
Deformable 3D Face Tracking 
in Real World Scenarios 

ZHANG, Wei 

A Thcjsis Submitted in Partial Fulfillment 

of Ui(，Requiremonts for the Dcgroc! of 

Doctor of Philosophy 

in 

Information Engineering 

The Chinese University of Hong Kong 

July 2010 



UM丨 Number: 3446026 

A" rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

UMT 
Dissertation Publishing 

UMI 3446026 
Copyright 2011 by ProQuest LLC. 

All rights reserved. This edition of the work is protected against 
unauthorized copying under Title 17, United States Code. 

uesf 
ProQuest LLC 

789 East Eisenhower Parkway 
P.O. Box 1346 

Ann Arbor. Ml 48106-1346 



Abstract 

Three dimensional face tracking is a crucial task for many applications in 

computer vision. Problem like face recognition, facial expression analysis and 

animation, are more likely to be solved by if the geometry and appearance 

properties are available through a 3D face tracker. 

In the first part of the thesis, the problem of tracking a non-rigid 3D face 

is studied. A novel framework for non-rigid 3D face tracking is proposed for 

applications in live scenarios. In order to extract more information of feature 

correspondences, the proposed framework integrates three types of features 

which discriminate face deformation across different views. The integration 

of these complementary features is important for robust estimation of the 3D 

parameters. In order to estimate the high dimensional 3D deforinatioii param-

eters, we develop a hierarchical parameter estimation algorithm to robustly 

estimate both rigid and non-rigid 3D parameters. We show the importance of 

both features fusion and hierarchical parameter estimation for reliable tracking 

3D face deformation. Experiments demonstrate the robustness and accuracy 

of the proposed algorithm especially in the cases of agile head motion, drastic 

illumination change, and large pose change up to profile view. 

The video based face recognition is studied in the second part of the thesis. 

Compared to the still image based recognition methods, the video based meth-

odssharc the merits of spatial temporal coherence among image sequences and 

over complete training samples. We propose a framework for the task of face 

recognition in real-world noisy videos based on 3D defonnable face tracking, 



which can directly estimate face pose for a view-based face recognition scheme. 

Meanwhile, the precise non-rigid tracking provides well-aligned face samples 

for the subsequent recognizer. At the recognition stage, three types of feature 

descriptors, including Regularized LDA, LE and sparse represontatioii, are 

exploited. Extensive experiments conducted on the real world videos ciernon-

strate that the proposed recognition framework can achieve the statc-of-the 

art recognition results, oven with the usage of a simple classifier. 

Finally, a performance driven face animation system is introduced. The 

proposed system consists of two key components: a robust non-rigid 3D track-

ing module and a MP EG 4 compliant facial animation module. Firstly, the 

facial motion is tracked from source videos which contain both the rigid 3D 

head motion (6 DOF) and the non-rigid expression variation. Afterward, the 

tracked facial motion is parameterized via estimating a set of MP EG 4 facial 

animation parameters(FAP) and applied to drive the animation of the target 

avatar. 
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摘要 

在§t算機視覺科學中，基於三維模型的人臉跟踪是一個關鍵的研究課題。通 

過人臉跟踪算法得到的人臉的幾何和表觀特徵，對解決人臉識別，表情分析和動 

畫生成等領域的很多課題，都有著重要的意義。 

在論文的第一部分，我們著重討論了基於非剛體假設的人臉跟踪算法。對於 

現寅場景中的人臉跟踪問題，我們提出了一個全新的算法框架。該框架包含以下 

幾個方面的要素：我們採用了三種不同的局部特徵抽取算法進行人臉特徵抽取， 

從而保證了在不同的視角下都能夠盡可能多的抽取用於匹配的二維特徵點集；同 

時，我們利用可形變的三維人臉模型來描述人臉的非剛性運動。在建立二維特徵 

點和三維人臉模型對應的基礎上，我們利用魯棒參数估計的方法來估計人臉的剛 

性運動參數和非剛性運動參數。在實驗部分，我們在大量的真寅場景下的人臉運 

動視頻中測試了我們所提出的跟踪算法的有效性。對於真寅場景中常見的極端狀 

況：包括快速的姿態變換，誇張的表情和不同的光照情況，我們都可以進行有效 

的跟踪。 

基於視頻的人臉識別算法，是我們論文的第二個硏究課題。和通常的基於圖 

像的人臉識別算法相比，視頻中的人臉識別問題有以下兩個方面的優越性：視頻 

中的人臉信息存在時域和空域上的約束性；基於視頻的訓練様本對於特定的識別 

對象提供了完備的描述。對於現賁場景中的人臉視頻識別問題，我們利用非剛體 

的人臉跟踪方法，分析每一頓圇像中的人臉的姿態，並對人臉特徵點進行精確的 

定位。通過精準的人臉抽取和對姿態進行分類，我們解決了人臉識別中常見的姿 

態蜜化和配準問題。在人臉識別階段，我們三種不同的特徵抽取算法和簡單的分 

類模式進行單頓圖像的人臉識別。為了測試我們的識別算法在真霣場景中的有效 

性，我們對於大量從互聯網上所獲取的視頻進行識別實驗。和在相同數據集上的 

其他識別算法相比，我們所提議的識別算法獲得了大幅度的識別率的提升。 

在論文的最後一部分，我們研究了基於表情驅動的三維人臉動畫生成。我們 

所提出的動畫生成系統包含瞭如下兩方面的要素：魯棒的三維人臉追踪和基於 

MPEG-4的表情生成系統U我們通過人臉跟踪算法，對驅動源中的三維人臉運動 

信息進行的有效抽取。在表情驅動階段，我們利用MPEG-4中表情參數的定義對 

三維人臉運動進行參數化求解，並利用鍾些表情參數進行三維動畫的生成。 
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Chapter 

Introduction 

One of the great challenges in computer vision is to build a system that can 

precisely track the facial motion. This task is difficult because the unpre-

dictable nature of the facial motion. A face can appear in a variety of poses 

and expressions, and is often surrounded by clutter. Currently, most existing 

systems typically require strict assumptions, for example, near-frontal motion, 

unique illumination, or simplified background. 

In the first part of the thesis, we focus on the problem of three-dimensional 

face tracking, a specific sub field of the research topic on face tracking, for the 

following potential advantages. Problems like face recognition, facial expres-

sion analysis, lip reading are more likely to be solved if a stabilized image is 

generated through a 3D head tracker. Determining the 3D head position and 

orientation is also fundamental in the development of vision-driven user inter-

faces, and, more generally, for head gesture recognition. Furthermore, head 

tracking can lead to the development of very low bit-rate model-based video 

coders for video telephone. Most potential applications for head tracking re-

quire robustness to significant head motion, change in orientation, or scale. 

Moreover, they must work near video frame rates. Such requirements make 

the problem even more challenging. 

Many approaches have been proposed to recover 3D head motion. The 

first type of approaches are to use distinct image features [60] [61] [34] [45],which 
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work well when the features may be reliably tracked over the image sequence. 

When good feature correspondences are not available, tracking the entire head 

region using a 3D head model is more reliable. Both generic and user-specific 

3D geometric models have been used for head motion recovery [22] [29]. With 

precise initialization, such models perform well and introduce minimal error. 

However, when the initialization step is not good, model error will increase 

substantially and degrade motion recovery. To alleviate initialization errors, 

it is often an effective and robust way to use a much simpler geometric head 

model. Various planar model-based methods have been presented [6] [3]. They 

model the face as a simple plane and use a single face texture to recover head 

motion. The approximation of a planar face model introduces trivial model 

error, which is less sensitive to small initialization errors. When the head 

orientation is not far from the frontal view, the planar assumption works well. 

To represent the geometry of the entire head, a more complete 3D model is 

necessary. In [10] [5], an ellipsoidal model was used with good results for 3D 

head tracking. Cascia et al. [50] brought out a fast 3D head tracker that 

treats a 3D head as a texture-mapped cylinder. The head image is treated as 

a linear combination of a set of bases that are generated by changing the pose 

of a single face image. The head pose of the input image then is estimated by 

computing coefficients of the linear combination. Though simple and effective, 

the usage of of a single, static template is unable to accommodate the scenarios 

in which large out-of-plane rotation drives the face away from the camera. In 

90] [11] [85], a more sophisticated 3D face was used to achieve high precision 

3D tracking result, with the aid of robust statistical approaches for outlier 

rejection. 

The previous mentioned approaches handle only rigid motion, where the 

non-rigid facial deformation is treated as errors via the robust techniques. 

Meanwhile, some specific vision tasks, for example, expression recognition, 

performance driven animation, have the requirement to analyze the detailed 
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facial motion. Most of the non-rigid tracking algorithms have been applied for 

the 2D cases, since it is relative easy to acquire the descriptive representation 

like silhouette or contour. For the 3D case, a parametric model is often ex-

ploited to describe the non-rigid facial deformation. One of the representative 

work comes from [8], a linear deformation 3D shape model is used for the reg-

istration of faces. In [100], a similar linear 3D model is used to track the facial 

deformation caused by expression variation. However, these non-rigid tracking 

systems suffer from the generalization problem since the appearance feature 

they depend on is locally adaptive to the specific tracking target. They need 

special training for the tracking target to achieve a good result. 

In Chapter 3, we propose a feature based framework for 3D tracking of the 

deformable face. In order to extract more discriminative information on face 

deformation across different views, we combine three types of features: the 

semantic features which are the same as those defined in ASM, the silhouette 
1 

features which are dynamically specified and matched according to different 

poses, and the online tracking features which are obtained by the robust match-

ing of image interest points. In addition to the feature augmentation, we show 

that hierarchical parameter estimation is quite important to progressively re-

ject outlier feature correspondences and estimate both rigid and non-rigid 3D 

parameters. In our framework, the parameter estimation is formulated as an 

energy minimization problem under the constraint of a deformable 3D face 

model which usually converges in a few iterations, thus fulfills the real-time 

tracking task. With comparison to other non-rigid face tracking algorithm, the 

proposed tracking framework may have potential advantages in the following 

aspects. Firstly, it has a strong generalization power with the usage of local 

feature descriptors for face tracking. No special training is required for a spe-

cific tracking target: Meanwhile, no special parameter tuning work is required, 

all the tracking parameters are fixed for all persons. 

In the second part of the thesis, we put our focus on the topic of video based 
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face recognition, which is generally built up on a robust tracking subsystem. 

During the past decades, research topics on object recognition especially the 

biometric related recoguition such as face are extensive developed. Despite 

recent efforts [114],[113],[74], accurate and robust facc recognition remains a 

challenging task in live scenarios, where the major difficulties lie in the appear-

ance variations arising from changes in pose, expression, illumination ,partial 

occlusion and motion blur. At the same time, video based face recognition 

has received significant attention in the community of computer vision since 

it can take full advantage of temporal coherence among consecutive frames to 

achieve more accurate recognition rate, where the weak recognition decision in 

each frame is integrated over the whole sequence. 

For the tasks of video based face recognition, the first and principle prob-

lem to be addressed is to efficiently and effectively track the face for samples 

collection. It plays a key role for the success of recognition procedure. All 

the tracking for recognition approaches can be divided into categories by the 

tracking modules they used. 

Due to the maturity of 2D face tracking techniques over the past decades, 

the majority of existing video face recognition approaches are based on 2D 

tracking [2], [48]. As for the state-of-the-art 2D face tracking approaches[48] [77], 

appearance changes caused by face pose or viewpoint are learned by SVM 

13], LDA [64], GMM [24] or a combination of such techniques. However, the 

tracking precision of these methods are limited with the rectangle described 

results, which contain a clutter background and cannot guarantee to provide 

well aligned faces. Although some techniques can be developed to reject bad 

2D tracking results based on training a classifier on well cropped faces [48], 

they need a labor heavy work at the training stage where large amounts of 

samples are needed. Furthermore, view classification and appearance learn-

ing is significantly depended on the training data set arid do not have good 

generalization capability for real-world applications. 
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3D tracking based methods belong to another category for video recogni-

tion, which try to recover rigid facial pose for the recognition task. In [31], 

person-spccific textured 3D face model is used for face pose estimation across 

video frames. Promising results have been achieved with the usage of a simple 

confidence megusure for characters recognition in featured movies. Similar 3D 

face model is used in [104] where 3D tracking is performed with illumination 

compensation. The main problems of above approaches are that considerable 

amount of user supervision is required to fit a textured 3D faco model for 

tracking. Moreover, the using of holistic appcaraiice template or model for 

face tracking does not work robustly in practice. 

In Chapter 4, wc propose a new tracking for recognition method which 

targets for applications in live scenarios. At the face tracking step, the re-

lated tracking module takes the advantage of 3D morphablc model (3DMM) 

for non-rigid shape representation and uses local features set for facial appear-

ance description, which include both off-line trained facial features and online 

tracked image features. Meanwhile, a hierarchical shape and pose estimation 

strategy is used for robust estimation of both rigid and non-rigid motion pa-

rameters. The integration of all the above ingredients ensures the tracking 

robust to occlusion, deformation and illumination changes, which arc often 

encountered in the real world application. 

Given the robust 3D tracking results, a simple recognition strategy is used 

at the recognition stage which consists of the following two aspects. Firstly, for 

each tracked frame, we use the widely used feature descriptors, for example, 

Regularized LDA [57], LE descriptor [14], sparse representation [97], for fea-

tures extraction. Nearest Neighbor is used to selected the candidate identities; 

Secondly, for the whole tracked sequence, a simple frame fusion fusion scheme 

(voting scheme and distance fusion) is utilized to select a best matched identity. 

The confidence of 3D tracking is measured through the geometric consistency 
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of facial features matching with the 3D model, which are used to select re-

liable frames for recognition. Given the extensive experiments on the public 

video dataset, we show that the proposed non-rigid tracking based recogni-

tion approach achieves significantly performance improvement over existing 

approaches, even with the usage of a simply holistic feature descriptor. 

In the last part of the thesis, the problem of performance driven realistic 

facial animation is studied, which is still built up on the ba^ds of noii-rigkl face 

tracking. The human face animation is a challenging task for both fields of 

research. In psychology, it has the demand for realistic, but controllable face 

stimuli. On the other hand, a good understanding of the cognitive processes of 

face perception in humans would clearly help Computer Graphics researchers 

and artists in the difficult task of synthesizing realistic virtual humans. With 

the successful of vivid facial animation generation, a variety of industrial appli-

cations could benefited: computer games, hunian-coinpiiter interfaces (HCI), 

teleconferencing, medical rehabilitation systems, computer based training and 

consulting as well as the film industry. 

In order to achieve the goal of realism facial aiiiiriation acquisition, the 

real-world facial data is used extensively. Shape and appearance information 

of a face and its deformation arc measured in a 3D scanner and then con-

verted into a morphabic 3D face model. Additionally, motion information for 

a sparse set of facial markers is acquired using an optical Motion Capture sys-

tem. The deformation of the 3D model are computed from motion capture data 

by decomposing the marker trajectories into seriiaritically ineariingfiil motion 

elements based on the Facial Action Coding System (FACS) [28], which defines 

a set of basic facial motions called Action Units (AUs). These AUs approx-

imately correspond to natural muscle activations, providing an intuitive and 

accurate system for annotating facial motion. Using FACS as a basis has the 

following two additional advantages. Its semantics allow easy retargeting of 
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the motion onto any facc model that uses the saiiu) semantic structure. In con-

trast to approaches that use statistical concepts sucli as Principlo Component 

Analysis, AUs can be verbally described. Tlius, matching facial expressions 

can be generated by actors or artists. Furthermore, AUs dcscribo local offccts 

in the face which is beneficial for a generative inodd of facial motion. It has 

been argued that AU activations might fail to describe the facial state accu-

rately since they might rcfloct the combined activations of multiple muscles 

and do not take temporal information into account [30]. However, most of 

the above animation systems are built on the basis of a complicated motion 

capture subsystem, which make it infea^jible to be applied on a low-end PC. 

'Ill Chapter. 5, we present a system for realistic facial animation that trans-

fers the captured facial motion into seiiiantically meaningful cxpressional chan-

nel based on the MP EG-4 standard. The proposed animation system consists 

of two key components: a robust non-rigid 3D tracking modulo and a MPEG4 

compliant facial animation module. Firstly, the facial motion is tracked from 

source videos which contain both the rigid 3D head motion (6 DOF) and the 

non-rigid expression variation. Afterward, the trackccl facial motion is param-

eterized via estimating a set of MPEG4 facial animation paraineters(FAP). 

As the final step, these FAP values are transferred to the MPEG4-compliarit 

face model for the animation purpose. The proposed tracking and anima-

tion system has a strong generalization ability and can bo used in the indoor 

environment with no additional assumptions. 

1.1 Thesis Framework 

The rest of thesis is organized as follows. In Chapter. 2，wc give a brief 

view of the tracking related work. The proposed non-rigid tracking framework 

is presented in Chapter. 3. In Chapter. 4, the video based face recognition 

is introduced with the experiments results. Chapter. 5 shows the system of 
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performance driven facc animat.ion. In Chapter. 4.5, w(，conclude the thesis 
and highlight tlie future work. 



Chapter 2 

Related Work 

There is an abundance of visual tracking work in tho literature, from a simple 

template matching approach [38] to a 3D rnodol-based algorithm [100). Tliese 

algorithms differ mainly in the representation schcrne: ranging from color pix-

els, blobs, texture, features, image patchcs, toiiiplatos, aclivc contours, snakes, 

wavelets, eigcnspace, to 3D geometric models; and in the proclictioii approach, 

such as correlation, sum of square distance, partick; filter, Kalnian filter, EM 

algorithm，Bayesian iiifcrciicc, statistical models, mixture inocicls, and opti-

mization formulations. A thorough discussion of this topic is beyond the scope 

of this thesis. In this chaptoi, we review only the most rolovant objcct tracking 

work and focus on the algorithms that operate directly on gray scale images. 

2.1 Template Based Tracking 

Hager and Belhunicur [38] propose a tracking algorithm, using parametric mo-

tion models, which holds a constant referencti tor叩late. To avoid computing 

the whole .Jacobian matrix at every iteration, it is factored into a constant part 

that is depended on the brightness gradients of the rcfcrciicn template multiply 

the spatial derivative of the transformation, and a variable part consisting of 

the derivative of the transform with respect to the motion parameters. Illu-

mination is handled by learning a siibspace from training samples taken from 

9 . 



Chapter 2 Related Work 10 

various lighting corulitions and using it to precoriiputc a constant correction 

matrix. M-estiniation, implemented using iteratively rowcightocJ least-squares, 

is used to handle partial occliisiori. 

Shi And Toina.si prosnnt a local fcaturo tracking algoritliiii for identifying 

and tracking a sot of feature points [76]. Their systorn computes only the 

translational component of motion during tracking. In an attempt to solve 

the drift problem, the features are monitored during tracking by warping them 

back to the original frame using an affine motion model. The similarity between 

the feature points in tlic current and original frames is computed via the sum of 

squared differences (SSI)). If the dissimilarity of a feature between the original 

and curroiit frames becomes too huge, then that feature is discardnd. 

Tracking with fixed template can be reliable over short duration, but it 

is poorly to handle witli appearance during a long tracking period, which is 

common in most scenarios. One can improve the robustness of such trackers 

by representing the variability of each pixel in the template. This allows the 

tracker work efficiently against a clutter hackground. 

2.2 Subspace Based Tracking 

Tracking robustness can be further enhanced with the use of siibspacc mod-

els of appearance. Such view-based methods, usually learned with Principle 

Component Analysis (PCA), have the advantage of modeling variations with 

lighting and pose. However, they still have the disadvantages that they are 

object specific and require that training prior to tracking for tho appoararice 

subspace learning. 

In [7], two contributions have been made to the subspace-based tracking. 

First, matching between the eigcnspace and the image is made robust by re-

placing the eigcn-coefficients with a robust norm error functions that are robust 

to outliers arising from occlusions, background clutter, and noise. Second, they 
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introduce the subspacc constancy assiiniption, which is a generalization of the 

notion of brightness constancy used in optical flow. 

Cootus cl al.[21) introduced Activc Shape Model (ASM) as a method for 

representing and searching for 2D shapes. An ASM is obtained from a train-

ing set which hgus been aiinotatod with landmark points. The training set is 

first aligned by Procrust Analysis. Thereafter, a mean shape and a matrix 

containing tho main modes of variation about the mean shape arc determined 

using PC A. Any particular shape from the class can be expressed as a com-

bination of the mean shape plus a set of shape jjarainetcrs tiinos th(i modes 

of variation.. The shape parameters have a zero mean Gaussian distribution. 

New shape similar to those from the class can b(; generated by varying the 

shape parameters with a range of a few standard deviations. Searching a new 

image using an ASM is an iterative process, consisting of placing the ASM 

in the image and then moving the points towards the strongest edges under 

the constraint that shape parameters remain within tlie siilxspacc and liave a 

Gaussian prior. 

Cootes ei al.[20] later introduced Active Appcararicc Model (AAM), which 

extends the local feature model with a shapc-frcc appearance model. The 
e 

appearance model is obtahic^d by warping the training imago to the mean shape 

and then apply PCA to the extracted textures. The shape and appearance 

parameters arc then concatenated into a single vector. Allowing for different 

in units and a further PCA is applied on this data to obtain a combined model 

that controls both shape and appearance. A A Ms can be used to generate 

photorealistic reconstructions of objects like faces, and varying the appearance 

parameters within a few standard deviations can generate novel images from 

the same class. As with ASMs, an AAM search consists of placing a model in 

an image and then changing the appearancc parameters under the constraint 

that they remain within the subspacc and have a Gaussian prior. Both ASMs 

and AAMs have been used for tracking. For instance, during tracking one 
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would expGct identity to roniairi constant while expression, pose and lighting 

vary with their own clyiiamics. Tlic shortcoming of this approach is that these 

residual variations are (lass-.specific. 

2.3 3D Model Based Tracking 

The common 3D model based methods assume that a 3D model of the target 

object is available a priori. The ta.sk of tracking is thus rod need to registering 

the model with the image of the target in the sc(3iio. Tlieso approaches can be 

divided into two categories by their tracking precision. 

2.3.1 Rigid 3D Tracking 

In the case of only rigid motion is considered, the most coiniiion strategy is to 

use simple geometric head models. Xiao et al. [101) propose a 3D face track-

ing algorithm, which recover the rigid motion of the head from an input video 

using a cylindrical head model. It recovers the global motion l)y minimizing 

the difference of texture or optical flow between observation and the model. 

As a template matching based approaches, the propos(3(l system builds up a 

set of refcrciico ternplato online and register the input frame to the registered 

templates dynamically. To handle the non-rigid motion and occlusion,the iter-

atively re-weighted least squares (IRLS) technique is used for registration error 

norm minimization. To accoinrnodate the sclf-occliisioii and lighting variation, 

the templates are dynamically update using robust techniques. Similar head 

geometry and matching strategy is used in [50]. However, the illumination 

is compensated by the prccomputed illumination basis vectors. Vacchetti et 

al. [86] used multiple key frames and feature point matching to estimate the 

motion of their model under large pose variation. These approaches assume 

that the 3D shape of the object does not change during tracking, they do not 

need to handle the non-rigid deformation. 
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For all the rigid 3D tracking, the nunibcr of all the model parameters are at 

most 6-cliin. The low cliineiisioiiality of the pamniet'er space results in robust 

tracking performance wlicn compared to the high dimensionality of the AAMs. 

In addition, these methods do not require any learning stage, which means that 

they are person independent. Moreover, they are robust to a large pose change 

because they use the whole area of the head in the image instead of a specific 

part. 

2.3.2 Non-rigid 3D Tracking 
» 

Some researchers tried to track the deforming shape and global motion at the 

same time. Structure from motion is a typical band of approachns which di-

rectly derive the 3D object structure from the input iniage stream. Bregler 

et al. [9] proposed a factorization method to siinultaricously reconstruct the 

non-rigid shape and camera projection matrices. This method was extended 

to a trilinear optimization approach in [83]. The optimization process involves 

three types of unknowns, shape vectors, shape parameters, and projection 

matrices. However, thesti factorization boused approach require a high quality 

sparse features correspondence during the whole tracking sequences. Other-

wise, robust techniques are required to reject outliers for prccious structure 

acquirement [12]. 

When the prior of tracking targets deformation is available, DoCarlo and 

Metaxas [22] used a deforming face model whose fitting algorithm integrated 

optical flow and edge information. 2D + 3D AAM [100] is flexible model 

that can explain the varying shape and appearancc of a non-rigid objcct. It 

is especially useful when we arc interested in describing a specific part of a 

3D object and the part is always visible because the AAM require that the 

topology of the shape must be consistent. 3D niorphablc models (3DMMs) [8 

is another type of flexible model that are very similar to the 2D+3D AAM 
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that are extension of the traditional 2D A A Ms by incorporating 3D shape 

models into themselves. They require a large niiinber parameters to describe 

the detailed variations of the shape and appearaiicc and lack of generalization 

since precornputation of appearance is required. Meanwhile, these algorithms 

are not adequate for tracking of large head pose change and the quality of the 

estimated 3D sliapcs cannot be guaranteed. 



Chapter 3 

Non-Rigid 3D Face Tracking 

In this chapter, we develop a novel framework for 3D tracking of the non-

rigid face deformation from a single camera. The difficulty of the problem lies 

in the fact that 3D deformation parameter estimation becomes unstable when 

there are few reliable facial features correspondences. Unfortunately, this often 

occurs in real tracking scenario when there is significant illumination change, 

motion blur or large pose variation. In order to extract more information 

of feature correspondences, the proposed framework integrates three types of 

features which discriminate face deformation across different views: 

- t h e semantic features which provide constant correspondences between 

3D model points and major facial features; 

- t h e silhouette features which provide dynamic correspondences between 

3D model points and facial silhouette under varying views; 

- t h e online tracking features that provide redundant correspondences be-

tween 3D model points and salient image features. 

The integration of these complementary features is important for robust es-

timation of the 3D parameters. In order to estimate the high dimensional 

3D deformation parameters, we develop a hierarchical parameter estimation 

algorithm to robustly estimate both rigid and non-rigid 3D parameters. We 

1 5 
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show the importance of both features fusion and hierarchical parameter esti-
mation for reliable tracking 3D face deformation. Experiments demonstrate 
the robustness and accuracy of the proposed algorithm especially in the cases 
of agile head motion, drastic illumination change, and large pose changc up to 
profile view. 

3.1 Motivation 

Reliable tracking of 3D deforrnable faces is still a challenging task in computer 

vision. The basic difficulty is that we need to estimate dozens of rigid and 

non-rigid 3D parameters from noisy image observation. The situation becomes 

even worse when the face is in profile view and almost half of the face region 

is occluded. 

There are mainly two categories of 3D deforrnable face tracking algorithms. 

The first one is appearance based approach [100] which uses generative linear 

models of face appearancc such as 2D Active Appearance Models (AAM) [65 

and 3D Morphable Models [8] to capture the texture and shape variation of 

face respectively. The deformation parameters can then be efficiently esti-

mated using gradient descent optimization. However, it is known that AAM 

has quite weak generalization capability because the general face texture space 

is too large to be capturccl by reasonable size training data. Therefore such ap-

proaches are limited to be used in conditions similar to the training data. The 

second one is feature based approach which uses aggregation of sparse facial 

features to represent face. The face variation is captured either by a multiple 

view 2D Active Shape Model(ASM) [115] or a complete 3D shape model [36] or 

a combination of both [89]. Compared with the appearance based algorithms, 

the feature based algorithms have better generalization capability. However, 

the local features used in ASM are semantic features whose correspondences 

in 3D model are manually defined. They are mainly located in regions around 
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eyes, nose, and mouth which could be severely occluded when the face is in 

poses with pan angle larger than 45 degrees. However, the shortage of reliable 

semantic correspondences could make the tracking unstable. 

In this chapter, we propose a feature based framework for 3D tracking of 

the deformablo face. In order to extract more discriminative information on 

face deformation across different views, we coinbino three typr^s of features: 

the semantic features which are the same aa those defined in ASM, the sil-

houette features which are dynamically specified and matched according to 

different poses, and the online tracking features which are obtained by the 

robust matching of image interest points. In addition to the feature augmen-

tation, we show that hierarchical parameter estimation is quite important to 

progressively rcject outlier feature correspondences and estimate both rigid 

and non-rigid 3D parameters. In our framework, the parameter estimation 

is formulated as an energy minimization problem under the constraint of a 

deformable 3D face model which usually converges in a few iterations, thus 

fulfills the real-time tracking task. 

3.2 Algorithm Overview 

Figure. 3.1 shows the flow diagram of the tracking algorithm at frame t: given 

the input image, the algorithm builds up the feature matches and estimates the 

3D pose and deformation parameters in a hierarchical way: Firstly the initial 

3D pose parameters are estimated from online interest point information, then 

the initial feature matchcs are refined by rejecting many outliers and the shape 

and pose parameters are estimated in an iterative way. Since the shape and 

3D pose estimation are based on feature matching between the neighboring 

frames, it is well known that such a strategy always suffers from acciirinilated 

drift. Our solution is the usage of key-frames and to anchor the current frame 

to them. The key-frames arc selocted online from the past estimated frames 
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Image input at frame 

Initial interest points matching 

1 t 
Initial pose estimation 

Refined Interest 
points matching 

Semantic features 
matching 

Silhouette features 
matching 

\ ， r 

Update local matching 

Output 3D pose and 
deformation parameters 

Figure 3.1: Flow diagram of the proposed algorithm 
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with high accuracy in which pose and shape parameters arc deterministic. For 

the details of key-frame selection and matching, we take the similar strategy to 

90], the nearest best matched frames are chosc^n to anchor the current frame. 

Initial Pose Estimation: The initial 3D pose estimation is obtained from 

interest points matching among the current frame, previous frame and some se-

lected key-frames, the 2D interest points in previous frame and key-fraiiins can 

be back-projected into the 3D face model to get their 3D position. The initial 

pose in current frame can be estimated by the 2D-3D point correspondences 

in a Bayesian inference way. Details are given in Section. 3.8.1. 

Iterative Shape and Pose Optimization: Given the initial pose estima-

tion, the matches for semantic features, silhouette features, and interest points 

are obtained and refined, t heir 3D correspondences in the model arc also deter-

mined. Then the 3D pose and deformation parameters arc estimated from the 

2D-3D point correspondences. The above procedure is carried out itoratively 

until convergence is achieved. Details are given in Scctioii. 3.5. 

Tracking Initia/ization: In order to make the whole tracking algorithm 

fully automatic, we need to estimate the 3D pose and deformation parameters 

in the first frame: the face is first detected-by the face detector [102], then the 

facial features arc extracted by the face alignment algorithm [105]. Such facial 

features are semantic features whose 3D correspondences in the face model are 

fixed, so we can apply the POSIT algorithm [23] to estiinato the 3D pose using 

rigid semantic features and then estimate the 3D deformation parameters. 

3.3 3D Deformable Shape 

The shape of a face is defined by a 3D triangulated incsh. The shape vector is 

denoted as S = (”{，••.，w h e r e Vi = (x^, Zif, (i = 1 ’ . . .，n) are the 3D 



f 

•
暴
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coordinates of the z-th vertex. The dcforinatioii of a 3-D facci is described by 
a linear model [8][100][103], such as PCA: 

= (3.1) 
t=i 

where /i rcprcsnnts llio average shape froin the? training samples, are 

orthogonal shape vectors, and ai are scalar values indicating the contributions 

of the shape deformation from the z-th shape vcctor. 

3.3.1 Training 3D model from image set 

Collecting and labeling a large riiinil)er of 3D faces is itself a difficult problem. 

Several techniques [8],[111] have been developed to establish the correspon-

dence among 3D Utser scans automatically. However, no guarantee can be 

made as to the correctness of the correspondence with tlio usag(i of optical 

flow. In our work wc adopt a different strategy: use synthetic 3D faces instead 

of real faces for training the dcforniable shape model and local patterns. 

Our experiments involve two face set: A) Mixture of facc images from 

AR Database [63] and XM2VTSbd Database [66]: 2907 frontal images, each 

image is manually labeled with 83 landmarks. B) \JSF Human-ID Database 

8]: 100 laser scanners aligned to a 3D reference model of 8895 points. We 

create a synthetic 3D face database from A and B for training: Recall that 

the 2D face model uses 83 points, and each image in set A is labeled with 

those landmark points. In the meantime, cach 3D laacr scanned faco in set B 

are marked with 8895 roforciicc points. Therefore oiicc wc establish manually 

the correspondences between those 83 points and 8895 points, we know the 

texture mapping between any pair of image I in database? A and 3D face L in 

database B. A new virtual 3D face is generated automatically from I and L 

with the process in Figure. 3.3. 

Firstly, we compute the relative 3D pose of I with respect to L that mini-
4 

mizes their shape and post cliffcrcncc iteratively on the image plane; Secondly, 
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Input Image 
3D Scan Shape 

Figure 3.3: Diagram of 3D Face Synthesis 
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we utilize the MPEG Facial Animation Parameters (FAP) for the cxpiossion 

parameters extraction; At tlio last stcj), we cxtract texture froin tlio 2D image. 

If holes (self occlusion) exist, the interpolation technique is utilized to fill the 

missing entry. 

Repeating this proccss for every image in A and 3D shape 

databases B, we produce a gigantic database of over 2907 syrithctic 3D faccs 

with established correspondences. Observed from Figiiro. 3.2, the syrithctic 3D 

faces may or may not correspond to a real person, l)iit they are all plausible 

face instances. Even with texture holes exist, the reconstructed 3D face model 

can be used to train dciforrnablc shape model ami local appearance models 

without loss of performance. 

The original 3D face models have 8955 vertices and 17535 triangular facets 

which are too many for the 3D tracking task in a rolativcly low resolution 

video sequcncc, so wc simplify the original models which contain only 180 

vertices and 332'triangular facets. The 3D deforrnable facc; modd is trained 

on the simplified models via PC A, where 42—dim shape variations are kept 

with 99% energy proservcxl. In the cxpcriinont section, we will show that such 

a low dimensional - representation will handle the expression variation among 

different persons effectively. 

3.4 Local Features Matching 

There are three types of local features used in the proposed algorithm for 2D-

3D features correspondence seeking: the scrnantic features are defined in inner 

face region, such features have fixed concspondeiiccs in 3D iiiodol which does 

not change with 3D faco pose; the silhouette features locate at the boundary 

of the face region and their 3D correspondences arc dynamically determined 

according to the 3D facc pose; the interest points arc salient image features on 

the face, so they vary across images. The appearance of the first two type of 
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features have a fixed pattern so that they can be learned from training samples 
in offline training stage. The third type of features arc selected online by the 
image saliency. In'the following svibscctioris, we will describe the training and 
matching methods of all these local features. 

3.4.1 Discriminative Learning for Type I,II Local Fea-

tures 

The local appearancc model can be learned from a given sot of example images 

with ground truth annotations. The ta.sk of learning is to Uiarriing a fitting 

function (model) tliat host fitting an image. In most of the existing work, gen-

erative models are commonly used in learning; exarnplos of generative models 

include ASM [21], Gaussian Mixture Mode(GMM) [115]. Generative models 

learn the relationship between the ground truth feature point and their ap" 

pearances to characterize the intrinsic generating process of feature pattern. 

However, a generative fiiiictioii docs not typically represent the background 

and therefore not optimal to distinguish the ground truth feature points from 

their background: The local features associated with the neighborhood points 

of a feature point are often similar to that associated with the feature point; 

moreover, the" inost reprosciitativc features arc not always the host discrimina-

tive features. 

Given sufficient training examples, discriminative learning approaches can 

provide better fitting functions. Discriminate learning has been applied suc-

cessfully to object detection applications [88] [59][54], in which the problem 

is formulated as a classification problem. In the training stage, the image 

patches containing the ground truth points are considered as positives, and 

the patches containing the points from neighborhood arc treat as negatives. 

In testing, the location of the feature point is located by scanning, using the 

trained classification function, the test image over an exhaustive range. 
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Recently, discriminative learning ha« been incorporated into generative 

models to improve the pattern localization pcrforrnanco. In [105], the local 

pattern detcctors arc trained to rcplacc the generative inoclcls in ASM for bet-

ter locating the facial components. In [54], view based classifiers are plugged 

into the 3D post estimation to provide the evidence of whether tho current fea-

ture belongs to the target objcct or not. The mo dels built by these approaches 

improve the localization results. However, they could still have local extremes. 

Discriminative loarning via ranking is originally proposed to retrieve infor-

mation ba«(icl on user preference. It lias been widely used in the vision tâ sks 

recently, like shape registration [98], deformable shape segmentation [106 . 

In this section, wc utilizci a supervised learning algorithm, Rank Boost [33], to 

build the local feature model that ensures the pattern around tho ground truth 

position will more likely have a higher confidence output tlian its neighbors. 

The reasons that we prefer to rank learning for tho local appearance model 

other than classification and regression are as following: 

• Instead of learning a classification function that will discriminate all pat-

terns around the ground truth from all patterns around their neighbors, 

our target is to learn a measurement (function) thai only need to satisfy 

partial constrains on local pattern from one ground truth only with its 

neighbors, which meets the criterion for rank learning quite well. 

• Unlike the regression based approach, which enforces a rcgrossor to pro-

duce continuous output in the model spacc, ranking only tries to learn 
I 

partial relations of paired points from the samples. The less constraints 

on the continuous in the model space makes ranking to be more genera-

tive. 

A detailed comparative study on the relationship between these learning ap-

proaches can be referred to [106]. 



’ R( P2 ) < R( P1 ) < R( PO ) 
Figure 3.4: Rank Preference on the Facial Pattern 

In the rank learning problem, we have a set of samples {<f〜，巾„}，in which 
‘ 4 

denotes the samples collected froin the ground truth position, 

denotes the samples collected from neighbors. As shown in Figure. 3.4, let 

{Poj Pi}，{A) A } be pairs of point candidates and its associated feature pairs 

{xo, Xi}, {x i , x'2}. The ordering of {xq, Xi}, {x i , X2} is determined by their rel-

ative distance to the ground truth: a point Pq that is the ground truth has a 

higher rank than a point Pi from faraway. 

Mathematically, the learning task for feature ranking is to learn a ranking 

function R that satisfy the following constraints:-
R(x') < I|p�-pW > - p 

= R(x2) pi unrelated p^ 
(3.2) 

The RankBoost algorithm contains a set of weak ranking evaluation func-

tions F = {fi,i = 1，... TV}, where N is the number of weak ranking function. 

Based on different ranking tasks, the ranking features used in weak ranking 

function is different. In the proposed tracking system in this thesis, wc define a 

new ranking feature fi on the eigen-vector of the PC A model. Suppose we can 

train a PC A (generative) model S = {/i,少，A} of the local patches when given 

a set of ground truth patches. For a new input local patch, we can evaluate 
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REQUIRE: Initial distribution D over sample pairs l i : cp X cp 

RETURN： Final ranking function: y?(jc) 二 [ a,f , (jc) 

INITIAL： Set D^ = l> 

for t = 1 to maximum round do 

Training all weak learners {g^ }using the distribution D,. 

Evaluate each weak learner g, by the rank loss function: 

•，g,.) 二 )(g. (x, ) - g, (x^ )) 
{xO,x\)en 

Select the weak learner f, with maximum rank loss: 

f. =argmax == CXD,,!；) 

Set OC,-— 
‘ 2 

Update the sample pairs weight: 

n ( Y � _ D,K，…）exp(f\(Xo)-f.(-y,)) 
乙t 

Z, is a normalization factor that enforce D,^, to be a distribution. 

Add the weak learner into the final ranking function: 

end for 

Figure 3.5: Train Local Feature Models with RankBoost 
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the likelihood p(:c|«S) of the input patch x: • 
N 

P{T-\S) OC OXP(||4>'^(.7； - / / ) | | A ) = (3.3) 

The geometrical interpretation of the weak ranking function J\ is the projection 

value of X to the ？:—th cigcii-vector of the PCA niodcl S. 

The boosting algorithin uses a set of weak ranking functions F to update 

the distribution as shown in Figure. 3.5. Suppose that {xq, x\ } is a crucial pair 

so that we want to he ranked highcir than 工().Assuming for the moment 
* * 

that the parameter a, > 0, this rule decreases the weight Dt (xo,工1) if ft gives a 

correct ranking:ft{x{)) > ft {xi ) . Otherwise, the pair weight will be increased. 

Thus, Dt{-) will tend to concentrate on the pairs whoso relative ranking is 

hardest to determine, which is the basic mechanism of the boosting family 

approaches. 
r •* ‘ 

Based on the definition Eq. (3.3), the weak ranking function J\ satisfies 

that: 
0 < < 1. (3.4) 

Based on the conclusion in [33], when wc choose the weighted rules at = 1 � 
i (In the rank loss function Eq. (3.5) is bounded. 

‘ 1 . , (3.5) 
1, X ts true \ ‘ 

x \ — 
0, X is false 

< 

By taking into account the neighborhood and enforcing a rank prior in the 

learning stage, the discriminative local appearance model heus a better local-

ization ability with comparison to the traditional PCA model. We conducted 

experiments to compare the performance of the proposed models using Rank-

Boost with tliat using the traditional PCA models. We use the ratio of of 

correct rank pairs to the total pairs ais an index to evaluate the localization 

power of the proposed models. 
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Figure 3.6: Annotated Image with 68 Feature Points 

Given an image set of 721 images, where each image is annotated with 68 

features points as shown in Figure. 3.6. For each annotated feature point, we 

collect a 9 X 1 image patch centered at ground truth. Meanwhile, we collect a 

9 x 5 neighbor regions around the ground truth with a fixed stepsize of 2 pixels. 

These collected patches are constructed to rank pairs by their relative position 

to the ground truth. To take the comparison into a unified framework. For 

the PC A model, we take the Mahalanobis distance tis the rank function. 

Figure. 3.7 give the comparison result for all 68 features points. The pro-

posed rank models outperform the traditional PCA models in all the points, 

while the maximum accurate rate over the traditional PCA models is more 

than 10 percentage. 

3.4.2 - Silhouette Feature Matching 

For the semantic features and silhouette features, the process of their offline 

training stage are mentioned in Section. 3.4.1: they both have annotated 

ground truth in the training images. However, the silhouette features are 

slightly different from semantic features since their 2D positions and 3D corre-

spondences are dynamically changed with respect to face pose. In the following 
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Figure 3.7: Localization Power Comparison: Rank Model V.S PC A 

subsection, we describe our method to determine of the 2D-3D correspondences 

between silhouette features and 3D face model. The whole proccss for silhou-

ette feature seeking and correspondence determination is performed by the 

following algorithm that include four steps with the results, on an example 

image, is shown in Figure. 3,8. 

1. Mesh map: First a mesh map is constructed. A rnesh map is a rendering 

� of the face, but instead of setting the R, G, B color at one pixel, a index 

of a facet which covers the pixel is set. If more than one facet cover 

the, same pixel, the index of facet which has the minimum depth value 

is kept. Such a process is similar to the Z-buffer algorithm in computer 

graphics. -
‘ . 

2' Binary map: The mesh map is converted to a binary map, in which ^ 
/ 

value of 0 is for a pixel in the face area, and 1 is for a pixel outside the 

face area. 
, 、 . 、 

• 

3. Contour Map: Since face region in a binary map has good connectivity 

(no holes). A scanline algorithm [99] is used to determine the contour 

map. Each pixel on this contour map set to 1 is on the contour of the 

f a c e . . ‘ 
4. Silhouette Features Sampling the contour map with a fixed stepsize. For 
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Figure 3.8: Illustration of silhouette representations by sparse points 

each sample among these pixels, seeking into the mesh map for the in-

dexes of the model vertexes on the contour. 

A 3DMM does not model the entire head model. As a result, some parts of 

its contour, on the lower part of the neck and on tho top of the forehead, 

arc artificial. These artificial contour points are skipped at the sampling step: 

since the.artificial part of a contour is present always in the same area of the 

face, a list of the vertex indexes on the artificial contour can be made so that 

the contour vertex indexes that are on the artificial contour list are removed. 

This post-processing step makes sure the validation of the contour vertex used 

for fitting. 

Although some previous work uses silhouette information [47] for 3D mo-

tion estimation, the silhouette is often used in curve form and evolved using 

level-set techniques [11], The cosl; of curve optimization is usually high and 

not suitable for real-time applications. Our point based silhouette represen-

tation is more flexible and can be efficiently integrated into a 3D pose arid 

deformation estimation algorithm as described in Section. 3.5. Furthermore, 

the appearance model of the silhouette can be trained to achieve more stable 

performance during curve searching. 
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3.4.3 Type III Local Features 

Point detectors are used to find interest points in images which have an ex-

pressive textures.lt has been a long history that most motion estimation and 

tracking problems utilize the point dctectors for cues extraction. A• desirable 

quality of an interest point is its invariarice to changes in illumination and 

homography. In the literature, commonly used interest point detectors include 

Harris point detector [40], KLT dctector [76], SIFT [62] etc. A comparative 

evaluation of interest point detectors can be referred to the survey by Mi kola-
4 

jczyk and Schmid [67]. In the proposed tracking system, we take the KLT point 

detectors to find the interest points, without loss generality and performance. 

Interest Point Selection 

The KLT detector computes the first order image derivatives, ( /x , ly), in x 

and y directions to highlight the directional intensity variations, then a second 

moment matrix M , which encodes the mentioned variation , is computed for 

each pixel in a pre-assigned neighborhood: 

M = (3.6) 
V TJl J 

An interest point is identified by finding the minimum eigenvalue A„“„of M 

'\fjnn = miri{A|Mf = A”}, ||?;|| = 1. (3.7) 

The'interest points are marked by thresholding Knin after applying nonrriaxima 
I suppression (NMS). Similar idea is used in Harris point detector except that 

{ 

a new threshold rule definition R:R = det(M) — ktr(M)^. The only difference 

between these two point detectors is that KLT enforces a predefined spatial « 
distance between the detected interest points. 
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Integral Image Technique for Fast Computation If the calculation in 

Eq. (3.6) is implemented in a straightforward way, the computational complex-

ity is 0(MA/'mn),where MN is the size of input image and nin is the size of 

a local window. This computational effort is not acceptable for most practical 

applications, especially when the real time tracking is concerned. Here we uti-

lize the integral image technique to reduces the computational complexity of 

the traditional normalized cross correlation from 0{MNrrin) to 0{MN). The 

proposed technique is invariant to the window size, and results in significant 

savings of computation time. 

Given an image input / ( x , y) of size M x ;V,tho intogral image associated 

with I(x, y) is constructed by: 

/ / ( x , 2/) 4- - 1,7/) + 5(x-, ?y - 1) - ~ 1, ?y - 1), .x > 0, y > 0 
S{x,y) = i 

y 0, X < 0, y < 0. 
(3.8) 

The sum of / ( x , y) can then be calculated from the integral image as: 

m / 2 n / 2 

/ ( x + j) =S{x 4- 7n/2, y + n/2) (3.9) 
i=-m/2 j = -n/2 

‘ —S(x - m/2 — l , y � + n/2) 

- S { x + m/2，y - n / 2 - 1) 

+ S(x 一 m/2 — l,?y — n/2 — 1). 

Point Tracking 

After all interest points are located, their features can be tracked across the 

frame by the template matching criterion. To dccide whether features are 

being tracked successfully or not, wc could examine the value of the discrep-

ancy between the intensities of the image patch centered at the interest points 

across frames. However, such discrepancy function does not compensate for 
、 

differences in the intensity variation among the patches of interest. A patch 
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with high variation gives high residual bocausc of pixol (quantization and in-
terpolation during the matching. A suitable discrepancy function turns out to 
be the normalized cross-correlation. 

The normalized cross correlation used for finding matches of a reference 
template t{i, j) of size rn x n in an image / (x , y) of size M x N is defined as: 

m / 2 n/2 

+ rn/2J + n/2)I{x + /:，y + j) - rnnfiifit 
xr/ � l=-Tn/2 J--TI/2 

/ m / 2 n / 2 \ ^ 

y^ 广(工 + y + j) - mn"� 

乂 1= 一 m / 2 J. = —71/2 

where fii(x, y) is the mean of local patch centered at (x, y) and is tlie mean 

of the reference template. In the feature tracking stage, we find an iiislHiice of 

a small reference template from previous image around tho interest point. By 

sliding the template in cnrrcnt image by a pixel-by-pixel ba^is, we compute 

the normalized correlation between them. Tho niaxiiniiin values or poaks of 

the computed correlation values indicate the matches between a template and 

image patch in currcnt frame. Meanwhile, the integral tcchiiiqiic is used here 

again for the computation of y). 

Since the 3D pose and deformation parameters of previous frame and key-

frames are assiiined to bo known, the 3D correspondences of the interest points 

can be calculated. It should be noted that the online matching of interest 

points could have many outliers. With the estimate of current 3D pose and 

deformation parameters, we can accordingly reject the matches which vio-

late the geometric constraints among the previous frame, current frame and 

key-frames. Such rejection technique is applied in the poso and deformation 

estimation i^rocess described in Section. 3.5. 
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з.5 Hierarchical Shape and Pose Inference 

The 3D face parameters to be estimated are denoted as {a, Q},where Q = 

{/?, T } represents the rigid motion of six parameters (three for object rota-
tion and three for its translation); o- is the coefficient of the linear model in 
Eq. (3.1). Given the 2D-3D correspondence between current input image and 
3D niorphable model, the simultaneous pose and deformation recx)vcry is an 
ill-posed problem with the following objective function: 

V 
k \ 

+ (3.11) 

The derivation of Eq. (3.11) can be found in the appendix, 
ft 

In the equation above,中 is an essential optimization function which denotes 
the 2D projection error between a 3D model point and its 2D correspoiidcrice 
и. The 3D points arc represented by the deformation parameters a. The 
footnotes of and 中！ represent the errors of the three types of features 
respectively. All types of correspondence errors are treated equally, p is a 
robust function [81�with a thresholclT: 

n{f') 二 
r T < T 

(3.12) 
2T r > r 

The last regularized item in Eq. (3.11) models the constraint of the deforma-
tion from 3D niorphable model in Eq. (3.1). In our cxperimerit's configuration, 
T indicates the sum of square projection error from 3D model. 

As shown in [41], a and Q in Eq. (3.11) arc coupled in the non-linear 
function 中 . A two-stage optimization scheme is taken where cach item in 
{a , Q] is fixed in turn for optimal inference. In general ca ĵo, such a sequential 
optimization scheme oft(，n suffers from the non-trivial local optima. Hence, we 
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Figure 3.9: Likelihood for inter-frame motion 

make use of a hierarchial optimization strategy described in Section. 3.5.2 to 

estimate the cleforniation and pose parameters efficiently. 

3.5.1 Robust Initial Pose Estimation 

Initial pose is estimated ！based on the rigid a^isurnptioii for the intor-frame 

motion. Given the deformation parameters estimated in previous frame, the 

initial pose is obtained via minimization of tho first item in Eq. (3.11). 

The initial pose estimation for the inter-frame , a, } is defined based 

on the point matches l)()tween frame — 1 and shown in Figure.3.9. Given 

the 2-D points set Ut-\ in frame t ~ \ and its back-projection 3-D points Ut-\� 

Ut is denoted tis tho 3-D point correspondence to " t - i in fVainc t and Ui is the 

2-D correspondence to Uf —�. From the definition, we can sec that Ui is easily 

to obtained from f/卜 i，by applying the inter-frame motion SQf. — 1,出ms we 
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REQUIRE: 3D feature scl U,.j and the correspondent 2 D feature set U, 

RETURN： Differential pose parameter SQ 

for I = 1 to maximum sampling count do 

Random sampling 4 samples L/,./ from Ut-i with their 2D correspondence u\. 

Calculate 3D incremental pose 8Q from { If t-i } using POSIT. 

Calculate the projection residual error Ei for remainder features using 14). 

end for 

Select dQ^. that minimize the projcct error { E }. 
* 

Select inlincr feature set and 2D correspondence U / based on SQ* and 

the robust function 

Get the final SQ from { f / V ； , # / * / } using POSIT. 

Figure 3.10: 3D Pose Estimation from 2D-3I) Points Correspondence 

define the likelihood of tlic inter-fraiiie motion as follows: 

= arg inax | (3.13) 

where e“ is the position difference between the i-th 2-D point Ut and the image 

projection of 3-D point Ul_j: 

4 = I I 以 ； - 川 2 = im - (3.14) 

Tlie accuracy of pose; estimation depends on the corrcctiicss and accuracy 

of the correspoiidenccs between Uf—land Ut, which is (leterinincd by the 2-D 

feature matches between Ut-\ and Ui in turn. 
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3.5.2 Two-stage Parameters Estimation 

Estimate Q Given o- Here, the cost function w(> in^xid to iniiiiinize is: 

E(Q)=p{\\^-P{Q(X))\\'). (3.15) 

where Q(X) is the rigid transform with rotation matrix R and translation 

vector T, P is the porspc^ctive projection of tlic 3D vector Q(X) in the image 

plane. We employ tlie stochastic optiinization approach again from 3.10, to 

optimize Eq. (3.15) as follows: 

Estimate a Given Q When the pose parameter Q is fixed, the cost function 

in Eq. (3.11) can be rc-arranged with tlie following form: 

k 
E(a) = ,)(||x — P( / / (a) )|p) + ftYyjXl (3.16) 

1=1 

where H denotes the linear transform of all the 3-D model points from the 

shape parameter a. Th(�first item in Eq. (3.16) is still a iion-liiicar form with 

a high dimorisioiial parameter a. 

Here we deduce the miniinization of the first itoin in Eq. (3.16) to the 

following objective function: 

E,(a) = \\Ma - b\\'\ (3.17) 

where matrix M is a linear transform matrix stemming from {Q, <!>, x}. We 

also prove thai the solution a tor Eq. (3.17) is also the optimal solution for 

Eq. (3.16) when the linear equation {Ma — b} has the unique solution; oth-

erwise, it is tho solution with the assumption that the projection degenerates 

to the weak-perspective model, which is the assumption used in [41],[42]. The 

detailed iriforence is list in Appendix A. 

In order to obtain the optimal shape parameters, wc set the partial deriva-

tive of Eq. (3.16) to zero. The optimal parameters are obtained by solving the 
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Figure 3.11: Model fitting result given an inkial pose 

following linear equation: 

( M ^ M + /？八）a = MTb. (3.18) 

3.6 Experiments 

3.6.1 View Based Local Descriptors 

As shown in Figure. 3.2 view based local models for semantic features arc 
constructed as follows:wc render the 3D textured facc models in 11 different 
views, where the roll angle ranges from —60° to 60° and the pitch angle ranges 
from —30° to 30°, with a stop angle of 30°. Given the location of each feature 
in each view, one image patch centered at the location is extracted as positive 
sample and 24 neighboring image patches are extracted as negative samples. 
In our experiment, tlic local feature models are built on three levels of image 
pyramid. The matching of the semantic feature is carricd out as follows: firstly 
the view of the feature model is sclccted by the cuircnt 3D pose estimation, 
then the feature match is obtained by searching in the neighborhood for the 
position with lowest feature model energy. 
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Figure 3.12: The first and third rows are the tracking results without silhou-
ette features and interest points respectively, the coiTcsponding results of the 
proposed method are listed in the sccond and fourth rows. 
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Figure 3.13: Multi-view samples for view based models training: The 11 view of 
training samples are collected, to enhance the feature's discrimination power on 
the border of facial region, wc add random images from MIT scene database[82 
as background for nioro variation. 

3.6.2 Video Sequence Selection 

To test the proposed algorithm on the videos in the indoor environment, we 

build a video database with 182 persons. Each identity is required to captured 

videos with similar configurations.: the first 100 frames hold mainly frontal 

pose with neural expression; thereafter, one has around 600 frames in which 

no constraints are poscci on the head motion and the expression variation 

except that the soquonce starts from a frontal pose. Meanwhile, the video 

clips are caplurecl in different environment and day-time. As a consoqiieiice of 

these freedom, the face images of the testing scqucncc vary greatly with the 

out-of-planc rotation, ciifFcrcnt facial expressions and uncontrolled illumination 

conditions. The typical video resolution is 640 x 480 pixels. We select 400 

interest points, 68 semantic features, and 15 silhouette features for non-rigid 

face tracking to acliicvo the results in this thesis. 

The non-rigid face motion arc shown by projecting tlic 3D rnorphable model 
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into the image pi arm under tlie estimated 3D pose. Moan while, the semantic 

features and silhouettes features are also imposed on the image for visualization 

purpose. For better tracking result illustration, wc us(3 only half of those 

features for demonstration. In Figure. 3.11, the initial estimated pose from 

interest points matching is shown in the first image, the iterative shape and 

pose estimation is performed and the final tracking result is illustrated in the 

second image. The fitting proccss converges to the right solution within 10 

iterations. 

To verify the robustness and generalization ability of the proposed tracking 

method, the algorithm has also been tested on the image sequences captured 

from a USB camera for four different persons. The difficulties for tracking 

in the image sequence stem from the out-of-plane motion, large expression 

chaiigc and numerous occlusions. Aside from providing the tracking output, 

a set of comparison experiments arc performed to demonstrate the rationality 

of the integration of complementary features. More tracking results for the 

captured image sequences can be obtained from the supplementary materials 

or. downloaded from (108 . , 

In the live video experinicnts, the typical USB camera's resolution is set 

to 320 * 240, and 100 interest points, 68 semantic features, and 15 silhouette 

features are used to achieve the results in F îgure. 3.17. As for the key-frame 
-未 

setting, wc use two key-frarnos for robust estimation: one key-frame is simply 

the first input fraini) and another key-frame is sclcctcci from a pool of history 

frames whose parameters are reliably estimated and arc moderately similar to 

the current frame. The threshold value of T in Eq. (3.12) takes the fixed value 

6 for all the test samples. 

The tracking results in the first two rows of Figure. 3.12 demonstrate the 

importance of the silhouette features for face boundary localization especially 

in the near profile pose, where the available semantic features rcducc by half 

with comparing^ to those of the frontal face. The other two types of features 
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"i^iirc 3 . 1 5 : T r a c k i n g with v m v illuinination 
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Figure 3.16: Ba(! tracking results with live captured image sequences. The 
mis-alignment’ of t.lie model is mainly due to insufficient, of localization power 
of the local i.(M"ir(�s. as shown 丨)y the grccri points. 

are kept lli(�s； ！!:�lor a fair coniparisoii. The Ufu.kirig results in the last two 

r ows ol" I Mgurc. ；；. l 2 i l l u s t r a t e tl"，l<ny ro le o f t h e int erest p o i n t s on r i g i d m o t i o n 

e s t i m a i i o n . T h e i r a c k i n g w i t h o n i t h e i n te res t p o i n t s s i i f lors f r o m agi le m o t i o n 

where the search of semantic points cannot rcach acciiratc positions. 

Figure. 3,1 7.：̂. 18,3.19,3.20 shows some typical tracking results of the se-

lected v'idooH. Our (.racking algorithm accurately localizes the facial compo-

nents such as ' . , � ’ � . eye brows, noses and nioiithcs. uri(l(�r th(? conditions with 

agile motion. hu jM' (^xprcssioil variation, and larg(^ occliisioii. 

Th(? p r o p o s e t racking algorit Imi runs fast on the general PC. On a Pentium-

D 3.6G corripntor. the algorithm's speed is about 15 fps for the video with 

320 * 240 rcsolni ion. The quant ily analysis of the algorithm shows that 90 

pe rcen tage o f I l ie i i m i i i n g t i m e is spen t o n t h e t y | K � I a n d t y p e II l oca l features 
C.1 

matching',. Tin- • wrlbrmance of the proposed tracking is proportional to the 

numbor of feat nrcs used for offline searching. V 

There still <�xist s sonic failure cases for the proposed tracking approach, as 

shown in Figure. "MG. When tfia l.racking target turns l.o a side vie/w pose with 
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large expression, variation, the proposed tTacking approach is failed to track the 

subtle motion "mund the semantic facial component. The most failure cases 
are due to the insufficient localization ability of the local feature models when 
side view faces arc presented. We attribute the insufficient discrimination 
power of the local feature to tlit; the synthesized training samples via 3D face 
reconstruction a|)pi.oach. The facial texture of the synthesized samples are ob-
tained from observation, in which the self-occlusion part is interpolated 
from the visil)](i part. 

3.7 Conclusion 

In this chaptci. we propose an efficient approach for tracking the deformable 

3D face from n single camera. ]3y taking the advantage of complementary 

features integral !(jii,' we 'obtain a large number of 2D-3D correspondences for 

the estimation of pose and deformation parameters. Aside from the low cost of 

computation, t he usage of local features enhances the generalization ability of 

the tracking sysl em. The non-linear shape and pose optimization is efficiently 

solved by a lii(�i ;�rcliical optiinizalioii scheme. The vvliolc tracking process is 

efficient, anion mtic, and the msult achieved is accurate even for low quality 

video. 



Figure 3.17: ‘ 
larg(，pose vti： 

、•"、̂； results for t he first performer. Tlu) .solectcd frames show 
’II ；incl deformal ion. . 
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-Figure 3.18: Tracking results for the second performer. The second image at 
the first row shows a bad fitting result on the excessive expression. This is duo 
t̂o the lack of. extreme expression variation in our training database. 
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Figure 3.19: Tracking results for the third performer. The second image at the; 
last row shows a bad fittingTresult due to the weak localization power of tlu; 
side view feature. However, it can be quickly recovered when the near froiilal 
pose is given, as shown in the lâ it image. 
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Figure 3.20: Tracking results with the forth perforiiinr. Tlie first two images 
at the l£ust row illiistrato the robustness of the tracking with partial occlusion. 
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3.8 Appendix 

3.8.1 Bayesian Interpretation of NonRigid 3D Tracking 

Probabilistic forniiilatioii is frequently used for visual Irackiiig since tlu ŷ pro-
vide a mathematical foundation for the derivation of target's state dist ribut ion 
ill a dynamic system. It provides a princi[)locl 1 ramework for fusing iiiforination 
from independent sources, iiichidiiig both ofliiiie source and online ()hs(" wi-
tions. In this section, we provide a prol)abilislic inUu piotat ion t,() (”"，non-rigid 
3(1 face tracking problem, and give the detailed derivation of Ecj. (3.11). 

The non-rigid face tracking is inodelecl as a (iyiiaiiiic system, wh(，m the-
state of the target and image observation at the /,-lh fi aiiK�are roprcsnnt.ecl by 
Xi, It respectively. Given the image observation secjuciicr I 二 {/"…，/(•} that, 
re la ted t o t he in feronco ()f t r a c k i n g s l a l u s in cu r ren t frame;, t , l i (�co i r(\s|)()ii(l(Mi(, 

target s tates are d e n o t e d as X = { X i , . . . , A^/,}, tracking at IVaiiie / is to 

infer the posterior distribution P{Xi\Ii, I, X) . a is the shapes paraiiioltM- that, 
incorporate the; prior of deformablc 3D model. 

Ill Figure. 3.21, the posterior distribution of Xi is specified by: 

I’ X , a) oc P(h, a) P (A^X) P (X|rv) F{n). (3.19) 

If we aissuiiic a static prediction model / ; ( A ^ ' J X ) �S J ) , which means 
the predication of the current state Xt from the. related state set X holds 
unchanged. Meanwhile, the deforination prior a is in()(ld()(l as a iiniltivariaU^ 
Gaussian: 

or � y v ( o , A)， 

A = dia(j{XuX2,... ’ A/v}， 

oc yV(" + 4)a’(5i/). 

The local feature matching from conscciitivc frames can bo enforced by incor-

.porating another Gaussian model into Ej,roj in Eq. (3.14): 

二 一 乂如）’ （3.21) 
^proj • 
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CD. � O 

o • • 
Figure 3.21: Graph Modol for Non-Rigid 3D Tracking 

where Zproj is a normalization factor to ensure the siiiii to be one. The Gaus-

sian assiiniptioii imposed in Eq. (3.20) and Eq. (3.21) gviarantoe the posterior 

P{Xi\Ii^ I, X , a) is still a Gaussian. The MAP estimation on Xi can be con-

verted to an energy minimization form 

. 22) 

where k is the inverse of the variance defined on the conclitional probability 

distribution p{a\It) with integrating out all the intermediate variables. 

3.8.2 Estimate the Shape Parameters From Fixed Pose 

Given the pose parameter Q — {/?., T} fixed, tlie project ion error Ej„.„j in 

Eq. (3.16) can be expanded to the following form with the perspective i)rojec-

tion assumption: 

i=l 
f Q^成 j + ko 
J ；=rr — U2i + J ̂ “ T T — 

E l 中ii+2口 + i� ‘2 
(3.23) 
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where T — 亡 and 巾'= { ( j^ i j ] is obtained !)y applying rotation matrix 

R to the eigeri-vectors of shape PC A: 

R 0 0 

= 0 0 

I 0 0 R 

(1>. /24) 

Consider the following the equation: 

r E l + + t‘i�l J 

Eq. (3.25) can be re-arranged in a linear form as 

= '",2“/,/ e {0 :1 } .25) 

where 

in 

A W - a 二 b: 

J•小[�i-“,j - ？他 

(3.26) 

+ 

� , + , = '"2.4-/̂ 2 - fti, (3.27) 

In the remainder part, wo will prove that: If Eq. (3.26) has the unique 

solution, i.e.,Rank(M) = Rank(M\b), the original function in Eq. (3.23) 
» 

also reaches its optimal value; otherwise, the solution A for Eq. (3.26) 

is the optimal solution in the meaning of MSE( minimum square 

error), with the first order approximation of the projection model. 
» 

The residual error e of tlie linear equation Eq. (3.26) is denoted as 

e = 入一 6)了(A//入-/)). 

Therefore, Ej,roj in Eq. (3.23) can be expressed l)y e as following: 
" % 

/ • \ 
0 0 
‘ 0 … 0 

•. 0 ： 

« • 0 • 

0 0 為 / 

3.^8) 

= (MA 一 b) T 

0 

0 (MA - b), (3.29) 
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where Zj is the depth of i-ih vertex on the 3D inoclel ait(n' applying t,h(�rigid 
transfor I nation Q: 

么 = ； ^ + +,i ’2 (3.30) 
1 

If {/'rr“n,�mncr} arci clciiotod Hs tlio 111iniinuin/iiuixi 11111111 (lcj)(-h value, of all 
vertices, the following inequality holds: 

I f < Ej,roj < (3.31) 
iiiax Tti i n 

A small 6 means a narrow rangci for the optimal value Eproj • Under the 

eussurnptioii of weak-persi:)ective projection inociel, in which 町 equals for 

all the points, the optimal values is equivalent in Eq. (3.23) and in Eq. (3.25), 

which means the solution in Eq. (3.25) is the solution with the weak perspectiv^e 

model assumption in the worst case. 



Chapter 4 

Video Based Face Recognition 

111 this chapter, wo propose a framework for the task of face recognition in 

real-world noisy videos based on 3D deforrnable face tracking. The difficulty 

of video face recognition tasks lies in the challenging appeaianco variations 

in real-world videos due to motion blur, large head rotation, occlusion, illu-

mination change and significant image noise. To achieve the goal of accurate 

localization of faces in videos, the proposed 3D tracking algorithm makes good 

use of 3D face shape priors, local appearance model of major facial features, 

face silhouette and online feature matches across video frames. As opposojcl 

to the state-of-the-art video facc recognition algorithm which relies on dis-

criminative appearance model to classify face images into (iifteront views, our 

3D tracking algorithm can directly estimate face pose for a view-based face 

recognition algorithm, which is more robust to outliers with coiiipaiisoii to the 

clustering based strategy. Piuthermore, the proposed 3D tracking algorithm 

has a probabilistic form and can provide confidence measurement, for the track-

ing result, which can be used to select liigh confidence frainos. Such a IVcIIIK? 

selection strategy ensures the robustness of facc recognition process. • 
With the proposed recognition framework, a high recognition rate can 

be achieved even with simple feature descriptors and classifiers (Regularized 

LDA +NN). The experiments performed on the real world noisy videos from 

YouTiibc demonstrate the significant improvement achieved with our approach: 

5 4 
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the accurate recognition rate readies 79.8%, while outperform tlie best re-
ported results sot (71.24%) on the same data. -

4.1 Introduction 

During the past decades, the rosoarch topics on objcct recognition cspccially 

the biometric related recognition such as face are extensive developed. Do-

spite rccent efforts [114, 113, 74], accuratc and robust face recognition remains 

a challenging ta«k in the real life applications, where the major difficulties lie 

in the appearance variations arising from the change in pose, expression, il-

lumination ,partial occlusion and motion blur. At the same time, the video 

bcUJcd face recognition has received significant att.cntion in tho field of computer 

vision since it can take full acivantage of the temporal coh(”.(�iic(�anioiig con-

sccutive frames to achievc a potentially more accurate recognition rate, where 

the weak face observation in eacli frame can be integrated over the; scqiieiico. 

4.1.1 Recognition: Froiri Images To Videos 

Generally speaking, all the conventional image based rc^cognition approaches 

suffer from the small sample size problem in statistics and pattern rccognitioji. 

For example, eigenface[84] and fisher face [72] will suffer serious performance 

drop or even fail to work. The core component of appearance-btiscd recognition 

nietliods is their learning mechanisins, while the classic families of learniiig 

mechanisms ( classifiers) need sufficiently large training set to achiovo a good 

recognition perfomiancc. Such a requirement for so large a training data set 
V 

is partly duo to the high-dimensional representation of facc images, and partly 

due to the appearance variation of facial expression and pose. Most of the face 

recognition approaches [4] [55] assume several training samples of the same 

person are always available for training. Unfortunately, in many real-world 

applications, tlic iiiiinber of training samples available is actually smaller than 



Chapter 4 Video Based Face Recognition (ili 

the requirement. - Due to its challenge and significance for real-world scenarios, 

many techniques have been developed to attack this problem, such as virtual 

samples synthesis ['87],[42], probabilistic patch based matching [64], neural 

networks approach[51], and the hybrid approach[57]. However, most of the 

approaches mention before focus on the ta«k of object recognition. In the 

real world applications, they need a face detection and feature extraction as a 

preprocess ing s tep t o w o r k a u t o m a t i c a l l y . 
/ • « 

The video boused approaches, from other hand,-tacklc tho problem of small 

samples problem since a bunch of images, which capturc the expression, pose 

and illviinination variation, ar6 available for one person. As shown in Fig-

ure. 4.2，a typical video-based face recognition system aiitoinatically clctects 

‘ ‘ ‘ 

face regions, extracts features from the video, and recognizes facial idcnitity 
t . 

if" a frtC(3 is. present. Face recognition based on video is prcrerable over using 

still iiiiages, since as demonstrated by Knigh.t and Johnston[49], motion helps 
m 

in recognition of faces wticn the images are negated, inverted or threshold. It 

was also dciiioiistrated that humans can recogiiizg animated faces l)ctter than 

randomly rearranged images from the same set. 

Even since recognition of faces from video sequence can l)c dircctly (wtenclcMl 

from the still Image based approaches, significant challenges for video-boused 
• I 

recognition still exists: 
， .* ‘ 

» '« 
4 

1. Compared to the still image captiircd by high resolution canieray, the 

image quality of video frame is low. Generally, the video,acquisition of 

� facc arc obtained in un-coopefatiyc style, there may be largo illuniination 
• » ‘ 

» . 

aijid pose variations in the face images. ‘ 
‘ 卜 ， • . 

{ 

2. T l ie face size, i n v i d e o franiG is o f t e n smal le r t h a n t h e assumed sizes in 
. ‘ ‘ , 

most still-iinage-based face recognition systems.. For example, the valid 

facial region can be as small as- 10 x 10 pixels (the iiiiniiimiu size of 

a detection zone), wherejis the facc image' sizes niscd in featiirc-lmsec 1 
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still image based systems can be as large as 128 x 128. Siiiall-siz(； faco 

images not only make the recognition task more difficult sincc most dis-

criminative details arc lost, but also affect the accuracy of facial feature 

extraction, as well as the accurate localization of the fiducial points that 

are often needed as an preprocessing step in the recognition methods. 

3. The diversity of the face images is large since large pose variation and 

-expression variation exists. As shown in Figure. 4.6, the pose difrereiicc 

in the same video could be more than GO degree. Recognition of individ-

uals of large pose is difficult. It is still an active research area to achicve 

pose invariant face recognition system since the variations of the appear-

ance caused by the view point is sometimes larger than the iiitra-pcnson 

distance. Meanwhile, it still contains large expression variations. 

4.1.2 Techniques Related to Video Based Recognition 

Before we introduce the existing video-based face recognition algorithms, we 

briefly review the close related techniques that are important for the success of 

video based face recognition. In [IGJ, four related techiiic^ucs wnm m(�iit,i()n(�fl 

as being important for video-based face recognition: sogrncritation of moving 

objects(faces) from video sequences; structure estimation; 3D models for facos; 

and non-rigid motion analysis. Based on the cuneiit devclopnieiit of video 

based face recognition, we will introduce two specific face-related techniques, 

facial pose estimation arid face tracking, instead of the above four g(!neral 

criteria. These techniques are critical for the realization of t he full potfuitial 

of the video-based face recognition. Meanwhile, these related techniques have 

not been well addressed in the scenario of face recognition and still remain as 

the hot research fields of the video based face recognition. 
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Pose Estimation 

It is not surprising that the performance of face recognition systems drops 

significantly when large pose variations exist in the input images.It has been 

testified in the FERET [73] and FRVT reports [74], arid been proposed as a 

major research topic. Here the pose problem only refers to the out-of-plane 

rotation since the in-plane rotation can be aligned by 2D geometrical transfor-

mation. 

Early methods focused on constructing pose invariant features [95] or syn-

thesizing a fixed view image after the 3D face model is extracted from the 

input samples [8] [42]. Such methods work well for small rotation angles and 

always failed when the view angle is large(60°), since severe self-occlusion cases 

exist. Most methods are proposed to use a large number of imilliview samples 

to handle the large pose variations. 

To address the pose problem more systematically, an attempt hai> been 

proposed by [53][48] to treat the pose estimation as a classification problem. 

The basic idea of this analysis is to assign a input sample with a pose label by 

minimize the pose distance from an image set with poye known, or by seeking 

the most discriminative projection direction from the pos(̂  labeled samples. 

Klore specifically, a generative pose manifold is Built up by a set of local linear 

pose subspace. For an new input sample, the pose label is assigned to the * 
subspace which minimize the projection error. Similar ideals can be used to 

train a pose discriminative subspace via LDA. The drawback of using pose 

classification is the large number of pose labeled samples for model training, 

which is hard to acquired in the real world applications. 

Facial Feature Localization 

The importance of facial features localization for face recognition cannot be 

overstated. Many face recognition systems need facial point ch^script-ors in 
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addition to the holistic face, as suggested by studies in psychology, ll, is well 

known that even holistic matching methods, for example, eigenfaces[84] aiifl 

fisher faces [72], need accurate key facial feature localization such as eyes, nose, 

and mouth to normalize the tracked/detected faces. In general, the facial 

feature extraction approaches can bo divided into throe categories： 

1. general methods based on edges, lines and curvos; 

2. feature template based approaches that are used to detect facial features 

such aii eyes; 

3. structural matching methods that incorporate geometrical constraints on 

the facial features. 

Early approaches focus on the localization of individual ioalures; for example, 

a template matching approach was described in [39] to detect and localize tlic； 

山umaii eye in a frontal face. However, when the appearance of th(； features 

change significantly,these methods have difficulty in accurate localization. To 

detect these features more reliably, recent approaches have used structural 

matching methods, i.e, the Active Shape Modc3l(ASM)[21 ]. Compared with 

previous approaches, the statistical based methods are much more robust in 

handling variations in image intensity and global shapes. 

4.1.3 Existing Work 

Due to the maturity of the 2D tracking techniques developed over the past, 

decadcs, the majority of the existing video face recognition approaches are 

based on 2D face tracking [2, 48]. For the state-of-the-art approaches with the 

2D face tracking schemes [48, 77], the appearance change caused by face pose or 

viewpoint must be learned by SVM[13], LDA[64], GMM[24] or a cornlMnatioii 

of such techniques. Moreover, the methods based on 2D tracking are limited 

by the rectangle based tracking results, which cannot guaraiitoci to provide 
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well aligned faces. Although soirie tecliniciucs can bo (l(>vnl()p(�(l to r� j (� ( l bad 

2D tracking result based on face appearancc learning [48], they 'also increase 

the risk to rejcct good tracking results. Furtherinore, view classification and 

appearance learning significantly depend on the training data s(，t, and do not, 

have good generalization capability for real-world applications. 

There are also some 3D facc tracking based approaclics which t ry to r(�(:(jv(M 

rigid facial pose for recognition. In [31], m person-spucific： lextiireel 31) facc; 

model is used for face pose estimation across video fraiiios. Promising results 

have been achieved using a simple con fid en cc incfisiire for character recogiiiticjii 

in feature movies. Similar 3D facc model is used in [104] where the 3D face 

tracking is performed with illumination compensation. The main problem 

of the above approaches is that considerable amount of us(jr su|)(” vision is 

required to fit a textured 3D face model for tracking and more import ant ly, 

the use of holistic appearancc template or model for facc tracking does not 

work robustly in practice. 

In contraist with existing work, our tracking algorithm is based on 3D non-

rigid face representation and use sparse local f(，aUii,es as ()l)s�rvaUfti vvliicli 

include both off-line trained major�facial feat urns and oiiliiu; t rackcid iiiia^c 

features. The resulting tracker is robust and provides accuratcly cropped im-

ages for view-based face recognition. The confidence of the tracking result 

is measured through the geometric consistency of facial features under tlic 

3D face shape prior, which can be used to improve the face recognition perfor-

mance over a sequence of frames. Through extensive experiments (川 the public 

ciatasct, we show that our 3D non-rigid tracking based recognition approach 

achieves significantly better performance over existing approaches. 

The rest of the chapter is organized a« follows. In Section. 4.2, the 3D 
、J 

tracking modiile^is introduced, which accuratcly extracts localized facc from 

video streams.. At tlic following Section. 4.3，the features and fli,stancc» inea-

sureiiient used for recognition is presented. In Section. wĉ  deinonstralo 
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the performance of the proposed framework, also with tlio comparison with t,h(> 

state-of-the-art approaches. Soction. 4.5 coiichidns the cliaplor and liighlights 

the future work. 

4.2 Face Tracking in 3D 

In this section, wc utilize the non-rigid 3D face tracking ； i l � iUmi for facial 

information extraction. Aside from the capability of catching up the? rigid 

3D head motion, it can recover the non-rigid facial struc ture pr�(:is(，ly acixjss 

frames, which makes the proposed tracking to be able to provide well aligiiofl 

samples for the following recognition task. 

Given a collection of image observations {II}, the non-rigid 3D facc't racking 

at frame i is formulated as Maximum A Posterior (MAP) ostiniation in t.lic 

Bayesiaii framework where the tracking state is described l)y llio 3D shap(' 

parameter Xt and rigid pose Qi： • 

{Xt .Qt } =argrjiaxp(;C,，Q,|{E}) (4.1) 

In the above equation, j){Xi) is the prior distribution of 3D faco ‘shapr 

Xi, p ( { ] I } Q i ) is the likelihood distribution which describes the conditional 

probability of image observations {11} given tlic tracking state {Xt, Qi}. In the 

rest of the chapter the subscript t is omitted for simplification. 

The proposed tracking algorithm has the following throe key coiiipoiients: 
% 

1. the shape prior model p (X ) , which is modeled as a (Idonnable model 

and can be trained by PCA on a set of 3D shape samples; 

2. the likelihood model p({E}|X, Q), which is modeled based on the 2D-3D 

feature correspondences. Wo use an extended feature; set similar to the 

work [110], wliich includes the off-line trained semantic f(;atiiios, facc 

silhouette features and online tracked image features; 
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Figure 4.1: Tracking Results on YouTubc 
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3. the robust estimation algorithm which obtains reliable] results in the cast， 

of significantly noisy image observations, w(i inakn use of an hinrarcliical 
optimization strategy couplocl with robust estimation tec:l"iiqiK，s t,() fulfill 
the ta.sk. 

The detail description about tho three components is in Chapter. 'A. Th(! pm-

posccl 3D tracking algorithm has strong gcru;ralization capabilily, which is less 

sensitive to ilhiniiiiation, iiidopciKlent of tracking target. As illustrated in Kig-

urc. 4.1, the i^roposed non-rigid tracking approach [)(;rforins well in the cont(;xt 

of real-world applications，even with large poso, expression and illuiniiuition 

variation. 

4.2.1 High Confidence Frames Selection 

Following the output at the tracking stage;, wo cxiract facx\s from videos based 

on their 3D motion and shape; parameters. However, not all the; frames from n 

video clip are suitable for the task of face recognition since the proposed track-

ing modulo could fail on some frames cvon with the robust rcc.ovni y iiujclianisin. 

Using error tmck(!d frames for facc recognition would load to a sigiiilicunl jxii-

fonnancc; drop. For the purpose of robust recognition, wo IICCKI to selcct well 

trackod frames aa candidates frames for recognition. 

The quality of the tracking result is specified by a coiilidenc:c» iiKnusuio 
t ^ 

related to the posterior probability Q\{I)) in Eq. (3.11): 

N 

N 
w = oxp{ - - i ^ ( / ; ( 1 1 V I / ( , CI X；) 11'̂ ))} (4.2) 

In the experiment section, we keej) all the frames with w > 0.35 for t,h(，su}> 

sequeiit recognition tasks. 
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FcHlurc Kxtraction 

Metric 
(liuclidcun Distance) 

J Frames Fusion (Normalize Correlation) 

(Ncarcsi-ncighbor) 
(Naive Hayes) 

Features 
(I lulisUc Appcarancc) 
(Sparse Kcprcscniulion) 

(Local Descriptors) 

Figure 4.2: Flow diagram of the video recognition 

4.3 Recognition From Image Sets 
\ . • 

111 this soction, wc consider face recognition with sjunpk�imagers Iroin k indi-

viduals that have been proporly croppcxl and iioriiializcHl IVorn vi(l(M)s. Giv(ui 

the face tracking outputtho procedure of vi(l(;o l)as(，(l recognition is illustratcHi 

ill Figure. 4.2，which consists of tlirco stages: firstly, a feature extraction coiii-

ponent is usckI to cjxtract feature (Iĉ sci iptors for oacli fi HiiKv, stH-oiidly, a IVjuiie 

bfUscd recognition process is pci.fonii(M:i, I he recognition result, lor each fraiiK' is 

given w i t h t he usage of a incasure inc i i l f unc t i on and a chussificr; hist l ) i i t no t 

least, <i frame fusion strategy is utilized, which iiit(̂ grat,(\s all t,h() individual 

frame recognition for the final identity decision. 

In the following subscctioiis, wc first introduce the feature (l(\s(:ript,()rs w(� 

uscid, which include holistic iiit(Misity imag(，，local patch (l(，.s(:ri|M.()r‘s and sparsci 

roprcsoiitation. Then, the cla.ssifiors and th(，rclatxicl fusion st,rat.ngi(»s lor i.�(:()g-

iiition are also doscribed. 
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4.3.1 Holistic Descriptors 

A s f o r t h e h o l i s t i c f e a t u r e b a ^ s e d m e t h o d s , e a c h f a ( , ( ， i i i m g ( ， i s r c p r c s e i i t c H l a s a 

s i n g l e h i g h c l i i i i e n s i o n a l v c c . t o r b y c o n c : a t , ( ， i u i t , i i i g I h r g n i y v a l u e s o f a l l p i x e l s 

i n t h e f a c ( \ T h e a d v a n t a g e s o f t h i s r o p r ( \ S ( M i t , a t i o n a r 。 t , w ( ) f o l d s . I 广 i i s t , ’ i t 

i m p l i c i t l y p r c i s c r v e s a l l t h e ( 1 ( 化 a i l e c l t e x t u r e ^ a n d s h a p e i n f o r m a t i o n U » a l . a i r 

u s e f u l f o r d i s t - i n g u i s l i i i i g f i i c c s . S e c o n d , i t c a n c a p t ’ u n > i n ( ) r ( 、 g l o b a l a s p c r l s o f 

f a c e s t h a n l o c a l f m t u r o b a s e d d e s c r i p t i o n s . 

Starting fmm the succ(\ssfiil low diiiKMisioiuil roconHtruction of ftict̂ s usin^ 

PC A projoctioiis [84]’ cigcnfacc h<Ls 1)(聽 o i i (�of the most widely used iGpie-

seiitation for the vision la«ks, for (，xaiui)l(，s, recognition, tracking, d r . T1H» 

intrinsic thought l)eliinrl such a r(�pr(巧iit.JiUoii is tlial, (lie highly st.nict.urcd 

g loba l rac(? appoara i i cd is assumed to reside on a sulxspacn of much l(jw(，r (l i-

iiieiisioii. However, the main target of PCA is for diiiKMisional rcduclicjii jind 

coinpressioii, thus it may not lead to optiiiwil (liscriiiiiiiat-ion. T(> (�xt,ia(:t t.h(� 

discriminant features, LDA [72] is further applied to t.hn top-kivcl piim.ipal 

coiiiponont.s. It pursues a linear transform W that mnximi'/(�s t,li() rat io of 

I x u - w n o i i - c l c u s s s c a t t e r i n g a n d w i t h i i i - c h u s s s ( . a U , ( ” , i i i g . 

S u 【 ) i ) c x s ( ) t h ( i t r a i n i n g s e t h a s n i m a g e s f m i i i C d i d e n i i i t . c : h u s s ( \ s , d o n o t o d b y 

{ ( / i , C i ) , ( 1 - 2 , ( ' z ) 1 . . . , ( I n » < - n ) } > w l i c i o (\ i s t h e l { i l ) ( ' l o f ( , h o / - 1 1 1 s a m p l e . D e n o t e 

t h e ) p r i n c i p a l c - o i i i p o i i e n t p r o j ( ， ( . t i ( ) i i f o r 八 l ) y j : , , t . h(， i i t h e I x i t . w c c n - i ' h u s s s c i i t . l . c r 

m a t r i x S i , a n d t l i o w i t h i i i - c h L s s s c a t t e r m a t r i x S ' u , a r e n \ s | ) ( u : t . i v (， l y ( l ( 、 f i n ( ) ( l a s : 

c 
= i - " 0 ( .叫 一 ， 

( . 1 , 1 ) 
s�u = „ 2 - v —"'人.)(.7‘、-川(）’ 

k= 1 i:c, — k 

wIhmc in-k i s tho nûun v c c t o r o f tin; A : - l h c l a s s , a n d m i s t h e t o t a l m e a n . 

T h e o p t i m a l p r o j e c t i o n m a t r i x W c a n l ) o o l ) t . a i n ( 、 ( l b y s o l v i n g a goiuMalizcd 
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eigenvalue problem: 
Si,\V - ( ‘[5) 

It is well known that LDA tend to suffer from t h(，singularit y of in a high 
(liiiiensioiial space. A scries of i in proved LDA algorithms am proposed to ad-
dress such difficulty, including PCA+LDA [113], Enhanced Fisher Model[58], 
Unified Subspacte Ancilysis[91], and Null-spacc LDA[17]. They r(;solvo t,li(�prol)-
lein at the expense of losing infommtioii in eilhor 丨)rim:i|)iil sul)sj)ac(； or null 
spaco of Meanwhile, (iiial-s])acc LDA [92] and Regularized LDA [57] t,a( kl(� 

the singularity probkuii while retain the principal siibspact^ and its ( cmiplomoiit,. 
Ill t.hc following part of the thesis, wo take the Regiilarizocl LDA JUS tlio holistic 
appearance descriptor. 

With a lcariH»(l licgularizod LDA nuxU l̂ 11,， w(�can c-oinpulc Uir discrinii-
nant feiit iirn vccrtors by 

y = M,厂:/:. (.1.(3) 

11 CM ICC, for two fac(\s (Icnotod l)y aiul Xy, the (list,iuic(�im\'isiii-riii(�iit. is 

given l)y d — d'Lsf.(W! x'l, W^ Xo). The cli fie rent iinplciiiniitatioiis of t,h(�di‘sUiiK.(， 

f u n c t i o n s dist{ •, •) can in f luence the recogn i t i on por fo r inanco d r a m at if •ally, as 

(loinoiKstrated in [G8]. In this chapter, wo t,ak(； tho following t,\v(> lyp(\s of 

distance ineiusureinoiit: Euclidean distance and noriTialize con-elalion. At tho 

final step, a Nearest Neighbor (NN) ch\.ssificr is used to assign a tc\st sample; 

with the c\nss label of th(，closest training sample. 

4.3.2 Local Descriptor 

Local methods that use local facial features for face rc^cognit.ioii is a rc^lalively 

inatiirc approach in the field with a long history [35],[70],[14]. Coin pared with 

holistic methods, local descriptors may ho inoro suitable for tlie task of recogni-

tion due to the following observations: Firstly, in local descriptors, the original 

face is represented by a set of low diinoiisional local feature vc^ctors, ral‘h(�r than 
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oiui single full high diiiiensional voctor, thus UK，cursc of rlinHMisionality (.aii 

1)0 alleviated from the beginning. Sccoiully, local methods 丨)mvide additional 

Hexil)ility to recognize a face hjised on its parts, thus the coinnion and chiss-

specific foataires can be ea ŝily idont.ificd. Hiirdly, clifi'erent facial inatiiros (:iui 

incrctiso the (livcrsily of the classifiers, which is helpful foi‘ face recognition. 

Daspit.e those advantages, tlio local inntluxls noccl to rnlorrc，a glohnl ron-

figuratioii to perform tlu; rocognit.ion Iroiii a iiuuT()s(�()|)ic |)(us|)c?ctivc. TIk� 

incorporation of glolml coiifigurational information in faccs is (�xt,n�mdy crit-

ical for the pcrforinancc of a local method. Generally, there an，two ways to 

pursue the coinl)inat.ion. First, t he glol)al inforiiiat-ion can 1)<�cxplicnlly oinbecl-

flcd into tlio algorithm using s\ich data structure as graph, where cnuh node 

i,q)n�s(”its a local f(»aturc, while the edge connecting two node's accounts for 

the spatial relationship l)ctwoon thcin. Facc recognition are then iorniulatin 1 

as a |)ml)lc)in of graph iiuitdiiiig. Alternative approach to incoi porating ^k)i)al 

iiiforiiiatioii is t’(）concatenate the local descriptors into a long v(�(.t.()i-. The 

metric aiul chussifiors used in the holistic approaclu\s are iis(�(l to achieve the 

final decision. 

Currently, the statc-ol-the-art recognition p�rf(>nimm.(�ior still images is 

ac;hievo(i with the usage of local descriptors [43][78] tor faxx̂  reproscMitation. 

Local Binary Pattern (LBP) [1] is oiio of the most i.(ipies(nitaUv(，appi.oiichas. 

LBF eiicodos the relative intensity inagnilude l)CitAveeii each i)ix(，l and its local 

neighbor pixels. Thoroaftor, the inicro-sLnicturo of a ("ace is dcscrilxMl by t‘h(; 

histogram of LBP from the corr(，sp()ii(l(”it. facial patch. Such, an (Micoding 

schcino and feature closcriptor its loss sensitivo to tlu�iiioiiutonic phot,(>ni(义ric, 

chango. Meanwhile, it share the merit of high cfficicncy coiiiputatioii. Howevor, 

the LBP-leased approaches [79][9(3][107] siifier from the uneven distribulion 

since the handcrafted original. Meanwhile, thny need a ticulc^ofl on f,h(�size 

of codcl)ook hot woo n the ciiscriinination and robustness in a high (liinoiision 

space. 
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REQUIRE: Nomializcd face image 

RETURN： LH feature vector X 

Filtering ihc input I with a DoG filter 

for each pixelPf in the filtered image do 

Sampling the neighbor pixels to form a feature vector V/. 

Normalize the feature vector V/ to unit length. 

Perform vector quantization on V/ with a random-projection tree 

�07<V/) = (!i. 

end for 

Divide the encoded image into a grid of patches. 

for each patch Bj 

Calculate the histogram Hj 

end for 

Concatenate all { Hj } to get the final feature vector X 

Figure 4.3: Learning Based Descriptor Extraction 
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f 

In this chapter, wo utilize a l(wning-hased encoding scheme for the local 

d(\scriptor construction, which is originally proposocl by Cat) et. al. [ 14]. Tli(� 

core idea of the proposed approach is to encode Lhn local iincro-striicluic\s of 

the face into a set of discrete codes. Thus the leamecl codcs arc more uniionnly 

(listribntocl and the resulting codn histogram can achieve much hotter discrim-

inative power and robustness tradeoff than existing niaimally tunecl encoding 

approaches. To keep the integrity of thesis, we give a brief introduction of the 

leaniing-basc�d(LE) descriptor. 

Figure. 4.3 shows the he algorithm for LE descriptor extraction from an 

input image. The input image is fed into a DoG filter (with = 2.0 aiui 

6-2 = 4.0) to alleviate the illuniination variations. At each pixel, \v(�sample 

its ndghbor pixels in tho ring-lnused pattern to form a low diniension fcalurc 

voctor (/'-iieighl)or pixels on the ring of radius 7 ). In the following exporiiiioiit 

configuration, we take the radius r to '2. Therefore, together with the valuo of 

the central pixel, a 25-diiii feature vector is built \ip for each pixel. After the 
\ 

local feature construction, wo normalize the feature vector into unit kiiigth. 

Such nonnalizatioii combined with DoG filtering makes th(�local f.(，at,un�v(ac-

tors invariant to local pliotoiiietric afline change. 

At the quantization step, the iioruuUi/xHl feature vector is oncocled into 

discrete codes. Dificrcnt from the haiidcraftcd coding schcincs, the LE ciicodcr 

is trained for fare iinagos with an unsupervised approach: nui(ioin-proj(xi.i()ii 

tree [32]. At the training stage, a raiKldiii-projecUoii tree is built up 1)<VS<H1 on 
• \ 

the uiiifoi'm criterion, which inoaiis that the samples (listribulion on each leal" 

node is tus even tus possible. In onr cxperiiiiciil, we train a 256 nodes raiuloin-

projection tree from annotated face images from LFW [44]. For each of Uk， 

25-dim feature vcctor, it is quantized to the discrete code that range from 1 
'c . 

to 256. ‘ ’ 
After the oiicoding step, tlie input image is transforrtHl into a c(k1(�image. 

Following the method described in LBP [1], the oncocied ilnage is clividcid into 
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a grid of patches. In our experiment, we take a patch grid of (> x 6 for 1.1 lo 

normalized input image with resolution 80 x 90. A histogram (256 bins) of the 

LE codes is built up for each patch and the pat-cli liistogniins arc coiicatciiatcKl 
J 

to fprni the descriptor for the whole face image. The total length of the final 

descriptor is 9216. -

Generally, it is liard to directly use such a high dimensional feature vector 

for the recognition task. A higli dimensional not only limits the number of 
facos to be processed, but also incroLUio tho computation load for tVicti recogiii-

\ 
tion. Thus, wc apply PC A to compress tlio concatenated histogram and use 
the compressed doscriptor as tlie final LE descriptor. In all tho following; ox-« 
poriiueiits, wc use PCA for dimension rocluction with 98% (;n(»rgy i)i.(\s(”.vtMl. 

The incMsuronicnt functions and chussifiers used in tho local descriptors boused 

approach are the same as those for tho holistic approach. 

4.3.3 Sparse Feature and Recognition 
« 

In the signal processing ctinnnunity, the problem of piirsuinj; sparse^ liiuuir 
* 

reprosentalioiis with rospect to an overcoinplcite dictionary of base signals has 

soon a rocont surge of interest [25] [112]. The corc problem of t.h(\sc appi oachcs is 

to find an optimal representation that is sufficient sparse. It can be siifHciently 

cornpiitod by convex optimization, which is similar to tho Ljlsso in vstatistics 

80][25], penalizes /^-norin of the coefficients in the linear coiiihination. 

In [97]，Yi Ma et.al. take tho aclvantago of sparse rcprcsciilalion for cl̂ ussifi-

cation in the context of automatic face recognition. Tho underlying rationality 
t to use s[)arse representation for chussification is that: Suppose xue have suffi-

4 

dent training samples for each class, it will he. possible to Tepniticiii the test 

samples as a linear combination of just those tr aining samples from the same 

class. ‘ This rcpt cscntation is naturaUy spar se, iiwolvhui only a small porhoti of 

the overall training iniages. With coinparisoii to the scoiuirio of recognition for 



Chapter 4 Video Based Face Recognition (ili 

still images, the video })ased faco recognition provides more t.rainiiiĵ  samples, 
where the sparse assumption is more suitable. 

Given sufficient training samples of tho ？:-th object class, C, — [:r,’i, 2, •••,：/ 

G IR爪xn�a new test sample y E R…from tlio same cbLss will be approximately 
lie ill the linear span of the training Hani[)lcs of C\. 

y = 工,,1 + + . . . + (4.7) 

with the linear coin))ination coefficient a G M. 

For cach y, it is represented by an overconiplete dictionary that, contains 

the entire training set of ri samples from k classes: 

C" = [C] ’ (�2, • . • ， — [2:1,1 ’ . •. ’ 丄、.’/•“. j. (‘'4,8) 

Therefore, the linear representation of y can bo ro writ to 11 in terms of C as: 

y = C(y e (4.9) 

Seeking a sparse solution a to Eq. (4.9) is cioiio by solving tho following 

/^-minimization prohlcin: 

d = arg riiiii 丨丨以！丨】’ y = CVi. (4.1()) 

This problem can 丨)(�solved in polynomial lime by the standard linear pro-

grarnrning method [18 . 

After get the sparse representation d for a t,(，st, sainplo /y via Eq. (4.10). In 

an ideal ease, the nonzero entry in d will be conespomkuiL to the coluiiin of C 

from a single class CV However, errors arising from modeling and nois(i may 

load to small nonzero entries associated with multiple classes. 

For cach class i, denote a, = [0, • . .，a!,!, . . . , ,(),. . .] that sclects the 

coefficients associated with the z-th class for a test sample y. Using we 

can 叩proximate y cis 仏—Ca,. Therefore, w(； classify y hascd on these 

approximations by assigning it to the class that iniiiiiiiizes the residual between 

y and ?7i： 
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R E Q U I R E : Set of training samples C = [C,，...，C人] 

a test sample y 

RETURN： Class label I a he I (y) for y 

Normalize the columns of C with P-norm. 

Solve the ”-minimization problem: 

a = a r g m i n a y = Ca 

Compute the residual error 厂,（>0 = y — Coc 

for all class i = \，…，k 

Get the class label via lahel(y) = arg min, r, (y) 

Figure 4.4: Recognition Ba-sed on Sparser H(”）r(，s(�iit,ati()ii 

nun r\{y) = \\y - y,\\2 •I.I 1) 

The overall recognition process for one single fiaine is suiiiiiiarizcHi in Fig-

ure. 4.4. 

4.3.4 View Based Models for Pose Accommodation 

A view based classification strategy is taken into t he traillinji, process, t.() handh^ 

the huge appearance variance owing to I lie out-of-plaii(，motion. For rarh ()1 

the cropped face samples, no matter from training set or quci.y set, a view-

label is assigned based on its 3D motion parameters. In our experiments, five 
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views are exploited: {-70。，一45°}，{-45°, - 2 0 ° } , { - 2 0 ° , 20"}, {20°, 45"}, and 
{45°, 75°}. With the view based strategy, all I ho training •sainpl(\s have the 
same view label are trained and the classification for each query t'ni川n is also 
per fori nod on the trained iiioch l̂s with the same view hil)(�l. 

4.3.5 Decisions Combination 

Given the classification results from each query frame, a (Incision fiKsioii srli()m(� 

is iieedecl to get the final decision for the overall vi(l(H>. lii the following (>xp(T-

iments, two combination strategies are \isecl. Th(�first on(� is a voting scliciiH；, 

wliere the single classification decision from (;ach frame are c.oll(x.U�(l to build a 

class histogram. The class with riiaxiniuin vo te is assigned to the whole im叩p 
/ 

sequence. Beside the rank-1 classification results, wo also offer tlie rank-2 (class 

with second most votes) and rank-3 (class with third most, voters) classification 

results. 

Another coiribinaticHi strategy is (icfined on tho iiKuisincniciit I'miction. 

Given the training samples from m object classes, I) = ,…，P,„]. /), 

taiiis all the videos for i-th class. For an input query video with n fi aiiK\s,y 二 

r/i, . . . , Qji], we define a sarnple-class distance function d^ for th() z-t,h query 

frame and A>th class as: 

d ) = •nnn{dist{(/f,,pi)\pi G A-}, (4.12) 

where dist{•) is one of the two niea.siireriient functions: Euclidoaii (list,an(.(， 

and normalized correlation. At.the next step, wc gc;t n iii(�a‘sur(�iii(�iit function 

defined between the overall query frames and a specific class 人•： 

d̂ - = — d ^ (1.13) 
fik 

In the above equation, n^ is the nuiiib(，i- of query fiaiiics thai can retrieve 

the sample-class distance function. In the (iosigri of , we [)r(?fer the average 
» 

distance over samples to the sum distance over siiniplos. This preforcnce is 
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\ 

based the following observation: With the cxploiUiUon of view L>AS(KL IIHXICKS, 

the query frame number rif̂  for cach cl̂ iss k might he fliffereiit. It is possible 
that sonic view labels are not contained in the training sainph^s ()f t lie A--t.h 
class. At a final step, assign t,h(�qunry vid(、(）with cUiss labd A: 二 nrg inin 

k 

However, wc only exploit the voting schoiiic for clocisioiis coiribinHtion for 

the recognition approach based on sparse representation. Since sparser n，p-

resentation attempts to solve tlio rcprcs(nitati(jii co(;ffic-ients tog(!tli(T with all 

the training sainpkis. It is meaningless to store distaiic(> to all t,h(; ol)“�ct 

cla.sses, since the sparse coc^fficieiits only coiiccuitratc on fV�u, sainph^s from even 

less classes. For most of tlie objcct classes, the f:()m)‘sp()n(l(Mit, cocjfficicnts k(’(]) 
zero entry. 

> 

4.4 Experiments 

In this section, we present experiments on publicly availabl(» data!)as(;s for 

video basc(i face recognition, which flciiK^rislratc! tin) (�ffi(:i(�m-y of t he i)i()|)()s(*(i 
、. 

recognition framework. With the accurate facc localization logolhcr witli pus(i 

extraction, we can acliiovo the state-of-the-art recognition per fori nance ()v(�ii 

with the using of simple holistic appearance features. 

We will first introduce the tracking configuration of tiu; [)i()i)o‘sfKl fran…work 

and the related face cropping proccss, which act as a i)i(ij)r(jcc'ssiiij2, st,(;|). Hicn 

we test the recognition performance of the proposed aj)proaclies on sjx'cifically 

designed benchmark datcuscts. The role of feature extraction in ilin proposed 

recognitioii framework is examined with a sci:i(3s ()i comparative ox[>oriiiients, 

together with the pcrforiiiance analysis. The overall perfcM inancc? on tlin r(;al-

world videos outperform the previous best rnpoi tncl approach oii tli(，SHIIK' dat a 

set [48], even with a simple holistic feature. \ 
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4.4.1 Video Datasets 

The video set used in our experiment contains quantities of noisy real-world 
videos crawled from YouTubc, which is public available [48]. Tlin datasct, 

- I 

consists of 46 identities with 1910 video scgnunits. Th(，typical rnsohitions 

of video varies from 240 x 180 to 320 x 240. Since our approach needs a 

frontal facc frame for automatic initialization, wc oinils t,ho video clips failed 

to initialize the tracking approach. The remaining 1239 vifico clips arc tracked 

and used for the recognition evalviation. This video set is chalkMigin^ for both 

tracking and recognition processes since videos exhibit large! variiit icjiis in fac(， 

pose illumination，expression, e.t.c. 

« 

4.4.2 Track and Crop Faces 

The proposed non-rigid 3D tracking is automatically initialized in an image 

witji frontal faco: first the facc rectangle is automatically (i(",(x:U)(l by a faco 

detector and then 2D facial features arc locatcd by the face alignnioiit algo. 

rithrn [115, 105]; given the localized 2D features and their correspoiulirig 31) 

vertex index on the deforrnable 3D shape model, the sliajjc and [)os(； paraino-

tervS are estiniaterl using the method in [42]. What should be rnentiorHKl here 

4s that our 3D tracker's parameters are fixed for all the videos û i(，(l in tlu; 

experiments, no matter whether they come from indoor sccnes or arc crawlod 

from Internet. 

To crop a normalized face, we locate the eyes ccntcrs and Iho rnoiitli c:cnter 

for each well tracked frame. Gcoinetric normalization and liistograni (�qimli'/a-
» . 

t i o n are p e r f o r m e d s e q u e n t i a l l y a n d t he nonna l i z (K l iriiag(3 size is t o 

80 X 90, which is a common size for imago l)a«()(l recognition. Kiguin. A.T) shows 

the examples of the well cropped faccs. 



mm 

m 

Figure 4.5: Croppcxl samples from the Youhiilx) DatHsct, 

m 
M M 
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F(iaturo Descriptor Voting Av(;ra^(i DistHiicc 
R(^g\ilarizccl LDA + I•之-no'nn 81.52% 59.78% 

RxigiiUiriznd LDA + norrrialized coiiT.lai'ioii 83.70% 80.43% 
LE + l^-iiorrn 83.70% G().:J()% 

LE + noTirializcd coiTelation 88.04% 85.87% 
sparse roprcsontation + I'^-nmin 84.78% N/A 

spars(i rciprcjsoniaiiori + LE -{-I'^-nmin 80.43% N/A 

Tabhi 4.1': Accurate Rocogiiitioii Hat(； (ARR) with DilfrnMit lu^alurc l)(，s( 
tors 

4.4.3 Recognition on Video Datascts 

In Iho following n.'cogiiiiioii (»xporiin(;nt.s, tlm accurate i()n rate (ARR) 

is usocl 'cxs tli(； porfornuincc iiulic-.ator of U i ( ， a p p r o a c l i . W(» first 

verify the rolo that foal urn (k^scriptors phiy in our r(;rô 2;nit,i(>ii fViiincvvork. 

ThrtM； types of foaturtis am testcnl on the saiiiî  vidcM) (labisct with other 

(?xi)(;riiiK;nt configurations k(K”：）iinchangcHl: R(，gulm,i'/(，d LDA, LE, and sparse, 

features. For the data preparation, w(i randoinly choosc; 4 videos for (lacli of 

the 4G iclcntitios from the Youtiilxi (lat,as(�t,, 2 vidtios for triiiiiiij^j, aiul '2 (or 

test. Two stanchird iiK^asuroiiK'iit, functions arc; us(，（l lor t,li(�fiist. 1 wo I(!«it.ur(;.s: 

norrnalizod correlation and "-nonii . Mcjaiiwhik;, two typ(�s ()1 (liH(”(，iit. (Incision 

fusions arc (jxploitiul. For (;ax.li train/test vid(K)’ wr t,ak(̂  only tin; first, 100 w(;ll 

trackc^d fiaiiuis to i,(”)i.as�t t,h(; ovnnill video. 

As shown in Table, d. 1, tlu^ cxjiiibiiuui feat,iire of s|)ai‘s(, i.(!|)r(�s(”iUiU<)n and 

LE (lcscripi(jr is achicvcnl by re placing t,h(�(jrigirial (T(J|)|)I)(�(1 sample \vi(,h the 

nxtracUid LR descriptors. Using LE flescriplor with ii(jnniili'/(，<l correlation 

inoasurenient achicvc the b(\st recognition r(，Hult,. 1IOW(，V(M, with UK) prcnisc; 

facial fcaLiirc extraction, tlie holistic fbaturo perform fus w(，ll as w(，(ixp(;ct(;(l. 

It has also \)(ieu notic(;d tliat the p(;rforiiiaiic(； of combining LE dc^scriptor 

and sparse reproscntation is lower tlian only using sparsfi reprc\st'iiliit,i()ii. This 

conclusion coincides with the assculion that LE (i(，scTii)t,()i scjcks t . o�m ()<l(，s t.hr 

local iiifbnnation a«s even as jjossiblo, tlio O-nonn iniiiiinizatioii on LIS is Inss 
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Figure 4.6: The pose disti’il)ut,i()ii ainoiiK Irjiiniiig samples 

(liscriniiiicitivc than the original saiiipkis. 

The rocognition n^sults on t.hn Yoiitiibo 山it,iis(，t, fire shown Tal)lo. 4.2, in 

which llin coiiiparisoii n^sults in tlic first two columns Mie cil.ccl from [48] on 

the sanio video dattisot. In our oxporiinc^nts the training and tnsting s(丄s are 

niiuloinly partitioned in a similar way to [48]: ARR of 78.9% is achiovcnl with 

a random partition witli 10% videos used for tniiniiig (132 clips). Tli(，1 raining 

and testing videos in(:hi(lo all the 46 persons. To the l)(\st of our kiiowlculge, 

» 2D Tracking 21) Tracking 3D Tracking 
> Voting HMM Voting 

Persons 35 35 46 
Videos 1200 1200 1239 
ARR G2.42% 71.24% 78.9% 

Table 4.2: Comparison of ARR on Y()utul)(; DaUis(�t, 
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Accurate Recognition Rate 

40.009& eO.OÔ o 80.00% lOO.OÔ o 120 OO'S 

B 30% 
10% 

Rank-1 
8 6 . 6 0 % 

78.90% 

Rank-2 
92.40% 
85.30% 

Rank-3 
95.60% 
87.90% 

Figui.(; 4.7: ARR on with Difrorent Train/Test Partition 

ARR of 71.24% in [48] is the I)est recognition poifoimamx，on i\\v. Y(mU山(� 

data, where around 1200 vicioo clips with 35 i(l(mt,iti(\s A"、us(I(L. HOWCVCM , 

since t.ho authors in [48] could not oflrr tli(，ir d(丄iiil(，(l training and Iĉ stin̂ z, 

partition. So such an comparison is less m(uiiiingful. Mori'over, whoii m()r(， 

persons arc iiicliKl(Kl in the rocogiiitioii exporiineiil (46 persons with rcspcHit 

to 35 persons in [48] )，while the l.otal niniibcr of videos koĉ ps iiiichaiig(Hl, tlû  

problem becomes more h an lor. 

Obviously, the ratio of tho training and testing is a key paraincU'r for 

Ui(； final rocogniiioii output. To (It'iiionsiratci thr infliicnct! of Ui(�aniounl. of 

training samples on t.lu; final locogiiitioii result, vv(； GIV(» (,1K; i,(K:ogiiit.i(川 n^siilt.S 

ill Table. 4.7 when 10% aiul 30% of the (iat,as(，t ai(，partitioned as tniining set: 

The figiircvS in Uie above tabic (Icinonstratc that when more clips Min used 
» 

in the training data set, the ARR rate soars up IVoin 78.9% to 8().()%, whilr 

the iniscUissifitHl vid(K) clips rediiccs from 232 to 91. When rank-2 and rank-li 
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Fmiital Only 3 Vi(nvs r) Views 
riogiilarized LDA 84.0% 8G.()% 85.9% 

LE + RegulaTi7,(，(丨 LDA 89.2% 90.27% 89.9% 

Table 4.3: A i m with DillenMit Views 

cla-ssification is taken into consicleration, wc can aclii(�v(，a high AH 11 clost̂  l.o 

tlic correct clticision. WIKMI the iiiischussifi(»(l vidt^os aro r(�trk�vt、（l，\v(，(in<) L.lial, 

the major causc of the iinscliussificatiDii is that t,h(，usjig(，of tlû  c-onfidciux^ 

measure cannot always select the well tracked {Vainas when blur dlrct,，agilr 

motion and sc^vero ilhiiiiination variation exist, in Ui(�video clip. As a rosiilt, 
k 

the tracking is drifted away and Ui(，voting sdu，川(，cannot guarant.(K! (o snloct. 

the correct identity. 

Tho i)os(i (list.ribut.ion among the Y()uTul)c (lat{is(,t. is shown in ‘1•“，most of 

the samples aro concentraU^d in the range {—20°, 20°}. To iiiv(\sli^at.c the m-

bustiioss of t.ho rocognil.ion results and the validation of t,hn vi(，w-l)aM(�(l mmlcls, 

wo t.(»st. the recognition ixMforinance with diireroiit view models: only first vi(�\v 

iiiocld; throe view models including {—45。，一20。}，{-20。，2()�}’ {20°, 45"}； all 

(ivo view iuo(ics. Wc raiHloiiily select 30% of tlio videos ius training s(�t’， 

while the reiiiaiiKlor 70% videos (853) are used for t.(\st,. 

In Table.4.3, give t.ho recognition r(\sult,s with Rx^gnlari/cul LDA and 

LE. With an accurate facc; extraction approach together wit.li a pnicist; view 

partition, the recognition results with usages of a siinpk^ holistic ap|)(NimiK.(’ {v.a-

t,ui(，arc comparable to the recognition r(5sults using u stati^-ol-tluvart fnat.nr(» 

descriptor. 

arc iiiUn'ost in the variation of ARR whon increase t he used vi(»vv-

l)jus(i(l models. For both of the t,wo f(»at,iires, tho best ARR is achieviul wIumi 

3 views are used for recognition. When 5 views ar() used, the ARR (lrclin(\s 

slightly. A n^asonable interpretation for the pcnrorinance (h^goiieitition is fus 

following. For sonic specific persons in the test they do not, have, t raining 

samples in the side views models, due to the random partition schema. Thus, 
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t he v i ( � w hjuiod incxio l labels t h e saniph，wit,h a. w r o n g ident i t y for that, f i .anu� ’ 

w h i c h loads to a w r o n g v o t i n g resu l t a t t h e decis ion cc)inl) i i iatic)i i ‘stage. 

4.5 Conclusion 

In this chapter，w(，propose，a video face recognition appmach l)a:s(ul on ：⑴ 

non-rigid facc? tracking. The proposed 3D IrackcM can provide^ both acciiriiti'ly 

cro|>pcd facc aiul reliable fare view iiiforiiiatioii, aiul thus significantly improvers 

t he i xMfonna iK 'e o f face recogn i t i on . T h e conf idence pmvi( i r ! ( l by the t rackcM' 

also servos as a criterion for robust face rocognitiDii in video s(，qu(�iK ( � W i t h t,h(， 

wel l c r o p p e d samples , wc can achicvo t h e s ta te -o f - t he -a r t recogn i t i on por for -

iiuiiuM^ cv(Mi with ilu) usage; of simply holistic f(�at.ur(�s. Kxt,(�iisiv(�（、xi)(Ti"i(�nts 

liavn been carried out on tlio videos crawled from lut,(�m(，t, which (Icmonst rate; 

the superior poiforinanco of our approach over rxistiiig appiocichcs. 
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Performance Driven Face 

Animation 

In this chapter, a pcMtbriiuiiice drivoii 3D face aniinalion systoin is 丨noposrd. 

The proposed approach consists of two koy conipoiicnt.s: a robust non-rigid 31) 

tracking module and a iVlPb]G4 compliant, facial animation mo(luh，. Firstly, 

the facial motion is tracked from source videos which contain both Uk�r igid 

3D head iiiotioii (6 DOF) and the non-rigid oxprossion varialion. Al.t,(” wiii(l， 

the tracked facial motion is paraniotorizod via (estimating a s(�t. oi" MPl̂ XM 

facial animation parani(U.ers(FAP). As the final step, these KAl) valims arc 

transferrin 1 to the MPEG4-coiiipliaiit face inocU?! for the uiiiination purpose. 

Coinparod with tho recent works on perrornianco (irivcn animation systoins, the 

potential advantages are two folds: Firstly, the non-rigid laco tracking provides 

a global motion for the aiiiinatioii, which is more robust with coinparisoii to tlû  

approaclies built on 2D tracking of few control points; St'condly, {.\\v proposcul 

tracking and aiiiiiuilion system has a strong gcnKnalizatioii ability and can ho 

usocl in tho indoor environment with no aclditioiuil fussuinjitions. 

82 
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5.1 Introduction 

Facial animation is highly deinanded in the applications of 3D gainos, iiit(M ac-

live huinaii/computer softwares and movies, for the luiiiuiii face can oxpiovss a 

wide gamut of emotions and expressions that, can vary widely both in iiiUMisity 

and meaning [46][71]. Traditionally, deforination of <i facc model is desigii(，d by 

experienced aiiimatoi. with tedious hand sciilptiirc. Constructing and siinulat-

iiig such a model luis been proven to be a difficult tcusk beciuisc of tho subtlot.y 

of faco skin motions. Contrarily, porfonnaiice driven facial aniniat ion [93] has 

l)oon a hot topic since it allows actors to express content, and mood iiat.iirally 

for taiget aniination controlling, and the rosultiiig animations have «i clngnu^ 

of realism that is hard to obtain from the hand crafted works. 

Since the pioneering work of [71], quantities of eflbrts \v(�r(�pi.()vi(l(�(l to in-

croiiiie the roalisni for ensuring the appealing interaction wit h humans. In [93], 
* 

an iippmach for l^iiilding realistic hiiniaii head model has(，d on photograpliic 

texture mapping luus been siiggovstcd. Based on this result, a mng(�of systcMiis 

luus been developed that analyze the expressions of a human porfoniier and 

transfer the corraspoiideiit facial animation onto the facre inodols. In [；i7l[75], 

n iiiorpliable model is built by fitting a gcnoric faĉ o model l.o iiiult-ipln i)h()-

tographs of ono facial (expression using iiiaiiually labelled fWituic points; tlui 

model is afterwards used to track video sciquonccs of Iho saiiio person. In [2G], 

an aniination system is designed for teleconferencing based on landmark track-

ing ill videos. This process is aid(xl by a dcforinablo 3D niosh model that, luus 

been obtained from m 3D Uuior scan. 办' 

For the success of a porforniaiice driven aiiiinatti)n sysl.(uii, it, IUHKIS to tackk; 

])robleins arising from the following aspects: What kind of approaches should 

bo used to obtain the model of facial motion? How to drive a 3D facial motion 

aniination using tracked facial laiulniarks. 

For tracking landmarks of face, adding markers on human faco was uscul 



Figure 5.1: Flow diagram of (.ho animation algorithm 
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in many of early work, for example, using a set of colored dots [37] [9 1]. Once 

the position of marker (iGtennincd, the facial motion featiires can be Ccisily 

derived from image or video sequence. However, this technic|ue is limitod only 

suitable for the case in there markers on face existed or allowed to IK�used. 

The approaches in a later stage mainly concern face tracking in uiiinarked fa(:(� 

of video. However, the traditional ai)proach[15] rely on t he 2D feature t racking 

to extract the source control, which limits the application scope only to the 

near frontal face. 

To handle it to map the facial motion of the pcrfomi(�r onto meaningful 

animation of the target model. There have been several difforent. approaches to 

map the facial motion from the source to the target iiiodcl. Generally they can 

be (livi(l(Hl into two categories: Uu，usage of a Ijleiicl shap(�system [-1G)[15] for 

target animation synthesis or directly motion retargeting on the target motion 

model. Expression cloning [69] is a typical tochiiiqiie in the second category, it 

directly maps an expression of the source model onto the surface of th(�target 

model, while no assumptions are made on the source/target models about the 

mesh geoinctiy or connectivity. Given the features corros[)oiKlence bet woo ii 

source and target models, the motion transferring from ihr source 川()(i�ls to 

tlic target models is carried with the criterion that the motion vector should 

be properly adjusted to account for the local shape of the models. 

Inspired by Chuang's work [19] to mapping a porforinance directly U) a 

target blend shape set, we present a novel 3D facial animation framework 

where defornialioii of the target, model is controlled animators in front of the 

web-camera: the non-rigid 3D facial inotioii is captured by registering a 3D 

inorphable model to each input frame; afterward, the rigid pose and non-rigid 

expression parameters is extracted and transferred to the target animation 

model, in which the shape blending technique is used to. synthesis the final 

result. 

Compared with the recent vision based aiiiination systems in [19][15][46 
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the usage of 3D deformablc tracking for animation driven has iollmviiig 

advantages: Firstly, the global facial motion is tracked instead of few c ojitrol 

points for the animation, which is more robust and not. constrained to tlu� 

near frontal pose; Secondly, the intrinsic decoupling of the pose and expression 

parameters makes us only need to focus on the non-iigid facial motion, which 

guarantee the animation procedure to be more acciiratc; Thirdly, the usage 

of a 3D motion data for FAP calculation reduces the ambiguity arising fro in 

the 2D tracked based approaches. Meanwhile, the MPE^G-4 compatible motion 

retargetting scheme has a strong generalization ability. No adaption is required 

for difFerent control sources. Experiments show that our system produces more 

vivid facc motion animation in a large pose range. 

5.2 Animation System Description 

Given a video sequeiice as input, the proposed system is used to drive the 

animation of a 3D model. Figure. 5.1 illustrates the flow diagram of whole 

animation algorithm. Firstly, non-rigid motion of the source video is capturcd 

by a non-rigid 3D face tracker. Then, the extracted mot ion vectors are used to 

calculated expression parameters which are based on the definition of MPEG-4 

FAP. Finally, expression parameters are transferred to the target model for an-

imation purpose. The performance of non-rigid tracking and mesh aiiiiiiatioii 

is real-time. Meanwhile, the only requirement for the animation system is a 

neutral face input at the first frame. 

5.2.1 Non-rigid 3D Tracking 

Given a collection of image observations {II}, non-rigid 3D facc tracking at 

frame t is formulated as the Maximum A Posterior (MAP) estimation in 

Bayesian framework where the tracking state consists of non-rigid 3D shape 
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Xi and rigid pose 

A A 

{ A � ’ Q J = argmaxp(A't,Q,|{II}) (5.1 

p{Xi) denotes the prior constraints of 3D face deformation on A',, Qt) 

is the likelihood distribution which describes the conditional probability of im-

age observations { I } given the tracking state {A〜，Qt}- The tracking algorithm 

consists of three key components: 

1. the prior shape model p(X), it ckaracterizes the 3D shape variation from 

a set of training samples; 

2. the likelihood model p({II}|A^, Q ) , which is modeled based on (ha 2D-3D 

features correspondences. The features set consists of the off-line tiained 

seniantic features, face silhouette features and online tracked low-level 

features; 

3. the robust estimation algorithm which obtains reliable results in the case 

of significantly noisy image observations. We make use oj\cni hierarclncal. 

optimization strategy together with robust estimation techniques to fulfill 

the task. 

The generalization capability is guaranteed with the usage of deforniable 
、 

shape model together with the off-line trained distinctive facial features. Fig-

iire. 5.2 shows the results of our tracking approaches for one performer. Do-

tailed algorithm can be referred in Chapter. 3. 

5.3 Controlling of Target Model 
) 

Given the source motion extracted from videos, the key problem for target 

model animation is to retargeting the motion where the topology of the target 
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Figure 5.2: Nonrigid Face Tracking Results 
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model is different from the source one. Given the non-rigid 3D face (racking 

module, the 3D rigid motion (6 DOF of head motion) and expression motion 

are intrinsically decoupled. Transferring of the rigid 3D motion is straightfor-

ward, we can apply the 3D pose p?lrainctcrs from the source rnoclcl directly 

to the target model. As for the non-rigid facial motion, wc first extract, the 

expression paranieters from the face deformation and then utilize the eexpres-

sion parameters to control the target ino(ld,s aniination.Since our animation 

system is based on the MP EG-4 standard, we will give a l)i,i(，f introduction to 

the definitions related to the facial animation. 
• 

I 

5.3.1 Motion Parameterization via MPEG-4 Encoding 

MP EG-4 has, a standard for 3D human facial animation. It. includes the def: 

iiiition of two sets of parameters: Facial Definition Parameters (FDPs), and 

Facial Animation Parameters (FAPs). The FDPs define the shape and tcxtiin^ 

of the human face. It also specifies how the face mesh will deform according 

to the FAP valuefe. The FAPs are account for the animation of facial model. 

MPEG-4 includes the common way to iinplemeiit the facial aiiiination bascxl 

on the FAPs and FDPs. An advantage of the MPEG-4 based facial aiiiination 

system is that little data arc required to drive the facial animation system. 

Furthermore, it doesn't need much computing work, so it is suitable for real 

time animation on very low-baud network. 

FDP includes infonimtion about feature points position, and Face Def Ta-

bles (FDT), etc. Each domain of FDP includes the following 2 key items： 

-FeaturePointsCoord: Specifies the coordinates of face feature points; 

- F D T : Depicts how to use the FAPs to animate facial meshes. 

In the standard of MPEG-4, there is a definition for 84 feature points in the 

FDP. The FAPs are a group of facial animation parameters. They represent 
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a complete sot of basic facial actions, and allow for the representation of most 
facial expressions. Tht»re arc altogether 68 FA Ps in the MP EG-4 standard, 
which can be divided into two groups. The first group contains two high-k^vel 
FAPs: viserne FAP and expression FA P. Wc can express particular expression 
or viserne using the linear conilMiiation of the predefined basic expression FA Ps 
or viserne FAPs. The other group contains 66 low-level FA Ps that express 
motion of difi'ereiit specific regions on facial models. Tlie iuiictioii of the two 
high level FAPs is to express visernes and common expressions coiivoiiient.ly. 
The function performed by high level FAPs can also be done by low level 
FAPs. Siiicc The low level FAPs can also express the coinplcx and irregular 
expressions that can't be expressed by high level FAPs. In our thesis, we 
mainly deal with the low-level FAPs. 

All the low-level FAPs arc expressed in toin of the Facial Animation Pa-
rameter Units (FAPUs). FAP Us arc correspond to ratios of distances between 

some key facial features to a basic unit (1024 in our experiments). To b(� 

specific, there are altogether 6 FAPUs in the MPEG-4 stcuidarcl: IRISD, KS, 
ENS, MNS, MW and AU. The definitions for FAPUs ar(�as the following: 

IRISD = IRISDO/1024 

ES = £；5'0/1024 

ENS = ENSO/1024 (5.2) 

MNS = A^/yVS'0/1024 

MW = MiyO/1024 

The FAPUs depends on the facial model, and different facial models have 

different FAPUs. These units are defined in order to allow interpretation of 

the FAPs oil any facial model in a consistent way. It means tliat a group 

of FAP represents the same expression on any facial model, thus making the 

FAPs universal. The physical meanings of FAPs are illustrated in Table. 5.1. 

In the MPEG-4 based facial animation system, if we get the value of an 

FAP, we need to look up the FDT to get information about tho control region 
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ID Action Mill/Max Value FAPU 
3 o p en 一 j a w 0/1080 iMNS 
4 lower 上 micllip -600/600 MNS 
5 raisc-b-riiidlip -1860/18G0 MNS 
G strctch-Lcoriierlip -600/600 MW 
7 strotch_r_cornerli p -600/600 MW 
8 lower-t_lip_lin -GOO/GOO MNS 
9 lowei-t-lip-rm -600/600 MNS 
10 iaise_bJip_lni -1860/1860 MNS 
11 raise_b_lip_rni -1860/1860 MNS 
19 close_t_l .eyelid -1080/1080 IRISD 
20 close_t_Leyclid -1080/1080 IRISD 
:]「 raise _LI .eyebrow -900/900 ENS 
32 raise_r_I -cycbrow -900/900 "ENS'"" 
33 raise 丄 m .eyebrow -900/900 ENS 
34 raise _r ,ni .eyebrow -900/900 ENS 
35 raise 丄 o_eyebiow -900/900 ENS 

36 raise r_o—eyebrow -900/900 ENS 
37 squeeze 丄 eyebrow -900/900 ES 
38 .s(iiio()ze-r_eycbrow -900/900 ES 
39 pufLLchcek -900/900 IvS 
40 I)ufr_r_clieek -900/900 ES 
41 lift 丄cheek ‘ -600/600 — i 丽 -

42 lift_r-cheek -600/600 EiNS 
53 stretch-l_corncrlip_o -600/600 MW 
54 strctch_r_cornerlip_o -600/600 MW 
61 stretch 丄 nose -540/540 ENS 
(32 stretch .r_iiose -540/540 ENS 
63 raise _iiose -680/680 ENS 
64 boiid_nosc -900/900 ENS 

Table 5.1: FAP Values for Expression Synthesis 
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Figure 5.3: Avatar animation by FAP values 

of th(3 FAP and the three (liiiKinsional motion factors of vciUcns within the 

control region to convert tlio FAP into facial aniiiiation. Obviously. FDT play 

ail important role in an MP EG-4 basod facial aniiiiation systcni. In our t.h(\sis, 

we use the i)iodefiiic(l FDT for 3D face rocoiist ruction in [42 

5,3.2 Transferring Expression Parameters 

In order to model tho expression variations from an animator, w(�^ussuiiie 

that, a generic c^xpressional facc shape is the sum of an idcMil ity shape aiul an 

expression cleforinatioii:S^xp = + AS, where S,̂ / and AS hold resp(ictiv(;ly 

the face shape with neutral expression and the displacements of tho vertic(i.s due 

to expression variation. In our work, S î is obtained at the initialization stage 

when the input neutral face is registered with a deformablo 3D model clcscrilxKl 

ill previous section. Meaiiwhilo, AS is expressed aa a linear combination of 
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FAPs: 
ft 

AS = (5.3) 

Given the above ecjuation, the recovcii y of expression�)ai.ameU)ns a is cast as 
a quadratic optimization problem, in whicli we riocfl to minimize the diffcuoncc 
between C/"') with tlic cur rent motion vendor AS. How()v(，r，tlic iinconslraincd 
error rniniriiization of linear cloff>i rnatioii might incur un(，xpnc:UKl distortion, as 
(loseribed in [19]. We tak(； tlio constraints on expression parameters to a fix(�(l 
region [07, and tho optiinization problem hfLS Mio following form of .slaiulard 
quadratic programming: 

rmn A , S - 亡 C广Vv”|2 (5.4) 
i=l 

w.r.t, CKi < a < cvu 

whicli can be handled cfficiontly with tho starularcl nimierical t(3chniqiK!S [27 

Oiicc the expression parameters are ixicovorcd, the motion retargeting to a 

new face model becomes a simple task, the 3D pose parain(3t(;rs HIKI FAPS arc 

traiisfcirred to the target model for animation. With the; docoiiplo of tlu; facial 

motion capturc and motion rotargoting, it is very cfusy to HMISO the tho SHIIK; 

source videos on diftorcnt rnoflols. Figure. 5.4 shows tho typical aiiiination 

rasiilts from difi'erciit animators. More (Iciiio results are avail abler on [109 

5.4 Conclusion 

We present a method of performance driven 3D facial animation l)y using a 
combination of non-rigid 3D tracking and shape blending for targot anima-
tion. Given an animation character as usual, the proposed algorithm allows 
any users in front of a camera to drive facial animation, rather than animate 
by liand. The approach is cffectivo even when the soui'co and target aiiinuitioii 
model liavo quite different shapes. Different from previous approaches whoro 



Chapter 5 Perforvnance Dmven Facc Animation 94 

"igiirc 5.4: Animation Results 
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the ariirriatioii is driven.from sparse local foatur(;s, our nioli(jii retargol.ing work 

is clos(U' to the category ()f motion pararneterizations, wliere th(�lioli.stic 3D 

model's dciforniation is used for the higli-lnvol qualitative (ixpmssioiis paranic-

tcrs calculation. 



Chapter 6 

Conclusion And Future Work 

I I I t h e first p a r t o f t l u i thes is , we focus on t h e p r o b l e m of Um)(，-(lim(msi()mil 

face t r a c k i n g , a ct ia l l o n g i n g v i s i on task t h a t has i n any ru Ivan I ag(i.s in the; f ields 

of. facci recognition and performance; driven facial aninuitioii. W�（i(，v(，l()p a 

novel frainowork for 3D tracking of th(3 non-rigid face cloforiiiat.ion from a sin-

gle camera. The challenging parts of tlio probk;iri lies in the fact that 31) 

deformation parameter estimation bccoines unstaljlo when there are few reli-

able facial features correspondences. Meanwhile, in the real tracking .scenarios 

t,li(M'(} (exists significant illumination chaiigc, motion blur or largo p()‘s(; vari-

ation. In order to (3xtract more information of feature corrcjspoiiclonccis, Ui() 

proposed frarn(^work integrates throe typas of features which cliscriiniruitc^ fac:(， 

(leforinatioii across (liffercnt views. The iiitogration of tlu^se coinploincntary 

features is important for robust estimation of the '3D paramo tors. In order to 

estimate} the high diriicnsioiial 3D deformation parameters, wo dcvolo[) a hier-

archical parameter estimation algorithrii to roljustly estimate both rigid and 

non-rigid 3D parameters. We show the irnportaiico of both fcuxtiires fusion and 

hierarchical parameter estimation for reliable tracking 3D facc rlcformation. 

The experiments of non-rigid tracking are performed on botli n^al-world 

videos and live camera with low resolution input. To test the proposed algo-

rithm on the vidcios in the indoor environment, w(» build a vi(l(?o d at abase with 

96 
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182 persons. For each identity in tlu; CLATAHMSC, a conUolhnl motion is cap-

Lured : the first 100 frames hold mainly frontal pose with neural expression; 

thereafter, one has around 600 fraincs in which no constraintvs arn posed on 

the head motion and tho (^xpressi(jn variation excopt, that tlu! sequ(Mic(，starts 

from a frontal pose. Meaiiwhih;, the video clips aro cai^turncl in (lifi"(;r(jnt envi-

ronniont and day-tiino. For tho live camera device, tho typical video i.()s()luti(� 

is set to 320 x 240.* Tlie difficulties for tracking in these videos slcin from the 

oiit-of-plaiie motion, large expression chaiigu and riuiruirous occlusions. 
‘ 、 、 • 

The proposed tiyickiiig algorithm works well for most Cfisos with a fixed 

tracking configuration. However, there still exists some failure CJLSCS. Iir our 

experiments, most failure cases an，clue to the insufficient localization ability 

o f th ( i l o c a l f (3at i i i ( i inoclols w h e n s ide v i e w frices urc. pix^sciitecl. \\k�allribut(! 

the in.su file i(!nt discri mi nation power of tho local feature to thn the synth(v 

sizcci training samples via 3D face reconstiucUon approach. Tlin facial textmxi 

of synthesized samples are obtained from frontal images, in which the self-

occhisioii part is interpolated from Uio visible part, which might differ fro in 

the gmiiiid truth. 

In the second part of the thesis, wo put our focus on tlio topic of vid(、(） 

ba.sed face recognition. A framework for face recognition in real-world noisy 

vicl(;os is proposed on the basis of 3D dcfonnable fV̂ pc tracking. The difficulty 

of video face recognition tajiks lies in the challenging appcaraiice variations 

in roal-workl videos due to motion bhir, large head rotation, occliusion, ilhi-

niinatioii change and significant image noise. To achicvc Ui(�goal of accurate 

localization of faces in videos, the proposed 3D tracking algorithm inakas good 

use of 3D face shape priors, local appcaraiice moWcl of major facial features, 

face silhouetto and online feature matches across video frames.. As opposed 

to the state-of-the-art video face recognition algorithm which relios on dis-

criminative appeararicc model to classify face images into difFoicnt vi�ws, our 

3D tracking algorithm can directly estimate face pose for a vic3w-based facc 
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recognition algorithm, which is more robust to outliors wit h comparison U) the 

clustering based strategy. Furthermore, tli(j proposed 31) tracking algorithm 

has a probabilistic form aiul tan provide coiifidcnco ineasiircinciit for th(，track-

ing result, which can be used to sclcct high coiifidcnco frames. Siicli a frainc 

selection strategy ensures the robustness of facc; recognition process. 

At the recognition stage, throe types of features usocl for facc r(”)i(，s()n-

tatioii: Regularized LDA, LE and sparse representation. T(J integrate all the 
I 

recognition results from single frames, siinplo decision cornbiiiatioii sdiciiios 

arc used including voting and rnotric fusion. With the proposed recognition 

fraiiiewbrk, a high recognition rale can be achieved even with a simple I'caturĉ  

descriptor and classifier (Regularized LDA + NN). Extensivt; (?xp(Miiiiciits car-

ried out on the real world noisy videos froin YouTuhc doinonstraic; tlic sigiiif-

icant iniprovcnient. achicvccl with our approach: tlie accurate recognition mt,(， 

rcjaches 79.8% for 46 porsons, which outporfonns the l)f\st reported insults on 

the same data set (71.24%) with 35 persons. 

In the last part of the thesis, a performance driven 3D facc animation sys-

t(;in is prop(xs(Kl, whore the rfjalisin facial animation is achieved on a frainoby-

fraine biusis. With the usage of low cost wob camera, a capturcxl perforiiiance 

is retargoted on to a inorphablo 3D facc model based on a sciiiaiitic corre-

spondence between the facial lanclrnarks and the 3D face model. The resulting 

facial animation reveals a high level of realism by combining the high resolu-

tion of a 3D inorphablo inodcl with the high temporal accuracy of captunnl 

motion data that accounts for subtle facial inovciricnts with sparse inoasuro-

riieiits. Though we have made ciicoiiraging progress in the topic of non-rigid 

face tracking, it is far from the end of the road. A lot of work can be done to 
* r 

make further iinproveiiient. 
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6.1 Future Work 

No research is ever truly complete, and the work described in this thesis is 

no exception. The purpose of this section is to briefly mention some of the 

extensions that could enhance the performance of the non-rigid tracking and 

the video based face recognition. Some of the extensions are incremental, while 

others would be entirely new ground. 

6.1.1 Automatic Discriminative Components Selection 

for Multi-view Face Alignment 

As described in Chapter. 3, There are still some failure cases for the pro-

posed tracking framework, especially when the largo view switch and expres-

sion change occurs. The failure is mainly due to the insufficient localization 

ability of the local feature models when side view faces are presented. We 

attribute the insufficient discrimination power of the local feature to the the 

synthesized training samples via 3D face reconstruction approach. Therefore, 

we need to develop an approach for tracking recovery and re-initialization via 

an automatic face registration technique, which is independent from the track-

ing process. Meanwhile, the multi-view case should be considered since the 

tracking could be failed in arbitrary view. 

For a typical automatic face alignment algorithm, the initial alignment 

configuration is determined by a face detector. Due to the large iiitra-class 

variation for face detection dataset, the holistic apprgach by treating the whole 

face as one object may drift from its true location in some cases, especially 

when the side view samples are presented. When the initialization location 

is out of the scope of alignments convergence, they can not search the truth 

position. 

A natural solution to this problem is to use facial component detectors for 
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a refined shape localization. In [56], Liang et.al. try to solve the alignment ini-

tialization problem via using a set of facial component detectors and direction 

classifiers for refined initial guess of the facial components position. The key 

idea of their work is a component level shape localization. The traditional ASM 

style alignment is performed on the base of coarse level localization to achieve 

high precision. This work has its deficiency that the components location are 

manually selected, they are mainly used for near frontal face alignment. When 

multi-view case is considered, a multi-view component detectors need to be 

trained, which have bad generalization abilities. Therefore, we try to tackle 

the multi-view facial registration problem by automatically selecting a set of 

components for face localization, where the components are aclaptively selected 

witl> respect to the view of face. Given the set of training facc images with 

face locations, we select the most discriminative components for localization 

via the rankboosting schcme. The ensemble of these components arc used for 

a more precise face location in arbitrary view. 

6.1.2 Video Based Recognition via Spatial Coherence 

Sparse Representation 

One property of faces from image sequences is that their tendency to be spa-

tially coherent. This strong source of regularity has not been explicitly lever-

age in the work present in Chapter. 4. However, it should be noticed that 

the spatial coherent of the facial appearance is widely used constraint in most 

manifold learning algorithms for face recognition. Most significant gains might 

be achieved by enforcing spatial coherence on the query videos at the stage 

of sparse representation feature extraction. For example, if we assume the 

appearance of an input videos lies in a low-dimensional space, an appearance 

manifold could be learnt via [52]. For each subspace approximation of the 

appearance manifold, we can enforce the constraint that the coefficients of the 
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samples lies in the same subspace will be similar. An potoiitial advantage of 
spatial coherence would be to suppress the diversity of the sparse coefficients 
over the whole image sequence, the sparse representation of the whole video is 
solved globally to pursue the goal of robust recognition. 

v> 
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