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ABSTRACT 

Since Markowitz published his seminal work on rnean-vanance portfolio selection 

in 1952, almost all literatures in the past half century adhere their investigation to 

a binding budget spending assumption in static problem settings and a self financ-

ing assumption in dynamic settings. In the mean-variance world for a market 

of all risky assets, however, the common belief of monotonicity does not hold, 

i.e., not the larger amount you invest, the larger expected future wealth you can 

expect for a given risk (variance) level. We introduce in this thesis the concept of 

pseudo efficiency to remove from the candidates such efficient mean-variance poli-

cies which can be achieved by less initial investment level. By relaxing the binci-

‘ ing budget spending restriction in investment, we derive an optimal scheme in 

managing initial wealth which dominates the traditional mean-variance efficient 

frontier. Moreover, as the general dynamic mean-variance portfolio selection for-

mulation does not satisfy the principle of optiinality of dynamic programming, 

phenomena of time inconsistency occur, i.e., investors may have incentives to 

deviate from the pre-committed optimal mean-variance portfolio policy during 

the investment process under certain circumstances. By introducing the con-

cept of time inconsistency in efficiency and defining the induced trade-off, we 

further demonstrate in this thesis that investors behave irrationally under the 

pre-committed optimal mean-variance portfolio policy when their wealth is above 

certain threshold during the investment process. By relaxing the self-financing 

restriction to allow withdrawal of money out of the market, we develop a revised 

dynamic mean-variance policy for a market with a riskless asset which dominates 
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the pre-committed optimal mean-variance portfolio policy in the sense that, while 

t he two achieve the same mean-variance pair of the terminal wealth, the revised 

policy enables the investor to receive a free cash flow stream (FCFS) during 

the investment process. We further apply the concept of pseudo efficiency to a 

(iyriarriic market of all risky assets and explore (better) revised dynamic mean-

variance policies. By including the free cash flow stream in the total wealth, our 

proposed policy dominates the pre-committed optimal mean-variance portfolio 

policy in the sense that while botli achieve the same total mean, the revised 

policy generates a smaller total variance. We reveal in this thesis that the time 

consistency in efficiency is closely related to the completeness of the market. 

We further discuss the relationship between time consistency in efficiency and 

the variance-optimal signed martingale measure (VSMM) of the market. Finally 

we show that time inconsistency in efficiency can be eliminated by enforcing 

no-shorting constraint for some market setting. 
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摘要 

自从Markowitzl952年发表其均值-方差投资组合选择的幵创性论文后，近半个 

世纪的几乎所有文献在研究静态模型时，都假设全部预算幵支，而在研究动态 

模型时，坚持自融资假设。然而在只包含风险资产的市场中，均值-方差模型 

‘ 并不满足一般的单调性，即并不是投资越多就一定能够使投资者在给定的风险 

(方差）水平下获得更大的期望收益。我们在本论文中引入伪有效性的概念， 

旨在从传统的有效均值-方差投资策略中剔除那些可以由较少的初始投资水平 

达到的策略。通过放松投资中预算约束假设，我们推导出管理初始财富的 优 

机制。该机制的表现优于传统的均值-方差有效前沿。此外，由于一般的动态 

均值-方差投资组合选择模型并不满足动态规划的 优化原理，时间不一致现 

象时有发生，即投资者在某些特定条件下有着偏离其预先设定的 优投资策略 

的愿望。通过引入有效性意义下的时间一致性的概念，并定义诱导权重参数， 

我们进一步说明在投资过程中当投资者的财富水平超过某个临界值时，投资者 

采用预先设定的 优均值-方差投资策略，将导致不理性的行为。在放松了自 

融资的约束，允许投资者从市场中撤出部分财富的条件下，我们为含有无风 

险资产的市场设计了严格优于预先设定的 优均值-方差投资策略的修正投资 

策略。该修正的投资策略可以实现与预先设定的 优投资策略相同的终端财 

富的均值和方差，同时为投资者提供了在投资过程中获得一系列自由现金流 

(FCFS)的机会。.我们也将伪有效性概念推广到只包含风险资产的动态市场 

中，并设计了更好的动态均值-方差修正投资策略。通过将全部自由现金流包 

含在总财富中，我们提出的修正策略可以实现和预先设定的 优投资策略相同 

的均值，但是拥有较小的方差。在本论文中我们还揭示了有效性意义下的时间 

一致性与市场的完备性有着紧密的联系。以此为基础，我们进一步讨论了有效 
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性意义下的时间一致性与与市场中方差 优的符号鞍测度（VSMM)之间的关 

系。 后，我们指出在一些市场模型中，有效性意义下的时间不一致现象可以 

通过添加不允许卖空的约束条件来消除。 
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C H A P T E R 1 

INTRODUCTION 

The seminal work on mean-variance portfolio selection by Markowitz (1952) [42 

more than a half century ago laid the foundation for modern financial analysis 

and led a remarkable development of the mean-risk portfolio selection framework 

by leaps and bounds witnessed in the advancement of the theory and practice 

of financial economics. Note that the original setting of Markowitz (1952) [42 

considers a market of all risky assets and does not allow shorting. The critical line 

method was developed in Markowitz (1956), (1959) [43, 41] to solve numerically 

the mean-variance portfolio selection problem without shorting. 

Investigating further the Markowitz's mean-variance portfolio selection model 

without short selling, Tobin (1958) [66] revealed the famous mutual fund theorem 

that the optimal portfolio of a mean-variance optimizer is a combination of a 

riskless asset and a risky fund. Sharpe (1966)，(1967) [60，61] also discussed the 

performance of the mutual fund later in his papers. 

Sharpe (1864) [59], Lintner (1965) [40] and Mossin (1966) [47] introduced 

the capital asset pricing model, independently, using different approaches. Using 

the equilibrium analysis, Mossin (1966) [47] found that all investors in a market 

allowing short selling would hold the same percentage of the total outstanding 

stocks of all risky assets and this percentage is positive. Furthermore, the return 

of any risky asset satisfies a linear relationship with respect to its risk parameter, 

P. 

1 



Ch apter 1. Introduction 1 

Black (1972) [7] discussed the equilibrium of a capital market allowing short 

selling and with no riskless asset or with no riskless borrowing. The efficient 

portfolio set in a market with no riskless asset is the combination of two different 

efficient portfolios. One of them can be chosen as a particular portfolio with a 

zero beta, i.e. a particular portfolio without systematic risk. By replacing the 

riskless return with the expected return of the zero-beta portfolio, an extension 

of the CAPM in this type of market can be obtained, which is termed the zero-

beta capital asset pricing model. The efficient portfolio set in a market with no 

riskless borrowing is of two parts: One part consists of a weighted combination of 

two different portfolios of risky assets, and the other part consists of a weighted 

combination of the riskless asset with a single efficient portfolio of risky assets, 

market portfolio. 

Merton (1972) [46] derived the analytic solution for the unconstrained mean-

variance portfolio selection and found that one fund theorem holds if and only if 

the expected return of the minimum variance portfolio is larger than the riskless 

return in an equilibrium market. 

The extension of the mean-variance formulation to dynamic settings, however, 

has been unsuccessful for many years, due to an inherent nonseparable structure 

of the variance minimization problem in the sense of dynamic programming. 

To seek an optimal dynamic portfolio policy under a mean-variance framework 

implies to achieve a dual balance between the expected return and the risk and 

between a short-term and long-term goals. Li and Ng (2000) [35] finally solved 

the mean-variance formulation of the multi-period portfolio selection problem by 

adopting an embedding scheme. In the same year, Zhou and Li (2000) [75] also 

solved the mean-variance formulation in continuous-time by adopting the same 

embedding scheme. The past eight years have witnessed numerous extensions of 

the mean-variance portfolio selection theory, see for examples, Li, Zhou and Lim 

(2002) [37], Lim and Zhou (2002) [39], Zhou and Yin (2003) [76], Hu and Zhou 

(2005) [23], Bielecki, Pliska and Zhou (2005) [6], Li and Zhou (2006) [36], Chiu 
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and Li (2006) [12], Xia and Yan (2006) [69], Xiong and Zhou [70] in continuous-

time settings and Leippold, Trojani and Vanini (2004) [31]，Zhu, Li and Wang 

(2004) [78], Liang, Zhang and Li (2008) [38], Yi, Li and Li (2008) [72] in discrete-

time settings. Recently, Cerny and Kallsen (2007), (2009) [10，11] studied the 

optimal mean-variance portfolio selection in a more general setting with a semi-

rnartingale price process, which includes both discrete-time and continuous-time 

settings as its special cases. 

We emphasize here that both the derived optimal policies in Li and Ng (2000) 

35) and Zhou and Li (2000) [75] are a linear function of both the current wealth 

level and the initial trade-off between the mean and the variance and do not 

satisfy the principle of optimality, still due to the rjonseparable property of the 

dynamic mean-variance formulation. Zhu, Li and Wang-(2003) [77] later investi-

gated the wealth reduction phenomena associated with the optimal multi-period 

mean-variance policy (termed pre-committed optimal dynamic mean-variance 

policy in [4]) derived by Li and Ng (2000) [35]. Basak and Chabakauri (2008) 

4] also recognized that investors may have incentives to deviate from the pre-

committed optimal dynamic mean-variance policy before reaching the terminal 

time. 

Stimulated by the ground-breaking work of Markowitz (1952) [42] in measur-
I 

ing investment risk by a variance term, investment decision formulations under a 

return-risk framework have been extensively investigated in financial economics,, 

almost independent of and parallel to the development of the utility theory in 

economics literatures Von Neumann and Morgenstern (1947) [68], Merton (1969), 
I 

(1971) [44, 45], although the latter is considered to be more systematic and more 

“ mathematically rigorous. One reason behind this phenomenon could be that 

practitiopers in portfolio management prdfer measurable quantities to abstract 

terms. In a return-risk framework, risk level is explicitly measured as a real 

number, such as the variance or Value-at-Risk, whereas risk is only implicitly 

represented by the utility function which itself is very hard to determine exactly 
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by investors. The past four decades have witnessed numerous alternative risk 、 

measures appearing in the literature, including the safety-first criterion (Roy 

(1952) [55]), mean-semivariance criterion (Markowitz (1952) [42], Stefani and 

Szego (1976) [64]), mean-Gini measure ( Sha l i ^ ^d Yitzhaki (1984) [58]), mea-

sure of absolute deviation (Konno and Yamazaki (1991) [28], Zenios and Kang 

(1993) [74], Speranza (1993) [63])’ value-at-risk (VaR) (Duffie and Pan (1997) 

18]), and conditional value-at-risk (CVaR)'(Bawa (1978) [5], Uryasev (2000) 

67]). To evaluate different risk measures, Artzner, Delbaen, Eber and Heath 

(1997), (1999) [2’ 3] introduced the so called "coherence" axioms as the require-

ment for any type of appropriate risk measures in quantifying the riskiness of 

financial positions with a maturity at a 

future time. Follmer and Schied (2002) 

19], Frittelli and Rosazza Gianin (2002) [20] further extended, independently, 

coherent risk measures t o ^ broader class of convex risk measure. 
/ 

When dealing with i^sk measures for dynamic portfolio selection, an addi-

tional requirement, “time consistency", seems natural and necessary for appro-

priate risk measures. Although the definitions of "time consistency" introduced 

in Rosazza .Gianin (2002b) [53], Boda and Filar (2006) [8], Artzner, Delbaen, 

Eber, Heath, Ku (2007) [1] and Jobert and Rogers (2008) [25] read differently, 

they all have their essence rooted in Bellman's dynamic programming. 

Let Xt be the wealth level at the beginning of period t, 7Tt an admissible 

investment policy at period t and Mt-riT^u.. • .ttt-i | ^t) a risk measure from 

period t to period T - 1 under given policy {冗“..• .ttt-i} with a given initial 

wealth Xt, t = 0, I, ..T — I. 

Def in i t ion 1.1 (time consistency). Ri$k measure MQ-T IS time consistent if any 

optimal policy for the portfolio selection problem over the entire time horizon, 

TT* = (7rJ,...,7rf_i) G arg min 。A^o-T ( 7 ro , • • . , ttt-i | XQ) 

also satisfies the local optimality conditions for all t = I,... — I , 

, « ， . . . ， 7 r f - i ) G arg mirv“.,  . • • ’ ttt-i | ^ t)， 
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where Xt is any realizable wealth at the beginning of period t. 

Almost all widely adopted risk measures in the literature, including the vari-

ance and VaR, are not time consistent according to Boda and Filar (2006) [8], 

, with only very few exceptions, e.g., the safety-first criterion by Roy (1952) [55 . 

One prominent candidate for a time consistent dynamic risk measure is the non-

linear expectation ("g-expectation") introduced by Peng (1997) [48] via Back-

ward Stochastic Differential Equation, which has been studied extensively by 

Rosazza Gianin (2002a), (2006) [52’ 54], Peng (2004), (2005) [49’ 50], Jiang 

(2008) [24] and Cohen and Elliott (2008)，(2009) [13, 14. 

The above definition of time consistency only concerns the risk measures. In 

investment, however, the risk criterion is always measured against a measure 

of the expected wealth due to the existing trade-off. In other words, the best 

portfolio policy is always sought with a best trade-off between the expected 

terminal wealth and the risk under a multi-objective framework. We thus need 

to consider a more general objective function in multi-period portfolio selection 

formulations, 

t • 

min«Mo-T(冗0，..., T^T-I I 工 o) + \E[XT | tt。，...，ttt-i’ 工 o)’ 

where E is the expectation operator and A < 0 denotes the trade-off between 

the expected value of the terminal wealth XT and the risk. In such a multi-

objective setting, we are interested in finding a set of efficient solutions, in terms 

of maximization of the expected terminal wealth and minimization of the defined 

risk, by varying the trade-off parameter A. 

While parameter A represents the trade-off between two conflicting objectives 
• 

for the entire time horizon, the trade-off between the two objectives for any 

efficient portfolio policy may essentially change at intermediate periods during 

the investment horizon. One interesting result revealed in Li (1990) [32] and Li 

(2000) [33] is that, unless the vector-valued objective function is of a periodwise 

additive form, the trade-off for various objective functions are time-varying as 
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the system evolves along any efficient trajectory. A multi-objective version of 

principle of optimality has been stated in Li and Haimes (1987) [34] and Li (1990) 

32): The principle of optimality holds if any tail part of an efficient policy is also 

efficient for any realizable state at an intermediate period. We need to extend 

the concept of time consistency to a version to incorporate efficiency. 

Def in i t ion 1.2 (time consistency in Efficiency). A combined risk-expected return 

measure A Io-t I t tq , • • • , t t t- i | Xq) + XE(XT \ ttq，. • . , tiy-i,工0) IS time consistent 

in efficiency if any optimal policy for the portfolio selection problem over the 

entire time horizon, . 

TT* = (TTq, • . • , T̂T- 1) ‘ 

e arg min^Q^ {AIo-tItto, .. ” t^t-i I 工o) + | ttq, . •. ,7rT-i,xo)} 

also satisfies the local optimality conditions for all t = I , . . . - I , 

(�•’ • • • 

e arg . . . ’7rr-i I ^t) + I tt ,̂ ...，ttt-i, 

• ^ 

for some nonpositive Xt (termed trade-off induced by n*), where Xt is any realiz-

able wealth at the beginning of period t. ^ 

> 

Note that time consistency implies time consistency in efficiency, but the 

reverse is in general untrue. Time consistency in efficiency yields time consistency 

only when'At =入’ for a lU = 1, . . T - 1. Thus, time consistency in efficiency 

is a relaxed version of time consistency. 

This thesis is organized as follows. After reviewing the literature in this chap-

ter, we revisit the cl^sical mean-variance portfolio selection problem in a market 

of all rist、, assets in Chapter 2. In Chapter 3, we s tud j^he dynamic mean-

variance portfolio selection problem in a market with a riskless asset, reveal that 

the mean-variance formulation in general does not satisfy time consistency in 

efficiency, and propose a revised policy that is better than the pre-committed 
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mean-variance policy. We discuss a similar issu^ in Chapter 4 for a dynamic 

market with only risky assets, and develop two revised policies. We investigate 

in Chapter 5 the relationship between time consistency in efficiency and the 

variance-optimal signed martingale measure and explore the possibility in elim- .、 

inating time inconsistency in efficiency by adding ncHshorting constraint. We 

finally conclude this thesis in Chapter 6 with some remarks. 



1 

C H A P T E R 2 

CLASSICAL M E A N VARIANCE • 

M O D E L REVISITED： PSEUDO 

EFF IC IENCY 

2.1. Introduction 

Since Markowitz published his ground-breaking work on mean-variance portfolio 
/ 

selection in 1952，almost all literature and textbooks in the past half century 

adopt an assumption of binding budget spending in their investigation on this 

classical investment issue. The only exception, to our knowledge, is Steinbach 

(2001) [65], in which Steinbach considered a market consisting of risky assets, 

one riskless asset and a zero-interest loss-guaranteed cash account. His model 

does not change the efficient frontier of the mean-variance model for markets 

with risky assets and a riskless asset, but improves the inefficient boundary by 

removing the risk completely. 

We consider in this chapter the following classical mean-variance portfolio 

selection problem in a market of n risky assets with a random total return vector 

8 
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r = (ri,r2, • • . 

(MV) min x'Vx (2.1) 
I 

s.t. x'e = /i, 

X'L = XQ, 

、 where XQ is the initial wealth, 1 is the n-dimensional vector with all its compo-

nents equal to 1, x is the n-dimensional decision vector with being the dollar 

amount invested in the 2th risky asset, e = E{r), V = Cov(r) and “ is the 

pre-given expected future wealth. We assume that the covariance matrix V is 

positive definite. In our model, we allow a negative value for XQ, which could be 

resulted from short selling. Note that normalizing XQ to 1 will reduce x to the 

vector with i , being the percentage invested in the ith risky asset, and problem 

{MV)'m such a case reduces to the mean-variance model originally studied in 

Markowitz (1952) [42], except that we allow short selling here in {MV). To study 

a market consisting of only risky assets is justifiable, as in practice, i) almost no 

asset is one-hundred percent riskless, and ii) most fund managers are specialized 

in their own sectors and seldom consider bonds. 

We reveal in this chapter that, in the mean-variance world for a market of all 

risky assets, the common belief of monotonicity: “The larger amount you invest, 

the larger expected future wealth you can expect for a given risk (variance) level" 

does not hold. We introduce in this chapter the concept of pseudo efficiency 

to remove from the candidates such efficient mean-variance policies which can 

be achieved by a less initial investment level. By relaxing the binding budget 

spending restriction in investment, we derive in this chapter an optimal scheme in 

“managing initial wealth which dominates the traditional mean-variance efficient 

frontier. 

The organization of this chapter is as follows. In Section 2.2, after reviewing 

the classical mean-variance portfolio selection model, we demonstrate that, for 

almost all reachable mean-standard deviation pairs, there exist dual realizations 
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associated with two different initial investment levels, leading to a finding of vio-

lation of monotonicity in the mean-variance world. In Section 2.3, we introduce 

first the concept of pseudo efficiency (type 1) and prove that the phenomena 

of pseudo efficiency exist in the traditional mean-variance formulation, leading 

to a conclusion that investors can perform better by relaxing the unnecessary 

binding budget spending constraint. We then introduce the concept of pseudo 

efficiency (type 2) and discuss the issue of optimal wealth management when 

only a market of risky assets is available for investment. We also show that the 

phenomena of pseudo efficiency occur in situations without shorting too. We 

further investigate in Section 2.4 the implication of our findings to the existence 

of a market equilibrium. Finally, we conclude this chapter in Section 2.5 with 

some remarks. 

2.2. Non-monotonicity in the Mean-Variance 

World: Dual Realizations of 

Mean-Variance Pair 

It can be verified (for example, see Merton (1972) [46]) that the optimal policy 

of (MV) is given by 

x(xo;/x) = ^(BV-'l - AV-'e) + ^ ( C V ^ e 一 AV-'l), (2/2) 

where ‘ 

B = e'V-^e > 0, 

c = rv-^i > 0, 

D = BC - A'^ > 0. 

The positiveness of D can be seen from the positiveriess of (Ae - BiyV~^(Ae -

Bl) = BD (Merton (1972) [46]). A fact that has not been fully recognized in 
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the literature is that parameter A = can be positive，negative or zero. 

We provide a detailed analysis for situations with negative A in Appendix 2.6. 

, Furthermore, the minimum variance set of problem (MV) can be expressed 

as 

As the mean-variance pair of the minimum variance portfolio (MVP) is given an 

(—xo, -^), the upper branch of the minimum variance set, 

C ( A xl A 
{(/ i，a” I cr̂  = — (^/i - - x o j + and ^ > - X Q ) , 

constitutes the so-called mean-variance efficient frontier. 

We denote all policies corresponding to the mean-variance pairs on the min-

imum variance set of problem {MV) boundary policies, which could be either 

efficient or inefficient. More specifically, the set of efficient boundary policies, 

denoted by and the set of inefficient boundary policies, denoted by X'^, can 

be expressed explicitly as follows: 

X^ = {X(XQ\/J,) I X{XO]FI) is given in (2.2) and /x > —Xo}, 

X*^ 二 {:c(:ro;M) I a:(:ro;/i) is given in (2.2) and /i < —Xq}. 

For a given pair (/i, a) in the mean-standard deviation space, we are interested 

in solving an inverse problem to find out which initial wealth levels enable us to 

achieve the given mean-standard deviation pair by adopting a boundary policy. 

Solving xo from (2.3) yields the following two solutions when condition | /z |< 

\/Ba holds: 

4 二 ( 2 4 ) 

= ( 2 - 5 ) 

Clearly, x j and XQ represent two initial wealth levels which can achieve the given 

pair of {fjL, a), where XQ > XQ holds whenever Ba"^ > /i^ and they are equal only 
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when Ba] --= /x̂ . Note that any pair (/i, cr) that does not satisfy | “ |< y/Ba is 

not achievable. 

Definit ion 2.1. The reachable region in the mean-standard deviation space is 

defined as 

while the boundary of the reachable region is given by 

|/ i|= y/Ba}. 

Note that the reachable region is a cone, which is uniquely determined by the 

market parameter B. See Figure 2.1. 

There are several phenomena to notice. 

i) All interior points within the reachable region in the mean-standard devi-

ation space can be realized by adopting one of the two boundary policies associ-

ated, respectively, with two different initial wealth levels. See Figure 2.1. 

ii) Any boundary point of the reachable region in the mean-standard deviation 

space is generated by a single boundary policy associated with one specific initial 

wealth level. The boundary of the reachable region is expressed in Figure 2.1 by 

the red rays. 

iii) The minimum variance sets associated with different initial wealth levels 

of xo form a family of hyperbolas. As the vertex of each individual hyperbola 

is the minimum variance point, whose position in the mean-standard deviation 

space is specified by (—xq, y we can conclude that a) When A is positive, 

decreasing the level of xo moves the hyperbola downwards; and b) When A is 

negative, decreasing the level of XQ moves the hyperbola upwards. 

The most important finding of this section is that any given interior mean-

standard deviation pair inside the reachable region can be priced differently by 

two different initial investment levels. It is evident that an optimal investment 

policy should prevent investors from adopting any policy associated with the 

higher investment level. 
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！̂八 Part I 

•剛—• 
^"•"^--^Part III 

Figure 2.1: The reachable region and its partition 

As the mean-standard deviation pair of the minimum variance portfolio for a 

given initial wealth level XQ is given as (^2:0, y -^), the set of all mean-standard 

deviation pairs associated with the minimum variance portfolios corresponding 

to different initial wealth levels is given by 

{Oi，f7) I /X= 土 7 a } ’ 

where {(/i,a) | /x = represents all minimum variance portfolios with positive 

expected future wealth and {(/i,a) | fi = represents all minimum variance 

portfolios with negative expected future wealth. 

Thus, we can further divide the reachable region into three parts (See Figure 

2.1): 

Part I: 

{ M l 勢 < /i < 彻Y 

For any point (仏 a) in Part I’ both " > A/Cx^ and fi > A/CXQ hold, where 
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x j and XQ are given in (2.4) and (2.5), respectively. Therefore, every point 

in Part I is achieved by two efficient boundary policies corresponding to two 

different initial wealth levels, except for the boundary points of the reachable 

region which are achieved by one efficient boundary policy. 

Part II: 

{ ( " ’ … 丨 - 皆 9 < 势 } ’ 

For any point (/i, a) in Part II’ it can be verified that /i > A/CXQ and < A/Cx^ 

hold when > 0, and /i > A/Cx^ and /z < A/CXQ hold when < 0. Therefore, 

any point in Part II is achieved by one efficient boundary policy and one inefficient 

boundary policy corresponding to two different initial wealth levels. When /I 二 0’ 

part II vanishes. 

Part III: 
厂 X I 、 

{(/i’cT)| - ^JBo < fi < — } . 

For any point (/z,a) in Part III, both fj, < A/Cx^ and “ < A/CXQ hold. There-

fore, every point in Part III is achieved by two ine伍cient boundary policies cor-

responding to two different initial wealth levels, except for the boundary points 

of the reachable region which are achieved by one inefficient boundary policy. 

2.3. Better than Classical Mean-Variance 

For any mean-standard deviation pair on the efficient frontier of {MV), (/i, a 

/X > ^xo) = (/i, (/X -和 0 ) 2 -f § I /i > 会工0)’ it is impossible to find a 

better mean-standard deviation pair under constraint x'l = xq, i.e., under the 

assumption that the investor invests all his initial wealth, xq, into the market of 

all risky assets. The traditional school of thinking always adheres itself to this 

binding budget spending restriction. Let us now change the way of thinking from 

the traditional school to explore a possibility whether we can achieve the same 

efficient mean-standard deviation pair by less initial investment level The key 

point is, when the investment performance is measured by a mean-variance pair, 
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the common assumption that the higher investment the better does not hold, as 

we have already revealed in the earlier section. 

2.3.1. Pseudo efficiency (Type 1) and best investment 

performance 

Definition 2.2. If an efficient mean-standard deviation pair of problem 

{MV) associated with initial wealth XQ, ( / i , ^^o)^ + 替 )，can be 

also generated or even dominated by another mean-standard deviation pair, 

( A ， - c 全 0)2 + 替)，which IS generated by another boundary policy assocz-

ated with initial investment level Xq which is strictly less than XQ, i.e., 

( " ’ - \ / § 0 - 条 。 + 碧 ) i - V ^ ^ O ^ - + 菩 ) ’ (2.6) 

Xo < Xo, (2.7) 

then, the given mean-standard deviation pair associated with initial wealth XQ 

IS termed pseudo efficient (type 1) and the corresponding efficient boundary 

policy x{xo\fjL) is called pseudo efficient policy (type 1). 

争 

In other words, if a mean-variance efficient boundary policy of {MV) with 

respect to a given initial wealth XQ becomes inefficient in an expanded three 

dimensional objective space: 

« 

{ min (initial investment level), 

max (expected future wealth), 
ft 

min (variance of the future wealth)}, 

it is pseudo efficient. 

One important recognition from our earlier discussion on dual realization in 

Section 2.2 is that, for any given mean-standard deviation pair in the interior of 

the reachable region, (/x, \J% (M—和o)2 +碧 associated with an initial wealth 
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xo, there exists another initial investment level XQ such that 

Xo -h xo = 

and (2.6) becomes an equality. In other words, two boundary policies, x(xo;m) 

and x(xo;m)^ with respect to two initial investment levels, XQ and xq, achieye 

the same mean-standard deviation pair. The following two propositions give the 

conditions for the existence of such an xq with io < ^o-

Proposi t ion 2.1. IVhen 〉0, all mean-standard deviation pairs within 

IQ / ^ J^ B 

{ ( " ， V d I ^ ' c ' ^ y + I - ^ ^ 3：0 > 0} 

are pseudo efficient (type 1). 

Proof: When XQ > 0’ set {fi \ ^xq < fi< fxo} is non-empty as D = BC -

y42 > 0. From (2.8) and the assumption of /i < f xo, we have 

XQ = -XQ + — / I < -XQ + 2X0 = 

D 
» 

• 

Example 2.1. Let's consider the example in Chapter 7 of Sharpe, Alexander 

and Bailey (1995) [62], which is a revised version of the example on page 176 

、 
of Markowitz (1959) [41]. For this market of three risky assets with expected 

return vector e = (1.162,1.246，1.228)' and covariance 

《0.0146 0.0187 0.0145、 ^ 

V = 0.0187 0.0854 0.0104 , 

^ 0 . 0 1 4 5 0 . 0 1 0 4 0 . 0 2 8 9 身 

the corresponding parameters can be calculated as A = 80.6015, B = 93.5679, 

C = 69.8459，and D = 38.7199. We consider an instance with investor's initial 

wealth equal to 1 and the pre-given expected future wealth equal to /x = 1.160’ 
I 
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which is greater than ^XQ = 1.154 and less than f Xq = 1.1609. The optimal 

efficient policy in such an instance is specified by 

i(xo = = 1.16) = (}.1075,-0.0471,0.0296/ 

and the corresponding efficient mean-standard deviation pair is given by 

、（1.160’ 0.1199). Prom (2.8) and Proposition 2.1，it can be verified that the 

following boundary policy associated with a less initial investment level XQ = 

0.9985, 

x(xo = 0.9985;/i = 1.16) = (0.9914,-0.0404,0.0475)' 

yields the same mean-standard deviation pair of (1.160，0.1199). Thus, policy 

x(xo = = 1.16) is pseudo efficient (type 1). 

Proposit ion 2.2. i) When y4 < 0 and XQ > 0’ all mean-standard deviation pairs 

of(MV), 

{ ( " ， y j % + I ^ x o < M , > 0 } 

are pseudo efficient (type 1). 

ii) When A <0 and XQ < 0, all mean-standard deviation pairs within 

In / \ 2 2；2 B 

U 叫 (̂ M - ^ ^ o j + I 7 � 0 } 

are pseudo efficient (type 1). 

Proof: i) When A <0 and XQ > 0’ from (2.8), the assumption of ^XQ < " 

and the fact of BC > A"^, we have 

2A ^ 
Xo = -XO + —fi < -XO + - ^ X O < XQ. 

ii) When A < 0 and XQ < 0’ from (2.8) and the assumption of f Xq < M. we 

have . 

2i4 
• io = -工 0 + < -工0 + 2Xo = XQ. 

t> 
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( 

. • 

The phenomena of pseudo efficiency are illustrated in Figure 2.2 for situations 

with positive and negative A when XQ > 0’ respectively. 

0 I » o \ 

'(a) > 0, xo > 0 (b) >1< 0, xo > 0 

Figure 2.2: Pseudo Efficiency (Type 1) 

1 

The economic implication of the above discussion and derivation is that in-

vestors should not implement any pseudo efficient policy by investing all his initial 

wealth, xo, into a market of all risky assets. He should rather consider alternative 

investment strategies by committing less initial investment level to the market. 

If we relax the assumption of binding budget spending, theSe pseudo efficient 

policies are essentially dominated by some other boundary policies associated 

with less initial investment level. 

For a pseudo efficient policy, let us name the particular boundary policy, 

which achieves the same mean-standard deviation pair with less initial investment 

level, ‘ 
I 

x(xo;/x) 二 尝 ( W - i l - AV-'e) + ^{CV-'e - AV-'l), (2.9) 

the replacing policy. It will be interesting to us to investigate the efficiency of 

the replacing policy with respect to its initial investment level XQ. 
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Proposition 2.3. Assume that A > 0. Then, when a replacing policy, x{xo\fi), 

exists, it is always efficient with respect to the less initial investment level, xo. 

Proof: Recall that, if parameter A > 0, the minimum variance set moves 

down when the initial investment level decreases and the pseudo efficient policy 

exists only when XQ > 0. Thus, pseudo efficiency only occurs in Part I of the 

reachable region. In other words, the replacing policy is efficient in situations 

with i4 > 0. 

If parameter A = 0, the pseudo efficient policy exists only when > 0 and 

XQ > 0. As the less initial investment level is XQ = -XQ, the replacing policy is 

efficient due to /i > 0 = ^Xq. 口 

• The situation with negative A is more complicated. 

Proposit ion 2.4. Assume that A < 0. i) When D < A'^, the replacing policy, 

x(xo;fi), is efficient with respect to the less initial investment level XQ if and only 

i f ^ x o > f i > ^ x o , x o < 0 . 

a) When D > A^, the replacing policy, x{xo\fi), is efficient with respect to the 

less initial investment level XQ if and only i f f i > -I^^XQ, Xq > 0 o r /x > f xq, 

xo < 0 . \ 

in) When D = A^, the replacing policy, x(xo\fi) is efficient with respect to 
« 

the less initial investment level XQ if and only if XQ is nonpositive. 

Proof: As the expected future wealth of the minimum variance portfolio 

, associated with the less initial investment level, XQ, is 

A^ A 

the replacing policy is efficient if and only if 

、\- A 川、 
M > - -^xo + ^ / i , (2.10) 

which can be expressed in the following equivalent form, 

{D - > -ABXO. (2.11) 

、、 
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i) If D < /12 and xq > 0，using the relationships BC〉A^ and < 7 for 

all negative A, (2.11) reduces to 

AB B A 

which contradicts the assumption that x{xo\ fi) is efficient. 

U D < A^ and XQ < 0, the existence of replacing policy requires that f xq < M 

and (2.11) is satisfied when /i < — 工 0 ’ which together yield the conclusion 

in i). “ 

ii) If D > and Xo〉0’（2.11) holds true when 

“ AB A 
朴 〉 5 工 0 ’ 

which is also the condition for the existence of a replacing policy (see item i) of 

Proposition 2.2). 

U D > A"^ and XQ < 0’ the existence of a replacing policy (see item ii) of 

Proposition 2.2) requires /i > f Xq, which further implies 

B ^ A ^ AB 
/i > -JXO > -XQ > - with Xo < 0’ 

which is exactly (2.11). 

iii) When D 二 /！之，(2.11) reduces to -ABXQ < 0’ which is true only for 

nonpositive XQ. 口 

Table 2.1 summarizes the situations with different conditions under which 

the replacing policy is efficient with respect to its initial investment level XQ. 

Actually, the replacing policy x{xo]^) is efficient with respect to the less 

initial investment level XQ, only when the efficient mean-standard deviation pair 

lies in Part I of the reachable region. When the efficient mean-standard deviation 

pair lies in Part II of the reachable region, the original policy x{xo\fi) is an 

efficient boundary policy corresponding to XQ and the replacing policy x(xo;/x) 

is an inefficient boundary policy corresponding to XQ. In the latter situation, 

investors can further modify his replacing policy X(XQ\ FI) to the efficient one 
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Table 2.1: Efficiency situations of the replacing policy 

wealth parameter interval for /x 

Xo > 0 A > 0 [^Xq, f Xo) 

xo > 0 A = 0 [0’ +00) 

xo < 0 < 0’ D < (号3^0，—^xo] 

xo > 0 A<0, D> A^ [ -； ^工 o， + o o ) 

Xo < 0 A<0, D> A^ (fxo,H-oo) 

Xq < 0 A<0, D = A'^ (fxo, +00) 

with the same standard deviation, albeit high expected return ft = ^XQ - /i (> 

fi). The same procedure can be applied to this newly identified better mean-

standard deviation pair ( A ， — 和0)2 + 碧 ) t o seek further improvement 

with less initial investment level and higher expected future wealth. This iterative 

improvement process will stop when the replacing policy becomes an efficient 

boundary policy. In other words, the iterative improvement process will stop 

when the newly resulting mean-standard deviation pair falls into Part I of the 

reachable region. 

Examp le 2.2. Consider a market of two risky assets with 

e = (1.22，1.78)' 

and 

(0.1200 0.1622 \ 
V = ^ 0. 

、0.1622 0.2200 

hi such a market, A = e'V-'\ = -50.4607 < 0, B = e'V'^e = 34.9820，C = 

I V - 4 = 171.1277, D = BC - A^ = 3440.1053, and D - A^ = 893.8202 > 0. 

Assume that the investor's initial wealth is Xq = 1. 

i) If the pre-given expected future wealth is set at /i = 2.0, we have 

AQ 
/i = 2.0 > - - ； ^ x o = 1.9749. 
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Then, the replacing policy is an efficient boundary policy corresponding to the 

less initial investment level Xo = —Xq + ^ ^ = —6.7699. 

ii) If the pre-given expected future wealth is set at " = 1.5’ we have 

1.5 < = 1-9749. 
D - A^ 

The replacing policy x{xo\M) now is an inefficient boundary policy corresponding 

to the less initial investment level XQ = -XQ + ^ = —5.3274. This inefficient 

boundary policy can be replaced by an efficient boundary policy x(io； A) with a 

higher expected future wealth, 

fi = 尝 i o - M = 1.6418， 
C 

and the same variance. As the other boundary policy which also generates 

the mean-standard deviation pair, (" ’ y / ^ f i _ 和 o ” + 碧）’ is associated with 

a larger investment level, 

io = -Xo + ^ = 0.5909 > Xo, 
D 

the policy x(xo;fi) is thus not pseudo efficient and the iterative improvement 

process stops. Essentially, the newly generated mean-standard deviation pair, 

(/i, yf%{iio - 和 0 ) 2 + § )， l i e s in Part I of the reachable region. 

We can conclude from our earlier discussion that, in a market with only risky 

assets, the common belief of monotonicity does not hold, i.e., not the larger 

amount you invest, the larger expected future wealth you can expect for a given 

risk (variance) level. More specifically, in certain situations, a smaller investment 

can achieve the same or even better performance than a larger investment, in 

the sense of mean-variance. Such findings lead to a clear conclusion: It is not 

justifiable to insist the binding budget spending assumption in a market setting 

with only risky assets. 

We now consider the following revised formulation of problem {MV) by al-
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lowing investors the flexibility not to invest all his initial wealth into the market, 

(Ml/,) mill x'Vx (2.12) 
X 

s.t. x'e = /i, 

x'l < XQ. 

As the expected future wealth of the minimum variance portfolio of (MVi) is 

given by 
F 

, 0, xo >0 , 
M = < 

\ Xo < 0. 

we confine parameter in {MVi) within {/x | M > 0} when Xq > 0 and within 

I /i > 和o} when XQ < 0. 

Proposition 2.5. The optimal policy of [MVx] is given as, 

A傘 

= "^(BV-'l 一 AV-'e) + ^ { C V e - AV-'l). (2.13) 

where xj is termed optimal investment level and is given as follows, 

Xo, /I > 0, Xo > 0,/i > fxo, 

f - (2.14) 

or A <0,xo< 0, ^ x o < M < i ^o-

会 / i , otherwise. 

Furthermore, the mean-variance efficient frontier of {MVi) is given by 

f - -f ̂ Xo, / l > 0 , X o > 0 , / i > fxo, 

or /I > 0,xo < 0,/i > 和0， 
/i = < (z. loj 

or A <0,xo< 0 ， ^ X o < f i < f x o , 

\/5<j, otherwise. 
< 

Proof: Solving problem (MVi) is equivalent to solving a two-phase optimiza-

tion problem: Finding first the optimal investment level, XQ, through 

' C ( A x2 

全 ^ ( ^ M " ^ x j + 5 ， （2.16) 
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and applying then the boundary policy X*{XQ] /i). It can be verified that the 

optimal investment level i j of problem (2.16) is given by (2.14). Applying the 

efficient boundary policy to XQ yields the efficient frontier in (2.15). • 

When < 0, xo > 0, the efficient frontier of problem {MV\) is exactly 

the upper boundary of the reachable region. In other words, in this situation, 

all efficient policies in the traditional mean-variance sense are essentially pseudo 

efficient (type 1), i.e., all the efficient mean-standard deviation pairs of (MV) are 

dominated by mean-standard deviation pairs of {MV{) corresponding to optimal 

investment levels. 

When ^ > 0, Xo > 0, the efficient frontier of problem [MVi) is a combination 

of the lower segment of the upper boundary of the reachable region (for /i < 

^XQ) and the upper segment of the efficient frontier of problem [MV) with 

initial wealth XQ (for FI > ^XQ). In other words, in this situation, some pseudo 

efficient (type 1) policies always exist for relatively small value of fi. 

When .4 < 0, xo < 0, the efficient frontier of problem {MV\) is a combination 

of the upper segment of the upper boundary of the reachable region (for /i > 

^Xo) and the lower segment of the efficient frontier of problem [MV) with initial 

wealth XQ (for /i < ^XQ). In other words, in this situation, some pseudo efficient 

(type 1) policies always exist for relatively large value of /x. 

It can be verified that the efficient frontier of [MV\) is a continuous differen-

tiable function. Figure 2.3 illustrates further the dominance relationship between 

efficient frontiers of problems {MV) and [MV\), Any mean-standard deviation 

pair in the shadow area dominates at least one efficient mean-standard deviation 

pair of [MV) and, at the same time, is dominated by an efficient mean-standard 

deviation pair of {MV\). 
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1 ^ ^ ^ ^ 
Z \ . - " v r 。 

(a) > 0, Xo > 0 
(b) /I < 0, xu < 0 

Figure 2.3: Efficient frontiers of (MV) and {MVi) 

2.3.2. Pseudo efficiency (Type 2) and opt imal 

management of initial wealth 

In the formulation of (MVi), we only consider the best investment performance 

in the market under an investor's budget constraint. As the investor's expected 

future wealth essentially involves a summation of the expected future wealth 

from the investment in risky assets and the money the investor places aside at 

the initial time, (xq —x 'l), it seems more reasonable to study the following revised 

mean variance model for the optimal management of the total initial wealth, 

(MVi) max x'e + (xq - x'l) (2.17) 
X 

s.t. x'Vx = a^y 

工'1 < Xo, 

where zero interest is assumed to be applied to the money the investor places 

aiside at the initial time. For (MV2) to have a solution, XQ is required to be no less 

than —\/Ca. Furthermore, as the standard deviation of the minimum variance 
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portfolio of (MV2) is given by 

t 

. 0， To>0 , 
o = i 厂 

‘ -似\jh、工0 < 0’ 

we confine parameter a in (MV2) within {a | a > 0} when a：。2 0 and within 

{a I cr > -工QyJ^、when Xo < 0. 

Proposit ion 2.6. For xq > —\/Ca, the optimal policy of {MV2) is given as, 

工 - ( i ; ;。 ” = + ( V 晶 - + 藉 广 l e - f 1 1 ) , 

(2.18) 

where i j is teimed optimal investment level and is given as 

(2.19) 

'工0， A > C, Xo > 0,a > ^ ^ ^ g ^ x o , 

• — — orA>C,Xo<0,a> -XoyJ^, 

0 1 o r y i < C , X o < 0 , -xoyfl <(J< 〒产 : T o , 

X 咖-C)yJ B丄2A、Otherwise. 

Furthermore, the mean-variance efficient frontier of (MV2) can be expressed as, 

‘ - 多 工 § + 咨工0， 

or A>C,XQ<^,a> -XqJ^, 

or C, Xo < 0, - x o ^ < a < 1 7 、 ’ 

Xq + y/ B + C — 2Aa, otherwise. 

、 
(2.20) 

Proof: Solving problem (MV2) is equivalent to solving a two-phase optimiza-

tion problem: Finding first the optimal investment level, xj, through 

” Id 2 A 

工0 = arg < Y - + - X + Xo - X, 

and applying then the efficient boundary policy, x*(xj;a^). It can be verified 

that the optimal investment level i j is given by (2.19), and the efficient policy 

in (2.18) and the efficient frontier in (2.20) then follow. • 
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It is easy to check that the efficient frontier of (MV2) is also a continuous 

differentiable function. Figure 2.4 demonstrates the relationship among three 

efficient frontiers of (MV), [MV\) and (MV2) under different situations, which 

are represented by the blue curve, the red curve and the green curve in the 

figures, respectively. 

、 X 。 , < F 。 

(a) A>C , xu > 0 
(b) A<C, xo<0 

M M I 

\ MVP 

(c) 0 < /I < C, Xo > 0 (d) A<0 ,xo>0 

Figure 2.4: Efficient frontiers of {MV), {MVi) and ( M ^ ) 

/ 

Definition 2.3. If there exists a a such that an efficient mean-standard deviation 

pair of problem (MV) associated with initial wealth rc。，(/i, \J % {t^ ~ 舎 ̂。广 + 营)’ 

which IS not pseudo efficient (type 1), is dominated by the efficient mean-standard 
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deviation pair of problem (MV2) with this specific a, i.e., 

( " ， " V 吴 会 c ) 、 + ( 补 - ( ? ) ' i ) ’ " V ( 工 ， ( 工 - ) ) , 

(2.21) 

where x* is the optimal policy of {MV2) given in (2.18), then the given mean-

standard deviation pair associated with XQ IS called pseudo efficient (type 2) 

and the corresponding efficient boundce^y policy X{XQ\is called pseudo effi-

cient policy (type 2). 

Proposition 2.7. i) When A < 0, all mean-standard deviation pairs within 

r, A V ^ 、 B - A z B … 

are psev^o efficient (Type 2). 

ii) When A — 0, all mean-standard deviation pairs within 

H L^F A V ^ 、 B ^ . 
{("，V万 l̂ P — ；) + 丨 < /̂ ，补 S 0} 

are pseudo efficient (Type 2). 

Hi) When Q < A < C, all mean-standard deviation pairs within ‘ 

{("，y/% § ) I f x o < /i, xo > 0} 

or {(/i. yj% (/ i-和0)2 + § ) I ^ x o < xo < 0} 

are pseudo efficient (Type 2). 

IV) When A = C, all mean-standard deviation pairs within 

{("，\L% I f 工0 < / i , xo > 0 } 

are pseudo efficient (Type 2). 

v) When A > C, all mean-standard deviation pairs within 

, , A V ^ 、 B z B — A … 
叫产)+5)丨7工。5"<：^^1。’ x。〉0} 

are (Type 2) pseudo efficient. 
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Proof: i) From (2.20), when A < 0 and Xo < 0, the two sectors of the 

efficient frontier of (MV2) intersect at /i = ff^工o- When /i > the 

efficient frontier of (MV2) is a straight line, which dominates the original efficient 

frontier of [MV). Excluding type-1 pseudo efficient mean-standard deviation 

pairs, {("’ (At -咨工0)2 + 碧）| f Xq < fi, XQ < 0}’ yields the conclusion. 

When < 0 and Xq = 0，there is no type-2 pseudo efficient solution of {MV). 

On the other hand, it is clear from Proposition 2.5 that all efficient solutions of 

[MV) are pseudo efficient (type 1) when A < 0 and XQ > 0. 

We can prove ii), iii), iv) and v) similarly. • 

For situation with A > C and XQ > 0, the original efficient frontier can 

be divided into three sectors, the sector of Type-1 pseudo efficiency, the sector 

of Type-2 pseudo efficiency, and the remaining sector from the original mean-

variance efficient frontier of {MV) (see Figure 2.4(a)). While the sector of Type 

1 pseudo efficiency can be achieved by less initial investment level, the sector of 

Type 2 pseudo efficiency cannot be achieved by less initial iijvestment level, but 

it is dominated when we consider the optimal management of the total initial 

wealth. 

Definit ion 2.4. A mean-standard deviation pair of (MV) associated with initial 

wealth XQ IS called pseudo efficient if it is either type-1 pseudo efficient or 

type-2 pseudo efficient, and its corresponding efficient boundary policy is called 

pseudo efficient policy. 

For different situations, we list in Table 2.2 the range of parameter ji in {MV) 

such that the solution of (MV) is pseudo efficient. ‘ 

Now let us discuss the impact of our findings on the separation theorem. 

In this discussion, we set xo = 1 and random variable x thus reduces to the 

return of the portfolio. Note that the efficient frontier of [MV2) includes all 

efficient mean-standard deviation pairs of return with binding budget spending 

assumption relaxed. Based on Proposition 2.6, when A > C, the efficient frontier 
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Table 2.2: Pseudo efficient intervals for fi 

wealth parameter type 1 type 2 efficient 

xo>0 A>C [^xcfxo) [fxo,f5^xo) [f5^xo,+oo) 

Xo > 0 0 < ^ < C [^xo, fxo) Ifxo, +00) NULL 

Xo > 0 A<0 [和o’+oo) . NULL NULL 

Xo < 0 A>C NULL NULL [和。’ +oo) 

Xo < 0 0<A<C NULL (ff^x。’ +oo)[和。， f f ^xo 

Xo < 0 ^ < 0 (fxo,+Oo) 

:ro = 0 / I SC* NULL NULL [0，+oo) 

Xo = 0 0 < ^ < C NULL (0,+oo) /i = 0 

0：0 = 0 A <0 (0，-foo) NULL // = 0 

of (MV2) is the combination of a linear segment (Sector 1) and a sector of the 

original efficient frontier of {MV) (Sector 2), see Figure 2.5(a). For Sector 2， 

we need two different funds to construct the whole sector of the efficient mean-

standard deviation pair, while for Sector 1, the whole line segment can be realized 

by varying the percentage investment of holding this particular efficient tangent 

fund indicated in Figure 2.5(a). Thus, in cases with A > C, a. mix of one-fund 

and two-fund theorems holds. When A < C, the efficient frontier of (MV2) is a 

straight line. There exists a unique inefficient tangent fund, i.e., see 

Figure 2.5(b). By varying the percentage investment of shorting this particular 

inefficient tangent fund yields the entire efficient frontier of ( M ^ ) , i.e.，a one 

fund theorem holds for cases with A < C. When A = C, the efficient frontier 

of (MV2) is also a straight line. But it can only be realized by holding net zero 

percentage investment in different risky funds. Because the efficient frontier of 

(MV2) is the asymptote of the efficient frontier of {MV) in this situation. 

Example 2.3. [Continuation of Example 2. Ij Applying the two revised mean-

variance formulations, {MVi) and (MV2), to Example 2.1 yields the mean-
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Sector 2 ^ ^ ^ 

^ ^ tangent fund ^ ^ ^ ^ 

Secicxi ^ 1 、 、 / 

V / < M V P \ 、 V ^ ^ O 

, 7 V ° \—‘ 
tangant fund 

\ \ 
a 

0 I ^ 

{&) A>C (b) /I < C 

Figure 2.5: Separation theorem for (MV2) 

variance efficient frontier of (MVi) as 

‘v/0.5544a2 — 0.0079 + 1.1540, ^ > 1.1609, 

“ 二 
9.6730a, 0 < /i < 1.1609， 

、 
and the mean-variance efficient frontier of (MV2) as 

！ v/0.5544a2 _ 0.0079 + 1.1540, /i > 1.2055, 

1 + 1.4868a, 0 < /i < 1.2055. 

It can be seen from Figure 2.6 that the mean-standard deviation pairs in 

{(/i, v/l.8039(/i - 1.1540)2) + 0.0143) | 1.1540 < fi < 1.1609} 

are pseudo efficient (type 1) and the mean-standard deviation pairs in 

{(/i, >/l.8039(/i — 1.1540)2) + 0.0143) | 1.1609 < /i < 1.2055} 

are pseudo efficient (type 2). In Figure 2.6, three efficient frontiers of (MV) , 

(MVi) and (MV2) are represented by the blue curve, the red curve and the green 

curve, respectively. 
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M个 
1.22 • 

‘ 1.21 - ^ 

: : : 

1.15 - \ MVP 

1 ; , , , K 
113 ̂  “ i ‘ I 1 1 ^ 1 1 * ^ 
‘ 0 . 08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 ^ 

• 

Figure 2.6: Efficient frontiers of {MV), (MVi) and {MV2) for Example 2.3 
2.3.3. Pseudo efficiency in markets wi thout shorting 

The phenomenon of pseudo efficiency may occur in markets with no shorting 

constraint as well. Let's continue to consider Example 2.1 and assume that 

shorting is not allowed now. The mean-variance portfolio selection problem is 

formulated in Markowitz (1959) [41] as follows, 
{MV - O) min x'Vx (2.22) 

X 

s.t. x'e = /i, 

x'l = 1, 

where x 6 IR" with Xi being the percentage invested in the zth risky asset. Re-

laxing the binding budget constraint yields the following revised mean-variance 
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portfolio selection problem, 

(MV - R) min x'Vx (2.23) 
I 

s.t. x'e = /i, 

x ' l < 1, 

X > 0. 

Solving (MV - O) and {MV — R) of Example 2.1 numerically gives rise two 

efficient frontiers in Figure 2.7. It is evident that the efficient frontier of [MV-R) 

dominates the efficient frontier of [MV - O). In markets without shorting, 

you may also invest less to get better investment performance, compared to the 

solution based on the classical mean-variance formulation. 

^ A 

1.178 • 

1.176 -

1.174 -

1.172 - ^ ^ 

1.17 - ^ ^ 
1.168 • y / ^ 

1.166 - Z Efficient froniter of (MV-R) 
/ - - Efficient froniter of (MV-0) 

1.164 - / ' 

/' 、 
1.162'—^ ‘ ‘ ‘ ‘ ‘ > 

0.1205 0.121 0.1215 0.122 0.1225 0.123 o 
» 

Figure 2.7: Efficient frontiers of (MV - O) and (MV - R) 

90 

Unlike situations with shorting in which pseudo efficiency (type 1) occurs 

for each model with XQ > 0, pseudo efficient (type 1) may not occur in some 

situations without shorting. If we change, for example, the return vector in 

the above example to e = (1.222，1.246，1.228)'’ we have observed that the two 
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efficient frontiers of (MV — O) and {MV — R) become the same. 

2.4. Issues Related to Market equilibrium 

It is assumed in Mossin (1966) [47) that a large number of risk averse individuals 

in a market, whose utility functions depend on the expected yield and the vari-

ance of his/her portfolio, construct their portfolios from (n ~ 1) risky assets and 

one riskless asset. All individuals are assumed to have identical estimation of 

the random yields' distribution. Mossin (1966) [47] found that each individual in 

the equilibrium market would hold the same percentage of the total outstanding 

stock of all risky assets and this identical percentage is positive. In other words, 

Mossin (1966) [47] claimed that each individual should hold positive position on 

each risky asset in the market, although he did not consider the conditions for 

random yields under which the existence of the market equilibrium is ensured. 

Merton (1972) [46] discussed both the efficient mean-variance sets in a market 

with only risky assets and in a market with multiple risky assets and a riskless 

asset with return 77. The model in Merton (1972) [46] for the market with 

multiple risky assets is the same as formulation (MV) in this chapter, except XQ 

is set at 1. He found that the one-fund theorem holds if and only if the riskless 

return 77 is less than the expected return of the minimum variance portfolio, 

AjC、and asserted that when rj > AjC、the optimal portfolio policy is not a 

general equilibrium solution with homogeneous expectations, for when a riskless 

asset is included, it is possible to select a portfolio with nonpositive net amount 

on risky assets. 

We consider now the mean-variance portfolio selection for a market with a 

riskless asset with a deterministic return ry > 0: 

(MV/(r/)) min x'Vx (2.24) 
X 

s.t. x'e -f (xo - x'l)R = /X, 

where XQ is the initial wealth and ^ > TJXQ is a pre-given expected future wealth. 
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It is well known that the optimal policy of (MV(rf)) is given by 

x ( x o ; / i ) = ( " - 广 V - I ( e - r ; l ) , (2 .25) 

where H = (e - rflYV-''(e - 77I) > 0. Furthermore, the minimum variance set 

of {MV{rf)) is given by 

= … ( 2 . 2 6 ) 
H 

Rema rk 2.1. It is easy to check that there exists only one initial wealth level, 

- — — , which enables us to achieve a given mean-standard deviation pair 

n 

{fjL, a) by adopting an efficient boundary policy. Therefore, all efficient mean-, 

standard deviation pairs are not pseudo efficient. 

When A/C < 77’ it is also easy to check that l'x{xo] fi) < 0 holds, which 

implies that the net amount invested in risky assets by each investor of mean-

variance type is nonpositive. The market is thus not in an equilibrium. In 

conclusion, A/C > r； is a necessary condition for an equilibrium of a market 

with a riskless asset. It is also worth to point out that when one-fund theorem 

holds, the market may be or may be not in an equilibrium: Each individual may 

hold a negative position on some risky asset, while having a positive net amount 

on all risky assets. 

In a market of all risky assets, if binding budget spending is not enforced, 

any mean-variance optimizer with an initial wealth, Xq, will adopt formulation 

(MV2) to determine his/her optimal investment level to the market. Recall that 

the optimal investment level is given by 

‘ X o , 

iS = < 

or A = C,Xo < 0. 

、 f r M - C ^ V 忍丄 2 / 1 ， o t h e r w i s e . 

When A < C, the optimal investment level XQ is nonpositive regardless the initial 

wealth Xo, which implies any individual of a mean-variance type will invest a 

/ ' " -
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nonpositive net amount in risky assets. The market is thus not in an equilibrium. 

In conclusion, /I > C is a necessary equilibrium condition for a market of all risky 

assets when binding budget spending is relaxed. 

Following Merton (1972) [46], when A/C > tj and Xq > 0’ one fund theorem 

holds and the expected return of the so called market portfolio is given as 

* AH -TJD 

^ 二 CH-D 工0， 

by solving 

G — H 

Proposition 2.8. The mean-standard deviation pair of the market portfolio, 

when it exists, is never pseudo efficient. 

Proof: Note that when A > C, efficient policies of {MV) are pseudo efficient 

only when Xq > 0 and /i < fE^rr。. As A/C〉77〉1 and CH-D = {Crj-Af > 

0，we have the following for XQ > 0, 

串 B - A 
“ 一 

一 [AH - RFD){A - C ) - (CH — D){B - A) 

二 {CH - D ) { A - C ) LO 

-Crj + (A-\- C)TJ - A 

二 [CH - D){A-C)补 

>0. 

• 

\ 

We thus conclude that for markets with a riskless asset, the phenomena of 

pseudo efficiency discussed in this chapter never occur. 

t 
I 
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2.5. Conclusions 

In this chapter, we have revisited the Markowitz's classical mean-variance model 

for markets consisting of ail risky assets. One key recognition is the dual realiza-

tion of mean-variance pairs, revealing a violation of the one price law and even 

raising concerns of arbitrage opportunities in the sense of mean-variance. 

By removing the constraint of binding budget spending and reexamining this 

classical problem from an expanded three-objective framework: Maximizing the 

expected future wealth, minimizing the risk (variance) of the future wealth and 

minimizing the initial investment level, we have derived somehow surprising re-

sults. More specifically, we have identified the set of portfolio policies which are 

efficient in the original mean-variance space, and are, however, inefficient in this 

newly introduced three-dimensional objective space. Stimulated by the revealed 

non-rnonotonic phenomenon in the mean-variance world, we have demonstrated 

that we can do better than the classical mean-variance when removing the bind-

ing budget spending constraint. 

Collective action of moving away from pseudo efficient solutions makes the 

market in transition, thus offering a possible new avenue to investigate a con-

verging process to a new market equilibrium. 

2.6. Appendix 

Appendix A: Analysis for Situations where A is Negative 

If the initial wealth is positive, the expected future wealth of the minimum 

variance portfolio (MVP), ^xq, is negative when the parameter A is negative. 

The minimum variance set in such situations is illustrated in Figure 2.8. 一 

Example 2.4. Consider a market of two risky assets with 

e 二（1.2,3.6)'， 
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A 

M 

0 • 

Ax。/C ( M V P 

Figure 2.8: The portfolio frontier when y4 < 0 

and 

/ 1 1.6 \ 
= 卜 0. 

、1.6 3.2 ) 

In such a market, parameter A = e'V'^l = -0.3750, B 二 e'\/-ie = 5.8500， 

C = rV-^1 = 1.5625. 

One may question whether this type of market is a reasonable market setting 

and whether this type of market always permits an arbitrage opportunity. Let 

us continue with Example 2.4. 

Example 2.5. (Continuation of Example 2.4) Assume that the market in Ex-

ample 2.4 is generated by the following two risky assets, A'l and X2, with their 

returns, ri and 厂2, being of log-normal, 

_ n.2y+0.698i;?-0 0814 — 0 2927y+0 3674Z+1 1706 
7 \ = e , 72 — G , 

respectively, where Y and Z are independent standard normal random variables. 
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It can be verified that the first and the second moments of the return vector are 

given exactly as in Example 2.4. 

Wo show now that this market setting does not permit an arbitrage opportu-

nity from the definition of arbitrage opportunity. When setting the initial wealth 

at zero, then the only feasible investment strategy in this market is to hold the 

wealth position x in asset Xi and hold —x in asset X2 at time 0. 

The random future wealth of this type portfolio is then expressed by 

0 2V +0 6981Z-0.0814 — 0,2927y+0.3674Z-I-1 1706 
C. JL> C • 

When X ^ 0, the future wealth can be positive, zero or negative, depending 

on the realizations of the two independent normal random variables, Y and Z, 

while the future wealth is zero when x = 0. Therefore, there does not exist an 

arbitrage opportunity in this exemplary market with a negative parameter /I. 

One important conclusion revealed from the above example is that, even in 

a no-arbitrage market with random returns always positive, the phenomenon of 

/I < 0 may happen. 



C H A P T E R 3 

BETTER THAN D Y N A M I C 

MEAN-VARIANCE: T I M E 

INCONSISTENCY AND F R E E CASH 

F L O W STREAM 
, , I = = 

3.1. Introduction 

In this chapter, we will show first that the multi-period mean-variance formu-

lation is neither time consistent nor time consistent in efficiency. In contrast, 

although the continuous-time mean-variance formulation is not time consistent, 

it is time consistent in efficiency. We find that the trade-offs induced by the multi-

period efficient mean-variance policy, which reflect investor's risk attitude during 

the investment process, are not only time-varying but also state-dependent. One 

fundamental question which we try to address and to answer in this chapter is 

why the time consistency, or more specifically, the time consistency in efficiency, 

really matters. If we relax the restriction that an admissible portfolio must be 

a self-financing policy and allow withdrawal of positive dollar amounts out of 

the market during the investment process, we can then devise an investment 

policy which is strictly better than the optimal multi-period mean-variance pol-

icy. More specifically, we propose a revised policy which can achieve the original 

40 
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mean-variance pair attained by any given multi-period efficient mean-variance 

policy and obtain during the investment process some extra (positive) dollar 

amounts with a strictly positive probability under certain probability distribu-

tion assumptions. « 

The organization of this chapter is as follows. In Section 3.2, we summarize 

the current results of optimal policies for both multi-period arid continuous-

time mean-variance portfolio selection problems. In Section 3.3, we examine the 

trade-offs induced by the optimal multi-period mean-variance policy, thus con-

cluding that the dynamic mean-variance formulation in discrete-time is neither 

time consistent nor time consistent in efficiency. In Section 3.4，we demonstrate 

that the dynamic mean-variance formulation in continuous-time is time consis-

tent in efficiency. In Section 3.5, we develop a revised mean-variance policy which 

dominates the optimal multi-period mean-variance policy in the sense that, while 

the two achieve the same mean-variance pair of the terminal wealth, the revised 

policy enables the investor to receive a free cash flow stream (FCFS) during the 

investment process. In Section 3.6，we investigate properties of FCFS and discuss 

the existence probability of FCFS, leading to an introduction of an inefficiency 

measure for multi-period mean-variance portfolio selection. We report in Sec-

tion 3.7 the results from a numerical experiment to demonstrate the features and 

benefits from adopting the revised mean-variance policy. Finally, we conclude 

this chapter in Section 3.8. 

3.2. Preliminaries 

3.2.1. Discrete-time dynamic mean-variance portfolio 

selection 

The motivation behind Markowitz's pioneering mean-variance portfolio selection 

formulation is to strike a balance between the expected final wealth and the risk 
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measured by the variance of the final wealth. When the single-period mean-

variance portfolio selection formulation is extended to a multi-period setting, an 

additional dimension of the balance between a short-term and long-term goals 

has to be dealt with. 

To be more specific about our discrete-time model (Li and Ng (2000) [35]), we 

consider a capital market consisting of one riskless asset and n risky assets within 

a time horizon T. Let St be the given return of the riskless asset at period t and 

Ct 二（ej，…’ the vector of random returns of the n risky assets at period t. An 

investor joins the market at the beginning of period 0 with an initial wealth xq. 

It is assumed that vectors et, i = 0, 1, . . T - 1, are statistically independent 

and the only information known about the random return vector et is its first 

two moments, the mean and the covariance. 

The investor can allocate his/her wealth among the riskless asset and n risky 

aaseis at the beginning of period 0 and reallocates his/her wealth at the beginning 

of each of the following (T — 1) consecutive periods. Let Xt be the wealth of the 

investor at the beginning of period t, and uj, i = 1，2， . •.’ n, be the amount 

invested in the zth risky asset at period t. 

The investor seeks a best investment strategy, u^ = ( u l / u f , u " ) ' for 亡=0, 

1,2,…、T — 1, to attain the optimality of the following dynamic mean-variance 

model: 

{MV) m in VAR(xT 丨补）+ \E{x t | Xo) 

s.t. xt-̂ i = StXt + PfcUt, Xo is given, (3.1) 

where the excess return vector Pt is defined as 

Pt = {Pt\Pt^ … ， P P Y = {{EL - 6、), {e'I - 5,),…’ (e「- s,))\ 

and is assumed to satisfy 

£;(Pt'Pt)0’ V《二 o，i’‘..,:r - 1’ 

- >0 , VZ 二 0’ 1’ …’ T - 1 , 
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Note that A represents the overall trade-off between two objectives of maximizing 

the expected return and minimizing the risk. Changing A from 0 to -oo yields 

the entire mean-variance efficient frontier. 

As the variance operation does not satisfy the smoothing property, i.e., 

Var{Var(- \ P) | 广）—Var{- | /”，\/ j > k, where 广 is the information set at 

period k, problem {MV) is nonseparable in the sense of dynamic programming. 

Li and Ng (2000) [35] embed problem (MV) into a separable parametric auxil-

iary problem with a quadratic utility function and derive the following optimal 

policy for {MV): 

A 、 

\fc=o 211矢=0(1 - B k ” 

{ T-\ . \ 
X I I - E-^(PtP; )E(Pt ) , i = 0 , 1 , . . . , T - 1 , (3.2) 

Wf i 

where Bt = E{F[)E-\PtP[)E{Pt) and A is assumed to be equal to 1 for 

any function fk. 111=0 知工o - 2nr/( i-队)^^ also denoted by F, which is called 

risk attitude parameter in this chapter. Furthermore, Li and Ng (2000) [35] give 

the mean-variance efficient frontier of (MV) explicitly as follows, 

/ T•一 1 \ 2 

V抓 (灯 I 孙）= 1 ' ^ o T - l n 乂 、 E [ 工 T I a : o ) - x o U s , ， 

T - l 

for E{xt I a;o) > f j StXQ. 

T=O 

For a given traxie-off between mean and variance, A, the expected value and 

variance of the terminal wealth are given, respectively, as 

邮了）^ Po¥。- ^n-d-B.) ’ 

《 、 冲 - n r ; o i ( i - 召 J ) ) 

As the original problem (MV) is nonseparable, the derived dynamic mean-

variance policy does not satisfy the principle of optimality. We will show in 
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the next section that the solution specified in (3.2) is neither time consistent 

nor time consistent in efficiency. Adopting the term in Basak and Chabakauri 

(2007) [4], we call the solution in (3.2) as the pre-committed optimal mean-

variance policy, which is derived to achieve the best mean-variance pair for the 

entire time horizon spanning from period 0 to period (T - 1). Note that, at any 

intermediate period t, (short-sighted) investors have incentives to deviate from 

the pre-committed policy determined at time 0 for a shorter time horizon from 

period t to period (T — 1). 

3.2.2. Continuous-time mean-variance portfolio selection 

In the continuous-time setting (Zhou and Li (2000) [75]), there are n + 1 basic 

assets which can be traded continuously. One of the assets is a riskless bank 

account whose value process So(t) is subject to the following ordinary differential 

equation (ODE), 

dSoit) = r{t)So{t)dt, t > 0’ 

、5o(0) = 50 > 0, 

where r{t) > 0 is the interest rate. The other n assets are risky securities 

whose price processes, Si{t),..., satisfy the following stochastic differential 

equations (SDE), 

I 

‘d即)=即)(6雄+ 〜⑴•明)，i >0, 

I 5“0) 二 S i〉 (M 二 1’2” •. ’n， 

where (14̂ 1 ⑴，...’ W^(t)) is the n-dimensional Brown motion defined on a prob-

ability space (n, J\ P). 

A s s u m p t i o n 3.1. (nondegeneracy condition) 

a{t)a{ty > 61, \ft e [O.T], 

where a{t) = (crtj(O)nxn cmd (5 > 0. 
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Let I = 1, n, be the dollar amount which an investor invests in 

the zth risky asset at time t. The wealth of the investor, then satisfies the 

following stochastic differential equation, 

，dx(t) = {r(t)x{t) + 一 r{t))u,{t)) dt + ZU 
< 

x(0) = :ro〉0. 

、 
(3.3) 

Similar to the discrete-time situation, the investor seeks a best investment strat-

egy, u ⑴ ’ which is an adapted vector random process, to attain the optimality 

of the following continuous-time mean-variance model: 

( M V c ) m i n Var(x(T)) + XE(x{T)) 

s.t. 

(x(.),u(.)) satisfy (3.3). 

Using the same embedding scheme as in Li and Ng (2000) [35]，Zhou and Li 

(2000) [75] derive the following optimal policy for {MVc), 

ul{x{t)) = -{a{t)a(tyr'B{ty ( : r (0 — 广 小 ) , (3.5) 

where . 

B{t) 二 （ 6 i ⑴ - r ⑴ . 人 ⑴ - r ⑴ ) ， 

. = 身 - 字 ， 

Pit) = B ⑴(冲)CT ⑴‘广 15(0'， 

7 is also called risk attitude parameter and express the efficient frontier of (MVc) 

explicitly as follows, 

V a 巾 ⑵ ） = 1 二 : ( 昨 ⑴ ） - “ 推 丫 ’ 

for £;(:r(T)) 2 xoe•̂厂rOOds 
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3.3. Induced trade-offs and Preference 

Switching 

Substituting the optimal policy in (3.2) into the wealth dynamics in (3.1), per-

forming some algebraic operations and taking the expected value give rise the 

following (Li and Ng (2000) [35]), 

E(xt+i |uJ，...，u:，Xo) = st(l - Bt)E(Xt I 

Solving the above equation recursively yields the following expression of the 

conditional expectation, 

秘 ’ . . . 义 1 " 。 ) = 仏 ( r o i - 劝 . 

L e m m a 3.1 . The pre-committed optimal mean-variance policy specified in (3.2) 

satisfies time consistency only when its wealth process follows a particular path, 

Xo — E(xi I Uo,Xo) — E{X2 I uJ,uJ,Xo) — > E{XT-\ I UO , . . . ,UT_2i2:o ) -

Proof: Consider the following truncated multi-period mean-variance problem 

from period k to period (T- 1) with a given Xk and the same trade-off parameter 

A as given in {MV): 

[MV^_rp) min Var[xT | Xk) + XE{xt | 

s.t. Xt+i = StXt + P'tUt，Xk is given. 

Similail to the solution to {MV), the optimal policy of at period t、 

i = /c, A: + 1, . . . , T - 1, can be derived as 

‘ / T - l . \ / 1 \ 

(3.6) 
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For the pre-committed optimal mean-variance policy to be time consistent, the 

policies in (3.2) and (3.6) must be the same due to the uniqueness of the solution. 

Note that u: is equal to for i = /c, /c -f 1, . . . , T - 1 only when 

工k 二 l ls j rro — / ^ , V' 

；=0 2n;、、(nr;o(i-召力） 

which is exactly the expectation of the XK conditional on XQ under the pre-

committed optimal mean-variance policy. 口 

Note when the returns of risky assets are continuous random variables, the 

probability that the wealth process follows the path of its expected value is equal 

to zero. Thus, the discrete-time dynamic mean-variance formulation is not time 

consistent. 

Now we further consider the following inverse optimization problem: For k = 

1,2,. . . ,T - l ,J ind a trade-off parameter A^ between E{xT\xk) and Var(xT\xk) 

such that the pre-committed optimal mean-variance policy 11̂ (2:̂ ) (t = k,k + 

1,.. . ’ r — 1) specified in (3.2) solves 

(MV；〜） min Var{xT | Xk) + XkE{xT | Xk) 

s.t. xt^i = StXi + P'tUt, Xk is given. 

Let a threshold i j be defined as follows at the beginning of period k: 

A “ 1 

工;="ooT-^, n ^ - i n H) + n 力 他 （3-7) 
^lli^k (1 一 场 ） 1 = 0 

which is constant and just the discounted risk attitude parameter at the begin-

、 
ning of period k. ‘ 

P r o p o s i t i o n 3 .1 . The pre-committed optimal mean-variance policy, Ut(a:() {t = 

k，/c+ 1,...，T-、1)，specified in (3.2)，solves (Ml^^V) •仇 Xk satisfying 

( k-l \ T-l A 

A. = 2 - n S i 工 0 n 5/(1 -召 / ) + … 力 1 一 … - (3.8) 

V 1=0 J I二k li/=o U -
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Furthermore, A^ < 0 when Xk < a:；；.，A/t 二 0 when Xk 二 x j , and A/e > 0 when 

Xk > hi-

proof: Similar to the solution 

to {MV), the optimal policy of (MV^^^V) at 

period 亡’（二 /c’ /c + 1’ … ’ - 1，is given by 

(3.9) 

Equalizing the policies in (3.2) and (3.9) yields the relationship between A^ 

and A given in (3.8). Form the assumptions of the model, sf{l - Bt) > t = 

0，1, . . . ’ r 一 1. It is evident now that A)t = 0 when Xk = xjj defined in (3.7), Xk 

< 0 when Xk < xj, and A/t > 0 when Xk > xj. 口 

The trade-off induced by the pre-committed optimal mean-variance policy 

at state x^, Xk, can not be guaranteed to be nonpositive under many returns 

assumptions, for example, under the assumption of a normal distribution for the 

returns of risky assets. Thus, the pre-committed optimal mean-variance policy 

specified in (3.2) is, in general, not time consistent in efficiency. 

R e m a r k 3 .1 . If the realizations of a return distribution are all small enough such 

thM the wealth Xk is never bigger than the threshold xj, the trade-off induced by 

{the ph-committed optimal mean-variance policy at state Xk, Xk, can be assured 

to be nonpositive. 

It is interesting to note from (3.8) that, at a given state the trade-off 

induced by the pre-committed optimal mean-variance policy, A^ , is a linear 

function of both the initial overall trade-off A and the current wealth ock. On one 

hand, the larger the overall trade-off A, the larger the induced trade-off Xk- On 

the other hand, the higher the current wealth level x^, the higher the induced 
f 

trade-off A/c, which implies that the investor will place less weight on maximizing 
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his/her expected return when he/she gets richer. Figure 3.1(a) presents the 

linear relationship between Xk and Xk- The intersection of the line of Xk and 

the horizontal line pin points the threshold xj, which is larger than E{xk 

UJ, • • . ’ U�_I，XQ). 

Afc个 z 、 个 A⑴个 

f^ii^M > ^ ^ ⑴ > 

/ \ z 
Z z y 

. ( a ) Induced trade-off under (b) Induced trade-off under (c) Induced trade-off under 

• the pre-committed MV policy the revised policy the continuous-time MV policy 

Figure 3.1: Relationship between induced trade-off A and wealth x 

When Xk < xj, the dynamic mean-variance policy u j (i = /c, /c + 1，...，了 - 1) 

specified in (3.2) can be generated by [MV^Hj^) with a A^ < 0, i.e., the pre-

committed optimal mean-variance policy u j (t = k,k -j- 1, . . . ,T - 1) remains 

to be mean-variance efficient at period k, although the trade-off parameter A^ 

between E{xT\xk) and Var{xT\xk) differs, in general, from A, the initial trade-off 

parameter between E{XT\XO) and l/ar(3:r|xo) in {MV). 

When Xk = xJJ, the pre-committed optimal mean-variance policy u j {t = 

/c，/c + 1’... ’ 了 - 1) can be generated by with A^ = 0’ i.e., the investor 

only cares about minimization of the variance of the terminal wealth, and the 

pre-committed optimal mean-variance policy u j {t 二 /c’/c+l， . . . ’r—l) becomes 

、 the least variance policy. 

When Xk > xj, the pre-committed optimal mean-variance policy u* {t = 

' + - 1) can be generated by (MV^^j^) with a A)t > 0, i.e., the 

pre-committed optimal mean-variance policy u j (i = /c，/c + 1，...，了一 1) is no 

longer mean-variance efficient at period k. More specifically, the investor switches 
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his/her risk attitude at period k to minimize both E{xt | x^) and Var{xT I Xk) 

and this trade-ofF is x^-dependent. 

The above analysis leads us to conclude that, in order to achieve a mean-

variance efficiency for the overall T-period problem, an investor needs to adjust 

his/her "induced" trade-off from period to period, to sacrifice his/her "local" 

interests, or even to behave irrationally in certain circumstances. The root of 

all these surprising phenomena is the inherent nonseparability in the dynamic 

rn^an-variance formulation. 

3.4. Nonpositive Induced Trade-OfFs from 

Continuous-Time Mean-Variance Policy 

We now define the time consistency in efficiency for continuous-time portfolio 

selection. Let 

Th-T = {tTs I t S s S 了}. 

Defin i t ion S . l ^ i m e consistency in Efficiency (Continuous-time)). A combined 

risk expected return measure A^o^ t I t tq-t 1 工o) + XE[xt | ttq-t, ^o) is time con-

sistent in efficiency if any optimal policy for the portfolio selection problem over 

the entire time horizon, 

TT二T e arg min冗o tIMo-t(兀o-T)丨 lo) + | tto—ts ^：。)}， 

also satisfies the 為ocal optimality conditions at any 0 < t <T, 

e arg min„^_^{Mt-Ti7rt-T) I ^t) + 丁 | nt-r^^t)} 

for some nonpositive A^, where Xt is any reachable wealth level at time t. 

Similar to the discrete-time case, we also consider an inverse optimization 

problem for the continuous-time mean-variance portfolio selection: For any given 

0 < i < T, find a time-t trade-off A ⑴ between E(x(T)\x(t)) and Var{x{T)\x{t)) 
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such that the pre-committed continuous-time mean-variance policy u*(x(6-)) (t < 

s < T) specified in (3.5) solves 

[MVc'^l) min Var[x{T)) + X{t)E{x[T)) 

s.t. 

(x(.), u(.)) satisfy the wealth dynamics with initial x{t). 

Let a threshold x*(t) be defined as follows at time t: 

工 • ⑴ 二 - ⑷ • ， （3.10) 
2eJt r(s)ds 

which is just the discounted risk attitude parameter at time t. 

P r o p o s i t i o n 3.2. The pre-committed continuous-time mean-variance policy, 

ul{x{s)) {t<s< T), specified in (3.5), solves with X{t) satisfying 

A ⑴ = 2 — Xoe^oris)ds^ ^I^iris)-Pis))ds + ；^̂ /。‘“⑷心. (3.11) 

Furthermore, A ⑴ < 0 when x{t) < x*(t), A ⑴ 二 0 when x{t) = x*(t), and 

入⑴ > 0 when x{t) > x*(t). 

Proof: Similar to the proof of Proposition 3.1. 口 

P r o p o s i t i o n 3.3. The optimal wealth x(t) in continuous-time under the pre-

committed optimal mean-variance policy specified in (3.5) never exceeds the 

threshold x*(t) given in (3.10). In other words, the trade-off induced by the 

pre-committed continuous-time optimal policy, X{t), is always nonpositive. 

Proof: Substituting uj(xf) specified in (3.5) into the wealth dynamics in (3.3) 

yields the following SDE, 

‘dx{t) = {b{t)x{t) + a{t))dt + Y:%AMt)x{t) + Cj{t))dW^(t), 
< 

x(0) 二 rro〉0, 

、 

where a{t), b{t), Cj(t), dj{t), j = 1, .. . ’ n’ are deterministic time dependent 

functions, which implies that the optimal wealth process is continuous. Note also 
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that the threshold x*(t) is a function of t with > XQ, which implies that 

the optimal wealth process starts from a point below the threshold trajectory. 

There are two possible situations for the optimal wealth process x(t). 

i) x{t) < J：•⑴’ VO < t < T, i.e., the optimal wealth never exceeds the thresh-

old. The induced trade-off is thus always negative. 

ii) At some time t, the optimal wealth reaches the threshold, x{t) = x*{t). Due 

to the continuity of the wealth process x{t) and the form of the pre-coiiunitted 

optimal policy u*(x(0), the optimal policy u:(:r(iS)) = ()’ for all s such that t < s 

< T、leading x(5) 二 ：r.(s)’ V i $ 6’ $ T. The induced trade-off for the remaining 

time, A(6)’ is zero for all s such that t < s < T. • 

The trade-off induced by the pre-committed continuous-time optimal mean-

variance policy at any state x{t), A⑴ ’ is nonpositive all the time. Thus, the 

continuous-time mean-variance formulation is time consistent in efficiency. Fig-

ure 3.1(c) illustrat(3s the relationship between A⑴ and x{t). The prominent 

feature of the continuous-time case is that the wealth level never exceeds the 

threshold. 

3.5. A Strategy Better than the 

Pre-committed Opt imal Multi-Period 

Mean-Variance Policy 

Stimulated by the recognition of an irrational behavior of an investor when he/she 

follows the pre-comiiiitted optimal mean-variance policy in discrete-time situa-

tions, we demonstrate in this section that any pr(^-cominitted optimal mean-

variance policy specified in (3.2) is dominated by another better policy that 

generates the same mean-variance pair, while having a positive probability to 

receive a free cash flow stream. 
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3.5.1. Two-period case 

We first consider the following two-period mean-variance portfolio selection prob-

lem to better explain the motivation of our approach, 

iiiin Var[x2 | Xq) + \E[x2 | xq) 

s.t. = Stit + P't^t, ^ = 0,1, Xo is given. 

Applying (3.2) to the above two-period problem yields its pre-coiiiiiiitted optimal 

mean-variance policy, 

u j (xo) = —•So£ri(PoP;j)£;(Po)工。+ r丄 E-i(PoP'o)£XPo)’ 
Si 

u\{x,) = - . S i E - i ( P i P ' i ) E ( P i ) a : i + r E - i ( P i P ' i ) E ( P i ) ’ 

where F = >506丫Co - • From Proposition 3.1, policy u;(:ri) is no 
^ ^ 1、 

longer a single-period mean-variance efficient policy when X\ > x\ =—. 

The above recognized irrational behavior motivates us to modify the pie-

committed optimal dynamic mean-variance policy when Xi > xj. For x^ greater 

than xj, our new strategy is to divide x： into two parts: Investing only a par-

tial amount under the optimal dynamic mean-variance policy and taking the 

amount Xi —X\ out of the market. Clearly, our new policy is of a partial stopping 

nature and goes beyond the class of self-financing policies. An immediate ques-

tion is whether or not we are able to ensure the modified policy to achieve the 

same mean-variance pair of the terminal wealth as the original pre-committed 

two-period optimal mean-variance policy, while having a possibility to take “free 

cash" out of the market at the beginning of period 1. 

Wc propose the following revised portfolio policy for the two-period problem 

under consideration: At period 0, 

uS(xo) = uj(xo)； 

At period 1，when Xi < xj, 
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when x\ > take a positive amount, X\ — Xi, out of the market, where 

.r, - - 2(.ti - X\)B, (3.12) 

is the remaining amount left in the market. Let the portfolio policy at Xi be 

u\(x,) = + f E - ^ ( P i P ; ) E ( P O , (3.13) 

where 

f 二 - 2si(x, — x*}Bi — F. (3.14) 

T h e o r e m 3 .1 . The revised policy with Xi and f specified in (3.12) and (3.14), 

respectively, achieves the same mean-variance pair, E(x2 | a:o) and Var{x2 | 丄,0), 

as dots the pre-committed optimal mean-variance policy，while having a possibility 

to take free cask out of the market. 

Proof: When X\ > the original pre-cominitted optimal mean-variance 

policy u\ yields 

E{x2\xi) = Si'Xi + (r - SiXi)Bu 

VAR{X2\X,) = [T - B,). 

At a wealth level Xi which is strictly less than Xi, wo require that the one-

period portfolio policy yield the s铁me conditional expected value and conditional 

variance as the pair of E{x2\xi) and Var(x2\xi). Note that one-period mean-

variance policy at X\ specified in (3.13) gives rise 

E(X2\Xi) = SjXi + (f - SiXi)Bu 

Kar(x.2|xi) = ( f - iS】i,i尸召“ 1 一块）. 

Equalizing E(x2\xi) and Z:;(x2|i:i) and equalizing Var{x2\xi) and Var{x2\x\) 

simultaneously yield 

( r - 5iXi)Bi = cSii'i 十 ( r — S]Xi)Bu 

‘ （ r - — B,) = (f̂  一 — B,). 
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Solving the above system of two equations for Xi and f leads to two solutions, 
\ . . 

one given in (3.12) and (3.14) and the other one, Xi, F = F), which is 

rejected. 

We now demonstrate that and Varlx'jjxo) are the same under both 

the original pre-coinniitted optimal mean-variance policy iT and the revised pol-

icy u*： 

E(x2lxo) |u- = E(E(x2lxi)lxo) 

= J E(x2\xi)f{xi)dxi 

TOO rx] 

=/ E(x2\xi)f(xi)dxi + / E(x2\xi)f{xi)dxi 
Jx\ J-oo 

厂 oo r^I 

二 Z E{x2\xi)f{xi)dxi + / E(x2\xi)f(xi)dx^ 

J X* J —oo 

=E{x2\Xq) Iq. 

Var[x2\xQ) |u-=^(V'ar(2:2|a:i)|xo) + VaT{E[x2\xi)\xQ) 

= J Var(x2\x,)f(x,)dx, + J(E{x2\x,) - E(x2\xo))''f(x,)dx, 

= f Var{x2\xi)f{xi)dx^ + f Var{x2\xi)f{xi)dxi 
Jx* J-oo 

T O O 

+ / {E(X2\XI) - E{X2\Xo))'^f(Xi)dXi 

+ / (E(X2\X,) - E{x2\xo)ff{x^)dx, 
J-oo 

= Var{X'2\xo) |g•’ 

where /(xi) is the probability density function of random variable Xi, which 

depends on the initial wealth Xq and period-0 policy uj(xo). 口 

Figure 3.2 explains the solution concept behind Theorem 3.1. When Xi > xj, 

policy u\ places point (E{x2\x\), Var{x2\xi)) on the lower branch (thick red 

curve) of the (quadratic) ininimuin variance set associated with Xi, of which 

only the upper branch is mean-variance efficient. By taking some positive amount 
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‘、E(X2\X,) 

0 s > 

Var{x2\x\) 

Figure 3.2: Two minimum variance sets associated with X\ and Xi 

out of the market, we relocate the mean-variance point (E(x2|xi), Var(x2\xi)) 

corresponding to the remaining amount of Xi on the upper branch (thick blue 

curve) of the minimum variance set associated with . By choosing a suitable Xu 

we can make two thick curves intersect exactly at {E{x2\xi), Var{x2\xi)), which 

implies that the revised policy retains the same conditional expectation and the 

conditional variance of the wealth, while achieving an efficiency corresponding 

to the remaining amount of f i . 

The revised policy is better than the pre-committed two-period mean-

variance policy in the sense while the two achieve the same mean and variance 

for the terminal wealth, the revised policy generates additional positive cash 

flow with probability of Pr(xi〉x；) during the investment process. Whenever 

X'l > Xi, we withdraw amount of 2(xi - x\)Bi out of the market and continue to 

invest the remaining amount Xj in the market. From Theorem 3.1，the expected 

value of the free cash flow taken out at the beginning of period 1 is given by 

"I 

where f (x i ) is the density function of wealth x】. 
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The following fact is interesting. When x^ > Xj, after taking the amount 

2(xi -X\)BI out of the market, the revised portfolio policy at the reduced wealth 

level Xi essentially takes the negative value of the original pre-cornmitted two-

period mean-variance policy at Xi, 

二 -u-i(Xi). 

For the proposed revised policy, we investigate further its corresponding in-

duced trade-ofF at period 1, Ai, under which the revised policy, u j , solves the 

second-period problem. 

When xi < x*, the truncated second-period portfolio selection problem, 

(W,」2)，is 

(MV/,^2) min Var(x2 | Xi) + XiE(x2 | Xi) 

s.t. X2 = SiXi + P'lUi，Xi is given. 

Equalizing the optimal policy 
of ( W i t y and u j (x i ) yields 

Ai p 
力工 1 — 二 ‘ 

which implies 

When Xi > xj, the truncated second-period portfolio selection problem, 

(MI/,」2)，is 

min Var{x2 | i i ) + XiE(x2 丨 i i ) 

、 s.t. X2 = SIXI + P'lUi, XI = XI - 2(^1 — XDBI. 

Equalizing the optimal policy of {MV^^) and u*i(xi) yields 

— Ai p 
力 工 】 — = F， 
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which implies 

Ai = 2si(l 一 Bi)(xt — Xl) < 0. 

In summary, the trade-ofF induced by the revised policy at any Xi is 

Ai = -2si( l - Bi)|xi -x；!, (3.15) 

which is always nonpositive, i.e., the revised policy remains to be efficient for Xi. 

3.5.2. General T-period problem 

We now extend the revised policy presented in the previous subsection for the 

two-period case to a general multi-period setting. Let the wealth process, {x/t}, 

under the pre-committed optimal mean-variance policy, ul(xk) (A: = 0,1, . . . , T -

1), be generated by the following recursive equation, 

= SkXk + PkK(Xk), 

7 

with initial wealth XQ. 

Similar to the two-period case, we propose the following revised portfolio 

policy, ulixk), for the T-period problem (MV): 

At period 0: uS(io) = uS(xo); 

At period /c for /c = 1, . . . T - 1, implement a revised policy according to the 

following recursions: 

• 、 f 1 \ 

= + n 7 芯(PO; (3.16) 

‘ X k . if < 

Xk = / 、 (3-17) 

2{x, — n) ( i - n r 二 (1 - ^j))， if 无矢〉 

Xo = XQ 

= + (3.18) 
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Tk-i if 元k < 无 I , 

「 《 
‘ = \ + n r 二 1 � ( 2 无 矢— 一 X：) (1 - n r 二 “ — Bj))) if > xi 

(3.19) 

无 : = ^ 
Uj^k 〜 

Note that both risk attitude parameter Tk and the wealth threshold x^ {k = 

1,2,... ,T - 1) axe path-dependent. Thus, xj is different from threshold x^ 

discussed in Section 3’ as xj is a path-dependent threshold for a wealth process 

in which cash withdrawals may occur. O n e major feature of this revised policy 

is that, when the wealth level Xk > xj, we withdraw a positive free cash flow, 

2(xk - xl) (1 一 njjfc (1 一召J))’ out of the market and apply the mean-variance 

policy for the remaining amount in the market, 
/ T - l \ 

ik = 无 k 一 1 - n ( l - B]) . (3 21) 
V j 二k / 

Theorem 3.2. The revised policy with and xl defined in (3.19) and (3.20), 

respectively, achieves the same mean-variance pair of the terminal wealth as does 

the original pre-committed optimal T-period mean-variance policy, while hamng 

possibility to take free cash flow stream out of the market during the investment 

process. 

Proof: The case with = 2 has been already proved in Theorem 3.1. We 

assume that the theorem is true for T = /c with k > 2. We now proceed to 

prove that the theorem is also true for T = /c -f 1 . The following is clear from 

Proposition 3.1 and its discussion. 

When Xl = Xi < x； = xj, the truncated pre-committed optimal policy 

uj(xt) (t = 1 , 2,…’ k) specified in (3.2) is fc-period mean-variance efficient policy 

which solves problem with To 二 H工i ^jXi - 2n，:)(】i-aj)肌廿 yields 
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a fc-period mean-variance pair {E(xk+i\xi)\u', Var{xk+\\xi)\u') with trade-off 

parameter Ai < 0 and initial wealth X). 

Apply the A>period revised policy u ; ( i t ) {t = 1 , 2 , k ) at = Xi = xi 

which possesses the risk attitude parameter Fi = Fq = 11^=1 Sj i i -

to (MV",」(⑷))• From the assumption of the mathematical induction, we have 

the following for i i = $ 无了 = xj, 

When xi = xi > = ^he trancated pre-committed optimal policy 

uj(xt) {t ^ 1,2,..., A:) is no longer /c-period mean-variance efficient and gives 

rises to 

k / k \ 
= ； Q s j l - 召」 Z i + F o 1 一 1 1 ( 1 - 巧 ） ’ 

j=i \ / 
2 

yyfc (1 一召） / k \ 

1 - l i j = i l l ” ^j) \ j=i / 

Let us consider problem (MV^ii(矢+i)) with initial wealth Xi, which is strictly less 

than xi, trade-off parameter Ai < 0 and risk attitude parameter Ti 二 H ^ i 〜士i 一 

—TT-̂  The efficient mean-variance pair 
of can be expressed as 

k / k \ / k \ 
= Us.x.+ i l - H i l - B j ) r i - H s為， 

3=1 \ J=l / \ J=1 / 

^ / 矢 \ 2 

丨士 1) = - n^.^i I . 
1 - l l j = i ( l - ^j) \ j=i / 

Equalizing and E(xk+i\xi) and equalizing Var(x)t+i|xi)|u- and 

Kar(xfc+i|fi) at the same time yield 

(£;(x)t-,i|xi)|u. 一 n ) = i = (^^(x/c-filxi) 一 u U ^J^O . 
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Solving the above system of two equations for Xi and Fi leads to two solutions, 

one that satisfies both (3.19) and (3.21) and the other one, (xi = Z i , r i = Fq), 

which is rejected. 

Applying the /c-period revised policy to (MV;A」(h”)，we have the following 

for Xi = X] > x* = i j , 

Carrying out similar steps as in Theorem 3.1, we can further obtain 

Var[xk^\|a:o)|u- = Var{xk+\\xo)\u'. 

• 

Our newly proposed T-period revised policy is better than the pre-committed 
> 

mean-variance policy in the sense while the two achieve the same mean and 

variance of the terminal wealth, the revised policy enables investors to receive a 

free cash flow stream during the investment process. 

In the two-period problem, when Xi > x\, the revised policy at i j = xi -

2(xi - x\)Bi satisfies u j ( i i ) = -u j (x i ) . Furthermore, the trade-off induced by 

the revised policy at period 1，Ai, is always nonpositive. We now extend the 

results to the T-period setting. 

Without loss of generality, we assume that event {x^ > xj} occurs at 0 < 

h <t2 < ... <ts <T with S <T-l. 

D e f i n i t i o n 3.2. For the revised policy, Xk is the induced trade-off at period k 

such that the truncated revised policy, ul{xt) {t = k,k + l,…’ T - 1), is also the 

revised policy of the following truncated portfolio selection problem, (MV^f.^), 

(MV; iv) niin Var(xT | x^) + hE{xT \ Xk) 

s.t. Xt+i = SiXt + P'tUt，Xk == ik IS given. 



Chapter 3. Better Than Dynamic MV: TI and FCFS - 63 

R e m a r k 3 .2 . The revised policy of is governed by a risk attitude pa-

rameter, nr:/ SjXk — onT々，„、, and wealth at the beginning of period k, Xk, 

while the truncated revised policy is determined by risk attitude parameter r^ and 

wealth at the beginning of period k, Xk, which evolve from TQ and XQ, respectively, 

according to (3.17) - (3.20). Therefore, the trade-off induced by the revised policy 

at time k, Xk, satisfies HJJa ! Sj士fc 一 =厂矢. 

L e m m a 3 .2 . When Xt, > x。，the revised policy satisfies ul(xk) = -u^ixk), k 二 

i1’ + 1,. •. ’ ——1. 

Proof: Please see Appendix A. • 

P r o p o s i t i o n 3 .4 . The revised policy satisfies 

Kiik) = ( - i r K i x , ) . 

and the trade-off induced by the revised policy satisfies 

T-l 

Afc 二 ( - i r A , = —2 n 5,(1 - Bj)\x, - xll 

j=k 

where ak 二 I{xt>xi}-

Proof: Please see Appendix B. 口 

Figure 3.1(b) illustrates the relationship between the trade-off induced by 

the revised policy and the wealth level. Comparison between Figures 3.1(a) 

and 3.1(b) reveals that when the wealth level is higher than the threshold and 

the investor switches his/her risk attitude, by taking free cash flow out, we can 

keep the trade-off between the mean and the variance for the remaining periods 

negative. In other words, by taking certain free cash flow out of the market, 

investors remain a rational risk attitude for the entire time horizon. 

Independent of what the actual return distribution is, the revised policy can 

achieve the ^ame optimal mean-variance pair of the terminal wealth as the pre-

committed optimal mean-variance policy does and obtain a free cash flow stream 
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with a positive probability when the wealth process has a positive probability to 

exceed the threshold. The revised policy reduces to the original pre-committed 

optimal mean-variance policy only when the wealth level is guaranteed not to 

exceed the defined threshold. 

Example 3.1. Consider Example 2 in Li and Ng (2000) [35], in which there 

exist i) three risky assets, A, B, and C with their expected return vector given 

by E(et) = {E{ef),E(e^),E{ef)y 二（1.162,1.246,1.228)'’ t = 0,1,2,3, and 

their covariance given by 

(0.0146 0.0187 0.0145、 

CoT;(et) = 0.0187 0.0854 0.0104 ，亡=0’1’2 ’3， 

、0.0145 0.0104 0.0289 y 

and ii) a riskless asset with a sure return of 1.04. The above given data give rise, 

E{PT) = E(ET 一 ST.EF 一 ST^EF 一 ST)' 二（0.122’ 0.206’ 0.188)'，i = 0,1,2,3, 

(0.0295 0.0438 0.0374、 

E(PtP't) = Cav(Gt) -f- = 0.0438 0.1278 0.0491 ， 

、 0 . 0 3 7 4 0 . 0 4 9 1 0 . 0 6 4 2 多 

^ = 0,1,2,3, 

and B, = E(P't )E-i(PtP'J£:(Pt) = 0.593817, t = 0’ 1,2，3. 

Assume that an investor with initial wealth xq = 1 would like to minimize 

the mean-variance objective of Var{x^) — \E{x4). We now assume that the 

random return takes a particular sample path, Pt = (0.5’ 0.5’ 0.5)'’ t = 0,1,2,3, 

and compare the revised policy with the original pre-committed optimal mean-

variance policy for such an instance. 

For this particular sample path, according to (3.2), the pre-committed opti-
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mal mean-variance portfolio is given a ĵ, 

UQ(XO) = (3.1436,5.0998，18.1618)'， 

u;(xi) = (-2.0171，-3.2724’-11.6537)'， 

u5(:r2) = (1.2943,2.0997,7.4777)', 

u;(x3) = (-0.8305,-1.3473, —4.7982)'’ 

and the corresponding wealth trajectory is {xq == 1’ 工i 二 14.2426, X2 = 

6.3407, X3 二 12.0302, X4 = 9.0234}. The corresponding revised portfolio for 

this particular sample path can derived according to (3.16) - (3.20). 

Period 0: 

Xo = 1，ro = 10.3544, Uoixo) = u;(xo). 

Period 1: 

p 

Xl = sxo + P q u J = 14.2426 > x] = = 9.2050, 
s 

X, = Xl - 2(xi - xt) - n ( l - B , )^ = 4.8425, 

4-1 ( ( 4-1 \ \ 

n 二 + - 无 ; ） i - ; Q ( i _ 召J) =11.1138’ 
J=\ \ \ J=1 / / 

u\(x,) = (2.0171,3.2724,11.6537)' = -u ; (x , ) . 

Period 2: 

X2 = s i i + p;u； = 13.5078 = ^ = 10.2754, 
s 

/ 4-1 \ 

X2 二 52 —2(52-5; ) l — n ( l 一战）= 8 . 1 0 9 5 ’ 

\ J=2 / 
4-1 / / 4-1 \ \ 

r2 = - 「 + ] ] [ 4 2 5 2 - 2 ( 无 2 - 无 ; ) 1 - 1 1 ( 1 - 叫 卜 1 2 . 2 6 7 5 ， 
j=2 \ \ J = 2 / / 

u;( i2) = (1.2943’ 2.0997’ 7.4777)' = 11“工2). 
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Period 3: 

To 
X3 = SX2 + P2U； = 13.8698 > X3 = ^ = 11.7956, 

s 
/ 4-1 \ 

i 3 = 53 — 2 ( 5 3 - 无 l - n ( l 一召力 = 1 1 . 4 0 6 5， 

- \ J = 3 / ‘ 

4 - 1 / 广 4-1 \ \ \ 

厂3 = - 厂 2 + I I � 2 X 3 - 2(X3 - x ^ ) 1 一 n ( l — B 」 = 观 9 8 ， 

j=3 \ V ；=3 / / 

u'( i3) = [0.8305,1.3473,4.7982]' = -u^i^a). 

For this particular sample path, the revised policy generates a wealth trajec-

tory {io 二 l，:̂ i = 1 4 . 2 4 2 6 , = 13.5078,X3 = 13.8698, X4 = 15.3507} and a free 

cash flow stream {xi - x： = 9.4001,X2 - X2 = 5.3983,X3 -£3 = 2.4633}. 

3.6. Properties associated with Free Cash 

Flow Stream 

Following the proposed revised policy, an investor is able to withdraw a positive 

dollar amount from the market at the beginning of period /c (/c = 1,2,. . . , T - 1) 

when Xk > xj. We name this positive cash flow stream taken out as the free cash 

flow stream (FCFS). We are interested in finding out the existence probability of 

such a free cash flow stream, or equivalently, its non-existence probability given 

by 

Pr(xi < xlx2 < f̂ ...,无：r一 1 < XT-I). 

We are also interested in finding out the expected value of the free cash flow 

stream. Although we only need the first two moments of the returns in the 

discrete-time mean-variance formulation, we require more specific return distri-

bution information for calculating the above non-existence probability and the 

expected value. 

Let us set up a filtration for the discrete-time mean-variance portfolio selec-

tion model. We assume that we know at the beginning of period 0 the distribu-
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lions of (A: = 0, 1,. . . , r - 1). At, the beginning of period k, the infonnalion 

set is givon by Tk cr(/"n Vcr(Po) Vc7(Pi) . . . V 1 ))• To simplify the writing, 

we define H / 全 £ ; (P j ' ) / r i (PjPj ' ) in this section. 

A s s u m p t i o n 3 .2 . The investor's initial trade-off parameter,入，is assumed to 
* 

be negative. 

Note that, when A = 0, the pre-committed optimal mean-variance policy is 

= 0 (A: = ( ) ’ l ’ . . . ’ r - 1), i.e., the investor puts all his/her wealth in 

the riskless tuisot. There is thus no chance of receiving FCFS for any return 

distribution. Under Assumption 3.2, the initial risk attitude parameter of the 

revised policy, Fq, satisfies Fq > f l二 ' •SjX'o-

3.6.1. Nonexistence Probability of the Free Cash Flow 

Stream 

At the beginning of any period k, the risk attitude parameter Ft, and the thresh-

old xl can be obtained using (3.19) and (3.20), respectively. Furthennore, the 

proposed revised policy at the reduced wealth level Xk can be calciilatcd using 

(3.16). 

Lemma 3.3. For A： = 1, 2 , . . . , T - 2, if A e Tk and A C {x人，< i.;}，then 

= 1 ) . 

For k = 1 , 2 , . . . , T - 2, if B e Fk and B C {x^, = xl), then /"(无人= 

、 无'“丨IB) 二 1. 

In addition, under Assumption 3.2, 

Pr(:r, < !•；) = /)r(Ho'Po < 1)’ 

. Pr(l：, = x\) = " r (Ho ' Po 二 1). 
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Proof: Our construction of the revised policy assures pmc(、ss {i:人.} to be 

Markovian，i.e., t人.,]depends only on xi, and r\._i’ or cquivakmUy，depends 

only on 元 k and I J. Note when Xk < xj., 

_ 拿 — * 

I'k f 1 = + 二 '"^kxd^- - Hk'Pk)十 i、“iH|/Pk-

As A implies {；!、- < , 

<xU,\A) = P r ( ( . s , . T , = Pr (H^ 'Pu < 1)， 

Pr{x,,, = J-；.,, I A) -二 Pr - - H ^ P k ) = 0|A) - Pr (H. 'Pk = 1). 

Similaiiy, we liavo / ) 7 、 ( 于 人 二 = 1. 

At period 0, we have 

— 

rUi)〜 

；I'l = iSolTo + PqUo(X()) = 6oi:o(l - Ho'Po) + XiHo'Po-

As .Co < cussiirecl by Assumption 3.2, carrying out similar steps as above 

1 lj=l)、Sj 
gives rise the laat part of the leiiiina. 口 

The above ieniiiia also applies lo k = 7^-1 with = Fr-u although there 

is IK) concern of free cash flow at terminal tiirio T. 

A signed variance-optimal martingale rneasm'e is iiitroduci^d in Cerny and 

Kallseii (2007), (2009) [10, 11) for the mean-variance hedging. Applying their 

particular martingale meaaui.e U) our discrote-tinlo market setting gives rise tlie 

following density, 

产0 ^ 

When the wealth is always less than the threshold, i.e., x̂- < x l ,人 . =1 , . . . , 7\ 

the variance-optimal martingale measure defined in (3.22) becomes a probability 

ineiUJiire. 

X 
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P r o p o s i t i o n 3.5. The nonexistence probability of the free cash flow stream is 

giveji by 

T-2 T-2k-\ 

n 厂r(Hk'Pk < 1)十 < l ) / V ( H , ' P , 二 1). (3.23) 
人二 (J 人 1 = 0 

Proof: Nolo that, for any 1 < j < T - 2, { t , < xj,..., < 2；̂  = 

X * < x'.̂  p ..., < } is a subsi;t of {.T'l < I ' , , < x) . i , I'j = 

X*}. On the other hand, based on Leiiiiiia 3.3, s(、t, {:7"i < x] Xj_ i < i* p J'j = 

X*} implies set {x, < T ] , < ,, Xj = x*, I'； +1 二 +1 …’ J,'/,-1 — .rf_i}• 

Hierofore, st'ls {I'l < J - < x*_,, Xj = x*, x, ̂  i < I'* ̂ , < } 

and {：？! < :rj, . . . , x^-i < j, Xj = .f*} are equal. 

For 人,=0, 1,,. . ’ r — 2， 

/ ) / 一 — • 一 — • — 一 傘 \ 

/ i'[:v\ < . r j , < J, xa：-,. I = ,) 

= P r ( x i < x\)Pr(x2 < X2I-T1 < X；).. . Pr{Xk+\ = 无 无 1 < '^'k < -K) 

k - \ 

= [ ] P r (H/P i < l ) / ) r (Hk 'Pk 二 1). 
I二0 

Similarly, 

T-2 

rr(x, < .r;’...’J-:)t_i < 元 t—” 无 T-i < ^'r-i) = n 厂 < D-

I 二 t) 

Tho iionexisterico probability of the free cash flow stream is 

Pr(xi < .f*,X2 < < 

= Fr(xi = !•；) + Fr(2 i < x；, Xj = xl) + • • • 

+ /V(;ri < x；, < xl.Xk^ 1 = 乏 “ 1) + •. . 

. + /)r(J.i < ：1'7 -2 < '^T-'i'^T-l = 

十 / " . ( i i < J:,, ...,xr-2 < ^T-I < 

T一2k-\ T-2 

= n 尸 r (H/P i < 1) Pr (Hk'Pk = 1 )十 [ ] / ) r < 1). 

• 
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R e m a r k 3 .3 . When the retmiis of nsky assets are continuous random variables, 

/ V ( H k ' P k = 1) = 0, A: = Q, 1,. . . , T - 1. The nonexistence pTobabiiity of the fret 

cash flow stream then reduces to ["[【二二 尸r(Hk'Pk < 1). 

For any k 二 0, I T - I, sinco E lHu 'Pu ) = Bf, < 1, we have 0 < 

Pr(Hk'Pk < 1) < 1. As the probability of receiving a free cash flow stream 

over T periods is 

T - 2 7 - 2 j - i 

1 — f ]八 , (Hk 'Pk < 1) 一 E n 尸r (Hi'Pi < 1) Pr (H /P j = 1), (3.24) 
人-=() j=0 1=0 

w introduce the following new nieasure. 

D e f i n i t i o n 3 .3 . For the formulaticm of a given mai^ket setting, the term (3.23) 

IS defined as the degree of time consistency in efficiency. 

When a model is time consistent in efficiency, the degree of time consistency 

in efficiency is equal to 1. Under various return distributions, the mean-variance 

portfolio selection models in the discrete-time setting can be time consistent in 

efficiency or time inconsistent in efficiency. 

P r o p o s i t i o n 3 .6 . When a market is complete for the first T — 1 periods, its 

degree of time consistency in efficiency equals 1. 

Proof: Page 133 of Pliska (1997) [51| states that “The rnuUipeviod model is 

compU'tc if (171(1 only if eveTy underlying snujk period model is complete ” W'v 

consider now a single period A;, k = 0, I’...、7，— 2. 

Denote by (Q’ J\.+ i’ P) the probability space. Assume that there are d risky 

iussets and one riskless cksset in the market. Denote by t《the random return of 

risky asset j at perioci k: and Sk the sure return of riskless asset at period k. Note 

that the excess r(、tuni vector is given by 

P»< = ( (e i-6、 )r.，(e; ;-.s0) ' . 

Define a signed measure Q人-， 

dQ, 二 1 - l y P k 

I F 二 1 - B 厂、 
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which is absolutely continuous to probability P. We have 

= (3.25) 
\ dP J \ \ - Bk J 

We further have 

: + 榮 ） 

— , ， / ^ P k ( l - H k ' P k ) 、 

二 琴 k - P k P k ' E — i ( P k P ' j 吼 ) ) 

— 1 — B k 

= 0 , (3.26) 

where the third equality is due to the symmetry of E"^(PkPk')- As, from (3.26), 

- f ^ ) ^ 1, j = l’ … 乂 （3.27) 

W 
Qi, is a signed martingale measure for the single period k. 

As stated on Page 25 of Pliska (1997) [51] that “The model is complete if and 

only if M consists of exactly one risk neutral prvbability measurethere exists 

a unique probability me腿re Q*, under which the discounted returns of assets 

equals to 1. 

‘ To make the market complete, we have Q = {u；!’... ’u;(i+i}. Let q* be the 

risk neutral probability for state u;,. Then, {r/* > U, i = 1, • • • , fi + 1} is the 

unique solution of 
z 

(hSk + •..十 qd+\Sk = Sk, 

(I\el + … + (7d+ie{. = Sk, 
i 

It is also the unique solution in K科】.Therefore, Q* is also the unique signed 

martingale ineasuro. The uniqueness of the signed martingale meayure implies 

(]* =禁(。')的’ ,=1’. ••’ d 十 L 
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Thus, ^ ( u ; , ) is nonnegative due to the nonnegativeness of q* and the positive-

riess of pi’ z = 1，…，ri + 1, which in turn implies 

Fiirtherinoro, 

7 - 2 J - 1 T-2 
n 尸（Hk'Pk < (Hj 'Pj 二 1) + ; Q fV (Hk'Pk < 1) 

'厂-3J-1 T-3 

= X ] IT Pr (Hk'Pk < 1) Pr (Hj'Pj = 1) + ;Q /̂ r < 1) 
k=0 k=0 

= P r {Ho'Po< 1) 

= 1 . 

• 

If a market is incomplete, the degree of time consistency in efficiency can 

often be less than 1. 

Example 3.2. Assume that there are one risky asset and one riskless asset in a 

market with a time horizon of 2. Assume further that, at period 0, the random 

return of risky asset, eo, takes three possible values 1.52, 0.62 and 11.02 with 

corresponding probabilities of 0.5, 0.49 and 0.01, while the riskless return is 

1.02. It is obvious that this market is incomplete. It can be verified that E{FQ) 

=E{eo - SO) = 0.154, E(P^) = E((EO — S^F) = 1.2034, 

=0.0640, E(PO)E-'(P^)PO{UJ2) =-0.0512’ £：(尸。)E-�(/)。2)尸。(0̂ 3) - 1.2797. Thus, 

the degree of of time consistency in efficiency, Pr{E{Po)E-'{P^)Po) < 1) = 0.99. 

To make the degree of of time consistency equal to 1 in this model, all the 

realizations of Cq must be no bigger than when E(PO) > 0 or be no less 

than when E{PQ) < 0. 
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3.6.2. Expected value of Free Cash Flow Stream 

When Xfc+i > xJJ+i at the beginning of period /c + 1, the free cash flow received 

according to the proposed revised policy, 2(xk^i - 无 ( 1 — F I 1 ( ^ 一 召j))’ 

is a random variable with respect to J'o- We assume that the free cash flow 

taken out at the beginning of period k + 1 earns riskless return for the remaining 

periods and are interested in finding the expected value of the entire free cash 

flow stream, 

/ T - 2 / 7 - 1 \ T-l \ 

E 1 - n ( i一召 J ) n 口<i,+i>,“i}i八• 
\ ) t = 0 \ j = k+l / 3 = k+\ / 

L e m m a 3.4. Under Assumption 3.2’ 

= {Hk'Pk > 1’ X, T^x；}, 

十 1 < xl^,} = {Hu'Pk < 1, l , 2 , . . . , T - 2 , 

{ x i > x ; } = {Ho ' Po> l } , 

{ x i < x t } = {Ho 'Po< l } . 

Proof: Based on Lemma 3.3’ Pr{xk+i =无lUil无fc 二 无 1J-) = ^ implies {x)t+i > 

xj^px/c = X；} = 0 and {xk+i > 无 ; 无 f c + ^J} = > 

As, when Xk < xj, 

无fc+l ~ Sk元k, 

= + P'^Kix,) = - Hw'Pk) + ̂：-HiHk'Pk, 

we then have 

> 无 “ 1 {skXk - SkXl){l - Hk'Pk)〉0 Hk'Pk > 1. 
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As, when x^ > xj, 

/ ( \ \ 
= -Skxl^s, 2x, - 2[x, - xl) 1 - J ] [ ( l - S , ) , 

V \ I J 

= Skik + PkU;;{x;t) 
/ / T-\ \\ 

V \ I I 
we then have 

> x； !̂ <=> {s,xl - s,Xk){l - Hk'Pk) > Hk'Pk > 1-

Thus, {x/e+i > xl^i} = {Hk'Pk > 1, Xfe ̂  X；} follows. The second equation in 

the lemma can be derived by similar steps. 

At period 0, XQ < is assured by Assumption 3.2, carrying out similar 

steps as above, we can also derive the last two equations in the lemma. • 

L e m m a 3.5. The time-k conditional expected value of the free cash flow taken 

out at the beginning of period k H- 1 (/c = 1, 2 , . . . , T - 2) is given by 

( / T - l \ T - 1 \ 

E — 1 — 一召J) n 〜1{无“】〉•^矢 

\ V / / 
/ T-\ \ / T - l \ 

=2 1 - n (1 - 叫 r 广 n 卯 H i / P k - 1) + ) W w ’ (3.28) 

where {x)+ := max{x,0}. 

Proof: 

/ / T - l \ T - l \ 

E 1 - n ( i - 召 J ) n sji{i“i>n+i}i7* 

\ \ ]=k+l / j=k+\ ) 

T - l p 

= 2 ( 1 - J ] (1 - B,))E({sA + P;u;;(x,) - ) n …〉仏 

/ T - l \ / / T - l \ \ 

=2 1 - n ( 1 - B j ) E 

V A t l J \\j=k / / 

二 2(1- n (r, - n E ((Hk'p, - • 
\ j=k+\ / \ j=k / 



Chapter 3. Better Than Dynamic MV: TI and FCFS 78 

As we have the following from Lemma 3.4, ^ 

=E ((Hk'Pk -

we conclude with (3.28). • 

L e m m a 3 .6 . The unconditional expected value of the free cash flow taken out at 

the beginning of period /c -f 1 (/c = 1, 2 , . . . , T - 2) 25 given by 

/ / T - l \ T-l \ 

E ⑷ -无； ; + 1 ) 1 - n ( i - 召 J ) n {无“1〉土“1 “ 八 

\ \ J = k+\ J J = /c+l / 

二一 Yl ( l - B , ) ] … 力 E ( ( H k ' P k - l ) . ) n 7 ； ’ (3.29) 

where 

A / \ 
" n ^ - i n 二 2 r o - n ¥ o ’ 

l l j = o ( l - ^j) \ 3=0 J 

I j = + 2 E ( ( H j ' P j - l ) ^ ) . 

Proof: Please see Append ix C. 口 

The following proposit ion is immediate from L e m m a 3.6. 

P r o p o s i t i o n 3 .7 . The unconditional expected value of the entire free cash flow 

stream is 

- n " : n X i ' - n ( l _ B 】 ) ) n ^ H k ' P k - i ) + ’ （3.30) 

i l j =0 t 丄 — f c = 0 \ j = k+\ J 3=0 

where 7, = {1 - Bj) + 2E(Hj 'Pj - 1)+ and UJIQ^J = 1-

R e m a r k 3 .4 . When all the excess returns Pk (k = 0 , 1 , . . . , T - 1), are inde-

pendent identically distributed, the unconditional expected value of the entire free 

cash flow stream reduces to 

\ 、 f 茫 ( 1 - ( 1 - B f - ' - ^ ) ( { l - B ) + 2 C r C , (3.31) 

( 1 - 召 ） T I 
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where B = E(P' )E-i(PP' )£ ; (P) and C = E{E{P')E-'(PP')P - 1)+. 

3.6.3. Case with normal returns 

Corollary 3.1. If all the excess returns Pk (k = 0 , 1 , . . . ,T - 1), follow in-

dependent normal distributions with mean E(Pk) and variance E(PkPk') 一 

E(Pk)£'(Pk')» the probability of receiving a free cash flow stream over the T 

periods is ‘ 

T-2 ( n^、 
/c=o \ V … ） 

and the unconditional expected value of the entire free cash flow stream is 

i l j 二 丄 一。 3 ) k=0 \ j = /c+l / j=0 

where Q j 二 y/B.il-Bj)(汝e—Y - 9；(1 一 and q； = y / ^ -

Proof: As Hk'Pk �N 〈 B k ’ - B^)), we have 

( H k ' P k - Bk 1 - Bk \ 

-<m、… 
即 H / P j - 1)+) = f i . - 1 - � r 诚 办 

. = ( 去 e - 樂 - - 卿 ) . 

The corollary then follows from Proposition 3.5, Remark 3.3 and Proposition 3.7. 
• 

Example 3.3. We reconsider Example 2 in Li and Ng (2000) [35] with the initial 

trade-off A equal to -0.5. As in Li and Ng (2000) [35], the pre-committed optimal 
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policy is given as follows from (3.2): 

u ; ( x ( ) = - K t i J t + V t , 

where 

^ 0.4004 \ 3 .5440、 

Kt = 0.6496 ’ t = 0,1,2,3, vq = 5.7494 ’ 

、2.3133 y \ 20.4751 y 

< 3.6858 \ ( 3.8332 \ ( 3.9865、 

vi = 5.9794 ’ V2 = 6.2185 , V3 = 6.4673 

、21.2941 y \ 22.1459 / \ 23.0317 

The corresponding expected terminal wealth and the risk level are ^(x^) 二 

10.1043 and Var{x^) = 2.2336, respectively. 

The revised policy is given as follows according to the results in Section 5.2: 

= + 1 0 4 : " F i t 

where c 

(0.4004 \ 0.3850、 

Kt = 0.6496 ， L t = 0.6246 ， t = 0,1,2,3， 

、2.3133 ) \ 2.2244》 

and r , and X, follow (3.16) - (3.20) with TO = U^IQ、工0川了=10.3544 

and xo = XQ = 1. The corresponding expected terminal wealth and the risk level 

are = 10.1043 and Var{x4) = 2.2336, respectively. 

We assume now that the random returns of risky assets, et (t = 0,1,2, 3), 

are normal vectors with the given mean and covariance matrix in the example. 

Applying Corollary 3.1 gives rise the probability of receiving FCFS over the 4 

periods equal to 0.4958 and the unconditional expected value of FCFS (iqual to 

1.5773. 

We run 5000, 20000, and 50000 sample pathes，respectively, in our simulation 

to verify the theoretical value of the mean-variance pair of the terminal wealth 
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under the pre-committed optimal policy and the revised policy, i.e. X4 and x^ and 

to estimate the probability of receiving FCFS and the unconditional expected 

value of FCFS, with the following results given m Table 1. 

Table 3.1: The simulation results 

Samples E{x^) Var{x,) E(x,) Varix^) Probabil i ty E(FCFS) 

5000 10.1485 1.8992 10.1559 1.9220 0.4970 1.5255 

20000 10.1049 2.2071 10.0990 2.1792 0.4994 1.5758 

50000 10.0910 2.2800 10.0959 2.2857 0.4950 1-5691 

Using the simulation data, we can also estimate the distributions of the ter-

minal wealth under the pre-committed optimal policy and the revised policy, 

respectively. From Figure 3.3, where the distributions of X4 and X4 are approxi-

mated from 20000 samples, we find that the distribution of terminal wealth under 

the revised policy, X4, has somewhat fatter tails in both directions. 

' [ ‘ ‘ “ ‘ ^ ^ ” " I “ ~ ‘ ^ ~ — C U D j • 
0 9 ： 0 35 丨 

0 8 . I I 

, 0 3 [ 

07 I 

( 0 25 I. 
0 6 ‘ ‘ 

§05 ‘： 瓷 丨 丨 丨 _ 

‘ 0 15 I I 

. 0 3 . I I ’ 

/ 
” / , 

/ 0 05 
0 1 J ‘ ‘ 《 -Z 
n -r “ i_.. ,— 1 ‘‘ - 丄—— 
2 4 e 6 10 12 U 16 IB 2 4 6 8 10 ’ 2 M 16 18 

Z îil) T � “ 

(a) The cumulat ive distribution functions of(V>) The p^robability density functions of x^ 

X4 and X4 and X4 

Figure 3.3: The distributions of x^ and X4 



Chapter 3. Better Than Dynamic MV: TI and FCFS 78 

3.7. Numerical Experiment 

We consider a continuous-time market model with constant parameters and in-

vestment horizon T. There are two assets in the market: A riskless asset with 

its price process S"()⑴ following 

dSo(t) = rSo(t)dt, t > 0, 

\ 5o(0) 二 So〉0， 

where r > 0 is the interest rate, and a risky asset with its price process S\(t) 
/ 

satisfying 

‘(/Si(0 = S^(t){bdt-\-adW{t))J > 0, 

\ Si(0) = 6-, > 0 , 

where W(t) is a 1-dirnensional Brown Motion. We consider both the continuous-

time and discrete-time trading strategies for the mean-variance portfolio selection 

problem. 

When adopting the continuous-time optimal mean-variance policy, the effi-

cient frontier is given below as specified in Section 2.2, 

Var(x(T)) = {E{x{T)) - xoe^^)' for E{x{T)) > (3.32) 

where p — (二 ) . 

Now we confine ourselves to trade assets only at discrete-time points zAi, i 二 

0，. •.，yv —1’ where A i == In a corresponding formulation for the discrete-time 

mean-variance portfolio selection problem, we can assume the stock's returns 

尸I + grAt’ i 二 0，…，yV - 1，to be i.i.d. log normal random vanables’ 

In (P. + O � T V ( (fc - A t , a J ， V z . 

Furthermore, we have 

E(P,) = 八 L e ” " ’ Vz, 

E ( / 〒 ） = — 2e(“…A、e ' rA^ Vz, 

I (efcAf 一 

B = E{I\)E-\P^)E{P.) 二 产 — 2 一 二 十“^。寸L. 
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We can verify the following, 。 

Pt{E{P,)E-'{P^)P, < 1)=巾 (?• ) ’ Vz, (3.33) 

where 

p- = - 4 = —已一)A” — - e^^') — bAt + ^a^A^^ . 
aVAt \ 2 乂 

(3.34) 

Please refer to Appendix D for the derivation of (3.33). For -this constant-

parameter discrete-time model, the mean-variance efficient frontier is given by 

Var{xr) 二 ,、？、二 — e^^xof for E{xt) > e^^xo- (3.35) 

1 — (1 — o ) 

When the trade-off between the mean and the variance, A, is selected, the cor-

responding expected value and variance of the terminal wealth are expressed, 

respectively, by 

彻 ） = ^ 工 0 2(1 — fi广’ ( ) 

A2(l —( 1 -召广 ) 

師 了 ） = 4 ( 1 - B 广 . 

When adopting the proposed revised policy, the expected value of the free cash 

flow stream associated with a given trade-off A is given as 

- j Y z ^ E (1 - (1 - 召 广 _i) ((1 一 召 ) + 

where for all 2, 

= 一 HP')) - + 1 ) ( 1 — )), 

(3.37) 

with p* being given in (3.34) and 

p = p' — oyKt. 、 
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Please refer to Appendix D for the derivation of (3.37). 

If we consider the total expected wealth under the revised mean-variance 

\ policy as the summation of the expected wealth from the original mean-variance 

、\ pair and the expected value of the free cash flow stream, the efficient mean-

variance frontier under the revised mean-variance policy is given by 

V M x r ) 二 ( ( 1 ( 二 ; ( - 1 ; : ) ( 二 ) ( 啡 T ) - e � ) 2 for > e-xo, 

(3.38) 

where D = — (i 一 �- - 召 ） + 2CfC. 

We now consider a specific continuous-time market with parameters r — 

0.6，b = 3.2, (7 = 1.5 and r = 1. We assume Xq = 1 and let N、the number 

of discrete-time periods, equal to 1,2,3,8,9,30,100 and oo. Note that the two 

situations with N equal to 1 and oo lead, respectively, to single-period (static) 
. * • 

and continuous-time mean-variance formulations. 

‘ ey 
07, •. • —I 07| ？ • —：：7| 

J Prob«Mily of FCFS - - ProbabiWy ol FCFS 
EnpacM vlueo< FCFS E«pec>»d value ol FCFS| 

0 6 0 6 . 

f。5 1°' \ 

|o4 lo.- \ 

:'o3 卜：、\ 
L a j 、 入 

1 V _ _ , I T V _ _ ^ I 
0 50 100 ISO 200 0 50 100 \bO 200 

Trading p«nods N Trading perods N 

(a) A = -1 (b) A = -2 

Figure 3.4: Probability of the occurrence and the expected value of the free cash 

flow stream 

Figures 3.4 depicts the occurrence probability and the expected value of the 

free cash flow streams associated with A equal to —1 and —2，respectively. It is 
t 
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‘ Figure 3.5: Dominance relationship for Var(xr) = 1 

clear that the shapes of the occurrence probability and the expected value have 

a similar pattern and both converge to zero when N goes to infinite. 

Fixing Var(xT) at 1, Figure 3.5 illustrates the dominance relationship be-

tween the revised mean-variance policy and the pre-committed mean-variance 

policy, while the horizontal line on the top represents the expected terminal 

wealth level under the continuous-time trading. 

The efficient frontiers, associated with different /V, in the mean-standard 
〜 « 

jdeviation space are given in Figure 3.6. The solid lines from bottom to top are 

corresponding to N =1, 2，3, 8，9, 30，100, oo under the pre-committed mean-

variance policy, while the dash-dot lines from bottom to top are corresponding 

to TV = 2, 3’ 8，9’ 30, 100 under the proposed revised mean-variance policy. It is 

clear that, under either the pre-committed mean-variance policy or the revised . 

mean-variance policy, the -period efficient frontier dominates the 

efficient frontier when N\ > N2. When N is increasing, the efficient frontier 
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Figure 3,6: Mean-Standard Deviation efficient frontiers 

under the revised mean-variance policy converges back to the one under the 

pre-committed mean-variance policy, and both converge to the continuous-tirne 

efficient frontier. It is interesting to observe that the 8-period efficient frontier 

under the revised mean-variance policy dominates the 9-period efficient frontier 

under the pre-committed mean-variance policy. In this sense, the revised mean-

variance policy could offer a better way to improve the mean-variance efficiency 

without suffering a burden of increasing the trading frequency. 

As evidenced from (3.36), the contribution to the expected final wealth from 

investing in risky assets under the pre-committed mean-variance policy is given 

by - 丄：口 ). For given N、we define the ratio of the expected value of the free 

cash flow stream over this amount as the improvement ratio of the revised mean-. 

variance policy over the pre-committed mean-variance policy. Furthermore, the 

’ best improvement ratio is found as follows, ‘ 

. (1 - (1 - B 广 ( ( 1 -召）+ 2Cy^C 

a 二 m âx 1 — (i _ 召广 • ( • ) 

JV 
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Note that the effect of the investor's risk attitude, A, is eliminated in this ratio. 

The computational results of the best improvement ratio for various market 

settings are given in Table 2. . 

Tabic 3.2: The best improvement ratio under various market settings 

r b (J a^ yV(a-) 

1.1 1.2 1.5 0.0044 0.00067% 2 

1.1 1.2 0.8 0.0156 0.00031% 2 

0.6 1.2 1.5 0.1600 0.27% 3 

0.6 1.2 0.8 0.5625 1.33% 3 

1.1 3.2 1.5 1.9600 7.09% 6 

0.6 3.2 1.5 3.0044 11.05% 7 

1.1 3.2 0.8 6.8906 21.48% 6 

0.6 3.2 0.8 10.5625 26.11% 7 

It is clear from the table that the best improvement ratio varies significantly 

under different market settings. Note that parameter p, to certain degree, rep-

resents the position of the risky asset. It seems from the table that a positive 

correlation exists between parameter p and the best improvement ratio, which 

makes sense as the free cash flow stream is generated from the risky asset. When 

parameter p is very small, the best improvement ratio is also very small, and in 

such a situation, the variance of the return becomes the dominating force. 

3.8. Conclusion 

The mean-variance framework in dynamic portfolio selection is not time con-

sistent, due to the inherent nonseparable nature of the involved variance term. 

The trade-off between the two conflicting objectives, the expected value and the 

variance of the terminal wealth, is time-varying and state-dependent. In some sit-

uations where the wealth level exceeds some threshold, the trade-off may change 
I 
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its sign, which implies that the investor changes his/her risk attitude towards 

the objectives, leading to time inconsistency in efficiency and irrational trading 

behaviors for the remaining investment periods. 
if 

By devising a revised mean-variance policy, we retain the efficiency of the 

portfolio policy for all time periods. While achieving the same mean-variance 

pair of the original pre-committcd optimal mean-variance policy, the revised 

mean-variance policy enables investors to receive a free cash flow stream. Note 

that the probability of receiving free cash flow stream and its expected value are 

both path-independent. . 

We emphasize that the distribution-free discrete-time mean-variance model 

in Li and Ng (2000) [35], in general, corresponds to an incomplete market, while 

the Brown motion driven continuous-time mean-variance model in Zhou and Li 

(2000) [75j represents a complete market. The existence of the free cash flow 

stream seems to be related to the market completeness. Recall from Proposition 

3.6 that the existence of the free cash flow stream disappears in a complete 

discrete-time market. We tend to conclude that the market incompleteness is 

the source of the existence of the free cash flow stream. Finally, the (act that the 

optimal dynamic mean-variance policy is dominated, revealed in thi於chapter， 

could have a profound impact on the theory of portfolio selection and asset 

pricing. 

( 

3.9. Appendix 

Appendix A: Proof of Lemma 3.2 

Proof: Let 

Z“ = 2xt, 一 2(xt, 一 xl) (1 - 1 ^ ( 1 - Bj)^ • 
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We use mathematical induction to prove 

k-i 

、 Xfc = P][ SjZtj — Xk, k — ti, 11 -h 1 , t ' j - ^ 

j=ti 

G【(ifc) = -ul(xk), /c 二“山 + 1’...山-1. 

Since x。> x。，we have 

iti = ^t, 一 无<1 二 ^i]—工ti， 

T-l 

厂 h = - ro + n 仏 ’ 

j=ti 

f 丁-i 1 \ 

/ T-l \ 

二 6 ’ “E—i (P“P ' J丑 (P“） : r , , - T o n — 

、 V7 = “ + l 〜y 

Thus, the statement holds true for k = ti. We assume now that the statement 

holds true for k = t: it = F I ;二 , SjZt、-Xt and ul{xt) = W h e n k = ^-f 1, 

we have 

/t-l \ 

= , �[ Y l ^ j Z u - x t - p x i x t ) 

t 

= = n - ^：…’ 

3 = tl 

\ 

•r 
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and 

W+i(全“1) 

f 1 、 
二 — …)i^，(Pt+i)it+i+rVM n 一 广 i (P t+ iP ' t+ i )扔P“1 ) 

厂 - 1 1 \ 

= - s w £ i - i ( P t “ p ' “ . i ) E ( P t “ ) i w + r “ n — … P ' t + 1 ) 观 t+1) 

厂 - 1 1 \ 

二6、…厂一i(Pt+iP“i)£;(Pt+i)工…一ro n - £- i (P t+iP ' t+ i )权P"1) 
= S] J 

=-^Uii^t+i)-

We complete the proof. • 

Appendix B: Proof of Proposition 3.4 
參 

Proof: For “ 6 {《 i山，…“s}’ let 

/ T-l \ 

\ j=t； / 

To prove the theorem, we will use mathematical induction to prove the following 

statement for tg G {(i, <2’ …，^s} and i = “，亡s + 1’... ’ ts+i 一 1’ , /t-i \ 

j=i \k=tj ) 

r W - i ) T 。 + ; ^ ( - i ) " ( n “ , ) ’ 

\k=tj ) 

Note that the above statement holds true for “ = “ as proved in Lemma 3.2. 

Assume that the statement is true for t^ = tp. We consider now the case with “ 
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=tp+i. As 

二 Ztp+i — ^tp^i 

二 Z … 广 + 1 ) ( 节 s 成 ) + ( —1 产 + ” 而 一 

J=1 \ k = t j / 

p+1 Ap+1 -1 \ 

= ( - ” ( … 、 … n s 而 ’ 

j = l \ k=tj / 

P + 1 / T - l \ 

= 广 + 丨 ） n 城 ’ 

尸 1 J 
we have 

a ； , , . ( i t . . , ) = - 〜 … ) 哪 。 + i K + i 

+ � n … p ' t p j 聊 t p + i ) 

二(-1 广iu:p+i(x【p+J. 

It is clear that the statement is true for t = 卜 Assume that the statement 

is true for t = tp+i + k. We consider the case with t == (p+i + /c(+ 1 (/c = 

0， 1’ • ••’ tp+2 —亡p+i — 2), . 

p+l 卜+1、女 k 、 

= ( 一 1 产 + 1 ) 、 一 n ， 
j=i \ k = t , ) 

p+l /T-l \ 

… = ( - 1 产+i)ro + 广 n s 而 • 

'OF 
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We thus have 

U : … + k + l (工丨)十fc+丨） 

/ T-l J \ 

.+r�+。+fc+i n (Pt(p+i)+k+iP't(…)+k+i) E(Pt<p+i一十 1) 

+ ” 。 + K + 一 ( 、 + 一 )： 

Now we consider the induced trade-off under the revised policy. Note that 

T-l 入 

n Sj't 一 =Fr 

Substituting the expressions of and Xt into the above equation yields 

/ T - l 、 \ T-l 

Xt 二 ( - 1 ” n s]工t - r o n ( i - B]、=(-1)〜 

\3=l / ]=t 

Furthermore, when Xt < 

A, = 2 n 5,(1 — B,) (x, - - f e ^ ) = 2 n - 丑 ⑷ - 无 ; ） < 0; 

3=t \ 1 S3) j=t 

when Xt > x*, 
\ 

A. 二 2 n � ( 1 - - ^t) = 2 n -^.(i -聯 T ‘ 无 0 < 0. 

j=t \llj=t s] J j=t 

n 

Appendix C: Proof of Lemma 3.6 

Proof: Based on Lemma 3.5’ we only need to prove 

( ( T g \ \ 
E I Ffc - 11 ^j^k 吨 

\ \ ]二k 1 / 

入 k-l / T-l \ fc-l 

二 一 H ^ n ^ ^ - T o - n ¥ 0 n ^ 
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— 

For k 二 2,…、T — 2、we know 

/ / T-l \ \ 
^ 厂 矢 — n s]全k I 

W j=k / / 
/ / T-l \ \ / / T-l \ \ 

r\ - n s ] 士 k I + 外 F r n ’ 

VV j=k J ) \\ j=k J ) 

while the first and second parts of the above expression can be expressed, re-

spectively, as 

/ / T-l \ . \ 

E 厂 _ n I 

\ \ J=k J J 

=E ( 卜 — 1 - n + l{i“i:}l"^it—丨) 、 

=E ((rV1 - n sA-i) (1 - Hk-i'Pk-i)l{i,<inl«^、-i) 

/ T-l \ 

V J=K-L ) 

= I Tfc-i Y [ Sjifc-1 j ~ Hk-i 'Pk-i)^) 

V j=k-\ / 

and 

/ / T-l \ \ 

E I F/t - f j SjXk I -1 

\\ ] 二k J / 

二 E ( f - i v i Hh n … - - X：) ( i - n ( i - B , ) ) I , 

‘ V V \ \ / / 

- n 〜 ( A - 一 m (1 一 fiV - 叫 ) ) ) I 八 -。 

/ / T - l \ 、 \ 

=E I r V i - n SjXk-i (Hk-i 'Pk-1 - 1) ln.yiDlTk-i 

W j=k-i / » / 
( T一1 \ 

=Ffc-i - YL SJXK-\ E ((Hk-i'Pk-i - 1)+) 

\ 3=k-\ / 、 
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、 
\ 

Therefore, 、 

(( \ \ / “ 1 \ 

E Tk - Y\ ^jik I = T/e-l - 11 � ) 人- - l l { f “ l / i : _ , } . 

\\ j^k J ) \ J 

Furthennore, 

/ / T - l 、 、 \ 

厂 厂 f c - n Sjifc 
\ \ ]=k ) J 

( ( ( ( T - l \ \ \ \ 
= E E …E r , - Yi Sj^k •••1^1 1^0 

\ V \\ / / / / 

At period 0, by following the discussion above and noticing Lemma 3.4, we have 

/ / r-i \ \ / r-i \ k-i 

K EI 二 Fo — n � T o I ] > 
\ \ j = k / / \ 7 = 0 / 尸 0 

• 

Appendix D: Proof of Eqs. (3.33) and (3.37) 

Proof: As /), can be represented by 

p _ ^a^At + av/Ati _ ^rAf 

where x is the standard normal random variable, we have 

C 二 £； ( (丑 (尸 1 ) £； -1 (尸— 十） 

二 厂 ( ^ ^ b A t - i a ^ A t ^ a ^ t x _ y A t ) 一 i ) 去 厂 ^ 办 

二 E ⑶ E - 1 ⑶ 2 e 仏 丨 「 ' e - ^ ' ^ d x 
JP" \/2TT 

+ 00 ^ 

- ( 耶 ) ⑶ 2 一 t + 1) 全 

= 丑 ( 尸 乂 1 -少(//)) - + 1 ) ( 1 - Hp)) 

0 
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and 

I 

尸 ( 尸 1 ) 2 尸 , < 1) 

. / I _ p{6+r)-A(\ \ 

\ ^ \ e - e H 

where p* is the solution of equat ion 、 

、 ( 产 組 — er八9 _ 1 = 0. . 

• 

• » 

i 
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CHAPTER 4 

BETTER THAN D Y N A M I C , 

MEAN-VAR IANCE P O L I C Y IN 

M A R K E T WITH A L L R I S K Y ASSETS 

4.1. Introduction 

In this chapter, we first demonstrate that the conventional multi-period mean-

variance portfolio selection in a market with all risky assets also does not satisfy 

time consistency in efficiency. By relaxing the assumption of self financing at th^ 

beginning of period s、we extend the concept of pseudo efficiency (type 1 or type 

2) in Chapter 2 to a dynamic setting. We then propose two different revised poli-

cies for dealing with two types of pseudo efficiency. While being able to achieve 

the same mean-variance pair attained by a pre-coinrnitted optimal mean-variance 

policy, the first revised policy is also able to generate during the investment pro-

cess a positive cash flow stream or free cash flow stream (FCFS) with a strictly 

positive probability under certain probability distribution assumptions. While 

being able to achieve the same total mean as the one by a pre-comrnitted optimal 

rnean-variance policy, the second revised policy ensures a total variance no bigger 

than the one by the pre-committed optimal mean-variance policy by including 

the free cash flow stream in the total wealth. Similar to the discrete-time case, 

we also derive two revised versions of the continuous-time optimal iiieaii-variance 

92 
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policy in a market with all risky assets. 

The organization of this chapter is as follows. In Section 4.2, we summarize 

the current results of the optimal policy for miilti-penod mean-variance portfolio 

selection in a market with all risky assets and discuss some prominent properties 

of the parameters. In Section 4.3, we examine the trade-offs induced by the pre-

committed optimal mean-variance policy, thus concluding that the discrete-time 

mean-variance formulation in a market with all risky assets is not time consistent 

in efficiency. In Section 4.4, we extend the concept of pseudo efficiency (type 1 or 

type 2) to a dynamic setting and develop two revised policies which dominate the 

pre-committed optimal mean-variance policy. In Section 4.5’ we investigate the 

continuous-time optimal mean-variance policy in a market with all risky assets 

and construct t^o similar revised policies in the continiious-tirne setting. Finally, 
i 

we conclude this chapter in Section 4.6. 

4.2. Discrete-time Mean-Variance Portfolio 

Selection 

We consider a capital market consisting of n + 1 risky securities within a finite 

time horizon T. Let et = (e!\eh...，e「)' be the vector of random total return 

rates of the n + 1 risky securities at time period t. We assume in this chapter 

that vectors et, ^ = 0, 1, . . - 1, are statistically independent, and the only 

information known about the random return vector, et, is its first two moments, 

the mean and the covariance, which are assumed to be finite for all t. We also 

assume that the covariance matrix is positive definite for all t. 

An investor joins the market at time 0 with an initial wealth XQ. He can 

allocate his wealth among n + 1 risky securities at time 0 and reallocates his 

wealth at the beginning of each of the following {T - 1) consecutive time periods. 
» 

Let Xt be the wealth of the investor at the beginning of period t、and i = 1’ 2， 

...，n, be the amount invested in the zth risky asset at the beginning of period t. 
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Then the amount invested in the 0th risky asset at the beginning of the period 

t is equal to Xt — Y^^^i 以！. 

The investor is seeking a best investment policy, u j = ((i/J)•’（w?)*’ …，�[)• ) ' 

for i = 0, 1, 2, . . T - 1, to attain the optimality of the following multi-period 

mean-variance portfolio selection model: 

{MV) min Var{xT\xo) + A£'(x7'|a:o) 

s.t. Xf+i = + P ; u t , 《 二 0 ’ 1 ’ . . . ’ 了 一 1 ’ (4.1) 

Xo is given, 

where ‘ 

Pt = ...’ pry = ((e! 一 e?)，(ef 一 e?)，...’ (ê  一 e«))' 

satisfies 

E((e?)2) - E(e?P; )E-HPtP; )^ (e?Pt) > 0, Vt = 0,1’ - 1’ 

o 

due to the positive definiteness assumption of the covariance matrix of et for all t. 

Note that A represents the overall trade-off between two objectives of maximizing 

• the expected return and minimizing the risk. Changing A from 0 to —oo yields 

the entire mean-variance efficient frontier. 

Problem {MV) is nonseparable in sense of dynamic programming. Li and 

Ng (2000) [35] solve problem [MV) analytically using an embedding scheme and 

derive the following pre-committed optimal policy for {MV): 

ulix,) = + \ (60工0 - 尝 ) ( ^ ) 

t = 0 ,1 , . . . - 1, 

• (4.2) 
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where the parameters are defined as 

Af 二 — > 0’ 

T - l T - l / T - l \ T - l 

k=t k-t \j=/c+l / k=t 

⑷ ， 6 � 二 " ^ = 1 ^ ， 

( . 2 (u x2 、Ttn - —/i? 

Ct = 丁t —⑷-(it(bt) =) 1 _ 2… . 

Note that H/tee 八 ^̂  assumed to be equal to 1 and A is assumed to be 

equal to 0 for any function fk-

l ^ r a given overall tfade-off between mean and variance, A, the expected 

value and the variance of the optimal terminal wealth are given, respectively, in 

Li and Ng (2000) [35] as 

E{XT\XQ) = (/Xo + 60*^0)2:0 - 7 ^ ’ Var(xT\xo) = —^ + coxg. 

Zao 4ao 

Furthermore, Li and Ng (2000) [35] give the minimum variance set of (MV) 

explicitly as follows, 

Var(xT\xo) 二 与（E(:rr|:co) — (/xo + + CQ^- (4.3) 

f 

All the mean-variance pairs on the minimum variance set are called bound-

ary mean-vanance pairs in this chapter.、It is easy to verify that, when 

E(xt\xo) > {fiQ + bQi/o)xo, the mean-variance pair is efficient. We denote all 

policies corresponding to the boundary mean-variance pairs on the minimum 

variance set of problem {MV) boundary policies、which could be either efficient 

or inefficient. 

R e m a r k 4.1. Parameter A\ may be negative. 
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Examp le 4.1. Consider an instance with an expected return vector E(et )— 

(1.162，18.246,4.228)' and a positive definite covariance matrix 

< 1.46 1.87 1.45、 

Cov[Gt) = 1.87 8.54 1.04、 . 

、1.45 1.04 2.89》 

We can calculate 

E{P[) = E{e\ - e?，e? - e?)' = (17.0840,3.0660/, 

“ ( { e i r 一 + (e?)2 - 一 + (e?)^ \ 

' ' " V e;e? — e?e； - + (e?” - 2e?e? + ⑷ 尸 ) 

,298.1231 51.5595、 

、51.5595 10.8504 ‘ 

E(e?Pt) = E(eje? - (e?)2’e?e? - (e?)^)' = (20.2616，3.5527)'. 

.We thus have Bt = 0.9854 > 0，A} = -0.0019 < 0，and Af = 1.4320 > 0. 

L e m m a 4.1. For any 0 < t <T - the parameters Aj, Af and Bt satisfy 

Af{l-Bt)>{Alf. (4.4) 

Proof: Let 

, , , ( V^ar(e?) E(e?Pi) - E{e',)E{P[) 
M = 

E(e?Pt) — £;(e?)£;(Pt) ^(PtP；) 一 E{P,)E{P[)； 

Since 

0 . . . 0 \ , 1 -1 . . . - 1 、 

- 1 1 . . . 0 0 1 . . . 0 
M = Cov{et) ， 

• • • • • » • • • • • • • • • • • • • • • 

、-1 0 … 1 y \ 0 0 . . . 1 ^ 

M is positive definite. 
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Due to the positiveness of E-'{PtP[) and £;(PtP；) 一 E{Pt)E{P[), 

( 1 0 \ / 1 0 \ ( V^ar(e?) 、 
M = ^ 0, 

\ 0 [ E _ i ( P t P ; ) l 去 ) \ 0 / V Q Q / 

(4.5) 

( 1 E{P[) \ 

V ^ (P t ) ^(PtP't) / 

(4.6) 

where 

二 - 卵 ? ) E ( P ; ) ’ 

Applying Sherman-Morrison formula gives rise 

As the two matrices in (4.5) and (4.6) are positive definite, the product of 

their determinants is positive, i.e., 

(l-Bt)iVar(e^)-(/Q-'q) 

= ( 1 - Bt) Varie"；) -qg f ^ t 

， = ( 1 - B,)Var(e^) 一 q'q + q'qB, - p ' t ) E 

> 0. (4.7) 

The last two terms in the above expression can also be rewritten as, 

q'qB, - 丑(P;)丑-i(PtP't)P 

‘ -[E(P[)E-\P,P[)E{e',P,)]' -

=M? - — (41 - m 
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Finally, from Eqs. (4.7) and (4.8), we have 

- Bt) - (Alf 

- + 2E(e«)E(P;)£;-HPtP;)E(e°Pt) 一 M丨 一 ^(e?))' 

= ( 1 一 B,)Var{e',) - q'q + [A] - - [A\ -

> 0. 

• 

Lemma 4.2. 

0 < i/t < < 7：^ and fi】< Tt(l - 2vt). 

Proof: First, 

“。=RFRRI 響 ) … ' = 宏 ( F T ' 響 H>。. 

Second, based on Lemma 4.1， 

\-2vt 

T - l / T - l (Al\2\ T-l T - l T - l 

k=t \j=k+l j ) k=t J=t 

M ? = n (冲 2 < n ( 4 ) ( i - B,)=T, n ( i - 场 ) <『 “ i - 21.0. 
j=t j=t j=t 

• 

4.3. Induced Stage Trade-offs and Preference 

Switching 

Substituting the pre-committed optimal policy given in (4.2) into the wealth 

dynamics described in (4.1)’ performing some algebraic operations and taking 
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the expected value give rise the following as shown in Li and Ng (2000) [35], 

Solving the above equation recursively yields the following expression of the 

conditional expectation, 

= 頃 + + ( “ — 令 ) ] 

= (4.9) 
Mt \ ZclqJ \ fM J 

L e m m a 4 .3 . The pre-committed optimal mean-variance policy given in (4.2) 

satisfies time consistency only when its wealth process follows a particular path, 

Proof: Consider the following truncated multi-period mean-variance portfolio 

selection problem from time k to T with a given Xk and the same trade-off 

parameter A as given in (MV): 

i ^ K - r ) min Var{xT\xk) + XE{xT\xk) 

s.t. xt+i = e^tXt + P'tUt, t = k，k: + 1,…、T — 1’ 

Xk is given. 

Similar to the solution of (MV), the optimal policy of at period t can 

be derived as 

、！ = — E - i ( p j n ) 附 Pt)而 + 1 ( � A - 尝 ) ( ^ ) £ r i (P tP ; )E (P t ) ’ 

t = (4.10) 

For the pre-committed optimal mean-variance policy to be time consistent, the 

policies in (4.2) and (4.10) must be the same due to the uniqueness of the solution. 
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Note that u； is equal to u^"^ only when 

bo Ai/o , Xi/k Mo I f , A"o、f t̂ o -
Xk = — 一 ； ； ； 7 ： r ~ = — + OqXo - - ~ I I 1 ’ 

bk 2aobk 2akbk fM V 2ao 乂乂 乂 

which is exactly the expectation of XK conditional on XQ under the pre-committed 

optimal mean-variance policy. • 

Now we consider the following inverse optimization problem: For 0 < k < 

T-l, find a trade-ofT parameter A a： between E{xT\xk) and Var{xT\xk) such that 

the pre-committed optimal mean-variance policy uJ(Xi), t = k,k + I," - , T - 1, 

specified in (4.2) solves 

(MV^fciV) min Var(xT\xk) + XkE{xT\xk) 

s.t. xt+i = ejxt + P'tUt，t = kyk + l, ...,T - 1’ 

Xk is given. 

When /ifc + 0，we define the following threshold x\ at stage k\ 

= (4.11) 

\ 2ao/ 

Proposit ion 4.1. The pre-committed truncated optimal mean-variance policy at 

Xt, u:(xt)At = + 1) specified in (4.2)’ solves with Xk 

satisfying 

X, = + ^ (^-boxo + . (4.12) 

We then have i) \k < 0 when /x/t > 0 and Xk < x j , ii) Xk < 0 when /x/t < 0 

and Xk > x j , iii) Xk 二 0 when Xk = x j , iv) Xk > 0 when /x^ > 0 and Xk > x\, 

and vj Xk > 0 when /x*： < 0 and Xk < x j . Furthermore, when fjLk = 0, we have 

\j <0{j< k). 

Proof: Similar to the solution to {MV), the optimal policy of (MV^^j^) at 、 
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stage k is given by 

= + 臺 ( b … — 樂 ) ( ^ ) E - i ( P t P ' t ) — 0， 

t "— k ̂  k 1，. ••’ T* 1 • 

Equalizing the policy above and the policy in (4.2) yields the relationship between 

A A： and A given in (4.12). As 

、 1 

0 < î it < î o < 2' 

we have a^ > 0. Since = 0 implies fij = 0 (j < k) and bj = Q (j < k)、(4.12) 

in such a case reduces to 

aoUk 

Other conclusions in the proposition can be obtained directly from the linear 

relationship between Xk and Xk- 口 

R e m a r k 4.2. We cannot ensure Xk, the trade-off induced by the pre-committed 

optimal policy at state x^, to be nonpositive all the stages under many return 

‘ distribution assumptions, for example, under the assumption of a normal distri-

bution for the returns. Thus, the pre-committed optimal mean-vanance policy 

ul{xk) specified in (4^2) is, in general, not time consistent in efficiency. 

It is interesting to note from (4.12) that the stage trade-off Xk at state Xk 

induced by the pre-committed optimal mean-variance policy is a linear function 

of both the initial trade-ofF A and the current wealth Xk. Figures 4.1(a), 4.1(b) 

and 4.1(c) illustrate the linear relationship between Xk and Xk for situations with 

^ different /i^s. The intersection of the straight line of Xk and the horizontal line 

is the threshold xJ. 

0 

\ 
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、 gl̂ /clxol 、- ^ 

； t ？ ^ 0 X. 

A - - - "yT - - • A 

. z \ 
(a) f i k > 0 (b) M/c < 0 (c)/Xfc = 0 

Figure 4.1: Relationship between induced trade-ofF A^ and wealth Xk 

4.4. Pseudo Efficiency and Policies Better 

than the Pre-committed Opt imal 

Mean-Variance Policy 

4.4.1. Achievement of the same mean-variance pair by 
» 

lower funding level 

Let us investigate the 了-period mean-variance portfolio selection problem {MV), 

of which the pre-committed optimal policy is given in (4.2). We denote 

- ( b n X n — ^ ^ I by risk attitude parameter, r _ i , and define 
2 V 2ao ) 

— T ‘ 

To 

r _ i , i f Xq < X；, 

r , 2/ioro(xo - xg) if T O 于、 
I 1 -1 H o i~2 ’ “工0〉工0 ) 
I 2[/oTo + /ig 

We now propose the following revised portfolio policy for problem {MV). 

J 
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Revised Policy 4.1. 

uS(io) = -E-\PoP'ome'oPo)xo + r 。 ( ^ ) E-'(PoP'o)^(Po), 

u:(x,) = + ro E-\P,P[)E(Pt). 

\ 1 / 
t = 1, •• , T - 1, 

where the wealth dynamics still follows (4-1) with initial wealth XQ and 

Xo, • if 2：0 < xj, 

士0 H 2Mo(/ioXo + 2i.or_i) 
-Xo H ； 2 , It :co〉工0’ 

, 2I/oTO + Mo 

IS termed the revised lower funding level. 

When Xo > xj, the amount of money taken out termed free cash flow, XQ-XQ, 

is positive. 

Proposit ion 4.2. Revised policy achieves the same mean-variaTice pair as 

does the pre-committed optimal mean-variance policy.-

Proof: When XQ < x；, the conclusion follows. When XQ > x；, from (4.9), the 

mean-variance pair attained by the pre-committed optimal policy is given by 

E{XT\XO) = —Xo + 一 吟 = M o x o + 
\ Mr J^T 

‘ • ‘ Var{xT\xo) = ^(E(xt\xo) - (/io + + CqXQ, 

and the mean-variance pair achieved by the revised policy and the revised lower 
s 

funding level is given by 

、 E{XT\XO) = — IO + 21^0 外 — = ；XOXO + 
Mt MT 

. Var{xT\xo) = ^{E[XT\XQ) - (/xq + 知 + CoXq. 
"0 

Equalizing E(xtIxo) and £'(xt|xo) and equalizing Var(xTl^o) and Var(xr | io) 

simultaneously yield 
£ 

fjioXQ + 2r_ii/o = fJioio + 2roi/o> 

I ^{E{xt\xq) - (/io + 60̂ ))工0)2 + Coxl = ^[E{xt\xo) - (Mo + + Coio-
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Substituting the first equation into second equation gives rise, 

f � + 士 鄉 ( 鄉 A + 全o + C 二 0’ 

v 21/0/ 1^0 

where 

C 二 匆 ( 解 0 + 严 W -仅o(2r_i - bo,0)2 - coxl 

Solving the above quadratic equations yields two roots, 

\ , • ‘ J、 , ^ . 2fio(fj,oXo + 2f/or-i) 
Xo = Xo (rejected) and XQ = -XQ -f 之 /̂。^。+ /xg • 

We further have 

r r /io fry 2/io(AtoXo + 2r-i"o)、_ p . 2/ioro(xo - x；) 

r。= ( 。 2t.oro + f i l ) 2 冲 + • 

Note that the condition, XQ > xj, holds if and only if 

2/io(W^:o + 2r一 i"o) 乂 
-Xo + o ; 2 < 

which implies that (XQ — Xo)’ the free cash flow, is positive. 口 

The implication of the above proposition is clear. When condition XQ > XQ 

holds, a revised funding level which is strictly less than XQ still enables you 

to achieve the same mean-variance pair which you are aiming for, while you 

can use the released "extra" money, free cash flow, to catch other irrvestment 

opportunities. Note further that the threshold xj depends on investor's trade-off 

parameter A. The smaller the absolute value A, the larger degree of risk aversion, 

and a higher chance that XQ > XQ holds. 

Example 4.2. Let us consider an instance with E{ex,) 二（1.162，1.246,1.228)'， 

t = 0，1, and 

(1.46 1.87 1.45〉 

C(yv{et) = 1.87 8.54 1.04 ， ^ = 0,1. 

^ 1.45 1.04 2.89 y ‘ 
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We can calculate 

， E ( P [ ) = E(el - - e?/ = (0.0840,0.0660)', t = 0,1, 

二 “ (e;)2 - 2e?e； + (e?)^ - e?e； 一 e^ef + (e?)^ \ 

( 6 . 2 6 7 1 -0.8145 \ 
， ^ = 0,1, 

-0.8145 1.4544 y 、 

E(e^Pt) = E(ey, - (e?)2，e?e? - (e?)^)' = (0.5076，0.0667)'，^ = 0,1. 

Furthermore we have Bt = 0.0055 > 0，Al = 1.1476 > 0, /I? = 2.7561 > 0， 

{t = 0,1), /io = 1.3171’ To = 7.5960, a。= 0.0020, and 6o = 2.6557. The 

condition XQ > XQ holds when 

xo > -1.3098A. 

We use Figure 4.2 to further explain our derived result. When the condition, 

Xo > X；, is satisfied, a given efficient mean-variance pair {E{XT\XQ), Var(XT\XO)) 

can be also produced by the upper branch of another minimum variance*curve 

corresponding to a smaller funding level io. Note that when the two efficient 

frontiers cross each other, the associated trade-ofF parameters must be different. 

More specifically, risk attitude parameter FQ corresponding to the revised policy 

is larger than the original risk attitude parameter r _ i (in situations with positive 

It becomes clear now that, for a given initial wealth XQ > 0，if the absolute 

value of trade-off parameter A is large enough, the condition of XQ > XQ will not 

be satisfied. Note that when /xq = 0，the condition of taking free cash flow out 
\ _ r_i/io 

of the market at time 0 always holds, as evidenced from Xq > x； = = 0. 
To 

Propos i t ion 4.3. For a given positive initial wealth XQ, condition XQ > XQ does 

not hold when 

f < M z i L z ^ , , < 0, i f , , > 0, 

X _ J ~ Mo 

> ^ ( t i L i M , , > 0 , if 鄉 < 0 . 、 
. 一 Mo 
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牟 

： ^ 〉 

- • 

Figure 4.2: Minimum variance sets corresponding to XQ and XQ 

�、、 
Proof: It is the direct conclusion with the help of /ig < to(1 - 口 

、•— •‘ 

The above proposition reveals a financial finding: In a market with /io > 0, 

you'd better to look for a portfolio with relatively high risk (relatively large 

variance), if you have to invest only in the risky assets. Otherwise, you can 

use a lower wealth level to achieve the same efficient mean-variance pair while 

increasing the absolute value of A, your initial trade-off parameter. 

4.4.2. Pseudo Efficiency (Type 1) and the First Type of 

Revised Policy 

Based on the discussion in Section 4.3’ the truncated pre-committed optimal 

mean-variance policy at the beginning of period s may be efficient or inefficient, 

although it must be a boundary policy. Now let us consider the truncated mean-
r 

'I*. 

I • 
« 
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i 

variance portfolio selection starting from time (5 — 1), 

(MV (s_ i )_ t ) min V^ar(:rT I ) + 丨:Ts-i) 

s.t. = ejxf + P'tUt, f 二 s - 1，s’...，了 - 1， 

Xs-i is given, 

of which the optimal policy is given by 

t = s - I (4.13) 

、 1 ( A U 
where risk attitude parameter 1 is given by - I 6̂ -1X5-1 - — - I- At the 

time when the investor arrives at the beginning of period 5, the truncated optimal 

pplicy, (二 s ’ + 1’ • • • ’ 了 — 1’ specified in (4.13), leads to the following 
t 

conditional mean and variance of the terminal wealth, which is a boundary mean-

variance pair for {MVS-T)^ 

E{XT\XS) = ^isXs + Var{xT\xs) = ^{E{XT\XS) - {FIS + Ms)：^,” + c.x^ 
"s 

(4.14)' 

Definition 4.1. For a given wealth level Xs at period s, if an efficient mean-

variance pair for the truncated (T - s)-period problem, (MVS-T), can be also 

generated or is even dominated by another (T 一 s)-period mean-variance pair 

generated by another (T - s)-period boundary policy associated with a strictly 

less wealth l,evel Xg, i.e., 

(E(XT\XS),-Var{xT\xs)) :< (E(XT\XS). -\/ar(XT|is))，with I , < a:,, (4.15) 

the given {T - s)-period mean-variance pair is termed pseudo efficient (type 

1) . • 

Proposition 4.4. The boundary mean-variance pair specified in (4-14) can be 

produced by a lower wealth level, is, if and only if 

「s-l"s 
工s〉 • 

Ts 
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Furthermore, if the boundary mean-variance pair is efficient, it is pseudo efficient 

(type 1). 

Proof: The boundary mean-variance pair corresponding to a new wealth level, 

is, is given by 

E{xt\XS) = fisis + 2i/,,rs， 

‘ Var{xT\xs) = ^(E(xt\xs) - (fis + + 

where V̂  is a revised risk attitude parameter associated with Xg. Equalizing the 

above mean-variance pair and the mean-variance pair specified in (4.14) yield 

^sXs + = fj'sis + 21"八 

‘^ ( E { x r \ x s ) - {fis + bsiM] + c.x^ 二 一 (MS + + c.x'f. 

Solving the above quadratic equations yields two roots, 

Xs = Xg (rejected) and Xs = —Xg H 5 • 
2i^STS + Ms 

Note that the condition, x^ > 厂‘;广’ holds if and only if 

-XS 4- ； 2 < 工S-
^l^sTs + Ml 

• 

We now propose a general T-period revised portfolio policy, u【（ifc)’ k = 

0’.. •，了 一 1, for the T-period problem (MV). 
% 
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Revised Policy 4.2. 

= 十 r , ( S ) E-nPkP'J^(Pic)； (4.16) 

^ ik, if 元k < Xfc, 

无 0 = 3：0 

( 4 . 1 8 ) 

Ffc-i， if Xk < xl, 

… 2 … 必 , “ 〉 〜 

口 = K “ - 樂 ） 

二 r v ^ (4.20) 
Tk 

Note that both risk attitude parameter and the wealth threshold x j {k = 

0’ 1，... ’T - 1) in Revised Policy 4.2 are path-dependent. More specifically, xj 

in Revised Policy 4.2 is different from threshold xj discussed in Section 3, as xj 

is a path-dependent threshold for a-wealth process in which cash withdrawals 

may occur when Xk > xj, i.e., when pseudo efficiency (type 1) appears. One 

major feature of Revised policy 4.2 is that, when the wealth level Xk > xj, we 
_ _ _ 

withdraw a positive free cash flow, Xk — Xk = — 元 l ) ’ out of the 
+ Mit 

market and apply a different mean-variance policy to Xk, the remaining amount 

. ‘ 

in the market. 

Theorem 4.1. Revised policy 4-2 achieves the same mean-variance pair as does 

the pre-committed optimal mean-variance policy of the T-period problem {MV), 

while having possibility to take positive free cash flow stream, {xjt — x^}, out of 

the market during the investment process. 

Proof: The case with T = 1 has been already proved in Proposition 4.2. We 

assume that the theorem is true for T = /c with k>\. We now proceed to prove 

that the theorem is also true for T = A: + 1. 
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Proposition 4.2 also proves that 

Var(xk+i\xo)\a- = Var(xk+\\xo)\u', 

where u* is the revised policy specified in Revised Policy 4.1. Then at time 1, 

with the wealth level Xu the policy i i :之 = 1 , . . . ，fc，achieves 

J 

which is a fc-period boundary mean-variance pair with initial wealth X\ and 

trade-ofF Ai_ = -(2ro — biXi). 

Pi 一 一 

On the other hand, (E(xfc-j-i|xi)|u«, V'ar(x/t+i|xi)|uO can be achieved by a 

it-period revised policy with initial wealth Xi = Xi and parameter = r!一 = 

^ ^biXi 一 P 广 - ) f r o m the assumption of the induction, i.e., 

We combine the /c-period revised policy and the time 0 policy to form our 

(k + l)-period revised policy. We demonstrate now the conclusion of reaching 

the same mean-variance pair by presenting the following facts: 

E(xk+\\xo)\u' 

=£^(:rjt+i|io)|QS，『 

= j E{xk+i\xi)\ii'f{xi)dxi 
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yar(xA:+i|xo)|u-

=E{Var{xk+i\xi)\xo)\ui,u' + V'ar(£;(xit+i|xi)|xo)|us.Q-

= J [Kar(xfc+i|xi)|Q. + (£;(xjt+i|xi)|Q. - / (无无 i 

= j [Uar(xfc+i|xi)|Q. + — ^(xfc+i|XO)|Q-,Q.f{Xi)dxi 

=Var{xk+\\xQ)\{i', 

where /(xi ) is the probability density function of random variable Xi, which 

depends on the initial wealth io and period-O policy uj(io)- • 

Our newly proposed Revised policy 4.2 is better than the pre-committed op-

timal mean-variance policy in the sense while the two achieve the same mean and 

variance of the terminal wealth, the revised policy enables investors to receive 

additional (nonnegative) free cash flow stream during the investment process. 

The scheme of Revised policy 4.2 can be explained by Figure 4.3. If the con-

ditional boundary mean-variance pair attained by the truncated pre-committed 

optimal policy can be produced by lower wealth level, we take positive free cash 

flow out of the market and apply the revised policy to achieve the same condi-

tional boundary mean-variance pair. In this revised policy, we not only relax the 

self-financing assumption like the revised policy introduced in a market with a 

riskless asset (see Chapter 3), but also increase the feasible region of investment 

policy by allowing a no-borrowing riskless asset. 

4.4.3. Achievement of better total mean-variance pair 

Based on the discussion in Section 4.4.1，in certain situations, we'd better invest 

lower initial wealth in the risky assets and use the extra money in a free cash flow 

for other investment opportunity, or just save the free cash flow in the pocket. 

Tiien, the total wealth from both the risky assets and in the free cash flow 
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I. 

,广{E(iT\±.).VVar{xT\x.)) 0 .�-..-� ^^ � 

yVar{ir|x.) 

(a) ^ k>0 (b) /Ufc < 0 

Figure 4.3: The scheme of first revised policy 

stream together forms the total wealth at the terminal time. Let we consider 

now a revised T-period mean-variance portfolio selection problem {RMV) by 

taking into the consideration the free cash flow at time 0, 

[RMV) min Var[xT + { x q 一 + AE[x t + {xq - yo)\xo 

s.t. rrt+i =e?:Et + P'tUt，《二1，...，了—1’ （4.21) 

Xi = e^yo + P q U o , 

yo < 工0. 

Remark 4.3. If we consider the free cash flow account as a riskless asset with 

total return of 1 and no borrowing, the concept behind dynamic mean-variance 

portfolio selection model {RMV) is quite similar to the static mean-variance 

portfolio selection model with no riskless borrowing proposed in Black (1972) /7/. 
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An equivalent formulation of {RMV) is given as follows, 

{RMV(e)) min Var(xT + Xq - yo\xo) 

s.t. E(XT + Xo - yo|3:o) = c, (4.22) 

Xt+\ = + P'tUt’ ^ = 1 , . , T - 1, 

xi 二 egl/o + PqUo, 

2/0 < 工 0 . 

The minimum variance set of the total wealth can be identified by solving {RMV) 

or (RMV{e)) with A or e changing from —oo to +oo. 

We denote - 6oXo — by risk attitude parameter f—i and define 
2 \ 2ao ) 

‘_ 一 

_ r_i, if ( t o - Mo)3:o < ( m o - 1 + 2t/o)r_i, 

I 2I/O(to 一 1) + (MO — 1)2 

We now propose the following revised portfolio policy. 

Revised Policy 4.3. 

ulixo) = -B-'(PoP'omeSPo)io + fo f — ) ^-^(PoPo)^(Po), 

V'̂ t+i / 

V^t+i / 

t = 1，..-，了一 1’ 

where 
r — 

Xo, if {tq — fJ'o)xo < (/io - 1 -H 2i/o)r-i, 

无0 = O^o 一 1 + 2 , 1 ) 二 约 r _ i ] ’ if (TO 一 鄉 )朴〉（狗 _ 1 + • 

, 2i/O(To - 1) -f (/XO - 1)2 

is the revised initial funding level in the risky assets. 

Theorem 4.2. Revised policy 4.3 is optimal to (RMV{e)) with t = fiQXo + 

2uoT-i. 
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Proof: Problem {RMV{e)) is equivalent to 

min F(yo), 
{！/0<Xo} 

where F{yo) is the optimal objective value of following T-period self-financing 

mean-variance portfolio selection problem with initial wealth i/o. 

{MV{e 一 (xo 一 yo))) min Varixrlyo) 

s.t. E(xT\yo) = e - (xo - yo), 

xt+i = + P'tUt, t = 1’. . . ’T - 1， 

XL = CQVO + Pq U o . 

The mean-variance pair, (E(xo|2/o), Var{xT\yo)), must lie on the minimum vari-

ance set. Thus, 

F(yo) = Var(xT\yo) 

=~{E{xT\yo) - (Mo + + Co2/o 

= ^ ( e - (xo - yo) - (Mo + 知"0)2/0)2 + CQVI 

— 2 i / o ( t o 一 1) + (/ip - 1)2 2 _ (Mo - 1 -f 2i/o)[(/io - l)xo + 2i/or-i] +。。 

where Co is a constant not depending on yo. 

The best funding level invested in the risky asset, i。，is given by 

Xo = arg min {F(yo)}. 
{l/o<xo} 

Note XQ < Xo holds if and only if (tq - > (/xq - 1 -H 2I/O)T-i. 

The optimal policy for the best funding level can be further got by identifying 

the risk attitude parameter, fo. When (tq - /xo)工0〉（Mo 一 1 + 2i/o)f-i, with the 

help of (4.9), we have 

EIXRLYO) = E - {XQ- XQ) 

FLOXO + 2UOTO = IJLQXQ + 2i/of_i - {XQ 一 To), 
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furthermore, 

、 
p _ ^ (/ip - l)(xo - Xq) — (丁0 - M0)l(At0 - 1)工0 + 2"0广-1 

* 

• 

Noticing the fact of e = E(XT\XO)\U* = fioXo + 2"oF-i’ we have the following 

corollary. 

Corollary 4.1. While revised policy 4.3 solves {RMV(t)) with t = E{XT\XO)\U', 

i.e, it achieves the same total mean as does the pre-committed optimal mean-

• variance policy, it attains a no bigger total variance than the pre-committed op-

timal mean-variance policy. 

Since both TQ < /x。’ TQ = /io and TQ > …could happen, we are unable to 

derive a well-defined threshold for the wealth process as we do in revised policy 

4.2. When the condition of (r。- ^io)xo〉(/x。一 1 + 2i/o)f-i is satisfied, a given 

efficient mean-variance pair {E(xT\xQ),Var{xT\xo)) of (MV) will be dominated 

by a boundary mean-variance pair of (RMV), which possesses the same mean 

as the given efficient mean-variance pair. 

When /io = 1 - 2z/o, we have TQ > fio due to To(1 - 2i/o) > Mo- Thus, the 

condition of (tq - fMo)xo〉（/xo 一 1 十 2i/o)r_i always holds in such a situation for 

positive initial wealth level (XQ > 0). 

Proposit ion 4.5. For a given positive initial wealth level XQ, condition (tq -

fio)xo�（/io — 1 + 2i/o)r_i does not hold when 

- \ _ , 一 uo - 1 + 2i/o 
〉 2 ( / 1 - 、 ( 1 - , 。 ) ) 工 。 〉 0 ， , , , < 1 - 2 . 0 . 

, /Xo — 1 + 

Proof: This conclusion follows due to /ig < ro(l - 口 

» 
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4.4.4. Pseudo Efficiency (Type 2) and the Second Type 

of Revised Policy 
争 

We now introduce a definition of "pseudo efficiency (type 2)”. Let us consider 

the revised truncated mean-variance portfolio selection problem, 

‘ (RMVS-T(€)) min Var(xT^ + x̂  - ？工s) 

s.t. E(xt -h XS - Vsl̂ s) = 
4 

Xt+i = ê X̂t + P'tUt, « = s + 1，…’T 一 1， 

Xs•^-l = + P'sUs, 

Vs —工s-
/ 

y 

Definition 4.2. For a given wealth level Xg at period s, if an efficient mean-

variance pair for the truncated (T 一 s)-period problem, (MVS-T), IS not pseudo 

efficient (type 1) and is, however, dominated by a total mean-variance pair of 

problem {RMVa-r), i.e., 、、； • 

{^(xtIxs),-Var{xT\Xs)) < {E(xt + - ys\xs), -Var{xT + - y l̂工s))’ 

with ys < Xs, . 

. (4.23) 

then the given (T - s)-period mean-variance pair associated mth wealth Xs is 

called pseudo efficient (type 2). 

Remark 4.4. It is easy to see that any pseudo efficient (type 1) mean-variance 

pair must satisfy (4.23). 

Proposition 4.6. A boundary {T - s)-period mean-variance pair 

E(XT\XS) = FISXS + Var{xT\xs) = ^{E{XT\XS) - {^IS + + 

, with nsk attitude parameter and wealth level Xs is dominated by another 

boundary total mean-variance pair of {RMVS-T) with the same mean, if and 

only if 

(TS 一 fJLs)Xs〉（/i广 1 + 
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Furthermore, if this boundary mean-variance pair is efficient but not pseudo ef-

ficient (type 1), it must be pseudo efficient (type 2). 
� 

Proof: Similar to the proof of Theorem 4.2, we solve (RMV ,-T(^)) with 

c = fXs^S + 肩一 1. (RMVS-T{^)) is equivalent to 

’ min F(ys), 

where F{ys) is the optimal objective value of following (T - 5)-period self-

financing mean-variance portfolio selection problem with initial wealth 2/5, 

(MV；—T(e - {xs - Vs))) min Varixrlys) 

s.t. EixrlVs) ==e-(xs-ys)y 

xt+i = e^xt + P'tUt, i = 5 4- 1, . . . - 1, 

2:5+1 = e% + PgUs. 

The mean-variance pair, (Eixrlys), VO''r{xT\ys))y must lie on the minimum vari-

ance set. Thus, 

F{ys) = Var(xT\ys) 

= ^ ( E ( x T \ y s ) - ("，+ bsiys)ysy + Csvl 
l^s ‘ , 

2Î s{Ts - 1) + (Ms — 1)2 2 (Ms - 1 -H — + 

— Us ys 卞 Us， 

i 

where C, is a constant not depending on ys. The best funding level invested in 

the risky asset at the beginning of period 5, is given by 

Xs = axg min {F{ys)}. � 

Note that < x^ holds if and only if (r^ - aO工s > (/x, - 1 + 口 

We now propose a general T-period revised portfolio policy, Uk(xfc), k = 

0，…’ r 一 1’ for the T-perfod problem (MV). 
I 

f> 
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Revised Policy 4.4. 

= + r , (4.24) 
\ T A c + 1 / 

Xk, if (Tk 一 < - 1 + 2i/jt)f\一 1, 

叫 二 ) 二 产 d ’ If ( … ) i p O ^ 广 一 ) f “ 
I 2口kijk — 1) + (Mfc - 1 尸 

(4.25) 

io =工0 

• _ ffc-i， if (jk - < (Mic - 1 + 2"fc)ffc_i’ 

= ( T 「 / f�� ， +� 丨’ if (r. - 〉 广 1 + 2 ⑷ i V i ’ 
, - 1) + (^k - 1)2 

(4,27) 

= 2 ( “ - ， 

Note that risk attitude parameter Tk is path-dependent. One major feature 

of tMs type of revised policy is that, when the condition (ta： - > (/i)t - 1 + 

2i/k)Tk-i holds, we place a positive free cash flow into the pocket, 

A 一 - . 2i/k{rk - fJ'k)xk + - 1 + 2i/k)rk-i 
八工* = … ‘ 二 - 1) + (/X. - 1)2 ’ 

and apply the revised mean-variance policy for the remaining amount in the 

market, Xk-

Theorem 4.3. Revised policy 4-4 achieves the same total mean as the pre-

commitied optimal mean-vanance policy of the T-period problem (MV) does, 

while having smaller total variance than the pre-committed optimal policy does, 

i.e., 
T - l 

E{XT -f y ^ AXJ|xo)|Q« = E{XT\xo)\U*, , 
j=o 

T-l 

Var{xT -f y ^ Axj|xo)|Q. < Var{xT\xo)\u». 
. j=0 
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Proof: The case with = 1 has been already proved in Proposition 4.1. We 

assume that the theorem is true for T = /c with fc > 1. We now proceed to prove 

that the theorem is also true for T = /c + 1. 

As the following is true from Proposition 4.1, 

E(xk-i-i + Axo|xo)|u- = E{xk^\\xo)\u', 

Var(xk-i-\ + Axo|a:o)|u- < Var(2:/t+i|xo)|u', 

then at time 1’ with the wealth level Xi, the policy t = 1’ …，k、yields 

which is the fc-period boundary mean-variance pair with initial wealth Xi and 

trade-off Ai_ = (2ro 一 biXi). 

On the other- hand, (£;{xfc+i|ii)|u-, is dominated by a k-

period second revised policy with initial wealth io 二 i i and parameter F—i = 

f0 二 i ftjXi - … f r o m the assumption of the induction, i.e., 
2 \ 2ai ) 

k , 

j=i 

k 
Var{xk+i -f AxjIXOIQ. < V'ar(xfc+i|ii)|u--

i=i 

The /c-period revised policy and the time-0 policy are then combined to form 

our (k + l)-period revised policy. The conclusion follows as evidenced from the 

following two relationships, 

= E { x k + i + Axo|xo)|u' 

= J E{xk^\xi)\ii^f{xi)dxi -f Axo 

r k 

J j=i 

k 

, j = 0 



m 
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/ 

丨工 o)|ii- • 

>Var(xk+\ + Axo|xo)|u* 

= Var{E(xk+i + Axo|xi)|xo)|u- + E(Var(xk+i 十 Axo|xi)|xo)|u-

= J (E{xk+i + Axo|xi)|u- — E{xk+i + Axo|xo)|Q.)V(ii)f^ii 

+ j Var(xk+i -H Axo|xi)|u-/(xi)cixi 

> / + - E{xk^i + ^Xo\xo)\u'?f(xi)dxi 
J 3=0 

r ^ 
+ / Var(xk+i + ^ Axj|ii)|(i./(xi)c^xi 

J j=0 
k 

= Var(xk+i + y ^ Axj|xq)|Q>, 

j=0 

where f{xi) is the probability density function of random variable Xi, which 

depends on the initial wealth XQ and period-0 policy uj(xo). 口 

The rational of Revised policy 4.4 can be better explained by Figure 4.4. 

If the conditional boundary mean-variance pair attained by the truncated pre-

committed optimal policy at time k is dominated by the boundary total mean-

variance pair with the same mean, we place a positive free cash flow into the 

pocket and apply the boundary policy of (RMYk-r)- In Revised policy 4.4, 

we actually introduce a free cash flow account into the investment choice and 

consider the wealth in risky assets and free cash flow account as a whole. Different 

from previous revised policies, we do not relax self-financing assumption, while 

increasing the investment flexibility. 

Example 4.3. We consider Example 1 in Li and Ng (2000) [35] again, in which 

there exist three risky assets, A, B, and C with their expected return vector given 

by E{etME(ef), E(ef)，E(ef))' = (1.162，1.246，1.228)'’ t = 0,1,2,3’ and their 
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“ < y V a r ( i r l i J ) 

。 ‘ 、 \ , 0 ^ > 

(a) Hk> I - 2uk (b) 1 - > Mfc > 0 

Figure 4.4: Illustration of Revised policy 4.4 

covariance given by 

J ( 0.0146 0.0187 0.0145、 

Cov{et) = 0.0187 0.0854 0.0104 , t = 0,1,2,3. 

、0.0145 0.0104 0.0289 j 

Taking asset A as the reference asset gives rise 

E(Pt) 二 - e广’ ef — ef)' = (0.084,0.066/, t 二 0，1,2,3, 

p 二 “ (ef )2 — 2efef + (e 广尸 efef 一 efef - e 广 ef + (e f )^、 

[ e f e f - efe^ - efel'+ (ef)' ( e f ” _ 2e "「+ (e。2 j 

( 0 . 0 6 9 7 一 0 . 0 0 2 7 \ -
= ， ^ = 0 , 1 , 2 , 3 , 

y -0.0027 0.0189 y 

E{etV[) = {E { e f e f ) - E { { e f f ) , E (efef) - E {(et)')) 
= ( 0 . 1 0 1 7 , 0 . 0 7 6 6 ) , t = 0 , 1 , 2 , 3 . ； 

J 

\ 

Furthermore, we have Bt = 0.3566, A} = 0.7424, /I? = 0.8711，t = 0,1,2,3. We 

assume that an investor with initial wealth Xo == 1 would like to minimize the 

mean-variance objective of VaT{x^) — 2E[x^). 

The pre-committed opt imal mean-variance policy is given in Li and 
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Ng (2000) [35] as: 

= -Ktx , + vt, i -0 ,1 ,2 ,3 , 

where 

(1.6238 \ ( 5.8919 \ 
Kt = ， ^ = 0,1,2,3, vo = ， 

、4.2907 y y 16.1444 y 

< 6.9128 \ i 8.1106 \ ( 9.5160 、 
Vi = , V2 = , V3 = 

y 18.9418 y y 2 2 . 2 2 4 0 y 乂 26.0749 y 

Revised policy 4.2 can be derived as follows, 

ulixt) = -KtXt -h ̂ ^ ^ FeLt, i = 0,1,2,3, 

where 

1.6238 \ ( 1.3466 \ 
Kt = , Lt = , ^ = 0,1,2,3, 

、4.2907 y Y 3.6899 y 

and Xt and Ft follow (4.17) - (4.20) with XQ = XQ = I and r_ i = 

臺 ( “ - S ) 二 7 皿 

Revised policy 4.4 can be obtained as follows, 

, j l、3-i 

( i 妝 ) = - K t i t + ( 系 J ftLt, f 二 0，1，2，3’ 

where Kt and Lt are the same as in Revised Policy 4.2， and it and Ft follow 
一 1 / i/nA\ 

(4.25) - (4.27) with io =工0 = 1 and r_ i 二 ；； boXo - ^ = 7.0666. 
2 \ 2ao / 

While the expected terminal wealth and the risk level of the pre-corninitted 

policy are E[oo4) = 6.0666 and Var{x4) = 4.4954, respectively, the expected 

terminal wealth and the risk level of Revised Policy 4.2 are the same with E{x4)= 

6.0666 and Var{x4) = 4.4954. For Revised Policy 4.4’ we only know that its 

expected total terminal wealth and the risk level satisfy E(x4 + ) 二 

6.0666 and Var(x4 + ̂ ；】=0 A i j ) < 4.4954. 

We assume now that the random returns of risky assets, Ct (t = 0, 1,2，3), 

are normal vectors with the given mean and covariance matrix in the example. 
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We run 5000, 20000, and 50000 sample pathes, respectively, in our simulation 

experiments to verify the above theoretical value of the mean-variance pair of 

the terminal wealth under the pre-committed optimal policy and the two revised 

policies, i.e., X4, X4 and X4 + X]】=o 么无j and to estimate the probability of receiving 

FCFS and the unconditional expected value of FCFS for Revised Policy 4.2，and 

the probability of placing free cash flow in the pocket for Revised Policy 4.4，with 

the results given in the following Table 4.1. 

Table 4.1: The simulation results 

Samples E � Var{x^) E[x^) Var[x^) £̂ (王4 + E】=o 八无 j ) 

5000 6.0867 4.6073 6.0876 4.5846 6.0903 

20000 6.0718 4.4307 6.0749 4.4494 6.0757 

50000 6.0599 4.4657 6.0624 4.4669 6.0631 

Simulation results of Example 4.2 (Cont'd) 

Samples Var{x^ + Pr(FCFS) E(FCFS) Pr(Axj > 0) 

5000 4.3443 0.3176 0.2506 0.5070 

20000 4.2157 0.3219 0.2479 0.5178 

50000 4.2403 0.3172 0.2442 0.5097 

Using the simulation data, we can also estimate the distributions of the termi-

nal wealth under the pre-committed optimal policy and the two revised policies, 

respectively. From Figure 4.5，where the distributions of a:̂ , X4 and 王4+^̂ 】=0 么无j 

are approximated from 50000 samples, we find that the distribution of the ter-

minal wealth under Revised Policy 4.2, X4, has somewhat fatter tails in both 

directions, while the distribution of terminal wealth under Revised Policy 4.4 

has thinner tails. 

Furthermore, we represent three efficient frontiers under the pre-committed 

optimal policy, Revised Policy 4.2 and Revised Policy 4.4 together in Figure 4.6. 

For most initial trade-offs, Revised Policy 4.2 gives the best efficient frontier, 



Chapter 4. Better than MV in Market with ALL Risky Assets 108 

--“ 0 06 ！ A ——“ + 

。7 j ——•？• il \\ ' 

§。5 / 卜 / I 

U ' U I 
0 2 4 e 8 10 12 14 0 2 4 6 8 10 12 14 

(a) Cumulative distribution functions (b) Probability density functions 

Figure 4.5: The distributions of X4, x^ and X4 + !C】=o 么无j 

since we consider to add the expected value of FCFS into the return, but not to 

consider to combine the variance of FCFS with the risk of the terminal wealth. 
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4.5. Continuous Time Mean-Variance 

Portfolio Selection in Market with ALL 

Risky Assets 

Although Zhou and Li (2000) [75] derive the analytical solution for the mean-

variance portfolio selection problem in a continuous-time market with one riskless 

asset and multiple risky assets, to our knowledge, there is no parallel result in 

the literature derived for the mean-variance formulation of a continuous-time 

market with all risky assets. We will fill in this gap first in this section and then 

apply the same concepts which we have developed in the previous sections of this 

chapter to the continuous-time market with all risky assets. 

We assume that there are (n + 1) riksy assets in a continuous-time market, 

and their price processes, . . • ’ {-^nCO}) satisfy the following 

SDEs, 

I ds办)=b,m(t)dt + E7=V . _ 
< 2 — U，丄，• . .，TI 

[5 , (0 ) = Sn 

where Wj, j = 1 , . . . , m -f- 1, m > n, are m + 1 independent Brown motions in 

the filtrated probability space (H, 7 � P ) and all bi{t), aij{t) are deterministic 

functions. 

Assumpt ion 4.1. (nondegeneracy condition) 

a(t)a(ty > SI, for some S > 0, 

。 o i ⑴ … 

where d{t)= ... . 

\^。nl ⑴ … 一 + 1 ) ⑷ 乂 (n+l)x一 1) 

Remark 4.5. The nondegeneracy condition ensures that 

a{t)a(ty — 0, (4.28) 

C � ' C � - C{tya(ty [a(t)a{ty]~' (T{t)C(t) > 0’ （4.29) 



/ 
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hold true, where 

C ⑴ = ( c j o i ⑴’…，cro(m+i)⑴)'’ 

^ a n ( 0 - aoi(0 …（7 i (m+i )⑴-ao(m+i )⑴、 

口 ( t )= . . . . . . . . . . 

\ - aoi{t) ... ⑴ 一 f 7 o ( m + i > ( 亡 ） 乂 一 爪 十 i) 

Let u ⑴ = . •. , be the dollar amount which an investor invests 

in the risky assets, . . .，5„, at time t. The wealth of the investor, is 

then governed by the following stochastic differential equation, 

dx(t) = [bo(t)x(t) + B(tyu(t)]dt + z r = V M i ) ^ ( t ) + 

x(0) = Xo > 0, 

where 

B(t) = (b j ( t )-bo(t )r- ' ,bn(t)-bo(t))\ 

Dj(t) = (cTjj(t) - a o j ( t ) ,…， a … ⑴ - M O ) ' . 

Similar to the discrete-time situation, the investor seeks a best investment strat-

egy, u*(t), which is an adapted random process, to attain the optimality of the 

following continuous-time mean-variance model: 

(MVc) min Var(x(T)) + AB(x(T)) 

s.t. (4.Jl) 
(x(.), u(.)) satisfies (4.30), 

where the traxle-off between two objectives, A, is assumed to be nonpositive. 

Theorem 4.4. The optimal policy and the optimal mean variance pair of (MVc) 

are given by 

u• “ ’ xW) = � + \ (boxo - g ) 尝 屯 ⑷ ’ (4.32) 

E{xiT)) 二（/io + boi^o)xo - (4.33) 

l/ar(:r(T)) 二 ^ + C o : r g ， （4.34) 
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where 

少⑷= [ a ( t ) a ( t y ] - ' [ B � - f (j(t)C(t)]，屯(t) = [a�a⑴‘广 B(t), 

叫=e广一心’ Tt = e广一)气 = - f B�'中⑷e_人一)〜s， 

2 Jt • 
at =令-⑷2，6. = ^ = Q=T ,- (M02-a , (M2 ’ 

2 CLf 1 — Zl^i 

and 

a^{t) = bo{t) — B�'W{t)a(ty]-' [ B � + a � C � ] ， 

ar(t) = 2bo{t) + C{tyC(t) - [ B � ' + C(0V(01 W{t)cj{ty]-' [ B � + a(t)C(t)], 

a^(t) = ar(t) - 2a州 > B(t)'屯(t). 、 

Furthermore, the efficient frontier can be expressed by 

Var(x(T)) = ^(E{x{T)) - (/xo + + CQXI for E(x(T)) > (/io + ^ 
"0 

(4.35) 

Proof: Using the same embedding scheme in Li and Ng (2000) [35] and Zhou 

and Li (2000) [75], we consider the following auxiliary problem A{fiyX), 

A) min E [fix(Tf + Xx{T) 

St j u(.) e 
• y (x(.),u(.)) satisfies (4.30). 

By defining the following variables, 

y(t) 二 x(t) - r , and T = -A/2/i, 

we reformulate problem A) as the following equivalent stochastic LQ form, 

min E 

，dy[t) = [bo(t)y{t) + B � ' u � + 6��H出 

s.t. + S r ^ i W 彻 ⑷ + Dj ⑷ ' u ⑴ + aojT]dWj{t) 

2/(0) = x o - r . 
< 
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Based on Theorem 7.10 in Chapter 6 of Yong and Zhou (1999) [73], the 

optimal investment policy of A) is 

y ⑷ ） = - M Y �- 糊 截 - ( 中 ⑷ — 少 ⑷ ) r , (4.36) 

where P(t) and (^(t) satisfy 

，P⑴+ a 浙 P ⑴ 二 0， . 

^ P{T) = M, 

[ a � a � ' 1 P[t) > 0’ 

and 

j m + ot^itMt) + {ocrit) — a "⑷ ) r p⑷ = 0 ’ 

\ ^{T) 二 0, 

• (P� 
respectively. Setting h(t) 二 gives rise 

Mt) = P⑷妳 j^「t)f ⑴ 冲 ) = - M O ) " ⑴ - ( M t ) — a . ( 0 ) r . 

Since h[T) = 0，we solve h(t) as 

h(t) = M = r[l-e-广(ar�-M州心-. 
-

The optimal investment policy can be now simplified to 

u(t,x(t))=-中⑷X�+ r � � . 
丁t 

Under this optimal investment policy, the wealth dynamic in (4.30) evolves as 

follows accordingly, 

dx{t) = - B{ty^{t)] x{t) + B ( t ) ' 屯 ⑷ r 尝 } dt 

‘ + Er=V {woAt) 一 m r m ] _ + ( 4 . 3 ” 

x(0) = Xo > 0. 
V. 
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We can further find out that B{x{t)) and E{x{t)^) satisfy the following ordinary 

differential equations, respectively, 

f dE{x(t)) = [a,(t)E{x{t)) + B⑴'屯⑴re- / , ( - ⑷ “ 拳 ] d t (斗？呂） 

\ E{x{0)) = Xo, 

and “ 

f dE{x(t)^) = [Qt⑴扔工⑷2) + B⑷'中⑴r2e-2/「(a“s)-Ms))叫出 

I 制 0 ) 2 ) = xl , 

Solving (4.38) and (4.39) yields 

E{x(T)) =XoMo + 2i/or, 

=:rgTo + 2"。r2. 

From Zhou and Li (2000) [75] and Theorem 8.2 in Chapter 6 of Yong and'Zhou 

(1999) [73], the optimal policy of (MVc) can be found by selecting r such that 

r = 字 + E(x(T))=字 + 卯"0 + ， 

which yields 

- Mo A 1 

. r = T ^ z o _ 2(1 _ = 2 (60^0 - ^ o ) . 

Equations (4.32) and (4.33) then follow and 

Var(x{T)) = E{x{Tf) - {Ex(T))'' = ^ + Cox^ 
‘ 400 

holds. Furthermore, the efficient frontier in (4.35) can be obtained. 

Besides, noting that the nondegeneracy condition in (4.29), we have 

oL^(t) = c{tyc{t) 一 c{tya(ty + b⑷ ‘ 少 ⑷ > b⑴ ' 屯 ⑴ ， 

which implies i/̂  < ^ for all 0 < i < T. 口 
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Remark 4.6. The structure of the optimal policy and the efficient frontier of 

the continuous-time setting with all risky assets are the same as its counterpart 

in the discrete-time setting. When applying the control at discrete time instants 

to the continuous-time market, the parameters of the discrete-time formulation 

will converge to the corresponding parameters in the continuous-time setting as 

the time interval of discrete-time control goes to zero. 

Lemma 4.4. 

fit > 0, and, (1 - 2i/t)rt > /x?. » 

Proof: 

(1 一 2ut)Tt = ( 1 一 义T b ( s ) '屯 ( s ) e - ^ ^ ' " ^一 )d t ^心 ) 
fjy V 

〉 (1 一义 a“s)e-广一)加ds) e/'T^T一 

• 

We now discuss two similar revised policies for the continuous-time mean-

variance portfolio selection problem, {MVc). Let 0 =亡o 〈亡i < . • •〈亡/v = 了 be 

N ~ \ time points between 0 and T. 

The first revised policy, u*{t,x{t)), applied at time t for tk < t < h+u 矢=0， 
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1，...，A/" - 1，is carried out according to the following recursions: 

x{t)) = -^{t)x(t) + F f ch屯⑷； (4.40) 
‘ Tt 

， i f x (h) < , 

= — , ⑷ + 2 / X “ / X , ， ) ： 2 ， I ) ’ 无 ⑷ 〉 , • ⑷ ， （ 4 41) 

x(t), 'lftk<t< tk+u 
< 

XQ = XO 

satisfies (4.30) with inital wealth x{tk), (4.42) 

‘ i f 

= 2� 卜 -

= (4.44) 
Tk 

When the wealth level x(tk) > x*{tk), we withdraw a positive free cash flow, 

x{tk) 一 £(tk) = 二;4邮)-咖)’ ‘ 

out of the market. 

The second revised policy, u*(t,x(t)), applied at time t for t,, < t < 亡失+！，k 
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=0, 1，…’ yv — 1’ is carried out according to the following recursions: 

n*(t, x(t)) = -^(t)x(t) + (4.45) 
丁t 

F 

(Tk - fJ>k)x(tk) 
X(tk), if -

< (/ifc- 1 + 2 " 0 “ ‘ 1 ’ 

- 圳 = ( M k - I-i- 2iyk)l(Mk - l)i(tk) + 22yfcf,-i] (Tk - Mk)i(tk) 

2i/“Tfc - 1) + (/ifc — 1)2 ， ‘ 〉（/ifc-l+2r/fc)ffc_i， 

x(t) , if tk < t < tfc+i’ 
\ 

(4.46) 

Xo = Xo 

(x(t),u*(t,x(t))) satisfies (4.30) with inital wealth x(tk), (4.47) 

_ ‘ (Tk - fik)i(tk) 
Ffc-i , i f _ 

- 1) + (j^k — 1)2 ’ 〉（A - 1 + 2i/fc)Ffc_i， 

(4.48) 

= 1 ( “ - 樂 ) . 

When the condition (jk - fik)x(tk)〉（Mifc — 1 + 2i/fc)f/t-i holds, we put a positive 

free cash flow into the pocket, 

A a : ( “ ) = 工 ⑷ - = 2 • - + • 

« 

The parameters,叫、i/k and Tk are defined in Theorem 4.4 for time tk. The . 

only difference between discrete time revised policies and continuous-time revised 

policies is that the derived continuous-time policy is continuous during each time 

period from tk to /̂t+i-
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4.6. Conclusion 

The dynamic mean-variance portfolio selection in market with all risky assets 

is not time consistent in efficiency, due to the inherent nonseparable nature of 

the involved variance term. The induced trade-ofF of pre-committed optimal 

mean-variance policy is time-varying and state-dependent. In some situations, 

the trade-ofF may change its sign, which implies that the investor changes his/her . 

risk attitude towards the objectives, leading to irrational trading behaviors for 

the remaining investment periods. 

By relaxing binding budget spending at the beginning of period s, the con-

cept of pseudo efficiency (type 1 or type 2) in Chapter 2 has been extended 

to a dynamic setting in this chapter. Two revised policies have been proposed 

accordingly. The first revised policy eliminates possible phenomenon of type-

1 pseudo efficiency and achieves the same mean-variance pair attained by the 

original pre-committed optimal mean-variance policy. Furthermore, it enables 

investors to receive a free cash flow stream. The second revised policy elim-

inates possible phenomenon of type-2 pseudo efficiency and achieves the same 

total mean and less total variance, when compared to the original pre-committed 

optimal mean-variance policy. 

The continuous-time optimal mean-variance policy in a market with all risky 

assets has been derived in this chapter, which is a linear function of current 

wealth and the initial trade-off. Two revised policies, which are similar to their 

counterparts in the discrete-time setting have been proposed to the continuous 

time setting to attain better performance than the original pre-committed opti-

mal mean-variance policy. 
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CHAPTER 5 

T I M E CONSISTENCY IN EFF IC IENCY 

AND VARIANCE-OPTIMAL S IGNED 

MART INGALE M E A S U R E 

5.1. Introduction 

For the constrained portfolio selection problems, Cvitanic and Karatzas (1992, 

1993) [15, 16] discussed them using convex duality. Li, Zhou and Lim (2002) 

37] investigated the continuous time mean-variance portfolio selection without 

shorting. Furthermore, Labbe and Heunis (2007) [30] extended the duality ap-

proach for mean-variance portfolio selection with general convex constraints and 

random market parameters in continuous time. Yi (2009) [71] derived the mean-

variance portfolio selection without shorting in multi-period setting by extending 

the idea proposed in Pliska (1997) (51). As the mean-variance portfolio selec-

tion problem is closely related to variance-optimal hedging problem, Schweizer 

(1996) [57] discussed the connection between variance-optimal hedging problem 

and variance-optimal signed martingale measure. Recently Cerny and Kallsen 

(2007, 2009) [10, 11) sstudied the optimal mean-variance portfolio selection and 

variance-optimal hedging in a more general setting with a semi-martingale price 

process, which includes both discrete-time and continuous-time settings as its 

special cases. 

134 
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Discussion on no-arbitrage opportunity in a frictionless market has been 

widely studied in the literature, for example, by Harrison and Kreps (1979) [21], 

Harrison and Pliska (1981) [22], Kreps (1981) (29], Dalang, Merton and Willinger 

(1990) [17], Kabanov and Kramkov (1994) [27].The famous fundamental theorem 

of asset pricing (FTAP) states that There is no arbitrage opportunity if and only 

if there exists an equivalent probability measure that turns the discounted stock 

price process into a martingale. Jouini and Kallal (1995) [26], Schiirger (1996) 

56] and Car ass us, Pham and Toiizi (2001) [9] provided an extension of FATP to 

the case where trading strategies are subject to different constraints. 

In this chapter, we will show first that the satisfaction of time consistency in 

-efficiency of the general multi-period mean-variance formulation in a frictionless 

market is equivalent to the nonnegativeness of the conditional density process 

of the variance-optimal signed martingale measure of this market. If the market 

is complete, time consistency in efficiency holds. We then prove when the state 

space is finite, the optimal mean-variance portfolio policy in a frictional market 

without shorting can be achieved by the optimal mean-variance portfolio policy in 

an (unconstrained) auxiliary frictionless market, M ^ T h u s , verifying the time 

consistency in efficiency in the frictional market without shorting can be carried 

out by checking the time consistency in efficiency in the auxiliary frictionless 

market. By adding no-shorting constraint, the time inconsistency in efficiency 

can be eliminated for some market setting, although this does not always work 

for all settings. At last, we proceed to give a sufficient condition, under which 

time-consistency in efficiency holds in markets without shorting. 

The organization of this chapter is as follows. In Section 5.2，we first derive 

the pre-committed optimal mean-variance policy in a frictionless market, when 

the returns of risky assets at different periods are correlated. We then examine 

the relationship between the time consistency in efficiency of the optimal policy 

and the variance-optimal signed martingale measure. In Section 5.3，we develop 

an assertion that the optimal noshorting mean-variance policy is identical to 
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the optimal mean-variance policy in an auxiliary friction less market. In Section 

5.4，we show that time inconsistency in efficiency can be eliminated by adding 

noshorting constraint for some market setting, and provide a sufficient condition 

for assuring the success of such a scheme. Finally, we conclude our chapter in 

Section 5.5. 

5.2/ Time Consistency in EfRciency of 

Mean-Variance Portfolio Selection in 

Frictionless Market 

We consider a frictionless capital market consisting of one riskless asset and 

n risky assets within a time horizon T, under an assumption of no arbitrage 

opportunity. Let r̂  > 0 be the given deterministic return of the riskless asset 

at period t and et = ( e j , e " ) ' the vector of random returns of the n risky 

assets at period t defined on the probability space (Xl, P), whose distribution 

depends on the realizations of et_i, • • •, Cq. We use Tt to denote the smallest 

sigma algebra generated by et_i, • • • , Cq and Ei(-) to denote the conditional 

expectation E{'\Tt)-

An investor joins the market at the beginning of period 0 with an initial 

wealth XQ. He/She can allocate his/her wealth among the riskless assel and N 

risky assets at the beginning of period 0 and reallocates his/her wealth at the 

beginning of each of the following (T — 1) consecutive periods. Let Xt be the 

wealth of the investor at the beginning of period t，and uj, i = 1， 2， . . n , be 

the amount invested in the ith risky asset at period t. 

The investor seeks a best investment strategy, u j = (uj, u")' for t = 0’ 

1 ,…，T ~ 1, to attain the optimality of the following dynamic mean-variance 
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model: 

{MV) mm Varo(xT) + XEo{xt) 

s.t. Xt^i = rtXt 4- P'tUt, (5.1) 

Xo is given, 

where the excess return vector Pt is defined as 

Pt = ( / ) / ’ /? ’ …’ P n ' = ((ej - rO, (e? - n) ,…’ (e^ — r,))'， 

and A represents the overall trade-ofF between two objectives of maximizing the 

expected return and minimizing the risk. Changing A from 0 to -oo yields the 

entire mean-variance efficient frontier. 

We assume that conditional covariance matrix of et is finite and positive 

definite, Covt{et) >• 0’ P — a.s.，which implies the conditional second moment of 

(rt,et') is also positive definite almost surely, i.e., 

/ 0 0' \ 

£:“(r,’etT(r,，et'))= ’ “ + e/) ) ^ 0, P - a.s. 

\ On, Covt(et) y 

Furthermore, we have 

Et(PtPt') y o , Vt = 0’ 1，…、T - 1 ， P-a.s. 

r2(l - E t (P t ' ) ^ r ' (P tP t ' ) ^ t (P t ) ) > 0 , Vt = 0，1’...’ T - l , P-a.s. 

Proposi t ion 5.1. Using the embedding scheme in [35jy we can derive the optimal 

policy of (MV) as 

ulixt) = - uxtE-'(et^,PtP[)Et(et^,Pt) 

+ H w o - 去 ( n ^ r V m P t P ' t ) 柳 … P t ) ， (5.2) 

where random variable Ot is J^i-measurable and positive, which is calculated by 

the following backward recursion, 

dt - (权,+ i P ' t ) E 「 i ( 代 ( 权 … P t ) ， £ = T 一 1，…，0，P - a . s . 

(5.3) 

with boundary condition 0^ = 1. 
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Proof: Please refer to the Appendix 5.6. 口 

Let f n ^ j J rjXo ——^ ) be denoted by r , which is termed risk attitude pa-

- V 】- 2^0/ 
rameter in this paper. 

Assumpt ion 5.1. Without loss of generality, we assume E t - i ( P t - i ) ^ On, P — 

a.s. 

Due to the almost surely positive definiteness of E f丄 “ P t - i P t - i ' ) ’ 

£V_i(Pt-i) = 0„ for some possible wealth level XT-\ implies the optimal policy 

at period T - l , UT_i(j:r-i)三 On, In such a situation, we only need to consider 

the mean-variance portfolio selection problem ending up at the end of period 

T - 2, as only the riskless asset is active at period T — I. 

Remark 5.1. The adapted process, is actually the same as the 

opportunity process, {Ljf=o,�’:r—i, introduced for mean-variance hedging problem 

in demy and Kallsen (2009) [llj. 

Now we consider the following inverse optimization problem: For k -

1,2, . . . ,T - 1, find an induced trade-ofF parameter A a： between Ekixrlxk) and 

Vark{xT\xk) such that the optimal mean-variance policy (t = fc’A: + 

1，.，. ’ r - 1) specified in (5.2) solves 

min Vark(xT | Xk) + h E k i x r | Xk) 

s.t. Xt+\ = rtXt + P'tUt, 

Xk is given. 

Let a threshold xj be defined as follows at the beginning of period k: 

A 矢 r 
工:=一 2e n ^ - V + n。工0 = f f ^ ， （5.4) 

which is a constant and represents the discounted risk attitude paramet^ at the 

beginning of period k. . 

» 
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Proposition 5.2. The optimal mean-variance policy, uj(xt) {t = k, k + 

1), specified in (5.2), solves (MV^^V)肌仇 Xk satisfying 

/ k-\ \ T-l 

Afc 二 2 卜 - n ” , 。 n 唤 ( 5 . 5 ) V J=0 J 3 = k 0 

Furthermore, Xk < 0 when Xk < x j , A*： = 0 when 工矢 二 工；̂, and A^ > 0 when 

Xk > 
J 

Proof: Similar to the solution to {MV), the optimal policy of (MV^^j^) at 

period = A:，/c + 1’ …，T - 1’ is given by 

[ N ^^^^ - ( l i 丄)丑「i(没…PtP't)芯“权…Pt)-

(5.6) 

Equalizing the policies in (5.2) and (5.6) and noticing Assumption 5.1’ we 

can find the relationship between Xk and A given in (5.5). From the positiveness 

of Ok, it is evident now that A^ = 0 when Xk = x^ defined in (5.4), Ajt < 0 when 

Xk < xj, and Ajt > 0 when Xk > xj. 口 

If all the possible wealth processes under the optimal policy, {:rjf=i”..,:r-i» 

never exceed the threshold, the truncated optimal policy is efficient 

for the corresponding truncated portfolio selection problem, and time consistency 

in efficiency is, thus, satisfied. 

Assumpt ion 5 .2 . The investor's initial trade-off parameter, A, is assumed to 

be negative. 

Note that, when A = 0, the optimal policy is ul(xk) = 0’ A: 二 0’ 1’...，r 一 1’ 

i.e., the investor places all his/her wealth in the riskless asset. It is obvious 

that the time consistency in efficiency holds in such a case. Under Assumption 

5.2, the initial risk attitude parameter of the pre-committed policy,「，satisfies 

r > nr=o ¥0. 
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Lemma 5.1. For k — 1,2,.. ., T — 2, 

i < < X：) 二 Pr { P y . ' < 1)， 

= < X：) 二 Pr E ； ； ' = 1) ’ 

= = xj) = 1. 

In addition, under Assumption 5.2, 

< x\) = Pr {Po'Eo'{eiPoPo)Eo(OiPo) < l)， 

PT(X, = X；) = Pr {Po'E^'(E,PoPo)Eo(OiPo) = l). 

Proof: We have = rkxl and 

X A r + l 

=rkXk + PkU;;(x/t) 

= r , x , ( l — 权…PkP'k)权 Wt+iPk)) + 工 厂 i (权…PkP'J 芯“沒 fc+iPk). 

Then, 

Pr(xk+i < < X；) 

=Pr {(vkX, - - Pk'E「i(�+iPkPlc)权(权fc+iPk)) < < X：) 

The other two equations in the lemma can be obtained in similar ways. 

At period 0, we have 

Xl 二 rorro + POUQ{XO) 

As Assumption 5.2 assures n j j o『 j卯 < 厂 carrying out similar steps as above 

gives rise the last part of the lemma. 口 

Now let us go back to the assumption of no arbitrage opportunity. Based on 

the classical FTAP, there exists a nonempty probability measure set that con-

tains all equivalent martingale probability measures of the market. We consider 
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here a larger set that contains all signed martingale measures (Schweizer (1996) 

57]). We use notation Q < < P in the following to denote that Q is absolutely 

continuous to P. 

Definition 5.1 (Schweizer (1996) [57]). We call a signed measure Q « P with 

Q(f2) = 1 absolutely continuous signed a-martingale measure (SaMM) ifPZ^ 

is P-a-martingale for the density process 

ofQ. 

Definition 5.2 (Schweizer (1996) [57]). A signed a-martingale measure Q* is 

called variance-optimal if Q* minimizes 

E [ ( 芸 ) ] 

over all Q e Q, where the closed set Q contains all SaMMs. 

Applying the above definition to our discrete-time market setting, the 

variance-optimal signed martingale measure, Q•，is given by Cerny and Kallsen 

(2007, 2009) (10, 11:. 

dCr 界 0…界 E 讽 � P j P P 丑 “ 。 + i P j ) ) (5 7) 

Based on Lemma 5.1, whether the first ( T - l ) periods wealth level exceed the 

threshold can be checked by whether conditional density process of variance-

optimal signed martingale measure is a nonnegative process. We thus get the 

following proposition. 

Proposit ion 5.3. Time consistency in efficiency of mean-variance portfolio se-

lection in frictionless market holds if and only if the conditional density process 

of variance-optimal signed martingale measure is a nonnegative process, i.e., 

E >0, P - a.s., /or i = 1，2’...，7^ — 1. 
乂 (iP J 
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Proposit ion 5.4. When the market is complete, time consistency in efficiency 

of mean-variance portfolio selection holds true. 

Proof: Let us consider the signed martingale measure, Q, defined in (5.7). It 

is easy to check that 

0 (0 ) = 1, (5-8) 

玲 ( • ) = 1 , “ O r . . , T - l . (5.9) 

As stated on Page 25 of Pliska (1997) [51] that “The model is complete if and 

only if M consists of exactly one risk neutral probability measure", there exists 

a unique probability measure Q*, under which the discounted returns of assets 

all equal to 1. 

Furthermore, page 133 of Pliska (1997) [51] states that “The multipenod 

model is complete if and only if every underlying single period model is complete: 

We consider now a single period A:，/c 二 0，1’. •. ’ :r 一 2. To make the market 

complete, the return of risky asset must have a tree structure with (n + 1) 

branches. At period /c, the states space is finite, fk = W i r " ’̂ ^JUi}- Let 

{q* > 0, i == 1’. ••，n + 1} be the conditional risk neutral probability for state 

cjf, which is the unique solution of 

q\rk H + qd+i^k = nt, 

Qiel + ••. +<?d+iei = nt， 
• • • 

qie'i " • Qd+ie'i = Tk. 

It is also the unique solution in R^+i. Therefore, {g* > 0, i = 1，.. • ’ n + 1} is 

also the unique conditional signed martingale measure of period k . Furthermore, 

Q* is the signed martingale measure. The uniqueness of the signed martingale 

measure implies 
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Thus ,靜 M is nonnegative, which in turn implies 

< 1 ) = 1, J = 0 ’ . . . ’T - 1. 

Based on Lemma 5.1, 

Pr(xi < x*,"- ,XT-I < 工}_1) = 1’ 

holds. Thus, the optimal wealth process never hits the threshold and the time 

consistency in efficiency holds true. 口 

5.3. Mean-Variance Portfolio Selection 

without Shorting 

Assume that the states of the world is finite, Q = {cJi, ••‘ ’ a n d the 

return of risky assets is of a tree structure with (m +1) branches at each interme-

diate node. If m > n, the market is incomplete due to the existence of multiple 

martingale probability measures. Furthermore, 

(i) there exist It := (m + elements A},'" at time t, which forms a 

partition of Q and satisfies 二 a 
⑷ … ， 々 ) ； 

(ii) V z < /t, c for j = 1’ … ’ m + 1. 

In the remaining of our paper, we consider the following mean-variance port-

folio selection without shorting, (MV - C I ) , 

{MV - C I ) min Varoixr) + XEO{XT) 

s.t. Xt+i. = TtXt 4-P'tUt, 
* 

Ut > On, Xo is given. 

For any incomplete market, we can always introduce (m — n) auxiliary nsky 

assets, whose returns, • .. , e；", are specified arbitrarily to make the market 
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with m risky assets and one riskless asset complete. The original mean-variance 

portfolio selection without shorting, (MV - C l ) , can be now reformulated as 

(MV 一 C2) min Varoixr) + 入Eo(:ct) 

s.t. xt+i = TtXt -I- P'tUt, 

Ut > 0„, Vt = Om-n, 

Xo is given, 

where the excess return vector Pt is defined as 

Pt = ...’ pry = {{el - rt). (e? - n ) ， { e T 一 M)'， 

. Ut = (ui, v^)', and Vt denotes the amount invested in the auxiliary risky assets 

at period t. 

Yi (2009) [71] extended Pliska (1997) [51]'s dual approach for utility max-

imization problem and performed detailed analysis on mean-variance portfolio 

selection problem (MV - C2). Following Yi (2009) [71]，problem {MV - C2) is 

first embedded into thcfollowing auxiliary problem, 

AciP) max 

s.t. :rt+i = n:rt + Pi^t， 

Ut > 0„, Vt = 

Xo is given. 

Based on Lemma 5.2’ the solution of Ac(0) also solves {MV - C2) when 

P = 2EO(XT)|Q- - A. 

As we know, Ac(P) can be tackled as a static optimization problem, where 

all the realizations of Ut are considered separately based on our discrete financial 

model. More specifically, the objective function can be expressed explicitly as 

follows, 
/ T-L T-L T-1 \ 

ueo \ t=o (=0 / 
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where U(x) = + fix. Notice that ut(u;) = Qt(斤t) if ^ ^ ^；. due to the 

tree structure of the market. The decision vector in the above static formulation 
禽 

consists of Ut(/ll), i = 0’ 1，. " ’ r 一 1 and i = 1’ • •.，“. 

Note that the Lagrangian dual of problem Ac[P) is given as 

( D 乙 ) 茫 史 ⑷ + 5 > M " ( x 。 n r , + ; ^ P ; a t H 厂小�
( u 龙=0 uen \ t=0 t=0 3=t+i / 

* 

where《={(€/，•..’ …，€r)'}t=o’i’... .r-i is an adapted process and f； > 0 

for i 二 1，... ’n. As problem AcW) is convex, there is no duality gap between 

problems Ac{0) and ( D l ) from the strong duality theorem. Furthermore, the 

process pair {u\C) that satisfies the following first-order condition, 

£：0 f i : " ' f x o n V . + E P t u ； n P t n + 《 " � ' ) = •’ （5.10) 
_ \ f=0 j = t + l / 3 = t-\-\ -

Cr ⑷ i i t ” ⑷ = 0 ’ (5.11) 

for all A\ and j = l , . . . , m , is optimal to Aci/^)-

On the other hand, let us introduce an auxiliary market indexed by a adapted 

process, K = {(/cf,…’ k^) '} . where the period-i return of assets is adjusted 

to 

Tt rt\ 

e{ — ej + K】。j = 1 ， . . .， m . 

Consider the following unconstrained utility maximization problem in M ^ , 

min EO(-X^/3XT) 

s.t. 二 n^^t + (P?)'iit’ 

Xo is given, 

where PJ = ((ej + /c； - r()’ (e? + — r,)’ ••.’ (e^ -h < " ^))'-



Chapter 5. Time Consistency in Efficiency and VSMM 138 

Proposition 5.5. The optimal policy of Ac(P), u；, is also the optimal policy of 

K'*) m a fnctionless auxiliary market, 氏•，with 

代 ⑵ 々 ) ( 5 . 1 2 ) 

t Eo [1 (xo n 二 n + E 二 p'to： n r 二 1 n ) n r 二 1 丁、 

Proof: It is clear from (5.11) that = 0 holds for all t and j. 

We next show that 0； satisfies the optimality condition of problem AciP, f̂ *)-

From (5.10) and (5.12)，we have 

- / T-l T- l T- l \ T - l 

Eo 卜 0 r h + Y i ^ p t + < ) 、 • n 。 ( P t + n 下] 
_ \ i=0 «=0 J = / J = -
- / r-1 T-l T - l \ _ T - l _ 

丨 " ' 卜 o f h + E 吹 N r 小 + N r] 
_ \ t=0 t=0 j = t + \ J -
• / T - l T-l T-l \ _ r - 1 -

=Eo 1 w 卜 0 n r t + p ; u ： n 卜 n r) 
_ \ t=0 t=0 / 3=t+l -

- / T-l T-l T-l \ T-l _ 

+Eo Ujf/ ' x o n ^ ^ + z ^ t ^ t n ^̂  < n ^̂  

_ \ t 二0 J 二 t+1 / 3=t-V\ -

= 0 . 
I 

• 

Remark 5.2. When EQ nr=V�t + P't^； n J J t V i � ) � ] -

0, could be 土oo. Under such a circumstance, the optimal policy of 

Ac(Py also exists. More specifically, u j = 0. 

From Lemma 5.2 again, the solution of ACW.K,*) also solves the mean-

variance portfolio selection problem in auxiliary market MK�(MV{K*)) 

{MV{K*)) min Varo(xr) + )^EO{XT) 

s.t. Xt+i = TtXt + {Pfyu t , 

XQ is given, 

with the same overall trade-off parameter A as in (MV - CI). 
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5.4. Time Consistency in Efficiency of 

Mean-Variance Portfolio Selection 

without Shorting 、 

Let us consider now the truncated mean-variance portfolio selection problem 

without shorting: 

(MV - Cl^^tr) min Vark(xT){Ai) + � 

s.t. = TtXt -f P'tUt, 
> 

Ut > On, Xk is given, 

where A^ is the current starting node after adopting optimal policy u j , . . . , u；；—!. 

Similarly, we consider the following auxiliary problem, 

Ac{/3)tT max E “ - : 4 +/^ziOMi)， 

I s.t. Xt+\ = TtXt + P'tUt, 

， U t > 0 „ , V t = 0爪—„, 

Xk is given. 

Carrying out the similar analysis as in Section 5.3，we can conclude that the 

optimal policy of ( M V —CI力！^了）also solves the following unconstrained portfolio 

selection problem, 

(MV{k*)lt.T) min Vark{xT){Ai) + Afc£;“:r<r)K) 

s.t. xt+i = rtXt + (P f ' / u t , 

Xk is given, 

where 

' 丨 ⑷ 二 E. [i.；^' (x.nr二 rt + E r J k v n 二 1 n 二 ⑷ , 

and process pair satisfies the'first-order condition of Ac(0)t-T-
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Proposi t ion 5.6. 

Proof: The Lagrangian dual of problem Ac{0)k-T ^̂  given as follows, 

则K-T 

^ t^k 1=1 wen ^^"^^kJ \ t=k t=k ]=t+i J 

where i = {($/，... 乂厂，C十】，…，0'}bM+i’ ’t—i is an adapted process and 

(I > 0 for z = 1, . . . ,n. Furthermore, the process pair (&•’‘•) that satisfies the 

first order condition, 

E , n t A Pt n K ) 十 • ⑷ 二 0’ 

• \ t = k t=k J 二 t+1 / j=t+l . 
(5.13) 

(5.14) 

for all A\ and j = 1，... ’ m’ is optimal. 

Comparing (5.10)-(5.11) to (5.13)-(5.14), and noticing that both XQ arid 

{ u j , . . . ， } lead to Xk, we have 

u* = fit*, i = /c, /c + 1,.. ., T - 1, 

P{Al)i:(A\) = Ct{A\), i = /c,/c + l , . . . , T - l . 

We completes the proof. • 

Thus the time consistency in efficiency issue for {MV - C I ) , the mean-

variance portfolio selection problem without shorting, is equivalent to the time 

consistency in efficiency issue for {MV{K,*)), the mean-variance portfolio selec-

tion problem in a suitable auxiliary market, M^,'-

Furthermore, when the unique signed martingale measure in the optimal 

auxiliary market M^- with the density defined by (5.7) satisfies the requirement 
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in Proposition 5.3, the time consistency in efficiency holds in the auxiliary market, 

So does the mean-variance portfolio selection without shorting, (MK-C l ) . 

Remark 5.3. The other direction in Proposition 5.3 does not hold true, as the 

condition 

/^t-i(Pt-iPt-/)^t-i(Pt-i) - On’ P-a.s. > 

may not hold in the auxiliary market, M^', even if it holds in the original market, 

MQ. In such situations, there may exist some states at the (T - l)th period such 

that risky assets do not play a role in the last period after setting u^-i = 

and the induced trade-off at the last time period can be thus arbitrarily assigned. 

We use the following example to illustrate that, by adding the noshorting 

constraint, we can make the optimal policy to satisfy time consistency in effi-

ciency, while the pre-committed optimal policy in the original frictionless market 

is not time consistent in efficiency. 

Example 5.1. Assume that there are one risky asset, 5i, and one riskless asset, 

SQ, in the market with a time horizon of T = 2. The random total return of 

risky asset follows a trinomial tree structure, which is given in Figure 5.1, while 

the riskless returns, ro and n , are both 1.02. It is obvious that this market is 

arbitrage free and incomplete. The investor's initial trade-ofF, A, is assumed to 

be —2 and the initial wealth is assumed to be 1. 

As the random total returns at different periods are independent in this ex-

ample, it is not difficult to derive the following solution for this unconstrained 

參 
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(1 52, 0 5. u)〉 

(1 22. 0 3.<Dj) 

(0 0 2 . 0 2 .山 ;） 

^ ^ (0 52. 0 2, ujj) 

^ ^ ^ ^ (1 52.0 5, w*) 

1 (0 52, 0 5. uî) (1 22.0 3. ŵ) 

(0 52. 0 2. u>®) 
(1 52. 0 5 

(132. 0 3. w;) ^ ^ 

(1 22, 0 3 o)®) 

^ ^ (0 52, 0 2 w®) 

(Bq. P.uj) (O|. P.W) 

Figure 5.1: Random return of risky â sset 

rnean-variance portfolio selection problem, 

= 0.7642, 6q = 0.4828, 

-2Eo{0iFo) 
" 。 ⑴ = - 2 n M : 。 M 广 戰 

X,(uj\) = 3.0807, = 2.0503, 二 0 . 4 0 1 8’ 

• ( … ） - - r 丨 • D U S ( … + - 宗 ) 纖 ( … 二 — 0 湖 ， 

M 鼎 = - r i ( … + - I F G ( … = 1 • • ， 

( • ？ ) ) = … 、 • ” 纖 ( … + 卜 - ( > - 宗 ) 纖 ( … - 3 皿 

It can be checked that the optimal policy for the truncated mean-variance prob-

lem atu;} > 0 for all nonpositive Aj. As u^lx,(cj；)) = -0.0529 

from the above calculation, we can conclude that the truncated pre-committed 

optimal policy at LJ\ is no longer efficient for the second period. Thus, time 

consistency in efficiency does not hold in this example. Furthermore, the 

conditional density process of the variance-optimal signed martingale rnea^iure 

given by (5.7) is 

E ( 二 - 0 . 0 3 6 , E ( = 0.7734, E f ^ k A = 2.0683， 
\(iP J \ dP / \(it J 
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which is NOT iionnegativo almost surely. (An example of Proposition 5.3) 

Now we consider to enforce a no shorting constraint of the risky asset, Si. It 

is clear that the above derived optimal policy is no longer admissible. We first 

introduce an auxiliary risky asset S.z with the randoiii return following a trinomial 

tree structure, which is given by Figure 5.2. It is easy to check that there exists 

a unique niartingalc probability measure in this market. We solve next the 

corresponding problem [MV - C2) directly by using quadratic programming. 

^ ^ (1 52.0 5, u)j) 

(0 5533. 0 3. ŵ) 

(142.0 2, u>\) 
^ ^ (1 50.0.2, u)J) 

^ ^ ^ ^ (1 50. 0 5. aij) 

1 ^ (0 595, 0 5. w]) (0 5S33. 0 3. 

52.0 2.01®) 
^ ^ (1 50. 0 5. o»l) 

(1 12833.0 3, u)；) ^ ^ 

^ (0 5533, 0 3. (!)•) 

^ ^ (1 52.0 2. 

(«0' P P.u)) 

Figure 5.2: Random return of auxiliary risky asset 

Tho optimal policy of the mean-variance portfolio selection problem without 

shorting is 

, 卯 ） = 0’ 

XI((JJI) = :ri(a/f) = a:i(u;if) = 1.02， 

ii\(x,{u\)) = uU^i(^f)) = = 1-4696. 

Note that u* is also the optimal policy for the second period with trade-off -2. 

Thus, time consistency in efficiency does hold. 
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Accordingly, the suitable market parameter process, K*，is given as 

Ko = (0.36, o.iy, 

«:(u；!) = (0,-0.2)', K^(uj^) = (0, -0.2)'’ = (0,-0.2)'. 

It is easy to compute the unique signed martingale measure in whose 

density is given by 

^ ( u ; ^ ) = 0.5738, = 1 . 0 1 4 7 , 签 = 2 . 0 4 3 4 ， 

= 0.5738, = 1.0147’ ^ “ ) = 2.0434’ 

= 0 . 5 7 3 8 , 暮 = 10147, 二 2.0434. 

The conditional density process of the variance-optimal signed martingale 

measure is 

芯 ( 盖 丨 令 1 ， 尸 - a . s . 

The above scheme of adding the no-shorting constraint does not guarantee 

elimination of the time inconsistency in efficiency in general. The following 

problem serves as a counterexample. 

Example 5.2. Assume that the basic market setting is the same as Example 

5.1, except for some different random total returns. Please refer to Figure 5.3. 

It is obvious that this market is arbitrage free and incomplete. 

Bailed on (5.2) and (5.3), the pre-committed optimal policy in frictionless 
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(1 52. 0 2, wj) 

(0 82. 0.3. ui]) 
(11 02.0 01. w!) 、 

^ ^ (0 52. 0 5. Uip 

^ ^ ^ (1 52.0 5. u>J) 

(1 52. 0 5. m]) (1 22. 0 3. 01̂) 

52, 0 2, uij) 
, ^ ^ ( 1 52.0 5.4) 

(0 62.0 49. u>；) ^ ^ 
^ (1 22.0 3.o4) 

^ ^ (0.52. 0 2. u»5) 

(0^. P,u)) {o| .P .u i ) 

Figure 5.3: Random return of risky asset 

market can be derived as 

= 0.7642, = 0.7491, 

• /I、 -2E^(d\P3) 
� ⑴ = - 2 n M ： 。 ( 明 广 0167。， 

X,(ojI) = 2.6950, xi(cj?) = 1.1038，Xi(cc；?) = 0.9530， 

咖 ⑷ ) = ( ⑷ + - 宗 ) I S ^ ( … 二 0 • • ’ 

咖 = - n 一 … + ( - - 0 - 纖(…=1.佩 

二 纖 ( ⑷ 十 - 歲 ) I T S ( ⑷ 一一 撒 

It can be checked that the optimal policy for the truncated mean-variance prob-

lem at uj\ is < 0 for all negative Ai. As u;(xi(u;；)) 二 0.4195 

from the above calculation, we can conclude the time consistency in efficiency 

does not hold in this simple example. 

It is easy to see that the pie-committed optimal policy also solves the mean-

variance portfolio selection problem without shorting. As the optimal policy for 

truncated mean-variance problem without shorting at u;J is /Xi) 二 0 

for all negative Ai, the time consistency in efficiency does not hold even when 
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n o - s h o r l i n g , c o n s t i H i n t i s * a d d e d . 

I f w ( � i n t r c x i i i c o a n a u x i l i a r y r i s k y a ^ s s t ' t S 2 w i t h t h e r a n d o m r e t u r n f o l l o w i n g 

a t r i n u i n i a l t i e r s t r u c t u r e g i v e n 1 1 1 F i g u r r 5 . 4 , i t i s t � a s y t o ( � h ( � ( ’ k t h e u i i i q u e i i e s s 

o f t h e m a r t i n g a l e m e a s u r e ' i n i h i t i m a r k e t . 

^ ^ I’ 52 0 2 

(0 S533 0 3 uj j ) 

(1 42 0 01 m；) , 
(1 bO 0 5 

^ ^ (1 50 Ob. (D̂) 

， (0 8044 0 b (Û) (0 5633 0 3 lû) 

(1 52 0 2 u)') 
(1 50 0 5 Wj) 

(1 0277 0 49 tuj) 
^ (0 5533 0 3 u)') 

^ ^ p 52 0 2 uj") 

(8o P P ujl 

I m ^ u i c 5 . 4 ; R a n d o m r e t u r n o f a u x i l i a r y r i s k y c u s s e t 

S i n c t ' t h e s u i t a b l e � m i r k e t p a i a i i u ' t e r p r o c e s s , is g i v r i i cks 

Ko = (0, -0.1)', 

1) 二 (0,0.2)', ^(cjf) = (0,0.2)', = (0,0.2)' 

wv am coinpiilc the imiqm、signet! martingale inea^sure in with iLs eiensitv 

g i v e n b y 

導 =-0.583G, ( • ^ “ ) = —0.2898, (•^“、= -01639, 

二 0 . 5 4 7 9 , ( 与 - 0.9688, (•^“、= 1.9510’ 

^ ( ^ • • I ) = 0.()153, (•^“、= 10880, 力 - 2 . 1 9 1 1 

T h e c o n d i t i o n a l t i e n s i t y p r o c ( \ s s o f t h e v a n a n r c - o p t i n u i l s i g i u n l i i i a r t i i i g a l c 

i i u ' c i s i i r t ' I S 

^ - 謹 ) ’ < 》 ? ) 二 ™ < 笠 丨 — ） 二 丨 则 
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We now proceed to find some sufficient conditions, under which time consis-

tency in efficiency can be achieved when forcing a no-shortiiig constraint. 

Proposit ion 5.7. When Et(Pt) 〉 0 … P — a.s., time consistency in efficiency 

holds in the rntan-variance portfolio selection without shorinig. 

Proof: Consider the truncated mean-variance portfolio selection problem 

without shorting that starts from period s, 

[MV - C l , _ r ) nun V'“厂“灯）+ A E 加 ） 

s.l. Zf+i 二 rfXt 十 P'lUt, t = s,. . . , T - 1, 

Ut > On, Xs is given. 

The possible value of E^(XT) is IH^^a' r^x^, +oo). Assume that the T-period 

optimal policy is given by uj(xt), t = 0,. . . - 1. Then we can prove that the 

truncated optimal policy starting from period s, uj(xt), t - s,... /F - 1, must 

satisfy the following conditions： 

T-l 

Var,{xr)\u' 二 min {V^ar,(xr)|u, s.t. E,{XT)\U = Es(工t)丨u.}’ 
U t > O n 

I.e., the truncated optimal policy at the beginning of period s is also efficient for 

the truncated problem (MV — C*1卜t). 

If it IS not true, tJiere must exist another feasible policy for (T — .s)-period 

problem, Ut(X(), t = 5 , . . . , T — 1, such that 

T-l 

£̂、“工T)|ii = £"s(2>r)|u. > J"J。工，’ 

J = 3 

V(ir,{xr)\u < Var,{xT)\u'-

Combining uj(x,), i = 0,. . . , s - 1 with Ut(X(), t = s,. .. - 1, yields another 

T-period policy. Based on the following two relationships * 

i^oi-rr) = Eo{FJ,{xr)\. 

Vavoixr) = £o[V'ar,(j:r)l + Varo|E,(xr)l, 
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it can be verified that the new combined policy generates a mean-variance pair 

which is strictly better than uj(xt),亡=0’. . .，7" — 1. It is a contradiction to the 

optimality of uJ(Tt), T 二 0，... ’T — 1. Therefore, the truncated pre-committed 

optimal policy is also efficient for the truncated problem, (MV - Clj,_r)- Time 

consistency in efficiency holds. • 

5.5. Conclusion 

The rnean-variance portfolio selection does not satisfy the multi-objective version 

of Bellman's principle, i.e., it does not satisfy time consistency in efficiency. 

When the market is frictionless, the satisfaction of time consistency in efficiency 

IS equivalent to the nonnegativeness of the conditional density process of the 

variance-optimal signed martingale measure in this market. A specific corollary 

is that time consistency in efficiency holds when the market is complete, even the 

return of the risky assets are correlated during the time horizon, which represents 

an extension of the result in Chapter 3. 

When no shorting constraint is added, the optimal policy of mean-variance 

portfolio selection is the same as the optimal policy of mean-variance portfolio 

selection in an suitable auxiliary frictionless market M^*- So does the time con-

sistency in efficiency. We demonstrate via some simple examples that, by adding 

a noshorting constraint, time inconsistency in efficiency can be eliminated in 

some situations. At last we derive some sufficient conditions, under which time 

consistency in efficiency holds in the market without shorting. 
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5.6. Appendix 

Proof of Proposition 5.1 

To solve problem (MV), we consider the auxiliary problem 

A[P) max + 

s.t. it+i 二 n工t + Pt'Ut，Xo is given. 

Define 

— {u(.)|u(.) is an optimal control of (MV,)}, 

n^(^) = {u(.)|u(.) is an optimal control of A{P)}. 

Lemma 5.2. For any A < 0, z/ u(-) € U(mv), then u(-) G n_4(召with d* = 

2EO{xt) - A. 

Proof: Assume that u(-) ^ n乂("•)，then there exists u(.) such that 

{Eoix^r) 一 — P* iEo(xT) — Eoiir)) < 0. 

Set a function 

7r(x,y) = X - y^ Xy. 

It is a concave function in (x, y) and 

7T(EO(XI), EO{XT)) = VARI)(TR) + AEU{JY), 

which is the objective function of the problem (MV,). The concavity of tt iiiiplics 

<7T{EO{XI), EO{xt)) + ⑷ 4 ) — - ( ^ ^ ( ^ r ) - - I 'Mir ) ) 

<TT(EO{XI), EO(XT))-

Thus, u(-) is riot optimal for tlu; pioblein (A7V^), leading to a coriUacliction. • 
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Remark 5.4. The Lemma 5.2 also holds when Ut(-) is constrained in the closed 

subset of R". 

Lemma 5.3. The optimal policy of A{P) is given by 

7 " — 1 

u:(x,) : n r r “仏+ iPtP;)-丨£U0,+ iPt)， (5.15) 

“；=M 1 

where positive 6i can be corjipiUe recursivtly as, 

e, = • … ) —厂 , (仏 ‘ i P t ' ) / : ; , ( 0 , + iPtP'J-i£;(^( + iPt)’ t = T - l r " ,0, 

with boundaj'y conditioji Of ~ 1. 

+ Proof: The cost-to-go function of. problem is defined as, 

- max E (-x^ + ̂ i r l ^ t ) • 

liT ,T>t 

Clearly, it ha^ recursion. 

•JA-r-t) = niax Et (Jt , 
lit 

丄r(iT�=-工!+ Pocr-
• / 

At period t = T - 1, 
J 

,；-/•_ I (.T-r-1) 

-max AV-1 { — (rr-ixr-i + + 0{rT-iXT.i - H P t - i U t - i ) ; 
UT- 1 

= - + Prr-iOr-iXr-i + —(1 -

and 

Or-1 = 1 - /^V-1 ( P t - 1 ) 1 ( P t - 1 P t - 1 ) ^ t - i ( P t - i ) > 0，P-a.s. 

Note that dp-] > 0 is the conclusion of the positive definite of the conditional 

covariance matrix of . 
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At period t 二 T - 2� 

Jt-2(xt—2) = max Et-2{i (^r-1)]' 
U T - 2 

=-rT-27'T-l^T-2^T-2 + 3 7 ^ - 2 『 丁 一 \ 0 丁 - 2 工 丁 - 2 + (1 — 没 T - 2 ) ’ 

UT-2(^2) = (TT^ 7̂ -2工7̂ -2)£̂丄2(权了一 lPT-2P'T-2)芯"^-2(没T-lPT-2)• 
扣 - l 

We can define an equivalent probability measure Q with density 

^ 二 OT-I 

^ 二 知-1)' 

Then 

OT-2 = ET-2{0T-I)[1 - 一 2 ( P ' T - 1 ) (绍 - 2 ( P T - l P ' T - 1 ) ) —1 辟—2(PT-1)1. 

It is easy to see that the conditional covariance matrix of eJp_2 under the equiv-

alent probability measure Q is also positive definite, which further implies 

Ot-2 > 0, P-a.s. 

by noticing ET-2(0T-\) > 0. 

Solving the problem dynamically, the conclusion follows. • 

Applying the optimal policy (5.15), we have 

了一 2 

Eo{x*r) = ]jrjeoxo + ^{l-0o). 

Baiied on Lemma 5.2, the optimal auxiliary parameter, 

T-l 

j=o 

is the solution of = 2EQ{X^) 一 A. 



CHAPTER 6 

CONLCUSION 

Revisiting Markowitz's classical mean-variance model for markets consisting of 

‘ all risky assets, one key recognition in our investigation is the dual realization 

of mean-variance pairs. The implication of this finding could be profound. We 

essentially reveal a violation of the one price law in the mean-variance world 

and even raise concerns of arbitrage opportunities in the sense of mean-variance. 

By removing the constraint of binding budget spending and reexamining the 

classical mean-variance problem under an expanded three-objective framework: 

Maximizing the expected future wealth, minimizing the risk (variance) of the 

future wealth and minimizing the initial investment level, we have identified the 

set of portfolio policies which are efficient in the original mean-variance space, 

and are, however, inefficient in this newly introduced three-dimensional objective 

space. Stimulated by the revealed non-monotonic phenomenon in the mean-

variance world, we introduce the concepts of pseudo efficiency (type 1) and (type 

2) and have demonstrated that we can do better than the classical mean-variance 

when removing the binding budget spending constraint. 

The mean-variance framework in dynamic portfolio selection is not time con-

sistent, due to the inherent nonseparable nature of the involved variance term. 

The trade-off between the two conflicting objectives, the expected value and the 

variance of the terminal wealth, is time-varying and state-dependent. In some sit-

uations where the wealth level exceeds some threshold, the trade-ofF may change 

160 
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its sign, which implies that the investor changes his/her risk attitude towards 

the objectives, leading to time inconsistency in efficiency and irrational trading 

behaviors for the remaining investment periods. 

In a market with riskless asset, we retain the efficiency of the portfolio policy 

for all time periods by devising a revised mean-variance policy. While achiev-

ing the same mean-variance pair of the original pre-committed optimal rnean-

variance policy, the revised mean-variance policy enables investors to receive a 

free cash flow stream. Note that the probability of receiving free cash flow stream 

and its expected value are both path-independent when the returns of risky assets 

at different periods are independent. 

Moreover, in a market with all risky assets, by relaxing binding budget spend-

ing at the beginning of period s、we extend the concept of pseudo efficiency 

(type 1 or type 2) to a dynamic setting. Two kinds of revised policies have been 

pr\)posed accordingly. The first revised policy eliminates possible phenomenon 

of type-1 pseudo efficiency and achieves the same mean-variance pair attained 

by the original pre-committed optimal mean-variance policy. Furthermore, it 

enables investors to receive a free cash flow stream. The second revised policy 

eliminates possible phenomenon of type-2 pseudo efficiency and achieves the same 

total mean and less total variance, when compared to the original pre-comrnitted 

optimal mean-variance policy. Furthermore, the continuous-time optimal mean-

variance policy in a market with all risky assets has also been derived. Two re-

vised policies, which are similar to their counterparts in the discrete-time setting 

have been proposed to the continuous time setting to attain better performance 

than the original pre-committed optimal mean-variance policy. 

When the market is frictionless, the satisfaction of time consistency in effi-

ciency is equivalent to the nonnegativeness of the conditional density process of 

variance-optimal signed martingale measure (VSMM) in this market. A specific 

corollary is that time consistency in efficiency holds when the market is complete, 

even when the returns of the risky assets are correlated during the time horizon. 
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However, when no shorting constraint is added, the optimal policy of mean-

variance portfolio selection is the same as the optimal policy of mean-variance 

portfolio selection in an optimal auxiliary frictionless market MK* • So does the 

time consistency in efficiency. We illustrate by two simple examples that it is 

possible to eliminate time inconsistency in efficiency by enforcing a no-shorting 

constraint in some situations. We then give the sufficient conditions, under which 

time consistency in efficiency will hold in the market without shorting. 

Looking into the future, the fact that we can do better than both the classi-

cal and pre-committed optimal dynamic mean-variance policies, revealed in this 

thesis, could have a profound impact on the theory of asset pricing and provide 

some possible answers to some paradoxes which have puzzled us for so many 

years. We understand that this further step could be very challenging, as we 

switch our investigation from an individual decision making framework to an 

equilibrium market setting. 

Up to this stage, the revised policies introduced in this thesis only consider the 

possibility of taking money out from the portfolio. It is also reasonable to think 

over the possibility of adding part of the free cash flow or external money back 

to the portfolio. This consideration is more realistic and may further improve 

the mean-variance investment performance. 
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