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Introduction

Ion-beam techniques play an important role for the modification of materials. Ion im-
plantation is commonly applied in microelectronics and for the hardening of steel, e.g.,
ion sputtering and ion etching to modify surfaces or to deposit thin layers. The appli-
cation of these techniques is not always straightforward. Many experimental parameters,
i.e. ion energy and dose, annealing time and temperature, have to be well chosen. In ion
implantation, e.g., the depth distribution of the implanted ions is strongly influenced by
the kinetic energy of the ions.

As the relevant processes are very complex, no adequate theory exists to predict ma-
terial properties. In order to experimentally optimize the process parameters, large series
of experiments are needed. Alternatively, computer simulations can be used, as for exam-
ple with the well-known computer code TRIM [Zie 92] which sufficiently predicts depth
distributions for ion energies above several keV. They are often less expensive and less
time-consuming than true experiments which is much appreciated by researchers and in-
dustry alike.

Simulating atomic interaction presents a second appealing advantage. Within the sim-
ulation, the behaviour of the single atoms is calculated and can be observed in any desired
detail. Thereby, simulations can be used as a time-resolved microscope on the nanometer
scale, giving a deeper insight into the physical processes, which, in real experiments, is
often very difficult to obtain.

In order to have reliable results with computer simulations a well-suited model is
needed. Besides the description of the solid via its constituents and its crystal structure,
the main assumptions of the model are related to the interactions within the system
under study. Starting from the initial conditions and using the defined model, physical
problems can be solved iteratively or statistically, thus allowing to predict properties in a
deterministic way. If the model is well known and experimentally tested, experiments can
be avoided or optimized in the tested range of the model.

The interaction of atoms within a solid is usually approximated by so-called inter-
atomic solid state potentials. Experimentally, potentials have mainly been investigated
in two limiting cases, very low and very high energies. In the high-energy regime, above
several keV, experiments have been performed using ion scattering at gas targets or ion
transmission through thin foils. Furthermore, depth distributions after ion implantation
have been analysed. At the other extreme, potential functions can be fitted to equilib-
rium properties as elastic constants, the cohesive energy, or crystal structure. Neutron
scattering at phonons can also be used to experimentally access this region. The most
important high-energy and equilibrium potentials, applied within this work, are presented
in Chapter 1.



2 Introduction

Due to the continuous miniaturization, especially in microelectronics, ion energies are
continuously reduced. Interest that focused on MeV or high keV energies for a long time,
is more and more extending to the low keV regime, as for the creation of shallow p-
n junctions. In the relevant energy range, between the vacuum level (0eV) and about
1000 eV, the knowledge of interatomic potentials is very limited. The only experimental
method, low-energy ion (surface) scattering, mainly tests the interatomic potentials at the
surface of the sample and not within the bulk crystal.

An alternative approach is given by the Gamma-Ray Induced Doppler broadening
(GRID) technique which was developed in the mid-1980s at the Institut Laue-Langevin
(ILL) for the measurement of nuclear level lifetimes [Bor 88, BorJol 93]. The use of
single-crystalline samples was proposed in 1992 [HeiJan 92]. This so-called Crystal-GRID
method was predicted to yield Doppler broadened energy spectra with a fine structure,
depending on the crystal orientation.

In GRID experiments, sample nuclei are excited by thermal neutrons that penetrate
the bulk. The capture reaction leads to excited nuclei that de-excite via successive photon
emissions. The primary photon entails a recoil of the capture nucleus that starts moving
through the crystal with an initial kinetic energy of several hundred eV. The secondary
photon allows to read out information about the velocity of the recoiling atom via the
Doppler shifted energy. As this velocity is related to the interatomic forces experienced,
the recoiling atoms probe the interatomic potentials. In a measurement, many photons
are observed, a Doppler broadened energy spectrum is obtained. Its fine structure should
allow the study of interatomic potentials at intermediate energies going from several eV
up to 200eV to 300eV, typically.

As the neutron capture reaction takes place within the bulk and the kinetic energy of
the captured neutron can be neglected, Crystal-GRID is not influenced by the interaction
of a probing particle with the surface of the material under study. A detailed description
of the experimental method is given in Chapter 2.

The first Crystal-GRID experiments were performed in 1995 [Jen 96b, Jen 97a], prov-
ing the existence of the predicted orientation-dependent fine structure. It was further

shown that it might be possible to study interatomic potentials. However, statistics were
insufficient for definite proof.

This work focuses on the applicability of the Crystal-GRID method. Its major aim is to
show if and to what extent Crystal-GRID can be applied to the study of interatomic solid
state potentials at intermediate energies. For that purpose, three important sub-topics
can be defined. First, it must be checked which solids are suited due to their nuclear
properties. Second, as the Crystal-GRID method is very young, studies with respect to
the theoretical description and data evaluation are needed. And third, an experimental
proof of the applicability needs to be obtained on the basis of a correct data evaluation.

In order to obtain the high energy resolution, needed to resolve the energy spectra,
double crystal spectrometers have to be applied. Due to the low efficiency of these devices,
measurements can only be performed at the world’s most intense source of thermal neu-
trons, the high-flux reactor of the Institut Laue-Langevin (ILL) in Grenoble. It quickly
turned out that the efficiency of the ultra-high resolution spectrometers GAMS 4/5 presents
one of the major limitations of the method.
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@_ model system real system model @
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v A
test of test of test of model
model theory and/or theory

FIGURE 1: The real system is modelled by the crystal structure and the interactions among
the particles. Using an appropriate theory, results of experiments can be predicted. Comparing
these results to experimental findings, the model and the approximations of the theory are tested
simultaneously (right side). Computer simulations allow to distinguish the influence of the model
and of the approzimate theory. When comparing the predictions from computer simulations to the
theoretical results, only the approximations of the theory are tested. Comparing the predictions
to ezperimental findings, the model can be improved. As the interatomic potential is part of the
model, its parameters can be optimized by fitting the predicted lines to the experimental scans
(Figure adapted from [AlIT4l 87, p.5] [Hab 95, p.2]).

Neutron capture cross sections of different nuclei vary by several orders of magnitude.
Unfortunately, most solids of interest only consist of atoms with low cross sections. A
systematic study within this work shows that expected count rates in Crystal-GRID mea-
surements are much lower than those previously obtained in many nuclear physics GRID
measurements. The experimental setup and the results of the study of applicability due
to the nuclear properties are discussed in Chapter 3.

In the case of Crystal-GRID, Molecular Dynamics (MD) or Restricted Molecular Dy-
namics (RMD) simulations are used to calculate the slowing down of the recoiling atoms
and thus to predict the Doppler broadened energy spectra on the basis of the model.
Details on how to perform computer simulations of the slowing down and how to derive
Doppler broadened energy spectra from these simulations are given in Chapters 4 and 5.
For the first time, a microscopic study is used to explain the observed fine structure of the
spectra, which attributes the fine structure to single collisions with neighbouring atoms.

The aim of improving interatomic potentials can be achieved by comparing experi-
mental and simulated spectra (see left side of Fig. 1). If both spectra agree, the model
sufficiently describes the physics being studied, it is correct in the tested domain and to
the precision of the experiment. Otherwise, the model must be improved until the best fit
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is achieved.

In order to judge the consistency of model lines and experimental data, a statistic is
needed. Due to the low yield in the measurements, the applicability of different statistics
to Crystal-GRID measurements is tested. It turns out that the statistic used for the
data evaluation until this work, may not be applied to Crystal-GRID measurements. The
different statistics and their application to Crystal-GRID data is discussed in Chapter 6.

GRID lines for poly-crystalline samples are commonly predicted by a mean free path
approach (MFPA) of the slowing down. This theory is based on the same model as
the simulations. It avoids time-consuming calculations, but using further approximations
instead. As can be seen in the right part of Fig. 1, the influence of the model and
of the approximations of the theory are not separated, if comparing these theoretical
predictions to experimental results. When comparing the derived theoretical Doppler
broadened energy spectra to the results from the computer simulations, however, it can
be checked whether the approximations of the theory are justified (see left side of Fig. 1).
Only if the correctness of the approximations has been verified, can this comparison be
used to test the model. Therefore, the different approaches are compared in Section 8.3.

For over ten years, scientists have tried to apply GRID measurements to the investiga-
tion of interatomic potentials. A first try has been published by Jolie et al. in 1989 [Jol 89]
using different poly-crystalline samples containing Ti. In 1991 and 1992, a series of papers
was published by Kuronen and Keinonen. Therein, several GRID measurements were re-
evaluated, comparing different interatomic potentials [Kur 91, Kei 91, Kur 92]. The first
application of Crystal-GRID to the investigation of interatomic potentials was performed
by Jentschel etal. [Jen 97a]. In parallel to the present work, Stritt etal investigated
interatomic potentials in single-crystalline metals [Str 99b, Str 99¢, Str 99al.

However, due to several problems, the definite proof of applicability is not obtained
until this work. A complete survey of the attempts and a discussion of different criteria
to judge which potential is best is found in Chapter 7.

Due to the low experimental yield, measured data. are not suited for methodical studies
of the sensitivity of Crystal-GRID measurements to nuclear level lifetimes and to potential
parameters, e.g. For that reason, artificial GRID data are applied within this work, allow-
ing for the first time to check several predictions concerning the application of Crystal-
GRID. As the Crystal-GRID method is very young, similar studies have not yet been
performed. The results are discussed in Chapter 8.

Within this work, Crystal-GRID measurements have been performed using ZnS, Si, and
TiO. single crystals. The data have been evaluated in order to determine best potential
parameters, nuclear level lifetime, or to determine angular correlation parameters. The
results are reported in Chapter 9. As the commonly applied data evaluation had to be
essentially revised, measurements using Cr, Fe, and Ni single crystals were re-evaluated.
This re-evaluation allows to show that a correct statistical data treatment is essential to
avoid false conclusions from measurements.

Finally, after the summation, a brief look at the future of Crystal-GRID is discussed.



Chapter 1

Classical interatomic solid state
potentials

Interactions between particles are described by the forces acting between them. If these
forces F are conservative, they can be related to an interatomic potential V', also called
potential-energy function

F=-VV (L1)

where V' only depends on the position vectors of the interacting particles.
Any potential-energy function V' describing interactions among N particles can be
resolved into one-body, two-body, three-body, etc. contributions

N
V (r1,r2, ..., IN) = ZVl (r;) + Z Vo (rs,r;) + Z Vs (13,75, Tg) + ... (1.2)

i=1 i<j i<j<k

In order that this representation be useful, it is necessary that the component functions V,
converge quickly to zero with increasing n. For closely packed systems with ionic bonding,
only two-body terms are needed to describe the system. In semiconductors of the diamond
or zinc-blende structure, however, three-body terms are essential to stabilize the crystal
structure. Higher terms are generally neglected.

The first term is a constant value as long as no external forces are regarded. It has no
influence on the calculation of forces and can therefore be freely chosen. The two-body
term V, only depends on the distance r;; = |r;;| = |r; —r;| of the two particles, and
not on the absolute positions in space. Also, the three-body term V3 must possess full
translational and rotational symmetry; it only depends on the interatomic distances r;;
and r;;, as well as on the angle 0, in between r;; and ry, leading to

V (r,rs,...,Tn) = Z Va (ri5) + Z V3 (74, Tik, Ojik) + const. (1.3)

i<j i<j<k

As discussed in the introduction, experimental methods allow to access interatomic po-
tentials in the two limiting regions of very high and very low energies, respectively. Typical
high-energy (HE) and equilibrium (EQ), i.e. low-energy potentials will be presented in the
following two sections. Section 1.3 will be dedicated to the interpolation between the two
regions allowing to get a complete interatomic potential function for the full energy range.
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1.1 High-energy potentials

In ion beam physics, samples are mostly bombarded by high-energy ions (typically 10keV
to 2MeV). These ions penetrate the bulk and approach the bulk nuclei to very small
distances. They lose energy to the target via electronic and nuclear interactions. For
the energies, relevant in this work, electronic stopping is negligible compared to nuclear
stopping. The nuclear stopping in high-energetic collisions can be well approximated by
a sequence of two-body collisions. Consequently, so-called pair potentials, only containing
two-body terms, are sufficient to describe the high-energy regime.

1.1.1 Screened Coulomb potentials

Free nuclei (fully stripped ions) interact via the Coulomb force. If looking at two colliding
atoms, the Coulomb interaction is partially screened by the surrounding electrons. This
behaviour is reflected by the so-called screened Coulomb potential V€, defined for a pair
of interacting atoms as

1 ZZ;e? Tij
VEC (ry) = y— n-;— . B <.a_:.) (1.4)

Coulomb potential screening function

where r;; is the distance between the two particles, Z; and Z; are the atomic charge
numbers, e is the electron charge (1.602x 10~ C), and &q the vacuum permittivity (8.854x
10—12 Fm—l) .

The screening function @ depends on the interatomic distance r;; which is scaled to the
so-called screening length a,. Several expressions have been proposed, e.g. in the famous
potentials of Thomas-Fermi, Moliere, Lenz-Jensen, or Bohr (see [Zie 85)).

In this work, mostly the so-called universal (ZBL) potential will be used where the
screening function @ is defined as

4
Tij —dl 7‘1;]'
k.7 R E — Y 1.
(I,(CLS) =1 CzeXp( Qg ) ( 5)

with a;, = 0.88534 ap (27 + Z7)" (1.6)

Here, ap is the Bohr radius (0.529 A), and ¢, di, z, and y are constants, listed in Table 1.1.

This potential has been developed by Ziegler, Biersack, and Littmark. They calculated
the screening functions for 522 randomly chosen atom pairs using a simplified quantum-
mechanical approach starting with the two atomic charge distributions of the colliding
atoms (for any details see [Zie 85, p.24ff]). After scaling the distance r;; to the Z-dependent
screening length a,, the screening functions of all the combinations of atom sorts became
very similar. By optimizing the parameters = and y in the definition of a, (Equation 1.6),
the scatter of screening lengths could be reduced to o ~ 18% for V€ > 2eV. The
parameters ¢; and d; were then fitted to the average screening function. The universal
(ZBL) potential is assumed to be the best mean potential available for high energies
[Eck 91, p. 62].

A different set of parameters had been derived, some years before, by Wilson, Hag-
gmark, and Biersack [Wil 77]. The so-called Krypton-Carbon (KrC) potential has the
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universal (ZBL) potential | KrC potential

[Zie 85] [Wil 77]

¢ 0.028171 0.190945

Co 0.28022 0.473674

c3 0.50986 0.335381

(A 0.18175 0

dy 0.20162 0.278544

dy 0.40290 0.637174

ds 0.94229 1.919249

dy 3.1998 0

T 0.23 0.5

y 1 -0.666667

TABLE 1.1: Parameters of the two screened Coulomb potentials applied in this work.

same functional form as the universal (ZBL) potential, its parameters are also listed in the
table. The KrC potential will be occasionally used in this work. Both of these potentials
are mean potentials and are therefore universally applicable, but not optimally suited for
a specific pair of atoms.

Géartner and Hehl applied a similar method to derive interatomic potentials
[GarHeh 79]. Their screening functions are calculated for a special pair of interacting
atoms, the representation is numerical. In this work, these so-called Gértner-Hehl (GH)
potentials will be applied in the case of ZnS and TiO,. The screening functions have been
calculated by Gértner [Géar 98, Gér 00]. The disadvantage of a numerical representation
is that there is no parameter that can be easily varied in order to further optimize the
potential function. ,

The applied screened Coulomb potentials are good approximations in the high energy
region, certainly down to 1000 eV. Below this energy, it is difficult to experimentally check
their validity.

Optimizing a screened Coulomb potential is most effectively done by varying the screen-
ing length. As for a given atomic interaction, the charge numbers are fixed, the parameters
z and y are correlated. In order to optimize the screening length, only one parameter is
needed. In this work, the number 0.88534 in Equation (1.6) will be multiplied with a
factor between 50% and 200%.

1.1.2 Born-Mayer potential

A different, very simple formulation of a pair potential is given by the so-called Born-Mayer
(BM) potential VM which can be written in the form!

VM _ 4 e (_-;"_Bf;) (L7)

with the adjustable parameters Agy and Bpy. Parameters for 104 homo-nuclear pairs
of neutral ground-state atoms as well as a combining rule for hetero-nuclear pairs are

1The BM potential is sometimes defined as Agm exp (—bpmri;) with by = 1/Bgm. This is the case
in the original publication [Abr 69].
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F1GURE 1.1: Interatomic potentials for the Zn—S interaction. The high-energy potentials ZBL,
KrC, and GH show a very similar run. The BM potential, however, is completely different. A
typical interpolation between the high-energy and the equilibrium potential is also shown. The
Va-azis is plotted in a linear scale below 4eV, and in a logarithmic scale above 5eV.

given in [Abr 69]. The parameters have been derived basing on the Thomas-Fermi-Dirac
approximation. They are supposed to be correct to about 4% for interatomic distances
0.8A < r; < 1.8A [Abr 69]. As can be seen from Fig. 1.1, the BM potential using the
parameters of [Abr 69] looks very different compared to the screened Coulomb potentials.
It is more repulsive for low energies. The stated accuracy is not correct. However, by
changing the parameters Agym and Bgum, a good potential in the medium energy range can
be obtained. :

The BM potential is often used as it can be easily implemented. Many authors who
developed potentials for metals, e.g., used the BM form with individually adapted param-
eters for the high-energy part (compare Sections 1.2.2 and 9.4). Furthermore, the BM
potential is of special importance to GRID, as the MFPA theory, still commonly applied
to calculate powder GRID lines, bases on this potential (compare Section 8.3.2).

1.2 Equilibrium potentials

Equilibrium potentials are developed in order to describe the solid (or liquid) phase of a
material. These potentials must reproduce the correct crystal structure. Among different
possible atomic arrangements, the stable structure must yield a minimum of the potential
energy. It is evident that equilibrium potentials depend strongly on the material studied,
i.e. on the crystal structure and on the type of binding.

Whilst the screened Coulomb potentials are purely repulsive, equilibrium potentials
are repulsive for distances smaller than the nearest neighbour distance and attractive for
larger distances. Quite generally, the additional constant in V' is chosen in such a way that
the vacuum level is at 0 eV and thus the potential minimum at —e where ¢ is the binding
energy per atomic bond.
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parameter Si GaP ZnS
[StiWeb 85] | [Ich 96] | (this work)
€ eV /bond 2.1675 1.78 1.58
A 7.049556277 | 7.62333 | 7.71484
B 0.6022245584 | 0.681 0.693
o A 2.0951 2.0642 2.0439
A 21.0 29.57 15.266
a 1.80 1.80 1.80
p 1.20 1.20 1.20

TABLE 1.2: Stillinger-Weber potential parameters for Si, GaP, and ZnS.

1.2.1 Stillinger-Weber potential

The so-called Stillinger-Weber (SW) potential [StiWeb 85] was first proposed in 1985 in
order to describe interactions in solid and liquid forms of Si. Its functional form and
parameters are chosen so that the diamond structure is the most stable structure and
typical crystal properties are reproduced. As “no reasonable pair potential will stabilize
the diamond structure”, the Stillinger-Weber potential consists of two-body and three-
body terms. It is defined as

VB (1) = A [B (})4 - J exp {(fai - a) 4} for 1 < ao (1.8)

2]

VW (v, 15, Tr) = B(Tji, Tk, Oji) + h(Tkj, Tjis Okgs) + P(Tik, Ths, Oins) (1.9

.. -1 . —1
h(rji, Tir,0i6) = €Aexp ['y (% —a) 47 (%E — a) ]

2
. (cos Ojir + %) for rj;<aoc A ryg<ao (1.10)

The three-body term equals 0 for the ideal tetrahedral angle 6; (cosf; = —1/3) and
becomes positive as soon as this angle is changed. The resulting force acts on the atoms
so that they regain the optimal tetrahedral configuration. The potential is smoothly cut
off at the interatomic distance ao; the second neighbour shell lies outside this cutoff.

Parameters for some ITI-V compound semiconductors were derived by Ichimura, [Ich 96].
Following Ichimura, potential parameters for ZnS are calculated within this work (see Ap-
pendix B), the values are listed in Table 1.2 for Si, GaP, and ZnS.

1.2.2 Embedded-atom potentials

Metals are intensively studied in literature, where a large number of interatomic potentials
is published (see Table 9.11). The so-called embedded-atorn method (EAM) is a technique
for constructing potentials especially for metals, originally developed by Daw and Baskes
[DawBas 83, DawBas 84]. Therein, the potential energy V is divided into two contribu-
tions: the energy WEAM to embed an atom into the local-electron density p, at the position



10 Chapter 1. Classical interatomic solid state potentials

of the atom % provided by the other atoms of the metal and the energy due to a short-range
screened repulsive pair interaction ®AM,

VEAM _ 3 gEAN () 1 37 g () (111

i<j

The electron density p; is approximated by the superposition of the atomic electron den-
sities p% of all the atoms.

pi= 3 A (i) (L12)

The embedded-atom potentials are designed to describe the bound state. The repulsive
pair term ®¥AM is of the same form as the term V5 in the general definition of the inter-
atomic potential, Equation 1.2. Indeed, it is often set to be equal to a known repulsive pair
potential, as the BM potential, and thereby allows to extrapolate to closer approaches, i.e.
to higher energies. However, less care is usually given to the short-range interaction and
thus it is not clear whether this extrapolation is useful.

In this work, EAM potentials are used in the re-evaluation of experiments originally
performed by Stritt et al. (compare Section 9.4). To simplify the application of the EAM
potentials, he used an effective pair potential [Str 99b]. In this approach, WEAM (p.) is
developed around the electron density p, in a perfect lattice. This allows to transfer the

first term of the expansion to the pair potential. The so-called effective pair potential
PEAM is obtained [Rud 96]

EAM EAM d\IlEAM
Qo (rig) = @ (ry;) +2p (rij) i (L.13)

P=Pg

Due to this transformation, the new embedding function has null first derivative, it be-

comes less important. Stritt neglected the embedding function completely and used only
the effective pair potential in his simulations, i.e.

VErM (ry;) = BEM (ry5) (1.14)

It is not checked whether this additional approximation is justified.

1.3 Imterpolating potentials

The high-energy (HE) potentials are valid above 1000 eV, the equilibrium (EQ) potentials
well describe the bound state, they may be a good approximation up to several eV. In
order to close the gap, some interpolation method must be applied.

In this work, a function is used to smoothly switch from one potential function to the
other. Two different functional forms are applied: the Fermi function s; (r;;) with the
adjustable parameters ¢ and 6r

1
1+exp (1-13}5‘1)

s1(135) = (1.15)
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and a function — called power-switch function in the following — depending on the pa-
rameters ro and ¢ (£ > 0)

S9 (’f‘,;j) = ———1——— (116)

¢
1+ (";g—)
The parameter 1y defines the switch centre, the parameters ér and ¢ the relevant range
over which the switching is performed. The power-switch function is more adapted to the
interpolation of interatomic potentials, as its value tends to 1 as r;; tends to 0, and thus
for very near approaches, the combined potential equals the high-energy potential.

The switching is only applied to the two-body part, as the high-energy potentials do
not include any three-body term. For near approaches, the three-body force becomes

negligible compared to the two-body forces, anyway.

Potentials are only defined to an arbitrary constant which cancels out when deriving
the interatomic force from the potential function. However, if two potentials are connected

as in
Vo = (BE+0) s+ (W4 ) - (1= s:(ry)) (117)
= [VzHE 8 (rg) + V- (1—s (r,-,-))] +(C1~C) - si(rij) + Co (1.18)
the difference of the constants, C;—C>, does not cancel out when calculating the force. This

additional parameter, not having any physical meaning, is avoided by directly connecting
the two-body forces F3

W (_an® v ]
B=- Iy ( dre 8(riz) + > (1 — s(ri)) (1.19)

and deriving the combined interatomic potential by an integration.
Vo= —/Fg dr (1.20)

This additionally ensures that the combined force function does not have an unphysical
local maximum which could occur when interpolating the potentials and badly choosing
the constants C; and Cs.



Chapter 2

Experimental Method —
Crystal-GRID

The investigation of interatomic solid state potentials at energies below 500eV is often
perturbed by the interaction of the probing particles with the surface of the solid under
study. The GRID ( Gamma-Ray Induced Doppler broadening) method avoids this problem
by using thermal neutrons that penetrate the bulk. A capture reaction leads to excited
sample nuclei without any significant transfer of kinetic energy. The first de-excitation
entails a recoil motion of still excited nuclei. Information on this motion can be read out
via Doppler shifted photons from secondary photons, the recoiling nuclei form nuclear
probes.

The GRID method has been developed by Bérner et al. for the measurement of nuclear
level lifetimes [Bor 88]. A reviewing description can be found in [BorJol 93]. While orig-
inally only poly-crystalline samples were used, Heinig and Janssen proposed in 1992 to
apply GRID to single crystals [HeiJan 92]. The first so-called Crystal-GRID experiments
were performed in 1995 by Jentschel etal. [Jen 96b], proving the existence of a predicted
orientation-dependent fine structure in the measured energy spectra. In the present work,
GRID using powder or other poly-crystalline samples is called powder GRID; the general
term GRID refers to measurements with both, powder and single-crystalline samples.

The physical effects underlying GRID measurements will be discussed in the following.
A summarizing sketch is displayed in Figure 2.1.

2.1 Neutron capture and de-excitation

In GRID experiments, the material to be studied is exposed to an intense flux of thermal
neutrons. Neutron capture reactions generate excited nuclei of mass number A + 1 and
charge number Z, where A and Z are the mass and charge numbers of the capturing nuclei.
The excitation energy is given by the binding energy of the thermal neutrons (=~ 10 MeV),
as the kinetic energy of the neutrons can be neglected (= 25 meV).

GRID can be observed if the de-excitation takes place via at least one intermediate
excited state (y cascade). A typical cascade is displayed in Fig. 2.2. The capture level,
Ei.e; = 8.642MeV, in this case, is depopulated by a first, primary photon v,, emitted in
an arbitrary direction. Due to momentum conservation, the emitting nucleus recoils in
the opposite direction.
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FIGURE 2.1: Scheme of the GRID method. A thermal neutron is captured by a nucleus of the
solid leading to an exzcited nuclear state. The de-excitation takes place via a v cascade. The
emission of a primary photon v, entails a recoil of the still excited nucleus. The trajectory of the
recoiling atom (initial velocity v°) is defined by the collisions with neighbouring atoms, thus by
the crystal structure and the interatomic solid state potential. At the timet', a secondary photon
is emitted and observed by the spectrometer. As the emitting nucleus is moving, the photon’s
energy is Doppler shifted.

If the intermediate excited state, e, = 3.221 MeV, has a short lifetime and decays
under emission of a secondary photon 7,, this secondary photon allows to read out infor-
mation on the recoiling atom’s velocity. It forms a nuclear probe. The decay probability
P(t') dt’ is given by the radioactive decay law

P)dt = Lexp (=) at (2.1)
= - p 7_ 2.

where 7 is the nuclear level lifetime!.
Ideally, the intermediate level is only fed by one transition depopulating the capture

1Often, the half life Tij9 =7-In2 % 0.69 - 7 is given instead of the lifetime 7. In the context of GRID
measurements, the lifetime 7 is used by convention.
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FIGURE 2.2: De-ezcitation cascade of the nuclear reaction 32S(n,v)32S. The 2.380MeV transition
has been used for Crystal-GRID measurements. It depopulates the 3.221 MeV level which is
mainly primarily fed. Two two-step cascades contribute less than 10%. The numbers given are
the nuclear level lifetimes T, the photon energies E.,, the initial velocities v° of the recoiling atom
(calculated from E.) for the feeding transitions, the absolute probabilities Py, for the transition
to occur (% refers to the total number of neutron captures), where relevant, and the nuclear level
energies Eieyel-

state. In this case, all nuclei under study are at rest at their original lattice sites? and start
moving with one fixed recoil velocity ©°. In most nuclei, however, additional so-called side
feeding exists. In Fig. 2.2, e.g., two further two-photon transitions populate the studied
intermediate level. Due to the first recoil of the two-step cascade (transition a and c in the
figure), the nuclei are moving when the second transition (b and d) occurs. Instead of a
mono-energetic initial recoil velocity, a distribution of velocities exists [Jen 97a, Appendix
A.1]. For that reason, it becomes more difficult to extract information on the interatomic
potential from the Doppler shifted photons.

How can one be sure that the observed secondary photon belongs to the cascade under
study? Even though the sample contains different isotopes of the same species and a
multitude of decay channels exists, the energy of the secondary photon can generally
be clearly resolved by the spectrometer. The level schemes of the studied isotopes are
sufficiently well known, so that a measurement of the primary photon is not necessary. A
coincidence measurement of both photons would avoid including the side feeding; however,
the measured yield would be orders of magnitude lower.

Besides the 7 cascades, decay channels including S or neutrino emission also exist.
Corresponding measurements are called BID (Beta decay Induced Doppler broadening) or
NID (Neutrino Induced Doppler broadening). A short comparison of the three methods
is given in [Jen 97a, Chapter 1]. First experimental results are reported by Jentschel et al.
for BID [Jen 96a], as well as by Stritt etal. for NID [Str 97, Str 98, JolStr 00]. In this
work, only GRID measurements will be discussed.

%if neglecting the thermal motion



2.2. Recoil and slowing down 15

2.2 Recoil and slowing down

The emission of a primary photon -, entails a recoil to the emitting nucleus because of
the conservation of momentum

m’ = E, /e (2.2)

where m is the mass and 1° the initial velocity of the recoiling nucleus, E., the energy
of the primary photon, and c the velocity of light. The direction of the initial recoil is
opposite to the random direction of the photon emission.

Typically, the energy E,, of the primary photon is of the order of several MeV. Conse-
quently, the initial velocity v° of the recoiling nucleus lies in between 0.1 A /fs and 2 & /fs,
i.e. between 10~%¢c and 2 - 10™* ¢, corresponding to an initial kinetic energy

B )2
B, = im () = 5] 23
of approximately 100 eV to 1000 eV (Numerical relations are given in Appendix A).

This initial kinetic energy EL,, is well above typical atomic binding energies. The re-
coiling nucleus can leave its lattice site and travel several neighbour distances. The velocity
is slow, however, compared to typical electron velocities. The electrons can adiabatically
adjust to the nucleus; the nuclear probe consists of a recoiling atom.

The motion of this recoiling atom is governed by the collisions with the neighbouring
lattice atoms leading to a slowing down. Its trajectory through the phase space (position
r(t) and velocity v(t)) is defined by the crystal structure and the interatomic forces, i.e. by
the interatomic solid state potentials. As the collision partners can be found on neighbour
shells that have well-defined distances to the starting position of the recoiling atom, the
slowing down will be enhanced near a neighbour shell and reduced elsewhere. After about
100 £s the atom has lost most of its initial recoil energy and moves slowly, again. On the
time scale of several 100 fs, the situation can be described as an equilibrium at enhanced
temperatures, due to the deposited energy. This regime will be called “quasi-thermal”
within this work.

In a single crystal, the motion of the recoiling atoms is highly anisotropic. For example,
the slowing down in the direction of the nearest neighbour (“blocking”) is more efficient
than in the direction between two nearest neighbours (“channelling”). The isotropic dis-
tribution of velocities just after the recoil becomes anisotropic as soon as the interaction
with nearest neighbours becomes non-negligible. In a powder target, this anisotropy is
averaged out by the arbitrary alignment of the micro-crystals. However, in the case of a
single crystal, the anisotropy exists macroscopically.

2.3 Doppler shifted photons and GRID line

The intermediate excited nuclear level of the recoiling atom will decay further. If a sec-
ondary photon 7, of energy EJ_ is emitted at time ¢’ (see Eq. 2.1) along the direction of
observation n, it is detected by the spectrometer. Due to the first recoil, the emitting
atom is moving. Measured in the laboratory system, the energy of the secondary photon
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FIGURE 2.3: Theoretical Crystal-GRID lines. The shape of the Doppler broadened energy spec-
trum depends strongly on the lifetime. a) For short lifetimes with 7 S d/v® ~ 10fs where d is
the nearest neighbour distance, the line is well structured. b) For long lifetimes with T > d/v°,
a central peoak becomes dominant and the fine structure in the wings less visible.

is Doppler shifted by

v(t')-n
AE,,=E,, - E) = E22—(_C)-— | (2.4)
The natural line width of the transition is small. Compared to the resolution obtained in
the measurements, its influence on the GRID line can be neglected for lifetimes 7 > 1fs
[Jen 97a, Figure 1.4].

In a GRID measurement, a large number of neutrons are captured, leading to many
recoiling atoms. However, the number of capture events (= 107/ d for the samples studied
in this work) is small, compared to the number of atoms in the crystal (= 10?%), so that
almost every recoiling atom moves in a perfect crystal.

The recoiling atoms travel on different trajectories, as the primary photons are emitted
in arbitrary directions. The emission of the secondary photons occur at different times.
Therefore, observing many of them, a Doppler broadened photon energy spectrum I(AE.,,)
is obtained, the so-called Crystal-GRID line. The maximum Doppler shift AE., |max cor-
responds to the maximum possible velocity projection (v(#) - 1) |max = v°. It is typically
a few hundreds of eV and can be calculated by combining Eq. (2.2) and (2.4):

ATy e = B0, = 18, P (2.5)
P2IWEX T e 0 T T Y2402 :

‘What does a typical Crystal-GRID line look like? If the intermediate nuclear level is
short-lived, i.e. 7 S d/v® ~ 10fs where d is the nearest neighbour distance, most of the
secondary photons are emitted by fast moving atoms. The Doppler broadened line will
be broad and fine structured due to the anisotropic and time-dependent slowing down
(compare Fig. 2.3a). For long-lived levels, most photons are emitted from slowly moving
atoms, leading to a small shift. In this case, the Doppler broadened line I(AE.,) will have
a significant peak around AE,, = 0 and only small contributions in the wings. The fine
structure is less visible (see Fig. 2.3b). A more detailed look at Crystal-GRID lines will
be given in Chapter 5.
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FIGURE 2.4: Principle of angular correlation measurements. a) Two detectors are placed under
an angle ¢ relative to each other. The simultaneous counts of both are recorded as a function
of the angle. b) Example of a 0-1-0 cascade with the quantisation azis chosen parallel to z. c)
Result from angular correlation measurement. (Figure taken from [MK 94].)

2.4 Angular Correlation

Angular correlation is observed if nuclei decay through successive emission of two photons,
just as in the case of Crystal-GRID. The probability of emission of a single photon by an
excited nucleus depends on the angle between the nuclear spin axis and the direction of
emission. However, as the spins of the nuclei are randomly oriented in the crystal, the
existence of a preferred orientation is averaged out when observing many emission events.

When looking at two successive photons emitted in directions making an angle ¢ be-
tween each other, the observed intensity depends on this angle. In order to understand
the influence of angular correlation on Crystal-GRID, a short look at angular correlation
measurements will be given. For more details as well as a general theory and a large
number of references on angular correlation, refer to [Fra 55, FraSte 65].

Angular correlation measurements

Most angular correlation measurements are coincidence measurements, the principle is
displayed in Figure 2.4. A primary photon is observed by a detector placed in a fixed
direction. Secondary photons are only considered in coincidence, i.e. after a primary
photon has been registered in the detector. Therefore, only a selected subset of the nuclei
is seen. The spin distribution before the second photon emission is not isotropic in this
subset, the nuclei are selected or “prepared” with a preferred spin orientation.

In this case, the angular dependence of the succeeding, secondary photon emission is
no longer averaged out and can be observed. The measured coincident yield depends on
the angle ¢ between the directions of emission of the two photouns, it is proportional to
the correlation function W (¢).

If the nuclear spin states of the initial, intermediate, and final nuclear states are known,
e.g. from prior angular correlation measurements, the correlation function W (¢) can be
calculated from the transition probabilities and the directional distribution functions which
are specific for a certain kind of radiation. Its general form is

W (cos @) =W (0) ~ 1+ AoPs (cos &) + A3 Py {coso) + ... (2.6)

with the Legendre polynomials P, and the parameters A,. Normalization as a weighting
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FIGURE 2.5: After the neutron capture, a primary photon v, is emitted. The excited nucleus
recoils with initial velocity v° and is scattered along its trajectory. Secondary photons vo can only
be observed, if they are emitted in the direction n pointing to the spectrometer. Consequently,
the angle between the directions of emission of the two photons equals ¢ for all observed photons
from this trajectory. :

factor is obtained by the condition

27

W (¢) dp =2m (2.7)

Only even polynomials are needed as the parity is conserved under emission of a photon;
the angular correlation function W (¢) is symmetric with respect to ¢ = 90°, W’ (cos ¢)
is symmetric with respect to 0.

Angular correlation in Crystal-GRID

In Crystal-GRID measurements, the initial velocity v of the recoiling atom is opposite to
the arbitrary direction n.,, of the primary photon emission after neutron capture.

v0=—"-n, (2.8)

A secondary photon can only be observed if it is emitted along the direction n,, =n
pointing to the spectrometer. Looking at a single trajectory with a fixed direction n,,,
the angle ¢ is fixed for all secondary photons from this trajectory (see Figure 2.5).

cosp=mn,  -n,=n, 0= ;:E(()())l) -n (2.9)

Every trajectory makes a different angle ¢ with the direction of observation n, fixed
in a measurement. Consequently, the probability of observing a Crystal-GRID photon
originating from a trajectory is enhanced or reduced by the angular correlation factor
W’ (cos ¢).

2.5 What is Crystal-GRID used for?

Crystal-GRID belongs to the area of nuclear solid state physics. Measurements are per-
formed in order to determine interatomic solid state potentials in the energy range of
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approximately 5eV to 500eV. The measured signal, the Doppler broadened energy spec-
trum, however, also depends on the nuclear level lifetime of the intermediate level. As
reported values have large errors, a precise value needs to be determined by the Crystal-
GRID measurement, as well.

In powder GRID measurements, the influence of interatomic potential and nuclear level
lifetime largely compensates, so that only one of the two quantities can be determined at
once. As nuclear level lifetimes span more than 20 orders of magnitude, errors of around
50% are acceptable. By fixing an interatomic potential, which is expected to be correct
within perhaps 30%, it is possible to determine nuclear level lifetimes which are sufficiently
accurate for nuclear physics.

The use of single crystals is supposed to separate the two variables; the interatomic
potential and the nuclear level lifetime should become measurable at the same time. It is
one of the major aims of this work to examine to what extent this prediction holds true
in real experiments.

Up to now, Crystal-GRID has been used by three different groups. Starting from
1995, Jentschel and Heinig (Forschungszentrum Rossendorf®, Germany) performed the
first Crystal-GRID experiments, confirming the orientation-dependence of Crystal-GRID
lines and showing that the technique should be applicable to the investigation of inter-
atomic solid state potentials [Jen 96b, Jen 96a, Jen 97a, Jen 97b]. After these encourag-
ing results, Karmann and Wesch (Friedrich-Schiller-University Jena?, Germany) started
investigating foreign atom sites with Crystal-GRID [Wes 98, Kar 00]. The investigation
of interatomic potentials was the subject of two almost simultaneous research projects:
the work presented here, as well as an investigation by Stritt and Jolie (University of
Fribourg®, Switzerland) [Str 99b, Str 99¢c, Str 99a, Str 00], revised in this work (see Sec-
tion 9.4). The measurements of all three groups were done in close collaboration with the
ILLS (Grenoble, France), mainly with Bérner and Jentschel.

A historical overview of the investigation of interatomic potentials using both, powder
and Crystal-GRID will be given in Section 7.1, after all concepts have been presented in
the following chapters.

3http://www.fz-rossendorf.de/FWI/
‘http://www.physik.uni-jena.de/
“http://www.unifr.ch/physics/
Shttp://www.ill.fr/nfp/



Chapter 3

Experimental Setup and its
Application

Crystal-GRID experiments can be performed at the ultra-high resolution v spectrometers
GAMS4 and GAMSS5 (GAMma Spectrometer) at the Institut Laue-Langevin (ILL) in
Grenoble, France (see Fig. 3.1). The main reason of using the GAMS spectrometers is that
they attain a very high energy resolution, AE,,/E, is typically 5-107%,i.e. AE, = 10¢€V for
a typical Crystal-GRID transition of about E, = 2MeV. As the maximum Doppler shift
usually amounts to a few hundred eV, this allows to measure the fine structure of Doppler
broadened lines. Unfortunately, the efficiency of the spectrometers is extremely low. Even
though they are installed at the ILL’s high-flux reactor generating the highest permanent
flux of thermal neutrons in the world (= 5-10" cm =25 at the sample), the experimental
yield presents the main problem for Crystal-GRID studies. The new spectrometer GAMS 5
is being developed in order to cope with this problem. Its anticipated improvements will
be described in Section 3.2.

Figure 3.1: Polygone Scientifique in Grenoble, France. The marked cylinder-like building is
the high-flux reactor of the Institut Laue-Langevin (ILL). Just next to the ILL, the synchrotron
facility ESRF can be found.
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detector

FIGURE 3.2: ILL, Grenoble. Sketch of the high-fluz reactor with the -y spectrometers GAMS 4
and GAMS 5 (figure adapted from [Jen 97a]).

The two spectrometers are placed on either side of a through-going tangential beam
tube (H6/H7) containing the sample crystals placed at a distance of 55 cm from the reactor
core. The distance between the sample and the spectrometers is 15 m and 17 m for GAMS 4
and GAMS 5, respectively. Each spectrometer is located in an experimental casemate
together with a -y detector. The setup can be seen in Fig. 3.2.

The spectrometers are built upon vibration isolation platforms. The temperature in
the environmental chambers is stabilized, further humidity and air pressure are recorded.
A short description of the spectrometers will be given in the next section. For any further
details refer to a recent article of Kessler etal. [Kes 01].

3.1 Double flat crystal spectrometer

GAMS 4 is a double flat crystal spectrometer which has been installed as a collaboration
of the National Institute of Standards and Technology (NIST!, Gaithersburg, USA) and
the ILL. For all measurements described in this work, GAMS 5 has also been used in
double flat crystal mode. Fig. 3.3 shows the two common crystal arrangements, called
non-dispersive (left) and dispersive geometry (right), respectively.

Radiation from the sample strikes the first spectrometer crystal. The diffraction at a
set of lattice planes (hkl) can be described by the Bragg condition

nA = 2dsinf (3.1)

where n is the diffraction order, A = hc/E, the photon wavelength, d the lattice plane
spacing of the spectrometer crystal, and 6 the angle between the incident radiation and
the lattice planes.
The Bragg condition allows to determine the angular positions 8, of the maxima in
the diffraction pattern of a given wavelength A
nA

0, (A) = arcsin (ﬁ) (3.2)

Ihttp://www.nist.gov/
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. gl
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FicURrE 3.3: Measuring geometries of a double flat crystal spectrometer. The non-dispersive
geometry, shown on the left side, is used to experimentally determine the instrumental response
Junction. The dispersive geometry (right) is selective in energy and allows to record the Doppler
broadened energy spectra. For further details, refer to the text.

‘When studying a certain transition of wavelength \*, the first crystal is positioned to
fulfil the Bragg condition for this wavelength in a chosen diffraction order n. The diffracted
radiation leaves the crystal under the angle —@,, (\*).

Due to the finite thickness of the sample, an angular spread of the incoming beam exists.
For the GAMS 4 facility this spread is given by 260 = 2mm /15m = 0.13 mrad ~ 27 arcs.
For each incident angle within the spread, a different wavelength A within the wavelength
region [A* — 8\, A" + )] with 6\ =~ 2d - 60/n satisfies the Bragg condition of the first
crystal. Every wavelength A leaves the spectrometer only under its specific angle —6,, (A).

Non-dispersive geometry / Instrumental response function

In the non-dispersive geometry, shown on the left side of Fig. 3.3, the lattice planes of the
two crystals are parallel. In this case, the incident angle at the second crystal is —0, (A)
for all wavelengths X\ within the diffracted interval. All wavelengths A that are diffracted
by the first crystal. simultaneously satisfy the Bragg condition at the second crystal; the
second diffraction does not additionally select in energy.

In Crystal-GRID measurements, the maximum Doppler shift in wavelength is always
much smaller than the spread 26\ of diffracted wavelengths. Consequently, in a non-
dispersive measurement all photons belonging to one transition, Doppler shifted or not,
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FiGURE 3.4: Ezxample of instrumental response and Doppler broadened energy spectrum. The
instrumental response function as calculated by dynamical diffraction theory (narrowest curve)
is broadened by crystal imperfections and small vibrations (dash-dotted line). The theoretical
Doppler broadened energy spectrum, as calculated from MD simulations, is convoluted with this
experimental instrumental response function before comparing theory and experiment. The spec-
trum is calculated for the 2.239MeV transition in Cr, observed in <100> orientation and in
diffraction order (1/2).

are diffracted simultaneously if the second crystal is parallel to the first one.

The Bragg condition only allows to calculate the positions of the diffraction maxima.
A more elaborate description is given by the dynamical diffraction theory. Its application
to a double flat crystal spectrometer like GAMS4, diffracting photons of energy E., in
diffraction order (+n,+m), is implemented in the code Xfneval. For perfect spectrometer
crystals, a Lorentzian-like rocking curve ROEWn’m (A8) with Pendellosung oscillations is
obtained (see [Kes 88, Kes 01] and references therein), where A8 = 0 refers to the optimal
position of the second spectrometer crystal in =m*® order diffraction.

By rocking the second spectrometer crystal around the Bragg angle while keeping the
first one fixed, the instrumental response function can be measured. Due to remaining
imperfections of the spectrometer crystals, the measured instrumental response slightly
deviates from the perfect theory. It can be approximated by convoluting the ideal response
function Ry, ... (Af) from dynamical diffraction theory with a Gaussian G (A8, gey) of
width ey, the so-called excess width (see Fig. 3.4).

I

Frnm (80) = Rp g (80) %G (A, 0u) (3.3)

with G(Al,0e;) = —\/2:1~—~exp (—E%G—L) (3.4)
’ﬁ—er =ew
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Dispersive geometry / Energy-resolved measurement

The spectrometer is transformed to the dispersive geometry, shown on the right of Fig. 3.3,
by rotating the second crystal through 6, (A*) 4 6,, (\*) compared to the non-dispersive
geometry while keeping the first crystal fixed. Here, n is the diffraction order of the first,
m of the second spectrometer crystal, and \* the wavelength of the studied transition.
As in the non-dispersive case, a large number of wavelengths A are diffracted by the first
crystal. In the dispersive geometry, however, the incident angle at the second crystal is
—0p, (A) + 0, (X) + 0, (X*). For m® order diffraction this angle has to be equal to 6,, ().
The diffracted wavelengths A can be calculated by solving this equation

b (\)+ 0, (X)) = 00 (N) +0m (M)
. [\ . [m\ ! . (nA . [ mA

arcsin ( 2d ) -+ arcsin ( 27 ) = arcsin (2_d-) -+ arcsin (—2—67) (3.5)

As arcsin is a monotonous function, and arcsin (z) = — arcsin (—z), the previous equation
can only be fulfilled if

A=AV n=-m (3.6)

e e’
non-dispersive geometry
The second solution, namely n = —m, corresponds to parallel crystals, i.e. to the non-

dispersive geometry where all wavelengths are diffracted. In the dispersive geometry, only
one wavelength is diffracted, namely A = A*. By rocking the second crystal about the
Bragg angle, i.e. by slightly changing A*, the Bragg condition is sequentially satisfied for
different wavelengths A diffracted by the first crystal.

Thus, in the dispersive geometry, the recorded profile reproduces the wavelength spread
of the incoming gamma ray, convoluted by the instrumental response. In this geometry,
the Crystal-GRID line can be measured. Due to the selectivity in energy, the peak height
is generally lower than in a non-dispersive scan.

Spectrometer Crystals / Interferometer

The spectrometer crystals are made out of nearly perfect Si or Ge crystals. The diffraction
efficiency depends on the thickness and material of the crystals, as well as on the energy
of the radiation to be diffracted. Different crystal thicknesses are available. Depending
on the studied energy, it might be useful to change the spectrometer crystals (for more
details see Appendix C.2). However, crystal changing is a time-consuming work and is only
done if a high gain in efficiency can be obtained. Most measurements in this work have
been performed with 2.47mm and 2.72 mm thick Si crystals on GAMS4 and GAMS5,
respectively. Diffraction takes place at the (220) lattice planes.

The high resolution of the gamma spectrometers necessitates a very precise positioning
of the crystals. The rotation of each crystal is controlled by a polarization sensitive
Michelson interferometer with an angular sensitivity of a few times 10~ arcs (for details
see [Kes 01]). The angles are measured in interferometer fringes, one fringe corresponding
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to 0.0402 arcs (GAMS4) or 0.0322arcs (GAMS5). In a dispersive scan, conversion from
this unit to energy, can be done by an equation derived on the basis of Bragg’s Equation
(3.1) [RobJol 90].

(3.7)

0 2
AE,, eV B (E72 [MeV]) '
Af | GAMS4-fringe| 0.01657308473

=

The conversion is applied to angle differences, in order to avoid errors of the absolute energy
calibration. Precise absolute energies are not needed for Crystal-GRID measurements.
Conversion from GAMS 4-fringes to GAMS 5-fringes is done by the factor 1.249438271,
determined by Jentschel from measurements using TiO, on July, 2™¢, and July, 5%, 1999.

For dispersive measurements, it is convenient to rewrite the instrumental response
function RE™, . (A) of Eq. (3.3) as R"Eewnm (AE,,), a function of the Doppler shift
energy AEW, normahzed so that its maximum is 1. Usmg the transformation of Eq. (3.7),
one obtains

O ROE-F:,wn (Ae)
By yism (AE'Y2) ——_————R?’Y“:n’m (0) (3.8)

In some cases, the maximum of the response function is not located at Af = 0, and the
normalization would have to be done differently. However, non-centrally peaked response
functions are not well suited for Crystal-GRID measurements and are therefore disregarded
here.

Detector / Background suppression

The Doppler shifted photons are counted by a high-purity Ge detector. The analog sig-
nals of the detector are amplified and analysed by a multichannel analyser with 8192
channels. Under typical operation conditions, the relative energy resolution of the detec-
tor is AE,/E, = 1073. The Doppler shifted photons belonging to the transition under
study are typically spread over 5 to 10 channels of the analyser. The remaining channels
only register background intensity. The additional energy resolution of the analyser allows
to significantly suppress the background intensity by selecting only those channels that
contain the Doppler shifted photons.

For the measurement of a GRID spectrum, the second crystal is stepped through a
small angular range around the Bragg angle 6,,, (A\*). For each angular position 6; of the
crystal, the complete y-ray spectrum is recorded; finally yielding a matrix A'7 containing
for each selected angular position #; and each channel j of the nulitlchdnnei analyser
a number of counts. Using the graphical user interface Xtrysf, the relevant channels
[7—,7+] are selected. Background suppression in the experimental GRID spectrum ¢ (6;)
is obtained by disregarding all counts recorded in channels outside the chosen window.

Ja
¢ =clf;) = Z AJ (3.9
i

The choice of the window [j_, j.} is arbitrary to some extent. However, an influence on
the obtained results could nexer be observed.
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FIGURE 3.5: Crystal bender [Dol 00]. Bent spectrometer crystals are expected to gain efficiency
and accept thin films instead of thick single crystals. Unfortunately, the bending has turned out to
be much more difficult than foreseen. The bent-crystal mode was not available during the present
work.

Not all photons deposit their total energy within the detector. If a photon undergoes a
Compton scattering reaction, a variable part of the energy is transferred to the scattered
electron. If this electron leaves the volume of the detector, the initial photon energy is
only partially detected and the photon is counted in a lower channel. Compton scattering
leads to an intensity distribution.

Above 1.022MeV, photons may entail (multiple) pair production(s). If one of the
created particles leaves the detector, the energy equivalent of the escaped particle is missing
in the detected energy. The photon is counted in a channel corresponding to the energy
E.,,—0.511 MeV; a second peak is created, the so-called single escape peak. If two particles
leave the detector, the photon is counted in the double escape peak.

Generally, the best signal-to-noise ratio is obtained by choosing only the full energy
peak of the detector. However, as with increasing energies the pair production effect is
enhanced, it is sometimes better to include the single and double escape peaks or even the
whole region of Compton scattering for high energies.

3.2 Prospects for GAMS 5

The second spectrometer, GAMS 5, is supposed to operate in double bent crystal mode
[Dol 00]. However, bending crystals at a precision needed for the GAMS facility turned out
to be very difficult, and work is still in progress. A crystal bender is displayed in Fig. 3.5.
All measurements in this work, including those using GAMS 5, have been performed in
double flat crystal geometry as described in the preceding section.

Using a spectrometer in bent-crystal mode is supposed to significantly increase the
efficiency of the spectrometer. A bent crystal can accept all incoming photons within the
solid angle spanned by the crystal. Assuming a spectrometer crystal size of approximately
2020 mm?, a solid angle of the order of 1077 is covered. In the case of a flat spectrometer
crystal, diffraction is only obtained for parallel radiation. Taking the distance of two
neighbouring atoms within the solid as maximum allowed divergence, an effective solid
angle of 107! can be estimated (= 2 A/15m). On the other hand, a flat crystal captures



3.2. Prospects for GAMS5 27

o \N\a“d circle of B C’J’Sta/

First image of intersection line
"= second image of sample

B crystal

Intersection line with
small Rowland circle
= first image of sample

Sample =
- Source of radiation

FIGURE 3.6: Dispersive geometry of a double bent crystal spectrometer. For each uniformly bent
crystal a Rowland circle visualizes the set of points allowing diffraction ot the crystal. The virtual
image can be found on the same circle. For further details see text.

intensity of the whole, 2mm thick, sample. The curved crystal focuses on a thin layer.
This partly compensates the expected gain in efficiency.

The principle of a double bent crystal spectrometer is shown in Fig. 3.6. Bragg diffrac-
tion by a bent crystal of v rays under the angle 6; is possible for all points on the so-called
“Rowland circle”. The source intersects the small Rowland circle of the first crystal (A) in
a line; different angles of incidence corresponding to different wavelengths or energies are
diffracted. The diffracted radiation of the first crystal can be seen as if it was coming from
the first image shown in the figure. If the second crystal (B) is positioned in such a way
that its Rowland circle intersects the first Rowland circle within the first image, diffraction
becomes also possible from the second crystal. As the image is a line, it intersects the big
Rowland circle only at one point. Consequently, only one wavelength leads to diffraction;
by this means, energy selection is obtained.

This shows that a double bent crystal spectrometer should work like a double flat
crystal spectrometer while yielding higher intensities. Furthermore the focusing allows
to use thin films instead of thick single crystals. A minimum thickness of approximately
0.1 mm is needed, however, in order to simultaneously diffract all Doppler shifted photons
of the transition under study by the first crystal. This requirement is essential in order to
measure GRID lines by rocking the second ervstal while keeping the first one fixed. Both
of these improvements should allow to investigate more solids with Crystal-GRID than
presently possible (see Section 3.5).
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7

FIGURE 3.7: Graphite containers for GAMS sources and direction of observation. The single
crystals are put in three thin-walled graphite containers suspended by a zircaloy rod from o graphite
hanger (distances are in mm). During the ezperiment, the sources are only 55 cm away from the
reactor core.

3.3 Sample Preparation

Single crystals for Crystal-GRID experiments are usually bought in the correct size, needed
for the studies, so that the further sample preparation is very easy. Each single crystal is
put into a separate thin-walled graphite container which is suspended by a zircaloy rod
from a graphite hanger (see Fig. 3.7). The samples and graphite containers are covered
by a thin carbon deposit in order to enhance heat radiation in the reactor.

In general, three oriented crystals of size 17 x20x 2 mm? are used for the measurements,
4 mm thick graphite containers are also on-hand. If sufficiently big single crystals are
unavailable or too expensive, smaller ones can be assembled in the graphite container.
The assembled sample crystals should be as large as the graphite container, as otherwise
the crystals might not be parallel to the optical axis during the measurement.

The graphite hanger is supported by the sample tube mechanism on “V”s which pro-
vide precise alignment. The three containers are semi-automatically introduced in the
tangential beam tube and positioned next to the reactor core. They are placed one behind
each other, so that the spectrometers see a source width of 2 mm, and a height of around
20 mm.

Before the experiment, the orientation of the single crystals should be verified, e.g.
using standard X-ray diffraction. This is especially important, as the samples are highly
activated in the reactor and can not be recovered for analysis after the experiment.

3.4 Crystal-GRID measurements —
the general practice

Crystal-GRID measurements are performed by positioning the first spectrometer crystal
so that the photons of energy E., are diffracted in n*® order. The second crystal is then
rocked about the position corresponding to m*™ order diffraction. At each angular position,
a photon spectrum is taken by the detector for an identical period of time. A set of about
80 to 100 measuring points corresponding to different angular positions of the second
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spectrometer crystal is called a scan.

Several scans belonging to one transition measured in one diffraction order (n, m) using
sample crystals oriented in direction <hkl> is called a series of scans. A set of different
series belonging to one transition is called a measurement of a transition.

Excess width

A GRID measurement consists of three different steps. First, the extra-broadening of the
instrumental response, described by the excess width oew, needs to be determined. As
discussed in section 3.1 the ideal response function can be calculated using dynamical
diffraction theory. The extra-broadening due to imperfections of the spectrometer crystals
and other perturbations has to be determined experimentally.

Non-dispersive scans of an intense transition allow to measure the true experimental
response. The excess width oy can than be obtained by fitting the calculated instrumental
response to the measured scans?.

The excess width is related to intrinsic properties of the spectrometer. Its value can be
used for all the measurements. A dependence on the energy measured or on the diffraction
order used has never been observed. Nonetheless, a «y transition with an energy similar
to the one measured for the Doppler shift is usually chosen. When looking at different
transitions, the corresponding instrumental response is obtained by convoluting the newly
calculated ideal instrumental response with a Gaussian of width oey.

Temperature of sample crystal (thermal velocity)

In a second step, a long-lived state is measured in dispersive geometry. For a long-lived
state, the Doppler broadening is mainly due to the thermal motion of the atoms within the
sample crystal. Therefore, the lines are suited to determine the sample temperature which
needs to be known for the evaluation of the Doppler broadened spectra. The thermal
motion of the crystal atoms yields an additional broadening.

Doppler broadened energy spectra and drift correction

Once these two measurements have been performed, the true Crystal-GRID scans can be
recorded. For a given transition, the diffraction order is chosen as a compromise between
better resolution obtained in higher order and higher efficiency obtained in lower order. As
can be seen from Fig. 3.4, good resolution is important if the fine structure of the Doppler
broadened line is to be resolved.

Due to the low efficiency of the spectrometers, a Crystal-GRID measurement using one
crystal orientation takes at least two weeks. Even though the temperature is stabilized
within the experimental casemates, a change of the atmospheric pressure or humidity leads
to a slight drift of the measured angles. Over a time as long as several weeks, a complete
stability of the instrument is impossible. For that reason, a series of scans is measured
instead of one very long scan, each of them not exceeding several hours.

2The extra-broadening is usually described by the full-width halfmaximum {(FWHM) oI WM of the

Gaussian. This quantity is used as input value in the fitting codes gravel and griddie. The quantity
Oew in the Gaussian, however, is the standard deviation, cIVHM = /EIn2 gew 7 2.350 -
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Of course, the drift also influences the scans themselves. During this work, it has
first been tried to correct for this drift. Fast reference scans of an intense transition have
been measured between the long scans. By monitoring the peak positions of the reference
scans, it becomes possible to approximate the drift function. In slowly drifting regions, the
angular positions within a scan can be corrected. If a sudden strong drift occurs during a
long scan, however, this scan is disregarded in the evaluation. The topic of drift correction
will be addressed in a publication by Jentschel et al. to be submitted.

3.5 Applicability

Information on interatomic potentials can be obtained mainly from the fine structure
of the Doppler broadened energy spectra. In order to contain pronounced fine structure,
solids to be studied with the Crystal-GRID method must contain an isotope, which — after
neutron capture — de-excites via a simple y cascade with a mostly primarily fed, short-lived
(5...40fs) intermediate nuclear level. The primary feeding guarantees a mono-energetic
recoil. If the amount of side feeding was high, an unstructured line would be obtained.

Furthermore, the value of the level lifetime is essential. If, on the one hand, it is too
short, the recoiling atom does not collide with its neighbours before emitting the secondary
photon. The GRID line will be box-like (see Section 5.2.1) and the measurement not
sensitive to the interatomic potential. If, on the other hand, the lifetime is too long, most
recoiling atoms will have slowed down to thermal velocities before emitting the secondary
photon. The fine-structured wings will become insignificant compared to the central peak.

If the Doppler broadened line is well structured, it further depends on the crystal struc-
ture, on the mass ratio of the different atoms in the solid, and on the initial recoil velocity,
i.e. on the energy of the primary photon. However, these influences can compensate each
other. It is not easy to predict whether a transition is suited without calculating the
corresponding theoretical GRID line (see Chapter 5).

In an experiment, a number of additional requirements have to be met. In the reactor,
the crystal temperature can become very high. The crystal structure needs to be stable
up to approximately 1200K, in order to avoid any change in its structure. In any case,
it must be excluded that material melts or evaporates under the conditions in the high-
flux reactor. Further reactor safety requirements must also be considered, e.g. the total
activation has to be sufficiently low to allow a save extraction of the sample at any time.

If a short-lived, mostly primarily populated level exists, the intensity requirement is
the most limiting. The expected intensity mainly depends on the neutron capture cross
section and the probability for the chosen < transition to occur, including the isotopic
abundance of the considered isotope. A detailed discussion of expected count rates is
given in Appendix C.

Due to the intensity requirement, sufficiently big single crystals must be available. The
typical size is three pieces of 17 x 20 X 2mm?3. As soon as GAMS 5 will be operational in
bent-crystal mode, thin single-crystalline films should also be usable (see Section 3.2).

According to the requirement of a simple y-cascade with short-lived levels, light nuclei
would be preferential. However, these isotopes often have very small neutron capture
cross sections. This currently limits the number of good candidates for Crystal-GRID
experiments to nuclei such as Cl, Ti, Fe, Cr, and S.

An overview of measurable nuclei and solids is given in Fig. 3.8. Many of them,
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FIGURE 3.8: Average count rates expected when measuring Crystal-GRID lines for different
materials. The measurement is supposed to base on a transition in the bold-face printed nuclei.
The lines indicate approzimately, the current limit for the Crystal-GRID method. The scale on
the left compares different nuclei. The expected count rate is given per mole. The scale on the
right compares different solids containing the nuclei to be used.

however, are unavailable as single crystals on the cm scale. This is the case for TiN, TiC,
TiP, TiS, TiS,, TiSiz, AIN, BN, and InN, e.g. These solids will only become accessible to
Crystal-GRID when thin films can be used.

Furthermore, improvements of the spectrometer efficiency are urgently needed. An
efficiency improved by at least a factor of 100 would be needed, in order to investigate a
lot of solids that are of great interest in solid state physics such as a number of important
semiconductors.



Chapter 4

Computer simulation of the slowing
down of recoiling atoms in crystals

The slowing down of the recoiling atom needs to be calculated in order to predict Doppler
broadened energy spectra (GRID lines). Usually, for powder GRID experiments, it is ap-
proximated by a so-called Mean Free Path Approach (MFPA) developed by Jolie et al.
around 1990 (see [BorJol 93, Appendix 1] and references therein) and implemented in the
computer code griddle [RobJol 90]. The MFPA theory contains a large number of ap-
proximations. Nowadays, modern computers are fast enough to perform less approximate
computer simulations.

As the velocity of the recoiling atom (< 2A/fs = 2-10%¢) is much below typical
electron velocities (=2 20 A/fs), electronic excitation can be neglected. Kuronen showed
that their effect on GRID lines is negligible [Kur 91]. Consequently, the recoil motion can
be considered within non-relativistic, classical mechanics; the best numerical realisation
of which being Molecular Dynamics (MD). MD is exact within classical mechanics, and,
hence, the results are as good as is the description of the atomic interaction.

MD simulations were first applied to GRID experiments by Kuronen and Keinonen
etal. in 1990 [Kur 91, Kei 91, Kur 92] when they re-evaluated a number of powder GRID
experiments. MD becomes essential for the evaluation of Crystal-GRID experiments, as
the MFPA does not consider any discrete crystal structure and thus can not predict any
orientation-dependent differences.

In this work, an RMD (Restricted Molecular Dynamics, see Section 4.2) code by
Jentschel has been improved and extended to full MD calculations. The major con-
cepts of Molecular Dynamics as well as the performed improvements will be briefly de-
scribed in the following section. For any further details refer to the standard literature
[Hab 95, Hee 90, Hai 92, AIITil 87].

4.1 Molecular Dynamics (MD)

What is the main idea of molecular dynamics? The trajectories of N atoms are evaluated
by simultaneously integrating Newton’s equations of motion for all V particles.

f;=v; and myv; =F;=-V;V i=1,..,N (4.1)
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where r; and v; are the position and velocity vectors of the particle ¢, F; is the acting
force, and V' the interatomic potential.

MD simulations can be performed if the initial and boundary conditions are fixed
and expressions for the interatomic forces between all N atoms are given. In the case of
recoil simulations at 0 K, the initial positions are given by the crystal structure, whilst the
initial velocities vanish. The recoil due to the emission of the primary photon is realized
by setting the initial velocity of the emitting atom to v° in a randomly chosen direction.

A large number of trajectories are simulated by choosing different random directions
for the initial recoil. If the atomic species under investigation occupies multiple lattice
sites of the unit cell, trajectories must be calculated for atoms initially starting from all
of these sites, unless the sites can be transferred to each other by applying the symmetry
operators of the appropriate point group.

MD at finite temperature

In order to consider the enhanced temperature near the reactor core, the initial conditions
are slightly changed. As it is impossible to correctly define all initial positions and veloc-
ities, an equilibration needs to be performed. All atoms are placed on their ideal lattice
sites and given randomly oriented velocities corresponding to twice the thermal energy.
The recoil directions are chosen so that the total momentum of the simulation cell is zero.

Thereby, at the beginning of the equilibration, the simulation cell has twice the ki-
netic energy needed for the experimentally determined temperature of the crystal. An
MD simulation is performed for 5ps, a time sufficient for equilibration. Following the
virial theorem, approximately half of the assigned kinetic energy will be transformed to
potential energy, the other half remains as kinetic energy, once the equilibrium is reached.
Consequently, the correct temperature is obtained without using a heat bath.

To avoid arbitrary effects, the phase space at the end of the equilibration is not used as
an initial condition for all trajectories. Instead, the simulation at equilibrium is continued,
and snapshots of the phase space are recorded every 20 fs, each of them representing the
initial conditions for a new recoil event.

Simulation cell / Periodic boundary conditions

The simulation in this work is performed in a rectangular cell of finite volume. As MD
simulations are time-consuming and a large number of trajectories need to be calculated,
the simulation cell typically contains no more than 63 unit cells. By performing test
simulations with smaller and larger cells, it is checked that convergence is reached, i.e.
whether the cell size is sufficient. A similar test is also applied to the number of trajectories.

To avoid any influence of the cell surfaces, periodic boundary conditions are imple-
mented, i.e. the simulation cell is thought to be repeated identically an infinite number
of times in all three dimensions. All the particle properties, e.g. its velocity, are the same
for all the periodic images of an atom. If an atom crosses the surface of the simulation
box, one of its images enters on the opposite side of the cell with identical velocity. This
approach is correct as long as the cell size is sufficiently large and the forces do not act on
distances longer than the simulation box lengths.

The cell size is chosen so that the recoiling atom does not re-enter a heavily damaged
region during the simulation time of approximately five times the muclear level lifetime
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7. Damage in the simulation cell is, on the one hand, caused by the direct collisions of
the recoiling atom with its neighbours and, on the other hand, by the deposited energy
which leads to a drastically enhanced temperature near the recoiling atom’s track. As heat
dissipation is rather slow compared to the considered simulation time, the local heating
does not additionally influence the trajectory of the recoiling atom. Therefore, cooling via
a heat bath, by scaling all atoms’ velocities, e.g., is not used.

Verlet algorithm

Recoil trajectories can be calculated, starting with the simulation cell, the initial condi-
tions, and an interatomic potential. The motion of all N atoms in the cell is calculated
by integrating Newton’s Equations (4.1) numerically.

I

r; o t () at’
@) = 2+ [ vz(tt)dt
vi(t) = "?*m% /0 Firu),...,en()) dt (4.2)

A number of algorithms have been developed. In this work, the Verlet algorithm [Ver 67]
in velocity form [Swo 82 is used. It is based on the equations

I; (‘[Z -+ At) = TI; (t) + At - Vi (t) =+ (ZA,,:ZZ Fz (t)
Vit EAD) = vit) + 2L Bt + Fi(t + AL (4.3)
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where At is the size of the time step [Hab 95, p. 66].

The implementation is as follows. Using the initial quantities r;(¢ = 0) and v;(t =
0), the initial forces F;(f = 0) are determined. Further time steps can be calculated
iteratively; each iteration consists of four steps. First, preliminary values of the velocities
are calculated and used to determine the new position vectors. Then, the new forces are
calculated, and the velocities advanced to their new values.

1 vi(t+ 3A8) = vi(t) + 7= Fy(t)
2. ri(t+ At) =1;(t) + At - vi(t + FAL)
3. Fi(t+ At) =Fi(r;(t + At),j=1...N)
4. vi(t + At) = vyt + A1) + ALF (¢ + At)
After every time step, the velocity of the recoiling atom is recorded for the calculation

of the Crystal-GRID lines.

Variable time step

In Crystal-GRID simulations, only a very few atoms are fast moving. Furthermore, speed
is rapidly lost by collisions with neighbouring atoms. The MD code has been improved in
order to use a minimum of computing time while keeping good precision by implementing
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a variable integration time step. This is achieved by surveying that in any one step the
fastest atom never moves more than (Ar)__ = 0.0234 A, which is 1% of the nearest
neighbour distance in ZnS. As energy can be transferred from potential to kinetic energy,
the highest possible velocity vmax is approximated by

Viax = ma.X \/2 (Ei,kin + Ei,pot) (4.4)

my

maximised over all N atoms of the cell. The maximum allowed time step (At),,. can be
calculated by

(At)ma.x = (Ar)max /vmax (45)

For historical reasons, the velocity of the recoiling atom has to be recorded with a fixed
time step Aty for the calculation of GRID lines. To combine both concepts, Aty is divided
into ¢ equal periods At, the time step used in the integration.

, Aty
- _ — 1 .
At = Ato)q with g INT( : At)max> + (4.6)

Typically, Aty is set to a value in between 0.25fs and 1fs, depending on the lifetime 7
of the nuclear state. Due to the small value of (Ar) .., the realized time step At is
sufficiently small for a precise simulation of the trajectory. Right after the initial recoil, ¢
can reach values of 20.

Potential cutoff radius / Force tables

The calculation of the interatomic forces mainly determines the total duration of the
simulation. Most of the potentials lead to non-negligible forces only for relatively short
distances. In order to speed up the calculation, a potential cutoff radius r., is used
beyond which the forces are neglected. This cutoff is inherent in some potentials, like the
Stillinger-Weber potential. For the purely repulsive potentials, as ZBL or Born-Mayer, a
cutoff of typically 3.7 A is used.

For two-body interactions — only depending on the absolute distance of the two parti-
cles — force tables are calculated and used to look up the forces during the time loop of the
simulation. The values in between the tabulated ones are approximated by the Newton-
Gregory forward difference interpolation [AlTil 87, p.144]. Its calculation is much faster
than the direct force evaluation and independent of the functional form of the force.

Neighbour lists (improved algorithm)

Even though forces are only needed for neighbours nearer than the potential cutoff radius
T¢p, it would be necessary to determine the distances for all atom pairs. As the duration
of this calculation scales with N2, a book keeping algorithm is used, the so-called Verlet
neighbour list [Ver 67]. The number of distance calenlations is reduced by listing all
neighbouring atoms within the neighbour cutoff r.,, ~ 4 A and not renewing the list
before the calculation of a few time steps.
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a) Fen b) Fon

FIGURE 4.1: Neighbour and potential cutoff radii roy, andrep. o) Two atoms apart by a distance
Tem need to be considered for the force calculation as soon as their distance is reduced by Are. b)
If oscillations by Ar./4 of the atoms around their equilibrium positions are considered without
influence on the neighbour list, the allowed travelling distance is reduced to Arc/4.

An update of the neighbour list has to be performed as soon as any distance between
two non-listed atoms becomes smaller or equal to the potential cutoff distance 7.p. This
cannot occur before the time 2At,, that the fastest atom needs to travel half the distance
Ar, between neighbour and potential cutoff (see Fig. 4.1a)

20ty = (Ar,/2) [Vmax = ([Tc,n - Tc,p] / 2) /Vmax (4'7)

In this work, the neighbour list algorithm has been significantly improved for Crystal-
GRID simulations by taking into account the premises that most atoms in the simulation
cell are moving at thermal velocities, i.e. very slowly, around their equilibrium position.
Only the recoiling atom and the few atoms that had high-energetic collisions are moving
fast and change neighbours rapidly.

Instead of re-calculating the whole list, new neighbours are only determined for those
few atoms that have moved more than Ar./4 since their last neighbour calculation. As
can be seen from Fig. 4.1b), the neighbour list must be renewed after the time At,, that
the fastest atom needs to travel the distance Ar./4, in this case.

Aty = (A’)"c/4) /'Umax (48)

Due fo this improvement, the calculation time of the Verlet algorithm is reduced by a
factor of approximately three and its dependency on the size of the simulation cell is
reduced without losing any accuracy.

Energy stability

Usually, in an MD simulation, the total energy is conserved to high precision. However,
due to the potential cutoff, atoms crossing the cutoff distance, suddenly lose or gain
energy. Energy conservation can be re-established by shifting the forces and potential for

all r < Tep.
F'(r) = F(r)—F(rep)
V(1) = V)=V (rep) + (= 7op) F (rep) (4.9)

This “shifted-force potential” is used in the present code when checking the energy stability
of a newly implemented potential. However, the shifted forces change properties of the
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system, and corrections would be needed in order to extract material properties. As a
perfect energy conservation is not important for GRID simulations, the forces are left
unshifted in the true simulations, following a recommendation of Haile [Hai 92, p. 193].

Simulating side feeding

Besides the main feeding of the nuclear level under study leading to one initial velocity of
the recoiling atom, side-feeding branches may exist in the decay cascade. These additional
decay channels are considered during the simulation.

Let’s assume a 5% side feeding via a two-step decay; 5% of the trajectories are calcu-
lated with the two-step feeding. One atom is first given a recoil. Its motion is simulated
for a time randomly chosen from the radioactive decay distribution of the intermediate
state lifetime. Thereafter, the second recoil is exerted in a randomly chosen direction.
The recoiling atom has now reached the nuclear level under investigation, and the atom’s
trajectory is recorded for the later evaluation.

Statistics are quite bad if one calculates only 5% of the trajectories via the side feeding.
If more time can be spent for the simulation, it is preferable to average over a larger number
of trajectories.

Often a part of the side feeding is not even known. This is obviously the case, when the
reported depopulating probability of a level is higher than its probability to be populated.
In principle, it is possible to use a distribution of initial velocities that can be approximately
calculated from nuclear properties. However, the transitions investigated in this work were
chosen such that the entire side feeding only contributes a little to the total GRID line.
Therefore, the unknown part of the side feeding was neglected.

4.2 Restricted Molecular Dynamics (RMD)

Even using the described concepts, MD simulations are very time consuming, total running
times of several days are common. This is problematic when trying to optimize potential
parameters, as for every set of parameters a complete calculation with a few thousand
trajectories needs to be performed.

A significant gain in speed can be obtained when only calculating the interaction
between the recoiling atom and its neighbours, while ignoring the interactions of the other
sample atoms. This concept is not exact, as opposed to full MD calculations, but it is a
better approximation than the widely-used Binary Collision Approximation (BCA), where
only successive binary collisions between the impinging ion and the nearest neighbours are
considered.

Two studies of range distributions after ion bombardment have compared the three
methods some years ago [Gar 95, PosHei 95]. While the round robin test by Girtner
etal. finds that the binding of the target atoms in 200eV B into Si implantation has
only very little influence, Posselt and Heinig come to the opposite result for 250V Si
into Si. Géartner explains this difference by the different masses of the impinging ions. A
complementary explanation, based on the results obtained in this work, will be given in
Section 8.3.1.

For Crystal-GRID, only the trajectory of the recoiling atom needs to be known. The
interaction between the other sample atoms has little inflnence on the future behaviour
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FIGURE 4.2: Interaction sphere of Restricted Molecular Dynamics simulations. In RMD, only
the interaction of the recoiling atom with its neighbours is considered. The interaction sphere
follows the motion of the recoiling atom.

of the recoiling atom. Therefore, Jentschel adopted the idea of neglecting the interac-
tion among the sample atoms for Crystal-GRID. In his so-called Restricted Molecular
Dynamics (RMD) simulations, only the interaction of the recoiling atom with its neigh-
bours is calculated [Jen 97a] (see Fig. 4.2).

If finite temperatures are to be considered in RMD, all atoms are assigned displace-
ments corresponding to the temperature of the sample. As the total simulation time is
very short, these displacements reflect the temperature influence quite well, the actual
movement of the sample atoms is neglected.

In the present work, RMD and MD calculations will be compared for semiconductors
using artificial data (see Section 8.3.1).



Chapter 5

Theoretical view on Crystal-GRID
lines (Doppler broadened energy
spectra)

GRID lines for an observation along the crystal direction n can be calculated from the
decay law of the recoiling excited nuclei and the phase space trajectories {r; (t),v; (t)} of
recoiling atoms as calculated in an MD simulation of the slowing down. The formalism of
how to calculate GRID lines is presented in Section 5.1.

Tnformation on the atomic interaction is contained in the fine structure of the lines, as
the recoiling atoms’ velocities {v; (t)} are influenced by the interatomic potentials. The
shape of the lines further depends on the nuclear level lifetime 7, the crystal structure, and
the direction of observation n. In order to study interatomic potentials with Crystal-GRID,
a basic understanding of the Doppler broadened energy spectra is needed. Consequently,
the remaining sections make different approaches to explain the fine structure.

5.1 Calculation of Crystal-GRID lines

In a measurement, the direction of observation is fixed. The Doppler shift AE,, of one
photon only depends on the projection

’U” =v-n (5'1)

of the recoiling atom’s velocity v on the direction of observation n (compare Eq. (2.4)).

For a given n, the time-dependent probability P (v;;,t) dvy dt that a recoiling atom
has the velocity projection v;(t) - n in the range vy ...vy + dvy during the time interval
t...t+ dt can be deduced by

Ny Ng
1 -
P(vy, 1) dvy dt = vy — [vi{t) - M, -n]) dvydt 5.2
(vy, t) dy NN ;:1 82:15(1% [vi(t) - M, - nl) dvydt (5.2)

with the first sum extending over the N simulated trajectories. For better statistics, the
Ng symmetry operators M, of the appropriate point group are applied to the trajectories.
If the GRID line is calculated for a powder or for a poly-crystalline sample, the direction
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of observation n is chosen randomly for each trajectory. Instead of applying the symme-
try operators, multiple random directions are used, in order to enhance the number of
trajectories.

Eq. (5.2) bases on the assumption that the emission of a secondary photon is equally
probable for all of the trajectories. As discussed in Section 2.4, however, this is not
the case, if angular correlation is taken into account. The emission probability must be
multiplied by the angular correlation factor W’ (cos ¢), where ¢ is the angle between the
emission directions of the two photons, as defined in Eq. (2.9).

Nt Ng

P(’U",t) d’l)” dt = NT%NS Z}; 5(’Uu — [Vi(t) . Ms . n])
" ~v;(0)-M, -n ’
W () e 69

As the percentage of side feeding is very small, no angular correlation is taken into account
for these branches of the decay cascade, where multiple correlations exist.

The Crystal-GRID line is the distribution of Doppler shifted secondary photons emitted
by the recoiling atoms. It is proportional to the probability density P;(v)) that the recoiling
atom has the velocity projection v| at the time ¢’ of the second y decay. For a given nuclear
level lifetime 7, P-(v)) can be calculated by multiplying P(vy, t) with the radioactive decay
law, Eq. (2.1), and integrating over time:

P (vy) dvy = % [/Ooo exp (—t'/7) P(y,t') dt'] dvy (5.4)

In general, MD simulations for GRID are performed up to tenq & 57 where 99.3% of
the secondary photons have been emitted. Consequently, P(v,t’) is only known up t0 tenq
as well. The remaining part of the integral in Eq. (5.4) is approximated by

P(uy,t") = P(vj,tena)  for &' > tena (5.5)

On the considered time scale, this approximation is exact if the simulation is performed
up to thermal velocities'. In this case, the velocity of a single recoiling atom may further
change, but the distribution of velocities remains a Maxwell distribution of the sample
temperature, as it is at time £.nq.

Using Eq. (2.4), P,(v}) dvy can be transformed to the probability density P-(AE.,) dE,,
of the Doppler shift energy. The transformation only uses a constant scaling factor, the
shape of the line is identical.

¢AE,,\ dE
AE,,) dE,, = =—1]. 14
P.(AE,) dB,, = B (Un 7, ) do %
E©°
= Pr(y) —*dy (5.6)

!The implementation in the program line4 necessitates that all trajectories are recorded with an
identical munber of time steps, i.e. that fepq is identical for all of them.
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This distribution is called the ideal Crystal-GRID line and would be measured with
a spectrometer yielding a 6-like response function. As discussed in Section 3.1, the nor-

malized instrumental response function is given by Rﬁi"’nm (AE,) (Eq. 3.8). Convoluting

the probability density P, (AE.,,) with R}’iy"jn’m (AE,), the theoretical Crystal-GRID line
I, (AE,) can be calculated.

I: (AE,,) = Igr (AE,,) = P, (AE,,) * R, .. (AE,) (5.7)
It gives the proportion of photons, observed at the angular position of the spectrometer

corresponding to the Doppler shift AE.,, , related to the total yield I of diffracted photons
belonging to the transition under study, as observed in a non-dispersive scan with parallel

spectrometer crystals.

5.2 Understanding Crystal-GRID lines

In a well-suited material, Crystal-GRID lines contain a very pronounced structure. The
fine structure is related to the scattering within the sample crystal and thereby to the
interatomic potential. Jentschel explained the peaks by the scattering of the recoiling
atom at the neighbour shells and consequential channelling [Jen 97a, Figure 2.5]. He
showed nicely that the recoiling atoms cumulate in the velocity space. In this work, the
scattering with every single neighbour is analysed in order to further explain how the
structure is created.

5.2.1 Microscopic look at Crystal-GRID lines

Simulations have been performed for seven different atomic configurations. The simula-
tion cells contain the initially recoiling atom and zero to eight neighbours. The nearest
neighbour distance is 3 A. The simulation cell is chosen to be 100 A in each dimension, so
that the recoiling atom only interacts with one image of the neighbours during its flight.
For every set-up, 10,000 trajectories have been calculated. The resulting Crystal-GRID
lines for three different orientations of the atomic configurations are plotted in the first
column of Fig. 5.1.

The lines are derived from simulations in two dimensions (2D). As in true 2D calcu-
lations, i.e. with the initial velocity v in the z-y plane, the obtained Doppler broadened
spectra would be unrealistic, the direction of v is arbitrarily chosen in three dimensions
(3D) and projected into the 2~y plane. This approach is identical to a 3D caleulation with
neighbouring slabs along the z direction instead of neighbouring atoms. Similar results
could be obtained by normal 3D calculations. However, more recoiling atoms would not
interact with any neighbour, and consequently, the structure would be less pronounced.

The remaining columns of Fig. 5.1 show emission points of the secondary photons.
To obtain nice and comprehensible pictures, the emission points have been chosen from
720 trajectories calculated by true 2D simulations, with the initial recoil angle regularly
increased in steps of 0.5°. The observer is located to the right of the figures.

"The colour of the emission points represents the Doppler shifted photon energy. Dark
blue is the maximum blue-shift, i.e. the maximum positive Doppler shift AE. (maximum
energy I, , minimum wave length ), green indicates no shift {energy E,?E‘}, and red is the
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maximum negative Doppler shift (minimum energy, maximum wave length). The blue-
shifted photons are emitted by atoms moving towards the spectrometer, the red-shifted
by atoms moving away from it, and the unshifted by atoms moving perpendicular to the
direction of observation.

The density of the plotted points indicates the probability of decay; decreasing with
time and thus with distance from the starting point. The trajectories are plotted for one
value of the lifetime and followed up to 27.

No neighbours

Fig. 5.1a) shows the GRID line of a non-interacting particle and the instrumental response
function used in the calculation of all the lines. The GRID line has a box-like shape with
smoothed wings due to the convolution with the instrumental response function.

The box form can be easily understood. In the case of no interactions, the velocity
v; (t) of the recoiling atom is unchanged for all times

vi(t) = v;(0) (5.8)
= P(y,t) = P(vy,0) (5.9)
= P, (AE,) ~ P, (v)) = P (y,0) (5.10)

In this case, the ideal Crystal-GRID line P, (AE,) is directly proportional to the distri-
bution P (vy,0) of initial velocity projections, as can be seen from Eq. (5.4).

The initial recoil directions are chosen randomly; the probability of initial recoil di-
rections is constant as a function of the solid angle Q. Using spherical coordinates, i.e.
dQ = 27 sin df and vy (0) = v(0)-n = +°-cosd, the distribution P (v}, 0) of initial velocity
projections can be calculated.

1 dQ
- . < 0
an d'U" d’l)” for I’UHI sv

1 dQ dé d (cos6)

27_1: ’ _(25 . d(COSH) ' d’U”

P (v,0) dvy =

dy

1 . -1 1
= (2msind) - v mdv”
1
= "o
= const. - dy

The ideal GRID line P, (AE,) ~ P (v”, 0) is constant within the possible range of Doppler
shifts, and 0 elsewhere. Taking the instrumental response into account, the shape displayed
in Fig. 5.1a) is obtained.

One neighbour

The situation with only one neighbouring atom is illustrated in Fig. 5.1b). If the neighbour
is located in the direction of observation (<100>), the recoiling atoms moving towards
the spectrometer are scattered by this neighbour. The scattering leads to a slowing down
of the recoiling atom and to a deflection of its direction of movement. Both phenomena
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FIGURE 5.1: GRID lines and emission points of secondary photons in 2-dimensional atom ar-
rangements. Three different sample orientations arc plofied: < 100> (red GRID line;, <11
(green), and <010> [blue). In the last three rows the orientations <1002 and <010 are iden-
tical. The rows show the following atom configurations: aj no neighbours, ) 1 neighhour, )
2 neighbours, d} 2 neighbours at different distanees, e} 4 neighbours (1st neighbour shell), [ §
neighbours {2nd neighbour shell), and g; S neighbours (1st and 2nd neighbonr shells |,



44 Chapter 5. Theoretical view on Crystal-GRID lines
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FIGURE 5.1: (continuation of previous page)

result in a reduced velocity projection. Nearly no secondary photons are emitted with the
highest possible positive Doppler shift. The intensity in the GRID line is reduced at the
right edge (red line) and enhanced towards smaller shifts.

If the neighbour is located perpendicular to the direction of observation (<010>),
those recoiling atoms are scattered that initially move perpendicular to the direction of
observation, i.e. that have a zero Doppler shift. Again, the scattering leads to a slowing
down of the atoms. However, the zero Doppler shift cannot be further reduced. The
deflection of the trajectories leads to an enhanced velocity projection. Secondary photons
of the scattered atoms are observed at non-zero Doppler shifts. The corresponding GRID

line has less intensity in the centre and enhanced intensity to both sides of the minimum
(blue line).

In the third case, a neighbour placed 45° from the direction of observation (<110>),
the situation is in between the two previous cases. Intensity is reduced at medium Doppler
shifts and enhanced for lower Doppler shifts due to the slowing down (green line). Besides
the central peak, a second peak can be seen at the maximum positive Doppler shift.
It is related to two phenomena. First, the atoms initially moving towards the observer
are nearly uninfluenced by the neighbour and thus continue to contribute photons with
maximnum Doppler shift. Second, some atoms are scattered into a direction towards the
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spectrometer, yielding higher velocity projections despite the slowing down.

Summarizing the three situations, it can be clearly seen that one neighbouring atom
causes one region of reduced intensity, i.e. one valley, in the GRID line. This region can
be located at any Doppler shift energy, not only in the centre or at the edge. Therefore,
a single collision can cause multiple peaks.

Two neighbours

Fig. 5.1c) shows the case of two neighbouring atoms. The GRID lines can be explained in
the same way as in the previous situation. Only now, the GRID lines are symmetric. In the
<100> and <110> cases, the lines show two regions of reduced intensity as expected in the
case of two neighbours, one for positive Doppler shifts, and one for negative. In the <010>
orientation, where both neighbours scatter the recoiling atoms moving perpendicular to the
direction of observation, only one minimum exists. It can be called doubly degenerate, as
both neighbours contribute to the GRID line in the same way. They are indistinguishable
in the chosen direction of observation.

Degeneracy always occurs for neighbours occupying lattice sites that can be transferred
to each other by a rotation around the axis of observation. Crystal-GRID is insensitive to
this angle of rotation, as the Doppler shift only depends on the projection of the recoiling
atom’s velocity.

A similar situation is shown in Fig. 5.1d). However, now, the set-up is asymmetric. The
scattering of the atom further away from the atom under investigation has less influence
on the GRID line, as it scatters fewer atoms due to the reduced solid angle as seen from
the recoiling atom’s initial site. Consequently, the regions of reduced intensity caused by
the atom on the right are less pronounced. The simulated GRID lines are asymmetric
(<100> and <110>). The topic of asymmetric GRID lines will be looked at in more
detail in Section 5.3.

One neighbour shell (Four neighbours)

Simulations have been performed with the complete first neighbour shell consisting of four
atoms (Fig. 5.1€)) as well as the second neighbour shell (Fig. 5.1f)). The two cases are
almost identical if one turns the second shell by 45°. However, the atoms of the second
shell are around 40% further away from the central atom. The GRID lines differ in that
the minima are slightly more pronounced for the first neighbour shell. This can be seen in
the larger offset at the edges of the line and at the higher central peak caused by slightly
deeper valleys on both sides.

Let’s look at Fig. 5.1e). In the <100> orientation - identical to the <010> case —
the line should show three valleys (red line), as two atoms yield one degenerate valley.
The two regions of reduced intensity at the edges of the line are clearly present. However,
the doubly degenerate minimum expected in the centre of the line presents a small local
maximum.

Due to the slowing down and the deflection of trajectories, the neighbours along the
axis of observation lead to reduced intensity at the edges and “shift” this intensity to lower
Doppler shifts (compare Fig. 5.1¢) <100>). The two other neighbours reduce intensity
in the centre and shift it to higher velocity projections (compare Fig. 5.1¢) <010>). The
two processes, slowing down and deflection of trajectories, however, have opposite effects;
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the shifting is less efficient. The three valleys are perfectly present. However already in
this simple situation they start to smear out.
In the <110> orientation, two doubly degenerate valleys can be seen.

Two neighbour shells (Eight neighbours)

Taking both neighbour shells together, five minima are expected, three doubly degenerate
and two non-degenerate valleys. As can be seen from Fig. 5.1g), the two regions of missing
intensity at the edges are clearly visible. Two further regions are present at medium
shift energies. However, they are only resolved because a narrower instrumental response
function is used in this calculation. The central minimum disappeared completely.

The more neighbours are present and contribute to the slowing down, the more photons
are emitted from slowly moving atoms, thus having a small Doppler shift. The central
peak starts dominating the GRID line and thereby hiding its fine structure.

Furthermore, the recoiling atom can now be successively scattered by different neigh-
bours. The first neighbours focus a part of the recoiling atoms in the direction of the second
neighbours so that the scattering efficiency of the second neighbour shell is enhanced.

Conclusion

The interaction of the recoiling atom with every single neighbour causes a region of re-
duced intensity to appear in the GRID line. Next to this valley, one or two peaks are
created. The slowing down due to the scattering always reduces the absolute velocity
projection; the deflection of the trajectories can both increase or decrease the projection.
For atoms that are located on degenerate positions, degenerate valleys are formed so that
in high-symmetric crystal orientations, the number of valleys is smaller than the number
of neighbours.

As soon as several neighbours are taken into account, valleys and adjacent peaks start
to mix and structure disappears. Only the missing intensity at the edges of the GRID
line can always be attributed to recoils with neighbours in the direction of observation,
without any doubt. The nearer a neighbour is located to the recoiling atom, the more
influence it has on the GRID line.

5.2.2 Macroscopic look at Crystal-GRID lines

The shape of Crystal-GRID lines depends on a large number of properties. Jentschel
extensively discusses this topic in his thesis [Jen 97a, Section 2.2]. He studies the influence
of the sample crystal by varying the orientation of the crystal (direction of observation),
the mass-ratio of its constituents, the charge number of the recoiling atom, the lattice
constant, and the crystal structure. Also, the influence of nuclear properties has been
investigated, namely the initial recoil velocity (recoil energy), the details of the decay
cascade, and the nuclear level lifetime. Last but not least, an influence is observed by
using different interatomic potentials.

As discussed in Section 3.5 and Appendix C, only very few transitions are actually
suited for Crystal-GRID measurements due to the low efficiency of the spectrometers.
Therefore, in this work, discussion will be limited to selected transitions.



5.2. Understanding Crystal-GRID lines 47

For a given transition, the experimental Crystal-GRID line only depends on the di-
rection of observation, i.e. on the sample crystal orientation. This dependence can be
understood from the previous section. When calculating GRID lines theoretically, the
nuclear level lifetime 7, as well as the interatomic potential V' are varied in order to find
the best estimates of these unknown quantities. Their influence is visualized by theoretical
GRID lines, calculated for the studied transition E,, = 1.498 MeV in TiO,, depopulating
the 3.261 MeV nuclear level (compare Section 9.3).

Influence of level lifetime

Fig. 5.2 shows the crucial influence of the lifetime on a GRID line. For very short life-
times, most secondary photons are emitted by the recoiling atom before any scattering
occurs. Only very few atoms have experienced a scattering event and thus lead to a certain

structure of the line.

For intermediate lifetimes, most recoiling atoms have scattered and a well-structured
line is formed. The amount of observed structure depends mainly on the resolution of the
spectrometer.

The structure disappears more and more for very long lifetime values, as many recoiling
atoms have enough time to reach quasi-thermal velocities before emitting the secondary
photons. This can be seen in the plot of the trajectories. A large central peak is obtained
from these thermalized atoms with their nearly unshifted photons. Structure is still present
on the wings. However, it is added to the wing of the central peak, so that the ratio of
structured contributions to the monotonously increasing central peak intensity becomes
very bad for large values of 7.

For many nuclear levels, lifetimes are reported in the literature. However, the reported
(or neglected) errors of the lifetimes are of the order of 30%. Even values obtained by pow-
der GRID measurements can not be taken as being more precise, due to the assumptions
inherent in the MFPA approach and the use of the BM potential in the evaluation (com-
pare Section 8.3.2). Therefore, the lifetime has to be considered as an unknown variable,

when evaluating Crystal-GRID data.

Influence of interatomic potential

The main topic of this work is to check whether interatomic solid state potentials can be
improved by Crystal-GRID measurements. What influence do they have on Crystal-GRID
lines? Fig. 5.3 shows three lines derived from simulations using both the universal (ZBL)
potential, one with the original screening length, and two with a reduced or increased
screening length. The recoiling atom loses energy more quickly, the more repulsive the
potential is, leading to the creation of a central peak in the line, If the centre peak becomes
dominant, less structure is visible.

In the energy region under investigation, the ZBL potential is expected to be a rel-
atively good approximation for the true interactions. A change of 25% of the screening
length presents a drastic change. Even though many parameters can be varied in inter-
atomic potential formulas, and many functional forms can be used, it is obvious that the
interatomic potential has less influence on GRID lines than the miclear level lifetime has.
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Fi1Gure 5.2: Influence of nuclear level life time on Crystal-GRID lines. The longer the lifetime,
the more atoms have slowed down to low velocitites and the higher the central peak becomes. Most
structure is obtained for intermediate lifetimes.
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FIGURE 5.3: Influence of the interatomic potential on Crystal-GRID lines. An enhanced screen-
ing length as leads to a faster slowing down and thereby to a higher central peak and less structure
on the line.

5.3 Asymmetric GRID lines

In previous powder GRID and Crystal-GRID measurements, the Doppler broadening was
always symmetric with respect to the unshifted photon energy. This symmetry was due to
the inversion symmetry in real space of the crystals. Crystals having an inversion svimmetry
yield symmetric lines for all orientations, because the recoiling atom slows down in the
same way for an emission with velocity +v°® or —vP.

As stated before, the Crystal-GRID method is insensitive to rotations of the sample
around the direction of observation. Therefore, a symmetric GRID line is also produced if
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FiGURE 5.4: Asymmetric Crystal-GRID line. The total GRID line is subdivided into its single
contributions of intervals of 101s after the initial recoil. In the left picture, the contributions are
added to each other so that the time-dependent “evolution” of the line can be seen. The right plot
visualizes the single contributions seperately.

the lattice only has a rotation-inversion symmetry around this axis. In a direction without
rotation-inversion symmetry, however, an asymmetric line is predicted.

Fig. 5.4 illustrates the formation of an asymmetric Crystal-GRID line. In the right part
the contributions to the total Doppler broadened energy spectrum belonging to secondary
photons emitted within the first 10fs, the second 101s, and so on, are plotted separately.
On the left side, the contributions are added successively visualizing the “evolution” of
the line. It can be clearly seen that the asymmetry is formed by the photons emitted
soon after the initial recoil, i.e. by the atoms having undergone only few collisions. The
asymmetry is directly related to the nearest neighbours of the initially recoiling atom. At
later times, the correlation of the velocity to the first scattering event is lost and symmetric
contributions are added to the line.

If the lifetime is higher than in the plotted case, more photons are emitted at late times
and thus contribute a symmetric part to the line. The asymmetry, mainly present in the
wings, becomes less visible.

From the very beginning of this work, it was one of the major aims to verify the exis-
tence of this asymmetry. The zinc blende structure, e.g., has no inversion symmetry if the
two sub-lattices are occupied by different atomic species. A rotation-inversion symmetry
exists for some axes, e.g. for the <100> and the <110> directions, but not for the <111>
direction. Consequently the predicted Crystal-GRID line in the latter case is asymmetric.
Results of measurements using Zn$ single crystals are reported in Section 9.1.

5.3.1 Angular correlation and asymmetry

The guestion arises if angular correlation can influence the symmetry of Crystal-GRID
lines. Symmetric lines are predicted in crystals having at least an inversion-rotation sym-
metry around the axis of observation. In this case, after application of the symmetry
operators, to every trajectory v; (t) a second trajectory v; (t) exists where the initial re-
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coil occurred in the opposite direction and the trajectory evolves in the identical but
opposite way. If an inversion symmetry exists, v; (t) = —v; (t); if only a rotation-inversion
symmetry exists, a rotation around the axis of observation must be applied.

In both cases, v; (t) -n = —v; (t) - n, i.e. the two trajectories contribute at opposite
velocity projections to the Crystal-GRID line. The angle ¢ between the emission directions
of the two photons, —v(0) and n, can be calculated using Eq. (2.9)

cos ¢; = ——VJOLO—) ‘n = —cosd; (5.11)

If angular correlation is considered in the calculation (compare Eq. (5.3)), the contri-
bution of the trajectories is weighted by the factor W’ (cos¢). As seen in Section 2.4, this
factor is symmetric with respect to 0. Consequently, it is identical for both trajectories,
and the Crystal-GRID line remains symmetric.

It can not be proven, that asymmetric Crystal-GRID lines remain asymmetric when
considering angular correlation. However, it is highly improbable that angular correlation
exactly compensates the effect of the asymmetric slowing down. Therefore, in the general
case, angular correlation does not influence the symmetry of a Crystal-GRID line.
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Fitting theoretical GRID lines to
experimental scans

Crystal-GRID measurements are performed in order to determine potential parameters
and nuclear level lifetimes. For this purpose, the theoretical Crystal-GRID line I, (AE.,2)
(Eq. (5.7)) is fitted to the experimental scans consisting of count values cf (Eq. (3.9)) taken
at angular positions ¥ of the second spectrometer crystal. Here, £ numbers the K scans
within a series of scans and ¢ numbers the measuring points of a single scan. Due to the
slight drift of the spectrometer, it is not possible to directly convert 0;“ to an absolute
energy with sufficient precision. For that reason, the theoretical line is always given as
a function of the Doppler shift AE,, = E,, — EY,. The Doppler shift (AE,,)? at the
measuring angle 6% can be obtained by converting the angular difference 0 — 6%, where
0’; is a fit parameter, the so-called centre position of scan k, corresponding to unshifted
photons.

e == (55) (61

conversion factor (Eq. (3.7))

As discussed in Section 5.1, the theoretical line I, is normalized to the total yield
I, of photons belonging to the transition under study. Consequently, the GRID line to
be fitted to the experimental scans, also called model function m,, depending on the J
parameters a = (ay, ag, ..., a7), can be obtained by multiplying the theoretical GRID line
I,; with I and adding the constant background I.

Mg = Ipr - Lyor + Ibg (6-2)

Often, it is more convenient to explicitly use the height I, in the centre of the GRID line
for scaling.

Ic = Ipr (O) : Itot (63)
Iy
a = - I .
> m, Ipr (0) ¢+ Ibg (6 4)

For the actual fitting, the value of the model function at the angular position 6% needs to
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be known.

In ((AE,,)})

kY _— T N\ %) gk k
My (0.;) = Ipr (O) Ic + Ibg
w0 () L .,
- Ipr (O) c bg ( . )

As can be seen, three parameters need to be determined for every scan k: the height I* in
the centre of the line (or, alternatively, the total yield If,), the constant background level
I{fg, and the centre position ¥ of the experimental scan. These so-called local parameters
are only related to the data within one scan. For clarity, the upper index k& will be dropped
if the discussion only focuses on a single scan.

The nuclear level lifetime 7 and the potential parameters are physical constants and
are thus identical for all the scans. These so-called global parameters also need to be
determined by the fit. Consequently, if looking at K scans, the total number of parameters
to be fitted is 3K + 1 + L where L is the number of potential parameters.

The distinction of local and global parameters suggests to separate the fitting proce-
dure. First, the GRID line corresponding to a trial value of the global parameters is fitted
to all the scans separately by varying the three local parameters and looking for the best
consistency between model function and experimental counts.

Second, the nuclear level lifetime is varied. For every new trial value of the lifetime,
the corresponding GRID line is calculated and again fitted to every single scan in order
to optimize the local parameters. The best estimate of the lifetime is found as soon as
the simultaneous consistency between the model function and all experimental scans is
reached.

These two steps are performed by the fitting codes griddle and gravel (see Sec-
tion 6.3). The consistency is judged by the statistical variable x?, as discussed in Sec-
tion 6.1.

In a third step, the parameters of the interatomic potential will be optimized. For
every set of parameters, a new simulation of the slowing down becomes necessary. As
these simulations may take several days, a straightforward optimization within a fitting
code, as done for the lifetime, is not possible. Instead, the two-step fitting, as described
before, is applied to every simulation separately. Afterwards, the results are compared
in order to judge on which potential parameters are best. As this comparison brings
about several problems, the next Chapter will be entirely dedicated to the optimization
of potential parameters.

6.1 Statistics

The estimation of parameters is the main aim of fitting model functions to experimental
data. It is called point estimation in statistics literature. In order to judge which param-
eters are best, a so-called statistic is used. A statistic is a measure of the consistency of
the model and the experimental data.

Two more quantities can be estimated from the fit in order to get an idea about the
reliability of the parameters. First, a measure of the errors or uncertainties needs to be
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determined using the so-called interval estimation. A typical measure is the standard
deviation o of the parameter.

Parameter and error estimation are sufficient if the underlying model is known to be
correct. Otherwise, a statement on the validity of the model is needed, the so-called
goodness-of-fit needs to be calculated, as presented in Section 6.1.5. In statistics this is
called the test of hypothesis. It tells how probable it is that the data have occurred if the
assumed model was true.

Three different statistics are presented in the following, two well-known x? methods,
as well as the maximum likelihood estimation (MLE) using Poisson distributed data.
Maximum likelihood approaches are numerically more costly than x? methods. With
modern computers, however, this difference becomes meaningless. In Section 6.5 and
Appendix D, the different statistics will be applied and compared, in order to understand
under which circumstances which statistic can be used. For more details see [HauJen 01].

6.1.1 »? statistics

The classical x? statistics base on the x? density which is defined as
2 _ N (6= ma(6:))°
X' = Z - (6.6)

where (c; — ma (6;)) is normally (Gauss) distributed with the known variance 7. When
counting random events, however, the number of counts per given time is not Gauss but
Poisson distributed around the true value ¢(6;). It is necessary to check whether x?
statistics can be used, anyhow.

For Poisson distributed data, it can easily be shown that the variance is equal to the
true value, i.e. 07 = ¢(f;). As this true value is not known, it must be approximated.

Depending on what approximation one uses, the statistic can be represented by one of the
classical chi-square forms:

Xp = Pearson’s x* = Z‘——‘——“(Q ;Tzegz)) (6.7)

2 . o 2 (e — ma (6:))”
Xy = modified Neyman's x* = Z m

(6.8)
The fitting code griddle uses the modified Neyman’s x%. Originally, Neyman’s x% has
been defined with ¢; in the denominator. As this expression is undefined if any measured

value ¢; is zero, Eq. (6.8) has been widely used [Awa 79, BevRob 92, Whe 95]. It is
identical to the original Neyman’s x%, if all ¢; are non-zero.

6.1.2 Maximum likelihood estimation (MLE)

An intuitive way of extracting information from measured data is to ask the question
whether it is probable that the data have occurred given a set of parameters and a model.
The idea of maximum likelihood estimation (MLE) is to maximize this probability, called
“likelihood”. In its simplest form it can be used to determine the expectation value of an
observable if the latter has been measured several times.
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Stoneking and Den Hartog state that “for non-normal uncertainty distributions such
as the Poisson distribution, minimizing x* does not maximize the likelihood that the fitted
parameters reflect the data” [StoDen 97].

The likelihood Lp is given by the combined probability of measuring a set of ¢; counts
at positions §; where the model predicts m,(6;) counts. In the case of Poisson distributed
data,

L (cfm) = ] Pr(cima(8)) = [T P2 oo 69)

(]

where Pp (c;;maq (0;)) is the Poisson probability that a measurement gives ¢; counts if
the true value is m,(6;) and ¢ = (cy, ¢, ..., cn) is the set of N measured count values
[BevRob 92, p. 111]. If m, depends on the J parameters a;, then the likelihood Lp needs
to be maximized with respect to these parameters in order to find their best estimates.

It is easier to use the logarithm of this expression. Minimising —21In Lp leads to the
same parameters as maximising Lp.

—21n Lp (c|ma) =2 Z [ma (0;) — c;Inma (6;) +Ingl] (6.10)

A similar equation has been derived several times. In 1979, Awaya presented it as a
“new method” and called it G [Awa 79]. In the same year, Cash published his C statistic
[Cas 79]. Further formulations can be found in [Gre 91, JadRii 96][BloLoh 98, p. 191].
If no analytic expression of the model function m, exists, as in the case of GRID lines,
numerical methods are used to find the minimum.

6.1.3 Likelihood ratio test

The log-likelihood of Eq. (6.10) does not have the typical properties of a x* distribution.
It can be extended, however, by using the so-called likelihood ratio test [Wil 63, section
13] (see also [Cas 79][BakCou 84][Hoe 54, p. 189][Ead 71, p. 230ff|[Bra 99, p. 228}).

The (maximum) likelihood ratio A was first introduced by Neyman and Pearson and
defined as [NeyPea 28]

maxa Lp (c|m,)
max Lp (c|m’) (6-11)

A =max, \* =

The numerator gives the likelihood Lp (c|mg) that the experimental data ¢ occurred if the
model m, was true, and maximized with respect to the parameters a. The denominator
gives the likelihood Lp (c|m’) that the experimental data ¢ occurred, maximized without
having any restriction on the model, where m’ = (m], mj, ..., m/y) is the set of parameter-
independent model values. As the denominator is constant and independent of the model,
the quantity A* has been introduced. Parameters can be estimated by maximising its
value. It is evident that the ratio A, as well as \*, can only take on values between 0 and
1. .
The likelihood in the numerator is given by Eq. (6.9). The global maximum of L in
the denominator is found by calculating

5,?;}? [—2In Lp (cjm’)] =0 (6.12)

3
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where the parameter-independent m/ replaces m, (6;) in the likelihood function Lp (see
Eq. (6.9)).

P A 6.13
- 7 m] ° (613)

The best possible estimation of the counts c is the counts themselves, i.e. max Lp (c|m’) =
Lp (c|c). Even though this sounds trivial, it is not a general result.
One can now define a “maximum likelihood x3 »” as

Xp = —2InX*
= 2InLp(c|c) —2InLp (c|ma) (6.15)
= 2 z (ma (65) — ¢;) — Z ¢iln (m“cge") ) (6.16)

c;#0

This equation will be referred to as Poisson MLE

As 0 < A" <1, the maxlmum likelihood x3 p can not become negative. A theorem of
Wilks shows that min, X)\ p asymptotically follows a x? distribution with N — J degrees
of freedom [Wil 63, p. 419] except for a deviation varying as 1 /N which is important if
the number N of data points is small.

As the ﬁrst term in Eq. (6.15) does not depend on the parameters to be estimated,
minimising 3 5. p With respect to one parameter is 1dentlca1 to minimizing —21In Lp (c|ma).
Thus, the parameter estimation is unchanged if using x3 p instead of —21n Lp. In addition,

however, x?2 _p should be applicable to check the con31stency of the model and the data by
a goodness-of-fit test (see Section 6.1.5).

6.1.4 Error estimation

Estimating parameters is only useful if one can also state the error of the newly obtained
value. It is well known that for x? statistics the 1o error of non-correlated parameters can
be obtained by looking for their values where x? is increased by 1.

For sufficiently large event samples, the likelihood (not the distribution of the single
measurements) becomes Gaussian centred on those values a; that minimize its function
[BevRob 92, p. 144] (see also [Ead 71][BloLoh 98, p. 189]). Near the minimum, the likeli-

hood Lp can be approximated by
1 (a; —a; 2
: ( - ) ] 6.17)

where A is a function of the parameters a1, as, ..., aj_1, @jt1, -.., a7. Calculating the negative
logarithm of Eq. (6.17) yields

Lp=Aexp

aj -— a’- 2
J ) -+ const. (6.18)

'—21an = (

oj

a; —a;\?
Xap = ( L ) -+ const. (6.19)
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showing that a varlatlon of the parameter a; by no; (a; = aj £ no;) leads to an increase
of the Poisson MLE X3 3. p by n®. In order to extract the lo error limit, one can vary the
parameter until x? 5pis increased by 1, just as one would do for a classical x? statistic.

This derivation is correct in the case where only one parameter is fitted. In the GRID
fitting procedure, the local parameters are optimized for every value of 7. Thereby the
fitting problem is separated into K sub-problems with 3 parameters, and one fit with 1
parameter, the lifetime. Consequently, it is correct to look for the increase of x2 by 1 to
find o [BevRob 92, p. 212].

6.1.5 Goodness-of-fit estimation

Up to this work, the consisteﬁcy of theoretical GRID lines and experimental data was
roughly judged by the so-called reduced x?2

X, =x*/v (6.20)

where the number v of degrees of freedom is equal to the number N of measuring points
minus the number of fitted parameters. For a good fit, the value of x2 must be close to 1.
However, the meaning of the term “close” depends strongly on the number of degrees of
freedom. Increasing the number of scans, e.g., X3 comes closer to 1 without any change
to the model.

For that reason, a better-defined variable is chosen in this work, the so-called goodness-

of-fit Q

2 1 / oo ]
Q (Xmin, 1/) =T (%) oy exp(—t) t27"dt (6.21)

where T is the Gamma function. Q (x2;,,7) gives the probability that an observed x?
exceeds the value x2;,, obtained for the best potential, by chance even for a correct
model. In other words, assuming that the model were correct, then @) is the probability
that the consistency between any experimental data and the model line is worse than the
consistency of the measured data with this model.

If the goodness-of-fit Q) > 10%, approximately, the model can be accepted, if @ < 0.1%
the model is very likely to be wrong [Pre 89, p. 160-165]. For a correct model, @ is
independent of the number of data points and of the number of counts. If the model is
not quite correct, however, ) decreases with increasing statistics, showing that the model
needs to be further improved.

6.2 Summing experimental data

The typical fine structure of a Crystal-GRID line can only be observed in the experimental
data after summing several scans, because the intensity of every single scan is usually so
small that the statistical noise hides all details. The so-called experimental sum scan is
also needed if one wants to present the measured data, as often more than 100 scans are
measured.

The scans need to be aligned with respect to each other using the centre positions Gf
in order to correct for the slight drift of the spectrometer. After the alignment, the scans
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overlap in a certain energy range. Ideally, all scans cover at least the full Doppler broadened
line and extend slightly into the background to the right and left of the spectrum. Within
this common range, a set of summation points ¢; needs to be defined. The first summation
point is fixed at one edge of the common interval. The remaining points are defined
iteratively, by using the average spacing of the measuring points in the single scans at
the previous angle. For most scans, no measurement has been performed exactly at the
positions . For that reason, the number of counts in every single scan is intra-polated
in between the two nearest measuring points.

By using the fitted centre positions 6% for the alignment, however, the experimental sum
scan depends on the model applied during the fitting procedure. Theory and experimental
data are not clearly distinguished.

Alternatively, it has been tried to perform a theory-independent summation by a self-
consistent fit of the experimental sum scan. How does this work? A first alignment of the
scans is obtained by looking for the highest count rate of every single scan, averaged over
three adjacent measuring points to reduce statistical noise. Summing the aligned scans, a
first experimental sum scan is obtained.

In the following iterations, the experimental sum scan is used as model function, after
subtracting the background. It is fitted just like a theoretical model function to every
single scan by varying the three local parameters. The experimental sum scan for the next
iteration is obtained by summing the single scans shifted with respect to their fitted centre
positions. The background to be subtracted is given by the sum of the fitted background
terms I{fg of the single scans. After several iterations, the procedure converges and the
theory-free experimental sum scan is determined.

The correctness of the described algorithm has not been rigorously proven. However,
test calculations for the solids studied within this work show that, within the errors,
the theory-free experimental sum is identical to the experimental sum from the model-

dependent fit. As the experimental sum scan is only needed for visualisation, the minor
differences are of no importance.

6.3 The fitting codes gravel and griddle

Up to this work, the evaluation of GRID data was done with the fitting code griddle
[RobJol 90]. The original version of griddle used the MFPA theory of the slowing down
for the calculation of GRID lines. Jentschel extended the code to the case of Crystal-
GRID where the slowing down is calculated by an MD or RMD simulation [Jen 97a). The
fitting code calculates the model GRID line and fits this line to the experimental scans as
described before, using the modified Neyman’s x%; statistic. '

Summing up the experimental scans as well as the fitted theoretical GRID lines, one
finds that the theoretical sum lies far outside the error bars of the summed experimental
data points. This can be seen in Fig. 6.1a) where the summed theoretical GRID line is
plotted with a dashed line (x%;). For every single scan, the theoretical GRID line lies
within the errors of the single data points (see Fig. 6.1b). The obvious disagreement only
becomes visible after summing many scans.

Two questions arise at that point. Where does the disagreement come from? And,
does it have any influence on the parameters to be determined, i.e. on the nuclear level
lifetime, and in a later step, on the interatomic potential?
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FIGURE 6.1: Comparison of fitted theoretical lines and artificial experimental data. (a) The sum
of 1000 artificial scans (centre height I, = 10 on a background Iyy = 2) is compared to the sum of
the fitted lines. It is most evident, that Neyman's X%, as used in griddle, and Pearson’s X% do
not reproduce the data at all. (b) The inconsistency can not be seen in the plot of a single scan.

The implementation of the theory-free experimental sum, as discussed in the previous
section, allowed to fit theoretical GRID lines to the sum scan. It is observed that thereby,
the disagreement can be reduced. However, the sum scan should not be used to determine
parameters. The measured data are given by the single scans and not by the sum scan.
Only in the optimal case, i.e. if the summation algorithm is rigorously correct and has
perfectly converged, the experimental sum scan contains as much information as all the
single scans.

Looking deeper into detail, it turned out that the disagreement is related to the statistic
used for the evaluation. In statistics literature, it is well known that x% and x% are not
suited to estimate the area under a peak or simply the mean of Poisson distributed values
(for details see Appendix D). As can be seen in Fig. 6.1, only the Poisson MLE x3 p leads
to a good agreement of summed fitted lines and experimental sum scan.

The question whether other parameters are also influenced will be answered in Sec-
tion 6.5, where it will be shown that the Poisson MLE also is the best statistic to estimate
the nuclear level lifetime.

6.3.1 Short description of the new fitting code gravel

The implementation of the fitting procedure in the code griddle only allows to work with
symmetric GRID lines. As in this work, the existence of asymmetric Crystal-GRID lines
should be proven, a new fitting code, called gravel, has been developed. Five different
statistics have been implemented in this code in order to check the applicability of the
different statistics.

When starting gravel, the general input file fit_input.dat, the scan files, the instru-
mental response function, the symmetry operators of the crystal, as well as the trajectories
(MD input file) are read in. Amongst others, it can be chosen whether the summation
shall be performed with or without using the theory (compare Section 6.2), which statistic
is to be used for the fitting (compare Section 6.1), and if the lifetime shall be fitted or



60 Chapter 6. Fitting theoretical GRID lines to experimental scans

stepped through with a constant step size in order to obtain the dependence x?2 (7).

During the run of the program, the file fit_protocol.dat is generated, containing a
detailed protocol of the fit. At the same time, the experimental data, theoretical lines,
sum scans, and the calculated x? values are displayed on the screen, so that the fitting
procedure can be easily supervised.

The first three iterations are performed using the trial values 74/1.3, 74- 1.3, and ¢ for
the lifetime where 7, is read in from the input file. First guesses for the local parameters
are calculated for every scan: The background I{fg is estimated by averaging the lowest
counts within the scan, the centre height I* by searching for the highest number of counts,
averaged over three adjacent measuring points, and the centre position #* by a simple
least-squares fit of the model line to the scan.

For every trial value 7/, the theoretical Doppler broadened line is calculated by mul-
tiplying the radioactive decay law with the pre-calculated distribution P(v|,t) (Eq. 5.4).
The local parameters are then optimized, scan by scan, by minimizing the statistical vari-
able x? using a Levenberg-Marquardt algorithm (compare Appendix E). After all scans
have been fitted, the global x? can be calculated as

K
X =% (6.22)
k=

The x? values of the last three iterations are connected by a parabola as a function
of 7'. The minimum of this parabola determines the next trial value for the lifetime.
Convergence is assumed as soon as the extrapolated minimum is very near to the last
calculated value.

After convergence to the value 7, the standard deviation o, is calculated from the
parabola, and seven further iterations are performed at the trial values 7 & 30, 7 + 207+,
7+ 0., and 7. This allows to plot the function X2 () and to visualize the convergence to
the value 7 as well as its error o, (see e.g. Fig. 7.1).

6.3.2 Improvements in gravel compared to griddle

Besides the implementation of different statistics and the possibility to fit asymmetric
Crystal-GRID lines, several minor improvements have been implemented, all of them
related to the calculation of the theoretical GRID line on the basis of an MD input file.

1. The calculation of GRID lines is much faster as the probability distribution P(y),1)
(Eq. (5.2)) is only calculated once from the MD input file. During the fitting pro-
cedure the theoretical line is calculated by multiplying the radioactive decay law
(Eq. (5.4)) basing on the pre-calculated distribution.

2. As discussed in Section 5.1, the trajectories are only simulated up t0 tenq = 57. Up to
this work, the remaining part of the trajectories was completely neglected. All decays
occurring after ¢.,q did not contribute to the theoretical GRID line. Therefore, the
central peak was always underestimated by a few percent, and consequently, the
fitted lifetime was always too high. Now, the remaining part is approximated by the
velocity distribution at the last time step (Eq. (5.5)). If the quasi-thermal regime is
reached, this approximation is exact on the considered time scale, and the lifetime
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is correctly estimated. Otherwise, it predicts too many decays at velocities above
the thermal regime, and too few at thermal velocities. The centre peak is slightly
smeared out, eventually entailing a small error of the lifetime. In any case, the error
is smaller than in griddle. If necessary, it can be further reduced by increasing teng.

3. During the simulation, the recoiling atom’s velocity is recorded with a constant time
step At. The integral of Eq. (5.4) is approximated by a sum over these discrete values.
In gravel, a minor improvement was implemented, in that the values P(v,0) are
only considered for half a time step. Thereby, instead of calculating the upper sum
of the integral, a better approximation to the integral is performed. Compared to
the old fitting code, the theoretical GRID line and the estimate of the level lifetime
is slightly improved.

6.4 Generating artificial (Monte Carlo) data

Real experimental data are not well suited for methodical studies of the data evaluation,
as needed, e.g., to compare the different statistics implemented in the fitting code gravel.
The true interatomic interactions are not known and need to be approximated. Many
other variables may also have an uncontrolled influence on the studied phenomenon. Fur-
thermore, Crystal-GRID experiments suffer from the low efficiency of the spectrometer.
For that reason, it was tried, for the first time, to generate and to apply artificial GRID
data, i.e. Monte Carlo data, allowing to ignore any problem of low efficiency, insufficient
measuring time, limited stability of the instrument, and others. In that sense, artificial
data can be considered as ideal experiment and show up principle limits of the GRID
method.

Working with artificial data, the model is completely known, so that it is possible to
concentrate on selected parameters. For that reason, artificial data are extensively used
in this work. On the one hand, the comparison of different statistics, as discussed in
Section 6.5, largely bases on these data. On the other hand, investigations have been
performed in order to study the influence of angular correlation, to predict the sensitiv-
ity of Crystal-GRID to potential parameters and the level lifetime, to predict the size of
expected uncertainties and to compare the different approaches, MD, RMD, and MFPA,
with respect to their estimation of level lifetimes. All of this will be discussed in Chap-
ter 8. Furthermore, complementary investigations using artificial data are done for the
true experiments using ZnS and Si single crystals, as discussed in Chapter 9.

How can artificial data be generated? First, the theoretical Crystal-GRID line is
calculated for a given interatomic potential V' and a given nuclear level lifetime 7. As
in a true experiment, the number of measuring points and their spacing needs to be
defined. The spacing must be chosen so that in all scans, several background data points
are present on both sides of the Doppler broadened spectrum. The centre position of the
line is randomly chosen within a range of approximately 2 fringes, in order to account for
a slight drift between the scans. Drift within the scans is not considered in the generated
data, even though this could be easily done for an assumed drift function.

Once the centre position and the sampling points are defined, artificial data can be
generated by a Monte Carlo approach. At every sampling point 8;, a random number of
counts ¢; is taken from the Poisson distribution around the model value m, (6;) of the
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FIGURE 6.2: Crystal-GRID lines for two directions of observation in GaP single crystals derived

Jrom MD simulations based on idealised assumptions about the decay cascade. The nuclear level
lifetime is taken to be T = 81s.

Crystal-GRID line at the sampling point. The algorithm used, is described in [Pre 89,
Section 7.3, p. 207].

Investigating artificial data allows to freely chose the constant background Iz, the
centre height I, the number of scans, the number of data points in each scan, and the
spacing of these data points. Furthermore, it is possible to generate data for any desired
potential and any value of the level lifetime.

The newly developed computer code for generating artificial data is subdivided into two
parts. The program ad_prepare generates the sampling points for all the scans, ad_make
calculates the GRID line from an MD input file and determines the random numbers at
the given sampling points.

Sometimes, artificial data corresponding to a real experiment are needed. In this case,
the second program uses the experimental data files as input for the sampling points. The

intensity can be scaled in order to simulate a higher efficiency of the spectrometer in an
otherwise unchanged measurement.

6.5 Testing statistics with artificial data

6.5.1 Parameter and error estimation

For the purpose of testing the different statistics, artificial data are generated for GaP.
The decay cascade is idealised, the details of which are of no importance to the following.
Two directions of observation are investigated, along the <100> and <111> crystal ori-
entations, respectively. The major difference is related to the symmetry of the lines. The
lines for the fixed lifetime of 8fs are displayed in Fig. 6.2.

The artificial data are generated by scaling the line with 7 = 8fs so that the centre
height I, is equal to 6, 10, 18, 30, 60, 100, 180, 300, 600, or 1000 counts, and afterwards
adding a constant background of 2 counts. A total of 100 equidistant points (distance:

0.13 fringes ~ 13.8 eV) are chosen within the line as well as in the background region to
the right and left of the line.
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FIGURE 6.3: Resulting lifetime when fitting the model line to artificial data generated using the
true lifetime of 8fs. The fit has been performed using scans for an observation a) in <100>
direction, and b) in <111> direction, respectively.

For each centre height, 1000 artificial scans are generated, for I, < 18, 5000 scans are
used, as convergence is not easily obtained. The model GRID line is fitted to these scans
in order to determine an estimate for the lifetime. Ideally, the true value of 8 fs should be
reproduced.

The result of the fit can be found in Fig. 6.3(a-b) where the values of the fitted lifetime
corresponding to the minimum 2 are displayed versus the true centre height in a single
scan. In the case of the modified Neyman’s x% statistic, the resulting lifetime is too high,
especially at low values of I.. The Poisson MLE statistic, as well as Pearson’s x%, lead to
nearly identical results. The estimates of 7 are consistent with the true value in the case
of <111> orientation, they are slightly too small for small centre heights in the <100>
orientation.

Why is the true value of the lifetime not at least within one or two standard deviations
o, of the estimated value? The fitting procedure separates the fits of the local parameters
from the lifetime fit. Consequently, the statistical error o, does not include the uncertain-
ties of the local parameters which can be regarded as systematic error related to the way
of fitting. The statistical error o, of the lifetime can be reduced to an arbitrarily small
value by adding further and further scans. Yet, the accuracy of the local parameters is not
increased. For low centre heights, the statistical error may become negligible compared to
the systematic one.

The fitted centre position (65) of scan k deviates from the known true one 6% by
AGF = (6F) — 6%. The average deviation, as well as their spread or standard deviation are
displayed in Fig. 6.4. It can be seen that the average deviation is very small for any centre
height and any statistic, but that there is a large spread oag,, especially for small centre
heights. If one summed up the single scans centred around the wrong centre positions,
the obtained “experimental” sum scan is smeared out in comparison to the true one.

In a second step, it is checked whether this deviation entails the observed error in the
determination of the lifetime. The centre position in every scan is fixed to the correct
value, so that besides the lifetime only I and I{fg have to be fitted as local parameters.
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FIGURE 6.4: Average deviation of the fitted centre positions from the true values and its spread
when fitting a model line to a large number of scans for an observation in <100> direction. On
average, all statistics estimate the correct positions, the deviation from the true values is very
small. However, a large spread (standard deviation) exists, especially for true centre heights up
to 30 counts. A similar result is found for the <111> orientation.
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FIGURE 6.5: Resulting lifetime when fitting the model line to artificial data generated using the
true lifetime of 8 fs with the centre positions fized at their true values during the fit. The fit has

been performed using scans for an observation a) in <100> direction, and b) in <111> direction,
respectively.

The resulting lifetimes are plotted in Fig. 6.5(a-b).

In this case, the deviation of the lifetime estimates derived from the Poisson MLE
statistic is slightly smaller, the true value of the lifetime can be obtained within 20,. The
modified Neyman’s x% again yields incorrect results. If the Pearson’s X% estimates are
better than without fixing the centre positions, it is difficult to say.
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6.5.2 Goodness-of-fit test

Which statistic is suited for a goodness-of-fit test? The goodness-of-fit ) is a true proba-
bility and can be calculated using Eq. (6.21), if the statistical variable follows a x? distri-
bution. The general x? statistic fulfils this requirement, if all terms in the sum are inde-
pendent and Gauss distributed with variance 1 [Ead 71, p. 64]. For counting experiments
this is only approximately fulfilled. The likelihood ratio, as presented in Section 6.1.3, is
supposed to extend the maximum likelihood approach for this purpose.

If the statistic follows a x? distribution, the expectation value (x?) should be equal to
the number v of degrees of freedom. In the following, this necessary condition is checked
for the estimation of a mean value, where a sufficiently high value of @) indicates that the
measured data really belong to a Poisson distribution around one value, whereas a low
value is a sign for a systematic error. If the experimental conditions have changed during
the measurement, e.g., the correct description might be a superposition of two Poisson
distributions around different mean values.

The expectation value of x? is calculated by

(x*) = i N - Pp (ci; 1) - X2 (cilws) (6.23)

;=0

where Pp (c;; p1) is the Poisson probability of obtaining ¢; counts if the true mean value is
i, and x?2 (¢;|) is the appropriate statistical variable.

The deviation of (x2) from v = N — 1 is shown in Fig. 6.6 for the three statistics
presented in Section 6.1. It can be clearly seen that only Pearson’s x2 leads to the
correct estimation. All the other statistics deviate from the theoretical expectation value
at least for small values of p and can therefore not be used for a goodness-of-fit test. This
behaviour has also been found by Mighell (see Fig. 2 in [Mig 99]), but he does not draw
any conclusions from the disagreement.

The result is very interesting as the wide application of the x? methods is often ex-
plained by their applicability to goodness-of-fit estimation. It can be clearly seen, however,
that the Neyman approximation does not give the correct expectation value in the case of
Poisson distributed data, i.e. that it is not distributed following a x? distribution.

The maximum likelihood approach, as well, leads to incorrect results. This is aston-
ishing as the textbooks do not mention any deviation from the x? distribution for small
numbers. Deviations for small data sets exist and possible corrections are discussed for
example in [KenStu 67, p. 233] or originally by Lawley [Law 56b, Law 56a]. He proposes
to correct the obtained x? by multiplying a factor v/ (x?).

6.5.3 Conclusion

Within this section, it could be shown that the Poisson MLE xi, p statistic is best suited to
estimate the nuclear level lifetime. Not only do the theoretical and experimental sum scans
coincide (Fig. 6.1), but also the estimates of the lifetime reproduce the true values. For
very small centre heights, a small systematic deviation may exist. The modified Neyman’s
X% statistic, as implemented in the old fitting code griddle, is not suited at all. Pearson’s
x% yields estimates of the lifetime that are nearly as good as using the Poisson MLE
statistic. However, the summed theoretical lines overestimate the experimental sum, so
that this statistic should also be avoided.



66 Chapter 6. Fitting theoretical GRID lines to experimental scans

(<x’>-v)/v

—+—— Poisson MLE xzhp ]
—-2--Neyman'’s x°,
- ©- Pearson’s y’,

PAEYTTN |

1B 001 01 1 10 100
true mean p (counts)

—t

1000

FIGURE 6.6: Normalised ezpectation values for X2 calculated for different mean values of a
Poisson distribution. If the statistic is distributed following a X2 distribution, the expectation
value <x2) should be equal to the number v of degrees of freedom, therefore (<x2> —v)/v) should
vanish. Only Pearson’s x2, shows this behaviour Jor all mean values. A goodness-of-fit estimation
based on the other statistics would lead to incorrect results for the consistency.

Pearson’s x% is the only statistic yielding a correct expectation value for x2, however.
Consequently, the goodness-of-fit test needs to be performed on the basis of the x% value
determined at the parameter values estimated with the Poisson MLE statistic.

It is worth noting that Pearson’s x3 does not take on its minimum there. As seen
from Fig. 6.7, its value is larger than its minimum value, obtained when using x% for the
parameter optimization, as well. If using this minimum value of X% for a goodness-of-fit
estimation, the consistency of the model with the data would be overestimated.
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Chapter 7

Improving interatomic potentials

" “A detailed study of the validity of different possible interatomic potentials has been
started recently and is in itself certainly one of the very challenging issues which can be
addressed with the GRID/MD method.” [BorJol 93]

GRID lines mainly depend on two quantities, the nuclear level lifetime 7 and the inter-
atomic potential V. The lifetime is a physical constant. Interatomic potentials, however,
are developed in order to approximately describe the atomic interactions. They are pre-
sented in arbitrary functional forms with several parameters that, unlike the lifetime, have
no physical meaning by themselves. For that reason, the study of interatomic potentials
is much more complicated than the determination of a level lifetime.

The study of interatomic potentials includes two main topics. On the one hand, dif-
ferent reported interatomic potentials can be compared. On the other hand, one or more
potential parameters of a single interatomic potential can be optimized. Both approaches
will be summarized as “improving interatomic potentials”, they will only be distinguished
if necessary.

By what means is it possible to improve potentials? For every potential (or set of
potential parameters), a separate MD simulation is performed. As described in Chapter 6,
fitting the derived GRID line to the experimental scans, yields an estimate of the nuclear
level lifetime as well as a minimum value of the P01sson MLE x3 p for each potentlal
Arguing in the same way as for the determination of the lifetime, the lowest value of x,\ p
belongs to the best potential. This straightforward approach, called x? criterion in the
following, has not been used until very recently. Instead, the fitted estimate of the lifetime
has often been compared to reported values or to values from other GRID measurements.
This approach will be called lifetime criterion. A complete survey of first attempts to
improve interatomic potentials using GRID measurements is given in Section 7.1.

Section 7.2 deals with the error of the statistical variable x2 itself and reports on
convergence tests. This error needs to be known before comparing different potentials
using the x? criterion. Once the best potential is found, the question arises whether it
sufficiently well describes the slowing down. Both, the goodness-of-fit test and the lifetime
criterion can be used in order to judge the quality of the obtained best potential (see
Section 7.3). In the last section of this chapter, it will be discussed which part of the
interatomic potential, Crystal-GRID is most sensitive to.
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7.1 History of potential investigation via GRID

Already in 1988, Borner et al. mentioned the possibility to investigate the slowing-down
mechanism and the model used for the slowing down if the lifetime of an investigated level
is known by other methods [Bor 88].

A first try has been published by Jolie et al. in 1989 [Jol 89] dealing with two nuclear
levels in Ti. The slowing down was described by the MFPA theory using a Born-Mayer
potential with two different sets of potential parameters. In order to judge which set
is better, measurements were performed using the two poly-crystalline materials Ti and
TiC and comparing the estimates of the lifetime from the two different measurements.
Identical estimates are a necessary condition for a correct description of the slowing down.
In this very measurement, the estimates are consistent within the error using one set of
parameters, but differ by about two standard deviations using the other set. Even though
a difference of two standard deviations is very small, this work can be seen as the first
indication that interatomic potentials at intermediate distances can be studied using the
GRID technique.

In his thesis, Ulbig studies the influence of the potential on the estimate of nuclear
level lifetimes in order to make a statement on the reliability of the GRID method with
respect to lifetime measurements [Ulb 91a, p. 92-94]. Two different interatomic potentials
are used in the MFPA theory, the universal (ZBL) and a Born-Mayer (BM) potential. A
series of GRID measurements is compared via their estimates of the nuclear level lifetime.
Ulbig finds that the estimates obtained with the ZBL potential are systematically higher
than the BM estimates. Especially for short-lived levels, the difference reaches up to 60%.

In order to decide on which lifetime is correct, and thus on which potential yields a
better description, it was tried to compare the estimates to results from Doppler shift at-
tenuation (DSA) measurements. However, this comparison did not help to discriminate the
two potentials, as the errors of the DSA measurements are quite large, multiple measure-
ments differ strongly from each other, and the DSA evaluation also includes assumptions
on the slowing down.

In 1991 and 1992, a series of papers was published by Kuronen and Keinonen who first
used MD calculations to simulate powder GRID lines [Kur 91, Kei 91, Kur 92]. Kuronen
studied the dependence of the simulated energy spectra on the interatomic potential by
comparing three potentials [Kur 91], the universal (ZBL) potential, a Born-Mayer (BM)
form with parameters from Abrahamson, and a pair potential based on effective-medium
theory (EMT) by Jacobsen. As all of these potentials are only repulsive, a Morse potential
was added for the equilibrium region. MD simulations were performed for poly-crystalline
Ti. The calculated GRID lines were found to be insensitive to the exact form of the attrac-
tive potential. The repulsive part is important, however. The estimates for the lifetime
strongly depend on the interatomic potential. The lifetime obtained for the 3.261 MeV
level (1.499MeV transition) is (9.6 3= 0.5)fs with the BM, (15.9 & 1.6) fs with the ZBL,
and (18.1 & 0.7) fs with the EMT potential. A decision on which potential is best was not
drawn, however, as no accurate non-GRID value of the lifetime is reported which could
be used as a reference.

Keinonen et al. compared three interatomic potentials using GRID measurements of
KCl and NaCl, namely the universal (ZBL) potential, an interatomic potential by Gordon
and Kim, and a newly developed ab initio potential basing on density functional theory
(DFT) atomic cluster calculations [Kei 91]. In the first two cases, Coulomb forces were
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additionally taken into account. The best fits of the simulated GRID lines resulted in
similar estimates of the lifetime using any of the potentials. All estimates of the life-
time are further compatible with a reported value of (61 &+ 4) fs from DSA measurements.
Keinonen points out that “despite of the remarkable differences between the potentials
similar slowing-down times (...) are obtained as total effects.” He prefers the newly de-
rived ab initio potential “as it is based on a minimum number of approximations and
contains no adjustable parameters.”

The observation of similar lifetimes from very different potentials is astonishing. It
is difficult to judge today, if the calculation has been done with sufficient care. The
simulation cell only contained 216 atoms. This is very small, as long-range Coulomb
forces are considered, and the level lifetime is very long. The insensitivity to the potential,
however, might also be related to the very long and thus unsuited lifetime of around 60 fs.

Until then, only powder samples were used. For every nuclear transition, only one
Doppler broadened spectrum could be recorded. In 1992, Heinig and Janssen presented the
idea to use single crystals, instead [HeiJan 92]. They predicted an orientation-dependent
fine structure of the Doppler broadened energy spectra. Different GRID lines were pre-
dicted for different crystal orientations. This should allow to determine more accurate
lifetimes, to make more decisive tests of interatomic potentials, and to extract both infor-
mation from one GRID measurement.

As discussed in the previous chapter, the estimates of the lifetime are obtained by a
x? optimization during the fit of the theoretical line to the experimental data. Jentschel
first proposed to use x? also for the investigation of interatomic potentials [Jen 96b]. The
lowest value of x* is supposed to belong to the best potential among the ones under study.
In his work, Jentschel compares RMD simulations using different potentials, mainly the
universal (ZBL) and the Krypton-Carbon (KrC) potential. Jentschel further made first
efforts to improve interatomic potentials by varying parameters [Jen 97a]. He optimized
the screening length of the ZBL potential via the parameters z and y, by minimizing x?.

Finally, Stritt etal. investigated interatomic potentials in metals [Str 99b, Str 99c,
Str 99a). The slowing down was calculated by MD simulations using a large number of
different potentials. Best potentials were found by only considering those potentials that
yield a lifetime compatible with reported values, and comparing the remaining potentials
via their x2. As this approach is questionable and as the evaluation still used the old fitting
code griddle, the measurements are re-analysed within this work (see Section 9.4).

7.2 Accuracy of the statistical variable y?

The model line to be fitted to experimental data analytically depends on the local param-
eters background, centre height, and centre position. For a given set of trajectories, the
dependence on the nuclear level lifetime is also analytic. For these parameters, x2 can be
easily minimized. The estimate of the parameter and its statistical error can be directly
given, as illustrated in Fig. 7.1a). As the dependence is analytic, the fitting procedure is
very fast and can be followed to any precision wanted.

When optimizing potential parameters, different simulations are performed. Even if
using the same series of random numbers in the MD simulation, different rounding errors
occur, and the dependence of the derived GRID line on the potential parameters is not
analytic. Plotting x? as a function of a potential parameter, as the relative screening
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FIGURE 7.1: Typical dependence of x? on the level lifetime T and on potential parameters. Whilst
the dependence on T easily allows to determine the best estimate and the error o, the dependence
on potential parameters is less clear. It is often not easy to determine a best estimate and the
standard deviation op.p. for potential parameters.

length, e.g., often the dependence is not as nice as in the previous case. This is illustrated
in Fig. 7.1b). The statistical variable x? itself must be attributed an error, as plotted in
the figure.

The influence of a potential parameter on the GRID line is partly compensated by the
lifetime 7. As this latter variable is optimized for every set of potential parameters, the
variation of x? with a potential parameter is reduced. Sometimes, x? does not significantly
change its value at all, when varying one parameter within reasonable limits. In this case,
the measurement was not sensitive to this parameter. By repeating the same procedure
with artificial data containing more scans or higher peaks, it is possible to estimate if
the Crystal-GRID measurement with this material is not sensitive at all or if the non-
sensitivity is only due to an insufficient total number of counts.

The error of 2 itself is directly related to the accuracy of the simulated GRID lines.
One MD simulation consists of a large number of independent trajectories calculated in a
finite simulation cell. Two technical parameters influence the accuracy of the GRID line:
the cell size and the number of calculated trajectories. In order to limit the computing
time, it is necessary to chose relatively small numbers. For good accuracy, the numbers
must be high. :

The size of the simulation cell influences the results, as in small cells the recoiling atom
can penetrate a damaged region due to the periodic boundary conditions, even though it
should reach an undisturbed crystal. The number of calculated trajectories determines
the statistical error of the calculated line. The less events one calculates, the more noise
is present.

Convergence tests have been performed for the ZnS measurements as described in
Section 9.1. The estimates of the lifetime are plotted in Fig. 7.2, the minimum values
of the Poisson MLE xj p in Fig. 7.3. For every cell size, 6000 trajectories have been
simulated (5000 for 3% unit cells). They have been grouped in sets of 1000, 2000, 3000,
and 6000 trajectories, so that one can get an idea of the spread of the values when using
different random numbers.
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FIGURE 7.3: Statistical variable x? for different sizes of the simulation cell and different numbers
of trajectories. Even in sufficiently large cells, the spread of x? when calculating only 1000 or
2000 trajectories is quite large.

As can be seen from Fig. 7.2, the estimate of the lifetime slightly drifts with increasing
cell size. The two cases of 6% and 7% unit cells, yield similar results. Estimates of the
lifetime from different sets of trajectories are mostly consistent within one or at maximum
two standard deviations. Consequently, a cell size of 63 unit cells seems to be sufficient,
in this case.

Looking at Fig. 7.3, the spread of the values of 2 seems to be more or less independent
of the cell size, perhaps slightly enhanced for smaller cell sizes. However, the spread largely
depends on the number of trajectories. For 1000 trajectories, the standard deviation Oy2
is about 5, even in the largest cell; for 2000 trajectories, it is still of the order of 3.

Typically, no more than 2000 trajectories are simulated for every set of parameters,
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because full MD simulations take a lot of time. Consequently, an error of +3 should
be taken as the standard deviation o,.. This is important, as a variation of x2 by 1,
gives the standard deviation for the parameter under study; a variation by 4 gives the
20 error (compare Section 6.1.4). Including the error of x? itself, a cautious approach is
to always state the 20 error as the statistical error of parameters extracted from GRID
measurements.

Special care is necessary when comparing different potentials, as in this case, no error
can be attributed to a potential parameter. A potential should only be judged “best” if
the appropriate x? is significantly lower compared to the other potentials. A difference of
4 should be the absolute minimum, before making any statement.

Of course, it is possible to use more trajectories and to reduce the error of 2. However,
also the feeding of the nuclear level and the angular correlation is often not perfectly known,
and small rounding errors are present in the MD simulation as well as in the calculation
of the GRID line. In order to avoid false conclusions from Crystal-GRID measurements,
one should never publish decisive results, if the difference in x? is very small, even if
10, 000 trajectories have been calculated.

7.3 Quality check for best potential

After determining a best potential or a best set of potential parameters, it is essential
to quantitatively check the quality of this potential. This check is necessary, as it is
impossible to vary all parameters of a potential and to use all imaginable functional forms
when improving the potential. How can the quality be checked? Two approaches can be
used: the purely statistical goodness-of-fit test and the physical lifetime criterion.

On the one hand, a goodness-of-fit test using Pearson’s x% should be performed. As
discussed in Section 6.1.5, this test gives a quantitative statement about the consistency
of the theoretical GRID line with the experimental data. If the goodness-of-fit estimator
Q is well above 0.1%, the model is sufficiently good to describe the measured data. This
does not automatically mean that the potential well describes the slowing down, but only
that the actual set of measured data is sufficiently well reproduced, within the error of the
experiment. Perhaps, if continuing the measurement and thereby reducing the statistical
error of the data, @ decreases. If ) is below 0.1%, then the potential is very likely to be
no good approximation. In this case, the potential needs to be further improved.

On the other hand, if reliable values for the lifetime have been obtained by other GRID
or non-GRID measurements, a comparison of the newly derived GRID estimate with these
reported values should also be performed.

This lifetime criterion has been extensively used in the past. However, it is not needed
to decide on which potential is best, as the statistical variable xi, p gives an unambiguous
and doubtless result. Furthermore, reported lifetimes have large errors and are sometimes
not reliable or not independent of a description of the slowing down, as in the case of
Doppler shift attenuation (DSA) measurements.

If two or more GRID measurements have been performed with one nuclear level using
different single crystals, the obtained estimates of the lifetime should coincide within one
or two standard deviations for a good potential. If they don’t, the potential probably
does not well describe the slowing down. However, by no means, a potential that yields
a significantly higher value of x? should be preferred only because the estimates of the
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lifetime coincide, in this case. Instead, it should be tried to further optimize the potential,
e.g. by varying additional parameters.

If one GRID measurement is compared to reported values of the lifetime, one should
be even more cautious. If the estimates, obtained with the best potential, coincide with
the reported value, and the goodness-of-fit is sufficiently high, the results can be trusted
within the precision of the measurement. If the values do not agree within one or two
standard deviations, but the goodness-of-fit indicates good consistency, one should, on the
one hand, question the reported value and the size of its error, and on the other hand,
try to vary some of the potential parameters. It is possible that a potential parameter is
strongly correlated with the lifetime, leaving the value of x? more or less unchanged while
changing the potential parameter. In this case, further measurements are needed in order
to get a result, both for the interatomic potential and the nuclear level lifetime.

7.4 Which part of the potential function
most influences GRID lines?

In a Crystal-GRID experiment, the velocity projections of recoiling atoms are measured
via the Doppler shift of the photon energy. The trajectory, and thus the velocity, of the
recoiling atom is determined by the interaction with the neighbouring atoms, i.e. by the
interatomic forces or the interatomic potential. For two-body interactions, it is equivalent
to say that the recoiling atom underlies a certain force, a certain potential or is located at
a certain distance of one neighbour.

The nearest possible approach of the recoiling atom to a neighbour is realized in a head-
on-collision. If the neighbour atom was fixed at its lattice position, this nearest approach
Would be given by the distance corresponding to the recoiling atom’s initial kinetic energy

E}., (typically several hundreds of €V) minus the small binding energy (about 5€V). The
approaching atom repels its neighbour, however, so that some of the energy is transferred
to kinetic energy of the neighbour.

As shown in Fig. 7.4, the maximum potential energy is reduced by a factor of 2, ap-
proximately, in the case of Si where the two colliding particles have almost equal masses.
The figure shows the interatomic BM-SW potential, the theoretical nearest approach cor-
responding to three different initial kinetic energies, and the true nearest approaches ob-
tained by simulating a head-on-collision. It can be concluded that the part of the potential
energy function above this critical value does not influence the resulting GRID line, and
is not tested by the Crystal-GRID method.

Most of the time, the recoiling atom moves at “large” distances to its neighbours. The
forces exerted by its neighbours are small, and the trajectories are only little altered. The
recoiling atom is influenced by the low-energy part of the potential curve. Due to the high
initial recoil energy, the moving atom can approach other atoms up to relatively small
distances in central collisions. In this case, the velocity is heavily changed. Admittedly,
only few recoiling atoms undergo (almost) central collisions. The influence of the high-
energy part of the potential is very strong, but occurs rarely.

The interaction of the recoiling atom with one lattice atom is no 81mp1e two-body inter-
action, however. The lattice atom is coupled to its (first) neighbours via the equilibrium
part of the potential. This can be regarded as an effective mass effect and represents
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a second order contribution. This interaction is neglected in the RMD calculation, but
automatically taken into account in a full MD calculation.

After some time, the recoiling atom is slowed down to quasi-thermal velocities. Espe-
cially for long lifetimes, many recoiling atoms reach this regime. Now again, the dynamics
is determined by the low-energy part of the potential.

The equilibrium parts of interatomic potentials, especially when also including many-
body interactions as in the case of ZnS (Stillinger-Weber potential), are often optimized
for one crystal structure. In this case, the applicability of this potential to the low-energy
interactions between the recoiling atom and the lattice atoms is doubtful. At the beginning,
the recoiling atom is quickly moving through the crystal. It can not be found on a lattice
site where the potential yields a correct description. Later, in the thermal regime, at least
some of the recoiling atorns are located at interstitial positions, i.e. at shorter distances to
their first neighbours than expected by the potential. In this case, the potential will lead
to a relaxation. However, one should be cautious about conclusions to be drawn, as the
potential is only valid for the perfect crystal structure.



Chapter 8

Results on the basis of artificial data

Due to the low experimental yield, methodical studies for Crystal-GRID were not possible
or very difficult to perform until this work. Precise knowledge about methodical topics
was often replaced by assumptions from hand-waving arguments. The use of artificial
data finally allows to address these studies. In Section 8.1, several assumptions about the
sensitivity of Crystal-GRID measurements are analysed that largely influence the way of
how Crystal-GRID measurements are performed. The analysis is performed for GaP, where
nicely structured lines are obtained. However, the main conclusions can be transferred to
other materials. The question whether angular correlation has a significant influence on
experimental results will be discussed in Section 8.2.

The last section will be dedicated to a comparison of the different descriptions of
the slowing down, mainly MD and RMD simulations. Furthermore, the use of artificial
data finally allows to compare predictions from the MFPA theory to the less approximate
predictions from MD simulations, fundamentally clarifying the inadequacy of the MFPA
for a general description of the slowing down.

8.1 Sensitivity of Crystal-GRID to the nuclear level
lifetime and to potential parameters

8.1.1 Influence of separation into scans

Due to the slight drift of the spectrometer, GRID measurements are separated into many
scans. An upper limit for the measuring duration of a single scan is given by the drift
stability, a lower limit by the necessity to have a sufficient number of counts per scan in
order to correctly fit the centre positions.

In order to check whether the error of fitted parameters depends on the number of scans
into which the total measuring time is subdivided, artificial data have been generated
for GaP with different centre heights' I. (10, 30, 60, 100, 300, 600, 1000, 3000). The
background I;,; was chosen to be 10% of the centre height I,. The model line has been
fitted to the artificial data, in order to determine an estimate for the lifetime 7 and its
error 0. The result is displayed in Fig. 8.1. For different summed centre heights, it can

1The centre height refers to the <100> orientation. Lines for other orientations have been normalized
so that they correspond to an identical measuring time.
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FIGURE 8.1: Error o of the fitted lifetime. The error o, does not depend on the number of scans
into which the total measuring time is subdivided. For a summed centre height of 600 counts,
e.g., calculations have been performed using 60 scans with I, = 10, 20 with I, = 30, and so on.
The plotted results have been obtained for single crystals oriented in <111> direction. Similar
results are obtained for other orientations or with a powder sample.

be shown that o, does not depend on the number of scans into which the total measuring
time is subdivided.

A single scan consists of many measuring points, typically 60 to 100. Keeping the total
measuring time for a single scan constant, it could be further shown that the number of
measuring points within a scan does not significantly influence the result, as long as the
number is sufficiently high to correctly determine the centre positions of the lines. For
this investigation, artificial data have been used for three different orientations of single
crystalline samples, going from 200 measuring points (I, = 10, Iz = 1) to 10 points
(I. = 200, Iy = 20). In the case of only 10 measuring points, convergence could not be
obtained. However 25 points turned out to be sufficient. The correct lifetime is always
found within the standard deviation o.-. The standard deviation o, slightly increases with
decreasing number of measuring points. In this case, an increase by about 3% from 200
to 25 measuring points was observed.

The standard deviation o, turned out to be proportional to the square root of the total
number of counts which itself is proportional to ) I, for a constant number of measuring
points (see Fig. 8.2)

or e~/ L (8.1)

The variance o2 of a number of counts always equals the (model) number of counts ¢ in a
counting experiment. Consequently, the above result is not surprising. It shows, however,
that the basic proportionality o ~ c is also valid for the error of the lifetime, even though
the calculation of GRID lines uses MD simulations.
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10%, approzimately. A powder sample is nearly as well suited as a crystal. Combining different
orientations does not improve the statistical error of the lifetime.

8.1.2 Determination of level lifetime

Comparing different sample orientations, it is found that the error of the lifetime — for
a given interatomic potential — only slightly depends on the orientation of the sample.
As can be seen in Fig. 8.2, the error obtained by fitting data of the <111> orientation
is slightly lower than for other orientations; the difference between best and worst case is
about 10%. Furthermore, using a powder sample, the standard deviation is of the same
size as when using a single crystal. The general assumption that combining measurements
of different crystal orientations (“all” in the figure) would reduce this error, could not be
verified.

The error o, depends on the value of the level lifetime, as the lifetime drastically
influences the fine structure of a GRID line (compare Section 5.2). Artificial GaP data, for
different values of the true level lifetime have been evaluated. The obtained errors o, are
plotted in Fig. 8.3. In this case, the optimal lifetime lies around 20 fs. The dependence of
the relative error o, /7° on 70 is almost similar for the three different crystal orientations.
Only for the powder sample, o, varies more strongly with the true value 79 of the lifetime.

Consequently, for a given system, artificial data can be used to calculate which crystal

orientation is best and to estimate the expected statistical uncertainty as a function of the
total number of counts.

8.1.3 Determination of potential parameters

What about the potential parameters? Using 30 artificial scans for GaP with a centre
height of 100 counts on a background of 10 counts, the screening length a, has been fitted.
"The results are shown in Fig. 8.4 for artificial data belonging to true values of the level
lifetime of 8fs (a-b) and 20fs (c-d), respectively. Similar results are obtained with 150
scans with a centre height of 20 counts on a background of 2 counts.
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this case, the smallest error can be obtained for a true lifetime 0 of 20fs. The error increases
especially for very small lifetimes. The three single-crystalline samples show a similar behaviour.
The dependence of o on the true lifetime is stronger in the case of a powder sample.

As can be seen in Fig. 8.4a) and 8.4c), single-crystalline samples are much more sen-
sitive to the screening length than a powder sample in which case x? hardly changes at
all when varying a;. The sensitivity depends on the sample crystal orientation. This
is related to the fine structure of the lines which depends on the orientation (compare
Section 5.2). The best sensitivity, i.e. the smallest error is obtained for the asymmetric
<111> orientation.

For the first time, it could be shown that the asymmetry by itself improves the sensi-
tivity. For that purpose, the <111> GRID line has been symmetrized, and artificial data
have been generated for both, the original <111> orientation and this so-called <111>*
orientation. As obvious from Fig. 8.4a) and 8.4c), the sensitivity is drastically reduced for
the symmetrized line.

Contrary to expectations prior to this work, the sensitivity is not improved by com-
bining measurements with different crystal orientations. The size of the error ¢, is similar
to the error obtained when measuring one crystal orientation the whole time {(compare
Section 9.2).

A second prediction could also not be verified. It was assumed that only with the
correct potential, the lifetime estimates obtained from the measurement of different orien-
tations should coincide. If the estimates did not agree, the potential would not be suited
and it could be excluded. As can be seen in Fig. 8.4b) and 8.4d), the lifetime estimates
do not differ strongly from each other when varying the screening length within a wide
range. A difference of two standard deviations is not sufficient to exclude a set of potential
parameters. As discussed in Section 7.3, this additional criterion is not necessary. as the
best set of potential parameters also yields the lowest value of y2.
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FIGURE 8.4: Optimization of screening length for artificial GaP data with a true level lifetime of
81fs (a+b) and 20fs (c-+d). The sensitivity to the screening length depends on the orientation of
the sample (<111>* refers to a symmetrized <111> Crystal-GRID line). Different orientations
yield lifetime estimates that do not differ a lot. Consequently, potential parameters can not be
excluded due to inconsisient estimates from different measurements.

8.2 Importance of angular correlation

The angular correlation function can only be calculated if the nuclear spin states of the
cascade under study are known. Otherwise, the unknown coefficients have to be fitted
during the GRID evaluation. However, this enlarges the number of free parameters and
thus the needed accuracy of the measurement. For that reason, it would be nice if angular
correlation could be neglected when calculating GRID lines.

Jolie states that angular correlation is only important for “very short lifetimes” [Jol 92,
p. 32). After some collisions, the correlation of the recoiling atom’s initial direction with
the actual direction of motion is lost, and the y—y correlation washes out. Fig. 8.5 shows
Crystal-GRID lines of the 4.934 MeV transition? in 2°Si for the <100> crystal orientation.
For every value of the lifetime 7, two lines have been calculated, correctly taking into
account the angular correlation, and neglecting its influence, respectively. For the short
lifetime of 5fs, the two lines differ strongly. The difference decreases with increasing
7. However, even for a comparatively long lifetime of 35fs, the theoretical lines differ

2This transition has been studied experimentally within this work (compare Section 9.2).
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FIGURE 8.6: Deexcitation cascade in 31Si [Ram 92]. For each level of energy Eievei, the reported
lifetime T [End 90] and the spin parity J™ are given. For the transitions, the photon energy E.,
the corresponding initial recoil velocity v° of the Si nucleus, and the absolute intensity P, of the
transition are indicated (% refers to the number of neutrons captured). Only the main feeding is
used in the calculations.

significantly.

In order to get an idea of how experimental results are influenced if angular correlation
is neglected, artificial data have been generated for the 2.781 MeV transition in 3!Si. The
corresponding decay cascade is shown in Fig. 8.6, the angular correlation of the two photons
is given by the factor W’(cos¢) ~ 1+ £ [3 (cos é)? — 1].

Data have been generated for single crystals in <111> orientation and for a powder
sample at six different values of the lifetime, namely, 5fs, 10fs, 15fs, 20 fs, 30 fs, and 40 fs.
The background I, has been set to 30 counts, the total number I of diffracted photons
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to 900, corresponding to a centre height I, in between 90 and 230 counts, depending on
the lifetime3.

The GRID lines have been derived from an MD calculation using a combined BM-SW
potential; the switching between the two forces is performed by the power-switch function
with parameters ro = 1.6 A, and £ = 12 (compare Fig. 7.4). The simulation cell contained
6% unit cells, i.e. 1728 atoms.

Fig. 8.7 shows the estimates of the nuclear level lifetime obtained when fitting theo-
retical GRID lines to these artificial data. While the correct values are reproduced within
the error when taking the correct model, the estimates become drastically wrong if ne-
glecting the angular correlation. As expected, the largest deviation is observed for the
shortest lifetime. Until this work, it was commonly assumed that angular correlation is
of no importance above 15fs. As can be seen, the estimate of the lifetime is wrong by
about 10% at 7 = 15fs. Even for 7 = 301s, the error is still of the order of 5%. At least
in this cascade, angular correlation can not be neglected even for longer lifetimes. Yet,
the result is not general, as the strength of the angular correlation depends on the nuclear
spin states.

A 5% error for longer lifetimes may be regarded as very small compared to other
sources of errors in nuclear level lifetime measurements. However, on the one hand, it
must be included in the error given for the lifetime. And on the other hand, for Crystal-
GRID measurements with the aim of improving interatomic potentials, it is necessary to
describe the GRID lines as well as possible. The neglect of the angular correlation may
partly compensate the weak influence of the interatomic potential and thereby lead to
incorrectly determined potential parameters.

*The Crystal-GRID lines for the <111> orientation are displayed in Figure 8.8.
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8.3 Comparing different descriptions
of the slowing down

8.3.1 MD versus RMD

As discussed in Section 4.2, MD simulations are very time-consuming. A significant gain
in time can be obtained by performing restricted MD (RMD) calculations where only the
interactions of the recoiling atom with its neighbours are considered. Until this work, it
could not be finally shown if this approximation is justified or if it alters the outcome of
a GRID experiment.

In full MD calculations, all atoms are stabilized at their lattice positions by the inter-
action with their further neighbours. In a head-on-collision, e.g., the impinging atom is
strongly slowed down. In the case of equal masses of the collision partners, the kinetic
energy is maximally transferred. The recoiling atom occupies the lattice site of its neigh-
bour which itself starts moving through the lattice. The observed Doppler shift (almost)
vanishes.

In RMD calculations, the first neighbour only underlies the interaction with the re-
coiling atom itself. It is repelled without having a restoring force. Consequently, the
scattering leads to a stronger acceleration of the neighbour and a weaker deceleration of
the recoiling atom. Furthermore, once the scattered atom has left the interaction sphere
of the recoiling atom, it can move freely through the crystal without being slowed down
by any further neighbour. The initially recoiling atom continuous moving through the
lattice which now has one vacancy but is perfect otherwise. In a full MD calculation the
scattered atom would be slowed down by the further neighbours, entailing a cascade and
thus a significantly changed crystal arrangement.

Furthermore, using the same full potential in RMD simulations, as would be used in
full MD calculations, including an equilibrium part, Jentschel observed that the recoiling
Cl atom in NaCl attracts the neighbouring Na atoms and pulls them through the crystal
(unpublished). This phenomenon that could be called “vacuum-cleaner effect”, occurs due
to the long-range attractive forces in ionic crystals. Of course, this behaviour is far from
being real and only related to the neglected interactions among the sample atoms. This
effect is not observed in Si where the attractive forces are short-range.

In full MD calculations, the equilibrium part of a potential is essential in order to keep
the crystal structure in the simulation cell stable. In RMD calculations, no interactions
between the sample atoms are taken into account, and therefore, Jentschel decided to
apply only purely repulsive potentials in RMD simulations. Besides the enormous gain in
computer time, this presents a second appealing advantage. The universal (ZBL) potential
only depends on the atomic charge numbers Z of the atoms involved and can thus be used
to simulate Crystal-GRID lines in any material. It would not be necessary to look for
adapted equilibrium potentials which differ from material to material.

In this case, however, an inverse effect has been observed within this work. After
reaching quasi-thermal velocities. all neighbours are repelled due to the missing attractive
part of the potential. In simulations for ZnS, no neighbours are left in the neighbour shell
of the recoiling atom after about 100fs, the recoiling atom moves freely.

A purely repulsive potential seemed to be sufficient to deseribe the slowing down of
the recoiling atom. However, it must be emphasized that the interatomic potential differs
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for energies below 100eV, approximately. This can be seen in Fig. 7.4 in the case of Si.

Within this work, comparative investigations have been performed for the 2.781 MeV
transition in 3'Si. For this transition, GRID lines have been derived from three different
simulations: a full MD calculation with the combined BM-SW potential, an RMD cal-
culation with the same potential, and an RMD calculation with the purely repulsive BM
potential. In order to study the influence of the initial recoil energy, further simulations use
the same decay cascade, but with the initial kinetic energy of the recoiling atom enhanced
by a factor of 2 and 4, respectively.

The derived GRID lines for six values of the level lifetime are plotted in Fig. 8.8-8.10.
What can be seen? The three different approaches yield quite similar lines. However, some
obvious differences exist. The different lines for the short lifetimes (5 fs and 10fs) disagree
in many details. For longer lifetimes, the central peak becomes more and more dominant,
and the main difference between the three approaches becomes obvious in the height of
this central peak. The RMD simulation using the combined BM-SW potential always
yields a central peak that is lower than the peak derived from the full MD calculation.
The RMD simulation using only the BM potential slightly overestimates the height of the
central peak.

In the case of a low initial kinetic energy (Fig. 8.8), some BM (RMD) lines coincide
almost exactly with the full MD ones. Also for the highest kinetic energy (Fig. 8.10), the
consistency with the correct MD lines is generally better compared to the lines derived
from the BM-SW (RMD) simulations. Only for the intermediate energy (Fig. 8.9), this is
not the case.

The average velocities calculated from the different simulations are plotted in Fig. 8.11,
the distribution of velocities in the case of a full MD calculation (EY, = 161€V) is illus-
trated in Fig. 8.12. The interaction of a recoiling atom with its first neighbour, located at
2.4 A from the initial lattice site, e.g., entails a decrease of the average velocity. Most atoms
are only slightly slowed down, as they pass far from the neighbour’s lattice site. However,
some of them undergo a strong collision, their velocity drops quickly (see Fig. 8.12).

In the case of NaCl, Jentschel had found that MD and RMD calculations show a similar
time-dependence of the average velocity of recoiling Cl atoms in NaCl down to velocities
of about 0.02 A/ fs, neglecting the equilibrium part of the potential in the RMD approach
[Jen 97a, Jen 00].

The actual investigation shows that for high velocities, i.e. high kinetic energies, the
average velocities in the three approaches are very similar. The approximations of the
RMD approach only little influence the slowing down (see Fig. 8.11c), ¢ < 201s).

For later times (¢ < 1001s), the average velocity obtained from RMD simulations with
the BM-SW potential is systematically too high, leading to the underestimated height of
the central peak in the GRID lines. Using the purely repulsive BM potential in the RMD
simulation, the average velocity comes closer to the result of the full MD calculation up to
100 fs, approximately. The approximations of the RMD approach are partly compensated
by the more repulsive potential (compare Fig. 7.4). Depending on which influence is more
pronounced, the average velocity is sometimes higher and sometimes lower than the full
MD average velocity. A good equilibration is reached in the last case (Fig. 8.11c), the
average velocity is always too small in the second case (Fig. 8.11b), it oscillates around
the MD average velocity in the first case (Fig. 8.11a). The two effects are of varying
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FIGURE 8.8: Theoretical Crystal-GRID lines for the 2.781 MeV transition in 3 Si for the <111>
crystal orientation. Angular correlation is taken into account, side feeding disregarded. The lines
are plotted for different values of the lifetime and using three different simulations.

importance. Consequently, a general conclusion about the influence on GRID lines is not
possible.

For times ¢ > 1001s, the RMD simulation using the BM potential results in too small
average velocities, the central peaks of the derived GRID lines is too high. However, only
few atoms decay at very late times, and thus, the influence on the GRID lines is not very

pronounced.

In order to estimate the influence on parameters to be determined, the derived GRID
lines from the three approaches are fitted to artificial data that have been generated on
the basis of the full MD calculation (compare previous section). The resulting deviations
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taken into account, side feeding disregarded. The lines are plotted for different values of the

lifetime and using three different simulations.

of the lifetime estimates 7 from the true values of the lifetime 70, used when generating
the artificial data, are shown in Fig. 8.13.

As expected, the full MD calculation reproduces the true values 70 quite well, both
using a powder sample and an oriented single crystal. The small deviations are related
to the error of fitting the local parameters of the single scans, as discussed in Section 6.5.
The RMD simulation using the combined BM-SW potential overestimates the lifetime,
The deviation becomes generally bigger, the longer the true lifetime is, and reaches values
of 10% to 20% (see Fig. 8.13a) and 8.13c)).
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The RMD calculation using the BM potential mostly yields estimates that are wrong
by less than 3%. Only for 70 = 515 in the first, and for 7° > 30fs in the second case, the
deviations are larger (5% to 7%). The observed deviations quantify the differences in the
GRID lines.

This work mainly focuses on semiconductors, and consequently. Si has been chosen
for the investigation. Similar studies can be easily performed for any solid of interest.
However, basing on the above results, some general conclusions can be drawn for GRID
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FIGURE 8.12: Velocity distribution of 2000 recoiling atoms starting with an initial kinetic energy
Egm = 161eV (black=many atoms, white=few atoms). The recoiling atoms that move in the
direction of their first neighbour undergo o first collision after a few fs. The head-on collision
leads to a drastic reduction of the recoiling atom’s velocity. Most atoms, however, pass the first
neighbour shell with almost unchanged velocity (black spot in the upper left corner). As they are
focused by the first neighbours in the direction of the second neighbours, most of them undergo o
strong collision at the second shell. Further collisions can be recognized in the velocity distribution.

After about 100fs, most atoms reach guasi-thermal velocities.

and Crystal-GRID measurements. When performing GRID measurements with the aim
of determining nuclear level lifetimes, only one simulation with a well-suited interatomic
potential needs to be performed. If an adapted interatomic potential is reported in the
literature, it is absolutely possible to perform a full MD calculation avoiding additional
errors. Otherwise, RMD simulations using a purely repulsive potential, as the ZBL poten-
tial, seem to quite well reproduce the GRID lines and lifetime values, at least for lifetimes
up to 20fs or 30fs. A 5% error is acceptable for the determination of nuclear level life-
times. RMD calculations should, however, not be performed using the full potential, as
this approach may lead to big errors, as seen for Si.

When performing Crystal-GRID measurements with the aim of improving interatomic
potentials, many simulations are needed. RMD calculations would be of big advantage. As
seen before, RMD simulations with the full potential may vield errors of up to 20% for the
lifetime, and would consequently vield errors for potential parameters to be determined.
Whether they are better suited for other crystals, as metals, e.g., it can be checked by a
similar investigation using artificial data.

When neglecting the equilibrium part and using a purely repulsive potential in RMD
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FiGURE &.13: Deviation of fitted lifetime T from true lifetime 70 for different sets of artificial
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as well as the purely repulsive BM potential (RMD). A similar investigation at 0K comes to

identical results.
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simulations, instead, the error of the simulation itself is partly compensated by a more
repulsive potential. As it is the aim to learn more about the interatomic potential, however,
this compensation is clearly undesired. Reported potentials are quite good already, and
only small corrections to some parameters are needed. Consequently, if one wants to
further improve a potential, it is absolutely necessary to perform full MD calculations.

There is one exception. Interatomic potentials are improved for computer simulations.
If the improved potential is to be used in an RMD calculation in the same energy range, it
may be better to improve the potential parameters also using a similar RMD calculation.
However, it must be clearly stated, that the potential is not the best potential that could
be fitted to the data, but that it is the best potential to be used in the approximate RMD
approach.

The difference between the two RMD simulations may also be used to further explain
the discrepancy in the two studies of range distributions after ion bombardment of Si,
as presented in Section 4.2. In the round-robin test [Gér 95|, the purely repulsive ZBL
potential was used in the RMD simulations. In this case, Gértner comes to the conclusion
that RMD and MD simulations yield similar results. Posselt and Heinig [PosHei 95], on
the other hand, used a combined ZBL-SW potential to describe the interaction. They
found a disagreement between MD and RMD. Gértner explained the difference by the
different masses of the impinging ions, B in the first case and Si in the second case. Basing
on the investigation described in this section, the difference might also be explained by
the different potentials applied in the RMD simulations. The two studies present no
contradiction in themselves.

8.3.2 MFPA versus MD

The mean free path approach (MFPA) has been developed in the late 1980s by Jolie et al,
in order to theoretically describe the slowing down of recoiling atoms in GRID experiments
[Jol 92, pp. 26-30]. The MFPA bases on many approximations and is therefore less suited
to describe GRID lines than computer simulations. Nevertheless, the approach is still
commonly applied for the evaluation of powder GRID experiments. Jentschel, e.g., states
that “in order to obtain a very fast qualitative estimation of the slowing down the MFPA
presents the best suited approach” [Jen 97a, p.60].

Even though MFPA is not suited for the evaluation of Crystal-GRID experiments, as
it does not consider the crystal structure and as it is thus not able to predict orientation-
dependent properties of GRID lines, it is worth comparing MFPA to MD simulations by
looking at powder samples. It is the aim of this section to use artificial data to finally and
clearly present the discrepancies of the MFPA approach.

It has been reported since long that MFPA yields different estimates for the level
lifetime compared to MD simulations. The general conclusion was that MFPA lifetimes
are approximately 30% higher than MD lifetimes. Comparing a large number of MD
lifetime estimates in the range of 10fs...100fs to published MFPA values, Kuronen et al.
found an average scaling of

7ap.zer. = 0.69 Tarpa.pa (8.2}
with a large “scatter of necessary scaling factors” for different materials Kur 92].

The comparison mixes two different things, however. MFPA is a theoretical approach

to describe the slowing down just as MD does. But both, theorv and simulation, base
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FIGURE 8.14: Comparison of MFPA and MD estimates of the lifetime. Theory and simulation
are both based on the BM potential. In the considered case, MFPA yields a deviation of more
than 100% of the true value.

on an interatomic potential. In the MFPA approach, the BM potential with parameters
from Abrahamson is used [Abr 69], as it was supposed to be “the best empirical potential
appropriate for the description of the interaction of identical atoms at separations between
0.5A and 2 A” [Jol 92, p. 28]. The MD calculations, however, commonly use the universal
(ZBL) potential which is said to be the best-suited potential by the ion-beam community
[Eck 91, p. 62]. Therefore, the scaling factor corrects for two things at the same time, the
different approach and the different interatomic potential.

Using the ZBL potential in the MFPA approach, Ulbig found that the newly obtained
estimates for the lifetime are up to 60% higher than with the BM potential [Ulb 91a, p.
92]. Kuronen cites this work and concludes that MFPA yields lifetimes by about a factor of
2 longer than the ones obtained in the MD simulations, this time using the ZBL potential
in both cases [Kur 92]. Despite this work, the factor of 0.69 became common knowledge
[BorJol 93, Jen 97a).

In this work, MD and MFPA calculations are compared, using artificial data basing
on the BM potential (as generated in Section 8.2). Both evaluations use the BM potential
to describe the slowing down. As can be seen in Fig. 8.14, the MFPA overestimates the
lifetime by (111 & 5) % for the original decay cascade with E, = 161€V. Increasing the
recoiling atom’s initial velocity, the estimates become even worse, they are too long by
(121 4 8) % or (130 == 7) %, respectively. The energy-dependence of the deviation shows
that it is not possible to give a universal correction factor as previously tried.

Why does the MFPA yield that wrong estimates? MFPA uses two basic assumptions for
the iterative calculation of the recoiling atom’s velocity: i) The recoiling atom moves with
unchanged energy for a distance equal to the energy-dependent mean free path Rurp (Egin)
and ii) it loses half of its energy at this point. The mean free path Rywp is taken to be the
length of a cylinder of base 7 | w)® and volume V, where dpi, is the distance of closest
approach at a given kinetic energy El,, and V is the average volume per atom in the
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sample [Jol 92, pp. 26-30].

14 _ |4
7 [dmin (Bain)]® 7 [Bau In (2Asm/ Ban)]®
In Eq. 8.3, the distance dg;, is calculated using the BM potential where Apy and Bgy
are the potential parameters. The mean free path Rygp is visualized in Fig. 8.15 for

commonly used, monatomic GRID samples. The straight lines represent a mean free path
A calculated as the third root of the volume per atom (liquid model)

A=V

Ryrp (Fin) = (8.3)

The plot drastically shows why the MFPA method fails in the case of Si. Even at the
low initial kinetic energy of 161eV, the first mean free path in the MFPA calculation is
about 5 A. This value is much larger than the nearest neighbour distance of 2.35 A or than
A = 2.72 A. For increased initial kinetic energies, the mean free path Ryye (B, ) becomes
even longer; the discrepancy from a reasonable size is further enhanced. Consequently,
the slowing down is not well described. This can be seen in Fig. 8.16, where the average
velocity in the MD/RMD calculation is compared to the MFPA velocity which is a step
function.

In fact, Jolie mentions that the approximation of considering the energy loss only after
the atom has travelled the distance Rywrp, is only valid if Ryrp (E{fm) is of the order of
the interatomic distances [Jol 92, p. 30]. This condition is not fulfilled in the case of Si.
It is, however, also not fulfilled in many other cases where it has been applied (compare
Fig. 8.15).

Basing on these considerations, it becomes clear that the MFPA approach should
not be used at all, unless a better formulation for the mean free path is found. RMD
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FIGURE 8.16: Average velocity (v) of recoiling atom determined from MD and RMD calculations
as well as taken from the MFPA theory in the case of Si with EY, = 161eV. The MFPA
underestimates the slowing down drastically. If taking all mean free pathes to be only half as
long, a good consistency would be obtained, in this case.

calculations using the purely repulsive ZBL potential can be easily performed for all GRID
measurements up to about 100fs. For longer times, a different treatment is needed, as
RMD does no longer sufficiently describe the recoiling atom’s velocity. In the MFPA
approach, a Maxwell distribution around the measured sample temperature is used as soon
as thermal velocities are reached. With some additional work, a similar approximation
could also be implemented in the RMD code.

If a well-suited interatomic potential exists, an evaluation by a full MD simulation is,
of course, preferable. With modern computers it should be no problem to perform a full
MD simulation even for lifetimes up to the ps range. As slowly moving recoiling atoms
only emit almost unshifted photons, the simulation can even be made more efficient by
stopping the calculation of a trajectory as soon as the recoiling atom is very slow. However,
investigations for this range of lifetimes are beyond the scope of this work.



Chapter 9

Experimental Results

Crystal-GRID experiments have been performed at the high-flux reactor of the ILL in
Grenoble. The use of the ILL facilities requires the submission of proposals which are
then handled in a subcommittee of the Scientific Council, corresponding to their scien-
tific content. The proposals are evaluated for scientific merits, assigning priorities and
beam time to accepted proposals. Actually, around 70% of the submitted proposals are
accepted!. On average, seven months pass in between the submission of a proposal and
the actual measurement.

When I first started working on the investigation of interatomic potentials using
Crystal-GRID, two proposals had already been submitted by my supervisors and accepted
by the Scientific Council, dealing with gallium phosphite (GaP) and iron (Fe) single crys-
tals, respectively.

The proposed measurements using single-crystalline iron (Fe) were scheduled only a
few days after I started working on Crystal-GRID. As a second group, from the Université
de Fribourg in Switzerland, had proposed similar measurements, it was decided that this
Fe experiment would be evaluated by the Fribourg group, and that I would focus on
semiconductors.

Predictive computer simulations had shown that GaP should be ideal to prove the
existence of asymmetric Crystal-GRID lines. However, the study of expected count rates,
as reported in Appendix C, shows that the transition in P, originally selected for the GaP
measurement, is to weak to yield good results. Furthermore, no more than one GaP crystal
can be brought in the reactor, as the § activity of Ga would be too high in case of an
emergency extraction of the samples. Instead, it was decided to use ZnS single crystals,
even though the reported lifetime of 7 = (40 + 12) fs is at the upper limit of measurability.
Results are reported in Section 9.1.

Silicon (Si) is certainly the technically most important semiconductor. Improving its
interatomic potential would be of great interest. A new potential could immediately be
applied, e.g. in standard process simulation software. Unfortunately, the only transition
that might actually be measurable has a reported lifetime of 7 = (1.22 £ 0.18) fs (compare
Appendix C) which is too small for Crystal-GRID measurements. As reported lifetimes
are often not very reliable, test measurements have been performed with Si single crystals
in order to verify the value. Experimental results as well as results using artificial data
are reported in Section 9.2.

thitp: //www. 111 . £r/SC0/
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Both, the measurements with ZnS and Si, did not yield very promising results. There-
fore, further measurements were performed using the insulator titanium dioxide (TiOs).
The studied transition in Ti had already been applied several times in powder GRID
measurements. As first Crystal-GRID data had been taken by Jentschel during his thesis
[Jen 97a), it was known that well-structured lines would be obtained. The results of these
measurements are reported in Section 9.3.

The Fe experiment, as well as measurements with Cr and Ni, have been evaluated
by Stritt etal. (Fribourg). After the detailed studies presented in Chapters 6 and 7, a
re-evaluation of these measurements became necessary. The results are presented in the
last section of this chapter.
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9.1 Results — Zinc Sulphide (ZnS)

Zinc sulphide (ZnS) is a II-VI semiconductor with a comparatively wide band gap (3.7eV).
The material is especially interesting because of its optoelectric properties. Examples for
its application are electro-luminescent devices [Bri 94] or planar waveguides [Won 91].
Diodes and transistors can also be produced on the basis of ZnS.

During three measuring periods, ZnS crystals have been investigated with the <100>,
<110>, and <111> directions oriented towards the spectrometer, respectively. The mea-
surements used the E) = 2.380MeV transition in the 338 nucleus, depopulating the
3.221 MeV level. This level is mostly directly fed, 91% of the nuclei decay directly from
the capture state (see Fig. 9.1). Two two-step cascades further contribute to the feeding
[Ram 85]. Their influence is small but taken into account in the simulations. The en-
ergy E.,, of the primary photon in the main feeding is 5.421 MeV, corresponding to an
initial recoil energy of the excited S nucleus of 478 €V, i.e. an initial recoil velocity 1° of
0.529 A/ fs. The nuclear state has a reported lifetime 7 of (40 & 12) fs [Fir 96].

The two spectrometers, GAMS 4 and GAMS 5, were used in flat-crystal mode. For all
orientations, one measurement has been performed with one crystal in first, the other in
second diffraction order. Two further measurements have been done with both crystals in
second diffraction order leading to a higher resolution at the cost of intensity. For each
measurement, a large number of scans (16 to 47) has been recorded, containing about
90 data points each. Details can be found in Table 9.1.

As discussed in Section 3.4, the experimental setup is not absolutely stable, and a small
drift is present in the scans. For that reason, short reference scans of the long-lived, highly
intensive 0.841 MeV transition have been measured in between the long scans. Fitting
the centre positions of these scans allows to approximate the drift function and to correct
the drift. A linear correction algorithm has been used in slowly drifting regions. Scans
including a strong drift have been neglected in the evaluation. The centre positions of
both, the reference scans and the scans of interest, are plotted in Fig. 9.2 for the <100>

measurement at GAMS 5.

E, [MeV]
7 [fs] V' [c] B [MeV] a 2931
328 +n 4> 338 P‘llﬂ 8.642 0.954'10-4
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FIGURE 9.1: Partial level scheme of 335 [Ram 85]. For each level of energy Eicyer, the reported
lifetime T is given [Fir 96]. For the transitions, the photon energy Ey, the corresponding initial
recoil velocity % of the S nucleus, and the absolute intensity P, of the transition (% refers to
the number of captured neutrons) are given.
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orient. | GAMS | order | no. | m. time | centre h. | backg. excess width
<hkl> (n/m) | scans | /point | > I, S Ing Oew

(min) | (counts) | (counts) | (GAMS 4-fringe)
<100> 5 (1/2) | 47 235 1347 113 0.259 + 0.016
<110> 4 (1/2) | 33 176 906 380 0.281 £ 0.013
<110> ) (2/2) 19 190 299 58 0.263 + 0.014
<111> 4 (1/2) | 33 176 908 333 0.252 +0.015
<111> 5 (2/2) 16 160 290 44 0.164 £ 0.016

TABLE 9.1: Details of the five measurements using the 2.380 MeV transition in 33S. For every
measurement, the orientation of the ZnS crystals, the used spectrometer, the diffraction order of
the spectrometer crystals, the number of performed scans (90 measuring points each), the time of
measurement per point, the summed centre height over background, the summed background level
as well as the fitted excess width are given. The excess width is given in GAMS4-fringes for all
measurements, conversion to eV can be obtained with the factor 113.9 eV /fringe.

The sum scans of the five measurements are plotted in Fig. 9.3. Only a small part of
the background is shown, the single scans extend further in the background region. The
straight lines are the summed fitted theoretical GRID lines. The dashed lines show the
instrumental response functions. )

All GRID lines have a significant peak around zero, confirming that the nuclear level
lifetime is rather long. The wings contain fine structure which differs significantly com-
paring the five measurements. However, the dominant peak leads to a strong statistical
noise, thus hiding a lot of the fine structure. Even though many scans have been taken,
the statistics of the measurement is not sufficient.

The resolution in the measurements, which are displayed on the right side of Fig. 9.3,
is much better compared to the other three measurements. The main peak is narrower
and the fine structure becomes slightly more pronounced.

9.1.1 First measurement of asymmetric Crystal-GRID line

Besides the improvement of the interatomic potential, the actual experiments aimed to
observe for the first time a theoretically predicted asymmetry of the Doppler broadened
line for the <111> crystal orientation.

Under normal conditions, zinc sulphide has the zinc-blende structure (point group
F43m). The two constituents are found on two face-centred cubic sub-lattices, respectively,
displaced with respect to each other by one forth of the diagonal of the cubic unit cell
(see Fig. 9.4). Every atom has 4 first neighbours of the opposite atom sort at a distance
di = v/3a/4 = 43% a (tetrahedral positions), and 12 second neighbours of the same atom
sort at da = a/ V2 = T1% a where a is the lattice constant.

The zinc-blende structure has no inversion symmetry. A rotation-inversion symmetry
exists for some axes, e.g. for the <100> and for the <110> directions, but not for the
<111> direction. Consequently, the expected Crystal-GRID line in the latter case should
be asymmetric (compare Section 5.3).

This asymmetry could be verified experimentally, as can be seen in Fig. 9.3. Due to the
long lifetime, the asymmetry of the Crystal-GRID lines is not very pronounced (compare
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FIGURE 9.2: Drift of spectrometer monitored by the fitted centre positions of short reference scans
(0.841MeV, diffraction order (1,—1), left scale, solid square) and of the scans of the transition
under study (2.380 MeV, diffraction order (1,2), right scale, hollow square). The z-azis gives the
names of the scan files (oc=october, 02=2"%, 8=1998, 001=file 1). (plot by Jentschel)

Section 5.3). However, especially, the slope around 200 eV differs significantly for positive
compared to negative energy shifts. As the two spectrometers are placed on opposite sides
of the beam tube (see Fig. 3.2), i.e. of the sample, the asymmetry is mirrored comparing
the measurements at the two spectrometers.

The existence of the asymmetry is also confirmed statistically by fitting theoretical
Crystal-GRID lines for both, the <111> and the <111> orientations, to the same experi-
mental scans, and comparing the obtained values of x5 p. A difference in x3 p correspond-
ing to more than 40 for GAMS 5 and more than 60 for GAMS4 is obtained, proving that

the line is asymmetric.

9.1.2 Improving the interatomic potential (RMD)

As MD simulations are very time consuming, RMD simulations with purely repulsive
potentials have been performed to get a first impression of how the interatomic potential
can be improved on the basis of the measured data.

First, the universal (ZBL) potential is used. The screening lengths of the potentials for
all three interactions (Zn-S, S-S, and Zn-Zn) are simultaneously varied in order to find an
optimal value. The original value, as defined in Eq. (1.6), will be called a? in this context.
In principle, it would also be possible to separately optimize the screening lengths of the
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FIGURE 9.3: Ezperimental results for ZnS. The sum scans are plotted together with the summed
theoretical GRID lines (straight lines) and the instrumental response functions of the spectrom-
eters (dashed lines). The measurements with one spectrometer crystal in first, one in second

diffraction order are shown on the left side, the measurements with both crystals in second order
are shoun on the right side.

three interactions. However, in this case, a three-dimensional parameter space would have
to be treated. Furthermore, the recoiling S atom is not or only very little influenced by the
Zn~Zn potential. The Zn-S potential is the most important, as the first neighbour shell
consists of Zn atoms. Due to the long lifetime, also the S-S potential plays an important
role for the movement of the recoiling S atom.

Second, the Gértner-Hehl potential is used. The screening functions for the three
combinations Zn-S, S-S, and Zn-Zn, have been calculated by Girtner [Gér 98]. They
should, in principle, yvield a better description than a mean potential, as ZBL. As the
function is given numerically, it is difficult to vary the potential for an optimization. Only
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FIGURE 9.4: The ZnS lattice consists of two inter-penetrating fec lattices, shifted by one forth of
the lattice diagonal and occupied by two different atom sorts. The laitice has no rotation-inversion
symmetry along the <111> crystal orientation, along which the S atom has a Zn neighbour at a
distance of d = \/3_0,/4 in one direction and 3d in the other direction.

data | potential | optimized as/al | minimum x3 p Q T (fs)
original GH 14051 0.007% | (51.6 £0.7)
ZBL (98 11) % 14065 0.005% | (54.8 + 0.8)
drift-corrected | GH 14057 0.005% | (61.7+0.7)
7BL (97 £11) % 14071 | 0.004% | (55.7 % 0.8)

TABLE 9.2: Results of ZnS measurement evaluated with RMD simulations. The error given for
the screening length corresponds to a 20 error, the error for the lifetime 1 is purely statistical
(due to the total number of counts).

the originally calculated functions are used.

The simulated GRID lines have been fitted to both, the original and the drift-corrected
data. The resulting values of the statistical variable x3 p are plotted as a function of the
relative screening length in Fig. 9.5. It can be seen that the original data are slightlj,
more consistent with the model lines than the drift-corrected data, the values of X,\ P
are smaller?. Obviously, the linear drift correction did not improve the consistency®.
Consequently, the drift correction is ignored in the following, the small additional error
can be neglected compared to the statistical error. A similar conclusion can be drawn
from the evaluation using full MD simulations (compare Fig. 9.12).

The screening length as of the universal (ZBL) potential can be optimized. Its opti-
mized value is (98 = 11) % of the original value, i.e. the original value is correct within
this 20 error. The GH potential is slightly better suited for RMD simulations than the
optimized ZBL potential. The results are summarized in Table 9.2.

Looking at the goodness-of-fit, one gets aware that both potentials are not sufficient to
describe the data, as @ is only of the order of 0.005%. Usually, for Q < 0.1%, the model
is rejected (see Section 6.1.5). The inconsistency becomes only visible when considering
all data in the evaluation. Every single series of scans is sufficiently well described by the

2The drift-corrected data (v = 12835) contain five data points less than the original data {v = 12840).
Consequently, the expectation value of X3, p is reduced by 5 compared to the original data. This further
enhances the observed difference in v} 5P between the two data sets.

3Rigourously speaking, it is not clear whether the drift correction is correct. 3 1. 18 astatistical variable
describing the consistency of data and model. Of course, it is possible that the cgrrecth drift-correcied
data are less consistent with the model. However, this is not very probable.
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FIGURE 9.5: Minimum values of the statistical variable Xi, p obtained by fitting theoretical GRID
lines (RMD) to the data. The original data lead to smaller values of x?\’ p than the drift-corrected
data, showing that the drift correction is not suited. The GH potential leads to a slightly bet-

ter consistency than the ZBL potential. The screening length a, of the ZBL potential can be
optimized.

orientation | GAMS | x3 p | goodness-of-fit @
<100> 5 | 4626 0.9%
<110> 4 3149 0.6%
<111> 4 2949 24%
<110> 5 1835 8%
<111> 5 1489 9%

TABLE 9.3: Comparison of the five measurements evaluated with RMD simulations on the basis
of the GH potential.

potentials, @ is in the range from 0.6% to 24% (see Table 9.3).

Due to the large number of scans, the statistical error o, ~ 0.7fs is very small. How-
ever, this error does not include the uncertainty due to the potential. This explains the
comparatively large discrepancy between the GH and the ZBL estimates for the lifetime.
Including the 20 uncertainty of the screening length a, in the error o, a reasonable esti-
mate of the lifetime, basing on RMD calculations, becomes (55 4+ 11) fs.

9.1.3 Improving the interatomic potential (MD)

Due to the long lifetime, many secondary photons are emitted by slowly moving atoms.
However, the equilibrium state of ZnS is not reflected in RMD simulations.

As discussed in Chapter 1, the high-energy part of the interatomic potential is well
described by one of the screened Coulomb potentials, namely ZBL, KrC, or GH. This has
been tested experimentally for high energies. The equilibrium state is well described by
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FiGURE 9.6: Two-body term Vo of the combined interatomic KrC-SW potential for the Zn—S
interaction used in the evaluation of the ZnS Crystal-GRID data. Potential functions are plotted
for the highest and lowest values of the two parameters. As can be seen, the switch centre ro has
a larger influence than the parameter ér. The Vo axis is linear below 4eV and logarithmic above

5eV.

equilibrium potentials. For ZnS, Stillinger-Weber (SW) potential parameters have been
adjusted within this work (compare Appendix B). This potential should be well suited for
the description of the bound state.

The aim of Crystal-GRID is to improve the intermediate region. The studied recoiling
atoms have an initial kinetic energy of 478eV. The nearest approach corresponds to an
energy of about 300€V, i.e. the potential energy function can only be studied for energies
below 300 eV, approximately. For this reason, it is first tried to optimize the parameters
of the switch function (see Section 1.3).

Simulations are performed using a combined KrC-SW potential for the Zn-S inter-
action. A total of 1500 trajectories is calculated using a simulation cell of 6% unit cells,
i.e. 1728 atoms. The cell is equilibrated at a temperature of 900 K.

The potential is optimized by varying the adjustable parameters rg and 6r of the switch
function sy, as defined in Eq. (1.15) and (1.19). The parameter 7o is the switch centre, i.e.
the position where both potentials are added with an equal weight of 50%. It determines
which of the two potentials, SW or KrC, is more important in the intermediate region.
The switch parameter 6r defines the steepness of the transition. The smaller ér, the faster
the switching occurs.

"The two-body terms V2 of the combined interatomic potentials are plotted in Fig. 9.6
for the maximum and minimum values of the parameters.

In the following, often the value

\/ Axjp= \/ X3p — X3l (9.1)
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is plotted instead of the statistical variable itself. As shown in Section 6.1.4, a variation
of the parameter a; by no; corresponds to an increase of the Poisson MLE Xi, p by n2.

Consequently, \/Ax?\, p gives the number of standard deviations that a trial value of a

parameter is worse than its best value. Due to correlation, this is not perfectly correct
when varying more than one parameter. However, the quantity is still better suited for
visualization than x3 p, itself.

Fitting the theoretical Crystal-GRID lines derived from full MD simulations using the
combined KrC—SW potential to the experimental data by optimizing the local parameters
as well as the nuclear level lifetime 7, best values of the statistical variable x3 p and
estimates for the lifetime are obtained for every set of parameters r¢g and ér. The values

A /Ax?\, p are plotted in Fig. 9.7, the corresponding estimates of the lifetime in Fig. 9.8.

As can be seen, the value of Xi, p varies only little for the different switch parameters.
The difference between best and worst Xi, p is about 10, corresponding to little more
than 3 standard deviations. Furthermore, no clear minimum can be distinguished. The
parameter-dependent variation of xi, p is, if present, completely hidden by the statistical
noise. An optimization of the parameters is not possible.

Indeed, the variation of the parameters did change the slowing down of the recoiling
atoms. This can be seen in Fig. 9.8. The estimates of the lifetime show a clear dependence
on the potential parameters, they increase from 7 = 46fs for 7y = 1.6 A up to 7 ~ 50fs
for rg = 1.0 A. This variation is significant, as the statistical error o, is only 0.7fs. The
non-sensitivity to the switch parameters is clearly linked to the correlation of nuclear level
lifetime and interatomic potential.

The absolute values of Xi, p, as well as the goodness-of-fit (), have similar values as in the
evaluation basing on RMD simulations. Hence, the added equilibrium part of the potential
did not significantly improve the consistency of model GRID lines and experimental data.

The fitted estimates of the lifetime are smaller, now. This is related to the use of the
KrC potential which is slightly more repulsive than the ZBL or GH potential, leading to
a faster slowing down of the atoms. Due to the correlation of lifetime and slowing-down
time, this leads to a shorter estimate of the lifetime.

Obviously, it is necessary to more strongly change the interatomic potential in order to
see a significant variation of x3 p with a potential parameter. Therefore, simulations are
performed with a combined ZBL-SW potential where the screening length a, of the ZBL
potential, as well as the switch centre ry are varied. Again, the forces are linked, but using
the power switch function s, this time (see Eq. (1.16)). The second switch parameter is
fixed at the value £ = 10. The potentials for various values of the screening length are
plotted in Fig. 9.9.

To reduce statistical noise, 2000 trajectories are calculated for every set of potential pa-
rameters. One further calculation is performed using the combined GH-SW potential with
switch parameters 7 = 1.2 A and £ = 10. In this case, 4000 trajectories are calculated.

The result of the parameter variation is shown in Fig. 9.10 and 9.11. Again, the switch
centre 7 does not significantly influence the consistency of model and data. However, the
variation of the ZBL screening length leads to large changes in Xi, p- A sectional view of
Fig. 9.10 for ry = 1.4 A is plotted in Fig. 9.12.

This latter figure additionally shows the results of fitting the drift-corrected data, as
well as the results for the GH-SW potential. As in the RMD evaluation, the drift-corrected
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FIGURE 9.7: Result of fitting model GRID lines to original data. The variation of the switch
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manimum can not be found. The measurement is not sensitive to the parameters.
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FIGURE 9.8: Estimated lifetimes T for different values of the switch parameters ro and ér. A
correlation between rp and T can clearly be seen. This correlation compensates the change of \3 p

with o when fitting model lines to the data.
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FIGURE 9.9: Interatomic potentials for the Zn—S interaction. The combined ZBL-SW potentials
are plotted for different values of the screening length as. The Va scale is linear up to 4eV and
logarithmic above 5eV. The potential with as = 50% - ag is certainly unsuited due to its unusual
run. This will also turn out in the evaluation.

data | potential | optimized a,/a) | minimum 2 p Q T (fs)
original | GH-SW H 14059 0.006% | (50.3 +£0.7)
ZBL-SW | (101+11)% 14055 0.007% | (50 %0.7)
KrC-SW 14057 0.006% (46...50)

TABLE 9.4: Results of ZnS measurement evaluated with MD simulations. The error given for
the screening length corresponds to a 20 error, the error for the lifetime T is purely statistical
(due to the total number of counts).

data are less consistent with the model GRID lines than the original data. They will not
be regarded.

The optimization of the screening length leads to a value of (101 & 11) % of the original
value a. Due to the large error, the variation with ry can be neglected. The resulting
value of a, is consistent with the original value of the screening length, the stated error
corresponds to the 20 error. The obtained values of X,2\, py @, and 7 are listed in Table 9.4.

As evident from Fig. 9.11, the screening length is strongly correlated to the slowing-
down time, i.e. to the interatomic potential. The very high values for a; = 50%-a? are not
precise, as the trajectories are cut off at 250fs. However, even between 75% and 200%,
the estimates of the lifetime vary between 75fs and 25 fs, approximately.

Including the variation of a, in the error of the lifetime, a reasonable estimate of the
3.221 MeV nuclear level lifetime is (50 = 8) fs. This result is compatible with the reported
value of (40 + 12)fs [Fir 96]. Unfortunately, it is at the upper bound of the previously
reported interval. As Crystal-GRID lines become less structured for long lifetimes, the
newly obtained value of the lifetime shows that ZnS is not well suited for the investigation
of atomic interaction using the Crystal-GRID method.
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FIGURE 9.10: Optimizing the screening length as and the switch parameter ro in the combined
ZBL-SW potential by fitting model GRID lines to the original ZnS data. The clear dependence of
X3 p on the screening length allows to optimize the latter variable. The experiment is, however,

not sensitive to the switch parameter rg.
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FIGURE 9.12: Optimization of the screeming length in the combined ZBL-SW potential for a
fized switch parameter ro = 1.4 A. For comparison, the minimum values of the GH-SW potential
are also indicated. The original ZnS data lead to a better consistency than the drift-corrected
data.

As said before, the correlation between level lifetime and slowing-down time leads to a
reduced dependence of Xi, p on the potential parameters. This is emphasized in Fig. 9.13
and 9.14 for an RMD and MD calculation, respectively. If the true value of the lifetime
was known, it would be much easier to optimize potential parameters. As this is not the
case, large errors must be attributed to the parameters, as long as the total number of
counts can not be drastically enhanced.

The correlation is stronger for the RMD calculation. This is not surprising, as the MD
simulation uses a combined potential where the equilibrium part is identical for all values
of the screening length. In the RMD calculation, the purely repulsive screened Coulomb
potential is applied for the complete range.

The actual ZnS measurement allows to optimize the screening length to within an
error of about 10%, showing that the original choice is good. The screening length has a
comparatively strong influence on the potential. Therefore, it must be expected that the
present data do not allow for further results, and it has not been tried to optimize other,
less important parameters.

Furthermore, investigations with artificial 'data show that the total number of counts
in this measurement is not sufficient to optimize parameters such as ro and 6r. This has
been found by fitting the model functions to artificial data, generated on the basis of the
known KrC-SW potential with known switch parameters. Drastically increasing the total
number of counts, the true switch parameters can be estimated*. However, even in this
case, the variation of x‘i p with the parameters is very noisy. The optimization is easier
possible if the true lifetime were shorter.

Why is the goodness-of-fit that small? A value of 0.007% indicates that the model is not
well suited to describe the data. A bad value of @ usually indicates a wrong estimation of

4 Artificial data with 3 I, = 30,000 were not sufficient, while data with 3~ I, = 1,000,000 allowed to
find the minimum.
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FIGURE 9.13: Correlation of nuclear level lifetime T and screening length as in the case of an
RMD evaluation of the original ZnS data using the purely repulsive GH potential. If the lifetime
was previously known, the screeming length could be much better estimated by Crystal-GRID

measurements.
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FIGURE 9.14: Correlation of nuclear level lifetime T and screening length as in the case of a full
MD evaluation of the original ZnS data using the combined GH-SW potential. The correlation
is weaker than in Figure 9.13, as the SW part of the potential is unchanged when varying the

screening length.
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potential parameters. The fact that all simulations, MD or RMD, using a purely repulsive
or a combined potential, using a mean potential like ZBL or a specially calculated one like
GH, yield nearly identical values of the minimum Xi p and of the goodness-of-fit urges to
look for a different explanation.

e The drift correction did not improve the consistency of the data with the theoret-
ical GRID lines. However, a drift within the scans is present. Using an improved
algorithm for the drift correction, the goodness-of-fit might eventually be improved.

e The SW potential has been developed for the diamond or zinc-blende structure of
crystal. It is not at all evident that it is adapted for the S atom moving through
the crystal and therefore being part of a completely different atomic configuration.
Especially, the three-body term is only valid near the equilibrium, tetrahedral struc-
ture. Also for late times, where a quasi-thermal equilibrium at high temperature is
reached, the SW potential may be a fundamentally wrong approach to describe the
atomic movement. If these points have a significant influence on the results, however,
an investigation of interatomic potentials using Crystal-GRID would be impossible
from general considerations.

e The switching to the SW potential is only applied for the Zn-S interaction. The S-S5
interaction as well as the Zn—Zn interaction are described by the purely repulsive
screened Coulomb potentials in all simulations. This is certainly not justified. The
equilibrium part of the Zn-S interaction stabilizes the sample lattice and is thus the
most important equilibrium part. Nonetheless, an equilibrium potential for the S-S
interaction should not be neglected. Atoms that have slowed down to low velocities
are influenced by this potential. However, the same problems as mentioned for the
SW potential would arise. The Zn—Zn interaction is of nearly no importance for the
recoiling S atom.

These points are not further investigated within this work. Due to the insufficient
statistics, a significant improvement with respect to the study of interatomic potentials
can not be expected.

The central peak of the ZnS Crystal-GRID lines mainly originates from slowly moving
atoms. On the one hand, a good equilibrium potential is needed to well describe the
crystal structure. On the other hand, the method is not very sensitive to the very low
energies.

This problem could eventually be avoided by masking the central peak in the fit and
fitting only the wings. Of course, the total number of counts in the peak must be included
as boundary condition. Thereby, it might be possible to concentrate on the potential range
above a certain threshold energy. This approach has not been tested, however, as the fine
structure in the wings of the ZnS measurement is too much washed out.
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9.2 Results — Silicon (Si)

Silicon is one of the actually most important materials for industrial applications. Its use
as basic material for the semiconductor industry makes it very interesting for the applica-
tion of ion beam techniques. An investigation of the interatomic solid state potential by
Crystal-GRID would be of big interest.

Only one transition in silicon has a sufficiently high effective cross section (see Ta-
ble C.2) to allow a measurement with the crystal spectrometers GAMS 4/5 in flat crystal
mode. This transition depopulates the 4.934 MeV state in 2°Si towards the ground state

(see Fig. 9.15).

The lifetime of the 4.93¢ MeV level is reported to be (1.22+£0.18) fs [End 90]. This
lifetime would be too short to study atomic motion with Crystal-GRID, as most of the
~-rays are emitted before the first atomic collision could occur. However, reported values
of lifetimes are often not very precise. As will be seen in Section 9.2.2, a value of about
3fs would already allow to perform Crystal-GRID studies. For that reason, it was tried
to verify the reported value of the lifetime. Experimental results will be reported in

Section 9.2.3.

9.2.1 Angular correlation of 4.934 MeV transition in 2Si

As shown in Section 8.2, angular correlation has a large influence on Crystal-GRID lines,

especially for small values of the lifetime (compare also Section 2.4). For the studied
4.934 MeV transition in 2?Si, the spin and parity values in the two-step cascade are %+ —

37 %+ (see Fig. 9.16). The emitted radiation is of type E1, electric dipole radiation. For

E, (MeV)
T (fS) Vo g&/fs) Elevel (MeV) JE
B3+ n —p 2Gj L 8.473 1/2*
53898
35 222 | 2.09289
0.52+0.16 20.1E% 6.381 0.232
1.22+0.18 4934 3/2 | b:1.44614
0.160
0.71%
4.93398
65.59%

0 1/2°

FIGURE 9.15: Deezcitation cascade in °Si [Ram 92]. For each level of energy Eeyer. the reported
lifetime T [End 90] and the spin parity J™ are given. For the transitions, the photon energy Ey,
the corresponding initial recoil velocity 10 of the Si nucleus, and the absolute intensity Pyy of
the transition are indicated (% refers to the number of neutron captures).
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FIGURE 9.16: Directional correlation of Si cascade. If the first photon is observed along the
quantisation axis, only transitions with Am = %1 can occur (solid arrows). The second photon
7o is detected under the angle ¢ to the first direction, transitions with Am = %1 (solid arrows)
and Am = 0 (dashed arrows) are allowed. The relative intensities are shown. The energy levels

for different quantum numbers m, have been drawn separately even though they have the same
energy.

this radiation, the directional distribution functions FA™ are (for details see [FraSte 65])

F(¢) = 2—2Py(cosg)
FE($) = 2+ Py(cos) (0.2)

If the direction of the first photon emission is chosen to be the quantisation axis, only
transitions with Am = %1 are possible; the relative intensities are shown in Fig. 9.16. With
this knowledge, the angular correlation function W or W’ can be calculated [FraSte 65]:

W) ~ 1+ %Pz(cos $) =1+ -;— (3cos® ¢ —1)
W'(cosg) ~ 1+ —é (3(cos ¢)? — 1) (9.3)

These functions are illustrated in Fig. 9.17. As the Doppler shift energy AE,, is propor-
tional to cos ¢, a GRID line of a non-interacting particle would look exactly like W’ (cos ¢).
This is realized in the limiting case 7 — 0, i.e. for very short lifetimes.

9.2.2 Results using artificial data

A theoretical study is performed to check whether it would be possible to investigate the
Si interatomic potential with Crystal-GRID if the lifetime 7 was slightly longer. Artificial
data are generated for three assumed true values 7° of the lifetime, 1fs, 3fs, and 5fs. For
every lifetime and three different crystal orientations, <100>, <110>, and <111>, 120
scans are used with a centre height I, = 30 counts on a background I,y = 10. Furthermore,
30 scans are generated with I, = 120 on Iy, = 40, i.e. for an identical total measuring time
subdivided into fewer scans.

Theoretical GRID lines are derived from RMD simulations using the ZBL potential
with the screening length varied in between 75% and 125% of its original value al. These
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change its value significantly. The two other sets show a clear dependence. The figure on the
right gives an enlarged view.

lines are fitted to the artificial data generated for a, = aJ. The resulting values of Ax3 p =
X3.p — X3pl, are plotted in Fig. 9.18.

As expected, the data corresponding to a lifetime 70 = 1fs are insensitive to the
screening length. The statistical variable X3 p remains almost constant within the studied
range. If one wanted to state a best value of the relative screening length, it is found to
be much larger than the true 100%. However, the true value lies within the 1o error. The
value of Ax3 p corresponding to a 1o error is indicated by a straight dashed line in the
enlarged view on the right side of Fig. 9.18, the straight dotted line corresponds to the 2¢
error.

The sensitivity of the data to the screening length is significantly enhanced for higher
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values of the lifetime. Both, for 3fs and for 5fs, the parameter can be optimized, i.e.,
already for a value of 3fs, the interatomic potential becomes accessible. Consequently, a
verification of the reported lifetime is very useful.

As already shown in Section 8.1, the sensitivity does not significantly depend on the
number of scans into which the total measuring time is subdivided. It can be seen, how-
ever, that the screening length is better estimated by the data corresponding to a longer
measuring time per scan (I, = 120). For all three values of the lifetime, the estimate is
closer to the true value than the estimate coming from the I. = 30 data which, however,
are also correct within two standard deviations.

9.2.3 Experimental Results

Encouraged by the theoretical results, a test measurement of the 4.934 MeV transition has
been performed. Before the experiment, it was not possible to estimate the background
intensity that largely influences the obtainable statistics, because the measured energy
represents the highest energy ever measured in a GRID experiment. The spectrometer
works at extremely small Bragg angles, which make a good shielding of the detector
against the direct beam and small angle scattered photons very difficult. A certain fraction
of the beam time was spent on the optimization of the shielding. Despite this effort, the
background was still much higher than in prior experiments.

Data were taken at the GAMS 4 spectrometer with thick spectrometer crystals (4.41 mm
and 6.95 mm, respectively) mounted to increase the efficiency. 15 scans (600s per measur-
ing point per scan) in diffraction order (1,2) were recorded during six days of measurements.
For technical reasons, GAMS 5 could not be used at the time of the experiment.

Due to the low intensity of the studied transition as well as to the high energy of the
photons to be detected, the experimental number of counts at a given measuring point
is determined by adding the full-energy, single-escape and double-escape peaks of the Ge
detector (compare Section 3.1). The experimental sum scan is plotted in Fig. 9.19a),
showing that a signal-to-noise ratio of 530/340 (3 I, &~ 190, Y I,; =~ 340) is obtained.

To further enhance the number of counts, a second set of experimental data is defined
by additionally considering the Compton scattered photons from the full-energy and the
single-escape peaks, i.e. by counting all photons that are detected by the Ge detector
in an energy window |EJ — 1.022MeV, E22] . In this case, the background intensity is
drastically enhanced, a signal-to-noise ratio of 4500/3850 (3 I, ~ 650, 3. I, ~ 3850) is
obtained. The sum scan is displayed in Fig. 9.19b).

The collected intensity is very low, the background very high, in both cases. For com-
parison, the investigation using artificial data in the previous section assumed a summed
centre height 3" I. = 3 - 3600 on a background 3" I, = 3 - 1200.

Theoretical Crystal-GRID lines are calculated on the basis of RMD simulations using
different interatomic potentials. Fitting these model lines to the two sets of experimental
data, estimates of the level lifetime 7 and minimum values of x2 ,, are obtained. As can
be seen in Table 9.5, the results are very similar for the different applied interatomic
potentials.

However, comparing the two different sets of experimental data, the estimates of the
lifetime are not identical. Neglecting the Compton scattered photons, a lifetime of about

(3.5 % 1.1) fs is obtained; including the additional counts, a value of (2.2133) fs is extracted.
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FIGURE 9.19: Measurement of the 4.934 MeV transition in 2°Si, using single crystals oriented
along the <100> direction. a) The experimental data contain the full-energy, single-escape, and
double-escape peaks of the detector. Three different theoretical lines (simulated using the ZBL
potential) are plotted — for the fitted lifetime T as well as for the lifetimes T+ o,. The statistical
errors of the data points are larger than the details of the structure. b) The experimental data
are formed by additionally including the Compton scattered photons. The fitted lifetimes of the
two approaches overlap within the statistical errors.

| KrC |KrC-SW| ZBL | goodness-of-fit Q)

Sum of peaks | 7 (55) |34 £ 1.0 | 34110 |36L 11 5%
B | (11422) | (1142.4) | (1142.4)

sum of peaks | 7 (fs) | 2.2775 | 2.2+09| 22777 25%

+ Compton | x2p | (1154.9) | (1154.6) | (1155.0)

TABLE 9.5: Resulting estimates of the lifetime and minimum values of X;‘i p- The evaluation
is performed with two sets of experimental data, using RMD simulations on the basis of three
different interatomic potentials.
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Even though the difference is quite large, the estimates are consistent, as their 1o errors
overlap.

The GRID lines corresponding to the fitted lifetime 7, as well as to 7+, and to 7 — o,
are also plotted in Fig. 9.19. It can be clearly seen that the statistical errors of the data
points are larger than any fine structure in the theoretical lines.

Full MD simulations are not performed, as the error due to the RMD approximation
(compare Section 8.3.1) is much smaller than the intrinsic error o, of the measurement
related to the insufficient statistics (30%...50%).

Due to the large error of the lifetime estimates, it can not finally be decided whether
the reported lifetime of the 4.93¢ MeV nuclear level, 7 = (1.22 £+ 0.18)fs, is incorrect.
However, it is probable that the true lifetime is longer by a factor of 2 or 3.

As the study of atomic motion in silicon is an extremely important task, the experiment
is continued. Unfortunately, the measurements could not be finished before the end of this
work. It can be estimated that the determination of the nuclear level lifetime to an error®
o, = 0.3fs necessitates a total number of counts increased by a factor of 10 (compare
Eq. (8.1)). This can be achieved by using both spectrometers during a measuring period
of approximately one month.

Spurely statistical ervor, disregarding the influence of the unknown potential
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9.3 Results — Titanium Dioxide (TiO)

The aim of this work is to show whether interatomic potential functions can be optimized
by Crystal-GRID measurements. The measurements using ZnS or Si single crystals did not
finally answer this question, as they were not or only very little sensitive to the potential.
For that reason, a better suited solid was needed. As can be seen from Fig. 3.8 (compare
also Appendix C), Cl and Ti are the nuclei that yield the highest count rates.

The 1.498 MeV transition in °Ti has already been used in a number of powder GRID
experiments. This transition is emitted from the 3.261 MeV level, which is mostly primarily
fed (95%) [Bur 95]. The relevant part of the decay cascade is shown in Fig. 9.20.

The lifetime of the 3.261 MeV level was found to be about 15fs [Bor 88, Kur 91].
However, the estimate of the lifetime depends on the assumptions of the slowing down.
As usual, the evaluation of powder GRID measurements is performed using the MFPA
theory on the basis of a BM potential.

The 1.498 MeV transition has also been used in the very first Crystal-GRID measure-
ments using single crystals of SrTiOs in three different crystal orientations, as well as
TiO, in one orientation [Jen 96b, Jen 97a]. Nicely structured lines were obtained. How-
ever, statistics was not good enough to extract precise information on the lifetime, as
well as on the interatomic potentials. Furthermore, the Crystal-GRID experiments using
SrTiOs; showed inconsistencies because different lifetime values were measured for different
crystal alignments [Jen 97a].

The aim of the current experiment is to optimize the interatomic potential and to
determine the nuclear level lifetime, at the same time. This would be the final prove that
Crystal-GRID is, in principle, suited for the investigation of interatomic potentials. Fur-
thermore, it will be checked whether the lifetime estimates for different crystal orientations
are consistent and the unknown angular correlation function will be determined.

E (MeV) a:  83.02668

44
7 (fs) v° (Ang/fs) Eiois (MeV) 019
v b:  1.8537
48 49 Kiic) _ 0-122
Ti + n ——P 7Tj | 8.142406 0.066%
4.8816_‘184 aee A
unknown 082 5.11557 & 1.40636
unknown 4.51% 4.66668 0.092
unknown blldTi 4.58828 0.055%
15 8.260702 e 355399
1.498662 0.233
4.89% £ 1.32774
0.087
—_— 1.761971 0.254%

F1GURE 9.20: Partial level scheme of *® Ti [Bur 95]. For each level of energy Eype, the reported
lifetime 7 is given (if known). For the transitions, the photon energy E.,, the corresponding initial
recoil velocity v° of the S nucleus. and the absolute intensity P.., of the transition 56 refers to
the number of captured neutrons) are given.
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FIGURE 9.21: Unit Cell of TiO: in the rutile structure (figure taken from [Jen 97a]).

Chapter 9. Experimental Results

orient.

GAMS

numb.

order m. time | centre h. | backg. eXCess W.
<hkl> | (year) (n/m) | scans | per point | > I, > Iig Oow
(min) (counts) | (counts) | (fringes)
<110> | 4 (1996) | (2/2) | 21 112 322 339 0.203
100> | 4 (1999) | (2/2) | 56 318 2075 1010 | 0.311
<100> | 5 (1999) | (2/2) | 51 204 830 52 0.213
001> | 4 (1999) [ (2/2) | 21 84 628 148 0.299
<001> | 5 (1999) | (2/2) | 53 265 871 62 0.141
<110> | 4 (2000) | (2/2) | 30 150 703 370 0.181
<110> | 5 (2000) | (2/2) | 46 184 928 88 0.171

TABLE 9.6: Details on the measurements with TiOs single crystals using the 1.499 MeV transition
in ¥ Ti. The first row gives the details of the 1996 measurement by Jentschel. Conversion from
fringe to eV is possible by the factor 33.88 €V /fringe for GAMS4 and 27.12 eV /fringe for GAMS5.

9.3.1 Experimental Details

New measurements have been performed within this work, using three different crystal
orientations of TiOs. Fig. 9.21 shows the unit cell of rutile, the stable crystal structure of
titanium dioxide in the relevant temperature range. Details about the measurements are
summarized in Table 9.6. The first row corresponds to the 1996 measurement of Jentschel,
showing that the signal-to-noise ratio has been improved drastically within the last four
years. Especially, GAMSS5 yields a very low background intensity. Due to this, the fine
structure of the Crystal-GRID lines becomes more pronounced in the new measurements.

As in the case of ZnS, intensive reference scans have been measured in between the
scans of the transition under study. Applying a linear drift correction for the <110>
measurements at both spectrometers, the consistency of model lines and data decreases.
The goodness-of-fit is reduced from 53% to 24% for the GAMS 4 measurement and from
25% to 21% for GAMS 5. Obviously, the linear approximation to the drift function does
not allow to improve the data. As the drift within the scans is expected to have only little
influence on the results, it has not been tried to apply higher order corrections. Instead,
the drift correction is disregarded in the evaluation.

A single scan is displayed in Fig. 9.22. The Doppler broadening can be clearly seen,
the fine structure, however, is mostly hidden by the statistical noise. It becomes visible in
the experimental sum scans, as shown in Fig. 9.23. As predicted, symmetric shapes are
found that differ strongly for the different crystal orientations.
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FIGURE 9.22: Single scan (no. 99/09/07-5) of the 1.499MeV transition in *® Ti measured with
the GAMS5 spectrometer. The Doppler broadening can be seen in a single scan, most of the fine
structure is hidden by the statistical noise, however.

9.3.2 Improving the interatomic potential (RMD)

RMD calculations are performed with the purely repulsive screened Coulomb potentials
ZBL, KrC, and GH. The screening length of the first two potentials is varied in the range
of 75% to 125% of the original value a?. The GH potentials for the interactions Ti-O,
Ti-Ti, and O-O have been calculated by Gértner [Gér 00].

Fitting the derived theoretical Crystal-GRID lines to the experimental data by opti-
mizing the local parameters as well as the nuclear level lifetime, minimum values of the
Poisson MLE x3 p and estimates of the lifetime are obtained. As can be seen in Fig. 9.24a),
the screening length of both, the KrC and the ZBL potential can be optimized to a good
precision. Within the range of screening lengths studied, the difference between lowest
and highest value of x2 » is of the order of 300. This is ten times more than in the ZnS
measurement (compare’Fig. 9.5), immediately showing that TiO, is much better suited
for an investigation of interatomic potentials.

The result of the GH potential is nearly indistinguishable from the result for the KrC
potential with the original screening length. It yields a slightly worse description than the
optimized KrC or ZBL potential.

The optimized values of the screening length are listed in Table 9.7. Including the
angular correlation (assumption of pure M1 transition, see Section 9.3.4), the goodness-
of-fit is slightly reduced. However, the resulting values of the optimized screening length
do not change significantly.

Fig. 9.24b) plots the values of x} » as a function of the estimated lifetime. It can be
seen that a consistent value of the lifetime is obtained for both optimized potentials. A
similar observation has already been made by Jentschel basing on only one measurement
[Jen 97a, Figures 6.6 and 6.7]. He further showed that the optimized potentials have a
similar functional run. Whether the value of the lifetime is reliable, it can only be said after
optimizing an interatomic potential for the full energy range using full MD simulations,

As in ZnS, the lifetime and the screening length are strongly correlated (see Fig. 9.25).
Increasing the screening length, the potential becomes more repulsive. The recoiling atoms
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FIGURE 9.24: Optimization of the screening length using RMD simulations by fitting model
lines to the experimental Ti0a data. a) The Poisson MLE Xi, p shows a clear dependence on
the screening length as. The optimized KrC and ZBL potentials slightly better reproduce the
experimental TiOq data than the GH potential. b) Both, the optimized KrC and ZBL potentials,
yield consistent values of the lifetime. The GH result is almost indistinguishable from the result

of the original (100%) KrC potential.

ang. corr. | potential | optimized a,/al | X5p| . | @

neglected | KrC (92.6+2.6)% |25837 |23%
7ZBL (95.8£2.6)% | 25845 | 22%
GH 25863 20%

M1 KiC 01.9F24)% | 25855 | 21%
ZBL | (953+2.4)% | 25870 |20%
GH 25888 18%

TABLE 9.7: Results of the optimization of the screening length a, using RMD simulations. The
data have been evaluated, both neglecting and taking into account the angular correlation. The
errors of the optimized screening lengths correspond to 20 errors.

are slowed down more quickly leading to an enhanced intensity in the centre of the sim-
ulated Crystal-GRID line. Reducing the nuclear level lifetime, the central intensity is
reduced and a compensation can be obtained. However, the studied scans are sufficiently
structured and intense, in order to determine both parameters, the screening length and
the lifetime, at the same time.

Values of the goodness-of-fit ) above 20% indicate that the purely repulsive screened
Coulomb potentials applied in the RMD simulations are already suited to describe the
slowing down. Even the mean ZBL potential with its original screening length gives a
relatively good approximation to the true interaction.

This is astonishing, as the initial kinetic energy E% of the recoiling atom is only 261 eV,
Consequently, the maximum potential energy tested by the actual measurement is less than
75eV for the Ti~O interaction, and less than 130 eV for the Ti-Ti interaction, the potential
energies obtained in a head-on-collision with the neighbouring atoms. It can be expeeted
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FIGURE 9.25: Correlation of the nuclear level lifetime T and the screening length. The numbers
within the line give the quantity /X% — X?|mins -6 the number of standard deviations that the
actual parameter values are worse than the optimal choice. Even though a strong correlation exists
between the lifetime and the screening length, both parameters can be simultaneously determined.
A global minimum can be found as seen in Figure 9.24.

that using an adopted equilibrium part for the low-energy region and performing full MD
calculations, the agreement of theoretical lines and data can be further improved.

However, long-range Coulomb interactions have to be considered in MD simulations
for ionic materials. This requires to use the Ewald method in the MD simulations. As this
technique is not implemented in the code developed within this work for the simulation
of semiconductors, first full MD simulations for TiO; have been performed by Jentschel
who had studied ionic compounds during his thesis [Jen 97a]. Due to the application of
the Ewald technique, the MD simulations are very slow. Until the end of this work, only
a small nurmber of simulations could be finished, each of them consisting of no more than
1000 trajectories in the main branch. The optimization of the switch parameters and of
the ZBL screening length is actually in progress.

9.3.3 First results from MD simulations

An equilibrium potential for TiO, has recently been published by Kim et al. [Kim 96]. First
full MD simulations have been performed using this potential for the equilibrium part and
the universal (ZBL) potential for the high-energy part. The switching is performed by
the switch function s; (Eq. (1.15)). It has been started to optimize the presumably most
important switch parameters, namely ry of the Ti—Ti and Ti—O interactions. By varying
both values between 0.8 A and 1.1 A, the statistical variable X, p is changed by about 400,
showing that the measurement is sensitive to these parameters. However, a final best set
of parameters could not yet be found. In the following, the values as given in Table 9.8

will be used. They currently lead to the best consistency of model lines and experimental
data.
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interaction | ro (A) | 6r (A)
Ti-Ti 0.9 0.10
Ti-O 0.7 0.05
0-0 0.7 0.20

TABLE 9.8: Switch parameters used in the MD simulations for TiO;.
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FIGURE 9.26: Determination of the sample temperature by fitting theoretical Crystal-GRID lines
for different sample temperatures to the experimental TiOy data. The result of the RMD simu-

lation at 0K is also plotied.

First of all, the sample temperature is determined. Usually, the temperature of GRID
samples is estimated from the thermal broadening of a very long-lived level. However,
the thermal broadening only reflects the “temperature” of the recoiling atoms which is
not necessarily identical to the sample temperature. The recoiling atoms deposit energy
in their environment. Even for long-lived levels, with lifetimes of typically a few 1000 s,
the heat is not completely dissipated, the surrounding rests at enhanced temperatures.
Throughout this work, this situation is called “quasi-thermal”.

Furthermore, many recoiling atoms will take on interstitial lattice sites after several
hundreds of fs. It is far from obvious that the temperature, i.e. the average kinetic energy,
of interstitial atoms is identical to the temperature of atoms in the optimal lattice.

The temperature of the TiO; samples is determined in a different way. Trajectories
for the transition under study are calculated in simulation cells, equilibrated at different
temperatures. Fitting the derived Crystal-GRID lines to the experimental data, the true
sample temperature is expected to yield the best consistency, i.e. the lowest value of xf\y P
As shown in Fig. 9.26, the temperature can be determined to 600 K, approximately. For
comparison, the 0 K RMD result is also plotted. The sample temperature has only a small
influence on Crystal-GRID lines. A more precise determination, e.g. by repeating the
above calculation for the optimized potential, is not necessary.

The temperature can only be determined from full MD simulations, as RMD simu-
lations do not consider the interactions among the sample atoms, they do not correctly
describe the bulk sample. The MD values of x3 p obtained from the MD simulations are
better than the RMD values for all temperatures, proving that the combined ZBL-Kim
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FIGURE 9.27: Lifetime estimates when fitting the series of scans separately. The lifetime esti-
mates are consistent, only one value of the RMD evaluation lies more than two standard devia-
tions away from the global estimate indicated with a straight line (dashed line = error of global
estimate). Also, the old measurement of 1996 (<110> (4*)) is consistent with the new mea-
surements. The lifelime estimates of the MD approach are systematically lower than the RMD
estimates. This is mainly related to the different potentials applied. As the MD potential is not
yet optimized, the lifetime estimates of the MD are only preliminary.

potential is even better suited to describe the slowing down of the recoiling atoms than
the purely repulsive screened Coulomb potentials. The goodness-of-fit is Q = 32% for the
600 K measurement.

As said before, Jentschel had observed inconsistencies in his SrTiO; measurements.
Evaluating the series of scans for different crystal orientations separately, the derived values
of the lifetime were not consistent. Since these measurements, two major improvements
have been realized: the signal-to-noise ratio of the spectrometers could be significantly
enhanced, and, within this work, a new fitting code has been developed.

The resulting estimates for the seven series of TiO, scans are displayed in Fig. 9.27,
evaluated using both, RMD and MD simulations. In the new measurements, the values
coincide very well. Only one RMD estimate differs significantly from the global estimate
which statistically is not impossible. As stated at the end of Section 8.1, lifetime estimates
do not differ for different crystal orientations, even if the potential is not optimally suited,
as the RMD potential in this case. The difference between RMD and MD estimates can
mainly be explained by the different potential applied and the correlation between lifetime
and potential. However, a final statement can only be made after the potential parameters
of the combined potential have been optimized.

9.3.4 Angular Correlation

Until this work, angular correlation in Ti has always been neglected in the evaluation
of GRID data, mainly because the correlation function is not exactly known. The spin
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FIGURE 9.28: Determination of angular correlation constant Az. The consistency of model
lines and experimental TiOy data increases with decreasing Ay. Consequently, the lowest possible
value, namely As = 0.05, best describes the data. The 1.499MeV transition is a pure M1 tran-
sition. Astonishingly, the consistency is further enhanced by completely neglecting the angular
correlation. This is to be verified with a further improved potential.

states of the two-step cascade (compare Fig. 9.20) are 1 — 2 — 2. In order to determine

the angular correlation function W”, it must be known which kind of transition occurs
between the different states. This is not exactly known for the 1.499MeV transition
(72)- The most probable assumption is that this transition is purely M1. In this case, the
angular correlation would be very weak. If the transition is 50% M1 and 50% E2, however,
it would be much stronger [Leh 99].

, _ [ 140.05- Py(cosg) for y5: M1
W' (cos §) = { 1+40.41- P (cos ) for v,: 50% M1, 50% E2 (9-4)

As can be seen, the constant Ay, as defined in Eq. (2.8), lies in between 0.05 and 0.41.
In order to determine the correct correlation function and thereby the kind of transition
between the two nuclear states, Crystal-GRID lines have been derived for different values
of Ay. The resulting values of x5 p are plotted in Fig. 9.28 for two different interatomic
potentials, the combined ZBL-Kim potentials with relative screening lengths of 80% and
100%, respectively.

As can be seen in the figure, the best consistency of model lines and data is achieved
for the lowest value of A;. Consequently, the 1.499 MeV transition is found to be a pure
M1 transition, and the correct value of As = 0.05. Astonishingly, disregarding the angular
correlation leads to a slightly better consistency than the pure M1 transition. However,
the difference is small, much smaller than the difference to other possible values of A,.
It can be expected that for the optimized interatomic potential, the calculation yields a
global minimum at A; = 0.05.
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9.4 Results — Metals (Cr, Fe, Ni)

A series of Crystal-GRID measurements has been carried out mainly by Nicolas Stritt and
Jan Jolie from the University of Fribourg in Switzerland. The results have been published
in [Str 99a, Str 99b, Str 99c, Str 00]. The studied transitions are listed in Tables 9.9 and
9.10. For further details refer to the cited publications.

The data evaluation has been performed using the evaluation code griddle [RobJol 90]
basing on Neyman’s x% statistic, thus possibly leading to partially incorrect results. For
this reason, the results are re-evaluated with the new fitting code gravel, developed in
this work and described in Section 6.3. As will be seen, especially the interpretation has
to be revised after thoroughly looking at the absolute values of x? instead of concentrating
on the reduced X2, as defined in Eq. (6.20).

The aim of this section is to re-analyse the data of Stritt et al. with respect to the statis-
tics applied and not to repeat the complete study of interatomic potentials. Consequently,
the experimental data as well as most of the simulations are taken from Stritt et al. New
simulations have only been performed occasionally, mainly to underline detected insuffi-
ciencies. If the side feeding, or the angular correlation have been neglected in the original
evaluation, these approximation have also been adopted.

reported | reported prop.
E,, E). 1 1v9 Bea | T 7 (GRID) direct E22
(MeV) | (eV) | (A/fs) | (MeV) | (fs) (fs) feed. | (MeV)
5Cr | 6.64564 | 440 | 0.40 | 3.07410 [ <25 ¢ 12.940.7 41 | 98% | 2.23907
247128 | 10.340.5 42
54Cr | 5.99995 | 358 | 0.36 | 3.71991 | <43 @ 3145 Al 97% | 3.71984
10180 | 2442 42
5TRe | 5.92035 | 337 | 0.3¢ | 1.72542 | 3612 ¢ | 626 &1 91% | 1.72529
47+9 ¢ | 3843 B2
5TFe | 421798 | 171 [ 0.24 | 3.42767 | <5 ¢ 43795 BT 1 100% | 2.72117

5INi | 6.58385 | 396 | 0.36 | 2.41497 | 4811 ° | 7973 1 95% | 1.95005
6030 ©
ONi | 4.85861 | 216 | 0.27 | 4.14034 | none 85121 [ 96% | 3.67523
6.511.4 €2

TABLE 9.9: Studied transitions (Cr: [Jun 98], Fe: [Bha 98], Ni: [Bag 93]). The table gives the
nuclei after neutron capiure, the energy E., of the first photon entailing the recoil, the initial
kinetic energy Fy;,, and velocity |[vO| of the recoiling nucleus, the intermediate nuclear level energy
FEievel, the reported values of the nuclear level lifetime, the proportion of direct feeding of this
level, and the unshifted energy Egz of the second photon used in the measurement. — Non-GRID
lifetimes from: a) DSAM [Stu 80], b) Gamma-Ray Induced Doppler Shift Attenuation (GRIDSA)
[Kov 91] (see also [Kah 97]), ¢) DSAM in (n,n*), d) centroid shift in (d,py) [Ulb 89], e) DSAM
[Pic 74] (see also [And 83]). — GRID lifetimes: A) GRID (called DSA in this paper) [Lie 88]
[Uth 91a, p. 54], B) GRID [Ulb 89] [Ulb 91a, p. 59], C) GRID [Ulb 91b] [Ulb 91a, p. 64] —

1) evaluation using MFPA approach with BM potential, 2) evaluation using MD simulation and
ZBL potential [Kur 92].
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orient. | order | no. time / conver-
E,, <hkl> | (n/m) | scans | point | Y IF | 37IE | 0 | sion
(MeV) (min) | (c.) (c.) (fr.) | (eV/fr)

51Cr | 2.239 | <100> | (1/2) | 36 | 120 | 781 |457 | 0.242 | 100.8
<110> | (1/2) |37 |123 |966 | 784 |0.268 | 100.8
3.719 | <100> | (1/1) |5 33 256 | 36 0.242 | 417.5
<110> | (1/1) | 6 40 373 | 74 0.268 | 417.5
5TFe | 1.725 | <100> | (2/2) |20 | &0 1051 | 335 | 0.248 | 44.91
<110> | (2/2) | 25 | 100 | 1092 | 384 | 0.234 | 44.91
<110> | (2/3) | 8%) |43 185 | 86 0.234 | 35.9
2721 | <100> | (1/1) 35 |140 | 1059 | 220 | 0.248 | 2234

<100> | (1/1) |6 24 163 | 22 0.213 | 223.4
<110> | (1/1) |27 108 714 | 68 0.234 | 223.4
%Ni | 1.950 | <100> | (1/1) |7 19 337 |12 0.256 | 114.7
<100> | (1/2) | 34 136 1363 | 117 | 0.256 | 76.48
<111> | (1/2) |12 53 384 |33 0.260 | 76.48

3675 | <100> | (1/1) |12 | 60 203 | 51 0.256 | 407.5
<100> | (1/2) |16 | 112 |66 |44 0.256 | 271.5
<111> | (1/1) |15 |75 217 | 56 0.260 | 407.5
<lli> | (1/2) |17 | 119 |97 |187 |0.260 | 271.5

TABLE 9.10: Ezperimental details of the Cr, Fe, and Ni measurements at GAMS4 measured in
1997 and 1998 by Stritt et al. The table lists the nucleus after neutron capture, the energy E.,,
of the measured transition, the orientation of the metal crystals with respect to the spectrometer,
the diffraction order of the spectrometer crystals, the number of scans, the total measuring time
per data point summed over all scans (one scan contains approzimately 60 to 100 data points),
the fitted centre heights and background levels summed over all the scans as well as the excess
width and the conversion factor needed to convert fringes to eV. *) Scans not considered in the

evaluation.

The MD simulations are mostly based on screened Coulomb or embedded-atom method
(EAM) potentials, the applied interatomic potentials are listed in Table 9.11. As discussed
in Section 1.2.2, the EAM potentials consist of two contributions, one for the equilibrium
state and one for the short-range interactions. While the equilibrium part is individually
designed for all of these potentials, different standard pair potentials with individually
adjusted parameters are used for the repulsive pair interaction term. The potentials are
applied in effective pair potential approximation, they are illustrated in Fig. 9.29. As can
be seen, the run of the potential curves differs significantly, both, in the equilibrium region
and for intermediate energies. Consequently large differences in the statistical variable x?
or in the correlated value of the lifetime 7 are expected.

The initial kinetic energy EY,, of the recoiling atom is of the order of 200eV to 400eV
(see Table 9.9). For atoms of almost equal mass, the maximum potential energy in a
head-on-collision equals approximately half of the kinetic energy of the moving atom.
Consequently, the presented Crystal-GRID measurements are sensitive to energies below
100eV to 200eV, approximately. This energy is far above the range for which EAM
potentials are developed. Consequently, the actual measurements test the low-energy
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| potential | potential form Cr | Fe | Ni | authors (reference) |
BM Apmexp (—r/Bpy) | xv | xv | x 1 | Born, Mayer [Abr 69]
ZBL ~®(r)/r x1 | x1 | x1 | Ziegler, Biersack, Littmark [Zie 85]
OMS BM 3) + special X Osetsky, Mikhin, Serra [Ose 95]
OoP BM 3) + cubic X x Ogorodnikow, Pokropivny [OgoPok 91]
PAIR sum of cubic terms x | Baskes, Melius [BasMel 79]
RAJ sum of cubic terms X R. A. Johnson [Joh 64]
EAMATVF | sum of cubic terms x | Ackland, Tichy, Vitek, Finnis [Ack 87]
EAMBSS | BM 3) x |x |x | Bhuiyan, Silbert, Stott [Bhu 96]
EAMFBD | ~exp(=br)/r x | Foiles, Baskes, Daw [Foi 85, Foi 86]
EAMGA sum of cubic terms | x | =x Guellil, Adams [GueAda 92]
EAMOJ BM 3) x | Oh, Johnson [OhJoh 88]
EAMPFS polynomial x2) | x Pasianot, Farkas, Savino [Pas 91]
EAMVC Morse x | x | Voter, Chen [VotChe 87]
EAMWB special form X 2) Wang, Boerker [WanBoe 95]

TABLE 9.11: Potentials used in the evaluation of the metal data. For the EAM potentials,
the column “potential form” gives only the repulsive pair interaction ®FAM, — 1 ) As the
BM and ZBL poteniials are only repulsive, the potentials are switched to a Morse potential
(D [exp (=20 (r — 1)) — 2 exp (—a (r — r0))] [GirWei 59]) for distances near the equilibrium dis-
tance. — 2) The repulsive part of the potential is insufficient to give reasonable results: a
repulsive term of the BM type, called BM* in the text, with individually chosen parameters has

been added to the potential. — 3) The parameters of the BM potential are individually adjusted
for the potential.

region of the repulsive pair interaction as well as the equilibrium part.

9.4.1 Chromium (Cr)

In chromium, two different nuclear transitions have been studied. The neutron capture
entails the reaction 33Cr(n,y)33Cr. The capture state is 9.720MeV. The details of the
transitions are listed in Table 9.9.

Simulations have been performed by Stritt for seven different interatomic potentials
(see Table 9.11) [Str 99¢]. Theoretical GRID lines can easily be calculated from these
simulations and be fitted to the experimental data. The sum scans of the measurements
are displayed in Fig. 9.30 together with the summed fit and the instrumental response
functions. The broadening of the 2.239 MeV transition is much larger than the instrumen-
tal response function (dashed line) which determines the resolution of the measurement.
The measured sum scans clearly contain fine structure which differs significantly in the
different crystal orientations. Consequently, this transition is better suited for GRID mea-
surements than the measurements of the 3.719 MeV transition displayed in the same figure
where the resolution is very low leading to non-structured sum scans.

Fig. 9.31 shows a comparison of the GRID lines calculated using the different potentials
and fitted to the experimental data in the case of the <100> measurement of the 2.239 MeV
transition. Obviously, it is impossible to judge with the naked eye which fit is best and
thus which potential is best suited. As discussed in Section 7.3, two criteria are in principle



9.4. Results — Metals (Cr, Fe, Ni) 129

. Cr—Cr interaction Fe—Fe interaction Ni-Ni interaction
8 g ; g;
- ={i 1L i
iy
:il'!
W M
g2 8 ik g
<k
i
X 8¢ 280
B S ' %
5 3 3
s¢ 29 Sgf
& 8 gl
[~} et =
© o8 1 15 2 28 3 .
Interatomic distance (K] ’ Interatomic distoace A1 nteratomic distance [A]

FIGURE 9.29: Comparison of the interatomic potentials applied in the evaluation. of the metal
data. The potentials, supposed to describe one interaction, differ strongly, both in the equilibrium
region and for intermediate energies. Consequently, significant differences in the consistency
of deduced Crystal-GRID lines and ezperimental data are expected (figures taken from [Sir 99c,

Str 00]).

applicable to choose among the different potentials. On the one hand, the best potential
should yield the lowest value of x3 p. On the other hand, the value of the lifetime has to
be consistent with reported values, experimentally determined by other methods. In the
case of chromium, only reliable upper limits for the lifetimes have been measured by other
means than GRID measurements. One Gamma-Ray Induced Doppler Shift Attenuation®
(GRIDSA) measurement has been published in [Kov 91]. The reported lifetimes are given
in Table 9.9, they are systematically lower than other values. As they have only been
published in a one-page conference publication without any explanation, the values are
only little credible.

In Fig. 9.32, the results for the 2.239 MeV transition, obtained within this work, are
opposed to the ones by Stritt et al. The values of the level lifetimes do not differ more than
their standard deviation in most of the cases. The incorrectness of the statistic used in the
old evaluation has no strong influence on these values. However, the values of x? change.
As discussed by Stritt et al., the original potentials EAM WB and EAM PFS did not “give
reasonable values” [Str 99c]. Therefore, a BM potential with freely chosen parameters,
called BM* in this work, has been added by Stritt etal. As can be seen in the upper
left picture of Fig. 9.32, the minimum 2 was obtained with the BM*/EAM WB potential
according to the old evaluation. The new evaluation shows that the BM*/EAMPFS
potential leads to a slightly better fit.

Besides comparing different potentials, Stritt etal. optimized the screening length of
the ZBL potential by varying the parameter x (see Eq. (1.6)). In the upper right picture
of Fig. 9.32, x? is plotted as a function of the relative screening length, a function of
z. Stating the lo error, the new evaluation leads to a minimum at a,/a? = (83*%) %,

SThis is not GRID, but a DSA technique.
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FiGURE 9.30: Summed ezperimental data of the measured transitions in Cr. The solid line gives
the summed best fit, the dashed line the instrumental response function of the spectrometer. The

2.239 MeV yield nicely structured sum scans, while the resolution of the 3.719MeV GRID lines
15 not sufficient.

corresponding to z = 0.2973%3 Including the error of approximately +3 of x? itself, a
conservative estimate of the error limits would be twice as big. Even in this case, however,
the standard value (z = 0.23, relative screening length 100%) lies outside the obtained
range. The old evaluation by Stritt et al. gives a value of z = 0.3140.02. Even though this
value is consistent with the new evaluation, the new evaluation leads to a much smoother
run of the curve X2 (a,), especially around the minimum and for relative screening lengths
below 60%.

Taking into account the error of approximately =3 of x? itself, the modified embedded-
atom potentials BM*/EAM WB and BM*/EAMPFS as well as the ZBL potential opti-
mized with respect to the screening length (called ‘ZBL (aS)’ in the plot) lead to similarly
good fits.

A huge spread is found when looking at the estimates for the nuclear level lifetime
obtained with the different potentials (see lower part of Fig. 9.32). The minimum value of
(6.1 +0.1) fs is obtained with the EAM BSS potential, the maximum value of (22.7 & 0.5) fs
with the BM*/EAM PFS potential. In the literature, only a reliable upper limit of 25fs
determined with DSA can be found [Stu 80]. The results of all fitted potentials are
consistent with this upper limit. Only by varying the relative screening length of the ZBL
potential below 55%, the limit can be violated. The published value of (2.4713) fs [Kov 91]
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FIGURE 9.31: Comparison of the best fits using seven different interatomic potentials. The fit
has been performed to the 2.239 MeV transition in Cr. All models seem to yield a good agreement
with the experimental data. With the naked eye, a distinction is not possible.

can not be reproduced by any potential.

The lower right picture of Fig. 9.32 compares the lifetimes obtained for the two orienta-
tions when they are fitted independently. For the evaluation, the ZBL potential is applied
with varied values of the screening length. A comparison with the data by Stritt etal
is omitted, as the values are very similar. As discussed in Section 8.1, the selection of a
best potential was originally thought to be possible by looking for the parameter value
where the independently fitted estimates of the lifetime for different crystal orientations
coincide. Also in Cr, however, the estimates coincide for any value of the screening length
within the error. The same behaviour can be found when looking at the other potentials
studied. Only in one case, the difference is about two standard deviations.

The optimized ZBL potential gives a lifetime of (1213)fs taking into account the
20 error of the screening length. The other two “best” potentials yield (14.4 +0.3)fs
(BM*/EAMWB) and (22.7+0.5)fs (BM*/EAMPFS), respectively. The latter two er-
rors are purely statistical. As can be seen in Fig. 9.29, the “best” potentials are very
different from each other. The discrepancy of the lifetimes shows that it is insufficient to
compare reported potentials and that the optimization needs to be continued.

In order to check which value is correct, and thus to obtain a best interatomic potential,
the potentials need to be optimized. As the BM*/EAM PFS estimate of 7 differs strongly
from the other two values, it is tried to optimize its BM potential parameters. The reported
values for the parameters are A%y, = 10606 eV and B3y = (1/3.58663) A= 0.278813 A in
the case of Cr [Abr 69]. Instead of switching between the high-energy and the equilibrium
parts, Stritt added a BM potential with the parameters A%,, = 3606eV and B3, =
0.17882 A [Str 99¢]. These values are not motivated within the publications.

MD simulations are performed using the BM/EAM PFS potential with the two original
BM parameters multiplied independently by a factor in the range of 50% to 150%. For a
good comparison to the results of Stritt et al., the two potentials are added. The resulting

values /Axj3 p are displayed in Fig. 9.33. A similar behaviour is obtained in RMD simu-

lations using only the repulsive BM potential. The best consistency is obtained for values
Apy = T0% - Ay and Bpy = 75% - B3y For a precise determination of best values,
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FIGURE 9.32: Results of the fit — 2.239MeV transition in Cr. The consistency of the model
GRID lines deduced from dzﬁerent potentials with the data is judged by the Poisson MLE x?2 XP
(new evaluation) or by x% (Stritt etal.) Different potentials are compared (top left) and the
screening length of the ZBL potential is optimized (top right). The corresponding estimates of
the lifetime are plotted in the lower half. For further details refer to the text.

further simulations are necessary. However, it can already be shown that this potential
better describes the data than the one used by Stritt et al., the absolute value of x3 p is
smaller by 30, approximately.

As the ZBL potential is said to be the best mean potential for the high-energy part, a
further investigation is based on a combined ZBL/EAMPFS potential. As usual, the two
potentials are combined by the switch function s,, the parameters are chosen to rg = 1.4A
and £ = 10. Varying the screening length a, of the ZBL potential, an optimization can be
achieved, the best value of the screening length is found to be a,/a? = (91 + 15) % stating
the 20 error. The result is shown in Fig. 9.34. The lifetime is determined to a value of
(12 £ 2) fs, including the 20 error due to the uncertainty of the potential parameters.

The optimized BM/ EAMPFS potential yields a lifetime estimate of (1213) fs. The
obtained values of x3} p for the two series of simulations are plotted as a function of
the lifetime estimates in the right part of the figure, underlining that both parameter
optimizations yield consistent values of the lifetime. The value, obtained by Stritt et al.,
is also plotted. Obviously, the parameters of the added BM potential were not optimally
chosen. The obtained lifetime is higher by a factor of 2 than for the optimized potentials.

This example proves that in order to optimally extract information from Crystal-GRID
data, it is necessary to optimize the potential parameters of the different interatomic
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FIGURE 9.35: Optimized interatomic potentials in Cr. The newly optimized potentials differ
significantly from the one found ‘best’ by Stritt etal. and to the original EAM PFS potential.
The two optimized full potentials BM / EAM PFS and ZBL / EAM PFS are close to each other,
even though differences ezist due to the different functional forms.

potentials to be compared. Some of the potentials are plotted in Fig. 9.35. It can be seen
that the optimized potentials are relatively close to each other. Of course, differences due
to the functional form still exist. The original EAM PFS potential as well as the improved
BM*/EAMPFS potential as used by Stritt etal. differ strongly from these newly found
potentials.

The second transition studied was the 3.719 MeV transition. The results are displayed
in Fig. 9.36. All potentials lead to similar values of x2, a selection following this criterion,
as done by Stritt et al., is not possible. Consequently, an optimization of the ZBL screening
length is not performed, no sufficient variation of x? is expected. The ‘ZBL (aS)’ value in
the figure corresponds to the optimized screening length of the 2.239 MeV transition. The
obtained values of the lifetime vary in a range going from (16 & 1) fs to (74 &= 4) fs. Again,
the reported GRIDSA value of (1073) fs [Kov 91] is much lower than the estimated values.

Only the BM*/EAM PF'S potential, with the BM parameters as chosen by Stritt et al.,
leads to a value significantly higher than the reported upper limit of 43 fs [Stu 80]. This
can be explained by the unsuited parameters of the BM potential, that also lead to a
wrong lifetime in the previous evaluation.

Stritt et al. concluded that the BM*/EAM WB potential is best suited and thus adopted
the corresponding estimates of 7 for both nuclear levels, i.e. a value of (14.8 &= 0.3) fs for the
3.074 MeV level, and (44 =+ 3) fs for the 3.719 MeV nuclear level. As discussed, this result is
not correct. Furthermore, the error margin is taken only from one potential. As shown for
the 2.239 MeV transition, the potentials need to be further optimized. Still neglecting the
angular correlation, the new value for the 3.074 MeV level lifetime is (12 &+ 2) fs, including
the uncertainty of the potential parameters.

The goodness-of-fit Q for the 2.239 MeV and 3.719 MeV transitions is 3% and 19%, re-
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FIGURE 9.36: Results of the fit — 3.719MeV transition in Cr. All models yield similarly good
fits (left side). However the estimated values for the nuclear level lifetime vary in a huge range.
All estimates but one are consistent with the reported upper limit of 43 fs.

spectively. Both values indicate that the model is sufficient to describe the data. However,
a further optimization may be possible.

9.4.2 Iron (Fe)

Two transitions have been chosen for Crystal-GRID measurements using iron (Fe) single
crystals. The 2.721 MeV transition is emitted from a level with a short lifetime below 5 fs,
the 1.725MeV transition originates from a level with a lifetime of approximately 45 fs (see
Table 9.9). In the first case, the initial recoil velocity is 0.24 A/ fs (see Table 9.9). Most of
the secondary photons are emitted before the recoiling atoms could collide with the nearest
neighbour which is 2.5 A away. Their velocity is therefore only little altered. The expected
GRID line resembles a lot the free-atom box-like structure (compare Section 5.2.1).

The second nuclear level treated is rather long-lived. Many nuclei can travel far through
the crystal, finally reaching quasi-thermal velocities, and contributing only to the un-
shifted, central peak of the GRID line. Much of the fine structure in the wings is hidden
by the dominant central peak.

The described features can be found in the sum scans shown in Fig. 9.37. The GRID
lines of the 2.721 MeV transition differ for the two crystal orientations. The plateau is
broader in the <110> orientation. Hardly any difference can be detected for the 1.725 MeV
transition, where the resolution is not sufficient to resolve any fine structure.

Fig. 9.38 shows the results of the 2.721 MeV transition. Within the error, all potentials
lead to similar values of ¥2. The goodness-of-fit Q equals 18% which proves a good
consistency of all model GRID lines with the data. Furthermore, all fitted values of the
lifetime are consistent with the reported upper limit” of 5fs [Ulb 89]. Only the EAM BSS
potential yields a lifetime slightly larger, but within 20, of the upper limit. No selection
of a potential becomes possible from this measurement.

"The reported value of (4.3133) fs, cited in [Str 99c, Figure 4], originates from a GRID measurement,

and is thus not independent of the new measurements.
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Ficure 9.37: Summed ezperimental data of the measured transitions in Fe. The solid line
gives the summed best fit, the dashed line the instrumental response of the spectrometer, i.e. the
resolution of the measurement.

Stritt et al. then tried to optimize the screening length of the ZBL potential. As can
be seen in the upper right picture of Fig. 9.38, they find a minimum of x? for a relative
screening length of approximately 90%*50% (z = 0.27+33%) [Str 99¢]. Even though the
given error, deduced from the increase of x? by 1, is huge already, it does not include the
error of x? itself. The new evaluation does not even find a minimum. This drastically
proves that it is not possible to draw any conclusions if the variations of X2 are as small
as in this case.

In principle, for a lifetime as short as 4fs, angular correlation needs to be considered.
As the potentials cannot be distinguished by the measurement and all of them yield a
good fit (Q = 18%), no try will be made to determine the unknown angular correlation.
No significant improvement of the results can be expected.

The investigation of the 1.725MeV transition has been more successful, as can be
seen in Fig. 9.39. Two interatomic potentials can be excluded due to their high values
of x2, the EAMPFS and EAM BSS potentials. As in Cr, the EAMPFS potential does
not yield “reasonable results”. In this case, it was not tried to add a BM type potential,
however. The EAM VC and BM/Morse potentials can probably also be excluded, however
the difference in x? is not as pronounced. The remaining potentials ZBL/Morse, OP,
RAJ, EAMGA, and OMS all yield good consistency of the model GRID lines with the

experimental data. The goodness-of-fit Q is about 17%, which quantitatively supports
this conclusion.
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FIGURE 9.38: Results of the fit — 2.721 MeV transition in Fe. The comparison of different
potentials (top left) as well as the optimization of the screening length in the ZBL potential (top
right) do not yield big differences for the Poisson MLE x/z\, p (new evaluation) or X%, (Stritt etal.)
A discrimination of potentials is not possible. The related estimaies of the 3.428MeV level
lifetime vary approzimately from 2fs to 6fs (bottom). Nearly all estimates are consistent with
the reported upper limit of 51s [Ulb 89].

Again, the potentials have very different functional runs, and the similar values of x?
are only obtained due to the correlation of interatomic potential and nuclear level lifetime.
An optimization of the single potentials seems to be necessary. A higher total number of
counts would probably also allow to better discriminate between the potentials. Taking
the five potentials as best candidates, a nuclear level lifetime for the 1.725 MeV level can
be fixed to 38'%fs. Being more conservative and including the BM/Morse and EAM VC
potentials in the error of the lifetime, a value of 38735 fs would be obtained. The reported
lifetime is (36 £ 12) fs or (47 £ 9) fs from two different measurements [Bha 98], consistent
with the newly obtained value.

Stritt etal. concluded in their paper that the EAM VC potential was the best even
though six of the other potentials lead to a better agreement between theory and experi-
ment. They did not look for the best x? value but excluded all potentials but the EAM VC
and OMS potential, because their estimates of the lifetime lie outside the reported error.
As reference value, Stritt etal. used a reported lifetime of (48 - 7) fs that is supposed to
be extracted from [Bha 92] (value taken from [Str 99c, Figure 4]). However, the given
reference lists multiple values for the 1.725MeV level lifetime, as (61 £ 6) fs from GRID
[Ulb 89], (36 &+ 12) fs from DSA and (46 = 9) fs from centroid shift in (d,py) [Ulb 89]. As
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FIGURE 9.39: Results of the fit — 1.725MeV transition in Fe. Two potentials can be easily
ezcluded due to their bad values of x? (top left). Their estimates of the lifetime are also far away
Jrom the experiental values (bottom left). All the other potentials differ only little. The results
previously obtained by Stritt etal. differ in some important details from the new ones (top left).
An optimization of the ZBL screening length becomes possible (top right). However, the x* values
are worse than the best ones obtained with potentials including an attractive part.

can be seen in the lower left picture of Fig. 9.39, most potentials yield lifetime estimates
compatible with these experimental values. The lifetime criterion certainly has some rel-
evance, in principle, but it is absolutely necessary to only exclude potentials that give
estimates very far off the reported values, like for the EAM BSS potential. In this latter
case, however, the x? criterion comes to the same conclusion. The lifetime determined in
[Str 99¢] is (52 4 3)fs. From the considerations presented here, the error given is much
too small and even the value of the lifetime is probably wrong,

As the optimization of the screening length of the purely repulsive ZBL potential in the
2.721 MeV transition had not been successful, new RMD simulations have been performed
for the 1.725MeV transition. The result of the fitting is displayed in the right part of
Fig. 9.39. A minimum can be found around a value of 90%. However, the x2 (a,) curve
looks unusual due to three local minima. Furthermore, the RMD minimum of x? using a
purely repulsive potential is about 18 higher than the minimum x? obtained with the best
potential in a full MD calculation using potentials including an equilibrium part. This
probably indicates that the equilibrium part of the potential is not negligible.

In all of the evaluation, only the main feeding of the 1.725 MeV level has been taken
into account. A 9% side feeding by multiple transitions has been ignored. Stritt etal.
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FIGURE 9.40: Summed ezperimental date of the 3.675MeV transition in Ni. The solid line
gives the summed best fit, the dashed line the instrumental response function of the spectrometer.
Statistics is much too low to unambigously detect any fine structure within the sum scans.

state that the influence on the lifetime is only small. This has not been re-checked. For
a correct determination of an interatomic potential, however, the side feeding should not

be neglected.

9.4.3 Nickel (Ni)

Two different transitions have been investigated in nickel (Ni). Both transitions have been
measured in two different crystal orientations, <100> and <111>, and in two different
reflection orders, (1/1) and (1/2).

The sum scans of the different measurements are displayed in Fig. 9.40 and 9.41. The
pictures on the right in Fig. 9.40 show that the GRID lines in the two different orientations
differ significantly. However, the total number of counts is much too low in order to clearly
see any fine structure. The first order scans, displayed on the left side, are smeared out by
the reduced resolution. Looking at the 1.950 MeV transition (Fig. 9.41), one can see that
the GRID lines are mainly influenced by the poor resolution. The different orientations do
not show any difference. In order to extract any fine structure, one would have to switch
to higher order. However, this is not possible, as the sensitivity of the setup would not be
sufficient.

The new evaluation of the 3.675 MeV transition shows that all potentials lead to similar
values of x? (see Fig. 9.42). The fitted values of the lifetime, however, vary extremely,
going from 4fs to 28fs. No reported lifetime value exists for the 4.140 MeV level except
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FIGURE 9.41: Summed experimental data of the 1.950 MeV transition in Ni. The solid line gives
the summed best fit, the dashed line the instrumental response function of the spectrometer. The
resolution is very low, so that possible fine structure is smeared out.

for GRID values that are not independent of the new measurements. The variation of the
screening length comes to a similar result. By varying its value between 50% and 150% of
the original value, the fitted lifetime can be “chosen” to any value between 4fs and 21 fs.
The statistical variable x? does not vary by more than 2 in the whole range. This can be
seen in the right part of Fig. 9.42. Consequently, no conclusions can be drawn from the
measurement of this transition. At least, much more intensity would be needed. Before
any repetition of the measurement, however, artificial data should be used to estimate
whether the chosen transition is sensitive to the potential, at all.

The results of the 1.950 MeV transition are shown in Fig. 9.43. Again, all the potentials
yield similar values of x?, with the only exception of the BM potential which then has
been modified by switching to the Morse potential yielding a similar lifetime but a better
fit. The reported value of the lifetime of the 2.415MeV level has been measured with
the Doppler shift attenuation method and been determined to (48 £ 11) fs or (60 = 30) fs
[Pic 74]. The fitted values vary between 26 fs and 89 fs. These values are all consistent with
the reported lifetime, at least within two standard deviations. Furthermore, the reported
error does not include any uncertainty of the stopping power needed in the evaluation
[Pic 74]. Consequently, also this transition does not help to discriminate between the
potentials tested or to determine a nuclear level lifetime.

Stritt etal. come to more positive results in their paper [Str 99b]. They argue that
the ZBL, EAMVC, and EAM OJ potentials are the best due to the good agreement in
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FIGURE 9.42: Results of the fit — 3.675MeV transition in Ni. No distinction becomes possible
Jrom the x? values (top). All potentials yield similar values. An optimization of the ZBL screeming
length is also impossible. The 4.140 MeV level lifetime can not be determined, neither (bottom,).
The estimates differ by a factor of 7 from the lowest to the highest value.

lifetime. To my opinion, it is impossible to exclude any potential as none of them lies
far outside the reported error. They further argue that these potentials also give the best
x2. Unfortunately not all x? values are given in their paper. However, the new evaluation
shows that the differences are very small and that it is not justified to exclude potentials
on this basis, neither.

9.4.4 Conclusions

The aim of this chapter was to re-analyse the data of Stritt etal. with respect to the
statistics applied and not to repeat the complete study of interatomic potentials, The new
evaluation shows that only the 2.239 MeV transition in **Cr is well suited to study the
atomic interaction and that, quite generally, different interatomic potentials need to be
optimized before a comparison. For most of the other transitions, the differences between
the reported potentials can be compensated by the nuclear level lifetime which is adjusted
during the fit. A decision on which potential is best can not be made, the lifetime not be
determined.

If the lifetimes of the studied nuclear states were known to a precision of 20% or
better, a discrimination amongst the potentials would immediately become possible. If
the potentials were known to a good precision, it would be possible to determine the level
lifetimes within narrow limits. Due to the ignorance of both, a much higher total number
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of counts is necessary to extract valuable information.

In any case, conclusions about best potentials should be made much more carefully,
and errors of nuclear level lifetimes should be given much bigger than this is the case in
the papers of Stritt et al. The error of the fitted lifetime obtained for a single potential
does never represent the final error of the lifetime. There always remains an uncertainty
about the correct potential leading to an additional error.

The study of the 2.239 MeV transition in 5*Cr should be continued. Performing one
further measurement during three weeks with both spectrometers, the total number of
counts can be enhanced by a factor of 4. As shown for the BM*/EAM PFS potential, the
different potentials can be further optimized. Thereby, a final value of the nuclear level
lifetime and a decision on which potential is best should become accessible. Furthermore,
the influence of angular correlation should be tested and it must be checked whether the

effective pair potential approximation in the EAM simulations is justified. All of this, it
could be done within the framework of a Diploma thesis.



Summary

The major aim of this work was to check if and to what extent Crystal-GRID can be used
for the study of interatomic potentials under the actual conditions.

The major limitation of the Crystal-GRID method turned out to be the low yield
of the flat crystal spectrometers GAMS4/5. The systematic study of the applicability
of Crystal-GRID showed that only very few solids can be investigated. Furthermore,
sufficiently large single crystals are not available for many possible candidates. Both of
these problems were expected to be partially solved when using the bent-crystal mode of
GAMS 5. Unfortunately, sufficiently bent spectrometer crystals were not operational until
the end of this work.

The major physical problem of the Crystal-GRID technique is the correlation of nuclear
level lifetime and interatomic potential. Both have a similar influence on Crystal-GRID
lines and are therefore difficult to separate. When fitting theoretical lines derived from dif-
ferent interatomic potentials to experimental scans, often similar values of x? are obtained
with extremely different estimates of the lifetime.

Measurements using TiO, single crystals finally prove that interatomic potential func-
tions can be improved with Crystal-GRID. It can be shown that a global minimum on the
x? surface can be found if two criteria are fulfilled: the Doppler broadened line must be
well structured and the total yield in the experiment must be sufficiently high. In this case,
the relative screening length of the three interactions is optimized to (95 == 3) % for the
ZBL potential using RMD simulations. Full MD simulations using a potential including
an equilibrium part yield even better consistency with the data. Furthermore, it can be
shown, for the first time, that the 1.499 MeV transition in 4°Ti is a pure M1 transition.

The first measurements within this work, using ZnS single crystals, only allowed to
verify the original value of the screening length of the ZBL potential. The large error of
about 10% can be explained by the correlation of interatomic potential and nuclear level
lifetime. The measurement is insensitive to the parameters of the switch function which
is used to interpolate between the high-energy and the equilibrium parts of the potential.
The lifetime of the 3.221 MeV nuclear level is determined to (50 = 8) fs, including the error
of the screening length. The studied transition is not well suited for Crystal-GRID, as the
measured lines contain only little structure due to this high value of 7.

The low numbers of counts in the experimental scans mainly determined the further
steps within this work. First, the statistical basis of the evaluation had to be completely
revised and second, artificial data have been intensively used for methodical studies in
order to overcome the lack in intensity.

Until this work, the fitting code griddle, based on Neyman’s x% statistic was used
to evaluate GRID data. It is shown within this work that this statistic is not suited for
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the evaluation of counting experiments. Especially for low-statistics data, the use of an
accurate statistic is essential to obtain correct results. For this reason, the fitting code
gravel has been developed, applying the Poisson MLE statistic Xf\, p for the parameter
and error estimation. Investigations using artificial data show that the true value of the
lifetime can be found with this statistic. If the centre height in the single scans is very
low, a small systematic error may be present due to the separated fits of local and global
parameters.

A criterion is needed to judge which potential or which set of potential parameters
is best suited to describe the experimental data. First attempts to apply GRID to the
investigation of interatomic potentials mainly used the lifetime criterion, i.e. looked for a
good agreement of the lifetime estimate with reported values or with estimates from other
GRID measurements. However, consistent values of the lifetime are only a necessary
condition but by no means a sufficient criterion for a good description of the atomic
interaction.

Instead, a x? minimization has to be used. A quantitative statement concerning the
consistency of model and data can be given by the goodness-of-fit ). It is shown, within
this work, that the value of x? is influenced by statistical noise due to the accuracy of the
theoretical GRID line, i.e. mainly due to the limited number of simulated trajectories. This
influence is significant for low total numbers of counts as obtainable with Crystal-GRID.
Consequently, an error must be attributed to the statistical variable x? itself, it is shown
to be of the order of 0,2 = 3 for a typical number of 2000 simulated trajectories. For
that reason, errors for potential parameters have to be given as 20 errors, corresponding
to a change in x? by 4. The statistical error of the nuclear level lifetime 7 is often very

small. It is essential, however, to additionally include the error of the estimated potential
parameters.

In parallel to this work, measurements using Cr, Fe, and Ni single crystals have been
performed by Stritt et al. However, the evaluation has several problems. On the one hand,
it is based on Neyman’s x% statistic, and neglects the error of x? itself. On the other hand,
the lifetime criterion is used to discriminate among different potentials, often taking the
1o errors of reported lifetimes as exclusion criterion. For this reason, the measurements
are re-evaluated within this work. The re-evaluation clearly shows that wrong conclusions
were obtained due to the incorrect statistical model applied in the evaluation.

Only for the 2.239MeV transition in Cr, where nicely structured sum scans were ob-
tained, a meaningful investigation of the interatomic potential is possible. The total
number of counts of the other measurements is too low. Often, the resolution is also insuf-
ficient to resolve the fine structure. By measuring in higher diffraction order, it is easily
possible to enhance the resolution on the further cost of intensity.

The metal evaluation is based on a comparison of different potentials, reported in the
literature. Often, similar values of x? are obtained for several potentials, but the estimates
of the lifetime differ strongly. While Stritt et al. applied the lifetime criterion to select the
“best” potential, it can be shown in this work that a correct potential is only found if
the potential parameters of the multiple potentials are optimized before the comparison.

Optimized potentials yield consistent estimates of the lifetime for the 3.074 MeV level in
Cr.

Methodical studies on the basis of experimental data are not possible due to the low
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count rates. For this reason, artificial GRID data have been applied for the first time
within this work. Artificial data present many advantages as the underlying model is
completely known and any problem connected to low efficiency, insufficient measuring
time or limited stability of the spectrometers can be ignored.

Artificial data have been applied to study the sensitivity of GRID measurements to
certain parameters. It is shown that — for a given potential — the statistical error of
the lifetime does not significantly depend on the orientation of the single crystals, even
powder samples yield results of the same quality. As expected, the error of the lifetime
depends on 7.

However, Crystal-GRID is much more sensitive than powder GRID to potential pa-
rameters. This is related to the fine structure. It can be shown, for the first time, that
the sensitivity depends on the orientation of the sample crystals and thus, on the fine
structure of the lines. It is furthermore proven that asymmetric lines are better suited
than symmetric ones. In powder GRID measurements, most of the fine structure is aver-
aged out. In this case, the correlation between lifetime and interatomic potential is even
stronger and a simultaneous determination of both quantities is impossible.

Against prior assumptions, it is shown that combining measurements of different crys-
tal orientations, as commonly done, does not enhance the sensitivity and that the lifetime
estimates for different orientations do not strongly differ for different orientations even for
unsuited potential parameters. Consequently, against prior expectations, the lifetime esti-
mates from different crystal orientations can not be used to discriminate among different
potentials.

Artificial data further show that a measurement with Si single crystals would be sensi-
tive to potential parameters if the lifetime of the 4.934 MeV nuclear level was 3 fs instead
of 1.22fs, as reported. First test experiments had an insufficient total number of counts
due to the very short allocated beam time. Even though a large error of the lifetime is
obtained, it seems to be probable that the lifetime is in the range of 2fs to 3fs. The
experiments are being continuing,.

Due to the results obtained within this work, it becomes possible to better prepare
Crystal-GRID experiments. The expected count rates can be easily estimated, the sensi-
tivity to parameters can be checked beforehand using artificial data and the best crystal
orientation can be chosen. Until this work, quantitative statements of this kind were not
possible. Furthermore, it is no more necessary to perform multiple Crystal-GRID mea-
surements with crystals oriented along different crystal directions. This saves money and
makes better use of allocated beam time.

Three different approaches are used to derive theoretical GRID lines: i) MD simula-
tions, ii) RMD simulations, and iii) the MFPA theory, only applicable to powder GRID
experiments. The three approaches are compared within this work on the basis of artificial
data.

As expected, the MFPA theory is found to be unsuited and should not be used at all.
The estimated lifetimes are often wrong by a factor of 2. Only due to the application of
the BM potential which is known to be too repulsive, a partial compensation is obtained
reducing the error to about 30%. It can be shown that the error of the lifetime is related
to the definition of the mean free path Ryrp.
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MD simulations are performed with full potentials containing equilibrium and high-
energy parts. RMD simulations, using the same potentials, often yield incorrect results;
errors up to 20% are found for the lifetime within this work. RMD simulations, using
purely repulsive potentials, instead, are usually better suited to determine the lifetime.
The neglect of the interactions among the bulk atoms in the RMD approach is partly
compensated by the different potential.

If GRID measurements are only used to determine a nuclear level lifetime within an
error of about 10% and no MD potential is known, RMD simulations using the universal
(ZBL) potential are probably a sufficient tool. They can also be applied to get an idea of
the sensitivity of measurements or for a preliminary evaluation. However, correct results
about interatomic potentials can only be expected from full MD simulations.

The present work clearly shows that the efficiency of the actually available spectrom-
eters is not sufficient to investigate interatomic potentials of many solids. Apparently,
only transitions in Ti and Cr, as well as in Cl seem to be well suited. As most of the Ti
compounds are not available as sufficiently large single crystals, not many further Crystal-
GRID studies are possible.

In the near future, it is necessary to finish the evaluation of TiO,. The measured
data are shown to be well suited to obtain optimized interatomic potentials below 100eV,
approximately. As the investigation of the interatomic potential in Si is very important,
additional measurements are being performed.

Furthermore, new measurements of the 2.239 MeV transition in Cr should be carried
out and thoroughly evaluated. The re-evaluation within this work only gives an idea of
possible steps towards the optimal interatomic potential. This task could be nicely done
within the framework of a Diploma. thesis.

In order to profit from the theoretical beauty of the Crystal-GRID technique, however,
it is absolutely necessary to improve the efficiency of the GAMS spectrometers. This task
turned out to be very difficult for the ILL instrument scientists during the last couple of
years. Nevertheless, a wide application of the Crystal-GRID technique for the investiga-
tion of interatomic solid state potentials at intermediate energies is only possible with an
optimized experimental setup.
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Numeric relations for Crystal-GRID

The following relations allow to quickly calculate relevant quantities related to Crystal-

GRID

Initial recoil velocity
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using uc? = 931.49 MeV and ¢~ 2997.9 3/ fs

Initial kinetic recoil energy
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Maximum Doppler shift

AE’Yzlma.x = EO ?‘9 = Egz‘l}-

"2 e me?
E., [MeV
DB, muleV] = B V] - et o

Estimation of intensity

Ifcounts /min] =~ 8- 4+[barn] - cs{%)] - Nafmol] -

_ P, 72[ g] : RE»,z;mm (0) {1] - P. ¥25p (AE’ﬂ)
I[counts /min] =~ 8-04-[barn] - cp{%] - Najmol] -

PWZ[%} * RE_ﬂ’n’m (O) {1} . AEIQB {e&;

2AE,, |max [OV]

(A1)

(A2)

(A.3)

(A4)

(A.5)

(A6)

(A7)
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Appendix B

Stillinger-Weber parameters for ZnS

The Stillinger-Weber potential is applicable to crystals in the diamond or zinc-blende
structure (compare Section 1.2.1). As the original SW potential was only designed for
the application in Si, Ichimura extended the approach to some III-V compounds [Ich 96].
The SW parameters were obtained from the experimental lattice constant, the cohesive
energy, and the elastic properties. The latter requirement was fulfilled by a comparison
to the Keating potential which is supposed to correctly describe the elastic properties.
Ichimura states that “the obtained potentials coincide with the Keating potentials for
small distortion (< 1%) but are more accurate for larger distortion”.

Here, potential parameters for ZnS are derived by the same approach. The Keating
parameters « and (3, the cohesive energy € per bond, and the lattice constant ay are used
as input parameters. Their values are listed in Table B.1.

The Keating potential V¥ was originally developed for the diamond type of crystals
[Kea 66]. The potential energy function only uses the two independent parameters o and
B. Just as the SW potential, V¥ contains two-body and three-body terms. The interaction
with atoms in the second-neighbour sphere is neglected.

The transfer to the zinc-blende structure was performed by Martin [Mar 70]. Eq. (9)
in his paper gives the energy change AV¥ relative to the ideal tetrahedral structure per
primitive unit cell, i.e. for one Zn and one S atom.

4 2 3 4
AVE = 2 {azm (- xa)P 830 D (AR -rsj>12} (B.1)

i=1 s=1 i=1 j=i+1

where d is the equilibrium bond length.
In the SW potential, the two-body term accounts for an isotropic expansion or com-
pression, the three-body term is linked to a change of the bond angle. Stillinger-Weber

[ perameter | | GaP ] ZnS |
coh. energy | € | eV/bond | 1.78 [Ich 96] 1.58 [GolJeu 63]
lattice const. | ap A 5.45 [Mad 82] | 5.41 [Mad 82]

Keating par. | « | eV/A? | 2.953 [Mar 70] | 2.804 [Mar 70]
Keating par. | 8 | eV/A? | 0.652 [Mar 70] | 0.298 [Mar 70]

TABLE B.1: Input parameters for the determination of Stillinger-Weber potential parameters.
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and Keating potentials are easily comparable, after transforming the above equation.

4 2 3 4
AVE = 53—2 {QZ[ le) +'BZZ Z [A (rirs; cos 05)] }

s=1 i=1 j=i+1
3 4
= gaa {O{ Z [2dA’f‘1i]2
i=1

2
2 3 4

+8 Z Z Z d- cosb; (Arg + Arg;) + d? A cos 0is;

s=1 i=1 j=i+l

_% cosgiaj‘*‘%
2 3 4
- 3 jeen+ 133 [fenany
i=1 s=1 i=1 j=i+1

2
—|—-§,8d2 (cos Oisj + %) - —g—d (cos Oisj + = ) (Arg; + Afrs,)} (B.2)

where 0; = 109.47° is the ideal tetrahedral angle

The SW potential is defined in Eq. (1.8) to (1.10). The parameters a and v keep their

original values as given in [StiWeb 85]. The other parameters can be uniquely determined
from the four conditions presented in the following. The derived values are listed in
Table 1.2.

o First of all, the SW potential needs to reproduce the equilibrium bond length d of
the ideal crystal. As the three-body term vanishes in the ideal tetrahedral structure
(Eq. (1.9)), the correct bond length is given if

o\4 d 2
—eA {43&g + [B (?i) - 1] (; - ) : ;} = 0 (B.3)
e Furthermore, the interatomic potential must yield —e for the ideal crystal structure

where € is the cohesive energy per first neighbour bond.

12 @ =
A @G|

e When changing a bond angle from the ideal tetrahedral angle 8, while keeping the

bond lengths unchanged, the Keating potential energy is increased by (compare
Eq. (B.2))

I

—€ | (B.4)

3 1\?
AViena (Biej) = gﬁdz (COS Ois5 + 5) (B.5)
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In the Stillinger-Weber potential, the two-body term (Eq. (1.8)) is imchanged and
the change in potential energy is given by
AV (Biss) = V3 (d,0is5) = V3" (d, )
VoW (d, 0:55) — 0

; Exexp [27 (i _ )_IJ (cos Bis; + %)2 (B.6)

Both expressions have the same angular dependence. Consequently, the angular
term of the Keating potential can be exactly converted to the SW potential.

AVt (Bis) = AVina (Biss)
3 d -1
gﬂd = elexp|2y(——a (B.7)

e Finally, an isotropic expansion or compression by Ad for all bonds is considered
without changing the bond angles from their ideal values ;. In this case, an exact
conversion is not possible for all values of Ad. Following Ichimura, the two expres-
sions are set equal for a compression of Ad = —0.4% - d. Per ZnS primitive unit cell,
the energetic change calculated from the Keating potential is given by

tretch (Ad) = {4 . -Z—a (Ad)2 +12. % .4 (Ad)z}
= 43 {3a+5}H(Ad B3

In the SW potential, the change in energy is given by the two-body term; multiplied
by 4 for the four neighbouring atoms.

AV, stretch (Ad) = 4. {VSW (dl) ‘/ZSW (d)}

- afealp(3)' - ew|($0) | v} @9

where d’ = d+ Ad. Equating the two expression, the parameters can be determined.
tretch (Ad) = %:Z;ch (Ad)

%{3a+ﬂ}md>2 = calB(3)'-1]ew [(%'—a)_l}—e (8.10)

In order to check whether the derived potential fulfils some basic requirements, elastic
constants are calculated. The constants are derived from MD total energy calculations.
For details see Appendix A.1 in [Alb 98] and references therein. The resulting values are
listed in Table B.2. They are compared to experimental values reported in [Mad 82], as
well as to ab initio results, calculated using the Cerius code within this work.

The SW values deviate only slightly from the experimental values. This indicates that
the new potential quite well describes the crystal. Only the value of ci4 is wrong by a
factor of 2, approximately. Comparing the SW values with the ab initio results, all data
are consistent. The constant ¢y is overestimated in both theoretical approaches.
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parameter | experiment | ab initio | SW

c11 GPa | 98...105 105 109

Ci12 GPa 59...65 68 74

Caa GPa 34...46 78 89

D = 2(c;; — c12) | GPa 70...80 74 71
B = (cu+262)/3 | GPa|  72..82 80 | %

TABLE B.2: Elastic constants calculated using the new parameters of the Stzllmger—Weber po-

tential compared to experimental and ab initio results.




Appendix C
Count rates in Crystal-GRID

Besides the necessity of a short-lived, mostly primarily populated nuclear level, the ef-
ficiency of the spectrometer actually presents the major limitation of the Crystal-GRID
method. The expected count rate I (AEW) for a transition 7,,

_I(AE,)

I(AE,) = (C.1)

tobs
can be estimated from some fundamental quantities, multiplied by a normalization con-
stant C determined from previous measurements. Here, £, is the time of observation.

C.1 Estimation of count rates

The simultaneous occurrence of four basic processes is required before a photon is counted
by the detector of a GAMS spectrometer. First, a neutron must be captured by a sample
nucleus. Second, the excited nucleus must de-excite via the decay cascade under study,
i.e. under emission of a secondary photon of the studied transition. Third, the photon
must be diffracted by the spectrometer crystals, and fourth, it must be detected by the
Ge detector.

In the following, the sample material will be assumed to be XY, consisting of the two
different atomic species A and B. The decay cascade under study de-excites the capture
state of the isotope X*.

1. The number of neutrons NN, captured by the sample is proportional to the number
of capture centres, i.e. to the number Nx» of atoms of isotope X*, as well as to the
(n,) capture cross section ox+ of this isotope.

Nn ~ Ox* * Nx~ =Ox NX » CX* (0.2)

where cx~ is the isotopic abundance of the isotope X*. The number Nx of atoms X
in the sample can, of course, easily be calculated by

- ms - ol ps . ‘/; .
T oMy +yMy T My +yhy (C3)

where m; is the sample mass and Mx and My are the atomic masses of atom sorts
X and Y. If the sample mass m, is not known, it can be calculated from the sample

Nx = Nx,y, -«
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density p, and the total volume V; of the crystals which is usually V, = 3- (17 x 20 x
2) mm?® = 2.040 cm?.

. The probability P,,. that a photon of energy E.,, is emitted if a neutron is captured

can be found in the literature for sufficiently strong transitions. Absolute intensities,
referred to the total number of neutron capture events, can often be found in the
original publications of measurements.

. The reflectivity of the spectrometer is given by the instrumental response function

E’y nm (D0) (see Section 3.1). It depends on the energy E., of the photon to be
measured, on the diffraction order (n,m), as well as on the thickness and the material
(usually Si or Ge) of the spectrometer crystals, as discussed in the next section.

The response function can be characterized by two quantities: the maximum reflec-
tivity! R . (0) with the second crystal in its correct m™ order position, and the
resolution Aﬁres or AE, of the spectrometer (see Fig. C.1 and C 2).

If the central peak of the response function is reasonably narrow, for instance, less
than 20% of the width of the Doppler broadened line, it can be approximated by
a box-like function of the same area and same height for the purpose of intensity
estimation. The width of this box is called the “resolution” Af.. or AF.s of the
spectrometer in this context?

AE _ JdORE .m(A0) AE
A9~ Ry ..(0) A

A-Eres = Aares ° (04)

The conversion factor AE/A#f is given by Eq. 3.7, it also depends on the photon
energy EJ and on the diffraction order (n,m).

In a non-dispersive measurement, all photons of one transition, Doppler shifted or
not, are diffracted simultaneously. In a dispersive scan, however, only some of the
Doppler shifted photons fulfil the diffraction condition. Their proportion Iy, (AEA,Z)
can be calculated for any given Doppler shift AE.,, using the computer code line4.

The expected count rate [ (AE,,) is proportional to R}, . .. (0), i.e. to the maximum
reflectivity, and to the proportion of diffracted photons.

(AE’)’z) E‘, KR (0) Ipr (A 2) (05)

In order to compare count rates from different transitions without calculating all the

GRID lines, the average proportion I, averaged over the whole line, seems to be a
reasonable quantity. It can be approximated by

- AEres
Ipl’ ~ m for AEreS < AE’72 lma_x (C.G)

X fneval gives the instrumental response R%. n,m i arbitrary units, proportional to the reflectivity.
2The response function itself contains fine structure. In lifetime measurements of long-lived levels, this
fine-structure can be measured. In this case, the resolution is not given by the total width of the response

function but by the width of one of its peaks, i.e. much better. For Crystal-GRID, however, this enhanced
resolution can not be used.
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FIGURE C.1: Reflectivity of GAMS /4 using the standard crystals (see Table C.1). The reflectivity
RE,»nm (0) is strongly energy-dependent. Especially for high energies the reflectivity in higher

order diffraction becomes very small.
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FIGURE C.2: Resolution of GAMS 4 with standard crystals (see Table C.1). The resolution
AE,.; can be increased by using higher reflection order. In reflection order (2,2) the relative

resolution AEres/Eq2 is about 1075.
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The average count rate T is proportional to the maximum reflectivity ROE,Y nm (0) and
to the average proportion of diffracted photons I,;.

T ~ RoEq,n,m (O) ) _jl; (07)

The broader the response function, i.e. the larger AF, the more counts are ob-
tained, and the less the structure of the energy spectrum is resolved.

4. The detection efficiency of the detector depends slightly on energy. The efficiency
decreases with increasing energy, a factor of two may occur in the relevant range
of about 1 MeV to 3MeV. The energy dependence is ignored in the following, the
efficiency taken as constant and included in the constant C.

Combining the dependencies and introducing the calibration constant C' to be deter-

mined, the count rate [ (AE,,) and the average count rate I can be written as (see also
Appendix A)

[(AB,) = C-[ox=- Nx x| P [Bhynm ) - Ix (ABy,))] (C8)
Ny
= AE,
— C-loxe - Ne-cxal-Poo - | B . DPbres _
I =C [UX Nx cx ] P’7’2|n l:RE-,,n,m (0) 2AE12 Imax] (C 9)

n

In order to estimate the expected peak count rate I (AE,, = 0) of a measurement, the
GRID line must be calculated using a good estimate of the lifetime. The quantity
I: (AE,,) also depends on the resolution function, i.e. on the diffraction order and on the
excess width.

The calibration constant C is calculated from the TiO, measurements at GAMS4 in

1999 and 2000 using the 1.498 MeV transition in diffraction order (2/2). The measurements
are listed in chronological order.

orientation peak proportion of | sample calibration
count rate GRID line mass constant
<hkl> |I(AE,,=0)|IL:(AE,=0)| m, C
(min~?) (€) | (min~!mol 'barn?)
<100> 6.53 14.0% 8.7 6.39
<001> 7.48 13.2% 8.63 7.82
<110> 5.29 8.4% 8.67 8.66

The efficiency of the spectrometers is being continuously improved. Since the 1996 TiO,
measurement, it has been approximately doubled. Therefore, the calibration constant C
can not be given precisely; its actual value is of the order of 8 min—! mol ‘barn~!. GAMS 5
is slightly more efficient. Due to the larger distance to the sample crystals (17 m instead

of 15 m), however, it uses a smaller effective solid angle. The absolute count rates are very
similar to those at GAMS 4.
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FI1GURE C.3: Reflectivity of GAMS spectrometer for 2MeV photons. By optimizing the thickness
of the spectrometer crystals, intensity can be gained. While in 2" order diffraction, the standard
crystals are near the optimum, in third order the efficiency can be improved by a factor of 8.5.
The left part gives the reflectivities as calculated by Xfneval, the right part includes absorption
within the spectrometer crystals.

C.2 Optimization of Spectrometer Crystals

Usually two 2.47 mm thick Si crystals are used by the GAMS 4 spectrometer, two 2.72 mm
thick Si crystals by GAMS 5. For a measurement of a known energy the spectrometer
crystal thickness can be optimized. Fig. C.3 shows the dependence of the reflectivity on
the spectrometer crystal thickness for 2 MeV photons.

Absorption is neglected in the code Xfneval, used to calculate the instrumental re-
sponse functions. The left part of the Figure displays the reflectivity Ry, ., (0) calculated.
The right part includes absorption via the simple assumption that all photons travel twice
the crystal thickness L within the crystal.

reflectivity (including absorption) ~ R .., (0) - exp (—2a.L) (C.10)

The absorption coefficient is extrapolated to o = 0.12mm™" for E.,, = 2MeV from the
data collection [Vei 71]. Absorption is 50% higher at 1 MeV, and becomes less important
for higher energies.

Different crystals are available for the spectrometers, a list is given in Table C.1. For
energies above 3 MeV, approximately, the combination of 4.41 mm and 6.95 mm thick Si
crystals yields higher reflectivity and better resolution compared to the standard 2.47 mm
crystals. Furthermore, the 1.27mm Ge crystals yield a reflectivity increased by a factor
of 2 at similar resolution if using a (2/-2) reflection instead of a (1/-2) with the standard
crystals. An unpublished comparison of the available crystals with respect to reflectivity
and resolution has been performed by Karmann [Kar 99].

Changing crystals takes about two days at GAMS 4 and is therefore rarely applied.
At GAMS 5 it is now possible to change crystals within half a working day, so that future
low-intensity Crystal-GRID measurements can use different crystals without losing too

much time.
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quantity | material | planes | thickness comment;

(mm)

2 Si (220) 1.6

2 Si (220) 2.47 standard GAMS 4

2 Si (220) 2.72 standard GAMS 5

1 Si (220) 4.41

1 Si (220) 6.95

2 Ge (220) 1.27

2 Ge (111) 4.26

TABLE C.1: Awailable spectrometer crystals for GAMS.
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FIGURE C.4: Spectrometer crystal thicknesses yielding mazimum reflectivity. The thick lines,
linking the bozes, represent the first and highest mazimum in the reflectivity-versus-thickness
curve (compare Figure C.8). The solid lines belong to diffraction order (1/1), the dashed to
order (2/2), and the dotted to order (8/3).

The optimal crystal thickness is linearly dependant on the photon energy (see Fig. C.4).
As can be seen from Fig. C.3, the reflectivity oscillates as a function of the spectrome-
ter crystal thickness. This is related to the interference of reflected waves from the top
and back surfaces of the crystal. The reflectivity in the maxima is plotted in Fig. C.5.
The height of the maxima decreases with crystal thickness due to enhanced absorption.
Therefore, second or third maxima are most often not suited for measurements.

C.3 What can be measured?

Crystal-GRID measurements are only possible using single crystals containing an isotope
with a mostly primarily populated short-lived level. The decay cascade after neutron cap-
ture must be sufficiently well known in order to simulate the recoil trajectories. Especially
for heavy nuclei, knowledge of level schemes and <y transitions is very limited. Further-
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FIGURE C.5: Reflectivity optimized by chosing optimal spectrometer crystal thickness. Absorp-
tion is neglected in this Figure. The different lines of same style belong to the different mazima
(boz = 1°¢, circle = 2%, up triangle = §¢, and down triangle = 4 mazimum) in the reflectivity-
versus-thickness plot (compare Figure C.3).

more, nuclear level lifetimes in the interesting fs range are often not known, as only a few
experimental methods exist.

A systematic search for suitable materials has been performed. It is limited to nuclei
up to Kr (atomic number A < 36) as heavier nuclei generally have complicated feeding
that is only partially known; noble gas nuclei are disregarded. Hydrogen is also not suited
for GRID studies, as the de-excitation of deuterium (2H) after neutron capture takes place
via emission of a single photon.

The analysis mainly bases on the latest evaluations as listed in the Cumulated Index
of the Nuclear Data Sheets, Vol. 90, No. 1, detailed references are given in Table C.2.
Furthermore, a data collection containing the effective (n,7y) cross sections o 4» - ca» for
most stable isotopes [Kis 94], as well as first studies concerning intensity estimation for
Crystal-GRID performed by Karmann and Wesch [WesKar 98, Kar 00], have been used.

Odd-odd nuclei® usually do not have short-lived levels with lifetimes around 10fs.
The following nuclei have been excluded, as no short-lived levels are reported (e.g. in the
standard data collection [Fir 96]): Sc, V, Mn, Co, Cu, Ga (one short-lived level exists, but
cascade not known), As, Br. The same is true for the heavier nuclei (4 = 37...54) Rb, Y,
Nb, Rh, Ag, In, Sb, and 1. All of these nuclei only have odd-odd isotopes after neutron
capture, except for vanadium. The isotope 55V has a short-lived level, but the feeding is
not sufficiently known.

Table C.2 lists all stable isotopes of the remaining nuclei together with their capture
cross sections ox», isotopic abundances cx~ [SE 81], and effective cross sections ox»-cx» for
neutron capture by a nucleus of isotope X*, as well as the binding energies 5441 [Fir 96].

30dd-odd nuclei are isotopes having an odd number Z of protons, and an odd number (A — Z) of
neutrons.
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The best-suited transitions are listed in Table C.3. Besides the isotope after neutron
capture, the level energy FEievel, the level lifetime 7, and the amount of primary feeding, the
secondary photon energy E,_, its probability P,,n, and the derived effective cross section
ox+ - Cx++ Py,n for emission of a photon 7,, and the maximum Doppler shift AE,, |max
are given. The amount of primary feeding may be wrong if transitions are missing in the
reported cascades. This is probably the case for Se where many unplaced ~y transitions
are reported. .

Some of the transitions in Table C.3 are at the limit of measurability for Crystal-GRID,
as they depopulate levels with lifetimes that are very short (Si 4.934 MeV) or very long
(Se, S, Al).

The average proportion I, of diffracted photons, the efficiency ROE%n’m (0) of the spec-

trometer, as well as the average expected count rates per mole I /Ny for all of these
transitions are given in Table C.4. The calculation has been performed with the standard
GAMS 4 crystals (2 times 2.47 mm Si) and for a combination of thicker crystals (4.41 mm
and 6.95mm Si, marked by * in the table). The higher yields of both are listed in the
Table; the enhanced absorption by the thicker crystals has been neglected.

Once, suitable isotopes and transitions are found, one can calculate the expected count
rates. The average expected count rates I for some materials are listed in Table C.5 for
three different diffraction orders, basing on the most intense transition of Table C.4.

A viewgraph comparing the average count rates of the different nuclei and crystals is
given in Chapter 3 (Fig. 3.8).
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nucl. | n capt. | isotopic | X* effect. | binding | comment references
after | cros.sec. | abund. | cros.sec. | energy (7, cascade)
capt. oxX* cx» ox* * CX* Sasa
A+1X | [barn] [mbarn] [MeV]
TLi 0.038 7.5% 2.9 7.251 | E [AS 88]
814 0.000050 92.5% 0.046 2.033 B, Z AS 88
10Be 0.0085 100% 8.5 6.812 A C AS 88
11 0.29 20% 58 11454 | D AS 90
12 0.0055 80% 4.4 3.370 B AS 90
BC 0.0035 98.9% 3.5 4.946 ok AS 91
140 0.0014 1.1% 0.015 8176 | A,F,Z AS 91
BN 0.075 99.63% 75 10.833 | ok AS 91], [Jur 97]
16N | 0.000024 0.37% 0.000 Z
70 | 0.000202 | 99.76% 0.202 4.143 AE [Til 93]
180 | 0.000538 0.04% 0.000 8.044 Z o~ from [AS 83]
190 0.00016 0.20% 0.000 Z
2 0.0095 100% 10 6.601 ok Ram 96]
24Na, 0.53 100% 530 6.959 B, F End 90]+[EndvdLeu 78]
Mg 0.053 79% 42 7.331 ok End 90]
26Mg 0.18 10% 18 11.093 | B,D [End 90]
2TMg 0.038 11% 4.2 6.443 | ok [EndvdLeu 78]
Al 0.23 100% 230 7.725 ok End 90], [Sch 82]
2953 0.17 92% 156 8.474 ok End 90], {Ram 92]
30g; 0.28 5% 13 10.609 | ok [End 90], [Ram 92]
31gi 0.11 3% 34 6.587 ok End 90}, {[Ram 92]
2p 0.18 100% 180 7.936 ok End 90], [Mic 89]
338 0.53 95% 504 8.642 ok [End 90], [Ram 85]
343 0.14 0.75% 11 Z
358 0.24 4.2% 10 6986 |Z
373 0.15 0.02% 0.030 Z
38C1 43 76% 32581 8.580 ok |[End 90], [Kru 82]
3801 0.428 24% 104 Z
0K 1.96 93% 1827 7.800 ok {End 90], [vEgi 84]
4K 30 0.01% 3.0 z
2K 1.46 6.7% 98 C Z End 90]
41Ca 04 97% 388 8.363 ok [End 90], [GruSpi 67]
43Ca 0.65 0.65% 4.2 Z
44Ca 6.2 0.14% 84 Y/
45Ca 1 2.1% 21 Z
47Ca 0.7 0.004% 0.028 Z
49Ca 11 0.19% 2.1 Z
47T 0.6 8.2% 49 Z
48§ 1.7 7.4% 126 Z
4974 7.8 74% 5756 8.142 ok [Bur 95]
5074 2.2 5.4% 119 Z
5Ly 0.179 5.2% 9.3 zZ

TABLE C.2: List of stable isotopes (continued next page).
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nucl. | n capt. | isotopic | X* effect. | binding | comment references
after | cros.sec. | abund. | cros.sec. | energy (7, cascade)
capt. ox» cx~ Ox+ + Cx* Sa+1
A+l [barn] [mbarn] [MeV]

S1Cr 15.9 4.4% 692 Y [Chu 97]

53Cr 0.76 84% 637 7.939 B [Jun 99]

54Cr 18.2 9.0% 1638 9.719 ok [Stu 80], [Jun 93]
55Cr 0.36 2.4% 8.5 Z

55Fe 2.25 5.8% 131 Y [Enc 85]

57Fe 2.63 92% 2412 7.645 ok [Ulb 89], [Bha 98]
58Fe 2.48 2.2% 55 Z

59Fe 1.15 0.30% 35 Z
59Ni 4.6 68% 3140 8.999 ok [Pic 74, Kur 92|, [Bag 93]
61Ni 2.8 26% 731 EorY [Bha 99]

62Ni 2.5 1.1% 28 Z

63Ni 14.2 3.6% 510 Y [Aub 79

65Ni 1.49 0.91% 14 Z

65Zn 0.78 49% 379 C [Bha 93a}

67Zn 0.85 28% 237 B F [Bha 91], [MoSen 83]
687n 6.9 4.1% 283 10.198 | B, F [Bha 95], [Bha 88]
697n 1.072 19% 202 C [Bha 89]

7n 0.0917 0.6% 0.550 Z

Ge 3.2 21% 656 7416 | C [Bha 93b]

BGe 0.98 27% 269 6.783 C [KinCho 93]

Ge 15 7.8% 1170 10.196 | C [Far 95]

BGe 0.383 3% 140 6.505 C [FarSin 99]

Ge 0.14 7.8% 11 6.072 | C,Z [FarSin 97]

75Se 51.8 0.90% 466 8.028 ok, G [FarSin 99]

Se 85 9.0% 7650 7.419 ok, G [FarSin 97]

783e 42 7.6%. 3192 10498 | B [Rab 91]

Se 0.43 24% 101 Z

81Ge 0.61 50% 303 C [Bag 96]

83Ge 0.045 9.4% 4.2 y/

TABLE C.2: List of stable isotopes (continued). For every isotope, the capture cross section, the
isotopic abundance, and the binding energy are given. Isotopes with comment ’ok’ are, in princi-
ple, suited for Crystal-GRID. Other comments explain why the isotope is not suited. comments:
A) decay cascade only partially known, B) decay cascade not (sufficiently) known, C) no short
lifetime known, D) lifetimes not known, E) populated state lifetime too long, F) lifetimes good for
Crystal-GRID, G) many transitions unplaced in level scheme, Y) isotope has much lower cross
section for secondary photons (ox+-cx+ -Pyojn) than other isotope of the same nucleus, Z) isotope

has much lower natural cross section (ax= - cx=) than other isotope of the same nucleus.
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nucl. level level prim. || photon | prob. v, effect. max.
after || energy lifetime feed. || energy | of gam. cros.sect. D. shift
capt. Eevel T E,, P ox+ ccx» - Py || AE,, Imax
A+1X Il [MeV] [fs] [MeV] [mbarn] [eV]
15C 3.684 1.6(1) 100% 3.684 32% 1.1 384
5N 7.155 18(8) 77% 1.885 19% 14 496
15N 5.299 25(7) 92% 5.298 21% 16 2098
BN 8.313 1.7(11) 100% 8.310 4% 3.0 1499
15N 9.155 7+6-3 98% 2.000 4% 3.0 240
20 3.526 5.5(6) 95% 2.469 2% 0.190 408
Mg 3.414 16(6) 100% 2.824 59% 25 475
2TMg 3.560 <10 100% 3.560 57% 2.4 408
28A1 4.691 50(13) 100% 4.691 4.60% 11 546
28A1 5.442 40(10) 100% 3.303 1.10% 2.5 289
28A1 5.135 40(10) 100% 5.135 3% 6.9 510
281 5.442 40(10) 100% 5.411 2% 4.6 474
296i 4.934 1.22(18) 99% 4.934 65% 102 647
3084 7.508 <35 100% 5.272 16% 2.1 585
80g4 7.508 <35 100% 2.677 2.2% 0.288 297
31Gj 3.533 <15 95% 2.781 67% 2.3 294
32p 2.658 <10 40% 2.658 2% 3.6 471
32p 2.230 36(20) 35% 2.152 6.7% 12 412
s2p 3.444 35(15) 39% 1.215 0.5% 0.900 183
335 3.221 40(12) 85% 2.380 45% 227 420
- 36( 2.864 <15 30% 2.864 6.55% 2134 488
40K 2.787 <40 50% 2.757 1.9% 35 371
0K 2.756 <30 57% 1.956 1.8% 33 265
40K 2.756 <30 57% 2.727 1.6% 29 369
40K 2.730 <40 80% 1.087 1.1% 20 148
40K 2.730 <40 80% 1.930 0.5% 9.1 263
40K 3.128 <30 61% 3.128 0.6% 11 392
41Ca 3.945 <20 85% 2.001 19% 74 231
410y, 4,753 <35 100% 2.811 3.80% 15 266
41Ca, 4.753 <35 100% 2.290 1.60% 6.2 216
T4 3.261 15 95% 1.498 5% 281 160
%4Cr 3.074 < 25 98% 2.239 10.20% 167 296
54Cr 3.719 < 43 7% 3.719 3.60% 59 444
5TRe 3.427 <5 100% 2.721 1.37% 33 216
57Fe 1725 | 36(12), 47(9) | 91% 1.725 6.30% 152 192
59Ni 2.415 | 48(11), 60(30) | 95% 1.950 1.70% 53 234
59N 4.140 6.5(1.4) 96% 3.675 0.96% 30 325
758e 1.590 724-20-12 100% 0.979 1.73% 8 90
77Se 1.818 80+40-30 ? 1.297 3.4% 260 101
7S¢ 2.892 70--30-20 ? 2.591 0.58% 44 164
7"Se 2.892 70+30-20 ? 1.284 0.2% 15 81

TaBLE C.3: Suited Transitions for Crystal-GRID. Information on the nuclear level and the
secondary gamma transition are given, as well as the mazimum Doppler shift to be measured.
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nucl. || photon || av. prop. diffr. v, efficiency av. count rate / mole
after || energy | (1/1) | (1/2) | @2 |/ a2 e | an | @2 | @2
Capt‘ E"/z Ipr R%'.,,n,m (0) I/NA
A+1X || [MeV] . [min~tmol~!]

13C 3.684 32% | 11% | 5% | 243 | 107 | 76 0.11% | 0.03%
BN 1.885 || 10% | 4% | 2% || 358 | 233 | 192 || 4.00 | 1.16 0.38
15N 5.298 8% | 4% | 1% | 148 | 93 | 45 | 1.42*% | 0.41* | 0.08*
15N 8.310 21% | 12% | 5% || 91 | 30 | 12 * 0.08* | 0.01*
BN 2.000 21% | 10% | 4% || 412 | 238 | 172 0.55 0.16
DF 2.469 5% | 8% | 3% || 471 | 198 | 104 0.02 0.01
BMg || 2.824 16% | 8% | 4% || 415 | 153 | 71 2.52 0.53
Mg 3.560 20% | 11% 4% || 264 | 101 | 76 0.20% | 0.06*
BAL 4.691 36% | 11% | 5% || 122 | 109 | 58 1.03% | 0.93%
28A] 3.303 35% | 18% | 6% || 314 | 104 | 73 " 0.08*
28A] 5.135 31% | 14% | 6% || 143 | 98 | 48 * * 0.15*
2871 5.411 35% | 16% | 7% || 150 | 89 | 43 * * 0.11*
251 4.934 24% | 10% | 4% || 134 | 103 | 53 * 8.56*% | 1.85%
30g; 5.272 27% | 13% 5% || 147 | 94 45 * 0.20% 0.04*
30g; 2.677 24% | 12% 6% || 443 | 172 | 83 0.05 0.01
31gj 2.781 26% | 13% 6% || 424 | 158 | 74 0.08
3Zp 2.658 15% | 8% | 3% | 446 | 174 | 85 0.38 0.08
32p 2152 || 13% | 6% | 3% | 457 | 232 | 147 || 565 | 1.38 0.37
32p 1.215 27% | 13% | 3% || 254 | 113 | 188 * 0.10%* 0.04
335 2.380 14% | ™% | 3% || 476 | 209 | 115 26.72 6.52
3BCL 2.864 16% | 8% | 4% || 407 | 148 | 68 212.04 | 4451
oK 2.757 20% | 10% | 5% || 429 | 161 | 76 4.60 0.99
40K 1.956 19% | 9% | 3% || 393 | 237 | 179 5.31 1.63
40K 2.727 20% | 10% | 5% || 434 | 165 | 79 3.92 0.85
40K 1.087 26% | 15% | 4% || 284 | 117 | 127 0.72
40K 1.930 19% | 8% | 3% 381 | 236 | 184 1.46 0.46
40K 3.128 24% | 12% | 4% || 350 | 120 | 67 1.29 0.24%
41C,, 2.001 21% | 10% 4% || 212 | 238 | 172 13.96 4.18
41Cs, 2.811 29% | 15% 7% || 418 | 155 | 72 0.58
4Ca || 2.290 26% | 183% | 6% || 475 | 220 | 127 1.40 0.36
oy 1.498 30% | 12% | 4% || 410 | 263 | 238 * 1 7293% | 20.00
54Cr 2.239 19% | 9% | 4% || 471 | 225 | 134 27.33 7.09
54Cr 3.719 20% | 10% | 4% || 237 | 108 | 76 5.13% | 1.45*
*TFe 2.721 34% | 17% | 8% || 435 | 166 | 79 1.64
57Fe 1.725 26% | 11% | 4% || 260 | 207 | 217 2753 | 10.14
5INi 1.950 21% | 10% | 4% || 390 | 237 | 180 9.73 3.01
Ni || 3675 || 38% | 14% | 5% || 244 | 107 | 76 * 1.00%
"Se 0.979 36% | 22% | 6% || 533 | 146 | 161 * 0.66%
7Se 1.297 || 36% | 17% | 5% || 490 | 212 | 215 * * 22.64
Se | 2591 || 41% | 21% | 9% || 457 | 183 | 91 3.06
"TSe 1.284 || 47% | 22% | 6% | 457 | 197 | 211 * * 1.63

TABLE C.4: Espected intensities for possible Crystal-GRID transitions. For every transition,
the resolution, and efficiency of the spectrometer is given in the three different diffraction orders
(1,1), (1,2), and (2,2). The derived expected average count rate per mole is listed if the relative
resolution is better or equal 13%. The calculation has been performed for the standard 2.47 mm
crystals as well as for a set of thicker crystals (4-41mm/6.95mm). The intensity is the mazimum

of both setups (* indicates thick crystals).
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material || atoms A nucleus || gamma level aver. count rate
in sample energy | lifetime (1/1) | (1/2) | (2/2)
N, A E’Yz T I
[mol] [MeV] [fs] [counts/min]
BN 0.1792 N 1.885 18(8) 0.72 0.21 0.07
TiN 0.1790 0.72 0.21 0.07
AIN 0.1620 0.65 0.19 0.06
InN 0.1089 0.44 0.13 0.04
CagN2 0.0735 0.29 0.09 0.03
CaF, 0.1662 Ca 2.469 5.5(6) 0.004 { 0.001
AIN 0.1620 Al 4.691 50(13) 0.17 0.04
AlP 0.0845 0.09 0.02
AlAs 0.0753 0.08 0.02
Si 0.1692 Si 4.934 1.22(18) 1.45 0.31
TiSiy 0.1569 1.34 0.29
CaSi 0.0715 0.61 0.13
TiP 0.1056 P 2.152 36(20) 0.60 0.15 0.04
AlP 0.0845 0.48 0.12 0.03
InP 0.0673 0.38 0.09 0.03
TiS2 0.1228 S 2.380 40(12) 3.28 0.80
ZnS 0.0846 2.26 0.55
TiS 0.0983 2.63 0.64
NaCl 0.0757 Cl 2.864 <15 16.06 | 3.37
K;TiOg 0.0727 K 1.956 <30 0.40 0.12
KNbO3 0.0526 0.39 0.12
CaO 0.1215 Ca 2.001 <20 1.70 0.51
CazNy 0.1102 1.54 0.46
CaSi 0.0715 1.00 0.30
CaC2 0.0707 0.99 0.30
CaTiO3 0.0597 0.83 0.25
Cal’s 0.0831 1.16 0.35
CaTe 0.0592 0.83 0.25
TIiN 0.1790 Ti 1.498 15 12.93 3.58
TiC 0.1680 12.13 3.36
TiO. 0.1080 7.80 2.16
TiP 0.1056 7.63 2.11
TiS 0.0983 7.10 1.97
TiSi, 0.0784 5.67 1.57
TiSe 0.0614 4.43 1.23
CaTiOg 0.0597 4.31 1.19
K;TiOg 0.0363 2.62 0.73
Cr 0.2801 Cr 2.239 <25 7.65 1.99
Fe 0.2876 Fe 1.725 36(12), 47(9) 7.92 2.92
Ni 0.3096 Ni 1.950 | 48(11), 60(30) 3.01 0.93

TABLE C.5: Intensity estimation for various crystals. The average count rate is given for three
different diffraction orders if the relative resolution is better or equal 13%.



Appendix D

Comparison of statistics:

Estimation of mean values and areas
under peaks

A common problem when dealing with x? statistics is that the area under the measured
peak is not identical to the area under the fitted curve. This problem does not arise with
maximum likelihood methods. When using MLE, the areas are identical. As pointed out
by Baker and Cousins, this is true as long as the overall scale in the fitting function can
be freely varied during the fit, e.g. when estimating a constant background [BakCou 84].

D.1 Asymptotic behaviour

The estimation of a mean value p is a special case of area determination. It is widely
known that when trying to find the mean value of Poisson distributed data, the modified
Neyman’s x% statistic underestimates the true mean and Pearson’s x% overestimates it.
Similar results have been found or stated in several publications, e.g. [Awa 79, BakCou 84,
Gre 91, Whe 95, JadRii 96, Mig 99, Mur 98]. In statistics, an estimator that does asymp-
totically lead to a wrong value is called inconsistent [Ead 71, p. 115]. The problem leading
to the wrong values can be well explained qualitatively. Using 1/¢; as a weighting factor
in Neyman’s statistic, a stronger weight for all values ¢; < p will thus lead to an underes-
timation. On the other hand, using 1/ in Pearson’s statistic, makes x? smaller when p
is increased, thus leading to an overestimation.

The size of the inconsistency depends on the true mean of the Poisson distributed data.
This can be seen in Fig. D.1. A set of 500,000 Poisson distributed numbers with mean
has been generated. Using the three statistics described in Section 6.1, best estimates (u)
for the mean have been calculated using the relations given in Table D.1. This has been
done for true mean values g from 0.001 to 1000. The deviation from the true mean by —1
for x%;, and 0.5 for x%, can be found for true mean values of approximately 10 or more.
Using the MLE approach, the mean of Poisson distributed data is estimated correctly for
any p.

Baker and Cousins claim that the wrong “area”, i.e. the wrong estimate of the mean, is
due to the implicit assumption of Gauss statistic in the x* methods [BakCou 84]. However,
the maximum likelihood approach “Gauss MLE”, based on the assumption that data are
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FiGURE D.1: Deviation of fitted mean from true mean value when using the three statistics
under study. (a) For large p Pearson’s x% leads to an overestimation of 0.5 whereas Neyman’s
X3 underestimates the true mean by —1. (b) Looking at the ratio of fitted and true mean, one
clearly sees that using Pearson’s x5, the fitted mean deviates eztremely from the true one for

very small p.

statistic () (1) asymptotic mean
(only 1 datum)
X3p A c ¢ [HanTho 99]
X% xd c pt4/1+ 1 [JadRii 96]
2 ch‘;ﬂ)l [atet W Mig 99
XN _E—m:x—%;;/ ¢ = : = [Mig 99]

TABLE D.1: Relations giving the best estimate for the three statistics under study derived by
setting dx?/du = 0. In the second column the general result is given. The third column gives the
special case of only one measurement. The last column gives the asymptotic mean in the case of
many observations.



168 Appendix D. Estimation of mean values and areas under peaks

normally distributed, also estimates the correct mean if the variance is approximated by
the fitted value. The calculation of the mean fails if the normalisation factor (2mo?)~Y/? of
the Gauss distribution is neglected as in x5 or artificially made independent of the mean
to be fitted as in x%. The best possible derivation coming from the maximum likelihood
method leads to additional terms Inm,, (6;) compared to Pearson’s X% leading to a correct
estimation of the mean even with Gauss statistic. [HauJen 01]

For large mean values, the Poisson distribution can be approximated by a normal dis-
tribution to high precision. This could explain the correctness of the Gauss MLE approach
in the high-p part. For low averages, however, this is not true. The overall correctness
is due to the large number of Poisson distributed numbers used. The central limit the-
orem states that a variable is normally distributed if it is the sum of many independent
identically distributed random variables. Consequently, averaging (summing) over a large
number of Poisson data, a correct estimation of the mean becomes possible even with
Gauss statistic.

Similar investigations have shown that inconsistent results are also obtained when
fitting some pre-defined curve (e.g. a Gaussian or Lorentzian) to a peak in order to estimate
a total intensity. If information about intensities is needed, the classical x* methods are
clearly not suited.

D.2 Convergence properties

In true experiments, only a limited number of measurements can be performed. Is it
possible to estimate a correct mean when using only very few data points? The same
500,000 Poisson distributed numbers as used before, have been grouped by 1, 3, 9, ...,
36 = 729 numbers. The estimate of every group can then be calculated by the equations
given in Table D.1. Every group leads to a different result, of course, due to the random
nature of the input data. However, it is possible to compare the distributions of results
via their mean values and their spread.

It is important to note that the average has to be calculated without any weighting
factor, as all the random numbers have been taken from a Poisson distribution around the
same true value fi.

<I"’>average = Z _(-l—;g—k (D].)
k=1

The results of the calculations are displayed in Fig. D.2. For the modified Neyman'’s
x% and Pearson’s X% statistics, on average, the correct mean value p is found if every
datum is “fitted” separately (Fig. D.2b-c). This can be understood as, for a single datum
these statistics yield g; = ¢;. As soon as the inherent weighting of the statistics comes,,
into play, i.e. as soon as more than one datum is fitted simultaneously, the correct value is
no longer obtained on average. Combining many data finally leads to the deviation of —1
respectively, 0.5 for high values of p. This proves that the failure of these two statistics
can be understood as a problem with the weights used.

What about the asymptotically correct statistic? In the case of Poisson maximum
likelihood estimation the average of the fitted results coincides with the true mean value
for all values of p and for any number of simultaneously fitted data points (Fig. D.2a).
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FIGURE D.2: Conwvergence test for the three statistics under study: (a) Poisson MLE, (b) X%,
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D.3 Binned data — combining bins

Counting experiments often deal with binned data (histograms) and so do many publica-
tions. In GRID measurements, the theoretical function is sampled by taking measurements
at different angles ;. This sequential way of measuring can be looked at as if all measure-
ments were taken at the same time in different bins of identical size.

The x% methods require, that the spread of the measured data is sufficiently well
described by a normal distribution, i.e. that the number of counts in each bin is sufficiently
large. Otherwise adjacent bins must be combined (”re-binning”). Many textbooks state
that at least 5 counts must be in every bin (see e.g. [Ead 71, p. 257]). Combining bins,
however, washes out the fine structure that may contain valuable information. Gumble
already studied this phenomenon half a century ago using the x% statistic [Gum 43]. He

finds that not only the x2? values but also fitted intensities and parameters may depend
on the way of re-binning,.



Appendix E

Application of the
(Levenberg-)Marquardt method

The best estimate of a parameter is the value that minimizes the statistical variable 2.
As in the case of GRID, the model function is not known analytically, a numeric method
is used to find this minimum. The applied Levenberg-Marquardt algorithm, also called
Marquardt algorithm, combines the advantages of two different approaches, the gradient
(steepest descent) method and an approximate analytic (inverse Hessian) method.

Far away of the x? minimum, the gradient method is used. The idea is to minimise 2
by changing the parameter vector a along the negative gradient of x?, i.e. in the direction
of steepest descent [BevRob 92, p. 153]. As the gradient gives no information about how
far to go, it has to be multiplied by a well-chosen number ¢. The change in parameters is

baj=—c-  with ¢>0 (E1)
Nearby the optimized values, a first order expansion of the theoretical function my,

about the point a} in the parameter increments éa; = a; — a} is made in order to calculate
the next step.

ma(0;) ~ ma(0;) + Z {3”52(?1)

7

. 5@_7'} (EQ)

G=1

where m. (0;) is the value of the fitting function with parameters o} and the derivatives are
evaluated at this point. In this approximation, x? can be expressed explicitly as a function
of the parameter increments 8a;. Setting the derivative 8x2/8 (6ax) = 0, a matrix equation
of form

B=a-da (E.3)
can be obtained with the matrix a to be determined for every statistic, and
_ 1oy

as in the gradient part.
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In the Levenberg-Marquardt method, the two approaches are combined in order to get
a faster convergence. The parameter vector a is changed by da, calculated from

sa=(a)"'-B with o =a+li-1 (E.5)

where the diagonal elements of the matrix o are increased by A leading to the application
of a pure gradient method for very high A and a pure analytic solution for very small A.
A detailed description can be found in [BevRob 92, Pre 89], e.g. However, the d1scus51on
is usually hmlted to the application of a classical x? statistic with known variances o2.
When choosing 2 = max (c;, 1), this becomes the modified Neyman’s X% statistic.

E.1 Neyman’s x4

In the case of the modified Neyman’s x% statistic, the components of @ and 3 take on
the following values.

10 G ma(0;) Oma(6s)
Be = T2 Oay - Z max (c;, 1) O |gmp
B 1 Oma(6:) Oma(6:)
Cr; = 27': max (ci, 1) 6‘ak a=a’ 8aj a=a’ (E6)

’ 2
E.2 Pearson’s xp
In the case of Pearson’s X%, the statistical variable is given by Eq. (6.7)

(cz Mg (az))
Z mMa (6;)

Using the expansion of Eq. (E.2), x3 can be written as a function of the parameter
increments 6a;.

2
RRSCEYIE 1 00
. — 7

Minimising this function with respect to éa; by settmg its derivative equal to zero, the

components of @ and 3 can be derived after applying the approximation (14¢)~2 ~ (1-2¢)
for¢ <1

& \
1- : Lo (E8)

) 2
a=a' (mal (61:) + Zj ang:.joz a=a’ 60:.7)
(E9)

GX% _ ama(ei)
Béak o Z Bak

3ma(9,-)
= Z Bak

{1 i (mj"”)z | (1 ) 2 o
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aa/ ([mafczei)} 2 - 1) N

2¢2 Oma(6;)
2 [Z (o

J

Z 3ma(0,)
7 Bak

8ma(9i)
5‘a,j

a=a’

a:a)J ba; (E.10)

This can be written in the form of Eq. (E.3) with components

- 10%_1x[(_a V'] om@

B 2 Oay, 2 ma/(ﬂ) Oay, a=a’

o e .Bma("z) 9ma(6:)
Qkj = Z (mar (0:))° Bay |, Oa; |, (E.11)

E.3 MLE/Poisson

The MLE x2 for Poisson statistics is given by Eq. (6.16)

X5p =2 Z [ma (6;) — ciInmq (6;)] + const.
Using the expansion of Eq. (E.2) in this statistic, one obtains
X3.p = -?Z [(ma'(G )+ Z am“(e ) ) Iaaj)
—eln (ma:(ﬁ )+ Z Bma(9 )

a=a’

5&3‘)] + const. (E.12)

This function is minimised with respect to Sa; by setting its derivative equal to zero,
leading to, if using the approximation (1+&) 1~ (1—-¢) for{ K1

ax3, OXop _ }: Omq(6;)

¢ il
o = B ] L0 (B13)

1-—
a=a’ [ ma,(ﬁi) + Zj 9—"’—5‘;&"—9—"2 é’aj

a=a’

Ormal%) c Oma(6) i}
> "o —{ ma:(ei)( @ 2T o )} =0 (®1

(i)

Ci ama(ﬁi)
4? [Z ((;ma:(ﬁi))z By,

i

E (9ma(9,-)
: 30*

Oma(6;)
6aj

n:w)} ba; (E.15)

a=a'
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This can be written in the form of Eq. (E.3) with components

1 3XA P Z 3ma(9

— - Ci —
'Bk B Bak 6ak a=—a’ (ma,(ﬂi) 1)
_ ] ama(oz) 8ma(91)
Qg = ZZ: (ma'(f)i))2 dax |,_. Oa; |_. (E.16)
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