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The automotive industry has experienced a significant boom in recent years, 

accelerating the problems of energy shortage and environmental disruption 

around the world. To solve the two problems, electric vehicles (EVs), in-

cluding battery electric vehicles (BEV), hybrid electric vehicles (HEV), and 

fuel-cell electric vehicles (FEV), have been proposed and studied in recent 

years. Despite the efforts devoted to the development of EVs by both the 

scientific research and industrial communities, there are still many obstacles 

hindering the mass commercialization of EVs. Among these obstacles, the 

battery system, the new energy storage component in EVs, is one of the most 

important yet most difficult parts of EV design, and the battery management 

system (BMS) is recognized as the single most important technical issue in 

the successful commercialization of EVs. 

A vehicular battery must consist of a large number of cells to provide 

the necessary energy and power. Management only at the level of the bat-

tery pack causes out-of-investigation cells and lack of cell equalization ability. 

Therefore, in the smart module concept, cells are first grouped into modules, 

which are then connected to the battery pack. Each module is an indepen-

dent unit with a controller to investigate and control cells. Based on this 



concept, the work in this thesis redistributes tasks among module controllers 

and a central controller, applies a self-power design to enhance module in-

dependence, and selects the newly developed automotive ICs and sensors. 

Finally, a prototype of the BMS has been developed and successfully applied 

in a series of HEVs. 

State of charge (SoC) is a battery state indicating its residual capacity. 

It is the fundamental state of the battery and is the basis for other battery 

operations. However, SoC is not a directly measurable state and has to be 

obtained by estimation techniques. Aiming to enhance the anti-noise ability 

of SoC estimation in a real vehicle environment, we propose a SoC estimation 

framework consisting of an adaptive nonlinear diffusion filter to reduce the 

noise of current measurement, a self-learning mechanism to remove its zero-

drift, an open loop coulomb counting estimator and a model based closed loop 

filter to estimate SoC, and a data fusion unit to reach the final estimation 

result. In a simulation study, the closed loop filter is implemented based 

on an RC model and Hqo filter. In experiments and application, we modify 

the enhanced self-correcting model to model a type of LiFeP04 battery and 

apply an extended Kalman filter to estimate SoC. The framework has been 

demonstrated to improve accuracy and anti-noise ability, and achieves the 

technique upgrading goal recently published by the Chinese government. 

Cell equalization is a crucial technique to balance the cells inside a bat-

tery pack, with the ability to maximize pack capacity and protect cells from 

damage. For the bi-directional Cuk equalizing circuit, we propose a SoC 

based, instead of voltage based, fuzzy controller to intelligently determine 

the equalizing current, with the aim of reducing equalizing duration, enhanc-
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ing equalizing efficiency, and protecting cells. The inputs to the controller 

are specially designed as the difference in SoC, the average SoC, and the total 

internal resistance. Because of the lack of theoretical analysis on equalizing 

current in the electrochemistry field, we utilize a fuzzy controller to incorpo-

rate the experience and knowledge of experts. Simulations and experiments 

verify its availability and efficacy. Especially for a LiFeP04 battery, a large 

SoC difference may lead to only a small difference in voltage and cause the 

failure of a traditional voltage based equalizer. The SoC based method suc-

cessfully avoids this problem and obtains good performance in equalizing 

LiFeP04 cells. 

Fast charge is intended to charge a battery as fast as possible, without any 

damage and with high energy efficiency, thus helping to reduce vehicle out-

of-service time and promote the commercialization of EVs. Battery safety 

and charging efficiency are partially reflected by the increase in temperature 

during the charging process. Therefore, the aims of this thesis were to ac-

celerate charging speed and reduce the temperature increase. We introduce 

a model predictive control framework to control the charging process. An 

RC model and the modified enhanced self-correcting model are employed to 

predict the future SoC in simulations and experiments respectively. A single-

node lumped-parameter thermal model and a neural network trained by real 

experimental data are also applied respectively. In addition, a genetic algo-

rithm is applied to optimize the charging current under multiple objectives 

and constraints. Simulation and experimental results strongly demonstrate 

that the Pareto front of the proposed algorithm dominates that of the popular 

constant current constant voltage charge method. 
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論文摘要 

汽車工業在最近幾十年得到了迅速的發展，然而，也加速了全球性的能源 

危機和環境惡化。近年來，為了能夠同時解決這兩個問题，電動汽車，包 

括純電動汽車、混合動力汽車和燃料電池汽車，作為新一代交通工具得到 

了大規模的研發。盡管科技界和產業界均投入了大量的努力，但目前仍然 

存在不少障礙，阻礙了電動汽車的大規模商品化。其中，電動汽車的新增 

儲能系統，即電池系統，是電動汽車研發中最重要也最困難的零部件之 

一。電池管理系統甚至被認為是電動汽車成功商業化過程中最為重要的單 

個技術。 

為了提供足夠的能量和功率，車載電池包必須由大量的電池單體構成。 

對電池包整體進行管理，不能對單體進行監測和均衡。因此，在智能模塊 

概念中，首先由單體構成模塊，然後再將模塊連接成電池包。每個模塊是 

一個完全獨立的單元並釆用一個微處理器對模塊内的單體進行監測和控 

制。基於此概念，本文重新定義了模塊控制器和中央控制的任務分配，釆 

用模塊自供電設計增強了模塊的獨立性，並選用了新型的電動汽車專用芯 

片和傳感器，最終開發出一款電池管理系統，並成功地應用於一輛串聯式 

混合動力汽車。 

荷電狀態是衡量電池剩余能量的指標，它是電池中最基本的狀態，為 

其它電池的操作和管理提供了根據。然而，荷電狀態是一個不可直接測量 

的量，必須采用估計手段來獲取。為提髙在實際車輛行駛環境中核電狀態 

估計的抗幹擾能力，本文提出了一個荷電狀態估計框架，包含一個自適應 

非線性擴散爐波器以降低電流测量噪聲，一個自學習機制以去除電流測量 

的零點漂移，一個開環電流積分估計器以及一個基於模型的闭環估計器分 

別對荷電狀態進行估計，最後再利用一個數據融合單元，對上述兩個結果 
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進行融合。在仿真實驗中，闭環估計器基於RC模型和Hoc濾波器進行了實 

現。在實際應用中，本文修改了增強型自校正模型，對一款碟酸鐵鋰電池 

進行了建模，並釆用擴展卡爾曼濾波器對荷電狀態進行闭環估計。仿真、 

實驗和實際應用結果表明，本文提出的算法能有效提髙荷電狀態估計的抗 

幹擾能力，達到了中國最近頒布的技術進步目標。 

單體均衡是平衡電池包内各個單體核電狀態的技術，有助於最大化電池 

包容量，並防止單體濫用。基於Cuk均衡電路，本文提出了一種基於荷電 

狀態，而非電池端電壓，的模糊控制器來自動控制均衡電流的大小。控制 

的輸入設計為荷電狀態差、平均荷電狀態和總内阻，分別代表了單體的不 

均衡性，平均放電能力和内阻損耗。因均衡問题缺乏電化學的理諭研究， 

我們採用模糊控制器來實現專家的經驗和知識，建立棘屬度函数和知識 

庫。仿真和實驗結果都證明了本文提出方法的有效性和實用性。尤其是對 

於磷酸鐡鋰電池，由於其荷電狀態與開環電壓的曲線十分平坦，不均衡性 

往往僅導致微小的電壓差，使得基於電壓的均衡方法無法工作。基於荷電 

狀態的方法能有效避免此問题，在磷酸鐡鋰電池上獲得了良好的實際均衡 

效果。 

快速充電是指對電池不造成損害的同時，快速地、高效地對電池進行充 

電。它有助於減少充電時間，并推廣電動汽車的商業化。電池的安全性和 

充電效率可部分地體現為充電過程中的發熱，因此，本文以減少充電時間 

和降低溫度上升為目標，採用模型預測控制的框架對充電過程進行控制。 

對核電狀態的預測，在仿真和實驗中分別釆用RC模型和修改後的增強型自 

校正模型；對溫度的預測，分別采用單節點集中參数熱學模型和神經網絡 

模型。在提出的性能指标下，採用遺傳算法對未來的充電序列進行優化。 

仿真和實驗均證明，基於模型預測控制所得到的帕累托前沿主導目前所常 

釆用的恒流恒壓充電。 
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Introduction 

1.1 Motivation 

The automotive industry has experienced a significant boom in recent years. 

As the number of all types of automobiles is increasing, energy shortages 

and environmental disruption have become the most serious worldwide prob-

lems. In America, for example, road vehicles are one of the most important 

pollution sources, emitting 18% of suspended particulates, 27% of volatile 

organic compounds, 28% of Pb, 32% of nitrogen oxides, 62% of CO and 25% 

of CO2 [1]. Meanwhile, America's petroleum consumption for transportation 

accounts for 71% of total petroleum consumption and 95% of total trans-

portation demand, as shown in Fig. 1.1 [2]. It is undoubtedly time, therefore, 

to change the propulsion source of the traditional internal combustion engine 

vehicle (ICEV). 

Electric vehicles (EVs), including battery electric vehicles (BEV), hybrid 

electric vehicles (HEV) and fuel-cell electric vehicles (FEV), are recognized 
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S u p p l y S o u r c e s D e m a n d Sectors 

Figure 1.1: U.S. primary energy consumption by source and sector 
(Quadrillion Btii), 2008. ’ 

as the most accessible way of replacing traditional-fuel vehicles, with the 

promising ability to reduce energy consumption and emissions simultane-

ousiy. Although both scientific research and industry have devoted consider-

able effort to the development of EVs, there are still many obstacles hindering 

their mass commercialization. Among these obstacles, battery systems, the 

new energy storage component in EVs, are one of the most important and 

most difficult aspects of EV design [3]. 

Battery systems consist of two parts. The battery, which is made by 

connecting tens or even hundreds of cells in series and/or parallel, converts 

chemical energy to electrical energy when it discharges and reverses this 

conversion when charging. The battery management system (BMS) monitors 

the static and dynamic states of the battery package; it controls its charge 

and discharge operations to prolong its life, enhance the efficiency of the 

whole powertrain, guarantee the safety of passengers, and cooperate with 
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the upper controller, or vehicle management system (VMS). 

In fact, existing battery techniques cannot produce batteries that per-

fectly satisfy the requirements for their application in EVs, especially the 

consistency of cells in the battery package and their safety in conditions of 

high-current or high-power charge and discharge. The currently unavoidable 

defects of batteries and the strict demands of EVs require a multi-functional, 

reliable, intelligent and safe BMS. Dickinson et al. even highlighted the 

BMS as probably the single most important technical issue in the successful 

commercialization of EVs [4 . 

1.2 Configurations of Electric Vehicles 

To facilitate illustration of battery behavior in EVs and explain the dynamic 

properties of the charge/discharge currents determined by generators/motors 

in vehicles, it is first necessary to provide a brief introduction to the config-

urations of EVs. 

Books [5] and [6] comprehensively review the fundamentals, theories, and 

designs of EVs. Generally, EVs are classified into three categories: BEV, 

HEV, and FEV p]. The main difference between the first two types is that 

BEVs are driven only by an electric power source, the battery, while HEVs 

usually integrate the power sources from an internal combustion engine (ICE) 

and a battery. The reason a FEV is treated as a separate type is that the bat-

tery in a FEV is made up of fuel cells rather than traditional electrochemical 

cells. Since the fuel cell has totally different principles and characteristics 

from electrochemical cells, it is beyond the scope of this thesis and we will 
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Figure 1.2: The typical configuration of battery elcctric vchicle 

not discuss it in detail. 

1.2.1 Battery Electric Vehicles 

A battery electric vehicle, also known as a pure electric vehicle or zero emis-

sion vehicle, has the simplest configuration. It replaces the fuel tank and ICE 

of an ICEV with a battery and electric motor, as shown in Fig. 1.2. The en-

ergy flow of a BEV initiates from the chemical energy stored in the battery. 

Chemical energy is first converted into electrical energy when discharged, 

and the electrical energy is then converted by an electric motor into kinetic 

energy to drive the wheels. Although a regenerative braking system can re-

trieve some energy to recharge the battery, the battery is gradually depleted 

and has to be charged by external charge sources, such as a specially designed 

charge station (fast charge) or the household electric grid (overnight charge), 

before it becomes over-discharged. 

Compared with ICEs, electric motors have excellent energy efficiency to 
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provide adequate torque over a wide speed range. Meanwhile, the change of 

energy source not only provides an alternative propulsion method for vehicles, 

but also leads to some completely novel concepts in vehicle design, owing to 

the flexibility of energy transfer via electric wires instead of rigid mechanical 

connections. 

1.2.2 Hybrid Electric Vehicles 

Under the general definition of a HEV as a vehicle with more than one energy 

source, at least one of which can deliver electric energy, a HEV has many 

options for combining energy sources, such as gasoline ICE and battery, diesel 

ICE and battery, battery and capacitor, battery and flywheel, or battery 

and battery [7]. Nevertheless, in practice the most common configuration of 

HEVs is a combination of ICE and battery. According to the different ways 

of combining ICE and battery, HEVs also can be sub-categorized into series 

HEV, parallel HEV, series-parallel HEV and complex HEV [8,9]. Plug-in 

HEVs are also a special type of HEV family [10]. 

Series HEV 

As shown in Fig. 1.3, a series HEV is driven only by the electric motor and 

fuel energy is totally converted into electric energy to charge the battery. 

This configuration can be regarded as a BEV equipped with an on-board 

charger (generator) and an extra energy source (ICE and fuel tank). Thus, 

the advantages of BEVs, such as flexible design and the high energy efficiency 

of the motor drive, are inherited by series HEVs. 

Since the ICE only works to provide charging current to the battery, the 
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Figure 1 3 The typical configuration oi series HEV. 

required torque of the ICE changes in a smaller range compared with an 

ICEV, so that the ICE can be designed to work mostly at high-efficiency and 

low-consumption working points. However, this configuration involves two 

energy conversion stages, via the ICE and the electric motor. The indirect 

energy flow will cause some loss of energy. 

Parallel HEV 

In a parallel configuration, as shown in Fig. 1.4, the ICE and electric motor 

are both applied to drive the vehicle directly and their powers are composited 

through a torque coupler. The method of combining the two energy sources 

is determined by the torque supply from the ICE and the torque demand of 

the vehicle, since the battery always acts passively. When the ICE cannot 

provide enough torque to meet the demand from the vehicle, the battery 

will discharge and drive the electric motor to compensate. When the torque 
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Figure 1.4: The typical configuration of parallel HEV. 

provided by the ICE exceeds the demand from the vehicle, the electric motor 

will rotate in reverse and act as a generator to charge the battery. 

One of the advantages of this configuration is that it increases the peak 

power of the total powertrain when the ICE and battery both release energy. 

Meanwhile, the ICE can purposely work in its high performance region, leav-

ing the insufficient torque to battery or charging the battery by the extra 

energy, of cause, when the battery is allowed to discharge or charge. For 

example, when the vehicle is starting, the battery can provide all the torque 

that is required and shut off the ICE to avoid its lowest efficiency working 

point and reduce emissions. However, the flexible energy flow requires more 

complex management and control algorithms, which are implemented in the 

VMS and BMS. 
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Figure 1 5. The typical configuration of series-parallel HEV 

Series-Parallel HEV 

A series-parallel HEV is actually an integrated configuration of series HEV 

and parallel HEV, as shown in Fig.1,5. Compared with a series HEV, it 

provides another driving mechanism through an additional torque coupler 

and, compared with a parallel HEV, it provides an extra battery charge 

channel using an additional generator. A series-parallel HEV incorporates 

the benefits of both series and parallel HEVs, but at the cost of higher 

complexity and expense. 

Complex HEV 

Prom its name, we know that a complex HEV refers to the kind of HEV 

which has more components, energy flow channels, and/or energy sources. 

In fact, any HEV that does not belong to the configurations mentioned above 

mi 

m 
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is recognized as a complex HEV. This structure is still under investigation 

and is expected to realize further potential benefits. 

Plug-in HEV 

Besides the configuration-based classification of HEVs, plug-in HEVs are a 

special group, referring to an HEV with the ability to recharge its electro-

chemical energy storage with electricity from an off-board source (such as 

the electric utility grid) [11], no matter which configuration is used. Unlike 

other kinds of HEV, whose major power comes from petroleum, the plug-

in HEV mainly consumes electric power stored in a large-capacity battery. 

Since the cost of electricity is lower than petroleum, plug-in HEVs have a 

clear price advantage. Even taking into consideration the vehicle purchase 

cost, the large petroleum reduction potential of plug-in HEVs provides strong 

justification for further development and commercialization [12]. 

1.3 Vehicular Batteries 

A vehicular battery is equipped within a vehicle and propels it directly or 

indirectly. Compared with the batteries used in portable devices, such as 

laptops, shavers, and so on, a vehicular battery is required to provide much 

higher performance to satisfy the high maneuverability and powerful power-

train of a vehicle. Among existing batteries, nickel metal hydride (NiMH) 

batteries and lithium-ion (Li-ion) batteries, including liquid Li-ion and poly-

mer Li-ion batteries, are currently the most practicable for meeting these 

strict requirements and have been successfully applied in some commercial 
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Table 1.1: Performa,nce indexes of typical batteries. 

Indexes Lead Acid NiMH Li-ion 
Cell voltage [V] 2.1 1.2 3.6 

Energy density [wh/r 50-70 200 150-250 Energy density 
[Wh/kg] 20-40 40-60 100-200 

Power density [W/kg] 300 1300-500 3000-800 
Self-discharge [%/month] 4-8 20 1-5 

Cycle life (@80% DoD) 200 >2500 <2500 

Cost estimation [$/kWh] 150 500 800 Cost estimation 
[$/kW] 10 20 50-75 

Data source: Tab. 2 in [16], 2006. 

EVs. 

1.3.1 Requirements 

Although the requirements for vehicular batteries may be different for differ-

ent vehicle configurations or performance goals, for example the test manu-

als [13-15] specify the battery requirements in some typical EVs, the general 

requirements for EVs are listed below. 

Large Capacity 

The capacity of a battery is a measure of the total electric energy that can 

be drawn from the fully-charged battery in ampere-hours [Ah] (a current of 

one ampere for one hour is equal to lAh). HEVs usually require batteries 

to hold the capacity for around 10Ah or more, while the batteries in BEVs 

must have tens (for a sedan) or even hundreds (for a bus) of ampere-hours. 
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High Charge/Discharge Rate 

The charge/discharge rate refers to the measurement of the charge/discharge 

current as expressed by the ratio of current to the capacity in C-rate [C]. For 

example, given a battery with a capacity of 2.3Ah, a 2C discharge means the 

battery is discharged using a current of 4.6A, and a 0.5C charge means the 

battery is charged using a current of 1.15A. 

Since vehicles demand a high discharge current when accelerating, and 

feed the energy back to the battery with a high charge current using a regen-

erative braking system or fast charge station, the batteries need to release or 

accept the current up to 300A [15], or around 士20C (for HEVs) or 士5(7 (for 

BEVs) [17]. ‘ 

High Energy Density and Power Density 

The energy density includes gravimetric energy density, which is defined as 

the energy contained per kilogram of battery [Wh/kg], and volumetric energy, 

which refers to the energy contained per litre [Wh/l]. Similarly, the power 

density includes gravimetric power density [W/kg] and volumetric power den-

sity [W/1]. 

On the one hand, vehicular batteries must contain sufficient energy and 

provide enough power to keep vehicles moving fast and over long distances. 

On the other hand, they are expected to be lightweight and small in vol-

ume to reduce unnecessary load and save vehicle space. The solution is to 

select batteries with high energy and power density. As shown in Tab. 1.1’ 

compared with lead-acid batteries, NiMH and Li-ion have clear performance 

advantages, which partially explains why these batteries are used in commer-
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cialized EVs. 

Long Cycle Life 

The cycle life refers to the number of cycles a battery can provide from its 

birth to inutility, where a cycle stands for a process consisting of a single 

charge and discharge, usually in the range from 100% to 20% of full capacity, 

i.e. 80% depth of discharge (80%DoD). As shown in Tab. 1.1, the approxi-

mately 2500 cycle life of NiMH and Li-ion batteries are much longer than the 

200 cycle life of lead-acid [16], which is the second reason for the popularity 

of NiMH and Li-ion batteries in EVs. 

/ 

Slow Self-discharge 

Due to internal leakage between the anode and cathode, cells lose charge even 

in an open-circuit situation. The self-discharge rate is used to measure the 

speed of self-discharge as expressed by the ratio of lost charge to the capacity 

per month as a percentage [%/month]. As shown in Tab. 1.1, Li-ion batteries 

have an excellent ability to retain energy while NiMH batteries possess the 

weakest performance in this field. 

Safety 

Battery safety takes performance under extreme conditions into considera-

tion, such as nail penetration, external short circuit, overcharging, overheat-

ing, and so on [18-20]. Li-ion needs to be most carefully investigated and 

controlled because there is a risk of it catching fire or even exploding under 

hazardous conditions, such as short circuiting, overcharging, and thermal 
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runaway [21-23]. 

The safety issue becomes much more serious in a vehicular battery con-

taining a large number of cells. Due to the inconsistency of cells, management 

of the whole battery cannot assure the safety of each individual cell. For ex-

ample, one cell may already be full while the battery as a whole is still lacking 

energy. Continuous charge to the battery will inevitably cause overcharging 

of the outstanding cell and the discharge situation is similar. In addition, 

performance of the whole battery can suffer from a single damaged cell, i.e. 

the cask effect, so that it is necessary to detect any defective cell. Therefore, 

a BMS is recommended to investigate every cell, especially for the Li-ion 

type [24]. 

Low Cost 

The cost of the battery is a crucial factor in the promotion of EVs, which 

accounts for a large part of the vehicle purchase and maintenance fee. The 

goal is to reduce the battery manufacturing cost to $100/kWh or less, similar 

to the current cost of lead-acid batteries [25]. Prom Tab. 1.1, it can be seen 

that NiMH and Li-ion batteries are still far away from the target costs. 

At this stage, many countries have to provide high government subsidies 

to buyers to stimulate consumption of EVs and to support research and 

production. 

1.3.2 Battery Types 

Since the scope of this thesis focuses on EV application, the batteries of 

interest are NiMH and Li-ion. This subsection will briefly introduce the 
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fundamentals of the electrochemistry of both batteries. 

NiMH Battery 

The NiMH battery, the successor of the nickel-cadmium cell, is a type of 

secondary electrochemical cell with an environmentally friendly hydrogen-

absorbing alloy for the negative electrode instead of cadmium. The electro-

chemical reactions occurring in a NiMH cell are expressed as: 

Negative electrode 

charge 
H2O + M + e— . �O H - + MH 

discharge 
(1.1) 

Positive electrode 

charge 
Ni{0H)2 + OH— 、 - mO{OH) + H2O + e— 

discharge 
(1.2) 

Overall reaction 

charge 
Ni{0H)2 + M . - NiO{OH) + MH 

discharge 
(1.3) 

The “ metal" M in the negative electrode of a NiMH cell is actually an 

intermetallic compound. The most common compound is AB5, where A 

stands for mischmetal, lanthanum, cerium, or titanium, and B stands for 

nickel, cobalt, manganese, and/or aluminium [26 . 
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Li-ion Batteries 

Li-ion is a type of rechargeable battery in which the movement of lithium 

ions produces current. During discharge, lithium ions move from the negative 

electrode to the positive one, and the process is reversed during charge. 

Depending on the type of electrolyte, a battery can be categorized as a 

liquid Li-ion battery, in which the lithium-salt is held in an organic solvent, 

or a polymer Li-ion battery, in which the lithium-salt is held in a solid poly-

mer composite such as polyethylene oxide or polyacrylonitrile. In addition, 

using different cathode materials, it can be realized by LiCoOg, LiMnsOq, 

LiNi02, LiCoi/3Nii/3Mni/302, LiFe04, and so forth. Among them, LiFeO* 

is generally recognized as one of the most available and suitable types for EV 

applications. In this thesis, we will use LiFeO* as the exampie of a Li-ion 

battery. 

The electrochemical reactions in LiFe04 are expressed by: 

Negative electrode 

charge 
6C + xLi+ + X6 ’ " LIxGq 

discharge 
(1.4) 

Positive electrode 

charge 
LiFePO^ \ - Lii—冗FePOi + xW^ + xe 

discharge 
(1.5) 

Overall reaction 

charge 
LiFePOi + 6C . � + ly^CG 

discharge 
(1.6) 
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In fact, the battery charge and discharge are Li-ion intercalation and 

deintercalation processes. 

1.4 Battery Management System 

A vehicular battery faces a severe working environment. On the one hand, 

it consists of a large number of cells to provide the necessary driving power. 

The voltage and current of the battery pack are both much higher than 

in other electronic devices, such as shavers or mp3 players. On the other 

hand, vibration, electromagnetic interference, uneven temperature fields and 

other negative conditions cannot be avoided in vehicles, leading to damage 

and danger to the battery. In addition, the cost of the battery accounts 

for a large part of the whole vehicle cost, especially for BEVs, in which it 

represents approximately half the cost. To reduce the cost of electric vehicles, 

it is necessary to protect the battery and prolong its life cycle. 

The battery, as a passive component, has no ability to protect itself. 

Therefore, a BMS, a newly proposed vehicle controller, takes responsibility 

for managing the battery system and communicating with the VMS to report 

the state of the battery system. 

1.4.1 Functions 

In [16], a BMS is defined as a system for monitoring the correct battery pack 

operation and performing the appropriate safety steps in case of hazardous 

situations. Besides the monitoring and protection functions, [24] suggests 

the BMS should control and balance the battery package. [27] also adds 
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state estimation and communication functions. 

In summary, Tab. 1.2 lists the general functions of BMS and their details 

are described in the following. 

Table 1.2: Functions of battery management system. 

Monitoring 

Cell voltage 

Monitoring Battery pack voltage Monitoring 
Battery pack current 

Monitoring 

Battery temperature field 

Protection 

Overcurrent 

Protection 
Over volt age 

Protection Leakage of electricity (Insulation) Protection 
Overcharge 

Protection 

Overdis charge 

Estimation State of charge Estimation 
State of health 

Control 

Charge control 

Control Cell equalization control Control 
Thermal control 

Control 

Pre-power control 

Communicat ion 
SPI in module 

Communicat ion CAN in vehicle Communicat ion 
COM between BMS a,nd PC 

Monitoring 

Monitoring a battery involves sampling the relevant data from the battery 

at a sampling frequency. Although complex electrochemical reactions oc-

cur inside a battery, only the terminal voltage, bus current, and cell surface 

temperature can be directly measured. The following estimation, protection, 
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and control functions have to be realized based on these limited data. There-

fore, monitoring is the basis of the BMS and it should obtain information as 

accurately as possible. 

Cell voltage measurement is usually implemented through isolation opera-

tion amplifiers or special chips, such as AD7280 produced by Analog Devices, 

Inc., and LTC6802 produced by Linear Technology. Current measurement is 

usually implemented through current shunt and isolation operation amplifiers 

or current sensors. Temperature measurement can be realized using a ther-

mocouple, thermistor and so on, typically a negative temperature coefficient 

thermistor (NTC). 

Protection 

To prolong life cycle, equally to reduce the cost of EVs, and guarantee the 

safety of the whole vehicle system, especially the driver and passengers inside 

the vehicle, automatic detection of abnormal situations is necessary. 

At the battery pack level, the BMS is concerned with four abnormali-

ties. First, if the current is larger than the charging or discharging ability of 

the battery, known as over-current, it will cause permanent damage to the 

cells and the risk of firing or exploding. Secondly, if the charging voltage is 

higher than the float voltage of the battery, known as over-voltage, it has the 

potential to breakdown the electrodes and cause an internal short-circuit. 

To guarantee the safety of passengers, it is also necessary to make sure the 

battery system is absolutely insulated from the vehicle body and no leakage 

of electricity can occur. 

At the ceil level, the main protection is to avoid overcharge and overdis-
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charge. These functions are implemented based on the detection of the full 

charge and empty states, as indicated by the SoC. 

Estimation 

The battery is typically a less-information system, inside which some crucial 

states are not directly measurable, such as state of charge (SoC) and state of 

health (SoH). These hidden states have to be estimated based on the limited 

data obtained by monitoring. 

In EV applications, SoC, defined as the ratio of residual charges in a bat-

tery to its capacity, is the most important state of the battery, indicating the 

capacity left in the cell. For BEVs, SoC is used to determine the range, while 

for HEVs it determines when the engine is switched on and off. In addition, 

SoC is the basis for preventing cells from overcharge and overdischarge. Fur-

thermore, in charge control and equalization control, SoC is also a critical 

input to the controller to calculate the control variables. 

The SoH is another important state of the battery, which indicates the 

cell's ability to deliver the specified performance compared with a fresh bat-

tery. Simply speaking, it reflects the aging of the cell. Since many battery 

parameters have a close relationship with the SoH, a change in these para-

meters would be used as an indicator of the SoH. Meanwhile, the number of 

charge-discharge cycles is usually a measure of the SoH if no extreme abuse 

of the battery occurs. Therefore, a log-book of battery usage is helpful to 

estimate the SoH. 
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Control 

Charge control is an essential feature of a BMS. Statistical data show that 

inappropriate charging is the primary cause of damage to batteries. Thus, 

the basic requirement of charge control is to assure the protection of the 

battery. In addition, unlike the overnight charge in most portable electronic 

devices, EVs require the battery to charge quickly so that the out-of-service 

time can be reduced to an acceptable level In this sense, charge control is 

an important factor determining the commercialization of EVs. 

A vehicular battery is made up of multiple cells. Due to the inconsistency 

of cells, an imbalance of cells is impossible to avoid. Cell imbalance nega-

tively affects the performance of the battery for two reasons. Firstly, there is 

the risk of overcharging the strongest cell and discharging the weakest cell. 

Secondly, it greatly reduces the usable capacity of the whole battery pack -

its discharge ability is determined by the weakest cell and its charge ability is 

limited by the strongest. Therefore, equalization control is also an essential 

function of the BMS. 

Thermal control is needed to keep the temperature of the battery pack 

within a safe range and to balance the temperature field. Thermal manage-

ment usually has two steps. The first step is the design of the layout inside 

the battery pack based on thermo analysis methods, for example finite ele-

ment analysis, aimed at establishing a naturally uniform temperature field. 

Strictly speaking, this step is not involved in BMS design. The second step 

is online control of the battery temperature. The actuators, such as fans，are 

simply controlled to be on or off. 

Pre-power control works only at the moment the vehicle starts. Its goal is 
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to limit the initial current within a safe range by series-connecting a resistor. 

This function allows a soft start behavior, which is beneficial to the motor. 

After self-diagnosis of the whole vehicle system, the resistor will be switched 

off and the battery system switches to its normal service period. 

Communication 

Communication in the BMS exists on three levels. Communication inside 

the battery module is implemented by a serial peripheral interface (SPI). 

The communication between the BMS and other vehicular components oc-

curs through the standard controller area network (CAN) bus. The serial 

communication interface (SCI) port is additionally realized to facilitate fault 

diagnosis and testing via computers. 

1.4.2 Research Issues and Challenges 

In this thesis, besides the realization of a practicable BMS that has been 

assessed using testing equipment and applied in a real electric vehicle, some 

novel methodologies and solutions are also proposed to solve the challenging 

research issues in BMSs. 

State of Charge Estimation 

SoC is the crucial state in battery, based on which BMS and VMS can deter-

mine whether to charge or discharge, what is C-rate, whether battery cells 

are in balance, and how to equalize them. Unfortunately, SoC can not be 

measured directly so that the estimation of SoC becomes to one of the most 

important issues in BMS design. 
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The SoC is the crucial state of the battery, based on which the BMS 

and VMS can determine whether to charge or discharge, what the C-rate 

is, whether the battery cells are in balance, and how to equalize them. Un-

fortunately, the SoC cannot be measured directly so estimation of the SoC 

becomes one of the most important issues in BMS design. 

The difficulties of SoC estimation for vehicular batteries arise mainly from 

three issues. Firstly, measurement of the battery current is inaccurate due 

to a large measuring range and various sources of interference. Secondly, a 

battery is a typical time-variant plant, a linear model with fixed parameters 

that are difficult to determine accurately. Thirdly, the approximate true 

value of the SoC is only available after the vehicle stops. No correction can 

be made during the running process. 

For the LiFeP04 battery, SoC estimation becomes more difficult because 

there is a very flat relationship between SoC and OCV, so that changes of 

state inside the battery are not obviously reflected in the outside measurable 

states. Therefore, it is necessary to develop highly accurate measurements 

and advanced estimation models and algorithms. 

Cell Equalization Control 

Cell equalization consists of two parts, the equalization circuit and the equal-

ization algorithm. Previous research on cell equalization mainly focuses on 

the first, and various circuits have been proposed. Depending on whether the 

equalizing current can be controlled online, these circuits can be divided into 

two categories. The uncontrollable circuit usually has a simple structure, but 

the equalizing current is either fixed to a constant or is passively changed 
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along with cell voltages. 

Cell equalization has a number of goals, such as safety and prevention of 

damage, short equalization duration, and high energy efficiency. To realize 

the multiple objectives of equalization, it is necessary to tune the equalizing 

current according to the state of the battery. Therefore, in this thesis, we 

select a controllable circuit as the basis for studying the equalization algo-

rithm. 

Unlike equalization circuit design, equalization algorithms to determine 

the equalizing current have not been comprehensively and intensively inves-

tigated yet. One major difficulty is that no model or theory has been estab-

lished to map the battery state to a best equalizing current. Furthermore, 

the inputs of the equalizing controller to determine the equalizing current is 

still under exploration. Based on the fact that battery equalization is essen-

tial to equalize SoC rather than voltage, we propose a set of control inputs in 

this thesis. To incorporate human experience and knowledge of equalization, 

a fuzzy controller based on SoC has also been proposed. 

Fast Charge Control 

Charge control has three similar goals: safety and prevention of damage, 

short charging duration, and high energy efficiency. Therefore, it is naturally 

a multi-objective control problem. In addition, due to the time-variant prop-

erty of battery, a pre-determined charging profile may not be always suitable 

along with the changes in battery states. Open-loop control manners have 

difficulties in solving this problem. Meanwhile, performance evaluation of the 

charging process should be based on the whole period. Good performance 
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over a short time is insufficient to indicate a good overall performance. A 

charge controller is required to take future charging behavior into consider-

ation when calculating the present charging current. 

Modeling of batteries has been comprehensively studied in recent years. 

Available battery models establish the basis for applying a model predictive 

control (MPC) framework to solve the charge control problem. Three ad-

vantages of MPC explain the rationale. Firstly, it has the ability to predict 

future battery states under a possible future charging sequence and hence 

evaluate charging performance over a comparatively long period. Secondly, 

it calculates the best charging sequence using an optimization method, which 

can solve multi-objective problems. Thirdly, since it utilizes a receding hori-

zon strategy and only applies the first element of the best charging sequence 

at each control moment, prediction error caused by model inaccuracy will 

not accumulate because instantaneous measurements correctly update each 

initial prediction value. 

1.5 Thesis Organization 

The contents of this thesis are organized as follows. 

Chapter 2 illustrates the system structure and hardware design of our 

BMS prototype. First, we discuss the need to investigate each cell of the 

Li-ion battery and propose solutions for improving the system framework. 

We then illustrate the details of the circuit design. Finally, the simulations, 

experiments and application platforms are introduced. 

Chapter 3 focuses on the robust SoC estimation framework. We propose 
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an adaptive-/t nonlinear diffusion filter to reduce noise, and a self-learning 

mechanism to remove zero-drift in the measurement of current. Then an 

Hoo filter is utilized to realize the robust estimation using a fixed model in 

simulation, while an extended Kalman filter, based on a modified enhanced 

self-correcting model, is used in the experiments and real application. Sim-

ulations, experiments and real application in a HEV all demonstrate the 

availability and efficacy of the proposed framework. 

Chapter 4 proposes a SoC based fuzzy controller to equalize cells. Since a 

large difference in SoC results in a small difference in voltage for the LiFeP04 

battery, the traditional voltage based equalizer has difficulty balancing the 

cells. We apply the bi-directional Cuk circuit as the equalization basis and 

select three inputs to the fuzzy controller, each of which represents a relevant 

issue during equalization. Then, a fuzzy controller is established based on 

experts' experience and knowledge. Both the simulations and experiments 

are designed to test the performance of the proposed method. 

Chapter 5 proposes a fast charge framework based on model predictive 

control, with the aim of simultaneously reducing charge duration, which rep-

resents the out-of-service time of vehicles, and temperature increase, which 

represents safety and energy efficiency during the charge process. Given a 

future charge sequence, we apply the battery models to predict future SoC 

and temperature. A genetic algorithm is then applied to find the best charge 

sequence under a specified fitness function. Both simulations and experi-

ments demonstrate that the Pareto front of the proposed method dominates 

that of the most popular CCCV method. 

Chapter 6 concludes with the contributions of the thesis and highlights 
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future research. 

• End of chapter. 



Chapter 2 

System Structure 

Hardware 

2.1 Introduction 

A vehicular battery pack must consist of a large number of cells to provide 

the necessary energy and power to drive EVs. Unlike portable devices, it 

is impossible to manage the vehicular battery only at the pack level, which 

leads to two problems: out-of-investigation cells and lack of cell equalization 

ability. 

Firstly, the state of cells cannot simply be calculated according to the 

state of the pack. Cell imbalance causes the state of some cells to be far away 

from the average, especially when there are a large number of cells. These 

abnormal cells, which should be closely supervised, are out of the range of 

investigation and hence risk abuse and even damage, such as overcharging, 

overdischarging, and so forth. Furthermore, if one cell is broken, the pack 

27 
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manager cannot identify it; the whole pack has to be replaced and then 

repaired off-line. 

Secondly, management at pack level cannot equalize the cells. This dis-

advantage not only intensifies the first problem, but also limits the perfor-

mance of the whole pack. A battery is a typical system with a cask effect, 

in which the weakest cell determines the discharge ability of the pack, while 

the strongest determines its charge ability. For example, given the extreme 

case in which one cell's SoC is 1 while another's is 0, how should the battery 

pack operate? Charging will cause overcharge damage to the full cell, while 

discharging cannot avoid overdischarge damage to the empty one. Without 

cell equalization, the battery pack is unserviceable even though the pack still 

contains a large number of charges. 

The above analysis reveals that a BMS for vehicular batteries must have 

a specially designed system structure and must manage the pack as well as 

the individual cells. 

The first option is a centralized structure. In this structure, the pack 

and all cells are managed by a single micro-programmed control unit (MCU) 

28, 29]. Due to the large number of cells, the MCU has to measure and 

control cells in turn, using selective circuits. Obviously, this design cannot 

investigate cells in real time. In addition, it is very hard to estimate the SoC 

of each cell in a single MCU. 

A hierarchical structure (also known as a modular BMS) is therefore a 

more reasonable design, in which cells are first grouped into modules man-

aged by modular controllers, and then modules are incorporated into a pack 

managed by a central controller. Design considerations for a modular BMS 
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include the following: 

1. how to distribute tasks to modular and central controllers; 

2. how to communicate with each other; 

3. how to measure and control cells and the pack; 

4. how to provide power supply for controllers. 

Stuart et al. presented a complete prototype of a modular BMS [24]. The 

modular controller takes responsibility for cell voltage measurement, temper-

ature measurement, and cell equalization control. The tasks of the central 

controller include current measurement, data collection, synchronization and 

processing, battery SoC determination, safety features, module on/off con-

trol, system monitoring during sleep mode, and battery maintenance equip-

ment control. The communication between the modules and the central 

controller is via a CAN bus with speed and reliability advantages. Cell volt-

age is measured using an operational transconductance amplifier and then 

sent to a local controller via a switch and voltage transfer circuit in turn. 

The power supply for the central controller comes from two sources: the 12V 

vehicle battery when the system is in sleep mode, or the propulsive battery 

pack via a DC/DC converter otherwise. The local controllers are powered 

by the central controller. 

This modular BMS prototype establishes a good example to the followers, 

and some modifications have been made in the following years. 

While this modular BMS prototype established a good example, some 

modifications have been made subsequently. Chatzakis et al” aiming to 
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provide fault-tolerant capability and protection, equipped each modular con-

troller with a current sensor to determine if any current leakage occurred in 

the battery string and also to estimate battery states [30]. However, in this 

study, the total error in cell voltage measurement was too large to estimate 

SoG (50inV voltage error corresponds to about 25% change in SoC). Mean-

while, accuracy of current measurement was also unsatisfactory (about 0.7A 

in the range of 15A or 4,7% of the range). These problems highlight the 

significance and difficulty of measurement in BMS. 

Chen et al. proposed a new communication method between modules 

and the central controller [31]. A module communicates with its adjacent 

counterparts to transfer data and commands. Only the furthest module 

communicates with the central controller directly. This design is known as 

daisy chain and has been adopted in commercial BMS chips AD7280 and 

LTC6802 [33]. 

Most recently, Stuart et al. concluded that "modular BMS provides a 

relatively simple yet accurate means of managing the large Li-ion packs such 

as those found on commercial electric vehicles or aerospace applications" [34 . 

2.2 System Structure 

The system structure of the BMS in this thesis also follows the modular 

concept and its implementation proposed in [24]; however, it includes some 

modifications to improve accuracy, modularization, and intelligence. 



CHAPTER 2. SYSTEM STRUCTURE AND HARDWARE DESIGN 31 

2.2.1 Considerations of Modification 

Task Distribution 

SoC estimation has been treated as the pack-level task in [24] and imple-

mented in the central controller. The purpose of this idea may be understood 

in two ways. 

Firstly, it may imply that the central controller only estimates the SoC of 

the pack using the pack's voltage, current, and other related data, as applied 

in [29]. However, the SoC of the pack is a meaningless term in practice. For 

example, what is the SoC of the pack in which the SoC of one cell is 0 and 

another is 1? Cell imbalance causes overcharge and overdischarge of cells 

when control is based on the SoC of the pack. 

Secondly, the central controller may estimate the SoC of each cell. In 

this case, the large number of cells results in a heavy computing load to 

the central controller. In addition, each module controller has to report the 

voltage of each cell to the central controller, leading to a very busy CAN bus. 

Therefore, no matter which implementation is applied, it is not feasible 

to assign the SoC estimation task to the central controller. This provides 

a strong rationale for distributing the cell SoC estimation task to module 

controllers. Besides the obvious benefits, such as considerable load reductions 

on the central controller and CAN bus, it also allows the module controller 

to equalize cells based on cell SoC rather than voltage. 
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Communication 

There are two options for communication between modules and the central 

controller: daisy chain and CAN bus. 

Although daisy chain has been adopted in some BMS chips, it has two 

disadvantages. The first is that communicating data or commands to one 

module requires transmission through all the modules between it and the 

central controller. This results in a heavy transmission load and hence may 

cause delays and errors. The second is that, if one module is broken, subse-

quent modules can no longer communicate with the central controller. This 

leads to the failure of the whole pack. One solution is redundant design, 

which establishes two parallel daisy chains, but at double the cost. 

CAN bus, the vehicle bus standard designed to allow communication 

among controllers and devices within a vehicle, is a message-based proto-

col which has been successfully applied in automotive engineering for many 

years. It has three features: (1) a multi-master hierarchy in which the com-

munication network is still able to operate even when one node is defective, 

(2) broadcast communication, which guarantees data integrity as all devices 

in the system use the same information, and (3) sophisticated error detecting 

mechanisms and re-transmission of faulty messages. 

Therefore, we follow the CAN bus design used in previous work and 

establish a communication system with dual CAN buses in our BMS, one 

for communication inside the BMS, and the other for communication among 

BMS and other vehicular controllers, such as the VMS. 
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Measurement 

Cell voltage measurement is crucial to estimate cell states and hence protect 

the cells and battery pack. Most past designs measure voltages using an 

operational amplifier and convert them to digital signals via the AD ports of 

a MCU. However, measurement accuracy is not satisfactory. For example, 

the voltage measurement error in [30] is 50inV (roughly corresponding to 

25% SoC error), maximum 9mV for a 3.5V cell (4.5% SoC) in [24], and at 

least 4mV for a 4V cell (2% SoC) in [34]. To enhance accuracy, we apply the 

IC AD7280 to measure cell voltage. Its typical accuracy is 0.07% (-40°C to 

85�C)，equal to 2.8mV for a 4V cell (1.4% SoC). In addition, six cells can be 

measured by a single AD7280. Conversion time for each channel is only lus 

so that voltage sampling frequency is fast enough to be treated as realtime 

measurement. 

Current measurement is another critical factor. The current of a vehicular 

battery is much more dynamic than in portable devices. Its range usually 

covers -300A to 300A [15]. The large range causes difficulty in achieving 

accurate current measurement. In this thesis, we select the HTFS200-P/SP2 

current sensor to measure pack current [35]. It is a hall-effect sensor linearly 

converting 士300A current to 2.5±1.875V voltage. Its accuracy excluding 

offset is around 士1%, which causes error of several amperes in the higher 

range. It is clearly very hard to improve the accuracy of current measurement 

by hardware design alone. Therefore, in chapter 3, we propose a filtration 

method and a zero-drift removal algorithm to enhance accuracy in a soft 

manner. 
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Power Supply 

How the controllers are powered is closely related to modularization. Good 

modularization should reduce the dependence between each module. In the 

existing design, the module controllers are usually powered by the central 

controller. Although this design allows the central controller to easily shut 

power down to the module controllers, it has two disadvantages. First, mod-

ules cannot work independently so it is impossible to conduct self-test and 

self-diagnosis before assembly. Second, malfunction or even danger in one 

module may affect the whole pack. For example, a short circuit in the power 

circuit of one module will lead to a high short circuit current on the central 

board and short out other modules. 

In this thesis, therefore, the module controller is powered by the cells 

inside. In this way, a module can work independently. Any module can be 

easily replaced if there is a problem, and the failure of the module will not 

affect any other parts. 

2.2.2 Overview of the Proposed Structure 

Based on the modular concept and consideration of the modifications dis-

cussed above, we have designed and implemented a new BMS, An overview 

of the proposed structure is shown in Fig. 2.1. 

Each module contains 12 series connected cells, investigated and con-

trolled by a module controller. The cells and module controller are encapsu-

lated within a module pack, externally leaving only two power bus wires and 

two CAN bus wires. The module pack is a self-powered and self-organized 
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Battery pack & BMS 

Figure 2.1: System framework structure of the proposed BMS. 

system, called a smart module. Smart modules are series-connected to form 

the battery pack. A central controller is equipped within the pack and man-

agement takes place at pack level. The assignment of tasks to module con-

trollers and the central controller are listed in Tab. 2.1, Communications are 

implemented on two levels, one for BMS internal communication and one for 

communication at vehicle level. The communication data are listed in Tab. 

2.2. 

2.3 Smart Module 

A schematic diagram of a smart module is shown in Fig. 2.2. A smart 

module applies two AD7280 ICs to measure the voltages of 12 cells. Four 

temperature sensors are fixed in the module to roughly measure temperature. 
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Table 2.1: Assignment of tasks in the proposed modular BMS. 

Smart Modules 
Cell voltage measurement 
Module temperature measurement 
Cell SoC estimation 
Cell equalization 
Cell overcharge and overdischarge detection 
Commimicatioii with the central 

Central Controller 
Pack current measurement, overcurrent detection 
Pack voltage measurement, overvoltage detection 
Current leakage detection and protection 
Lowest, a,verage and highest cell SoC calculation 
Pre-power control 
Thermal control 
Disconnect battery Ironi vehicle in emergency 
Communication with modules 
Communication with VMS 

Table 2.2: Da,ta communication on the CAN buses. 

CAN bus 
ill BMS 

Smart Modules —> Central Controller 

CAN bus 
ill BMS 

Lowest, average and highest cell SoC 

CAN bus 
ill BMS 

Module temperature 
CAN bus 
ill BMS 

Error code if any 
Central Controller — Smart Modules 

CAN bus 
ill BMS 

Pack current 

CAN bus 
ill BMS 

Switch to sleep mode 

CAN bus 
in vehicle 

�Central Controller VMS 

CAN bus 
in vehicle 

Lowest, average and highest cell SoC in battery pack 
CAN bus 
in vehicle 

Error code if any 
VMS Central Controller 

CAN bus 
in vehicle 

Switch to sleep mode 
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All the data are sent to the module controller MC9S12XEP100MAL SoC 

estimation, overcharge and overdischarge detection, and equalization control 

are all implemented in the controller in a soft manner. 

2.3.1 Power Supply 

The cells inside the module provide the power source for the module con-

troller. Since each module contains 12 cells, the voltage of the power supply 

may vary from 30V (2.5V cut-off voltage) to 50.4V (4.2V full voltage) for a li-

ion battery, and from 12V (IV cut-ofF voltage) to 16.8V (1.4V cut-off voltage) 

for a NiMH battery. To develop a universal BMS, it is necessary to ensure 

the power supply is always stable with such a large variation. In this thesis, 

we select the IC TPS54160 for the power supply, as shown in Fig. 2.3 [37 . 

TPS5410 is a 60V, 1.5A, step down regulator with an integrated high side 

MOSFET. Its input voltage range is from 3.5V to 60V, which covers all pos-

sible types of vehicular battery. Its output voltage is set by a resistor divider 

from the output node to the VSENSE pin, as expressed by 

Fee = 0.8 X — + 0.8V (2.1) 
Ri 

where Ri = 53.6/cSl! and i?2 二 in this thesis. Thus, power supply 

voltage of the module controller Vcc 二 5.088V". 

2.3.2 Cell Voltage Measurement 

To realize a highly accurate and fast cell voltage measurement, we select the 

IC AD7280 to obtain cell voltage directly [32]. Since each chip has the abil-
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Figure 2.3: Schema.tic diagram of power supply for module controllers. 
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Vcc Vcc 

MCP9701A 
Vout ADI MC9S12 

XEP100MAL MCP9701A 
MC9S12 

XEP100MAL 

Figure 2.5: Schematic diagram of module temperature measurement. 

ity to measure six cells, a module contains two chips, as shown in Fig, 2.4. 

To provide protection to the analog inputs in case of overvoltage or under-

voltage of cells, for each channel a lOkH resistor is connected with a cell in 

series. In conjunction with the resistor, a lOOnF capacitor across the pseudo 

differential inputs acts as a low pass filter, with a cut-off frequency of 318Hz. 

This external measurement configuration allows a combined acquisition and 

conversion time of 1/is, which is fast enough to be recognized as realtime mea-

surement. To send the voltage measurement results, the two AD7280s both 

communicate with the MCU via SPI ports, rather than via daisy chain. Its 

typical accuracy is 0.07% (-40°C to 85°C), equal to 2.8mV for a 4V cell (1.4% 

SoC). It has the best performance for voltage measurement, as discussed in 

the previous section. 

2.3.3 Temperature Measurement 

We apply the IC MCP9701A to measure the temperature inside the mod-

ule [38]. MCP9701A is the most accurate of the low-power linear active 

thermistors in the MCP9000 family. It has a very simple external circuit, as 

shown in Fig. 2.5. The output voltage Vout has a linear relationship with the 
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ambient temperature Tq, as expressed by 

K u i = Te X Ta + T W (2.2) 

where the temperature coefficient Tc = 19.5mV/°C and sensor output at O^C 

VW = 400my. 

The typical accuracy of MCP9701A is 士 r C when 7； - 0°C to 70�C, 

It is noteworthy that the BMS is designed for vehicles in Hong Kong where 

the temperature is seldom lower than 0°C. If the BMS is equipped within a 

vehicle used in colder areas, MCP9700A is more suitable because it can work 

at -25^C. 

2.3.4 Cell Equalization 

Cell equalization is implemented in two ways in this thesis. 

The first method is the traditional discharging equalization, which dis-

charges the cells with higher SoC through dissipative resistors. With, the 

advantage that the interface for cell equalization is already integrated in the 

AD7280, the implementation of discharging equalization is quite simple, as 

shown in Fig. 2.6. 

When the MCU detects one cell's SoC is higher than others, for exam-

ple if it exceeds a threshold, the MCU will send the equalization command 

to AD7280, which will make the corresponding MOSFET discharge the cell 

through its bypass resistor. The resistances of R1 to R12 determine the dis-

charging current of cells in equalization. Selection of the resistance should 

take two points into consideration. For discharging equalization, the equal-
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izing current cannot be too large, typically O.OIC. Meanwhile, discharging 

power cannot exceed the bearing capacity of the circuit board. In this work, 

the resistances are set to corresponding to about 0.069A equalizing 

current for the 6.9Ah LiFeP04 cells in our application. 

Although equalizing cells using this discharging method is quite simple, 

and it has been applied in many existing EVs, some disadvantages hinder its 

future promotion. First, it is a dissipative method causing energy loss on the 

resistors. Second, the heating of the resistors will cause problems for thermal 

management, especially for retaining a uniform thermal field. In addition, 

the discharging current is a constant determined by the discharging resistor 

and is usually designed to be small. This feature causes a long equalization 

period, especially when the imbalance is excessive. 
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Therefore, to improve the quality of equalization, it is necessary to develop 

an advanced equalization method. In Chapter 4, an intelligent transferring 

equalization approach has been proposed to study this issue further. 

2.3.5 Microprogrammed Control Unit 

Selection of the MCU in a BMS should consider cost, power consumption, 

EMC, code-size efficiency, communication ability, adaptability and reliability 

in the vehicle environment, and so forth. The freescale MC9S12XE-famiiy 

delivers 32-bit performance with all the advantages and efficiencies of a 16 

bit MCU [36). It features an enhanced version of the performance-boosting 

XGATE co-processor. It is programmable in "C" language with an instruc-

tion set optimized for data movement, logic and bit manipulation instruc-

tions. It also has strong communication ability with external devices, includ-

ing eight synchronous serial communications interfaces (SCI), three serial pe-

ripheral interfaces (SPI), two 16-channel, 12-bit analog-to-digital converters, 

one 8-channel pulse-width modulator (PWM), five CAN 2.0 A, B software 

compatible modules (MSCAN12), and so on. 

Based on these features, we apply the MC9S12XEP100MAL as the MCU 

in both the module controller and central controller. Its block diagram is 

shown in Fig. 2.7. The green items stand for the ports used for communica-

tion with other components in this work. 
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Figure 2.8: Schematic diagram of CAN isolation. 

2.3.6 Controller Area Network 

CAN bus communication is very important for automotive engineering. It is 

realized in two steps. 

First, ADuM5402 is applied to isolate the signals in the controllers from 

the CAN bus, as shown in Fig. 2.8. The ADuM5402 isolator provides four 

independent isolation channels in a variety of channel configurations and data 

rates. The number of channels is sufficient to use a single chip to handle the 

isolation of CAN communication. 

Next, the high speed CAN-transceiver TLE6250 is applied to work as 

an interface between the CAN protocol controller and the physical differ-

ential bus, as shown in Fig. 2.9 [39]. TLE6250 is optimized for high speed 

differential mode data transmission in automotive and industrial applica-

tions. Protection of electrostatic discharge (ESD) is implemented based on 

the dual line CAN bus protector NUP2105L [40]. To improve anti-EMI abil-

ity, B82793, the choke for data and signal lines, is also series connected with 

the CAN lines [411. 
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Figure 2.9: Schematic diagram of CAN transmission. 

2.3.7 Implementation 

Fig. 2.10 shows the photograph of the implemented module controller. Its 

size is 95min*95min*11.6min, with four layers. The small size allows it to be 

fixed in a small volume. 

2.4 Central Controller 

The schematic diagram of the central controller is shown in Fig. 2,11. It 

mainly focuses on management at the pack level, including measurement of 

pack voltage, pack current, and current leakage of the pack. It also drives 

fans and contactors to control pack temperature and the opening/closing of 

the battery power bus. 

2.4.1 Power Supply 

The power supply of the central controller is the 12V vehicular battery rather 

than the high voltage propulsive battery pack, for two reasons. First, the 

power voltage on the controller board is 5V, while that of a propulsive battery 
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Figiiie 2 10 Piiotogiapli of the implemented module controllei 

pack usually is more than 300V. The large difference in voltage requires a 

complex and expensive DC/DC converter to provide a stable power supply. 

Second, the central controller works at the vehicle level, whereas most other 

units are powered by the 12V vehicular battery; for example, the VMS, motor 

controller, and engine control unit (ECU) Therefore, this design allows units 

to have common ground and facilitates control and communication among 

them As shown in Fig 2 12’ we continue to use the TPS54160 to provide a 

stable power supply for the central controller 

2.4.2 Battery Pack Voltage Measurement 

As shown m Fig 2 13，to measure the high pack voltage, the first step is to 

use voltage dividers to linearly reduce the voltages of positive and negative 

battery poles below 5V It is noteworthy that the negative pole of the battery 

pack is not the ground of the central controller The two low voltages Vpos 
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filter bank 

Vcc = 0 . 8 * - ~ + 0 . 8 V 
冠. 

Vcc 

Figure 2.12: Schematic diagram of power supply for the central controller, 

and Vneg are respectively calculated as: 

D O D O 

‘ 3 二 ‘ " - S T T ^ x V L (2.3) 

where and V-. are the voltages of the pack poles with respect to the ground 

of the controller. Then, a subtracter is applied to obtain the difference voltage 

Vpack to be sent to the AD input port of the MCU, as expressed by: 

DO 

二 V 誇 一 K e , 二 见 + 丑2 X 一 (2-4) 

The selection of R1 and R2 depends on the voltage of the battery pack, 

making sure Vpack is below 5V to avoid damage to the MCU. 

2.4.3 Battery Pack Current Measurement 

The hall effect current sensor HTFS200-P/SP2 [35] is applied to convert the 

current in 士300A to the voltage in 2.5 士 1.875V, as expressed by 

= 2.5 +1.25 x ^ {V) (2.5) 
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Figure 2.13: Schema,tic diagram of pack voltage nieasiiremeiit. 

where I is the pack current to be measured and Kut is the output voltage. 

To decrease output impedance and isolate the central controller from the 

sensor fixed on the power bus, Vout is sent to the AD input port via a follower, 

as shown in Fig. 2.14. 

2.4.4 Leakage Current Measurement 

When current leakage occurs, a small amount of current goes to the vehi-

cle body or the ground, making the current on the battery's positive pole 

different from that on the negative pole. Measurement of the small current 

difference allows detection of current leakage. 

The CYCT04-M20B current sensor family is based on a magnetic mod-

ulation and compensation principle, and can be used for measurement of 

small DC current and leakage current, a current difference between two or 

more conductors [42]. Leakage current is bidirectional. The sensor linearly 

CHAPTER. 2. SYSTEM STRUCTURE AND HARDWARE DESIGN 50 

J
 ̂
l
a
c
E
a
 

M
 3
3
p
i
 

U
E
J
 

t
i
的
 

l
v
s
o
o
I
<
I
3
x
n
s
6
3
w
 

l
a
v
 



h I OK 

Absoliitc-viiliie circuit 

I OK 
-AAAf-

CHAPTER. 2. SYSTEM STRUCTURE AND HARDWARE DESIGN 51 

0 
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Figure 2.14; Schematic diagram of pack current measurement. 

Figure 2.15: Schematic diagram of leakage current measurement. 

converts the leakage current in ±50mA to the output voltage ±5V. 

As shown in Fig. 2.15, the output voltage of the sensor first goes through 

a voltage follower to decrease output impedance and isolate the central con-

troller from the sensor. Then, an absolute-value circuit is applied to convert 

the voltage in ±5V to 0-5V. This is because the current leakage is only re-

lated to the value, but not the direction, of the leakage current. Finally, 

a comparator is designed to produce an interruption signal if the measured 

voltage is higher than the reference voltage determined by the sliding resis-

tor R. In this work, R is selected to produce interruption if the value of the 

leakage current is greater than 30mA. 
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Figure 2.16: Schematic diagram of driving circuit of fans and contactors. 

2.4.5 Driving Circuit of Fans and Contactors 

Fans and contactors are applied to control the battery package temperature 

and the on/off of the power bus, respectively. To drive fans and contactors, 

the driving circuit shown in Fig. 2.16 is applied for each channel. NCV33125, 

the dual high speed MOSFET driver, is applied to drive an actuator via a 

MOSFET [43]. Since the power of fans and contactors is higher than the 

driving ability of the controller, we directly use the 12V vehicle battery for 

the power source. In addition, to measure the states of fans and contactors, 

each channel is also fed back to the MCU. 

2.4.6 Implementation 

Fig. 2.17 shows the photograph of the implemented central controller. Its 

size is 120mm*95mm* 11.6mm, with four layers; as it is the same width and 

height as those of the modules, assembly is easy. 
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Figure 2 17 Photograph oi the implemented central controller 

2.5 Battery Pack with Battery Management 

System 

To validate the feasibility of the proposed BMS and establish a platform 

to study the proposed SoC estimation, cell equalization, and fast charging 

algorithms in the following chapters, a battery pack with the BMS has been 

developed. 

The pack consists of 2.3Ah LiFeP04 cells, which have ordinary perfor-

mance including charge/discharge ability, internal resistance, cell consistency 

and so forth. The aim of selecting this pack is to demonstrate the efficiency 

of our proposed BMS and various algorithms under general conditions. 

Extension of capacity and increase of voltage are usually two necessary 

requirements for establishing a vehicular battery. Extension of capacity is 
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implemented by connecting cells in parallel, while increase of voltage is im-

plemented by connecting cells in series. In this case, two pack architectures 

are possible. The first approach, called a series cell module, builds the pack 

by firstly wiring the cells in series for increased voltage, and then connecting 

the high voltage strings in parallel for extension of capacity. In contrast, the 

second method, called a parallel cell module, creates the pack by first wiring 

cells in parallel and then connecting the large capacity strings in series. We 

follow the second approach in this work, with the advantage that the parallel-

connected cells can be recognized as a new capacity-extended cell, and no 

further investigation and control are needed to manage the cells inside. The 

parallel cells will naturally have the same voltage, equal to an embedded cell 

equalization function based on voltage. In addition, the capacity-extended 

cell can be modeled as a whole, with larger capacity and smaller internal 

resistance than the individual cells. 

As shown in Fig. 2.18, three cells are parallel-connected to form a new 

capacity-extended 6.9Ah cell, then eight new cells are series-connected to 

form a smart module managed by a module controller. In the module con-

troller, each AD7280 investigates four new cells. Finally, two smart modules 

are series-connected to form the battery pack controlled by a central module. 

The capacity-extended cell and the final battery pack are shown in Fig. 2.19. 

2.6 Test Platforms and Application 

To test and demonstrate the availability of the implemented BMS system 

and verify the efficiency of the algorithms for SoC estimation, cell equaiiza-
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Figure 2.18: Grouping architecture of the applied battery pack. 

Figure 2,19: The capacity-extended cell and battery pack used in this work. 
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tion, and fast charge proposed in the following chapters, three platforms are 

applied in this thesis. 

2.6.1 Simulation Platform: Advisor 

The advanced vehicle simulator (Advisor), developed by scientists at the Na-

tional Renewable Energy Laboratory (NREL), is a software portfolio based 

on the MATLAB/Simulink software environment for modeling various con-

ventional, pure electric, hybrid electric powertrains, and for predicting their 

effects on user-specified vehicle configurations, such as economy and emis-

sions. 

As shown in Fig. 2.20, Advisor provides the simulation for almost every 

component used in electric vehicles, including the battery, engine, motor, 

generator, torque coupler and so on. Given a specified vehicle configuration, 

with correct setup of parameters, the simulator will automatically generate 

the charge and discharge current to the battery system, and hence lead to 

changes in variables such the terminal voltage of the battery, SoC, tempera-

ture, and so forth. In addition, the battery models in Advisor are based on 

real data tested by NREL, which makes the simulation of the battery system 

more reliable and realistic. In this thesis, all of the simulation studies are 

based on Advisor. 
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Figure 2.20: Simulation system in Advisor for a parallel HEV (Source: Ad-
visor). 

2.6.2 Experimental Platform: Programable Electric Loader 

and Charger 

To further demonstrate the proposed methods, we establish an experiment 

based on a programmable electric loader and charger. The loader is IT8512C, 

with high performance and an affordable single channel DC electronic load. 

The high resolution voltage ImV, current 0.1mA measurement system pro-

vides both accuracy and convenience for our battery testing [44], The charger 

IT6154 is a single output programmable power supply with O.lmV, 0.01mA 

high resolution, and high rise speed of 20ms [45 . 

Since the focus of our research is the estimation and investigation at 

cell level, the experimental platform is applied for modeling, testing, and 

verification of algorithms for the cells or extended cells. The experimental 

environment is shown in Fig. 2.21. 
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Figuie 2 21 The experimental environment using progiamable electric loadei 
and charger 

Figiue 2 22 The series liybiid electric vehicle developed by our lab 
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2.6.3 Application: Series Hybrid Electric Vehicle 

To apply the battery pack with the proposed BMS in practice, the whole 

system is implemented in the series hybrid electric vehicle developed by our 

lab. A photograph is shown in Fig. 2.22. 

This vehicle is equipped with an engine and a generator to supply electric 

power to the battery pack. Unlike traditional vehicles, this vehicle is driven 

by four in-wheel motors and steered by four independent steering motors. 

This design allows the functions of 4-wheel independent drive and 4-wheel 

independent steering. Since this thesis focuses on the BMS developed by 

myself, the details of this novel vehicle are not illustrated here. Interested 

readers can find a description in [7,46,47]. 

• End of chapter. 



of Charge 

Estimation 

3.1 Introduction 

One of the fundamental vehicular states is the residual propulsive energy 

in vehicles, based on which drivers can estimate the left driving range. In 

conventional fuel-driven vehicles, the amount of gasoline or diesel residual in 

fuel tank is directly measured by a variable resistor which is connected to a 

floater. However, in electric vehicle, the propulsive energy becomes to be the 

charges residual inside battery pack. How to measure the left charges is a 

difficult problem in BMS design. 

State of Charge (SoC), defined as the ratio of residual charge to the nom-

inal full capacity, is the most fundamental state of a battery, working as the 

"fuel gauge" for conventional fuel-driven vehicles. Unfortunately, the crucial 

state is not directly measurable, essentially requiring a soft estimator to cal-

60 
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culate it. An accurate estimation result can indicate the amount of residual 

energy in a battery, inform users of the range available, and cooperate with 

the VMS to prolong the battery life cycle and achieve overall optimal energy 

efficiency. Therefore, SoC estimation has attracted wide coverage in both 

research and application in recent years, and has become one of the most 

significant but difficult issues in BMS design. 

3.1.1 Literature Review 

A comprehensive review of SoC estimation for general battery-powered ap-

plications has been studied by Valer Pop et al [48]. However, limited by the 

special requirements for EV application, such as realtime estimation, avoid-

ance of energy loss, and impossibility of injecting extra test signals during 

the vehicle in-service period, some typical, usually more accurate methods 

are impractical for estimating the battery SoC in EVs. These include, for 

example, Open Circuit Voltage (OCV) direct measurement, discharge test, 

measurement of electrolyte physical properties [49] and a.c. impedance spec-

troscopy [50,51]. 

Coulomb counting (usually denoted as Ah method) is one of the most 

applicable SoC indicators, which simply accumulates the charge transferred 

in or out of the battery. Recently, some advanced techniques have been pro-

posed to enhance its performance by on-line estimation of charge/discharge 

efficiencies [52,53). Essentially, coulomb counting is a type of open-loop es-

timator that requires accurate measurement of the battery current. It will 

accumulate current noise and has no ability to self-correct. If the mean of 

noise is non-zero, that is, if zero-drift is present, the estimation result reaches 
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divergence. 

Model-based methods have also been well studied, aiming to establish a 

closed-loop estimation based on a battery model Battery models usually 

apply current as a control input, terminal voltage as measured output, and 

SoC, State of Health (SoH) and/or equivalent OCV as hidden states [54-58]. 

An extended Kalman filter (EKF) was first utilized to estimate these hidden 

states according to realtime sampling data of the current and terminal volt-

age [59], and was then further improved by enhancement strategies such as 

reduced order EKF [60], augmented states EKF [61], adaptive EKF [62], and 

Sigma-point KF [63, 64]. These model-based methods require the battery 

model to be accurate., And it will be better that the model parameters have 

obvious physical meanings to facilitate identification of the parameters and 

analysis of the model's behavior. In addition, model-based methods are also 

sensitive to noise properties. Noise reduction is necessary before estimation. 

A sliding model observer was utilized to compensate the modeling errors 

and uncertainties [65,66]. However, the selection of parameters in a sliding 

model observer, such as the boundaries of uncertainties and switching gains, 

still depends on a comprehensive understanding of battery dynamics. More-

over, a set of unsuitable parameters runs the risk of causing the chattering 

phenomena [66]. 

To avoid the difficulty of battery modeling and identification, machine 

learning strategies were also introduced to establish black-boxes mapping 

measurable data to SoC, including Neural Network (NN) [67], fuzzy NN 

[68,69], evolutionary NN [70,71] and support vector machine [72,73]. These 

data-oriented methods inevitably suffer from intrinsic problems, such as large 
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numbers of train data covering the whole possible range of operation, the 

selection of a model structure, and the balance between under-fitting and 

over-fitting. Meanwhile, the estimation result is theoretically unpredictable 

when it suffers from noise. 

In recent years, some hybrid or combined estimation frameworks have 

been proposed to integrate the advantages of individual estimators with 

different characters. A combination of the RC and hysteresis models was 

proposed to compensate for the deficiencies of the individual models [74 . 

Coulomb counting and EKF based estimation were integrated to achieve 

better performance [75-77]. A very accurate result, whereby estimation er-

ror was less than 1 min in time left or 1% in SoC, was also obtained under 

the combined contributions of direct measurement of the electro-motive force 

and a book-keeping algorithm [78], though it was not specifically designed 

for EV application. The inspiring results reveal that the establishment of 

SoC estimation frameworks, which rationally consist of types of estimators, 

is a potential way of achieving more accurate and robust performance. 

3.1.2 Overview of Proposed Framework 

The real vehicle driving environment often involves interference sources which 

cause signal measurement noise and even zero drift. Meanwhile, the strong 

time-variant properties of batteries makes it difficult to establish a sufficiently 

accurate linear modei to estimate and predict batteries' dynamic behavior. 

In other words, the non-ideal working conditions make it hard to satisfy the 

prerequisites of most individual SoC estimators. 

Therefore, to guarantee estimation accuracy in the real driving process, 
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it is necessary to improve the anti-noise abilities, or robustness, of SoC es-

timation techniques. In this paper, we have proposed a robust estimation 

framework, as shown in Fig.3.1, which consists of: 

1. A nonlinear diffusion filter to reduce current measurement noise, where 

Im is the measured current and If is the filtering result. 

2. A current zero-drift estimator to remove the zero-drift, where Izd is the 

estimated zero-drift of current measurement and Id = If Î d is the 

denoised result. 

3. A coulomb counting estimator to implement open-loop estimation SoCi. 

4. A model based estimator to realize closed-loop estimation, where Vm is 

the measured terminal voltage and S0C2 is the estimated result. 

5. A data fusion component to achieve the final estimation SoC by inte-

grating SoCi and S0C2. 

Section 3.2 firstly analyzes the quasi-random property of battery current in 

driving process, and then applies nonlinear diffusion filter to achieve better 

noise reduction performance than linear digital filter and wavelet based filter. 

In Section 3.3, based on the estimation error of coulomb counting method 

obtained at each SoC calibration available time, a self-learning strategy is 

proposed to estimate the zero-drift of current measurement. In Section 3.4, 

we introduce H ô filter to robustly estimate SoC and conduct simulations to 

compare performance with conventional EKF. In Section 3.5, the enhanced 

self-correction model has been modified to establish an accurate model for the 
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applied LiFeP04 battery and EKF is utilized to estimate SoC in experiments 

and application. Conclusions and future studies are outlined in Section 3.6. 

3.2 Current Denoising Using Nonlinear Dif-

fusion Filter 

A battery is a typical less-information system, where a complex multi-parameter 

electrochemical reaction occurs inside, while only terminal voltage, bus cur-

rent and surface temperature can be measured outside. SoC, one of the 

internal states, has to be estimated according to the limited external vari-

ables. Thus, the measurement accuracy of these variables is crucial for SoC 

estimation. 

3.2.1 Property Analysis of Current Measurement 

A vehicular battery pack usually consists of tens, even hundreds, of se-

ries/paralle connected cells to generate a large charge/discharge current vary-

ing in rbSOOA [15]. However the precision of commercialized current sensors 

is around 士 1%, resulting in a maximum error of 士3A. The error is non-

ignorable for SoC estimation. Moreover, although the peak current can reach 

300A, the current is normally less than lOOA, thus the 士3A noise represents 

a comparatively large percentage. 

Another distinct difficulty is that the current signal possesses a quasi-

random property, which leads to the failure of traditional filters. Fig.3.2 

illustrates a typical current profile of a Prius driving on a UDSS cycle, which 
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Figure 3.2: Current profile of Priiis driving on cycle UDDS. 

is simulated by Advisor. Battery current is determined by the demand from 

the motor and/or generator, and primarily depends on driving behavior. The 

way a vehicle is driven is limited by road conditions and may be disrupted by-

various unexpected events, such as traffic jams, braking to avoid pedestrians, 

sudden acceleration when overtaking, and so forth. Such erratic driving will 

inevitably result in quasi-random current on the power bus. Analysis of 

the frequency domain further depicts the property of the battery current, 

as shown in Fig.3.3. The current signal, with lOOHz sampling frequency, 

expands across the whole frequency domain and it is hard to determine a 

cut-off frequency that separates signal from noise. 

Noise reduction essentially requires some kind of property difference be-

tween signal and noise. As discussed above, the similar frequency properties 

of current signal and noise causes difficulty in applying traditional filters, e.g. 

low-pass filters, to isolate noise. 

The variation in real current signal is caused by driving behavior, which 
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Figure 3.3: Frequency analysis of current profile of Prius driving on cycle 
UDDS. ‘ 

usually leads to a comparativeiy large degree of change. However, current 

noise is often produced by the precision of measurement units, electromag-

netic interference, vehicle vibrations and so on, which typically varies in a 

small range. 

According to experiments, we find that the noise in current measure-

ment is continues within a limited region. In addition, the noise is time-

independent. Therefore, in this work, we assume the noise has Gaussian 

distribution with a fixed standard deviation and a nonzero mean. 

Under this assumption, it is clear that large current variation caused 

by driving behavior possesses higher signal-noise-ratio (SNR). The filtering 

of current measurement is purposely designed to improve the measurement 

with low SNR and keep the measurement with high SNR. Based on the above 

analysis, we apply a nonlinear diffusion filter to reduce noise. 

S i l i i i ^ i i l i i i ^ 
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3.2.2 Nonlinear Diffusion Filter 

Nonlinear Diffusion Filter (NDF) was firstly proposed in the image processing 

field to nonlinearly eliminate the oscillation in a small range while retaining 

the variation in a larger range [79 . 

Denoting k and i as the discrete time and iteration index, the iterative 

equation of the nonlinear diffusion filter is described as 

I(k, i + l) = I(k, i) + Atx ci{k, i) X [I{k I(k, i)] 
(3.1) 

+At X C r ( k , i ) X [I[k + 1，i) — /(/c, i ) 

where initial iteration /(/c, 1) is set as the measured data sequence I-miS), the 

last iteration I[k, N) is the filtering result If{k), and N is the iteration time. 

As an iterative step, a large At stands for a long diffusion period in 

each iteration, leading to smoother results, but with the risk of an unstable 

iteration process. In contrast, a too small At causes a slow diffusion process, 

requiring more iterations to achieve a satisfactory result. 

ci{k,i) and Cr(k,i), generally denoted by c(k,i), are the left and right 

diffusion coefficients respectively, which control the degree of smoothing for 

values between the kth datum and its left or right neighbor. The smaller 

c(Jc, i) is, the harder it is to smooth. As discussed above, a large change in 

current has a high possibility of being with large SNR, while a small change 

usually possesses low SNR. Thus, we set c(k, i) to be inversely proportioned 

to the signal difference, using the conventional equation: 

ci(k, i) = • ： ^ (3.2) 



CHAPTER 3, ROBUST STATE OF CHARGE ESTl\fATiCh\ 7y 

and 

Cr{k, i) = � , , � . � , , 2 (3.3) 

1 + J ( f c + l , i ) - / ( f c 

where k is the gradient modulus threshold that controls the conduction. 

3.2.3 Adaptive-/^ Strategy 

Equations (3.2) and (3.3) indicate that the performance of the nonlinear 

diffusion filter depends on the selection of k. In general, a noisy signal with 

low Signal-Noise-Ratio (SNR) requires a large k to enhance the smoothing 

effect. However, the SNR of a noisy signal is an unknown value and has to 

be estimated indirectly. Based on the characteristics of battery current, an 

adaptive k, selection method is proposed using the following steps. 

1. Calculate the differential signal Almik) of the original signal /^(/c), 

where the duration between k and ic + 1 is the sampling period. 

AI^{k) = Im{k-hl)-Im{k) (3.4) 

2. Establish the set A^ in which the absolute values of differential signal 

are smaller than 5A. The reason to remove higher differential data is 

that they are likely caused by driving behavior, i.e. the real current 

change. 

A , = {Almik) I � I < 5 } (3.5) 

3. Calculate the standard deviation std{As) of the elements in set A^. To 

some extent, std{As) is an indicator of the SNR of signal. The smaller 
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std(As) is, the larger SNR is. 

4. Adaptively determine n according to std(As). In this study, we first 

fix the iteration time N = 20 x fs {fs stands for sampling frequency) 

and the iterative step At = 0.6, then the relationship between k, and 

std(As) is experimentally determined by the below piecewise function. 

K 
mm{std{As)/lO, 2) std{As) > 2.2 

(3.6) 
max{std{l\s) x 1.76 - 3.652,0) std{A,) < 2.2 

Remark: As the nonlinear diffusion filter requires the right neighbors 

(future data) to smooth the current datum, the filter has to delay for a 

period. In this work, the iteration time N — 20 x fs will result in 20 seconds 

delay, which is short enough to be negligible because SoC changes slowly. 

3.2.4 Performance Comparison 

To demonstrate the efficacy of the nonlinear diffusion filter with adaptive-/c 

strategy, performance is compared with the traditional lowpass filter and 

wavelet filter. The lowpass filter is implemented using the Butterworth 

method with cutoff frequency faut = 0.9 x (/s/2) determined by trial-and-

error. The wavelet filter uses level-dependent thresholds determined by the 

Birge-Massart strategy [80]. 

The current profiles are produced by Advisor. We select the well-developed 

"Prius-jpn" vehicle model and three typical driving cycles: the highway 

"HWFET", the suburban "WVUSUB", and the urban "MANHATTAN". 

The current signal is corrupted by white noise with SNR from OdB to 20dB. 
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The performance index of the Reduced Root-Mean-Square of Errors (RRM-

SoE) is defined below. 

and 

where 

RRMSoElA] = rms{I, /饥)—rms(I, If) 

RRMSoEm =函队),：•侧 乂 100% 

(3,7) 

Tms{I, Im) 

rms{Iij2) \ 

(3.8) 

(3.9) 
L 

/ , Im and If are the real current, measured noisy current and filtering result 

respectively, L is the length of data. 

As an example, Fig 3,4 illustrates the HWFET case with 15dB SNR noise. 

The top subfigure describes the real current signal and noise signal. It is clear 

that the real signal has larger variance. Added noise appears as burrs. The 

errors of the filtering results are given in the bottom subfigure. Without 

doubt, the lowpass filter gives poor performance, even worse than the noisy 

signal, because it simultaneously removes the real signal in the high frequency 

zone. Basically, any frequency based filter will have difficulty handling this 

problem. The wavelet filter, focusing on both scale and time, performs better 

than the lowpass filter but still fails to keep the large variation in the real 

signal. The nonlinear diffusion filter successfully removes the noise appearing 

as burrs while keeping the real signal with large variation in morphology. 

The total results are given in Tab. 3.1, where each value is the average 

of 100 independent random tests. It is clear that the adaptive-strategy 
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Time ⑷ 

Figure 3.4: Filtering results of HWFET current profile corrupted by noise 
with 15dB SNR. 

efficiently estimates the equivalent SNR in each case and hence calculates a 

suitable k to achieve satisfactory denoising. 

3.3 Current Zero-Drift Reduction using Learn-

ing 

Although the nonlinear diffusion filter has the ability to remove the oscillatory 

noise, it cannot handle the zero-drift problem which causes the baseline shift. 

Zerodrift, actually the non-zero mean of noise, is the source of divergent 

results in coulomb counting, which negatively affects the performance of other 

estimators. 

In this section, we propose a self-learning strategy to estimate the zero-

drift of current measurement. To establish the self-learning system, it is 

necessary to know the estimation error, equally the real SoC. In practice, the 

true value of the SoC can be obtained when (1) the battery is fully charged, 
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(2) OCV is available, or (3) a more accurate result is somehow obtained. In 

these calibration-available moments, we can not only reset SoC estimation 

but also calculate zero-drift using the error of coulomb counting, as deduced 

in the following. 

3.3.1 Estimation of Current Zero-Drift 

The discrete recursive equation of coulomb counting is described as: 

S 趣 = — 1) + 胁 y 抓 (3.10) 
Qfuii 

where SoCi {k) is the estimated SoC at time k, Id{k) is the "denoised" cur-

rent, Qfuii is the charge stored in the fuily-charged battery, and Tg is the 

sampling period. is initialized by the SoC-OCV mapping table or 

other advanced methods at each start time, or is reset to the true value at 

each calibration-available time. 

ri{k) is the coulombic efficiency or ampere-hour efficiency. Strictly speak-

ing, it is a time-variant parameter, depending on temperature, SoC and other 

relative states. The basic way of determining coulombic efficiency is to es-

tablish its value table according to the manufacturers' datasheets or testing 

data [81]. The mass utilization of coulomb counting in practical applications 

has demonstrated its feasibility and validity. In addition, adaptive learning 

and on-line estimation strategies can strengthen the accuracy of coulombic 

efficiency estimation [52,53,75]. Moreover, since the accuracy of the coulomb 

counting primarily depends on measurement of the battery current and es-

timation of the initial SoC [53]，the error of coulombic efficiency will not be 
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covered in this paper. 

To analyze the zero-drift of current measurement, we denote the true 

value of current as I{k), the residual noise affecting the coulomb counting 

estimator as /„(A;), and the true value of SoC as SoC{k). The "denoised" 

current accumulated in the coulomb counting method is expressed by 

and 

S ^ i i k ) = — 1) + MgsIMZk 

(3.11) 

=5oCi (0 ) + 

=555i(O) + 

Qfuii 
k 

E W v 啦 
1=0 

Qfull 
/ fc k 、 (3.12) 

SoCi(O) + 

Qfull 

Q f u l l + Q f u l l 

Since is initialized at each start time by the SoC-OCV map-

ping table or advanced algorithms, or is reset to the "true" value at each 

calibration-available moment, its error is small enough to be ignored within 

the tolerance range. Therefore we have 

^"551(0) = SoC{0) (3.13) 

_ T . E IJMi) 
= SoC{k) + — ^ (3.14) 

Qfull 
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E — SoC{k)) = E 

k \ k 
Ts E In{()r}ii) 

i=0 

Qfull 

Ts E ri(i) 

Qfull 

(3.15) 

At each calibration-available time k*, the true value SoC(k*) is available, 

thus 
_ TsE ri(i) 

SoCi(k*) — SoC(k*) = E{In{i)) 
Qfull 

The zero-drift of current measurement Izd is the mean of noise: 

Qjuii \S^i{k*) — SoC{ki 

(3.16) 

T s E r)(i) 

(3.17) 

At each calibration available moment, Î d is updated by equation (3.17), 

which enables online tracking of zero-drift. 

3.3.2 Performance Comparison 

To demonstrate availability and efficacy, simulations based on Advisor have 

been conducted to track SoC when the Prius drives on the cycles HWFET, 

WVUSUB, MANHATTAN, NEDC, US06, and NYCC, successively. After 

completion of each cycle, a half-hour stop allows the battery OCV to be 

determined. When the vehicle starts a new driving cycle, SoC is reset to 

the real value and the algorithm re-estimates zero-drift. The SNR of current 

measurement is set to OdB. The zero-drift Izd is set to 0.5A in the lst-3rd 

cycles and lA in the 4th-6th cycles. BMS firstly de-noises the current by 

ada-/€ NDF and then removes the zero-drift by subtracting the estimation 
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value Izd, 

Fig. 3.5 shows the SoC tracking results, comparing performance either 

using or not using the zero-drift self-learning strategy. Tab. 3.2 summarizes 

the numerical indexes of each cycle, including the average (ave) of absolute 

SoC estimation errors and the standard deviation (std) of errors in each cy-

cle. Since we have no prior knowledge about zero-drift, its estimation value 

is set to 0 in the first driving cycle, HWFET; it therefore achieves the same 

SoC tracking performance as the conventional method. In the following two 

cycles, OCV is available at each start time to calibrate the SoC and to cal-

culate the estimation error of the previous cycle, which allows Î d to update. 

The estimation values of zero-drift are 0.4895A and 0.4952A respectively, 

which are very close to the real zero-drift of 0.5A. Thus, the estimation error 

of the proposed method is clearly smaller than the conventional algorithm. 

In the 4th cycle, the real zero-drift is changed to lA, with the aim of testing 

the self-adaptive ability of the learning strategy. As the learning strategy 

determines zero-drift by using the error in the previous cycle, the one-cycle 

delay means that Izd = 0.4987 cannot fully compensate the real lA drift, 

resulting in nonconvergent SoC estimation. In the following cycles, the large 

error updates the Izd to be 0.9863 and 0.9967 in the 5th and 6th cycles re-

spectively. The self-adaptive ability leads to satisfactory performance in the 

last two cycles. 

Although the proposed framework significantly improves on the perfor-

mance of the conventional coulomb counting method, it is inherently an open 

loop estimator which does not take the measurable voltage into considera-

tion. It only self-corrects estimation results at calibration moments but can 
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Table 3 2 Numerical results of SoC tracking using oi not using self-learning 
strategy (unit [%]) 

SoC estimation methods, HWFET WVUSUB MANHATTAN NEDC US06 NYCC SoC estimation methods, 
dve std ave Sid ave std dve std ave std ave &td 

Conventional Ah 4 71 2 71 9 87 6 22 6 20 4 04 16 21 9 36 7 74 4 36 7 16 4 86 
Ah with self-leai mng 4 71 2 71 1 34 0 96 i 23 0 95 8 24 4 77 1 42 1 65 0 96 0 50 

not revise errors during the driving process. 

3.4 Simulation: RC Model and Hoo Filter 

A battery is a typical time-variant system, closely related to SoC and other 

battery states. Online identification is the popular strategy for solving the 

time-variant problem, but at the cost of high time consumption and inac-

curate identification results due to noise. An alternative method is to use a 

robust estimation technique, which constructs a sub optimal filter with the 

ability to minimize the maximum estimation error caused by the noise and 

uncertainties of system model. 

In pace with the development of Hoo control theory, researchers have 

shown great interest in the Hoo filter [82,83]. A good introduction and review 

can be found in [84]. In contrast to Kalman filter, Hoo filter is proposed to 

handle estimation problems under conditions of uncertain model structure, 

model parameters, and system noise. It has two main features: (1) it does 

not require any assumptions about disturbances and model uncertainties; (2) 

it minimizes the estimation error in the worst situation. Therefore, it is more 

applicable than Kalman filter in practical application. 
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3.4.1 Hoo Filter Algorithm 

Denoting x as the system state vector, y the output vector, u the input 

vector, w the process noise, and v the measurement noise, system state space 

equations are expressed as: 

o^k+i = AkXk + BkUk + TkWk 

Vk = CkXk + DkUk + Vk (3.18) 

The suboptimal Hoo filtering problem is formalized as: given estimation 

error bounder 7 > 0, find an estimation of Zk = F八Uq,…，Uk,yQ,…，yk) 

such that 

-|2 
^k 一 之k I2 

A 

. f ^k - ^k 2 
mi sup ^ ^ 
Ff xq,w&H2,v£H2 Xq - Ip-i + Wk I2 + Vk 

< 1 ' 
(3,19) 

where Zk = LkXk is the estimation goal, i.e., the linear combination of system 

states, Lk is user-defined state weight matrix, and ||xfc|ll = I^JLo XiXi • 

The solution of the suboptimal H ô filtering problem can be calculated 

by the following recursion formulas: 

Rk = 

= AkXk + BkUk 

Pk 
I 0 

+ 
Ck 

0 —72/ 
1 

Lk 

T
f
c
 

(3.20) 

(3.21) 
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Pk+i = AkP.Al + — AkPklClLl]R^ 
Ck 

Lk 

T PkAi 

Kk+i = I + Ck+iPk+iC丨 
iT 

念 fc+1 =念 fc+i,fc + Kk+1 ivk+i — Ck+iS;k+i,k — Dk+iUk+i] 

乏 fc+i = Lk+iXk+i 

under the conditions that [Ak Ffc] has full rank and 

Pfe-i + C^Ck - T'^LlLk > 0 for all k 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

Prom the above formulas, it is clearly that if L{k) = I and 7 —> oo, H^o 

filter degrades to be Kalman filter. Thus, Kalman filter is a special situation 

of Hoo filter with infinite Hoo norm, and hence it is the least robust. 

3.4.2 Battery RC Model 

V a 

Rc R, 
zn 

X 
Rb 
Cb 

Figure 3.6: Battery RC Model. 

As shown in Fig.3.6’ we apply battery RC equivalent circuit model in 

this paper [56]. The RC model consists of a bulk capacitor Cb and a surface 

capacitor C5, which simulate energy storage and dynamic property of the 

battery respectively. Output resistance R � , surface resistance Rg and bulk 



(M 0.6 0.8 
SoC 

Figure 3.7: Resistance variance of resistors in RC model. 

resistance i?& are used to model the internal resistance of battery. 

By selecting state vector as the voltages of bulk and surface capacitors 

Xk = [Hfc，Kfc]'，system input as bus current Uk = Ik, output as terminal 

voltage yk == Vok, and sampling time as Ts, the discrete state space equations 

(3.18) are concrete into the following matrixes. 

A 
T« 

CsiRb+R.) 
IL 

C 4 R b + R s ) 

(3.27) 

C 

一 R f j T n 

Rb 
b + R s R b + R s 

RhRs 
Rh + Rs 

(3.28) 

(3.29) 

(3.30) 
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The SoC for the RC model was estimated by using the voltages of the two 

capacitors. Since Cb represents the bulk energy in the battery, it contributes 

the majority of SoC, as expressed in the equations below. 

S^2{k) = — hoS^cM + S^Csik) 
丄 L 

(3.31) 

where 

SoCc,{k) = Focv-~Soc(Vbk) = ^ocv-SocMl)) 

SoCcM = Focv~Soc{Vsk) = Focv-Soc{xk{2)) 

(3.32) 

(3.33) 

and Focv-Soci') is the function mapping OGV to SoC. It usually is prede-

termined by manufactory's datasheet or experimental testing data. 

Model parameters will essentially change during the running process. A 

type of 6.5 Ah Prismatic Panasonic NiMH Battery has been tested at the 

NREL Battery Thermal Management Lab and the corresponding model para-

meters are provided by Advisor [85]. Fig. 3.7 shows the change in resistance 

of the resistors versus temperature and SoC. Taking the output resistor as 

an example, it is clear that the maximum resistance is 0.02160, more than 

three times the minimum value 0.00710. The significant variation in the 

model parameters is worth paying special attention to in the design of the 

SoC estimator. Other resistors and capacitors have similar properties. 

Since the model error is hard to determine aforehand, we leave this dif-

ficulty to Hoo filter and estimate F only according to current noise. The 

measured current is w = Jc = / + where I is the clean signal and is the 

current noise. Therefore, Bu = BI Bin = BI + Bw, i.e., T = B. 



CHAPTER 3, ROBUST STATE OF CHARGE ESTl\fATiCh\ 7y 

3.4.3 Performance Comparison 

To demonstrate the performance of Eoo filter, simulation experiments are 

conducted to compare the SoC estimation errors among the model output, 

the results of Kalman filter and the results of Hoo filter. 

As demonstrated above, the adaptive-k nonlinear diffusion filter has the 

ability to remove the current noise and a self-learning strategy can compen-

sate for zero-drift. Therefore, we fix the SNR of current noise to lOdB and 

zero-drift to 0.5A, which simulates the residual noise after the two noise re-

duction steps. The experiments aim to verify the filters' abilities to handle 

the modeling error, thus we apply a fixed model with the parameters set 

to their maximum, average, and minimum values of each cycle, respectively. 

The inaccurate model parameters include the resistances of Rb,Rs,Ro and 

capacitance of Cc- Since Cb is determined by the nominal capacity of the 

battery, rather than identification, no modeling error is added to it. 

Battery model parameters are from the Panasonic Prismatic 6.5Ah bat-

tery. The settings for Kalman filter are experimentally optimized as initial 

states estimation error P — 0.01/, process noise variance matrix Q = 0.001^/, 

and measurement noise variance matrix R ~ 0.01^. The settings for Hoo filter 

are L = [1,1] and 7 = 50. If 7 fails to satisfy the condition equation (3.26), 

it will increase 10 step by step till it meets the requirement. 

Fig. 3.8 shows the SoC estimation results of the Prius, driving on suc-

cessive HWFET, WVUSUB, MANHATTAN, and NEDC cycles. Due to the 

non-zero mean of current noise and model error, the accumulated total errors 

are reflected in the model output, resulting in a non-convergent estimation 

result. After a short time of oscillation, Kalman filter gradually converges to 
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a stable estimation, but with stable errors. Zero-drift and model errors de-

stroy its ability to act as an optimal filter. Hoc leads to a faster convergence 

process than Kalman filter and achieves fewer stable errors. 

Tab. 3.3 summarizes the numerical results. Hoo filter clearly has the 

ability to estimate SoC of the time-variant battery based on a set of fixed 

parameters. It outperforms Kalman filter no matter which values the model 

parameters are fixed to. The robustness of Hoo filter is well demonstrated. 

Prom the results shown in Fig. 3.5 and Fig. 3.8, it is clear that coulomb 

counting estimation is generally good at the beginning of the period due to 

small accumulated errors, while Hoo filter obtains better performance in the 

latter period, when it reaches convergent estimation. Therefore, one natural 

way to make best use of the advantages and avoid the disadvantages is to 

combine the results of the two estimators, weighted by time. 

In the proposed framework, we design a simple data fusion unit to achieve 

the final SoC estimation S ^ { k ) based on a linear combination of 55&i(/c) 

and S^2{k ) . The weights of the two estimators are experimentally deter-

mined by the following equations: 

S^i{k) t < 5 

wi X X &2W 5 < t < 10 (3.34) 

55&2 (A；) t > 10 

where ui = 一0.2艺 + 2，uj2 — 0.2t — 1 and t is the vehicle running time (unit 

min]). 

Since we have demonstrated that coulomb counting with self-learning 
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strategy outperforms conventional method and Hoo filter achieves a more 

robust estimation than Kalman filter in a real vehicle driving environment, 

verification of the availability and efficacy of the overall framework only re-

quires comparison of its performance with the two single estimators. 

The simulation environment is the same as described above. The SNR 

of white current noise is fixed to 5dB and the zero-drift is set to 0.5A for 

the first three cycles and changed to lA for the remainder. To further test 

the robustness of the whole framework, we introduce the model error (Em), 

defined as Em = Pm/Pr^ where Pm is the model parameter, pr is the real 

parameter, p presents the arbitrary parameters of R。, Rs, Rb and C。The 

Em varies from 1.2 in the first cycle to 0.7 in the last cycle. 

The estimation results are shown in Fig.3.9 and Fig.3.10 gives the averages 

of absolute estimation errors and their standard deviations in each cycle. 

In the first cycle of HWFET, the zero-drift in measurement of current, as 

well as the model error, results in a large error in the coulomb counting and 

Hoo filter. The fusion of the two approaches can reduce this error. In the 

following two cycles, the self-learning strategy estimates the zero-drift and 

effectively compensates for the error. Although the other two approaches 

also show good performance, the hybrid approach outperforms them. In the 

fourth cycle, the drift is increased. The errors of Hqq filter and coulomb 

counting are greatest in the first third and latter two-thirds respectively, 

while the hybrid approach has the least error. In the last two cycles, self-

learning estimates the zero-drift again. Consequently, performance of the 

Ah method is improved. Even though the model error is increased, due to it 

robustness the Hoo filter converges to a small error after passing through a 
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short period of large error, so that the combined results still result in good 

performance. 

As a summary, the performance of coulomb counting and Hqo filter are 

dependent on the model error, noise and zero-drift. Although their individual 

performance is slightly better in some regions, the overall performance of the 

hybrid method is superior overall 

3.5 Experiment and Application: Modified 

ESC Model and Extended Kalman Filter 

3.5.1 Modified ESC Model 

In experiments and application, we select and revise the nonlinear battery 

model "enhanced self-correcting model (ESC)" proposed in [57] for two rea-

sons: (1) it is more accurate to model the LiFeP04 battery with a clear 

physical background; (2) to demonstrate the proposed framework in various 

situations. 

The ESC model is expressed as: 

fk+l 

hk+1 = 

SoCk+i 

diag{a) 0 0 

0 F{Ik) 0 

0 0 1 

fk+l 1 0 

hk+1 + 0 1 - F{Ik) 

SoCk+i J l i T s Q 

Ik 

M{SoC, SoC) 

(3.35) 
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Vk = OCV{SoCk) — RIk + hk + Gfk (3.36) 

The model first estimates SoC based on coulombic counting method and 

then establishes the relationship between SoC and simultaneous terminal 

voltage. Since terminal voltage is measurable during the vehicle running 

process, it is applied as the system output to establish the closed-loop esti-

mation. 

The mapping from SoC to terminal voltage consists of four parts: (1) 

OCV, (2) voltage decrease or increase due to the internal resistance during 

charge and discharge, (3) hysteresis, which represents the hysteresis phe-

nomenon, and (4) the current filter, which expresses the dynamic behavior 

of battery. 

In this thesis, we have established the ESC model of the batteries used in 

experiments, with modification to the implementation of the current filter. 

SoC vs. OCV 

The mapping from SoC to OCV Vocvik) = OCV{SoC{k)) is established 

using a curve fitting method based on the real data. As shown in Fig. 3,11, 

we measure the OCV at each concerned SoC point and then apply a nonlinear 

model to fit the curve. 

As suggested in [57], the OCV function is designed as the equation below, 

to enable its derived function to be calculated easily. 

OCV{SoC{k)) = ao - 7 7 - ^ - a2SoC{k)+a3 ln{SoC{k))+a4 ln(l - SoCik)) 
DoC[k) 

(3.37) 



Ohmic drop/rise 

When the battery is operating, discharge or charge current will cause the 

terminal voltage to rise or fall due to its internal resistance R, as expressed 

by RI{k). 

In a strict sense, the internal discharging and charging resistances of the 

2.6 

2.4 

2.2 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

SoC 

Figure 3.11: SoC vs. OCV samples and curve fitting results. 

where a = [3.545,0.00338,0.6605,0.1828, -0.1539], identified by curve fit-

ting. 

It is worth noting that the above equation cannot solve the situations 

SoC = 1 and SoC = 0，therefore we use SoC = 0.01 and SoC - 0.99 to 

present the empty and full states. In the following, we use the same equation 

to model internal resistance and hysteresis. 
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CelM 
Ceil 2 
Ceil 3 
Curve fitting 

0.1 0.2 0.3 
__I I I I I— 

0.5 0.6 0.7 0.8 0.9 
SoC 

Figure 3.12: SoC vs. internal discharging resistances of cells. 

battery are variables that change along with SoC, as shown in Fig. 3.12 and 

Fig. 3.13. Although in [57], internal resistance is modeled as a constant, we 

find it is not accurate enough for our application, where the highest internal 

resistance is more than twice that of the lowest. Thus, we use the same 

equation to fit the curve for internal resistance. 

For discharging resistance, we have 

丑disC^oC⑷）二 ao 
ai 

SoC{k) 
a2SoC{k)+as ln(5'oC(fc)) + a^ ln(l — SoC{k)) 

(3.38) 

where a = [0.5291’ 0.0247，一8.164，-4.341, -0.2616], identified by curve fit-

ting. 
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Figure 3.13: SoC vs. internal charging resistances of cells. 

For charging resistance, we also have 

Rchg{SoC{k)) = do - -a2SoC{k)+a3 ln(5o(7(fc))+04 ln(l - SoC{k)) 

(3.39) 

where a 二 [6.837,0.01123, -1.901, -0.3976, —0.4924], also identified by curve 

fitting. 

Hysteresis 

Ideally, after operation of the battery, terminal voltage will gradually con-

verge to the OCV. However, in practice, the convergence value after a dis-

charge process is always smaller than OCV, while that after a charge is always 

bigger. This phenomenon is called hysteresis. 

To model the hysteresis, the cells are firstly discharged using a C/20 
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0.1 0.2 0.3 0.4 0.5 
SoC 

0.7 0.8 0.9 

Figure 3.14: SoC vs. hysteresis of cells. 

current from full to empty and then charged to full using the same current 

rate, at 25®C. The two discharge and charge curves, indexed by SoC, are 

not coincidental. The voltage difference consists of the ohmic voltage and 

hysteresis. Since the current is very small, the ohmic voltage is only about 

2.8mV. Therefore, the remaining voltage difference is caused by hysteresis. 

Fig. 3.14 shows the half voltage difference caused by the hysteresis effect, 

with RI{k) subtracted. In this work, we use the same equation to fit the 

hysteresis curve . 

M(SoC(k)) = ao- ai 
SoC{k) 

—a2SoC(k) + as ln{SoCik)) + a* ln(l SoC{k)) 

(3.40) 

where a = [14.39, -0.08124,6.033,1.963, -0.2637], identified by curve fitting. 

In application, h{k) = SH{k)M, where sn(k) represents the sign of the 
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current and is expressed as 

SH{k) 

1 I{k) > e 

—1 I{k) < - € 

SH(k - 1) \Iik)\ < e 

(3.41) 

Dynamics of Current 

The above modeling components do not take into consideration the dynamic 

response of the battery. In fact, battery takes some time for its terminal 

voltage to reach a stable value if given a step signal. 

As shown in Fig. 3.15，the above model without the consideration on 

time constant is unable to simulate the dynamics of battery. The original 

method used to simulate the system proposed in ESC applies a state-space 

form Vf{k) = Gf{k) = GAff{k — 1) + GBfI{k — 1), where Af = diag{a) is 

the state-transition matrix, Bf is the arbitrary input matrix, and G is the 

output which make the Gf{k) 一 0, during the constant-current period. 

However, the design of Af, Bf, and hence G is not based on any obvious 

physical meaning. The time constant and gain of the current filter is also not 

explicitly expressed in the matrix parameters. Since the transitional period 

is very similar with a exponential decay function, we propose a new design 

method to realize the modeling of battery dynamics. 

Given a step function u{t)^ the desired response of battery is an exponen-

tial decay y{t) — e—丢，therefore, the transfer function can be implemented 



160 180 

Time (s) 

Figure 3.15: Battery dynamic response to step discharge current and model 

output without dynamic consideration. 

using the Laplace transform： 

(3.42) 
\ } I{s) s + r \ , 

where K is the gain and r is the exponential time constant representing the 

time needed for the initial value to be reduced by a factor of e. 

As shown in Fig. 3.15, K is determined hj K = v\^V2 肌d t is measured 

directly from the duration of time when the initial value VI decays to Vl/e. 

In this thesis, K = 0.287 and r 二 12.55. 

In application, the continuous transfer function is discretized at the sam-

pling period Tg. In this work, discretization is implemented based on a 

triangle approximation. The discrete time form is expressed by: 

二 禁 ： r ^ ^ ( 3 . 4 3 ) 

^ J I{z) dyz + d2 \ ) 
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where Ui = 0.2758, n2 = -0.2758, di = I, d2 = -0.9231 in this work when 

Ts = Is. 

Finally the whole battery model is given by: 

m - 〜而 0 协 - 1) 

SoCik) 0 1 SoCik - 1 ) 

+ ” 而 几 V 而 

0 - 气 

Hk - 1) 

m 

(3.44) 

(3,45) 
V{k) = OCViSoC{k)) — SdUk)R^USoC{k)){I{k) — If{k)) 

- S o h g { k ) R c h g { S o C { k ) ) { I { k ) - If{k)) — sH{k)H{SoC{k)) 

where Sdis = 1, s 咖 = 0 when I{k) ~ If{k) > 0 and Sdis = 0, Schg = 1 when 

I{k) — If{k) < 0. 

3.5.2 Extended Kalman Filter Algorithm 

Unlike the linear RC model used in simulations，the above modified ESC 

model is a nonlinear model which cannot be applied in the linear B.^ fil-

ter mentioned above. Therefore, in experiments and application, we utilize 

extended Kalman filter to implement the closed loop component in our pro-

posed framework. 

Consider a discrete-time nonlinear system with state vector Xk, input 

vector Uk and observation vector yk at the time instance k. The dynamic 
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state space model can be represented in the form: 

Xk+l = f (工k,Uk,VJk) 
(3.46) 

Vk = Vk) 

where /(•) is the state evolution function and g{') is the observation function. 

Wk and Vk stand for process and measurement noise vectors respectively, with 

associated covariance matrices Q = E ^w^w'^^ and R = E To iter-

ate the evolution process, an initial state vector should be estimated ahead, 

denoted by a;�. Then the expectation of initial estimates of states and covari-

ance matrix are given hy x q = E {a:o} and P q = E { ( r c o — — ^o)^}-

For application of EKF, it is also necessary to derive the linearized state 

and observation equations with respect to states and noises near a desired 

reference point {xk̂ Uk̂ Wk̂ Vk)： 

工k+i ~ Uk, Wk) + Ak{xk — h) + P^ki^k — Wk) 
(3.47) 

Vk - Vk) + Ck{xk 一 Xk) + Gk{vk - Vk) 

where 
A — df{x,Uk,Wk) I ^fc 一 ^ k=ffc 

TP, = df{xk,uk,w) I _ 
‘ 加 I 切 = 叫 (3.48) 

— Q^ X=Xk 

ri — I _ 
bfc — Qy …=iifc 

iVk = E {lî fc} and Vk ~ E {ffc} are the expectations of input noise vector and 

measurement noise vector respectively, Xk is the estimate of state vector at 
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time instance k. 

The Kalman filter has two distinct phases: prediction and update. The 

first utilizes the state estimate based on the previous information to produce 

an estimate of states at the current time. In the update phase, measurement 

information at the current time is applied to refine this prediction and obtain 

a revised, and hopefully more accurate result, again for the current time 

instance. 

(1) Predict equations: 

•Pkjk-̂ i = + FkQklf 
(3.49) 

(2) Innovation equation: 

efc = 2/fc - g{xk\k~i,Vk) 

Sk = CkPk\k-iCl + GkRkGl 
(3.50) 

(3) Update equations: 

Kk = Pk\k-lC!k 

=全 fc|fc_i + KkCk 

Pk\k = Pk\k~i — KkCkPk\k-

(3.51) 

where Xk\k-i and Pk\k-~i are the prediction output based on past measure-

ment and corresponding error covariance matrix, ê  and Sk is the innovation 

information obtained from current measurement and corresponding innova-
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tion covariance matrix, Xk\k and Pk\k are the refined estimate results based 

on the Kalman gain Kk derived from innovation information. 

In the modified ESC model, the above procedure is realized by 

� 0 

0 1 

(3.52) 

Ck 

Fk = I 

dVjk) dV{k) 

SoC{k) 9SoC{k) hik) 

(3.53) 

(3.54) 

(3.55) 

3.5.3 Performance Demonstration 

In experiments, the "real" SoC is calculated based on coulombic counting 

according to measurement of the electric loader and charger, with both dis-

charging and charging efficiencies of 1. 

A combined pulse discharge test is conducted based on the electric loader. 

A discharge cycle consists of 2C discharge for 60 seconds and 3C discharge for 

30 seconds. As shown in Fig. 3.16, the initial SoC is intended to be different 

from the real value. In the first round, the current sensor with a measurement 

range from [-200A 200A] actually has a bias of around +2A, causing a gradual 

increase in the estimation error of the coulomb counting method. EKF has 

the ability to follow the real SoC trajectory based on the voltage feedback. 

The average SoC estimation error is 6.235%, while the maximum error, with 

the exception of the errors affected by the initial error, is 11.273%. In the 
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Figure 3.16; Discharge experiment results based on electric loader. 

second round, based on the error of the coulomb counting method, the zero-

drift of current measurement is estimated as 1.908A, without the effect of the 

initial SoC error. By removing the zero-drift, estimation results are greatly 

improved, with an average error of 4.673% and maximum error of 7.632%. 

In the same manner, a charge test is conducted using a combined pulse 

with 2C for 60s and 3C for 30s. As shown in Fig. 3.17’ in the first round we 

also assume the zero-drift is unknown. The average error is 5.863% and the 

maximum is 9.736%. In the second round, the estimated zero-drift is 1.836A, 

average error is 4.352%, and the maxknuin error is 7.018%. 

Since the above results verify that the model based on EKF estimation 

outperforms the coulombic counting method in every process, the data fusion 

unit in the real application is designed to trust the results of EKF, and the 
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Figure 3.17: Charge experiment results based on electric charger. 

estimation results of coulombic counting are only applied to estimate zero-

drift. As shown in Fig. 3.18, the battery pack has been tested in a real 

application. To keep the vehicle speed at 20kiii/h, we initially operate the 

vehicle in pure electric mode, then turn on the engine to provide the driving 

torque and charge the battery. The procedure is then repeated once. 

SoC of each extended cell is measured online, with the known zero-drift 

of 1.875A estimated in the experimental platform. Since the number of ex-

tended cells is too large to show each one, only the estimated results for 

the highest cell, the lowest cell, and the average value are shown. Results 

for the other cells are similar. In real application, the true SoC of each ex-

tended cell is unknown online. Only when the vehicle is stopped and the 

corresponding OCV becomes available, we can get the "real" value of the 
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Figure 3.18: Cell SoC estimation in a hybrid electric vehicle. 

final SoC. The maximum SoC estimation error at the end of the running 

process is 7.635%, the minimum is 3.263%, and the average is 5.893%. The 

estimation results satisfy the requirement of 8% in China's newly published 

development goal [86]. 

3.6 Summery 

oise produced by different sources of interference in the vehicle driving en-

vironment, and zero-drift caused by sensors and measurement circuits, fail 

to satisfy the prerequisites of the typical SoC estimation methods, such as 

coulomb counting and Kalman filter, to realize their theoretically optimal 

performance. Therefore, it is necessary to study the anti-noise and self-

adaption abilities of SoC estimation, and enhance estimation robustness in 

the presence of non-ideal conditions. 
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In this chapter, we propose a framework to implement a robust estimation 

of SoC in the application of EVs. Firstly, the proposed adaptive-/i: nonlinear 

diffusion filter is able to estimate the SNR of the noisy signal and reduce 

noise according to the degree of change. Since it captures the main difference 

between the real signal and measured noise, it outperforms the linear digital 

filter and wavelet based filter. The zero-drift in the measurement of current 

is then estimated using the estimation error of coulomb counting at each 

SoC calibration available moment. This self-learning strategy works simply 

because the accumulated error is mainly attributed to the non-zero mean of 

noise. 

In simulation, Hoo filter is introduced to realize the robust estimation 

using a fixed RC model Although the fixed model cannot fully predict 

the dynamics of a time-variant battery, the inherent robustness of Hoo filter 

successfully handles the model's uncertainty and the estimation gradually 

converges to stable tracking with small errors. In experiment and application, 

we propose the modified ESC model to establish a model of the real applied 

LiFeP04 battery, and then apply EKF to estimate SoC. The availabilities and 

effectiveness of the individual components and overall framework have been 

demonstrated by simulations, experiments, and application. Its performance 

satisfies the national development goal of China. 

• End of chapter. 



State of Charge 

4.1 Introduction 

The existing technologies in battery design and production cannot retain 

the consistency of cell parameters, such as internal resistance, charge and 

discharge efficiencies, speed of aging and degradation, and so forth. The dif-

ferences will result in the imbalance of cells in the same battery package and 

force celis to have different states of charge and terminal voltages. There-

fore, monitoring and control at the battery level are insufficient to manage a 

battery, especially a vehicular battery. 

The most significant problem caused by cell imbalance is the SoC differ-

ence among cells. The battery behavior is a typical cask effect, where the 

cell with the lowest SoC determines the discharge capacity and the highest 

determines the charge capacity. Therefore, to maximize the capacity of the 

108 
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whole battery and avoid overcharge and overdischarge damage, it is necessary 

to keep the SoC differences within a tolerably small range. This function, 

known as battery equalization or cell equalization, has become one of the 

most difficult and important issues in battery management systems (BMS), 

especially for EVs. 

The study of battery equalization mainly focuses on the equalizing circuit 

design and equalizing current control The equalizing circuit design is gen-

erally categorized into discharging equalization, charging equalization, and 

transferring equalization. 

Discharging equalization is a dissipative method which discharges the 

cells with higher SoC via bypass resistors [87]. Although this method is 

easy to implement at a low cost, it reduces the capacity of the battery to 

the lowest level determined by the weakest cell and requires special thermal 

management to handle the heating of the bypass resistors. 

Charging equalization balances cells by feeding them with different amounts 

of charge. One strategy is to charge the whole battery pack, with each cell 

parallel connected with a shunt resistor. A MOSFET series connected with 

each shunt resistor is controlled to tune the shunt current [88]. A simple de-

sign based on this principle directly disconnects the fully-charged cells from 

the battery pack [89]. Another way is to route a boost current to the weaker 

ceils through a selective relay matrix [90,91]. The disadvantage of charging 

equalization is that it only works when used with a charger, thus it cannot 

work in hybrid electric vehicles and during the vehicle running process. 

Transferring equalization is an advanced equalization method that de-

livers the charge from higher SoC cells to lower ones to achieve a balance. 
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This method results in little energy ioss and can work without any external 

components, thus it has attracted a lot of research interest in recent years. 

The charge transfer can be implemented by a capacitor, inductor, and trans-

former. Capacitor or inductor based transfer is usually utilized in cell-to-cell 

equalization. The higher voltage cell firstly discharges the electric energy 

to be stored in the capacitor or inductor, which then releases the stored 

energy to charge the lower voltage cells. The time sequence is controlled 

by MOSFET according to a pulse-width modulation (PWM) signal [92-94]. 

Transformer based equalization is often employed in battery pack or module 

pack cell equalization, in which the selected cells, usually the weakest cells, 

are charged using the energy of the whole battery pack. The transformer 

is applied to convert the high voltage of the battery to the low voltage of 

the cell. The equalizing current is also controlled by a MOSFET according 

to the PWM signal [95,96]. Further details on equalizing circuit design are 

reviewed in [88,89，97:. 

Compared with the intensive designs of equalizing circuits, control of the 

equalizing current has still not been comprehensively studied. The equalizing 

current determines the duration of equalization and is usually designed to 

be large when the difference in terminal voltage between the selected or 

neighbored pair of cells is large, and to be small when the difference is small. 

It also takes into consideration the terminal voltage - the higher it is, the 

smaller the current. Based on these general concepts, a fuzzy control system 

is proposed in [98] to tune the equalizing current in real-time. However, the 

state that causes the difference in terminal voltage, and that should really be 

equalized, is the SoC. Although the open circuit voltage (OCV) can indirectly 
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represent SoC, a small difference in OCV may be caused by a large difference 

in SoC, due to the nonlinear and flat voltage-SoC relationship. Therefore, [99 

has recently proposed an equalization control method directly based on SoC 

estimation; nevertheless, the SoC is only utilized as a threshold to turn the 

equalization process on and off, rather than to tune the equalizing current. 

In this chapter, we apply the well-studied modified bi-directional Cuk-

converter as the equalizing circuit [98,100] and propose an online SoC esti-

mation based fuzzy controller to tune the equalizing current, with the aim of 

accelerating equalization speed, enhancing energy efficiency, and protecting 

cells. In Section 4.2, the equalizing circuit is introduced and formuiized using 

an analytic method. To emphasize the nonlinear property of the OCV-SoC 

relationship, the cell is modeled as a SoC-dependent voltage source with a 

series-connected SoC-dependent internal resistor. Based on online SoC es-

timation, a fuzzy controller is proposed to determine the equalizing current 

in Section 4.3. To demonstrate the availability and efficacy of the proposed 

method, in Section 4.4, simulations and experiments are conducted to eval-

uate overall performance. Conclusions are provided in Section 4.5. 

4.2 Equalizing Circuit and Analysis 

4.2.1 Battery Modeling 

To analyze the dynamics of the equalizing circuit, it is necessary to model the 

cell. One method is to use a capacitor which simulates energy storage and 

a series-connected resistor which simulates internal resistance [98]. This cell 

model leads to a linear relationship between the residual charge and OCV, 



Figure 4.2: Typical internal resistance vs. SoC curve of a Saft 6Ah Li-ion 

cell at provided by Advisor. 
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Figure 4.1: Typical OCV-SoC curve of a Saft 6Ah Li-ion cell at pro-

vided by Advisor. 

as expressed by Q = CV. However, in reality, the SoC-OCV relationship 

is typically a nonlinear curve, especially for Lithium-ion batteries, as shown 

in Fig.4.1. The internal resistance is also a changeable variable, along with 

SoC, as shown in Fig.4.2. Therefore, a capacitor-resistor model is insufficient 

to model the cell dynamics in battery equalization. 
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Considering that in a MOSFET control cycle only a very few charges are 

transferred, the variation in cell voltage will be small enough to be ignored. 

Thus, we model the cell as a voltage source with a series-connected resistor. 

The voltage of the voltage source and the resistance of the resistor are both 

determined by the SoC, according to the cell characteristic curves obtained 

either by testing or from the manufacturing datasheet. 

4.2.2 Equalizing Circuit and Principle 

As shown in Fig.4.3, the framework of battery equalization in this paper 

is based on individual cell equalizers (ICEs), which balance each pair of 

neighboring cells [98]. A battery pack containing n cells requires (n — 1) 

ICEs. 

Since an ICE works on a cell-to-cell level, only Cell 1 and Cell 2 are used 

to facilitate the following illustration and analysis, as shown in Fig.4.4(a). 

The implementation of each ICE has multiple options, as reviewed in Section 

4.1. In this study, we choose the modified bi-directional Cuk-converter, as 

shown in Fig.4.4(b). 

The equalizer has a symmetrical structure; therefore, without loss of gen-

erality, we assume the SoC of Cell 1 is larger than that of Cell 2. The circuit 

is driven by a PWM signal which controls MOSFET Qi to be on or off. 

Denoting Vi and 14 as the voltages of voltage sources, Vî  and V̂ a as the 

voltage of Li and L2, Vc as the voltage of C, the positive direction of ii and 

Z2 as shown in Fig.4.4(c), fs and D as the control frequency and duty cycle 

to Qi, Tq — D/ f s as the timing to time off Qi, and Tg = 1/fs as the period of 

a control cycle, the circuit dynamics in each Qi control period are analyzed 
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Figure 4.3: The framework of individual cell equalization system. 
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as follows: 

In the initial state, there is no current in the whole circuit, ii = 12 = 0, 

and the voltage of the medium capacitor equals to Vc = + T4-

In the period (0, Tq], Qi is on and the equivalent circuit is shown in 

Fig.4.4(c) left. On the Cell 1 side, ii > 0，Cell 1 discharges to Li and Li 

stores the energy. On the Cell 2 side, {2 > 0, the medium C discharges to 

Cell 2 and L2 also stores some of the energy. 

In. the period (To, Ts], Qi is off and the equivalent circuit is shown in 

Fig.4.4(c) right. On the Cell 1 side, since the inductor Li has the ability to 

maintain the direction of ii, the Li will charge C using its stored energy. In 

this period, Cell 1 is still discharging. The D2 limits the direction of zi, thus 

when = 0 the circuit reaches a stable state. In the same manner, on the 

Cell 2 side, L2 also charges continuously Cell 2 until the stored energy is 

totally transferred. When 12 reduces to 0，the circuit reaches a steady state. 

Through careful selection of Iq, L2, C, fs and D, the final states of Li, L2 

and C after a Qi control cycle can be reset to the same as their initial states. 

In this case, the equalization behavior will repeat in the following cycles and 

the charges are transferred from Cell 1 to 2 gradually. The quantitative 

analysis of this circuit will be presented in the following section. 

4.2.3 Quantitative Analysis 

(1) Governing equations of ii： 
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When ii > 0, it is governed by 

Liii(t) + Riii(t)~Vi=0 t€lO,To 
(4.1) 

CLii'Kt) + CRiiiit) + ^(t) = 0 te (To,T, 

once ii < 0, it will limited to 0 by D2. The initial and jumping conditions 

are given by 

z i ( 0 ) - 0 

il(O) = Vi/^i 

i'liTo + 0+) = [Fi — Rih{To) — VciTo)] /L 

(2) Governing equations of 12'-

When 12 > 0, it is governed by 

C L 2 躺 + CR2i'2{t) + i2{t) = 0 t e [0,To] 

L2i 渊—R2i2(t) +1/2 = 0 te (To, Ts 

(4.2) 

(4.3) 

once i2 < 0, it will limited to 0 by D � . The initial and jumping conditions 

given by 

^2(0) = 0 

綱 = V i / L 2 (4.4) 
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(3) Governing equations of Vc： 

V c ( t ) = 

with the initial condition 

— t e [ 0 , T o 
(4.5) 

Vc(0) = Vi + V2 (4.6) 

Considering generally R2 〜10—217, Iq, La 〜10—4丑，and C �10~4厂， 

the solutions of the above governing equations are given as: 

(1) Solution of ii： 

where 

tti 

是—是 e-奇* ^€[0,To 

[bi cos(Ai) + b2 sin(Ai)}力 € (T^，Tn 

0 t e { T n , T , 

.M. 
2Li 

(4.7) 

n _ ^/4CLl-所C2 

ffiii(ro)cos(/3iro)-i;(ro)sm(ffirQ)-haizi(ro)sm(/3iTo) (4.8) 

L /3iii{To) sin(/3iTo)+x^, (Tp) cos(/3iro)-ain(ro) cos(A?o) 
。2 二 bT^O 

Tn = 是 arctan(香) 
62 
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(2) Solution o f � 2 : 

i2{t)= 是 + •鸯 t 

0 

t e [0,To 

e(To,ri2] (4.9) 

where 

0；2 
21/2 

伪 = ^ 
(4.10) 

A = e—§�0 

(3) Necessary conditions: 

The above solutions are subjected to the following necessary conditions. 

When design a controller, D and fs must satisfy them. 

a. To assure Cell 2 is charged in Qi on period: Tq < tt/广2; 

b. To assure Cell 1 is still discharged after To： Tn > To； 

c. To assure Cell 2 is still charged after To： T12 > To； 

d. To assure = 0: T̂  > Tn; 

e. To assure i2(Z) = 0: T, > T^. 

4.2.4 Implementation of an Equalizing Circuit 

To implement an equalizing circuit for the mentioned 6Ah cells, we select 

equalizing parameters Li 二 I/2 二 100/_iiJ，C = 470/iF and D 二 0.45, Al-

though the internal resistances of cells will change along with their SoCs, in 
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this subsection, lOmQ is used as a typical value to facilitate the following 

discussion. 

The control frequency fs is utilized as the control variable of the equal-

ization system. Given fs = 5kHz, the typical current and voltage curves in 

two successive Qi control cycles are shown in Fig.4.5. It is clear that the 

dynamics of the equalization system satisfy the theoretical analysis. One 

remarkable feature of the dynamics is the small difference between ii and 

which causes the current curves not to overlap completely. The difference is 

due to the energy lost on the internal resistors of cells. The charge drawn 

from Cell 1 is always larger than that transferred into Cell 2. Therefore, 

the ratio of i) to ii can be used as an indicator of equalizing efficiency. As 

shown in Fig,4.6, the smaller the control frequency, the larger the equalizing 

current . Hence, the energy loss on internal resistors increases, resulting in 

lower energy efficiency. In practice, capacitors, inductors, and MOSFETs 

also cause energy loss and so energy efficiency is less than that given in the 

simulations. 

4.3 State of Charge based Fuzzy Control 

Based on the equalizing circuit with the parameters given above, the equal-

izing process can be driven by the control frequency to MOSFET. Besides 

the speed of the equalizing process, the performance of an equalizer is also 

evaluated by the equalizing efficiency and the protection of cells. There-

fore, a fixed control frequency is insufficient to achieve a satisfactory overall 

performance. Given the states of cells, how to tune the control frequency, 
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Figure 4.5: The current and voltage curves in two successive MOSFET con-
trol cycles (fs = 5kHz, SoCi = 0 6, S0C2 = 0 5) 

and equally how to tune the equalizing current, becomes the key issue in 

equalizing system design. 

4.3.1 Selection of Inputs 

Generally, the selection of inputs of a controller should reflect the relevant 

factors, based on which the controller can determine an optimal, or at least 

a suitable, value of control variable. The relevant factors affecting equalizing 

performance in this study are equalizing speed, efficiency and cell protection. 

Therefore, three corresponding cell states are utilized as the inputs 

The difference in SoC (A^oC - \SoCh - SoCsl) 

The aim of battery equalization is for all cells to possess the same SoC Cell 

imbalance is essentially the SoC imbalance rather than a voltage imbalance 

A large ASoC indicates a serious situation and requires a comparatively 
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Figure 4.6: The average equalizing currents and equalizing efficiencies of 

various control frequencies (SoCi 二 0.6, S0C2 二 0.5). The energy efficiency 

only consider the energy loss on resistors. 

large equalizing current to accelerate the equalizing speed. A difference in 

SoC larger than 30% is treated as a malfunction and at least one cell has 

to be replaced. In contrast, a small difference represents a slight imbalance 

that does not need to be equalized urgently. In this situation, the equalizing 

process can focus more on equalizing efficiency. In practice, limited by the 

accuracy of SoC estimation, a difference in SoC less than 2% is small enough 

to be recognized as equal In other words, this input mainly determines the 

equalizing speed. 

The average of SoC (S^ = \(SoCi + S0C2)) 

The transferring equalization method is to charge one cell by discharging the 

other one, therefore discharging ability should be taken into consideration. 

An overlarge equalizing current, intended to accelerate the equalizing speed, 

may cause damage to a discharging cell with a low SoC. The average SoC 
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represents the level of residual capacity. Therefore, it is used to indicate 

whether a large equalizing current is allowed. Usually, if the average SoC is 

less than 0.15, cells are in a very low state and a large equalizing current is 

strictly forbidden. Simply speaking, the second input chiefly focuses on the 

protection of cells. 

The total internal resistance (ER 二 + 

As shown in Fig.4.2, the internal resistance varies according to the SoC. 

Meanwhile, as discussed previously, the resistance causes energy loss in the 

equalizing process. Therefore, a simple way of enhancing the equalizing effi-

ciency is to apply a large current when the total internal resistance is small, 

and apply a small current in the opposite situation. Thus, the third input 

focuses on energy efficiency. 

4.3.2 Implementation of Fuzzy Controller 

Based on the inputs proposed above, a controller should map the input vector 

to a control frequency, i.e. establish a function F : fs = F{ASoC^ SoC, ER), 

However, due to the lack of quantitative analysis and modeling of the rela-

tionships among these variables, it is hard to design a controller based on 

traditional methods. In contrast, the inputs can easily be qualitatively clas-

sified into different levels and expressed as linguistic variables, such as large, 

small, and so on. There is, therefore, a strong rationale for applying fuzzy 

control to determine the equalizing current. 

In general, a fuzzy controller consists of the membership functions of 

inputs and outputs, a rule database, and inference methods [101]. The infer-
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Figure 4.7: The membership functions of input and oiiipiit variables in the 

proposed fuzzy controller 

Table 4. ？lilies database in the proposed fuzzy controller. 

f. 
SoC S NS 

f. m. s M B S M B 
VS VB VB VB M B VB 

o s B VB VB S M B 
o 

c q M M B VB VS S M 
<] B S M B VS VS S 

VB VS S M VS VS VS 

ence methods are the same as the default settings in the fuzzy logic toolbox 

given by Matlab. As shown in Fig.4.7, the membership functions of inputs 

and outputs are based on the experiences and basic knowledge of cell equal-

ization, where VS—very small, S=sniaU, M=middle，B=big, VB=very big, 

and NS=not small The rule database is provided in Tab.4.1 and hence the 

typical decision surfaces when SoC = 0.15 and SoC — 0.4 are shown 

Fig.4.8. 
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Figure 4.8: The decision surface in the proposed fuzzy controller. Left: fix 
SoC to absolute S; right: fix SoC to absolute NS. 

4.4 Performance Demonstration 

4.4.1 Simulation Results 

To demonstrate the availability and efficacy of the proposed equalizing sys-

tem, simulations are conducted using the 6Ah battery model with features as 

shown in Fig.4.1 and 4.2. The control period of the fuzzy controller is set to 

one second. During each second, the variation in cell states is small enough 

to be ignored so that only one MOSFET control cycle needs to be calculated, 

based on the given fs, and the following fs — 1 cycles will repeat the same 

dynamics. Thus, the total quantity of electricity transferred in one second 

equals fs times that in any one cycle. Based on the accumulated variations, 

the SoC can be updated every second and cell terminal voltages and internal 

resistances are changed according to their respective characteristic curves, as 

indexed by SoC. In the fuzzy controller, the inputs A/SoC, SoC, and T.R are 

also calculated every second. Consequently, the MOSFET control frequency 

fs will be tuned to realize an adaptive control and reach a satisfactory overall 
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equalizing performance. The simulation temperature is fixed to 25°C. Con-

sidering the accuracy of SoC estimation in practice, the equalizing process 

will terminate when the SoC difference is smaller than 2%. 

Four typical equalizing processes are illustrated in Fig.4.9. 

The first two rows show the results under the initial conditions of SoCi — 

0.2, S0C2 = 0.1 and of SoCi = 0.9, S0C2 = 0.8. Both of them are initialized 

with a comparatively small SoC difference. Although the ASoC is the same 

in the beginning, the large total resistance and the limited discharging abil-

ity of low SoC cells restrict the equalizing current smaller than that in the 

situation of high SoC level. Therefore, the equalizing period in the low SoC 

situation is longer, but with the benefit of high energy efficiency. 

The last two rows increase the SoG differences to 30% and test whether 

the proposed controller is able to quickly alleviate the large imbalance, which, 

without proper equalization, risks damaging the cells by overcharging or 

overdischarging. Prom the curves, it is clear that the equalizer initially applies 

a large equalizing current (around 0.4C for the high SoC situation, 0.3C 

for the low SoC situation) to balance cells as quickly as possible. At this 

stage, energy efficiency is not a consideration because it is less of a priority 

than the safety and performance of the cells. Along with the reduction in 

SoC difference, the current gradually becomes smaller to emphasize energy 

efficiency. Therefore, the later phases are similar to the equalizing process 

shown in the first two rows. 

Although only four situations are shown in this paper, we actually con-

ducted a large number of simulations to test the performance of the proposed 

equalizer. The four situations illustrate the extreme results, while tests under 
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Figure 4.9: The simulation results under various initial conditions. Each row 

shows curves of SoC, equalizing current and energy efficiency under the same 

initial conditions. 

average conditions obtained moderate results. The self-adaptive ability and 

multiple considerations of equalizing speed, efficiency, and cell protection are 

well verified by the finding that any imbalance less than a 30% SoC difference 

can be equalized in less than one hour, and the average energy efficiencies 

are almost all above 0.95. The worst result among our tests was 0.9493. 

4.4.2 Experiment Results 

In experiments, we also applied the equalization method to equalize two 

capacity-extended cells. The SoC of each cell is estimated using the method 
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Figure 4.10: Equalizing cycles when control frequency oi MOSFET is 5k 

proposed in Chapter 3. Charging and discharging resistances are also mod-

eled in Chapter 3. 

Fig. 4.10 and Fig. 4.11 show the equalizing cycles when the control fre-

quencies of MOSFET are 5k and 20k respectively, obtained by oscillograph. 

Compared with the theoretical situation, the equaling current and equaliz-

ing efficiency are both smaller. Fig. 4.12 illustrates the average equalizing 

currents and equalizing efficiencies of various control frequencies in the ex-

periments. 

In the experiments, we applied three extended cells to test the perfor-

mance under different initial conditions. Fig. 4.13 and Fig. 4.14 show the 

equalizing processes of high and low initial SoC conditions respectively. The 

SoC curve is estimated by the method proposed in Chapter 3. Limited by 

the accuracy of SoC estimation in the experiment, we stop the equalization 

process when the largest SoC difference is below 5 % . It is clear that, because 
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Figure 4.13: Equalization process in experiment with high SoC initial condi-
tion (SoC=0.95,0.75,0.85). 

the total internal resistance in the low SoC condition is greater than that in 

the high SoC condition, and the discharge ability of the cell with a low SoC 

is worse than that of a high SoC cell, the equalizing current is smaller in the 

low SoC situation so as to generate less heat and protect cells. 

The more significant performance is shown in Fig. 4.15，which illustrates 

the equalizing process in middle SoC condition. Since LiFeP04 has a very 

flat SoC vs. OCV relationship, the large 20% SoC imbalance only causes 

around 20mV difference in voltage. Along with the equalizing process, the 

voltage difference gradually becomes smaller than the error of the voltage 

measurement, which is around 8mV in the experiment. Such a small voltage 

difference cannot be handled by the existing voltage-based fuzzy controllers. 

Our method applies the SoC rather than the voltage as the input to the fuzzy 

controller and successfully solves the equalization problem for the LiFeP04 
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Figure 4.14: Equalization process in experiment with high SoC initial condi-
tion (SoC=0.25,0.05.0 15) 

battery. 

4.5 Summery 

Based on the analysis of the equalizing circuit implemented by the Cuk con-

verter, we have established a fuzzy controller to adaptively tune the MOS-

FET control frequency and to tune the equalizing current. The overall per-

formance of the proposed equalizer is evaluated by its equalizing speed, ef-

ficiency, and cell protection, indicated by the three controller inputs - SoC 

difference, total internal resistance, and average SoC, respectively. The mem-

bership functions and rules database are established based on experience and 

the knowledge of experts, as well as the characteristics and abilities of cells. 

Simulations under various initial conditions are conducted to demonstrate 

5000 
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Figure 4.15: Equalization process in experiment with middle SoC initial 
condition (SoC-0 55,0.35,0 45) 

the availability and efficacy of the proposed equalizer. The results verify 

that it can self-adaptively achieve satisfactory overall performance, within 

a limited equalizing period and with high energy efficiency. Experimental 

results also demonstrate that the proposed method is able to equalize the 

LiFeP04 battery, which has a very flat SoC vs. OCV relationship 

• End of chapter. 



Predictive Control based 

Charge 

5.1 Introduction 

It is necessary to refuel vehicles after a period of travel. For conventional fuel-

driven vehicles, the fuel can be replenished fast and safely at filling stations, 

with an ignorable out-of-service time and without energy loss. However, the 

replenishment of energy in electric vehicles requires to charge the battery-

pack. In general applications, such as MPS players, shavers, cell phones, the 

charging process lasts for several hours, leading to a long out-of-service time. 

The charging method is also crucial; an unsuitable method leads to high 

temperature increase in battery and even runs the risks of fire and explosion. 

Therefore, charging control is another significant issue in battery man-

agement systems, with the aim of feeding external energy into batteries in 

a fast, safe, and efficient way. Fast charging helps to reduce out-of-service 

132 
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time and promote the commercialization of EVs. Safe charging not only as-

sures the safety of users by preventing battery burning and explosion during 

the charging process, but also prolongs the battery life by preventing over-

charging and overheating damage. Efficient charging can convert as much 

electrical energy as possible from a charger to electrochemical energy stored 

in a battery to enhance energy efficiency. 

5.1.1 Literature Review 

Charging methods have been studied since the invention of rechargeable bat-

teries. The earliest and simplest method is to charge using a constant trickle 

current (CTC) [102]. This method has a simple circuit structure and very 

low cost and so has been adopted in most electronic products for many years. 

However, due to the very small current, charging time is extremely long so it 

usually works overnight. An easy way to reduce the charging time is to in-

crease the constant current (CC). Charging with IC current can fill an empty 

battery in one hour. However, this method requires a very precise state of 

charge (SoC) estimator to determine when the battery is fully charged and 

stop the charging process. Another disadvantage is that CC charging cannot 

avoid overvoltage to the battery, A battery can be simply modeled with 

an open circuit voltage (OCV) source and a series-connected resistor. The 

voltage on the resistor during CC charging will cause the terminal voltage 

to be always higher than the OCV, finally leading to overvoltage when the 

OCV approaches its full value. Taking a Li-ion battery as an example, the 

overvoltage during charging will degrade the crystallographic structure of the 

cathode and cause oxidative decomposition of the electrolytic solvents [103]. 
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To overcome the disadvantages of CC charging, the constant current con-

stant voltage (CCCV) method has been proposed. In the following CV pe-

riod, after the charging voltage reaches a predetermined value in the CC pe-

riod, the charging voltage is fixed to a cutoff value and the charging current 

will be automatically reduced along with an increase in the SoC. However, 

the CV period usually requires a long charging period [104]. Various combi-

nations of CC and CV periods have also been proposed to improve charging 

performance, such as CCCVCV [105], (CCCV” [106], and so forth. 

In recent years, microprocessor control units (MCUs) have been applied 

in battery management systems, allowing the monitoring and estimation of 

battery states, based on which intelligent methods can be implemented to 

control the charging process. The first kind of intelligent charger controls the 

charging process based on the detection of tuning points. The tuning points 

are selected as the threshold points, stationary points, and inflection points of 

battery voltage, temperature, and lapsed time [107-109]. These methods only 

change the charging behavior at tuning points and the periods between tun-

ing points are still in open-loop control Fuzzy control has been also utilized 

to solve the charging control problem. In [104], the fuzzy controller replaces 

the usual CV mode in the CCCV charging method. Neural networks and 

genetic algorithms are also introduced to design the membership functions 

and inference rules of the fuzzy controller [110-112]. Optimization methods, 

including an ant colony algorithm and evolutionary algorithm, have also been 

introduced to optimize a best multi-stage CC charging profile [113,114]. The 

optimization aims to find a best charging profile covering the whole charg-

ing process and does not regulate the realtime charging current according to 
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instant system measurements. Therefore, its performance is seriously depen-

dent on the accuracy of the model used in optimization and its robustness 

is weak, suffering from system noise and the time-variant properties of the 

battery. A grey-predicted control system is employed to increase the charg-

ing speed without taking temperature increases into consideration [115]. In 

addition, only a one-step prediction is utilized in that study. The smallest 

predictive horizon weakens the prediction of future system behavior. 

5.1.2 Overview of Proposed Charging Controller 

In recent years, much effort has been devoted to establishing battery models, 

some of which are demonstrated to be accurate and efficient at modeling the 

behavior of batteries [54-58]. These models make it possible to apply model 

predictive control (MFC) to management of the battery charging process. 

MPC is a typical advanced control method and is widely utilized in many 

fields [116,117]. It is based on the principle of using a system model to predict 

system responses to possible future control inputs, and find the best future 

control sequence to optimize the user-defined objective function. Only the 

first step of the control sequence is applied at each time. The system states 

are then sampled again and the calculations are repeated at the next control 

time. The prediction horizon is constantly shifted forward. Since the reced-

ing horizon strategy updates predictions based on the instant measurement 

of system inputs and outputs at each control time, its robustness has been 

demonstrated to be strong [118]. Depending on the linearity of the system 

models and constraints, MPC may be categorized as either linear MPC or 

nonlinear MPC. For linear MPC, the best control sequence can be analyt-
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ically obtained by solving Diophantine equations. However, for nonlinear 

MFC, the best control sequence can generally be numerically calculated only 

under an optimization framework [119 . 

As shown in Fig.5.1’ the fast charging control framework proposed in this 

work consists of the following components: 

1. a SoC predictor, predicting the SoC of battery when feeded by a se-

quence of future charging current; 

2. a temperature predictor, predicting the future battery temperature un-

der the sequence of charging current; 

3. a fitness evaluator, evaluating the performance of the sequence of charg-

ing current; 

4. an optimizer, finding the best sequence of charging current using genetic 

algorithm (GA). 

5.2 Predictive Models 

To utilize predictive control, battery models are needed to predict future 

states exerted by a sequence of future charging current. The relevant battery 

states in this study are SoC and temperature. The former indicates the 

charging speed and whether overcharge damage is possible, while the latter 

represents the safety of the charging process and the amount of lost energy 

converted to heat. Charging control is necessary to, (1) maximize charging 

speed, (2) minimize temperature increases, and (3) restrict temperature to a 

safe range. 
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The RC model and modified ESC model both have the ability to predict 

the battery's SoC based on a given future current. Therefore, we directly 

apply them in our simulation and experiment, respectively. 

5.2.1 Thermal Model in Simulation 

A simple, single-node lumped-parameter thermal model has been established 

in [120]. It models the thermal process in three stages. In the first stage, the 

Joule effect generates heat in the battery. In the second, the battery's heat 

is conducted and convected to the surrounding air. Finally, the surrounding 

air exchanges heat with the ambient. 

In the RC model, the heat generation is expressed by: 

Q“k) = z \l^ik}Ra(k) + l!{k)Rs(k) + lUk)Rb(k) \
—
/
 

1
 

/

\
 

where 

Io(k} = I(k) 

/ = Vb(k)-Vs(k)+R,(k)I(k) (5.2) 

Is{k) = It{k)-I{k) 

Meanwhile, the heat passing from the battery to the surrounding air is 

expressed by: 

— 1 ) 严 — 1 ) (5.3) 

where the Tair is the effective temperature of surrounding air and R^f / is the 

effective thermal resistance. 

Based on the assumption that that 50% of the heat from the battery is 
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spent to warm the air, Tair is expressed by 

稀-1)= - 0.5 X Q,{k — 1) (5.4) 
讯 air U air 

where Tamb is the ambient temperature, Qp{k — 1) is the passing heat in 

previous step, Tfhdij* IS the airflow rate, and Cair is its heat capacity. 

Strictly speaking, Reff will vary depending on the thermal control method; 

for example, it will become smaller if the cooling fans are open. However, in 

this study, we assume the charging process is conducted in an environment 

with only natural convection and no thermal control device. In this case, 

Reff is fixed as a constant with the value calculated by: 

where h is the heat transfer coefficient in the natural environment, A is the 

total module surface area exposed to the air, t is the thickness of the module 

case, and k is the thermal conductivity of the module case material. 

Qg{k) indicates the heat generation which heats the battery, while Qp{k) 

represents the heat loss which cools the battery by heating the surrounding 

air. Therefore, the battery temperature T{k) can be calculated by: 

T(k) = T{k - 1) + _ 一 p Q p (句 (5.6) 
饥 bat。bat 

where iribat is the battery mass and Cbat is its heat capacity. 



CHAPTER 5. MODEL PREDICTIVE CONTROL BASED FAST CHARGEUO 

5.2.2 Thermal Model in Experiment 

The simulation model requires many physical parameters for the battery and 

working environment. However, in practice, these parameters cannot usually 

be obtained accurately. Meanwhile, the theoretical model only considers the 

ideal situation, which may not be suitable for the complex and nonlinear 

electrochemical process inside the battery. Furthermore, heat generation is 

only caused by heating of the resistors, which does not fully represent the 

actual situation. In reality, heat generation during charge is also affected by 

the charging acceptance rate. [106] pointed out that “close-to-fully discharged 

batteries can be recharged with very high currents for a short period of time." 

and [121] concluded that for A123, a kind of LiFeP04, "at a low state of 

charge, nearly all the charging current is absorbed by the chemical reaction. 

Above 80% of SOC, more and more energy goes into heat". 

Fig. 5.2 shows the temperature curves of our experimental cell during 

charge processes with different charging rates. The increasing temperature 

trend agrees with the two results reported in the literature above. Another 

two extended cells are also tested, resulting in similar curves. 

Besides the SoC, increasing temperature obviously has a close relationship 

with the charging rate. High charging rates will cause high temperature 

rises. Therefore, in practice, we select the SoC, charging rate, and current 

temperature to predict the future temperature, based on a neural network 

(NN) trained by the data from three extended cells. 

Fig. 5.3 shows the structure of the NN implemented to predict tempera-

ture. The training method is back propagation (BP) learning. When the time 

step is set to 30s, the average prediction error is 3.36% and the maximum is 
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Figure 5.2: Temperature rising during various charging rates. 

5.43%. 

5.2.3 Model based Prediction 

In addition to the models above, to predict battery states under a given 

sequence of future charging current, two problems still need to be solved: 

(1) how to initialize the prediction at time k, and (2) how to realize the 

multi-step prediction using a one-step predictive model. 

To initialize the prediction at time k � t h e RC model requires the last 

system state x{k — 1), last input u{k — 1), and the model parameters at 

time k. Since u{k — 1) and y{k — 1) are both available from the current 

sensor and voltage measurement respectively, x{k — 1) can be estimated by 

closed-loop estimators such as the extended Kalman filter [59], sigraa-point 

Kalman filter [63,64], Hqo filter [122], and the robust SoC estimation frame-

work proposed in Chapter 3. The closed-loop filters axe able to eliminate 
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Figure 5.3: Neural network for predicting battery temperature. 

accumulated errors and the estimation result will gradually converge to the 

real value, or to a limited error range. The model parameters are stored in 

a look-up table indexed by SoC and temperature. The slow change in both 

SoC and temperature is the reason for updating the model parameters at 

time k according to SoC{k — 1) and battery temperature T{k — 1), especially 

when the T̂  is comparatively small SoC{k — 1) is estimated by the method 

proposed in Chapter 3 and T{k — 1) is measured directly from a temperature 

sensor fixed on the surface of the battery. 

The above preparation allows a one-step prediction of SoC{k) and T(k), 

given the value of I{k). However, a single-step prediction is usually insuffi-

cient to predict system behavior over a long process. Generally, the prediction 

horizon in MPC is more than one step. Therefore, a multi-step predictor is 

necessary to predict system states exerted by a sequence of future charging 

current. A simple way to realize the multi-step predictor is an iterative pre-

diction, using the predictive future system states at time k + j as the initial 

state for the next time A; + j + 1. 
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In summary, at control time k, the SoC model and temperature model can 

iteratively map a sequence of future charging current [I{k), I{k-\-l),.. •, J(/c+ 

P — 1)] to future battery states [SoC{k), SoC{k + !),•••, SoC{k + 尸—1): 

and [T(/c), T{k + 1), * • •, T{k + P — 1)]. The multi-step prediction uses an 

open-loop method in which each step suffers from the prediction error of 

the previous step and finally reverts to the errors in the initial values at 

time k ~ 1. Fortunately, these initial values are estimated in a closed-loop 

manner so that initial errors are limited to be small. In reality, any battery 

management system requires such an estimator to obtain the realtime SoC 

and measure the battery temperature. The results can be used as the initial 

values. 

5.3 Formulation under MFC Framework 

Given a series of control inputs, the length of which is denoted as the pre-

diction horizon P, the future system states can be predicted based on a 

dynamic system model. The future system behavior under the sequence of 

inputs can then be evaluated based on a performance index. At each control 

time k, the basic idea of MPC is to find an optimal sequence of control inputs 

u{k)yu{k + 1), •.. ,u{k + P — 1)], which optimizes the performance index, 

and apply the first element of the input sequence u{k) to the system as the 

current control variable. 

In the charging control problem, MPC optimizes a sequence of future 

charging current [/(/c), I{k + 1), • • •, i { k 4- P — 1)]，which has the best per-

formance index based on the predicted battery states 
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1)，…’ S^cik + P - 1)] and lf{k),f{k + 1),...，TO + P — 1)]. 

5.3.1 Performance Indexes 

The performance index reflects the control objectives. The first objective 

is to maximize charging speed. However, since it is impossible to directly 

predict the total charging duration in a limited prediction horizon, we turn 

to the tracking of a user-defined SoC trajectory instead. A fast-rising SoC 

trajectory requires a fast charging speed while a flat one requires a slow 

speed. 

The expected SoC trajectory can directly copy from any real charging 

trajectory controlled by any charging scheme. In addition, the expected 

trajectory can be set as a real trajectory with revisions based on certain 

special considerations. For example, for a CCCV trajectory, we may increase 

the charging speed when the SoC is in the middle and internal resistance is 

small. In addition, the expected trajectory can be designed entirely on the 

demands of the charging system. 

To track the expected trajectory, a part of the performance index Ji is 

expressed by 

Ji - + P - 1 ) - SoC^k + 尸一 1)1 (5.7) 

where SoC* is the expected SoC trajectory. Evaluation of the SOC tracking 

performance is only based on the final prediction state because the SoC only 

needs to achieve the expected point in the final step. How this is achieved is 

not very important from the point of view of the charging process. 
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The second objective of charging control is to minimize the increase in 

temperature, which partially reflects energy efficiency and system safety. As-

suming that the expected trajectory is copied from a CCCV charging process, 

without consideration of temperature，the best charging current sequence is 

the same sequence applied in the CCCV process. However, if we include eval-

uation of performance based on temperature, as expressed in J2, the MPC 

will try to achieve the expected SoC point in the final step, by the process 

in which temperature rising is minimized. 

J2 = max{f(A; + j) - T{k 一 1)| j = 0，1,.••，尸-1} (5.8) 

5.3.2 Constraints 

Constraints in the charging process are designed to prevent a charging se-

quence that may cause damage to the battery or lead to dangerous events. 

The first constraint is that the SoC must not exceed 100%, to avoid over-

charge damage. In practice, to reserve some tolerance, 98% SoC is treated 

as the full charging state. The second constraint is that temperature must 

be kept in a user-defined range to avoid overheating caused by overcharge or 

by a large charging current which exceeds the instant charging acceptance 

level. The two constraints are expressed by: 

Ci : ^ ( f c + j ) < 9 8 % (5.9) 

and 

C2： f{k + j)<f{k-\-j) (5.10) 



CHAPTER 5. MODEL PREDICTIVE CONTROL BASED FAST CIiARGE157 

where j = 0,1, • • •, P — 1 and f is the user defined safe range, which is de-

signed either as a constant, indicating the highest temperature during the 

whole charging process, or as a time indexed function specifying the temper-

ature limitation along with charging duration. 

5.4 Optimization Using Genetic Algorithm 

The MPC charging control problem is formulized to minimize the perfor-

mance indexes Ji and J2, subject to the constraints Ci and C2, Essentially, 

the control problem is transformed into a constrained multi-objective opti-

mization problem. 

Generally, a multi-objective optimization problem can either be solved by 

multi-objective optimizers directly, or by first transforming it into a single-

objective problem that is then solved by single-objective optimizers [123]. 

In this work, we apply the latter method because SoC tracking is more im-

portant than temperature management in the charging process, so the two 

objectives can be merged into one index by summing with different weights. 

To solve the optimization problem, a genetic algorithm (GA) is applied due 

to its strong global searching ability, without the requirement for derivative 

information of objective function. Since the two constraints should be strictly 

satisfied in the charging process to assure the safety and health of the bat-

tery, solutions that fail to satisfy any one of the constraints will be assigned 

the worst fitness. 

Based on the above discussion, the fitness function to be minimized in 
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Initialization Coding 

Fitness 

K valuation 
Sclcction 

Fitness 

K valuation 
Sclcction 

Figure 5.4: Scheme of the standard GA. 

GA is expressed by 

F 
uJiJi + LO2J2 (Ci and C2 are held) 

+00 {otherwise) 
(5.11) 

where Ui and 0̂ 2 are the weights of Ji and J2 

The minimization problem is solved by a standard GA. the scheme of 

which is illustrated in Fig. 5.4 and briefly described in the following steps. 

Coding. The standard GA generally codes a candidate solution as a string 

of characters which are usually binary digits, referred to as a chromosome. 

The candidate solution is termed an individual Accordingly, the set made 

up of a number of individuals is termed a population. In this chapter, we 

apply a real-value coding method, which codes a candidate solution as a set of 

floating decision variables. The real-value coding method is proven to have 

superior performance to the binary-coded method in control optimization 

problems [124]. 
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Time k: 

Best Sequence 

TimeA-+/； 

Initial Individual 

m 彻+1) 彻-1〕 

/(jfc+i) 

Figure 5.5: Initialization of one special individual by introducing the best 
control sequence optimized in last step into the present step. 

Initialization, The standard GA starts with the generation of an initial 

population. Usually, individuals in the initial population are produced ran-

domly. In MPC, the initialization process is executed at each control point 

to start the GA. Since the best control sequence optimized at time k contains 

good candidates from /c + l t o / c + P — 1, as shown in Fig. 5.5, one initial 

individual is specially designed by shifting it one time step and filling the 

last charging current with the same value as i{k + _P — 1). This individual 

introduces historical best charging sequence into the current optimization 

process, thus it is helpful to improve optimization performance to be at least 

very similar with the previous prediction. 

Fitness evaluation. We can evaluate the fitness of each individual in each 

generation according to the equation (5.11). The smaller the fitness, the 

better the individual. However, to facilitate the following selection steps, 

the raw fitness is usually scaled to assign suitable selection pressure to each 

individual. In this work, the scale function is expressed as: 

Fscale (5.12) 

where r is power of raw fitness. A large r will quickly increase the selection 
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pressure to a worse individual, accelerate the convergence speed, and increase 

the risk of premature especially for multi-peak landscape, and vice versa. 

Selection, Individuals are selected from the last generation to the next 

generation based on the scaled fitness Fscaie following the survival of the fittest 

rule. Many selection methods have been developed to avoid genetic drift and 

premature phenomena. In this work, the roulette wheel selection method is 

adopted [125]. The elitism strategy is also applied in selection to assure that 

the best solution will never be lost. 

Crossover. In the crossover step, the standard GA exchanges information 

between two parent individuals and produces two child individuals. In this 

work, the arithmetical crossover method is used. Given two parents Xi and 

the children yi and y2 are produced by linear combinations of parents 

with a random coefficient A € Rx'-

yi = Aa：! + (1 "入 
(5.13) 

2/2 = + (1 — A)a;i. 

Mutation. After the crossover step, a subset of individuals is selected with 

a mutation probability of j P 饥 . T o explore the search space, we use Gaussian 

mutation, which adds a random value from a Gaussian distribution with 

variance a to each item of the selected individual. 

Termination. Many terminating conditions have been proposed to stop 

the iteration process, For example, when the distances among individuals 

are smaller than a predetermined value, an individual satisfies a minimum 

criterion, or the maximum number of generations is reached. The last method 
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Figure 5.6: Battery time-variant properties. Taking OCV and R � a s exaan-

ples. Data source: Advisor. 

is applied here. 

5.5 Performance Demonstration 

5.5.1 Settings 

To evaluate the proposed MPC based charging control strategy, simulation 

experiments are conducted based on a well established "7 Ah Soft Lithium 

Ion battery" provided in Advisor. RC model parameters and OCV all are 

time-variant variables depending on SoC and temperature. The curves of 

OCV and R � a r e shown in Fig. 5.6 as examples. Interpolating method is 

applied to create the continuous values space. The constant parameters in 

this simulation environment are given in Tab. 5.1. 

In this work, we select the control period Ts to be 30 seconds using trial 

and error method according to experimental results. The shorter period 

CHAPTER 5. MODEL PREDICTIVE CONTROL BASED FAST CIiARGE157 

y 
^ 

/ 

f / H B- 1 < 
>e 25' 

45, i 
B- 1 < 
>e 25' 

45, � c 

《
9
0
 o
比
 

6
.
 

4
.
 

3
 
3
 

S
A
O
O
 



CHAPTER 5. MODEL PREDICTIVE CONTROL BASED FAST CIiARGE157 

Table 5.1: Simulation and experiment parameters setting. 
Symbol Description Value Unit 

• rH 

C Battery nominal capacity 7 Ah 
• rH 

饥bat Battery mass 0.37824 kg 

1 * I—1 

CO 

Chat Battery heat capacity 795 J/kgK 
1 * I—1 

CO RefJ Effective thermal resistance 7.8146 K/W 

b 

'U 

Tamb Ambient temperature 20 � C b 

'U Tn.air Airflow rate 5.8333 g/s 
PQ 

Cair Air heat capacity 1009 J/kgK 

Ts Control period 30 s 

0 
Pt P Prediction horizon 5 

乏 Weight of SoC tracking Ji 100 

0；2 Weight of tempera,ture rising J2 1 

MaxGen Maximum generation number 30 

PopSize Population size 50 一 
c 
0 

r Power of raw fitness in scaling 2 c 
0 

Rx The range of crossover coefficient [0,1,0,9] 
Pm Mutation probability 0.2 -

a Variance of Gaussian mutation 1 -

Remark: The typical value of Ji is around 0.08 while that of Jg is around 2. 
Therefore, the real weight ratio of Ji to J2 is around 4:1. 

requires the charger to change the charging current more frequently. It will 

increase working load to the charger and lead to more energy loss caused 

by switch circuits. The longer period will decrease the frequency to tune 

charging current in the charging process so that the performance of MPC will 

be limited. In addition, the long control period implies that the prediction 

based on the model is over a long time which essentially requires a more 

accurate battery model. Finally, the 30 seconds control period is long enough 

to allow GA to finish the optimization process. 
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5.5.2 Evaluation Method 

Fast charging speed and low heat generation are both objectives in charging 

control. However, the two goals conflict with each other. Fast charging 

essentially requires large current and hence leads to high heat generation, 

and vice versa. Prom the viewpoint of multi-objective optimization, the 

conflicting objectives are usually evaluated by Pareto curve. For charging 

control, the x-axis is set as the charging duration and the y-axis as the final 

temperature increase T(end) —T(0). As shown in Fig. 5.7, the curve with the 

circle marks represents the Pareto front of the CCCV family, where the CC 

period applies 1.5C to 6C current for fast charging. The CCCV Pareto front 

splits the objective space into two sections. Any charging result located in the 

upper right section is worse than the CCCV family for both objectives, while 

any result in the bottom left section is better than CCCV for both objectives. 

Therefore, we evaluate the performance of the charging controller according 

to the location of results. 

5.5.3 Simulation Results 

To facilitate comparison with the conventional CCCV family, we set the ex-

pected SoC trajectory by multiplying by 1.05. The new trajectory is intended 

to accelerate the charging speed. Since the working temperature of Li-ion 

batteries, especially for vehicular batteries, is from 20°C to 40°C, the ambi-

ent temperature is set as 2CFC and the safe range of temperature is set below 

40°C. The search space of the charging current is fixed from OC to 6C. 

The MPC is applied to track the modified SoC trajectories from 1.5C 
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to 4.5C. A faster charging speed cannot keep the rising temperature in the 

safe range. The Pareto front of the MPC is illustrated in Fig. 5.7 by the 

curve marked with stars. The results for the MPC clearly dominate those 

of the CCCV family. Only the result of the trajectory revised from 1.5C 

has a similar performance to CCCV. The reason is that a 1.5C current is 

comparatively so small that it limits the applicable current sequence to a 

small range. If the fixed search range can be accordingly reduced, e.g. from 

OC to 3C, the result will be improved. 

As an example, the charging processes of CCCV and MPC are compared 

in the case of 3C, shown in Fig. 5,8. At the beginning of charge, the internal 

resistance is large when the SoC is very low. In this process, the rising 

temperature dominates the fitness function. The optimized charging profile 

applies a smaller current than CCCV. However, the increase in the SoC 

tracking error gradually requires a higher current to speed up. Meanwhile, 

internal resistance is reduced significantly along with the increase in SoC. 

Therefore, in the middle period, the charging current for MPC is larger than 

for CCCV. In the final stage, the current in the CV period is decreased to 

prevent overvoltage of the terminal voltage. Since the trajectory of the MPC 

is modified from the CCCV, the same trend is retained in MPC, keeping the 

terminal voltage under 4V. 

5.5.4 Experiment Results 

Since the maximum charging current of the programmable electric charger is 

9A, in the experiment we use a single cell with 2.3Ah to demonstrate the fast 

charge performance of MPC. Correspondingly, the charge resistance model 
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Figure 5.7: Pareto fronts of CCCV and MPC charging methods in simulation. 
The expected trajectories of MPC are modified from CCCV by multiplying 
1.05. 
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of a 6.9Ah cell is multiplied by three. To protect the cells, we limit the 

charging current to below 3C, i.e. 6.9A. The ambient temperature is 25°C. 

The expected SoC trajectories of MPC are 1.10 times those of the CCCV 

results. 

Fig. 5.9 shows the Pareto-fronts of the CCCV and MPC charging results 

in experiments. All the results for MPC are superior to those for CCCV. 

Fig, 5.10 illustrates the details of the 2C charging processes. Unlike the 

simulation model, where the temperature is high in the lower SoC range of the 

specified battery type, the real LiFeP04 cell has good charging acceptance 

at low SoC. Therefore, a high charging current is utilized to increase the 

charging speed. Before reaching around 80% SoC, another high charging 

period occurs. This is because MPC predicts the high temperature increase 

beyond 80%, so it applies a high charging current at this stage and switches 

to a low charging current when SoC is close to 1. 

5.6 Summery 

To accelerate charging speed and reduce the temperature increase, we in-

troduce the MPC framework to the charging control process. Given a fu-

ture charging sequence, the RC model and proposed modified ESC model 

in Chapter 3 are applied to predict the SoC in simulation and experiment, 

respectively. Meanwhile, besides the single-node lumped-parameter thermal 

model used in simulation, we also establish a neural network to model the 

thermal behavior of the applied battery in the experiment. A standard ge-

netic algorithm is applied to optimize the charging current under the multi-
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objectives and constraints. The simulation and experimental results strongly 

demonstrate the availability and efficacy of MPC, with the conclusion that 

the Pareto front of the MPC dominates that of CCCV. 

• End of chapter. 



6.1 Contributions 

® Developed a practicable BMS with the following features: (1) a self-

power design to increase module independence and allow off-line self-

testing and self-diagnosis; (2) selection of newly developed automobile 

sensors and ICs to increase the accuracy of signal measurement; (3) 

redistribution of tasks in module control and central control to allow 

the SoC estimation of each cell for Li-ion battery. The BMS has been 

applied and demonstrated in a series HEV and has worked steadily 

for several months already, successfully implementing all the designed 

functions and protections. 

® Proposed and implemented an anti-noise SoC estimation framework to 

increase the availability in a real vehicle environment. This involved: 

(1) an adaptive-nonlinear diffusion filter to denoise the measurement 

of current; (2) a self-learning mechanism to remove zero-drift online in 

158 
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the measurement of current; (3) a modified ESC model to model the 

FeLiP04 cells in experiment and application. Simulation, experiment 

and application results all demonstrate that the proposed estimation 

framework can handle the interferences in a real vehicle running envi-

ronment and achieve more accurate and robust estimation results than 

conventional methods. Furthermore, the estimation result satisfies the 

requirement of the newly published development goal of China. 

® Proposed and implemented a SoC based fuzzy controller to equalize 

cells, due to the lack of electrochemical theories and models to explain 

the cell equalization process. The selection of inputs consists of (1) the 

difference in SoC, representing the degree of imbalance, (2) the average 

of SoC, representing the average discharge ability, and (3) total internal 

resistance, partially representing the equalizing efficiency. Simulation 

and experimental results both show that the proposed controller has the 

ability to incorporate the experiences and knowledge of experts, and 

intelligently tune the charging current along with the instantaneous 

battery states to balance the multi-objectives represented by the three 

inputs. Especially for LiFeP04 battery, a large SoC imbalance may 

cause only a very small difference in voltage, causing the failure of 

traditional voltage based methods. Therefore, SoC based equalization 

is more suitable for equalizing these types of batteries. 

@ Proposed and implemented a fast charge framework using model pre-

dictive control, with two objectives: (1) to reduce charging duration, 

and (2) to reduce temperature rising. In the experiments, a neural 
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network was established to model the temperature increase during the 

charging process, and the modified ESC model was utilized to predict 

the future SoC given a future charging sequence. Both simulation and 

experimental results shows that the MPC based method can simulta-

neously reduce the charging duration and limit temperature increase. 

The Pareto front of the proposed method has been demonstrated to 

dominate that of the most popular CCCV method. 

6.2 Future Works 

® Electric vehicle manufacturing is a new industry in the world. The 

standards and test methodologies of key components as well as the 

whole vehicle，are currently at an immature stage. In future, the pro-

posed BMS system should be further tested according to national and 

international standards, if published. 

@ The current design of BMS does not take the cost into consideration. 

In future, for commercialization purpose, the cost of BMS must be 

reduced. 

© The performance of the proposed robust SoC estimation framework 

has been demonstrated in simulations, experiments and real applica-

tion in this thesis. In the future, we will use theoretical analysis to 

demonstrate the robustness of the proposed framework, based on the 

statistical properties of noise, zero-drift, and model errors in a vehicle 

driving environment. 
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© Cell equalization is one of the main sources of temperature imbalance 

in the battery pack. In the future, we will study heat generation in 

the proposed equalization method and also find a way to keep the 

temperature field balanced. 

© Experiments in fast charge are based on the programable electric charger 

for universal purpose. In the future, we will develop a charger for elec-

tric vehicles and integrate the proposed fast charge framework. 

• End of chapter. 
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