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UMI Number: 3484720 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent on the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

UMI 
Oissortation Publishing 

UMI 3484720 

Copyright 2011 by ProQuest LLC. 

All rights reserved. This edition of the work is protected against 
unauthorized copying under Title 17, United States Code. 

^(^Ugst 
ProQuest LLC. 

789 East Eisenhower Parkway 
P.O. Box 1346 

Ann Arbor. Ml 48106- 1346 



Abstract of thesis entitled: 

Shape and Topology Optimization with Parametric Level Set Method 

and Partition of Unity Method 

Submitted by HO, Hon Shan 

for the degree of Doctor of Philosophy 

at The Chinese University of Hong Kong in June 2010 

Traditional structural optimization approaches can be referred to as 

sizing optimization, since their design variables are the proportions of 

the structure or material. A major restriction in the sizing problem 

is that the shape and the topology of the structure are fixed a priori. 

Undoubtedly, changes in shape (e.g., curved boundary) and topology 

(e.g., holes in a member) could produce more significant improvement « 
in dynamic performance than modifications in size alone. A recent de-

velopment of shape and topology optimization based on the implicit 

moving boundaries with the use of the renowned level set method is re-

garded as one of the most sophisticated methods in handling the change 

of the structural topology. In this thesis, we study the parametrization 

of the classical level set method for the structural optimization and the 

associated computational methodology. 

First of all, the PDE form of the classical level set function $ is pa-

rameterized with an analytical form of Radial Basis Function (RBF), 

which is real-valued and continuously differentiable. Such that the 

upwind scheme, extension velocity and reinitialization algorithms in 



solving the discrete Hamilton-Jacobi equation can be waived in the nu-

merical process, the whole framework is transformed into a standard 

mathematical programming problem in which the linear objective func-

tion can be directly optimized by a gradient algorithm - shape sensitiv-
< 

ity. The minimization of the mean compliance is studied and presented 

to demonstrate the advantages of the parametrical method. 

Parametrization substantially reduces the complexity of the original 

discrete PDE level set method. However, the result shows that the 

high number of RBF knots leads to dense coefficient matrices. Thus, it 

induces numerical instabilities, slow convergence and less accuracy in 

the process. Consequently, we then study the distribution of knots 

density for faster computation. By updating the movement of the 

knot, the knot moves towards the position where the change is directly 

determined by the shape sensitivity. In such case, we may use lesser 

number of knots to describe the properties of the system while the 

smoothness of the implicit function is satisfied. The sensitivity study 

is evaluated carefully and discussed in detail. Results show a significant 

improvement in the computational speed and stability. 

Usually, a large-scale model will lead to bulk coefficient matrices in 

the RBF optimization and the linear function normally require 0[N^) 

flops and 0{N'^) memory while processing. It is becoming impractical 

to solve as N goes over 10,000. In fact, the dense system equation 

matrix frequently leads to the numerical instabilities and the failure 

of the optimization. Finally, we introduce the method of Partition of 

Unity (POU) to deal with this problem. POU is often used in 3D 

reconstruction of implicit surfaces from scattered point sets. It breaks 

the global domain into smaller overlapping subdomains such that the 

implicit functions can be more efficiently interpolated. Meanwhile, the 



global solution is obtained by blending all the local solutions with a set 

of weighting functions. The algorithm of POU is presented here, and 

we analyze and discuss the numerical results accordingly. 

The study found significant improvement obtained in the structural 

optimization with the parametric level set method, both the stability 

and efficiency were given as the benefits of using the method of the 

parametrization. 



傳統的結構優化方法可以稱為尺寸優化，因為他們的設計變量的比例結構或材料。一 

個主要的限制，獎紗的問題是，形狀和拓撲結構是固定的先驗。亳無疑問，改變形狀 

(例如，曲線邊界）和拓撲結構（例如，在一洞）可以顯著改善，生產更多的動力性能 

比單獨修改的大小。最近開發的形狀和拓撲優化基於隱含邊界移動與使用著名的水平 

集方法被認為是一個最複雜的方法，在處理拓撲結構的變化。在這篇論文中，我們研宄 

了參數化的經典水平集方法的結構傻化和相關的計算方法。 

首先，在偏微分方程形式的經典水平集函数是參数化的分析與形式徑向基函数（RBF) 
神經網絡，這是寅值和連續可微的。這樣的迎風格式，擴展速度和重新初始化算法在求 

解離散的Hamilton - Jacobi方程可免除數值的過程中，整個架構轉化為一個標準的數學 

規劃問題，其中線性目標函数可以直接優化梯度算法-形狀的敏感性。最小化的平均符 

合研究，並提交證明的參數化方法的優點。 

參‘数化的複雜性大大降低了原離散PDE的水平集方法。但是，結果表明，大量的RBF 
海裡導致密集係數矩陣。因此，它誘使数值不穩定性，收敎速度慢，精度低的過程。 

因此，我們又研宄了節密度分佈的計算速度更快。通過更新運動中的結，結的位置，走 

•向的變化直接決定了形狀的敏感性。在這種情況下，我們可能會使用較少數節描述的 

屬性系統，而平滑的隙函数是滿意的。的敏感性研究仔細評估和詳細討論。結果顯示， 

顯著改善了計算速度和穩定性。 

通常，一個大規模的模式將導致大批係数矩陣中的RBF優化和線性函数通常需要觸發器 

和内存而處理。它正在成為不切责際的解決為它去。事寅上，茂密的系統方程矩陣往往 

會導致數值不穩定和破壞的優化。最後，我們介紹的方法對(時間單位分解）POU結構來 

處理這個問題。POU結構常用於三維隙式曲面重建散亂點集。它打破了全球域名成更 

小的子域重叠，這樣的隙函数可以更有效地插。與此同時，全球性解決方案得到了混 

合所有的局部解與一組權函数。該算法的POU是這裡，我們分析並討論相應数值結果. 

研宄發現，取得了顯著的改善與優化結構參數水平集方法，無論是穩定和效率均給予的 

好處使用方法的參數化。 
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Chapter 

Introduction 

1.1 Background and Motivation 

An engineer working in the field of research and development is often 

found in the position of having to design a completely new structure. 

The conditions such as loads and constraints are usually known but the 

designer has the difficult certainty what is the aspect of the structure 

that makes his case right. The weight is known to be one of the main 

factors that contribute to the performance and the cost of the build-

ing, and for this reason the reduction of it is very frequently the key 

objective to be achieved. There are similar cases previously addressed 

but it is unlikely that a downsizing of the previous design gives con-

crete benefits. Otherwise, one can appeal to intuition and experience of 

the designer, but this approach can become long and exhausting, that 

the success of the project is not guaranteed. Alternatively, the prob-

lem of the product design can be facilitated by structural optimization 

tools. Historically, the structural optimization problem is related to 

the development of those areas where the lightweight component is a 

prerequisite for the exercise, just think of civil construction, industries 



such as aerospace and automobile. Structural optimization has become 

widely accepted in engineering design in the past decades, and is be-

coming more and more important as the essential competitive power in 

the industries. Besides market-driven force, the rapid development of 

powerful computers and the software plays an important role in popu-

larizing the structural optimization techniques in these areas. 

In 1904 Michell [10] studied the topological optimization problem of 

the lattice structures, the development of the techniques related to this 

problem had significantly grown only in the recent years and led to the 

definition of that are now well established rules and practices. Today, 

the achievements in the field well beyond the satisfaction of the mass 

reduction (objective far more frequent!) and the field meets ever wider 

applications such as the dynamics, acoustics, heat transmission or even 

the modern micro-electromechanical applications. Recent decades have 

witnessed a rapid spread of instrument optimizations so that they have 

become irreplaceable in automotive and aircraft and begin to make 

their appearance in the world of the competition sports (cycling) or 

even in the design of the joint replacements. It gave fresh impetus to 

research in the field of the structural optimization. On the other hand, 

the recent development of the mathematical models for the behaviors 

of the materials and the surge of the processing power in the personal 

computer benefit the popularization of the optimization tools. We will 

see that the huge majority of these techniques inevitably focuses on 

the use of finite element computer codes. The choices of size, shape 

and topology refer to different aspects of the structural problem. If 

applied, these concepts help to tied to the quality and performance of 

the design component. 

Traditional structural optimization approaches can be referred to as 



sizing optimization, since their design variables are the proportions of 

the structure or material. In the earlier structural optimization solver, 

the finite elements were mainly the types of truss and thin shell. Size 

optimization contains the capability in modifying the cross-section or 

the thickness of the finite elements. The optimization is governed by 

mathematical algorithms to optimize the different objective functions, 

e.g. minimum weight and maximum strength. However, the major 

restriction in the sizing problem is that the shape and the topology 

of the structure are fixed a priori. Undoubtedly, changes in shape 

(e.g., curved boundary) and topology (e.g., holes in a member) could 

produce more significant improvement in the performance than the 

modifications in size alone. Therefore, a formulation that includes the 

determination of the geometry (including size and shape), the topology, 

and the material distribution in the optimization process is likely to 

produce a structure with substantially higher performance quality. 

The shape optimization changes the surface geometry in a manner 

that a homogenous stress distribution is achieved. In shape optimiza-

tion the boundary of the surface is represented explicitly or implicity, 

and it is modified during the optimization. The strain energy density 

is constant everywhere along the optimal free boundary, in fact, it is 

also the objective of the classical shape optimization methods based 

on a shape sensitivity analysis by Rozvany (1998) [64]; Sokolowski and 

Zolesio (1992) [83). Physically, this indicates that the mutual energy 

form of the elastic structure reach明 a constant value on the boundary. 

In most shape optimization applications, a Lagrangian formulation of 

boundary propagation was used to achieve the optimality condition 

and obtain an optimal shape of the structure. The boundary changes 

can be accomplished only if the connectivity of the boundaries does 



not change since there is a sever limitation that only a structure of a 

fixed topology can be optimized. 

An structural optimum topology can be arrived at by optimally 

adding holes and changing the connectivity of the structural design 

domain, which is actually implemented by redistributing material in 

an iterative and systematic manner Eschenauer (1994) [24] and Wang 

at al. (2006) [92]. No initial design proposal is needed! The topology 

optimization as a conceptual design tool has the highest importance 

in the developing process of all structural optimization methods be-

cause of its ability in achieving greatest savings. Topology optimization 

finishes with an optimal design concept for the creation of the finite 

element model for the subsequent size and shape optimization. It is 

regarded as the best method for solving the eigenvalues problem and 

for producing the best overall structure. 

A generalized shape and topology optimization problem has been re-

cently studied intensively through the finite element (FE) based struc-

tural analysis. One of the most recognized categories of methods is the 

one based on the homogenization approach first proposed by Bends0e 

and Kikiichi [11], in which the structural form is expressed as the mi-

crostructures with voids and optimized the material distribution by the 

optimality criteria (OC) method. Another important variant approach 

developed upon homogenization is the so-called SIMP (Solid Isotropic 

Microstructure with Penalization) method [9, 66, 80], that has been 

widely used in modern engineering considerations because of its com-

putational efficiency and simple implementation [65). However, the 

ill-posed material density [12] affects the boundary smoothness and 

thus numerical instabilities may occur to slow down or even to stop 

the convergence of the local optimal shape [4, 89). Another impor-



tant family of structural optimization method is known as Evolution-

ary Structural Optimization (ESO) method, which is introduced by 

Xie and Steven [99]. The material in the design domain which is not 

structurally active is regarded as non-effective element, will be removed 

slowly [100). In structural shape and topology optimization problems, 

a growing popular family of methods is based on the implicit moving 

interfaces with the use of the renowned level set method |91]. This 

method was first introduced by the pioneers of the American mathe-

maticians, Osher and Sethian [57], in 1988. It was instantly realized 

as a simple and versatile method for computing and analyzing tool for 

tracking the evolution of the boundary in 2D or 3D domain. 

Sethian, Wiegmann and Wang et al. are among the scientists who 

extend the level set method to embed the free boundary of the solid 

structure on a fixed Eulerian mesh for the optimization with the frame-

work of the shape sensitivity [3,78,90]. The great potential of the level 

set method in handling sharp corners, break apart and merge together 

enables itself with the powerful capability on the manipulation of topo-

logical changes, reserves the precision of the boundary representation 

in all circumstances. Nevertheless, it is rather difficult to implement 

the conventional discrete level set method as it is well-known that the 

PDEs are not easy to calculate [45]. Although some robust and so-

phisticated method such as upwind scheme, extension velocities and 

reinitialization algorithm have been proposed [57], it is not practical to 

solve these problems with a reasonable computational cost. 

In regard to the complex implementation of the conventional dis-

crete level set method, we present a parametric approach to the exist-

ing method and it is generally recognized as a more effective method in 

the topology optimization. The original time-dependent implicit level 



set function is now replaced by Radial Basis Functions (RBFs), which 

are widely used in the approximating function of huge scattered data 

fitting [15,17,71]. The RBF builds the novel interpolation upon the 

parametric space rather, and hence the PDE nature of the Hamilton-

Jacobi can be successfully transformed into mathematically convenient 

ODE [18,25,37]. Parametric interpolation of the RBF function replaces 

the integration of implicit PDE level set function that brings more ad-

vantages in the implementation [46]，but also enables the framework of 

shape sensitivity for structural optimization. 

Since a large-scale model will lead to dense coefficient matrices 

in the RBF optimization and the linear system will normally require 

0{N^) flops and memory while processing. It is becoming im-

practical to solve for optimal shapes as N goes over 10,000 [41, 94 . 

In fact, the dense system equation matrix frequently leads to the nu-

merical instabilities and the failure of the optimization. Finally, we 

introduce the method of Partition of Unity (POU) to deal with this 

problem. POU is often used in 3D reconstruction of implicit surfaces 

from large scattered point sets [30-32,53,87,88,97]. By using the tech-

nique of 'divide-and-conquer', it breaks the global domain into smaller 

overlapping open covers such that the implicit functions can be more 

efficiently interpolated and the global solution is obtained by blending 

all the local solutions with a set of shape functions. The algorithms 

of both RBF and POU are presented here, we analyze and discuss the 

numerical results accordingly. 



1.2 Previous Findings and Problem Statement 

In this thesis, we are concerned with the programming problems defined 

in the following way: 

Minimize /(x) , 

subject to g{x) ^ 0, (1.1) 

X 6 n, 

where / : DT —股，and 5 : IR" — are smooth and C DT is 

Tvdimensional. In recent several years, there are many software capa-

ble of optimizing the geometry function for various engineering goals 

available. The operation of the algorithms used is grouped into two 

main categories: 

1. those referred to as the method of homogenization or formally similar 
power law approach (or SIMP: Solid Isotropic Material with Penaliza-
tion); 

2. those based on the principles of evolution. 

In the first case one solves a formalized mathematical problem, as a 

result of additional assumptions and hypotheses becomes a traditional 

optimization problem. The solution is obtained then through one of 

many optimization algorithms operating on a number of finite dimen-

sions (space variables). Nevertheless, as mentioned previously that the 

insufficient density model imperils the numerical stabilities and the 

smoothness of the boundaries [81], we will not consider it further in 

this thesis even if it provides a potential of a high efficient optimiza-

tion framework. 

The other methods are evolutionary approaches based on intuition, 

where the methods of the class embedded with complex mathemati-

cal operations and programming, they rely on simple rules borrowed 

from the evolutionary nature. The topological optimization problem 



is not limited solely to description and explanation of the operational 

resources. The literature in the field is vast and among them, we focus 

on the method based on the implicit moving boundaries - Level Set 

Method [1,55—58]. The great potential of the level set method in han-

dling complex geometry and tracking moving interfaces make it easier 

to manipulate the topological changes during optimization, though the 

classical level set method with discrete representation (i.e. the signed 

distance form) inheres in a significant limitation in increasing the nu-

merical efficiency. 

In order to eliminate the additional load consumed in the processing, 

e.g. upwind scheme, extension velocity and reinitialization algorithms, 

it is worthy to reconstruct the level set method with the parametric 

shape representation [86, 93). Consequently, the extra procedures in 

stabilizing the discrete distance form can be removed to increase the 

overall throughput. This obvious benefit motivates numerous develop-

ments in researching an appropriate parametric framework to replace 

the original time-consuming one. 

Radial basis functions (RBFs) method is a mature technique to 

reconstruct an admissible design with a shape function which is globally 

continuous and differentiable. This is a popular methodology in the 

area of the computer vision to interpolate the scattering points in the 

domain to reproduce smooth surface or boundary, as the associated 

system of the linear equations is guaranteed to be invertible under the 

control conditions on the locations of the data points [17]. They are 

very effective in the construction and modeling of geometric objects 

70] and the field of the artificial intelligence [14). RBFs are capable 

of solving PDEs based on an irregular data distributions because the 

interpolations of RBFs is complete and unique when the functions to 



be approximated are of multiple variables or are given only by a great 

amount of scattering data [46 . 

Efforts were made to parameterize the traditional level set method 

with RBFs, the authors had successfully transformed the implicit model 

to represent the shape and topology of an admissible design in the para-

metric manner. However, these studies were biased on the capability 

of the convergence and the accuracy of the solution, it did not show 

significant improvement in the efficiency and the benchmark study of 

both methods was not provided for further investigation [93, 94,101 . 

The effects of the knot configurations to both the optimization result 

and the computational effectiveness were not studied. In this thesis, we 

study the above questions in details and try to resolve the numerical 

issues arising from the use of the parametric method. In addition, we 

extend this parametric optimization to a meshless discretization — par-

tition of unity method (PUM) so as to increase the overall computation 

power and to reduce the cost in the calculation. 

1.3 Overview and Original Contributions 

In CHAPTER 2，we introduce the background knowledge of the struc-

tural optimization with the implicit modeling of level set method. The 

algorithms of the level set based optimization are discussed. Then, the 

parametric approach of the structural optimization that combines the 

theory of the radial basis functions interpolation is studied in CHAP-

TER 3. In addition, a dynamic knots scheme for an optimal knots 

distribution of RBFs is devised and tested in CHAPTER 4. The nu-

merical results show significant improvement in the efficiency without 

sacrificing the accuracy at all. 

Parametric level set method solves the drawbacks inhered in the 



conventional method and the next in line is naturally to study the 

partition of unity (POU) method to further improve the numerical 

efficiency in CHAPTER 5. The idea is simply to solve a large number of 

small, local problems instead of one large, global problem and to put 

the local solutions together by a POU scheme. Results are given to 

demonstrate the distinguished advantages by applying this technique 

to the structural optimization with RBFs. 

At the end of CHAPTER 5, we combine the benefits provided from 

the optimal distribution of RBFs knots in the moving knot scheme and 

the fast local evaluation in POU method to yield a concrete technique 

to achieve a high level of computational efficiency with the capability to 

reasonably handle the computational complexity concerning sufficiently 

high number of radial basis functions. At this level of capability, we 

should be able to apply the RBF-based parametric level set method 

for shape and topology optimization of a large class of structures and 

mechanisms in the realistic engineering problems. 

• E n d of c h a p t e r . 



Chapter 2 

Structural Optimization Sz 

Level Set Method 

Classical optimization methods used for finding the maxima and min-

ima of functions and functionals have direct applications in the field of 

structural optimization. It implies here to encompass the techniques of 

ordinary differential calculus and calculus of variations. The exact so-

lutions to a few relatively simple unconstrained or equality constrained 

problems have been studied in the literature using both techniques. 

Here, we will review some of important findings that are related to the 

work of this thesis so as to give a more comprehensive idea about the 

theory applied. 

2.1 Shape and Topology Optimization 

The optimization of the layout or the geometry of a structure or mech-

anism can be formulated as a topology or shape optimization prob-

lem [12]. In the former the optimal distribution of material within the 

design domain of the structure or mechanism is searched, while in the 

1
 

1
 



latter the type of structure (e.g. truss or shell structures) is choscn 

lirst and its shape is ofJtimized. This gen(3val idea is easily visiuilizcd 

by the following diagram Figure 2.1. 

O 丨 

� 

U ‘ "J 'I'LV ，， 

丨;fe鄉冲1 

cft^i 

Figure 2.1: Process of shape and topology optimization 

Structural optimization can be dcscribcd as the problem of struc-

tural optimization using a typical setting of a linear elaiJtic structure. 

Let RI G D C R" ( “ 2 or 3) be an open and bounded set occupied 

by a set of n distinct material phases. As shown in Figure 2.2，the 

boundary of 0 consists of three parts, V = = Fq U [\ U 1�2, with 

Dirichlel boundary conditions on and Neumann boundary condi-

tions on 1̂ 2. It is assumed that the boundary segment FQ is traction 

free. The displacement field u in O is the unique solution of the linear 

elastic system. Hence, the general problem of design is specified as an 

optimization problem: 

Minimize ./ (w, fl) 二 F{u)di^, 
“ 7 (2.1) 

subject to C (u, fl) = gj(u)dfl�0 ( j 二 1,...，r). , 



Figure 2.2: A general condition of a bounclaiy under applied load and con-
straint . 

The design variable is actually the shape of the structure and 

the objcctivo function J depends on il in a mutual situations [62 -

tlie integral of the explicit dependence is derived in il and the implicit 

dependence through u while it is the solution of the state equations as 

shown in the following elliptic partial differential equations: 

—(liv (7(u) 二 f in i}, 

u — 0 in I � 

a{u) • n = (/ oil P-

2) 

where a is the stresses, f the body force, a the displacement on the 

Dirichlet boundary Fi and ry the traction on the Neuinaim boundary 

厂2. Here we go with a set of r constraints that inchules the limit on 

the amount of material for each pluise in the adinissihle design. By 

rewriting (2.2) into its general weak variational fomi, the linear elastic; 

system is expressed as 

Ef(ji) : e{v)({n = / / • vdil -f- / g • vdV, for all f G 
'it (2.3) 

U = {// : a e u = I/O on 



with the strain tensor e, E the elasticity tensor, uq the prescribed dis-
>> 

placement on Fi, f the applied body force, g the boundary traction 

force applied on 厂2 such as an external pressure load exerted by a 

fluid, and n the outward normal to the boundary, with U denoting the 

space of kinematically admissible displacement fields and the symbol 

representing the second order tensor operation. The goal of the opti-

mization is to find a minimizer 0 for the optimization criterion J {u, O), 

which yields an optimized structure with respect to a specific function 

described by F {u) (e.g. strain energy density). This is a standard 

notion of structural topology optimization [11,12,65). 

2.2 Shape Derivatives 

In order to minimize the objective function in (2.1), it is necessary to 

find out the gradient of change of J {u, Q) with respect to a perturbation 

on the shape Q and this process is known as shape sensitivity analysis. 

The variational result of the objective function is then called shape 

derivative. In the following context, we briefly introduce the general 

problem with the use of the variational method which is proposed by [4, 

33,59,85]. A more detailed derivation process for the parametric shape 

gradient of the objective function involved with structure optimization 

problem will be presented in next chapter. 

Suppose that 0 is a domain with a continuous and smooth boundary 

as shown in Figure 2.3. A vector field V is applied on the boundary 

for a short moment r and assume there is a domain mapping from ft 

to f r . With sufficient regularity assumptions, then we have 

s j = j )，n^) - J (u, n)， （之‘) 

=[Jn + JuUq] Sfl, 



1' igvirc 2.3: Perturbation of the boundary of ll by a vcctor field V 

where Jit is the derivative of the objective function J with rcspcct to 

the sliape il with t,he state variable u reiiiainecl constant. As implied 

by (2.1), the objective function of the domain J{y, U) = f^^ f(u(Q))dQ 

is varied as 

5J [ Sf{u)dn 十 [ f ( i i ) d n . (2.5) 
.In .Isn 

The perturbation integral can be extended with the vector lickl as [4 

f f (u) (in ~ [ f(u)V • mis, (2.6) 
Jsii Jim 

substitute (2.6) into (2.5), then we get 

6J - [ fjudn + [ f(u)V • nds. (2.7) 
Jn Jdn 

For J{u, expressed in the boundary integral J{u, dU) = /如 f{u{Q))ds. 

its weak form is written a« [85 

SJ = [ fjuds + [ V • n + /K) ds� (2.8) 
Jon Jmi � “� • J 

wliGYiYhi is the mean curvature defined by k. 二（liv7t and == • / • n. 

Since the virtual displaccjinent Su or uq cannot be evaluated directly, 
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the adjoint equation will be applied to (2.8) to eliminate the term of 

the infinitesimal change. 

As shown in (2.4), we denote the state equation as W(u,Q.) = 0 

and find the variation of the state equation at 0 of the perturbation, 

i.e. 

6W = [Wn + WuUn] SO.三 0, (2.9) 

then, multiply the SW with a Lagrange multiplier A and add the prod-

uct with 5J in (2.4) 

SJ = 6J-{- X6W, 

=[Jf t + JuU î + + W^un)] (2.10) 

=(Jn + XWn) S^ + (人 + XW^) uqSQ,. 

Assume (人 + XW^) = 0，we can simplify (2.10) as 

SJ = (Jn + XWa) 6n. (2.11) 

The only additional effort in this method is necessary to solve the 

adjoint equation (人+ = 0 for the Lagrange multiplier A and this 
I 

parameter is important in the functional analysis later in the numerical 

process [62]. 

2.3 Level Set Method of Implicit Function 

Numerical methods of shape and topology optimization based on the 

level set representation and on shape differentiation make possible 

topology changes during the optimization process. Level set method 

is a numerical technique for tracking interfaces and shapes. The ad-

vantage of the level set method is that one can perform numerical 

computations involving curves and surfaces on a fixed Cartesian grid 



without having to parameterize these objects (this is called the Eu-
4 

lerian approach) [57]. Also, the level set method makes it very easy 

to follow shapes that change topology on a Euler grid by solving a 

HamUton-Jacobi partial differential equation. 

Level set method represents the motion of the dynamic interfaces 
•普 

through the implicit level set function which is Lipschitz-continuous 

and the interface can be simulated with the zero iso-surface i.e. zero 

level set of the function {rr G | ^(x) = 0} (d = 2 or 3). The evolu-

tion of the free boundary is described by solving the Hamilton-Jacobi 

equation [58]. 

DEFINITION 2 . 1 Define the bounded domain D dW^ be the working 

domain in which all admissible shapes are included, i.e. H C D. The 

shape and topology of a structure are described by a level set function 

^{x) as follows 

^{x) = 0 Vx € a n n D, 

< 0 vx € n \ dn, (2.12) 

> 0 \/xe(D\Q). 

As shown in Figure 2.4，the convention of the interior and the exterior 

is distinguished clearly by (2.12). 

2.4 Level Set Equation 

In the level set method, the normal velocity is defined as the advection 

velocity in the transport equation [58]. 

LEMMA 2 . 2 The normal velocity is the product of the velocity vector 

field y = ^ and the normal vector n of the boundary. Let Vn be 

the normal velocity on the boundary, such that Vn = V • n and n = 



.fHHii 

Figure 2.4: An illustration of the lovcl set met hod ami its implicit function 

The HamilUm-Jacohi cqxiation is obtained by the differentiation 

o/Q(/, x{t)) = 0 wit/i respect to t, where x(t) is a point cm the houndary, 

= (2.13) 

Remark Moving the boundary of the domain represented implicitly 

by the zero level set function, i.e. {Vx € dil | = 0}, along the 

descent gradient direction is equivalent to move the implicit function 

by solving (2.13). 

The partial differential equation (2.13) is formulated as the level set 

equation [57,58,7G] and the optimization problem is transformed into 

a problem of finding the steady-state solution of the Haniilton-Jambi 

equation. In order to move the boundary in the descent direction, the 

velocit}'̂  Vn is determined from the sensitivity analysis in rcspcct of the 

clifFerent miniiiiization objectives. 

2.5 Discrete Level Set Method 

In order to discretize the domain into an Eulerian grid, we fix D as the 

unit square D = (0,1) x (0,1). For the discretization of the Hamilton-



Jacobi equation (2.13), we first define the mesh grid of D. We introduce 

the nodes Pij whose coordinates are given by (zAx, jAy), where Ax and 

Ay are the discretization steps in the x and y directions, respectively. 

Let us also denote t'' = kAt the discrete time for A; 6 N, where A亡 is 

the time step. We are seeking an approximation 小^ ~ (f){Pijyt'^). 

Normally, the numerical scheme of the partial differential equations 

will be implemented with the simple finite difference method. However, 

it is not easy to get a sufficient stability for the convergence in the 

boundary value problem [28], we propose the first-order explicit upwind 

scheme for 2D instead 

4少 1 = 4 - 叫 為 D ^ Dy為 

where 

D ^ 一 ^ ~ ’ DAj 一 A ^ 

(2.14) 

(2.15) 

are respectively the backward and forward approximations of the x-

derivatives of cj) at Pij. Similar expressions hold for the approximations 

and D^ of the y-derivatives. The numerical flux is given by 

g(D 工-<h�Dlct>ij. D^jkh 净 + g j f . (2.16) 

The numerical flux part corresponds to the discretization of the 

first-order part of the Hamilton-Jacobi equation and is given by 

gjj^ = max 0) G+ + min (v^-, 0) G— 

with 
G+ = [max (DZ(/>ij, o f + min ( J D冰 j � o f 

^1/2 

+ max {Dl(t>ij,0)^ + min {D'icPij, Of 

min 0)2 + max � � ,O ) ' G一 = L 、 

.2 + min {Dl(i)ij, 0 ” + max (JD^.ij�0) 

19 



and Vij = Vext{Pij) is the extended normal velocity at point Pij. 

The numerical flux part g ĵ̂  in (2.16) is the centered finite differ-

ence approximation of the second-order term of the Hamilton-Jacobi 

equation, i.e. glf ~ — 2 / i P c ( Q )九代 j ) . 

This upwind scheme is stable under the following two conditions: 

(2.17) 

• m i n ( A t ' W ) ^ 1. 

The condition (2.17) arises from the upwind part of the scheme cor-

responding to the discretization of the first-order term of the Hamilton-

Jacobi equation. The condition (2.18) comes from the centered difference 

discretization used for the second-order term involving the curvature. 

2.6 Reinitialization of Level Set Function 

Let us start with a general remark on the numerical solution of (2.13). 

For the sake of numerical accuracy, the solution of the level set equation 

should be neither too flat nor too steep. This condition is fulfilled, e.g., 

if (p is the distance function, i.e. \V(j>\ = 1. Unfortunately, even if we 

start with a signed distance function d[x) for the initial data cpo� 

d [ x ) ， Vx G D\Q. 

(l){x)— < 0 , Vx e a n , (2.19) 

Vx G • 

where d{x) is the distance function defined as 

^(x) = min( |x -Ti | ) , for Vxi G (2.20) 

the solution </> of the level set equation does not generally remain close 

to any distance function. We can perform a reinitialization of 0 at a 



time t by determining the solution ip 二（p(:r，r) of the following equa-

tion, up to t he stationary state: 

iPr I 5 ( 0 ) (|V(p| — 1) 二 (）in D X R+, 

0) = / ,), X e D, 

Here S is an approximation to the sign function 

(2.21) 

(2.22) 

(2.23) 
yjd' + | W 

with £ = min(A：/:, Ay), where Ax and Ay stand for the space dis-

creti/ation steps in the x and y directions, respectively. Other choices 

are also possible for the approximate sign function. Readers can refer 

to [6] for more details. 

2.7 Extended Normal Velocity 

The normal velocity Vn in LEMMA 2.2 should be defined on the whole 

domain D for the well posedncss of the level set equation (2.13). In 

Figure 2.5, the normal velocity is only given on the Neumann bound-

ary � 2 and we need to extend Vn to the domain D. Another reason 

for extending the velocity is to enforce the solution (p of the level set 

equation t,o remain close to the distance function. Indeed, if we arc 

Figure 2.5: An illustration of the method of the extended normal velocity 



able to compute an extended normal velocity Vext such that 

^Vest • = 0 in D X IR+, (2.24) 

then it can be shown [103] that the solution 0 to (2.13) satisfies the 

distance function = 1. A way to construct an extension V̂ xt 

satisfying (2.24) at time t is to solve the following equation for q, up 

to the stationary state [58 

Qt + . Vq = 0 inDx IR+, (2.25) 

g(x,0) =p(x,t), X € D, (2.26) 

where p = Vn on the boundary�2 and 0 elsewhere. The function <S is 

the approximate sign function defined by (2.23). 

2.8 Topological Derivative 

The shortcoming of the method of shape derivative is that no nucleation 

of holes inside the domain are allowed. Numerical methods based on the 

shape derivative may therefore fall into a local minimum and hence they 

do not solve the inherent problem of ill-posed of shape optimization, 

which manifests itself in the existence of many local minima, usually 

having different topologies [3,4]. 

The level set approach based on the shape sensitivity may get stuck 

at shapes with fewer holes than the optimal geometry in some ap-

plications to construct designs. To address this issue, [35] proposed 

a modified level set method that includes the topological derivative. 

This derivative measures the influence of creating a small hole in the 

interior domain. 
I 

The topological derivative is unlike the shape derivative, for which 

it is defined on local perturbations of the boundary of the domain, 
I 



that measures the influence of the hole creation at a certain point. The 

concept is to create a small ball Bp�: with center x and radius p inside 

or outside the shape Q and then consider the variation of the objective 

functional J with respect to the volume of this ball. For x G H, the 

topological derivative dr^(Q.){x) is defined as 

d r H m ^ ) lim — ：^•仰 ’ (2.27) p-o |Bp,3： n 

where Tip,a： = H — B(p^x). It means to subtract material at x € H. 

But in some situations, it is reasonable to add material aX x e D — fl 

In this case, the "set-minus" must be replaced by "union" in (2.27). 

For simplicity, we will only derive the "set-minus" case and extend the 

solution to the "union" case by analogy. 

In fact, there exist functionals that are not differentiable: 

d r m i = lim - lim ^ = oo. (2.28) 
p—>0 B, "一 n niy p-*0 

When the topological derivative does exist, by Taylor expansion we 

naturally have = + TTp^drT{Q){x) + That shows 

is second-differentiable with zero first derivative at = 0. 

Furthermore we assume that G R) with respect to p for 

small p. 

We mark that it might not be easy to compute the shape derivative 

of the objective functional ！F{Q). However, the purpose of this paper is 

not to incorporate the topological derivative into the parametric level 

set method, which assumes that the information of the shape derivative 

is known already. For explicit computations of topological derivatives 

in shape optimization, etc., please refer to [5,29,34, 51,82] for more 

information. 

• End of chapter . 



Chapter 3 

Parametric Optimization 

with RBF Implicit Modeling 

This chapter discusses a structural optimization method that optimizes 

shape and topology based on the parametric method. The proposed 

method has the same functional capabilities as a structural optimiza-

tion method based on the level set method incorporating signed dis-

tance functions. The advantage of the method is the simplicity of com-

putation, since extra operations such as re-initialization of functions 

are not required [86,93 . 

Structural shapes are represented by RBFs defined in the design 

domain, and optimization of this function is performed by solving a 

time-dependent equation. The algorithms used in this optimization 

are derived from the sensitivity analysis. The proposed method is ap-

plied to two-dimensional linear elastic problems such as the minimum 

compliance problem. The numerical examples provided illustrate the 

convergence of the objective function and the effect of the knot density 

on the optimal configurations. 



3.1 Settings of the Problem 

For the minimization of the linearized elasticity system, it can be ex-

pressed as 

mm. J (u ,$ ) = J E{ufCe(u)H{^)dn, 

D r (3.1) 
s.t. ^ Vmax where = / 

D 

where u eR^ is the displacement field, e(iz) the strain field, C the elas-

ticity tensor, Kthe volume constraint and / / ($) the Heaviside function. 

The unconstrained optimization problem can be obtained by multiply-

ing the volume constraint with a positive Lagrange multiplier A 

and hence the system equation is now transformed to 

min = £ {uf Ce (u) H ($) dfi + A (V ($) - V；̂, 
* J 

D ‘ ^ 
(3.2) 

LEMMA 3 . 1 Let fl be a smooth bounded open set upon the local pertur-

bation of the boundary of the admissible domain, the shape derivative 

can be obtained by the differentiation of the Lagrangian L [4,91] with 
* 

respect to the artificial time t, 

尝 = J (A - £ �T C e � )V n d s - (3.3) 
an 

Remark Consequently, a normal velocity in the descent direction is 

defined as 

Vn = - (a - e (7x)t Ce � ) . （3.4) 

The right-hand side of (3.4) shows that the normal velocity Vn on the 

boundary of the shape is related with the strain energy density. Con-

ventionally, we substitutes the velocity (3.4) into (2.13) to solve for 



the front of the moving boundary and hence the optimization can be 

proceeded. 

3.2 Parametrization of Level Set Method 

Parametric level set method solves the drawbacks inhered in the con-

ventional method, in order to eliminate the additional load consumed in 

the processing, e.g. upwind scheme, extension velocity and reinitializa-

tion algorithms, we need to parameterize the conventional discrete level 

set equation. The level set function is a shape function with the 

order of C�cont inui ty in space. For solving the Hamilton-Jacobi equa-

tion on a fixed Cartesian grid, the elliptic PDE of time-space domain 

is expressed as 

= (3.5) 

which is a finite difference of finite element method over a rectilin-

ear mesh (58,78, 91]. As the mesh is fixed on space, only the nodal 

values of the implicit function are calculated. It is important 

to characterize precisely the geometry by the nodal values of in 

Eulerian approach and hence the shape function can represent all the 

admissible designs smooth enough in the domain [38,57]. In fact, only 

the smooth function with low order approximations ^ G shape are 

used (8,19,58). It is because of the polynomial snaking problem that the 

interpolation in higher orders can easily lead to singularity and induce 

difficulty in achieving the convergence of the solution [36’ 37,68，69 . 
\ 

Only the implicit function 中(rr) can be guaranteed to be continuous 

across the mesh but not its partial derivatives. In addition, the spatial 

truncation errors due to the low order accuracy can only be minimized 

by using aggressively fine mesh. Consequently, the mesh spacing must 

be small enough to arrest the changing of the derivatives accurately 



and then the artifacts contamination to the numerical results can be 

avoided. However, this make the computation very costly and time-

consUming, in result, this method is impossible to simulate the large 

scale problem in question. On the other hand, some extra numerical 

algorithms, e.g. upwind scheme and reinitialization and extended nor-

mal velocity, are necessary to apply into the process so as to maintain 

the stability and convergence of the solution. 

All the drawbacks of the conventional method can be eliminated 

by the parametrization while retaining the geometrical benefits of the 

implicit representation. As proposed in [93], author transformed the 

level set function into an alternative implicit parametric shape 

representation by generalizing it with radial basis functions (RBFs). 

Some of the advantages of radial basis functions are their insensitiv-
( 

ity to the spatial dimension d, which makes the implementation of this 

method in higher dimensions much simpler than, e.g. finite elements. 

Another useful feature of radial basis functions is their radial symme-

try and invariance under Euclidean transformations. Furthermore, in 
ts 

the context of scattered data interpolation it is known that some ra-

dial basis functions have spectral convergence orders (e.g. (reciprocal) 

multiquadrics, Gaussians). 

Under this parametrization the level set function is derived as 

a time-dependent parametric form 
$ = t) 二 . Q；⑷， (3.6) 

where ^p{x) are a set of radial basis functions and a{t) are the ex-

pansion coefficient corresponding to the artificial time in the iteration. 

Substitute (3.6) into the Hamilton-Jacobi equation (3.5) we can get the 

following form: 

pT ⑷ ， 动 T � = 0 ， (3.7) 



which indicates the relationship between the boundary propagation 

velocity and the time derivative of the expansion coefficients d. It 

implies that if the velocity field is available, the iteration of the param-

eters a can be evaluated then [25,36]. By combining the collocation 

method with the extended normal velocity, the original PDE based op-

timization problems are transformed into a set of simpler ODE initial 

condition problems and the problems can be solved by several differ-

ent ODE solver such as the first-order forward Euler's method and 

higher-order Runge-Kutta, Rung-Kutta-Fehlberg, Adams-Bashforth, 

or Adams- Moult on methods. 

Because of the numerical stability offered by RBFs, we will evaluate 

the solution of the elliptic partial differential equations with the popu-

lar method of the collocation approach based on radial basis functions. 

Since the level set function is continuously represented in a differen-

tiable condition, the extra reinitialization process is no longer need 

to regularize the conventional discrete level set method. Even though 

this parametrization converts the level set method into more efficient 

method and simplifies the implementation, it still confines the level set 

based optimization method in a framework of differential equations but 

not actually transformed it into a mathematic programming approach. 

In the later section, we propose another parametric approach based 

on sensitivity analysis to solve for the general minimization problem. 

The sensitivity algorithms determine the search direction in terms 

of the parameters and there are numerous sophisticated schemes for 

solving the equations, for example, the steepest descent method, the 

method of moving asymptotes (MMA) and the optimality criteria (OC) 

method. Nevertheless, it is still a popular way to solve this structural 

optimization with the collocation scheme [93,94] and hence we will in-



troduce this method together with the sensitivity approaches in Section 

3.4 in details. 

3.3 Parametric Shape Representation 

In order to eliminate the disadvantages arising from the use of the dis-

crete method, we parameterize $ with a new function that is globally 

continuous and differentiable. An implicit model based on radial basis 

functions (RBFs) is considered. RBFs are common in the applica-

tion of scattered data interpolation, and guarantees to provide smooth 

boundary as it is invertible on the location of the data locations [15,93 . 

3.3.1 RBFs Implicit Modeling 

A radial basis function (RBF) is a real-valued function whose value 

depends only on the distance from the origin, so that (p(x) 二 (^(||x||); 

or alternatively on the distance from some other point c, called a cen-

ter, so that (p(x, c) = (^(||x — c||) [15]. Any function $ that satisfies 

the property y7(x) = (/?(||x||) is a radial function. The norm is usually 

Euclidean distance, although other distance functions are also possi-

ble. For example by using Lukaszyk-Karmowski metric it is for some 

radial functions possible [42] to avoid problems with ill conditioning of 

the matrix solved to determine coefficients Qi, since the ||x|| is always 

greater than zero. 

RBFs method is a well-developed methodology to approximate or 

reconstruct an admissible design with a single function which is glob-

ally continuous and differentiable. They are popular for interpolating 

scattered data to produce smooth surface or boundary as the asso-

ciated system of non-linear equations is guaranteed to be invertible 



under mild conditions on the locations of the data points [17]. Radial 

basis functions techniques have become extremely useful, ranging from 

construction and modeling of geometric objects [70-72, 75], artificial 

intelligence [14], to simply solving PDEs based on irregular data distri-

butions [26] since the interpolations based on radial basis functions are 

effective when the functions to be approximated are of multiple vari-

ables or are given only by a great amount of data or by scattered data. 

Some attractive features of radial basis functions such as the unique 

solvability of the interpolation problem and their smoothness and con-

vergence make them very easy to be accepted in topology optimization 

field. Incorporating with the level set method, RBFs implicit modeling 

is regarded as an effective representation to reconstruct the shape and 

topology of an admissible design, as its global continuity maintain a 

high fidelity of the topological characteristics. 

In the following we assume we are given a set of knots {工1，... , x/v} C 

E^, along with a continuous function ip: [0’ oo) —> R. We then refer to: 

cp.{x) = Xi G E^, z e {1, . . . ,yV}, (3.8) 

where ||-|| denotes the Euclidean norm on 耿“，x, is the position of 

the knots, and ip: R^ —+ M with (^(0) ^ 0. There are numerous ra-

dial basis functions commonly used in computation, for which they are 

usually divided into two categories: globally supported radial basis func-

tions (GSRBFs), including multiquadrics (MQs), reciprocal or inverse 

multiquadrics (IMQs), thin-plate spline, polyharmonic splines, Sobolev 

splines and Gaussians, the another one is compactly supported radial ba-

sis functions (CSRBFs) [95,98]. The kernels of the globally supported 

RBFs and the CSRBFs proposed by Wendland [95] are listed in Table 

3.1 and Table 3.2，respectively. Examples of these basis functions are 

displayed in Figure 3.1. 



Name 9ir) (r = llx-Xill) Parameters 

Thin-pi ate spline 

Cubic spline 

Polyharmonic splines 

polyharmonic splines 

Sobolev spline 

Matern spline 

Exponential spline 

Gaussians 

Multiquadrics 

Inverse Multiquadrics 

Compactly supported 
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c > 0 

c > 0 

c > 0 

c > 0 

m > 2,p(r): polynorraial of Wendland 

Table 3.1: Examples of Radial Basis Functions 
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Table 3.2: Examples o 
tions [95] 

Wendland Compactly Supported Radial Basis Func-



(a) Miiltiquadrics Splines (b) Partial Derivative of Mulliqiutcirics 
Splines in x direction 

(c) Inverse Multiquadrics Splines (d) Partial Derivative of Inverse Mult i 
quadrics Splines in x direction 

(c) C 2 - C S R B F Splines ( f ) Partial Derivative! of C2-CSR BF in 
X direction 

Figure 3.1: Illustrations of RBFs Shape Functions 
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3.3.2 Collocation wi th R B F s 

In the following we use the multiquadrics (MQs) as an example to 

demonstrate the idea of the RBFs modeling. The multiquadric kernel 

is defined as: 

^i(x) = y^(X-Xi)2 + c2， (3.9) 

where x, is the position of the knot and c is the free shape parameter 

which is regarded as a constant for all knots [27,49] in most cases. 

In the RBFs implicit modeling, the MQs represent the scalar implicit 

function $(x) with N knots and MQs by interpolating them at their 

centers 
N 

$(x) = ; ^ c w ^ ) + p ( x )， （3.10) 
x=l 

where oti is the weighting or expansion coefficient of the radial basis 

function at the location of the i-th knot Xj and p (x) is the first-degree 

polynomial to account for the linear and the constant portions of v?(x) 

and to ensure polynomial precision [15]. For three dimensional prob-

lems, p (x) is given by 

V (x) =Po + Pi a： + V2y + (3.11) 

where po, pi, P2 and ps are the coefficients of the polynomial p (x) 

and (x,yjz) is the coordinate of the point x 6 In order to ensure 

a unique solution, the coefficients in (3.10) must be subject to the 

following orthogonality or side constraints [15,17]: 

N N N N 

= 0 = 0 = 0 F A 沟 二 0, (3.12) 
i=l i=l 1=1 t=l 

and (3.10) can be rewritten as 

$(x) = <^T(x)a， (3.13) 



where 

a = 

. . . I X y z 

Oil ... OLN PO PI P2 PS 

G R ( " + 4 ) x i ’ ( 3 . 1 4 ) 

e 股(yv+4)xi’ （3 15) 

The multiquadric collocation matrix A is theoretically invertible [15,37, 

44], the generalized expansion coefficients a is thus given by rewriting 

(3.10) into a matrix form 

a = (3.16) 

or expressed explicitly as 

f V 

仍 ( X L ) . . ( P N M J L XI 2/1 Zl 
- 1 

‘ 维 1 ) 

0L2 
• • 

. . ( P N ( X 2 ) J L工2 2/2 

• 

OLN 
> = 

(Pi(xjv) 
• • 

(PN(xjv): L XJSJ VN ZN i 
Po 1 1 . .. 1 ( ) 0 0 0 0 

Pi X2 . • . XN ( ) 0 0 0 0 

P2 Vl 2/2 . • • VN ( ) 0 0 0 0 

.P3 . _ Z2 . • . Z[M ( ) 0 0 0 _ 0 
� 

(3.17) 

It should be noted that the necessary degree of the polynomial 

item p(x) in (3.10) to make the collocation matrix A positive definite 

is varied for different radial basis functions. The polynomial item is 

not necessary for the inverse multiquadrics (IMQs) and multiquadrics 

(MQs) [25] so that we will use them to evaluate the results in the 

following experiments. 



3.4 Parametric RBFs based Level Set Method 

A level set method with RBFs is proposed to transform the Hamilton-

Jacobi PDE into a system of the first-order ordinary differential equa-

tions (ODEs) over the entire domain D to solve structural optimiza-

tion problems with the use of the level set method efficiently, in such 

way, we will achieve with a significant mathematical convenience. As 

aforementioned, in the level set based topology optimization methods, 

moving the boundary of the shape along a descent gradient direction 

to find an optimal shape and topology is equivalent to transporting 

the scalar implicit function by solving the Hamilton-Jacobi equa-

tion (3.5) and [4] the optimal propagation of the front is performed by 

solving the Hamilton-Jacobi PDE. In the following studies, RBFs im-

plicit modeling is used to interpolate with N knots by using IMQs 

centered at these knots. Since the Hamilton-Jacobi equation (3.5) is 

time-dependent, we assume that the space and time are separable and 

the time-dependent implicit function $ is related to the generalized 

expansion coefficients a of the RBF interpolant in (3.15). With these 

Gumptions, the RBF interpolant of the RBFs interpolant in (3.13) in 

3-dimensions becomes time-dependent as follows: 

$(x，t)=i^T(x)。⑷， (3.18) 

and the orthogonality constraints in (3.12) can be re-written as 

N N N N 

i=l i=l i=l i=l 
(3.19) 

substituting (3.18) into the Hamilton-Jacobi equation (3.5) yields 

a 
凌 T ( x ) 尝 ( V ^ ) ^ a = 0 , (3.20) 



where 

(•利' 

S7 “ 学 i + 学 i + 学 k, (3.21) 

(3.22) 
dx ) y dy 

In (3.20)，the time dependence of the Hamilton-Jacobi equation is 

due to the expansion coefficients as the expansion coefficients are ex-

plicitly related to time. At the initial time, all the time-dependent 

variables should be specified over the entire domain. Therefore, this 

initial value problem can be considered as equivalent as an interpo-

lation problem since the expansion coefficients at the initial time will 

be evaluated as a solution of the interpolation problem, as shown in 

(3.13). Thus, solving the PDEs with the parametrization of RBFs at 

the beginning is actually an interpolation problem that is equivalent 

to solving an initial value problem. The original time-dependent initial 

value problem thus becomes an interpolation problem for the initial 

values of the generalized expansion coefficients a . To advance the ini-

tial values a along with time, a collocation method is introduced. In 

Eulerian approach, all the nodes of the fixed mesh are taken as the 

fixed knots of the RBF interpolation for the implicit function As 

an extension, (3.20) is then applied to every knot of the RBF inter-

polation, rather than only the points at the evolutionary front. The 

normal velocity t;„ in (3.20) is thus extended as v^ to all the knots in 

the domain D, This is illustrated in Figure 2.5, for which each node is 

considered as a knot of the RBF. 

We use collocation method together with the orthogonality con-

straints in (3.19), then a set of ODEs can be obtained: 

A 尝 + B{a) = 0， （3,23) 



where 

B { a ) = 0 (3.24) 

0 

0 

0 

In fact, (3.23) is a collocation formulation of the method of lines, 

in which the PDE problem is reduced to a simpler ODE problem by 

discretization [43]. The method of lines has a solid mathematical foun-

dation and the convergence of the solution of the converted ODE prob-

lem to the solution of the original PDE problem has been rigorously 

proven. In (3.24), the spatial derivative can be found analytically 

from (3.13) & (3.14) due to the RBF interpolation [43 . 

The set of coupled non-linear ODEs of (3.23) can be solved by 

several different ODE solvers such as the first-order forward Euler's 

method and higher-order Runge-Kutta, Rimge-KuttarFehlberg, Adams-

Bashforth, or Adams-Moulton methods [39]. For simplicity, only the 

first-order forward Euler's method is implemented into the solution 

algorithm for ODE initial condition problems. An approximation to 

(3.23) can be given by 

� r + i ) = 一 tA-^B ， (3.25) 

where r is the time step. It is necessary to have the step size small 

enough to achieve the numerical stability due to the Courant-Priedrichs-

Lewy (CFL) condition [58] and to reduce the truncation error due 

to the variation in a single step of the decent gradient direction and 



the velocity field in (2,13) in the level set-based topology optimization 

methods. Once the solution in (3.25) is found at each time step, the 

time-dependent shape and topology can be updated by using (3.18). 

With this numerical strategy implemented in the RBF-level set op-

timization method, the evolution of the boundary of the shape along 

a descent gradient direction is in fact by advancing the scalar implicit 

function 屯 in time by solving the system of coupled non-linear ODEs 

(3.23) and the optimal propagation of the front can be found by using 

the approximated solution in (3.25). 

In the conventional level set method, the upwind scheme is not em-

ployed to advance the front in this parametric method. Because of 

the low accuracy of finite difference method, it does have a tendency 

to lose characteristics of the surface in under-resolved regions in each 

step [60] or unwanted dissipation of the front [84]. In order to revive 

the condition of the level set function，the reinitialization procedure 

is applied to the neighborhood of the front to guarantee a good ap-

proximation of the normal, i.e. |V# | = 1 or the curvature of the front. 

Unfortunately, the error induced by the reinitialization is likely to accu-

mulate as the number of time steps increases. Iterative reinitialization 

schemes based on signed distance functions have the potential disad-

vantage in the relative low-resolution of the switch function based on 

checking the sign of the level set equation, for which may cause the 

front to move undesirably [76]. In addition, the reinitialization pro-

cedure is usually time-consuming [102]. Hence, reinitialization should 

be avoided as much as possible. In practice, whether reinitialization 

is appropriate depends on the underlying problem is interested in only 

the zero level set of function or the entire function 

Reinitialization produces a serious problem in the existing level set 



method that new holes cannot be created within the admissible do-

main [3,16]. In the parametric RBF-level set method, spatial deriva-

tives of the level set function can be obtained analytically and a good 

behavior of the normal or curvature of the front can be maintained due 

to the infinite smoothness of the MQ splines [15]. Furthermore, reini-

tialization is not performed and the entire level set function $ is taken 

into account. Thus, the RBF level set model is capable of hole nucle-

ation and elimination of the dependency of the final optimal solution 

on the design initiation [16]. As suggested by [76], possible problems 

such as loss of mass or movement of the zero level set without reini-

tialization can be avoided if an appropriate extension velocity method 

is adopted. In this parametric method, a straightforward and efficient 

extension velocity method is adopted. 

3.4.1 Extension Velocity 

As mentioned previously, the normal velocity Vn{x) at the front must 

be extended in the Eulerian approaches. In this parametric method 

using collocation of lines, the normal velocity v^ix) as shown in (3.24) 

is the extension velocity, which is defined over the entire design domain 

D as v^{x): Z) —> R. The choice of the extension velocity method is 

important because it can directly affect the overall efficiency of the 

level set method [63]. To guarantee an accurate and efficient time 

advancement of the front, must be defined carefully. 

There are many approaches to construct the extension velocity and 

the original level set method introduced by Osher and Sethian [58] was 

concerned with the interface problems with geometric propagation ve-

locities and thus a natural construction of an extension velocity was 

obtained, in which a signed distance function was used as a level func-



tion due to its simplicity. In other applications, many extension velocity 

methodologies have also been developed. In fluid simulations, the fluid 

velocity was chosen as the extension velocity [84]. An approach using 

less physical quantity to build an extension velocity field was developed 

by Sethian and Strain [77], in which a numerical simulation of dendritic 

solidification with a jump condition across the interface was presented. 

In the parametric RBF-level set method, a physically meaningful 

extension velocity method is proposed for the topology optimization 

based on the implicit function. In accordance with the shape derivative 

(3.3)，a natural extension of the normal velocity can be obtained if the 

strain field is .defined over the entire design domain D by assuming 

e{u) = 0, iz € { D \ Q). Since both the strain energy density inside 

the design domain and the constraint-related La^ange multiplier are 

included, this extension velocity is physically meaningful. 
I • 

In practice, this extension introduces a discontinuity in speed as it 

closes to the boundary. It is because the strain field is not continu-

ous across the front. To ensure a smooth progress of the front, this 

discontinuity must be eliminated. The boundary itself is smooth and 

continuously differentiable because of the RBF implicit modeling [36], 

but the magnitude of the normal velocity at the boundary may not 

be continuous and smooth enough due to the finite element modeling 

involved in the strain analysis. Therefore, the magnitude of the nor-

mal velocity along the front must be regulated to allow for a stable 

propagation along a decent gradient direction. To perform all these 

operations, the boundary must be explicitly captured. 

However, in the field of level set methods, it is well known that 
t 

the boundary is implicitly represented in level set methods and that 

all of the method may be executed on the underlying mesh [76,90 



To make full use of this feature, all the smoothing operations are per-

formed in a narrow band region, rather than only along a front curve. 

A narrow band region around the zero level curve (front) is defined as 

三 = G ^ where 6 is the bandwidth. The extension 

velocity in the narrow band is further improved by applying a sim-

ple linear filter, radially linear 'hat' kernel [12,80], to achieve a good 

smoothing effect, which can be expressed as 

where 

p € N ( i ) 

/C �= ^ ( I I P - ^ I I ) 
peN{x) 

W { \ \ p - X \ \ ) = Tmin - lb - a： 

(3.26) 

(3.27) 

(3.28) 

in which N{x) is the neighborhood of x 6 5 in the filter window and 

TVnin the window size. Thus, the overall extension velocity is defined as 

- ( A — VX € Rd (x) < -6 

v-ix) = vl(x) Vrr G 5 (3.29) 

-A Vx € Rd (x) > 6 

It is clearly that the new extension velocity field used to move the 

level set function is closely related with the normal velocity suggested 

by the physics in the entire design domain and thus the extension 

velocity conveys all information about the physics. 

3.5 Shape Sensitivity Analysis 

In this analysis we simply evaluate the solution of the linear system as 

illustrated by (3.2) so as to find out the rate of change of the objective 

function against the design parameter, e.g. expansion coefficient a. In 



the conventional discrete level set approach, the design variables are the 

discrete values of the level set function over the whole design domain. 

In this RBFs based parametric method, the design variables are 

the expansion coefficient a instead. In the corresponding interpolation 

scheme, Xi the positions of the knots are fixed in space, i.e. the nodes 

of the Eulerian grid, the space and time can then been completely 

separated. 

THEOREM 3 . 2 Lemma 2.2 shows that the Hamilton-Jacobi equation 

(2.13) is only time -dependent’ the level set function t) can now be 

represented by N RBFs centered at N knots. 

Proof As time and space are separable, the time-dependent 少 is related 

to the generalized expansion coefficient a of the RBF interpolant as 

follows 
N 

$ (x,0 = (O^i �， (3.30) 

and substitute (3.30) into (2.13) yields 

N 

= (3.31) 
i= l 

Then, we now have the shape equation presented in parametric form. 

The time-dependent property behaves only on the updating of the 

expansion coefficients a during the minimization process. If the Karush-

Kuhn-Tucker conditions (KKT) is satisfied, there exist a local minimum 

that satisfies some regularity conditions. Consequently, we are only 

necessary to solve a set of algebraic equations for the optimal solution, 

rather than dealing with the boundary value PDEs [91] or ODEs with 

extension velocity [93 . 
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3.5.1 Shape Sensitivity Algorithm 

From (3.4) we can deduce the normal velocity Vn on the moving bound-

ary by rewriting (3.31): 

N 

= ^ (^m M - (3.32) 
丨•少 

THEOREM 3.3 In Lemma 3.1, the boundary integral is independent of 

the rate of change of the expansion coefficient oti which can be taken out 

from the integration. Then, the shape derivative 乾 can be obtained by 

applying chain rule to the time derivative of the Lagrangian 榮. 

Proof Substitute (3.32) into the shape derivative (3.3) 

芸 = E / (A - - ⑷ T ⑷ ) ( • _ “ - ) ) 仅 

as the rate of change of expansion coefficient d is independent to the 

boundary integral, it can be taken out from it and then we get 

芸二 f > / (A - £ �T � £ ⑷）去V ^ i � ds. (3.33) 

⑷ an 

Since L is dependent on t through dj, we can derive the following 

expression by chain rule 

= 斤 a E ‘ •〜 （3.34) 
t=i 1=1 1=1 

As shown in (3.33) and (3.34)，the sensitivities of the objective function 

and the volume constraint can be rapidly obtained by comparing them 

in the following fashion: 

dJ 厂 ， � T… � 1 
e{u) ^ C e { u ) ( x ) ds, i = l，...’yv. (3.35) 

doti «/ I•少 
dn 



d v r 1 
dai - J 

an 

(x) ds, i = (3.36) 

The proof is completed. 

Therefore, we have successfully converted the general minimization 

problem into its parametric form. The sensitivity analysis resolves the 

shape and topology optimization problem in the level set framework 

through mathematic programming instead of solving the tedious PDEs 

or the costly ODEs system. The sensitivity algorithms determine the 

search direction in terms of the parameters and there are numerous nu-

merical schemes for solving the equations, such as the steepest descent 

method and the method of moving asymptote (MMA) [93，94 . 

3.5.2 Other Benefits from Sensitivity Analysis 

In the sensitivity analysis framework, many sophisticated and well-

established optimization algorithms driven by the proposed method 

can be used to solve the optimization problem. The CFL condition 

applied onto the step size in stabilizing the upwind scheme can be 

totally neglected. In [12,65], the step size is also a factor for stabilizing 

the optimization process, however, the principle is completely different 

from that of CFL condition. The issue of the CFL condition is merely 

related to the effect of the mesh size on the finite difference scheme, in 

contrast, the sensitivity analysis is insensitive to the size of the mesh or 

grid. It is clear that the sensitivity method is potential in handling the 

realtime engineering problems in large-scale systems and the numerical 

models will be expected to be accurate. 

In convectional level set-based implicit shape structural optimiza-

tion, the normal velocity field at the design boundary is explicitly calcu-

lated by using the steepest-gradient descent method, which is the clas-



sical approach for the unconstrained programming that chooses the re-

duction heading of the negative gradient as the downhill direction [50]. 

It is characterized with the conceptual simplicity, but it zig-zags its 

way towards the optimal solution because each subsequent searching 

direction is orthogonal to the previous one. In each iteration, the ob-

jective function around one particular point might be locally descent 

fast in terms, but phe zigzag cannot ensure a globally steepest descent 

of the objective function but a crooked searching. At the start of the 

iterations, the descent of the objective function may be fast, but when 

the point is approaching to the optimum solution, the convergent speed 

will become slower and slower. 

In the method of the sensitivity analysis, it is no longer need to cal-

culate the velocities of all knots explicitly because they are substituted 

into the subsequent equation as an alternative way to evaluate the ten-

dency for the optimal design, so that the application of the extension 

of the velocity [91] and the velocity smoothness schemes [93] are all 

unnecessary. 

Conclusively, the movement of the design boundary is now governed 

by the rate of change of the expansion coefficient d which is directly 

determined from the sensitivities of the objective and constraint func-

tionals at all knots. In the next chapter, we discussed the sensitivity 

analysis intensively in term of its efficiency and accuracy. The effect 

of the knot distribution will be studied and POU will be introduced 

to improve the overall quality of the optimization algorithm. Details 

of the numerical implementation will be listed and the results will be 

given as the evidence of the improvement in CHAPTER 4. 

• End of chapter. 



Chapter 4 

RBFs with Dynamic Knots 

In the conventional level set method, $ must be discretized through a 

distance transform on a rectilinear grid. The numerical schemes such 

as upwind schemes, extension velocities and reinitialization algorithms 

must be applied; however, these may limit the capability of the level 

set method. For example, the process of the reinitialization forbids a 

level set function from nucleation of new holes in the interior regions of 

the material [4,16]. The other disadvantages are mainly raised from its 

discrete representation. Since the grid is fixed in space, only the nodal 

values of the implicit function axe used directly. 

In CHAPTER 3 we have already resolved the some of the above 

problems by parametrization [41,93,94], however, the spatial issue from 

using the fixed mesh is not completely addressed by the authors. For 

the parametric sensitivity method, the use of the globally supported 

basis functions means that the boundary integrals of (3.35) and (3.36) 

must be carried out for each RBF, a total of AT x 2 times. For a large N 

(e.g., 10®), these integrals are hardly efficient to compute. This leaves 

a great doubt in the effect of the knot distribution to come into both 

the quality and efficiency of the optimization process in practice. 



4.1 Dynamic Knots for Optimal Distribution 

To tackle this complexity problem, compactly supported RBFs (CS-

RBFs), as shown in Figure 3.1 (e) & (f) may be employed instead. 

They would result in band diagonal and sparse coefficient matrix and 

can noticeably improve the efficiency in the sensitivity computations of 

(3.35) and (3.36) [73,95,96]. But the limited range of the local support 

of the basis functions demands a denser set of the basis functions to be 

distributed in the design domain, substantially increasing the number 

of RBFs and hence compromising the computational efficiency gained 

in using the local supports. A modest number of CS-RBFs may give 

rise to irregular boundary shapes in the optimal structure obtained [94]. 

Therefore, the greatest benefits of the parametric level set method 

lie in reducing its numerical complexity while maintaining the fidelity 

of shape and topology representation. An important potential of the 

RBF parametric method is that we have more freedom to choose design 

variables and to control more parameters with the sensitivity analysis 

and that we have potentially more efficient strategies for the interpo-

lation of the level set function with the globally supported basis func-

tions. These developments, and their combinations, would make the 

RBF level set representation a truly powerful technique with significant 

efficiency in the numerical computations. The aim of this proposed re-

search is to generalize the RBF parametric technique for the structural 

shape and topology optimization. Central to the research development 

are two key techniques: (1) a new parametric scheme of dynamic knots 

and (2) a use of the partition of unity (POU) scheme which will be 

discussed in next chapter in detail. 



4.2 RBFs with Dynamic Knots 

In the following contents, the first goal is to devise a numerical scheme 

for an optimal distribution of knots of the radial basis functions. Ra-

dial basis functions provide a powerful method for interpolation of the 

level set function. The concept is rooted to their use for multivariate 

interpolation to scattered data [74,88,96]. So, we introduce a scheme 

that can make use of the knot position as one of the design variables in 

the optimization problem. In this way, we can easily to move around 

the knots inside the domain where the topology changes are more rig-

orous. We choose IMQs as the implicit representation of the level set 

function ^ because of its stability and high sensitivity, which can be 

written as 

= (4.1) 
^ ( x - x O ' + c? 

We assume the expansion coefficient as a constant so that the formu-

lation of the RBFs interpolants (3.30) can be re-written as 

N 

$(a:’i) = fai(^i(a:，t)’ (4.2) 
t=i 

Our idea is inspired by the work in [54,61] to consider the varia-

tion of the knots for the purpose of improving the performance of RBF 

interpolation to scattered data. But, unlike in [54,61], our problem 

is not static, but rather dynamic. So, we need optimally distributed 

RBF knots in the design domain Cl{t) during the entire dynamic evolu-

tion process of the level set function ^{x, t) changing in pseudo-time t. 

Thus, the knot positions must be dynamic as well, i.e., Xi = Xi(t). In 

our dynamic knots scheme, we would regard the positions Xi of knots 

as design variables, besides the expansion coefficients ai. 



Remark We can modify THEOREM 3.2 and THEOREM 3.3 to enable the 

movement of the knot position and hence the knot can move towards 

the position where the change is more critical as determined by the 

shape sensitivity. In such case, we may use fewer number of knots 

to describe the properties of the system while the smoothness of the 

implicit function is satisfied. 

THEOREM 4 . 1 In the following we assume the expansion coefficient ai 

as a constant throughout the optimization process; however, the po-

sitions of the knots xi are now changed with time and (4.1) can be 

modified as 
1 

(工，t)= 

hence, (3.31) is rewritten in a new form 

(4.3) 

N 

i=l 
(4.4) 

where 

difi 
dxi 

{Xi — x] (4.5) 
y/(x - Xif-j-cf 

Then, the normal velocity in term of the rate of change of the knot 

position Xi on the free boundary is 

1 d^pi (x, t ) . 

i=l 

In the following step, we substitute (4.6) into (3.3) to obtain the shape 

derivative in term of Xi 

t=l an 
p
 

1
 

(4.7) 



Since L is still dependent on t through xi, we can derive the following 

expression by chain rule again 

dL A aL . A d j . � A d v Sr^ uju ^ uj ^y f . ON 
dt = + (4 .8) 

t=i 1=1 1=1 

As shown in (4.7) and (4.8)，the sensitivities of the objective function 

and the volume constraint can be rapidly obtained by comparing them 

in the following fashion: 

dJ f f \Tn f \ ^ 抑i (工’ 0 , 
dxi V 丨•剩 dxi 

an 

dxi V |V$| dxi 
on 

二 I、…、N. (4.9) 

=1,…，N. (4.10) 

Proof This result is a straightforward corollary of THEOREM 3.2 and 

THEOREM 3.3. 

4.3 Optimization Algorithm 

The knot positions are eventually permitted to change in each iteration 

of the design optimization. Their changes are determined through the 

design sensitivity analysis and are guided by the optimization process. 

With the RBF representation of the level set function, we can directly 

obtain the sensitivity of the objective and constraint functionals with 

respect to Xj (i.e.载，载)’ respectively. 

To find the local minimum of the objective function as stated in 

(3.1), we make use of the steepest descent method to proceed with the 

search in the descent direction of the sensitivity functions at the cur-

rent point as shown in (4.9) & (4.10). Normally, the gradient descent 

method is only suitable for the unconstrained optimization problem as 



the discrepancy of the gradients between the objective and the con-

straint fiuictionals may be large. However, the lagrange multiplier re-

duces the gap of the gradient difference and balances the effects caused 

by them. As a result, the descent method can be applied in this situa-

tion correctly. 

Prom (4.8) the search direction can be defined as 

Xi = 4 - A ^ 1 , i = 1�…�N� 
\ dxi dxi 

and the position of knots can be updated 

= xj' + rxi, 1= 1�…，IV� 

(4.11) 

(4.12) 

where r is the time step and it is fixed as a positive constant. In fact, 

the time step is chosen under the Courant-Priedrichs-Lewy condition 

(CFL condition) which is a necessary condition for convergence while 

solving certain partial differential equations (usually hyperbolic PDEs) 

numerically. For example, if a boundary is crossing a discrete grid, 

then the time step must be less than the time for the boundary to 

travel adjacent grid points. In practice, the time step varies from one 

model to another and hence some trials are necessary to determine the 

suitable time step by the actual experience. 

Once the knots position is updated as 工广，we can calculate the 

corresponding new basis function 广 by (4.3) 

二 , 1 2 _’ (4-13) 

and hence the updated level set function is 
N 

妒+1 = E a i ( / ? p i ’ （4.14) 
.1=1 

thus, the implicit function is computed everywhere in D and then the 

boundary of the structure is propagated accordingly. 



Algorithm 1 Our proposed algorithm is an iterative method and im-

plemented as follows: 

1: Choose initial ^ D, set n = 0. 

2: repeat 

3: Compute 6 Q". 

4: Compute ip^ G i.e. solve the RBF equation (4.3). 

5: Solve the descent gradient 截，by solving (4.9) & (4.10). 

6: Evaluate the search direction in (4.11). 

7: Update the position of knots a;广 by (4.12). 

8: Update the RBF value (p"- on each knot by (4.13). 

9: Update the level set function by (4.14). 

10: Update the shape n奸工. 

11: Increment the iteration n. 

12: until - < TOL. 

The new shape fin+i is characterized by the level set function 妒 

through the time step At^， i t is chosen in the way that 

^ (4.15) 

Here, we may also update the expansion coefficients and the 

positions of the knots Xi simultaneously. As the implicit interface is 

related to both the parameters, this methodology will provide more 

accuracy to regulate the propagation of the boundary during optimiza-

tion. However, the sensitivities of both parameters are greatly different 



in scale so that we must be careful to choose the time steps to avoid 

discontinuous data happening in either update scheme. 

In this study, we present the simpler process with the update scheme 

of changing knot position and steepest descent method to illustrate the 

capability of the parametric optimization, however, it is easily extended 

to the more complicated algorithm such as MM A and OC methods. 

4.4 Numerical Results 

Here, we present illustrative numerical examples throughout the spatial 

discretization which is done with piecewise bilinear finite elements on 

quadrilateral cells. In Section 4.4.2, we show the results using the 

variant of the optimization loop building up the entire shape function 

as described in Algorithm 1 and the results of the other variant are 

mainly the same. 

We consider the minimum compliance problem with the volume 

constraint in Section 4.4.1 on the space-time domain. Assume the 

Young's modulus 二 1 for solid material, E — 10"^ for void material 

(i.e. holes) and Possion's ratio i/ = 0.3. The “ersatz material" approach 

is adopted because it is simple but effective in topology optimization [4 . 

The positions of the knots initially coincide to the corresponding 

nodes of the mesh. As mentioned in Section 4.2, we only employ IMQs 

function in this numerical example and the shape parameter Q will 

influence the final optimization result. Some studies have been done on 

choosing the optimal Q but it is not the issue in this paper. Therefore, 

we select the shape parameter c, = /i, where h is the size of the finite 

element. 

In order to satisfy the volume constraint, we employ the augmented 

Lagrangian method (ALM) to evaluate the Lagrange multiplier A. The 



iteration is terminated when the diffcrciicc of two siicccssivc Lagrangiaii 

values is less than the prescribed tolerance TOL = lU ® or when t.lm 

maximum number of iterations rcachc? the prcscribcd limit, which is 

set to 500 steps in this study. 

All computations are*done with the software packages MATLAB. 
/ 

The shape is obtained by j) lot ting tlie contour of l.he height matrix 
% 

calculated from the sum of tho radial basis functions on all the nodes 

of the prescribed domain, i.e. <I>(x) with the matrix size of 81 x 41. 

For the detail of the contouring algorithm, readers may refer to the 

clociimeiitation of MATLAD in the section: Graphics/Cantour Plots. 

As shown in Figure 4.1(b), the shape is presented in term of the 2D 

contour of the level set function. The z-value of the current contour 

level is set to be 二 0 where is the location of the boundary, as 

it can be seen in Figure 4.1(a). The positive z-values represent the 

interior of the shape and vice 'versa. 

(a) 3 D Contour plot of 4>(x) 

Figure 4.1: Contour plot of level 

(h) 2D Contour plot of a»(x) 

set function <I>(2：) in 2D and 3D 



Fij^uro 4.2: D(\sign domain - Cmitil(�v(�i- Ix'aiii wit h diincnsion L : 11 

4.4.1 Test problem 

Short cantilever beam 

Tli(�i)i.()l)l(，m in CASE 1 Sc '2 is a short canlilcvor beam (厂： / / — 2 : 1) 

witli a fixed boundary on tho loft, where no displacciiicMit is allowed 

shown in Figure 4.2. A point load P 二 i is applied at t.lu�iiiiddk* 

of the right end. The (Icsign domain is divided into a rcctilinear incsh 

as 80 X '10 and the size of the (initt> eleriK^nt is h 二（U>2r). the voliim(� 

fraction ( = 0.5 and tlio tiiiu; stop tr = 5 x H)""̂ . 

MMB beam 

In order to show the extenclability of the dynamic knots method, wr 

trial it witli tlu; MMB Ix̂ Min wit.li th(i ttist contij^iiratioiis which arc 

(lifi�(T(mt from the short cantiloven- hcain ust^l in CASE i and (’ASK 

2. Tlio problem in CASK 3 is a MBB l _ i (L : // = 4 : I) with its 

k�l.t. comer of the bol loiii is lully conslraiiKKl, wliilo llu' i.iglit coriKn- is 

support(K1 vertically and allow(Ml to inovo horizontally AS can IK�seen in 

Figuio 4.3. A point load P == 1 applied at its iiikldlo top suiraco. The 

design (ioinaiii is divided into a rcctiliTirar mesh as 1 ()U x 10 but <inly 

tlic riglithand side of the doinain is computed ( lu(� to its stnictiiral 



4.3: D<'.sig;ii (ioinaiii - MMB b(�ain witli dimonsioii L : II - I : I. 

syiiiiiKM.iy- The size of t.li(�Hiiite element is li — 0.1)25, the \.olum(� 

iraclion C = 0.5 and " i (�lime stop f^ - 5 x 10—\ 

4.4.2 Computa t ions of R B F Dynamic knots 

CASE 1 Optimization without optimal knot distribution 

In this example, we discuss tho optimal prohlciri with liilly loaded Rlil: 

knots on th(i grid. 81 x 41 — 3321 knots. Suppusedly. it should give 

t li(�maximum resolulioii of Uic shapt�roj)i(\s(nilali()ii and piovi(l(�the 

host [)Ossible iiunu^rical slahility to I lie siimilatioii. Ilowovor, the re-

sult shows that t lie (jv<M-popiilato(l knot density not only slows dmvn 

1110 roinputat ion pmrcss but also prohibits sonic knot.s rroiii moving 

to a stable position. I he knots will move t.() the positions wIipi.p rlir 

losullaiit strain (Miergy density is I lie niininiurti, i.e. the itiininiuiii La-

grangiaii value, (.'oiiscciiiciitly, tho tixcess knots will iviiiaiii (m 

luulcsirahlo j)()siti()ns that will eventually reduce! t ho spird of I he coii-

vcrgt'iKx .̂ 

As shown ill Kigmr 1.4, the valuos of Lagiaiigiaii and moan (onipli-

ancc are rapidly convorgod lo the coiislaiits in tho first 30 slops, and 

thc*sc const ill lis almost remain un eh an god in the following iterations. 

Ilowpvor, wo can so(， l.roiii t Ik? plot of the volume ratio (i.e. volume 



Figure 4.4: Convergence history of CASK I 

coiisUaiiit) that the fluctuation is persisting until the end ()l the 301) 

steps. 

In Figure '1.8，one can notice that the sliapo does not liavĉ  significant 

change after J 00 steps. In fact, the oxcĉ ssivc.' imiiibcT of knots (:i<�at()s 

a-dense interpolation niatrix in l.lie RBF oplirnizalion thai, slows dovyii 

the convcirgence of Mu? local optimal shape, e.g. in the niiddlo of tho left 

hand sido ol Uio beam - Uio small 'island'. The average t ime c:onsiiiiiccl 

[x'l it 01 at ion 二 12.5 seconds and tlio solution cannot converge aftcn 5UU 

steps. 

CASE 2 — Optimization with optimal knot distribution 

III this ease, we tlis( uss the optimal problem with various loaded RBF 

knots on the rcclilinear mesh. The niinil)crs of the knots aro to.steel 

in the following fashion: (a) 81 x 21 = 1701, (h) 11 x It = ]()81 

and (c) 41 x 21 = 861. From the observation, the siiioothness of the 

100>' 

J  

i50 



evolving boundary is still saCisfiod and t he iiurneric-al st.a!)ilit,y remains 

iiiichaiiged, oven though Uie resolution of I ho shape rcprcsentHlion is 

rcdiiccd. 

The results shows that the optimally-fitted knot density expedite 

the movement of the knots and significantly lower t}ie coinj^iitational 

cost because of the lesst?r knot imnibor. All oi. the knots can readily 

move to the stable position as there is plenty of room favoral)le for tlic.ir 

flow. Thus, the resiillaiil. sUain energy density can reat:h the? rniiiiinmn 

ill the IciLst pussible iiiiicfraiiic. The best, result is found to bt�CASK 

2c — the smallest possible knots size in this oxpoiiiiiciit. 

As shown ill Figure 4.5 (CASE 2c), the valiu.-s of Lagraiigiaii and 

mean compliancc arc immediately converged to the iniiiiinum level 

within tlie first 30 steps. At the same time, we can seê  from the plot. of. 

tho vol I line ratio (i.e. volume constraint) that the variation has i()a(:hf�d 

its 011(1 aflnr 80 sleps. No (iisl inclive vmint ioii can be observed after 100 

steps ami even the .solution is c(jnverged eventimlly under a lmi.sh(�st. 

criteria (i.e. TOL ^ 10"^). 

Ul, 

rv-� 

Figure 4.5: Cunvcrgciicc history of CASE 2c (41 x 21) 



Table 4.1: Comparison of results for CASE 1 and CASE 2. 

CASE No. Knots size No. of Knots Time/Step (s) Iteration Compliance 

1 81 > < 41 3321 12.5 500 62.4 

2a 81 > < 21 1701 10.2 500 62.2 

2b 41 > < 41 1681 10.0 500 61.6 

2c 41 > < 21 861 8.6 402 60.8 

In Figure 4.11, it is obvious that the shape has almost reached its 

optimal form within the first 100 steps. The knots readily move to 

its favorable positions and this help to remove the unwanted material 

from the domain in a few iterations. All the separated islands have 

been minimized instantly and they are completely eliminated after 200 

steps. The average time consumed for each iteration has been reduced 

dramatically to 8.6 seconds and finally the converged solution is ob-

tained at 402 steps. 

In Table 4.1，we note that the significant improvement brought by 

the optimally-distributed knot algorithm. Apart from the impressive 

computational advantages, the final results generated from the set of 

CASE 2 are more accurate than the one evaluated from CASE 1. We 

remark that not even the higher quantity of knots will result in a bet-

ter solution, it will jeopardize both the speed and the quality of the 

simulation. This fact implies that the parametric topology optimiza-

tion can be beneficial by dividing the domain into many subsets for 

independent calculations. In the next section, we will investigate the 

possibility of the proposed philosophy and extend it into formulations. 



Table 4.2: Comparison of results for CASE 3a and CASE 3b. 

CASE No. Knots size No. of Knots Time/Step (s) Iteration Compliance 

3a 81 X 41 3321 12.6 500 77.8 

3b 41 X 21 861 9.4 256 76.2 

CASE 3 - Test example of MMB beam 

It is similar to the previous cases that the fully-loaded RBF knots 

CASE 3a (81 x 41 = 3321 knots) does not show the better results in 

both the quality and efficiency than CASE 3b (41 x 21 = 861 knots). 

The problem of the over-crowded knot density in CASE 1 repeats again 

here in CASE 3a and the calculation speed is slowed down by the 

excessive knots in the domain. The details of the model settings are 

listed in Table 4.2. 

As shown in Figure 4.6 (CASE 3a), the values of Lagrangian and 

mean compliance are gradually decreased to the constants after 150 

steps. There are no significant changes for these constants afterwards. 

In Figure 4.12, one can notice that the change of the shape slow down 

significantly after 200 steps, there are some unwanted materials still 

remained on the final shape at step 500. The average time consumed 

per iteration = 12.6 seconds and the solution does not converge after 

finishing 500 steps. 
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Figure 4.6: Convergence history of CASE 3a (81 x 41) 

As shown in Figure 4.7 (CASE 3b), the values of Lagrangiaii and 

inean compliance are immediately converged to the minimum level 

within the first 60 steps. At the same time, we can see from the plot of 

the volume ratio (i.e. volume constraint) that the variation hiui reached 

its end after 100 steps. No distinctive variation can be observed after 

150 steps. In Figure 4.13，the shape has almost reached its optimal 

form within the first 80 steps and the smaller number of knots enables 

each individual knot carrying higher normal velocity from the same 

sensitivity and this help to evolve the boundary of the shape further 

and faster in each iteration. All the unwanted materials have been 

completely eliminated after 100 steps. The average time consumed for 

each iteration has been reduced dramatically to 9.4 seconds and finally 

the converged solution is obtained at 256 steps. 

4.5 Summary of Dynamic Knots Scheme 

It is known that there is an intimate relation between the numerical 

stability and the approximation accuracy of the iiilerpolatioii iiieth()(L 

Generally speaking, the interpolation's approxiiiiatioii quality, nunier-
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Figure 4.7: Convergence history of CASE 3b (41 x 21) 

ical efficiency and stability all depend on the density and the distri-

bution of the radial beisi« functions in the representation domain [61 . 

In view of numerical cfFicicncy and stability, the separation distance 

between the knots cannot be too small. On the other hand, a good 

proxiination of the level set function (thus, an accuratc representation 

of the structure's shape) requires the separation distance suitably fine. 

Obviously, there must be a trade-off between these two criteria in de-

termining how to distribute the radial basis functions, especially when 

simply using a'miitbnn grid aus in the common practice. It is even 
• 4. - . i 

if • 

harder to define an optimal distribution of RBF knots in the design 

domain. 

For our problem of structural topology optimization. The structure 

being optimized changes its shape in each update during the optimiza-

tion proccss. It is not possible to use a fixed set of basis fimctioiis of 

reasonably sparse separations to represent the level set function with 

good approximation accuracy. Therefore, a relatively denso grid of 

knots is coiiiinoiily used, al. the expense of iivinierical eflicieiicy and 

convergence rate in the optimization algorithms. The situation is sim-

ilar to the use of radial basis functions for solving partial clifTerential 

5 0 
I 

50 

00 / 



equations [20,73], where the choice of the RBF set can have a direct 

impact on the numerical solution. In addition, some of the knots move 

to the outer bound of the domain where contains no structural in-
t 

formation of the shape. However, it will not deteriorate the accuracy 

because the resultant level set function is actually calculated from 

the fixed sampling points, i.e. the nodes on the fixed rectilinear grid. 

As in (4.2)’ each RBF ipi[x) interpolates with all the nodes and then 

gives the result in respect to its nodal position x on the fixed grid. 

In this chapter we have successfully developed a dynamic knots 

method to replace the common practice of uniform grid distribution of 

knots and hence we can reduce the number of the radial basis func-

tions in approximating the level set function. A significant reduction 

in the number of RBFs would increase the numerical efficiency, while a 

non-uniform distribution of the knots would help maintain the approx-

imation quality and enhance the numerical stability. Apart from the 

improvement of the computational speed, the overall quality and the 

rate of the convergence are increased due to the higher maneuverabili-

ties of the knots inside the domain. As it can be seen from the results 

shown in CASE 2c and CASE 3b, the computational cost has been 

dramatically decreased and it enables the possibility for solving the re-

altime engineering problems in the way of the structural optimization 

by the robustness of the level set method. 

• End of chapter . 



Figiiio 4.8: Opt.iinizat,ioii steps of CASE i: 81 x 41 = 3321 kiiols, tr = 

5 X 10一3 and Ci 二 0.025，no coiivcrgcncc after 500 stops, time consumed per 

iteration = 12.5 second. 
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Figure 4.9: Optimization sto[)y of CASE 2a: 81 x 21 — 1701 knots, (：丁 二 

5 X 10_3 and Cj = 0.025, no convergence after 500 steps, t.inio consmn�fl per 

iteration = 10.2 4>econd. 
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Figure 4.10: Optimization steps of CASE 21): 41 x 41 = 1681 knots, “ = 

5 X 10一3 and Ci = ().()2r>, no convergrnco after 500 steps, t iino COHSUIIKKI per 

iteration = 10.0 second. 
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Figure 4.11: Optimization steps of CASE 2c: 41 x 21 - 861 knots, -fr -

5 X 10一3 and Ci = 0.025, converged at Step 402, time consumed per iteration 

=8.6 second. 
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Figure '1.12: Oplirnizalion steps of CASE 3a: 81 x 41 = 3321 knots, Lr = 

5 X 10一3 and Ci — 0.025, no convorgonco after 500 steps, tinio consunied per 

iteration = 12.6 second. t 
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Chapter 5 

RBF-POU Method 

The discretization of partial differential equations (PDEs) is usually 

obtained by covering the domain of interest by a suitable grid. Then, 

after time discretization, linearization, and space discretization {by fi-

nite elements, finite differences, or finite volumes), a linear system of 

discrete equations is set up and solved. Beside uniform structured grids 

which are most simple to handle, block structured grids and unstruc-

tured grids are also employed successfully. Furthermore, for dealing 

with non-smooth data or solutions, adaptive refinement is a must for 

efficiency reasons [2,13,22,52 . 

However, all grid- or mesh-based methods are quite involved when 

it comes to time-dependent problems with complicated geometries, free 

moving boundaries, and interfaces. Then the geometry of the domain 

may change over time, the non-smooth part of the data or the non-

smooth part of the solution changes with time, or the location of sin-

gularities of the solution may vary time dependently. In the Eulerian 

approach, an adaptive mesh technique must follow the time-dependent 

features of the data or solution by local refinement and coarsening-of 

the mesh [13, 21, 52, 67]. But time-dependent adaptive mesh refine-



merit and coarsening is not simple, especially for three-dimensional 

(3D) problems. It is very tedious that programming is complicated, 

data structures are not easy to handle, and the storage overhead is 

significant. Besides, good local and global error estimators are neces-

sary. Therefore, there exist only a few unstructured adaptive programs 

which are able to handle 3D application-oriented problems with time-

dependent change of the geometry, the data, or the solution. 

5.1 POU Method 

5.1.1 Engineering Considerations 

In real life engineering applications, a very time-consuming portion of 

the overall computation is the mesh generation from CAD input data. 

Typically, more than 70% of the overall computing time is spent by 

mesh generators. In result, especially within the engineering commu-

nity, there is growing interest in other discretization methods which 

involve no mesh at all. These approaches are summarized under the 

term meshless or gridless methods. The main idea is to consider points 

only, i.e. we omit any fixed relation among the nodes such as element 

boundaries, and move these points in a time-dependent manner. The 

location of the points and the distribution of the points account for 

the description of the changing geometry, the change in data, and the 

time-dependent changing variation of the solution or its gradient. 

5.1.2 Gridless Discretization 
I 

Generally speaking, there are two different types of meshless approaches 

- t h e classical particle methods [47,48】，and gridless discretizations 

based on data fitting techniques [7, 23]. They are truly Lagrangian 



methods, i.e., they are based upon a time-dependent formulation or 

conservation law. In this content, We will only focus our discussion on 

the later method - gridless methods that follow a different approach. 

Patches or subdomains are attached to each point whose union forms 

an open covering of the domain. Then, local shape functions are con-

structed with the help of methods from data fitting. These shape func-

tions are used in a Galerkin or collocation discretization process to set 

up a linear system of equations. Finally this system must be solved 

efficiently. 

According to the data fitting method concerned, there are three 

approaches: (i) Shepard's method [79]，which has a consistency of first 

order only, will be studied and used for data-fitting in the optimization 

process later; (ii) whereas there are also moving least squares method 

(MLSM) [40],which generalizes Shepard's approach implicitly to the 

case of higher order shape functions; (iii) and the partition of unity 

p-version method, which generalizes Shepard's approach explicitly to 

higher consistency orders. 

5.1.3 Shepard ' s Method 

The discretization is stated in terms of the points only. To obtain test 

and trial spaces, patches or subdomains uji C IR̂  are attached to each 

point Xi whose union forms an open cover {cjj} of the domain Q, i.e. 

Q, C IJ^x- From the given weight functions Wi, local shape functions 

ipi are constructed by Shepard's method. They form a partition of 

unity {(^i} such that 

y ^ (Pi = I on Q. (5.1) 
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Figure 5.1: Typical examples of the shapes of a patch uji 

Then, each shape function ipi is multiplied with a sequence of local 

polynomials to gain higher degree shape functions. These are finally 

plugged into the weak form to set up a linear system of equations. 

Now we associate a certain weight function Wi{x) to each sub-

domain LJi. Since we decided to use rectangular patches only, i.e. 

cji = � ! = {工⑷ e R ， — 工 叫 < /4')}’ where hi € R 

is the half of the diameter of the patch cjj., some examples are shown 

in Figure 5.1. The most natural choice is to use a product approach of 

one-dimensional local functions, i.e. WAx) where 

supp {Wi) = Ui. If we use [0，1] as reference interval and define the 

affine linear mapping i f ) : [0,1] — � —i f ) ( a ; � ) ’ we can de-

fine the respective weight functions as 

where the one-dimensional weight function W can be any non-negative 

function. Furthermore, we obtain the mapping from the reference 

element [ 0 , t o Ui as the product : [ 0 , — > cjj, x —> Ti(x)= 

In the next step, we should construct shape functions 供 from these 

given weight functions Wi with the help of data fitting techniques. 

In general, a data fitting method produces an approximation of a 

function cj) by 
N 

~ “ (5.2) = > 

i = l 

where N is the number of patches, are given data derived from 



that. Shepard's method uses the idea of inverse distance weighting, 

which leads to shape functions 

= ， ） ’ (5.3) 

where Wi{x) = ||x But since such shape functions have global 

support, they would lead to a dense stiffness matrix and a quadratic 

complexity of the method. We therefore use a localized version of 

Shepards approach. There are basically two variants. In [40] a locally 

supported singular weight function such as 

Wi{x) = Li{x)\\x — where Li G and supp (Lj) = uji, 

(5.4) 

is used. This approach generates an interpolatory partition of unity, 

i.e. (pi{xj) = 5ij. Another approach is to employ a locally supported 

smooth weight function. We will discuss it in more details next section. 

On the other hand, the amount of overlap of the cover patches and 

the choice of weight functions Wi affect the smoothness of the Shepard 

functions ipi. If the cover is minimal, i.e. there is exactly one patch 

(jjj for every x G n with x E uJ] ^ the partition of unity degenerates to 

the characteristic functions (pi = Xui independent of the chosen weight 

functions Wi. Thus, we see that small overlaps will cause very large 

gradients of ipi close to the boundary of the respective support uJi. 

5.2 RBF-POU Model 

The key concept of POU method is that we divide the design domain 

into numbers of overlapping patches, or siibdomains as described in 

Figure 5.2. Let be a collection of M overlapping patches which 

cover n such that O C IJ^i- In order to yield the POU of the cover 



we need to define a collection of the non-negative shape func-

tions {(/>t}fli with compact support and coiitinuoiis functions such that 

its property as shown in (5.6). For cach siibdomaiii Q,, we use to 

computo a local reconstruction function Then, the; approximation 

(i of the global function 少 can be defined by the sum of all the local 

inierpolants with a set of shape functions 0,(.r) as 

M 
<!> (x, t) = J 2 (.T, 0 Or), (5.5) 

and this set of positive, compactly-supported shape fiinctioiis 0,(.t) 

art* oblai 110(1 hoiri a set of weight functions \\\ by an inverse dislaiico 

weighting proccduro 

(Pi �= V � / 、， ( � ) 

where it satisfies i^') = 1. There are many choices for the smooth 

weight functions ly^ and they are often defined as the composition of 

a distance fiiuclion Di : M" — [0,1] and a decay function V : [0, 1] —+ 

0,1] such that VV, (x) — V o Dj (x) [88]. The distancf function must 

smooth at the boundary of Q.̂ , then D,(j：) = 1. For an Euclidean box 

in 3D defined by two opposite corncrs S and T，the disLan(:(�function 

I'iguro 5.2: Plot of two subdoiiiains il̂  in tiie entire ciornain il uiidor l)OU 

condition 



Di is expressed as [30’ 97 

r e l L �Tt-ST? 

The decay function V must be continuous from the local interpolant 

to the global function The following functions are recommended 

for these continuity requirements: 

: �= 1 - d� 

Ci : Vi(d) = 一 Scf + 1, 

C^ ： V^{d) = -6d5 + — lOd^ + 1. 

(5.8) 

5.3 RBF-POU with Stationary Knots 

5.3.1 Sensitivity algori thm 

Now we assume that the positions of knots Xj are fixed during the 

optimization process and the expansion coefficients aij changes with 

time. For equation (5.5), the local reconstruction function 少i is now 

represented by RBF interpolant where (pij = (pi (||x — Xj\\), Xj G D. 

Then, modify (3.30) as, 
N 

= (5.9) 
j=i 

Substitute (5.9) into (5.5) for the new representation of and the 

Hamilton-Jacobi equation (2.13) can be rewritten as 
M N 

J ^ ' / ' i Y l - ^n I = 0, (5.10) 
i=l j=l 

and hence the normal velocity Vn on the moving boundary can be ob-

tained by rewriting (5.10) 
1 Ad N 

= " " " ( 5 . 1 1 ) 

•中 1=1 j=i 

76 



As derived in THEOREM 3.3, we substitute (5.11) into (3.3) the 

shape derivative of the Lagrangian to construct the corresponding sen-

sitivities 
M N dL 

= £ E 知 . / (入-咖)TC咖))<i>m � ds, (5.12) 
i=i 7=1 L 

dt 
j=i an 

then by chain rule, we get 
j r M N or M N r . J M N 

As shown in (5.12) and (5.13), the sensitivities of the objective function 

and the volume constraint can be derived by comparing them in the 

following way: 
Qj r 1 

£{u)^C£{u)———(j)i(fij{x)ds^ 2 = 1, N\j = 1 , M , 
dOLij J 

an •中 

(5.14) 
dV f 1 

(t>i^ij {x) ds� i = 1 , N . � j = 1’ …，M. doiij 
an 

(5.15) 

5.3.2 Optimizat ion a lgor i thm 

To find the local minimum of the objective function as stated in (3.1), 

we employ the steepest descent method to proceed with the search in 

the descent direction of the sensitivity functions at the current point 

as shown in (5.14) & (5.15). 

Prom (5.13) the search direction can be defined as 

Oii-i =— OJ + A ^ ) , i = = (5.16) 
dQij dot” 

and the expansion coefficient otij can be updated as 

a , = + 丁知、 i = l,…’ N - j = 1，..., M, (5.17) 



where r is the time step and it is fixed as a positive constant. 

Once the expansion coefficient is updated as aj^+i and substitute 

into (5.9) to get the updated local interpolant, thence the new level set 

function can be deduced from (5.5) 

M N 
= (5.18) 

i = l j = l 

and then the boundary of the structure is propagated accordingly. Be-

cause the knot positions remain unchanged and the shape function is 

independent on time, i.e. is constant throughout the process. 

Algorithm 2 The proposed algorithm is an iterative method and im-

plemented as follows: 

1: Choose initial i o G D, set n — 0. i 
I 

2: repeat 

3: Compute li" G 0". 

Compute 6 i.e. solve the RBF equation (4.1). 

Solve the descent gradient , 载 by solving (5.14) k (5.15). 

Evaluate the search direction dy in (5.16). 

Update the expansion coefficient by (5.17). 

Update level set function 态“+丄 by (5.18). 

9: Update shape ̂！“+丄. 

10: Increment n. 

until J - J ( V ) < TOL. 11 



The new shape is characterized by the level set function 

through the time step A t ” it is chosen in the way that 

^ (5.19) 

5.3.3 Numerical result 

CASE 4 - Optimization with stationary knot and POU 

Here, we present an illustrative numerical example - CASE 4 and the 

test problem is the same as the one implemented in Section 4.4.1. We 

summarize the model settings used in this test and the computation 

time in Table 5.1. 

Table 5.1: Comparison of results for CASE 4. 

CASE No. Knots size POU Time/Step (s) Iteration Compliance 

4a 81 > < 41 V 8.5 1000 62.4 

4b 81 > < 41 X 11.5 1000 62.4 

Although we keep all the parameters same as them used in the 

previous cases, we must be careful that no direct comparison can be 

made between these two models. It is because we do not apply moving 

knots scheme in this case and the knots are fixed in space instead. As 

concluded by most of the authors (41,93,101] that the dynamic knots 

scheme is far more efficient than the method of changing expansion 

coefficient only. 

For the simplicity of this feasibility study, we divide the entire do-

main into two artibdomains only in CASE 4a, however, it is easy and 

straight forward to extend it into multiple partitions for the finer cal-

culation. In addition, the test problem is optimized with a stationary 



knots schcrnc labeled as CASE 4b for tlio coinparison piirp()S(j, as it 

can b(? seen in Figure 5.11. 

In Figure 5.10, one can notice that the shape docs not have sig-

nificant. cliaiigo after tho first 100 st(，ps. T[i(» outline of. the optimized 

shape can only l)c obtained after 500 stops, ('‘specially for the dirnimi-

t ion of the small .iskuicl' in 1 lio iniddlo ol' l.lio l(，R hand side ()�.t lie beam. 

This rOS!lit coincide with the stop history of tlie met,hod of t ho changing 

(•fxidicient Oij. We note that POU method icchicos the compiil.atioiuil 

1 iiiK.' pel iteration by more than 25%. 

Figure 5.3: ConvorgcJicc; liist.ory ol. CASE 4a 
，* 

-As shown in Figure 5.3, tjic values of all I ho object ive indiixcs .sucii 

as Ijagrarigian, volume ratio and mean c(;nipliancc arc gradually urn-

verged to the steady lf，v(�l in bot.vvroii 2UU -- 250 strps. It is cxactly the 
J < 

pcrforiiiaiicc cliaractcristic of stnictural optimization hy the method oi" 

changing coediciciit a. It proves that neither POU incthod iniprovo nor 

clegraflc the quality of tlic coiiiputatioiial result, in fnct, POU incthofls 

only utilizes the computational i(\somc(^ (luring 1 hv, of tlie 

optimization efficient 1}'. 



5.4 RBF-POU with Dynamic Knots 

As shown in Section 5.3, we conclude that POU method will not carry 

any significant loss in the representation accuracy onto the shape, which 

is constructed with the parametric method of RBFs. Unlike (3.35) for 

the original global RBF method, the sensitivity computation is now 

local and much more efficient, for a modest Ni in each local region Qj 

Therefore, we can transform the general shape and topology optimiza-

tion problem into a parameter optimization problem in the subdomains, 

enabling us to enhance computational efficiency without any significant 

loss in representation accuracy. 

In our aforementioned two research tasks, the dynamic knots scheme 

is aimed to utilize each basis function to its maximum extend in the 

level set function representation. Thus, the benefit is to reduce the 

number of basis functions and hence the computational cost. The POU 

RBF scheme restrains the span of a set of basis functions within their 

local region and consequently saves efforts in the sensitivity integration 
t 

computations. Naturally, if we combine these two schemes, we would 

have the best use of the two ideas. 

Our final research task is to devise a combined method to allow 

knot positions to be design variables for the local RBFs within the 

subdomains of the POU decomposition of Q. Therefore, the design 

sensitivity (4.9) would be generalized for the POU method to the vari-

ation of knot Xij in the subdomain Hj and the updating schemes of 

(4.12) for the knot positions can also be utilized in the similar fashion. 

It is expected that the investigation would yield a concrete tech-

nique that combines the dynamic knots method with the POU scheme 

to achieve a high level of computational efficiency with the capability to 

reasonably handle the computational complexity concerning more than 



1,000,000 radial basis functions. At this level,>6f capability, we should be 

able to apply the RBF-based parametric level" set method for shape and 

topology optimization of a large class of three-dimensional structures 

and mechanisms 'and to make the method practically viable for indus-

trial applications in aerospace, structural, and mechanical engineering. 

Therefore, we will test the ‘dynamic knots RBF-POU' extensively with 

different configuration settings in this section and benchmark the re-

sults with the previous findings to validate our approach. 

5.4.1 Sensit ivity a lgor i thm 

In the following we assume the expansion coefficient aij as a constant 

throughout the optimization process, however, the positions of the 

knots Xj in each patch are now changed with time and (4.1) can be 

modified as 

^ij (工，t) 
如-巧⑷)2 + C] 

then, the local reconstruction function is, 

(5.20) 

N 

7 = 1 

(5.21) 

Substitute (5.21) into (5.5) for the new representation of $ and the 

Hamilton-Jacobi equation (2.13) can be rewritten as 

M N 
> niDi J (T t.\ ~ 

(5.22) I
 

•
X
 

\
—
/
 

£
 H

，
 

•
J
 

'
t
 

M
s
 

•少 = 0 , 

where 
M« N 



and hence the normal velocity Vn on the moving boundary can be ob-

tained by rewriting (5.22) 

M N 

Vr.= 
1 • • dipijjx, t) 

•少 “1 “1 狐” 

(5.24) 
i= l 7=1 

Then, we substitute (5.24) into (3.3) to obtain the shape derivative in 

term of Xi 'V 
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(5.25) 

then by chain rule, we get 

dL v^ dL 
dt 
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. 1 1 ^^tJ t= l 7=1 

Xi 

i = l i = l ” 
dxii ” 

(5.26) 

As shown in (5.25) and (5.26), the sensitivities of the objective function 

and the volume constraint can be derived by comparing them in the 

following way: 

dJ 
=—aij I £{u)'^Ce{u 

dx 
on 

d n �s ， 
dx 

dV 
dx 

a 
an 

1 ch'^ds. 
•少 dxi 

i 二 …�N.�j = 

(5.27) 

z = 1, ...，N]j = 1，…，M. 

(5.28) 

5.4.2 Optimizat ion algori thm 

To find the local minimum of the objective function as stated in (3.1), 

we employ the steepest descent method to proceed with the search in 

the descent direction of the sensitivity functions at the current point 

as shown in (5.27) & (5.28). 



Prom (5.26) the search direction can be defined as 

工ij — + A - , i = 1,..., AT;/= 1’...’M， (5.29) 
\dxij dxij / 

and the position of knots Xij can be updated as 

= x^j + rx i j , 2 = = (5.30) 

where r is the time step and it is fixed as a positive constant. . 

Once the knot position is updated as and substitute into (5,21) 

to get the updated local interpolant, thence the new level set function 

can be deduced from (5.5) 

M N 

t=i j=i 

thus, the implicit function is computed everywhere in D and then the 

boundary of the structure is propagated accordingly. 

Algorithm 3 The proposed algorithm is an iterative method and im-

plemented as follows: 

1: Choose initial ^ D, set n = 0. 

2: r epea t 

3: Compute vT G 

Compute € H", i.e. solve the RBF equation (4.3). 

Solve the descent gradient ^ , ^ by solving (5.27) k (5.28), dxij ‘ dx -

Evaluate the search direction i y in (5.29). 

Update the position of knots by (5.30) 

8: Update the RBF value as in S tep 4. 



9: Updatq： level set function by (5.31), 

10: Update shape n" - " / 

11: Increment n. 

12: unti l J (杏n+i) — J (!>") < r o L . 

The new shape is characterized by the level set function 

through the time step A亡了，it is chosen in the way that 

(5.32) 

5.4.3 Numerical resul t 

Now we have successfully enabled the movement of the knot, so that 

the first study should be given to the effect of the number of the over-

lapping knots. It is because the size of the overlapping regions of the 

adjacent patches may impose different effects on the Shepard functions 

(j>i and may cause very large gradient of ( ĵ close to the boundary of the 

respective support Oj. In result, the accuracy of the global approxima-

tion $ may eventually be jeopardized by the insufficient representation. 

CASE 5 — Effect of the amount of overlap of the cover patches 

We present here an illustrative numerical example - CASE 5 and the 

test problem is the same as the one implemented in Section 4.4.1. In 

this test we study three overlapping configuration settings and they 

are: (a) 1-knot, (b) 3-knots & (c) 5-knots in both directions of the 

rectangular patch i.e. rij： and Uy. We summarize the model settings 

and the computation time in the following Table 5.2 and the initial 

patch configuration of CASE 5b is shown in Figure 5.4. 



topo & knots 0 

Figure 5.4: Patcli pattern of CASE fib 

It is straight forward to understand that tlie computational time is 

directly related to the amount of the overlap cover. As shown in Table 

5.2, CASE r)a scorcs the vshorLcst c;oniputationaI time, for which there 

is only one knot sit uated in the overlajipiiig region. In Figure 5.5, we 

capturc the iteration step ‘127' and compare their topologirs and find 

out the results are very similar in 3 cases. 

In fact, the rate of the topology change in 3 cases arc almost the 

same ami hence the amount of the overlap cover docs not apply any 

noticeable effect on the simulation result in cach step, but it does CICCKIO 

CASE No. Overlap size Patcli Total No. Tiiiio/SU'p Complianco 

rii ) < Uy Pattern Knots (sec) 

5a 41 ) < 21 2 x 2 3444 6.83 60.6 

5b 42 > < 22 2 X 2 3696 7.12 60.4 

5(: 43 > < 23 2 x 2 3956 7.32 01.7 

Ta])lo 5.2: Comparison of results for CASE 5. 



(c) CASE 5c 

Figure 5.5： Optimization step 127 of CASR 5 

the speed of the calculation. As the total number of knot increases 

due to a bigger overlap cover, the original coefficient, matrix with the 

(liiiKMisions A = N X N will enlarge in the rate of (N + Uj.) x {N + Uy). 

(h) CASE 5b 

topo & Knots 127 



The results evidence that the overlap cover with one knot from the 

neighboring patch is sufficient, the boundaries of Qi can be well repre-

sented by the Shepard function 0t and thus the accuracy of the global 

approximation l> is maintained in a good condition. Consequently, we 

will only apply 1-knot overlap cover in the following experiments for 

higher efficiency. 

CASE 6 - Effect of patch pattern 

Finally, we need to find out the effect of the patch pattern (Py x P^) 

to the simulation results and its overall efficiency, where P^ and Py are 

the number of patch in x- and y-direction, respectively. Theoretically, 

the efficiency will be raised as the number of patch increases, however, 

as indicated in test CASE 5 that the total number of knots will also 

increase. It exists a contradiction between the number of patches and 

knots towards the performance of the optimzation. 

In CASE 6a, we divide the domain into patches in the x-direction 

only and the model settings are shown in Table 5.3. Then, the domain 

will be cut into patches in y-direction only in CASE 6b as listed in 

Table 5.4. Follow that we discretize the whole domain in x- and y-

direction simultaneously in CASE 6c and the settings are tubulated in 

the Table 5.5. In each case there are five model settings to be tested 

and all the simulations will be stopped at 500 steps unless it converges 

in the earlier stage. The overlap size is 1-knot in n! and Uy in all cases. 

The volume fraction target is 0.5. 

As can be seen in Table 5.4 and 5.5, the computation spefed increases 

as the number of patch increases. Even though the number of knot 

increases with the increment of the patch, the efficiency does not drop 

but rises proportionally. 



CASE No. Patch Total No. 
S • 

Time/Step Compliance Volume 

Pattern Knots .(sec) Fraction 

i 1 x 2 3362 
V 

• 8.05 60.4 0.4^9 

ii 1 x 4 ‘3444 ^ 6,96 60.5 0.499 

iii 1 x 5 3485 6.69 61.0 0.498 

iv 1 X 8 3608 6.41 61.1 0.499 

V 1 X 10 3690 6.29 60.8 0.499 

Table 5.3: Comparison of results for CASE 6a. ‘ 

CASE No. Patch Total No. Time/Step Compliance Volume 

Pattern Knots (sec) Fraction 

i 2 X 1 3402 7.95 60.5 0.499 

ii 4 X 1 3564 6.87 60.8 0.499 

i i i 5 X 1 3645 6.69 60.5 0,498 

i v 8 X 1 3888 6.49 60.8 0.499 

V 10 X 1 4050 6.35 60.7 0.499 

Table 5.4: Comparison of results for CASE 6b. 

In order to visualize the effect induced by the numbers of the patches 

and knots, we plot the calculation time of the "sensitivity analysis" 

against the number of patch for CASE 6a k CASE 6b in Figure 5.6. 

Because the overall calculation consists of three parts: 1. FEM calcu-

lation, 2. sensitivity analysis k. 3. updating processes. The processes 

(1) and (2) are only affected by the number of geometrical node which 

is kept constant throughout all cases. As the times of these two pro-

cesses are fluctuated from step to step, it is more fairly to compare 

their computational costs consumed by the sensitively analysis. 

、 



CASE No. Patch Total No. Time/Step Compliance Voluiiio 

Pattern Knots (sec) PYactioii 

2 x 2 3444 6.86 60.4 0.199 

4 x 4 3696 6.07 ()().5 0.499 

5 x 5 3825 5.98 61.0 0.498 

8 x 8 4224 5.93 61.1 0.'199 

10 X 10 4500 5.93 60.8 0.499 

Tabic 5.5: Comparison of results for CASE 6c. 

.00 

.50 r 
Sensitivity Timsvs Patch Number 

«CASE6s 
»CASE6b 

Figure 5.0: Plot of Sensitivity Time vs Patch Number for CASE 6a Gb 

As shown in Figure 5.6, CASE 6a and CASE 61) have similar patch 

divisions but in the opposite directions. The differences between these 

two eases in terms of number of knots and sensitivity time arc less than 

2%. The result shows that the computation time is mainly governing 

the number of patch as long as the difference in the knot amount is not 

significant large. � 
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CASE No. Patch Total No. Time/Step Compliance Volume 

Pattern Knots (sec) Fraction 

i 5 X 10 4050 5.92 60.6 0.500 

ii 10 X 5 4250 5.94 60.6 0.500 
.• • • 

111 10 > < 20 5000 5.99 61.4 0.500 

i v 20 > < 10 5400 6.01 61.2 0.500 

V 20 > < 20 6000 6.14 62.3 0.500 

v i 20 > < 40 7200 6.50 94.3 0.500 

Table 5.6: Comparison of results for CASE 6d. 

In Figure 5.12 and 5.13，we show the simulation steps of CASE 

6a(iv) [1 X 8] and CASE 6b(iv) [8 x 1) in details, respectively. The 

results ensure that the POU method does not impose significant quality 

problem onto the accuracy of the calculation. We can see in these 

figures that the boundary propagations in both cases are very close 

and the final topologies are approximately the same. 

In order to further study the efficiency change against the number 

of patch and knots, we perform the last CASE 6d to accommodate 

more patch combinations and total knot numbers. The details of the 

model settings are listed in Table 5.6. In CASE 6d(i) [5 x 10], it 

finishes an iteration in 5.92 seconds which is the quickest in this study, 

and the total number of patch and knot are 50 and 4050, respectively. 

As shown in the Figure 5.14，the final result converges to the similar 

topology obtained from the typical dynamic knots scheme as well. 

The results of CASE 6c (iv) & (v) are comparable to the quickest 

one, however, they use higher number of knots to represent the level 

set functions. The overviews of the comparison results are given in the 

following Figure 5.7 (number of patch vs sensitivity time) and Figure 



Figure 5.8: Plot of Sensitivity Time vs Knot Number 

5.8 (number of knot vs sensitivity time). Then, we observe from the 

results that as the patcli number goes over 100, the sensitivity time 

increases even though the patch mimbor is also increasing. It is because 

the knot number increases significant and caiiscs the knot density too 

high that actually slow down the calculation. In CASE Gd(vi) the 

numbers of patch and the knot are the highest, however, the over-

'igure 5.7: Plot, of Sensitivity Time vs Patch Niiinbor 

Sensitivity Time vs Knot Number 
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populated knot density deteriorates the simulation quality as we have 

already commented in the previous chapter. As a result, the final 

topology is not satisfied as shown in Figure 5.16. 

5.5 Summary of POU with Dynamic Knots 

As demonstrated in the numerous and intensive experiments, we con-

clude that the POU method can reduce the computation time without 

jeopardizing the quality of the simulation, as long as the number of 

patch and knot in a reasonable ratio. In this study, we find out that 

there should be one division of patch cover fli for every 8 knots, i.e. 

the diameter of the patch 2/1,, such that the best result happened to 

CASE 6d(i) [5 x 10) accordingly. 

On the other hand, since the combination of the continuous RBFs 

implicit function ipi and the compactly supported shape function (/)i 

provides sufficient representation over the whole domain so that it does 

not need to place large amount of knot in the overlap cover. Otherwise, 

the excessive number of knots in the overlap cover slows down the 

overall performance as shown in CASE 5. It is because the original 

coefficient matrix with the dimensions A = N x N will enlarge in the 

rate of (TV + 几工)x (AT + n^), as happened in CASE 6d(vi). 

In this study, we realize that POU method is stable against different 

arrangements of the patch pattern and the computational efficiency will 

be very close as long as the total number of patch is same. This effect 

has been conducted in CASE 6 in detail. As can be seen in Figure 5.7, 

the cases with the same number of patch use similar sensitivity time 

in an iteration and the maximum discrepancy is less than 5%. 

Finally, we combine the techniques of POU method and dynamic 

knot to minimize the total number of knot, e.g. 861 knots in CASE 2c. 



(a) Step 二 0 (b) Step = 488 

Figure 5.9: Optiinizaliori result of CASE 7: Changing Xij schcrne with POU, 

patch pattern (/)y x Pj.) — 1 x 2 , total knots number 二 88‘2, time consumed 

per iteration = r).r) seconds. 

Now, wc shall have utilize each basis functions ipi to its iiiajcimum ca-

pability ill representing the implicit level set function (k POU method 

confines a smaller set of basis functions within the local cover o;, ami 

hence saves computational cost in the sensitivity integration process. 

CASE 7 - RBF-POU with optimal knot distribution 

Patch ])ini Patch Total No. Time/Step Compliance Vol I line 
(knot) Pattern Knots (sec) Fraction 

21 X 21 1 X 2 882 5.5 fiO.l 0.499 

Table 5.7: Comparison of results for CASE 7. 

Ill the last exy^orinioiit - CASE 7, wc cxainine the iilt.iriiatei perfor-

mance of the combined method with the test ease as of Scctioii 4.4.1 -

short cantilever beam. The model settings arc in the following fashion: 

(Py X Pa； = 1 X 2), total imniher of knot = 882 k: 1-knot in the overlap 

cover, i.e. each patch with a dimensions of 21 x 21. The result is listed 

ill Tabic 5.7; the initial and final topologies are shown in Figure 5.9(a) 

& Figure 5.9(b), respectively. The siiniilalioii is converged at step 488. 

The sensitivity time in this ease is 0.5 second and it is coiriparable 

•”f̂ ， .C 



to the fastest example in previous study - CASE 6d(i), whereas its 

sensitivity time is 0.92 second. 

• End of chapter. 
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Figure 5.10: Optimization steps of CASE 4a: Changing rvij scheme with 

POU, t-T = 5 X 10一3 and c^ — 0.025, no convcngcncc after 1000 steps, time 

consumed per iteration = 8.5 seconds. ‘ 
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Figure 5.11: Optimization steps of CASK 4b: Changing (1�) schcmc without 

POU,, tr = 5 X 10一3 and q 二 0.025，no convergence after 1000 steps, tinu; 

consumed per iteration = 11.5 scconds. 
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lopo 4 knots 500 r4o«JM/Ptlch • 

Figure 5.12: Optimization steps of CASE 6a(iv); Changing Xij schcmc with 

POU，patch pattern (Py x F^) = 1 x 8 , total knots nuinbei, = 3608, time 

consuriKKl p(，r itoratioii = 6.41 scconds. 
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Figure 5.13: Optimization steps of CASE Gb(iv): Changing Xij scheme with 

POU, patch pattern {Py x P：̂) ^ 8 x 1 , total knots number - 3888, time 

consumed per iteration = 6.49 sccorids. 
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Figure 5.14: Optimization steps of CASE 6d(i): Changing Xij scheinc with 

POU, patch pattern (Py x P^) = 5 x 10, total knots number = 1050, time 

consumed per iteration = 5.92 seconds. 
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topo & knots 50 Nodes/Patch = 9 Total nodes = 7200 

Figure 5.15: OpLimization steps oF CASE 6cl(vi): Changing Xtj scheme with 

POU, patch pattern {Py x P^) = 20 x 40，total knots number = 7200, time 

consumed per iteration 二 6.50 seconds. 
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Figure 5.16: Optimization steps of CASE 6d(vi) (cont’)： Changing .r,j 

scheme with POU, patch pattern (Py x P^) ； 20 x 40，total knots niini-

ber = 7200, time consiinipci per iteration = 6.50 seconds. 
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Chapter 6 

Conclusion 

6.1 Conclusion 

In this study, we have successfully transformed the conventional dis-

crete topology optimization problem into its parametric form by the 

use of the radial basis function. The flexibility of the parametrization 

not just provide an easier implementation of the problem, but also put 

forward the shape derivative into an useful shape sensitivity analysis, 

which allow the user to compute the problem with more sophisticated 

mathematical programming methods that offer higher efficiency and 

accuracy. On the other hand, the parameterized algorithms can be 

easily extended to solve for the optimal solution in multi-physical re-

quirements such as minimum stress and eigenvalues. 

In order to further improve the computational e伍ciency, we im-

plement a gridless discretization method to divide the domain Q into 

smaller open cover Qi for more efficient sensitivity integration. POU is 

a time-dependent Lagrangian method and the parametrization of level 

set method makes the implementation simple and straight forward. 

Then, we use the data fitting method - Shepard's method, which has 



a consistency of first order, to approximate the exact solution $ well 
� _ _ A f 

locally with the shape functions such that 歪(a:，t) = Yli 中iO^，O0i(T)-

The theoretical formulations, the calculation algorithms as well as 

the computational results have been implemented and presented in this 

thesis in full.detail. Three major schemes of RBF parameterizations 

are studied here: 

A. RBFLS with dynamic knots algorithm. 

B. RBFLS-POU with stationary knots algorithm. 

C. RBFLS-POU with dynamic knots algorithm. 

The numerical experiments show that Scheme A performs with an 

overwhelming advantages in both the quantitative and qualitative as-

pects as compared to the original moving knots method. Definitely, the 

dynamic knots method consumes lesser computational power and offers 

the users with the converged answers in a shorter timeframe. However, 

the nature of the globally-supported RBF such as IMQs increase the 

computational complexity as the number of knots go over 100,000. It 

is rather difficult to keep the number below this level when we are 

dealing with the models in 3D. Scheme B is our next approach for 

tackling this complexity problem, as its standard numerical algorithms 

are efficient for recursive domain decomposition over multi-levels. The 

numerical results show that the computational efficiency is improved 

while without any significant loss in representation accuracy. 

Finally, we have successfully coupled above mentioned schemes into 

a combined method as implemented in 'Scheme C so that we use the 

knot positions as the design variables for the local interpolant 龟i within 

the subdomains of the POU decomposition of the domain CI. Conse-

quently, we can deduce the generalized shape sensitivities for POU 



method as 截 and 载 for the optimization. Prom the experiments 

of CASE 5 & 6, we show that the approximation quality of the global 

function 4 has not been deteriorated even though the overlapping knots 

move out of the overlap covers. It is an encouraging results that we 

may use lesser knots to complete a simulation with a quality of being 

as fidelity as the work done in CASE 7. 

6.2 Future Work 

In our next research, we will extend this numerical schemes to the 

3D models and the realtime engineering problems. The effects and 

relations among the knot positions, the number of knots, patch config-

urations and the representation quality will be intensively studied and 

numerically observed. 

In addition, we will focus on multi-material microstructure designs 

of multi-physics. These areas are considered as the significant appli-

cation of the structural topology optimization. They have found their 

ways in designing materials with unusual properties such as negative 

Poisson's ratios and zero thermal expansion coefficients [12]. It would 

be informative to compare the results of our approach with those ob-

tained with the homogeneous methods and discrete level set method. 

With the benchmarking results, we shall demonstrate with outstand-

ing numerical efficiency, flexibility in handling topological changes, fi-

delity of boundary representation, and high degree of automation of 

the proposed the parametric RBF-POU based level- set method for 3D 

optimization problems. 

• End of chapter. 
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