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ABSTRACT

The study of Novel Epstein-Barr Virus Encoded Micro-RNAs in

Nasopharyngeal Carcinoma Cells
Submitted by: LUNG Raymond Wai Ming for the degree of Doctor of Philosophy in Anatomical
and Cellular Pathology at The Chinese University of Hong Kong

Infection with the Epstein-Barr virus (EBV) is a strong predisposing factor in the
development of nasopharyngeal carcinoma (NPC). Many viral gene products
including EBNA1, LMP1 and LMP2 have been implicated in NPC tumorigenesis,
although the de nove control of these viral oncoproteins remain largely unclear.
MicroRNAs (miRNAs) are a class of small, non-coding RNAs with a size
around 18-24 nucleotides with significant roles in regulating gene expression by
either transcriptional silencing or translational suppression. As gene regulators,
recent miRNA studies have emphasized the contribution of aberrant miRNA
expression in cancer development. The recent discovery of EBV encoded viral
miRNAs (ebv-miRNAs) in lymphoid malignancies has prompted us to examine
the NPC-associated EBV miRNAs. In this study, we have systematically
examined the NPC associated EBV genome for viral-encoded miRNA expression.
By constructing small cDNA libraries from a native EBV positive NPC cell line
(C666-1) and a xenograft (X2117), we screened about 3000 clones and detected
several small EBV fragments, within which two novel ebv-miRNAs in the
BARTs region were identified. These two newly identified miRNAs, now
named miR-BART2] and miR-BART22, were proven to be abundantly
expressed in most NPC samples by both Northern blot and QRT-PCR analysis.
Based on matching analysis between different EBV strains, we found two
nucleotide variations in miR-BART21 and four nucleotide changes in

miR-BART22. Interestingly, two nucleotide variations upstream of mature



miR-BART22 likely favor its biogenesis by Drosha/DGCRS8 processing and we
experimentally confirmed this augmentation by in-vitro Drosha digestion, and
thus may underline the high and consistent expression of miR-BART22 in NPC
tumors.

We attempted to predict the potential viral and cellular targets of
miR-BART21 and miR-BART22 by public available computer programs,
miRanda and RNAhybrid. A number of potential cellular mRNA targets were
suggested, although many failed to be validated by luciferase reporter assay.
However, we found a putative miR-BART22 binding site in the LMP2A-3’UTR.
Although the LMP-2A transcript is consistently detected in NPC, only 6 out of
26 (23%) primary NPC tumors show weak LMP-2A expression by
immunohistochemistry (IHC). The expression levels of miR-BART22 and
LMP-2A mRNA have also been determined in eleven of these tumors.
Interestingly, the LMP-2A mRNA expression level did not directly correlate with
protein expression, and relatively low expression levels of miR-BART22 miRNA
were observed in all 3 LMP-2A positive-primary tumors. The suppressive
effect of miR-BART22 on LMP-2A was also experimentally validated by a series
of dual luciferase reporter assays using reporter constructs containing the
putative or mutated recognition site at the LMP-2A 3’UTR. By co-transfection
of different amounts of miR-BART22 with the LMP-2A-3’UTR expression
vector in reporter assay, we confirmed that miR-BART22 suppressed the
LMP-2A protein level in a dose-dependent manner. Furthermore, transfection
of miR-BART22 into HEK293 cells that had been stably transfected with
pcDNA3.1-LMP-2A, which contains a complete LMP-2A ORF and 3’UTR,

readily suppressed levels of the LMP-2A protein.



Taken together, this thesis shows that two newly identified EBV-encoded
miRNAs are highly expressed in latent EBV infection in NPC. Frequent
expression of miR-BART22 can be explained partially by a specific EBV strain
that is associated with NPC in our locality. Our findings emphasize the role of
miR-BART22 in modulating LMP-2A expression. Because LMP-2A is a potent
immunogenic viral antigen that is recognized by the cytotoxic T cells (CTLs),
down-modulation of LMP-2A expression by mir-BART22 may permit escape of

EBV-infected cells from host immune surveillance.



i ES

%9 B §% 7 (Epstein-Barr virus, EBV) % 4t Eil B I /8 (Nasopharyngeal
carcinoma, NPCHR#Z L HHRAAY - MER BRI NE BIRERBRECERE
8 b RMEETE R - BRFLHBED T HEE S RA AN -
HrhfuiE EB #H1RE(EBNAD BRI F(LMP-1 and LMP-2) -

MicroRNAs(miRNAs, 255§ RNAYRE R AT 18-24 [EREEER
)y ~ MFEARIBAZREZRRNAYD T - X EE RS B (mRNA) K
MRS - (T R EHRE - HERY  miRNAs R
HREA ST RREHEUIERN - A RISE R e A S
3 EBV /@G5 miRNAs(ebv-miRNAs) « SE B BRI B B AR
FEAHREGY ebv-miRNAs FERGHEE - FHid EBV 3 IERT SR E MLk
(C666-1)FNE B ERABX2 11 7) MBI KB L fE R EAFEREE(cDNA) » 31/
$6E T RIfE/)N cDNA 3B (cDNA libraries) - ZEA43 3000 {E sofZHI AT -
BAMSELT %M@ EBY BN HrhEHERER SR miR-BART21 ]
miR-BART22 £9#7 ebv-miRNAs - EFHENEHERZ (Northern Blot)fIE & B
PCR FG(QRT-PCR)Z3y, FEHH T iEM{EHTET miRNAs & 7E BIENE A D &,

LA [l EARRITCRC T » 3PS BIE BART21 #0 BART22 FffiTaY
By BB T RERIMEE TR R R - RRFHEE ERE T
% BAMNREEE WA BART22 FHIHSEB HERER - BETREPE
Hppulle - RIVSERTRMBCHEBERZE TE—8 - ENTHRERE
B miR-BART22 ERIRE R —EEFErN P —AFREK -
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AT B E A SR ITRYET F A2 - (miRanda A1 RNAhybrid) 2k FH#
miR-BART21 #{1 miR-BART22 HTB7ERIR - MRS E— EIBEAHIRER
K EARER S - A 1ERT B EE R ee ol @ s U R & o iTevERaE - A&
m o WA BEAE LMP2A EERER VmR#E$EE (UTR)H —{@#
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REFER] HEK293 Rk - HET ISR miR-BART22 A LIA R MR
Al LMP-2A R E#E% -

BiET R - FPHEEm GRS H R T M EE SRR A PR RER
ebv-miRNAs- A2 (LR EB AT HEEEE miR-BART22 K&
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CHAPTER 1: INTRODUCTION

1.1 Epstein-Barr Virus (EBV)
1.1.1 Discovery of EBV

In the 1950s, Dr. Denis Burkitt first described a new lymphoma affected
children in equatorial Africa. This lymphoma was named as Burkitt’s
lymphoma (BL). Due to the high incidence rate of yellow fever in the same
region, Burkitt originally postulated that BL. might also be induced by infection
of insect vectored virus similar to that of yellow fever (Burkitt, 1958, 1962;
Haddow, 1964). Through further investigation on the unusual epidemiology of
BL, Tony Epstein and his colleagues finally identified human herpes-like viral
particles in the endemic BL-derived cell lines under the electron microscope
examination. They named this virus Epstein-Barr Virus (EBV) (Epstein et al.,
1964).

Subsequent work on EBV found out that healthy adults were also positive in
serological tests against EBV (Henle & Henle, 1966), however the antibody titers
to EBV antigen in BL patients were much higher than the control groups (Henle
& Henle, 1966; Klein er al., 1968). Further studies of EBV recovered from BL
patients had proven that the virus had the ability to transform peripheral
leukocytes in vitro into EBV latently infected B-lymphoblastoid cell lines (LCLSs)
(Henle ef al, 1967). Furthermore, the detection of a small amount of EBV
DNA in a non-virus producing line “virus-free” from BL (Raji) indicated that
EBYV is the first virus identified to take an important role in the induction of

human malignancies (Zur Hausen & Schulte-Holthausen, 1970).
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L1.2 Molecular Biology of EBV

EBY, also known as human herpesvirus 4 (HHV4), shares a similar structure
with other herpesviruses, in which the viral genome is wrapped with a
toroid-shaped protein core. The EBV genome is linear and double stranded
with a size about 184kb (Pritchett ez al.,, 1975; Raab-Traub et al., 1980). The
genome contains around 80 ORFs but only 70 ORFs are expressed during virus
replication. There are 0.5kb internal tandem repeats (TR) of the same sequence
at both termini and 6 to 12 internal repeats (IR1) which divide the genome into
short and long unique sequence domains (Us and Up) (Given & Kieff, 1979;
Given ef al., 1979; Cheung & Kieff, 1981, 1982; Hayward et al., 1982). EBV
was the first herpesviruses to be completely cloned and sequenced in 1984.
Since the sequence was obtained from a BamHI fragment-cloned library, the
promoters and open reading frames (ORFs) are all referred to the specific BamHI
fragments, from A to Z, in descending order (Baer er af., 1984; Polack et al,

1984).

L 1.3 Lytic and latent infection of EBV

EBV preferentially infects B-cells by binding its envelop glycoproteins,
gp350 and gp42, to the CD21 receptor and human leukocyte antigen (HLA) class
I molecules respectively (Nemerow et al., 1987; Borza & Hutt-Fletcher, 2002).
After penetration, the viral genome is transported to the nucleus, in which it
immediately circularizes and initiates viral gene transcription. The infected
B-cells, which prohibit virus replication would subsequently become a latently
infected proliferating lymphoblasts, and eventually develop into transformed

LCL.
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Although it has been difficult to demonstrate direct EBV lytic infection in in
vitro systems, virus-infected B-cell do elicit a potent T-cell response against viral
antigens. In young adult, primary EBV infection often elicits infectious
mononucleosis (IM) in which the serum from the patient became strongly
positive to EBV antibodies during the emergence of IM symptoms (Henle ef al.,
1968; Niederman et al., 1968). Interestingly, the virus will not be completely
eliminated and will ultimately establish persistence within memory B cells
permanently (Niederman et al., 1970).

The lytic EBV infection process can be studied in latently EBV infected cell
lines using several chemical inducers (Luka ef al., 1979; Hudewentz et al., 1980;
Ben-Sasson & Klein, 1981). EBYV replication is initiated in the nucleus with the
expression of two immediate early lytic genes, BZLFI and BRLFI. BZLF1 and
BRLF1 proteins are transcription factors that alter host cellular responses and
facilitate the expression of other early lytic genes for replication such as BHRF1,
BSMLF1 and BMRF1 for replication (Chevallier-Greco et al., 1986; Cox et al.,
1990; Holley-Guthrie et al.,, 1990; Quinlivan et al,, 1990). The activation of
these early genes is followed by viral genome replication and late protein
expression for virus packaging. The free virions will finally be released from

the cells.

1.1.4 EBYV Latent Genes Expressions

Latent EBV infection, which is common among the majority of adults, is
thought to be a contributor to EBV-related malignancies. There are only 12
viral genes selectively expressed during latent infection. Based on their

expression pattern, four different types of EBV latency infection program have
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been classified, denoted as latency 0, I, II, III. In latency III, all 12 viral genes
are expressed, including six EBV nuclear antigens (EBNA-1,2,34,3B,3C and LP),
three latent membrane proteins (LMP-1, LMP-2A4 and LMP-2B), transcripts from
BamHIA region (BARTs) and two small EBV-encoded RNAs (EBER! and
EBER?2) (Gregory et al., 1990; Rowe et al., 1992). Due to the high expression
of all latent genes, latency III cells will stimulate the host immunosuppressive
effect, leading to the onset of several illnesses such as post-transplant
lymphoproliferative disease (PTLD) and infectious mononucleosis etc (Timms et
al., 2003). EBV gene expression in latency II is limited to EBNA-1, LMPs,
EBERs and BARTs. This type of latency can be found in tissue from NPC,
gastric carcinoma, T-cell lymphoma and Hodgkin’s disease (Herbst et al., 1991;
Brooks et al., 1992; Imai et al, 1994). EBNA-1 is the only viral protein
expressed in latency I, which has the phenotype found in BL (Rowe et al., 1987).
In a healthy carrier, EBV remains silent in memory B-cells which circulate in the
peripheral blood (latency 0), EBNA-1 is the only viral protein expressed during
cell division (Hochberg et al., 2004), albeit the LMP-24 transcript is also
detected at very low level (Babcock et al, 1998) EBERs and BARTs are
expressed in all latency types (Brooks et al., 1993; Chen er al, 1999b). The
EBV latency pattern and their associated malignancies are summarized in Table

1.1
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1.1.4.1  EBV Nuclear Antigens (EBNAs)

EBNA-1 is the only viral protein which is expressed in all EBV infected
cells. It can be transcribed from different promoters according to the EBV
stages (Deacon et al, 1993). The Qp promoter, located in the BamHI Q
fragment, is used in infected cells with latency I and II. In latency III, EBNA-1
is transcribed from the Cp and Wp promoters. The Fq promoter is activated to
transcribe EBNA-1 during Iytic infection. EBNA-1 protein can bind to the
sequence-specific repeat elements on the plasmid origin of viral replication, oriP
in order to maintain the circular episomal genome of EBV (Yates ef al., 1984).
In addition, EBNA-1 can transactivate other EBNAs and LMP-] expression from
episomal DNA, probably through viral Cp and Wp promoters (Nonkwelo et al.,
1996; Kang et al., 2001).

The presence of an internal glycine-alanine repeat domain in EBNA-I
protein resists ubiquitin-proteosomal degradation, thus preventing it from being
cleaved into small viral piptides for presentation through MHC class I pathway,
which is a class [ restricted cytotoxic T-Cells (CTLs) response (Levitskaya ef al,,

1997). The functions of other EBNA proteins are showed in Table 1.2,
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Table 1.2 Functions of EBNAs proteins

Protein Required for Functions

transformation

EBNA-1  Yes »  Episomal maintenance;

»  Up-regulates viral genes

EBNA-2  Yes »  Up-regulates viral and cellular
genes
EBNA-3 -A, -C: Yes > Inhibits EBNA-2 activity;
-B: No »  Up-regulates cellular genes
EBNA-LP Probably No » Augments EBNA-2 activity
Abbreviations: EBNA, Epstein-Barr virus nuclear antigen;

EBNA-LP, Epstein-Barr virus nuclear antigen leader protein.

Table adapted from Cohen JI, 2006 (Cohen, 2006)
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1.1.4.2 Latent Membrane Proteins (L.LMPs)
1.1.421 LMP-1

LMP-1 is the known EBV oncoprotein. This is also the first EBV protein
demonstrated to have transforming ability in rodent fibroblasts (Wang et al.,
1985). Furthermore, expression of LMP-1 is essential for B-cell transformation
in both cell lines studies and in transgenic mice experiments (Kaye et al., 1993;
Kulwichit et al., 1998).

LMP-1 is a functional homologue of the constitutively active form of CD4{),
a member of tumor necrosis factor receptor (TNFR) family (Uchida et al., 1999).
There are 2 functional domains on the C-terminal of LMP-1, namely the
C-terminal activation regions 1 and 2 (CTAR! and 2). TNF-associated factors
(TRAFs) can interact either directly CTARI or indirectly with CTAR2 via the
TNF receptor-associated death domain (TRADD) for activation (Huen ef al,
1995; Eliopoulos & Young, 2001). They can promote cell growth and
differentiation responses by initiating the activities of several signaling
molecules including phosphatidylinositol 3-kinase (PI3K), Janus-activated kinase
3 (JAK-3), mitogen-activated protein kinase kinase kinases (MAPKKKs) and
nuclear factor kappa B (NF-xB) (Devergne et al., 1996; Eliopoulos & Young,
2001).

LMP-1 is also involved in other signaling pathways for cancer development.
For example, it can promote apoptotic resistance by enhancing A20 and Bcl2
expression (Fries et al, 1996; Wang ef al, 1996). Furthermore, it can
contribute to both growth stimulation and immune system suppression by
activating cellular gene expression, such as of intracellular adhesion molecule

(ICAM-I), lymphocyte function associated antigen-1 (LFA-1), HLA class I, Il
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and TAP (Zhang et al., 1994; Rowe et al., 1995; Devergne et al., 1998).

Recent findings revealed that expression of LMP-1 in B-cells can stimulate
the expression of two oncogenic host miRNAs, miR-146a and miR-155 (Mrazek
et al., 2007). Due to the presence of two NF-xB response elements in their
promoter regions, LMP-1 may mediate up-regulation of these two miRNAs via
NF-xB signaling pathways (Motsch et al., 2007, Cameron et al., 2008; Gatto er
al., 2008). Interestingly, expression of these two miRNAs can contribute to the
EBV latency maintenance. For examples, miR-155 can reduce both EBV copy
number and EBNAI expression in latently-infected cells (Lu ef af., 2008a), and
miR-146a can inhibit the expression of some EBV lytic genes such as BZLF/
(Godshalk ef al, 2008). Consistent with the findings in papillary gland
carcinoma (He ef al, 2005a) and cervical cancer (Wang ef al., 2008b), our
QRT-PCR results in the biopsy study also demonstrate the up-regulation of
miR-146a in nasopharyngeal carcinoma (NPC), one of the EBV-associated
diseases (unpublished observations). Another research finding in diffuse large
B-cell lymphoma and BL cells also reported that LMP1 can down-regulate a
major oncogene, TCLI1 expression by up-regulating miR-29b expression
(Anastasiadou et al, 2009). Together with our previous finding that
ebv-miRNAs, such as miR-BART1, 16 and 17, can also downmodulate LMP-1
protein expression (Lo et al., 2007). Thus, LMP-1, the main viral oncoprotein,
is a key molecule taken an integral part in the complicated miRNA signaling

network for cancer development.

1.1.4.2.2 LMP-2s

The viral LMP-2 gene encodes two integral membrane proteins, LMP-24
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and LMP-2B. The LMP-2A promoter is located upstream of the LMP-2 gene

while LMP-2B is expressed from the same bi-directional promoter as LMP-]
(Laux et al, 1989). Being transcribed from a different promoter, LMP-2B
represents an N-terminal truncated form of LMP-2A, in which only 119 amino
acids in N-terminal cytoplasmic domains of LMP-2A is missing (Sample et al.,
1989). Due to the lack of a functional amino terminal domain found in
LMP-2A, LMP-2B can associate with LMP-2A and negatively modulate
LMP-2A activity in B-cells (Rovedo & Longnecker, 2007).

Although LMP-2s are not essential for B-cell transformation in vitro
(Longnecker, 2000), experiments in transgenic mice show that expression of
LMP-2A in B-cell receptor (BCR) deficient B-cells can rescue them from
apoptosis (Caldwell et al., 1998). LMP-2A replenishes BCR function with the
BCR-like amino terminal domain, immunoreceptor tyrosine-based activation
motif (ITAM), which mimics receptor function by constitutively activating the
Syk tyrosine kinases (Fruehling & Longnecker, 1997). However, the Src family
kinase, LYN protein, also binds to the Y112 motif on the LMP-2A active
terminus. This interaction sequesters LYN kinase from BCR and eventually
inhibits BCR signaling pathways (Miller et al., 1994; Dykstra et al., 2001). The
amino-terminal of LMP-2A also contains two PYmotifs (PPXY motifs) which
are associated with Nedd4 ubiquitin proteins to down-regulate both LMP-2A and
LMP-2A-induced phosphorylated tyrosine kinases (PTKSs) activities (Ikeda et a/.,
2001). Consequently, the normal BCR signaling pathway is blocked and the
AKT induced transcription of the viral early lytic gene, BRLFI, is inhibited,
resulting in maintenance of viral latency (Miller ez al., 1995; Mori & Sairenji,

2006). LMP-2A also contributes to EBV-associated epithelial malignancies.

10
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It can affect cellular growth properties, transform epithelial cell lines and inhibit
differentiation (Scholle et al, 2000; Morrison et al, 2003). LMP-2A
constitutively activates PI3K/Akt pathways in both epithelial cells and B cells by
employing different mechanisms (Fruehling er al, 1998; Lu et al., 2006).
Recent studies in gastric carcinoma cell lines suggested that LMP-2A expression
favors cancer development by down-regulating PTEN and up-regulating survivin
expression (Hino et al, 2008; Hino et al., 2009). The signaling pathways

engaged by LMP-24 are summarized in Figure 1.1.

1
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Figure 1.1 Structure and function of LMP-2A

Epstein-Barr virus latent membrane protein LMP-2A contains 12 transmembrane
domains, 27 amino acids C-terminal and 119 amino acid functional N-terminal
that contain 12 tyrosine residues. Three of the main tyrosine residues are
indicated as circle Y, in which Tyr74 and Tyr85 form on ITAM motif with similar
function to active BCR. However, the interaction between LMP-2A and LYN
sequesters the latter protein from BCR, resulting in the inhibition of B-cell
signaling pathways. The two phosptyrosine (PY) motifs, indicated as circle PY,
recruit NEDD4-like ubiquitin proteins to promote degradation of both LYN and

LMP-2A itself through a ubiquitin-dependent mechanism.

12
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1.1.4.3 EBV Encoded Small RNAs (EBERs)

In addition to viral latent proteins, EBV also transcribes non-coding RNAs
in all forms of latency programs. This virus actually expresses EBERs in
around 5x10° copies per infected cell (Howe & Shu, 1989). Nowadays,
detection of EBER transcripts has been extensively used for EBV detection in
human biopsies. EBERs, first identified in 1981 by Prof. Joan A. Steitz’s
research team contain two species, EBER] and EBER2, with the size of
approximately 170 nucleotides (Lerner et al., 1981). They are confined to the
nucleus, where they form complexes with autoantigen La protein, ribosomal
protein L22 (formerly EBER-associated protein EAP) and interferon-inducible,
double-stranded RNA activated protein kinase R (PKR) (Lerner et ai, 1981;
Howe & Steitz, 1986; Clarke et al., 1991; Toczyski & Steitz, 1991; Fok ef al,
2006a; Fok et al., 2006b). Although EBERs are nonessential for EBV-induced
transformation in B-cells, expression of EBERs in B-cells has been demonstrated
to have oncogenic roles in vitro and in vivo (Komano et al., 1999; Laing er al.,
2002; Niller et al, 2003; Yajima et al, 2005). They have been shown to
facilitate cell survival by inducing interleukin-10 (IL-10) expression and resisting
interferon-inducible apoptosis in Burkitt’s lymphoma cell lines (Kitagawa et al.,
2000; Nanbo er a/,, 2002). In epithelial malignancies, EBERs neither induce
cellular transformation nor increase tumeorigenicity, but confer an apoptotic
phenotype in epithelial cells (Wong et al., 2005). On the other hand, EBERs
were proven to support cell growth by stimulating insulin-like growth factor 1
(IGF-1) secretion in both EBV-positive gastric carcinoma and NPC cell lines

(Iwakiri et al., 2003; Iwakiri et al., 2005)

13



Chapter 1: EBV and NPC
1.1.4.4  BamHI-A Rightward Transcripts (BARTs)

BARTS are multi-spliced transcripts that are originally discovered by cDNA
library analysis in NPC xenograft and later reported in other EBV-infected
individuals (Hitt et al., 1989; Gilligan et al., 1990; Karran et al., 1992; Chen e¢
al., 1999a). Since expression of BARTs is selectively high in EBV-positive
NPC and gastric cancer cells, it has long been speculated that BARTs have
important functional roles in these EBV-associated epithelial malignancies (Cai
et al., 2006). In the early study of BART transcripts, some QRFs in the spliced
cDNA transcripts were investigated. For example, RPMS1 and A73 ORFs were
identified to be translated into protein in vifro (Smith et al, 2000). The
important roles of these two “proteins” for cancer development were
experimentally confirmed. RPMSI1 and A73 have been shown to be negative
reguiators of Notch signaling and of PKC and Src tyrosine kinase, respectively
(Smith et al., 2000; Zhang et al, 2001; de Jesus ef al., 2003; Li ef al., 2005).
However, expression of these two viral proteins has not been confirmed in
natural EBV-infection samples (Al-Mozaini et al., 2009).

Recent studies on viral miRNA have identified 23 EBV miRNAs
(ebv-miRNAs) from latently infected B cells (Pfeffer et al., 2004; Cai et al., 2006;
Grundhoff er al, 2006; Landgraf et al, 2007). Among them, 20 miRNAs
{(miR-BART1 to miR-BART20) are derived from the BART transcripts. The

details of miR-BARTs will be discussed later in this chapter.

14
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1.2 Nasopharyngeal Carcinoma (NPC)
1.2.1 Histopathology and Epidemiology

Nasopharyngeal carcinoma (NPC) is a distinctive type of head and neck
cancer arising from the nasopharynx (Sham et al, 1990). The World Health
Organization (WHQ) has classified NPC into 3 categories according to histology
(Shanmugaratnam & Sobin, 1991). Type 1 is keratinizing squamous cell
carcinoma (SCC), which is the common type of NPC found in Western world
(Marks et al, 1998). Type 2 is non-keratinizing carcinoma and type 3 is
undifferentiated epithelial carcinoma. Because of wusually prominent
lymphocytic infiltration, type 3 is also described as Iymphoepithelioma of
nasopharynx. More than 97% of NPC in Southern China belongs to this type
(Marks et al., 1998)

NPC exhibits distinctive ethnic and geographic distribution. This is a rare
tumor in most parts of the world (below 1 per 100,000 persons per year).
However, the incidence rate is remarkably high among southern Chinese,
especially those of Cantonese origin (McDermott et af., 2001). In Hong Kong,
males are reported to have a higher NPC incident rate than females with a sex
ratio of about 2.8:1. This is the fifth most common cancer in males in the region.

The incidence rate and mortality rate are about 20.7 and 7.8 per 100,000 persons

{Hong Kong Cancer Registry 2007; http://www3.ha.org.hk/cancereg/e_stat.asp).

1.2.2 Etiology
Although the cause of NPC is still poorly understood, a number of
etiological factors have been extensively investigated.  These include

environmental factors such as the consumption of salted fish; other factors

15
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involve genetic predisposition and EBV infection.

1.2.2.1 Environmental Factors

Consumption of Cantonese-style salted fish was first proposed to be an
etiological factor for NPC in 1971 (JHC, 1971). A large number of studies
conducted in Cantonese migrants in different parts of Asia had been carried out to
investigate the hypothesis (Yu et al., 1986; Ning ef al., 1990; Sriamporn ef al.,
1992; Lee et al., 1994; Armstrong et al., 1998). Case-control studies suggested
that consumption of salted fish during childhood was the primary cause of NPC
among Cantonese (Yu et al., 1985; Yu et al., 1989). These studies had provided
additional evidence for the earlier finding from our group member that feeding
rats with salted fish could promote NPC development (Huang et al., 1978).
Since the extract from salted fish could elevate the expression of EBV early
antigen (EA) in B-cells (Shao er al.,, 1988), consumption of salted fish might
indeed promote NPC development through EBV activation.

In addition to salted fish consumption, traditional preserved food such as
pickled vegetables, fermented beans, salted and fermented eggs, might also
increase the risk of NPC development (Yu et al., 1988; Ning ef al., 1990; Lee et
al., 1994; Yuan et al, 2000). Potential carcinogens, including volatile
nitrosamines, have been consistently detected in these preserved foods (Huang et
al., 1981; Shao et al., 1988; Zou et al., 1994). Besides, consumption of tobacco,
alcohol and Chinese herbal medicine was also suggested to be associated with
NPC carcinogenesis by case-controlled studies (Yu, 1990; Hildesheim et al.,
1992). Other high risk events such as occupational exposures to certain toxic

pollutants have been reported to increase NPC incidence. Such pollutants
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included formaldehyde, smoke and chlorophenols and heavy metal (Blair et al.,

1986; Mirabelli et al., 2000; Yu & Yuan, 2002).

1.2.2.2 Genetic Factors

The distinct geographical distribution of NPC incidence suggests a genetic
involvement to this cancer. It has been proven by the observation that high NPC
incidence among the Chinese immigrants from southern China to non-endemic
areas are retained even by the second and third generations (Buell, 1974; Zeng &
Jia, 2002). Moreover, around 10% of NPC cases have a family history of the
disease (Ng e? al., 2009).

Human leukocyte antigens (HLA) genes are highly polymorphic and encode
HLA molecules that are essential for the presentation of foreign antigens to the
host immune system. An association between HLA locus and NPC was first
reported in 1974, in which the HLA-A2 phenotype was related to an increased
risk of NPC among Cantonese (Simons ef al., 1974; Simons et al., 1975). Later
on, studies on HLA loci demonstrated that an increased risk of NPC might be
associated with HLA-BW46, BW59, B98 and DR9, and negatively associated
with All and B3 (Chan et al, 1983; Chan, 1990; Hildesheim et al., 2002).
Furthermore, high-resolution HLA genotype screening among Chinese has shown
that people with HLA-A*0207, but not HLA-A*0201, have an increased NPC
risk. In fact, HLA-A*0207 is the common genotype among Chinese
(Hildesheim et al., 2002). In addition to the HLA locus, recent genome-wide
linkage scanning in familial nasopharyngeal carcinoma recognized three
susceptibility loci at 4p15.1-q12 (Feng et al., 2002); 3p21.31-21.2 (Xiong et al.,

2004); S5p13-15 (Hu er al, 2008). However, the NPC-related genes in these
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regions need to be further investigated.

Other genetic polymorphisms are also involved in NPC susceptibility. For
example, a case-control experiment demonstrated that subjects carrying the c2/c2
genotype of the cytochrome P450 2E1 (CYP2ET) gene experience an increase risk
of NPC by 2.6 fold. The variant form of CYP2E! (c2 allele) can possess higher
enzymatic activity to activate nitrosamines, a carcinogen found in preserved food
(Hildesheim ef al, 1997). Genetic polymorphism of glutathione S-transferase
M1 (GSTM1) may also relate to NPC. GSTMI is a critical enzyme involved in
the detoxification of several tobacco-related carcinogens, maintaining genome
integrity and cancer susceptibility. A study of GSTMI indicated that null
genotype of this gene is correlated with a two-fold increase in risk for NPC

(Nazar-Stewart et al., 1999; He ez al., 2009).

1.2.2.3 EBY infection

The complex multi-step process of NPC carcinogenesis is not only
influenced by host genetics and environmental factors, but also related to EBV
infection. It is observed that clonal EBV genome and viral latent gene
expression are detected in almost all primary NPCs (Figure 1.2) (Raab-Traub &
Flynn, 1986; Lo & Huang, 2002; Raab-Traub, 2002; Lo er al.,, 2004).

EBYV is known to reside in NPC as latency Il infection, where only few viral
latent genes are expressed (Table 1.1).  As discussed previously in section 1.1.4,
EBV acquires tumorigenic potential through the expression of a set of viral latent
genes. However, tumor cells are capable of processing and presenting those
viral proteins on the cell surface in conjunction with the major histocompatibility

complex (MHC) (Lee, 2002; Gottschalk e¢ al., 2005).
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In NPC, viral protein expression is limited to EBNAl, LMP-1 and 2.

Among them, LMP-2A has a particularly stronger immunogenicity than the two
other NPC-expressed viral proteins (Brooks ef al., 1992; Khanna et al., 1998; Lee
et al., 2000; Leen er al, 2001). In this regard, limiting LMP-2A protein
expression would potentially be advantagous for NPC cells to escape host

immune surveillance.
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Figure 1.2  Multiple steps of Nasopharyngeal Carcinoma tumorigenesis

NPC carcinogenesis is a complex process, in which EBV infection is consistently
detected in invasive carcinoma and high-grade dysplastic lesion prior to tumor
expansion. Expression of EBV latent genes can enhance tumor transformation,
so clonally expansion of the EBV genome in the early stages of NPC may
activate the progression to invasive carcinoma. Recent findings in our team
have shown that 12p12.1-13.3 amplification, with the functional LT8R oncogene
overexpressed, is highly associated with NPCs (Or et al., 2010). This has added

even more complexity to NPC tumorigenesis.
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1.2.3 Molecular Pathogenesis
1.2.3.1 Global Genetic Changes

NPC is a multistep process, in which multiple genetic variations are present.
In early genetic studies, several chromosomal abnormalities had been identified
by karyotyping analysis on NPC cell lines and biopsies (Lo & Huang, 2002).
Most of these genetic alterations were later confirmed by multi-color spectral
karyotyping (SKY), with additional breakpoints identified at 3p21, 3926, 3931,
6p21-25, 7pl4-p22, and 8q22 (Wong ef al., 2003).

Comparative genomic hybridization (CGH), a more accurate method for
genetic lesion detection, was also employed to study the DNA copy gains and
losses in NPC by several groups. These studies suggested numerous genetic
variations of multiple chromosomal regions in NPCs (Hui ef gl., 1999; Wong et
al., 2003) (Chien et al,, 2001; Fang et al., 2001). Through this method, gain and
loss of chromosome 12 and 3p were suggested to be the most frequently observed

chromosomal abnormalities associated with NPC.

1.2.3.2 Oncogenes

Conventional CGH analysis is an important tool to study putative
NPC-associated oncogenes. However, due to the relatively low resolution
(~10Mb), the tumor related genes have been difficult to localize. Instead, a
higher-resolution array-based CGH (aCGH) method has been used in NPC study.
This commercial CGH microarray, AmpliOnc [ microarray (Vysis), contains 58
known common amplicons in cancers. Using this array, amplifications of
several putative oncogenes in NPC were identified by our group. They are

including MYCL (1p34.2), TERC (3q26.3), ESR (6q25.1) and PIK3CA (3q26.3)
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(Hui et al., 2002). Furthermore, an active mutation (A3140G) in the PIK3CA

gene was also observed in NPC cells (Or et al., 2006). With the help of another
home-made array which contained 1803 BAC clones (obtained from Prof. J.W.
Gray, UCSF), our group further identified cyclin D1 (CCNDI, 11ql3) as a
putative oncogene in NPCs (Hui ef al., 2005). Furthermore, lymphotoxin beta
receptor (LTSR, 13p13.31) had also been identified as a putative oncogene by
using the Agilent Human Genome CGH Microarray 44B (Agilent Technologies
Inc) (Or et al., 2010). The oncogenic potential of these two genes in NPC cells
had been demonstrated by in vitro functional studies. Studies from other groups
suggested that several oncogenes such as c-myc, ras, c-met, bcl-2 were
over-expressed in primary NPC (Lu et al., 1993; Porter ef al, 1994; Qian ef al,,
2002). Although the regulatory mechanism of these oncogenes in NPC is
largely unknown, their high expression has suggested an involvement in NPC

development.

1.2.3.3 Tumor Suppressor Genes (TSGs)

Alterations of well-known TSGs, such as Rb and p53, are not common in
NPC (Effert er al., 1992; Sun et al., 1993). However, inactivation of TSGs has
been identified in minimal deleted regions. Loss of heterozygosity (LOH) in the
Ppl4ARF, pl5 and pl6 TSGs on 9p21 was identified in up to 85% of NPC cases.
In the microdissected primary NPC samples, inactivation of pI44ARF (54%), pl5
(40%), and pl6 (77%) was confirmed to be the result of both homozygous
deletion and promoter hypermethylation (Huang er al, 1994; Lo et al, 1996;
Kwong et al., 2002). Promoter hypermethylation is a common mechanism for

NPC’s TSGs inactivation. Through the extensive LOH and epigenetic studies in
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NPC, an increasing number of NPC-related TSGs had been reported. They
included RASSFIA (3P21.3) (Lo et al., 2001), SLCI (11923.2) (Hui et ai., 2003),
DLEC!I (3p22.3) (Kwong et al., 2007), DLC! (8p22.3) (Seng et al., 2007), and
WIF (12q14.3) (Chan et al., 2007), POLydactylt 1 (MIPOLI) (14q13.1-13.3)
(Cheung et al., 2009) and protein tyrosine phosphatase receptor type G (PTPRG)

(3pl4-21) (Cheung et al., 2008)

1.3 MicroRNAs (miRNAs)

MicroRNAs (miRNAs) are a group of abundant small non-coding RNAs
with the size of around 18-24 nucleotides. They are produced by endogenous
enzymatic (Drosha/DGCRS8 and Dicer) digestion of RNA transcripts containing
hairpin structures, Mature miRNAs function as negative gene regulators
through complementary sequence pairing to the 3’ untranslated region (3°’UTR)
of the target transcripts by inducing either mRNA degradation or translational
repression (Bartel, 2004). Given that miRNAs can regulate gene expression by
imperfect complementary binding to the 3’UTR of the target mRNA, one
miRNA is expected to regulate over 100 predicted cellular targets. Therefore, it
is estimated that about 30% of cellular protein-coding genes are, in fact,
regulated by miRNAs (Krek et al., 2005; Lewis et al., 2005; Lim et al., 2005).
As gene regulators, mammalian miRNAs play key roles not only in various
biological processes including development, differentiation, but also in cancer
development.

The first miRNA, lin-4, was discovered in Caenorhabditis elegans
(C.elegans) by two research teams (Lee ef g/, 1993; Wightman et al., 1993).

They observed that /in-4 contained sequences complementary to the 3’ UTR of
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lin-14 mRNA and functioned as a repressor of lin-14 protein expression, a novel
protein that regulated C.elegans development. Since lin-14 was not conserved
in other species, not much attention was paid to this miRNA as it was regarded as
a molecule for nematode-specific developmental regulation (Ambros, 2008).
Only in 2000, the second small RNA from C.elegans, let-7, was discovered
and identified as a temporally regulated RNA generated from a longer double
strand hairpin structure precursor (Reinhart ef al., 2000). Let-7 regulates lin-41
expression through the imprecise antisense base-pairing to the 3°UTR of lin-41
mRNA (Slack et al, 2000). Subsequently, let-7 was found to be highly
conserved and expressed in a wide range of animal species (Pasquinelli ez al.,
2000). This accelerated the extensive identification of small RNA in different
species like C.elegans, Drosophila melanogaster, and in the human genome
(Lagos-Quintana ef al., 2001; Lau et al., 2001; Lee & Ambros, 2001). This new
class of 18-24-nt noncoding regulatory RNAs were named miRNAs. In 2004,
the first group of animal virus-encoded miRNA was identified in EBV (Pfeffer ez
al., 2004). Currently, 23 EBV-encoded miRNAs have been identified in the

EBV genome (Pfeffer et al., 2004; Cai et al., 2006; Grundhoff et al., 2006).

1.3.1 MiRNAs Biogenesis

Similar to protein coding mRNAs, miRNA biogenesis starts with the
transcription of primary transcript, named pri-miRNA (Figure 1.3). The
transcription is mediated by either RNA polymerase II (Pol II) as polycistronic
primary transcripts (Lee et al., 2004) or RNA polymerase III {Pol IIT) (Borchert
et al., 2006). Pri-miRNAs possess a 5° methyl guanosine cap structure and a

polyA tail at the 3’ end. In humans, over 70% of the pri-miRNAs are located
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within introns (intronic miRNAs) of either coding or non-coding transcripts (Kim
& Kim, 2007). Due to sequence complementarity within the pri-miRNA
transcript, distinct hairpin structures were formed.

The stem-loop pri-miRNA is sequentially processed by two ribonuclease
[MI-like enzymes (RNase III), Drosha and Dicer. In the nucleus, the stem-loop
structures of the pri-miRNAs are recognized by the dsRNA binding protein,
DiGeorge syndrome critical region gene-8 (DGCRS8) or Pasha in Drosophila and
C.elegans. DGCRS then forms a complex with Drosha and other proteins
called the “microprocessor” that crops the pri-miRNA transcript into small
precursor miRNAs (pre-miRNAs) with a size around 70-nt (Denli ef al., 2004;
Gregory ef al., 2004; Han et al., 2004, Landthaler et al., 2004; Han er al., 2006).
The cleavage site on the stem-loop is approximately 11-bp from the ds/ssRNA
junction (Figure 1.4). Some other proteins, like DEAD box RNA helicase
subunits and SMAD protein, may also be critical for a subset of Drosha-mediated
miRNA processing (Fukuda et al., 2007; Davis et al., 2008). Drosha produces
pre-miRNAs by cleaving pri-miRNAs or mRNAs that contain long hairpin
structures. If the cleavage sites are located within an exonic region, spliced out
pre-miRNAs can destabilize the protein coding transcript and down-regulate it
protein synthesis (Han et @/, 2009). On the other hand, intronic miRNAs can
be processed cotranscriptionally without affecting the mature mRNA levels (Kim
& Kim, 2007). In addition, other studies have suggested an alternative miRNA
biogenesis mechanism which is not dependent on Drosha. The spliced intronic
pre-miRNAs, named mirtrons, are processed by an alternative pathway other
than Drosha cleavage in the nucleus (Figure 1.3) (Berezikov ef al., 2007; Kim &

Kim, 2007; Okamura et al., 2007; Ruby et al., 2007).
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All the pre-miRNAs and mirtrons are actively transported to the cytoplasm
by the nuclear transporter, exportin-5 (Yi et al., 2003; Okamura et al., 2007). In
the cytoplasm, pre-miRNAs are further processed by the second RNase I1I-like
enzyme, Dicer, into around 22-nt double-strand duplex containing the mature
miRNA (Figure 1.3 and Figure 1.4). In human, Dicer interacts with TRBP
(TAR RNA-biding protein), PACT (PRK activator), Argonaute (AGO) 1-4 to
mediate the pre-miRNA processing and the assembly of the miRNA-containing
RNA-induced silencing complex (miRISC) (Chendrimada et al., 2005; Haase et
al., 2005; Lee et al., 2006; Kok et al., 2007). Based on the stability of the 5’
end duplex, AGO selects only one strand of mature miRNAs to be incorporated
into the RISC and guides the complex to search for the 3’UTR of the target
mRNA. The opposite strand, known as miRNA* is usually destroyed quickly by
the miRISC complex. However in some case, miRNA* can be survived and
function as mature miRNA (Schwarz et al, 2003; Gregory et al., 2005).
Although all AGO family members, AGO-1-4, are associated with miRNAs in
human, only AGO-2 is proven to guide target RNA cleavage (Meister et al.,
2004). However, a recent study in Drosophila indicated that AGO-1 is indeed
the main AGO protein contributing to miRNA regulatory mechanism in that

organism (Easow et al., 2007; Hong et al., 2009; Kawamata et al., 2009).
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Figure 1.4 Junction anchoring model for pri-miRNA processin

The cleavage process involves in 2 steps.  First, DGCRS interacts with the stem
of a pri-miRNA, which is ~33 bp from the terminal loop (substrate recognition
step). After the initial recognition step, Drosha will transiently interact for the
cleavage and release of the pre-miRNA (catalytic reaction step). The cleavage

centre is placed ~11 bp from the ss/ds RNA junction.
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1.3.2 Post-transcriptional Gene Silencing by MiRNAs

The function of miRISC is to recognize target mRNAs and subsequently
modulate their expression. The miRNA binding site is mainly located in the
3’UTR, and in some cases, S’UTR of the target transcript (Lytle et al., 2007).
The nearly perfect complementarity between miRNAs and their binding sites
favors mRNA cleavage (Zeng et al., 2003). On the other hand, imperfect
complementarity between the miRNA and its target is mainly for inducing
translational repression or RNA degradation. It was found that the 3’ end of the
miRNA is particularly important to miRNA-target association, especially the 2°%-
to 8"-nt {seed region) (Lai, 2002; Doench & Sharp, 2004; Brennecke er al.,
2005). Nevertheless in some cases, poor a seed match can be compensated by
strong 3" base pairing sequence (Lewis ef al., 2005).

While the mechanism of how miRISC mediates gene silencing still remain
elusive, multiple possibilities have been suggested (Figure 1.5). For example,
the miRNA can block translation of 7-methyl-guanosine (m’G) capped mRNA at
the initiation step by interfering with the cap-binding protein that directs the
ribosome to the cap structure {(Humphreys et al., 2005). This hypothesis is
further proven by the identification of a specific motif on the hAGO?2 that is
highly similar to the cap-binding domain on eukaryotic initiation factor 4E
(eIF4E, a well-known cap-binding protein). The presence of this motif on AGO
is likely to preclude the recruitment of eIF4E to the m’G of the mRNA target
{Kiriakidou et al., 2007). MiRISC has also been reported to interfere with
mRNA translation by recruiting other mRNA regulatory proteins, such as RNA
helicases (RCK/p54 and MOV10), for RNA degradation (Meister et al., 20085;

Chu & Rana, 2006), and elF6, for preventing the productive assembly of the
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ribosome on to the cap structure (Chendrimada e al., 2007). The ribosome-free
mRNA will finally be repressed and aggregate into cytoplasmic processing
bodies (P-bodies) for either degradation or storage (Figure 1.5) (Liu ez al., 2005).

Other studies also support that miRNAs regulate translation in
post-initiation steps (Nottrott es al.,, 2006; Petersen ef al., 2006; Lytle et al.,
2007). This is mainly carried out by deadenylation leading to decay of the
target mRNA, in which GW182 proteins play critical roles by directly interacting
with AGO proteins (Eulalio er al, 2008). GWI182 proteins recruit the
deadenylase complex and poly(A)-binding protein (PABP) towards its
C-terminal to degrade target transcripts (Behm-Ansmant et al., 2006; Fabian e!
al., 2009; Zipprich et al, 2009). While the different miRISC regulatory
mechanisms may not be mutually exclusive, further investigations are necessary

to obtain a clear miRISC regulatory network (Figure 1.5).
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Figure 1.5 Possible mechanisms of miRNA-mediated repression
Three proposed miRISC-mediated gene silencing mechanisms are shown.

Details are described in the text.
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1.3.3 MiRNAs and Cancer

The first two miRNAs, /in-4 and let-7, were originally identified to regulate
developmental timing in C.elegans. Since then, miRNAs were recognized as a
major group of regulatory molecules for gene expression, in which aberrant
expression of miRNAs was predicted to be involved in cancer development.

The first study of involvement of miRNAs in cancer was reported in 2002.
Calin et al. identified two clusters of miRNAs, miR-15a and 16-1, located in the
well-known 30-kb deleted region on chromosome 13 in chronic lymphocytic
leukemia (CLL) patients. They subsequently confirmed in blood samples that
these two miRNAs were down-regulated in the majority (~68%) of CLL patients
(Calin et al., 2002). This observation suggested that miR-/5a/16-1 might be
involved in the pathogenesis of CLL with the 30-kb deletion. These two
miRNAs were later confirmed to have tumor suppressive activity by controlling
cell cycle and apoptosis in a variety of cancer cells such as lymphoma, prostate
cancer and non-small cell lung carcinoma (Cimmino et al., 2005; Bonci ef al.,

2008; Chen et al., 2008; Bandi ef al., 2009).

1.3.3.1 MiRNAs with Tumor Suppressive Activities

Although originally identified in C.elegans, let-7 was the first miRNA
experimentally proved to function as a tumor suppressor gene by inhibiting the
expression of the proto-oncogene, RAS in lung cancer (Johnson et af., 2005).
Overexpression of the RAS oncogene is common in lung cancer. Johnson et al
further showed that overexpression of RAS was strongly correlated with
reduction of Jet-7 expression in lung cancer tissue. Another independent group

previously reported that expression of /ef-7 is reduced in lung cancer, and this
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correlated with poor cancer prognosis (Takamizawa ef al., 2004). Recently, the
let-7 complementary binding site polymorphism on the KRAS 3’UTR was
shown to be associated with an increased risk of oral and non-small cell lung
carcinoma. Hence, /et-7 may be the key tumor suppressor gene in cancer
involving KRAS expression {Chin er al, 2008; Christensen er al, 2009).
Shortly after Johnson’s report, two well-known oncogenes, MYC and HMGA2,
were validated as targets of let-7 as well (Lee & Dutta, 2007; Sampson et al.,
2007).

Another well studied tumor suppressor miRNA is miR-34. This miRNA is
the downstream target of p53 tumor suppressor gene upon DNA damage. In
addition, expression of miR-34 alone in both primary and tumor-derived cell
lines could induce cell cycle arrest (Chang ef al., 2007; He et al., 2007). One
independent group even demonstrated that miR-34 inhibited the silent
information regulator 1 {SIRT1) expression, resulting in stabilization of p53 and
its downstream targets, PUMA and p2] by increasing their acetylation.
Furthermore, p53 might activate itself by suppressing the expression of SIRT]
through miR-34, which is a transcriptional target of p53 (Yamakuchi et a/., 2008).
Recently, some tumor suppressor miRNAs such as miR-29c, miR-200a and
miR-100, have been identified in NPC (Sengupta ef al., 2008; Shi ef al., 2009,
Xia et al, 2009). Other well-characterized examples of tumor suppressor

miRNAs are listed in Table 1.3.

1.3.3.2 MiRNAs with Oncogenic Activities
The miR-17-92 cluster, which consists of six miRNAs, is known to be

over-expressed in B-cell lymphoma and lung cancer (Ota et al., 2004; Hayashita
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et al., 2005; He et al, 2005b). This cluster of miRNAs is located within a

region on chromosome 3 that is frequently amplified in human B-cell lymphoma
and lung cancer (Hayashita et al., 2005; Johnson ez al., 2005). He et al. direcily
showed that miRNAs in this cluster are overexpressed in B-cell lymphoma cell
lines with chromosomal amplification. Furthermore, they demonstrated in a
mouse model that increased expression of miR-17-92 cluster can accelerate the
tumorigenesis of c-Myc-induced B cell lymphoma. Later, another research
group demonstrated that c-myc can increase the expression of miR-17-92, which
in turn suppressed the function of angiogenesis protein Thrombespondin 1 (TSP1)
(Dews et al, 2006). Interestingly, miR-17-92 does not simply function as an
oncogene. Another independent study suggested that myc protein can induce
expression of both E2F1 and miR-17-92, whilst miR-17-92 in turn inhibited
E2F1 expression (O'Donnell ef al, 2005). Based on this observation, a new
regulatory mechanism in which c-myc fine-tunes its oncogenic properties by
miRNA expression has been suggested.

MiR-155, is processed from a non-coding RNA transcribed from the B-cell
Integration Cluster (BIC) (Lagos-Quintana et al., 2002), Overexpression of
miR-155 has been detected in several solid tumors such as breast cancer (Volinia
et al., 2006), colon cancer (Wang et al., 2008b) and lung cancer (Yanaihara ef al.,
2006). Moreover, up-regulation of miR-155 has been detected in human
leukemia and lymphoma (Eis ef al, 2005; Kluiver et al, 2005). Several
biological activities of miR-155 in tumorigenesis have been suggested. For
example, it suppresses apoptosis by blocking the caspase-3 activity and induces
cell cycle arrest by targeting the tumor protein p53 inducible nuclear protein 1

{TP53INP1) (Gironella ez al., 2007; Ovcharenko et af., 2007).
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Interestingly, Kaposi’s sarcoma herpes virus (KSHV) and Marek’s disease
virus (MDV) have recently been shown to encode miRNAs with high homology
to miR-155, namely miR-K12-11 (KSHV) (Skalsky et af, 2007) and
MDV-miR-M4 (Zhao et al., 2009). In addition, EBV has been reported to
up-regulate miR-155 expression through the NF-«B pathways (Gatto ef al., 2008;
Lu et al, 2008a). As a result, these viruses may contribute to cancer
development by increasing miR-155 homologous miRNA expression. As
important gene regulators, some miRNAs were reported to have oncogenic
effects in NPC. They include miR-141, miR-17-92 and miR-155 (Chen et al.,
2009; Zhang e al, 2010). Other well-characterized oncogenic miRNAs are

listed in Table 1.4.
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Chapter 1: MicroRNA4s

1.3.4 Viral-Encoded MiRNAs

The first group of viral-encoded miRNAs was reported by Thomas Tuschl’s
research team in 2004. They used molecular cloning method to identify five
miRNAs in human B-cells infected with the prototype EBV strain B95.8, which
carries a 12-kb deletion in the BART region of the EBV genome (Pfeffer ¢ al.,
2004). Subsequent work on other latently infected B cells further identified a
total of 23 EBV encoded miRNAs (Cai et al., 2006; Grundhoff et al, 2006).
Among them, three miRNAs arise from in the untranslated region of the viral
garly Iytic gene, BHRF (miR-BHRF1-1, miR-BHRF1-2 and miR-BHRF1-3).
Expression of those miRNAs is predicted in EBV latency 11l program. The rest
of the 20 miRNAs (miR-BART1 to miR-BART20)} are located into two clusters
within the non-coding BART region, which is generally highly expressed in most
EBYV infected epithelial cells (Figure 1.6).

Currently, over 60 virus encoded miRNAs have been reported from different
human DNA viruses, with most of them derived from herpesviruses (Table 1.5).
Although one functional miRNA was reported to be produced by Dicer in human
immunodeficiency virus 1 (HIV-1) (Ouellet ez al., 2008), other RNA viruses are
unlikely to produce miRNA (Pfeffer et al, 2005). A possible reason is that
processing of miRNA precursor in RNA virus by Drosha might lead the cleavage

of the viral genome and result in degradation.
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Figure partly modifisd from Pisffer ot &l 2004
FIHRF1-1

BART1 BART2
BHRF1-2

EBERSanaLP

LMP1

B95-8 deletion (12kb)

N BARTIS

BARTS
BARTS g,pT1517 BARTT-12
BARTS 4, p16 BARTI1S:20

BART1 BART13-14

BART2
W 4 H

Figure 1.6  Location of miRNAs in EBV penomes

The locations of the miRNAs in the EBV genome were listed. The first five
identified EBV-miRNAs and non-coding RNAs (EBERs and BARTSs) are
named in red and blue colors, respectively (upper panel). MiRNAs located in
the B95.8 deleted BART region are further illustrated inside the red circle in the
lower panel.
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Chapter 1: MicroRNAs

1.3.5 Function of viral miRNA

Gene regulation by miRNAs is particularly useful and convenient for the
virus machinery. Unlike other regulatory proteins, miRNAs are processed from
small pri-miRNAs, with a minimal size of around 200 nucleotides. The small
pri-miRNAs can be tightly packed into a relatively small viral genome.
Furthermore, miRNAs are non-coding RNAs which are presumably
non-immunogenic molecules, yet they can regulate several target genes to

enhance infected cell survival.

1.3.5.1 Viral mRNA targets

Identification and validation of miRNA targets is the most difficult part of
an miRNA study. In spite of this, some viral targets of viral miRNA have been
casily identified because they are transcribed antisense to the pre-miRNA
sequence. Interestingly, the target genes of viral miRNAs mainly correspond to
the control of host immune system and virus replication. The first viral miRNA
target was identified in simian virus (SV40). The SV40 encoded miRNA,
miR-81, is expressed in the late stage of infection and it down-regulates the
expression of viral T antigen (TAg) by perfect complementarity to its target
mRNA. The infected cell then becomes less sensitive to cytotoxic T-cells and is
protected from the host immune system (Sullivan et of, 2005). MiR-S1 is
evolutionary conserved with miRNAs from other human polyomaviruses
including JCV and MCV. They are all transcribed antisense oto their early TAg,
and negatively regulate the expression of TAg in infected cells, like SV40 (Seo et

al., 2008; Seo er al., 2009).

A similar example is observed in EBV. EBV miR-BART2 was found to lie
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opposite to the viral DNA polymerase gene, BALF5 (Figure 1.6, upper panel)
(Pfeffer et al., 2004). Another research group confirmed later that miR-BART2
can down-regulate BALFS via siRNA cleavage of the binding site (Barth et g/,
2008). Being an important protein for DNA replication, down regulation of
BALF5 may facilitate virus entry to latency. Apart from the siRNA cleavage
mechanism, EBV-miRNAs can also modulate the expression of other viral genes
by binding to the 3’UTRs of target transcripts. Our laboratory has previously
reported that LMP-1 is down-regulated by three cluster 1 miR-BARTs,
miR-BART1-5p, miR-BART16 and miR-BARTI17-5p. Although LMP-}
exhibits oncogenic properties in some cell types, overexpression of LMP-1
results in increased sensitivity to apoptosis and reduced NF-xB activity. For
this reason, EBV-miRNAs may contribute to cancer maintenance by tightly

regulating LMP-1 expression in infected cells (Lo ef al., 2007).

HSV-1 expresses a total of seven miRNAs in latent infection (Umbach ez al,
2009). One of these miRNAs, miR-H2, is transcribed antisense to the viral
immediate early protein (ICP0) mRNA, yet it can only down-regulate ICP(Q
expression at the translational level, despite sequences that are fully
complementary. Umbach et al further demonstrated that another HSV-1
miRNA, miR-H6, can target another immediate early protein mRNA, ICP4,
through imperfect binding.  Suppression of ICP activities inhibits the
transcription of other viral genes and results in maintenance of viral latency.
HSV-1-miR-H3 and H4 are also proposed to inhibit expression of ICP34.5 as
they are transcribed from the antisense strand of this gene (Umbach et al., 2008).
The silencing effect of miR-H3 and H4 on ICP34.5 was finally demonstrated by

HSV-2 miRNAs, miR-1 and miR-II, which share a similar genomic location and

42



Chapter 1: MicroRNAs
sequence to HSV-1-miR-H3 and H4, respectively (Figure 1.7) (Tang et al., 2009).

As a known neurovirulent factor, down-regulation of ICP34.5 may protect the

latent infected cells from neurovirulent effects during virus reactivation.

Although eleven miRNAs are produced from hCMYV, the function of only
one miRNA, miR-UL112-1, has been identified. MiR-UL112-1 is able to target
viral immediate-early protein IEl, also known as IE72 and U123, through two
partially complementary elements located in the 3’UTR (Grey er al., 2007;
Murphy et al., 2008). The expression level of IEI is initially high but gradually
declines after hCMV infection. Grey et al. also demonstrated that premature
expression of miR-UL112 in the early stage of hCMV infection resulted in a
decrease in viral replication rate. This example again shows that miRNAs
contribute to the establishment and maintenance of viral latency. On the whole,
modulation of viral protein expression by viral miRNAs might be a common
approach for viruses to maintain/enter viral latency and protect their infected
cells from the host antiviral immune response. The known viral targets of other

viral miRNASs are summarized in Table 1.6.

1.3.5.2 Cellular mRNA targets

Herpesviruses are the leading cause of human disease after influenza virus.
Once a human being is infected with herpesviruses, the viruses may stay in the
host for life-long latency with subsequent reactivation. For this reason, viruses
need to protect themselves by regulating cellular signaling pathways in order to
escape the host defense system. Viral encoded miRNAs, a new group of genc

regulators, seem to participate in “autoregulation”, and inhibit translation of
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cellular mRNAs bearing imperfect complementary sites in their 3’UTRs, having

similar function to cellular miRNAs.

The miRNAs from three of the four miRNA-producing herpesviruses are
able to regulate cellular genes for cancer development (Table 1.7), with KSHV
miRNAs highly preferring to target cellular genes. An interesting example is
miR-K12-11, which shares the same seed sequence as human miR-155; thus,
they are predicted to regulate a similar set of targets. For example, they
regulate the expression of the transcriptional suppressors, BTB and CNC
homolog 1 (BACHI), which contain several putative binding sites for these two
miRNAs in their 3’UTRs (Gottwein et al., 2007; Skalsky et al, 2007).
Although the function of BACHI in KSHV replication is not clear, up-regulation
of miR-155 was observed in several tumors (see section 1.2.3.2). For this
reason, miR-K12-11, which is supposed to down-regulate the same set of

miR-155 target genes, might also be involved in tumor development.

A cluster of KSHV miRNAs, including mir-K1, K3-3p, Ké-3p and K11, are
able to down-regulate the expression of an important tumor suppressor gene,
thrombospondinl (THBS1) (Samols et al, 2007). THBSI is a potent
anti-angiogenic regulator involved in several biological processes including cell
to cell adhesion and anti-proliferation (Lawler, 2002). Down-regulation of
THBSI by KSHV miRNAs may assist the development of Kaposi’s sarcoma in
vivo. Recently, the pro-apoptotic protein, Bcl-2-associated factor 1 (BCLAFI
or bef) and the natural killer (NK) cell ligand, MHC class I polypeptide-related
sequence B (MICB), were identified as cellular targets of KSHV miRNAs

(Nachmani et al, 2009; Ziegelbauer et al, 2009). Intriguingly, unrelated
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miRNAs deriving from hCMV and EBV were also reported to inhibit MICB

expression through independent binding sites within the 3’UTR of the target
transcript (Table 1.7) (Stern-Ginossar et al., 2007; Nachmani et al., 2009). As
MICB is the stress-inducible cell surface ligand recognized by NK cells for
immune responses, down-regulation of MICB by viral miRNAs might be an
important process for herpesviruses-infected cells (stress induction} to escape the

host immune defense system.

EBV miRNAs can also modulate cellular gene expression. For example,
miR-BARTS, which is strongly expressed in epithelial cancers, is able to inhibit
the expression of the pro-apoptotic protein, p53-upregulated modulator of
apoptosis (PUMA). Suppression of endogenous miR-BARTS in NPC cell line
(C666-1) has been demonstrated to stimulate PUMA-dependent apoptosis (Choy
et al., 2008), suggesting that miR-BARTS may protect EBV-infected cells from
p33 induced apoptosis.  Another ebv-miRNA, miR-BHRF1-3 has been
proposed to down-regulate the expression of a chemokine named
CXC-chemokine ligand 1I (CXCLII), a potent interferon-inducible T-cell
chemoattractant (Xia et al, 2008).  Specifically high expression of
miR-BHRF1-3 in viral latency 11l and during virus replication may be important
for active EBV infected cells to be shielded from cytotoxic T cell elimination in
Vivo.

In summary, the identified cellular and viral targets of virus-encoded
miRNAs are similar in function. They enable the virus to prolong their culture
in infected cells by either evading host immune response or escaping

viral-induced apoptosis.
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Table 1.6 Viral targets of human viral miRNAs
Virus _miRNA Target Function References
HSV-1 miR-H2-3p ICP0 Immediate-garly protein (Umbach et al.,
2008)
miR-H3 ICP34.5 Neuro-virulence factor
miR-H4 ICP34.5 Neuro-virulence factor
miR-H6 1CP4 Immediate-early protein
HSV-2  miR-1 ICP4 Immediate-early protein (Tang et al., 2008;
Tang et al., 2009)
miR-11 ICP34.5 Neuro-virulence factor
miR-III ICP34.5 Neuro-virulence factor
HCMV miR-UL112-1 IE1* Immediate-early protein (Grey et al., 2007;
Murphy ef al.,
2008)
EBV BART2 BALF5  Virus DNA polymerase (Barth ef al.,
2008)

BARTI-5p  LMP-i
BARTI6

BART!7-5p

Viral oncogene

(Lo et al., 2007)

* IE1 also known as IE72 or UL123
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miRNA Sequence (5’ to 3") Homology
JCV miR-J1-5p :JCCUGGGAARAGCAU- 57%
SV-40 miR-S1-5p 5ICCUGAAAUGAGCCUU
- * % k% * k% &
JCV miR-J1-3p Uf5CUGGAIICCAUGUCCAGAGUC 75%
SV-40 miR-S1-3p ~{5CUGITUCAUGCCCUGAGU -
i e =4 = khkkk *k FThkkx
HSV-1 miR-H2 c[zaGT|AGGGACGAGUGCGACU 73%
HSV-2 miR-III UL 13AG JUGGGUCAUGCGCGA-~
v e ks kkk * Kk hkkk
HSV-1 miR-H3 =732 +2 UGUGCGGUUGGGA- - 85%
HSV-2 miR-I U555 JUCUGCGGUUGGGAGE
Foaod + 5 |k kkkEtEkdhkdhkhkk
HSV-1 miR-H4 cfia T JUCUAACUCGCUAGU 57%
HSV-2 miR-II {55 U1 {CCUAGC GAACUCA-
E I B ' %* %k
miR-K12-11 Ul AANGTIUAGCCUGUGUCCGA- 57%
miR-155 U}i=a a0 AAUCGUGAUAGGGGU
] R I Y *

Figure 1.7 Conservation between different miRNAs

The miRNA  sequences were extracted from miRBASE

(http://www.mirbase.org/) and the seed region (2™ to 8" nucleotides were

highlight with green color).
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Table 1.7 Cellular targets of human viral miRNAs
Virus miRNA Target Function References
KSHV miR-K12-5, BCLAF!  Pro-apoptotic factor (Ziegelbauer es af,,
-9, -10 2009)
miR-cluster THBSI1 Angiogenesis inhibitor (Samols et al.,
(K12-1, 2007)
“3“513, '6'3p,
-11 etc)
miR-K12-7 MICB Natural-killer cell ligand  (Nachmani ef g,
2009)
miR-K12-11 BACHI Transcriptional suppressor {Gottwein ef al.,
2007; Skalsky et
al., 2007)
HCMV miR-ULII2 MICB Natural-kiiler cell ligand  (Stern-Ginossar ef
al., 2007)
EBV BHRF1-3 CXCL1l  Chemokine, T-cell (Xia er al., 2008)
attractant
BART5 PUMA Pro-apoptotic factor {Choy et al., 2008)
BART2-5p MICB Natural-killer cell ligand  (Nachmani ez al.,

2009)

Abbreviation: BCLAF1: Bel-2-associated factor (also called bef),

THBS1: thrombospandini;

MICB: MHC class I polypeptide-related sequence B,

BACHI: BTB and CNC homologyl;

CXCL1H: CXC-chemokine ligand 11;

PUMA: p53-up-regulated modulator of apoptosis.
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1.4  AIM OF THESIS

With their limiting coding capacity, tiny miRNAs represent a particularly
efficient and accessible tool for viruses to regulate specific gene expression,
The recent discovery of EBV-encoded miRNAs in lymphoma cells and the
identification of several cancer-related targets of miR-BARTs suggests the
importance of EBV miRNAs in tumorigenesis including NPC (see previous
section for information). Whereas miR-BARTs are important in complex
virus-host interactions and contribute to human tumorigenesis, currently
identified EBV miRNA are either cloned from EBV positive lymphoma cell lines
or confirmed in lymphoma cells by computer prediction from the EBV sequence.
Thus, EBV-encoded miRNA involved in NPC may have been missed in previous
discovery processes. These “NPC specific viral miRNAs” may be important for
NPC carcinogenesis.

In order to understand the contribution of EBV-enceded miRNAs in NPC
development, we have three objectives in this thesis. The first objective is to
systematically examine the Jocal NPC-associated EBV genome for viral-encoded
miRNAs. Such information would enhance our understanding of the potential
role of EBV miRNA in NPC development. The distinct expression pattern of
ebv-miRNAs may also serve as a potential diagnostic marker for NPC.

Based on the conventiona! small RNA library cloning methods developed
by the Bartel lab (Lau et al., 2001), we constructed complementary DNA (cDNA)
libraries from a native EBV-positive NPC cell line (C666-1) and xenograft
(X2117). In the libraries, we identified within the BART region two novel
ebv-miRNAs, named miR-BART?21 and miR-BART22. We also confirmed the

high expression of these two miRNAs in NPC cell lines, xenografts and primary
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tumor biopsies.

For the above findings, the second objective of my thesis is to explain the

high expression of miR-BART21 and miR-BART22 in endemic NPC samples.
By comparing sequences between different EBV strains, we identified several
nucleotide variations in the flanking regions of mature miR-BART21 and
miR-BART22. Among them, two nucleotide variations upstream of the mature
miR-BART22 in the local EBV strain are likely to enhance its biogenesis by
Drosha/DGCRS8 processing.

By computational methods for miRNA targeting prediction, we found
several interesting cellular targets for miR-BART22. This observation has led

to the third objective, which is to identify and validate targets of the newly

identified miRNAs using bioinformatic analysis and functional screening. The
bioinformatics software we used for miRNA target prediction were miRanda
(Enright et al., 2003; John et al., 2004) and RNA hybrid (Rehmsmeier et al.,
2004), as we had previous experience using these programs to identify EBV
miRNA targets (Lo et al., 2007; Choy et al., 2008). We finally established that
LMP-24, an important viral latent gene, is one of the downstream targets of
miR-BART22.

In summary, this thesis sought to characterize two novel ebv-miRNAs,
miR-BARTR21 and miR-BART22, which are highly expressed in NPC.
Specific sequence variations within the prevalent EBV strain in our locality
might contribute to the high miR-BART22 expression level in our NPC samples.
Further investigation of the functional role of miR-BART22 in modulating the
expression of the viral LMP-24 gene may facilitate a deeper understanding of

NPC development.
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In summary, the aims of the study are follows:

1. To identify the ebv-miRNAs in NPC by constructing small RNA
librartes from EBV-positive NPC cel line and xenograft.

2. To elucidate the possible contribution of sequence polymorphism in the
biogenesis of ebv-miR-BART22,

3. To identify target(s) of ebv-miR-BART22.
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CHAPTER 2: MATERIALS AND METHODS
2.1 General Materials
2.1.1 Reagents
Reagents Company
3M Sodium Acetate Ambion Inc

40% Acrylamide/bis 19:1 Gel Solution
40% Acrylamide/bis 29:1 Gel Solution
Bromophenol Blue

Chloroform

Diethyl pyrocarbonate (DEPC)

Dimethyl sulfoxide (DMSO)

Ethanol
Ethidium bromide (EiBr)

Formamide

Gel loading buffer II (Denaturing PAGE)
Geneluice transfection reagent

Glacial Acetic Acid

Glycerol

Hi-Di Formamide
Isopropanol
Lipofectamine 2000

N,N,N’,N’-tetramethylethylenediamine
(TEMED)

Non-radioactive cell Assay

Nuclease free Water
Phenol/Chloroform/isoamyl alcohol 25:24:1

Precision Plus Protein"™ Standards (Dual Color)
Protein loading buffer pack (Westemn)
Sephadex ™ G-50 Fine

Super optimal culture (8.0.C) medium

BioRad Laboratories
BioRad Laboratories
Sigma (Fluka) Company
BDH

Sigma Chemical
Company

Sigma Chemical
Company

BDH

Sigma Chemical
Company

Sigma Chemical
Company

Ambion Inc
Novagen Inc

BDH

Sigma Chemical
Company

Applied Biosystems
BDH

Gibco Invitrogen
Corporation

Sigma Chemical
Company

Promega Corporation
Ambion Inc

Gibco Invitrogen
Corporation

BioRad Laboratories
Fermentas Life Sciences
Amersham Biosciences
Gibco Invitrogen

Corporation

SYBR Gold Gibco Invitrogen
Corporation

Trizol® reagent Gibco Invitrogen
Corporation

Trypan Blue Gibco Invitrogen
Corporation

Tween20 Sigma Diagnostic

Xylene Cyanol FF Sigma (Fluka) Company
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2.1.2 Chemicals

Chemicals

Company

4-Morpholinepropanesulfonic acid (MOPS)

Agarose, regular
Ammonium persulfate (APS)
Boric Acid

Complete Protease Inhibitor Cocktail Tablets
Ethylenediaminetetraacetic acid (EDTA)

Glycine

LB. Broth

LB. Agar

Phosphate buffer saline (PBS) pellet
Sodium Chloride (NaCl)
Sodium Citrate

Sodium deoxycholate

Sodium dedecyl sulfate (SDS)
Sodium floride (NaF)

Sodium orthovanadate (Na;VQ,)
Trizma® base (Tris)

Sigma Chemical Company
Biowest

Sigma Chemical Company
BioRad Laboratories
Roche Applied Bioscience
BDH

Sigma Chemical Company
USB Corporation

USB Corporation

Sigma Chemical Company
BDH

BDH

Sigma Chemical Company
BioRad Laboratories
Sigma Chemical Company
EMD Biosciences

Sigma Chemical Company

1.1.3 Buffers

Prepared Buffers

Reagents

Blotting buffer, 10x (Western blot)

Dissolving buffer, 8x (Western blot)

DNA loading Dye, 6x

Oligo annealing buffer, 10x

RIPA (Whole cell lysis buffer)

Running buffer
SSC solution, 20x%

Stacking buffer, 4x (Western blot)

Stripping buffer (Northem blot)

Tris buffer saline (TBS)

Tris buffer saline tween (TBST)
ULTRAhyb-Oligo hybridization Buffer

0.25M Trizma Base, 1.92M Glycine
{10% Methanol were added for 1X
blotting buffer)

3M Trizma Base (pH8.8)

(add SDS to 0.4% after autoclave}
10mM Tris, 0.03% Bromophenol
Blue, 0.03% Xylene Gyanol FF,
60mM EDTA (pH 8.0, 60%
Glycerol

100mM Tris (pH 8.0), 10mM
EDTA, IM NaCl

1% NP-40, 0.5% Sodium
deoxycholate, 0.1% SDS, 10mM
Sodium orthovanadate (Na3VO,),
50mM Sodium floride (NaF),
Dissolving in PBS

1X Blotting buffer, 0.1% SDS

1 L of Stock solution containing:
175.3g NaCl; 88.2g Sodium Citrate
(pH 7.0)

0.5M Trizma Base (pH6.8)

(add SDS to 0.4% after autoclave)
0.1%SDS and 0.1% SSC

150mM NaCl, 50Mm Tris. (pH7.5)
TBS, 0.01% Tween

Ambion
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1.1.4 Cell Culture

Reagents and Culture Plastic

Company

Defined Keratinocyte-SFM (KSFM)
Fetal Bovine Serum (FBS)

Geneticin (G418)

GlutaMA X[
Karatinocyte-SFM(KSFM)

Minimum Essential Medium (MEM)
Opti-MEM® I Reduced-Serum Medium
Penicillin-Streptomycin, 100x

RPMI powder

RPMI Solution

Tissue culture flask (25, 80 cm?)

Tissue culture plate (96-, 24~ and 6-well)
Trypsin, 0.05% with EDTA

Gibceo Invitrogen Corporation
Gibco Invitrogen Corporation
Roche Applied Science
Gibco Invitrogen Corporation
Gibco Invitrogen Corporation
Sigma Chemical Company
Gibco Invitrogen Corporation
Gibeo Invitrogen Corporation
Sigma Chemical Company
Gibco Invitrogen Corporation
BD Labware Company

Iwaki Company

Gibco Invitrogen Corporation

1.1.5 Nucleic Acids

Nucleic acids Company
Custom designed oligonucleotides Gibco Invitrogen
Corporation,
Tech Dragon Ltd
Deoxyuncleotide Trisphosphate dNTP set GE Healthcare
GeneRuler™ 1 kb DNA Ladders Fermentas Life Sciences
miRNA mimics Qiagen
GeneRuler™ Ultra Low Range DNA Ladders Fermentas Life Sciences
SiRNA duplex Qiagen
phi X-174 RF DNA-Hae Il Digest GE Healthcare
Tagman Probe for QRT-PCR Applied Biosystems

1.1.6 Enzymes

Enzymes

Company

EcoRI

Hindlll

Spel

T4 DNA ligase

T4 Polynucleotide Kinase (PNK)
Taq DNA polymerase

Xbal

Xhol

New England Biolabs

New England Biolabs

New England Biolabs

Gibco Invitrogen Corporation
New England Biolabs
Fermentas Life Sciences
New England Biolabs

New England Biolabs
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1.1.7 Eguipments

Equipments

Company

7500 Real-Time PCR System

7900HT Fast Real-Time PCR System

9800 Fast Thermal Cycler

ABI PRISM® 3130XL Genetic Analyzer
NanoDrop-1000 UV-VIS Spectrophotomer
Victor' ™ Multilabel Counter

Applied Biosystems
Applied Biosystems
Applied Biosystems
Applied Biosystems
NanoDrop Technologies
Perkin Elmer

1.1.8 Kits

Kit

Company

BigDye Terminator Cycle Sequencing Kit
DAB (,3'-diaminobenzidine) Detection Kit
Dual Luciferase Reporter® Kit

EBYV probe ISH kit

Flag® Tagged Protein Immunoprecipitation Kit
High Capacity cDNA Archive Kit
MAXIscript kit

microRNA Isolation Kit, Human Ago2

miRCat™ cloning Kit

MirVana™ miRNA Isolation Kit
miScript Reverse Transcription Kit
miScript SYBR Green PCR Kit
PureLink™ Hi Pure mini, midi prep Kits

QiAquick Gel Extraction Kit

QIA PCR purification Kit

QIAamp DNA FFPE Tissue Kit

TagMan Universal PCR Master mix

TagMan Universal PCR Master mix, No UNG
TOPO TA Cloning® Kit

Western Chemiluminescent HRP Substrate

Applied Biosystems
Sigma Chemical Company
Promega
Novocastra, UK
Sigma Chemical Company
Applied Biosystems
Ambion

Wako Pure Chemical
Industries, Ltd
Integrated DNA
Technologies
Ambion Inc

Qiagen

Qiagen

Gibeo Invitrogen
Corporation

Qiagen

Qiagen

Qiagen

Applied Biosystems
Applied Biosystems
Gibco Invitrogen
Corporation
Millipore
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1.1.9 Software and Web Resources

Software and web resources

Company/URL

ABI PRISM® 3130 Genetic Analyzer
Data Collection Software v1.1

GenBank database

Image J software
MFOLD

MiRanda

MiRBASE

National Center for Biotechnology
Information (NCBI)

Primer 3

RNAhybrid

Applied Biosystems

http://www.ncbi.nlm.nih.gov/BL
AST

http://rsb.info.nih.gov/ij/
http://mfold.bioinfo.rpi.edu/cgi-bi
n/rna-forml.cgi

http://www.microrna.org/
http://microrna.sanger.ac.uk/
http://www.ncbi.nlm.nih.gov/

http://frodo.wi.mit.edu/cgi-bin/pri
mer3/primer3_www.cgi
http://bibiserv.techfak.uni-bielefel
d.de/rnahybrid/
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2.2 NPC Biopsies

Twenty-five nasopharyngeal carcinoma (NPC), three normal nasal
pharyngeal (NP), nine Hodgkin’s disease (HD) and one infectious mononucleosis
(IM) endoscopic biopsies were used in both Northern blot analysis and
immunohistochemical staining (IHC). The EBV DNA for the miR-BART22
sequence variation (Chapter 3) study was collected from the oral cavities of local
NPC patients. All specimens were obtained from the patients prior to treatment
with informed consent from the Prince of Wales Hospital, The Chinese
University of Hong Kong. All biopsies were paraffin-embedded, sectioned at
around Sum and subjected to histological diagnosis by Department of
Anatomical and Cellular Pathology, The Chinese University of Hong Kong.
The presence of EBV in the tissue was detected by EBV-encoded small RNA

(EBER) in situ hybridization (ISH).

2.3 NPC CELL LINES AND XENOGRAFTS
2.3.1Cell lines

A panel of NPC cell lines was commonly used in this study (Table 2.1).
They included five NPC cell lines, namely C666-1, HK1, HK1-EBV, HONEI,
HONEI-EBV and two immortalized normal nasal pharynx (NP) epithelial cell
lines, NP69 and NP460. The C666-1 cell line, which consistently carried EBV
in long-term culture, was established in our laboratory from an NPC xenograft
{X666) derived from an undifferentiated NPC tumor biopsy (Cheung et al,
1999). HKI1 is a well-differentiated NPC cell line established from a recurrent
squamous carcinoma of the nasopharynx of a Chinese male (Huang et al., 1980).

HONE1 was derived from the biopsy taken form poorly-differentiated squamous
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cell carcinoma of the nasal pharynx (Glaser et al, 1989). HKI-EBV and
HONEI-EBV were established by co-culturing the corresponding parental cell
lines with Akata cells which carry a recombinant EBV tagged green fluorescent
protein (GFP) and a neomycin resistance gene (Neo'). The cells were selected
by G418, and the presence of EBV in the cells was confirmed with GFP
expression (Lo et al., 2006). NP69 and NP460 were twe normal immortalized
NP epithelial cell lines established by SV40T oncogenes and telomerase reverse
transcriptase (hTert) integration, respectively (Tsao ef al., 2002; Li et al., 2006).
They were commonly used as the EBV-negative normal epithelial cell control.

For comparison purposes, EBV-positive marmoset leukocyte, B95.8, and
three native EBV-containing human lymphoid cells, Akata, Namalwa and Raji,
were included. They were available from the American Type Culture
Collection (ATCC). For luciferase reporter assay analysis, human embryonic
kidney cell lines HEK293 and 293FT, which is a HEK293 derivative expressing
the simian virus 40 (§V40) T antigen, were purchased from ATCC and Gibco
Invitrogen Corporation respectively.

Cell lines C666-1, HK1, HONEI, HK1-EBV, HONEI1-EBV, B95.8, Akata,
Namalwa, Raji were cultured in RPMI plus 10% FBS. To maintain the EBV
genome inside the cells, G418 selection was applied for HK1-EBV (100pg/ml),
HONE-EBV (300ug/ml) and Akata (300ug/ml). NP69 cells were grown in
Keratinocyte serum free medium (KSFM) supplemented with prequalified
human recombinant Epidermal Growth Factor 1-33 and Bovine Pituitary Extract
(BPE). NP460 cells were cultured in medium containing KSFM and Defined
KSFM in 1:1 ratio. Cell lines HEK293 and 293FT cells were grown in MEM

containing 10% FBS. All cell lines were kept in humidified incubator with 5%
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CO, at 37°C. Cells at around 80% confluence were routinely split or harvested

for RNA and protein extraction.

2.3.2 Xenografts

Four NPC xenografts, X666, X2117, C15 and C17, were used in the study.
X666 and X2117 were established in our laboratory (Huang et al., 1989). On
the other hand, C15 and C17 were kindly provided by Prof. Pierre Busson at the
Institut Gustave Roussy, France (Busson ef al., 1988). All the xenografis were
continuously maintained by inoculating subcutaneously into nude mice.
Xenografts removed from the mice were snap-frozen and stored at -80°C until
protein or RNA extraction. The information of all NPC cell lines and

xenografts are summarized in Table 2.1
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Table 2.1 Summary of NPC cell lines and xenografts in the study
Characteristic EBV Reference
Cell lines
C666-1 Undifferentiated Carcinoma positive (Cheung et al.,
1999)
HK1 Well-differentiated Negative  (Huang et al., 1980)
squamous cell carcinoma
HK1-EBV Well-differentiated Positive (Lo et al., 2006)
squamous cell carcinoma
HONE]1 Poorly-differentiated Negative  (Glaser ef al., 1989)
squamous cell carcinoma
HONEI-EBV Poorly-differentiated Positive (Lo et al., 2006)
squamous cell carcinoma
NP69 Normal nasopharyngeal Negative  (Tsao et al., 2002)
epithelial cells
NP460 Normal nasopharyngeal Negative  (Li ez al., 2000)
epithelial cells
Xenografts
X666 Undifferentiated carcinoma Positive (Huang et al., 1989)
X2117 Undifferentiated carcinoma positive (Huang e? al., 1989)
Cl15 Undifferentiated carcinoma positive (Busson et al., 1938)
C17 Undifferentiated carcinoma positive {Busson et af., 1988)
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2.4 Induction of EBV lytic cycle in NPC cell lines

To compare the viral lytic effect with different agents, C666-1 and
HK-EBYV cells were treated with 100ng/ml of Gemcitabine (GEM, Eli Lilly and
Company) alone, or together with either 300nmol/L of Valporic acid (VPA,
Sigma Chemical Co.) or 100ng/ml Trichostatin A (TSA, Sigma Chemical Co.)
for 48 days. Western Blots were performed as described in section 2.11 with
anti-EA-D (BMRF1) antibody. The result of the lytic effect is shown in Figure

2.1.

2.5 Plasmid DNA preparation
2.5.1Plasmids
Construction of specific expression vectors will be discussed later in this

chapter. The information of basal plasmids used in this study is listed in Table

2.4

Table 2.2 Basal plasmids used in this study

Name: Selectable Vector Source:
marker Map

pcDNA3.1-(+) Ampicillin Figure 2.2 Gibco Invitrogen
Corporation

pEGFP-Cl1 Kanamycin Figure 2.3 Clotech company

pFLAG/HA-DGCRS Ampillicin Figure 2.4 Addgene Inc
(Landthaler et al.,
2004)

pcDNA4/TO/cmycDrosha  Ampillicin Figure 2.4 Addgene Inc
(Landthaler et al.,

2004)
pRL-CMV Ampillicin Figure 2.5 Promega Corporation
pMIR-REPORT™ Ampillicin Figure 2.5 __Ambion Inc
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=; - -
s 2=pREExEEX =R TR Y
("‘).m SE352584808838888284
— ->~_§§ = o
_ e mn o XEEXERTE=2
( Lﬁ%&%ﬁﬁ%ﬁﬁ%?&ﬁ%.

pcDNA3.1 (+/-)
5428/5427 bp

Comments for pcDNA3T [+)
5428 nucladtidas

CNV promoter: bases 232-819
TT promoter/priming site; bases B63-882
Mudtiple cloning site: bases BS5-1010
pcDNAZ 1/BGH revorse priming site: bases 1022-1039
BGH polyademylatior secuence: bases 1028-1252
t1 origin: bases 1298-1726
SV4D cady promoter and origin: bases 1731-2074
Neomycin resistance gene (ORF): bases 21362930
SV40 eardy polyademdation sigral: bases 3104-3234
pUC origin: bases 3617-4287 (complementary strand)
Ampicilin resistance gene (bfa): bases 4432-5428 (complementary strand}
ORF: bases 4432-5292 (complemoentary strand)
Ribosome dinding ste: bases 5300-5304 (complementary strand}
bia promoter [P3 ) bases 5327-5333 (complementary strand)

(Source: http:/fteols.invitrogen.com/content/sfs/manuals/pcdna3. 1 _man.pdf)

Figure 2.2 Restriction map of pcDNA3.1 (+/-)
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(Source: http://www.clontech.com/images/pt/dis_vectors/PT3028-5.pdf)

Figure 2.3

Vector map of pEGFP-C1
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2.5.2Preparation of Competent E.coli

A fresh bacteria colony (TOP-10 and DH50) was incubated in 2 ml of
L.Broth and grown for 3-4 hr. The bacteria were diluted into 100ml LB Broth
and grown for about 2 hr until the ODs3 reached 0.2.  The bacterial culture was
chilled on ice for 15 min and the pellet was harvested by centrifugation at 2500
rpm at 4°C for 15 min. The pellet was resuspended in 50ml of ice cold 0.1M
CaCl; (pH 6.0) and kept on ice for 15 min to 2 hr. The bacteria were
centrifuged again at 2500 rpm for 5 min, and resuspended in 5 ml fresh 14%
glycerol and 0.1M CaCl,.  Aliquots of the suspension in Eppdendorf tubes were

snap-frozen in liquid nitrogen and stored at -80°C until use.

2.5.3Bacterial Transformation

For transformation of the plasmid DNA, E.coli DH5a and TOP10 were used.
The frozen competent bacteria (see 2.5.2) were thawed slowly on ice. Around
500 ng of plasmid DNA was added into 50ul of bacterial suspension and kept on
ice for 10 min. The competent cell-DNA mixture was then heated at 42°C for 2
min or 37°C for 4 min, diluted to 250ul of L.Broth or S.0.C. medium followed
by shaking at 37°C for 45 min at 200 rpm. One hundred micoliters of mixture
was plated on the L.Broth plate in the presence of suitable antibiotic (100pg/m!
of ampicillin or 50pg/ml of kanamycin). The transformed bacteria were

incubated overnight at 37 °C for colony selection.

2.5.4Plasmid DNA Extraction
For small scale plasmid DNA preparation, a siiigle bacterial colony was

inoculated into 3ml of LB Broth medium with a suitable concentration of
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antibiotic for at least 8 hr at 37°C with shaking. The bacterial culture was
pelleted by high speed centrifugation and resuspended in 0.1ml of solution 1
{50mM glucose, 25mM TrisCl pH8.0 and 10mM EDTA pH8.0) for incubation at
room temperature for S min. Afterwards, 0.2ml of solution 2 (0.2M NaOH and
1% SDS) was added to the suspension with gentle mixing, and the mixture was
kept on ice for 10 min. The mixture was mixed gently with 0.15mli of ice-cold
solution 3 (3M potassium acetate and 0.1M glacial acetic acid) and incubated on
ice for 5 min for neutralization. The debris was centrifuged down and the
supernatant was precipitated with 0.7 volume of isopropanol. The
DNA-isopropanol mixture was incubated at room temperature for 2 min, and the
DNA was pelleted by centrifugation at full speed for 30 min at 4°C. The DNA
pellet was air dried and dissolved in 40pl of water. Large scale plasmid DNA
preparation was done by PureLink™ Hi Pure midi preparation Kits (Invitrogen)

following the manufacturer’s instructions.

2.6 PAGE Northern Blot Analysis
2.6.1Polyacrylamide Gel Electrophoresis for miRNA

To prevent RNase contamination, the gel plate and apparatus were soaked
with 0.5M NaOH for 15 min and then rinsed thoroughly with RNase-free watet.
The 12% polyacrylamide/8M Urea denaturing gel was prepared from a 15 ml
mixture of 7.2g urea, 1x TBE, 4.8ml of 40% acrylamide (acryl:bis acryl = 19:1),
75ul of 10% APS and 15u] TEMED.

Ten micrograms of total RNA was denatured with an equal volume of 2x
Gel Loading buffer Il (Ambion Inc.) at 95°C for 5 minutes and chilled on ice

immediately. The sample was then resolved on a 12% polyacrylamide/8M Urea
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gel using the Bio-Rad Protein II minigel system. The electrophoresis was
performed at constant voltage (140V) until the faster dye reached the bottom of
the gel. The gel was removed from the glass plate, stained with SYBR GOLD
for 3-10 minutes and the RNA stained image was recorded. The gel was then
rinsed with 0.5x TBE. RNA in the gel was electrophoretically transferred onto
a Nytran Supercharge membrane (Schleicher & Schuell, Dassel, Germany) using
a semi-dry electroblotter (BioRad Laboratories) at a constant voltage of 20V for
1 hr. The transferred RNA on the membrane was fixed by UV cross-linking

twice at 1200x 10pJ for 30 sec using a UV crosslinker (Stratagene).

2.6.2Probe Labeling

Oligonucleotides complementary to target RNA sequences were end-labeled
with y-32P ATP as probes for Northern blots.  Fifty microliters of the labeling
mixture containing 1.5pul of 10pM oligonucleotides, 15U of T4 PNK and 5pl of
10x PNK buffer were incubated at 37°C for | hour followed by 70°C for 15 min
to stop the reaction. The mixture was directly used for hybridization,
Sequences of the oligonucleotide probes for the Northern blot are listed in Table

2.3.
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Table 2.3 Sequences of oligonucleotide probes for Northern blot

Target miRNAs Sequence (5’2 3") Size
hsa-miR-16 CGCCAATATTTACGTGCTGCTA 22
ebv-miR-BART21 GTTAGTTGCCTTCACTAGTG 20
ebv-miR-BART22 ACTACTAGACCATGACTTTGTAA 23
ebv-miR-BARTI1-5p CAGCACGTCACTTCCACTAAGA 22
ebv-miR-BART2-5p GCAAGGGCGAATGCAGAAAATA 22
ebv-miR-BARTS GATGGGCAGCTATATTCACCTT 22
ebv-miR-BART10 TGTACAGAACCAAAGAGGTGGC 22
ebv-miR-BHRF1-1  AACTCCGGGGCTGATCAGGTTA 22
ebv-miR-BHRF1-2  TCAATTTCTGCCGCAAAAGATA 22
ebv-miR-BHRF1-2* GCTATCTGCTGCAACAGAATTT 22
ebv-miR-BHRF1-3  TGTGCTTACACACTTCCCGTTA 22
U6 RNA GCAGGGGCCATGCTAATCTTCTCTGTATCG 30

2.6.3Hybridization and Signal Detection

Membrane were pre-hybridized with 5ml of ULTRAhyb®-oligo
hybridization buffer at 42°C for 1 hr. Labeled probe (section 2.6.2) were then
added directly to the membrane in hybridization buffer with for ovemnight
hybridization at 30°C.

After hybridization, the membrane was rinsed twice with primary wash
buffer (6X SSC/0.2% SDS), followed by washing 3 times with the same buffer at
room temperature for 5 min each, then washed once with 2x SSC/0.5% SDS at
42°C for 15 min.  Afier the final wash, the blot was wrapped in plastic wrap and
exposed to the X-ray film (Fujifilm Corporation) at -800C overnight. The

exposure time was dependent on the expression level of the target miRNA.

2.7 Total DNA and RNA Extraction
2.7.1DNA Extraction

For sequencing analysis, DNA was purified from different samples
including FFPE tissue, flesh biopsies, xenografts and cell lines. QlAamp DNA

FFPE Tissue Kit (Qiagen) was used to extract DNA from FFPE tissue following
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the manufacturer’s protocol.

Homogenized biopsies, xenografis and cell lines were washed twice with 1x
PBS and then resuspend in 10ml nucleic lysis buffer (10mM Tris-Cl, 0.4M NaCl
and 5SmM EDTA). Following centrifugation at 1000 rpm for 15 min at 4°C, the
pellet was collected and resuspended in 3ml nucleic lysis buffer together with
120pul proteinase K (10mg/ml) and 400pul 10%SDS. Samples were digested at
55°C overnight. Following proteinase digestion, the supernatant was
transferred into a new 15ml tube and DNA was precipitated by adding 350p] 3M
sodium acetate (pH 5.2) and 10ml ice cold 100% isopropanol with gentle shaking.
The DNA precipitate was transferred into a new 15ml tube containing 10ml of
75% ethanol. The DNA was rocked for an hour to remove salt and then
transferred into a new 1.5ml tube. The DNA pellet was dried by incubating at
65°C for 15 min. The DNA was resuspended in 100pl of TE buffer and its
concentration was determined using a  NanoDrop-1000 UV-VIS

Spectrophotomer.

2.7.2RNA Extraction

For quantitative analysis, total RNA was extracted from cell lines,
xenografts and biopsies using TRIzol® reagent. Homogenized xenografts,
biopsies and cell lines at 80% confluence in culture dishes were washed twice
with 1x PBS and then mixed with 1 ml TRIzol reagent. Samples were
incubated at room temperature for 5 min to permit complete dissociation of
nucleoprotein. Chloroform was added at a ratio of TRIzol: Chloroform, 10:2.
The mixture was vigorously vortexed for 15 sec and allowed to stand at room

temperature for 3-5 min. Following centrifugation at 14000 rpm for 15 min at
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4°C, the aqueous phase containing RNA was carefully collected and precipitated
by isopropanol in a ratio TRIzol: Isopropanol, 2:1. The mixture was kept at
room temperature for 10 min and then centrifuged at 14000 rpm for 30 min at
4°C. The RNA peliets were dried at 65°C for 15 min and resuspended in
nuclease free water. The concentration of RNA was determined using a
NanoDrop-1000 UV-VIS Spectrophotomer. All RNA was kept at -80°C. The

extraction of a small RNA-enriched fraction will be discussed in section 2.18.1.

2.8 Quantitative RT-PCR (QRT-PCR)

For traditional QRT-PCR, one microgram RNA was reverse transcribed with
High Capacity ¢cDNA Archive Kit following the manufacturer’s protocol. In
brief, the 15pul reaction mixture contained RNA, 0.15pl of 100mM dNTP, 1.5ul
of 10x random primers (Invitrogen), 0.19ul of 20U/ul RNase inhibitor, and 1pl
of 50U/ul MultiScribe™ Reverse Transcriptase. The reaction was performed at
16°C for 30 min, 42°C for another 30 min and 85°C for 5 min. All cDNA were
stored at -80°C until use.

For SYBRGreen QRT-PCR, 10pl of PCR reaction containing 1pul of cDNA,
Sul of 2x SYBRGreen Reaction mix, 0.2ul of each of the 10uM forward and
reverse primers was amplified. If a Tagman probe was used for the reaction,
one micro-liter of cDNA was added to the 10pl PCR reaction containing Spl of
2x Taqman® Universal PCR Master Mix, 0.05ul of 10pM Tagman probe, 0.2ul
of each of the 10uM with as the follow thermal cycling condition: 95°C for 10
min, 50 cycles of 95°C for 15 sec and 60°C for 1 min. The threshold cycle
number (Ct) at which the emission intensity of fluorescent signal was detected.

The specificity of the SYBRGreen PCR product was confirmed by adding
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dissociation steps at the end of PCR reaction, in which the PCR products were
subjected to an increase in temperature from 55°C to 95°C and the fluorescence
measurements were taken at each temperature increment. The fluorescent
signal was plotted versus temperature with a single peak on the plot around 80°C
indicating the specificity of the PCR product.

For miRNA QRT-PCR, the miScript Reverse Transcription Kit and miScript
SYBR Green PCR Kit were used according to the manufacturer’s instructions.
The principle of miScript is illustrated on Figure 2.6. In brief, 10pl of reverse
transcription reaction mixture containing 1pug of RNA, 0.5pl of miScript Reverse
Transcriptase Mix and 2pl of 5% miScript RT buffer were incubated at 37°C for
60 min, then 5 min at 95 °C to inactivate any enzyme activities. Thirty
microliters of nuclease free water were added to dilute the cDNA for real-time
PCR. The PCR reaction (10ul) contained Sui of 2x QuantiTect SYBR Green
PCR Master Mix, Ipul of 10x miScript Universal primer, 0.5pul of 10uM miRNA
specific primer and 1ul of cDNA sample was performed with the following
thermal cycling condition: 95 °C for 15 min, followed by 40 cycles at 94°C for
15 sec, 55°C for 30 sec and 60°C for 30 sec. The results of the relative fold
difference in the target gene expression relative to the house-keeping gene

(B-actin or RNU6B snRNA) were calculated using 27°*".  Analysis of each

sample was performed in triplicate. The primers used for QRT-PCR are listed

in Table 2.4
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Table 2.4 Primers for QRT-PCR

Primer name Sequence (5’2 3%) Size Melting
temp.
ACTIN-69F CTGGCACCCAGCACAATG 18bp 57°C
ACTIN-69R GCCGATCCACACGGAGTACT 20bp 59°C
BRLFI-F AATTTACAGCCGGGAGTGTG 20bp 56°C
BRLFI-R AGCCCGTCTTCTTACCCTGT 20bp 58°C
BZLF-F GCACATCTGCTTCAACAG 18bp 52°C
BZLF-R CGTGAGGTCAGTATATAC 18bp 47°C
EBNA1-1162F TCATCATCATCCGGGTCTCC 20bp 56°C
EBNAI1-1229R CCTACAGGGTGGAAAAATGGC 21bp 56°C
EGFP 82F: CGACAACCACTACCTGAGCA 20bp 57°C
EGFP 82R: GAACTCCAGCAGGACCATGT 20bp 57°C
Notch 1-F: CCGCAGTTGTGCTCCTGAA 19bp 58°C
Notch 1-R ACCTTGGCGGTGTCGTAGCT 20bp 61°C
LMP2A-F CGGGATCACTCATCTGAACACATA 24bp 56°C
LMP2A-R GGCGGTCACAACGGTACTAACT 22bp 59°C
Tagman Probe' (FAM)- 26bp -
CAGTATGCCTGCCTGTAATTGTTGCG
-(TAMRA)
Spec- RNUSB  ACGCAAATTCGTGAAGCGTT 20bp 56°C
Spec-BART10 TACATAACCATGGAGTTGGCTGT 23bp 56°C
Spec- BART21 CACTAGTGAAGGCAACTAAC 20bp 51°C
Spec-BART22 TTACAAAGTCATGGTCTAGTAGT 23bp 51°C

' The primers and probe designed for LMP-2A QRT-PCR were refer to (Bell et

al., 2006)
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Total RNA prep
mRNA Small non-coding RNAs
feg. miRNAs and RNU6B}
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Figure modified from (miScript System Handbook, Qiagen)
Figure 2.6 miScript principle

RNAs are polyadenylated by poly(A) polymerase and subsequently converted
into ¢cDNA by reverse transcriptase with oligo dT priming in miScript Reverse
Transcriptase Mix (Step 1). The ¢cDNA can be used for real-time PCR
quantification of both miRNA (using miRNA specific primer and miScript
Universal Primer) (rvight panel) and specific mRNA (using gene-specific primers)

(left panel).
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2.9 hAGO-2 Immunoprecipitation

Immunoprecipitation (IP) was performed in C666-1 cells using the
anti-hAGO-2 antibody microRNA Isolation Kit following the manufacturer’s
protocol (Wako Company). This antibody has been confirmed to work
efficiently for IP (Azuma-Mukai et al., 2008). Anti-Flag M2 antibody (Sigma
Chemical Company) was used in a parallel experiment as the negative control.
In brief, the cell pellet collected from 2 plates of 50% confluency was
resuspended in 2.2 ml cell lysis buffer (Wako) and kept on ice for 5 min.
Afterwards, the mixture was centrifuged at 14000 rpm at 4°C for 20 min. The
supernatant was split into three aliquots, 1 ml for hAGO-2 bead 1P, 1 m! for
Anti-Flag M2 bead IP, and 0.2 ml was kept as input total RNA for comparison.
The antibody beads for the reaction were pre-washed as described in the
manufacturer’s protocols before adding to the cell lysate. The antigen-antibody
reaction was mixed by rotator overnight at 4 °C followed by purification of the
miRNA fraction. Total RNA was extracted with the TRIzol method and
dissolved in 20pl of nuclease free water as described in section 2.7. Four

micro-liters of RNA were loaded for Northern blot analysis.

2.10 Protein Extraction

Cells were washed twice with PBS, harvested and centrifuged in a
microfuge. The cell pellet was resuspended in 100pl RIPA buffer (section
2.1.3), supplemented with 1x protease inhibitor cocktail (Roche). The mixture
was freeze-thawed twice using liquid nitrogen and 37°C and then left on ice for
30 min. The mixture was subsequently centrifuged at 14000 rpm at 4 °C for 15

min to remove all cell debris. The protein supernatant was transferred to a new
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1.5ml tube. The protein concentration was determined by BCA Protein Assay
Reagent (Thermo Scientific) with reference to serial dilutions (0.1-2mg/ml) of
bovine serum albumin (BSA). The BCA protein assay is a
detergent-compatible formulation based on bicinchoninic acid (BCA) for the

colorimetric detection and quantitation of total protein (Smith et al., 1985).

2.11 Western Blot Analysis

Proteins were analyzed by sodium dodecylsulfate polyacrylamide gel
electrophoresis (SDS-PAGE) using a mini protein gel apparatus (BioRad).
Twenty micrograms of protein samples were mixed with 5x protein loading
buffer, denatured at 95°C for 5 min and chilled on ice for 5 min before loading.
Samples were run in 1% running buffer at a constant voltage of 120V. Precision
Plus Protein™ Standards (BioRad) were used as size markers.

Following electrophoresis, the proteins in the gel were transfered to a PYDF
membrane (GE Healthcare Life Science) using a Mini Trans-Blot® Cell at
approximately 120V for 1 hr in 1x blotting buffer. The membrane with
transfered proteins was then incubated with 5% dried milk in 1x TBST for 30
min to block non-specific protein binding, followed by incubating overnight at 4
°C or 1 hr at room temperature with the primary antibody in 5% dried milk (or
BSA) in 5 ml of TBST. The concentrations of antibodies used in Western blots
are listed in Table 2.5. After washing the membrane with three changes of 20
ml TBST at room temperature, the membrane was incubated in secondary
antibody diluted in 5% dried milk in 5ml of TBST. Excess antibody was
removed by washing the membrane as before. Antibody conjugated signals

were visualized by exposure to X-ray film using Western Chemiluminescent
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HRP Substrate (Millipore). All information about the buffer preparations and

materials used in Western blot is described in Section 2.1.1.

Table 2.5 Concentrations of antibodies used in Western blot

1° Antibodies Company Dilution
Mouse monoclonal Anti-EBV EA-D (Chemicon) 1000
(BMRF1) (6D1) Millipore.
Mouse monoclonal anti-GAPDH (G8795)'  Sigma Chemical Co. 200000
Mouse monoclonal anti-B-Actin (AC15) Sigma Chemical Co. 200000
Mouse monoclonal anti-E2F3 (PG30) Sigma Chemical Co. 1000
Mouse anti-EBV Transcription Factor R ARGENE 1000
(BRLF1)
Mouse anti-EBV Z Replication Activator ARGENE 1000
(ZEBRA)
Mouse monoclonal Anti-AGO2 antibody (Upstate) Millipore 5000
(9E8.2)
Mouse monoclonal GFP Clontech Company 100000
Rabbit monoclonal Anti-AKT (#9272) Cell Signaling 2000
Rabbit monoclonal Cell Signaling 2000
anti-phospho-AKT(Ser473) (#9271)
Rat monoclonal LMP2A (15F9) AbD SeroTec. 2000
Biotinylated 2° Antibodies
Polyclonal goat anti-rabbit DAKO Company 250000
Polyclonal rabbit anti-mouse' DAKO Company 250000
Polyclonal rabbit anti-rat DAKO Company 250000

' To detect GAPDH, membrane incubated with primary/secondary antibody for

15 min at room temperature is enough.
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2.12 Immunochistochemistry (JHC)

The protocol for LMP-2A Immunohistochemical staining is described in
Heussinger et al. with some modification (Heussinger ez al., 2004). In brief, the
Sum paraffin sections were dewaxed in xylene and rehydrated in a series of
graded ethanol series and finally washed in TBS. Endogenous peroxidase
activity was blocked with 3% H;0, at room temperature for 20 min. Antigen
retrieval was performed by using a pressure cooker with 10nM citrate buffer (pH
6.0) for 4 min. The tissue sections were then washed with TBS and blocked
with serum in TBS with 3% BSA for 10 min. Primary antibody against
LMP-2A (15F9, AbD SeroTec; 1:50 dilution) was applied and incubated for 2 hr.
Subsequently, the section was incubated with biotinylated secondary antibody
(DAKO; 1:100 ditution) for 1 hr. The signal was visualized by using the 3,
3’-diamino-benzidine DAB detection kit (Sigma) and hematoxylin counter
staining was performed. The presence of EBV in the paraffin sections was
confirmed by EBER #n sity hybridization which was carried out with an EBV

probe ISH kit (Novocastra, Newcastle, U.K.).

2.13 Cell Poliferation Assay

The cell proliferation rate was measured by non-radioactive cell Assay kit
(Promega Corporation). Briefly, 2x10° transfected cells were distributed in a
96-well plate and incubated at 37°C with 5% CO,. Cell viability was estimated
by adding 15ul of dye solution to each well and incubation at 37°C for 4 hours to
allow the cells to convert the tetrazolium of the dye solution into a formazan
product. Afterwards, 100pu! of solubilization solution was added to solubilize

the formazan product. The absorbance at ODs was recorded using a Victor ™
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Multilabel Counter.

2.14 Flow Cytometry

All cells after transfection were grown in normal culture medium. The
cells should grow to about 60% confluency at the time of harvesting for analysis.
The cells were washed in 5 ml ice-cold PBS and finally resuspended in 100 pl
cold PBS, followed by gently adding 5 ml of ice-cold 70% EtOH. Cell
suspensions were then fixed by incubation at 4 °C overnight or at least 30 min.
The cell pellet was collected by centrifugation at 1000 rpm for 5 min; it was then
stained in 800 pl of PBS containing 50ug/ml propidium iodide (Sigma) and
10ug/ml of RNaseA. Flow cytometric analysis was performed using a flow
cytometer FACS Calibur (BD Biosciences, CA, USA) after incubating the
samples at 37 °C for 30 min. Data were analyzed by Modfit LT™ with standard

settings.

2.15 Transfection

Cells for transfection were normally growth to 50-80% confluency.
Plasmid transfections on 293FT and HEK293 cells were performed using
Geneluice transfection reagent (Novagen) following the manufacturer’s protocol.
The ratio of Geneluice: DNA was 3pl: 1ug unless otherwise specified. For
each well in a 24-well plate format, 0.75u1 GenelJuice was mixed with 20pl
Opti-MEM® medium and incubated at room temperature for § min. Following
incubation, 0.25ug of plasmid DNA was added and the GeneJuice-DNA mixture
was further incubated for another 15 min. The entire mixture was added

dropwise to the cells in normal culture medium; the plate was then gently rocked
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to ensure even distribution. To transfect cells in a 6-well plate and 100mm dish
format, the volume of the mixture prepared for transfection was increased by 4-
and 24-fold, respectively. To normalize the transfection efficiency for some
comparative experiments, 10% pEGFP-C1 was included in the transfection
mixture.

All siRNA duplex and miRNA mimics were purchased from Qiagen. The
target sequence of siLMP-2A with dTdT overhang modification was
AACUCCCAAUAUCCAUCUGCU (Bell et al., 2006). The sequences of the
miRNA mimics used are listed in Table 2.6. Allstars negative control (Qiagen)
was used for both siRNA and miRNA transfection experiments. In the
experiments, 20nM siRNA or miRNA mimic were vsed to transfect cells in a
6-well plate format. Protein and RNA were extracted 24 hours post-transfection.
All transfections were carried out by lipofectamine™ 2000 (Invitrogen)
according to the manufacturer’s protocol. In a 24-well plate format, 0.6ui of
20uM RNA to 1pl of lipofectamine™ 2000 was mixed in 100l of Opti-MEM®
medium, and incubated at room temperature for [5 min; the mixture was then

evenly added to the culture cells.

Table 2.6 Sequences of miRNA mimics

Name of miRNA mimic Sequence (5°23") Length (nt)
miR-BARTI12 UCCUGUGGUGUUUGGUGUGGUU 21
miR-BART22 UUACAAAGUCAUGGUCUAGUAGU 23
miR-M2-BART22 UAAGAUACUCAUGGUCUAGUAGU 23
miR-M3-BART22 AUUCUAUGUCAUGGUCUAGUAGU 23
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2.16 DNA SEQUENCING ANALYSIS

All DNA sequencing reactions were performed with the Big Dye Terminator
vi.l Cycle sequencing kit. In a 10pl sequencing reaction, lul of Big Dye,
0.32pl of 10uM sequencing primer, and 1.5pl 5x sequencing buffer were mixed
together with 100ng plasmid DNA or 0.5ul PCR products amplified from
genomic DNA. The sequences of some common sequencing primers are listed
in Table 2.7. The sequencing reaction was carried out in 9800 Fast Thermal
Cycler (Applied Biosystems) with thermal cycling condition as follows: 1 min at
96°C, followed by 30 cycles of 10sec at 96°C, Ssec at 50°C and 1min at 60°C.
To remove unincorporated nucleotides, sequencing products were purified with
Sephadex™ (-50 (GE Healthcare Life Science). The eluted product was mixed
with 10u! of Hi-Di formamide, denatured at 95°C for 5 min and chilled on ice for
another 5 min prior to the sequencing analysis. The sequences of the samples

were analyzed using an ABI PRISM® 3130XL Genetic Analyzer.

Table 2.7 Sequences of sequencing primers
Primer Name Sequence (5’>3") Size (nt) Tm (°C)
pMIR-REFORTERTM vector
pMIR-F1 AGGCGATTAGTTGGGTA 17 58
pMIR-R2 CGGAGGAGTTGTGTTTGT 18 57
pcDNA3.1-(+)
CMV-F TCTAAAAGCTGCGGAATTGT 20 53
T7-F TAATACGACTCACTATAGGG 20 50
BGHI0-R TAGAAGGCACAGTCGAGG 18 54
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2.17 Small ¢cDNA Library
2.17.1  Extraction of the small RNA fraction (<200 nt)

The enriched small-RNA fraction for cDNA cloning was collected with the
miVana miRNA Isolation Kit according to the manufacturer’s instructions
(Ambion). Two plates of 50% confluence C666-1 and 10mg of X2117
xenograft were used as the starting materials for extraction. The RNA samples
were finally eluted in 50 pl of nuclease free water and the concentrations were
determined by a NanoDrop-1000 UV-VIS Spectrophotomer. Twenty

micrograms of enriched RNAs were used for library construction.

2.17.2  Library Construction

The small RNA libraries were constructed by using miRCat™ cloning kit
(Integrated DNA Technologies, IA), which was modified from the most common
small RNA cloning method (Lau et al., 2001). The outline of the procedure is
shown in Figure 2.7. In brief, both a 3’-acetylated linker and a 5’ linker were
ligated to small RNAs for cDNA synthesis followed by PCR amplification and
cloning. An internal RNA control (miSPIKE™) of 21-nts was included as a
size marker during RNA purification and 3’ linker ligation reaction. Due to the
absence of a §’ phosphate group on the miSPIKE™, this internal control would
be eliminated in the subsequent cloning steps. In order to increase the
sequencing efficiency, the small RNAs (miRNA + linker) were serially ligated
(concatemerized) before cloning. All cloning used the TOPO-TA cloning® kit

and sequencing was performed using an ABI PRISM® 3130xI DNA Sequencer.
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Figure 2.7 Outline of the library construction

The construction of a small RNA library is illustrated in this figure. The
red arrows in the cartoon gel photo indicate the positive clones for

sequence analysis.
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2.17.3 Identification and Structure Prediction of miRNAs

Isolated RNA fragments longer than 18nt were annotated to the genome.
Known miRNAs were identified by blasting the sequences to “miRBase”
(Grundhoff er al., 2006). The remaining sequences were individually blasted to
NCBI databases. Putative precursor sequences of the cloned EBV fragments
were extracted from the EBV genome (AJ507799) and further examined for their
pre-miRNA structures by using the MFOLD program (Zuker, 2003}. The most

stable predicted structure was trimmed to a size of less than 80 nucleotides.

2.18 In Vitro Drosha Digestion
2.18.1 In vitro primary miRNA transcripts

The digestion substrate was prepared by in vifro transcription from one
microgram of T7 promoter-containing miR-BART22 PCR product (321nt) using
MAXIscript kit (Ambion) following the manufacturer’s protocol. The PCR
templates were amplified from genomic DNA of either C666-1 or Namalwa cells.

The primer sequences for PCR reaction are listed in Table 2.8.

2.18.2 Digestion Preparation and Signal Detection

For irn vitre digestion, Drosha and Flag-DGCRE8 expression vectors (Figure
2.3) (Landthaler er al., 2004) were co-transfected into 293FT cells at a 2:1 ratio.
The Drosha/DGCRS enzymatic complex was purified using the Flag® Tagged
Protein immunoprecipitation kit (Sigma, Saint Louis) 48 hours post-transfection.
Digestion was performed by mixing 100ng RNA with the precipitated complex at
37 °C for 1.5 hours. Digested products were visualized after 3% PAGE by

SYBR Gold staining (Invitrogen) and Northern blot analysis. The outline of the
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procedure of in vitre pri-miRNA processing assay is shown in Figure 2.8.

Table 2.8 Primer sequences for T7-added PCR

Primer name Sequence (5’2 3%) Size Tm
(mt) Q)
T7-C666-BART22-F TAATACGACTCACTATAGGGCTA 29 55
ATATCA
T7-Nam-BART22-F TAATACGACTCACTATAGGGCTA 29 55
ATAACC

T7-BART22-R CCCAAGGCAGGTAAACATTG 20 54
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2.19 MicroRNA Functional Studies
2.19.1 Potential Target Prediction of miRNAs

Both miRanda (Enright et al., 2003; John et al., 2004; Kiriakidou e! al,
2004) and RNA hybrid programs (Rehmsmeier e al., 2004) were used to predict
the potential targets of miR-BART21 and BART22. Human 3’ UTR sequences
were first extracted from BioMart (http://www.ensembl.org/Multi/martview) and
subsequently analyzed by the miRanda program. In order to obtain more
putative targets, we loosened the stringency in the miRanda prediction by
adjusting the energy threshold to -15kcal/mol and the cut-off score to 99.
Before experimental validation, interesting potential targets were cross-analyzed
using the RNAhybrid program with the default settings. The LMP-ZA

reference sequence for target prediction was from NCBI (AB290724).

2.19.2 Cloning
2.19.2.1 MicroRNA Expression Vectors

The miRNA expression plasmids were made by inserting the PCR products,
which contains miRNA flanking sequences of about 300nt, into the pcDNA3.1
expression vector via Hind Il and either Xbal or Xhol sites. All the PCR
products were generated using C666-1 DNA as template and PCR primer

sequences listed in Table 2.9.
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Table 2.9 Primer sequences for miRNA expression vector constructions

Primer Sequences (5'> 3°) Size (nt) Tm (°C)
BARTI-F GGTAAGCTTATGCTGCTGGTGT 22 58
BARTI1-R GGCICTAGATGGTCATGTTTCCCT 24 58
BARTI14-F GGT44GCTTGGACGGCTGAC 20 58
BARTI4-R GGCICTAGAAAAGGCCTGCTGT 22 59
BARTI16-F GGTAAGCTICTGATGCTCTGTGG 23 58
BARTI6-R GGCICTAGATGGATTGGACCAAC 23 57
BART21-F AGCCAAGCTIGCTGGGCAGAGAA 30 65
TGTTTGT

BART2I-R ACCGCTCGAGTAAGGGGAGGGG 31 66
AAAGCTAAA

BART22-F AGCCAAGCTTACTTCATGGGTCC 30 64
CGTAGTG

BART22-R ACCGCTCGAGCCACACTGCTAAG 30 68
GCAGTCA

Restriction Enzyme sites are underlined: AAGCTT (EcoRI); TCTAGA (Xbal);
CTCGAG (Xho I).
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2.19.2.2 Luciferase Reporter Vectors

Construction of the firefly luciferase reporter plasmids containing
CMV-driven Flyfire pMIR-REPORT (Figure 2.4) was described previously
(Wong et al., 2008). The predicted or mutated binding site containing inserts
were prepared by annealing synthetic oligonucleotides and cloning into the
pMIR-REPORT. Oligonucleotides (50uM each) were annealed in DNA
annealing buffer containing 10 mM Tris-HCI pH 8.0, | mM EDTA and 100mM
NaCl. One hundred microliters of the reaction were denatured at 95°C for 10
min and then annealed at room temperature for 30 min. Annealed
oligonucleotides were diluted by 50,000-fold for cloning.

Two micrograms pMIR-REPORT was digested with Spel and Hindlll at
37°C for 2 hours. Following enzyme digestion, digested vector was subjected
to agarose gel electrophoresis and eluted into 20pl water after purification by
using QIAquick Gel Extraction Kit (Qiagen). One microliter of insert was
ligated to 3ul of purified vector in the Spl reaction mix uvsing High Density T4
ligase (Invitrogen) at room temperature for 1 hour. Ligated product was
transformed into bacteria as described in section 2.5.3. Eight colonies were
randomly picked for PCR to check for the presence of an insert. Usually, the
size of the PCR product from a positive clone was slightly different from the
PCR product using pMIR-REPORT vector as a template. The correct sequence
of the insert was double confirmed by sequence analysis as previous described in
section 2.17. Only plasmids bearing the correct insert sequence were used for
the luciferase reporter assay. The sequences of the primers used for both PCR

and sequence analysis are listed in Table 2.10.
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Table 2.10 Sequences of oligonucleotides used for firefly luciferase reporter
plasmids construction

Primer Sequences (5’2 3°)
TI1-8 CTAGTGATCGCCTGCCACTTCCACAGCAA
T1-AS AGCTTTGCTGTGGAAGTGGCAGGCGATCA
T2-§ CTAGTAACCCCACGGAGCAGGGCAACATTGCAGGGA
T2-AS AGCTTCCCTGCAATGTTGCCCTGCTCCGTGGGGTTA
T3-S CTAGTAGACTATGCATACACTGAATTTAGA
T3-AS AGCTTCTAAATTCAGTGTATGCATAGTCTA
T4-S CTAGTAGACCTGTGTGCTGTATTTAA
T4-AS AGCTTTAAATACAGCACACAGGTCTA
BARTI12-S CTAGTAACCACACCAAACACCACAGGAA
BARTI2-AS AGCTTTCCTGTGGTGTTTGGTGTGGTTA
BART14-8 CTAGTATCCCTACTACTGCAGCATTTAA
BARTI14-AS AGCTTTAAATGCTGCAGTAGTAGGGATA
BARTI16-S CTAGTAGAGCACACACCCACTCTATCTAAA
BARTI16-AS AGCTTTTAGATAGAGTGGGTGTGTGCTCTA
BART21-8 CTAGTGTTAGTTGCCTTCACTAGTGA
BART21-AS AGCTTCACTAGTGAAGGCAACTAACA
BART22-S CTAGTACTACTAGACCATGACTTTGTAAA
BART22-AS AGCTTTTACAAAGTCATGGTCTAGTAGTA
BARTI-5p-S CTAGTCACAGCACGTCACTTCCACTAAGAA
BART1-5p-AS AGCTTTCTTAGTGGAAGTGACGTGCTGTGA
LMP2A-WT-S CTAGTCCTGTGTGACCCCTCACTTTGTACA
LMP2A-WT-AS AGCTTGTACAAAGTGAGGGGTCACACAGGA
LMP2A-M1-S CTAGTCCTGTGTGACCCCTCAA
LMP2A-M1-AS  AGCTTTGAGGGGTCACACAGGA
LMP2A-M2-8 CTAGTCCTGTGTGACCCCTCAGTATCTTCA
LMP2A-M2-AS AGCTTGAAGATACTGAGGGGTCACACAGGA
LMP2A-M3-S CTAGTCCTGTGTGACCCCTCACATAGAAGA

LMP2A-M3-AS

AGCTTCTTCTATGTGAGGGGTCACACAGG
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2.19.3  Construction of a stable LMP-2A transfectant

The pcDNA3.1-LMP-2A expression plasmid was constructed by inserting
2kb of RT-PCR product, which includ.ed a complete LMP-2A ORF and 3’UTR,
into the pcDNA3.1 expression vector via the EcoRI and Xbal sites. The RT-PCR
product was amplified from RNA in B95.8 cells by using the LMP-2A-F primer:
5-ACG GAA TTC TGC TGC AGC TAT G-3° (EBV coordination:
166092-166105) and LMP2A-R primer: 5’-CGT TCT AGA GCA CAT TGG
GIT TAT TGG-3' (EBV coordination: 5840-5856). The presence of the
LMP-2A coding sequence and the complete 3’UTR was confirmed by
sequencing.

After introducing pcDNA3.1-LMP2A plasmid into HEK293 cells, stable
LMP-2A transfectants were selected by growth in medium containing 600pg/ml
G418 (Geneticin, invitrogen) for four weeks. A single colony was isolated and
allowed to grow in medium containing 300pg/ml of G418. Expression of
LMP-2A in the stable clones was confirmed by both Western blot analysis and
[HC using the LMP-2A specific antibody (clone 15F9). The results of LMP-2A

specific [HC are shown in Figure 2.9.
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2.19.4 Luciferase Reporter Assay

Cells (1x10%) grown in 24-well plates were co-transfected with miRNA and
reporter plasmid for analysis. All miRNA expression plasmid transfection
experiments were carried out using GenelJuice transfection reagent (Novagen) in
a 24-well plate format. Transfection complexed containing 50ng of reporter
plasmid, 2ng of pRL-CMV control reporter plasmid and 200ng of the indicated
miRNA expression plasmid were prepared for each transfection. For miRNA
mimic transfections, a mixture containing 50nM of miRNA mimic, 800ng
reporter vector and 80ng control reporter vector was prepared with lipofectamine
2000 (Invitrogen, CA). Cell lysates were collected for analysis 48 hours
post-transfection. Cells were first rinsed with PBS, followed by addition of
100p! of 1x passive lysis buffer (Promega), and the cells were allowed to lyse at
room temperature for 20 min with mild rocking. Later, 20ul of lysate were
collected to assay enzyme activities using the Dual Luciferase Reporter Kit
(Promega). One-hundred microliters of a 2-fold diluted LARII substrate was
added to the lysate, and the luminescent signal of firefly luciferase activity was
measured immediately. This was followed by the addition of 100pl of the
2-fold diluted Stop and Glo buffer that contains the substrate for renilla luciferase
to simultaneously quench the firefly luciferase reaction and initiate the renilla
luciferase reaction. The transient renilla signal was immediately recorded.
Three individual experiments were performed and student t-test was used for

statistical analysis. A P-value <0.05 was considered as statistically significant.

94



Chapter 3: Identification of Novel EBV encoded miRNAs in NPC
CHAPTER 3: IDENTIFICATION OF NOVEL

EBV-ENCODED MICRORNAS IN NPC

3.1 Introduction

Shortly after Pfeffer’s group reported the identification of five EBV
encoded miRNAs in an EBV infected B-cell line (Pfeffer et al., 2004), over 80
viral-derived miRNAs have been discovered. Interestingly, almost all miRNAs
producing viruses are members of the polyomaaviridae and herpesviridae
families, which carry DNA genomes and can establish lifelong latent infection in
their host. They include Epstein-Barr Virus (EBV) (Pfeffer et al., 2004; Cai et
al., 2006; Grundhoff et al., 2006), Kaposi’s sarcoma associated herpesvirus
(KSHV) (Samols er al., 2005; Grundhoff e al., 2006), Herpes simplex virus 1
(Cui et al, 2006; Gupta et al, 2006; Umbach et al, 2008), Human
Cytomegalovirus (hCMV) (Dunn et al., 2005; Grey et al., 2005; Pfeffer et al.,
2005) and Simian virus 40 (SV40) (Sullivan ef al., 2005).

Until 2006, 23 ebv-miRNAs were identified into two distinct regions
(BHRF1 flanking region and BART region) on the EBV genome. Among them,
20 miR-BARTs (miR-BART1 to miR-BART20) could be further clustered into
two groups according to their genomic location (Figure 1.6). Similar to the
BART transcripts, miR-BARTs are generally highly expressed in most EBV
infected epithelial cells (Cai et al., 2006; Kim do ef al., 2007). Nasopharyngeal
carcinoma (NPC) is well-known to be associated with Epstein-Barr virus (EBV),
and the detection of clonal EBV genomes can be found in almost all invasive
carcinoma in our locality. However, only a few viral latent proteins are

expressed in this undifferentiated lymphoepithelial cancer. Thus, it is plausible
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that EBV augments cancer development through miR-BARTs. While in most
instances the function of the EBV-miRNAs remains unclear, recent discoveries
suggest great importance for miR-BARTs in modulating both viral and cellular
gene expression (Cullen, 2009; Ghosh ef al., 2009).

Although EBV may exploit RNA silencing as a convenient mechanism for
gene regulation, the currently identified EBV miRNA are either primarily cloned
from EBV positive lymphoma cell lines or confirmed in lymphoma cells
following computer prediction. Data on EBV miRNA expression in epithelial
malignancy are very scanty.

This chapter aims to investigate the EBV miRNA expression profile in our
local NPC cells by constructing miRNA libraries from the EBV positive NPC
cell line (C666-1) and xenograft (X2117). Such information would enhance our
understanding of NPC tumorigenesis, thus providing new diagnostic and
therapeutic prospects for future developments. The reason to use local NPC
samples is that the EBV strains in Hong Kong are different from other localities
in many respects, e.g. The LMP-1 variants in the majority of EBV isolates from
NPC are China 1 strain with a 30-bp deletion in comparison to B95.8 strain
(Cheung et al., 1998). Most significantly, C666-1 cells carry a relatively
wild-type EBV strain. The BART RNAs spanning region deleted in B95.8

strain is retained in C666-1 EBV (de Jesus et al., 2003).
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3.2 Materials and Methods

3.2.1 Cell Lines

For comparison purposes, five cell lines not listed in Table 2.1 were
subjected to analysis in this chapter. Among them, four EBV positive cell lines
are of lymphoid origin. They are the Burkitt’s lymphoma cel! lines Raji
(Pulvertaft, 1965), Namalwa (Klein et al, 1972) and recombinant
EBV-containing Akata (Kanda et al, 2004), as well as an in house EBV
re-infected lymphoblastoid cell line, CB14022. A marmoset cell line carrying
the prototype EBV strain B95.8 was used as a positive control. [t has been
previously shown that all the earliest identified EBV-miRNAs a strongly
expressed in B95.8 cells (Pfeffer et al., 2004). All cell lines were cultured in
RPMI plus 10% FBS unless otherwise specified. Akata cells were cultured in

selective medium with 500pg/ml of G418.

3.2.2 Tumor Samples

For Northern blot and QRT-PCR analysis, three nasopharyngeal (NP) and
14 NPC biopsies were obtained from the Prince of Wales Hospital, The Chinese
University of Hong Kong. The presence of EBV in the NPC samples was
confirmed by EBER ISH. Information on NP and NPC biopsies is shown in
Table 3.1. The methods of RNA preparation and Northern blot analysis are

described in detail in section 2.6.

3.2.3 Detection of BHRF-1 mRNA expression
Expression of BHRF1 mRNA was analyzed by an RT-PCR-based assay as

previous described (Oudejans et al., 1995). RNA extraction and RT-PCR were
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performed as described in sections 2.7.2 and 2.8. In brief, RNA was extracted
by Trizol reagent and lug of total RNA was reversed transcribed by the High
Capacity cDNA Archive Kit (Applied Biosystems) in a 20ul reaction containing
random primers. One microliter of total cDNA was used to perform PCR
reaction for 35 cycles of 94°C for 30s, 55°C for 30s and 72°C for | min in a 25l
reaction containing 0.25mM dNTPs (Amersham), 0.2pl of each 1QuM primer, 1x
PCR reaction buffer, 1.6pl of 25mM MgCl; and 0.2pl of Taq polymerase
{Fermentas). PCR products were analyzed in a 2% agarose gel. To transfer
DNA to the membrane for Southern blot analysis, DNA in the agarose gel was
first depurinated in 0.25M HCI for 5 min, then denatured in washing buffer
{0.5M NaOH, 1.5M Na(Cl) for 20 min, followed by a wash with neutralizing
buffer (0.5M Tris Ph7.0, 3.0M NaCl) for another 20 min. DNA was then
transferred to the positively-charged Nylon membrane (Amershan) with 20x
SCC overnight. Synthetic oligonucleotides complementary to the lytic form of
BHRF] mRNA were end-labeled with y->2P ATP using T4 polynucleotide kinase
as described in section 2.6.2. Hybridization and washing were carried out as
described for Northern blot analysis described in section 2.6.3. The sequences
of primers and probes are listed below:

Actin 207-F: TAAGGAGAAGCTGTGCTACGTC

Actin 2097-R: GGAGTTGAAGGTAGTTTCGTGG

BHRF1 5°-H2: GTCAAGGTTTCGTCTGTGTG (Lear ef al., 1992)

BHRF1 3’-H3: TTCTCTTGCTGCTAGCTCCA (Lear et al., 1992)

BHRF] probe: ATGCACACGACTGTCCCGTATACAC (Oudejans et al., 1995)
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3.2.4Sequencing analysis

Sequencing analysis was preformed as described in section 2.16. 'We used
a forward PCR primer for sequencing reactions. The primer sequences for PCR
and sequencing were as follow:
SEQ-BHRF1-1F: CCTTTAGGAAGCACCACGTC (41377:41396)
SEQ-BHRFI-1R: CCCAACCTTTTAATGGCAAA (41634:41615)
SEQ-BHRF1-2,3F: GACACAGTGCCCATGCATTA (42747:42766)
SEQ-BHRF1-2,3R: TGGGCTGCAGTATAGGCTCT (43129:43110)

The numbers in the parentheses indicate the location of the primers in the
viral genome (AJ507799). Multiple sequence alignments were performed by

using the CLC Sequence viewer (www.clcbio.com/index.php?id=28).

3.2.5Transfection study in NP69 cells

In order to increase the transfection efficiency of NP69 cells, FUGENE6
Transfection Reagent (Roche) was employed. In a é-well plate format, NP69
cells were seeded to 70% confluency the day before transfection. Transfection
complexes were prepared according to the manufacturer’s standard protocol
{(FUGENE: DNA ratio = 3:2). The transfection efficiency of NP69 was
evaluated by employing the pEGFP-C1 (Figure 2.3). The GFP signal from the
transfected cells was examined under a fluorescence microscrope at 24 hours
post-transfection. Flow cytometry analysis was performed 24 hours after
transfection. The procedure for flow cytometry analysis was described in
section 2.13. The cells for MTT analysis were trypsinized and seeded again in
96-well plate (2000 cells/well) 5 hr after transfection. The procedure for MTT

analysis is described in section 2.14.
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3.2.6Statistical analysis

Results of the MTT assay and QRT-PCR expressicn analysis were compared
using the student s t-test. Analyses of each sample were performed in triplicate
with the mean +SD shown, A p-value <0.001 is denoted as (**) and p-value
<0.05 is denoted as (*)

All other methods, such as Northern blot, Western blot, Ago2 co-IP and the
MTT assay, are described in Chapter 2. The sequences of synthetic
oligonucleotides used as probes in Figure 3.11 and Figure 3.14 are listed below:
EBER1-5p: TAGGGCAGCGTAGGTCCT;

EBER!-3p: AAACATGCGGACCACCAGCTGG;
EBER2-5p: GTGTGTCCGAAACCACTA;

EBER2-3p: ACAAGCCGAATACCCTTCTC
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3.3 Results
3.3.1 Aberrant expression of ebv-miRNAs in NPC

Expression of five ebv-miRNAs (miR-BHRF1s and miR-BART! and 2)
was first characterized in B-cell lines (Pfeffer et al, 2004). To study the
significance of miRNAs in NPC, the expression pattern of the early identified
ebv-miRNAs in a variety of EBV-positive NPC samples was examined by
Northern blot analysis. A panel of NPC samples for the analysis included a
native EBV-positive NPC cell line C666-1, two EBV-reinfected cell lines
(HK1-EBV, HONEI-3EBV), two xenografts (X666 and X2117) and two
biopsies.

Northern blot analysis of NPC samples suggested that miR-BART1 and
miR-BART2 were consistently detected in almost all EBV positive samples with
expression at different levels (Figure 3.1). In addition, abundant expression of
miR-BARTS was observed in most NPC samples (Figure 3.2). The expression
of miR-BARTS was not detected in B95.8 because the region that gives rise to
miR-BARTS is deleted (Figure 1.6). It is interesting to note that although EBV
infection of Namalwa, Raji, CB14022 and B95.8 cells is in latency III, the
expression of miR-BART1 and miR-BART?2 in these cells highly varied. For
example, miR-BART1, which was highly expressed in Namalwa and B95.8 at
comparable levels, was not detected in lymphoblastoid (LCL) cell, CB14022.
On the other hand, miR-BART2 expression in Namalwa cells was only barely
detectable by blotting analysis. Similar results were also observed for the EBV
latency II infected cells. Expression of miR-BART2 in C666-1 is apparently
higher than that in HK1-EBV and HONE1-EBV reinfected cells, while the

expression of miR-BART1 was similar among these three cell lines of epithelial
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origin (Figure 3.1B8). These observations suggested that the distinct miR-BART
expression pattern in various EBV positive samples reflect their unique function
for specific cell environments,

Unlike the ubiquitous expression of miR-BARTs, expression of
miR-BHRF1s demonstrated vast variation in different types of EBV samples.
We did not detect expression of EBV-miR-BHRF1s in any of the tested NPC
samples including cell lines, xenografts and biopsies. As a control, expression
of miR-BHRF1-1, miR-BHRF1-2 and miR-BHRF1-3 was detected in latency 1I1
infected cells (Namaiwa, CB14022, Raji and B95.8). Nevertheless, although
miR-BHRF1 genes are located within the intronic region and 5’UTR of BHRF]
mRNA, it is interesting to observe the expression of BHRF1 mRNA in NPC
samples including C666-1, X666 and X2117. Weak expression of BHRF1
mRNA was further confirmed in two of the four NPC biopsies by Southern blot
analysis of the membrane transferred RT-PCR products from agarose gel (Figure
3.4).

By analyzing the viral DNA sequences from a variety of EBV positive cell
lines, two distinct single nucleotide variations were observed in the
pre-miR-BHRF1 sequence (Figure 3.5). However, the nucleotide variations
should not affect the production of either miR-BHRF1-2 or 3. The EBV
sequences in CB14022 cells in which miR-BHRF1-2 and 3 are expressed, are the
same as all miR-BHRF1-2 and 3 negative EBV samples (C666-1, X666 and
X2117). Thus, the absence of expression of miR-BHRF1s in NPC can not due
to differenced in the EBV strains infecting.

In contrast to previous reports that induction of lytic EBV replication in

Akata, MUTU1 and Daudi infected cells (latency I) can facilitate miR-BHRF1s
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expression (Cai et al., 2006; Xing & Kieff, 2007), our data show that induction

of lytic EBV replication does not activate pre- and mature miR-BHRF1
expression in C666-1 cells, which exhibit EBV latency type II infection (Figure

3.6).
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Figure3.1 _ Expression of ebv-miR-BART1 and BART? in NPC samples

Northern blot analysis indicates the expression of miR-BART1 and BART?2 in
several NPC samples including cell lines and xenografts (Panel A); NPC
biopsies (Panel B) and other EBV infected cell lines (Panel C). In panel C,
EBV positive cell lines (Namalwa, CB14022 and Raji) were included for
comparison. Expression of miRNAs in B95.8 cells provided a positive control.

Detection of U6 RNA expression serves as an RNA loading control.
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Figure 3.2 _ Expression of miR-BARTS in NPC

Northern blot analysis to show expression of miR-BARTS in NPC biopsies
(Upper panel) and different EBV infected cell lines including tymphoid cell lines
(Lower panel), Normal epithelial biopsies (NP01-03) (Upper panel) and cell
line NP460 (Lower panel) were blotted as negative controls. Detection of U6

RNA expression serves as an RNA loading control.
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Figure 3.3 Expression of ebv-miR-BHRF1s in NPC samples

Northern blot analysis indicates expression of miR-BHRF1s in several NPC
samples including cell lines (Panel 4), NPC xenografts (Panel B) and two NPC
biopsies (Panel C). EBYV positive cell lines (Namalwa, CB14022 and Raiji)
were included for comparison. Expression of miRNAs in B95.8 cells provided
a positive control. Detection of Ué RNA expression served as an RNA loading

control,

167



Chapter 3: Identification aof Novel EBV encoded miRNAs in NPC

@ <
4 2_38
o= - o v @&
w b W .o — an
$igc2si3atgeese
"]
op ETTETT8 Z o0 @ RRz=Z 2=
arz— | —
. o 4= gDNA(B50b,
603 — . gDNA( p)
e
m -
23~ | ~ mRNA (211bp)
194
iy L .
284 ~
24—

234 e d A ol L LT T R S - ACTIN (207bp)

o« “ w» |- mBHRF1(211-bp)

Figure 3.4 RT-PCR detection of the lytic spliced BHRF1 transcript

RT-PCR and blotting signal on the membrane-transferred RT-PCR agarose gel
shows the expression of the lytic BHRF1 transcript (211-bp). The 650-bp
band detected in some cases indicates amplification of viral genomic DNA.
The presence of RNA for RT-PCR was confirmed by the detection of actin

mRNA expression (207-bp).
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Figure 3.5 _ Alignment of pre-miR-BHRF1s in different EBV strains

Alignment of pre-miR-BHRF1-1 (AJ507799, 41433:41568) (Panei A) and

pre-miR-BHRF1-2, 3 (AJ507799, 42818:43059) (Panel B).

positions of nucleotide variation are indicated by the red arrowheads.

The two
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Figure 3.6  Induction of EBV lytic replication in C666-1 cells unable to

activate miR-BHRF1s expression.

C666-1 cells were cultured in either normal medium (indicated as “-”) or
medium containing 100ng/ml of Gemcitabine (GEM) and Trichostatin A (TSA)
(indicated as “+”) for 48 days. Cells entering into viral lytic replication are
indicated by the expression of a number of viral lytic proteins, including
ZEBRA, BRFL1 and BMRFI, analyzed by Western blot (Left Panel).
Expression of ebv-miR-BHRFl1s is demonstrated by Northern blot (Right
Panel). B95.8 sample was included as positive control. Detection of
hsa-miR-16 was included to confirm the presence of miRNAs in the tested

samples. RNA loading was normalized by U6 snRNA detection.
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3.3.2 Identification of Novel ebv-miRNAs from NPC small ¢cDNA

libraries

3.3.2.1 Small cDNA libraries

Two independent ¢cDNA libraries were constructed from C666-1 and
X2117 cells as described in section 2.17 and Figure 2.7. The construction
from C666-1 small RNAs is illustrated in Figure 3.7 as an example. A total

of 2928 clones with sequence = 18 nucleotides were obtained, including

1813 clones from C666-1 and 1115 clones from X2117. The known
miRNAs and human sequences were annotated by blasting individual
extracted sequences against miRBASE (Griffiths-Jones, 2004) and GenBank
databases. Sequences that match the EBV genome were identified by
BLAST search against the full length EBV genome (accession number:
AJ507799). The results indicate that several kinds of cellular and EBV
fragments are present in the libraries, while many of them are known
microRNAs (Table 3.2 and Table 3.3).

In the C666-1 library, 615 and 277 clones matched to known EBV and
human miRNAs, respectively, based on the miRBase (Version 11.0) search.
In addition to the known miRNAs, 811 clones were human sequences that
mostly correspond to rRNA and tRNA fragments. Interestingly, 32
sequences that aligned to the EBV genome showed no match to any known
miRNAs previously reported in lymphoid cells.  According to their sequence
similarity, these novel EBV transcripts could be classified into 3 groups.
Group 1 and group 2 represent EBV fragments from positions 145515-145534

and 147203-147215, respectively. Group 3 contains multiple short EBV
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fragments with homology to EBERs. Examples of the sequencing results
from each group are displayed in Figure 3.8. Their sequences and total
number of clones are listed in Table 3.4.

The distribution of small RNAs in the X2117 library is similar to that in
C666-1, except that a higher percentage of human cellular miRNAs are found
in X2117. On the whole, the most abundant EBV miRNA clones are
miR-BARTY (n=467) and miR-BART10 (n=251).

To establish whether some of the isolated RNA fragments could
represent potential novel ebv-miRNAs, putative precursor sequences with
sizes of around 70 nucleotides contained the cloned fragments from the EBV
genome were subjected to structure predictions using the MFOLD program
(Zuker, 2003). A precursor miRNAs (pre-miRNAs) hairpin structure was
produced from each of the putative precursor sequences from Group 1 and
Group 2 EBV fragments, which are now named miR-BART21 and
miR-BART22, respectively (Figure 3.9). Group 3 contained multiple short
fragments from EBER 1 and 2, whose secondary structures contain a number
of stable stem loops (Glickman er a/., 1988). It is interesting to find that
some of the cloned fragments are located in regions of stem structure (Figure

3.10).
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Figure 3.7  Construction of a small RNA library from C666-1 cells

{4) Small RNA (< 200-nt) were mixed with an internal RNA marker
“miSPIKE” and separated by 15% PAGE. Synthetic RNA oligonucleotides
of 18 and 24-nt were loaded as size markers. (B) The isolated RNA ligated
to the3’ linker (indicated as *) was visualized and isolated from the PAGE
analysis. (C & D) After ligation of both 3’ and 5 linkers, the cDNA was
amplified by PCR, followed by digestion with Banl (**) restriction enzyme
for concatamerization. The concatamer migrate as a fuzzy ladder (***) on
the 2% agarose gel. The DNA migrating above 100bp was excised, purified
and cloned as described in section 2.17. (E) PCR screening was used to
identify positive clones (red arrows) for further sequencing and annotation

analysis.
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Table 3.2: Distribution of small RNAs in cloned libraries

C666-1 X2117

Human Sequences 812 167
Total known hsa-miRNAs 277 433
Total known ebv-miRNAs™" 615 504
BART1-5p (-3p) 25(9) 6(2)
BART2-5p 1 0
BART3 (3%) 30 (11) 6 (1)
BART4 11 2
BARTS 22 5
BART6-5p (-3p) 18 (17) 0 (0)
BART7 45 64
BARTS (8*) 15 (7) 16 (10)
BART?9 179 288
BART10 169 82
BART11-5p (-3p) 74 0 (0)
BART12 6 1
BARTI13 (13%) 1(0) 3()
BART14 (14*) 5(2) 0(2)
BART16 7 0
BART17-3p (-5p) 14 (9) 6 (0)
BART18-5p 1 0
BART19-3p (-5p) 0 (0) 8 (1)
EBV fragments (Group 1)° 1 0
EBV fragments (Group 2)¢ 14 1
EBV fragments (Group 3)° 17 2
Total number of EBV fragments 32 3
Unknown sequences 77 8
Total clones for analysis 1813 1115

2 All miR-BHRF1s, BART15 and BART20 were not cloned;

® Ebv-miRNA nomenclature is recommended by miRBase registry

(http://www.mirbase.org/)
*MiR-BART?21 clones;
P!MiR-BART22 clones

“EBV sequences from EBV encode RNA s (EBERs).
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Table 3.3 Distribution of known hsa-miRNAs in cloned libraries

Hsa-miR® C666-1 X2117 Hsa-miR C666-1 X2117
let-7a 17 0 miR-101 1 0
let-7b 11 0 miR-103 6 0
let-7¢ 0 2 miR-103* I 0
let-7d 10 0 miR-106a 2 0
let-7f 16 0 miR106b 10 1
let-7i 6 3 miR-125b 0 8
miR-15a 0 1 miR-148b 0 3
miR-15b 6 10 miR-184 0 1
miR-16 2 0 miR-184* 1 0
miR-17-3p* 1 0 miR-186 0 1
miR-17-5p 25 0 miR-191* 1 0
miR-18b 6 0 miR-193a 12 0
miR-19b 3 0 miR-200a 2 29
miR20a 6 0 miR-200b 20 72
miR-20b 0 1 miR-200c 21 47
miR-21 22 6 miR-205 0 4
miR-23a 4 65 miR-221 0 1
miR-23b 0 64 miR-300d 0 1
miR-23b* 0 1 miR-320a 17 1
miR-24 0 2 miR-331 5 0
miR-25 1 12 miR-365 5 0
miR-26a 1 4 miR-374b 0 1
miR-27a 0 I miR-423-5p 7 0
miR-29b 0 1 miR-429 0 2
miR-30e 0 1 miR-449 14 0
miR-32a 0 1 miR-484 0 |
miR-34a 10 3 miR-505 0 2
miR-92a 0 64 miR-532-5p 0 1
miR-92b 0 3 miR-551b 0 1
miR-93 5 0 miR-574-5p 0 1
miR-99a 0 10 Total clones 277 433

® MiRNA nomenclature is recommended by miRBase registry

(http://www.mirbase.org/)
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Figure 3.8  Identification of EBV fragments in the cloned libraries
The cloned small EBV fragments were shown. Orientation of the

cloned sequence is indicated with the black arrow. Small EBV
fragments and adaptor sequences in the figure are highlighted with
blue-green and purple colors respectively.
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Chapter 3: Identification of Novel EBV encoded miRNAs in NPC

ebv-miR-BART21 pre-miR

5-aU0 ¢U 6 UU 4] AAGG A ABU
GG C GG UA CAC AGUG CAACUA CAC U

CC G CC AU GUG UCAC GUUGAU GUG A
3'-AC UG U UU G CCGU c CAG

dG=40.4 kCal/mol;
EBV 145501:155580

ebv-miR-BART22 pre-miR

G G C GaG - - UA
57 -GUCACAG U CUAGACC UG UUG AACC AG
c

3'-CAGUG A GAUCUGG AC  AACAUUGGCUC
uuG U U UGA AC

dG=-35.8kCal/mol;
EBV 147161:147231

Figure 3.9 _ Fold back precursor sequences of
ebv-miR-BART?21 and ebv-miR-BART22
Stem-loop structures of miR-BART21 (upper panel) and
miR-BART22 (lower panel) are illustrated. The cloned mature
miRNA sequences are indicated by underlined letters. The folding
energy (dG) and EBV genomic sequences {AJ507799) are listed

below.
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Figure 3.10 Positions of the cloned EBER fragments on EBER1/2
Predicted EBER 1 and EBER 2 secondary structures are shown. The

positions of the cloned small RNAs are indicated with red lines.
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Chapter 3: Identification of Novel EBV encoded miRNAs in NPC
3.3.2.2 Detection of cloned EBV fragments

The expression of cloned EBV fragments in EBV-infected NPC tumors
were tested by Northern blot analysis. Expression of 5° and 3’ end small
EBERI1 fragments could be readily detected in EBV positive NPC samples
including two NPC biopsies. However, we could only detect the expression of
two EBERI1 end terminal but not any of the small EBER2 fragments in EBV
positive samples by the same detection method (Figure 3.11).

The expression of miR-BART21 and miR-BART22 in EBV-infected NPC
tumors were validated by Northern blot analysis. The cell line C666-1, three
xenografts (X666, X2117, C15) and two primary tumor biopsies were examined.
The EBV-negative immortalized normal nasopharyngeal epithelial cell line,
NP460, was included as a negative control. As a comparison for expression in
another EBV-associated tumor type, three lymphoid cell lines, Akata, Namalwa
and Raji, were examined at the same time. Expression of miR-BART21 was
detected in C666-1, X666, X2117 and one of the two primary NPC biopsies
(Figure 3.12, upper panel). In contrast, miR-BART22 was expressed in all
EBV positive cells but particularly highly in NPC samples (Figure 3.12, lower
panel). These results suggested that the two novel EBV miRNAs are
preferentially expressed in NPC cells. Because only a small amount of RNA
could be isolated from the primary NPC biopsies, we designed a sensitive
QRT-PCR assay for the detection of these novel EBV miRNAs in tissue
specimens. The relative expression levels of miR-BART21 and miR-BART22
in cell lines and xenografts as measured by QRT-PCR were similar to those
determined by Northern blot analysis (Figure 3.12). By employing QRT-PCR,
we confirmed high and consistent expression of these two EBV miRNAs in

primary NPC tumors (Table 3.5).
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3.3.2.3 Characterization of the Novel Ebv-miRNAs

The miR-BART21 and BART22 expression plasmids (pcDNA3.1-BART21
and pcDNA3.1-BART22) were constructed by inserting the PCR product, which
contained miR-BART with flanking sequence (~300nt), into the pcDNA3.I
expression vector via Hind 1l and Xhol sites, where the expression of miRNA
was driven by the CMV promoter. All PCR products were generated using
C666-1 DNA as template with primer sequences listed in Table 2.9.

To investigate whether the expression vectors could be used for study, the
expression and silencing properties of these vectors were studied in transient
transfection assays. Northern blot analysis was chosen to confirm the
expression of miR-BART21 and miR-BART22 in 293FT cells at 24 hours
posi-transfection by expression vector. ~ As shown in Figure 3.13 (upper panel),
both expression vectors produced mature miRNAs with a size similar to the
corresponding endogenous miRNA in C666-1. The relative expression of
miRNAs in the transfectants is also be quantified by QRT-PCR. The silencing
activities of these miRNAs were confirmed by the dual luciferase reporter assay.
A miRNA expression vector was co-transfected into 293FT cells together with
the control renilla reporter vector (Rluc) and firefly reporter vector (Fluc) bearing
a single perfectly complementary sequence to the corresponding transfected
miR-BART22 vector. The result in Figure 3.13 (Jower panel) shows that Fluc
activity was significantly reduced by 70% in the cells transfected with
pcDNA3.1-BART22. We further confirmed that miR-BART22 was associated
with Ago2 in C666-1 cells by co-immunoprecipitation (Figure 3.14). On the
other hand, Fluc activity was only slightly inhibited by co-transfection with

pcDNA3.1-BART21 although the difference was statistically significant.
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To elucidate the regulatory role of these two novel ebv-miRNAs on cell
proliferation, MTT assay was performed on NP69 cells transfected either with
pcDNA3.1, pcDNA3.1-BART21, or pcDNA3.1-BART22. The result in Figure
3.15 showed that expression of BART21 and BART22 on NP69 did not affect the
proliferation rate. Further analysis by flow cytometry using PI staining showed
that expression of these two microRNAs on NP69 cells did not affect cell

viability and DNA content in cell cycle (Figure 3.16).
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Figure 3.12  Expression of novel ebv-miRNAs in EBV positive samples

Representative Northern blot results for the expression of miR-BART21 and 22
in cell lines, NPC xenografis and NPC biopsies are displayed. The normal
epithelial cell line NP460 was included as negative control. U6 RNA or
SYBR Gold staining PAGE was used to control for RNA loading. The
miRNA expression in the sample was assayed by QRT-PCR and compared with
that in C666-1 (set at 100}. The analysis of each sample was performed in

triplicate with the mean +SD shown.
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Table 3.5

Expression of novel ebv-miRNAs in NPC samples
Sample BARI21 _ BARI22 _
C666-1 100 100
NPCI 9.17 36.39
NPC2 52.57 123.18
NPC3 31.85 41.07
NPC4 26.97 18.85
NPCS 47.44 76.54
NPC6 3.15 2.06
NPC7 2936 39.17
NPC3 25.81 28.05
NPC9 8.71 30.68
NPC10 61.72 64.04
NPCI11 12 55.2
NP1 0 0
NP2 0 0
NP3 0 0

Expression on C666-1 was set at 100 for comparison,
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pcDNA3.1-BART21 pcDNA3.1-BART22
293FT 293FT
iy ] E Y o E’
8. % g2 _%
C E wa 0L
pre-miR (~80 nt}} . = ' re-miR {~70 nt)
P ® Northern
Blot
BART21 {20 nt) | & Py BART22(23 nt}| » ®
3% {117 nij - 83117 -,
Rel. miIRNA (1) (9} (0) (2.7) Rel. miRNA (1) (0} (0){39.3) QRTPCR
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o ] | . g f_.—l ) |
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Figure 3.13  Expression of novel ebv-miRNAs in transient assays
Expression of ebv-miRNAs by DNA3.1-BART21 and pcDNA3.1-BART22

(upper panel) was tested by transfecting 293FT cells with either empty vector
(EV) or a specific ebv-miRNA expression vector, as indicated. Detection of
specific miRNAs in C666-1 and 293FT (mock) were included as positive and
negative controls respectively. The silencing effect of miRNA expression
vectors was demonstrated by the luciferase reporter assay (lower panel). 293FT
cells transfected with the reporter plasmid, containing a perfectly
complementarity sequence to the corresponding miRNA in its 3’UTR, plus an
empty vector or its miRNA expression vector (miR). The relative FLuc activity
was normalized with RLuc. The analysis of each sample was performed in
triplicate with the mean +SD shown. Statistical analysis by Student-t test was
used with a p-value of <0.001 denoted as (**) and a p-value of <0.05 denoted as
™*)
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Figure 3.14 _Biochemical detection of AGO?2 associated

miR-BART22
(A) Western blot (WB) analysis of hAGO-2 protein from C666-1 whole cell
lysate before (Input) and afier immunoprecipitation (IP) with anti-Ago2
antibody. (B) Monoclonal antibody against FLAG tag (lane 2) and against
hAgo2 (lane 3) were used for IP from C666-1 cell lysate. AGO-2 associated
miRNAs were analysed by Northern blot with synthetic oligonucleotide probe
for the specific small EBV fragments listed below the figure. Locations of the
small RNA fragments are indicated with arrows. RNA loading was visualized
by SYBR Gold stained PAGE. RNA without immunoprecipitation (lane 1)

was included as positive a control.
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Figure 3.15 MTT assays on miRNAs transfected NP62 cells

Representative results from three individual MTT assay are shown.
Expression vectors (0.2ug/well in a 96-well plate) for transfection are indicated
on the right. The miRNA expression of the transfected cells in each of
post-transfection day was assayed by QRT-PCR and compared with that on the
first day (set at 100).  The analysis of each sample was performed in five
replicates with the mean +8SD shown. The transfection efficiency of NP69
cells was evaluated by pEGFP-C1 plasmid transfection, and the representative
images were shown in the lower panel.
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Figure 3.16  Flow cytometry analysis of novel ebv-miRNAs on NP69

NP69 cells were transfected with expression vectors listed below each figure

and harvested for PI staining 24 hours after transfection. The distribution of
three main phases (G1, S and G2) of cell cycle is summarized in the table

shown in the bottom right corner.

129



Chapter 3: Identification of Novel EBV encoded miRNAs in NPC

3.33 Nucleotide polymorphisms affect Drosha processing of
miR-BART22

Since pre-miR-BART10 (AJ507799; 147304-147380) and miR-BART22
(147161-147231) are in close proximity in the EBV genome, miR-BART10 and
miR-BART22 are thought to share the same RNA transcript in miRNA
biogenesis. However, the expression ratio of miR-BART22 to miR-BART10
was significantly higher in C666-1 than in Namalwa cells (p<0.05) as shown by
both Northern blotting and QRT-PCR analysis (Figure 3.17). This observation
suggested that the biogenesis of miR-BART10 and miR-BART22 was different
between these two cell types. To evaluate if nucleotide variation(s) play a role
in the biogenesis of these novel miRNAs, the flanking sequences of
miR-BART21 and miR-BART22 from C666-1 (EU828629) and Raji (AJ507799)
were compared. We employed the Raji-EBV sequence for analysis because
Raji is commonly accepted as a reference EBV sequence. Based on matching
analysis, we found two single nucleotide variations in miR-BART21 and four
nucleotide changes in miR-BART22 (Figure 3.184).

By MFOLD analysis, the predicted secondary structures of the
miR-BART21 primary transcript (~300 nucleotides} from Raji-EBV and
C666-EBV strains were highly similar (Figure 3.19). In contrast, the secondary
structure predicted for miR-BART22 was dissimilar between the Raji-EBV and
C666-EBV. Folding predictions for pri-miR-BART22 (147137:147456) from
Raji-EBV suggested the presence of a small side-branched stem-loop adjacent to
the mature miR-BART22 sequence (Figure 3.20, left parel). However, this
stem-loop was not predicted for the C666-EBV derived miR-BART22 sequence

(Figure 3.20, middle panel). 1t is possible that the nucleotide variations found
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Chapter 3. Identification of Novel EBV encoded miRNAs in NPC
in the C666-EBV associated miR-BART22 underlie the predicted structural

difference between the EBV strains. Although all four nucleotide variations in
miR-BART?22 are positioned distal from the hairpin structure, changes of two
nucleotides (147144 A>T and 147146 C>A) could readily affect the stem-loop
formation (Figure 3.20, right panel). Remarkably, these two specific nucleotide
variations were identified in all 17 primary tumors tested from Hong Kong NPC
patients (Figure 3.21). In fact, the formation of the small side stem-loop might
impair miRNA maturation by concealing the DGCR8 recognition site during
pri-miRNA processing (Han et al., 2006). To elucidate whether this nucleotide
polymorphism of pri-miR-BART22 affects miRNA maturation, we examined the
digestion efficiency of Drosha/DGCR8 enzymatic complex by incubating
immunoprecipitated flag-tagged Drosha/DGCRS with in-vitro transcribed EBV
RNA substrates (147137-147456) corresponding to the C666-1 and Namalwa
EBV genome (section 2.18), which has the same sequence as Raji (Figure 3.21).
PAGE analysis showed digested products of ~70-bp, which could correspond to
either miR-BART 10 or miR-BART22 pre-miRNA (Figure 3.20 and Figure 3.22
left panel).  To further confirm that the digested product contained
pre-miR-BART22, Northern blot analysis with a complementary miR-BART22
oligonucleotide was carried out on the PAGE transferred to membrane. We
found that in vitro digestion of pre-miR-BART22 from C666-1 was more
efficient in Drosha/DGCRS processing compared to Namalwa (Figure 3.22 right
panel). Our findings lead us to hypothesize that nucleotide polymorphisms
within the pri-miR-BART22 transcript can augment its maturation in NPC, and

explain at least in part the varying transcript levels in different EBV strains.
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Figure 3.17 MiR-BART10 and miR-BART22 expression in C666-1 and

Namaiwa cells
(A) Northemn blot analysis demonstrates that the relative expression of
miR-BART22 to BARTI0 in C666-1 is significantly higher than that in
Namalwa (p<0.05). Representative results from three independent experiments
are shown. The relative expression level for each miRNA was calculated with
- reference to Namalwa (set as 1) after normalization to the U6 level. (B) The
expression ratio of miR-BART22 to miR-BART!0 is significantly higher in
C666-1 than Namalwa cells as measured by QRT-PCR (p<0.05). The expression
of miR-BART22 is compared to miR-BART10 after normalization to EBNAL.

The results shown are the mean+SD from three independent experiments.
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Chapter 3: Identification of Novel EBV encoded miRNAs in NPC

Figure 3.21 Alignment of pri-miR-BART22 sequences from

different EBV strains
Alignment of pri-miR-BART22 (AJ507799, 147142:147227) sequences
from seventeen NPC samples (NPC-T1 to NPC-T17), EBV infected cell
lines and NPC xenografts. The sequences of Raji (M35547), IM9
(EU828628), Mutu 1 (EU828632), and NPC samples GD1 (AY961628)
and C18 (EU828627) were extracted from GenBank for analysis. The
sequences of other samples were directly obtained by sequencing in our
laboratory. The two nucleotide variations critical for the small side

stem-loop formation are shown inside the pink boxes.
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Figure 3.22: In vitro Drosha/DGCRS processing of pri-miR-BART22

transcript.

C666-1-EBV and Namalwa-EBV pri-miR-BART22 transcripts (pri-RNA)
(AJ507799, 147137:147456) were in vitro transcribed and incubated with
bead-bound Flag-tagged Drosha/DGCR8 complex (+) or beads containing
empty vector transfected cell extract (-) (section 2.18.2). The digested
products were separated on 8% PAGE for analysis (fefi). The presence of
pre-miR-BART22 with a size around 70nt was confirmed by Northern blot with
a miR-BART22 complementary oligonucleotide probe (right). A representative

result from at least three individual blots is shown.
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3.4 Discussion

Besides the production of viral latent proteins, it is believed that EBV
contributes to NPC development through expressing abundant non-coding viral
RNAs, including EBERs and miRNAs. [n this chapter, we examined
miR-BARTI, BART2 and BARTS as examples to confirm that ebv-miR-BARTs
are abundantly expressed in NPC samples (Figure 3.1 and figure 3.2). Similar
observations had also been reported in another epithelial cancer, gastric
carcinoma (Kim do ef al, 2007). Thus, we postulated that ebv-BARTSs should
function in epithelial cancer development. Although expression of BHRFI
mRNA in NPC cell samples {including C666-1 cells) was observed,
miR-BHRF1s were not detected in the same sample by Northern blot analysis
(Figure 3.3 and figure 3.4). Furthermore, different from previous reports that
EBYV replication can stimulate the expression of miR-BHRF1s in cell lines (Cai
et al., 2006; Xing & Kieff, 2007), we found that induction of the EBV lytic cycle
in C666-1 cells did not activate expression of miR-BHRFIs.  These
observations suggested that biogenesis of miR-BHRF1s might be controlled by
more complex mechanisms in NPC.

In this chapter, we report the identification of two new ebv-miRNAs,
miR-BART21 and miR-BART?22, from screening 2928 clones by a traditional
small RNA library cloning method in the NPC cell line (C666-1} and xenograft
(X2117). They are both located in the BART cluster 2 region (Figure 3.23).
These two newly identified miRNAs are consistently expressed in NPC cells and
primary tissues. In line with our finding, Meister and co-workers have recently
reported the identification of several novel EBV miRNAs by massive sequencing

of 47000 clones that were derived from two NPC biopsies. We note that two
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EBV miRNAs identified in their study, ebv-miR-BART21-3p and

ebv-miR-BART22, are identical in sequence to our newly discovered
miR-BART21 and miR-BART?22, respectively (Zhu et al., 2009). Our study
has clearly established the r¢levance of miR-BART21 and miR-BART22 in NPC,
and demonstrates the feasibility of direct cloning of small cDNA libraries as an
efficient approach for the discovery of novel viral miRNAs.

In the library screening, miR-BART1S and miR-BART20 were not detected.
In fact, a previous study in our group suggested that miR-BARTIS is
undetectable by Northern blot in all native infected, re-infected epithelial cell
lines, as well as in Hela cells overexpressing EBV RNA transcripts from the
C666-1 strain (Lo et al., 2007). Nevertheless, Cosmopoulos and coworkers have
recently reported the detection of BART15 and BART20 expression in C666-1
cell using real time RT-PCR (Cosmopoulos et al., 2009).

We also identified some small RNA fragments from another abundant
non-coding EBV RNA (EBER). Among them, we could only validate the
presence of the fragments from EBER1 by Northern blot analysis (Figure 3.11).
Although some reports have suggested that another non-coding virus-associated
(VA) RNA from adenovirus can be processed to a functional mature microRNA
(sva-RNA) (Aparicio ef al., 2006; Sano er al, 2006), EBERI is unlikely to
undergo microRNA biogenesis because of the following reasons. Firstly, the
predicted secondary structure of EBERI is unlikely to be a pre-miRNA (Figure
3.10). Secondly, EBERI is confined to the nucleus and does not associate with
exportin 5, a protein which facilitates nucleus export of premature miRNAs (Fok
et al,, 2006a). Thirdly, it was not cleaved by Dicer in an in vitro experiment

(Sano et al, 2006). And in this chapter, we further confirmed that small
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EBERI1 fragments (EBER1-3p and EBER1-5p) do not bind to Ago2, an integral

part in RISC complex (Figure 3.14).

It was shown in previous reports that microRNA biogenesis can be altered
by sequence polymorphisms located in either the mature microRNA sequence or
microRNA flanking sequence (Gottwein et al, 2006; Duan et al, 2007;
Jazdzewski er al.,, 2008). By comparing sequences between different EBV
strains, we identified the presence of a strain specific EBV polymorphism,
especially at nt147144 A>T and nt147146 C>A, which predisposes to enhanced
biogenesis of miR-BART22 and thus increases its expression level in our local

NPC samples.
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Chapter 4: Functional analysis of miR-BART22
CHAPTER 4: FUNCTIONAL ANALYSIS OF MIR-BART22

4.1 Introduction

EBYV resides in NPC in latency II and the expression of latent proteins is
restricted to EBV nuclear antigen 1 (EBNAI1), latent membrane protein 2
(LMP-2A and LMP-2B), and in around 20-50% of NPC, oncogenic latent
membrane protein 1 (LMP-1) (Fahracus et al, 1988; Young et al, 1988,
Niedobitek er al, 1992; Raab-Traub, 2002). In addition, two types of
non-coding RNAs, EBERs and BARTS, are expressed in all NPC. Interestingly,
given the selectively high expression of BARTs in EBV positive epithelial
cancers including NPC, the function of these transcripts is not clear. The recent
discovery of ebv-miRNAs within the BARTs region may help to reveal the
function of these long non-coding transcripts. There is strong evidence
suggesting that miRNAs are an important class of regulatory non-coding RNA
species, which negatively regulate gene expression through complementary
sequence pairing to the 3° untranslated regions (3° UTR) of target genes by
inducing either mRNA degradation or transiational repression (Bartel, 2004).
While in most instances the function of ebv-miR-BARTs remains unknown,
current findings suggest similar regulatory roles of miR-BARTs in gene
expression {Cullen, 2009; Ghosh et al., 2009).

Following the findings in chapter 3 that miR-BART21 and miR-BART22 are
highly expressed in NPC samples, we proceeded to investigate how these two
miRNAs contribute to NPC development. In this chapter, we aim to identify
the targets of these newly identified miRNAs using bioinformatics and functional
approaches. At the time of this study, two bioinformatics software programs

were in wide use for miRNA target prediction, namely miRanda (Enright ef al.,
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2003; John et al., 2004) and RNA hybrid (Rehmsmeier et al., 2004). Although

these two programs were initially designed to predict miRNA target genes in D.
Melanogaster, we previously explored them to successfully identify some viral

miRNA targets (Lo et al., 2007; Choy et al., 2008).
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4.2 Materials and Methods
4.2.1 Tumor samples

For LMP-2A THC, all nasopharyngeal (NP) and the first 11 NPC biopsies
were the same as the ones used in Chapter 3. The rest of the biopsies, isolated
from other EBV-positive NPC, infectious mononucleosis (IM) or Hodgkin
Disease (HD), were obtained from the Prince of Wales Hospital, The Chinese
University of Hong Kong. Information on the patients is listed in Table 4.4.

Human experiments were approved by the local ethics committee.

4.2.2 Western Blot

Western blots were performed as described in section 2.11. For LMP-2A
protein expression analysis in cell lines, fifty micrograms of protein were used
for the western blot. However, five micrograms of protein was used to analyse
the transgene expression in stable clones or transient transfectants. The density
of the Western signals was measured by Image J software as described

previously.

4.2.3 DNA sequencing

DNA extraction and sequencing analysis were performed as described in
section 2.7.1 and section 2.16, respectively. In brief, the DNA fragment of
interest from the EBV genome was amplified by PCR using 10ng of genomic
DNA. The amplification product was checked by 2% agarose gel
electrophoresis and visualized by EtBr staining. Roughly one microliter of PCR
product was directly used for a 10pnl sequencing reaction using the forward PCR

primer. The sequences of the primers for PCR are listed below:
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LMP2A-3"UTR-F: TGGCGCTTTGCTATGAATTA (5457:5476)

LMP2A-3* UTR-R: AGGTTCACGTCCAGCTTCTC (5804:5823)
The numbers in the parentheses indicate the location of the primers in the viral

genome (AJ507799). Multiple sequence alignment was performed by using

CLC Sequence viewer (www.clcbio.com/index.php?id=28).

4.2.4 Construction of luciferase reporter vectors

Construction of firefly luciferase reporter vectors was described previously
(Wong et al., 2008). In brief, two micrograms of sense (8) and antisense (AS)
oligonucieotides corresponding to encoded a single miRNA test target were
annealed in 30 mmol/L HEPES buffer (pH7.4) containing 100 nmol/L potassium
acetate and 2 mmol/L magnesium acetate, and the annealed oligos were cloned
downstream of the cytomegalovirus (CMV) promoter-driven firefly luciferase
cassette in a pMIR-REPORT vector {(Ambion, Inc) via Spef and AHind [T sites.
The dual luciferase reporter assay was performed as described in section 2.19.
The sequences of oligonucleotides used for cloning are listed below:
T1-8: 5’-CTAGTGATCGCCTGCCACTTCCACAGCAA-3’
T1-AS: 5’-AGCTTTGCTGTGGAAGTGGCAGGCGATCA-3’
T2-8: 5’-CTAGTAACCCCACGGAGCAGGGCAACATTGCAGGGA-3’
T2-AS: 5-AGCTTCCCTGCAATGTTGCCCTGCTCCGTGGGGTTA-3’
T3-8: 5’-CTAGTAGACTATGCATACACTGAATTTAGA-3’
T3-AS: 5°-AGCTTCTAAATTCAGTGTATGCATAGTCTA-3*
T4-S: 5’-CTAGTAGACCTGTGTGCTGTATTTAA-3’
T4-AS: 5’-AGCTTTAAATACAGCACACAGGTCTA-¥

BART12-8: 5’-CTAGTAACCACACCAAACACCACAGGAA-3’
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BARTI12-AS: 5’-AGCTTTCCTGTGGTGTTTGGTGTGGTTA-3*

BART14-S: 5’-CTAGTATCCCTACTACTGCAGCATTTAA-3’
BART14-AS: 5°-AGCTTTAAATGCTGCAGTAGTAGGGATA-3’
BARTI16-S: 5’-CTAGTAGAGCACACACCCACTCTATCTAAA-3’
BART16-AS: 5’-AGCTTTTAGATAGAGTGGGTGTGTGCTCTA-3’
BART21-S: 5’-CTAGTGTTAGTTGCCTTCACTAGTGA-3*

BART21-AS: 5’-AGCTTCACTAGTGAAGGCAACTAACA-3’
BART22-S: 5’-CTAGTACTACTAGACCATGACTTTGTAAA-3’
BART22-AS: 5-AGCTTTTACAAAGTCATGGTCTAGTAGTA-3’
BART1-5p-S: 5’-CTAGTCACAGCACGTCACTTCCACTAAGAA-3’
BART1-5p-AS: 5°-AGCTTTCTTAGTGGAAGTGACGTGCTGTGA-3’
LMP2A-WT-S: 5’-CTAGTCCTGTGTGACCCCTCACTTTGTACA-3’
LMP2A-WT-AS: 5’-AGCTTGTACAAAGTGAGGGGTCACACAGGA-3’
LMP2ZA-M1-8: 5’-CTAGTCCTGTGTGACCCCTCAA-3’
LMP2A-MI1-AS: 5°-AGCTTTGAGGGGTCACACAGGA-Y
LMP2A-M2-8: 5’-CTAGTCCTGTGTGACCCCTCAGTATCTTCA-3’
LMP2A-M2-AS: 5’-AGCTTGAAGATACTGAGGGGTCACACAGGA-3’
LMP2A-M3-S: 5’-CTAGTCCTGTGTGACCCCTCACATAGAAGA-3’

LMP2A-M3-AS: 5’-AGCTTCTTCTATGTGAGGGGTCACACAGGA-3’

4.2.5 RT-PCR analysis of LMP-2A

Expression of LMP-2A mRNA was confirmed by traditional RT-PCR. In
brief, one microgram of total RNA was reverse transcribed by High Capacity
cDNA Archive Kit (Applied Biosystems) in a 20ul reaction containing random

primers. One microliter of total cDNA was used to perform the PCR reaction
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for 22 (ACTIN) or 40 (LMP-2A) cycles of 94°C for 30s, 55°C for 30s and 72°C

for 1 min in 25u1 reaction containing 0.25mM dNTPs (Amersham}, 0.2u! of each
10uM primer, 1XPCR reaction buffer, 1.6ul of 25mM MgCl, and 0.2ul of Tag
polymerase (Fermentas). Due to the low LMP-2A mRNA expression in C666-1,
another 10 additional cycles of PCR reaction were performed in order to achieve
a clear-cut result. The PCR products were analyzed in a 2% agarose gel. The
sequences of the primers are listed below:

LMP2A-Exon-1-F: 5°-CGGGATCACTCATCTGAACACATA-3’
LMP2A-Exon-3-R: 5’-CATGTTAGGCAAATTGCAAA-3’

Actin-209F:  5’-TAAGGAAGAAGCTGTGCTACGTC-3’

Actin-209R:  5’-GGAGTTGAAGGTAGTTTCGTGG-3’

42,6 IHC
Immunochistochemical staining for LMP-2A was performed as described in

section 2.12.

42,7 LMP-2A stable transfectants
Construction of stable LMP-2A transfectants is described in section 1.19.3
and the expression of LMP-2A in the stable clones was confirmed by IHC

(Figure 2.9).

4.2.8 Preparation of small RNA markers
Chemically synthesized 18- and 24-mer RNA oligonucleotides were
purchased from IDT Inc. The sequences of the synthetic oligonucleotides are

listed below:
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18-mer: rArGrCrGrUrGrUrArGrGrGrArUrCrCrArArA;

24-mer; rGrGrCrCrArArCrGrUrUrCrUrCrArArCrArArUrArGrUrGrA

Two hundred micro moles of RNA oligonucleotides were separated and
purified on 15% PAGE. RNA was eluted from the gel strip by incubating the
gel with 200pl of elution buffer (0.5M NH4OAc, ImM EDTA and 0.1% SDS) at
55°C for 1 hour, followed by incubation at 4°C overnight with shaking. Afier
elution, the RNA-containing buffer was collected into a new tube for RNA
precipitation. For RNA precipitation, 1l of glycogen (10mg/ml) and 600pl of
100% EtOH were added to the RNA-containing buffer and incubated on dry ice
for 10 min. The RNA pellet was collected by centrifugation at 4°C for 15 min
at maximum speed, washed once with 75% EtOH and re-dissolved in 20pl of
RNase free water.  One to two microliters of RNA was used as a marker.

Thirty-five-mer and 41-mer size markers were prepared by ligating the
modified DNA oligo 17.91X onto 18- and 24-mer RNA following the miRNA
cloning protocol available from the Bartel Lab:

(http://web.wi.mit.edu/bartel/pub/protocols.html) (England et al, 1977). The

sequence of 17.91X is AppCTGTAGGCACCATCAddJA (available from IDT

Ing.).

4.2.9 Statistical analysis

Results from QRT-PCR, luciferase reporter assays and protein expression
analyses were compared using the Student’s t-test. The results were analyzed
from at least three independent experiments. A p<0.05 was considered
significant.

All other methods are described in detail in Chapter 2.
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4.3 Results
4.3.1 Prediction of potential cellular target(s) of miR-BART21 and
miR-BART22
To attempt the prediction of any potential cellular targets of miR-BART21
and miR-BART22 by miRanda and RNAhybrid programs, we first retrieved all

human 3’UTR using MartView (www.ensembl.org/Multi/martview). The

3’'UTRs were fed separately into miRanda and the RNAhybrid program to
predict potential targets using standard parameters. The total score of predicted

binding site(s) = 90 in miRanda and the minimum free energy (r_mef)=

-18kCal/Mol in RNAHybrid were considered. Potential binding sites were
further checked for cross species conservation using UCSC Human BLAT. The
top 100 potential targets of each miRNA ranked by miRanda are listed in
appendix II and III.

At the first glance, several potential cellular targets appeared to be involved
in the regulation of immunity, cell cycle and apoptosis {(Table 4.1 and 4.2).
However, in transient transfection assay, pcDNA3.1-BART21 vector could only
produce a low level of mature miRNA which was not enough to exert sufficient
suppressive effect for miRNA-target validation (Figure 3.13). Thus, we could
only focus on the targets of miR-BART22. The E2F3 transcription factor has
drawn high attention because we have identified a total of three miR-BART22
putative binding sites on its 3’UTR by using another computer prediction
program, miTarget (Table 4.3) (Kim er al., 2006). Furthermore, expression of
E2F3 in two EBV negative epithelial cells, NP6% and HONE] is higher than that
in C666-1 (Figure 4.1 left panel). Western blot analysis was directly performed

to further investigate the expression of E2F3 after ectopic expression of
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miR-BART22 in two EBV negative NPC cells, HONEI and NP69. However,

western blot showed the negative result that E2F3 protein level did not change
between mock, miR-BART21 and miR-BART22 transfectants in these two cell
lines (Figure 4.1, middle and right panel).

E2F3 was found to be a false positive target of miR-BART22.
Simultaneously, we also failed to validate all potential targets listed in Table 4.2
by luciferase reporter assays using pcDNA3.I-BART22. The high false
positive rate generated from our prediction may be due to the fact that the
algorithm design of these two programs is not sensitive enough for the viral
miRNA target searching. This, in turn, was probably caused by insufficient
experimental data concerning the interaction between viral miRNAs and their
cellular mRNA targets. However, by using miRanda and RNAhybrid programs,
previous reports were able to identify a specific viral mRNA target that interacts
with viral encoded miRNAs (Grey et al., 2007; Lo er al, 2007). Subsequent
analysis therefore focused on viral mRNAs potentially targeted by

miR-BART22.
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HONE1 NP69
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Figure4.1  Effect of miR-BART22 on protein expression of E2F3

Western blot analysis for E2F3 protein expression in EBV negative cells,
HONE]1 and NP69, and EBV-positive NPC cells, C666-1, indicate that EBV
infection may regulate the expression of E2F3 (left panel). However, transient
transfection of miR-BART22 into both HONE1 and NP69 did not alter E2F3
protein expression levels suggesting that E2F3 is not the direct target of
miR-BART22. The miRNA expression in the samples was assayed by
QRT-PCR and compared with that in C666-1 (set at 1). Representative data

were selected from two independent experiments.
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4.3.2 Interaction of BART22 with the 3’UTR of LMP-2A mRNA

Using the default setting of the miRanda program, we found a putative
miR-BART22 binding site in the LMP2A-3’UTR (AJ507799; 5546-5568). The
predicted putative target site is highly conserved between different EBV strains
(Figure 4.2). A total of 16 nucleotides including the seed sequence (2-8nt) of
miR-BART22 are perfectly complementary to the target site (Figure 4.3, upper
panel). To study the predicted suppressive effect of miR-BART22 on LMP-2A,
a series of dual luciferase reporter assays were performed in 293FT cells. The
reporter constructs contained the predicted or mutated binding sequences that
were cloned using synthetic oligonucleotides into the 3'UTR of the
pMIR-REPORT plasmid. Using a miRNA expression vector in reporter assays,
we found that miR-BART22 exerts a strong inhibitory effect on the LMP-2A
3'UTR (42%, £ < 0.001). On the other hand, repression was eliminated when
the complementarity of the seed region was either deleted or mutated, for
example, LMP2A-MI1-M3 in Figure 4.3. This observation suggested that the
repressive property of BART22 on the LMP2A 3’UTR is both functional and
specific.

To further confirm the importance of seed sequence complementarity in the
BART22-LMP-2A interaction, we performed additional luciferase assays of
LMP2A-M1-M3 reporter plasmids with miR-BART22 and two miRNA mimics,
miR-M2-BART22 and miR-M3-BART22, in which the mutated seed regions on
the LMP2A-M2 and M3 reporters should be compensated (Figure 4.4). The
miRNA mimics exerted different levels of suppression on the 3’UTR BART22,
indicating that the miRNA mimics were functionally active. However in

co-transfection with LMP2A-WT 3°UTR, only miR-BART22, but not
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miR-M2-BART22 and miR-M3-BART22, was able to successfully reduce

translation.  Specifically, mutant miR-M3-BART22  with  restored
complementarity to LMP2A-M3 failed to exert an inhibitory effect on its
corresponding mutated reporter.  While miR-M2-BART22 could significantly
inhibit translation on the LMP2A-M2 mutated reporter, it was only slightly
below the control level and clearly did not exhibit profound repression ability
(Figure 4.4). Together, our data would hence suggest that the seed interaction
between miR-BART22 and LMP2A-3’UTR is unique and the replacement of
seed pairing by other complementary sequences provides negligible or only a
partial suppressive effect.

We further investigated whether LMP2A-3’UTR might contain putative
binding sites for other miR-BARTs. By loosening the MiRanda program
parameters for prediction, target sites for miR-BARTI, 12, 14 and 16 were
suggested but none could be successfully validated by luciferase reporter assay
(Figure 4.5). This further implied the uniqueness of the interaction between

miR-BART22 and LMP2A-3’UTR, thus the expression regulation of LMP2A.
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Figpure 4.2 Conservation of the 3’UTR of the LMP-2A gene

in different EBV strains

Direct sequencing resuits of the putative miR-BART22 binding site on the

3’UTR of the LMP-2A gene from different samples are illustrated. The

B95.8 sequence is extracted from GenBank (accession number: X01995)

and is shown as a reference sequence.
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miR-BART22: 3*' UGAUGAUCU-GGUACUGAAACAUU &'

Pl [LLLL T TITEDNAE

LMP2A-UTR: b5'..CCTGTGTGACCCCTCACTTTGTAC. .3

B BART1-5p
[ IR Hvwih

CCTATGTGACCCCTCACATAGARG LMPZA-M3

CCTGTGTGACCCCTCAGTATCTTC LMP2A-M2

CCTGTGTGACCCCITCA------ -~ LMP2A-M1

CCTGTETGACCCCTCACTTTGTAC LMP2A-WT
Seed Region

[Fluc] CACAGCACGTCACTTCCACTAAGA  ¢BART1-5p

ACTACTAGACCATGACTTTGTAA cBART22

0.5 1.0
Rel. luciferase activity

Figure 4.3  Viral LMP-2A is a potential target of miR-BART22

The base complementarity suggests that the putative miR-BART22
target site is at the 3’UTR of LMP-2A (AJ507799.2, 5545:5568)
(upper panel). The luciferase reporter vector carrying wild-type
(LMP2A-WT) and mutated (LMP2A-M1 to M3) LMP2A sequence in
the 3°UTR are shown. The seed binding region is underlined and the
base substitutions used are marked in red. As a control, reporter
vectors carrying miRNA complementary sequence in the 3’ UTR are
constructed (cBARTI1-5p and cBART22). The relative luciferase
activity was normalized to renilla luciferase control and results were
taken from at least three independent experiments. Data shown are
the mean + SD.  Statisctical analysis by Student-t test was used, and

a p-value < 0.001 is denoted as (**).
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-

Relative luciferase
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miR-BART22 LMP2A-WT LMP2A-M1 LMP2A-M2 {MPZA-M]

Expression Vector

miR mimic sequences

—3J miR-BART22 . UUACAAAGUCAUGGUCUAGUAGU
miR-M2-BART22 : UAAGAUACUCAUGGUCUAGUAGU
EE miR-M3-BART22 : AUUCUAUGUCAUGGUCUAGUAGU
gzzzg  Allstars negative control

Figure 4.4 Uniqueness of the interaction between miR-BART22 and the
LMP-2A-3'UTR

The sequences of miRNA mimics are displayed. The base substitutions that

restore seed-mutated complementarity are labeied in red (miR-M2-BART22 and

miR-M3-BART22). The relative firefly luciferase activity was normalized to

the renilla luciferase control and results were taken from at least three

independent experiments. Data shown are the mean + SD. Statistical analysis

by Student-t test was used, and a p-value < 0.001 is denoted as (**).
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Figure 4.5 Predicted LMP-2A-3’UTR binding sites for other miR-BARTSs

(A) Schematic diagram showing the location of predicted target sites (t1-4) on
the 3°’UTR of the LMP-2A gene (open bar) according to GenBank accession no.
AJ507799. (B) The alignment of the target sites to the corresponding
miR-BARTS is shown. The target sites were cloned into luciferase reporters for
analysis. (C) Luciferase reporter assays of t1-4 containing constructs in the
presence of indicated miR-BARTs were performed in 293FT cells. Reporter
activity was normalized to the renilla luciferase control. Luciferase activity
from the construct containing no miRNA target in its 3°UTR (white bar) was set

at 1. Data shown are the mean + SD from three independent experiments.
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4.3.3 Differential expression of LMP-2A in NPC

In order to investigate whether LMP-2A is commonly expressed in NPC, we
performed both RT-PCR and Western Blot on a panel of NPC samples from
Southern China. Although the LMP-2A RNA transcript could be detected in
C666-1 cells and NPC xenografts X666 and X2117, none of them showed
detectable LMP-2A protein levels in western blot analysis (Figure 4.6). We also
failed to detect the expression of LMP-2A protein in a series of EBV positive cell
lines (Figure 4.7). Nevertheless, we were able to detect weak focal expression
of LMP-2A in X2117 by immunohistochemical staining (IHC). As a control,
strong LMP-2A staining was demonstrated in an EBV-positive infectious
mononucleosis (IM) and six of the eight Hodgkin’s disease/lymphoma (HD)
biopsies (Table 4.4). This finding suggested that IHC analysis has a higher
sensitivity than Western blotting for the detection of LMP-2A expression. By
IHC, we were able to detect weak LMP-2A expression in 6 out of 26 (23%)
primary NPC tumors (Figure 4.8). The expression levels of miR-BART22 and
LMP-2A mRNA have also been determined in eleven of these tumors (Table 4.5).
Interestingly, the LMP-2A mRNA expression level was not directly correlated
with protein expression. Furthermore, a relatively low expression level of
miR-BART22 miRNA was observed in all three LMP-2A positive-primary
tumors, as well as in X2117 (NPC6, 8 and 11 in Table 4.5 and Figure 4.8).
These findings supported the possible regulatory role of miR-BART22 in

LMP-2A expression.
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Figure 4.6 Wesfern blot analvsis of LMP-2A expression in NPC samples

One NPC cell line (C666-1) and two xenografts (X666 and X2117) were
subjected to analysis, Protein samples from LMP-2A transfected 293FT cells
{293-LMP-2A) and NP69 were included as the positive and negative controls,
respectively. The non-specific bands (NS) are labeled. The LMP-2A and
EBNA]1 mRNA expression levels in the same sample were confirmed by
RT-PCR and QRT-PCR, respectively. The QRT-PCR results were normalized to
GAPDH and are shown as the mean + SD from three independent experiments.
The expression levels of LMP-2A in 293-LMP-2A, and of EBNAI1 in C666-1

were set at 1.
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FIGURE 4.7 Detection of LMP-2A protein in EBV positive cell lines

LMP-2A expression was analyzed by western blot.  Protein samples from
LMP-2A transfected 293FT cells (293-LMP-2A) and pcDNA3.1 empty
vector transfected cells (293-EV) were included as the positive and

negative controls, respectively. Non-specific bands (NS) are labeled.
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NPC11 NPC2

RN E oy (T

Figure 4.8 LMP-2A protein expression in NPC, IM and HD specimens

LMP-2A expression was not detected in the NPC cell line C666-1 and xenograft
X666 and only focally weak LMP-2A expression was detected in xenograft
X2117(Upper panel). Weak expression of LMP-2A was noted in three NPC
samples (NPC6, 8, 11) and a negative example (NPC2) was included (Middle
panel). Strong expression of LMP-2A was detected in Infectious
Mononucleosis (IM) and three tissues which positive for Hodgkin Disease (HI¥}

were included as controls (lower panel).
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Table 4.4 Expression of LMP-2A in HD) and IM samples

Code Sex Age LMP-2A (IHC)

Hodgkin's disease (HD) HD1 M 34 Positive
HD2 M 22 Positive

HD3 M 56 Positive

HD4 M 29 Negative

HD5 F 78 Positive

HD6 G 58 Positive

HD?7 G 31 Negative

HDS8 M 68 Positive

Infectious mononucleosis (IM) IM F 17 Positive
Nasopharyngeal Carcinoma (NPC) NPC12 M 43 Negative
NPC13 F 65 Negative

NPC14 F 54 Negative

NPC15 F 35 Positive

NPC16 M 50 Negative

NPC17 M 51 Negative

NPC18 M 78 Negative

NPC19 M 39 Negative

NPC20 M 57 Negative

NPC21 M 50 Positive

NPC22 M 41 Negative

NPC23 M 54 Negative

NPC24 M 45 Negative

NPC25 M 70 Negative

NPC26 M 52 Positive
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Table 4.5 Expression of miR-BART?22 and LMP-2A in NPC samples

Sample BART22 LMP2A mRNA" LMP2A IHC
C666-1 100 100 Negative
NPC1 36.39 <1 Negative
NPC2 123.18 226 Negative
NPC3 41.07 242 Negative
NPC4 18.85 258 Negative
NPCS 76.54 257 Negative
NPC6 2.06 <1 Positive
NPC7 39.17 233 Negative
NPCS8 28.05 335 Positive
NPC9 30.68 264 Negative
NPC10 64.04 NA Negative
NPCI11 55.2 183 Positive
NP1 0 0 Negative
NP2 0 0 Negative
NP3 0 0 Negative

*Expression level of Ca66-1 was set at 100; NA, Not analyzed;
Expression level was normalized to EBNAL.
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4.3.4 Suppression of LMP-2A protein expression by miR-BART22

To establish whether an interaction between miR-BART22 and the
LMP2A-3"UTR occurs, two experiments were designed. Firstly, the dose effect
of miR-BART22 on LMP-2A expression was studied by co-transfection of
different amounts of miR-BART22 with the LMP-2A expression vector that
included the full length of the LMP-2A 3’UTR. MIiR-BART22 suppressed the
LMP-2A protein level in a dose-dependent manner without an apparent effect on
LMP-2A mRNA levels (Figure 4.9). In addition, miR-BART?22 expression had
no obvious effect on the EGFP control protein. Secondly, transfection of
miR-BART22 into HEK293 cells that had been stably transfected with
pcDNA3.1-LMP-2A (Figure 4.10) readily suppressed the LMP-2A protein level.
The transfection again had no significant effect on LMP-2A mRNA expression.
These results strongly suggest that LMP-2A is a direct target of miR-BART22,
which specifically represses LMP-2A expression at the post-transcriptional level.

Previous reports suggested that expression of LMP-2A can induce AKT
activity in C666-1 cells (Shair er al, 2008) and activate the Notch signaling
pathway in epithelial cells (Anderson & Longnecker, 2009). We asked whether
transient transfection of miR-BART22 in LMP-2A expressing HEK293 stable
clones could suppress Notch-1 mRNA expression and mildly suppress AKT
activation (Figure 4.11 and Figure 4.12). Although suppression of both Notch
and AKT pathways may not favor cancer cell growth, forced expression of
miR-BART22 in normal epithelial cells did not induce any change in cell
proliferation (Figure 3.15). These observations were consistent with the recent
finding that overexpression of LMP-2A in C666-1 cells does not affect cell

growth and migration although it can activate the PI3K/Akt pathway (Shair et al.,
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2008). Thus, we believe that downregulation of LMP-2A by miR-BART22

may contribute to cancer development by other means, such as permitting the

infected cells to escape from the host immune surveillance.
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Figure 4.9 Suppression of LMP-2A protein expression by miR-BART22

in a dose-dependent manner

Western blot of LMP-2A and EGFP in 293FT cells transiently co-transfected

with 0.1pg/well pEGFP-C1 plasmid in a 6-well plate format. The amount of the

expression plasmids are indicated (lane 3-6), with 2pug of total DNA made up

with pcDNA3.1 as carrier. LMP-2A expression level was normalized to EGFP.

MiR-BART22 (normalized to U6) and LMP-2A (normalized to actin) RNA

expression levels in the same sample were analyzed by QRT-PCR and are shown

relative to lane 3.
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Figure 4.10 Suppression of LMP-2A protein expression by miR-BART22 a

in stable clone
Representative western blot results indicate that miR-BART22 represses the
expression of LMP-2A protein. An siRNA control (siCtl) and an LMP-2A
specific siRNA (sILMP-2A) were included as controls. The LMP-2A
expression level was normalized to actin and the level relative to mock
transfection (set at 1) was calculated. LMP-2A mRNA expression in the same

sample was assayed by QRT-PCR.
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Figure 4.11 Inhibition of AKT activity by miR-BART22

Inhibition of LMP2A-mediated AKT activity by miR-BART22 was examined
using western blot. HEK293-LMP2A stable cells transfected with an siRNA
control (siCtl) and LMP-2A specific siRNA (siLMP-2A) were included as
controls. A representative biot from three independent experiments is shown in
pancl A. The AKT activity was calculated by the expression level of
phosphorylated AKT relative to total AKT, with the activity relative to a control
transfection (set at 1) shown. Statistical analysis by Student-r test was used and
compared with the control transfection, p-value <0.05 is denoted as (*) and

<0.001 is denoted as (**).
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Figure 4.12 Downregulation of Notch] expression by miR-BART22

The relative expression of Notch-1 of transfected cells was analyzed by
QRT-PCR. Notch-1 expression levels were normalized to actin and compared
with the mock transfection (set at 1).  All data shown in the figure are the mean
+ SD from three independent transfection experiments. Statistical analysis by
Student-t test was used to compare the relative expression to the control

transfection, p-value <0.05 is denoted as (*) and <0.001 is denoted as (**).
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4.4 Discussion

Although the LMP-2A transcript was previously reported to be detected in
most NPC samples (Brooks ef al., 1992; Busson et al., 1992; Heussinger et al.,
2004), our IHC data indicate that only 23% of primary NPC tumors from our
locality have detectable LMP-2A protein expression. Transcriptional regulation
of LMP-2A in EBV-infected cells by epigenetic and viral latent protein
mechanisms has been reported previously (Gerle et al., 2007, Anderson &
Longnecker, 2008; Fernandez ef al, 2009}, In this chapter, we showed that
LMP-2A can also be modulated at the translational level by miR-BART22.
Moreover, while seed complementarity of the LMP-2A-3"UTR with other known
ebv-miRNAs has been suggested, we have not been able to confirm these
associations in a reporter assay (Figure 4.4), implying a unique role for
miR-BART22 in the translational regulation of LMP-2A. We were able to
demonstrate LMP-2A protein expression in NPC biopsies, which tend to have
relatively low expression of miR-BART22 (Table 4.5). However, not all
biopsies with low miR-BART22 expression have detectable LMP-2A, indicating
that LMP-2A expression might also be regulated by other pathways. Such
multiple regulatory mechanisms have also been implicated in LMP-1 modulation
(Lo et al., 2007).

There are several potential benefits of suppressing LMP-2A expression
during NPC development. Previous reports showed that NPC cells are capable
of processing and presenting endogenously synthesized proteins to CTLs.
LMP-2A in particular is more strongly immunogenic than two other NPC
expressed viral proteins, namely EBNAl and LMP-1 (Brooks er al, 1992;

Khanna et al., 1998; Lee et al., 2000; Leen ef al., 2001; Lo ef al., 2007). In this
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regard, limiting LMP-2A protein expression would have potential advantages for
NPC cells to escape host immune surveillance, and thus LMP-2A expression in
NPC is predictably low. As discussed in Chapter 1, immunomodulatory effects
of other ebv-miRNAs have recently been demonstrated. For example,
down-regulation of LMP-1 expression by miR-BARTs may favor immune escape
by decreasing the antigen processing function of NPC cells (Lo et al., 2007). In
primary effusion lymphoma, miR-BHRF1-3 can target CXCL-11/I-TAC, an
IFN-inducible T-cell attracting chemokine (Xia et al., 2008). Furthermore,
miR-BART2-5p can repress expression of the cellular stress-induced immune
molecule, MICB (Nachmani et al., 2009). Apart from immunogenicity aspects,
LMP-2A, as opposed to LMP-1, could suppress NF-xB levels resulting in an
anti-proliferative effect (Stewart et al., 2004). Moreover, LMP-2A expressing
epithelial cells could also inhibit telomerase reverse transcriptase activity, an
enzyme important for cell immortalization and transformation (Chen et al., 2005).
In addition, our preliminary data showed that forced expression of LMP-2A in
C666-1 cells could stimulate the expression of one of the viral early lytic genes
(BRLFI). This is probably through the activation of the PI3K/Akt signaling
pathway by LMP-2A, as previous described in Burkitt’s lymphoma cells (Figure
4.13) (Mori & Sairenji, 2006; Shair et al., 2008). Since LMP-2A has diverse
functional roles in epithelial cells, its expression level is therefore required to be
tightly regulated during the development of NPC.

Our group has previously reported that miR-BARTs regulate LMP-1
expression (Lo ef al, 2007) and miR-BART5 affects the expression of the
cellular target gene PUMA (Choy et al, 2008). In this study, we further

identified miR-BART22 as a modulator of an important oncogenic and
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immunogenic viral gene, LMP-2A (Figure 4.14). In concordance with our
previous reports, we have thus provided evidence for the vital roles of
EBV-encoded miRNAs in regulating oncogenic and immunogenic viral latent
protein expression, which holds importance for the progression and survival of

EBV-infected NPC.
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Figure 4.13  Activation of BRLF1 mRNA expression by LMP-2A

C666-1 cells were transfected with either an LMP-2A expression vector
(LMP-2A) or empty vector (EV) for 24 hours. Protein and RNA were extracted
from the same sample for paraliel analysis. The representative western blot in
Panel A shows the activation of Akt phosphorylation by LMP-2A. Expression
of viral early lytic genes, BRLF1 and BZLLF1, was measured by QRT-PCR and
normalized to GAPDH (Hs00266705; Applied Biosystems).  Triplicate
individual experiments were done for both western blots and QRT-PCR, and
student-t test was used for statistical analysis with a p-value <0.001 denoted by
{**). The sequences of the primers and antibodies used are list in Table 2.4 and

2.5 respectively.
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Chapter §: Brief discussion & proposed future studies

CHAPTER 5: DISCUSSION AND PROPOSED FUTURE

STUDIES

5.1 General findings

In spite of their high expression in NPC, the function of the two EBV
non-coding RNA transcripts, EBERs and BARTSs, remains obscure. Unlike
EBER RNAs, which are highly expressed in infected cells in all states of latency,
BARTs are preferentially expressed in cells of latency II status such as in NPC
and gastric carcinoma. The recent discovery of a novel viral-encoded miRNAs
in the BART region indicates that EBYV, particularly in latency II, may explore
this efficient regulatory system to facilitate cancer development and/or avoid host
immune and antiviral responses.

In this thesis, we identified two novel ebv-miRNAs which are located in the
BART region and are highly expressed in local NPC samples. Frequent
expression of miR-BART22 can be explained partially by a specific EBV strain
that is associated with NPC in our locality. By bioinformatics and functional
analysis, LMP-24 has been successfully identified as the direct downstream
target of miR-BART22. Because LMP-2A is a potent immunogenic viral
antigen that is recognized by cytotoxic T cells (CTLs), down-modulation of
LMP-2A expression by miR-BART22 may permit escape of EBV-infected cells

from host immune surveillance.

5.2 LMP-2A protein expression regulated by human miRNAs
We observed in chapter 4 that the correlation between LMP-2A (IHC) and
miR-BART22 expression is not absolute (Table 4.5). Furthermore, while

LMP-2A mRNA is consistently detected in NPC and latent EBV infected B
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lymphocytes (Qu & Rowe, 1992; Tierney et al., 1994), we have failed to detect
protein expression of LMP-2A in a variety of tested EBV positive cell lines
(Figure 4.6 and Figure 4.7). These observations indicate that the expression of
LMP-2A may also be regulated by other mechanism(s) at the posttranscriptional
level.

Understanding LMP-2A regulation is important in EBV related cancer
biology, especially in immunotherapy development. It is worthwhile to
continue to investigate whether cellular molecules can regulate LMP-2A
expression. Using the computer program “Probability of Interaction by Target
Accessibility” (PITA) (Kertesz et al, 2007), together with the previously
described miRanda and RNAhybrid, several putative homo sapicns miRNA
(hsa-miRNA) binding sites on LMP-2A-3"UTR are suggested {(Table 5.1). The
good complementaritics between some predicted miRNAs and their potential
binding sites in the LMP-2A-3"UTR (Table 5.2) suggests that these miRNAs
may modulate LMP-2A expression. However, further experimental analysis
should be conducted to determine if those miRNAs contribute to LMP-2A

regulation.
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Chapter 5: Brief discussion & proposed future studies
Table 5.2 Alignment of LMP-2A-3’UTR with predicted hsa-miRNAs

Human miRNA Alignment®
hsa-miR-15a Target 5’ CCAGACC--UGUGUGCUGCA 3’
IR RN
miR 3’ GUGUUUGGUAAUACACGACGAU 5’
hsa-miR-134 Target 5’ GCCCCUCCGAGU-GACCAGUCACC 3’
LETEEE T« EE T
miR 3’ GGGGAGAC-CAGUUGGUCAGUGU 5’

hsa-miR-296-3p
Target 5’ UAGCC-CCGGGCCCAGCCCUCC 3°

LD T T =TT

miR 3’ CCUCUCGGAGG--UGGGUUGGGAG 5’

hsa-miR-423-5p
Target 5’ AUCUGGCUCUCCUGUGUGACCCCUCAC 3¢

[T LTI

miR 3’ UUUCAGAGCGAGAG----- AC-GGGGAGU 5

hsa-miR-497 Target 5’ CCAGACCU--GUGUGCUGUA 3’

[P0 T

miR 3’ UGUUUGGUGUCACACGACGAC 5’

hsa-miR-550
Target 5 AGCUCACCUAUGGUCACUCAGGCACG 3

|11 LETT TR

miR 3’ CCCGAGA- - - -AUGAGGGAGUCCGUGA 5’

-miR-1275
hsa-miR-12 Target 5’ CGUGAACCUCCCCCCCAG 3’

SRR AR

miR 3’ CUGUCGGAGAGGGGGUG 5’

*Alignment was suggested by RNAhybrid program
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Chapter 5. Brief discussion & proposed future studies

5.3 Identification of ebv-mmiRNA downstream targets

A single miRNA is expected to silence hundreds of target transcripts at the
post-transcriptional level. Hence further identification of more ebv-miRNAs
downstream targets is critical to understand how EBV is involved in cancer
development. In the previous studies, several computer prediction programs
were successfully employed to identify targets of ebv-miRNAs. In this thesis,
the viral LMP-24 gene was identified and confirmed as a target of miR-BART22.
The same strategy was explored to investigate the target of ebv-miR-BARTs in
our laboratory but no new downstream target was finally validated. On the
other hand, some reports suggested that genuine miRNA targets might escape in
silico predictions if they lack seed match associations with the 3’UTR of the
target transcripts. For example, miR-24 can directly down-modulate E2F2 and
MYC expression eventhough it contains a poorly conserved 7-mer exact seed
match with their 3’UTRs (lLal et al, 2009).  Despite the successful use of in
silico methods for viral miRNA target identification, the number of false
positives/negatives remains high. These observations suggest the need to obtain
miRNA targets by other suitable and reliable approaches.

MiRNAs also affect the expression levels of target mRNAs (Lim et al,
2005). In view of this, our department has successfully employed gene
expression profiling together with in silico predictions to identify some miRNA
targets in cancer cells: for example, downregulation of Stathmin I by miR-223 in
HCC (Wong et al., 2008) and SLCI164] by miR-124 in medulloblastoma (Li et
al., 2009). However, identification of miRNA targets by proteomic studies
suggested that miRNA mainly suppress protein expression without any

significant change in mRNA level (Baek et al., 2008; Selbach et al., 2008). By
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Chapter 5: Brief discussion & proposed future studies

using 2D-PAGE and mass spectrometry analysis, tumor suppressor tropomyosin
1 (TPMI1) was confirmed as a downstream target of miR-21 in MCF7 breast
cancer cell lines (Zhu ef al., 2007). This approach highlights the feasibility of
using proteomic approaches for miRNA target prediction although the secondary
effects of miIRNAs may score as false positives.

Direct biochemical methods may provide an easy and reliable alternative
means for miRNA target identification (Beitzinger et al, 2007; Easow et al,
2007; Karginov et al, 2007). This method combines RISC
co-immunoprecipitation with gene expression analysis (Figure 35.1).
Transfection of either control or miR-BART expression vectors into Hela cells
can be subjected to pull down by monoclonal Agol and Ago2 antibodies. Since
Ago protein is a core component of RISC, the pull down complex from
miR-BARTSs transfectants should contain miR-BARTs-targeted transcripts. The
bound cellular transcripis can be extracted and analyzed by microarray profiling
or high throughput sequencing. Potential targets can further be analyzed by
miRNA recognition sites in their 3’UTR regions. The key advantage of this
method is that it can enrich the direct targets of miR-BARTs without any

consideration of the down-regulatory pathways involved.
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Appendix 1. Tumor Staging

APPENDIX I

TUMOR STAGING (AJCC 6™ EDITION) FOR NASOPHARYNX

Primary tumor (T)

TX Cannot be assessed

TO No evidence of primary tumor

Tis Carcinoma in situ

Tl Tumor confined to nasopharynx

T2 Tumor extends to soft tissue

T2a Tumor extends to the oropharynx and/or nasal cavity without

parapharyngeal extension.

T2b Any tumor with parapharyngeal extension

T3 Tumor invades bony structures and/or paranasal sinuses

T4 Tumor invades intracranial extension and/or involvement of cranial
nerves, infratemporal fossa, hypopharynx, orbit, or masticator space

Regional Lymph Nodes (N)

NX Regional lymph nodes cannot be assessed

NO No regional lymph node metastasis

N1 Unilateral metastasis in lymph node(s), 6 cm or less in greatest
dimension, above supraclavicular fossa

N2 Bilateral metastasis in lymph node(s), 6 cm or less in greatest
dimension, above supraclavicular fossa

N3a Metastasis in lymph node{s) more than 6 cm in dimension

N3b Metastasis in lymph node(s) residing wholly or in part in the
supraclavicular fossa

Distant Metastasis (M)

MX Cannot be assessed

Ml Distant metastasis

STAGE GROUP

Stage 0 Tis NO MO

Stage | Tl NO MO

Stage II A T2a NO M0

Stage II B Tl Ni MO
T2a N1 M0
T2b NO, N1 MO

Stage 111 T1 N2 MO
T2 N2 MO
T3 NO, N1, N2 MO

Stage IV A T4  NO,NI,N2 M0

Stage IV B Any T N3 MO

Stage IV C Any T Any N M0
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