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Abstract of thesis entitled: 
Bayesian Criterion-based Model Selection in Structural Equation Models 

Submitted by LI, Yunxian 
for the degree of Doctor of Philosophy 
at The Chinese University of Hong Kong in May 2010 

Structural equation models (SEMs) are commonly used in behavioral, edu-
cational, medical, and social sciences. Lots of software, such as EQS, LIS-
REL, MPlus, and WinBUGS, can be used for the analysis of SEMs. Also 
many methods have been developed to analyze SEMs. One popular method 
is the Bayesian approach. An important issue in the Bayesian analysis of 
SEMs is model selection. In the literature, Bayes factor and deviance in-
formation criterion (DIG) are commonly used statistics for Bayesian model 
selection. However, as commented in Chen et al. (2004), Bayes factor relies 
on posterior model probabilities, in which proper prior distributions are 
needed. And specifying prior distributions for all models under consider-
ation is usually a challenging task, in particular when the model space is 
large. In addition, it is well known that Bayes factor and posterior model 
probability are generally sensitive to the choice of the prior distributions 
of the parameters. Furthermore the computational burden of Bayes fac-
tor is heavy. Alternatively, criterion-based methods are attractive in the 
sense that they do not require proper prior distributions in general, and 
the computation is quite simple. One of commonly used criterion-based 
methods is DIG, which however assumes the posterior mean to be a good 
estimator. For some models like the mixture SEMs, WinBUGS does not 
provide the DIG values. Moreover, if the difference in DIG values is small, 



only reporting the model with the smallest DIG value may be misleading. 
In this thesis, motivated by the above limitations of the Bayes factor and 
Die , a Bayesian model selection criterion called the Ly measure is con-
sidered. It is a combination of the posterior predictive variance and bias, 
and can be viewed as a Bayesian goodness-of-fit statistic. The calibration 
distribution of the Ly measure, defined as the prior predictive distribution 
of the difference between the Ly measures of the candidate model and the 
criterion minimizing model, is discussed to help understanding the Ly mea-
sure in detail. The computation of the Ly measure is quite simple, and 
the performance is satisfactory. Thus, it is an attractive model selection 
statistic. In this thesis, the application of the Ly measure to various kinds 
of SEMs will be studied, and some illustrative examples will be conducted 
to evaluate the performance of the Ly measure for model selection of SEMs. 
To compare different model selection methods, Bayes factor and DIG will 
also be computed. Moreover, different prior inputs and sample sizes are 
considered to check the impact of the prior information and sample size on 
the performance of the Ly measure. In this thesis, when the performances 
of two models are similar, the simpler one is selected. 



摘要 

結構方程模型 ( S E M s )被廣泛應用於行為學、教育學、醫學以及社會科學等領 

域。很多軟件都可以用來分析S E M s，比如E Q S , LISREL，MPlus, WinBUGS，等 
等。同時，很多统计方法可以用于分析S E M s �在貝葉斯模型選擇中，貝葉斯因 

子和DIC準則是其中最常用的兩種方法。模型選擇在結構方程模型分析中是一 

個重要的問題。在一些文獻中，貝葉斯因子被廣泛運用于結構方程模型的比 

較。然而，這種方法通常依賴於模型的後驗概率，从而也依赖于合適的先驗分 

布的选取。在可選擇模型比較多的時候，這通常是一項很艰巨的任務。除此之 

外，貝葉斯因子以及後驗概率通常受參數先驗分布的影響。而且，貝葉斯因子 

的計算量較大。然而，基於舉則的方法通常不需要选择適當的先驗分布，而且 

計算也比較簡單。最常用的模型選擇準則之一是DIC準則，然而DIC準則通常假 

設後驗均值是較优的估計。對於一些模型，例如混合模型，WinBUGS不能提供 

DIC值。另外，如果兩個模型的DIC值相差很小，只考虑具有最小D1C值的那个 

模型可能会得出错误的结果。基于以上提到的关于贝叶斯因子和DIC准则的一 

些缺点，我們提出了一種叫做Lv測度的貝葉斯準則作為模型選擇的方法。Lv测 

度是後驗預測方差和偏差的一個組合，也可以看成一個貝葉斯擬合優度統計 

量。同時我們還定義了Lv測度的一個校正分布，即候選模型與最小Lv測度模型 

的 L v測度之差的邊際分布，這將作為 L v測度的一個補充。正如 I b r a h i m e t 
a l . ( 2 0 0 1 )指出，L v測度的計算比較簡單，而且在很多模型的选择中有较好的表 

现。因此，這是一個很有吸引力的模型選擇統計量。本論文中，我們將討論Lv 
測度在結構方程模型中的應用，同時給出一些實例對這種方法在結構方程模型 

選擇中的表現進行評估。為了比較不同的模型選擇方法，我們也給出貝葉斯因 

子和DIC準則的相关結果。此外，我們還討論了先驗信息及樣本量對Lv測度的 

影響。在本文中，對於表現相同的模型，我們將選擇相對簡單的模型。 
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Chapter 
Introduction 

1.1 Overview 
Structural equation models (SEMs) are very popular in analyzing relation-
ships among observed and latent variables. Nowadays, SEMs have been 
applied to many fields, including but not limited to business, marketing, 
education, medicine, psychology and sociology. One of the main objectives 
of these applications is to search a good SEM that can reveal the rela-
tionships among covariates, observed and latent variables. Hence, model 
selection is an important issue in analyzing SEMs. Moreover, as explained 
in Lee (2007, chap. 5), hypothesis testing can be treated as a model selec-
tion problem. 

Recently, the Bayesian approach for analyzing SEMs has received much 
attention, see Schines et al. (1999), Dunson (2000), Ansari et al. (2002), Lee 
(2007), Lee et al. (2010), Cai et al. (2010), and references therein. So far, the 
most widely used Bayesian model selection statistics are Bayes factor (Kass 
and Raftery, 1995) and the Deviance Information Criterion (DIC) (Spiegel-
halter et al., 2002). It is well known that for complex statistical models, the 
computation of Bayes factor is difficult (DiCiccio et al., 1997). Gelman and 
Meng (1998) developed an efficient algorithm, namely the path sampling, 
to compute the normalizing constant of a probability density function. This 
algorithm has been applied to compute the Bayes factors of many complex 



SEMs (see for example, Lee and Song, 2002, 2003a; Song and Lee, 2007, 
2008, and the references therein). Like the Bayesian Information Criterion 
(BIC), Die takes into account the number of unknown parameters in the 
model. As the software WinBUGS (Spiegelhalter et al., 2003) provides the 
DIG values for most SEMs, the application of DIG is convenient. 

While Bayes factor and DIG have some nice features, they have limita-
tions. It is well-known that Bayes factor requires proper prior distributions 
of the parameters. In fact, it will favor the competitive model Mq if the 
prior of the parameters in model Mi has a very large spread so as make it 
non-informative. This is known as the "Bartletts Paradox". Moreover, for 
competitive models Mq and Mi, such as multilevel SEMs with very different 
structures, it is difficult to find a direct path to link them when applying 
the path sampling. Under these cases, some auxiliary models may have to 
be used in computing the Bayes factor (see Lee, 2007). This will increase 
the computational burden. For DIG, it assumes the posterior mean to be 
a good estimator; and for some models (for example, the mixture SEMs), 
WinBUGS does not give the DIG values. Moreover, if the difference in 
Die values is small, only reporting the model with the smallest DIG value 
may be misleading. In this thesis, motivated by the above limitations of 
the Bayes factor and DIG, we propose an attractive Bayesian statistic for 
model selection for different kinds of SEMs. 

The proposed Bayesian statistic, called the Ly measure, is a criterion-
based method that does not require proper prior distributions of the param-
eters. It will be shown that the computational burden involved is light, and 
the statistic can be obtained conveniently via observations simulated for the 
Bayesian estimation. Basically, the Ly measure involves two components. 
The first component is related to the reliability of the prediction, and the 
second component measures the discrepancy between the prediction and 
the observed data. Hence, it can be used to examine the goodness-of-fit of 
the model to the observed data. We will also consider the calibration dis-



tribution of the Ly measure, which will allow us to compare two competing 
models in more details. 

1.2 Ly Measure for Model Selection 
To define the criterion, some notations will be used. Let Y^^^ 二 (yfs , . . .， 
y^^) be a matrix of observations, = ,. •. , y^^P) be a matrix of 
replications, which has the same distribution with and 0 be a vector 
that contains all the unknown parameters in the given model 

Gelfand and Ghosh (1998) proposed a minimum posterior predictive loss 
approach for model selection. They obtained the criterion by minimizing 
posterior loss for a given model and then, for models under consideration, 
selecting the one which minimizes this criterion. To define the loss, let 
a = ( a i , … , a n ) be the action matrix which is an estimate trying to ac-
commodate both and what we predict for Y哪.For the ith observa-
tion in y o b �l e t 1/(2/7叩，a“y产)denote the loss for guessing a^ when 
is obtained and y f ^ is observed. The criterion is defined as follows: 

n 

L � P , a； ” ) = Y . Ey，Y�“(y7’ 
I (1 .1) 

i=l 

where L(-, •) denotes a certain loss, and different loss will give different 
criterion for model choice. E y�b.,L(., •) indicates the conditional expec-

y i I 
tation of L(-, •) which is taken with respect to the conditional distribution 

This equation rewards closeness to but also to a; is 
viewed as a compromise action. The domain A for ai need not to concur 
with the support of y^. For instance, if y^ is a p-dimensional vector of dis-
crete data, say p Poisson variables, A would be 0 . • • � When the 

p 

mean of y^ exists, A will typically be the space of the mean. The scaler 
k in equation (1.1) indicates the relative regret for departure from Y^^^ as 

3 



compared with departure from When k = Q, this criterion can be 
viewed as finding a better guess a for y哪.B y using the expected squared 
Euclidean distance (Ibrahim and Laud, 1994) as the loss function L(-, •), 
the criterion can be defined as 

i=l 

= E — - a,) (1.2) 
n 

The minimizing a^ is (1 + + k y f ' ) , where /x̂  = In-
serting these CLi into equation (1.2), and let v = k/{k 1), we get the Ly 
measure (Ibrahim et al., 2001)，which is given by 

obs、 L 双 ’ = — - fM) + — 一 y 

= E {tAv^vT'iy^'l] + — y，n^^i — y f ' ) ] . (i-3) 
i = l 

From the definition, the L^ measure can be viewed as a combination of two 
terms. The first one is the predicted variance which can be viewed as a 
penalty, and the second one is the predicted bias which can be viewed as 
a goodness-of-fit measure. Therefore, the model with the smallest value of 
the Ly measure will be selected. 

1.3 Outline of the Thesis 
In this thesis, we focus on model selection for several different kinds of 
SEMs. To the best of our knowledge, Bayes factor and DIG are the most 
popular methods for model selection of SEMs. Due to the reasons given in 
the section of overview, they have some limitations. Hence, there is a need 
to develop an efficient and simple approach to deal with the problem of 



model selection in structural equation modeling. In Chapter 2, the Ly mea-
sure is applied to nonlinear SEMs. In addition, the calibration distribution 
of the Ly measure is discussed. In Chapter 3, the Ly measure is further 
applied to nonlinear SEMs with mixed continuous and ordinal categorical 
responses. In Chapter 4, considering the existence of hierarchical obser-
vations in real applications, the Ly measure, together with the calibration 
distribution, is used for model selection of two-level SEMs. In Chapter 5’ 
a finite mixture of SEMs with unknown number of components is consid-
ered for the analysis of heterogeneous data. The Ly measure is used to 
perform the model selection of mixture SEMs. Simulation studies and real 
data analyses are conducted to demonstrate the proposed methodologies 
in these chapters. Besides, to address the performances of different model 
selection methods, Bayes factor and DIG are also computed for model se-
lection in this thesis. Conclusions and further developments are presented 
in Chapter 6, and technical details are given in the Appendix. 



Chapter 2 
Ly Measure for Nonlinear Structural 
Equation Models 

2.1 Introduction 
Model selection is an important issue in data analysis. Recently, many 
methods for model assessment and model selection have been developed. 
However, for structural equation models (SEMs), it is a difficult problem 
due to the complexity of SEMs. To deal with the problem, Bayes factor 
was proposed for model selection in structural equation modeling (see Jedidi 
et a l , 1997; Lee and Song, 2001, 2003b; Lee, 2007). But as pointed out by 
Ibrahim et al. (2001) and Kass and Raftery (1995), this method relies on 
posterior model probabilities, and proper prior distributions of unknown 
parameters are needed. Therefore, it is usually a major task to specify the 
prior distributions for all models under consideration, in particular when 
the model space is large. Moreover, Bayes factor is generally sensitive to 
the choice of prior distributions, and its computational burden is heavy. 
Alternatively, criterion-based methods are attractive in the sense that they 
do not require proper prior distributions in general, and the computational 
burden is much light compared with Bayes factor. There are many criterion-
based methods for model selection, such as Akaike information criterion 
(AIC) (Akaike, 1973，1981), Bayesian information criterion (BIG) (Schwarz, 



1978), and deviance information criterion (DIG) (Spiegelhalter et al., 2002). 
AIC and BIC are statistics for model assessment and selection based on 
maximum likelihood estimates. In this chapter, a statistic called the Ly 
measure (see Gelfand and Ghosh, 1998; Ibrahim et a l , 2001; Chen et a l , 
2004) will be applied to model selection in nonlinear SEMs. As discussed 
in Ibrahim et al. (2001), the Ly measure can be written as a sum of two 
components, one is related to the reliability of the prediction, and the other 
is related to the discrepancy between the prediction and the observed data. 
It can be viewed as a Bayesian goodness-of-fit statistic, and can be used as a 
criterion for model assessment and selection. By using MCMC method, the 
computation of the Ly measure is quite easy after obtaining the estimates 
of unknown parameters and latent variables. To compare the performance 
of different model selection methods, Bayes factor and DIG will also be 
computed for model selection in this chapter. 

The remainder of this chapter is divided into six sections. In Section 
2.2, a brief review of the Ly measure for model selection will be given. In 
Section 2.3, a nonlinear SEM will be specified. In Section 2.4, the Ly mea-
sure for model selection of nonlinear SEMs will be introduced. In Section 
2.5, a simulation study is presented to demonstrate the performance of the 
Ly measure. In Section 2.6, a real example is analyzed to illustrate the 
methodology. A discussion is given in Section 2.7. 

2.2 Brief Review of the Ly Measure 
Let Y'^ ' = ( 2 / f � . . . , yoĵ s) be a matrix of observations, and = (y;叩，... 
印)，which has the same distribution with Y—’ be the future value of an 

imagined replicate experiment. Suppose that for the observations in 
a class of models denoted by { M t , � = = 0 , 1 , … ,T } are considered. Under a 
certain model M“ let 9 be the parameter vector that contains all unknown 
parameters in the model, and a = (di, • , . , be an estimate trying to 



accommodate both and Y哪.Then a minimum posterior predictive 
loss for this model was proposed (see Gelfand and Ghosh, 1998): 

M t ) = m i n 〜 ， 广 . v f ) 
… “ (2.1) 

where A: is a weight that indicates the trade-off between the departure from 
y f s and the departure from y ? , L(-, •) denotes a certain loss, and different 
loss will give different criterion for model choice. , ai] yf^) can be 
interpreted as the loss for guessing ai when is obtained and y f ^ is 
observed. In equation (2.1), by using the Euclidean distance defined in 
Ibrahim and Laud (1994), the Ly measure (see Ibrahim et a l , 2001) for 
model Mt is defined as follows: 

.obs、 Mt) = t r [Var (2 /n Y ^ ’ ,风)]+ ^ Y M — y，f�叫 _ y\ 
(2.2) 

where f i , = 五 �M t ) , and 7； - 0 < ̂； < 1. From equation (2.1), 
k G [0，oo) is a trade-off between two losses, k = 1 means equal weights, 
which makes v — 0.5. Therefore, in this chapter, we will consider the L^ 
measure with v equals to 0.5. The conditional variance and expectation in 
equation (2.2) are taken with respect to the posterior predictive distribution 
of (2/[印 �M丄 which is defined by 

From its definition, the L^ measure can be viewed as a Bayesian goodness-
of-fit statistic, which measures the performance of a model by a combina-
tion of how close its predictions are to the observed data and the vari-
ability of the predictions. The model with the smallest value of the Ly 
measure will be selected. Specifically, let P = Mt)] 
and G = — vt'Yif^r — then M,) = P + " x 



where P can be viewed as a penalty term, and G is an error sum of squares 
and can be viewed as a goodness-of-fit measure. For over-fitted model, 
P will decrease while G will increase; for underestimated model, P will 
increase while G will decrease. Therefore, complexity is penalized and a 
parsimonious choice is encouraged. 

2.3 Model Description 
Let y“ for i 二 1, • • • ,n, be a p x 1 random vector of observed variables, 
and y = ( j / i , . . • , y^). The nonlinear SEM denoted by M is defined by 

M : - w + Au;^ + e” (2.3) 
= + + (2.4) 

where n is a p x 1 mean vector; u;̂  is a ^ x 1 vector of latent variables; ê  is a 
pxl random vector of error terms, and is independent of uv’ uji : (rj[’ 
is a partition of uji into endogenous and exogenous latent vectors x 1) 
and x 1), respectively. 11 and F are matrices of unknown regression 
coefficients; F(-) — ( / i ( . ) , …， / ” • ) �i s a r x 1 vector-valued function with 
differentiable functions / i , …， / �a n d r > g2； is a gi x 1 random vector 
of error terms, and is independent of h. We assume that, for i = 1, •' * 

a �7V[0,屯e]，ii �iV[0, 5i 〜 7 V [ 0 , 中 ( 2 . 5 ) 

where 屯e = diag{ipa, •..，ipep) and = diagi^si,. . . ,如qi). 
Let GiuJi) = and A^ = (n,r), then equation (2.4) can 

be rewritten as r/̂  = A^G{uJi) + Si. Moreover, let Â ^ and A � b e the 
submatrices of A corresponding to 77̂  and respectively. And let XIq = 
Iq^ — IT, which is assumed to be nonsingular, then model M can be written 
as 

y^ = u + + S,) + + (2.6) 
The Bayesian approach (see Dunson, 2000; Lee and Song, 2004; Lee, 

2007) can be applied to the estimation of this nonlinear SEM. Here，we will 



focus on model selection based on the Ly measure. For convenience, the 
following notations will be used. Let = (y fs ,…，yjs ) be the observed 
continuous data set, where y f ^ = ...，Vip^Yii = 1 , . . . ,n) is the zth 
column of and Y^p = …,y:ep) ^e the replicated data set 
which has the same distribution with where = ,. •. ,y�p印) 
Let n = (cji, •. • be the matrix of latent variables. Moreover, let Qi 二 
(巧 1，.. •； Vn) and 0,2 ~ { i i r " , Sn) be the submatrices of f t corresponding 
to T]^ and “ respectively. Furthermore, let G = (G(ct;i), • • • , and 
0 be the vector that contains all the unknown elements in ix, A,屯^，11，F,少 

and 中 in the model defined by equations (2.3) and (2.4). Finally, let O 
be the space of the parameter vector and 三 be the space of the latent 
variables 专,“ for ?: = 1，…,n. 

2.4 Ly Measure for Nonlinear Structural Equation Mod-
els 

2.4.1 Definition of the L^ measure 
In this part, the L^ measure will be applied to the nonlinear SEM, M, 
defined by equations (2.3) and (2.4). According to equation (2.2), with 
observations , the Ly measure for model M can be defined by 

n n 

z—1 i=l 

(2-7) 
where /i^ = ^ M), in which the expectation is taken with respect 
to the posterior predictive distribution of M), 

p { y 7 r . M) = / A m i M)ded^,. (2.8) JQxE 

10 



It can be shown that, the Ly measure given by equation (2.7) can be rewrit-
ten as: 

f —1 i=] 
Yobs,M)� where Var(y;7|y"血’ M) is the jih diagonal element of Var(i/[ 

and fiij is the j t h element of /x .̂ The first term in equation (2.9) is the 
penalty part and the second term is the bias part. The model with the 
smallest value of the Ly measure will be selected. The conditional expecta-
tion and conditional variance-covariance matrix required in the Ly measure 
can be given as follows: 

(2.10) 

and 
Var(y; 

+ Var A/ (2.11) 

where, 

T 

Var 厂 |6U“ M ) | y � & � M ] 
=E M] 

From the definition of the model given by equation (2.6), we can get 
1 = u + + A 必， (2.12) 

印 1 M)=屯 f + A , n o - i 屯 1 广 (2.13) 
Note that the conditional expectation and variance given by equations 
(2.10) and (2.11) cannot be obtained directly, because the joint posterior 
distribution p{9, contains intractable high dimensional integral. 
Therefore we can't get the closed form of the Ly measure, and Markov 
Chain Monte Carlo (MCMC) methods will be used to calculate the Ly 
measure for the nonlinear SEMs. 

11 



2.4.2 Computation of the L̂  Measure 
In this section, MCMC method for computing the Ly measure is discussed. 
According to the definition of the L^ measure, it can be easily calculated 
after the Bayesian estimates of unknown parameters and latent variables 
are obtained. In the Bayesian analysis, we will treat the latent variables in 

as hypothetical missing data, and augment the observed data set Y^^^ 
with fl in the posterior analysis. A sufficiently large sample of (11, 0) from 
the joint posterior distribution [0, can be generated by the following 
Gibbs sampler algorithm (see Geman and Geman, 1984). At the (r + l) th 
iteration with a current values of 0(厂)）： 

Step a Generate ^^(”+” from � , 
Step b Generate 6/(”+1) from p(6/|J7(r+i)，！““石”. 

After the convergence of the MCMC algorithm, the samples of {(没⑷，！！⑷): 
A 

r = 1 , … , R j are generated. Then the Bayesian estimates d^i and 0 can 
be obtained as follows: 

的 = 云 从 ' R乙 

and the estimates of Var(Cc;i|Y—) and V a r ( 0 | Y � ” can be obtained as 
R 

R 
T 

The estimate of the Ly measure for model M can be given as 
n n 

m) = Y1 + X > — y f ) (A. — y，f i=i 
where 
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and 
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Where /xf) = t x � + + 
In the Gibbs sampler, the conditional distributions yo&s, m) and 

p{0\ft, yoM, M) are required. To obtain these conditional distributions, the 
prior distributions of the unknown parameters are needed to be specified. 
We will discuss them in the next subsection. 

2.4.3 Full Conditional Distributions 
In this section, the conditional distributions required in the Gibbs sampler 
will be discussed. Let Oy be the unknown parameters in u, A and 中e that 
are associated with the measurement equation; and Ô j be the unknown 
parameters in F, IT,企 and 中5 that are associated with the structural equa-
tion. For simplicity, we assume no fixed parameters. It is natural to assume 
that the prior distribution of Oy is independent of the prior distribution of 
G奶 i.e. p{e) 二 p ( 6 g p ( 6 g . Moreover, as p{Y,ft\0) = 
we have 

As a result, the conditional distributions of Oy and 0 �c a n be treated sepa-
rately. The following commonly used conjugate type prior distributions are 
used: for k = P’ 

p{u) = A^[购，So], Pii^ck) - Gamma[ao,k. Poek 
p{Ak\Ak)全 NlAok.tpekH Oyk 

(2.14) 
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where A^ is the A:th row of A; ao^k, Poek,权o, Aqa；,丑oyit and Sq are hyperpa-
rameters whose values are assumed to be given. For k ^ h, it is assumed 
that (ipek, Ajt) and {ipeh, ^h) are independent. The conditional distribution 
of A is given for the case where all its elements are unknown parameters. 
The case with fixed elements in A can be handled with slight modification. 

Let Ak = {H-y\-{-nn T� •\yi = (y fcr v L f with yl- - yki-Uk, ^k = 
+ and ft, 二 Pô k + K ^ f ^ ^ " ^ I ^ k ' ^ k + A ^ , / / A o , ) . 

Then, it can be shown that for /c = 1,…，p， 

n,u) = Gamma[n/2 + aodt, Aa：], 

n , A，屯 e) - + + Eq^^o), (S�—�+ n^：')-' 
_ n where Y = ^ ^ { y , - Ao;,). 

Now, consider the conditional distribution of 没⑴ that is proportional to 
p(fl\0̂ )p(0u；)- Since the distribution of 专 only involves 屯 , = 
p(f22|中).Moreover, it is assumed that the distribution of 少 is independent 
of the prior distribution of (A�中j)，then we get 

Thus, the conditional distributions of (A^, ^ s ) and 少 can be treated sep-
arately. 

Similar to the literature of Bayesian analysis of SEMs, the following 
conjugate prior distributions for the parameters in G � are considered: 

1) 4 Wq^ Pii^sk) - Gamma[aosk, ^osk\ 

where A^k is the kth row of A^; Ro^Po, (y-osk, and Ho^k are all given 
hyperparameters. For h • k, {ipsk^ ^ujh) and {ip3k^ ^cok) are assumed to be 
independent. Similar to A^, we assume no fixed elements in A ĵk- It can be 
shown that the conditional distribution of # is 

(2.15) 

= + 丑 0— 1 ) ,几 + P o 

1 4 

(2.16) 



Let ftik = (T]ik,... , VnkV for k = gi. It can be shown that, 
p ( 功 全 Gamma[n/2 + aosk： Ĵ osk (2.17) 

where A^k =(丑o"丄 + 卯了”，a^^ = 丄Ao“ + G ^ u ] , and 
psk = pQSk + — alf^A'la^k + A『。；^ffg"丄Therefore, the 
conditional distributions associated with Step b are obtained, and they are 
the familiar Gamma, normal, and inverted Wishart distributions. Generate 
observations from these distributions are straightforward and fast. 

Finally, consider the conditional distribution required in Step a in the 
Gibbs sampler. It can be shown on the basis of the definition and assump-
tions that 

n n 

i = l i=l 
As uji and y^ are both mutually independent, 0) is proportional to 

e x p I — • 《 中 - \ { y i — w — 一 w — A c j , 

2 rh — T rh — (2.18) 

Therefore the conditional distribution required in Step a is achieved. How-
ever, this distribution is nonstandard and complex, the Metropolis-Hastings 
(MH) algorithm (Metropolis et al., 1953; Hastings, 1970) algorithm is used 
to generate observations from the target density 9) as given in 
(2.18). In this algorithm, we choose cr^S^] as a proposal distribution, 
where E j^ = S广 + A ^ ^ J ^ A and S j ^ is given by 

V- i — 
-

n • 乂 i i i o ’ 

( n 『 屯 f i r A 广 # 

- n � �A (2.19) 

and A — = 0. Let p(-|a;,cr̂ XIo；) be the proposal density 
corresponding to cr^E^ ĵ, the MH algorithm is implemented as follows: 
At the r-th iteration with a current value a;„—)’ a new candidate u;!扑丄）is 
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generated from p . c r ' ^ T , ^ ) , and accepting this new candidate with the 
probability 

^ ： ？ • (2-20) 

The variance cP" is chosen such that the acceptance rate is approximately 
0.25 or more (Robert et al.，1997). 

2.4.4 Calibration Distribution 
As pointed out by Ibrahim et al. (2001), criterion-based methods typi-
cally rely on the minimum criterion value as the basis for model selection. 
However, this basis is not satisfactory in general, since it does not allow 
a formal comparison of criterion values between two or more competing 
models. Thus, one of the crucial steps in using criterion-based method for 
model assessment and model choice is to define a calibration for the crite-
rion. Let ,，Mc) denote the Ly measure of the candidate model M � 
and Mt) denote the L, 

measure of the true model Mt. Then given 
V, the difference of the Ly measures between the candidate model Mc and 
the true model Mt is defined as 

M,)三 “(Yobs, Mc) — L�{Yobs,风). (2.21) 
To calibrate the Ly measure, we need to construct the marginal distribution 
of Mc), denoted by M。)），computed with respect to the 
prior predictive distribution of Y"^^ under the true model Mf 

= J J ( 9 , Mt)p{n\e, Mt)p{e\Mt)dnd6. (2.22) 

Note that Box (1980) and Ibrahim et al. (2001) developed similar ideas in 
calibration using the prior predictive distribution, and Gelman et al. (1996) 
developed calibration measures using the posterior predictive distribution. 
The proposed calibration distribution of the candidate model M � i s 

PL,三 p(JMY , Mc)) = J (2.23) 
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As discussed by Bayarri and Berger (1999), this definition is appealing 
because it avoids the potential problem of a double use of the data. After 
obtaining the calibration distribution P L � s e v e r a l statistical summaries 
can be obtained. These include highest probability density (HPD) interval, 
the mean 以Mc), and the standard deviation SDy{Mc) of Mc). 
Here, HPD interval denotes the shortest credible interval that means the 
interval with the highest posterior density. Note that all HPD intervals 
presented in this chapter as well as the subsequent chapters in this thesis 
are computed using a Monte Carlo (MC) method developed by Chen and 
Shao (1999). /i“Mc) measures, on the average, how close the candidate 
model and the true model. Specifically, if the candidate model is "close" to 
the true model, fiv{Mc) is close to zero; otherwise, fiv{Mc) will be far apart 
zero. SDy[Mc) measures the variability of Mc). Ibrahim et al. 
(2001) show that PLc is not sensitive to choices of vague proper priors, 
and suitable choices of informative priors can be useful in improving the 
precision in the estimation of P L � H e n c e , we need to specify a proper prior 
distribution for 0 in calculating the calibration distribution. 

As discussed previously, we can get a closed form of neither the Ly mea-
sure, nor the calibration distribution in the complex nonlinear SEMs. So 
MCMC method will be used again to estimate the calibration distributions 
of the models under consideration. Specifically, for a candidate model M � a 
sample of Mc) will be generated via Gibbs sampler algorithm, then 
the kernel density estimation method (Silverman, 1986; Sheather and Jones, 
1991; Scott, 1992) will be used to estimate the distribution of A;(y•血，Mc). 
Since the true model is usually unknown in practical applications, the model 
with the smallest Ly measure will be considered as the true model Mt. From 
the definition of the calibration distribution given by equation (2.23), the 
specific procedure for the estimation of PLc can be given as follows: 
(a) Generate (Jl, 0) from the prior predictive distribution Mt)p{9 

Mt), where p(0\Mt) is the prior distribution of 0 in model Mt, 
17 



(b) Generate a pseudo observation Y from p(Y\Ct^ 0), 
(c) Set = y , and use the method described above to obtain the esti-

mates of Mc) and L,乂Y—,风)，and then calculate DyC^血,MJ. 
Repeat (a), (b), and (c) R times, we obtain the samples Mc),r = 
1’...，/?}’ M ) , r = 1,…， R } , and M� ) , r = 1,…， R } . 

Based on {Dy^ ( Y � ��M c ) , r = 1，... , R}, we can estimate the calibration 
distribution PLc via the kernel density estimation method, and the sum-
maries of PLc can be easily obtained. 

Specifically, the mean and the standard deviation of 咖，M。）are 
given by 

1 R 

1 R 
S D . 洲 = ^ Mc) -

‘ r = l 

Following Chen and Shao (1999), let L>(力 be the j t h smallest of 
Mc),r - ! ,••• the 100(1 — a)% HPD interval is given by (D(广）, 

D{j*+[R{i-a)])), where — a)] denotes the integer part of R{1 — a), and 
j* is chosen so that 

[即—,— D � =1还恕兔1—(州即—柳— Z ) � ) . 
The density function of PL�denoted by f{Dy{Y, Mc))^ is estimated on 
the basis of this sample via the following kernel method. The estimator of 
肌{Y肩 is given by 

.frnv, 认 • ； 广 丨 , 具 ) ) ， 
r = l 

where K is the kernel function which is taken to be the Gaussian func-
tion: = exp{ — }, and h is the smooth parameter which 
is chosen to minimize the risk function defined by 

18 



where cr]^ = f x^K(x)dx, and /"(,) is the second derivative of /(.)，which is 
unknown and can be replaced by a reference distribution function. The ref-
erence distribution function is rescaled to have variance equal to the sample 
variance. In this thesis, the standard normal distribution is used as refer-
ence distribution, which yields the estimate of h as h= L06(7i?-V5, where 

is the sample variance, see details in Silverman (1986). The procedure 
for estimating the density function can be done by R software. 

2.5 A Simulation Study 
In this section, a simulation study will be conducted to show the perfor-
mance of the Ly measure for model selection of nonlinear SEMs. To com-
pare the performances of different model selection methods, results of model 
selection related to DIG and Bayes factor will also be presented. 
Model Setting 
The observations in Y^^^ — {y^, i = 1, • • • , n} are simulated from a nonlin-
ear SEM denoted by Mq, which is given as 

M) : = " + Au;, + e" and r]i = +，2̂ 12 + 736i$z2 + S” 
where 

‘1.0* A2i A31 0.0* 0.0* 0.0* 0.0* 0.0* 0.0* \ 
0 . 0 * 0 . 0 * 0 . 0 * 1 . 0 * A 5 2 A 6 2 0 . 0 * 0 . 0 * 0 . 0 * 

、 0 . 0 * 0 . 0 * 0 . 0 * 0 . 0 * 0 , 0 * 0 . 0 * 1 . 0 * A s a A 9 3 , 

where the elements with asterisks are fixed. The true values of the unknown 
parameters in this model are given as: A21 = A31 = 0.8, A52 = A62 = 
0.7, Ass = A93 = 0.8, fjb = (0.0,0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0)^ , 71 = 
0.6,72 = 0.6,73 = —0.5，011 = 022 = 1-0,012 = = 0.2，‘ih\ 二 … = 
ijjed = 0.5, and xps = 0.5. 

Four SEMs denoted by M i , … , M ^ are considered as competing models. 
The measurement equation of model M^ (A: = 1, • • • , 4) is the same as that 
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of Mq. The structural equations for the four models are given as follows: 
M l :V u . + 7 l , 2 ? l , i 2 + 7 l ,3Cl , i 1 + 7 l ’ 4 f l ’ i 2 + 7 1 . 5 6 , + 
M2 = 7 2 , l ? 2 , i 1 + 72,2^2,12 + 
Ms = 7 3 , l $ 3 ’ i 2 1 + 73 ,26 , ^2 + 73,3^3, il + 知’“ 

M 4 二 7 4 , I 6 M 1 + 74,2?4,Z2 + 7 4 , 3 ^ i2 + 
The prior distributions given in equations (2.14) and (2.15) will be used 
here. To study the impact of the prior inputs of the hyperparameters, two 
types of prior inputs, Prior I and Prior II, are considered. 

Prior I: In the prior distributions of fi, A^ and Â；, the means of the 
normal distributions are taken as the true values of the corresponding pa-
rameters, and the covariance matrices are taken as the identity matrices 
with corresponding dimensions. In the prior distribution of po and Rq 
in the Wishart distribution are taken to be 4 and $o，respectively, where 少o 
is the matrix with true values of (pu, 4̂ 21 and 022. In the prior distributions 
of ips and 礼k, the hyperparameters in the Gamma distribution are taken 
to be aok = aos = 9 and Pok = Pos = 4, 

Prior II: The prior inputs are given by the following ad hoc values: the 
means of the normal distributions are taken as zero, the covariance matrices 
are equal to four times of the identity matrices with appropriate dimensions, 
Po 二 4, and Rq is the identity matrix, aok 二 aoj = 4 and /̂qa； = pos = 5. 

Furthermore, to study the impact of the sample size, we consider three 
different sample sizes (n—150, 300, and 600) in the simulation study. For 
each replication, a total o( R = 2000 observations are collected after H = 
2000 burn-in iterations. Three methods given bellow are conducted for 
model selection among Mq to M5. The results are obtained on the basis of 
100 replications. 
Ly Measure for Model Selection 
Under Prior I, the calibration summaries are given in Table 2.1, where 
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mean(Lo.5) denotes the mean value of the Ly measure with v = 0.5,仰.5’ 
5£>0.5, and 95% HPD denote the mean, the standard deviation, and the 95% 
HPD interval of the calibration distribution of the corresponding model with 
V ~ 0.5, respectively. From Table 2.1, we see that /̂ 0.5(似2)，/̂ 0.5(似3)，and 
/̂ 0.5(似4) are substantially larger than zero under each case. In addition, 
the 95% HPD intervals corresponding to M2, M3, and M4 do not include 
zero. Thus, we can conclude that M2, M3, and M4 are far from the true 
model. However, for model Mi, /Wo.5(Mi) is not significantly different from 
zero given the large value of SDo_^{Mi) under each case. Furthermore, 
zero is included in all the 95% HPD intervals of the calibration distribution 
of Ml. Therefore, we can conclude that model Mi is close to the true 
model Mo, and that the performances of these two models are similar. 
According to the parsimonious principle, the simpler model MQ is selected. 
Besides, when the sample size increases, the centers of the distributions of 
the calibration distributions of M2, M3, and M4 become further from zero. 
But the center of the distribution of the calibration distribution of Mi gets 
closer to zero. The reason for this phenomenon is that MQ is nested in Mi, 
and the estimation of MI gets closer to MQ when sample size increases. The 
estimated the calibration distributions presented in Figure 2.1(a) to Figure 
2.1(c) also agree with these conclusions. 

To study the sensitivity of model selection results to the prior inputs, the 
same data sets are reanalyzed under Prior II. The calibration summaries 
under Prior II are also given in Table 2.1, and the estimated the calibration 
distributions are presented in Figure 2.2(a) to Figure 2.2(c). The same 
conclusions can be obtained from these results. Therefore, the performance 
of the L.U measure for model selection seems not sensitive to the considered 
prior inputs and sample sizes. The Bayesian estimates of the unknown 
parameters under Mq with Prior I and Prior II inputs are given in Table 
2.2 and Table 2.3, respectively. 
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Bayes Factor for Model selection 
In this part, Bayes factor will also be calculated to compare the above five 
models. Path sampling (Gelman and Meng, 1998) will be used to compute 
the Bayes factor. Let t) be the log-likelihood function with a 
continuous parameter t in [0,1], and 

= (2.24) 
Further, let 力(•) 二 0 < t⑴ < • • • < 力< i(S) ~ 1 be fixed grids in [0,1 . 
It follows from Lee (2007, ch.5) that an estimate of logarithm Bio obtained 
via the path sampling is given by  

1 

log Bio = -力⑷)(�+1) + (2.25) 
5 = 0 

where 0 � s � i s the average of U(Y^^^, 艺based on all simulated obser-
vations, that is, 

J 

£/(.) 二 （2.26) 

J = 1 

inwhich { ( n ⑴， 0 � = 1 , " . , J } are simulated from p(n’ 例Y�"��s)) via 
MCMC algorithm. 

Model Mo and the four candidate models M i , … , M 4 can be linked 
up with the parameter t. Specifically, the linking models have the same 
measurement equation as MQ but different structural equations, which are 
given as follows: 

Mtoi =71 + 72&2 + ijs^ii + + 756/aSi,i2 + 
风02 m =7l$'il + 72fi2 + (1 - i)�诚 2 + 知 

Mm m = 7 l � l + 72^i2 + + (1 — t)lAiilU + 知 
MtQ4 m 二 + 72?i2 + t iz ia + (1 - 仏 + 氏. 

Clearly, when t 一 0,M^oi = M02 二 Mm Mq. When t = 1,M肌 二 
Ml, Mi02 二 二 Ma, and Mm 二 M4. The log-likelihood functions 

22 



corresponding to the linking models are: 

1 
2 C* + 屯 + I](认—U — -U-AUJ, 
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where c* is a constant that is equal to log(27r) + log |中已| + log |屯<51 + 
log The first derivatives of these functions with respect to t are equal 
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 , t) 71&1 — 72& — tjs^l — -

dt t t 
n\e, t) — 71&1 — 72 己 2 — ( i - 械 - E i\ 

dt ^ 秘械 
2 nl. 

d\ogpos(Y"'\ n\e, t) 71 仏 - — t�络—(1 —力 

dt 彻 ( 7 3 % — 

i2 - (1 -
i=l 

n\e, t) ^TU— 7iea - 72<ez2 — h 始2 - (1 - 074&ie 
dt 台 办 ( 7 3 ( 1 1 ‘ 

These derivatives give ^ t) for computing the logarithm Bayes 
factors, see equations (2.24) to (2.26). 

In the path sampling procedure, we take 5 = 20 grids in [0,1]. Based 
on the previous analysis, for each 力⑷，we take a burn-in phase of 2000 it-
erations, and further collect 2000 observations in computing the logarithm 
Bayes factor. The estimated logarithm Bayes factors are presented in Table 
2.4. From this table, all the logarithm Bayes factors are negative, which 
consistently select Mq (see the interpretation of Bayes factor in Kass and 
Raftery, 1995). Furthermore, the estimated logarithm Bayes factors have 
similar values under Prior I and Prior II inputs. Therefore, the same con-
clusion is drawn under these two different prior inputs. 
Model Selection Using DIC and WinBUGS 
In this part, DIC values with WinBUGS for model selection among Mq 
to Ms will be presented. For nonlinear SEMs, the software WinBUGS can 
produce Bayeian estimates of the structural parameters and latent variables, 
as well as DIC values for model selection. Same as before, we take the 
burning iterations as 2000, and further collect 2000 samples after burn-in 
phase. The DIC values under Prior I inputs with different sample sizes are 
given in Table 2.5. From this table, the true model Mq with smallest DIC 
value is selected under each given sample size. 
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2.6 A Real Example 
To illustrate the application of the Ly measure for model selection to a real 
data, a small portion of the Inter-university Consortium for Political and 
Social Research (ICPSR) data set collected in the project WORLD VALUE 
SURVEY 1981-1984 and 1990-1993 (World Value Study Group, ICPSR 
Version) is analyzed. In this example, only the data obtained from the 
United Kingdom were used. Six variables in the original data set (variables 
180, 96, 62, 179, 116 and 117; see the Appendix) relating to the respon-
dents' job, religions belief, and homelife were taken as observed variables in 
y = (jji,... , 2/6)1. After deleting cases with missing data, the sample size 
was 197. Among them, (yi，y2) were related to homelife (77), (ys, ^4) were 
related to religions belief (^1), and (^5, y^) were related to job satisfaction 
(f2). Variable (t'a, V4) were measured in a five-point scale, while the others 
were measured in a ten-point scale. As the purpose of this example is for 
illustration, they were all treated as continuous for brevity. 

data set, five SEMs with latent factors uj = (77, are 
Specifically, they are assumed to have the same measurement 
=U + AUJ + e, and different structural equations: 

For this 
considered, 
equation, y 

Mo 
Ml 
M2 

M3 

V = 7ifi + 72?2 + … 
V = 716 + 726 + 73^? + 
V = 7iCi + 726 + 73^2 + 么 
1 = + 726 + + 

M4 ： V = TiCi + 726 + 73?? + 74^2 + 756^2 + 
In the measurement equation, 

1.0* A21 0.0* 0.0* 0.0* 0.0* 
XT = 0.0* 0.0* 1.0* A42 0.0* 0.0* 

0.0* 0.0* 0.0* 0.0* 1.0* 入63 
where the zero's and one's in A were treated as fixed 
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calculate the L” measures, the following hyperparameters were specified: 
ocî ek = oiQs = 10, Poek = Am = 8, Hoyk and Hq^}, are diagonal matrices 
with diagonal elements 0.25, p^ = 20, Sq = •Te, -Rq = 2$, no = u and 
Ao^ 二 Aqa；, where tx, and Aqa； were the Bayesian estimates obtained 
using noninformative prior inputs. Based on different starting values of the 
parameters, three parallel sequences of observations were generated. We 
found that the MCMC algorithm converged after about 2000 iterations. 
After convergence, a total of 2000 observations were collected to obtain the 
results. Take v — ^ ).5, the L measures for the five models are 

3657.8, �M i ) = 3 6 5 2
.

6 7
， 

3702.8, Lo.5(>^��M3) = 3568.4, 
3853.5. 

Since the value of the L^ measure for model M3 is less then the others, 
M3 is selected. Now we consider the calibration distributions. First, 100 
replication data sets are generated based on M3 according to the prior 
distribution under the auxiliary prior inputs. Then the calibration 
distributions can be obtained through the method given in section 2.4.4. 
The summaries of the calibration distributions are presented in Table 2.6, 
and the densities of them are presented in Figure 2,3. 

From Table 2.6, the mean values of all the calibration distributions are 
larger than zero, which means that, on average, the performance of M3 is 
better than the others. In addition, the 95% HPD interval of M<i dose not 
include zero, we conclude that M3 performs significantly better than M2. 
For MQ, although zero is included in the 95% HPD interval, the lower bound 
of this interval is quite close to zero. Therefore, we conclude M3 performs 
better than MQ. For M4, zero is included in the 95% HPD interval and 
the lower bound of this interval is not close to zero, indicating that the 
improvement of adding two terms, and 这，into the structural equation 
of M3 is not significant. This phenomenon can also be revealed by the 
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small values of �3(0.032) and 似—0.061) in model M4. For model Mi, zero 
is also included in the HPD interval. However, compared with the higher 
bound, the lower bound of this interval is relatively small. Considering 
the small value of 似0.032) in Mi, M3 is selected. The estimated the 
calibration distributions presented in Figure 2.3 give the same conclusion. 
The Bayesian estimates of the unknown parameters, together with their 
standard errors estimates, in model M3 are given in Table 2.7. Thus, the 
estimated nonlinear structural equation in the selected model is 

m = 0.376e,i + 0.584^,2 — + 式. 

Bayes factor and DIG are also calculated for the model selection. Results 
of logarithm Bayes factors are: 

log Bo3 二 —2.678, log Bi3 二 —4.3134, 
log B23 二 -2.874, log B43 二 —0.1231. 

All the estimated logarithm Bayes factors are negative. According to the 
criterion in interpreting logarithm Bayes factors (Kass and Raftery, 1995), 
Ms is selected. 

D i e values from WinBUGS for the five models are: 

DICo = 4093.03, DICi = 4090.54, DIC2 = 4093.96, 
DICs = 4081.56, DIC4 = 4087.63. 

The D i e value of M3 is smaller than the others, therefore, M3 is selected. 

2.7 Discussion 
From the numerical studies given in the previous sections, the Ly measure, 
Bayes factor, and DIG can achieve the same conclusion in model selection. 
However, the computational burden of Bayes factor is heavy. For exam-
ple, when taking 5 = 20 in the path sampling in calculating Bayes factor, 
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the computing time is almost twenty times of that for calculating the L^ 
measure. When applying DIG method, we select the model only according 
to the minimum DIG value. However, when the difference of DIG values 
between two competing models is small, we can't decide which one is bet-
ter. As compared with the other two methods, the computation of the Ly 
measure is quite simple and fast. Moreover, besides considering the model 
with the smallest value of the Ly measure, the corresponding calibration 
distribution is also used to help making decision. Therefore, the Ly measure 
provides better alternative method for model selection of SEMs. 
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Table 2.1: Mean values of the Ly measure and calibration summaries for simulation study 

Sample size Model niean(Lo.5) /%5 SDo., 95% HPD 
Mo 1337.144 - - -

Ml 1347.115 9.971 12.445 (-13.154, 37.325) 
n=150 Ms 1442.170 105.027 55.201 (21.066, 223.426) 

M3 1427.118 89.974 49.080 (9.190, 206.845) 
M4 1424.956 87.813 45.883 (11.960, 193.298) 
Mo 2688.229 - - -

Ml 2699.543 11.314 11.562 (-16.137, 28.206) 
Prior I n - 3 0 0 M2 2908.353 220.124 68.943 (109.608, 385.510) 

Ms 2867.839 179.610 57.984 (70.835, 280.530) 
M4 2873.309 185.080 60.002 (82.646, 328.037) 
Mo 5367.910 - - -

Ml 5364.678 -3.232 15.443 (-34.846, 22.448) 
n=600 M2 5838.367 470.458 108.807 (261.086, 656.186) 

Ms 5765.362 397.453 98.704 (210.631，567.128) 
M4 5771.552 403.642 98.070 (212.586, 572.154) 
Mo 1506.464 - - -

Ml 1500.840 -5.624 8.324 (-21.980, 8.684) 
n=150 M2 1603.918 97.455 51.061 (8.366, 202.987) 

M3 1580.422 73.959 39.936 (10.483, 160.038) 
M4 1581.718 75.255 43.230 (9.947, 152.681) 
Mo 2876.646 - - -

Ml 2870.890 -5.756 13.911 (-34.010, 16.984) 
Prior II n 二 300 M2 3084.528 207.882 65.212 (83.901, 345.813) 

Ms 3041.908 165.262 55.203 (82.329, 279.141) 
M4 3046.956 170.310 57.366 (68.674, 289.637) 
Mo 5567.036 - - -

Ml 5554.704 -12.332 19.301 (-43.150, 29.024) 
n=600 M2 6022.318 455.282 106.536 (264.944, 652.684) 

M, 5944.422 377.386 95.427 (212.204, 532.871) 
M4 5949.764 382.728 96.519 (202.196, 556.094) 
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Table 2.2: The Bayesian estimates for simulation study under Prior I inputs 

n 二 150 n = 300 n = 600 
Para TRUE mean RMS BIAS mean RMS BIAS mean RMS BIAS 
入21 0.800 0.776 0.068 0.024 0.795 0.047 0.005 0.794 0.035 0.006 
入31 0.800 0.778 0.055 0.022 0.796 0.047 0.004 0.796 0.036 0.004 
^52 0.700 0.660 0.082 0.040 0.671 0.068 0.029 0.686 0.046 0.014 

0.700 0.670 0.067 0.030 0.672 0.065 0.028 0.687 0.046 0.013 
入83 0.800 0.745 0.097 0.055 0.764 0.069 0.036 0.787 0.047 0.013 
〜3 

0.800 0.752 0.085 0.048 0.763 0.062 0.037 0.784 0.048 0.016 
也1 0.500 0.478 0.073 0.022 0.501 0.060 0.001 0.493 0.040 0.007 
少e2 0.500 0.533 0.076 0.033 0.504 0.049 0.004 0.503 0.036 0.003 
也3 0.500 0.510 0.065 0.010 0.504 0.048 0.004 0.509 0.037 0.009 
也4 0.500 0.476 0.072 0.024 0.476 0.067 0.024 0.480 0.050 0.020 
也5 0.500 0.528 0.067 0.028 0.509 0.050 0.009 0.504 0.033 0.004 

0.500 0.522 0.069 0.022 0.508 0.047 0.008 0.509 0.037 0.009 
'067 0.500 0.470 0.074 0.030 0.475 0.066 0.025 0.482 0.053 0.018 
As 0.500 0.528 0.071 0.028 0.526 0.054 0.026 0.508 0.037 0.008 
Ad 0.500 0.527 0.077 0.027 0.517 0.051 0.017 0.509 0.040 0.009 
也 0.500 0.578 0.109 0.078 0.541 0.078 0.041 0.525 0.060 0.025 
011 1.000 1.061 0.166 0.061 1.035 0.120 0.035 1.018 0.096 0.018 
012 0.200 0.198 0.105 0.002 0.205 0.075 0.005 0.195 0.055 0.005 
022 1.000 1.051 0.181 0.051 1.037 0.127 0.037 1.020 0.087 0.020 
7i 0.600 0.555 0.102 0.045 0.563 0.081 0.037 0.594 0.055 0.006 
72 0.600 0.564 0.101 0.036 0.584 0.073 0.016 0.588 0.055 0.012 
73 -0.500 -0.429 0.114 0.071 -0.452 0.085 0.048 -0.470 0.055 0.030 

0.000 -0.004 0.102 0.004 0.002 0.078 0.002 -0.006 0.054 0.006 
0.000 -0.004 0.095 0.004 -0.005 0.071 0.005 -0.005 0.048 0.005 
0.000 0.002 0.079 0.002 -0.001 0.064 0.001 -0.005 0.050 0.005 
0.000 0.018 0.094 0.018 0.010 0.066 0.010 -0.003 0.046 0.003 

Ms 0.000 0.012 0.068 0.012 -0.002 0.056 0.002 -0.003 0.038 0.003 
Me 0.000 0.010 0.077 0.010 0.006 0.058 0.006 -0.001 0.038 0.001 
",7 0.000 0.012 0.106 0.012 0.007 0.074 0.007 0.004 0.048 0.004 
/化 0.000 0.011 0.089 0.011 0.004 0.061 0.004 0.001 0.042 0.001 

0.000 0.014 0.082 0.014 0.007 0.062 0.007 -0.002 0.044 0.002 
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Table 2.3: The Baycsian estimates for simulation study under Prior II inputs 

n 二 150 n = 300 n = 600 
Para TRUE mean RMS BIAS mean RMS BIAS mean RMS BIAS 
入21 0.800 0.757 0.073 0.043 0.783 0.048 0.017 0.788 0.035 0.012 
入31 0.800 0.758 0.062 0.042 0.784 0.049 0.016 0.790 0.036 0.010 
八52 0.700 0.665 0.076 0.035 0.675 0.065 0.025 0.687 0.045 0.013 
-̂ 62 0.700 0.675 0.063 0.025 0.676 0.063 0.024 0.689 0.045 0.011 
入83 0.800 0.745 0.093 0.055 0.766 0.066 0.034 0.788 0.045 0.012 
入93 0.800 0.753 0.081 0.047 0.765 0.060 0.035 0.785 0.048 0.015 
也1 0.500 0.542 0.081 0.042 0.530 0.066 0.030 0.508 0.040 0.008 
也2 0.500 0.593 0.117 0.093 0.535 0.061 0.035 0.519 0.041 0.019 
也 3 0.500 0.570 0.096 0.070 0.535 0.060 0.035 0.525 0.044 0.025 
Ai 0.500 0.565 0.096 0.065 0.524 0.065 0.024 0.503 0.044 0.003 
Ab 0.500 0.583 0.103 0.083 0.536 0.061 0.036 0.517 0.038 0.017 
Ae 0.500 0.577 0.104 0.077 0.535 0.059 0.035 0.523 0.042 0.023 
Ai 0.500 0.549 0.084 0.049 0.517 0.062 0.017 0.504 0.050 0.004 
As 0.500 0.586 0.109 0.086 0.555 0.074 0.055 0.523 0.042 0.023 
V�9 0.500 0.583 0.113 0.083 0.545 0.067 0.045 0.523 0.047 0.023 
也 0.500 0.673 0.190 0.173 0.590 0.111 0.090 0.552 0.076 0.052 
4>u 1.000 1.040 0.153 0.040 1.022 0.119 0.022 1.014 0.095 0.014 

0.200 0.205 0.106 0.005 0.207 0.078 0.007 0.196 0.055 0.004 
022 1.000 1.043 0.173 0.043 1.028 0.119 0.028 1.016 0.087 0.016 
7i 0.600 0.566 0.098 0,034 0.571 0.077 0.029 0.597 0.052 0.003 
72 0.600 0.567 0.099 0.033 0.588 0.070 0.012 0.588 0.055 0.012 
73 -0.500 -0.439 0.109 0.061 -0.460 0.081 0.040 -0.473 0.055 0.027 

0.000 -0.002 0.108 0.002 0.002 0.075 0.002 -0.005 0.053 0.005 
0.000 -0.004 0.100 0.004 -0.006 0.068 0.006 -0.005 0.047 0.005 

M3 0.000 0.002 0.083 0.002 -0.003 0.061 0.003 -0.005 0.049 0.005 
IM 0.000 0.015 0.097 0.015 0.009 0.068 0.009 -0.002 0.045 0.002 

0.000 0.010 0.070 0.010 -0.003 0.057 0.003 -0.003 0.038 0.003 
Me 0.000 0.008 0.080 0.008 0.006 0.059 0.006 -0.000 0.037 0.000 

0.000 0.011 0.105 0.011 0.005 0.073 0.005 0.005 0.047 0.005 
"8 0.000 0.009 0.087 0.009 0.003 0.062 0.003 0.002 0.042 0.002 
"9 0.000 0.013 0.084 0.013 0.006 0.062 0.006 -0.001 0.044 0.001 
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Table 2.4: Logarithm. Bayes factor for simulation study 

Prior Logarithm Bayes factor n=150 n-300 n=600 
Prior I log Bio -2.34 -2.965 -3.48 

log B20 -11.04 -22.504 -48.358 
log B30 -8.89 -19.697 -43.046 
log B40 -11.47 -21.295 -44.794 

Prior II log Bio -2.39 -2.95 -3.4 
log B20 -9.37 -20.65 -46.37 
log B30 -7.82 -18.34 -41.35 
log B40 -9.1 -18.89 -41.96 

Table 2.5: DIG for simulation study with different sample sizes 

model n 二 150 n=300 n=600 
Mo 3233.15 6461.76 12893.5 
Ml 3238.23 6465.55 12898.3 
M2 3255.77 6493.9 12961.6 
Ms 3256.17 6496.7 12966.8 
M4 3255.41 6496.4 12962.2 

32 



Table 2.6: Calibration summaries for real example 

Model SDo., 95% HPD 
Mo 101.531 66.392 (-0.007, 259.848) 
Ml 82.341 66.838 (-24.141’ 203.688) 
M2 100.543 62.803 (10.458, 225.316) 
AU 21.451 27.647 (-27.615, 77.312) 

Tabic 2.7: The Baycsian estimates for real example 

Parameter EST SE Parameter EST SE 
7/1 8 . 3 9 7 0 . 1 2 5 '^el 0 . 8 3 5 0 . 1 7 3 

W2 7 . 8 0 3 0.128 1 . 2 0 4 0.19 
Us 2.360 0.118 0.873 0.15 
U4 3.047 0.126 0.934 0.161 
U5 7.555 0.156 1.943 0.443 
Uq 7.403 0.174 3.691 0.493 
A2I 0.924 0.107 7l 0.376 0.116 
^32 -1.066 0.108 72 0.584 0.104 
入63 0.867 0.161 73 -0.212 0.071 
011 1 . 5 3 8 0.268 (f>l2 -0.209 0.2 
4>22 2.765 0.584 0 . 8 4 6 0.177 
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1=150 

(b) n=300 
i for simulation study 

(c) n=600 

Figure 2.1: Calibration distributions under Prior 
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n=150 
Calibration distributions for stmulaUon study 

(b) n=300 
CaHbration distributions for simulation study 

(c) n=600 

Figure 2.2: Calibration distributions under Prior II 
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Calibration distributions for real example 

1 0 0 1 5 0 2 5 0 

Figure 2.3: Real example 
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Chapter 3 
Ly Measure for Nonlinear Structural 
Equation Models with Mixed 
Continuous and Categorical Data 

3.1 Introduction 
As discussed in the literature, structural equation models (SEMs) have 
been widely used in behavioral, educational, medical and social sciences. 
In these fields, categorical variables are often encountered. A typical exam-
ple is when a subject is asked to report the opinion about a policy on scales 
like 'strongly disagree', 'disagree', 'no opinion', ‘agree，，'strongly agree', or 
to report the effect of a drug on scales like 'getting worse', 'no change', 'get-
ting better'. To deal with this kind of data, SEMs with ordered categorical 
variables are proposed. In the analysis of SEMs with ordered categorical 
data, a commonly used approach is to treat the variables as observations 
that come from a hidden continuous normal distribution with a threshold 
specification, see Lee (2007). In this chapter, the methodology developed 
in Chapter 2 is extended to nonlinear SEMs with mixed continuous and 
ordered categorical data. To define the Ly measure for categorical data, a 
method proposed by Chen et al. (2004) is used to transform the categori-
cal data into binary data. The Bayesian approach, together with MCMC 
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algorithms, is applied to the estimation of latent variables and unknown 
parameters, and to the computation of the Ly measure for model selection. 

The remainder of this chapter is organized as follows. Section 3.2 de-
fines a nonlinear SEM with mixed continuous and ordered categorical data. 
Section 3.3 discusses the definition and computation of the L^ measure for 
nonlinear SEMs in the presence of ordered categorical data. In Section 
3.4, a simulation study is presented to demonstrate the performance of the 
Ly measure in model selection of nonlinear SEMs with mixed continuous 
and ordered categorical data. In Section 3.5, a real example is analyzed to 
illustrate the methodology. A discussion is given in Section 3.6. 

3.2 Model Description 
Suppose j/̂  is a p X 1 vector of manifest variables, and it satisfies the fol-
lowing measurement equation: 

= u + Aca, + €,"?； = 1’ . . . ,n, (3.1) 
where uis a pxl mean vector, Ui is a. qxl vector of latent variables, A is a 
p X q loading matrix, is a vector of error measurements with distribution 
7V[0,屯e]，屯e 二 diag('0ei, •. • , 'ipep)^ and u)i is independent of e .̂ In addition, 
the latent vector Ui is partitioned into (r/f ,专�)�which satisfy the following 
structural equation: 

= + (3.2) 
where 77̂  is a 仍 x 1 vector of endogenous latent variables, ^ is a x 1 
vector of exogenous latent variables, = …，fm{ii)V is a 
vector-valued function with differentiable functions /i,…，/m，and m > 
q2. Moreover, we assume that ITo = is positive definite, and its 
determinant is independent of the elements in IT, ‘ �i V [ 0 , $ ] and 6i � 
7V[0,屯d are independent, and = diag(论<51，. •. , ipsq̂ ). Let Â ^ = (IT, F) 
and G{ijj.i) = (r/f, the structural equation given by equation (3.2) 
can be written as: = K^GiuJi) + 

38 



Furthermore, let A^ and A^ are the submatrices of A corresponding to 
7]̂  and respectively. The nonlinear SEM defined by equations (3.1) and 
(3.2) can be rewritten as: 

+ A,!!�—1 + (50 + AeCi + e" i = 1,…，n. (3.3) 

To deal with ordered categorical data, suppose y^ = ( y ^ . , w h e r e 
y^ i is a r X 1 vector corresponding to the observed continuous variables, and 

is a s X 1 vector corresponding to the unobservable continuous variables. 
The information of y叫�is given by the observed ordered categorical variables 
in Zi, The relationship between = ( y u , i i , ' . .， a n d Zi is given as 
follows: for 2' = 1 , … , n and k = 1 , . . . , s, 

1 ‘ 

Ck；!,̂ .̂  < yu41 < ai^zn + l 
Z. = •： if i ； ， （3.4) 

^is �̂s .ZIS < Vu^is ^ + l 
where z认 is an integer that belongs to the set {0,1,…,bk}, and ctk = 
{a幼，…,o^kM+i} are thresholds. In general, we set ak,o =—⑴，ctk -̂hi = 
oo. Thus, for the A:th variable, there are + 1 categories which are defined 
by the unknown thresholds cxk. For convenience, we denote this model by 
M. 

As discussed in Lcc and Song (2004), without imposing any identifica-
tion conditions, models with ordered categorical variables are unidentified. 
So, we fix afc，i and Oik,hk(]̂  = 1, • •• , 5) at some preassigned values. To iden-
tify the covariance structure of following the common practice, we fix 
some appropriate elements in A and H at preassigned values. In the follow-
ing part of this chapter, some notations are used. Let Y^^^ = Yu), 
where "K，= (y二，f,... , y二) be the matrix of observations corresponding 
to the observed continuous variables, Y^ == ( y … … , b e the ma-
trix of observations related to the underlying unobserved continuous vari-
ables, y f j = … •作 = 1 , …， n ) , Vu, = {VuA^--- .Vu^sf and 
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y, - { y f f . y l ^ f - Let zobs = . •. be the matrix of observa-
tions corresponding to the observed ordered categorical variables, where 
z f s =(禮、 . . . , z �T . Let Y ' '^ = 印’ Yl'P) be the replication of , 
and be the replication of Z—. Moreover, let Q 二 (u；!, • • • , 
f t i = ( r / i , , . . ,rj丄 and ft2 = •.‘ and let a be the vector that 
contains all the unknown thresholds, and 6 be the vector that contains all 
the unknown parameters in tt, A,屯e, A … a n d "^s Besides, let 9 , T, Ty, 
and E be the support spaces of 6, a , y�,�and 己’ respectively, i — 1, • • • , n. 

3.3 Ly Measure for Nonlinear SEMs with Mixed Con-
tinuous and Ordered Categorical Data 

Ly measure, originally proposed by Gelfand and Ghosh (1998), is based on 
exponential family. However, the distribution of ordered categorical data 
dose not belong to the exponential family. Therefore, we cannot use it 
directly. A method proposed by Chen et al. (2004) is used to transform the 
ordered categorical data into binary data in this chapter. 

3.3.1 Definition of the Ly Measure 
To handle the ordered categorical variable Zik in M defined by equations 
(3.1) to (3.4), a new vector z*汝 is introduced, where js*̂  = (z ĵt,!, • •.，Zik̂ bk+iV： 
and the elements in z*)̂  arc defined as follows: for i = ]_,••• , n and k — 

1, if z^k = j — I Zikj = ， j = 1，…A + 1 . (3.5) 0, otherwise 
From equation (3.4), we have 

p{zik,j = 1) = p{zik = i - 1) = p{o^k,j-i < yu,ik < (^kj) - Pzkj^ (3.6) 
and 

p{zik,j = 0) = 1 — p(^Zi�j = 1) = 1 — p,kj. (3.7) 
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It can be shown that Zik�j has a Bernoulli distribution with parameter 
Pik,j, and the density function can be written as: 

f{zik,j,Prkj) = P^jil — Pikd)i-咏】二 exp{z,kAkj — 如 y h (3-8) 

where Oikj = log 广“’ and b{9ikj) = log(l + e*̂來j). It belongs to the 
exponential family, and 

E{zikj) = b{Oikj) = Pik,j, (3.9) 
V&T{zikj) = i(Oi�j�= Pzkj{l — Pikj), (3.10) 

where b{-) and denote the first and second derivatives, respectively. 
Now we consider the Ly measure for the ordered categorical variables 

defined in equation (3.4). According to equation (3.5), the elements ẑ ^̂  
in Z— and z ; � i n can be dichotomized as vectors zf^' ' : … , 

and z T = (43> …,41+1)，respectively. Let Z . * 二 = 
1,...，n; k = l r - ' = l r - - + a n d Z 代 = 了；i 二 1,...，n; 

A： = 1，...，s; J : 1,...，6fc + 1}. Given observations and Z � ^ , the 
quadratic loss Ly measure (see Gelfand and Ghosh, 1998; Ibrahim et a l , 
2001) is defined by 

6' n 

i^l (3.11) 

where == M), in which the expectation is taken with 
respect to the posterior predictive distribution M) de-
fined by: 

, , (3.12) 
ik fin J no 

where Qo = B x T x E x Ty, e j is a (6^ + 1) x 1 vector with 1 at the j t h 
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element and 0 at the others, and 

(3.13) = = j -1|仏 a , i � �y — 糧 e , a , z o b � M ) 
购’广 1 < < a , M)p(a , M). 

It can be shown that equation (3.11) can be rewritten as: 

s n fefc+1 
- E E E Zobs, M) + v{4：； — /i*,,) '] , (3.14) 

k=l i=l j—1 

where M) is the j t h diagonal element of the conditional co-
variance matrix M), and j is the j t h element of the con-
ditional expectation /i*^. Therefore, 

=E [五(;47|0，a，e,’y,力 A^)|Y，，Z•’, M: 
- E 了 = 1|没，专,,，2Ax,hM)|yf�Zo�Af 

= E < y 二 < a , M ) | Y f , Z � "�M 

(3.15) 

According to the definition of the proposed model, given 0 and y从 
has a normal distribution with mean u^ + + Ât，沃’ and 
covariance matrix 屯Allf 1)了)八1” +屯_ where u ^ � A"，”, a n d 
屯are the submatrices of u, A小 A^, and 屯e corresponding to y,^,“ respec-
tively. Therefore, 

^kj - {uu,k + + Au,^kii} 

—巾 Qfcj-l - {Un,k + + Xu炒ti] 
— 屯 dllo-i) 了)A�”& + A.uk 

where Uu,k is the kth element of Uu； Â u,”k and are the A:th row of 
and respectively; (p^uk is the kth. diagonal element of 屯 • ( . ) is 
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the cumulative distribution function of the standard normal distribution. 
Thus, the conditional expectation required in equation (3.14) is obtained. 
Similarly, the conditional variance in equation (3.14) is given by 

V a r ( 4 了 �Z -， i k O 

= = zobs, M)[l — = zob�M) 
(3.16) 

It can be calculated easily after obtaining the conditional expectation /i*̂  •. 
For the observations corresponding to the continuous variables, the 

Ly measure defined by equation (2.9) in Chapter 2 is applied. Therefore, 
given ( Y f �Z^^" ) , the L, measure for the model M is defined by 

L,(Y，，Z0&�M) = Z气 M) + LL{YL'\ Z气 M) 

obs\2 

仁 1 

s n bk + l 
(3.17) 

k=l i=l i='. 

V a r ( 4 7 | Y 'obs ̂ obs M) + v{z^； — lAk,] 

where (Mk 二 Let w� ’ A。’"，Ao’̂  and 屯⑶ be the submatri-
ces of u, Ar/, A^, and 少e corresponding to y工〜respectively. As discussed 
in Chapter 2, 

=E + A 明 , + A 你 Z , M 
where Uo,k is the kth element of Uq] Ao，7/A； and Ao^^k are the kth row of Ao,rj 
and Ao’《，respectively. The conditional variance in the first summation of 
equation (3.17) is given by 

Due to the existence of intractable integrals in calculating the conditional 
expectation and variance, we can get neither a closed form of Z"�似’ 
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M), nor a closed form of M). Therefore, MCMC methods 
are used to calculate the L^ measure defined by equations (3.14) and (3.17). 

3.3.2 Computation of the Ly Measure 
From its definition, Ly measure can be estimated with a sufficiently large 
number of random observations ；̂ g = 1 , . . . , G} gener-
ated from the posterior distribution p{6, a , f t , Z^^^). To generate 
this sample, Gibbs sampler (Gelman and Meng, 1998) given bellow is used. 
With current values Y'[f))， 

Step (a) Generate from �， Y j f ) , 
Step (b) Generate from a �， V f " ' , Z � ^ . 

robs� Step (c) Generate(a(^i)，Y(f+i))fromp(a,igi9("+i),r2(^i),Yf"_,Z 
After the convergence of the MCMC algorithm, the random observations 
are collected to get the estimation of the unknown parameters, the latent 
variables, and the Ly measure. The Bayesian estimation of unknown pa-
rameters and latent variables are given as follows: 

“治⑷’。‘这 
g=l .9=1 

= ^ ； - 沪 ) ) _ ) - d � f , 

i r ( 的 ) = ^ - - 广’ 

For i = 1, -' • , n and k = 1, ‘.. , r, let 

and 
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For i 二 

n, /c = 1, • • • , 5, and j = h + 1，let 

化1� 

and 
G 

A* —丄 *{g+l) A* — � /- � ’ 

“ 认 ’ j ^ G l^ik，j , ^ ikj 二 /i认,J. ( 1 — fhkd, 
Then the estimation of the Ly measure is given by 

^ik + v{Jiik — obs\2 

k—1 

bk + l (3.18) 
+ a + v�z歡—Jhkjf 

k=l i—l j=l 

Now we consider the conditional distributions required in steps (a), (b), 
and (c) in implementing the Gibbs sampler. 

3.3.3 Full Conditional Distributions 
To obtain the conditional distribution p{0\ fi, Yu) required in 
Step (a), the prior distributions of the parameters in 6 are needed. Accord-
ing to the suggestion given by Lee and Zhu (2000), the following commonly 
used conjugate prior distributions are specified: 

P{i>6k) = G a m m a [ a o d - f c , ’ vi'^ek) - Gamma[aoefc,fhtk 
p{Ak\Ak) = A^[Ao/c,ipekHok], p{A^k\i^dk) = 'ipSkHo^k 

(3.19) 

where ijjtk and ijjsk are the kth diagonal elements of 中e and 屯j，respectively. 
Ak and A f̂c are the /cth row of A and A � respectively; Uq, ôoeA：, Poek, Aqa；, 

aosk, Posk, Aocja；, and po, and positive definite matrices So ,丑ofc，丑 , and 
i^o, are hyperparameters whose values are given by the prior information. It 
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can be shown that conditional distributions of the components in 6 are the 
familiar normal, Gamma, and inverted Wishart distributions. Generating 
observations from these distributions are simple and fast. 

For the conditional distribution p{Ct\e, Y,̂ , Y，，Z—) required in Step 
(b)’ 

n 

n 

a Ylp(y , lu ; , ,0)p( r , , l i„0)p(a0) . (3.20) 

According to the definition of the model, P(^il^) oc exp <j - ^(Pi - w - - u - Au;, 

Vi — 屯广[77, — A^G{uj (3.21) 

Thus, the required conditional distribution in Step (b) can be obtained 
through equations (3.20) and (3.21). 

Finally, consider the joint conditional distribution of (a, Y^), given 
Z—, ft and 9. The following non-informative prior distribution of a is 
used: for /c = 1 , … , s , 

p{oik) = •. • , o^k,bk-i) «： C, for < . . . < 
where C is a constant. As ^^ is diagonal, (a, Y^) is conditionally indepen-
dent of Y，and Zobs gj^^n U and 0, and 

=v{<Xk\e. y 咖 补 a , , n , y f , z。“） 
n 

= V u i k ) ) �y T . z - ) . 
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where y 咖 = yu,nkh and 

oc n 而fe + l - Uu^k - K , k � 
•cak 

- Uu，k - A^f^U 
‘ "^tuk 

一尘 

(3.22) 
and 

'P、yuA\oLkryl%,n,G�= N{:uu’k + K,k⑴ i 無k)h A T ){yu,ik)' (3.23) 
From equations (3.22) and (3.23), the conditional distribution required in 
Step (c) is obtained. 

The conditional distributions involved in Y " … Z " " ^ ' ) and p (a , 
Yu\0,17, Z"^^) are non-standard and complex. The Metropolis-Hastings 
(MH) algorithm (Metropolis et al., 1953; Hastings, 1970) is used to simulate 
observations from them. Thus, the proposed MCMC algorithm for poste-
rior simulation is a hybrid algorithm that combines the Gibbs sampler and 
the MH algorithm. 

3.3.4 Calibration Distribution 
Let Z—, Mc) denote the L” measure for the candidate model M � , 
and L J l ^ f s，Z � ��M t ) denote the Ly measure for the true model Mt. Then 
the difference between the Ly measures of Mc and Mt is defined as 

Mc) = L人Yfs, zobs, Mc) — 风)，(3.24) 

and the calibration distribution for model M � d e n o t e d by P L � i s defined 
as the marginal distribution of Z \ ( Y f � z " ^ ^ ^ Mc), computed with respect 
to the prior predictive distribution of ( y，， ) under the true model Mt: 

Pt{Z obs -XyTobs r r ) = / p { Y f \ zobs e, a, Mt)p{e M^cx Mt)deda, (3.25) JexT 
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where 

二 f a, Vu, fi2, M,)dQ2dVn. JExTy 
Thus the calibration distribution P L � i s defined by 

PLcEP(AXY，,Z��MC)) . (3.26) 
From this definition, it is impossible to obtain a closed form of the calibra-
tion distribution. As discussed in Chapter 2，MCMC methods are used to 
estimate the calibration distribution. As the true model Mt is required in 
calculating the calibration distribution, we will treat the model with the 
smallest value of the L^ measure as the true model in real applications. 
The procedure is given as follows: 
(a) Generate (0, a , Yu) fromp(Xl2, a , Mi)p(6/|Mi)p(a|M0’ where 

p{9\Mt) and p{cx\Mt) are proper prior distributions of a and 6 under 
Mu 

(b) Generate a pseudo observation (1^�, Z) from p ( y , d , V -̂u), 
(c) Set Z"" '̂) = {Yo^Z), and use the method described above to 

obtain the estimates of Z � "�M , ) and L ^ Y ，， , M � , then 

Repeat (a), (b), and (c) G times, we can obtain a sample {D^?�(Z—，Y，， 

Mc), g = 1, - • • , G}. Based on this sample, we can estimate the calibration 
distribution PLc via the kernel density estimation method (Silverman, 1986; 
Sheather and Jones, 1991; Scott, 1992). The summaries of PLc can be 
obtained easily through the methods given in Chapter 2. 
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3.4 A Simulation Study 

Model Setting 
In this section, a simulation study is presented to evaluate the performance 
of the Ly measure. The observations {Vo^i, î； i 二 1, • • • , n} are generated 
from the following structural equation model: 

Mo : yi = u-\- AtJi + Ei, and rji 二 + � ^ + + 氏， 

where y^ 二 2/【，is a 9 x 1 vector，and x 1) which corre-
sponds to 2/i4，i(4 X 1) is generated from equation (3.4) through threshold 
a — ( a i , …，� 4 ) . (jJi = ("i,6i，< î2) is a 3 X 1 vector of latent variables. 
The specification of A is 

( 1 . 0 * 入21 Aai 0.0* 0.0* 0.0* 0.0* 0.0* 0.0" \ 

0.0* 0.0* 0.0* 1.0* A52 ^62 0.0* 0.0* 0.0* 

乂 0.0* 0.0* 0.0* 0.0* 0.0* 0.0* 1.0* 入83 入93 / 
where the elements with asterisks are fixed. True values for the unknown 
parameter are given as: A21 = A31 = Ass = A93 ~ 0.8, A52 -入62 = 0.7, 
Ui = ' • • = Ug = 0.0, 7i = 72 二 0.6,73 = —0.5; 4>n = ^22 二 1.0, (pu = 
021 = 0.2,论el = . . . 二功e9 = 0.5, ips = 0.5, and a i = . . . = 0̂ 4 = 
(—1.0*. —0.6,0.6,1.0*)^, in which —1.0 and 1.0 are fixed. Four competing 
models with the same measurement equation as Mq but different structural 
equations are considered. The structural equations are given as follows: 

Ml： r), = 71&1 + J2U + 73??I + + 7 5 & C �+ 知 

M2 ： rji = + 72�i2 + 
: Th = T i & i + 7 2 & + 7 3 f ? i + 

Ml : = + 72fz2 + + 
To compare different model selection methods, results related to Ly mea-
sure, Bayes factor, and DIG will be presented. Similar as in Chapter 2, to 
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study the effect of sample size and prior inputs of the parameters, two dif-
ferent types of prior inputs, Prior I and Prior II, and three different sample 
sizes, n=150，300 and 600, are considered. 
Prior I: In the prior distributions of w, A � a n d A^̂ , the means of the nor-
mal distributions are taken as the true values, and the covariance matrices 
are taken to be the identity matrices with appropriate dimensions. In the 
prior distribution of 办，po，and Rq in the Wishart distribution are taken 
to be 7 and 4 times of 办o, respectively, where is the matrix with true 
values of (pu, (j)2i and 022- In the prior distributions of i/js and ijjck, the hy-
perparameters in the Gamma distributions are taken to be Qqa： = = 9 
and Pok = Pos = 4. 
Prior II: The means of the normal distributions are all zero, the covariance 
matrices are equal to four times of the identity matrices with appropri-
ate dimensions, po = 2, Rq is the identity matrix, aok = ôqs = 4 and 
Pok = Am 二 5 ‘ 

L^ measure for model selection 
In this simulation study, 100 replications are conducted to get the esti-
mation of unknown parameters, the Ly measure, and the calibration dis-
tribution. Results of the calibration summaries are given in Table 3.1, 
where mean(Lo.5) denotes the mean value of the L^ measure with v — 0.5, 
yUo.5, 5Do.5, and 95% HPD denote the mean, the standard deviation, and 
the 95% HPD interval of the calibration distribution of the corresponding 
model with v 二 0.5, respectively. From this table, under each case, /io.5 
for Ml is close to zero, and the corresponding 95% HPD interval contains 
zero, we conclude that the performances of models MQ and MI are similar. 
According to the parsimonious principle, Mq is selected. Compared with 
^0.5 for Ml, yLio.5 for models M2, M3, and M4 are much larger than zero. We 
conclude that the performance of Mq is better than M2, M3, and M4 on 
average. Apart from the means，we also see that when the sample size is 
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small, some of the 95% HPD intervals for M2 to M4 contain zero. How-
ever, considering the large values of the corresponding upper bound, the 
lower bounds are relatively close to zero, which means that Mq is favorable. 
When sample size n ~ 600, it is obvious that Mq performs much better 
than M2, M3, and M4. Thus, MQ is selected under each case. 

The calibration distributions under Prior I and Prior II are given in 
Figures 3.1(a) to 3.1(c) and Figures 3.2(a) to 3.2(c), respectively. The 
same conclusion as above is obtained. Therefore, the true model can be 
consistently selected under the considered different types of prior inputs 
and different sample sizes. Besides, when sample size increases, the centers 
of the calibration distributions for M2, M3, and M4 become further apart 
from zero, but that for Mi changes little. 
Bayes Factor for model selection 
To calculate the Bayes factor, path sampling (Gelman and Meng, 1998) 
is used. Mq and the four candidate models Mi, • • • , M4 can be linked up 
similarly as Chapter 2 with the parameter t, where t G [0,1]. In the path 
sampling procedure, we take S — 20 grids in [0,1]. Based on the previous 
analysis, for each 力⑷’ we take a burn-in phase of 4000 iterations, and further 
collect 2000 observations in computing the logarithm Bayes factor. The 
estimated logarithm Bayes factors are presented in Table 3.2. From this 
table, all the logarithm Bayes factors are negative, which consistently select 
MQ. Furthermore, the estimated logarithm Bayes factors have similar values 
under Prior I and Prior II. Therefore, the same conclusion can be drawn 
under these two different prior inputs. 
Model selection using DIC and WinBUGS 
In this part, model selection based on DIC is discussed. DIC value can be 
obtained similarly as before through WinBUGS. We use a burn-in phase 
of 4000 iterations, and further collect 2000 samples to calculate DIC. The 
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D i e values under Prior I with different sample sizes are given in Table 3.3. 
From this table, Mq with the smallest DIG value is selected for each given 
sample size. 

3.5 A Real Example 
Measures of quality of life (QOL) and/or health-related QOL have great 
value for clinical work, and the planning and evaluation of health care. A 
Bayesian method for analyzing a common QOL data with ordered cate-
gorical items has been discussed in Lee (2007). The aim of this section is 
to apply Ly measure to model selection in the analysis of this QOL data. 
The instrument WHOQOL-100 (see Power et a l , 1999) in measuring QOL 
was established to evaluate four latent constructs: physical health, psycho-
logical health, social relationships, and environment. In the instrument, 
Q3 to Q9 measure 'physical health', QlO to Q15 measure 'psychological 
health', Q16 to Q18 measure 'social relationships', and the last eight items 
(Q19 to Q26) measure 'environment'. In addition to the 24 ordered cate-
gorical items, the instrument also includes two ordered categorical items, 
the overall QOL (Ql) and the health-related QOL (Q2), giving a total of 
26 items. All of the items are measured with a 5-point scale (1 二 'not at 
all/very dissatisfied'; 2 = 'a little/dissatisfied'; 3 = 'moderate/neither'; 4 
='very much/satisfied'; 5 = 'extremely/very satisfied'). The sample size 
of the whole data set is extremely large. To illustrate the performance of 
Ly measure, we only analyze a synthetic data set with sample size n = 
338. Similar as in Lee (2007), we compare a SEM (Mi) with four exoge-
nous latent variables with another SEM (M2) with three exogenous latent 
variables. The measurement equation of Mi is defined by 

y = AiCJi + e, (3.27) 
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where cji = (jj, ？4)了’ f : �i V [ 0 ,中 e i]， a n d 
" 1 A21 0 0 0 0 0 0 0 0 0 0 0 0 0 ( 3 0 

A 卜 

0 0 1 A42 ••• A92 0 
0 0 0 0 0 0 1 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

0 0 0 0 0 0 
All,3 … A i 5 , 3 0 0 0 

0 0 0 1 AI7,4 AI8,4 
0 0 0 0 0 0 

0 0 ( 
0 0 ( 
0 0 ( 
1 入20’5 ., 

J 0 
� 0 
3 0 
•入26’5 

The structural equation of Mi is given by 
rj = 7 I6 + 726 + 73^3 + 746 + (3.28) 

where ^ = (Ci’... and S are independently distributed as iV[0’ 
and af^], respectively. The measurement equation of M2 is defined by 

y = + e, (3.29) 
where : 

:("，$1,<^2，$3)了,( ：〜 N [0, , a n d 

1 入21 0 0 0 0 0 0 0 0 0 0 0 0 

Al 二 

0 0 1 入42 . . . A92 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 All，; 3 AI5,3 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 AI7’4 • • • 入26，4 

The structural equation of M2 is given by 

V = 7 I6 + 726 + 736 + & (3.30) 
where ^ =(仏 f2, ? 3 ) �a n d S are independently distributed as 7V[0, #2] and 
"[0,略],respectively. 

In the above two models, y is the underlying vector of manifest vari-
ables, which corresponds to the observation The relationship between 
z and y is defined by equation (3.4). The threshold are given by a = 
(ai,...，a26)了，where cxk = • . . OLk^), 二 -oo.akQ = 00. 
For identification, some elements of the thresholds will be fixed at certain 
values. Here the standard normal distribution 1] is applied to yk, and 
then ak2 and a^^ can be fixed according to the cumulative frequencies of 
the ordered categorical items, see Lee (2007) for more details. 
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Ly measure for model selection 
To calculate the Ly measure, the conjugate prior distributions are used. 
The hyperparameter values corresponding to the prior distributions of the 
unknown loadings in Ai and A2 are all taken to be 0.8; those corresponding 
to (71,72,73,74) are (0.6,0.6,0.4,0.4); those corresponding to and 少2 
are 二 = 30, RqI = 8/4, and Rq2 二 8/3, respectively; Hoki — 
丑0fc2 = 0.25/26?丑OcJbi = 0.25/4, and H^^ki = O.25J3, where Id denotes 
an identity matrix with dimension d; ao^ki = <̂ oski = (̂ 0tk2 = = 10 and 
Poeki = Poski 二 A)eA;2 = = 8. In the Gibbs sampling in computing the 
Ly measure and the estimation of unknown parameters, we take J = 2000 
observations after a burn-in phase of 4000 iterations. L^ measure is 7273.01 
for Ml and 7343.826 for M2. As the value of the L^ measure of Mi is less 
than that of M2, Mi is selected. To obtain the calibration distribution, 
100 data sets are generated based on Mi under Prior I. The calibration 
distribution summaries are given in Table 3.4, and the density of calibration 
distribution is given in Figure 3.3. We see that the mean of the difference 
between the L^ measures of Mi and M2 is larger than zero, and the 95% 
HPD interval dose not include zero. Therefore, Mi will be selected. The 
estimation of the the unknown parameters are given in Table 3.5. 
Bayes factor for model selection 
To compare Mi and M2 by using Bayes factor, path sampling (Gelman and 
Meng, 1998) is applied. First, we will compare model Mi with the following 
model Mo： 

Mo : y = e, 
where e �7V[0,屯e], and 屯e is a diagonal matrix. We obtain log Biq = 
81.36. Similarly, M2 and Mq can be compared via the path sampling pro-
cedure, and log B20 = 57.85, which means that Mi and M2 are both better 
than MQ. Furthermore, from the above result, log B12 is equal to 23.51. 
Therefore, Mi is selected. 
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WinB UGS and DIC for model selection 
For a SEM with ordered categorical variables, the software WinBUGs can 
produce the Bayesian estimates of the structural parameters and latent 
variables in the model, as well as the DIC value for model selection. In this 
example, DIC value is 19532.8 for model Mi, and 19609.3 for model M2. 
Therefore, Mi is selected. 

3.6 Discussion 
From the numerical studies in this chapter, the same conclusion in model 
selection is obtained by using the Ly measure, Bayes factor, and DIC. As 
mentioned in Chapter 2，the computation of the Ly measure is much more 
efficient than Bayes factor. Besides, the Ly measure is more reasonable than 
DIC because it incorporates the calibration distribution to further helping 
making decision in model selection. In this chapter, we propose Ly measure 
for nonlinear SEMs with mixed continuous and ordered categorical data. 
The simulation study demonstrates that our proposed method performs 
well. A quality of life data is analyzed for illustration. 
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Table 3.1: Mean values of the L” measure and calibration summaries for simulation study 

Sample size Model mcan(Lo.5) /iO.5 sno.5 95% HPD 

Mo 1172.887 - - -

Ml 1176.119 3.231 13.371 (-13.263, 44.183) 

n-150 M2 1195.186 22.298 13.444 (-0.660, 49.418) 

Ms 1193.872 20.985 14.777 (-6.415, 47.962) 

M4 1192.788 19.901 11.664 (3.380, 45.548) 

Mo 2327.844 - -

Ml 2328.963 1.118 10.463 (-14.350, 22.744) 

Prior I n=300 M2 2372.570 44.726 21.968 (5.489, 79.529) 

Ms 2369.000 41.155 25.904 (8.724, 84.179) 

M4 2374.842 46.998 34.075 (2.470，88.519) 

Mo 4645.018 - -

Ml 4644.271 -0.746 14.661 (-22.804, 36.000) 

n=600 M2 4739.627 94.609 37.701 (28.232, 178.181) 

Ms 4732.777 87.760 34.010 (31.140, 162.030) 

\ M4 4732.938 87.920 31.939 (30.122, 150.164) 

Mo 1252.040 - -

Ml 1253.551 1.511 12.758 (-17.913, 36.100) 

n 二 150 M2 1271.365 19.325 13.001 (0.908, 52.612) 

Ms 1271.588 19.548 14.288 (-7.796, 50.790) 

M4 1271.512 19.471 13.826 (-3.864, 47.642) 

Mo 2411.128 - -

Ml 2413.038 1.910 20.953 (-19.854, 77.502) 

Prior II n=300 M2 2455.364 44.237 22.139 (-4.492, 89.980) 

M3 2450.996 39.869 21.143 (-0.313, 83.849) 

M4 2452.959 41.832 22.702 (5.707, 100.516) 

Mo 4730.851 - -

Ml 4735.537 4.685 24.557 (-20.688, 81.630) 

n=600 M2 4818.795 87.943 32.794 (34.767, 158.430) 

Ms 4812.197 81.345 28.582 (24.479, 130.711) 

M4 4818.343 87.492 35.130 (23.915, 158.075) 
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Table 3.2: Logarithm Bayes factor for simulation study 

Logarithm Bayes factor n=150 n=300 n=600 

Prior I log Bio -1.89 -2.56 -3.25 

log 820 -6.05 -13.43 -29.65 

log ^30 -6.78 -13.548 -29.386 

log B40 -6.77 -13.886 -30.02 

Prior II log Bio -2.05 -2.63 -3.29 

log B20 -5.43 -12.56 -28.54 

log B30 -6.11 -12.63 -28.36 

log B40 -6.18 -13.02 -27.85 

Table 3.3: DIG values for simulation study 

model n-150 n=300 n=600 

Mo 3550.29 7097.44 14200.96 

Ml 3556.84 7118.46 14265.34 

M2 3606.42 7169.57 14734.12 

A/3 3614.07 7192.41 14362.13 

M4 3600.47 7185.42 14375.42 
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Table 3.4: Calibration summaries for real example (y = 0.5) 

Model /WD) SD{Do.,) 95% HPD 

M2 95.6 17.896 (68.783’ 135.124) 

Table 3.5: Bayesian estimates of unknown parameters in M i for real example 

Parameter EST SD Parameter EST SD Parameter EST SD 

0.85 0.07 ips 0.25 0.03 也1 7 0.96 0.09 

A42 0.91 0.09 7i 0.76 0.09 0.52 0.06 

A52 1.06 0.08 72 0.37 0.1 '0el9 0.53 0.06 

•̂ 62 1.14 0.09 73 0.14 0.11 也20 0.67 0.07 

A72 0.79 0.09 74 -0.03 0.11 All 0.7 0.07 

〜2 
1.26 0.08 Ai 0.39 0.05 认22 0.7 0.07 

入92 1.14 0.08 也2 0.42 0.05 0.74 0.07 

All, 3 0.8 0.09 也3 0.62 0.07 认24 0.57 0.06 

入 12,3 0.72 0.08 AA 0.61 0.07 也25 0.71 0.07 

AI3’3 0.75 0.09 也5 0.46 0.05 也2 6 0.66 0.07 

AI4’3 1 0.08 也 6 0.4 0.05 (pn 0.49 0.06 

入15’3 0.86 0.08 ^£7 0.7 0.06 0 1 2 0.35 0.04 

入17’4 0.28 0.09 也 8 0.28 0.03 013 0.22 0.04 

入 18’4 0.95 0.1 0.39 0.04 014 0.31 0.04 

^20,5 0.8 0.08 也10 0.47 0.05 022 0.58 0.07 

入 21,5 0.77 0.09 V êll 0.65 0.07 0 2 3 0.38 0.05 

入22’5 0.76 0.09 也12 0.71 0.07 (p24 0.39 0.05 

入23’5 0.71 0.09 0.7 0.07 0 3 3 0.59 0.08 

入24，5 0.97 0.1 Au 0.45 0.05 0.38 0.05 

入25’5 0.77 0.09 Alb 0.57 0.06 <^44 0.54 0.07 

入26，5 0.84 0.1 AIQ 0.46 0.06 
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Ca l ib ra t ion d is t r ibut ions for s imu la t ion »tuc)y 

(a) n - 1 5 0 
CaMbratlon distributions for simulation study 

(b) n=300 
Calibration distributions for simulation study 

(c) 11=600 

Figure 3.1: Calibration distributions under Prior I 
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(b) n - 3 0 0 

n=600 

Figure 3.2: Calibration distributions under Prior II 
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Cal ibrat ion d is t r ibut ions fo r s imulat ion »tuc)y 

n=150 
Calibration distributions for simulation fttudy 



Calibration distributions for real example 

Figure 3.3: Real Example 
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Chapter 4 
Ly Measure for Model Selection of 
Two-level Structural Equation 
Models 

4.1 Introduction 
In the previous chapters, Ly measure has been used for model selection of 
nonlinear structural equation models (SEMs) with different types of data, 
which are obtained from a single population. However, in many applica-
tions, the observations may exhibit two possible kinds of heterogeneity. The 
first kind is mixture data which means that the observations are obtained 
from K {k > \) populations with different distributions. In this kind of 
heterogenous data, K may be known or unknown and is usually small. 
Besides, no information is available on which of the K populations an indi-
vidual observation belongs to. The second kind of heterogeneous data are 
drawn from a number of different groups (clusters) with a known hierarchi-
cal structure. Examples may be drawing random samples of patients from 
within random samples of clinics or hospitals; or of students from within 
random samples of schools. In contrast to the mixture data, these hierar-
chically structured data usually involve a large number of G groups, and 
the group membership of each observation can be specified accurately. 
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In this chapter, we discuss the second type of heterogeneous data, in 
which individuals within a group are allowed to share certain common in-
fluential factors. Hence, the assumption of independence among observa-
tions is violated when dealing with this kind of data. Clearly, ignoring the 
correlated structure of the data and analyzing them as observations from a 
single random sample give erroneous results. Moreover, it is also desirable 
to establish a meaningful model for the between-groups levels, and study 
the effects of the between-groups latent variables to the withiri-groups latent 
variables. Consequently, two-level SEMs that take into consideration of the 
correlated structure of the data are developed. Recently, many statistical 
methods have been proposed for the analysis of this model. For example, 
maximum likelihood (ML) approach (see McDonald and Goldstein, 1989; 
Zhang and Lee, 2001; Lee and Shi, 2001; Lee and Song, 2005) and Bayesian 
approach (see Song and Lee, 2004; Lee, 2007). In this chapter, we focus 
on model selection which is also an important issue in data analysis. Song 
and Lee (2004) and Lee (2007, chap. 9) applied Bayes factor to model se-
lection in two-level SEMs. In this chapter, the Ly measure (Ibrahim et a l , 
2001; Chen et al., 2004) is applied to model selection of two-level nonlinear 
SEMs. According to the discussions in previous chapters, Ly measure can 
be viewed as a Bayesian goodness-of-fit statistics. Through MCMC meth-
ods, the Ly measure can be computed easily after obtaining the estimates 
of unknown parameters and latent variables. In addition to applying the Ly 
measure to two-level nonlinear SEMs, the calibration distribution is defined 
and used for model selection. 

The remainder of this chapter is organized as follows. A two-level non-
linear SEM is defined in Section 4.2. Ly measure for model selection in 
two-level nonlinear SEMs is discussed in Section 4.3. In Section 4.4, a sim-
ulation study is conducted to evaluate the performance of the Ly measure 
for model selection. In Section 4.5, a real example is analyzed through the 
proposed methodology. Finally, a discussion is presented in Section 4.6. 
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4.2 Model Description 
Suppose {Vgi： i = 1 , … , N g , g = 1 , … , G } is a collection of p-variate ran-
dom vectors. The sample size Ng may differ from group to group so that the 
data set is unbalanced. At the first level, we assume that, conditional on the 
group mean Vg^ random observations in each group satisfy the following 
measurement equation: 

Vgi = + ^ig^igi + � “ (4-1) 
where ujigi is a x 1 random vector of latent variables; Ai^ is a p x ĝ i 
loading matrix; eigi is a p x 1 random vector of error measurements which 
is independent of cjigi, and we assume that �7V[0,屯i"], where 中 i s a 
diagonal matrix. Note that due to the existence of V "，�a n d y幻‘ are not 
independent. Hence, in the two-level SEM, the usual assumption on the 
independence of the observations is violated. To deal with this difficulty, 
an equation for the between-groups level is considered: for ^̂ 二 1’ . . . , G, 

K2ijJ29 + e2g, (4.2) 
where u is the vector of intercepts; A2 is a p x g2 loading matrix; CJ25 is 
a X 1 vector of latent variables; 62̂  is a p x 1 random vector of error 
measurements which is independent of and we assume that €2̂  � 
7V[0,屯2], where 屯2 is a diagonal matrix. Moreover, the first and the second 
level measurement errors are assumed to be independent. According to 
equations (4.1) and (4.2), y^^ can be expressed as 

ygi = U + X2UJ2g + €25 + AlgU^lgi + Cl— (4.3) 
To assess the inter-relationships among the latent variables, cjigi and uJ2g are 
partitioned as ufigi = 仏 ) 丁 and �2 g =(”�…这gY\ respectively, where 
VigiiQu X 1) and 7725(921 x 1) are endogenous latent variables, x 1) 
and ^2g{Q22 x 1) are exogenous latent variables, qji + qj2 = Qj for j = 1，2. 
Furthermore, we assume that 专 丄 “ ； �A / ' [ 0 , and �办 2 ] . The 
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following nonlinear structural equations are incorporated in the between-
groups and within-groups models of the proposed two-level SEM: 

” Igi = + + (4.4) 
r]2g = n2r/2.Q + r2 i^2 ($2 .�+ ^.9, (4-5) 

where 仍） = 丄… J i a { i i g i ) V and = (/2i($2")，…， 

f2b{^2g))'^ are vector-valued functions with nonzeros differentiable functions 
fik and respectively, and usually a > qi2 and b > q虹、Tligiqn x 
仍i),n2(彻 X 921)，ri9(如 X a), and F s f e i x b) are unknown parameter 
matrices; Sigi and d2g are vectors of error measurements, and we assume 
that digi �7V [0 ,屯 1 夕 a n d �中 2 5 ]， w h e r e 屯 1 如’and are diago-
nal matrices. In the within-groups structural equation and between-groups 
structural equation, we assume that digi and S2g are independent of ̂ 义 
and €2.9，respectively. Let AJ^ 二 (！！丄…！^。)，Gi(a;i如)=ivigr, , 
A； = (ni，r2), and G2(u;2,)=("�9,1^2($2,)了)了，equations (4.4) and (4.5) 
can be rewritten as: 

rjigi = + digi, (4.6) 
V2g = A;G2{lJ29) ^ S2g. ( 4 . 7 ) 

Moreover, we assume that the within-groups latent vectors rjig^ and ^^^ are 
independent of the between-groups latent vectors rf2g and Thus, this 
two-level nonlinear SEM dose not accommodate the effects of the latent 
variables in the between-groups level on the latent variables in the within-
groups level. However, in the within-groups model or in the between-groups 
model, nonlinear effects of the exogenous latent variables on the endogenous 
latent variables can be assessed through (4.4) and (4.5); and the hierarchical 
structure of the data has been taken into account. As the functions fik in 

and f2k in i^2(“）are rather general, the common interaction 
and quadratic cflFects are their special cases. Practically, allowing nonlinear 
relationships such as interaction and quadratic terms among latent variables 
leads to models that represent reality more accurately. 
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Furthermore, we assume that IIi^o = — Hi^ and 1120 = 12 — ^ 2 are 
nonsingular, and their determinants are respectively independent of the el-
ements in Uig and 112, and Ai妖 are submatrices of Ai^ corresponding 
to r]ig,i and � , “ respectively; and A2” and A a r e submatrices of A2 cor-
responding to r)2g and respectively. Then the two-level nonlinear SEM 
defined by equations (4.1), (4.2), (4.4), and (4.5) can be rewritten as 

+ A2, ( 1 1 2 — + ^2,) + + �� 
+ Mgr) (n「的Fii^liilgi) + ^Igi) + 八1 政 + ^Igi' 

The proposed two-level nonlinear SEM is not identified without impos-
ing the identification restrictions. The common method of fixing appropri-
ate elements in A!", XIi” A2,112’ and r � a t preassigned values is used 
to achievc an identified model. For convenience, we denote the proposed 
two-level SEM by M, and let 0 be the parameter vector that contains all 
the unknown structural parameters in u , Ai^,屯ig，Hi^, Fi^,少 1",屯ipj, 
A2,屯2, r2, and 中2. Let Y ' ' ' : = l，.-‘，。，< = 1，... , i V j de-
note the observed data, and = \ g : 1’ … , G , i = 1 , . . . ’ Ng], 
which has the same distribution with denote the replicated data. Let 
y = {Vw"，"^G)’ = ( �I , - . . 馬 ivj’ Qi = ( O i l , … a n d 
ft2 = (CJ21’ … , M o r e o v e r , let fii" and Hi^ be the sub-matrices of 
Hi corresponding to rĵ ^^ and 专丄�“ respectively, and let H � ” and be the 
sub-matrices of corresponding to 772̂  and respectively. Furthermore, 
let 9 be the space of the parameter vector 6, Bi be the space of the latent 
variables《丄“ for g = 1，... , G and i = 1 , . . . , Ng, and let 三 2 be the space 
of the latent variables �f o r g = 1，... , G. 
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4.3 Ly Measure for Two-level Structural Equation Mod-
els 

4.3.1 Definition of the L̂ j Measure 
According to the definition of the Ly measure defined in previous chapters, 
we define the Ly measure for the proposed two-level SEM as 

G Na 

£r=l i=l 
G Ng 

+ P Z ] t r {{figi - — y g i f ) 

'obs 

(4.9) 

where v G [0,1], and = 二，F咖，似)，in which the conditional 
expectation is taken with respect to the posterior predictive distribution: 

�M ) 

6xHi x52 M ) p i e , 〜 叱 , 我 

(4,10) 
Therefore, 

M,. = E . (4.11) 
According to the definition of the proposed model, the conditional expec-
tation “山g,M�is given by 

+ AlgrjiUlgoTlgF + A!"必, 
-obs' 

(4.12) 

Similarly, the conditional variance Y8ii{y'gf'\Y ) in equation (4.9) is given 
by 

V a r ( i / 7 | y � 6�A ^ ) = Var [所？;;:’, � 2 …M (4.13) 
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Since rhg.̂  and rjig are independent, we get 

Var(y7|0, ‘ M) = + 屯2 (‘ 工‘) 

+ (Ai卯n「丄)屯 1乂 Ai,‘"n�"i�广 + � 
The first term in equation (4.13) is 
V a r [ • ’ ，。 , A ,；! ^ ) ! ! ^ -， - ] 

〜 4 

(4.15) 
Based on the above discussion, the Ly measure can be calculated easily 

after obtaining the conditional expectation given by equation (4.11) and the 
conditional variance given by equation (4.13). However, these two terms 
cannot be obtained directly because the high dimensional integrals involved 
in the conditional distribution of ‘1"“ $ 2 5 �M ) . Hence, the closed 
form of the Ly measure cannot be obtained, and MCMC methods are ap-
plied to calculate the Ly measure. The model with the smallest value of 
the Ly measure is selected. 

4.3.2 Computation of the Ly Measure 
With observations from the posterior simulation via MCMC methods, the 
Ly measure can be calculated. Our strategy for the computation of the Ly 
measure is to augment the observed data with the latent data that come 
from the latent variables and/or latent measurements, then MCMC tools 
are applied to simulate observations in the posterior analysis. More specifi-
cally, we consider the joint posterior distribution of [0, Oi, M]. 
The Gibbs sampler (Geman and Geman, 1984) is used to generate a se-
quence of observations from this joint posterior distribution. Based on these 
observations, the Bayesian estimation of the unknown parameters can be 
obtained, and then the Ly measure can be computed easily. In applying the 
Gibbs sampler, we iteratively sample from the following conditional distri-
butions: p{v\e,Hi,02,yob�M), V，彻，M), p{n2\o, nu v, 
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yobs, M), and V, Y � "�M ) . After the convergence of the MCMC 
algorithm, a Gibbs sample { 0 � ’ ̂ ；…，fif)’ = 1,…，i?} can be recorded, 
and with this sample, the estimation of the unknown parameters and latent 
variables are given as follows: 

0
 t

 

1
 
-
D
^
 

-
<
0
 

( r ) 1 (r) 
R (jj 

Furthermore, let 
.M) - I A � 

l ^ g i — ^ 十八27/ n ( r ) x - l - n ( r ) ( r ) 
20 

•z
 

1
 

1
 

and 
R 

T 
+ 屯 

(r) 
1.9 

= 这 达 端 祝 ) r 

Then Ly measure is computed as follow: 
G N, 

/V aT 

= E E [tr { t ^ r ( " ; r | ” ) } + t r { ” ( " 识 — y 鳥 -
(4.16) 

4,3.3 Full Conditional Distributions 
In this section, we discuss the conditional distributions required in Gibbs 
sampler. First, we consider the conditional distribution p[0\fli, 122, V, 
M]. For the proposed two-level nonlinear SEM, this conditional distribu-
tion can be further decomposed into components involving various struc-
tural parameters in the between-groups and within-groups models. These 
components are different under various special cases of the model. Three 
typical examples are: 
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(1). Models with different within-groups parameters across groups. In this 
case, the within-groups structural parameters Oig = {Ai^, Ilig, Fi^, 
少 1…中P r a c t i c a l l y , G and Ng should not be too small for drawing valid 
statistical conclusions for the between-groups model and the ^-th within-
groups model. 
(2). Models with some invariant within-groups parameters. In this case, 
parameters involved in 6ig associated with the ^-th group are equal to those 
associated with some other groups. 
(3). Models with all invariant within-groups parameters. Under this situa-
tion, 二 012 = ... = OiG-
Conditional distributions under these three cases are similar but different. 
We take the first case for an illustration. To get these conditional distri-
butions, prior distributions of the parameters are required. On the basis of 
the reasons given in the Bayesian literature of SEMs, conjugate type prior 
distributions are used. The prior distributions for parameters involved in 
the within-groups model are given as follows: 

P(少 1—5I) - WqjRoig.Polg], 
for A: = 1, • • • , ‘p, 

P{^igk) - Gamma[aQigk, Poigk], p{Aigk\i>igk) - 沖，也"a：丑oi.gA；], 

and for A: = 1, • . . , qu, 
P{'^ig\k) - Gamma[aoigSk, PoigSk]^ p{Algf,\'ipigk)=斤 

where and A;抽 are the kth rows of Ai^ and A ^ , respectively; ipigk 
and 'ipigSk are the kth diagonal elements of 屯 1" and 屯î tj，respectively; 
Poig, c^oigk, l^oigk, Aoig/c, o^QigSk, PoigSk, ^Qigk^ and the positive definite matri-
ces Roig, Hoigk, and 丑JipA； are all given hyperparameters. 

For the parameters involved in the between-groups model, the following 
prior distributions are considered: 

P ( u ) = P ( 少 2 ” - [只02, 
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f o r A: = 1,…，p , 

a n d f o r fc = 1, • • •，彻’ 

where A.2k and Â於 are the kth rows of A2 and A^ respectively;论and 
ip25k are the kth diagonal elements of 中2 and 屯respectively; Uq, /9o2, 
Q02/C, o/.026k, A02/C, Ao2a；, and the positive definite matrices So, 
Rq2, Ho2k, and J^^fc are all given hyperparameters. 

Given the above conjugate prior distributions, the conditional distribu-
tions of the components in p{6\Cti, can be easily obtained. 
These conditional distributions are generalizations of those that are associ-
ated with a single level model; and most of them are standard distributions, 
such as normal, univariate truncated normal, Gamma, and inverted Wishart 
distributions. Simulating observations from them requires little computing 
time. The posterior density functions of p{V\9, ^ i , M), p{fti\0, 
…，y M), and 口(1̂2丨6>’ ^ i , V , M ) can also be easily obtained. 
However, the conditional distributions, 1 7 2 ， M ) and 
Hi, V, , M), are complex. Hence, it is necessary to implement the MH 
algorithm for an efficient simulation of observations from these conditional 
distributions. The conditional distributions and the MH algorithm involved 
in this chapter can be derived and implemented similarly as before. They 
are not presented to save space. 

4.3.4 Calibration Distribution 
As discussed in previous chapters, criterion-based methods typically rely 
on the minimum criterion value as the basis for model selection. However 
this basis is not satisfactory in general, since it may be misleading when 
two different models have similar values of the Ly measure. Thus, one of 
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the crucial steps in using criterion-based method for model assessment and 
model choice is to define a calibration for the criterion. In this chapter, 
we apply the same calibration as discussed in previous chapters to the 
implementation of the Ly measure. Specifically, let ，Mc) denote 
the Ly measure of the candidate model M � a n d Mt) denote the Ly 
measure of the true model Mt. Given v, the difference of the Ly measures 
between the candidate model Mc and the true model Mt is defined as 

D孜气 Mc) - “ (yobs , AQ — Mt). (4.17) 
Then the marginal distribution of Mc)̂  computed with respect 
to the prior predictive distribution of Y^^^ under the true model M“ is 
defined as the calibration distribution. The prior predictive distribution for 
the proposed model is defined by 

Pt(Yob” = f 01 ,^2 , Mt)p{e, nun2\Mt)dedftidn2. 
JQxEi X三2 (4.18) 

We denote the calibration distribution of the candidate model Mc by 
P />cEP(A; (1^�6�Mc) ) . (4.19) 

Similarly, several statistical summaries of calibration distribution are con-
sidered. These include highest probability density (HPD) interval, the mean 
fiy{Mc), and the standard deviation S D j J i Q of M^). HPD inter-
val denotes the shortest credible interval which means the interval with the 
highest posterior density.以M^) measures, on average, how close the can-
didate model and true model are. SDy{Mc) measures the dispersion of the 
calibration distribution. Specifically, if the candidate model is "close" to 
the true model, /i^(Mc) is close to zero; otherwise, //.^(Mc) is far apart from 
zero. From equation (4.19), to well define P L � p r o p e r prior distributions 
for the unknown parameters in 0 are needed. The definition given by equa-
tion (4.19) is appealing since it avoids the potential problem of a double 
use of the data (see Ibrahim et al., 2001). 
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For the proposed two-level nonlinear SEM, we can get a closed form 
of neither the Ly measure, nor the calibration distribution. So MCMC 
methods are used to estimate the calibration distributions of the considered 
competing models. Specifically, for a candidate model M � a sample of 

, Mc) is generated via Gibbs sampler algorithm, then kernel density 
estimation method (Silverman, 1986; Sheather and Jones, 1991; Scott, 1992) 
is used to estimate the distribution of D ” ( " K � � M c ) . However, in data 
analysis, true model is unknown. Therefore, the model with the smallest 
Ly measure is considered as the true model M“ and a pseudo data set Y 
can be generated from this model. Details about the estimation of the 
calibration distributions are given in Chapter 2. 

4.4 A Simulation Study 

Ly measure for model selection 
In this simulation study, observations are generated from a two-level non-
linear SEM, Mo, with measurement equations given by equations (4.1) and 
(4.2). In this model, we assume that Ai" = Ai. To identify the model, Ai 
and A2 of the within-groups model and between-groups model are given as 

‘1.0* A2i A31 0.0* 0.0* 0.0* 0.0* 0.0* 0.0* \ 
0.0* 0.0* 0.0* 1.0* A52 A62 0.0* 0.0* 0.0* 

�0.0* 0.0* 0.0* 0.0* 0.0* 0.0* 1.0* A83 A93 , 
where the elements with asterisks are fixed. 

The structural equations of the within-groups model and between-groups 
model for Mq are given as follows: 

Vlgi = lu^lgil + 71265^2 + 7l3?l5l6,92 + ^Igi, 
mg = 721^2^1 + 722?2.92 + 如“， 

where LJigi — {771̂ ,̂ figa, $1.9x2} is the vector of latent variables in the within-
groups model, and uj2g = 乂乂2^2} is the vector of latent variables 
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in the between-groups model. The true values of some parameters are 
given by: A21 = A31 二 A52 = A62 = Ags = A93 = 0.8, u 二 (0，. • •，0广， 

r i , = Ti =： ( 7 1 1 , 7 1 2 , 7 1 3 ) = (0.6,0.6,-0.4), T2 = ( 7 2 1 , 7 2 2 ) = (0.6，0.6), 
屯ig = — 0 . 64 /g , and 屯2 = 0 . 36 /g , where Ig is the 9-dimensional 
identity matrix. True values of parameters in the covariance matrices 办 1" 二 
企1，屯igs 二 i^is,企2 and = are given by ^i^n = (/)i,22 = 1.0, ^1,12 = 

0.3, $2 =企1, = 0.64 and ip2S 二 0.36. The structural equation of the 
between-groups is linear, and the structural equation of the within-groups is 
nonlinear with an intersection term. For each of the 100 replications, three 
samples with different sample sizes are generated. Specifically, the first 
sample is generated with N 二 1000, G = 1 5 0 , = •. •二 N蘭=5，N皿= 
.*. = A îso 二 10; the second sample is generated with N = 1500, G = 
200, Ni = - = N iqo = 5, A îoi = • • • = Â2oo = 10; and the third sample 
is generated with N = 2000, G : 300, N^ =…=A ^ 2 o o 二 5, iV2oi = •..= 

Â 300 = 10. 
To give a sensitivity analysis about the prior inputs of the hyperparam-

eters in the prior distributions, two types of prior inputs given below are 
considered. 
Prior I: The mean vectors, W q , A q i ^ a； = 二 A q i a； , and Ao2fc，are 
taken as the true values of the corresponding parameters, the covariance 
matrices, So,丑015A；=丑ou,丑&"a；=付Su, and H02A；, are equal to iden-
tity matrices of appropriate orders, a^igk = ot̂ ik 二 oĉ igSk = o^oia = «02/c = 

= 15, I^Qigk = 0Qlk = PoigSk = PoiSk 二 9，and /?02/c 二 ^02Sk = 5; 
— Roi = Ro2 = 3.OJ2, and poig = poi = P02 = 6. 

Prior II: The mean vectors, txo, Agî fc = Aqu, Agi^^ = Aqî , and AQ2k 
are taken as two times of the true values of the corresponding param-
eters, the covariance matrices, Sq, ifoi^fc = H q u , -f̂ oî A； ~ ^^oik^ and 
Ho2k, are equal to four times of identity matrices of appropriate orders. 
OiQlgk = Oi0igSk = O^02k — CyQ26k = 15, Poigk 二 PoigSk = 19，Po2k = f^Q26k = 11， 
Pole, = A)i, and po2 are equal to four times of the values given in Prior I, 
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while the other hyperparameters values are the same as those given in Prior 
1. 

Four competing models are considered. A single-level SEM denoted by 
Ml is given by 
Ml : = Aa;, + £“ and r^ = + + + 氏，i = l , … 具 

Three two-level SEMs with the same measurement equation as Mq but 
different structural equations given below are considered. For g = 1,…,G 
and i = 1，... , Ng, 

M2 ： Vigi = Jll^lgil + 71265^2 + ^Igi, 
V2g = 721+ 722652 + 723651^2^2 + 

M3 ： Tjigi = 7l 16.9̂ 1 + 7126,9̂ 2 + ^Igi； 

mg 二 721$2gl + 722̂ 2̂ 2 + 各2g� 
Ma ： rjigi = Jllg^lgil + 他、i2 + Tisf Iffil + 知 ffi, 

mg 二 + 722$2g2 + + � . 

Ly measure for model selection 
The mean values of the Ly measures and the calibration summaries are given 
in Table 4.1, where mean(Lo.5) denotes the mean value of the Ly measure 
with V — 0.5, /io.5, SDo.5, and 95% HPD denote the mean, the standard 
deviation, and the 95% HPD interval of the calibration distribution of the 
corresponding model with v = 0.5, respectively. From this table, we see that 
the values of /ig.s corresponding to Mi, M2, and M3 are larger than zero, 
and the 95% HPD intervals corresponding to these three models are far 
apart from zero. Hence we conclude that Mq performs better than Mi, M2, 
and Ms under each case. However, for M4, /io.s value is relatively close to 
zero, and the 95% HPD interval includes zero under each case. Therefore, 
we conclude that the performances of models Mq and M4 are similar under 
each case. According to the parsimonious principle, the simpler model 
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Mo is selected. Besides, when sample size increases, the centers of the 
calibration distributions of Mi, M2, and M3 become further apart from 
zero. While the center of the calibration distribution of M4 changes little. 
The estimated calibration distributions, estimated under Prior I via kernel 
density estimation method described in Section 3.4, are presented in Figure 
4.1(a) to Figure 4.1(c). Figures corresponding to Prior II are similar and 
hence not presented. From these figures, the calibration distribution of M4 
is centered at zero under each case, while the others are far apart from zero. 
Hence we get the same conclusion as before. From the above discussion, 
Mq is selected under each given type of prior inputs and sample size, thus 
it seems that the Ly measure is rather robust to prior inputs. 
Bayes factor for model selection 
In this section, the logarithm Bayes factors for comparing the above mod-
els are computed via the path sampling procedure. In applying the path 
sampling, an important step is to find a good linking model to link the 
competing models. In this simulation study, the linking model for Mq and 
Ml is given by 
Vgi 二 (1 — t)Vg + AiUJigi + eigi, TJigi Ju^lgil "h + Il3^lgililgi2 + ^Igi^ 
Vg = Ui- A2UJ2g + r]2y 二 72165I + 722̂ 2̂ 2 + hg-
The linking models for Mq and M � f o r c = 2,3,4, have the same measure-
ment equation as MQ but different structural equations given as follows: 

M20 •'nigi = In^lgil + 712(102 + (1 — t)jizilgililgi2 + ^Igi, 
V2g = 721C25I + 722652 + i723S2gl^2ff2 + 如 p 

Mso :mgi 二 + l U “ i 2 + (1 - + ^Igi, 
mg 二 l2\^2g\ + l22^2g2 + 

Mm -Vlgi = lll^lgil + 7l26ffz2 + luilgil^\gi2 + hgi, 
V2g = 721C25I + 7226^2 + S2g-

Clearly, for c = 1 , . . . ,4, when 力=0, Mtd) reduces to Mq； whilst when t = 1, 
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Mtco reduces to M � B y differentiating the complete-data log-likelihood 
functions of these four linking models, we get 

G N, 

仏 10 幻化》(Vgi 一（1 — - Al̂U；!̂ ), 
9= 

G 

Uu. 二 — y 
.9 二 

G 

+ 
9= 

G 

Uu. 二 — y 

,9 
G 

Ng 

^ Vlgi — 7 1 1 6 5 ^ 1 — Il2i\gi2 — ( 1 一 力)713(1.9《1?1.9?:2 
- 1 

”2g — 721 ̂ 2.91 一 722^2^2 — 

'0^2(7236516^2)"^ ‘ 

Vlgi - 7ll6.9il 一 71265^2 - (1 -
”2g - l2\i2g\ —— 722^^2 — ^723^^1 

5=1 
Consequently, log • • • , log B40 can be obtained based on the above 

differentiations (see Lee, 2007, chap. 5). Results for this simulation study 
are given in Table 4.2. According to this table, log B ô for c = 1,…，4 are 
all negative. Therefore, based on the interpretation of logarithm of Bayes 
factor (Kass and Raftery, 1995), M � i s selected under each case. 

4.5 A Real Example 
In this part, a real example discussed in Lee (2007, chap. 9) is analyzed. 
Here, we focus on model selection with the L” measure. A brief introduction 
of the application is given. The Accelerated Schools for Quality Education 
(ASQE) Project is a huge project which was conducted for helping schools 
to achieve an internal cultural change in order to be self-reliant in attaining 
school-based goals in self-improvement. In this section, we focus on the 
particular issue about the causal relationships among the school values in-
ventory, teachers job satisfaction, and their empowerment in identifying and 
solving the schools problems. Relationships among these latent variables at 
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the school level and the teacher level are important in the cultivation of their 
own and their peers skills in improving their teaching skills and practice. 
Based on the proposed two-level SEM that incorporates the effects of the 
between-groups (school level) latent variables to the within-groups (teacher 
level) latent variables, we can assess precise interrelationships among the 
latent variables in both levels. To save space, we only present our results 
based on analyses of the data that were obtained from September 1998 to 
August 1999. The data set is hierarchically structured with n = 1555 teach-
ers nested in G = 50 schools. The data set is unbalanced with values of Ng 
ranged from 14 to 47. Three manifest variables (relating to questions: 'I 
proudly introduce my school as a worth-while working place to my friends'; 
'I find that my attitude of value is close to my schools attitude of value'; and 
'I can fully utilize my potentials in my school w o r k . ' ) y灿 and are 
taken as indicators for the latent factor, ‘job satisfaction.' These variables 
are measured via a 7-point scale. For brevity, they are treated as continu-
ous. The manifest variables 办4, and y洲 for the latent variable, 'school 
value inventory' are: (1) participation and collaboration, (2) collegiality, 
and (3) communication and consensus, which are respectively measured by 
the averages of seven, six, and ten items in the questionnaire. The manifest 
variables '彻，and '"沖 for the latent factor, 'teachers empowerment' are: 
(1) decision making, (2) self efficacy, and (3) self autonomy, which are mea-
sured by the averages of four, four, and five items in the questionnaire. The 
sample means and standard deviations of the manifest variables are 4.139, 
4.553, 4.487, 2.406, 3.171, 3.468, 0.534, 0.381，0.601 and 1.371, 1.187，1.181, 
0.848, 0.763, 0.728，0.499，0.486，0.490, respectively. Six two-level SEMs 
(Mo, • • • , Ms) with nine manifest variables and three latent variables are 
considered in this example. They have the same between-groups model, 
and the same within-groups measurement equation, but different within-
groups structural equations. Specifically, a factor analysis model for the 
between-groups model is considered. Three latent variables, 'job satisfac-
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tion, CJ2.91', ‘schools value inventory, 0；2购，and 'teachers empowerment, uj2g3‘ 
are considered in this factor analysis model. These latent factors are al-
lowed to be correlated, and uj2g = �̂̂[0，少2]. Similar as 
discussed in Lee (2007), we consider the following common structure for 
the factor loading matrix: 

‘1.0* 入2,21 As,31 0,0* 0.0* 0.0* 0.0* 0.0* 0.0* ‘ 
0 . 0 * 0 . 0 * 0 . 0 * 1 . 0 * 入2，52 A2,62 0 . 0 * 0 . 0 * 0 . 0 * 

�0.0* 0.0* 0.0* 0.0* 0.0* 0.0* 1 . 0 * 入2，83 A2,93 , 
where the elements with asterisks are fixed parameters. For the within-
groups model at the teachers level, we also use the same factor loading 
structure of A2 for Ai (with unknown elements denoted by Ai力•) to relate 
the latent factors to the manifest variables. Again, there are three latent 
factors, Tjgi, ^gii, and (g仏 in the within-groups model. Similarly, based 
on the meaning of the corresponding questions, interpretations of r]gi, f^ i , 
and (gi2, are 'job satisfaction', 'schools value inventory', and 'teachers em-
powerment' that are directly related to the teachers. The variances and 
covariance of《州，and are given by (̂ 1,11, 22 and <̂ 1,12, respectively. 
As ‘job satisfaction' of the teachers is an important factor in education, it is 
important to investigate its relationships with the other latent factors. The 
within-groups structural equations for the six models are given as follows: 

rjgi 二 7lC.9il + l2^gi2 + 74^2^1 + lb^2g2 + l6^2g3 + ^gi： Mo； : % 
Ml : : % 
M2 : :Vg 
M3 : : % 
M4 : : 
Ms : :如 

乂5” 

-76�253 + 
)'iigi\igi2 + 7狗 gl + 75^2.92 + 76^2.93 + 

+ 75^252^2^3 + 
In this example, a Bayesian approach is used to obtain the estimates of 
the unknown parameters. Ly measure and Bayes factor are applied for 
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model selection. L^ measures for the six models are: Lq_^{Mq) = 8549.997, 
Lo.5(MI) = 9745.978, L “ M 2 ) 二 8500.443, L�.5(M3) = 12540.29, Lo.,{M,)= 
8407.755, and = 8471.401. From these results, M4 has the small-
est Lv measure. Therefore M4 is selected. To estimate the calibration 
distributions, 100 pseudo data sets generated from M4 are used. The 
calibration summaries are given in Table 4.5, and the estimates of the 
calibration distributions are presented in Figure 4.3. Based on these re-
suits, M4 is also selected. Logarithm Bayes factors are log Bqi 二 882.31, 

= 240.59, l o g ^ s = 245.43, l o g ^ 4 = -4.018, l o g ^ 5 = 一2.832, 
and logB54 = —1.187 (see Lee, 2007, chap. 9). Based on the values of 
logarithms of Bayes factor, M4 is selected, which agree with our conclusion 
by using the Ly measure. 

4.6 Discussion 
In this chapter, we applied the Ly measure to model selection of two-level 
nonlinear SEMs. From the numerical studies, Ly measure and Bayes factor 
can achieve the same conclusion for model selection. However, compared 
with Bayes factor, the computation of the L” measure is much simpler and 
faster. Besides, with the calibration distribution, L^ measure avoids the 
disadvantage of criterion-based method for model selection, that is when 
the difference of criterion values between two competing models is very 
small, we cannot decide which one is better. Moreover, the value v can 
vary from zero to one, which makes the Ly measure more flexible for model 
selection. Therefore, L^ measure is a better alternative method for model 
selection in the analysis of hierarchical data. 
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Table 4.1: Mean values of the Ly measure and calibration Summaries for Simulation Study 

Prior Sample size Model mean(Lo.5) "("0.5) SDiDo.3) 95% HPD 

Mo 18037.049 - - -

Ml 20379.092 2342.043 409.974 (1573.234, 3066.244) 

N= =1000 M2 18585.459 548.410 133.428 (315.598, 837.713) 

M3 18574.902 537.854 136.609 (331.680, 856.649) 

M4 18040.594 3.545 54.883 (-97.074, 111.106) 

Mo 27104.910 - - -

Ml 30691.829 3586.919 471.146 (2746.449, 4566.627) 

Prior I N-=1500 M-2 27885.636 780.726 174.418 (478.045, 1135.086) 

Ms 27887.252 782.342 180.206 (379.828, 1142.793) 

M4 27108.927 4.017 79.882 (-123.440，144.897) 

Mo 36066.012 - - -

Ml 41063.885 4997.873 655.524 (3723.356, 6024.570) 

N= =2000 M2 37172.099 1106.087 268.667 (570.621, 1602.051) 

M3 37185.838 1119.826 268.117 (622.727, 1613.824) 

M4 36054.359 -11.653 94.785 (-185.301, 153.191) 

Mo 18037.049 - - -

Ml 20810.895 2773.847 406.668 (2019.064, 3529.070) 

N= =1000 M2 18585.459 548.410 133.428 (315.598, 837.713) 

M, 18574.902 537.854 136.609 (331.680, 856.649) 

M4 18040.594 3.545 54.883 (-97.074, 111.106) 

Mo 29491.332 - - -

Ml 31122.734 1631.401 450.888 (727.012, 2412.766) 

Prior II N= =1500 M2 30256.928 765.596 161.661 (500.773，1142.496) 

M3 30271.349 780.016 166.609 (513.664, 1115.918) 

M4 29489.946 -1.386 73.578 (-123.754, 137.684) 

Mo 38544.984 - - -

Ml 41501.122 2956.138 636.520 (1789.012, 4003.023) 

N-=2000 Ms 39638.304 1093.320 261.839 (507.750, 1551.527) 

M3 39660.264 1115.280 258.207 (643.898, 1601.887) 

M4 38527.284 -17.700 76.920 (-143.895, 147.313) 
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Table 4.2: Logarithm Bayes factor for simulation study 

Prior Logarithm BF n 二 150 n=300 n=600 

Type I log Bio -1709.67 -2488.41 -3336.19 

log B20 -28.34 -38.56 -41.87 

log B30 -26.28 -36.33 -39.84 

log 040 -2.06 -2.02 -1.75 

Type II log Bio -1706.34 -2481.56 -3329.67 

log B20 -27.63 -37.87 -39.97 

log B30 -25.75 -35.35 -38.98 

log B40 -1.47 -1.63 -1.31 

82 



Tabic 4.3: The Bayesian estimates for within-groups model under accurate prior inputs 

n 二 1000 71 - 1500 n = 2000 

Para TRUE mean RMS BIAS mean RMS BIAS mean RMS BIAS 

•̂ 1,21 0.800 0.804 0.032 0.004 0.798 0.022 0.002 0.802 0.025 0.002 

AI’31 0.800 0.804 0.027 0.004 0.803 0.024 0.003 0.803 0.024 0.003 

<̂ 1,52 0.800 0.803 0.037 0.003 0.805 0.036 0.005 0.801 0.025 0.001 

AI，62 0.800 0.802 0.045 0.002 0.803 0.031 0.003 0.804 0.030 0.004 

AI’83 0.800 0.801 0.038 0.001 0.808 0.035 0.008 0.803 0.031 0.003 

入1’93 0.800 0.802 0.037 0.002 0.804 0.035 0.004 0.800 0.029 0.000 

<̂ 1,11 1.000 0.991 0.085 0.009 0.984 0.059 0.016 0.991 0.060 0.009 

01,12 0.300 0.302 0.039 0.002 0.290 0.039 0.010 0.308 0.033 0.008 

01,22 1.000 0.997 0.072 0.003 0.986 0.070 0.014 1.005 0.063 0.005 

'01 el 0.640 0.640 0.042 0.000 0.639 0.042 0.001 0.642 0.037 0.002 

0.640 0.637 0.045 0.003 0.637 0.028 0.003 0.636 0.030 0.004 

功 lf.3 0.640 0.637 0.042 0.003 0.632 0.027 0.008 0.641 0.028 0.001 

^164 0.640 0.640 0.000 0.000 0.640 0.000 0.000 0.640 0.000 0.000 

0.640 0.640 0.035 0.000 0.638 0.030 0.002 0.636 0.027 0.004 

0.640 0.638 0.035 0.002 0.640 0.032 0.000 0.639 0.026 0.001 

0.640 0.640 0.000 0.000 0.640 0.000 0.000 0.640 0.000 0.000 

^leS 0.640 0.637 0.040 0.003 0.639 0.030 0.001 0.638 0.025 0.002 

V'le9 0.640 0.637 0.042 0.003 0.641 0.031 0.001 0.643 0.029 0.003 

As 0.640 0.621 0.056 0.019 0.643 0.049 0.003 0.628 0.040 0.012 

7ll 0.600 0.604 0.051 0.004 0.602 0.041 0.002 0.605 0.035 0.005 

712 0.600 0.608 0.049 0.008 0.606 0.041 0.006 0.602 0.037 0.002 

713 -0.400 -0.400 0.042 0.000 "0.397 0.039 0.003 -0.398 0.040 0.002 
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Table 4.4: The Bayesian estimates for between-groups model under accurate prior inputs 

n = 1 0 0 0 n = 1500 
n 二 2 0 0 0 

Para TRUE mean RMS BIAS mean RMS BIAS mean RMS BIAS 

•^2,21 0 . 8 0 0 0.813 0 . 1 0 0 0.013 0.829 0.087 0.029 0 . 8 1 2 0.065 0 . 0 1 2 

入2，31 0 . 8 0 0 0.824 0.095 0.024 0.817 0.085 0.017 0 . 8 0 8 0.074 0 . 0 0 8 

入2’52 0 . 8 0 0 0 . 8 1 6 0 . 0 8 1 0 . 0 1 6 0.807 0.073 0.007 0.799 0.053 0 . 0 0 1 

入2，62 0 . 8 0 0 0.798 0.085 0 . 0 0 2 0.794 0.074 0.006 0.794 0.057 0.006 

入2’83 0.800 0.798 0.077 0.002 0.804 0.059 0.004 0.797 0.054 0.003 

入2，93 0 . 8 0 0 0.806 0 . 0 8 2 0.006 0.800 0.064 0.000 0.795 0.063 0.005 

0.360 0.366 0.047 0.006 0.356 0.047 0.004 0.355 0.038 0.005 

0.360 0.349 0.044 0.011 0.356 0.041 0.004 0.360 0.038 0.000 

功2e3 0.360 0.343 0.050 0.017 0.343 0.044 0.017 0.351 0.038 0.009 

0.360 0.355 0.044 0.005 0.360 0.051 0.000 0.359 0.051 0.001 

2̂65 0.360 0.359 0.043 0.001 0.358 0.042 0.002 0.359 0.036 0.001 

0.360 0.355 0.040 0.005 0.362 0.038 0.002 0.359 0.038 0.001 

'02e7 0.360 0.351 0.045 0.009 0.353 0.044 0.007 0.358 0.043 0.002 

'02e8 0.360 0.364 0.044 0.004 0.358 0.039 0.002 0.360 0.038 ； 0 . 0 0 0 

0.360 0.357 0.042 0.003 0.360 0.050 0 . 0 0 0 0.358 0.043 0 . 0 0 2 

i>25 0.360 0.377 0.048 0.017 0.368 0.045 0.008 0.367 0.048 0.007 

02,11 1.000 0.956 0.167 0.044 0.981 0.143 0.019 0.991 0.107 0.009 

02 ,12 0.300 0.272 0.107 0.028 0.284 0.105 0.016 0.297 0 . 0 8 0 0.003 

02 ,22 1.000 1.019 0.185 0.019 1.000 0.148 0 . 0 0 0 1.025 0.135 0.025 

721 0.600 0.547 0.122 0.053 0.564 0.100 0.036 0.597 0.078 0.003 

722 -0.600 -0.553 0.100 0.047 -0.568 0.088 0.032 -0.583 0.081 0.017 

fh 0.000 -0.001 0.102 0.001 -0.006 0.077 0.006 0.005 0.075 0.005 

0.000 0.004 0.078 0.004 0.003 0.068 0.003 0.009 0.067 0.009 

0.000 -0.003 0.089 0.003 -0.008 0.074 0 . 0 0 8 0.002 0.061 0.002 

fM 0.000 -0.008 0.093 0.008 0.007 0.085 0.007 0.004 0.070 0.004 

0.000 -0.013 0.085 0.013 0.005 0.066 0.005 -0.001 0.057 0.001 

IH 0.000 -0.006 0.081 0.006 -0.001 0.077 0.001 -0.003 0.057 0.003 

0.000 0.005 0.107 0.005 -0.002 0.087 0.002 0.006 0.071 0.006 

/切 0.000 -0.007 0.087 0.007 -0.002 0.075 0.002 0.008 0.057 0.008 

0.000 -0.005 0.091 0.005 0.003 0.075 0.003 -0.000 0.061 0.000 
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Table 4.5: Calibration summaries for real example 

Model SD{Do.5) 95% HPD 

Mo 119.149 107.884 (-33.307, 358.124) 

Ml 4412.300 320.986 (3857.586, 5108.685) 

M2 118.533 68.006 (-8.213，228.110) 

Ms 4350.957 318.336 (3820.036, 5005.845) 

Ms 22.309 37.425 (-57.704, 88.144) 
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(c) N - 2 0 0 0 

Figure 4.1: Calibration distributions under Prior I 
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(b) N=1500 

CaHbrat ion d is t r ibut ions for s imulat ion study 

(a) N^IOOO 

PL3 
PL4 

PL1 
PL2 



Calibration distributions for s imulat ion »tuc)y 

(a) N^IOOO 
Calibration distributions for simulation stu<ly 

(b) N二 1500 
Calibration distributions for simulation study 

(c) N=2000 

Figure 4.2: Calibration distributions under Prior II 
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Calibration distributions for real example 

Figure 4.3: Example 2 
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Chapter 5 
Ly Measure for Finite Mixture 
Structural Equation Models 

5.1 Introduction 
As mentioned in Chapter 4，heterogeneity of population is inevitable and 
is an important concern. In such cases, the observations may exhibit two 
possible kinds of heterogeneity. One kind of heterogeneous data, which has 
been discussed in Chapter 4, is drawn from a number of different groups 
(clusters) with a known hierarchical structure. The other kind is mixture 
data, in which the observations come from K populations with different 
distributions, and no information is available on which of the K popula-
tions that an individual observation belongs to. To analyze this kind of 
data, a finite mixture model (see Redner and Walker, 1984; Titterington 
et al., 1985) has been developed. In finite mixture models, K can be known 
or unknown. When K is known, the method of moments (Lindsay and 
Basak, 1993), the Bayesian approach (Diebolt and Robert, 1994; Robert, 
1996; Lee, 2007), and the maximum likelihood (ML) method (Hathaway, 
1985) can be used for the estimation of the model. When K is unknown, 
it becomes a difficult problem. To deal with this problem, Richardson and 
Green (1997) proposed a full Bayesian analysis on the basis of the reversible 
jump MCMC method, and treated the number of components K as ran-
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dom; Lee and Song (2002, 2003a) and Song and Lee (2007, 2008) proposed 
a Bayesian approach for the analysis of finite mixture structural equation 
models (SEMs), and treated the problem of selecting the number of com-
ponents as a model selection problem. Furthermore, they developed Bayes 
factor as a statistic for model selection. As we have discussed in previ-
ous chapters, Bayes factor has some advantages except for the difficulty in 
computation. Besides Bayes factor, deviance information criterion (DIG) is 
also a popular Bayesian method for model selection, and it can be obtained 
directly through WinBUGS for most of models. However, for mixture mod-
els, WinBUGs dose not produce the DIG values due to the reasons given 
by Celeux et al. (2006). Therefore, finding an efficient and simple method 
for model selection of mixture SEMs is important. 

In this chapter, the Ly measure is proposed for model selection of finite 
mixture SEMs with unknown number of components. Similar as discussed 
in Lee and Song (2003a), we treat the problem of selecting the number of 
components as a model selection problem. Furthermore, the calibration of 
the Ly measure is also discussed. As the closed forms of the Ly measure and 
the calibration distribution for mixture SEMs cannot be obtained, MCMC 
methods are applied to the estimation of the Ly measure and the calibration 
distribution. 

This chapter is organized as follows. In Section 5.2, a finite mixture 
of SEMs is defined. The Ly measure and its calibration distribution are 
discussed in Section 5.3. In Section 5.4, a simulation study is conducted 
to demonstrate the performance of the Ly measure for model selection of 
finite mixture SEMs. In Section 5.5, a real example is analyzed by using 
the Ly measure. A discussion is given in Section 5.6. 
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5.2 Model Description 
Suppose t/̂  is a p X 1 random vector corresponding to the 2th observation 
in a random sample of size n, and the distribution of y^ is given by the 
following probability density function: 

K 

f{y^\0) = ^ T^kfk{yi\uk, Ok),i (5.1) 
k=l 

where is a given integer, iTk is the unknown mixing proportion such that 
TTfc > 0 and TTi + • •. + ttk 二 1.0, fkiViluk, ^k) is the multivariate normal 
density function with an unknown mean vector Uk and a general covariance 
structure E^ 二 T,k{Ok) that depends on an unknown parameter vector Gk, 
and 6 is the parameter vector that contains all unknown parameters in tt̂, 
Uk, and Gk, k = 1’ … , K . 

Similar as Lee (2007, chap. 11), the following well-known LISREL type 
model (Joreskog and Sorbom, 1996) for the random vector ŷ  conditional on 
the kth component is considered. For the /^-component, the measurement 
equation of the model is given by 

= + Ak(^ki + eki, (5.2) 
where u^ is the mean vector, A^ is the p x q factor loading matrix, u^^i is 
a random vector of latent variables, and eki �iV[0,屯;is a random vector 
of residuals, where ^k is a diagonal matrix. It is assumed that uJki and eki 
are independent. Moreover, let u^ti = i l iV- The structural equation 
of the model, which describes the relationships among latent variables, is 
defined as 

rfkz 二 队”+ ^kiki + (5.3) 
where ry^ and “生 are 仍 x 1 and 必 x 1 subvectors of ujki respectively; 11̂  and 
Tk are unknown parameter matrices such that IT^i = {I - exists, 
and lllo/tl is independent of the elements in 11/̂ . Ski is a random vector 
of residuals that is independent of Let the distributions of “ and dk 
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be ^k] and ^sk]) respectively, where 屯仆 is a diagonal matrix. 
The parameter vector Ok in the A;-component contains all the unknown 
parameters in Â；, Ilfc, 屯狄，and 屯k The covariance structure of 
(^ki is given by 

S uk (5.4) 

The covariance structure for 2/i under the A:th component is ^ k i ^ k ) = 
+ 屯 k 

As the mixture model defined in (5.2) is invariant with respect to permu-
tation of labels k = 1，…,AT, adoption of an unique labeling for identifia-
bility is important. The method proposed in Roeder and Wasserman (1997) 
and Zhu and Lee (2001) is proposed to impose the ordering ui^i < … < uk^i 
for solving the label switching problem (jumping between the various la-
beling subspace), where is the first element of the mean vector Uk-
This method works well if < • . . < uk,i are well separated. However, if 
iii，i < • •. < uk,i are close to each other, it may not be able to eliminate the 
label switching, and may give bias results. Hence, it is important to find an 
appropriate identifiability constraint. Here, the random permutation sam-
pler that is developed by Friihwirth-Schnatter (2001) is applied to finding 
the suitable identifiability constraints. Moreover, for each k = 1, • • • , K, 
the structural parameters in the covariance matrix corresponding to 
the model defined by equations (5.2) and (5.3) are not identified. This 
problem is solved by the common method in structural equation modeling 
by fixing appropriate elements in A；；；, 11^, and/or at preassigned values 
that are chosen on problem-by-problem basis. For clear presentation of 
the Bayesian method, we assume that all the unknown parameters in the 
model are identified. Furthermore, inspired by many works in finite mix-
ture models, a group label ŵ  for the zth observation y七 is considered as 
a latent allocation variable, and is assumed independently drawn from the 
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following distribution: 
p{wi = k) = TTk^ for A: = 1，...，K. (5.5) 

We treat ŵ  as a categorical variable, and to apply L^ measure to the 
proposed mixture SEMs, a new vector w* is introduced. Specifically, w* 二 
(w*i,…，w*^)^, and for k = 1. 

< = ： , . (5.6) 

We denote the proposed model by M. For convenience, let = {vt^,…， 
y^^) be the matrix of observed data, where y f^ = {yn, • • • , yipY{i = 
1,...，n) is the ith column of ！̂。“，and = ( y ;印’… w h i c h 
has the same distribution with be the replicated data, where 二 
("r严，…，Vil̂ Y• Let f t 二（tJi,…,cJn) be the matrix of latent variables, 
fii and fl2 be the submatrices of f t corresponding to rj and ‘，respectively. 
Let W = (wi,…，Wn) be the observation of the latent allocation vari-
able, where ŵ  G {1，…,K}. Furthermore, let W* = (w*, • • • , w*), and 

二 (w厂叩,...，wjjrep) be the replication which has the same distribu-
tion with W\ 

5.3 Ly Measure for Finite Mixture SEMs 
5.3.1 Definition of the L‘�Measure 
For the proposed mixture model, there are two important issues. One is 
prediction, and the other is classification. Therefore, two measures are 
considered for the proposed mixture SEMs. First, we propose a measure 
that considers the accuracy of the prediction. The L” measure for the 
proposed model is defined as follows: 

= ^ M)) + 咖产 -n；)】 (y产 -
i^l 

(5.7) 
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where = M), in which the conditional expectation is taken 
with respect to the predicted posterior distribution , M) defined 
by 

K 

Therefore, the conditional expectation fi^ is given as follows: 

(5.8) 

K 

k—l 
=E E[y?P\e,‘w”M) 

(5.9) 
and 

e., w, = k,M) = Uk + Akr^iU-j^Tk^i,,) + Xkitki, 
where A/̂ ^̂  and A权 are submatrices of hk corresponding to ？7 and re-
spectively. For the conditional variance of we have 

\ / a r ( 2 / n Y - ’ M ) 

=尉 ( 2 / 7 ) ( 2 / 7广 | 1 " � ' �M } - £；(2/7|1^�6�M)E"(?/nr'''，Mf, 
similarly, we can get 

=E 
=E 

0’e’W,广,M VM2/:’，$,，w”M): 
(5.10) 

+ 五 
( 9 ， 己 ， 似 

E[y?P\e,t�v^i,M)E[y?P\e,ti,w.t,M) T 

and 

沒 , = M ) = + 屯 ( 5 . 1 1 ) 
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Now, we consider the accuracy of classification. As the higher the ac-
curacy of classification, the lower the rate of misclassification. Therefore, 
instead of considering the accuracy of the classification, we consider the loss 
of misclassification. Again, the Ly measure is applied, and it can be defined 
by 

( ] / a r ( w r 印 M ) ) + — 一 tA 
(5.12) 

where fx* = E(w厂p 

and for /i： = 1, • • 
M) - ( • � Y•，AO,… -obs \T 

*rep ik M) - p(w,说 Yobs ]\/r\ —丄” Y - , M) 二 p{w-'P == M) 
= J 二 M叫， k̂, i ^ o “ ， M � d u k d e k ’ . 

(5.13) 

where - 0 ,， M ) = After obtaining the 
conditional expectation, the A:th diagonal element of the conditional covari-
ance matrix M) can be obtained easily as: Var{yjYk^\Y 'obs 
M ) = 认 叩 = - = To calculate the 
measure defined by equation (5.12), w* is replaced by the Bayesian esti-
mates, we will discuss it later. 

Combine equations (5.7) and (5.12), Ly measure for the proposed mix-
ture model is given by 

M ) = ^ M ) ) + 咖广—⑷厂(衫广— / x 
i = l 

+ ^ [tr(Vrzr(w:，:r-，M)) + v(w: 一 — M*) 
i=l 

(5.14) 
From the above discussion, the most important issue in calculating the L^ 
measure is to simulate observations from the joint posterior distribution 

obs �T / 八.obs 
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，M). According to the definition of the model, it is impos-
sible to get a closed form of this posterior distribution. Therefore, MCMC 
methods are used. 

5.3.2 Computation of the Ly Measure 
Suppose ⑷；r = 1 ’ . . . i s an MCMC sequence generated 
fromp(0, W^ M). Based on the posterior observations, the Bayesian 
estimation of the unknown parameters, latent variables, and the allocation 
variables of the proposed mixture model can be obtained, and then the 
Ly measure can be easily computed. Specifically, for the proposed finite 
mixture SEMs, L” measure can be calculated as: 

uyobs, M) = J2 [ t r(私)+ V{yf' - —反 

i=l 
n (5.15) 

T ‘ 

In the first summation. 
- 1 V^ (r )r 

1 R 
R A (r) n 

fc(�\ O / c � 少 ⑷（八 A;� tA 0A;(， 

T 

、T 
+ 中 

where /c(” = w,?), and 
�l ;p(r) Ar) , A( 
丨 i f c �� A ;�i t八' In the second summation, 1 is a i^-dimensional vector with all elements be-

ing 1, P* = (Ki , . . • ^p IkV and = (^i , •. 
1 R 

=T^y^ 八wf") = k), and = 

‘ 

where for k — 1. K. 

Pzk 
1，if max(p*) = Plk ‘ 

R 0， otherwise. 
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Gibbs sampler algorithm (see Geman and Geman, 1984) is applied to 
generate observations required in computing the Ly measure. With current 
values 没…)，f2(�and W…)，the Gibbs sampler is implemented as follows: 
Step (a) Generate ^^(厂+” from , M). 
Step (b) Generate 0(厂+1) from M). 
Step (c) Generate 0…+” from p(0|f2(〜）’Vr�+”’:K—,ykO. 

5.3.3 Full Conditional Distributions 
In this part, the full conditional distributions required in the Gibbs sampler 
are discussed. First, we consider the conditional distribution associated 
with Step (a). As w^'s are mutually independent, 

(5.16) 

and 

'p(yf ''6) 
二 k 7r)p(y产’ 

p{yt 約 

^kfkiyf s Uk.Ok) 
piyf k G) , 

(5.17) 

where fk{yf^\uk, Ok) is a multivariate normal density function with mean 
vector Uk and covariance matrix Ttk{9k). Therefore, the conditional dis-
tribution of W given Y— and 0 can be derived from (5.17). Drawing 
observations from this conditional distribution is straightforward. 

Now, we consider the conditional distribution M, W, 0) re-
quired in Step (b). As <jJi are mutually independent given ŵ  and 0，we 
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have 

n 
obs� 

oc = k)p{uj,\e,w, = k), (5.18) 
i=i 

where p(双产|0,cj“Wi = k) = Nluk + AfcO；” 屯於]and 二 k)全 
iV[0, Let Ck = ^Zk + A^^^^Afc, it can be shown that 

= k,yf” A 一 (5.19) 
Then the conditional distribution of W) can be obtained. 

Finally, we consider the conditional distribution $1, W). As 
discussed in Lee (2007, chap. 11), the conditional distribution of 6 given 
Y~ob�fi, and W is complicated, but the complexity can be reduced by 
assuming some mild conditions on the prior distribution of 0. Let u = 
(tti, 162,.. • , Uk), tt = (tti, 712, • • • , TT/̂ ), Qy be the vector that contains all 
the unknown parameters in {A/t, ^k] k — 1 , … , K } relating to the mea-
surement equation, and be the vector that contains all the unknown 
parameters in 地屯狄；/c = 1, • • • , K} relating the structural equa-
tion. The assumptions are given as follows: 
(1) Assume that the prior distributions of the mixing proportion tt is inde-
pendent of the prior distributions of u, Gy, and 0 � ‘ 
(2) Assume that the prior distribution of the mean vector u can be taken 
to be independent of the prior distributions of the parameters 6y and in 
the covariance structures. 
(3) Assume that the prior distributions of 9y and Q � are independent. 
From the above assumptions, we get 

二 p(7r, u, Oy, e^) = p{iT)p{u)p{ey)p{e^). 
Furthermore, from the definition of the model and the properties of 0，$1, 
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and W . we have 
V{W\0) =p(W|7r 

Therefore, the joint conditional distribution of 6 given W , H, and can 
be expressed as 

'obs� 

(5.20) 
p{0\w, n. Y � ^ = u, Oy, w, y 
�p{n)p{u)p{ey)pi6Mw. a 
OC Oy, W) 

Thus we can consider the marginal densities p(7r卜)，卜)，and 
separately. 

First, we consider the posterior distribution p(7r|.). Like many Bayesian 
analyses in SEMs, we take the symmetric Dirichlet distribution as the prior 
distribution of tt. Specifically, tt �D ( a , • • • , a) with probability density 
function given by 

( �n K a ) , TT K-

K where r(.) is the Gamma function. From equation (5.5), p{W\t:) o c Y l 

k=l then the conditional distribution for tt can be given by 

p(7r卜）oc p{7r)p{W TT] oc 
K n TT 

Uk+a 
k ‘ (5.21) 

where Uk is the total number of i such that ŵ  二 k. Thus, p (7r | . )= 
D{A + NI, • • • , A + UK). 

Now, we consider the posterior distributions of the parameters in u, Gy, 
and 0UJ. We use the same conjugate prior distributions as given in other 
Bayesian literature. Let Y f ^ and be the submatrices of Y"^^ and ft 
such that all the zth columns with Wi • k are deleted. Moreover, let ftik 
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and fl2k be the submatrices of flk related to rĵ  and respectively. Then 
it is natural to assume that for k h, {uk, Oyk^ O^k) and (ix/̂ , Oyh, O^h) are 
independent. Thus given W^ we have 

K (5.22) 
oc ']\p{uk)p{eyk)v{Ou^k)v{yt"\'^k. Gyk� 

So, we can treat the product in (5.22) separately with each k. To get 
the posterior distributions of the parameters involved in Uk, Oyk and 
{or k 二 1,…，IC, proper prior distributions are required. In this chapter, 
conjugate priors are used. Specifically, we consider the following conjugate 
prior distribution for Uk: 

p{uk) = iV[Wo,So:. 
For the parameters involved in Oyk, the following conjugate priors are con-
sidered: for j = 1,…， p , 

where Akj is the j t h row of A/.,如j is the jth. diagonal element of 屯k; 
Uq, Aokj,ao(k, /̂ Oek, and the positive definite matrices Sq and H^ykj are all 
given hyperparameters. By some derivations, the posterior distributions for 
them can be given by 

="[(So 1 + n j力 - i K屯� i ^ P f c + So-iixo), (So-1 + n , ^ - ^ ) -
and for j = 1 , . . . 

obs 
A 

Ukj 

E 
yobs 

E nk ‘ 

with 2 be the summation with respect to 
n 

those i such that ŵ  = k, and rik = liyu = ^ykj = + 
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• Oykj r � � T 1  ^Oek + [YkjYf.j - ^kjYykj 
Y kj = —叫j)的 and I3,kj = 

^ykj + ^Okj^^Oykj^Okj.. 
For the parameters involved in G此 we consider the following prior dis-

tributions: 

and for j = Qi 
p{A^kj\'^skj) - Pi'iPskj) “ Gamma{aQSk,l^o5k)^ 

where A^^ = (11左，1\), A^kj is the j t h row of A^^, and ipskj is the j t h 
element of "^sk] ^oukj^c^osk, Posk̂  A)，and the positive definite matrix Rq 
and Ho^kj are all given hyperparameters. With these prior distributions, 
we can get the posterior distributions of them as below by some derivations. 

= IWq,[n2k^lk + 丑 o"l，”'A; + PQ. 
and for j — Qi 

Au/fcj'IV f̂A ,̂ Qfe, — ^[^Skj^ Ipdkj^ojkj 
'^skjl^k^ y f ] - Gamma[n/2 + a^sk^Pdh 

where A战？ = + �k j =(丑0"」幻 + l̂ fcl̂广丄，and 
丄Ysk产ukj The above Pskj = PoSk + {^Ikj^ikj 

posterior distributions are the familiar normal, gamma, and wishart distri-
butions. Generating observations from them are simple. 

5.3.4 Calibration Distribution 
To define the calibration distribution, let Mc denote the candidate model 
under consideration, and Mt denote the true model. Furthermore, let 

Mc) denote the Ly measure of the candidate model Mc, and , 
Mt) denote the Ly measure of the true model Mt. Then given v, the differ-
ence of Ly measures between the models M � a n d Mt is defined as 

D双obs, Mc)三 Mc) — L j y � � � M t ) obs -obs (5.23) 
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Similar as discussed in previous chapters, to calibrate the L,̂  measure, we 
need to construct the marginal distribution of Mc), computed with 
respect to the prior predictive distribution of Y^^^ under the true model Mt: 

= J M t ) p { e \ M t ) d e , (5.24) 
where p{6\Mt) is proper prior distribution for 6 under the true model Mt. 
We denote the calibration distribution of the candidate model M^ by 

(5.25) 

After obtaining the calibration distribution P L � t h e mean the 
standard deviation SDy[Mc)^ and the highest probability density (HPD) 
interval of PLc can be obtained. As we can get a closed form of neither the 
Ly measure, nor the calibration distribution, MCMC methods are used to 
estimated them. Details can be found in Chapter 2. 

5.4 A Simulation Study 
Suppose the observations Y— are generated from a mixture SEM with 
two components defined by equations (5.1), (5.2), and (5.3). The loading 
matrices Ai and A2 are given by 

Af 二 A j = 

where the elements with asterisks are fixed at preassigned values. True 
values of the parameters in this model are given by: t t i 二 0.5,兀2 = 0.5, u i — 
Ox I9, U2 = 2 X I9, where I9 is a 9-dimensional vector with all elements 
being 1; A21 = A31 = A52 =入62 = Asa = A93 = 0.8, Ti 二 (0.5,0.5),Fz = 

(0.5,-0.5),屯 1 = diag(0.64),屯2 = d i ag (a36 ) ,功= d b ,如 = 1 . 0 , and 
= (k,22 = l.O,0fc,i2 = 0.3, = - 0 . 3 for k = 1,2. For convenience, 

we denote this two-component model by M � . T o evaluate the performance 
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of the Ly measure, three SEMs with different components will be considered 
as competing models. Let Mi, M3，and M4 be mixture SEMs with one, 
three, and four components, respectively. In this simulation study, two 
samples with n = 300 and 600 are considered, and 100 replications are 
conducted to estimate the calibration distribution for each sample. 

To give a rough analysis of the impact of prior inputs on model selection, 
two types of prior inputs, Prior I and Prior II’ are considered. 
Prior I: The means of the normal distributions are taken as the true values 
of the corresponding parameters, and the covariance matrices are taken as 
the identity matrices with corresponding dimensions; Rq equals 4 times of 
the identity matrix, and po = 7 in the Wishart distribution; aoefc = Oiosk = 5 
and fto.k = Po6k 二 8. 
Prior II: The means of the normal distributions are taken as zero, the 
covariance matrices are equal to four times of the identity matrices with 
appropriate dimensions; Rq equals 8 times of the identity matrix, and pQ = 
8 in the Wishart distribution; ao^k = cto6k — 10 and I3q法=(3嫩=10. 
Ly measure for model selection 
The mean values of the Ly measures and the summaries of the calibration 
distributions are given in Table 5.1, where mean(Lo.5) denotes the mean 
value of the Ly measure with v = 0.5，/xq.s, S'Dq.s, and 95% HPD denote the 
mean, the standard deviation, and the 95% HPD interval of the calibration 
distribution of the corresponding model with v = 0.5，respectively. From 
this table, we see that /io.5 and the 95% HPD interval corresponding to Mi 
are far apart from zero, so M2 performs much better than Mi under each 
case. However, for M3 and M4, /io.5 values are relatively close to zero, and 
zero is included in the 95% HPD intervals. Therefore, the performances 
of M2, M3, and M4 are similar. Based on the parsimonious principle, the 
simpler model M2 is selected. The calibration distributions under each 
given type of prior inputs and sample size are presented in Figure 5.1(a) 
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to Figure 5.2(b). From these figures, the calibration distributions of M3 
and M4 are centered at zero, while the calibration distribution of Mi is far 
apart from zero under each case. This gives the same conclusion as above. 
Bayes factor for model selection 
In computing Bayes factor through path sampling, finding a good linking 
model to link two competing models is an important step. An illustrate 
example is given as follows. Consider two models M2 and M3 in this simu-
lation study. These two models can be written as: 

2 

M2 :/(2/fi 沒，力 = 

fc二 1 3 

To apply path sampling in computing log B32, they are linked up by a path 
t G [0,1] as follows: 

Mt ： / ( t / f =[冗 1 + (1 — •obs 

+ [冗2 + (1 - t)a2n,]f2{yr\uk, S , ) + t u s M y r i u k . S , ) , 
where ai + a2 = 1. Clearly, when t = 1，Mt reduces to M3； when Z = 0, 
Mt reduces to M2 with = + â tTTs, k 二 1,2. A natural choice is 
afc = 1/2,A: = 1,2. With this linking model, logarithm Bayes factor can be 
estimated (see Chapter 2). 

The logarithm Bayes factors in this simulation study are given in Table 
5.2. From this table, the same model M2 is selected under each given prior 
inputs. 

5.5 A Real Example 
In this section, a small portion of the ICPSR data set collected in the 
project WORLD VALUES SURVEY 1981-1984 AND 1990-1993 (World 
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Value Study Group, ICPSR Version) is analyzed. As an illustration of the 
proposed method, only the data obtained from United Kingdom with a 
sample size 1484 are used. Eight variables (V116, V117, V180, V132, V96, 
V255,V254, and V252) in the original data set that related to respondents 
‘job’ and 'homelife' are taken as manifest variables in y. A description of 
these variables in the questionnaire is given in Appendix. After deleting 
the cases with missing entries, the sample size is 819. In fact, this data 
set has been analyzed by Lee (2007), they proposed mixture SEMs for this 
data set and applied Bayes factor to model selection. In this chapter, five 
mixture SEMs as discussed in Lee (2007) are considered, and Ly measure is 
used for model selection. Specifically, these models are denoted by Mk for 
A: = 1，…，5, where k denotes the number of components in Mk. For each 
component in these models, there are three latent variables which can be 
roughly interpreted as 'job satisfaction 77', 'homelife, and 'job attitude, 
f2，. Then these models can be defined by equations (5.1), (5.2), and (5.3), 
and the specification of the parameter matrices in the model formulation 
are given by 11 a： = 0, ^sk ='巾 6kJ"k = (7fc，i,7fc,2)， k̂ = diag('0H,... , 
and 

1.0* ^21 0.0* 0.0* 0.0* 0.0* 0.0* 0.0* 
0.0* 0.0* 1.0* A42 A52 0.0* 0.0* 0.0* ,少 

0.0* 0.0* 0.0* 0.0* 0.0* 1.0* A73 入83 

The elements in A^ with an asterisk are fixed for identification. To calculate 
Ly measure, MCMC methods are used. In this example, the inputs for the 
prior distribution of the unknown parameters are taken such that the means 
of the normal distributions are taken as the estimates of the corresponding 
parameters obtained by using noninformative prior inputs, the covariance 
matrices of the normal distributions are taken as the identity matrices with 
appropriate dimension; Rq equals 5 times of the identity matrix, and p = 5 
in the Wishart distribution; ÔfA； 二 = 6 and 3(kk 二 Posk = 6 in the 
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gamma distributions. The Ly measure for these five models are: 
Lo.5(Y^,MI) 二 34547.15, Lo‘5(Y^，M2) = 32368.39, 
Lo‘5(YO�M3) = 30323.69, = 30680.77, 
Lo‘5(y"6�•Ms) = 31061.87. 

Prom the results, the mixture model with three components has the smallest 
value of L^ measure. Therefore, M3 is selected based on L” measure. How-
ever, as discussed before, only considering the model with the smallest cri-
terion value may be misleading, thus calibration distribution is considered. 
To estimate the calibration distribution, 100 pseudo data sets are generated 
from p{Y\6^ M3)p(0)，where p{6) is the prior distribution of 9 with proper 
prior inputs. Through MCMC method, a sample of = 1, 2,4,5) 
can be obtained, and the calibration distributions of the four models are 
estimated with kernel density estimation methods. The calibration sum-
maries are given in Table 5.3. Prom this table, /io.sl^i) and /io.5(M2) are 
larger than zero, and the 95% HPD intervals of these two models are far 
apart from zero. Therefore, M3 performs much better than Mi and M2. 
However, /xo.5(M4) and are less than zero but relatively close to 
zero, and zero is included in the 95% HPD intervals of these two models. 
Hence, the performances of M3, M4 and M5 are similar. According to the 
parsimonious principle, the simpler model, M3, is selected. The calibration 
distributions for Mi, M2, M4, and M5 are presented in Figure 5.3. From this 
figure, M3 performs significantly better than Mi and M2, while the perfor-
mances of M3, M4，and M5 are similar. Thus the same conclusion as above 
can be obtained. This data set was analyzed by Lee (2007, chp. 11). They 
conducted model selection with Bayes factor. According to their result, M3 
is also selected as the best model among the five competing models. 
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5.6 Discussion 
In this chapter, Ly measure and the calibration distributions are applied to 
model selection of finite mixture SEMs. As for a mixture model, no infor-
mation about which component the individual belongs to，we consider not 
only the goodness-of-fit of the model, but also the classification accuracy in 
the Ly measure. Based on the numerical studies, our proposed Ly measure 
performs satisfactorily in model selection of mixture SEMs. The involved 
computation is easy and fast. 
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Table 5.1: Mean values of the Ly measure and calibration and calibration summaries for 

simulation study 

Prior Sample size Model mean(Lo.5) Mo.5 SDo.s 95% HPD 

M2 3157.436 - - -

n=300 
Ml 

Ms 
3325.981 

3155.765 

168.545 

-1.671 

78.274 

21.408 

(39.502, 307.358) 

(-44.355, 33.198) 

Type I 
M4 3159.633 2.198 22.583 (-45.667, 42.495) 

Type I 
M2 6246.697 - - -

n=600 
Ml 

M3 
6746.575 

6240.849 

499.877 

-5.848 

112.245 

9.705 

(264.720, 692.098) 

(-34.112, 9.453) 

M4 6238.067 -8.630 13.690 (-41.791，12.232) 

M2 3735.657 - - -

n 二 300 
Ml 

M3 

3822.117 

3742.335 

86.460 

6.678 

55.856 

5.487 

(1.987, 197.129) 

(-4.698, 17.288) 

Type II 
M4 3748.650 12.993 7.014 (1.658, 25.841) 

Type II M2 6898.080 - - -

n 二 600 
Ml 

M3 

7294.296 

6903.009 

396.217 

4.930 

109.127 

7.404 

(150.538, 574.789) 

(-9.959, 19.057) 

M4 6908.377 10.297 7.366 (-4.014, 24.985) 
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Table 5.2: Logarithm Bayes factor for simulation study 

Prior Logarithm Bayes factor n=300 n=600 

Type I log B21 116.1152 272.7424 

log B32 -0.0590 -1.1253 

log B43 -1.1631 -1.2890 

Type II log B21 76.8860 238.6673 

log B32 0.4207 -1.1253 

log B43 -0.4012 -0.2890 

Table 5.3: Calibration summaries for real example 

Model " 0 . 5 SDo.5 95% HPD 

Ml 3861.841 462.727 (2924.941, 4575.270) 

M2 1190.338 283.321 (643.688, 1708.400) 

M4 -4.170 157.924 (-384.711, 236.816) 

M5 -18.342 166.512 (-381.604, 252.348) 
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Calibration distributions for simulation study 

200 250 300 

(a) n二300 

Calibration distributions for simulation study 

100 200 400 500 600 700 

(b) n-600 

Figure 5.1: Calibration distributions for simulation study under Prior I 
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(b) n=600 

Figure 5.2: Calibration distributions for simulation study under Prior II 
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Calibration distributions for simulation study 
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Calibration distributions for real example 

Figure 5.3: Real Example 
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Chapter 6 

Conclusions and Further 

Developments 

6.1 Conclusions 
Structural equation models (SEMs) are widely used in behavioral, edu-
cational, medical and social sciences. In this thesis, we focus on model 
selection for four different kinds of SEMs. In Chapter 2, the Ly measure is 
used for model selection of nonlinear SEMs with continuous data, and from 
the illustrative examples, the performance of the Ly measure for nonlinear 
SEMs is pretty good. Discrete responses are often encountered in structural 
equation modeling due to the questionnaire design. Therefore, there is a 
need to propose SEMs with categorical data. Motivated by this problem, 
we further apply the Ly measure to nonlinear SEMs with mixed continuous 
and ordinal categorical data in Chapter 3. Moreover, in the analysis of 
data from behavioral, educational, medical and social science, heterogene-
ity is inevitable. To deal with heterogeneous data, multi-level SEMs and 
mixture SEMs are developed. Searching for a good model selection method 
for these two kinds of models becomes an important issue. Thus, in Chap-
ter 4, we propose the Ly measure for model selection of multi-level SEMs. 
Specifically, a two-level SEMs is presented as an example. In Chapter 5, 
the Ly measure is proposed for model selection of finite mixture SEMs. 

113 



Through all these chapters, MCMC methods are used to calculate the Ly 
measure, and kernel density estimation method is applied to estimate the 
calibration distributions. According to our analysis, the L” measure can be 
easily calculated after obtaining the Beyesian estimation of the unknown 
parameters and latent variables. We conduct simulation studies to demon-
strate the proposed methods in each of these chapters. For illustration, the 
developed methodologies are also applied to analyze some real data sets. 
Moreover, results of model selection based on the L” measure are compared 
with those based on Bayes factor (Kass and Raftery, 1995) and deviance 
information criterion (DIG) (Spiegelhalter et al,，2002). 

6.2 Discussion and Further Developments 
From the simulation studies, only considering the smallest value of the Ly 
measure may lead to misleading results in some circumstances. Especially 
when comparing two nested models, the full model may have a slightly 
smaller value than the alternative model. Therefore, calibration distribu-
tion and a parsimonious method are necessary. In this thesis, the mean, the 
standard deviance, and the HPD interval of the calibration distributions are 
considered. However, there are some other summaries that may be helpful 
for making decision about model selection. For example, the p-value of the 
calibration distribution. 

In this thesis, we take the value of v in Ly measure as 0.5, which gives 
equal weights to the departure of the ‘guess’ to the future values and to the 
observed values. However, as discussed in Ibrahim et al. (2001), changing 
the value of v gives more flexibility to the Ly measure in model selection. 
Therefore, selecting the value of v in model selection with the L̂； measure 
should be an important issue. We can try to find the optimal v in comparing 
different kinds of models. 

Moreover, according to the original definition of the Ly measure given 
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by Gelfand and Ghosh (1998)，different criterion can be obtained by using 
different loss function. In all the chapters, we applied the expected squared 
Euclidean distance (Ibrahim and Laud, 1994) as the loss function. That 
is because the computation of the Ly measure using this loss function is 
quite simple. However, as we discussed before, calibration distributions 
are important in using such a measure. As computing the calibration dis-
tributions is time consuming, and it requires proper prior distributions of 
the unknown parameters, there is a need to find a more efficient criterion 
which can produce better result. For example, Gelfand and Ghosh (1998) 
proposed a deviance version of the criterion by using log scoring loss notion. 
We can try to use this criterion as a statistic for model selection of SEMs, 
or we can find other criterions by using different loss functions. 

Based on our study, the Ly measure can be used to the problem of model 
selection for the hierarchical models with latent variables. In this thesis, 
we mainly consider the SEMs in which the response variables are normally 
distributed. However, in the application of SEMs, the variables may come 
from an exponential family (Song and Lee, 2007; Lee, 2007). Therefore, 
there is a need to propose the Ly measure for SEMs with data from expo-
nential family. Furthermore, incomplete or missing data are commonly en-
countered in practical applications. Basically, there are two kinds of missing 
data，ignorable missing and nonignorable missing. Rubin (1976) provided a 
classification system for missing data mechanisms and argued that missing 
data can be ignored under two conditions: missing completely at random 
(MCAR) and missing at random (MAR). Missing data are nonignorable in 
the sense that the missing values depend on themselves (Little and Rubin, 
1987). Thus, finding an appropriate missing mechanism based on the Ly 
measure is also an important issue in structural equation modeling. 
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Appendix 

V62 {Religious beliefs): 1, 2’ 3，4, 5. 
V96 {All things considered, how satisfied are you with your life as a whole 

these days?): 1, 2, 3，4, 5, 6, 7, 8, 9, 10 (from “Dissatisfied” to "Sat-
isfied"). 

V116 (Overall, how satisfied or dissatisfied are you with your job?): 1, 2, 
3，4’ 5, 6, 7, 8, 9, 10 (from "Dissatisfied" to “Satisfied”）. 

VI17 (How free are you to make decisions in your job?): 1, 2，3, 4, 5, 6’ 
7, 8, 9，10 (from "Not at all" to "A great deal"). 

VI32 (How satisfied are you with the financial situation of your house-
hold?): 1, 2, 3 ,4 ,5, 6 ,7 ,8，9 ,10 (from “Dissatisfied” to "Satisfied"). 

V179 (How often do you pray to God outside of religious services? Would 
you say ...): 1 (Often), 2 (Sometimes), 3 (Hardly ever), 4 (Only in 
times of crisis), 5 (Never). 

VI80 (Overall, how satisfied or dissatisfied are you with your home life?): 
1，2, 3, 4，5, 6, 7, 8, 9, 10 (from "Dissatisfied" to “Satisfied”）. 

V252 {Individual should take more respectively for providing for them-
selves) 1, 2, 3, 4, 5 ,6 ,7 ,8 ,9 ,10 {The state should take more respon-
sibility to ensure that everyone is provided for). 

V254 (Competition is good. It stimulates people to work hard and develop 
new ideas) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (It Competition is harmful, brings 
out the worst in perople). 
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V255 (In the long run, hard work usually brings a better life) 1’ 2，3, 4，5 
,6 ,7, 8, 9, 10 (Hard work doesn't generally brings success-it's more a 
matter of luck and connections). 
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