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Abstract of thesis entitled: 
Semiparametric Latent Variable Models with Bayesian P-splines 

Submitted by LU, Zhaohua 
for the degree of Doctor of Philosophy 
at The Chinese University of Hong Kong in Jiin 2010 

In medical, behavipral, and social-psychological sciences, latent 
variable models are useful in handling variables that cannot be 
directly measured by a single observed variable, but instead are as-
sessed through a number of observed variables. Traditional latent 
variable models are usually based on parametric assumptions on 
both relations between outcome and explanatory latent variables, 
and error distributions. In this thesis, semiparametric models with 
Bayesian P-splines are developed to relax these rigid assumptions. 

In the second part of the thesis, a latent variable model is pro-
posed to relax the first assumption, in which unknown additive 
functions of latent variables in the structural equation are modeled 
by Bayesian P-splines. The estimation of nonparametric functions 
is based on powerful Markov chain Monte Carlo (MCMC) algo-
rithm with block update scheme. A simulation study shows that 
the proposed method can handle much wider situation than tradi-
tional models. The proposed semiparametric latent variable model 
is applied to a study on osteoporosis prevention and control. Some 
interesting functional relations, which may be overlooked by tradi-
tional parametric latent variable models, are revealed. 

In the third part of the thesis, a transformation model is devel-



oped to relax the second assumption, which usually assumes the 
normality of observed variables and random errors. In our pro-
posed model, the nonnormal response variables are transformed to 
normal by unknown functions modeled with Bayesian P-splines. 
This semiparametric transformation model is shown to be applica-
ble to a wide range of statistical analysis. The model is applied to 
a study on the intervention treatment of polydrug use in which the 
traditional model assumption is violated because many observed 
variables exhibit serious departure from normality. 

In the fourth part of the thesis, the methodology developed in 
the third part is further extended to a varying coefficient model 
with latent variables. Varying coefficient model is a class of flex-
ible semiparametric models in which the effects of covariates are 
modeled dynamically by unspecified smooth functions. A transfor-
mation varying coefficient model can handle arbitrarily distributed 
dynamic data. .A simulation study shows that our proposed method 
performs well in the analysis of this complex model. 

In the last part of the thesis, we propose a finite mixture of vary-
ing coefficient models to analyze dynamic data with heterogeneity. 
A simulation study demonstrates that our proposed method can 
explore possible existence of different groups in a dynamic data, 
where in each group the dynamic influences of covariates on the 
response variables have different patterns. The proposed method 
is applied to a longitudinal study concerning the effectiveness of 
heroin treatment. . Distinct patterns of heroin use and treatment 
effect in different patient groups are identified. 
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摘要 

在医学，行为学和社会心理科学屮，潜变量模型常用于处理不能直接由单 

个观测变量测量的变量。这样的潜变量需要通过一系列的观测变量去测量。传 

统的潜变量模型通常会基于参数假设。参数假设包括：1.潜变量中的因变量和 

自变量之间的关系可以用一个己知的函数反映；2.随机误差服从正态分布。在 

这篇论文中，基于贝叶斯惩罚样条的半参数模型将用于放松这些参数的假设。 

论文的笫二部分提出可以放松第一种假设的潜变量模型。这种潜变量模型 

中的结构方程包含可加的潜变量的未知函数。这些未知函数可以用贝叶斯惩罚 

样条来逼近。我们用带有块更新（block-update)的马尔科夫链蒙特卡洛算法来 

估计这些非参数函数。这种模型被应用到一个关于预防骨质疏松症的研究中。 

在论文的第三部分，我们提出非参数变换模型放松第二种假设。在大多数 
‘ » . 

模型中，因变量的误差分布都被假定为正态。我们提出的模型只假设因变量在 

一个未知的变换之后满足一般模型中的正态假设。这种变换模型可以广泛应用 

于非正态数据的统计分析，并在对治疗滥用多种药物的研究中得到应用。 

,在论文的第四部分，第三部分提出的非参数变换方法被推广到带潜变量的 
t 

变系数模型中。变系数模型是一类灵活的半参数模型。自变量的系数可以是一 

个动态变化的未知函数。这种变系数变换模型可用于动态的非正态数据分析。 
等 

在论文的最后一部分，我们提出另一种统计模型来处理动态的非正态数 

据。在总体存在异质性的情况下，我们提出一个变系数的有限混合模型。模型 

能够分析由若干个子总体组成的数据，其中每一个子总体可用一个不同的变系 

数模型进行硏究。这个方法被应用于一个关于海洛因治疗效果的研究。 
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Chapter 

Introduction 

1.1 Bayesian P-splines 

Studying the relations between variables has always been an im-
portant topic in statistics literature. One useful model is the linear 
regression model (Searle, 1971)，which represents the relation be-
tween a response (outcome) variable y and a set of indicator (ex-
planatory) variables x = ( x i , . . . , t h r o u g h a linear equation: 

y = x ^ a + 6, (1.1) 

where a = ( a ! ’ . . . ， � ) �i s a vector of regression coefficients and e 
is a random error. Despite its simplicity and ease of use, the model 
is too restrictive because its linearity assumption may not be true 
in many practical applications. Nonlinear regression model (Seber 
and Wild, 2003) was introduced to relax such a rigid assumption, 
in which the relation between response and indicator variables can 
be expressed as: 

y = •， a ) + e ， （1.2) 

where ^ is a known nonlinear function which comes from theoretical 
derivation corresponding to some specific application backgrounds. 
For example, a logistic function can be used to model the growth 
pattern of soybean plants (Pinheiro and Bates，2000). Although 



modeling with nonlinear function 没(x, a ) may be supported by 
certain background theories, whether the model g{x, a ) fits the 
data well must be checked further after model fitting. Besides, 
such theoretical justifications do not always exist. To tackle these 
problems, nonparametric and semiparametric modeling techniques 
were developed for building a more flexible model, where ^(x, a ) 
is assumed to be unknown and to be determined by data. 

There can be little doubt that nonparametric modeling with var-
ious smoothing techniques has a very respectable place in statis-
tics. Approaches for nonparametric modeling include, but are not 
limited to smoothing splines (Green and Silverman, 1994), kernel 
methods with local polynomials (Fan and Gijbels，1996; Fan and 
Zhang, 1999), regression splines (Hastie and Tibshirani, 1990), and 
penalized splines (Ruppert et al., 2003). We follow a Bayesian ap-
proach because Bayesian analysis has several nice properties. First, 
useful prior information can be incorporated to produce more accu-
rate estimates. Second, more involved models can be analyzed by 
the Bayesian approach due to its related powerful sampling-based 
tools, such as the Markov chain Monte Carlo (MCMC) techniques 
(Geman and Geman, 1984; Chen et a l , 2000; Liu, 2008). Third, 
as compared with other approaches, the standard error estimates 
of unknown parameters and model comparison statistics can be 
easily obtained using the MCMC samples produced in the estima-
tion procedure. Finally, Bayesian approach does not rely on the 
large-sample asymptotic theory, thereby produces more reliable re-
sults even in situations with small sample size (Scheines et al., 
'1999; Dunson, 2000; Lee and Song, 2004). More recently, due to 
these nice features of the Bayesian approach, the development of 
Bayesian methodology for the estimation of smooth functions has 
become both extensive and fruitful; see, DiMatteo et al. (2001)， 
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Biller and Fahrmeir (2001), Behseta et al. (2005), Panagiotelis 
and Smith (2008)，among others. In particular, Bayesian P-splines 
(Berry et al., 2002; Lang and Brezger, 2004)，which is a Bayesian 
approach for penalized splines, is appealing because it can flexibly 
fit unknown smooth function using a large number of basis func-
tions with a simple penalty on differences between coefficients of 
adjacent basis functions, and simultaneously estimate smooth func-
tions and smoothing parameters. In this thesis, we further apply 
the Bayesian P-splines to latent variable models (LVMs), trans-
formation models, varying coefficient models, and mixture varying 
coefficient models, which all contain unknown functions that need 
to be estimated. 

1.2 Latent Variable Models (LVMs) 

LVMs generally refer to models with latent variables that are unob-
served or cannot be measured by a single observed variable. LVMs 
have been attracting much attention in the literature (Bollen, 1989; 
Bentler, 1995; Joreskog and Sorbom, 1996; Shi and Lee, 2000; Song 
and Lee, 2005; Lee, 2007, among others). Latent variables may be 
included in the rnodel for several reasons. First, latent variables can 
be used to characterize the correlation among observed variables. 
For example, in the analysis of longitudinal data with repeated 
measures using mixed effects models (see for example，Lindstrom 
and Bates, 1988), an individual specific latent variable (random ef-
fect) is used to model the correlation among the repeated measures 
of the same individual at different time points. Second, latent vari-
ables can stand for some attributes that are hard to be measured 
directly, for example, fear, ambition and satisfactory. 

Structural equation models (SEMs) are important members in 
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LVMs. One main goal of SEMs is to study the relations among 
latent variables. Therefore, SEMs are widely used in behavioral, 
educational, medical, psychological, and social researches. Clas-
sical SEMs such as LISREL (Joreskog and Sorbom, 1996) and 
EQS (Bentler, 1995) are based on linear structural equations, in 
which the relations among latent variables are expressed similarly 
to (1.1). Researchers later realized that adding nonlinear terms of 
latent variables to structural equations can improve the model fit-
ting (Kenny and Judd, 1984; Jaccard and Wan, 1995; Schumacker 
and Marcoulides, 1998; Lee and Zhu, 2002; Song and Lee, 2002; Lee 
and Song, 2003a). In these articles, the relations among latent vari-
ables are expressed similarly to (1.2), in which the nonlinear terms 
were limited to quadratic and interaction terms of latent variables. 
In this thesis, we relax the parametric assumption of g(.) in (1.2) 
and allow this unknown function to be estimated from data. Dif-
ferent from the traditional nonparametric regression modeling, our 
semiparametric LVMs incorporate latent variables in both sides of 
equation (1.2). 

Besides assuming parametric relations between variables, an-
other assumption usually made by traditional LVMs is the nor-
mality of observed variables and random errors. However, this as-
sumption is usually violated in real applications. Transformation 
models, in which a transformation of data is fitted to the con-
ceived model instead of the data themsevles, are one approach for 
alleviating the departure of data from the model assumption. In 
this thesis, we develop a Bayesian semiparametric transformation 
method which can be applied to a wide range of statistical models 
including LVMs. 

Along with the aforementioned rigid assumptions, traditional 
LVMs have some other limitations. First, most of the traditional 
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LVMs are developed to study static data with constant regres-
sion coefficients. However, varying regression coefficients, which 
reflect dynamic influences of covariates on response variables, are 
of great interest in many studies. Second, traditional LVMs usu-
ally assume data coming from a homogeneous population. The 
statistical analysis based on this assumption cannot accommodate 
the heterogeneous characteristic existing in commonly encountered 
real life data. Thus, there is a need to develop more complex LVMs 
to analyze these kinds of data. In this thesis, we further develop 
transformation varying coefficient LVMs and mixture varying co-
efficient LVMs to handle highly-nonnormal dynamic data and het-
erogeneous dynamic data. 二 

1.3 Outline of the Thesis 

In this thesis, we apply the Bayesian P-splines method to the mod-
els with unknown smooth functions. In Chapter 2，we develop a 
LVM with a nonparametric structural equation, in which outcome 
latent variables are influenced by unknown smooth functions of 
explanatory latent variables and covariates. A simulation study 
demonstrates that the proposed estimation procedure performs sat-
isfactorily. The method is applied to a study concerning the effects 
of sexual hormones on the bone mineral density of older men. Some 

» 

interesting findings are obtained, which are hard to be revealed by 
traditional parametric LVMs. 

Transformation models, which can be dated back to Box and 
Cox (1964), were developed to alleviate the deviations of data 
from model assumptions, such as skewness, multimodal, hetero-
geneity, etc. Ever since this influential paper, a large number of 
works have been done on transformation models, most of which 



considered parametric transformation functions. In Chapter 3，we 
propose a Bayesian semiparametric transformation model. Non-
paxametric transformation functions are modeled with Bayesian 
P-splines. The transformed variables can be fitted to a general 
nonlinear mixed model, which includes but is not limited to, linear 
or nonlinear regression models, mixed effect models, factor anal-
ysis models, and other LVMs as its special cases. Markov chain 
Monte Carlo (MCMC) algorithms are implemented to estimate 
transformation functions and unknown quantities in the model. 
The performance of the developed methodology is demonstrated 
by a simulation study. The application to a real study on polydrug 
use is presented. 

In Chapter 4, we study methods to eliminate violations of model 
assumptions in the varying coefficient model (Hastie and Tibshi-
rani, 1993; Hoover et al., 1998; Fan and Zhang, 2008). Bayesian 
varying coefficient models are usually based on the normal assump-
tion (Biller and Fahrmeir, 2001; Lang and Brezger, 2004). However， 

response variables in practical studies may disobey the normality 
assumption. To alleviate such a violation, we extend the Bayesian 
semiparametric transformation method to varying coefficient mod-
els. A simulation study shows that the proposed method can es-
timate the model parameters accurately when the nonparametric 
transformations are applied to non-normal data, and neglecting the 
violation of the normal assumption or transforming the data by in-
appropriate parametric transformations may produce misleading 
results. 

In Chapter 5，we develop a finite mixture of varying coefficient 
models with unknown number of mixture components. Finite mix-
ture approach is one of the approaches to model heterogenous data 
with non-normal distributions (see for example, Titterington et al., 
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1985; McLachlan and Peel, 2000; Cai and Song, 2010). In our 
model, the unknown number of mixture components is determined 
by a modified Deviance Information Criterion (DIC，see Spiegelhal-
ter et al.，2002; Celeux et al•，2006; Cai et al.’ 2010). A Simulation 
study shows that the estimates of parameters are accurate and the 
modified DIC can select the right number of components. The 
model is applied to a longitudinal study of treatment effect on the 
control of heroin use. Three distinct patterns of treatment effect 
are identified. 



Chapter 2 

Semiparametric Latent Variable 
Models 

2.1 Introduction 

In the behavioral, biomedical, and social-psychological sciences, it 
is common to encounter latent variables that cannot be accurately 
measured by an observed variable, but instead are assessed through 
many observed variables. Latent variable models (LVMs) (Bollen, 
1989; Joreskog and Sorbom, 1996; Bentler, 1995; Lee, 2007) are use-
ful methods in the assessment of interrelationships among observed 
and latent variables. Basically, LVMs are formulated by a measure-
ment equation, which is a confirmatory factor analysis model for 
grouping correlated observed variables to "measure" their corre-
sponding latent variables，and a regression type structural equation 
with latent variables for examining the effects of explanatory latent 
variables on outcome latent variables of interest. Because the major 
objective of LVMs is the analysis of latent variables, the structural 
equation with latent variables plays the most important role. In 
traditional LVMs, the structural equation is linear. It has recently 
become recognized that interaction or quadratic terms of explana-
tory latent variables should be included in relating or predicting 
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outcome latent variables (Kenny and Judd, 1984; Schumacker and 
Marcoulides, 1998). As a result, nonlinear LVMs with nonlinear 
terms of explanatory latent variables have been developed (see Lee 
and Zhu, 2002; Song and Lee, 2002; Lee and Song，2003a; Mous-
taki, 2003). Although such nonlinear LVMs have been found to 
be useful, their structural equations are parametric and hence may 
be too restrictive to correctly reflect the reality. It is thus nec-
essary to consider more general structural equations for revealing 
the true functional relations among outcome and explanatory la-
tent variables, and covariates. 

There can be little doubt that nonparametric modeling with var-
ious smoothing techniques has a very respectable place in statistics. 
Approaches to nonparametric modeling include, but are not limited 
to smoothing splines (Green and Silverman, 1994)，kernel methods 
with local polynomials (Fan and Gijbels, 1996; Fan and Zhang, 
1999)，regression splines (Hastie and Tibshirani, 1990), and penal-
ized splines (Ruppert et al., 2003). We follow a Bayesian approach 
because Bayesian analysis have certain nice properties. First, use-
ful prior information can be incorporated to produce more accurate 
estimates. Second, more involved models can be estimated with the 
Bayesian approach due to the powerful sampling-based tools, such 
as the Markov chain Monte Carlo (MCMC) techniques (Geman 
and Geman, 1984; Chen et al., 2000; Liu, 2008). Third, inference, 
such as calculating the standard errors of parameter estimates and 
model comparison statistics, can be done comparatively easily with 
the MCMC samples produced in the estimation procedure. Finally， 

Bayesian approach does not rely on the large-sample asymptotic 
theory, thereby produces more reliable results even in situations 
with small sample size (Scheines et al., 1999; Dunson, 2000; Lee 
and Song，2004). More recently, due to these nice features of the 
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Bayesian approach, the development of Bayesian methodology for 
the estimation of smooth functions has become both extensive and 
fruitful; see, DiMatteo et al. (2001), Biller and Fahrmeir (2001)， 

Behseta et al. (2005)，Panagiotelis and Smith (2008), among oth-
ers. In particular, Bayesian P-splines (Berry et al., 2002; Lang and 
Brezger，2004)，which is a Bayesian approach for penalized splines, 
is appealing because it can flexibly fit unknown smooth function 
using a large number of basis functions with a simple penalty on 
differences between coefficients of adjacent basis functions, and si-
multaneously estimate smooth functions and smoothing parame-
ters. Based on a specific latent variable model without any ex-
planatory latent variable in the structural equation, Fahrmeir and 
Raach (2007) applied Bayesiaji P-splines in developing semipara-
metric methods for analyzing smooth functions of observed covari-
ates and spatial effects in their structural equation. As their focus 
was on observed covariates and spatial effects, relations among la-
tent variables were not involved in their model, and nonparametric 
smooth functions of the important latent variables were not accom-
modated in the crucial structural equation. Hence, the existing 
nonparametric methods cannot be applied to analyze functional 
relations among latent variables. To extend the applicability of 
LVMs, this chapter aims to develop a novel semiparametric LVM， 

in which the important structural equation is formulated via un-
specified smooth functions of latent variables, along with covariates 
if applicable. The structural equation in our proposed semipara-
metric LVMs can be regarded as a generalization of the ordinary 
nonparametric regression model with the new inclusion of unknown 
smooth functions of latent variables. The Bayesian P-splines ap-
proach, together with a MCMC algorithm will be developed to 
estimate smooth functions, unknown parameters, and latent vari-

0
 

1
 



ables in the model. 
The remainder of this chapter is organized as follows. Section 

2.2 defines a nonparametric LVM, in which the structural equa-
tion is formulated by a scries of unspecified smooth functions of 
covariates and explanatory latent variables. Section 2.3 introduces 
the Bayesian P-splines for modeling the unspecified smooth func-
tions. The MCMC sampling and the related computational issues 
are presented in Section 2.4. In Section 2.5, a simulation study 
is given to demonstrate the performance of the proposed method， 

and the methodology is applied to an illustrative example on a 
study of the bone mineral density in older men. Section 2.6 ends 
the chapter with a conclusion. Some technical details are provided 

« 

in Appendix A. 
、内 

\ 

2.2 Model Description 

Let y,- = (2/ii, • • • , yip)^ be a random vector of observed variables 
and 0；1 = (cJii, • • • , be a random vector of latent variables for 
n observations, p > q. The relationship between y^ and u;̂  is given 
by the following measurement equation: ^ 

Yi = Aci + AcJi + €f, (2.1) 

where Ci is a vector of fixed covariates, A is a matrix of coeffi-
cients, A is a factor loading matrix, and ei is a residual random 
vector which is independent of (jJi and has a distribution N[0,屯], 

in which ^ is a diagonal matrix. It is worth noting that the mea-
surement equation is regarded as confirmatory with pre-specified 
number of latent variables and structure of A. These specifications 
are chosen on the basis of the nature of observed variables and/or 
prior knowledge from experts, and serve tKe purpose in identify-
ing the model. As an example, see (2.21) in Section 2.5.2 for a 
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non-overlapping structure of A in the analysis of the BMD data 
set. 

Based on the objective of the substantive study, the latent vari-
ables in (jj arc distinguished into outcome and explanatory latent 
variables, then the functional effects of explanatory latent variables 
on the outcome latent variables are assessed by a nonparametric 
structural equation. For this purpose, we partition cjf to (r/f, $『)『， 

where r)i{q\ x 1) and 认q2 x 1) are outcome and explanatory la-
tent vectors，respectively. It is assumed that the distribution of 

is iV[0,剩 with a non-diagonal covariance matrix To assess 
the functional effects of ^ on ry, the following nonparametric struc-
tural equation is proposed. For an arbitrary element rjih in rŷ , 
i = 1，…，n，and h = 1，…，仍， 

Vih = 9hl{00ii)-^"'-\-9hD{00iD)-^fhl{^il) + ' . • + + (气.2) 

where rcii，…，xw are fixed covariates that can be directly observed 
such as age and weight, gm,.. •，ghD, fhi,…，A收 are unspecified 
smooth functions with continuous second order derivatives, and dih 
is the residual error with a distribution 7V[0, il)sh] and is independent 
of ^'s and 5ij, for j — h. For notational simplicity，we suppress the 
subscript h in (2.2) by assuming ĝ i = 1 in the following sections. 
An extension to the case with qi > I is straightforward. 

Fahrmeir and Raach (2007) (F & R) developed a semiparametric 
LVM which has a similar measurement equation as equation (2.1) 
but a different structural equation as follows: 

‘ M r = Prl(a^il) + • • • + grdiXid) + 9r,spat{ei) + 7�Uf + Sir, (2.3) 

where Uir is the r-th component of u?i, grir "，9rd are nonparamet-
ric smooth functions of fixed covariates xi, • • • , Qr.spat is a spatial 
effect of the location ei，u is another vector of fixed covariates, is 
a vector of regression coefficients, and Sir is the random error with 
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variance 1.0 and is independent of Sik for k ^ r. Comparing (2.3) 
with our structural equation (2.2)，we observe substantial differ-
ences between our approach and the F & R approach. First，their 
approach focused on the effects of fixed covariates and a spatial 
effect of a given location, involved no partition of l j into outcome 
latent vector rf and explanatory latent vector 之，and their structural 
equation did not involve explanatory latent variables “ … ， � 2 . 
As a result, neither parametric nor nonparametric effects related 
to latent variables can be assessed by their approach. Second, the 
covariance matrix of their latent vector l j was assumed to be an 
identity matrix. In our model, the covariance matrices of ^ and a; 
can be non-diagonal. The corrected structure of latent variables 
in our approach leads to a more complicated computing algorithm 
because: (i) it requires more sampling steps to cope with the addi-
tional parameters involved in the non-diagonal covariance matrices 
of ^ and (jj (see steps (b4), (b5), and (b7) in Section 2.4.2)，and 
(ii) more complex MCMC techniques are needed to draw samples 
in our sampling scheme (see steps (a) and (b7) in Section 2.4.2 
and the implementation of the MCMC algorithm in Appendix A). 
As latent variables in practical applications are usually correlated, 
the accommodation of non-diagonal covariance matrix is impor-
tant. Third，due to the presence of explanatory latent variables in 
our nonparametric structural equation, some extra computational 
difficulties are encountered in estimating unknown smooth func-
tions of latent variables. In Section 2.3.2, we propose some novel 
methodologies for solving these difficulties. 
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2.3 The Bayesian P-splines 

2.3.1 General formulation 

In analyzing the proposed semiparametric LVM defined by (2.1) 
and (2.2)，modeling the smooth nonparametric function is an im-
portant issue. Because of the nice features of Bayesian P-splines 
(see Lang and Brezger, 2004) and the advantages of the Bayesian 
approach in analyzing LVMs (see Dunson, 2000; Lee, 2007)，we will 
concentrate on using the Bayesian P-splines approach. To present 
the basic ideas, we first consider the following simple case: 

. * 

、 r j i = 鳩 + (2.4) 

and then extend it to the more general case as defined by (2.2). We 
take the common assumption that has a continuous second or-
der derivative, and can be modeled by a sum of B-spline (De Boor, 
2001) basis determined by a series of knots in the domain of as 
follows: ‘ 

K 
/ t e ) = X PkBk叫, (2.5) 

k=l ‘ 
where K is the number of splines determined by the number of 
knots ,�风 is an unknown parameter, and Bk{') is a B-spline of 
appropriate order. A common choice is the cubic B-spline. In 
practice, a choice of. K in the range of 10 to 60 provides flexibility 
of fitting. To prevent overfitting due to the use of a relatively large 

* * 

number of knots, Eilers and Marx (1996) proposed using a differ-
ence penalty on coefficients of adjacent B-splines. More specifically, 
we shall minimize . 
' � " "n K . ^ K 

, Y ^ i m — E _ “ 咖 + A E 仇)2， (2^6) 

U \ ， 



where A is a smoothing parameter to control the penalty, and 
么爪Pk is the difference penalty defined in a recursive manner as 
follows: A”‘仇 二 A爪一 1 从,—A"卜 1 饭,一1 (for example, A f h = 13k-
P k - u 剑 k = ^ P k — A/3a :- i = Pk — 2 l 3 k - i + l 3 k - 2 ) . I t can be shown 

that (2.6) can be expressed as 

n K 
Y^iVi - 乂 + (2.7) 
t= i fc=i 

where (3 ==(风,.• • �P k Y �a n d M is the penalty matrix that can 
be obtained with the specified difference penalty. 

In the Bayesian framework (Lang and Brezger, 2004), coeffi-
cients Pk are treated as random and the ‘difference penalty in (2.7) 
is replaced by its stochastic analogues: Pk = + Uk, where Uk 
is i.i.d. as 7V[0,t"]. With this model framework, the amount of 
smoothness is controlled by the additional variance parameter r^, 
which corresponds to the inverse of the smoothing parameter A in 
(2.7). Consequently, t" can be regarded as a new smoothing pa-
rameter. Let K* = ranfc(M), and the complete-data log-likelihood 
based on (2.5) is proportional to 

K � 2 

2 
— 力 ( M 一 " 几 ( T 卢 ) 

1=1 、 /C=1 ' T/̂  
(2.8) 

The above approach can be applied to the more general situation 
defined by (2.2). By using the sum of B-spline basis in (2.5) to 
model each of the smooth nonparametric functions, the structural 
equation (2.2) is reformulated as: 

D Kbd <12 Kj 

= E E ^dkBUxid) + E ^3kBjk{iij) + (2.9) 
d=l A ; = l 7 = 1 k=\ 
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and the corresponding complete-data log-likelihood is proportional 
to 

D Km 

2 

丄 

” ^ d k B ^ d k i ^ u i ) 一 
i=l � d=\ k=\ 

Q2 Kj >1 2 ^ \ 1 
E E Mki^ij) [ + E —^dMtdhd + — /3j MpjPj 

/=1 k=l J d=l 丁hd 丁射 

‘ ‘ n . … 丄 、 ^ K ； 
, ^ H ^ s ) - - y l n i n d ) — ^ - f l n i r p j ) , (2.10) 

j=i d=i _ 

where b d i c � P j k , Bjk, bd,/3力 Mm, M/?力 Km, Kid, Kj , K*, Ud, 
and Tpj are defined similarly as in (2.7) and (2.8). 

2.3.2 Model ing nonparametric functions of latent vari-
ables 

The modeling of nonparametric functions of latent variables a 
main challenge in this study. Compared with the existing litera-
ture, some additional difficulties will be encountered in the current 
analysis that involves the nonparametric smooth functions of latent 
variables. 

First, traditional B-splines are defined in finite intervals. This 
induces some difficulties since observations of the latent variables 
obtained in MCMC iterations may be outside these intervals. To 
tackle this problem, we consider the B-spline basis for natural cu-
bic splines: 1 < A; < Kj, 1 < j < q2- Suppose 
…，Kj^Kj-i^ f^jKj) are the knots and ( �i ’ � / ^ �a r e the boundary 
knots. Each Njki^ij) is a piecewise cubic spline which smoothly 
joins at knots. This property is similar to B-splines inside the 
boundaries. Moreover, in (—oo, kji) and oo), Njk(Xij) is lin-
ear and smoothly joined at kji and kjkj with the part inside the 
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boundaries. Hence, Ylk^i Pjk^jki^ij) is used to model the unknown 
smooth function f j i^i j) . Even if some “ generated in a MCMC 
iteration exceed the boundaries, Yl%i Zlitii Pjk^jkiiij) is still well 
defined. Thus, the formulation in (2.9) is modified as 

D Kbd (12 Kj 
rji = b d k B ' d M + Y 1 Y . P j k N j k i i i j ) + (2.11) 

d=l k=l j=l k=l 

The second difficulty is caused by the unknown scales of la-
tent variables, which makes it impossible to determine the range 
of a latent variable and the positions of the knots beforehand. To 
solve this problem, for each ^ we choose the product of a free 
scale parameter s j and fixed quantiles of 7V[0,1] as knots. For 
example, if the quantiles are . . . , then the knots for 
constructing {Njk{^ij)}i<k<i<j are {sjhiuSjK,2,... .sj^Kj)- NOW, as 
{^jk{^ij)}i<k<Kj depends on the scale parameter sj, the formula-
tion in (2.11) should be further modified by 

D Kbd 92 Kj 

Vi = J2H f^dkB^dM + E E M k i ^ M + 知 ( 2 . 1 2 ) 
d=l k=l j=l k=\ 

The third difficulty is related to the fact that each function 
/j(^ij), j = 1，…，g2，is not identified up to a constant. Inspired by 
Panagiotelis and Smith (2008) in a simpler context of semiparamet-
ric regression, we solve this problem by imposing a constraint on 
Denote f j = ( J j d i j ) , / j ( 6 j ) , . • •，fji^nj))'^ and 1 = (1,..., 1)^. In 
each MCMC iteration, we practically set l^f^ == 0. It can be shown 
that this is equivalent to I'^Nj/Sj = 0, where N j = [A/ j j t (� | s�„xA: j 
is a matrix in which the elements are the B-spline basis of natural 
cubic splines. Let Q j = l ^ N j , then the above constraint can be 
written as Qj/Sj = 0. A similar constraint will also be imposed on 
brf to identify nonparametric functions gd{xid)y d 二 1 , … L e t 
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Bfed = [B î̂ {xid)]nxKbd^ and Qbd = l^B^^/, then the constraint on b^ 
can be written as Qtdbd = 0. 

7 

2.4 Bayesian Estimation and MCMC Algorithjm 

2, Prior distributions 

In Bayesian methods, parameters are treated as random. An im-
portant issue is to specify appropriate prior distributions of the 
parameters. 

First, we hope to control the scale parameter s j such that it 
is not too small or too large. If the scale of Sj is too small, 
many generated samples of “ may fall outside the boundary knots 
(sj/^i, Sj^Kj)' As discussed in Section 2.3.2，natural cubic splines 
are defined with linear functions outside the boundary knots. As a 
result, the nonlinear function of “ fji^ij)^ would be estimated by 
a linear function at a large range of ；，leading to a poor estimation 
of f j i^i j) . If the scale of s j is too large, the generated sample of 
would vary within a small part of a large range, leading to many 
spline knots being wasted. Consequently, the remaining knots may 
not be enough to accurately estimate the unknown function of 知 

For this purpose, inspired by the (2.14) and (2.17), we propose the 
prior distribution of s as follows: 

92 

P{^\rsw'，T叫2) n 
(27rT幻严"2 exp 

1 
2Tsj 

K� 

(2.13) 

where Kk is the fc-th quantile of iV[0,1 
(2.13) is equivalent to penalizing {列，. 

Kj 

The prior distribution in� 

,Sg^} with.the penalty 

92 

f=l k=\ 
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Based on (2.13)，we have 

n D Km 
l o g p ( S 卜）（X 

2如 

^{"^i-YlYl^dkBlkiXid) 
• 1 = 1 d—\ fc=l 

72 Kj 1 92 Kj 
{ln(|sj/CA;|)} 

2 片知 = 1 Tsj 

which consists of a quadratic term and a penalty term. A too small 
or too large s j results in a large penalty and a small logp(s|.). 
Hence, for a given r^j, it is less likely to draw a too small or too 
large scale parameter s j under prior distribution (2.13). Here，Tsj 
is an unknown parameter for determining the amount of penalty 
put on Sj, and it plays the similar role as rpj and Ud in the prior 
distributions specified in (2.14) and (2.17) below. As we never know 
the true scales of latent variables, this unknown parameter can help 
to capture the information from the data and thus automatically 
update the amount of penalty on s j in the MCMC iterations. 

Second, to identify the unspecified smooth function f j i^i j) , the 
^dentifiability constraint Q j P j = 0 should be imposed on Under 
this constraint, the prior distribution of the unknown parameter f3j 
is assigned as 
« 

oc = 0), (2.14) 

with appropriate penalty matrix which is a linearly con-
strained Gaussian density. The prior distribution given in (2.14) 
is a conjugate type because the posterior distribution of I3j given 
others is still linearly constrained Gaussian with following density: 

N{f3*,i:*)I{Qj(3j = 0 \ (2.15) 

where S* = + = S ^ N j r y ^ M , and rj* = 

；‘ ‘ 19 
‘ ， ’， 

、•’ 



了，in which 
b Kba Ki 

Vi 二 m - ^Z^bdkB^j^ixid) -2^2^/3ikNik{^ii\si). 
d=l fc=l IjLj k=l 

According to Panagiotelis and Smith (2008), sampling an observa-
tion f3j from (2.15) is equivalent to sampling an observation /3(�— 
from N(/3*,Ej), then (3�广、is transformed to l3j by 

= /3丨—_ 丨—. (2.16) 

Similarly, under the identifiability constraint Qhd\>d 二 0, the prior 
distribution of the unknown parameter b^ is assigned as 

hdlUd cx exp{-^h '^Mbdhd}I{Qbdhd = 0). (2.17) 

The posterior distribution of b^ given others is 
峰 

= (2.18) 

where = ( B ^ ^ B ^ ^ M + M , d / n d ) - \ K = ^ I d ^ L v M . and 

V*x = ( X i , … ， i n which 
Kbi 92 Kj 

l^d k=l j=l k=l 

Moreover, in a full Bayesian analysis, the inverse smooth pa-
rameters tm, 丁pj�and Tsj are also treated as random and estimated 
simultaneously with the unknown b^, 力 and Sj. According to 
a common practice in the literature (see for example, Lang and 
Brezger, 2004; Fahrmeir and Raach, 2007，and references therein), 
the highly dispersed (but proper) inverse gamma priors are as-
signed to these parameters. For d = 1’ …，D’ and j•二 1,…，仍： 

Tbd 〜/G(a6o，Ao)，T已j 〜 卯 ) ’ Tsj 〜 I G ( a T O , M C 广 ( j s j ) , 
(2.19) 
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where ôo，/Ŝo，Of"。，Âo, ctro，and 凡• are hyperparameters whose 
values are preassigned, and Y[f=i ^ji'^sj) is the normalizing con-
stant in (2.13). The common choices for these hyperparameters are 
ctbo 二 = Oiro = 1, PbOl PpOl and Pro are small. Throughout this 
chapter we set a^o = apo == a^o = 1 and Pbo 二 Ppo 二 PtO = 0.005. 

Finally, for structural parameters such as A, A, ips, and 少， 

the following conjugate prior distributions are assigned according 
to the common practice in LVMs (see Lee, 2007). For = 1 , . . . 

〜A/^A州，Sajo)/ Xj 〜 N � �Q �帖 j Q ) , 

'ips^ 〜gamma(a5o,/？犯)，妙广〜gamma(ajo,约o)， 

�Wishart(Ro，po)， ‘ 

where A j and AJ are the j-th row of A and A, respectively; ipj is 
the j-th diagonal element of 屯，Â o, A州,aoj, Poj, â ，犯’ po, and 
positive definite matrices Saj。，马o, and Rq are hyperparameters 
whose values are assumed to be given by the prior information. 

2.4.2 Posterior inference via M C M C sampling 

The Bayesian estimate of 6 is obtained by observations drawn 
from p{fl,0\Y) with some MCMC tools such as the Gibbs sam-
pler (Geman and Geman, 1984) and the Metropolis-Hastings (MH) 
algorithm (Metropolis et al.，1953; Hastings, 1970). Let Y = 

(yi’..•，yn)，O = =(…，•..，”」，=(专 1’ 

. • • ,专n)，b = { b i , . . . , b p } , (3 = s 二 { s i ’ . . . ’ s ^ } ’ 

Tb — {t6i, ...，T6d}, t^ = {rpi, • •.，T•彻2}, Ts = {tsi, . . . ’ Tsg?}，and 
6 = {A, A,屯,i/js,中，Tb, T", Ts, b, (3�s}. The computing algorithm 
in our method is implemented as follows: At the t-th iteration with 
current values { f i �，0 � }： • 

(a) d r a w i n g n “ + i ) f r o m p ( n | Y，A “ ) , A W , ^ ( \ 7 / ; A ^ W， b“)，沪 )， 

s⑷)； 
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(b) drawing ⑷）from p(0|Y’ ^^(…)). Due to its complexity，step 
(b) is further decomposed into: 

(bl) draw from p(A|Y，17(&1)，A�，屯⑴）； 

(b2) draw (A(…)，屯(…)）from p(A，屯丨丫，̂2(叫)，A“+”）； 

(b3) draw i；、广” from p(如|n('+i)’ b � , / ? � ,s⑴ )； 

(b4) draw from 

(b5) draw 丁义…）from M n i b � ) ’ t广） f rom p(t"|/3⑴)，and 

(b6) 

(b7) 

ri '+i) from p(T.“s�)； 

draw b(…）from p(b|n(…),t/；广D’ r ! … ) ’⑴， s � ) ; 

draw (/3(…)’ s(…)）from p{f3, s | n _ ) ， � ) ’ t 广 ) ’ Xt+i) 

The conditional distributions involved in steps (bl)-(b5) are nor-
mal, inverse gamma, and inverse Wishart distributions, respec-
tively. Simulating, observations from them is standard (see Lee, 
2007). However, the conditional distributions involved in steps (a) 
and (b7) are nonstandard and need to be derived. The MH al-
gorithm is used to simulate observations from these non-standard 
distributions. All the full conditional distributions, and the imple-
mentation of the MH algorithm are given in Appendix A. 

2.5 Numerical Studies 

2.5.1 A simulation study 

The main purpose of this simulation study is to demonstrate the 
empirical performance of the proposed approach. The data set is 
simulated on the basis of the model defined by (2.1) and (2.2) with 
p 二 = 4, 二 1,92 = 3, and D = I. For i = ,300, the 
covariate q is fixed at 1.0 such that A^ = (ai, • • •，ai2) is a vector 
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of intercepts, the covariate Xi is independently drawn from N[0,1 
and the latent vector = ( C i i ， “ �？ is drawn from 
The structure of the loading matrix is 

A了 = 

1 A21 A31 0 0 0 0 0 0 0 0 0 

0 0 0 1 A52 入62 0 0 0 0 0 0 

0 0 0 0 0 0 1 ^83 入93 0 0 0 

0 0 0 0 0 0 0 0 0 1 Aii，4 入12’4 

where the one's and the zero's are fixed parameters in achieving 
an identified model, and the A，s are unknown parameters. The 
nonparametric structural equation is 

Vi = 9{xi) + /itei) + /2te2) + /atea) + (2.20) 

=1 .65 — 
The true 

with g{xi) = { x i / 2 ) \ / i t e i ) = sin(1.5^n) — / 2 化 2 ) 
exp(&), and /3(。）= —0.5 + 辟p(2� i3) / [ l + exp(2€i3)]. 
population values are taken as a j 二 0 . 5為 二 xjj石二 0.3’ j = 
1，• •.，12, A21 = Aai = A52 = A62 = Asa = A93 == An,4 = Ai2,4 = 0-8, 
and {011，<pi2y </)i3, fe, 023，033} in 少 are {1.0，0.2，0.2,1.0, 0.2, 1.0}. 

In the simulation study, the conjugate priors specified in Section 
2.4.1 with the following hyperparameters were used. The elements 
in Ajo and A^o were taken as zeros, and Hajo and Sjo were taken 
as identity matrices with appropriate dimensions, ajo = aso = 9’ 
Pjo = PsQ = 4, /Oo = 7, Ro = 3I3, where I3 is a three-dimensional 
identity matrix, a^o = a^o = Qvo = 1，and Pbo 二 Ppo == = 0.005. 

A total of 20 equidistant knots were used to construct cubic P-
splines of covariate Xi. The 20 knots based on quantiles of 1) 
multiplied by the scale parameter s j were adopted for constructing 
B-spline basis for natural cubic splines of latent v a r i a b l e s � ’ “ 
and The second order random walk penalties were used for the 
Bayesian P-splines to estimate the unknown smooth functions. On 
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the basis of 100 replications, the bias�(BIAS) and the root mean 
squares (RMS) between the Bayesian estimates and the true pop-
Illation values of the parameters were computea. The main results 
are presented in Table 2.1 (Column ‘Semipara LVM’)，and some 
less important parameters {aj and j = 1，…,12) are not re-
ported to save space. We observed that the ‘BIAS，and 'RMS' were 
small, which indicates that the Bayesian estimates of unknown pa-
rameters are accurate. Based on 100 replications, the average of 
the pointwise posterior means of nonparametric functions, together 
with the 5%- and 95%-pointwise quantiles are presented in Fig-
ure 2.1. Compared with their true functions (represented by solid 
curves), the estin.ated curves correctly capture the true functional 
relations among latent and observed variables. 

In order to compare the empirical performance of the proposed 
semiparametric LVM with some parametric LVMs, the data sets 
in the 100 replications were re-analyzed on the basis of Mi： a sim-
ple linear LVM and M2： a non-linear parametric LVM where the 
exact forms of functions g, / i , /2, and fs are known. The esti-
mates of unknown parameters and unknown smooth functions are 
respectively presented in Table 2.1 (Columns 'Linear LVM，and 
‘Non-linear LVM') and Figure 2.2, which show that (a) the results 
obtained from our approach are close to those obtained under M2. 
Note that the 61 and 7 ' s in our approach were estimated by fit-

A 
ting true parametric functions to g{xi) and (b) As the 
misspecification in Mi only focuses on the structural equation, the 
performance of parameter estimates associated with the measure-
ment equation in Mi is similar to that in M2 and our approach. 
However, the results associated with the structural equation in M\ 
are very misleading (see Figure 2.2 and the bold-faced parameter 
estimates in Table 2.1). In particular, the large estimated variance 
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of the residual in the structural e q u a t i o n ,知 reveals inadequacy 
of a linear LVM in capturing unknown functional relations among 
latent variables and covariates. 

The above analysis was repeated for two different choices of 
(1，0.05) and (0.001，0.001)' for a^) = a"o = f：̂) and pbo == = 
j3ro, and some perturbations of the hyperparamters in the prior 
distributions of structural parameters. The sensitivity analysis re-
vealed that the Bayesian results are robust to different choices of 

(o!to,/3to)} and the hyperparameters related 
to structural parameters. It took about 20 minutes in a PC with 
Intel Core2 3.00GHz CPU and 2G ram for completing the compu-
tation for each replication in the simulation study. 

2.5.2 Application: A study on osteoporosis prevention 
and control of older men 

The proposed methodology was applied to a partial study on os-
teoporosis prevention and control which concerns the influence of 

r 

serum concentration of sex hormones, their precursors and metabo-
lites on the bone mineral density in older men. A total of 1446 
Chinese men aged 65 years and above were recruited using a com-
bination of private solicitation and public advertising from com-
munity centers and public housing estates. The primary objective 
of this study is to investigate the functional relations among bone 
mineral density (BMD) and its correlated determinants including 
‘Estrogen’，‘Androgen’，‘Precursors，，and 'Metabolites'. We no-
tice from prior medical knowledge that BMD and its correlated 
determinants are latent constructs that cannot be measured by a 
single observed variable. For instance, ‘BMD，is formed by ob-
served variables ‘Spine BMD’ and ‘Hip BMD’ because the bone 
mineral densities are measured at both spine and hip. How 'Es t ro 
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gen,，‘Androgen,’ ‘Precursors’，and 'Metabolites' influence BMD 
functionally is a main interest of the medical research, and the 
related study will be beneficial to osteoporosis prevention and con-
trol. Due to the complex nature of the above mentioned latent 
variables, we expect that the traditional LVMs with parametric 
structural equations are inadequate to provide accurate analysis 
of the true functional relations among latent variables. Hence, 
the proposM semiparametric LVM is necessary. The following ob-
served variables were selected in establishing a model to achieve 
the objective: spine BMD, hip BMD, estrone (El), estrone sulphate 
(El-S), estradiol (E2), testosterone (TESTO)，5-Androstenediol (5-
DIOL), dihydrotestosterone (DHT)，androstenedione (4-DIO NE), 
dehydroepiandrosterone (DHEA), DHEA sulphate (DHEA-S), an-
drosterone (ADT), ADT glucuronide (ADT-G), 3a-diol-3G (3G), 
and 3d-diol-17G (17G). Moreover, weight and age were also in-
cluded as covariates. All the above continuous measurements were 
standardized. 

Based on the medical meaning of the observed variables, we 
identified five latent variables through the measurement equation 
(2.1). More specifically, spine BMD and hip BMD were grouped 
into a latent variable named 'BMD'; similarly, {El, E l -S, E2}’ 
{TESTO, 5-DIOL, DHT}, {4-DIONE, DHEA, DHEA -S}，and 
{ADT, ADT-G, 3G，3G-17G} were respectively grouped into four 
latent variables which could be interpreted as ‘Estrogen，，'Andro-
gen', ‘Precursors，，and 'Metabolites', respectively. Hence, we con-
sidered a measurement equation with A = 0，a 5 by 1 random 
vector (jj containing the above latent variables, and following non-
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overlapping factor loading matrix, 

1 入21 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 入42 入52 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 ^73 0 0 0 0 0 0 0 • 

0 0 0 0 0 0 0 0 1 ‘ 入 10’4 • 入 11’4 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 ‘ 入 13’5 入 14’5 AI5,5 
(2.21) 

The one's and zero's are fixed parameters for identifying the model 
according to the common practice of LVMs (see Lee, 2007). The 
Ajj's represent unknown factor loadings and reflect the asbociations 
between latent variables and the relative observed variables. Ac-
cording to the main objective of this study, which is to investigate 
the functional effects of ‘Estrogen，，‘Androgen’，'Precursors', and 
‘Metabolites，on 'BMD', we define the outcome latent variable rj to 
be BMD, and define the vector of explanatory latent variables ^ as 

=(Estrogen, Androgen，Precursors, Metabolites)^. 
Finally, to take also into account the effects of fixed covariates 
weight and age，the nonparametric! structural equation of the pro-
posed model was defined by: 

( 

r/i =仍(工,1)+夕2(工i2) + /l(eil) + /2(&2) + /3te3) + / 4 ( 仏 ( 2 . 2 2 ) 

where xn and Xi2 are weight and age, respectively. The weight 
effect and age effect were modeled by cubic P-splines, and the ef-
fects of the explanatory latent variables on BMD were modeled 

4 

by natural cubic P-splines，which are combinations of B-spline ba-
sis for natural cubic splines and difference penalties. A first or-
der random walk penalty and 20 knots were used in the analy-
sis. As specified in Section 2.4.1’ the conjugate priors wete used 
as the prior distributions for most of the unknown parameters. 
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The diffuse hyperpriors a^o = oc^q — ovo =» 1 and / ? � =彻 o = 
/3ro = 0.005 were used for the inverse smoothing parameters in 
Th, Tp^ and Tg. To obtain some prior knowledge for the struc-
tural parameters, we conducted a preliminary analysis for the cur-
rent data set by using a traditional LVM, which has been defined 
by measurement equation (2.1) and a linear structural equation 
rji = M i l + b2Xi2 + .7161 + 7262 + 73^t3 + + St. The standard 
package LISREL 8 (Joreskog and Sorbom, 1996) produced the max-
imum likelihood (ML) estimates of unknown parameters for the 
parametric LVM. The hyperparameters in the prior distributions 

\ /S 

of structural parameters were taken as: Ajo = A), ajo = a犯 二 9, 
rs 八 A 

PjQ = (ajo-l)V^j，060 = ( a ^ o - P o = 8，and Ro = (po —奶—1)少， 
/N A A A 

where.Aj為,t/^rf, and 少 were the ML estimates obtained via the 
parametric LVM. � 

After checking the convergence, we found that the MCMC algo-
* 

rithm converged within 10,000 iterations. After discarding 10,000 
t \ 

burn-in iterations, 20,000 observations generated by the MCMC 
algorithm were used to obtain the Bayesian results. The estimates 
of factor loadings and their standard error estimates are reported 
in Figure 2.3. For clarity, the less important structural parame-
ters in and 屯 are not reported. The pointwise posterior 
means of unknown smooth functions, together with the 10%- and 
90%-poiiitwise quantiles are depicted in Figure 2.4. We observed 
that most of the fitted curves were neither linear nor quadratic. 
This fact provides verification that traditional parametric LVMs 
with linear and/or quadratic terms of latent variables cannot cor-
rectly reflect the true functional relations among latent and ob-
served variables, and would give misleading conclusion if the data 
were analyzed through a parametric approach. 

The specific interpretation of the fijnctional relations are given 
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as follows, (i) Weight had a positive effect on BMD. Roughly speak-
ing, this effect rose linearly. The increasing rate slowed down when 
subjects were overweight, say with weights exceeding 80kg. (ii) 
The effect of age on BMD was basically negative. This negative 
effect was leas significant for 65-75 years old men, but became in-
creasingly significant when the subjects were over 75 years old. (iii) 
The influence of Estrogen on BMD rose with Estrogen score, indi-
cating that the subjects with a higher level of Estrogen would have 
had a higher level of BMD and thus a lower risk of osteoporotic 
fractures, (iv) The influence of Androgen on BMD exhibited a 
nonlinear pattern. It changed direction from positive to negative, 
indicating a positive effect for subjects with low Androgen scores 
and a negative effect for those with moderate or high Androgen 
scores. Therefore, some insights about the influence of Ahdrogen 
on BMD might be achieved: although increasing Androgen might 
have had a positive impact on BMD for those with a low level 
of Androgen, for most of subjects, however, controlling Androgen 
level could have helped improving BMD and thus preventing the 
development of osteoporotic H^actures. (v) The influence of Pre-
cursors on BMD was hardly significant when Precursors level was 

-m 

low, and it became more and more significant with the increase of 
Precursors level. Since Precursors play an important role in pro-
ducing sex hormones, for older men with relatively high Precursors 
level, controlling Precursors might have helped controlling Andro-
gen and thus improving BMD. (vi) The influence of Metabolites 
on BMD presented a composite effect of an increasing trend and 
a sinusoidal shape for periodic pattern, which resulted in an over-
all increase trend but with significant changes in both tails of the 
curve. If we partitioned the subjects into three types with respec-
tively low, middle, and high levels of Metabolites, the estimated 
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curve revealed that the effect of Metabolites on BMD was clearly 
nonlinear and had completely different patterns for different types 
of subjects. Therefore, different treatments should be taken to im-
prove BMD thus prevent the development of osteoporotic fractures 
for older men with low, middle, and high levels of Metabolites. The 
above insights obtained from nonlinear curves cannot be achieved 
by parametric LVMs. 

To assess the sensitivity of the Bayesian results to inputs of hy-
perparameters in the prior distributions, the above analysis was 
repeated with some ad hoc perturbations of the current prior in-
puts. In particular, two different choices of a^o = otpo = <̂ tO == 1， 

pbo = Ppo = PtQ = 0.05 and ato = oĉ q = Qvo 二 0.001，/？⑷=Ppo = 
PrO == 0.001 were used. As close Bayesian estimates of unknown 
parameters and similar estimated curves of unknown smooth func-
tions were obtained, the Bayesian results are not very sensitive to 
different prior inputs. The program is written in R. It took about 
60 minutes in a PC with Intel Core2 3.00GHz CPU and 2G ram 
to complete all numerical results in this example. 

2.6 Conclusion 

In this chapter, a nonparametric LVM is proposed to assess the 
functional relations among latent and observed variables. Different 
from traditional LVMs, the proposed model formulates the struc-
tural equation in a nonparametric way by introducing a series of 
unspecified smooth functions. The Bayesian P-splines incorporat-
ing MCMC techniques are employed to conduct the analysis. Some 
additional difficulties, such as unfixed ranges and un-predetermined 
scales of latent variables in each MCMC iteration, are encountered 
in the assessment of the functional relations among latent vari-
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ables. Hence, a modified Bayesian P-splines approach is introduced 
to solve the. problems. Results obtained from a simulation study 
demonstrate that the empirical performance is satisfactory. The 
proposed approach is also applied to study the influences of serum 
concentrations of sex hormones, their precursors and metabolites 
on bone'mineral density in older men. This study will be helpful 
ill a long-term project in osteoporosis prevention and control. 
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Table 2.1: The comparison of parameter estimates under three models in the 
simulation study n = 300，number of replications = 100 

Semipara LVM Linear LVM Non-linear LVM 

Para TRUE BIAS RMS BIAS RMS BIAS RMS 

A 2 1 0.80 -0.001 0.018 0.005 0.021 0.001 0.019 

0.80 -0.001 0.019 0.003 0.020 -0.001 0.019 

入52 0.80 0.022 0.044 0.022 0.054 0.013 0.049 

入62 0.80 0.021 0.048 0.021 0.045 0.009 0.037 

>83 0.80 0.022 0.050 0.015 0.049 0.012 0.046 

0.80 0.023 0.048 0.008 0.053 0.007 0.051 

\ll,4 0.80 0.007 0.049 0.016 0.049 0.014 0.048 

\ l 2 . 4 0.80 0.016 0.046 0.017 0.047 0.014 0.046 

0 1 1 1.00 -0.057 0.110 -0.069 . 0 1 2 6 -0.049 0.111 

0 1 2 0.20 -0.022 0.070 -0.003 0.054 -0.004 0.054 

0 1 3 0.20 -0.010 0.064 -0.019 0.068 -0.017 0.067 

0 2 2 1.00 -0.037 0.113 -0.037 0.122 -0.029 0.117 

0 2 3 0.20 0.003 0.058 -0.006 0.073 -0.003 0.074 

(hi 1.00 -0.025 0.116 -0.043 0.111 -0.040 0.111 

0.30 0.020 0.040 2.080 2.814 0.036 0.056 

61 1.00 0.003 0.151 -0.708 0.720 -0.019 0.130 

7i 1.00 0.022 0.128 -1.511 1.523 0.027 0.121 

7 2 1.00 0.030 0.088 0.695 0.736 0.041 0.103 

7 3 1.00 0.023 0.186 -0.719 0.731 -0.029 0.163 
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Figure 2.1: Estimates of the unknown smooth functions in simulation study. 
The solid curves represent the true curves, the dashed and dot-dashed curves 
respectively represent the estimated average, and the 5%- and 95%-quantiles of 
the pointwise posterior means on the basis of 100 replications. 
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Figure 2.2: Estimates of the unknown smooth functions in the simulation study. 
The dashed curves are estimated with our semiparametric LVM. The dot-dash 
curves are estimated with a linear LVM. The dotted curves are estimated with a 
non-linear parametric LVM when the exact forms of g � / i , /2, and fs are know. 
The solid curves are true curves. All the estimated curves are obtained on the 
basis of 100 replications. 
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Figure 2.3: The path diagram, together with the estimated factor loadings and 
their stajidard error estimates (in parentheses), of the proposed LVM in the 
analysis of BMD data. 
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Figure 2.4: Estimates of the unknown smooth functions in the real example. 
The solid curves represent the estimated pointwise posterior mean curves, while 
the dotted curves represent the 10%- and 90%-pointwise quantiles. 
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Chapter 3 

Semiparametric Transformation 
Models 

3.1 Introduction 

The semiparametric transformation models proposed in this chap-
ter are motivated from a study of the dropout behavior in a treat-
ment program which aimed at preventing polydrug use in five Cal-
ifornia counties in 2004. Two main interests of this study are to 
investigate how the history of drug use and convicted crime affects 
retention in the drug treatment, and how this retention will affect 
future drug use. One obstacle in analyzing the data set related to 
the study is that the distributions of most variables are extremely 
non-normal； such as U-shaped and highly skewed distributions. For 
example, due to the fact that drug users either did not get addict 
to drugs or used them very frequently, the distribution of the vari-
able that measures patients' drug use in the past 30 days at intake 
was U-shaped. Another example is the variable that records the 
number of arrests in the lifetime of the drug users before entering 
this treatment. As only a few subjects were arrested frequently, 
the corresponding distribution was highly skewed. 

To introduce the transformation models； we consider the fol-
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lowing statistical model yi = + i = 1, •..，n，where 
Ui is a response variable; ^ is a function of a vector of fixed co-
variates Xj, a vector of unknown parameters 7 , and a vector of 
random effects, bj； and ei is the random error, which is indepen-
dent of bi. The distribution of the response variable is usually 
assumed to be normal. One common approach in handling the vi-
olation of this normal assumption is using a transformation model 
f{yi) = yi 二 p(Xi，7，bi) + ê , in which the response variable yi in 
the model is transformed to yi. The transformation function /(•) 
was first modelefl by parametric functions in the sense that these 

* 

functions could be specifically determined by a small number of pa-
rameters. (Box and Cox, 1964) provided a family of power transfor-
mations and estimated it through both maximum likelihood (ML) 
and Bayesian approaches. Since then, various extensions and other 
parametric transformation families have been proposed under the 
ML framework; for example, see John and Draper (1980), Bickel 
and Doksum (1981)，，David (1993), Lipsitz et al. (2000)，Foster 
et al. (2001)，and references therein. With the rapid development 
of statistical computing, the Bayesian parametric transformation 
also received much attention in the literature; for example，see Per-
icchi (1981), Smith and Kohn (1996), Hoeting et al. (2002)，and 
Yin and Ibrahim (2006). ‘ 

As parametric transformations may not provide good solutions 
for many situations, it is natural to consider transformation models 
with unspecified smooth functions. This nonparametric modeling 
has been developed rapidly in a non-Bayesian framework; for ex-
ample, see Ramsay (1988)，Tibshirani (1988)，Nychka and Ruppert 
(1995), Wang and Ruppert (1995)，He and Shen (1997), and Ram-
say (1998), and references therein. Although the development of 

% 
the nonparametric transformation under the non-Bayesian frame-
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work has been fruitful, research with a Bayesian framework is lim-
ited. As far as we know, the only contribution is from Mallick and 
Walker (2003), whose work focused on a regression model with-
out random effects. In their model, the nonparametric function in 
modeling the response variable was based on a composite function 
of a mixture of incomplete beta functions with unknown weights 
but with a pre-determined base function. The number of incom-
plete beta functions was also unknown; hence, the dimension of the 
parameter space was unknown. Estimation was based on reversible 
jump Markov chain Monte Carlo (MCMC) algorithm. Moreover, 
because their model and the MCMC algorithm were specifically de-
signed for survival analysis, the domain of each response variable 
was limited to (0，+00). 

There are other classes of models related to the nonparametric 
transformation model. One class is the generalized linear model 
(GLM) based on unknown link functions, which can be treated 
as transformation functions of the means of the response vari-
ables. Using notations above, the model of this class in the case 
of a normal response variable can be expressed as E{y i \h i )= 

bj)), which differentiates itself from the transformation 
models described above because it transforms the means of the re-
sponse variables instead of response variables themselves. Mallick 
and Gelfand (1994) used the method similar to Mallick and Walker 
(2003) to study the unknown link function in GLM, which was ap-
plied by Mallick and Gelfand (1996) to study errors-in-variables 
models. Muggeo and Ferrara (2008) used P-splines to model un-
known link functions in GLM by likelihood-based method. In these 
papers, p(Xi，7，bi.) are all linear as x f 7 and without b^. Another 
class of mbdel is the curve registration studied by Telesca and In-
oue (2008) and the reference therein. The model in Telesca and 
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Inoue (2008) can be expressed as yi{x) = gi{x, 7, b^) + Ci where x 
is a scalar, yi{x) is the z-th curve at x, A transformation h{x) on 
X was applied through 7, b^) and h{x) was modeled by 
Bayesian P-splines. The model was specifically designed for func-
tional data yi{x) and the transformation was applied through x. 
How this methodology can be applied to common data yi is not 
clear. 

In this chapter, we consider a general nonlinear mixed effect 
model with random effects, which subsumes the regression model, 
mixed effect model, and factor analysis model as its special cases. 
As our proposed model involves random effects, and the domain 
of each response variable is (—00,00)，the estimation method de-
veloped in Mallick and Walker (2003) cannot be applied. Inspired 
by the recently developed efficient Bayesian methods for analyzing 
general nonparametric functions, such as DiMatteo et al. (2001)， 

Biller and Fahrmeir (2001), Lang and Brezger (2004)，Brezger and 
Steiner (2008) among others, we develop our MCMC algorithm 
with Bayesian P-splines in estimating the transformation functions, 
unknown parameters, and random effects in the proposed model. 
Hence, our objectives and estimation method are substantially dif-
ferent from those given in Mallick and Walker (2003). 

The chapter is organized as follows. Section 3.2 defines a semi-
parametric transformation nonlinear mixed model, and introduces 
Bayesian P-splines with monotonic constraints. The Markov chain 
Monte Carlo (MCMC) sampling and the related computational is-
sues are presented in Section 3.3. In Section 3.4, a simulation 
study demonstrates that the proposed methodology is effective in 
handling highly non-normal variables in the context of a nonlin-
ear mixed effect model, and the method is applied to a real stiidy 
about polydrug use. Setion 3.5 gives a conclusion. Some details of 
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the real study are provided in Appendix B. 

3.2 Model Description 

3.2.1 General model formulation 
f r 

For z = 1 , . . . , n, let Yf = {yn, •..，yip^Y be a random vector of 
observed variables measured in each of the n independently dis-
tributed observations. In practice, for each subject i, yij can repre-
sent one of the repeated measurements at pi different time points, 
or the measurement corresponding to the j-th item in a question-
naire. Let f j be an unspecified smooth transformation function 
for yij, and yij = f j ivi j ) . . Like parametric transformations, the 
unknown functions f j are assumed to be strictly monotonic in-
creasing. A semiparametric transformation nonlinear mixed model 
is defined as follows: 

fjiVij)=仏j = 7 ’ bf) + €ij, (3.1) 

where Xij is a vector of covariates, 7 is a vector of unknown pa-
rameters, hi is a vector of random effects, and Cij is a random error 
independently distributed as a j ) . It is assumed that b^ is 
independent of e^j and follows a multivariate normal distribution 
yV(0,少).The g{') in model (3.1) is a specified general function that 
can be used to subsume a wide range of statistical models such as 
linear or nonlinear regression models, random effect models, multi-
level models, factor analysis models, and some other latent variable 
models. 

？ 

3.2.2 Bayesian P-splines and prior distributions 
r 

The transformation functions f j introduced in (3.1) are strictly 
monotonic increasing smooth functions. These functions are un-
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specified and have to be determined by the data. Modeling such 
nonparametric transformation functions to make the distribution of 
yij closc to normal is an important issue. Bayesian P-splincs (Lang 
and Brezger, 2004), which is a Bayesian analog to the P-splincs 
method proposed by Eilers and Marx (1996), has been found to be 
useful in modeling unspecified smooth functions. We will develop 
an efficient approach in modeling nonparametric transformation 
functions through some modifications of the Bayesian P-splines. 

The idea of P-splines is that the unknown smooth function 
fjiVij) is approximated by the following sum of B-splines Bjk{yij), 
Ylk^i PjkBjkiVij) (De Boor, 2001)，where Kj is the number of splines 
determined by the number of knots in the support of yij, and 
13ji,. • • , PjK^ are unknown coefficients. With fj{yij) approximated 
by P-splines, model (3.1) can be rewritten as 

^PjkBjkiyrj) = 小 7，bi) + e^j. (3.2) 
k=\ . 

The complete data likelihood corresponding to model (3.2) is as 
follows: 

Z = 1 J = l L� J J 
A'. 

( v / ^ 广 丨 外 
X 

(3.3) 
1 = 1 

where q is the dimension of bj, ^jk^jkiVij) is the Jacobian of 
^t^transformation, and B'-^{yij) is the first derivative of Bjkiyij)-

The flexibility of this approach in modeling f j is achieved by a 
large number (from 10 to 60) of BjkiVij), while the smoothness of 
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f j is controlled by penalizing very large differences between coeffi-
cients of adjacent B-splines. In a Bayesian framework, this penal-
ization is conveniently incorporated to the coefficients Pjk through 
the first- or the second-order random walk priors. The first- and 
second-order random walks are defined as: 

13jk = + Ujk, a n d = Wj�k—\ 一 P j , k - 2 + U j k � ( 3 . 4 ) 

with Ujk �iV(0，tJ), and a diffuse prior Pji cx constant for the first-
order random walk, and /3ji oc constant and Pj2 oc constant for the 
second-order random walk. The variance r j can be viewed as an 
inverse smoothing parameter, which determines the smoothness of 
the resulting function f j . 

Let P j 类购1，…,lijKjŶ  and the resulting prior distribution 
of I3j is ‘ 

where d is the order of the random walk, M = (Dj—i x … x 
X … X Do), and D/ is a {Kj - / - 1) x [Kj - 1 ) matrix: 

- 1 1 0 ••• o \ 

0 • . • • • ： 

D , = 
： • • • 0 

0 . . . 0 - 1 1 

= 0,-- . “ i - 1. (3.6) 

To ensure 二丄i t^jkl^jkiUij) to be strictly nionotonic increasing, 
the constraint Pji < .•‘ < PjK j is needed. This constraint can 
be incorporated in the analysis by assigning the following prior 
distribution of 

A ， e x p { - & / 3 � M / 3 j } / ( / 3 j i < � < A ； ^》，( 3 . 7 ) 
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where /(.) is an indicator function. Moreover, we realize that the 
model may not be identified in the following situations. First, the 
coefficients in 7 are linear, for example, ^(xjj, 7, b^) = 7工 x " + 7办， 

where 7 = (7工，7,,). As (/3力 7, (Jj) and c)，caj) yield the same 
likelihood (3.3) for an arbitrary constant c under this case, the 
model is not identified. Hence, a j is fixed at 1.0 for identifica-
tion purposes. Second, an intercept, say /i, exists in the function 
" (X i j ’ 7，b i ) . As Y l k i i P j k ^ A V i j ) - = + c ) B j k { ^ j i j ) -

(/x-hc), which results in a non-identified model because both (")�-, /x) 
and {(3jk + c，/la + c) yield the same likelihood (3.3). To achieve 
identification, we impose further constraints on f5j as follows. Let 
Bij = {Bjiiuij),…，BjK,{yij)Y, B j = (Bi力…’ 了’ in which 
7ij is the number of observations at the j-th measurement, and 1 二 

( 1，…，1 , . To achieve identification, we set Yl'iii ！Cfcii 0jkBjk{yij) 
二 0，which is equivalent to I'^Bj/Sj = 0. Let Q j ~ l ^ B j . The con-
straint becomes Qjf3j 二 0, and it can be incorporated by adding 
an additional constraint to the prior distribution of as follows: 

C{rj) exp <1 - 卜(约 1 < … < PjK^Mjf^j = •)’（3.8) 

where C{rj) = �I n a full Bayesiaii analysis, the 
inverse smoothing parameters Tj are treated as random. According 
to a common practice, 

Tj一2 �Gttmma(a;ji，aj2)’ (3.9) 

where a^i, and aj2 are specified hyperparameters. In this chapter 
we use a j i = 1 and aj2 = 0.005 to obtain a highly dispersed (but 
proper) gamma prior of r广. 

For the parameters involved in the righthand side of model (3.1) 
or (3.2), the following conjugate prior distributions are assigned. 

7 �A^(7O, SO),少一 1 �H/is/ iar^�Ro，ro) , (3.10) 

44 



where 7o, r � ’ and positive definite matrices Eq and Rq are hy-
perparameters whose values are assumed to be given by the prior 
information. 

3.3 Estimation of Nonparametric Transforma-
tion 

L e t Yi = (2M，... Y = { y i ; i = I , . . . , n } ’ b = { b f ; z = 

1, • • •，n}，and 0 be a vector of all unknown parameters in the 
nonparametric transformation model (3.2). 'The Gibbs sampler 
(Geman and Gcman, 1984) is used to draw observations from the 
joint posterior distribution of unknown quantities, p(0, b |Y), for 
Bayesian estimation. The related full conditional distributions cor-
responding to the components of (0, b) for implementing the Gibbs 
sampler are presented as follows. 

3.3.1 Full conditional distributions 

(a) Full conditional distribution of l3j 
Let be the subvector of 0 excluding 力 and rij be the num-

ber of observations at the j-th measurement. The full conditional 
distribution of f3j is given by 

刺 Y，b’0一卢 J, 

u j 「 1 〜 

oc Yl e x p j - J 
1=1 L k=\ 

K] - 1 
1 nT 

A:=L 

= (3.11) 
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In some circumstances, the same transformation f = Pk 
Bk{') is applied to each yij for j 二 1，…，Pi’ resulting in common 
transformation parameters r'^, and /3 = • • • , PkY. A typical 
example is transforming the repeated measures of subject i at dif-
ferent time points j = 1,. • . 具 Identical transformations should 
be applied to all yij because the meanings of the measures are the 
same. In this case, the full conditional distribution of (3 is obtained 
by pooling all yij together as follows: 

p( /3 |Y’b,0 一… 

oc 
n P i � 1 A' 

n n exp{ - 2 ( ^f^^kiVij) - 7, bi)) 
1 = 1 7 = . 

K 

k=\ 

(3.12) 

where Q = 1 了(B�’.• •, B j p = maxi{pi), and is similarly 
defined as in (3.11). These full conditional distributions are 
defined on a truncated and degenerated space. The algorithm used 
to draw samples from these distributions are given in the next two 
subsections. 

(b) Full conditional distributions of b^, 7，少，and tJ 

Pi 1 Kj 
OC e x p j -

X exp I - (3.13) 
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^ n Pi Kj 

^ ^^p { - 2 x m (/^jkBjkiyzj) 一 7 , bi)) 

1=1 j=l A:=l 
X exp { - 臺 ( 7 - 7 0 ) r s � i ( 7 — 7o)}， 

n 
= + Ro, n + ro), 

i=l 

竺 Gamma + 厂‘广，a,2 + 

(3.14) 

(3.15) 

(3.16) 

For bj and 7，the associated full conditional distributions are non-
standard. Given /3力 MCMC sampling schemes, such as Metropolis-
Hastings (MH) (Metropolis et al., 1953; Hastings, 1970) algorithm, 
can be implemented similarly to models without transformation. 

3.3.2 The Random-Ray algorithm 

For notational simplicity, we temporarily suppress the subscript 
j in this and iiv the next subsections. In the implementation of 
the Gibbs sampler for the Bayesian estimation, simulating jS from 

• 

(3.11) or (3.12) is challenging because the corresponding full con-
ditional distribution is irregular, and the parameter space is trun-
cated and degenerated. Let = = ( 伪 , • . • < . . . < 
Pki = 0} be the constrained parameter space of (3. It is diffi-
cult to apply the conventional MH algorithm with a multivariate 
normal proposal distribution in sampling /3 in 5 because it is very 
hard to generate a candidate in an irregular space. Moreover, the 
/3-dependent normalizing constant in (3.11) or (3.12) cannot be 
calculated analytically. Even for a (3 with moderate dimension, it 
is very time consuming to obtain an accurate approximation. Chen 
and Schmeiser (1993) proposed the Hit-and-Run (HR) algorithm, 
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which is suitable for sampling observations in a constrained pa-

rameter space. Based on a current state yS⑴，the H R algorithm 

randomly generates a direction vector e and a scalar r, providing 

a candidate ⑴ + re. Consequently, sampling in a multivariate 

constrained space is converted to sampling in a univariate trun-

cated space of r. Liu et al. (2000) proposed a Random-Ray (RR) 

algorithm, which combines the ideas of the H R algorithm and the 

Multiple-Try Metropolis ( M T M ) algorithm (Liu et al., 2000). The 

M T M algorithm can increase the acceptance rate without narrow-

ing down the Metropolis jumps but at the expense of generating 

multiple candidates from the proposal distribution in each itera-

tion. 

The nrf algorithm in generating /3 from the full conditional 

distribution p(外）in (3.11) or (3.12) at the current state ⑴ is 

described as follows: 

(a) Randomly generate a directional unit vector e (see the follow-

ing Section 3.3.3). 

(b) Draw wi，…，w^ along the direction e by generating scalars 

rik from a univariate proposal distribution 了6(/3⑴，w)，and 

calculating Vjfc = p⑴ + riĵ e, fc = 1，…’ m . 

(c) Choose w* from candidates wi, • • • , w ^ with the following 

probabilities: 

= Wife) (xp(Wfc|.)7;(Wfc，/3⑴）’ k = I,... ,m. 

(d) Draw Vi,…jV^-i along the direction e by generating r2k 

from Te(w*, v), and calculating v̂； = w* -f for k 二 

1，…，m — 1. Let v ^ = ⑴’ and r2m be the scalar such that 
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⑴ = w * + r2m^- Compute the generalized Metropolis ratio 

m 

(EP(wd.)T;(w*，/3⑴ 

尺⑷ 二 min 1, ̂  • (3.17) 

^ I>(Vit|.m(Vfc，w*) J 
k=i 

(e) Generate vi 〜U n i f o r m ( f i , 1), and let = w * if v\ < ⑴； 

⑴ if 〉/?(《)• 

In steps (a)-(e), m is the number of multiple candidates. For I = 
1,2，k = l,...,m，the truncated normal distribution 7V(0’af)/( 

ifî , is used as the proposal distribution of r/jt, where the trun-

cation range (/Jj[？, ii{【)）is determined by e (see Section 3.3.3). There-

fore, all ufĵ ) have to be updated in each M C M C iteration. In 

most situations studied in this chapter, a? ranging from 4 to 8 and 

m ranging from 5 to 10 produce acceptance rates between 0.4 and 

0.6. In our semiparametric transformation model with Bayesian 

P-splines, generating e with the R R algorithm is crucial because it 

affects the efficiency of the sampling scheme. A modified Random-

Ray algorithm is proposed. 

3.3.3 Modified Random-Ray algorithm 

Let + re be a candidate sample generated along the direction 

e = (ei,... ,ck) based on current state (3. To ensure that all 

new samples generated by the R R algorithm are in the constrained 

parameter space S�the following two conditions should be satisfied: 

(1) Qe = 0. Since Q/3 = 0，we have Qe = 0 iff Q(/3 + re) = 0. 
(2) P m + refc+i〉Pk + rek, for A: = 1 , . . . , - 1. W e can 

determine the range of r as follows. For A: = 1, • • • — 
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r G < 
-{Pk+i - Pk)/{ek+i 一 e/c), oo]， ek+\ > e^ 

一oo, — (Ab+i — - efc)], efc+i < e^, 

Let Ii = {k\ek+i > e^} and lu == {A:|eA;+i < ê；}. The domain of r 
is the intersection of these K — I intervals: 

r / 0k+l — Pk^^ . r . / Pk+l — Pk^ 1 
max \ — oo, maxf ) m m \ minf )’ oo \ 

keit ek+i -Ck ^ keK ê t+i — ek 」 

(3.18) 

• As the directional vector e affects the range of r, it also affects 

the efficiency of the algorithm. One approach (Chen and Schmeiser, 

1993; Liu et al.，2000) is to generate Ck 〜Uniform( —1,1)， k 二 

1,... and let ek = ^k/y/'^k 药.However, in the transforma-

tion model that we considered, this sampling scheme ignores the 

feature ofp(/3 丨.），thereby leading to an inefficient exploration in the 

parameter space S. Hence, we modify the conventional sampling 

of e by drawing e from S(/3))/(Qe = 0) with 

SG9) 二 d\-\ogv{i3\-)}/dm 

= B ^ B + M / t 2 + (B'广 D09)B'， 

in which 

B ' = (B'l，…’ B^)^, 

= ⑷，…， S W y O r， 

D(/3) = 了 B'i)2，...， 

According to our numerical experience, this modified R R ( M R R ) 

algorithm produces better efficiency in exploring the constrained 
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parameter space of (3. In the M R R algorithm, generating the direc-

tional vector e from N{0,1](j3))/(Qe = 0) in step (a) is efficient by 
using the algorithm in Rue (2004)，because E(/3) is a band matrix. 

As j3 is involved in E(/3), we implement step (a) in the M R R al-

gorithm with the following two phases to simplify the computation 

of (3.17): 

(al) In the burn-in phase，we use S = B ^ B + M / r ^ as a rough 

approximation of I](/3) in generating e. 

(a2) After the burn-in phase, we use Xl(/3o) as an approximation 

of 5](/3) in generating e, where /3。is the mean of (3 obtained 
with the burn-in samples. 

Steps (al) and (a2) take into account the information obtained 

from the initial stage to achieve a better approximation, and avoid 

the calculation of S(Wfc) and S(vfc), k 二 l，...，m in R⑴(see 

(3.17)) at each iteration. Therefore, considerable computing time 

is saved. 

3.4 Numerical Studies 

3.4.1 A simulation study 

To study the empirical performance of the proposed semiparamet-

ric transformation model, we conduct a simulation study based on 

the following nonlinear mixed model given in Pinheiro and Bates 

(2000): 

fiVij)==仏 j = (7i + bii) + (bi2 + 72)砖 exp{-(6i3 + 73)工 ij} + e … 

(3.19) 

where hi = (bii, fci2’ 〜3)『〜#(〇，中)，for i = 1,..., 100 are sub-

ject specific random effects, eij 〜 c r ^ ) , for i = 1，...，100 
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and 7 = 1，…，14，and hi and eij are independent. This model 

involves the linear random effects {6山…2}，nonlinear random ef-

fect bi3, and fixed effects 7 = (71,72,73)了. Three typical non-

normal distributions of y”, including higlily skewed, U-shaped, 

and bimodal distributions, are considered in OUF simulation study. 
To produce non-normal data yij, we simulate yij based on equa-

tion (3.19), and then take the inverse transformation /一 1 for yij 

such that yij = f — H 如 ) . T h e three settings of non-normality 

are as follows: (1) f-\y) = exp(^)/(l + exp(^)), result-

ing in a highly skewed yij； (2) f~^{y) = 15argtan(log(^/30)), re-
sulting in a non-symmetrically U-shaped yij； and (3) = 

y/7 + sin((y — 20)/10), resulting in a bimodal yij. The histograms 
of the simulated data under these settings are depicted in the 

upper part of Figure 3.1. Let xn 二 一1，ooij = 2{j — 2) for 

j = 2’ …，8, and Xij = 12 + 3(j — 8) for j = 9，...，14 (see Pinheiro 

and Bates, 2000). The true population values of the unknown 

parameters are taken as = (23.810，4.762,—0.55) and 屯= 

(1.306,-0.192,—0.082;—0.192,0.580，0.063;-0.082，0.063, 0.010 )， 

and cr2 = l is fixed for identification purposes. 

In each of the above settings, identical transformation /(•) is 

applied to yij for j = 1,…,14. The P-splines with X = 20 is used 

to approximate the transformation function /(•). W h e n conduct-

ing the Bayesian analysis, the prior inputs in (3.10) were taken 

as: 7o = 0, So = 10一41，tq = 5, and Rq = 少 . T h e estimates 

of the unknown transformation function and unknown parameters 

were obtained by the Bayesian P-splines approach based on 100 

replications. In each replication, 5,000 burn-in samples were dis-

carded, and 45,000 samples were acquired as posterior samples. 

The estimated transformation functions, together with the 95% 

pointwise credible intervals, are depicted in the lower part of Fig-
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ure 3.19, which indicates that the proposed approach accurately 

estimates the unknown transformation functions. The bias (BIAS) 

and the root mean square (RMS) between the true values of the 

parameters and their estimates are reported in Tables 3.1 and 3.2， 

respectively. The obtained results show that the proposed method 

performs well for the response variables with the above-mentioned 

highly non-normal distributions. Note that although the P-splines 

can estimate the shape of /(.) under constraint Q卢=0，the esti-

mated 工 PkBkivij) deviates from f{yij) roughly with a constant 

shift. Thus, the estimated 71, which represents the overall mean, 

is meaningless in the transformation model and is not presented in 

Table 3.1. 

To study the sensitivity of the Bayesian results to the prior in-

puts, the simulated data sets were reanalyzed by using two different 

prior settings: (I) 70 = 27，So = I，ro 二 5，Rq 二 ax = 1’ 

and 0C2 == 0.05; and (II) 70 = 0.57’ So = I’ r。二 5，Rq == 0.5少’ 

ol\ = 0.001, and 0:2 = 0.001. The estimated unknown parameters 
and nonparametric transformation functions are close to those re-

ported in Table 3.1 and 3.2，and Figure 3.1, indicating that the 

Bayesian results obtained by our method are not very sensitive to 

the prior inputs under the given sample sizes and model settings. 

It took 30 minutes to produce the Bayesian estimation for one 

replication using a P C with Core 2 6300@1.86 G H z and IG R A M . 

It should be noted that the non-Bayesian transformation models 

and their associative statistical methods (see references in Section 

3.1), and the Bayesian transformation model considered in Mallick 

and Walker (2003) cannot be applied to analyze the nonlinear 

mixed model defined in equation (3.19). To compare our method 

with other possible existing methods, the simulated data were rean-

alyzed by the following conventional transformations. The first one 
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is the Box-Cox transformation, which is the most popular paramet-

ric transformation method. W e considered the Box-Cox transfor-

mation with the index parameter A in { — 1, —1/2，0,1/2,1}, which 

are commonly used and associated with the reciprocal, reciprocal 

of square root, logarithm, square root, and identity transformation, 

respectively. The identity transformation with A = 1 is equivalent 

to ignoring the non-normality and simply fitting the data to the 

nonlinear model in the right hand side of (3.1). The second one is 

to discretize the non-normal response variable yij into a categorical 

variable via threshold specification (see Cowles, 1996). This is a 

commonly used ad hoc method in dealing with highly non-normal 

data in practical applications. The estimated unknown parameters 

produced by the above-mentioned two conventional transformation 
, 

methods are presented in Tables 3.1 and 3.2 for comparison. The 

results show that the performance of our proposed method with 

the Bayesian P-splines is much better than those associated with 

the Box-Cox transformation and the discretization method. 

3.4.2 Application: A study on the intervention treat-

ment of preventing polydrug use 

The proposed semiparametric transformation model with Bayesian 

P-splines is applied to a real study concerned on Proposition 36 

(Prop36, Evans et al., 2009) initiated by California voters. The 

proposition directs drug offenders to a community-based drug treat-

ment to reduce drug abuse using proven and effective treatment 

strategies. Objectives in this study include examining the rea-

son why court mandated offenders dropout of the drug treatment, 

and comparing their characteristics, treatment experiences, per-

ceptions, and outcomes with treatment completers (see Evans et 

al., 2009). The entire data set was obtained based on a number of 
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self-reported and administrative questionnaire items on drug treat-

ment dropouts, drug-related crime histories, and drug use histories. 

Also, information about services 抑d tests received was collected 

from the participants at intake, three-month, and 12-month follow-

up interviews. In our analysis, we employ a latent variable model 

to investigate how the drug use severity and convicted crime his-

tory affect the retention in the drug treatment and how this re-

tention will affect the behavior of the future drug use. Variables 

related to the following items are included in the analysis: ‘‘drug 

problems in past 30 days at intake (Drgplm30，yi),” "drug use in 

past 30 days at intake (DrgdaySO, 2/2)’” "number of kinds of drugs 

used in past 30 days at intake (DrgN30，^3)," "number of incar-

cerations in lifetime at intake (Incar, 2/4)," "number of arrests in 

lifetime at intake (ArrN, 2/5)，，’ "age of first arrest (2/6)，，’ "treat-

ment retention (yy)," and "primary drug use in past 30 days at 

12 month interview (M12drg30, 2/8).” The first three observed vari-

ables (yi, 2/2，2/3) reveal the characteristics of patie^s’ drug severity. 

These variables were grouped into a latent facior "drug severity, 

bi.” The next three observed variables (2/4,2/5? Z/ej, which reflect the 

patients，crime history, were grouped into a latent factor "crime 

history, b � ：A confirmatory factor analysis (CFA) model was pro-

posed to group the observed variables into latent factors. Three 

observed variables, including "services received in past 3 months 

at a 3 month interview (Sericem,^xi)," "number of drug tests in 

past 3 months at the 3 month interview (DrugtestTX,工2)，” and 

"number of drug tests by criminal justice in past 3 months at the 3 

month interview (DrugtestCJ, X3)," were considered as covariates 

because they were expected to affect treatment retention according 

to prior medical knowledge. The sample size of the data set was 

1,028，and all variables were treated as continuous. W h e n looking 

‘55 



at the histograms of the variables (see Figure 3.2), we found that 

most distributions were far away from normal. Specifically, y\ and 
y2 were non-symmetrically U-shaped, y^ and y-j were bimodal, and 

the rest were highly right skewed. For these highly non-normal 

variables, the conventional parametric and discretizing transfor-

mations were not expected to work well. Therefore, we applied 

the proposed methodology to analyze the data. As the patterns of 

non-normality and the meaning of the variables are very different 

for Uij at distinct j, component specific transformations /j (•) are 

applied to yij for cach j. 

In formulating an appropriate model to analyze the data, "treat-

ment retention, yy" plays a special role because both the covariates 

(x'l, X2, .X3) and latent factors (61, 62) influence y-j, and y-j itself fur-
ther influences the drug use at the 12-month interview (yg). There-

fore, yi is not only in the sets of the response variables but also in 

the sets of the covariates in the model. For i = 1,…,1028， 

f(yi) = yi = + I'b̂ i + (3.20) 

where y,： 二 (仏 i,.-. = …,MUih)? ’ x , = 

(工ii，工i2,工i3，yi7)』，7.r and are the matrices of unknown regres-

sion coefficients corresponding to fixed effects x? and random ef-

fects (latent factors) b/，respectively; b^ = �•/V(0，少)’ 

and e , = (芒山…， e化广〜 i V ( 0 , 1 ) , where I is an identity matrix 

for identifying the model. Based on the prior knowledge of experts 

in formulating the relations among response variables arid latent 

factors (see the path diagram in Figure 3.3), the structures of 7工 
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(3.20) are prespecified as follows: 

0 0 0 0 

7:r = 7:rl 1x2 7.1-3 0 ) 

0 0 0 1x4 

1 7M 7//2 0 0 0 7/)r) 0 
lfb = 

0 0 0 1 7 w 7 w 7/,g 0 

where the O's in indicate 6 x 1 vectors of zeros. All the zeros and 

ones ill 7丄.and were fixed for defining an identified C F A model 

(see Shi and Lee, 2000) as given in Figure 3.3. Hence, the unknown 

parameters are 7 二 ，7.r2’ 7x3，7̂ :4, 7m, 762, 7w，765,7Wi)了，and 

{011)^12) 022} in 少.We encounter the following problem in apply-

ing the nonparametric transformation to each Although the 

UijS vary within a wide range, most of them take integer values 

(e.g., number of days or number of arrests), which results in tics. 

As the transformations are one to one, it is impossible to traris-

foriii the variables with many ties to normal. To solve this prob-

lem, small random noises generated from N(0，0.01) were added to 

break the ties, which still maintained the orders of the patients for 

every variables. In this analysis, we take K4 二 40，K^ 二 60, and 

Kj 二 30 for the rest j as the number of splines for approximating 
the unknown transformation functions f j . The prior distributions 
of 7 and 屯 were taken as those in (3.10) with the hyperpararneter 

A 

inputs: 7() = 7 , vq = 6’ and Rq = (ro 一 q — 1)少’ where q is the 
dimension of b^, and 7 and 少 are the M L estimates obtained via 

the discretization method. 

After checking the convergence, we found that the M C M C al-

gorithm converged within 30,000 iterations. To be conservative, 

50,000 generated samples were used to obtain the Baycsian results 



after discarding 50,000 burn-in iterations. The estimates of factor 

loadings, regression coefficients，and their standard error estimates 

arc reported in Figure 3.3. The estimates of the pointwisc pos-

terior means of the unknown transformation functions, together 

with the 5%- and 95%-pointwise quantiles, are depicted in Figure 

3.4. For most curves, the estimated credible intervals formed by 

the pointwise quantiles are narrow, indicating good estimates of 

the unknown transformation functions with the Bayesian P-splines 

approach. To investigate the sensitivity of the Bayesian results to 

the prior inputs, the above analysis was repeated with some per-

turbations of the current prior input. In particular, two different 

choices of ar = 1, /3t = 0.05, and otj = 0.001, Pr 二 0.001 were used. 

W e obtained close Bayesian estimates of unknown parameters and 

similar estimated curves of unknown smooth functions. The pro-

gram was written in R. The computational time for completing the 

above analysis was about 230 iniii using a P C with Intel Core2 1.86 

G H z C P U IG RAM. 
The interpretation of the results are given as follows. First, all 

the factor loadings are significant, indicating strong associations 

between latent factors and the corresponding observed variables. 

The loading on "age of first arrest" is negative, indicating that pa-

tients who were involved in crime earlier in their lives tend to have 

more serious crime history, which may be reflected by large num-

bers of incarcerations and arrests. Second, both “drug severity" 

and “crime history，，have negative impacts on "retention," indicat-

ing that patients who have more serious "drug severity" and worse 

“crime history" tend to have less treatment retention. Therefore, 

some enforcement actions might be necessary for those patients. 

For example, more attention should be given to patients who were 

young criminals or who were serious drug users. Third, the covari-
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ates that measure services and tests in the three-month interview 

give a significant indication of retention measurement. x\ is the 

mean value of a questionnaire about the treatment with 42 ques-

tions at the three-month interview, which reflects the attitude of 

the patients towards the treatment after the first three months. X2 

and 2；3 are numbers of tests the patients received in the first three 

months, which reflect how much attention is given to monitoring 

the treatment process. Patients who received more attention were 

likely to stay longer in the treatment. Piirthermore, the results 

from the three-month interview can serve as an indicator to mon-

itor and improve the treatment proccss. To decrease the number 

of dropouts from the treatment, special attention should be given 

to the patients who filled the questionnaire with low values and 

received few drug tests. Finally, "retention" has negative impact 

on drug use in the 12-month follow-up interview, which indicates 

that longer treatment retention leads to less drug use at 12 months. 

This finding indicates a positive effcct of the Proposition 36 treat-

ment program in reducing drug abuse. 

3,5 Conclusion 

In this chapter, a semiparametric transformation model is proposed 

to analyze data involving highly non-normal variables. Differ-

ent from traditional transformation methods such as the Box-Cox 

transformation, the current model formulates the unknown trans-

formation function through Bayesian P-splines. To solve the dif-

ficulties encountered in the development of the proposed method-

ology, a modified constrained Bayesian P-splines approach incor-

porated with powerful M C M C techniques is employed. A simula-

tion study demonstrates that the proposed model and methodology 
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perform satisfactorily with several commonly encountered highly 

non-normal distributions. The novel model and methodology are 

applied to analyze a data set related to poly drug use intervention, 

in which the observed variables 

as U-shaped and highly skewed, 

tained. 

arc extremely non-normal, such 

Some interesting findings are ob-
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Table 3.1: The Bayesian estimates of fix effect coefficients in 100 replications 

Par" P-spline Dis 
A ill Box-Cox transfomation 

-0.5 0 0.5 

Skewed 

72 

73 

Bias -0.055 

Rms 0.230 

-4.279 -2.883 -3.612 -4.162 -4.138 -3.989 

4.282 2.886 3.613 4.162 4.138 3.989 

Bias 

Rms 

-0.002 -0.091 0.684 0.420 0.069 -0.010 0.013 

0.010 0.100 0.685 0.423 0.072 0.015 0.016 

U-shaped 

72 
Bias 

Rms 

-0.056 -2.171 -1.673 -2.790 -4.003 -4.140 -4.134 

0.239 2.183 1.702 2.793 4.004 4.140 4.134 

73 
Bias -0.002 

Rms 0.010 

0.004 0.797 0.526 0.056 -0.059 0.070 

0.011 0.798 0.527 0.063 0.060 0.071 

Bimodal 

72 

73 

Bias -0.090 

Rms 0.249 

.681 -1.547 -2.489 -3.042 -3.482 -3.422 

.704 2.463 2.495 3.044 3.483 3.422 

Bias -0.003 

Rms 0.010 

0.022 0.628 0.494 0.282 0.076 -0.006 

0.032 0.657 0.496 0.285 0.078 0.013 

Note 1: “Dis” denotes "Discretize". 

Note 2: Under transformation, the estimated jjij is close the 仏j generated in the 

simulation with a constant shift. Therefore, overall mean 71 is meaningless and is 

not reported here. 
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Table 3.2: The Baycsian estimates of diagonal elements of covariance matrix of 

random effects in 100 replications 

Par P-splinc Dis 
A in Box-Cox transfomation 

-0.5 0 0.5 

(^n 
Bias -0.0073 -0.559 0.973 1.348 2.250 2.251 0.988 

Rms 0.191 0.666 0.977 1.352 2.250 2.252 0.989 

Skewed Bias -0.0046 -0.384 1.845 0.796 0.924 0.954 -0.456 

Rins 0.077 0.402 1.870 0.799 0.924 0.954 0.456 

Biais 0.00006 -0.010 0.010 -0.005 -0.010 -0.010 0.007 

Rms 0.002 0.010 0.011 0.007 0.010 0.010 0.007 

ĉii 
Bias -0.010 -0.090 -1.172 -1.121 -0.963 1.031 .132 

Rms 0.197 0.204 1.172 1.122 0.964 1.031 1.132 

U-shaped Bias 0.002 -0.205 2.585 0.213 -0.520 -0.537 -0.547 
(^22 ‘ 

Rms 0.099 0.212 2.900 0.341 0.520 0.537 0.547 

Bias 0.0001 -0.002 0.028 0.006 -0.009 -0.009 -0.008 

Rms 0.0002 0.003 0.029 0.007 0.009 0.009 0.008 

(^n 
Bias -0.024 -0.152 -1.214 -1.223 -1.185 -1.052 -0.877 

Rms 0.198 0.222 1.216 185 1.053 0.879 

Bimodal Bias 0.0004 0.539 212.3 0.987 0.254 -0,276 -0.414 

Rms 0.097 1.507 579.1 1.039 0.279 0.282 0.415 

Bias 0.0002 -0.003 0.043 0.059 0.035 0.008 0.0002 

Rms 0.002 0.010 0.051 0.062 0.009 0.009 0,002 

Note: "Dis" denotes "Discretizc" 62 



n 

%r 
E t U m M M l trsA«form«ttofi funcUon toy 

C i U m a t * d t r m f o n n a t l o f f i Kmct lon by 卜 s p l l n * 
E«Ufn«t»<S trsntformaUon hmcttoo by 

Figure 3.1: Upper part contains histograms of yi] randomly selected from 100 

replications in the three situations. Lower left to right are estimates of the trans-

formation function f in three situations: Highly Skewed, U-shaped, Bimodal. 

The solid lines are the true transformation curves; dashed lines are estimated 

mean curves; dot-dash lines form the estimated point-wise 95% credible inter-

vals. • 
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Figure 3.2: Histogram of response variables in real example. First row from left 

to right: 2/1，2/2’ and 2/3； Second row from left to right: 2/4, 7/5, and ？/g； Third row 

from left to right: yi、y .̂ 
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Figure 3.3: The path diagram, together with the estimated regression coefficients 

and their standard error estimates (in parentheses) of polydrug use data analyzed 

by the Bayesian P-splines transformation model. 
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Figure 3.4: Estimates of the unknown transformation functions in the real exam-

ple. The solid curves represent the estimated pointwise posterior mean curves, 

while the dashed curves represent the 5%- and 95%-pointwise quantiles. 
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Chapter 4 

Transformation Varying 

Coefficient Models 

4.1 Introduction 

Varying coefficient models (see Hastie arid Tibshirani, 1993; Hoover 

et al., 1998; Fan and Zhang, 1999; Chiang et al.，2001; Eubank 

et al., 2004, among others) are useful and flexible nonparametric 

regression models in analyzing effects of covariates dynamically ac-

cording to certain modifiers, e.g., time or location. More recently, 

Bayesian varying coefficient models (see Biller and Fahrmeir, 2001; 

Lang and Brezger, 2004) have also attracted much attention, be-

cause the Bayesian approach based on M C M C sampling can be 

more easily applied to complicated models (Gelfand et al., 2003; 

Dunson et al., 2003; Hennerfeind et al., 2006; Haneuse et al., 2008; 

Su and Hogaii，2010). In most of varying coefficient models, distri-

butions of error terms are usually assumed to be standard, e.g., nor-

mal distribution (see Biller and Fahrmeir, 2001; Lang and Brezger, 

2004; Rodrigues and Assungao, 2008)，and Gaussian time process 

(see Su and Hogan, 2010). Although varying coefficient models are 

very flexible nonparametric models, the«^bove assumptions may 

be violated in real applications, and thus the validity of estimation 
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would be undermined. One common approach to alleviate such 

violation is to transform the observed variables. 

In this chapter, wc consider a Bayesian semivarying coefficient 

model with a nonparametric transformation and random effects. 

Inspired by the recently developed efficient Bayesian methods in 

the analysis of general nonparametric functions, such as DiMatteo 

et al. (2001)，Biller and Fahrmeir (2001), Berry et al. (2002), Lang 

and Brezger (2004)，Brezger and Steiner (2008)，and Song and Lu 

(2010)，among others, we develop our M C M C algorithm to estimate 

the transformation functions, the varying coefficient functions, un-

known parameters, random^fFects, and smoothing parameters in 

the proposed model. 

The chapter is organized as follows. Section 4.2 defines a semi-

varying coefficient model with a nonparametric transformation and 

random effects. The unknown functions, including nonparamet-

ric transformation functions and varying coefficient functions, are 

modeled with Bayesian P-splines. The M C M C sampling scheme 

and the related computational issues are given in Section 4.3. Sec-

tion 4.4 presents a simulation study to demonstrate the efficiency 

of the proposed methodology for handling highly non-normal vari-

ables in the context of a semivarying coefficient model with random 

effects. Section 4.5 concludes the chapter with a discussion. 

% 

4.2 rJiodel Description 

4.2.1 General model specification 

For i — 1,..., n, let yi = {yn,..., yipjT be a random vector of 
observed variables measured in each of n independent observations. 

In practice, for each subject i�yij can represent one of the repeated 

measurements at pi different time points. Let f be an unspecified 
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smooth transformation function for yij, and ijij 二 f{yij). Similar to 

parametric transformations, the unknown function f is assumed to 
be strictly monotonic increasing. A nonparametric transformation 

semivarying coefficient model is defined as follows: 

fiVij) = Vij = + zfjb, + wjjoc + e 小 (4.1) 

where x̂ j = (xiji,..., Xijq̂  and Uij = {uiji, •..，û jq̂  Y are vec-

tors of fixed covariates, ẑ j is a g〗x 1 vector of covariates, and Cij 

is a random error which is independently distributed as N{0, a^). 
It is assumed that b^ is independent of Cjj and follows a multi-

variate normal distribution 7V(0,中).w^j and a are q^ x I vec-

tors of covariates and fixed coefficients, respectively. 7(11")= 

(7i(〜ji)，..., 7(71 ( 叫 i s a vcctor of coefficient functions on Xij. 

All 7/(.) are assumed to be unknown smooth functions, which result 

in varying coefficients of Xjji according to uiji, / 二 1 ’ …，(71. 

4.2.2 Modeling unknown smooth functions 

For notational simplicity, we assume qi = I. An extension to the 

case with (71 > 1 is straightforward. Under this assumption, the 

model (4.1) is simplified to 

fiVij) = Vij 二 ^iM'iHj) + zjjbi + wJjOL + (4.2) 

where /(•) and 7(.) are assumed to be unspecified smooth func-

tions, and to be determined by data. In addition, the transforma-

tion function /(.) is assumed to be strictly monotonic increasing. 

Flexible f can eliminate serious departure of yij from normality. 
W e adopt the different versions of Bayesian P-splines introduced 

in Chapter 2 and Chapter 3 to model 7(.) and /(•)，respectively. 

Specifically, f{yij) and "y{uij) are approximated by the following 
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sums of B-splines Gfdyij) and Bk{u,j) (De Boor, 2001) 

/v, K 
fiVij) 二 ('",)_)， 7(.t“j) 二 

A;=l k=l 
flkB,{ll u (4.3) 

where Ky and K arc tlic numbers of splines detcriniiuxl by the 

numbers of knots in the supports of ijij and Uij. They are usually 

set in advance between 10 to 60 in order to provide the model with 

enough flexibility. Let i/ == ("!，...，“八‘/3 = {I3[ 
{G\{yij),…’ G/、'"(y,j) )了, and B,) = (:r。Si(w")，…，x,jBk('U,j)广. 

With f(y,j) and 7('“"）approximated by (4.3), model (4.2) can be 

expressed as: 

Gjjiy = B l P + z[；hi + w/;a + f u u u 'J (4.4) 

The coiiiplcto-data likelihood corrcsporicliiig to model (4.4) is 

(x/^严叫少I”/ 
cxp 

2 

Pt h\ ！:=1 

bf 中—lb, X 

nn 
/=1 1 L k= 1 

Bj/3 - zjM - w j a ) 

y/^a 
已 - • ( G i f； " 

(4.5: 

where G[,{yij) is the first derivative of Gk(jjij\ and J2k=i 外 ^''kivu 
is the Jacobiaii of the transformation. 

4.2.3 Prior distributions 

The following prior distribution is assigned to f3 to prevent over-
fitting induced by large K: 

K 

M = n 
人 1 

1 

\ h'-d 

exp 

y/^r J 
exp 

1 
2T2 

1 

Wk 一 

(4.6) 
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where d is the order of the random walk, /“- = and //̂； 二 

1 — Pk-2 arc the first- and second-order raiidoiii walks, respec-

tively, and M = (D,/_i x ... x D())7’(Df/—i x . •. x D()), where D/, 

/ = 0,…，d — 1, arc defined as in (3.6). 

Several constraints have to be imposed in order to identify tlie 
八’ 

model. First, to ensure f i u i j ) = [ 么 人 y " ) to be strictly 

moiiotonic increasing, the constraint /々  < … < /乂八is needed. 

This constraint can be incorporated in the analysis by assigning 

the prior distribution of v as follows: 

1 \ 八 厂 f 1 T 1 

e x p 《 - — y M f j U < •.. < ///、-J， （4.7) 
I 2T2 

where /(•) is an iiulicator function, and M,, and d" are similarly 
defined as M and d in (4.6), respectively. Second, the coefficients 
ill b,, and a arc linear in model (4.4). As (/3, i/, a, hj , a, 

and {cp, cv, cot,, chj , ca, c^^) yield the same likelihood (4.5) for 

an arbitrary constant c under this case, the model is not identi-

fied. Heiicc, (7" is fixed at 1.0 for identification purpose. Third, an 

intercept, say a\, exists in wfjCt. As Ylkh GA-(//,；) — 1， 

h'u A',, 

i^k-GkiUij) — n.i =〉(i/A- + c)Gk{ytj) — (̂ vi + (. 
k= 1 k= 

which results in a iioii-icloiitified model b(x:ause both (i/, rvi) and 

{u + c, a I + c) yield the same likelihood (4.5). To achieve idontifi-
cation, we impose another constraint on i/： 

n p, 
�‘r G/," 二 (). 

Let G , = (Gn’...，G,J、G = (G[,…’ G;(y: and 1 二（1’... ’ 1广. 

The third identification constraint is equivalent to Gu 二 0. Let 
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Qy = ITG. This constraint becomes QyU 二 0, which can be in-

corporated ill the analysis by modifying the prior distribution of i/ 

in (4.7) as follows: 

( 1 、八"" r 1 ^ 1 

b ^ ) (4.8) 

where Cy — {Vl̂ î < … < /乂八‘,” = 0}. 

Ill a full Bayesiaii analysis, the inverse siiiooUiiiig parameters r^ 

arid T^ are treated as random. According to a common practice, 

wc assign the following prior distributions for r^ and r"： 

= G(ini'rii(i{a\, a-?), = Gum川a(ai, (1.2), (4.9) 

where cii and a-) are specified 1 ivper[)aran 1 etcrs. In this chapter wc 

use (1[ 二 1 and (I2 = 0.005 to obtain a highly dispersed (but proper) 
gamma prior of 丁；"^ and r"^. 

For the parameters involved in the riglithand side oi model (4.2), 

the following conjugate prior distributions are assigned. 

a = yV(a(), S o ) ,少 — 1 = Wisfiart{K^),ro), (4.10) 

where a()，？.()，and positive definite matrices S(> and Ro arc hy-

perparameters whose values are assumed to be given by the prior 

information. 

4.3 Estimation of Nonparametric Transforma-

tion and Varying Coefficient Functions 

Let y, == (jji\,…，Uipy、, Y = = 1，... b = = 

1, • • .， a n d 0 be a vector of all uiikiiowii parameters. W e use 
the Gibbs sampler (Gcmaii and Gcman, 1984) to draw observations 

from the joint posterior distribution p{6, b|Y) for the Bayesiaii 
estimation. The related full conditional distributions are presented 

follows, 
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4.3.1 Full conditional distributions 

(a) Full conditional distributions of v and f3 

Let Q-u be the subvector of 0 excluding v. The full conditional 
distribution of u is given by 

p("|Y’b,0—p) 

t=i j=i 

nG'kiy u 
k: 

1 .T cxpj - — ( 4 . 1 1 ) 

The full conditional distribution in (4.11) is clefiried on a truncated 

and degenerated space. The algorithm used to draw samples from 

this (listribiitioii is analog to that described in Section 3.3.2 except 

the following modifications: (i) the target distribution in (3.17) is 

rcplaccd by (4.11), and (ii) the covariancc matrix of the proposal 

distribution of the directional vector in Section 3.3.3 is calculated 

by (liffereiitiatiiig the logarithm of (4.11) with respect to v twice. 

Let B, = (Bii,..., B 二 (Bf,...，Bjy. The full condi-

tional distributions of (3 is: 

p{f3\YM0.p) = (4.12) 

where S" = (B^B + j3* = S;^(B、*)，y* = (yf,...， 

y* = ami y-j = Gj-u-zj-h, -wj-cx. Sam-

pling observations from this multivariate normal distribution can 

be done efficiently using the algorithm in Rue (2004). 

(b) Full conditional distributions of smoothing parameters r^ and 
t \ 

‘73 



Based on the prior distributions given in (4.9) 

V D 

D 

Gamma h\-d ax + a2 + 

^ Gamma ai + a2 + M/3 

(c) Full conditional distributions of b^, a，and 少 

n 

iTi 

n) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

where E；,- = (ZfZ, + h： = S； = ( W W ^ + 

So-i)-i’ a* = + S o — Z , 二（z.山• • •，z,。,)了’ W 二 

(^11)-•.，川ip"...’ ’⑴"1，..•，切n/J『，ytt 二 {ytiv ..., ytifjr, y； 二 

(^ain . •. ’ IAuh, ...，y二, ... ’ yLpjT, ylij = GjjU - - w j a , 
T 

Valpi 
and y:“ = Gj^u — Bj,f3 一 zjjh, 

4.4 Numerical Studies 

.4.1 A simulation study 

To study the empirical performance of the proposed sernivarying 

coefficient model with nonparametric transformation, we conduct 

a simulation study bai>ed on the following model: 

fivij) = Vij = Xijx-)x{uijx) + 00ij2j2(Uij2) + zjb, + w j a , (4.17) 

,100 are subject specific 

...，100，j 二 1，…，16， 

where b, = (J)u,!)i2)〜N取少)，i = 1，• 

random effccts, and Cij 〜7V(0,1), i = 
which are independent of b,. Three typical non-normal distribu-

tions of Uij, including highly skewed, U-shaped, and bimodal dis-

tributions, are considered in our simulation study. To produce 
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non-normal data yij, we simulate yij based on equation (4.17), 

and then take the inverse transformation f_i(.) for 如 such that 

yij = /-i(访J). The /(.) corresponding to the three settings of 

non-normality are as follows: (1) = — exp(—0.2t»)，result-

ing in a highly skewed yij; (2) = exp(0.8(i; - 0.5))/[l + 

exp{0.8(i; — 0.5)}], resulting iii a non-symmetrically U-shaped ŷj； 

and (3) = l-2v -f sin(f), resulting in a bimodal yij. The 
histograms of the simulated data under these three settings are 

depicted in the lower part of Figure 4.1. The varying coefficient 

functions for the three settings arc given as follows: (1) for skewed 

mj, 71 (^) = 0.5cxp((u-8)/4)-2, 72(^) = (0.18(u-8))^ (2) for U-

shaped yij, 71 (w) - sin(0.5(u - 8))’ 72(11) = (0.15(1/ - 8)”； and (3) 

for bimodal ijij, 71 (u) = 1.250('a — 8)，72(H) 二 (0.25(n - 8)), where 

0(-) is the standard normal probability density function. W e fix zuj 

and w\ij at 1 to make bn and a\ to be random and fixed intercepts, 

respectively. The mean of bn is 0, and l)“ and ai are identified. 

Z2ij arc generated from the standard normal distribution, xuj and 

X2ij, w<2ij and w-̂ ij are independently generated from the uniform 

distribution on (—2,2), and uuj and U2ij arc independently gener-

ated from the uniform distribution on (0’ 16). The true population 

values of the unknown parameters are taken as a ^ 二（0,1，1) and 

少=(1.0，0.3;0.3，1.0); (7̂  = 1 is fixed for identification purposes. 

The P-spliiies with 25 equal-distant knots in the support of y"， 

Uiji, and Uij2 are used to approximate the transformation func-

tion /(.) and the varying coefficient functions ̂ i{uiji) and 

The prior inputs in (4.10) are taken as: ao = 0，So = I，ro 二 5, 

and Ro = 中 . T h e Bayesian estimates of unknown transformation 

function, varying coefficient functions, and unknown parameters 

are obtained based on 100 replications. In each replication, 2,000 

burn-in samples are discarded, and 7,000 samples are acquired as 
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posterior samples. The estimated transformation functions and 

the varying coefficient functions, together with their 95% point-

wise credible intervals, are respectively depictcd in the upper part 

of Figure 4.1, and Figure 4.2, which indicate that the proposed 

approach accurately estimates the unknown transformation func-

tions and varying coefficient functions. The bias (BIAS) and the 

root mean square (RMS) between the true values of the parameters 

and their estimates are reported in Tables 4.1 and 4.2 under the 

column "P-spline", respectively. The obtained results show that 

the proposed method performs well when the response variables 

are highly non-normal. Note that although the P-splines can esti-

mate the shape of /(•) under the constraint QyU 二 0, the estimated 

Gijiy = 0 deviates from f{yij) roughly with a constant shift. Thus, 

the estimated ai, which represents the overall mean, is meaningless 

in the transformation model and is not presented in Table 4.1. 

To study the sensitivity of the Bayesiaii results to the prior in-

puts, the simulated data sets are reanalyzed by using two different 

prior settings: (I) a。二 1，So = I’ ro = 5, Rq 二 2少，a\ 二 1, 

and a<i = 0.05; and (II) cxq = 一 1, S q = I, tq = 5, R o = 0.5啦， 

ai = 0.001, and a。= 0.001. The estimated unknown parame-

ters, varying coefficient functions and nonparametric transforma-

tion functions are close to those reported in Tables 4.1 and 4,2，and 

Figures 4.1 and 4.2. Therefore，the Bayesian results obtained by 

our method are not sensitive to the considered prior inputs under 

the given sample sizes and model settings. 

To compare our method with other possible existing methods, 

the simulated data are reanalyzed by the following conventional 

transformations. W e consider the Box-Cox transformation with 

the index parameter A in { —1, —1/2,0,1/2,1}, which are com-

monly used and are associated with the reciprocal, reciprocal of 
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square root, logarithm, square root, and identity transformation, 

respectively. The identity transformation with A 二 1 is equivalent 

to ignoring the non-normality and simply fitting the data to the 

semivarying coefficient model defined in the right hand side of equa-

tion (4.17). The estimated unknown parameters obtained with the 

Box-Cox transformation method are also reported in Tables 4.1 and 

4.2 for comparison. The results demonstrate that the performance 

of our proposed method is much better than those associated with 

the Box-Cox transformations. The program is written in R. It 

takes about 15 minutes to produce all the Bayesian estimates for 

one replication using a P C with Core 2 8400®3.00 G H z and 2G 

R A M . 

4.5 Conclusion 

In this chapter, a semivarying coefficient model with rionparamet-

ric transformation is proposed to analyze data with repeatedly 

measured highly non-normal variables. The unknown transfor-

mation functions and unknown varying coefficient functions are 

approximated with Bayesian P-splines. The noriparametric trans-

formation considered in our model is different from the traditional 

parametric transformation methods such as the Box-Cox transfor-

mation. A modified Random-Ray algorithm together with other 

M C M C methods are proposed to solve difficulties in developing our 

methodology. A simulation study demonstrates that the proposed 

method performs satisfactorily in handling repeatedly measured 

and highly non-normal data. 
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Table 4.1: The Bayesian estimates of fix cfTcct coefficients based on 100 replica-

tions 

Par P-splinc 
A in Box-Cox trarisfomation 

Par P-splinc 
-1 -0.5 0 0.5 1 

Biaij -0.0041 -1.026 -1.06 -0.757 -0.55 -0.402 

Skewed 
Rms 0.034 1.026 1.061 0.759 0.551 0.404 

Skewed 

Bias 0.0071 -1.023 -1.058 -0.759 -0.055 0.402 

Rms 0.028 1.023 1.058 0.7G1 0.552 0.403 

Bias 0.0003 -1.356 -1.550 -0.232 -0.170 -0.191 

U-shaped 
Rrns 0.033 1.357 1.550 0.234 0.173 0.194 

U-shaped 

Bias 0.0035 -1.357 -1.551 -0.231 -0.169 -0.19 

Rrns 0.027 1.357 1.551 0.233 0.171 0.192 

Bias -0.0036 -1.027 -1.102 -0.524 -0.21 -0.131 

Bimodal 
Rms 0.033 1.028 1.102 0.525 0.212 0.135 

Bimodal 

Bias -0.0067 -1.029 -1.103 -0.523 -0.208 -0.129 

Rms 0.027 1.029 1.103 0.524 0.21 0.132 

Note: Under transformation, the estimated ijij is dose the fjij generated in the 

simulation with a constant shift. Therefore, overall mean a! is meaningless 

and is not reported here. 
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Table 4.2: The Bayesian estimates of diagonal elements of the covariance matrix 

of random effects based on 100 replications 

Par P-spline 
A in Box-Cox transfomation 

- 1 -0.5 0 0.5 

01 
Biâ  0.011 -0.945 -0.693 -0.498 0.201 -0.544 

Rins 0.139 0.946 0.697 0.507 0.268 0.548 

Skewed Bia.s 0.009 -0.259 -0.194 -0.135 0.06 -0.147 
012 

Riiis 0.104 0.286 0,227 0.17 0.107 0.162 

022 

Birus 0.012 -0.292 -0.554 -0.366 0.283 -0.482 

Rins 0.143 0.862 0.65 0.492 0.391 0.493 

01 
Bia^ 0.0014 -0.809 -0.654 -0.378 0.371 0.107 

Rms 0.137 0.811 0.657 0.388 0.382 0.138 

U-shapcd Bias -0.0025 -0.214 -0.185 -0.129 -0.064 -0.012 
012 

Rms 0.01 0.223 0.194 0.144 0.087 0.057 

(P22 
Bias -0.0189 -0.751 0.G15 -0.402 0.306 0.036 

Rms 0.014 0.754 0.062 0.412 0.319 0.081 

01 
Bias -0.0097 -0.956 -0.721 -0.541 -0.164 -0.238 

Rms 0.139 0.975 0,723 0.548 0.2 0.265 

Bimodal BiaiJ 0.0007 -0.272 -0.213 -0.152 -0.05 -0.071 
012 

Rms 0.103 0.281 0.225 0.166 0.088 0.106 

022 

Biaa 0.0097 -0.875 -0.G46 -0.46 -0.126 -0.253 

Rms 0.144 0.888 0.662 0.482 0.172 '0.276 
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--r-n ct 

Figure 4.1: The first three graphs in the upper part are the estimates of the 

unknown transformation functions /() in the simulation. The solid curves rep~ 

resent the underlying true curves. The estimates of the pointwise posterior mean 

curvcs arc depicted by dashed lines. The dot-daah ciirvcs represent the 2.5%-

and 97.5%-pointwisc quantilcs based on 100 replications. The lower part are the 

histogram of yij applied to the corresponding transformation. 
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Figure 4.2: Upper and lower graphs are estimated 71 () and 72()，from U-shape, 

Skewed, and Bimodal situations, respectively. The solid curves represent the 

underlying true curves. The estimates of the pointwise posterior mean curves 

are depleted by dashed lines. The clot-clash curves represent the 2.5%- and 

97.5%-pointwise quantiles b£Lsed on 100 replications. 
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Chapter 5 

Finite Mixture Varying 

Coefficient Models 

5.1 Introduction 

In this chapter, a finite mixture of varying coefficient models is 

motivated from a longitudinal study concerning compulsory treat-

ment for heroin patients carried out by the California Civil Addict 

Program. How treatment affects the level of heroin use in differ-

ent patient groups is of great interest. In this longitudinal study, 

assuming the effect of treatment to be invariant with respect to 

time is irrational. Moreover, it will be more informative if the 

dynamic treatment effect in each patient group can be estimated. 

As discussed in Chapter 4，varying coefficient models will be a 

good candidate for modeling this kind of time dependent effects. 

Another important concern of this study is to distinguish patient 

groups with different patterns of heroin use. To accommodate the 

possible existence of heterogeneity in this longitudinal data, we 

propose to use a finite mixture of varying coefficient models. 

Heterogeneous population, which is composed of several subpop-

ulations (groups), is inevitable in many fields such as economics, 

psychology, education, and sociology. The analysis of treating 
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heterogeneous population as homogenous will bury the valuable 

information of each subpopulation (group). And the estimates 

that ignore different characteristics of subpopulations (groups) are 

misleading and hard to interpret. As the group membership of 

each independent observation is unknown, methods for multiple 

group problems (situations with known group membership) can 

not be applied directly. As a result, mixture modeling (Redner 

and Walker, 1984; Titterington et al.，1985; McLachlan and Peel, 

2000), in which the group memberships of observations are treated 

as unknown quantities and arc estimated together with parameters, 

has received much attention in both statistics and other disciplines. 

Finite mixture models have been studied extensively using dif-

ferent estimation procedures, including the method of moments 

(Lindsay and Basak, 1993), the maximum likelihood method (Hath-

away, 1985; Yung, 1997; Lee and Song, 2003b) and the Bayesian 

method (Diebolt and Robert, 1994; Richardson and Green, 1997; 

Lee and Song, 2003c; Lee, 2007). ijetermining the number of mix-

ture components is also an important issue. In a Bayesian frame-

work, Richardson and Green (1997) developed a full Bayesian ap-

proach based on the reversible jump Markov chain Monte Carlo 

( M C M C ) algorithm (Green, 1995). Lee and Song (2003c) proposed 

a model selection procedure for selecting the number of components 

in a finite mixture of structural equation models (SEMs) by using 

Bayes factor together with path sampling method. Recently, Cai 

et. al. (2010) developed a finite mixture of S E M s with nonignor-

able missing responses and covariates. They determined the num-

ber of mixture components by a model selection criterion, namely 

modified Deviance Information Criterion (DIG, Spiegelhalter et al., 

2002; Celeux et al., 2006). In this chapter, we use a Bayesian ap-

proach to analyze the finite mixture of varying coefficient models. 
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The number of components is determined by the modified DIG 

because it can avoid complicated varying dimensional M C M C al-

gorithm and its computational burden is light given the simulated 

M C M C samples in the estimation procedure. 

This chapter is organized as follows. Section 5.2 defines the pro-

posed mixture varying coefficient models. The prior' distributions 

of unknown parameters in this model are also discussed. Section 5.3 

develops the full conditional distributions required in producing the 

estimation and determining the number of components involved in 

the mixture model. In Scction 5.4，a simulation study is conducted 

to demonstrate the performance of our proposed methodology. The 

method is applied to the motivated example and some interesting 

findings are obtained. A conclusion is given in Section 5.5. 

5.2 Model Description 

5.2.1 General, model specification 

For i = 1,... ,n, let yi 二 (yn,...,ytpj^ be a random vector of 

observed variables measured in each of the n independent obser-
vations, and Xij =(工iji’...，工and Ujj = (uiji,..., UijqjT be 

vectors of fixed covariates. In practice, for each subject i, yij can 

represent one of the repeated measurements at pi different time 

points. In the proposed mixture varying coefficient models, yij is 

assumed to have the following probability density function: 

R 
= ^(PirPriVijlOr)^ (5.1) 

r = l 

hr j = 1,... ,pi, i = 1,... ,n. i? is a given integer representing 

the number of components used to model the density of yij. Or is 

a vector of parameters which characterize the density of the rth 
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component of the mixture, ̂ pir is the probability of the zth obser-

vation in the rth component, and Y2r=\ 灼 r = 1, for i 二 1,... ,n. 

According to a common practice in mixture modeling, it is useful 

to introduce a latent allocation variable Q is assumed to take in-

teger value 1，...，with probability p{(i = r) = (f tr^ r = 1,..., R. 
Q = r indicates that pij is from the rth component. The probabil-
ity density function of Pij given Q is 

P("ij|0i，...’0/?,Ci = r) = Pr(yij\0,}. (5.2) 

Conditional on Q = r, ŷ j is modeled by a varying coefficient model 

which is defined as follows: 、 

Vij == y^JjlMij) + z^bi + wja,. + eij, (5.3) 

where Zij is a (72 x 1 vector of covariates, and Cij is a random er-

ror independently distributed as 7V(0, of). It is assumed that bj is 

independent of cij and follows a multivariate normal distribution 

yV(/Xr，<Ev). Wjj and ov are g'3 x 1 vectors of covariates and coeffi-

cients, respectively. Let OV(Uij) = (7ir(̂ tji),... ̂ IqiA^kjqi))^ be a 

vector of functional coefficients related to Xij, and {uiji,...，Uijq̂ Y 

be a vector of covariates. They are usually called modifiers, such 

as time or location, etc. Elements of 7“）are assumed to be un-

known smooth functions, which allow the coefficients of x̂ j to vary 

according to Uij. 

For notational simplicity, we assume qi = 1. A n extension to 

the case with > 1 is straightforward. Under this assumption, 

the model (5.3) is simplified as: 

Vij = + zjjhi + ^JjOLr + Cij. (5.4) 

W e use the Bayesian P-splines to model 7r(从)•）• The Jr{uij) is 
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approximated by the following sum of B-splines Bk{uij): 

‘ K 

lr{Uij) == y ^ Prkl^Uij), (5.5) 
• * • 

where K is the number of splines determined by the number of 

knots in the support of uij. Let (3̂ . == (/？小...,PtkY be a vector 

of unknown coefficients in the rth component. K is set in advance 

between 10 and 60 to ensure that the approximation is adequate. 

Denote Bjj = [xijBi{uij),..., XijBK{uij)Y. With、[Uij、approxi-

mated by (5.5), model (5.4) can be expressed as: 

Vij 二 B 試 . + zjjbi + wfjOLr + Cij. (5.6) 

Let (fj^ 二 ((/?ii， ( f i f i ) , i = 1,..., n. (p^ is modeled by the 
following multiple logistic regression model: 

, , 、 expj'dlvi) 
Er=i Vi) 

where i9r and v^ are vectors of coefficients and covariates, respec-

tively. The probability of each observation in certain component 

differs for certain reasons characterized by the covariates in Vj. 

i9ji is set to be 0 for model identification according to a common 

practice. 

5.2.2 Prior distribution 

Using a common prior specification in Bayesian P-splines, the prior 

distribution of /3『is: 

K 

(圭广exp卜击伪床、（5.8) 
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where d is the order of the random walk, Prko 二 /3r�k-i and Prko = 
2Pr,k-i — Pr,k-2 are the first- and second-order random walks, re-

spectively. M = {D(i-i X •. • X Do)^{Ddi-i X ... X Do), in which 

Di, Z = 0，…，(i 一 1, arc defined as in (3.6). 

In a full Bayesian analysis, the inverse smoothing parameters t》 

are treated as random. According to the similar reason as given 

before, for r = 1,…，7?， 

丁广〜Gamma�air,a2r), (5.9) 

where a\r and a2r are specified hyperparameters and wc use a\r = 1 

and a2r = 0.005 to obtain a highly dispersed (but proper) g a m m a 

prior of r"^. 

For in (5.7), r = 1,...,/? — 1, we assign a multivariate normal 

prior: 

〜W(办Or，5：洲r). (5.10) 

For the parameters involved in the right hand side of model (5.6), 

the following conjugate prior distributions are assigned. For r = 

Ctr 〜A^(aor，SaOr), ^r ̂  〜 亡 ( R o r , A)r)， 

ptr 〜A^(Mor，S/!Or)，. CT；*?〜Gamma(adr, ), (5.11) 

where iJor, Q̂ or, Por，Â or, ^(Tir, î(T2r，and positive definite matrices 

Ê ôr, SaOrj Ro'r, and are hyperparapieters whose values are 

assumed to be given by the prior information. 

5.3 Estimation and Model Selection of Mixture 

Varying Coefficient Models 

Let Yi = (yii，...，2/ip,广’ Y = (yf , b = (bi，...’b„) 了， 

C = (Ci,. • . ， a n d 0 = (01,... ’ Or), where Or is a vector that 
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contains all unknown parameters in 3” ocr, /î，少r，cr̂ , and i?r-

The complete-data likelihood of observed response variables Y and 

unobserved latent variables b and ^ is 

=p(Y|b,c，0)P(bK’0)P(CI 权） 

n 
1=1 
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(5.12) 

W e use the Gibbs sampler (Geman and Geman, 1984) to draw 

observations from the joint posterior distribution of all unknown 

quantities, p(0,b，<^|Y), for Bayesian estimation. The full condi-

tional distributions in implementing the Gibbs sampler are pre-

sented as follows. 

5.3.1 Full conditional distributions 

(a) Full conditional distributions of Pj. and 

Let Bi = (Bii，.. •，BinJ^, and B = (Bf, ..., B : , Denote 

Br be the submatrix of B which only retains B^ with Q = r. 
Let = (/3i, •..，/3r一 1’/3”+1，... ’/3/?)，y-j = Vij — ẑ b,- - wf产r, 
y*i = …,Vinf^ y* = (yl 了，…，yff^ and y^”）be a subvector 

which retains the elements y* in y* if (i = r. The full conditional 
distributions of /3广，r = 1,..., i?, are: 

‘’ = ( 5 . 1 3 ) 

where = (B^B./a^ + M/r^)-' and (3； = 

Sampling from this multivariate normal distribution can be done 
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efficiently using the algorithm in Rue (2004) because Xl/jr is a block 

diagonal matrix. 

For / = 0, • • •，91， 

= Gamma D K — d i nTi - ^ 
air + —y—, a2r + -/3； M/3, (5.14) 

(b) Full conditional distributions of a”，cr̂ , /x̂  and ^r 
For r = 1’ …，/?，denote W = (wn,…，Wip,,…’ …’ 

WnpJ了’ VcTij = -zjbi -wJjOCr, Vaij = yij-Bjj(3^ -zjbi, 
Ya = (ycTll, • . .，yalpi, • • .，VcTTiU . . .，VanpnV, and y^ = (yall, • . •, 
Paipi 7...，?/cmi,..., VanpnY' Let W ^ and b(r) be submatrices of W 

and b without Wij and bj if Q + r, respectively. Define yo” yw， 

and Yr be subvectors of y^, y^, and Y , which only retain 細力 yaij, 

and yij if • = r, respectively. Let SV = r}, and n* be the 
number of integers in SV，r == 1,…，兄 

D 
Pic^r = a*27' 

p(ar|Y"b(r)’ 卢n 〜2)竺 7V(a;,S:)， 
D 

D 
p(少;:i|b⑷，/ir) 二 n; + po, 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

where a;!” = â lr + I J2ieSr =知2r + lylvYor. = 

and fi； = S;“少;：1 E 路 b, + S^oV^Or). R ; = — 

(c) Full conditional distribution of'0 = . . . ， 了 . 

T. 
n exp { - — -仇r)} 

(5.19) 
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The full conditional distribution of i? is nonstandard. M C M C sam-

pling schemes, such as the Metropolis-Hastings algorithm (MH) 

(Metropolis et al.，1953; Hastings, 1970), can be used to draw the 

posterior observations from this nonstandard distribution. 

(d) Full conditional distributions of bf and Q 

For 2 = 1, 

D p{hi\yueXi = r) = mb;,拟, (5.20) 

where = (Z『Zi+少力一丄，b： = Z^ 二（Zii’... ,z叩,) 

Ybi = (yinu ..., ywp,)了，and ynj = yij — B^/3,. — w 

T 

rT.^ 
For r = 1，...，the full conditional probability mass function 

of Q is: 

p(Ci = Hyi，bi，0)= (5.21) 

The probability in the denominator is independent of Q. To find 

P(Ci = r|yj, bj, 0), it is sufficient to calculate 

Piyu^uQ 二 H权) (5.22) 

=P{yi\hu Ci = r, = r, e)v{Q = r|0) 

exp I —臺(bi - - a O } 

p. n exp < 一 Tr^iVij -

Bjjf3r — — w^.ar) V 

Hence, (5.21) can be calculated and (i can be drawn from a multi-

nomial distribution with known probability mass function. 

The allocation variable Ci is of interest for classification purpose, 

which is estimated by 

A 
(i = argmaxr{ip trf (5.23) 
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where (pir — 7(Ci”）= "r)/J, J is the number of M C M C samples 

after burn-in period, and (?) is the sample of (i at the tth M C M C 

iteration. 

5.3.2 Identification issue 

In finite mixture models, it is well known that under symmetric 

prior of parameters in different components, the label switching 

problem has to be solved for identification purpose. The label 

switching is caused by the fact that the likelihood in mixture mod-

els (e.g. (5.1)) is invariant with a permutation of the group labels 

1，... ； i?，so is the case for the posterior distribution under sym-

metric prior. This will lead to R\ subspaces with identical posterior 
distribution，each of which corresponds to a different way in label-

ing the groups. The resulting posterior distribution will be multi-

modal, which is challenging in sampling with M C M C algorithm. 

The general idea to solve this problem is to put constraints on the 

parameters in order to get samples from only,one subspace out of 

/?! candidates. In the literature, several solutions have been pro-

posed to solve the label switching problem, see Celeux et al. (2000), 

Stephens (2000), Pruhwirth-Schnatter (2001), Jasra et al. (2005)， 

among others. Inspired by Lee (2007), we use the random permu-

tation sampler by Fruhwirth-Schnatter (2001). The idea of random 

permutation sampler is as follows. Each sample is first drawn from 

the posterior distribution in the unconstrained parameter space. 

The simulated samples are relabeled according to some predeter-

mined parameter constraints described later. The relabeled sam-

ples can then be used for M C M C inference. The corresponding 

M C M C algorithm using the full conditional distributions in the 

unconstrained space is as follows. Given latent variables and pa-

rameters at the ith iteration of the M C M C chain, {0⑷，b⑴乂⑴}’ 
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the sample at the {t -f l)th iteration is generated as follows: 

(a) Draw 

(a) Draw 

⑷ Draw 

(d) Let S 

termined identification constraint. Relabeling 0 = (0i，...，On) 

such that Or = Os*{r), where S*{r) is the rth element in S*. 
For i = 1，...，n, let (i = r if Ci = S*{r) before relabeling. 

As described in Lee (2007)，we use the permutation sampler in two 

stages. At the first stage, the sampling scheme based on steps (a) 

-(c) is implemented in an unconstrained space. This procedure 

produces samples that explore the whole unconstrained parame-

ter space and jump between the different labeling subspaces in a 

balanced fashion. The resulting samples are used to find an appro-

priate identification constraint used in the permutation sampler. 

At the second stage, we use the permutation sampler to produce 

the posterior samples from a specific siibspace determined by the 

chosen identification constraint at the first stage. Specifically，S* 

is determined based on the results obtained with steps (a) - (c) in 

an unconstrained space at stage 1, and then is used to perform the 

permutation sampler with step (d) at stage 2. 

5.3.3 Selecting the number of components with a modi-

fied Deviance Information Criterion 

There are several methods to determine the number of components 

in finite mixture models. Richardson and Green (1997) proposed to 

treat the number of components as random and use the reversible 
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jump M C M C algorithm to sample from the joint posterior distribu-

tion of the number of components and other unknown quantities in 

the model. Lee and Song (2003b) compared mixture models with 

different fixed number of components, and selected an appropriate 

number by using Bayes factor and path sampling procedure. W e 

use a modified Deviance Information Criterion (DIG) to determine 

the number of components in the mixture of varying coefficient 

models. DIG was proposed by Spiegelhalter et al. (2002), which is 

a generalization of Akaike Information Criterion (AIC) because it 

aims to seek for an appropriate model by finding the balance be-

tween the measure of goodness-of-fit and model complexity under a 

Bayesian framework. It can be estimated with the M C M C samples, 

which are the by-products in the estimation procedure. Thus, the 

extra computational burden in calculating DIG is light. As noted 

by existing literature (see for example Spiegelhalter et al., 2003; 

Cai et al., 2010), applying DIG directly in selecting mixture mod-

els is problematic. W e adopt a modified DIG proposed by Celeux 

et al. (2006) to overcome this problem. 

. In terms of our proposed model, the modified DIC can be ex-

pressed as 

-4£;0，b’c[logp(Y’ b’ C\0)] + 2五b，C[logp(Y’ b, C\0*)\YI (5.24) 

where p(Y, b, is the complete-data likelihood defined in (5.12), 

and 0* = C]. The first expectation in (5.24) can be 

estimated as follows: 

丑0’b’(:[logP(Y’b’<:|0)] « J t logp(Y，b⑴’ C⑴⑴ ) 

To estimate b, ，at the ,th iteration, we gen-

erate Ji extra samples 0(")’ … ， 山 ） f r o m p(0|Y, b⑴，C⑴）by re-

peating (a) in Section 5.3.2 Ji times. Let 0!。= E/J-I 权(,’“)/ 
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The second expectation in (5.24) can be estimated as follows: 

1 J 
Eb’dlogp(y，b’C|0*)|Yl a jElogp(Y，b⑴，C⑴ 

t=i 

The model with the smallest DIG value will be selected. 

5.4 Numerical Studies 

5.4.1 A simulation study 

W e conduct a simulation study to evaluate the empirical perfor-

mance of the proposed mixture varying coefficient models. Condi-

tional on (i = r, pij is defined as follows: 

Pij = ^ijl7lr(Uijl) + Xij2lf2r{Uij2) + Zijbi + Wijiair + ^^”2<^2r + 
(5.25) 

where xiji, Xij2, uiji, and Uij2 are generated independently from 

U(-l’l)，which is the uniform distribution on [—1,1]. Zij is fixed 

at 1 for all i and j, and bi 〜A/'(/ir, (t>r) is a subject-specific ran-

dom intercept, which is independent of cij 〜 w m and 

Wii2 are generated from U(-l,l), and let w m 二 ... 二 u；仏and 

Wi\2 =…= W i n二 for all z, which are subject-invariant covariates. 

The latent group variable Q is generated from the multinomial 

distribution with probabilities specified by the multiple logistic re-

gression model: 

expi'dirVii + l92rVi2) 

where vn and Vi2 are generated independently from U(-l,l). 

The simulation is conducted in two scenarios. In the first sce-

nario, the mixture is composed of two components. The true val-

ues of the unknown parameters are taken as fi\ == 一1, /i2 = 1, 
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ail 二 0.6, a2i — 0.6, a u = —0.6, 0:22 = —0.6，0i = 02 = 0.5, 

(J? 二 二 0.3, Tin = 1’ 1̂ 21 = 1, t?i2 = 0, and 7)22 = 0. The pro-

portion of cach component is around 50%. The underlying varying 

coefficients are defined as: 

7ii(u) = -4(/){2(u + 0.5)), 721 (̂ i) = 1.5sin(2.5u), 

712 ⑷=exp(u), 722 ⑷=cos(2u) + O.bu, 

where is the probability density function of standard normal 

distribution. 

In the second scenario, the mixture is composed of three com-

ponents. The true values of the unknown parameters are taken as 

fii 二 一2, fi2 = 0, //3 = 2’ an = 0.6, a2i = 0.6, ay^ = 一0.6, 

»22 = -0.6, ai3 = 0.6，a23 = 一0.6，(f>i = (/>2 = 03 = 0.5, 

af = al = a'i = 0.3，i9u = 1’ ^21 二 —1’ = -1, ̂ 22 = 1, 

79i3 = 0，and i?23 = 0. The proportions of components are about 

40%, 40%, 20% for r = 1, 2,3，respectively. The underlying varying 

coefficients are defined as: 

7ii(u) = -40(2(ii + 0.5))’ 721(1/) = 1.5siii(2.5u), 

7i2(iO 二 exp(w), 722⑷=cos(2i0 + 

713(W) = 1..5ix3， 723 (^) = 1.51/2. 

Each scenario is studied with two different sample sizes. In the 

first scenario, n = 400 and n = 800 are used, and in the second 
scenario n 二 500 and n = 1000 are used. P-splines in (5.5) with 

Ki = 20 are used ‘to approximate the 7/,,(以ij/)，/ = 1,2. The prior 

distributions in (5.9) - (5.11) are taken as invariant with r as fol-
lows. (I): for all r, air = 1, a2r = 0.005, i9or = 0，E^or = O.OOOII, 

CtOr == 0，EaOr = Ror = 0.5, Por = 3, /Xor = 0，E^Or = 

â ir = 3； and aa2r = 1, where I denotes the identity matrix with 

appropriate dimension. After checking convergence with well sep-

arated starting values, we find the algorithm converges after 2,000 
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M C M C iterations. The estimates of varying coefficient functions 

and unknown parameters are obtained based on 100 replications. 

In each replication, 2,000 burn-in samples were discarded, and 

4,000 samples were acquired for posterior inference. 

In first scenario with sample sizes n = 400 and n = 800, the esti-
mated varying coefficient functions and the 95% pointwise credible 

intervals are depicted in Figures 5.1 and 5.2, respectively. The biâ j 

(BIAS) and the root mean square (RMS) between the Bayesian es-

timates and the true values of parameters are reported in Table 5.1. 

The obtained results show that the estimates of unknown param-

eters are accurate and the estimated varying coefficient functions 

are close to the underlying true functions. The performance of the 

estimation improves as sample size increases. Results of the second 

scenario are reported in Figures 5.3 and 5.4, and Table 5.2，which 

give the same conclusion. 

To demonstrate that the modified DIG can select the right num-

ber of mixture components，the simulated data in the first scenario 

with n = 400 are reanalyzed with 1- and 3-component mixture 

models defined by (5.1) and (5.25). Let M ^ denote the mixture 

model with k components/A: = 1,2,3. The modified DIG values 

of M l to M 3 are calculated. The results are reported in the left 

part of Table 5.4. The modified DIG value of M 2 is the smallest 

in all 100 replications, indicating that the true model M 2 can be 

consistently selected by the modified DIG in this scenario. The 

simulated data in the second scenario with n = 500 are reanalyzed 
by M l and A/2. The modified DIG values of M i to M 3 are calcu-

lated. The results are reported in the right part of Table 5.4. The 

true model M 3 is also consistently selected in all 100 replications 

in the second scenario. ‘ 

To study the sensitivity of the Bayesian results to the prior 
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inputs, the simulated data in the first scenario with n = 400 are 
reanalyzed with two additional different prior-̂ ettings: (II) air = 1, 

a2r = 0.05, l9or = 21, E^Or == I，ttOr = 51, E ^Or = I，POr = 4， 

Ror = 1, Mor = 21, 二 I，Ĝ rir. = 9, and a^2r 二 8; (III) 

air = OTOOl,, a2r = 0.001, t̂ Or = -21, S^Or 二 I, aor = —51， 

S a O r = I， /?0r = 飞 、 R ( ) r = 0 . 2’ P o r 二 一 2 1 , ^^lOr = I ， ^ a l r = 9 , . a n d 

â 2r =i 2; where I is an identity matrix and 1 is a vector of 1 with 

appropriate dimensions. The estimates of unknown parameters 

are reported in Table 5.3，and the estimates of varying coefficient 

functions are close to those reported in Figure 5.1. Hence, the 

Bayesian results obtained by our method are not very sensitive to 

the prior inputs under the given sample sizes and model settings. 

The program is written in R. In a P C with Intel Core 2 8400@3.00 
« » 

G H z and 2G R A M , it takes about 70 minutes to produce the 

Bayesian estimation and the modified DIC value in one replica-

tion of the first scenario with 400 samples. 

5.4.2 Application: A longitudinal study of the treatment 

effect on the control of heroin use 

In this section, we applied the mixture varying coefficient models 

to the motivated example concerning treatment effect on heroin 

use control (Hser et al., 2007). The sample consists of 437 patients 

originally admitted to the California Civil Addict Program, which 

was established to give compulsory drug treatment for narcotics-

dependent criminal offenders ̂ mmitted under court order. Each 

patient wâ s followed up at the first 16 years after his/her onset of 

heroin use. Self reported longitudinal data were acquired to study 

subsequent, long-term outcomes of interests. Whether the com-

pulsory treatment had any effect on the control of heroin use and 

how the effect evolves are of particular interest. Another important 
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concern of the study is to distinguish different patient groups with 

different patterns of heroin use and treatment effects. 

The data include time variant variables: “Mean days of heroin 

use per month (pij),” and "Months in treatment per year (xij)" in 

each of the 16 years, z = 1,..., 437, j = 1’ …，pi, where pi < 16. 

The data are unbalance because some patients were incarcerated 

for 12 months in certain years. During these years, the patients 

were completely separated from heroin. Therefore, the mecha-

nism of heroin use in these years were different from those when 

the patients had free access to heroin, and we exclude them from 

the data. The data also include time invariant variables: "age at 

the first' treatment {wnY' and "age at the first heroin use (tt;i2)’，, 

i 二 1,... ,437. The proposed model was applied to find the vary-

ing coefficients of treatment over time in possible groups of heroin 

users. In the rth group, 

Vij = 7lr(Uij) + Xij^2r{Uij) + Wnair + Wi20C2r + bi + (5.27) 

where uij stands for the number of years from the last incarceration 

for 12 months in one year, jir{uij) is the trend of overall mean 

of heroin use, and 72”(叫j) represents the time-varying effect of 

treatment on heroin control in the rth group, bi 〜iV(/ir, 0r) is a 

subject-specific random effect and is independent of eij 〜A/^O, cr̂ ). 

10 equal-distant knots in [1，16] were used to construct the B-spline 

b a s i s f o r e s t i m a t i n g j i r { u i j ) a n d 7 2 r ( 叫 j ) . A s 7 i r ( . ) a n d f i r a r e n o t 

identifiable, we use the method discussed in Section 2.4.1 to solve 

this problem. 

Latent allocation variables Q is assumed to follow a multinomial 

distribution with probability {(pn,..., ̂ m)： 

、 exp(…r巧1 + f}2rVi2 + qq、 
p{Q = r) = (fir = — ^ , (o.zoj 
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where vn and Vi2 are “age at the first treatment" and “age at the 

first heroin use." Before conducting the analysis, yij, Xij\, wn, Wi2, 

Vii, and Vi2 were standardized. 

W e fitted the data with three models, 1-component (Mi), 2-

component (M?)，and 3-component (M3) mixture varying coeffi-

cient models, and compared their modified DIG values. Although 

a 4-component mixture model (M4) was also fitted, the estimation 

exhibits serious label switching problem even under the identifia-

bility constraint determined by the permutation sampler. Hence, 

we only considered the candidates M\ to M3. The prior inputs in 
(5.9) - (5.11) were taken as invariant with r: for all r, air = 1， 

a2r = 0.005, i9or = 0, S^or = 0.00011，aor = 0，E^or = 10-^1, 

Ror = 0.15, Por = 3, fiQr = •，Êor = 10—41，a^ir = 3, and â 2r = 1. 

The permutation sampler was used to find a suitable identifica-

tion constraint. The constraint which can separate the compo-

nents well is fir > "r_i. After discarding 3500 burn-in iterations, 

3500 samples were acquired to obtain the Bayesian estimates of 

unknown parameters, unknown coefficient functions, and the mod-

ified Die values. Ji = 10 was used to calculate the modified DIG. 

DICm, = 15913, DICm2 = 15444, and DICm, = 15021, indicating 

that a 3-component model is selected. The estimates of unknown 

parameters, together with their standard errors (SE) estimates un-

der the selected model are reported in Table 5.5. The estimated 

varying coefficient functions and the corresponding 95% pointwise 

credible intervals are shown in Figure 5.5. The upper part of Fig-

ure 5.5 includes the trends of overall means of heroin use in each 

group, which are obtained by adjusting the scale of the estimates 

of 7ir(.) + Mr to that of yij before standardization. 

The data were reanalyzed with some perturbations of Ji and 

the hyperparameters in the prior distributions. Under different 
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prior inputs, the modified DIG values with J\ = 20 consistently 
select M3，and the estimates of unknown parameters and varying 

coefficient functions in M 3 are close to those reported in Table 5.5 

and Figure 5.5，Thus, the Bayesian results in this study are robust 

to the prior inputs. 

The interpretation for the estimates of time-varying and time-

invarying coefficients under the selected model is as follows: (1) 

The estimated trends of overall means depicted in the upper part 

of Figure 5.5 show the patterns of heroin use in each group. Group 1 

(13%) is composed of serious addicted patients who used heroin fre-

quently (more than 20 days per month) in the entire study, Group 

2 (47%) consists of patients that used heroin with increasing fre-

quency, and Group 3 (40%) is formed by patients who became ad-

dicted in the first two years and decreased steadily afterwards. (2) 

The lower part of Figure 5.5 shows different patterns of treatment 

effect in different groups. The treatment effects in Group 1 and 

Group 2 are positive in controlling heroin use. Also, there is a pos-

itive correlation between the severity of addict and the treatment 

effect, which indicates that the proposed treatment is especially 

useful for serious heroin addicts. For Group 3 in which the pa-

tients decreased heroin use continuously, the treatment effect had 

a reverse pattern, indicating that the proposed treatment may not 

be suitable for the less heroin addicts. Other possible treatments 

are desirable for Group 3 patients. (3) "age at the first heroin use" 

is negatively associated with the probability of Group 2 (i?22)’ in-

dicating that the younger the patients use heroin, the more likely 

they addict themselves to heroin with an increasing trend. There-

fore, we should pay particular attention to those who involved in 

heroin early, and provide them prompt and effective treatments. 



5.5 Conclusion 

In this chapter, a finite mixture of varying coefficient models is 

analyzed. The unknown varying coefficient functions are modeled 

with Bayesian P-splines. The M C M C algorithm is used to ob-

tain the Bayesian estimates of unknown parameters and varying 

coefficient functions. The modified DIG is used to determine the 

number of components in the mixture model. A simulation study 
I 

shows that the proposed method can estimate the varying coeffi-

cient functions and unknown parameters accurately, and the DIG 

can correctly determine the number of components in the mixture 

model. The model is applied to a longitudinal study concerning 

treatment effect on the control of heroin use, where the data ex-

hibit heterogeneity. Distinct patterns of heroin use and treatment 

effect in different patient groups were identified. The results show 

that the proposed mixture varying coefficient models is particularly 

useful in the analysis of heterogeneous data with dynamic effects. 
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-0.008 0.099 -0.012 0.076 

0.002 0.062 0.002 0.037 

-0.005 0.071 -0.001 0.042 

0.003 0.015 0.006 0.014 

Table 5.1: The Bayesian estimates of parameters in M2 based on 100 replications 
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0.008 0.070 

0.002 0.070 

0.000 0.040 

0.006 0.044 

0.002 0.011 

0.024 0.168 

-0.001 0.163 

-0.011 0.065 

0.004 0.078 

-0.004 0.041 
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0.001 0.012 
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Table 5.2: The Baycsian estimates of parameters in M3 based on 100 replications 
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0.015 0.093 0.058 0.110 -0.027 0.093 

0.014 0.104 0.061 0.118 -0.027 0.108 

0.012 0.050 0.023 0.055 -0.005 0.049 

-0.006 0.059 -0.008 0.059 -0.020 0.062 

0.003 0.016 0.015 0.022 0.000 0.017 

0.013 0.194 0.145 0.229 -0.018 0.191 

-0.020 0.192 0.104 0.194 -0.075 0.199 

-0.008 0.080 0.031 0.090 -0.053 0.096 

-0.008 0.099 0.027 0.098 -0.054 0.110 

0.002 0.062 0.006 0.062 0.008 0.063 

-0.005 0.071 -0.006 0.072 -0.015 0.074 

0.003 0.015 0.016 0.022 0.000 0.014 

Table 5.3: The sensitivity analysis of the Bayesian estimates in M2 with n = 400 

based on 100 replications 

Prior (I) Prior (II) Prior (III) 

Parameters Bias RMS Bias RMS Bias RMS 

a 

a； 



Table 5.4: The estimates of the modified DIG in two scenarios of the simulation 

study. 

Scenario 1 Scenario 2 

M2, n: =400 M3, n =500 

D ie SD D ie SD 

Ml 6442.93 69.74 8219.78 86.37 

M2 4651.19 81.10 6934.56 115.7 

Ma 4888.06 77.90 6131.62 91.91 
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Table 5.5: The Baycsian estimates of parameters in heroin use control study 

with the selected model A/3 
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Figure 5.1: Estimated varying coefficient functions based on 100 replications 

in M2 with sample size 400. From left to right, top to bottom, the figure is 

composed of 7ii(.)，7i2(.)’ 72i(.), and 722(.). The solid curves represent the true 

curves, and the dashed and dotted curves arc the pointwise median and 2.5% 

and 97.5 % quantiles of the varying coefficient functions. 
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Figure 5.2: Estimated varying coefficient functions based on 100 replications 

in M2 with sample size 800. From left to right, top to bottom, the figure is 

composed of 7ii(.), 7i2(.)’ 72i(.)，and 722(.). The solid curves represent the true 

curves, and the dashed and dotted curves arc the pointwisc median and 2.5% 

and 97.5 % quantiles of the varying coefficient functions. 



Figure 5.3: Estimated varying coefficient functions based on 100 replications 

in M3 with sample size 500. From left to right, top to bottom, the figure is 

composed of 7ii(-), 7i2(.)，7i;3(.)’ 72i(.)，722(.)，and 723(.). The solid curves 

represent the true curves, and the dashed and dotted curves are the pointwise 

median and 2.5% and 97.5 % quantiles of the varying coefficient functions. 



Figure 5.4: Estimated varying coefficient functions based on 100 replications 

in M3 with sample size 1000. From left to right, top to bottom, the figure 

is composed of 7ii(.)、7i2(.)，7i3(.)’ 72i(.)，7.22(.)’ and 723(.). The solid curves 

represent the true curves, and the dashed and dotted curves are the pointwise 

median and 2.5% and 97.5 % quantiles of the varying coefficient functions. 

‘10 



10 15 

Figure 5.5: Estimated varying coefficient functions with M3 in the real example. 

The upper part contains 711(.)，7i2(.)，and 7i3(.)，and the lower part includes 

72i(-)> 722(.)，and 723(.). The solid curves and ciaiihed curves are the estimated 

pointwise median, and 2.5% and 97.5 % quantiles of the varying coefficient 

functions. 
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Appendix A 
> 

Technical Details of M C M C 

Sampler 

The full conditional distributions involved in steps (a) and (bl)-

(b7) (see Section 2.4.2), and the implementation of the M H algo-

rithm are given below. 

(A) Full conditional distribution of fi in step (a). 

p(n|Y’0) 
n ‘ n 

1=1 i=l 

oc 

So 

n (tl P i V i M ^ Aj，A力 ⑷（，Xh、b，/3, 
t=i j—\ 

(A.l) 

oc exp{-亡去(yo — Aja 一 Aju^i)'} exp(-•打 
7 = 1 

X exp 
D Km 92 Kj 

1 f ^ 1 飞 

d=\ k-. k=l 
(A.2) 

‘112 



The conditional distribution given in (A.2) is nonstandard and 

complex. Hence, the M H algorithm is used to generate observa-

tions from this conditional distribution. For the target density 
> 

we choose …aSS^J as the proposal distribution, 

where 

‘ i ^ f - 么 - 1 灿 、 .•了、 T , 一：、 - 1 
= .+ 

-紀U^AY^ 功7IAT/3了/3A 

where /3A is the first derivative of Y l % i ^ k i i ( ^ u I ) with 

respect to h at ̂ ^ = 0. Let 於 l/î ^，cr…Ŝ ；) be the proposal density 

corresponding to iV[/x…cr三SJ, the M H algorithm is implemented 

as follows: At the 亡-th iteration with a current value a new 

candidate lji is generated from g(.|u;f)，cr̂ ,̂ Ŝ；), and accepted with 

the probability 

min < 1， 

The variance a^ can be chosen such that the average acceptance 
* 

rate is approximately 0.45. 

(B) Full conditional distributions of structural parameters 

A, A , 中 ， a n d 少 in steps (bl)-(b4). 

Let A J and A J be the j-th rows of A and A , respectively; 

and be the j-th diagonal element of 屯.Let y*j = yij — AJui, 

Yj = (Mj, •. Vij = Vij 一 Ajcu Yj =(仏 j,. • C = 
(Ci，...，Cn), and = (€1,…’ Cn)- The full conditional distribu-
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tions of A力 Aj，ipj,如，and 屯 are given as follows: 

P(Ajl')〜Ni jXaj�^a j ) . p{Aj\')�N(jjlx” SAJ), 

p{ips\')〜/G[a犯 + n/2,历]，p(也十）〜/G[ayo + n/2, Pxj 

p(中I.)�I W [ i l 2 ^ l + Ro’ n + po], 

« 。 (A.3) 

where = ( 功 广 C C ^ + 〜 = + ^"'Cy；), 

SA,- = {nn'^ + 抖Xj = + f^y,), Pxj = Pjo + 
(yjy.- 一 + aJo5]7O^a,O)/2, = Pso + ZUivi-
Ef^i IG[ ] and IW[] 
denote the inverted g a m m a distribution and inverted Wishart dis-

tribution, respectively. 

(C) Full conditional distributions of r^, rp and r^ in step 

(b5). 

It can be shown that the full conditional distributions of T、T"， 

and Ts are: 

p{rpj\')〜/G[a"o + {Kj - m)/2，p的 + y9『M"j/3乂2]， 

p{nd\')〜/G[a6o + (Kui 一 m)/2, + bjMb^b^ /2] , 
Ki 

p{rsj\')�/G(a,o + K“2�从。+ (A.4) 

for j = ,(72’ cf = 1，…，Z). 

(D) Full conditional distribution of b^ in step (b6). 

The full distribution of b^ is 

= (A.5) 

where S ^ = (B^BM/V^J + Mtd/nd)-\ K 二 公m^WJ如,and 

Vl = (”ii，...，"5n)r with 

Kbi <72 

v*xi = bik 可iM - Y l Y l 

1
 



According to the discussion in Section 2.4.1，sampling an observa-

tion hd from 7V(bJ, Jll^)I{Qbdhd = 0) is equivalent to sampling an 

observation b广…）from EJl̂ ), then is transformed to 

bd by 

b . = b 广 ) — E ⑷ 『 讽 & 调 力 『 J - i Q ⑶ 广 ) . 

(E) Full conditional distribution of sj) in step (b7). 

For j = 1 , … , l e t 13一j and s_j denote subvectors of (3 and s 
that exclude /Sj and sj, respectively. The conditional distribution 

of {f3j, Sj) is 

p(/3j, ips, rpj, Tsj, b, /3一力 s_j) 

oc 如,7-办，b, f3_j, s)p{sj\rsj) 

oc exp 
E{”1* - E知‘乂.““Is》}' - -
1=1 it=i , 

Kj 

〜A:=l 

(A.6) 

The reason for updating sj) in a block is given below. It is 
noticed from fjî ij) = Ylk=i ^jki^ijl^j) that the highly corre-

lated (3j and sj are used to model the unknown smooth function 

f j together. Updating them within a block will accelerate M C M C 

convergence. 

As the conditional distribution in (A.6) is nonstandard, the M H 

algorithm is used to simulate observations from it. Inspired by Rue 

(2004)，given current we first generate a new sj” using the 

random walk defined by s^p = / * s广i), with p { f ) oc 1 + 1//， 

f E [1/C, C] {C > 1), in which C is a tuning parameter. It can be 
shown that 

1 1 (A.7) 

s W) + 
s 

1 
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The random walk defined in (A.7) is symmetric in that q{sj\sj^)= 

一 W i t h this proposal density, a new sample sj^} 

is accepted with probability min{l, Rj}, and 

Rj 
； 

where is the marginal distribution of full conditional distri-

bution p(/3;-0’ s;.0|-)，which can be derived analytically as follows: 

oc e x p [ - 去 X 

exp - + 幻、Pj - 2阶 N T”， 

OC S； 
1/2 exp 

k=l (A.8) 

Since Rj depends only on s、p and s广、and not on 力 a new ob-
r 

servation of /Sj is generated from i V ( / J ; ， h 0) when s) 

is accepted. As discussed in Section 2.4.1, sampling an observation 

(3j from N{l3p Yij)I{QjPj = 0) is equivalent to sampling an ob-

servation 对ew) from 7V(/3;，Sp, then I3(广、is transformed to 

by 、 、 
• /3, = M — - •成new). 

J
.
L
I
義
I
i
p
i
p
i
p
i
l
；
!
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Appendix B 

A Description of the Polydrug 

Use Data 

y\ (DrgplmSO): Drug problems in past 30 days at intake, which 
ranges from 0 to 30. 

2/2 (DrgdaySO): Drug use in past 30 days at intake, which 

ranges from 0 to 30. 

(DrgNSO): The number of kinds of drugs used in past 30 

days at intake, which ranges from 1 to 8. » 

Va (Incar): The number of incarcerations in lifetime at intake, 
which ranges from 0 to 216. 

2/5 (ArrN): The number of arrests in lifetime at intake, which 

ranges from 1 to 115. 

ye (Agefirstarrest): The age of first arrest, which ranges from 

6 to 57. 1 

2/7 (Retent): Days of stay in treatment or retention, which 
ranges from 0 to 365. 

ys (M12drg30): Primary drug use in past 30 days at 12 month 

interview, which ranges from 1 to 5. 

‘117 



xl (Servicem): Services received in past 3 months at TSI 3 

month interview. 

x2 (DrugtestTX): The number of drug tests by T X in past 3 

months at TSI 3 month inter- view, which ranges from 0 to 

36. 

x3 (DrugtestCJ): The number of drug tests by criminal justice 

in past 3 months at TSI 3 month interview, which ranges from 

0 to 12. 
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