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Abstract of thesis entitled: 
Bayesian Variable Selection for High Dimensional Data Anal-

ysis • 
Submitted by YANG, Aijun 
for the degree of Doctor of Philosophy ‘ 
at The Chinese University of Hong Kong in May 2010 

« 

In the practice of statistical modeling, it is often desirable to 
have an accurate predictive model. Modern data sets usually 
have a large number of predictors. For example, DNA microar-
ray gene expression data usually have the characteristics of fewer 
observations and larger number of variables. Hence parsimony is 
especially an�important issue. Best-subset selection is a conven-
tional method of variable selection. Due to the large number of 
variables with relatively small sample size and severe collinearity 
among the variables, standard statistical methods for selecting 
relevant variables often face difficulties. 

The second part of the thesis proposes a Bayesian stochastic 
variable selection approach for gene selection based on a probit 
regression model with a generalized ‘ singular g-prior distribu-
tion for regression coefficients. Using simulation-based MCMC 
methods for simulating parameters from the posterior distribu-
tion, an efficient and dependable algorithm is implemented. It 
is also shown that this algorithm is robust to the choice of ini-
tial values, and produces posterior probabilities'of related genes 
for biological interpretation. The performance of the proposed 
approach is compared with other popular methods in gene se-
lection and classification via the well known colon cancer and 
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leukemia data sets in microarray literature. 
In the third part of the thesis, we propose a Bayesian stochas-

tic search variable selection approach for multi-class classifica-
tion, which can identify relevant genes by assessing sets of genes 
jointly. We consider a multinomial probit model with a general-
ized p-prior for the regression coefficients. An efficient algorithm 
using simulation-based MCMC methods are developed for sim-
ulating parameters from the posterior distribution. This algo-
rithm is robust to the choice of initial value, and produces poste-
rior probabilities of relevant genes for biological interpretation. 
We demonstrate the performance of the approach with two well-
known gene expression profiling data: leukemia data and lym-
phoma data. Compared with other classification approaches, 
our approach selects smaller numbers of relevant genes and ob-
tains competitive classification accuracy based on obtained re-
sults. 

The last part of the thesis is about the further research, which 
presents a stochastic variable selection approach with different 
two-level hierarchical prior distributions. These priors can be 
used as a sparsity-enforcing mechanism to perform gene selec-
tion for classification. Using simulation-based MCMC methods 
for simulating parameters from the posterior distribution, an 
efficient algorithm can be developed and implemented. 



摘要 

在統計建模的寅際應用中，通常希望有准確地預測模型。現代数據集通常具 

有很多的變量。例如，DNA微陣列基因数據就是有少量的親測值和大量的 

變量。因此，模型的簡約性是一個很重要的問題。最佳變量選擇是一種傳統 

的變量選擇方法。但是由於觀測值少，變量多以及變量之間強相關性的原 

因，傳統選擇重要變量的方法經常面臨困難。 

基於probit模型和對回歸系数指定奇異g-prior分布，論文的第二部分 

提出使用貝葉斯變量隨机選擇的方法來選擇重要的基因。基於模擬的 

MCMC方法，我們使用一種有效並且可靠的算法來從後驗分布中抽取樣 

本。結果顏示這種算法對初始值的選取非常穩健。並且得到每個基因被包含 

的後驗概率。這些後驗概率可以用於從生物角度的解釋。通過對微陣列文獻 

中的結腸癌和血癌数據的分析，從選擇的基因和分類的結果將所提出的方法 

和其他方法進行了比較。 ‘ 

.在論文的第三個部分，我們同樣提出使用貝葉斯變量隨机選擇的方法來 

選擇重要的基因，並且對多分類數據進行分類。這個部分主要基於 

muhinomial probit模型和對回歸系數指定廣義g-prior分布。基於模擬的 
MCMC方法，我們使用一種有效並且可靠的算法來從德驗分布中抽取樣 

本。結果顯示這種算法對初始值的選取非常棵健。我們主要通過兩組基因数 

據-血癌和淋巴瘤数據-來說明我們方法的表現。結果顯示：同其他方法相比 

較而言，我們的方法可以利用更少的*因來得到具有競爭力的結果。 

論文的最後一個部分是關於將來的研究。我們考慮使用基於兩層結構的 

先驗分布函數的貝葉斯變量随機選擇的方法來選擇重要基因。這種具有兩層 

結構的先驗分布擁有更加離散的特點。基於模擬的MCMC方法，我們可以 

使用一種有效並且可靠的算法來從後驗分布中抽取樣本。 
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Chapter 1 

Introduction 

In the practice of statistical modeling, it is often desirable to 
have an accurate predictive model with a sparse representation. 
Modern data usually have a large number of ‘predictors. For 
example, duo to recent advances in information technology, it 
is possible to access thousands of macroeconomic time series, 
which have been shown the "value" for signal extraction and 
forecasting. This is not an issue of mere academic interest. Lar 
Svensson (2005) described what central bankers do in practice: 
"Large amounts data about the state of the economy and the 
rest of world...are collected, processed, and analyzed before each 
major decision." In an effort to assist in this task, researchers 
recently have proposed new methods to handle large data sets 
in the econometrics of forecasting. Also DNA microarray gene 
expression data usually have the characteristics of fewer observa-
tions and larger number of variables. Hence parsimony^js espe-
cially an important issue. Best-subset selection is a conventional 
method of variable selection. Standard statistical methods for 
selecting relevant variables often face difficulties due to the small 
sample size as it can create an unreliable selection process. 

Bayesian stochastic search variable selection is a model- based 
approach for studying regression models that relate a response y 
to a vector of candidate explanatory variables x = (xi, • • •，工 p) 了. 
In generalized linear models, both the density of y and the mean 



function of y conditional on x depend on a linear combina-
tion x^P through the regression coefficients p 二（A,…,PpY• 
Rather than fixing the dimension (the number of selected genes), 
the SSVS approach uses priors that propose different model 7's 
and the corresponding sets of regression coefficient where 
7 indicates the components of covariates that are included in 
the regression model. This creates additional flexibility as well 
as the ability to impose a constraint by limiting the dimension. 
Therefore, the prior\works as a penalty to create this constraint. 

Bayesian stochastic search variable selection has gained much 
empirical success in a variety of applications. For example, 
SSVS is used in basis selection for nonparametric regression 
(e.g., Smith and Kohn 1996) and in construction of financial 
in^ex"tracking portfolios (e.g., George and McCulloch 1997). 
Recently, SSVS has been applied to the area of bioinformat-
ics. Lee et al. (2003) applied their multivariate gene selection 
to microarray data with two classes. Sha et al. (2004) and 
Zhou et al. (2006) extended the underlying theory to multi-
ple classes data. The multivariate Bayesian model of Lee et 
al. (2003) and Zhou et al. (2006) used the 夕-prior (Zellner, 
1986) for unknown parameters of regression coefficients associ-
ated with the covariates (related genes). However, for situations 
with high-dimensional covariates, or highly collinear covariates, 
the covariance matrix involved in the "-prior is nearly singular 
(Gupta and Ibrahim, 2007)，and results in unstable convergence 
of the algorithm. Moreover, due to the complicated structure of 
high dimensional distribution, convergence of the algorithm is 
slow in general. Sha et al. (2004) proposed an algorithm that is 
based on a multinomial probit model by using adding/deleting 
and swapping algorithm. According to Larhnisos et al. (2009), 
this kind of algorithm that randomly chooses to either add or 
delete a single explanatory variable, or to swap two explanatory 
variables in the model often leads to high model acceptance rates 



when the number of variables is substantially larger than the 
sample size. Moreover, the Metropolis random walk suggested 
by Sha et al. (2004) with local proposals and high acceptance 
rate is often associated with the poor mixing of MCMC chains. 
Furthermore, as their approach did not capture a priori correla-
tion in the parameters, eliciting a prior covariance matrix with 
p > n is difficult (Gupta and Ibrahim, 2009). Finally, both Sha 
et al. (2004) and Zhou et al. (2006) calculated the leave one 
out cross validation (LOOCV) within the gene selection process. 
According to Ambroise and McLachlan (2002) and Rocke et al. 
(2009)，a selection bias that optimizes the classification accu-
racy exists when this internal LOOCV procedure is applied to 
estimate the prediction error. . 

Chapter 2 proposes a Bayesian stochastic variable selection 
approach for gene selection based on a probit regression model 
with a generalized singular g-prior distribution for regression co-
efficients. Using simulation-based MCMC methods for simulat-
ing parameters from the posterior distribution, an efficient and 
dependable algorithm is implemented. It is also shown that this 
algorithm is robust to the choices c^nitial values, and produces 
posterior probabilities of related genes for biological interpreta-
tion. The performance of the proposed approach is compared 
with those of other popular methods in gene selection and classi-
fication via the well known colon cancer and leukemia data sets 
in microarray literature. 

In Chapter 3，we propose a Bayesian stochastic search vari-
able selection approach for multi-class classification, which can 
identify relevant genes by assessing sets of genes jointly. We con-
sider a multinomial probit model with a generalized 分-prior for 
the regression coefficients. An efficient algorithm using simulation-
based MCMC methods is developed for simulating parameters 
from the posterior distribution. This algorithm is robust to the 
choice of initial value, and produces posterior probabilities of 



relevant genes for biological interpretation. We demonstrate the 
performance of the approach with two well-known gene expres-
sion profiling data: leukemia data and lymphoma data. Com-
pared with other classification approaches, our approach selects 
smaller numbers of relevant genes and obtains competitive clas-
sification accuracy based on obtained results. 

Chapter 4 is about the further research, which presents a 
stochastic variable selection approach with different two-level 
hierarchical prior distributions. These priors can be used as 
a sparsity-enforcing mechanism to perform gene selection for 
classification. Using simulation-based MCMC methods for sim-
ulating parameters from the posterior distribution, an efficient 
algorithm is developed and implemented. 

• End of chapter. 



Chapter 2 

Bayesian Variable Selection for 
Disease Classification Using 
Gene Expression Data 

2.1 Introduction 

Class prediction has recently received much attention in the con-
text of DNA microarrays. Its main objective is to classify and 
predict the diagnostic category of a sample based on its gene ex-
pression profile. This problem is challenging because the num-
ber of genes is usually much larger than the number of samples 
available, and only a small subset of genes is relevant in classi-
fication. Thus, a critical issue is the identification of genes that 
contribute most to the classification. Moreover, a^mphasized 
by Dougherty (2001), Li et al. (2002), and YeunV^al . (2005), 
a small number of relevant genes is essential. 

In the past decade, many gene selection approaches have been 
proposed in the literature. In some published studies, the num-
ber of selected genes is large; for example, 2000 genes (Alon et 
al., 1999)，and 1000 or 2000 genes (Furey et al., 2000). Even 
after performing gene selection, the numbers of selected genes 
in certain studies are still large compared to the numbers of 
samples; for example, 50 genes (Golub et al., 1999), 51 genes 



(Hendenfalk et a l , 1999), 25 to 1000 genes (Furey et al., 2000)’ 
96 genes (Khan et al., 2001)，and 231 to 549 genes (Antonov et 
al., 2004). 

In addition, several methods for reducing the number of genes 
to be considered before using appropriate classification, are uni-
variate methods in the sense that each relevant gene is consid-
ered individually. Examples include the weighted voting scheme 
(Golub et al., 1999), the mixture model algorithm (Pan, 2002)， 

the partial least squares (PLS) (Nguyen and Rocke, 2002)，non-
parametric methods (Troyanskaya et al., 2002)，and the Wilcoxon 
test statistic (Dettling, 2004). To take into account the depen-
dency between genes for achieving a reduced number of relevant 
genes, multivariate gene selection procedures, which consider 
multiple genes simultaneously, have been proposed by Bo and 
Jonassen (2002)，and Jaeger et al. (2003)，among others. The 
Bayesian stochastic search variable selection method (George 
and McCulloch, 1993) has recently become popular (see Lee et 
al., 2003，Gupta and Ibrahim, 2007; among others). The mul-
tivariate Bayesian model of Lee et al. (2003) used the 没-prior 
(Zellner, 1986)'for unknown parameters of regression coefficients 
associated with the covariates (related genes). However, for sit-
uations with high-dimensional covariates, or highly collinear co-
variates, the covariance matrix involved in the 分-prior is nearly 
singular (Gupta and Ibrahim, 2007)，and results in unstable 
convergence of the algorithm. Moreover, due to the complicated 
structure of high dimensional distribution, convergence of the 
algorithm is slow in general. Bae and Mallick (2004) introduced 
a two level hierarchical Bayesian model with different priors that 
favor sparseness in terms of number of genes used. They iden-
tified the significant genes using the posterior variances of the 
regression coefficients. However, their methods did not produce 
the posterior probabilities, which are useful for biomedical in-
terpretation, for the selected genes. Some recent contributions 



in the selection of genes for multiclass "Classification and other 
important problems can be found in McLachlan et al. (2004, 
2008)，Le Cao et al. (2008), Le Cao and Chabrier (2008), Rocke 
et al. (2009), and references therein. 

In this chapter, we consider a multivariate Bayesian regres-
sion model together with a stochastic search variable selection 
(SSVS) method for gene selection and classification of diagnos-
tic category. To overcome the problem induced by the possible 
singularity of the covariance matrix involved in the ’p r io r dis-
tribution of the regression coefficients, we propose a generalized 
singular 分-prior (gsg-prior) on the basis of .the Moore-Penrose 
generalized inverse of matrices. This kind of gsg-prior has been 
found to be effective for similar statistical problems with large 
number of genes and small number of samples (West, 2000). 
Moreover, unlike the method based on approximation, we per-
form. full Bayesian analysis through the Markov chain Monte 
Carlo (MCMC; Gilks et al., 1996) based on a stochastic search 
algorithm. In developing our gsg-SSVS algorithm, the efficient 
sampling scheme suggested by Panagiotelisa and Smith (2008) 
is implemented. For the posterior analysis associated with this 
sampling scheme, the unknown intercept and regression coeffi-
cients in the Bayesian regression model are integrated out from 
the joint posterior distribution. This gives a simple and well de-
fined posterior distribution to ensure stable convergence of the 
resulting MCMC methods. As a result, our algorithm is com-
putationally more stable and efficient compared to the MCMC 
algorithm in Lee et al. (2003). In addition, the gsg-SSVS 
approach produces the posterior probabilities for the selected 
genes, which are helpful for achieving better biological interpre-
tation. We illustrate the advantage of our method on two well 
known microarray data sets: Colon cancer data (Alon et al., 
1999) and Acute leukemia data (Golub et al., 1999), which have 
been extensively used in the literature to demonstrate various 



classification" procedures (Nguyen and Rocke, 2002; McLachlan 
et al, 2004; Ma et al.’ 2007; Le Cao et al., 2008; Le Cao and 
Chabrier, 2008; among others). Our results show that the pro-
posed gsg-SSVS approach reduces the number of selected genes 
and produces prediction accuracy comparable to those of the 
existing variable selection and classification methods. 

This chapter is organized as follows. In the Method sec-
tion, we briefly review the model specification based on stochas-
tic search variable selection; we also discuss the related prior 
distributions and the implementatipn of the Bayesian method. 
Discussions on classification are also presented in this section. 
Results obtained from the analyses of the two published data 
sets are given in the Results section. Some concluding remarks 
are presented in the Discussion section. The technical details 
are provided in Appendix A. 

2.2 Method 

2.2.1 Model 

Suppose that n independent binary random variables Yi, Yn 
are observed. For example, Yi = 1 indicates that sample i is 
normal or one type of cancer and V̂  = 0 indicates that sample 
i is .cancer or another type of cancer. For each sample z, the 
expression levels for a set of genes were measured; hence we 
have the following data matrix X of covariates: 

X = 

Xu … 
X21 X22 . . . X2p 

工 nl X np 

We define a probit, type regression model as = P{Yi = 1 ) = 
^(aH-Xj/?), where a represents the intercept, and = (A, • • • , Pp)‘ 
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is a p by 1 dimensional vector of regression coefficients, X^ is the 
z-th row of X, and 少 is the standard normal cumulative distri-
bution function relating pi with a + XiP. According to Albert 
and Chib (1993), latent variables Z = (Zi, Z2, • • • , Zn)' are in-
troduced to simplify the structure. More specifically, we define 

二 a + Xj3 + £ ” … （2.1) 

where the random errors £{ are independently and identically 
distributed as iV(0，1). The relationship between Yi and is 

1 if Z i � 0 ， 

0 if Z, < 0. 

Motivated by Lee et al. (2003) in setting a modified model 
for performing gene selection, we define an indicator vector 

if Pi ^ 0 (the 2-th gene is selected), 
^ 八 if A = 0 (the z-th gene is not selected). 

Given 7，let p^ be the number of 1 in 7, (5’ be a by 1 vector 
consisting of all the nonzero elements of (5, and X^ be an n 
by p^ matrix of covariates consisting of all the columns of X 
corresponding to those elements of 7 that are equal to 1. Hence, 
for a given 7, the probit regression model (2.1) is reduced to 

Zi = a -f Xî ^P^ -f (2.2) 

where Xî ^ is the i-th row of X^. 
By introducing the latent vector Z and the indicator vector 

7, we connect the probit binary regression model for Yi to a 
normal linear regression model for Z{. In the regression model 
(2.2)，the unknowns are (a具，7，Z). When n < py, X!yX^ is 
not full rank and the conventional approaches encounter seri-
ous difficulties. Thus, methods of gene selection for reducing 

9 



the dimension of the variable space are needed. As discussed, 
our gene selection based on (2.2) includes assigning a gener-
alized singular 夕-prior (gsg-prior) for (5’ to avoid the problem 
due to a singular or nearly singular XlyX^; integrating a and 
(5’ out, and drawing 7 from the marginal distribution to avoid 
possible computational difficulties; and estimating the posterior 
gene inclusion probability, p(7i = X), by a sufficiently large 
number of MCMC samples. Genes with high posterior inclusion 
probabilities are selected for the classification. Therefore, our 
method updates Z and 7 by an efficient MCMC algorithm, and 
avoids the computation relating to the regression parameters a 
and Pt 

2.2.2 Prior Distribution 

The choice of the prior distributions for the unknown parame-
ters is very important in the Bayesian SSVS approach. In this 
chapter, prior distributions for a , p ’ � a n d 7 with the structure 

= p � p ( / ? 7 | 7 ) p ( 7 ) are considered. The prior distri-
bution of OL is taken as 

a � y V ( 0 , / 0 ’ (2.3) 

where /i is a hyperparameter representing the variance of the 
univariate normal distribution. Since a is not our focus, a spec-
ified value is assigned to h. According to Lamnisos et al. (2009), 
a large value of h is taken. 

Given 7，the prior distribution of the crucial regression coef-
ficient parameters is taken as 

"力〜7V(0，Eg， （2.4) 

where H , ) is a p^-dimensional multivariate normal distri-
bution with mean 0 and covariance matrix H^. The 分-prior (see 
Zellner, 1986) for P , is iV(0，cCXIyX’)—”，where c is a specified 

10 



value. If n < then X^X^ is not a full rank matrix and 
does not exist. Moreover, as pointed out by Gupta 

and Ibrahim (2007), X^^X，is nearly singular for situations with 
high-dimensional covariates or highly collinear covariates. How-
ever, occurrence of such covariates is common in gene selection 
problems with large numbers of correlated genes. Taking 夕-prior 
for Pnf with such a covariance matrix may lead to the collapse 
of the MCMC algorithm and other convergence problems, or in-
correct simulation of 7 or P^ in the MCMC sampler that may 
give misleading gene selection results. Here we consider a modi-
fied form of the p-prior, namely the generalized singular g-prior 
(gsg-prior), as follows 

"力〜A r ( 0， c ( x ; x j + ) , (2.5) 

where (Xî ^X，” denotes the Moore-Penrose generalized inverse 
of This generalized inverse always exists even under sit-
uations with high-dimensional covariates, discrete covariates or 
highly collinear covariates. Moreover, if X^ is a full column 
rank matrix, then (X^X’) . 二（X^X，)-、Hence, the gsg-prior 
is appropriate for solving the singularity problem. 

For i = 1,. •.，p，the prior distributions of are assumed to 
be independent, and 

* 7i �Bernoulli(jri�, 0 < tTj < 1, (2.6) 

that is p(7i = 1) = TTj. We choose small values for tt” hence 
restricting the number of genes in the model. 

..V 
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2.2.3 Computation 

Let Y = "，Yn). Under the model and prior specifications 
in the above sections, the joint posterior distribution is given by 

e x p { - ^ — } n i � 
丄 Z=1 

X X 2 � e x p ( - ^ i ^ ^ ) f l A ； " 

-7. 

(2.7) 

where Ai is either equal to {Zi : Z： > 0} or {Z^ : Ẑ  < 0} 
corresponding to = 1 or Yi = 0, respectively; Ai，... , A^^ 
(m-y < p)) are the nonzero eigenvalues of (X ŷX，”，and I(-) is 
an indicator function. The MCMC methods can be applied to 
simulate observations from this intractable joint posterior dis-
tribution through the full conditional distributions. It can be 
shown that the conditional distribution of given (Z, a, 7) is 
multivariate normal with a covariance matrix /(c +1). 
If Xy is not of full column rank, this covariance matrix is not pos-
itive definite and the multivariate normal distribution is degen-
erated. This may induce convergence problems in the MCMC 
algorithm. To avoid this problem, we integrate a and P^ out 
from the joint posterior distribution. This step can also reduce 
the strong posterior correlations between Z and jX/�and (5, and 
7, and thus speeds up the computations. It can be shown that 
(see Appendix A), the joint posterior distribution of (Z, 7) is 

12 



given as follows: 

p ( Z ’ 7 | V ; X ) c x ; e x p ( - ^ ^ 4 ^ ) f [ l � 
2 

i=. 
(2.8) 

where = 1 + /i l l + cXy(X^Xy)'^Xy. As Hy IS posiUvG 
definite, its inverse exists and X) is well defined. 

The posterior distribution in (2.8) cannot be expressed in an 
explicit form; therefore, we use an MCMC technique, namely 
the Gibbs sampler (Geman and Geman, 1984)，to generate ob-
servations from this posterior distribution. The conditional dis-
tributions for implementing the Gibbs sampler are given below: 
(z) p(Z|y, X,7) : It can be shown that p(Z|V"’X，7) is propor-
tional to iV(0, S，）nr=i 1(A)，which is a multivariate truncated 
normal distribution. Direct sampling from this distribution is 
known to be difficult. We follow the method given in Devroye 
(1986) to simulate samples from the univariate truncated nor-
mal distribution V, X, 7), where Z(_i) is the vector of 
Z without the z-th element. 
{ii) p(7|y, X, Z): This conditional distribution is proportional 

to X r i L i 7i7，(1 - 7r i) i -� . Inspired by Pana-
giotelisa and Kohri (2008) for implementing an efficient sampling 
scheme, we draw a component j i of 7 conditionally on 7(_小 

where 7卜）is the vector of 7 without the z-th element, and 

p(7r|7(-t), X’ Z) oc exp( E 
1 • -7t 
7 

2 

(2.9) 
Because is binary, we can get the conditional probabilities 
p(7i = l|7(-i), X, Z) and p(7i = 0|7(-小 X，Z). Denote 7 ' 二 

(7i，... ’7i-i,7i = l,7i+i，•…，7p) and 7° = (71,-“，7i-i，7i = 
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0，7i+i，-.. ,7p), and similarly define S y and S^o as the in 
(2.8). It can be shown that (see Appendix A): 

P(7i = l | 7 ( - z ) ,X ,Z)= 
P(7i = l|7(-o，X,Z) 

p h i = l|7(-t)’X，Z) +p(7i = 0|7(_i),X,Z) 
TT, 

二（1 + J p ) —1’ 

where 

P = -1 2 exp 
2 

(2.10) 

(2.11) 

As a result, an explicit form of the conditional distribution can 
be derived. In our method, although the dimension of in 
equation (2.2) changes in the MCMC iterations, it is not a prob-
lem because we integrate a and out before the Gibbs scheme 
so that only Z and 7 (with a fixed dimension p) are updated. 
Moreover, by using equation (2.10) our method implements an 
efficient sampling scheme to do a search over the entire model 
space during each of iterations, which leads to a more effective 
algorithm in identifying the significant genes. 

To implement the Gibbs sampler，we start with an initial 
value (Z(o)，7(o))，and continue as follows: at the [k + l)-th iter-
ation with the k-th value (Z�’7⑷）， 

step (a): Fori = 1，2,…，n，draw fromp(zf̂ )|z((̂ :̂.)，V；了⑷) 

step (b): For i = 1,2, • • • generate a random number ui 
from a uniform distribution U[0,1], calculate the probability 
p t ' ^ 二 P(7f^+” = 1|7((%，>^X’Z(〜)）via (2.10) and (2.11), 
and update as follows: 

1 if � ) < u 

0 otherwise. 
-

H — 
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Under mild regularity conditions and for sufficiently large T, 
(Z⑴，7(”）simulated from the above Gibbs sampler can be re-
garded as an observation from the joint posterior distribution 
p (Z ,7 | r ,X) , see Geman and Geman (1984). We collect MCMC 
samplers {(Z(”,7(*))，/c 二 1, 2，…，M} after a suitable burn-in 
period. An initial value of 7(0) can be obtained by randomly 
selecting a small number of genes and assigning 1 to the corre-
sponding entries of 7(0) and 0 otherwise. In contrast, Lee et al. 
(2003) and Bae and Mallick (2004) used two sample t statistic 
to identify a certain number of significant genes for getting 7(0) • 
Our method seems more reasonable as we usually have little 
prior information about which genes are significant among the 
large number of genes. The MCMC algorithm in our method 
is robust to the choice of 7(0) and encounters no problem in 
convergence. Note also that the MCMC algorithm focuses on 
generating � ’ 7�)，which is important and sufficient for gene 
selection and classification, while the less important a and (5 (or 
(3 )̂ are not simulated. The relative frequency of each gene can 
be calculated as 

1 M 
= = = (2.12) 

This gives an estimate of the posterior gene inclusion proba-
bility as a measure of the relative importance of the z-th gene. 
Genes with high posterior inclusion probabilities are relevant for 
classification. 

2.2.4 Classification 

The performance of a classification rule is best assessed by ap-
plying the rule created on the training set to the test set. If 
no test set is available, we use the sample based leave one out 
cross-validation (LOOCV) method (Lachenbruch and Mickey, 
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1968; McLachlan, 1992). Let be the vector of V without 
the z-th element. A LOOCV predictive probability for Yi can be 
calculated as 

p ( y , | y ( _ , ) , x ) = ( J J p[Yi\Y卜小 

(2.13) 
Equation (2.13) enables us to use the distribution p(Z, X) 
that was computed with all the data in place of the distribu-
tion 7|y"(i)，X) that is used in the LOOCV context. This 
replacement is useful to simplify the simulation of Z and 7 in 
the required MCMC iterations and thus significantly reduces 
the computational and programming efforts in the gene selec-
tion problem with a fairly large sample size. An immediate 
Monte Carlo integration of (2.13) using the generated samples 
{(Z � , 7 � = 1,2, . . .，M} yields: 

p{Yi\Yf_i),X) = — . (2.14) 

If a test set Kew is available, the predictive posterior probability 
of Vnew given the new covariate 义卿 is 

X, Xnew) = J J X , Xnew, X)dZd-f 

Similarly, this probability can be approximated by Monte Carlo 
integration as follows: 

1 M 
P(^newl^) X, Xnew) = X’ Anew’ 

Z � , 7 � ) . 

2.3 Results 

We illustrate the usefulness of the proposed gsg-SSVS approach 
via two well known data sets: the colon cancer data analyzed 
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initially by Alon et al. (1999), and the leukemia data analyzed 
by Golub et al. (1999). The performance in gene selection and 
prediction accuracy of the gsg-SSVS approach will be compared 
with the existing gene selection and classification methods. 

2.3.1 Colon Cancer Data 

Alon et al. (1999) used AfFymetrix Oligonucleotide Array to 
measure expression levels of 40 tumor and 22 normal colon tis-
sues for 6500 human genes. These samples were collected from 
40 different colon cancer patients, in which 22 patients supplied 
both normal and tumor samples. A selection of 2000 genes based 
on highest minimal intensity across the samples was conducted 
by Alon et al. (1999)，and the data are publicly available at 
http://microarray.princeton.edu/oncology/afFydata/. Alon et 
al. (1999) discussed the application of clustering methods for 
analyzing expression patterns of different cell types. One clus-
ter consists of 5 tumor and 19 normal tissues, while the second 
contains 35 tumor and 3 normal tissues. We analyzed these data 
further by taking a base 10 logarithmic of each expression level, 
and then standardized each tissue sample to zero mean and unit 
variance across the genes. 

In our Bayesian analysis based on the gsg-SSVS approach, 
we set c = 10, tt̂  = 0.005, i = 1,…-，口，and h = 100. To check 
convergence, three chains with different initial values of Z and 
7 are run. The initial values 7(0) were obtained based on ran-
domly selecting 25 genes for chains 1 and 2, and 30 genes for 
chain 3 (see Appendix A) from a total of 2000 genes, and setting 
7i(o) = 1 if the 2-th gene is among the selected genes and 7广）=0 

otherwise. Three diagnostic plots recommended by Brown et al. 
(1998) were used to check convergence. Fig. 2.1(a) shows that 
the most significant genes, which are determined by the poste-
rior gene inclusion probabilities, are almost the same for three 
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chains. Fig.2.1(b) plots the number of selected genes versus the 
iteration number, and Fig.2.1(c) plots the log relative posterior 
probabilities of selected genes, log(p(7|y, X，Z))，versus the iter-
ation number. Fig.2.1(b) and Fig.2.1(c) indicate that the three 
chains mixed well enough within 10,000 iterations. We collected 
50,000 observations after 10,000 burn-in iterations to get the es-
timates of the posterior gene inclusion probabilities (see (2.12)). 

The .18 most significant genes ranked by the posterior gene 
inclusion probabilities (see Fig. 2.1(a)) for chain 1 are presented 
in Table 2.1. Seven of them were also selected by Ben-Dor 
et al. (2000). On the top of the genes listed in Table 2.1 is 
uroguanylin precursor Z50753. Notterman et al. (2001) showed 
that a reduction of uroguanylin might be an indication of colon 
tumors; and Shailubhai et al. (2000) reported that treatment 
with uroguanylin has a positive therapeutic significance to the 
reduction in precancerous colon ploys. The second selected gene 
in Table 2.1 is R87126 (myosin heavy chain, nonmuscle). The 
isoform B of R87126 acts as a tumor supressor and is well known 
as a component of the cytoskeletal network (Yam et al. 2001, 
among others). The discriminative power of gene J02854 also 
has a biological interpretation, because it is known to be an in-
tracellular target of integrins, affecting cell motility (Keely et 
al., 1998). .，•. 

Since there is ho test set available, it is common to evaluate 
the performance of the classification methods for a selected sub-
set of genes by the LOOCV procedure. Some existing methods 
in the literature calculated the LOOCV error within the gene 
selection process. However, as pointed out by Ambroise and 
McLachlan (2002)，： this internal LOOCV procedure is biased 
and prQvides optimistic results. Therefore, an external LOOCV 
procedure proposed' by Ambroise and McLachlan (2002) was 
used in our analysis. Similar to many other multivariate meth-

f 

ods, this procedure is challenged by server memory requirements 
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and large computational time. According to the traditional at-
tempts to overcome these problems (see Antoniadis et al., 2003; 
Le Cao and Chabrier, 2008)，we perform the external LOOCV 
procedure as follows: 1) omit one observation of the training 
set, 2) based on the remaining observations, reduce the set of 
available genes to the top 50 genes as ranked in terms of the t 
statistic, 3) the p* most significant genes were re-chosen from the 
50 genes'by our gsg-SSVS approach, and 4) these p* genes were 
used to classify the left out sample. This process was repeated 
for all observations in the training set until each observation had 
been held out and predicted exactly once. The performance of 
our method with p* = 6 and 10 are summarized in Table 2.2. 
Our method with 6 genes misclassified 5 tumor tissues (Tl, T2, 
T30, T33，T36) and 3 normal tissues (N8, N34, N36). Alon 
et al. (1999)，using a muscle index based on the average in-
tensity of ESTs, misclassified 5' tumor tissues (T2, T30, T33, 
T36, T37) and 3 normal tissues (N8, N12, N34). Furey et al. 
(2000)，applying the support vector machine (SVM) with 1000 
or 2000 genes, misclassified 3 tumor tissues (T30, T33, T36) 
and 3 normal tissues (N8, N34, N36). It is interesting to no-
tice that N36 and T36 were originated from the same patient, 
and both were consistently misclassified by SVM and our pro-
posed gsg-SSVS approaches. Our LOOCV results have been 
compared with the following classification methods: support 
vector machine (SVM; Furey et al., 2000); LogitBoost optimal, 
LogitBoost estimated, LogitBo.ost 100 iterations, AdaBoost 100 
iterations, 1-nearest-neighbor, and Classification tree (Dettling 
and Buhlmann, 2003); MAVE-LD (Antoniadis et al., 2003) and 
Supervised group Lasso (SGLasso; Ma et al., 2007). The sum-
mary is presented in Table 2.2. It is clear from the comparison 
that our method, which used fewer genes, is better than or com-
parable to the other popular classification methods. 

To assess the sensitivity of the Bayesian results to the inputs 
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of hyper parameters in the prior distributions, we reanalyzed the 
data set by using different values of c, /i, and tt. For instance, 
using c = 5 as suggested by Lamnisos et al. (2009) and others, 
h = 200, and tt = 0.007, the identification of the relevant genes 
and the performance of classification are essentially the same 
as before. The data set has also been analyzed by using three 
different chains with different random choices of 7(0). We observe 
that the three sets of the 18 most significant genes associated 
with different 7(0) are almost the same except a minor difference 
in the rank of gene indices and few non-overlapping genes (see 
Table A in Appendix A). Moreover, the LOOCV error rates 
produced by these three chains are the same. Therefore, it seems 
that the Bayesian results are robust to the choice of 7(0). 

2.3.2 Leukemia Dataset ‘ 

We further illustrate the performance of our classification proce-
dure on the leukemia dataset (Golub et al., 1999), which is avail-
able at http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi. 
This gene expression level was obtained from Affymetrix high-
density oligonucleotide arrays containing p = 6817 human genes. 
Golub et al. (1999) gathered bone marrow or peripheral blood 
samples from 72 patients suffering either from acute lymphoblas-
tic leukemia (ALL) or acute myeloid leukemia (AML)，which 
were identified based on myeloid (bone marrow related) and 
their origins, lymphoid (lymph or lymphatic tissue related), re-
spectively. The data comprise 47 cases of ALL (38 B-cell ALL 
and 9 T-cell ALL) and 25 cases of AML, which have already been 
divided into a training set consisting of 38 samples of which 27 
are ALL and 11 are AML; and a test set of 34 samples of which 
20 are ALL and 14 are AML. 

Based on the protocol given in Dudoit et al. (2002)，the fol-
lowing preprocessing steps were taken for the data: (i) thresh-
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olding: floor of 100 and ceiling of 16000; (ii) filtering: exclusion 
of genes with max/min < 5 and (max—min) < 500, where max 
and min refer respectively to the maximum and minimum ex-
pression levels of a particular gene across samples; and (iii) base 
10 logarithmic transformation. The filtering resulted in 3571 
genes. We further transformed the gene expression data to have 
mean zero and standard deviation one across samples. We ap-
plied the Bayesian gsg-SSVS method with the same inputs of 
the hyperparameters as in the first example. An initial value 
of 7 was similarly obtained as before via 25 randomly selected 
genes from a total of 3571 genes. 

The posterior gene inclusion probabilities are presented in 
Fig.2.2. The relevant genes selected on the basis of these prob-
abilities are reported in Table 2.3, together with the relevant 
genes selected by Golub et al. (1999) and Ben-Dor et al. (2000). 
The most significant gene is Zyxiii. Macclariia et al. (1996) has 
shown that Zyxin encodes an LIM domain protein localized at 
focal contacts in adherent erythroleukemian cells. It has also 
been recently demonstrated that Zyxin exports from the nucleus 
by intrinsic leucine rish nuclear export sequences, and enters 
the nucleus through association with other proteins. Wang and 
Gilmore (2003) reported that misregulation of nuclear functions 
of Zyxin protein seems to be associated with pathogenic effects. 
Therefore, it is not surprising that Zyxin plays an important role 
in classifying AML and ALL. Among the top-ranked genes we 
also found CD33 antigene with known expression specificity to 
AML (Sobol et al. 1987), CD63 antigene known as a member of 
the tranmenbrane 4 superfamily (Smith et al., 1995), and Mac-
marks known to be involved in growth and metastasis of certain 
tumors (Spizz and Blackshear, 1997). 

The top-ranked 6 genes out of the 18 selected genes were used 
to conduct the prediction on the test set. The external LOOCV 
procedure described in Colon Cancer Data section was applied 
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to get the classification error on the training set. There was 1 
training error and 1 test error (the 67-th observation). ‘ This 67-
th observation was also misclassified in Golub et al. (1999) and 
Lee et al. (2003). In Table 2.4, we compare our classification 
results with the following popular classification methods: SVM 
(Furey et al., 2000); weighted voting machine (WVM) (Golub 
et al., 1999); MAVE-LD and MAVE-NPLD (Antoniadis et al., 
2003); and PLS-LD and PLS-QDA (Nguyen and Rocke，2002). 
Our results, with fewer genes, are better than or comparable to 
those obtained by the above existing methods in the literature. 
Furthermore, the test set has also been analyzed by the near-
est shrunken centroids method (NSCM, Tibshirani et al., 2002) 
using 21 relevant genes, an iterative BMA algorithm (Yeung et 
al., 2005) using 20 genes, and the 分-prior SSVS method (Lee et 
al., 2003) using 5 genes. The misclassification error rates made 
by NSCM, iterative BMA, and p-prior SSVS are 0.0588，0.0588 
and 0.0294, respectively. As no LOOCV error results related to 
the training set were reported in these analysis, it may not be 
fair to compare our gsg-SSVS approach with these methods. 

� 

2.3.3 Computational Time 

The computational times for performing gsg-SSVS in the analy-
sis of Colon Cancer Data and the Leukemia Data are respectively 
43 minutes and 47 minutes for 10,000 iterations in a PC with 
Intel Core2 1.86GHz CPU IG ram. 

2.4 Discussion 

We propose a Bayesian probit regression model for gene selec-
tion with binary data and then use a small number of the most 
relevant genes to perform classification. Based on a gsg-prior, a 
Bayesian SSVS approach using simulation-based MCMC tech-
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nique is introduced. In this gsg-SSVS approach, the joint poste-
rior distribution of (a, 7, Z) is simplified to a joint posterior 
distribution of 7 and Z after a and are integrated out. As 

and always exist, this posterior distribution is well 
defined. Moreover, by applying the efficient sampling scheme 
suggested by Panagiotelisa and Smith (2008)，simulating sam-
ples from this posterior distribution is simple. At each MCMC 
iteration, it only requires the generation of Zi and from an uni-
variate truncated normal distribution and a binary distribution, 
respectively. As a result, the proposed algorithm is simple and 
efficient. . Other nice features of our approach also include the 
flexibility in choosing the initial value of 7，and the ability in pro-
viding posterior gene inclusion probabilities to achieve biological 
interpretation. Based on the colon cancer and leukemia data 
sets, we demonstrated that the proposed gsg-SSVS approach 
compared favorably with other popular methods in performing 
disease classification. 

In this chapter, we considered c and tt as known hyperparam-
eters in their prior distributions. This restriction can be relaxed 
by treating them as unknown parameters and further assign-
ing prior distributions to them. We have not considered the 
multiclass problem, because the binary case is one of the most 
common settings. However, the key ideas in this chapter can 
be applied to handle the multiclass problem. We assume that 
genes are independent. Extending the model to account for a 
correlation structure between genes may be helpful for achieving 
better results. 

• End of chapter. 
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Figure 2.1: Fig.2.1(a) shows the gene inclusion probabilities (in percentages) 
versus the gene index, Fig.2.1(b) and Fig.2.1(c) show the number of sclcctcd 
genes and the log relative posterior probabilities of selected genes versus the 
first 10000 iteration number, respectively. 

24 



0 500 1000 1500 2000 2500 3000 3500 

Figure 2.2: Fig.2.2 shows the gene inclusion probabilities (in percentages) 
versus the gene index for leukemia data. 
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Table 2.1: Colon cancer data: strongly significant genes for classifying normal 
and tumor tissues.‘ 

Rank Clone ID Gene annotation 
1 Z50753 H.sapiens mRNA for GCAP-II/uroguanylin precursor"*" 
2 R87126 MYOSIN HEAVY CHAIN, NONMUSCLE+ 
3 H06524 GELSOLIN PRECURSOR, PLASMA (HUMAN) + 
4 H08393 COLLAGEN ALPHA 2(XI) CHAIN (Homo sapiens)+ 
5 D14812 Human mRNA for ORF, complete cds 
6 R88740 ATP SYNTHASE COUPLING FACTOR 6’ 

MITOCHONDRIAL PRECURSOR (HUMAN); 
7 J02854 MYOSIN REGULATORY LIGHT CHAIN 2, 

‘ SMOOTH MUSCLE ISOFORM(HUMAN);+ 
8 T62947 60S RIBOSOMAL PROTEIN L24)+ 
9 M36634 Human vasoactive intestinal peptide (VIP) mRNA，+ 

0 T57882 MYOSIN HEAVY CHAIN, NONMUSCLE TYPE A 
1 R36977 P03001 TRANSCRIPTION FACTOR IIIA; 
2 T92451 TROPOMYOSIN, FIBROBLAST 

AND EPITHELIAL MUSCLE-TYPE(HUMAN); 
3 M63391 Human desmin gene, complete cds. 
4 H64807 PLACENTAL FOLATE TRANSPORTER (Homo sapiens) 
5 R55310 S36390 MITOCHONDRIAL PROCESSING PEPTIDASE; 
6 H20709 MYOSIN LIGHT CHAIN ALKALI, 

SMOOTH-MUSCLE ISOFORM(HUMAN)； 

7 M59040 Human cell adhesion molecule (CD44) mRNA, 
8 HI 1084 VASCULAR ENDOTHELIAL GROWTH FACTOR 

Ben-Dor et al. (2000) 
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Table 2.2: Comparison of LOOCV performance of different approaches for 
Colon cancer data. 

Method No. of genes LOOCV error rate 
1 SVM° 1000 or 2000 0.0968 
2 LogitBoost, optimal'' 2000 0.1290 
3 Classification tree'' 200 0.1452 
4 MAVE-LD'̂  50 0.1613 
5 l-nearest-neighbor'' 25 0.1452 
6 LogitBoost, estimated'' 25 0.1935 
7 SGLassoC 19 0.1290 
8 LogitBoost, 100 iterations'* 10 0.1452 
9 AdaBoost, 100 iterations^ 10 0.1613 
10 gsg-SSVS 10 0.1129 
11 gsg-SSVS 6 0.1290 

Furey et al. (2000); 
Dettling and Buhlmann (2003); 
Antoniadis et al. (2003) 
Ma et al. (2007). 
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Table 2.3: Leukemia data: strongly significant genes for discriminating ALL 
and AML samples. 

Rank Gene ID Gene descriptions 
1 X95735 Zyxin+* 
2 M27891 CST3 Cystatin C— 
3 Y12670 LEPR Leptin receptor^ 
4 M23197 CD33 antigen (differentiation antigen)+• 
5 L09209 APLP2 Amyloid beta (A4) precursor-like protein 2' 
6 M22960 PPGB Protective protein for beta-galactosidase* 
7 X62654 CD63 antigen' 
8 HG1612 Macmarcks* 
9 D88422 CYSTATIN k* 
0 M27783 ELA2 Elastatsc 2，neutrophil 
1 M16038 LYN V-yes-1 Yamaguchi sarcoma viral 

related oncogene homolog+* 
2 X04085 Catalase 5'flaiik and exoii 1 mapping to chroinosomc 11 
3 M83652 PFC Properdin P factor, complement^* 
4 X85116 Epb72 gene exon 
5 X74262 RETINOBLASTOMA BINDING PROTEIN P48+ 
6 X51521 VIL2 Villin 2 (ezrin)* 
7 U50136 Leukotriene C4 synthase (LTC4S) gene+* 
8 M92287 CCND3 Cyclin D3_ 

Golub et al. (1999); 
Ben-Dor et al. (2000). 
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Table 2.4: The comparison of classification methods for the leukemia data. 

Method No. of genes LOOCV en •or rate Test error rate 
1 SVM° 25 to 1000 0.0526 0.0588 to 0.1176 
2 WVMb 50 0.0526 0.1471 
3 MAVE-LD'̂  50 0.0263 0.0294 
4 MAVE-NPLDe 50 0.0263 0.0294 
5 PLS-LDd 50 0.0000 0.0294 
6 PLS-QDAd 50 0.0000 0.1765 
7 gsg-SSVS 6 0.0263 0.0294 

a: Furey et al. (2000); 
6: Golub et al. (1999); 
c: Antoniaciis ( it al. (2003) 
d: Nguyen and Rocke (2002). 
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Chapter 3 

Multi-class Classification via 
r 

Bayesian Variable Selection 
with Gene Expression Data 

3.1 Introduction 

In practice, DNA microarray gene expression data usually have 
the characteristics of fewer samples and larger number of genes. 
Multi-class classification, based on data with a relatively small 
number of samples (n) as compared to the number of variables 
(p) involved, is an important topic in bioinformatics. The prob-
lem of high-dimensional multi-class classification is challenging 
because many noise variables that may not be relevant to clas-
sification exist, and these variables can potentially degrade the 
prediction performance of classification. Moreover, identifying 
which variables contribute most to the multi-class classification 
is necessary. 

Many variable selection methods related to multi-class clas-
sification have been described in the bioinformatics literature. 
These methods can be classified into univariate and multivari-
ate approaches. Based on the marginal utility of each vari-
able for the classification task, univariate methods consider each 
variable individually. These methods include parametric and 
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non-parametric methods. Examples include the weighted vot-
ing scheme (Golub et al., 1999)，the threshold number of mis-
classification score (Ben-Dor et al., 2000)，the significance anal-
ysis of microarray statistic (Tusher et al., 2001), the ratio of 
between-groups to within-groups ium of squares (Dudoit et al., 
2002)，the pairwise mean difference (Nguyen and Rocke, 2002), 
and the Wilcoxon test statistic (Dettling, 2004). Due to their 
conceptually simple nature, univariate methods have attracted 
much attention. However, they do not consider the correlations 
between variables, resulting in a subset of variables that may 
not be optimal for the considered classification task. 

To take into account the dependency between genes for achiev-
ing a reduced number of relevant genes, Yeung and Bumgarner 
(2003) and Jaeger et al. (2003) proposed multivariate gene se-
lection procedures, which do not score each variable individually 
but determine the combinations of variables that yield high pre-
diction accuracy. The multivariate Bayesian gene selection ap-
proach based on the stochastic search variable selection method 
(George and McCulloch, 1993) has been applied to the multi-
class classification problem (see Sha et al., 2004, Zhou et al., 
2006). Sha et al. (2004) proposed an algorithm that is based on 
a multinomial probit model by using adding/deleting and swap-
ping algorithm. According to Lamnisos et al. (2009)，this kind 
of algorithm that randomly chooses to either add or delete a sin-
gle explanatory variable, or to swap two explanatory variables 
in the model often leads to high model acceptance rates when 
the number of variables is substantially larger than the sample 
size. Moreover, the Metropolis random walk suggested by Sha 
et al. (2004) with local proposals and high acceptance rate is 
often associated with the poor，mixing of MCMC chains. Fur-
thermore, as their approach did not capture a priori correlation 
in the parameters, eliciting a prior covariance matrix with p > n 
is difficult (Gupta and Ibrahim, 2009). Zhou et al. (2006) p r o 
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posed a multivariate Bayesian model using the g-pnov (Zellner, 
1986) for the-unknown regression coefficients related to relevant 
genes. For situations with high-dimensional covariates, or highly 
collinear covariates, the covariance matrix involved in the g-
prior is nearly singular (see Gupta and Ibrahim, 2007), resulting 
in the unstable convergence of the algorithm. Moreover, their 
methods assumed the covariance matrix of random errors to be 
an identity matrix. This specification has several limitations. 
For instance, it entails some symmetry between different classes, 
and an independence from irrelevant alternatives assumption is 
not appropriate in some applications (Train, 2003) because this 
specification postulates independent latent variables. Finally, 
both Sha et al. (2004) and Zhou et al. (2006) calculated the 
leave one out cross validation (LOOCV) within the gene selec-
tion process. According to Ambroise and McLachlan (2002) and 
Rocke et al. (2009)，a selection bias that optimizes the classifi-
cation accuracy exists when this internal LOOCV procedure is 
applied to estimate the prediction error. 

In this chapter, we consider a multivariate Bayesian pro-
bit model together with a stochastic search variable selection 
(SSVS) method for the gene selection and the classification of 
diagnostic category for a multi-class problem. We propose a 
generalized 分-prior (gg-prior) to overcome the problem induced 
by the possible singularity of the covariance matrix involved 
in the 分-prior distribution of the regression coefficients. We 
show that this kind of gg-prior is effective in coping situations 
with a large number of genes and a small number of samples. 
Moreover, unlike the method based on approximation, we per-
form full Bayesian analysis through the Markov chain Monte 
Carlo (MCMC; Gilks et al., 1996) based stochastic search al-
gorithm. In developing our gg-SSVS algorithm, the efficient 
sampling scheme suggested by Panagiotelisa and Smith (2008) 
is implemented. For the posterior analysis associated with this 
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sampling scheme, the unknown intercept and regression coeffi-
cients in the proposed model are integrated out from the joint 
posterior distribution. This gives a simple and well-defined pos-
terior distribution to ensure stable convergence of the resulting 
MCMC methods. Hence, our algorithm is more stable and effi-
cient as compared to the MCMC-based algorithm of Sha et al. 
(2004) and'zhou et al. (2006). In addition, the gg-SSVS ap-
proach produces the posterior probability for the selected genes, 
which is helpful in a diagnostic setting. We illustrate the ad-
vantage of our method on two well-known microarray data sets: 
acute leukemia data (Golub et al., 1999) and lymphoma data 
(Alizadeh et al., 2000). We compare the performance of the pro-
posed gg-SSVS approach with some other classification proce-
dures in the literature, such as those of Dettling and Biiuhlmann 
(2003) and Yeung et al. (2005), among others. Our results show 
that the proposed gg-SSVS approach reduces the number of se-
lected genes and produces a prediction accuracy comparable to 
that of existing methods for variable selection and classification. 

The rest of this chapter is structured as follows. The next 
section provides a brief review of matrix variate distribution. 
In the Method section, we specify the model on the basis of 
the stochastic search variable selection procedure. Discussions 
on the related prior distributions, the implementation of the 
Bayesian method, and the associated classification are also pre-
sented. The results obtained from the analysis of the two pub-
lished data sets are given in the Results section. Some con-
cluding remarks are presented in the Discussion section. The 
technical details are provided in Appendix B. 

3.2 Matrix Variate Distribution 

We follow the notation- introduced by Dawid (1981)- for matrix 
variate distribution. M + A/"(P，S) will stand for a matrix nor-
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mal distribution of X，where M is the matrix mean of X, and 
PiiH and EiiP are the covariance matrices of the i-th row and 
j-th column of X，respectively. Let XI �ZVV((^，Q)’ then the 
induced marginal distribution for X is a matrix T distribution 
denoted as T{S] P，Q). The probability density functions of ma-
trix normal distribution and matrix T distribution are given by 
Brown (1993) (see Appendix B). 

3.3 Method 

3.3.1 Model 

Suppose we are given a training data set that consists of n sam-
ples …，y；)，where Xi = { X . ^ X a r ..，凡p) € R^ 
represents covariates or input vectors, and Yi is a categorical re-
sponse variable from sample i and takes on values, 0，1，• •. , K — 
1. Based on the training data, we aim to predict the target val-
ues of previously unseen points given a set of new covariates. 

Following the standard approach for the multinomial probit 
model (see Albert and Chib，1993), we introduce n auxiliary 
variables Z�— (Zn,…，Zi/c_i), i = 1, 2，• •. , n to connect the 
multinomial probit model to the following multivariate normal 
linear regression model: 

i 

= a + + e“ i = l,2,..�n, (3.1) 

where a is a K-1 dimensional vector of intercept, B is a p x (/C — 
1) matrix of regression coefficients, and Cj = (^ji, • • •，^iK-i) i-i-d. 
� y V ( 0 ’ n ) . The relationship between the auxiliary variables Ẑ  
and the discrete observations Yi is defined as follows: 

Y _ j j if maxi<A:<iir-i Z认 > 0, and Zij = maxi^kKK-i Zik, 
‘ 0 if maxi<A:</c_i Zik < 0. 

(3.2) 
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L e t Z 二（Z;’... ’ Z ; j ' ’ X = (X;,...，X:j'’and€ = (e;，...，4)'. 
The multivariate normal regression model (3.1) can be rewritten 
in matrix form as 

Z = : l „ a + X B + e， (3.3) 
§ 

where is an n by 1 vector of ones, X is an n x p matrix of 
covariates, and e � S ) , in which is an n x n identity 
matrix and •) denotes the matrix normal distribution. As 
introduced in previous section, e � N \ l n � 5 ] ) indicates that the 
mean of € is an n x (K — 1) matrix of zeros, the covariance 
matrices of the z-th row and the j-th column of e are S and 
cTjjIn, respectively, and a j j is the j-th diagonal element of Xl. 
This notation has the advantages of maintaining the matrices' 
structure, avoiding the need to string matrices by row or column 
as a vector, and using Kronecker product covariance to make the 
formal Bayesian manipulations much easier. 

Let denote the z-th row of B. To model the relationship 
between the observation Y and a subset of the covariates in X， 

we introduce an indicator vector 7 = (7i, • • • ,7p) such that 

7z 二 4
 

⑶
 

o’
 n
^
 

#
 
I
I
 

•
t
 

'
t
 

c
q
 B
 

f
 f
 

•
 1
 •

 1
 

1
 o
 

Here, 7i = 1 indicates that the z-th covariate is included in the 
model, and 7! = 0 otherwise. Incorporating 7 into (3.3), a model 
indexed by 7 is defined by 

Z = + X7B7 + €, (3.5) 

where X^ denotes a submatrix of X with the columns corre-
sponding to = 0 being deleted, and B^ is a submatrix of B 
with the rows corresponding to = 0 being deleted. Let p^ 
denote the number of ones in 7, and the dimension of X^ and 
B^ are n x p^ and p^ x {K - 1), respectively. 
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3.3.2 Prior Specification 

The unknowns in Model (3.5) are (a, B^, X), 7). The choice of 
prior distributions for these unknown parameters is very impor-
tant in developing the Bayesian SSVS approach. We consider 
the following structure of prior distributions for a , B-y, 7，and 
E: 

B^, E , 7) = 7)P(7)P(5：). (3.6) 

Specifically, for a, 7, and E, we propose the prior distributions 
as follows: 

�J\J\h�E), I；�：iVV(po, Ro), 7i �Bernoul l i (ni") , 
(3.7) 

where h is taken to a large value, and JVV(-, •) denotes the in-
verted Wishart distribution. The scale matrix hyperparameter 
Ro is usually taken in the form of k l ^ - i , in which /c is a chosen 
constant, and Ik-i is a (K — 1) X (/C — 1) identity matrix. As 
the expectation of E is Ro/(/?o — 2), we generally take po = 3, 
which is the smallest integer value such that the expectation of 
H exists. For 7，we propose the independent Bernoulli prior 
distribution with lu = p(7i = 1)，which means that each covari-
ate is selected independently with prior probability 兀“ and the 
value of TTj is usually chosen to be small in order to restrict the 
number of covariates included in the model. 

The prior distribution for the more crucial parameter B^ is 
taken as: 

B7 |S ’7 �Ar(H7，S)’ (3.8) 

where H^ is a p-y x p^ dimensional covariance matrix. According 
to Zellner (1986)，the "-prior for B，is A/ ' (c(X'X)" \E) , where 
c is a specified value. If n < p<y, then X^X^ is not a full rank 
matrix, and (X^^X^) 一 1 does not exist. Moreover, as pointed 
out by Gupta and Ibrahim (2007)，X'^X? is nearly singular for 
situations with high-dimensional covariates or highly collinear 
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covariates. However, the occurrence of such covariates is com-
mon in gene selection problems with large numbers of correlated 
genes. Taking 夕-prior for B^ with such a covariance matrix may 
lead to the collapse of the MCMC algorithm and other con-
vergence problems, or the incorrect simulation of 7 or B^ in 
the MCMC sampler which may give misleading gene selection 
results. Similar to Gupta and Ibrahim (2007), we consider a 
modified 分-prior, the generalized "-prior (gg-prior), as follows: 

B . IS , 7 � + 5：), (3.9) 
c 

where r is a specified scalar similar to the ridge parameter in 
ridge regression. The advantage of the gg-prior in (3.9) is that 
it simultaneously stabilizes the prior and posterior simulation of 
the regression coefficients while possessing the operating charac-
teristics and properties essentially identical to the usual ^'-prior 
when high dimensionality and collinearity issues are present. For 

x ' x 
example, when > n, the original matrix is singular, but 
x ' x c 
— ^ -h rlp^ is not necessarily singular. The ridge parameter 
r is generally chosen within a range of values between 0 and 
1/c, leading to maximum stability of the estimated coefficients. 
As suggested by Gupta and Ibrahim (2007), a fixed value of r 
leads to more stable and less variable estimates, and the bias in 
estimates introduced by r turns out to be negligible. 
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3.3.3 Computation 

Based on the model and prior specifications, the joint posterior 
distribution (Z, a , B), S , 7|y^’ X) is proportional to 

exp{ 
I 

X l X 

tr[(Z 一 Ina 一 X 办 ) S - i ( Z - Ua — X, 
2 

迎 } ft 1 ( A ) 

X — + 2 e x p { -
tr[( 

X exp 

V 

2h }|Ro 
f>n+K - 2 

exp{ 

x J J 冗 兀 广 1 ” 
n + p-f-i-pQ + 2 K -

.X. 
+ r I p J B 飞:E-iB: 

2 

t r ( S - i R o ) 

2 

(3.10) 

where Ai is equal to either {Zi : maxi<fc</c_i Zik > 0, Zij = 
maxi<jt</c-i Zik} or {Z, : maxi<ifc<A:_i Zik < 0} corresponding 
to ŷ  == or ŷ i = 0, respectively, and I(-) is an indicator func-
tion. As the joint posterior distribution in (3.10) is intractable, 
directly simulating observation from it is impossible. Hence, 
MCMC methods are used to iteratively simulate observations 
from the full conditional distribution of each component given 
the others. To reduce the strong posterior correlations among 
latent quantities Z, a , B^, and S in the MCMC sampling, we 
integrate out the less important parameters a，B”’ and S from 
the joint posterior distribution, and focus on the most important 
parameter 7 which determines the selected subset of variables 
in SSVS procedure. After integrating out a, B^, and S , the 
marginal joint posterior distribution of Z and 7 is proportional 
to (see Appendix B): 

P . P ^ + ZRq-^Z 
PQ + n+K 

n i ( A ) x ] > 7 ’ ( l - 7 r j H , ’ 
1=1 

(3.11) 
1=1 
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where P^ = + h l ^ + + rlpJ-^X；. 

The posterior distribution in (3.11) is also intractable; hence 
the Gibbs sampler (Geman and Geman, 1984) is employed to 
generate observations from this posterior distribution. The full 
conditional distributions in implementing the Gibbs sampler are 
given below (see*Appendix B): 

n 

(2) Z|y, X’ 7 � T ( p o ’ Ro) n 1(A)， (3.12) 

where T(.，.’.）indicates the truncated matrix student t distri-
bution. As direct sampling from this distribution is difficult, 
we iteratively simulate each row of Z, Zi, given the others from 
the corresponding conditional distributions. Let Z(_i) be a sub-
matrix of Z with the i-th row deleted. The conditional distri-
bution of (Zi|Z(_i),y, X,7) is the following non-central multi-
variate truncated t distribution (using the notation of Brown; 
1993): 

Zi - P7，i(-t)P;’}一i)(_i)Z(一i) (3.13) 

� T ( p o 4 - n - 1, /\ii.(-o，Ro + 

where P讽 - i ) = — 

(ii) p(7|X，Z) oc I P ^ I ^ ^ I P ^ + ZRo"iZ'| (3.14) 

Z=1 
As 7 has support on 2�values, and p is large, obtaining its pos-
terior by direct enumeration is impractical. Let 7(_i) denote the 
vector of 7 without the z-th component. Following Panagiotelisa 
and Smith (2008), we in turn generate 7,- conditionally on the 
rest 7(_t). The conditional distribution of given 7(_小 X, and 
Z is proportional to: 

+ Z R o - i Z ' l - ^ " ^ X n^il — 兀 , ” . （ 3 . 1 5 ) 
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Since is binary, we can calculate the conditional probabil-
ity of p(7i = l|7(_i)，X’Z) and = 0|7(—i)’X，Z) exactly. 
We denote 7I = (71,-•• ’7i-i’7i = l,7i+i，.*.，7p) and 7 � = 
(71’ •…，7i-i’7i = 0,7i+i, • • • ,7p), then 
p(7i 二 l |7(-i),X，Z)= (3.16) 

p{ji = l|7(_i),X,Z) 1 - TT, 1 
= ( 1 + P ) , P(7i = l|7(-i)’X，Z) +p(7i = 0|7( 一 i)，X’Z) 7T 

, IP 丨P O + " ” ~ where p 二 ^ 卯…飞 , . . � 

To implement the Gibbs sampler, we start with initial value 
(Z(o)，7(o))，and continue as follows: at the (t + l)-th iteration 
with the t-th values (Z⑴，7⑴） 

Step (a): For i = 1, • • • , n, generate z f from its full con-
ditional distribution (3.13). 

Step (b): For i = 1, • •，p，generate a random number ui 
from a uniform distribution (7[0,1] and calculate the probability 
p!…）二 p(7!…）二 1|7((^_)”,:K,X’Z“+i)). Then 7, is updated a^ 
follows: 

1 if P ” 1) < U” 
0 otherwise. 

7广）二 

Let {(Z⑴，7⑷)，亡=1, 2，…,T] denote the posterior simulation 
collected after convergence of the Gibbs sampler, where T is 
a sufficiently large number (Geman and Geman, 1984). The 
relative frequency of the z-th variable included in the model can 
be estimated below: 

1 T 
P{li = = “ 1 ’ 2 ’ . . .， p . (3.17) T •i 

The value of p(7t = 1) provides us an estimate of the posterior 
variable inclusion probability as a measure of the relative im-
portance of the z-th variable. Our gg-SSVS procedure searches 
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variables with high posterior inclusion probabilities for classifi-
cation purpose. 

3.3.4 Classification 

We check the performance of a class prediction rule by applying 
the rule created on the training set to the test set. If no test 
set is available, we use the sample-based leave one out cross 
validation (LOOCV) method (Lachenbruch and Mickey, 1968; 
McLachlan, 1992; Gelfand, 1996). Let V；.,) be the vector of V 
without the i-th element. An LOOCV predictive probability for 
Vj can be calculated as 

p(V, = jlV^.,^) = {JJ 

(3.18) 
An immediate Monte Carlo integration of (3.18) yields 

T 

E二 ipC^I 二力巧 - o ， z � ’ 7 � ) 
(3.19) 

where 

= 小 z �,7⑴） 

二Jp{Y, = Z ⑴ ， 7 � • ) 収 ( 3 . 2 0 ) 

二 f 1(4) > zll\vk + 加 (对 ) | y H , z ⑴， 7 � ) 喊… 

If a test set is available, the predictive posterior probability of 
Vnew = j given the new covariate Xnew is 

= j\Y�X 卿 � = J j = Z, y\Y)dZd^, 

(3.21) 
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which can be approximated by the Monte Carlo estimation: 

T 

with 

P(>;ew= j|V;X„ew，Z�’ 7⑴） 

=I PO^nev/ — j ^new)p(^new 

y ; X_，Z ( � 7(。， ( 3 . 2 2 ) 

Z � ’ 7 � ) 必 new (3.23) 

= / / ( Z n e w j > ^newk, V/c + j ) p ( Z „ e w ^ n e w , 'new 

Efficient methods for calculating the multivariate integration in 
Equations (3.21) and (3.23) are described by Genz and Bretz 
(2002). 

3.3.5 Misclassification • 

When the classification rule determined in previous sections is 
applied to a multi-class dataset, there are many ways to mea-
sure and report the misclassification error rate. The class of 
each sample is predicted based on the selected variables, then 
compared against the given label. The overall misclassification 
error rate, which is the ratio of the total number of misclgissifi-
cation errors over the total sample size, is the simplest type of 
error rate. For multi-class problem, when the data set is charac-
terized by unbalanced classes with a small number of cases in at 
least one of the classes, and this "rare" minority class is of par-
ticular interest to biologists for its value in diagnosing a disease, 
it is important and generally more informative to report the er-
ror rate for each class. Therefore, in our real applications, we 
compare our gg-SSVS procedure with other existing methods by 
reporting several classification error rates, including the overall 
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misclassification error rate, the average of class error rates, and 
error rate for each class (Wessels et al. 2005; Wood et al., 2007). 

3.4 Real Data Analysis 

3.4.1 Leukemia Data 

We first applied our classification method to leukemia data, 
which were originally analyzed by Golub et al. (1999) and are 
available at h t tp : / /www . b road .mi t . edu /cg i -b in /cancer / 
d a t a s e t s . cgi. This gene expression level was obtained from 
AfFymetrix high-density oligonucleotide arrays containing p . = 
6817 human genes. Golub et al. (1999) gathered bone marrow or 
peripheral blood samples from 72 patients suffering either from 
acute lymphoblastic leukemia (ALL) or acute myeloid leukemia 
(AML), which were identified based on myeloid (bone marrow 
related) and their origins, lymphoid (lymph or lymphatic tissue 
related), respectively. The data comprise 47 cases of ALL (38 
B-cell ALL and 9 T-cell ALL) and 25 cases of AML, which were 
already divided into a training set consisting of 38 samples of 
which 19 are ALL-B, 8 are ALL-T, and 11 are AML; and a test 
set of 34 samples, of which 19 are ALL-B, 1 is ALL-T, and 14 
are AML. 

Following the protocol in Dudoit et al. (2002)，preprocess-
ing steps were taken for the data: (i) thresholding: floor of 
100 and ceiling of 16000; (ii) filtering: exclusion of genes with 
max/min < 5 and (max-min) < 500，where max and min refer 
respectively to the maximum and minimum expression levels of 
a particular gene across samples; and (iii) base 10 logarithmic 
transformation. The filtering resulted in 3571 genes. We fur-
ther transformed the gene expression data to have mean zero 
and standard deviation one across samples. 

To conduct the Bayesian gg-SSVS procedure, we set c 二 
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10,7ri 二 0.005，i 二 l’...，p,h = 100,RQ = 21，and po = 3,T = 
0.01. The initial value of 7(0) was taken with 25 randomly se-
lected elements set to 1. Three diagnostic plots suggested by 
Smith and Kohn (1996) and Brown et al. (1998) were used to 
check convergence. Fig.3.1(a) shows the most significant genes, 
which are determined by the posterior gene inclusion probabil-
ities. Fig.3.1(b) plots the number of selected genes versus the 
iteration number, and Fig.3.1(c) plots the log relative posterior 
probabilities of the selected genes, log(p(7|y, X, Z)), versus the 
iteration number. Fig.3.1(b) and Fig.3.1(c) show that the three 
chains mixed well within 10,000 iterations. We collected 50,000 
observations after 10,000 burn-in iterations to obtain the esti-
mates of the posterior gene inclusion probabilities (see (3.17)). 

Based on the entire training data, the 12 most significant 
genes, which were ranked by the posterior gene inclusion prob-
abilities, are presented in Table 3.1. The leading gene in Table 
3.1 is M27891, which also leads the list of strong genes in the 
works of Yeung et al. (2005) and Koo et al. (2006). Cys-
tatins (CST3) are endogenous protein inhibitors of cathepsins, 
and these protease-inhibitor pairs, reported in myeloid cell lines 
with altered development, might be important in the etiology of 
AML. Golub et al. (1999) already showed that cystatin C gene 
is responsible for the subtype classification of leukemia as a two-
class (ALL/AML) problem. The CST3 gene was also identified 
by Antonov et, al. (2004) for AML/ALL classification. The 
relevance of gene X59871 to T-cell ALLs was reported in the 
biological literature. The gene TCF7 transcription factor 7 (T-
cell specific) encodes a transcription factor that is a member of 
the high-mobility of group protein family. Expression of TCF7 
is specific to T-cells, and the gene product was originally desig-
nated as TCF-1, a T-cell specific transcription factor. A closely 
re la te�fac tor , LEF-1 (lymphocyte transcription factor), is ex-
pressed in both T- and B-cell lineages. Both TCF-1 and LEF-1 
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arise from the same gene, TCF7, by alternative splicing and the 
use of dual promoters (Kingsmore et al., 1995). We also identi-
fied some genes not identified by. Yeung et al. (2005) and Koo 
et al. (2006), such as U05259 an(J M31523. The MB-1 gene en-
codes the Ig-alpha protein of the B-cell antigen component but 
may have other functions in addition to its role in signal trans-
duction in B lineage cells. Ha et al. (1992) reported that MB-1 
transcripts could be detected in pre-B cell lines and fetal bone 
marrow in normal, and mitogen activated- and transformed B 
cells but not in myeloma plasma cells. Furthermore, MB-1 is 
located in the 19ql3 chromosomal region known to be a site of 
recurrent abnormalities in ALL. The MB-1 gene was also iden-
tified for AML/ALL classification (Gulob et al., 1999; Ben-Dor 
et al., 2000). Kamps et al. (1990) showed that the heterodimers 
between tissue-specific basic helix-loop-helix (bHLH) proteins 
and TCF3 play major roles in detenniriing tissue-specific cell 
fate during embryogenesis, such as muscle or early B-cell differ-
entiation. They are involved in a form of pre-B-cell acute lym-
phoblastic leukemia (B-ALL) through a chromosomal translo-
cation which involves TCF3 and PBXl. 

We first evaluate the performance of the classification meth-
ods for a selected subset of genes with the LOOCV procedure. 
An external LOOCV procedure proposed by Ambroise and McL 
achlan (2002) was used to perform the evaluation. Similar to 
many other multivariate methods, the external LOOCV pro-
cedure is challenged by server memory requirements and large 
computational time. According to the traditional attempts to 
overcome these problems (see Chu et al., 2005; Le Cao and 
Chabrier, 2008)，we perform the external LOOCV procedure as 
follows: (1) omit one observation of the training set, (2) based 
on the remaining observations, reduce the set of available genes 
to the top 50 genes as ranked in terms of the ratio BSS/WSS 
(Dudoit et al., 2002), (3) the p* most significant genes were 
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re-chosen from the 50 genes by our gg-SSVS approach, (4) the 
re-chosen p* genes were used to classify the left out sample, and 
(5) go back to Step (1) and select another observation. This pro-
cess was repeated for all observations in the training set until 
each observation had been held out and predicted exactly once. 
The misdassificatio%errors of our method with p* = 8, 10, and 
12 are summarized in Table 3.2. 

We further evaluate the performance of the classification meth-
ods for the test data. Our classification on the test data with p* 
= 8 , 10, and 12 genes reported one misclassification error with 
error rate 0.0294 (see Table 3.2). The test data have also been 
analyzed by some other multi-class classification methods. For 
instance, Lee and Lee (2003) reported one test error by mul-
ticategory support vector machine procedure using 40 selected 
genes. Yeung et al. (2005) applied the Bayesian model averaging 
(BMA) approach and reported one inisclassified sample on the 
test set using 15 genes. This result is one of the most favorable 
results in the literature. Tan et al. (2005) applied the k-Top 
Scoring Pairs (k-TSP) to classify the test data. They reported 
one classification error with 36 genes. Koo et al. (2005) ap-
plied the structured polychotomous machine (SPM) to the test 
data and reported three classification errors using four genes. 
Our results on the test error rate, together with those given in 
previously published papers, are summarized in Table 3.3. Our 
method with fewer genes is shown to be comparable' to other 
popular classification methods. 

Whether or not, the selected genes serve as legitimate markers 
for multi-class classification of the test data was further verified 
by the heat map of the selected genes. By visual inspection of 
the gene expression of the 12 selected genes, we detect some 
patterns for classifying ALL-T, ALL-B, and AML. Figure 3.2 
illustrates three different patterns of the 12 selected genes in 
the same fashion as Figure 1 in Lee and Lee (2003) and Figure 
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5 in Koo et al. (2006). 
To assess the sensitivity of the Bayesian results to the inputs 

of hyperparameters in the prior distributions, we reanalyzed the 
data set by using different values of c, TTj, h � R q , po, and r . For 
instance, using c 二 5 as suggested by Lamnisos et al. (2009), 
TT, 二 O.OOT̂ , h = 200, Ro = 41’ po = 6，and r = 0.005，the 
identification of the relevant genes and the performance of clas-
sification are essentially the same as before. 

3.4.2 Lymphoma Data 

The lymphoma data set was previously analy^d by Alizadeh et 
al. (2000) and are publicly available at h t t p : / / l lmpp . n ih . gov 
/lymphoma/data/f i g u r e l / This data set contains gene expres-
sion levels of 4026 well-measured genes involving three most 
prevalent adult lymphoid malignancies: diffuse large B-cell lym-
phoma (DLBCL), chronic lymphocytic leukemia (CLL), and fol-
licular lymphoma (FL). The total sample size is 62, of which 42 
samples are DLBCL, 11 samples are CLL, and 9 samples are 
FL. Some samples contain a number of genes with unreliable or 
missing data. The following steps (Troyanskaya et al., 2001 and 
Dudoit et al., 2002) are used to impute the n ^ i n g data for each 
gene with missing entries: (i) compute its correlation with all 
other p -1 genes, and (ii) for each missing entry, identify the five 
nearest genes having complete data for this entry and impute 
the missing entry by the average of the corresponding entries for 
the five neighbors. Each sample is further standardized to have 
mean zero and variance one across genes. We classify DLBCL, 
CLL, and FL using our method. 

We applied the Bayesian gg-SSVS method with the same in-
put of the hyperparameters as in the first example. The initial 
value of 7(0) is also taken with 25 randomly selected elements set 
to 1. The posterior gene inclusion probabilities estimated on the 
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entire training data are presented in Fig. 3.3. The relevant genes 
selected on the basis of these probabilities are reported in Table 
3.4，together with the relevant genes selected by Tibshirani et 
al. (2003) and Draminski et al. (2008). 

Since there is no test set available, the external LOOCV pro-
cedure described in Leukemia Data section was applied to obtain 
the classification error on the training set. In Table 3.5, we com-
pare our classification results with the following popular classi-
fication methods: LogitBoost, estimated, AdaBoost, 100 itera-
tions, Classification tree (Dettling and Biiuhlmann, 2003), ran-
dom forest var.sel., SC.s, and NN.vs (Diza-Uriarte and Andes, 
2006). We observe from Table 3.5 that our results are compara-
ble to those obtained by the existing methods. 

3.4.3 Computational Time 

The computational times to run 1 time of the gg-SSVS on the 
whole set of variables in the leukemia Data and lymphoma data 
are about 4.5 hours and 5 hours, respectively, for 60,000 itera-
tions in a PC with an Intel Core2 1.86 GHz CPU and IG ram. 

3.5 Discussion 

This chapter studies the problem of gene selection and multi-
class classification when the sample size is small and the num-
ber of genes is large. The auxiliary variables are employed to 
relate the multinomial probit model to a multivariate regres-
sion model. We propose the Bayesian stochastic search variable 
selection method for gene selection on multi-class microarray 
data. The gg-prior is employed to solve the singular problem 
of the covariance matrix involved in the p-prior. We use the 
algorithm by integrating the regression coefficients out the joint 
posterior distribution to draw the indicator variable, so that the 
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MCMC chain will not be reducible. Our method also produces 
the posterior probabilities for selected genes, which is helpful 
in biological interpretation. As compared to other approaches 
on the same multi-class microarray data, our method uses fewer 
genes and produces comparable classification accuracy. 

Chapter 2 (see also Yang and Song, 2010) proposed a hier-
archical Bayesian model with a MCMC-based stochastic search 
algorithm to perform gene selection and classification for a two-
class problem. They employed a generalized singular ’pr ior 
(gsg-prior) on the basis of the Moore-Penrose generalized in-
verse of the covariance matrix. We also use the gsg-prior for 
gene selection and multi-class classification. The gsg-SSVS with 
p* 二 8，10，and 12 all reported a 0.0588 error rate for leukemia 
test data, which is slightly worse than the current results in Ta-
ble 3.3，and 0.0323, 0.0323, and 0.0161 LOOCV error rates for 
lymphoma data, which are the same as the current results in 
Table 3.5. However, the gsg-SSVS approach is more computa-
tionally demanding due to the simulation of the Moore-Penrose 
generalized inverse of the covariance matrix in each MCMC it-
eration. 

In this chapter, we consider c and TTj as known hyperparame-
ters in their prior distributions. This restriction can be relaxed 
by treating them as unknown parameters and further assign-
ing prior distributions to them. Extending our framework to 
account for an interaction structure between genes is also inter-
esting. * 

• End of chapter. 
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Fig. 3 1(a) gene inclusion probabilities 
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Fig. 3.1(c): log relative posterior probabilities 
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Figure 3.1: Fig.3.1(a) shows the gene inclusion probabilities (in percentages) 
versus the gene index, Fig.3.1(b) and Fig.3.1(c) show the number of selected 
genes and the log relative posterior probabilities of selected genes versus the 
first 10000 iteration number, respectively. 
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Figure 3.3: Fig.3.3 shows the gene inclusion probabilities (in percentages) 
versus the gene index. 
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Figure 3.2: Genes that distinguish ALL-B, ALL-T and AML. Each column 
corresponds to a sample array and each row corresponds to a gene. The heat 
map is generated by using Matrix2png softerwarc (Pavlidis and Noble, 2003). 
Genes with expression levels greater than the mean arc colorcd in red and 
those below the mean are colored in green. 
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Tabic 3. 
AML. 

Significant genes found for discriminating ALL-T, ALL-B and 

Rank Gene ID Gene description 
1 M27891 CST3 Cystatin C � � 

2 X03934 GB DEF = T-cell antigen receptor gene T3-delta" 
3 X59871 TCF7 Transcription factor 7 (T-cell specific” 
4 U23852 GB DEF = T-lymphocyte specific protein tyrosine kinase 

p561ck (Ick) abberant mRNA 
5 D88422 CYSTATIN A 
6 M89957 IGB Immunoglobulin-associated beta (B29) 
7 X04145 CD3G CD3G antigen, gamma polypeptide 
8 M37271 T-CELL ANTIGEN CD7 PRECURSOR 
9 U05259 MB-1 gene 
10 M31523 TCF3 Transcription factor 3 (E2A immunoglobulin 

enhancer binding factors E12/E47) 
11 U22376 C-myb gene extracted from Human gene, complete 

primary cds, and five complete alternatively spliced cds 
12 U49020 MEF2A gene (myocyte-specific enhancer factor 2A, C9 

form) extracted from Human myocyte-specific enhancer 
factor 2A gene, first coding 

a: Yeung et al. (2005). 
6: Koo et al. (2006). 
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Table 3.2: Error rate results for the training data and test data of Leukemia 
data, respectively. 

No. of genes Erri Err2 Effall-b EriALL-T EFFAML 
Training data 8 0.0789 0.0768 0.1053 0.1250 0 

10 0.0526 0.0592 0.0526 0.1250 0 
12 0.0526 0.0592 0.0526 0.1250 0 

Test data 8 0.0294 0.0238 0 0 0.0714 
10 0.0294 0.0238 0 0 0.0714 
12 0.0294 0.0238 0 0 0.0714 

Err': overall error rate; 
Err^: average of the class error rates; 

‘ ErfALL-Bi ErfALL-T and Effaml： the class-specific error rates for ALL-B, ALL-T 
and AML, respectively. 

Table 3.3: The comparison of classification results for Leukemia test data. 

Method No. of genes Overall test error rate 

1 multicategory SVM° 40 0.0294 
2 HC-A;-TSPc 36 0.0294 
3 BMA6 15 0.0294 
/ 
4 PAM" 8 0.0588 
5 SVM-RFE'^ 6 0.0882 

6 SPMd 4 0.0882 

7 gg-SSVS 8 0.0294 

8 gg-SSVS 10 0.0294 

9 gg-SSVS 12 0.0294 

Lee and Lee (2003); 
Yeung et al. (2005); 
Tan et al. (2005); 
Koo et al. (2006); 
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Table 3.4: Significant genes found for classifying DLBCL, CLL, and FL. 

Rank Gene ID Gene description 
1 GENE1622X 

2 GENE3805X 

3 GENE1644X 
4 GENE1775X 

5 GENE1648X 
6 GENE1647X 
7 GENE1673X 
8 GENE1610X 

9 GENE1795X 
10 GENE653X 
11 GENE2403X 
12 GLNE30X 

CD63 antigen (melanoma 1 antigen)力 

Clonc=769861 
ISGF3 gamma=IFN alpha/beta-responsive 
transcription factor ISGF3 gamma" 
subunit (p48); Clone=1372520 
(cathepsin L; Clone=345538)'''^ 
(Unknown UG Hs. 140483 ESTs;" 
Clone=1319683) 
cathepsin B; Clone=297219° 
cathepsin B; C l o n e = 2 6 1 5 1 7 � � 

Glutathione peroxidase 1; Clone=712106" 
Mig=Humig=chemokine targeting T cells;"� 

Clone=8 

CD31=PECAM-1; Clone=359925 
(Lactate dehydrogenase A; Clone=686889)"''' 
(Unknown; Clone=1356913)°力 

(NC2 alpha subunit二repressor of class II gene 
transcription through specific binding to 
TBP-promoter complexes via heterodimeric 
histone fold^omains; Clone= 1340774) 

a: Tibshirani et al. (2003); 
b: Draminski et al. (2008). 
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Table 3.5: Comparison of LOOCV results of different methods for Lymphoma 
data. 

Method No. of genes LOOCV error rate 
1 SC.s^ 2796 0.0330 
2 random forest var.sel. (s.e. =0广 73 0.0470 
3 random forest var.sel. (s.e. = 1 ” 58 0.0420 
4 NN.vs� 15 0.0400 
5 LogitBoost, estimated" 10 0.0323 
6 AdaBoost, 100 iterations� 10 0.0484 
7 Classification tree" 10 0.2258 
8 gg-SSVS 8 0.0323 
9 gg-SSVS 10 0.0323 
10 gg-SSVS 12 0.0161 

a: Dettling and Biiuhlmann (2003); 
6: Diza-Uriarte and Andes (200G). 
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Chapter 4 

Sparse Bayesian Variable 
Selection for Classifying 
High-dimensional Microarray 
Data 

4.1 Introduction 

With the development of microarray technology, researchers can 
rapidly measure the levels of thousands of genes expressed in a 
single experiment. One important application of this microar-
ray technology is to classify the samples into different diagnostic 
categories using their gene expression profiles. One current diffi-
culty is that the microarray data often consist of a large number 
of genes compared to the number of samples. Some genes could 
be related to a particular type of diagnostic category. How-
ever, many of the genes are irrelevant or redundant and affect 
the accuracy of classification. Therefore, robust and accurate 
gene selection methods are required because effective gene se-
lection methods often lead to a compact classifier with better 
interpretability and accuracy. 

Gene selection problem basically can be treated as a variable 
selection problem associated with linear regression models prob-
lem in statistics. Among many methods developed in the liter-
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ature, several selection methods utilized correlations between 
genes and class labels. The correlation can be measured by 
signal-to-noise ratio (Gulob et al., 1999)，the Pearson correla-
tion (Hastie et al., 2001)，t-statistic (Nguyen and Rocke, 2002), 
information-based criteria (Liu et al., 2005) and inter-class vari-
ations (Yang et al., 2006), or others. These procedures are uni-
variate gene selection methods in the sense that the correlation 
between genes and disease is examined for each individual gene. 
Although being useful in practice and being easy to perform, 
all these methods select one important gene at a time and fail 
to take into account the correlation between genes. Alterna-
tive methods are multivariate approaches that consider multi-
ple genes simultaneously and account for dependency between 
genes. Some of them are correlation-based approaches, for ex-
ample, a fast correlation based filter solution (Yu and Liu, 2004) 
and the Markov blanket filter (Marnitsuka, 2006). Diflereiit from 
the correlation-based approaches, Lee et al. (2003) developed 
a multivariate Bayesian approach which used a Markov chain 
Monte Carlo (MCMC)-based stochastic search variable selec-
tion algorithm (George and McCulloch，1993). They adopted 
the p-prior (Zellner, 1986) for unknown parameters of regres-
sion coefficients. However, for situations with high-dimensional 
covariates, or highly collinear covariates, the covariance matrix 
involved in the 化prior is nearly singular (Gupta and Ibrahim, 
2007). 

Prom a machine learning viewpoint, using support vector ma-
chines (SVMs) to deal with high-dimensional and small-sized 
data is attractive. SVMs have been demonstrated to achieve low 
test error in classification (Cristianini and Shawe-Taylor, 1999). 
However, as the standard SVMs utilize all the genes without 
discrimination, they can suffer from the presence of redundant 
genes (Hastie et al., 2001). Several methods have been proposed 
and have reported results on the application of SVMs for per-
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forming gene selection. For example, by using generalization 
bounds from statistical learning theory, Weston et al. (2001) 
compared feature selection and Fisher score. But these meth-
ods need to estimate a trade-ofF parameter in order to utilize 
Mercer kernel functions and also lack of probabilistic output, Li 
et al. (2002) exploited an alternative approach, Bayesian tech-
nique of automatic relevance determination (ARD), to perform 
variable selection. Their approach adopted a zero-mean Gaus-
sian prior with unknown variance for the unknown regression 
parameter. Compared with SVMs, variable sparsity is naturally 
incorporated into the algorithm and the optimal number of rel-
evant variables is decided automatically, while SVMs need an 
additional variable selection procedure and a further criterion 
to indicate when the best variable set has been found. When 
applied to gene expression data sets, the ARD approach com-
pared well with alternative kernel-bsised techniques. The main 
disadvantage is that the approach sets the value of the coeffi-
cient parameters corresponding to irrelevant variables to some 
small value but not to zero (shrinkage rather than selection). 
Bae and Mallick (2004) considered a multivariate Bayesian re-
gression model. For the coefficient parameters, they assigned a 
zero-mean Gaussian prior with three different prior distributions 
for the unknown variance of the coefficient, parameters. They se-
lected the significant genes according to the posterior mean of 
the variance of the coefficient parameters. 

In this chapter, for gene selection and classification of di-
agnostic category, we consider a multivariate Bayesian regres-
sion model with two-level hierarchical (TH) Bayesian frame-
work and a stochastic search variable selection (SSVS) method. 
Moreover, unlike the method based on approximation, we per-
form full Bayesian analysis through the Markov chain Monte 
Carlo (MCMC)-based stochastic search algorithm. In develop-
ing our TH-SSVS algorithm, an efficient sampling scheme is im-
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plemented. In addition, the TH-SSVS approach produces the 
posterior probabilities for the selected genes, which is helpful 
for achieving better biological interpretation. 

4.2 Methods 

4.2.1 Model 

Suppose the data set has n observations with p predictors. Let 
Y = (V^i,…,Yn) denote the observed binary responses. For 
each sample i�let Xij be the measurement of the expression level 
of the j'th gene for the z-th sample. Similar to Section 2.2.1，we 
define 

Z, = a -f X,/? -f (4.1) 

where the disturbance or noise term €{ are independently and 
identically distributed as N{0,1). The relationship between Y^ 
and Zi is 

… 0 , (4.2) 
\ o if Z, < 0. \ , 

We introduce a latent binary vector 7 = (7i,...，7p) to in-
dex the possible subsets of genes for performing gene selection. 
Given 7，let p^ = J^JLj be a by 1 vector consisting of 
all the nonzero elements of (5�and X^ be an n by p^ matrix of 
covaraites consisting of all the columns of X corresponding to 
those elements of 7 that are equal to 1. Adopting these nota-
tions, given 7，model (4.1) can be rewritten as 

么二 a + + (4.3) 

where is the z-th row of X^. 
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4.2.2 Prior Distribution 

The choice of the prior distributions for the unknown parameters 
is very important in the Bayesian SSVS approach. Similar to 
Chapter 2，we consider prior distributions for a, P ’ � a n d 7 with 
the structure 7) = p � P ( � 7 | 7 ) P ( 7 ) here. 

The prior distribution of a is taken as 

% Q � y v ( 0 , / i ) , (4.4) 

where h is a hyperparameter representing the variance of the 
univariate normal distribution. Since a is not,our focus, a spec-
ified value is assigned to h. According to Lamnisos et al. (2009), 
a large value of h is taken. 

For more crucial regression coofficient parameter (3�wc con-
sider sparse priors in this chapter. Sparse priors play an impor-
tant role in Bayesian regression modeling, and has been shown 
to be useful in a more general problem of learning a sparse model 
in high-dimensional space (Wainwright et al., 2006). In contrast 
to a prior assumption of independently and normally distributed 
coefficients sharing a common variance, sparse priors are heavy 
tailed and peaked at zero, and can better accommodate large 
regression coefficients. Two particular sparse priors are student 
t and Laplacian distributions. In regression problems, study and 
use of the Laplacian prior distribution have become popular in 
part due to its connections to the Lasso procedure of Tibshirani 
(1996). However, the variable selection property is ad hoc from a 
Bayesian perspective. Under the absolutely continuous student 
t or Laplacian prior distribution, the prior probability of the 
event A 二 0 is zero, and so the posterior probability of such an 
event must also be zero. In order for posterior inferences about 
events such as A = 0 to be coherent, prior probability mass must 
be allocated to these events. By the definition of 7,, if 二 0， 

the 2-th gene is excluded from the model, it is natural to force 
Pi = 0，and if 7i = 1, we assign a student t or Laplacian prior for 
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A. Within the class of sparse priors for 13” scale mixtures of nor-
mal distributions have received extensive attention. Therefore, 
the student t prior or Laplacian prior can be presented as a two 
level hierarchical model. The complete hierarchical probability 
distribution for given % are given below. 

At the first level, the regression coefficient given is as-
sumed to be 

p{PH) = ( 1 - + 1 傳 、 A O , (4.5) 

where (5(0) is a point mass at 0, Â  is the variance of when 7, 
is equal to one. 

At the second level, we assume two different prior distribu-
tions for Aj： “ 

Model I: Aj �IG(号，I)， where IG( | , denotes an inverse 
gamma distribution, and a and b are hyperparametcrs with the 
density function proportional to + exp( —壳)，ix > 0， 

Model II: Aj ~ Ga(l, where Ga(l, has the density func-
tion I exp( — u > 0. where r is a hyperparameter. 

For the prior specification on 7，a widely used prior is 

p 

厂(7) = [1没1� (1 —幻1—、， O S 久 $ 1 ’ (4-6) 

that is p(7i =1)=队，<二1，..-，p. This prior assumes that the 
z-th gene is included in the model independently with a prior 
probability 0” 

4.2.3 Computation 

Denote Z = (Zi, • • • , Zn)\ A = diag(Ai, • ‘ • , A^). Under the 
model and prior specifications in the above sections, the joint 

61 



posterior distribution under Model I or Model II is given by 

X e x p ( - ^ ) X f [ A ” e x p ( - 亡 罢 ) x 們 1 — � � 飞 
1=1 i=\ I 1=1 

“ p I� ， P \ 
( 1 + 1) , 0 f ^ t A , X n A ? " ) exp( - E • ) { • � e x p ( - ( 4 . 7 ) 

where Ai is equal to either { Z ! : 么 〉 0 } or {Z! : < 0} 
corresponding to Vi = 1 or Yi = 0, respectively; and I(.) is an 
indicator function. 

The posterior distribution in (4.7) cannot be expressed in an 
explicit form; therefore，we use an MCMC technique, namely 
the Gibbs sampler (Geman and Geman, 1984)，to generate ob-
servations from this posterior distribution. Because o： is rarely 
of interest, we marginalize it out for the purpose of simplicity 
and speed (Park and Casella, 2008). To make the sampling 
scheme efficiently explore the space of variables, we jointly 
update correlated components to improve the results. We can 
in turn update Z, A, and 7 based on p(Z, A|X, Y, 7) oc 
p ( Z | X ’ y , A, 7)P(A|/?’ 7) a n d 7 |X，Z, A) oc p(从 |X, Z , A, 7) 
p(7|X, Z, A). The conditional distributions for implementing 
our sampling scheme are given below: 
{i) p(Z|X, Y, A, 7): It can be shown that: 

n 
p(Z|X’ r , A, 7) oc yv(0, S^) J J I(A)’ (4.8) 

1=1 

with Yly = hlnl'^ + X-yA^X!^ + I„, which is a multivariate trun-
cated normal distribution (see Appendix C). In (4.8), fl is margin 
alized out from the posterior distribution p(Z|X, V, A, 7) to 
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reduce autocorrelation between P and Z � t h u s to improve mix-
ing in the Markov chain. Direct sampling from (4.8) is known 
to be difficult. We follow the method of Devroye (1986) to sim-
ulate samples from the univariate truncated normal distribution 

X, y, A, 7)’ where i) is the vector of Z without the 
z-th element. 
(iz) 7): The posterior distribution of the z-th diagonal 
element of A, Â , under Model I is (see Appendix C) 

� I G ( ¥ ’ ; ^ ) . (4.9) 

The posterior distribution of \ under Model II is (see Appendix 
C) 

入 � 1 | / 3 " 7 , � I n v G a u s s ( 安 ， T ) ， （ 4 . 1 0 ) 

where InvGauss denotes the inverse Gaussian distribution with 
the probability density function 

I ^ K (U 
InvGauss(^ k) 二 '、？,?： }，" > 0. (4.11) 

We use the algorithm given in Chhikara and Folks (1989) to gen-
erate the random observations from the inverse Gaussian distri-
bution. 
{in) Z, A, 7): the full conditional distribution for (5�is 
(see Appendix C) � 

^ g X , A, 7 � N队 电 Z , O )̂， （4.12) 

where 少 = ( " U l : + l n ) - \ and - (X'^^X^ + A；^)"^ = 
A^ - + The matrix inversion 
for calculating fl^ is computed using the well known Sherman-
Morrison-Woodbury formula, which can make the computation 
much faster when data are high-dimensional with small sample 
size. 
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(iv) p(7|X，Z, A): This conditional distribution is proportional 

to IS7I—I exp( z E-'z )X - 一�. We marginalize 
out ff from the conditional distribution p(7|X, Z, A) so that 
the Markov chain would be non-reducible (Panagiotelisa and 
Kohn, 2008). For implementing an efficient sampling scheme, 
we draw a component 7, of 7 conditionally on 7(_!)，where 7(_i) 
is the vector of 7 without the z-th element, and 

p(7i|7{-i),X,Z, A) oc 没？（1 — 没 一 、 

(4.13) 

Because is binary, we can get the conditional probabilities 
of p(7i = l|7(_i), X, Z, A) and p(ji = 0 | 7(_小 X ， A ) . Denote 
7I == (71’... ,7i-u7z = l，7i+i’ • •.，7p) and 7 � = (71,. . . ’7i-i’ 
二 0’7i+i, • . . , 7p), and similarly define E^i and Eyj as Ey in 

(4.8). It can be shown that (see Appendix C): 

P(7z 二 l|7(-o，X，Z’ A) 二（1 + 
ft 

pr (4.14) 

where 

P = 7 7 
- 1 exp 

观；丨1 - S;Q丨)Z 

2 
(4.15) 

As a result, an explicit form of the conditional distribution in 
(4.14) can be derived. 

To implement the Gibbs sampler, we start with an initial 
value (Z(o)，A(o)，4O)，7(o)), and continue as follows: at the {k + 
l)-th itei^ation with the k-th value ( Z � ’ A�’/^矢)，7⑷）， 

step (a): For i = 1, • • • , n, draw from the univariate 
truncated normal distribution p(zf^)|Z((2)，X,>^，A(�7(^)). 
step (b): For i = 1，• • •，p’ if 7i = 1 draw A !知 f r o m the con-
ditional distribution (4.9) and (4.10) for Model I and Model II， 

respectively; if 7, 二 0，set A j (矢= 
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step (c): Draw 成 f r o m the conditional distribution (4.12). 
step (d): For i = 1，…，p，generate a random number û  from 
a uniform distribution f/[0,1], calculate the probability p:(⑷）= 

广 1) = 1|7((二,X，Z(�)’A(…)）via (4.14) and (4.15), and 
update as follows: 

7 r ) 
1 if < 

0 otherwise. 

Under mild regularity conditions and for sufficiently large T, 
( Z � , ,成 T ) , simulated from the above Gibbs sampler 
can be regarded as an observation from the joint posterior dis-
tribution p(Z, /3…A, 7|y, X), see Geman and Geman (1984). We 
collect MCMC samplers {(么⑷’/̂ ^̂ 八⑷，飞⑷），A: = 1，2,...，M} 
after a suitable burn-in period. An initial value of 7(0) can be 
obtained by randomly selecting a small number of genes and 
assigning 1 to the corresponding entries of 7(0). In contra«st, 
Bae and Mallick (2004) used two sample t statistic to iden-
tify a certain number of significant genes for getting V� ) . Our 
method seems more reasonable as we usually have little prior 
information about which genes are significant among the large 
number of genes. The MCMC algorithm in our method is ro-
bust to the choice of 7(0) and encounters no problem in con-
vergence. Note also that the MCMC algorithm focuses on gen-
erating (Z�’矢)，A⑷，7�)，which is important and sufficient 
for gene selection and classification, while the less important a 
is not simulated. The relative frequency of each gene can be 
calculated as 

M 
= = (4.16) 

Jt=i 
This gives an estimate of the posterior gene inclusion proba-
bility as a measure of the relative importance of the z-th gene. 
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Genes with high posterior inclusion probabilities are relevant to 
classification. 

4.2.4 Classification 

The performance of a classification rule is best assessed by ap-
plying the rule created on the training set to the test set. The 
predictive posterior probability of Vnew given the new covariate 

^new is . 

(4.17) 

二 j p(rnew IV^, ^new, P. A, P. A, ^\Y)dZdf3d\d^. 

This probability can be approximated by Monte Carlo integra-
tion as follows: 

P(̂ new V̂, X, Xnew ) = M 

M 
y p(V;ew|K, X, Xnew, Z � ' �克 A � , 7 � ) 

(4.18) 

• End of chapter. 
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Chapter 5 

Summary and Discussion 

The objective of this thsis is to propose new Bayesian approaches 
in variable selection and diseases classification for applications 
to high-dimensional data analysis. At first, we have introduced 
some background of Bayesian variable selection approach and 
reviewed some related literatures. 

Chapter 2 proposes a Bayesian stochastic variable selection 
approach for gene selection based on a probit regression model 
with a generalized singular g-prior distribution for .regression 
coefficients. Using simulation-based MCMC methods for sim-
ulating parameters from the posterior distribution, an efficient 
and dependable algorithm is implemented. It is shown that this 
algorithm is robust to the choices of initial values, and produces 
posterior probabilities of related genes for biological interpreta-
tion. The performance of the proposed approach is compared 
with those of other popular methods in gene selection and classi-
fication via the well known colon cancer and leukemia data sets 
in microarray literature. 

Though we considered c and tt as known hyperparameters 
in their prior distributions. This restriction can be relaxed 
by treating them -as unknown parameters and further assign-
ing prior distributions to them. Furthermore, we assume that 
genes are independent but in our framework the model can be 
easily extended to account for a correlation structure between 
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genes. 
In Chapter 3, we propose a Bayesian stochastic search vari-

able selection approach for multi-class classification, which can 
identify relevant genes by assessing sets of genes jointly. We con-
sider a multinomial probit model with a generalized ’pr ior for 
the regression coefficients. An efficient algorithm using simulation-
based MCMC methods are developed for simulating parameters 
from the posterior distribution. This algorithm is robust to the 
choice of initial value, and produces posterior probabilities of 
relevant genes for biological interpretation. We demonstrate the 
performance of the approach with two well-known gene expres-
sion profiling data: leukemia data and lymphoma data. Com-
pared with other classification approaches, our approach selects 
smaller numbers of relevant genes and obtains competitive clas-
sification accuracy based on obtained results. 

Chapter 4 is about the further research, which presents a 
stochastic variable selection approach with different two-level 
hierarchical prior distributions. These priors can be used as 
a sparsity-enforcing mechanism to perform gene selection for 
classification. Using simulation-based MCMC methods for sim-
ulating parameters from the posterior distribution, an efficient 
algorithm is developed and implemented. 
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Appendix A 

A. l Method 

(i) Proof of equation (2.8). 

Since the prior distributions for a, (3�and 7 are 

a � N [ Q , � 7 V ( 0 ’ � — Tr,̂，•，（A 1) 

and conditional on parameters a, ")，and 7， 

么 = Q + + 2 - I,--- ,n, (A 2) 

we have 

Zriv, X, (5，n � + X i � [ i y � ( A 3) 
where A^ is equal to either {Zi : Z�> 0} or [Z^ : Z, < 0； 

corresponding to V̂  = 1 or Yi = 0, respectively; and I(.) is an 
indicator function which truncates the univariate normal distri-
bution of Zi to the appropriate region. 

The joint posterior distribution of (Z, Q, 7) given (V, X) 
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IS 

p{Z, a , 0 1 � X ) c x n X , a , Ap 7 ) P � p (凡 | X， 7 ) f [ p{li) 
1=1 

oc 

a 2 
X exp( - — ) X 

2 1=1 

P X XyPy y^ -
2c 1 1=1 

1 - 7 , 

1=1 
(A 4) 

where A i，…， ( r r i y < p^) are the nonzero eigenvalues of 
(X'^X^)"^. We first integrate out a given Z, 7. The exponen-
tiated terms that are associated with a in above equation can 
be rewritten as follows: 

- a - « 2 

2 2h 
{Z - l a - - l a - X^p^) o? 

"'•‘ , I ••議 一一 —• 

2 2 " /A 5) 
{h-^ + n){a - {h-' + n)-'l'{Z - �，) 

^ ^ — • I 

一 2 

—(1 + n h ) - \ Z - - X^P^) 
2 ‘ 

The exponential of the first term in expression (A 5) forms the 
kernel of a Gaussian probability density of a and can be inte-
grated out. Thus, the integration of a is done. 

Using a special case of binomial inverse theorem (see Wood-
bury 1950; Plackeett, 1950)，the second term of expression (A 
5) can be expressed as 

(Z — + " l l ' ) - i ( Z — X � 

2 
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Turning to the integration of the expression (A 6) plus the 
third term of expression (A 4) can be rewritten as 

P'X'Mln + hU')-' + — + hlVy'Z 
2 

z'iir,-^ hwy^z 
2 

ifi�一 - A-'B) Z'(In + hlV)-'Z - B'A''B 
2 2 

(A 7) 

where A = + h l V ) - ' B 二 X;(I„ + / i l l ' ) - iZ. 
The first term of expression (A 7) is a completed quadratic 

form in /?)，which forms a Gaussian probability density and can 
be integrated out. The second term forms the kernel of a pos-
terior probability density of Z|X, 7 as 

X 

(A 8) 

X'Jln^hllT'Z 
2 

From expression (A 8)，we obtain that p(Z|X, 7 ) � y V ( 0 , 

with 二 + 

Denote 二 In + h l l ' + Then ^ 

- ( In + h l V y x ^ l X M l n + h l i y + + 

一 1 

X 
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= I n + C(ln + / i l l ) - l X 飞 ( X 而 + X 7 

1 + n / i c 
1 

+ -)-\ln + hu + hu 
1 + n/i c 

+ C(ln + "11')-1X 祝 X,) + X ; 

1 + n/i c 
1 1 � -1 c 

1 + n/i c 1 + n/i 

= In + C(ln + M l ' ) - % ( X ; X 7 ) + X ; 

-C(I„ + / l l l ' ) -%(X;X，) + X ; 二 In. 

Therefore, = S)* and 

p � X ， 7 ) 〜 歸 ， 5 ： , ) . 

Hence, the joint posterior distribution of (Z, X) is 

(A 9) 

p (Z ,7 | r ,X)ocp(Z | r ,X ,7 )p (7 ) 

oc 
X； 

-7i 
2 

(A 10) 

(ii) Proof of equation (2.10). 
From equations (A 1) and (A 10), we have 

oc 
E , 

e x p ( — Z ) X 7r7'(l — 7 r , y ” ' 
2 

(Al l ) 
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and 

51 
exp( ) X TT, (A 12) 

1 
v[li 二 0 7(_,),r,X,Z) oc — r e x p ( x (1 - tt, 

S y ) 2 

(A 13) 

where = ( 7 1 , • • • , 7 t - i , 7 z == — . ’ 7 p ) and 二（ 7 i , . . . 

二 0, 7z+i，...，7p). As 7i is binary, we have 

p(7z = l|7(-o, X，Z) + = 0|7(-o’ >"，X, Z) 二 1. (A 14) 

From equations (A 12)-(A 14), we get 

P(7i = l|7(-o，y，X，Z) 

5 1 e x p ( — — X TT, 
I Z Ya X Z 1 2 S Q ̂  

exp( f — ) X TT, 4- exp( f — ) x (1 - tt, 

二（1 + 
TTv 

TT, P) - 1 

where 

P = exp{ ^ - ~ ~ } 
2 

(A 15) 
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A.2 Results 

Tabic A: Initial (randomly sclccted) gene iiidiccs, sclcctcd gene indiccs by 
gsg-SSVS, and the LOOCV error rates for three different chains in the analysis of 

Colon C^nccr Dat^. 
Chain No. 

Chain 1 

Chain 2 

Chain 3 

Initial (randomly sclccted) 

gene index 

203 1879 385 1743 100 

1621 513 1021 1642 531 

213 909 1172 933 1254 

346 1583 1207 949 1329 

493 227 16 1306 846 

1023 980 726 1946'657 

1702 1224 1522 807 1773 

1144 240 1573 825 1272 

728 1962 1790 771 889 

1219 1504 941 1724 1684 

388 1459 683 1572 882 

718 1723 1950 275 1024 

1569 1756 342 29 778 

633 1080 734 1365 1286 

116 82 557 1372 1207 

406 95 1769 985 1398 

sclcctcd gene index 

by gsg-SSVS 

377 493 1843 1772 57G 

792 1423 1346 1635 353 

1042 822 249 1924 1210 
14 1400 1549 

377 493 1843 1772 576 

792 1423 1346 1635 353 

1549 1042 1 2 1 0 249 1924 

1400 14 6 2 5 

377 493 1843 1772 1423 

792 576 1635 353 1346 

249 1549 1924 1400 1042 

6 2 5 14 7 3 9 

*Thc gene indiccs in boldfacc indicate non-overlapping genes in the three sets 
of the 18 most significant genes, 
the scuiic, only minor diU'crcnccs 

Note that the ten top-ranked selected gCFies arc 
tippearcci in relation t.u genes with lower ranks. 
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Appendix B 

B. l Matrix Variate Distribution 

(i) Matrix normal distribution 
Let Z{p X q) be a random matrix. Z is said to follow a matrix 

normal distribution, M -f Af{P, Q), if M is the mean of Z，and 
PuQ and Q „ P are the covariance matrices of the z-th row and 
the j-th column of Z, respectively. 

If P and Q are positive definite, the probability deiKsity fiiiu-
tion of the matrix normal distribution can be represented by 

, 7 � � - D � r tr[P一i(Z — M)Q-^(Z - M)' p(Z) = (27r) 2 |P | 2|Q| 2 exp { 
2 

(ii) Inverse Wishart distribution 
Let U{q X q) he a. matrix. U is said to follow an inverse 

Wishart distribution, U � / iy( (^ ;Q)， i f for 6 > 0, the density 
fuiiction is defined ais 

p(U) = exp{ —tr(U:iQ)}, u > 0， 
2 

with = 

(iii) Matrix Student T-distribution 
• Let 巾 � Q ) and given 巾’ T � N \ P �中） .T h e induced 
marginal distribution for T(p x g) is a matrix T'-distribiition 
denoted as 
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The density function of the matrix ^'-distribution exists if 
〉0，P〉0，and Q > 0. The density function of the matrix 

T-distribution is given by 

p{T)=如’聊丨甲丨Q|,P + T Q - i T ' - 她 • 

EH where c{p,q,6) = t t 令 ] “ 7 - ( j / r 
Marginal and conditional distributions of the matrix 7'-distrib 

utioii are also matrix-T. For example, if T is partitioned into 
T = (T;,T；) with X q), i = 1,2，and pi + P2 = p， 

then marginally T2 � T ( S ; P22, Q), and the conditional distri-
bution of Ti given T2 is T j — P12P.J2T2 � T ( d + p.； Pii 2’ Q + 
T ; P � / T 2 ) . 

B.2 Method 

(i) Proof of equation (3.13) 
Since the prior distributions for a, B^, E and 7 arc 

Q S � 释 ’ E), B , E � + 丨 ’ S ) 
c p r • - (13 1) 

5：� Z W ( " o，R())，；p ( 7 H n 几?1(1-兀 

1=1 

and conditional on parameters a, B^ E and 7, 

Z 二 + X7B1 + e, 
i 

Then, 

(13 2) 

(Z|y, X，a, E, 7) - ( l n a + � M i } ! : � S ) [ ] 1(A), 
1= 

• (B 3) 
where Â  is equal to either {Z, : maxi<jt<A'-i Ẑ ^ > 0，and Z � , � = 
niaxi<jt</c-i Zja：} or {Z, : niaxi<)t<A'-i < 0} corresponding to 
Yj = j or Y^ = 0，respectively, and 1(A) is an indicator function. 
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The joint posterior distribution of (Z, a, B^, E, 7|y, X) is pro-
portional to 

/
I
 

X
 

e
 

n
-
2
 J_

 

tr[(Z — Ka — 一 

2 } n i � 

X 

X 

X7X7 I -
c 

V � f ti, 
X. 2 e x p l 

2 

exp{ 
2k R o 

(13 4) 

We first integrate out a given Z，B̂ ,̂ S , and 7. Using t r (MN) 二 

t r (NM), the exponentiated terms that are associated with cy in 
expression (B 4) can be rewritten as: 

(Z — 1„Q — X 办 ) ' ( Z - 1„Q - X 7 B飞）Q ' Q 
2 2h 

(h-i + n ) { Q — (Zi-i + n ) - i - —(“一】+ n ) —1 

2 

(1 + nh)-\Z - X)B飞）(Z - X ^ B 
2 

( B 5) 

The exponential of. Uie first t m n in expression (13 5), together 
with the factors and |5]|~2, forms the kernel of a matrix 
variate normal probability density of a and can be integrated 
out. Thus, the integration of a is done. 

Using a special case of binomial inverse theorem (see Wood-
bury, 1950 and Plackcett, 1950), the second term of expression 
(B 5) can be written as 

- ( B 6 ) 
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Denote H-y = + rlp^)~^ Turning to the integration of B-y, 
the expression (B 6) plus the second term of expression (B 4) 
can be rewritten as 

B;{X;(I,i + h U U T ' ^ y + - + IZ 

( B 7 ) 

2 

- z ' ( l . + + + h l X r ' Z 
2 

_ (B^ - M- IN) 'M(B 7 - M - i N ) _ Z'(In + / i l 丄 ) - i Z - M ' N - i M 
二 2 2 

where M = {X;( I , + + H； }̂, and N = + 

The first term of expression (B 7) is the completed quadratic 
form of Together with the factors and |S|~2, this 
term forms a matrix normal probability density and can be in-
tegrated out. The second term of (B 7) forms the kernel of the 
posterior probability density of Z|X, 7 as follows: 

( B 8 ) 
2 

+ h i x r ' ^ M ^ n + h i x r ' x , + + hinKr'z 
2 

From expression (B 8), p(Z|X, E, 7)�M\l?��S), with 
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Denote P^ = + " l ^ X + X^H^X' Then, 

= { ( I n + " I n l ' J - 1 - (In + + h l J ' J -

X ; ( I „ + M 丄)-i}(I„ + h l X + X 办 X ; ) 

- ( In + Z l l n l : ) - + h U l n T ' ^ y + H ^ ^ ^ ' X 

- ( In + / l l n i ; j - % [ X ; ( I n + "1 丄 ' ) - % + 

1X7 + H ; 

nh + 

X l X 

X 

7 乂” 

~ nh -h 1 ’ 
- 1 

nk+ 1 . _ 7 

= I n + (In + — (I„ + /zl, 1J "' 二 In 

Therefore, P-̂  = P^* and 

p ( Z | V ; X ’ : E ’ 7 ) � A a f V S ) 

oc P 
^ n r t r [ S - i Z ' P ; i Z 

exp{ — ~ - � 
2 }ni(式 

1=1 
( B 9 ) 

Since the form of the last term of expression (B 4) is the same 
as expression (B 9), their product is proportional to 

P 
K - \ 

Rf 2J 2 exp{ 
t r [S - i (Z 'P ; iZ + Ro) 

2 } n i � 
(B 10) 
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Given 7, E can be integrated out of expression (B 10). Thus, 
we have 

p(Z |y ,X,7)oc |P Ro|-导丨 P 7 + Z R ^ ^ Z 
_ PQ + n-f K-2 

I I I � 
( B l l ) 

which is the probability density function of the truncated matrix 
student T-distribution T(po； P7, Ro)-

(ii) Proof of equation (3.16) 
From equations (B 4) and (B 11), 

P(7i|7(-o’ y，X, Z) oc p(Z|X, 7)P(7i) 
oc 

n + Po 
P ^ R o —亏 P j + ZRo~ Z 

X7r7，（l — 7rJi—\ 

PO十n + K -2 

(B 12) 

and 
P{li = 1|7(—0, Y ’ X ’ Z ) 

(X 

oc 

p 

p 

R o r ^ l P y + Z R o ^ Z 

R o | ] | P y ) + Z R q ^ Z ' 

PO + n+K-
X TTi (B 13) 

14) 

where 二（7i，。.，7i-i，7i = l，7i+i’ • … ’ > ) a n d 7° = ( 7 i ’ . �， 7卜 1’ 

= 0’ 7i+i’ …，7p). As 7i is binary, we have 

P h r = l|7(-o，>^，X’ z) + p ( 7 i = 0|7(—0，X, Z ) 二 1. (B 15) 

From equations (B 13)-(B 15), we get 

p h t = 1|7(-0,>^，X，Z) 
p ( 7 i = l | 7 ( - o ’ Y ’ X , Z ) 

(B 16) 

Ph i = 1|7(-1), y，X, Z) + p(7i 二 0丨7(-0，X, Z) 

- f i l l i p ) - , ‘ 
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where 

P = 
P Py) + ZR^^Z 即 + n + K" 

P £Q±I1： P y + ZRo-iZ _ pQ f n-HC (B 17) 
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Appendix C 

c Method 

(i) Proof of equation (4.8). 

Since the prior distributions for a, /?)，A and 7 are 

a 〜"(0,")’- 〜yV(0,入)，72 〜&、（1—⑴ 1 1 

A!�IG(^’?）(or A , � G a ( l ’ 5 ) ) 

z 0 z 
and conditional on parameters Q, 0 ’ � a n d 7， 

(C 1) 

Z^ = a •]- Xi�fly + e” = 1 n, 

we have 

Zdy;X,a，/3^^，7 �例a + X�办、\)1{A^) 

(C 2) 

(C 3) 

where Ai is equal to either {Z, : > 0} or {Z^ : Ẑ  < 0} 
corresponding to == 1 or Ŷ  = 0, respectively; and I ( ) is an 
indicator function which truncates the univariate normal distri-
bution of Zi to the appropriate region. 

The joint posterior distribution of (Z, a , A , 7) given {Y, X) 
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� 

IS 

oc 

oc 

X 

n p 

n P(Zi|y，X, ĉ ’ 7)p•(…P(氏LX’ A, 7) n 
i=l 

e x p { - “ = i …；—� � } n i � 
1=1 

A ) | - “ x p 卜 X 作—�)1”, 

V p , p 

X exp( 

X 
1=1 1=1 1=1 

( C 4 ) 

We first integrate out a given Z, A, 7. The exponentiated 
terms that are associated with a in above equation can be rewrit-
ten as follows: 

Zl.iZ, - a -
2 2h 

(Z - l a - - iQ - X^P^) — ^ 
2 元 

(/i-i + - ("-1 + n)-^i{Z -
2 

(I nh)-'{Z - -

(C 5) 

2 

The exponential of the first term in expression (C 5) forms the 
kernel of a Gaussian probability density of a and can be inte-
grated out. Thus, the integration of a is done. 

Using a special case of binomial inverse theorem (see Wood-
bury 1950; Plackeett, 1950), the second term of expression (C 
5) can be expressed as 

(Z - + hli)-^{Z -
-
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Turning to the integration of the expression (C 6) plus the 
third term of expression (C 4) can be rewritten as 

/^;{X;(In + /llnlnQ-^X, + A；^}/?^ — + klX)-'Z 
2 

+ h l X ) - ' X � 0 i + Z'jln + hlXr'Z 
^ 2 

{p., — - n̂ ) z'(i, + — ^ n̂  
2 2 

(C 7) 

where H - [乂;(1,+/11丄)-1义一八;1广1,少=X;(I,+/il丄）、丨 

The first term of expression (C 7) is a completed quadratic 
form in (5’�which forms a Gaussian probability density and can 
be integrated out. The second term forms the kernel of a pos-
terior probability density of Z|X, A, 7 as 

2 

+ "1 丄；rlX)[X;(I„ + " 1 丄 ) - % + + /llnl 

(C 8) 

2 

From expression (C 8), we obtain that p(Z|X, A, 7 ) � y V ( 0 , S，)， 

with £厂1 = + 

Denote T,̂ * = In + + X-^A-^X'̂ . Then 

={( In + " I n C ” - (In + "1 乂 ) - + h l X ) ' ' ^ , + 八 

X ; ( I „ + + h l X + X^A^X；) 
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；I„ + (I„ + / i l 丄 ) - i X A X ; 

- ( I n + / l ln l ; J - lX 抓 + "1 丄 r % + A;丨 r IX; 

- ( I n + "1 丄)-%[X;(I„ + M 丄 r % + A,-"-丨 

- ( U " 1 丄 ) - I X J ^ ^ + ArM-ix : 
nh + 

X : X 7 ’ y ^ - M - i ^ y s i ^ x ' 
nh + 1 nh + 1 

+ (In + /llnl ' j-^X^A^X； — (In + 1；̂  ' ^ X , A,X； = I". 

Therefore, = and 

P(Z|X,A，7)�A^(0’S7) . (C 9) 

Hence, the joint posterior distribution of (Z, X, A) is 

p ( 2 , 7 | r , X , A ) o c p ( Z | y , X , A , 7 ) p ( 7 ) 

oc exp( — � X -
2 

i = i 

(C 10) 

(ii) Proof of equation (4.9) and equation (4.10) 
From equation (C 1), we get 

p(A,|A,7z) oc p{ftt\Knz)p{K) 

V , 饮 � X-(f + i) , b � 
oc Â  2 X Aj 2 exp( 

2 V 

OCA「(中+ i ) e x p ( - 禁 

W (C 11) 
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Hence, the joint posterior distribution o{p{X \̂|3 ,̂ 7!) is IG("+i 飞 

for model I. 
From equation (C 1), we also can get 

p{K\Pinx) ^ p[flx\Kni)v{K) 

oc \ ” 哪 ( - 条 ) X 

Denote 77̂  = then ^ — and 
7 

(C 12) 

A ,70 OC ~ ^ e x p ( —从�a X . 1 
2'仏 n； 

丁 ( nt + 贪 
oc — = = e x p ( 2；— 

丁 
oc exp( 

Pt 

fa - f ) ' 
)淨 

oc 
丁 , 丁 (“厂爱): exp( -

(C 13) 

Hence, the joint posterior distribution of p(A� i | A ， i s InvGauss(j^, t] 
for model 11. 

(iii) Proof of equation (4.12). 
From equation (C 7)，we can get equation (4.12) 

(iv) Proof of equation (4.14). 
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From equations (C 1) and (C 10), we have 

P(7z|7(-小 y. X, 7��A) cx p(Z|X, A, 7)P(7i) 
1 Z Y ^ ' ^ Z 

oc ——rexp( 1 ) X — 6 ^ ) 1 - � 

E 

and 

P{li = l |7(-o’ V，X’Z, A) oc 

2 

(C 14) 

S飞1 

e x p ( ^ — — ) X 0, 
2 

(C 15) 

p{lx = 0|7(—小 V", X，Z, A) oc 
E 

e x p ( ^ ~ ~ ) X (1 — 0, 
2 

(C 16) 

where = ( 7 i ’ . . . ,7z-i,7r = l,7z+i，’.. ,7p) and 7° = (7i，... ：7 卜 1 

7i = 0,72+1,... ,7p). As is binary, we have 

P{li = A) +p(7i 二 0|7(-0 

From equations (C 12)-(C 14)，we get 

= 1|7(-O’>^’X,Z,A) 

P(7i = A) 

X，Z’A) 二 1. 
(C 17) 

P(7z = l|7(-z), V； X, Z, A) + = 0|7(-小 y, X, Z, A) 

X e. 
Z 

e x p ( 7 E 

Or X e x p ( X e^ + 
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P(-

V)-

ex 

Oi 
Or 二 (1 + 



where 

P= 功 去 exp{ 
2 

(C 18) 
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