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Submitted by ZHAO Jing 
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at The Chinese University of Hong Kong in May 2010. 

A B S T R A C T 

General diffusion processes (GDP), or Ito's processes, are potential candidates for the 
modeling of asset prices, interest rates and other financial quantities to cope with empir-
ical evidence. This thesis considers the applications of general diffusions in finance and 
potential extensions. In particular, we focus on financial problems involving (optimal) 
stopping times. A typical example is the valuation of American options. We investigate 
the use of Laplace-Carson transform (LCT) in valuing American options, and discuss its 
strengthen and weaknesses. Homotopy analysis from topology is then introduced to de-
rive closed-form American option pricing formulas under GDP. Another example is taken 
from optimal dividend policies with bankruptcy procedures, which is closely related to 
excursion time and occupation time of a general diffusion. With the aid of Fourier trans-
form, we further extend the analysis to the case of multi-dimensional GDP by considering 
the currency option pricing with mean reversion and multi-scale stochastic volatility. 



摘要 

為了兼顧大量的經驗證據，一般擴散過程或者Ito過程是模擬資産價格，利率水平和 

其它金融數量的潛在模型.本文探討了一般擴散過程在金融的方面的應用以及潛在的 

推廣.具體地説，我們集中研究涉及最優停時的金融問題.美式期權定價是一個典型的 

例子.我們探討了拉普拉斯-卡森變換在分析美式期權方面的作用和弱點.為了推導一般 

擴散過程下面的美式期權的解析解，我們採用了來源于拓撲學中的同倫分析.另一個例 

子考慮了破産過程對最優派息策略的影響.這個問題與一個一般擴散過程的巡潛時和 

佔位時緊密相關.在傅立葉變換的幫助下，我們通過研究自回歸和多尺度隨機波動下面 

的外匯期權定價，將分析擴展到了多維一般擴散過程. 
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Chapter 

Introduction 

General diffusion processes are potential candidates for the modeling of asset prices, 

interest rates and other financial quantities. Specifically, let {X^ G M : t G [0, oo)} be 

a stochastic process defined on a probability space (Q, T , P ) with a filtration {Tt\t>o^ 

meaning a family of sub-cr-algebras of J^ with Ts [ ^t whenever s <t. One-factor general 

diffusion process (GDP) is described by the stochastic differential equation (SDE) 

dXt =风Xu t)dt + t)dW[, X � = xo, (1.1) 

where the drift JL{X, t) : M X [0, OO) IR and diffusion coefficient t) :Rx [0, oo) — E+ 

are real, deterministic functions and { W f , t > 0} is the standard Brownian motion 

process, representing the uncertainty in the economy, defined on (Q, P). The rep-

resentative investor is assumed to have access only to the information contained in the 

historical data, which can be modeled by the cr-field generated by J^t = :0 < s <t}. 

In order for the SDE (1.1) to admit unique solution, throughout the thesis we assume gen-

erally that Il{x, t) and t) are measurable functions and satisfy the following Lipschitz 

and growth conditions: for any t >0, 

\li{x,t) - il{y,t)\ + \a(x,t) 一 < L\x — y\,\hc,y G E, (1.2) 

and for any a: G E, 

\Jl{x,t)\ + < K{1 + W), W > 0, (1.3) 



where L > 0 and > 0 are constants. 

1.1 American Options under General Diffusions 

General diffusions have been commonly used to model stochastic dynamics of financial 

securities following the works of Black and Scholes (1973) and Merton (1973) which 

established the foundation of option pricing theory in finance. Under the one-factor 

general diffusion process, the underlying asset price St evolves according to the SDE 

= (/i(5„ t) — D{Su t))Stdt + a{St, t)StdWf, (1.4) 

where ii{St, t), D(St, t), and a {St, t) are deterministic functions, which represent the 

expected return on the asset, the dividend yield and the return volatility, respectively. 

We assume that a (St, t) > 0 and is bounded away from zero. Given this assumption 

and conditions (1.2)-(1.3), Novikov (1979) showed that there exists a unique martingale 

measure equivalent to P, or the risk-neutral probability Q, for the asset price considered 

in (1.4). This equivalent martingale measure is defined as 

Q(A) = / ^(wf^t)P(dwn, VA e Tu 
J A 

where the adapted process 

= exp ( - f - i r 
Jo V / 2Jo V 民，s) y 

(1.5) 

(1.6) 

represents the Radon-Nikodym derivative of Q with respect to P. Consider 

(Sut)-
• 尸 = d w r + ( d t . 

The risk-neutral asset dynamics is given by 

dSt = (r- D{Su t))Stdt + cj{Su t)StdW,^. (1.7) 

Risk neutrality asserts that the expected total return on the asset equals the risk-free 

interest rate: E ^ + D{St^ t)dt\Tt\ = rdt, and any derivative can be uniquely 



priced as the expected value of its discounted payoff under the risk-neutral measure. 

There has been phenomenal growth in financial products and instruments powered by 

these processes, as documented in Sundaresan (2000). The valuation and hedging of 

American-style options is a challenging topic in both academic circles and the financial 

industry, because most liquidly traded options are American-style contracts, which allow 

option holders to exercise their rights before maturity. Specifically, determining the price 

of an American option with payoff {g{St))o<t<T until maturity T could be characterized 

by the optimal stopping problem 

VAiSut) = ess sup E 外 ( 卜 。 丄 （1.8) 
reTt,T 

where 7̂，了 denotes the set of all stopping times between t and T, There is not yet an 

analytical solution to these financial products under a more realistic situation, beyond 

the Black-Scholes dynamics. The principal difficulty arises from the absence of a simple 

expression for the optimal early exercise strategy of American options, which should be 

determined within the pricing mechanism. 

Using Black-Scholes asset price dynamics, the valuation of American options has been 

studied thoroughly. The intractability of the optimal stopping approach leads McKean 

(1965), Merton (1973), and many others to formulate the valuation of American options 

as a free boundary value problem involving the solution of partial differential equations 

(PDEs). Possible numerical methods for American option pricing are the finite difference 

method (Brennan and Schwartz, 1977; Wu and Kwok, 1997), the binomial method (Cox 

et al.,1979), and simulation via least squares method (Longstaff and Schwartz, 2001). 

An alternative method uses quasi-analytical approximations (Geske and Johnson, 1984; 

MacMillan, 1986; Barone-Adesi and Whaley, 1987). A quasi-analytical approximation 

can be obtained either by considering early exercise rights at a small number of discrete 

time points and then projecting the result to a larger number of exercise rights, or by 

simplifying the Black-Scholes equation with some ad hoc approximations. Important 

developments include the capped option approximation of Broadie and Detemple (1996), 



Table 1.1: Examples of GDP with dSt = (r — q)Stdt + a(Sut)StdW^ 
Model a{St,t) Remark 

CEV model 5Sf a special case of GDP (considered in Chapter 2&c3) 
hyperbolic sine model OL\j 1 + ^ a special case of GDP (considered in Chapter 3) 

Black-Scholes model cr a special case of the CEV model 

square-root model ( t S � " 2 a special case of the CEV model 

and the integral-equation method of Kim (1990), Carr et al. (1992), Huang et al. (1996), 

Ju (1998), and others. Under the Black-Scholes assumption, the Laplace-Carson trans-

form (LCT) has been adopted by Carr (1998) to value American options and by Kimura 

(2008) to value finite-lived Russian options. 

Empirical evidence, however, suggests that the Black-Scholes model is inadequate to 

describe asset returns and the behavior of option markets. In particular, asset return 

distributions exhibit excess kurtosis and fat tails, whereas the volatility implied by the 

option prices shows a smile or skew shape across strike prices. This leads to a practical 

need to establish a more flexible model to cope with the empirical facts. One popular class 

of models is the one-factor general diffusion processes specified in (1.7). For instance, 

the constant elasticity of variance (CEV) model of Cox (1975, 1996) is a special case of 

one-factor general diffusion processes in which the volatility of the asset is a monomial 

of the asset price, i.e., (T(St,t) = (55f. Carr et al. (1999) characterize the entire class of 

volatility functions that allow the stock price to be transformed into standard Brownian 

motion by changing only the scale. Table 1.1 gives some examples of one-factor general 

diffusion processes (GDP) with constant dividend yield q under the risk-neutral measure. 

In fact, one-factor general diffusion processes with deterministic volatility function of 

time and the underlying asset price are often called local volatility (LV) models, or deter-

ministic volatility function (DVF) models. This class of models originates from Derman 

and Kani (1994), Dupire (1994), and Rubinstein (1994) to fit the observed option prices 

(or, equivalently, the implied volatility surface) cross-sectionally. The main advantage of 

one-factor general diffusion processes, compared to Levy or stochastic volatility models, 

is that they avoid non-traded source of risk. Consequently, the one-factor general diffu-



sion processes satisfy the complete market assumption that allows for arbitrage pricing 

and hedging. 

One-factor general diffusion processes are very elegant and theoretically sound, how-

ever, they may suffer from some stability issues in practice. For instance, the calibration 

of local volatility function is sensitive to the input data. To avoid such problems, we 

may specify the parametric form for the local volatility function in advance, see the CEV 

model and the hyperbolic sine model in Table 1.1 for examples. Unfortunately, there 

are significant difficulties in extending the aforementioned results of American option 

valuation under the Black-Scholes dynamics to the case of general diffusion processes. 

Even though typical present value representations of the American option price (1.8) are 

valid with general diffusions, little is known about the corresponding early exercise strat-

egy. In recent years, optimal stopping problems under general diffusions have generated 

considerable attention. For the valuation of American options under the CEV model, 

Detemple and Tian (2002) derive a recursive integral equation for the exercise boundary. 

Wong and Zhao (2008) generalize the artificial boundary finite difference method to the 

CEV model. Nunes (2009) proposes an alternative characterization of the early exercise 

premium that is valid for the CEV model. 

However, the analytical valuation of American options under the CEV model is yet to 

solve. In Chapter 2, we show that by the Laplace-Carson transform (LCT) the determi-

nation of the optimal early exercise boundary can be separated from the American option 

valuation procedure, enabling the option holders to know the early exercise strategy in 

advance. The LCTs of the Greeks are derived in explicit forms. This may help managing 

market risks through hedging. The application of the LCT, however, relies heavily on 

the specific parametric form of the volatility function. When the local volatility function 

is time-dependent such as the hyperbolic sine model in Table 1.1, Laplace-Carson trans-

forms do not work in valuing American options. The analytical valuation of American 

options under a wide class of general diffusion processes calls for techniques with more 

degree of flexibility. 



In mathematical physics, Liao (1997) has introduced the homotopy analysis method 

from topology (Patty, 1993, Chapters 8-9) to solve nonlinear problems. Zhu (2006) 

has applied this approach to derive a closed-form solution to American put options on 

a non-dividend paying stock using the Black-Scholes model. Although his solution is 

expressed in Taylor's expansion, it is exact and explicit. The closed-form solution is 

useful not only in determining option values quantitatively, but also in understanding 

American option properties qualitatively. Chapter 3 investigates the analytic valuation 

of American options under general diffusion processes using homotopy analysis. Although 

it focuses on vanilla options, the method is generally applicable to any exotic derivatives 

with continuous earlier exercise rights. 

Chapter 3 may contribute to the literature in the following ways. 

1. The homotopy analysis method in American option pricing is generalized by intro-

ducing a shape parameter and kernel function, which could be used to reduce the 

error for a given order of approximation. This generalization originates from Liao 

(2004) in the area of heat transfer and fluid mechanics. 

2. The determination of the optimal early exercise boundary is separated from the 

American option valuation procedure for general diffusion processes of a dividend 

paying stock. To our knowledge, similar separation is only obtained under the 

Black-Scholes model with zero dividend in the literature.^ 

3. Exact and explicit solutions for American options and the early exercise boundary 

are obtained in Maclaurin series under general diffusion processes. 

4. As the option price and exercise policy are expressed as infinite series, sequence 

transformations are proposed to speed up the convergence. Specifically, the Pade 

technique is employed to improve the accuracy and efficiency. 

iCarr (1998) is the first one using Laplace transform to separate the optimal early exercise boundary 
from the valuation procedure of American put on a non-dividend paying stock. In the context of 
homotopy analysis method, Zhu (2006) successfully does the separation for the American put options 
on a non-dividend paying stock. 



5. A hybrid numerical scheme of homotopy analysis and finite difference method is 

proposed to the American option pricing under general diffusions. This proposed 

scheme is unconditionally stable and efficient given that the infinite homotopic 

series converges. 

Therefore, a unified framework for American option pricing under general diffusion 

processes is established in Chapter 3. Numerical examples using the CEV model and 

the hyperbolic sine model show the validity, effectiveness, and flexibility of the proposed 

homotopy analysis approach. 

1.2 Application in Optimal Dividend Policies 

The financial applications of general diffusion processes are not restricted to option pric-

ing. In the asset price dynamics (1.4)，the dividend yield D(St,f) is assumed to be 

a deterministic function of time and the underlying asset price for the convenience of 

derivative pricing. In order to investigate the optimal dividend payment strategies, the 

firm-surplus approach is employed in Chapter 4. In particular, the optimal dividend 

policy aims at maximizing the expectation of the discounted total dividends until a firm 

becomes bankruptcy in the physical measure. Thus, the dividend policy should strike 

the balance between bankruptcy risk and the dividends received by shareholders. 

Gerber and Shiu (2003, 2004) propose a dividend barrier strategy on the surplus, 

which is assumed to follow a Brownian motion, and give a comprehensive history of 

this topic. Their approach has been extended in various ways recently. For instance, 

Gerber and Shiu (2006) study the generalized barrier strategy with a refraction boundary, 

above which the dividends are paid at a constant dividend rate. Leung et al. (2008) 

consider a finite time dividend-ruin model in which the firm value, instead of the surplus, 

follows a geometric Brownian motion (GBM). The dividend barrier is an upside reflecting 

boundary on the firm value. Bankruptcy occurs when the firm value hits a downside 

barrier. Cai et al. (2006) show how the expectation of discounted dividends and the 

optimal dividend barrier can be calculated when the surplus earns investment income at 
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a constant force, which essentially leads to an Ornstein-Uhlenbeck (OU) process with a 

negative mean-reverting rate. In Chapter 4, we further assume that the firm pays a debit 

interest rate depending on the deficit level when it is in financial distress. The proposed 

model is a special case of general diffusion processes (1.1) with drift = /i + p{x)x 

and diffusion coefficient a(a;, t) 二 cr, where p{x) is the surplus-dependent credit/debit 

interest rate. 

However, there is still a gap between the theoretical results and reality, as the impact 

of bankruptcy procedures on optimal dividend strategy remains unclear. Chapter 4 is 

devoted to filling that gap. In Chapter 11 of the US Bankruptcy Code, default and 

liquidation are two distinguishable events. A defaulted firm is allowed to continue its 

business for a "grace" period of time, during which a renegotiation process can take place 

between shareholders and debt holders and the firm is given the chance to reorganize. If 

the firm is unable to recover during this period, then shareholders are forced to declare 

bankruptcy. 

This bankruptcy procedure could be integrated into our model setting by using so-

called excursion time or occupation time framework, which have appealing interpretation 

in a corporate bankruptcy scheme. Suppose that a regulatory authority takes its bank-

ruptcy filing actions according to a hypothetical default clock, in the case of excursion 

time framework, an excursion time is counted by this default clock, which starts ticking 

when the surplus process breaches the default threshold and is reset to zero if the firm 

recovers from the default. Thus, successive defaults are possible until the underlying 

surplus stays consecutively below the default threshold longer than some predetermined 

time. In the case of occupation time framework, the default clock, corresponding to an 

occupation time, is not reset to zero when a firm emerges from default, but it is only 

halted and restarted when the surplus process goes below the default threshold again. 

As a result, the past defaults are never forgiven. Specifically, our model is based on the 

surplus of a firm. When the firm is in a creditworthy condition, the surplus generates an 

investment income at a constant rate of interest. Default occurs when the surplus hits a 



default threshold, but the firm is allowed to continue its business for a period. Once the 

surplus is negative, a debit interest is charged at a rate related to the deficit level of the 

firm. Liquidation is triggered by an excursion time or an occupation time. 

The impact of bankruptcy mechanisms has recently attracted a great deal of attention. 

Chen and Suchaneki (2007) show how the mentioned bankruptcy procedure affects the 

market value of life insurance liabilities. They also provide examples from different 

countries in which defaulted firms were allowed to continue operations for a period. For 

instance, the grace period lasts from 119 days up to 1669 days for defaulted companies 

in United States. In France, a legal three-month observation period before a possible 

liquidation is systematically granted by the courts to firms in financial distress. Similar 

bankruptcy mechanisms are also considered by Francois and Morellec (2004), Cetin et 

al. (2004), Yildirim (2006) and Broadie et al. (2007). These studies concentrate on the 

optimal capital structure rather than the dividend policy and are specific to Brownian 

motion or GBM. In Chapter 4, we consider a more general situation, in which the surplus 

follows an OU process. Moreover, our results are applicable to any values of mean-

reverting rate. Cadenillas et al. (2007) also study optimal dividend policy with a mean-

reverting cash reservoir. However, they do not consider bankruptcy procedures. 

When the underlying stochastic variable follows Brownian motion or GBM, the dis-

tribution of the excursion time and occupation time has been studied thoroughly and 

applied to different aspects. Lau and Kwok (2004) construct valuation algorithms that 

price risky convertible bonds with embedded option features and explored the impact 

of the excursion time requirement in the soft call constraint on optimal issuer's calling 

policy. Galai et al. (2007) consider the liquidation is triggered when the total time that 

the firm's asset value spends under the distress threshold exceeds a predetermined grace 

period and the corresponding valuation of equity and debt. Bernard and Chen (2009) 

model the realistic bankruptcy procedure by an excursion time and an occupation time, 

respectively and investigate how the regulator can establish regulatory rules to meet 

some regulatory objectives. Linetsky (1999) derives the pricing formulas of step options 



using the distribution of the occupation time variable under GBM. Hugonnier (1999) 

presents the Feynman-Kac framework to study occupation times under Brownian mo-

tion and GBM, and links up occupation time derivatives with a-quantile options. Wong 

and Kwok (2003) extend the aforementioned approaches to options on multiple assets 

with an occupation time. Beyond Brownian motion, Leung and Kwok (2007) derive 

the distribution of occupation time under the CEV model. To the best of our knowl-

edge, excursion times or occupation times of (restricted) OU processes have not yet been 

considered in the literature. Chapter 4 thus provides a unified framework to study the 

related problems. For instance, our result can be applied to the valuation of Parisian 

options under mean reversion. 

1.3 Multi-Dimensional GDP: Application in Currency 
Option Pricing 

The OU process observed in optimal dividend problem motivates us to consider its use in 

option pricing. OU processes are usually linked to mean-reversion in finance. Evidence of 

mean reversion in financial assets is abundant. In particular, there is strong evidence of 

mean reversion for currencies, such as that presented by Bessembinder et al. (1995). Jo-

rion and Sweeney (1996) show that the real exchange rates revert to their mean levels and 

Sweeny (2006) provides empirical evidence of mean reversion in G-10 nominal exchange 

rates. Theoretical results have also been presented on mean-reverting currency process. 

Sorensen (1997) suggests that mean reversion takes place through the dynamics of the 

domestic and foreign term structures of interest rates, whereas Ekvall et al. (1997) pro-

vide several explanations for mean-reverting exchange rates using an equilibrium model. 

One possible reason for the mean reversion witnessed in the foreign-exchange market is 

the intervention of central banks, which keeps the exchange rates close to desired target 

values. Thus, mean-reversion speed can be regarded as a measure for the magnitude of 

central bank intervention. 

One-factor general diffusion processes are however insufficient to capture market phe-

10 



nomena for currencies since stochastic volatility is inevitable for currency option pricing. 

Ekvall et al. (1997) are among the pioneers who proposed that the logarithmic currency 

value follows an Ornstein-Uhlenbeck process under the risk-neutral measure and who 

derived the closed-form solution to European options. Although their approach has been 

extensively applied to path-dependent currency options, such as in the studies by Hui and 

Lo (2006) and Wong and Lau (2008), the constant volatility assumption of their model 

is generally regarded as inappropriate. Not only does the implied volatility smile of the 

currency option market call for stochastic volatility, but there is a theoretical inconsis-

tency in their model. As Duan and Pliska (2003)2 point out, even though the currency 

exhibits mean reversion under the physical probability measure, the risk-neutral process 

has no mean reversion effect in a continuous-time economy if the volatility and interest 

rates (both domestic and foreign) are constant values. This is because the Black-Scholes 

(BS) delta-hedging argument sends the risk-neutral drift to a constant. A risk-neutral 

mean reversion process can occur only in an incomplete market in which the number of 

stochastic variables is larger than the number of underlying assets of the option. 

A possible source of incompleteness in a financial market is stochastic volatility (SV). 

Wong and Lo (2009) recently incorporated the Heston (1993) SV model into a mean 

reversion asset price process. They then obtained a closed-form European option pricing 

formula and devised a numerical approach for path-dependent options. Although the 

Wong and Lo model may be useful for assets with mean reversion and SV, it is inadequate 

for the currency option market. The empirical results of Fiorentini et al. (2002) indicate 

that the Heston model has a tendency to overprice out-of-the money (underprice in-

the-money) calls for daily data. Andersen and Bollerslev (1997) examined the intraday 

periodicity and the volatility in foreign exchange and equity markets, and found that 

several distinct component processes affected the volatility dynamics. In other words, 

there should be more than one factor in the SV process. The empirical study of Alizadeh 

2 Although the argument of Duan and Pliska (2004) is based on option pricing on co-integrated assets, 
it also holds true for mean reversion because a mean-reverting asset is co-integrated with itself. 
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et al. (2002) further documented that there were two dominated stochastic factors that 

governed the evolution, of currency volatility, with one highly persistent factor and one 

quickly mean-reverting factor. Chernov et al. (2003) also found evidence in favor of 

a second volatility factor. In fact, LeBaron (2001) has documented that two-factor SV 

models can produce the kurtosis, fat-tailed return distribution and long memory effect 

that is observable in many financial times series. 

Chapter 5 aims to extend one-factor general diffusion processes to multi-factor mod-

els for currency option pricing incorporating mean reversion and multi-scale stochastic 

volatility. In particular, multi-dimensional general diffusion process (GDP) is defined by 

the system of stochastic differential equations (SDEs) 

n 

dXj = a"(Xut)(it 十 E6�.(Xf，《)dWf，^^ for i = 1, , m ， (1.9) 
j=i 

where = l , . , . ,m) and b气i 二 1, ...,m;j = 1, ...n) are measurable functions from 

R " ^ X [0，oo) i n t o M . T h e p r o c e s s W ^ = …，^^斤，")丁，with ^ d e n o t i n g t r a n s p o s i t i o n , 

is an n-dimensional Brownian motion on a probability space ( Q , ^ , P) , and F = {J^t)t>o 

is the P-augment at ion of the filtration generated by W ^ . Like in the case of one-factor 

model, we assume that the coefficients â  and W satisfy appropriate growth and Lipschitz 

conditions. For the mean reversion and multi-scale stochastic volatility model considered 

in Chapter 5, the component X^ describes the log-currency- value process and is denoted 

by Xt = log{St). The other components of X can then be used to model the structure of 

the market in which St is embedded. In our case, they include a specification of stochastic 

volatility. 

Multi-scale SV (MSV) models have gained attention in the option pricing literature. 

Fouque et al. (2003) proposed a two-scale SV model that was based on the suggestion of 

Alizadeh et al. (2002) and others, and managed to calibrate all effective parameters from 

volatility skews of equity options. They also obtained an asymptotic approximation of a 

European call option as the sum of the BS formula and the Greek correction term. The 

Greek correction term is a combination of the gamma, delta-gamma, vega, and delta-
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vega of the option. The model developed by Fouque et al. (2003) has been applied to 

defaultable bonds (Fouque et al. 2006), lookback options (Wong and Chan, 2007), default 

correlation (Fouque et al., 2008) and turbo warrants (Wong and Chan, 2008). Despite 

the fact that the model of Fouque et al. (2003) does not take into account the mean 

reversion on the asset value process, it relies heavily on the assumption that the mean 

reversion rates of the two SV driving factors are close to zero and infinity, respectively, 

in order to derive asymptotic solutions. 

Fat one et al. (2009) considered a simple MSV model that is a special case of Fouque 

et al. (2003), but parsimonious and analytically tractable. They have demonstrated its 

calibration to the implied volatilities and obtained a corresponding explicit solution for 

European options. Chapter 5 combines the works of Wong and Lo (2009) and Fat one et 

al. (2009) and extends them to currency option pricing with mean reversion and MSV. 

An advantage of the proposed model is that it can simultaneously fit the term structure 

of currency futures and the implied volatility surface of currency options. It is in fact a 

super-calibration to currency futures in the sense that the resulting characteristic function 

of the log-currency-value is expressed directly in terms of the observed term structure of 

the futures contracts of the underlying currency. 

The proposed model in Chapter 5 is flexible enough for a financial analyst to perform 

scenario analysis with it. For instance, a currency option trader who is concerned about 

the impact of central bank intervention on option prices can examine the sensitivity of the 

option price to the change in mean-reversion speed. To allow seasonal volatility within 

derivative pricing, the mean levels of the volatility driving processes can be postulated 

to be a time-dependent periodic function. In such a situation, the closed-form solutions 

for vanilla call and put options remain available. 

Once the characteristic function is derived, the fast Fourier transform (FFT) option 

pricing approach of Carr and Madan (1999) can be effectively carried out to value the 

vanilla call and put options. However, we further improve the computational efficiency by 

relaxing the grid size constraint within the FFT by employing the fractional FFT (FRFT) 
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of Bailey and Swarztrauber (1991) and Chourdakis (2004). The FRFT is extremely 

useful when a large number of evaluations on characteristic function are needed in case 

of calibration to European option prices. Using Monte Carlo simulation as a benchmark, 

our numerical examples show that the derived option pricing formula is accurate and 

efficient for practical use. 

1.4 Outline of the Thesis 

The remainder of the thesis is organized as follows. Chapter 2 investigates American 

option pricing under the CEV model by using the Laplace-Carson transform. Chapter 3 

provides closed-form solutions in the sense of homotopy expansion for American options 

under general diffusion processes, which nest the CEV model as special cases. Chapter 

4 examines the impact of bankruptcy procedures on optimal dividend barrier policies 

wherein generalized barrier strategies and finite time dividend-bankruptcy models are 

also considered. Chapter 5 extends one-factor general diffusion processes to multi-factor 

models for currency option pricing incorporating mean reversion and multi-scale stochas-

tic volatility. Chapter 6 concludes the thesis. 
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Chapter 2 

American Options under the CEV 
Model 

In recent years, empirical evidence shows that Black-Scholes model is difficult to reconcile 

with both the assumptions on the process of the underlying asset and the predictions on 

the behavior of option prices. The constant elasticity of variance (CEV) model introduced 

by Cox (1975) is a popular alternative in modelling asset price dynamics in practice. The 

CEV model assumes that the risk-neutral process of the underlying asset price St evolves 

according to the stochastic differential equation: 

dSt = {r- q)Stdt + dW尸， (2.1) 

where r is the risk-free interest rate, q is the dividend yield, and W^ is the Wiener process 

under the risk-neutral measure. It belongs to the class of general diffusion process with 

(j(S, t) = Thus, j3 can be interpreted as the elasticity of the local volatility function 

because = /3, and 6 is the scale parameter fixing the initial instantaneous volatility 

at time t = 0, ao = a (So) = SSQ. 

Closed-form pricing formulas of European call and put options are available for the 

CEV model (see Cox 1975, Emanuel and MacBeth 1982). As stated in Wong and Zhao 

(2008), the CEV model nests several asset price processes as special cases by setting 

different values of (3 and captures the volatility smile in the financial market. 
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2.1 The free-boundary problem 

Let PA(S,T) be the American put option price with strike price K and 5 / ( r ) be the 

corresponding optimal exercise boundary, where T = T — t is the remaining time to 

maturity and T is the calendar time of maturity. The valuation can be formulated as a 

free boundary problem. Specifically, 

dPA{Sf{r),r) 
^ ， 

lim Pa(S,t)^Q. 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

, (2.6) 
5—s-oo 

This PDE is defined on 5 G [5'/(t), cxd) and r G [0, T]. Equation (2.5) is known as 

the high-contact condition for American put options. This condition must hold for all 

continuous asset price processes, including the CEV model (see Carr et al. 1992). In the 

region (5 / ( r ) , oo) x [0,T], Pa{S, r) > max(K — S, 0). The option should be held rather 

than exercised and hence it is called the continuation region. In addition, 5"/(0+) ~ 

min(rK/q, K). 

According to the put-call symmetry of American options (Proposition 6 in Detemple 

2001), the problem of pricing a call option can always be converted into a problem of 

pricing a put option and vice versa under Markovian models. Thus, it suffices to consider 

the valuation of either the American put option or the American call option. This chapter 

considers the put option value. 

2.2 Valuation with Laplace-Carson transforms 

For A > 0, define the Laplace-Carson transform (LCT) of the American put option price 

PAiS,r) as 
fOO 

PA{S,X)= / PA{S,T)\E->^^DT : = (2.7) 

16 



Similarly, we denote the LCTs oi Sf{r) by Sf{X). There is no essential difference between 

the LCT and the Laplace Transform (LT) except that the use of LCT simplifies notation 

in the later analysis of this chapter. Under the Black-Scholes assumption, LCT has been 

adopted by Carr (1998) to value American options and by Kimura (2008) to value finite-

lived Russian options. From equations (2.2)^(2.6), the following proposition is obtained 

to describe the LCT of the optimal exercise boundary. 

Proposit ion 2.2.1. The LCT of the early exercise boundary of the American put option 

under the CEV model satisfies 

+ ^4 
s=sf{x) 

(2.8) 
S=Sf{\) 

where 
XCPX+RIS - K) ^ = / _ X D<L>X+RIS) 

\ A + r A + g y DS 
+ 、 

S=K A + g 

qh{S = K) qAjS = K) TKK{S = K) 
= ^ , = ^ ^ ， A4 = — ， 

A + ^ A + <? A + r 

the explicit forms of A(5), and are given in Appendix A. 

Proof. Taking LCTs on equations (2.2)-(2.6) gives us 

臺 沪 炉 阳 错 + ( r - q ) S ^ - ( A + r)PA + A max(K - 5 , 0 ) = 0, 

pAiSf(X)A)=K-Sf{X), 
dpA 咖 , X ) — 

^ =—丄， 

lim PA{S, A) = 0 . 
S—^oo 

The solution of the governing equation (2.9) is classic: 

p (S A) = / CIICH+r� + when S E {K, oo), 
， 1 �+ C 7 2 2 也 w h e n S E {SF{X), K)., 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

where and 八S) are the fundamental increasing and decreasing solutions with 

the explicit forms given in Appendix A. Moreover, based on the results in Davydov and 

Linetsky (2001), the Wronskian of ijjx+riS) and (l)x+r{S) is defined by 

( 约 ^ ^ ^ - ^ . . r i S ) ^ ^ ^ 二 = A(5), (2.14) 
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where 

柳=exp 
r — q 
52(3 

S 一邓 
2|r-g|r(2m+l) 
Pr7 “ CO 入 = J 押(m-fc+1/2) r-qf^O, 

r 一 gf 二 0， 

(2.15) 

and r(a:) is the Euler Gamma function. 

To match the boundary condition (2.12), we have C12 = 0. It is easy to see that 

A 
5 4-

AK 
A + q A + 

(2.16) 

is a particular solution to the non-homogeneous equation. 

Based on the pathwise continuity of the solution at S = K and the high-contact 

condition specified in (2.11), we obtain 

Ciitt i = C2iai + C22CI2 + bi, 
Ciitts = C2ia3 + C22<M + h, 
C21CI5 + 022^6 二 

(2.17) 

where 

ai=(l)x+r(S = K), a2 = = K) 
dj^X+rjS) 

d"^ S=K (24 = "5 — je 
(A) 

<̂ 6 — H.t? 

S二 K 

S^SfiX) 
63 = - 1 - d〜^g)‘ 

(2.18) 

S=K S=SfiX) 

Thus, Cii，C21 and C22 can be uniquely determined as 

C — 0'5(ci2b2—ct4.bi)-\-aei(i3bi—aib2) . 
11 _ {A2A3—ALA4:)AS 

广 _ 0'6{0'3h-CLlb2) I ^ 
21 _ (a2a3-aict4)a5 as ‘ 

Coo = —2— 
a2a3—aia4 • 

(2.19) 

-"-V. >*v 

Denote aj = (l)x+r{S = Sf{X)), ag = = 5/(A)), and 64 = ux+r(S = Sf(X)) — K + 

5/(A), the value match condition (2.10) corresponds to 

C21CL7 + C220'8 + � = 0 . (2.20) 

According to equations (2.14), we recognize that 

(22(13 - aia4 = -A(K), 
h = -b2 — 1, 

- <35̂ 8 = A(S'/(A)), 
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which yields 

Cu = [(0405 - a3a6)bi + (aiag - (12(15 - A{K))b2 ~ h{K)]/[K(K)a^], 
C21 = [-a^a^W + - A(K))b2 - A( /0 ] / [A( i^as ] , 
C22 = [a^bi - ai&2]/[A(^)]-

(2.21) 

After simplifying (2.20), the functional equation for the LCT of the optimal exercise 

boundary is found 

AiA(Sf{X)) = A2(Px+R{SFW) + ASSFIX) 
d4>x+r{S) 

dS 
-h A, d0A+r � 

(A) 

where 

A,= 
\K \ 

A + r A + g 
K 

Ao^ -
qA(S = K) 

A^ = 

‘ d S 

gA(S = K) 
X-\-q 

+ X 小 八 s = iq 

S=K 

AA = -

A + g ‘ 

rKAjS = K) 
A + r 

• 

Remark 2.2.1. Consider the functional equation (2.8), if we set 

f ( y ) = AA(y) - A2(f>A+r(y} - Asy dS 
- A 

D^X^r(S) 

S=y d5 
(2.22) 

S=y 

It can be verified that there exists a unique root of the equation f{y) = 0 in the interval 

(0, K) for different values of model parameters. For instance, when /? < 0 and r — q > 0, 

we have f{K) > 0，/(O) < 0，and ^ > 0 for i/ G (0, K) based on the properties of 

the confluent hypergeometric functions and Euler Gamma function. After specifying the 

interval of the root, 5/(A) could be found by secant method for different values of A. 

Proposit ion 2.2.2. The LCT of the American put option price under the CEV model 

is given by 

PAiS,X) = 
Cn((>x+r{S), when Se[K,oc), 
C21^X+r{S) + C22^A+r(5) + Ux+r{S), whcil S G (5/(A), K), 

(2.23) 

where Cu , C21, C22, (i)\+r{S),於A+r(幻，and U\^r(S) are defined in Proposition 2.2.1. 

Moreover, Sf{\) < J^ is a unique positive solution of the functional equation (2.8). 

Remark 2.2.2. Proposition 2.2.1 and Proposition 2.2.2 are also useful to perpetual 

American put option and Canadian put option considered by Carr (1998), of which 
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maturity follows an exponential distribution. The perpetual American put and its early 

exercise boundary can be obtained by setting A = 0; whereas, those of Canadian put can 

be obtained by setting A 二 1/T. Mathematically, we have p^erpetuaz(s) = = 0), 

S广—-Sf{\ = 0), pcanadian^g^ T) = 入= 1 / T ) and S?醒—几=Sf{X = 1/T). 

As important as computing the prices of an option is computing the standard hedge 

sensitivities: A, P, and 6 . In financial markets, the aim of a trader is to manage 

the Greeks so that all risks are acceptable. Provided the LCTs of the optimal exercise 

boundary and the American put option price under the CEV model, we can derive the 

LCTs of the Greeks in explicit forms as follows: 

Proposit ion 2.2.3. The LCTs of the Greeks under the CEV model 

A(5, A) = CC 

r{s,x)=^cc 

dPAjS^r] 

ds^ 

(A) = 

(A) = 

dpAjSA) 
^ ^ ^ ’ 

^ ^ ^ 

Q(S,X)=CC 
dPAjS^r] 

dr 
(A) = X[PA(S, A) - m a x ( A ' - S, 0) 

are, respectively, given by 

� 1 1 ~ H Q ~ AOS, A) 二 
X+q 

S E [K, oo), 

。 1 1 ~ ^ ~ 

e(5,A) = XCu4>x+riS) Se iK^oo] 
X(C2i<Px+r{S) + C22^x+riS) + 以;^十”�-K + S) , 5 G (5;(A), K). 

Remark 2.2.3. By recognizing the relationship between LCT and LT, i.e. 

CC[W{T)\ � = � 1 (A), (2.24) 

the optimal exercise boundary, American put option price and Greeks can be expressed 

in terms of Laplace inversion: 

SFIR) ^ C^' 5 ; ( A ) / A 

r(5,A)/A and Q = C 

A = C-

e(5,A)/A' (2.25) 

20 



2.3 Numerical Examples 

This section provides numerical examples to illustrate the American option valuation un-

der the CEV model using the Laplace-Carson transform. In fact, the implementation of 

our solution is straightforward given the analytical solutions. The first step is to numeri-

cally calculate the early exercise boundary. To this end, the secant method (or any other 

root-finding procedure) is applied to determine the unique root of the functional equation 

in Proposition 2.2.1 over the interval (0, K). The Gaussian quadrature scheme is then 

implemented to numerically calculate Laplace inversion for the optimal exercise bound-

ary. The Gaussian quadrature scheme is adopted because Piessens (1971) shows that 

directly implementing Gaussian quadrature scheme to the Bromwich inversion integral 

is very accurate on a fairly wide range of functions. 

Figures 2.1—2.4 plot the early exercise boundaries of American put options under 

the CEV model with specified parameters. Understanding the early exercise strategy 

of American option may be of great independent interest to option investors. In fact, 

investment agents have to provide the expected holding time of an American-style con-

tract. Other things being fixed, Figures 2.1-2.4 show that the early exercise boundary 

of a put option is shifting upward when r increases, q decreases, <7o decreases and/or (3 

increases. These are very natural. When interest rate increases, it is more attractive to 

exercise the option early for cash due to a higher return from interest rate. When the 

underlying asset pays more dividend, the put option holder attends to delay exercising 

the option for receiving dividend from the asset. The continuation value of an Ameri-

can put is higher for a higher volatility because its European counterpart gains values 

from volatility. Thus, the American put is less likely to be exercised early for a highly 

volatile underlying asset. Under the CEV model, the instantaneous volatility function, 

A(S) = = (7Q[S/SQY�is increasing with ctq, but decreasing with (3, due to the fact 

that SQ > <S/(r) for American puts. It explains the shifts for the cases of Figures 2.3-2.4. 
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Time lo maturity (r) Time to maturity (t) 

Figure 2.1： Early exercise boundaries (CEV) Figure 2.2: Early exercise boundaries (CEV) 
(T = 2,g = 0,ao = 0.4, = -1，ii： = 40). (T = 2, r = 0.05, (70 = 0.4, = - 1 , K = 40). 

Time to maturity ( t) Time to maturity (x) 

Figure 2.3： Early exercise boundaries (CEV) Figure 2.4: Early exercise boundaries (CEV) 
(T - 2, r = 0.05, q = 0^j3= -l,K = 40). �T = 2,r 二 0.05, q = 0,(TQ = 0.4, K = 40). 

Despite the early exercise boundary, the Laplace-Carson transform approach also 

renders an efficient computation to the American option price based on the analytical 

solution in Proposition 2.2.2. To fairly compare the accuracy and efficiency of our nu-

merical method, we use the binomial ap- proximation of Nelson and Ramaswamy (1990) 

with a large number of time steps (3000) as the benchmark and contrast our results 

with alternative numerical PDE methods. Specifically, the competitor approaches are 

the traditional Crank-Nicolson (CN) finite difference method (FDM) and the implicit 

FDM with an artificial boundary condition (ABC) proposed by Wong and Zhao (2008). 

It has been shown by Wong and Zhao (2008) that the ABC approach is an uncondi-

tionally stable FDM for CEV option pricing. Table 2.1 summarizes the computational 

results of American puts. The parameter values are Sq = 40，r = 5%, q = Q, and T — 3. 

The relative error (RE) shown in parentheses, which is the absolute difference between 
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the computed numerical values and the binomial approximation divided by the binomial 

approximation, is less than 1% for all cases. The computational time of the binomial ap-

proximation with large time steps (3000) is about 1035 seconds for each output, whereas 

the Laplace-Carson transform approach takes less than 1 seconds. Compared with FDM 

and ABC with 1024 x 1024 grids, the proposed method is more than 10 times faster. 

It is worth mentioning that the binomial approximation can be regarded as an explicit 

FDM so that its converging property is similar to those of the CN-FDM and ABC. Thus, 

the relative error is only used to show the computational time for an accurate enough 

numerical value. 

The corresponding early exercise boundary offers an alternative approach to exam-

ining the computational performance. Figure 2.5 plots the early exercise boundaries 

obtained from different numerical schemes for the case of ctq = 0.3. It can be seen 

that the early exercise boundaries produced by the traditional CN scheme and the ABC 

method are smoother with larger number of grid points and converge to the one obtained 

from the Laplace-Carson transform approach. In other words, the Laplace-Carson trans-

form is more efficient in producing a smooth early exercise boundary which, in turn, 

facilitates the computation of hedging parameters based on Proposition 2.2.3. It is an 

indirect evidence that the option value produced by the Laplace-Carson transform may 

be even more accurate than the binomial approximation or other alternative competitor 

approaches. 

2.4 Conclusion and Discussion 

We study the valuation of American options under the CEV model by taking Laplace-

Carson transforms in this chapter. The determination of the optimal early exercise 

boundary is separated from the valuation procedure. The LCTs of the optimal early 

exercise boundary, the American option price, and the Greeks are also obtained. Al-

though it focuses on vanilla options, the method is generally applicable to many exotic 

derivatives with continuous earlier exercise rights. 
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Table 2.1: American put option prices under the CEV model 
ABC: 256 X 256 ABC: 512 X 512 ABC: 1024 X 1024 

0.2 0.3 .2 0.3 0.2 

K = 3 5 
(RE) 

1.8588 4.04 6.4009 
(0.09%) (0.00%) (0.04%) 

1.8592 4.04 6.3968 
(0.06%) (0.00%) (0.03%) 

1.8595 4.0404 6.3972 
(0.05%) (0.01%) (0.02%) 

K = 4 0 
(RE) 

3.395 5.7911 8.2628 
(0.03%) (0.01%) (0.08%) 

3.396 
(0.00%) 

5.7909 
(0.00%) (0.01%) 

3.3965 5.7915 8.2574 
(0.01%) (0.01%) (0.02%) 

K = 4 5 
(RE) 

5.9178 8.1127 10.5246 
(0.06%) (0.00%) (0.06%) 

5.9195 8.1121 10.5159 
(0.03%) (0.01%) (0.02%) 

5.9205 8.1129 10.5167 
(0.02%) (0.00%) (0.02%) 

CPU(s) : 0.0698 CPU(s)： 0.9225 CPU(s) : 

FDM: 256 X 256 FDM: 1024 X 1024 Laplace-Carson t ransform 
.2 0.3 0.4 .2 .3 0.4 0.2 .3 0.4 

K = 3 5 
(RE) 

1.8585 4.0394 6.3961 
(0.10%) (0.01%) (0.04%) 

1.8595 4.0404 6.3973 
(0.05%) (0.01%) (0.02%) (0.22%) (0.03%) 

6.391 
(0.12%) 

K - 4 0 
(RE) 

3.3948 5.7899 8.2558 
(0.04%) (0.01%) (0.00%) 

3.3965 5.7915 8.2574 
(0.01%) (0.01%) (0.02%) 

3.378 

(0.56%) 

5.7536 
(0.64%) 

8.211 

(0.55%) 
K = 4 5 
(RE) 

5.9178 8.1127 10.5246 
(0.06%) (0.00%) (0.06%) 

5.9204 8.1129 10.5167 
(0.02%) (0.00%) (0.02%) 

5.8952 8.1163 10.5111 
(0.44%) (0.05%) (0.07%) 

CPU(s) : 0.0622 CPU(s) : CPU(s 

1.5 2 
Time to maturity (T) 

1.5 2 
Time to maturity (T) 

Figure 2.5: Early exercise boundaries based on different numerical schemes. 
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Chapter 3 

American Options under General 
Diffusion Processes 

This chapter considers a one-factor general diffusion process for the underlying asset price 

under a risk-neutral measure. Specifically, the underlying asset price is assumed to follow 

the diffusion process 

dS, 二（r 一 D(St,t))Stdt + a{Sut)StdW,^, (3.1) 

where r is the constant interest rate, W^ is the Wiener process, the deterministic function 

D(Stj t) is the dividend yield, and the deterministic function a (St, t) represents the local 

volatility. It is assumed that D{St-, t) and cr{St, t) are continuously differentiable with 

bounded derivatives and positive almost everywhere. 

This general diffusion model nests several asset price processes as special cases. For 

instance, it incorporates the CEV model if the volatility function cr(5i,t) = (5Sf. The 

hyperbolic sine model (Bibby and Sorensen 1996, Carr et al. 1999) is also a particular 

case of (3.1), in which the volatility function takes the form 

(3.2) 

where (3 is given in (3 = 5oe'^^csch(—aL). The volatility smile implied by this model 

is approximately hyperbolic in S (normal volatility) for S near zero and asymptotically 

approaches a constant a (lognormal volatility) for a high value of S. As S increases from 

0 to oo，the volatility smile slopes downward in a convex fashion. 
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Therefore, the proposed general diffusion process incorporates an interesting and the 

most general one-factor model in the financial markets. In addition, our consideration 

allows the dividend yield to be a function of time and the underlying asset price. The 

main virtue of this general model is market completeness so that every derivative contract 

can be replicated by a dynamic trading strategy. 

3.1 The Valuation of American Options 

Similar to (2.2)—(2.6)，the valuation of American put option can be formulated as a free 

boundary problem defined on 5 G [5/(r) , oo) and r G [0，T]. Specifically, 

瓷 二 * 作 T - 袋 + (r — D、S, T — • 眷 - r P A , 

PA(S,0) = m a x ( K - S,0}, 

PA(Sf(T),T) = K - S f ( T ) , 

dPA(Sf(T),T) 

l i m PA(S,T) = 0. 
S—OO 

(3.3) 

(3.4) 

(3-5) 

( 3 . 6 ) 

(3.7) 

Since PA(S, T + AT) > PA{S, r) for any positive A r in the continuation region, it is 

easily seen that the following inequality holds: 5/(T) > ；S/(r + AT), implying that 5 / ( r ) 

is decreasing function of r. It is known that 5/(oo) < 5/(T) < Appendix B 

shows that 5/(0+) can be obtained by solving the following equation: 

綱 = m i n ( 華 V , ， 4 _ 

In addition, the Markov property of the generalized diffusion model enables us to consider 

the put option value alone because of the put-call symmetry of American options. 

Remark 3.1.1. When the v o l a t i l i t y is a function of time and asset price, Laplace-Carson 

transforms do not work any more in valuing American options. In addition, Dupire 

(1994) has shown that, if no-arbitrage market prices for European vanilla options are 

available for all strikes K and maturities T, a{St,t) can be extracted analytically from 
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market prices. Dupire's equation is a general non-parametric approach, which motivates 

us to establish a unified framework for American option pricing under general diffusion 

processes. 

3.1.1 The Front-fixing Transformation 

The major difficulty of accurately computing American options lies in the unknown free 

boundaries associated with the early exercise feature. Wu and Kwok (1997) suggest that 

this difficulty can be resolved by the front-fixing transformation proposed by Landau 

(1950). After rescaling the variables 

S = KS, PA(S, T) = KPA(S, T), a n d & ( r ) = KSFIR), 

the following transformation of the state variable is applied for equations (3.3)-(3.7): 

a: = ln(S/Sf(T)) or S = 

Define PA{S, T) = V{x, r). The valuation problem can then be expressed as 

(3.9) 

a y d 5 ; ( r ) a y ^ 
dr Sfir) dr dx 2 

d^V dV 
dx^ dx 

dv 

l im V(X,T)=0, 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

where a^(^) = a^(K§f(T)e ' ' ,T - r ) , = D{KSf{r)e ' ' ,T - r ) , and a; e [0,oo). Com-

bining equations (3.12) and (3.13) yields 

1 + 抓 工 力 = V ( 0 , r ) and = 1 - y(0 , r ) . (3.15) 

Consequently, the front-fixing transformation converts the linear partial differential 

equation (PDE) with a free boundary into a nonlinear PDE defined on a fixed domain. 
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The nonlinear operator is given by 

… ， 、 ？ ？ / ^y 1 d 5 / ( r ) dV 1 2 
I
 

z
 

2
 

2
二
 

dV 

(3.16) 

To simplify matters, the governing equation is written as 

J\f[V{x,T),Sf{T)] = 0 . (3.17) 

3.2 A Generalized Homotopy Analysis Method 

The front-fixing transformation makes the American option pricing problem become a 

nonlinear PDE problem defined on a fixed domain. This section generalizes the homotopy 

analysis method by introducing a shape parameter and kernel function, and then solves 

the nonlinear problem. 

A homotopy between two continuous functions f and g from a topological space 

X to a topological space y is a continuous mapping : X x [0,1] —> F such that 

H{x, 0) = f{x) and H{x, 1) = g{x) for all x e X. The notion of homotopy is a very 

useful tool in topology. Applications of homotopy can be found in Patty (1993) and Liao 

(1997, 2004). The essence of the homotopy analysis method is that the solution of a 

nonlinear PDE problem can be transformed into an infinite sum of solutions of many 

linear subproblems. Each subproblem is associated with a deformation equation. The 

solution of the original problem can then be approximated by truncating the series into 

a partial sum, provided that the infinite sum is convergent. 

3.2.1 Deformation 

The homotopy analysis method is based on a continuous variation from an initial trial 

to the exact solution. We construct the homotopic mapping r)——^ $(a:，T;p)， 

5/(r)——> 77(7•； p) such that as the embedding parameter p increases from 0 to 1, r ; p) 

and T]{T\P) vary continuously from the initial guesses to their exact solutions, R) and 

5 / ( r ) , respectively. Let VQ{X,T) denote an initial guess of the exact solution r) and 
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(a) e(p) = p and Different h 

h=0.2 
h=0.4 
h=0.6 

(b) h=1 and Different e(p) 

P p2 

Figure 3.1: Path functions with different shape parameters and kernel functions. 

C be an auxiliary linear operator with the property 

T)] = 0 when f{x, r) = 0. (3.18) 

Using the embedding parameter p G [0,1], a generalized homotopy is constructed with a 

path function A(p): 

where 

A ( 和 " A _ = 0 ， _ = 1， (3.19) 

h is the shape parameter of the generalized homotopy, and 0{p) is the continuous kernel 

function. Thus, we have A(0) = 0 and A(l) = 1. 

Figure 3.1(a) shows the path functions associated with different values of the shape 

parameter h and the identity kernel function. The kernel function has a substantial 

influence on the shape of the deformation. For example, Figure 3.1(b) presents the path 

functions in which different power functions are chosen as the kernel function. When 

h = 1 and 6{p) = p, the generalized homotopy is reduced to the traditional homotopy 
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in which the path function is a straight line. This traditional homotopy is used by Zhu 

(2006). . 

Being homotopic is an equivalence relation on the set of all continuous functions from 

one topological space, X, to another one, Y. The paths in Figure 3.1 are homotopic 

relative to their endpoints and form isocontours of possible homotopies. 

3.2.2 Zero-order Deformation Equation 

The homotopy analysis method of Liao (2004) is a general approach for solving nonlinear 

differential equations. There is a great degree of freedom to choose the initial guess, 

the auxiliary linear operator, the shape parameter and the kernel function, but different 

choices result in different computational efficiency. However, there are no rigorous the-

oretical results on the optimal choice. Thus, the application of the homotopy analysis 

method usually relies on prior knowledge of a specific application, which is option pricing 

theory in our case, for a good balance between analytical tractability and practical usage. 

Under the Black-Scholes model, the nonlinearity of the PDE solely comes from the 

unknown early-exercise boundary. Therefore, it is very natural for Zhu (2006) to consider 

the Black-Scholes formula for European option as the initial guess and the Black-Scholes 

linear operator within traditional homotopy analysis. Under general diffusion processes 

and generalized homotopy analysis, the situation is rather different and we have to con-

sider an appropriate choice of the ingredients for the homotopic formulation. In practice, 

option investors always use the at-the-money (ATM) Black-Scholes implied volatility as 

the benchmark. This motivates us to use the Black-Scholes operator with a constant 

ATM implied volatility as the auxiliary linear operator to solve the American option 

pricing problem under general diffusion processes. The following gives the detail of our 

approach. 

Enforcing the homotopy (3.19) to be zero, i.e. 

nmx, T-p), ry(r;p); r ) , = 0, (3.20) 
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the zero-order deformation equation is obtained as 

(1 - e{p)){C[^{x,T-p) - = (3.21) 

where 7]〔丁； p) is a solution that depends upon not only the initial guess VQ{X, T) 

and the auxiliary linear operator £ but also the embedding parameter p G [0，1], the shape 

parameter h, and the kernel function 9{p). When p = 0，the zero-order deformation 

equation (3.21) becomes 

cmx, T； 0) - Vo{x, r)] = 0. (3.22) 

According to the property of the auxiliary linear operator (3.18), 

二 M)(a;，T) (3.23) 

satisfies the zero-order deformation equation (3.22). 

To make a reasonable initial guess, T;P) and R}{T;P) are enforced to satisfy the 

following initial and boundary conditions corresponding to (3.11), (3.15), (3.14), and 

(3.12)： 

<I>Or’ 0;p) 二（1 - p)Vo(x, 0) + p m a x ( l - §/(0)e工,0), 

- + 1 = ( 1 1 ) - 聰 T ) + 

lim T;P) = 0, 

(3.24) 

(3.25) 

(3.26) 

(3.27) •； p) = 1 

When p = Vo{x, r) satisfies the initial and boundary conditions (3.24)-(3.25) auto-

matically.^ 

The choice of the auxiliary linear operator reflects the set of basis functions used to 

span the solution of the nonlinear problem. As a square-integrable real-value function can 

be spanned by any set of basis functions, the choice of C is important for the efficiency 

of approximating a nonlinear problem. In the Black-Scholes model, all coefficients of the 

nonlinear operator are constant values so that it is straightforward to choose its linear part 

^Based on equation (3.23) and the fact that the derivative with respect to x is independent of p. 
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as the auxiliary linear operator. In our case, the coefficients are deterministic functions 

of time and asset value. It is believed that the Black-Scholes dynamics could partially 

explain the evolution of the underlying asset price. Based on the (constant) implied 

volatility of the ATM options observed in the market, we consider the Black-Scholes 

operator with the ATM-volatility on a non-dividend paying stock as the auxiliary linear 

operator. Specifically, 

where ctq is the ATM-volatility. 

When p = 0, the initial guess should respect the Black-Scholes operator (3.28) and 

vanish at infinity as specified in equation (3.26). This enables us to use the closed-form 

solution for European options under the Black-Scholes model. 

Defining = 0) as an initial guess of the optimal early exercise boundary, we 

obtain the relationship between the two initial guesses: Co(t) = 1—Vo(0, r ) corresponding 

to equation (3.27). 

When = 1, the zero-order deformation equation (3.21) reduces to 

Based on the original governing equation (3.17), we have 

T； 1) = V{x, T) and R]{T\ 1) = ^ / ( r : 

(3.29) 

(3.30) 

satisfying equation (3.29). According to equations (3.23) and (3.30), as the embedding 

parameter p increases from 0 to 1, r ;p) and r](T•，p) deform continuously from their 

initial approximations Vo{x, r) and to exact solutions r) and Sf{r) of the 

original problem (3.10)-(3.14). Such a continuous variation is called deformation in 

homotopy and hence equation (3.21) is called the zero-order deformation equation. 

Define the mth-order deformation derivatives as 

dp 
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Consider the Taylor expansions of and with respect to 

+ 00 -rrlm] / 

, ml P 

and 

+00 Am\/ N 

ml 
m = l 

Let 
= and C n � 

m\ m\ 

The power series (3.32) and (3.33) become, respectively, 

(3.32) 

(3.33) 

(3.34) 

(3.35) r; p) = ^ x , r;0) + 5 ] r)p 饥 

m=l 

and 
+00 

Vir;p) = •； 0) + X I Cm⑷广， (3.36) 
m=l 

where Vm{x, r) and《爪(丁) are determined by the high-order deformation equations de-

scribed in the following section. 

3.2.3 High-order Deformation Equations 

Define the vectors 

K = Wa^T)’VS(:^;，T),V2(:r,T)r.，\y:r,T)}, (3.37) 

= �,Ci(t),C2M，…•，Cn(T)}. (3.38) 

From equation (3.34),. the homotopy analysis method enables us to obtain the relation be-

tween T) and by differentiating (3.27) m times with respect to the embedding 

parameter p, dividing it by ml, and setting p = 0. The result is given by 

CM(T) = -Vm(0,T), m > 1. (3.39) 

The governing equation, the initial and boundary conditions of Vm(x,r), and Cm(T) can 

also be derived from the zero-order deformation equation (3.21) and conditions (3.24)-

(3.26). Specifically, the following series of linear subproblems in a general form defined 
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on the semi-infinite domain [0, ool are obtained 

C[Vmi0C,T)] = fm{x,T] 

Vm(x, 0) = 1pm{x), 

dVrniO.r] 
dx 

lim = 0, 

where /饥(:c，t), ipm{x) and are expressed as follows. 

(1) When m = 

i^rnix) = -Vo(x, 0) + max(l - «^/(0)e�。)， 

•r = 聰 T ) -
dx 

(2) When m > 2, 

fm{x,r)= 
kl'^ 

• m ⑷ = 0 , 

(f>m(r) = 0. 

For m > 0, the remainder function Rm is defined as 

^ m, S 爪，工，‘)—爪！ dp' 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

The linear PDE (3.40)-(3.43) can be split into three problems. The first one is a ho-

mogeneous linear PDE with an arbitrary initial condition and a homogeneous boundary 

condition at x = 0 . The second one is a homogeneous linear PDE with a nonhomo-

geneous boundary condition at x = 0 and zero initial condition. The third one is a 

nonhomogeneous linear PDE but both the boundary condition at a: = 0 and the initial 
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condition are homogeneous. All three problems can be solved in explicit forms. The 

closed-form solution of the linear PDE (3.40)-(3.43) is presented as follows. 

(1) When m = 1, 

r [\i{X)G{x,0,t - X)dX 
Jo Jo 

rT POO 
/ / (3.51) 

JO JQ 
+ 

(2) When m > 2, 

Jo Jo 
(3.52) 

where 

exp 
2a V 4a 

J o [ ( 工 - 0 ” S exp _ 4ar _ 

+ exp 
4ar 

s = 1 + 

—2sy/'KaT exp[s(x + $ 十 a<ST)]Erfc 

b 1 . 

X + ^ + 2asT 

\/4ar 

2a 
2
 b

 

丄
-
2
 

-r
 

1

1
 

T
o
 

C = —1 

(3.53) 

(3.54) 

The homotopy analysis method enables us to solve a series of linear partial differential 

equations with constant coefficients instead of handling the nonlinear partial differential 

equation with variable coefficients directly. In essence, our solution takes a similar form 

as that of Zhu (2006) because we both use the Black-Scholes operator as the auxiliary 

linear operator. However, our solution is more general and flexible as it accommodates 

general diffusion processes and generalized homotopy with a shape parameter and kernel 

function. 

The initial guess is defined through the Black-Scholes formula by setting the strike 

price to one. Thus, 

Vo(x, r ) = - eM-di)： (3.55) 

where (/?(*) is the standard normal cumulative distribution function and 

In(e^) + (r + crV2)r 
d,= 

CTY/R 
and d<2 = di — uyfr . 
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Based on the relationship between Vm and《勵 we obtain 

C 善 { l - 卵 - 一 0, (3.56) 
—Vm(0,T) when m > 1. 

k. 

Consequently, an exact and explicit solution for the nonlinear problem (3.10)—(3.14) is 

derived as a Maclaurin series: 

+ 00 +00 
V(x, T) 二 ^(X, T； 1) = ^(X, T;0) + J2 V爪(工,= E T), (3.57) 

m=l m=0 

+ 00 +00 
Sf(T) = T)ir; 1) = v(r; 0) + [ Cm(r) = [ Cm(r). (3.58) 

The corresponding k-th order approximations are given by 

k k 
V{x,t) Sf(T) (3.59) 

The following proposition shows that the series solutions of the option price and early 

exercise boundary are the exact solutions of the original problem once the series expansion 

converges. 

+00 
Proposit ion 3.2.1. If the series Vo{x^ r) + r) is convergent, it must be the 

m=l 
exact solution to the nonlinear problem (3.10)-(3.14). 

+00 
Proof. The convergence of the series Vm(x,T) yields 

m = 0 

lim Vm(3:,T) = 0. (3.60) 
m—>+cx) 

According to equation (3.40), when m > 1, 

m—1 
c Vm{x,T) -Y.T^-^k'^M-kix^r] 

“ /d dpk 
rC— 1 

(3.6 I
 

7
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Thus, we obtain 

n 

E 1 

k\ dpk 

dO 
V2{x.r) - - V , { x , r ] + 

p = C 

T " 、 洲 V f 、 1 狗 1/, 

H h Vn{x,T] 
m 
dp 

Vn-i(x,r)  
d“0 

= V n i x , T ) ^ 1 -
dp. 

Vn-iix.r) + 
de 1 

/ de 1 d'^e 
H h 1-7；———• 

dp 2!办2 J 
Vn-2(x,r] 

dp 2!办2 

As _ = 0 and 9(1) = 1， 

/ de 1 d^e 1 d'e\ 

[n - 1)! dp' 

p^O 

p=( 

lim 
dp 2!办2 i\ dp' J p=0 

d'O 
dp' 

= l - e { l ) = 0. (3.62) 

When n — +oo, combining equations (3.60) and (3.62) yields 

E 
fc=] 

1 dkQ 
k\ dpk 

Vm-k{x,r] = 0 . 

By equation (3.61) and the linear property of £ , we have 

d'^o E 
m = l 

de 

^^^ m_k, C m-k, 2；, T] 
* 」p=0 

D de D 1 3 6 ^ 1 d'^e ^ 1 d^d D 
办丑。+苏丑1 + 面 乘 丑 。 + 炉 + ‘ + 面 • 0 + 

i! dpi p=0 
Ro + y i d'e 

dp' 

As 

E 1 d'O 
i ! ^ =E a dp^ 

+ … = 0 . 

-剛= 6>(1)-刚 

it is given that 

^ RmiVm, C m, X, t ) = 0. 

Based on the definition of Rm in equation (3.50)，we have 

E ml dp爪 
= 0 . 

(3.63) 

(3.64) 

(3.65) 
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Let £(x, T]p) = r;p), r](T;p)] be the residual error of the governing nonlinear 

equation. Clearly, £(x,T;p) = 0 corresponds to the exact solution that satisfies the 

nonlinear operator. 

Therefore, the Maclaurin series of the residual error s(x, T;P) with respect to the 

embedding parameter p is 

m l _ ^ ml dp' m\ dp 
f(t — u ‘ f “ IfO一u 

When p= 1, using equation (3.65), we obtain 

(3.66) 

£ ( a ;，T ; l ) = Y^ 
0 ml djf 

= 0 . (3.67) 

This means (see the definition of that the obtained solution satisfies the non-

linear governing equation when p = I. Based on (3.24)—(3.25), setting 0{p) = p and 

/i = 1, a similar procedure verifies that the initial and boundary conditions are satisfied. 

The boundary condition at infinity (3.14) is also forced to hold by using equation (3.26). 

This completes the proof. • 

Remark 3.2.1. Proposition 3.2.1 ensures that the homotopic series tends to the true 

value once it converges. However, the convergence of the series solution remains open. 

Thus, we follow Zhu (2006) to use numerical experiments to demonstrate the convergence 

of specific problems in the next section. 

As important as computing the prices of an option is computing the standard hedge 

sensitivities: A, F, 0 , and p. In financial markets, the aim of a trader is to manage 

the Greeks so that all risks are acceptable. Provided the resulting series of r) and 

S f i j ) converge uniformly, we can derive the Greeks in explicit forms as follows: 

dPA _ KdV d^V QY 
= 瓦 瓦 ， = 否 " ^ ― 歹 石 ， 

OPa ^dV . OPA ^dV . dV 以 、 

"二 i = 凡 石 ， 二 -K百,and p = K - . (3.68) 

3.2.4 Sequence Transformations: The Pade Technique 

Let PM(S, T) denote the m-th order homotopic approximation of the American put option 

price determined by the m-th order approximations (3.59) of the nonlinear problem 
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(3.10)-(3.14) in the framework of homotopy analysis. Thus, it presents the partial sum 

of the series with the corresponding elements 

Po(S, r) when m = 0, 
Cim{S,T)= (3.69) 

Pm{S, T) - Pm-i{S, T) when M > 1. 

As {PM{S, T) : m = 0,1, 2, • • • } forms a sequence, various acceleration techniques can 

be used to improve the rate of convergence. Sequence transformation is a resummation 

of a series, which is commonly used for series acceleration in conjunction with extrapo-

lation methods. It can be divided into two categories; linear sequence transformations 

and nonlinear sequence transformations. Nonlinear sequence transformations often pro-

vide powerful numerical methods for the summation of asymptotic series that arise, for 

instance, in perturbation theory, and may be regarded as highly effective extrapolation 

methods. 

We advocate a nonlinear sequence transformation to improve homotopic approxi-

mations. For a given order of a partial sum, the Pade technique is the best way to 

approximate the function by a rational function (Sidi 2003). This method often pro-

vides superior approximation to truncating its Taylor series, and may still work when 

the Taylor series diverges. 

To apply the Pade technique to the embedding parameter p, a homotopic power series 

is constructed; 
m 

= (3.70) 
i=0 

where Qm{S, r ; 0) = Po{S, r) and Ctrn{S, r ; 1) = Pm{S, r). Thus, for fixed m, as the em-

bedding parameter p increases from 0 to 1，the mapping (3.70) deforms continuously from 

the zero-order homotopic approximation to the m-th-order homotopic approximation of 

the American put option price. In fact, r ; 1) : m 二 0，1,2,... } is equivalent to 

: m = 0， l ,2,"-}’ 

When the traditional Pade technique is applied to r ;p) : m = 0,1, 2, • • • } 
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with respect to p, the [k, n] Fade approximation gives 

where r ) and r) are functions determined by the elements 

ai{S, r ) , i = 0，1, 2,3，• •. ,k + n. 

See Appendix C for details. 

Setting p = l provides the [k, n] homotopy-Pade approximation 

Pk,n\S,T) 二 仏，„(6,T; 1 ) = 

(3.71) 

(3.72) 

(3.73) 

which accelerates the convergence rate and enlarges the convergence region. Numerical 

examples demonstrate the efficiency of this approximation in the next section. 

3.3 Numerical Examples 

Using the homotopy analysis method, closed-form solutions of the option price and early 

exercise boundary are expressed in infinite series in which each individual term contains 

an integration over an infinite domain. In addition, the recursive computation of t ) 

is necessary at the endpoints of all sub-intervals in the numerical integration. All these 

imply an expensive computational cost if the exact solution is put into practical use. 

What is the use of the homotopic closed-form solutions beyond mathematical sat-

isfaction? The answer is twofold. The first application is to examine some qualitative 

properties of American options. For instance, the convexity of the early exercise bound-

ary of the American put option under general diffusion can be examined by differentiating 

the closed-form solution of the early exercise boundary. For the Black-Scholes model, the 

convexity has been shown by Ekstrom and Johnson (2004) and Chen et. al (2008). This 

application may (or may not) be regarded as not practical enough. The second applica-

tion is to construct a more stable and efficient numerical scheme to compute American 

option prices and their optimal exercise policy under general diffusion processes. 
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Traditional numerical methods, such as the explicit finite difference method and bino-

mial tree, are conditionally stable in computing American options under general diffusion 

processes. The main reason is that the coefficients of the governing PDE are functions 

of S and t instead of constant. Thus, a varying grid or additional treatment is needed 

to guarantee stability and convergence of the numerical scheme. For instance, Wong and 

Zhao (2008) show that an artificial boundary approach is required to secure unconditional 

stability when American option prices under the CEV model are computed using numer-

ical PDE methods. The CEV model is only an example of general diffusion processes. 

In fact, it is the simplest one. The homotopy analysis approach is not restricted to CEV 

but is widely applicable to almost all general diffusion models. 

It is worth recalling that the mth-order deformation satisfies a linear PDE with con-

stant coefficients over a fixed domain (3.40)-(3.43) for all m. Therefore, all of the de-

formations can be easily computed using standard numerical PDE methods, such as the 

finite difference method (FDM) or finite element method. The advantages of homotopy 

analysis are that all the required deformations can be computed from the same grid over 

the same domain and all governing deformation equations share the same linear operator, 

the Black-Scholes operator. Therefore, the discretization requires a negligible additional 

computational burden even though a large number of terms are used in the homotopic 

approximation. For a linear PDE with constant coefficients, the numerical method can 

be easily constructed to be unconditionally stable. The homotopic closed-form solution 

can then be accelerated by sequence transformations. If the order of the homotopic ap-

proximation is fixed in advance, the shape parameter h provides an alternative way to 

reduce the error further. To demonstrate the practical use of the proposed approach, 

this section employs the Crank-Nicolson FDM to solve the mth-order deformation and 

then combines the approaches to produce homotopic approximations. The CEV model 

and the hyperbolic sine model are taken as illustrative examples. 

Example 3.3.1. Consider the pricing of American put options under the CEV model 

with a constant dividend yield q, in which the underlying asset price evolves according 
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‘ Table 3.1: m-th Order homotopic approximations (CEV) 
Order 8th 12th 20th 24th 28th 32th 3 6 t h “ 
K=90 2.3446 1.7877 1.6020 1.5402 1.5010 1.4854 1.4743 1.4647 1.4557 
(RE) (61.59%) (23.73%) (10.88%) (6.60%) (3.89%) (2.81%) (2.04%) (1.38%) (0.75%) 

K=100 6.2243 5.4872 5.2247 5.1197 5.0494 4.9933 4.9400 4.8832 4.8256 

(RE) (29.39%) (14.07%) (8.61%) (6.43%) (4.97%) (3.80%) (2.70%) (1.52%) (0.32%) 
K=-110 12.2618 11.6818 11.4570 11.3480 11.2778 11.2207 11.1682 11.1173 11.1003 

(RE) (10.65%) (5.41%) (3.38%) (2.40%) (1.77%) (1.25%) (0.78%) (0.32%) (0.16%) 

to the stochastic differential equation 

二 (r _ q)Stdt + SS^^^dW,^. (3.74) 

The parameters are: elasticity factor (3 = —0.25，stock price S = 100, risk-free 

interest rate r = 5%, dividend yield q = 1%, at-the-money volatility a = 0.2, and time 

to expiration T = 0.5 year. 

Without loss of generality, we use the identity kernel function and unity shape para-

meter for the constructed homotopy. Numerical experiments show that when m increases, 

the magnitude of T) decreases monotonically and uniformly. Therefore, the con-

vergence condition 

lim 
a—— 

V j m + 1 ] 

< 1， （3.75) 

which is also used by Zhu (2006), is satisfied as evidenced by the numerical result. In 

the following examples, the condition (3.75) is tested for the convergence of the results. 

Based on 50 x 50 grid points, Table 3.1 shows the results of the m-th order homotopic 

approximations {P^^) with different strike prices, i.e., K = 90, K = 100, and K = 110. 

These strike prices correspond to out-of-the-money (OTM), at-the-money (ATM), and 

in-the-money (ITM) options, respectively. We use the binomial approximation {P吴饥、of 

the diffusion process proposed by Nelson and Ramaswamy (1990) with large time steps 

(3000) as the benchmark because the convergence of binomial methods for American 

options are well established by Amin and Khanna (1994), Jiang and Dai (1999) and 

others. The results from binomial method are 1.4462, 4.8103, and 11.0820 for OTM, 

ATM and ITM options, respectively. Thus, the relative error (RE) 

rA _ I pHA _ pBi 
, (3.76) 
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Figure 3.2: RE of m-th-order approximations with different h (CEV). 

decreases as the order of approximation increases. 

To investigate the influence of the shape parameter h on the constructed homotopy, 

the relative error (RE) of the m-th order homotopic approximations with different h are 

shown in Figure 3.2. We can see that for a fixed order, a non-unity shape parameter 

may provide better results than the original Maclaurin series for /i = 1. As the path 

of the constructed homotopy is determined through the shape parameter and kernel 

function, they have substantial impacts on the obtained Maclaurin series. We can obtain 

an approximation of the nonlinear problem with sufficient accuracy by a small number 

of terms if the shape parameter and kernel function are properly chosen. 

Example 3.3.2. We use another example to demonstrate the usage of homotopy analysis 

incorporating the Pade technique as a nonlinear sequence transformation. Under the 

hyperbolic sine model, the local volatility function is defined by 

4 = , (3.77) 

where j3 = S'oe^^csch(—aL). 

The parameters are: L = —4，S — 100, r = 1%, q = 0,a = 0.3，and T = 1. Compared 

with the binomial approximation with large time steps, it can be seen from Table 3.2 

that the relative error decreases as the order of homotopic approximation increases. 
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Order 4th 
K=90 5.0556 
(RE) 

ic一1 nn 
(23.19%) 

Q ncn s 
i v一 lUU 

(RE) (14.14%) 
K=110 14.6286 

(RE) (7.95%) 

Table 3.2: m-th Order homotopic approximations (hyperbolic sine) 
8th 12th 16th 20th 24th 28th Bino30Q0 

5.8319 6.2368 6.4327 6.5158 6.5569 6.5790 6.5822 

(11.40%) (5.25%) (2.27%) (1.01%) (0.38%) (0.05%) 
9.9682 10.3443 10.4988 10.5503 10.5775 10.5865 10.5887 

(5.86%) (2.31%) (0.85%) (0.36%) (0.11%) (0.02%) 
15.4469 15.7431 15.8463 15.8797 15.8905 15.8941 15.8916 

In Table 3.3, the Pade technique is employed to accelerate the rate of convergence 

for h = 1. The [m, m] homotopy-Pade approximation is determined by the first 2m 

terms of the original homotopic approximations. For the different strike prices, all the 

homotopy-Pade approximations outperform their pure homotopy counterparts with a 

negligible additional computational burden. The computational time of the binomial 

approximation with large time steps (3000) is about 1147 seconds for each output. In 

contrast, [4,4] homotopy-Pade approximation takes about seven seconds to obtain a result 

with relative error less than the bid-ask spread. As shown in Figure 3.3，the Pade 

technique effectively accelerates the convergence of the sequence and provides us with an 

efficient way to obtain an accurate result for a small number of terms. 

3.4 Conclusion and Discussion 

In this chapter, closed-form solutions for American options and their early exercise bound-

ary are investigated under general diffusion models. Based on generalized homotopy 

analysis, an exact and explicit solution for American options on dividend-paying stocks 

is derived in Maclaurin series. The corresponding optimal early exercise boundary and 

the Greeks are also obtained. Since the mth-order deformation satisfies a linear PDE 

with constant coefficients over a fixed domain for all m, we directly solve the deforma-

tions by Crank-Nicolson scheme with unconditional stability. The Pade technique, a 

nonlinear sequence transformation, is proposed to accelerate the convergence of the ho-

motopic solution. Numerical examples showed that , for a fixed order of the homotopic 

approximation, an accurate result can be obtained if an appropriate value of the shape 

parameter h is chosen. Future research may consider how h can be chosen so as to reach 
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Table 3.3: [m, m] Homotopy-Pade approximations (hyperbolic sine: 
Pm, K-- K=l\Q CPU(s) 
[1.1] 5.3939 8.5487 13.8814 0.3819 
(RE) (18.05%) (19.25%) (12.65%) 
[2.2] 6.1061 10.0720 15.2328 0.4750 
(RE) (7.23%) (4.87%) (4.15%) 
[3.3] 6.3599 10.8797 15.9687 0.7976 
(RE) (3.37%) (2.74%) (0.48%) 
[4.4] 6.6298 10.6469 15.9259 7.0972 
(RE) (0.72%) (0.54%) (0.20%) 

an optimal homotopic approximation by a small number of terms. 
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14 16 

Figure 3.3: Original homotopic and homotopy-Pade approximations (hyperbolic sine] 
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Chapter 4 

Optimal Dividends with Bankruptcy 
Procedures 

For the convenience of derivative pricing, the dividend yield of the asset price dynamics is 

assumed to be constant in Chapter 2 and is extended to the case of deterministic function 

of time and the underlying asset price in Chapter 3. What is the suitable dividend-value 

function? This question is yet to be addressed. By employing firm-surplus approach, this 

chapter investigates the impact of bankruptcy procedures on optimal dividend barrier 

policies. Specifically, we focus on the Chapter 11 of the US Bankruptcy Code, which 

allows a firm in default to continue its business for a period. The model is based on the 

surplus of a firm that earns investment income at a constant rate of credit interest when 

it is in a creditworthy condition. The firm pays a debit interest rate that depends on 

the deficit level when it is in financial distress. Thus, the surplus follows an Ornstein-

Uhlenbeck (OU) process with a negative surplus-dependent mean-reverting rate, which 

is a special case of general diffusions. 

4.1 The Model 

Let Xt be the surplus of a firm if no dividends are paid. We assume that the surplus earns 

interest at the constant force ckq > 0. When the surplus is negative, a debit interest is 

charged at a rate related to the deficit position of the firm rather than the constant debit 

interest used in Cai et al. (2006). In particular, define a step function p{Xt) ： M ——^ R 

through the following quantities. 
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1. A sequence of interval margins 

{xn < Xn-i < • • • < xi =0} cR,n eN; 

2. A sequence of intervals 

AN ：= {-00,Xn)； AI ：= [Xi+i, Xi) foV i = 1, • - • , Tl - 1； AQ ：= [xi, oo)； 

3. A sequence of constant interest rates 

{an, a^- i ,…，ao} C M satisfying an > i > • • • �a i > a o � 0 . 

When the surplus is negative, i.e. xi = 0, the firm should borrow money to continue its 

operation. A debit interest rate which is greater than that from the normal investment 

income, qq, should be charged to the firm under financial distress. The larger the deficit, 

the higher the debit interest rate the lenders use. 

Given the notation above, we define the surplus-dependent credit/debit interest rate 

p{Xt) as 
n 

p{Xt) = (不)， fo r all Xt e M, (4.1) 
i=0 

where is the indicator function for the event A. In other words, p(Xt) = ai if Xt G Ai 

for i = 1’ 2, • •. , n. 

Using the arguments of Cai et al. (2006), the surplus process follows the stochastic 

differential equation (SDE), 

dXf = (Ai + p{XT)XT)dt + adWf, t > 0, (4.2) 

where W^ is a Wiener process under the physical probability measure, {fi + p{Xt)Xt) is 

the drift, cr̂  is the variance per unit time, and Xt is the current surplus. It is clear that 

(fj, + p{Xt)Xt) and a are Lipschitz-continuous functions. 

In the time interval [t, t + dt), the firm pays a nonnegative amount dDt in dividends 

such that the dividend aggregated up to time t, Dt, is a nondecreasing function of time 

that is adapted to the filtration {JT^}, the smallest filtration satisfying the usual conditions 
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where Tt contains a{Ws : s < t}. Although we assume that p(Xt) > 0, the results below 

can automatically be applied to both the case of p(Xt) < 0，which corresponds to the 

traditional mean-reverting process, and the case of p(Xt) 二 0, the Brownian motion. 

The dividend barrier strategy proposed by Gerber and Shiu (2003, 2004) is as follows. 

If the surplus goes above an upside barrier level b, the overflow will be immediately paid 

to shareholders as dividends so that the surplus is brought back to b. A formal definition 

can be given in terms of the running maximum 

Mt = max Xs- (4.3) 
0<s<t 

Then, the dividends aggregated up to time t is determined by the formula: 

A = M A X ( M T - 5 , 0 ) , (4 .4 ) 

and the modified surplus at time t is Xt ~ Dt-

4.1.1 The Bankruptcy Procedure 

It is often assumed that bankruptcy immediately occurs when the surplus hits a downside 

default barrier. We, however, consider a more realistic situation in which default and 

bankruptcy are two distinguishable events. Suppose that a regulatory authority takes its 

bankruptcy filing actions according to a hypothetical default clock, which can be modeled 

by two kinds of frameworks: excursion time framework and occupation time framework. 

Excursion Time Framework 

In the case of excursion time framework, the hypothetical default clock, counting an 

excursion time, starts ticking when the modified surplus process breaches the default 

threshold L and is reset to zero if the firm recovers from the default. The liquidation of 

the firm is declared at the first time that the modified surplus stays below the default 

threshold longer than a prescribed amount of time in a single excursion. This bankruptcy 

procedure calls for the use of excursion time associated with the default threshold. The 

excursion time I I is simply the period during which the modified surplus remains below 
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the default threshold L in the current excursion. Mathematically, let 

rt ：二 sup{w < t\X^ - D u > L ] (4.5) 

be the last time that the modified surplus was above the default threshold L. Define the 

random quantity, called the excursion time, 

tL(t) •‘= t - if 二 t — sup{u < t\Xu -Du> L}. (4.6) 

As a hypothetical default clock, i i (力）measures the length of time the modified surplus 

has spent below the default threshold L in the current excursion. Note that, tiit) = 0 if 

the modified surplus is above the default threshold. 

The dynamics of 力l � are described by the expression 

d t L ( t ) = 

dt if X t - D t < L, 

-tiit-) if Xt-Dt = L, (4.7) 

0 if X , - Dt > L, 

where tiit—) is the left limit of 力l(亡)-The hypothetical default clock t j^t) is reset to 

zero when the default threshold is reached from below, and does not change when the 

modified surplus is above the default threshold. Denote 

dtL{t) = H i L - [ X t - D t ] ) d t , (4.8) 

we have 

H{x)= 

To illustrate the idea, we assume that L 

to other values of L is trivial. 

With the bankruptcy procedure just 

others), the bankruptcy time becomes 

0 when x < 0, , � 
(4.9) 

1 when X > 0. 

= 0 throughout this chapter but the extension 

mentioned (see Chen and Suchaneki 2007 and 

r : = i n f { t 2 0|t 丄⑴=71}， (4.10) 

where TL can be interpreted as the "grace" period granted to a defaulted firm. 
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Occupation Time Framework 

In the case of occupation time framework, the hypothetical default clock, corresponding 

to an occupation time, is not reset to zero when a firm emerges from default, but it is 

only halted and restarted when the modified surplus goes below the default threshold 

again. As a result, the past defaults are never forgiven and affects further defaults by 

shortening the maximum allowed length of time that the company can spend in default 

without being liquidated. The occupation time ti,{t) is simply the length of period spent 

by the modified surplus below the default threshold L between 0 and t. Mathematically, 

幼）：=/ (4.11) 

which leads to a differential form 

dti = H{L — [XF - Dt\)dt. (4 .12) 

with 
f 

0 when x < 0, 则 = (4.13) 
when X > 0. 

The hypothetical default clock based on occupation time does not reset at the default 

threshold L and the corresponding bankruptcy time becomes: 

f -.= inf{^ > ^\tL{t) = 71}, (4.14) 

4.1.2 Dividend Barrier Strategy 

Although both excursion time framework and occupation time framework are possible 

choices for modeling bankruptcy procedure, we primarily concentrate on the former ap-

proach for a smooth presentation. The latter framework will be established and analyzed 

with a very similar procedure and less details. In the case of excursion time frame-

work, the discounted total dividends with an interest rate of r and bankruptcy procedure 

becomes 

D = / e "MDt. (4.15) 
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One of our objectives is to determine the optimal dividend barrier level b* such that 

the expectation of the discounted total dividends in (4.15) is maximized. When the 

dividend value function is denoted as 

our goal is to determine, 

= arg max ^^(0);6,71). 
6 g ( 0 , C O ) 

In the case of occupation time framework, we also have the associated optimal divi-

dend barrier level b* determined by 

〜 〜 〜 -f予 
b* = arg max V{XojL{0)]b,TL) = arg max E / e ^ ' M A 

be(o，oo) 6e(0,oo) lyo 

4.2 The Dividend Value Function 

To determine the optimal dividend barrier, the derivation can start by obtaining a closed-

form solution for the dividend value function, l̂(O)； ^l)- The optimal dividend 

barrier is thus determined by maximizing the function V{Xq^ 力l(0); B, Tl) with the initial 

surplus Xo = X over all possible values of b. This section is devoted to deriving the 

dividend value function. 

4.2.1 Differential Equations 

With the derivation process in mind, we concentrate on the dividend value function 

ti{0)] 6, Tl) . The following proposition plays a key role in the analysis. 

Proposit ion 4 .2.1. The dividend value function, ^^(0); 6, T^), satisfies the homo-

geneous partial differential equation (PDE): 

for - o o < X <b and 0 <tL < Tl. 
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Proof. This proposition is actually a consequence of the classical Feynman-Kac formula. 

Hugonnier (1999) and Karatzas and Shreve (1991) provide useful comments and a rigor-

ous proof for the case of general diffusion, respectively. For our case, in the infinitesimal 

time interval from 0 to dt, it is required that 

e- ' '^ 'E[V(Xdt, tL(dt) ;b,n)l = = :Ml(0);6，TZJ. (4.17) 

We recognize that 

= (l + rdt)V(x,t^(0);b,n) 

- t U O ) ; b , TL) + RV(A;’ TJM;B, T^DI， 

and the initial dividend DQ = 0 x E ( — 0 0 ， A p p l y i n g Ito's Lemma on V with respect 

to the differential forms of (4.2) and (4.8), we arrive at 

Substituting the above into (4.17) produces the desired PDE (4.16). • 

To obtain a closed-form solution for l̂(O)； h, TL), appropriate boundary condi-

tions for the dividend value function are required. When the default threshold is set at 

zero, i.e. L = 0, three sets of boundary conditions are defined based on the initial values 

of X and 力丄(0)- Figure 4.1 illustrates three possible regions for the surplus. 

1. Region One (Rl): For x G (—oo,0) and ijr(O) G [0,TJ, 

n M z X o ) = 了L;心，⑴=0, 

V(_oML(0);6，7y = 0 , (4.18) 

dx 
= 释 , 0 肌 ) 
— bx 

=0+ 

When the current surplus x falls below the default threshold, the hypothetical 

default clock is switched on for counting the grace period. It is natural to see 
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t l / 

T l 

System Two System Three 

• 
X 

Figure 4.1: Three possible regions for V{x,tL] ^.Tl). 

that the governing equation involves 力i, according to Proposition 4.2.1. Since the 

initial surplus is below the default threshold, the firm may have already filed for 

bankruptcy with some initial timing l̂CO) > 0. By the end of the grace period, 

shareholders should be unable to receive dividends, and hence we have the first 

boundary condition： V(x,TL\h,Ti) = 0. When the surplus tends to negative 

infinity, the probability of reaching the dividend barrier is zero. Thus, we have 

the second boundary condition for x —oo. The continuity of the dividend value 

function across the default threshold yields the last two boundary conditions. 

2. Region Two (R2): For x G (0,6] and = 0, 

n M ; 哪 L=广 1， 

dx 

(4.19) 

c = 0 + 
-9V{x,tLiO);b,TL) 
—— dx 

When the surplus is above the default threshold, the hypothetical default clock is 

reset to zero and does not change. According to Proposition 4.2.1, the governing 

equation is reduced to an ordinary differential equation of x. In this region, it is 

possible for the surplus to hit the upside dividend barrier on which a reflecting 

boundary condition is applied according to Gerber and Shiu (2003，2004). This 

gives the first boundary condition. The remaining boundary conditions account for 
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the continuity of the dividend value function. 

3. Region Three (R3): For x E (&,oo) and = 0, 

V{x, 0;b,TL)=T — b + V(b, 0; b, Tl). (4.20) 

When the initial surplus rises above the dividend barrier, a dividend equivalent 

to a: - 6 is paid to shareholders at once. Thus, the change in the dividend value 

function should be the payment received by the shareholders. 

Remark 4.2.1. In the case of occupation time framework, similar procedures could show 
� � 

that V{x, Tl) also satisfies the homogeneous PDE (4.16) with H{L — x) replaced 

with H[L — x). However, V does not jump at the default threshold L = Q. This means 
〜 〜 

that we need to solve and calculate the values of V for all possible values of 亡l(0) even 

if X is above the default threshold. In Figure 4.1, system two and system three will then 

be defined in the rectangle x e (0,6]，Fl(0) G [0, Tl] and x G (6,+oo)’Fl(0) G [0,7^’ 

respectively. 

In the case of excursion time framework, to separate the influence of the barrier level 

from the dividend value function, we present the solution in R1 and R2 in factorization 

form as follows. 

(Rl): For X e ( -oo ,0 ) and ti^O) G [0,Tl], 

= (4.21) 

(R2): For a: G (0,6] and = 0, 

V ( x A b , T L ) = 鶴 . (4.22) 

Here g(x,tL(0)) and go(x) are independent of the barrier level b. The boundary condition 

8it X = b in (4.19) is satisfied automatically. For a fixed parameter set 0 = {fi; n; ai{i 二 

0, . . . ,n) ; ( j ; r ;6 ;TL} ,如 (0+) and g'o(b) are constant. Based on (4.18) and (4.19), we 

obtain the corresponding system for g(x,ti(0)) in R1 and go(x) in R2, respectively. 
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1. Region One (Rl): For a: G ( - 0 0 , 0 ) and 力 i ( 0 ) G [0,1^], 

‘ 晏 — + + P⑷力尝 + 急 一 r " = 0， 

咖:^丄(0) = 21) = 0’ 

g{-oo,tL{0)) = 0, (4.23) 

dgix,tLm 
dx t;=0-

_ dgojx) 
— dx 

2. Region Two (R2): For a: G {0,b] and ^l(O) = 0, 

(4.24) 
dgojx) 

dx 
=0+ 

_ dg{x,tLm 
— ^ 

4.2.2 Solving the P D E in R1 

To solve the PDE of ^l(O)) in Rl , we reverse the excursion time by setting t)̂  = 

TL — ^2,(0) and substitute it into (4.23) to obtain an initial boundary value problem on 

a fixed domain with a zero initial condition. As R l can be decomposed into subregions 

corresponding to Ai x [0, T^], the notation gi(x^ = g(x, t\) is used to indicate that 

X G A- for all i = n. 

Consider the Laplace transform, 

广00 
么 � = / g 人 工 , : = Cs(gi[x, tl))., 

Jo 
(4.25) 

where s > 0 is the parameter of the Laplace transform. The subsidiary equation for 

(4.23) with zero initial condition is then given by 

1 ^d^Qi � d ^ 
+ (/i + aiX； 

2 dx^ dx TQi = SQi, (4.26) 

and the corresponding boundary conditions are: 

�„(—oo) = 0 ， � 1 ( 0 - ) = 

The solution of (4.26) is classic (Zwillinger 1992): 

" o ( 0 + ) (4.27) 

(4.28) 
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where 

= \Fi ai, -,Zi(x),屯i’r+sO) = iFi 
\ I / 

r + 5 
a,- = —• 2a,- zAx] = -• •(/i + OiiX)'' (4.29) 

Ci,i and Ci,2 are constants with respect to the fixed parameter set O. The function 

iFi{yi,y2, ？/s) is the Kummer confluent hypergeometric function. 

Using an asymptotic property of the confluent hypergeometric function: 

r t e ) 
r O / 2 1 1 ) "1[1 + 0(|如丨—1)]，（况("3)<0) (4.30) 

where r( . ) is the gamma function, the boundary conditions (4.27) are reduced to 
f 

+ dn,2Cn,2 = 0 

+ Ui,2Ci,2 =如(0+) / s , 
(4.31) 

where 

dn’l = ( -1) : 
r 

7
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7
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ui,i = <̂ i，r̂ +s(0—),ui，2 =屯 1，杆 s(O-). (4.32) 

Using the continuity of the functions g(x) and 警 at a: = ：̂么 for i = 2, • • • , n, we obtain 

Ui^iCi^i + Ui,2Ci’2 — di-i^iCi-i^i — = 0 
(4.33) 

where 

抛, 
U, 1 = 

dx 
U, o = 

,r+s 

d*_-i 1 = 
d仏 , r + s 

dx 

dx 
(4.34) 

dx 

Combining (4.31) with (4.33) yields a system of linear equations, 

a c t = ^o(0+)G- (4.35) 

where C = [C„,i,Cn,2, Ĉ n—i’i’ ‘ ‘ • , Ci,i,Ci,2] is a vector of 2n unknowns, Gix2n = 

[Oix2n-i, 1/s] is a vector of 2n given elements, and A is a block tridiagonal matrix with 
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entries Ui，i,uli,di，i and d*-̂ . Classical LU factorization methods, such as the Thomas 

algorithm, can be used to efficiently solve the system of linear equations in (4.35). As A 

is a full-rank square matrix, C ^ can be uniquely determined as 

CT 二 5o(0+)A-^G' (4.36) 

By inverting the Laplace transform, the solution of g{x, in R1 (4.23) takes the 

form, 
n 

9 M ) = (4.37) 

where 

(4.38) 

We then obtain the Neumann boundary condition at a: = 0— and = TL (^^(0) = 0) 

from (4.38): 
dgi 
dx 

=C\ 
X=0-,T=Tl 

5
 

dx 二 "o(0+)7， (4.39) 

where 

c: 抛 1,+sO) 
dx 

r<* — 

1 ~ 

dx 

r* -

Cl’2 _ ^ 

--TL 

(4.40) 
"o(0+) 

The constant 7 can be efficiently evaluated by numerical Laplace inversion with high 

accuracy. 

4.2.3 Solving the ODE in R2 

The differential equation of go(x) in R2 (4.24) is an ordinary differential equation with 

respect to x, the solution of which can be easily obtained as (Zwillinger 1992) 

go{x) = C o , + < ^ 0 , 2 ^ ^ 0 , r - K (4.41) 

where 

$o’r(工）=M lao,-,zo{x) 屯0，rO) = Zo{x)^M f ao + -,】，匆Or) 
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ao = — 
2^0 

zo(x) ^(/i + aox)' (4.42) 

The ratio between Co,i and Co,2 is constant for a given parameter set 0 . Moreover, the 

Dirichlet and Neumann boundary conditions at a: = 0+ can be obtained as follows: 

"O(0+) = C?o,lCo,i + <io’2G)’2, dgo 

where 

do,I = $o，r(0+),G?o，2 = 屯 O，r(0+),Gf5i = 

dx 

抛 f 

=C^O, 1^0,1 + (̂ 0,2̂ 0,2 (4.43) 

dx 
fj* — U/n O — 

dx 
(4.44) 

-ca-

using the pathwise continuity of the solution, i.e. (4.39) and (4.43), we have 

1^0,1 + <̂ 0,2̂ 0,2 =如 (0+)7 = ⑷ ’ + ĉ o,2^0,2)7-

Thus, we can set 

Co,i = dool - 《 2 , CQ，2 = d l . - do，i7. 

(4.45) 

(4.46) 

According to (4.36), (4.43), and (4.46)，Co,i, Co,2, po(0) and C ? are obtained. Moreover, 

by recognizing the denominator of the factorization form (4.21)-(4.22) satisfying 

劇 = C o , 
抛0’ 

dx + C'0,2 
抛0’ 

dx 
(4.47) 

we arrive at the dividend value function b, TL). 

4.2.4 The Solution and Examples 

The solutions for the differential equations in three regions are summarized in the fol-

lowing proposition. 

Proposit ion 4.2.2. In the case of excursion time framework, under the dividend barrier 

strategy, the dividend value function satisfies 

1. Region One (Rl): For a: G ( -00,0) and 力l(0) 6 [0,7^], 

n 

V ( x , t l - b , n ) = ;^/:7i[C《，i<lv+“工）+ CV2 屯 � ] ( 4 . 4 8 ) 
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2. Region Two (R2): For x e (0,6] and = 0’ 

VIXAH^N) 二 + C o , A , W ) 删 . (4.49) 

3. Region Three (R3): For x E (6,oo) and 力i(O) = 0, 

V{x, 0;b,TL)=x-b + V{b, 0; B, Tl). (4.50) 

Remark 4.2.2. Although the derivation above assumes p { x ) � 0 , the results generally 

hold for the case that p{x) / 0, which includes the traditional mean-reverting process. 

When p{x) = 0, the surplus process (4.2) becomes the Brownian motion with constant 

drift considered by Gerber and Shiu (2004). With the underlying bankruptcy procedure, 

the dividend value function still satisfies the differential equations corresponding to the 

three different regions (4.18)-(4.20) but the fundamental solutions are simpler: 

拟;r) = exp (i^ - V V + 
X 

(T 
= exp ( + 如 1 + 2c7V) 

X 
\ 

(4.51) 

E[D] can then be obtained by the same technique. 

In the case of occupation time framework, by performing similar techniques the solu-
� � 

tions for V(x, ^^(0); b, TL) are characterized in the following proposition. 

Proposit ion 4 .2.3. In the case of occupation time framework, under the dividend barrier 

strategy, the dividend value function satisfies 

Region. One (Rl): For G ( - o o , 0 ) and 1^(0) G [0,Tl], 

V{XJI-ATL) = 
E A—l 企i，r+“工)+ a謎i’r+s(X� ^AAX] 

c： dx + D屯0, 

dx 

(4.52) 

2. Region Two (R2): For x € (0,6] and Fl(0) G [O.TL 

V{XJL;B,TL) = 
CJ' + 屯0，r(工) 

c： dx + 肿0,  
dx 

(4.53) 

60 



3. Region Three (R3): For x e (b,oo) and 1^(0) G [0,Tl], 

i>(a:，Tl； b,TL)=x-b+ V(b, tl； (4.54) 

Please refer to Appendix D for the details of the derivation and the definitions of the 

notations. 

Remark 4.2.3. Although we assume that the grace period TL is a predetermined con-

stant, with the aid of the analytical solution of the dividend value function in the form 

of Laplace inversion, the extension to the stochastic TL is straightforward based on the 

tower rule of expectation: 

POO 

E[D] = E[E[D |Ty] = ^^(0); 6, Tl)] = / V(x, tz.(0); b, (4.55) 
Jo 

where the probability distribution of TL admits a probability density function /{TL) . 

Example 4.2.1. In the case of excursion time framework and occupation time frame-

work, consider the expectation of the discounted dividends under barrier strategy with 

parameter b = 10, which corresponds to bankruptcy procedures with different grace peri-

ods TL, We assume that the parameter set is taken as 6 = {// = 1; n = 1; ao = 3%; a i = 

5%; a = 5; r = 4%; 6 二 10; TL = 0 ,1 /24 ,1 /12 ,1 /6 ,1 /4 ,1 /2 ,3 /4 ,1} . 

Table 4.1 shows how the dividend value function changes with the grace period TL 

and the initial surplus x in the case of excursion time framework and occupation time 

framework, respectively. It can be seen that, for a fixed T^, the dividend value function 

is increasing with the initial surplus x for different frameworks. It is natural that the 

higher the initial surplus value, the higher the probability of hitting the dividend barrier. 

Other things being fixed, the bankruptcy procedures substantially influence the dividend 

value function. The effect is particularly pronounced for small values of initial surplus. 

For example, in the case of excursion time framework, when x — 0.2 the dividend value 

with TL = 1/24 (or 1/2 months) will be seven times larger than that it would be with the 

immediate bankruptcy rule. With same initial surplus and grace period, the dividend 

value function in the case of excursion time framework is larger than that in the case 
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Dividend Barrier (b) 
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Figure 4.2: V"(:c’ �T丄）against b with different TL 
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Table 4.1: Dividend value function against the grace period 
E x c u r s i o n T i m e F r a m e w o r k 

TL TL = 1 /24 T l = 1/12 T^ = 1 /6 TL = 1 /4 TL = 1/2 TL 二 3 / 4 TL 
0.4050 2.9711 

0.6 

0.8 
1.0 

2.0 

4.0 
6.0 

8.0 
10.0 

12.3995 
14.9726 
17.2779 
19.3692 

16.9413 
19.2033 
21.2815 

10.5401 
10.8525 
11.1613 
11.4666 
11.7683 
13.2268 
15.9173 
18.3531 
20.5842 
22.6529 

11.8621 
12.1633 
12,4612 
12.7559 
13.0475 
14.4597 
17.0796 
19.4701 
21.6766 
23.7379 

O c c u p a t i o n T i m e F r a m e w o r k 

TL TL = 1/24 T l = 1/12 TL - 1 /6 TL = 1 /4 TL = 1 /2 TL = 3 / 4 TL 

2.0 

4.0 
6.0 
8.0 
10.0 

0.4050 
0.8037 
1.1960 
1.5822 
1.9622 
3.7753 
7.0065 
9.7901 

12.2093 
14.3351 

2.1486 
2.5324 
2.9104 
3.2826 
3.6492 
5.4013 
8.5395 
11.2633 
13.6500 
15.7660 

5.3235 
5.6762 

.0238 

4363 
7751 
1095 
4396 
7653 
3324 

7308 
0194 
1056 

8.7388 
9.0651 

9.7056 
11.2387 
14.0429 
16.5519 
18.8225 
20.9032 

28 
Excursion Time Framework 

28 
Occupation Time Framework 
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of occupation time framework, since the past defaults are never forgiven in the case of 

occupation time framework such that it is more likely for the firm to be liquidated after 

which no more dividends will be paid out. 

Figure 4.2 plots the dividend value function against the dividend barrier for x = 10 

for different frameworks. The graph further illustrates that the larger the TL the greater 

the dividends paid to shareholders for a given b. By fixing the bankruptcy procedure, the 

dividend value function increases with b, attains the maximum value, and then decreases 

to 0 if 6 —̂  oo. Hence, Figure 4.2 shows numerically that the optimal dividend barrier is 

finite and exists. A deeper analysis is made in the next section. 

4.3 The Optimal Dividends 

In the case of excursion time framework, let b* be the optimal dividend barrier that 

maximizes the dividend value function, V{x, ti(0); b, Ti). The following proposition gives 

the condition of the optimal dividend barrier through the denominator of the factorization 

forms. 

Proposi t ion 4.3.1. Suppose that the uncontrolled surplus process follows the stochastic 

differential equation (4.2). The dividend value function under the bankruptcy procedure, 

V(x, tL{0); 6, Tl), attains its maximum by setting the dividend barrier to b* if the optimal 

dividend barrier If exists and satisfies, 

dx^ 
0‘ (4.56) 

Proof. The proof is based on Shreve et al. (1984) but extends to the case of bankruptcy 
procedure. As 

we obtain 

db 

gijr, if ( - 0 0 , 0 ) , t̂ io) e [o, n ] 
ffQ(x)/ffl)(b), i f x e (0,b], tj^(O) =0， 

i f x e (6,oo), ^l(O) - 0, 

(4.57) 

-g(x,tz.(0))gi;(b)/(gl,(b))', i f x e (—oo，0)，h(0) e [ 0 , r j , 

-"oOr)W(6)/(pi(6))2， (0,6], tL(0) = 0, 
-夕oW戒W/(分;)W)2, if (6，oo), tj^(O) = 0. 

(4.58) 
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If V{x,tL{0);b,TL) attains its maximum at b*, the corresponding first-order condition is 

綱 = 
d'goix] 

dx-" 
= 0 . 

The proof is completed. 

(4.59) 
• 

According to (4.41), we have 

dcc2 = C o , •dx^ + Q),2 
护少r 

dx^ 
= 0 . (4.60) 

This enables us to define the set of all optimal dividend barriers, which is independent 

of the initial surplus, as 

B^ = {0<y<^: f ( y ) = 0 } 

where 

f(y) = Co, dx^ + Co,2 dx^ 

(4.61) 

(4.62) 

Clearly, B^ is nonempty if the following conditions hold, 

‘ / ( O ) < 0, 

m > 0, 

f'{y) > 0, for all z /G(0 ,O. 

(4 .63) 

Moreover, there must be a unique b* G B^ such that f{y) = 0. It is straightforward to 

show that f{y) does satisfy all conditions in (4.63). 

Setting X = b = b* in (4.19) and utilizing the reflecting boundary condition at x = b 

in (4.19) and the optimal barrier condition (4.56)，we have 

Vib\tLi0) = 0;b\TL) = 
/i + ao^' (4.64) 

Thus, V(b*, 0; If.Ti) is identical to the present value of a perpetuity, where the payment 

rate is the sum of the drift and the interest on the initial capital. The relation (4.64) also 

holds for both the models considered by Gerber and Shiu (2004) and Cai et al. (2006). 

It is worth mentioning that the value of h* is, however different, because it depends on 

TL and p[x) in our case. 
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Figure 4.3: Optimal barrier with different "grace" period TL 

Remark 4.3.1. In the case of occupation time framework, similar procedures could be 

performed to find the optimal dividend barrier b* satisfying 

dx^ 
= 0 , (4.65) 

where the initial occupation time has be reset to 0 by shortening the grace period = 

TL-h(O). 

Example 4.3.1. We look at the optimal dividend barrier b* corresponding to different 

Tl using parameters O = {/n = 1; n = 1; ao = 3%; cti 二 5%; a = 5;r = 4%; b = 10; TL} in 

the case of excursion time framework and occupation time framework, respectively. 

It can be seen from Table 4.2 that the bankruptcy procedure has a significant impact 

on the optimal dividend barrier. If renegotiation time is granted to a defaulted firm, a 
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Excursion Time Framework 
Occupation Time Framework 

、o. 
a. 

、o-

Table 4.2: Optimal barrier with different bankruptcy procedures 
Ti = 0 TL = 0.05T^ = 0.10TL = 0.15TL = 0.20TL = 0.25TL = 0.30 
31.7496 30.2534 29.6263 29.1422 28.7320 28.3691 28.0397 
31.7496 30.7395 30.3193 29.9966 29.7245 29.4848 29.2682 

TL = 0 . 3 5 T l = 0.40""“TL = 0 . 4 5 T L = 0 . 5 0 T L = 0 . 5 5 T L = 0 . 6 0 T L = 0.65 
27.7357 27.4519 27.1845 
29.0691 28.8840 28.7102 

26.9309 26.6890 26.4572 26.2344 
28.5461 28.3901 28.2412 28.0986 

T l = 0.70 TL = 0.75 TL = 0.8C 
26.0195 25.8116 25.6101 
27.9616 27.8295 27.7019 

TL = 0.85 T l = 0.90 TL = 0.95 TL = 1.00 
25.4143 25.2239 25.0382 24.8571 
27.5783 27.4583 27.3412 27.2254 
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lower optimal barrier level can be set because the bankruptcy procedure lowers the firm's 

bankruptcy risk. Shareholders could enjoy a more aggressive dividend policy. As the 

grace period is closely related to the negotiation power of the management of the firm, a 

reputable management team benefits shareholders by decreasing the bankruptcy risk and 

hence improving the total amount of dividends. With the same length of "grace period", 

the optimal barrier in the case of excursion time framework is lower than that in the 

case of occupation time framework because of the memoryless feature of the hypothetical 

default clock in the case of excursion time framework so that a more aggressive dividend 

policy could be applied. 

Figure 4.3 shows the decreasing trend of the optimal dividend barrier against T^. 

When TL —̂  oo, the optimal dividend barrier reaches 0. In other words, if TL is large 

enough, it takes a very long time for the firm to declare bankruptcy. Consequently, 

shareholders can receive dividends whenever the surplus is positive and the risk remains 

with debt holders. This implies that the grace period should not be too long for protecting 

debt holders. In addition, the optimal barrier in the case of excursion time framework is 

beneath that in the case of occupation time framework. 

Shareholders are interested in the dividend value function. Table 4.3 and Figure 4.4 

show the dividend value function with different initial surplus under the optimal dividend 

strategy for different bankruptcy procedures. Several observations could be highlighted. 

Firstly, although the optimal dividend level b* is independent of the initial surplus, the 

dividend value function increases with the initial surplus for a fixed bankruptcy proce-

dure with the corresponding optimal dividend strategy. Secondly, the dividend value 

function under the excursion time framework is the largest among the three. By allow-

ing a defaulted firm to continue its business, the bankruptcy procedures do benefit the 

shareholders by increasing their expected dividend payments. The effect is particularly 

pronounced for firms with small initial surplus. Thirdly, when the initial surplus rises 

above the optimal dividend barrier, the dividend value is a linear function of the initial 

surplus for all of the three cases. It is natural because the immediate dividend payment 
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5 
5 10 15 20 25 30 35 

initial surplus (x) 

Figure 4.4: Dividend value function under the optimal dividend strategy 

brings the surplus back to the optimal barrier level. 

4.4 Distribution of the Bankruptcy Time 

Consider the dividends are paid according to a barrier strategy with parameter b, which 

may be different from the optimal value b*. Under the excursion time framework, we 

would like to know the distribution of the bankruptcy time T. Consider 

L ( x M O y A T L ) (4.66) 

where x is the initial surplus. This can be interpreted as the expected present value of $1 

paid at the bankruptcy time, or the Laplace transform of the probability density function 

of T, or the moment generating function of T. Thus, the expected bankruptcy time can 
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Table 4.3: Dividend value function under the optimal dividend strategy 
initial surplus (x) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 ( n 

TL=0 

Occupat ion TL = 1 
Excursion TI — 1 

I.6441 
II .4409 
14.5396 

3.22407 
12.4731 
15.4073 

4.7428 
13.4734 
16.252 

6.20308 
14.4433 
17.0749 

7.6076 
15.3842 
17.877 

8.95896 10.2597 
16.2976 17.1848 
18.6593 19.4229 

(31.7496) 
(27.2554) 
(24.8571) 

initial surplus (x) 5 10 15 20 25 30 35 M 

TL=0 

Occupat ion T!l = 1 
Excursion T^ = 1 

13.8819 
19.7019 
21.6104 

23.5534 
26.8635 
28.0312 

30.7843 
32.8044 
33.6031 

36.7095 
38.1276 
38.7676 

42.0086 
43.192 

43.7857 

47.0618 52.0626 
48.1936 53.1936 
48.7857 53.7857 

(31.7496) 
(27.2554) 
(24.8571) 
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be determined by 

E [ T ] = -
dL0MzXO);6，rzJ 

dr 
(4.67) 

Using the framework established in Section 4.2, the differential equations for L(x, ti(0); b, Tl) 

in three different regions can be formulated as follows. 

1. Region One (Rl): For x e ( - o o , 0 ) and 6 [0 ,7^ , 

l i m 叫魄帅吼） = 0 ， 

L ( 0 - , 嫩 TzJ = L(0+, 0; 
dL{x,tLiOyATL) _ dLix,0-,b,TL) 

= 0 + 

2. Region Two (R2): For G (0,6) and 力丄(0) = 0, 

匹 - n 
dx x=b _ u ’ 

L ( 0 + , 0; T i ) = L ( 0 - ， 嫩 6, T i ) : 

dLix,0-,b,TL) _ dLix,tLioy,b,TL) 
=0+ x^O-

3. Region Three (R3): For x € (5, oo) and t i (0) = 0, 

L(x,0-b,TL) = L(b,0;b,TL). 

(4.68) 

(4.69) 

(4.70) 

In the case of occupation time framework, we need to solve and calculate L{x, b, Tl) 

for all possible values of 亡iXO) even if x is above the default threshold. Region Two and 

Three should then be defined in the rectangle x G (0,6],力L(0) G [0, Tl] and x G {b, +oo)’ 

tiXO) € [0,Ti], respectively. 

Using techniques similar to those introduced in Section 4.3 and Appendix D, the 

analytical solution of L and L could be obtained in the form of Laplace inversion. 

Proposit ion 4 .4.1. For the same initial surplus a:, barrier level b and grace period 

E[T] > E[r] > E[T 

where T* is the default time or the bankruptcy time with Tl = 0. 

(4.71) 
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Proof. The process of the modified surplus is independent of the bankruptcy procedure 

with the same initial surplus and barrier level. The bankruptcy procedure influences the 

dividend value function only be the hypothetical default clock counting the lifespan of 

the company. 

For any path of the modified surplus, on the one hand, let 

于=QJJl) ：= inf ^ i > 0 > T l , X q - D q = x \ (4.72) 

denote the bankruptcy time in the case of occupation time framework with grace period 

Tl and initial surplus x. Since the past defaults affect further defaults by shortening the 

maximum allowed length of time that the company can spend in default without being 

liquidated, we have L{x,力l(0); b, Tl) = L{x, 0; b, Tl —力î O)). Without loss of generality, 

it is assumed that tL(0) — 0 and consequently 

f = e , ( n ) = To + QoiTi), (4.73) 

where TQ is the first hitting time of zero by the modified surplus and 0O(7L) is the 

bankruptcy time with zero initial surplus and grace period of Tl. Based on the linearity 

of the expectation operator, 

E[ f ] = E [ T o ] + E [ e o ( T j ] . 

Since EfT�] = E[T*] is the default time with TL = Q and QQ{TL) > 0，we have 

E[ f ] > E[r*]. (4.74) 

On the other hand, based on the dynamics of d t i i t ) and d t i i t ) as shown in (4.7) and 

(4.12), 

& �一 i L �= )’ where S = {u> -Du = L}. (4.75) 
ues 

Since tL{u—) > 0 for any u > 0 , t i i t ) > Zl(力).By the definition of the bankruptcy time, 

we have T < T for any path of the modified surplus. Based on the monotonicity of the 

expectation operator, 

E[F] < E[T]. (4.76) 

The proof is completed. • 
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Table 4.4: Expectation of bankruptcy time with different initial surplus 
X 0.5 1.0 1.5 2.0 2.5 3.0 3.5 (6*) 

TL=0 
Occupation 
Excursion 

15.268 
64.938 

227.657 

29.907 
70.964 

223.120 

43.929 
76.727 

238,338 

57.350 
82.234 

243.318 

70.184 82.446 
87.494 92.513 

248.067 252.592 

94.152 
97.297 
256.899 

(31.7496) 
(27.2554) 
(24.8571) 

X 4 7 10 13 16 19 22 (b*) 
TL=0 

Occupation 
Excursion 

105.316 
101.856 
260.995 

161.812 
124.849 
281.525 

202.779 
141.433 
296.112 

231.470 
152.963 
306.025 

250.807 263.272 
160.617 165.382 
312.369 316.066 

270.867 
168.055 
317.857 

(31.7496) 
(27.2554) 
(24.8571) 

Remark 4.4.1. The expected bankruptcy time E[r] can be determined by (4.67). Ac-

cording to the fundamental theorem of calculus, the differentiation with respect to r 

and the Laplace inversion can be interchanged. Thus, the analytical solution, of E[T 

obtained in the form of Laplace inversion. 

IS 

Remark 4.4.2. As the Laplace transform of the probability density function of T is 

obtained, the density function can be calculated using numerical Laplace inversion. Let 

m{y) = 

denote the moment generating function of T, m(—r) = L{x,亡l(0); b, T^), which has been 

determined in this section. Hence, moments of T can be obtained by differentiation. 

For the same initial surplus x and dividend barrier level b, we have the relationship 

between the expected bankruptcy time under different bankruptcy procedures according 

to Proposition 4.4.1. However, the firm optimized its dividend strategy by setting b* to 

maximize the dividend value function as described in Section 4.3. 

Example 4.4.1. We look at the expectation of bankruptcy time under the optimal div-

idend strategy using parameters Q = {fi = l ; n = 1; ao = 3%; a i = 5%; a = 5;r — 

4%; b = 10; Tl = 1} in the case of excursion time framework and occupation time frame-

work, respectively. 

The optimal dividend level b* is independent of the initial surplus as shown in Section 

4.3. It can be seen from Table 4.4 and Figure 4.5 that under the optimal dividend 

strategy the initial surplus has an influence on the expected bankruptcy time for different 

bankruptcy procedures. Firstly, for any initial surplus, the expected bankruptcy time in 
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Figure 4.5: Expectation of bankruptcy time under optimal dividend strategy 

the case of excursion time framework is the longest among the three. It is due to the 

resetting feature of the hypothetical default clock so that the liquidation of the firm is only 

triggered by a consecutive stay below the default threshold. Secondly, for the firm with 

low initial surplus, the bankruptcy procedure in the case of occupation time do prolong 

the expected lifespan of the firm. Under such situation, the impact of the barrier level on 

the modified surplus is mild. Although a more aggressive dividend policy is employed in 

the case of occupation time framework, the firm could still enjoy a longer life with little 

probability to pay dividends. Thirdly, for the firm with relatively large initial surplus, 

the bankruptcy procedure in the case of occupation time framework surprisingly shortens 

the expected bankruptcy time. Under such situation, the barrier level plays the key role 

and past defaults are never forgiven. Granted the grace period, the firm will adopt an 

aggressive barrier level, which makes it more likely to be liquidated. Fourthly, there 

exists some critical value of initial surplus, with which the expected bankruptcy time in 

the case of occupation time framework is equal to that in the case of zero grace period. 
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4.5 Generalized Barrier Strategies 

If a barrier strategy is applied, the ultimate ruin of the company is certain. In some 

circumstances this is not desirable. This consideration leads to the idea of imposing 

restrictions on the nature of the dividend stream, resulting in optimization problems 

with additional constraints. When p = 0，Jeanblanc-Picque and Shiryaev (1995) and 

Asmussen and Taksar (1997) postulate a generalized barrier strategy, called a threshold 

strategy. Under this strategy, dividends are paid at a constant rate k whenever the 

surplus rises above threshold b. Gerber and Shiu (2006) carry out some elementary and 

down-to-earth calculations on this model. Threshold b plays the role of a break-point or 

a regime-switching boundary. The discounted value of dividends takes the form, 

D = k f (4.77) 
Jo 

The excursion time framework is now applied to this barrier strategy with the surplus 

following the OU process. The dividend value function E[D] = ^l(O); 6, Tl) still 

satisfies the differential equations in three different regions (4.18)—(4.20), except that the 

following modification is required. 

1. The boundary condition in R2 at a: = 6 is replaced by 

where ( is a constant with respect to the fixed parameter set ©. 

(4.78) 

2. In R3, the dividend value function is no longer a direct formula but should be solved 

from a differential equation. For x G (6, oo) and 亡l(0) = 0, 

i c T ^ 0 + (/X + a o o ; - f - r y + = 0 , 

( 4 . 7 9 ) 

V{x,0;b,TL) for re —oo. 

When X > b, the modified surplus behaves with an extra drift of —k,. If there is infinite 

surplus, then the dividends are a continuous perpetuity of amount k per unit time. Thus, 

we have the last boundary condition in (4.79). 
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Using techniques similar to those introduced in Section 4.2 and the continuity of the 

dividend value function at x — 6, a system of equations with a larger number of unknown 

coefficients can be obtained. Simple calculation can yield the result. Once the formula 

of the dividend value function is derived, the optimal dividend barrier and the expected 

bankruptcy time can be obtained by mimicking the analysis in the earlier sections. The 

detailed calculation is omitted here. 

4.6 Conclusion 

This chapter extends the optimal dividend barrier strategy of Gerber and Shiu (2003, 

2004) to incorporate bankruptcy procedures consistent with Chapter 11 of the US Bank-

ruptcy Code. More precisely, bankruptcy occurs if a firm is in financial distress over a 

period of time. This is realized by using an excursion time that measures the total time 

spent below the default threshold in a single excursion or an occupation time variable 

that measures the cumulative length of period instead. To allow general discussion, we 

consider a general Ornstein-Uhlenbeck process in which the mean-reverting rate can take 

any real number. Moreover, we assume that the debit rate is dependent on the deficit 

position of the firm. A general framework is then formulated to study the problem. Con-

sequently, the closed-form solution for the dividend value function is derived in the case of 

excursion time framework and occupation time framework, respectively. By maximizing 

the dividend value function, the optimal dividend barrier is obtained numerically. Our 

result shows that the underlying bankruptcy procedure can significantly affect the opti-

mal dividend policy. We sketch possible extensions of our framework to related problems, 

such as generalized dividend barrier strategies. 
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Chapter 5 

Multi-Dimensional GDP: 

Application in Currency Option 

Pricing 

The analysis so far focuses on a one-factor general diffusion processes. In order to capture 

the evidence of mean reversion and multi-scale stochastic volatility in currency market, 

this chapter considers a multi-dimensional general diffusion process for currency option 

pricing. 

5.1 The Model 

Let St be the underlying currency for which the risk-neutral process is postulated as 

St = exp{Xt), 

dXt =剛-KXt - — V2,t/2)dt + v ^ d W 严 + V ^ d W严， （5 1) 

ch; i ’ i 二（ a i � -b i v i ^ t ) d t + 

dv2,t = (a2(t) - f^2V2,t)dt + 

where the constant k is the mean reversion speed for the log-currency-value; the de-

terministic function 0(t) represents the equilibrium mean level of the log-currency-value 

against time; Vî t and V2,t are stochastic variances on different time scales with the mean 

reversion speed 6i and 62； ai(t) and <22 (t) are equilibrium mean levels of the two stochastic 

variances against time; cti and 02 are the volatility coefficients of the volatility processes; 
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W^o'i, Wf’2，对 and W^ are Wiener processes. In fact, the empirical study of Alizadeh et 

al. (2002) documented that there were two dominated stochastic factors that governed 

the evolution of currency volatility, with one highly persistent factor and one quickly 

mean-reverting factor. Based on the suggestion of Alizadeh et al. (2002), the proposed 

model specified in (5.1) considers a two-scale stochastic volatility. Following Fatone et 

al. (2009), we further assume that 

m i d W ^ ) = 0 ， � d H f ' M W / �= Pid 力，�(W尸 d H f � = 0， 

�dW力。’ = 0 , � d w f > = � d H厂̂ d M / f ， 2 �= 0 , • 

w h e r e � . �d e n o t e s the expectation operator, and pi, p2 G [—1,1] are constant correlation 

coefficients. 

Our proposed model is a multi-dimensional general diffusion process, see (1.9), with 

Xf = (Xt^ Vî t, and is reduced to the model of Fatone et al. (2009) if k; = 0 and 

6{t) = r, the risk-free interest rate, for an equity option. As long as currency option is 

concerned, the domestic interest rate, r山 and the foreign interest rate, 77, are embedded 

into the risk-neutral parameter 9(t). We will see shortly that the effects of rd and 7 7 are 

fully reflected in and captured by the currency future prices, which will be regarded as 

observations that are "super-calibrated" to the model. 

5.1.1 The Characteristic Function 

Given the currency dynamic, it is possible to obtain the characteristic function for the 

log-currency-value Xt. Denote the characteristic function as 

灼， t - 4>) = E[e场知 = X, i；!,, = v,,v2,t = i;2l, (5.3) 

where T >t and i = The following lemma holds. 

Lemma 5.1.1. If Xt follows the dynamics in (5.1), then the characteristic function for 

Xt defined in (5.3) is given by 

f(x, VI,V2, t\ 4>) = exp [Ai{r-, (f))vi + A2(T; (j))v2 + B{T\ (p) + , (5.4) 

75 



where T = T — T. 

B{T;(j)) = f ie-^'cpeiT - s)ds + [ ai(T - s)Ai(s;(l))ds + f as(T - 5)^2(5; (^)ds 
Jo Jo Jo 

Uji{r) + U,2{r)-\-Ujs{r) 
DAT� 

for j = 1,2, (5.5) 

UJIIR) = + 

UJ2IR] 

Ujsir] 

DAT] 

A , = 
-i{2pj(K - bj) + aj) = b 

2K 
c： 

K 
A不 

Pi 二 

CJI 

Cj2 

Cj3 

FJ 

=-2p*{k + bj) + i(2hipj - 2hjPj + cr^), 

= - bj) - i(2f^pj - 2bjPj + o-j), 

=2/9* (/c — bj + ipjajcf)) + (jj{2(f)pj — 20 — i) + 2if)办j 
= 吟 B鄉 + 〜力 ; ( c ; ) 

= 她 ） + 4 命 W;z;+i，6鄉， 
(5.6) 

and Mk，m� and Wk^mi^) are the Whittaker functions. 

Proof. The Feynman-Kac formula gives the following partial differential equation (PDE) 

for the characteristic function. 
2 

^^^fxx + PlCTlVlfxvi + ^ f v i v i + (力)-BIVI)FY, + P2(T2V2fxv2 

+ + ( a 2 � —b 2 V 2 ) f . , + {0{t) - ACX - f - f ) + = 0, (5.7) 

To see this, we apply the Ito Lemma to { f ( x , v, s; (j>)}t<s<T, and obtain 
f{XT, Vl^T, V2，T, T； (j)) = f{xu 仍,t, t； (f)) 

+ / V^if.dW^^' + [ 风。’2+ [ a i V ^ i ；风 1 + / 

/ 

+ R:V2 

2
 

V
 

2
2
 b

 

巧 t 仍 fxx + + ^^fviv, + {ai{t) — biVi)fy^ + p2(72V2fxi 
\ z z 

. 2 - f卿2 + M t ) - b2V2)fv2 + {0{t) - /^a： - y _ 导)/a； + ft^ ds 

Taking the expectation on both sides and recognizing that /(o^t,仍’t, 了； = e傘 t 

then gives the result. Consider an exponential affine form for the characteristic function: 

fix, V, t\ (p) - exp (Ai{T; (f))vi + A2{T] (j))v2 + B(T; 0) + C(T; + icpx), 
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where r = T - ^ and Ai{T = = A2(r = 0;(p) = B{T = 0; (/>) = C ( r = 0](f>) = 0. 

Substituting it into (5.7) yields 

0 = Z；! y C ⑴ + + p,a,A^{T){C{T) + icf) + 

+ X[-I^{C{T) + i(j)) — 

+V-2 -^{C{R) + I4>F + P 2 ^ 2 ^ 2 ( r ) ( C ( r ) + + -oIAI(T] 

where the differentiations are taken with respect to r . This leads to the following system 

of ordinary differential equations: 

0 = - ( C ( r ) + i(j>F + P,G,A,{T){C(T) + i<i>) 

- + 帕 ） - M - A ' l , 

0 = i ( C ( r ) + + p2^2A2(r)(C(r) + 

+ - + i4>) - & 2 ^ 2 ( r ) -

0 = -/€(C(T) + i0 ) -C'， 

0 = 0(t)(C(T) + i(P) + a i ^ i ( r ) + a2A2(T) - B'. 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

It is clear from (5.10) and (7(0) = 0 that 

C{T) = m — i(f). (5.12) 

Substituting (5.12) into (5.8), we have 

- 成 = + (h - Pia.icPe-^A, + 尹 + 小、-”, (5.13) 

whose solution is 
Uuir) + Uuir) + Ui3i： 

A M 
which is specified in (5.5) and involves the undetermined constant coefficient Fi and the 

Whittaker functions M k , m � and M4，m(工)• Imposing the initial condition that Ai{r = 

77 



0) = 0 gives the explicit form of Fi. Similar procedures can be applied to (5.9) for the 

solution of 成(T). With AI(T) and � ( t ) available, from (5.11), we obtain 

B{R;(f)�= f ie—^^SfpeiT — s)ds+ f ai(T - </))ds + [ a2(r - 5)^2(5; 0)d5. 
Jo Jo Jo 

• 

Although the closed-form solution of the characteristic function seems to be compli-

cated, it is expressed in certain elementary functions. The computation of the Whittaker 

functions is also standard as these functions are available in the Mathematica and Mat-

lab software packages. These mathematical functions are widely applied to mathematics, 

physics, engineering and finance (see the comments in Wong and Lau, 2008). As the 

Whittaker functions require a little more computational time than other elementary 

functions, such as sine, cosine and exponential, the Fourier inversion formulas for a func-

tion involving them should be implemented using a highly efficient numerical method. 

Our suggestion is to use the fractional FFT (FRFT), which detailed in section Fractional 

FFT. 

The probability density function of the log-return can be obtained by inverting the 

Fourier transform on the characteristic function. Here, we examine the distributional 

properties of the proposed model. Figure 5.1 shows how the positive correlations of 

volatilities with the spot return create a fat-right-tail and thin-left-tail distribution of 

the log-ret urn. Positive correlations result in a high variance when the spot asset rises, 

which fattens the right tail of the density function. 

Figure 5.2 shows how the mean reversion rate of the underlying asset pushes the 

distribution toward the equilibrium mean level 0{t). If we interpret the underlying asset 

as an exchange rate, then the mean reversion rate can be regarded as an indicator of the 

magnitude of central bank intervention. An increase in the magnitude of such intervention 

on the exchange rate thus results in a decrease in the volatility of the exchange rate. 
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NS/Sq) 

Figure 5.2: Probability density function for different values of K. The parameter values are: 
e{t) 二 /dn(1.5), SQ = 1.0,1；1’0 = 0.5, a i ( i ) = 0.5328, hi 二 1.45, = 0.4, pi = -0.4, V2,o = 0.18, 

a 2 � = 1 . 2 , &2 = 5.33, = 0.2, P2 = - 0 . 6 . 

Figure 5.1: Probability density function of the log-return over a 1-year horizon with different 
correlations. The parameter values are: K = 10, d(t) = 4.0339, So = 1.0, vi’o = 0.5, ai(t)= 
0.5328, &i = 1.45, (Ti = 0.4, pi = 一0.4 or 0.4, V2,o = 0.18，a2(t) = 1.2’ 62 = 5,33，(72 - 0.2, 
P2 = - 0 . 6 or 0.6. 
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5.2 Super-Calibration to Currency Futures 

As pointed out by Heston (1993) and many others, the characteristic function is not only 

useful for examining distributional properties but also for deriving formulas for standard 

derivative products. An obvious application is to derive a closed-form solution for future 

prices. Under risk-neutral dynamics (5.1), the future price of underlying asset St with 

maturity T is given by 

FT {t) = E^ [ST] = f{X, - z ) , (5.14) 

where f{x,Vi,V2,t;4>) is defined in (5.3). Lemma 5.1.1 immediately gives the following. 

Corollary 5.2.1. The future price of an asset following the proposed mean reversion 

MSV model in (5.1) is given by 

F r i t ) = exp [A^[T)VI + A^{j>2 + + rce—巧， (5.15) 

where T = T — T, A((T) = Ai{r;-i), A^(T) = ^ 2 ( t ; - z ) , and B^{T) = B(T; -i) are 

defined in (5.4). 

Let us imagine a situation in which the term structure of future prices is observed at 

time t. In practice, it is often useful to express the characteristic function in terms of the 

observed term structure of future prices. More precisely, we would like to calibrate the 

characteristic function to observed future prices. This is important to ensure that we can 

derive option pricing formulas that are consistent with the observed future prices. We 

now carry out the super-calibration by directly expressing the characteristic function in 

terms of observed market future prices in the following proposition. 

Proposi t ion 5.2.1. If the underlying asset follows the mean reversion MSV process in 

(5.1), then the characteristic function calibrated to the term structure of future prices is 

given by 

fix, Vu 巧,t- Frit)) = FT ⑴场 exp[A^i(T； + AA2(r; 0)”2 + A S ( r ; 0)]， (5.16) 

where 

AB{T; (F))= ( ai[T - S)^Ai{S-(L))DS+ [ a2(T - S)AA2(S-,(F))DS, 
Jo Jo 
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A^i(r; 0) - 4>) - icf>Af {r),AA2{r; 0) = A^ir; 0) — i^A:(r), 

with 丁 = T — t, Ai{r; (p) and A2{r； (p) defined in Lemma 5.1.1, A{(T) and Af ( t) defined 

in Corollary 5.2.1. 

Proof. Corollary 5.2.1 gives us 

B ^ i r ) = InFAt) - - A^{T)V2 + x e — = 5(T; -Z) 
=/； e—^(T - s)ds + f； ai(r - s)A({s)ds + f； a2(T - s)A[(s)ds.卜) 

By Lemma 5.1.1, 

= 1(1) f e — 1 ( T - s ) d s + /" ai(T - s)Ai{s-(j))ds+ [ a2(T - s)A2{s;(f))ds 
Jo ^ Jo T Jo 

=icpB^ir) + [ ai(T~s)AAi{s;(f))ds+ [ a2{T - s)AA2{s; (f))ds, (5.18) 
Jo Jo 

where 

AAi(r; 0) = yli(r; 0) 一 A 成 ( t ; 0) = cf>)—坤 A : (r). 

Substituting (5.18) into (5.4) yields 

f i x , VUV2, t; (f>, Fr i t ) ) = F T W ^ exp[AAi(r; (t>)v̂  + A 成(t; 4>)v2 + AS( r ;州， 

with 

[ ai{T-s)AAi{s;(f))ds+ [ a2{T - s)AA2{s;(l))ds. 
Jo Jo 

• 

5.3 European Option Pricing 

Using the characteristic function, European options can be valued through Fourier in-

version. While Carr and Madan (1999) advocate the FFT to numerically implement the 

Fourier inversion, Chourdakis (2004) shows significant improvement using the FRFT, 

which is a linear transformation that generalized the Fourier transform. The FRFT al-

gorithm has the advantage of using the characteristic function information in a more 

efficient way than the straight FFT by relaxing the restriction on grid sizes. Using sev-

eral numerical examples, this section demonstrates how the FRFT can be applied to our 

case. The implied volatility surface generated by the proposed model is reported. We 

attempt to show numerically that this model not only fits the term structure of future 

prices, but is also able to produce a realistic volatility surface consistent with the market. 
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5.3.1 Vanilla Call Option 

The plain vanilla call option has the following payoff: 

max(知一 ir’0)’ 

where K is the strike price and T is the option's maturity. Let k denote the log of the 

strike price K, Crik) be the desired value of a T-maturity call option with strike exp{k), 

and qris) be the risk-neutral density of the log-asset price ST = In ST-

Following Carr and Madan (1999), the modified call price is defined by 

Or(k) = exp(ak)CT(k), for some constant a > 0, 

where Crik) = f � A s is not square integrable over (—oo, oo), 

the introduction of a damping factor exp(ak) aims to remove this problem. This makes 

the Fourier transform of cr(/c) exist: 

如 ⑷ = r E �( 咖 K = — t r f L _ ( r 、 广 1)2)， (5.19) 

J-oo Q；̂  + Ct - (t̂  + 1)^ 

where f is the characteristic function defined in Proposition 5.2.1. 

The call option prices can then be numerically obtained using the inverse transform: 
p—ak foo p—Oik poo 

Crik) = — / e-吵如⑷二 ——/ e-•如[…I (5,20) 
J-oo 沉 Jo 

More precisely, the call price is determined by substituting (5.19) into (5.20) and per-

forming the required integration. 

5.3.2 Fractional FFT 

Integration (5.20) is a direct Fourier transform and leads itself to an application of the 

FFT. The integration is first approximated using a numerical integration rule: 

—afc roo —ak ̂ FFT-l 
——/ e - ' ^ ^ M m ^ — — E 如[�)w外�=jr), (5.21) 

where N f f t is tlie number of grid points and Wj is the weight of the j - th component 

in implementing the integration rule. For instance, wq = wnff^-i = 1/2 and Wj = 
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1, j — 1 , … , N F F T — 2, for the trapezoid rule, and WQ = u;〜厂广i = 1 / 3 and WJ ~ 

(3 + ( - i y + i ) / 3 , J. = 1，. •.，NFFT _ 2, for Simpson's rule. 

The standard F F T method simultaneously computes the values of the integral ap-

proximations (5.21) for the set of log strikes 

{ku = —b + Xu, u = , N f f t - 1}, 

ranging from —b to b — A, where b = This F F T method suffers from a restriction 

that the grid spacing must satisfy the condition 

Ott 
= (5.22) 

丄N FFT 

The sum in (5.21) can then be expressed in the form 

-AK NFFT-1 -AK ^FFT-^ ^^ 
C r i K ) ^ - ^ Y . e-认”he如b�T[�)Wjr) 二——^ (5.23) 

兀 j = 0 兀 j = 0 

which allows the application of the FFT procedure invoked on the vector 

h = {HJ - e ' ^ ' ^MQwjV. j = 0,…，NFFT _ !}• 

As an inverse relationship exists between the grid sizes, rj and A, specified in (5.22), we 

must either increase 77, thus rendering the grid a c r o s s �c o a r s e r , or increase NFFT with 

a larger length of input vector h, thus leading to the substantial waste of computational 

time, to obtain a fine grid across the log strikes. In addition, the resulting series will 

extend beyond the range of required log strikes. For example in the case of the 4,096-

point FFT employed in Carr and Madan (1999), only 66 of them correspond to the option 

prices of interest in the sense that the stike-to-spot ratio falls in between 0.80 and 1.20. 

To facilitate the calibration to the impiied volatilities quoted against the strike prices, 

the FRFT suggested by Chourdakis (2005) is considered to replace the standard FFT in 

this chapter. It rapidly computes the sum in the form 

N-L 
ZMh，/?) = ; ^ e — • 外 ( 5 . 2 4 ) 
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for any value of When /3 = jj, it is reduced to the FFT. Specifically, (5.21) gives us 

-ak N-l _ak N-1 

C r i k u ) - — e - 彻 X 社 e 如 b 如 〔 ⑶ 切 j ” = — V (5.25) 
^ U ^ u 

where = RJX. The sum in (5.25) can then be computed using the FRFT without 

imposing the restriction as in (5.22). In other words, the two grid spacings (those among 

the characteristic function support and the log-strikes) can be chosen independently 

within the FRFT parameter: 27r(3 ~ 77A. 

The sums in the FRFT are computed by invoking two normal and one inverse FFT 

procedures. To compute an iV-point FRFT on the vector h = (hj)gi, the following 

2iV-point vectors have to be defined 

y = ((V-^2�t�i，(。)it—oi)， 

z = ( ( e - 她 ) �e - ( 靖 微 

Then the FRFT is given by 

Z M h , " ) = ( e - 切 ’ t o ' O 办)© (5.26) 

where © denotes element-by-element vector multiplication, Dfc(h) denotes the FFT sum 

j=0 

and D广(h) is the inverse FFT sum 

Note that the exponential quantities do not depend on the actual function 

that is integrated and therefore can be precomputed and stored. 

The major advantage of the FRFT is that both the grid sizes of 77 and A are chosen 

independently. Although three FFTs are required instead of just one, the freedom to 

choose the grid sizes prevails and, in turns, considerably speeds up computation because 

the input vectors are typically much shorter. This approach has been proven to be useful 
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Table 5.1: Call option prices: FRFT vs. Monte Carlo (MC) 
• 5 T-] 

Strike Price 3 2 - F R F T 6 4 - F R F T 128-FRFT MC 3 2 - F R F T 6 4 - F R F T 128-FRFT M C 
0.85 

%diffe 
0.9 

%diffe; 
0.95 

%diffe: 

%diffe 

%diffe 

%diffe 

%diffe 

.05 

15 

0.6035 
(-0.03%) 
0.5547 

(-0.09%) 
0.5062 

(-0.12%) 
0.4584 

(-0.11%) 
0.4113 

(-0.07%) 
0.3652 

(-0.05%) 
0.3206 

(-0.06%) 

0.6034 0.6034 0.6037 
(-0.05%) (-0.05%) 
0.5548 0.5548 0.5552 

(-0.07%) (-0.07%) 
0.5065 0.5065 0.5068 

(-0.06%) (-0.06%) 

(-0.09%) 
0.4113 

(-0.07%) 
0.3651 
(-0.08%) 

0.3204 
(-0.12%) 

(-0.09%) 
0.4113 

(-0.07%) 
0.3651 

(-0.08%) 

0.3204 
(-0.12%) 

0.4116 

.3654 

.3208 

0.5933 0.5931 
(-0.05%) (-0.08%) 
0.5455 0.5457 

(-0.13%) (-0.09%) 

(-0.16%) 
0.4514 

(-0.18%) 
0.4054 

(-0.12%) 
0.3602 

(-0.14%) 
0.3163 

(-0.13%) 

(-0.10%) 
0.4516 

(-0.13%) 
0.4053 

(-0.15%) 
0.36 

(-0.19%) 
0.3161 

(-0.19%) 

0.5931 0.5936 
-0.08%) 
0.5457 0.5462 
-0.09%) 

-0 .10%) 

0.4516 
-0.13%) 

0.4053 
-0.15%) 

0.36 
-0.19%) 
0.3161 
-0.19%) 

0.4522 

0.4059 

0.3607 

0.3167 

CPU Time 2.6915s 5.7033s 14,2695s 66.6635s .09s .4532s .7336s 

when a large number of characteristic function evaluations are needed for calibration 

purpose. Chourdakis (2005) has already demonstrated that, to produce 64 option prices 

for the strike-to-spot ratio ranging from 0.80 to 1.20, only three 128-point FFTs are 

required, and the execution time is shorter by a factor of about 25 compared with the 

straight FFT used by Carr and Madan (1999). 

5.3.3 Numerical Examples 

It would also be interesting to determine the performance of the FRFT applied to vanilla 

options under the proposed mean reversion MSV model. Our numerical example uses 

T] 二 0.5, b = 0.2, and different N, i.e., N = 32,64,128 corresponding to the log strike 

price spacing of Ak — A = 1/40,1/80,1/160, respectively. The damping coefficient is set 

at a — 3. The other parameter values are K, = 10，0{t) = 4.0339, SQ = 1.3, = 0.5, 

ai{t) = 0.5328, bi = 1.45, cr： 二 0.4, pi = -0.04, V2,o = 0.18, a2(t) = 1.2, 62 = 5.33, 

(72 二 0.2, and p2 = —0.06. We compute the half-year and one-year maturity call options 

using the FRFT and contrast the results with the Monte Carlo simulation of 40,000 

sample paths and time-step of 1/500. The numerical results are displayed in Table 5.1. 

The 32-FRFT takes less than 5 seconds to produce 32 option prices corresponding 

to different strike prices with Ak = 0.025. If the Monte Carlo price is regarded as 
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. z 

Figure 5.3: Implied volatility for different values of K. The parameters are 9{t) = ft:ln(1.2) 
So = 1.0, vi，o = 0.152, a i ( t ) 二 0.33282，fo! - 1.45，cti = 0.4, pi 
a2⑴=0 .22，“ 二 2.33, a2 = 0.2, and p2 = -0.6. 

CA.X V̂  1/ I t/ I fXi XXXI O. J ^ 
- 0 . 4 , V2fi = 0.082， 

the benchmark, then the absolute percentage difference in the prices obtained using 32-

FRFT is less than 0.2% for all cases. The 64-FRFT and 128-FRFT generate even more 

option prices with slightly better level of accuracy at the cost of a longer computational 

time. The Monte Carlo simulation takes more than 60 seconds for each option price. 

This numerical example verifies that our analytical solution is correct and the FRFT is 

accurate and efficient. Although constant 6{t) is considered here, the proposed FRFT 

method can generally be applied to the case of the characteristic function calibrated to 

the term structure of futures, as demonstrated in the following subsection. 

5.3.4 Implied Volatility 

The accurate FRFT option pricing framework enables us to further investigate the volatil-

ity smile implied by the proposed model. Figure 5.3 shows that the left-tail skewness of 

the volatility smile increases with K, the mean reversion speed for the asset. Consider the 

case of an exchange rate. If the mean reversion rate k represents the force of central bank 

intervention, then the proposed model implies that the greater the left-tail skewness, the 

greater the market expectation that the central bank will intervene. 

The proposed mean reversion MSV model enables the exact fit of the option prices to 

the term structure of currency futures. Consider the term structure of future contracts 
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Figure 5.4: Observed future prices 

shown in Figure 5.4 in which a linear interpolation is employed. We produce the implied 

volatility surface of European options in Figure 5.5. The graph is generated based on 

parameters: = 0.3, So = 1.0, Vi，。二 0.152, ai{t) = 0.3328^ 6i = 1.45, = 0.5, 

Pi = 0.1, V2fi = 0.082,以2(之）=0.22’ ^ = 2.33，(72 = 0.2, p) = 0.1. It can be seen that the 

implied volatility surface that integrates the information from future contracts resembles 

the volatility surface used by currency option traders. The volatility is relatively low 

for at-the-money options. It becomes progressively higher as an option moves either in 

the money or out of the money. Two-scale stochastic volatility provides the model with 

greater flexibility to produce a rich set of volatility surfaces. 

5.4 Conclusion 

This chapter proposes a new option pricing model for currency options that allows mean 

reversion and multi-scale stochastic volatility to be captured within a unified framework. 

The model also allows the super-calibration of the observed term structure of currency 

futures. Analytical solutions are derived for the characteristic function and European 

options. The fractional FFT is adopted for implementation to ensure that the restriction 
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Figure 5.5: Implied volatility surface consistent with the future prices in Figure 5.4 

on grid spacing in the standard FFT is relaxed and the information contained in the 

characteristic function is effectively used for calibration to the entire implied volatility 

surface. Although the model is applied to European options in this chapter, we recognize 

that it could also be applied to discrete barrier option pricing by slightly modifying the 

framework of Griebsch andWystup (2008) for the Heston model. Thus, the proposed 

model has rich potential application in practice. 
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Chapter 6 

Conclusion 

This thesis investigates the applications of general diffusion processes in the field of Amer-

ican option pricing, optimal dividend barrier policies, and currency option pricing to cope 

with empirical evidence. Different techniques are adopted to facilitate the corresponding 

analysis. 

Firstly, with the aid of Laplace-Carson transform (LCT), we separate the determina-

tion of the optimal early exercise boundary from the valuation procedure of American 

options under the CEV model. Although, the analysis focuses on vanilla options, the 

method is generally applicable to other exotic derivatives with continuous earlier exercise 

rights and facilitates the analysis of optimal stopping strategy. 

Secondly, the impact of bankruptcy procedures on optimal dividend barrier policies 

is investigated by assuming that liquidation is triggered by an excursion time or an 

occupation time and the surplus of a firm follows an Ornstein-Uhlenbeck (OU) process 

with a negative surplus-dependent mean-reverting rate. By using Laplace transform, we 

obtain the optimal dividend barrier, and further characterize the distributional property 

and the expectation of bankruptcy time subject to the bankruptcy procedure. 

Thirdly, general diffusion processes are extended to a multi-dimensional setup to si-

multaneously capture the empirical evidences of mean reversion and multi-scale stochastic 

volatility for currencies. A closed-form solution is derived for the characteristic function 

of the log-asset price, which links up with vanilla option prices through Fourier transform. 

The proposed model enables us to calibrate simultaneously to the observed currency fu-
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tures and the implied volatility surface of the currency within a unified framework. The 

fractional fast fourier transform (FRFT) is adopted for implementation to ensure that the 

restriction on grid spacing in the standard FFT is relaxed and the information contained 

in the characteristic function is effectively used for calibration procedure. The proposed 

model is thus flexible enough for a financial analyst to perform scenario analysis with it 

and also allows seasonal volatility within derivative pricing. 

Laplace-Carson transform, Laplace transform, and Fourier transform are all widely 

used integral transforms. Although the problems considered are difficult to solve in their 

original representations, integral transforms provide possible mapping into a frequency 

domain and simplify the corresponding quantitative and qualitative analysis. However, 

the application of integral transforms is not without restriction as it highly depends on 

the parametric form of the model. Homotopy analysis method is an alternative powerful 

technique based on a continuous variation from an initial trail to the desired solution. 

Taking American option pricing under general diffusions as an example, we demonstrate 

the effectiveness, and the flexibility of homotopy analysis. A theoretical drawback is 

that a formal proof of convergence of the homotopic expansion still remains an open 

problem. Future research may consider the corresponding convergence analysis and how 

the ingredients of the generalized homotopy can be chosen so as to reach an optimal 

homotopic approximation by a small number of terms. 
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Appendix 

A Fundamental Solutions in (2.13) and Their Prop-
erties 

Use the notation of Davydov and Linetsky (2001): 

fj, = r — q, X = 
m 

S- -2/3 2；= 
m 

S- sign(/i 外 

A + r 
u = 

m 
The fundamental increasing {i}̂ x+r) and decreasing {(j)x+r) solutions in (2.13) are 

=炉+l/2e�/2J\4，爪⑷，0A+r(5) = 奸 於 ’饥⑷，< Q , ^ 0, 
^A+r(S) 二 奸l/V"2Wfc,“a：), < h + r ⑶= g 奸 地，爪⑷,卢〉“ # 0, 

吻x+riS) = c^x+r{S) = + < 0，" = 0, 

^x+r{S) 二 + <t>x+r{S) = Si/2/“v^2(A + r)2), / ? � 0 ’ " = 0, 

where M k j n � and are the Whittaker functions, and Ii,{x) and Kj,{x) are the 

modified Bessel functions. The corresponding Wronskian and its derivatives are given by 

A � = 0 ；入 +湖) : 
dA(5) 

^A+r 哪 )  
dS 

where 

拟） = e x p S巧 
S. -20 d 制 2 / ^ 5•普1湖 

d 5 
^ A + r = 

2|M|r(2m+l) 
6^r{m-k+l/2) 

fi = 0. 

The derivatives of the fundamental solutions are presented below: 
1. When < 0 and /i 0, 

drPx+AS)— 
~ d 5 — 

d 5 — 

.l+2l3+Al3k-2(3{l+e)x 
2S 

f3il+2k+2m)Mi+k,M 
SMk,m{x) )-^X+riS), 

妒 = d 

dVA+r � — 
d ^ — 

'403+2州 2-1 
^ 

20^{l+2k+2m){l+€)x\ , 
)Mi^’rM 十 

(4/3^(l+k)(l+2k+2m) 

H ^ 

4(/3+2/3fc)^-l 

(x) 

4P^k(l+e)x 
^ 十 

j3^(l+2k+2m)(3+2k+2m)M2+k,m(x) 

丄 f802(l+k) 4沪 ( l+e)a :�H^ i+ fc ^  
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2. When > 0 and // 0, 

~ d 5 ~ — 
dHx+r{S) _ “^~ 一 

~ ~ _ 

V ^ I SWk,m(x) 
f l+2/3+4^fc-2/3(l+e)x — /3(l+2/c+2m)Mi+fc, 

— 4沪fe(l+e)x 丄 , f 8/?^(l+fc) — H î+fe， ‘ ^ r — I I c2 c2 I ~ "452-

4(/3+2_2 —1 

52 

(f>\+r{S). 

2/3^(l+2fc+2m)(l+e 
52 

|_ M 丄 丁 ( 一 

^ ^ — ^ 、 一 

4/?^fc(l+e)x 1 沪 ( l+e)2 4/32(1 十 fc)(l+2fc+2m)  ^  

3. When < 0 and // = 0, 
/ 

/32(l+2/c+2m)(3+2fc+2m)M2+fc’rn(a：) 

dS — 

K + 
d 5 — I 1 2 5 + 

-N 
1 

dS2 - 452 • 

~ ^ ~ — 

t̂ +i(-v/2(A+r)2)) 

(l>X+riS). 

4. When � 0 and // = 0, 

dj^X+rjS) _ ^ ~ ~ — 

d<l>X+riS) _ 

d^i^X+rjS)— 
” ^ _ 

— 

^ + J 仏“"^)， 

4S2 

(l>X+r{S), 

2S^Kuiy/2iX+r)z) 

+ 

B Asymptotic Behavior of Sf{r) Close to Expiry 

When T — 0+ and S < K,hy the continuity of the put option, 

= K - S. (1) 
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If the American put is alive, it satisfies the governing equation (3.3). By substituting (1) 

into (3.3), given that (S, r) lies in the continuation region, we have 

DPA 
dr 

O'PA 
=0+ 2 、， 7 

+ {r -
:o+ DS 

- R P A \ R = 0 + 
--0+ 

=-{r-D{S, T-))S-r{K-S) 

= - r K + D{S,T-)S. 

As in the continuation region, the American put P{S, r) is always above the intrinsic 

value P{S, T) = K — S, to keep it alive until the time close to expiry, we have 

OPA 
dr > 0. (2) 

0+ 

The value of S at which ^ ^ 了=�+ changes sign satisfies S = D(JT-�K. As ^i^sT-)^ 

lies in the interval S < K only when r < D(S,T-）, if r > D[S,T-), the changing sign 

point will become S = K. 

The optimal exercise price S"/(0+) is given by the underlying asset value at which 

Q+ changes sign. We then obtain 5/(0+) by solving the following equation: 9PA 
dr 

綱 = m i n ( 卿 ⑶ 

C The Determination of the Homotopy-Pade Ap-
proximation 

As follows from (3.71), the polynomials on the embedding parameter p, r;p) and 

satisfy 

X nk+NIS,r;p) - W^S,T-p) = as p — 0. (4) 

Substituting = and = 1 + 丁)P^ 

in (4) yields the linear system 
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min(z,n) 

k + n. (6) 

Obviously, r ) can be obtained by solving the equations in (6). With these avail-

able, the determination of r ) from (5) is straightforward. Using Cramer's rule to 

express r ) , it is easy to show that has the determinant representation 

O 、 呢 ( 如 ) 

t ) afc-„+2(<S"’T) 

ak-n+2('S', r ) afc-„+3(<S，T) 

f 4 ( * ) P � 

ak+i{S, T) 

ak+2{S, 丁) 

0^k-n+l{S,T) ak-n+2{S, T) 

ak-n+2{S,r) ak-n+z(S, r] 

pu 

(^k+iiS, r] 

ak+2{S, T] 

(7) 

ak{S,T) afc+i(5,r) . . . ak+n{S,T] 

where = a^S, for m = 0，1，…,and a人S, r ) — 0 for z < 0. 

From = 1 + and (7)，we recognize that 

= 1 + 眷 , ’ ⑶ 

that is, once r) are determined, 1\’„(S, can be received completely without 

actually solving r ) . Setting p = 1 provides the [k,n] homotopy-Pade approxima-

tion 
卢〜o 邮小仏wf(s,丁) x h 善 ) 
PkAS, r) = QkAS, r ; 1) = 1 + 1 lyD^g 丁) ， （9) 

where Pm{S, r ) = 0 for m < 0. 

^^ _ _ 
D Derivation of V{x,tL{0)]b,TL) in Proposition 4.2.3 

In the case of occupation time framework, to separate the influence of the barrier level 

from the dividend value function, we present the solution in R1 and R2 in factorization 
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form as follows: 

( R l ) : For X e ( - 0 0 , 0 ) a n d & ( 0 ) e [0，Tl 

f>/ 7 ,n“ tm H^JL(O)) (10) 

(R2)： For X e (0,b] and 1^(0) € [0,TL 

V(x,0;b,TL) = 
ho(xjL(0)) 
K(BMO)) 

(11) 

Here h{x,tL{^)) and are independent of the barrier level b. The reflecting 

boundary condition at a: = 6 is satisfied automatically. We then obtain the corresponding 

system for /i(a:, ^^(0)) in R1 and 力l(0)) in R2, respectively. 

1. Region One (Rl): For x G ( - 0 0 ,0) and Fl(0) G [0 ,TJ , 

羞 — © + + p⑷工)!！ + 悬 - 妨 = 0 ， 

" ( - o o ， F i ( 0 ) ) = 0 , 

„ — dx 

2. Region Two (R2): For a: G (0,6] and 1^(0) 6 [0,71 

(12) 

+ + (5/10 = 0, 

" o ( 0 + , ? L ( 0 ) ) = / i ( 0 - ， F L W ) , 
洲 0(ar，FL(0)) 

(13) 

=0+ 

_ dh{x,tL{Gi)) 
— ^ 

To solve the PDEs defined in the region R1 and R2, we reverse the occupation time 

by setting t*L = Tl — tL and consider the Laplace transform, 

hi{x) - I := Cs{h{x,tl)), where xeA -St*r a7* 

HNIX] 

The subsidiary equations for (12) and (13) are then given by 

1 ^ d ^ / i i , , d h i -

(14) 

(15) 

(16) 
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豆 — & + ( ” 一 石 - 胁 。 = 0 ， (17) 

with classic solutions 

H x ) = + 5i，2屯2’5+s(a：), ho(x) = + Co,2^0,<5(2；； (18) 

Based on the corresponding boundary conditions and the continuity of the functions, we 

obtain 

d n , l C n , l + dn^2Cn,2 = 0 , 

己iA + & - d'Li^lQ-

- 1 , 2 ^ 1,2 = 0, for i = l,...,n, 

-d*^, 2^1-1,2 = 0, for i = l , . . . ,n , 

(19) 

where Uî i, , di,i, ； ； ？ ？ 1̂,2 are defined in (4.32) and (4.34). It is a system 

of 2n + 1 equations involving 2n + 2 unknowns. To make it identifiable, we rescale the 

unknowns by Co,2 and obtain 

= Q,1/^0,2, = a,2/Co,2,for z = l , . . . ’n, C^̂ , = Co,i/5o,2 C^ ,̂ = 1. 

& = [C^i, 5^-1,1, ^ n - 1 , . . , ’ 丑 1 ， 丑 2 ， 1 is then solvable based on system (19), 

which gives us 

H ^ ) = ⑷ + ho(x) = 5 O ， 2 ( 5 o 丑 ⑷ + 少0，乂工))• 

By inverting the Laplace transform, the solution of (12) and (13) are determined by 

h(xMO)) = hoixMo)) = 

By recognizing the denominator of the factorization form (10-11) satisfying 

h'oibMO)) = Co,2JC；' P^R 
dx 

+ d^oj 
dx 

(20) 

we arrive at the dividend value function V{x,tL{0);b,TL) in Proposition 4.2.3. 
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