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On Stecidy Compressible Flows in a Duct with Variable Sections 

Abstract of thesis entitled: 

On Steady Compressible Flows %n a Duct with Variable Sections 

Submitted by Duan Ben 

for tlie degree of Doctor of Philosophy in Mathematics 

at The Chinese University of Hong Kong in July 2010 

First, we investigate the steady Eulcr flows through a general 3-D axially 

symmetric infinitely long nozzles without irrotationality. Global existence and 

uniqueness of subsonic solution are established, when the variation of Bernoulli's 

function in the upstream is sufficiently small and mass flux has an upper critical 

value. 

Second, we concerns the following transonic shock phenomena in a class of 

de Laval nozzles with porous medium posed by Courant-Friedrichs: Given a 

appropriately large receiver pressure p” if the upstream flow is still supersonic 

behind the throat of the nozzle, then at a certain place in the diverging part 

of the nozzle a shock front intervenes and the gas is compressed and slowed 

down to subsonic speed. The position and the strength of the shock front are 

automatically adjusted so that the end pressure at the exit becomes p^. We 

investigate this problem for the full Euler equations, the stability of the transonic 

shock is proved when the upstream supersonic flow is a small steady perturbation 

of. the uniform supersonic flow and the corresponding pressure at the exit has a 

small perturbation. 



On Steady Compressible Flows in a Duct with Variable Sections 6 

商 要 

首先，我們研究了三維抽對稱無窮長管道中的穩態歐拉流，得到了全局亞音速解 

的存在性和唯一性结論.這裏我們要求來流的布努利數足夠小並且質量流有 

一個上臨界指標.封於這樣一個問题，主要的困難之一是在於一般的穩態歐拉 

系统在亞音速區域，是雙曲拋物偶合的系统.關鍵的地方是我們引進了兩個延著 

流線的不變數，使得流函數框架在這裏是可以使用的.通過這樣的框架，歐拉方 

程組等價於一個擬線性的兩階方程.另外一個困難點是，我們先驗的並不知道 

方程的解是否是一致亞音速的.所以，我們通過截斷的方法，使得方程變成一致 

橢圓的.由於我們考慮的是轴對稱問题，我們還需要面對的一個困難是在對稱抽 

附近,方稱的係數會出現奇性.通過多次的截斷，我們找到一個可以求解的逼近 

問题，並且可以得到逼近解的詳细估計.通過研究逼近解的極限和極限函數的漸 

進行為，還有對稱轴附近的精细估計，我們從而得到了整體一致亞音速解的存在 

唯一'I•生结論. 

其次，我們研究了一類de Laval管道中的跨音速激波問题.特別的，這裏我們 

考慮的是多孔介質邊界問题 .Commit和Friedr ichs在他們的書中曾經提到了如 

下的問题：在给定管道出口一個大的壓力條件下，如杲來流在管喉是一致超音速 

的’是否在張口管道的特定位置會有激波產生並且氣體會被壓縮，之後速度會降 

低為亞音速.這個激波的位置和強度會自動由出口壓力來调节.我們使用整體歐 

拉方程作為模型，研究了上面的問题.封於出口歷力有一个小擾動的情況下，我 

們得到了穩定性的结果，對於這個問题，主要的難點在於激波的位置是一個自由 

邊界問题，還有复雅的相容性條件需要滿足. 
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Introduction 

Many basic phenomena of natural sciences are governed by nonlinear conser-

vation laws of the form 

dtu + dzvF(u) = 0， ueR^,xe IT几 (0.0.1) 

by neglecting those small scale physical effects such that as dissipation, disper-

sion, relaxation, chemical reaction and external sources. The convection term is 

assumed to be hyperbolic in the sense that the n x n matrix ^ • VF(u) has n 

real eigenvalues for all ^ G 脱 \ {0}. For a compressible fluid, if one neglects 

diffusion and heat conduction, it is described the following famous compressible 

Euler equations: 
dtP + div{pu) — 0’ 

dt{pu) + div{pu 0 + Vp = 0， (0.0.2) 

�dt{pE) + div{puE + up) ~ 0, 

which describes the fundamental physical laws in continuum mechanics: conser-

vation of mass, momentum and energy, where x E t G R^; the unknowns, 

p, u e R'j, p and E denote the density, velocity, pressure and total energy re-

spectively, and 五 二 e + 夸 with the internal energy e, and p = p(p，e)• The 

compressible Euler system is one of the most important systems of nonlinear 

hyperbolic conservation laws. 

Investigating in this field is fantastic, since plenty of natural phenomenon are 

governed by balance laws. There are lots of challenging open problems, such 

problems will make a big deal not only in mathematics, also in physics and 

engineering. 

One of the most important feature of (0.0.1) is that the speed of wave depends 

on the wave itself, which leads to great complexity and rich phenomena in the be-

havior of solutions. Generally, smooth solutions will break down in finite time, so 
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the weak solution is essential for hyperbolic conservation laws both theoretically 

and numerically. 

A rather complete and satisfactory theory exists for scalar conservation laws in 

arbitrary space dimensions in terms of well-posedness theory, regularity and com-

pactness of solution operator, large time asymptotic behavior of nonlinear waves, 

local structure of entropy weak solutions, and convergence of various approxi-

mate aolutions generated by either physical perturbations, or various numerical 

schemcs [42, 68, 116]. All the methods working in this case rely essentially on the 

availability of the maximum principle. 

The most important breakthrough in the mathematical theory of shock waves 

for systems is tlic celebrated random choice method pioneered by Glimm [60], 

which yields not only the existence of BV weak solutions for generally one di-

mensional strictly hyperbolic system of conservation laws with small BV data, 

but also precise asymptotic structures [44, 61, 86]. In 1990,s, Bressan successfully 

proved the uniqueness and L^-continuous dependence in the class of the viscosity 

solutions by a semigroup approach in a weighted space [14, 16]. Also, the L � 

coritinuous dependence of Glimm's solution is shown alternative^ later by Liu 

and Yang by constructing a different interesting and very useful functional [87 , 

These yield a satisfactory well-posedness theory for one dimensional hyperbolic 

conservation laws witli small BV data [15 . 

At the end of 1970's, an elegant theory, compensated compactness method was 

developed by Murat [103] and Tartar [109] to solve nonlinear partial differential 

equations and Tartar and DiPerna succeeded in applying the method to solve a 

class of hyperbolic conservation laws [46, 109]. However, this theory seems to 

require the availability of some type of maximum principle and the existence of 

plenty of entropy-entropy flux pairs for the underlying hyperbolic systems. In 

general, those two hold only for scalar conservation law or one dimensional 2 x 2 

system. 
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As important applications for previous theories, for the isentropic gas dynam-

ics, when the initial data is away from the vacuum, global existence of weak 

solution was obtained via Glimm scheme, even for large data in particular case, 

104，105]. When the vacuum appears, global existence was established by the 

compensated compactness theory with various kinds of approximation solutions 

for the system, see [43. 45, 65, 82 . 

However, it seems that the success of the previous theory is somewhat limited 

to scalar or one dimensional system of conservation laws. Since the theory for 

scalar conservation law depends mainly on the maximum principle, which does 

not hold for general systems of conservation laws. The theory of compensated 

compactness docs not work for general system of multidimensional conservation 

laws either, since, in general there are few entropies for multidimensional systems. 

Moreover, it seems that the celebrated Glimm's method is limited to strictly 

hyperbolic system in one-dimension since BV space is not a suitable space for 

hyperbolic systems in more than one dimension [106 . 

For unsteady compressible Euler equations, smooth solutions will blow up in 

finite time for generic smooth initial data [108]. So far, there is no suitable func-

tion space for studying the global-in-time well-posedness of compressible Euler 

equations. Since multidimensional full compressible Euler equations are too dif-

ficult. As a first step to understand multidimensional conservation laws, many 

researchers involved in the work on some important physically relevant wave pat-

terns where a lot of experimental data, numerical simulations and asymptotic 

results have been done. These patterns include transonic flows, standing shock 

in a nozzle, shock reflection phenomena, self-similar flows and other flows with 

various symmetry. Since 1980's. there have been a lot of works on transonic shock 

for quasi-one dimensional nozzles [85], global solution for steady supersonic flows 

past a perturbed cone [80], and unsteady spherical flows [29], etc. Although there 

are some multidimensional physical phenomena involved in all of these work, the 
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governing equations are essentially one dimensional systems with various source 

terms, so the powerful Gliinm sclieme, and even compensated compactness theory 

can be applied. This is the biggest restriction to describe the real multidimen-

sional plienomena. 

The first significant theoretical progress for multidimensional conservation 

laws is due to Majda. By reducing tlie problem into a nonlinear hyperbolic initial 

boundary value problem, he showed local structural stability for multidimensional 

shock fronts with the help of Kreiss theory. Moreover, he successfully applied this 

general theory to two important concrctc examples, multidimensional iscntropic 

Eulcr and full Eulcr equations, see [88, 89]. For the later development in this 

direction, please refer to reccnt nicc book by Berzoni-Gavage and Serre [10] and 

references therein. 

One of the difficulties for compressible Euler equations is that it may have two 

types of discontinuous solutions, shock waves and vortex sheets. Many important 

approximate models were proposed to study some important wave patterns in 

multidimensional fluids. Two of thern are potential equation and incompressible 

Euler equations. Potential flows originate from the study compressible flows 

without vorticity, while incompressible Euler flows concentrate on the effects of 

vorticity. For the comprehensive study on incompressible Euler equations, please 

refer to [92] and references therein. For the study on the exiytence of steady 

incompressible Euler flows in a bounded domain, please refer to Troshkin [110], 

Alber [1], Glass [49], etc, and references therein. 

Compared with Euler equations, potential equation has many advantages to 

help understand multidimensional conservation laws [91]. In fact, for structural 

stability of shock front for potential flows, the theory is not only proved much 

simpler [93], but also quite satisfactory, there are even some global stability results 

63 

Combining some fundamental idea of Majda's with the method of partial 
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hodograph transformations, local structural stability of shock front for a steady 

supersonic flow past a symmetric and non-symmetric body is established in [35 

and [32] respectively. Later on, Chen, Xin and Yin established global existence 

for supersonic flow past a perturbed cone by a deliberate choice of multipliers 

for energy estimates [38]. Surprisingly, it was show that the flow is smooth 

except for the main shock. Recently, Xin and Yin established global existence 

for supersonic flow past a three dimensional body under the perforated boundary 

conditions [122]. For the local structural stability for unsteady supersonic flow 

past a wedge, please see [39 . 

The study on subsonic flows has a long history. For global subsonic potential 

flows, a significant progress was due to Bcrs [11], who showed that for two dimen-

sional flows past a profile, if the Mach number of the free stream is small enough, 

then the whole flow field will be subsonic outside the profile; furthermore, as the 

freestream Mach number increases, the maximum of flow speed will tend to the 

sound speed. Later on, Finn and Gilbarg [54] showed uniqueness of subsonic flow 

past a profile by maximum principles and obtained asymptotic behavior of flows 

at far field. For the three dimensional flows, it was studied initially by Finn and 

Gilbarg [55], and then by Dong [47], the final results are quite similar to the 

two dimensional case, that a subsonic flow exists globally if the freestream Mach 

number is suitably small. Moreover, the maximum of the flow speed will tend to 

the sound speed if the frreestrearn Mach number increases to some critical value. 

We note that Bers' result does not apply to the flow with the critical freestream 

Mach number. In fact,by the maximum principle, Gilbarg and Shiffman [58 

asserted that the sonic point should occur on the profile, which presupposed the 

existence of the smooth critical flows, in this regard, Glibarg and Shiffman [58 

remarked in footnote 8:" The actual existence of critical flows past finite profiles 

of bounded curvature lias been proved by M. Shiffman (unpublished)". Bers also 

mentioned this unpublished result in [12], There is a proof on the existence of 
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weak solution for subsoiiic-sonic flows via compensated compactness method very 

recently by Chen et al [21 . 

OH the other hand, for flows through an infinite ling nozzle, so far it does 

not have a complete theory compared with what has been obtained by Bers, 

et al, for flow past an obstacle. In his famous survey [12], Bers proposed the 

following problem, for a given nozzle, show that there is a global subsonic flow 

through the nozzle for an appropriately given incoming mass flux. Although 

it seems that this problem is quite similar to the airfoil problem physically. It 

docs not seem to be true mathematically and few study lias been carried out 

along these lines. However, one should note the significant result due to Gilbarg, 

57], where he showed that if an subsonic plane nozzle flow or axially symmetric 

flow approximates to uniform subsonic flows at far fields，then the flow speed 

oil the boundary is monotone increasing with respect to the incoming mass flux 

by a comparison principle. Recently, Xie and Xin [112，113, 114] answer Bers' 

problem firwt on subsonic potential flow in both 2-D and 3-D axially symmetric 

nozzle and Euler flow in 2-D nozzle. One of the aims of this thesis is to give a 

positive answer the problem for Euler flows in 3-D axially symmetric infinitely 

long nozzle. Moreover, we would like to show that there exists a critical value 

such that a global uniforni subsonic flow exists uniquely in a general nozzle as 

long as the incoming mass flux is less than the critical value. More importantly, 

we would like to investigate the properties of these uniform subsonic flows； so 

that we can obtain a class of subsonic-sonic flows corresponding to the critical 

incoming mass flux as the limits of uniform subsonic flows associated with the 

incoming mass fluxes which increase to the critical value. 

Concerning transonic flows, some significant progress was made by Morawetz, 

she showed that smooth transonic flow>s past an airfoil are not stable by multiplier 

method [96，97, 98, 99]. One of the most important features for transonic-flow 

problems is that the governing equations are of mixed type. A unified treatment 
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for mixed type equations was developed by Friedrichs, he used energy method 

to develop the whole theory for positive symmetric systems, such as existence, 

uniqueness of weak solutions, admissible boundary conditions, and regularity of 

solutions, etc [56, 70]. Recently, this idea was used by Kuzmin to treat accelerated 

transonic nozzle flows and transonic nozzle flows with perforated boundary condi-

tions [69]. Another important contribution to transonic flows by Morawetz is on 

the existence of a weak solution to transonic flows via the theory of compensated 

compactncss in some special eases [100, 101 . 

For quasi-one-dimensional model, Liu [84, 85] studied gas flow along a duct 

in a one-dimension model for both the case of a duct with variable sections and 

the case of a duct with constant sections. He showed that the flows along the 

expanding portion of the nozzle are stable, while flows with shock waves along 

the contracting duct are dynamically unstable by Glimm scheme method. Embid, 

Goodman, and Majda [51] studied the existence of multiple steady states with 

the same far field behavior for simple one-dimensional transonic model problems 

by using some explicit solutions in a scalar model case. They showed that only 

some of these solutions in a scalar model case. They showed that only some of 

these solutions are dynamically stable and are accessible through physical time 

independent perturbations. 

In [20]. the authors established the existence and the stability of a uniform 

planar transonic shock for the two-dimensional transonic small disturbance equa-

tion (TSDE). TSDE is the first order of an asymptotic expansion for flows around 

slender bodies at free-stream speeds close to sonic speed and can be written into 

a second-order nonlinear equation mixed type in two dimension with the coeffi-

cinnts depending only upon the unknown function itself. Since the coefficients of 

the TSDE equations are independent of the gradient of the unknown function, 

additional compactness of solutions can be obtained which play a key role in the 

analysis of [20 • 
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It should be noted that there are some important recent works on other ap-

proximate models for compressible Euler equations, such as transonic small dis-

turbance equation, pressure gradient system, and nonlinear wave systems, etc. 

The existence and stability of transonic shocks, shock reflection, and Reimann 

problems for there systems were studied by Canic, et al, [17，18, 19, 20] and Zheng 

125, 126；. 

For the numerical method for hyperbolic conservation laws, please refer to [40 , 

There is a very nicc introduction to one dimensional viscous conservation laws in 

117]. The rccent progress on general existence theory for compressible Navier-

Stokes equations is summarized and presented in detail in [81] and [52]. For the 

reccnt work on inviscid limit of viscous problems, please refer to [13] for general 

one dimensional sysstem with general small BV data, [64] for multidimensional 

shock data and reference therein. 

For the transonic flow with shock in an infinitely long nozzle, the existence 

and stability of multidimensional transonic shock are also established in a series 

of papers [25，26，27]. In this case, the transonic flow is governed by the inviscid 

potential flow equation with supersonic upstream flow at the entrance, uniform 

subsonic downstream flow at the exit at the infinity, and the slip boundary con-

dition oil the nozzle wall. They find that for this problem, one can prescribe the 

uniformity condition of the flow but can not prescribe a velocity state at infinity 

in the downstream direction in general. After that, Xie and Wang [115] show 

that the uniform transonic shock wave in an infinite cylindrical nozzle is stable 

with respect to a perturbation of the incoming flow and of the nozzle wall. In a 

rccent paper [36] of Chen and Yuan, they study the uniqueness of solutions with 

a transonic shock in a duct, which arc not necessarily small perturbations of the 

background solution for steady potential equation. Their results indicate that for 

transonic shock solutions in semi-infinitcly long ducts, the a priori assumptions 

on tlie asymptotic behavior of transonic shock solutions in an infinitely long duct 
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in [25, 26, 27] may not be necessary. One just need the reasonable assumptions 

that the velocity and acceleration of the flow are bounded. 

Concerning the transonic flow for full Eiiler equation, the authors in [23 

establish the existence and uniqueness of transonic flow with a transonic shock 

when the flow is in a finite nozzle of slowly varying cross-sections with nearly 

horizontal velocity at the exist of the nozzle. 

As described in [41], from tlie physical point of view, it is more reasonable 

to proscribe the pressure at the exit of the nozzle. For the steady potential 

equation and the slowly-varying nozzle walls, Xin-Yin [118, 121] showed that 

the well-posedness of the transonic shock problem can not be true for arbitrary 

large pressure at exit. In the case of instability, they found a class of pressures 

such that the transonic shock problem is stable and satisfies the given boundary 

conditions. The main ingredients of their analysis are a generalized hodograph 

transformation and multiplier methods for elliptic equation with mixed boundary 

conditions and corner singularities. 

With the exit pressure condition, this phenomena is also true for the steady 

two dimensional compressible Euler equations in (—A î, N2) x (0,6) when the 

shock is assumed to go through some fixed point. In [119], the authors proved the 

iiiiiqiieness of the transonic shock problems in a 2-D nozzle under the assumption 

that the shock wave goes through a fixed point and then, based on the uniqueness 

result, they proved the nonexistence of transonic solution for two dimensional 

nozzle with flat walls without the assumption that the shock front goes through 

a fixed point. For a divergent nozzle with a given large pressure at the exit of 

the nozzle, there is also no such a transonic shock solution if the shock front is 

assumed to go through a fixed point. 

Note that the uniqueness results in [119], [118, 121] are obtained under the ad-

ditional assumption that the shock curvc goes through a fixed point in advance. 

However, as showed in [119], this additional condition may lead the transonic 
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shock problem to be over-determined for a divergent nozzle. In a series of pa-

per [71，72, 73], the authors have found a new way to determine the position of 

the transonic shock and remove the undesired assumption that the shock curve 

goes through a fixed point so that the transonic shock problem as described by 

Courarit-Friedrich is well-posed. Compared with the results in [118, 121], the 

different Bernoulli's constants or entropies on two sides of the shock is closely 

related to tlie existence and the position of the shock wave. In their analysis, the 

tiansonic shock problem was reduced to solve a boundary value problem for the 

steady Eulcr system in the subsonic domain with a free boundary (the shock sur-

face) ,which can be reformulated as a system consisting of an ordinary differential 

equation for the shock with a free initial position, a first order nonlinear elliptic 

system for the pressure and angular velocity, and two transport equations for the 

specific entropy and Bernoulli's function respectively on a fixed domain. The new 

key ingredients are to establish the monotonic property of the pressure along the 

nozzle walls and to estimate the gradients of the solution instead of the solution 

itself so that they can avoid the difficulties induced by the unknown position of 

the shock. Actually in 2-D case, they obtained the existence and uniqueness of 

transonic shock in the slowly-varying nozzle with variable end pressure. In 3-D 

case, the uniqueness is still true but the existence result is only obtained in the 

case of the axis-symmetric exit pressure. It should be emphasized that in almost 

all the previous work [71, 72, 73], the diverging part of the nozzle is assumed to 

change slowly so that the subsonic flow of the background transonic shock is close 

to a constant state, which are crucial in the procedures of analysis and related 

estimates. In [74], the authors have found an effective way to decompose the Eu~ 

ler system to a canonical form, in which the hyperbolic part and the elliptic part 

are only weakly coupled in their coefficients. The key issue is to solve a bound-

ary value problem for a first 2 x 2 elliptic system with non-local terms and an 

unknown parameter. By a new elaborate iteration scheme, the authors are able 
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to solve the transonic shock problem without some artificial boundary conditions 

on requirement of the divergent part of the nozzle being slowly-varying. 

In this thesis, first we give an affirmative answer to Bers' problem on subsonic 

Euler flows in infinitely long nozzle. We will show that, for 3-D axially symmetric 

nozzle, if the variation of Bernoulli's constant in far field is sufficiently small, the 

there exist true Euler flows in the nozzles with prescribed mass flux in a suit-

ably regime with an upper critical value. One of the main difficulties is that the 

governing equations are a mixed elliptic-hypcrbolic system. Wc introduce two 

invariants along the stream lines, then stream function formulation can be avail-

able. By this formulation, Euler equations are equivalent to a quasilinear second 

order equation for a stream function so that the hyperbolicity of the particle path 

is already involved. Another main difficulty is that one does not know a priorly 

whether tiie flow is uniformly subsonic, we first truncate the equation to be a 

uniformly elliptic equation, then we need to give a priori estimate as good as 

possible to remove the truncation. For axially symmetric flows, besides the diffi-

culties above, the equation contains singular coefficients near the symmetric axis. 

We use several truncations to have a solvable approximate problem and detailed 

elliptic estimates. By those, we proved the global existence of subsonic solution 

and obtained the asymptotic behavior. For this problem, all boundary conditions 

and far field conditions are carefully selected from physical observation, such that 

the problem itself is closed. 

Second, we investigate transonic shock phenomena in a class of de Laval noz-

zles with porous medium posed. For the full Euler equations, the stability of the 

transonic shock is proved when the upstream supersonic flow is a small steady 

perturbation of the iiniform supersonic flow and the corresponding pressure at the 

exit lias a small perturbation. The main difficulties are the free boundary prob-

lem of the shock position and the complicated compatibility conditions becausc 

of the leakage on the boundary. The key point is to establish the monotonic-
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ity between shock position and end pressure. With this monotonic property, 

we proved the existence and uniqueness of a transonic shock solution to the full 

steady compressible Euler system in this class of nozzles. 

The rest of the thesis is arranged as follows: In Chapter 1, we recall some 

basic definition and theorems of elliptic equation which we used in following 

chapters. In Chapter 2，we established the existence and uniqueness of subsonic 

flows through, infinitely long three dimensional axially symmetric nozzles. In 

Chapter 3, two dimensional Transonic Shocks in Nozzle with Porous Medium is 

investigate. In the last Chapter, we give a brief summary and discuss about the 

future work. 



Chapter 

Preliminaries 

In this Chapter we will intioduce some basic definitions and theorems for elliptic 

equations, which will be used in this thesis 

Consider a second oider differential equation of the form 

L - + b\x)D,u + c{x)u a” - oP (1 0 1) 

where x ~ (xi, , lies in a domain fl of M", n >2 

Definition 1.0.1 The operator L m (1 0 1) is said to be elliptic at a point x eU 

if the coefficient matrn is positive, that is , if A(x)； A(a;) denote respec-

tively the mimmum and maximum eigenvalues of [a^^], then 

for all ^ = (<̂ 1, , G M" \ {0} If X > 0 in Q, then L w called elliptic m il, 

and strictly elliptic tf X > Xq > 0 for some constant Aq IfhJXis bounded m 

we shall call L umfoj mly elliptic in Q 

The maximum piinciple is one of the most important properties for elliptic 

opei ator, which is the following 

Theorem 1.0.1 fChapter^ of [59]) Let L in (10 1) be elliptic m the hounded 

domam 0 Suppose that 

Lu > 0(< 0) m n, c 二 0 in 

15 
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with u e n Thus the maximum (minimum) of u in Cl is achieved 

on that is, 

sup u — sup u (inf u = inf u) ‘ 
n dci ^ 如 

Next, we introduce a class of special domains: 

Definition 1.0.2 The domain ft is said to satisfy an mtenoi sphere condition 

at Co G dQ if there exists a ball Bc.il with Xq E dB. il is said to satisfy the 

exfenor spliere condthon at xq G dQ ？/ the complement of Q satisfies an rntenor 

sphere condition at xq G dQ 二 dW. 

Then we state the following Hopf Lemma. 

Lemma 1.0.2 (Chapters of [59]) Suppose that L defined m (1.0.1) is uniformly 

elliptic, c 二 0 and I/u t 0 in fl. Let xo € dQ be such that 

{i) u IS continuous at rz;。， 

u{xq) > u{x) for all x E fi, 

(M?) dQ satisfies an interior sphere condition at Xq. 

Then the outer normal denvative of u at xo； if it exists，satisfies the strict m-

eqaahty 
d u . . 八 

T(工0) > 0. 
du 

If c < 0 and c/X is bounded, the same conclusion holds provided u{tq) > 0； and 

i} u(xo) = 0, the same conclusion holds irrespective of the sign of c. 

By the Hopf Lemma above, we can strengthen the maximum principle: 

Theorem 1.0.3 (Chapters of [59]) Let L in (1.0.1) be uniformly elliptic, c 二 0 

and Lu > 0(< 0) m a domain Q (not necessary bounded). Then if a achieves its 

maximum (mmini urn) in the interior of Q, u is constant . If c < 0 and c/X is 

bounded, then u can not achieve a nonnegatwe maximum (nonpositive minimum) 

in the rntenor of Q unless it is constant. 
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111 Theorem 1.0.1 and Theorem 1.0.2, Lu is either nonnegative or nonpositive. 

If this assumption is not true, we can write = rriax{u, 0}, f— = rritn{f, 0} 

and tlien the following a priori estimate holds. 

Theorem 1.0.4 (Chapters of [50j) Let Lu > /(— / ) in a bounded domain Q, 

where L defined in (1.0.1) is elliptic, c <0, and u e fl C^iQ). Then 

sup u(|n|) < supu + Csup 
n do. n A 

r i f\f \ 

a'J 
( 1 . 0 . 2 ) 

where C w a constant depending only on dzamQ and (3 ~ sup \h/X\. In particular, 

if i1 hes between two parallel planes with distance d, then (1.0.2) is satisfies with 

C 

Now. we note that Holder space is a suitable space to study classical solution 

of elliptic equations, which is intioduced in many textbooks. 

f is said to be uniformly Holder continuous with exponent a in D if the quantity 

IS finite. 

Set 

f 尸 sup o < a < 
x,yeD x^y ~~ V 

Define 

u]ko,n = iD̂ wlo，!̂  二 sup sup /c 二 0,1,2， 
\0\=k n 

二 sup [D^u 

IMIc 响 U k,n = MMI^ 二 X^MzAii = ^ I仍 i 

lU (n) = n 二 + = l̂ l̂fc.Q + [D^U 

= € C^(il), \u\k,a,E < CO, for each compact setE (g O}. 

The Holder space has the following properties: 
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Lemma 1.0.5 (i) I f f e M) andg e (7丄"(Q, f/)，then fog e E), 

where rn ~ rrurL(k, 7). 

(iL)(Chapter6 of [59j)Let Q be a C^-^ domain in M" (with k > 1) and let S be a 

bounded set m C^ "(O). Then S is precompact m C^'^(Q) if j + ,8 < k a. 

At this stage, we can state the global Schauder estimate for elliptic equations 

in terms of Holder space. 

Theorem 1.0.6 (Chapter6 of [59]) Let Q be a C切 domain m R^ and let u G 

C^ "(fi) be a solution of Lu = f in Q, where f G and L is of the form 

(1.0.1) and the coeffictents of L satisfy 

and 

0 Si) < A, 

for positive constants A and A. Let ^{t) £ C^'^^(Q), and suppose u — (f on dft. 

Then 

2,a,fi < C'd^lo.fi + M2i«’f2 + 1/ u 0 a几 

where C — a. A. A, Q). 

By virtue of the Schauder estimate above, the solvability of Poisson equation 

and the method of continuity, we can show the existence of elliptic boundary 

value problems. 

Theorem 1.0.7 (Chapterd of [59]) Let L m (1.0.1) be strictly elliptic in a bounded 

domain fi； with c < 0； and let f and the coefficients of L belong to Sup-

pose that il IS a C^'" domain and that cp € C^'^ijl). Then the Dznchlet problem, 

Lu = f in Q,. u ~ if on dil, 

has a (unique) solution lying m 
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For the existence of quasilinear elliptic equations, we usually use the Leray-

Scbauder fixed point theorem as following; 

Theorem 1.0.8 (Chapter 11 of [59]) Let T be a compact mapping of a Banach 

space B into itself, and suppose there exists a constant M such that 

\X\\B < M 

for all X £ B and a 6 [0,1] satisfying x = aTx. Then T has a fixed point. 

Then, we get the existence theorem for quasilinear elliptic equations. 

Theorem 1.0.9 (Chapter 11 of [59]) Let Q be a hounded domain in R^^ and sup-

pose that 

Qu = u, Dv)D”u + 6(.t, u, Dv) 

IS elliptic in Q with coefficients a”，b G C" (nxRxR" ) , 0 < q < 1. Let dn e 

and LP e (72 唯 ) . T h e n , if for some /? > 0 there exists a constant M，independent 

of u and g，such that every solution of the Dirichlet problem^ 

QaU = a”（00，u, Dv)D”u + ab(x, u, Du) — 0 in H, 

u ~ a(p on d^}, 0 < cr < 1 

satisfies 

M l c i ^ < M, 

it follows that the Dirichlet problem, Qu = Q in i^，u = (p on dQ, is solvable in 

For elliptic equations of two variables, we have the following nice estimate and 

then the existence theory. 

Theorem 1.0.10 (Chapter 12 of [59]) Let u be a bounded solution of 

Lu = a{x, y)urx + 26(,-r, ？ + c{x, y)uyy = / , 
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where n C ^^ is a C^ domain and that u 二 0 on dQ, L is uniformly elliptic, 

satisfying 

K e + rf) < + _ + cn' < 7A(f + 7/2)’ 

where X{x y) > 0 and 7 > 1 a constant Then for some a == a;(7) > 0，we 

have 

< c 

whete C 二 C{\v\q, | / / A | O , 7,dzamVt) is a continuous junction satisfying 

C(0, 0 diamO) 二 0 Moreover，C is increasing with respect to all the 

above five quantities 

Theorem 1.0.11 Let n be a C^ ^ domain in JR̂  and let (f E Then if 

quasilmear operator 

Qu 二 y, u, u^ Uy)u:cx + y, u^, uy)uxy + c{x, y, u^ Uy)Uyy 十 f[x, y, u^, Uy) 

satisfieb (ondihons 

• The functions a = a{x y u p, q), , f = f(x, y, u,p, q) are defined for all 

(x, y, q) mflxRx R^ and, m addition, a, b,c, f e x M x R^) foi 

some f3 G (0,1)， 

• The operator Q ts uniformly elliptic m ^ for hounded u, that is, the eigen-

vahies A = X{x, y, u,p G)； A — A(T y, v p, q) of the cocfficienf matrix satisfy 

1 < Y < MM) , V(x y,u,p, g) G X R X A 

where 7 is non-decreasing, 

• The function f satisfieb the structure conditions 

f 
A 

signu < 1/(1 + \p\ -f |<7|), V(a:, w p, 6 fi x M x f z --<� . - I —� W/ _ . . .. 一、r . . THI . . Tn)2 
A 

where fi ts non-deer easing and v is a non-negative constant 
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Then the Dirichlet problem 

Qu — 0 in O, u = (fi on <90, 

has a solution u G C^'^(Q). 

Finally, we state the gradient estimate for solutions to elliptic equations, which 

lead the estimate. 

Theorem 1.0.12 (ChapterlS of [59j) Let u € C2(?I) satisfy |ii|i.n = K and 

Qu — Q in il where Q is elliptic in Q and is of divergence form 

Qu ~ divA{x, u, Du) + B{x, u, Du) 

with xMxM"). Suppose that there exist positive 

constants Xk, A a- and /uk such that 

\Dp.A'(x,z,p)\ < A/<, 
PjDzA'{x.,z,p) + D^ A'{x,z,p) \ + \B{x,z,p)\ < /.lk, 

for all X E + S K, i, j n. Then if dil E C^ and u = {p on dO., 

where ip e C2(r2) with =否，we have the estimate 

Du]a-fi < C 

where 

C = K, <̂)， « 二 a(n, AK/^K, 



Chapter 2 

Subsonic Euler Flows in Axially 
Symmetric Nozzle 

2.1 Introduction and main results 

In this paper, we establish the existence and uniqueness of the steady subsonic 

flow through an infinitely ]orig axisyinrnetric nozzle. Such problems rise naturally 

in the physical experiments and the engineering designs. (See [12] and [41] and 

references cited therein) 

To understand some important phenomena in Steady ideal fluids, it is na-

ture to start from the steady Euler equations. However, the steady Euler equa-

tions themselves arc not so easy to tackle. An approximate model is potential 

flow, which comes from the study of flows without vorticity. Since 1950，s, a 

lot of progress has been made in understanding the potential flows and Euler 

flows. Subsonic potential flows wore studied extensively by Shiffman [111], Bers 

11], [12], Finn, Gilbarg [54], [55j, Chen, et al [21] and Morawetz [96]-[101]，et 

al. In 2006, Xie and Xin [112]，[113] established the wellposedness for subsonic 

and supersonic-sonic potential flows through infinitely long 2-D and 3-D axially 

symmetric nozzles. Recently, Du, Xin and Yan [48) proved the existence and 

22 
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uniqueness of global subsonic potential flows through infinitely long nozzles for 

arbitrary dimension. For subsonic Euler flows, Xie and Xin [114] established the 

global existence of steady subsonic Euler flows through infinitely long nozzle by 

using the stream function formulation when the variation of Bernoulli's constant 

in the upstream is sufficiently small and mass flux is in a suitable regime with an 

upper critical value. 

In this chapter, we establish the existence and uniqueness of global steady 

subsonic Euler flows though 3-D infinitely long axialiy symmetric nozzles. 

Consider three-dimensional steady iseiitropic Euler equations 

ipui)xi + ip'U2)x2 + ipuH)x3 = 0, 

{puDxi + {pUiU2)x2 + (f^lU3)x3 + -Pxi 0, 
( 2 . 1 . 1 ) 

where p 

pressure. 

0 for p > 

the state 

(pUiW2)xi + 十 + Px2 = 0, 

(pUiU2)xi + + {puD^., + P-ra = 0， 

is the density, (ui,u2,u3) is the velocity, and P = P{j)) denotes the 

In general, we assume P = P[p) is smooth with P'(p) > 0 and P"(p) > 

0, c(p) = \ l i s called the sound speed.For the ideal polytropic gas, 

equation is given by 

P(p) 二 Ap\ 

where A and 7 are positive constants with 7 > 1. Since the length of the nozzles 

is usually much larger than their cross-sections in the practical application, then 

problem can be formulated mathematically into an infinite long nozzle problem. 

We consider the flows through an infinitely long axisymmetric nozzle as 

= I 0 < V â i + < / ( 工 1 ) ， - oo < Xi < + 0 0 
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where / (x i ) satisfies 

f{xi) 1, as —( f ( x i ) r-Q > 0 , a s xi - > + 0 0 ， 

(2.1.2) 

1/I1c2’"(r) < C for some a > 0, C > 0 and irif f{xi) ~ b > 0. 
M 

Assume that the nozzle wails are solid, then the flow satisfies no-slip boundary 

condition 

(til, ti2, u^) • n = 0 on dfl, (2.1.3) 

where n is the unit outward normal to the nozzle walls. The continuity equation 

in (2.1.1) and the no-flow boundary condition (2.1.3) imply that the mass flux 

{pui，pu2,pus) • Ids = mo (2.1.4) 

remains for some positive constant mo, where E is any surface transversal to the 

.T丄-axis direction, I is the normal of E in the positive xi-axis direction. 

In this paper, we focus on the axisymmetric flows, so let the fluid density 

and velocity be p(x, r) and {U(x, r), V{x, r), W{x, r)) in cylinderical coordinates, 

where U, V, W are axial velocity, radial velocity and swirl velocity respectively, 

X ~ Xi, r 二 \ + xl- Furthermore, we seek such a flow without swirls, one has 

ui 二 U2 = V(x,r)~, W3 二 " r ) 巧 r r (2.1.5) 

Then, instead of (2.1.1), we have 

{rpU)^ + {rpVl 二 0, 

(2.1.6) 

The system of conservation laws (2.1.6) in the cylinderical coordinates can be 

written in a matrix form as 

AF^ + + C - 0, 
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where 
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[ U c ' i p ) 
P 、 

c\p) 0 

( 崎 ） 0 

P 
f VCHP)] 

r 

二 pU 0 ， B = 0 pV 0 , 0 = 0 

、 0 0 pU J 、 彻 0 pv J 、 0 

and F = (p, U, Vf is the unknown function. Then the eigenvalues of the sym-

metric system are 

V
 r
y
 

-
一
 

1
 

UV 土 C(P) 

IP — C2(P) ‘ 

which are the solutions of 

det(AA - B ) = 0. 

Clearly, if the flow is supersonic, io., — > 0, the system has three real 

eigenvalues, the steady Euler system (2.1.6) is hyperbolic; Whereas, if + -

c^(p) < 0, io., the flow is subsonic, the system has a real eigenvalue Ai and two 

complex eigenvalues 入2,3，the steady Euler system (2.1.6) is hyperbolic-elliptic 

coupled system, which implies we have to deal with the hyperbolic mode, even 

for globally subsonic flow. This is the one of main difficulties in this paper. 

Rewrite the axisymmetric nozzle as 

Qq = {(;r, r ) | 0 < r < / (x) , — 00 < ‘T < + 0 0 } 

with axis and boundary of the nozzle 

Ti = {(x, r)Ir : 0 , —00 < x < + 0 0 } , T2 = {{x, r)|r = f{x), —00 < x < + 0 0 } . 

For convenience, we denote by Q. the interior of the nozzle except the axis, 

n = Qo\Ti 二 { 0 ’ r)|0 <r < / ( . T ) , - CXX .X < + 0 0 } • 

Here, f satisfies the condition (2.1.2). 



On Steady Compressible Flows in a Duct with Variable Sections 26 

The no-flow bouiiddry condition (2.1.3) becomes 

(f/, K 0) • fti - 0 onTa, (2.1.7) 

where Ui is the unit outer normal of nozzle walls in cylinderical coordinates. 

Moreovei, since T] is the .symmetry axis in the original problem, by symmetric 

property, we also have 

(/7, K 0) • no = 0 on7\ : (2 .1 .8 ) 

where tTq is the unit vector which is perpendicular to the axis T\‘ The mass flux 

condition (2.1.4) can be rewritten in the cylinderical coordinates as 

mo 1 (rpU, rpV. 0) . tdS 三 m 二� 
Vs 27r 

1
 

where E IS any curve transversal to the x-axis direction and I is unit normal 

E. 

9) 

of 

Due to the continuity equation in cylinderical coordinates 

.,pU)工 + {rpV)r = 0, (2 .1 .10 ) 

one can introduce a stream function ip — ip{x, r) such that 

A 二 —rpV, ijjr = rpU. 
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Combining the continuity equation, when the flow is away from vacuum, the 

momentum equations are equivalent to 

UU工 + VUr + h[p)工=0, + VVr + h(p)r = 0, (2.1.11) 

where h(p) is the enthalpy of the flow which satisfies h'(p) — . To determine 

/i(/j), we have to specify the integral constant. For example, we always choose 

h(fi) = 0 for poly tropic gas 7 > 1, 
(2.1.12) 

/i(0) = 1 for isothermal gas 7 = 1, 

Recalling the definition of the stream function, (2.1.11) implies the Bernoulli's 

law 

•丄 . V h [ p ) 十 • “ J = 0, (2.1.13) 
V 2 y 

Ip + y2 
where V 二 (d^, dr) and •丄={dr , -d^). The quantity B{p, U, V) - h(p) + -

is so-called Bernoulli's function, which remains a constant along each streamline. 

For the Eulcr flows in the axisymmetric nozzle, wc assume that Bernoulli's 

function is given in the upstream, namely, 

hip) H > B{r) as x - 0 0 , (2.1.14) 

where B{r) is a smooth function defined on [0,1. 

Before stating the main results in this paper, wc give some notations as follows 

Bq = inf h{p) 
p>0 

0 for polytropic gas 7 > 1’ 

- c o for isothermal gas 7 = 1， 

B= inf B{T), B= sup B(R), d - ||5'(r)||co.H[o,i]) (2.1.15) 
汗[0，1] re[0’l] 
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Theorem 2.1.1 (Existence) Suppose the nozzle satisfies {2.1.2) and the Bernoulli 's 

function B{r) in the upstream satisfies 

B>Bq, B'{r) 1]), B'{Q) = 0, B'{r) > 0 on r € [0,1；. 

(2 .1 .16) 
^ - ，1 

Then there exists a ()�o > 0 such that if 5 < then there exists m < 26q such 

that for any m E {6^, fh), there exists an axisymmetric subsonic flow through the 

nozzle with mass flux condition {2.1.9) and the asymptotic condition (2.1.14) in 

the upstream. 

Furthermore, the flow is globally uniformly sub some and the axial velocity is 

always positive, i, e.， 

sup { V + 1/2 — < 0 肌 u >Q 
Q 

Theorem 2.1.2 (Properties of the Flows) Suppose 

2.1.1 hold. Then the sub some flow m Theorem 2.1.1 

in Q: (2.1.17) 

the hypotheses of Theorem 

satisfies 

pIIci,"⑶，II列(7i,«(n)’ < C 1
 

/
—
\
 

for some constant C > 0, and possesses the following asymptotic behaviors in far 

fields 

p po > 0, U 4 Uo[r) 

Vp VC/-> (0, U'qO 

uniformly for r G Ki CC (0,1)， 

> 0, 4 0 AS X -oo , 

•)) > 0, W 0 AS X -oo , 

and 

(2.1.19) 

/?->/?!> 0, U — Ui{r) > 0, V as x +oo, 

Vp -> 0, VU ^ (0, U[{r)) > 0 , VV as x+oo, 

(2.1.20) 

uniformly for r e K2 CC (0, Vq), where pQ and PI are both POSITIVE constants, and 

Pq, Pi, Uo{r) and Ui{r) can be determined by m, B{r) and r�unique ly . 
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Theorem 2.1.3 (Umqueness) The axzsyrnmetnc umformly suhsomc Euler flow 

in Theorem 2.1.1 is unique. 

Theorem 2.1.4 (Critical Mass Flux) Assume that the hypotheses of Theorem 

2.1.1 hold, and B{r) also satisfies 

B'{1) = 0, (2.1.21) 

then there exists a critical mass flux m�such that for any rn € 'fric), there 

exists a unique axisymmetnc subsonic flow through the nozzle with mass flux 

condition (2.1.9) and the asymptotic behavior {2.1.19). Moreover, rric is the upper 

critical mass flux for the existence of subsonic flow in the following sense: either 

sup (f/2 + � ) 0 as in trie (2.1.22) 
n 

or there is no a > 0 such that for all m E (jric, m�+ (^)； there are Euler flows 

With the mass flux m through the nozzle which satisfy the asymptotic condition 

(2.1.14), the asymptotic behaviors {2.1.19) and 

sup sup (c2(p) — (U) + V 2 ) ) � 0 . (2.1.23) 
mG(m, ,Wc-\-cr) Q 

Remark 2.1.1 In [112], [113] and [114], Xie and Xin established the above re-

sults m Theorem 2.1.1-Theorem 2.1.4 fi^^st on subsonic and sub sonic-sonic 'poten-

tial flows in both 2-D and 3-D cmally symmetric mfimtely long nozzle, and then 

on steady suhsomc Euler flows m 2~D mfimtely long nozzle. Our 't esults are the 

extension to steady subsonic Euler flows in case of 3-D axially symmetric nozzle. 

Remark 2.1.2 One of the mam difficulties for the general steady Euler flows 

IS that the governing equations are a mixed elliptic-hyperbolic system even for 

umjoymly suhsomc flows. In 2-D Euler flows, Xin and Xie used stream function 

formulation for suhsomc-sonic flows. However, for general 3-D Euler flows, there 

IS no such formulation. Fortunately, motivated by Xin and Xie, we use two 
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invariants along the stream lines such that stream function formulation can be 

available for axially symmetric case. By this formulation，Euler- equations are 

equivalent to a quasilinear second order equation for a stream function so that the 

hyperbolicity of the particle path is already involved. 

Remark 2.1.3 Another difficulty is that one does not know a priorily whether 

the flow ts uniformly sub some. When the flow approaches to sonic, the equation 

becomes degenerate. Thus we first truncate the equation to be a uniformly el-

liptic equation, then we need to give a more precise a priori estimate to remove 

the truncation. For axially symrnetnc flows，besides the difficulties above, the 

equation contains singular coefficients near the symmetric axis. Unfortunately, 

different from the 3-D axially symmetric potential flows, the equation does not 

have a variational structure, which helps to establish existence of subsonic flow 

in [113]. So, we use several truncations to have a solvable approximate problem, 

and precise elliptic estimates. By those, we proved the global existence of subsonic 

solution and obtained the asymptotic behavior. 

This paper is organized as follows. In the next section, based on the stream 

function formulation in [114], we first reformulate the problem into a quasilinear 

second order equation for the stream function under the asymptotic assumptions 

in the upstream. In section 3, we consider the existence of the stream function 

problem. Since the problem for stream function may be degenerate near the sonic 

and occurs singularity on the symmetric axis, we truncate the coefficients of the 

equation and formulate a uniformly elliptic problem without singularities. On the 

other hand, the problem is in an unbounded domain, we first solve the approx-

imating problems in the bounded nozzle with the Dirichlet boundary condition. 

To remove the truncation and the singularity, we establish the uniform estimates 

in section 3 and show the solutions of the approximating problems converge to 

the one of the original problem. The stream function formulation depends on 

the assumption of asymptotic behavior and the positivity of the axial velocity, so 
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in section 4, we will show the subsonic flow induced in section 3 satisfies these 

properties. With these properties, the formulation is consistent with the original 

problem for steady Euler flows in the infinitely long axisyrnmetric nozzle. In sec-

tion 5, the uniqueness of the axisyrnmetric uniform subsonic flow is established 

by energy estimate. In the last section, the existence of the critical mass flux is 

proved. 

2.2 Stream function formulation 

In this section, under the asymptotic assumptions in the upstream, we refomrn-

late the original subsonic problem into a boundary value problem with a quasi-

linear second order equation for the stream function. The steady Euler system is 

hyperbolic-elliptic coupled system even though the flow is globally subsonic，so 

we have to deal with the hyperbolic mode, which is the main issue in this section. 

2.2.1 The invariants. 

Set w 二 — Ur. It follows from (2.1.11) that 

dr{uu, + vUr + H p ) , ) + d , { u v , + KI； + h{p)r) - 0， （2.2.1) 

which implies that 

(U, V)-Vuj + u div{U, y ) 二 0, (2.2.2) 

where div denotes the divergence operator respect to cylinclerical coordinates 

{x, r). The continuity equation in (2.1.6) implies that 

div(/7, V) 二 V) . \/{rp) (2.2.3) 

provided the flow is away from vacuum. Substituting (2.2.3) into (2.2.2) yields 

that 

/ CJ \ / LJ\ I / u\ 
[U�V)- I S/uj ——V(rp) = rf)(U, K) • V — = •丄妙• V — - 0. (2.2.4) 

\ ^P J VPJ VPJ 
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(jj 
Note that, this means that the quantity — remains an invariant along the stream-

‘ rp 
line and it is functional dependent on Similarly, Bernoulli's law (2.1.13) im-

plies that the Bernoulli's function h{p) H is also an invariant along each 
� jj2 y2 

stroamlino. Therefore, one may regard the quantities — and hip) H as 
rp 2 

two functions of ip by 
— 二 W � （2.2.5) 
rp 

and 

HP) + =糊 (2.2.6) 

respectively. 

Moreover, the no-flow boundary condition (2.1.7) implies that T2 is a stream-

line, so • is a constant on it. On the other hand, the symmetric property of 

the flows implies tlie axis T\ is also a streamline. From the mass flux condition 

(2.1.9), we may assume that 

Us 二 0 on Ti, 'c\nd ？ = m on T2. (2.2.7) 

With the invariants, we can easily derive the equivalence of the Euler system 

between (2.1.10), (2.2.5) and (2.2.6). 

Proposition 2.2.1 For a smooth non-vacuum flow m the nozzle 0 satisfying 

(2.1.2), the Euler system {2.1.6) is equivalent to the system consisting of {2.1.10), 

(2.2.5) and {2.2.6) provided that 

1. the given flow satisfies no flow boundary condition, 

2. the axial velocity is always positive, ie., 

U >0 in a (2.2.8) 

3. U, p and Vy are hounded, 

V，Vx, Pr 0 as X —>• — 0 0 . (2.2.9) 
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Proof. 

From previous analysis, we know that system (2.1.6) implies (2.1.10), (2.2.5) 

and (2.2.6). 

On the other hand, (2.2.5) may induce 

(U, F) • V f - 0 

I.e. 

{U, V)-Voj + oj- dtv{U, V) = 0. 

Noting cj = Vx — Ur and Vu 二（14：̂  — Utx, Kr — Urr), we have 

driUU, + VUr + h[p)工)-d^iuv, + VK + h(p)r) = 0， 

Set (1)1 二 [/[/^-hV[/r+h(p)^ and 二 Then cuir(<h,公2)= 

0 implies there exists a function ^ such that 

So. (2.2.6) is equivalent to 

{U, = 0. (2.2.10) 

Because of no flow boundary condition, (P is a constant along each component 

of nozzle. If, in addition, 

(IV 0 as X - 0 0 , ( 2 . 2 . 1 1 ) 

then —> C as X —00. However, it follows from (2.2.8) that through each 

point in Jl, there is only one streamline satisfying 

{^T 
1 =聯)’小,))， 
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wliicli can be defined globally in the nozzle. Furthermore, (2.2.8) guarantees that 

any streamline through some point in 0 can not touch the nozzle wall. 

Thus, one can always solve (2.2.10) in the whole domain ft, which yields 

= C in n, if (2.2.11) holds. Obviously, (2.2.11) is guaranteed by (2.2.9). 

Therefore ^^ 三（I)r = 0 in SI, which implies (2.1.6) immediately. 

• 

2.2.2 Asymptotic structure in the far fields 

To determine the explicit forms of B and W, we need to study the far field be-

havior of the flows. The following propositions show that there exist asymptotic 

states (PO, UQ) and {pi, Ui) in the upstream and downstream, respectively, pro-

vided the variation of Bernoulli's function in upstream is sufficiently small. The 

proof of these propositions in this subsection will be only sketched, see Section 2 

in 114] for details. 

We have the following propositions. 

Proposition 2.2.2 For any given Bernoulli's constant s > BQ — inf h{p). 
yO>0 ‘ 

1. There exists a unique Q{S) such that k(g(s)) = s and dgjs] 
ds 

> 0. 

2. There exists a unique g{s) E (0, |0(s)) such that s] 
dg{s] 

ds 
> 0, where 

which is derived by the density-speed relation 

'(^(s)) and 

and q ~ vf/^ + y^ is the speed of the flow, c(p) 

speed. 

(2 .2 .12 ) 

\JP'{p) is the sound 
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3. Define 

r(60 二 qig{s), s) = cieis)), = (2.2.13) 

Then, 
d^s] 

ds > a 

4- There exists a unique 6> 26 2||B'(r')||co,i([o,i]) such that 

Q{B) <Q{B + 5)<Q[B + ^] <Q(B+§)^ ~Q{B)-
\ ^J 

(2.2.14) 

r ⑷二？ (咖， 

0 q{S) Q{S) P 

The density-speed realtion for some given s 

Remark 2.2.1 In Proposition 2.2.2, Q{S), Q{S), r (s) and S(s) are the maxi-

mum density, the critical density, the critical speed and the critical mass flux, 

respectively for the states with given Bernoulli 's constant s > BQ. 

Proof. 

(i) Note that P'{p) > 0 for p > 0 and P"(p) > 0’ therefore h'(p)= 

p > 0 arid for some p > 0, 

for 
P 

KP) 二 h{p) + 
p'is] fp P'(o] 
^ Us>h{p)+ / - ^ d s for p>p, 

S ' Jn S 

which implies that h(p) oo as p oo. On the other hand, by the definition 

of Bo, 
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h{p) BQ as p 0. 

Thus, by the monotonicity of h(p), for any fixed s > BQ, there exists a unique 

g = g{s) > 0 such that 

h(Ms)�二 s. 

(ii) By the density-speed relation (2.2.12), for any fixed s > BQ�the corre-

sponding speed q{p. s) satisfies 

Hence, for any fixed s，q{p, s) is a strictly decreasing function of p on [0, g{s] 

By the definition of ^(s), one has 

Indeed, we have g(0, <s) > c(0). since c"(p) = P'{p) is an increasing function of p, 

there exists a unique g{s) € [0, ^(5)], such that 

g(咖，s) = cO(>)) 

In summary, for any given s > BQ, there exist g 二 ^(.s), Q = g{s) and F = r(.s) 

such that 

H m = s, h{g{s)) + ^ = c\g{s)) = ⑷， （2.2.15) 

where ^(5), g(s) and r(5) are the maximum density, the critical density and the 

critical speed, respectively, for the states with given Bernoulli's constant s. 
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Set the critical mass flux 

Then direct calculation shows that 

and 

Thus 

dg Q dg __ 1 
Ts ^ 幽 + 孕 

些 = - h{Q{s))) 1 - 2p'{^+fv"{Q) 
T s - v^^tM ^ - h{g{s))) 

(2.2.16) 

_ � a and 函 〉 0 . 
ds ds ds 

(2.2.17) 

(iv) By the continuity arid rrioriotonicity O{Q{S) and ^/2{S~h{p)), there exists 

a 8 such that 

This completes the proof. 

(2.2.18) 

• 

Next, we introduce the mass flux as a function of p for any given s > BQ, 

defined by 

(2.2.19) 

Denote M ==工(p) in (0, ^(s)), thus p is a two-valued function of M for M E 

0, 2^(5)). We denote the subsonic branch by 

"二 for M e (0,E2(5)), (2.2.20) 
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Mp) 

^s) 

M subsonic branch 

p � J{M) Us) P 
The density-mass flux relation for given s 

which satisfies J{Ai) > 

When s varies in (i?o, +00), we denote this branch by 

P = J�M,s) for {M,s) G {[M,s)\M G (0, ^^(s)) , 5 > 5o} , (2.2.21) 

which is the relation between mass flux and density for given Bernoulli's constant. 

Suppose that the flow satisfies the asymptotic behavior (2.1.19) in the up-

stream, then the Bernoulli's law and the mass flux condition implies 

u'ih =B{t), Uoir) > 0, 

and 

rpoUo(r)dr = m, 

(2.2.22) 

(2.2.23) 

and 

m = / rpo 

(2.2.24) 

(2.2.25) 

For the downstream； since (2.2.8) implies a simple topological structure of stream-

lines, we can introduce a streamline 

0 ) for s G [0,1], and r(0) - 0， r ( l ) = (2.2.26) 
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Hence �f the flow fcatisfiefe the asymptotic behavior (2 1 20) in the downstream, 

then it can be determined by the position in upstream, le , 

HPO) + ， = HP,) + 爾 S ) ) > 0 (2 2 27) 

and 
/S rr{s) 

/ fpoUo[f)dt = / 7(t)p贴)dt (2 2 28) 
Jo JO 

We can give the existence of the asymptotic structure of the flow in the tar field 

Proposition 2.2.3 Let B>Bo,-fe (0,1/3) There exists Sq such that for 

^ < m > and m G (2 2 29) 

such that there exist solution (po, Uo) to {2 2 22)-{2 2 23) and (pi, U-i) solving 

(2 2 35)-{2 2 36) with the following properties 

1 PO.PI e {Q{B) g{B)), 

2 there exists a positive constant C, such that 

-q(B) -C<po< m ) + C-'S'^<Uo{7)<C m7)\<C6'-\ 
(2 2 30) 

3 either PO Q{B) or pi —̂  Q[B) as m in 

Remark 2.2.2 Choosmg 知 < 5/2, where 5 is defined m Proposition 2 2 2, 

(2 2 9) implies that the interval (Q{B), Q{B)) IS well-defined and non-empty 

111 order to proof the pioposition, we need the following lemmas 

Lemma 2.2.4 Assame that {2 1 19) is true, and (i < Then, for any、！ G 
ZI 

1 1 
(0 there exits a D^ E {Q -S) such that there exits a umqae PQ with the property 

o 」 

(2 2 31) 
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and 

/ rpo^/2{{B{T) - h{po)))dT = m, (2.2.32) 
Jo 

〜 - -1 1 ^ 
provided S G (0, <5�) and m G (cP, mi) with irii > C~ S^ > 2SQ ^. 

Furthermore, there exits a £ (0, SQ) such that if 5 6 (0, (fo)； then 

C > m ) (2.2.33) 

Proof. 

Define 

rn(p) = / rp^/2{B{:r) - h{p))di 

then 

^ 二 广 ； < 广；K吾-_ - 如〈0 

dp Jo S/2{B{r) — h{p)) -Jo Y/2{B{T) — h{p))‘ 

Thus, rn{p) is decreasing in p on 0{S))-

M 細 ） = 一 mm))dr < C5-� 
JQ 

m{Q{B)) 二 j\Q{B)^2(B{T)-h{e{B)))dr 

> Q{B) j'^r^2(B^h{Q{B)))dT 

=Q{B) j\^2[h{g{B))-KQ{mdr 

二 q(B) j : ryj2{h{Q{B + h{6{mdr 

> 
1
-
2
 

r
o
 

1
 -c

 

>
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Therefore there exists a unique solution p 6 (Q{B), g(B_)) such that (2.2.32) holds. 

m= / rpoV2(B(r) — h(po))dr < 义 rpoV^ + h{Q(B)-h{po))di 

^POVSTHIM) -- KPO))-. 

so. 

Hence 

+ h{g(B)) — "(po) > > C-1(^27， 

mSS) — h�Po) > 

for S small enough. Then (2.2.33) holds. • 

Lemma 2.2.5 Assume that [2.1.19) is true, and 6 < -S. 

Then there exists a unique Uo�r) given by (2.2.24) and a constant C, such that 

<Uo<C, 

m 
B' 

2^{B{r) - h{p)) 

Proof. 

We need only to verif}^ the estimates. 

(2.2.34) 

Uo{r) > Vm-Kpo)) - yMhim)) 一 h{po)) > 

and 

f/oO 
B' B'ir] < 6 

Uoir) — C - 飞 

• 
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Lemma 2.2.6 Assume that (2.1.19), {2.1.20) and [2.2.8) hold. 

Then, there exist r =小)，s G [0,1]，^ € (0, So) and a unique pi G {g{B), q{R)) 

and Ui{r), r G [0, a] such that 

(2.2.35) 

tpUo[t)dt it}piU,{t)dt, 

and 

0 ’ r{s\ 

provided 6 G (0. and m € with m2 > 26( 

Proof. 

(2.2.36) 

(2.2.37) 

If such a r = r(s) exists and is smooth, then it follows from (2.2.36) that 

spoUois) 二 r{s)piUi{r{s)y{s] 

Thus 

Define 

dr 
ds 

spoUois) spoUois) 

spoUois) 

r(0) 二 0 

spoUois] 
lo ris}piy^2(B(s) - hipi)} 

ds. 

spoUo{s] 
ds, 

It is easy to check G'{pi) > 0, pi G (^(B), g{B)), 

dG f 
T{s)pl{^2{B{s)-h{p^))r 

ds > 
is)pl{^2{B{s) ~ h{p,W 

ds > 0. 
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Gim)) 城 ⑷ ds 

> 

丨0 r i s 細 柳 [ s ) - h 瀬 ) ) 

f i spoUQ{S) ds 

•ds = > a. 

< a. So one can choose 如 and rrii suitable, such 

mi) that 

>-j JQ 

Similarly, we can show G{Q{B)) 

that for any S G (0, ô)? € (S飞 

G{Q{B)) < a, a n d G{Q{B)) > A, 

there exists unique pi such that 

ru � /.I spof/o � , 
Jo r{s)p,y/2{B{s)-h{p^)) 

As soon as pi is determined, one solves the ODE above to obtain r(s)，and then 

to get Ui(r{s)). • 

As a consequence of above lemmas, wo may complete the proof of Proposition 

2.2.3. 

Proof. It remains to verify the last statement. 

If m G {6^,mi), then both po and pi exists and po € {q{B), ^(B)), pi e 

As the proof of Lemma 3.4, for given B(r), when m increase po must decrease. 

So if rri —rri, /Jq — 

m = f : Tp[B) •聊、— h { Q � _ 

Thus, there must exists an upper bound for m to ensure the existence of po； 

Define 

m = Sup m 6 (d長,s) such that po, Pi € g(B)) | . 
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Clearly, rli G [m2, m]. Now it is easy to see that m satisfies the requirement. • 

2.2.3 The explicit form of W and B 

To determine the explicit from W and B, it suffices to fix the expression of the 
CJ 

two invariants, Bernoulli's function and — by • in the upstream. Under the 
rp . 

assumption (2.1.19), the stream function can be written as 

ip = f spQUo{s)ds, 0 < r < 1, (2.2.38) 
Jo 

in the upstream. Furtliermorc, due to SPQUO{S) > 0 for s € (0,1], • is an 

increasing function of r. Thus, one can represent r as a function of 也 write as 

r 二 /€(t�). 

Let the axial velocity and its derivative in the upstream be functions of the 

stream function 

0(^/0 - (功))，E{w) = U'Q{k[iIj)) for I'p e [0, m]. (2.2.39) 

Hence, (2.2.5) and (2.2.6) yield the explicit forms of W and B, ie., 

and 
(jj 
rp 

=h{po) + ^ ^ - BM (2.2.40) 

列 "々） - W W , (2.2.41) 
K⑷p〔 

provided that (2.2.8) holds. Furthermore, note that (2.2.8) implies that 

0 < ^ < m. (2.2.42) 

Remark 2.2.3 In the upstream, 

ri^W 
ip 二 spoUo{s)ds, for 0 < ip < m. 

Jo 
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Differentiating the both sides with respect to ip yields 

This, combined with {2.2.39), shows 

e'wo = 称 W = M 
fi(ip)poe(ip) 

that IS 

e{ii；) 二 (於)e'o) and w w o 二 -OWO'W. (2.2.43) 

Furthermore, ？>f B{r) satisfies {2.1.16) with 0 < 5 <5^ and m E � 5 \ f f i ) , one can 

derive that there exists a constant C > 0, such that 

< e < c, e'(m) > o, e'(o) < o, 

2.2.4 Formulation of the problem 

Recall the density-mass flux relation (2.2.21), one has 

(2.2.44) 

P二 J 
•功 2 " 、 ⑷ 

2 
(2.2.45) 

/ 

which can be regarded as a function of 

/ 
P二 H 

and written as 

(2.2.46) 

/ 

It follows from the definition of cj and ij; that 

Lj = — div 
V^X 
.TP J 

Furthermore, due to (2.2.41) and (2.2.43), the stream function satisfies 

div 
rH VIF) \

—
/
 

V飞p 2 \ 

/ 
(2.2.47) 
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Hence, we reformulate the original subsonic problem as follows. 

Problem 1. Assume ||5^(r)||co,i([o,i]) be sufficiently small, find a solution 

r) to the boundary value problem 

div 
V功 

rH Vijj ，0 in Q, 
(2.2.48) 

々)二 0 on Ti, 二 TT? on T), 

and the flow fields induced by 

p = H 
Vip 

u 丄 , V = 
rp rp 

satisfy the far field behavior (2.1.19)，(2.1.20) and (2.1.17). 

Remark 2.2.4 Since Bernoulli's function is also invariant along each stream-

line, one has 

KP) + 0 二 HPO) + - f ^ 

S/i'p 
Further-which can determine the implicit form of H (Ai, and A4 

more, one has 

dH{M, ij;) — H dHiM.xjj) _ e&H'' 
W M = MY ~ ^ ~ = ~ M • 

denoted by Hi {M., ip) and H) [M., IIJ\ respectively. 

Remark 2.2.5 The quasilinear second order equation in (2.2-48) can be rewrit-

ten in non-divergence form as 

A 
fV'il) 

where 

and 

A 
\ 

,tjj = Hd” — 2Hi 
r r 

J'iMAw) 

(2.2.49) 

(2.2.50) 

(2.2.51) 
一 M 

with {ipi,ip2) — {dxiPi dj-ifj). Clearly, the equation (2.2.49) may be degenerate near 

the sonic state and contains singularities on the axis r — 0. 
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2.3 Existence of solution for Problem 1 

In this section, we consider the existence of the solution for Problem 1. There are 

three main obstacles to solve the Problem 1. First, the ellipticity of the equation 

(2.2.47) is not guaranteed beforehand, since the equation in Problem 1 may be 

degenerate elliptic near sonic state. Second, The coefficients in (2.2.47) rise the 

singularity near the axis. Third, the nozzle region is unbounded. In order to 

overcome these difficulties, we first truncate the coefficients of the equation in 

Problem 1 to ensure the strong ellipticity, and then, truncate the domain 0 to a 

series of bounded domains Qi, with additional boundary conditions. Therefore, 

to solve the Problem 1 becomes to study a series of approximate strong elliptic 

problems in bounded domains and their uniform estimates, which ensure to pass 

the limit of approximate solutions to Problem 1. To remove the singularity, we 

construct a sequence of auxiliary regular problems and use these to approximate 

Problem 1, with some uniform estimates. 

2.3.1 Extension 

First, note that the function H{M, -0) is not well-defined when M and ip are 

larger than some values. We introduce the following extension. 

Set 

9(3] 
e'(m) 

昨 ） 

2m — s 
m 

5 + m 
m 

0, 

if 0 < s < m, 

if m < s < 2m, 

if - m < s < 0 , 

if s > 2m, s < —rn. 

(2.3.1) 

It is obvious that g G (R) and 

沉s)||c�(jR) < l|0'(s)||r;o([o,m]) 
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Moreover, it follows from the properties (2.2.44) of 6'(5) that 

> 0 if s >771, g{s) < 0 if 5 < 0 , 

and 

Define the extension functions of 0 � and B { ' ( p ) as 

8(5) == 9(0)十 f git)dt and = h{po) + 2 

(2.3.2) 

(2.3.3) 

respectively. Clearly，B'(<s) = g{s) and 6 ( 5 ) G C^'^(M). Moreover, if m > 

there exists a suitably small such that for ^ < 

Bo<B — eoS h(po) + 
2 

(2.3.4) 

holds for some SQ > 0. Furthermore, by (2.2.44) and (2.3.2) one has 

e'(5) ||co(K)< and II &(s) ||co,i(R)< 

2.3.2 Subsonic truncation 

(2.3.5) 

Note that the derivative Hi [Ai/ip) in the coefficients of (2.2.49) goes to the 

negative infinity when the flow approaches to sonic from subsonic. Thus the 

equation (2.2.47) becomes degenerate elliptic near the sonic. To guarantee the 

uniformly ellipticity, we truncate the term in H{M, ijj) in the following way. 

Choose a smooth increasing function C,o{s) such that 

s
 

/
—
\
 

0
 

_
f
c
 

2
 

1
 V

 
5
 

r
w
 

t
i
 

I
c
 

1
 

>
 

f
 

•

 1
 

I
 

(2.3.6) 

Then define the truncation of the term M = 
VIJ) 

as 

M ( M V ; ) = C 。 C M — + (2.3.7) 



On Steady Compressible Flows in a Duct with Variable Sections 49 

where £(5) is defined in (2.2.13). Set the truncation of H{A4, ip) as 

which can be determined by 

Thus, the derivatives of H are 

HIIM.IJ) 

H2 (M, 二 

一 M ) 

+ 一 1)) 
！Pc] — M 

Instead of (2.2.48), we first solve the following problem 

' ( - \ 〜妙 2 
div 

rH 

V'IJJ 
VIP 

二 REME'{I^)H 

/ 
x}j in ft, 

ip — 0 on 21, ij; — ？n on 

The equation in (2.3.10) can be rewritten in non-divergence form as 

•功 

where 

A IP 二 HD .. 
2HI 

- M 
M + H^ 

and 
产 H - 2H,M , Y  

(2.3.8) 

(2.3.9) 

(2.3.10) 

(2.3.11) 

(2.3.12) 

(2.3.13) 

(2.3.14) 

It is easy to check that away from the axis 7\，there exist two positive constants 

入 and A, such that 
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for any ^ E IT. 

To the end of this section, we will show that the solution of the truncated 

problem (2.3.10) satisfies 

M 二 
Vip 

< - ^o) — 2^0 for some SQ, (2.3.15) 

as long as the incoming mass flux m and the variation of Bernoulli's function is 

sufficiently small. Consequently, the extension and the subsonic truncation can 

be removed. 

2.3.3 Truncation of the singularity on the axis 

Due to the singularity at r 二 0, we consider following approximate problems 

Vijj 
r + k r \ + Q k in Q, 

(2.3.16) 

炒二 • on Ti, xjj ~ m on T2. 

here 

and 

A ⑷ H 
Vip 

H 
QK = 

r + k 6” 一 2i7i 
w ’ 

r k 

2 \ 

,功 
A ih 

r+k I) — 2HI 双 2 如 
r+k 

J 

•功2 
r+k 

r + kr + k 

r k 

for 0 < k << 1. Note that the estimates (2.3.5) implies 

(2.3.17) 

2.3.4 Truncation of the domain 

Our strategy to deal with the unbounded domain in Problem 1 here is to truncate 

the domain and to construct a sequence of truncated problems which approximate 

Problem 1. 

For any given integer L > 0, choose CIL such that 
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1. {(x-.r)|(x,r) G a - L < X < L} C C {(x,'r)|(x, r) G Q, —4L < x < 

4L}. 

2. HL ^ (0 < ACi < K) for some constant 0 < < 1 satisfies the uniform 

exterior sphere condition with uniform radius RQ, for all L > LQ with some 

LQ sufficiently large. 

For the explicit constiuction of such please refer to Appendix in [112 

Thus, we formulate the approximated truncated problems as 

r k 
+ Qk in Ql, 

(2.3.18) 

V 
尸(工: 

-m on df̂ L： 

which are Dirichlet problems for uniformly elliptic equations with two variables 

in bounded domains QL-

Applying Theorem 12.5 in [59] that there exists a solution € n 

C^(Ql) to the problem (2.3.18), for any fixed k > Q and L > 0. Note that 

the estimate (2.3.17) implies the linear growth condition (12.27) in [59] holds. 

Furthermore, by Theorem 3.7 in [59], we can obtain the apriori bound for the 

solution 

n < sup l^il + Csup 
T2 Hi A 

(2.3.19) 

where C — e — I with d 二 sup /(x). Thus, 

T T 
入 

< 02 < m + C s u p � 
Ol a 

(2.3.20) 

By (2.3.17), one has 

(2.3.21) 

where C — C{k, |/|, tt?) 
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2.3.5 A priori estimates in Q for fixed k 

Now, we derive some precise apriori estimates of the approximated solution 此 

and to show that it converges to the solution to Problem 1 in original domain Q 

as L —> oo. 

It follows from the techniques developed in [59] that, one can get the following 

estimate for Holder semi-norm of 

\ 
u (2.3.22) 

Actually, O) depends only on the diam and C^ norm of the boundary 

of T2. Applying it to problem (2.3.18) shows that there exists = (A/A) > 0, 

such that for any x^ E (11 with K > 4Z/, one has 

^ C (A/A, k, /，m) (1 十 + ^ 

This, together with interpolation inequality and (2.3.21), yields 

7 (2.3.23) 

< " C ( 令 ， / c , / ’ m ( 1 + D寸K 
1 f 

(2.3.24) 

1 二〉 
0 

/ 

Taking ”• sufficiently small so that rjC (A/A, K, f , m) < II RJ < TJQ, one has 
Zi 

妳111;則。：。)晚 $ ” C ( A A U ， / > 0 f 1 + ^ l ^ l o j + C , ( m + - T (2.3.25) 
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Thus, the local Holder estimate (2.3.23) becomes 

< jk 
WK + 

k / . 1 二 、 

< (l + C(A/A,A;，/，m)) ^ ^ + X 

< C(A/A,A;,/,m 

F 
/ 

mC (A/A, k, / , m) [1 + - i J^ lo j + C^o (jn + 

+C (A/X,kJ,m) ( 1 + -IJ-

/ 
< C(A/A.kJ,m) l+m-h-lJ" \ X 

1 

(2.3.26) 

Note that, for any x, y e 

< 

2 •？广 

if 

(2.3.27) 

K •ML if y e B丄 

This together with (2.3.25) and (2.3.26), yields the global Holder estimate 

(2.3.28) <C(A/A, /c , / ,m) ( l + m + 4 ^ o � 
\ X J 

Furthermore, it follows from (2.3.26), the Schaiider estimate and the bootstrap 

argument that one has 

/ I ~ \ 
斤�))nfii - C (^A/A, k, / , m, j for some 0 < a < (2.3.29) 

Similar to the argument as (2.3.28), one has 

f 
\ 

VK 
1 二、 � � < (7 A/A, k, / , m, F (2.3.30) 

which is a uniformly bound to L. Hence, using Arzela-Ascoli lemma and diagonal 

procedure, we see that there exists a subsequence { •？/ f o r fixed k, such that 

—功& in for any compact set U C^ and 0 < < a'. 
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Furthermore, satisfies the problem 

ip^T 
Vil； 

r + k I -i-Qk in 

• = Q on T, i p ^ m on dQ 

and the estimate 

where 17 G (0,77。）. Thanks to the estimate (2.3.17) for 7 �o n e has 

A 7 

\ / 

\ A / 

(2.3.31) 

(2.3.32) 

< rjC (A/A, k, f , m) (1 + + + (2.3.33) 

where C depends only on 知，/f?, A, A. 

2.3.6 Removal of the singularity on axis 

Set 

IP{T) = 7-(r + kf with b = min f(x) > 0. 
0 xGR 

A direct calculation yields that 

62 and 
•补 ) 2 — 

r-hk — M 

Furtheimore, 

div 
/ 

Recalling the expression of H^ 

2m Am?iT + k) ~ 丁，�� 

— " 丑 2 ( I T 身 ) , 

(2.3.34) 

the right hand side of (2.3.34) is non-positive if 

/ 

the flow IS subsonic. On another side, ？》> •m on i飞L, then by the standard-

comparison principle, ip{r) is a super-solution to (2.3.18), and 

+ in QL, 
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for any L > 0. Moreover, one gets 

+ in n, (2.3.35) 

which implies 

r) -> 0 as on the axis T l (2.3.36) 

Away from Ti, we denote Q^^s = { ( a ： , < L,£ < r < f(x)} for any L > 0 

and 0 < c < < 1. Using Caccioppoli's inequality； both in interior and on the 

boundary, one can obtain 

•功 入 q/，饥). (2.3.37) 

Furthermore, one gets the Holder estimate for the gradient 

Vip 
/ 

< C A/A, e. /，m, — f o r some 0 < a] < a 
\ A J 

It follows from the Scbaiider estimate 

V 
1 二 \ 

(2.3.38) c i ’ '�我e) — 、̂“"•，…，••” X , 

Due to a diagonal process and Arzela-Ascoii Lemma again, there exists a subse-

quence {kj} 0 as J —oo and • e such that 

功、-> ip in C�"{pL�e) for some 0 < < a 

as y oo for any L > 0, 0 < s << 1. In particular, 

IJJK：) —> IL) pointwisely in FT as J oo. 

(2.3.39) 

(2.3.40) 

It follows from (2.3.36), (2.3.39)-(2.3.40) that is a solution to (2.3.16) with 

K = 0. It follows bootstrap arguments that IP G ⑴）n C^'^IQ U T2)门 

2.3.7 Removal of the extension and truncation 

To get rid of the extension and the subsonic truncation, we need some more 

precise estimates for M. ~ 
Vip 
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Step 1. The estimate away from the axis 71. For any given 

(xo,ro) G == {(a:’r)|(;r,r) € Q, r > 6/4} 

it follows from (2.3.33) and (2.3.40) that 

V杯Q, To) < T}C (A/A, k, /’ m) (1 + (7(̂ 1—2” + Crjim 十 CS''^^] 

Therefore 

V彻， '厂�) < rjC (A/A, k, f , m) (1 + C f — + C丄m + (2.3.41) 
'厂0 “ 

for ro > b/4.. 

Step 2. The estimate near the axis Ti. For any fixed point {xq^ ro) € R x 

(0, b/2), set 

ro 
父�oO, r) 二 7^?�0o + x^, ro + r^), with ^ = — 2 

which is well-defined in 0). Moreover, direct calculations yield that 

•功(.To + .T ,̂ ro + rO � • 

ro + r^ 2 + 

and 咖 satisfies 

div V ô 
二 eOo + r^oe'ff 

vpo 
2 + 

e ^ o . (2.3.42) 

Due to (2.3.35) and (2.3.40), one gets 

4 9m 
0 < M工,0 ^ + ro + < — . 

。 
Applying Moser's iteration in the interior, we can obtain the estimate of the 

gradient 

V7/;o| < C{h)m ill 召 1/2(0,0). 
In particular, 

？0 
=|V^o(0,0) | < C{h)m for 0 < tq < 6/2. (2.3.43) 
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Step 3. H51der continuity of M. near the axis. As in step 2, we set 

1 1 
r) = + ro + r^), with ^ r ^ , 

defined in Ba{0,0) for any fixed point (%，ro) € M x (0, 6/2), where a is a constant 
1 

satisfying ro + a r j > 0. It holds that 

WOo，ro) ro 
•炉0(0, 0)1 < C(b)mro for 0 < tq < 6/2. 

w 

(2.3.44) 

Then by the same argument, we conclude that is uniformly Holder continuous 

up to r — 0. Moreover, 

Urn A 0 Vrro G K] (2.3.45) 
o�’o) r 

Proposition 2.3.1 (Existence of subsojuc flows of Problem 1) Suppose the hy-

potheses of Theorem 2.1.1 hold. Then, there exists a positive constant < Jq； 

•where 知 is defined in Proposition 2.2.3, such that if S < di and rn G (<5"*', ifi) with ^ — 

rh — 26i < if I, then the problem {2.2-4-8) has a solution tp € satisfying 

ViP 
0 < < m, < — £o) — 2^0 for some EQ > 0 . (2.3.46) 

Proof. Obviously, there exist rji e (0, rjo) and E (0,知）such that 

r/iC(7, rn, /)(1 + CS^-'^) < - so) - 2so)/2, 

and 

Therefore, for any S € (0, (5。）and m G 
the estimates (2.3.41) and 

(2.3.43) imply that the solution tfj satisfies 

VV 
- 一 2^0, 

, b 
for r > - , 

A ‘ < r 

w 
r 

2 
4 
1 

(2.3.47) r 

w 
r ~ ^o) 一 2^0, 

. b 
tor r < 

Zi 
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Hence, M 二 风 and 

f'(M,ip, r) 二 
md^ - M 

and 2 f h M � 
1p2 

To remove the extension, we first consider the domain “ {(工，？“) ^ ^{ipix, r) > 

m}. Owing to 0'{ip) > 0 in fie, 

A ^ ― D I / I P ~ { H ~ 2H^M) 也 r ) > 0， i n 

Therefore, by maximum principle 'ip achieves its maximum on the boundary of 

so ip < rn in Similarly, one can show ^ > 0. Thus, • satisfies 

0 < < m in O, (2.3.48) 

which implies 台 = Q'['i}j) and then the all extensions disappear naturally. 

Hence，ip solves the original problem (2.2.48) and satisfies (2.3.46). • 

Therefore, it follows from (2.3.28), (2.3.30) and (2.3.45) that ijj satisfies the 

following higher order estimates 

< C (A/A, / ,m) + 

and 
/ 1 ~ 
A/A,/, 771,-17-

/ 

(2.3.49) 

(2.3.50) 

Thus J there exist 61 € (0, such that (2.3.47) is true for all r. 

Therefore, combining (2.3.41) and (2.3.43)，we can remove both extension and 

truncation appeared in (2.3.10). 

2.4 Proper t i es of t he subsonic Euler flows 

111 this section, we will consider some properties of the subsonic Euler flows ob-

tained in section 3. We obtain the asymptotic behavior in the far fields and the 

positivity of the axial velocity, which are not only of importance themselves but 
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also crucial for our formulation. The stream function formulation is consistent 

with the steady Euler system in the infinitely long axisyrrimetric nozzle, as long 

as the flow induced by a solution of (2.2.48) satisfies the asymptotic behavior 

(2.1.19) in the upstream and the positivity of the axial velocity (2.2.8). 

To obtain the profile of the solution in the upstream, we first investigate the 

flow in the cylinderical nozzle D, then show the flow in the upstream converges 

to the one in cjdinder nozzle. 

Set 'D be an infinite long cylinderical nozzle with 

D = {{x, r) \ -- oo < X < + 0 0 , 0 < r < 1}, 

and yj be the solution to the following problem 

‘ { \ / 
div 

V劝 
0 in D. 

lb — Q on r = 0, jjj = m on r — 

(2.4.1) 

Proposition 2.4.1 There exists 62 6 (0, Jq] such that if 

1. 6 < 62, m £ (0, fh), where f f i is defined m Proposition 2.2.3, 

2. there exists e < £q such that ip e C灿、£>) solves the problem (2.4.1) and 

satisfies 

then ijj is independent of x, moreover, 

w (2.4.2) 

r ) = 封 r ) 二 / spoUois)ds. (2.4.3) 
Jo 

Proof. The proof is divided into two steps. First, it will be shown that is 

independent of x. Then we will prove that ijj is of explicit form (2.4.3). 



Oil Steady Cornprebsible Flows in a Duct with Variable Sections 60 

Step 1. Set o; 二 ipT and M 二 

with respect to x yields 

( A . 

Differentiating the equation in (2.4.1) 

d.uj 一 这 
TtP {M,ip) yrmiM.ih) j j 

二 rV ij^’ 奶 u + d (M,奶�diLj 

where A^j, and d ( M , i p ) are defined as 

LJ 
(2.4.4) 

d{M. ^(p) = (M,奶. 

(2.4.5) 

for Vt/J - (^1,1/^2), here € due to (2.2.44). It follows from (2.4.2) 

that there exists a positive constant A which depends only on e such that 

< A(e). 

Although wc don't know whether 6 the equation (2.4.4) holds in weak 

sense. Moreover, uj satisfies the boundary conditions 

cj = 0 on r = 0,1. 

Let 77 be a function satisfying 

T] - 1 for |s| < ? ] = 0 for > / + 1， and g 2. (2.4.6) 

Now multiplying r产(x)cj on both sides of (2.4.4), and integrating it over D yields 

rIP {M,t) 
” djudiijfoS) ojd-i{ri^(jj] 

rIP {M,^) J L _ 

- J J rV (M,釣 rfi^' + d (M,句 ^d^ojrfu; 

dxdr 

dxdr. 
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Substituting the explicit forms of A^j, Hi (M, ip) and H2 {M, v) into the above 

equality and noting that ip satisfies (2.4.2), gives 

I I 

J L 

rr Vo; dxdr 

+ 

DTH ( a 

2H,⑷，司 

D � f P (M, 0) 
Vuj rf dxdr 

I L 

A V 

D RM 

(jfojdioj + 2rjd^rj(jj'^)dxdr 

djUjdiijTjUjdxdr 

I L TH^ {M.IP) 

j j r + (e'('勿)2) H (M,iP) rjWdxdr 

j j Te\^)e{^)H2 [M,^] rfuj^dxdr — j j r f c j ^ 

I孕 .Vc^ lV 

Vudxdr 

dxdr 
— I L rH (伊 { M , c^ — M) 

JJD tP {M, ij) ‘ r 丨 JJD IP {M,到 c2 -

I I 
djUjdj/rjLudxdr 

jfuj Voudxdr 

I J r ( e � ( v � e � + {e\iJj)f)H {M,奶 rfiJdxdr 

- I L ( M , ^ ) 
6 

ifbj^dxdr 

Note that 

h+h + h 

Vib 
rH�H¥ — M) 

here H 二 H{M, for simplicity. 

h <C5 

—2ee'H^ujVij}. vu； + ( e e o ' ^ w j < o 

Moreover, due to (2.2.44), one has 

rl+l 广 1 
-37 ruj^drdx. 

'0 
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Finally, since H < g{B), thus if 62 is sufficiently small, one gets from above that 

/ dx 
J-I . 

< C[B,e] 

•dr 

广 + 1 、 

dx-h dx 
Ji / 

rl+i 
dx + / dx 

Jl / 

Voju; 

< C(B,e 

Since cj — 0 on r = 0, Poincarc inequality implies that 

+ I I ru^drdx 
J-I Jo 

+ + + f iJdrdx. 
J-I Jo 
(2.4.7) 

Lo'^dr < / \Vuj\^dr 

Combining this with (2.4.7) yields that 

•6u’ 
[[\Vu\'^drdx < f [ 

J-I Jo J-I Jo 
drdx 

< C 
厂Z+l \ / 1 

dx + / dx 
Jl 7 Jo 

2 + 4 iVojl^dr + / f 
—) J~i Jo 

Consequently, 

F F 
J-i Jq 

^i+i 
Vu '^drdx < C Vw "^drdx + 

V. / i _ 
. I \Vu;\''drdx) (2.4.8) 

. Jo J for some small 62 and any I > 0. It follows from (2.4.2) that 
广1 广z+i 广1 

i2 / / / 
'0 Jl Jo 

Vco\^drdx < C 

for some uniform constant C which is independent of I. Therefore, 

f f \Vuj\'^drdx < C 
J-I Jo 

for any I > 0 and some constant C > 0. Letting / ^ 0 0 in (2.4.9) yields 
/•oo rl 

/ / Vcj ^drdx < C. 

(2.4.9) 

Hence 

-00 JQ 

rl+l 
Vw '^drdx + / / Vcj '^drdx 0 as I -> 
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In view of (2.4.8), this implies 
/•oo pI 
/ / \VLj\'^drdx = 0. 

J-oo Jo 
Recalling the Poincare inequality, we can conclude that 

cj = 也 = 0 in D. 

Therefore, ip(x, r) is independent of x^ we still denote it as ip{r). Thus tp[r) satis-

fies the following boundary value problem for a second order ordinary differential 

equation 

dr 
re'weMH 

(2.4.10) 

1/5(0) - 0 , ？ 二 m . 

Step 2. Uniqueness of the solution to the boundary value problem (2.4.10). 

Suppose that there are two solutions t^i and 02 to (2.4.10). Let 务二 pi —必2-

Then (p satisfies 
( _ c ia^' + hd)' = + rh 杏, 

0
 

I
-

\
—
y
 

1
 

/—、
 

一一
 

(2.4.11) 

where 

a = 

c= / d 
Jo 

Tip (|字|2，̂：’) 

tp'ds, 
/ \ 
\ 

r 
/ 

I

I
 

-
6
 

7
a
 

h 

rtP ( l ^ P , ^ ) 
2 \ 

ds. 

V ds. 

with ^ 二 sipi + (] — 5)'02 (0 < 5 < 1), where T> and d are defined in (2.4.5). 

Multiplying ^ on the both sides of the equation in (2.4.11), and integrating it 

over 0,1], we have 

rH 
dr < H 

/ i 
2 \ 

/ 

\ 
r y 

2
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By (2.2.44), thanks to the smallness of 6 and the Poincare inequality, one has 

[ ‘ ^-^dr < 0. 
Jo Jo T. 

Therefore,杏'二 0, So the solution to (2.4.10) is unique. 

On the other hand, by the definition of H and G, we have that problem 

(2.4.10) has a solution 

— — 厂 
^ = ^(r) 二 / sf>QUo(s)ds. 

Jo 

This completes the proof of the Proposition. • 

In the following, we will show that the solution of Problem 1 converges to -ip 

in the upstream. 

For X < n, define r) 二 讽oc — n, r)x{o<r</(x-n)}- For any compact set 

K CC D, it follows from (2.3.50) that 

I妙(…|k)2，a(/() < C for n sufficient large. 

Therefore, by Arzela-Ascoli lemma and the diagonal procedure, there exists a 

subsequence • � ,s u c h that 

功 i n C�日 ijC) (2.4.12) 

for any K CC D and E (0,a). However, ip solves the problem (2.4.1) and 

satisfies 

0 < <m, < — - 2EQ for some > 0. 

It follows from Proposition 2.4.1 and (2.4.12) that the flow induced by the stream 

function satisfies (2.1.19). 

The asymptotic behavior in the downstream can be obtained by a similar 

argument. 
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Proposition 2.4.2 Suppose that satisfies the assumptions {2.1.2). Then there 

exists Ss e (0, ^o] such that if ||B'(r)||co,i([o，i]) S < and the mass flux 

rn e {5\rn), • satisfies (2.3.46) and solves {2.2.48) then 

Q < 油 < m in ft. (2.4.13) 

and 

ipr > 0 in Q. (2.4.14) 

Proof. It follows from (2.3.46) that ip achieves its minimum on and maximum 

on T2, hence 

On the other hand, set A4 — 

•Ipr > 0 on T2. 

V'tp 
and u = ijjJ. satisfies 

a-
A 

djV - di + di diip 

=rV (M, + d (M, ip) —diiy — (M, ip) 

(2.4.15) 

in the weak sense, where 

队M, = 2Hi{M, ip)M — H{M, ii).‘ 

Aij.’ T> and d are defined similar as in Proposition 2.4.1 except we replace G, H 

and if) by 6 , H and ip, respectively. We first claim that 

z/ > 0 in 0. 

Indeed, it follows from Proposition 2.4.1 that i/{x, r) > 0 when \x\ > L for 

some L sufficiently large. Multiplying (2.4.15) by v— = min(", 0), one may get 



Oil Steady Cornprebsible Flows in a Duct with Variable Sections 66 

that 

| W � // 
J JU 

dxdr 

JJiu<o\ JJu 
ud^udxdr 

- I I d抑dwdi'dr - f l rV(M, ijjydxdr 
J J{um r 仅 J J{^m 

- f f d(M, . Vi^dxclr + f f &[i/j)e{iP)P{M, iP)iydxdr 
J JD r 7 J{i/<0} 

< -FF r(e〃(利e(例 + ^ydxdr 
J J{v<Q) 

< I f ru^dxdr. 

Sincc r is bounded above, we have 

f f <C [ f ,,dxdr < Cd'"'^^ [ f i/dxdr, 
J J { u m i/j) ./7{.<0} rH{M,灼 — J J �� � 

Define K^ = {r|0 < r < f{x), u{x, r) < 0}, then K^ is an open set for each x. 

Let Kx = I J /J, where are connected components of K^. For cach r E 
Vw/ 
leA 

J min / 左 
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Therefore, 

/ / r)dxdr — / dx ^ / r)dr 
J -̂ {̂ <0} J-I 论乂 Ji\ 

f f s)ds\ dr 

_ _ p 广 m a x 

dxY^I / {driy{x, s))^ds{msLxIl - min/ i )^r 
A JII -Jminll 

{pTiy{x, s�Ydb 

/

I 厂max /丄 

dxY / {drv{x,s)fds 
I “ ： ^ “ 爾 / ; 

< max I/O)丨2 11 \Vi/\^dxdr 

口 Jl'x -Jmm II 

dx y^(max I; - min I I) 
leA 

•max Î . 
m m 

Hence, // 
J Ji 

W 
Vv '^dxdr. 

this implies 
{i/<o} H�M,明 — J J{^<0) 

/ / \Vv\^dxdr < 0, 
J J {u<Q} 

SO > 0 in n. 

Now, we use the argument similar to the proof of Lemma 1 in Scction 9.5.2 

in [49] to show that 

= > 0 in n (2.4.16) 

holds for any weak solutions “ to (2.4.15). 

Indeed, let i/ = e—〜，where a > 0 will be selected later. Then i/ is a 

nonnegative weak solution to 
/ A \ (A2 H2 d冲 

a — 
rm m d 陶 i ) 

where A^J and d are defined similarly in Proposition 2.4.1, and 

G,= 
A 22 2 

rm 一 + 这 

(A2 \ H2 d2-ip d2ip\ 
-rV{M, (Jj), 
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and 

V —H: / 
with V and f̂  defined as before. Choose (t > 0 sufficiently large such that Gi > 0. 

Thus 

o f Aj aro , / A2 H2 d冲 ../、这功〉cT 厂;̂  z n 
这 1 ； ; 这 " ) + — Jp— 一 dU^,奶 了 ]e d,u + G2< 0. / 

It follows from maximal principle (see Theorem 8.19 in [59]) that (2.416) holds. 

Now, (2.4.13) follows directly from (2.2.42) and (2.4.16). 

Next, we consider the positivity of 'ipr on the boundary T2 and the axis Ti. 

Since '0 二 m on T2, if 9 ' (m) > 0, then for any (.t卩,/(rz：。)）G T2, there exists 

a small disk B C Q satisfying BOQ = such that e ' ( ' ( � )> 0 in B, 

therefore, 

Aj f — , A - ( H - 2HiM) — ^ J-{M, r) > 0, in B. 
\ r J T 

Moreover, by (2.4.13) ip < m in B. Thus, by Hopf Lemma, one has 

On the other hand, in the case 0\m) = 0, also by Hopf Lemma, we have dr^Jj > 0 

on T2. 

Similarly, on the axis one can show that •(工,0) > 0 for any x G R. 

This finishes the proof of the Proposition. • 

Proof of Theorem 2.1.1-2.1.2. Choose 60 = min{^i, ^2}, then ô > 0. If ^ < SQ, 
2. 

for any m 6 2 6 ^ ) , it follows from Proposition 2.3.1 and Proposition 2.4.2 that 

there exists a solution to the problem (2.2.48) with asymptotic condition (2.1.14), 

(2.1.19), mass flux condition (2.1.9). 
• 
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2.5 Uniqueness of the uniformly subsonic flow 

Proposition 2.5.1 (Uniqueness) Suppose thatO, satisfies the assumptions [2.1.2). 

Then there exists S3 6 (0, 0̂] such that if ||B'(r)||co,i([o,ij) ~ < 63； and the mass 

flux m G ((FJTTi)，then there exists at most one solution ip to {2.2.^8) satisfying 

0<p< m, 
Vip -Y?{B{w)) < e for some e > 0. (2.5.1) 

Proof. Let ijji and 功2 be two solutions to (2.2.48). Set ijj 二 — Then ij; 

satisfies 

(a-ijdjip) + d人Ihi}/) ~ —d^ip + rh也 in n 
(2.5.2) 

^ - 0 on Ti U T2, 

where 

d 

A “ 彻 

字 I2，而 
~ 2 

-ds， k = 
H, V-ip 

y.jj-2̂ 1 VV-' 2 ds： 

/ 
d^ipds, h二 V 

JG 

Vip 
ip ds. 

here 也=«s诊i + (1 � ( 0 < s < 1), A j , V and d are defined similar to 

Proposition 2.4.1. 

Set 7/ be a cut-off function defined in (2.4.6), multiplying both sides of equation 

(2.5.2) by ifijA^x, r) and 妙+(3：, r) — max (妙(x, r), 0), then the similar to the proof 

of Proposition 2.4.1, one has 

// 
JJnr 

Vip 
rnn{|:c|s/}n{V>�o} 

Since r has upper bound, we have 

dxdr < C(B, e) f ( 
J JnnfKlx 

+ \SJilj\^dxdr. 

I F 
J Jo 

\Vij\''dxdr < C{B, e) f f 
J Jn Qn{i<|x|<z+i}n{i/i>o} 

dxdr. 

It follows from Theorem 2.1.2 that ipi and ip2 have the same far fields behavior, 
Vip 

thus 'ip and • 功 0 as x 00. And also note that 0 as —̂  
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Thus 

\V^ip\'^dxdr = 0, 

so yj < 0. Similarly, one can show that ij; > 0. Therefore, ijj 

1 1 
J JFI( 

the proof of the proposition. 

0. This finishes 
• 

(2.5.3) 

Lemma 2.5.2 The swvri component of any smooth subsonic axisyrnmetnc flow 

must be zero，provided that it satisfies the asymptotic conditions. 

Proof. Let the fluid density and velocity be p(x, r) and {U{x, r), V{x, r), W(x, r)) 

in cylindrical coordinates, where U, V, W are axial velocity, radial velocity and 

swirl velocity respectively, x — xi, r = /̂a：望 + .Xg. Then, instead of (2.1.1), we 

have 

(rpU), + {rpVl - 0, 

(rpUV)^ + (rpV^)^ - pW^ + rP, - 0, 

(rpUW)^ + irpVW\ + pVW 二 0. 

It follows from the first and the fourth equation in (2.5.3) that 

+ rVWr + FPi^ = 0. (2,5.4) 

First, it is easy to see that the axial velocity U in the nozzle is positive. 

Secondly, on the axis = 0，note that the swirl velocity W must be zero due 

to the axisymmetricity of the flow. 

For r • 0, it follows from (2.5.4) that 

V V 
VF, + -Wr + —w = 0. 

U rU 

Due to the positivity of [/, for any point in the inlet, there is one and only one 

streamline satisfying 

\
)
/
 

\—•/
 

r
 

I
I
 , 2 ； = — ( r o ^ O . 
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Obviously, it can be defined globally in the nozzle. Furthermore, any streamline 

can not touch the axis for rg ^ 0. Thus. 

d 1 VW 
•Wiayiix)) + , , , , (x,r(x)) = 0, r(x-))U=-oo = 0, 

dx ‘ r[x) U 

which is a linear ordinary differential equation to W. Hence, we have M, = 0. 口 

As a direct consequence of Proposition 2.5.1, Lemma 2.5.2, it completes the 

proof of Theorem 2.1.3. 

2.6 Existence of critical mass flux 

Now, we have shown that for given Bernoulli's function B{r) in the upstream 

satisfying (2.1.16), there exists a unique uniformly subsonic Euler flow in an 

axisymmetric nozzle as long as the mass flux m G ((F, 2Sq ). Finally, we will show 

that there exists a critical value of mass flux, the subsonic Euler flow exists if the 

incoming mass flux is less than the critical value. 

Proof of Theorem 2.1.4. Recall the definitions (2.2.22) (2.2.23) of po and [/o(r) 

in the upstream, we can find the relationships between po, Uq(r) and m, 

/ SPO^2{B{T) 一 h(po))dr = m, C/o(r) = V2[B(r) - h[PO)). 
J o 

Thus, for the given Bernoulli's function B{r) in the upstream satisfying (2,1.16) 

and m € (仏 m), po and Uo{r) can be regarded as the functions of m, denoted by 

Po(饥）and C/o(r; m), respectively. 0{iIJ) also depends on m by definition (2.2.39), 

we denote it by Q{ip; m). 

Set 

M(m) = sup + V ) - c\p)) = sup 
n n 

The condition (2.1.21) implies 

e ' (m) = e'(o). 

, • 论 2 

( 糊 ) 
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Thus, we can make the zero-extension of Q'{s) as 

e'(6’）= 
€)'(s� if 0 < s < m, 

if s < 0 

(2.6.1) 

s > m. 

Then the extension 6(5), defined by 6 ( 5 ) = 6(0) + / &{s)dsy satisfies 
Jo 

Bo <B-eo< HPO) + ^ ^ < B and < (2.6.2) 

Set a strictly decreasing positive sequence {£n}^=:i satisfies 

£i < and lim = 0. 
n—00 

One can define the truncation of H associated with £几 similar to Section 3. Set 

a sequence of smooth increasing function („ such that 

Qn{s)= 
if s < -2e., 

En, if <S�_£ri • 

(2.6.3) 

Truncate M 二 as 

Mn{M, m) Cn (M - m))) + m)). (2.6.4) 

where 

B{'ip; m) = h(po(m)) + 
62(功;m) 

(2.6.5) 

Furthermore, we can define the truncation of H associate with e^ as 

尔")(A1，也.m) 二 J (Mn�M,x[r,m),敢. (2.6.6) 

where J is defined in (2.2.21). Hence, we obtain the subsonic truncated problem 

associated with 

二 i�r; m) + Gr, 

yj = 
作 : 

•m 

in n, 

on TiH^Ts: 

(2.6.7) 
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where 

Al；^ ^ _&�(风功;m)5” — 2軌M, t , m ) - ’ (2 .6 .8) 

Tn (M,也 r; m) = ^ � 
“(尔 n))2c2 — Mn 

从 + (妒)) 

(2.6.9) 

and 

么 = (尔—2对 " )々 , ) (2 .6 .10) 

After the subsonic truncation, it is easy to check that there exist two positive 

constants A � and A � such that 

< Alf^.^j < A⑷旧2 for any ^ G 

Applying tlie argument above, for any rn G (S^, fh), there exists a solution 

父//—(.T, r ;m) to the problem (2.6.7). Moreover, if 

(2 .6 .11) 

then (二 = 1 and the subsonic truncation disappears, one has 

0 < 功(^:c，r;m) < m. 

Since the bounds of rn) is independent of Sn, one can estimate the integration 

term /s ill Proposition 2.4.1. Furthermore, it follows from the same argument in 

Proposition 2.4.1 that the solution to (2.6.7) satisfying (2.6.11) has far fields 

behavior as (2.4.3). In addition, such a solution is unique among the class of 

solution satisfying (2.4.3). 

Note that in general, we do not know uniqueness of solutions to problem 

(2.6.7). Let the set of the solution of problem (2.6.7) as 

Snim) 二 "j>(")(:z;，r;m)|0(W(:z;,r;m) solves problem (2.6.7)} , (2.6.12) 
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Then define 

Mn (rn) 二 inf sup — 所 ( 2 . 6 . 1 3 ) 

and 

Tn 二 <s<m and A4(m) < -Ae,, if m G ((T’ s)} (2.6.14) 

It follows from the existence theorem above, we have that C Tn, there-

fore, Tn is not an empty set and define rrin = supT„. Clearly, { 饥 几 } 二 is an 

increasing sequence, due to the monotonicity of Sn-

We claim that M几(m) is left continuous for m G ((F, rrin. 

In fact, for any m e (^T, m j , choose an increasing sequence {mjf^}^^ C ( d : m] 

with lim mt — m. Since M^(mjf^) < we can obtain the following estimate 
k-^QC 

from Section 3 

< C , 

here C is independent of k. Therefore, there exists a subsequence 功⑷(x, r; m f ' ) ) 

such that t /^’�(x, r; m ( 巧 也 moreover, ijj solves problem (2.6.7). Thus M J j n ) < lim Mn (m^f 

So Mn{m) < — 4e„. Note that all these solution satisfy the far field behavior as 

(2.4.3), by uniqueness of solution in this class 

Mn (mf)) -> M„(m), as — m, 

which implies the left continuous at m. For the arbitrariness of m 6 {6^, mj，we 

prove the claim. 

Furthermore, we can claim that rrin < 仇.Indeed, suppose on the contrary 

rrin — fh. By the definition of rrin, one has fh G T^. It follows from the left 

continuity of Mn at M that M„(m) < — T h u s by means of the proof of 

Proposition 2.4.1, �( T � r ; f h ) has far field behavior as in (2.4.3). However, it 
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follows from the definition of rh that 
/ 

sup 所妙⑷(Z.,r;'/7i))) 

> sup nmx{\poim)Uoir;m)f -E'iBir)), |/.i(m)[/i(r(5); m)p -

二 0 

where r = r(s) is defined in (2.2.26). Thus (m) > 0, which leads a contradic-

tion. Therefore rrin < rh. 

Hence, is a bounded increasing sequence, wc can define 771�= lim m^ 

and rric < m. 

Note that for any m e ((P^mc), there exists > m, therefore Mn{m) < 

~4sn. Thus • 二 ij/""�ix)r;m) solves (2.2.48) and 
/ 

sup 
n 

V'lP 
昨 ⑷ ） = N U r n ) < 一4£? 

If sup M{rn) < 0, then there exists n such that sup M{m) < — A s 

the same as the proof for the left continuity of Mn{'rn) on ( d � m j , Mn{rnc) < ~4e. 

Suppose that there exists <7 > 0 such that (2.2.48) always has a solution for 

m G (mc, TTic + (j), and 

sup M{m) 二 sup sup 
Vii) 

Then there exists k � 0 such that 

sup M (m) = sup sup 
mG(mc,mc+cr} rne{rnc,7nc+c7) Q 

— 糊 ） < 0. 

⑷ ） < 

This yields that rrin+k ^ mc + a, which contradicts with the definition of rric- The 

contradiction implies that either M{rn) 0, or there does not exist > 0 such 

that (2.2.48) has solution for all m G (ttIc, rric + cr) and 

sup M{m) < 0. 
m€(mc,r7T.c+f) 

This finishes the proof of Theorem 2.1.4. • 



Chapter 3 

Transonic shocks in 2-D nozzles 
with porous medium 

Concerning to the transonic flows, Xin and Yin [118] proved the wellposedness 

of a transonic shock for the steady potential flows through a general 2-D nozzle 

with variable section. For compressible Euler fluids, an important phenomena for 

transonic flow is posed by Courant-Friedrichs [41]: Given a appropriately large 

receiver pressure Pe, if the upstream flow is still supersonic behind the throat of 

the nozzle, then at a certain place in the diverging part of the nozzle a shock front 

intervenes and the gas is compressed and slowed down to subsonic speed. The 

position and the strength of the shock front are automatically adjusted so that the 

end pressure at the exit becomes p^. As indicated by Courant-Friedrichs, Xin and 

Yin [120] showed that for a symmetric incoming flow in a symmetric nozzle and 

for a nontrivial range of exit pressure, there exists a symmetric transonic shock. 

Recently, Li, Xin and Yin [71] solve this Courant-Friedrichs problem for the 2-D 

steady Euler system with a variable exit pressure in a nozzle whose divergent part 

is an angular sector. 

In this chapter, motivated by the iteration scheme developed in [74], we 

establish the stability of a transonic shock solution to the full steady compressible 

Euler system in a class of de Laval nozzles under the C^'" perturbation of the 

76 
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supersonic incoming flow. 

3.1 In t roduc t ion and main results 

The 2-D full steady Euler system is 

dl�pUi) + d2[pU2) 二 0， 

+ + 二 0, 

77 

(3.1.1) 

1 di{{pe + -p\u\^ + P)ui) + + -p\u\^ + P)U2) = 0 
2 ' ' ' 一 2' 

where u = (wi, u^) is the velocity, p is the density, P 二 尸(p’ 6') is the pressure, 

e is the internal energy and S is the special entropy respective!}^. Moreover, the 

pressure function P = P(p，S) and the internal energy function e = e(p, S) are 

smooth in their arguments. In particular, dpP(p, S) > 0 and dse{p, S) > 0 for 

p > 0, and c(p, S) = \JdpP{p, S) stands for the local sound speed. 

For ideal polytropic gases, the equations of states are given by 

互 P P — Ap^e cv and e == 
； 7 - l ) p ' 

here A, Cy and 7 (1 < 7 < 3) are positive constants. 

Assume that the nozzle walls Fj and [2 are regular for XQ — I < 

\Jx\ + X2 < Xq + 1 (here 0 < a < 1, and Xq > 1 is a fixed constant) and 

r! consists of two curves V] and F^ with FJ and T] including the walls for the 

converging part of the nozzle, while Fj and F^ being the straight line segments so 

that the divergent part of the nozzle is part of a symmetric angular sector. Assume 

that r^ is represented by X2 = {—iyxitan9o with Xi > 0 and Xq < r < Xq + 1, 
TV 

where 0 < < 
Zi 

Let the uniform supersonic incoming flow U— = ('^ro(^)' '̂ 2,0(^)5 ^oi^)) 

is smooth and symmetric near r = X � s o that u~Q{X) = “ \i 二 
‘ r 

1,2), 二 尸0一('厂）and SQ (X) — SQ~ (SQ is a constant). It is noted that this 
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assumption can be easily realized by the hyperbolicity of the supersonic incoming 

flow and the symmetric property of the nozzle walla for XQ < R < XQ 1, one 

can see 67 

Suppose the supersonic incoming flow at the inlet r = XQ is given by 

which is close to the uniform supersonic flow in the following sense 

(3.1.2) 

- (Î b) PQ) cos e, XQ sin 6») ||f72,"[-0�爲]< ̂  

and satisfying the following compatibility conditions: 

d 
dO iB,S){XoCose,Xosm0)\e=±eo - 0 

(3.1.3) 

(3.1.4) 

1 "J 

where 二 (UIQ{X), (工)，K工)），and B = -{u\ + ul) + e(P, 5) 

is the Bernoulli's function. 

If the transonic shock curve S : Xi : r]{x2) is formed, and denote the flow 

behind S by {uj{x),u2{x), S'^{x)). Then it follows from the Rankine-

Hugoniot conditions on S that 
pui] — v'{x2)[pU2] = 0， 

pul + P] — = 0 

_pUiU2] 一 -h P] = 0 
(3.1.5) 

1
 (pe + + P)ui] ~ r/'(x2)l(pe + + P)u2] = 0. 

In addition, the pressure P(x) satisfies the physical entropy condition 

on 工 1 = ？/(工’2)‘ 

On the exit of the nozzle, the end pressure is prescribed by 

尸+(約二 約 on r = Xo-h 

here c > 0 is suitable small, 0 = arctan—, fo(^) G 6^) with 

Poi^Oo) - 0, 

(3.1.6) 

(3.1.7) 

(3.1.8) 
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the constant Pc denotes by the end pressure for which a symmetric transonic shock 

lies at the position r = r � w i t h TQ G (Xq, XQ + 1) and the supersonic incoming 

flow is given by ("o—(',')�户o—W，*̂。—）in the domain {r ： Xq < r < Xq + 1}. For 

more details, one can see Section 147 of [41] or Theorem 1.1 of [118 . 

We assume upper nozzle wall is porous medium means for given function 

> 0, 1 

upper boundary 

/ > a imic72’�< S and suppif) C (fo,Xo + 1) C 广 + f o + l , 而 + 1), on the 

= f { ^ x l + xl). (3.1.9) 

Since the flow is tangent to the nozzle wall X2 ~ (—l):r丄 tan 办,then 

U2 = tan^o on ;r2 二 ( 一 t a n 6>o. (3.1.10) 

As been stated in Section 147 of [41] (see also Theorem 1.1 of [118]), under 

the above assumptions on the nozzle and the symmetric supcrsonic incoming flow 

near the throat of the nozzle, there exists a unique symmetric transonic shock 

solution for the given constant end pressure P^. Furthermore, the position of the 

shock, r ~ 7o, depends monotonically on the given end pressure. This solution 

will be called the background solution in this paper. Let (f/(^(r), (aSq" 

is a constant) be the subsonic part of the background solution for ro < r < Xq + I , 

which can be extended into the domain {r : TQ — SQ < r < XQ + I ) (6Q > 0 is some 

constant depending only on the supersonic incoming flow) (see Theorem 1.1 of 

118]). The corresponding extension will be denoted by P^^(r), S^). 

Now we can state the main result in this chapter 

Theorem 3.1.1 (Existence and Uniqueness) Under the assumptions above, there 

exists a constant cq > 0 such that for all e € (0, e。]，if (3.1.2)~(3.1.4)hold, the 

problem (3.1.1),(3.1.5)-(3.L10) has a unique transonic shock solution 

which satisfies the following properties: 
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(1). U— IS supersonic, f/+ is sub some, and S is the transonic shock front 

separating U— and and satisfies the entropy condition. 

(2) Let the equation ofYl he xi 二 r/(x2) and define the supersonic region 

and subsonic region as follows: 

a 二 {(i:i‘:t2) •• Xl - < JL�< r]{x2), I丄21 < x^tanOo} 

and 

a + {(丄 1- 3.2) 7](X2) < Xi < y {Xq + 1)2 - \x2\ < XitanBo} 

then the following estimates hold 

(i). - {u^{x).u^{x),P'-(x),S~[x)) G C2， in—and 

[u^ , . P ‘ S ) — (Ui^o- ^2,0' . SQ )|lr;2,a(Q_) < CQS (3.1.11) 

and the generic constant CQ IS a 'positive constant depending only on a and the 

supersonic incoming flow. 

Also for (r cos OQ, (一l)^?-siii € dil— we have: 

{U:’ cos(9o,(—1)V sin^o) = 0, [/2"(rcos^o,(-l)Vcos^o) = 0. 

(3.1.12) 

M. 7/(2:2) e 工2 ,工2 and 

7/O2) - yVg — 3：引|口3叫4颂 < CQE (3.1.13) 

where {x\,xl){t = 1, 2) stands for the intersection points of xi 二 7](j:2) with 

X2 = (—l)�i切7100 for I 1,2. 

(ill). - e and 

(3.1.14) 

如here 喊。，时）二（ >̂0十«三， ô+M). 
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Remark 3.1.1 In [119], Z. P. Xin, W, Yan and H. C. Yin, they investigate 

the problem on the well-posedness of a transonic shock to the steady compressible 

Euler flow through a 2-D slowly variable nozzle. If the upstream flow remains 

supersonic behind the throat of the nozzle, then at a certain place in the nozzle, 

a shock front intervenes and the flow is compressed and slowed down to subsonic 

speed, and the position and the strength of the shock front are automatically ad-

justed so that the end pressure at exit becomes Pr by [41 J. They showed that, 

the uniqueness of such a transonic shock solution if it exists and the shock front 

goes through a fixed point. Moreover, they proved that there is no such transonic 

shock solution for flat nozzles with some large pressure given at exit. Motivated 

by above work, we would like to investigate porous medium boundary condition in-

stead of solid wall condition and expect the existence of transonic shock solutions 

with perturbed end pressure. However, there are essential difficulties, we only 

could deal with divergent nozzles in Theorem 3.1.1. If we can have the uniform 

estimate respect to 0，we may use a limit argument to conclude the desired result. 

Unfortunately，we did not have such estimate yet. 

To solve this transonic shock problem, we first establish the existence and 

uniqueness of supersonic flows in the whole nozzle Q via the method of charac-

teristic. 

Theorem 3.1.2 (Existence and Uniqueness for supersonic flow) If (3.1.3)-(3.1.4) 

hold, the problem (3.1.1),(3.L2), (3.1.9) and (3.1.10) has a unique supersonic so-

lution in domain Q = {(x, r)|Xo < r < tq, <9< OQ}, 

satisfies the following properties: 

八 
— {uIq, < Co£， (3.1.15) 
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and the generic constant CQ LS a positive constant depending only on a and the 

supersonic incommg flow 

Furthermore, we have 

^ ( " r P—一)(rcos0o，（—l)Vsm 叫 = 0 , (r cos Oo, {-1)V &m Oo) - 0 
c ) 没 、 丄 ， 八 u，、 , u / 洲2 

(3 1 16) 

Indeed, this theoiem has been e&bentially proved in [119], [23], we will give 

an outline of the pi oof of this theorem in Appendix A 

With Theorem 3 12, we can tiansform tlie trcinsonic shock pioblern into the 

following one-phd&e fiee boundary \alue problem 

F B P : Giueri a super some solution = (m�(t), of 

(3 1 1)，(3 1 2), (3 1 9) and (3 1 10) satisfymg (3 1 ll)-(3 1 12) for some small 

constants e > 0, find a sub some flow U+ m the downstream separated by a tran-

sonic shock front 二 ？7(T2) satisfying (3 1 5)-(3 1 10) 

Then wc only need to prove the following theoiem 

Theorem 3.1.3 Let s > 0 be small, and the svpersomc in corn mg flow obtained 

w Theorem 312, the problem F B P has a subsomc solution 

and a shock front 

3：! 二 ri(j2) 

which satisfy the Ranhne-Hugomot condition, the entropy condition and the es-

timates (3 1 13)-(3 1 U) 

Remark 3.1.2 Compared with the results in [71]- [73], we do not need to require 

that the diverging part of the nozzle wall changes slowly The key ingredient in 

the analysis of [71]- [73] is to establish the moriotomc property of the shock 

positwn along the nozzle wall with respect to the exit pressure so that one can 
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avoid the difficulties caused by the unknown position of the shock. After some 

modification of the new elaborate scheme developed m [74],现 can determine the 

shock position together with the solution in each iteration step. The key issue is 

to solve a boundary value problem for a first 2 x 2 elliptic system with non-local 

terms and an unknown parameter. Our results show that the background transonic 

shock solution with arbitrarily changing subsonic flow is structurally stable under 

small perturbation of the supersonic incoming flow and the exit pressure. 

Remark 3.1.3 One should note that the mam difference between our case and 

the one m [74] is the Bernoulli function is not a constant any more. Actually, 

the Bernoulb/s function is not conserved across the shock, hence we have to deal 

with the Rankine-Hugomot condition m a different way. The monotonicity of 

pressure for the background solution in the subsonic region plays an important 

role in the well-posedness of the elliptic system. 

Remark 3.1.4 By the results m [119], we know that the shock curve is per-

pendicular to the nozzle wall. To guarantee the C^ regularity of transonic shock 

solution m the downstream region (up to the boundary), the Bernoulli's constant 

and entropy of supersonic 'incoming flow and the curvature of the nozzle wall is 

required to satisfy some compatibility conditions. And the compatibility condition 

(2.1.4) is a sufficient condition. This condition is also necessary in the isentropic 

case. One can see §3.3 for more detailed explanation. 

Remark 3.1.5 One can expect the existence and uniqueness results for such a 

question is still true without this condition. In this case, singularity will he de-

veloped and propagated along the nozzle wall and may affect the regularity of the 

interior. Another more essential difficulty lies m the loss of regularity on dealing 

with the hyperbolic mode. Hence one has to employ the Lagrangian transfor-

mation. It is easy to prove the equivalence of the weak solution in Euler and 
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Lagrangian coordinates since the Lagrangian transformation is Lipschitz. How-

ever, it IS quite difficult to prove the norm equivalence due to the formation of 

shock. Recently, Li, Xm and Ym have solved this difficult problem. 

Now we explain the main idea of the iteration scheme. Actually, the problem 

can be reformulated as a system consisting of an ordinary differential equation for 

the shock with a free initial position, a first order nonlinear elliptic system for the 

pressure and angular velocity, and two transport equations for the specific entropy 

and Bernoulli's function respectively on a fixed domain. Linearizing the nonlinear 

equation and the nonlinear boundary condition, one can obtain a new iteration 

schcnie which involve a boundary value problem for a first order 2 x 2 elliptic 

system with non-local terms and an unknown parameter. The non-local terms 

arise from the Rankine-Hugoniot condition and hyperbolic modes, the unknown 

parameter denotes the unknown shock position on the nozzle wall. 

The rest of this chapter will be organized as follows. In §3.2, following [74], 

we reformulate the 2-D problem (3.1.1) with the boundary conditions (3.1.5)-

(3.1.10) so that one can obtain a 2 x 2 first order elliptic system on CJ : and 

pressure together with the shock curve equation and the entropy 5"+，two first 

order hyperbolic equation on 5*+ and B along the streamline. In §3.3，using the 

decomposition techniques in §3.2, we linearize the resulted nonlinear equations 

and construct a suitable iteration scheme, especially, a linear 2 x 2 first order 

elliptic system with the nonlocal terms and an unknown constant is derived. In 

§3.4, we establish some a priori estimates on the linearized equations derived in 

§3.3 and further complete the proof on Theorem 3.1.1. 

3.2 Reformulat ion of the problem 

In this section, we reforrimlate the nonlinear problem (3.1.1) with (3.1.5)-(3.1.10) 

so that we can obtain an a first order elliptic system for the pressure P^(x) and 
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the angular velocity Uf (x), two first order partial differential equations for the 

Bernoulli s function and the special entropy S'^(x) respectively. 

Due to the angular geometric structure of the nozzle walls, it is more conve-

nient to use the polar coordinates 

I x\ 二 rcosd, , � 
(3.2.1) 

X2 — rsin6, 
\ 

and decompose the velocity {uf, ut) into the radial speed Ui and angular speed 

U2 as follows 
u卞=[f^cosd — U^sinO, (3 ^ � ) 

ii2 二 U^sinO + U^cosO. 

Under the polar coordinate transformation (3.2.1), the domains 

O 二 {(‘Ti, ：12) : Xo < y x f + X2 < Xo + 1, \x2\ < xitan6o} 

and 

= • < Xi < y (Xo + 1)2 — x^, IX2I < xitanOo) 

are changed into 

R = {(r, : Xo < r < Xo + 1, < 6 < (3.2.3) 

and 

R+ - {(r, 0):浏)<r< Xo + 1,-00 <0< 60} (3.2.4) 

respectively, where r 二 认 ff) stands for the equation of shock curve E in the polar 

coordinate (r, 9). 

It follows a direct computation that (3.1.1) and (3.1.5) become respectively 

drip^Ut) + Id八p+U.t) + 华 二 0， 

d r l p U ^ n ' + P十)+ -doip^U^U^) + (听)=0, 
T T 

drip'-utu^)+Wp-'mr+p"-)+-p-'u^u} 二 0， 

1 o 1 二 1 1 1 

1 1 厂 T 
+ — + + = 0 

T Zi 
(3.3.12) 
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and 

pl/i m PU2] 二 0， 

pUl + P]-

plhlh 

徵 剛 = 0 , 

肌 p 树 + P] 二 0, 

where [ / = (l/i, U^). 

Meanwhile. (3.1.7), (3.1.9) and (3.1.10) are converted into 

(3.2.6) 

(3.2.7) 

and 

(3.2.8) 

From now on, for notational conveniences, the superscripts ”+” will be ne-

glected. Then for any solution, (3.2.5) is actually equivalent to 

pUi 
= 0 ’ d八 plh) +，e[pU2) + ” 

U湖一今+冗—巧 

jj ^ j j 丄&2…^ 1%P \ U 2 UidrU'i ̂ ——delh H H : 
(3.2.9) 

r 

P 

Now we reforniuiate the boundary conditions on the shock line. By Rankine-

Hugoniot conditions, we have 

‘G肌 U-�= [p仏][pt/f + P]~ [pU^U2\[pU2] 二 0, 

G^iU, f/_) = {\pU,U2]f — [pUl + P][pUl + P] = 0, 

G肌 UJ) = [p(e + + ~)Ui][pUl + P]- [p[/if/2][p(e + huf + -)f/2] 
丄 P 2 P 

(3.2.10) 



Oil Steady Cornprebsible Flows in a Duct with Variable Sections 87 

As in [118], by implicit function theorem, one has on r = 辦） 

‘Ui — Uo{ro) = 9i{Ul U{ - [/o-(ro), P- - P � -0。)， - 67, (U^)', U：^!!^), 

P — = 嫩 , U �— U“ro), P-—户o—C厂 0), r — So, (f/̂ —f ’ U拘、 

S — = 9,[Ul Vr 一 Uo{ro), P~ 一 S- — 6 7 ， U 洲 , 

(3.2.11) 

here 丞(0，0, 0, 0, 0, 0) = 0 for i = 1, 2,3. An important property of gi is 

氛= 0 { U l ) + 0{U{ — f/o'(7o)) + OiP~ — (ro)) + — S^) + 

+ ( 狐 f o r I = 1,2,3. 

Actually, we can give a more detailed description of gi. Set 少 二 (Ui, U2, P, S) 

and denote (公�for the subsonic and supersonic state of the background solu-

tion respectively. Since = 0 hold for i = 1,2,3, we have 

- (对(辦)) ,$「(辦)))} - - GK对 (r�)A—(r�)) } . 

The terms in the first two brackets {} in the above formula, are all high order 

term. The third term has the form 9)—少�(�0))), which is not a so 

important term. We only need to calculate the fourth term. 

二 (I)�(ro)) • 学 ( r � ) + 办「(『0)) . ^ ( r o ) ) — ro) 

+ 崎 一 ro)'). 
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Careful calculations show that 

没）一亞广 ( n O ) - 0 ( ( �一 r o f ) + 

Po - ro) + ~ 

where 

广(ro), <K{ro)mm； 0) 一 (；^广(ro)) 二 � 

— (；&「）+ (T) — (I)广(之(巧，約)2)， 

广 ( r o )， (阶 o ) M M 0) — KMKro))} = 一 r � ) � 

+0((I>- — (I)「）+ e) ~ (I)广(€(0), 

B), implicit function theorem, we obtain 

U, - U^iro) - B,{m 一 ro) + Ri(議—^o)', 尘-一 $「)， 

P — Po'(ro) = B‘妖—ro) + (《約—�尸，Ul 广—(I)厂)， 

S — So+ = Bsi^ — ro) + RsHm — ^o)', Ul — $厂)， 

7f/o+(r。） [Po 

(3.2.12) 

Bi=-

B2 二 — 

Bs 二 — 

( 7 - 1 ) (说 ( r � ) ) 2 + 7一 (p�+(ro)A+)[ iy 

< 0. 

<0, 
c 2 ( p ; [ ( r o ) , ^ ) - ( f / � + ( r � ) ) 2 

(7 - I W [ P o ] � 0 

Furthermore, it follows from the third equation in (3.2.6) that r = satisfies 

\
—
/
 

/
—
\
 

A
c
-

I

I
 ⑷

 

(pUlu) - p~U[U2 
(3.2.13) 

where u 二 
U2 
Th 

We now decompose the clliptic-hyperbolic system (3.2.10) by its elliptic and 

hyperbolic modes. 

Ui X {the first equation}—p x {the second equation} and t/2X {the first equation} 

—p X (the third equation} in (3.2.10) respectively, together with (3.2.11) and 
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Uo 
(3.2.7)-(3.2.8), we know that w = — and P satisfy: 

十 rf/? — 抑 十 pU计[p，,S) +pc?�p,S�^-c:^�p.,S��)��r 

1 pc\p,S)Uf 1 Ufu; 1 pcHp .S)U^ , 

站 + -rU? — c \ p , S 严 + -r i n — � �S 严 + r f/f - 5) ^̂  + � ） — � 

P - =秘—ro) + i?2� on r = ^{6), 

uj{T,eo) = ^ — 二 0， 
(A 

P = P, + £Po{e) on r = Xo + l. 
- (3.2.14) 

111 addition, it follows from the fourth equation in (3.2.10), (3.2.11) and the 

Bernoulli's law that 

f UidrS-h—deS = 0 in R+, , 
^ r 卞, (3,2.15) 

� - 二域 (巧 - r o ) +糊， on r = _ 

and 

UidrB + —deB-^0 'in 
1 '厂 ‘ 

B = + Brim 一�o) + RMf + U!) 

+ B2im - ^o) + S^ + Bs議—r。）+ R2(0)} 
7 — 1 

on r = ^{0). 

、 (3.2.16) 

Thus, to prove Theorem 3.1.3, it suffices to solve the problems (3.2.14)-

(3.2.16). Furthermore, it is more convenient to reduce the free boundary problem 

into a fixed boundary value problem by setting 

� 丫 ； ； 1 ， �( X G + 1 —ro)， (3.2.17) 

Z2 = 0. 

Then the domain R+ defined in (3.2.4) is transformed into 

E+ - {{zi, Z2) : 0 < < Xo + 1 - ro, -Oo < 勾 < 6>�}. (3.2.18) 

•m 
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A direct computation yields 

^0 + 1 - ro dr do 
Zi - {Xo + 1 - To) 

达1 +汰2 
而 + 1 — «勿; r i， X � + l—‘(之2) 

(3.2.19) 

Thus, in the new coordinate, the problems (3.2.13)-(3.2.16) can be rewritten 

respectively as 

一一
 

、
—
/
 

沒
 

/
f
v
 

pVlu ^ p-V^Vr, M.O) in —队’队 

(3.2.20) 

and 

dzi � + 义0 + 1 —彻） (Xo + 1 - i{z2))Ul 
UJ 

+• 
r (Xo + 1 - rojpUi 

1 ) 1 1 彻 H F 肌 ， 础 饥 

Xo + 1 - ({Z2) pc\p, S ) U l � …I 7 ( X � + 1 — 

E. 

-DZO�4—— i(Xo + l - r , ) U l ~ c2(p, 广 ‘ r . (Xo + 1 - r o ) 听 - � ,S ) ) 

P - = - ro) + R2{e) on zi = 0， 

f(z, + r o ) 

P 

w (21,^0)= Lh ^{zi： -Oq) = 0, 

on Xo + 1 - To 

and 

(Xo + 1 — + (Xo + 1 - f̂e))̂ ：! + {z, ~ (Xo + 

S-S^ + on 訂 = 0 , 

(3.2.21) 

(3.2.22) 
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and 

((Xo + 1 — ro)a^2) + (Xo + 1 — + (尉- (Xo + 1 - To))C{z2)ujjd,,B 

+ (Xo ^ 1 - 0 in E+, 
1 � 

B = -((f/cTCro) + — To) + Ri)' + 
尸o+(ro) + B认e — ro) + 对 + 战K 一 ^o) + 场） on z^ 二 0. 

� 1 
(3.2.23) 

where 

1
 Ulu 

+ -r 
a;2 t/f � 2 

一 1)《(勿)dziO； + ~ 
Ao十丄一 70 , 

S) pc2(p, S){JJl 一 d〜,S)) JVXo + l-To 

+ 馬 小 “ 勿 W 
1 為 + 1 — 彻 ） U ^ LJ-

為 + 1 —ro � 2 )厂 Xo + 1 —ro - S)‘ 
and 

1/ . 之 1 . pc\p.S)U! ^ 7 ( l o + l — 制 P 时 . . 2 

= (丄一 X.^l-rjul-c^ip^st — + 
1 识UJ { 

5) V'Xo + 1 - r o 
1 ) 作 2)知 p + • � - + 1「彻) 

with 
“ 、 ， X o + 1 -

\

/
 2

 

/

V
 

Xo + ro 

(3.2.24) 
"T i. — 7"o 

here one should note that the functions Fi(P，[/!，o;，Q and F2(P, 1/2,CJ,() both 

are error terms of second order in if Theorem 3.1.3 holds. 

We now set for z 6 

Ao十丄7 To 
, � �I Xo + 1 — � 

Ao + 丄 一（0 � 
Xo + 1 - 彻 ) „ X 

V 丨 1：“么1，之2)， 

Ao + 丄一7o 

戶0+⑷二/ 

(3.2.25) 
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and 

l
<
\
 W,(z) 二 S{z) — So+， 

(3.2.26) 

= €(22) — ro, 

It is noted that the corresponding background solution {Uq {ZI), P^ {ZI),Sq) 

satisfies 

么1戶0+ + 
7 •户0十=0. (3.2.27) 

7-0 + A 广， 

Then in terms of the notations in (3.2.25)-(3.2.26) and a direct computation, we 

can derive from the equations (3.2.20)-(3.2.23) and (3.2.15) that 

办 2 ) P ( 0 , 勿 ) ( t M O ，勿） - { p - U , U 2 m Z 2 ) , Z 2 ) 
P{0,Z2) 一 Po-{aZ2))+pi0.Z2)Un0,Z2)u;^{0,Z2) _ (/厂（t/J"尸）(M勿)，之2) 

(3.2.28) 

and 

1 
ro 十 zi 

(ro +巧)对a/o+)厂‘广�丨 ro + zr {U+Y ~ , S^) 
zi 、户0 + 

W, 

(1 X o + 1 - T o ' 

1 对 对 

W^(z2) = FsiW, VW) in 

d.JV2 + 7 

+ 7 

ro + 约 一 6^) ro + ^i (C/o勺 2 — 对,说) 
W3 

V (^0 + 1 - ro) + ^^巧)(t/f - 5)) 

(仏+)2 '^Po^ = F4(W,VW) 

Vl/3(Xo + 1 — ro, Z2) - £Po(z2)； 

/(之1 + ro) 

zn E, 

W2izi,0o) Ui 句，-叫二 0, 

(3.2.29) 
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and 

({Xo + 1 - r�)e(22) + (Xo + 1 — + — ( X �+ 1 — 

V / 、 ) 
十 义 0 + 1 一 efe) = 0 in E+, 

\ / 
W4 = BSW5^BS(z2), on 句二a 

(3.2.30) 

and 

/ 
(Xo + 1 — roK(之2)十（Xo + 1 — + (z, - (Xo + 1 - ro))e'(勿)w 

^ / X ‘ 

d对(B - Bo) + Xo + 1 - 《 勿 ） - Bo) = 0 in 五 十 ， 

1 � ) 
B-Bo = -((f/o+(ro) + + + 拷） 

7 
•e Po" + Vt/5 + R2, + B^W^ + — Bo on zj - 0. 

7 — 1 
(3.2.31) 

here 

F3(W,VW)= 

r 1 而 + 1 — «之2) 

V(ro + 々 ) 磁 ( ( X o + 1 — ro)C(^2) + {^0 + 1 - 滅 J 

f (对 

(Xo + 1 - 腳 \ 

+ + 1 — Torn 一 c'ip.S))] 2 

I , 1 1 � 

+ (1 - X � + l — r o ) ( 两 - 刚 

+ F肌,CO, P, S, 0 - 0, ro), 

知W3+ 
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and 

聊曹)=(1脚。+,对)(奶2 
•‘ Vro + ̂ 1 {(JtY-cXpt.st) 

Xq + 1 - pc\p.S)Ul \ 
(為 + 1 —〜）(《(々 ）十 两 一 S)J 

7 
(^0 + 1 - ro) (^(z,) + 时 — 外 約 ) 

( … 書 — 舰 )) 

^ 、2 I 7 

+ H P � a ' , 0 — F^ipt, G, ro). 

and Bo = -U^iO) ' + 
2 7 — 1 

Set 

A -
(Xo + 1 - ro) _ + - 5)) 

m y � 

Computations show that 

(Xo + 1 — ro) (ro + S^) — {U^y 
•W, 

+ 7咖 

and 

(ro + z i ) 歸 ’ SJ) — ( 輔 
m m p , S)-軌谅,s^)) + 

1 时 

Po Po 
Finally, wc obtain 

,4 = + 55(^1)^3 + + 执 + R4{W) 
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where 

二 財(Zi)戶。+(约对(A), ^ 0 
4�之iJ ~ (r.o + S^) — ， 

. 7 ( 刚 � ) )2 ( P � +�) 2 � 0 

) 二 7(义。+ 1 ) ( 垃 ( 旬 ) � o 
八 “ (Xo + 1 - To) (ro + z .nc^ ip t i z i ) , S^) - • 

Hencc (3.2.29) can be rewritten as 

1 1 

一 • ( I — 赠 = 恥 1 ， 釈 胃 ） - 五 + ， 

厂 0 + A (C/o) — C^Pd ‘ ^o) + ( f / o 十 尸 — 十 ） 

+B,(zi)W3 + Be(z^)W4 + Briz^jWs = F4(2i, IV’ VTV) + m 丑+, 

W3(Xo + l-ro,Z2)=£Fo(z2), 

t 驰 為 ) � �r �) ==0, 
^ (3.2.32) 

With these, Theorem 3.1.3 can be derived from the following theorem: 

Theorem 3.2.1 Under the assumptions of Theorem 3.1.3, there exists a positive 

constant C depending only a and the uniform supersonic incoming flow such that 

the system (3.2.28), (3.2.30)-(3.2.32) has a unique solution W with the following 

estimates 

陶 < Ce (3.2.33) 

and 
4 

< CE (3.2.34) 
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3.3 I te ra t ion Scheme 

In this section, we will follow [74] to develop a new iteration scheme which is 

suitable for us to obtain the existence theorem. To find the suitable iteration 

space, we firstly derive some compatibility conditions. 

Lemma 3.3.1 If the system (3,2.5)^(3.2,6) with (S.2.7)-(3.2.8), has a solution 

(f/i (r，0)，仏(r,昨 P(r，昨 S(r’ 叫 e C72’a 

and ^{9) 6 then the following compatible conditions at the corners hold for 

deUi(T, 士0o) = O， 

deP(T, 士00) - deS{T, 士办）二 0, 

仏(r, 士 礼 湾 f M n 士外 

士 叫 乂 ⑶ ( 土 叫 二 0. 

(3.3.1) 

Proof. It follows from boundary condition (3.2.8), the jumping condition 

(3.2.6) that 

(Mr, 仏 ( r ,-礼）=0, deP{r, 土外）-0,《乂士叫=0. 

App ly ing� (6�dr+dQ to the first, the second and the fourth equations in (3.2.6) 

and [/2(r, 6'o) = 0 when r e + r~o), then evaluate at the (C(士外)，士办） 

deipiU.f + P) = deip{U,-f + P^, 

de(p{e + |f/|2 + = do[p{e- + P + y W ^ ) . 

By Theorem 3.1.2, one has doU^{r. 士礼）=doF~(r, 士礼）=deS-^r, 土(9。）二 0. 

Hence we obtain 

�{j)Ui"}=0, 

de(p{U,f + P) == 
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That is 

‘UidppdeP + UidspdeS + pdeUi = 0, 

{{Uifdpp + 十 ( J h f d s p d e S + 2pU,doU, 二 0， 

m f d p p + + gdspdeS + [^piU.fdpp + 佩 二 0. 
7—丄 L I 7—丄 

Since the determinant of the coefficient matrix is not zero, we obtain that 

士外）二 ( 土 士 - 士办)，士办）二 0 

Apply BQ to the second and the fourth equation in (3.2.5)，and then evaluate 

at 士6*0, we find that deUi(r\ 士6*o) cmd dsS{j�士i9o) satisfies 

Uidr{deU,) + {drU, + ^deU2 — — ~ ^ d e S = 0 on 0 = ±6>o, 

UidridoS)十{drUi + -deU.JdoS + drSdeUi - 0 cm 0 二 士 0o， 
r 

汰 ( 土 土 0 0 ) 二 0’ 

which implies 士外）=doSij, 士0�) = 0. 

In addition, differentiating the first equation of (3.2.5) with respect to 0, one 

can get 

dllUr, 士礼）= 0. 

And taking ^'{0)dr + de on the third equation of (3.2.6) twice yields 

礼）-0. 

We have finished the proof of Lemma 3.3.1. 

Remark 3.3.1 For isentropic flow, one can find that doB~{zi, ±9q) ^ 0 is a 

necessary condition to guarantee the compatibility condition. 

Indeed, in this case at (《(士(9o), 士(9o) we have 

do[pUi]=0, 

do[p{Uif + P] = 0. 
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From this equation, we can derive that 

doU, = + P-) — m r + c 書op}. 

Using the boundary condition, one can derive that 

士办）-0 and 士 彻 ） = 士 礼 ) • 

Hence it follows from the above equation that 

iAp) - {U斤、dop = P队—^ut�出一. 

Using Rankine-Hugoniot conditions and entropy condition, one has 

(f/i—— (士礼)，土礼） 

To guarantee (《土0。），士外)=0, we need the condition 汤(�(土礼），士彻）= 

0 

Next, we construct an iteration scheme to solve the nonlinear problem (3.2.28) 

and (3.2.30)-(3.2.31). 

To this end, we introduce an iteration space as follows 
4 

二 {VI, : X； I丨沙;lb,«(勾 + P,5||C’3’+^m�] < …5巧浙J(化 士 叫 - 1,3，4; 

W2(巧’ 士〜）二 約’ 士〜）二 0 , 0 S < r"o; W2(之1，士礼）> 0; W•(士00) = Wf)(土队） 

(3.3.2) 

where the constant d > 0 will be determined later on. 

In terms of the notations in (3.2.26), each W G S j has the following expression 

(f / iW, P{z), ^>2)). (3.3.3) 

We now define the linearized scheme to the problem (3.2.28) and (3.2.30)-

(3.2.31) aiid determine its corresponding solution as follows 

M / ^ = {W,{z), W2W, WsW, W5(Z2)). 
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3:3.1 Determination of 1̂ 5 

Due to (2.2.28), VV3 is defined as 

柯 勿 ） - 4 + 恥2), (3.3.4) 
尸0 (0) - 尸0 (ro) 

where 

( 知2)/5(0,功 W(CU2))2 
� = 

+ 

卿,22) 

— + [MNM^.之 2 ) — 之 2)) 

Since W e^s and (3.1.16), one checks easily that 

= = 0’ 

[ A ： = 0,1，2， 

here and below the generic positive constant C is independent of 5, e. 

(3.3.5) 

3.3.2 Determination of I/I4 

From (3.2.31), VV4 is required to satisfy 

((Xo + 1 - r�)<e>2) + (Xo + 1 - + {zi - (Xo + 1 - To))e{z2)W2)0,,W4 

+ (Xo + 1 — i(z2)) md,, m^O in E+. 

(3.3.6) 

with the initial data I歹4(0，Z2) being chosen in terms of the expression of Z2) 

in (3.2.30). 

Let Z2(s; (3) be the characteristics going through z 二 Z2) with Z2(0; ,6) — (3 

for the first order differontial operator 

8 + {Xg + I - i(z2))W2 8 
对 ( X o + 1 - ro)i{z,) + (Xo + 1 -知2))2：1 + {z, - (Xo + 1 - To))e{z2)W2 巧’ 
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namely, 

‘dZ2(s；^) = / (Xo-hl-i(z2))m  
办 — V (.Yo + 1 — ro)iiz2) + (Xo + 1 - + - (^0 + 1 - (22)他乂 

= Z2, Z2(Q. /3) = /3, /3e [一礼，外]. 

� (3.3.7) 

Due to (3.3.7), the variable (3 can be regarded as the function of 2 = (zi，Z2), 

wliicli is denoted by 

- ,6iz). (3.3.8) 

It follows from (3.3.7) that 

(Xo + 1 - ro)i{z2) + (Xo + 1 - iiz2))z^ + - (Xo + 1 - ro))f (zsjVVj 
(is. 

z={S,Z2{S\I3)) 
(3.3.9) 

It follows from W2("2i，士彻）=0，(3.3.7) and (3.3.9) that 

(3.3.10) 

It is noted that (3.3.6) is a first order linear partial differential equation of W4, 

then it follows from the characteristics method and the expression of ^4(0，Z2) in 

(3.2.31) that 

1 ^ / 4 � =d { z ) ) = + Fr(z), (3.3.11) 

where 
rJ3(z) 

FV�三 Fr(W)(z) = W^{s)ds + Rs{W{0,风z)))‘ 
J Z2 

Due to (3.1.16)，one can check that 士办）=0, which implies 

4 

lc��(左+) + llPVsllcWhN—̂ ?()，00]) + CE. 
、 z二 1 

(3.3.12) 

where A: 二 0’ 1,2. 
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3.3.3 Determinations of Wi 

From (3.2.31), B is required to satisfy 

( ( X �+ 1 — ro)C>2) + ( X �+ 1 — + (约—（為 + 1 — r�))<f 电 ( 否 — B o ) 

+ (XO + 1 - - BO) M E+, 
(3.3.13) 

A similar analysis shows that 

[B-Bo)iz) = {B-Bo)iO,Piz)). 

Using the mean value theorem and after some tedious calculations, we have 

m(^) 二 杯MO,⑷)+ 、 馳 腳 一 〜 二 、 咖 

+ 二、(徵她腳 一 + h{z). 
Po (0) Po(^i) 

where Fg = 0{\W\^) has same properties as F-j 
Hence we have 

where 

pt{z,)U+{z,) � \ P �o + ( 0嘛 1) (3 3 � 

"0 Oi) Po (0) 

Ptizi) “ “ 

I 户。+(0)戶。+ ⑷ 、 

has the same properties as Fj which can be checked in a similar way as above: 

4 

� 1=1 
(3.3.12) 

where k — 0,1, 2. 
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3.3.4 Determinations of W2, Ws and W5 

By (3.2.30), (3.3.4), (3.3.11) and (3.3.14), in terms of the unknown shock position 

W5{—9O) at the nozzle wall 9 = —GQ (it should be noted that 1^5(—^0) will be 

determined together with the solution W2 and 1 歹3 of the linearized equations), 

we define W2 and W3 by solving the following problem 

_ I I (U'^y -
汰i购+ ( r 。 + • 〜 掀 / ⑶ + — ( 奶 仏 劝 

1 ( 1 - 恕 。 ) ( ， 0 ) ) : _ ， 勿 ) 

二 Fs(z^.w,yw) + — V . I . 则 m 丑 

ro + \ Xo + 1 - P+(0) 一 

J：___(1 £1 \ ^Zi^Q 
— Xo + 1 ~ iV 

ro + — 一 ( 对 ， V ' ^ O + ^l — ^0+) ( + 讽聰 0) + + 丄战 — ̂ ) ) + 
WiziV … P t ( 0 ) 4 �对 对 ( 2 1 ) 

/ V 十(0) — 户0 (nO J-00 / 
= V W ) — 一 B,FS(Z) - BeFj - + ^ 

„ _ � Po (0) 

\ 幻 Po (0) - (^0) J-eo 乂 

I , 胁 l A ) �� 驰 ’ — 办 

1 (3.3.16) 

To write the first and second equations of (3.3.16) in divergence forms and for 
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notatiorial conveniences, we define 

(之1) 二 cxp 

A2O1) 二 

-Zl \ 
ds 〉0, 

(ro +么 1 )舰 + ) : 
�Ai � > 0， 

A 3 � = 1
 

/
—
V
 

ro + 2:1 \ Xo + 1 - — P ^ h 
•Ai(zi) > 0 

with A3(Xo + 1 - ro) = 0, 

入4(>1) = exp 

1 

Asfe) 

(严上 +恥）一 o
 >

 

\
—
/
 

5
 

d
 

f
i

。
 

t
外
 

ro +之1 趙 A + ) — (f/o +�2 > 0, 

1 B2B4 

\ 
+ BsBe + B7 A4(釘）> 0, 

P^(zi) )) 

知 = 僅 o ) ( _ ) ) � o . 
Po+(0) — ̂ o-(ro) 

(3.3.17) 

and 

Xo + l - r o - z , d^.Po' 
F,{Z2) ^ ⑷ 二 入1 ⑷ (恥 1，电 _ + (ro + + 1 - ro) 劝 2 

G2iz) = VH'O — 一 B,izj)F8iz) ~ Be⑷F^z 

(B^B^iO) + + - + B讽 + B,) r 腳 s , 
PoW l^v /̂ o (0) Pll^i) ) J-eo 

G3(Z2) = B2 R Feis)ds + R2{W{0,勿)). 
J-OQ 

(3.3.18) 

It follows from the expressions of Fs{W, VW) and F4{W, VW) together with 

(3.3.5), (3.3.12), that 

I 土 - 0， 土00) - 0, 

k - 1 , 2 

(3.3.19) 
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and 

I d.,Gs(±Oo) - 0, 

< C{6 + (左+) + C'e, k = 0，1，2 

(3.3.20) 

/ 

Then, direct computation shows that (3.3.13) can be easily rewritten as 

达 1 + d巧(u^im) - A3(^I)M/2(0, 22) = G认 

从 1 — d,, (A5(zi)H/2) + (w,{-eo) + At 广 P^2(0，s)d8^ 
V / \ / \ J-do 

=G2(Z), 

怀，3(0,勿）二 丑2 ( m h ^ o ) + AT 广 ^2(0, + ⑷， 
V J-Oo / 

1^3(^0 + 1 - r o , 22) 

访〜叫』：；广 0 ) , 胁 r 叫 二 0， 

which is equivalent to 

达 1 + (x2{z,)W; 一 入 3 ( 夠 ） （ 1 巧 ^ 办 ) + 广 1 ^ 2 ( 0 , s)ds) 

/
 

-Oq 

Gi{zi, s)ds = 0, 
Oq , J 

dzi -汰 2 + A6(2I) 而）+ X �e 风,2(0, S�ds 

Z2) - B2(w,{-eo) + A7 厂 ^2 (0 , s ) d s ) + 6^3(^2), 
\ J-00 / 

Ih 

By the first equation in (3.3.20), one can set 

(3.3.21) 

�Z2 
= A2(zi)W3 — 丨 办 ) + I W2{0,s)ds) ~ I G,{zi,s)ds, 

入 7 J —Gq J-00 

0 ( 0 , 一00) - 0. 

(3.3.12) 
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It is easy to see that (3.3.20) is equivalent to the following problem for a second 

order non-local elliptic equation for <p(z) with the unknown constant 

�̂ ^ z i ) � Asi^i) o A / , d ,入30I)A4(>1)�� 

‘(硕么1乡)+式2 丛 2 句 — �A 7 + 石 ( 糊 ） J 

_ ’ — = GAz)-这1 ( 销 r (？“幻,s)ds) m Eh 
达 1 Z2) + (B^XjX^iO) — As(0)) ( m Z2)—讨彻)) 

入1 

= A2(0)G3(勾）-r G,{0,s)ds, 

丞 1 0 ( X �+ 1 - ro, Z2) 二 + 1 — r o ) P o � —f ‘ G i ( X �+ 1 — r。，s)ds, 

d身iM 二 ,(二;;_) d ^ , -9) ^ 0 
Wi{zi) + U^(zi) 

(5̂ 0，—So) = 0. 
� (3.3.23) 

3.4 A priori es t imates and proofs 

In this section, wc establish some key a priori estimates on the linearized problems 

given in §3 to define a contractible mapping from into so that Theorem 

3.1.1 can be shown. To this end, we first derive some useful a priori estimates on 

(3.3.4), (3.3.11) and (3.3.18). 

3.4.1 Estimates on 1%, Ws and W^ 

Due to (3.1.8), (3.3.19H3.3.20), if one can verify 

A6(^i)A7 + f M f l l M f l ) ) > 0, —入3(0) < 0 (3.4.1) 

then, the conditions of Proposition 4.4 in [74] will be fulfilled. Thus, the solv-

ability and the estimates on W2, W3 and W {̂—9Q) can be subsequently obtained 

by Proposition 4.4 in [74 . 

We now verify (3.4.1). 
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Since the subsonic background solution {P^(zi), Uq (zi), Pq {z-[), satisfies 

Q 伊 二 对，>3"̂ 。+)对 ( ) 

then by a direct computation, one has 

(3.4.3) 

In addition, 

d f A30i)A4(Zi) 
dzi \ X2{zi) J 

二 ⑷ + 6 ( 1 - ^ ^ • ： ^ ， ^ 斤 + 入 ^ 秘 丨 

二 ( • ( B l B為 + ( 0 ) + 驚 + - ^ ) ) 
(>1) /̂ o (0) 7Cv Po (0) Po(^i) 

+ 战战 + 场）— ^ T f ： ! ^么力 + (1 - X o T ^ ^ I劣1 户•+ / 
+ 划丄,…

(
却!：； 恥1) - B办、 

(3.4.4) 

It is noted that 

块(々）—y , , ,氏 1 汽 + 
y^O十丄一厂0 

/ X � + 1 _ 1) (3 4 5) 
(而 + 1 — ro){ro + — (U+y) V �+ z � 

1 込 1 刚 ¥ —1) 
Xo + 1 - r � ro + zi 

and 
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《巧+ +么1户0+ 
/ 

7 

d-訂戶。+ 

+ 战 ⑷ 一 

-27C405�+’5^) 

+ — {Uo^YY + —(仏十尸广 

7 (却)2 

1 -d力. 

+ � 2 � 

) 
厂0 +之1 

Then substituting the expressions above into (3.4.4) and noting that Bi < 0, < 

0，Bsizi) > 0, B 4 � < 0, BQ{ZI) > 0 and a, > 0 (i - 4, 7) hold true, 

dzi \ A2O1) 

1
 

、
/
 

d 

(3.4.6) 

where we have used the property of background solution —~户o+(句）�� ,so we 
dzi 

have 
皮 ( 0 )冉 + (釘) < 0. 

ptiz^) 

Furthermore, since we have Bi < 0, > 0, one has 

战入7入2(0) — A3(0) 

= - < 0 . 

Combining this with (3.4.6) yields (3.4.1). Thus, by Proposition 4.4 in [74 

(3.3.21) has a unique solution 两(—叫）satisfying 

< C{e + 5'' + e5). 
(3.3.12) 
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Remark 3.4.1 One can solve the system (3.3.21) in the following way. First, it 

is easy to derive that W2 satisfies the following equation: 

+ (A7A2(0)BI(0) — A3(0))i歹2(0，么2) = Gi(0，Z2) — X2{0)G',{z2). 

d,, (AiW2)(Xo + 1 - r � , Z2) 二 Gip^o + 1 — r。，勿）—£入2(1�+ 1 - r�)i^�Z2)， 

二 彻：'厂0)，W2(ẑ, —(9o) 二 0. 

(3.4.8) 

in [74J, we can develop a similar theory to obtain the existence and uniqueness 

of W2 for (3.4-S). With W2 being solved, one can solve the following equation to 

obtain W-^: 

二 G i W + 入 3 ( 么 1 ) 1 歹 2 ( 0 , 么 2 ) - d , , ( \ i { z { ) W 2 ) . , 

= a,,(As(21)^2)—入6(之1)0^5(—+ A7 / W2(0,s)ds} + 02(2). 

Z 2 ) 二 i M 砍 5 M o ) + A 7 r M / 2 ( 0 , s ) d s ) + ^ 2 ( ^ 2 ) , 

J —do 

(3.4.9) 

The solvability of (3.4.9) takes the following form, which can be used to determine 

the shock position 礼). 

RXO + L-TQ / \ / ^Xo + l-ro 
/ ^2) + ^2) )dz,+ { X4{0)Bi{0) - / X6{zi)dzi 

Jo \ J \ Jo / 

〜 似 — + AT r ^2(0, 心 ) + ( ^ 3 � —e P o i z 2 ) X , ( X o + 1 - r。）= 0. 
\ J-OO J 

(3.4.10) 

Once 14^5(^0) is known, one can solve W^ and obtain the corresponding estimates. 
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3.4.2 Estimate on Ws(z2) 

By the estimates for W2 and in (3.4.7)，the unique solution (勿）of 

(3.3.4) satisfies 

购 而 A] < 叫 l + l l 砍 左 + � llcM及+)) < C(计d—2 + £外 

(3.4.11) 

3.4.3 Estimate on W4(z) 

It follows from (3.3.10)-(3.3.11), (3.4.11) that 

||怀,4|̂叫忌+) < + < + +明.(3.4.12) 

3.4.4 Estimate on Wi{z) 

It follows from (3.3.14), (3.3.15) and (3.4.7)-(??) that 

取 Ilc2’"向 < 丨柯 |C"2’�(玄+) + || 陶 IC。，"陶 + 11 丹⑷ Ilc2’"(息)）< + + 

(3.4.13) 

Based on the estimates above, we are now ready to show Theorem 3.2.1. 

3.5 Proof of Theorem 3.2.1 

Based on the iteration scheme and the estimates (3.4.7)-(3.4.13), if 6 二 0(1)£ is 

properly chosen, then one can show that 

II讨,玄+)+l|w^5|lc3’午叱,叱】^ & 
i^l 

Hence we can define a mapping T from Es into itself as follows 

T{W) 二 II^ 

where W - (M-̂ i, Vi/2, W3, W5) and W - {Wi, W 3 , W 5 ) . 

It remains to show that the mapping T is contractible. 

(3.5.1) 
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For any given two states 

二 W ^ W ^ , WlW.^) and W^ = {W^, W^ W^ W^, W.^) 
八 A A A 

in with the corresponding fluid variables {Un.cbi, Pi, ^i) and {Uu, 62,尸2，<^2) 

respectively, wc set 
T(IV^) - I,炉， 

with 1 妒 = ( W l , Wl W5O for z - 1,2. 

Let 
f � 二 (Ki(z), f ^ w , r3(z),么⑷，fK勿))’ 

n^) 二 m w , K(斗巧 ( Z)，斗 n f e ) ) 

with t(^)=命/ - Iztf and V,(z) - Wl — W,^ (1 < z < 5). 

In order to obtain the contractibility of T in the Banach space we establish 

some estimates on for 1 < i < 5, which will be provided by the following four 

steps. 

3.5.1 The estimate of shock location 

It follows from (3.3.3) and a direct computation that 

f^ ' fe) 二 O ⑴ + 0 ⑷ f . 

This implies 
- / - / 4 ^ 

-OoM 

(3.5.2) 

(3.5.3) 

3.5.2 The estimate of the entropy difference 

First, define the characteristics z^s; going through (21, Z2) with 2:2(0； = 

as 

喻 I X } 
ds (ÂO + 1 一 + (Xo + 1 ~ + 0 —（Xo + 1 — A 

4(^1； A ) -勿， 功(0，A) = (A., A e [一外,So 
(3.3.12) 
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for z = 1,2. 

Set l(s) = zl{s\ ^i) - zl[s\^2)- Then it follows from (3.5.4) and a simple 

computation that 

f s 二 0{e)l + 0(1)^2(5； / y ) + 0(£) 动S; ), 

K^i) = 0, /(o) - A - P2. 

(3.5.5) 

where the quantity 0{£) in (3.5.5) belongs to due to Wi £ 

and W^ e ^o]- In addition, the estimate of 0i — can be derived 

in terms of (3.5.5). 

Indeed, it follows from (3.5.5) that 

rO / \ Bi 一 (h 

m 二 
/ >1 v 

0{E)l{t) + 0(l)Y2{t- zl(t-P2)) + o�{Y,{zl{t; / y , Y^{zl{t;伪)）dt, 

Oie)lit) + 0{l)Y2(t; zl(t; AO) + O�{Ysizlit; fh),n(zl{t; _ dt. 
人1 \ J 

(3.5.6) 

On the other hand, the estimate (3.3.9) implies 

< CE, \\dz2Wu < C. 

This, together with (3.5.6), yields 

/ . 八 

Pi — 02 Ci’哨+) ^ ^ Gi’�(丑+)+£ ^ 
\ * 

In addition, it follows from (3.3.11) that ¥4 satisfies 

？4⑷ 二 O �( A - + 0{1)¥,{62) + + B, 

(3.5.7) 

'22 
( 恤 

(3.5.8) 

One should note that although R^ contains the term 0(<l>" 一尘「），the coeffi-

cient of Y5 is 0{e). 

This, together with (3.3.10) and (3.5.4), shows that ¥4 admits the following 
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estimate 

/ 4 
< C l II巧||ci，<̂ M[)A)] + - ll̂ 't 

/ 

3.5.3 Estimate on Fi(z). 

It follows from (3.3.14) that 

= O � + O � + 0{e){Yu n). 

\ 

(3.5.9) 

(3.5.10) 

Thus, 

f 

I (3.5.11) 

3.5.4 Estimates on FsO)’？^-) and 

It is noted that 1̂ ，巧 and satisfy 

‘ 5 
(AiC^i)句 + 达2 (Ma)巧）—入3(21 佑 ( 0 ， 勿 ) �f ; + o � V i y 

dq 一 幻(A5(釘声2) + A6(?5(—办)+ Ar 广 s ) d s ) 
J-00 

5 Mz) 
- + 0(£)Vy-) 4- - /52) + 0(1) / Y!{s)ds, 

1=1 人 2 

/ ‘Z2 _ ^ 
Y2{z,,±9o)=0. 

(3.5.12) 



Oil Steady Cornprebsible Flows in a Duct with Variable Sections 113 

By proposition 4.4 in [74], one has the following estimates 

/ 4 X 
一 — / • 八 --> 、 

c叫E+") + I Ys r;j'«(£+) + < P e l ^ ^ X C1，《(应+) + 

(3.5.13) 

Collecting all the estimates in Step 1-Step 4 above shows that 

E K 
— / V ^ 八 

c�够+)十 ^ Ce > I "(左+) + m 
V — 1 

(3.5.14) 

here the constant C > 0 depends only on a and the supersonic incoming flow. 

Thus, for suitably small e, (3.5.14) implies that the mapping T is contractible 

in X (72，°"[—没0,没0], Therefore, there exists a unique solution W = 

in which solves (3.2.28)-(3.2.29) and (3.2.30)-(3.2.31). 

Furthermore, by the definition of Sj. we know that W satisfies (3.2.33)-(3.2.34). 

Hence, we complete the pi oof of Theorem 3.2.1. 

Finally, we prove Theorem 3.1.3. 

Proof of Theorem 3.1.3. By Theorem 3.2.1, there exists a unique solution 

剛，讽P⑷，纲；制 

to the problem (3.2.19)-(3.2.21), and further 

( [ / i M ) M r ， 明 r ， 明 厂 , 湖 

solves the problem (3.2.12)-(3.2.15). Moreover, in terms of the transformations 

(3-2-1)-(3.2.2)，one obtains a solution 

(ui{x),u2{x), P{x),S{X)-,T]{X2)) 

to the problem (3.1.1) with (3.1.2)-(3,1.5) and admits the following estimates 

—小i - < — ro||c3，c^[—< CE (3.5.15) 

with {x\,x\){i 二 1,2) standing for the intersection points of Xi — 7](X2) with 

-lyxitan^o for ？ — 1. 2, and 
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1
 

1
 

+ lie — ro||c2/�卜 00，彻] 

< Ce. 

Thus, we complete the proof of Theorem 3.1.3. 

At the end of this chapter，wc want to discuss some properties of the transonic 

shock solution obtained before. 

To this end, we assume that the system (3.2.28),(3.2.30)-(3.2.32) has two 

solutions M,2丄，W31, ^51) and {W12. W22, VF32, W42； 1̂̂ 52) when the end 

pressure is replaced by 

尸(0) 二尸(3 + £_/\(6>)， on Xn + l., (3.5.16) 

and 

Fi0) = Pe + £_)�on r = Xo + 

Denote V； 二 V^i — i = 1,2,3,4，5. 

We have the following properties: 

(3.5.17) 

4 

+ < 丨尸•L(>2) — (3-5.18) 

2=1 

This implies the continuous dependence of the transonic shock solution with 

respect to the exit pressure. 

Indeed, same analysis as in the proof of Theorem 3.1.3，we have the following 
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1
 

1
 

estimates: 

00] - lie]’"(应+) + ^ + llFslIci叫一00為] 

Klllci’(上(丘+) ^ + ||̂ 5||c2."([-0o,0o]) + g y ^ ||yJlci’�(^^+) + 
V 

�,2||ci,«(左+) + 应+) + l^oi-Oo)] 

-Oo,Go] 

Hence one can easily obtain the estimates (3.5.18). 

One may try to apply a similar approach in [74] to establish the monotonicity 

of shock location with respect to the exit pressure. But we did not succeed. 

Actually, due to the porous medium boundary condition W2 is a main term in 

our solvability condition (3.4.10), which is quite different from the solvability 

condition in [74 . 



Chapte r 4 

Summary and discussion on 
fu tu re work 

In this chaptcr, we will briefly summarize previous work and discuss some open 

problems which arc closely related to the results obtained in this thesis. 

Ill Chaptcr 2, we consider 3-D axially symmetric Eiiler flows through in-

finitely long nozzles without assuming irrotational condition. Global existence 

and uniqueness of subsonic solution are proved for a general nozzle, when the 

variation of Bernoulli's function in the upstream is sufficiently small and mass 

fiux has an upper critical value. We use a stream function formulation, by which, 

3-D Euler equations are equivalent to a quasilinear second order equation for 

a stream function. A key point here is to have the gradient estimate near the 

axis. Then, the existence of solution to the BVP and asymptotic behavior for the 

stream function are obtained. Finally, the uniqueness of the solutions will be a 

consequence of the asymptotic behavior. 

In addition, we showed only the uniqueness of uniformly subsonic flows in 

class of axially symmetric flows. Is the flow unique among all 3-dimensional 

axially symmetric nozzles? Moreover, note that subsonic flow obtained is under 

assumption that the mass flux is less than the critical mass, there may be rich 

phenomena in the nozzle if the mass flux is beyond the critical value and transonic 

116 
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shocks appear. More generally, can we show existence and uniqueness for subsonic 

flows through 3-dimerisiorial infinitely long nozzles? 

In Chapter 3, we establish the existence and uniqueness of a transonic shock 

solution to the full steady compressible Eiiler system in a class of de Laval nozzles 

with porous medium. For this class of nozzles, we have solved the transonic 

shock problem posed by Courarit-Friedrichs: Given a appropriately large receiver 

pressure pe, if the upstream flow is still supersonic behind the throat of the nozzle, 

then at a certain place in the diverging part of the nozzle a shock front intervenes 

and the gas is comprosscd and slowed down to subsonic speed. The position 

and the strength of the shock front are automatically adjusted so that the end 

pressure at the exit becomes Pe-

Furthermore, we would like to consider similar boundary conditions for fiat 

nozzles, since Z. P. Xin, W. Yan and H. C. Yin in [119] proved that there is no 

such transonic shock solution for fiat nozzles with some perturbed pressure given 

at exit. We expect such problem is the well-posed if porous medium boundary 

condition is concerned. 



Chapte r 5 

Appendix 

In this appendix, we will give a description on the transonic solution of the 

problem (3.1.1) with (3.1.2)-(3.1.5) when the exit pressure is a suitable constant 

Pf, under the assumptions on the nozzle walls and the uniform supersonic incoming 

flow in Chapter 3. Such a solution is called a background solution and can be 

obtained by solving the related ordinary diffeieritial equations. In fact, the related 

analysis has been given in Section 147 of [41] and the details can be seen in [120 . 

In this appendix, we give a detailed illustration. 

Theorem (Exiaterice of a transonic shock for the constant end pressure) For 

the 2-D nozzle and tlie uniform supersonic incoming flow given in §1 of Chapter 

1，then tliere exist two constant pressures Pi and P2 with Pi < P2 such that if 

the exit pressure Pe G (Pi, F2), then the system (3.1.1) has a symmetric transonic 

shock solution, 

( o c "�，：《o , 尸0—� ,幻， for < '̂ 0, 
u + 

，0, for r > ro. 

here W^oix) = t/Q^(r)~,Xo < r < Xq + 1, is a constant, and t/(^(r)) 

is C^-srnootli. 

Remark 1. By the assumption (3.1.6), one has for ro < 7' < Xq + 1 
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Remark 2. One can obtain an extension (/5^(r), of (r)) for 

r e (Xo, Xq + 1) by solving the Eiiler system. 

For notational conveniences, the superscripts ”-” will be neglected. 

As in chapter 3, it is convenient to use the polar coordinate and set Dq = 

Di = dy” D2 二 丄各2, then the system (3.2.5) can be rewritten into the 

following non-divergence form 

ADiU + BD2U ^C. (B.l) 

where 

A 二 

^
 o

 o

 o
 

o
 

1
 

o
 p
 

0

0

^

0
 

p
 ̂

 o
 

1
 

p
 B = 

0 p 0 Uo 

p/72 0 0 0 

0 pU2 1 0 

U2 
0 1 - 4 0 

7 尸 

and 

-DopUi 

DoUl U2 

—D0U1U2 P 

P 

The background solution satisfies the following problem: 

(B.2) 
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where 

.4n = 

PQ 0 0 Uin 

PO仏, 0 0
 

1
 

0 PqUÎ O 0 0 

Uin 
1
 

0 
7^0 

0 

BE 

0 A) 0 0 

0 0 0 0 

0 0 1 0 

0 1 0 0 

Co = 

—DoPQUL 

Set W = U — UQ, then W satisfies the following system: 

-iDoPoU, 

(B.3) 

where - A{W + UO). B - B{W + UQ) and E{W) = C7 — (7�—（A — 

By solving det(B — XA) = 0, we find the eigenvalues of (B.3): 

=如 = T T，� , 4 = f/l 

The corresponding left eigenvectors are 

U^ -

h 二（1,0,0, —p), A 二 (0, Uu Ih , 0), 4,4 = (0, A3,4, - 1 , P[U2 - UiM,,)). 

Multiplication of (B.3) by yields 

(B.4) 

Simple calculations show that 

4,4/1 = (p[/2, —plA,干 V时 + 圾— ' 2 ’ 0). c 
The system (B.4) can be rewritten as 

E CkjiD.W, + XtD2Wj) = £,EiW)=:叫,3, 4. (B.5) 
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where (Ch, Cfc2, C/c3, Ow) = 

Denote Rs = {Xo,Xo + d) x ( -1 ,1) , where 5 is to be determined later. Set 

the iteration space 

H. = {W e C2，％/y ： 似 < 

Take V e S � w e set (kj = Ckj{V + f^o), Mfc = l^i'tiV + l^o), hence we obtain the 

linearized equation: 

Y^ + = J h , k 二 1，2’ 3，4. (B.6) 
产1 

Next we consider the boundary condition. We already know VF2 — 0 on the 

boundary y^ = 士1. We need three more conditions on the boundary to prescribe 

Wi, Ws and W4. We use the characteristic method to determine the data on the 

boundary. Let us only consider the data on the lower boundary 奶 二 - 1 . 

Define the i-th characteristics 力 parsing through [yi, —1) by 

dMnyu^l) Xi{{V + Uo){rJ,)) 
dr T ‘ 

fi(Vi‘,yi, —1) = -1-

Using the equations, along the i-th characteristic, we have 

(B.7) 

dr dr (B.8) 

Since Ai = A2 = 0 and A4 < 0 on ?y2 = — 1, the first, second and fourth charac-

teristics can travel to the left and reach the initial boundary on yi — Xq. Let 

ii{yi) = fi(Xo； yi, —1), integrate along the above equation to obtain 

fm fi 
—1) 二 咖）+ / 丁IMWdr =: Xr 

Jxo dr 

Now we will linearize these conditions as in [23]; replace £iA by £iA and Xi by 

又i, where 
rvi A 

又 1 = U M ^ f y i ) ) + / -{eiA){V + Uo)dr. 
Jxo dr 
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Together with the boundary condition W2(yi, —1) = 0, we have 

- … ’ � ：K , 3 + {Ui,o + Vi)W4 = XI, 

+p)(f/i.o + v j ' m + ("1,0 + Vi)m -
一 A4(1 — )W3 = Xl-

122 

(B.9) 

After these preparations, we are able to use the characteristic method to solve 

the problem. 

Let be the 3-th characteristic going through (XQ, —1) and the I: be the 

4-th characteristic going through (Xq, 1). Set R\ R2 二 Rs and /J", will 

separate the domain R^ into two parts, which will be denoted by R^, R^ and 

R4, R: respectively. 

By the characteristic method, we have 

‘ 4 4 ryi J _ 

户1 户1 •^彻肪 

4 4 

E 凡(歸)E 站歸)，-1)哪(歸)，-1) 

片 产】 
rvi d - - -

〜 歸 2 ) 虹 

4 4 

户 1 j=i 
rvi (i - - ~ 

+ / + iii{W))dT ~ {yi, y2) E R^, 
4々(歸2)江丁 

(B.IO) 

where <̂3(̂ /1，？72), y2) are defined as follows: 

dr yi 
Myi;yi,y2) 二 y�-

\ 

and 
{ d 、入I0，/4(t;奶，2/2))  
丁 f4[丁,,yi,y2)= , 
dr yi 
/4(?/i;:yi，y2) 二 y2. 
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and Csfei, ^2), ？/2) satisfy / s f e f e i , 1/2)； , 1/2) = — 1 and / ‘ (� ‘ (y i ’ "2); "1，"2)= 

1. 

Next we will use the contraction principle to solve (B.IO). Take any W G 

solving the linear system 

J=l 

Hencc wo can define a mapping S : Z — In order to get the contraction 

of S, wc introduce the following norm in Sj： 

where a, b are positive constants. A direct computation shows that S maps Ĥ  to 

itself. 

One can show that for sufficiently large a and 6, S is a contraction operator. 

Hence there exists a unique fixed point W such that W : Hence wc 

have solved the linearized equation. This enable us to define another mapping 

T : V ——�W. Using the integral equations and Gronwall's inequality, one can 

derive the estimate of W. Differentiating the equations with respect to 机 one 

can derive the equation of dŷ  Z�which takes the same form as Z, one can derive 

the estimate of dy^Z as for Z. Finally using the equation itself, one can derive 

the estimate of dy: Z. In a word, one can prove that the mapping T maps 5 to 

itself if 6 is small enough. For the details； one may refer to [83 . 

One can do the same estimates to show that T is a contraction operator with 

respect to C^ norm. Since is compact in and closed in the C^ norm, 

then T has a unique fixed point in 

Hence we have proved that for the initial-boundary value problem (3.1.1),(3.1.2)-

(3.1.9) with < CO for 0 < £0 < 1, there exits a small Jo > 0 depending 

only oil 80, UQ siicli that there exists a unique solution U on RS^ satisfying the 
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2
 

1
 

following estimate: 

where C| depends only on UQ, SQ 

Now take e 
a +1 then we have 

u — ) < C'lll^o 一 
•1) 

< 
C ¥ 

Hence < e. Then one can apply the above result a,gain, continue 
2 

this process (up to —+ 1 times), wc extend the local solution to the whole region. 

The corresponding estimate holds also. (3.1.15) can be checked directly. Hcnce 
we have completed the proof. 
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