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Abstract of thesis entitled: 
Learning to Recommend 

Submitted by MA, Hao 
for the degree of Doctor of Philosophy 
at The Chinese University of Hong Kong in December 2009 

Recommender Systems are becoming increasingly indispensable 
nowadays since they focus on solving the information overload 
problem, by providing users with more proactive and personal-
ized information services. Typically, recommender systems are 
based on Collaborative Filtering, which is a technique that au-
tomatically predicts the interest of an active user by collecting 
rating information from other similar users or items. Due to 
their potential commercial values and the associated great re-
search challenges, Recommender systems have been extensively 
studied by both academia and industry recently. 

However, the data sparsity problem of the involved user-item 
matrix seriously affects the recommendation quality. Many ex-
isting approaches to recommender systems cannot easily deal 
with users who have made very few ratings. The objective of 
this thesis is to study how to build effective and efficient ap-
proaches to improve the recommendation performance. 

In this thesis, we first propose two collaborative filtering 
methods which only utilize the user-item matrix for recommen-
dations. The first method is a neighborhood-based collabora-
tive filtering method which designs an effective missing data 
prediction algorithm to improve recommendation quality, while 
the second one is a model-based collaborative filtering method 



which employs matrix factorization technique to make the rec-
ommendation more accurate. 

In view of the exponential growth of information generated by 
online users, social contextual information analysis i^becoming 
important for many Web applications. Hence^ based on the 
assumption that users can be easily influenced by the friends 
they trust and prefer their friends' recommendations, we propose 
two recommendation algorithms by incorporating users' social 
trust information. These two methods are based on probabilistic 
matrix factorization. The complexity analysis indicates that our 
approaches can be applied to very large datasets since they scale 
linearly with the number of observations, while the experimental 
results show that our methods perform better than the state-of-
the-art approaches. 

As one of the social relations, "distrust" also performs an 
important role in online Web sites. We also observe that dis-
trust information can also be incorporated to improve recom-
mendation quality. Hence, the last part of this thesis studies 
the problem on how to improve recommender system by consid-
ering explicit distrust information among users. We make the 
assumption that users' distrust relations can be interpreted as 
the "dissimilar" relations since user Ui distrusts user Ud indicates 
that user Ui disagrees with most of the opinions issued by user 
Ud. Based on this intuition, the distrust relations between users 
can be easily modeled by adding the regularization term into the 
objective functions of the user-item matrix factorization. The 
experiments on the Epinions dataset indicate that distrust in-
formation is at least as important as trust information. 

11 
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摘要 

因為能夠提供給在綫用戶個性化的信息服務，並且能夠解決互聯網资訊過載 

的問題，推面系統已經越來越收歡迎，並且必不可少。典型的推菌系統是基於協 

同過浦的。這種技術能夠根據其他相似用戶的評分記錄來自動預測當前用戶的興 

趣。由於其重要的商業價值和研究價值，推裔系統已經被工業界和學術界進行了 

深入的研究。 

然而，用戶-項目矩陣的數據稀疏問題嚴重影塞了推鬼質量。很多的推商算 

法都不能準確的給評分很少的用戶評分。因此，本論文的目標是研究怎樣設計更 

加有效的推面方法來改善推薄的性能。 

本諭文首先提出了兩種基於用戶-項目矩陣的協同過浦方法。第一種方法屬 

於基於鄰居的協同過滅方法，這個方法設計了一個有效的預測缺失數據的算法來 

提高推苗質量：第二種方法是基於模型的協同過澳的方法，這種方法應用了矩陣 

分解技術使得推苗更為準確。 

随著因特網上用戶產生的數據的大量增加，社交相關的信息分析在很多在錢 

應用中被庚泛研究。因此，基於用戶很容易就能被在錢好友影番的猜想，本論文 
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接著提出了基於用戶社交“信任”信息的兩種新顆的推商算法。這兩種方法提出 

了概率矩陣分解框架來進行推商。複雜度分心顯示這兩種方法能夠應用到十分大 

的数據集上，同•時，貪驗結果證明我們提出的方法比其他的先進算法更加優秀。 

作為一種社會關係，“不信任”關係在互聯網上也是十分重要的。我們同時 

也親察到“不信任”的信息也能用於改善推蔣系統。因此，本論文的最後一個部 

份提出了一種算法使用用戶的“不信任”信息來提高推商質量。這種算法是基於 

一下的假設：用戶Ui不信任用戶Ud表明了用戶Ui不同意用戶Ud的大多數親點, 

基於這個直覺，用戶之間不信任的關係可以被建模為矩陣分解目標方程的 

正則項。使用Epin ions数據集的寅驗結果顯示在推蔴系統中，“不信任” 

關係和“信任”關係一樣重要。 
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Chapter 1 

Introduction 

1.1 Overview 

As the exponential growth of information generated on the World 
Wide Web, the Information Filtering techniques like Recom-
mender Systems have become more and more important and 
popular. Recommender systems form a specific type of infor-
mation filtering technique that attempts to suggest informa-
tion items (movies, books, music, news, Web pages, images, 
etc.) that are likely to interest the users. Typically，recom-
mender systems are based on Collaborative Filtering, which is a 
technique that automatically predicts the interest of an active 
user by collecting rating information from other similar users or 
items. The underlying assumption of collaborative filtering is 
that the active user will prefer those items which other similar 
users prefer [68]. Based on this simple but effective intuition, 
collaborative filtering has been widely employed in some large, 
well-known commercial systems, including product recommen-
dation at Amazon^, movie recommendation at Netflix^, etc. 

Due to the potential commercial values and the great research 
challenges, recommendation techniques have drawn much atten-
tion in data mining [9, 59], information retrieval [7’ 26’ 45’ 50’ 

1 http://www.amazon.con 
^http://www.netftbc.com 

http://www.amazon.con
http://www.netftbc.com
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Figure 1.1: Recommendations from Amazon 

58, 131] and machine learning [75, 94，98, 99, 100，133] com-
munities. Recommendation algorithms suggesting personalized 
recommendations greatly increase the likelihood of customers 
making their purchases online. Fig. 1.1 shows some recommen-
dation examples from Amazon. 

A number of algorithms have been proposed to improve both 
the recommendation quality and the scalability problems. These 
collaborative filtering algorithms can be divided into two main 
categories: neighborhood-based (or memory-based) and model-

CHAPTER 1. INTRODUCTION 19 
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CHAPTER 1. INTRODUCTION 20 

based approaches [16, 102]. Different methods make different 
assumptions. The neighborhood-based recommendation algo-
rithms assume that those who agreed in the past tend to agree 
again in the future. They usually fall into two classes: user-
based approaches [16，44] and item-based approaches [28，102 . 
To predict a rating for an item from a user, user-based methods 
find other similar users and leverage their ratings to the item for 
prediction, while item-based methods use the ratings to other 
similar items from the user instead [21]. In addition to the 
neighborhood-based approach, the model-based approaches em-
ploy the observed user-item ratings to train a predefined model. 
Algorithms in this category include clustering methods [124], 
Bayesian model [128], aspect model [48], etc. 

Although recommendation algorithms have been widely used 
in recommendation systems [65，95], the problem of inaccurate 
recommendation results still exists in both neighborhood-based 
methods and model-based methods. The fundamental problem 
of these approaches is the data sparsity of the user-item matrix. 
The density of available ratings in commercial recommender sys-
tems is often less than 1% [102] or even much less. In such cir-
cumstance, neighborhood-based [53，65, 68，119] collaborative 
filtering algorithms fail to find similar users, since the methods 
of computing similarities, such as the Pearson Correlation Coef-
ficient (PCC) or the Cosine method, assume that two users have 
rated at least some items in common. Moreover, almost all of 
model-based [47，48, 99, 107] collaborative filtering algorithms 
cannot handle users who rated only a few items. 

Many recent algorithms have been proposed to alleviate the 
data sparsity problem. In [119], Wang et al proposed a gener-
ative probabilistic framework to exploit more of the data avail-
able in the user-item matrix by fusing all ratings with a predic-
tive value for a recommendation to be made. Xue et al. [124 
proposed a framework for collaborative filtering which combines 
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the strengths of memory-based approaches and model-based ap-
proaches by introducing a smoothing-based method, and solved 
the data sparsity problem by predicting all the missing data in 
a user-item matrix. Although the simulation showed that this 
approach can achieve better performance than other collabora-
tive filtering algorithms, the cluster-based smoothing algorithm 
limited the diversity of users in each cluster and predicting all 
the missing data in the user-item matrix could bring negative 
influence for the recommendation of active users. 

Based on the above analysis, in order to improve the recom-
mendation quality, we need to solve the data sparsity problem. 
In this thesis, we propose five effective and efficient methods to 
make the recommendations more accurate. 

The first two algorithms purely based on user-item matrix, 
and do not include any other data sources. The first algo-
rithm [68] is a memory-based collaborative filtering algorithm 
which focuses on recommending products or items based on the 
past behavior of similar users. Notable similarity computation 
algorithms include Pearson Correlation Coefficient (PCC) [95 
and Vector Space Similarity (VSS) algorithm [17]. PCC-based 
collaborative filtering generally can achieve higher performance 
than the other popular algorithm VSS, since it considers the dif-
ferences of user rating styles. In order to generate more accurate 
recommendations, Amazon also extended this method to calcu-
late the implicit relations between items or products, which is 
called item-based method. Item-based methods share the same 
idea with user-based methods. The only difference is user-based 
methods try to find the similar users for an active user but item-
based methods try to find the similar items for each item. The 
second algorithm [72] is a model-based collaborative filtering al-
gorithm which employs semi-nonnegative matrix factorization 
techniques to improve recommendation quality. 

Different with the first two algorithms, the rest three ap-



CHAPTER 1. INTRODUCTION 5 

proaches [69，70，74] incorporates social relations between users. 
These relations are normally assigned by online users explicitly. 
Actually, thanks to the popularity of the Web 2.0 applications, 
recommender systems are now associated with various kinds of 
social context information, including users' social trust network, 
social distrust network, tags issued by users or associated with 
items, etc. This contextual information contains abundant ad-
ditional information about the interests of users or properties of 
items, hence providing a huge opportunity to improve the recom-
mendation quality. For example, in users' social trust network, 
users tend to share their similar interests with the friends they 
trust. In reality, we always turn to friends we trust for movie, 
music or book recommendations, and our tastes and characters 
can be easily affected by the company we keep. 

Traditional recommender systems assume that users are in-
dependent and identically distributed. This assumption ignores 
the social trust relationships among the users. But the fact is, 
offline, social recommendation is an everyday occurrence. For 
example, when you ask a trusted friend for a recommendation 
of a movie to watch or a good restaurant to dine, you are essen-
tially soliciting a verbal social recommendation. In [110], Sinha 
et al. have demonstrated that, given a choice between recom-
mendations from trusted friends and those from recommender 
systems, in terms of quality and usefulness, trusted friends' rec-
ommendations are preferred, even though the recommendations 
given by the recommender systems have a high novelty factor. 
Trusted friends are seen as.more qualified to make good and-
useful recommendations compared to traditional recommender 
systems [8]. Prom this point of view, the traditional recom-
mender systems that ignore the social network structure of the 
users may no longer be suitable. 
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1.2 Thesis Contributions 

The main contributions of this thesis can be described as follows: 

(1) Effective Missing Data Prediction 
In order to extract implicit social relations between users, 
we first use PCC-based significance weighting to compute 
similarities between users, which overcomes the potential 
decrease of similarity accuracy. We also extend this method 
to calculate similarities between items. Second, we pro-
pose an effective missing data prediction algorithm which 
exploits the information both from users and items. More-
over, this algorithm will predict the missing data of a user-
item matrix if and only if we think it will bring positive 
influence for the recommendation of active users instead of 
predicting every missing data of the user-item matrix. The 
simulation shows our novel approach achieves better per-
formance than other state-of-the-art collaborative filtering 
approaches. 

(2) Recommend with Global Consistency We propose a 
semi-nonnegative matrix factorization method with global 
statistical consistency. The major contribution of our work 
is twofold: (1) We endow a new understanding on the gen-
eration or latent compositions of the user-item rating ma-
trix. Under the new interpretation, our work can be formu-
lated as the semi-nonnegative matrix factorization problem. 
(2) Moreover, we propose a novel method of imposing the 
consistency between the statistics given by the predicted 
values and the statistics given by the data. We further 
develop an optimization algorithm to determine the model 
complexity automatically. The complexity of our method 
is linear with the number of the observed ratings, hence it 
is scalable to very large datasets. 
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(3) Social Recommendation 
We propose a framework to integrate social contextual in-
formation and the user-item rating matrix, based on a prob-
abilistic factor analysis. We connect these different data 
resources through the shared user latent feature space (or 
item latent feature space), that is, the user latent feature 
space in the social contextual information is the same as in 
the user-item rating matrix. By performing factor analysis 
based on probabilistic matrix factorization, the low-rank 
user latent feature space and item latent feature space are 
learned in order to make recommendations. The experi-
mental results on the Epinions^ and Movielens^ datasets 
show that our method outperforms the state-of-the-art col-
laborative filtering algorithms, especially when active users 
have very few ratings. Moreover, the complexity analysis 
indicates that our approach can be applied to very large 
datasets since it scales linearly with the number of obser-
vations. 

(4) Recommend with Social Trust Ensemble 
Aiming at modeling the recommender systems more accu-
rately and realistically, we endow a novel understanding to 
all the ratings in the user-item matrix R. We interpret 
the rating Rij in the user-item matrix as the representa-
tion mixed by both the user UiS taste and his/her trusted 
friends tastes on the item Vj. This assumption naturally 
employs both the user-item matrix and the users' social 
trust network for the recommendations. 

In terms of the users' own tastes, we factorize the user-item 
matrix and learn two low-dimensional matrices, which are 
user-specific latent matrix and item-specific latent matrix. 

3http://www.epinions.com 
'*http://www.grouplens.org/node/73 

http://www.epinions.com
http://www.grouplens.org/node/73
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For the social trust graph, based on the intuition that users 
always prefer the items recommended by the friends they 
trust, we infer and formulate the recommendation prob-
lem purely based on their trusted friends' favors. Then, by 
employing a probabilistic framework, we fuse the users and 
their trusted friends' tastes together by an ensemble param-
eter. Finally, by performing a simple gradient descent on 
the objective function, we learn the latent low-dimensional 
user-specific and item-specific matrices for the prediction 
of users' favors on different items. 

(5) Recommend with Social Distrust 
We elaborate how user distrust information can benefit the 
recommender systems. Users，distrust relations can be in-
terpreted as the ‘̂ dissimilar，，relations since user Ui distrusts 
user Ud indicates that user Ui disagrees with most of the 
opinions issued by user Ud. Different with distrust, users' 
trust relations can be modeled as the "similar" relations due 
to the reason that user Ui trusts user Ut means that user 
Ui agrees with most of the opinions issued by ut. Based 
on the above intuitions, the distrust and trust relations 
between users can be easily modeled by adding the regular-
ization terms into the objective functions of the user-item 
matrix factorization. By performing a simple gradient de-
scent on the objective function, we can learn the latent 
low-dimensional user-specific and item-specific matrices for 
the prediction of users，favors on different items. 

1.3 Thesis Organization 

The rest of this thesis is organized as follows: 

• Chapter 2 
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In this chapter, we briefly review some background knowl-
edge and related work in the field of recommender systems. 

• Chapter 3 
This chapter focuses the neighborhood-based collaborative 
filtering problems on two crucial factors: (1) similarity com-
putation between users or items and (2) missing data pre-
diction algorithms. First, we use the enhanced Pearson 
Correlation Coefficient (PCC) algorithm by adding one pa-
rameter which overcomes the potential decrease of accuracy 
when computing the similarity of users (implicit social re-
lations) or items. Second, we propose an effective missing 
data prediction algorithm, in which information of both 
users and items is taken into account. In this algorithm, 
we set the similarity threshold for users and items respec-
tively, and the prediction algorithm will determine whether 
predicting the missing data or not. We also address how 
to predict the missing data by employing a combination of 
user- and item information. Finally, empirical studies on 
dataset MovieLens have shown that our newly proposed 
method is more robust against data sparsity. 

• Chapter 4 
In this chapter, we propose a Semi-Nonnegative Matrix 
Factorization with Global Statistical Consistency (SNGSC) 
approach for collaborative filtering. First, we endow a new 
understanding on the latent compositions of the ratings, 
which is based on the following assumptions: (1) there are 
totally a number of d types of items; (2) on each type of 
items, every user has a confidence value indicating the taste 
of this user on the type; (3) each item also has a qual-
ity value on each type. Based on these assumptions, we 
formulate the collaborative filtering algorithm as the Semi-
Nonnegative Matrix Factorization problem, and propose an 
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optimization formulation with sensitive analysis. Second, 
based on the observation that the statistics of the predicted 
ratings are not consistent with the statistics of the train-
ing data, we propose to impose the consistency between 
them. This consideration generates very good performance 
when the dataset is spare. Furthermore, we develop aji al-
gorithm to determine the model complexity automatically. 
The complexity of our method is linear with the number 
of the observed ratings, which can be applied to very large 
datasets. 

• Chapter 5 ‘ 
In this chapter, based on the assumption that users' deci-
sions can be easily influenced by the friends they trust, we 
propose a factor analysis approach based on probabilistic 
matrix factorization to alleviate the data sparsity and poor 
prediction accuracy problems by incorporating social trust 

\ information. This method is quite general, and we also 
can extend this approach to improve recommender systems 
with social tags that are issued by users. 

• Chapter 6 
Although the users' social trust network is integrated into 
the recommender systems by factorizing the social trust 
graph in Chapter 4，the real world recommendation pro-
cesses are not reflected in the model. This drawback not 
only causes lack of interpretability in the model, but also 
affects the recommendation qualities. A more novel and 
realistic approach is needed to npdel the trust-aware rec-
ommendation problem. In this chapter, aiming at model-
ing recommender systems more accurately and realistically, 
we propose a novel probabilistic factor analysis framework, 
which naturally fiises the users' tastes and their trusted 
friends，favors together. In this framework, we coin the 
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term Social Trust Ensemble to represent the formulation of 
the social trust restrictions on the recommender systems. 

• Chapter 7 
In this chapter, we prove that not only social trust informa-
tion can be used to improve recommender systems, social 
distrust information is also a very important source. We 
model users' distrust relations as the "dissimilar" relations 
based on the intuition that distrust can be interpreted as 
disagree in most circumstances. We also extend this idea 
to model trust relations as the "similar" relations. The ex-
perimental results show that the distrust relations among 
users are as important as the trust relations. 

• Chapter 8 
The last chapter summarizes this thesis and addresses some 
future directions that can be further explored. 

In order to make each of these chapters self-contained, some 
critical contents, e.g., model definitions or motivations having 
appeared in previous chapters, may be briefly reiterated in some 
chapters. 

• End of chapter. 



Chapter 2 

Background Review 

Generally speaking, the concept of Recommendation is very 
broad. Lots of research problems can be classified as recommen-
dation problems, including search ranking [18，19, 22，67, 92], 
query suggestion [5，25，32，34，37, 52，71，123], tag recommen-
dation [41, 108，112，132], Web service recommendation [129], 
marketing candidates selection [29，30，73, 97, 111], question an-
swering [52], etc. However, in this thesis, we only focus on Rec-
ommender Systems, which foriBpi specific type of information 
filtering technique that at tempt^to present information items 
(movies, music, books, news，images, web pages, etc.) that are 
likely of interest to the user. 

Recoirimender systems have become an important research 
area since the appearance of Jhe first papers on collaborative fil-
tering in the mid-1990s [46’ 95,106]. They are becoming increas-
ingly indispensable nowadays since they focus on solving the in-
formation overload problem by providing users with more proac-
tive and personalized information services. In this chapter, we 
briefly review some backgrounds about recommender systems, 
including (1) traditional recommender systems which are mainly 

• • < 

b^ed on collaborative filtering techniques, and (2) social-based 
recommender^ systems which have drawn^ lots of attention re-
cently. 

2
 

1
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2.1 Traditional Recommender Systems 

As reported in [2], although the roots of recommender sys-
tems can be traced back to the extensive work in cognitive sci-
ence [96], approximation theory [91], information retrieval [101], 
forecasting theories [4]，and also have links to management sci-
ence [80] and to consumer choice modeling in marketing [64]， 
recommender systems emerged as an independent research area 
in the mid-1990s when researchers started focusing on recom-
mendation problems that explicitly rely on the ratings structure. 
The missing ratings of the not-yet-rated items can be estimated 
in many different ways using methods from machine learning, 
approximation theory, and various heuristics [2 . 

Normally, recommender systems can be classified into two 
categories: 

t 

• Content-based filtering: The user will be recommended 
items similar to the ones the user preferred in the past; 

• Collaborative filtering: The user will be recommended items 
that people with similar tastes and preferences liked in the 
past. 

In this chapter, we mainly focus on collaborative filtering 
since this method is the most popular and effective method, 
which is widely analyzed in both industry and academia. Ac-
cording to [17]，algorithms for collaborative filtering can be grouped 
into two general classes: memory-based (or neighborhood-based) 
and model-based. 

2.1.1 .Memory-based Methods 

The memory-based approaches [17, 27, 39，44，53，57, 65, 81，95， 

102] are the most popular prediction methods and are widely 
adopted in commercial collaborative filtering systems [65，95 . 
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The most analyzed examples of memory-based collaborative 
filtering include user-based approaches [17，44, 53,124] and item-
based approaches [28’ 65，102 . 

44] presented an algorithmic framework for performing col-
laborative filtering and new algorithmic elements that increase 
the accuracy of collaborative prediction algorithms. This work 
also presented a set of recommendations on selection of the right 
collaborative filtering algorithmic components. [65] reviewed the 
famous Amazon item-to-item collaborative filtering method. 

User-based approaches predict the ratings of active users based 
on the ratings of similar users found, and item-based approaches 
predict the ratings of active users based on the information of 
similar items computed. User-based and item-based approaches 
often use PCC (Pearson Correlation Coefficient) algorithm [95 
and VSS (Vector Space Similarity) algorithm [17] as the simi-
larity computation methods. PCC-based collaborative filtering 
generally can achieve higher performance than the other popular 
algorithm VSS, since it considers the differences of user rating 
styles. 

Given a recommendation system consists of M users and N 
items, the relationship between users and items is denoted by 
an M X AT matrix, called the user-item matrix. Every entry in 
this matrix represents the score value, r, that user m rates 
an item n，where r e { 1 , 2 , r ^ a x } - If user m does not rate the 
item n, then rm,n = 0. 

User-based collaborative filtering engaging PCC was used in 
a number of recommendation systems [106], since it can be eas-
ily implemented and can achieve high accuracy when comparing 
with other similarity computation methods. In user-based col-
laborative filtering, PCC is employed to define the similarity 
between two users a and u based on the items they rated in 
common: 
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(厂a’i 一 厂a) •(厂u’i 一 ^u, 

Sim{a^ u)= iG/(a)n/(ii) 

i ( V i —尹a)2 
iel{a)ni{u) i iel{a)nl{u) 

(2.1) 
where Sim{a^ u) denotes the similarity between user a and user 
u, and i belongs to the subset of items which user a and user u 
both rated, ra^i is the rate user a gave item i, and fa represents 
the average rate of user a. Prom this definition, user similarity 
Sim{a^ u) is ranging from [—1,1]’ and a larger value means users 
a and u are more similar. 

Item-based methods such as [28,102] are similar to user-based 
approaches, and the difference is that item-based methods em-
ploy the similarity between the items instead of users. The basic 
idea in similarity computation between two items i and j is to 
first isolate the users who have rated both of these items and 
then apply a similarity computation technique to determine the 
similarity Sim{i,j) [102]. The PCC-based similarity computa-
tion between two items i and j can be described as: 

- n) • {ruj - � j ) 

Sim{iJ)= ueu{i)nu{j) 

i — T i ) ' 

ueuii)nuu) I E (' 
(2.2) 

where Sim(i,f) is the similarity between item i and item j, and 
u belongs to the subset of users who both rated item i and item 
j. r^^i is the rate user u gave item i, and � i represents the average 
rate of item i. Like user similarity, item similarity Sim{i,j) is 
also ranging from [—1，1 
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In the VSS approach, the two users a and u are treated as two 
vectors in m-dimensional space. Then, the similarity between 
two vectors can be measured by computing the cosine of the 
angle between them: 

Sim{a^ u) = cos(~a ^ Tt)= 
~a ‘ ~u 

~a X 

r. 
~u 

i€/(a)n/(u) 

I • I Z 
Y t€/(a)n/(u) Y i€/(a)nj 

(2.3) 
ri 

)n/(u) 

where i t • 1? denotes the dot-product between the vectors ~a 
and ~u. 

Once the similarities are calculated, we can easily calculate 
the values of missing rating r^.i for user u and item z.by aggre-
gating the ratings of some other (usually, the N most similar) 
users for the same item i: 

二 aggivef/,7v,i’ (2.4) 

where U' denotes the set of N users that are the most similar 
to user u and who have rated item i. Some examples of the 
aggregation function are [2]: 

r. 

N 

1 

Sim{u^ u') X r^/^i, 

= + 
Ylu'eU' \Sim{u 

(2.5) 

(2.6) 

—pr ^ Sim(u,u') x (rv，i - TV)， 
’ 以 j u 'GC/ ' 

(2.7) 
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where f^ is the average rating of user u. 

2.1.2 Model-based Methods 

In contrast to the memory-based approaches, the model-based 
approaches [13, 20，36，40，75，86，119] to collaborative filtering 
use the observed user-item ratings to train a compact model that 
explains the given data, so that ratings could be predicted via 
the model instead of directly manipulating the original rating 

13 pro-database as the memory-based approaches do 
posed a collaborative filtering method in a machine learning 
framework, where various machine learning techniques coupled 
with feature extraction techniques (such as singular value de-
composition) can be used. [20] introduced a peer-topeer pro-
tocol for collaborative filtering which protects the privacy of 
individual data. This work also presented a new collaborative 
filtering algorithm based on factor analysis which appears to be 
the most accurate method for collaborative filtering. The new 
algorithm has other advantages in speed and storage over pre-
vious algorithms. It is based on a careful probabilistic model of 
user choice, and on a probabilistically sound approach to dealing 
with missing data. 

There have been several other model-based collaborative rec-
ommendation approaches proposed in the literature. Algorithms 
in this category include the aspect models [47，48，107], Bayesian 
model [24], relevance models [120，121], latent class models [49’ 
54, 76’ 107, 104], matrix factorization models [14’ 40，94，103 

and clustering models [6, 35, 56, 87, 116，117]. [47] proposed 
an algorithm based on a generalization of probabilistic latent 
semantic analysis to continuous-valued response variables. [24 
proposed a Bayesian approach for the problem of predicting the 
missing ratings from the observed ratings. This approach in-
corporates similarity by assuming the set of judges can be par-
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titioned into groups which share the same ratings probability 
distribution. This leads to a predictive distribution of miss-
ing ratings based on the posterior distribution of the group-
ings and associated ratings probabilities. Markov chain Monte 
Carlo methods and a hybrid search algorithm are used to obtain 
predictions of the missing ratings. [121] presented a probabilis-
tic user-to-item relevance framework that introduces the con-
cept of relevance into the related problem of collaborative filter-
ing. Experimental results complement the theoretical insights 
with improved recommendation accuracy. The unified model 
is more robust to data sparsity, because the different types of 
ratings are used in concert. [54] conducted a broad and system-
atic study on different mixture models for collaborative filter-
ing. It discussed general issues related to using a mixture model 
for collaborative filtering, and proposed three properties that a 
graphical model is expected to satisfy. Using these properties, 
this work thoroughly examined five different mixture models, 
including Bayesian Clustering (BC)，Aspect Model (AM), Flex-
ible Mixture Model (FMM), Joint Mixture Model (JMM), and 
the Decoupled Model (DM). Experiments over two datasets of 
movie ratings under different configurations show that in gen-
eral, whether a model satisfies the proposed properties tends 
to be correlated with its performance. In particular, the De-
coupled Model, which satisfies all the three desired properties, 
outperforms the other mixture models as well as many other 
existing approaches for collaborative filtering. [56] presented an 
algorithm for collaborative filtering based on hierarchical clus-
tering, which tried to balance both robustness and accuracy of 
predictions, especially when few data were available. 

More recently, a significant amount of research has been done 
in trying to model the recommendation process using more com-
plex probabilistic models. For instance, Shani et al. [105] view 
the recommendation process as a sequential decision problem 
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and propose using Markov decision processes for generating rec-
ommendations. [75] proposed a combination method of multino-
mial mixture and aspect models using generative semantics of 
Latent Dirichlet Allocation. Similarly, Si and Jin [107] also use 
probabilistic latent semantic analysis to propose a flexible mix-
ture model that allows modeling the classes of users and items 
explicitly with two sets of latent variables. Furthermore, Kumar 
et al. [62] use a simple probabilistic model to demonstrate that 
collaborative filtering is valuable with relatively little data on 
each user, and that, in certain restricted settings, simple collab-
orative filtering algorithms are almost as effective as the best 
possible algorithms in terms of utility [2 . 

Recently, due to the efficiency in dealing with large datasets, 
several low-dimensional matrix approximation methods [94，98， 
99，113] have been proposed for collaborative filtering. These 
methods focus on fitting a factor model to the data, and use it 
in order to make further predictions. 

Low-rank matrix approximations based on minimizing the 
sum-squared errors can be easily solved using Singular Value 
Decomposition (SVD), and a simple and efficient Expectation 
Maximization (EM) algorithm for solving weighted low-rank ap-
proximation is proposed in [113]. In [114], Srebro et al. proposed 
a matrix factorization method to constrain the norms of U and 
V instead of their dimensionality. Salakhutdinov et al. pre-
sented a probabilistic linear model with Gaussian observation 
noise in [99]. In [98], the Gaussian-Wishart priors are placed on 
the user and item hyperpaxameters. Although low-dimensional 
methods are proved to be very effective and efficient, these meth-
ods still suffer several disadvantages that are unveiled. In the 
SVD method, as well as other well-known methods such as the 
weighted low-rank approximation method 
Principal Component Analysis (PPCA) [115 

113], Probabilistic 
,Probabilistic Ma-

trix Factorization (PMF) [99] and Constrained Probabilistic Ma-
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trix Factorization [99], the latent features are uninterpretable, 
and there is no range constraint bound on the latent features 
vectors. The lack of interpretability results in the improper 
modeling of the latent factors, hence downgrades the recommen-
dation accuracy. In [127], a nonnegative constraint is imposed 
on both user-specific features U and item-specific features V 
(Nonnegative Matrix Factorization). 

Actually, the fundamental problem to low-rank matrix fac-
torization is to learn two latent feature spaces of users U and 
items V. The most fundamental technique is Regularized Ma-
trix Factorization. 

Regularized Matrix Factorization 

Consider an m x n user-item rating matrix R, the matrix fac-
torization method employs a rank-/ matrix X = U^V to fit 
it, where U G R'xm and K € R'^n prom the above defini-
tion, we can see that the low-dimensional matrices U and V are 
unknown, and need to be estimated. Moreover, this feature rep-
resentations have clear physical meanings. In this linear factor 
model, each factor is a preference vector, and a user's prefer-
ences correspond to a linear combination of these factor vectors, 
with user-specific coefficients. More specifically, each row of U 
performs as a "feature vector", and each row of V is a linear 
predictor, predicting the entries in the corresponding column of 
R based on the "features" in U. 

To find matrices U and V, we can solve the following opti-
mization problem: 

m 

’ t=i j = i 

+ (2.8) 
2 ” 2 

where I巧 is the indicator function that is equal to 1 if user Ui 
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rated item vj and equal to 0 otherwise, and || •临 denotes the 
Frobenius norm. 

A local minimum of the objective function given by Eq. (2.8) 
can be found by performing gradient descent in 1/“ Vj, 

3
 9

 9

 5
 m 

(2.9) 

2.2 Netflix Prize Competition 

The Netflix Prize competition is an important event related 
to recommendation technologies. It is started and supported 
by Netflix, a company provfding online movie rental services. 
In October 2006, this company released a large movie rating 
dataset containing about 100 million ratings from over 480 thou-
sand randomly selected customers on nearly 18 thousand movie 
items. In Netflix Prize competition, RMSE (Root Mean Square 
Error) is adopted for performance evaluation and the algorithms 
in the competition are allowed to output real valued ratings. 
Lots of new concepts and methods have been proposed during 
this contest [10，11, 12, 60，61，98, 99, 125, 126，134 . 

In [60], Koren proposed a model to combine the latent fac-
tor model, which directly profile both users and products, and 
neighborhood model, which analyze similarities between prod-
ucts or users. The factor and neighborhood models is smoothly 
merged, thereby building a more accurate combined model. The 
accuracy improvements are achieved by extending the models to 
exploit both explicit and implicit feedback by the users. The ex-
periments show that on Netflix data, the proposed method are 
better than those previously published on this dataset. Most 
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recently, [61], Koren proposed another collaborative filtering 
method based on the intuition that customer preferences for 
products are drifting over time. The proposed model can track 
the time changing behavior throughout the life span of the data. 
The experiments results show that this method is better than 
other state-of-the-art methods. 

2.3 Social-based Recommender Systems 

Recall that all the above methods for recommender systems are 
based on the assumption that users are independent and iden-
tically distributed, and ignores the social trust relationships be-
tween users, which is not consistent with the reality that we 
normally ask trusted friends for recommendations. 

In the most recent research work conducted in [109], by an-
alyzing the who talks to whom social network on the MSN in-
stant messenger^ over 10 million people with their related search 
records on the Live Search Engine^, Singla and Richardson re-
vealed that people who chat with each other (using instant mes-
saging) are more likely to share interests (their Web searches are 
the same or topically similar). Therefore, to improve the rec-
ommendation accuracy, in modern recommender systems, both 
social network structure and user-item rating matrix should be 
taken into consideration. 

Based on this intuition, many researchers have recently started 
to analyze trust-based recommender systems. 

Trust is type of social relations, and a wide range of re-
search [1，3] of turst begins from sociologist Gambetta's defi-
nition of trust [33]. Trust models have been applied to a wide 
range of contexts, ranging from onlin reputation systems to dy-
namic networks [23] and mobile environments [93]; a survey of 

^http://www.msn.com 
^http://www.live.coin 

http://www.msn.com
http://www.live.coin
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trust in online service provision can be found in [55 . 
Recently, trust modeling has been extensively studied in rec-

ommender systems [3，8，15，38, 51, 77，78, 82, 83，84，85，89, 
90’ 122，118]. 

Andersen et al. in [3] developed a set of five natural axioms 
that a trust-based recommendation system might be expected to 
satisfy, and then proved that no system can simultaneously sat-
isfy all the axioms. Apparently, this work is out of the scope of 
this paper since we focus on how to employ both social trust net-
work and user-item matrix to provide more accurate and realistic 
recommendations. In [77], a trust-aware collaborative filtering 
method for recoramender systems is proposed. In this work, 
the collaborative filtering process is informed by the reputation 
of users which is computed by propagating trust. Trust values 
are computed in addition to similarity measures between users. 
The experiments on a large real dataset show that this work 
increases the coverage (number of ratings that are predictable) 
while not reducing the accuracy (the error of predictions). Bedi 
et al. [8] proposed a trust-based recommender system for the Se-
mantic Web. This system runs on a server with the knowledge 
distributed over the network in the form of ontologies, and uses 
the Web of trust to generate the recommendations. 

These methods are all neighborhood-based methods which 
employ only heuristic algorithms to generate recommendations. 
There are several problems with this approach, however. The 
relationship between the trust network and the user-item matrix 
have not been studied systematically. Moreover, these methods 
are not scalable to very large datasets since they may need to 
calculate the pairwise user similarities and pairwise user trust 
scores. In this thesis, we propose three effective and efficient 
model-based methods to help solve these problems. 

• End of chapter. 
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Chapter 3 

Effective Missing Data 
Prediction 

This chapter focuses the memory-based collaborative filtering 
problems on two crucial factors: (1) similarity computation 
between users or items and (2) missing data prediction algo-
rithms. First, we use the enhanced Pearson Correlation Coef-
ficient (PCC) algorithm by adding one parameter which over-
comes the potential decrease of accuracy when computing the 
similarity of users or items. Second, we propose an effective 
missing data prediction algorithm, in which information of both 
users and items is taken into account. In this algorithm, we 
set the similarity threshold for users and items respectively, and 
the prediction algorithm will determine whether predicting the 
missing data or not. We also address how to predict the missing 
data by employing a combination of user and item information. 
Finally, empirical studies on dataset MovieLens have shown that 
our newly proposed method outperforms other state-of-the-art 
collaborative filtering algorithms and it is more robust against 
data sparsity. 

24 
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3.1 Similarity Computation 

This section briefly introduces the similarity computation meth-
ods in traditional user-based and item-based collaborative filter-
ing [17’ 28, 44, 102] as well as the method proposed in this chapi-
ter. Given a recommendation system consists of M users and 
N items, the relationship between users and items is denoted by 
an M X TV matrix, called the user-item matrix. Every entry in 
this matrix r爪,„ represents the score value, r, that user m rates 
an item n，where r € {1，2, r爪ox}. If user m does not rate the 
item n, then rm,n = 0. 

3.1.1 Pearson Correlation Coefficient 

User-based collaborative filtering engaging PCC was used in a 
number of recommendation systems [106], since it can be eas-
ily implemented and can achieve higli accuracy when comparing 
with other similarity computation methods. In user-based col-
laborative filtering, PCC is employed to define the similarity 
between two users a and u based on the items they rated in 
common: 

Sim{a^ u)= 

[ { r a , i - fa) • ( � i - ftx)  
iei{a)ni{u)  

J E ( � i - F a ) 2 . / Y^ -
Y t€/(a)n/(u) Y t€/(a)n/(u) 

(3.1) 
where Sim{a, u) denotes the similarity between user a and user 
u, and i belongs to the subset of items which user a and user u 
both rated, t̂ m is the rate user a gave item i, and �a represents 
the average rate of user a. Prom this definition, user similarity 
Sim{a, u) is ranging from [—1,1], and a larger value means users 
a and u are more similar. 

Item-based methods such as [28,102] are similar to user-based 
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approaches, and the difference is that item-based methods em-
ploy the similarity between the .items instead of users. The basic 
idea in similarity computation between two it^ms i and j is to 
first isolate the users, who have rated bot^of these items and 
then apply a similarity computation technique to determine the 
similarity Sim{i, j) (102]. The PCC-based similarity computa-
tion between two items i and j can be described as: 

(̂ tz.t - ri) • (r^j - fj) 

Sim{iJ)= ue 啊 ) 

/ ~ ^ ~ ( r u , t - • I ^ { r ^ j - fjY 

Y ueU{i)nu{j) Y 

(3.2) 
where Sim(i,j) is the similarity between item i and item j, and 
u belongs to the subset of users who both rated item i and item 
j: r\i’i is the rate user u gave item i, and f j represents the average 
rate of item i. Like user similarity, item similarity Sim{i,j) is 
also ranging from [—1,1 . 

.， 、、：’ 
3.1.2 Significance Weighting 

PCC-based collaborative filtering generally can achieve higher 
performance than other popular algorithms like VSS [17], since 
it considers the factor of the differences of user rating styles. 
However PCC will overestimate the similarities of users who 
happen to have rated a few items identically, but may not have 
similar overall preferences [79]. Herlocker et al. [43, 44] proposed 
to add a correlation significance weighting factor that would 
devalue similarity weights that were based on a small number of 
co-rated items. Herlocker’s latest research work [79] proposed 
to use the following modified similarity computation equation: 

/ =她工队叫’ 7) • Sim(a,u). (3.3) 
7 

、： 
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This equation overcomes the problem when only few items 
are rated in common but in case that when | / �A /u| is much 
higher than 7，the similarity Sim'{a, u) will be larger than 1， 

and even surpass 2 or 3 in worse cases. We use the following 
equation to solve this problem: 

Sim'[a^u)=欣圳 1�n /u|，7) Sim{a, u), (3.4) 
7 

where | / �A /u| is the number of items which user a and user u 
rated in common. This change bounds the similarity Sim'{a^u) 
to the interval [0,1]. Then the similarity between items could 
be defined as: 

W ( M ) = 勤 肌 严 几 • • (3.5) J 
where \Ui n is the number of users who rated both item i 
and item j . 

3.2 Collaborative Filtering Framework 

In prat ice, the user-item matrix of commercial recommendation 
system is very sparse and the density of available ratings is often 
less than 1% [102]. Sparse matrix directly leads to the predic-
tion inaccuracy in traditional user-based or item-based collabo-
rative filtering. Some work applies data smoothing methods to 
fill the missing values of the user-item matrix. In [124], Xue et 
al. proposed a cluster-based smoothing method which clusters 
the users using K-means first, and then predicts all the missing 
data based on the ratings of Top-N most similar users in the 
similar clusters. The simulation shows this method could gener-
ate better results than other collaborative filtering algorithms. 
But cluster-based method limits the diversity of users in each 
cluster, and the clustering results of K-means relies on the pre-
selected K users. Furthermore, if a user does not have enough 
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Figure 3.1: (a) The user-item matrix (m x n) before missing data prediction, 
(b) The user-item matrix (m x n) after missing data prediction. 

similar users, then Top-N algorithm generates a lot of dissimilar 
users which definitely will decrease the prediction accuracy of 
the active users. 

According to the analysis above, we propose a novel effective 
missing data prediction algorithm which predicts the missing 
data when it fits the criteria we set. Otherwise, we will not pre-
dict the missing data and keep the value of the missing data to 
be zero. As illustrated in Fig. 3.1(a), before we predict the miss-
ing data, the user-item matrix is a very sparse matrix and every 
user only rates few items with r̂ î； at the same time, other un-
rated data are covered with shade. Using this sparse matrix to 
predict ratings for active users always results in giving bad rec-
ommendations to the active users. In our approach, we evaluate 
every shaded block (missing data) using the available informa-
tion in Fig. 3.1(a). For every shaded block, if our algorithm 
achieves confidence in the prediction, then we give this shaded 
block a predicted rating value r^ î. Otherwise, we set the value 
of this missing data to zero, as seen in Fig. 3.1(b). 

Accordingly, the collaborative filtering is simplified into two 
simple questions. The first is "Under what circumstance does 
our algorithm have confidence to predict the shaded block?" 
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and the second is "How to predict?". The following will answer 
these two questions. 

3.2.1 Similar Neighbors Selection 

Similar neighbors selection is a very important step in predict-
ing missing data. If selected neighbors are dissimilar with the 
current user, then the prediction of missing data of this user 
is inaccurate and will finally affect the prediction results of the 
active users. In order to overcome the flaws of Top-N neighbors 
selection algorithms, we introduce a threshold rj. If the similar-
ity between the neighbor and the current user is larger than r/, 
then this neighbor is selected as the similar user. 

For every missing data r^,“ a set of similar users S{u) towards 
user u can be generated according to: 

S(u) = {Ua\Sim'(UajU) > rf,Ua ̂  u}, (3.6) 

where Sim'{ua, u) is computed using Eq. (3.4). At the same 
time, for every missing data 八“ a set of similar items S{i) 
towards item i can be generated according to: 

S{i) = {ik\Sim'{ik, i) (3.7) 

where 6 is the item similarity threshold, and Sim'(ik,i) is com-
puted by Eq. (3.5). The selection of t] and 6 is an important step 
since a very big value will always cause the shortage of similar 
users or items, and a relative small value will bring too many 
similar users or items. 

According to Eq.(3.6) and Eq.(3.7), we define that our algo-
rithm will lack enough confidence to predict the missing data 
Tû i if and only if iS(ii) 二 0 八 S{i) = 0，which means that user 
u does not have similar users and item i does not have similar 
items either. Then our algorithm sets the value of this missing 
data to zero. Otherwise, it will predict the missing data r^.t 
following the algorithm described in Section 3.2.2. 
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3.2.2 Missing Data Prediction 

User-based collaborative filtering predicts the missing data us-
ing the ratings of similar users and item-based collaborative 
filtering predicts the missing data using the ratings of similar 
items. Actually, although users have their own rating style, if 
an item is a very popular item and has obtained a very high aver-
age rating from other users, then the active user will have a high 
probability to give this item a good rating too. Hence, predict-
ing missing data only using user-based approaches or only using 
item-based approaches will potentially ignore valuable informa-
tion that will make the prediction more accurate. We propose to 
systematically combine user-based and item-based approaches, 
and take advantage of user correlations and item correlations in 
the user-item matrix. 

Given the missing data according to Eq. (3.6) and Eq. (3.7) 
if S{u) ^ 0 A S{i) #0，the prediction of missing data P(r^^i) is 
defined as: 

^ Sim (UayU) ‘ - U a ) 

Pir.,) 二 A X ( W _ ^ , � ) + 
> bim [Ua, u) 

uaeS{u) 

^ Sim(ik,i). - ifc) 

），(3.8) 

ikeS{i) 

where A is the parameter in the range of [0,1]. The use of 
parameter A allows us to determine how the prediction relies on 
user-based prediction and item-based prediction. A = 1 states 
that P(ru,i) depends completely upon ratings from user-based 
prediction and A = 0 states that P(ru,i) depends completely 
upon ratings from item-based prediction. 
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In practice，some users do not have similar users and the 
similarities between these users and all other users are less than 
the threshold T). Top-N algorithms will ignore this problem and 
still choose the top n most similar users to predict the missing 
data. This will definitely decrease the prediction quality of the 
missing data. In order to predict the missing data as accurate 
as possible, in case some users do not have similar users, we use 
the information of similar items instead of users to predict the 
missing data, and vice versa, as seen in Eq. (3.9) and Eq. (3.10). 
This consideration inspires us to fully utilize the information of 
user-item matrix as follows: 

If S{u) — 0 八 = 0，the prediction of missing data P{ru,i) 
is defined as: 

“ Sim (ua.u) • - Ua) 

^ ( V O = 双 + _ ^ , 、 . (3.9) 
y ^ Sim (Ua, u) 

u a € 5 ( u ) 

If S{u) = 0 八 + 0，the prediction of missing data 
is defined as: 

J Sim�ik,i�• (ju’ik-h� 

嘛 ） . ( 3 . 1 0 ) 

ikeS(i) 

The last possibility is given the missing data r^^j, user u does 
not have similar users and at the same time, item i also does not 
have similar items. In this situation, we choose not to predict 
the missing data; otherwise, it will bring negative influence to 
the prediction of the missing data r^ î. That is: 

If S{u) = 0 八 = 0，the prediction of missing data Pir^^i) 
is defined as: 

P{ru,i) = 0. (3.11) 
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This consideration is different from all other existing predic-
tion or smoothing methods. They always try to predict all the 
missing data in the user-item matrix, which will predict some 
missing data with bad quality. 

3.2.3 Prediction for Active Users 

After the missing data is predicted in the user-item matrix, the 
next step is to predict the ratings for the active users. The 
prediction process is almost the same as predicting the missing 
data, and the only difference is in the case for a given active 
user a; namely, if S{a) = 0 A S{i) = 0，then predicts the missing 
data using the following equation: 

P(ra. i) = A X Fa + (1 — A) X (3.12) 

In other situations, if (1) S{u) ^ 0 A S{i) ^ 0, (2) S{u) ^ 
0 八 S^i) = 0 or (3)- S{u) = 0 八 S(i) + 0, we use Eq. (3.8)， 

Eq. (3.9) and Eq. (3.10) to predict ra’“ respectively. 

3.2.4 Parameter Discussion 

The thresholds 7 and S introduced in Section 3.1 are employed 
to avoid overestimating the users similarity and items similarity, 
when there are only few ratings in common. If we set 7 and S too 
high, mo^t of the similarities between users or items need to be 
multiplied with the significance weight, and it is not the results 
we expect. Hgwever, if we set 7 and S too low, it is also not 
reasonable because the overestimate problem still exists. Tuning 
these parameters is important to achieying a good prediction 
results. 

The thresholds rj and 9 introduced in Section 3.2.1 also play 
an import紐t role in our collaborative filtering,algorithm. If rj 
and 6 are set too high, less missing data need to be predicted; if 
they are set too low, a lot of missing data need to be predicted. 
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Table 3.1: The relations lip between parameters with other CF approaches 
Lambda Eta Theta Related CF Approaches 

1 1 1 User-based CF without missing data prediction 
0 1 1 Item-based CF without missing data prediction 
1 0 0 User-based CF with all the missing data predicted 
0 0 0 Item-based CF with all the missing data predicted 

In the case when 77 = 1 and 0 = 1, our approach will not predict 
any missing data, and this algorithm becomes the general col-
laborative filtering without data smoothing. In the case when 
77 = 0 and 0 = 0, our approach will predict all the missing data, 
and this algorithm converges to the Top-N neighbors selection 
algorithms, except the number N here includes all the neigh-
bors. In order to simplify our model, we set rj = 0 in all the 
simulations. 

Finally, parameter A introduced in Section 3.2.2 is the last pa-
rameter we need to tune, and it is also the most important one. 
A determines how closely the rating prediction relies on user ih-
formation or item information. As discussed before, A = 1 states 
that P(ru,i) depends completely upon ratings from user-based 
prediction and A = 0 states that P(ru,i) depends completely 
upon ratings from item-based prediction. This physical inter-
pretation also helps us to tune A accordingly. 

With the changes of parameters, several other famous collab-
orative filtering methods become special cases in our approach 
as illustrated in Table 3.1. 

3.3 Empirical Analysis 

We conduct several experiments to measure the recommenda-
tion quality of our new approach for collaborative filtering with 
other methods, and address the experiments as the following 
questions: 
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1. How does our approach compare with traditional user-based 
and item-based collaborative filtering methods? 

2. What is the performance comparison between our effec-
tive missing data prediction approach and other algorithms 
which predict every missing data? 

3. How does significance weighting affect the accuracy of pre-
diction? 

4. How do the thresholds rj and 6 affect the accuracy of pre-
diction? How many missing data are predicted by our al-
gorithm, and what is the comparison of our algorithm with 
the algorithms that predict all the missing data or no miss-
ing data? � 

5. How does the parameter A affect the accuracy of prediction? 
s 

6. How does our approach compare with the published state-
of-the-art collaborative filtering algorithms? 

‘In the following, Section 3.3.3 gives answers to questions 1 
and 6，Section 3.3.4 addresses question 2, and Section 3.3.5 de-
scribes experiment for the questions 3 to 5. 

3.3.1 Dataset 

Two datasets from movie rating are applied in our experiments: 
MovieLens^ and EachMovie^. We only report the simulation 
results of MovieLens due to the space limitation. Similar results 
can be observed from the EachMovie application. 

MovieLens is a famous Web-based research recommender sys-
tem. It contains 100,000 ratings (1-5 scales) rated by 943�users 

^ http://www.c8.umn.edu/Research/GroupLen8/. 
^http://www.research.digital.com/SRC/EachMovie/. It is retired by 

Hewlett-Packard (HP), but a postprocessed copy can be found on 
http://guir.berkeIey.edu/projects/swami/. 

http://www.c8.umn.edu/Research/GroupLen8/
http://www.research.digital.com/SRC/EachMovie/
http://guir.berkeIey.edu/projects/swami/
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Table 3.2: Statistics of Dataset MovieLens 
Statistics User Item 

Min. Num. of Ratings 20 1 
Max. Num. of Ratings 737 583 
Avg. Num. of Ratings 106.04 59.45 

on 1682 movies, and each user at least rated 20 movies. The 
density of the user-item matrix is: 

。 二 0 二 6.30%. 
943 X 1682 

The statistics of dataset MovieLens is summarized in Table 3.2. 
�W e extract a subset of 500 users from the dataset, and divide 

it into two parts: select 300 users as the training users (100， 
200’ 300 users respectively), and the rest 200 users as the active 
(testing) users. As to the active users, we vary the number of 
rated items provided by the active users from 5，10，to 20, and 
give the name Given5, Given 10 and Given20，respectively. 

3.3.2 Metrics 

We use the Mean Absolute Error (MAE) metrics to measure the 
prediction quality of our proposed approach with other collabo-
rative filtering methods. MAE is defined as: 

V . 
MAE = 

N (3.13) 

where r^^j denotes the rating that user u gave to item i, and r^.i 
denotes the rating that user u gave to item i which is predicted 
by our approach, and N denotes the number of tested ratings. 

3.3.3 Comparison 

In order to show the performance increase of our effective miss-
ing data prediction (EMDP) algorithm, we compare our algo 
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Table 3.3: MAE comparison with other approaches (A smaller MAE value 
means a better performance). 

Training Users Methods GivenS GivenlO Given20 

MovieLens-300 
EMDP 0 . 7 8 4 0 . 7 6 5 0 . 7 5 5 

MovieLens-300 UPCC 0.838 0.814 0.802 MovieLens-300 
IPCC 0.870 0.838 0.813 

MovieLens 200 
EMDP 0 . 7 9 6 0 . 7 7 0 0 . 7 6 1 

MovieLens 200 UPCC 0.843 0.822 0.807 MovieLens 200 
IPCC 0.855 0.834 0.812 

MovieLens 100 
EMDP 0 . 8 1 1 0 . 7 7 8 0 . 7 6 9 

MovieLens 100 UPCC 0.876 0.847 0.811 MovieLens 100 
IPCC 0.890 * 0.850 0.824 

Table 3.4: MAE comparison with state-of-the-arts algorithms (A smaller 
MAE value means a better performance). 
Num. of IVaining Users 100 200 300 

Given Ratings 5 10 20 5 10 20 5 10 20 
EMDP 0 . 8 0 7 0.769 0.765 r ) . 7 9 3 D . 7 6 ( l 0 . 7 5 1 0 . 7 8 8 0 . 7 5 4 0 . 7 4 6 

SF 0.847 0.774 0.792 0.827 0.773 0.783 0.804 0.761 0.769 
SCBPCC 0.848 0.819 0.789 0.831 0.813 0.784 0.822 0.810 0.778 

AM 0.963 0.922 0.887 0.849 0.837 0.815 0.820 0.822 0.796 
PD 0.849 0.817 0.808 0.836 0.815 0.792 0.827 0.815 0.789 

PCC 0.874 0.836 0.818 0.859 0.829 0.813 0.849 0.841 0.820 

rithm with some traditional algorithms: user-based algorithm 
using PCC (UPCC) and item-based algorithm using PCC (IPCC) 
The parameters or thresholds for the experiments are empiri-
cally set as follows: A = 0.7, 7 = 30, (J = 25, 77 = ^ = 0.4. 

In Table 3.3, we observe that our new approach significantly 
improves the recommendation quality of collaborative filtering, 
and outperforms UPCC and IPCC consistently. 

Next, in order to compare our approach with other state-of-
the-arts algorithms, we follow the exact evaluation procedures 
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which were described in [119, 124] by extracting a subset of 500 
users with more than 40 ratings. Table 3.4 summarizes our ex-
perimental results. We compare with the following algorithms: 
Similarity Fusion (SF) [119], Smoothing and Cluster-Based PCC 
(SCBPCC) [124], the Aspect Model (AM) [48], Personality Di-
agnosis (PD) [88] and the user-based PCC [17]. Our method 
outperforms all other competitive algorithms in various config-
urations. 

3.3.4 Impact of Missing Data Prediction 

Our algorithm incorporates the option not to predict the miss-
ing data if it does not meet the criteria set in Section 3.2.1 and 
Section 3.2.2. In additigrf, it alleviates the potential negative 
influences from bad prediction on the missing data. To demon-
strate the effectiveness of our approach, we first conduct a set of 
simulations on our effective missing data prediction approach. 
The number of training users is 300，where we set 7 = 30’ 5 = 25’ 
T] = 6 — 0.5, and vary A from zero to one with a step value of 
0.05. We then plot the graph with the ratings of active users of 
Given5, Given 10 and Given20, respectively. As to the method 
in predicting every missing data (PEMD), we use the same algo-
rithm, and keep the configurations the same as EMDP except for 
Eq. (3.11). In PEMD, when S{u) = 0 and S{i) = 0, we predict 
the missing data r^.i using the nearest neighbors of the missing 
data instead of setting the value to zero. In this experiment, 
we set the number of nearest neighbors to 10. The intention of 
this experiment is to compare the performance of our EMDP 
algorithm with PEMD under the same configurations. In other 
words, we intend to determine the effectiveness of our missing 
data prediction algorithm, and whether our approach is better 
than the approach which will predict every missing data or not. 

In Fig. 3.2, the star, up triangle, and diamond in solid line 
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Figure 3.2: MAE Comparison of EMDP and PEMD (A smaller MAE value 
means a better performance). 

represent the EMDP algorithm in Given20, Given 10 and Given5 
ratings respectively, and the circle, down triangle, and square in 
dashed line represent the PEMD algorithm in Given20, GivenlO 
and GivenS ratings respectively. All the solid lines are below 
the respectively comparative dashed lines, indicating our effec-
tive missing data prediction algorithm performs better than the 
algorithm which predict every missing data, and predicting miss-
ing data selectively is indeed a more effective method. 

3.3.5 Impact of Parameters 
7 and 6 in Significance Weighting 

Significance weighting makes the similarity computation more 
reasonable in practice and devalues some similarities which look 
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similar but are actually not, and the simulation results in Fig. 3.3 
shows the significance weighting will promote the collaborative 
filtering performance.. 

In this experiment, we first evaluate the influence of 7，and 
select 300 training users，then set A = 0.7, t] = 6 = 0.5，6 = 26. 
We vary the range of 7 from 0 to 50 with a step value of 2. 
Fig. 3.3(a)’(b)，(c) shows how 7 affects MAE when given ratings 
20，10； 5 respectively, a ^ Fig. 3.3(d) shows that the value of 7 
also impacts the density of the user-item matrix in the process 
of missing data prediction. The density of the user-item matrix 
will decrease according to the increase of the value of 7. More 
experiments show that 5 has the same features and impacts on 
MAE and matrix density as 7; however, we do not include the 
simulation results due to the space limitation. 
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Impact of A 

Parameter A balances the information from users and items. It 
takes advantages from these two types of collaborative filtering 
methods. If A = 1，we only extract information from users, and 
if A = 0, we only mine valuable information from items. In other 
cases, we fuse information from users and items to predict the 
missing data and furthermore, to predict for active users. 

Fig. 3.4 shows the impacts of A on MAE. In this experiment, 
we test 300 training users, 200 training users and 100 training 
users and report the experiment results in Fig. 3.4(a), Fig. 3.4(b) 
and Fig. 3.4(c) respectively. The initial values of other parame-
ters or thresholds are: r;=没==0.5，7 = 30, S = 25.'-

Observed from Fig. 3.4, we draw the conclusion that the value 
of A impacts the recommendation results significantly, which 
demonstrates that combining the user-based method with the 
item-based method will greatly improve the recommendation 
accuracy. Another interesting observation is when following the 
increase of the number of ratings given (fronj^5 to 10，and from 
10 to 20), the value of argminA(MA五）of each curve in Fig. 3.4 
shifts from 0.3 to 0.8 smoothly. This implies the information for 
users is more important than that for items if more ratings for 
active users are given. On the other hand, the information for 
items would be more important if less ratings for active users 
are available; however, less ratings for active users will lead to 
more inaccuracy of the recommendation results. 

Impact of T) and 6 

7] and 6 also play a very import叩t role in our collaborative 
filtering approach. As discussed in Section 3.2，rj and 6 directly 
determine how many missing data need to be predicted. If rj and 
6 are set too high, most of the missing data cannot be predicted 
since many users will not have similar users, and many items will 
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Figure 3.5: Impact of Eta and Theta on MAE and Density 

not have similar items either. On the other hand, if 77 and 6 are 
set too low, every user or item will obtain too many similar users 
or items, which causes the computation inaccuracy and increases 
the computing cost. Accordingly, selecting proper values for 77 
and ^ is as critical as determining the value for A. In order to 
simplify our model, we set 7; = 0 as employe^an our experiments. 

In the next experiment, we select 500 use^s from MovieLens 
dataset and extract 300 users for training users and other 200 
as the active users. The initial values for every parameter and 
threshold are: A = 0.7, 7 = 30, <5 = 25. We vary the values of 
77 and 0 from 0 to 1 with a step value of 0.05. For each training 
user set (100, 200, 300 users respectively), we compute the MAE 
and density of the user-item matrix. The results are showed in 
Fig. 3.5. 
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As showed in Fig. 3.5(a), given 300 training users and given 
20 ratings for every active user, this algorithm will achieve the 
best performance around rj — 0 = 0.50，and the related den-
sity of user-item matrix in Fig. 3.5(d) is 92.64% which shows 
that 7.36% missing data of this user-item matrix are not pre-
dicted. In this experiment，the number of data that was not 
predicted is 0.0736 x 500 x 1000 = 36800. We observe that 
around rj ^ 6 = 0.70, this algorithm already achieves a very 
good MAE value which is almost the same as the best MAE val-
ues in Fig. 3.5(b). The related matrix density is 29.00%, which 
illustrates that more than 70% data of user-item matrix are not 
predicted. Nevertheless, the algorithm can already achieve sat-
isfactory performance. 

3.4 Summary 

In this chapter, we propose an effective missing data prediction 
algorithm for collaborative filtering. By judging whether a user 
(an item) has other similar users (items), our approach deter-
mines whether to predict the missing data and how to predict the 
missing data by using information of users, items or both. Tradi-
tional user-based collaborative filtering and item-based collabo-
rative filtering approaches are two subsets of our new approach. 
Empirical analysis shows that our proposed EMDP algorithm 
for collaborative filtering outperforms other state-of-the-art col-
laborative filtering approaches. 

• End of chapter. 



Chapter 4 

Recommend with Global 
Consistency 

Recently, due to its efficiency in handling very large datasets, 
low-dimensional factor models have become one of the most pop-
ular approaches in the model-based collaborative filtering algo-
rithms. The premise behind a low-dimensional factor model is 
that there is only a small number of factors influencing the pref-
erences, and that a user's preference vector is determined by 
how each factor applies to that user [94 . 

Although these methods can effectively predict missing val-
ues, several disadvantages are unveiled, which will potentially 
decrease the prediction accuracy. First, in low-rank factor-based 
approaches, both item factor vectors and user-specific coeffi-
cients are understood as latent factors which have no physical 
meanings, and hence uninterpretable. Moreover, the lack of in-
terpretability will result in the improper modeling of the latent 
factors. For example, these latent factors in [98, 99] are set to 
be in the Euclidean space, while they are nonnegative in [127 . 
Second, due to the sparsity of the user-item rating matrix (the 
density of available ratings in commercial recommender systems 
is often less than 1% [102]), many matrix factorization methods 
fail to provide accurate recommendations. In the sparse user-
item rating matrix, the ratings for training the user features are 

43 
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rare, hence the learned user features and the coefficients cannot 
accurately reflect the taste of users, which will result in the bad 
prediction accuracy. 

In this chapter, aiming at providing solutions for the issues 
analyzed above, we propose a Semi-Nonnegative Matrix Factor-
ization with Global Statistical Consistency (SNGSC) approach 
for collaborative filtering. 

4.1 Framework 

4.1.1 Problem Definition 

Without loss of generality, in this chapter, we use the movie 
recommender systems as the example. In a collaborative pre-
diction movie recommendation system, the inputs to the system 
are user ratings on the movies the users have already seen. Pre-
diction of user preferences on the movies they have not yet seen 
are then based on patterns in the partially observed rating ma-
trix X 6 where n is the number of users, and m is the 
number of movies. The value Xij indicates the score of item 
j rated by user i. This approach contrasts with feature-based 
approach where predictions are made based on features of the 
movies (e.g. genre, year, actors, external reviews) and the users 
(e.g. age, gender, explicitly specified preferences, social trust 
networks [69’ 74]). Users "collaborate" by sharing their ratings 
instead of relying on external information [94 • 

Table 4.1 and Table 4.2 are the toy examples on the problem 
we study. As illustrated in Table 4.1，each user (from u\ to 
tie) rated some items (from ii to ig) on a 5-point integer scale 
to express the extent of favor of each item. The problem we 
study in this chapter is how to predict the missing values of the 
user-item matrix effectively and efficiently. 
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Table 4.1: User-Item Matrix 

h 24 l7 

5 2 3 4 
U2 4 3 5 

4 2 2 4 
U4 

5 1 2 4 3 
4 3 2 4 3 5 

Table 4.2: Predicted User-Item Matrix 

i2 ia u is ie i? ia 
5 2 2 . 5 3 4 . 8 4 2 . 2 4 . 8 

4 3 2 . 4 2 . 9 5 4 . 1 2 . 6 4 . 7 

4 1 . 7 2 3 . 2 3 . 9 3 . 0 2 4 
Ua 4 . 8 2 . 1 2 . 7 2 . 6 4 . 7 3 . 8 2 . 4 4 . 9 

Us 5 1 2 3 . 4 4 3 1 . 5 4 . 6 

U6 4 3 2 . 9 2 4 3 . 4 3 5 

4.1.2 How is user-item matrix X generated? 

The n X m matrix X contains the ratings of users on items. 
X is generated by the users who rate the movies according to 
their overall feeling about the movies that they have seen. By 
anatomizing their overall feeling, we give a detailed analysis on 
the rating process as follows. 

Each user has a different taste on different type of genre, 
actors, or something else. But with the only given rating matrix, 
the information for genre or actors is unknown, so we assume 
there are d different unknown types of objects, which are named 
as latent types. We further assume that user i has confidence 
Uik {Uik G R+) on k-th. type, and Uik is also the taste of user i 



CHAPTER 4. RECOMMEND WITH GLOBAL CONSISTENCY 46 

in ranking objects of type k\ on the other hand, on k-th type, 
each i tem j has a " t rue" qual i ty value Vjk {Vjk G R). So to user 
i, i tem j should be rated by user i as Uik * Vjk- As a result, on 
k-th type, i f bo th the qual i ty of object j and the taste of user i 
are high, then user i w i l l rate object j w i t h a high score. 

These d latent types may have cross-effects on each other. For 
example, War type movies may also belong to classic Hol lywood 
sub-category. Considering the cross-effects, we assume a sym-
metric non-negative mat r i x E^xd, in which Eki = Eik denotes 
the cross-effect between type k and I, and T,kk = Xk. Ideally, 
we hope tha t the d latent types are independent, and their sig-
nificance can be ordered, i.e., nonnegative significance values 

^ > . . . > Ad can be assigned to the d latent types. 
Consequently, on type k, user i rates i tem j w i t h a score 

d 

i=\ 
where the qual i ty Vji of i tem j on type I is transferred to qual i ty 
Vji * Tiki by Ttki- Note that , i f E^fxd is diagonal, then i t becomes 
Yli=i Xk * Uik * Vjk- Accumulat ing al l the different unknown 
types, we obta in tha t 

d d 

where Uk is the vector consisting of Uik, Vk is the vector consist-
ing of Vjk, a i i d U = ( f / i , f / 2 , . . . , [ / d ) and 二 04，Vi，...，Kf) . 

We consider factorizations of the form X « f / E V ^ , where U G 
E e 、and V G 

R e m a r k . According to the physical meaning of U and V, U 
is nonnegative whi le V should be unrestricted. For example, a 
movie may be very bad so tha t everyone dislikes i t , and hence 
the qual i ty of this movie can be scored as —1. The confidence 
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is the abi l i ty of a user to rate a movie, and so should not be 
negative. To explain i t further, i f the confidence of a user is 
also set as - 1 , then the product of -1 and -1 w i l l be 1，which 
means tha t a user w i t h low confidence rates a bad movie w i t h 
a high score, which is not t rue in reality. On the contrary, the 
sett ing Ui € R ^ avoids such unreasonable cases, leading to the 
advantage of the interpretabi l i ty of U. 

4.1.3 Sensitivity Analysis 

We find U, E , and V so that P = approximates X well. 
Bu t i t is not preferable tha t small changes (due to comput ing 
errors or error propagated f rom observation errors in X ) in these 
three matrices result in a big change in their product . Since the 
derivatives w i t h respect to the variables U, E, and V mean the 
change rate, we examine the square sum of the corresponding 
derivatives. Let the notat ion || • \ \ f denote the Probenius norm. 

By ^ ^ = Sim{A)nj^ we have 

ijmn \ dUmk ijmk 

E ( ( 們 … 2 

ijk 

=n 
jk 

Simi lar ly we have 

ijmn \ 

tjmn 

dVmk 

d^mk 

\ 

/ 
= m UE 

=d U i V 

(4.1) 

(4.2) 

(4.3) 
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4.1.4 Optimization Problem 

Considering bo th the approximat ion X ^ UTiV^ and the sensi-
t i v i t y analysis, a factorizat ion problem can be cast as an opti-
mizat ion problem. 

m m 

+ A + + d\\U 
s.t. U >0, 

E > 0. 

V 

(4.4) 

where A is a hyperparameter that controls the balance between 
the approx imat ion and the sensitivity, and OI denote the set of 
observed index pairs. 

4.1.5 Problem Simplification and Solution 

Let UiS and V^'s be the columns of U and V respectively. W i t h -
out loss of generality, we set'||[/)fc||^ = 1 ， = 1 for 1 < A: < 
d. As a result, ||C/||^ = d, \\V\\f = d. For the purpose of simpli-
fy ing the solut ion, we further assume tha t Edxd is diagonal, i.e., 
Edxd = diag(Ai,入2，..•，Ad). Consequently, 

EV」 

and 

f / E i = A： 

In order to s impl i fy the notat ion, we denote f / E as U、 then 
E disappears, and the conditions Ai > A2 > . . . > A j can be 
changed to | | f / i | |F > 丨 . . . > \\Ud Based. on the 
above simpl i f icat ion, Eq. (4.4) can be reformulated as follows. 
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Given an n x m nonnegative mat r i x X , solve 

m m 
Uk.Vk 

+ 

s. 

(ij)eoi 
d 

A n V 

Uk>0, 

Vk (4.5) 

In order to obta in the most informative latent features and 
find the dimension d�we fit the incomplete mat r i x X step by step 
in such a way tha t when Uk and Vk are learned, Uj { j <k — 1) 
and Vj {j < k — 1) are fixed, and we only learn Uk and 14 based 
on the residual R. R is defined as 

on 01, and R = 0 on others for convenience. The process con-
tinues un t i l there is no useful in format ion retained in R. When 
the process stops, the dimension can be determined. So we only 
focus on the fol lowing problem: 

m i r 
Uk,V 

+ 
s. 

E ( 双 广 〜 ) 

{iJ)eOl 

Uk>0, 
Uk. > Uk F 

(4.6) 

Note that the elements in R may be negative. I f we ignore the 
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variant A^, the Lagrangian of the above problem is 

J = E ( ^ i - (UkV^h) 
(ij)eO/ 

+ X{m-hn)\\Uk\\p 
+ fikiU^Uk - U^.iUk-i) 
+ lykiV^Vk - 1) - Y ' ^Uk . (4.7) 

where Y 6 and fXk € R+. Let the i-th. element of Uk, the 
j - t h element of 14，and the z-th element of Y be Uk“ Vkj and Yi 
respectively. In order to solve this problem, take derivative on 
J w i t h respect to Uki and Vj. We have 

dJ 

'Mhi 

dJ 

= E m r •jX—Vkj) 

2(Rij — UkiVki){-Uki) 
i.iiJ)eOI 

+ 2ukVki = 0. 

(4.8) 

(4.9) 

I f Uk is given, then min imiz ing the quadrat ic funct ion in Eq. (4.7) 
we obta in tha t 

(4.10) 
y^ 二 Yli:{i,j)eOi �U k i 

Yli:{ij)eOi Uli + ^k， 

where Vk is a parameter such tha t ||Vi||/r = 1. 
I f Vk is given, considering the constraints tha t Uk > ^ and 

Uk- iWr > ||f/jk||F> we obtain 

Uk. = 凡:jVkj + Vi/2 

= ( E 術 ) e o / 彻 仙 ， (4 11) 
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where ¥{ is the min imum positive number such that 

, R i j V k j + yi/2 > 0, 
r{iJ)eOi 

i.e., 
y i = o if > RiiVki > 0’ 

and 
二 - RijVkj if RijVkj < 0, 

r{i>moi j:(tj)eO/ 
and fik is the min imum positive number such that 

Uk p< Uk 一 1 F 

We name our algor i thm as Semi-Nonnegative Ma t r i x Fac-
tor izat ion w i t h Global Statistical Consistency (SNGSC). In Al-
gor i thm 1，we summarize a learning algor i thm by employing 
Eq. (4.10) and Eq. (4.11). The criterion that no useful infor-
mation can be mined in R is specified in our experiments as: 

in the difference between the mean residual J2{i j)eOi 
the current dimension d and that in the previous dimension is 
smaller than 0.0005. 

FYom the algori thm, we can see the t ime complexity of SNGSC 
is linear on the number of ratings, i.e., 0 ( | 0 / | ) , because we only 
need to calculate the mult ipl ications when the ratings values are 
not missing. Moreover, w i t h the proper physical meaning in U 
and V , our algor i thm is expected to achieve more accurate re-
sults. 
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Algorithm 1: SNGSC Learning Algorithm 

Input : Incomplete matrix X > 0 
Output: d�{Uk}U, and {Vkit, 

In i t ia l ize d = 0, k = I. 
repeat 

if k = = 1 then 
R = X 

else 
R 二 R - Uk-iV�_i 

end if 
repeat 

for j = 1 TO m do 
• . . — R n. y; . _ [‘:(‘.j)€0/ 琴ki 

end for 
for z = 1 TO n do 

rr _ ([j:“.j)eo/ 风j〜)H  
〜 一 二 如 矢 

end for 
until Converge 
k = k-\-l 

u n t i l No useful in format ion can be mined in R 
8： d 二 k — 1 

4.2 Consistency with Global Information 

Unt i l now, we only constrain the expression in 
Eq. (4.5) by f i t t i ng i ts values on the user-item pairs w i t h the 
t ra in ing data. However, we observe tha t th is par t ia l constraint 
cannot make the values fol low the global statistics 
such as the first moment and the second moment. The previous 
low-dimensional factor models share this problem because no 
act ion is taken on control l ing the global statistics. For example, 
the mean of rat ings in EachMovie Data is 0.607357 (after scaling 
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Figure 4.1: An illustration showing the problem of SNGSC and SVD without 
controlling the global statistics. The means predicted by models are far away 
from the true means. 

to the interval [0,1]), but the mean given by SVD and SNGSC 
is far away f rom the t rue mean. In Figure 4.1, we demonstrate 
this problem. 

Based on the above observation, we propose to impose the 
consistency on SNGSC between the predicted statist ics and those 
given in the data samples. Ideally we should consider moments 
of al l orders and the data priors, but considering the compu-
ta t ion cost and the model complexity, we only include the first 
moment X-the mean of ratings in this chapter. The predicted 
values are given by Y l k ^ i i ^ k V k ) ^ and hence the predicted mean 
by the model is 

1 m 

nm 

where Ok and Vk are the vector means of Uk and 14 respectively. 

Mean Given by SNGSC Without Global Constraints 
Mean Given by SNGSC With Global Constraints 
Mean Given by SVD 
Mean of Ratings in Data 
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Let rj be the parameter balancing the tradeoff of f i t t i ng the data 
and f i t t i ng the mean of ratings. Then we should opt imize 

min ( ^ i - iUkV.^h) 
‘iiJ)eOl 

+ 
+ 

An f/jt i -I- Am Uk 
m 

1 = 丄 7 = J / = 1 
o
 

>
1
 

i
 

Vk 
> Uk 

(4.12) 

When ry = 0, no global in format ion is included; when 77 = +00, 

all the predicted values Y a = i ^ i M j w i l l be equal to X such that 
the first moment is perfectly fitted. The best rj should be in the 
middle of these two extreme cases. In our experiments, we set 
T) = y/nm/\OI\ based on experiences. A n ord inary calculus can 
result in simi lar equations as Eq. (4.10) and Eq. (4.11). 

4.3 Experiments 

In th is section, we conduct several experiments to compare the 
recommendation qual i ty of our approach w i t h other state-of-
the-art col laborat ive f i l ter ing methods. Our experiments are 
intended to address the fol lowing questions: 

4 ‘ 

1. How does our approach compare w i t h the published state-
of-the-art col laborat ive f i l ter ing algorithms? 

2. How does the model parameter r j (the global consistency 
parameter) affect the accuracy of the predict ion? 

3. How do the non-negative constraints affect the accuracy of 
the recommendation qual i ty? 
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4. W h a t is the performance comparison on users w i t h different 
observed ratings? 

4.3.1 Description of Dataset 

We evaluate our algor i thms on the EachMovie dataset^ which is 
commonly used in previous work [75，94, 133]. The EachMovie 
dataset contains 74,424 users, 1,648 movies, and 2,811,718 rat-
ings in the scale of zero to five. We map the rat ings 0,1,2,3,4 
and 5 to the interval [0,1] using the linear funct ion t{x) = x / 5 . 

As to the t ra in ing data, we employ three settings: 80%, 50% 
and 20% for t ra in ing, where 80% means we randomly select 80% 
ratings as t ra in ing data to predict the remaining 20% ratings. 
Selecting 80% as t ra in ing data is the standard evaluation sett ing 
which is widely employed in the previous work. However, in this 
chapter, we are also interested in the settings to include 50% 
and 20% as t ra in ing data, since these two settings can be used 
to examine how well the algori thms are under the sparse data 
settings. The reported results in al l of the experiments in this 
chapter are the average of ten runs of the algor i thms on the ten 
random par t i t ions of the dataset. 

4.3.2 Metrics 

We use the Mean Absolute Error ( M A E ) and Root Mean Square 
Error (RMSE) metrics to measure the predict ion qual i ty of our 
proposed approach in comparison w i t h other col laborative fil-
ter ing methods. M A E is defined as: 

二 二 々 - H (4.13) 

where r i j denotes the ra t ing user i gave to i tem j , f i j denotes 
the ra t ing user i gave to i tem j as predicted by our approach, 

^ http: / / www. research .digital .com/SRC/EachMovie / . It is retired by Hewlett-Packard 
(HP). 
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and N denotes the number of tested ratings. RMSE is defined 
as: . 

RMSE:)J^、I^、'厂 (4.14) 

4.3.3 Performance Comparisons 
We compare our SNGSC approach w i t h other four approaches. 

1. User Mean: Th is is a baseline method which predicts a 
user's missing rat ing on an i tem by the sample mean of this 
user's ratings. 

2. Item Mean: Th is is a baseline method which predicts a 
user's missing rat ing on an i tem by the sample mean of this 
i tem's r a t y ^ s . 

3. M M M F [94，114]: This method constrains the norms of 
U and V instead of their dimensionality. Th is corresponds 
to constraining the overall "strength" of the factors, rather 
than their number. 

4. P M F [99]: Th is method proposes a probabi l ist ic frame-
work to employ U f V j w i t h Gaussian noise f i t t i ng each rat-
ing observation. 

The predict ion accuracies evaluated by Root Mean Squared 
Error (RMSE) and Mean Absolute Error ( M A E ) are shown in 
Table 4.3. I n SNGSC, the parameter A is set to be 0.000004, 
and the parameter rj is set to be y/nm/\OI\y where \OI\ is the 
number of observed ratings. The dimensions for SNGSC are 
automat ical ly determined at each of the ten runs, and they are 
between 25 and 30. I n order to compare other algor i thms fairly, 
we set the dimensions of M M M F and P M F to 30. 

Prom Table 4.3, we can observe tha t our a lgor i thm consis-
tent ly performs better than the other methods in al l the set-
tings. When we use a sparse dataset (20% as t ra in ing data) , we 
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Table 4.3: Comparison with other popular algorithms. The reported val-
ues are the mean RMSE and MAE on the EachMovie Dataset achieved by 
ten runs from dividing the data into 80%, 50%, and 20% for training data, 
respectively. 

Data Metrics User Mean Item Mean MMMF PMF SNGSC 

RMSE 1.426 - 1.386 1.173 1.151 1.122 

80% 
Variance < 10-4 < 10-4 < 0.001 < 0.001 < 10-5 

80% 
MAE 1.141 1.102 0.928 0.901 0.860 

Variance < 10-4 < 10-4 <0.001 <0.001 < 10-5 

RMSE 1.438 1.387 1.342 1.335 1.176 

50% 
Variance < 10-4 < 10-4 < 0.001 < 0.001 < 10-5 

50% 
MAE 1.149 1.103 0.978 0.963 0.891 

Variance < 10-4 < 10-4 <0.001 <0.001 < 10-5 

RMSE 1.484 1.388 1.466 1.451 1.266 

20% 
Variance < 0.001 < 0.001 < 0.01 < 0.01 < 10-4 

20% 
MAE 1.180 1.103 1.143 1.085 0.973 

Variance < 0.001 < 0.001 <0.01 <0.01 < 10-4 

find that our method generates much better performance than 
M M M F and P M F . However, M M M F and P M F do not address 
the problem of sparsity, hence they even per form worse than 
the I tem Mean method when using 20% as t ra in ing data. This 
demonstrates the advantage of our a lgor i thm in handl ing the 
sparsity problem. 

In Figure 4.2 and Figure 4.3，we also plot the percentages of 
performance increase of our a lgor i thm against other four meth-
ods in terms of R M S E and M A E on the EachMovie dataset, 
respectively. From these figures, we observe an interesting phe-
nomenon: as the sparsity of the data increases, the percentages 
of performance increase against M M M F and P M F keep increas-
ing. Th is observation again proves the advantage of our a l g o 
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Performance Increase on RMSE 
H 80% as Training data H 50% as Training data U 20% as Training data 

27.09% 

22.28% 

17.22% 15.80% 
14.1296, 

2.58% 

User Mean Item Mean MMMF 

Figure 4.2: Performance Increase on RMSE (EachMovie) 

r i thm. On the other hand, we can also notice that as the sparsity 
increases, a l though our method st i l l can generates much better 
recommendation qualit ies than User Mean and I tem Mean meth-
ods, the percentages of performance increase against these two 
methods keep dropping. Th is observation is reasonable because 
our random test ing data generation method does not change 
the d is t r ibut ion of the ratings. Hence, the User Mean and I tem 
Mean algor i thms should be relatively stable against the sparsity 
problem. 

I n order to show the usefulness of each key par t of SNGSC, 
we also evaluate our a lgor i thm on its various degraded cases as 
follows: 

L SNGSC-1: I t is the SNGSC algor i thm w i thou t the global 
consistency (77 = 0); 

2. SNGSC-2: I t is the SNGSC algor i thm w i thou t the non-
negative constraint (a modif ied version of SVD w i t h global 
consistency)； 
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Performance Increase on MAE 
y 80% as Training data • 50% as Training data u 20% as Training data 

32.67% 

… 〜 28.14% 

23.79% 

17.47% 

13.36% 
9.76% 

7.91% 

11.51% 

User Mean Item Mean MMMF 

Figure 4.3: Performance Increase on MAE (EachMovie) 

3. SNGSC-3: I t is the SNGSC algor i thm w i t h nonnegative 
constraints on bo th U and V (a modif ied version of N M F 
w i t h global consistency). 

The results on the EachMovie dataset are reported in Ta-
ble 4.4. Prom the results, we observe tha t our Semi-Nonnegative 
sett ing is the best among al l these variants, which empir ical ly 
demonstrates the need of introducing SNMF. 

However, the global consistency achieves only a l i t t le accu-
racy improvement in this experimental sett ing (See SNGSC-1 
and SNGSC). Th is phenomenon may be caused by the sett ing 
that ma jo r i t y (80%) of data is chosen as t ra in ing data. In the 
extreme case tha t the ra t ing data is very sparse and each user 
only rates one movie, then the latent features U and V do not 
have much meanings, but we can at least predict al l the missing 
ratings as the mean of t ra in ing data. We believe tha t the sparser 
the t ra in ing data, the better the global consistency approach. To 
demonstrate the effectiveness of the global consistency approach, 
we run bo th SNGSC-1 and SNGSC in 任 different sett ing: 20% 
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Table 4.4: Comparison with variants of SNGSC in a setting with 80% for 
training and 20% for testing on the EachMovie dataset. (1) SNGSC-1: 
SNGSC without the global consistency (t) = 0); (2) SNGSC-2: SNGSC 
without the nonnegative constraint (a modified version of SVD with global 
consistency); and (3) SNGSC-3: SNGSC with nonnegative constraints on 
both U and V (a modified version of NMF with global consistency). 

Algorithms SNGSC-l SNGSC-2 SNGSC-3 SNGSC 

RMSE 1.151 1.212 1.258 1.122 

Variance < 10_5 <0.001 <0.001 < 10-5 

MAE 0.883 0.932 0.971 0.860 

Variance < 10-5 <0.001 <0.001 < 10-5 

Table 4.5: Comparison with variants of SNGSC in a 20% for training 80% 
for testing setting on the EachMovie dataset. 

Algorithms SNGSC-1 SNGSC-2 SNGSC-3 SNGSC 

RMSE 1.423 1.356 1.365 1.266 

Variance < 10-4 <0.01 <0.01 < 
MAE 1.095 1.048 1.060 0.973 

Variance < 10-4 <0.01 <0.01 < 10-4 

of the data are chosen for t ra in ing and 80% for testing. The 
results are shown in Table 4.5. From the results, we can see 
SNGSC w i t h the global consistency signif icantly outperforms 
the one w i thou t the global consistency (SNGSC-1). I n such a 
sett ing, i t is not surprising to see tha t the difference between 
SNGSC and SNGSC-2 is small, because the latent feature is not 
very meaningful and hence the sign sett ing is not so impor tant ; 
therefor, the global consistency dominates the results. 

4.4 Summary 

We demonstrate a Semi-Nonnegative M a t r i x Factor izat ion method 
w i t h Global Stat ist ical Consistency for col laborative f i l ter ing, in 
which the user-specific latent feature Uik includes the meaning of 
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the confidence of user i on the k-th latent type of the i tem, and 
the item-specific latent feature Vjk includes the meaning of the 
qual i ty of the i tem j on the k-th latent type of the i tem. This 
work has showed tha t the latent features w i t h physical mean-
ings can achieve not only the model in terpretabi l i ty but also the 
predict ion accuracy. Moreover, we propose a novel method that 
imposes the consistency between the statistics of t ra in ing data 
and the statist ics of the predicted ratings. The experimental 
analysis shows tha t our method outperforms other state-of-the-
art algori thms. 

For the global consistency, we only take the f irst step, i.e., 
we only make our models consistent w i t h the first moment cur-
rently. By doing so we have already achieved promising results. 
In order to capitalize on these achievements, fur ther study is 
needed on the fol lowing problems: 

1. We would enforce the consistency w i t h the second moment 
globally in the models w i thou t increasing the complexi ty of our 
models. 

2. There is pr ior in format ion tha t al l values in the mat r i x 
should be between zero and one after the mapping. 

W i t h o u t tak ing any action, predict ion by Y l k ^ i ^k^k w i l l run 
outside of the range of val id ra t ing values. For this, one choice is 
to map the values to the interval [0,1] by some nonlinear func-
tions like logistic funct ion. Bu t in our sett ing, such a mapping 
does not match our intuition—the predict ion on the user-item 
pair (i,j) results f rom a linear combinat ion of the products of 
i，s author i ty on a latent type and f s qual i ty. For such a consid-
eration, how can we put a constraint tha t 0 < [ ^ ( U k V ^ ) < 1 
while we can s t i l l learn the latent features dimension by dimen-
sion. 

• End of chapter. 



Chapter 5 

Social Recommendation 

Tradit ional recommender systems assume that users are i.i.d. (in-
dependent and identically distr ibuted); this assumption ignores 
the social interactions or connections among users. But the fact 
is, offline, social recommendation is an everyday occurrence. In 
order to reflect users' social relations in the recommendations, 
based on the in tu i t ion that a user's social network wi l l affect 
her/his personal behaviors on the Web, in this chapter, we pro-
pose to fuse a user's social network graph w i th the user-item 
rat ing mat r ix in order to make more accurate and personalized 
recommendations, which is called Social Recommendation. 

5.1 Recommendation Framework 

In this section, we first design a recommendation framework 
by consolidating user-item rat ing matr ix and users' social trust 
network in Section 5.1.1. Then in Section 5.1.2, we apply this 
framework to incorporating social tag information, which is an-
other important source of social contextual information. 

5.1.1 Recommendation with Social Trust Network 

We first demonstrate our recommendation framework using a 
simple but i l lustrat ive toy example. Then we introduce the rec-

62 
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ommendat ion framework by factor analysis using probabil ist ic 
mat r i x factorizat ion. 

A Toy Example 

Let us first consider the typical social t rust network graph in 
Fig. 5.1(a). There are 6 users in to ta l (nodes, f rom u i to ue) w i t h 
8 relations (edges) between users in this graph, and each relat ion 
is associated w i t h a weight Wij in the range [0,1] to specify how 
much user Ui knows or trusts user Uj. In an online social network 
Web site, the weight Wij is often expl ic i t ly stated by user Ui. As 
i l lustrated in Fig. 5.1(b), each user also rates some items ( f rom 
i i to is) on a 5-point integer scale to express the extent of favor 
of each i tem. The problem we study in th is chapter is how to 
predict the missing values of the user-item mat r i x effectively and 
efficiently by employing two different data sources. Mot ivated 
by the in tu i t ion tha t a user's social t rust connections w i l l affect 
this user's behaviors on the Web, we therefore factorize the social 
t rust graph and user-item mat r i x simultaneously and seamlessly 
using JJTZ and U'^V, where the shared low-dimensional mat r i x 
U denotes the user latent feature space, Z is the factor ma t r i x in 
the social network graph, and V represents the low-dimensional 
i tem latent feature space. I f we use 5 dimensions to perform the 
mat r i x factor izat ion for social recommendation, we obta in 
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Social Network Graph 
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(b) User-Item Matrix (c) Predicted User-Item Matrix 

Figure 5.1: Example for Toy Data 
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U = 

1.55 1.22 0.37 0.81 0.62 一 0.01 

0.36 0.91 1.21 0.39 1.10 0.25 
0.59 0.20 0.14 0.83 0.27 1.51 

0.39 1.33 - 0 . 4 3 0.70 - 0 . 9 0 0.68 

1.05 0.11 0.17 1.18 1.81 0.40 

V = 

1.00 - 0 . 0 5 - 0 . 2 4 0.26 1.28 0.54 - 0 . 3 1 0.52 

0.19 - 0 . 8 6 - 0 . 7 2 0.05 0.68 0.02 - 0 . 6 1 0.70 

0.49 0.09 - 0 . 0 5 - 0 . 6 2 0.12 0.08 0.02 1.60 

- 0 . 4 0 0.70 0.27 - 0 . 2 7 0.99 0.44 0.39 0.74 

1.49 - 1 . 0 0 0.06 0.05 0.23 0.01 - 0 . 3 6 0.80 

where Ui and Vj are the column vectors and denote the latent 
feature vectors of user Ui and i tem Vj, respectively. Note tha t the 
solutions of U and V are not unique. Then we can predict the 
missing value Wij in Fig. 5.1(b) using U ^ V j (before predict ion, 
we need to f irst transfer the value of lf[Vj using logistic funct ion 
g{x) and another mapping funct ion f ( x ) , which w i l l be intro-
duced in Section 5.1.1 and Section 5.1.1 respectively). There-
fore, al l the missing values can be predicted using 5-dimensional 
matrices U and V, as shown in Fig. 5.1(c). Note tha t even 
though user 1x4 does not rate any items, our approach st i l l can 
predict reasonable ratings. 

Since th is example is a toy example, we cannot evaluate the 
accuracy of the predict ion. However, the experimental analysis 
in Section 5.2 based on Epinions dataset tests the effectiveness 
of our approach. I n the fol lowing sections, we w i l l present the 
details of how we conduct factor analysis for social recommen-
dat ion using probabi l ist ic mat r i x factorization. 
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Social Network Matrix Factorization 

Suppose we have a directed social network graph 6 二（V’<f), 
where the vertex set V = represents al l the users in 
a social network and the edge set S represents the relations 
between users. Let C 二 {cj/t} denote the m x m ma t r i x of Q, 
which is also called the social network mat r i x in this chapter. 
For a pair of vertices, Vi and Vk, let Cik € (0,1] denote the weight 
associated w i t h an edge f rom Vi to Vk, and Cik = 0, otherwise. 
The physical meaning of the weight Cik can be interpreted as 
how much a user i t rusts or knows user A: in a social network. 
Note tha t C is an asymmetric mat r i x , since in a social network, 
especially in a trust-based social network, user i t rus t ing k does 
not necessary indicate user k trusts i. 

The idea of social network mat r i x factor izat ion is to derive 
a high-qual i ty /-dimensional feature representation U of users 
based on analyzing the social network graph Q. Let U E Ri咖 

and Z G E}…be the latent user and factor feature matrices, 
w i t h co lumn vectors Ui and Zk representing user-specific and 
factor-specific latent feature vectors, respectively. We define the 
condit ional d is t r ibu t ion over the observed social network rela-
tionships as 

m m 

p{C\U, z. 4 ) = n n ^ ， （5.1) 
1 = 1 k=\ 

where Af{x\/ j , , cr^) is the probabi l i ty density funct ion of the Gaus-
sian d is t r ibu t ion w i t h mean // and variance and if^. is the 
indicator funct ion that is equal to 1 i f user i t rusts or knows 
user k and equal to 0 otherwise. The funct ion g{x) is the logis-
t ic funct ion g{x) = 1 / (1 + exp(—x))，which makes i t possible to 
bound the range of i f f Zk w i t h i n the range [0，1]. We also place 
zero-mean spherical Gaussian priors [31，99] on user and factor 
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feature vectors: 
m 

1=1 
m 

p ( • ！ ) = n 華 丨 0’ 动 ) 
(5.2) 

: = 1 

Hence, through a simple Bayesian inference, we have 

Z | C , a l . a l . a l ) 
a p{C\U,Z,al)p{U\al)p{Z\al) 

m m 
I f . 

m 

X l l ^ m ^ l l ) X (5.3) 
i=l k=l 

In online social networks, the value of Cik is most ly expl ic i t ly 
stated by user i w i t h respect to user /c, which cannot accurately 
describe the relations between users since i t contains noises and 
i t ignores the graph structure in format ion of social network. For 

130 in instance, simi lar to the Web l ink adjacency graph in 
a trust-based social network, the confidence of t rust value Cik 
should be decreased if user i t rusts a large number of users; 
however, the confidence of t rust value Cik should be increased if 
user k is t rusted by lots of users. Hence, we employ the te rm 
c-^ which incorporates local author i ty and local hub values as a 
substi tute for Cik in Eq. (5.1), 

m 

pim z, ai) 
iR 

/ d-{vk) 
⑷ + d 一 ⑷ 

X Cik, (5.4) 

where d'^{vi) represents the outdegree of node Vj, whi le d~{vk) 
indicates the indegree of node Vk. 
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R ^C 

Figure 5.2: Graphical Model for Social TYust Recommendation 

User-Item Matrix Factorization 

Now considering the user-item mat r ix , suppose we have m users, 
n movies, and ra t ing values w i th in the range [0，1]. Actual ly, 
most recommender systems use integer ra t ing values f rom 1 to 
Rmax to represent the users' judgements on the items. In this 
chapter, w i thou t loss of generality, we map the rat ings 1, ...，Rmax 

to the interval [0,1] using the funct ion f{x) = {x~l)/{Rmax-'^)-
Let Rij represent the ra t ing of user i for movie j , and U G 
B}^^ and V € R}欣 be latent user and movie feature matrices, 
w i t h co lumn vectors Ui and Vj representing user-specific and 
movie-specific latent feature vectors respectively. We define the 
condit ional d is t r ibu t ion over the observed rat ings as 

m 

(5.5) 
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where I - j is the indicator funct ion that is equal to 1 i f user i 
rated movie j and equal to 0 otherwise. We also place zero-mean 
spherical Gaussian priors on user and movie feature vectors: 

m 

p{U\al) = llAf{Ui\0,all) 

(5.6) 

Hence, similar to Eq. (5.3), through a Bayesian inference, we 
have . 

oc p{R\U,V,al)p{U\al)p{Z\al) 
m n 

= n n " [ � 夕 咖 ’ 4) 
i = i 7 = 

m 

X J ] A r ( f / , | 0 , 4 l ) X l[Ar{Vj\0,all), (5.7) 
i = l 

Matrix Factorization for Social Trust Recommendation 

In order to reflect the phenomenon that a user's social connec-
tions w i l l affect th is user's judgement of interest in items, we 
model the problem of social recommendation using the graph-
ical model described in Fig. 5.2，which fuses bo th the social 
network graph and the user-item rat ing mat r i x into a consistent 
and compact feature representation. 

Based on Fig. 5.2, we have 

oc p { R \ U , V , a l ) p { C \ U , Z , a l ) 

X p{U\al)p{V\al)p{Z\al). (5.8) 
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The log of the posterior d is t r ibut ion for the above equation 
is given by 

In p("，T/’ Z\C, R, a ' � a a ' y . a ' z )= 
1 m 
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—-{mllnaij + nllnay + m/lnal) + C, (5.9) 

where C is a constant that does not depend on the parame-
ters. Max imiz ing the log-posterior over three latent features 
w i t h hyperparameters (i.e., the observation noise variance and 
prior variances) kept fixed is equivalent to min imiz ing the fol-
lowing sum-of-squared-errors objective functions w i t h quadratic 
regularization terms: 

C�R�C�U,V,Z)= 
1
1
2
 

m 

1=1 

Ac 
m m 

+爷EI：,加：广"("�z� : 

+ 

2 

At/ 
2 

i=i 

U Xv 
2 2 

^ I I f ( 5 . 1 0 ) 

where Ac = Xu = \ v = o y a \ , \ z = 
and denotes the Probenius norm. A local m i n i m u m of the 



m 

+ A c ^ igg'iUfZMUjZ,) - + XulU 

m 

1=1 
m 

where g\x) is the derivative of logistic funct ion g (x) = e x p ( x ) / ( l + 
exp(x))^. In order to reduce the model complexity, in all of the 
experiments we conduct in Section 5.2，we set Xy = Xy = Xz-

Complexity Analysis 

The main computat ion of gradient methods is evaluating the ob-
ject funct ion C and its gradients against variables. Because of 
the sparsity of matrices R and C , the computat ional complexity-
of evaluating the object funct ion C is 0{prI + pcO，where pr 
and PC are the numbers of nonzero entries in matrices R and C, 
respectively. The computat ional complexities for gradients 
靜 and f § in Eq. (5.11) are 0{prI + pcO. 0{prI) and 0 { p c l ) , 

respectively. Therefore, the to ta l computat ional complexi ty in 
one i terat ion is 0 { p r I + pe l ) ’ which indicates tha t the computa-
t ional t ime of our method is linear w i t h respect to the number of 
observations in the two sparse matrices. Th is complexi ty anal-
ysis shows tha t our proposed approach is very efficient and can 
scale up w i t h respect to very large datasets. 
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objective funct ion given by Eq.(5.10) can be found by perform-
ing gradient descent in C/,, Vj and Zk, 

dC 
dUi 

dC 
dVj 

dC 
dZi 
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5.1.2 Recommendation with Social Tags 

In the above section, we demonstrate how to recommend by in-
corporat ing users' social t rust informat ion. Actual ly , this gen-
eral f ramework can also be easily extended to fuse the user-item 
rat ing ma t r i x w i t h social tags informat ion. We can use similar 
factor analysis approach by ut i l iz ing bo th users' ra t ing infor-
mat ion and tagging informat ion at the same t ime in l ight of 
the facts tha t both users' rat ing in format ion and users' tag-
ging in format ion can reflect their opinions about Web content. 
Specifically, on the one hand, we connect users' ra t ing infor-
mat ion w i t h users' tagging inforntat ion through the shared user 
latent feature space. The graphical model of this case is shown 
in Fig. 5.3，where the mat r i x T represents the latent feature of 
each tag, and Fik indicates how many times that user Ui used 
tag tk. We can also have the similar object funct ion as shown in 
Eq. (5.10) w i t h the parameter A^ control l ing how many users' 
tag in format ion should be used. On the other hand, we connect 
items' received ra t ing in format ion w i t h i tems' received tagging 
in format ion through the shared i tem latent feature space. The 
related graphical model is shown in Fig. 5.4，where Fjk repre-
sents how many times tha t i tem v j is tagged by tag tk. In the 
objective funct ion, we employ A^ to control how many items' 
tag in format ion should be incorporated. 

The user latent feature space affects users' behaviors on both 
rat ing and tagging activit ies, while the i tem latent feature space 
determines bo th the received rat ing in format ion and received 
tagging informat ion. 

5.2 Experimental Analysis 

In this section，we conduct several experiments to compare the 
recommendation qual i ty of our social recommendation approach 
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Figure 5.3: Graphical Model for Recommendation with User Tags 

F UR 

Figure 5.4: Graphical Model for Recommendation with Item Tags 
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wi th other state-of-the-art collaborative f i l ter ing methods. We 
conduct the experiments on two different datasets, one is Epin-
ions which is associated w i t h a social t rust network, another is 
Movielens which has tag informat ion tha t is issued by different 
users. 

Our experiments are intended to address the fol lowing ques-
tions: 

1. How does our approach compare w i t h the published state-
of-the-art col laborative f i l ter ing algorithms? 

2. How does the model parameter Ac affect the accuracy of 
prediction? 

3. W h a t is the performance comparison on users w i t h different 
observed ratings? 

4. Can our a lgor i thm achieve good performance even if users 
have no observed ratings? 

5. Is our a lgor i thm efficient for large datasets? 

5.2.1 Metrics 
We use two metrics, the Mean Absolute Error ( M A E ) and the 
Root Mean Square Error (RMSE)，to measure the predict ion 
qual i ty of our proposed approach in comparison w i t h other col-
laborative f i l ter ing and trust-aware recommendation methods. 

The metrics M A E is defined as: 

MAE = ”丨厂【、丨， (5.12) 

where u j denotes the rat ing user i gave to i tem j , rij denotes 
the rat ing user i gave to i tem j as predicted by a method, and 
N denotes the number of tested ratings. The metrics RMSE is 
defined as: 
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RMSE=\^ 

5.2.2 Compared Methods 

一 ru)'^ 
N (5.13) 

In this section, in order to show the performance improvement 
of our Recommendation A lgo r i t hm w i t h Social Contextual In-
format ion (SoRec), we compare our a lgor i thm w i t h two baseline 
methods User Mean and I tem Mean, as well as two state-of-
the-art algor i thms SVD [63] and Probabi l ist ic M a t r i x Factor-
ization ( P M F ) [99]. 

5.2.3 Epinions Dataset 
Description of the Epinions Dataset 

A tremendous amount of data has been produced on the Internet 
every day over the past decade. Mi l l ions of people influence 
each other imp l ic i t l y or expl ic i t ly through online social network 
services, such as Facebook、As a result, there are many online 
opportuni t ies to mine social networks for the purposes of social 
recommendations. 

We choose Epinions as the data source for our experiments 
on social recommendation. Epinions.com is a well known knowl-
edge sharing and review site tha t was established in 1999. In 
order to add reviews, users (contr ibutors) need to register for 
free and they begin submi t t ing their own personal opinions on 
topics such as products, companies, movies, or reviews issued by 
other users. Users can also assign products or reviews integer 
ratings f rom 1 to 5. These ratings and reviews w i l l influence 
future customers when they are deciding whether a product is 
wor th buying or a movie is wor th watching. Every member of 

^http://www.facebook.com 

http://www.facebook.com
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Figure 5.5: Power-Law Distributions of the Epinions Dataset. (a) Items per 
User Distribution, (b) TVust Graph Outdegree Distribution, (c) TVust Graph 
Indegree Distribution. 

Epinions maintains a " t rust " list which presents a network of 
t rust relationships between users, and a "block (distrust)" list 
which presents a network of distrust relationships. This net-
work is called the "Web of t rus t " , and is used by Epinions to 
re-order the product reviews such tha t a user f irst sees reviews 
by users tha t they t rust . Epinions is thus an ideal source for ex-
periments on social recommendation. Note that in this chapter, 
we only employ t rust statements between users whi le ignoring 
the distrust statements, for the fol lowing two reasons: (1) The 
distrust l ist of each user is kept private in Epinions.com in order 
to protect the privacies of users, hence i t is not available in our 
dataset. (2) As presented in [42], the understanding of distrust 
is more complicated than t rust , which indicates tha t the user 
t rust latent feature space may not be the same as the user dis-
t rust latent feature space. The study of distrust-based social 
recommendation w i l l be conducted as future work. 

The dataset used in our experiments is collected by crawl-
ing the Epinions.com site on Jan 2009. I t consists of 51,670 
users who have rated a to ta l of 83,509 different items. The 
to ta l number of ratings is 631,064. The density of the user-
i tem rat ing ma t r i x is less than 0.015%. We can observe that 
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Table 5.1: Statistics of User-1 tern Rating Matrix of Epinions 

Statistics User Item 

Max. Num. of Ratings 1,960 7,082 

Avg. Num. of Ratings 12.21 7.56 

Table 5.2: Statistics of Social Trust Network of Epinions 

Statistics Trust per User Be Trusted per User 

Max. Num. 1,763 2,443 

Avg. Num. 9.91 9.91 

the user-item rat ing mat r i x of Epinions is very sparse, since the 
densities for the two most famous collaborative f i l ter ing datasets 
Movielens (6,040 users, 3,900 movies and 1,000,209 ratings) and 
Eachmovie (74,424 users, 1,648 movies and 2,811,983 ratings) 
are 4.25% and 2.29%, respectively. Moreover, an impor tan t fac-
tor tha t we choose the Epinions dataset is tha t user social trust 
network in format ion is not included in the Movielens and Each-
movie datasets. The statistics of the Epinions user-item rat ing 
mat r i x is summarized in Table 5.1. As to the user social t rust 
network，the to ta l number of issued t rust statements is 511,799. 
The statistics of this data source is summarized in Table 5.2. 

We also observe a number of power law distr ibut ions in our 
dataset, including items per user d is t r ibut ion, social t rust net-
work outdegree and indegree distr ibut ions. The distr ibut ions 
are shown in Fig. 5.5. 

Comparison 

We use different amounts of t ra in ing data (90%, 80%, 70%, 60%) 
to test al l the algori thms. Tra in ing data 90%, for example, 
means we randomly select 90% of the ratings f rom Epinions 
dataset as the t ra in ing data to predict the remaining 10% of 
ratings. The random selection was carried out 5 t imes indepen-
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Table 5.3: MAE comparison with other approaches on Epinions dataset (A 
smaller MAE value means a better performance) 

Methods 90% Training 80% Training 70% Training 60% Training 

User Mean 0.9294 0.9319 0.9353 0.9384 

Item Mean 0.8936 0.9115 0.9316 0.9528 

5D 

SVD 0.8739 0.8946 0.9214 0.9421 

5D PMF 0.8678 0.8946 0.9127 0.9350 5D 

SoRec 0.8442 0.8638 0.8751 0.8948 

lOD 

SVD 0.8702 0.8921 0.9189 0.9382 

lOD PMF 0.8651 0.8886 0.9092 0.9328 lOD 

SoRec 0.8404 0.8580 0.8722 0.8921 

Table 5.4: RMSE comparison with other approaches on Epinions dataset (A 
smaller RMSE value means a better performance) 

Methods 90% TVaining 80% TVaining 70% Training 60% Training 

User Mean 1.1927 1.1968 1.2014 1.2082 

Item Mean 1.1678 1.1973 1.2276 1.2505 

5D 

( 

SVD 1.1635 1.1845 1.2067 1.2298 

5D 

( 

PMF 1.1583 1.1773 1.1943 1.2163 5D 

( SoRec 1.1333 1.1530 1.1690 1.1892 

lOD 

SVD 1.1600 1.1812 1.2011 1.2268 

lOD PMF 1.1544 1.1760 1.1968 1.2230 lOD 

SoRec 1.1293 1.1492 1.1660 1.1852 
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dently. The experimental results are shown in Table 5.3. The 
parameter settings of our approach are Ac = 20, Xu = Xy = 
Xz = 0.001，and in al l the experiments conducted in the follow-
ing sections, we set all of the parameters A17, A^ and Xz equal 
to 0.001. Prom Table 5.3 and Table 5.4，we can observe that our 
approach outperforms the other methods. The improvements 
are significant, which shows the promising future of our recom-
mendation approach. 

Impact of Parameter Ac 

The main advantage of our recommendation approach is that i t 
incorporates the social t rust network informat ion, which helps 
predict users' preferences. In our model, parameter Ac balances 
the in format ion f rom the user-item rat ing mat r i x and the user 
social t rust network. I f Ac = 0，we only mine the user-item 
rat ing mat r i x for ma t r i x factorization, and if Ac = 00, we only 
extract in format ion f rom the social network to predict users' 
preferences. In other cases, we fuse in format ion f rom the user-
i tem rat ing mat r i x and the user social network for probabi l ist ic 
mat r ix factor izat ion and, furthermore, to predict rat ings for ac-
tive users. 

Fig. 5.6 shows the impacts of Ac on M A E and RMSE. We ob-
serve tha t the value of Xc impacts the recommendation results 
significantly, which demonstrates that fusing the user-item rat-
ing mat r i x w i t h the user social t rust network great ly improves 
the recommendation accuracy. As Ac increases, the predict ion 
accuracy also increases at first, but when Ac surpasses a certain 
threshold, the predict ion accuracy decrease w i t h fur ther increase 
of the value of A^. Th is phenomenon confirms the in tu i t i on that 
fusing the user-item rat ing mat r i x and the user social t rust net-
work can generate better performance than only purely using 
each of these two resources separately. From Fig. 5.6, we ob-
serve that for this Epinions dataset, our social recommendation 
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Figure 5.7: Performance Comparison on Different Users 
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method achieves the best performance when Ac is around 20’ 
whi le smaller values like Ac = 0.1 or larger values Ac = 100 can 
potent ia l ly degrade the model performance. 

Performance on Different Users 

One main task we target in this chapter is to provide accurate 
recommendations when users only supply a few rat ings or even 
have no ra t ing records. “ A l though previous work has noticed 
this cr i t ica l problem, few approaches per form well when few user 
ratings are given. Hence, in order to compare our approach w i t h 
the other methods thoroughly, we first group al l the users based 
on the number of observed ratings in the t ra in ing data, and 
then evaluate predict ion accuracies of different user groups. The 
experimental results are shown in Fig. 5.7. Users are grouped 
into 10 classes: “ = 0 ” , “1 - 5"，“6 - 10", "11 — 20”，“21 - 40”， 

“41 — 80”，“81 - 160”，“160 - 320”，“320 - 640”，and “〉640”， 

denoting how many rat ings users h^ve rated. 
Fig. 5.7(a) summarizes the distr ibut ions of test ing data ac-

cording to groups i n the t ra in ing data (90% as t ra in ing data). 
For example, there are a to ta l of 3,360 user-item pairs to be * 
predicted in the test ing dataset in which the related users in the 
t ra in ing dataset have ra t ing numbers from 1 to 10. In Fig. 5.7(b) 
and Fig. 5.7(c), we observe tha t our SoRec a lgor i thm consis-
tent ly outperforms other methods even when users only rated 
very few ratings. 

Efficiency Analysis 

The complexi ty analysis in Section 5.1.1 states tha t the compu-
ta t iona l complexi ty of our approach is linear w i t h respect to the 
number of rat ings, which proves tha t our approach is scalable 
to very large datasets. Actual ly , our approach is very efficient 
even when using a very simple gradient descent method. In the 
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Figure 5.8: Efficiency Analysis 

experiments using 90% of the data as t ra in ing data, each itera-
t ion only needs less than 2 seconds. Also, as shown in Fig. 5.8’ 
when using 90% of the data as t ra in ing data, our method needs 
less than 300 i terat ions to converge, which only needs approx-
imately 10 minutes. When using 60% of the data as t ra in ing 
data, we only need less than 5 minutes to t ra in the model. A l l 
the experiments are conducted on a normal personal computer 
containing an Intel Pentium D C P U (3.0 GHz, Dual Core) and 
1 Giga byte memory. 
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Prom Fig. 5.8, we also observe that when using a small value 
y 

of Ac, such as Ac = 0.1 or Ac = 1, after 50 or 100 iterations, 
the model begins to overfit, while a larger Ac, such as Ac = 
20，does not have the overf i t t ing problem. These experiments 
clearly demonstrate that in this Epin ion dataset, using l i t t le 
social network in format ion can cause overf i t ing problem, and 
that the predict ive accuracy can be improved by incorporat ing 
more social network informat ion. 

5.2.4 MovieLens Dataset 
Description of the MovieLens Dataset 

MovieLens is a famous recommender system. The dataset we 
employ in th is chapter is the lOM/ lOOK dataset. Th is data 
set contains 10,000,054 ratings and 95,580 tags added to 10,681 
movies by 71,567 users of the online movie recommender service 
MovieLens. 

Comparison 

In the comparison，we employ different amounts of t ra in ing 
data, inc luding 80%, 50%, 30%, 10%. 80% t ra in ing data means 
we randomly select 80% of the ratings f rom the MovieLens 
lOM/ lOOK data set as the t ra in ing data, and leave the remain-
ing 20% as predict ion performance testing. The procedure is 
carried out 5 t imes independently, and we report the average 
values in this chapter. 

As introduced in Section 5.1.2, we can incorporate social tag 
in format ion in two ways: (1) the first method is to treat the 
tags as the favors of users (we call this method SoRecUser, and 
i t is related to the graphical model shown in Fig. 5.3 w i t h the 
parameter A^) ; (2) the second method is to interpret the tags 
as the properties of items (we call th is method SoRecItem, and 
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Table 5.5: MAE comparison with other approaches on MovieLens dataset 
(A smaller MAE value means a better performance) 

Methods 80% Training 50% Training 30% Training 10% Training 

User Mean 0.7686 0.7710 0.7742 0.8234 

Item Mean 0.7379 0.7389 0.7399 0.7484 

5D 

SVD 0.6390 0.6547 0.6707 0.7448 

5D 
PMF 0.6325 0.6542 0.6698 0.7430 

5D 
SoRecUser 0.6209 ‘0.6419 0.6607 0.7040 

5D 

SoRecItem 0.6199 0.6407 0.6395 0.7026 

lOD 

SVD 0.6386 0.6534 0.6693 0.7431 

lOD 
PMF 0.6312 0.6530 0.6683 0.7417 

lOD 
SoRecUser 0.6197 0.6408 0.6595 0.7028 

lOD 

SoRecItem 0.6187 0.6395 0.6584 0.7016 

Table 5.6: RMSE comparison with other approaches on MovieLens dataset 

(A smaller RMSE value means a better performance) 

Methods 80% Training 50% IVaining 30% Training 10% Training 

User Mean 0.9779 0.9816 0.9869 1.1587 

Item Mean 0.9440 0.9463 0.9505 0.9851 

5D 

SVD 0.8327 0.8524 0.8743 0.9892 

5D 
PMF 0.8310 0.8582 0.8758 0.9698 

5D 
SoRecUser 0.8121 0.8384 0.8604 0.9042 

5D 

SoRecItem 0.8112 0.8370 0.8591 0.9033 

lOD 

SVD 0.8312 0.8509 0.8728 0.9878 

lOD 
PMF 0.8295 0.8569 0.8743 0.9681 

lOD 
SoRecUser 0.8110 0.8372 0.8593 0.9034 

lOD 

SoRecItem 0.8097 0.8359 0.8578 0.9019 
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Figure 5.9: Performance Comparison on Items with Different # of Tags 

i t is associated w i t h the graphical model shown in Fig. 5.4 w i th 
the parameter A^) . 

In the comparison, we set A^ = 1 and A^ = 10. The M A E re-
sults and R M S E results are reported in Table 5.5 and Table 5.6, 
respectively. Prom the results, we can see tha t our SoRecUser 
and SoRecItem approaches consistently outper form the baseline 
methods and the state-of-the-art recommendation algori thms, 
especially when there is a small amount of t ra in ing data, which 
is equivalent to data sparsity in reality. In addi t ion, i t is nec-
essary to notice tha t in the MovieLens lOM/ lOOK data set, al l 
the selected users have rated at least 20 movies, but in reality, 
according to the famous power law d is t r ibut ion phenomenon, in 
almost al l k i i ids of Web activit ies, most users only rated very 
few items. Thus, we can see the improvement of our method 
is signif icant, and this again shows the promising future of our 
approach. 

As to the parameters A^ and A^ basically, they share the 
similar trends w i t h Fig. 5.6, hence we do not show the detailed 
results here. 
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Figure 5.10: Tag Distributions of Testing Data on Different Amount of Train-

ing Data 
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Performance on Items with Different Number of Tags 

One major cont r ibut ion of this chapter is incorporat ing social 
tagging in format ion w i t h t rad i t ional ra t ing in format ion to im-
prove predict ion quali ty. In order to further investigate how the 
number of tags attached to one i tem affects the predict ion ac-
curacies, we first group al l the items based on the number of 
unique tags they have been annotated,. then evaluate the pre-
dict ion accuracies on different groups. We divide the items into 
5 groups based on the number of unique tags tha t have been 
annotated: “ = 0”，“1-5”，"6-10", "11-20", and " > 2 1 " . 

Exper imental results are presented in Fi盒.5.9. Th is fig-
ure shows the predict ion accuracies (measured w i t h M A E and 
RMSE) of groups of i tems annotated w i t h different number of 
unique tags, and the results of different amount of t ra in ing data 
are al l presented. We only report the results on dimensional i ty 
二 10. Prom Fig. 5.9，we can see that incorporat ing tags informa-
t ion can improve predict ion qual i ty significantly. In addi t ion, as 
the number of annotated unique tags increases, the predict ion 
qual i ty first improves drastically, then gradual ly stabilizes after 
the number of tags surpasses some threshold value (around 20 
in this data set). Th is phenomenon is reasonable, because w i t h 
more tags’ in format ion, the concept of an i tem can be repre-
sented more accurately, but too many tags result in redundancy 
in representing the concepts of the items. Fig. 5.10 shows the 
tag dist r ibut ions of test ing data on different amount of t ra in ing 
data. 

5.3 Summary = 

In this chapter, in order to alleviate the data sparsity problem 
in the t rad i t iona l recommender systems, we present a novel, effi-
cient and general recommendation framework fusing a user-item 
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rat ing ma t r i x w i t h social contextual in format ion using proba-
bil ist ic ma t r i x factorization. The experimental results show that 
our approach outperforms the other state-of-the-art collabora-
t ive filtering algori thms, and the complexity analysis indicates 
i t is scalable to very large datasets. Moreover, the data fusion 
method using probabi l ist ic mat r i x factor izat ion we introduce in 
this chapter is not only applicable to recommendation w i t h so-
cial contextual in format ion, but also extensible to other popular 
research topics, such as social search. 

For fu ture work, we employ the inner product of two vectors 
to fit the observed data in this chapter; this approach assumes 
that the observed data is a linear combinat ion of several latent 
factors. A l though we use the logistic funct ion to constrain the 
inner product , a more natura l and accurate improvement over 
this assumption is to use a kernel representation for the two 
low-dimensional vectors, such ‘as a Gaussian Kernel or a Poly-
nomial Kernel, which map the relations of the two vectors into a 
nonlinear space, and thus leading to an increase in the model's 
performance. 

Moreover, we only employ inter-user t rust in format ion in this 
chapter, but in many online social networks, the distrust infor-
mat ion is also stated by many users. Because a user t rust feature 
space may not be consistent w i t h the corresponding user distrust 
feature space, we cannot s imply incorporate the distrust infor-
mat ion in to our model. In the future, we need to investigate 
the fol lowing two problems: whether the distrust in format ion is 
useful to increase the predict ion qual i ty, and how to incorporate 
this distrust in format ion to obtain better qual i ty results. 

Furthermore, when fusing the social t rust network informa-
t ion, we ignore the in format ion diffusion or propagat ion between 
users. A more accurate approach is to consider the diffusion pro-
cess between users. Hence, we need to replace the social network 
mat r ix factor izat ion w i t h the social network diffusion processes. 
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This consideration w i l l help alleviate the data sparsity problem 
and w i l l potent ia l ly increase the predict ion accuracy. 

Lastly, we either associate tags w i t h users or associate tags 
w i th items. Actual ly , wcfcan design a more general framework 
to incorporate tags w i t h users and items simultaneously. This 
consideration w i l l provide more in format ion than either of the 
proposed methods, hence can further improve the recommenda-
t ion quali ty. 

• End of chapter. 



Chapter 6 

Recommend with Social Trust 
Ensemble 

In last chapter, we developed a factor analysis method based on 
the probabil istic graphical model which fuses the user-item ma-
t r ix w i th the users' social trust networks by sharing a common 
latent low-dimensional user feature matr ix . The experimental 
analysis shows that this method generates better recommen-
dations than the non-social collaborative f i l ter ing algorithms. 
However, the disadvantage of this work is that although the 
users' social t rust network is integrated into the recommender 
systems by factorizing the social trust graph, the real world rec-
ommendation processes are not reflected in the model. This 
drawback not only causes lack of interpret abi l i ty in the model, 
but also affects the recommendation qualities. A more novel 
and realistic approach is needed to model the trust-aware rec-
ommendation problem. 

6.1 Recommendation with Social 
Trust Ensemble 

Tradit ional recommender system techniques, like collaborative 
fi ltering, only uti l ize the information of the user-item rat ing ma-
t r i x for recommendations while ignore the social t rust relations 

91 
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Figure 6.1: Example for Trust based Recommendation 

among users. As the exponential growth of online social net-
works, incorporat ing social t rust in format ion into recommender 
systems is becoming more and more impor tant . In this section, 
we first describe the trust-aware recommendation problem in 
Section 6.1.1，and then provide the solut ion in Sections 6.1.2’ 
6.1.3 and 6.1.4. 

6.1.1 Problem Description 

In the real wor ld, the process of recommendation scenario in-
cludes two central elements: the t rust network and the favors of 
these friends, which can essentially be modeled by the examples 
of the t rust graph in Fig. 6.1(a) and the user-item rat ing ma-
t r i x in Fig. 6.1(b), respectively. In the t rust graph i l lustrated in 
Fig. 6.1(a)，totally, 5 users (nodes, f rom u i to 1x5) are connected 
w i th 9 relations (edges) between users, and each relat ion is asso-
ciated w i t h a weight Si j in the range (0，1] to specify how much 
user Ui knows or trusts user uj. Normal ly, the t rust relations in 
the online t rust network are expl ic i t ly stated by online users. As 
i l lustrated in Fig. 6.1(b), each user also rated some items ( f rom 
v i to vq) on a 5-point integer scale to express the extent of the 
favor of each i tem (normally, 1，2, 3, 4 and 5 represent "hate", 
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"don' t like”，"neutral", " l ike" and “love”，respectively). The 
problem we study in this chapter is how to predict the missing 
values for the users effectively and efficiently by employing the 
t rust graph and the user-item rat ing mat r ix . 

6.1.2 User Features Learning 

In order to learn the characteristics or features of the users, we 
employ ma t r i x factor izat ion to factorize the user-item matr ix . 
The idea of user-item mat r i x factorizat ion is to derive a high-
qual i ty /-dimensional feature representation U of users and V of 
items based on analyzing the user-item mat r i x R. Suppose in 
a user-item rat ing mat r i x , we have m users, n items, and rat-
ing values w i t h i n the range [0,1]. Actual ly , most recommender 
systems use integer ra t ing values f rom 1 to Rmax to represent 
the users' judgements on items. In this chapter, w i thou t loss of 
generality, we map the ratings 1,..., Rmax to the interval [0,1 
using the funct ion f{x)==工 I Rmax. Let Rij represent the rat ing 
of user Ui for i tem v j , and U G R:"^爪 and V e Ri仍 be latent user 
and i tem feature matrices, w i t h column vectors Ui and Vj rep-
resenting the 厂dimensional user-specific and item-specific latent 
feature vectors of user Ui and i tem v j , respectively. Note that 
the solutions of U and V are not unique. I n [99], the condit ional 
d is t r ibut ion over the observed ratings is defined as: 

m n 

p ⑷ " ’ = n n [ " ( 仗 「 巧 ) ’ 。 训 ’ （6.1) 
i= l j=l 

where a^) is the probabi l i ty density funct ion of the Gaus-
sian d is t r ibu t ion w i t h mean /z and variance a^, and I巧 is the 
indicator funct ion that is equal to 1 i f user Ui rated i tem Vj and 
equal to 0 otherwise. The funct ion g{x) is the logistic funct ion 
g{x) = 1 / (1 + exp( -a ; ) ) , which makes i t possible to bound the 
range of UfVj w i t h i n the range [0,1]. The zero-mean spherical 
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(c) Recommendations with Social Trust Ensemble 

Figure 6.2: Graphical Models 
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Gaussian priors are also placed on user and i tem feature vectors: 
m 

p { U \ a l ) = l l A f { U i \ 0 , a l l ) , = J ] a ^ I ) . (6.2) 

Hence, through a Bayesian inference, we have 

V\R, a l 4 ) oc p(R\U，K, 
m n 

=UUi^i^MUrVjWn)]''' 
1 = 1 j=l 
m n 

X ] j A f { U i \ 0 , a l l ) X 
1 = 1 7 = 1 

(6.3) 

The graphical model of Eq. (6.3) is shown in Fig. 6.2(a). This 
equation represents the method on how to derive the users' la-
tent feature space or users' characteristics purely based on the 
user-item ra t ing mat r i x w i thout considering the favors of users' 
t rusted friends. In the next section, we w i l l systematical ly illus-
t rate how to recommend based on the tastes of t rusted friends. 

6.1.3 Recommendations by Trusted Friends 

In this section, we analyze how our social t rust networks affect 
our decisions or behaviors, and propose a method to recommend 
only by using the tastes of t rusted friends. 

Suppose we have a directed social t rust graph Q = ("， f) ’ 
where the vertex set U = represents al l the users in 
a social t rust network and the edge set £ represents the trust 
relations between users. Let S = denote the mxm mat r i x 
of Q, which is also called the social t rust ma t r i x in this chapter. 
For a pair of vertices, u,- and uj, let Sij e (0,1] denote the weight 
associated w i t h an edge f rom Ui to and Sij = 0, otherwise. 
The physical meaning of the weight Si j can be interpreted as 
how much a user Ui t rusts or knows user Uj in a social network. 
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Note tha t social t rust ma t r i x S is an asymmetr ic mat r i x , since 
in a trust-based social network, user Ui t rus t ing u j does not 
necessary indicate user u j t rusts Ui. 

In reality, we always t u r n to our friends for recommendations 
since we t rus t our friends. We also believe tha t most probably we 
w i l l l ike the i tems (books, music, movies, etc.) tha t our t rusted 
friends recommend. Even i f the recommended items are not the 
types we like, we st i l l have a high probabi l i ty to be influenced 
by our t rusted friends. In the real wor ld, suppose a user wants 
to see the movie "The Dark Kn igh t " (suppose i t is the i tem v i 
in Fig. 6.1(b))，which is now playing at the theaters, but he/she 
knows noth ing about the movie，like user u i in Fig. 6.1(b). W h a t 
this user normal ly do is to take into account h is/her t rusted 
friends' recommendations. Among al l of h is/her t rusted friends 
in Fig. 6.1(a), U2 and U4 rated th is movie as 4 and 5，and u i 
t rusts U4 (weight 1.0) more than U2 (weight 0.6). Based on the 
informat ion, there is a very high probabi l i ty tha t Ui w i l l draw 
the conclusion tha t "The Dark Kn igh t " is a very good movie 
wor th of watching. 

Prom the above analysis, we can generalize the above social 
process as 

YL RjkSij 
总，二 (6.4) 

T(i) 
where Rik is the predict ion of the raySag, tha t user Ui would 
give i tem vj, Rjk is the score tha t user uj gave i tem Vk, T{i) is 
the friends set tha t user Ui t rusts and \T{i)\ is the number of 
t rusted friends of user Ui i n the set T{i). \T{i)\ can be merged 
in to Si j since i t is the normal izat ion te rm of t rust scores. Hence, 
Eq. (6.4) can be simpli f ied as 

^ ^ RjkSi j . (6.5) 
jeT{i) 



CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 97 

Then the predict ion of the ratings that user Uj gives to all the 
items can be inferred as 

R21 
^ 1 2 丑22 

R m l \ 

Rm2 

� I f^ln 只2n .•• -^^mny 

We can then infer tha t for all the users to 

R = SR, 

/ 

Ri2 
— 

\ ^n j v 

511 
512 

m \Si 

obta in 

(6.6) 

(6.7) 

where SR can be interpreted as the recommendations purely 
based on the t rusted friends' tastes. 

Prom the social t rust network aspect, we define the condi-
t ional d is t r ibu t ion over the observed rat ings as 

m nn 
1=11—. 

M 

m 

(6.8) 

where Sik is normalized by |T(z)| , which is the number of t rusted 
friends of user Ui in the set T(z) . I f j is the indicator funct ion 
that is equal to 1 i f user i rated i tem j and equal to 0 otherwise. 

Hence, simi lar to Eq. (6.3), through a Bayesian inference, we 
have 

cx p{R\S, U, V, al)p{V\S, 4 ) (6.9) 

In Eq. (6.9), we can assume that S is independent w i t h the 
low-dimensional matrices U and V， then this equation can be 
changed to 
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P(JA V\R, S�al 4 , 4 ) cxp{R\S, U�V, (jl)p{U\al)p{V\al) 
in 

m =nn 
1=11= 

M RiM E SikUlVj).al 

X ^ N M ^ . C R L L ) X Y [ A F { V J \ 0 , A L L ) (6.10) 

i = l 

where and p(K|cry) are zero-mean spherical Gaussian 
priors on user and i tem feature vectors. Th is equation specifies 
the method to recommend purely based on users' t rusted friends' 
tastes. The graphical model is shown in Fig. 6.2(b). 

6.1.4 Social Trust Ensemble 

In Section 6.1.2, given the user-item rat ing mat r i x , the observed 
rat ing R i j is interpreted by the user Ui's favor on i tem 巧，while in 
Section 6.1.3, given the user-item rat ing mat r i x and users' social 
t rust network, the observed rat ing R i j is realized as the favors on 
i tem Vj of user UiS t rusted friends. Actual ly , bo th of the above 
assumptions are par t ia l ly r ight since in the real wor ld s i tuat ion, 
every user has his/her own taste and at the same t ime, every 
user may be influenced by his/her friends ke/she trusts. Hence, 
in order to define the model more realistically, every observed 
rat ing in the user-item mat r i x should reflect bo th of these two 
factors. Based on this mot ivat ion, we model the condit ional 
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dis t r ibut ion over the observed ratings as: 

m nn 
1=11= 

AT R i M o ^ U l V j + (1 -
、 k^m 

m 

m 

(6.11) 

In Eq. (6.11), the users' favors and the t rusted friends' favors 
are smoothed by the parameter a , which natura l ly fuses appro-
priate amount of real wor ld recommendation processes into the 
recommender systems. The parameter a controls how much do 
users t rust themselves or their t rusted friends. I t is also the 
reason we call our approach Recommendation w i t h Social Trust 
Ensemble (RSTE) . The graphical model of R S T E is shown in 
Fig. 6.2(c). 一 

The log of the posterior d is t r ibut ion for the recommendations 
is given by 

- m n 

2(72 E E 功 风 - + (1 - … E 秘【••‘ 
ker(i) t = l 7 = J 

^ 1=1 ^ j = i 
1 m n 1 

一 E 1 如nc72 - - ( m / l n 4 + n / l na^ ) + C， (6.12) 
i = l 7=1 

where C is a constant tha t does not depend on the parame-
ters. Max imiz ing the log-posterior over two latent features w i t h 
hyperparameters (i.e., the observation noise variance and prior 
variances) kept fixed is equivalent to min imiz ing the fol lowing 
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sum-of-squared-errors objective functions w i t h quadrat ic regu-
lar izat ion terms: 

C{R. s�U, V) 
1 m n 

t=i j = i k e T { i ) 

(6.13) 

where \ u = o^ j 、 X y = cr^/a^, and |卜 denotes the FVobenius 
norm. 

A local m in imum of the objective funct ion given by Eq. (6.13) 
can be found by performing gradient descent in Ui, Vj , 

‘ J=i k e T ( i ) 

X 咖UfVj + (1 — S a U ^ V j ) — R i j ) 

E 办 ' + (1 —…E Spk 咖 
peB{t) keT{p) 

X {g{aU^Vj + (1 — a)J2SpkUlVj) - Rpj)Sj^Vj + XuUu 
keT{p) 

a广 爪 

备二 m c ^ u f v , + (1 - … E 

j t=i keT{i) 

X {giaUlVj + (1 — SikU^Vj) — 

X {aUi + (1 - a ) E SikU^) + AyV̂ 力 （6.14) 

ker{i) 

where g\x) is the derivative of logistic funct ion g'{x) = exp (a : ) / ( l + 
exp(x))^ and B{i) is the set tha t includes al l the users who t rust 
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user Ui. In order to reduce the model complexity, in all of the 
experiments we conduct in Section 6.2，we set Xy = 

6.1.5 Complexity Analysis 

The main computat ion of gradient methods is evaluating the 
object funct ion C and its gradients against variables. Because 
of the sparsity of matrices R and S�the computat ional complex-
i ty of evaluating the object funct ion C is 0 { p r I + p r J c V ) , where 
pn is the number of nonzero entries in the ma t r i x R, and k is 
the average number of friends that a user trusts. Since almost 
all of the online social networks fit the power-law dis t r ibut ion, 
a large long ta i l of users only have few trusted friends. This 
indicates tha t the value of k is relatively small. The computa-
t ional complexit ies for the g r a d i e n t s ^ and 靠 in Eq. (6.14) are 
0 { p r p I + f ) p p kl) and 0 { p r I + P R k l ) , respectively, where p is 
the average number of friends who t rust a user, which is also a 
small value. Actual ly , in a social t rust graph, the value of k is 
.always equal to the value of p, which is 9.91 in the dataset we 
employ in the Section 6.2. Therefore, the to ta l computat ional 
complexi ty i n one i terat ion is 0 {pRp I + pRp kV), which indicates 
that theoretical ly, the computat ional t ime of our method is l in-
ear w i t h respect to the number of observations in the user-item 
mat r i x R. Th is complexi ty analysis shows tha t our proposed 
approach is very efficient and can scale to very large datasets. 

6.2 Empirical Analysis 

In th is section, we conduct several experiments to compare the 
recommendation qualit ies of our R S T E approach w i t h other 
state-of-the-art col laborative filtering and trust-aware recom-
mendat ion methods. Our experiments are intended to address 
the fol lowing questions: (1) How does our approach compare 
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Table 6.1: Statistics of User-Item Rating N̂  

Statistics User Item 

Max. Num. of Ratings 1960 7082 

Avg. Num. of Ratings 12.21 7.56 

atrix of Epinions 

Table 6.2: Statistics of Social TVust Network of Epinions 

Statistics Trust per User Be Trusted per User 

Max. Num. 1763 2443 

Avg. Num. 9.91 9.91 

wi th the published state-of-the-art col laborative f i l ter ing and 
trust-aware recommendation algorithms? (2) How does the model 
parameter a affect the accuracy of prediction? (3) W h a t is the 
performance comparison on users w i t h different observed rat-
ings? (4) Can our a lgor i thm achieve good performance even if 
users have few observed rat ing records? (5) Is our a lgor i thm 
efficient when t ra in ing the model? 

6.2.1 Dataset Description 

We choose Epinions as the data source for our experiments on 
recommendation w i t h social t rust ensemble. Epinions.com is a 
well known knowledge sharing site and review site, which was 
established in 1999. In order to add reviews, users (contr ibutors) 
need to register for free and begin submi t t ing their own personal 
opinions on topics such as products, companies, movies, or re-
views issued by other users. Users can also assign products or 
reviews integer rat ings f rom 1 to 5. These ratings and reviews 
w i l l influence future customers when they are about to decide 
whether a product is wor th buying or a movie is wor th watch-
ing. Every member of Epinions maintains a " t rus t " l ist which 
presents a social network of t rust relationships between users. 
Epinions is thus an ideal source for experiments on social t rust 
recommendation. 
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The dataset used in our experiments is collected by crawl-
ing the Epinions.com site on Jan 2009. I t consists of 51,670 
users who have rated a to ta l of 83,509 different items. The 
to ta l number of rat ings is 631,064. The density of the user-
i tem rat ing ma t r i x is less than 0.015%. We can observe that 
the user-item ra t ing mat r i x of Epinions is very sparse, since the 
densities for the two most famous collaborative f i l ter ing datasets 
Movielens (6,040 users, 3,900 movies and 1,000,209 ratings) and 
Eachmovie (74,424 users, 1,648 movies and 2,811,983 ratings) 
are 4.25% and 2.29%, respectively. Moreover, an impor tan t fac-
tor tha t we choose the Epinions dataset is tha t user social t rust 
network in format ion is not included in the Movielens and Each-
movie datasets. The statistics of the Epinions user-item rat ing 
mat r i x is summarized in Table 6.1. As to the user social t rust 
network, the to ta l number of issued t rust statements is 511,799. 
The statistics of this data source is summarized in Table 6.2. 

6.2.2 Metrics 

We use two metrics, the Mean Absolute Error ( M A E ) and the 
Root Mean Square Error (RMSE), to measure the predict ion 
qual i ty of our proposed approach in comparison w i t h other col-
laborat ive f i l ter ing and trust-aware recommendation methods. 

The metrics M A E is defined as: 

MAE = (6.15) 

where Vij denotes the rat ing user i gave to i tem j�Vij denotes 
the ra t ing user i gave to i tem j as predicted by a method, and 
N denotes the number of tested ratings. The metr ics RMSE is 
defined as: 

4 = 、 / ‘ 广 、 力 2 (6.16) 
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6.2.3 Comparison 

In this section, in order to show the performance improvement of 
our RSTE approach, we compare our method w i t h the fol lowing 
approaches. 

1. P M F : this method is proposed by Salakhutdinov and M inh 
in [99]. I t only uses user-item mat r i x for the recommenda-
tions, and i t is based on probabil ist ic mat r i x factorization. 

2. Trust: this is the method purely uses trusted friends' tastes 
making recommendations. I t is proposed in Sedtion 6.1.3 in 
this chapter. I t is also a special case of RSTE when a = 0. 

3. SoRec: this is the method proposed in [74]. I t is a so-
cial trust-aware recommendation method tha t factorizes 
the user-item rat ing mat r ix and users' social t rust network 
by sharing the same user latent space. 

We use different amounts of t ra in ing data (90%, 80%) to 
test the algorithms. Train ing data 90%, for example, means we 
randomly select 90% of the ratings f rom Epinions dataset as 
the t ra in ing data to predict the remaining 10% of ratings. The 
random selection was carried out 5 times independently. The 
experimental results using 5 and 10 dimensions to represent the 
lat€nt features are shown in Table 6.3. 

The parameter settings of our approach are a = 0.4 for both 
90% t ra in ing data and 80% tra in ing data, Xy = Xy = 0.001, 
and in al l the experiments conducted in the fol lowing sections, 
we set al l of the parameters Xy, Xv equal to 0.001. Prom Ta-
ble 6.3，we can observe that our approach RSTE outperforms 
the other methods. I n general, two social t rust recommenda-
t ion approaches SoRec and RSTE all perform better than the 
P M F method (only uses the user-item mat r i x for recommen-
dations). However, the Trust method performs worse than the 



CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 105 

Table 
Means 

6.3: Performance Comparisons (A Smaller MAE 
a Better Performance) 

RMSE Value 

Training Data Metrics 
Dimensionality = 5 

Training Data Metrics 
Trust PMF SoRec RSTE 

90% 
MAE 0.9054 0.8676 0.8442 0.8377 

90% 
RMSE 1.1959 1.1575 1.1333 1.1109 

80% 
MAE 0.9221 0.8951 0.8638 0.8594 

80% 
RMSE 1.2140 1.1826 1.1530 1.1346 

Training Data Metrics 
Dimensionality = 10 

Training Data Metrics 
Trust PMF SoRec RSTE 

90% 
MAE 0.9039 0.8651 0.8404 0.8367 

90% 
RMSE 1.1917 1.1544 1.1293 1.1094 

80% 
MAE 0.9215 0.8886 0.8580 0.8537 

80% 
RMSE 1.2132 1.1760 1.1492 1.1256 

P M F method, which indicates purely u t i l iz ing t rusted friends' 
tastes to recommend is not applicable. Among these three trust-
aware recommendation methods, our R S T E method generally 
achieves better performance than the SoRec and Trust methods 
on both M A E and RMSE. This demonstrates tha t our interpre-
ta t ion on the format ion of the ratings is realistic and reasonable. 

6.2.4 Performance on Different Users 

One challenge of the recommender systems is tha t i t is diffi-
cult to recommend items to users who have very few ratings. 
Hence, in order to compare our approach w i t h the other meth-
ods thoroughly, we first group al l the users based on the number 
of observed rat ings in the t ra in ing data, and then evaluate pre-
dict ion accuracies of different uSer groups. The experimental 
results are shown in Fig. 6.3. Users are grouped in to 6 classes: 
" 1 - 1 0 " , “11 — 20”，“21 - 40”， “41-80”， “81-160” and “〉160”， 

denoting how many ratings users have rated. 



•10 11-20 21-40 41-80 
Number of Observed F 

(a) Distribution of Testing 
TYaining Data) 

81-160 

(90% 

Dimensionality > Dimensionality: 

11-20 21-40 41-80 81-160 
Number of Observed Ratings 

20 21-40 41-80 81-
Number a4 Observed Ratings 

(b) MAE Comparison on Different User (c) RMSE Comparison on Different User 
Rating Scales (90% as IVaining Data) Rating Scales (90% as TVaining Data) 

Figure 6.3: Performance Comparison on Different Users 
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Fig. 6.3(a) summarizes the distr ibut ions of test ing data ac-
cording to groups in the t ra in ing data (90% as t ra in ing data). 
For example, there are a to ta l 3,360 user-item pairs to be pre-
dicted in the test ing dataset in which the related users in the 
t ra in ing dataset have rat ing numbers f rom 1 to 10. In Fig. 6.3(b) 
and Fig. 6.3(c), we observe that our R S T E a lgor i thm consis-
tent ly performs better than other methods, especially when few 
user ratings are given. When users' ra t ing records are ranging 
f rom 1 to 80，our R S T E method performs much better than the 
Trust, P M F and SoRec approaches. 

MM 

6.2.5 Impact of Parameter a 

In our method proposed in this chapter, the parameter a bal-
ances the in format ion f rom the users' own characteristics and 
their friends' favors. I t controls how much our method should 
t rust users themselves and their friends. I f a = 1, we only mine 
the user-item ra t ing ma t r i x for mat r i x factor izat ion, and simply 
employ users' own tastes in making recommendations. I f a = 0， 

we only extract in format ion f rom the social t rust graph to pre-
dict users' preferences purely f rom the friends they t rust . In 
other cases, we fuse in format ion f rom the user-item rat ing ma-
t r i x and the user social t rust network for probabi l ist ic mat r i x 
factor izat ion and, furthermore, to predict rat ings for the users. 

Fig. 6.4 shows the impacts of a on M A E and RMSE. We 
observe tha t the value of a impacts the recommendation re-
sults signif icantly，which demonstrates tha t fusing the users' 
own tastes w i t h their friends' favors greatly improves the rec-
ommendat ion accuracy. No matter using 90% t ra in ing data o不 

80% t ra in ing data, as a increases, the M A E and RMSE de-
crease (predict ion accuracy increases) at f irst, but when a sur-
passes a certain threshold, the M A E and R M S E increase (pre-
dict ion accuracy decreases) w i t h further increase of the value 



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8 0 9 

(C) ⑷ 

Figure 6.4: Impact of Parameter oc (Dimensionality = 10) 

of a . Th is phenomenon confirms w i t h the in tu i t ion tha t purely 
using the user-item rat ing mat r i x or purely using the users' so-
cial t rust network for recommendations cannot generate better 
performance than fusing these two favors together. 

Prom Fig. 6.4(a) and Fig. 6.4(b), when using 90% ratings as 
t ra in ing data, we observe tha t , our RSTE method achieves the 
best performance when a is around 0.4, whi le smaller values 
like Q； = 0.1 or larger values like a = 0.7 can potent ia l ly degrade 
the model performance. This indicates tha t we need to t rust 
more about the tastes of users' t rusted friends than the i r own 
tastes, since the t ra in ing data of user-item mat r i x is very sparse, 
which can hardly learn the accurate characteristics of users. In 
Fig. 6.4(c) and Fig. 6.4(d), when using 80% ratings as t ra in-

0.4 0.5 0.6 0.7 0.8 

(a) 

丨 Training Data 
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Figure 6.5: Efficiency Analysis (90% as Training Data) 

ing data, the opt imal value of a is also around 0.4. However, 
less ratings for users w i l l lead to an overall degradation of the 
recommendation results. 

6.2.6 Training Efficiency Analysis 

The complexi ty analysis in Section 6.1.5 states tha t the compu-
tat ional complexi ty of our approach is linear w i t h respect to the 
number of rat ings, which shows tha t our approach is scalable 
to very large datasets. Actual ly, our approach is very efficient 
even when using a very simple gradient descent method. I n the 
experiments using 90% of the data as t ra in ing data, our method 
only needs less than 400 iterations for t ra in ing, and each itera-
t ion only requires less than 20 seconds. A l l the experiments are 
conducted on a normal personal computer containing an Intel 
Pentium D C P U (3.0 GHz�Dual Core) and I G memory. 

.‘/ 

Fig. 6.5(a) and Fig. 6.5(b) show the performance ( M A E and 
RMSE) changes w i t h the iterations. We observe tha t when us-
ing a large value of a , such as a = 1 or a = 0.7’ at the end of the 
t ra in ing, the model begins to overfit (especially for the RMSE) , 
while a relat ively smaller a , such as a 二 0 or a = 0.4, does not 
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have the over f i t t ing problem. These experiments clearly demon-
strate tha t in this dataset, an approach ignor ing the social t rust 
in format ion can cause the overf i t t ing problem, and tha t the pre-
dict ive accuracy can be improved by incorporat ing appropriate 
amount of social t rus t informat ion. 

6.3 Summary 

This chapter is mot ivated by the fact tha t a user's t rusted friends 
on the Web w i l l affect th is user's online behavior. Based on the 
in tu i t ion tha t every iiser，s decisions on the Web should include 
bo th the user's characteristics and the user，s t rusted friends' rec-
ommendations, we propose a novel, effective and efficient prob-
abil ist ic ma t r i x factor izat ion framework for the recommender 
systems. Exper imenta l analysis on the Epinions dataset shows 
the promising future of our proposed method. Moreover, the 
method introduced in th is chapter by using probabi l ist ic ma t r i x 
factor izat ion is not only work ing in trust-aware recommender 
systems, bu t also applicable to other popular research topics, 
such as social search, col laborative in format ion retrieval, and 
social data min ing. iC 

In this chapter, a l thoi igh we employ the t rusted friends' opin-
ions i n the social t rust network to make recommendations for 
the users, we do not consider the possible diffusions of trusts 
between various users. Under the circumstance tha t bo th the 
user-item ra t ing maU ix and the t rust relations of a social net-
work are very sparse, the diffusions of t rust relations become 
inevitable since th is consideration w i l l help to al leviate the data 
spaxsity problem and w i l l potent ia l ly increase the predict ion ac-
curacy. We plan to employ the diffusion processes in our future 
work, 、 

y^ many popular applications on the Web, users not only can 
keep a l ist of t rus t relationships, but also have the r ights to 
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establish a l ist of distrust or block relationships. I f a user u j 
is in the distrust l ist of a user u,, most probably, i t is because 
the user Ui th inks the user Uj,s taste is to ta l l y different f rom 
h im/her . Actua l ly , this in format ion is very useful on the recom-
mender systems. Unfortunately, to the best of our knowledge, 
no previous work can employ this in format ion well in to recom-
mender systems. The understanding of distrust relations is st i l l 
unclear to the researchers: We cannot use dif fusion methods to 
model i t due to the reason that one person's enemy's enemy is 
not necessarily the enemy of this person. I n the future, we plan 
to study the format ion and nature of the distrust relations, and 
expl ic i t ly model them in the recommender systems. 

• End of chapter. 



Chapter 7 

Recommend with Social 
Distrust 

Although we developed two trust-based recommendation ap-
proaches in this thesis, we ignored a very important information, 
i.e., distrust relations among users. 

In this chapter, we propose a factor analysis framework w i th 
the constraints of distrust and trust relations among users. Our 
work is based on the following intuit ions: 

• Users' latent features can be extracted by factorizing the 
user-item rat ing matr ix . 

• Users’ distrust relations can be interpreted as the "dissim-
i lar" relations since user Ui distrusts user Ud indicates that 
user Ui disagrees w i t h most of the opinions issued by user 
Ud. 

• Users' t rust relations can be modeled as the "similar" re-
lations due to the reason that user Ui trusts user ut means 
that user Ui agrees w i t h most of the opinions issued by ut. 

7.1 Recommendation Framework 

Previous recommender system techniques only uti l ize the in-
formation of the user-item rat ing mat r ix for recommendations 

112 
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while ignoring the t rust and distrust relationships among users. 
However, the fact is, t rust and distrust in format ion is very help-
ful i n making the recommendations since to some extent, they 
represent the "simi lar" and "dissimilar" relationships. W i t h the 
exponential g rowth of Web 2.0 Web sites, prov id ing personal-
ized recommendations and incorporat ing t rust and distrust into 
t rad i t iona l recommender systems are becoming more and more 
impor tant . 

I n this section, we first describe the problem we study in 
Section 7.1.1，and then brief the mat r i x factor izat ion technique 
for recommendation in Section 7.1.2. We provide solutions on 
how to incorporate the distrust and t rust into recommendations 
in Section 7.1.3, Section 7.1.4 and Section 7.1.5. Final ly, the 
complexi ty analysis is conducted in Section 7.1.6. 

7.1.1 Problem Definition 

Fig. 7.1(a) i l lustrates a typical Web user we w i l l study in this 
chapter. I n this figure, user u i rated three items v i , v^ and v^. 
In addi t ion to the ra t ing data, this user also maintains two lists: 
t rust l ist and distrust l ist. The t rust l ist stores al l the users that 
user u i t rusts whi le the distrust list includes al l the users that 
user u i distrusts. 

By integrat ing al l the in format ion f rom al l the users, we sum-
marize three different data sources: the user-item ra t ing mat r i x 
shown in Fig. 7.1(b), the user t rust graph shown in Fig. 7.1(c) 
and the user distrust graph shown in Fig. 7.1(d). I n this exam-
ple, tota l ly , there are 5 users ( f rom u i to u^) and 5 items ( f rom 
v i to vs) w i t h 6 t rust relations (edges) and 5 distrust relations 
between users. Each relat ion is associated w i t h a weight Wij in 
the range (0,1] to specify how much user Ui t rusts or distrusts 
user Uj. I n an online social network Web site, the weight Wij 
is often expl ic i t ly stated by user Ui. Typical ly, each user also 
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Web user u^ Rated Items: 

5 3 5 

Trust List: U2 1 

U3,U4,Us 4 

Distrust List: U4 3 4 2 

"2 5 4 

(b) User-Item Rating Matrix 

(c) User TVust Graph 

Figure 

(d) User Distrust Graph 

A Toy Example 

rates some items on a 5-point integer scale to express the extent 
of the favor of each i tem (normally, 1，2，3，4 and 5 represent 
"hate", "don ' t l ike", "neut ra l " , " l ike" and " love", respectively). 

The problem we study in this chapter is how to effectively and 
efficiently predict the missing values of the user-item mat r i x by 
employing these different data sources. 

7.1.2 Matrix Factorization for Recommendation 

A common and popular approach to recommender systems is to 
fit a factor model to the user-item ra t ing mat r i x , and use i t in 
order to make further predictions [48，76’ 94, 99]. The premise 
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behind a low-dimensional factor model is tha t there is only a 
small number of factors influencing the preferences，and that a 
user's preference vector is determined by how each factor applies 
to tha t user [94 . 

Consider an m x n user-item rat ing ma t r i x R�the mat r i x 
factor izat ion method employs a rank-/ mat r i x X — IJ^V to fit 
i t , where U e IR、"" and V e From the above defini-
t ion, we can see tha t the low-dimensional matrices U and V are 
unknown, and need to be estimated. Moreover, th is feature rep-
resentations have clear physical meanings. I n th is linear factor 
model, each factor is a preference vector, and a user's prefer-
ences correspond to a linear combinat ion of these factor vectors, 
w i t h user-specific coefficients. More specifically，each row of U 
performs as a "feature vector", and each row of K is a linear 
predictor, predict ing the entries in the corresponding column of 
R based on the "features" in U. 

Actual ly , most recommender systems use integer ra t ing val-
ues f rom 1 to Rmax to represent the users' judgements on items. 
In this chapter, w i thou t loss of generality, we map the rat-
ings 1 , R m a x to the interval [0,1] using the funct ion f { x ) = 
^/Rmax- However, s imply employing U f V j to predict the miss-
ing value Ri，j can make the predict ion outside of the range of 
val id ra t ing values. Hence, instead of using a simple linear factor 
model, in th is chapter, the inner product between user-specific 
and movie-specific feature vectors is mapped through a nonlin-
ear logistic funct ion g{x) = 1 / (1 + e x p ( - x ) ) , which bounds the 
range of the predict ions into [0, 1 . 

Hence, by adding the constraints of the norms of U and V, 
we have the fol lowing opt imizat ion problem: 
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where I - j is the indicator funct ion tha t is equal to 1 i f user Ui 
rated i tem v j and equal to 0 otherwise, and || • denotes the 
Probenius norm. 

The opt imizat ion problem in Eq. (7.1) minimizes the sum-of-
squared-errors objective funct ion w i t h quadrat ic regularization 
terms. I t also has a probabil ist ic in terpretat ion w i t h Gaussian 
observation noise, which is detailed in [99]. However, the same as 
many other col laborative f i l ter ing methods, this approach only 
util izes the user-item rat ing mat r i x for the recommendations. 
In the fol lowing sections, we w i l l introduce how to incorporate 
the distrust and t rust in format ion into the mat r i x factor izat ion 
method. 

7.1.3 Recommendation with Distrust Relations 

In this section, we analyze how the distrust relationships can 
affect the recommendation processes. 

Distrust is one of the most controversial topics and issues to 
cope w i th , especially when considering t rust metrics and t rust 
propagation [135]. A l though many researchers have already con-
ducted comprehensive studies on the t rust related applications, 
the understanding of distrust relations is s t i l l unclear to the 
researchers. Distrust is to ta l ly different w i t h t rust , hence the 
method employed in the trust-aware recommender systems can-
not be s imply transplanted to distrust-aware recommender sys-
tems. For example, the most popular method in trust-aware 
recommender systems is to improve the recommendation qual-
i ty by the propagat ion of t rust ; however, we cannot s imply use 
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propagation methods to model distrust due to the reason that 
one person's enemy's enemy is not necessarily the enemy of this 
person. 

However, we cannot ignore the distrust in format ion since as 
reported in [42], experience w i t h real-world implemented trust 
systems such as Epinions and eBay suggests tha t distrust is at 
least as impor tan t as t rust . 

I n this chapter, we employ a simple in tu i t ion to make positive 
influence using distrust informat ion. I f a user Ud is in the distrust 
l ist of a user Ui, most probably, i t is because the user Ui th inks 
the user u / s taste is to ta l ly different f rom h im/her . Actual ly , 
this in format ion is very useful on the recommender systems. We 
could interpret th is problem using the fol lowing in tu i t ion : i f user 
Ui distrusts user Ud、then we could assume tha t the features Ui 
and Ud w i l l have a large distance in the feature space. Based on 
this assumption, for al l the users in the user space, we summarize 
the fol lowing opt imizat ion function: 

1 
m a x - X ^ ^ S f A U i - U . W l ^ (7.2) 

i=l d€P+(t) 
where T>'^{i) is the set of users that user Ui distrusts, and Sĵ  E 
(0,1] is the weight of distrust score tha t user Ui gives to user Ud. 
The larger the value of Sj^ is, the more the user Ui distrusts the 
user Ud. 

Based on Eq. (7.1) and Eq. (7.2), we define the recommenda-
t ion w i t h distrust relations as the fol lowing opt imizat ion prob-
lem: 



In the online opinion sharing or recommender systems, the 
distrust value Sj^ is typical ly issued by user Ui expl ic i t ly w i t h 
respect to user Ud, and i t cannot accurately describe the relations 
between users since i t contains noises and ignores the graph 
structure in format ion of distrust network. For instance, similar 
to the Web l ink adjacency graph in [130], in a distrust graph, 
the confidence of distrust value Sj^ should be decreased if user Ui 
distrusts lots of users; however, the confidence of distrust value 
Sj^ should be increased i f user Ud is t rusted by lots of users. 
Hence, we propose to smooth the te rm Sf^ by incorporat ing 
local author i ty and local hub values in Eq. (7.3), 

野d = v ^ z ^ l v ^ u , ) X 忍 （7.4) 

where represents the outdegree of user Ui in the distrust 
graph, whi le •一 (Wd) indicates the indegree of user Ud in the 
distrust graph. 

A local m in imum of the objective funct ion given by Eq. (7.3) 
can be found by performing gradient descent in Ui, Vj , 
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where is the set of users that user Ui trusts, and E 
is the degree indicates how much user Ui t rusts user Ut. 
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dCy 

dCv 

3=1 

+ E + p 队-Ui) 
dev+{i) pGP-(i) 

+ XuUi� 
m 

= ^ ! j 9 \ U l V j ) { g { U ^ V j ) - R i j W i + XyVj , (7.5) dVj — 

where T>~{i) is the set of users that distrust user Ui. 

7.1.4 Recommendation with Trust Relations 

In this section, we discuss how to incorporate the t rust relation-
ships into recommender systems. I n order to model the t rust 
relationships between, users realistically, we first need to under-
stand where the " t rus t " comes from. Actual ly , on the Web, i t 
is not di f f icul t to interpret the generation of t rust relations. For 
example, in an opinion sharing Web site, i f a user ut is in the 
trust l ist of a user Ui, most probably, the under ly ing cause is 
that user Ui agrees w i t h most of user ut's opinions. Moreover, 
how much user Ui t rusts user Ut depends on how much user Ui 
agrees w i t h user Ut. 

Based on the above interpretat ion, i f user Ui t rusts user ut, we 
can assume tha t the feature representations Ui and Ud of these 
two users are close in the feature space. Fol lowing this in tu i t ion, 
we minimize the objective funct ion 
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larger the value of 5 j is, the more the user Ui t rusts the user Ut. 
By employing Eq. (7.1) and Eq. (7.6), we define the recom-

mendat ion problem w i t h t rust relations as the fol lowing opti-
mizat ion problems: 

min Cr(R, S^ V) uy V ， ， ， / 

+ 

+ 

2
 1
 

n
v
 

1
1
2
 

a
 
1
2
 

A
 

m 

m 

j = i 

E (结丨州 I S ) 
<Gr+(t) 

2 
U 1 + Xv 

2 
V (7.7) 

Similar to Eq. (7.4), we also smooth the t rust value Sj^ in 
Eq. (7.7) based on the fol lowing equation: 

sit ~ 

A - ⑷ 
X s T t , (7.8) 

where represents the outdegree of user Ui in the trust 
graph, whi le indicates the indegree of user Ut in the trust 
graph. 一 

In Eq. (7.7), by performing gradient descent in [ / “ Vj , we 
have 

dCr 
'Wi 

dCr 

+ 

+ 

^ E SUUi-Ut) + a SliUi - U,) 
ter^ii) QeT-{i) 

XuUi� ‘ 
m 

E ^ ! j 9 \ U l V j ) { g { U r V j ) - R i j W i + (7.9) 

where T~{i) is the set of users that t rust user u, 
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7.1.5 Prediction 

After the low-dimensional latent feature spaces U and V are 
learned, the next step is to predict the ratings for the active 
users. For the given missing data R i j , the value predicted by 
our method is defined as 

R i j = g { U l V j ) . (7.10) 

We wi l l evaluate the predict ion qual i ty in Section 7.2. 

• 7.1.6 Complexity Analysis 

The main computat ion of gradient methods is evaluating the 
object functions C r and their gradients against variables. 

Because of the sparsity of matrices R, S^ and ST�the com-

putat ional complexit ies of evaluating the object ive functions Cv 
are Cr are 0{prI + mfl) and 0{prI + msZ), respectively, where 
PR is the number of nonzero entries in the ma t r i x R, I is the 
dimensions of the user feature, m is the number of users, r is 
the average number of users that a user distrusts, and s is the 
average number of friends that a user trusts. Since almost all of 
the online social network graphs fit the power-law d is t r ibut ion, a 
large long ta i l of users only have few trusted or distrusted users. 
This indicates tha t the values of f and s are relat ively small. 
Generally, mf « pr and ms « pR. 

The computat ional complexities for the gradients ^ ^ and 
^ in Eq. (7.^) are 0 { p r I ^ + m ( f 4 - P ) / ) and 0{prI^), respec-
tively, where r, is the average number of users who distrust a 
user, which is also a small value. Actual ly , in a distrust network 
graph, the value of f is always equal to the value of which is 
0.94 in the dataset we employ in the Section 7.2. 

The computat ional complexities for the gradients 靜 and 
靜 i n Eq. (7.^) are 0{prI'^ + m{s + ？)/) and 0{prI^), respec-
tively, where s, is the average number of friends who t rust a 
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user. I n a t rust network graph, the value of s is also equal to 
the value of s'，which is 5.45 in the dataset we employ in the 
experiments. 

Therefore, the to ta l computat ional complexi ty in one iter-
at ion is 0{prI + PrI^), which indicates tha t theoretical ly, the 
computat ional t ime of our method is linear w i t h respect to the 
number of observations in the user-item mat r i x R. Th is com-
plexi ty analysis shows that our proposed approach is very effi-
cient and can scale to very large datasets. 

7.2 Experimental Analysis 

In th is section, we conduct several experiments to compare the 
recommendation qualit ies of our approaches w i t h other state-of-
the-art col laborative f i l ter ing and trust-aware recommendation 
methods； Our experiments are intended to address the fol lowing 
questions: 

1. How does our approach compare w i t h the published state-
of-the-art col laborative filtering and trust-aware recommen-
dat ion algorithms? 

2. How do the model parameter a and P affect the accuracy 
of prediction? 

7.2.1 Dataset Description 

We choose Epinions as the data source for our experiments on 
t rust and distrust-aware recommendations. Epinions.com is a 
well known knowledge sharing site and review site，which was 

established in 1999. I n order to add reviews, users (contr ibutors) 
need to register for free and begin submi t t ing their own personal 
opinions on topics such as products, companies, movies, or re-
views issued by other users. Users can also assign products or 
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Table 7.1: Statistics of User-Item Rating Matrix of Epinions 

Statistics User Item 

Min. Num. of Ratings 1 1 

Max. Num. of Ratings 162169 1179 

Avg. Num. of Ratings 102.07 17.79 

Table 7.2: Statistics of Trust Network of Epinions 

Statistics Trust per User Be Trusted per User 

Max.. Num. 2070 3338 

Avg. Num. 5.45 5.45 

reviews integer ratings f rom 1 to 5. These rat ings and reviews 
wi l l influence future customers when they are about to decide 
whether a product is wor th buying or a movie is wor th watch-
ing. Every member of Epinions maintains a " t rus t " l ist which 
presents a network of t rust relationships between users, and a 
"block (d is t rust) ” l ist which presents a network of distrust re-
lationships. Th is network is called the “Web of t r us t " , and is 
used by Epinions to re-order the product reviews such that a 
user first sees reviews by users tha t they t rust . Epinions is thus 
an ideal source for experiments on social recommendation. 

The dataset used in our experiments consists of 131,580 users 
who have rated at least one of a to ta l of 755,137 different items. 
The to ta l number of ratings is 13,430,209. The density of the 
user-item ma t r i x is 0.014%. We can observe tha t the user-item 
mat r i x of Epinions is very sparse, since the densities for the two 
most famous col laborat ive f i l ter ing datasets Movielens (6,040 
users, 3,900 movies and 1,000,209 ratings) and Eachmovie (74,424 
users, 1,648 movies and 2,811,983 ratings) are 4.25% and 2.29%, 
respectively. Moreover, an impor tant reason tha t we chobse the 
Epinions dataset Js tha t user t rust and distrust in format ion is 

t  

not included in the Movielens and Eachmovie datasets. The 
statistics of the Epinions user-item ra t ing ma t r i x is summarized 
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Table 7.3: Statistics of Distrust Network of Epinions 

Statistic Distrust per User Be Distrusted per User 

Max. Num. 1562 - 540 

Avg. Num. 0.94 0.94 

in Table 7.1. 
As to the user t rust network, the to ta l number of issued t rust 

statements is 717,129. The statistics of the this data source 
iŝ  summarized in Table 7.2. In the user distrust network, the 
to ta l number of issued distrust statements is 123,670，and the 
statistics of the d is t rus t 'da ta is summarized in Table 7.3. 

We also observe a number of power-law dist r ibut ions in these 
data sources, including items per user, t rust relations per user 
(outdegree in the t rust graph) tod distrust relations per user 
(outdegree in the distrust graph). The dist r ibut ions are shown 
in Fig. 7.2. 

7.2.2 Metrics 

We employ the Root Mean Square Error (RMSE) to measure 
the predict ion qual i ty of our proposed approaches in comparison 

« 

with, other col laborat ive filtering and trust-aware recommenda-
t ion methods. — 

The metrics R M S E is defined as: . 

RMSE = 产 气 -
(n-j - ？i、j)‘‘ 

(7.11) 

where r ‘ , j denotes the rat ing user i gave to i tem j , ？V’）denotes 
the ra t ing user i gave to i tem j as,predicted by a method, and 
N denotes the number of tested ratings. 
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Figure 7.2: Power-Law Distributions of the Epinions Dataset. (a) Items per 
User Distribution, (b) Trust Graph Outdegree Distribution, (c) Distrust 
Graph Outdegree Distribution. 
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1 

7 . 2 . 3 �C o m p a r i s o n 

In this s ^ t i o n , in order to show the effectiveness of our proposed 
recommen^Sctrion approaches, we compare the recommendation 
results of the fol lowing methods: 

1. P M F (Probabi l ist ic Ma t r i x Factorization): this method is 
proposed by Salakhutdinov and M i n h in [99]. I t only uses 
user-item mat r i x for the recommendations. 

2. SoRec (Social Recommendation): this is the method pro-
posed in [74]. I t is a trust-aware recommendation method 
tha t factorizes the user-item rat ing ma t r i x and users' t rust 
network by sharing the same user latent space. 

3. R W D (Recommendation W i t h Distrust) : this is a mat r i x 
factorization-based recommendation method w i t h distrust 
constraints. I t is proposed in Section 7.1.3 in this chapter. 

4. R W T (Recommendation W i t h Trust) : this is a ma t r i x factorization-
based recommendation method w i t h t rust constraints. I t 
is proposed in Section 7.1.4 in this chapter. 

As to the t ra in ing data, we employ three settings: 5%，10% 
and 20% for t ra in ing, where 20% means we randomly select 20% 
ratings as t ra in ing data to predict the remaining 80% ratings. 

I n our R W D and R W T methods, there are to ta l ly four pa-
rameters need to be set, including a , (3�Xy and Xy. W i t h o u t 
loss of generality, in order to reduce the model complexity, we 
set = Ay = 0.001 in all the experiments we conduct in this 
chapter. We w i l l discuss the influence of the parameters a and 
P in the experiments conducted in Section 7.2.4. 

The predict ion accuracies evaluated by R M S E are shown 
in Table 7.4. I n our proposed distrust-aware recommendation 
method RWD, the parameter (3 is set to be 0.00001 whi le in our 
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Table 7.4: RMSE Comparison with other popular algorithms. The reported 
values are the RMSE on the Epinions Dataset achieved from dividing the 
data into 5%, 10%, and 20% for training data, respectively. 

Dataset Trailing Data D imensionality P M F SoRec RWD RWT 

5% 
5D 1.228 1.199 1.186 1.177 

5% 
lOD 1.214 1.198 1.185 1.176 

Epinions 10% 
5D 0.990 0.944 0.932 0.924 

Epinions 10% 
lOD 0.977 0.941 0.931 0.923 

20% 
5D 0.819 0.788 0.723 0.721 

20% 
lOD 0.818 0.787 0.723 0.720 

RWT Performance Increase on RMSE 
(Dimensionality = 5) 

H 5% as Training data • 10% as Training data Li 20% as Training data 

11.97% 

fe^ 8.50% 
6.67% 

PMF SoRec 

0.86% 
0.76% 0.28% 

RWD 

Figure 7.3: RWT Performance Increase (5D) 
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RWT Performance Increase on RMSE 
(Dimensionality = 10) 

H 5% as Training data H 10% as Training data u 20% as Training data 

11.98% 

8.51% 

7 阶 0.97% 0.76% 0.41% 

RWD 

3.13% 

PMF SoRec 

Figure 7.4: RWT Performance Increase (lOD) 

trust-aware recommendation method R W T , the parameter a is 
set to be 0.001. 

From Table 7.4，we can observe tha t our R W D and R W T ap-
proaches constantly performs better than the other methods in 
all the settings. When we use 20% as t ra in ing data, we find that 
our method generates much better performance than P M F and 
SoRec. Th is demonstrates the advantages of t rust and distrust-
aware recommendation algorithms. 

I n Fig. 7.3 and Fig. 7.4, we also plot the percentages of per-
formance increase of our R W T algor i thm against P M F , SoRec 
as well as our R W D algori thms in terms of RMSE. Prom these 
figures, we observe an interesting phenomenon: as the sparsity 
of the data decreases, the percentages of performance increase 
against P M F and SoRec keep increasing. This observation is 
reasonable since in the very spare t ra in ing settings like 5% and 
10%, the user features cannot be accurately learned since the 
t ra in ing sample is very sparse. Hence our opt imizat ion methods 
cannot maximize the influences of the t rust and distrust con-



CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 129 

Dtonensionality • 

0.96 

0.96 

600 
r i rt 
3000 3500 

Figure 7.5: Efficiency Analysis (10% as Training Data), (a) RMSEs of PMF 
and SoRec Change with Iterations, (b) RMSEs of RWD and RWT Change 
with Iterations (a = 0.001’ (5 = 0.00001). 

straints. Bu t as the increase of the t ra in ing data, R W D and 
R W T performs better and better. 

We also observe another phenomenon wor thy of studying. 
We find tha t the distrust-based method R W D performs almost 
as good as the trust-based method R W T (Please notice that in 
Table 7.2 and Table 7.3，in average, every user only has 0.94 
distrusted users whi le has 5.45 trusted users). Th is observation 
proves tha t the distrust in format ion among users is as impor tant 
as the t rust in format ion in the recommender systems. 

In Fig. 7.5, we plot the performance (RMSE) changes w i t h 
the i terations. We observe that in the P M F and SoRec methods, 
at the end of the t ra in ing, the models begin to overfit，as shown 

in Fig. 7.5(a), whi le our R W D and R W T methods do not have 
the overf i t t ing problem, as i l lustrated in Fig. 7.5(b). These ex-
periments clearly demonstrate tha t in this dataset, the employ 
of our t rust and distrust regularization terms not only gener-
ates better performance than other methods, but also avoids 
the overf i t t ing problem. 
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(b) 10% as IVaining Data (c) 20% as Training 

Figure 7.6: Impact of Parameter a 
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7.2.4 Impact of Parameters a and P 

In our method proposed in this chapter, the parameters a and (3 
play very impor tan t roles. They control how much our method 
should use the in format ion of t rusted or distrusted users. In the 
extreme case, i f we use a very small value of a or we only mine 
the user-item rat ing ma t r i x for ma t r i x factor izat ion, and simply 
employ users' own tastes in making recommendations. On the 
other side, i f we employ a very large value of a or 0、the trust 

or distrust in format ion w i l l dominate the learning processes. In 
normal cases, we integrate in format ion f rom the user-item rat-
ing mat r i x and the users' t rust or distrust network for mat r ix 
factor izat ion and, furthermore, to predict rat ings for the users. 

Fig. 7.6 shows the impacts of a on RMSE. We observe that 
the value of a impacts the recommendation results significantly, 
which demonstrates that incorporat ing the t rust in format ion 
greatly improves the recommendation accuracy. No mat ter us-
ing 5% t ra in ing data, 10% t ra in ing data or 20% t ra in ing data, as 
a increases, the R M S E decrease (predict ion accuracy increases) 
at f irst, but when a surpasses a certain threshold like 0.01, the 
RMSE increase (predict ion accuracy decreases) w i t h further in-
crease of the value of a . The existence of the y ie ld ing point con-
firms w i t h the in tu i t ion that purely using the user-item rat ing 
mat r i x or purely using the users' t rust in format ion for recom-
mendations cannot generate better performance than appropri-
ately integrat ing these two sources together. 

The impact of (3 generally shares the same t rend as the impact 
of a . The difference is tha t we should choose a relat ively small 
value of /?, since i f we choose a large value, the opt imizat ion 
problem in Eq. (7.3) w i l l become unbounded, hence we cannot 
find the solutions. 
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7.3 Summary 

In this chapter, we systematically study how to effectively and 
efficiently incorporate the t rust and distrust in format ion into 
the recommender systems. Our proposed framework is based 
on ma t r i x factor izat ion w i t h regularization terms constraining 
the t rust and distrust relations between users. The complex-
i ty of our proposed opt imizat ion framework is linear w i t h the 
observations of the ratings, and the experimental analysis on a 
large Epinions dataset shows that our R W D and R W T meth-
ods outperforms other state-of-the-arts algori thms. Based on 
the experimental analysis, we also draw the conclusion tha t the 
distrust in format ion is at least as impor tan t as the t rust infor-
mat ion. Th is observation brings a major cont r ibut ion to the 
research of t rust and distrust-aware applications since i t proves 
that the distrust in format ion can also be ut i l ized to influence 
online applications in a positive fashion. 

In this chapter, the t rust and distrust constraints are regular-
ized separately. I n order to generate better predict ion quali ty, 
a possible improvement is to fuse these two data sources into 
the same objective funct ion. The most direct method is simply 
at taching the constraints in Eq. (7.2) and Eq. (7.6) to the objec-
t ive funct ion in Eq. (7.1). However, this w i l l increase the model 
complexity, hence a more flexible and efficient method needs to 
be designed in the future. 

• End of chapter, 



Chapter 8 

Conclusion and Future Work 

8.1 Conclusion 

In this chapter, we provide a summary of the thesis. The thesis 
consists of two parts: the first part deals w i t h t radi t ional rec-
ommender systems while the second part focuses on social-based 
recommender systems. A l l of the approaches proposed in this 
thesis are aiming at al leviating the data sparsity problems in 
recommender systems. 

In the first part , we first present an effective missing data pre-
dict ion method for collaborative filtering, which is a memory-
based method. In order to improve the recommendation per-
formance, we predict some of the missing data, and uti l ize the 
enriched data for further prediction. The second method in this 
part is a model-based method which utilizes mat r i x factoriza-
t ion technique to constrain the mean of the testing data w i th 
the mean of the t ra in ing data. The experimental results show 
that this method can generate better results. 

In the second part of this thesis, thanks to the many Web 
2.0 Web sites, we propose three methods to incorporate social 
contextual informat ion into t radi t ional recommender systems. 
For t rust relations, the underlying assumption we make is that 
online users can be very easily influenced by the friends they 
trust, and prefer their friends，recommendations. For distrust 

133 
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relations, we model them as "dissimilar" relations since user Ui 
distrusts user uj, indicates that user Ui disagrees w i t h most of 
the opinions issued by user Ud. 

In general, the goal of our work is to model the real world 
recommendation as realistic as possible. Our proposed social 
recommendation framework opens a new direct ion for other re-
searchers. 

8.2 Future Work 

There has several research directions we can follow in bo th tra-
d i t ional and social-based recommender systems in the future. 

For t rad i t iona l methods, we plan to conduct more research 
on the relationship between user in format ion and i tem informa-
t ion since our simulations show the a lgor i thm combining these 
two kinds of in format ion generates better performance. Another 
direct ion wor th of investigation is how design a method to take 
advantages of bo th memory-based and model-based methods. 

For the social based methods, currently, we only use social 
t rust and distrust in format ion to improve recommendations. 
However these two types of relations are st i l l different w i t h the 
"Friend" relat ion, such as fr iend relations in F a c e b o o k 、 T o 

achieve the final goal of social recommendation, we need to ut i -
lize social f r iend data instead of social t rust data for recommen-
dation. 

As the exponential g rowth of online social network sites con-
tinues, the research of social search is becoming more and more 
impor tant . We also p lan to develop similar techniques to allow 
users' t rusted friends to influence the users' search results or 
query suggestions. The in tu i t ion behind this is tha t i f a large 
number of our friends are searching for something, i t 's l ikely 

1 http://www.facebook.com 

http://www.facebook.com
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that we may be interested in that topic too. Th is would be an 
interesting search phenomenon to explore in social networks. 

The Web is now leaving the era of search and entering one 
of discovery. Search is what you do when you are looking for 
something. Discovery is when something wonderful tha t you do 
not know existed, or do not know how to ask for, finds you. 
Hence, in the future, another promising research topic would be 
how to actual ly extend recommendations techniques to search 
problems. I f we can accurately model users' search behaviors, 
we believe we can also design accurate personalized results for 
all the online users. 

• End of chapter. 
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