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ABSTRACT
of thesis entitled:

Multi-objective Route Planning for the Transportation of

Dangerous Goods: Hong Kong as a Case Study

Submitted by Li, Rongrong
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong
in September 2010

The transportation of dangerous goods (DGs) can significantly affect human fife and
the environment if accidents occur during the transportation process. Such accidents
can result in traffic disruption, fatalities, property and cnvironmental damages.
‘Therefore, sate DG transportation is of paramount importance, especially in high-
density-living environments where population and socioeconomic activitics are

densely distributed over the transportation network.

Effective and rational routing of DGs is one of the powerful means to mitigate the
DG transportation risk. DG transportation imnvolves multiple stakeholders playing
different roles and having different objectives that are generally conflicting. The
solution of such problem is to search for one or a set of “compromise” solutions
rendering the best possible trade-offs for conflict resolution among different
objectives. Given the multi-objective nature of the DG routing problem, multi-
objective optimization (MOP) becomes a sound framework for analysis and

decision-making.

This research establishes a general framework for optimal route planning for DG
transportation in a high-density-living environment. Within the framework, multi-
criteria risk assessment and multi-objective route planning can be efficiently solved
by novel compromise programming models and high performance algorithms. Non-
linearity and non-convexity often exist in the optimal DG routing problem which
cannot be solved appropriately by conventional models such as the weighed sum
approach. This research has proposed three novel methods to facilitate the generation

of a set of optimal solutions on the Pareto front representing various trade-offs



among the conflicting objectives. The proposed mcthodologies give full
consideration to dccision-makers’ inclination and capability in determining the
weights for different criteria. The compromise programming procedure allows
decision-makers to exercise their preference structures in pursuing desired solutions
rendering good compromises among different objectives. The adaptive weighting
method approximates the Pareto front with a few suitable solutions to help decision-
makers select the most satisfactory route without generating all of them. The genetic-
algorithm-based approach uses a set of specifically designed genetic operators to
efficiently capture a wide range of Parcto-optimal and near-optimal solutions, from
which a decision-maker can choose the most preferred or best compromise one to
implement. The diversity of methodologies provides decision-makers with more

flexibility in choosing appropriate MOP methods to route DG shipments.

A real-life application in optimal route planning for the transportation of liguefied
petroleum gas (LPG) ih Hong Kong was performed to implement the proposed
framework. A set of criteria fitting the context of Hong Kong were defined, and
various optimal routing solutions with diverse compromise in different objectives
were generated. The implementation of the proposed methodologies enables the
avoidance of the pitfalls of preference-based techniques and the burden of generating
a complete set of possible solutions, and provides decision-makers with an overview
of the solution space and the possible trade-offs among the conflicting objectives.
The application study demonstrated the effectiveness of the proposed methodologies.
In light of the study results and limitations, some recommendations are provided for

future research.
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CHAPTER 1: INTRODUCTION

1.1 Background of the study

1.1.1 Dangerous goods transportation

Dangerous goods (DGs, also referred to as hazardous materials, HAZMATS) are
substances, which by virtue of their chemical, physical or toxicological properties,
could pose a catastrophic risk to health, safety, property and the environment if
relcased or disposed improperly (Lepofsky er al. 1993). However, dependence on
DGs is a fact of life in industrialized societies and there are thousands of different
dangerous goods in use today (US DOT 2004). The United Nations sorts dangerous
goods into nine classes according to their physical, chemical, and nuclear properties
(UN 2001). In almost all instances, DGs originate at a location other than their
destination. For example, oil is extracted from oil fields and shipped to a refinery
(typically via a pipeline); oil products such as gasoline and liquefied petroleum gas
are refined at the refinery and then shipped to storage tanks at different locations.

Hence, transportation plays a significant role for DGs.

The Office of Hazardous Materials Safety (OHMS) of the US DOT estimated that
there were 800,000 domestic shipments of HAZMATS, totaling approximately 9
million tons, in the USA each day in 1998 (US DOT 2000}. Transport Canada
estimated that nearly 30 million shipments of dangerous goods were moved by road,
rail, water, and air in Canada every year (Transport Canada 2004). The Italian
National Statistic Institute (ISTAT) reported that in year 2003, the total amount of
gt;ods transported by road in Italy was about 1.2 billion tons, among which 84.96
million tons (accounting for 6.8% of the total amount) were dangerous goods. In
other European countries, such as Germany, France, and United Kingdom, the
quantities of DG shipments were also over 80 million tons per year (Rindone and
Ianno 2005).:In China, according to incomplete figures, by the end of year 2008, the
total amount of DGs transported by road has been over 400 miliion tons /year (Wang
2009).



The vast majority of shipments of DGs reach their destinations safely. Given the
large number of DG shipments, however, there remains the potential for catastrophic
incidents with multiple fatalities, injuries, large-scale evacuations, and severe
environmental damage. DG accidents are perceived as low-probability-high-
consequence (LPHC) events (Sherali ef al. 1997). Most transportation accidents that
impact a large number of people and result in significant economic loss invelve a DG
cargo. Therefore, safe DG transportation is of paramount importance, especially in a
high-density-living environment where population and socioeconomic activities are
densely distributed over the transportation network. DG transportation has become a
strategic problem faced by various government departments, DG carrters, and the

public in recent years (Erkut es al. 2007).

1.1.2 The risk of transporting dangerous goods

The transportation of dangerous goods is generally associated with significant levels
of risk. In the context of DG transportation, risk refers to the likelihood of incurring
the undesirable consequences of a possible accident (Alp 1995). For example, the
release of petrochemical-type of DGs during the transportation process, 1.e., the focus
of this study, can lead to a vanety of serious incidents such as a spill, fire or
explosion in the case of flammable liquids or pressure-liquefied gasses. The
undesirable consequences of these incidents include traffic disruption, fatalities,
injuries, emergency evacuation, property damage, environmental damage, elc.
Making decisions on the transportation of DG are difficult, not only because of the
plausible catastrophic accidents, but also the intense public concern over this issue. It

is thus important to carefully study such risks for strategic decision-making.

Quantitative risk assessment (QRA) methods are commonly used to assess the risk of
DG transportation. The risk is generally defined as a function of DG release
frequencies and the consequent damages resulting from such releases (Erkut and
Verter 1998). The frequencies of DG releases depend on many factors such as the
probability of a traffic accident, the conditional probability of release given the
traffic accident, the probability of a certain release size taking place, and the volume

of DG movements (Rhyne 1994). The consequences of a DG release are associated
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with the type of transported DG, the amount released, meteorological conditions, and
potentially expoéed population (List et al.. 1991; Zhang er al. 2000). Accidents
involving DG transportation near densely populated areas pose the lzirgest risks due
to the considerable number of potentially affected people. Also, areas prone to high

frequencies of traffic accidents give rise to higher risk levels.

Numerous models have been proposed to measure the risk of DG transportation over
the years (Erkut et al. 2007). The common feature of all approaches is that a risk
indicator is composed of the probabilities of occurrence of some undesirable events
and their possible adverse consequences. Although there is a wealth of risk models,
few of them are specifically designed for high-density living with respect to various
risks. In most of these models, the undesirable consequences of an accident related to
DG are mainly expressed in terms of potential injuries and fatalities (Erkut and
Verter 1995; Verter and Kara 2001; Kara et a/. 2003). These constitute the main part
of impact costs and most decision-makers would prefer to minimize population
exposure at the expense of financial profits (Kalelkar and Brooks 1978). In principle,
the evaluation of DG transportation risk should consider not only the direct damages
to individuals and vehicles travelling along the route where the incident occurs but
also the indirect damages to population, properties, and environment near the
incident location. However, most of the prevailing literature focuses only on the
indirect damages; few of them take into account the direct damage simultaneously.
Moreover, the capability of emergency response is rarely considered when assessing
the risk of DG transportation. Clearly, prompt and efficient response is critical to the
minimization of possible <¢atastrophic consequences on human life and the
environment in the event of a DG accident, especially in a high-density environment.
In order to make an effective risk assessment for DG transportation in high-density
living environments, it is necessary to take into account all of these factors and

model the associated risks appropriately.
1.1.3 Route planning for dangerous goods transportation

The transportation of dangerous goods has a good safety record; however,
accidents do take place, and the consequences can be significant due to the

nature of the cargo. Reduction of the risk of DG transportation can be achieved
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in many different ways. Routing DG shipments reasonably and effectively is one of

the powertul means to mitigate the DG transportation risk { Erkut es al. 2007).

DG transportation involves multiple stakeholders such as shippers, carriers,
consignees, and governments; each playing a different role in safely moving DG
from the origins to the destinations over a transportation network (Kara and Verter
2004). Moreover, different stakeholders usually have different priorities and
perspectives on DG transportation (Erkut and Gzara 2008; Verter and Kara 2008).
Thus, DG transportation is a typical muiti-stakeholder and multi-gbjective problem
which is generally complicated to solve. These objectives are usually competing or
conflicting with each other so that a single “best” solution that can optimize every
single objective is impossible. The solution of such problem is to search for one or a’
set of “compromise” solutions rendering the best possible trade-offs for conflict
resolution among different objectives. Given the multi-objective nature of the DG
routing problem, multi-objective optimization (MOP) thus becomes a sound

framework for andlysis and decision-making.

Despite the extensive research that has been done on route planning for DG
transportation, only a few have addressed the multi-objective nature of the DG
routing problem using an appropnate multi-objective optimization method. Vigorous
multi-objective optimization methods are seldom employed to seek optimal routes
for DG transportation based on the results of risk assessment. The weighted sum
(WS) approach is most commonly used in DG route planning (Chin and Cheung
1989; ReVelle er al. 1991). Although it is the simplest and most straightforward
multi—objecti\.ze optimization technique, there are problems in using this method
when objectives are nonlinear or the set of feasible solutions is not convex. Even for
convex multi-objective problems, a uniform variation of the weights can hardly
produce an even distribution of points in the efficient set (Das and Dennis 1997). To
solve these problems, high performance MOP methods need to be developed to
optimize the routes for DG transportation. It is instrumental to generate a set of
efficient routes representing the inherent trade-offs among different objectives for
decision-makers to choose the one that gives the best compromise among the

conflicting objectives.



Compromise programming (CP) and genetic algorithms (GAs) provide promising
solutions to such optimization problems. CP depends on a weighting mechanism to
collapse multiple objectives into a single objective function and searches for the
desired solution that is closest to the ideal solution in which each objective achieves
its optimum value simultaneously (Zeleny 1982; Zhang 2003). As a highly efficient
search strategy for global optimization, GAs demonstrate superior performance on
solving multi-objective optimization problems that have a large and complex
solution space. Moreover, being a population-based approach, a GA is able to find
multiple feasible solutions in a single run (Goldberg 1989; Gen and Cheng 2000).
Non-linearity and non-convexity often exist in multi-objective route optimization
problem which cannot be appropriately solved by conventional models such as the
weighed sum approach. CP and GAs, however, can handle these problems

effectively.

The Dijkstra’s algorithm (Dijkstra 1959) is most commonly used to search for the
shortest path from the source node to one additional node within a network. DG
route planning involves multiple objectives and thus multi-objective shortest paths
should be derived. In this connection, the conventional Dijkstra’s algorithm needs to
be appropriately modified to effectively address the multiple components of link

impedance, and to efficiently search for the optimal path.
1.1.4 Routing of dangerous goods in Hong Kong

Hong Kong is a large city with high population density and narrow streets. Due to
the land constraints, vehicles carrying DGs inevitably have to pass thrdug_h densely
populated areas or their vicinities. Therefore safe DG transportation is of paramount
importance. In an attempt to ensure public and environmental safety, the Government
has issued rules and regulations for dangerous goods transportation. Each DG
transport company is required to advise their drivers to follow major routes and to
avoid heavy traffic and densely populated areas as much as possible. Currently, there
are no designated routes for vehicles carrying DGs in Hong Kong. However, vehicles
carrying dangerous goods such as explosives, flammable liquids, or pressure-
liquefied gasses are forbidden to pass through any tunnels in Hong Kong. The

existing regulations specify the forbidden spots or road sections rather than the
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approved routes. Given an origin and a destination, it is essential to find a number of
possible routes from which the route(s) that gives a preferable compromise between

cost and risk might be selected.

W

1.2 Objectives of the study

This study aims to contribute to the literature of dangerous goods transportation by
constructing a general framework applicable to multi-objective route planning for the
conveyance of DGs in high-density living environment. Within the framework,
multi-criteria risk assessment and multi-objective route planning can be efficiently

solved by novel compromise programming models and high performance algoriihms-
. The study focuses on the development of vigorous multi-objective optimization
methods to search for optimal routes for DG transportation based on the multi-
criteria risk assessment. As a basis, a set of criteria fitting the context of high-
density living will be identified and a risk model with respect to various risks will
be designed to assess the risk associated with DG transportation. A real-life
application in optimal route planning for the transportation of liquefied petroleum
gas (LPG) in Hong Kong will be carried out to implement the framework and to

evaluate the proposed methodologies. The objectives of this study are:

1. To construct a general multi-objective optimization framework for DG route
planning for high-density living.

2. To identify a set of criteria fitting the context of high-density living environment
for risk estimation.

3. To develop appropriate methods of risk assessment for the transportation of
petrochemical-type of DGs suitable for high-density Living.

4. To develop novel methods for the routing analysis of DG transportation under
‘conflicting objectives.

5. To devise high performance algorithms for the implementation of the
corresponding multi-objective optimization methods for the routing of DG

transportation.



6. To make a real-life application in optimal route planning for the transportation of
liquefied petroleum gas (LPG) in Hong Kong, a high-density city, to implement

the framework and to evaluate and improve the proposed methodologies.

1.3 Significance of the study

The transportation of dangerous goods can significantly affect human life and the
environment if accidents occur during the transportation process. Therefore, safe DG
transportation is of paramount importance, especially in high-density-living
environments. Risk assessment and route planning play a crucial role in the
prevention or minimization of possible catastrophic consequences on human life and
the environment. However, effort has seldom been made to analyze such problems in
the literature. Hence there is an urgent need to carry out risk assessment and optimal
route planning for DG transportation in a high-density environment. This study aims
to establish a general framework for optimal DG routing in such an environment,
within which non-convexity and non-linearity can be handled, risk assessment
applicable to high-density living can be made, and the best compromise solution can
be obtained along the Pareto front stipulating various trade-offs among the
conflicting objectives. The results obtained from this research will benefit the

research and applications in the field of DG transportation.

DG transportation remains a great public concern due to its potentially catastrophic
consequence. It is thus important to carefully assess the associated risks for strategic
decision-making. In this study, risk is measured by means of accident probability,
different exposure risks, and emergency response capabilities. A model with
emphasis on high-density living is developed to evaluate the risk of transporting DG
in the road network. On the basis of risk assessment, route planning can then be

conducted using MOP methods with efficient solution algorithms.

DG transportation is a multi-objective problem with multiple stakeholders playing
different roles and having different objectives. Although there is a weaith of

literature on the DG transportation problem, most of it focuses on risk assessment by



various risk models. Lesser effort has been made on route planning for DG
transportation under conflicting objectives, particularly in high-density environment.
This study proposes novel multi-objective optimization methods for DG routing
analysis. High performance algorithms guarantee speedy convergence via efficient
searches. The methodologies developed in this study gives full consideration to
decision-makers’ inclination and capability in determining the weights for different
routing criteria. The diversity in methodologies provides decision-makers more

flexibility in choosing applicable MOP methods for effective DG route planning.

Different types of DGs possess different characteristics whose risk assessments and
routings call for a wide spectrum of technical knowledge and practical considerations.
This study concentrates mainly on the transportation of petrochemical-type of DG.
The framework can, however, be extended to solve more complicated problems
involving the transportation of a large variety of DGs in a high-density environment.
The study will advance the research and applications of optimal route planning for

DG transportation for high-density living.

1.4 Organization of the thesis

This thesis consists of six chapters. Following this introductory chapter, Chapter 2
introduces the definition and classification of dangerous goods, as well as the
concept of risk in the transportation of DGs. Current practices of DG transportation
in Hong Kong are reviewed. The methodologies commonly used in the risk
assessment for DG transportation are examined. The multi-objective optimization
techniques and their applications to the vehicle routing problem, in particular, multi-

objective route planning for DG transportation are discussed in detail.

Chapter 3 and Chapter 4 focus on the methodological framework, where three
distinct multi-objective optimization methodologies proposed in the study are
presented. Chapter 3 concentrates on the deterministic multi-objective path
optimization methods. It begins with an introduction of the multi-objective shortest

path problem that underlies the optimal route planning for DG transportation. It then



introduces the concept of Pareto optimality, an important notion in the multi-
objective problems. Subsequently, the simplest and most straightforward multi-
objective optimization method, weighted sum of objective functions, is discussed.
Following that is a detailed description of compromising programming (CP), a
mathematical programming technique for finding a compromise solution amongst a
set of conflicting objectives. Specifically, the utility functions commonly employed
in CP are introduced. The construction of criteria weights is then described. In
particular, the analytical hierarchy process {(AHP) is specified and the procedure of
multi-objective DG route planning based on compromise programming is detailed
accordingly. In addition to the CP approach, an adaptive weighting method for muiti-
objective route planning is proposed to avoid the pitfalls of preference-based
techniques. The framework of this approach to explore the Pareto front is presented,
followed by the procedure of approximating such a front. The implementation issues

are also specified.

Chapter 4 introduces a heuristic method — the genetic algorithm, for the problem of
optimal route planning. As a powerful and broadly applicable stochastic search and
optimization technique, GAs and their characteristics are briefly introduced at the
beginning. The major components and basic structure of normal GAs are examined,
and the typical parameters in a genetic algorithm are discussed. This is followed by a
detailed introduction of the proposed GA-based heuristic approach to multi-objective
route planning for DG transportation. The genetic representation scheme of candidate
solutions, the initialization of population, and the fitness evaluation are elaborated.
The genetic operators used in the proposed GA are also detailed and the

implementation issues are specified.

Chapter 5 focuses on the case study of routing road tankers conveying liquefied
petroleum gas (LPG) in the road network of Hong Kong. The set of criteria fitting
the context of high-density living, and Hong Kong in particular, is identified, and the
model for evaluating the risks associated with the transportation of LPG is detailed.
This is followed by an elaboration on the implementation of three proposed muiti-
objective optimization methodologies in optimal route planning for transporting LPG
in Hong Kong. The composition of risks in each solution is examined and the actual

trade-offs involved are interpreted. Particular issues with reference to the
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implementation of each method are specified. Chapter 5 concludes with a discussion

of the execution efficiency and application condition of each method.

Chapter 6 concludes the thesis by summarizing the major research contributions. In

light of the study results and limitations, recommendations are provided for future

research.
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CHAPTER 2: LITERATURE REVIEW

This chapter reviews the academic body of literature in areas relevant to dangerous
goods transportation, risk assessment, and muiti-objective optimization techniques.
The definition and classification of dangerous goods are introduced, the feature of
dangerous goods transportation is described, and current practices of DG
transportation in Hong Kong are reviewed. The methodologies commonly used in the
risk assessment for DG transportation are examined. The multi-objective
optimization techniques and their applications to the vehicle routing problem, in

particular, multi-objective route planning for DG transportation are discussed in

detail.

2.1 Definition and classification of dangerous goods
2.1.1 Definition

The European Agreement Concerning the Intemational Carriage of Dangerous
Goods by Road (ADR) proposes the definition of dangerous goods as follows (ADR
2009):
“Dangerous goods mean those substances and articles the carriage by road of
which is prohibited by ADR, or authorized only under the conditions prescribed

therein.”

According to ADR, dangerous reaction means:
(a) Combustion or evolution of considerable heat;
(b) Evolution of flammable, asphyxiant, oxidizing or toxic gases;
(¢) The formation of corrosive substances;
(d) The formation of unstable substances; or

(e) Dangerous rise in pressure (for tanks only).

The US Department of Transportation (US DOT 2004) defines hazardous matenals

or dangerous goods as any substances or materials that may pose an unreasonable

11



risk to health, safety or property. These materials can cause harm to people, the
environment, and property if release or dispose improperly due to their physical,

chemical, and biological propcrties.
2.1.2 Classification

The UN Recommendations on the Transport of Dangerous Goods sorts dangerous
goods into 9 classes according to their physical, chemical, and nuclear properties, in
order to regulate the transportation, packaging, and labeling of dangerous goods with
respect to their hazards (UN 2001). Some of these classes are subdivided into
divisions. Class or division is a number assigned to the article or substance according
to the crniteria of one or more of the nine UN hazard classes. Substances (including
mixtures and solutions) and articles subject to the Regulations are assigned to one of

the nine classes according to the hazard or the most predominant of the hazards they

present.

These classes and divisions include (UN 2001):

Class 1: Explosives
Division 1.1: Substances and articles that have a mass explosion hazard
Division 1.2: Substances and articles that have a projection hazard but not a
mass explosion hazard
Division 1.3: Substances and articles that have a fire hazard and either a
minor blast hazard or a minor projection hazard or both, but
not a mass explosion hazard
Division 1.4: Substances and articles that present no significant hazard
Division 1.5: Very insensitive substances which have a mass explosion
hazard
Division 1.6: Extremely insensitive articles which do not have a mass
explosion hazard
Class 2: Gases
Division 2.1: Flammable gases
Division 2.2: Non-flammable, non-toxic gases

Division 2.3: Toxic gases



Class 3: Flammable liquids
Class 4: Flammable solids; substances liable to spontaneous combustion; substances
which, in contact with water, emit flammable gases
Division 4.1: Flammable solids, self-reactive substances and solhd
desensitized explosives
Division 4.2: Substances liable to spontaneous combustion
Division 4.3: Substances that in contact with water emit flammable gases
Class 5: Oxidizing substances and organic peroxides
Division 5.1: Oxidizing substances
Division 5.2: Organic peroxides
Class 6: Toxic and infectious substances
Division 6.1: Toxic substances
Division 6.2: Infectious substances
Class 7: Radioactive material
Class 8: Corrosive substances

Class 9: Miscellaneous dangerous substances and articles

2.2 The risk of transporting dangerous goods

2.2.1 Dangerous goods transportation — an industry af risk

In almost all instances, dangerous goods originate at a location other than their
destination. For example, oil is extracted from oil fields and shipped to a réf'mery
(typically via a pipeline); oil products such as gasoline and liquefied petroleum gas
are refined at the refinery and then shipped to storage tanks at different locations.
Hence, transportation plays a significant role for DGs. The transportation of DGs
poses special risks to the neighboring population, environment, and property due to
the nature of the cargo. Therefore, DG transportation requires specific safety
measures with respect to packaging of the material, design and operation of vehicles,

training of crew, handling methods, and emergency response procedures.
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Although accidents involving DGs are infrequent, this number is likely to be
proportional to the number of shipments. The statistics for Hong Kong are not
available, but the US Department of Transportation (DOT) maintains a
comprehensive database of historical records that provides good insight into the
practices associated with DG transportation. The Office of Hazardous Materials
Safety (OHMS) of the US DOT estimated that there were 800,000 domestic
_shipments of HAZMATS, totaling approximately 9 million tons, in the USA each day
in 1998 (US DOT 2000). Approximately 94% of total daily HAZMAT shipments
were shipped by trucks (Table 2.1). In Europe and China, the quantities of DG
shipments transported by road are also tremendous. Therefore, ensunng efficient and

safe routing of vehicles carrying DGs is of utmost importance for public safety.

Table 2.1 Average daily hazmat shipments in the United States

Shipment mode Number of shipments % of total shipments
Truck 768,907 93.98%
Air 43,750 535%
Rail 4,315 0.53%
Pipeline 873 0.11%
Water 335 0.04%
Daily total 818,180 100%

Source: US DOT (2000)

The risk of DG transportation differs from the risk of fixed facilities for HAZMAT
storage in that the exposure of population and the environment along the routes to the
DG shipments is dynamic rather than fixed. Certain DGs are transported on the road
network in quantities that would exceed the threshold for safety if stored in a fixed
facility. On the other hand, recent analyses and historical events have shown that
risks arising from DG transportation are almost of the same magnitude as those
resulting from fixed facilities (Fabiano et al. 2002). A survey of the literature from
1926 to 1997 reveals that among 3,222 accidents related to the handling,
transportation, processing, storage of chemicals involving different types of DGs,
54% were related to fixed facilities, 41% were transportation accidents and 5%
miscellaneous accidents (Khan and Abbasi 1999). Gorys (1987) found, from the
1983 Commercial Vehicle Survey, that approximately one third of all DGs release in

Ontario results from transportation related incidents. Given that transportation
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activities take place beyond the control of fixed facilities, there is a justifiable

concern that dangerous goods should be transported in the safest manner possible.

The major concemn in the process of DG transportation is the likelihood of incurring
an undesirable event, as might occur could lead to a release or explosion. Such an
event can cause severe damage to society and can involve multiple fatalities, serious
injuries, large-scale evacuations, and can require significant clean-up effort. For
instance, at 2:45 p.m. January 13, 2004, a fuel tanker traveling south on Maryland’s
I-895 (the Harbor Tunnel Thruway) veered off the overpass and landed on the
northbound lanes of [-95 just south of Baltimore. The explosion involved 8,000
gallons of gasoline. The crash led to I-95 shutdown in both directions for more than

nine hours and took four lives (Buck et al. 2004).

Greenberg (2001) estimated the economic impact of hazardous material accidents in
the United States by averaging the accidents records over the period of 1995-1997.
Table 2.2 contrasts the average costs (per event) of HAZMAT and non-HAZMAT
motor carrier accidents and incidents for one year. Although the cost of an average
HAZMAT incident is not significantly higher than that of a non-HAZMAT incident,
the cost of a HAZMAT incident resulting in fire or explosion is significantly higher.
DG transportation accidents are perceived as low-probability-high-consequence
(LPHC) events. The LPHC feature of DG transportation accidents tends to mislead
public perceptions of the actual danger of transporting DGs, and it poses a challenge

to the scientific community on gquantitative risk assessment for DG transportation.

Table 2.2 Comparative costs of HAZMAT and non-HAZMAT motor carrier

accidents/incidents
Type of accident/incident events Average cost (in USY)
non-HAZMAT events 340,000
all HAZMAT events 414,000
HAZMAT events with spill/release 536,000
HAZMAT events with fire 1,200,000
HAZMAT events with explosion 2,100,000

Source: Greenberg (2001)



DG transportation involves multiple stakeholders such as shippers, carriers,
consignees, and governments; each playing a different role in safely moving DG
from the origins to the destinations over a transportation network (Kara and Verter
2004). Moreover, different stakeholders usually have different priorities and
perspectives on DG transportation (Erkut and Gzara 2008). Given the low accident
probabilities, shippers, carriers, and receivers of DG are primarily interested in
maintaining the throughput of DGs in terms of timely shipment and minimum cost.
Although safety is a reasonable objective, throughput remains their dominant
concern. As a result, government agencies are responstble to administrate regulations
over the safety of DG transportation with thorough consideration on the economic
cost and public risk, and striking a balance between economy and safety (Verter and
Kara 2008).

2.2.2 Current practices in Hong Kong

The transportation of DGs can significantly affect human life and the environment if
accidents occur during the transportation process. Hong Kong is a large city with
high population density and narrow streets. Due to the land con;straims, vehicles
carrying DGs inevitably have to pass through densely populated arcas or their

vicinities. Therefore safe DG transport is of paramount importance.

in Hong Kong, the Dangerous Goods Ordinance (DGO), Cap. 295, Laws of Hong
Kong provides for the control on land and at sea of about 400 types of dangerous
goods under ten broad categories in accordance with their inherent characteristics, i.e.
explosive, flammable, corrosive, toxic, etc. According to the Schedule of Dangerous
Goods (Application and Exemption) Regulation, dangerous goods are classified into
the following categories (FSD 2004):

Category 1.  Explosives and Blasting Agents. (The Authority is the Commisstoner
of Mines.)

Category 2:  Compressed Gases.
Class | - Permanent Gases

Class 2 - Liquefied Gases
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Category 3:

Category 4:

Category 5:

Category 6:
Category 7:
Category 8:
- Category 9:

Category 9A:

Category 10:

Class 3 - Dissolved Gases
Corrosive Substances.

Poisonous Substances.
Class 1 - Substances giving off poisonous gas or vapour

Class 2 - Certain other poisonous substances

Substances giving off inflammabie vapours.

Class 1 - flash point below 23°C

Class 2 - flash point of or exceeding 23'C but not exceeding 66 C

Class 3 - flash point of or exceeding 66 C (applicable to diesel oils,
furnace oils and other fuel oils only)

Division 1 - immiscible with water (applicable to Class 1 & 2 only)

Division 2 - miscible with water (applicable to Class 1 & 2 only)
Substances which become dangerous by interaction with water
Strong supporters of combustion

Readily combustible substances

Substances liable to spontaneous combustion

Combustible goods exempted from Sections 6 to 11 of the

Ordinance.

Other dangerous substances.

In Hong Kong, the DG transportation on land is controlled by relevant authorities.

The conveyance of Cat.l, 2 and 5 DGs on road by vehicles is subject to licensing

control. Pursuant to the Section 6 of the Ordinance, no person shall convey any Cat.

2 or 5 DGs using any vehicle, provided that a license is granted by the Director of the

Fire Services Department (FSD). Cat.1 DG (Explosives) is under the control of the

Mines Division of the Civil Engineering and Development Department. It can only

be manufactured, transported, or stored as required by the Commissioners of Mines.
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Control and licensing aspects of Liquefied Petroleum Gas (LPG) in Cat. 2 are under
the jurisdiction of Electrical and Mechanical Services Department (EMSD). The
radioactive materials and chemical waste are governed by the Department of Health

and the Environmental Protection Department, respectively.

To ensure public and environmental safety, the Government has issued rules and
regulations for DG transportation, involving packaging of the material, design and
operation of vehicles, training of crew, handling methods, etc. The vehicles used for
the conveyance of DGs must comply with the safety standards as required by the
Director of Fire Services. The containers and tankers for bulk chemical
transportation must be designed, manufactured and tested in accordance to the
internationally acceptable standards. A third party inspection body must certify that
they have met the stipulated standards before use on Hong Kong roads. While in
service, all containers, tankers and vehicles must be properly labeled and carry
appropriate hazard warning panels. The carriers are required to put up an adequate
emergency response plan describing specific actions that will be taken by the driver
or the company’s emergency response team in the event of a DG release. All drivers
must undergo specific training course and examination, and observe the safety
instructions and emergency procedures as stipulated in the document provided by the
consignors. DG vehicles must be equipped with adequate stock of emergency
equipment, such as chemical fire extinguisher, neutrz;lising agent, adsorbents,
oversized drums, protective gears, etc. In case of an incident, the carriers are required

to take immediate action and notify the corresponding authorities.

In addition to the these rules and regulations, each DG transport company is also
required to advise their drivers to follow major routes and to avoid heavy traffic and
densely populated areas as much as possible. DG transportation can only take place
between 9:00 am and 5:00 pm from Monday to Saturday, excluding Sundays and
public holidays. This is to ensure that there is ample daylight when responding to any
incident and that emergency response teams will be readily available. Currently,
there are no designated routes for vehicles carrying DGs in Hong Kong. However,
under the Road Tunnels (Government) Regulations, vehicles carrying Cat.1, 2 and 5
dangerous goods are forbidden to pass through any tunnels in Hong Kong. Tung

Chung Road and South Lantau Road are closed roads. Any vehicle that has to access
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to these two roads are required to apply for special permits and have to observe
special conditions attached to the access permits. In terms of the terrain conditions,
roads of steep gradients must be avoided unless in absolutely necessary

circumstances.

2.2.3 Quantitative risk assessment

Risk is the primary ingredient that separates DG transportation problems from other
transportation problems. The transportation of DGs is generally associated with
significant levels of risk. In the context of DG transportation, risk refers to the
likelithood of incurring the undesirable consequences of a possible accident (Alp
1995). For example, the release of petrochemical-type of DGs during the
transportation process can lead to a vanety of serious incidents such as a spill, fire or
explosion in the case of flammable liquids or pressure-liquefied gasses. The
undesirable consequences of these incidents can be a health effect (death, injury, or
long-term effects due to exposure), property ioss, an environmental effect (such as
soil contamination or health impacts on flora and fauna), an evacuation of nearby
population in anticipation of imminent danger, or stoppage of traffic along the

impacted route.

Quantitative Risk Assessment (QRA) methods are commonly used to assess the risk
of DG transportation. In general, a QRA involves hazard identification, frequency
estimation, consequence analysis, and risk calculation. Ang and Briscoe (1989)
suggested the following three-stage framework for risk analysis in transportation:
1) Determining the probability of an undesirable event (e.g. an accident
involving the release of a dangerous good);
2) Determining the level of potential population and property exposure, given
the nature of the event;
3) Estimating the magnitude of consequences (e.g. fatalities, injuries and

property damage) given the level of exposure.

Each stage of the process produces one or more probability distributions; two of
them (2 and 3) produce conditional distributions, for which statistical records are

seldom available. In practice, the above process is seldom carried all the way through
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(List er al. 1991). Most researchers simplify the analysis by only using the product of
the probability of a release accident and the extreme consequence of the accident to
estimate the risk, i.e., Risk = Probability x Consequences. The extreme consequence

is often represented by the potentially impacted population.

The probability estimates are usually based on accident rates with respect to DG
trucks, and the frequency of release sizes given the type of accident. When historical
data are unavailable or ircomplete, techniques such as fault tree analysis or event
tree analysis (Alp 1995) are sometimes used by researchers to derive relevant
parameters (Abkowitz et al. 1984; Harwood et al. 1993; Nicolet-Monnier and
Gheorghe 1996). Occasionally, general truck accident rates are simply used to serve
as a substitute of such probability. In practice, accident probability of DG
transportation is associated with road design characteristics, traffic condition, and
random influences of weather condition. Saccomanno and Chan (1985) demonstrated
that changes in probability due to the variation in environmental conditions could

result in no route being absolutely safe under any circumstances.

For transportation QRA, the common practice is to estimate, a priori, the impact area
of a potential accident along each link and to use the number of people living within
this area as the consequence measure. The shape and size of an impact area depends
not only on the substance being transported but also on other factors such as
topography, weather, and wind speed and direction. Different geometric shapes have
been used to model the impact area, e.g., a band of fixed width around each route
segment (Batta and Chiu 1988; ReVelle er al. 1991); a circle with a substance-
dependent radius centered at the incident location (Erkut and Verter 1998; Kara et al.
2003), and rectangie around the route segment (ALK Associates 1994). The radius of
the circle approximation or the bandwidth of the rectangle approximation and the
fixed-bandwidth approximation is substance-dependent. But the radius or the
bandwidth is assumed to be constant for a given shipment, which means that the
approximation does not consider the distance effect on the level of impact. In an
airborne dangerous good (e.g., chlorine, propane, and ammonia) accident, however,
the concentration of the airborne contaminant varies with distance from the source of
accident. It will be lower as the gas disperses with distance and wind. In this case,

researchers resort to the Gaussian plume model (Patel and Horowitz 1994;
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Chakraborty and Armstrong 1995; Zhang et al. 2000) to approximate the impact area
with an ellipse shape. The central assumption in all aforementioned models is that
each individual within the danger zone will be impacted equally and no one outside

of this area will be impacted.

Unlike fixed DG facilities in which DG types, sources, and accident location
conditions are all known, nisk assessment for DG transportation is carried out on a
road network and has the property of uncertainty with reference to the expected
location and condition of the accident site. A common approach to transportation risk
analysis is to divide a DG route into segments (links) where a parameter can be
assumed homogeneous. The total nsk along the DG route is then estimated as the

sum of the risks of all its constituent segments.

Although numerous models have been proposed to measure the risk of DG
transportation along a route (Table 2.3), few of them are specificatly designed for
high-density living with respect to various risks. In most models, the undesirable
consequences of an accident related to DG are mainly expressed in terms of potential
injuries and fatalities. In practice, the evaluation of the risk of DG transportation
should consider not only the direct damage to individuals and vehicles travelling
‘along the route where the incident occurs, but also the indirect damage to population,
properties and environment near the incident location. While most of the prevailing
literature focuses on the indirect damage, few of them take into account the direct
damage simultaneously. Moreover, the capability of the emergency response has
rarely been considered when assessing the risk of DG transportation. Apparently,
prompt and efficient response is critical to the minimization of possible catastrophic
consequences on human life and the environment in the event of a DG accident,
especially in a high-density environment. In order to make a comprehensive risk
assessment for DG transportation in high-density living environments, it is

imperative to take into account all of these factors and model the associated risks

properly.
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Table 2.3 Summary of the risk models suggested in the literature for DG
transportation risk (adapted from Erkut et al. 2007)

Approach Model Sample References
nr) Alp 1995
Traditiona! risk Z p.C Jin and Batta 1997
1=t US DOT 1994
nir) -1
Expected damage Z p,H (1-p)C, Erkut and Vener 1998
=1 j:l
nir .
Population exposure C Batta and Chiu 1988
P P l ! ReVelle ef al. 1991
=
alr) Saccomanno and Chan 1985
Incident probability > b Abkowitz et al. 1992
peel Jin and Bata 1997
(S Helander and
. oy clandacr an
Incident probability -~ 1 In{l-p,) Melachrinoudis 1997
1=
nir}
Perceived risk p,C’,a>0 Abkowitz et al. 1992
r=1
n(ry
Mean-variance Z p, (Cr + kal k>0 Erkut and Ingolfsson 2000
i=1
ngr)
Expected disutility Z p,(exp(kC, )- 1), k>0 Erkut and Ingolfsson 2000
=l
Maxm“.lm max (Ca ) Erkut and Ingolfsson 2000
population exposure 1818n(r)
alr) () Sivakumar ef al. 1995
Conditional risk Z r.C Z P, Jin and Batta 1997
: =1 el Sherali et al. 1997
ary =l a(r)
Demand satisfaction p,H 1-p)C H (1-p) Erkut and Ingolfsson 2005
=1 4=l =1

Note:
pi is the incident probability along the ith link of the path comprising »n(r) links,
and C; is the population affected by an incident on the ith link.

2.3 Multi-objective route planning for dangerous goods

transportation

2.3.1 Multi-objective optimization techniques

DG transportation is a multi-objective problem with stakeholders playing different

roles and having different objectives. These objectives are generally conflicting so
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that a single “best” solution that can optimize every single objective is tmpossible
(Zitzler et al. 2003). The solution of such problem is to search for one or a set of
“compromise” solutions rendering the best possible tradeoffs for conflict resolution
among different objectives. Given the multi-objective nature of the DG routing
problem, multi-objective optimization (MOP) thus becomes a sound framework for

analysis and decision-making.

In mathematical terms, the multi-objective optimization problem can be generally

expressed as follows:

min £(x) = (/,(x), /(0. £, (X))
s xe X (2.1)

where fi(x), i = I, 2, ..., m are objective functions, x is vector of the decision
variables in the solution space X within which all of the points are the feasible

solutions for the above MOP, and T is the transpose of the objective function vector.

Relative to single objective optimization problems, MOP solutions are optimal in the
sense that the optimal achievement of one objective 1s often made at the expenses of
the others. This kind of optimality is normally termed Pareto optimality in MOP.
Non-dominated solutions, also referred to as Pareto optimal solutions, are the optimal
solutions for MOP. The set of all non-dominated solutions is usually referred to as
the Pareto optimal set. For a given Pareto optimal set, the corresponding objective

function values in the objective space are called the Pareto front. N

A wide variety of MOP solution methods have been reported in literature. Generally
speaking, these methods can be categorized into the preference-based and the
generating techniques. The preference-based approaches have been developed to
allow decision makers to state their preferences a priori for all the objectives, such as
the weighted sum approach (Steuer and Choo 1983), or interactively during the

search procedure, e.g. the STEM methods (Benayoun et al. 1971) and through |
achievement functions (Wierzbicki 1980). Usually, the optimization is done by
combining multipie objectives into a single overarching objective function. Each
objective is assigned a scalar weight accounting for its relative importance to other

objectives. By solving the combined single-objective problem, the optimal solution
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of the original MOP is obtained. Moreover, different solutions can be yielded by
varying the weights.

The commonly used preference-based MOP methods include weighted sum approach,
goal programming, compromise programming, £ -constraint method, etc. They are

summarized as follows:

o Weighted sum approach

In this method (Steuer and Choo 1983), each objective is assigned a scalar weight
that signifies its relative importance to other objectives. The onginal multi-objective
optimization problem is then tumed into optimizing a positively weighted sum of
different objective functions, that is,

miniw,f,(x), (2.2)

1=l

where w;s are the weighting coefficients satisfying the conditions, 0 <w, <1 and

iw{=l.

Weighted sum approach is the simplest and most straightforward MOP technique.
However, there are problems using this method when objectives are nonlinear or the
set of feasible solutions is not convex. Even for convex muiti-objective problems, a
uniform variation of the weights can hardly produce an even distribution of points in
the efficient set (Das and Dennis 1997). In addition, this technique generally
identifies a small subset of the non-dominated solution set as it is impossible to

enumerate all weights assignments.

e Goal programming method (GP)

Goal programming is another commonly used MOP technique. In this method, the
decision-maker sets goals to be attained for each objective and attempts to minimize
the deviations of the objective functions from their respective goals. The generalized
goal programming method proposed by Ignizio (1976) is adapted to non-linear

problems as follows:

min f(x)={iw, ey +a; ]q} . g2l 2.3)

fal]
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st f(x)+d' ~d =T, i=1,2..m

I

d',d 20, i=12,..m,
where d’ and d, are, respectively, the underachicvement and over-achievement of

the ith goal; T: is the goal (or target) set for the ith objective function; w , Zw, =1,

=]

is the weight provided by a decision-maker, representing the relative preference /
importance attached to the ith objective; and ¢ is the parameter govemning the

deviation from the goal (Rao et al. 1988).

The use of deviation variables makes the handling of constraints in goal
programming flexible and effective. Also this technique has a good conceptual
foundation. However, since there 1s at least one deviation variable associated with

each goal, it can be troublesome with larger problems.

e Compromise programming method (CP)

Compromise programming is a mathematical programming technique that is used to
find a compromise solution amongst a set of conflicting objectives. In essence, the
main idea of CP is to identify an ideal soiution as a point where each objective
achieves its optimum value simultaneously, and to search for a multi-objective
solﬁtion that is closest to the ideal solution (Zeleny 1982; Ehrgott 2005). Generally,

the formation of CP is expressed as:

‘ﬂij.{iw!(ﬁ(x)‘f;)’]’, 0<w <1, iwi =1, 1< p<om, (2.4)

i=l
where f,(x)and f; are the efficient point and the ideal point, respectively; w, is the
weight accounting for the relative importance of the ith objective; p is the parameter
governing the distance between f (x)and f, . p acts as a weight attached to the
deviation of a solutioﬁ from the ideal point reflecting the decision maker’s
perspective (Romero and Rehman 1989). Although the weights are used as the

preference structure when applying CP, it has been mathematically proven that CP is

superior to the weighted-sum-(WS) method in locating the efficient solutions (Steuer
1986).
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* & -constraint method

This method optimizes one of the objective functions while the others are required to
have specified upper bounds. In other words, it minimizes the single most important
objective function and simultaneousl¥ maintains the maximum acceptable levels for
the others (Marler and Arora 2004; Ehrgott 2005), that is:

min f;(x), i=12..m (2.5)
5L f;(x)Sa‘}, j=1 2., mandj #i.

The selections of f,(x) and ¢, are not straightforward and depend on the particular

problem under consideration. In general, the higher values of ¢ 's mean a wider

feasible region for the single objective optimization problem and this may in turn
give a more improved solution for f (x) at the expense of the other objective
functions. As shown in the formulation, the optimization problem (2.5) can be solved
for all f,(x)'s (i =1, 2, ..., m) and the optimal solution that best suits the problem

can be chosen among the m solutions. But this involves laborious computational

effort.

The MOP methods discussed above have been employed to solve various
optimization problems. Although easy to understand, they leave more for decision
makers to do if there are too many objectives or the concemed objectives are
incommensurable. Moreover, these methods directly generate user-optimal solutions,

and only one solution can be obtained at a time.

Different from preference-based techniques, generating approaches attempt to obtain
an evenly distributed set of points along the Pareto front, thereby presenting an
unbiased structure of all possible trade-offs amongst the competing objectives.
Various generating methods have been developed, including weighted sum
approaches with weight scanning (Steuer and Choo 1983), and a series of heuristic
approaches such as simulating annealing (Suppapitnarm et al. 2000), evolutionary

programming (Fogel et al. 1966), and genetic algorithms (Goldberg er al. 1992).

Recently, heuristic generating methods, especially genetic algorithms (GAs), have
gained cver-growing acknowledgement and applications (Coello 2000, Mooney and

Winstanley 2006). As a highly efficient search strategy for global optimization, GAs
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exhibit superior performance on solving multi-objective optimization problems that
have a large and complex solution space. Moreover, being a population-based
approach, a GA is able to find multiple feasible solutions in a single run (Andersson
2000). On the other hand, the main impediment of GAs is that when used in a finite
population, GAs tend to converge to a single solution known as genetic drift, thus
resulting in a clumping of solutions in objective space (Coello 2000). Moreover, GAs
are computational expensive in terms of computation time and memory space

required.

Although there are numerous generating methods, few of them can virtually sample a
diversified and well-extended Pareto front for a given MOP. Some of these methods
also suffer from either an exhaustive computation problem or generating too many
solutions to choose from. Motivated by the challenges, Das and Dennis (1998)
developed a normal boundary interaction (NBI) method, which can explore both the
convex and concave parts of the Pareto front, and produce uniformly distributed
solutions. Due to its reliance on equality constraints, however, NBI will converge to
local optima for complex, nonlinear problems. In addition to NBI, adaptive methods
have also been applied in recent studies. Kim and Weck (2005) suggested using an
adaptive weighted sum method to solve the ‘concave region’ problem. Aiming for a
good shape representation of the Pareto front, Zhang and Gao (2006) proposed an
adaptive scheme that automatically updates the weights involved in a min—max
method. Through a novel bilevel strategy, the tangent and normal directions of the
Pareto curve are calculated, and Pareto optimum points can be obtained sequentially
with a uniformly spaced distribution. Despite those attempts, the adaptive methods
still require further improvement in order to achieve balances between computational

efficiency and well distributed solutions.

2.3.2 Vehicle routing with multiple objectives

2.3.2.1 Generating the optimal routes

DG route planning falls into the category of vehicle routing problem, which can be

viewed as an extension of the elementary shortest path problem. In graph theory, the

shortest path problem is to find a path between two vertices such that the sum of the
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weights of its constituent edges is minimized. An example is to search for a path
linking two nodes of a transportation network with minimum travel cost. There have
been extensive studies on the shortest path problem in literature, which provides
good insights of the state-of-the-art and various algorithms to generate the optimal

solution.
(1) The single objective shortest path

The shortest path (SP) algorithms are initially developed by Bellman (1958) and
Dijkstra (1959). Although various improvements have been proposed since the end
of 1950s, most of the variants perform the same fundamental operations and only
differ in terms of implementation issues such as network storage structure, labeling
method and node selection process. As the most well-known and commoniy used SP

solution method, Dijkstra’s algorithm can be summarized as follows:

Denote G = (N, A, C) as a directed network, where N={1,2,....,n}, A= {({i, /) | i,
jeN } and C = {c; |(i, je A} are the sets of nodes, arcs and arc-travel costs
respectively. It is assumed that G does not comprise any cycle with negative cost,
and that the costs c;; are additive along the arcs. Let node s be the source node of
the path, ¢ be a sink node on that path, and f{r) be the total travel cost of the
currently known shortest path between s and r. The recursive step of the
algorithm can be put as: finding an arc (4, f/)€ A4 so that the cost f{i) of traveling
from node s to node / increased with the cost ¢, of travelling along (i, j) is less
than the present cost of travelling from s to node j: f{i) + ¢; < f{j). If such an arc
exists, then node i becomes the predecessor of node j in the shortest path and the
procedure resumes, otherwise the present cost of travelling from the origin to

node j is the minimum cost.

The above procedure computes a shortest path tree from one source node to all the
others in the network. It can also be used for finding costs of shortest paths from a
single source node to a single destination node by stopping the algorithm once the

shortest path to the destination has been determined.
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Cherkassky et al. (1996), and Zhan and Noon (1998) tested and discussed the
computational efficiency of Dijkstra’s algorithm and its various variants. According
to their tests, a simplex implementation of Dijkstra’s algorithm has complexity of
O(n’), while improvements result in lower complexities to O(na), or Ka+nlog(n)),
or Xa+nCpa), where n and a are the number of nodes and arcs in the network,
respectively, and Cpq, 1s the maximum arc cost. In addition, Zhan (1997), and Miller
and Shaw (2001) addressed concerns with respect to the network representation and
data processing for the use of shortest path algorithms within a geographical
information system (GIS). Although there are a wide variety of SP algorithms, no
algorithm is absolutely better than another since it i1s always possibie to construct a
network “which illustrates the very worst behavior of a particular algorithm”™ (Van
Vet 1977).

The conventional Dijkstra’s shortest path algorithm works under the assumption that
travel costs are additive along the links. This leads to the traditional formulation of

the shortest path problem:

min( Zc,J xu] (2.6)

(1) A
1, ifi=s,
st ) x, = 2x, =40, ifi#st, V(G j)ed 2.7
(+,5)d (1,5)eA _1, {'ff=f,

where s and ¢ are the origin and destination of the path, respectively. The constraints

(2.7) ensure the flow of DG from origin s to destination /. The binary variable x, =1

when the link from i to j belongs to the shortest path, and x, =0 otherwise.

Most algorithms provided in commercial software rely on the dynamic programming
theory to solve the shortest path problem. Dynamic programming for the SP problem
can be regarded as a special case of Dijkstra’s algorithm. The node selection rule is

adapted to make use of network connectivity, leading to the recursive problem:

f(H=, min (f()+c,) (2.8)

{lEﬂ|f=K(j)}
and the labeling phase is modified to account for node-related costs. The efficiency

of dynamic programming depends on Bellman’s principle of optimality, that is, “any
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optimal policy has the property that whatever the initial state and initial decision are,
the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision” (Bellman 1957). In other words, any sub-path of the
optimal route must be optimal, and mlmmlzmg the total travel cost can be achieved
by recursively minimizing partial travel costs. Over the years, dynamic programming
has been used successfully to solve various shortest path problems, including not
only standard SP problems, but also some variants with time-varying travel costs
(Chabini 1998; Miller-Hooks 2001), stochastic link attributes (Wijeratne ef al. 1993),

and non-linear cost functions (Eiger er al. 1985).

(2) The multi-objective shortest path (MOSP)

In the context of DG transportation, the routes must be efficient with respect to a
number of critena. While the carriers are primarily interested in minimizing
transportation cost, which may be a function of travel time, travel length, route
characteristics etc., public agencies are concerned with minimizing the risk incurred
by population, environment and properties along the route. Both travel cost and risk

may be expanded or completed with further-detailed objectives.

‘Replace the single cost ¢, of traversing link (, j) in expression (2.6) by the multi-

dimenstonal attribute c(i, ) = (c,j,c,f, 7 ), the shortest path problem has now m

objectives:
0= 3 e,
("§A )
f (x)= cr x: ?
min fx)=1"  uea’ " (2.9)
fm(x)_ chj u'
(1.0)ed
I, ifi=s,
> ox, - 2x, =40, ifi#st, V(.j)eA, x, {01} (2.10)
(e, )ed {r2)eA __1, iyi=f,

As introduced in section 2.3.1, for a multi-objective problem, it is usually difficult if
not impossible to identify a singie “best” route that can optimize every single

objective in MOSP. For example, one route may minimize the number of people at

30



risk, while another route may minimize the accident probability. Due to the multi-
objective nature, there are a number of “equivalent” solutions, in the sense that none
of them is better than any other with respect to all objectives. These solutions are

Pareto optimal or non-dominated solutions for the concerned MOSP.

The Pareto optimal solutions can be generated using multi-objective linear
programming (MOLP) techniques or dynamic programming (DP) based algorithms
(Current and Marsh 1993). MOLP methods create efficient solutions within
reasonable computational time (Evans 1984). However, due to the discrete nature of
the variables in MOSP, and the requirement of MOLP that each objective be a linear
function of the link attributes, few of MOLP methods work well for MOSP problems.
The most successful MOLP example might be the branch-and-bound algorithm
(Nemhauser 1994; ReVelle et al. 1997). However, the efficiency of such algorithm
depends on the order in which the vanables are examined. In the worst case, it may

come down to a mere enumerative method on a network.

By making use of network connectivity to direct the search towards the optimal
solution, dynamic programming methods have proven to be more effective than
MOLP in dealing with MOSP problems. For the network defined in subsection
2.3.2.1, DP can be regarded as a particular case of the following generic procedure,
which sets the frame for all MOSP algorithms:

» Step 1: Set initial value of f(¢) = (f,(r), L) f, (f)), the cost of travelling
from source node s to current node ¢, and #{f) the predecessor of node .

e Step 2: Find an arc (i, j) € 4 such that f(i)+c, is non-dominated. Set
Sf() = f()+c, and ={j) = i, and update the set F; of non-dominated labels

for node j, by adding the new label and removing those that have become

dominated.

e Step 3: Repeat step 2 until f(i)+ ¢, is dominated for every arc (i, /)€ 4.

The above procedure can be adapted to handle various formations of cost functions
(Sancho 1988), such as £,(j) = fi()+¢", fi(j)= flyxct, f(j)=min(f, (), <),

or a combination of these. The generic MOSP algorithm appears similar to Dijkstra’s
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single objective SP algorithm. However, the former keeps in memory all the Pareto-
optimal labels, rather than keeping the best label found for each node j, because none
of the Pareto labels can be deemed better than any other (Daellenbach and De
Kluyver, 1980). Moreover, the generic MOSP algorithm retains a certain number of
temporary paths based on some preference rules and defers the final choice until

further information is available.

Martins (1984) demonstrated that every Pareto-optimal path from origin to
destination contains only Pareto-optimal sub-paths from the orgin to any
intermediate node of the considered path. Hansen (1980) developed several bi-
criterion shortest path algorithms, which were further generalized by Martins (1984).
There has been a substantial amount of work since these pioneering articles in early
1980s. Most of these work deals with only two objectives, but claims that the
solutions can easily be generaiized to more than two criteria. Skriver (2000) made a
summary of the bi-criterion shortest path algorithms and classifies various techniques
into four categories based on the niceties of implementation: 4-th shortest path, two-
phase method, label-setting and label-correcting algorithms. The label-correcting
method was found to be most efficient, which confirms the conclusions of Martins
and Dos Santos (1999). Gandibleux et al (2006) extended Martins® labeling
algorithm by introducing a procedure that can solve the multi-objective shortest path
problem with a max-min cost function. Gandibleux ef al. argued that the number of
efficient solutions would increase with the number of objectives considered and the

density and size of the network.

The multi-objective shortest path problem is NP-hard (Skriver 2000), which indicates
that no algorithm can guarantee to find the set of efficient solutions within
polynomial computational time. Moreover, each algorithm has its merits; no
algorithm outperforms any other when their performance is averaged over all

possible networks (Corne and Knowles 2003).

2.3.2.2 Alternative solutions to the generation of efficient routes

MOSP problems generally have multiple Pareto optimal solutions from which

decision makers can choose the most preferred or best compromise solution to
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implement. However, generating and presenting the entire Pareto set to decision
makers may not be efficacious as they will find it difficult to make a selection due to
the large number of paths. To address this issue, researchers have proposed various
alternative methods. Based on fhe strategy used for exploring the Pareto set, these
methods can be distinguished as three categories:

« methods for identifying the Pareto optimal solution set approximately;

¢ methods based on utility functions; and

* interactive methods.

(1) Identifying an approximation of Pareto optimal routes

Evolutionary algorithms (EAs) and genetic algorithms (GAs) have seen wide
applications to various types of routing problems (Leung ef al., 1998; Mooney and
Winstanley 2006), though few works have appeared applying them directly to multi-
objective shortest path problem. Davies and Lingras (2003) implemented a GA-based
approach to routing shortest paths in dynamic and stochastic networks where the
network information changes over time. Their experimental results show that the
proposed GA could find the shortest path and alternative backup paths efficientiy.
Mooney and Winstanley (2006} proposed an evolutionary algorithm (EA) for muiti-
criteria path optimization problems. Their results indicate that the EA outperforms
the modified Dijkstra approach in terms of execution time and, that the EA
converges quickly to the Pareto-optimal paths. Recently, Pangilinan and Janssens
(2007) explored the Strength Pareto Evolutionary Algorithm (SPEA) in generating
efficient solutions to multi-objective routing problem and described its behavior in
terms of diversity of solutions, computational complexity, and optimality of solutions.
Base on their experimental results, the authors conclude that the evolutionary
algorithm can find diverse solutions in polynomial time and can be an alternative

when other methods are trapped by the tractability problem.

Although heuristic methods such as EAs and GAs have not been extensively
employed in solving the multi-objective shortest path problem, one may expect this
topic to flourish in the near future, as well as the general application of other

heuristic algorithms such as taboo search or the ant algorithm.
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(2) Generating user-optimal route using utility functions

Unlike heuristic methods which search for approximately optimal solutions without
assumptions on the decision-makers’ preferences, preference-based methods are
developed to allow the decision makers to state their preferences a priori or during
the search procedure and thus to avoid keeping too many solutions. To model
decision-maker’s preference structure, one of the commonly used methods is to
construct a utility function. The function represents the utility, or disutility,

associated with each possible solution and, as such, 1s characteristic of the decision-
maker (Thurston 1991).

The most popular utility function is the weighted sum. A weight wy is assigned to
each objective f;, reflecting the importance of this particular objective to the
decision-maker. By summing al! the weighted objectives, the problem is transformed
to a single objective:
i""’kfm O<w, <1, iw,=l, (2.11)
pa =
which has the advantage of remaining linear across links. This property ensures that
Bellman’s principle of optimality holds with the weighted sum function. Given a set
of weights (w; ,w; ,...,wn ), an optimal route can be identified using a standard
shortest path algorithm. Varying the weights would yield different efficient solutions
for the concened MOSP problem (White 1982).

The utility function commonly used in compromising programming 1s considered to

be more general (Chen et al. 1999; Zhang 2003), which measures the “closeness” of
a feasible solution f,(x) to the ideal solution f;’, under the preference structure

provided by a decision-maker:

i

U(p,w)=(fjw,,(fk(x)-ff)*’] . w>0, ISp< . (2.12)
k=1

Paixdo et al. (2003) proposed to use the Euclidian norm (i.e. p = 2) as a better
objective function, arguing that it allows mimmizing every individual objective

simultaneously. As Bellman’s optimality principle does not hold, Paixdo er al.
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employed a labeling algorithm similar to that of the multi-objective shortest path.
Wakuta (2001) adopted a novel approach to a MOSP problem by formulating it as a
Markov decision process. Instead of finding the route that optimizes a certain utility
function, ‘Wakuta explored a set of policies that facilitate moving from one node to

another, which ultimately yield some Pareto-optimal paths from origin to destination.

(3) Interactive selection of the optimal route

Given that decision makers may find it difficult to state their preferences before they
have an explicit conception of the actual trade-offs involved (Zionts and Wallenius
1983), interactive methods were proposed to search for efficient routes. These
methods are based on a direct interaction with decision makers. During the process
of interaction, decision makers indicate their preferences in various forms. The
algorithms find the non-dominated solutions that best correspond to the decision
maker’s preferences. Since the search of the Pareto-optimal solutions is limited in the
search space “bounded” by decision maker’s preferences, interactive methods are

computationally efficient.

Current et al. (1990) proposed an interactive approach to solving the bi-objective

- shortest path problem. This method is characterized by two phases: while the first
phase aims to provide a decision maker with an approximation of the possible trade-
offs, the second phase settles the constrained shortest path problem under the
decision maker’s preference structure. Similar approaches have been reported by
Climaco and Coutinho-Rodrigues (1988), and Coutinho-Rodrigues et al. (1994), in
which the search of Pareto-optimal paths inside the duality gap (i.e. non-convex part
of the Pareto frontier) was done by using a k-shortest path algorithm. As shown by
Coutinho-Rodrigues et al. (1999), interactive methods based on the &-shortest path
algorithm are more efficient than the method proposed by Current ef al. (1990).

Murthy and Olson (1999) presented an interactive procedure to solve the bi-criterion
shortest path problems by making use of the concept of domination cones. The
decision maker’s implicit utility function is assumed to be quasi-concave and non-
increasing. *Based on decision maker’s pairwise comparisons of the trade-offs

between two criteria, domination cones are developed, which help reduce the number
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of Pareto-optimal solutions. Granat and Guerriero (2003) developed a different
interactive approach to multi-objective shortest path problem. Each step requires
decision-makers to define the desired attributes and some trade-off weights
accounting for the preferences. The algorithm then moves from the current solution
towards the target idea! path by maximizing a predefined achievement scalarizing

function.

Despite the expected advantage of converging directly to the user-optimal routes,
interactive methods suffer some weaknesses. For an unacquainted user (decision
maker), the decisions taken at similar steps may be inconsistent, which is likely to
destroy the convergence of the algorithm. Moreover, interactive methods may not
outperform other techniques in terms of computation time. In practice, finding a
subset of Pareto optimal paths in a given region of the objective space is usually as
difficult as collecting all of them, because they are encountered during the run of a

generating algorithm.

2.3.3 Optimal route planning for dangerous goods transportation

A large body of literature has addressed the problem of DG routing with the aim of
optimizing several objectives. However, most studies primarily focus on the physical
modeling of the problem (definition of the various objectives, analysis of the trade-
offs between alternative routes) and rely on simplistic MOP solution methods to

calculate the optimal route.

Saccomanno and Chan (1985) examined three different routing policies separately:
minimizing the operating costs, minimizing the probability of an accident, and
minimizing the expected damage resulting from an accident. Each problem was
solved using a single-objective shortest path tree algorithm. The three routes
obtained were found to be significantly different, indicating that HAZMAT
transportation involves conflicting objectives that cannot be optimized
simultaneously. Robbins (1981} reported similar findings, demonstrating that
compared with the route with the shortest travel distance, the route involving
minimum population can significantly reduce the number of people affected by DG

incidents.
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DG route planning has been a popular area of research in the United States. The
Office of Highway Safety under Federal Highway Administration is responsible for
the regulation of routing procedures for HAZMAT transportation. Its publication (US
DOT 1994) outlines the routing process involving HAZMATS. In addition to the
population exposed, this guide also identifies factors such as the existence of public
facilities, e.g. schools, hospitals, fire stations and reservoirs, which may affect the
decision on the choice among alternative routes whose risks may otherwise be
similar. The guide also states that the evaluation of plausible burden on commerce is
an essential part of the selection process. In addition, the level of service of the
highway collectively affects travel time, travel speed, safety and the probability of

release accidents.

In their analysis, Turmnquist and List {(1993) focused on the aforementioned factors
including operating cost, accident rate, population exposed and the number of
schools in the exposure area. They concurred that multiple objectives must be
incorporated into the analysis, and argued that the existence of multiple criteria
meant that it is usually impossible to identify a single best route between given origin
and destination. Consequently, the focus should be on finding a set of non-inferior

routes which explicitly represent the trade-offs among criteria.

In the early stage, the classic shortest path routing was applied in most DG
transportation problems (Joy et al. 1981; Abkowitz and Cheng 1988). Batta and Chiu
(1988), and Chin and Cheung (1989) suggested a stmilar method to find a path that
minimizes the weighted sum of lengths that an obnoxious unit travels over a network
within a given threshold distance from the population centers and a bandwidth along
a route. Gopalan et al. (1990), Linder ef al. (1991), and List and Mirchandani (1991)
developed models taking into account the risk equity among the generated routes.
ReVelle ef al. (1991) used a weighted combination of cost and population exposure
to find routes for transporting radioactively contaminated fuel waste. Patel and
Horowitz (1994), and Karkazis and Boffey (1995) studied the effects of weather
systems on the routing of dangerous goods. Erkut and Verter (1995) estimated the
expected number of people that would face the consequences of a possible DG

related incident.
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Miller-Hooks and Mahmassani (1998) proposed a specific model for optimal routing
of hazardous substances in stochastic, time-varying networks. Different catastrophe
avoidance models were discussed in Erkut and Ingolfsson (2000, 2005), and most of
them could be reduced to a standard shortest path problem. Kara and Verter (2004),
and Erkut and Gzara (2008) developed bilevel models for the network design
problem with the focus on the rel‘ationship between DG regulators and the carriers. A
similar problem was also addressed by Verter and Kara (2008), however, as a path-
based formulation incorporating. the regulator’s risk concerns and the carriers’ cost

concerns.

The development of Geographical Information Systems (GIS) have provided DG
routing with realistic means to accurately estimate the travel cost and risk, as well as
vividly visualize the proposed routes. Lepofsky and Abkowitz (1993) demonstrated
that GIS can be used to integrate plume representation with population data and
transport maps to more effectively estimate consequences. Using combinations of
routing criteria (e.g. population exposure, accident likelihood and environmentally
sensitive areas) in a single analysis with varying weights on their importance, one
can examine the trade-offs among various alternatives. Zhang et al. (2000) used GIS
to assess the risks of transporting airborne contaminants (such as ammonia and
chlorine) in networks. The dispersion of the airborne contaminants was medeled
using a Gaussian Plume model. The probability of an undesirable consequence ('such
as injury, illness, or death) was modeled as a function of contaminant concentration.
The risk imposed on population was estimated as the product of this probability and \
the population affected. The risk value was obtained by combining concentration
mathematically with the population distribution by means of traditional raster GIS
overlay techniques. Brainard et al. (1996) employed GIS to route aqueous waste
cargoes with four methods: (1) routing by shortest time only; (2) routing by
motorway and dual-carriageway encouragement; (3) routing to avoid population
exposure; and (4) routing to ‘avoid accidents. The first two methods were used to
' identify the most probable routes used by tanker drivers to deliver their consignments.
The next two methods were used to analyze risk-reducing scenarios. Huang et al.
(2004) explored a novel appr(;tach to evaluating the risk of HAZMAT transportation .
by integrating GIS and genetic algorithms (GAs). GIS was used to quantify the
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specified routing criteria, and GA was applied to efficiently determine the weights of
the factors involved in route choice. Using weighted combination of routing criteria
(e.g. population exposure, accident likelihood and environmentally sensitive areas) in
a single analysis, one can compute the generalized cost of the possible routes and

examine the trade-offs among various alternatives.

With the advances in DG routing studies, more problems have been considered, e.g.,
scheduling of shipments (Nozick er al. 1997; Erkut and Alp 2007) and facility
location (ReVelle er al. 1991; Helander and Melachrinoudis 1997). The scheduling
problem arises when considering that link attributes may vary significantly over time.
For instance, at night, travel time is usually shorter because there is less traffic, yet
accident rate may be higher. The optimal routing/scheduling can be formulated as a
dynamic MOSP problem, and solved using a modified shortest path algorithm under
some assumptions (Chabini 1998). On the other hand, the facility location problem
combined with DG routing arises when planning new dangerous facilities (e.g., a
waste disposal site). In this problem, the origin and/or the destination of shipments

are not fixed and DG routing is only considered as a sub-problem.

Despite the extensive research that has been done on DG routing analysis, only a few
have addressed the multi-objective nature of the DG routing problem using an
appropriate multi-objective optimization method. Vigorous multi-objective
optimization methods are seldom employed to seek optimal routes for DG
transportation based on the results of risk assessment. The weighted sum (WS)
approach is most commonly used in DG route planning. Aithough it is the simplest
and most straightforward MOP technique, this method may be problematic when
objectives are nonlinear or the set of feasible solutions is not convex. Even for
convex multi-objective problems, a uniform variation of the weights can hardly
produce an even distribution of points in the efficient set (Das and Dennis 1997). To
overcome the drawbacks of conventional MOP methods, high performance MOP
methods need to be developed to optimize the routes for efficient and safe DG

transportation.
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2.4 Summary

The transportation of dangerous goods can significantly affect human life and the
environment if accidents occur during the transportation process. Such accidents can
result in traffic disruption, fatalities, injuries, emergency evacuation, property and
environmental damages, etc. Therefore, safe DG transportation 1s of paramount

importance, especially in high-density-living environments.

Decisions reparding DG transportation are difficult to make because of its
catastrophic consequence and public sensitivity. This makes it important to carefully
study such risks for strategic decision-making. In the context of DG transportation,
risk refers to the likelihood of incurring the undesirable consequences of a possible
accident. Quantitative risk assessment (QRA) methods are commonly used to assess
the DG risk during transportation. The common feature of all QRA approaches 1s
that a risk indicator is composed of the probability of some undesirable events and
the possible adverse consequences. The probability estimates are usually based on
the accident rates with respect to DG trucks and the frequency of release sizes given
the type of accident. The estimation of the unfavorable consequences is primarily
focused on the expected damage to the population, properties, and environment near
the incident location, while the direct damage to individuals and vehicles travelling
along the route where the incident occurs are seldom considered simultaneously.
Moreover, the capability of emergency response in the event of a DG accident is
rarely included into the risk estimation. To make an effective risk assessment for DG
transportation in high-density living environments, it is essential to take into account

all of these factors and model the associated risks appropriately.

DG transportation is a multi-objective problem with stakcholders playing different
roles and having different objectives. These objectives are generally conflicting so
that a single “best” solution that can optimize every single objective is impossible.
The solution of such problem is to search for one or a set of “compromise” solutions
rendering the best possible trade-offs for conflict resolution among different
objectives. Given the multi-objective nature of the DG routing problem, multi-

objective optimization thus becomes a sound framework for analysis and decision-
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making. Extensive research has been donc on DG routing with the intent of
optimizing several objectives. However, only a few have addressed the multi-
objective nature of such problem using an appropriate multi-objective optimization
method. Vigorous MOP methods are seldom employed to seek optimal routes for DG
transportation based on the results of risk assessment. Undoubtedly, high
performance optimization techniques are of utmost importance to effective DG
routing, particularly in high-density environments. [t is instrumental to generate
several efficient routes representing the inherent trade-offs among different
objectives for decision-makers to choose the one that gives the best compromise
among the conflicting objectives. And this will be the major objective of this

research.
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CHAPTER 3: DETERMINISTIC MULTI-OBJECTIVE PATH
OPTIMIZATION

This chapter and Chapter 4 introduce different multi-objective optimizatior
methodologies proposed in this study. This chapter is focused on the deterministic
multi-objective path optimization techniques, and a heuristic method will be
discussed in Chapter 4. The present chapter begins with an introduction on the multi-
objective shortest path problem that underlies the optimal route planning for DG
transportation, followed by the concept of Pareto optimality, an mmportant notion in
the multi-objective problems. The weighted sum of objective functions is discussed
since it is the simplest and most straightforward multi-objective optimization
technique. In the second part of this chapter, compromising programming (CP), a
mathematical programming technique for finding a compromise solution amongst a
set of conflicting objectives, is described in detail, with specific discussion on the
utility functions that are commonly employed in CP. The construction of criteria
weights is then described, with an emphasis on the analytical hierarchy process
(AHP). The procedure of multi-objective DG route planning based on compromise
programming is specified. To avoid the pitfalls of preference-based techniques, an
adaptive weighting method for multi-objective route planning is proposed in addition
t0 the CP approach. In the third part of this chapter, a framework of this approach to
explore the Pareto front is presented, followed by the procedure of approximating

such a front. The implementation issues are also specified.

3.1 Multi-objective path optimization
3.1.1 Multi-objective shortest path problem

As one of the major components of network routing problems, the shortest path
problem arises in a wide variety of practical problem settings, either as a stand-alone
model or as a sub-problem in more complex problem settings. Being an extension of
the conventional shortest path problem, the multi-objective shortest path problem

(MOSP) is concerned with finding a set of efficient paths with respect to multiple
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objectives (e.g. the problem of finding efficient routes in transportation planning that
simultaneously minimize travel cost, path length, and travel time). In general, the
objectives in a MOSP are conflicting with each other. For example, minimizing route
changes may require longer journey time; while minimizing overall journey time
may lead to multiple route changes. Hence, optimizing a MOSP with respect to a
single objective often results in unacceptable results with respect to the other
objectives. It is therefore almost impossible to generate a perfect multi-objective
solution that simultaneously optimizes each objective function. A reasonable solution
to a MOSP is to investigate a set of solutions, each of which satisfies the objectives

at an acceptable level without being dominated by another solution.

Denote G = (N, 4, ) as a directed network, where N = {1,2,...,n}, A= {(i, )|, j
e Njand C = {c; | k=1, ...,mand (i, j) €A} are the sets of nodes, arcs (edges), and

m-dimensional arc costs, respectively. Each arc belonging to A4 is associated with a

[y
1 b
C

cost vector ¢, = (¢, .c,, ...

¢, )- It is assumed that G does not comprise any cycles

with negative cost, and that the costs cj are additive along the arcs. Given a source

node 5 and a destination node ¢, a path R is a sequence of nodes and arcs from s to f.

The cost vector ¢ for linear functions of path R is the sum of the cost vectors of its

arcs, that is ¢ = ch . Multi-objective shortest path problem requires one to find a
(i.feA

simple path between s and ¢ such that the cost of this path is minimized over all valid
paths. A simple path is a path between two fixed nodes that does not contain any

loops or repeated edges. MOSP can be formulated as follows:

(fi(x)= Dex,,

e d

L(x0)= Yeix,,
min f(x)=4 e 3.1
fo(x)= Derx,.
L {t.0)eAd
1, ifi=s,
st Y x, — ».x, =10, ifi#s,t, (3.2)

JA)ed J)ed s
{1,7)e {1.7)e "1’ lf!=i,

1, if arc (i, j) bel to the shortest path,
) ={ it arc (i, /) belongsto P Vares(i,j)e 4 (3.3)

0, otherwise,
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MOSP specifies that no path will contain loops and each path considered must have
the same source s and destination £. Each incoming edge of a node on a path must be
matched by an outgoing edge on that path except for nodes s and ¢ (as in equation
(3.3)). All valid paths have the form {s, p;, p2, ...pw, t} where p;, p2, ...p represent

the nodes included in the path, except for the source s and destination ¢.

The transportation of DGs involves multiple stakeholders such as shippers, carriers,
consignees, and government agencies; each playing a different role in safely moving
DG from the origins to the destinations over a transportation network. Moreover,
different stakeholders usually have different priorities and perspectives on DG
transportation. The carriers are primarily interested in minimizing transportation cost,
which may be a function of travel time, travel length, and route characteristics, etc.;
while government agencies are concemed with minimizing the risk incurred by
population, environment and properties along the route. Both travel cost and
exposure risk can be expanded or completed with further-detailed objectives.
Therefore, DG transportation is a typical multi-stakeholder and multi-objective

problem which is generally complicated to solve.

Optimal route planning for DG transportation can be treated as a MOSP in search of
efficient routes that simultaneously minimize several objectives such as travel cost
and exposure risk. The concept of optimization in such a MOSP is generally different
from the single-objective shortest path problem, where the task is to find a path that
minimizes a single objective function, i.e. travel distance. For MOSPs involving
multiple conflicting objectives, a unique solution optimizing all the objectives
simultaneously is hardly a realistic possibility (Zitzler et al. 2003). It is therefore
preferable to concentrate on finding routing paths that are near optimal, or display
the best trade-offs among the objectives considered. In other words, the ultimate

goal is to search for Pareto-optimal paths.

3.1.2 Pareto optimality and alility functions

3.1.2.1 Pareto optimality
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Consider the following multi-objective optimization problem (MOP):

min £(x) = (£,(x), £ (2),..., [ (D))

st xeX 3.4)
where f(x), i = [, 2, ..., m are objective functions, x is vector of the decision
variables in the solution space X within which all of the points are the feasible

solutions for the above MOP, and 7 is the transpose of the objective function vector.

Relative to single objective optimization problems, MOP solutions are optimal in the
sense that in general no singie solution minimizes every f(x) at the same time. The
optimai achievement of one objective is often made at the expenses of the others.
This kind of optimality is normally termed Pareto optimality in MOP. Non-
dominated solutions, also referred to as non-inferior or Pareto optim:il solutions, are
the optimal solutions for MOP. Instead of a unique solution to the problem, the
solutions to a multi-objective problem are a set of Pareto points. The set of all non-
dominated solutions in the solution space is referred to as the Pareto-optimal set, and
for a given Pareto-optimal set, the corresponding objective function values in the
objective space are called the Pareto front. Figure 3.1 presents an example of a
Pareto frontier. Each point represents a feasible solution, and smaller values are
preferred to larger ones. Point C is not on the Pareto frontier because it is dominated
by both point A and point B. Points 4 and B are not strictly dominated by any other,

and hence both of them are Pareto optimal solutions and lie on the frontier.
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Figure 3.1 An example of Pareto frontier
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Multi-objective shortest path problem is one of the core problems in the area of
multi-objective optimization (Ehrgott 2005; Ehrgott and Gandibleux 2002) with
numerous applications. The objectives in a MOSP are generally conflicting. Thus,
unless a well-defined utility function exists, there is no single optimal solution but
rather a set of non-dominated or non-inferior solutions from which a best

compromise solution can be selected. Denote R, = (rr', wont, yand R = (rq' v ¥y ) @S

two feasible routing paths between the given origin and destination nodes, where

rpandr,,i=1,..m, are the ™ objective value for R, the R respectively, m is the
number of objective. Route R dominates route R_ if and only if f,(R,) < f,(R)
for k=1..,m and f,(R))< [, (R,) for at least one objective tunction, which

indicates that route R, is always better than or equivalent to route R , and it is

strictly better with respect to at least one objective. On the other hand, R, is Pareto-
optimal if 1t is not dominated by any other routes in the solution space, that is, for all

routes R, f (R )< fi(R,) k=1.,mand f (R )< f(R))for at least one k. In

additton, R_ is said to be weakly Pareto-optimal if there is no other feasible solution

q

R such that f, (R,) < f,(R,) for k=1,..,m. It should be noted that if two routes
weakly dominate each other, ie. [, (R)}<f(R) and f, (R )< [, (R)) ,

k =1,...,m, their vectors of attnbutes (objective function values) are equal, but

nothing guarantees that they are identical.

Figure 3.2 provides a graphical interpretation of Pareto-optimal and weakly Pareto-
optimal solution, as well as dominance relations. R;, R, and R; are three optimal
solutions (i.e. routing paths) to a MOSP with two objectives: R; = {12, 38}, R, = {40,
38}, R; = {52, 10}. The solutions R; and R; are non-dominated or Pareto-optimal,
while R; is weakly Pareto-optimal. The other solutions are feasible, but they are

dominated by R;, R;, and R;.

According to the definition of Pareto optimality, moving from one Pareto optimal
solution to another necessitates trade-off. A trade-off reflects the ratio of change in
the values of the objective functions concerning the increment of one objective

function that occurs when the value of some other objective function decreases.
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Under the concept of Pareto optimality, the efficient solutions to a MOSP are
equivalent: a gain in one objective is at the cost of another. The globally optimal
solution to a MOSP with conflicting objectives rarely, if ever, exists. Weakly Pareto-
optimal solutions, on the other hand, are also of importance for MOSP (Minami
1983). Although they do not strictly optimize any objective, they offer interesting
trade-offs among the multiple objectives to decision makers, who can then keep or

discard such solutions by comparing them with the genuine Pareto optimal.

Objective 2
4
+ + . .
e Pareto-optimal solution
R, 7 R : :
AR 0l * © weakly Pareto-optimal solution
Lo+
. + dominated solution
L
‘R

Objecti've 1

Figure 3.2 An example of Pareto-optimal and weakly Pareto-optimal solutions

3.1.2.2 Utility function

As a multi-objective optimization problem, or specifically a MOSP, route planning
for DG transportation usually has several feasible solutions. These solutions render
various possible trade-offs for conflict resolution among different objectives. None
of them can be deemed absolutely better than another. As long as no objective is
preferred to the others, all Pareto optimal paths are possible solutions to the MOSP

concerned.

In practice, a decision-maker is not indifferent to all the objectives. Even if he/she
does not feel comfortable ranking the objectives or stating preferences numerically
{(e.g. objective A is twice as important as objective B), the decision-maker is assumed
to have an explicit or implicit function which reflects his /her preferences for

different objectives (Henig 1985). This underlying function maps the attributes of the
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feasible solutions onto scalar values with the preference of each attribute determined
by the decision-maker (Keeney and Raiffa 1976). According to utility theory
(Thurston 1991), the overall performance of a solution can be represented by a multi-
attribute utility function which incorporates consideration of attributes that cannot be
directly converted to a common metric. Once the utility function is formulated, the
optimization problem is formulated accordingly to optimize that utility. If the utility
function properly captures how the decision-maker values a solution, an optimization
of the utility would yield the best solution in respect to the decision-maker. In light
of this, selecting the best route from the user’s perspective comes down to optimizing
the utility function over a set of feasible paths. There are generally two ways to
achieve this: (1) to directly generate the solution that yields maximum utility
(preference-based techniques); (2) to generate a subset of Pareto-optimal solutions,

and then maximize the utility function value over this subset (generating techniques).

In general, decision making is formulated in terms of maximizing a utility function
U(x). In a traditional transportation problem, however, decision making is formulated
in terms of minimization, 1.e. to select a route with the smallest travel time. Thus,
when applying the decision making theory to transportation problems, these

problems are reformulated in terms of a disutility functionu(x) = -U(x). In other

words, selecting the route with the maximum of utility U is equivalent to selecting
the route with the minimum of disutility «. In this research, the word “utility
function” is used in order to follow the principles of the decision making theory, but

the discussion applies to disutility function as well.

As mentioned above, finding the Pareto-optimal paths can be achieved by optimizing
the utility function directly, on condition that the preferences for different objectives
are defined a priori by a decision-maker. The preference is used as the weight of each
concerned objective. The multiple weighted objectives are meaningfully combined to
form a dimensionless overarching objective function, which expresses the goodness
of a particular solution. In this way, the MOSP is transformed to a single-objective
shortest path problem. By solving this aggregated single-objective problem, the
optimal path of the original MOSP is eventually identified. Furthermore, different
Pareto-optimal paths can be yielded by varying the weights.
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When solving a multi-objective optimization problem by means of preference-based
techniques, the utility function is commonly used to model decision-maker’s
preference structure about the objectives involved. Different utility functions have
been formulated. @ The weighted sum 1s probably the most popular and
straightforward utility function. In this method, each objective is assigned a scalar
weight accounting for its relative importance to other objectives. The original multi-
objective optimization problem is then turned into optimizing a positively weighted
sum of different objective functions. More complicated utility functions allow non-
linear combinations of multiple objectives (Cook 1997; De Weck 2004). Most of
these functions are monotonic utility functions, within which monotonically
increasing or decreasing relationships between an objective and its corresponding
utility are captured by larger-is-better or smaller-is-better relationships. Non-
monotonic utility functions to capture periodic utilities also exist. However, those are
special cases that are encountered infrequently in practice. Once the utility function
for the current multi-objective problem 1s constructed, optimization can be conducted
and the solution with maximal utility can be found. Here the weights indicating the
preferences for different objectives are interpreted as control parameters. Through
changing these parameters in the utility function systematically, non-dominated

solutions can be found one by one.

3.1.3 A natural and self-explanatory approach — weighted sum of objective

Sunctions

Muiti-objective shortest path problem can be solved using preference-based
optimization techniques. Given the pre-defined preferences, different objectives are
aggregated into a single objective. By solving this combined single-objective shortest

problem, the Pareto-optimal paths for the original MOSP can be obtained.

There are many methods that can sum up the multiple atiributes of a given route into
a single scalar function. Such a function represents the utility, or disutility, associated
with each possible path characterized by a decision maker. A very popular approach
for converting a multi-objective problem into a single-objective problem is to
minimize the positively weighted convex sum of different objectives. A coefficient,

or weight, w, is assigned to each objective f;, reflecting the importance of this
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particular objective to the decision-maker. By summing all the weighted objectives,

the multi-objective problem is transformed to a single objective formulation:
u(f(x))= 2, w, fu(x),
k=f

stowz0, iw,‘ =1. (3.5)
k=1
Minimizing the original multiple objective functions is then equivalent to minimizing
the utility function (3.5). It follows immediately that the global minimizer x* of the
above problem is a Pareto optimal point for the original multi-objective optimization
problem, since if not, then there must exist a feasible x which improves at least one
of the (positively weighted) objectives without downgrading other objectives and

hence produces a smaller value of the weighted sum.

The weighted sum method is often considered as a naive and simplistic approach to
solving multi-objective optimization problems. However, it combines all the
objectives In a single estimator where each weighting coefficient indicates the
relative importance of this particular objective to the decision-maker. This renders
the procedures of searching for feasible solutions much simpler. The simplicity of the
weighted sum approach makes it convenient to use, especially in a situation where
clarity is very important. Being natural and easily understandable, this approach can
assist a decision-maker in explaining the decision process and clarifying the trade-

offs in his/her decisions when confronting with dissenting views.

From the computational point of view, the weighted sum approach is very efficient in
solving a multi-objective shortest path problem. Recall that the recursive step of a
standard shortest path algorithm (Gallo and Pallottino 1988) can be put as follows:
finding an arc (i, /)e A so that the cost f{i) of traveling from the origin to node i
increased with the cost ¢, of travelling along (i) is less than the present cost of
travelling from the origin to node j: f{§) + ¢, < 7). If such an arc exists, then node i
becomes the predecessor of node j in the shortest path and the procedure resumes;

otherwise the present cost of travelling from the origin to node j is the minimum cost.
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In case of multi-dimensional link attributes, the cost of travelling along arc (i, j) is

not the value of any single attribute c;, but the m-dimensional attribute vector ¢,, ¢,
=(c;,cj s, ). The current Pareto-optimal paths from the origin to any node ;j are

collected in a set F,. The recursive step selects a node i and, for each path in F,
compares the vector f (i) + ¢, with the attnbutes f (/) of the paths in F}. If this vector
is eventually non-dominated, t.e., fii} + ¢, < f{y) holds for at least one attribute, the
corresponding path is added to F, and the set of Pareto-optimal paths is updated by

removing the paths from the origin to j that have become dominated.

The computational cost of the above procedure stems from the numerous
comparisons that are required to determine whether the new path should be put into
F, or not. For m-dimensional attributes, such comparisons need to be performed m
times for each recursive step, which is computationally expensive in terms of both
time and memory. By assigning weights to each objective and combining multiple
objectives into a single one through the utility function in the form of a weighted sum
of objective functions, the MOSP in question collapses to a single-objecti«ve?fQortest
path problem. As a result, the size of F, is reduced from multiple elements (re. m
attributes) to one single element, and the number of comparisons is limited:ft_o one at
every step. The Pareto-optimal paths can then be identified by minimi;ing the

weighted sum utility function through the conventional shortest path algorithm.
3.1.4 Limitations of the weighted sum method

The weighted sum approach has been successful in solving multi-objective shortest
path problems throughout the years. Finding the Pareto-optimal paths for a MOSP is
of NP-hard difficulty (Skriver and Andersen 2000), which means that no algorithm
can guarantee finding the set of efficient solutions within polynomial computational
time. However, it becomes easier by optimizing directly the disutility function in the
weighted sum form. Through combining the weighted objectives linearly, the MOSP
comes down to a single-objective problem, which is solvable in polynomial time
(Cherkassky ef al. 1996). Minimization of this disutility function yields a path that is
non-dominated (Miettinen 1999). Varying the weight values, the weighted sum

method can generate different Pareto-optimal paths.
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However, the weighted sum methed is known to have limitations in its applications
(Athan and Papalambros 1996; Das and Dennis 1997). First, although there are many
methods to determine the weights, such as point allocation, ranking method, and
pairwise comparison, a satisfactory a priori selection of weights does not necessarily
guarantee that the final solution be acceptable. One may have to resolve the problem
with new weights. It would be more adequate to define the weights as functions of
the original objectives rather than constants in order for a weighted sum formulation

to model a decision-maker’s preference structure accurately (Messac 1996).

The second problem with the weighted sum approach is that it is impossible to obtain
points on non-convex portions of the Pareto optimal set in the objective space (Das
and Dennis 1997; Messac et al. 2000). Due to the linear form of the scalarized
objective function in the objective space, it can only be used to capture the Pareto
optimal points located in the convex part of the Pareto optimum curve and will fail
when such points _fall within the non-convex parts of the Pareto set. In other words,
not every Pareto solution can be found by solving the weighted sum utility function,;
there may not exist a weight w such that a given Pareto point can be found by solving
the weighted sum utility function. Figure 3.3 shows the efficient set (frontier) of a bi-
objective minimization problem in the objective space. The solutions obtained by
solving the weighted sum utility function can be geometrically identified as the
points of contact between the curve (Pareto frontier) and the tangent line of the curve
that is perpendicular to the vector w. This figure shows that the weighted sum
approach may fail to generate the efficient solutions located on the arc between
points A and B, since for some vectors w > 0, it could achieve a smaller weighted
sum value on the tangent line of the Pareto curve outside of the arc rather than at any

point along that arc.

Similarly, in a MOSP, not all the Pareto-optimal paths can be generated by
optimizing a weighted sum of objective functions. It is possible to find some non-
dominated paths that do not minimize the sum of weighted cost for any given set of

weights. Figure 3.4 shows an example.
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Figure 3.3 Generating Pareto-optimal solutions by the weighted sum approach

o

Figure 3.4 An example of a non-dominated path that does not minimize the weighted
sum of objective functions for any choice of weights

From origin (S) to destination (7), there are three paths, SP7, 87, and SQT with
attributes (i.e. objective values) of (0, 1.5), (1, 1), and (1.5, 0), respectively. None of
them is worse than any other with respect to both attributes, therefore alk of them are
non-dominated. Denote w,, w; as the weights for objectives 1 and 2, respectively.
The weighted sum of attributes for the paths SPT, ST, and SQT are:

SPT:0*w; +05*w, +0*w,;+ 1 ¥w>=15w>= 1.5(1 wy),

ST: w; + ws(=1),

SQT: 1 *w;+0*w, +05*w,; + 0 *wy= 15w,

Clearly, whatever a choice of (w;. w>) is made, the direct path ST never generates the
smallest weighted sum. In other words, it is impossible to capture this path through a

weighted sum approach, though it is non-dominated.
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The implementation of weighted sum approach in solving MOSPs may also
encounter the problem of sensitivity. For a given set of weights, minimizing the
weighted sum produces onc Parcto-optimal path. If users specify ditferent priorities,
the best path may change drastically. In the example of Figure 3.4, a slight change in
the weights (w;, w;) from (0.51, 0.49) to (0.49, 0.51) would make the optimum
switch from path SPT to path SOT. Hence, a slight imprecision in the statement of

preferred trade-offs may lead to completely different solutions.

The final difficulty with the weighted sum approach is that this method cannot
approximate the real Pareto optimum curve properly. This is because a uniform
variation of the weights can hardly produce an even distribution of the Parcto optima
{Das and Dennis 1997). Quite frequently, all of the points found cluster in certain
parts of the Pareto set with no point in the interesting ‘middle part’ of the set, thereby
providing little insight into the shape of the trade-off curve. This implies that
depending on the structure of the problem, the linearly weighted sum doces not

guarantee that a desirable solution be produced as a decision-maker expects.

3.2 A preference based multi-objective optimization technique

The weighted sum approach s the simplest and most straightforward way of
obtaining multiple points (solutions) on the Pareto-optimal front. However, this
method often produces poorly distributed solutions along a Parcto front, and it is
unable to find Pareto optimal solutions in non-convex regions. Morcover, varying the
weights does not guarantee the identification of desirable solutions. Motivated by the
obvious necd for a more powerful approach, Zeleny (1973), Yu and Leitmann (1974),
and others developed Compromise Programming (CP) — an approach based on a
procedure that finds an efficient point closest to the ideal point, the point at which
every objective under consideration simultaneously attains its minimum value. For
the multi-objective optimization problems with conflicting objectives, such ideal
point can never be achicved despite its existence. Nevertheless, this poimnt can serve
as a reference point for evaluating the comparative performances of the alternatives

in achicving the desired objectives (Zeleny 1982). The CP method is a general
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formulation of multicriteria optimization. By varying the involved weighting
paramecters, one can get various desired Pareto optimal solutions. On the other hand,
it has been mathematically proven that the CP method is advantageous over the
classical weighting method (weighted sum) when the Pareto optimum closest to the

ideal point in the Minkovsky metric is sought (Zhang 2003).

3.2.1 Compromise programming (CP)

Compromise Programming is a muiticriteria decision technique which employs a
priori information on the preference structure of the decision-maker to find a
compromise solution amongst a set of conflicting objectives. It expresses the goal-
seeking behavior (Yu 1985) in terms of a distance function. In order to achieve this, a
reference pomt is taken for representing the goal to attain, and the distance to this

point from any other point of the objective space is minimized.

According to Romero and Rehman (1989), compromise programming can be
regarded as a natural and logical way to solve multi-objective optimization problems.
As a distance-based technique, CP is marked by the following features: First,
compromise programming makes use of the concept of non-dominance to select the
best solution or choice of alternatives. A CP solution is deemed non-dominated in the
secnse that it cannot be made better off without worsening some other solutions.
Second, CP considers the ideal solution as an analytical reterence for optimization.
The ideal solution (CP 1decal) is the solution with the best, or almost the best values of
the concerned criteria, rather than a target established by the decision-maker from
his/her own views and judgments. Third, a CP solution is obtained by minimizing the
weighted distance from each efficient point to the reference point (CP ideal) so that
the decision-maker will choose the efficient alternative closest to the CP ideal.
Therefore, although using preference-based weights, CP searches for an optimal
solution rather than a ‘satisficing’ solution (Ballestero 2007). Satisficing is a
decision-making strategy that attempts to meet criteria for adequacy, rather than to

identify an optimal solution.

In essence, the main assumption in CP is to search for a multi-objective solution

closest to the ideal solution. The concept of ‘closeness’ is basically related to human
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preferences represented by a function measuring the distance of the compromisc
solution from the ideal solution. CP helps decision makers to choose an optimal or
the best compromise solution on the basis of a distance function generated by a
combination of attribute scores. This technique is preferred by many researchers to
other approaches because of the simplicity of the distance-based methods, their
rclationship to multi-attribute utility theory, and the availability of solution

algorithms (Lakshminarayan ef al. 1995).

The CP methods in multi-objective optimization problems differ in their choice of
the distance metric and definition of the reference point. In most conventional CP
models, the reference point is defined by the ideal solution point whose components
are obtained by minimizing each individual objective. In some variant versions of CP
methods, however, the reference point is defined by a solution whose components
are slightly smaller than those of the ideal solution. Such a point is called a utopian
point. The advantage of using utopian point instead of ideal point is to guarantee that
there exists a positive weight vector such that a feasible MOP solution is at lcast
weakly non-dominated (Choo and Atkins 1983). In this research, without loss of
generality, the reference point is defined as the ideal point at which all objectives
achieve their minimum values simultaneously, and decision makers would prefer the

solution having a cost value as close as possible to the minimum.

The basic idea of the CP method is 10 define the scalarized objective function to be
minimized by a metric form. Mathematically, this metric is a type of evaluation
index measuring the distance between the Parcto optimum to be sought and the

reference point. Such a distance can be calculated by using the Lp-metric. In a
Cartesian plane, the distance between two points, x' = (x,',x;) and x’ =(xf,x§),

can be calculated using the Pythagorean theorem as follows:

d = [(xf ﬂx:)z +(x§ —x) )2 ]k‘;

This concept of distance can easily be extended to an m-dimensional space, and the

distance between points x with objective & becomes the Euclidean distance:

TEpIACEE )]

k=1
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The extension of this Euclidean distance is most commonly employed in compromise
programming as the distance measure. It i1s a member of the family of Lp-metric
(known as Minkovsky metric) (Lakshminarayan et al. 1995), which is represented in

its general form as:

" 1 p
Lp=[§wk(zk—z;)p} ,  l<p<c, (3.6)

where z, and z; are the efficient point and the ideal point respectively; w, ,

m

Zw,, =1, is the criterion weight in standardized form, representing the relative
k=1

preference / importance attached to the 4" criterion. The weights are generally
defined by a decision maker. They can also be developed by means of analytic
hierarch process (AHP) through pairwise comparison of the criteria. An important
advantage of compromise programming in practical applications is to encompass an
interactive procedure allowing decision makers to specify their preferences in the
optimization process by a weighting system, which 1s believed to facilitate the

determination of the best CP solutions (Ballestero 1997).

The parameter p in (3.6) is a parameter governing the distance between an efficient

point z, and the reference pointz, . It acts as a weight attached to the deviation of a

feasible solution from the ideal point reflecting the decision maker’s perspective
(Romero and Rehman 1989). The value of p ranges from one to infinity and presents
the concern of the decision maker over the maximum deviation (Tecle and Yitayew
1990). The larger the value of p, the greater the concern becomes. Each value of p
gives a different measure of distance. L; (p = 1) is the so-called street-block distance
(also called Manhattan distance) that gives the maximum distance between two
points. In the context of suitability evaluation for alternative routes, total
compensation between objectives is assumed, indicating that a decrease of 1 unit in
one objective can be totally compensated by an equivalent gain in any other objective
(Pereira and Duckstein 1993). In the situation where p = 2, the Lp-metric represents
the Fuclidean distance, L;. Each weighted deviation is accounted for in direct

proportion to its size. When p becomes greater than a certain value, the largest

will dominate the evaluation, and it will reach a totally non-

deviation [z* -z,

compensatory situation when p = w (Zeleny 1982). Therefore, all posstble distances
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in the space are bounded by the ‘longest’ distance (the L;-metric) and the ‘shortest’

distance (Lo-metric), which is also called the “Tchebysheff” distance.

Given p and the weight set (w,), the preferred alternative has the minimum Lp
distance value. Thus, the alternative with the lowest value for the Lp-metric will be

the best compromise solution because it is the solution nearest to the ideal point.
3.2.2 Relating utility function optimization to compromise programming

In general, methods for multi-objective optimization problems can be categorized
into the generating technique and the preference-based technique. The generating
technique, as the name suggests, generates complete or a subset of feasible solutions
for a MOP, and leaves the physical interpretation and the intensive choice of the best
solution with those who can take on the responsibility. No prior knowledge of
relative importance of each objective 1s used. By contrast, the preference-based
technique has been developed to allow decision-makers to state their preferences a
priori for ail objectives, such as the weighted sum approaches (Steuer and Choo
1983), or interactively during the search procedure, e.g. Step Method (STEM)
(Benayoun et al. 1971) and through achievement functions (Wierzbicki 1980).
Usually, the optimization is done by aggregating different objectives into a single

objective and assigning them different weights provided by the decision-maker.

As a typical preference-based method of MOP, utility functions serve to map the
attributes of the feasible solutions onto a scalar value with the preference of each
atiribute determined by the decision-maker. By systematically changing these
parameters, the utility function can seek the non-dominated solutions one after
another. The utility function commonly used in CP measures the distance between a
Pareto optimum (an efficient solution) and the ideal point, along with parameters
accounting for the decision-maker’s concern over the maximum deviation. It is
considered to be more general than weighted sum (Chen ef al. 1999; Zhang 2003). Its

universal formulation is expressed as:

"F(x) -F

, 3.7)
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where the norm n - " is a mathematical measure of the distance between points, i.e.

d(fz,f‘)=||f2 —f'"; F(x) and F’ are the efficient solution point and the ideal

solution point, respectively. As mentioned above, the distance measure in CP,
namely the Lp-metric, i1s closely related to the parameters p and weight set (wy); thus,

for a weighted Lp-metric, the utility function can be formulated as:

k=1

m 1p .
U(paw)=[zwk|fk(x)_fk.lp] : wkEO,Zwk:l,ISpgco.
k=1

Observe that for every xe€ X, f,(x)> f, . Thus the absolute value sign in the

definition of the metrics can be dropped. Consequently, the above utility function can
also be written as:
[

Vp
U(p,w)=[zwk(ﬁ(x)—ﬂ')"} . w20, > w=1,1<p<ow, (3.8)

kel

When p = 1, the U (1, w) can be expressed as:
Udwy=Yw (- )= wmfi-Sws . w20, 3w =1, (39
kal k=1 k=4 k=1

which is equivalent to the weighted sum formulation.

When p =« , the comesponding CP problem becomes a min-max problem, and

minimizing U/ (e, w) is equivalent to minimizing the maximum weighted deviation:

min max {w, (f,(x)~ /;)}, w20, iw,, =1, (3.10)

xeX k=1, m o

Such a method is referred to as the min-max method, or weighted Tchebycheff
approach, which turns out to be very useful in generating Pareto solutions. In this
research, besides the compromise programming method, an adaptive method based
on the weighted Tchebycheff approach is also developed to solve the problem of
multi-objective route planning for DG transportation. This will be elaborated further

in section 3.3.

Recall that both the weighted sum and the min-max belong to particular cases of the
utility function formulated as (3.8) with the parameter p taking the values of 1 and

infinity, respectively. In other cases, i.e. 2< p <o, the utility function is nonlinear
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and does not have explicit physical meaning. However, as illustrated in Figure 3.5,
the exponent p has the effect of adjusting the curvature, i.e. the convexity of the
objective function. An increase of p is favorable to capture the non-convex Pareto

optimum set (Zhang 2003).
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Figure 3.5 [llustration of the CP method using different exponents

Based on the utility function of (3.7), a general CP problem can be formulated as:

l

si. xeX. 3.11)

Min |F(x)- F

Whether an optimal solution of problem (3.11) is Pareto optimal depends on the

properties of the distance measure, and hence on the properties of norm|}-{[. A norm
|-]| is called monotone, if | '] <{f?| holds for all f*, f2e R™with |7)|<|£}. &
= 1,..., mand moreover |[/'] <|£2| if| £ <[/, k=1..... m. A norm || is called
strictly monotone, if |f'| <|f?| holds whenever |£}|<|f?|. k = 1., m and

| f,'| # I ff| for some . With this definition of monotone, it is easy to prove that for an

optimal solution x of (3.11), the followings hold:
i If || - || is monotone, then x is weakly Pareto optimal. If X is a unique optimal

solution of (3.11), then x is Pareto optimal.

i) If " . ]| is strictly monotone, then x is Pareto optimal.
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Proof:
i) Suppose Xis an optimal solution of (3.11) and ¥ is not weakly Pareto

optimal. Then there is some x'e X such that f(x')< f(x). Therefore

7

0SS~ fi <f ) -f for k=lLmand /()= /| <)~ £

contradicting optimality of x .

Now assume that x is a unique optimal solution of (3.11) and x is not Pareto

optimal. Then there is some x'e X such that f(x')< f(x) . Therefore
0< f,(x")— f, € f.(X)~ f, for k=1,.,m with one strict inequity, and
"f(x')vf'u S"f(i)—f'". Given the optimality of x, equality must hold,

which contradicts the uniqueness of x .

ii) Suppose x is an optimal solution of (3.11) and xis not Pareto optimal.

Then there are x'e X and je{l,.,m} such that f (x')< f,(x) for
k=1,.,mand f (x')< f, (). Therefore 0< f,(x') - f, < f,(%)- f; for all
k=1,.mand 0< f (x')- f; < fi(x)- f;. Again the contradiction

|y - s <lreo- 1|

follows. 7l

The weighted CP problem in line with the utility function (3.8) derived from the

weighted Lp-metric can be formulated as follows for general p:

m P\/o
mi}] [Zwk(fk(x)—j:) J , wkEO,Zwk =1,1<p<w, (3.12)

Without loss of generality, consider the following formulation:

min ﬁ=(iwk(f,‘(x)ﬂ')}, wkEO,Zwk:l,IipSoo. (3.13)
XeX Py

Due to the fact that £, is the minimum value of each individual criterion over the

feasible solution space, £, (x) — f, > 0. Hence, the partial derivative of the scalarized

objective function f with respect to each constituent criterion is positive. According
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to the theorem that the solution of a scalar objective function is sufficient for Pareto
optimality if the objective function increases monotonically with respect to each
criterion (Stadler 1988), the solution of (3.13) is thus sufficient for Pareto optimality.

The increase of a component w; will push the solution of the related criterion f,(x)

toward the ideal solution f, . Therefore, varying wy in the nominal interval of {0, 1]

can generate a set of Pareto optimal solutions.

3.2.3 Weights assignment and analytic hierarchy process (AHP)

The weight wy in the formulation of compromise programming is attributable to the
decision maker's preferences accounting for the relative importance of each objective.
A wide range of techniques exist for the development of weights, including point
allocation, different ranking methods, and pairwise comparison. When point
allocation is used to develop weights, the weights are estimated by the decision
maker on a pre-determined scale, the more points an objective receives, the greater
its relative importance 1s. The total of all objective weights must sum to 1. This
method is easy to normalize. The ranking techniques, such as rank sum, reciprocal,
and exponent, also provide a satisfactory approach to weight assessment. As a
starting point in deriving weights, these ranking methods provide a way of
simplifying multicriteria analysis. However, the ranking technique is limited by the
number of objectives to be ranked. It is therefore inappropriate for a large number of
objectives since it becomes very difficult to straight rank as a first step (Malczewski

1699}.

Among various methods in assessing criterion weights, the analytic hierarchy process
(AHP) (Saaty 1980) using the pairwise comparison technique is commonly
employed. AHP works basically by developing priorities in terms of the relative
importance judged on a scale of 1 to 9 (nine-point scale). The importance of each
objective is individually determined and a pair-wise comparison matrix is created.
The eigenvalues of this matrix are then calculated and these eigenvalues are
employed as weights of the objectives. In detail, to assess weights to a set of m

objectives by means of AHP, the procedure is described as follows:
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Step 1: Generating the pairwise comparison matrix.
Given a pair of objectives each time, a nine-point scale value is used to specify
and rate the relative performance for all the pairs. The definition of the value is
shown in Table 3.1. The comparison forms a ratio matrix (Table 3.2). The upper
right of the matrix is the values assigned by a dectsion-maker, while the lower
left of the matrix 1s filled up with the reciprocal value corresponding to the
respective element. The diagonal elements are all equal to 1 as the objective is

compared with itself.

Table 3.1 Rating scale for pairwise comparison

Intensity of Definition
Importance
1 Equa! importance
2 Equal to moderate importance
3 Moderate importance
4 Moderate to strong importance
5 Strong importance
6 Strong to very strong importance
7 Very strong importance
8 Very to extremely strong importance

9 Extreme importance
Source: Saaty (1980)

Table 3.2 Pairwise comparison ratio matrix

obj 1 obj 2 obj 3 - obj m
Obj_l 1 W2 W3 Wim
obj 2 1/ wyy 1 W3 Wim
0bj_3 1/ W3 1/ Waa ] Wim
obj m 1/ wim H wam 1/ wam ]

Step 2: Computing the objective weights.
AHP computes a weight for each objective based on the pairwise comparisons
using mathematical techniques such as eigenvalue, mean transformation, or row
geometric mean. In this rescarch, the eigenvalue technique is employed for
computing the weights under AHP.
2.1 Add up the values of each column of the pairwise matrix:
sum =1+ 1w+ Vwi+ .o+ 1wy,

sum _2: Wy + 1+ 1/\v23 + ...+ 1 Wim
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SUM M= Wip + Wap + Wi, + ...+ 1
2.2 Recalculate each element in the matrix by dividing its current value by its
corresponding column total: w; =w, [fsum_j (i,j=1,...,m)
2.3 For each row, add up the new value of each element, and then average the

sum by the number of objcctives. The final output is the relative weight (w" )

of the objectives;

m
wi =3 w, |m

-1

i=

Note that due to the normalization process, the sum of these weights 1s equal
tol,ie Y w =1.
i=1

Step 3: Testing the consistency of pairwise judgment.
In AHP, afier the generation of the relative weights of the objectives, the degree
of inconsistency of the weights is tested by computing consistency ratio (CR)

through a number of steps (Malczewski 1999).
3.1 Calculate the consistency vector (¢) for each objective. The consistency

vector 1s computed by dividing the weighted sum vector by each individual

objective weight (w; }. The computation is performed row by row. The
weighted sum vector is the summation of the products of weight w by cach

of the original weight w, in this particular row i, that is:
C =Z:wiwn/w1
-1
¢, = ZW;W;:_, /w,
1=1
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m
c, = ZW;WW W,
-\

3.2 Calculate the average of the consistency vectors (¢}, Amax: 4, = an / m

-1

3.3 Compute the consistency index (CI): CI =(4,,, —m)/(m-1)

3.4 Calculate the consistency ratio (CR) by dividing the consistency index (Cl)
by the random index (RI): CR =CI/RI . The value of RI varies with

different number of objectives being considered, and it can be checked out
from Table 3.3.

Table 3.3 Random inconststency indices

m ] 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ri{00071000[058[090 .02 (1.24 [ 1323 1.41} 145|149 | 151 | 48 | 1.56 | 1.57 | 1.59

Source: Saaty (1990)

As suggested by Saaty (1990), if the resulting CR < 0.1, it indicates that the weights
produced through pairwise comparisons are consistent; else, if CR > 0.1, it indicates
inconsistency in the weighting process. In this case, the pairwise judgment should be

revised and the weights should be recomputed accordingly (Malczewski 1999).

3.2.4 Compromise-programming-based multi-objective route planning for DG

transportation

Multi-objective DG route planning can be identified as an application in
transportation planning. The shortest path problem is one of the typical problems in
the design of transportation network. It deals with the search for a path from a source
to a destination that minimizes the sum of the weighted constituent links. For the
dangerous goods transportation problem, the “shortest” path could be the one with
minimum population exposure risk, or lowest accident probability, or least operating

cost, or the efficient combination of all such objectives.

Various solution techniques have been developed to solve the shortest path problem.
Important algorithms include Dijkstra's algorithm (Dijkstra 1959), Bellman-Ford
algorithm (Bellman 1958; Ford and Fulkerson 1962), A* search algonthm (Pear!
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1984), Floyd-Warshall algorithm (Floyd 1962; Warshall 1962), and Prnim's algorithm
(Cherition and Tarjan 1976). Dijkstra’s algorithm searches for the shortest paths from
a single source vertex to all other vertices in a weighted, directed graph. All weights
(i.e. edge-travel costs) must be non-negative. The Bellman-Ford algorithm also
solves the single-source problem. However, unlike Dijkstra's algorithm, the Bellman-
Ford algonthm can be used on graphs with negative edge weights, as long as the
graph contains no negative cycle reachable from the source vertex (node) s. The A’
algorithm searches for the least-cost path from a given source node to the destination.
It uses heuristic information (including the cost from the source node to the current
node, and a heuristic estimate of the distance to the goal) to determine the order in
which the search visits nodes in the tree, so that the search becomes more efficient.
The Floyd-Warshatl algorithm finds shortest paths in a weighted, directed graph with
negative cost edges. A stngle execution of the aigorithm can lead to the finding of the
shortest paths between all pairs of vertices. The Piim's algorithm finds a minimum
spanning tree for a connected weighted graph. The process that underlies Prim's

algorithm is similar to the greedy process used in Dijkstra's algorithm.

Among various shortest path algonthms, Dijkstra’s algorithm is one of the most
well-known and commonly used algorithms. Starting with the source node,
- Dijkstra’s algorithm searches for the shortest path from the source node to one
additional node within the network in each subsequent iteration. The procedure
requires n - 1 iterations to find the shortest path tree. The algorithm uses a set S (i.e.
the set of solved nodes) to store the nodes for which the shortest path has already
been established by the algorithm at the current point. At initialization, the travel cost
of the source node s is set to 0, and the costs of all other nodes are assigned the value
of infinity. While iterating, the algorithm assigns a new value to each node ¢ in the
network, which represents the travel cost (i.e. length) of the shortest path to node ¢
from s through the members of S. At the end of the algorithm, the final value of node

¢ is the ultimate travel cost of the shortest path from s to ¢.

The Dijkstra’s algorithm 1s essentially a labeling method. It 1s based on a node
selection rule which ensures that the shortest path tree is constructed by
“permanently labeling” one node at a time (Zhan and Noon 1998). Once a node is

permanently labeled, its optimal shortest path distance from the source node is
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identified. To be specific, denote G = (N, 4, ('} as a directed network, where N - {1,
2.0, A={U. Nli,jeN ) and C = {c, |(, oA} are the sets ot nodes, arcs and
arc-travel costs respectively. It is assumed that (& does not comprise any cycle with
negative cost, and that the costs ¢, are additive along the arcs. 1t should be noted
that most road networks satisty the assumption of directed graph since cach side of
the road is usually dedicated to onc direction only. For bidirectional graphs.
undirccted links can be achicved by splitting cach bidirectional link into two
unidirected links between the same extreme nodcs. Let node s be the source node of
the path, ¢ be a sink node on that path, and f(#) be the total travel cost of the
currently known shortest path between s and 1. Let (f) be the parent node, or

predecessor, of node 1 in the current shortest path trom s to £ Let S be the set of

solved nodes to which the distance from the source node s 15 shortest.

« Step 1: Initialization.
Set suitable values of f(r) and ¢(¢) for all nodes . For instance,

f(s)=0and f{t)=c0 ifr#£ 5, and @(t)- . 5= {5}, Vie N\ {s}.

« Step 2: Label setting.
Find an arc (i, ) € 4 (node sclection) such that f(i)+c¢, < f(f) and
update the shortest path tree by sctting a new “label™ (f() (/)
with f(j)= f(i)+¢, and @(j) = i(labeling phase). Update the set §

by adding node j to S.

»  Step 3: Repeat Step 2 unul f(7) +¢, 2 f()) torevery arc (4.)) e 4.

The above procedure computes a shortest path tree from one source node to all the
others in the network. [t can also be used to find costs of shortest paths from a single
source node to a single destination node by terminating the algorithm once the

shortest path to the destination has been determined.

The Dijkstra's algorithm can only solve single objective shortest path problem. Route
planning for DG transportation, however, involves multiple objectives with reference

to operating cost, accident probability, cxposure risk. and cmergency response
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capability. Hence multi-objective shortest paths nced to be determined. This is far
beyond the capability of the conventional Dijkstra's algorithm, since running
Dijkstra's algorithm to different objectives can only cstablish the corresponding paths
being optimal in one particular objective. In order to address this issue, a modified
Dijkstra's algorithm is proposed in this research, which incorporates compromise
programming in the scarch £or the Pareto optimal routes tor DG transportation. Due
to the multi-objective nature of the problem, the single cost ¢, of traversing link (i, j)
used in Dijkstra’s algorithm is replaced by the multidimensional attributc‘vcclor

c(i, j) = (¢, cyncy ). For the DG routing problem with m objectives, the proposed

algorithm works as tollows:

*  Siep 1: Pre-determine the value of the parameter p and a set of weights (wy,
W, ..., w,) for the objectives under consideration. The weights are generated
by making use of AHP through pairwise comparisons. Test the degree of

inconsistency of the weights to ensure that the weights produced be consistent.

» Step 2: Initialization. Set suitable values of f(¢) and @(¢) for all nodes ¢

J(s)=0and f(t) =0 ifr£s,and @)= Q. 5= {s}. Vi e N\{s}.

» Step 3: For cach objective &k (k = 1, 2, ..., m), search the shortest paths {to be
exact, the least cost paths) from the start point s to cach node on the network
by making usc of Dijkstra’s algorithm, and then save all least cost values

Jo@y k=12, ..., m:ie N)inanarray.

« Step 4: Find an arc (4, j) € 4 such that for each individual objective & (k= 7,

20 om), (i) 7 fi() + cb, and for all objectives under consideration,

" Ve
[ ()= {Z w, (f;(:')-—_/;' (:'))'"} < f(j}. update the shortest path tree by
k=

setting a new “label” ( /(J).@(/)) with f(J) = 1) and ()= i. Update
the set § by adding node j to §.
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» Step 5: Repeat step 4 until f(i)+ ¢, = f(j) tor all objectives and every arc
(i, j) that constilutes the path between the start point (source) and the end

point (destination).

Step 4 is the key step of the proposed algorithm. It modifics the classic Dijkstra’s
algorithm by taking nto account multiple objectives in the cost calculation for each
link. Let (i, ) be a link, between the source s and the destination v, with node j and its
immediate predecessor /, i, j # 5, and i, j # v. For cach individual objective £, link (i,

7) bears a cost ¢} . The cost of traversing from node / to node j for objective k is

calculated as: f, (i) = /, (i)+:,':. For all objectives considered, the overall cost of

. Vp
traversing link (i, j) is obtained as: / (i) = {Z W, (/;(i)— j:(i))"} . Compare the
k=1
value of /(i) with the previously recorded value on node J, i £ (i) < £(/) (infinity
in the beginning), overwrite f () with /£ (7); otherwisc, keep /() as the “label” of

node ;.

An upper bound of the running time of an algorithm is ofien referred to as the

‘complexity of the algorithm. It is derived that the implementation of the modified
Dijkstra’s algorithm has complexity ()(m(n2 +e)) , where m 15 the number of
objectives considered. n and e are the number of nodes and edges (arcs), respectively,
of the network ( defined carlicr. This 1s apparently a modification of the
computation time for the conventional Dijkstra’s algorithm. Implementing the
conventional Dijkstra’s algorithm to find a single objective shortest path runs i
O(nz) time. With the increase of the objectives concerned, the complexity of the
algorithim will increase accordingly. In the modified Dijkstra’s algorithm, to evaluate
the disutility for cach arc, we must first solve the shortest path problem m times for
each objective: it takes the time proportional to ()(mnl) using the conventional
Dijkstra’s algorithm. Next, for cach arc, we compute its disutility value, and it takes
the time proportional to O(me) lor all arcs. Using the modified Dijkstra’s algorithm

in line with the utility function (3.12), we compute the multi-objective shortest path
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in time O(nz ), and thus the total time of the proposed modified Dijkstra’s algorithm

for solving MOSP problem is ()(m(n2 + e))

It is not difficult to prove the correctness of the proposed modified Dijkstra’s
algorithm because the proof is essentially the same as that of the classic Dijkstra’s
algorithm. In fact, with the aid of CP, the multiple weighted objectives are combined
meaningfully to form a dimensionless overarching objective function. As a result, the
original MOSP comes down to a single-objective shortest path problem, which can

be solved by the modified Dijkstra’s algorithm in polynomial time.

The proof can be obtained using proof by contradiction. Denote S as the set that
consists of the vertices whose distance to the source node s is shortest; d[«] as the
cost of a path from s to node w, u # 5 sDist[s, 4] as the cost of the “shortest” path
from s to u. Before proceeding with proof, we claim some facts/lemmas first.

» Shortest paths are composed of shortest sub-paths. This is based on the notion
that if there was a shorter path than any sub-path, then the shorter path should
replace that sub-path to make the whole path shorter.

« Ifs—...— u— vis ashortest path from s to v, then after u is added to S, d[v]
= sDist[s, v] and dfv] 1s not changed thereafter. It takes advantage of the fact
that at all times d|v] = sDist[s, v].

After running the algorithm, we get d[u] = sDist[s, «] for all #. Once u is added to S,

d[#] i1s not changed anymore and should be sDist(s, u].

Proof by contradiction:
Suppose that w 1s the first vertex added to S for which d|u] # sDist]s, u]. Note
that & cannot be s, because d[s| = 0. In addition, there should be a path from s

1o u; otherwise, d[«] would be infinity.

Let s — x — p — u be the shortest path from s to «. x 1s within S and y is the
first vertex not within S. When x is inserted into S, d[x] = sDist[s, x]. Edge (x,
v} was relaxed at that time. Hence our claim that d[y] = sDistfs, y] folows

from the convergence property, and we have d[y] = sDist[s, y] < sDist[s, u] <
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d[u]| (By the upper bound property). Now both y and « are in & when u is
chosen, so d{u] < d[y]. Conscquently, the two inequalities must be equalities:
dly} = sDist|s, y] = sDist[s, u] = d{u}. Hence d[u] = sDist[s, u], which
contradicts our hypothesis. Therefore, when each w is inserted, d[u] = sDist[s,

ul. M

Figure 3.6 Correctness proof of the algorithm

3.3 An adaptive weighting approach to multi-objective route

planning

The preference based multi-objective path optimization methods, such as weighted

sum approach and compromise programming, are aimed to find the Pareto optimal
| paths in a pre-determined fashion. The weights accounting for the preferences for
different objectives are defined a-prion by a decision-maker. In some cases, however,
decision makers may find difficult to state their preferences before they have an
explicit conception of the actual trade-offs involved. As Zionts and Wallenius (1976)
stated, decision makers in general are accustomed to responding to the trade-oft
questions in the context of a concrete situation (i.e. the trade-offs that are attainable
from realizable situations) rather than in the abstract. Consequently, it is often
desirable to generate the efficient solutions first, and then let decision makers select
the most preferred or the best compromise solution from this set. Generating the
entire Parcto optimal set may not be efficacious as it becomes difficult to make a
selection due to the large number of alternatives. A more etfective solution is to
generate a subset of non-dominated solutions that i1s small enough to be handled by a
decision maker, and yet large enough to give an overview of all the possible trade-

offs among conflicting objectives.
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3.3.1 A framework to explore the Pareto front

As one of the two major solution techniques for multi-objective path optimization
problems, the generating approach attempts to obtain a set of Pareto-optimal paths
for a given MOSP, with the ultimate goal of sampling a well-extended and uniformly
diversified Pareto front. A variety of generating methods have been developed,
ranging from exact methods, such as multi-objective linear programming and
dynamic programming, to a series of heuristic approaches, such as simulated
annealing and tabu search. However, most of these methodologies fail to explore the
non-convex part of a Pareto front that may be of interest to decision makers. Some of
them also suffer from cxcessive complexity, requiring the solution of an exhaustive

computation problem or generating too many solutions for a straightforward choeice.

An alternative to both the generating techniques and preference-based techniques is
to define a parametric objective function that behaves like a utility function and can
generate multiple Pareto-optimal paths for multi-objective path optimization problem
by varying the parameters. A careful choice of these parameters makes it possible to
directly generate reasonably good paths, which provide an approximation of the set
of optimal paths without too much redundancy. As a result, decision makers are
presented with a small set of solutions for the final choice, and yet feel reasonably

confident that the key options have not been overlooked.

Recall that the best possible outcome of a multi-objective (minimization) problem
would be the ideal point F’ where each objective achieves its optimal value
simultancously, or the utopian point defined as F' =F' - ¢, £ 20 with very small

components. As stated in section 3.2.1, the advantage of using utopian point is to
cnsure that there exists a positive weight vector such that a feasible MOP solution is
at least weakly non-dominated. This will be clarified further later in this subsection.
It is well-known that when the objectives involved in a MOP are conflicting with
each other, it is impossible to attain either the ideal point or the utopian point.
However, this point can serve as a reference point for the search of a feasible

. solution closest to it. This 15 the basic notion of CP. Based on this notion, a
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parametric objective function is adopted, which is commonty used in CP to measure
the distance between an efficient solution point and the reference point F°
F° e {F',FY}. As-introduced earlier, a general formulation of the CP problem is

expressed as:

min | F(X)-F°| (3.14)
Generally, the weighted metric Lp =\| . n‘; with (p > 1) is adopted so that the CP

problem is formulated as

” "\ :
min [Zﬁk(f,‘(k'%fk”) J : A, >0,1<p<w, (3.15)

for general p, and
minirlllai(l,(f*()()—ff)), A, >0 (3.16)

for p = o, where A, designates the k-th positive weighting coefficient. Lp is strictly

monotone for 1 € p < « and monotone for p = o (Ehrgott 2005).

Since the structure of the CP problem depends on the choice of the metric, we use the
notation CP(p, 4). Our primary concern here is the case in which the parameter p
takes the value of infinity. As introduced in subsection 3.2.2, when p = oo, the CP(co,
A ) becomes a min-max problem, which minimizes the following parametric

objective function:
U@ f)= max (R (L CO-/D) 4 >0 (3.17)

U().. f ) is not exactly a utility function in the sense that 1s defined in subsection
3.1.2 since it is not strictly increasing. For example, a route R, with attributes
'f,, =(0,1,..,1) dominates a route R, with attributes f, =(1,1,...1), but their
maximum weighted attribute is equal most of the time. Hence, the minimum of the
function (3.17) may not be strictly non-dominated. However, any non-dominated

route minimizes U(4, ) for a given positive weight vector, 4.

The CP(co, 1), referred to as the weighted Tchebycheff approach, is of significance
in generating Pareto optimal solutions. Bowman (1976) shows that for every Pareto

solution there exists a positive vector of weights so that the corresponding CP(w, 1)
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is solved by this Pareto point. Figure 3.7 shows the same efficient frontier that is
depicted in Figure 3.3. For the given reference point I/ and the weight vector w, the
solutions of CP(e0, A ) can be geometrically identified as the points of contact
between the efficient frontter and the corresponding level curve (“square wedge™) of
the weighted Tchebycheff metric. It is observed that varying the reference point and
the weights, one may reach all the efficient points located on the arc between points
A and B. Therefore, in this research, an adaptive weighting method based on the
weighted Tchebycheff is developed to solve the multi-objective DG routing problem,
which guarantees that a set of efficient routing paths can be generated; moreover,
these solutions can provide decision-makers with an overview of the solution space

and the possible trade-offs among the conflicting objectives.

e

U

Y

Figure 3.7 Generating Pareto-optimal solutions by the weighted Tchebycheff approach

It should be noted that, as illustrated earlier, the solutions obtained by means of the

weighted Tchebycheff approach are weakly non-dominated when F° = F" . The proof

of this notion is as follows:

Proposition: A feasible solution x € X is weakly non-dominated <> there exists a

weight vector 2 > 0 such that x is an optimal solution of the problem (3.16).

Proof:
“<=" Suppose x is an optimal solution of the problem (3.16) and x is not

weakly non-dominated. Then for a strictly positive weight vector 4. > 0, there

is some x'e X such that0 < A, (f,(x") = £/ ) < A, (f,(x) - f") . Divided by 4
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we get £, (x)— f < fi(x)-f forall k=1, ..., m, which contradicts the

optimality of x .

“=" The necessity property can be proved by defiming appropriate weights.
Let Ay = 1/(fi(x) - fU), k=1,...,m Since (£”,.... £, ) is the utopian point,

A is strictly positive for all &£ = 1,..., m. Suppose X is not optimal for (3.16)

with these weights. Then there is a feasible x'e X such that
max 4, (f,(x") = £")
1

=k=}.axm-f_;"(x-—):“—;_;(fk(x =)
<ggfnm(ﬁ(i)—ﬂ”)=l

and therefore

LU =f) <) forallk=1, .. ., m.

Divided by 4 we get £, (x') - f,” < f,(x)- f forallk=1,..., mand thus

f(x") < f(x), contradicting the fact that x is weakly non-dominated. O

~ In summary, any Pareto optimal solution can satisfy the min-max formulation (3.16)
for a given positive vector 4; on the other hand, by solving (3.16), a weakly non-
dominated solution can be obtained. Furthermore, if this optimal solution is unique, it

is then Pareto-optimal. For proof of the last proposition, refer to subsection 3.2.2.

Recall that the exponent p in the formulation of compromise programming has the
effect of adjusting the curvature of the objective function, and an increase of p is
favorable to capture the non-convex Pareto optimum set. When p—owo, the

corresponding CP problem becomes a min-max problem formulated as (3.16).
Consider the function § = max(/l, £ AL ) A geometrical interpretation shows that

in two-dimensional space, the isolines of such a function form a square wedge and
that the inner part of the wedge corresponds to the set of solutions dominating the
summit of the square angle (Figure 3.8). The shape of the isolines is ideally suited for

the exploration of both the “convex™ and “concave” parts of the Pareto front, while
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ensuring Pareto-optimality of the points encountered. Hence, an approximation of the

Pareto front can be obtained by solving several instances of the min-max problem
min max (A, (o) - £5), A >0,
where ( £°,..., ) defines the search origin, and the reciprocal of the weight’s vector

(1/4;, 1/4;, ..., 1/An ) designates the search direction (Wierzbicki 1980, 1986).
Figuratively, solving an instance of this problem is equivalent to exploring the Pareto
front along the specific line joining the reference point and the nadir point (the anti-
ideal point, which is defined in such a way that it is composed of the worst values
obtained for each objective) of the current exploration region. For instance, in a two-

objective case shown in Figure 3.8, when minimizing the parametric objective
function’s value C, the isolines of ma.xr(/'tJ 2. f 2)= C will move downward along
the line joining the reference point U and the nadir point, and reach the Pareto front.
This approach can be viewed as an example of the achievement scalarizing function
(Wierzbicki 1982). The main structure of an achievemem scalanizing function is
based on the weighted Tchebycheff distance from the reference point to the feasible
set. In other words, the maximum (unwanted) deviation from the reference point is
minimized.

objective /3
L}

isolines of mad2,f,, i f;)=C

. . L. + Pareto-optirnal solution

objec—u've I

Figure 3.8 Isolines of mauc(ﬂ.Jr A0 ) = ( used to derive both the convex and
concave parts of Pareto optimal

Since it is closely related with the weight coefficients which vary with the search
direction in the objective space, the proposed methodology can be considered as an
adaptive weighting method. Although the weight coefficients are involved in both

methods, the generation of the weights in the proposed adaptive weighting method is
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‘essentially different from that in the weighted Tchebycheff approach. The weights
employed in the latter method are generally created based on a decision-maker’s
preferences for different objectives. In the proposed adaptive weighting method,
however, the weights are calculated based on certain heuristics. No prior knowledge
of relative importance of each objective 1s used. Through adaptively adjusting the
exploration in the objective space, the weights can be generated accordingly, and a
good approximation of the Pareto front can then be achieved. This will be discussed
in detail in the next subsection.
‘Q
3.3.2 Sampling the Pareto front

The number of Pareto-optimal solutions to the multi-objective shortest path problem
may increase exponentially with the size of the network and the number of objectives
(Hansen 1980). Therefore, identifying and presenting the entire Pareto optimal set is
practically impossible due to its size. A practical approach is to investigatg a sét of
solutions that represent the Pareto optimal set as well as possible so that the decision-
maker can easily understand the available trade-offs and select desirable paths. The
previous subsection has defined a mathematical tool to explore the objective space
along a given direction. By varying the origin and direction of exploration, one can

generate a good approximation of the Pareto front.

Studies show that an approximation of the Pareto front without prior knowledge of
the actual one can be achieved by means of heuristic methods. In order to improve
the efficiency, an adequate heuristics should seek a balance between the amount of
information provided and the computational time required to obtain it. In this
connection, an ideal algorithm should effectively combine exploration of the largest
unexplored regions of the objective space with exploitation of the previously
encountered solutifms {Hughes 2003). The goodness of an algorithm can be reflected
by the quality of the approximate set, which is generally measured in terms of
diversity of the generated solutions, uniformity of their distribution, and cardinality
(Kim et al. 2000). More specifically, a diverse set of efficient paths is essential to
provide backup alternatives in case the designated route is affected by an unexpected
event. A relatively even distribution of the solutions is beneficial to the unbiased

presentation of the possible trade-offs among alternative routes. Finally, a reasonable
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size of the approximate set is of utmost importance. ldeally, it should be small
enough to be handled by a decision maker and yet large cnough to give an overview

of all the possible trade-offs among conflicting objectives.

The major concern of the proposed adaptive weighting method i1s how to alter the
weights so that a good approximation of the Pareto front can be efficiently generated
with an acceptable amount of the solutions. In our solution, once a Pareto-optimal is
obtained, the search space will be partitioned into smaller pieces, and the regions that
are either dominated by the known optimal solutions or free of optimal solutions will
be discarded. The search origin and direction are then adjusted based on the largest
uncxplored space that may contain cfficient solutions.

objective f; objective f;

A A
Ra Re
¢

o @  objectivefi O

b region dominated by the known
Pareto-optimal solutions

E | region free of optimal solutions +  Pareto-optimal solutions found

/ search direction

regionsto be explored for Pareto

. . Pareto front
optirnal solutions

Figure 3.9 (a) Partition of the two-dimensional search space; (b) determination of the
search origin and direction basced on the largest unexplored sub-region

As shown in Figure 3.9 for the case of two dimensions, points R, and Rj represent
two “extreme” solutions which individually minimize each of the two objectives.
When a Pareto optimal point R, is found, the objective space can then be partitioned
into three kinds of regions. Region D is dominated by a known solution R,, hence no
Pareto optimal point will exist there. Region E is obviously free of optimal solutions.

Therefore, only regions S are the ones that necd to be explored, with a possibility that
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the Pareto optimal points might be found there. Once the larger unexplored region
(e.g. the lower left sub-region S) is identified, the search origin and direction of the
exploration for new Pareto optimal solutions can be determined accordingly. The
way of comparing the promising unexplored regions is to compare the area of each
concerned region because only two objectives are being considered here. When the
dimensions m is higher than 2, the notion of volume is used to compare the
unexplored regions. The calculation of the exact volume of the regions can be very
cumbersome when m 1s large. For the sake of simplicity, in this research, the volume
of the unexplored region is broadly estimated as the product of difference on each
individual objective value between the nadir point and the reference point of this

particular region.

A list of unexplored regions is carefully maintained in implémenting the proposed
method. The list is sorted in descending order of volumes so that the largest
unexplored region is always the next candidate to search for an additional point.
Each time when a new efﬁci(;:nt solution is found, the list will be updated
subsequently. In that list, every unexplored region is described by its utopian point
and nadir point, its expected volume, and the known solutions lying on its boundaries.
The utopian point and the nadir point of an unexplored region are defined as the
" lowest point and the furthest summit of the region, respectively. The proposed

procedure works as follows (Figure 3.10):

o Step 1: For each objective &, search for the optimal solution f;, and thus

define the utopian point U = ( £, 7,,.., £ ) and the nadir point V =

(£, £ ... 1)) Based on U, V, and the optimal solutions obtained for each

individual objective, the region to be explored can be 1dentified. Initialize the
list of the unexplored regions.

s Step 2: Remove the largest unexplored region from the list and define the
new search origin and the new searching direction A based on the attributes of

Uand Vas A= (A, A2, ... An), where X = 1/( f, I k=1, m

e Step 3: Solve the min-max problem (3.16).
e Step 4: If the solution found is already known, resume at Step 2; else a new

N
solution i1s found. Calculate the new unexplored regions lying between this
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new solution and its neighbors according to their objective values, then
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Figure 3.10 Iterative search for Pareto-optimal solutions in two-dimensional
objective space

In Step 1, the utopian point U = ( 7, £/, ..., £ ) is computed as a result of m single

objective optimizations with each objective serving as an objective function at a time.

Once the utopian point is determined, the information found is then used to compute

an estimate of the nadir point ¥ = ( £, f,,... £ ). An approximation of V is

defined in such a way that for each criterion &, f represents the worst value

obtained during the computation of the utopian point. It should be noted that except

for the first iteration, the attributes of U and V in Step 2 need to be updated in each

iteration according to the known Pareto-optimal lying on the largest unexplored

region. To solve the min-max problem min(max (’13 (f,(X)— ff))] in Step 3, a

classic labeling algorithm is employed in our case, along with proper modifications,
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to vield the desirable minimization solution. The algorithm stops when a subset of
Pareto-optimal solutions of the desired size has been obtained or when the proportion

of the remaining unexplored sub-regions is sufficiently small.
3.3.3 Implementation issues
3.3.3.1 Complexity of the algorithm

As introduced in the preceding subsection, the procedure proposed to approximate
the Pareto front mainly consists in managing the'list of unexplored regions. After

initialization, a typical iteration of the algorithm is as follows:

First, select the largest unexplored region. Since the list of unexplored regions
is sorted in descending order of volumes, the largest one is always the first
element in the list. Based on the largest unexplored region, we can define the

current search origin and direction, and solve the corresponding minimization

problem minU(4, f) to obtain a new Pareto point (solution). The

minimization operation results in a complexity of O(m(n2 +e)), where m is the

number of concerned objectives, n and e are the number of nodes and edges

(arcs), respectively, of the network G defined at the beginning of this chapter.

Next, verify th‘at the newly found solution is not already known. This can be
done by comparing this solution with ¥ non-dominated solutions that have
been found so far (exclude the extreme solutions found during the phase of
initialization). Since therc are m attributes which need to be compared, this

operation can be accomplished in O(Nm).

Subsequently, subdivide the currently explored region based on the newly
found point, which can create at most m sub-regions that may contain Pareto-
optimal solutions and thus need for further exploration. For each of these
unexplored sub-regions, calculate the coordinates of the Nadir point and
broadly estimate the unexplored volume, which result in a complexity of O(m)

and O(m?), respectively.
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Finally, update the list of unexplored regions by inserting the newly created
ones in the sequence, which requires a dichotomous search over the volumes.
This is of complexity O(mx s log(s)) where s is the number of elements of the
list. If ¥ non-dominated solutions have so far been found (excluding the
extreme solutions found during thé phase of inttialization), the list of
unexplored regions will contain at most s = N xm — (N —1) elements, because
each non-dominated solution defines m unexplored sub-regions in the objective

space but (N —1) of them are counted twice.

Note that the bounds on the complexity given in the above are broadly estimated, and
thus are probably loose. Nevertheless, one may notice that among those recursive
steps, the first step has abéolutely higher complexity than each of the rest typical
iterations. This step involves solving a non-linear integer program of NP-hard
“difficulty. The main computational burden in terms of run-time and memory space,
therefore, comes from this step. Hence, the efficiency of the procedure proposed to
approximate the Pareto front depends largely on the efficient solution of this step. In
addition, it is also essential to keep the number of iterations small and to make the

most of each 1teration.
3.3.3.2 Solving the min-max problem

Although managing the list of unexplored regions can be onerous, it 15 not as

computationally expensive as solving the min-max problem,
min(*miax (/1* (f,(X)- ff))]. The general min-max optimization problem in various

forms has long had the attention of researchers. A number of approaches for handling
the min-max problems have been reported in previous studies. The commonly used
methods include the classical and augmented Lagrangians (Kim and Choi 1998;
Polak and Royset 2005), the standard and improved branch-and-bound algorithms
(Yamada et al. 1997 Jansson and Kniippel 1995), etc. However, in the case of
network routing problem, both Lagrangians and branch-and-bound algorithms are
unlikely to outperform the labeling algorithms in solving the shortest path probiem

developed from the original min-max problem, because the labeling algonthms are
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specifically designed to make use of the network shape. The labeling algorithms
process the links in the optimal order and run faster than a standard linear
programming solver (Gutiérrez and Medaglia 2008). With this consideration;, the
Dijkstra’s algorithm, a classic node-labeling algorithm, is employed, with proper
modifications, to search for the mmnimum of the disutility function

U(l.f)=Eax(ﬁ.k(f,(/\’)—ff)) . Given the muilti-objective nature of our

application problem (i.c. optimal route planning for DG transportation), the cost of
traversing link used in the conventional Dijkstra’s algorithm is, in our case, not the
value of any single criterion, but rather the largest element of the weighted

“distance” between the point being explored and the reference point among all the

objectives examined, that is,c, = )mexl (lk( L =1L )) The procedure of solving
{i.ieAd k=1, m

the min-max problem by means of the modified Dijkstra’s algorithm is similar to that
of the conventional Dijkstra’s working on shortest path problem. The recursive step
of the algorithm can be put as follows:
finding an arc (i, j)€ 4 so that the cost f{i) of traveling from the origin to node i
increased with the cost ¢, of travelling along (i, f) is less than the present cost
of travelling from origin to node j: £i) + ¢, < f{7). If such an arc exists, then
node i becomes the predecessor of node j in the shortest path and the procedure
resumes, otherwise the present cost of travelling from the origin to node j is the

minimum cost.

However, everything has a cost. While the labeling algorithm can solve the min-max
problem more efficiently than a standard linear program solver such as branch-and-
bound procedure, it causes another problem for implementation, namely the memory
space requirements. Unlike the branch-and-bound algorithm, the labeling algorithm
" requires large amount of computer memory to store the list of temporary labels for
every node. Considering the increasing capabilities of desktop computers in terms of

speed and memory space, this issue, however, seems insignificant as a whole.
3.3.3.3 Estimation of the potentially Pareto-optimal volumes

The proposed adaptive approach approximates the Pareto-front by exploring the

empty regions that may contain Pareto-optimal solutions. The volume of these
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regions indicates the amount of information that remains unknown and decreases
with more efficient solutions sought, thus indicating how effective the approximation

15.

The simplicity of the two-dimensional case makes one underestimate the difficulty of
estimating these volumes. For example, consider a situation with three objectives as

shown in Figure 3.11.
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Figure 3.11 Partitioning of the three-dimensional search space

Suppose that Uy and V are the utopian point and the nadir point, respectively, of the
currently explored region, the point f is a non-dominated point found based on U
and ¥y. Region D is dominated by f and region E is free of optimal points. The
remainder of the cuboid is potentially Pareto-optimal. Following the proposed
procedure, there are three unexpiored regions along the three faces of region D,
namely the three cuboids with extreme vertex ¥y, V13, or V3. Strictly speaking, these
three regions are not completely unexplored as they all contain region £ where no
Pareto-optimal solution can be found. Therefore, the actual unexplored volumes
should be calculated by deducting the volume of region E from each of them. For
example, the exact volume of the unexplored region with the extreme vertex ¥

should be calculated as:

W -uswr-vi v -u)-(r -us )kt -ue s -us) (3.18)

Though it is relatively easy to calculate these volumes for the first iterations, it can
become extremely difficult to handle the succedent ones, especially when the number

of objectives is more than 3. As mentioned earlier, the purpose of calculating the
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unexplored volume is to compare the relative size of the unexplored region and to
identify the largest one accordingly in order to define the new search origin and
direction for exploring additional Pareto point. On the other hand, at each iteration,
the region free of Pareto-optimal solutions (i.e. the region of type region E) is
included in each of the unexplored regions. Whether including or excluding its
volume in the calculation of the unexplored volumes will actually not influence the
comparison result of the relative size of the unexplored regions. In view of this, in
the present study, each- of the potentially Pareto-oplima;l volumes is broadly
estimated as the product of difference on each individual objective value between the

nadir point and the utopian point of this particular region.
3.3.3.4 Termination criteria of the algorithm

The adaptive weighting algorithm produces one solution in each iteration. More
solutions can be generated through several iterations. The termination criterion of an
algorithm controls the amount of solutions produced. There are two ways to define
the criterion: it can either be defined as a desired number of solutions that is
sufficiently small to be handled by a decision-maker, or defined as the maximum loss
of information acceptable by the decision-maker. If either of the termination criteria
is satisfied, the iterative process of the algorithm will be terminated. In the proposed
adaptive method, the algorithm stops when a subset of Pareto-optimal solutions of
the desired size has been obtained, or when the proportion of the remaining
unexplored sub-regions is sufficiently small, that 1s, the total area of the unexplored

regions is smaller than a certain percentage of the initial unexplored region.

3.4 Summary

The transportation of dangerous goods is a multi-objective problem (MOP) with
stakeholders playing different roles and having different objectives. These objectives
are generally conflicting so that a unique solution that can optimize every single
objective is impossible. The solution of such problem is to search for one or a set of

“compromise” solutions, known as Pareto optima, which render the best possible
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trade-offs for conflict resolution among different objectives. The simplest and also
most widely used method for such MOP is to minimize a positively weighted sum of
all the objectives, thus transforming the problem to a much easier single objective
optimization. Traditionally, the weights represent the relative importance of each
objective provided by decision-makers, and only one solution can be rendered
accordingly. Although simple and straightforward, weighted sum approach suffers
from some drawbacks. In particular, this method often produces poorly distributed
solutions along a Pareto front. Neither can it find the Pareto optimal solutions in non-

CONnvex regions.

Motivated by the obvious need for more efficient solutions, a couple of MOP
techniques are proposed in this research, namely, the compromise programming
method and the adaptive weighting method. Compromise programming is a
multicriteria decision technique which employs a priori information on the
preference structure of the decision-maker to find a compromise solution amongst a
set of conflicting objectives. CP expresses the goal-seeking.behavior in terms of a
distance function. In order to achieve this, a reference point is taken to represent the
goal to be attained, and the distance to this point from any other point of the
objective space is minimized. l'n this research, without loss of generality, the
~ reference point is defined as the ideal point where each objective achieves its
minimum value simultaneously, and decision makers would prefer the solution
having a cost value as close as possible to the minimum. The distance between an
efficient point and the reference point is calculated by using the Lp-metric. The
weights accounting for the decision-maker’s preferences for different objectives are

computed by means of analytic hierarchy process.

Optimal route planning for DG transportation can be treated as a multi-objective
shortest path problem. The Dijkstra’s algorithm is one of the most commonly used
algorithms in routing analysis, which solves the single-source shortest path problem
with non-negative link cost. This algorithm, however, can only solve single objective
shortest path problem, whereas DG routing involves multiple objectives, and thus
multi-objective shortest paths should be derived. In order to address this issue, a
modified Dijkstra’s algorithm is developed in this study, which incorporates

compromise programming in search for the Pareto optimal routes for DG
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transportation. The core of the modification is to take into account multi-objectives
in the cost calculation for each link. The composite cost of a link is computed by
aggregating multiple attributes into a single one through compromise programming,
with the consideration of decision-makers’ preference for each objective and
perspective on the deviation of a feasible solution from the ideal solution. The
modified Dijkstra's algorithm guarantees that the solution belongs to the set of

efficient solutions.

The compromise programming model attempts to find the Pareto optima in a pre-
determined fashion. The weights accounting for the pr-efefences for different
objectives are defined a-priori by a decision-maker. In some cases, however, it is
difficult for decision makers to state their preferences before they have an explicit
conception of the actual trade-offs involved. Consequently, it is often desirable to
generate the efficient solutions first, and then let decision makers select ?he most
preferred or the best compromise solution from this set. Identifying the entire Pareto
optimal set is practically impossible due to its size. Therefore, a realistic approach is
to investigate a set of solutions that represent the Pareto optimal set as well as
possible. With these concerns in mind, an adaptive weighting method is developed.
Rather than an unnecessarily extensive search, this method focuses the searﬁh on a
particular region of the Pareto front in order to obtain a subset of the Pareto optimal
solutions. A weighted maximum utility function is adopted in the method. By
altering the weights adaptively according to the largest unexplored feasible region
and solving the corresponding min-max problem through custom-made labeling
algorithm, a relatively well-distributed set of Pareto optimal solutions can be
generated efficiently. When the approximation of the Pareto front reaches a pre-
specified resolution, the algorithm terminates. The proposed adaptive method is
capable of generating reasonably good solutions to present the decision-maker with

an unbiased overview of the possible trade-offs among the concerned objective.

The compromise programming model and the adaptive weighting approach are two
MOP methods proposed in this research to solve the multi-objective DG routing
problem. Both of them can be considered as the class of deterministic technique,
within which the exploration in the search space is goal-direqted, rather than a

random search. Besides the deterministic methods, the heuristic technique, i.e.
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genetic algorithm in our case, has also been explored in this research to search for
efficient solutions for multi-objective DG route planning. This will be elaborated in

the next-chapter.
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CHAPTER 4: EVOLUTIONARY MULTI-OBJECTIVE PATH
OPTIMIZATION

Route planning for the transportation of dangerous goods often requires the
optimization of multiple objectives that are conflicting and non-commensurable.
Many approaches have been developed to generate various routing alternatives.
These methods typically depend on a weighting mechanism to aggregate mﬁltiple
objectives into a single one. As a result, the process becomes a singlc-objective
optimization, and the outcome of this simplified process will largely depend on the
vector of weights employed. To generate the desired solution, the exploration in the
objective space is always oriented towards the expected direction. In other words, the
search is goal-directed, rather than a random search. In the literature of multi-
objective optimization, these optimization methods generally belong to the class of
deterministic technique. The compromise programming approach and the adaptive

method introduced in Chapter 3 fall within this category.

‘Since the 1960s there has been increasing interest in the simulation of living beings
to develop powerful algorithms for difficult optimization problems. Evolutionary
algorithm (EA), a probabilistic optimization technique, provides an altenative to the
conventional techniques. Among all the EAs, genetic algorithm (GA) is the most
widely used. GAs are a class of global search methods that are modeled after the
mechanics of natural evolution within populations and species via reproduction,
competition, selection, crossover breeding, and mutation. They operate with a
population of possible solutions rather than a single candidate. Therefore, they are
less likely to get trapped in a false local optimum. Moreover, a number of Pareto
optimal solutions may be captured during one run of GA. GAs are relatively simple
and easy to implement. They do not require any auxiliary information such as
gradients other than the evaluation of the multiple objective functions. These merits
make GAs very appealing as more reasonable candidate optimization tools for

optimal route planning for the transportation of DG.

This chapter introduces the proposed GA-based approach, a heuristic method, to the

multi-objective path optimization problem. First, GAs and their characteristics are
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briefly introduced at the beginning. Then the major components and basic structure
of simple GAs are examined. Subsequently, a detailed introduction of the proposed
GA-based heuristic approach to multi-objective route planning for DG transportation
is presented, which includes the genetic representation scheme of candidate solutions,
W initialization of population, and the evaluation of fitness. Finally, the genetic
operators used in the proposed GA are discussed with specifics on the

implementation issues

4.1 Genetic algorithms

4.1.1 Introduction

Evolutionary algorithm (EA), a probabilistic optimization technique which has been
proposed based on Darwin’s theory of natural selection, provides an alternative to
conventional techniques of solving optimization problems. The class of erlutionary
algorithms includes genetic algorithms (GA) (Holland 1975), genetic programming
(GP) (Koza 1992), evoluﬁonary programming (EP) (Fogel er al. 1966), and
evolutionary strategy {ES) (Schwefel 1995). Among all the evolutionary algorithms,
GA 1s probably the most widely used method. GA was first introduced by Holland
(1975) and it has been receiving increased attention thanks to the tremendous
successful applications in different disciplines, such as bioinfonnﬁtics, engineering,
economics, chemistry, manufacturing, mathematics, and physics (Tarafder et al

2005).

A genetic algorithm is a computational model simulating the process of genetic
selection and natural elimination in biologic evolution. As a highly efficient search
strategy for global optimization, GA exhibits favorabie performance on solving
multi-objective optimization problems. Compared to traditional search algorithms,
GA is able to acquire and accumulate the necessary knowledge about the search
space automatically during its search process, and control the entire search process
self-adaptively through the random optimization technique. Being a population-based

approach, GA can find multiple feasible solutions in a single run. The ability of GA
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to simultaneously 'search different regions of the solution space makes it possible to
find a diverse set of solutions for complex problems with non-linear objective
functions and non-convex solutions space. In addition, most multi-objective GAs do

not require users to prioritize, scale, or weigh objectives.

The basic idea of GA is to start with a population of potential solutions (represcnted
as chromosomes) instead of a single point in the search space, and allow the
population to evolve using genetic operations such as selection, crossover, and
mutation until the termination criteria are satisfied. In the evolution process, GA uses
a directed random search strategy: genetic operators such as crossover and mutation
perform essentially a blind search, while the selection operator hopefully directs the
search towards the desirable area of the solution space. This indicates that selection
plays an important role 1n exploitation, while crossover and mutation are cnitical in
exploration. A general principle for applying genetic algorithms to a particular real-
world problem is to make a good balance between exploration and exploitation of the
search space. To achieve this, all the components of the genetic algorithms, such as
population size, crossover and mutation rate as well as the mechanism used for
population initialization, individuals’ representation, and evolution imp.lemcntation,
should be examined carefully. Moreover, additional heuristics may be needed to

enhance the performance of the algorithm.
4.1.2 Overview of genetic algorithms

Genetic algorithm was first developed by Holland (Holland 1975). In general, GA
consists of five basic compor_lent'é as summarized by Michalewicz (1996):

1. A genetic representation of solutions to the problem;

2. A way to create an initial population of solutions;

3. An evaluation function rating solutions in terms of fitness;

4. Genetic operators that generate new individuals;

5. Values for the parameters of genetic algorithms.

A genetic algorithm generally starts with a population of randomly generated
individuals (i.e. chromosomes, each representing a potential solution to the problem)

and happens in generations. In each generation, the fitness of each chromosome in
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the population is evaluated by a predefined function. Multiple chromosomes are
stochastically selected from the current population (based on their fitness) and
modified (recombined and randomly mutated) to form a new population. The new
population is then used in the next iteration of the algorithm. This iterative process
continues until the termination criterion is satisfied. The general procedure of genetic

algorithms can be summarized as follows:

Procedure: Genetic Algornthms
begin :
t=0
generate initial population P)
evaluate P(1)
while (not termination condition} do
begin
1=t+1
select Pt} from P(t-1) based on fitness of the individuals in Pr-1)
generate (by crossover and mutation) structures in P¢t)
evaluate P(t)
end
end

where P(t) is the population at generation (. Figure 4.1 shows the simplified

flowchart of a GA.

Start

Initialize population

k4

gen=20

.

Fitness Evaluation

v

Reproduction

h 4

Crossover

k4

Mutation

Figure 4.1 Flowchart of a genetic algorithm
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Genetic representation (encoding) plays an important role in genetic algorithm. The
original GA uses binary encoding. However, with the increasing utilization of GA in
more complex problems, different encoding methods have been proposed, such as
real-number encoding, integer or literal permutation encoding and general data
structure encoding (Gen and Cheng 2000). Traditionally, the initial population is
generated randomly with an attempt to cover the entire range of possible solutions
(the search space). In some occasions, the solutions may be "seeded” in the areas

where optimal solutions are likely to be found.

To evolve to the next generation, genetic operators {i.e., selection, crossover, and
mutation) are employed to recombine the solutions in the previous generation to
form a new generation. Selection (reproduction) is a process in which the individuals
are selected based on their fitness and copied to the next generation. Selection is
intended to improve the average quality of the population by giving the high-quality
chromosomes better chances of being copied into the next generation (Goldberg
1989; Hue 1997). The selection thereby focuses the exploration on promising regions
in the solution space. Selection should work to impose a balance between selection
pressure and population diversity. The selection pressure is defined as the ratio of the
probability of selection of the best chromosome in the population to that of an
average chromosome. The convergence rate of GA is largely determined by the
magnitude of t}le selection pressure. A low selection pressure leads to low
con\:'ergence rate, and the GA will take unnecessarily longer time to find the optimal
solution. On the other hand, a high selection pressure results in the population’s
reaching equilibrium very quickly, but with inevitable sacrifices in genetic diversity
(i.e., convergence to a suboptimal solution). Therefore, the proper selection schemes
are of importance to the implementation of a GA. Many selection methods have been
proposed. The selection schemes commonly used in the current practice include
roulette wheel selection (Holland 1975), ranking selection (Baker 1985), tournament
selection (Goldberg et aI.- 1992), and Genitor (or “steady state™) selection (Whitley
1989; Syswerda 1989).

Crossover is a process of combining two parental chromosomes and generating new

offsprings that are different from their parents. Afier the selection (reproduction)
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process, the population is enriched with better individuals. Reproduction makes
clones of good chromosomes but does not create new ones. A crossover operator is
applied to create better offsprings. The simplest genetic algorithm uses single-point
crossover in which only one crossover point is randomly selected to break a
chromosome into two segments. By exchanging corresponding segments of two
parents, new offsprings are then produced. Figure 4.2 illustrates the single-point

crossover operation.

Parent | 0100100010
Parent 2 0001110001
Offspring 1 |0 100 1,1 00 0 1
Offspring2 [0 001 11000 1 0

1
t

Figure 4.2 Single-point crossover

In addition to the single-point crossover, more complicated crossover operations
‘have also been proposed, such as multi-point crossover (De Jong and Spears 1992)
and unifﬁrm crossover (Ackley 1987). They are all based on the same principle of
exchanging corresponding segment(s) of two parents to produce offsprings. Figure .
4.3 illustrates a two-point crossover operation. The dotted lines indicate the
crossover points. Thus the contents between these points are exchanged between the

parents to produce new offsprings for mating in the next generation.

Parent | 1100101001
Parent 2 00100111100

Offspring] |11 0100 1:100 1
Offspring2 [0 0 110 101 1 00

Figure 4.3 Two-point crossover
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In Figure 4.4, the offsprings are produced using the uniform crossover approach.
Each gene in the offspring is created by copying the corresponding gene from one or
the other parent chosen according to a crossover mask of the same length as the
chromosomes. A crossover mask is randomly generated for each pair of parents. The

offsprings, therefore, contain a mixture of genes from each parent.

™

Parent 1 1010001110
Parent 2 0011010010
Mask 011001,1000

Offspring] (0011001010
Offspring2 {1 010010110

" Figure 4.4 Uniform crossover
' AN

Mutation plays a role in alterations of génetic materials and randomly disturbing
" genetic informéition. It is considered as a background operator to maintain genetic
diversity in the popu-lation. Mutation introduces new genetic structures in the
population by -ra.ndornly modifying some of its building blocks. It assists the search
in escaping from local optima' and maintains diversity in the population. The
_. mutation operation is cssent_iiaily done by altering the value of a randomly selected
position in a string. Figure 4.5 illustrates a chromosome before and after mutation at -

two mutation points indicated by the double arrows.

Parent 0010100010
! !
Offspring 0000100110 )

Figure 4.5 Mutation operation

An important: parameter in mutation operation is the mutation probability, which
decides how freql;ently parts of chromosome are mutated. Compared to crossover
probability (which is usually between 0.6 and 1), mutation probability is usually set
fairly low (e.g. 0.01). If it is set to high, the search will turn into a primitive random

search.
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Termination is the criterion by which the genetic algorithm decides whether to
continue or to stop the search. The termination criteria can be specified as the
permissible maximum number of generations or an acceptable approximated solution.
The evolution process can also be terminated when the best individual found has
remained unchanged over a specified number of consecutive generations. Generally,

the last criterion applies as convergence slows to the optimal solution (Louis 1993).

4.2 A GA-based approach to multi-objective path optimization

problem

While the basic structure of a genetic algorithm is universally followed in all
applications to solve an optimization problem, experience has shown that the success
of GA is largely dependent on the specifics of how it is applied. To this end, the
essence of a customized genetic algorithm for the multi-objective route planning for

the transportation of dangerous goods is detailed in this section.
4.2.1 Genetic representation

Genetic representation (encoding) of a solution to the problem in the context of a
chromosome structure is a critical step in a genetic algorithm. Various encoding
methods have been developed for different types of problems. According to the type
of symbols used as the alleles of a gene, the encoding methods can be classified as:
binary encoding; real number encoding; integer or literal permutation encoding; and
general data structure encoding (Gen and Cheng 2000). Binary encoding is
commonly used because it is simple to create and manipulate. In addition, single-
point crossover and mutation can be conducted without modification to a range of
problems (Davis 1991). However, for many problems in the real world, it is hard or
even impossible to represent solutions using binary encoding. Other representation
schemes are better suited for these problems. For example, real number encoding
outperforms binary encoding for function optimizations and constrained
optimizations (Eshelman and Schaffer 1993, Michalewicz 1996, Walters and Smith

1995), while integer or literal permutation encoding is deemed best for combinatoﬁal
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optimization problems, which searches for a best permutation or combination of

objectives subject to constraints (Cheng ef al. 1999; Zhu 2003; Wang et al. 2008).

Genetic algorithms have seen wide applications in solving various transportation
problems such as shortest path problem, vehicle routing problem, traveling salesman
problem, network flow problem, etc. When solving these problems by genetic
algorithms, the integer-string representation is most commonly used for chromosome
encoding. The candidate solution is usually represented as a string (chromosome) of
K distinct integers, where K 1s the number of nodes the candidate route comprises.
Each gene in the chromosome is the integer node number. The sequence of the genes
indicates the order of the nodes through which the routing path passes. For example,
the integer stringof 1 -2 -6--3-7 -8 -4 -9 -5 - 10 represents a route between

nodes 1 and 10 shown in Figure 4.6.

Figure 4.6 Example of a route and its integer encoding

The same encoding scheme is adopted in the proposed genetic algorithm to represent
potential routing solutions. In this method, a feasible route is represented as a
variable-length chromosome, which consists of an ordered sequence of positive
integers representing the IDs of nodes through which the route passes. Each gene of
the chromosome represents a node in a route. The first gene is always reserved for
the source node. The length of the chromosome is variable, depending on the number
of nodes that form the route. Every chromosome starts with a source node and ends
with a destination node, connecting links that stretches from the origin to the
destination along a constrained network. An example of genetic representation for a
route from node S to node T is shown in Figure 4.7. The chromosome is encoded as a
list of nodes along the constructed route, {S- P;,— P, —... — Pp.; — P, — T}. The first
gene encodes the source node S, and the second gene encodes the node randomly or
heuristically selected from the network, which is connected with node S. This

procedure continues iteratively for the succeeding nodes until a simple path to the
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destination node 7 is created. It should be noted that a valid chromosome is loop-free,
that is, no duplicated integers should be included in the sequence. The existence of
loops may cause problems when routing. Neither can the consistency of routing be

guaranteed 1n the presence of loops.

o m‘“ o
~
¥
~

chromosome: I_S P, P P, | P, T—l

Figure 4.7 Example of a routing path and its encoding scheme

4.2.2 Population initialization

A genetic algorithm normally starts with an initial population. In general, there are
two issues to be considered for population initialization of GA: the initial population
size and the procedure to initialize the population (Goldberg 1989; Hue 1997). It is
generally agreed that the population size should increase significantly with the
complexity of the problem in order to generate good solutions. While a large
population might increase the diversity of solutions, it demands excessive costs in
terms of both memory and time (Goldberg 1989; Harik ef al. 1999). Recent studies
have shown, however, that satisfactory results can be obtained with a much smaller
population size using an additional elitism strategy and adaptive grid-type technique
to accelerate the convergence and to keep the diversity in Pareto front (Coello and
Pulido 2001). As would be expected, deciding adequate population size is crucial for
the efficiency of a GA. In this study, the size of the initial population is defined as an
empirical parameter, and its value is set after a number of experimental tests. The
determination of population size aims at striking a balance between the extra

computational efforts and the diversity of rendered solutions.

Population initialization is a crucial task in genetic algorithms because it can affect
the convergence speed as well as the quality of the final solution. In general, there
are two ways to generate initial population. The first one is randoin initialization. In

the absence of a priori information about sclution, random generation i1s most
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commonly used to create tnitial population. Baker and Ayechew (2003) argue that
randomly generated population (over a more structured approach) ‘provides a more
diverse population that converges to a near optimal solution quickly.” The other way
to intialize population is heuristic initialization. A good knowledge of the problem
always contributes to the problem-solving process. Upon its availability, heuristic
initialization can be performed by “seeding” solutions in areas where optimal
solutions are likely to be found. Seeding the initial population may improve initial
quality and provide a better starting point for the genetic algorithm. It has been
observed that the mean fitness of heuristic initialization is generally higher than that
of random initialization so that it may help the GAs to find solutions faster (Zhang

and Armstrong 2008).

Random initialization benefits the diversity of population; however, it may take
" longer time for the GAs to find satisfactory solutions. On the other hand, heuristic
initialization provides a better starting point for a GA, which may facilitate the
convergence of the algorithm. Using a purely heuristic method would, however,
merely produce a number of solutions all identical to each other, which would be
undestrable in terms of the evolutionary theory. In this regard, we experiment with
both techniques to initialize a group of individuals (candidate routes) in the
population. The initiation procedure starts with an origin and randomly chooses a
valid node based on the connectivity information of the network. The encoding
process keeps selecting a valid node that can be connected to the last node of the
current route and has not been included in the route so far, until a destination is
reached. However, applying random walk only can result in poor performance when
working on larger sized network, for example, consuming an excessive amount of
CPU time to form extremely long chromosomes. To solve this problem, heuristics
are introduced into the initialization process. A hybrid approach that contains the
seeds generated by Dijkstra's shortest path algorithm is employed in this study. The
seeds include the routes produced by Dijkstra's algorithm on each single objective, as
well as those generated by combining two or more objectives using unbiased
preferences (i.e., equal weight) on each objective. The objectives to be combined and
the number of these objectives are chosen at random, while the duplicated
combination 1s prevented. The heuristic initialization will contribute 20% individuals

in the initial population, and the rematining individuals are provided by random walk.
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By incorporating random initialization with heuristic initialization, we may achieve a
higher quality of initial population than random generation while still preserving

population diversity to certain extent.
4.2.3 Fitness evaluation

The fitness function in a single-objective GA is typically the objective function of the
indicated optimization problem (Goldberg 1989; Leung er al. 1998). It is used to
measure the quality of the individuals (chromosomes) in a population. The fitness
function has a higher value when the fitness characteristic of the chromosome is
better than others. Moreover, it introduces a criterion for the selection of

chromosomes. The definition of the fitness function is therefore very critical (Hue
1997).

Different from single-objective GAs, in a multi-objective scenario, the fitness value
of a solution should reflect its optimality in each of the objectives. The fitness value
of a solution depends not only on the values from a single objective function, but
also on its optimality within the entire population. Therefore, a Pareto optimum
concept is adopted. In the proposed GA, a Max-Min fitness function (Balling ef al.
'1999) is employed to measure the Pareto optimality of each route in a particular
generation:

Fitness' =1 ~max[ min (ﬁf!—in (4.1)

jri k=12 m ft"‘“ — k"“"

where Fitness' is the fitness of the ith route in the generation, f, and f/ are the
values of the kth objective for the ith and jth routes in the generation, respectively.
The scaling factors f,™ and f™ are maximum and minimum values, respectively, of

the kth objective in the generation.

In equation (4.1), the min is taken over all the objectives from | to m, and the max is
taken over all routes in the generation from 1 to » (i.e. population size) except route i.
Hence, the Max-Min fitness function here can be easily implemented as three nested

loops. The outer loop over i ranges from 1 to n. The middle loop over j ranges from 1
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to n — 1. The inner loop over k ranges from 1 to m. Thus, the total number of

comparisons 1s m x n x (n — 1).

The Max-Min fitness function is derived from the definition of dominance. Any
chromosome whose Max-Min fitness value is less than | is a dominated route; it is
otherwise a non-dominated route if the value of Fitness' is greater than one. This is

because Fitness' > 1 indicates that the latter part of the right-hand side of equation
p g q

¥ _ ]
(4.1) 1s negative, i.e. max| min _l,.___L <Q , which means route i
jei | k=12 m k""“ - ™ :

outperforms the others on at least one objective. A chromosome is weakly-dominated
if its Max-Min fitness is one, which means that it is either a dominated route or a
duplicate non-dominated route. The Max-Min fitness of a solution can identify not
only whether a solution is dominated or not (with respect to the rest of the
population). but also whether it is clustered with other solutions, i.e., diversity
information. When the fitness is maximized, it rewards diversity and penalizes
clustering of non-dominated solutions (Balling 2003). As a result, no additional
clustering or niching technique is needed with the Max-Min fitness function.

For multi-objective DG routing problem, a route is a “non-dominated route” if it is
feasible and there is no other feasible solution in the generation which has better
values for all the objectives considered. According to equation (4.1), the fitness of
Pareto-optimal routes will be between 1 and 2, whereas the fitness of dominated
routes will be between 0 and 1. A “clustered route” is a route whose objective values
are close to those of other candidates in the generation. According to equation (4.1),
the Max-Min fitnesses of clustered non-dominated routes are greater than and close
to 1, whereas the Max-Min fitnesses of non-clustered non-dominated plans are
greater than and far from 1. Thus, the Max-Min fitness function given by equation
(4.1) penalizes both dominance and clustering. Maximizing the Max-Min fitness

function will yield a diverse set of non-dominated routes.
4.2.4 Genetic operations

4.2.4.1 Selection
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During each successive generation, a proportion of the existing population is selected
to breed a new generation. Individual chromosomes (solutions) are selected through
a fitness-based process, where fitter chromosomes are typically more likely to be
selected. There are two basic types of selection scheme commonly used in current
practice: proportionate selection and ordinal-based selection (Goldberg 1989; Hue

1997).

Proportionate selection selects chromosomes based on their fitness values relative to
that of the others in the population. It is generally more sensitive to the selection
pressure. Therefore, a scaling mechanism in the form of function transforming the
raw fitness into scaled fitness is often used, which redistributes the fitness range of
the population in order to adapt to the selection pressure. Fitness scaling aims to
maintain a reasonable differential between relative fitness ratings of chromosomes,
and to prevent too-rapid takeover by some “super” chromosomes to meet the

requirement to limit competition early but to stimulate it later (Gen and Cheng 2000).

The best known proportionate selection technique is the roulette wheel selection
(Figure 4.8). The principle of roulette selection is a search through a roulette wheel
with the slots in the wheel proportionate to the chromosome’s fitness values. The
value of a chromosome is set by dividing its fitness by the sum of the fitness in the
population. Each chromosome is assigned a slice of the roulette wheel, with the size
of the slice being proportional to the chromosome’s fitness. The wheel is spun NV
times, where N is the number of chromosomes in the population. On each spin, the
chromosome under the wheel’s marker is selected as a parent for the next generation.
Due to the randomness of the selection, fit chromosomes are not guaranteed to be
selected for, but have a higher probability of selection. For this reason, elitism is a
common practice in GA selection to ensure that the best chromosomes are selected

and copied directly to the next generation.

Ordinal-based selection schemes select chromosomes based on their rank rather than
fitness within the population. The chromosomes are ranked according to their fitness
values. The selection pressure depends on the relative ranking of the population.

Similar to proportionate selection schemes, ordinal-based selection suffers when the
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selection pressure is inadequate (i.e., low or high), in other words, a low selection
pressure leads to low convergence rate, while a high selection pressure may result in
loss of genetic diversity or convergence to local rather than global optima. Examples
of ordinal-based selection type iriclude tournament selection, (p, A) selection,

truncation selection, and linear ranking selection.

Pointer
(wheel’s marker)

Fittest chromosome has
largest share of the Weakest chromosome has
roulette wheel smallest share of the
roulette wheel

Figure 4.8 Roulette wheel selection

Tournament selection (Goldberg et al. 1992) is one of the most widely used ordinal-
based selection schemes. In tournament selection, a specified number of
chromosomes, s (tournament size), is selected from the current population. The best
individual out of the s chromosomes is selected for further genetic operation. The
selection of s chromosomes can be performed either with or without replacement.
The difference is that in a selection with replacement, the chromosomes selected for
the current tournament are candidates for other tournaments; while in a selection
without replacement, the chromosomes once selected are not candidates for other
tournaments. In GA literature, tournament selection without replacement has
received considerable analytical attention, and has been successfuily used in a wide
variety of GAs. Tournament selection without replacement works by means of
choosing non-overlapping random sets of s chromosomes from the population,
running tournaments among them, and selecting the winner of the tournament from
each set to serve as a parent for the next generation. The mating pool comprising the

tournament winners has higher average population fitness. The fitness difference
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provides the selection pressure, which drives GAs toward improved population
fitness of the succeeding generations. Unlike the roulette wheel selection, the
selection pressure in the tournament selection strategy is easily adjusted by changing
the tournament size. The selection pressure increases as the tournament size becomes
larger (Hue 1997; Harik et al. 1999). The tournament selection technique 1s simple
and efficient. The main advantage of this mechanism is that it does not require
implementation of any ranking or scaling method; instead, only the relative

differences of fitness values between the selected individuals are needed.

In the proposed GA, the tournament selection without replacement is employed to
generate a new population for the next gencration. Tournament selection is
implemented with a tournament size of three. Each time three chromosomes (routes)
are randomly selected from the current generation, and are involved 1in the
tournament. The chromosome with the highest fitness value (i.e., the best Pareto-
optimal route) is selected and put into the mating pool. This process will repeat N°
times until the mating pool is filled. The N’ chromosomes in the mating pool will
then be undergoing genetic operations such as crossover and mutation to produce
succeeding population. Note that the value of N’ is not the same as that of the
population size N, rather, N’ is a bit smaller than N. The rest (¥ — N’} chromosomes
in the immediate succeeding generation will be derived through the elitism strategy
(which will be explained in the next paragraph). Tournament selection without
replacement is perceived as an effort to keep the selection noise as low as possible
(Goldberg er al. 1992). Hence, in each generation, once a chromosome has been
selected in the tournament selection, it will be removed from the population in order

to ensure that the same chromosome would not be chosen twice as a parent.

As a common practice in most GAs, the selection operation employed in the
proposed GA also incorporates an elite retaining strategy. Elitism is the process of
Qreserving previous high performance chromosomes from one generation to the next.
This is usually achieved by simply copying the fittest chromosomes directly into the
new generation. Elitism has long been considered an effective method for improving
the efficiency of a GA (De Jong 1975). Various studies have shown that inclusion of
an elitist element can considerably improve the performance of the algorithms,

because it ensures that the best solutions found would not be lost (Zitzler et al. 2000;
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Deb er al. 2000). In this study, elite retaining ts carried out before the actual
tournament selection starts. The elitism is chosen at 10%, meaning that 10% of the
best individuals whose Max-Min fitness values are the highest in the current

generation are copied directly into the next generation without modification.

4.2.4.2 Crossover

The crossover operator, one of the distinctive characteristics of GAs, plays a vital
role in the search process. It is considered one of the essential components for the

good performance of a GA.

Crossover is the process of combining two parent solutions and producing offsprings
from them. It is applied with an expectation that a better offspring is created.
Crossover proceeds in three steps:
t. The selection operator randomly selects a pair of parent chromosomes for the
mating;
1. A cross-site 1s then selected at random along the length of the mated
chromosomes;
ini. Finally, the position values are swapped between the two chromosomes

following the cross-site.

For a selected pair of chromosomes, a random number between zero and one is
generated. If the random number falls below the crossover probability, then these
two chromosomes will be recombined. Crossover is achieved by simply choosing at
random a crossover point (cross-site), copying everything before this point from one
parent and then, copying everything after the crossover point from the other parent.
Besides the single-point crossover, more complicated crossover algorithms have also
been devised, which often involve more than one cut point. An advantage of having
more crossover points is that the problem space may be searched more thoroughly.
However, adding additional crossover points is more likely to disrupt the building
blocks of chromosomes during the process of crossover operation, and consequently

degrade the performance of the GA (Sivanandam and Deepa 2008).
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In routing problems like multi-objective route planning addressed in this research,
crossover essentially plays the role of producing offsprings (i.e. new routes) by
cutting the two chosen chromosomes (parents) and exchanging each partial route of
the parent chromosomes. Each offspring represents only one route. One partial route
connects the source node to the intermediate node where crossover is conducted (i.e.
cross-site), and the other partial route connects the intermediate node to the
destination node. The crossover between two dominant parents chosen by the
selection gives higher probability of producing offsprings possessing the dominant

traits.

In view of this, one-point crossover is employed in the proposed GA. Unlike the
conventional one-point crossover operating on two chromosomes of the same length,
in the proposed crossover scheme, the two chromosomes (routes) chosen for
crossover can have different lengths, that is, the number of nodes that form each
parent (route) can be different from each other. The only condition is that the two
parent chromosomes have at least one gene (node) in common except for the source
and destination nodes. This common node is the crossover point/cross-site where
crossover 1s accomplished. The crossover point can be at different positions on each
parent chromosome. For example, it may be on the 23" node in one parent, but on
the 15" node in the other. If more than one common gene is found, the proposed GA
will randomly choose one of them as the crossover point. Figure 4.9 shows an
example of the crossover procedure. Two routes, {S — P;— P; — P4 — Py — P7 — T}
and {S - P;— P3 - P4 — P5s — T}, are selected by tournament selection as parent 1 and
parent 2, respectively, for mating. P; is detected as the node which is commonly
included in both routes. It is then used as the crossover point of each chromosome.
Each route is “broken” into two partial routes on the crossover point: {§ — P; - P;}
and {Ps - Py~ P; - T} from parent 1, and {S — P,— P;} and {P; ~ Ps — T} from
parent 2. Two corresponding partial routes are subsequently exchanged: for example,
{Ps — P4~ P; — T} from parent | is exchanged with {P; — Ps — T} from parent 2.
The partial routes are then assembled: {S — P, P;} from parent ! is connected with
{Pg— Ps — T} from parent 2, while {S— P,— P;} from parent 2 is connected with {P;
~ Py — P; — T} from parent 1. Two new routes are produced eventually, they are: {S
~P-P3 Py ~Ps—T}and {S—-P,—-P;s—Ps - P, —P; - T).
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s]P1 P; | Ps! P, P?lTI

S|Py|Ps|PaiPsiT

Figure 4.9 An example of single-point crossover

The crossover procedures may generate loops in routes. A route with one or more
loops in it is regarded as an infeasible route, since it is commonly agreed that the
solution to the shortest path problem.should not include any loop. To cure infeasible
chromosomes, a repair function is applied in the proposed GA to eliminate undesired
loops in each ‘infeasible chromosome. The proposed repair function detects a loop in
a route by searching for duplicated nodes. The loop is then eliminated by deleting the
dllplicated nodes. For example, the route {S — P, — P, — Pg ~ P14 — Py;3 — Pg — P14 —
P19 — P2a — T} produced by crossover is an infeasible route since a loop {Pg — P4 —
P13 — Pg} can be detected in it. By deleting one of two node Pg, a valid route { S -

P, - Pz —Pg—P1s—Pyo— P24 - T} is generated accordingly.
4.2.4.3 Mutation

Similar to the role of crossover, mutation is also critical to the success of GAs. If
crossover is supposed to exploit the current solution to find better ones, mutation is
supposed to help explore the whole search space (Sivanandam and Deepa 2008).
Mutation is viewed as a background operator to maintain genetic diversity in the
population. It plays the role of altering genetic materials as well as for randomly
disturbing genetic information. Mutation introduces random changes to a
chromosome and thus maintains or increases population diversity. It diversifies the

search directions and avoids the convergence of the algorithm to local optima.

rd
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After crossover, the newly generated chromosomes are subjected to mutation.
However, not all but part of the chromosomes will take part in the mutation
procedure. Whether a chromosome will be mutated is determined by the probability
of mutation (i.e. mutation rate). For a chosen chromosome, a random number
between zero and one is generated. If the random number falls below the rate of
mutation, then this particular individual will be mutated. There are many different
types of mutation, such as flip bit mutation, boundary mutation, uniform mutation,
non-uniform mutation, and Gaussian mutation. Unlike the flip mutation which can
only be used for binary genes, the other four mutation operators can only be used for
integer and float genes. The flip bit mutation simply inverts the value of the chosen
gene {0 goes to 1 and 1 goes to 0). The boundary mutation replaces the value of the
chosen gene with either the upper or lower bound for that gene (chosen randomly).
The uniform mutation replaces the value of the chosen gene with a uniform random
value selected between the user-specified upper and lower bounds for that gene. The
non-uniform mutation increases the probability that the amount of the mutation will
be close to 0 as the generation number increases. This mutation operator keeps the
population from stagnating in the early. stages of the evolution, while allows the
algorithm to fine tune the solution in the later stages of evolution. The Gausstan
mutation adds a unit Gaussian distributed random value to the chosen gene. The new
gene value is clipped if it falls outside the user-specified lower or upper bounds for

that gene.

The mutation method used in this study is somewhat different from the
aforementioned mutation schemes. In the proposed GA, the mutation operation
generates an alternative partial route from the mutation point (i.e. the node in the
route which is chosen to be mutated) to the destination node. First, a gene (i.e. a node)
in a chosen chromosome is randomly selected as the mutation point. A partial route
starting from this mutation point to the destination is subsequently generated by
means of a similar procedure used for population initialization, incorporating
heuristics with random walk. The produced partial route is then combined with the
surviving portion of the parent route, i.e. the partial route stretching from the ongin
1o the mutation point in the parent’s chromosome, to form a new route. Note that the
nodes that are already included in the partial route from the origin to the mutation

point should not be introduced into the partial route from the mutation point to the
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destination, except for origin, destination, and mutation point. The underlying reason
is that the same node cannot be included in one route twice; ogherwise, it incurs loops
in the route, which in turn results in the route infeasible. Recall that the crossover
operation may generate invalid routes that contain loop(s). This problem, however,
will not happen to the mutation operation. The chromosome obtained by mutation is
cerfainly feasible, because during the mutation process, once a node is chosen, it will
be excluded from the candidate nodes forming the rest of the route. Hence no loop
will be included in the generated routes.

Figuré 4.10 indicates how a new chromosc:me 1s created by mutation operation. Let
{S — P, — P, — Ps — Ps — T} be the parent chromosome that is selected to mutate. As
can be seen from Figure 4.10, there also exist other routes between the source node S
and the destination node 7. In order to perform a mutation, a gene (i.e. node P)) is
randomly selected first from the chosen chromosome. P; is the mutation ﬁoim. One
of the nodes directly connected to node P,, for example, Py, is chosen at random as
the first node of the alternative partial route. The remaining procedure follows that in
the initializing process to create the partial route stretching from P; to the destination
T, {P — P4 — P, — P; — T}. Finally, this partial roixte is combined with the partial
route starting from the source S to the mutation point P;, {S — P,}, and the new route

between Sand 7, {S — P; — P4 — P, — P; — T} is eventually formed.

Figure 4.10 An example of single-point mutation
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4.2.5 Termination criteria

Termination is the criterion by which the genetic algorithm decides whether to
continue ot stop the search. Each of the enabled termination criterion is checked after
each generation to decide whether it is the time to stop. The termination conditions
that are most commonly used include:

e The maximum number of generations has been reached.

* A specified time has elapsed. It should be noted that if the maximum number
of generation has been reached before the specified time has elapsed, the
search process will terminate.

» There is no change to the population’s best fitness for a specified number of
generations. Note that the process will end if the maximum number of
generation has been reached before the specified number of generation
without changes has been obtained.

» There is no improvement in the objective function for a specified number
consecutive generation.

e Combinations of the above.

The proposed GA is controlled by two termination criteria. One criterion is that a
specified number of generations have evolved. The other is that the mean of the
fitness in the entire population has remained unchanged, or changes within a very
small range, over a specified number of consecutive generations. If either of the two

termination criteria is satisfied, the iterative process of the GA is terminated.

4.2.6 The proposed genetic algorithm

With the above detailed introduction of each component, the proposed genetic
algorithm tailored for multi-objective route planning for the transportation of DG are
described algorithmically as follows. The block diagram of the proposed GA is

shown in Figure 4.11.
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Select a pair of chromosomes for mating
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With the P, perform crossover

With the Py, perform mutation
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s the size of the new
population equal to N?

No

Replace the current chromosomes population with
the new population

()

Figure 4.11 The flowchart of the multi-objective routing genetic algorithm

Step 1. Population Initialization:
1.1 Specify the population size N,,,, tournament size s, clitism size Ny,
crossover probability P, mutation probability P,, and the evolution

termination criteria.
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1.2 Based on the proposed chromosome representation, generate N,
chromosome (candidate route) to form the initial population POP(0):
POP(0) = {CHR(0), CHR(0), ...CHR npop (0)}.
A hybrid approach is used to initialize population POP(0), which
incorporates random walk with heuristic initialization containing the seeds
generated by Dijkstra's shortest path algorithm. Each chromosome is
represented in the same encoding scheme as shown in Figure 4.7.

1.3 Setk=0.

Step 2. Fitness evaluation:
Compute the fitness Fitness(CHR(k)) of individual CHR(k), i = 1... N,
according to the formula (4.1). Sort the fitnesses in the descending order so that

the fittest individual is always on the top.

Step 3. Population evolution:
3.1 Elitist strategy.
Select Ny elites from the current population, Neye = Nyop ¥ 10%. Copy these
individuals directly into the next generation without modification.
3.2 Selection.
- (1) Pick three individuals at random from current generation.
(2) Compare the fitness values of these 3 individuals. Select the one with the
highest Max-Min value as one parent chromosome, say CHR (k).
(3) Remove the selected individual from the current population so that it
would not be picked again as a candidate for other tournaments.
(4) Repeat (1) to (3) to select another parent chromosome, say CHR/(k), i # .
3.3 Crossover.
(1) Identify the crossover point.
Compare the genes of CHR{k) and CHR{k). If no common genes
(common nodes except for the source and destination nodes) can be found,
put one of them back into the mating pool, and then pick another
individual. If more than one gene is found in common, randomly choose
one common gene, and the locus of this gene becomes the crossover point.
(2) Perform the crossover operation on CHR,(k) and CHR(k) with probability
P., and yield the intermediate individuals OSP’(k} and OSP (k).
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Breaic CHR (k) and CHR/(k) into two parts, respectively, on the crossover
point. Connect the upper part of CHR,(k) with the lower part of CHR,(k)
to yield the offspring OSP’{k). Similarly, connect the upper part of
CHR{(k) with the lower part of CHR(k) to yield another offspring
OSP (k). The upper part of an individual represents the portion of the
chromosome stretching from the first gene (source node) to the
intermediate gene at the crossover point, and the lower part represents the
portion stretching from the intermediate gene at the crossover point to the
last gene (destination node).

(3) Repair infeasible route if necessary. Detect loops in the offspring OSP (k)
by searching for duplicate nodes. The loop is then eliminated by deleting
genes between duplicate nodes. Repeat the same operation on the
offspring OSP (k).

3.4 Mutation.

(1) 1dentify the mutation point.

Randomly choose a gene (node) from OSP'(k), and the locus of gene
becomes the mutation point.

(2) Mutate OSP '(k) with probability P,, to yield the offspring OSP (k).

Take 1.2 of Step 1 to generate the new lower part of the chromosome
OSP’(k) stretching from the intermediate gene at the mutation point to
the last gene. Assemble this portion with the surviving portion of OSP’(k),
the offspring OSP(k) is then generated.

(3) Repeat (1) and (2) to yield the offspring OSP/(k).

3.5 Construction of new population.

Repeat 3.2 to 3.4 until (NMypp — Nepe) individuals have been produced.

Together with N, elites copied directly from the current population, a new

population with its size of N, is constructed.

POP(k +1) = {CHR(k +1), CHRy(k +1), ...CHR npop(k +1)}.

Replace the current population with this new one.
Step 4. Termination check:

If POP(k + 1) satisfies the pre-specified evolution termination criteria, the

algorithm terminates; otherwise, go to Step 2 with k=4 + 1.
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4.2.7 Implementation issues
4.2.7.1 Complexity of the genetic algorithm

Compared with the compromise programming and the adaptive weighting method,
the proposed genetic algorithm has relatively higher complexity. To start, the
population initialization takes time proportional to O(N mnz) to create N,,, initial
candidates by either random walk or seeding (i.e. heuristic initialization) using
Dijkstra’s algorithm, where N, is the population size, n is the number of nodes of
the network G defined in Chapter 3. After initialization, a typical iteration of the
algorithm comprises four operations: fitness evaluation, selection, crossover, and

mutation. Implementing the Max-Min fitness function to evaluate the fitness of each
individual in the current generation runs in O(mN;'OP), where m is the number of
objectives considered. Given that (Nyop — Neie) individuals need to be selected and
the size of tournament selection is 3, the selection operation can be accomplished in

O(3(N ver — Nina )), where N, is the elitism size. To decide whether a crossover

operation needs to be conducted ona pair of selected individuals, a random number
between zero and one is generated for each pair. At the worst, all the random
numbers fall below the crossover probability. Consequently, the crossover operation
has to be performed on every pair of chromosomes, which results in a complexity of

O(N mp—N,,m) . Similarly, the mutation operation results in a complexity of

O((N pop — N elire )nz) at the worst when each selected individual needs to be mutated.

Consequently, the overall complexity for the initialization and N iteration is

approximately 0(}\fwn2 + N(memp +(N oy — N e Wnt + 4))).
4.2.7.2 Global fitness

When the algorithm stops, a set, of (approximate) solutions for the DG routing
problem will be obtained. Moreover, M generations of population of solutions will be
generated. Decision makers may be interested in examining how well the genetic
algorithm can improve Pareto optimality from generation to generation. However,

the fitness function in formula (4.1) is designed to compare the fitnesses between
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solutions within a generation, thereofore it cannot be used to compare the fitnesses

between solutions in different generations as the scaling factors f™ and £™" in

different generations might be different. To solve this problem, a “global generation”
is created, which includes (M * N,,;) feasible solutions from M generations lumped
together. The “global fitness” for each of the (M * N,,;) solutions in the global
generation can be calculated according to formula (4.1). Based on global fitnesses,

the *“global Pareto set’’ for the global generation can be generated.

4.3 Summary

GAs are a particular type of evolutionary algorithm initially developed by Holland
(1975) in the early 1970s. A GA is a computing model that aims to minimize (or
maximize) an objective function by simulating the mechanism of genetic selection
and natural elimination in biological evolution. It is a computationally simple yet
robust and powerful way to search for optimal and near-optimal solutions for
optimization problems. As a highly efficient search strategy for global optimization,
GAs exhibit superior performance on solving multi-objective optimization problems
that have a large and complex solution space. Moreover, being a population-based

approach, a GA is able to find multiple feasible solutions in a single run.

GAs operate on a population of candidate solutions encoded as a finite bit string —
chromosome. [t usually starts with an initial population of candidate solutions that
are randomly or heuristically generated. These candidates are retained and ranked
according to their quality measures by a fitness function, which screens out
unqualified solutions. Genetic operations, such as selection, crossover, and mutation,
are then performed on those qualified solutions to generate new candidate solutions
for the next generation. These processes are carried out repeatedly until certain

convergence condition 1s met.

The unique features of GAs facilitate their application in multi-objective route
planning for the transportation of DGs. This chapter details a genetic algorithm for

multi-objective DG routing analysis. Variable-length chromosomes (representing
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routes) and their genes (representing nodes) are used to encode the problem. A
chromosome consists of sequences of positive integers representing the 1Ds of nodes
through which a route passes. Each valid chromosome starts with a source node and
ends with a destination node. No duplicated integers are included. A hybrid approach
is used to initialize the population, which incorporates random walk with heuristic
initialization containing the seeds generated by Dijkstra's shortest path algorithm.
The incorporation of heuristics into random initialization enables the production of a
better initial population while maintaining its diversity. A Max-Min fitness function
derived from the definition of dominance is employed to maximize the difference
between any two routes, which ultimately results in a diverse set of non-dominated
solutions. The tournament selection without replacement is used to select candidates
for breeding a new generation. An elite retaining strategy is incorporated, copying
the fittest individuals directly into the next generation without modification, which
prevents the loss of the best solutions found in each generation. The crossover
operation exchanges partial chromosomes (i.e. partial-routes) at location independent
crossover point. A repair function is applied to cure the infeasible chromosomes
produced from crossover by eliminating undesired loops in these chromosomes.
Through crossover, the algorithm searches the solution space in a very effective
manner. The mutation operation introduces new partial chromosomes (partial-routes),
which, in essence, maintains the diversity of population, thereby avoiding local traps.
Selection, crossover, and mutation together provide a search capability that leads to

improved quality of solutions and enhanced convergence rate.

The present and the preceding chapters have introduced different methodologies for
the multi-objective path optimization problem. While Chapter 3 focuses on the
deterministic optimization techniques, present chapter concentrates on the heunstic
method. Applications of these approaches in optimal route planning for dangerous

goods transportation is demonstrated in Chapter 3.
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CHAPTER 5: CASE STUDY ON HONG KONG ROAD
NETWORK

The previous chapters have presented conceptual and numerical optimizatien tools
for the generation of multi-objective shortest paths with specific atterition given to
the transportation of dangerous goods on the road. As an application example, this
chapter focuses on the problem of routing the road tankers conveying liquefied
petroleum gas (LPG) in Hong Kong, a high-density living environment. A set of
routing criteria fitting the context of the high-density living, in particular, Hong
Kong, is identified. With the aid of GIS, each criterion is quantified under the rules
suggested by the authoritative organizations. The three MOP methodologies
proposed in this research are employed individually to generate various efficient
sotutions for optimal route planning for transporting LPG between Tsing Yi LPG
terminal and the designated LPG filling stations located in Kowloon and the New
Territories. The composition of risks in each solution is examined and the actual
trade-offs involved are interpreted. Particular 1issues with respect to the
implementation of each method are specified. The execution efficiency and

application condition of each method are also discussed.

5.1 Overview

The transportation of dangerous goods can significantly affect the human and natural
environment if accidents occur during the transportation process. Hong Kong is a
large city with high population density and narrow streets. Due to the land
constraints, vehicles carrying DG inevitably have to pass through densely populated
areas or their vicinities. Therefore, safe DG transportation is of paramount
importance. Routing of such vehicles should consider not only the operating cost, but
also the safety of travelers in the network, the population potentially exposed, as well
as the possible damage inflicted to the surrounding properties and facilities 1n the
event of a DG incident. It is thus necessary to model the risks associated with the
transportation of DGs and to design appropriate routes presenting inherent trade-offs

between costs and risks.
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Everyday, there are different types of dangerous goods transported on the roads in
Hong Kong. As one of the most commonly transported DGs in Hong Kong, liquefied
petroleum gas (LPG) was chosen as the DG example for this case study. LPG is non-
toxic and is not harmful to soil or water. Tests conducted by the U.S. Environmental
Agency show that LPG vehicles produce 30 ~ 90% less carbon monoxide than
gasoline engines and about 50% fewer toxins and other smog producing emissions.
Since LPG is harmless to the environment, it is considered as a type of clean energy.
At present, almost 100% of taxis and more than 60% of light buses in Hoeng Kong
run on LPG. Albeit harmless, LPG is potentially dangerous. It is highly inflammable
like all petroleum fuels. Small quantities of LPG can give rise to large volumes of
gas/air mixture as approximately 2% of the vapour in air will form a flammable
mixture; if this situation occurs in a confined space and the mixture ignites, an
explosion will result. LPG vapour is heavier than air, which has important safety
implications. Any leakage will sink to the ground and accumulate in low-lying areas
and may be difficult to disperse. The vapour can remain for some time if the air is
relatively still, and if ignition occurs at a remote point the resulting flame may travel
back to the sources of the leak. In addition to the risk of fire/explosion, LPG is also
dangerous as it vaporizes and coois rapidly, and can therefore inflict severe cold
~ burns if spilt on the skin. Moreover, it has an anaesthetic effect when mixed in high
concentrations with air; the greater the concentration, the greater the risk of

suffocation.

Given the dangerous nature of LPG, safe LPG transportation is of even greater
importance for high-density living environment like Hong Kong in which population
and socioeconomic activities are densely distributed over the transportation network.
Route planning plays a crucial role in the prevention or minimization of possible
catastrophic consequences on human life and the environment. However, study on
such a problem in Hong Kong has seldom been reported so far. Hence there is an
urgent need to carry out risk assessment and optimal route planning for LPG

transportation in Hong Kong.

LPG is imported into Hong Kong by sea and stored at Tsing Yi LPG Terminals. It is
then distributed throughout Hong Kong in cylinders and bulk road tankers. As Figure
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5.1 shows, there are currently a total of 56 LPG filling stations in Hong Kong.
Among them, 12 are dedicated LPG filling stations of which 9 are located in
Kowloon and the New Territories. In addition, there are 44 non-dedicated LPG
filling stations (i.e. LPG gas refilling stations). Currently, there are no designated
routes for LPG cylinders and road tankers in Hong Kong. However, under the Road
Tunnels (Government) Regulations, they are forbidden to pass through any tunnels in
Hong Kong. The existing regulations specify the forbidden spots or road sections
rather than the approved routes. Given a set of alternate routes between an origin and
a destination, there are no quantitative means for the evaluation of the suitability of
possible routes at the present moment. In the case study, a set of criteria were
formulated for risk assessment, and the proposed methodologies were then employed
to search the Pareto-optimal routes for transporting LPG from Tsing Yi LPG
Terminal to the 9 dedicated LPG filling stations located in Kowloon and the New
Territories. Note that for illustration purpose, the results of Tsing Yi terminal to
Kowloon Bay and Tai Po station are presented in this chapter. Other choices of
destination were tested and gave comparable results. However, in order to keep this
chapter to a reasonable size, they are not reported below, but detailed in the appendix.
It should also be noted that the present study mainly focuses on routing from Tsing
Yi terminal to the dedicated LPG filling stations located in Kowloon and the New
Territories. Stations located in Hong Kong Island were not taken into account in
present study, because the transportation mode of LPG from Tsing Y1 Terminal to
Hong Kong Island is different from those of Tsing Yi to Kowloon and the New
Territories. Since it is forbidden to pass through any tunnels in Hong Kong, a LPG
tanker cannot run from Tsing Yi to Hong Kong Island directly, rather, it has to be
transported from Tsing Yi to the Kwun Tong Dangerous Goods Vehicle Ferry Pier,
then ferried to the North Point Ferry Pier, and finally delivered to LPG filling
stations in Hong Kong Island. Due to the existence of multi-mode of transportation,
the risk assessment for LPG transportation from Tsing Yi to Hong Kong Island will
be quite different, more factors need to be considered; in addition, the risk of transfer
also needs 1o be taken into account. Because of those reasons, this case study only

concentrates on routing from Tsing Yi to Kowloon and the New Territories.
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Figure 5.1 LPG supply and distribution in Hong Kong (Source: Electrical and
Mechanical Services Department, Hong Kong)

In the present case, the problem of routing dangerous shipments is essentially spatial,
therefore a Geographical Information System (GIS) is appropriate to manage and
display the set of geospatial data. GIS provides functions to perform topological
operations and database queries in a natural and straightforward manner. The GIS
platform adopted for this case study is ArcGIS 9.2, a GIS software package
developed by Environmental System Research Institute, Inc. (ESRI), which runs on a
desktop computer and allows for customization. The data used in the case study were
mostly collected in 2008 from different sources, such as the Transport Department,
the Planning Department, and the Census and Statistics Department. The data include
several layers representing the territorial and administrative boundaries, the land use,
transportation infrastructures, and a c;'Jmprehensive inventory of all the buildings and
point§ of interest. The road network is highly detailed with 40,150 links used to
represent the 4,392.25 km of roads, and a description of the link attributes (e.g. road
type, speed limit, traffic flow, traffic accident rate). The database provides adequate

information to locate industrial, commercial and residential buildings along a road, to
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estimate the impact area in the event of a DG accident, or to calculate the response
time from the nearest emergency response unit for instance. Thus, it forms a solid

foundation for subsequent risk assessment and route planning.

5.2 Relevant concepts, procedures and measurements
5.2.1 Identification of routing criteria

The routing criteria considered by traditional routing procedures usually include
costs (like transport time, transport distance), safety (for the purpose of preventing
accident), and exposure to the public and natural environment. To minimize the risk
of exposure, in particular, the highly populated areas, places of high commercial

value, ecologically sensitive regions, etc. should be avoided.

US Federal Highway Administration (US DOT 1994) suggests that, when
determining routes for any class of DG, the following factors should inevitably be
considered: population density, type of highway, type and quantity of DG,
emergency response capabilities, exposure and other nsk factors, accident history,
terrain consideration, effect on commerce, delays in transportation, and climatic
conditions. These factors are, however, not universal. Routing criteria need to be
tailored to the local situation. Since high-density living is of a particular concern in
our study, the exposure risk considered in this study should contain not only road
users at risk, but also off-road population exposure, as well as population with
special needs at risk. The special populations are the groups (e.g., students and the
elderly) that may be particularly sensitive to DG releases, and are, therefore, difficult
1o evacuate in the event of a DG accident. The risk of special population exposure is
as important as those of the other two kinds of population exposure in DG route
planning (US DOT 1994). In addition, the emergency response capability 1s also
included in the route analysis, with a view that timely action by emergency
responders can considerably reduce the magnitude of the consequenceé associated
with a DG release, and is, therefore, of significance in a high-density living

environment.
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By considering costs, safety, and exposure, the following attributes are identified as
the routing criteria for Hong Kong:

+ expected travel time

« probability of an incident with release of LPG

+ expected road users at risk

» expected off-road population at rnisk

* expected people with special needs at risk

» expected negative impact on economy: industrial, commercial and transport

facilities at risk

* emergency response capabilities

Note that the factor with reference to environmentally sensitive arcas is not included
as a routing criterion. This is because LPG 1s non-toxic and free of lead, and is thus
not harmful to the natural environment. Nevertheless, LPG is still potentially
dangerous due to its high inflammability. It also should be noted that the
optimization methodologies proposed in this research are limited in that all attributes
be . additive along paths. As a result, most of the attributes in this research are
expected values, which are additive under the assumption that accident probabilities
are independent from one link to another. This simplification, which is in fact
commonly adopted in most prevailing literature, enables using the conventional
labeling algorithm such as Dijkstra’s algorithm with moderate, rather than drastic,
modification to solve the routing problems. However, more elaborate attribute

definitions should be considered in further improvements of the optimization tools.
5.2.2 Qaantification of the objectives — analysis using GIS

The use of GIS in vehicle routing problems presents a variety of advantages over the
conventional methods. GIS has powerful spatial data processing and analytic
capabilities, which facilitate the determination of the impact area and the search for
particular features. In addition, GIS provides efficient database management
capabilities that can handle attribute data. Attribute queries are easy and relatively
accurate. The present study uses ArcGIS as the GIS platform to support route

analysis. After identifying the routing criteria, GIS is used to quantify each criterion.
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Given the identified criteria, up to seven different objectives are included in the
routing analysis. These objectives can be classified into three major categories:
operating costs, risk estimates and emergency response capabilities. It should be
pointed out that due to the inevitable use of simplified approximations, the numerical
values of these objectives may not be exact but they can simply illustrate the actual

figures.
5.2.2.1 Operating costs

The cost of operating a vehicle usually involves many factors ranging from fuel
consumption, maintenance, to insurance and amortization costs, which, under
different accounting policies, may yield different definitions of cost. It is generally
recognized that the main part of the operating costs increase with the running of the
vehicle, and that the costs from other sources are either negligible or constitute a
fixed charge. In the case of DG transportation, although the insurance cost is not
supposed to be negligible (Verter and Erkut 1997), it is usually assumed in most
literature that the operating costs mainly depend on trip length and travel time.
Wijeratne et al. (1993) suggested using the following formula to estimate the
operating costs for the transportation of DGs:

operating cost = a x expected travel time + £ x trip length, (5.1)

where a and B are numerical parameters that can be fitted through regression analysis
(Wijeratne ef al. took a = 21.67 US$/hr and £ = 0.714 US$/miles). In the above
formula, both the expected travel time and trip length are included as two objective
functions in the analysis. In practice, however, the expected travel time and trip
length are strongly correlated positively: the shorter the route, the earlier the vehicle
will reach destination. Since the optimal routes for both objectives will probably be
similar, the objectives are redundant and the estimation of the route length can thus
be removed from the routing analysis. For simplicity, this study assumes that the
operating costs are an increasing function of the travel time only, and the travel time
is directly designated as one objective in the mintmization problem. In the absence of
actual travel time profiles for the Hong Kong road network, the expected travel time
of each link (i.e. road segment) is estimated as a function of length of road segment

and functional speed:
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expected travel time = length of road segment / functional speed, (5.2)

where functional speed is the traffic speed limit, which vanes with different types of

M

road.
5.2.2.2 Risk estimates

Numerous models have been proposed to measure the risk of transporting dangerous
goods along a route (subscction 2.2.3). The common feature of all approaches is that
a risk indicator is composed of the probability of some undesirable events and the
possible adverse consequences. Here, the risk is specified by the following
constituent components: accident probability, exposed population along the route
(including both road users and off-road population), people with special needs at risk

¥

and economic activities under threat.

Let p, be the probability of an accident with release of DG along the i-th link of route
r. which comprises n(r) links, and C; be the consequence of such accident. Under
some reasonable assumptions, notably that p; << 1 for every link, the expected

consequence of an accident along route r can be defined as:

n{r) il n(r)

E) =Y p]]0-p)cC ﬁZP,CH (5.3)

1=1 1=1

where C;’s are successively the road users at risk along link #, the off-road population
at risk along link i, the special population at risk along link i, and the expected

damage on the economy along link i.

The probability P(X) of a possible outcome X of a DG accident is usually calculated
from a sequence of other probabilities, since there is no adequate historical record
from which to estimate the distribution of P(X) directly. Suppose that the adverse
outcome X is conditional on a release R, which is in turn conditional on an accident 4,
using Bayesian theorem, we then obtain the probability of outcome X resulting from
an accident 4, P(X), as:

P(X)=P(A) x P(R{A) x P(X| A, R}, (5.4)

where P(A) is the probability of traffic accident A4 occurring on a road segment, P(R |
A) and P(X | 4, R) are both conditional probabilities. P(R | 4) s the probability of
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occurrence of release accident R given traffic accident A, while P(X | 4, R) is the
probability of outcome X given release accident R resulted from accident 4. Each of
these three probabilities can be estimated separately. For instance, P(A)\can be
estimated by multiplying the historical rate of accidents per truck-kilometer on a
segment by the length of the segment in kilometers; P(R|4) can be estimated by
calculating the historical percentage of accident that gave rise to a release; and
P(X]4,R) can be estimated by calculating the historical percentage of release
accidents that had the adverse outcome X (Chow er al. 1990; Erkut et al. 2007).

It should be pointed out that the focus of the present study is primarily on the multi-
objective DG routing, elaborated risk assessment is not the scope of our study. Given
this consideration, the risk associated with LPG transportation is broadly estimated in
the case study; and then based on risk estimation, multi-objective route planning is
subsequently conducted to search efficient routes for transporting LPG from Tsing
Yi LPG terminat to the designated LPG filling stations. In this respect, the present
study uses a relative risk approach rather than absolute risk model. The risk values
calculated by this method are not meaningful as absolute numbers; instead, it
represents the relative difference in the risks among alternatives that are used to

differentiate routes.

(1) Accident probability
The probability of an accident with release is calculated as the product of Truck
Accident Rate (per km), Conditional Probability of Release, and Length of link (in
km). That is,
Accident Probability = Truck Accident Rate (per ki) x Conditional Probability
of Release x Length of link (in km). (5.5

The truck accident rate and the conditional release probability in formula (5.5) are
road type related. Given the number of total accidents and the number of accidents
involving trucks occurred in one year, the truck accident rate can be broadly
estimated in proportion to traffic accident rate. According to the road traffic accident
statistics of HK in year 2008, the truck accident rate for each road is about 6% of the
value of traffic accident. In the absence of specific statistics for Hong Kong,

numerical values of the conditional probability of release were taken from Harwood
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et al. (1993), and they were adapted to the Hong Kong road network based on local
traffic conditions (Table 5.1).

Table 5.1 Conditional release probability adopted in the present study for estimating
the probability of a DG incident

. . Conditional
Road type Designation in release
Harwood et al. 1993 i~

probability
Expressway Urban freeway 0.062
Major road Urban multilane divided 0.062
Secondary road Urban two-lane 0.069

Source: Harwood et al. (1993)

One may argue that the conditional release probability varies with road traffic,
weather conditions, time of day, and numerous other parameters. However,
deficiencies and inconsistencies in a truck accident database preclude more elaborate
models (Lepofsky et al. 1993). Similar single-value probability models have been
widely used in many studies in the field of DG transportation and have been well
accepted by scholars and practitioners in absence of anything better (Turnquist and
List 1993; Ashtakala and Eno 1996).

(2) Road users at risk

Road users at risk (i.e. on-road exposure) refer to the travelers on the roadway near
the truck carrying DG, which is obviously associated with traffic volume. As a
measure of on-road exposure, vehicle-minutes, as suggested by Nozick ef al. (1997),
is used for all vehicles within a distance x from the truck. That is, as the truck moves
along a link, vehicles potentially exposed to the nsk of fire and/or explosion hazard
are those that are traveling in the same direction as the truck, and are less than
distance x (e.g. 800 meters) behind it, as well as those vehicles traveling in the
opposite-direction lanes at distance x or less ahead of the truck. The reason vehicle-
minutes, rather than just vehicles, is used as a measure of the exposure is because we
want to reflect both how many vehicles are within a specified distance of the DG
truck, and for how long. Suppose a truck carrying DG is crossing a road link. Based

on the information such as traffic volume in terms of average annually daily traffic
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(AADT), length of the link, functional speed, on-road exposure for one link i1s
estimated as follows:
¢ per lane traffic volume = AADT / number of lanes
e per lane traffic density = per lane traffic volume / functional speed = AADT /
number of lanes / functional speed
e exposure window behind the truck = 0.8 kilometers (assumed)
¢ vehicles in exposure window (x) = per lane traffic density x number of lanes
x exposure window = (AADT / number of lanes / functional speed) * number
of lanes x 0.8 = AADT / functional speed x 0.8
e time to traverse link = length of the link / functional speed
¢ vehicle exposure = vehicles in exposure window x time to traverse link x 2 =
(AADT / functional speed x 0.8) x (length of the link / functional speed) x 2
= AADT x length of the link x 1.6 / functional speed’

As mentioned earlier, vehicles potentially exposed to the risk include not only those
traveling in the same direction as the DG truck within a distance x, but also the
vehicles traveling in the opposite-direction. Hence, a factor of 2 is employed in the
calculation of vehicle exposure. The above calculations are repeated till the values of
vehicle-minutes of exposure for all links in the network have been obtained. Note
.that vehicles more than 800m ahead of the truck traveling in the same direction, or
behind the truck traveling in the opposite direction, are not included in the on-road
exposure risk estimation because in the event of an incident, they are already moving

away from the truck.

(3) Off-road population at risk

Off-road population refers to the population residing or working some distance away
from the road. This factor measures the average population at risk in case of accident
on a link, under the assumption that the probability of an accident is constant along
the entire length of the link. If an accident occurs within a link, then the expected
number of people exposed is the population within a given radius of the accident
location. The length of the radius depends on the type of DG. Given that the location
of future accidents is unknown and that they are expected to occur with a probability

that is uniformly distributed over the link, the expected number of people at risk can
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be approximated as the population within the impact area (a buffer) formed by a

series of equally spaced circles centering the link.

In ArcGIS, a buffer zone is created to simufate the potential impact area. The
potential impact zone for petrochemicals is typically taken at 800 meters in all
directions (US DOT 1994). Therefore, a buffer of 800m width is generated for each
road segment. The off-road population exposure along a road segment is calculated
from the exact number of buildings (residential, commercial and offices) within the
potential impact zone. Through ArcGIS, the appropriate attributes are queried and
the respective risk values are calculated. It should be noted that here the estimated
off-road exposure does not account for the decreasing probability of fatalities as
people live further from the road where the release occurs. Considering that an
elaborate assessment for the effects of a release of dangerous goods in the urban
environment is beyond the scope of this research, the present study simply assumes
that a release would equally affect an impact area that is isotropic and the dimension

of which depends on the type of material spilled (US DOT 1994).

(4) Special population at risk & expected damage on the economy

The additional risk components, such as special population at risk and negative
" impact on economy, are estimated using the framework suggested by US DOT
(1994). An indicator for special population exposure is derived based on the location
of schools, hospitals, and day care centers for the elderly. The value of such indicator
is calculated from the number of schools, hospitals, and elderly centers that falls

within the impact zone of the network.

As for the expected damage on the economy due to a DG transport incident, it is
again calculated as the product of accident probability with the number of industrial,
commercial and transportation facilities potentially at risk, assuming that a facility
within the impact zone will be out of service until the area has been cleaned up. If
land-use prices were available, it would also be possible to include a measure of the

expected property damage caused by an accident.

5.2.2.3Emergency response capabilities
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Emergency response capabilities can be a cntical consideration in evaluating the
consequences of a traffic accident involving the release of DGs. Timely action by
emergency responders can significantly reduce the magnitude of the consequences
associated with a DG release. The time required for emergency personnel to get to
the accident site i1s important for establishing control of the tmmediate area and
determining the nature of the hazard. The number of emergency response units or
teams (e.g. fire, police, and emergency medical) that are within a certain response
window along segments of a route could be counted and rated on a scale, which

could then be applied to reduce the consequence term in the risk calculation.

In this case study, the factor of the emergency response capabilities is estimated
using the framework suggested in the US DOT guidelines for DG routing (US DOT
1994). Several elements are taken into account: the proximity of the emergency
response units to each road segment; the number of trained and equipped firefighting
units; the number of police cars and; the number of ambulances (from the
Ambulance Depots) available within a specific response window (6 minutes in an
urban area and 9 minutes in a suburban area, Hong Kong Fire Services Review 2007)
from any point along a given route. The count of those numbers is divided by the
route length and is then translated into a rating on a scale from 1.0 (low) to 1.5 (high).
The relative risk for each route can then be divided by the response capability facfor.
Obviously, the higher the rate, the lower the risk score. This estimation assumes that
the closest unit will respond whether or not the incident is within its area of
jurisdiction. Further, it assumes homogeneity in response training and capability
across all fire response units because consistent information on these important

details is not available.

5.3 Compromise-programming-based route planning

As a natural and logic way to solve multi-objective optimization problems,
compromise programming employs a priori information on the preference structure
of the decision-maker to find a compromise solution amongst a set of conflicting

objectives. Therefore, a proper determination of the two parameters, the weight w;
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and the exponent p, in line with decision-makers’ preference is essential to the

efficient implementation of the compromise programming method.

5.3.1 Determination of parameters in compromise programming

5.3.1.1 Weight (w;)

It is usually recognized that determination of weights is one of the most difficult
exercises in analyzing problems involving multiple objeclives, especially those
employing a linear or convex combination operation. The weight w; in the Lp-metric
is attributable to the decision maker's preferences, and signifies the relative
importance of each criterion. Many methods can be used to assess criterion weights.
Present study employs the Analytic Hierarchy Process (AHP) (Saaty 1990) to
construct the weights. AHP works basically by developing priorities in terms of the
relative importance judged on a scale of 1 to 9. The importance of each criterion is
individually determined and a pair-wise comparison matrix is created. Subsequently,
the eigenvalues of this matrix are calculated and these eigenvalues are employed as

weights of the critena.

In this case study, criteria weights are constructed using the following procedures
and principles. First, a pair-wise comparison matrix is employed to determine the
relative importance of each decision criterion in comparison to the others.
Considering that the population exposure is the key factor in determining the
consequences of a DG release in risk analysis, the three criteria closely related to
such a factor, namely the off-road population exposed (PR), the road users (UR), and
the special population at risk (SR), should therefore have higher weights than the
others. PR, UR, and SR are thus given the same weight, but two times more
important than that of accident probability (AP), expected damage on economy (DE),
and emergency response capability (ER), and three times more than that for travel
time (TT) (Table 5.2). Furthermore, AP, DE, and ER are weighted twice more than
that of operating cost, and are given an equal weight. It should be noted that such
weighing principle can be taken as a basis, and different weighing schemes can be

implemented in accordance with decision-makers’ preferences. Such procedures
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result in composite weights (Table 5.2} with a consistency ratio of 0.002, which is

completely acceptable under the principle described in Saaty (1990).

Table 5.2 Pair-wise comparison matrix for deriving priorities of critena

TT AP PR SR DE UR ER Comparison

weight
Travel time (TT) 1 172 173 1/3 1/2 1/3 172 0.061
Accident probability (AP) 2 [ /2 12 1 172 1 0.107
Off-road population at risk (FR) 3 2 1 1 2 1 2 0.206
Special population at risk (SR) 3 2 I i 2 1 2 0.206
Expected damage on economy (DE) 2 | 1/2 1/2 1 1/2 1 0.107
Road users at risk (UR) 3 2 1 1 2 1 2 0.206
Emergency respense capability (ER) 2 1 1/2 1/2 1 172 ! 0.107

3.3.1.2 Exponent p

Romero and Rehman (1989) pointed out that the parameter p in the weighted Lp-
metric of a compromise programming mode! acts as a weight attached to the
magnitude of deviation between the value of a given alternative and that of the ideal
point. The value of p ranges from one to infinity and presents the concern of the
decision maker over the maximum deviation. The larger the value of p, the greater
the concern becomes. It is a general practice in solving compromise programming
problems to use the following values for the parameter p (Thinh and Hedel 2004):

e p =1 (the Manhattan norm),

¢ p =2 (the Euclidean norm), and

s p = oo (the maximum norm, corresponding to the “Tchebysheff” distance).
For other values of p, since the corresponding utility function is non-linear and has
no explicit physical meaning, they are seldom applied in a compromise programming

model for solving practicai problems.
In this case study, without loss of generality, the Manhattan distance (full trade-off),

the Euclidean distance (partial compensation), and the “Tchebysheff” distance (the

non-compensatory position) are employed to solve the DG routing problem.
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5.3.2 Single-objective optimization results and interpretations

To examine the effectiveness of the proposed methodology, two scenarios were
developed for testing. Both scenarios are to select optimal routes from Tsing Yi LPG
terminal to the dedicated LPG filling stations located in Kowloon and the New

Territories.

The first scenario considers each objective individually, which corresponds to a
series of single objective optimal route planning probiems. This can be treated as the
special case of multi-objective optimization by assigning unit weight to a certain
criterion (the one that is considered to be absolutely the most important by a decision
maker), and 0 to the others. Under this scenario, the parameter p is set to 1. Given 7
objectives and 9 different LPG stations, a total of 63 routes are generated. The
optimal routes between Tsing Yi and Kowicon Bay and those between Tsing Yi and

Tai Po are shown in Figure 5.2 and 5.3, respectively, for illustration purposes.

As a summarizing statistic of the optimal routes for the 9 origin-destination {OD)
pairs (i.e., Tsing Yi terminal to each of the 9 dedicated LPG stations), Table 5.3
contains the average and standard deviation of the objective-function values under
each of the 7 individual objectives, whereas Table 5.4 contains the minimum and
maximum of the routes. The rows in the tables correspond to the optimal solutions,
and the columns to the objectives. Note that for each link, the scores on these criteria
must be normalized to unify the units of measurement of the criteria. The reason for
normalization is that the data sets (attribute values of the quantified criteria) contain a
mixture of measurements made on different scales and in different units. The
criterion of on-road population exposure risk, #;, i1s normalized as a score, z;, as: z; =
(ry - min) / (max - min), where min and max represent the minimum and maximum
value of this criterion, respectively, over all edges of the road network. The other
criteria are normalized in a similar manner. It is observed that in Table 5.4, for each
objective, the lower bounds (minima) in each row are more or less the same. The
reason is that these minima are all derived from the Tsing Y1 — Kwai Chong pair or
from the Tsing Yi — Mei Foo pair. These two stations are very close to the Tsing Yi
terminal. Due to the rather short distance and the road network structure, the optimal

routes for these two O-D pairs with respect to different objectives do not vary
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significantly. For the other O-D pairs, however, there are few instances of high

similarity between the routes selected by different objectives.
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Figure 5.2 Seven single-objective optimal routes from Tsing Y1 LPG terminal to
Kowloon Bay LPG filling station
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As depicted in Figures 5.2 and 5.3, the single objective optimization solutions are
rather different from each other. The differences in attribute values are clearly
revealed in Tables 5.3 and 5.4. These tables show that the optimal solution obtained
under one single objective gives non-optimal solutions under other objectives. in fact,
in most instances there are sigrliﬁcam trade-offs among the optimal solutions with

respect to these criteria.

The minimum travel time solution has the shortest trave! time because most of its
links are part of the expressways and tmnic roads. This, on the other hand, makes the
on-road exposure risk (road users at risk) the largest for the Tsing Yi — Tai Po patr,
and the second largest for the Tsing Yi — Kowloon Bay. Since it passes through
several densely populated areas, the off-road population exposure nsk is also made
relatively high. Consequently, the societal risk, which is the sum of the three parts
relevant to public safety, namely on-road population exposure risk, off-road
population at risk, and the population with special needs at risk, under this solution is,
for the Tsing Yi — Tai Po pair, the largest among all 7 single objective optimization
solutions, and for the Tsing Yi — Kowloon Bay pair, the third largest. This indicates

that by minimizing travel time, the public safety is jeopardized simultaneously.

The minimum off-road exposure solution has the minimal off-road exposure risk,
and the third smallest on-road exposure risk. It serves the second best on public
safety among all the solutions, and performs very well under the other critena. In the
context of overall cost, i.e. the sum of the costs and all sorts of risks, this solution is
reasonably good but still fails to strike the best compromise among various

objectives.

The minimum economic damage solution minimizes the expected negative impacts
on the economy in the event of an accident. It makes a big detour from Tsing Yi
terminal to Kowloon Bay station, in an effort to avoid densely commercialized areas.
This leads to the longest travel distance and the highest accident probability, and the
overall cost with it is also extremely high. From the perspective of operating cost,
this solution is probably unacceptable to the DG transport operators, neither is it
desirable from the perspective of safety. For the Tsing Yi — Tai Po pair, however, the

performance of this solution is satisfactory.
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The minimum on-road exposure risk solution exhibits good performance in
minimizing the risk of on-road population exposure, since most of its links mainly
follow secondary road with relatively lighter traffic. However, this resuits in running
a very high risk of off-road exposure. In addition, due to the proximity of special
populations, the risk of special population exposure is doubled accordingly.
Meanwhile, the expected damage on the economy with this solution 1s the largest

among all solutions.

The above analysis demonstrates that the existence of multiple criteria makes it
difficult if not impossible to identify a single “best” solution for all crniteria. The
optimal solution under one objective is generally attained at the expenses of the
others. To strike a good balance among the objectives, the focus should then be on
finding a set of “compromise” solutions containing trade-offs among the objectives
for decision making. The follow-up experiments were performed under this principle.
We employed different numbers of criteria and adopted different values for
parameters w; and p to generate Pareto-optimal solutions under these scenarios by

means of compromise programming, and analyzed the trade-offs among the solutions.
5.3.3 Multi-objective optimization results and interpretations

In general, the number of solutions for MOP problems increases with the number of
objectives considered. Given multiple objectives, there could be a large number of
solutions when selecting optimal routes based on various combinations of different
objectives for each origin-destination pair. For illustration purpose, the Tsing Ti -
Kowloon Bay and Tsing Ti — Tai Po pairs are chosen to provide some insight into the

trade-offs among different MOP solutions.

First, the three factors pertinent to public safety (i.e., road users at risk, off-road
population at risk, and people with special needs at risk) are considered to generate
the multi-objective DG routes. Solutions obtained well represent the Government’s
major concern in DG routing. Second, the criterion of operating cost, e.g. travel time,
is added for the purpose of striking a balance between economy and safety, Third, aﬁ
7 criteria are considered with (1) equal weights, and (2) different weights obtained by

the pair-wise comparison method. Three scenarios are explored in this series of
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studies: p =1 (full tradeoff), p =2 (partial compensation), and p =0 (thc non-
compensatory position). With the increase of the number of objectives, the MOP
routing solutions also increase. Although many more routes could be generated by
tuning the values of the parameters w; and p, 12 of them are selected. Their attnibutes
are shown in Table 5.5 and Table 5.6. It should be noted that all values in these

tables are unit free due to data normalization.

The single objective ol timization solutions are the “extreme” solutions each obtained
from individually minimizing one of the 7 criteria. Table 5.5 and Table 5.6 make a
general comparison among the single objective optimization solutions and
compromise solutions. Solutions 1 to 7 are single objective ones, while 8 to 19 are
compromise solutions under different scenarios. All of these solutions are Pareto-
optimal. Given any two of them, one is better than the other with respect to at least

one objective, and vice versa.

In order to facilitate decision-makers to select an appropriate routing decision, the
solutions are graphically displayed in Figure 5.4 (for Tsing Ti — Kowloon Bay) and
Figure 5.5 (for Tsing Ti — Tai Po) for efficient comparison. Each row of Table 5.5
and Table 5.6 is shown as a piecewise linear curve representing each Pareto-optimal

solution. Points in each curve correspond to the scaled values of the 7 objectives.
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Figure 5.4 The objective function values for different optimizations (Tsing Yi -
Kowloon Bay)
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Figure 5.5 The objective function values for different optimizations (Tsing Yt - Ta1 Po)

Clearly, there does not exist any curve that laid below all the others. If such a curve

existed, the Pareto solution represented would be better than any other with respect

to all the objectives.

To enrich the comparison, we use in Figure 5.6 and Figure 5.7 one stacked bar for
every row of Table 5.5 and Table 5.6, respectively. Each bar consists of seven
sections, one for each objective. In this case, we are also able to order the Pareto

solutions by simply ordering the bars by their heights, that is, by the sum of the seven

scaled objective values.
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Figure 5.7 Sum of the 7 scaled objective values for different optimizations (Tsing
Yi — Tai Po)

Based on the optimization results, we have the following observations:

1) The minimization of the single objective function gives rise to a significant
achievement of the chosen criterion, whilst heavily compromising the others. This

has been discussed in detail in subsection 5.3.2.
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2) The multi-objective solutions represent a good compromise among the competing
objectives, as evidenced by comparison of the results obtained with various
combinations of different objective functions in the compromise programming

problem.

Solution 8 focuses on the importance of public safety. 'l;hc three factors with
reference to societal risk, namely population exposure risk, including both on-road
and off-road, as well as special population at nisk are considered impartially. This
solution serves best on safety, yet it is not equally desirable from the perspective of
expected dmﬂage on the economy in the event of a DG incident, which increases by

over 60% than the minimum obtained under the single-objective solution 5.

Based on solution 8, solution 9 considers public safety together with travel time,
which makes improvement on the objectives with respect to travel time, off-road
population exposure, the possible damage on the economy, and the emergency
response capability. As trade-offs, for the Tsing Yi — Kowloon Bay pair, solution 9
downgrades by 9%, 17%, and 27% over solution 8 on accident probability, special
population at risk, and road users at risk, respectively. Larger trade-offs are observed
for the Tsing Yi — Tai Po pair, where solution 9 downgrades by 23% and 36% over
solution 8 on special population at risk and road users at risk, respectively.
Nevertheless, for both O-D pairs, the objective values between these two solutions

do not differ as significantly as those among single objective optimization solutions.

Solution 10 is obtained by taking all 7 criteria into consideration with unbiased
preferences (i.e. equally weighted on each objective). For both Tsing Yi — Kowloon
Bay and Tsing Yi — Tai Po, this solution increases by about 5% than solution 1
(which is the shortest path) in travel time, and offers different trade-offs with other
objectives: 50% ~ 80% more population with special needs at risk (compared to the
minimum achieved in solution 5), but smaller trade-offs with the minimum solutions
obtained under other single-objective minimization problems. The societal risk of
this solution is lower than that of most single objective solutions, though it is not the
lowest among all the 18 solutions. In the context of overall cost, solution 10 is the

best.
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Similar 1o solution 10, solution 11 also takes all criteria into account in the process of
route planning. The only difference is that the latter assigns dissimilar weights to
different objectives. The weights indicate relative importance of each criterion, and
are gencrated by means of pair-wise comparison (see Table 5.2). Compared with
solution 10, for both O-D pairs, solution 11 has relatively lower special population
exposure risk and expected damage on the economy; it also enhances the emergency
response capability. This is, however, at the cost of the lower achievements of the

other objectives.

Solutions 12 to 15 correspond’ to solutions 8 to 11 respectively, replacing
U(1,w) with U(2,w)as the utility function. Solutions 16 to 19 also correspond to 8 to
11 respectively, yet the utility function is changed to U(c,w). From Table 5.5 and
Table 5.6, it is not difficult to find that while these substitutes are worse off on some

objectives, they make improvement on the others at the same time. Yet, the objective

function values vary within a smail range.

The results presented and the behaviors shown in Figures 5.4 to 5.7 reveal the
diversity of DG routing solutions under the multi-objective approach, which

confirms the effectiveness of the proposed methodology.

5.4 Optimal routing by adaptive weighting approach

The same routing problem between Tsing Y1 LPG terminal and the dedicated LPG
filling stations were analyzed using the proposed adaptive weighting method
introduced in Chapter 3. Recall that this method consists in approximating the Pareto
front with a few suitable solutions to help the decision-makers select the most

satisfied routes without generating all of them.
5.4.1 Optimal routing results and interpretations

As indicated in Chapter 3, the implementation of the proposed adaptive method is
based on the result of m single objective optimizations with each objective at a time

serving as an objective function. Therefore, as an initial condition, a set of extreme
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solutions minimizing each of the objectives individually are generated first. After
that, the adaptive method is used to search for optimal routes with respect to muitiple
objectives. To examine the effectiveness of the method, three scenarios were
developed for testing. First, public safety, which involves the factors of road users at
risk, off-road population at risk, and people with special needs at risk, is considered
to generate the optimal routes. Clearly, the obtained solutions effectively address the
government’s major concerns in DG routing. Second, the criterion of operating cost,
e.g. travel time, is added with the intention of striking a balance between economy
and safety. Third, all 7 criteria are considered simultaneously. With the increase of
the number of objectives, the number of Pareto optimal solutions also increases. The
reason is that a Pareto-optimal solution for two objectives is also Pareto-optimal
when considering one or more additional objectives in conjunction with these two
objectives. Thus, the set of non-dominated solutions for all the objectives contains at
least all the non-dominated solutions for any choice of two, three, four, or more
objectives. Out of the numerous routes, 12 are selected. For illustration purposes, the
resulting optimal routes from Tsing Yi LPG terminal to each of the two dedicated
LPG filling stations, i.e. Kowloon Bay and Tat Po, are presented below to provide
some insight into the trade-offs among different solutions. Their attributes are shown
in Table 5.7 and Table 5.8, respectively. The rows correspond to the optimal
solutions, and the columns to the objectives. Note that all the values in these tables

are unit free due to data normalization.

5.4.1.1 The Tsing Yi — Kowloon Bay pair

Solutions 1 to 7 are “extreme” solutions, each of which individually minimizes one
of the seven objectives. These solutions provide information on the initially
unexplored region. Although these routes have been presented in Figure 5.2, they are
also displayed in Figure 5.8 in conjunction with MOP solutions for the purpose of
comparison. Table 5.7 reveals that there are significant trade-offs among the Pareto-

optimal solutions with respect to different criteria.
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Figure 5.8 Efficient routes from Tsing Yi terminal to Kowloon Bay LPG filling
station generated by the adaptive weighting method
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Solution 1 has the shortest travel time because most of its links are part of
expressways and trunk roads. Solution 2 has the lowest accident probability, and is
the best among all extreme solutions in terms of public safety. Solution 3 has the
least off-road exposure risk. Solution 4 is the best with regard to the risk of
population’ with special needs exposed. Solution 5 minimizes the expected negative
impacts on the economy in the event of an accident, by incorporating a large detour
from Tsing Yi to Kowlooon Bay to avoid densely commercialized areas. This
solution requires a longer travel distance and has a higher accident probability than
all other solutions identified. It also performs very poorly in teims of road users’
safety and emergency response capabilities. Because of its high operating costs, this
solution would probably be unacceptable to DG transport operators, and it also
leaves a lot to be desired from the perspective of safety. Solution 6 has minimum on-
road exposure risk since most of its links mainly follow secondary roads with
relatively light traffic. However, this results in running very high risks of off-road
exposure and special population exposure, and the largest expected damage to the

economy. Solution 7 performs the best on emergency response.

Individual mimimization of each of the seven objectives gives rise to a significant
achievement of the chosen objective, while heavily compromising the others. Il”:ly
contrast, the multi-objective solutions represent a good compromise among the
competing objectives, as evidenced by a comparison of solutions 8 to 12 given in
Figure 5.8. Solution 8 focuses on the importance of public safety by considering on-
road exposure, off-road exposure, and special population at risk impartially. This
solution serves best on safety, yet it is not equally desirable from the perspective of
expected damage on the economy in the event of a DG incident, which is over 70%
greater than the minimum obtained under solution 5. Solution 9 incorporates
operating cost (travel time) with public safety. Compared with solution 8, this
solution improves about 8% ~ 13% on most objectives; on the other hand, it also
downgrades by 35% over solution 8 on on-road exposure risk. Obviously, the
improvement in operating cost and some other objectives comes at the cost of
sacrificing the road users’ safety, though such trade-offs are not as substantial as
those among the “extreme” solutions. Solutions 10 to 12 are obtained by taking all 7
criteria into consideration simultaneously. Similar to solutions 8 and 9, these three

MOP solutions present various trade-offs among different objectives. Compared to
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the “extreme” solutions, however, these trade-offs are much milder. It should be

noted that although each of the last three solutions is created by impartially

considering all 7 criteria, they are somewhat geometrically different from each other,

which indicates that the proposed adaptive method is capable of generating a set of

diverse non-dominated solutions for the DG routing problem.

5.4.1.2 The Tsing Yi — Tai Po pair

Twelve of the optimal routes for the Tsing Yi — Tai Po pair generated by the

proposed adaptive method are presented in Figure 5.9, among which the first 7

solutions are “extreme” ones, and the last 5 are MOP solutions. Table 5.8

summarizes their attributes and reveals the differences in their attribute values.
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Figure 5.9 Efficient routes from Tsing Yi terminal to Tai Po LPG filling station
generated by the adaptive weighting method :
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Solution 1 is the fastest routc. However, the risks of special population exposure and
on-road exposure with this solution are very high, resulting in thc maximum societal
risk of any of the alternatives. In solution 2. while the accident probability is
minimized, the large detour from Tsing Yi to Tai Po following the links with low
accident rate leads to the longest travel time. Solution 3 has minimum off-road
exposure nsk. Solution 4 is the best with regard to the risk of exposure of
populations with special needs. However, it also has the highest accident probability,
more than 100% greater than the minimum obtained by solution 2. Solution 5
minmmizes the expected damage to the economy in the event of an accident. Solution
6 minimizes the on-road exposure risk by following secondary roads with lighter
tratTic, at the cost of the highest nisk of off-road exposurc. Morcover, should a DG
accident occur, the expected damage on the economy of this solution will be more
than doubled comparing to the minimum obtained in solution 5. Solution 7 is the

most desirable from the perspective of emergency response capabilities.

Solutions 8 1012 are a subset of “compromise” solutions containing trade-offs among
the considered objectives. Solution § takes into account the road users at risk, off-
road population at risk, and people with special needs at risk for the generation of
optimal routes for DG shipments. While effectively addresses the government’s
major concerns in DG routing, solution 8 is not equally desirable from the
perspective of accident probability, which is over 70% higher than the minimum
obtained under solution 2. Solution 9 incorporates operating cost with public safety,
which produces a shorter travel time and a lower accident probability than solution 8.
On the other hand, this solution results in deterioration ranging from 2% to 21% over
solution 8 on the other objectives. Solutions 10 to 12 are obtained by taking all the
criteria into consideration. Like the two previously mentioned MOP solutions, these
three solutions involve various trade-offs among different objectives, which,

however, are not as significant as those retlected in the “extreme™ solutions.

5.4.2 Assessing the theoretical validity of the model

The results presented in subsection 5.4.1 are satisfactory in the scnse that the
proposed adaptive weighting method proved effective in generating a small number

of efficient routes under multiple conflicting objectives. However, further analyscs
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arc needed to assess the theoretical validity of the proposed algorithm; in other words,
to confirm that the paths generated do provide an overview of the possible routing
options. A couple of aspects of the resulting paths are examined for this purpose. The
first criterion is to estimate the goodness of the approximation, which can be
measured by the proportion of the objective space that is covered by the approximate
sct of solutions. In practice, this notion is controlled by the size of the unexplored
regions remaining for exploration. Recall that the termination criterion of the
algorithm can be defined as either a desired number of solutions specified by a
decision-maker; or the maximum loss of information acceptable by the decision-
maker. In the calculation process, once the former criterion is met, the algorithm
terminates with showing the proportion of remaiming unexplored regions for
decision-makers’ reference. In case the second criterion is satisfied earlier, it 1s
observed that when the algorithm stops, the size of the uncxplored regions accounts

for less than 20% of the whole objective space.

Another criterion 1s to examine the efficiency of the proposed adaptive method by
estimating the dissimilarity of the generated routes, which 1s of importance in routing
DG shipments. A dissimilarity index is calculated for every pair of routes selected. It
is between zero and one, where zero indicates perfect similarity and one indicates
perfect dissimilarity. To compute a dissimilarity index for two routes R, and R,, we
process the arc lists of the two routes. If these two routes share no common arcs, then
the dissimilarity index for this pair is one. At the other extreme. if the two routes are
identical, then the index is equal to zero. If R, and R, have some common arcs, but
not identical, then the dissimilarity index quantifies the dissimilarity between them.
The dissimilarity of two routes R, and R, is defined as the symmetrical function

(Akgiin ef al. 2000):

L(R,NR,)) L(R,AR)
e

—-—--—m—], (5.6)

D(R,.,Rj):l—[
2L(R,) 2L(R,)

where R, N R, denotes the portion of common arcs between the route pair R, and R,

and L{ - ) denotes the length of quantity under brackets. This index reflects the
difference betwcen unit value and the arithmetic average of two ratios: the
interscction length divided by the length of route R,, and the interscction length

divided by the length of route R,.
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The results of the Tsing Yi — Kowloon Bay and Tsing Yi -~ Tai Po pairs are displayed
in Table 5.9 and Table 5.10, respectively. For the Tsing Yi — Kowloon Bay pair,
there are very few instances of high similarities between the generated optimal routes.
The minimum and maximum dissimilarities are 22.7% and 87.8% respectively, while
the average dissimilarity is 63.7% with a standard deviation of 17.5%. There are
more cases of mild to high similarity for the Tsing Yi — Tai Po pair, and there are
also more cases of high dissimilarity, with the dissimilarity index higher than 98%.
The average dissimilarity is 65.8% with a standard deviation of 31.5%, while the
minimum and maximum dissimilarities are 8.4% and 99.4%, respectively.
Considering the rather short lengths of the routes, these results compare

advantageously with those reported by Akgiin er al. (2000).

The cases of other O-D pairs exhibit similar performance except for the Tsing Yi -
Mei Foo and Tsing Yi — Kwai Chung pairs. Due to the rather short distance and the
limited route selection between these two stations in the road network, the generated
optimal routes do not vary much. As a result, the average dissimilarity is
comparatively lower than those of the Tsing Yi — Kowloon Bay and Tsing Yi — Tai
Po pairs. However, this is not due to the algorithm itself, but rather because of the
influence of the existing network structure. Overall, the adaptive weighting method
exhibits more powerful applicability to more complex road network with longer

travel distance.
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5.5 Genetic-algorithm-based route optimization

5.5.1 Parameter settings in the proposed genetic algorithm

The same routing problem between Tsing Yi LPG terminal and the dedicated LPG
filling stations were analyzed using the proposed genetic algorithm described in
Chapter 4. The GA was coded in C++ and tested on a Windows XP machine
(Pentium 4 /3.0-GHz processor with 2GB RAM). To examine the effectiveness of
the proposed GA, four scenarios were explored: (1) considering each objective
individually, corresponding to a series of single objective route planning; (2)
searching for optimal routes with particular concern on public safety, i.e., to take into
account the factors of road users at risk, off-road population at risk, and people with
special needs at risk simultaneously in routing analysis; (3) to strike a balance
between economy and safety by considering the operating cost in conjunction with
the three factors considered in test (2); and (4) optimizing all 7 criteria
simultaneously. For each test, the GA was run with a population size of 30. A hybnd
approach that incorporates random walk with heuristic initialization containing the
“seeds” generated by Dijkstra's shortest path algorithm was used to initialize the
population. Random walk and heuristic initialization contribute 80% and 20%
individuals, respectively, in the initial population. The Max-Min fitness function is
employed to maximize the difference between any two paths. The tournament
selection incorporating the elite retaining strategy is employed to generate a new
population for the next generation. The crossover operation exchanges partial
chromosomes (i.e. partial-paths) at location independent crossover point. The
mutation operation introduces new partial chromosomes (partial-paths). The
algorithm terminates if the change in the mean fitness of the population is less than

1% over 30 successive generations, or when 100 total itcrations have been reached.

A significant problem in designing a GA is the determination of the proper values for
the control parameters, such as generations, population size (i.e. number of
candidates), crossover probability P, mutation probability £, termination conditions,
etc. There is no formal theoretical methodology for this problem because different

combinations lead to different characteristic behavior of the GA. Traditionally,
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parameter determination is achieved through exhaustive experimental work (Eiben et
al. 1999). Based on the experimental tests performed in this study and reported in the
literature, the final settings of the control parameters used in the proposed GA for
this case study were defined as follows:

» population size: 30

e crossover probability: P. = 0.8

e mutation probability: P, = 0.05

¢ number of elites: 3

s tournament size: 3

» number of generations: 100

Note that the umformity of the solution set is a significant issue that cannot be
ignored. If every member in a solution set is exactly the same as that of another set,
these two solution sets are considered uniform. Recall that given a set of criteria
weights, the deterministic MOP methods such as compromise programming
produces a unique solution no matter how many times the same procedure is repeated.
The genetic algorithm, however, does not guarantee the uniformity in the solution set.
Due to the intrinsic randomness of the GA, the solution set produced in a single run
is very likely different from the set generated in another run even under the same
parameter settings. Thus, in this case study, tests for each of the four scenarios were

made several times in order to avoid exceptional cases.

5.5.2 Routing results and interpretations

Since genetic algorithms operate with a population of solutions, the result of the
proposed GA for each of the four scenarios is not a single route but a set of routes
bearing dissimilar proportions of cost and risk. Among these routes, not all but some
of them are non-inferior with respect to each other. They are efficient solutions for
the DG routing problem. Given the predefined population size, for each origin-
destination pair, about 4 x 30 = 120 solutions were generated for all tests. Despite a
large set of solutions, the set of Pareto-optimal routes is not very diversified since
many routes overlap. For illustration purposes, 14 distinct Pareto-optimal routes from

Tsing Y1 LPG terminal to Kowloon Bay station are selected and presented below to
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provide some insight into the trade-offs among different solutions. The same number
of efficient routes for the Tsing Yi — Tai Po pair is presented in Figure 5.11. Tables
5.11 and 5.12 summarize the attributes of the corresponding routes for these two O-D
pairs, respectively. The rows correspond to the optimal solutions, and the columns to
the objectives. Note that all the values in these tables are unit free due to data

normalization.
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Figure 5.10 Efficient routes from Tsing Yi terminal to Kowloon Bay LPG filling
station generated by the genetic algorithm
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Consider the application with respect to single abjective optimization. For each O-1)
pair, 1t 1s tound that in almost all tests, the resulting routes by the proposed GA (ie.,
soluttons 1 to 7) are exactly the same as the extreme ones generated by the
COMPromise programming applroach. This shows that the proposed GA is competent
in handling singlc objective oplimi;zftion problems, a special case of multi-objective
optimization with particular focus on a certain objective. The interpretation of these
solutions is not given here since the composition of risk and cost in cach solution and
the significant trade-ofts among the optimal solutions with respect to different

objectives have already been examined and discussed in the previous sections.

Solutions 8 to 14 are examples of the multi-objective solutions. Compared to the
routes produced by single objective optimization, these solutions exhibit a good
compromise among the competing objectives. Solutions 8 and 9 are obtained by
minimizing the risks of on-road exposure, off-road exposure. and the special
population exposure simultaneously. Solutions 10 and 11 incorporate operating cost
with public safety, and solutions 12 to 14 are generated by taking all seven criteria
into account simultancously. To examine the trade-offs among the objectives in each
MOP solution, we analyzed these Parcto-optimal routes tor cach of the two O-D

pairs scparately.

According to Table 5.11, it is found that tor the pair of Tsing Yi — Kowloon Bay,
solutions 8 and 9 have minimum socictal risk, since both of them primarily focus on
the importance ot public satety. However, they are not equally desirable from the
perspective of the expg;:tcd damage on the economy in the event of a DG accident,
which increases, for both solutions, by over 50% than the minimum obtained under
the single-objective solution 5. As far as the capability of emergency response is
concerned. solution 8 is the worst among the seven reported MOP selutions, with
90% higher nsk in this factor than the minimum obtained in solution 7. However,
compared to single-objective solutions 4 to 6 {(which bear more or less similar value
on the factor of emergency response with solution 8), the performance of solution 8
is clearly much better than those three on most criteria. Solution 10 considers public
safety together with travel time and does make improvement on most of the
objectives except the on-road exposure risk, which downgrades by 40% and 18%

over solutions 8 and 9, respectively. Having the same focus of concern as solution 10,
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solution 11 takes the shortest travel time among all the MOP solutions reported in
Table 5.11. Morcover, this solution outperforms solution 10 in regard to road users’
safety and the emergency response capability. However, in the context of off-road
exposure risk, population with special needs at risk, and expected damage on the
ecconomy 1n the event ot a DG incident, solution L1 is not as tavorable as solution 10.
Solutions 12 to 14 take all criteria into consideration in the process of route planning.
Like solutions 8 to 11, these three MOP solutions involve various trade-otfs among
the competing objectives. Overall speaking, for the Tsing Yi — Kowloon Bay pair,
considering all criteria simultancously results in lower accident probability and
smaller exposure risk of special population and road users. This is, however, at the
expense ol travel time, oft-road population exposure. expected damage on the
cconomy, as well as a decrease in the emergency responsce capabilities. Nevertheless,
the trade-ofts among the objectives are not as significant as those reflected in the

“extreme’” solutions.

The MOP solutions for the Tsing Y1 — Tai Po pair present a similar picture to that of
Tsing Y1 - Kowloon Bay. Solutions 8 and 9 serve best on public safety with the
towest societal risk among all 14 solutions reported in Table 5.12. However, this is
achieved at the cost of longer travel time and higher accident probability since both
routes pass through Lam Kam Road and Route Twisk, whose road conditions are
undesirable. Solutions 10 and 11 incorporate operating cost with public satety. which
shortens travel time and significantly reduces accident probability compared o
solutions 8 and 9. On the other hand, solution 10 downgrades by about 80% and 20%
over solutions 8 and 9 on special population risk and on-road cxposure risk,
respectively. As for solution 11, the performance on these two objectives
downgrades by 23% and 36%, respectively, compared with the abovementioned two
solutions. In terms of overall cost, solution Il is reasonably good with well-
proportioned compromise among various objectives, ‘The rest three, solutions 12 to
14, arc obtained by considering all seven criteria with unbiased preferences, among
which solution 13 gives better performance than solution 11 on all objectives except
the safety of road users, which increases by more than 18% of on-road exposure risk
than solutton 11. Solutions 12 and 14 involve various compromises among ditterent

objectives, and present higher overall cost than solution 13. However, compared with
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the single-objective solutions, they are acceplable with milder trade-ofls among the

competing objectives.

5.5.3 Assessing the quality of the proposed GA approach

As an efficient scarch strategy for global optimization, a genetic algorithm
demonstrates favorable performance on solving multi-objective  optimization
problems. The optimal routing problem in network analysis can be solved with GA
through efficient encoding, construction of fitness {unction, and various genetic

operations.

In this case study, we have demonstrated that the GA-based route optimization for
the transportation of DG in the road network of Hong Kong is subject to their
satistaction of multiple objectives in terms of cost and risk. The solution is a set of
routes that are non-inferior with respect to each other. Owing to the employment of a
Max-Min fitness function derived from the definition of dominance to measure the
Pareto optimality of each route in a particuiar generation, the multipie objectives to
be optimized have not been combined into a single one and hence the general nature
of the solution is maintained. Morcover, the Max-Min fitness function maximizes the
difference between any two routes, which ultimately results in a diverse sct of non-
dominated routes. This has been illustrated by the resulting solutions described in

subsection 5.5.2.

The computational experiments reveal the behavior of the proposed GA as applied to
the multi-objective DG routing problem in terms of diversity and optimality of
solutions, and computational complexity. After examining the solutions against all
seven criteria unbiasedly in routing analysis for the Tsing Yt - Kowloon Bay pair.
Figure 5.12 shows that the number of non-dominated solutions generally increases as
the number of generation increases, though the number of efficient routes fluctuates
in the process of iteration. This is not beyond our expectation. Due to the intrinsic
randomness of the genetic algorithm, in particular, the randomness in the crossover
and mutation operations, a route that is non-dominated in the previous generation is
very likely to become dominated in the next generation after genetic operations as it

cvolves o a different one, and vice versa. This inevitably leads to the change of
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proportion of efficient solutions in each generation. On the other hand, the
application of tournament selection and elite retaining strategy helps to improve the
average quality of the population by giving the high-quality individuals a better
chance to be copied into the next generation. Consequently, the number of Pareto-

optimal routes, as a whole, gradually increases with the evolution of population.
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Figure 5.12 The number of non-dominated routes increases with the generations (test
on the Tsing Y1 —Kowloon Bay pair with unbiased consideration of all criteria)

Figure 5.12 exhibits an upward movement in the number of Pareto-optimal routes in
the evolution process. However, it does not reveal exactly how Pareto optimality of
solutions in different generation changes. To assess the quality of the proposed GA
approach more appropriately, we attempted to examine how well the genetic
algorithm improves Pareto optimality from generation to generation. However, the
Max-Min fitness function used in the proposed GA is designed to compare the
fitnesses between solutions within a generation, and one cannot compare the
fitnesses between solutions in different generations. To solve this problem, we
created a “global generation”, which includes 30 x 100 = 3000 feasible routes from
the 100 generations lumped together. We then calculated the “global fitness™ for each
of the 3000 solutions in the global generation according to the same Max-Min fitness
function used before. Based on global fitnesses, we identified the ‘‘global Pareto
set’’ for the global generation. Of the 3000 routes in the global generation, there are
47 distinct routes in the global Pareto set. We averaged the value of global fitness

over the 30 individuals in each generation and plotted this average in Figure 5.13.
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We also plotted the number of routes in each generation that are members of the
global Pareto set. This plot clearly shows that the proposed GA improves global
Pareto optimality from generation to generation, which confirms the effectiveness

and efficiency of the proposed GA.
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Figure 5.13 Improvement of global Pareto optimality from generation to generation

In terms of the diversity of solutions, Figure 5.14 shows a plot of 9 efficient solutions,
which is a subset of the 47 distinct global Pareto-optimal routes for the pair of Tsing
Y1 - Kowloon Bay when considering all seven criteria unbiasedly in routing analysis.
The plot of optimal routes provides information on how good an algorithm is in
finding a diverse set of solutions for problems involving multiple objectives. A good
spread of solutions over a range implies that the algorithm is good in finding diverse
solutions (Pangilinan and Janssens 2007). Figure 5.14 shows that the solutions
obtained by the proposed GA are well spread over the range for all the objectives
under consideration. Also, the figure reveals that the proposed GA finds non-
dominated routes with appropriate compromise among the competing objectives. It is
found that for any two of these MOP solutions, an improvement in one objective
does not significantly downgrade others, which indicates a good balance is achieved
among the objectives between different solutions. Such solutions are desirable for a

MOP problem like DG route planning.

170



Objective yaloes (normalizzd units)

traval time accident off-road special expoctad rosdnusacsmt  riskfrom
probability exposcrerisk populationst sconorical risk Emargpncy
risk demage esponse

—+— sghition1—8— solution2 -~ soltiond + solntiond—— solutions

—+— solution6--= somtion” somson8 solotiond

Figure 5.14 A plot for a subset of the global Pareto optimal routes

Another aspect on evaluating the proposed GA is the closeness of its solutions to the
Pareto-optimal solutions. For Tsing Yi — Kowloon Bay pair, it is found that some
solutions produced by the GA coincide with those generated by the compromising
programming or the adaptive weighting method. It has been proved that solutions
created by the CP and the adaptive methods for a MOP problem are Pareto-optimal
or weakly Pareto-optimal. The agreement in the solutions of the GA with the other
two methods indicates that the GA has potential of finding (approximately) efficient
solutions. On the other hand, in the absence of the complete set of Pareto-optimal
routes for the DG routing problem under consideration, it is difficult to evaluate thé
GA in terms of proximity to the Parcto front. Nevertheless, as shown in Figures 5.12
and 5.13, the GA generates more efficient routes as the number of generations
" increases, which means that through evolution, the non-dominated solutions are
improved and move gradually to the location of the Pareto-optimal solutions. While
there is no assurance that the non-dominated solutions converge to the Pareto front or
the maximal set of efficient paths, the GA finds a subset of diverse and favorable
non-dominated solutions with good compromise among the objectives at each

generation, and improves the solution set as the number of generation increases.
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With regard to computational complexity, the proposed GA is a polynomial time
algorithm with respect to the number of nodes and arcs of a network. Although the
CPU runtime is longer than the other two methods, unlike exhaustive algorithms, the
GA does not suffer from intractability and memory problems, even with a large
network size in this case study. In this regard, the proposed GA is considered to be

computationally effective.

The above analysis and assessment of the proposed GA were made on the basis of
the results of Tsing Yi —- Kowloon Bay. In fact, similar conclusions could be arrived
from the analysis of routing results of other O-D pairs, though the degree in the
diversity of solutions and the optimality of solutions may be different. The present
study illustrates that the GA approach is effective in solving a multi-objective
optimization problem such as DG route planning. Moreover, the advantage of the
GA will become more significant when dealing with more complex combinatorial

optimization problems with larger solution space.

5.6 Summary and discussion

* In the preceding sections, the same routing problems between Tsing Yi LPG terminal
and the dedicated LPG filling stations were analyzed using three different MOP
methods, namely the compromise programming approach, adaptive weighting
method, and GA-based approach. The compromise programming procedure allows
decision-makers to exercise their preference structures in pursuing satisfactory
solutions rendering good compromises among different objectives. The adaptive
weighting method approximates the Pareto front with a few suitable solutions to help
decision-makers select the most satisfied routes without generating all of them. The
genetic algorithm based approach uses a set of specifically designed genetic
operators to cfficiently capture a wide range of Pareto-optimal and near-optimal
solutions, from which a decision-maker can choose the most preferred or best
compromise solution as the one to implement. Although the mechanisms of the three
MOP methods are different from one another, they have all been proved effective in
generating  efficient solutio’ns for multi-objective route planning for LPG
transportation on the road network of Hong Kong.
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When considering each objective individually, no matter which method is used, the
generated optimal routes in terms of a particular objective are rather different from
each other. The mimimization of one single objective function gives rise to a
significant achievement of the chosen criterion, whilst heavily compromising the
others. In other words, the trade-offs among different objectives are rather significant.
This manifests the conflicting nature of the multiple objectives in the DG routing
problem, which, therefore, reveals the necessity of the search for compromise
solutions rendering the best possible tradeoffs among different objectives for DG

route planning.

When various objectives are taken inte account for DG route planning, it gives a
different picture from single objective DG routing. Compared with the extreme
solutions, the multi-objective solutions present a good compromise among the
competing objectives, though they do not strictly correspond to a minimum of any
objectives. It is observed that for MOP solutions, when one or more objectives are
improved, other objectives are worsen off at the same time. However, the values of
the objective functions vary within a smaller range compared with those in the single
objective solutions. In other words, the compromise among the competing objectives
becomes much milder. On the other hand, the diversity of the routing solutions still
~remains, though the differences among the routing solutions appear to be smaller.
Taken together, albeit with limited scope, the computational experiments

demonstrate the validity of the methodologies proposed in this research.

The Pareto-optimal routes for some origin-destination pairs, such as the Tsing Yi —
Mei Foo and Tsing Yi — Kwai Chung pairs, are found to be alike in a number of
cases. These optimal routes exhibit high similarity not only under different
combinations of various objectives, but also under different MOP methods. The
possible reason is that the distance between the origin and the destination is so short
that the route selection in the road network is limited. On the other hand, the
similarity also appears in the MOP solutions for the Tsing Yi — Tuen Mun pair,
although in relatively fewer cases. Clearly, distance should not be the underlying
reason because Tsing Yi is much more distant from Tuen Mun than that from Mei
Foo and Kwai Chung. In theory, greater spatial extensiveness diversifies the choices

in route selection. However, the structure of the existing road network limits such a
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choice. It is found that between Tsing Yi and Tuen Mun, there exists a comdor
which is the only access from the origin to the destination: Tsing Yi LPG terminal>
Tsing Yi road - Cheung Tsing Highway = Tsing Long Highway = Tuen Mun
Road. Vehicles have to pass through this corridor before they reach Tuen Mun PG
station. In addition, the forbidden passage of DG vchicles through any tunnels in
Hong Kong further narrows down route selection. Under the joint eifect of these
factors, the variation in the routes between Tsing Yi terminal and Tuen Mun station
is very limited. Most of these routes comprise the same sections but in different ways.
For the other O-D pairs, however, the optimal routes under different objectives differ
significantly, which confirms the validity of the proposed methodologies in

generating a set of diverse solutions.

In present case study, identical solutions are obtained by different methods
sometimes. For example, solutions 12 and 14 through compromise programming for
the Tsing Yi — Tai Po pair are the same as solutions 8 and 10, respectively, through
the adaptive method. There are even more identical cases found in the solutions
generated by the proposed GA. As a population-based method, GA produces a set of
solutions in each single run. Although not all the solutions are guaranteed to be
Pareto-optimal, a few efficient routes (i.e. the ones that are Pareto-optimal or near
Pareto-optimal) can be found from the solution set. Among these efficient routes,
occasionally, one or more solutions are found to be the same as, or very close to, the
routes generated by the compromise programming method or the adaptive weighting
method. Given that the solutions by each of the three methods for these two O-D
pairs exhibit great varieties, the identicalness in the optimal solutions is unlikely
caused by the network structure. Rather, it confirms the validity of the methods. CP
is a preference-based method, and the weights employed in CP are predetermined
according to decision-makers’ preferences for each objective. The generated
solutions are Pareto-optimal, which reflect the trade-offs among different objectives
rendered under the weighting structure. The adaptive method and the genetic
algorithm fall into the category of generating technique. No prior knowledge of
relative importance of each objective is used. The “weights” in the adaptive
weighting method are created by the system automatically based on the largest
unexplored solution space. The solution produced by this approach is‘weakly Pareto-

optimal, or Pareto-optimal if it is unique. Working with population of solutions, GAs

174



have been proved well suited for finding a set of approximately efficient solutions. in
this case study, some solutions created by the proposed GA have been found to be
very close to, or even the same as, the ones produced by the compromise
programming method and the adaptive method. The occurrence of such identicalness
in the solutions of the three methods indicate that the adaptive method and the
genetic algorithm are competent for generating a set of efficient solutions for the
multi-objective DG routing problem; moreover, the optimal ones representing certain
preferences for different objectives are very likely to be found within this set.
{

The experimental results over the Hong Kong road network using the proposed
methodologies have demonstrated various compositions of risk and cost in the
routing solutions. In this study, the overall cost of a solution is defined as the
summation of operating cost, various risks, and the capability of emergency response.
Clearly, the principal contributor of the overall cost for different solutions is different
from each other. For example, for one solution, the overall cost may mainly depend
on the exposure risk; while for another solution, the operation cost contributes the
most; and in the third case, the contribution of the emergency response capability is
the most significant. The variety in the cost and risk composition reveals the distinct
emphasis in different solutions. In addition, it is also observed that under the current
system of evaluation for the cost and risk, except for the extreme solutions, the first
three contributors to the overall cost are on-road exposure risk, travel time, and
emergency response capability, respectively. This applies to most solutions for all

origin-destination pairs addressed in the case study.

It should be noted that mathematically optimal does not necessarily mean practically
optimal. A route being optimal in the context of a particular objective or a
combination of several objectives may be of insignificance in practice. Take Tsing
Yi — Tai Po as an example. When the major concern is to minimize the population
with special needs at risk, or to minimize the on-road exposure risk, the resulting
routes will always pass through Route Twisk, no matter which method is adopied.
Such solutions are, however, infeasible in practice. Route Twisk is the only link to
Tai Mo Shan Road, the road leading to Tai Mo Shan, the highest peak in Hong Kong.
It is narrow, sloping, and tortuous. Although the traffic volume on this road is quite

low, Route Twisk is rarely taken by the vehicles carrying dangerous goods due to its
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undesirable road condition. This indicates that despite being mathematically optimal,
any solution with Route Twisk as a component leaves a lot to be desired from the
viewpoint of feasibility. The Tsing Yi — Tai Po case suggests that for multi-objective
problems, although various MOP solutions can be generated by means of different
optimization procedures, the obtained solutions need to be examined carefully on

both the optimality and rationality to ensure their feasibility.

In this research, three methods have been proposed for the problem of multi-
objective DG route planning. Each of them has its respective characteristics and is
applicable to different situations. When decision-makers have explicit preferences
among objectives and arc prone to deciding the criteria weights on their own, they
can use compromise programming approach to conduct DG route planning. In other
cases, they can choose generating methods such as the adaptive weighting method or
the genetic algorithm. Both methods search for optimal routes with no requirement
on prior knowledge of the relative importance of the concerned objectives. However,
they have different working principles. The adaptive method is a deterministic
approach based on compromise programming. In this method, the exploration in the
objective space is always adaptively adjusted to point to the desired direction. In
other words, the search is goal-directed, rather than random search. The genetic
algorithm is a heuristic method. Compared to traditional search algorithms, GA is
able to automatically acquire and accumulate the necessary knowledge about the
search space, and self-adaptively control the entire search process through random
optimization technique. Moreover, it is able to find multiple feasibie solutions in a
single run. Compared to the adaptive method, GA is more suitable for solving the
combinatorial optimization problems with non-linear objective functions, or when

little is known about the search space.

In terms of complexity, the compromise programming based approach outperforms
the other two, and the genetic algorithm has the highest complexity. This can be
reflected by the CPU time running for generating efficient solutions using different
methodologies. Table 5.13 shows the computation time for single-objective, three-
objective, and seven-objective DG routing problems for the Tsing Y1 - Kowloon Bay
pair. The time is in the unit of seconds. For the genetic algorithm, the computation

time is averaged on the basis of ten runs. As illustrated in Table 5.13, the
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computation time of the genetic algorithm 1s the longest, followed by the adaptive
method. The compromise programming is the fastest. On the other hand, however,
the genetic algorithm excels the compromise programming in the gencration of
multiple solutions in a single run. The ability of GA to simultancously search
different regions of the solution space makes it possible to find a diverse set of
solutions for the MOP problem, while compromise programming only generates a
single solution each time. In comparison, the adaptive weighting method produces
one solution at each iteration, and the same procedures repeat several times ull the

desired size of solutions are obtained.

Table 5.13 The computation time (in seconds) for single-objective, three-objective,
and seven-objective DG routing problems tor Tsing Y1 — Kowloon Bay

N : adaptive o
compromise L genetic
programming weighting algorithm

method | o
single-objective 234 B 113.6
problem
three-objective 74.7 124.5 397.6
problem
seven-objective 153.0 229.5 823 1
problem T T

It must be noted that the purpose of cxploring different MOP techniques for the
problem of DG routing is to provide decision-makers with more options and more
flexibilities in solving the multi-criteria decision-making problem. It does not intend
to draw a conclusion on which method is better than others. In fact, cach approach
has its advantage and applicable conditions, no method may outperform other

“competitors” in all aspects. '

In this case study, some constraints on the road nctwork, such as the tumn restriction
on certain intersections and the traffic directions designated for the involved road
segments, have not been considered due to the problem of data availability. Such
road segments and intersections are then assumed to be unrestricted. Hence, the
experimental results obtained under this assumption may not be one hundred percent
realistic. The possible way to avoid such a problem is to secure the data and set

corresponding constraints on the.network.
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Finally, 1t is worth pointing out that the road network in Hong Kong is relatively
simple. A q}lmbcr of corridors in the network are actually the only routes between
some locations. Thus, the simplicity of the road network may not be able to fully
demonstrate the efficacy of the proposed framework and methodologies. [t is,
however, conceivable that the performance of the approach can be better illustrated

when it is applied to cities with more complicated road networks in future

applications.
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS

This study aims to contribute to the literature of dangerous goods transportation by
constructing a general framework applicable to multi-objective route planning for the
conveyance of DGs in a high-density living environment. In this chapter, the
research findings and methodological contributions of current study are summarized.
In light of the study results and limitations, some recommendations are provided for

future research.

6.1 Summary of the study

This research has addressed the problem of optimal route planning for the
transportation of dangerous goods on a road network. The main focus is on the
development of vigorous multi-objective optimization methods to seek optimal
routes for DG transportation in a high-density living environment, on the basis of
multi-criteria risk assessment. A general framework for dangerous goods route
planning for high-density living has been constructed. This framework can assist
stakeholders in evaluating the way vehicles carrying DG are being routed on the road
‘network, and can also provide decision-makers with efficient options if the current

routes need to be adjusted.

Three distinct multi-objective optimization methods have been developed to
properly manage the multiple objectives involved in DG route planning. High
performance algorithms have been devised to facilitate the implementation of these
methods. Multi-objective DG routing can be treated as an extension of the traditional
shortest path problem, for which the Dijkstra's algorithm is the most commonly used.
In order to make the best use of Dijkstra’s algorithm and efficiently address the
multi-objective nature of the DG routing problem, a modified Dijkstra'é algorithm
incorporating compromise programming (CP) has been developed to generalize
multi-attributes in the calculation of the cost value for each link. The least cost path
can then be identified based on the composite cost in each link. The main assumption
in compromise programming is to search for a feasible solution closest to the ideal

one in which each objective achicves its minimum value simultaneously. The degree
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of closeness is measured by the L,-metric. Two CP-based methods have been
proposed in this rescarch to accomplish the modification of the Dijkstra's shortest
path algorithm. They are: (1) a standard compromise programming method, and (2)
an adaptive weighting method. The standard compromise programming approach is a
typical preference-based method. The overall performance of a solution 1s
represented by a utility function which incorporates multiple attributes with the
weights accounting for decision-makers’ preferences for different objectives. This
method allows decision-makers to exercise different preference structures in
pursuing the compromise solutions. It offers flexibility in addressing the multiple
aspects of DG route planning. The solutions depict the trade-offs in achieving
various objectives. This is especially critical when the efficient solutions form a non-
convex frontier, in which casc the conventional MOP technique such as the weighted

sum approach may fail.

In the case that decision-makers find difficult to state their preferences for each
objective before they have an explicit conception of the actual trade-offs involved, it
is more desirable to generate the efficient solutions first, and then let the decision-
makers select the most preferred or best compromise solutions from this set. This is
the notion of generating method. The adaptive weighting approach proposed in this
study falls into this category. A parametric objective function (i.e. the weighted min-
max function} that behaves like a utility function is constructed. Properly
approximating the Pareto front with a few suitable solutions is achieved by
systemati‘cally varying the origin and direction of exploration. In this method, once a
Pareto-optimal is obtained, the search space will be partitioned into smaller pieces,
and the regions that are either dominated by the known optimal solutions or free of
optimal solutions will be discarded. The search origin and direction are then adjusted
based on the largest unexplored space that may contain efficient solutions.
Considering that in the case of network routing problem, conventional minimax
solutions such as the branch-and-bound procedure are unlikely to outperform the
labeling algorithms which are specially designed to make use of the network shape
and can process the links in the optimal order, the Dijkstra’s algorithm along with
appropriéte modifications is employed to solve the min-max utility function. The
cost of traversing link in the modified Dijkstra’s algorithm takes into account ali the

objectives examined, rather than a particular objective. Compared with the
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compromise programming approach, the adaptive method requires no prior
knowledge of relative importance of cach objective, yet it can provide an unbiased

approximation of the Pareto front.

Both the compromise programming approach and the adaptive weighting method
depend on a weighting mechanism to collapse multiple objectives into a single
objective function. To generate the desired solution, the exploration in the objective
space is always oriented towards the expected direction. In other words, the search is
goal-directed, rather than a random search. In the literature of multi-objective
optimizatiori, these optimization methods are generally categorized as the class of
deterministic technique. By contrast, the genetic algorithm, a probabilistic
optimization technique, provides a powerful alternative to the conventional solutions
for difficult optimization problems. GAs are a class of global search methods that are
modeled after the mechanics of natural evolution within populations and species via
reproduction, competition, selection, crossover breeding, and mutation. They operate
with a population of possible solutions rather than a single candidate. Therefore, they
are less likely to get trapped in a false local optimum. Moreover, several Pareto
optimal solutions may be captured during one run of GA. In the proposed GA-based
method, a feasible routing path is represented as a variable-length chromosome
whose elements represent the nodes included in it. The initial population is generated
using random walk incorporated with the seeds generated by Dijkstra's algorithm.
The incorporation of heuristics into random initialization is able to produce a better
initial population while maintaining its diversity. The Max-Min fitness function is
employed to maximize the difference between any two paths, which ultimately
results in a diverse set of non-dominated solutions. The tourmament selection
incorporating the elite retaining strategy is employed to generate a new population
for the next generation. The crossover operation exchanges partial chromosomes
(partial-paths) and the mutation operation introduces new partial chromosomes.
Crossover and mutation together provide a search capability that results in an

improvement of solution quality and convergence rate.

Given the multiple objectives in the process of DG route planning, a set of criteria
fitting the context of high-density living has been identified, covering most aspects

associated with DG transportation such as travel time, accident probability,
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exposure risk, and emergency response capabilities. Since high-density living is of a
particular concern in our study, the exposure nisk considered here contai.ns not only
road users at risk, but also off-road population exposure, as well as population with
special needs at risk. In addition, the emergency response capability, which is
significant for high-density living, is also included in DG routing analysis, with a
view that timely action by emergency responders can considerably reduce the
magnitude of the consequences associated with a DG release. As another type of
exposure risk, the possible damage inflicted to the surrounding properties and

facilities in the event of a DG incident is also addressed.

Based on the identified routing criteria, up to seven objectives are included in the
routing analysis, which can be classified into three major calegories: operating cost,
risk estimates, and emergency response capabilities. A risk model with respect to
various risks has been designed to assess the risk associated with DG transportation.
The risk assessment is conducted within a geographic information system (GIS),
which exploits the powerful spatial data processing and analytic capabilities of

GIS.

To validate the proposed methodologies, a case study has been carried out on the
transportation of liquefied petroleum gas in the road network of Hong Kong. it
attempts to generate optimal routes from Tsing Yi LPG terminal to the dedicated
LPG filling stations located in Kowloon and the New Territories. To examine the
effectiveness of these methodologies, four scenarios are tested for each method: (1)
considering each objective individually, which corresponds to a series of single
objective optimal routing problems; (2) routing with primary focus on public safety,
namely road users at risk, off-road population at risk, and people with special needs
at risk. Solutions obtained effectively address the government’s major concerns in
DG routing; (3) taking the operating cost into account in conjunction with the public
safety with the intention of striking a balance between economy and safety; (4)
considering all the criteria simultaneously in routing. The proposed methodologies
have been implemented on a GIS platform - ArcGIS. The computational
experiments demonstrate the robustness and flexibility of this platform as a tool to
quantify the routing criteria through spatial analyses and database management, to

perform the shortest path calculation, and to visualize the resulting solutions. A
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diverse set of routes have been generated under each method, presenting various

trade-offs among different objectives.

6.2 Research contribufion .

Safe DG transportation is of even greater importance for high-density living in which
population and socioeconomic activities are densely distributed over the
transportation network. Risk assessment and route planning play a crucial role in the
prevention or minimization of possible catastrophic consequences on human life and
the environment. However, effort has seldom been made to analyze such problem in
the literature. Hence there is an urgent need to carry out risk assessment and optimal
route planning for DG transportation in high-density environment. This study has
established a general framework for optimal DG routing in such an environment,
within which non-convexity and non-linearity can be handled, risk assessment
applicable to high-density living can be made, and the best compromise solution can
be obtained along the Pareto front stipulating various trade-offs among the
conflicting objectives. The results obtained from this research will positively
contribute to the research and applications in the field of DG transportation. The
contributions of this research to the literature of DG transportation can be

summarized as follows.

First, this study has established a conceptual framework for optimal route planning
for DG transportation in high-density living environment. To properly address the
special concern on high-density living, in the risk assessment and the routing analysis,
a high value has been put on various types of exposure risk, including not only the
off-road population at risk, but also the road users exposed to the DG vehicles, as
well as the population with special needs at risk, given that this group of people may
be particularly sensitive to DG releases and are difficult to evacuate. Considering that
prompt and efficient response is critical to the minimization of possible catastrophic
consequences on human life and the environment in the event of a DG accident, the
emergency response capability has also been counted as a factor in risk assessment
and routing analysis. To the best of our knowledge, although there is a wealth of
literature on the DG transportation problem, most of it only focuses on risk analysis
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by various risk models. Lesser effort has becen made on route planning for DG
transportation under conflicting objectives, particularly in high-density environment.

This study sheds a light on this gap.

Second, DG transportation is a multi-criteria and multi-objective problem which is
generally complicated to solve. High performance multi-objective optimization
methods are of paramount importance to effective route planning for DG
transportation. It is instrumental to generate a set of efficient routes representing the
inherent trade-offs among different objectives for decision-makers to choose the one
that gives the best compromise among the conflicting objectives. This study has
developed three novel methods to facilitate the generation of a set of optimal
solutions, instead of a single pseudo optimal solution, on the Pareto front including
non-convex (non-supported) points for the choice of compromise solution rendering
the best trade-offs among conflicting objectives. The associated high performance
algorithms guarantee speedy convergence via global and local searches. The
methodologies proposed in this study gives full consideration to decision-makers’
inclination and capability in determining the weights for different criteria. The
diversity of methodologies provides decision-makers more flexibility in choosing

applicable MOP methods for DG routing.

In the previous studies, optimal route planning for DG transportation was achieved
by either considering each individual objective separately, or linearly combining
multiple concerned objectives by a weighed sum approach, and reducing the original
problem to a standard shortest path problem. Consequently, the non-convexity
consisted in solution space and the non-linearity existed in some objective functions
cannot be properly handled. The methodologies proposed in this study have
effectively addressed this problem. Compromise programming has been
mathematically proven superior to the weighted sum method in locating non-convex
points on the Pareto front (Steuer 1986). The proposed adaptive weighting method is
suited for the exploration of both the “convex” and “concave” parts of the Pareto
front, while ensuring Pareto-optimality of the points encountered. The ability of the
genetic algorithm to simultaneously search different regions of the solution space
makes it possible to find a diverse set of solutions for difficult problems with non-

convex and discontinuous spaces. Avoiding the linear form of scalarized objective
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functions in the objective space enables the proposed methods to efficiently handle

difficult optimization problems with non-linear objective functions.

This research can benefit safe DG transportation in practical applications,
particularly in high-density cities. A real-life application in optimal route planning
for the transportation of liquefied petroleum gas in Hong Kong has been carried out
in this study. The implementation of the proposed methodologies enables the
avoidance of the pitfalls of preference-based techniques and the burden of generating
a complete set of possible solutions, and provides decision-makers with an overview
of the solution space and the possible trade-offs among the conflicting objectives.
The application study has illustrated the adaptation of the proposed framework in a

GIS environment.

Finally, different types of dangerous goods possess different characteristics whose
risk assessments and routings call for a wide spectrum of technical knowledge and
practical considerations. This research concentrates mainly on the transportation of
petrochemical-type of DG — liquefied petroleum gas. The framework can, however,
be extended for further research on more complicated problems involving the
transportation of multiple DGs over a transportation network in high-density

environment.

6.3 Recommendations for future research

As outlined in the preceding section, this study has made a positive contribution to
the field of dangerous goods transportation. However, further efforts are required to
extend both the methodology and the substance of this research, such as practical
and reliable estimation of the risk of DG transportation; exploration of efficient
approach to the DG routing problem with multiple origins and destinations; strategic
handling of the constraints involved in DG route planning; uncertainty analysis; as

well as real-time routing.

When modeling the risk of transporting DG along a route, the risk indicator 1s
usually composed of the probabilities of occurrence of some undesirable events and
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their possible adverse consequences (Erkut er al. 2007). The probability of an
accl:idcnt in a link of a route depends on various factors such as the long-run accident
rate, length of the link, road type, and traffic condition. In addition, the estimated
probab_iéities based on individual factors might be inconsistent and sometimes even
conflicting. Therefore, it is necessary to find a way to combine the pieces of
evidence/probabilities to estimate the composite probability for the link. Actually,
certain level of subjectivity usually exists in the estimation process, particularly
when public perceived probability is involved. The present study employs the
Bayesian approach to estimate the probability of an accident with release of DG. A
Bayesian method, commonly used in the literature (Chow et al. 1990; Glickman
1991), requires decision-makers to estimate prior and conditional probabilities and
cannot differentiate uncertainty from ignorance. By contrast, the Dempster-Shafer
theory of evidence (Shafer 1976; Wu et al. 2002; Florea et al. 2009) does not require
an assumption regarding the probability of the individual constituents. It allows
combining evidence from different sources and arrives at a degree of belief
(represented by a belief function) that takes into account all the available evidence.
These features make D-S theory potentially valuable for risk evaluation when
obtaining a precise measurement from experiments is impossible, or when
knowledge is obtained from expert elicitation. In future research, the feasibility of
the D-S theory in estimating the accident probability under conflicting evidence
needs to be explored. In particular, to overcome the limitation of the original
combination rule in the D-S theory, adaptive robust combination rules need to be
constructed to give a more practical and reliable way to estimate the probability of an

accident in a link of a route to be used in the estimation of risk of DG transportation.

Stmilar to most of the existing research in DG routing, the present study focuses on
selecting the routes for a given origin-destination pair. However, a comprehensive
DG transportation planning framework should consider DG transportation over the
transport network with multiple designated ongins and destinations, particularly
when multiple DGs are involved. Selecting optimal routes for each O-D pair may
result in overloading certain links of the transport network and, consequently, in poor
overall system performance. Given that relatively little attention has been received in
the literature, the research with respect to this kind of DG routing problem should be

carrted out in future. The DG routing problem with multiple origins and destinations
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1

can be formulated as a multiple destination routing (MDR) problem which searches
for a minimal risk tree in a given transportation network. The key to solve a MDR
problem is to find all relevant intermediate nodes linking the source and destination
nodes. Leung ef al. (1998) have proposed a novel genetic algorithm to solve the
unconstrained MDR problem which out-performs the common heuristic algorithms
(Tanaka and Huang 1993). The method needs to be further improved so that
convergence can be guaranteed and computational complexity can be further reduced,
which is essential in solving the DG routing problem with multiple origins and

destinations.

o4

~ The issue of constraints, such as the equity and capacity constraints in the
underlying network, should also be addressed in further research. The multiple

origin-destinations DG routing problem with basic constraints can be formulated as:

min ) c(e) 6.1)

eeT

s.t. T satisfies constraint set S

where ¢ is an edge (which corresponds to a link in a network) in sub-tree T of the
weighted graph (the transportation network) G = (V, E, C) with node set V, edge set
E, and weighted function ¢: £ > R, where c(e) is the risk/cost imposed on the edge
e € E . Numerous solution methods for constrained optimization problems have been
reported, such as penalty function method (Yeniay 2005), Lagrange multiplier
method (Bertsekas 1982), and gradient projcction method (Dick 2009). Novel
strategy needs to be explored to properly handle the constraints imposed on DG route

planning.

The traffic conditions and other risk factors in DG transportation networks (e.g.,
incident probabilities, population exposure, and the effects of release of DG) involve
considerable uncertainty, which increases the difficulty of routing decision.
Stochastic programming that handles such uncertainty via mean-risk (Markowitz
1987; Ogryczak and Ruszczynsk: 2002) and stochastic dominance (Levy 1992) is
commonly employed to solve the problem. Due to the low probability but high
consequence nature of DG transportation, it might be more profitable and practical to

handle uncertainty by imposing fuzzy restriction on the variability of risks within the
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fuzzy optimization framework. By this approach, the variability of yisk is formulated
as fuzzy numbers in the objectives and constraints .so that flexible route planning
under uncertainty can be materialized. The multi-objective DG routing problem can
then be formulated as a fuzzy optimization problem involving multiple objectives
(Leung 1988a, b, ¢) and subsequently solved by fuzzy optimization methods

extended on the genetic algorithm (Leung ef al. 1998; Leung 2010).

Finally, Most of DG transportation risk factors are both time-dependent and
stochastic in nature (Miller-Hooks and Mahmassani 1998; Erkut and Ingolfsson
2000}, i.e., they are random variables with probal;ility distribution that vary with
time. However, the vast majority of existing routing models are static and
deterministic. Therefore, dynamic and stochastic models that consider stochasticity
in a time-dependent environment should be developed to generate more rational and
approprigje routing solutions for DG shipments. Meanwhile, advances in information
and communication technologies enable the driver and dispatch center to obtain and
exchange real-time information, and as a result, to monitor and é.djusl the route of
vehicles accordingly. Such advance renders real-time DG routing an intriguing
research topic, under which the routing decision is subject to changes en-route due to
real-time updates of the traffic data, and efficient re—optimiiation procedures are
developed to seek adaptive routing strategies in response to the updﬁtcd network

condition.
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Appendix A: Supplemental Maps of Optimal Route Planning for the
LPG Transportation in the Road Network of Hong Kong

In this research, three optimization methods have been developed to seek optimal
routes for DG transportation with conflicting objectives, i.e., the compromise
programming approach, the adaptive weighting method, and the genetic algorithm.
With the support of geographical information systems (GIS), a case study was
carried out in the transportation of liquefied petroleum gas (LPG) in the road network
of Hong Kong. In particular, the routing problems between Tsing Yi LPG terminal
and the dedicated LPG filling stations located in Kowloon and the New Territories
were analyzed using the proposed MOP methodologies. To examine the
effectiveness of these methods, two scenarios were developed for testing, namely,
the optimal routing in terms of single objective, and the multi-objective route
planning. The aforementioned three methods were successively used in each
application to search for efficient routes for transporting LPG from Tsing Yi to each
of the nine dedicated LPG filling stations: Kowloon Bay, Kwai Chung, Kwun Tong,
Mei Foo, West Kowloon, Ma On Shan, Tai Po, Tuen Mun, and Yuen Long. For such
a multi-objective routing problem, the solutions obtained by each of the three MOP
methods for most of the origin-destination pairs are diverse sets of routes presenting

various trade-offs among different objectives, which has been illustrated in Chapter 5.

Due to space limitation, Chapter 5 only reports the sample results of the Tsing Yi -
Kowloon Bay and Tsing Yi — Tai Po pairs. To maintain the integrity of the
experimental results, and to further demonstrate the effectiveness of the proposed
methodologies, supplemental results of the rest 7 O-D pairs are collectively
presented in appendices. The maps of the efficient routes for each O-D pair are
displayed in this appendix, and the corresponding attribute values of the routes are
summarized in Appendix B. Note that not all routes gencrated by three MOP
methods are displayed due to the enormous number of routes. Moreover, the set of
Pareto-optimal routes for some O-D pairs (e.g., Tsing Yi — Mei Foo, Tsing Yi —
Kwai Chung) do not exhibit much diversity since many routes overlap. Similar to the
technique of expression adopted in Chapter 5, only a subset of efficient routes is

presented for each O-D pair. Specificaily, routes 1 ~ 7 are the single objective
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optimization solutions, 8 ~ 19 are the optimal solutions obtained by the compromise
programming method, 20 ~ 24 are a subset of efficient routes generated by the
adaptive weighting method, and 25 ~ 31 are the examples of the resuits of the genetic
algorithm. Figures 1in odd number after “A.” (e.g. Figure A.1 and Figure A.3) show
the single-objective optimal routes from Tsing Yi LPG terminal to each of the
dedicated LPG filling stations, while the ones in even number after “A.” (e.g. Figure
A.2 and Figure A.4) display multi-objective routes to the corresponding LPG stations
generated by the proposed MOP methods.
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Tong LPG filling station
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generated by the proposed MOP methods

L

226



i
2.
y 5
(2) Min (accident probability)

(1) Min (travel time)

s @
2 LI, 7
X

¥
B

+®
-

L L X

3

A Fhal A N
ok z =1
\. Q' “‘;.:.‘ ] et ]
Lo “, ..4;[. 'Ji.%'-
A iy
.'é"l‘.""'" - B .
PR, £ i
(4) Min (people with special need at risk)
Yoot Rontpen )
7 o

(6) Min (road users at risk)

(5) Min (expected damage on economy)

(7) Min ( risk from emergency mponse)

Figure A.11 Single-objective optimal routes from Tsing Yi LPG terminal to West
Kowloon LPG filling station

227



‘

(9) Jocusing on both travel fime and societal risk (p=1)

(11} weighing criteria by AHP (p=1)

(14) equally weighing of all 7 criteria (p=l2)

(15) weighing criteria by AHP (p=2)

228



i i
(16) focusing on societal risk (CP with pﬁﬂ) (17) focusing on both travel time and societal risk (p='°}
i
B
P
(18) equally weighing of all 7 criteria (p==) T
" — tﬁ o s =
-~ " 4
. :
-i -
e
y % w8
Yy
7w,
(20) focusing on societal risk (Adaptive weighting)
- o ¥ a-fegw.,ﬁ. = ) .
T . = /v S 5 \e
Sy oty . . i .
g L3 . X
3 met g, )
v i ,
- ‘>- o = !
S
e < Won e &4
.).I A £ “\ % E :

(23) considering all criteria unbiased f

(22) considering all criteria unbiased y

229



(24) considering all criteria unbiased s (23) focusing on societal risk (GA) l

. ¥ 'g-{'
5 e G

(28} focusing on both travel time and societal risk

o e
ol "

nd

(30) considering all criteria unbiased l (31) considering all criteria unbiased i

Figure A.12 Efficient routes from Tsing Yi terminal to West Kowloon LPG filling
2 station generated by the proposed MOP methods

230



(2) Min (accident probability) \
bl - . .. -.' e I 'I .
LS OBy W A P IRLPREAEY
"I'-.’
b okl .

- p—_—
W

(3) Min (off-road exposure risk) T " (4) Min (people with special need at risk)

r

{6) Min (road users at risk)

» . '-

7) Mi;: { risk from emergency response} -

Figure’A.13 Single-objective optimal routes from Tsing Yi LPG terminal to Yuen
Long LPG filling station

a 231



(9 Socusing on both travel time and societal risk (p=F -

(11) weighing criteria by AHP (p=1)

4

——

(13) focusing on both travel time and societal risk (p=2)

Y

(14) equally weighing of all 7 criteria (p=2)

(15) weighing criteria by AHP (p=2)

232



- :l*!

L . - L | .
i By y
';" ’ [T
- *
f_-,c'.-f( ’j.fl.‘
q
ey o NS B e e :
(17} focusing on both travel time and socieral risk (p==)
4\
(I 3):&5!@ weighing of all 7 criteria (p==) "
Wil 1 B 5o 3
{20) focusing on societal risk (Adaptive weighting) (21) focusing on both travel time and societal risk
al
|
f;f" '
: o
Toing T1 Tomminal 'ﬂs\ N
2" T i Y
(22) considering all criteria unbiased {23) considering all criteria unbiased
233



(26) focusing on societal risk (27) focusing on both travel time and societal risk

R

-
o
J -
Ll
" r
o 3
Tadng T Tomming
. N .S _—
(29) considering all criteria unbiased
T ankeeny FEE '_"ms’_ - e R
At g SR 00,
‘. ‘\? . 5I
w ; -y
- o e,
. ,
= H R "‘ )
: >,
"
L g P
wyes ’
o
3 ““m“ﬁv\
- v B : g L ¥
(30) considering all criteria unbiased (31) considering all criteria unbiased
'

. Figure A.14 Efficient routes from Tsing Yi terminal to Yuen Long LPG filling
station generated by the proposed MOP methods

234



Appendix B: Supplemental Tables of Optimal Route Planning for
the LPG Transportation in the Road Network of Hong Kong

The tables presented in this appendix summarize the attribute values of the optimal
routes for each O-D pair exhibited in Appendix A. It should be noted that the values
for each attribute in these tables are all in normalized units. The last three attributes,
i.e., societal risk, total risk, and overall cost, are defined as follows:

— societal risk: the value of this attribute is calculated as the sum of the
normalized off-road population exposure risk, special population at risk, and
road users at risk.

- total nisk: the value of this attribute is calculated as the sum of the societal
risk, normalized accident probability, and expected damage on the economy.

— overall cost: the value of this attribute is calculated as the sum of normalized

travel time and total risk.
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