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ABSTRACT 

of thesis entitled: 

Multi-objective Route Planning for the Transportation of 

Dangerous Goods: Hong Kong as a Case Study 

Submitted by Li, Rongrong 
for the degree of Doctor of Philosophy 

at The Chinese University of Hong Kong 
in September 2010 

The transportation of dangerous goods (DGs) can significantly affect human life and 

the environment if accidents occur during the transportation process. Such accidents 

can result in traffic disruption, fatalities, properly and environmental damages. 

Therefore, safe DG transportation is of paramount importance, especially in high-

dcnsity-living environments where population and socioeconomic activities are ‘ 

densely distributed over the transportation network. , 

Effective and rational routing of DGs is one of the powerful means to mitigate the 

DG transportation risk. DG transportation involves multiple stakeholders playing 

different roles and having different objectives that are generally conflicting. The 

solution of such problem is to search for one or a set of "compromise" solutions 

rendering the best possible trade-offs for conflict resolution among different 

objectives. Given the multi-objective nature of the DG routing problem, multi-

objective optimization (MOP) becomes a sound framework for analysis and 

decision-making. 

This research establishes a general framework for optimal route planning for DG 

transportation in a high-density-living environment. Within the framework, multi-

criteria risk assessment and multi-objective route planning can be efficiently solved 

by novel compromise programming models and high performance algorithms. Non-

linearity and non-convexity often exist in the optimal DG routing problem which 

cannot be solved appropriately by conventional models such as the weighed sum 

approach. This research has proposed three novel methods to facilitate the generation 

of a set of optimal solutions on the Pareto front representing various trade-offs 
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among the conflicting objectives. The proposed methodologies give full 

consideration to decision-makers' inclination and capability in determining the 

weights for different criteria. The compromise programming procedure allows � 

decision-makers to exercise their preference structures in pursuing desired solutions 

rendering good compromises among different objectives. The adaptive weighting 

method approximates the Pareto front with a few suitable solutions to help decision-

makers select the most satisfactory route without generating all of them. The genetic-

algorithm-based approach uses a set of specifically designed genetic operators to 

efficiently capture a wide range of Parcto-optimal and near-optimal solutions, from 

which a decision-maker can choose the most preferred or best compromise one to 

implement. The diversity of methodologies provides decision-makers with more 

flexibility in choosing appropriate MOP methods to route DG shipments. 

A real-life application in optimal route planning for the transportation of liquefied 

petroleum gas (LPG) in Hong Kong was performed to implement the proposed 

framework. A set of criteria fitting the context of Hong Kong were defined, and 

various optimal routing solutions with diverse compromise in different objectives 

were generated. The implementation of the proposed methodologies enables the 

avoidance of the pitfalls of preference-based techniques and the burden of generating 

a complete set of possible solutions, and provides decision-makers with an overview 

of the solution space and the possible trade-offs among the conflicting objectives. 

The application study demonstrated the effectiveness of the proposed methodologies. 

In light of the study results and limitations，some recommendations are provided for 

future research. 
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論 文 摘 要 ’ 

危險品在運輸過程中如果發生意外，將會給人們的生活及周圍環境造成嚴 

IE影释。因此，危險品的安全運輸十分重要，特別是在人口和社會經濟活動高 

度密集的地區，這一重要性顯得尤為突出。 、 

i合理制訂危險品運輸路線是降低風險的存效手段之一。危險品運輸涉及到 

多個部門，危險品運輸的主管部門和運輸企業分別擁有不同的期望，一方追求 

最少的危害人数，而另一方則追求最低的運輸成本（如最短的運輸路線）。政府 

與企業的不同追求目標往往是相互衝突的，因此，危險品運輸線路的制訂並不是 

一個唯一方案，而是一組反映了各目標之間為緩解衝突而達成的不同妥協的折 

束方案。多目標優化為危險品運輸線路的制訂提供了有效的分析與決策手段。 

本文建立了一個針對高密度環境下的危險品路徑優化的-基本理論框架。在 

這一框架内，多標準風險評估以及多li：]標路徑優化可通過新穎的妥協規劃模型 

及高性能的算法得以實現。危險品路徑選擇常涉及非線性和非凸性的問題，常 

規的優化模型，如加權®加法，無法解決這些問题。對此，本文提出了三種優 

化方法可以有效地產生多個帕累托最優解，這些解能充分反映各目標之問為達 

到某種最優而形成的不同妥協。其中，妥協規劃方法可使決策者自行定義各目 

標的相對重要性，從而直接求出最符合一定偏好的理想解；自適應定權方法毋 

須用戶給定權重，它通適一種啟發式的搜索直接找出一組有效解，供決策者從中 

選出最滿意的路線；遗傳算法模擬自然進化過程，運用特別設計的遺傳算子搜 

索最優或近似最優解，為決策者提供多個備擇方案。三種方法分別考慮了決策 
t 

者的不同需求和能力，為危險品運輸決策提供了便利。 . 

以香港液化石油氣運輸路徑優化為硏究案例，本文提出了一套針對高密度 

環境下的風險評估和路徑選擇標準，並應用上述三種優化方法分別對從青依油 

庫到各專用液化石油氣加氣站的運輸生成了多個不同的最優路徑方案。硏究結 

果表明，本文提出的優化方法可行而且有效。根據研究中存在的不足，本文提 

出了將來可能的研究方向。 
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CHAPTER 1: INTRODUCTION 

1.1 Background of the study 

1.1.1 Dangerous gdods transportation 

Dangerous goods (DGs, also referred to as hazardous materials, HAZMATs) are 

substances, which by virtue of their chemical, physical or toxicological properties, 

could pose a catastrophic risk to health, safety, property and the environment if 

released or disposed improperly (Lepofsky et al. 1993). However, dependence on 

DGs is a fact of life in industrialized societies and there are thousands of different 

dangerous goods in use today (US DOT 2004). The United Nations sorts dangerous 

goods into nine classes according to their physical, chemical, and nuclear properties 

(UN 2001). In almost all instances, DGs originate at a location other than their 

destination. For example, oil is extracted from oil fields and shipped to a refinery 

(typically via a pipeline); oil products such as gasoline and liquefied petroleum gas 

are refined at the refinery and then shipped to storage tanks at different locations. 

Hence, transportation plays a significant role for DGs. 

The Office of Hazardous Materials Safety (OHMS) of the US DOT estimated that 

there were 800,000 domestic shipments of HAZMATs, totaling approximately 9 

million tons, in the USA each day in 1998 (US DOT 2000). Transport Canada 

estimated that nearly 30 million shipments of dangerous goods were moved by road, • * 

rail, water, and air in Canada every year (Transport Canada 2004). The Italian 

National Statistic Institute (ISTAT) reported that in year 2003，the total amount of 
4 

goods transported by road in Italy was about 1.2 billion tons, among which 84.96 一 

million tons (accounting for 6.8% of the total amount) were dangerous goods. In 

other European countries, such as Germany, France, and United Kingdom, the 

quantities of DG shipments were also over 80 million tons per year (Rindone and 

lanno 2005).‘In China, according to incomplete figures, by the end of year 2008, the 

total amount of DGs transported by road has been over 400 million tons /year (Wang 

2009). 

f 
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The vast majority of shipments of DGs reach their destinations safely. Given the 

large number of DG shipments, however, there remains the potential for catastrophic 

incidents with multiple fatalities, injuries, large-scale evacuations, and severe 

environmental damage. DG accidents are perceived as low-probability-high-

consequence (LPHC) events (Sherali et al. 1997). Most transportation accidents that 

impact a large number of people and result in significant economic loss involve a DG 

cargo. Therefore, safe DG transportation is of paramount importance, especially in a 

high-density-living environment where population and socioeconomic activities are 

densely distributed over the transportation network. DG transportation has become a 

strategic problem faced by various government departments, DG carriers, and the 

public in recent years (Erkut et al. 2007). 

1.1.2 The risk of transporting dangerous goods 

The transportation of dangerous goods is generally associated with significant levels 

of risk. In the context of DG transportation, risk refers to the likelihood of incurring 

the undesirable consequences of a possible accident (Alp 1995). For example, the 

release of petrochemical-type of DGs during the transportation process, i.e., the focus 

of this study, can lead to a variety of serious incidents such as a spill, fire or 

explosion in the case of flammable liquids or pressure-liquefied gasses. The 

undesirable consequences of these incidents include traffic disruption, fatalities, 

injuries, emergency evacuation, property damage, environmental damage, etc. 

Making decisions on the transportation of DG are difficult, not only because of the 

plausible catastrophic accidents, but also the intense public concern over this issue. It 

is thus important to carefully study such risks for strategic decision-making. 

Quantitative risk assessment (QRA) methods are commonly used to assess the risk of 

DG transportation. The risk is generally defined as a function of DG release 

frequencies and the consequent damages resulting from such releases (Erkut and 

Verier 1998). The frequencies of DG releases depend on many factors such as the 

probability of a traffic accident, the conditional probability of release given the 

traffic accident, the probability of a certain release size taking place, and the volume 

of DG movements (Rhyne 1994). The consequences of a DG release are associated 

2 



with the type of transported DG, the amount released，meteorological conditions, and 
• ^ 、 

potentially exposed population (List et ai. 1991; Zhang et al. 2000). Accidents ‘ 

involving DG transportation near densely populated areas pose the largest risks due 

to the considerable number of potentially affected people. Also, areas prone to high 
V 

frequencies of traffic accidents give rise to higher risk levels. 

Numerous models have been proposed to measure the risk of DG transportation over 

the years (Erkut et al. 2007). The common feature of all approaches is that a risk 
、 

indicator is composed of the probabilities of occurrence of some undesirable events 

and their possible adverse consequences. Although there is a wealth of risk models， 

few of them are specifically designed for high-density living with respect to various � 

risks. In most of these models, the undesirable consequences of an accident related to 

DG are mainly expressed in terms of potential injuries and fatalities (Erkut and 

Verier 1995; Verier and Kara 2001; Kara et al. 2003). These constitute the main part 

of impact costs and most decision-makers would prefer to minimize population 

exposure at the expense of financial profits (Kalelkar and Brooks 1978). In principle, 

the evaluation of DG transportation risk should consider not only the direct damages � 

to individuals and vehicles travelling along the route where the incident occurs but 

also the indirect damages to population, properties, and environment near the 

incident location. However, most of the prevailing literature focuses only on the 

indirect damages; few of them take into account the direct damage simultaneously. 

Moreover, the capability of emergency response is rarely considered when assessing 

the risk of DG transportation. Clearly, prompt and efficient response is critical to the 

minimization of possible catastrophic consequences on human life and the 

environment in the event of a DG accident, especially in a high-density environment. 

In order to make an effective risk assessment for DG transportation in high-density 

living environments, it is necessary to take into account all of these factors and 

model the associated risks appropriately. 

1.1.3 Route planning for dangerous goods transportation 

The transportation of dangerous goods has a good safety record; however, 

accidents do take place, and the consequences can be significant due to the 
} 

nature of the cargo. Reduction of the risk of DG transportation can be achieved 
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in many different ways. Routing DG shipments reasonably and effectively is one of 

the powerful means to mitigate the DG transportation risk (Erkut et al. 2007). 

DG transportation involves multiple stakeholders such as shippers, carriers, 

consignees, and governments; each playing a different role in safely moving DG 

from the origins to the destinations over a transportation network (Kara and Verier 

2004). Moreover, different stakeholders usually have different priorities and 

perspectives on DG transportation (Erkut and Gzara 2008; Verier and Kara 2008). 

Thus, DG transportation is a typical multi-stakeholder and multi-objective problem 

which is generally complicated to solve. These objectives are usually competing or 

conflicting with each other so that a single "best" solution that can optimize every 

single objective is impossible. The solution of such problem is to search for one or a' 

set of "compromise" solutions rendering the best possible trade-offs for conflict 
f 

resolution among different objectives. Given the multi-objective nature of the DG 
t 

routing problem, multi-objective optimization (MOP) thus becomes a sound 

framework for analysis and decision-making. 

Despite the extensive research that has been done on route planning for DG 

transportation, only a few have addressed the multi-objective nature of the DG 

routing problem using an appropriate multi-objective optimization method. Vigorous 

multi-objective optimization methods are seldom employed to seek optimal routes 

for DG transportation based on the results of risk assessment. The weighted sum 

(WS) approach is most commonly used in DG route planning (Chin and Cheung 

1989; ReVelle et al. 1991). Although it is the simplest and most straightforward 

multi-objective optimization technique, there are problems in using this method 

when objectives are nonlinear or the set of feasible solutions is not convex. Even for 

convex multi-objective problems, a uniform variation of the weights can hardly 

produce an even distribution of points in the efficient set (Das and Dennis 1997). To 

solve these problems, high performance MOP methods need to be developed to 

optimize the routes for DG transportation. It is instrumental to generate a set of 

efficient routes representing the inherent trade-offs among different objectives for 

decision-makers to choose the one that gives the best compromise among the 

conflicting objectives. 
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Compromise programming (CP) and genetic algorithms (GAs) provide promising 

solutions to such optimization problems. CP depends on a weighting mechanism to 

collapse multiple objectives into a single objective function and searches for the 

desired solution that is closest to the ideal solution in which each objective achieves 

its optimum value simultaneously (Zeleny 1982; Zhang 2003). As a highly efficient 

search strategy for global optimization, GAs demonstrate superior performance on 

solving multi-objective optimization problems that have a large and complex 

solution space. Moreover, being a population-based approach, a GA is able to find 

multiple feasible solutions in a single run (Goldberg 1989; Gen and Cheng 2000). 

Non-linearity and non-convexity often exist in multi-objective route optimization 

problem which cannot be appropriately solved by conventional models such as the 

weighed sum approach. CP and GAs, however, can handle these problems 

effectively. 

The Dijkstra's algorithm (Dijkstra 1959) is most commonly used to search for the 
t . 

shortest path from the source node to one additional node within a network. DG 

route planning involves multiple objectives and thus multi-objective shortest paths 

should be derived. In this connection, the conventional Dijkstra's algorithm needs to 

be appropriately modified to effectively address the multiple components of link 

impedance, and to efficiently search for the optimal path. 

L1.4 Routing of dangerous goods in Hong Kong 

Hong Kong is a large city with high population density and narrow streets. Due to 

the land constraints, vehicles carrying DGs inevitably have to pass through densely 

populated areas or their vicinities. Therefore safe DG transportation is of paramount 

importance. In an attempt to ensure public and environmental safety, the Government 

has issued rules and regulations for dangerous goods transportation. Each DG 

transport company is required to advise their drivers to follow major routes and to 

avoid heavy traffic and densely populated areas as much as possible. Currently, there 

are no designated routes for vehicles carrying DGs in Hong Kong. However, vehicles 

carrying dangerous goods such as explosives, flammable liquids, or pressure-

liquefied gasses are forbidden to pass through any tunnels in Hong Kong. The 

existing regulations specify the forbidden spots or road sections rather than the 
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approved routes. Given an origin and a destination, it is essential to find a number of 

possible routes from which the route(s) that gives a preferable compromise between 

cost and risk might be selected. 

1.2 Objectives of the study 

This study aims to contribute to the literature of dangerous goods transportation by 

constructing a general framework applicable to multi-objective route planning for the 

conveyance of DGs in high-density living environment. Within the framework, 

multi-criteria risk assessment and multi-objective route planning can be efficiently 

solved by novel compromise programming models and high performance algorithms. 

The study focuses on the development of vigorous multi-objective optimization 

methods to search for optimal routes for DG transportation based on the multi-

criteria risk assessment. As a basis, a set of criteria fitting the context of high-

density living will be identified and a risk model with respect to various risks will 

be designed to assess the risk associated with DG transportation. A real-life 

application in optimal route planning for the transportation of liquefied petroleum 

gas (LPG) in Hong Kong will be carried out to implement the framework and to 

evaluate the proposed methodologies. The objectives of this study are: 

1. To construct a general multi-objective optimization framework for DG route 

planning for high-density living. 

2. To identify a set of criteria fitting the context of high-density living environment 

for risk estimation. 

3. To develop appropriate methods of risk assessment for the transportation of 

petrochemical-type of DGs suitable for high-density living. 

4. To develop novel methods for the routing analysis of DG transportation under 

•conflicting objectives. 
• “ 

5. To devise high performance algorithms for the implementation of the 

corresponding multi-objective optimization methods for the routing of DG 

transportation. 

6 



6. To make a real-life application in optimal route planning for the transportation of 

liquefied petroleum gas (LPG) in Hong Kong, a high-density city, to implement 

the framework and to evaluate and improve the proposed methodologies. 

1.3 Significance of the study 

The transportation of dangerous goods can significantly affect human life and the 

environment if accidents occur during the transportation process. Therefore, safe DG 

transportation is of paramount importance, especially in high-density-living 

environments. Risk assessment and route planning play a crucial role in the 

prevention or minimization of possible catastrophic consequences on human life and 

the environment. However, effort has seldom been made to analyze such problems in 

the literature. Hence there is an urgent need to carry out risk assessment and optimal �一 

route planning for DG transportation in a high-density environment. This study aims 

to establish a general framework for optimal DG routing in such an environment, 

within which non-convexity and non-linearity can be handled, risk assessment 

applicable to high-density living can be made, and the best compromise solution can 

be obtained along the Pareto front stipulating various trade-offs among the 

conflicting objectives. The results obtained from this research will benefit the 

research and applications in the field of DG transportation. . 

DG transportation remains a great public concern due to its potentially catastrophic 

consequence. It is thus important to carefully assess the associated risks for strategic 

decision-making. In this study, risk is measured by means of accident probability, 

different exposure risks, and emergency response capabilities. A model with 

emphasis on high-density living is developed to evaluate the risk of transporting DG 

in the road network. On the basis of risk assessment, route planning can then be 

conducted using MOP methods with efficient solution algorithms. 

DG transportation is a multi-objective problem with multiple stakeholders playing 

different roles and having different objectives. Although there is a wealth of 

literature on the DG transportation problem, most of it focuses on risk assessment by 
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various risk models. Lesser effort has been made on route planning for DG 

transportation under conflicting objectives, particularly in high-density environment. 

. This study proposes novel multi-objective optimization methods for DG routing 

analysis. High performance algorithms guarantee speedy convergence via efficient 

searches. The methodologies developed in this study gives full consideration to 

decision-makers' inclination and capability in determining the weights for different 

routing criteria. The diversity in methodologies provides decision-makers more 

flexibility in choosing applicable MOP methods for effective DG route planning. 

Different types of DGs possess different characteristics whose risk assessments and 

routings call for a wide spectrum of technical knowledge and practical considerations. 

This study concentrates mainly on the transportation of petrochemical-type of DG. 

The framework can, however, be extended to solve more complicated problems 

involving the transportation of a large variety of DGs in a high-density environment. 

The study will advance the research and applications of optimal route planning for 

DG transportation for high-density living. 

1.4 Organization of the thesis 

This thesis consists of six chapters. Following this introductory chapter. Chapter 2 

introduces the definition and classification of dangerous goods, as well as the 

concept of risk in the transportation of DGs. Current practices of DG transportation 

in Hong Kong are reviewed. The methodologies commonly used in the risk 

assessment for DG transportation are examined. The multi-objective optimization 

techniques and their applications to the vehicle routing problem, in particular, multi-

objective route planning for DG transportation are discussed in detail. 

Chapter 3 and Chapter 4 focus on the methodological framework, where three 

distinct multi-objective optimization methodologies proposed in the study are 

presented. Chapter 3 concentrates on the deterministic multi-objective path 

optimization methods. It begins with an introduction of the multi-objective shortest 

path problem that underlies the optimal route planning for DG transportation. It then 
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introduces the concept of Pareto optimality, an important notion in the multi-

objective problems. Subsequently, the simplest and most straightforward multi-

objective optimization method, weighted sum of objective functions, is discussed. 

Following that is a detailed description of compromising programming (CP), a 

mathematical programming technique for finding a compromise solution amongst a 

set of conflicting objectives. Specifically, the utility functions commonly employed 

in CP are introduced. The construction of criteria weights is then described. In 

particular, the analytical hierarchy process (AHP) is specified and the procedure of 

multi-objective DG route planning based on compromise programming is detailed 

accordingly. In addition to the CP approach, an adaptive weighting method for multi-

objective route planning is proposed to avoid the pitfalls of preference-based 

techniques. The framework of this approach to explore the Pareto front is presented, 

followed by the procedure of approximating such a front. The implementation issues 

are also specified. 

Chapter 4 introduces a heuristic method - the genetic algorithm, for the problem of 

optimal route planning. As a powerful and broadly applicable stochastic search and 

• optimization technique, GAs and their characteristics are briefly introduced at the 

beginning. The major components and basic structure of normal GAs are examined, 

and the typical parameters in a genetic algorithm are discussed. This is followed by a 

detailed introduction of the proposed GA-based heuristic approach to multi-objective 

route planning for DG transportation. The genetic representation scheme of candidate 

solutions, the initialization of population, and the fitness evaluation are elaborated. 

The genetic operators used in the proposed GA are also detailed and the 

implementation issues are specified. 

Chapter 5 focuses on the case study of routing road tankers conveying liquefied 

petroleum gas (LPG) in the road network of Hong Kong. The set of criteria fitting 

the context of high-density living, and Hong Kong in particular, is identified, and the 

model for evaluating the risks associated with the transportation of LPG is detailed. 

This is followed by an elaboration on the implementation of three proposed multi-

objective optimization methodologies in optimal route planning for transporting LPG 

in Hong Kong. The composition of risks in each solution is examined and the actual 

trade-offs involved are interpreted. Particular issues with reference to the 
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implementation of each method are specified. Chapter 5 concludes with a discussion 

of the execution efficiency and application condition of each method. 

Chapter 6 concludes the thesis by summarizing the major research contributions. In 

light of the study results and limitations, recommendations are provided for future 

research. 

JL 

’ . 
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CHAPTER 2: LITERATURE REVIEW 

This chapter reviews the academic body of literature in areas relevant to dangerous 

goods transportation, risk assessment, and multi-objective optimization techniques. 

The definition and classification of dangerous goods are introduced, the feature of 

dangerous goods transportation is described, and current practices of DG 

transportation in Hong Kong are reviewed. The methodologies commonly used in the 

risk assessment for DG transportation are examined. The multi-objective 

optimization techniques and their applications to the vehicle routing problem, in 

particular, multi-objective route planning for DG transportation are discussed in 

detail. 

4 J 

\ ‘ 

2.1 Definition and classification of dangerous goods 

2.1.1 Definition 

The European Agreement Concerning the International Carriage of Dangerous 

Goods by Road (ADR) proposes the definition of dangerous goods as follows (ADR 

2009): 

"Dangerous goods mean those substances and articles the c ^ i a g e by road of 

which is prohibited by ADR, or authorized only under the conditions prescribed 

therein.” 

According to ADR, dangerous reaction means: 

(a) Combustion or evolution of considerable heat; 

(b) Evolution of flammable, asphyxiant, oxidizing or toxic gases; 

(c) The formation of corrosive substances; 

(d) The formation of unstable substances; or 

(e) Dangerous rise in pressure (for tanks only). 

The US Department of Transportation (US DOT 2004) defines hazardous materials 

or dangerous goods as any substances or materials that may pose an unreasonable 
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risk to health, safety or property. These materials can cause harm to people, the 

environment, and property if release or dispose improperly due to their physical, 

chemical, and biological properties. 

2,1.2 Classification 

The UN Recommendations on the Transport of Dangerous Goods sorts dangerous 

goods into 9 classes according to their physical, chemical, and nuclear properties, in 

order to regulate the transportation, packaging, and labeling of dangerous goods with 

respect to their hazards (UN 2001). Some of the^e classes are subdivided into 

divisions. Class or division is a number assigned to the article or substance according 

to the criteria of one or more of the nine UN hazard classes. Substances (including 

mixtures and solutions) and articles subject to the Regulations are assigned to one of 

the nine classes according to the hazard or the most predominant of the hazards they 

present. 

These classes and divisions include (UN 2001): 

Class 1: Explosives 

Division 1.1: Substances and articles that have a mass explosion hazard 

Division 1.2: Substances and articles that have a projection hazard but not a 

mass explosion hazard 

Division 1.3: Substances and articles that have a fire hazard and either a 

minor blast hazard or a minor projection hazard or both, but 

not a mass explosion hazard 

Division 1.4: Substances and articles that present no significant hazard 

Division 1.5: Very insensitive substances which have a mass explosion 

hazard 

Division 1.6: Extremely insensitive articles which do not have a mass 

explosion hazard 

Class 2: Gases 

Division 2.1: Flammable gases 
、 

Division 2.2: Non-flammable, non-toxic gases 

Division 2.3: Toxic gases 
- 丨2 



Class 3: Flammable liquids 

Class 4: Flammable solids; substances liable to spontaneous combustion; substances 

which, in contact with water，emit flammable gases 

Division 4.1: Flammable solids, self-reactive substances and solid 

desensitized explosives 

Division 4.2: Substances liable to spontaneous combustion 

Division 4.3: Substances that in contact with water emit flammable gases 

Class 5: Oxidizing substances and organic peroxides 

Division 5.1: Oxidizing substances 

Division 5.2: Organic peroxides 

Class 6: Toxic and infectious substances 

Division 6.1: Toxic substances 

Division 6.2: Infectious substances 

Class 7: Radioactive material 

Class 8: Corrosive substances 

Class 9: Miscellaneous dangerous substances and articles 

2.2 The risk of transporting dangerous goods 
» _ 

2.2.1 Dangerous goods transportation - an industry at risk 

In almost all instances, dangerous goods originate at a location other than their 

destination. For example, oil is extracted from oil fields and shipped to a r^inery 

(typically via a pipeline); oil products such as gasoline and liquefied petroleum gas 

are refined at the refinery and then shipped to storage tanks at different locations. 

Hence, transportation plays a significant role for DGs. The transportation of DGs 

poses special risks to the neighboring population, environment, and property due to 

the nature of the cargo. Therefore, DG transportation requires specific safety 

measures with respect to packaging of the material, design and operation of vehicles, 

training of crew，handling methods, and emergency response procedures. 
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Although accidents involving DGs are infrequent, this number is likely to be 

proportional to the number of shipments. The statistics for Hong Kong are not 

available, but the US Department of Transportation (DOT) maintains a 

comprehensive database of historical records that provides good insight into the 

practices associated with DG transportation. The Office of Hazardous Materials 

Safety (OHMS) of the US DOT estimated that there were 800,000 domestic 

shipments of HAZMATs, totaling approximately 9 million tons, in the USA each day 

in 1998 (US DOT 2000). Approximately 94% of total daily HAZMAT shipments 

were shipped by trucks (Table 2.1). In Europe and China, the quantities of DG 

shipments transported by road are also tremendous. Therefore, ensuring efficient and 

safe routing of vehicles carrying DGs is of utmost importance for public safety. 

Table 2.1 Average daily hazmat shipments in the United States 
Shipment mode Number of shipments % of total shipments 

Truck 768,907 93.98% 
Air 43,750 5.35% 
Rail 4,315 0.53% 

Pipeline 873 0.11% 
Water 335 0.04% 

Daily total 818,180 100% 

Source: US DOT (2000) 

The risk of DG transportation differs from the risk of fixed facilities for HAZMAT 

storage in that the exposure of population and the environment along the routes to the 

DG shipments is dynamic rather than fixed. Certain DGs are transported on the road 

network in quantities that would exceed the threshold for safety if stored in a fixed 

facility. On the other hand, recent analyses and historical events have shown that 

risks arising from DG transportation are almost of the same magnitude as those 

resulting from fixed facilities (Fabiano et al. 2002). A survey of the literature from 

1926 to 1997 reveals that among 3,222 accidents related to the handling, 

transportation, processing, storage of chemicals involving different types of DGs, 

54% were related to fixed facilities, 41% were transportation accidents and 5% 

miscellaneous accidents (Khan and Abbasi 1999). Gorys (1987) found, from the 

1983 Commercial Vehicle Survey, that approximately one third of all DGs release in 

Ontario results from transportation related incidents. Given that transportation 
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activities take place beyond the control of fixed facilities, there is a justifiable 

concern that dangerous goods should be transported in the safest manner possible. ‘ 

The major concern in the process of DG transportation is the likelihood of incurring 

an undesirable event, as might occur could lead to a release or explosion. Such an 

event can cause severe damage to society and can involve multiple fatalities, serious 

injuries, large-scale evacuations, and can require significant clean-up effort. For 

instance, at 2:45 p.m. January 13，2004, a fuel tanker traveling south on Maryland's 

1-895 (the Harbor Tunnel Thruway) veered off the overpass and landed on the 

northbound lanes of 1-95 just south of Baltimore. The explosion involved 8,000 

gallons of gasoline. The crash led to 1-95 shutdown in both directions for more than 

nine hours and took four lives (Buck et al 2004). 

Greenberg (2001) estimated the economic impact of hazardous material accidents in 

the United States by averaging the accidents records over the period of 1995-1997. 

Table 2.2 contrasts the average costs (per event) of HAZMAT and non-HAZMAT 

motor carrier accidents and incidents for one year. Although the cost of an average 

HAZMAT incident is not significantly higher than that of a non-HAZMAT incident, 

the cost of a HAZMAT incident resulting in fire or explosion is significantly higher. 

DG transportation accidents are perceived as low-probability-high-consequence 

(LPHC) events. The LPHC feature of DG transportation accidents tends to mislead . 

public perceptions of the actual danger of transporting DGs, and it poses a challenge 

to the scientific community on quantitative risk assessment for DG transportation. 

Table 2.2 Comparative costs of HAZMAT and non-HAZMAT motor carrier 
accidents/incidents � 

Type of accident/incident events Average cost (in US$) 

non-HAZMAT events 340,000 

all HAZMAT events 414,000 

HAZMAT events with spill/release 536,000 

‘ HAZMAT events with fire 1,200,000 ‘ 

HAZMAT events with explosion 2，100,000 

Source: Greenberg (2001) 
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DG transportation involves multiple stakeholders such as shippers, carriers, 

consignees, and governments; each playing a different role in safely moving DG 

from the origins to the destinations over a transportation network (Kara and Verier 

2004). Moreover, different stakeholders usually have different priorities and 

perspectives on DG transportation (Erkut and Gzara 2008). Given the low accident 

probabilities, shippers, carriers, and receivers of DG are primarily interested in 

maintaining the throughput of DGs in terms of timely shipment and minimum cost. 

Although safety is a reasonable objective, throughput remains their dominant 

concern. As a result, government agencies are responsible to administrate regulations 

over the safety of DG transportation with thorough consideration on the economic 

cost and public risk, and striking a balance between economy and safety (Verter and 

Kara 2008). 

2.2.2 Current practices in Hong Kong 

The transportation of DGs can significantly affect human life and the environment if 

accidents occur during the transportation process. Hong Kong is a large city with 

high population density and narrow streets. Due to the land constraints, vehicles 

carrying DGs inevitably have to pass through densely populated areas or their 

vicinities. Therefore safe DG transport is of paramount importance. 

In Hong Kong，the Dangerous Goods Ordinance (DGO), Cap. 295, Laws of Hong 

Kong provides for the control on land and at sea of about 400 types of dangerous 

goods under ten broad categories in accordance with their inherent characteristics, i.e. 

explosive, flammable, corrosive, toxic, etc. According to the Schedule of Dangerous 

Goods (Application and Exemption) Regulation, dangerous goods are classified into 

the following categories (FSD 2004): 

Category 1: Explosives and Blasting Agents. (The Authority is the Commissioner 

of Mines.) 

Category 2: Compressed Gases. 

‘ Class 1 - Permanent Gases 

Class 2 - Liquefied Gases 
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Class 3 - Dissolved Gases 

Category 3: Corrosive Substances. 

Category 4: Poisonous Substances. 

Class 1 - Substances giving off poisonous gas or vapour ‘ 

Class 2 - Certain other poisonous substances 

Category 5: Substances giving off inflammable vapours. 

Class 1 - flash point below 23 C 

Class 2 - flash point of or exceeding 23 C but not exceeding 66 C 

Class 3 - flash point of or exceeding 66 C (applicable to diesel oils, 

furnace oils and other fuel oils o n l y ) ‘ 

Division 1 - immiscible with water (applicable to Class 1 & 2 only) 

Division 2 - miscible with water (applicable to Class 1 & 2 only) 

Category 6: Substances which become dangerous by interaction with water 

Category 7: Strong supporters of combustion • 

Category 8: Readily combustible substances 

Category 9: Substances liable to spontaneous combustion 

Category 9A: Combustible goods exempted from Sections 6 to 11 of the 

Ordinance. 

Category 10: Other dangerous substances. 

In Hong Kong, the DG transportation on land is controlled by relevant authorities. 

The conveyance of Cat. 1, 2 and 5 DGs on road by vehicles is subject to licensing 

control. Pursuant to the Section 6 of the Ordinance, no person shall convey any Cat. 

2 or 5 DGs using any vehicle, provided that a license is granted by the Director of the 

Fire Services Department (FSD). Cat. 1 DG (Explosives) is under the control of the 

Mines Division of the Civil Engineering and Development Department. It can only 

be manufactured, transported, or stored as required by the Commissioners of Mines. 
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Control and licensing aspects of Liquefied Petroleum Gas (LPG) in Cat. 2 are under 

the jurisdiction of Electrical and Mechanical Services Department (EMSD). The 

radioactive materials and chemical waste are governed by the Department of Health 

and the Environmental Protection Department, respectively. 

To ensure public and environmental safety, the Government has issued rules and 

regulations for DG transportation, involving packaging of the material, design and 

operation of vehicles, training of crew, handling methods, etc. The vehicles used for 

the conveyance of DGs must comply with the safety standards as required by the 

Director of Fire Services. The containers and tankers for bulk chemical 

transportation must be designed, manufactured and tested in accordance to the 

internationally acceptable standards. A third party inspection body must certify that 

they have met the stipulated standards before use on Hong Kong roads. While in 

service, all containers, tankers and vehicles must be properly labeled and carry 

appropriate hazard warning panels. The carriers are required to put up an adequate 

‘ emergency response plan describing specific actions that will be taken by the driver 

or the company's emergency response team in the event of a DG release. All drivers 

must undergo specific training course and examination, and observe the safety 

instructions and emergency procedures as stipulated in the document provided by the 

consignors. DG vehicles must be equipped with adequate stock of emergency 

equipment, such as chemical fire extinguisher, neutralising agent, adsorbents, 

oversized drums, protective gears, etc. In case of an incident, the carriers are required 

to take immediate action and notify the corresponding authorities. 

In addition to the these rules and regulations, each DG transport company is also 

required to advise their drivers to follow major routes and to avoid heavy traffic and 

densely populated areas as much as possible. DG transportation can only take place 

between 9:00 am and 5:00 pm from Monday to Saturday, excluding Sundays and 

public holidays. This is to ensure that there is ample daylight when responding to any 

incident and that emergency response teams will be readily available. Currently, 

there are no designated routes for vehicles carrying DGs in Hong Kong. However, 

under the Road Tunnels (Government) Regulations, vehicles carrying Cat. 1, 2 and 5 

dangerous goods are forbidden to pass through any tunnels in Hong Kong. Tung 

Chung Road and South Lantau Road are closed roads. Any vehicle that has to access 

18 



to these two roads are required to apply for special permits and have to observe 

special conditions attached to the access permits. In terms of the terrain conditions, 

roads of steep gradients must be avoided unless in absolutely necessary 

circumstances. 

2.2.3 Quantitative risk assessment 

Risk is the primary ingredient that separates DG transportation problems from other 

transportation problems. The transportation of DGs is generally associated with 

significant levels of risk. In the context of DG transportation, risk refers to the 

likelihood of incurring the undesirable consequences of a possible accident (Alp 

1995). For example, the release of petrochemical-type of DGs during the 

transportation process can lead to a variety of serious incidents such as a spill, fire or 

explosion in the case of flammable liquids or pressure-liquefied gasses. The 

undesirable consequences of these incidents can be a health effect (death, injury, or 

long-term effects due to exposure), property loss, an environmental effect (such as 

soil contamination or health impacts on flora and fauna), an evacuation of nearby 

population in anticipation of imminent danger, or stoppage of traffic along the 

impacted route. 

« 

Quantitative Risk Assessment (QRA) methods are commonly used to assess the risk 

of DG transportation. In general, a QRA involves hazard identification, frequency 

estimation, consequence analysis, and risk calculation. Ang and Briscoe (1989) 

suggested the following three-stage framework for risk analysis in transportation: 

1) Determining the probability of an undesirable event (e.g. an accident 

involving the release of a dangerous good); 

2) Determining the level of potential population and property exposure, given 

the nature of the event; 

3) Estimating the magnitude of consequences (e.g. fatalities, injuries and 

property damage) given the level of exposure. 

Each stage of the process produces one or more probability distributions; two of 

them (2 and 3) produce conditional distributions, for which statistical records are 

seldom available. In practice, the above process is seldom carried all the way through 
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(List et al. 1991). Most researchers simplify the analysis by only using the product of 

the probability of a release accident and the extreme consequence of the accident to 

estimate the risk, i.e.. Risk = Probability x Consequences. The extreme consequence 

is often represented by the potentially impacted population. 

The probability estimates are usually based on accident rates with respect to DG 

trucks, and the frequency of release sizes given the type of accident. When historical 

data are unavailable or incomplete, techniques such as fault tree analysis or event 

tree analysis (Alp 1995) are sometimes used by researchers to derive relevant 

parameters (Abkowitz et al. 1984; Harwood et al 1993; Nicolet-Monnier and 

Gheorghe 1996). Occasionally, general truck accident rates are simply used to serve 

as a substitute of such probability. In practice, accident probability of DG 

transportation is associated with road design characteristics, traffic condition, and 

random influences of weather condition. Saccomanno and Chan (1985) demonstrated 

that changes in probability due to the variation in environmental conditions could 

result in no route being absolutely safe under any circumstances. 

For transportation QRA, the common practice is to estimate, a priori, the impact area 

of a potential accident along each link and to use the number of people living within 

this area as the consequence measure. The shape and size of an impact area depends 

not only on the substance being transported but also on other factors such as 

topography, weather, and wind speed and direction. Different geometric shapes have 

been used to model the impact area, e.g., a band of fixed width around each route 

segment (Batta and Chiu 1988; ReVelle et al. 1991); a circle with a substance-

dependent radius centered at the incident location (Erkut and Verier 1998; Kara et al. 

2003); and rectangle around the route segment (ALK Associates 1994). The radius of 

the circle approximation or the bandwidth of the rectangle approximation and the 

fixed-bandwidth approximation is substance-dependent. But the radius or the 

bandwidth is assumed to be constant for a given shipment, which means that the 

approximation does not consider the distance effect on the level of impact. In an 

airborne dangerous good (e.g., chlorine, propane, and ammonia) accident, however, 

the concentration of the airborne contaminant varies with distance from the source of 

accident. It will be lower as the gas disperses with distance and wind. In this case, 

researchers resort to the Gaussian plume model (Patel and Horowitz 1994; 

20 



Chakraborty and Armstrong 1995; Zhang et al. 2000) to approximate the impact area 

with an ellipse shape. The central assumption in all aforementioned models is that 

each individual within the danger zone will be impacted equally and no one outside 

of this area will be impacted. 

Unlike fixed DG facilities in which DG types, sources, and accident location 

conditions are all known, risk assessment for DG transportation is carried out on a 

road network and has the property of uncertainty with reference to the expected 

location and condition of the accident site. A common approach to transportation risk 

analysis is to divide a DG route into segments (links) where a parameter can be 

assumed homogeneous. The total risk along the DG route is then estimated as the 

sum of the risks of all its constituent segments. 

Although numerous models have been proposed to measure the risk of DG 

transportation along a route (Table 2.3)，few of them are specifically designed for 

high-density living with respect to various risks. In most models, the undesirable 

consequences of an accident related to DG are mainly expressed in terms of potential 

injuries and fatalities. In practice, the evaluation of the risk of DG transportation 

should consider not only the direct damage to individuals and vehicles travelling 

along the route where the incident occurs, but also the indirect damage to population, 

properties and environment near the incident location. While most of the prevailing 

literature focuses on the indirect damage, few of them take into account the direct 

damage simultaneously. Moreover, the capability of the emergency response has 

rarely been considered when assessing the risk of DG transportation. Apparently, 

prompt and efficient response is critical to the minimization of possible catastrophic 

consequences on human life and the environment in the event of a DG accident, 

especially in a high-density environment. In order to make a comprehensive risk 

assessment for DG transportation in high-density living environments, it is 

imperative to take into account all of these factors and model the associated risks 

properly. 
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Table 2.3 Summary of the risk models suggested in the literature for DG 
transportation risk (adapted from Erkut et al. 2007) 

Approach Model Sample References 

妈 Alp 1995 
Traditional risk 7 . P , C , Jin and Batta 1997 

二 US DOT 1994 
"(r) /-I 

Expected damage - Pj)C, Erkut and Vcrter 1998 
»=I 7=1 

n(r) 
o , V*/^ Batta and Chiu 1988 
Population exposure ReVelle et al. 1991 

Jj^) Saccomanno and Chan 1985 
Incident probability Abkowitze/a/. 1992 

Jin and Batta 1997 
n(r) 

Incident probability - ^ ln(I ~p,) ！̂丨！̂匚̂卜̂ 丄̂呂 1997 

n{r) 
Perceived risk J ] p^ , a > 0 Abkowitz et al. 1992 

”(0 ( V 
Mean-variance + kC] ), k>0 Erkut and ingolfsson 2000 

/=i 
n(r) 

Expected disutility 工 / 7 , ( e x p ( / : C " , ) - k > Q Erkut and ingolfsson 2000 
<=1 

m a x ( c , ) Erkut and ingolfsson 2000 
population exposure 

； S i v a k u m a r et al. 1995 
Conditional risk / V / ? , Jin and Batta 1997 

^ 丨二 Sheralie/a/. 1997 
” � 1-1 I n�r� 

Demand satisfaction J ] P, J ] [ (1 - /？̂  ) C, / J ^ (1 - ) Erkut and Ingolfsson 2005 
'=丨 产 1 / /=! 

Note: 
Pi is the incident probability along the iih link of the path comprising n(r) links, 
and Ci is the population affected by an incident on the /th link. 

2.3 Multi-objective route planning for dangerous goods 

transportation 

2.3.1 Multi-objective optimization techniques 

DG transportation is a multi-objective problem with stakeholders playing different 

roles and having different objectives. These objectives are generally conflicting so 
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that a single "best" solution that can optimize every single objective is impossible 

(Zitzler et al. 2003). The solution of such problem is to search for one or a set of 

"compromise" solutions rendering the best possible tradeoffs for conflict resolution 

among different objectives. Given the multi-objective nature of the DG routing 

problem, multi-objective optimization (MOP) thus becomes a sound framework for 

analysis and decision-making. 

In mathematical terms, the multi-objective optimization problem can be generally 

expressed as follows: 

min f { x ) = ( / , ( J c ) , 人 ( j ： ) ) ' 
X 

s.t. JC G X (2.1) 

where f,{x), i = 1, 2, m are objective functions, x is vector of the decision 

variables in the solution space X within which all of the points are the feasible 

solutions for the above MOP, and T is the transpose of the objective function vector. 

Relative to single objective optimization problems, MOP solutions are optimal in the 

sense that the optimal achievement of one objective is often made at the expenses of 

the others. This kind of optimality is normally termed Pareto optimality in MOP. 

Non-dominated solutions, also referred to as Pareto optimal solutions, are the optimal 

solutions for MOP. The set of all non-dominated solutions is usually referred to as 

the Pareto optimal set. For a given Pareto optimal set, the corresponding objective -

function values in the objective space are called the Pareto front. 

A wide variety of MOP solution methods have been reported in literature. Generally 

speaking, these methods can be categorized into the preference-based and the 

generating techniques. The preference-based approaches have been developed to 

allow decision makers to state their preferences a priori for all the objectives, such as 

the weighted sum approach (Steuer and Choo 1983), or interactively during the 

search procedure，e.g. the STEM methods (Benayoim et al 1971) and through 

achievement functions (Wierzbicki 1980). Usually, the optimization is done by 

combining multiple objectives into a single overarching objective function. Each 

objective is assigned a scalar weight accounting for its relative importance to other 

objectives. By solving the combined single-objective problem, the optimal solution 
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of the original MOP is obtained. Moreover, different solutions can be yielded by 

varying the weights. 
‘ 

' » 

The commonly used preference-based MOP methods include weighted sum approach, 

goal programming, compromise programming, e -constraint method, etc. They are 

summarized as follows: , 

• Weighted sum approach 

In this method (Steuer and Choo 1983), each objective is assigned a scalar weight 

that signifies its relative importance to other objectives. The original multi-objective 

optimization problem is then turned into optimizing a positively weighted sum of 

different objective functions, that is, 
n 

minX>^,/XAO， （2.2) 

where WjS are the weighting coefficients satisfying the conditions, 0 < w, < 1 and 

/-I 

Weighted sum approach is the simplest and most straightforward MOP technique. 

However, there are problems using this method when objectives are nonlinear or the 

set of feasible solutions is not convex. Even for convex multi-objective problems, a 

uniform variation of the weights can hardly produce an even distribution of points in 

the efficient set (Das and Dennis 1997). In addition, this technique generally 

identifies a small subset of the non-dominated solution set as it is impossible to 

enumerate all weights assignments. 

• Goal programming method (GP) 

Goal programming is another commonly used MOP technique. In this method, the 

decision-maker sets goals to be attained for each objective and attempts to minimize 

the deviations of the objective functions from their respective goals. The generalized 

goal programming method proposed by Ignizio (1976) is adapted to non-linear 

problems as follows: 

‘ 历 <7] 1 � 

min/ ( jc ) = [d； + d - ] ， q > 1 (2.3) 
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s.t. /,(jc) + d* - d~ = r, , i = 1 , 2 ... , m 
2 0， / = l’2’...，w， 

$ 

where d* and d : are, respectively, the underachievement and over-achievement of 

m 

the ith goal; Ti is the goal (or target) set for the ith objective function; vv, ’ ^ w, = 1, 

is the weight provided by a decision-maker, representing the relative preference / 

importance attached to the ith objective; and q is the parameter governing the 

deviation from the goal (Rao et al. 1988). 

The use of deviation variables makes the handling of constraints in goal 

programming flexible and effective. Also this technique has a good conceptual 

foundation. However, since there is at least one deviation variable associated with 

each goal, it can be troublesome with larger problems. 

• Compromise programming method (CP) 

Compromise programming is a mathematical programming technique that is used to 

find a compromise solution amongst a set of conflicting objectives. In essence, the 

main idea of CP is to identify an ideal solution as a point where each objective 

achieves its optimum value simultaneously, and to search for a multi-objective 

solution that is closest to the ideal solution (Zeleny 1982; Ehrgott 2005). Generally, 

the formation of CP is expressed as: 

�-•/；•)' ' ’ 0<W, <1, X W . =1 , 1 < /7 < O), (2.4) 
\ 1 = 1 乂 1 = 1 

where / , (jc) and f : are the efficient point and the ideal point, respectively; w, is the 

weight accounting for the relative importance of the ith objective; p is the parameter 

governing the distance between / (jc) and f : . p acts as a weight attached to the 

deviation of a solution from the ideal point reflecting the decision maker's 

. perspective (Romero and Rehman 1989). Although the weights are used as the 

preference structure when applying CP, it has been mathematically proven that CP is 

superior to the weighted-sum-(WS) method in locating the efficient solutions (Steuer 

1986). 
/ 
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• £ -constraint method 

This method optimizes one of the objective functions while the others are required to 

have specified upper bounds. In other words, it minimizes the single most important 

objective function and simultaneously maintains the maximum acceptable levels for 

the others (Marler and Arora 2004; Ehrgott 2005)，that is: 

min fi(x), i = 1, 2,..., m (2.5) . 
s.t. f j { x ) ^ £,, j = 1, 2 , m and J ^ i. 

The selections of / (JC) and Ej are not straightforward and depend on the particular 

problem under consideration. In general, the higher values of Ej ’S mean a wider 

feasible region for the single objective optimization problem and this may in turn 

give a more improved solution for / , (jc) at the expense of the other objective 

functions. As shown in the formulation, the optimization problem (2.5) can be solved 

for all / (jc) 's (/ = 1, 2, “.，m) and the optimal solution that best suits the problem 

can be chosen among the m solutions. But this involves laborious computational 

effort. 

The MOP methods discussed above have been employed to solve various 

optimization problems. Although easy to understand, they leave more for decision 

makers to do if there are too many objectives or the concerned objectives are 

incommensurable. Moreover, these methods directly generate user-optimal solutions, 

and only one solution can be obtained at a time. 

Different from preference-based techniques, generating approaches attempt to obtain 

an evenly distributed set of points along the Pareto front, thereby presenting an 

unbiased structure of all possible trade-offs amongst the competing objectives. • 

Various generating methods have been developed, including weighted sum 

approaches with weight scanning (Steuer and Choo 1983), and a series of heuristic 

approaches such as simulating annealing (Suppapitnarm et al. 2000)，evolutionary 

programming (Fogel et al. 1966)，and genetic algorithms (Goldberg et al. 1992). 

Recently, heuristic generating methods, especially genetic algorithms (GAs), have 

gained ever-growing acknowledgement and applications (Coello 2000, Mooney and 

Winstanley 2006). As a highly efficient search strategy for global optimization, GAs 
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exhibit superior performance on solving multi-objective optimization problems that 

have a large and complex solution space. Moreover, being a population-based 

approach，a GA is able to find multiple feasible solutions in a single run (Andersson 

2000). On the other hand, the main impediment of GAs is that when used in a finite 

population, GAs tend to converge to a single solution known as genetic drift, thus 

resulting in a clumping of solutions in objective space (Coello 2000). Moreover, GAs 

are computational expensive in terms of computation time and memory space 

required. 

Although there are numerous generating methods, few of them can virtually sample a 

diversified and well-extended Pareto front for a given MOP. Some of these methods 

also suffer from either an exhaustive computation problem or generating too many 

solutions to choose from. Motivated by the challenges, Das and Dennis (1998) 

developed a normal boundary interaction (NBI) method, which can explore both the 

convex and concave parts of the Pareto front, and produce uniformly distributed 

solutions. Due to its reliance on equality constraints, however, NBI will converge to 

local optima for complex, nonlinear problems. In addition to NBI, adaptive methods 

have also been applied in recent studies. Kim and Week (2005) suggested using an 

adaptive weighted sum method to solve the ‘concave region’ problem. Aiming for a 

good shape representation of the Pareto front, Zhang and Gao (2006) proposed an 

adaptive scheme that automatically updates the weights involved in a min-max 

method. Through a novel bilevel strategy, the tangent and normal directions of the 

Pareto curve are calculated, and Pareto optimum points can be obtained sequentially 

with a uniformly spaced distribution. Despite those attempts, the adaptive methods 

still require further improvement in order to achieve balances between computational 

efficiency and well distributed solutions. 

2,3,2 Vehicle routing with multiple objectives 

2.3.2.1 Generating the optimal routes 

DG route planning falls into the category of vehicle routing problem, which can be 

viewed as an extension of the elementary shortest path problem. In graph theory, the 

shortest path problem is to find a path between two vertices such that the sum of the 
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weights of its constituent edges is minimized. An example is to search for a path 

linking two nodes of a transportation network with minimum travel cost. There have 

been extensive studies on the shortest path problem in literature, which provides 

good insights of the state-of-the-art and various algorithms to generate the optimal 

solution. 

(1) The single objective shortest path 

The shortest path (SP) algorithms are initially developed by Bellman (1958) and 

Dijkstra (1959). Although various improvements have been proposed since the end 

of 1950s, most of the variants perform the same fundamental operations and only 

differ in terms of implementation issues such as network storage structure, labeling 

method and node selection process. As the most well-known and commonly used SP 

solution method, Dijkstra's algorithm can be summarized as follows: 

Denote G = {N, C) as a directed network, where N = {1,2,.. . , w}, A = {(/，/) | /， 

j&N�and C = {c,y |(/, j)eA} are the sets of nodes, arcs and arc-travel costs 

respectively. It is assumed that G does not comprise any cycle with negative cost, 

and that the costs Cy are additive along the arcs. Let node s be the source node of 

the path，/ be a sink node on that path, and J{t) be the total travel cost of the 

currently known shortest path between s and t. The recursive step of the 

algorithm can be put as: finding an arc (/, j) e A so that the cost f i j ) of traveling 

from node s to node i increased with the cost Cy of travelling along (/, j) is less 

than the present cost of travelling from s to node j: J{i) + c" < flj). If such an arc 

exists, then node i becomes the predecessor of node j in the shortest path and the 

procedure resumes, otherwise the present cost of travelling from the origin to 

node j is the minimum cost. 

The above procedure computes a shortest path tree from one source node to all the 

others in the network. It can also be used for finding costs of shortest paths from a 

single source node to a single destination node by stopping the algorithm once the 

shortest path to the destination has been determined. 
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Cherkassky et al. (1996), and Zhan and Noon (1998) tested and discussed the 

computational efficiency of Dijkstra's algorithm and its various variants. According 

to their tests, a simplex implementation of Dijkstra's algorithm has complexity of 

while improvements result in lower complexities to 0(na), or 0(ci+nhg(nX)， 

or 0{a+nCmax)y where n and a are the number of nodes and arcs in the network, 

respectively, and C臓 is the maximum arc cost. In addition, Zhan (1997), and Miller 

and Shaw (2001) addressed concerns with respect to the network representation and 

data processing for the use of shortest path algorithms within a geographical 

information system (GIS). Although there are a wide variety of SP algorithms, no 

algorithm is absolutely better than another since it is always possible to construct a 

network “which illustrates the very worst behavior of a particular algorithm" (Van 

Vliet 1977). 

The conventional Dijkstra's shortest path algorithm works under the assumption that 

travel costs are additive along the links. This leads to the traditional formulation of 

the shortest path problem: 

f \ 
min X s ^ y (26) 

1， if i = 
sJ. X \ - I X ' = 0， V ( i , j ) e A (2.7) 

(i.j)eA 0.j)eA 一 1 ij- • _ ^ 

t 

where s and / are the origin and destination of the path, respectively. The constraints 

(2.7) ensure the flow of DG from origin s to destination t. The binary variable x" = 1 
when the link from i to j belongs to the shortest path, and x” = 0 otherwise. 

Most algorithms provided in commercial software rely on the dynamic programming 

theory to solve the shortest path problem. Dynamic programming for the SP problem 

can be regarded as a special case of Dijkstra's algorithm. The node selection rule is 

adapted to make use of network connectivity, leading to the recursive problem: 

and the labeling phase is modified to account for node-related costs. The efficiency 

of dynamic programming depends on Bellman's principle of optimality, that is, "any 
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optimal policy has the property that whatever the initial state and initial decision are, 

the remaining decisions must constitute an optimal policy with regard to the state 

resulting from the first decision" (Bellman 1957). In other words, any sub-path of the 

optimal route must be optimal, and minimizing the total travel cost can be achieved 
‘ 

by recursively minimizing partial travel costs. Over the years, dynamic programming 

has been used successfully to solve various shortest path problems, including not 

only standard SP problems, but also some variants with time-varying travel costs 

(Chabini 1998; Miller-Hooks 2001)，stochastic link attributes (Wijeratne et al. 1993), 

and non-linear cost functions (Eiger et al. 1985). 

(2) The multi-objective shortest path (MOSP) 

In the context of DG transportation, the routes must be efficient with respect to a 

number of criteria. While the carriers are primarily interested in minimizing 

transportation cost, which may be a function of travel time, travel length, route 

characteristics etc., public agencies are concerned with minimizing the risk incurred 

by population, environment and properties along the route. Both travel cost and risk 

may be expanded or completed with further-detailed objectives. 

Replace the single cost Cy of traversing link (/, J) in expression (2.6) by the multi- ‘ 

dimensional attribute c(i, j ) - { c ] j , ) , the shortest path problem has now m 

objectives: 

,2 � = 
min f{x)-< (2.9) 

• • • • 

人 ⑴ = 

1, if i = & 
sJ. X 乂ij 一 ! >， = 0， •(/，力 e J， e { 0 , l } (2.10) 

(ij)e/t _ J if i = t 

As introduced in section 2.3.1, for a multi-objective problem, it is usually difficult if 

not impossible to identify a single “best” route that can optimize every single 

objective in MOSP. For example, one route may minimize the number of people at 
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risk, while another route may minimize the accident probability. Due to the multi-

objective nature, there are a number of "equivalent" solutions, in the sense that none 

of them is better than any other with respect to all objectives. These solutions are 

Pareto optimal or non-dominated solutions for the concerned MOSP. 

The Pareto optimal solutions can be generated using multi-objective linear 

programming (MOLP) techniques or dynamic programming (DP) based algorithms 

(Current and Marsh 1993). MOLP methods create efficient solutions within 

reasonable computational time (Evans 1984). However, due to the discrete nature of 

the variables in MOSP，and the requirement of MOLP that each objective be a linear 

function of the link attributes, few of MOLP methods work well for MOSP problems. 

The most successful MOLP example might be the branch-and-bound algorithm 

(Nemhauser 1994; ReVelle et al. 1997). However, the efficiency of such algorithm 

depends on the order in which the variables are examined. In the worst case, it may 

come down to a mere enumerative method on a network. 

By making use of network connectivity to direct the search towards the optimal 

solution, dynamic programming methods have proven to be more effective than 

MOLP in dealing with MOSP problems. For the network defined in subsection 

2.3.2.1, DP can be regarded as a particular case of the following generic procedure, 

which sets the frame for all MOSP algorithms: � 

• Step 1: Set initial value o f / ( / ) = (/ , (r), f ^ ( / ) , . . . , ( / ) ) , the cost of travelling 

from source node s to current node /，and 7r(/) the predecessor of node /. 

• Step 2: Find an arc (/, j ) e A such that f (J) + c丨』is non-dominated. Set 

/ ( j ) = f (/) + c,j and ttQ) = /，and update the set Fj of non-dominated labels 

for node y, by adding the new label and removing those that have become 

dominated. 

• Step 3: Repeat step 2 until f (/) + c^ is dominated for every arc {iJ)E:A. 

The above procedure can be adapted to handle various formations of cost functions 

(Sancho 1988), such as 入（_/) = / “ / ) +《，A 0 ) = / , ( / ) x , / , ( ; ) = min( / , ( / ) ,< ) , 

or a combination of these. The generic MOSP algorithm appears similar to Dijkstra's 
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single objective SP algorithm. However, the former keeps in memory all the Pareto-

optimal labels, rather than keeping the best label found for each node j, because none 

of the Pareto labels can be deemed better than any other (Daellenbach and De 

Kluyver, 1980). Moreover, the generic MOSP algorithm retains a certain number of 

temporary paths based on some preference rules and defers the final choice until 

further information is available. 

Martins (1984) demonstrated that every Pareto-optimal path from origin to 

destination contains only Pareto-optimal sub-paths from the origin to any 

intermediate node of the considered path. Hansen (1980) developed several bi-

criterion shortest path algorithms, which were further generalized by Martins (1984). 

There has been a substantial amount of work since these pioneering articles in early 

1980s. Most of these work deals with only two objectives, but claims that the 

solutions can easily be generalized to more than two criteria. Skxiver (2000) made a 

summary of the bi-criterion shortest path algorithms and classifies various techniques 

into four categories based on the niceties of implementation: /:-th shortest path, two-

phase method, label-setting and label-correcting algorithms. The label-correcting 

method was found to be most efficient, which confirms the conclusions of Martins 

and Dos Santos (1999). Gandibleux et al. (2006) extended Martins' labeling 

algorithm by introducing a procedure that can solve the multi-objective shortest path 

problem with a max-min cost function. Gandibleux et al. argued that the number of 

efficient solutions would increase with the number of objectives considered and the 

density and size of the network. 

The multi-objective shortest path problem is NP-hard (Skriver 2000), which indicates 

that no algorithm can guarantee to find the set of efficient solutions within 

polynomial computational time. Moreover, each algorithm has its merits; no 

algorithm outperforms any other when their performance is averaged over all 

possible networks (Come and Knowles 2003). 

2.3.2.2 Alternative solutions to the generation of efficient routes 

MOSP problems generally have multiple Pareto optimal solutions from which 

decision makers can choose the most preferred or best compromise solution to 
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implement. However, generating and presenting the entire Pareto set to decision 

makers may not be efficacious as they will find it difficult to make a selection due to 

the large number of paths. To address this issue, researchers have proposed various 

alternative methods. Based on fhe strategy used for exploring the Pareto set, these 

methods can be distinguished as three categories: 

• methods for identifying the Pareto optimal solution set approximately; 

• methods based on utility functions; and 

• interactive methods. 

(I) Identifying an approximation of Pareto optinml routes 

Evolutionary algorithms (EAs) and genetic algorithms (GAs) have seen wide 

applications to various types of routing problems (Leung et al., 1998; Mooney and 

Winstanley 2006), though few works have appeared applying them directly to multi-

objective shortest path problem. Davies and Lingras (2003) implemented a GA-based 

approach to routing shortest paths in dynamic and stochastic networks where the 

network information changes over time. Their experimental results show that the 

proposed GA could find the shortest path and alternative backup paths efficiently. 

Mooney and Winstanley (2006) proposed an evolutionary algorithm (EA) for multi-

criteria path optimization problems. Their results indicate that the EA outperforms 

the modified Dijkstra approach in terms of execution time and, that the EA 

converges quickly to the Pareto-optimal paths. Recently, Pangilinan and Janssens 

(2007) explored the Strength Pareto Evolutionary Algorithm (SPEA) in generating 

efficient solutions to multi-objective routing problem and described its behavior in 

terms of diversity of solutions, computational complexity, and optimality of solutions. 

Base on their experimental results, the authors conclude that the evolutionary 

algorithm can find diverse solutions in polynomial time and can be an alternative 

when other methods are trapped by the tractability problem. 

Although heuristic methods such as EAs and GAs have not been extensively 

employed in solving the multi-objective shortest path problem, one may expect this 

topic to flourish in the near future, as well as the general application of other 

heuristic algorithms such as taboo search or the ant algorithm. 
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(2) Generating user-optimal route using utility functions 

Unlike heuristic methods which search for approximately optimal solutions without 

assumptions on the decision-makers' preferences, preference-based methods are 

developed to allow the decision makers to state their preferences a priori or during 

the search procedure and thus to avoid keeping too many solutions. To model 

decision-maker's preference structure, one of the commonly used methods, is to 

construct a utility function. The function represents the utility, or disutility, 

associated with each possible solution and, as such，is characteristic of the decision-

maker (Thurston 1991). 

The most popular utility function is the weighted sum. A weight Wk is assigned to 

each objective /灰，reflecting the importance of this particular objective to the 

decision-maker. By summing all the weighted objectives, the problem is transformed 

to a single objective: 

i X A ， 0 < w , <1, =1， (2.11) 
JUl i=l 

which has the advantage of remaining linear across links. This property ensures that 

Bellman's principle of optimality holds with the weighted sum function. Given a set 

of weights (wi ,W2，…，)，an optimal route can be identified using a standard 

shortest path algorithm. Varying the weights would yield different efficient solutions 

for the concerned MOSP problem (White 1982). 

The utility function commonly used in compromising programming is considered to 

be more general (Chen et al. 1999; Zhang 2003), which measures the "closeness" of 

a feasible solution (jc) to the ideal solution ，under the preference structure 

provided by a decision-maker: 

r - \ / p 
U{p,w)= 1 > “ / “ A C ) - / , V ， w, > 0 , 1 < p < oo. (2.12) 

Paixao et al. (2003) proposed to use the Euclidian norm (i.e. /? = 2) as a better 

objective function, arguing that it allows minimizing every individual objective 

simultaneously. As Bellman's optimality principle does not hold, Paixao et al. 
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employed a labeling algorithm similar to that of the multi-objective shortest path. 

Wakuta (2001) adopted a novel approach to a MOSP problem by formulating it as a 

Markov decision process. Instead of finding the route that optimizes a certain utility 

function, Wakuta explored a set of policies that facilitate moving from one node to 

another, which ultimately yield some Pareto-optimal paths from origin to destination. 

(3) Interactive selection of the optimal route 

Given that decision makers may find it difficult to state their preferences before they 

have an explicit conception of the actual trade-offs involved (Zionts and Wallenius 

1983), interactive methods were proposed to search for efficient routes. These 

methods are based on a direct interaction with decision makers. During the process 

of interaction, decision makers indicate their preferences in various forms. The 

algorithms find the non-dominated solutions that best correspond to the decision 

maker's preferences. Since the search of the Pareto-optimal solutions is limited in the 

search space ‘‘bounded’，by decision maker's preferences, interactive methods are 

computationally efficient. 

Current et al. (1990) proposed an interactive approach to solving the bi-objective 

shortest path problem. This method is characterized by two phases: while the first 

phase aims to provide a decision maker with an approximation of the possible trade-

offs, the second phase settles the constrained shortest path problem under the 

decision maker's preference structure. Similar approaches have been reported by 

Climaco and Coutinho-Rodrigues (1988), and Coutinho-Rodrigues et al. (1994), in 

which the search of Pareto-optimal paths inside the duality gap (i.e. non-convex part 

of the Pareto frontier) was done by using a 众-shortest path algorithm. As shown by 

Coutinho-Rodrigues et al. (1999), interactive methods based on the 众-shortest path 

algorithm are more efficient than the method proposed by Current et al (1990). 

Murthy and Olson (1999) presented an interactive procedure to solve the bi-criterion 

shortest path problems by making use of the concept of domination cones. The ‘ 

decision maker's implicit utility function is assumed to be quasi-concave and non-

increasing. •* Based on decision maker's pairwise comparisons of the trade-offs 

between two criteria, domination cones are developed, which help reduce the number 
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of Pareto-optimal solutions. Granat and Guerriero (2003) developed a different 

interactive approach to multi-objective shortest path problem. Each step requires 

decision-makers to define the desired attributes and some trade-off weights 

accounting for the preferences. The algorithm then moves from the current solution 

towards the target ideal path by maximizing a predefined achievement scalarizing 

function. 

Despite the expected advantage of converging directly to the user-optimal routes, 

interactive methods suffer some weaknesses. For an unacquainted user (decision 

maker), the decisions taken at similar steps may be inconsistent, which is likely to 

destroy the convergence of the algorithm. Moreover, interactive methods may not 

outperform other techniques in terms of computation time. In practice, finding a 

subset of Pareto optimal paths in a given region of the objective space is usually as 

difficult as collecting all of them, because they are encountered during the run of a 

generating algorithm. 

2.3,3 Optimal route planning for dangerous goods transportation 

A large body of literature has addressed the problem of DG routing with the aim of 

optimizing several objectives. However, most studies primarily focus on the physical 

modeling of the problem (definition of the various objectives, analysis of the trade-

offs between alternative routes) and rely on simplistic MOP solution methods to 

calculate the optimal route. 

Saccomanno and Chan (1985) examined three different routing policies separately: 

minimizing the operating costs, minimizing the probability of an accident, and 

minimizing the expected damage resulting from an accident. Each problem was 

solved using a single-objective shortest path tree algorithm. The three routes 

obtained were found to be significantly different, indicating that HAZMAT 

transportation involves conflicting objectives that cannot be optimized 

simultaneously. Robbins (1981) reported similar findings, demonstrating that 

compared with the route with the shortest travel distance, the route involving 

minimum population can significantly reduce the number of people affected by DG 

incidents. 
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DG route planning has been a popular area of research in the United States. The 

Office of Highway Safety under Federal Highway Administration is responsible for 

the regulation of routing procedures for HAZMAT transportation. Its publication (US 

- DOT 1994) outlines the routing process involving HAZMATs. In addition to the 

population exposed, this guide also identifies factors such as the existence of public 

facilities, e.g. schools, hospitals, fire stations and reservoirs, which may affect the 

decision on the choice among alternative routes whose risks may otherwise be 

similar. The guide also states that the evaluation of plausible burden on commerce is 

an essential part of the selection process. In addition, the level of service of the 

highway collectively affects travel time, travel speed, safety and the probability of 

release accidents. ‘ 

In their analysis, Tumquist and List (1993) focused on the aforementioned factors 

including operating cost, accident rate, population exposed and the number of 

schools in the exposure area. They concurred that multiple objectives must be > 

incorporated into the analysis, and argued that the existence of multiple criteria 

meant that it is usually impossible to identify a single best route between given origin 

and destination. Consequently, the focus should be on finding a set of non-inferior 

routes which explicitly represent the trade-offs among criteria. 

In the early stage, the classic shortest path routing was applied in most DG 

transportation problems (Joy et al. 1981; Abkowitz and Cheng 1988). Batta and Chiu 
V 

(1988), and Chin and Cheung (1989) suggested a similar method to find a path that 

minimizes the weighted sum of lengths that an obnoxious unit travels over a network 

within a given threshold distance from the population centers and a bandwidth along 

a route. Gopalan et al. (1990), Linder et al. (1991), and List and Mirchandani (1991) 

developed models taking into account the risk equity among the generated routes. 

ReVelle et al. (1991) used a weighted combination of cost and population exposure 

to find routes for transporting radioactively contaminated fuel waste. Patel and 

Horowitz (1994), and Karkazis 如d Boffey (1995) studied the effects of weather 

systems on the routing of dangerous goods. Erkut and Verter (1995) estimated the 

expected number of people that would face the consequences of a possible DG 

related incident. � 
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Miller-Hooks and Mahmassani (1998) proposed a specific model for optimal routing 

of hazardous substances in stochastic, time-varying networks. Different catastrophe 

avoidance models were discussed in Erkut and Ingolfsson (2000, 2005), and most of 

them could be reduced to a standard shortest path problem. Kara and Verier (2004), 

and Erkut and Gzara (2008) developed bilevel models for the network design 
、 

problem with the focus on the relationship between DG regulators and the carriers. A 

similar problem was also addressed by Verter and Kara (2008), however, as a path-

based formulation incorporating the regulator's risk concerns and the carriers' cost � 

concerns. 

The development of Geographical Information Systems (GIS) have provided DG 

routing with realistic means to accurately estimate the travel cost and risk, as well as 

vividly visualize the proposed routes. Lepofsky and Abkowitz (1993) demonstrated 

that GIS can be used to integrate plume representation with population data and 

transport maps to more effectively estimate consequences. Using combinations of 

routing criteria (e.g. population exposure, accident likelihood and environmentally -

sensitive areas) in a single analysis with varying weights on their importance, one 

can examine the trade-offs among various alternatives. Zhang et al. (2000) used GIS 

to assess the risks of transporting airborne contaminants (such as ammonia and 

chlorine) in networks. The dispersion of the airborne contaminants was modeled 

using a Gaussian Plume model. The probability of an undesirable consequence (such 

as injury, illness, or death) was modeled as a function of contaminant concentration. 

The risk imposed on population was estimated as the product of this probability and 

the population affected. The risk value was obtained by combining concentration 

mathematically with the population distribution by means of traditional raster GIS 

overlay techniques. Brainard et al. (1996) employed GIS to route aqueous waste 

cargoes with four methods: (1) routing by shortest time only; (2) routing by . 

motorway and dual-carriageway encouragement; (3) routing to avoid population 

exposure; and (4) routing to avoid accidents. The first two methods were used to 

identify the most probable routes used by tanker drivers to deliver their consignments. 

The next two methods were used to analyze risk-reducing scenarios. Huang et al. 

(2004) explored a novel approach to evaluating the risk of HAZMAT transportation 

by integrating GIS and genetic algorithms (GAs). GIS was used to quantify the 
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specified routing criteria, and GA was applied to efficiently determine the weights of 

the factors involved in route choice. Using weighted combination of routing criteria 

(e.g. population exposure, accident likelihood and environmentally sensitive areas) in 

a single analysis, one can compute the generalized cost of the possible routes and 

examine the trade-offs among various alternatives. 

With the advances in DG routing studies, more problems have been considered, e.g., 

scheduling of shipments (Nozick et al. 1997; Erkut and Alp .2007) and facility 

location (ReVelle et ai 1991; Helander and Melachrinoudis 1997). The scheduling 

problem arises when considering that link attributes may vary significantly over time. ’ 

For instance, at night, travel time is usually shorter because there is less traffic, yet 

accident rate may be higher. The optimal routing/scheduling can be formulated as a 

dynamic MOSP problem, and solved using a modified shortest path algorithm under 

some assumptions (Chabini 1998). On the other hand, the facility location problem 

combined with DG routing arises when planning new dangerous facilities (e.g., a 

waste disposal site). In this problem, the origin and/or the destination of shipments 

" are not fixed and DG routing is only considered as a sub-problem. 

Despite the extensive research that has been done on DG routing analysis, only a few 

have addressed the multi-objective nature of the DG routing problem using an 

appropriate multi-objective optimization method. Vigorous multi-objective 

optimization methods are seldom employed to seek optimal routes for DG 

transportation based on the results of risk assessment. The weighted sum (WS) 

approach is most commonly used in DG route planning. Although it is the simplest 

and most straightforward MOP technique, this method may be problematic when 

objectives are nonlinear or the set of feasible solutions is not convex. Even for 

convex multi-objective problems, a uniform variation of the weights can hardly 
4 

‘ produce an even distribution of points in the efficient set (Das and Dennis 1997). To 

overcome the drawbacks of conventional MOP methods, high performance MOP 

methods need to be developed to optimize the routes for efficient and safe DG 
« 

transportation. 
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2.4 Summary 

The transportation of dangerous goods can significantly affect human life and the 

environment if accidents occur during the transportation process. Such accidents can 

result in traffic disruption, fatalities, injuries, emergency evacuation, property and 

environmental damages, etc. Therefore, safe DG transportation is of paramount 

importance, especially in high-density-living environments. 

Decisions ref^arding DG transportation are difficult to make because of its 

catastrophic consequence and public sensitivity. This makes it important to carefully 

study such risks for strategic decision-making. In the context of DG transportation, 

risk refers to the likelihood of incurring the undesirable consequences of a possible 

accident. Quantitative risk assessment (QRA) methods are commonly used to assess 

the DG risk during transportation. The common feature of all QRA approaches is 

that a risk indicator is composed of the probability of some undesirable events and 

the possible adverse consequences. The probability estimates are usually based on 

the accident rates with respect to DG trucks and the frequency of release sizes given 

the type of accident. The estimation of the unfavorable consequences is primarily 

focused on the expected damage to the population，properties, and environment near 

the incident location, while the direct damage to individuals and vehicles travelling 

along the route where the incident occurs are seldom considered simultaneously. 

Moreover, the capability of emergency response in the event of a DG accident is 

rarely included into the risk estimation. To make an effective risk assessment for DG 

transportation in high-density living environments, it is essential to take into account 

all of these factors and model the associated risks appropriately. 

DG transportation is a multi-objective problem with stakeholders playing different 

roles and having different objectives. These objectives are generally conflicting so 

that a single “best” solution that can optimize every single objective is impossible. 

The solution of such problem is to search for one or a set of “compromise” solutions 

rendering the best possible trade-offs for conflict resolution among different 

objectives. Given the multi-objective nature of the DG routing problem, multi-

objective optimization thus becomes a sound framework tor analysis and decision-

40 



making. Extensive research has been done on DG routing with the intent of 

optimizing several objectives. However, only a few have addressed the multi-

objective nature of such problem using an appropriate multi-objective optimization 

method. Vigorous MOP methods are seldom employed to seek optimal routes for DG 

transportation based on the results of risk assessment. Undoubtedly, high 

performance optimization techniques arc of utmost importance to effective DG 

routing, particularly in high-density environments. It is instrumental to generate 

several efficient routes representing the inherent trade-offs among different 

objectives for decision-makers to choose the one that gives the best compromise 

among the conflicting objectives. And this will be the major objective of this 

research. 
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CHAPTER 3: DETERMINISTIC MULTI-OBJECTIVE PATH 

OPTIMIZATION 

This chapter and Chapter 4 introduce different multi-objective optimizatiori 

methodologies proposed in this study. This chapter is focused on the deterministic 

multi-objective path optimization techniques, and a heuristic method will be 

discussed in Chapter 4. The present chapter begins with an introduction on the multi-

objective shortest path problem that underlies the optimal route planning for DG 

transportation, followed by the concept of Pareto optimality, an important notion in 

the multi-objective problems. The weighted sum of objective functions is discussed 

since it is the simplest and most straightforward multi-objective optimization 

technique. In the second part of this chapter, compromising programming (CP), a 

mathematical programming technique for finding a compromise solution amongst a 

set of conflicting objectives, is described in detail, with specific discussion on the 

utility functions that are commonly employed in CP. The construction of criteria 

weights is then described, with an emphasis on the analytical hierarchy process 

(AHP). The procedure of multi-objective DG route planning based on compromise 

programming is specified. To avoid the pitfalls of preference-based techniques, an 

adaptive weighting method for multi-objective route planning is proposed in addition 

to the CP approach. In the third part of this chapter, a framework of this approach to 

explore the Pareto front is presented, followed by the procedure of approximating 

such a front. The implementation issues are also specified. 

3.1 Multi-objective path optimization 

3A,1 Multi-objective shortest path problem 

As one of the major components of network routing problems, the shortest path 

problem arises in a wide variety of practical problem settings, either as a stand-alone 

model or as a sub-problem in more complex problem settings. Being an extension of 

the conventional shortest path problem, the multi-objective shortest path problem 

(MOSP) is concerned with finding a set of efficient paths with respect to multiple 
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objectives (e.g. the problem of finding efficient routes in transportation planning that 

simultaneously minimize travel cost，path length, and travel time). In general, the 

objectives in a MOSP are conflicting with each other. For example，minimizing route 

changes may require longer journey time; while minimizing overall journey time 

may lead to multiple route changes. Hence, optimizing a MOSP with respect to a 

single objective often results in unacceptable results with respect to the other 

objectives. It is therefore almost impossible to generate a perfect multi-objective 

solution that simultaneously optimizes each objective function. A reasonable solution 

to a MOSP is to investigate a set of solutions, each of which satisfies the objectives 

at an acceptable level without being dominated by another solution. 

Denote G = (N, A, C) as a directed network, where 7V= {1, 2,.. . , n), A = {(/, j ) \ /，j 

G N) and C = { c^ | = 1, m and (/，j) eA) are the sets of nodes, arcs (edges), and 

m-dimensional arc costs, respectively. Each arc belonging to A is associated with a 
、 

cost vector c,j = ( c j ， . . . c,了）. It is assumed that G does not comprise any cycles 
» 

with negative cost, and that the costs c^ are additive along the arcs. Given a source 

node s and a destination node /，a path is a sequence of nodes and arcs from s to /. ‘ 

The cost vector c for linear functions of path R is the sum of the cost vectors of its 

arcs, that is c = [ c " . Multi-objective shortest path problem requires one to find a 

simple path between s and t such that the cost of this path is minimized over all valid 

paths. A simple path is a path between two fixed nodes that does not contain any 

loops or repeated edges. MOSP can be formulated as follows: 

,2 � = T A x ' ” . 
min / ( j c ) = ('j)^A (3.1) 

• _等參 

人 ⑴ = 2 > : 1 , 厂 

1, if / = s , 

SJ. X \ - I X = 0 ， i n " ， / ’ （3 .2 ) 

('."M 1 - 1 ， “ 

1，if arc (/’ /) belongs to the shortest path, , � ，。，、 
. y arcs A. (3.3) 

[0, otherwise, 
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MOSP specifies that no path will contain loops and each path considered must have 

the same source s and destination /• Each incoming edge of a node on a path must be 

matched by an outgoing edge on that path except for nodes s and t (as in equation 

(3.3)). All valid paths have the form {s, p!, p2,…pk, t} where /?/’/?_?，…Pk represent 

the nodes included in the path, except for the source s and destination t. 

The transportation of DGs involves multiple stakeholders such as shippers，carriers, 

consignees, and government agencies; each playing a different role in safely moving 

DG from the origins to the destinations over a transportation network. Moreover, 

different stakeholders usually have different priorities and perspectives on DG 

transportation. The carriers are primarily interested in minimizing transportation cost, 

which may be a function of travel time, travel length, and route characteristics, etc.; 

while government agencies are concerned with minimizing the risk incurred by 

population, environment and properties along the route. Both travel cost and 

exposure risk can be expanded or completed with further-detailed objectives. 

Therefore, DG transportation is a typical multi-stakeholder and multi-objective 

problem which is generally complicated to solve. 

Optimal route planning for DG transportation can be treated as a MOSP in search of 

efficient routes that simultaneously minimize several objectives such as travel cost 

and exposure risk. The concept of optimization in such a MOSP is generally different 

from the single-objective shortest path problem, where the task is to find a path that 

minimizes a single objective function, i.e. travel distance. For MOSPs involving 

multiple conflicting objectives, a unique solution optimizing all the objectives 

simultaneously is hardly a realistic possibility (Zitzler et al. 2003). It is therefore 

preferable to concentrate on finding routing paths that are near optimal, or display 

the best trade-offs among the objectives considered. In other words，the ultimate 

goal is to search for Pareto-optimal paths. 

3.L2 Pareto optimality and utility functions 

3.1.2.1 Pareto optimality 
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Consider the following multi-objective optimization problem (MOP): 

min f ( x ) = (/丨⑷，/2 �’…’ /« ix)Y 
X 

s.t. JC G X (3.4) 

where /(jc), i = 1. 2, m are objective functions, x is vector of the decision 

variables in the solution space X within which all of the points are the feasible 

solutions for the above MOP, and T is the transpose of the objective function vector. 

Relative to single objective optimization problems, MOP solutions are optimal in the 

sense that in general no single solution minimizes every/(JC) at the same time. The 

optimal achievement of one objective is often made at the expenses of the others. 

This kind of optimality is normally termed Pareto optimality in MOP. Non-

dominated solutions, also referred to as non-inferior or Pareto optimal solutions, are 

the optimal solutions for MOP. Instead of a unique solution to the problem, the 

solutions to a multi-objective problem are a set of Pareto points. The set of all non-

dominated solutions in the solution space is referred to as the Pareto-optimal set, and 

for a given Pareto-optimal set, the corresponding objective function values in the 

objective space are called the Pareto front. Figure 3.1 presents an example of a 

Pareto frontier. Each point represents a feasible solution, and smaller values are 

preferred to larger ones. Point C is not on the Pareto frontier because it is dominated 

by both point A and point B. Points A and B are not strictly dominated by any other, 

and hence both of them are Pareto optimal solutions and lie on the frontier. 

\ • • 翻 

\ - . • 
\ c 
E : X J • • 

� � � � J I • • 
\ • 

、、；、、： 
� e t o � � 

\ 

fi(A}<fi/B) / } 

Figure 3.1 An example of Pareto frontier 
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Multi-objective shortest path problem is one of the core problems in the area of 

multi-objective optimization (Ehrgott 2005; Ehrgott and Gandibleux 2002) with 

numerous applications. The objectives in a MOSP are generally conflicting. Thus, 

unless a well-defined utility function exists, there is no single optimal solution but 

rather a set of non-dominated or non-inferior solutions from which a best 

compromise solution can be selected. Denote R^ = (r^，...，r;) and R^ - ( r j r j " ) as 

two feasible routing paths between the given origin and destination nodes, where 
til 

r'p a n d r j , / = , are the i objective value forR^ the R^ respectively, m is the 

number of objective. Route R^dominates route R^ if and only if f^ (Rp) < f k i ^ q ) 

for k = l,".,m and f入Rp) < /̂ (/？ )̂ for at least one objective function, which 

indicates that route R^ is always better than or equivalent to route R ^ � a n d it is 

strictly better with respect to at least one objective. On the other hand, R^ is Pareto-

optimal if it is not dominated by any other routes in the solution space, that is, for all 

routes Rp, 入（/?》k = \,…,m and f^iR^) < fki^p) for at least one k. In 

addit ion�R^ is said to be weakly Pareto-optimal if there is no other feasible solution 

Rpsuch that f ^ iRp) < f k i ^ q ) for k = \，…’m . It should be noted that if two routes 

weakly dominate each other, i.e. fk{Rp) ^ f k i ^ q ) and /̂ (/？ )̂ < f ^ i ^ p ) ， 

众= l，...，w，their vectors of attributes (objective function values) are equal, but 

nothing guarantees that they are identical. 

Figure 3.2 provides a graphical interpretation of Pareto-optimal and weakly Pareto-

optimal solution, as well as dominance relations. R!, R � , a n d R^ are three optimal 

solutions (i.e. routing paths) to a MOSP with two objectives: R! = {12，38}，R2 = {40, 

38}，R3 = {52，10}. The solutions Rj and R3 are non-dominated or Pareto-optimal, 

while R2 is weakly Pareto-optimal. The other solutions are feasible, but they are 

dominated by Rj, R2, and R3. 

According to the definition of Pareto optimality, moving from one Pareto optimal 

solution to another necessitates trade-off. A trade-off reflects the ratio of change in 

the values of the objective functions concerning the increment of one objective 

function that occurs when the value of some other objective function decreases. 

46 

� 



Under the concept of Pareto optimality, the efficient solutions to a MOSP are 

equivalent: a gain in one objective is at the cost of another. The globally optimal 

solution to a MOSP with conflicting objectives rarely, if ever, exists. Weakly Pareto-

optimal solutions, on the other hand, are also of importance for MOSP (Minami 

1983). Although they do not strictly optimize any objective, they offer interesting 

trade-offs among the multiple objectives to decision makers, who can then keep or 

discard such solutions by comparing them with the genuine Pareto optimal. 

Objective 2 • 

+ . 
• Pareto-optimal solution 

+ R 

条 0-2 , + o weakly Pareto-optimal solution 
I + 
‘ + dominated solution 
； + 
I 
I 
I 
I 
• + 

I 

i 

‘ • 
Objective 1 

Figure 3.2 An example of Pareto-optimal and weakly Pareto-optimal solutions 

3.L2.2 Utility function 

As a multi-objective optimization problem, or specifically a MOSP, route planning 

for DG transportation usually has several feasible solutions. These solutions render 

various possible trade-offs for conflict resolution among different objectives. None 

of them can be deemed absolutely better than another. As long as no objective is 

preferred to the others, all Pareto optimal paths are possible solutions to the MOSP 

concerned. 

In practice, a decision-maker is not indifferent to all the objectives. Even if he/she 

does not feel comfortable ranking the objectives or stating preferences numerically 

(e.g. objective A is twice as important as objective B), the decision-maker is assumed 

to have an explicit or implicit function which reflects his /her preferences for 

different objectives (Henig 1985). This underlying function maps the attributes of the 
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feasible solutions onto scalar values with the preference of each attribute determined 

by the decision-maker (Keeney and Raiffa 1976). According to utility theory 

(Thurston 1991), the overall performance of a solution can be represented by a multi-

attribute utility function which incorporates consideration of attributes that cannot be 

directly converted to a common metric. Once the utility function is formulated, the 

optimization problem is formulated accordingly to optimize that utility. If the utility 

function properly captures how the decision-maker values a solution, an optimization 

of the utility would yield the best solution in respect to the decision-maker. In light 

of this, selecting the best route from the user's perspective comes down to optimizing 

the utility function over a set of feasible paths. There are generally two ways to 

achieve this: (1) to directly generate the solution that yields maximum utility 

(preference-based techniques); (2) to generate a subset of Pareto-optimal solutions, 

and then maximize the utility function value over this subset (generating techniques). 

In general, decision making is formulated in terms of maximizing a utility function 

U{x). In a traditional transportation problem, however, decision making is formulated 

in terms of minimization, i.e. to select a route with the smallest travel time. Thus, 

when applying the decision making theory to transportation problems, these 

problems are reformulated in terms of a disutility function u{x) = -U(x). In other 

words, selecting the route with the maximum of utility U is equivalent to selecting 

the route with the minimum of disutility u. In this research, the word "utility 

function" is used in order to follow the principles of the decision making theory, but 

the discussion applies to disutility function as well. 

As mentioned above, finding the Pareto-optimal paths can be achieved by optimizing 

the utility function directly, on condition that the preferences for different objectives 

are defined a priori by a decision-maker. The preference is used as the weight of each 

concerned objective. The multiple weighted objectives are meaningfully combined to 

form a dimensionless overarching objective function, which expresses the goodness 

of a particular solution. In this way, the MOSP is transformed to a single-objective 

shortest path problem. By solving this aggregated single-objective problem, the 

optimal path of the original MOSP is eventually identified. Furthermore, different 

Pareto-optimal paths can be yielded by varying the weights. 
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When solving a multi-objective optimization problem by means of preference-based 

techniques, the utility function is commonly used to model decision-maker's 

preference structure about the objectives involved. Different utility functions have 

been formulated. The weighted sum is probably the most popular and 

straightforward utility function. In this method, each objective is assigned a scalar 

weight accounting for its relative importance to other objectives. The original multi-

objective optimization problem is then turned into optimizing a positively weighted 

sum of different objective functions. More complicated utility functions allow non-

linear combinations of multiple objectives (Cook 1997; De Week 2004). Most of 

these functions are monotonic utility functions, within which monotonically 

increasing or decreasing relationships between an objective and its corresponding 

utility are captured by larger-is-better or smaller-is-better relationships. Non-

monotonic utility functions to capture periodic utilities also exist. However, those are 

special cases that are encountered infrequently in practice. Once the utility function 

for the current multi-objective problem is constructed, optimization can be conducted 

and the solution with maximal utility can be found. Here the weights indicating the 

preferences for different objectives are interpreted as control parameters. Through 

changing these parameters in the utility function systematically, non-dominated 

solutions can be found one by one. 

3.1.3 A natural and self-explanatory approach - weighted sum of objective 

functions 

Multi-objective shortest path problem can be solved using preference-based 

optimization techniques. Given the pre-defined preferences, different objectives are 

aggregated into a single objective. By solving this combined single-objective shortest 

problem, the Pareto-optimal paths for the original MOSP can be obtained. 

There are many methods that can sum up the multiple attributes of a given route into 

a single scalar function. Such a function represents the utility, or disutility, associated 

with each possible path characterized by a decision maker. A very popular approach 

for converting a multi-objective problem into a single-objective problem is to 

minimize the positively weighted convex sum of different objectives. A coefficient, 

or weight, w, is assigned to each objective j], reflecting the importance of this 
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particular objective to the decision-maker. By summing all the weighted objectives, 

the multi-objective problem is transformed to a single objective formulation: 

" ( / ⑷ 入 ⑴ ， 

m 
S.t. Wjt>0, ^ w, = 1. (3.5) 

jt=i 

Minimizing the original multiple objective functions is then equivalent to minimizing 

the utility function (3.5). It follows immediately that the global minimizer x* of the 

above problem is a Pareto optimal point for the original multi-objective optimization 

problem, since if not� then there must exist a feasible x which improves at least one 

of the (positively weighted) objectives without downgrading other objectives and 

hence produces a smaller value of the weighted sum. 

The weighted sum method is often considered as a naive and simplistic approach to 

solving multi-objective optimization problems. However, it combines all the 

objectives in a single estimator where each weighting coefficient indicates the 

relative importance of this particular objective to the decision-maker. This renders 

the procedures of searching for feasible solutions much simpler. The simplicity of the 

weighted sum approach makes it convenient to use, especially in a situation where 

clarity is very important. Being natural and easily understandable, this approach can 

assist a decision-maker in explaining the decision process and clarifying the trade-

offs in his/her decisions when confronting with dissenting views. 

From the computational point of view, the weighted sum approach is very efficient in 

solving a multi-objective shortest path problem. Recall that the recursive step of a 

standard shortest path algorithm (Gallo and Pallottino 1988) can be put as follows: 

finding an arc (/, j) e A so that the cost f{i) of traveling from the origin to node i 

increased with the cost Cy of travelling along ( i j ) is less than the present cost of 

travelling from the origin to node j\ f i j ) + Cy < flj). If such an arc exists, then node i 

becomes the predecessor of node j in the shortest path and the procedure resumes; 

otherwise the present cost of travelling from the origin to node j is the minimum cost. 
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In case of multi-dimensional link attributes, the cost of travelling along arc (/，j) is 

not the value of any single attribute c , ) � b u t the w-dimensional attribute vector Cy, Cy 

= (Cy )• The current Pareto-optimal paths from the origin to any node j are 

collected in a set F). The recursive step selects a node i and, for each path in F), 

compares the vector / (/•) + Cy with the attributes f (j) of the paths in F). If this vector 

is eventually non-dominated, i.e.�y(/) + c,j < f j ) holds for at least one attribute, the 

corresponding path is added to Fj and the set of Pareto-optimal paths is updated by 

removing the paths from the origin to j that have become dominated. 

The computational cost of the above procedure stems from the numerous 

comparisons that are required to determine whether the new path should be put into 

Fj or not. For m-dimensional attributes, such comparisons need to be performed m 

times for each recursive step, which is computationally expensive in terms of both 

time and memory. By assigning weights to each objective and combining multiple 

objectives into a single one through the utility function in the form of a weighted sum 

of objective functions, the MOSP in question collapses to a single-objecti^ve~sl:iortest 

path problem. As a result, the size of Fj is reduced from multiple elements ^.q. m 

attributes) to one single element, and the number of comparisons is limited! to one at 

every step. The Pareto-optimal paths can then be identified by minimizing the 

weighted sum utility function through the conventional shortest path algorithm. 

3.1.4 Limitations of the weighted sum method 

The weighted sum approach has been successful in solving multi-objective shortest 

path problems throughout the years. Finding the Pareto-optimal paths for a MOSP is 

of NP-hard difficulty (Skriver and Andersen 2000), which means that no algorithm 

can guarantee finding the set of efficient solutions within polynomial computational 

time. However, it becomes easier by optimizing directly the disutility function in the 

weighted sum form. Through combining the weighted objectives linearly, the MOSP 

comes down to a single-objective problem, which is solvable in polynomial time 

(Cherkassky et al. 1996). Minimization of this disutility function yields a path that is 

non-dominated (Miettinen 1999). Varying the weight values, the weighted sum 

method can generate different Pareto-optimal paths. 
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However, the weighted sum method is known to have limitations in its applications 

(Athan and Papalambros 1996; Das and Dennis 1997). First, although there are many 

methods to determine the weights, such as point allocation, ranking method, and 

pairwise comparison, a satisfactory a priori selection of weights does not necessarily 

guarantee that the final solution be acceptable. One may have to resolve the problem 

with new weights. It would be more adequate to define the weights as functions of 

the original objectives rather than constants in order for a weighted sum formulation 

to model a decision-maker's preference structure accurately (Messac 1996). 

The second problem with the weighted sum approach is that it is impossible to obtain 

points on non-convex portions of the Pareto optimal set in the objective space (Das 

and Dennis 1997; Messac et al. 2000). Due to the linear form of the scalarized 

objective function in the objective space, it can only be used to capture the Pareto 

optimal points located in the convex part of the Pareto optimum curve and will fail 

when such points fall within the non-convex parts of the Pareto set. In other words, 

not every Pareto solution can be found by solving the weighted sum utility function; 

there may not exist a weight w such that a given Pareto point can be found by solving 

the weighted sum utility function. Figure 3.3 shows the efficient set (frontier) of a bi-

objective minimization problem in the objective space. The solutions obtained by 

solving the weighted sum utility function can be geometrically identified as the 

points of contact between the curve (Pareto frontier) and the tangent line of the curve 

that is perpendicular to the vector w. This figure shows that the weighted sum 

approach may fail to generate the efficient solutions located on the arc between 

points A and B, since for some vectors H* > 0, it could achieve a smaller weighted 

sum value on the tangent line of the Pareto curve outside of the arc rather than at any 

point along that arc. 

Similarly, in a MOSP, not all ’ the Pareto-optimal paths can be ‘ generated by 

optimizing a weighted sum of objective functions. It is possible to find some non-

dominated paths that do not minimize the sum of weighted cost for any given set of 
» 4 

weights. Figure 3.4 shows an example. 
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Figure 3.3 Generating Parelo-optimal solutions by the weighted sum approach 
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Figure 3.4 An example of a non-dominated path that does not minimize the weighted 
sum of objective functions for any choice of weights 

From origin (5) to destination (7)，there are three p a t h s � S P 1 \ ST, and SQT with 

attributes (i.e. objective values) of (0，1.5), (1, 1)，and (1.5, 0), respectively. None of 

them is worse than any other with respect to both attributes, therefore aŴ  of them are 

non-dominated. Denote w/，W2 as the weights for objectives 1 and 2, respectively. 

The weighted sum of attributes for the paths SPT, ST, and SQT arc: 

SPT: 0 * \vi + 0.5 * \V2 + 0 * VV/+ 1 * 二 1.5 u，？ 二 1.5(1 一 

ST: Wi + W2i=\ \ 

SQT: 1 * w/ + 0 • m'2 + 0.5 * w'l + 0 • w. = 1.5 w/. 

Clearly, whatever a choice of w?) is made, the direct path ST never generates the 

smallest weighted sum. In other words, it is impossible to capture this path through a 

weighted sum approach, though it is non-dominated. 
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The implementation of weighted sum approach in solving MOSPs may also 

encounter the problem of sensitivity. For a given set of weights, minimizing the 

weighted sum produces one Pareto-optimal path. If users spccify different priorities, 

the best path may change drastically. In the example of Figure 3.4, a slight change in 

the weights (w/, W2) from (0.51, 0.49) to (0.49, 0.51) would make the optimum 

switch from path SPT to path SOT. Hence, a slight imprecision in the statement of 

preferred trade-offs may lead to completely different solutions. 

The final difficulty with the weighted sum approach is that this method cannot 

approximate the real Pareto optimum curve properly. This is because a uniform 

variation of the weights can hardly produce an even distribution of the Pareto optima 

(Das and Dennis 1997). Quite frequently, all of the points found duster in certain 

parts of the Pareto set with no point in the interesting ‘middle part' of the set, thereby 

providing little insight into the shape of the trade-off curve. This implies that 

depending on the structure of the problem, the linearly weighted sum docs not 

guarantee that a desirable solution be produced as a decision-maker expects. 

3.2 A preference based multi-objective optimization technique 

The weighted sum approach is the simplest and most straightforward way of 

obtaining multiple points (solutions) on the Pareto-optimal front. However, this 

method often produces poorly distributed solutions along a Pareto front, and it is 

unable to find Pareto optimal solutions in non-convex regions. Moreover, varying the 

weights does not guarantee the identification ot desirable solutions. Motivated by the 

一 obvious need for a more powerful approach, Zcleny (1973), Yu and Leilmann (1974), 

and others developed Compromise Programming (CP) - an approach based on a 

procedure that finds an efficient point closest to the ideal pointy the point at which 

every objective under consideration simultaneously attains its minimum value. For 

the multi-objective optimization problems with conflicting objectives, such ideal 

point can never be achieved despite its existence. Nevertheless, this point can serve 

as a reference point for evaluating the comparative performances of the alternatives 

in achieving the desired objectives (Zelcny 1982). The CP method is a general 
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formulation of multicriteria optimization. By varying the involved weighting 

parameters, one can get various desired Pareto optimal solutions. On the other hand, 

it has been mathematically proven that the CP method is advantageous over the 

classical weighting method (weighted sum) when the Pareto optimum closest to the 

ideal point in the Minkovsky metric is sought (Zhang 2003). 

3,2.1 Compromise programming (CP) 

Compromise Programming is a multicriteria decision technique which employs a 

priori information on the preference structure of the decision-maker to find a 

compromise solution amongst a set of conflicting objectives. It expresses the goal-

seeking behavior (Yu 1985) in terms of a distance function. In order to achieve this, a 

reference point is taken for representing the goal to a t ta in�and the distance to this 

point from any other point of the objective space is minimized. 

According to Romero and Rehman (1989), compromise programming can be 

regarded as a natural and logical way to solve multi-objective optimization problems. 

As a distance-based technique, CP is marked by the following features: First, 

compromise programming makes use of the concept of non-dominance to select the 

best solution or choice of alternatives. A CP solution is deemed non-dominated in the 

sense that it cannot be made better off without worsening some other solutions. 

Second, CP considers the ideal solution as an analytical reference for optimization. 

The ideal solution (CP ideal) is the solution with the best, or almost the best values of 

the concerned criteria, rather than a target established by the decision-maker from 

his/her own views and judgments. Th i rd�a CP solution is obtained by minimizing the 

weighted distance from each efficient point to the reference point (CP ideal) so that 

the decision-maker will choose the efficient alternative closest to the CP ideal. 

Therefore, although using preference-based weights, CP searches for an optimal 

solution rather than a ‘satisficing’ solution (Ballestero 2007). Satisficing is a 

dccision-making strategy that attempts to meet criteria for adequacy, rather than to 

identify an optimal solution. 

In essence� the main assumption in CP is to search for a multi-objective solution 

closest to the ideal solution. The concept of ‘closeness’ is basically related to human 
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preferences represented by a function measuring the distance of the compromise 

solution from the ideal solution. CP helps decision makers to choose an optimal or 

the best compromise solution on the basis of a distance function generated by a 

combination of attribute scores. This technique is preferred by many researchers to 

other approaches because of the simplicity of the distance-based methods� the i r 

relationship to multi-attribute utility t h e o r y � a n d the availability of solution 

algorithms (Lakshminarayan et al. 1995). 

The CP methods in multi-objective optimization problems differ in their choice of 

the distance metric and definition of the reference point. In most conventional CP 

models, the reference point is defined by the ideal solution point whose components 

are obtained by minimizing each individual objective. In some variant versions of CP 

methods, however, the reference point is defined by a solution whose components 

are slightly smaller than those of the ideal solution. Such a point is called a Utopian 

point. The advantage of using Utopian point instead of ideal point is to guarantee that 

there exists a positive weight vector such that a feasible MOP solution is at least 

weakly non-dominated (Choo and Atkins 1983). In this research, without loss of 

generality, the reference point is defined as the ideal point at which all objectives 

achieve their minimum values simultaneously, and decision makers would prefer the 

solution having a cost value as close as possible to the minimum. 

The basic idea of the CP method is to define the scalarized objective function to be 

minimized by a metric form. Mathematically, this metric is a type of evaluation 

index measuring the distance between the Pareto optimum to be sought and the 

reference point. Such a distance can be calculated by using the Z,p-metric. In a 

Cartesian plane, the distance between two points, = (x,', x\) and x " = [ x f , x j ) , 

can be calculated using the Pythagorean theorem as follows: 

4 丨、丨) 

This concept of distance can easily be extended to an m-dimensional spacc, and the 

distance between points jc with objective k becomes the Euclidean distance: 

m , 、•> 

> 1 -

56 



The extension of this Euclidean distance is most commonly employed in compromise 

programming as the distance measure. It is a member of the family of Lp-metric 

(known as Minkovsky metric) (Lakshminarayan et al 1995), which is represented in 

its general form as: 
- ^ -ii/p 

么/> = l > “ z , - , (3.6) 

where ẑ  and are the efficient point and the ideal point respectively; w^， 

m 
[vvj^ =1，is the criterion weight in standardized form, representing the relative 

“I 

preference / importance attached to the A：出 criterion. The weights are generally 

defined by a decision maker. They can also be developed by means of analytic 

hierarch process (AHP) through pairwise comparison of the criteria. An important 

advantage of compromise programming in practical applications is to encompass an 

interactive procedure allowing decision makers to specify their preferences in the 

optimization process by a weighting system, which is believed to facilitate the 

determination of the best CP solutions (Ballestero 1997). 

The parameter p in (3.6) is a p^ameter governing the distance between an efficient 

point ẑ  and the reference point zl . It acts as a weight attached to the deviation of a 

feasible solution from the ideal point reflecting the decision maker's perspective 

(Romero and Rehman 1989). The value of p ranges from one to infinity and presents 

the concern of the decision maker over the maximum deviation (Tecle and Yitayew 

1990). The larger the value of p, the greater the concern becomes. Each value of p 

gives a different measure of distance. Lj {p= 1) is the so-called street-block distance 

(also called Manhattan distance) that gives the maximum distance between two 

points. In the context of suitability evaluation for alternative routes, total 

compensation between objectives is assumed, indicating that a decrease of 1 unit in 

one objective can be totally compensated by an equivalent gain in any other objective 

(Pereira and Duckstein 1993). In the situation where /? = 2, the Lp-metric represents 

the Euclidean distance, L2. Each weighted deviation is accounted for in direct 

proportion to its size. When p becomes greater than a certain value, the largest 

deviation z,̂  - z] will dominate the evaluation, and it will reach a totally non-

compensatory situation when /) = 00 (Zeleny 1982). Therefore, all possible distances 
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in the space are bounded by the 'longest' distance (the 丄/-metric) and the ‘shortest’ 

distance (Loo-metric), which is also called the “Tchebysheff' distance. 

Given p and the weight set (w,), the preferred alternative has the minimum Lp 

distance value. Thus, the alternative with the lowest value for the Lp-metric will be 

the best compromise solution because it is the solution nearest to the ideal point. 

3.2.2 Relating utility function optimization to compromise programming 

In general, methods for multi-objective optimization problems can be categorized 

into the generating technique and the preference-based technique. The generating 

technique, as the name suggests, generates complete or a subset of feasible solutions 

for a MOP, and leaves the physical interpretation and the intensive choice of the best 

solution with those who can take on the responsibility. No prior knowledge of 

relative importance of each objective is used. By contrast, the preference-based 

technique has been developed to allow decision-makers to state their preferences a 

priori for all objectives, such as the weighted sum approaches (Steuer and Choo 

1983), or interactively during the search procedure, e.g. Step Method (STEM) 

(Benayoun et al. 1971) and through achievement functions (Wierzbicki 1980). 

Usually, the optimization is done by aggregating different objectives into a single 

objective and assigning them different weights provided by the decision-maker. 

As a typical preference-based method of MOP, utility fiinctions serve to map the 

attributes of the feasible solutions onto a scalar value with the preference of each 

attribute determined by the decision-maker. By systematically changing these 

parameters, the utility function can seek the non-dominated solutions one after 

another. The utility function commonly used in CP measures the distance between a 

Pareto optimum (an efficient solution) and the ideal point, along with parameters 

accounting for the decision-maker's concern over the maximum deviation. It is 

considered to be more general than weighted sum (Chen et al 1999; Zhang 2003). Its 

universal formulation is expressed as: 

I 厂 ⑴ - 厂 • 1 ， （3.7) 
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where the norm • is a mathematical measure of the distance between points, i.e. 

»/I)二 |/2 - /' ； F{x) and F* are the efficient solution point and the ideal 

solution point, respectively. As mentioned above, the distance measure in CP, 

namely the Lp-metric, is closely related to the parameters p and weight set (ŵ )； thus, 

for a weighted Z-p-metric, the utility function can be formulated as: 
- m y/p m 

Observe that for every x e X , (jc) > f : . Thus the absolute value sign in the 

definition of the metrics can be dropped. Consequently, the above utility function can 

also be written as: 
- -ii/p 

U{p,w)= ， w , > 0 , X w , = 1 , 1 < / 7 < 0 0 . (3.8) 

J “1 

When p = 1, the " ( 1 � w ) can be expressed as: 
m . 、 m fTi fn 

U(l,W) = X U ( ^ ) - / J = Z ^ ^ A ( ^ ) - Z A ' ， v ^ a o , ; ^ w , = l ’ (3.9) 

i=y k=l k=l 

which is equivalent to the weighted sum formulation. 

When p = 00 , the corresponding CP problem becomes a min-max problem, and 

minimizing f/(oo,w) is equivalent to minimizing the maximum weighted deviation: 
m 

min max { w “ / “ x )-//)}， w* ^ 0, Y w ^ =1， （3.10) 
xeX Aal. .m r^ 

Such a method is referred to as the min-max method, or weighted Tchebycheff 

approach, which turns out to be very useful in generating Pareto solutions. In this 

research, besides the compromise programming method, an adaptive method based 

on the weighted Tchebycheff approach is also developed to solve the problem of 

multi-objective route planning for DG transportation. This will be elaborated further 

in section 3.3. 

Recall that both the weighted sum and the min-max belong to particular cases of the 

utility function formulated as (3.8) with the parameter p taking the values of 1 and 

infinity, respectively. In other cases, i.e. 2 < < oo, the utility function is nonlinear 
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and does not have explicit physical meaning. However�as illustrated in Figure 3.5, 

the exponent p has the effect of adjusting the curvature, i.e. the convexity of the 

objective function. An increase of p is favorable to capture the non-convex Pareto 

optimum set (Zhang 2003). 
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Figure 3.5 Illustration of the CP method using different exponents 

Based on the utility function of (3.7), a general CP problem can be formulated as: 

Min F{x) - F' 

s.t. x e X . (3.11) 

Whether an optimal solution of problem (3.11) is Pareto optimal depends on the 

properties of the distance measure, and hence on the properties of norm || • ||. A norm 

1.11 is called monotone, if | | / ' | | < | | / ' | | holds for all / ' , e /Twith |/；|<|//|, A: 

=1, . . . , m and moreover / ' < f ^ if f l < f l , ^ = 1 . w . A norm || • || is called 

strictly monotone, if / ' < holds whenever f l < / / , k = 1,..., m and 

/ / 本 / / for some j. With this definition of monotone, it is easy to prove that for an 

optimal solution x of (3.11)，the followings hold: 

i) If • is monotone, then x is weakly Pareto optimal. If jc is a unique optimal 

solution of (3.11), then x is Pareto optimal. ‘ 

ii) If II • II is strictly monotone, then x is Pareto optimal. 
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Proof: 

i) Suppose X is an optimal solution of (3.11) and JC is not weakly Pareto 

optimal. Then there is some x'e X such that f{x') < f{x). Therefore 

0 < / , ( x')-/； < / , « - /； for k = \’…,m and |/(x’）—/.I < | | / (幻一 / . I , 

contradicting optimality of x . 
t 

Now assume that ；c is a unique optimal solution of (3.11) and x is not Pareto 

optimal. Then there is some x 'e X such that / ( x ' ) < / ( x ) . Therefore ‘ 

0 S 人（X’）—//S /�（；）-/: for k = l,...,m with one strict inequity, and 

f ( x ' ) - / ' < / (JC) - / * . Given the optimality of x , equality must hold, 

which contradicts the uniqueness of x . 

ii) Suppose x is an optimal solution of (3.11) and x is not Pareto optimal. 

Then there are x's X and j g {l,...,m} such that (x') < (x) for 

k = 1 � . . . � w and f�(x') < f�(x). Therefore 0 < / , ( x ' ) - /； < (x) — /； for all 

k = l,...,w and 0 < (x') - f ' < / (x) - f ' . Again the contradiction 

|/(义’)-r||<||/w -

follows. • 

The weighted CP problem in line with the utility function (3.8) derived from the 

weighted I/?-metric can be formulated as follows for general p: 

min [ 1 > “ /“小 / : )丫 ' ’ v., > 0, X w , = l , l < / 7 < o o . (3.12) 

Without loss of generality, consider the following formulation: 
f m P \ m 

mip P= ， w , > 0 , X w , = l , l < / 7 < c o . (3.13) 

j k=\ 

Due to the fact that / / is the minimum value of each individual criterion over the 

feasible solution space, / � ( x ) - / / > 0 . Hence� the partial derivative of the scalarized 

objective function P with respect to each constituent criterion is positive. According 
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to the theorem that the solution of a scalar objective function is sufficient for Pareto 

optimality if the objective function increases monotonically with respect to each 

criterion (Stadler 1988)，the solution of (3.13) is thus sufficient for Pareto optimality. 

The increase of a component Wk will push the solution of the related criterion f \ ( x ) 

toward the ideal solution f : . Therefore, varying w^ in the nominal interval of [0, 1 ] 

can generate a set of Pareto optimal solutions. 

3.2.3 Weights assignment and analytic hierarchy process (AHP) 

The weight w^ in the formulation of compromise programming is attributable to the 

decision maker's preferences accounting for the relative importance of each objective. 

A wide range of techniques exist for the development of weights, including point 

allocation, different ranking methods, and pairwise comparison. When point 

allocation is used to develop weights, the weights are estimated by the decision 

maker on a pre-determined scale, the more points an objective receives, the greater 

its relative importance is. The total of all objective weights must sum to 1. This 

method is easy to normalize. The ranking techniques, such as rank sum, reciprocal, 

and exponent, also provide a satisfactory approach to weight assessment. As a 

starting point in deriving weights, these ranking methods provide a way of 

simplifying multicriteria analysis. However, the ranking technique is limited by the 

number of objectives to be ranked. It is therefore inappropriate for a large number of 

objectives since it becomes very difficult to straight rank as a first step (Malczewski 

1999). 

Among various methods in assessing criterion weights, the analytic hierarchy process 

(AHP) (Saaty 1980) using the pairwise comparison technique is commonly 

. employed. AHP works basically by developing priorities in terms of the relative 

importance judged on a scale of 1 to 9 (nine-point scale). The importance of each 

objective is individually determined and a pair-wise comparison matrix is created. 

The eigenvalues of this matrix are then calculated and these eigenvalues are 

employed as weights of the objectives. In detail, to assess weights to a set of m 

objectives by means of AHP, the procedure is described as follows: 
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Step 1 ： Generating the pairwise comparison matrix. 

Given a pair of objectives each time, a nine-point scale value is used to specify 

and rate the relative performance for all the pairs. The definition of the value is 

shown in Table 3.1. The comparison forms a ratio matrix (Table 3.2). The upper 

right of the matrix is the values assigned by a decision-maker, while the lower 

left of the matrix is filled up with the reciprocal value corresponding to the 

respective element. The diagonal elements are all equal to 1 as the objective is 

compared with itself. 

Table 3.1 Rating scale for pairwise comparison 

Intensity of ^ _ , • Definition Importance 
1 Equal importance 
2 Equal to moderate importance 
3 Moderate importance 
4 Moderate to strong importance 
5 Strong importance 
6 Strong to very strong importance 
7 Very strong importance 
8 Very to extremely strong importance 
9 Extreme importance 

Source: Saaty (1980) 

Table 3.2 Pairwise comparison ratio matrix 

obj_l obj_2 obj_3 … o b j m 

obj_l 1 Wi2 Wi3 ... VVim 
obj_2 1/ W\2 1 ... W'2m 
obj_3 1/ Wi3 1/ W23 1 ... Ĥ3m 

obj m 1/ Wim 1/ W2m 1 / Wjm ^ 1 

Step 2: Computing the objective weights. 

AHP computes a weight for each objective based on the pairwise comparisons 

using mathematical techniques such as eigenvalue, mean transformation, or row 

geometric mean. In this research, the eigenvalue technique is employed for 

computing the weights under AHP. 

2.1 Add up the values of each column of the pairwise matrix: 

sum_l = 1 + l /w/2 + l/w/s + . . . + 1/ w/^ 

sum—2 = Wi2 + 1 + 1 /W23 + . . . + 1/ W2m 
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SUmjn = Wjm + W2rr, + Wjm + …+ 1 

2.2 Recalculate each element in the matrix by dividing its current value by its 

corresponding column total: vv: = w,^丨sum_j {i,J= 1, m) 

2.3 For each row, add up the new value of each element, and then average the 

sum by the number of objectives. The final output is the relative weight ( v / ) 

of the objectives: 

A 

7 = 1 / 

；=1 / 

y=i / 

Note that due to the normalization process, the sum of these weights is equal 
m 

to 1, i.e. ^ w* = 1. 
/=i 

Step 3: Testing the consistency of pairwise judgment. 

In AHP, after the generation of the relative weights of the objectives, the degree 

of inconsistency of the weights is tested by computing consistency ratio (CR) 

through a number of steps (Malczewski 1999). 

3.1 Calculate the consistency vector (c) for each objective. The consistency 

vector is computed by dividing the weighted sum vector by each individual 

objective weight ( w*). The computation is performed row by row. The 

weighted sum vector is the summation of the products of weight w] by each 

of the original weight in this particular row /，that is: 

q A l 
;=i / 

7=1 / 
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y=i / 

3.2 Calculate the average of the consistency vectors (c),义max: m 
,=i / 

3.3 Compute the consistency index (CI): CI = - m)/{m -1) 

3.4 Calculate the consistency ratio (CR) by dividing the consistency index (CI) 

by the random index (RI): CR = CI/RJ . The value of RI varies with 

different number of objectives being considered, and it can be checked out 

from Table 3.3. 

Table 3.3 Random inconsistency indices 

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.5 丨 1.48 1.56 1.57 1.59 

Source: Saaty (1990) 

As suggested by Saaty (1990), if the resulting CR <0.1, it indicates that the weights 

produced through pairwise comparisons are consistent; else, if CR > 0.1，it indicates 

inconsistency in the weighting process. In this case, the pairwise judgment should be 

revised and the weights should be recomputed accordingly (Malczewski 1999). 

3.2.4 Compromise-programming-based multi-objective route planning for DG 

transportation 

Multi-objective DG route planning can be identified as an application in 

transportation planning. The shortest path problem is one of the typical problems in 

the design of transportation network. It deals with the search for a path from a source 

to a destination that minimizes the sum of the weighted constituent links. For the 

dangerous goods transportation problem, the ‘‘shortest" path could be the one with 

minimum population exposure risk, or lowest accident probability, or least operating 

cost, or the efficient combination of all such objectives. 

Various solution techniques have been developed to solve the shortest path problem. 

Important algorithms include Dijkstra's algorithm (Dijkstra 1959), Bellman-Ford 

algorithm (Bellman 1958; Ford and Fulkerson 1962), A* search algorithm (Pearl 
I 

65 



、 

1984), Floyd-Warshall algorithm (Floyd 1962; Warshall 1962), and Prim's algorithm 

(Cherition and Tarjan 1976). Dijkstra's algorithm searches for the shortest paths from * i 

a single source vertex to all other vertices in a weighted, directed graph. All weights 

(i.e. edge-travel costs) must be non-negative. The Bellman-Ford algorithm also 

solves the single-source problem. However�unlike Dijkstra's algorithm, the Bellman-

Ford algorithm can be used on graphs with negative edge weights, as long as the 

graph contains no negative cycle reachable from the source vertex (node) s. The A* 

algorithm searches for the least-cost path from a given source node to the destination. 

It uses heuristic information (including the cost from the source node to the current 

node, and a heuristic estimate of the distance to the goal) to determine the order in 

which the search visits nodes in the tree, so that the search becomes more efficient. 

The Floyd-Warshall algorithm finds shortest paths in a weighted, directed graph with 

negative cost edges. A single execution of the algorithm can lead to the finding of the 

shortest paths between all pairs of vertices. The Piim's algorithm finds a minimum 

spanning tree for a connected weighted graph. The process that underlies Prim's 

algorithm is similar to the greedy process used in Dijkstra's algorithm. 

Among various shortest path algorithms, Dijkstra's algorithm is one of the most 

well-known and commonly used algorithms. Starting with the source node, 

Dijkstra's algorithm searches for the shortest path from the source node to one 

additional node within the network in each subsequent iteration. The procedure ‘ 

requires n - 1 iterations to find the shortest path tree. The algorithm uses a set S (i.e. 

the set of solved nodes) to store the nodes for which the shortest path has already 

been established by the algorithm at the current point. At initialization, the travel cost 

of the source node s is set to 0，and the costs of all other nodes are assigned the value 

of infinity. While iterating, the algorithm assigns a new value to each node / in the 

network, which represents the travel cost (i.e. length) of the shortest path to node / 

. from s through the members of S. At the end of the algorithm, the final value of node 

t is the ultimate travel cost of the shortest path from s to t. 

The Dijkstra's algorithm is essentially a labeling method. It is based on a node 

selection rule which ensures that the shortest path tree is constructed by 

"permanently labeling" one node at a time (Zhan and Noon 1998). Once a node is 

permanently labeled, its optimal shortest path distance from the source node is 
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identified. To be specific, denote G == (TV, A, (') as a directed network, where /V = {1, 

. 2 � . . . � " } ’ A = {(/,_/•) I / ’ . / .£" } and C = {c,j |(/, j)G A} are the sets of nodes, arcs and 

arc-travel costs respectively. It is assumed that G does not comprise any cycle with 

negative cos t�and that the costs c" arc additive along the arcs. It should be noted 

that most road networks satisfy the assumption of directed graph since cach side of 

the road is usually dedicated to one direction only. For bidirectional graphs, 

undirected links can be achieved by splitting cach bidirectional link into two 

unidirected links between the same extreme nodes. Lcl node s be the sourcc node of 

the path, t be a sink node on that path, and / ( / ) be the total travel cost of the 

currently known shortest path between s and t. Let (p{t) be the parent node, or 

predecessor, of node / in the current shortest path from \ to t. Let S be the set of 

solved nodes to which the distance from the source node s is shortest. 

• Step 1: Initialization. 
/ 

Set suitable values of / ( / ) and (p{t) for all nodes t. l:or instance, 

f{s) = Oand / ( / ) = oo \U t .�.’ and S = {‘、，}、€ /V \ {.v}. 

• Step 2: Label setting. 

Find an arc (/, /) eA (node selection) such that f{i) + c,̂  < / ( ‘ / ) and 

update the shortest path tree by selling a new “label” {f{J)s(p{J)) 

with / ( . / ) = / ( 0 + c a n d (p{ J) = i (labeling phase). Update the set S 

by adding node / to S. 

• Step 3: Repeat Step 2 until f (/) + c." > / ( / ) for every arc (/，/•) e A. 

The above procedure computes a shortest path tree from one sourcc node to all the 

others in the network. It can also be used to find costs of shortest paths from a single 

source node to a single destination node by terminating the algorithm once the 

shortest path to the destination has been dctcmiincd. 

The Dijkstra's algorithm can only solve single objective shortest path problem. Route 

planning for DG transportation, however, involves multiple objectives with reference 

to operating cost, accident probability, exposure risk, and emergency response 
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capability. Hence multi-objective shortest paths need to be determined. This is far 

beyond the capability of the conventional Dijkstra's algorithm, since running 

Dijkslra's algorithm to different objectives can only establish the corresponding paths 

being optimal in one particular objective. In order to address this i s s u e � a modified 

Dijkslra's algorithm is proposed in this research, which incorporates compromise 

programming in the search for the Pareto optimal routes for DG transportation. Due 

to the multiTobjective nature of the problem, the single cost c,j of traversing link (/ , / ) 
I 為 

used in Dijkslra's algorithm is replaced by the multidimensional attribute vector 

c{i, j ) = For the DG routing problem with m objectives, the proposed 

algorithm works as follows: 

• Step 1: Prc-dctcrmine the value of the parameter p and a set of weights (u'/, 

M'2, . . . � v v „ , ) for the objectives under consideration. The weights arc generated 

by making use of AHP through pairwise comparisons. Test the degree of 

inconsistency of the weights to ensure that the weights produced be consistent. 

• Step 2: Initialization. Set suitable values of / ( / ) and (p{t) for all nodes /: 

/(A) = Oand / ( / ) = OO if /7^v’and <^(0=0, {.v}, V/ eN\{s]. 

• Step 3: For each objective k {k = I, 2 m), search the shortest paths (to be 

exac t� the least cost paths) from the start point s to each node on the network 

by making use of Dijkslra's algorithm, and then save all least cost values 

f : (/•) (k= I. 2 m: /• e yv ) in an array. 

• Step 4: Find an arc (/，/•) eA such that for each individual objective k {k = I. 

2 / : ( / ) = J\ (/) + f* , and for all objectives under consideration, 
1 

‘ m ^ ' / / ' 

/ • ( / ) 二 < 玄 W 乂 / “ / ) - / / ( / ) y ' I < f ( j ) , update the shortest path tree by 
U-i J 

selling a new “label” ( f ( j ) , ( p ( J ) ) with f { j ) = /" ( / ) and (p{l) = /. Update 

the set S by adding node j to S. 
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• Step 5: Repeat step 4 until /(/•) + (；,, > j \ j ) for all objectives and every arc 

(/, /) that constitutes the path between the start point (sourcc) and the end 

point (destination). 

Step 4 is the key step of the proposed algorithm. It modifies the classic Dijkstra's 

algorithm by taking into account multiple objectives in the cost calculation for each 

link. Let (i,f) be a link, between the sourcc A. and the destination v, with node / and its 

immediate predecessor /, 丰 s � a n d 丰 v. For each individual objective /:，link (/， 

/•) bears a cost c*. The cost of traversing from node i to node j for objective k is 

calculated as: / “ ' ) = / “ O +1.,). For all objectives considered, the overall cost of 

• „ Up 

traversing link (/, j ) is obtained as: / (/)='艺>^ (A (/) 一 • . Compare the 

value of / (/) with the previously recorded value on node /, if / ' ( / ) < / ( y ) (infinity 

in the beginning), overwrite / (/') with / (/); otherwise, keep f {j) as the “label” of 

node /. 

An upper bound of the running time of an algorithm is often referred to as the 

complexity of the algorithm. It is derived that the implementation of the modified 

Dijkstra's algorithm has complexity o{tn(ti^ , where m is the number of 

objectives considered, n and c arc the number of nodes and edges (arcs), respectively, 

of the network G defined earlier. This is apparently a modification of the 

compulation time for the conventional Dijkstra's algorithm. Implementing the 

conventional Dijkstra's algorithm to find a single objective shortest path runs in 

lime. With the increase of the objectives concerned, the complexity of the 

algorithm will increase accordingly. In the modified Dijkstra's algorithm, to evaluate 

the disutility for each arc, wc must first solve the shortest path problem m times for 

each objective: it takes the time proportional to o(tnn') using the conventional 

Dijkstra's algorithm. Next, for each arc, wc compute its disutility value, and it lakes 

the time proportional to0(fne) for all arcs. Using the modified Dijkstra's algorithm 

in line with the utility function (3.12), we compute the multi-objcclivc shortest path 
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in time()(«2)，and thus the total time of the proposed modified Dijkstra's algorithm 

for solving MOSP problem is o{m(n^ + £?)). , 

It is not difficult to prove the correctness of the proposed modified Dijkstra's 

algorithm because the proof is essentially the same as that of the classic Dijkstra's 

algorithm. In fact, with the aid of CP, the multiple weighted objectives are combined 

meaningfully to form a dimensionless overarching objective function. As a result’ the 

original MOSP comes down to a single-objective shortest path problem�which can 

be solved by the modified Dijkstra's algorithm in polynomial time. 

The proof can be obtained using proof by contradiction. Denote S as the set that 

consists of the vertices whose distance to the source node s is shortest; d[z/] as the 

cost of a path from s to node w, u 丰 s\ sDist[,v�//] as the cost of the “shortest” path 

from s to w. Before proceeding with proof, we claim some facts/lemmas first. 

• Shortest paths are composed of shortest sub-paths. This is based on the notion 

that if there was a shorter path than any sub-path, then the shorter path should 

� rcplace that sub-path to make the whole path shorter. 

• If s —>...—> // —> V is a shortest path from s to v, then after u is added to S, d[v] 

==sDist]̂ •’ V] and d[ v] is not changed thereafter. It takes advantage of the fact 

that at all times d[v] > sDist[«y�v]. 

Alter running the algorithm, we get d[w] = sDist|i.’ w] for all u. Once u is added lo S, 

d|"] is not changed anymore and should be sI)ist[A、， 

Proof by contradiction: 

Suppose that u is the first vertex added to S for which d[fvj 丰 sDist[A-, u\. Note 

that u cannot be s, because d[s] = 0. In addition, there should be a path from s 

to w; otherwise, d\u] would be infinity. 

Let .V —• X —> —> w be the shortest path from s to u. x is within S and y is the 

first vertex not within S. When x is inserted into S, d[JC] = sDist[.y, JC]. Edge (JC, 

y) was relaxed at that time. I lence our claim that d[y] = sDist|\y’ y] follows 

from the convergence property, and we have d[y] = sl)ist[«y，y\ < sDistf、,，w] < 
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d[z/| (By the upper bound property). Now both y and u are in S when u is 

chosen, so cl[w] < d[yj. Consequently, the two inequalities must be equalities: 

d[v] = sDist[A,’ 少1 = sDistfi', u] = d[wj. Hence d[u] = sDist[i，’ w), which 

contradicts our hypothesis. Therefore，when each u is inserted, d[u] = sDistji•， 

"1 . n 

一 - 、 、 

z 、、 
• 、 

N , 
� Z 

、 ^ 

、、… -‘‘ 
Figure 3.6 Correctness proof of the algorithm 

3.3 An adaptive weighting approach to multi-objective route 

planning 

The preference based multi-objective path optimization methods, such as weighted 

sum approach and compromise programming, are aimed to find the Pareto optimal 

paths in a pre-determined fashion. The weights accounting for the preferences for 

different objectives are defined a'priori by a decision-maker. In some cases, however, 

decision makers may find difficult to state their preferences before they have an 

explicit conception of the actual trade-offs involved. As Zionts and Wallenius (1976) 

stated, decision makers in general are accustomed to responding to the trade-off , 

questions in the context of a concrete situation (i.e. the trade-offs that are attainable 

from realizable situations) rather than in the abstract. Consequently, it is often 

desirable to generate the efficient solutions first, and then let decision makers select 

the most preferred or the best compromise solution from this set. Generating the 

entire Pareto optimal set may not be efficacious as it becomes difficult to make a 

selection due to the large number of alternatives. A more effective solution is to 

generate a subset of non-dominated solutions that is small enough to be handled by a 

decision maker, and yet large enough to give an overview of all the possible trade-

offs among conflicting objectives. 
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3.3.1 A framework to explore the Pareto front 

As one of the two major solution techniques for multi-objective path optimization 

problems, the generating approach attempts to obtain a set of Pareto-optimal paths 

for a given MOSP, with the ultimate goal of sampling a well-extended and uniformly 

diversified Pareto front. A variety of generating methods have been developed, 

ranging from exact methods, such as multi-objective linear programming and 

dynamic programming, to a series of heuristic approaches, such as simulated 

annealing and tabu search. However, most of these methodologies fail to explore the 

non-convex part of a Pareto front that may be of interest to decision makers. Some of 

them also suffer from excessive complexity, requiring the solution of an exhaustive 

computation problem or generating too many solutions for a straightforward choice. 

An alternative to both the generating techniques and preference-based techniques is 

to define a parametric objective function that behaves like a utility function and can 

generate multiple Pareto-optimal paths for multi-objective path optimization problem 

by varying the parameters. A careful choice of these parameters makes it possible to 

directly generate reasonably good paths�which provide an approximation of the set 

of optimal paths without too much redundancy. As a result, decision makers are 

presented with a small set of solutions for the final choice, and yet feel reasonably 

confident that the key options have not been overlooked. 

Recall that the best possible outcome of a multi-objective (minimization) problem 

would be the ideal point F̂  where each objective achieves its optimal value 

simultaneously, or the Utopian point defined as F" = - ：̂, ^ > 0 with very small 

components. As stated in section 3.2.1, the advantage of using Utopian point is to 

ensure that there exists a positive weight vector such that a feasible MOP solution is 

at least weakly non-dominated. This will be clarified further later in this subsection. 

It is well-known that when the objectives involved in a MOP are conflicting with 

each other, it is impossible to attain either the ideal point or the Utopian point. 

However, this point can serve as a reference point for the search of a feasible 

.solution closest to it. This is the basic notion of CP. Based on this n o t i o n � a 
、 
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parametric objective function is adopted, which is commonly used in CP to measure 

the distance between an efficient solution point and the reference point � 

e { F ' , F " } . As'introduced earlier, a general formulation of the CP problem is 

expressed as: 

min | f ( X ) - F � | (3.14) 

Generally, the weighted metric Lp = || • 二 with (/? > 1) is adopted so that the CP 

problem is formulated as 

min (/“！）— / / ) , A, > 0 , l < p < c o , (3.15) 
� “ ' J 

for general p, and 

min max -/；)), A, > 0 (3.16) 
k=\, m 

for /7 = 00, where designates the 众-th positive weighting coefficient. Lp is strictly 

monotone for 1 <p < co and monotone for/? = oo (Ehrgott 2005). 

Since the structure of the CP problem depends on the choice of the metric, we use the 

notation CP(p, A). Our primary concern here is the case in which the parameter p 

takes the value of infinity. As introduced in subsection 3.2.2, when p 二①,the CP(oo, 

A ) becomes a min-max problem, which minimizes the following parametric 

objective function: 

max (a, ( A W-/；)), A, > 0 (3.17) 

A• /ft 

U{X,f) is not exactly a utility function in the sense that is defined in subsection 

3.1.2 since it is not strictly increasing. For example, a route Rp with attributes 

f^ = (o, 1,...,l) dominates a route Rq with attributes 人=(1’1’...，1), but their 

maximum weighted attribute is equal most of the time. Hence, the minimum of the 

function (3.17) may not be strictly non-dominated. However, any non-dominated 

route minimizes U{X,f) for a given positive weight vector, X. 

The CP(oo, X)’ referred to as the weighted Tchebycheff approach, is of significance 

in generating Pareto optimal solutions. Bowman (1976) shows that for every Pareto 

solution there exists a positive vector of weights so that the corresponding CP(oo, X ) 
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is solved by this Pareto point. Figure 3.7 shows the same efficient frontier that is 

depicted in Figure 3.3. For the given reference point U and the weight vector the 

solutions of CP(oo, X ) can be geometrically identified as the points of contact 

between the efficient frontier and the corresponding level curve ("square wedge") of 

the weighted Tchebycheff metric. It is observed that varying the reference point and 

the weights, one may reach all the efficient points located on the arc between points 

A and B. Therefore, in this research, an adaptive weighting method based on the 

weighted Tchebycheff is developed to solve the multi-objective DG routing problem, 

which guarantees that a set of efficient routing paths can be generated; moreover, 

these solutions can provide decision-makers with an overview of the solution space 
t 

and the possible trade-offs among the conflicting objectives. 
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Figure 3.7 Generating Pareto-optimal solutions by the weighted Tchebycheff approach 

It should be noted that, as illustrated earlier, the solutions obtained by means of the 

weighted Tchebycheff approach are weakly non-dominated when F^ = F^ . The proof 

of this notion is as follows: 

Proposition: A feasible solution jc E X is weakly non-dominated co there exists a 

weight vector X > 0 such that JC is an optimal solution of the problem (3.16). 

Proof: 

‘‘c=’’ Suppose JC is an optimal solution of the problem (3.16) and x is not 

weakly non-dominated. Then for a strictly positive weight vector X. > 0, there 

is some x'e X such that 0 < X, (/, (JC,) - /；') < A, (/, (JC) - ) . Divided by ^ 
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we get J\(x') - fif < / t (x) - fif fox all k = 1, . . . , m, which contradicts the 

optimality of x . 
I 

“：=>” The necessity property can be proved by defining appropriate weights. 

Let Xk = \l{fk{x) - 1,..., m. Since (/,"，…,/̂乂）is the Utopian point, 

Xk is strictly positive for all k= 1,..., m. Supposex is not optimal for (3.16) 

with these weights. Then there is a feasible A:'€ X such that 

m a x 义 “ 人 � - / / O 
k-i,…m 

- m a x 1 ^ u ( M ^ ' ) - f ' ) 
k-'. m fiXx) - fk 

〈尸严（广、1 ,"(/“幻-人"）= 1 

and therefore 

ifk ix')-fl;')<\ for all k = 1 m. 

Divided by Xk we get j\ (jc') - f j f < (x) — f j f for all k = 1 � . . . � m and thus 

/ ( J C ' ) < f (x)，contradicting the fact that JC is weakly non-dominated. 口 

In summary, any Pareto optimal solution can satisfy the min-max formulation (3.16) 

for a given positive vector X; on the other hand, by solving (3.16), a weakly non-

dominated solution can be obtained. Furthermore, if this optimal solution is unique, it 

is then Pareto-optimal. For proof of the last proposition, refer to subsection 3.2.2. 

Recall that the exponent p in the formulation of compromise programming has the 

effect of adjusting the curvature of the objective function, and an increase of p is 

favorable to capture the non-convex Pareto optimum set. When p—>00, the 

corresponding CP problem becomes a min-max problem formulated as (3.16). 

Consider the functionP = max(入丨f"又2/;).八 geometrical interpretation shows that 

in two-dimensional space, the isolines of such a function form a square wedge and 

that the inner part of the wedge corresponds to the set of solutions dominating the 

summit of the square angle (Figure 3.8). The shape of the isolines is ideally suited for 

the exploration of both the "convex" and “concave，’ parts of the Pareto front, while 
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ensuring Pareto-optimality of the points encountered. Hence, an approximation of the 

Pareto front can be obtained by solving several instances of the min-max problem 

min max (a, ( / , (x) - /；))’ A, > 0 , 

where defines the search origin, and the reciprocal of the weight's vector 

( m , ’ I//I2, 1//U ) designates the search direction (Wierzbicki 1980，1986). 

Figuratively, solving an instance of this problem is equivalent to exploring the Pareto 

front along the specific line joining the reference point and the nadir point (the anti-

ideal point, which is defined in such a way that it is composed of the worst values 

'' obtained for each objective) of the current exploration region. For instance, in a two-

objective case shown in Figure 3.8, when minimizing the parametric objective 

function's value C, the isolines of max(义；/“义之/: )= C will move downward along 

the line joining the reference point U and the nadir point, and reach the Pareto front. 

This approach can be viewed as an example of the achievement scalarizing function 

(Wierzbicki 1982). The main structure of an achievement scalarizing function is 

based on the weighted Tchebycheff distance from the reference point to the feasible 

set. In other words, the maximum (unwanted) deviation from the reference point is 

minimized. 

objective/: 

+ ‘ . • _ ^ ^ ‘ � i s o l i n e s of mcr^P.J'., |= C 
+ . • 

+ Pareto-optimal solution 
z ^ • + • 

U： H-
u 

objectrv'e/,-

Figure 3.8 Isolines of max(又丄，又2/;")= C used to derive both the convex and 
concave parts of Pareto optimal 

Since it is closely related with the weight coefficients which vary with the search 

direction in the objective space, the proposed methodology can be considered as an 

adaptive weighting method. Although the weight coefficients are involved in both 

methods, the generation of the weights in the proposed adaptive weighting method is 
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"essentially different from that in the weighted Tchebycheff approach. The weights 

employed in the latter method are generally created based on a decision-maker,s 

preferences for different objectives. In the proposed adaptive weighting method, 

however, the weights are calculated based on certain heuristics. No prior knowledge 

of relative importance of each objective is used. Through adaptively adjusting the 

exploration in the objective space, the weights can be generated accordingly�and a 

good approximation of the Pareto front can then be achieved. This will be discussed 

in detail in the next subsection. 

3.3.2 Sampling the Pareto front 

The number of Pareto-optimal solutions to the multi-objective shortest path problem 

may increase exponentially with the size of the network and the number of objectives 

(Hansen 1980). Therefore, identifying and presenting the entire Pareto optimal set is 

practically impossible due to its size. A practical approach is to investigate*a set of 

solutions that represent the Pareto optimal set as well as possible so that the decision- T̂： 

maker can easily understand the available trade-offs and select desirable paths. The 

previous subsection has defined a mathematical tool to explore the objective space 

along a given direction. By varying the origin and direction of exploration, one can 

generate a good approximation of the Pareto front. 

Studies show that an approximation of the Pareto front without prior knowledge of 

the actual one can be achieved by means of heuristic methods. In order to improve 

the efficiency, an adequate heuristics should seek a balance between the amount of 

information provided and the computational time required to obtain it. In this 

connection, an ideal algorithm should effectively combine exploration of the largest 

unexplored regions of the objective space with exploitation of the previously 

encountered solutions (Hughes 2003). The goodness of an algorithm can be reflected 
、 

by the quality of the approximate set, which is generally measured in terms of 

diversity of the generated solutions, uniformity of their distribution, and cardinality 

(Kim et al. 2000). More specifically, a diverse set of efficient paths is essential to 

provide backup alternatives in case the designated"route is affected by an unexpected 

event. A relatively even distribution of the solutions is beneficial to the unbiased 

presentation of the possible trade-offs among alternative routes. Finally, a reasonable 
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size of the approximate set is of utmost importance. Ideally, it should be small 

enough to be handled by a decision maker and yet large enough to give an overview 

of all the possible trade-offs among conflicting objectives. 

The major concern of the proposed adaptive weighting method is how to alter the 

weights so that a good approximation of the Pareto front can be efficiently generated 

with an acceptable amount of the solutions. In our solution, once a Pareto-optimal is 

obtained, the search space will be partitioned into smaller pieces, and the regions that 

are either dominated by the known optimal solutions or free of optimal solutions will 

be discarded. The search origin and direction are then adjusted based on the largest 

unexplored space that may contain efficient solutions. 

objective fi objective/： 
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” z r i leeion dominatedby the known j f , , D ^ � / search direction Pareto-optimal solutions 

E j region free of optimal solutions + Pareto-optimal solutions found 

" s H regionito be explored for Pareto •.... front 
！ optimal solutions '•‘ 

Figure 3.9 (a) Partition of the two-dimensional scarch space; (b) determination of the 
search origin and direction based on the largest unexplored sub-region 

As shown in Figure 3.9 for the case of two dimensions�points Ra and Rp represent 

two “extreme” solutions which individually minimize each of the two objectives. 

When a Pareto optimal point Rp is found, the objective space can then be partitioned 

into three kinds of regions. Region D is dominated by a known solution Rp, hence no 

Pareto optimal point will exist there. Region E is obviously free of optimal solutions. 

Therefore, only regions S are the ones that need to be explored, with a possibility that 
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the Pareto optimal points might be found there. Once the larger unexplored region 

(e.g. the lower left sub-region S) is identified, the search origin and direction of the 

exploration for new Pareto optimal solutions can be determined accordingly. The 

way of comparing the promising unexplored regions is to compare the area of each 

concerned region because only two objectives are being considered here. When the 

dimensions m is higher than 2，the notion of volume is used to compare the 

unexplored regions. The calculation of the exact volume of the regions can be very 

cumbersome when m is large. For the sake of simplicity, in this research, the volume 

of the unexplored region is broadly estimated as the product of difference on each 

individual objective value between the nadir point and the reference point of this 

particular region. 

A list of unexplored regions is carefully maintained in implementing the proposed 

method. The list is sorted in descending order of volumes so that the largest 

unexplored region is always the next candidate to search for an additional point. 

Each time when a new efficient solution is found, the list will be updated 

subsequently. In that list, every unexplored region is described by its Utopian point 

and nadir point’ its expected volume, and the known solutions lying on its boundaries. 

The Utopian point and the nadir point of an unexplored region are defined as the 

lowest point and the furthest summit of the region, respectively. The proposed 

procedure works as follows (Figure 3.10): 

• Step 1: For each objective k’ search for the optimal solution fk, and thus 

define the Utopian point U = (//"，力“，…，/！乂）and the nadir point V = 

( A ^ ^ f i ^ - ' f m ). Based on U, V, and the optimal solutions obtained for each 

individual objective, the region to be explored can be identified. Initialize the 

list of the unexplored regions. 

" • Step 2: Remove the largest unexplored region from the list and define the 

new search origin and the new searching direction k based on the attributes of 

Uand Vas X = (Xi, A,2, ... Xm), where h = l/( f : - f j f = 1,..., m. 

• Step 3: Solve the min-max problem (3.16). 

• Step 4: If the solution found is already known, resume at Step 2; else a new 
'S 

solution is found. Calculate the new unexplored regions lying between this 
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ne\t solution and its neighbors according to their objective values, then 

y Update the list of unexplored regions and resume at Step 2. 
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Figure 3.10 Iterative search for Pareto-optimal solutions in two-dimensional 
objective space 

In Step 1，the Utopian point U = (//乂，/之“，…，) is computed as a result of m single 

objective optimizations with each objective serving as an objective function at a time. 

Once the Utopian point is determined, the information found is then used to compute 

an estimate of the nadir point V = ( f \ ^fi . f l )• An approximation of V \s 

defined in such a way that for each criterion k, f : represents the worst value 

obtained during the computation of the Utopian point. It should be noted that excepl 

for the first iteration, the attributes of U and V in Step 2 need to be updated in each �� 

iteration according to the known Pareto-optimal lying on the largest unexplored , 

region. To solve the min-max problem min max (x^ (/^ {X) - in Step 3, a �� 
\/l[=l, m -J 

classic labeling algorithm is employed in our case, along with proper modifications, 
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to yield the desirable minimization solution. The algorithm stops when a subset of 

Pareto-optimal solutions of the desired size has been obtained or when the proportion 

of the remaining unexplored sub-regions is sufficiently small. 

3.3.3 Implementation issues 

3.3.3. J Complexity of the algorithm 

As introduced in the preceding subsection, the procedure proposed to approximate 

the Pareto front mainly consists in managing the，list of unexplored regions. After 

initialization, a typical iteration of the algorithm is as follows: 

First, select the largest unexplored region. Since the list of unexplored regions 

is sorted in descending order of volumes, the largest one is always the first t % • 

element in the list. Based on the largest unexplored region, we can define the 

current search origin and direction, and solve the corresponding minimization 

problem m i n a ( > l , / ) to obtain a new Pareto point (solution). The 

minimization operation results in a complexity where m is the 

number of concerned objectives, n and e are the number of nodes and edges 

(arcs), respectively, of the network G defined at the beginning of this chapter. 

Next, verify that the newly found solution is not already known. This can be 

done by comparing this solution with N non-dominated solutions that have 

been found so far (exclude the extreme solutions found during the phase of 

initialization). Since there are m attributes which need to be compared, this 

operation can be accomplished in 0{Nm). 

Subsequently, subdivide the currently explored region based on the newly 

found point, which can create at most m sub-regions that may contain Pareto-

optimal solutions and thus need for further exploration. For each of these 

unexplored sub-regions, calculate the coordinates of the Nadir point and 

broadly estimate the unexplored volume, which result in a complexity of 0{m) • 
' 7 

and 0(m ), respectively. 
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Finally, update the list of unexplored regions by inserting the newly created 

ones in the sequence�which requires a dichotomous search over the volumes. 

This is of complexity s log(«y)) where s is the number of elements of the 

list. If N non-dominated solutions have so far been found (excluding the 

extreme solutions found during th6 phase of initialization), the list of 

unexplored regions will contain at most s = N ^m - {N -\) elements, because 

each non-dominated solution defines m unexplored sub-regions in the objective 

space but (TV — 1) of them are counted twice. 

Note that the bounds on the complexity given in the above are broadly estimated, and 

thus are probably loose. Nevertheless, one may notice that among those recursive 

steps, the first step has absolutely higher complexity than each of the rest typical 

iterations. This step involves solving a non-linear integer program of NP-hard 

'difficulty. The main computational burden in terms of run-time and memory space, 

therefore, comes from this step. Hence, the efficiency of the procedure proposed to 

� approximate the Pareto front depends largely on the efficient solution of this step. In 

addition, it is also essential to keep the number of iterations small and to make the 

most of each iteration. , 

3.3.3.2 Solving the min-max problem 

Although managing the list of unexplored regions can be onerous, it is not as 

computationally expensive as solving the min-max problem, 

min max (x^ (人 ( A ^ ) — f^^ . The general min-max optimization problem in various 

forms has long had the attention of researchers. A number of approaches for handling ‘ 

the min-max problems have been reported in previous studies. The commonly used 

methods include the classical and augmented Lagrangians (Kim and Choi 1998; 

Polak and Royset 2005), the standard and improved branch-and-bound algorithms 

(Yamada et al. 1997; Janssoq and Knuppel 1995), etc. However, in the case of 

network routing problem, both Lagrangians and branch-and-bound algorithms are 

unlikely to outperform the labeling algorithms in solving the shortest path problem . 

developed from the original min-max problem, because the labeling algorithms are 
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specifically designed to make use of the network shape. The labeling algorithms 

process the links in the optimal order and run faster than a standard linear 

programming solver (Gutierrez and Medaglia 2008)." With this consideration, the 

Dijkstra's algorithm, a classic Jiode-labeling algorithm, is employed�with proper 

modifications, to search for the minimum of the disutility function 

" ( 义 , / ) = max (义“人（ J ^ ) 一 / 广 ） ) . G i v e n the multi-objective nature of our 

m 

application problem (i.e. optimal route planning for DG transportation), the cost of 

traversing link used in the conventional Dijkstra's algorithm is, in our case, not the 

value of any single criterion, but rather the largest element of the weighted 

‘‘distance" between the point being explored and the reference point among all the 

objectives examined, that is ,c . = max (义• 一 /*�)). The procedure of solving 

(i,»e/4.A = l, .m 

the min-max problem by means of the modified Dijkstra's algorithm is similar to that 

of the conventional Dijkstra's working on shortest path problem. The recursive step 

of the algorithm can be put as follows: 

finding an arc {iJ)eA so that the costy(/) of traveling from the origin to node / 

increased with the cost c,j of travelling along (/, j ) is less than the present cost 

of travelling from origin to node j: J{i) + Cy < fif). If such an arc exists, then 

node i becomes the predecessor of node j in the shortest path and the procedure 

resumes, otherwise the present cost of travelling from the origin to node j is the 

minimum cost. 

However�everything has a cost. While the labeling algorithm can solve the min-max 

problem more efficiently than a standard linear program solver such as branch-and-

bound procedure, it causes another problem for implementation, namely the memory 

space requirements. Unlike the branch-and-bound algorithm, the labeling algorithm 

requires large amount of computer memory to store the list of temporary labels for 

every node. Considering the increasing capabilities of desktop computers in terms of 

speed and memory space, this issue�however, seems insignificant as a whole. 

3.3.3.3 Estimation of the potentially Pareto-optimal volumes 

The proposed adaptive approach approximates the Pareto-front by exploring the 

empty regions that may contain Pareto-optimal solutions. The volume of these 
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regions indicates the amount of information that remains unknown and decreases 

with more efficient solutions sought, thus indicating how effective the approximation 

is. 

The simplicity of the two-dimensional case makes one underestimate the difficulty of 

estimating these volumes. For example, consider a situation with three objectives as 

shown in Figure 3.11. 

V:.’ Vo . X ! Z ！ 。〕 

X； i f n i i D 

i ii ^ i 
I ‘ 

• /' ' . 7 V<3 I ,, , 
- “ … — ^ yfVs. 

舞 … … - . ： ^ n I • 

1 , ； j I 
^ f- f ‘ r . 

z J I I 
z ^ 

Uc Uo 

Figure 3.11 Partitioning of the three-dimensional search space • 

Suppose that Uo and Vq are the Utopian point and the nadir point, respectively, of the 

currently explored region, the point / is a non-dominated point found based on Uo 

and Vq. Region D is dominated by f and region E is free of optimal points. The 

remainder of the cuboid is potentially Pareto-optimal. Following the proposed 

procedure, there are three unexplored regions along the three faces of region D, 

namely the three cuboids with extreme vertex Fn, K12, or F13. Strictly speaking, these 

three regions are not completely unexplored as they all contain region E where no 

Pareto-optimal solution can be found. Therefore, the actual unexplored volumes 

should be calculated by deducting the volume of region E from each of them. For 

example, the exact volume of the unexplored region with the extreme vertex Vn 

should be calculated as: 
( 厂 - u i h ] -u^v.] - u i i r - u i i r - u i ) (3.18) 

Though it is relatively easy to calculate these volumes for the first iterations, it can 

become extremely difficult to handle the succedent ones, especially when the number 

of objectives is more than 3. As mentioned earlier, the purpose of calculating the 
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unexplored volume is to compare the relative size of the unexplored region and to 

identify the largest one accordingly in order to define the new search origin and 

direction for exploring additional Pareto point. On the other hand, at each iteration, 
> 

the region free of Pareto-optimal solutions (i.e. the region of type region E) is 

included in each of the unexplored regions. Whether including or excluding its 

volume in the calculation of the unexplored volumes will actually not influence the 

comparison result of the relative size of the unexplored regions. In view of this, in 

the present study, each of the potentially Pareto-optimal volumes is broadly 

estimated as the product of difference on each individual objective value between the 

nadir point and the Utopian point of this particular region. 

3.3.3.4 Termination criteria of the algorithm 

The adaptive weighting algorithm produces one solution in each iteration. More 

solutions can be generated through several iterations. The termination criterion of an 

algorithm controls the amount of solutions produced. There are two ways to define 

the criterion: it can either be defined as a desired number of solutions that is 

sufficiently small to be handled by a decision-maker, or defined as the maximum loss 

of information acceptable by the decision-maker. If either of the termination criteria 

is satisfied, the iterative process of the algorithm will be terminated. In the proposed 

adaptive method, the algorithm stops when a subset of Pareto-optimal solutions of 

the desired size has been obtained, or when the proportion of the remaining 

unexplored sub-regions is sufficiently small, that is, the total area of the unexplored 

regions is smaller than a certain percentage of the initial unexplored region. 

3.4 Summary 

The transportation of dangerous goods is a multi-objective problem (MOP) with 

stakeholders playing different roles and having different objectives. These objectives 

are generally conflicting so that a unique solution that can optimize every single 

objective is impossible. The solution of such problem is to search for one or a set of 

“compromise” solutions, known as Pareto optima, which render the best possible 
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trade-offs for conflict resolution among different objectives. The simplest and also 

most widely used method for such MOP is to minimize a positively weighted sum of 

all the objectives, thus transforming the problem to a much easier single objective 

optimization. Traditionally, the weights represent the relative importance of each 

objective provided by decision-makers, and only one solution can be rendered 

accordingly. Although simple and straightforward, weighted sum approach suffers 

from some drawbacks. In particular, this method often produces poorly distributed 

solutions along a Pareto front. Neither can it find the Pareto optimal solutions in non-“ 

convex regions. 

Motivated by the obvious need for more efficient solutions, a couple of MOP 

techniques are proposed in this research, namely, the compromise programming 

method and the adaptive weighting method. Compromise programming is a 

multicriteria decision technique which employs a priori information on the 

preference structure of the decision-maker to find a compromise solution amongst a 
r 

set of conflicting objectives. CP expresses the goal-seeking behavior in terms of a 

distance function. In order to achieve this, a reference point is taken to represent the 

goal to be attained, and the distance to this point from any other point of the 

objective space is minimized. In this research, without loss of generality, the 

reference point is defined as the ideal point where each objective achieves its 

minimum value simultaneously, and decision makers would prefer the solution 

having a cost value as close as possible to the minimum. The distance between an 

efficient point and the reference point is calculated by using the Ip-metric. The 

weights accounting for the decision-maker's preferences for different objectives are 

computed by means of analytic hierarchy process. 

Optimal route planning for DG transportation can be treated as a multi-objective 

shortest path problem. The Dijkstra's algorithm is one of the most commonly used 

algorithms in routing analysis, which solves the single-source shortest path problem 

with non-negative link cost. This algorithm, however, can only solve single objective 

shortest path problem, whereas DG routing involves multiple objectives, and thus 

multi-objective shortest paths should be derived. In order to address this issue, a 

modified Dijkstra's algorithm is developed in this, study, which incorporates 

compromise programming in search for the Pareto optimal routes for DG 
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transportation. The core of the modification is to take into account multi-objectives 

in the cost calculation for each link. The composite cost of a link is computed by 

aggregating multiple attributes into a single one through compromise programming, 

with the consideration of decision-makers' preference for each objective and 

perspective on the deviation of a feasible solution from the ideal solution. The ‘ 

modified Dijkslra's algorithm guarantees that the solution belongs to the set of 

efficient solutions. ‘ 

The compromise programming model attempts to find the Pareto optima in a pre-

‘ determined fashion. The weights accounting for the preferences for different 

objectives are defined a-priori by a decision-maker. In some cases, however, it is 

difficult for decision makers to state their preferences before they have an explicit 

conception of the actual trade-offs involved. Consequently, it is often desirable to 

generate the efficient solutions first, and then let decision makers select the most ‘ � 

preferred or the best compromise solution from this set. Identifying the entire Pareto 

optimal set is practically impossible due to its size. Therefore, a realistic approach is 

to investigate a set of solutions that represent the Pareto optimal set as well as 

possible. With these concerns in mind, an adaptive weighting method is developed. 

Rather than an unnecessarily extensive search� th is method focuses the search on a 

particular region of the Pareto front in order to obtain a subset of the Pareto optimal 

solutions. A weighted maximum utility function is adopted in the method. By 

altering the weights adaptively according to the largest unexplored feasible region 

and solving the corresponding min-max problem through custom-made labeling 

algorithm, a relatively well-distributed set of Pareto optimal solutions can be 

generated efficiently. When the approximation of the Pareto front reaches a pre-

specified resolution, the algorithm terminates. The proposed adaptive n^ethod is 

capable of generating reasonably good solutions to present the decision-maker with 

an unbiased overview of the possible trade-offs among the concerned objective. 

The compromise programming model and the adaptive weighting approach are two 

MOP methods proposed in this research to solve the multi-objective DG routing i 

problem. Both of them can be considered as the class of deterministic technique, j 
. . . . . ^ 

within which the exploration in the search space is goal-directed, rather than a 1 

random search. Besides the deterministic methods, the heuristic technique, i.e. % 
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genetic algorithm in our case, has also been explored in this research to search for ] 
efficient ̂ lutions for multi-objective DG route planning. This will be elaborated in ^ 
the next-chapter. j 
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CHAPTER 4: EVOLUTIONARY MULTI-OBJECTIVE PATH 

OPTIMIZATION 
I 

Route planning for the transportation of dangerous goods often requires the 

optimization of multiple objectives that are conflicting and non-commensurable. 

‘ ‘ M a n y approaches have been developed to generate various routing alternatives. 

These methods typically depend on a weighting mechanism to aggregate multiple 

objectives into a single one. As a result, the process becomes a single-objective 

optimization, and the outcome of this simplified process will largely depend on the , 

vector of weights employed. To generate the desired solution, the exploration in the 

objective space is always oriented towards the expected direction. In other words, the 

search is goal-directed, rather than a random search. In the literature of multi-

objective optimization, these optimization methods generally belong to the class of 

deterministic technique. The compromise programming approach and the adaptive 

method introduced in Chapter 3 fall within this category. 

« 

Since the 1960s there has been increasing interest in the simulation of living beings 

to develop powerful algorithms for difficult optimization problems. Evolutionary 

algorithm (EA), a probabilistic optimization technique, provides an alternative to the • 

conventional techniques. Among all the EAs, genetic algorithm (GA) is the most 

widely used. GAs are a class of global search methods that are modeled after the 

mechanics of natural evolution within populations and species via reproduction, 

competition, selection, crossover breeding, and mutation. They operate with a 

population of possible solutions rather than a single candidate. Therefore, they are 

less likely to get trapped in a false local optimum. Moreover, a number of Pareto 

optimal solutions may be captured during one run of GA. GAs are relatively simple 

and easy to implement. They do not require any auxiliary information such as 

gradients other than the evaluation of the multiple objective functions. These merits 

make GAs very appealing as more reasonable candidate optimization tools for 

optimal route planning for the transportation of DG. 

This chapter introduces the proposed GA-based approach, a heuristic method, to the 

multi-objective path optimization problem. First, GAs and their characteristics are 
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briefly introduced at the beginning. Then the major components and basic structure 

of simple GAs are examined. Subsequently, a detailed introduction of the proposed 

GA-based heuristic approach to multi-objective route planning for DG transportation 

‘ is presented, which includes the genetic representation scheme of candidate solutions, 

initialization of population, and the evaluation of fitness. Finally, the genetic 

operators used in the proposed GA are discussed with specifics on the 

implementation issues 

4.1 Genetic algorithms 

4.1.1 Introduction 
* \ 

• « 

； 

Evolutionary algorithm (EA), a probabilistic optimization technique which has been 

proposed based on Darwin's theory of natural selection, provides an alternative to 

conventional techniques of solving optimization problems. The class of evolutionary 

algorithms includes genetic algorithms (GA) (Holland 1975), genetic programming 

(GP) (Koza 1992), evolutionary programming (EP) (Fogel et al. 1966)， and 

evolutionary strategy (ES) (Schwefel 1995). Among all the evolutionary algorithms, 

GA is probably the most widely used method. GA was first introduced by Holland 

(1975) and it has been receiving increased attention thanks to the tremendous 

successful applications in different disciplines, such as bioinformatics, engineering, 

economics, chemistry, manufacturing, mathematics, and physics (Tarafder et al. 

2005). 

A genetic algorithm is a computational model simulating the process of genetic 

selection and natural elimination in biologic evolution. As a highly efficient search 

strategy for global optimization, GA exhibits favorable performance on solving 

multi-objective optimization problems. Compared to traditional search algorithms, 

GA is able to acquire and accumulate the necessary knowledge about the search 

space automatically during its search process, and control the entire search process 

self-adaptively through the random optimization technique. Being a population-based 

approach, GA can find multiple feasible solutions in a single run. The ability of GA 
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to simultaneously search different regions of the solution space makes it possible to 

find a diverse set of solutions for complex problems with non-linear objective 

functions and non-convex solutions space. In addition, most multi-objective GAs do 

not require users to prioritize, scale, or weigh objectives. 

The basic idea of GA is to start with a population of potential solutions (represented 

as chromosomes) instead of a single point in the search space, and allow the 

population to evolve using genetic operations such as selection�crossover, and 

mutation until the termination criteria are satisfied. In the evolution process, GA uses 

a directed random search strategy: genetic operators such as crossover and mutation 

perform essentially a blind search, while the selection operator hopefully directs the 

search towards the desirable area of the solution space. This indicates that selection \ 

plays an important role in exploitation, while crossover and mutation are critical in 

exploration. A general principle for applying genetic algorithms to a particular real-

world problem is to make a good balance between exploration and exploitation of the 

search space. To achieve this, all the components of the genetic algorithms, such as 

population size, crossover and mutation rate as well as the mechanism used for 

population initialization, individuals' representation, and evolution implementation, 

should be examined carefully. Moreover, additional heuristics may be needed to 

enhance the performance of the algorithm. � 
• v. 

4,1.2 Overview of genetic algorithms 

Genetic algorithm was first developed by Holland (Holland 1975). In general, GA 

consists of five basic components as summarized by Michalewicz (1996): 

1. A genetic representation of solutions to the problem; 

2. A way to create an initial population of solutions; 

3. An evaluation function rating solutions in terms of fitness; 

4. Genetic operators that generate new individuals; 

5. Values for the parameters of genetic algorithms. 
« 

A genetic algorithm generally starts with a population of randomly generated 

individuals (i.e. chromosomes, each representing a potential solution to the problem) 
I 

and happens in generations. In each generation, the fitness of each chromosome in 
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the population is evaluated by a predefined function. Multiple chromosomes are 

stochastically selected from the current population (based on their fitness) and 

modified (recombined and randomly mutated) to form a new population. The new 

population is then used in the next iteration of the algorithm. This iterative process 

continues until the termination criterion is satisfied. The general procedure of genetic 

algorithms can be summarized as follows: 

Procedure: Genetic Algorithms 
begin 

t = 0 
generate initial population P(t) 
evaluate P(t) 
while (not termination condition) do 
begin 

t = t + 1 
select P(t) from P(t-l) based on fitness of the individuals in P(t-l) 
generate (by crossover and mutation) structures in P(t) 
evaluate P(t) 

end 
end 

where P(t) is the population at generation t. Figure 4.1 shows the simplified 

flowchart of a GA. 

r 

Start 
V � j � 

Initialize population 

gen = 0 

• Fitness Evaluation 

gen = gen + 1 下 e � Reproduction 
Z ^ r 

‘ Stop * 
Crossover 

I 
Mutation 

Figure 4.1 Flowchart of a genetic algorithm 

92 



Genetic representation (encoding) plays an important role in genetic algorithm. The 

original GA uses binary encoding. However, with the increasing utilization of GA in 

more complex problems, different encoding methods have been proposed�such as 

real-number encoding, integer or literal permutation encoding and general data * 

structure encoding (Gen and Cheng 2000). Traditionally, the initial population is 

generated randomly with an attempt to cover the entire range of possible solutions 

(the search space). In some occasions, the solutions may be "seeded" in the areas 

where optimal solutions are likely to be found. ， 

To evolve to the next generation, genetic operators (i.e., selection, crossover, and 

mutation) are employed to recombine the solutions in the previous generation to 

form a new generation. Selection (reproduction) is a process in which the individuals 

are selected based ‘on their fitness and copied to the next generation.. Selection is 

intended to improve the average quality of the population by giving the high-quality 

chromosomes better chances of being copied into the next generation (Goldberg 

1989; Hue 1997). The selection thereby focuses the exploration on promising regions 

in the solution space. Selection should work to impose a balance between selection 

pressure and population diversity. The selection pressure is defined as the ratio of the 

probability of selection of the best chromosome in the population to that of an 

average chromosome. The convergence rate of GA is largely determined by the 

magnitude of the selection pressure. A low selection pressure leads to low 
I 

convergence rate, and the GA will take unnecessarily longer time to find the optimal 

solution. On the other hand, a high selection pressure results in the population's 

> reaching equilibrium very quickly, but with inevitable sacrifices in genetic diversity 
A 

(i.e., convergence to a suboptimal solution). Therefore, the proper selection schemes 

are of importance to the implementation of a GA. Many selection methods have been 

proposed. The selection schemes commonly used in the current practice include 

roulette wheel selection (Holland 1975), ranking selection (Baker 1985), tournament 

‘ selection (Goldberg et al. 1992), and Genitor (or “steady state") selection (Whitley 

1989; Syswerda 1989). 

Crossover is a process of combining two parental chromosomes and generating new 

offsprings that are different from their parents. After the selection (reproduction) 
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process, the population is enriched with better individuals. Reproduction makes 

clones of good chromosomes but does not create new ones. A crossover operator is -

applied to create better offsprings. The simplest genetic algorithm uses single-point 

crossover in which only one cfossover point is randomly selected to break a 

chromosome into two segments. By exchanging corresponding segments of two 

parents, new offsprings are then produced. Figure 4.2 illustrates the single-point 

crossover operation. 

Parent 1 | 0 1 0 0 l j 0 0 0 1 厂 , 
Parent 2 0 0 0 1 1; 1 "0 0 0 1 

4 . 

Offspring 1 l o i Q O l ; 1 0 0 0 1 

Offspring 2 0 0 0 1 l l o 0 0 1 o" ^ 

Figure 4.2 Single-point crossover 

« • 

� ". In addition to the single-point crossover, more complicated crossover operations 

have also been proposed, such as multi-point crossover (De Jong and Spears 1992) 
V • • 

• > • • 

and uniform crossover (Ackley 1987). They are all based on the same principle of 

exchanging corresponding segment(s) of two parents to produce offsprings. Figure ’ 

4.3 illustrates a two-point crossover operation. The dotted lines indicate the 

crossover points. Thus the contents between these points are exchanged between the 

parents to produce new offsprings for mating in the next generation. 
- 、 ‘ 

. Parent 1 I 1 1 0： 0 1 0 ； 1 0 0 1 
, Parent 2 | 0 0 1 ; 0 0 1 ; 1 1 0 0 

V . 

‘ O f f s p r i n g 1 I 1 1 0 0 0 1 1 0 0 1 
Offspring 2 0 0 i j o 1 o j l 1 0 o" 

Figure 4.3 Two-point crossover 
£ 

t 
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In Figure 4.4, the offsprings are produced using the uniform crossover approach. ] 

Each gene in the offspring is created by copying the corresponding gene from one or * 
^ \ 

、 . ； 
the other parent chosen according to a crossover mask of the same length as the ； 

chromosomes. A crossover mask is randomly generated for each pair of parents. The : 

offsprings�therefore, contain a mixture of genes from each parent. 

Parent 1 I 1 0 1 0 0 0 1 1 1 o" 
Parent 2 0 0 1 1 0 1 0 0 1 0 

• Mask 0 L 1 0 0 1. 1 0 0 0 ‘ 
‘ Offspring 1 0 0 1 1 0 0 1 0 1 0 ^ 

Offspring 2 1 0 1 0 0 1 0 1 1 0 

‘F igu re 4.4 Uniform crossover 
‘ « -\ 

Mutation plays a role in alterations of genetic materials and randomly disturbing ， 
‘ “ ‘ .J 

genetic information. It is considered as a background operator to maintain genetic 

diversity in the population. Mutation introduces new genetic structures in the 
* "f 

population by randomly modifying some of its building blocks. It assists the search 

in escaping from local optima' and maintains diversity in the population. The ^ 
- ‘ . ‘ 广. i 

mutation operation is essentially done by altering the value of a randomly /iselected 
position in a string. Figure 4.5 illustrates a chromosome before and after mutation at • % 

\ 
two mutation points indicated by the double arrows. ； 

• ‘ • ‘ 

• • •— 

‘ P a r e n t l o o i o i o o o i o l ^ 

• 丨 t , 1 
Offspring I 0 0 0 0 1 0 0 1 1 0 ‘ I 

I ( 1 1 
• i 

Figure 4.5 Mutation operation i 

真 . •• i 
i 

An important • parameter in mutation operation is the mutation probability, which 
• I 

decides how frequently parts of chromosome are mutated. Compared to crossover : 
. . 1 

_ probability (which is usually between 0.6 and 1), mutation probability is usually set j 
j i 

fairly low (e.g. 0.01). If it is set to high, the search will turn into a primitive random 

search. 丨 
1 

.i 
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Termination is the criterion by which the genetic algorithm decides whether to 

continue or to stop the search. The termination criteria can be specified as the 

permissible maximum number of generations or an acceptable approximated solution. 

The evolution process can also be terminated when the best individual found has 

remained unchanged over a specified number of consecutive generations. Generally, 
« -

the last criterion applies as convergence slows to the optimal solution (Louis 1993). 
I 

4.2 A GA-based approach to multi-objective path optimization 

problem 

While the basic structure of a genetic algorithm is universally followed in all 

applications to solve an optimization problem, experience has shown that the success 

of GA is largely dependent on the specifics of how it is applied. To this end, the 

essence of a customized genetic algorithm for the multi-objective route planning for 

the transportation of dangerous goods is detailed in this section. 

4.2.1 Genetic representation 

Genetic representation (encoding) of a solution to the problem in the context of a 

chromosome structure is a critical step in a genetic algorithm. Various encoding 

methods have been developed for different types of problems. According to the type 

of symbols used as the alleles of a gene, the encoding methods can be classified as: 

binary encoding; real number encoding; integer or literal permutation encoding; and 

general data structure encoding (Gen and Cheng 2000). Binary encoding is 

commonly used because it is simple to create and manipulate. In addition, single-

point crossover and mutation can be conducted without modification to a range of 

problems (Davis 1991). However, for many problems in the real world, it is hard or 

even impossible to represent solutions using binary encoding. Other representation 

schemes are better suited for these problems. For example, real number encoding 

> outperforms binary encoding for function optimizations and constrained ' 

optimizations (Eshelman and Schaffer 1993, Michalewicz 1996，Walters and Smith • 
I . 

• 1995), while integer or literal permutation encoding is deemed best for combinatorial 
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optimization problems, which searches for a best permutation or combination of 

objectives subject to constraints (Cheng et al. 1999; Zhu 2003; Wang et al. 2008). 

Genetic algorithms have seen wide applications in solving various transportation 

problems such as shortest path problem, vehicle routing problem, traveling salesman 

problem, network flow problem, etc. When solving these problems by genetic 

algorithms, the integer-string representation is most commonly used for chromosome 

encoding. The candidate solution is usually represented as a string (chromosome) of 

K distinct integers, where K is the number of nodes the candidate route comprises. 

Each gene in the chromosome is the integer node number. The sequence of the genes 

indicates the order of the nodes through which the routing path passes. For example� 

• the integer string of 1 - 2 - 6 - 3 - 7 - 8 - 4 - 9 - 5 - 10 represents a route between 

nodes 1 and 10 shown in Figure 4.6. 

Figure 4.6 Example of a route and its integer encoding 

The same encoding scheme is adopted in the proposed genetic algorithm to represent 

potential routing solutions. In this method, a feasible route is represented as a 

variable-length chromosome, which consists of an ordered sequence of positive 

integers representing the IDs of nodes through which the route passes. Each gene of 

the chromosome represents a node in a route. The first gene is always reserved for 

the source node. The length of the chromosome is variable, depending on the number 

of nodes that form the route. Every chromosome starts with a source node and ends 

with a destination node, connecting links that stretches from the origin to the 

destination along a constrained network. An example of genetic representation for a 

route from node S to node T is shown in Figure 4.7. The chromosome is encoded as a 

list of nodes along the constructed route, {S - P丨-P2 -…—Pn-i - Pn -T}. The first 

gene encodes the source node S, and the second gene encodes the node randomly or 

heuristically selected from the network, which is connected with node S. This 

procedure continues iteratively for the succeeding nodes until a simple path to the 
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destination node T is created. It should be noted that a valid chromosome is loop-free, 

that is, no duplicated integers should be included in the sequence. The existence of 

loops may cause problems when routing. Neither can the consistency of routing be 

guaranteed in the presence of loops. 

c h r o m o s o m e :卜 | 丨尸，丨 . . . | /y,丨尸„ | r 

Figure 4.7 Example of a routing path and its encoding scheme 

4,2,2 Population initialization 

A genetic algorithm normally starts with an initial population. In general, there are 

two issues to be considered for population initialization of GA: the initial population 

size and the procedure to initialize the population (Goldberg 1989; Hue 1997). It is 

generally agreed that the population size should increase significantly with the 

complexity of the problem in order to generate good solutions. While a large 

population might increase the diversity of solutions, it demands excessive costs in 

terms of both memory and time (Goldberg 1989; Harik et al. 1999). Recent studies 

have shown, however, that satisfactory results can be obtained with a much smaller 

population size using an additional elitism strategy and adaptive grid-type technique 

to accelerate the convergence and to keep the diversity in Pareto front (Coello and 

Pulido 2001). As would be expected, deciding adequate population size is crucial for 

the efficiency of a GA. In this study, the size of the initial population is defined as an 

empirical parameter, and its value is set after a number of experimental tests. The 

determination of population size aims at striking a balance between the extra 

computational efforts and the diversity of rendered solutions. 

Population initialization is a cruciai task in genetic algorithms because it can affect , 

the convergence speed as well as the quality of the final solution. In general, there 

are two ways to generate initial population. The first one is random initialization. In 

the absence of a priori information about solution, random generation is most 
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commonly used to create initial population. Baker and Ayechew (2003) argue that 

randomly generated population (over a more structured approach) ‘provides a more 

diverse population that converges to a near optimal solution quickly.' The other way 

to initialize population is heuristic initialization. A good knowledge of the problem 

always contributes to the problem-solving process. Upon its availability, heuristic 

initialization can be performed by "seeding" solutions in areas where optimal 

solutions are likely to be found. Seeding the initial population may improve initial 

quality and provide a better starting point for the genetic algorithm. It has been 

observed that the mean fitness of heuristic initialization is generally higher than that 

of random initialization so that it may help the GAs to find solutions faster (Zhang 

and Armstrong 2008). 

Random initialization benefits the diversity of population; however, it may take 

• longer time for the GAs to find satisfactory solutions. On the other hand, heuristic 

initialization provides a better starting point for a GA, which may facilitate the 

convergence of the algorithm. Using a purely heuristic method would, however, 

merely produce a number of solutions all identical to each other, which would be 

undesirable in terms of the evolutionary theory. In this regard, we experiment with 

both techniques to initialize a group of individuals (candidate routes) in the 

population. The initiation procedure starts with an origin and randomly chooses a 

valid node based on the connectivity information of the network. The encoding 

process keeps selecting a valid node that can be connected to the last node of the 

current route and has not been included in the route so far, until a destination is 

reached. However, applying random walk only can result in poor performance when 

working on larger sized network, for example, consuming an excessive amount of 
V 

CPU time to form extremely long chromosomes. To solve this problem, heuristics 

are introduced into the initialization process. A hybrid approach that contains the 

seeds generated by Dijkstra's shortest path algorithm is employed in this study. The 

seeds include the routes produced by Dijkstra's algorithm on each single objective, as 

well as those generated by combining two or more objectives using unbiased 

preferences (i.e., equal weight) on each objective. The objectives to be combined and 

the number of these objectives are chosen at randpm, while the duplicated 

combination is prevented. The heuristic initialization will contribute 20% individuals 
» 

in the initial population, and the remaining individuals are provided by random walk. 
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By incorporating random initialization with heuristic initialization, we may achieve a 

higher quality of initial population than random generation while still preserving 

population diversity to certain extent. 

4,2,3 Fitness evaluation 

The fitness function in a single-objective GA is typically the objective function of the 

indicated optimization problem (Goldberg 1989; Leung et al. 1998). It is used to 

measure the quality of the individuals (chromosomes) in a population. The fitness 

function has a higher value when the fitness characteristic of the chromosome is 

better than others. Moreover, it introduces a criterion for the selection of 

chromosomes. The definition of the fitness function is therefore very critical (Hue 

1997). 

Different from single-objective GAs, in a multi-objective scenario, the fitness value 

of a solution should reflect its optimality in each of the objectives. The fitness value 

of a solution depends not only on the values from a single objective function, but 

also on its optimality within the entire population. Therefore, a Pareto optimum 

concept is adopted. In the proposed GA, a Max-Min fitness function (Balling et al. 

1999) is employed to measure the Pareto optimality of each route in a particular 

generation: 

( ( r - Vi 
Fitness' = 1 — max min — ( 4 . 1 ) 

" i 卜1.2 J〔 一 j-mm j J 

where Fitness' is the fitness of the /th route in the generation, / / and / / are the 

values of the ^th objective for the /th and yth routes in the generation, respectively. 

The scaling factors / 厂 and / 厂 are maximum and minimum values, respectively, of 

the ^th objective in the generation. 

In equation (4.1)，the min is taken over all the objectives from 1 to m, and the max is 

taken over all routes in the generation from 1 to n (i.e. population size) except route i. 

Hence, the Max-Min fitness function here can be easily implemented as three nested 

loops. The outer loop over i ranges from 1 to n. The middle loop over j ranges from 1 
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to n - 1. The inner loop over k ranges from 1 to m. Thus, the total number of 

comparisons is w x « x (/? - 1). 

The Max-Min fitness function is derived from the definition of dominance. Any 

chromosome whose Max-Min fitness value is less than 1 is a dominated route; it is 

otherwise a non-dominated route if the value of Fitness is greater than one. This is 

because Fitness' > 1 indicates that the latter part of the right-hand side of equation 

( ( / • ' • _ " ^^ 
(4.1) is negative, i.e. max min — ^ — < 0 , which means route / 

outperforms the others on at least one objective. A chromosome is weakly-dominated 

if its Max-Min fitness is one, which means that it is either a dominated route or a 

duplicate non-dominated route. The Max-Min fitness of a solution can identify not 

only whether a solution is dominated or not (with respect to the rest of the 

population), but also whether it is clustered with other solutions, i.e., diversity 

information. When the fitness is maximized, it' rewards diversity and penalizes 

clustering of non-dominated solutions (Balling 2003). As a result, no additional 

clustering or niching technique is needed with the Max-Min fitness function. 

For multi-objective DG routing problem, a route is a “non-dominated route’，if it is 

feasible and there is no other feasible solution in the generation which has better 

values for all the objectives considered. According to equation (4.1), the fitness of 

Pareto-optimal routes will be between 1 and 2，whereas the fitness of dominated 

routes will be between 0 and 1. A “clustered route” is a route whose objective values 

are close to those of other candidates in the generation. According to equation (4.1), 

the Max-Min fitnesses of clustered non-dominated routes are greater than and close 

to 1，whereas the Max-Min fitnesses of non-clustered non-dominated plans are 

greater than and far from 1. Thus, the Max-Min fitness function given by equation 

(4.1) penalizes both dominance and clustering. Maximizing the Max-Min fitness 

function will yield a diverse set of non-dominated routes. 

4.2,4 Genetic operations 

4.2.4.1 Selection 
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During each successive generation, a proportion of the existing population is selected 

to breed a new generation. Individual chromosomes (solutions) are selected through 

a fitness-based process, where fitter chromosomes are typically more likely to be 

selected. There are two basic types of selection scheme commonly used in current 

practice: proportionate selection and ordinal-based selection (Goldberg 1989; Hue 

1997). 

Proportionate selection selects chromosomes based on their fitness values relative to 

that of the others in the population. It is generally more sensitive to the selection 

pressure. Therefore, a scaling mechanism in the form of function transforming the 

raw fitness into scaled fitness is often used, which redistributes the fitness range of 

the population in order to adapt to the selection pressure. Fitness scaling aims to 

maintain a reasonable differential between relative fitness ratings of chromosomes, 

and to prevent too-rapid takeover by some “super’’ chromosomes to meet the 

requirement to limit competition early but to stimulate it later (Gen and Cheng 2000). 

The best known proportionate selection technique is the roulette wheel selection 

(Figure 4.8). The principle of roulette selection is a search through a roulette wheel 

with the slots in the wheel proportionate to the chromosome's fitness values. The 

value of a chromosome is set by dividing its fitness by the sum of the fitness in the 

population. Each chromosome is assigned a slice of the roulette wheel, with the size 

of the slice being proportional to the chromosome's fitness. The wheel is spun N 

times, where N is the number of chromosomes in the population. On each spin, the 

chromosome under the wheel's marker is selected as a parent for the next generation. 

Due to the randomness of the selection, fit 'chromosomes are not guaranteed to be 

selected for, but have a higher probability of selection. For this reason, elitism is a 

common practice in GA selection to ensure that the best chromosomes are selected 

and copied directly to the next generation. 

Ordinal-based selection schemes select chromosomes based on their rank rather than 

fitness within the population. The chromosomes are ranked according to their fitness 

values. The selection pressure depends on the relative ranking of the population. 

Similar to proportionate selection schemes, ordinal-based selection suffers when the 
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selection pressure is inadequate (i.e., low or high), in other words, a low selection 

pressure leads to low convergence rate, while a high selection pressure may result in 

loss of genetic diversity or convergence to local rather than global optima. Examples 

of ordinal-based selection type include tournament selection, (}j., X) selection, 

truncation selection, and linear ranking selection. 

Pointer 
(whee l ' s marker) 

Fittest chromosome has \ Z \ 
largest share of the \ 7 Weakest chromosome has 
roulette wheel \ smallest share of the 

roulette wheel 

Figure 4.8 Roulette wheel selection 

Tournament selection (Goldberg et al. 1992) is one of the most widely used ordinal-

based selection schemes. In tournament selection, a specified number of 

chromosomes, s (tournament size), is selected from the current population. The best 

individual out of the s chromosomes is selected for further genetic operation. The 

selection of s chromosomes can be performed either with or without replacement. 

The difference is that in a selection with replacement, the chromosomes selected for . 

the current tournament are candidates for other tournaments; while in a selection 

without replacement, the chromosomes once selected are not candidates for other 

tournaments. In GA literature, tournament selection without replacement has 

received considerable analytical attention, and has been successfully used in a wide 

variety of GAs. Tournament selection without replacement works by means of 

choosing non-overlapping random sets of s chromosomes from the population, 

running tournaments among them, and selecting the winner of the tournament from 

each set to serve as a parent for the next generation. The mating pool comprising the 

tournament winners has higher average population fitness. The fitness difference 
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provides the selection pressure, which drives GAs toward improved population 

fitness of the succeeding generations. Unlike the roulette wheel selection, the 

selection pressure in the tournament selection strategy is easily adjusted by changing 

the tournament size. The selection pressure increases as the tournament size becomes 

larger (Hue 1997; Harik et al. 1999). The tournament selection technique is simple 

and efficient. The main advantage of this mechanism is that it does not require 

implementation of any ranking or scaling method; instead, only the relative 

differences of fitness values between the selected individuals are needed. 

In the proposed GA, the tournament selection without replacement is employed to 

generate a new population for the next generation. Tournament selection is 

implemented with a tournament size of three. Each time three chromosomes (routes) 

are randomly selected from the current generation, and are involved in the 

tournament. The chromosome with the highest fitness value (i.e., the best Pareto-

optimal route) is selected and put into the mating pool. This process will repeat N' 

times until the mating pool is filled. The N' chromosomes in the mating pool will 

then be undergoing genetic operations such as crossover and mutation to produce 

succeeding population. Note that the value of N’ is not the same as that of the 

population size N, rather, N' is a bit smaller than N. The rest {N - N') chromosomes 

in the immediate succeeding generation will be derived through the elitism strategy 

(which will be explained in the next paragraph). Tournament selection without 

replacement is perceived as an effort to keep the selection noise as low as possible 

(Goldberg et al. 1992). Hence, in each generation, once a chromosome has been 

selected in the tournament selection, it will be removed from the population in order 

to ensure that the same chromosome would not be chosen twice as a parent. 

As a common practice in most G A s � t h e selection operation employed in the 

proposed GA also incorporates an elite retaining strategy. Elitism is the process of 

preserving previous high performance chromosomes from one generation to the next. « 
This is usually achieved by simply copying the fittest chromosomes directly into the 

new generation. Elitism has long been considered an effective method for improving 

the efficiency of a GA (De Jong 1975). Various studies have shown that inclusion of 

an elitist element can considerably improve the performance of the algorithms, 

because it ensures that the best solutions found would not be lost (Zitzler et al. 2000; ‘ 
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Deb et al. 2000). In this study, elite retaining is carried out before the actual 

tournament selection starts. The elitism is chosen at 10%, meaning that 10% of the 

best individuals whose Max-Min fitness values are the highest in the current 

generation are copied directly into the next generation without modification. 

4.2.4.2 Crossover • 

The crossover operator, one of the distinctive characteristics of GAs, plays a vital 

role in the search process. It is considered one of the essential components for the 

good performance of a GA. 

Crossover is the process of combining two parent solutions and producing offsprings 

from them. It is applied with an expectation that a better offspring is created. 

Crossover proceeds in three steps: 

i. The selection operator randomly selects a pair of parent chromosomes for the 

mating; 

ii. A cross-site is then selected at random along the length of the mated 

chromosomes; 

iii. Finally, the position values are swapped between the two chromosomes 

following the cross-site. 

For a selected pair of chromosomes, a random number between zero and one is 

generated. If the random number falls below the crossover probability, then these 

two chromosomes will be recombined. Crossover is achieved by simply choosing at 

random a crossover point (cross-site), copying everything before this point from one 

parent and then, copying everything after the crossover point from the other parent. 

Besides the single-point crossover, more complicated crossover algorithms have also 

been devised, which often involve more than one cut point. An advantage of having 

more crossover points is that the problem space may be searched more thoroughly. 

However, adding additional crossover points is more likely to disrupt the building 

blocks of chromosomes during the process of crossover operation, and consequently . 

degrade the performance of the GA (Sivanandam and Deepa 2008). 
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In routing problems like multi-objective route planning addressed in this research, 

crossover essentially plays the role of producing offsprings (i.e. new routes) by 

cutting the two chosen chromosomes (parents) and exchanging each partial route of 

the parent chromosomes. Each offspring represents only one route. One partial route 

connects the source node to the intermediate node where crossover is conducted (i.e. 

cross-site), and the other partial route connects the intermediate node to the 

destination node. The crossover between two dominant parents chosen by the 

selection gives higher probability of producing offsprings possessing the dominant 

traits. 

In view of this, one-point crossover is employed in the proposed GA. Unlike the 

conventional one-point crossover operating on two chromosomes of the same length, 

in the proposed crossover scheme, the two chromosomes (routes) chosen for 

crossover can have different lengths, that i s � t h e number of nodes that form each 

parent (route) can be different from each other. The only condition is that the two 

parent chromosomes have at least one gene (node) in common except for the source 

and destination nodes. This common node is the crossover point/cross-site where 

crossover is accomplished. The crossover point can be at different positions on each 

parent chromosome. For example, it may be on the 23'd node in one parent, but on 

the 15th node in the other. If more than one common gene is found, the proposed GA 

will randomly choose one of them as the crossover point. Figure 4.9 shows an 

example of the crossover procedure. Two routes, {S - P]- Ps - P^ - P4 - Py - T) 

and { S - P 2 - P i - P 4 - P 5 - T } , d j : Q selected by tournament selection as parent 1 and 

parent 2, respectively, for mating. P3 is detected as the node which is commonly 

included in both routes. It is then used as the crossover point of each chromosome. 

Each route is "broken" into two partial routes on the crossover point: {S - Pj- Pj} 

and (Ps -P4- P7 -T) from parent 1，and {S — P2-P3} and {P4 - P5 - T} from 

parent 2. Two corresponding partial routes are subsequently exchanged: for example, 

{Pe - P4 - P? - T} from parent 1 is exchanged with {P4 - P5 - T) from parent 2. 

The partial routes are then assembled: {S- Pj- P3} from parent 1 is connected with 

{P4 -P5-T} from parent 2, while {S-P2-P3} from parent 2 is connected with {P^ ^ 

-P4 - P7 - T) from parent 1. Two new routes are produced eventually, they are: {S 

-PJ-P3-P4-P5-T} and {S-P2-P3-P6 -P4-P7-T}. 
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Figure 4.9 An example of single-point crossover 

The crossover procedures may generate loops in routes. A route with one or more 

loops in it is regarded as an infeasible route, since it is commonly agreed that the 

solution to the shortest path problem should not include any loop. To cure infeasible 

chromosomes, a repair function is applied in the proposed GA to eliminate undesired 

loops in each infeasible chromosome. 丁 h e proposed repair function detects a loop in 

a route by searching for duplicated nodes. The loop is then eliminated by deleting the 

duplicated nodes. For example, the route {S - Pi - P2 - Pg - Pu - P13 - Pg - P14 -

Pi9 - P24 - T} produced by crossover is an infeasible route since a loop {Pg — P14 -

Pi3 - Pg} can be detected in it. By deleting one of two node Pg, a valid route { S -

Pi - P2 - Pg - Pi4 — Pi9 - P24 - T} is generated accordingly. 

4.2.4.3 Mutation 

Similar to the role of crossover, mutation is also critical to the success of GAs. If 

crossover is supposed to exploit the current solution to find better ones, mutation is 

supposed to help explore the whole search space (Sivanandam and Deepa 2008). 

Mutation is viewed as a background operator to maintain genetic diversity in the 

population. It plays the role of altering genetic materials as well as for randomly 

disturbing genetic information. Mutation introduces random changes to a 

chromosome and thus maintains or increases population diversity. It diversifies the 

search directions and avoids the convergence of the algorithm to local optima. 
/ 
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After crossover, the newly generated chromosomes are subjected to mutation. 

However, not all but part of the chromosomes will take part in the mutation 

‘ procedure. Whether a chromosome will be mutated is determined by the probability 

of mutation (i.e. mutation rate). For a chosen chromosome, a random number 

between zero and one is generated. If the random number falls below the rate of 
» 

mutation, then this particular individual will be mutated. There are many different 

types of mutation, such as flip bit mutation, boundary mutation, uniform mutation, 

non-uniform mutation, and Gaussian mutation. Unlike the flip mutation which can 

only be used for binary genes, the other four mutation operators can only be used for 

integer and float genes. The flip bit mutation simply inverts the value of the chosen 

gene (0 goes to 1 and 1 goes to 0). The boundary mutation replaces the value of the 

chosen gene with either the upper or lower bound for that gene (chosen randomly). 

The uniform mutation replaces the value of the chosen gene with a uniform random 

value selected between the user-specified upper and lower bounds for that gene. The 

non-uniform mutation increases the probability that the amount of the mutation will 

be close to 0 as the generation number increases. This mutation operator keeps the 

population from stagnating in the early stages of the evolution, while allows the 

algorithm to fine tune the solution in the later stages of evolution. The Gaussian ‘ 

mutation adds a unit Gaussian distributed random value to the chosen gene. The new 

gene value is clipped if it falls outside the user-specified lower or upper bounds for 

that gene. 

The mutation method used in this study is somewhat different from the 

aforementioned mutation schemes. In the proposed GA, the mutation operation 

generates an alternative partial route from the mutation point (i.e. the node in the 

route which is chosen to be mutated) to the destination node. First, a gene (i.e. a node) 

in a chosen chromosome is randomly selected as the mutation point. A partial route 

starting from this mutation point to the destination is subsequently generated by 

means of a similar procedure used for population initialization, incorporating 

heuristics with random walk. The produced partial route is then combined with the 

surviving portion of the parent route，i.e. the partial route stretching from the origin 

to the mutation point in the parent's chromosome, to form a new route. Note that the 

nodes that are already included in the partial route from the origin to the mutation 

point should not be introduced into the partial route from the mutation point to the 
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destination, except for origin, destination, and mutation point. The underlying reason | 

is that the same node cannot be included in one route twice; otherwise, it incurs loops i 

in the route, which in turn results in the route infeasible. Recall that the crossover ^ 

operation may generate invalid routes that contain loop(s). This problem, however, 1 
will not happen to the mutation operation. The chromosome obtained by mutation is | 

- i 
certainly feasible, because during the mutation process, once a node is chosen, it will j 

J 
be excluded from the candidate nodes forming the rest of the route. Hence no loop J 

will be included in the generated routes. j 
J 

. . 1 
Figure 4.10 indicates how a new chromosome is created by mutation operation. Let | 

{S - Pi - ?2 - Ps - ?6 - T} be the parent chromosome that is selected to mutate. As J 
I 

can be seen from Figure 4.10，there also exist other routes between the source node S j 

and the destination node T. In order to perform a mutation, a gene (i.e. node Pi) is | 

randomly selected first from the chosen chromosome. P! is the mutation point. One 

of the nodes directly connected to node 尸/’ for example, P4, is chosen at random as -i 

the first node of the alternative partial route. The remaining procedure follows that in 

the initializing process to create the partial route stretching from P 丨 to the destination '•；| 

T’ {Pi - P4 - P2 - P3 - T}. Finally, this partial route is combined with the partial � 

route starting from the source S to the mutation point P/’ {S - Pi}, and the new route 

between S and T, {S - Pi - P4 - P2 - P3 - T} is eventually formed. ； 

_ _ « 

I mutation 
I 

(Jj \ y \ ^ ^ I s i P i i 

Figure 4.10 An example of single-point mutation ‘ 
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4.2.5 Termination criteria 

Termination is the criterion by which the genetic algorithm decides whether to 

continue or stop the search. Each of the enabled termination criterion is checked after 

each generation to decide whether it is the time to stop. The termination conditions 

that are most commonly used include: 

• The maximum number of generations has been reached. 

• A specified time has elapsed. It should be noted that if the maximum number 

of generation has been reached before the specified time has elapsed, the 

search process will terminate. 

• There is no change to the population's best fitness for a specified number of 

generations. Note that the process will end if the maximum number of 

generation has been reached before the specified number of generation 

without changes has been obtained. 

• There is no improvement in the objective function for a specified number 

consecutive generation. 

• Combinations of the above. 

The proposed GA is controlled by two termination criteria. One criterion is that a 

specified number of generations have evolved. The other is that the mean of the 

fitness in the entire population has remained unchanged, or changes within a very 

small range, over a specified number of consecutive generations. If either of the two 

termination criteria is satisfied, the iterative process of the GA is terminated. 

4.2.6 The proposed genetic algorithm 

With the above detailed introduction of each component, the proposed genetic 

algorithm tailored for multi-objective route planning for the transportation of DG are 

described algorithmically as follows. The block diagram of the proposed GA is 

shown in Figure 4.11. 

、 
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• 
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Fitness evaluation of each chromosome 

Is the t e r m i n a t i o n ^ 
^^^^--..^criterion sat isf ied?^^^- '^ 

^^No 

Select a pair of chromosomes for mating 

1 

With the Pc perform crossover 

I ' 

With the Pm perform mutation 

i 

Put the resulting chromosomes in the new population 

No ^-•-"•"''^ts the size of the new'^.,^^^^^ 

； 

Replace the current chromosomes population with 
the new population 

1 

. I ； 

Stop 

Figure 4.11 The flowchart of the multi-objective routing genetic algorithm 

Step 1. Population Initialization: 

1.1 Specify，the population size Npop, tournament size s, elitism size Neiue-, 

crossover probability P^ mutation probability 尸讲’ and the evolution 

termination criteria. 
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1.2 Based on the proposed chromosome representation, generate Np叩 

chromosome (candidate route) to form the initial population POP(O): • 

POP(0) = {C///?/(0), CHR2(0X …CHR Npopm-

A hybrid approach is used to initialize population POP{0), which 

incorporates random walk with heuristic initialization containing the seeds 

generated by Dijkstra's shortest path algorithm. Each chromosome is 

represented in the same encoding scheme as shown in Figure 4.7. 

1.3 S e U = 0 . 

Step 2. Fitness evaluation: ‘ 

Compute the fitness Fitness(CHR,(k)) of individual CHR.{k), i = 1... Np叩, 

according to the formula (4.1). Sort the fitnesses in the descending order so that 

the fittest individual is always on the top. 

Step 3. Population evolution: 

3.1 Elitist strategy. 

Select Nehte elites from the current population, Neute = Npop * 10%. Copy these 

individuals directly into the next generation without modification. 

3.2 Selection. 

(1) Pick three individuals at random from current generation. 

(2) Compare the fitness values of these 3 individuals. Select the one with the 

highest Max-Min value as one parent chromosome, say CHRi(k). 

(3) Remove the selected individual from the current population so that it 

would not be picked again as a candidate for other tournaments. 

(4) Repeat (1) to (3) to select another parent chromosome, say CHRj{k), i 丰 j. 

3.3 Crossover. 

(1) Identify the crossover point. 

Compare the genes of CHR,{k) and CHRj{k). If no common genes 

(common nodes except for the source and destination nodes) can be found, 

put one of them back into the mating pool, and then pick another 

individual. If more than one gene is found in common, randomly choose 

one common gene, and the locus of this gene becomes the crossover point. 

(2) Perform the crossover operation on CHR,{k) and CHRj{k) with probability 

Pc, and yield the intermediate individuals OSP'ik) and OSP'j{k). 
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Break CHR,{k) and CHRj{k) into two parts, respectively, on the crossover 

point. Connect the upper part of CHRi{k) with the lower part of CHRj{k) 

to yield the offspring OSP Similarly, connect the upper part of 

CHRj{k) with the lower part of CHR,{k) to yield another offspring 

OSP 'j{k). The upper part of an individual represents the portion of the 

chromosome stretching from the first gene (source node) to the 

intermediate gene at the crossover point, and the lower part represents the 

portion stretching from the intermediate gene at the crossover point to the 

last gene (destination node). 

(3) Repair infeasible route if necessary. Detect loops in the offspring OSP ',{k) 

by searching for duplicate nodes. The loop is then eliminated by deleting 

genes between duplicate nodes. Repeal the same operation on the 

offspring OSP XA:). 

3.4 Mutation. 

(1) Identify the mutation point. 

Randomly choose a gene (node) from OSP',(/:), and the locus of gene 

becomes the mutation point. 

(2) Mutate OSP \{k) with probability P^ to yield the offspring OSP,(k). 

Take 1.2 of Step 1 to generate the new lower part of the chromosome 

OSP 'i(k) stretching from the intermediate gene at the mutation point to 丨 

the last gene. Assemble this portion with the surviving portion of OSP',(众)， 

the offspring OSP,{k) is then generated. 

(3) Repeat (1) and (2) to yield the offspring OSPj{k). 

3.5 Construction of new population. • 

Repeat 3.2 to 3.4 until (Npop - Nelite) individuals have been produced. � 

Together with Neiue elites copied directly from the current population, a new 

population with its size of Npop is constructed. 

POP{k +1)= {CHRiik +1 )，CHR2{k +1 )，.•.CHR Npop(A:+l)}. 

Replace the current population with this new one. 

Step 4. Termination check: 

If POP(k + 1) satisfies the pre-specified evolution termination criteria, the 

algorithm terminates; otherwise, go to Step 2 with k = k + 1. 
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4.2.7 Implementation issues 

4.2.7.1 Complexity of the genetic algorithm 

Compared with the compromise programming and the adaptive weighting method, 

the proposed genetic algorithm has relatively higher complexity. To start, the 

population initialization takes time proportional to o [ n y ) i o create N n̂n initial 

candidates by either random walk or seeding (i.e. heuristic initialization) using 

Dijkstra，s algorithm, where Npop is the population size, n is the number of nodes of , 

the network G defined in Chapter 3. After initialization, a typical iteration of the 

algorithm comprises four operations: fitness evaluation, selection, crossover, and 

mutation. Implementing the Max-Min fitness function to evaluate the fitness of each 

individual in the current generation runs in where m is the number of 

objectives considered. Given that {Npop — Neiue) individuals need to be selected and 

the size of tournament selection is 3, the selection operation can be accomplished in 

where Neiue is the elitism size. To decide whether a crossover 

operation needs to be conducted on a pair of selected individuals, a random number 

between zero and one is generated for each pair. At the worst, all the random 

numbers fall below the crossover probability. Consequently, the crossover operation 

has to be performed on every pair of chromosomes, which results in a complexity of 

Similarly, the mutation operation results in a complexity of 

o[(Npgp 一 ) at the worst when each selected individual needs to be mutated. 

Consequently, the overall complexity for the initialization and N iteration is 

approximately o i ^ N 卩。 ,、 n I ^ t i N : H N 卿 - N - X n ) +4))). 

4.2.7.2 Global fitness 

When the algorithm stops, a set, of (approximate) solutions for the DG routing 

problem will be obtained. Moreover, M generations of population of solutions will be 

generated. Decision makers may be interested in examining how well the genetic 

algorithm can improve Pareto optimality from generation to generation. However, ’) 

the fitness function in formula (4.1) is designed to compare the fitnesses between 
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solutions within a generation，thereofore it cannot be used to compare the fitnesses 

between solutions in different generations as the scaling factors f 广 and /""" in 

different generations might be different. To solve this problem, a "global generation" 

is created, which includes (M * Npop) feasible solutions from M generations lumped 

together. The "global fitness” for each of the (M * Npop) solutions in the global 

generation can be calculated according to formula (4.1). Based on global fitnesses, 

the ‘‘global Pareto set" for the global generation can be generated. 

4.3 Summary 

GAs are a particular type of evolutionary algorithm initially developed by Holland 

(1975) in the early 1970s. A GA is a computing model that aims to minimize (or 

maximize) an objective function by simulating the mechanism of genetic selection 

and natural elimination in biological evolution. It is a computationally simple yet 

robust and powerful way to search for optimal and near-optimal solutions for 

optimization problems. As a highly efficient search strategy for global optimization, 

GAs exhibit superior performance on solving multi-objective optimization problems 

that have a large and complex solution space. Moreover, being a population-based 

approach, a GA is able to find multiple feasible solutions in a single run. 

GAs operate on a population of candidate solutions encoded as a finite bit string -

chromosome. It usually starts with an initial population of candidate solutions that 

are randomly or heuristically generated. These candidates are retained and ranked 

according to their quality measures by a fitness function, which screens out 

unqualified solutions. Genetic operations, such as selection, crossover, and mutation, 

are then performed on those qualified solutions to generate new candidate solutions 

for the next generation. These processes are carried out repeatedly until certain 

convergence condition is met. 

TKe unique features of GAs facilitate their application in multi-objective route 

planning for the transportation of DGs. This chapter details a genetic algorithm for 

multi-objective DG routing analysis. Variable-length chromosomes (representing 
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routes) and their genes (representing nodes) are used to encode the problem. A 

chromosome consists of sequences of positive integers representing the IDs of nodes 

through which a route passes. Each valid chromosome starts with a source node and 

ends with a destination node. No duplicated integers are included. A hybrid approach 

is used to initialize the population, which incorporates random walk with heuristic 

initialization containing the seeds generated by Dijkstra's shortest path algorithm. 

The incorporation of heuristics into random initialization enables the production of a 

better initial population while maintaining its diversity. A Max-Min fitness function 

derived from the definition of dominance is employed to maximize the difference 

between any two routes, which ultimately results in a diverse set of non-dominated 

solutions. The tournament selection without replacement is used to select candidates 

for breeding a new generation. An elite retaining strategy is incorporated, copying 

the fittest individuals directly into the next generation without modification, which 

prevents the loss of the best solutions found in each generation. The crossover 

operation exchanges partial chromosomes (i.e. partial-routes) at location independent 

crossover point. A repair function is applied to cure the infeasible chromosomes 

produced from crossover by eliminating undesired loops in these chromosomes. 

Through crossover, the algorithm searches the solution space in a very effective 

manner. The mutation operation introduces new partial chromosomes (partial-routes), 

which, in essence, maintains the diversity of population, thereby avoiding local traps. 

Selection, crossover, and mutation together provide a search capability that leads to 

improved quality of solutions and enhanced convergence rate. 

The present and the preceding chapters have introduced different methodologies for 

the multi-objective path optimization problem. While Chapter 3 focuses on the 

deterministic optimization techniques, present chapter concentrates on the heuristic 

method. Applications of these approaches in optimal route planning for dangerous 

goods transportation is demonstrated in Chapter 5. 
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CHAPTER 5: CASE STUDY ON HONG KONG ROAD 

NETWORK 

The previous chapters have presented conceptual and numerical optimization tools 

for the generation of multi-objective shortest paths with specific attention given to , 

the transportation of dangerous goods on the road. As an application example, this 

chapter focuses on the problem of routing the road tankers conveying liquefied 

petroleum gas (LPG) in Hong Kong, a high-density living environment. A set of 

routing criteria fitting the context of the high-density living, in particular. Hong 

Kong, is identified. With the aid of GIS, each criterion is quantified under the rules 

suggested by the authoritative organizations. The three MOP methodologies 

proposed in this research are employed individually to generate various efficient 

solutions for optimal route planning for transporting LPG between Tsing Yi LPG 

terminal and the designated LPG filling stations located in Kowloon and the New 

Territories. The composition of risks in each solution is examined and the actual 

trade-offs involved are interpreted. Particular issues with respect to the 

implementation of each method are specified. The execution efficiency and 

application condition of each method are also discussed. 

5.1 Overview 

The transportation of dangerous goods can significantly affect the human and natural 

environment if accidents occur during the transportation process. Hong Kong is a 

large city with high population density and narrow streets. Due to the land 

constraints, vehicles carrying DG inevitably have to pass through densely populated 

areas or their vicinities. Therefore, safe DG transportation is of paramount 

importance. Routing of such vehicles should consider not only the operating cost，but 

also the safety of travelers in the network, the population potentially exposed, as well 

as the possible damage inflicted to the surrounding properties and facilities in the 

event of a DG incident. It is thus necessary to model the risks associated with the 

transportation of DGs and to design appropriate routes presenting inherent trade-offs “ 

between costs and risks. 
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Everyday, there are different types of dangerous goods transported on the roads in 

Hong Kong. As one of the most commonly transported DGs in Hong Kong, liquefied 

petroleum gas (LPG) was chosen as the DG example for this case study. LPG is non-

toxic and is not harmful to soil or water. Tests conducted by the U.S. Environmental 

Agency show that LPG vehicles produce 30 ~ 90% less carbon monoxide than 

gasoline engines and about 50% fewer toxins and other smog producing emissions. 
I -

Since LPG is harmless to the environment, it is considered as a type of clean energy. 

At present, almost 100% of taxis and more than 60% of light buses in Hong Kong 

run on LPG. Albeit harmless, LPG is potentially dangerous. It is highly inflammable 

like all petroleum fuels. Small quantities of LPG can give rise to large volumes of 

gas/air mixture as approximately 2% of the vapour in air will form a flammable 

mixture; if this situation occurs in a confined space and the mixture ignites, an 

explosion will result. LPG vapour is heavier than air, which has important safety 

implications. Any leakage will sink to the ground and accumulate in low-lying areas 

and may be difficult to disperse. The vapour can remain for some time if the air is 

relatively still, and if ignition occurs at a remote point the resulting flame may travel 

back to the sources of the leak. In addition to the risk of fire/explosion, LPG is also 

dangerous as it vaporizes and cools rapidly, and can therefore inflict severe cold 

bums if spilt on the skin. Moreover, it has an anaesthetic effect when mixed in high 

concentrations with air; the greater the concentration，the greater the risk of 

suffocation. 

Given the dangerous nature of LPG, safe LPG transportation is of even greater 

importance for high-density living environment like Hong Kong in which population 

and socioeconomic activities are densely distributed over the transportation network. 

Route planning plays a crucial role in the prevention or minimization of possible 

catastrophic consequences on human life and the environment. However, study on 

such a problem in Hong Kong has seldom been reported so far. Hence there is an 

urgent need to carry out risk assessment and optimal route planning for LPG 

transportation in Hong Kong. 

LPG is imported into Hong Kong by sea and stored at Tsing Yi LPG Terminals. It is 

then distributed throughout Hong Kong in cylinders and bulk road tankers. As Figure 
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5.1 shows, there are currently a total of 56 LPG filling stations in Hong Kong. 

Among them, 12 are dedicated LPG filling stations of which 9 are located in 

Kowloon and the New Territories. In addition, there are 44 non-dedicated LPG 

filling stations (i.e. LPG gas refilling stations). Currently, there are no designated 

routes for LPG cylinders and road tankers in Hong Kong. However, under the Road 

Tunnels (Government) Regulations, they are forbidden to pass through any tunnels in 

Hong Kong. The existing regulations specify the forbidden spots or road sections 

rather than the approved routes. Given a set of alternate routes between an origin and 

a destination, there are no quantitative means for the evaluation of the suitability of 

possible routes at the present moment. In the case study, a set of criteria were 

formulated for risk assessment, and the proposed methodologies were then employed 

to search the Pareto-optimal routes for transporting LPG from Tsing Yi LPG 

Terminal to the 9 dedicated LPG filling stations located in Kowloon and the New 

Territories. Note that for illustration purpose, the results of Tsing Yi terminal to 

Kowloon Bay and Tai Po station are presented in this chapter. Other choices of 

destination were tested and gave comparable results. However, in order to keep this 

chapter to a reasonable size, they are not reported below, but detailed in the appendix. 

It should also be noted that the present study mainly focuses on routing from Tsing 

Yi terminal to the dedicated LPG filling stations located in Kowloon and the New 

Territories. Stations located in Hong Kong Island were not taken into account in 

present study, because the transportation mode of LPG from Tsing Yi Terminal to 

Hong Kong Island is different from those of Tsing Yi to Kowloon and the New 

Territories. Since it is forbidden to pass through any tunnels in Hong Kong, a LPG 

tanker cannot run from Tsing Yi to Hong Kong Island directly, rather, it has to be 

transported from Tsing Yi to the Kwun Tong Dangerous Goods Vehicle Ferry Pier, 

then ferried to the North Point Ferry Pier, and finally delivered to LPG filling 

stations in Hong Kong Island. Due to the existence of multi-mode of transportation, 

the risk assessment for LPG transportation from Tsing Yi to Hong Kong Island will 

be quite different, more factors need to be considered; in addition, the risk of transfer 

also needs to be taken into account. Because of those reasons, this case study only 

concentrates on routing from Tsing Yi to Kowloon and the New Territories. 
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Figure 5.1 LPG supply and distribution in Hong Kong {Source: Electrical and 
Mechanical Services Department, Hong Kong) 

In the present case, the problem of routing dangerous shipments is essentially spatial, 

therefore a Geographical Information System (GIS) is appropriate to manage and 

display the set of geospatial data. GIS provides functions to perform topological 

operations and database queries in a natural and straightforward manner. The GIS 

platform adopted for this case study is ArcGIS 9.2，a GIS software package 

developed by Environmental System Research Institute, Inc. (ESRI), which runs on a 

desktop computer and allows for customization. The data used in the case study were 

mostly collected in 2008 from different sources, such as the Transport Department, 

the Planning Department, and the Census and Statistics Department. The data include 
I 

several layers representing the territorial and administrative boundaries, the land use, j 

transportation infrastructures, and a comprehensive inventory of all the buildings and 

points of interest. The road network is highly detailed with 40,150 links used to 'I 

represent the 4,392.25 km of roads, and a description of the link attributes (e.g. road 

type, speed limit, traffic flow, traffic accident rate). The database provides adequate • 

information to locate industrial, commercial and residential buildings along a road, to 1 
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estimate the impact area in the event of a DG accident, or to calculate the response 

time from the nearest emergency response unit for instance. Thus, it forms a solid ,] 

foundation for subsequent risk assessment and route planning. 

5.2 Relevant concepts, procedures and measurements 

5.2,1 Identification of routing criteria 

The routing criteria considered by traditional routing procedures usually include 

costs (like transport time, transport distance), safety (for the purpose of preventing 

accident), and exposure to the public and natural environment. To minimize the risk 

of exposure, in particular, the highly populated areas, places of high commercial 

value, ecologically sensitive regions, etc. should be avoided. 

US Federal Highway Administration (US DOT 1994) suggests that, when 

determining routes for any class of DG，the following factors should inevitably be 

considered: population density, type of highway, type and quantity of DG, 

emergency response capabilities, exposure and other risk factors, accident history, 

terrain consideration, effect on commerce, delays in transportation, and climatic 

conditions. These factors are, however, not universal. Routing criteria need to be 

tailored to the local situation. Since high-density living is of a particular concern in 

our study, the exposure risk considered in this study should contain not only road 

users at risk, but also off-road population exposure, as well as population with 

special needs at risk. The special populations are the groups (e.g., students and the 

elderly) that may be particularly sensitive to DG releases, and are, therefore, difficult 

to evacuate in the event of a DG accident. The risk of special population exposure is 

as important as those of the other two kinds of population exposure in DG route 

planning (US DOT 1994). In addition, the emergency response capability is also 

included in the route analysis, with a view that timely action by emergency 

responders can considerably reduce the magnitude of the consequences associated > 
" J 

with a DG release, and is, therefore, of significance in a high-density living ; 

environment. 1 
> 
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By considering costs, safety, and exposure, the following attributes are identified as 

the routing criteria for Hong Kong: 

• expected travel time 

• probability of an incident with release of LPG . 
« 

• expected road users at risk 

• expected off-road population at risk . , 

• expected people with special needs at risk 

• expected negative impact on economy: industrial, commercial and transport 

facilities at risk 

• emergency response capabilities 

Note that the factor with reference to environmentally sensitive areas is not included 

as a routing criterion. This is because LPG is non-toxic and free of lead, and is thus 

not harmful to the natural environment. Nevertheless, LPG is still potentially 

dangerous due to its high inflammability. It also should. be noted that the 

optimization methodologies proposed in this research are limited in that all attributes 

be,additive along paths. As a result，most of the attributes in this research are 

expected values, which are additive under the assumption that accident probabilities 

are independent from one link to another. This simplification, which is in fact 

commonly adopted in most prevailing literature, enables using the conventional 

labeling algorithm such as Dijkstra's algorithm with moderate, rather than drastic, 

modification to solve the routing problems. However, more elaborate attribute 

definitions should be considered in further improvements of the optimization tools. 
4 

5.2,2 Quantification of the objectives 一 analysis using GIS 

‘The use of GIS in vehicle routing problems presents a variety of advantages over the 

conventional methods. GIS has powerful spatial data processing and analytic 

capabilities, which facilitate the determination of the impact area and the search for 

particular features. In addition, GIS provides efficient database management 

capabilities that can handle attribute data. Attribute queries are easy and relatively 

accurate. The present study uses ArcGIS as the GIS platform to support route 

analysis. After identifying the routing criteria, GIS is used to quantify each criterion. 
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Given the identified criteria，up to seven different objectives are included in the 
§ 

routing analysis. These objectives can be classified into three major categories: 

operating costs, risk estimates and emergency response capabilities. It should be 

pointed out that due to the inevitable use of simplified approximations, the numerical 

values of these objectives may not be exact but they can simply illustrate the actual 

figures. 

5.2.2.1 Operating costs 

The cost of operating a vehicle usually involves many factors ranging from fuel 

consumption, maintenance, to insurance and amortization costs, which, under 

different accounting policies, may yield different definitions of cost. It is generally 

recognized that the main part of the operating costs increase with the running of the 

vehicle, and that the costs from other sources are either negligible or constitute a 

fixed charge. In the case of DG transportation, although the insurance cost is not 

supposed to be negligible (Verter and Erkut 1997)，it is usually assumed in most 

literature that the operating costs mainly depend on trip length and travel time. 

Wijeratne et al. (1993) suggested using the following formula to estimate the 

operating costs for the transportation of DGs: 

operating cost = a x expected travel time + P x trip length, (5.1) 

where a and P are numerical parameters that can be fitted through regression analysis 

(Wijeratne et al. took a = 21.67 US$/hr and fi = 0.714 US$/miles). In the above 

formula, both the expected travel time and trip length are included as two objective 

functions in the analysis. In practice, however, the expected travel time and trip 

length are strongly correlated positively: the shorter the route, the earlier the vehicle 

will reach destination. Since the optimal routes for both objectives will probably be 

similar, the objectives are redundant and the estimation of the route length can thus 

be removed from the routing analysis. For simplicity, this study assumes that the 

operating costs are an increasing function of the travel time only, and the travel time 

is directly designated as one objective in the minimization problem. In the absence of 
J 

actual travel time profiles for the Hong Kong road network, the expected travel time 

of each link (i.e. road segment) is estimated as a function of length of road segment 

and functional speed: 
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expected travel time = length of road segment / functional speed, (5.2) 

where functional speed is the traffic speed limit, which varies with different types of 

road. � 

5.2.2.2 Risk estimates 

Numerous models have been proposed to measure the risk of transporting dangerous 

goods along a route (subsection 2.2.3). The common feature of all approaches is that 

a risk indicator is composed of the probability of some undesirable events and the 

possible adverse consequences. Here, the risk is specified by the following 

constituent components: accident probability, exposed population along the route 

(including both road users and off-road population), people with special needs at risk, i 

and economic activities under threat. 

-S 
Let Pi be the probability of an accident with release of DG along the /-th link of route ： 

r, which comprises n(r) links, and C> be the consequence of such accident. Under \ 
1 

some reasonable assumptions, notably that p, « 1 for every link, the expected | 

consequence of an accident along route r can be defined as: | 
) 

n ( r ) 卜 1 « ( r ) j 

五“0 = 1 > , 1 1 ( 1 - 厂 , ， (5.3) ] 

/=! j=l /=1 ；i 
J 

where C,'s are successively the road users at risk along link /•’ the off-road population | 
"•1 

at risk along link /，the special population at risk along link i, and the expected j 

damage on the economy along link /. j 
1 
••1 2 

The probability P(X) of a possible outcome X of a DG accident is usually calculated J 

from a sequence of other probabilities, since there is no adequate historical record | 

from which to estimate the distribution of P(X) directly. Suppose that the adverse i 
j 

outcome Xis conditional on a release R, which is in turn conditional on an accident A, j 
•J 

using Bayesian theorem，we then obtain the probability of outcome X resulting from j 

an accident A, P{X), as: | 

P{X) = P(A) X P(R \A)^P{X\A, R), (5.4) | 

where P(A) is the probability of traffic accident A occurring on a road segment, P(R | 考 

A) and P(X | A’ R) are both conditional probabilities. P{R | A) is the probability of ^ 
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occurrence of release accident R given traffic accident A, while P(X \ A, R) is the 

probability of outcome X given release accident R resulted from accident A. Each of 

these three probabilities can be estimated separately. For instance, be 

estimated by multiplying the historical rate of accidents per truck-kilometer on a 

segment by the length of the segment in kilometers; P{R\A) can be estimated by 

calculating the historical percentage of accident that gave rise to a release; and 

P(X\A,R) can be estimated by calculating the historical percentage of release 

accidents that had the adverse outcome X (Chow et al. 1990; Erkut et al. 2007). � 

It should be pointed out that the focus of the present study is primarily on the multi-

objective DG routing, elaborated risk assessment is not the scope of our study. Given 

this consideration, the risk associated with LPG transportation is broadly estimated in 

the case study; and then based on risk estimation, multi-objective route planning is 

subsequently conducted to search efficient routes for transporting LPG from Tsing 

Yi LPG terminal to the designated LPG filling stations. In this respect, the present 

study uses a relative risk approach rather than absolute risk model. The risk values 

calculated by this method are not meaningful as absolute numbers; instead, it 

represents the relative difference in the risks among alternatives that are used to 

differentiate routes. 

(1) Accident probability 

The probability of an accident with release is calculated as the product of Truck 

Accident Rate (per km), Conditional Probability of Release, and Length of link (in 

km). That is. 

Accident Probability = Truck Accident Rate (per km) x Conditional Probability 

of Release x Length of link (in km). (5.5) 

The truck accident rate and the conditional release probability in formula (5.5) are 

road type related. Given the number of total accidents and the number of accidents 

involving trucks occurred in one year, the truck accident rate can be broadly 

estimated in proportion to traffic accident rate. According to the road traffic accident 

statistics of HK in year 2008, the truck accident rate for each road is about 6% of the 

value of traffic accident. In the absence of specific statistics for Hong Kong, 

numerical values of the conditional probability of release were taken from Harwood 
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et ai (1993)，and they were adapted to the Hong Kong road network based on local 

traffic conditions (Table 5.1). 

Table 5.1 Conditional release probability adopted in the present study for estimating 
the probability of a DG incident 

n . Conditional ^ J Designation in , 
Road type Harwood. /a / . 1993 re fuse 

probability 

Expressway Urban freeway 0.062 

Major road Urban multilane divided 0.062 

Secondary road Urban two-lane 0.069 

Source: Harwood et al (1993) 

One may argue that the conditional release probability varies with road traffic, 

weather conditions, time of day, and numerous other parameters. However, 

deficiencies and inconsistencies in a truck accident database preclude more elaborate 

models (Lepofsky et al. 1993). Similar single-value probability models have been 

widely used in many studies in the field of DG transportation and have been well 

accepted by scholars and practitioners in absence of anything better (Tumquist and 

List 1993; Ashtakala and Eno 1996). 

(2) Road users at risk 

Road users at risk (i.e. on-road exposure) refer to the travelers on the roadway near 

the truck carrying DG, which is obviously associated with traffic volume. As a 

measure of on-road exposure, vehicle-minutes, as suggested by Nozick et al. (1997), 

is used for all vehicles within a distance x from the truck. That is, as the truck moves 

along a link, vehicles potentially exposed to the risk of fire and/or explosion hazard 

are those that are traveling in the same direction as the truck, and are less than 

distance x (e.g. 800 meters) behind it, as well as those vehicles traveling in the 

opposite-direction lanes at distance x or less ahead of the truck. The reason vehicle-

minutes, rather than just vehicles, is used as a measure of the exposure is because we 

want to reflect both how many vehicles are within a specified distance of the DG , 

truck, and for how long. Suppose a truck carrying DG is crossing a road link. Based 

on the information such as traffic volume in terms of average annually daily traffic 

126 



(AADT), length of the link, functional speed, on-road exposure for one link is 

estimated as follows: 

• per lane traffic volume = AADT / number of lanes 

• per lane traffic density = per lane traffic volume / functional speed = AADT / 

number of lanes / functional speed 

• exposure window behind the truck = 0.8 kilometers (assumed) 

• vehicles in exposure window (x) = per lane traffic density x number of lanes 

X exposure window = (AADT / number of lanes / functional speed) x number 

of lanes x 0.8 = AADT / functional speed x 0.8 

• time to traverse link = length of the link / functional speed 

• vehicle exposure = vehicles in exposure window x time to traverse link x 2 = 

(AADT / functional speed x 0.8) x (length of the link / functional speed) x 2 

=AADT X length of the link x 1.6/ functional speed� 

As mentioned earlier, vehicles potentially exposed to the risk include not only those 

traveling in the same direction as the DG truck within a distance JC, but also the 

vehicles traveling in the opposite-direction. Hence, a factor of 2 is employed in the 

calculation of vehicle exposure. The above calculations are repeated till the values of 

vehicle-minutes of exposure for all links in the network have been obtained. Note 

that vehicles more than 800m ahead of the truck traveling in the same direction, or 

behind the truck traveling in the opposite direction, are not included in the on-road 

exposure risk estimation because in the event of an incident, they are already moving 

away from the truck. 

(3) Off-road population at risk 

Off-road population refers to the population residing or working some distance away 

from the road. This factor measures the average population at risk in case of accident 

on a link, under the assumption that the probability of an accident is constant along 

the entire length of the link. If an accident occurs within a link, then the expected 

number of people exposed is the population within a given radius of the accident 

location. The length of the radius depends on the type of DG. Given that the location 

of future accidents is unknown and that they are expected to occur with a probability 

that is uniformly distributed over the link, the expected number of people at risk can 
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be approximated as the population within the impact area (a buffer) formed by a 

series of equally spaced circles centering the link. 

In ArcGIS, a buffer zone is created to simuJate the potential impact area. The 

potential impact zone for petrochemicals is typically taken at 800 meters in all 

directions (US DOT 1994). Therefore, a buffer of SOOm width is generated for each . 

road segment. The off-road population exposure along a road segment is calculated 

from the exact number of buildings (residential, commercial and offices) within the 

potential impact zone. Through ArcGIS, the appropriate attributes are queried and 

the respective risk values are calculated. It should be noted that here the estimated 

off-road exposure does not account for the decreasing probability of fatalities as 

people live further from the road where the release occurs. Considering that an 

elaborate assessment for the effects of a release of dangerous goods in the urban 

environment is beyond the scope of this research, the present study simply assumes ‘ 

that a release would equally affect an impact area that is isotropic and the dimension 

of which depends on the type of material spilled (US DOT 1994). 

(4) Special population at risk & expected damage on the economy 

The additional risk components, such as special population at risk and negative 

impact on economy, are estimated using the framework suggested by US DOT 

(1994). An indicator for special population exposure is derived based on the location 

of schools, hospitals, and day care centers for the elderly. The value of such indicator 

is calculated from the number of schools, hospitals, and elderly centers that falls 

within the impact zone of the network. 

As for the expected damage on the economy due to a DG transport incident, it is 

again calculated as the product of accident probability with the number of industrial, 

commercial and transportation facilities potentially at risk, assuming that a facility 

within the impact zone will be out of service until the area has been cleaned up. If 

land-use prices were available, it would also be possible to include a measure of the 

expected property damage caused by an accident. 

5.2.2.3Emergency response capabilities 
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Emergency response capabilities can be a critical consideration in evaluating the 

consequences of a traffic accident involving the release of DGs. Timely action by 

emergency responders can significantly reduce the magnitude of the consequences 

associated with a DG release. The time required for emergency personnel to get to 

the accident site is important for establishing control of the immediate area and 

determining the nature of the hazard. The number of emergency response units or 

teams (e.g. fire, police, and emergency medical) that are within a certain response 

window along segments of a route could be counted and rated on a scale, which 

could then be applied to reduce the consequence term in the risk calculation. 
* 

In this case study, the factor of the emergency response capabilities is estimated 

using the framework suggested in the US DOT guidelines for DG routing (US DOT 

1994). Several elements are taken into account: the proximity of the emergency 

response units to each road segment; the number of trained and equipped firefighting 

units; the number of police cars and; the number of ambulances (from the 

Ambulance Depots) available within a specific response window (6 minutes in an 

urban area and 9 minutes in a suburban area. Hong Kong Fire Services Review 2007) 

from any point along a given route. The count of those numbers is divided by the 
( 

route length and is then translated into a rating on a scale from l.O (low) to 1.5 (high). 

The relative risk for each route can then be divided by the response capability factor. 

Obviously, the higher the rate, the lower the risk score. This estimation assumes that 

the closest unit will respond whether or not the incident is within its area of 

jurisdiction. Further, it assumes homogeneity in response training and capability 

across all fire response units because consistent information on these important 

details is not available. 

5.3 Compromise-programming-based route planning 

As a natural and logic way to solve multi-objective optimization problems, 

compromise programming employs a priori information on the preference structure 

of the decision-maker to find a compromise solution amongst a set of conflicting 

objectives. Therefore, a proper determination of the two parameters, the weight Wj 
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and the exponent p, in line with decision-makers' preference is essential to the 

efficient implementation of the compromise programming method. 

5.3.1 Determination of parameters in compromise programming 

5.3.1.1 Weight (w/) 

It is usually recognized that determination of weights is one of the most difficult 

exercises in analyzing problems involving multiple objectives，especially those 

employing a linear or convex combination operation. The weight w, in the I/7-metric 

is attributable to the decision maker's preferences, and signifies the relative 

importance of each criterion. Many methods can be used to assess criterion, weights. 

Present study employs the Analytic Hierarchy Process (AHP) (Saaty 1990) to 

construct the weights. AHP works basically by developing priorities in terms of the 

relative importance judged on a scale of 1 to 9. The importance of each criterion is 

individually determined and a pair-wise comparison matrix is created. Subsequently, 

the eigenvalues of this matrix are calculated and these eigenvalues are employed as 

weights of the criteria. 

In this case study, criteria weights are constructed using the following procedures 

and principles. First, a pair-wise comparison matrix is employed to determine the 

relative importance of each decision criterion in comparison to the others. 

Considering that the population exposure is the key factor in determining the 

consequences of a DG release in risk analysis, the three criteria closely related to 

such a factor, namely the off-road population exposed (PR), the road users (UR), and 

the special population at risk (SR), should therefore have higher weights than the 

others. PR, UR, and SR are thus given the same weight, but two times more 

important than that of accident probability (AP), expected damage on economy (DE), 

and emergency response capability (ER), and three times more than that for travel 

time (XT) (Table 5.2). Furthermore, AP, DE, and ER are weighted twice more than 

that of operating cost, and are given an equal weight. It should be noted that such 

weighing principle can be taken as a basis，and different weighing schemes can be 

implemented in accordance with decision-makers' preferences. Such procedures 
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result in composite weights (Table 5.2) with a consistency ratio of 0.002, which is 

completely acceptable under the principle described in Saaty (1990). 

Table 5.2 Pair-wise comparison matrix for deriving priorities of criteria 

‘ TT AP PR SR DE UR E R � � 二 � " 

Travel time (TT) 1 1/2 1/3 1/3 1/2 1/3 1/2 0.061 

Accident probability (AP) 2 1 1/2 1/2 I 1/2 1 0.107 

Off-road population at risk (PR) 3 2 丨 丨 2 丨 2 0.206 

Special population at risk (SR) 3 2 1 1 2 1 2 0.206 

Expected damage on economy (DE) 2 1 1/2 1/2 1 1/2 1 0.107 

Road users at risk (UR) 3 2 1 1 2 1 2 0.206 

Emergency response capability (ER) 2 1 1/2 1/2 1 1/2 1 0.107 

5.3.1.2 Exponent p 

Romero and Rehman (1989) pointed out that the parameter p in the weighted Lp-

melric of a compromise programming model acts as a weight attached to the 

magnitude of deviation between the value of a given alternative and that of the ideal 

point. The value of p ranges from one to infinity and presents the concern of the 

decision maker over the maximum deviation. The larger the value of p, the greater 

the concern becomes. It is a general practice in solving compromise programming 

problems to use the following values for the parameter p (Thinh and Hedel 2004): 

• p = 1 (the Manhattan norm), 

• p = 2 (the Euclidean norm), and 

• p = CO (the maximum norm, corresponding to the “Tchebysheff' distance). 

For other values of p, since the corresponding utility function is non-linear and has 

no explicit physical meaning, they are seldom applied in a compromise programming 
« 

model for solving practical problems. 

In this case study, without loss of generality, the Manhattan distance (full trade-off), 

the Euclidean distance (partial compensation), and the '"Tchebysheff" distance (the 

non-compensatory position) are employed to solve the DG routing problem. 
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5,3.2 Single-objective optimization results and interpretations 

To examine the effectiveness of the proposed methodology, two scenarios were 

developed for testing. Both scenarios are to select optimal routes from Tsing Yi LPG 

terminal to the dedicated LPG filling stations located in Kowloon and the New 

Territories. 

"S 

The first scenario considers each objective individually, which corresponds to a 

series of single objective optimal route planning problems. This can be treated as the 

special case of multi-objective optimization by assigning unit weight to a certain 

criterion (the one that is considered to be absolutely the most important by a decision 

maker), and 0 to the others. Under this scenario, the parameter p is set to 1. Given 7 

objectives and 9 different LPG stations, a total of 63 routes are generated. The 

� optimal routes between Tsing Yi and Kowloon Bay and those between Tsing Yi and 

Tai Po are shown in Figure 5.2 and 5.3, respectively, for illustration purposes. 

As a summarizing statistic of the optimal routes for the 9 origin-destination (OD) 

pairs (i.e., Tsing Yi terminal to each of the 9 dedicated LPG stations), Table 5.3 

contains the average and standard deviation of the objective-function values under 

each of the 7 individual objectives, whereas Table 5.4 contains the minimum and 

maximum of the routes. The rows in the tables correspond to the optimal solutions, 

and the columns to the objectives. Note that for each link, the scores on these criteria 

must be normalized to unify the units of measurement of the criteria. The reason for 

normalization is that the data sets (attribute values of the quantified criteria) contain a 

mixture of measurements made on different scales and in different units. The 

criterion of on-road population exposure risk, n, is normalized as a score, z,, as: Z/ = 

( f i - min) / (max - min), where min and max represent the minimum and maximum 

value of this criterion, respectively, over all edges of the road network. The other 

criteria are normalized in a similar manner. It is observed that in Table 5.4, for each 

objective, the lower bounds (minima) in each row are more or less the same. The 

reason is that these minima are all derived from the Tsing Yi - Kwai Chong pair or 

from the Tsing Yi - Mei Foo pair. These two stations are very close to the Tsing Yi 

terminal. Due to the rather short distance and the road network structure, the optimal 

routes for these two 0 - D pairs with respect to different objectives do not vary 
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significantly. For the other O-D pairs, however, there are few instances of high ^ 
, 1 

similarity between the routes selected by different objectives. ^ 
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Figure 52 Seven single-objective optimal routes from Tsing Yi LPG terminal to 
Kowloon Bay LPG filling station 
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As depicted in Figures 5.2 and 5.3，the single objective optimization solutions are 

rather different from each other. The differences in attribute values are clearly 

revealed in Tables 5.3 and 5.4. These tables show that the optimal solution obtained 

under one single objective gives non-optimal solutions under other objectives. In fact, 

in most instances there are significant trade-offs among the optimal solutions with 

respect to these criteria. 

The minimum travel time solution has the shortest travel time because most of its 

links are part of the expressways and trunk roads. This, on the other hand, makes the 

on-road exposure risk (road users at risk) the largest for the Tsing Yi - Tai Po pair, 

and the second largest for the Tsing Yi - Kowloon Bay. Since it passes through 

several densely populated areas, the off-road population exposure risk is also made 

relatively high. Consequently, the societal risk, which is the sum of the three parts 

relevant to public safety, namely on-road population exposure risk, off-road 

population at risk, and the population with special needs at risk, under this solution is, 

for the Tsing Yi - Tai Po pair, the largest among all 7 single objective optimization 

solutions, and for the Tsing Yi - Kowloon Bay pair, the third largest. This indicates 

that by minimizing travel time, the public safety is jeopardized simultaneously. 

The minimum off-road exposure solution has the minimal off-road exposure risk, 

and the third smallest on-road exposure risk,. It serves the second best on public 

safety among all the solutions, and performs very well under the other criteria. In the 

context of overall cost, i.e. the sum of the costs and all sorts of risks, this solution is 

reasonably good but still fails to strike the best compromise among various 
« 

objectives. 

The minimum economic damage solution minimizes the expected negative impacts 

on the economy in the event of an accident. It makes a big detour from Tsing Yi 

terminal to Kowloon Bay station, in an effort to avoid densely commercialized areas. 

This leads to the longest travel distance and the highest accident probability, and the 

overall cost with it is also extremely high. From the perspective of operating cost, 

this solution is probably unacceptable to the DG transport operators，neither is it 

desirable from the perspective of safety. For the Tsing Yi - Tai Po pair, however, the 

performance of this solution is satisfactory. 
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The minimum on-road exposure risk solution exhibits good performance in 

minimizing the risk of on-road population exposure, since most of its links mainly 

follow secondary road with relatively lighter traffic. However, this results in running 

a very high risk of off-road exposure. In addition, due to the proximity of special 

populations, the risk of special population exposure is doubled accordingly. 

Meanwhile, the expected damage on the economy with this solution is the largest 

among all solutions. 

The above analysis demonstrates that the existence of multiple criteria makes it 

difficult if not impossible to identify a single “best” solution for all criteria. The 

optimal solution under one objective is generally attained at the expenses of the 

others. To strike a good balance among the objectives, the focus should then be on 

finding a set of "compromise" solutions containing trade-offs among the objectives 

for decision making. The follow-up experiments were performed under this principle. 

We employed different numbers of criteria and adopted different values for 

parameters Wj and p to generate Pareto-optimal solutions under these scenarios by 

means of compromise programming, and analyzed the trade-offs among the solutions. 

5.3.3 Multi-objective optimization results and interpretations 

In general, the number of solutions for MOP problems increases with the number of 

objectives considered. Given multiple objectives, there could be a large number of 

solutions when selecting optimal routes based on various combinations of different 

objectives for each origin-destination pair. For illustration purpose, the Tsing Ti 一 
t 

Kowloon Bay and Tsing Ti - Tai Po pairs are chosen to provide some insight into the 

trade-(5ffs among different MOP solutions. � _ , 

First, the three factors pertinent to public safety (i.e., road users at risk, off-road 

population at risk, and people with special needs at risk) are considered to generate 

the multi-objective DG routes. Solutions obtained well represent the Government's 

major concern in DG routing. Second, the criterion of operating cost, e.g. travel time, 
負 

is added for the purpose of striking a balance between economy and safety. Third, all 

7 criteria are considered with (1) equal weights, and (2) different weights obtained by 

the pair-wise comparison method. Three scenarios are explored in this series of 
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studies: p = I (full t r adeof f ) ,尸=2 (partial compensation), and p-co (the non-

compensatory position). With the increase of the number of objectives, the MOP 

routing solutions also increase. Although many more routes could be generated by 

tuning the values of the parameters w, and p, 12 of them are selected. Their attributes 

are shown in Table 5.5 and Table 5.6. It should be noted that all values in these 

tables are unit free due to data normalization. 

The single objective optimization solutions are the "extreme" solutions each obtained 

from individually minimizing one of the 7 criteria. Table 5.5 and Tabic 5.6 make a 

general comparison among the single objective optimization solutions and 

compromise solutions. Solutions I to 7 are single objective ones, while 8 to 19 are 

compromise solutions under different scenarios. All of these solutions are Pareto-

optimal. Given any two of them, one is better than the other with respect to at least 

one objective, and vice versa. 

In order to facilitate decision-makers to select an appropriate routing decision, the 

solutions are graphically displayed in Figure 5.4 (for Tsing Ti - Kowloon Bay) and 

Figure 5.5 (for Tsing Ti - Tai Po) for efficient comparison. Each row of Table 5.5 

and Table 5.6 is shown as a piecewise linear curve representing each Pareto-optimal 

solution. Points in each curve correspond to the scaled values of the 7 objectives. 
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Figure 5.5 The objective function values for different optimizations (Tsing Yi - Tai Po) 

Clearly, there does not exist any curve that laid below all the others. If such a curve 

existed, the Pareto solution represented would be better than any other with respect 

to all the objectives. 

To enrich the comparison, we use in Figure 5.6 and Figure 5.7 one stacked bar for 

every row of Table 5.5 and Table 5.6, respectively. Each bar consists of seven 

sections, one for each objective. In this case, we are also able to order the Pareto 

solutions by simply ordering the bars by their heights, that is, by the sum of the seven 

scaled objective values. 
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Figure 5.7 Sum of the 7 scaled objective values for different optimizations (Tsing 
‘ Yi - Tai Po) 

Based on the optimization results, we have the following observations: 

1) The minimization of the single objective function gives rise to a significant 

achievement of the chosen criterion, whilst heavily compromising the others. This 

has been discussed in detail in subsection 5.3.2. 
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2) The multi-objective solutions represent a good compromise among the competing 

objectives, as evidenced by comparison of the results obtained with various 

combinations of different objective functions in the compromise programming 

problem. 

Solution 8 focuses on the importance of public safety. The three factors with 

reference to societal risk, namely population exposure risk, including both on-road 

and off-road, as well as special population at risk are considered impartially. This 

solution serves best on safety, yet it is not equally desirable from the perspective of 

expected damage on the economy in the event of a DG incident, which increases by 

over 60% than the minimum obtained under the single-objective solution 5. 

Based on solution 8，solution 9 considers public safety together with travel time, 

which makes improvement on the objectives with respect to travel time，off-road 

population exposure, the possible damage on the economy, and the emergency 

response capability. As trade-offs, for the Tsing Yi 一 Kowloon Bay pair, solution 9 

downgrades by 9%, 17%, and 27% over solution 8 on accident probability, special ； 

population at risk, and road users at risk, respectively. Larger trade-offs are observed 

for the Tsing Yi - Tai Po pair, where solution 9 downgrades by 23% and 36% over 

solution 8 on special population at risk and road users at risk, respectively. ‘ 

Nevertheless, for both O-D pairs, the objective values between these two solutions 

do not differ as significantly as those among single objective optimization solutions. 

Solution 10 is obtained by taking all 7 criteria into consideration with unbiased 

preferences (i.e. equally weighted on each objective). For both Tsing Yi — Kowloon 

Bay and Tsing Yi - Tai Po, this solution increases by about 5% than solution 1 

(which is the shortest path) in travel time, and offers different trade-offs with other 

objectives: 50% ~ 80% more population with special needs at risk (compared to the 

minimum achieved in solution 5), but smaller trade-offs with the minimum solutions < 

obtained under other single-objective minimization problems. The societal risk of 

this solution is lower than that of most single objective solutions, though it is not the 
V 

lowest among all the 18 solutions. In the context of overall cost, solution 10 is the 

best. 
� 
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Similar to solution 10, solution 11 also takes all criteria into account in the process of 

route planning. The only difference is that the latter assigns dissimilar weights to 

different objectives. The weights indicate relative importance of each criterion, and 

are generated by means of pair-wise comparison (see Table 5.2). Compared with 

solution 10，for both O-D pairs, solution 11 has relatively lower special population 

exposure risk and expected damage on the economy; it also enhances the emergency 

response capability. This is, however，at the cost of the lower achievements of the 

other objectives. 

Solutions 12 to 15 correspond* to solutions 8 to 11 respectively, replacing 

U(1, w) with U(2,w)as the utility function. Solutions 16 to 19 also correspond to 8 to 

11 respectively, yet the utility function is changed to w). From Table 5.5 and 

Table 5.6, it is not difficult to find that while these substitutes are worse off on some 

objectives, they make improvement on the others at the same time. Yet, the objective 

function values vary within a small range. 

The results presented and the behaviors shown in Figures 5.4 to 5.7 reveal the 

diversity of DG routing solutions under the multi-objective approach, which 

confirms the effectiveness of the proposed methodology. 

5.4 Optimal routing by adaptive weighting approach 

The same routing problem between Tsing Yi LPG terminal and the dedicated LPG 

filling stations were analyzed using the proposed adaptive weighting method 

introduced in Chapter 3. Recall that this method consists in approximating the Pareto 

front with a few suitable solutions to help the decision-makers select the most 

satisfied routes without generating all of them. 

5,4.1 Optimal routing results and interpretations 

As indicated in Chapter 3，the implementation of the proposed adaptive method is 

based on the result of m single objective optimizations with each objective at a time 

serving as an objective function. Therefore, as an initial condition, a set of extreme 
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solutions minimizing each of the objectives individually are generated first. After 

that, the adaptive method is used to search for optimal routes with respect to multiple 

objectives. To examine the effectiveness of the method, three scenarios were 

developed for testing. First, public safety, which involves the factors of road users at 

risk, off-road population at risk, and people with special needs at risk, is considered 

to generate the optimal routes. Clearly, the obtained solutions effectively address the 

government's major concerns in DG routing. Second, the criterion of operating cost, 

e.g. travel time, is added with the intention of striking a balance between economy 

and safety. Third, all 7 criteria are considered simultaneously. With the increase of 

the number of objectives, the number of Pareto optimal solutions also increases. The 

reason is that a Pareto-optimal solution for two objectives is also Pareto-optimal 

when considering one or more additional objectives in conjunction with these two 

objectives. Thus, the set of non-dominated solutions for all the objectives contains at 

least all the non-dominated solutions for any choice of two, three, four, or more 

objectives. Out of the numerous routes, 12 are selected. For illustration purposes, the 

resulting optimal routes from Tsing Yi LPG terminal to each of the two dedicated 

LPG filling stations, i.e. Kowloon Bay and Tai Po, are presented below to provide 

some insight into the trade-offs among different solutions. Their attributes are shown 

in Table 5.7 and Table 5.8，respectively. The rows correspond to the optimal 

solutions, and the columns to the objectives. Note that all the values in these tables 

are unit free due to data normalization. 

5.4.1.1 The Tsing Yi - Kowloon Bay pair 

Solutions 1 to 7 are "extreme" solutions, each of which individually minimizes one 

of the seven objectives. These solutions provide information on the initially 

unexplored region. Although these routes have been presented in Figure 5.2, they are 

also displayed in Figure 5.8 in conjunction with MOP solutions for the purpose of 

comparison. Table 5.7 reveals that there are significant trade-offs among the Pareto-

optimal solutions with respect to different criteria. 
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Figure 5.8 Efficient routes from Tsing Yi terminal to Kowloon Bay LPG filling 
station generated by the adaptive weighting method 
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Solution 1 has the shortest travel time because most of its links are part of 

expressways and trunk roads. Solution 2 has the lowest accident probability, and is 

the best among all extreme solutions in terms of public safety. Solution 3 has the 

least off-road exposure risk. Solution 4 is the best with regard to the risk of 

population* with special needs exposed. Solution 5 minimizes the expected negative 

impacts on the economy in the event of an accident, by incorporating a large detour 

from Tsing Yi to Kowlooon Bay to avoid densely commercialized areas. This 

solution requires a longer travel distance and has a higher accident probability than 

all other solutions identified. It also performs very poorly in terms of road users' 

‘ safety and emergency response capabilities. Because of its high operating costs, this 

solution would probably be unacceptable to DG transport operators, and it also 

leaves a lot to be desired from the perspective of safety. Solution 6 has minimum on-

road exposure risk since most of its links mainly follow secondary roads with 

relatively light traffic. However, this results in running very high risks of off-road 

exposure and special population exposure, and the largest expected damage to the 

economy. Solution 7 performs the best on emergency response. 
-一、.、 

、 \ 
» 

Individual minimization of each of the seven objectives gives rise to a s i g n i f i e d 
I 

achievement of the chosen objective, while heavily compromisirtg the others, fi^y 

contrast, the multi-objective solutions represent a good compromise among the 

competing objectives, as evidenced by a comparison of solutions 8 to 12 given in 

Figure 5.8. Solution 8 focuses on the importance of public safety by considering on-

road exposure, off-road exposure, and special population at risk impartially. This 

solution serves best on safety, yet it is not equally desirable from the perspective of 

expected damage on the economy in the event of a DG incident, which is over 70% 

greater than the minimum obtained under solution 5. Solution 9 incorporates 

operating cost (travel time) with public safety. Compared with solution 8，this 

solution improves about 8% � 1 3 ° / o on most objectives; on the other hand, it also 

downgrades by 35% over solution 8 on on-road exposure risk. Obviously, the 

improvement in operating cost and some other objectives comes at the cost of 

sacrificing the road users' safety, though such trade-offs are not as substantial as 

those among the "extreme" solutions. Solutions 10 to 12 are obtained by taking all 7 

criteria into consideration simultaneously. Similar to solutions 8 and 9，these three 

MOP solutions present various trade-offs among different objectives. Compared to 
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» ‘ 

the "extreme" solutions, however, these trade-offs are much milder. It should be 

noted that although each of the last three solutions is created by impartially 

considering all 7 criteria, they are somewhat geometrically different from each other, 

which indicates that the proposed adaptive method is capable of generating a set of 

' diverse non-dominated solutions for the DG routing problem. 

5.4.1.2 The Tsing Yi — Tai Po pair 

Twelve of the optimal routes for the Tsing Yi - Tai Po pair generated by the 

proposed adaptive method are presented in Figure 5.9, among which the first 7 

solutions are "extreme" ones, and the last 5 are MOP solutions. Table 5.8 

summarizes their attributes and reveals the differences in their attribute values. 
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Figure 5.9 Efficient routes from Tsing Yi terminal to Tai Po LPG filling station 
generated by the adaptive weighting method 
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Solution 1 is the fastest route. However, the risks of special population exposure and 

on-road exposure with this solution are very high, resulting in the maximum societal 

risk of any of the alternatives. In solution 2, while the accident probability is 

minimized, the large detour from Tsing Yi to Tai Po following the links with low 

accident rate leads to the longest travel time. Solution 3 has minimum off-road 

exposure risk. Solution 4 is the best with regard to the risk of exposure of 

populations with special needs. However, it also has the highest accident probability, 

more than 100% greater than the minimum obtained by solution 2. Solution 5 

minimizes the expected damage to the economy in the event of an accident. Solution 

6 minimizes the on-road exposure risk by following secondary roads with lighter 

traffic, at the cost of the highest risk of off-road exposure. Moreover, should a DG 

accident occur，the expected damage on the economy of this solution will be more 

than doubled comparing to the minimum obtained in solution 5. Solution 7 is the 

most desirable from the perspective ot emergency response capabilities. 

Solutions 8 to 12 are a subset of ‘‘compromise’，solutions containing trade-offs among 

the considered objectives. Solution 8 takes into account the road users at risk, off-

road population at risk, and people with special needs at risk for the generation of 

optimal routes for DG shipments. While effectively addresses the government's 

major concerns in DG routing, solution 8 is not equally desirable from the 

perspective of accident probability, which is over 70% higher than the minimum 

obtained under solution 2. Solution 9 incorporates operating cost with public safety, 

which produces a shorter travel time and a lower accident probability than solution 8. 

On the other hand，this solution results in deterioration ranging from 2% to 21% over 

solution 8 on the other objectives. Solutions 10 to 12 are obtained by taking all the 

criteria into consideration. Like the two previously mentioned MOP solutions, these 

three solutions involve various trade-offs among different objectives, which, 

however, arc not as significant as those reflected in the ‘‘extreme，，solutions. 

5.4,2 Assessing the theoretical validity of the mode! 

The results presented in subsection 5.4.1 arc satisfactory in the sense that the 

proposed adaptive weighting method proved effective in generating a small number 

of elTicicnt routes under multiple conflicting objectives. However，further analyses 
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are needed to assess the theoretical validity of the proposed algorithm; in other words, 

to confirm that the paths generated do provide an overview of the possible routing 

options. A couple of aspects of the resulting paths are examined for this purpose. The 

first criterion is to estimate the goodness of the approximation, which can be 

measured by the proportion of the objective space that is covered by the approximate 

set of solutions. In practice, this notion is controlled by the size of the unexplored 

regions remaining for exploration. Recall that the termination criterion of the 

algorithm can be defined as either a desired number of solutions specified by a 

decision-maker; or the maximum loss of information acceptable by the decision-

maker. In the calculation process, once the former criterion is met, the algorithm 

terminates with showing the proportion of remaining unexplored regions for 

decision-makers' reference. In case the second criterion is satisfied earlier, it is 

observed that when the algorithm stops, the size of the unexplored regions accounts 

for less than 20% of the whole objective space. 

Another criterion is to examine the efficiency of the proposed adaptive method by 

estimating the dissimilarity of the generated routes, which is of importance in routing 

DG shipments. A dissimilarity index is calculated for every pair of routes selected. It 

is between zero and one, where zero indicates perfect similarity and one indicates 

perfect dissimilarity. To compute a dissimilarity index for two routes Ri and R” we 

process the arc lists of the two routes. If these two routes share no common arcs, then 

the dissimilarity index for this pair is one. At the other extreme, if the two routes are 

identical, then the index is equal to zero. If R, and Rj have some common arcs, but 

not identical, then the dissimilarity index quantifies the dissimilarity between them. 

The dissimilarity of two routes R, and Rj is defined as the symmetrical function 

(Akgun et al. 2000): 

D{R,,Rj) = \~ — — — ^ + ― 么 ， (5.6) 
‘ “ t 2L(R,) 2L(Rj) J 

where n Rj denotes the portion of common arcs between the route pair R, and R” 

and L{ . ) denotes the length of quantity under brackets. This index reflects the 

difference between unit value and the arithmetic average of two ratios: the 

intersection length divided by the length of route and the intersection length 

divided by the length of route Rj. 
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The results of the Tsing Yi - Kowloon Bay and Tsing Yi — Tai Po pairs are displayed 

in Table 5.9 and Table 5.10, respectively. For the Tsing Yi — Kowloon Bay pair, 

there are very few instances of high similarities between the generated optimal routes. 

The minimum and maximum dissimilarities are 22.7% and 87.8% respectively, while 

the average dissimilarity is 63.7% with a standard deviation of 17.5%. There are 

more cases of mild to high similarity for the Tsing Yi 一 Tai Po pair, and there are 

also more cases of high dissimilarity, with the dissimilarity index higher than 98%. 

The average dissimilarity is 65.8% with a standard deviation of 31.5%, while the 

minimum and maximum dissimilarities are 8.4% and 99.4%, respectively. 

Considering the rather short lengths of the routes, these results compare 

advantageously with those reported by Akgun et al. (2000). 

The cases of other 0 - D pairs exhibit similar performance except for the Tsing Yi -

Mei Foo and Tsing Yi - Kwai Chung pairs. Due to the rather short distance and the 

limited route selection between these two stations in the road network，the generated 

optimal routes do not vary much. As a result, the average dissimilarity is 

comparatively lower than those of the Tsing Yi — Kowloon Bay and Tsing Yi - Tai 

Po pairs. However, this is not due to the algorithm itself, but rather because of the 

influence of the existing network structure. Overall, the adaptive weighting method 

exhibits more powerful applicability to more complex road network with longer 

travel distance. 
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5.5 Genetic-algorithm-based route optimization 

5.5.1 Parameter settings in the proposed genetic algorithm 

The same routing problem between Tsing Yi LPG terminal and the dedicated LPG 

filling stations were analyzed using the proposed genetic algorithm described in 

Chapter 4. The GA was coded in C++ and tested on a Windows XP machine 

(Pentium 4 /3.0-GHz processor with 2GB RAM). To examine the effectiveness of 

the proposed GA, four scenarios were explored: (1) considering each objective 

individually, corresponding to a series of single objective route planning; (2) 

searching for optimal routes with particular concern on public safety, i.e., to take into 

account the factors of road users at risk, off-road population at risk, and people with 

special needs at risk simultaneously in routing analysis; (3) to strike a balance 

between economy and safety by considering the operating cost in conjunction with 

the three factors considered in test (2); and (4) optimizing all 7 criteria 

simultaneously. For each test，the GA was run with a population size of 30. A hybrid 

approach that incorporates random walk with heuristic initialization containing the 

“seeds” generated by Dijkstra's shortest path algorithm was used to initialize the 

population. Random walk and heuristic initialization contribute 80% and 20% 

individuals, respectively, in the initial population. The Max-Min fitness function is 

employed to maximize the difference between any two paths. The tournament 

selection incorporating the elite retaining strategy is employed to generate a new 

population for the next generation. The crossover operation exchanges partial 

chromosomes (i.e. partial-paths) at location independent crossover point. The 

mutation operation introduces new partial chromosomes (partial-paths). The 

algorithm terminates if the change in the mean fitness of the population is less than 

1% over 30 successive generations, or when 100 total iterations have been reached. 

A significant problem in designing a GA is the determination of the proper values for 

the control parameters, such as generations, population size (i.e. number of 

candidates), crossover probability P � m u t a t i o n probability 尸爪，termination conditions, 

etc. There is no formal theoretical methodology for this problem because different 

combinations lead to different characteristic behavior of the GA. Traditionally, 
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parameter determination is achieved through exhaustive experimental work (Eiben et 

al. 1999). Based on the experimental tests performed in this study and reported in the 

literature, the final settings of the control parameters used in the proposed GA for 

this case study were defined as follows: 

• population size: 30 

• crossover probability: Pc = 0.8 

• mutation probability: Pm = 0.05 

• number of elites: 3 

• tournament size: 3 

• number of generations: 100 

Note that the uniformity of the solution set is a significant issue that cannot be 

ignored. If every member in a solution set is exactly the same as that of another set, 

these two solution sets are considered uniform. Recall that given a set of criteria 

weights, the deterministic MOP methods such as compromise programming 

produces a unique solution no matter how many times the same procedure is repeated. 

The genetic algorithm, however, does not guarantee the uniformity in the solution set. 

Due to the intrinsic randomness of the GA, the solution set produced in a single run 

is very likely different from the set generated in another run even under the same 

parameter settings. Thus, in this case study, tests for each of the four scenarios were 

made several times in order to avoid exceptional cases. 

5.5.2 Routing results and interpretations 

Since genetic algorithms operate with a population of solutions, the result of the 

proposed GA for each of the four scenarios is not a single route but a set of routes 

bearing dissimilar proportions of cost and risk. Among these routes, not all but some 

of them are non-inferior with respect to each other. They are efficient solutions for 

the DG routing problem. Given the predefined population size, for each origin-

destination pair, about 4 x 30 = 120 solutions were generated for all tests. Despite a 

large set of solutions, the set of Pareto-optimal routes is not very diversified since 

many routes overlap. For illustration purposes, 14 distinct Pareto-optimal routes from 

Tsing Yi LPG terminal to Kowloon Bay station are selected and presented below to 
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provide some insight into the trade-offs among different solutions. The same number 

of efficient routes for the Tsing Yi - Tai Po pair is presented in Figure 5.11. Tables 

5.11 and 5.12 summarize the attributes of the corresponding routes for these two O-D 

pairs, respectively. The rows correspond to the optimal solutions, and the columns to 

the objectives. Note that all the values in these tables are unit free due to data 

normalization. 
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Consider the application with respect to single objective optimization. cach O-l) 

pair, it is found that in almost all tests, the resulting routes by the proposed GA (i.e., 

solutions 1 to 7) arc exactly the same as I he extreme ones generated by the 

compromise programming approach. This shows that the proposed GA is competent 

in handling single objective optimization problems, a special ease of multi-objective 

optimization with particular focus on a certain objective. The interpretation of these 

solutions is not given here since the composition of risk and cost in cach solution and 

the significant Irade-otTs among the optimal solutions with respect to different 

objectives have already been examined and discussed in the previous sections. 

Solutions 8 to 14 arc examples of the multi-objcclive solutions. Compared to the 

routes produced by single objective optimization, these solutions exhibit a good 

compromise among the competing objectives. Solutions 8 and 9 arc obtained by 

minimizing the risks of on-road exposure, off-road exposure, and the special 

population exposure simultaneously. Solutions 10 and 11 incorporate operating cost 

with public safely, and solutions 12 to 14 are generated by taking all seven criteria 

into account simultaneously. To examine the tradc-ofts among the objectives in each 

MOP solution, we analyzed these Pareto-optimal routes for cach of the two O-D 

pairs separately. 

According to Table 5.11, it is found that tor the pair of Tsing Yi - Kowloon Bay, 

solutions 8 and 9 have minimum societal risk, sincc both of them primarily tbcus on 

I he importance of public safety. However, they arc not equally desirable from the . 

perspective of the expiected damage on the economy in the event of a DG accidcnt, 
t 

which increases, for both solutions, by over 50% than the minimum obtained under 

the single-objective solution 5. As far as the capability of emergency response is � 

concerned, solution 8 is the worst among the seven reported MOP solutions, with 

90% higher risk in this factor than the minimum obtained in solution 7. 1 lowevcr, 

compared to singlc-objcclivc solutions 4 to 6 (which bear more or less similar value 

on the factor of emergency response with solution 8), the performance of solution 8 

is dearly much better than those three on most criteria. Solution 10 considers public 

safety together with travel time and does make improvement on most of the 

objectives except the on-road exposure risk, which downgrades by 40% and 18% 

over solutions 8 and ()，respectively. I laving the same focus of conccrn as solution 10, 
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solution 11 takes the shortest travel time among all the MOP solutions reported in 

Table 5.11. Moreover, this solution outperforms solution 10 in regard to road users' 

safety and the emergency response capability. However, in the context of oft-road 

exposure risk, population with spccial needs at risk, and expected damage on the 

economy in the event of a DG incidcnl, solution 1 1 is not as favorable as solution 10. 

Solutions 12 to 14 lake all criteria into consideration in the process of route planning. 

Like solutions 8 to 11, these three MOP solutions involve various trade-offs among 

• the competing objectives. Overall speaking, for the Tsing Yi - Kowloon Bay pair, 

considering all criteria simultaneously results in lower accident probability and 

smaller exposure risk of special population and road users. This is, however, at the 

expense of travel time, off-road population exposure, expected damage on the 

cconomy, as well as a decrease in the emergency response capabilities. Nevertheless, 

the Irade-offs among the objectives arc not as significant as those reflected in the 

‘'extreme，，solutions. 

The MOP solutions for the Tsing Yi — Tai Po pair present a similar picture to that of 

Tsing Yi - Kowloon Bay. Solutions 8 and 9 serve best on public safely with the 

lowest societal risk among all 14 solutions reported in Table 5.12. However, this is 

achieved at the cost of longer travel time and higher accidcnt probability since both 

routes pass through Lam Kam Road and Route Twisk, whose road conditions are 

undesirable. Solutions 10 and 11 incorporate operating cost with public safety, which 

shortens travel time and significantly rcduccs accidcnt probability compared to 

solutions 8 and 9. On the other hand, solution 10 downgrades by about 80% and 20% 

over solutions 8 and 9 on spccial population risk and on-road exposure risk, 

respectively. As for solution 11， the performance on these two objectives 

downgrades by 23% and 36%, respectively, compared with the abovcmcntioned two 

solutions. In terms of overall cost，solution 11 is reasonably good with well-

proportioned compromise among various objectives. The rest three, solutions 12 to 

14，are obtained by considering all seven criteria with unbiased preferences, among 

which solution 13 gives belter performance than solution 11 on all objectives except 

the safety of road users, which increases by more than 18% of on-road exposure risk 

than solution 11. Solutions 12 and 14 involve various compromises among different 

objectives, and present higher overall cost than solution 13. However，compared with 
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the singlc-objcclive solutions, they are acceptable with milder Irade-otTs among the 

competing objectives. 

5.5.3 Assessing the quality of the proposed GA approach 

As an efficient search strategy for global optimization, a genetic algorithm 

demonstrates favorable performance on solving multi-objective optimization 

problems. The optimal routing problem in network analysis can be solved with GA 

through efficient encoding, construction of fitness function, and various genetic 
• 1 

operations. j 
i 
I I j 

In this case study, we have demonstrated that the GA-based route optimization for 

the transportation of DG in the road network of Hong Kong is subject to their 

satisfaction of multiple objectives in terms of cost and risk. The solution is a set of 

routes that are non-inferior with respect to each other. Owing to the employment of a 

Max-Min fitness function derived from the definition of dominance to measure the 

Pareto optimality of each route in a particular generation, the multiple objectives to 

be optimized have not been combined into a single one and hence the general nature 

of the solution is maintained. Moreover, the Max-Min fitness function maximizes the 

difference between any two routes, which ultimately results in a diverse set of non-

dominated routes. This has been illustrated by the resulting solutions described in 

subsection 5.5.2. 

The computational experiments reveal the behavior of the proposed GA as applied to 

the multi-objective DG routing problem in terms of diversity and optimality of 

solutions, and computational complexity. After examining the solutions against all 

seven criteria unbiasedly in routing analysis for the Tsing Yi - Kowloon Bay pair. 

Figure 5.12 shows that the number of non-dominated solutions generally increases as 

the number of generation increases, though the number of efficient routes fluctuates 

in the process of iteration. This is not beyond our expectation. Due to the intrinsic 

randomness of the genetic algorithm, in particular, the randomness in the crossover 

and mutation operations, a route that is non-dominated in the previous generation is 

very likely to become dominated in the next generation after genetic operations as it 

evolves lo a different one, and vice versa. This inevitably leads to the change of 
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proportion of efficient solutions in each generation. On the other hand, the 

application of tournament selection and elite retaining strategy helps to improve the 

average quality of the population by giving the high-quality individuals a belter 

chance to be copied into the next generation. Consequently, the number of Pareto- ^ 

optimal routes, as a whole, gradually increases with the evolution of population. 
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Figure 5.12 The number of non-dominated routes increases with the generations (test 
on the Tsing Yi -Kowloon Bay pair with unbiased consideration of all criteria) 

Figure 5.12 exhibits an upward movement in the number of Pareto-optimal routes in 

the evolution process. However, it does not reveal exactly how Pareto optimality of 

solutions in different generation changes. To assess the quality of the proposed GA 

approach more appropriately, we attempted to examine how well the genetic 

algorithm improves Pareto optimality from generation to generation. However, the 

Max-Min fitness function used in the proposed GA is designed to compare the 

fitnesses between solutions within a generation, and one cannot compare the 

fitnesses between solutions in different generations. To solve this problem, we 

crcated a “global generation", which includes 30 x 100 = 3000 feasible routes from 

the 100 generations lumped together. We then calculated the "global fitness’，for each 

of the 3000 solutions in the global generation according to the same Max-Min fitness 

function used before. Based on global fitnesses, we identified the "global Pareto 

set" for the global generation. Of the 3000 routes in the global generation, there are 

47 distinct routes in the global Pareto set. We averaged the value of global fitness 

over the 30 individuals in each generation and plotted this average in Figure 5.13. 
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We also plotted the number of routes in each generation that are members of the 

global Pareto set. This plot clearly shows that the proposed GA improves global 

Pareto optimality from generation to generation, which confirms the effectiveness 

and efficiency of the proposed GA. 
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Figure 5.13 Improvement of global Pareto optimality from generation to generation 

In terms of the diversity ot solutions, Figure 5.14 shows a plot of 9 efficient solutions, 

which is a subset of the 47 distinct global Pareto-optimal routes for the pair of Tsing 

Yi - Kowloon Bay when considering all seven criteria unbiasedly in routing analysis. 

The plot of optimal routes provides information on how good an algorithm is in 

finding a diverse set of solutions for problems involving multiple objectives. A good 

spread of solutions over a range implies that the algorithm is good in finding diverse 

solutions (Pangilinan and Janssem 2007). Figure 5.14 shows that the solutions 

obtained by the proposed GA are well spread over the range for all the objectives 

under consideration. Also, the figure reveals that the proposed GA finds non-

dominated routes with appropriate compromise among the competing objectives. It is 

found that for any two of these MOP solutions, an improvement in one objective 

does not significantly downgrade others, which indicates a good balance is achieved 

among the objectives between different solutions. Such solutions are desirable for a 

MOP problem like DG route planning. 
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Figure 5.14 A plot for a subset of the global Pareto optimal routes 

'Another aspect on evaluating the proposed GA is the closeness of its solutions to the 

Pareto-optimal solutions. For Tsing Yi - Kowloon Bay pair, it is found that some 

solutions produced by the GA coincide with those generated by the compromising 

programming or the adaptive weighting method. It has been proved that solutions 

created by the CP and the adaptive methods for a MOP problem are Pareto-optimal 

or weakly Pareto-optimal. The agreement in the solutions of the GA with the other 

two methods indicates that the GA has potential of finding (approximately) efficient 

solutions. On the other hand, in the absence of the complete set of Pareto-optimal 

routes for the DG routing problem under consideration, it is difficult to evaluate the 

GA in terms of proximity to the Pareto front. Nevertheless, as shown in Figures 5.12 

and 5.13, the GA generates more efficient routes as the number of generations 

increases, which means that through evolution, the non-dominated solutions are 

improved and move gradually to the location of the Pareto-optimal solutions. While 

there is no assurance that the non-dominated solutions converge to the Pareto front or 

the maximal set of efficient paths, the GA finds a subset of diverse and favorable 

non-dominated solutions with good compromise among the objectives at each 
I 

generation, and improves the solution set as the number of generation increases. 
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With regard to computational complexity, the proposed GA is a polynomial time 

algorithm with respect to the number of nodes and arcs of a network. Although the 

CPU runtime is longer than the other two methods, unlike exhaustive algorithms, the 

GA does not suffer from intractability and memory problems, even with a large 

network size in this case study. In this regard, the proposed GA is considered to be 

computationally effective. 

The above analysis and assessment of the proposed GA were made on the basis of 

the results of Tsing Yi — Kowloon Bay. In fact, similar conclusions could be arrived 

from the analysis of routing results of^other 0 - D pairs, though the degree in the 

diversity of solutions and the optimality of solutions may be different. The present 

study illustrates that the GA approach is effective in solving a multi-objective 

optimization problem such as DG route planning. Moreover，the advantage of the 

GA will become more significant when dealing with more complex combinatorial 

optimization problems with larger solution space. 

5.6 Summary and discussion 

In the preceding sections, the same routing problems between Tsing Yi LPG terminal 

and the dedicated LPG filling stations were analyzed using three different MOP 

methods, namely the compromise programming approach, adaptive weighting 

method, and GA-based approach. The compromise programming procedure allows 

decision-makers to exercise their preference structures in pursuing satisfactory 

solutions rendering good compromises among different objectives. The adaptive 

weighting method approximates the Pareto front with a few suitable solutions to help 

decision-makers select the most satisfied routes without generating all of them. The 

genetic algorithm based approach uses a set of specifically designed genetic 

operators to efficiently capture a wide range of Pareto-optimal and near-optimal 

solutions, from which a decision-maker can choose the most preferred or best 

compromise solution as the one to implement. Although the mechanisms of the three 

MOP methods are different from one another, they have all been proved effective in 

generating efficient solutions for multi-objective route planning for LPG 

transportation on the road network of Hong Kong. 
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When considering each objective individually, no matter which method is used，the 

generated optimal routes in terms of a particular objective are rather different from 

each other. The minimization of one single objective function gives rise to a 

significant achievement of the chosen criterion, whilst heavily compromising the 

others. In other words, the trade-offs among different objectives are rather significant. 

This manifests the conflicting nature of the multiple objectives in the DG routing 

problem, which, therefore, reveals the necessity of the search for compromise 

solutions rendering the best possible tradeoffs among different objectives for DG 

route planning. 

When various objectives are taken into account for DG route planning, it gives a 

different picture from single objective DG routing. Compared with the extreme 

solutions, the multi-objective solutions present a good compromise among the 

competing objectives, though they do not strictly correspond to a minimum of any 

objectives. It is observed that for MOP solutions, when one or more objectives are 

improved, other objectives are worsen off at the same time. However, the values of 

the objective functions vary within a smaller range compared with those in the single 

objective solutions. In other words, the compromise among the competing objectives 

becomes much milder. On the other hand, the diversity of the routing solutions still 

remains, though the differences among the routing solutions appear to be smaller. 

Taken together, albeit with limited scope, the computational experiments 

demonstrate the validity of the methodologies proposed in this research. 

The Pareto-optimal routes for some origin-destination pairs, such as the Tsing Yi -

Mei Foo and Tsing Yi - Kwai Chung pairs, are found to be alike in a number of 

cases. These optimal routes exhibit high similarity not only under different 

combinations of various objectives, but also under different MOP methods. The 

possible reason is that the distance between the origin and the destination is so short 

that the route selection in the road network is limited. On the other hand, the 

similarity also appears in the MOP solutions for the Tsing Yi — Tuen Mun pair, 

although in relatively fewer cases. Clearly, distance should not be the underlying 

reason because Tsing Yi is much more distant from Tuen Mun than that from Mei 

Foo and Kwai Chung. In theory, greater spatial extensiveness diversifies the choices 

in route selection. However, the structure of the existing road network limits such a 
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choice. It is found that between Tsing Yi and Tuen Mun, there exists a corridor 

which is the only access from the origin to the destination: Tsing Yi LPG terminal 

Tsing Yi road Cheung Tsing Highway — Tsing Long Highway + Tuen Mun 

Road. Vehicles have to pass through this corridor before they reach Tuen Mun LPG 

station. In addition, the forbidden passage of DG vehicles through any tunnels in 

Hong Kong further narrows down route selection. Under the joint effect of these 

factors, the variation in the routes between Tsing Yi terminal and Tuen Mun station 

is very limited. Most of these routes comprise the same sections but in different ways. 

For the other O-D pairs, however, the optimal routes under different objectives differ 

significantly, which confirms the validity of the proposed methodologies in 

generating a set of diverse solutions. 

In present case study, identical solutions are obtained by different methods 

sometimes. For example, solutions 12 and 14 through compromise programming for 

the Tsing Yi - Tai Po pair are the same as solutions 8 and 10，respectively, through 

the adaptive method. There are even more identical cases found in the solutions 

generated by the proposed GA. As a population-based method, GA produces a set of 

solutions in each single run. Although not all the solutions are guaranteed to be 

Pareto-optimal, a few efficient routes (i.e. the ones that are Pareto-optimal or near 

Pareto-optimal) can be found from the solution set. Among these efficient routes, 

occasionally, one or more solutions are found to be the same as, or very close to, the 

routes generated by the compromise programming method or the adaptive weighting 

method. Given that the solutions by each of the three methods for these two O-D 

pairs exhibit great varieties, the identicalness in the optimal solutions is unlikely 

caused by the network structure. Rather, it confirms the validity of the methods. CP 

is a preference-based method, and the weights employed in CP are predetermined 

according to decision-makers' preferences for each objective. The generated 

solutions are Pareto-optimal, which reflect the trade-offs among different objectives 

rendered under the weighting structure. The adaptive method and the genetic 

algorithm fall into the category of generating technique. No prior knowledge of 

relative importance of each objective is used. The "weights" in the adaptive 

weighting method are created by the system automatically based on the largest 

unexplored solution space. The solution produced by this approach is weakly Pareto-

( optimal, or Pareto-optimal if it is unique. Working with population of solutions, GAs 
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have been proved well suited for finding a set of approximately efficient solutions. In ‘ 

this case study, some solutions created by the proposed GA have been found to be 

very close to, or even the same as, the ones produced by the compromise 

programming method and the adaptive method. The occurrence of such identicalness 

in the solutions of the three methods indicate that the adaptive method and the 

genetic algorithm are competent for generating a set of efficient solutions for the 

multi-objective DG routing problem; moreover, the optimal ones representing certain 

preferences for different objectives are very likely to be found within this set. 

The experimental results over the Hong Kong road network using the proposed 

methodologies have demonstrated various compositions of risk and cost in the 

routing solutions. In this study, the overall cost of a solution is defined as the 

summation of operating cost, various risks, and the capability of emergency response. 

Clearly, the principal contributor of the overall cost for different solutions is different 

from each other. For example, for one solution, the overall cost may mainly depend 

on the exposure risk; while for another solution, the operation cost contributes the . 

most; and in the third case, the contribution of the emergency response capability is 

the most significant. The variety in the cost and risk composition reveals the distinct 

emphasis in different solutions. In addition, it is also observed that under the current 

system of evaluation for the cost and risk, except for the extreme solutions, the first 

three contributors to the overall cost are on-road exposure risk, travel time, and 

emergency response capability, respectively. This applies to most solutions for all 

origin-destination pairs addressed in the case study. 

It should be noted that mathematically optimal does not necessarily mean practically 

optimal. A route being optimal in the context of a particular objective or a 

combination of several objectives may be of insignificance in practice. Take Tsing 

Yi - Tai Po as an example. When the major concern is to minimize the population 

with special needs at risk, or to minimize the on-road exposure risk，the resulting 

routes will always pass through Route Twisk, no matter which method is adopted. 

Such solutions are, however, infeasible in practice. Route Twisk is the only link to 

Tai Mo Shan Road, the road leading to Tai Mo Shan, the highest peak in Hong Kong. 

It is narrow, sloping, and tortuous. Although the traffic volume on this road is quite 

low, Route Twisk is rarely taken by the vehicles carrying dangerous goods due to its 
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undesirable road condition. This indicates that despite being mathematically optimal, 

any solution with Route Twisk as a component leaves a lot to be desired from the 

viewpoint of feasibility. The Tsing Yi - Tai Po case suggests that for multi-objective 

problems, although various MOP solutions can be generated by means of different 

optimization procedures, the obtained solutions need to be examined carefully on 

both the optimality and rationality to ensure their feasibility. 

In this research, three methods have been proposed for the problem of multi-

‘ objective DG route planning. Each of them has its respective characteristics and is 

applicable to different situations. When decision-makers have explicit preferences 

among objectives and are prone to deciding the criteria weights on their own, they 

can use compromise programming approach to conduct DG route planning. In other 

cases, they can choose generating methods such as the adaptive weighting method or 

the genetic algorithm. Both methods search for optimal routes with no requirement 

on prior knowledge of the relative importance of the concerned objectives. However， 

they have different working principles. The adaptive method is a deterministic 

approach based on compromise programming. In this method，the exploration in the 

objective space is always adaptively adjusted to point to the desired direction. In 

other words, the search is goal-directed, rather than random search. The genetic 

algorithm is a heuristic method. Compared to traditional search algorithms, GA is 

able to automatically acquire and accumulate the necessary knowledge about the 

search space, and self-adaptively control the entire search process through random 

optimization technique. Moreover, it is able to find multiple feasible solutions in a 

single run. Compared to the adaptive method, GA is more suitable for solving the 

combinatorial optimization problems with non-linear objective functions, or when 

little is known about the search space. 

In terms of complexity, the compromise programming based approach outperforms 

the other two, and the genetic algorithm has the highest complexity. This can be 

reflected by the CPU time running for generating efficient solutions using different 

methodologies. Table 5.13 shows the computation time for single-objective, three-

objective, and seven-objective DG routing problems for the Tsing Yi - Kowloon Bay 

pair. The time is in the unit of seconds. For the genetic algorithm, the computation 

“t ime is averaged on the basis of ten runs. As illustrated in Table 5.13，the 
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computation time of the genetic algorithm is the longest, followed by the adaptive 

method. The compromise programming is the fastest. On the other hand, however, 

the genetic algorithm excels the compromise programming in the generation of 

multiple solutions in a single run. The ability of GA to simultaneously search 

different regions of the solution space makes it possible to find a diverse set of 

solutions for the MOP problem, while compromise programming only generates a 

single solution each time. In comparison, the adaptive weighting method produces 

one solution at each iteration, and the same procedures repeal several times till the 

desired size of solutions are obtained. 

Table 5.13 The compulation time (in seconds) for single-objective, three-objective, 
and seven-objective DG muling problems for Tsing Yi - Kowloon Bay 

. adaptive 一 ' . compromise . , . genetic 
. weighting , . , 

programming method algorithm 
single-objective ^ I 113.6 
problem 
three-objective : ^ 
problem 
seven-objective ^ ^ 823.1 
problem [ _ _ _ _ _ 

It must be noted that the purpose of exploring different MOP techniques for the 

problem of DG routing is to provide decision-makers with more options and more 

flexibilities in solving the multi-criteria decision-making problem. It does not intend 

to draw a conclusion on which method is better than others. In fact, each approach 
V 

has its advantage and applicable conditions, no method may outperform other 

"competitors" in all aspects.‘ 

In this case study, some constraints on the road network, such as the turn restriction 

on ccrtain intersections and the traffic directions designated for the involved road 

. segments, have not been considered due to the problem of data availability. Such 

road segments and intersections are then assumed to be unrestricted. Hence, the 

experimental results obtained under this assumption may not be one hundred percent 

realistic. The possible way to avoid such a problem is to secure the data and set 

corresponding constraints on thejielwork. 
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Finally, it is worth pointing out that the road network in Hong Kong is relatively 

simple. A fjumber of corridors in the network are actually the only routes between j 

some locations. Thus, the simplicity of the road network may not be able to fully 

demonstrate the efficacy of the proposed framework and methodologies. It is, 

however, conceivable that the performance of the approach can be better illustrated 

when it is applied to cities with more complicated road networks in future 

applications. 
i 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

This study aims to contribute to the literature of dangerous goods transportation by 

constructing a general framework applicable to multi-objective route planning for the 

conveyance of DGs in a high-density living environment. In this chapter, the 

research findings and methodological contributions of current study are summarized. 

In light of the study results and limitations, some recommendations are provided for 

future research. 

6.1 Summary of the study ， 

This research has addressed the problem of optimal route planning for the 

transportation of dangerous goods on a road network. The main focus is on the 

development of vigorous multi-objective optimization methods to seek optimal 

routes for DG transportation in a high-density living environment, on the basis of 

multi-criteria risk assessment. A general framework for dangerous goods route 

planning for high-density living has been constructed. This framework can assist 

stakeholders in evaluating the way vehicles carrying DG are being routed on the road 

network, and can also provide decision-makers with efficient options if the current 

routes need to be adjusted. 

Three distinct multi-objective optimization methods have been developed to � 

properly manage the multiple objectives involved in DG route planning. High 

performance algorithms have been devised to facilitate the implementation of these 

methods. Multi-objective DG routing can be treated as an extension of the traditional 

shortest path problem, for which the Dijkstra's algorithm is the most commonly used. 

In order to make the best use of Dijkstra's algorithm and efficiently address the 

multi-objective nature of the DG routing problem, a modified Dijkstra's algorithm 

incorporating compromise programming (CP) has been developed to generalize 

multi-attributes in the calculation of the cost value for each link. The least cost path 

can then be identified based on the composite cost in each link. The main assumption 

in compromise programming is to search for a feasible solution closest to the ideal 

one in which each objective achieves its minimum value simultaneously. The degree 
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of closeness is measured by the Lp-metric. Two CP-based methods have been 

proposed in this research to accomplish the modification of the Dijkstra's shortest 

path algorithm. They are: (1) a standard compromise pl-ogramming method, and (2) 

an adaptive weighting method. The standard compromise programming approach is a 

typical preference-based method. The overall performance of a solution is 

represented by a utility function which incorporates multiple attributes with the 

weights accounting for decision-makers' preferences for different objectives. This 

method allows decision-makers to exercise different preference structures in 

pursuing the compromise solutions. It offers flexibility in addressing the multiple 

aspects of DG route planning. The solutions depict the trade-offs in achieving 

various objectives. This is especially critical when the efficient solutions form a non-

convex frontier, in which case the conventional MOP technique such as the weighted 

sum approach may fail. 
i 

In the case that decision-makers find difficult to state their preferences for each 

objective before they have an explicit conception of the actual trade-offs involved, it 

is more desirable to generate the efficient solutions first, and then let the decision-

makers select the most preferred or best compromise solutions from this set. This is 

the notion of generating method. The adaptive weighting approach proposed in this 

study falls into this category. A parametric objective function (i.e. the weighted min-

max function) that behaves like a utility function is constructed. Properly 

approximating the Pareto front with a few suitable solutions is achieved by 

systematically varying the origin and direction of exploration. In this method, once a ‘ 
I 

Pareto-optimal is obtained, the search space will be partitioned into smaller pieces, 

and the regions that are either dominated by the known optimal solutions or free of 

optimal'solutions will be discarded. The search origin and direction are then adjusted 

based on the largest unexplored space that may contain efficient solutions. 

Considering that in the case of network routing problem, conventional minimax 

solutions such as the branch-and-bound procedure are unlikely to outperform the 

labeling algorithms which are specially designed to make use of the network shape 

and can process the links in the optimal order, the Dijkstra's algorithm along with 

appropriate modifications is employed to solve the min-max utility function. The 

cost of traversing link in the modified Dijkstra's algorithm takes into account all the 

objectives examined, rather than a particular objective. Compared with the 
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compromise programming approach, the adaptive method requires no prior 

‘knowledge of relative importance of each objective, yet it can provide an unbiased 

approximation of the Pareto front. 

Both the compromise programming approach and the adaptive weighting method 

depend on a weighting mechanism to collapse multiple objectives into a single 

objective function. To generate the desired solution, the exploration in the objective 

space is always oriented towards the expected direction. In other words, the search is 

goal-directed, rather than a random search. In the literature of multi-objective 

optimization, these optimization methods are generally categorized as the class of 

deterministic technique. By contrast, the genetic algorithm, a probabilistic 

optimization technique, provides a powerful alternative to the conventional solutions 

for difficult optimization problems. GAs are a class of global search methods that are 

modeled after the mechanics of natural evolution within populations and species via 

reproduction, competition, selection, crossover breeding, and mutation. They operate 

with a population of possible solutions rather than a single candidate. Therefore, they 

are less likely to get trapped in a false local optimum. Moreover, several Pareto 

optimal solutions may be captured during one run of GA. In the proposed GA-based 

method，a feasible routing path is represented as a variable-length chromosome 

whose elements represent the nodes included in it. The initial population is generated 

using random walk incorporated with the seeds generated by Dijkstra's algorithm. 

The incorporation of heuristics into random initialization is able to produce a better 

initial population while maintaining its diversity. The Max-Min fitness function is 

employed to maximize the difference between any two paths, which ultimately 

results in a diverse set of non-dominated solutions. The tournament selection 

incorporating the elite retaining strategy is employed to generate a new population 

for the next generation. The crossover operation exchanges partial chromosomes 

(partial-paths) and the mutation operation introduces new partial chromosomes. 

Crossover and mutation together provide a search capability that results in an 

improvement of solution quality and convergence rate. 

Given the multiple objectives in the process of DG route planning, a set of criteria 

fitting the context of high-density living has been identified, covering most aspects 

associated with DG transportation such as travel time, accident probability, 
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exposure risk, and emergency response capabilities. Since high-density living is of a 

particular concern in our study, the exposure risk considered here contains not only 

road users at risk, but also off-road population exposure, as well as population with 

special needs at risk. In addition, the emergency response capability, which is 

significant for high-density living, is also included in DG routing analysis, with a 

view that timely action by emergency responders can considerably reduce the . 

magnitude of the consequences associated with a DG release. As another type of 

exposure risk, the possible damage inflicted to the surrounding properties and 

facilities in the event of a DG incident is also addressed. 

Based on the identified routing criteria, up to seven objectives are included in the 

routing analysis, which can be classified into three major categories: operating cost, 

risk estimates, and emergency response capabilities. A risk model with ；'espect to 

various risks has been designed to assess the risk associated with DG transportation. 

The risk assessment is conducted within a geographic information system (GIS), 

which exploits the powerful spatial data processing and analytic capabilities of 

GIS. ‘ 

To validate the proposed methodologies, a case study has been carried out on the 

transportation of liquefied petroleum gas in the road network of Hong Kong. It 

attempts to generate optimal routes from Tsing Yi LPG terminal to the dedicated 

LPG filling stations located in Kowloon and the New Territories. To examine the 
； K 

effectiveness of these methodologies, four scenarios are tested for each method: (1) 

considering each objective individually, which corresponds to a series of single 

objective optimal routing problems; (2) routing with primary focus on public safely, 

namely road users at risk, off-road population at risk, and people with special needs 

at risk. Solutions obtained effectively address the government's major concerns in , 

DG routing; (3) taking the operating cost into account in conjunction with the public 

safety with the intention of striking a balance between economy and safety; (4) 

considering all the criteria simultaneously in routing. The proposed methodologies 

have been implemented on a GIS platform - ArcGIS. The computational 

experiments demonstrate the robustness and flexibility of this platform as a tool to 

quantify the routing criteria through spatial analyses and database management, to 

perform the shortest path calculation, and to visualize the resulting solutions. A 
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diverse set of routes have been generated under each method, presenting various 

trade-offs among different objectives. 

6.2 Research contribution 

Safe DG transportation is of even greater importance for high-density living in which 

population and socioeconomic activities are densely distributed over the 

transportation network. Risk assessment and route planning play a crucial role in the 

prevention or minimization of possible catastrophic consequences on human life and 

the environment. However, effort has seldom been made to analyze such problem in . 

the literature. Hence there is an urgent need to carry out risk assessment and optimal 

route planning for DG transportation in high-density environment. This study has 

established a general framework for optimal DG routing in such an environment, 

within which non-convexity and non-linearity can be handled, risk assessment 

applicable to high-density living can be made, and the best compromise solution can 

be obtained along the Pareto front stipulating various trade-offs among the 

conflicting objectives. The results obtained from this research will positively 

contribute to the research and applications in the field of DG transportation. The 

contributions of this research to the literature of DG transportation can be 

summarized as follows. 

First，this study has established a conceptual framework for optimal route planning 

for DG transportation in high-density living environment. To properly address the 

special concern on high-density living, in the risk assessment and the routing analysis, 

a high value has been put on various types of exposure risk, including not only the 

off-road population at risk, but also the road users exposed to the DG vehicles, as 

well as the population with special needs at risk, given that this group of people may 
/ 

be particularly sensitive to DG releases and are difficult to evacuate. Considering that 

prompt and efficient response is critical to the minimization of possible catastrophic 

consequences on human life and the environment in the event of a DG accident, the 

emergency response capability has also been counted as a factor in risk assessment 

and routing analysis. To the best of our knowledge, although there is a wealth of 

literature on the DG transportation problem, most of it only focuses on risk analysis 
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by various risk models. Lesser effort has been made on route planning for DG 

transportation under conflicting objectives, particularly in high-density environment. 

This study sheds a light on this gap. 

Second, DG transportation is a multi-criteria and multi-objective problem which is 

generally complicated to solve. High performance multi-objective optimization 

methods are of paramount importance to effective route planning for DG 

transportation. It is instrumental to generate a set of efficient routes representing the 

inherent trade-offs among different objectives for decision-makers to choose the one 

that gives the best compromise among the conflicting objectives. This study has 

developed three novel methods to facilitate the generation of a set of optimal 

solutions, instead of a single pseudo optimal solution, on the Pareto front including 

non-convex (non-supported) points for the choice of compromise solution rendering 

the best trade-offs among conflicting objectives. The associated high performance 

algorithms guarantee speedy convergence via global and local searches. The 

methodologies proposed in this study gives full consideration to decision-makers' 

inclination and capability in determining the weights for different criteria. The 

diversity of methodologies provides decision-makers more flexibility in choosing 

applicable MOP methods for DG routing. 

In the previous studies, optimal route planning for DG transportation was achieved 

by either considering each individual objective separately, or linearly combining 

multiple concerned objectives by a weighed sum approach, and reducing the original 

problem to a standard shortest path problem. Consequently, the non-convexity 

consisted in solution space and the non-linearity existed in some objective functions 

cannot be properly handled. The methodologies proposed in this study have 

effectively addressed this problem. Compromise programming has been 

mathematically proven superior to the weighted sum method in locating non-convex 

points on the Pareto front (Steuer 1986). The proposed adaptive weighting method is 

suited for the exploration of both the “convex” and “concave" parts of the Pareto 

front, while ensuring Pareto-optimal ity of the points encountered. The ability of the 

genetic algorithm to simultaneously search different regions of the solution space 

makes it possible to find a diverse set of solutions for difficult problems with non-

convex and discontinuous spaces. Avoiding the linear form of scalarized objective 
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functions in the objective space enables the proposed methods to efficiently handle 

difficult optimization problems with non-linear objective functions. 

This research can benefit safe DG transportation in practical applications, 

particularly in high-density cities. A real-life application in optimal route planning 

for the transportation of liquefied petroleum gas in Hong Kong has been carried out 

in this study. The implementation of the proposed methodologies enables the 

avoidance of the pitfalls of preference-based techniques and the burden of generating 

a complete set of possible solutions, and provides decision-makers with an overview 

of the solution space and the possible trade-offs among the conflicting objectives. 

The application study has illustrated the adaptation of the proposed framework in a 

GIS environment. ‘ 

� Finally, different types of dangerous goods possess different characteristics whose 

risk assessments and routings call for a wide spectrum of technical knowledge and 

practical considerations. This research concentrates mainly on the transportation of 

petrochemical-type of DG — liquefied petroleum gas. The framework can, however, 

be extended for further research on more complicated problems involving the 

transportation of multiple DGs over a transportation network in high-density 

environment. 

6.3 Recommendations for future research 

As outlined in the preceding section, this study has made a positive contribution to 

the field of dangerous goods transportation. However, further efforts are required to 
f 

extend both the methodology and the substance of this research, such as practical 

and reliable estimation of the risk of DG transportation; exploration of efficient 

approach to the DG routing problem with multiple origins and destinations; strategic 

handling of the constraints involved in DG route planning; uncertainty analysis; as 

well as real-time routing. 

When modeling the risk of transporting DG along a route, the risk indicator is 

usually composed of the probabilities of occurrence of some undesirable events and 
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their possible adverse consequences (Erkut et al. 2007). The probability of an 
� . . ‘ 

accident in a link of a route depends on various factors such as the long-run accident 

rate，length of the link, road type, and traffic condition. In addition, the estimated . 

probabilities based on individual factors might be inconsistent and sometimes even 

conflicting. Therefore, it is necessary to find a way to combine the pieces of 

evidence/probabilities to estimate the composite probability for the link. Actually, 

certain level of subjectivity usually exists in the estimation process, particularly 

when public perceived probability is involved. The present study employs the 

Bayesian approach to estimate the probability of an accident with release of DG. A 

Bayesian method, commonly used in the literature (Chow et al. 1990; Glickman 
% 

1991), requires decision-makers to estimate prior and conditional probabilities and 

cannot differentiate uncertainty from ignorance. By contrast, the Dempster-Shafer 

theory of evidence (Shafer 1976; Wu et al. 2002; Florea et al. 2009) does not require 

an assumption regarding the probability of the individual constituents. It allows 

combining evidence from different sources and arrives at a degree of belief 

(represented by a belief function) that takes into account all the available evidence. 

These features make D-S theory potentially valuable for risk evaluation when 

obtaining a precise measurement from experiments is impossible, or when 

knowledge is obtained from expert elicitation. In future research, the feasibility of 

the D-S theory in estimating the accident probability under conflicting evidence 

needs to be explored. In particular, to overcome the limitation of the original 

combination rule in the D-S theory, adaptive robust combination rules need to be 

constructed to give a more practical and reliable way to estimate the probability of an 

accident in a link of a route to be used in the estimation of risk of DG transportation. 

Similar to most of the existing research in DG routing, the present study focuses on 

selecting the routes for a given origin-destination pair. However, a comprehensive 

DG transportation planning framework should consider DG transportation over the 

transport network with multiple designated origins and destinations, particularly 

when multiple DGs are involved. Selecting optimal routes for each O-D pair may 

result in overloading certain links of the transport network and, consequently, in poor 
t ‘ 

overall system performance. Given that relatively little attention has been received in 

the literature, the research with respect to this kind of DG routing problem should be 

carried out in future. The DG routing problem with multiple origins and destinations 
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can be formulated as a multiple destination routing (MDR) problem which searches 

for a minimal risk tree in a given transportation network. The key to solve a MDR 

problem is to find all relevant intermediate nodes linking the source and destination 

nodes. Leung et al. (1998) have proposed a novel genetic algorithm to solve the 

unconstrained MDR problem which out-performs the common heuristic algorithms 

(Tanaka and Huang 1993). The method needs to be further improved so that 

convergence can be guaranteed and computational complexity can be further' reduced， 

which is essential in solving the DG routing problem with multiple origins and 

destinations. 

. * 

The issue of constraints, such as the equity and capacity constraints in the 

underlying network’ should also be addressed in further research. The multiple 

origin-destinations DG routing problem with basic constraints can be formulated as: 

m i n ^ c ( e ) (6.1) 
eeT 

s.t. r satisfies constraint set S 

where e is an edge (which corresponds to a link in a network) in sub-tree T of the 

weighted graph (the transportation network) G = (K, E, C) with node set V, edge set 

E, and weighted function c : E — R ’ where c{e) is the risk/cost imposed on the edge 

e e E . Numerous solution methods for constrained optimization problems have been 

reported，such as penalty function method (Yeniay 2005), Lagrange multiplier 

method (Bertsekas 1982)，and gradient projection method (Dick 2009). Novel 

strategy needs to be explored to properly handle the constraints imposed on DG route 

planning. 

The traffic conditions a n / other risk factors in DG transportation networks (e.g., 

incident probabilities, population exposure, and the effects of release of DG) involve 

considerable uncertainty, which increases the difficulty of routing decision. 

Stochastic programming that handles such uncertainty via mean-risk (Markowitz 

1987; Ogryczak and Ruszczynski 2002) and stochastic dominance (Levy 1992) is 

commonly employed to solve the problem. Due to the low probability but high 

consequence nature of DG transportation, it might be more profitable and practical to 

handle uncertainty by imposing fuzzy restriction on the variability of risks within the 
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fuzzy optimization framework. By this approach, the variability of risk is formulated 

as fuzzy numbers in the objectives and constraints .so that flexible route planning 

under uncertainty can be materialized. The multi-objective DG routing problem can 

then be formulated as a fuzzy optimization problem involving multiple objectives 

. (Leung 1988a, b, c) and subsequently solved by fuzzy optimization methods 

extended on the genetic algorithm (Leung et al. 1998; Leung 2010). 

Finally, Most of DG transportation risk factors are both time-dependent and 

stochastic in nature (Miller-Hooks and Mahmassani 1998; Erkut and Ingolfsson 

2000), i.e., they are random variables with probability distribution that vary with 

time. However, the vast majority of existing routing models are static and 

deterministic. Therefore, dynamic and stochastic models that consider stochasticity 

in a time-dependent environment should be developed to generate more rational and 

appropri^e routing solutions for DG shipments. Meanwhile, advances in information 

and communication technologies enable the driver and dispatch center to obtain and 

exchange real-time information, and as a result, to monitor and adjust the route of 

vehicles accordingly. Such advance renders real-time DG routing an intriguing 

research topic, under which the routing decision is subject to changes en-route due to 
t 

real-time updates of the traffic data, and efficient re-optimization procedures are 

developed to seek adaptive routing strategies in response to the updated network 

condition. ‘ , 

、 

\ 

% 
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Appendix A: Supplemental Maps of Optimal Route Planning for the 

LPG Transportation in the Road Network of Hong Kong 

In this research, three optimization methods have been developed to seek optimal 

routes for DG transportation with conflicting objectives, i.e., the compromise 

programming approach, the adaptive weighting method, and the genetic algorithm. 

With the support of geographical information systems (GIS), a case study was 

carried out in the transportation of liquefied petroleum gas (LPG) in the road network 

of Hong Kong. In particular, the routing problems between Tsing Yi LPG terminal 

and the dedicated LPG filling stations located in Kowloon and the New Territories 

were analyzed using the proposed MOP methodologies. To examine the 

effectiveness of these methods, two scenarios were developed for testing, namely, 

the optimal routing in terms of single objective, and the multi-objective route 

planning. The aforementioned three methods were successively used in each 

application to search for efficient routes for transporting LPG from Tsing Yi to each 

of the nine dedicated LPG" filling stations: Kowloon Bay, Kwai Chung, Kwun Tong, 

� Mei Foo, West Kowloon, Ma On Shan, Tai Po, Tuen Mun, and Yuen Long. For such 

a multi-objective routing problem, the solutions obtained by each of the three MOP 

methods for most of the origin-destination pairs are diverse sets of routes presenting 

various trade-offs among different objectives，which has been illustrated in Chapter 5. 

Due to space limitation. Chapter 5 only reports the sample results of the Tsing Yi -

Kowloon Bay and Tsing Yi - Tai Po pairs. To maintain the integrity of the 

experimental results, and to further demonstrate the effectiveness of the proposed 

methodologies, supplemental results of the rest 7 O-D pairs are collectively 

presented in appendices. The maps of the efficient routes for each O-D pair are 

displayed in this appendix, and the corresponding attribute values of the routes are 

summarized in Appendix B. Note that not all routes generated by three MOP 

methods are displayed due to the enormous number of routes. Moreover，the set of 

Pareto-optimal routes for some O-D pairs (e.g., Tsing Yi - Mei Foo, Tsing Yi -

Kwai Chung) do not exhibit much diversity since many routes overlap. Similar to the 

technique of expression adopted in-Chapter 5, only a subset of efficient routes is 

presented for each O-D pair. Specifically, routes 1 ~ 7 are the single objective 
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optimization solutions, 8 � 1 9 are the optimal solutions obtained by the compromise 

programming method, 20 ~ 24 are a subset of efficient routes generated by the 

adaptive weighting method, and 2 5 - 3 1 are the examples of the results of the genetic 

algorithm. Figures in odd number after “A.” (e.g. Figure A.l and Figure A.3) show 

the single-objective optimal routes from Tsing Yi LPG terminal to each of the 

dedicated LPG filling stations, while the ones in even number after “A.” (e.g. Figure 

A.2 and Figure A.4) display multi-objective routes to the corresponding LPG stations 

generated by the proposed MOP methods. 

/ 
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Figure A. 14 Efficient routes from Tsing Yi terminal to Yuen Long LPG filling j 
station generated by the proposed MOP methods 
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Appendix B: Supplemental Tables of Optimal Route Planning for 

the LPG Transportation in the Road Network of Hong Kong 

The tables presented in this appendix summarize the attribute values of the optimal 

routes for each O-D pair exhibited in Appendix A. It should be noted that the values 

for each attribute in these tables are ail in normalized units. The last three attributes, 

i.e., societal risk, total risk, and overall cost, are defined as follows: 

—societal risk: the value of this attribute is calculated as the sum of the 

normalized off-road population exposure risk, special population at risk, and 

road users at risk. 

—to ta l risk: the value of this attribute is calculated as the sum of the societal 

risk, normalized accident probability, and expected damage on the economy. 

- o v e r a l l cost: the value of this attribute is calculated as the sum of normalized ‘ 

travel time and total risk. 
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