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Abstract 

In many text mining applications, knowledge bases incorporating expert 

knowledge are beneficial for intelligent decision making. Refining an ex-

isting knowledge base from a source domain to a different target domain 

solving the same task would greatly reduce the effort required for preparing 

labeled training data in constructing a new knowledge base. We investigate 

a new framework of refining a kind of logic knowledge base known as Markov 

Logic Networks (MLN). One characteristic of this adaptation problem is that 

since the data distributions of the two domains are different, there should 

be different tailor-made MLNs for each domain. On the other hand, the 

two knowledge bases should share certain amount of similarities due to the 

same goal. We investigate the refinement in two situations, namely, using 

unlabeled target domain data, and using limited amount of labeled target 

domain data. 
\ 

、 
When there is no manual label given for the target domain data, we re-



fine an existing MLN via two cojmponents. The first component is the logic 

formula weight adaptation that jointly maximizes the likelihood of the ob-

servations of the target domain unlabeled data and considers the differences 

between the two domains. Two approaches are designed to capture the differ-

ences between the two domains. One approach is to analyze the distribution 

divergence between the two domains and the other approach is to incorpo-

rate a penalized degree of difference. The second component is logic formula 

refinement where logic formulae specific to the target domain are discovered 

to further capture the characteristics of the target domain. 

When manual annotation of a limited amount of target domain data is 

possible, we exploit how to actively select the data for annotation and develop 

two active learning approaches. The first approach is a pool-based active 

learning approach taking into account of the differences between the source 

and the target domains. A theoretical analysis on the sampling bound of the 

approach is conducted to demonstrate that informative data can be actively 

selected. The second approach is an error-driven approach that is designed 

to provide estimated labels for the target domain and hence the quality of 

the logic formulae captured for the target domain can be improved. An error 

analysis on the cluster-based active learning approach is presented. We have 

conducted extensive experiments on two different text mining tasks, namely, 

pronoun resolution and segmentation of citation records, showing consistent 
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improvements in both situations of using unlabeled target domain data, and 

with a limited amount of labeled target domain data. 
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摘要 

在 眾 多 的 文 本 挖 掘 的 應 用 ， 將 專 家 知 識 納 入 知 識 庫 有 利 於 智 能 決 

策。優化來源域(source domain)的知識庫到目標域(target domain)解決相 

同的任務，將大大減少所需的準備工作。我們硏究了一個新的框架以 

優化一種被稱爲馬爾可夫邏輯網络 ( M a r k o v Logic NetWork (MLN))的邏 

輯知識庫。這問題的一個特點是由於數據分佈在兩個域的不同，而應 

該有不同的並度身訂傲的邏輯網絡。另一方面，這兩個知識庫應該有某 

度上的相似之處。我們調查在兩種情況下，分別爲使用沒有標籤的目 

標域數據，或利有有限數量的已標藏的目標域數據，以作優化。 

當目標域沒有已標藏的數據時，我們通過兩個組成部分完善已有的 

邏輯網絡。第一部分是邏輯公式的重量優化，我們同時考量目標域的觀 

測數據的最大化及這兩域之間的分別。一種方法是分析兩個域之間數 

據分佈的不同，而另一種方法則是加入處罰。第二部分是遝輯公式的優 

化，此部分的目的爲發掘目標域的遲輯公式，以進一步捕捉目標域的特 
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當標籤有限數量的目標域數據是可能時，我們設計出兩個主動學習 

的方法來用積極選擇要標藏的數據；第一種方法是基於集合的主動學習 

法，它主要考來源和目標的區域的不同，而我們提出理論分析以立證 

明我們的方法能積極選擇有用數據作爲取樣；第二種方法是錯误驅動 

法，旨在爲目標城提供估計標藏，而使目標區域的邏輯公式的質量得 

到改善。我們在兩個不同的文本挖掘的任務即代名詞指代問題和引用 

記錄切分問題，進行了的實驗都顯示出持績的改善。 
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Chapter 

Introduction 

In many information systems, different information processing components 

are required for building intelligent applications. Knowledge bases are par-

ticularly useful in aiding decision making as expert knowledge can be flexibly 

captured and utilized. However, we often encounter situations where we al-

ready have an existing knowledge base from a source domain and we wish 

to apply it to solve the same task in a target domain which is different from 

the source domain. This situation is particularly common to many text min-

ing problems. Extensive analysis and efforts are carried out to build the 

knowledge base for solving the problem in a particular domain. To date, 

we are facing an overwhelming stream of information in this fast-changing 

world. New information appears raising the need for a new knowledge base 

to tackle the new and unseen domains. For text mining, domains may refer 



to text documents from different information sources, different topical cate-

gories, or different registers in linguistics. For example, one may have labeled 

documents from the Wall Street Journal where tokens in sentences are an-

notated with their corresponding part-of-speech information, but the actual 

goal is to develop a knowledge base for performing the task of part-of-speech 

tagging for biomedical texts. The text documents from the Wall Street Jour-

nal and the biomedical texts are referred to as the source and the target 

domains respectively. Due to the difference in the distributions between the 

two domains, the existing knowledge base for the source domain may not be 

adequate for the target domain. Typically, direct application of the source 

knowledge base to the target domain would result in large degradation in 

performance. Even when the text mining tasks of the source and target do-

mains remain the same, there exists considerable differences in them, such 

as feature space, hindering effective direct application of the source model to 

the target domain. In some situations, the distribution of data even in the 

same domain may change over time. The learned model may no longer be 

adequate for the updated data. 

One solution is to acquire expert knowledge for the target domain to 

manually refine the knowledge base. Alternatively, another solution is to 

collect sufficient amount of labeled data via manual annotations in the target 

domain so that the knowledge base can be automatically discovered. Labeled 



data refers to pieces of information containing the answers or labels provided 

by experts to certain data in the domain. A model can be constructed using 

these labeled data for solving the task related to the domain. Such model 

can then be used to aid the prediction of the answers to data given some 

observations. But additional expert knowledge is expensive to acquire and 

manual annotations for sufficient data in the target domain may be costly 

or even infeasible. Hence, a useful approach would be refining the existing 

available source domain knowledge base to the target domain using unlabeled 

target domain data or a very small amount of labeled target domain data. 

We investigate the refinement of a kind of logic knowledge base known as 

Markov Logic Networks (MLN) [50]. A standard MLN is a combination of 

probabilistic and first-order logic graphical models. It consists of a first-order 

knowledge base which is a set of first-order logic formulae describing the logic 

relations of the elements in the task and a set of weights, in which a weight is 

associated with each formula. The representation of first-order logic enables 

flexible model construction capturing knowledge such as relations among 

entities. It has the ability to incorporate a wide range of domain knowledge. 

Many statistical relational learning tasks, such as collective classification, link 

prediction, and object identification, can be concisely represented in MLN. 

An MLN serves as a promising tool for information extraction and decision 

making. Similar to other statistical approaches, the accommodation of an 
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existing MLN model to another domain would ease the burden of manual 

annotation. 

This motivates our investigation of performing refinement for an MLN. 

Suppose we need to solve a particular task, such as part-of-speech tagging, 

typically an existing source domain MLN suitable for problem solving of the 

task in the source domain is available. Now we wish to refine it so that it 

is suitable for the target domain. However, manual annotation of sufficient 

labeled data of the target domain is not available for learning a new model 

specifically for the target domain. Our aim is to reduce the amount of labeled 

data required while improving the performance of the refined model. Hence, 

we investigate how to effectively and automatically refine an existing MLN, 

constructed for the source domain to a target domain under two situations, 

namely, the situation of using unlabeled target domain data and the situation 

of using a limited amount of labeled target domain data. In the first situation, 

we assume manual annotation of the target domain data is infeasible, only 

unlabeled data from the target domain is given. The second situation is 

that limited resources for manual annotation is available such that a very 

limited amount of labeled target domain data can be acquired through expert 

annotation. 



1.1 Our Framework 

We first investigate the situation of using unlabeled target domain data. 

When labeled data from the target domain is not available, we refine the 

existing model in two components. The first component exploit the unla-

beled data by jointly maximizing the likelihood of the observations of the 

target domain and considering the difference between the source and the tar-

get domains. The rationale is that although the source and target domain 

datasets may have different data distributions, they also share certain sim-

ilarities since they solve the same task. Hence, it can be observed that the 

distribution of the target domain will not deviate too far from the the source 

domain. We develop two approaches to capturing the differences between 

the domains. In the first approach, it minimizes the distribution divergence 

between the two domains. For the second approach, we incorporate a pe-

nalized degree of difference, such that the influence of differences between 

the two domains to predictions are considered. The second component for 

exploiting the unlabeled data is to discover new logic formulae for the target 

domain using dependency information on the unlabeled target domain data 

only. In the absence of labeled data in the target domain, it is quite difficult 

to directly discover target domain specific logic formulae. The rationale of 

our approach is that although the new logic formulae for the target domain 



are not applicable in the source domain, they possess some similar behav-

iors with certain source domain logic formulae. We extract potential logic 

formulae from the unlabeled data of the target domain and analyze their 

correlations with the source domain model. Then we construct the new logic 

formulae for the target domain. 

Next, we investigate the situation of using a limited amount of labeled 

target domain data. When a small amount of manual annotations can be 

obtained from the target domain, we exploit such limited resources at the 

largest advantage. We develop active learning methods by actively asking the 

expert to provide labels (or answers) of a very small amount of automatically 

selected data. Two methods of incorporating active learning into •knowledge 

base refinement for the target domain are proposed, namely, pool-based and 

error-driven methods. In the pool-based method, we investigate how to ac-

tively select target domain data such that the labels obtained can aid the 

process of model refinement. Our rationale is that logic formulae specific 

to the target domain represent different characteristics of the source domain 

and the target domain. The impact of the new logic formulae can serve as 

important clues for refining the predictions and hence for better estimation 

of the target domain's distribution. The selection of data is achieved by an-

alyzing the influence of potential logic formulae in the target domain data. 

The actively labeled data is then utilized to filter potential relations and for 
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adapting the model to the target domain. 

In the error-driven method, since the size of labeled data is also an impor-

tant factor for learning, limited labeled target domain data still inhabits the 

actual analysis of the target domain. Hence, this method estimates complete 

labels for the target domain data by annotating a small number of actively 

selected target domain data. The estimated labels are then used for evalu-

ating the error of the potential logic formulae. By identifying groups of data 

with similar characteristics, we can capture potential relations from the tar-

get domain. Such clustering of data can be obtained with the help of actively 

selected data. Potential logic formulae in the unlabeled target domain data 

are discovered using the estimated labels. 

1.2 Our Contribution 

We investigate techniques for employing first-order knowledge base, specifi-

cally Markov Logic Networks (MLN), to solve text mining problems. As in-

formative relational information can be obtained from textual documents [5], 

text mining problems can be flexibly modeled in MLN [9]. We develop a re-

lational knowledge base for solving pronoun resolution [9, 6 

We develop a new framework for MLN knowledge base refinement from a 

source domain to a target domain in two situations. For the situation where 



only unlabeled data can be obtained for the target domain, we propose two 

different MLN refinement approaches, namely, distribution divergence ap-

proach [10] and penalty-based approach [12], by exploiting the differences 

between the source and the target domains to tailor the model to the target 

domain data. The source domain MLN is refined to conform to the charac-

teristics of the target domain achieving improved performance on the target 

domain data. We also propose methods [11, 7] to discovering logic formulae 

for the target domain using unlabeled target domain data. Logic formulae 

not found in the source domain knowledge base but beneficial to the target 

domain are discovered to capture the target domain specific logic formulae. 

For the second situation where only limited labeled data can be anno-

tated, we investigate the refinement process by actively selecting data for 

labeling to tackle the tasks of logic formula discovery and knowledge base 

refinement [8]. Two methods, namely, pool-based method and error-driven 

method, are designed to analyze how the limited amount of labeled data 

can be exploited for the knowledge base refinement. The pool-based method 

is developed for integrating the selection of data and logic formulae to im-

prove^ the performance for the target domain. In the error-driven method, 

we demonstrate that informative relations can be selected by examining the 

predicted labels obtained from actively clustering of data and examples. 

We also conduct a theoretical analysis on the assignment error bound. 
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It shows that the pool-based approach can generate useful data for evalu-

ating the changes of the target domain knowledge base and improving the 

performance of the target domain knowledge base over the source domain 

knowledge base. For the cluster-based active learning approach, an analysis 

on the error of the estimated labels is presented. 

We have implemented our framework and conducted experiments on two 

text mining applications, namely, pronoun resolution and segmentation of 

citations. Pronoun resolution is to determine a pronoun's antecedent among 

a set of noun phrases appeared in text documents. Segmentation of citations 

is to identify the fields of a technical paper citation for extracting the biblio-

graphical records. Our experimental results on the two applications demon-

strate that our proposed framework is able to improve the performance on 

the target domain in both the situation of having only the unlabeled target 

domain data or having only a very limited amount of labeled target domain 

data. The knowledge base is refined so that new formulae useful to the tar-

get domain can be automatically discovered and weights for the formulae are 

learned. 
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1.3 Thesis Organization 

The organization of this thesis will be as fol lows:, 

Chapter 1: Introduct ion. This chapter provides an introduction to 

the work. 

Chapter 2: Literature Reviews. This chapter describes some previous 

works regarding the area of domain adaptation, MLN transfer learning and 

Active Learning. 

Chapter 3: Background. In this chapter, we provide details on Markov 

Logic Networks and a problem definition of knowledge base refinement. 

Chapter 4: Using M L N to Tackle Text Min ing . This chapter 

investigates the construction of an MLN for pronoun resolution, a text mining 

task. 

f 

Chapter 5: Knowledge Base Ref inement wi th Unlabeled Target 

Doma i n Data . In this chapter, we present our approaches of knowledge 

base refinement using unlabeled target domain data. Experimental results 

are presented. 

Chapter 6: Knowledge Base Ref inement Using Limi ted Labeled 

Target Doma i n Data . We describe our approaches of incorporating active 

learning with knowledge base refinement and the experiments carried for the 

approaches. 
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Chapter 7: Conclusions. This chapter presents the conclusions and 

discusses some future directions. 
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Chapter 2 

Literature Review 

2.1 Domain Adaptation 

One related area is domain adaptation which has been applied for other 

machine learning methods. For statistical learning, Daume III [21, 20] has 

proposed two models of domain adaptation on analyzing general domain 
I 

and specific domain distributions and applied them on a series of sequence 

labeling tasks, such as named entity recognition, shallow parsing, and part-

of-speech tagging. Many of the investigations focused on the fully super-

vised scenario with both labeled dfeita from the source and the target do-

mains [15, 26]. More recently, domain adaptation models using unlabeled 

data from the target domain have been investigated. Some works have at-

tempted to learn a new representation for bridging the source and the target 
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domain. Blitzer et al. [3] proposed a method called structural correspondence 

learning (SCL) to learn a common feature representation for feature-based 

discriminative model by selecting some domain independent pivot features. 

Raina et al. [49) learned the sparse basis from unlabeled data which does not 

necessarily come from the same domain as the labeled data. Other works 

try to evaluate the difference in distributions between two domains by a non-

parametric distance estimate. Pan et al. [44] applied the Kernel Maximum 

Mean Discrepancy to learn the embedded space where the distance between 

distributions of the source and the target domain is minimized. Guo et 

al. [27] developed a model using semantic association to overcome the 

distribution gap between domains. Another research direction for domain 

adaptation is instance weight assignment. Jiang and Zhai [30] proposed an 

instance weighting technique for domain adaptation in NLP. Recently, Zhong 

et al. [60] utilized the Kernel Discriminative Analysis (KDA) to seek a com-

mon feature space which makes the marginal distributions from two domains 

H 

close and then re-selects and re-weighs source domain examples to remove 

the bias of the mapping. However, most of these works assume,that the con-

ditional distribution of the label values given a data instance is unchanged 
« . 

« 

between the source and target domains. , 
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2.2 Transfer Learning in Markov Logic Net-

works 

Traditional MLN structure learning methods aim at constructing logic forrnu 

lae of MLN with labeled training data. For example, Kok and Domingos (32 

first introduced a probabilistic method for learning MLN structure which out-

performs previous inductive logic programming (ILP) methods. Mihalkova 

and Mooney [40] have proposed a bottom-up approach to addressing the 

problem of local maxima in previous top-down structure learning approaches. 

More recently, Kok and Domingos [33] presented an approach which directly 

utilizes the data for constructing candidate clauses by considering the rela-

tional database as a hypergraph. 

Although the above works of structure learning can refine an existing 

MLN structure, considerable amount of labeled data on the target domain has 

to be provided. In contrast, our proposed framework adapts an existing MLN 

model and revises it for the target domain. However, little investigations have 

been carried on such domain adaptation in MLN. Instead, there is a related 

area known as transfer learning in MLN. Transfer learning in MLN focuses 

on mapping a knowledge base learned from one task to a different task，where 

the predicates and variables are different. For example, TAMAR, proposed 

by Mihalkova et al. [40], treats the transfer process as .two subtasks. It first 
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identifies the best mapping for the formula and then it revises the formula 

to improve its fit to the target domain data. Another model, called DTM 

proposed by Davis and Domingos [22]’ performs deep transfer based on a form 

of second-order Makov Logic. Given a set of first-order formulae in the source 

domain, they lift them into second-order logic by replacing the predicate 

names with variables and are then instantiated by the predicate names in the 

target domain. Mikhalkova and Mooney [41] have proposed another model, 

called SR2LR, which introduces the single-entity-centered setting to transfer 

a source domain MLN to a target domain. One common characteristic for 

the above models is that their problem setting is to adapt a source domain 

MLN to the target domain solving different tasks. The sets of predicates 

defined for the source domain and the target domain have to be different. As 

a result, these models are not effective when applying to our problem setting 

of solving the same task but different data distributions in both domains. 

They find effective mapping between the set of predicates from the source 

， 

domain to the different set of predicates from the target domain. They 

focus on identifying the best formula for the target domain among different 

candidate formulae generated from the mappings of predicates. Though our 

problem setting is for solving the same task in both domains, we not only 

refine the formulae for the target domain but also dicover new formulae for 
« 

the target domain whereas they do not discover new formulae for the target 
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domain. 

2.3 Active Learning 
一 - - 一 \ 

For many machine learning problems, labeled data are costly to prepare. 

Active learning provides a way to reduce the quantity of labeled training 

examples in achieving better performance. In active learning, queries, which 

are unlabeled examples, are selected automatically to acquire an expert's 

knowledge in labeling it. Active learning has been extensively studied in 

many machine learning problems and in different settings such as synthesiz-

ing queries [31], selective sampling [17], or pool-based active learning [37]. In 

query synthesis, queries can be generated by the learner to request for label-

ing, while in selective sampling, queries are processed one at a time to decide 
I 

if it is processed for labeling. Pool-based active learning is motivated by the 

situation that in many real-world learning problems, such as text classifica-

tion [57, 28] and processing [13], image classification and retrieval [56, 59], 
m 

large collections of unlabeled documents are usually available. Hence, it 

is one of the most commonly employed active learning setting for different 

learning problems. One issue to be addressed in pool-based active learning 

is how to select queries from a pool of unlabeled data for users or experts to 

label and to reduce the number of labeled queries required for learning. 

16 



Different strategies for evaluating and ranking the unlabeled examples 

for querying are investigated. The simple and the most commonly employed 

one is uncertainty sampling. Lewis and Gale [37] presented an uncertainty 

sampling approach which selects examples with unclear class membership 

in an iterative manner. Entropy [52] and confidence measures are also em-

ployed in uncertainty sampling for different models such as conditional ran-

dom fields [35] and support vector machines [18]. Query-by-committee(QBC) 

algorithms [53，39] are alternatives to uncertainly sampling. It maintains a 

committee of models representing competing hypotheses. Queries are se-

lected based on the level of disagreement between the committee members. 

Roy and Macallum [51] presented a querying strategy using estimated error 

reduction. Examples are selected according to the reduced error rate us-

ing naive Bayes models. Beygelzimer [2] recently proposed an importance 

weighted active learning framework based on general loss function to correct 

sampling bias. 

Moreover, research works on combining active learning with other related 

research areas have been carried out. For example, some research works have 

exploited the use of clustering with active learning [43]. Others investigated 

the use of active learning in feature level [47]. 

Though active learning has been studied in a range of learning problems 

and applications, little attention has been paid to combine active learning 
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with domain adaptation. Chan and Ng [13] proposed an approach to us-

ing active learning with domain adaptation for word sense disambiguation 

task. They employed a pool-based active learning approach of selecting ex-

amples for labeling and for learning naive bayes model to perform word sense 

disambiguation. Shi et ah [54] have also presented an approach of combin-

ing transfer learning with active learning. They designed an ensemble of 

classifiers learned with labeled source domain data and target domain data 

separately. However, different from our approach, their approach requires an 

initial pool of labeled target domain data for the construction of the target 

domain classifier. Only with a learned source domain classifier and a learned 

target domain classifier, the approach performs active learning to acquire 

labels for queries. More recently, Rai et al. [48] proposed an active learning 

model in a selective sampling setting to learn the best possible domain sep-

arator hypothesis to rule out certain examples for labeling. Our approach 

differs with the approach in that our approach utilizes active learning for not 

only acquiring informative examples for constructing labeled target domain 

data but also selecting informative relations for the tatget domain. 
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Chapter 3 

Background and Problem 

Definition 

3-1 Markov Logic Networks 

Many text mining and natural language processing applications involve rela-

tional information. Representing such information using logic is considered 

as an attractive model. It enables effective incorporation of complex knowl-

edge. Recently, research on combining first-order logic representation with 

probabilistic models has shown that superior results over pure probabilistic 

models are obtained. A successful model known as Markov Logic Networks 

(MLN) [50], proposed by Richardson and Domingos, has been applied to 

different text mining tasks [45). MLN is a combination of probability and 
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Table 3.1: An example of a logic formula and its weight in MLN 

Formula Weight 

number(m, plural) A number(p, plural) A isAntecedent(m,p) 1.39 

first-order logic graphical models. It aims at representing the knowledge in 

first-order logic together with a probabilistic model for handling uncertainty. 

The representation of first-order logic enables flexible model construction 

involving relations between entities. It is composed of a knowledge base 

containing a set of first-order formulae and each formula is associated with 

a weight. Considering a text mining problem, namely pronoun resolution, 

whose objective is to identify the antecedents of pronouns in a text docu-

ment, we can design some first-order predicates, for examples, number {p, n), 

and isAntecendent{m, p). The predicate number{p^ n) indicates whether the 

pronoun p is of number type n, where n G {singula^ plural, unknown}. The 

predicate isAntecendent{m^ p) indicates whether the mention m is an an-

tecedent of the proimun p. ,We can construct a logic formula using the pred-

I 
f • . 

icates. Table 3.1 depicts an example of a logic formula in MLN. 

Given an MLN and a set of constants, a ground Markov network can 

be obtained by applying the formulae to the set of constants, i.e., ground-

ing of formulae. An example of constants for the pronoun p is "them" and 
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where P{X) refers to the probability distribution over all possible worlds 工， 

the assignment of truth values; F represents the number of formulae in the 

21 

number("some countries", plural) 

numberi"them ", plural) 

numberi"the students", plural) 

Figure 3.1: An example of a ground Markov network. 

an example for the mention m is "the students". By applying the con-

stants to the predicates of the formula, groundings of candidates, such as 

number (“them”，plural), is Antecedent {Hhestudents", Hhem"), can be ob-

tained. Of the ground Markov network constructed, a node corresponds to 

a grounding of the predicates specified in the formulae and there is a truth 

value associated with each node. Two nodes are connected by an edge if 

their corresponding ground predicates appear together in the same formula. 

An example of a ground Markov network is illustrated in Figure 3.1. 

The probability distribution of a ground Markov network, X , over a pos-

sible world, x, can be expressed as follows: 
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MLN; Wi refers to the weight for the z-th formula; ni{x) refers to the number 
o 

of true groundings of a formula in the possible world x\ x, is the truth value 

of the atoms, the groundings of the predicates, appeared in the formula, and 

(t>i(xi) = Z refers to the normalizing factor which is the sum of the 

probabilities over all possible worlds. As a result, given the truth values for 

some nodes in the ground network, one can infer the truth values for other 

nocks. MLN weights u\ can be learned by maximizing the likelihood of the 

relational database. 

Richardson and Domingos [50] suggested to use Gibbs sampling to per-

form inference over the ground Markov network. First, it samples one ground 

predicate Xi given its Markov blanket MB(Xi). The Markov blanet of a 

groynd predicate is the set of ground predicates that appear in some ground-

ing of a formula wjth it. Then, given its Markov blanket, it calculates the 

probability that Xi takes on a particular truth value xi using the formula: 

产 

‘ (3.2) 

where ni{x) refers to the number of true groundings of the i-th formula in x. 

refers to the number of true groundings of the z-th formula when 

we force Xi 二 0. refers to the number of true groundings of the 
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z-th formula when we force Xi = I. 

3.2 Problem Definition 

3.2.1 Knowledge Base Construction and Learning 

For solving a typical text mining problem, we can design two sets of first-order 

predicates, namely, evidential predicates denoted by E and query predicates 

denoted by Y. Evidential predicates refer to the predicates whose truth 

values can be determined from the observations, while query predicates refer 

to the predicates whose truth values are not known from the observations. 

For instance, in pronoun resolution, number (p, n) is one of the evidential 

predicates while isAntecendent{m, p) is a- query predicate. Next we can 

construct a set of logiq formulae F based on expert knowledge using the 

predicates to capture the relations between the evidential predicates and the 

query predicates for a domain D. With the set' of formulae F, specially 

designed for the domain D, standard MLN learning aims at automatically 

learning the weight W for each of the logic formulae. Standard MLN weight 

learning is performed when a set of training examples L in the domain D, 

such that the truth values of the groundings for query predicates are known, is 

given. For example, we may have a set of documents in which the antecedents 
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of the pronouns are manually annotated by human experts. MLN learning 

aims at automatically learning the weight Wg for each of the logic formulae in 

MLN. To achieve this, we used a more efficient alternative to Equation 3.1， 

that is to optimize the pseudo-likelihood of the training data x as follows [50]: 

n 

Pw{X = x) 二 f J / V (不 = x i \ M B x { X i ) ) (3.3) 

ui 

where Xi refers to the l-th grounded predicate; xi refers to the state(truth 

values) of Xi in the training data; MBx(Xi) refers to the state of the Markov 

blanket of X/； and n is the total number of grounded predicates in the training 

J 

data; the subscript W denotes that the probability is computed using the 

weight W. Since the objective function is convex, the optimal weights W* 

can be obtained efficiently using the limited-memory BFGS algorithm [38 . 

As a result, an MLN, denoted by MLN, is constructed. The learned 

MLN can then be applied to the operational (testing) documents in the 

same domain D , that is to infer the truth values of the groundings of the 

query predicates given the truth values of the groundings of the evidential 

predicates. 

3.2.2 Knowledge Base Refinement 

r 

One major limitation of existing MLN learning is that the learned MLN^ 

for the source domain D^ cannot be effectively applied to a target domain^ 
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Dt, from another information source, solving the same task. Following the 

example of pronoun resolution, the suitability of the existing source domain 

formulae and the bags of words may be different for the two domains. New 

formulae describing the new wotds from the target domain have to be dis-

covered and weights for the formulae have to be modified. The refined MLN 

will be more suitable for the target domain. In principle, a new set of train-

ing examples with manually annotated labels are required to learn the new 

target domain MLN, denoted as MLNt, for Dt. 

* 4 

The problem setting investigated is described as follows: Suppose we need 

to solve a particular task, typically an existing source domain MLN suitable 

for problem solving in the source domain is available. Now we wish to refine 

it so that it is suitable for the target domain. However, manual annotation 

of sufficient labeled data of the target domain is not available for learning 

a new model specifically for the target domain. Given an existing source 

domain MLN, MLNs，for a source domain Ds, we aim at learning an MLN, 
t 

denoted as MLNt，tailored to the target domain Dt by modifying MLNg. 

The refined MLNt can differ from MLNg in the weights (i.e., Ws and Wt) as 

well as the formulae (i.e., F^ and Ft). Our aim is to obtain an MLNt that 
* 

achieves better performance in Dt than direct application of MLNg to Dt. 

During the refinement, two situations are handled: 
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1. Us ing unlabeled target doma i n data: In this situation, we are 

given only the unlabeled data Ut from the target domain. Under this 

situation, we are given the source domain MLN, MLNg and extensive 

amount of unlabeled target domain data Ut. 

2. Us ing a l im i ted amoun t of labeled target doma i n data: In this 

situation, a very limited amount of labeled target domain data Lt can 

be acquired from the unlabeled target domain data Ut. The limited 

amount of target domain data Lt is selected automatically and the truth 

values (annotations) of the query predicates to the data are acquired 

from experts. This limited amount of labeled target domain data Lt 
J 

and the remaining unlabeled target domain data C// are used to refine 

the source domain MLN for the target domain. 

Let Xi be the l-th ground predicate whose truth value xi is known and Yi 

be the l-th ground query predicate whose truth value yi is unknown. Xi can 

be an evidential predicate or a query predicate. Labeled data, L, is a dataset 

consisting of ground predicates Xi such that all the truth values, x/, for Xi 

are known. Unlabeled data, U ; is a dataset consisting of ground predicates 

Xi and Yj, where the truth values y、of Yj are unknown. Note that unlabeled 

target domain data, also refers to the dataset whose query predicates are 

not selected for annotations. -
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Our goal is to develop a framework to effectively and automatically adapt-

ing an existing relational logic model, specifically, an MLN, constructed for 

the source domain to a target domain. This problem can be divided into two 

sub-problems, namely formula weight adaptation and logic formula refine-

ment. The formula weight adaptation sub-problem is to learning the weights 

Wt of the logic formulae for the target domain. With the insufficient amount 

• / 

of labeled data, the learning of weights for the target domain using st^n-
\ 

dard weight learning methods become infeasible. Hence, weights have to ^ 
- . 

adapted for the target domain. The logic formula refinement sub-problem 

is to automatically discover logic formulae Ft specific to the target domain. 
‘ . * 

Since logic formulae in the source domain model are designed specifically for 
t 

the source domain, they may not be adequate to the target domain. The ex-

isting logic formulae Fg may fail to capture the characteristics of the target 

domain. 
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Chapter 4 

Using MLN to Tackle Text 

Mining 

Logic knowledge base is suitable for tackling some text mining problems. In 

formative relational information can be obtained from textual documents [5 

and hence many text mining problems can be solved using MLN. One way 

to construct a knowledge base for MLN is to acquire expert knowledge for 

building the logic formulae. For example, MLN has been investigated for 

solving text segmentation problem [55], where expert knowledge is employed 

to develop logic formulae for resolving the segmentation problem as deter-

mining the field of a token in text. We investigate using MLN for the task 

of pronoun resolution [6，9]. To our knowledge, our work is the first to use 

MLN for resolving pronoun resolution. 
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Pronoun resolution is different from coreference resolution on proper nouns 

where surface features, such as string comparison, are not^as significant. De-

spite the fact that pronouns are lack of rich semantic information, they are 

crucial in maintaining the coherence of knowledge representation in text. We 

investigate how to effectively characterize the pronoun coreference resolution 

process through conducting inference upon a variety of conditions. The in-

fluence of different types of constraints are also investigated. With MLN, 

expert knowledge, such as, linguistic features or constraints as heuristic rules 

can be incorporated into pronoun resolution, with the benefits of handling 

uncertainties. 

4.1 Problem Description 

Pronoun resolution is to identify the antecedents of the pronouns in text. 

The task of pronoun resolution can be regarded as determining a pronoun's 

antecedent among a set of noun phrases, to which are referred as candidate 

mentions. In our MLN model, all pairs of pronoun and candidate mention 

within a document will be jointly resolved for their antecedents. This dif-

fers with other pronoun resolution systems, which only considered pairs of 

pronoun and noun phrase independently [23 . 

Moreover, our goal of this task is to handle all kinds of personal pronouns 
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and noun phrases in a single resolution model. An antecedent of pronoun can 

be any noun phrases, such as-person, thing, and even temporal expressions, 

while a pronoun can be referential or non-referential. Different from many 

existing works on this task, we handle both referential and non-referential 

pronouns in a single model. 

Personal pronouns include subjective (e.g. “1”，"she"), objective (e.g. 

"me", "her"), possessive (e.g. "mine", "my", "hers") and reflexive pronouns 

(e.g. "myself, "herself"). A pronoun may be referential or non-referential. 

A referential pronoun means that it refers to another noun phrase in text, 

where non-referential pronouns do not refer to any specific noun phrases and 

hence they do not have an antecedent. The pleonastic "it" is an example of 

non-referential pronouns. 

4.2 Model Design 

From the linguistic point of view,'the distribution and location of different 

mentions within texts are governed by certain restrictions. In other words, 

through identifying whether mentions satisfy the constraints or not, the ref-

erential linkage can be deduced. Knowledge base- can be constructed with 

、 

these constraints and hence corresponds to a logic network for reasoning. 

Hence, pronoun resolution can be well described in first-order logic. Also, 
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the use of Markov logic network can support the handling of uncertainties in 

pronoun resolution. 

To construct the logic formulae describing the constraints of pronoun 

resolution, we design different types of predicates to capture information 

regarding the pronouns and the candidate mentions. First, we design a first-

order predicate is A ntecendent (rrii, Pj) as the query predicate which represents 

that the noun phrase m, is an antecedent of the pronoun pj. ^f a pronoun is 

non-referential, it is treated as having a null antecedent, which is represented 

as is Antecedent (nuU, Pj). 

Though referential and non-referential pronouns have different character-

istics, they are closely dependent. This dependency can be modeled using 

the following formula: 

isAntecedent(mi, Pj)八，isNullfjUi) Antecedent {null, pj) (4.1) 

As mentioned, pronoun resolution can be described as the inference result 

of certain constraints, hence we can use the following general formulation to 

construct the logic formulae. 

constraints on mi Sz pj => rrii is antecedent of pj (4.2) 

Our model aims at establishing the relations between pronouns and their 

corresponding antecedents. Constraints are constructed using predicates for 
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capturing the information about pronouns and candidate mentions, hence we 

refer them as evidential predicates. These evidential predicates describe the 

information for each pronoun, each candidate mention, and also information 

between pairs of pronoun and candidate mention. As a result, we design 

different types of predicates to capture different information regarding the 

pronouns and the mentions. 

o Lexical Predicates: This type of predicates describes the string com-

parison information. 

• same_str(j)i, nij、- whether the pronoun, pi, and the candidate 

antecedent, rrij, are the same. 

o Positional Predicates: Positional information provides a proximity dis-

tance value between the pronoun p, and its candidate mention m ” It 

is believed that the closer the candidate mention is to the pronoun, the 

more likely it is the antecedent of the pronoun. 

參 sent sent (Pi, nij) - whether the pronoun and the candidate men-

tion are within the same sentence in the text. 

• prev-sent(pi^ mj) - whether the candidate mention is in the pre-

vious sentence relative to the pronoun. 

• prev-twosent(pi, nij) - whether the candidate mention is located 
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in two sentences ahead of the pronoun. 

• within(pi, rrij) - whether the pronoun is located within the candi-

date mention. 

• a f te r (p i , rrij) - whether the pronoun's position located behind that 

of candidate mention. 

o Semantic Predicates: For a mention to be the antecedent of a pronoun, 

they have to agree semantically in gender, types and number informa-

tion. The following predicates are designed to capture the semantic 

information regarding the pronoun and the mention. 

• gender{rrii.i), gender(pi, t) - indicates whether m, or pi is of gen-

der t, where t G "female", "male", "neutral" or "unknown". 

• number (rrii, t), number(pi, t) - indicates whether rrii or pi is of 

number type n, where n G "singular"，"plural"，"unknown". 

• person{pi, t) - indicates whether the pronoun, p,-, is a "first", "sec-

ond" or "third" person pronoun. 

• type{mi^ t) - indicates whether the candidate mention, m,, is a 

proper noun of type, "Person"，"Organization" or "Location". 
% 

• article Jype{mi, aj) - whether the candidate mention, m)，has an 

article type, a, indicating it to be either an quantified noun phrase, 
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indefinite or definite noun phrase. 

o Grammatical Predicates: The behavior and the relations between the 

antecedents of pronouns are highly affected by different types of pro-

nouns. For example, reflexive pronouns and possessive pronouns are 

less likely to be the antecedents of other pronoun and more likely t o be 

non-referential pronouns. Hence, we design the following predicates to 

capture the types of pronoun: 

• pronouTi(mi) - whether candidate mention, m,-, is a pronoun 

• reflexive{mi), reflexive{pi) - whether the candidate mention, 

rrii, or the pronoun, pi, is a reflexive pronoun 

• possessive{mi), possessive{pi) - whether the candidate mention, 

TTij, or the pronoun, pi, is a possessive pronoun 

o Contextual Predicates: Since the pronoun itself provides little informa-

tion, contextual information regarding the pronoun can provide more 

clues to resolve a pronoun with its antecedent. Contextual information 

describing the surrounding information of the pronoun and the mention 

are captured by the following predicates. 

• has-term(mi, Wfc), hasJerTn(pi, Wk) - indicates that the candidate 

mention or the pronoun contains the term, Wk‘ 
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• lef tjposJag(jUi、tk), left.posJag(pi,tk) - the POS tag, tk, of the 

word on the left of the candidate mention or the pronoun. 

• right jpos-tag{rrii,亡大)，right.posJag(pi, tk) - the POS tag, tk of the 

word on the right of the candidate mention or the pronoun. 

• aroundjpos Jag(jUi, tk), around.posJag{pi, tk) - the POS tag, t^ 

of the words around the candidate mention or the pronoun. 

• embeded(jni) - indicates whether the candidate mention is embed-

ded in another noun phrase. 
ly 

• near est (pi, irij) - indicates whether the candidate mention is the 

nearest noun phrase toward the pronoun that agrees in number, 

gender and person type. 

With the above predicates, constraints can be captured. First-order logic 

formula can be constructed in form of Equation 4.2 as exemplified as: 

hasJerm{pj^ Wk) A type(m“ U) => is Antecedent {rrii^pj) (4.3) 

This formula captures the preference of a pronoun toward a specific type of 

proper nouns. Another example is: 

same.sent {pj, rrii)八 same』tT(j)j、m,) is Antecedent {mi, pj) (4.4) 

It is obvious that a referential pronoun has to agree in gender with its 
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antecedent. For number agreement, similar rules are designed: 

gender {pj^ gk) A gender (m], g^) => is Antecedent [mi, pj) (4.5) 

is Antecedent (jrit ’ Pj) A gender (pj, g^) => gender [rrii, gk) (4.6) 

Moreover, the probabilities of a certain type of pronoun to be non-referential 

are captured by the following formulae for each Wk： 

has.term(pj,Wk) => is Antecedent (null, pj) (4.7) 

le f t -pos-tag (j)j, t k) is Antecedent {null, pj) (4.8) 

right jpos -tagij)j, tk) => is Antecedent [null ^Pj) (4.9) 

ar ound jpos Jag (j) j、t k) => is Antecedent (nuU, pj) (4.10) 

Similar rules are also constructed for capturing the probability of POS tags. 

In resolving pronoun resolution, salience value on the candidate mentions 

are usually evaluated by the distance between the candidate mention and the 

pronoun. A negated prior weight is assigned to each pair of pronoun and the 

/ 

candidate mention, to favour closer candidate mentions. 

We have conducted experiments demonstrating the use of our pronoun 

resolution knowledge base in knowledge base refinement approaches. The 
k 

results are presented in Chapter 5.3.1, Chapter 6.1.2 and Chapter 6.3.3. 
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Chapter 5 

Knowledge Base Refinement 

with Unlabeled Target Domain 

Data 

In this chapter, we look into the situation of using unlabeled target domain 

data of our problem settings. One common requirement in different learning 

tasks for text mining is the preparation of labeled data. Manual annotation 

for text data becomes extremely time consuming due to the high complexity 

and large amount of textual information. In contrast, unlabeled data are 

more readily available. Hence, we propose a framework of knowledge base 

refinement for Markov Logic Networks (MLN) under a situation where an 
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MLN has already been learned from the labeled data in the source domain 

and only unlabeled data from the target domain is used. 

The overview of our framework is depicted in Figure 5.1. As mentioned 

in Chapter 3.2, the knowledge base refinement of MLN consists of two com-

ponents, namely, formula weight adaptation and logic formula refinement. 

i 

First, the formula weights of the source domain MLN, MLNg, is revised by 

the formula weight adaptation component. Second, by analyzing the adapted 

weights Wt, we refine the set of source domain formulae Fg. Finally, the re-

fined set of formulae Ft together with updated weights W[ is proposed with 

formula weight adaptation to obtain the final target domain MLN, MLNt. 

In the following sections, we describe the propose approaches for tackling 

each of the two components. 

5.1 Formula Weight Adaptation 

We propose two approaches, namely distribution divergence approach and 

penalty-based approach, to tackle the formula weight adaptation problem. 

Recall that given the labeled training examples Lg in domain Dg, the or-
• 

dinary MLN learning is to find a set of weight Ws of MLNs、such that the 

objective function, the pseudo-likelihood of the groundings of all the eviden-

tial and query predicates in the training example as shown in Equation 3.3 
叙 ** 會 
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is maximized. This is equivalent to maximizing the pseudo-log-likelihood 

function as follows: 

= }^\0gPwA^i = xi\MB(Xi)) (5.1) 

1=1 
» 

Since this function is convex, its gradient can be expressed as follows: 

d dwi 
nws.L, 

,[n:(x) - PwA^i = 0\MB{Xi))ni{xix,=o]) — PwA^i = l\MBiXi))ni{x[x,=i]) 
1=1 

(5.2) 

where n is the number of ground predicates in the MLN, and ni{x) is the 

number of true groundings for the i-th formula in MLN，considering the train-

ing examples Lg； MB(Xi) refers to the turth values of the Markov blanket of 

Xi where the Markov blanet of the ground predicate Xi is the set of ground 

predicates that appear in some grounding of a formula with it; ni{x[Xi=h]) 

is the number of true groundings for ^he i-th formula when forcing Xi = h. 

Since the truth value for each grounding of the query predicates is known in 

Ls, we can employ efficient algorithm like limited-memory BFGS algorithm 

to solve the problem. However, target domain Dt, the truth value of the 

ground query predicate is unknown since only unlabeled data is available. In 

other words, the objective of MLN learning in the target domain Dt is to find 

a set of weights, namely, Wt, which is different from Wg in principle, such 
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that the learned MLN, denoted as MLNi can accurately predict the truth 

value of the ground query predicates in Dt. As a result, MLN learning in 

the target domain becomes nontrivial and Equation 5.1 is not adequate. The 

ordinary MLN learning cannot be applied to learn MLN" the MLN tailored 

to Dt 

The main idea of our proposed approaches is that although the source 

and the target domain datasets may have different data distributions, they 

share certain similarities since they solve the same task. Hence, it can be 

observed that the distribution of the target domain may not deviate far from 

the the source domain. Our proposed approaches jointly seek to maximize 

the likelihood of the target domain and analyze the difference between the 

MLNs of the source and the target domains. The two approaches differ in 

their perspective of how to evaluate the differences of the source and the 

target domains. The distribution divergence approach directly evaluates the 

difference of the distributions of the source and the target domains, while the 

penalty-base approach considers the difference of the source and the target 

domains from the level of the truth values of the ground predicates in the 

network. 
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5.1.1 Distribution Divergence Approach 

The distribution divergence approach is designed based on two rationales. 

The firstTationale is that since we do not have training examples in the target 

domain Dt、instead of maximizing the pseudo-log-likelihood of the ground-

ings of both evidential and query predicates, we consider the groundings of 
* 

the evidential predicates, and the expected truth value of the groundings of 

the evidential predicates. Essentially, we consider the following pseudo-log-

likelihood function in the target domain: 

E E log E { P ⑷ ' ( 不 = y = y')P{r = y'\MB(Y'))} 
l=\ Y'eYiXi) y'=0,l 

(5.3) 

where n is the total number of grounded atoms in the unlabeled data Ut in 

Dt\ y{Xi) is the set of grounded atoms for the query predicates that are 

contained in MB(Xi). The second rationale of our framework is that since 

the source and target domains should share certain amount of similarities, 

MLNs and MLNt are likely to be similar. However, according to the gradient 

expressed in Equation 5.2，Ws and Wt are different as long as the distribution 

of the number of true groundings of any formula in the MLNs is different. 

As a result, we consider the maximization of Equation 5.3, at the same 

time, we aim at minimizing the difference between the distributions Pw^i^ — 
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y\MB(Y)) and Pwt(y = y\MD{Y)), where V' is the grounded atoms for 

the query predicates. To achieve this, we employ Kullback-Leibler (KL) 

divergence to measure the distance between the distributions. Consequently, 

* 

we define the objective function of our MLN adaptation framework as follows: 

= = x\\MB{Xt)) (5.4) 

+ h Z . {尸…(A�二 x\\MD{Xl)X = y')P{r = y'\MD{y'))} 

'=1 veYixj) i/=o,i • 

-KL(PwAyWB{Y))\\Pw,(y\MB{Y)) 

where the superscripts denote the domain from which the data comes from; 

KL{P\\Q)as the KL divergence between the probability distributions of P 

and Q. Consider the term 

E E log E { P w t W = r = y ' ) P ( r = y'\MB{Y'))} 
1=1 Y'eYixf) y'=o’i 

(5.5) 
f 

in Equation 5.4. If the truth value of Y' is known in the unlabeled data U in 

Dt, we can then set P(V' = hlMB(V')) to 0 or 1, where /i = 0,1 accordingly. 

This results in the original pseudo-log-likelihood function of MLN learning. 

However since these values are unknown in the target domain, we derive the 

following expected pseudo-log-likelihood function: 
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E E E \og[PwAXl^x\\MB[Xl)^^'= y') (5.6) 
' =1 Y ' e Y i X f ) y ' =0 , l 

= y'\MB(Y'))} 

According to Jensen's inequality and the concave property of the logarithm 

function, Equation 5.5 is bounded below by Equation 5.6. Hence, we can 

maximize the following revised objective function: 

= 2^\ogPwAX^ = xt\MB{Xn) ^ (5.7) 
/=i 

n 

+ E E E = x\\MB{Xl)X = y') 
/ = 1 二 0,1 

P(Y' = y'\MB(Y'))} - KL{PwAy\^^B{Y))\\Pw,{Y\MB{Y)) 

As r〃 > r"', we can approximate the maximum of r〃 by maximizing T"'. We 

can find the gradient of Equation 5.7 and apply the limited-memory BFGS 

algorithm to find the optimal set of Ws and Wt. However, Equation 5.7 

is no longer convex and the optimization may lead to local maximum. We 

develop our learning algorithm as depicted in Figure 5.2 to address the local 

optimal problem. Our algorithm first learns an MLN, namely, MLNg using 

the training examples L，in the source domain Ds. Since we have labeled 

training examples in D^、we can learn the weight Wg which is optimal to Dg 

t* 

using standard MLN learning algorithm. After that, we aim at learning the 

MLN, namely, MLNi for the target domain Dt by making use of the learned 
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MLNg and the unlabeled data Ut in Dt. Referring to Equation 5.7, we can 

fix Wg as the weight obtained in MLNg and obtain the following expression 

involving Wt by expanding the KL divergence: 

F(Wt) = ^ ^ logPv,,(X； = x\\MB(Xl), r - y') 

1=1 Y'€Y{Xf) y '=0 , l 

P(Y' = y'\MB(Y')) ‘ (5.8) 

+ z . ^ PwA^ = y'\MD{Y'))\ogPw,(y' = y'\my')) 

where NE refers to set of all query predicates. 
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The gradient of F(Wt) with respect to Wt can be derived as follows: 

dwt 

E E E {Pw^y = y'\MB{Y')m'. y = y' 
1=1 Y'eY{Xi)y'=0,1 

-PwAXi = OlMB(Xi),V' = y')fi(Xi 二 0, = y') 

-PwAXi = \\MB{Xi),Y' = y')U{Xi = 二 y') 

+ log PwAXi = xi\MB{Xt), Y' = y'){ 

/ ^ ( r 二 2 / _ r ) ) [ / “ . ’ r 二 2/) 

-PwA^i = 0\MB(Xi),Y' = y')MXi = 0, r = y') 

-PwAXi = \\MB{Xi)X = y')MXi = !,¥' = y')]}} 

+ E E E {PwAy' = y'\MB(Y')m-,Y' = y' 

1=1 y'€V(X,)y'=0,l -

-PwA^i 二 0|A/B(X/)’ y = y')fi(Xi = 0 , r = y') 

-PwAXi = llMB(Xi),r = y')MXi = = y') 

+ E E { / w r 二 y ' _ ( r ) ) [ / : ( . ， r 二 

-Pw^y = 0\MB{Y'))fi(-,Y' = y') 

(5.9) 

where /,(•, Y' = y') refers to the truth value of the z-th formula when Y' is 

constrained to be equal to y'; fi{Xi = h,Y' = y') refers to the truth value 

of the z-th formula when Xi and Y' are constrained to be equal to h and y' 

respectively. We can apply the limited-memory BFGS algorithm to optimize 

Equation 5.8. 
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There are two advantages for our algorithm compared with optimizing 

Equation 5.7 directly. The first advantage is that we start learning MLNt 

based on the MLNg, which is optimal to Dg. Although the objective func-

tion is still not convex, we can guarantee that the learned MLNt using our 

of、MLNs in Dt. The second advantage is that our method can effectively re-

duce the training time, Since MLNg and MLNt are learned separately using 

the data from their own domains, each training involves less amount of data. 
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# Our Adaptation Framework 

I N P U T : MLN, = (Fs, Ws): An MLN for source domain D, 

Ut'. A set of unlabeled data in target domain Dt 

O U T P U T : MLNt: An MLN for A 

A L G O R I T H M : 

1: Wt Perform weight adaptation on Fs, Wg 

2: Ft, W l <— Perform Formula Refinement on F^, Wt 

3: Wl ' <r- Perform weight adaptation on Ft、W^ 

4: MLNt = ( F u W n 

Figure 5.1: An Out l ine of Our Refinement Framework in Using Unlabeled 

Target Domain Data . 
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# The Distribution Divergence Approach 
*T 

I N P U T : Lg： A set of training examples in source domain D^ 

Ut: A set of unlabeled data in target domain Dt 

OUTPUT:ML7Vf： An MLN for A 

1 Apply ordinary MLN learning to train MLNg from L^ 

(This is conducted by invoking limited-memory 

BFGS algorithm to optimize Equation 5.3 

with the gradient depicted in Equation 5.2) 

2 Create MLNt 

3 Initialize Wt by setting Wt 二 M^， 

4 Learn MLNt by making use of Ui in Dt 

(This is conducted by invoking limited-memory 

BFGS algorithm to optimize Equation 5.8 

with the gradient depicted in Equation 5.9 

Figure 5.2: An Outline of the Distribution Divergence Approach. 
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5.1.2 Penalty-based Approach 

Recall that given a set of labeled training data Lg in the source domain Ds 

where the ground evidential predicates and the truth value of the ground 

query predicates are known. Let MLNg be the MLN for Dg with the set of 

weights Wg. The pseudo-log-likelihood function of the training examples can 

be expressec^ as follows: • 

n 

= = Xi\MB(Xi)) (5.10) 

/=i 

where Xi and xi refer to the /-th atom of any query predicate and the truth 

value of the /-th ground query predicate respectively. MB{Xi) refers to 

the state of the X‘’s Markov blanket. Tn the target domain Dt, the truth 
/ 

y 

values of the ground query predicates in the unlabeled data Ut are unknown. 

As a result, MLN learning in the target domain becomes nontrivial and 

Equation 5.10 is not adequate. 

Our penalty-based adaptation approach is designed based on two objec-
I 

tives. Similar to the distribution divergence approach, the first objective is 

that we aim at learning the set Wt such that MLNt should be tailored to Ut. 

On the other hand, we observe that the source domain Ds and the target 

domain Dt should share certain similarity. Therefore, our second objective 

is to ensure that MLNt will not deviate too far away from MLNs. In light 

of this, we aim at maximizing the following objective function in our MLN 
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adaptation approach: 

E log E {Pw^i^i = xtlMB(Xi),V' = y')P{Y' = 召(K'))} 
Z=1 V ' € V ( X i ) y ' =0 , l 

(5.11) 

where y (X i ) is the set of ground query predicates that are contained in 

MB(X i ) . Q(Ut, Ws, Wt) is a penalty function with respect to【/。Wg, and 

Wt, and 6 is the penalty parameter. 

Recall that our first objective is to find a set of Wt such that MLNi is 

tailored to Uf As the truth values of the ground query predicates are un-

known, this is insufficient for learning MLNt using the pseudo-log-likelihood 

expressed in Equation 5.10. Instead, for each ground query predicate Yi 

in Ut、we aim at maximizing the likelihood of the ground evidential pred-

icates Xi connected to V/. The first term of Equation 5.11 refers to the 

expected pseudo-log-likelihood function on the ground evidential predicates 

in U“ with respect to the Pw Xi = y'\MB{Yi)). Our second objective is to 

prevent MLNt from deviating too far away from MLNg. To achieve this, we 

introduce a penalty function Q(Ut, Ws, Wt) that is defined as follows: 

i=\ 

N is the number of ground query predicates whose truth values are unknown. 
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% 
y/lvvj and yi\wt are the predicted truth values for the ground query predicate 

Yi in Ut using Ws and Wt respectively, and x(工，2/) is an indicator function 

which is equal to 1 if x = ?/ and 0 otherwise. It is obvious that Q{Ut, Ws, Wt) 

increases as the number of disagreements for predicting the truth value of the 

ground predicates using MLNg and MLNt increases. As a result, by adjusting 

the penalty parameter 6, we can reduce the disagreement on prediction using 

MLNs and MLNt, and hence prevent MLNt from deviating too far away from 

MLNs in learning. 

By assuming a certain degree of difference between the source and the 

target domain datasets, effects of the difference are considered. The weights 

of the formulae are learned with the implied effect of the difference towards 

the query predicates. 
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5.2 Logic Formula Refinement 

A reason for poor performance for direct application of the source domain 

MLNs to the target domain is that the set of logic formulae Fg in MLNg may 

not be adequate for the target domain as it is originally designed for the 

source domain. Our approach aims at performing logic formula refinement 

which adapts the formulae of the MLN. The overview of our adaptation 

framework is depicted in Figure 5.3. Our algorithm first-learns a set of 

formulae Fs for the source domain MLNs using the source domain labeled 

data Ls as shown in Step 1. Since we have training examples in D^, we can 

learn the formulae Fg using the standard structure learning from the source 

domain. In fact, an alternative way to obtain Fg is to directly construct 

the formulae manually from expert knowledge if available. After that, we 

aim at applying the logic formula adaptation on the set of source domain 
> 

» 

formulae Fs to obtain the set of target domain formulae f] as shown in 

Step 3. Finally, MLNt is created from the formulae F] and the weights Wt. 

The logic formula adaptation algorithm in Step 3 of our framework is an 

important component. It aims at capturing the differences in the relations 

between the source domain and the target domain and adapt the relations 

from the source domain to the target domain. The logic formulae for the 

source domain may not be able to completely describe the relations of the 
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# The Logic Formula Refinement Framework 

I N P U T : 

Ls： A set of training examples in source domain Dg 

Ut： A set of unlabeled data in target domain Dt 

O U T P U T : 

MLNt： An MLN for A 

A L G O R I T H M : 

1: Apply ordinary MLN formula learning to discover 

the set of formulae Fg from Ls 

2: Apply ordinary MLN weight learning to train the 

weight Ws for the set of formulae Ft from Ls 

3: Perform logic formula refinement algorithm to train 

the set of formulae Ft from Fg, Ls, and Ut 

3.1: Fc Core formula identification algorithm 

3.2: Pf — Candidate pattern identification algorithm 

3.3: (Fq, Wo)卜 New formula construction algorithm 

3.4: Ft ^ F s V J Fa, W t i - W t U Wa 

4: Create MLNt with Ft and Wt 

Figure 5.3: An Outline of the Logic Formula Refinement. 
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target domain.. For example, for the pronoun resolution task, the bags of 

words are different for the two domains, new formulae describing the unseen 

words from the target domain have to be discovered. The set of source 

domain logic formulae Fs has to be modified to include the new relations 

of the target domain. We develop the logic formula refinement algorithm 

to discover these new relations of the target domain using the unlabeled 

data Ut in the target domain. The challenge of discovering the new relations 

> 

lies in that with only unlabeled data of the target domain where the truth 

values of the query predicates are unknown, it is not easy to establish the 

relations between the evidential predicates and the query predicates. Hence, 

we propose a method utilizing not only the unlabeled data Ut、but also the 

source domain labeled data Ls and formulae Fs. We focus on analyzing 

the relations describing the implication of the query predicates from the 

evidential predicates. Specifically, the pattern of evidential predicates, which 

A- ‘ 

leads to the conclusion of query predicates, is expressed in the form of {Ei A 

£"2 • • • A En) => N where Ei e E (evidential predicates) and N £ Y (query 

predicates). 

Our rationale is that the relations in the target domain share some similar 

behaviors with certairr'source domain relations. Some formulae of Fs should 

be equally applicable for both the source and the target domains. 

As shown in Step 3.1 in Figure 5.3, we develop an algorithm to identify 
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these core formulae F。Then, we try to discover the new relations by consid-

ering some frequent patterns that are specific to the target domain. Those 

potential candidate patterns Pf for constructing new formulae of the target 

domain are identified by our proposed algorithm as given in Step 3.2. Finally, 

the new formulae Fa capturing the new relations are constructed using our 

proposed algorithm as shown in Step 3.3. We analyze the correlations of the 

candidate patterns Pf with the core formulae Fc and establish the relations 

for the target domain. In the final Step 3.4，the new formulae Fa together 

with the source domain formulae Fs form the set of refined formulae fpr the 
# > 

target domain F[ 

5.2.1 Core Formula Identification Algorithm 

The identification of core formulae aims to discover which formulae are of 

great significance to both domains. It is the step 3.1 for our logic formulae 

adaptation as shown in Figure 5.3. We develop an approach as depicted in 

Figure 5.4 to identify the core formulae using the unlabeled data of the target 

domain. However, without the truth values of the query predicates in the 

unlabeled target domain data, it is challenging to capture the significance of 

the formulae towards the target domain. First, for each source domain for-
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# Identifying core formulae Fc for 

both the source and the target domain 

I N P U T : • 

Lg： A set of training examples in source domain D^ 

Ui： A set of unlabeled data in target domain D i 

Fs ： A set 'of formulae F , for the source domain 

0: A threshold for selecting the core formulae 

Y : Query predicates 

O U T P U T : 

Fc： A set of core formulae 

A L G O R I T H M : ‘ 

1 P 0; Fc ̂  0 

2 for each / , G * 

3 Create p, by removing the query predicates V from 人 

4 Create p[ by extracting the query predicates V from /, 

5 / <r- Find the length of pattern 仏 

6 Create a set of patterns P f where Vp. e P[ has length < 

56 



7 for each pj G P^ 

8 Create the formula f'] from pj and p[ 

9 Calculate S(f^,L,U) 

10 if(S(/;，L，"）2 0 ) M P j 3 P c ) 

11 Add /； to Fc 

12 end if 
廓 

13 end for 

Figure 5.4: Core Formula Identification Algorithm 

inula /,, instead of the whole formula, we remove the query predicates from 

the formulae to form a set of patterns P^ as shown in Line 3 in Figure 5.4. A 

pattern p] G Pf can be any subset of evidential predicates from the formula 

ft. For example, suppose a formula 八丑C *，where A and B are the 

evidential predicates and C is the query predicate. After removing the query 

predicate C, three patterns, namely, A A D, A, and B are obtained. Then, 

ill Line 4, we create a pattern p[ by retaining only query predicates in ft. 

Returning to the above example, the query predicate pattern p[ is C. As in 

Line 8，a pattern pj together with the query predicate pattern pJ of /, forms 

a candidate formula / ' . Following the sAine example, the three candidate 
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formulae are constructed, namely, A =>C, and D => C. 

Defin i t ion 1 A pat tern p^ :(仍 Ag2 .. . A 分 i s satisfied by I if the ground-

ing of the pattern p, is true given an inteTpretation, i.e. a set of constants, 

/ 6 D, 1=/ Pi where g\, g】，‘ •.,双n represent the predicates and D represents 

the dataset. 

Defini t ion 2 A formula f] : pj => p'] is satisfied given the patterns p] 

and p'j in dataset D if 

V/ 6 D, —/ {pj => p' ) if \=i pj and —, p' 

The next task is to develop a method for selecting core formulae among 

the candidate formulae. First, in most of the time, f〕should be satisfied 

given the corresponding evidential pattern p] and the query pattern in 

the source domain labeled data Lg. Definition 2 provides a definition for the 

conditions for a formula is satisfied given the patterns. If for all groundings of 

the pattern p] by Lg that is true and that the same grounding of the pattern 

Pj is true, then the corresponding grounding of the formula f] by Ls is also 

true. Under such condition, we regard f] as being satisfied given the patterns 

Pj and Py Let Np(x, D) be the number of true groundings for formula or 
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pattern x given the dataset D, and Nt{x, D) be the number of grounding for 

formula or pattern x given the dataset D. This criterion can be computed 

by Np(f-, L)/Np{pj, L), the ratio of whether the formula is satisfied given 

the patterns p] and p'̂  in the source domain labeled data L^. Second, the 

corresponding pattern p] is relatively frequent in the target domain unlabeled 

data Ut. This criterion is evaluated with Np{pj, U)/Ni{pj, U), the ratio of the 

pattern pj is true in the target domain unlabeled data Ut. Hence, we design 

a significance score, 5( / j , L, U)’ based on the above criteria for each formula 

}'* In Line 9，we calculate the significance score for each candidate formula 

f'j by Equation 5.13. 

綱 ( 5 . 1 3 ) 

Finally, in Lines 10 to 11, we select the formulae / j where 5( / j , L, U) > 6 

to form the set of core formulae Fc. This ensures that a core formula's 

corresponding pattern Pj appears both in the source and the target domain. 

5.2.2 Candidate Pattern Identification Algorithm 

Frequent patterns of predicates in the target domain are more likely to have 

greater influence in the inference of truth values for the groundings of the 
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# Identifying candidate patterns Pf 

I N P U T : 

Ls： A set of training examples in source domain Dg 

Ut： A set of unlabeled data in target domain Dt 

maxJen: the maximum length of the candidate patterns 

minjreq: the minimum frequency for a candidate pattern to be selected 

V: the types of constants to be variablized 

O U T P U T : Pf ： A set of candidate patterns 

F U N C T I O N : n{p): the frequency for a pattern p 

A L G O R I T H M : 

1 Compare L^ with Ut to obtain the distinctive 

ground evidential predicates Et 

2 P —边，Pf —边 

3 for I < max Jen 

4 Create a set of paths P' by generating all the paths 

of connected ground predicates with length I from Ut 

5 for each p' e P' 

6 if P' contains any Cj G Et 

7 Add p' to P 

8 end if 

9 end for 
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0 for each p G P 

1 p" — variablize p by replacing the constants of type v e V 

2 if p" € Pf 

3 n(p") — n{p") + 1 

4 else 

5 Pf 卜 Pf U p; n(p") <- 1 

6 end if 

7 end for 

8 for each p £ Pf 

9 if n{p") < min_freq 

20 Remove p" from Pj 

21 end if 

22 end for 

Figure 5.5: Candidate Pattern Identification Algorithm. 
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query predicates. These frequent patterns can be candidate patterns for con-

structing the new formulae for the target domain. Since one of our goals is 

to discover new relations in the target domain, we aim at finding patterns 

involving ground evidential predicates that are specific to the target domain. 

Def in i t ion 3 A ground predicate gi{a\ ，，•..，仅i，•. •，仅771) 

connected to an-

other ground predicate gj{b\, 6 2 , i f 3ai 3bj : (a^ = bj) 

where g” g] are m-ary and n-ary predicate respectively, and ai, a2,..., a^ , 61，62，..., b， 

are the constants for the arguments respectively. 

Def in i t ion 4 A pa th p 0 / length I is a series of I distinct ground predicates 

p =(夕1’ 夕2，.“î fc，…’仍)，Vpi € D where D represents the database, such that 

for\<k< I: 

1. the kth ground predicate Qk is connected to the {k — l)th ground predicate 

9k-\, and 

2. for l< i < k - I, Qk ̂  

Figure 5.5 depicts the algorithm of identifying the candidate patterns. We 

first identify the set of ground evidential predicates Et which only appear 

in the target domain unlabeled data Ut as shown in Line 1. Candidate 

patterns are then constructed from paths of connected ground evidential 
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predicates in Ut- A path is a series of connected ground predicates as given 

in Definitions 3 and 4. For example, the path, E{a, b) A F(a, c), where the 

two ground predicates, E{a, b) and F(a, c), are connected with the constant, 

a, is of length 2. In Line 4，paths whose length are shorter or equal to the 

f 

maximum length value specified are added to the set of candidate paths P*. 

Then in Lines 5 to 9, candidate paths in P' which contain at least one ground 

predicate from Et are selected. The candidate paths are variablized where 

some constants are replaced with variables to form candidate patterns p" in 

Line 11. Using the above example, in the logic expression b) A F(a, c), 

since the constants b and c are not the focus of interest, they are replaced 

by variables and "2 to form the pattern E{a, i/i)八 /^(a，"2). Finally, in 

Lines 18 to 20, only patterns p" with a frequency n(p") of value greater than 

min-freq are selected to form a set of candidate patterns Pj. 

5.2.3 New Formula Construction Algorithm 

Given the candidate patterns P/, it is not sufficient for constructing formulae 

from them as we do not know how the query predicates are associated with 

the patterns with only unlabeled data Ut from the target domain data Dt. 

However, if a set of formulae is known to agree with the target domain D “ 
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# Constructing new formulae Fa 

I N P U T : 
t 

Ut' A set of unlabeled data in target domain D , 

Y : Query predicates 

Fc： the core formulae 

Pj\ the candidate patterns 

W^: the set of weights for Fg 

O U T P U T : 

Fa： A set of adapted formulae for the target domain Dt 

F U N C T I O N : 

n(p): the frequency for a pattern p 

A L G O R I T H M : 

1 for each p爪 e Pj 

2 — 0 

3 for each / „ G Fc 

4 Create pn by removing the query predicates Y from / „ 

5 Create p'^ by extracting the query predicates Y from fr, 

6 Add p； to P 
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7 if p{Pm,Pn) > 0 

8 n{p'J 卜 n{p'J + 1 

9 Add fn to 

10 end if 

11 end for 

12 p" [ select e P 丨 with maximum nip'J 

13 Create the formula // from pm and P" 

14 Add // to Fa 

15 Wi Ef^eAr. Am where 

16end for 

Figure 5.6: New Formula Construction Algorithm. 
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it have some closely related patterns from Pj providing us hints on how 

those patterns are associated with the query predicates. This is performed 

by analyzing the correlations between the candidate patterns Pj and the core 

formulae F 。 

Figure 5.6 depicts the algorithm for constructing the new formulae Fa. For 

each target domain candidate pattern we calculate its correlations with 

each of the core formulae in F。This is done by first obtaining the evidential 

predicate pattern p„ and the query predicate pattern p'̂  of each core formula 

fc in Lines 4 and 5. Then, in Line 7, for each pair of (pm, Pn), vve calculate 

the correlation coefficient p(Pm,Pn) as given in Equation 5.14. The positively 

correlated core patterns pn are identified for the candidate pattern pm- A 

positive correlation coefficient p(pm,Pn) indicates that the candidate pattern 

Pm is closely related to core formula /„. Since each correlated important 

pattern is associated with a query predicate pattern a query predicate 

will be selected by majority voting on the set of query predicate patterns 

associated. In Lines 11 to 13, the most frequent query predicate pattern 

among the correlated important patterns are selected and combined with 

the target domain candidate pattern p爪 to form a new formula. Finally, in 

Line 15，the weight of the new formula // is set as the normalized sum of the 

weights of the correlated core formulae. 
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The correlation coefficient for two patterns pm and p„ is defined as: 

P ( P m ， P n ) = 
Cov{pm,Pn} 

y/Var{pm) * Var{pn 
(5.14) 

where Cov(pm, Pn) denotes the covariance between patterns pm and as 

defined in Equation 5.17, and Var{pm) and Var(pn) represent the variances 

of patterns Pm and Pn as defined in Equations 5.15 and 5.16 respectively, 

Var(pm) 二 El(pm - = E[{pm)''] - (E\p (5.15) 

VariPn) = E[(pr,-") (5.16) 

Cov(pm,Pn) = E[(Pm — M)(Pn — ")] = B[pm,Pn] — E\pm]E\pr,] (5.17) 

Being variables for calculating the covariance and variance, the patterns 

Prn and Pn are considered as either satisfied or not, i.e., true(l) or false(0). 

As a result, the expected values of the variables Pm and p„ can be computed 

as follows: 

E\pm] = {l)R{Pm) + (0)(1 一 R{Pm)) 二 (5.18) 

E[[Pm?] 二 + 0.2(1 — R{Pm)) = R{P. (5.19) 

E\pm.Pn] 二 ⑴i^bmn) + (0)(1 — R{Pmn)) = R{Pr (5.20) 

where R(Pmn), and R{pn) denote the ratio of the number of true 

groundings over the number of groundings for the patterns p 議， P m , and Pn 
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in the target domain unlabeled data Ut respectively. Pmn represents the joint 

pattern formed by the conjunction of the patterns Pm and Pn- Let Np{x, D) 

and Nt(x, D) denote the number of true groundings for formula or pattern x 

and the number of grounding for formula or pattern x given the dataset D 

respectively. 

mpm) = ^ ^ ^ ^ (5.21) 

风Pn) 二 (5.22) 

NtiPm 

M) 

Nt{Pn, U) 

A^Pmrx，") 
取 二 . (5.23) 

Hence, by the substitution of Equations 5.18，5.19, and 5.20 in Equa-

tions 5.15, 5.16, and 5.17 respectively, Var{pm), Var{pm), and Cov(pm,Pn) 

can be expressed as: 

- Var{pm) = R(Pm) - {R{Pm))' (5.24) 

- Var(pn) = R(Pn) - {R{Pn))' (5.25) 

CoviPm.Pn) = R{Pmn) — {R{Pm) * R(Pn)) (5.26) 
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5.3 Experiments 

We have con due ted expeririients on two diffen?nt tasks, namely, pronoun res-

olution and segmentation of citations. For each of th(、task, wc pro pared a 

source domain training dataset from which tho source (loiiuiiii MLN is ob-

tained. For the target domain, an unlabeled training datcisct is prepared lor 

adapting the source domain MLN to the target domain. Finally, a soparatc 

target doinairi testing dataset is used for evaluating the performaiico. Our 

framework is implemented based on the Alchemy system [34], which provides 

algorithms in statistical relational learning on the Markov Logic Network. 

Since little related works have been developod for p)erforining domain 

adaptation on MLN solving the same task, as a baseline for comparative 

evaluation, we employ a stato-of-tlie-art transfer learning systoin of MLN, 

called SR2LR, which can he appli(?d to conduct domain adaptation on iVlLN 

solving the same task [41). SR2LR transfers a source domain MLN model 

to a target domain MLN model using singlc-eriiity-coiitered exariiplos with 

respect to an entity in the target domain. In a sirigle-eiitity-centered example, 

the truth values of all the facts, i.e., ground predicates, involving the same 

entity, i.e., the central entity, arc given and the truth values of all other facts 

not involving the (5L*ntral entity are not necessarily provided. It is applicable 

to revising an existing source domain MLN model to a target domain solving 
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the same task by assuming there is only one available predicate mapping 
•t 

bctvveon the source and iho target domain, SR2LR algorithm h(、m(，filters 

out, foriiiulac which are not informative regarding the targot, domain. The 

weight of th(、target domain formula is a^ssignod the saino weight as that, in 

the source domain MLN under such single-prodicato mapping sotting. 

5.3.1 Pronoun Resolution 

Task Description 

VVc usod two -text (locurnont corpora, namely, (ho ACK 2004 [24] corpus 

and the OntoNotes [29, 46) project for conducting the pronoun rcsohitioii 

oxpeririieiit. The objective of this application is to (letorinino a pronoun's 

antecedent among a set of noun phiiises, to which aro referred cus caiididato 

mentions. As described in Cliaptcr 4, in our MLN model, all pairs of" pronoun 

and candidate mention within a (lociirnent will ho jointly r(、solv(、d for tlioir 

aniU^cionts. Moreover, our goal of this task is to handle all kinds of personal 

prdboiins and noun phraises in a single resolution model. 

In the ACE corpus, only noun pliraiics with ACE named entity types (i.e. 
1 

Person, Organization, Location, Facility, Woapoii, Vehicle and deo-Political 

Entity) are annotated. Pronouns referring to a non-ACE named entity are 

unannotated. Under such definition of annotation which.is not complete, we 
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can only assume those unannotated pronouns as rion-refercntial pronouns. 

This assumption is commonly made in all previous works that use the ACE 

corpus for pronoun resolution in their experiments. Tlui OntoNotes corpus 

luis annotations for all corcference relations of all kinds of entities. Therefore, 

unlike the ACE corpus, the OntoNotes corpus does not restrict the annota-

tion of corefercMice relations over ACE types of entities. It also addresses t he 

general anaphoric corcfcrcncc relations. Coreference noun phrases arc an-

notated over all possible noun phrases, even including temporal expressions. 

Hencc, all referential pronouns are annotated with their corrospoiuiing an-

tece(ients where all other unannotated pronouns are non-referential pmiioiiiis. 

Exper imenta l Setup 

In our experiments, 96 text documents from the newswire segment of the 

ACE corpus were randomly extracted and used as tho source domain dataset. 

<r 

99 unlabeled text documents were randomly extracted from the OntoNotes 

corpus for the target domain dataset. The dataset of target domain unlabeled 

documents is randomly split into two subsets: 50% for the unlabeled target 

domain training dataset and 50% for the testing dataset. As a result, there 

arc 1,842 pronouns in the source domain dataset, and 931 and 703 pronouns 

in the target domains unlabeled training dataset and testing dataset respec-

lively. There are 8,918 candidate mentions in the source domain dataset, and 
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7,125 and 5,569 candidate mentions in the target domains unlabeled training 

dataset and testing clatasct respectively. Queries are selected automatically 

for labeling from tho target domain unlabeled training dataset. 

As with common experimental setup in previous works, we focus on the 

evaluation of the resolution ability, we use the true mentions as candidate 

mentions. In tho ACE corpus, true ACE mention boundaries are annotated. 

However, for the OritoNotcs corpus, vvc follow the annotation guidolinos and 

identify the true boundaries of noun pjirases as candidate mentions. In both 

corpora, all personal pronouns arc identified by a predefined list of pronouns. 

Positive training instances are created by pairing the pronoun with its clos-

est antecedent. Negative instances are created for all pairs of pronouns and 

preceding noun phrases within a context window. We adopt a wii^low size of 

3 for our experiments, meaning that noun phrases appeared within tho soii-

teiice containing the pronoun and the preceding 3 sentences are considered. 

All documents were preprocessed with the Stanford Named Entity Hcc-

ogiiizer【[25]. Sentences were preprocessed with the POS tagger ''̂ [58]. We •• 

employed the noun gender data developed by Bergsnia [̂1]. With this corpus, 

wc obtained the gender and number information for a inention. 

The source domain MLNs is constructed on the preprocessed labeled data 

* http://www-nIp.stanford.edu/softwarc/CRF-NER.shtnil 

^http: / / www-nlp.staiiford.edu / software/tagger .shtinl 

^http://www.cs.ualberta.ca/ bergsma/Gender/ 
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based on the knowledge base design described above and in Chapter 4. For 

the experiment on SR2LR, we randomly selected a pronoun p, as the central 

entity, and created the single-entity example. For example, the truth value 

of the ground query isAntecendent(jn]、p、)、where m] is a candidate mention 

in the same document, is given in the example. The number of ground query 

predicates to be labeled in the single-entity-centered example is 729. In the 

experiment for our model, the penalty parameter 6 was set to a value of 5 

in the penalty-based formula weight refinement. The maximum length of 

candidate patterns was set to 3 and the minimum frequency for a candidate 

pattern to be selected was 10. 

We also investigate the performance of our two proposed formula weight 

refinement approaches, namely, distribution divergence and penalty-based. 

In our complete model, we perform knowledge base refinement using our 

framework as described in Figure 5.1 using both the penalty-based formula 

weight refinement approach (Chapter 5.1.2) and logic formula refinement 

(Chapter 5.2). 

0 
Evaluat ion Metr ic ‘ 

•t 
t 

As we also handle non-referential (non-anaphoric) pronouns, we adopt the 

modified accuracy metric, known as resolution etiquette [42]’ which is also 

used in Cherry and Bergsma [16], and Charnial and Eisner [14). It is de-
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fined as the proportion of pronouns correctly resolved, either to a candidate 

mention or to the non-referential category. 

Exper imenta l Results 

Table 5.1 depicts the performance of our approaches comparing to the SR2LR 

model. The significant increase in the performance of all our approaches and 

our complete model demonstrates that they are able to refine the existing 

source domain model\for the target domain. The improvement of our com-

plete model over the penalty-based approach also demonstrates that the now 

logic formulae discovered is useful for capturing the difference in the underly-

ing relations between the source and the target domains. Precisely, 127 new 

formulae were discovered which represent the new relations for the target 

domain. An example of a new formula is: 

next.sent{x^ y) A has-term[y, “schemer”、is Antecedently, x) 

In the above formulae, the term "schemer" is a word specifically appeared 

in the target domain only. Through our refinement model, we are able to 

establish relations between the evidential predicates containing the term with 

the query isAntecedent{y,x). All the formulae are also refined to fit the 

data distribution of the target domain. For example, the following formula 
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System Accuracy 

SR2LR 16.1% 

distribution divergence 22.1% 

penalty-based 31.3% 

our complete model 34.7% 

Table 5.1: Experimental Results of Using Unlabeled Target Domain Data 

for Pronoun Resolution 

originally has a high weight of 5.03 in the source domain MLNs. 

has.teTm(x, "if) => is Antecedent (null, x) 

After weight refinement, it has a much lower weight of 1.22 in the target 

domain MLN, MLNt. This captures one characteristic that referential pro-

nouns have different definitions between the source ACE corpus and the 

target OntoNotes corpus. 

Since most of the groundings of the formulae in the existing source pro-

noun resolution MLN have ground predicates not involving the central entity, 

those formulae will be directly selected as the formulae for the target domain 

pronoun resolution MLN by the SR2LR model. The final target domain 

MLN is hence roughly the same as the source domain MLN with the same 

set of weights. Our proposed model has the advantage of discovering new 

formulae and refining the corresponding weights of the formulae to the data 
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distribution of the target domain. 

5.3.2 Segmentation of Citation Records 

Task Descr ipt ion 

The goal of segmentation of citation records is to extract bibliographical 

records of technical paper citations and identify the candidate fields, namely, 

title, author, and venue, from the citation strings. We employed the segmen-

tation MLN model developed by Singla and Domingos [55] for our experi-

ments. The corresponding query is InField{i^ / , c). InField(i, / , c) is true if 

and only if the z-th position of the c-th citation is part of the field /，where f E 

{title, author^ venue}. The main evidential predicate is» HasToken{t, d, c) 

which represents the citation strings. HasToken{t, d, c) is true if and only if 

the c-th citation has a token t in the d-th position where t is a the token in 

the source domain labeled data. 

Moreover, there are predicates describing a string, the information on 

punctuations, and positional information regarding the citations. With the 

predicates, four main categories of relations, namely, mutual exclusive, word 

and field regression, signature words and position rules, are formulated in the 

segmentation model. For example, the following formula, describing whether 

a word tj is part of the field /„，is created for every word in the source domain 
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data. 

HasToken{tj,i,c) => InField{i, fn, c) (5.27) 

Exper imenta l Se tup 

We conducted experiments on CiteSeer, one of the standard datasets used 

for information extraction on citations. The CiteSeer dataset was first cre-

ated by Lawrence et al. [36]. The CiteSeer dataset has approximately 1,500 

citations to 900 papers, and it contains four different topic sections, namely, 

constraint satisfaction, face recognition, automated reasoning, and reinforce-
% 

ment learning. Each of the four sections are used as the source domain data 

separately. For target domain data, we combine two of the sections. Then 

the target domain data is randomly split into two subsets: 50% for the tar-

get domain unlabeled training dataset and 50% for the testing dataset. For 

example, when the section, face recognition, is used as the source domain, 

we combine two of the remaining sections, constraint satisfaction arid rein-

forcement learning, and divide them randomly to form the target domain 

unlabeled training dataset and the testing dataset. We perform experiments 

on all the combinations of source domain and target domain assignments. A 

total of 12 sets of datasets are obtained. 

We perform experiments on the 12 datasets using the SR2LR model, 

our two formula weight adaptation approaches, namely, distribution diver-
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gence and penalty-based, and our complete model. In our complete model, 

we perform knowledge base refinement using our framework as described 

in Figure 5.1 using the penalty-based formula weight refinement approach 

(Chapter 5.1.2) and logic formula refinement (Chapter 5.2). 

For the experiment on the SR2LR model, we randomly selected a cita-

tion c, as the central entity for each of the target domains, and crcated the 

single-entity example. For example, the truth value of the ground query 

InField{ci, author, pj) is true and is given in the Example. The number of 

ground query predicates required for labeling in the single-entity-centered 

examples is 18. 

In the experiment for our approaches, the penalty parameter 6 was set 

to a value of 1 in the weight refinement. The maximum length of candidate 

patterns was set to 3 and the minimum frequency for a candidate pattern to 

be selected was 10. 

Evaluat ion Met r i c 

We measure the performance of the query predicate InField(i, c,p). The F-

measure metric is used for evaluating the citation segmentation performance. 

Specifically, the F] measure is calculated by the weighted harmonic mean of 

Precision(P) and Jlecall(R). 
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^ tp 
P 二 (5.28) 

+ fp 

^ tp 
R = (5.29) 

tp + fn \ 1 

where tp, true positive, is the number of query predicts correctly labeled as 

true; in, true negative, is the number of query predicts correctly labeled as 

false; /p, false positive, is the number of query predicts incorrectly labeled 

as true; and fn , false negative, is the number of query predicts incorrectly 

labeled as false. 

厂 ( 5 . 3 0 ) 

Exper imenta l Results 

Table 5.2 shows our average refinement performance of the 12 datasets for 

the segmentation task. The performance of our model demonstrates con-

sistent improvement obtained by our model over the SR2LR model. Both 

the distribution divergence approach and the penalty-based approach out-

perform the baseline approach. The improvement of our complete model 

over using formula weight refinement approach alone shows that our logic 

formula refinement approach is able to construct useful new formulae for the 

target domains. The detailed results of each of the 12 datasets are shown in 
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System Average F-measure p-value(compared with SR2LR) 

SR2LR 75.0%' -

distribution divergence 76.2% 0.008 

penalty-based 76.5% 0.028 

our complete model 76.8% 0.012 

Table 5.2: Experimental Results of Using Unlabeled Target Domain Data 

for Segmentation of Citation Records 

� b l e 5.3.2. and performance for each field, namely, author, title and venue, 

are shown in the Appendix A.l . 

Some examples of new formulae are: 

HasToken{ “satisf action”, z, c) InField{i, “title”，c) 

HasComma、c, i)/\FoUowBy、c, I, COMMA)AHasToken{ 'W, i, c) InField{c, “venue' 

where HasComma[c, i) and FollowBy{c, i, t) describes if a citation c has or 

is followed by a cer^in^j^nctuation at the z-th position. The first formula 

depicts that the word "satisfaction" is part of the title, while the second 

formula depicts that if the word "co" contains a comma, and is also followed 

by a comma, then it is part of the venue. 

Moreover, we conducted statistical significance test using McNemar's 

paired t-tests over the 12 datasets and all our approaches were found to 
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be statistically better that SR2LR (p-value < 0.05 with a 95% confidence 

interval). When comparing our complete model with the penalty-based for-

mulae refinement approach, the p-value is 0.0014. Hence, the improvement 

of our complete model is statistically significant. 

For the SR2LR model, since most of the formulae in the source domain 

model consist of predicates with constants, and facts about those constants. 

For example, the truth value of the ground evidential predicate IsDate(tj), 

which describes if the string t〕is a date, is unknown as it does not involve 

the centered entity q . Those formulae are directly regarded as target domain 

formulae without any modification on the weights by SR2LR, whereas our 

model discovers new formulae and refines all formulae of the source MLN 

with regard to the data distribution of the target domain. 
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Source Target SR2LR distribution penalty our complete 

Domain Domain ‘ .divergence based model 

reasoning constraint-f-face 77.4% 78.0% 78.2% 78.4% 

reinforcement constraint+face 73.2% 74.1% 73.4% 74.1% 

face constraint-f reasoning 73.8% 76.5% 78.5% 78.9% 

reinforcement constraint-f reasoning 75.3% 、‘ 76.0% 75.7% 76.3% 

face constraint+reinforcement 74.3% 76.6% 79.1% 79.2% 

reasoning fconstraint+reinforcement • 80.9% 81.2% 81.4% 81.4% 

constraint face+reasoning 
• 

72.0% 73.4% 72.5% 74.7% , 

reinforcement face+reasoning 74.4% 74.9% 74.3% 74.7% 

constraint face+reinforcement、 72.2% 73.2% 72.5% 72.8% 
V 

reasoning face+reinforcement 79.8% 80.4% 80.3% 80.5% 

constraint reasoning+reinforcement 73.5% 74.3% 73.8% 73.9%'/ 

face reasoning+reinforcement 72.8% 75.9% • 78.2% 78.3% 

.Table 5.3: Experimental Results of Using Unlabeled Target Domain Data 
镯 

for All Datasets of Segmentation of Citation Matching 
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Chapter 6 

Knowledge Base Refinement 
> 

Using Limited Labeled Target 

Domain Data 

In this chapter, 'we investigate the situation of using a limited amount of 

labeled target domain data for knowledge base refinement. When a small 

amount of manual annotations can be obtained, we investigate on how to 
• • 

utilize such limited resources at the largest advantage. We develop two ap-

proaches of active learning for knowledge base refinement for the target do-

main, namely, pool-based and error-driven approaches. 

< 

. The source domain and the target domain share some similarities and 
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yet they are different. To refine the source domain knowledge for the tar-

get domain, we try to capture the differences among the two domains. In 

Chapter 5.2, we discover the differences using unlabeled data. Potential logic 

formulae for the target domain are discovered and a different target domain 

MLN, MLNt, can be constructed. But if we are given a small amount of la-

beled data, we could further improve the performance of MLNt by evaluating 

these potential logic formulae using labeled data. To achieve this objective, 

we develop two approaches, namely, pool-based approach and error-driven 

approach. 

6.1 Pool-based Approach 

In the pool-based approach, we investigate how to actively select query pred-

icates for manual labeling such that the labeled obtained can aid the process 

of model refinement. Our rationale is that logic formulae specific to the 

target domain represent different characteristics of the source domain and 

the target domain. The impact of the new logic formulae can serve as im-

portant clues for refining the predictions and hence for better estimation of 

the target domain's distribution. The logic formulae captured for the target 

domain MLN, MLNt, which are not included in the source domain MLN, 

MLNs, cause the ground query predicates in the target domain to have dif-
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ferent inference results. When no iabeled data for the target domain is given, 

the change in inference results cannot be verified. There is a risk that the 

logic formulae may deduce an incorrect conclusion. If a limited amount of 

labeled data can be obtained, then we can use the resources to review the 

results and conduct refinement to the target domain MLN, MLNt. 

Therefore, we design an approach where unlabeled query predicates are 

actively selected by analyzing the difference between the inference results 

using the source domain MLN, MLNg and the target domain MLN, MLNt. 

The actively labeled query predicates are then utilized to filter potential 

formulae and to adjust the weight learning of the formulae for the target 

domain MLN, MLNt. 

6.1.1 The Proposed Algorithm 

The outline of our proposed approach is depicted in Figure 6.1. The main 

idea of the proposed approach is to actively select ground query predicates for 

manual annotation by comparing the inference results of the target domain 

MLN, MLNt, and the source domainMLN, MLNg. At iteration j , given a 

source domain MLN, AfLNi, where the weights are learned using labeled 

* 

data from the source domain in Step 4. We perform inference on the target 

domain unlabeled data to obtain the predicted results, that is the truth 
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# Pool-based Approach 

I N P U T : 

MLNs： An MLN for the source domain Ds 

Ut'. A set of unlabeled query predicates in target domain Dt 

J : the number of iterations 

F: a set of candidate formulae 

N: the maximum number of query predicates selected for manual annotation in each iteration 

O U T P U T : MLNt： An MLN for A • 

N o t a t i o n s : MLN{x)\ the prediction of truth values of the ground query predicate, x. 

A L G O R I T H M : 

1 L, L [ ^ { M L N s [ y i ) } 
\ 

2 MLPfi,卜 MLNs 

3 for j 二 1 to «7 

4 Train MLN^ with L , 

5 Perform inference on Ut using MLN l '' 

6 for each formula / , G F 

7 compute 6 { f i ) 

8 end for 

9 Select a set of N formulae, F] 二 /in} e F with highest S{fi) 

10 MLNl — MLN\ U F j ^ 

86 



1 Train MLN{ with L[ ( 

2 Perform inference on Ut using MLN^ 

3 for all ground unlabeled query predicates ？ € Ut 

4 compute D(y i ) 

5 end for 

6 Sample from D, a subset N of M query predicates from Ut. 

7 Label the query predicates in N 

8 Ut — Ut\N 

9 L t ^ N 

20 for each unlabeled query predicate y,. y\ = MLNKy^) 

21 L[ ^LtU y\ 

22 end for 

23 Train MLN l with L； 

24 MLN l — filter the relatively less important formula from Fj 

25 — MLN{ 

26 end for 

27 Train MLN{ with L[ 

28 MLNt <- MLNi 

Figure 6.1: The Pool-based Approach. 
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values of the query predicates 队 in the target domain Dt, represented by 

MLNs(yi) in Step 5. In the next step, we select some potential formulae 

by evaluating the impact score S{ft) to the target domain dataset. 

The impact score of a formula is defined as: 

Hf^) = Z ^ l^tiylyfc = 0)) - riiiyluk “ l])! (6.1) : 
A: , 

•1 

where nj(ylj/i — 1]) refers to the number ot true groundings of the ？-th formula 

• k 

when we force the truth value of grounding predicate to be 1，and for 

n,(y[y, = 0]), the truth value of y、is forced to be 0. 

• • i 

Recall that inference with MLN can be done by calculating the probability 

that a predicate takes on a particular truth value using Equation 3.2. Suppose 

we add a formula to the MLN, the probability of a ground query predicate ] 

becomes: 、 
J 
-J 

P(Xi = xi\MB{Xi)) (6.2) • 

二 e 工 P ( E 二、 i M 工 ) ) ’ 

如I几t•(工[X,二01)) + - . 

= 叫 几 八 工 ) + li^F+iriF+i (工)）  

e 工 二 1 聊 t(印,=0]) + ^F+inF-i-i(^iXi=o])) + 二 1 ̂ ；：几！(工+ 

As a result, the probabilities of the truth value of the ground predicate to be 
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1 or 0 are: 

P{Xi = \\MB{Xi)) (6.3) 

expiZLi - n “ : c p ^ , = ” ) ] ) ( e " 叫 “ 伸 = " ) ) ) + 

P(Xi = 0\MB(Xi)) (6.4) 

One of the factor affecting the probability of a certain truth for the predicate 

is the value of g切工【A"‘=o1)—nF+i(:c【jv, = i l ) l 。 『 = 

As a result, we can assess the relative influence of a formula to the inference 

by evaluating the accumulated difference of the number of truth groundings 

of the (F + l)-th formula and forcing the truth values of the predicates to 

be 0 or 1, i.e. computing A formula /,• with larger is more 

important to the MLN and is selected. These selected formulae are added to 

the target domain MLN, MLN{. Weights are learned with the predicted and 

manual labeled truth values of the query predicates in the target domain. 

Inference on the target domain unlabeled data is performed to obtain the 

predicted results represented by MLNs(yi) in Step 12. We then compare the 

inference results MLNs{yi) and MLNt(yi) and compute the score of selection 

for labeling for each unlabeled query predicate in Step 13. 

89 



The selection score for labeling a query predicates is defined as: 

r{yi) = (6.5) 
+ 1 

0{y.) = m^LNsivr) = MLNt{yi))]v{MLNt{y,)) + 

\ 
(1 - 隨 M L N 人 y i ) + MLNtUJl))]u(MLNt(yi)) (6.6) 

where Lt is the set of labeled ground query predicates and Ut is the set of 

unlabeled query predicates, j/, is the i-th ground query predicate in the target 

domain data Ut. MLNt(yi) and MLNs(yi) are the predicted truth values of 

ground query predicate yi using the target domain MLN, MLNt, and the 

source domain MLN, MLNs, respectively.《(X) 二 1 if X is true. v{MLNt{yt)) 

represents the confidence of the prediction using the target domain MLN, 

MLNt. One way to measure the confidence of the prediction by an MLN is 

to consider the conditional probability of the predication. 

v{MLNt{y^)) = max {P{MLNt(yi) = l\Xt)) (6.7) 

Z={0，1} 

where Xt is the set of evidential predicates with known truth values in the 

target domain data. The higher the selection score of a query predicate, 

the higher the probability it is selected for manual annotation. Hence, the 

unlabeled ground query predicates are sampled with probability proportional 

to T{yi). The probability distribution of a query predicate to be selected for 
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labeling is: 

• 二 r q ^ f - (6.8) 

As a result, M query predicates are selected and the labels are requested 

and annotated in Step 17. For the remaining unlabeled query predicates, 

they are automatically labeled by the predicted truth values obtained using 

MLNl in Steps 20 to 22. The labeled query predicates in conjunction with 

V 

the predicated labels of the unlabeled query predicates form the updated 

labeled data L[. Weights in MLN^ are learned using the new set of labeled 

query predicates in L[. The logic formulae with exceptionally low weights 
t 

are removed from MLN{ as shown in Step 25. Finally, the refined MLNt is 

obtained by learning with the predicated and manual labeled truth values of 

the query predicates in the target domain. 

6.1.2 Experiments 

We have conducted experiments on two different tasks, namely, pronoun res-

olution and segmentation of citations. We used the same datasets described 

in Chapter 5.3 for experiments. For each task, we prepared a source domain 

training dataset from which the source domain MLN is obtained. For the 

target domain, an unlabeled training dataset is prepared for adapting the 

source domain MLN to the target domain. Finally, a separate target domain 

91 



testing dataset is used for evaluating the performance. Our approaches are 

also implemented based on the Alchemy system [34]. For pronoun resolu-

tion, documents are preprocessed and source domain MLN is constructed as 

described in Chapter 5.3.1. For segmentation of citations, documents are 

preprocessed and source domain MLNs used are described in Chapter 5.3.2. 

Similar to experiments in Chapter 5.3, resolution etiquette is used as the 

evaluation metric for the task of pronoun resolution, and F\ measure is used 

for the task of segmentation of citations. 

We compare the pool-based approach with a random sampling approach. 

In the random sampling approach, query predicates from the unlabeled target 

domain data selected randomly for annotation. The labeled target domain 

data and the predicted labels of the target domain data using the source 

domain MLN, MLNs, are used to learn the weights of the target domain 

MLN, MLNt. 

Both the pool-based approach and the random sampling approach use 

the same amount of actively selected labeled target domain data. For the 

tasks of pronoun resolution and segmentation of citation records, the amounts 

of selected query predicates are 6% and 10% of the total number of query 

predicates in the target domain, respectively. In the experiments for the 

pool-based approach, fi is set to the value of 0.9. 
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Pronoun Resolut ion 

Table 6.1 depicts the experimental results. The improvement of the pool-

based approach over the random sampling approach demonstrates that our 

approach is able to select more informative query predicates and hence assist 

the capturing of differences between the source and the target domain models. 

System Accuracy 

Random Sampling 18.5% 

Pool-based Approach 25.2% 

Table 6.1: Experimental Results of Pool-based Approach for Pronoun Reso-

lution Using Limited Amount of Labeled Data 

Segmentat ion of Ci tat ions 

Table 6.2 shows the average refinement performance of the 12 datasets for the 

segmentation task. The pool-based approach shows consistent improvements 

over random sampling. The detailed results of each of the 12 datasets are 

shown in Table 6.3. 
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System Average F-measure p-value 

Random Sampling 75.3% 一 

Pool-based Approach 76.1% 0.0003 

Table 6.2: Experimental Results of Pool-based Approach for Segmentation 

of Citation Records Using Limited Amount of Labeled Data 

6-2 Theoretical Analysis of the Assignment 

Error for Pool-based Approach 

As a query predicate is sampled according to the probability distribution in 

Equation 6.8, a query predicate 队 has a probability of D(yi) to be selected 

for manual annotation. Therefore, the probability of the query predicate 

not selected for manual annotation is 1 — D{yi). When a query predicate is 

not selected for manual annotation, we entrust it with the predicted truth 

values deduced from the target domain MLN, MLNl. Since the MLNl is 

trained upon the set of truth values for the unlabeled query predicates Ut, 

it is subjected to the influence of the accuracy of the those assigned truth 

values. -

Hence, to demonstrate the fitness of the refined MLNt to the target do-

main, we analyze the influence of the truth values by deriving the error of 

the assigned truth values of the query predicates during the active learning 
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Source Target Random Pool-based 

Domain Domain Sampling Approach 

reasoning constraint-(-face 77.0% 77.7% 

reinforcement constraint+face 72.7% 73.8% 

face constraint+reasoning 77.1% 78.3% 

reinforcement constraint H-reasoning 75.2% 75.3% 

face constraint-(-reinforcement 77.2% 78.4% 

reasoning constraint-l-reinforcement 80.4% 80.6% 

constraint face+reasoning 71.2% 72.1% 

reinforcement face+reasoning 74.3%'' 74.7% 

constraint face-h reinforcement 71.0% 71.7% 

reasoning face+reinforcement 78.8% 79.3% 

constraint reasoning-f reinforcement 71.9% 73.0% 

face reasoning-f reinforcement 76.6% 77.7% 

Table 6.3: Experimental Results of Pool-based Approach for All Datasets of 

Segmentation of Citations Using Limited Amount of Labeled Data 
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process. Such assignment error has been investigated in some active learning 

approaches [4’ 54] to demonstrate the effectiveness of the samples. With sim-

ilar motivations, we analyze the error bound of the sample selection process. 

Theorem 6.2.1 Let . . - .. -ote tk^^ecte, error of tke target 如 匪 n 

MLN, MLNt and the source domain MLN, MLNg respectively, and N denote 

the number of ground query predicates in the target domain. The assignment 

\ 

error t of the pool-based approach satisfies 

e.e^M：^ if MLNtivi) 二 MLN人y“, 
€ < (6.9) 

Proo f A query predicate will be assigned an incorrect truth value when it 

is not selected for sampling and based on the predicted truth values of the 

two MLNs, MLNt and MLNg. v(MLNt(yi)) represents the confidence of the 

predicted truth value MLNt(y“. This probability depends on the accuracy 

of MLNt. • 

viMLNtivi)) = l - e t (6.10) 
• 

In Equation 6.6, the sampling score is affected by whether the two predicted 

truth values, MLNt(yi) and MLNs(yi) obtained using MLNt and MLNs re-

spectively, are the same or not. Hence, we deduce the assignment error in 

two cases: 

1. MLNtivi) = MLNsivi) 
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2. MLNt{y^) + MLNsivi) 

Case 1: when MLNt{yi) 二 ML TVs (仏）， 

aMLNt[yi) '= MLNsivi)) - 1 and《 ( .ML" ,⑷ ^ M 风 ⑷ ） = 0 

0(yr) 二 l3v(MLNt(y,)) (6.11) 

< €s€ 

二 €,€ 

< 
< 

< 

=e, 

~ e, 

-

7 ⑷ 

丁 (JJi)、 

lA 

丁⑷ 

N 
1 

TV I P{v(MLNt{y^))) 

N-
N、…^(1-60 + 1 

一 et) + 1 — l/AT 

P 
障 一 et) 

(6.12) 

Case 2: when MLNt(yi) ^ MLN八yi), 

aMLNtiv i ) = MLNsivi)) = 0 and R M L N t ⑷ + MLNsiVi)) = 1 

二 [1 — p、”(MLNt(yi)) (6.13) 
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< 

1 - e, 

-e , 

1 一 e, 

1 -€. 

IN i V ~  

N^ {I - P)(viMLNt{yi))) + \ 

N 
N 

( 1- / ? ) ( ! -6 , ) + ! 

(1- 0)(l-et) + l-l/N 

(1 - + 
(6.14) 
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6.3 Error-driven Approach 

In the error-driven method, since the size of labeled data is also an impor-

tant factor for learning, the limited amount of labeled target domain data 

still hinders the analysis of the target domain. Hence, obtaining an esti-

mated labeled dataset by querying a small number of actively selected query 

predicates is an interesting issue towards knowledge base refinement. We 

investigate the use of estimated labeled dataset for the discovery of logic for-

mulae when the manual annotation of a very small amount of data in the 

target domain is possible. The idea of our approach is that certain query 

predicates have similar behavior. By identifying groups of query predicates 

with similar characteristics, we can capture potential logic formulae from the 
r 

target domain. Such clustering of query predicates can be obtained with the 

help of actively selected query predicates. Our method analyzes the unla-

beled target domain data and actively asks the expert to provide labels (or 

answers) of a very small amount of automatically selected query predicates. 

With the actively selected query predicates, a suitable clustering of query 

predicates is obtained and estimate the labels for the entire data. Potential 

logic formulae in the unlabeled target domain data are discovered using the 

estimated labels. 
« 

Our error-driven approach consists of 2 components: 
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1. Clustered-based active learning 

An estimated set of labels is obtained by performing active learning 

with a hierarchical clustering of unlabeled query predicates. 

2. Pattern discovery and filtering 

Potential patterns are discovered for the target domain from the unla-

beled target domain data, particularly, the evidential predicates. We 

then filter out low confidence patterns using the estimated set of labels 

of query predicates. 

6.3.1 Cluster-based Active Learning 

Cluster structure has been shown to be beneficial to incorporate with active 

learning to improve performance [43, 19]. We develop a cluster-based active 

learning component inspired by the model in Dasgupta and Hsu [19]. The 

t 

labels of the entire target domain unlabeled data are estimated by actively 

selecting query predicates for annotation. The outline of the cluster-based 

active learning is depicted in Figure 6.2. The rationale of this approach is 

that when a cluster of query predicates has a relatively high ratio of labeled 

query predicates with truth values equal to a particular label, it is assigned 

with that majority label and we mov^ on to investigate on labeling query 

predicates from other clusters. A clustering with relatively pure cluster labels 



and distribution not deviate too far from the source domain MLN, MLN】, 

can be obtained. 

First, hierarchical clustering H of the target domain unlabeled query 

predicates is performed and a hierarchical tree (root) of clusters is obtained. 

Starting from a pruning C = {z^t}, which is a disjoint set of clusters in 

the hierarchical clustering H、a node from C is selected based on the 

probability distribution D*(!/‘). The probability distribution is defined as 

Equation 6.22. 

、 - 队 八 1 - P乂Bl•(…- R仏⑷)  

⑷ 一 E , 政 - " “ i - P 二 • ⑷ ) ( i - / W “ ) ( ) 

where the probability of a node to be selected depends on three factors, the 

ratio of the size of the node denoted by w^i = kt|/ Y^̂ u^ec 1"知丨，the upper 

bound of how pure the node is in its labels denoted by P二•…‘)，as well 

as the agreement of the majority label between the current estimated label 

and the results of inference using the source domain MLN, MLNs、denoted 

by Rui.L'M-

尸 " “ L • ⑷ 二 I ^ I r ^ V " T o ( ) 

where TV二 is number of labeled query predicates in Ui having the truth value 

equal to I, N^. is the number of labeled query predicates in and L*{ui)= 

argmax N、. 

‘ o 们 7 、 



# Cluster-based Active Learning 

I N P U T : 

Ut： A set of unlabeled query predicates in target domain Dt 

J: the number of iterations 

N\ the maximum number of query predicates selected for manual annotation 

O U T P U T : L;: Estimated labels for Ut 

N o t a t i o n s : 

L{Ci): the label of the class C, of query predicates 

Ui： a node in the hierarchical clustering, H 

the upper bound of probability P{x) 

Pu„iU)'- the probability of labeled predicates in node i/i with label I 

/): the number of query predicates in i/ having label I 

A L G O R I T H M : 

1 H = root, " i , . . . 卜 perform hierarchical clustering on the set of query predicates Ut 

2 C — root; L{root) 4- 1 

3 for j = 1 to 

4 for i = l to N 

5 i/j 4r- select a node i^i e C by the probability distribution D* ⑷ 

6 V 

7 for each query predicate yk\yk € Ut from subtree 

8 compute Tj(yk) 
102 



9 

0 

1 

2 

end for 

yij select the query predicate from Ut with maix{{T](yk)}) 

label yyi 

Ut<r-Ut\ Vrj 

L； ̂  LIU yij 

end for 

for each i/t e V 

C' the pruning having scores s{ui) 

C ^C\V\JC' 

for each i/k G C 

L{i'k) argmax fi(j/kJ) 

I 

end for 20 

21 end for 

22 end for 

23 for each Uk £ C 

24 for each query predicate yk\yk € î k 

25L、、 Vk <r- L ⑷ 
�-

\ -

26 \ L l < ^ L l U y k 

27 end for 

28 end for 
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where y'f̂  is the predicted truth value of the k-th query predicate yk with the 

source domain MLN, MLNs, {̂y'l̂  = = 1 if the truth value yj. is equal 

to the majority label, / / ⑷，o f node 

Then, in Steps 7 and 8, an unlabeled query predicate y] is selected by 

Equation 6.18. 

vivj) 二（1 - maxi{P{yr = /|MLN„ ⑷)） （6.18) 

where y'〕is the predicted truth value of the query predicate y) with MLNg. 

P{y'j = /IMLN5, Ut) is the probability of the predicted truth values. 1 — 

maxi{P{yj 二 /|MLNs，Ut) is the uncertainty of the prediction made by MLN^. 

Regarding giving manual annotation to some selected query predicates, 

a pruning is updated and selected by accessing the improvement in the esti-

mated error of majority labeling based on s(i/,) in Equation 6.19. 

1 nL.^】、 
= — ( 6 . 1 9 ) 

y 、 " J 

Finally, the pruning|is updated and each query predicate in the cluster in the 

current pruning is assigned its majority truth value of the actively labeled 

query predicates. 

6.3.2 Pattern Discovery and Filtering 

The estimated truth values of the query predicates together with the ob-

servations, that are the evidential predicates, in the target domain D “ we 



discover the potential patterns. Potential patterns are extracted with the 

candidate pattern identification component as presented Chapter 5.2.1. We 

extract connected paths containing the ground query predicates. Next, we 

filter the un-informative patterns. The rationale of our filtering approach 

is that a candidate pattern can belong to one of the following cases given 

the clustering structure and the estimated truth values of the target domain 

data: 

1. the pattern appears in many clusters and its error rate is high; 

2. the pattern appears in many clusters and its error rate is low; 

3. the pattern appears in only one or a few clusters and the error rate is 

high; 

4. the pattern appears in only one or a few clusters and the error rate is 

low. 

Candidate patterns of case 2 are the patterns that would be beneficial to the 

target domain. Hence, in our approach, we would like to retain patterns of 

case 2 and filtered out the others. Hence, one way to solve the situation is to 

measure the error rate of a pattern by Equation 6.20. Assuming the pattern 

could be regarded as a formula in form o{ p ^ q: 

error(y) 二 iV(/)/A^(p) (6.20) 



where N(f) is the number of true groundings of f given the truth values of 

predicates in formula f and N{p) is the number of true groundings of p. More 

specifically, we computed the upper bound of the error rate, ejTOTuB(f), de-

fined in Equation 6.21. to obtain the pessimistic uncertainty of the formulae, 

such that only the most confident formulae will be retained. 

error(/) + 1 . 9 6 ^ 6 隨 ( / ) ( 1 ^ - e r r g ^ (6.21) 

where n = N(f). The filtering process is described in Figure 6.3. 

In Steps 7 to 12, we select the formulae such that more generalized rules 

are preferred unless the relatively more specific formula is more accurate. 

Finally, the selected set of formula are added to MLNj and weights are learned 

to construct the refined target domain MLN, MLNf. 

6.3.3 Experiments 

We have conducted experiments on two different tasks, namely, pronoun res-

olution and segmentation of citations. We used the same datasets described 

in Chapter 5.3 for experiments. For each task, we prepared a source domain 

training dataset from which the source domain MLN is obtained. For the 
» 

target domain, an unlabeled training dataset is prepared for adapting the 

source domain MLN to the target domain. Finally, a separate target domain 

testing dataset is used for evaluating the performance. Our approaches are 



# Pattern Filtering 

I N P U T : 

MLN,: An MLN for D, 

Et： A set of evidential predicates in target domain Dt 

Yt： A set of predicted truth values of the query predicates in target domain Dt 

F: a set of candidate formulae 

a : the threshold of error rate 

O U T P U T : 

MLNt： An MLN for A 

A L G O R I T H M : 

1 for each / i G F 

2 compute enoruB(f i ) 

if (erroruBifi) < «) 

F' F'U fi 

6 end for 
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7 for each € F' 

8 for each fj e F' 

9 if (Ji e fj) and (errotuBifi) < error"s(/J) 

10 F' ^ F'\ fj 

11 end for 

12 end for 

13 MLN; —MlJMsU 厂 

14 MLNt perform formula weight adaptation(Chapter 5) on MLN] 

Figure 6.3: The Pattern Filtering Process. 



also implemented based on the Alchemy system [34]. For pronoun resolu-

tion, documents are preprocessed and source domain MLN is constructed as 

described in Chapter 5.3.1. For segmentation of citations, documents are 

preprocessed and source domain MLN used are described in Chapter 5.3.2. 

Similar to experiments in Chapter 5.3，resolution etiquette is used as the 

evaluation metric for the task of pronoun resolution, and Fi measure is used 

for the task of segmentation of citations. 

We first compare the error-driven active learning approach with a random 

sampling approach. In the random sampling approach, query predicates from 

the unlabeled target domain data is selected randomly for annotation. The 

labeled target domain data and the predicted labels of the target domain 

data using the source domain MLN, MLNs, are used to learn the weights 

of the target domain MLN, MLNt. We also implemented the error-driven 

approach that randomly selects a limited amount of query predicates instead 

of using the cluster-based active learning component. 

The same amount of selected labeled target domain data are used in 

all the experiments. For both the error-driven approach and the error-driven 

active learning approach, we use the penalty-based formula weight adaptation 

to learn the weights for the target domain MLN, MLNt. 

For both tasks, the amount of selected query predicates is within 5% of 

the total number of query predicates in the target domain. In both error-



driven approach and the error-driven active learning approach, a is set to 

the value of 0.1 to filter out candidate formulae with estimated error rates 

above 0.1. 

Pronoun Resolut ion 

Table 6.4 depicts the experimental results. The improvement of the error-

driven active learning approach over the error-driven approach demonstrates 

that the estimated labels of the cluster-based active learning component is 

beneficial towards formula filtering. They enable the selection of a broader 

but still fairly accurate formulae for the target domain. 

System Accuracy 

Random Sampling 16.2% 

Error-driven 32.0% 

Error-driven Active Learning 37.0% 

Table 6.4: Experimental Results of Error-driven Active Learning Approach 

for Pronoun Resolution Using Limited Amount of Labeled Data 

Segmentat ion of Ci tat ions 

Table 6.5 shows our average refinement performance of the 12 datasets for 

the segmentation task. The error-driven active learning approach shows con-
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sistent improvements over random sampling and error-driven approach. In 

average, the error-driven active learning approach outperforms the error-

driven approach by 1.2%. Among 11 of 12 datasets, the error-driven active 

learning approach outperforms the error-driven approach. We conducted sta-

tistical significance test using McNemar's paired t-tests over the 12 datasets 

and the p-value is 0.004. The error-driven active learning approach is found 

to be statistically better that error-driven approach (p-value < 0.05 with a 

95% confidence interval). 

System Average F-measure ‘ p-value 

random sampling 74.5% -

error-driven 76.7% 
<3 

error-driven active learning 78.0% 0.004 (compared with error-driven) 

Table 6.5: Experimental Results of Error-driven Active Learning Approach 

• I 

for Segmentation of Citation Records Using Limited Amount of Labeled Data 

The detailed results of each of the 12 datasets are shown in Table 6.6. 

I l l 



Source Target ‘ Random Error-driven Error-driven 

Domain Domain Sampling active learning 

reasoning constraint+face 76.2% 77.9% 78.7% 

reinforcement constraint-f-face 72.4% 74.1% 76.2% 

face constraint-1-reasoning 76.4% 79.4% 77.6% 

reinforcement constraint+reasoning 74.6% 75.6% 77.1% 

face constraint-f reinforcement 76.0% 79.3% 79.7% 

reasoning con械raint+reinforcement 79.4% 81.6% 83.1% 

constraint face+reasoning 70.6% 72.3% 74.6% 

reinforcement face 4-reasoning 73.8% 74.7% 76.4% 

constraint face-H reinforcement 70.1% 72.5% 74.7% 

reasoning face-freinforcement 78.3% 80.7% 81.5% 

constraint reasoni ng+reinforcement 71.4% 73.8% 77.1% 

.face reasoning+reinforcement 75.3% 78.2% 79.1% 

Table 6.6: Experimental Results of Error-driven Active Learning Approach 

for All Datasets of Segmentation of Citations Using Limited Amount of La-

beled Data 
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6.4 Analytical Study for the Error-driven Ap-

proach 

We perform an analysis on the error of the estimated label for the query 

predicates from the cluster-based active learning approach. Let c be the 

error of the estimated label and D{ui) represent the probability distribution 

of a node to be selected. 

D ⑷ = 彷",(1 一 尸》/,,£<•(»/‘）)(1 - (6 22) 

‘ t̂'fcCl 一 - Rui^L'M) 

where /%’[•("‘）represents the ratio of labeled query predicates in node 

having the truth values //•("‘）’ Wî^̂  is the ratio of labeled query predicates in 

node "i. and Rui,L'{u,) is defined in Equation 6.17. E s s e n t i a l l y , 凡 c a n 

be interpreted as the agreement of the majority label between the current 

estimated labels and the results of inference using the source domain MLN, 

MLNs. 

Since the truth value for each query predicate can either be positive (+) 

or negative (-)，the error of the estimated label for the query predicate in 

iteration j can be as follows: A query predicate wliose truth value is actually 
I 

negative (or positive) but the node it belongs is not fleeted for manual 
I 

annotation and the majority label of the node is positive (or negative). This 

error is denoted by e+ (or e一 )、 
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Let el̂  is the expected error of the source domain MLN^ in predicting the 

truth value of the query predicates in node Uk to be the truth value /，and 

is the expected error of the source domain MLN, MLNg, in predicting the 

truth value of the query predicates in node i/k not to be 1. Then, (1 一 二 

(1 — — represent the probability that the truth value of 

a query predicate is estimated to be opposite to and the predicated 

truth value by MLNg agrees with the truth value. e+ can be expressed as 

follows: 

= / % ’ - ( l - W ) 

= P h 
秘 一 - 丑 " “ [ • ( I / , ) ) ) 

(6.23) 
抓〜 ( 1 - e i ：⑷） 

Hence, the probability that MLNs correctly predicts the truth value for 

i 

the query predicates in node be the label / is (1 — e'々 ）. Therefore, if 

MLNa does not agree with the majority label of the current clustering C 

except iy“ 记 一 （ t (*"」)increases, the error c十 increases. 
». 

One the other hand, if MLNg agrees with the the majority label of the 

current clustering C except Ylui,ec\ui 也 一 么("」)decreases, the error 

a • 

e+ decreases. 
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In our experiments, the probabi l i ty d is t r ibu t ion of the pur i ty rat io of the 

labeled d a t a can be described by: 

P p . , , • ⑷ ( x ) 二 (6.24) 

where /i = ^ and a 二 • ^ J ^ ~ • ‘ )• We employed the upper 

1 1 r ^n Ft 1 r-» • I-W \ . / \ 1 • 
bound to replace Pu^^L'M in D[ui), i.e. D 

t ion 6.22. This can prevent the cluster-based active 

Figure 6.2 from label ing smal l clusters and leaf nodes. 

[vi) shown in Equa-

learning approach in 
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Chapter 

Conclusions 

In this thesis, we investigate techniques for refining an existing knowledge 

base, in particular, MLN, from a source domain to a target domain. We 

tackle MLN refinement under two situations, namely, using unlabeled target 

domain data, and using a limited amount of labeled target data. For the situ-

ation of using unlabeled target domain data, our proposed framework consists 

of two components, namely, formula weight adaptation, and logic formula re-

finement. For formula weight adaptation, we design two approaches to jointly 

maximizing the likelihood of the target domain observations and capturing 

the differences of the source and the target domains. The first approach 

captures the difference by measuring the distribution divergence between the 

two domains. The second approach incorporates a penalized degree of dif-
- z 

ference between the source and the target domain data. For-logic formula 
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refinement, we discover new logic formulae specific to the target domain. For 

the situation of using a limited amount of labeled target domain data, we 

develop two approaches to actively select target domain unlabeled data for 

annotation to refine the existing MLN. In the first approach, a pool-based 

active learning selects data for annotation based on the difference between 

the source and the target domains. A theoretical analysis on the assignment 

error of the data selection process is conducted. In the second approach, 

the error-driven active learning estimates the labels for the target domain 

data and performs logic formula selection. Experimental results on two text 

mining tasks showing consistent improvements demonstrate that the refined 

knowledge base can capture the differences between the target domain and 

the source domain. The refined MLN can better characterize the target do-

main in either situations of using unlabeled target domain data and using a 

limited amount of labeled target data. 

One future direction is to apply our framework over different applications 

such as sequence labeling. We would like to investigate and evaluate our 

model in richer domains, and situations when more than one source domain 

are provided. We also plan to develop more advanced methods in utilizing 

the limited amount of labeled data in the refinement process. At present, we 

exploit the actively labeled data for discovering target specific queries and 

hence new formulae. We would also like to investigate the possible hidden 
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information behind the small amount of labeled data for revising existing 

formulae and also further enhancing the refined MLN for the target domain. 
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Appendix A 
> 

Detailed Experimental Results 

for Using Unlabeled Target 

Domain Data for Segmentation 

of Citation Records 

This appendix demonstrates the detailed experimental results of each dataset 

for Segmentation of Citation Records. Performances for each field, namely, 

author, title, and venue are shown. 



Source Target model overall author title venue 

reasoning constraint+face SR2LR 77.4% 79.0% 67.8% 82.0% 
reasoning constraint+face distribution 78.0% 78.9% 68.2% 83.0% 
reasoning constraint+face penalty-based 78.2% 78.1% 69.7% 82.9% 
reasoning constraint-f face complete model 78.4% 78.6% 70.3% 83.0% 

reinforcement constraint+face SR2LR 73.2% 72.9% 59.3% 80.6% 
reinforcement constraint+face distribution 78.0% 78.9% 68.2% 83.0% 
reinforcement constraint+face penalty-based 73.4% 74.5% 58.6% 80.6% 

reinforcement constraint+face complete model 74.1% 74.4% 60.2% 81.2% 

face constraint+reasoning SR2LR 73.8% 62.5% 77.2% 79.0% 
face constraint+reasoning distribution 76.5% 74.9% 68.7% 81.1% 
face constraint+reasoning penalty-based 78.5% 79.6% 69.8% 82.6% 
face constraint+reasoning complete model 78.9% 80.3% 69.6% 83.2% 

reinforcement constraint+reasoning SR2LR 75.3% 77.2% 61.0% 81.3% 

reinforcement constraint+reasoning distribution 76.0% 77.4% 61.6% 82.2% 
reinforcement constraint+reasoning distribution 75.7% 77.2% 60.9% 82.0% 

reinforcement constraint+reasoning complete model 76.3% 77.4% 62.5% 82.4% 

face constraint+reinforcement SR2LR 74.3% 61.6% 72.9% 79.1% 

face constraint+reinforcement distribution 76.6% 73.9% 70.6% 80.9% 

face constraint+reinforcement penalty-based 79.1% 80.3% 71.3% 83.0% 
face constraint+reinforcement complete model 79.2% 79J% 71.8% 83.2% 

reasoning constraint+reinforcement SR2LR 80.9% 82.0% 75.2% 83.7% 

reasoning constraint+reinforcement distribution 81.2% 83.2% 75.2% 83.8% 
reasoning constraint+reinforcement penalty-based 81.4% 82.8% 75.8% 84.1% 

reasoning constraint+reinforcement complete model 81.4% 82.3% 76.4% 83.9% 

constraint face+reasoning SR2LR 72.0% 64.4% 61.2% 80.9% 

constraint face+reasoning distribution 73.4% 68.6% 62.5% 81.2% 

constraint face+reasoning penalty-based 72.5% 64.6% 62.2^ >81.1% 

constraint face+reasoning complete model 72.6% 65.1% 61.如 81.4% 

reinforcement face+reasoning SR2LR 74.4% 76.5% 59.9%' 80.4% 

reinforcement face4-reasoning distribution 74.9% 78.2% 59.9% 80.7% 

reinforcement faice-f reasoning penalty-based 74.3% 77.1% 59.0% 80.5% 

reinforcement face+reasoning complete model 74.7% 77.3% 59.8% 80.6% 

constraint face+reinforcement SR2LR 72.2% 65.9% 61.0% 80.9% 

constraint face+reinforcement distribution 73.2% 69.4% 61.6% 81.2% 

constraint face-f- rein forcement penalty-bas6d 72.5% 66.0% 61.2% 81.4% 

constraint face+reinforcement complete modeP 72.8% 66.3% 62.1% 81.6% 

reasoning face-freinforcement SR2LR 79.8% 81.8% 72.5% ‘83.2% 

reasoning face+reinforcement distribution 80.4% 82.9% 73.1% 83.4% 

reasoning face+reinforcement penalty-based 80.3% 82.4% 73.5% 83.4% 

reasoning face+reinforcement complete model 80.5% 82.5% 73.4% 83.7% 

constraint reasoning+reinforcement SR2LR 73.5% 68.9% 61.7% 81.3% 

constraint reasoning+reinforcement distribution 74.3% 72.6% 62.4% 81.0% 

constraint reasoning+reinforcement penalty-based 73.8% 68.2% 62.8% 81.4% 

constraint reasoning+reinforcement complete model 73.9% 69.0% 62.8% 81.4% 

face reasoning+reinforcement SR2LR 72.8% 63.3% 69.6% 77.4% 

face reasoning+reinforcement distribution 75.9% 74.5% 68.3% 80.3% 

face reasoning+reinforcement penalty-based 78.2% 82.0% 68.3% 81.7% 

face reasoning-f reinforcement complete model 78.3% 76.7% 68.8% 82.0% 

Table A. l : Detailed Experimental FUififlts in Fi Measure of Using Unlabeled 

Target Domain Data for All Datasets of Segmentation of Citation Matching 


