Cross-Modality
Semantic Integration and
Robust Interpretation of

Multimodal User Interactions

HUI, Pui Yu

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of
Doctor of Philosophy
in

Systems Engineering and Engineering Management

The Chinese University of Hong Kong
September 2010



UM | Number: 3483863

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI

issertation Publishing

UMI 3483863
Copyright 2011 by ProQuest LLC.
All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17’ United States Code.

uest

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



Thesis/Assessment Committee

Professor Wai Lam (Chair)
Professor Helen M. Meng (Thesis Supervisor)
Professor Hong Cheng (Committee Member)

Professor James Landay (External Examiner)



Abstract of thesis entitled:
Cross-Modality Semantic Integration and Robust Interpretation of Multi-
modal User Interactions
Submitted by HUI > Pui Yu
for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in September 2010

Multimodal systems can represent and manipulate semantics from different
human communication modalities at different levels of abstraction, in which
multimodal integration is required to integrate the semantics from two or more
modalities and generate an interpretable output for further processing. In this
work, we develop a framework pertaining to automatic cross-modality seman-
tic integration of multimodal user interactions using speech and pen gestures.
It begins by generating partial interpretations for each input event as a ranked
list of hypothesized semantics. We devise a cross-modality  semantic integra-
tion procedure to align the pair of hypothesis lists between every speech input
event and every pen input event in a multimodal expression. This is achieved
by the Viterbi alignment that enforces the temporal ordering and semantic
compatibility constraints of aligned events. The alignment enables generation
of a unimodal paraphrase that is semantically equivalent to the original mul-
timodal expression. OQur experiments are based on a multimodal corpus in
the navigation domain. Application of the integration procedure to manual
transcripts shows that correct unimodal paraphrases are generated for around

96% of the multimodal inquiries in the test set. However, if we replace this



with automatic speech and pen recognition transcripts, the performance drops
to around 53% of the test set. In order to address this issue, we devised the
hypothesis  rescoring procedure that evaluates all candidates of cross-modality
integration derived from multiple recognition hypotheses from each modality.
The rescoring function incorporates the integration score, _/V-best purity of
recognized spoken locative references (SLRs), as well as distances between co-
ordinates of recognized pen gestures and their interpreted icons on the map.
Application of cross-modality  hypothesis rescoring improved the performance
to generate correct unimodal paraphrases for over 72% of the multimodal in-
quiries of the test set.

We have also performed a latent semantic modeling (LSM) for interpreting
multimodal user input consisting of speech and pen gestures. Each modality
of a multimodal input carries semantics related to a domain-specific task goal
(TG). Each input is annotated manually with a TG based on the semantics.
Multimodal input usually has a simpler syntactic structure and different order
of semantic constituents from unimodal input. Therefore, we proposed to use
LSM to derive the latent semantics from the multimodal inputs. In order to
achieve this, we characterized the cross-modal integration pattern as 3-tuple
multimodal terms taking into account SLR, pen gesture type and their tem-
poral relation. The correlation term matrix is then decomposed using singular
value decomposition (SVD) to derive the latent semantics automatically. TG
inference on disjoint test set based on the latent semantics achieves accurate

performance for 99% of the multimodal inquiries.
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from pen; (3) top-scoring hypotheses from speech and pen to
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pen {a= 0.01, two-tailed 2; -test) as shown in Appendix F. . . .
Detailed performance statistics of the test set. Improvements
in integration accuracies brought about by cross-modality hy-
potheses rescoring is statistically significant in the presence of
speech and/or pen recognition errors {a— 0.01, two-tailed z-

test) as shown in Appendices F.4, F.5 and F.6
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Chapter

Introduction

Human-human communication is multimodal, where people can simultane-
ously combine multiple modalities, including vision, hearing, speech, eye-gaze,
facial expression, gestures, posture, etc., so as to deliver their message effec-
tively and efficiently. The advantages can be achieved by the complementary

and redundant relationships across modalities. Figure 1.1 provides an illustra-

tion.

Message Sender Message Receiver
Figure An illustration of human-human communication with multiple modali-
ties.
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Multimodal message delivery requires the message sender to divide a mes-
sage into different modalities. Therefore, each modality alone carry incomplete
semantics. The complementary  semantics across modalities need to be com-
bined in order to get the holistic interpretation of the multimodal message.
For example, when a person is narrating a story about a woman who takes an
umbrella as a weapon, swings it in the air and chases after a man, the per-
son may just say "5/ie chases him out,, with hand movements that appear to
swing an object through the air. In order to have a complete insight of the per-
son's thinking, we have to combine the information conveyed by both speech
(i.e. the action of chasing) and hand movements (i.e. show the swinging of the
weapon). Alternatively, the person may present the same thinking unimodally
with speech, as: ““She takes an umbrella as a weapon and chases him out. She
swings the umbrella in the air while she is chasing him: Figure 1.2 illustrates
the scene where the person is narrating the story with complementary speech
and hand movements. This example also indicates that the use of complemen-
tary modalities can simplify the spoken expression and thus enhance efficiency
in human-human communication.

On the other hand, the message sender can repeat the same piece of in-
formation in different modalities. In other words, the information in multiple
modalities are redundant. For example, when a person is describing a story,
in which the man bends a tree branch backwards to the ground, the person
may say “he bends it way back, with arm movements that appear to grip
something and pull it back. The arm movements are repeating the semantic
content of speech. Although the information conveyed in different modalities
is mutually redundant, the repeated information can enhance the correctness
of information transmission through mutual reinforcement. Figure 1.3 shows
an illustration of the scene where the person is describing the story with re-

dundant speech and arm movements.
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Figure 1.2: An illustration of complementarity between speech and hand move-
ments. In this example, the person is narrating a story. He says “‘she chases him
out” with hand movements that appear to swing an object through the air. The
hand movements show the swinging of a weapon while speech conveys the action of

chasing. This example is borrowed from [1].

Figure 1.3: An illustration of redundancy between speech and arm movements. In
this example, the person says, “he bends it way back, with arm movements that
appear to grip something and pull it back. The arm movements exhibit the same

semantic content as presented in speech. This example is borrowed from [1],
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Conventionally, human-computer interaction is unimodal The WIMP
(windows, icon, menu and pointing device) interfaces allow people to input
through the keyboard, joystick, mouse, etc Information flows m and out
through one modality at a time as a stream of input/output events (i e the
interface maintains its singularity and can only process the input/output event
one by one) This is in contrast to natural human-human communication
where information can be input/output through multiple modalities and pro-
cessed m parallel (i e the interface can process multiple input/output events
through different modalities at the same time)

The growing penetration of mobile devices, like the Apple® iPhone” [2],
Nexus One”™" A [3], iPAQ smartphone [4], etc allows us to go beyond the desk-
top computers Pervasive computing presents new requirements for human-
computer interaction where computers and their screen-sizes are much smaller
There are often constraints due to usage environments (e g speaking m a
noisy office, screen glare, etc ), constraints due to user skills (e g for small
children, difficulties in Chinese input, etc ) > and constraints due to users' phys-
ical abilities (e g language barriers, visually impairments, etc ) Multimodal
interactions are increasingly appreciated, where users can use multiple modal-
ities individually or in concert to overcome the constraints For example, pen
gestures make it easier for conveying spatial information, while speech com-
munication IS preferred in hands-busy, eyes-busy environment

AUntil the first quarter of 2010, Apple sells 42,487,000 iPhones in 11 quarters {information source
http //moconews net/article/419-apple-seUs-record-8 74-million-iphones-during-hohdays/)

AUntil mid-March 2010, Google sells 135,000 Nexus One””™ (information source  Flurry
statistics http //blog flurry com/bid/31410/Ddy-74-Sa]es-Apple-iPhone-vs-Goog]e-Nexus-One-vs-
Motorola-Droid)
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1.1 Challenges

Multimodal user interface offers expressive power to users, but we need tech-
nologies to decode the user's intention. This presents the research problem of
automatic semantic interpretation of multimodal user inputs. In other words,
we wish to ask the question: How we can recognize, integrate and interpret

input from several modalities and generate a single semantic  interpretation?

1.1.1 Recognition of User Input in Different Modalities

There are many different combinations of modalities. For example, if we fo-
cus momentarily on speech and gestures, we can have speech and pointing
gestures [5], speech and lip movements [6] [7], speech and pen gestures [8] [9],
speech and mouse clicks [10] [11], speech, pen gestures, facial expressions [12] [13
etc. Generally, multimodal systems include a recognizer for each modality.
The challenge we face in recognition of the user input in each different modal-
ities is the performance, since it varies in different conditions. For example,
the performance of a speech recognizer is affected by the type of microphone,
usage environments, accents, speaking style, the speaker's voice, etc. We can
use a directional microphone with noise cancellation function for applications
in a desktop PC to ensure a better speech input quality. However, in a mo-
bile setting, we have to use the built-in microphone, which usually has poor
guality. The presence of environmental noise (especially non-stationary noise
includes a person talking) also affects the speech recognition performance. Ac-
cents often decrease the performance of a speech recognizer which is trained
on standard pronunciations where speaker adaptation may be required to im-
prove the performance. Speaker independent recognition performs worse than
speaker-dependent recognition. This is because different persons may differ
in accents, physical properties of vocal tract, spectral characteristics for the

same speech sound, etc.
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Another example is based on pen gesture recognition. The challenges in-
clude segmentation and classification. We can use a range of input devices
including the touch screen, tablet, mouse, etc. to capture of a trace of subse-
guent coordinates as pen inputs. However, how can we segment the coordinates
into one or multiple pen gestures? After segmentation, how can we classify
the pen gesture into which pen gesture type? The pen gesture recognition
performance varies with the writing style, number of writers, number of pen
gesture types, etc. Different persons may draw a symbol or write a charac-
ter in different ways - e.g. an open-mouth circle versus the character "U", a
point versus a short stroke, etc. that make the pen gesture become difficult
to be recognized. Similar to speech recognition, writer-dependent pen gesture

recognition performance is often better than writer-independent recognition.

1.1.2 Message Fission

People deliver their message through different modalities in various ways. They
may divide up their message across modalities in a complementary or redun-
dant manner. A person may prefer to use speech to present his intention and
to use pen to indicate the visible objects of interest. Moreover, the temporal
patterns across the modalities may be different, e.g., simultaneous and se-
guential temporal patterns. Alternatively, a person may speak out the entire
request (inciuding both his intention and related objects) and use pen gestures
to indicate the visible objects of interest on the system interface again. For
example, a person may say, "What are the opening hours of this place?" to
present his intention (i.e. to ask for the opening hours of a location) and then
use the pen to circle a restaurant on the map on screen. This will exhibit a se-
guential temporal pattern. Alternatively, the person may indicate the location
of interest in both the speech and pen modalities, e.g., "What are the opening

hours of the Glory Restaurant?" and encircling the icon of the Glory Restau-
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rant at the same time. This will exhibit a simultaneous temporal pattern. It

will be a challenge to learn how people divide up their messages.

1.1.3 Cross-modality Integration

Another challenge in the design of multimodal systems involves learning how
to integrate information from different modalities so as to obtain the user's
original intention (i.e. cross-modality integration). Since people divide up
their messages differently, a multimodal system should be able to take advan-
tage of the complementary inputs and see how the information from different
modalities can compensate for each other. On the other hand, a multimodal
system should also be able to take advantage of redundant inputs such that
the information from different modalities can reinforce with each other to en-
sure correct integration. However, information from different recognizers may
contain errors. Therefore, a multimodal system must be robust to recognition

errors.

1.1.4 High-dimensionality

Multimodal system offers expressive power to people to make an input into
the computer. The high dimensionality of input features (e.g., the lexicon size
in the speech recognizer and number of pen gesture types supported in the pen
gesture recognizer) and freedom in input styles (e.g., the ways that people di-
vide up their messages across modalities) may affect the performance (in both
efficiency and accuracy) of integration and interpretation. Large amounts of
training data are needed to cover all possible variations. An efficient dimen-
sional reduction method will be needed to enhance efficient computation and

reduce data requirements.
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1.2 Thesis Goals

We address the research problems mentioned above, in the context of multi-
modal inputs with speech and pen gestures. These two modalities are gaining
ubiquity in our daily lives, e.g. hand-held devices with global positioning sys-
tems (GPS), use of Google Maps [14], and use of speech and pen gestures
to control a mobile device and indicate spatial information. Moreover, co-
ordinated use of both speech and pen gestures enhances expressive power,
especially in the communication of complex semantics in succinct form [15 .

Consider the unimodal spoken inquiry:

What IS the name of the street that is five blocks south of the Yonghegong

and hes to the east of the China National Museum of Fine Arts?
may be paraphrased multimodally with substantial simplication, to become:
What street is this?] draw a stroke on the map>

Since speech and pen gestures are less temporally coupled, we apply semantic-
level integration to process multimodal speech and pen inputs. The semantics
of a multimodal input may be imprecise (e.g. a pen stroke on a map may
denote a street or demarcation), incomplete (e.g. use of anaphora in "how
about the previous one?- - -or erroneous due to mis-recognitions (e.g. speech or
pen gestures recognition errors). These problems motivate us to investigate

the following research problems:

e characterization and extraction of features from each modality - specifi-

cally, we focus on speech and pen gestures;

« recognition of input events from each modality — specifically, spoken loca-

tive references in speech and pen gestures in pen input;

* interpretation of recognition outputs of each input event (i.e. spoken

locative references and pen gestures) as their partial semantics;



CHAPTER 1. INTRODUCTION 38

* integration of the partial semantics across modalities;

* maintaining robustness against imperfectly captured inputs and mis-
recognitions by leveraging the mutual reinforcement and mutual disam-

biguation across modalities [16] [17]; and

« interpretation of the user's intention by integration across multiple modal-

ities.

1.3 Thesis Organization

This thesis begins with some background information about multimodal sys-
tems and a brief mention of related studies in cross-modality semantic in-
terpretation and integration. Chapter 2 introduces the variety of modalities
in multimodal system, relationships across modalities, related study on the
semantic interpretation/integration methods and evaluation methods of mul-
timodal systems. In order to support our investigations, we have designed
and collected a multimodal corpus for navigational inquiries. Our work in the
corpus design and collection is presented in Chapter 3. Chapter 4 describes
our findings in an exploratory data analysis of the collected multimodal cor-
pus, including the characterization, representation and relationships between
modalities. Details related to the partial interpretation of input events from
each modality are also presented in this chapter. The proposed cross-modality
semantic integration framework is introduced in Chapter 5, where we applied
the framework to perfect and erroneous recognition outputs so as to obtain
upper and lower bounds of the semantic integration performance. The per-
fect recognition outputs are referring to the manual transcriptions while the
erroneous recognition outputs are the recognition outputs automatically gen-
erated by speech and pen gesture recognizers. We extended the cross-modality

semantic integration framework with hypothesis rescoring to gain robustness
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against imperfectly captured inputs and recognition errors, and the details will
be presented in Chapter 6. Chapters 7 and 8 address our work in developing
a semantic analysis framework for task goal inference. Finally, this work is

concluded in Chapter 9, and we will also mention some possible future work.



Chapter 2

Related Work

In Chapter 1, we have stated our motivation and goals in recognition of speech
and pen gestures, partial semantic interpretation and cross-modality semantic
integration. This chapter presents related work in multimodal user interfaces
and cross-modality semantic integration. We would like to start by explor-
ing the variety of modalities with an focus on touch/pen-based modality and
visual-based modality. Previous work in relationship across modalities will also
be presented. One of the goals of this thesis is to develop a cross-modality se-
mantic integration framework, so previous work in the multimodal fusion (i.e.
semantic interpretation/integration methods) will also be described. Finally,

we will review some work on the evaluation of multimodal user interface.

2.1 Variety of Modalities

Since the appearance of the "Put-that-there" [5] system, which processed
speech in parallel with manual pointing during object manipulation, much
research effort has been devoted to the development of multimodal user in-
terfaces with various combinations of modalities such as speech and lip move-
ment, speech and eye-gaze, speech and head movement, etc. We focus on two

main categories of multimodal user interfaces: pen/touch-based modalities

40
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and visual-based modalities.

The category of speech with pen/touch-based modalities for interactions
with graphical, image and video data usually involves a pointing device or a fin-
ger/pen on a touch-sensitive screen [18]. This category supports visual-spatial
applications involving map-based interactions [19], sketching applications [20],
character [8] and handwriting [21]. Some example systems include Quick-
Set [17], which runs on a handheld PC for military simulation and medical in-
formatics that enable the user to create and position entities on a map through
speech and pen (including drawn graphics, symbols and pointing) gestures;
RealHunter™ [22] for real-estate information, which helps users to find resi-
dential properties through speech and pen gestures (including highlight, point-
ing and circling, etc.); city navigation systems such as Voyager [23] [24], which
provides navigation assistance and traffic information for Boston; and MATCH
(Multimodal Access To City Help) [25], which provides navigation for restau-
rants, points of interest and subway information for New York and Washington,
DC. Other applications include HCWP (Human-Centric Word Processor) for
voice dictation of radiology reports [26]; WITAS (Wallenberg laboratory for
research on Information Technology and Autonomous Systems) [10] [11] for
communicating with unmanned aerial vehicles [27] using speech and mouse
clicks; MiPad (Multimodal Interactive Personal Assistance Device) [28] for
personal information assistance using speech and pen gestures; Miki [29] for
simultaneous recognition and understanding to solve a mathematical problem
through integration of speech and fingertip movements; COMIC (Conversa-
tional Multimodal Interaction with Computers) [30] [31] for the applications
of architectural design through the use of speech, writing and drawing.

The category of speech with visual-based modalities includes lip reading,
facial expressions, eye-gaze and three-dimensional (3D) gestures. They are

usually perceived by computer vision technologies. Speech and lip reading
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can be applied in automatic audio-visual speech recognition [7] so as to sus-
tain recognition performance especially in noisy ambient conditions. Speech
(prosody) and facial expressions (which is influenced by both an affective state
and speech content) are fused in audio-visual affect recognition [32] for track-
ing of the user's affective states in human-computer interaction. Eye-gaze may
indicate a deictic reference and/or the focus in conversation, tracking of eye-
gaze behavior can check whether a user is engaged in the conversation [33.
Included in 3D gestures are the head, hands, fingers and more generic body
movements. Speech (voice-print), face and fingerprint can be regarded as digi-
tal personal identity. Hui [34] combines these three modalities with a dynamic
weighting scheme using fuzzy logic for speaker verification. Head movements
may directly convey a message, e.g., signifying agreement by nodding, and are
used extensively in face-to-face communication. Head movement recognition
performance can be improved by integrating the predictions that are made
based on the modalities of speech (i.e. lexical and punctuation features) and
head movements (i.e. output of head gesture recognizer) [35]. Hand and body
movements are suitable modalities for virtual-reality applications [36]. In ad-
dition, there are multimodal applications in meeting recordings, such as the
AMI project [37] that uses the modalities of speech, eye-gaze, head and hand
gestures, body movement, facial expressions, etc., allowing users to find infor-
mation they are interested in quick from a recorded meeting [38] in a smart
room. SmartKom [12] [13] is a large-scale multimodal dialogue system that
combines speech, pen gestures and facial expressions in interfaces for mobile
computers, public information kiosks and smart homes. User can interact with

the system through a combination of speech, gestures and facial expressions.
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2.2 Relationships across Modalities

This section discusses the properties that we need to consider for the develop-
ment of multimodal user interface. Development of the multimodal interface
depends on the knowledge on the features of natural human communication
methods, cognitive status of people that affects their choice of modalities, the
natural integration patterns that people use to combine different modalities
and the usability of multimodal interactions that influence the design of a

multimodal user interface.

2.2.1 Speech-Gesture Correlation

During human-human communication, people often use hand movement in
parallel with speech so that speech and hand gestures are complementary with
each other [1]. Concurrent hand movements can be classified into four types:
iconic gestures present images of concrete objects and/or actions including
size, shape, trajectory, direction, etc.; metaphoric gestures present images of
the abstract of ideas as form and/or space; deictic gestures are usually related
to pointing that entails locating entities and actions in space to a reference
point; and beats where the hand moves along with the rhythmical pulsation of
speech, which can be used to sighal something important. However, a gesture
may belong to more than one type.

Chen [39] focused on the iconic and deictic gestures and analyzed the cor-
relation between speech and hand gestures on prosodic and lexical levels for
multimodal input fusion and gesture classification. The study showed that
about 65% of the deictic gestures are synchronized in time with the peaks
of the delta pitch contours of speech, and a deictic gesture is likely to occur
given a peak in the delta peak of speech. It also showed that following the
lexical pattern allows them to predict an upcoming deictic gesture at about

75% confidence. The prosodic and lexical features found in this work can be



CHAPTER 2. RELATED WORK 44

incorporated into the integration and fusion mechanisms of speech and ges-

tures.

2.2.2 Cognitive Status and Form of References

During communication, humans often refer to something using references (or
referring expressions). These references may be ambiguous or incomplete.
People may be able to understand each other if the message receiver knows
the referent's cognitive status so as to identify the intended referent. Previous
research efforts proposing six cognitive statuses that are relevant to the form
of references in Givenness Hierarchy [40] are shown in Table 2.1, together with

their characterizations:

in focus > activated > familiar >* uniquely > referential >
identifiable
English it that that N the N indefinite
this this N
this N
Chinese () m{this) AN
it/ 4/ & W=>{that) {that N)
{he, =N
she, it) {this
N)

Table 2.1: Correlation between linguistic form and status in Givenness Hierarchy
where N stands for noun and O means zero. O N (in the last column) indicates
the use of a noun only and no article is required in Chinese (e.g. dog). The arrows
indicate that the statuses are ordered from most restrictive to least restrictive with

respect to the possible referents they include.

type
identifiable

aN

— N(aN)
0N
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Type identifiable: the message receiver is able to access the representation
of the type of the object described by the reference.

Referential: the message deliverer (i.e. source) intends to refer to a particu-
lar object(s).

Uniquely identifiable: the message receiver can identify the deliverer's in-
tended referent on the basis of the nominal alone.

Familiar: the message receiver is able to uniquely identify the intended ref-
erent because he has a representation of it in memory.

Activated: the referent is represented in current short-term memory.

In focus: the referent is not only in short-term memory but also at the current
center of attention.

Kehler [41] applied the first four statuses of Giveness Hierarchy (i.e. in
focus, activated, familiar and uniquely identifiable) to multimodal human-
computer interaction of travel guide application. Subjects were asked to plan
activities and plan places to stay, see, and dine using speech and pen gestures
for a hypothetical trip to Toronto. This work found that a simple decision list

procedure can be used for reference resolution as shown below:
» |If an object is gestured to, choose that object.

» Otherwise, if the currently selected object meets all semantic type con-

straints imposed by the referring expressions, choose that object.

* Otherwise, if there is a visible object that is semantically compatible,

then choose that object.

» Otherwise, a full noun phrase was used that uniquely identified the ref-

erent.

He found that subjects inferred their thoughts only from the information on
the visual display, which marked only the cognitive statuses of in focus (i.e.

selected) and activated (i.e. unselected but visible). Subjects only distinguish
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between unselected referents by either a multimodal expression (i.e. referen-
tial expression together with a disambiguating gesture) or a full and uniquely-
identifiable definite unimodal (i.e. speech-only) expression. It also found that
speech-only human-computer communication will result in less efficient refer-

ence than multimodal communication.

2.2.3 Integration and Synchronization of Input Modalities

Besides the relationship between cognitive status and references, multimodal
interactions were examined in [17] and [42] on the basis of user preference,
task action, linguistic content and integration patterns.

Analysis shows that subjects have a strong preference to interact multi-
modally with map-based systems. All of them used at least once multimodal
input of speech and pen gestures during a task. Subjects tend to use mul-
timodal interactions so as to reduce their cognitive load when tackling tasks
with increasing difficulty and communicative complexity.

Subjects tend to use multimodal inputs for spatial location commands (in-
cluding adding object(s), moving object to a new location, modifying specific
routes or spatial areas and calculating distance between two locations) > which
requires spatial location information (86% of the multimodal inputs as men-
tioned in [17]).

The majority (98%) of the multimodal construction conformed to the typ-
ical subject-verb-object order of English. It shows that the main difference
between multimodal and unimodal (i.e. speech only) input is the position of
the locative descriptor, where the locative descriptor always at the beginning
of a multimodal input but at the end of a unimodal input.

The majority (86%) of the multimodal constructions show a "draw and
speak" pattern. It shows that the pen always precedes speech in both simul-

taneous and sequential inputs. Moreover, the maximum lag between speech
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and a pen gesture is less than three seconds 97% of the time.

2.2.4 CARE Properties

The CARE properties proposed in [43] are used to characterize and assess
aspects of multimodal human-computer interactions. CARE stands for com-
plementary, assignment, redundancy and equivalence. They are the properties
that influence the design and implementation of multimodal user interface. A

description of each property is as follows.

(1) Complementary  use of two modalities can generate a complete inquiry
with the necessary information. For example,
S;ft “EfEM T B EIUERE" EHEA
P: * (a point) O (acircle)
Translation: How much time will it take from *“this location” to "these
four umversihes” ?
We only know that the user wants to go from one location to four uni-
versities from the spoken inquiry. We also get the name of five locations
from pen gestures. Therefore, we need to integrate information from both

modalities to be one.

(2) Redundancy can ensure correct semantic interpretation of the locations as
in the example:
Sife AR B CLET B
P: . .
What IS that shortest route from the “Renmm  University of China” to
"Beipng University of Posts and  Telecommunications’, ?
Since locations obtain from both modalities should be the same in this

case, we can ensure that the locations interpreted are correct.

(3) Assignment property is applied on the communication goals. In this work,
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speech is the dominant modality because speech indicates the status of the
interaction (i.e. task goal and dialogue act for understanding). Therefore,
the speech modality is assigned to present the type of information that

the user is interested in.

(4) The two modalities are equivalent on the expression of location (spatial
information). The user can either speak out the location name or point
on it during interaction. The process of joint interpretation/integration
should also incorporate the processes of mutual reinforcements and mutual
disambiguation across modalities [17] due to their complementarity and

redundancy.

U-CARE properties are a counterpart of the CARE properties where U-
CARE properties are the CARE properties of the user. U-CARE properties
are concerned with the user's choice between different modalities. Usability of
a multimodal user interface can be evaluated by considering its compatibility
with U-CARE properties as mentioned below:

U-complementarity means user provides part of the information in one
modality and the remaining one or more further modalities. The compatible
condition is that system-complementarity and U-complementarity modalities
are the same.

U-redundancy means all modalities available to the user are used. The com-
patible condition is the system-assignment modality is among the U-redundancy
modalities. Moreover, there is at least one common modality between system
equivalent modalities and U-redundancy modalities.

U-assignment means that user requires a particular modality. The compat-
ible condition is that the U-assignment modality be among system-redundancy
modalities.

U-equivalence means that user is prepared to use any one of the modalities.

The compatible condition is that the system-assignment modality be among
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the U-egmvalence modalities of the user Moreover, there is at least one com-
mon modality between system equivalent modalities and U-equivalence modal-

ities

2.3 Semantic Interpretation/Integration Methods

Multimodal integration is the technology that integrates information or se-
mantics from two or more human communication modalities The integration
gives rise to an mterpretable output with holistic semantics There are mainly
two approaches on the integration of multiple modalities feature-level integra-
tion and semantic-level integration Information processing of a multimodal
input starts with within-modalily = processing (i e recognize the input event
from each modality and interpret the recognition output so as to generate par-
tial semantic interpretation for each modality) Then, we can perform cross-
modality processing (i e integrate jointly the partial semantics from different
modalities) to generate a holistic interpretation This is referred as semantic-
level integration (see Figure 2 1) Alternatively, we can adopt feature-level
integration, where recognition outputs across modalities are first integrated
and then interpreted Feature-level integration is often applied early so as
to combine highly dependent and synchronized input modalities, e g, speech
and lip movements while semantic-level integration is performed at the word
or phrase level of a multimodal expression

Feature-level is appropriate for highly dependent and closely temporally
synchronized input modalities, eg speech and lip movements The features
from one modality influences the recognition of features in the other The
two modalities are usually combined using histogram techniques, multivariate
Gaussians, artificial neural networks or hidden Markov models [44] Significant
improvement in robust speech recognition performance using both speech and

visual information (lip movement) was showed in [6] The problem of bimodal
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Features of Recognition Partial
Modality A Output(s)A .| Semantics Holistic
R Interpretatlonﬂ N Semantics!

- - F ~ Concepts
Features of Recognized Partial "
Modality B Output (3) 1 Semantics

A Interpretation

Features of Recognition Holistic
Modality A Output(s) Integrated Semantics/
Features of Recognition OUtPUt(SQ Interpretation Concegts

Modality B Output(s)

Figure 2.1: Semantic-level integration (top) vs. feature-level integration (bottom).

(speech and pen gestures) character auto-completion (CAC) has also involved
feature fusion. Significant improvement can be obtained by combining hand-
writing CAC and speech recognition candidates in the posterior sense [8.

Semantic-level integration is more suitable for modalities that are less cou-
pled temporally and is performed at the word or phrase level of a multimodal
expression. It is used to integrate partial semantic information (hypotheses)
from each modality together with some contextual information to be a rea-
sonable interpretation of the user's multimodal input. However, it can be
decomposed into two sub-problems: representing partial semantic information
from each modality and integrating pieces of partial semantics with other con-
textual information into a holistic interpretation of the user's intention. The
"Put-that-there" system [5] and QuickSet [9] are two examples of a semantic-
level integration system.

Previous approaches toward cross-modality semantic integration / interpre-
tation of multimodal input include frame-based heuristic integration, unifica-
tion parsing, hybrid symbolic-statistical approach, weighted finite-state trans-

ducers, probabilistic graph matching and the salience-driven approach. We
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will describe them in greater detail below.

Frame-based heuristic integration [45] [23] uses an attribute-value data
structure to represent partial semantics from each input modality and each
type of contextual information. The data structures are then merged accord-
ing to top-level control heuristics and pattern matching techniques that incor-
porate temporal difference and contextual information. Research work in [45
devised the "melting pot" representation that encapsulates types of structural
parts of a multimodal event with athree-step procedure handling simultaneous
input by microtemporal fusion, sequential input by macrotemporal fusion and
context-based fusion by contextual fusion. Wang [23] developed a multimodal
context-resolution module for resolving anaphoric and deictic references based
on syntax and semantics in spoken language. However, Wang does not claim
to support events with multiple gesture-based selections.

Unification parsing was proposed in [46] [47]. This approach represents
TV-best speech/pen recognition hypotheses as typed feature structures. Tem-
porally compatible multimodal combinations are combined semantically by
multi-dimensional chart parsing using a declarative unification-based gram-
mar. The complex grammar rules are written by hand and encapsulate seman-
tics from both modalities, as well as a set of spatial and temporal constraints
for multimodal integration. Authoring rules require a high level of expertise.

The hybrid symbolic-statistical approach was proposed in [48] for Quick-
Set. This approach aims to statistically refine unification-based parsing with
probabilities and confidence scoring of the features structures in order to ac-
count for co-relations between modalities. This approach filters for seman-
tically plausible associations across modalities, followed by weighted inter-
polation of the probabilities from the individual feature structure. Weights
are trained by the Members-Teams-Committees (MTC) technique [49]. Since

multiple sets of trained weighting parameters (i.e. parameters at each level of
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the MTC hierarchy) are used in the MTC technique, much training data is
needed. SmartKom [12] also applies a unification approach on the recognition
hypotheses graphs for each modality with adaptive confidence scoring [13 .

Weighted finite-state transducers (FSTs) was proposed in [25] [50] for the
MATCH system. This approach encodes syntactic and semantic information
to offer tight coupling across modalities, with FST weights as trained from
data. This approach also requires the development of a multimodal grammar
used with a FST. The grammar has non-terminals that are atomic symbols and
terminals are three-tuples consisting of spoken words, gestures and their com-
bined meaning. The grammar contains many rules and is relatively complex.
Again, authoring such a grammar requires specialized skills. Furthermore,
the work in [50] indicated that the approach has difficulty in handling gen-
eral plural expressions, which may be integrated with a multitude of possible
sequences of gestures.

Probabilistic graph matching was proposed in [51] [22]. This approach
incorporates semantic, temporal and contextual constraints to combine infor-
mation from multiple input modalities, where the information is represented
as attribute relational graphs (ARGs). Each graph node encodes seman-
tic/temporal information and each edge encodes semantics/temporal relations.
Integration includes maximizing the node match probabilities between ARG
from speech and the ARG from pen input. The work in [22] indicated that
a higher number of referring expressions may cause the approach to become

intractable because the graphs increase in size.

The salience-driven approach was proposed in [52]. This is an n-gram lan-

guage model that incorporates a salience distribution based on the pen ges-

tures to constrain the bigram probability for understanding spoken language.

Trained weights are used in a probabilistic context-free grammar (PCFG),

which is applied in language modeling. The large number of weights to be
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trained demands much training data.

2.4 Evaluation Methods

There are many components in a multimodal system. Hence, evaluation of
a multimodal user interface may be carried out at the component-level or

system-level.

2.4.1 Component-level Evaluation

Evaluation of the system components can re-use the evaluation methods used
in various sub-fields. We can evaluate the system components based on recog-
nition accuracy or error rate, for example, evaluation of speech recognition [53],
evaluation of pen gesture recognition and evaluation of handwriting recogni-
tion. We can also evaluate a component based on user perception, for example,

of talking head [54] and text-to-speech synthesizer.

2.4.2 System-level Evaluation

As mentioned in Section 2.3, there are mainly two approaches in the integration
of multimodal inputs: feature-level integration and semantic-level integration.
System-level evaluation can be further divided into two categories according
to the integration approach.

Evaluation of multimodal user interface with feature-level integration is
similar to the evaluation of system components. Evaluation criteria includ-
ing recognition accuracy, error rate, false rejection rate and user perception,
etc. can be used. For example, the audio-visual automatic speech recogni-
tion system developed in [7], which combines speech and lip movement for
robust speech recognition, uses word error rate as the performance evaluation

criterion.
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An appropriate evaluation metric has to be defined for the evaluation of

multimodal user interface with semantic-level integration according to the na-

ture of the system and availability of a test set. Some possible metrics include

task completion time, task success rate, number of turns, naturalness, user sat-

isfaction, cost, etc. These evaluation metrics can be obtained through different

evaluation approaches, including user-based, theory-based and expert-based

evaluations [55.

User-based Evaluation Benchmark evaluation, simulation studies
and user studies are examples of user-based evaluation. Benchmark eval-
uation requires the collection of a test set for performance evaluation.
It is suitable to test the overall performance of a system based on a
set of multimodal inputs. Work in [56] used the benchmark evaluation
method for performance evaluation. Simulation studies can simulate a
multimodal system before implementation of a working system. The
Wizard-of-Oz technique has been widely used for simulation study [17 .
User study requires a multimodal system prototype for evaluation, but
the user inputs collected during user study can build up a multimodal
database for benchmark evaluation afterwards. For example, MiPad [57
performed a user study and used task-completion time and user satisfac-
tion as evaluation criteria to study whether their Tap and Talk interface

can add value to the PDA user interface.

Theory-based Evaluation The predictive model is an example of
theory-based evaluation. It predicts user behavior or performance vari-
ables based on pre-defined assumptions and model parameters. It allows
evaluation of the multimodal system at the design stage so as to improve

the design before implementation.

Expert-based Evaluation This type of evaluation requires a human

expert to evaluate whether the system matches with the pre-defined de-
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sign criteria or established design heuristics in a structured way using a

prototype system.

2.5 Chapter Summary

This chapter presents the previous work that are related to the cross-modality
semantic integration framework. The framework is motivated by the increasing
need of multimodal user interfaces where users can use multimodal modalities
individually or in combination to overcome the constraints due to usage en-
vironment, users and user's skills. We also explore the variety of modalities
with a focus on the two main categories: pen/touch-based modalities and
visual-based modalities. Since multimodal interfaces consist of two or more
modalities, we need to consider their properties and correlation for the devel-
opment of multimodal user interface. Therefore, relationships across modal-
ities, including features of natural human communication methods, cognitive
status of people that their choice of modalities and the natural integration pat-
terns that people use to combine different modalities and the characterizations
of multimodal human-computer interactions (i.e. the CARE properties) are
discussed in this chapter. One of the goals of this thesis is to develop a cross-
modality semantic integration framework, so previous work in the semantic
interpretation/integration methods are described. The proposed framework
contains many components so details of the component-level and system-level

evaluations are also discussed in this chapter.



Chapter 3

Multimodal Corpus

This chapter describes our work in the design and collection of a multimodal
corpus of navigational inquiries. The multimodal corpus is a collection of
bi-modal user inputs that has been organized, transcribed and annotated to
support our investigation. The design principles, data collection procedure,

corpus statistics and annotation methods will be presented in this chapter.

3.1 Information Domain

The current investigation is cast in the information domain of navigation
around Beijing. Inquiries involving locative information often induce mul-
timodal user input. We downloaded thirty two maps from the Internet, cov-
ering seven districts in Beijing. Figure 3.1 shows the coverage of the maps
downloaded. Figure 3.2 shows an example of the map. We identified about
4,652 locations associated with icons and labels on the thirty two maps. For
each icon, we annotated their positional coordinates, corresponding to the
four corners of the icon. We also categorized the icons according to "loca-
tion types" and "sub-types". There are seven location types in all, including
TRANSPORTATION (e.g. a bus stop), LAND AND WATER (e.g. a river) » PO-

Ahttp://one.5i.net.cn/html/bjmap/bjmap/bjmap.htm

56
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LITICAL FEATURES (e.g. a district office), LEISURE FACILITIES (e.g. a park),
PUBLIC FACILITIES AND SERVICES (e.g. a hospital), SCHOOLS AND LIBRARIES
(e.g. a university) and MAJOR BUILDINGS (e.g. a shopping center). Each lo-
cation type is further organized into two to twelve "subtypes". For example,
the location type TRANSPORTATION contains the subtypes road, street, tram
statwn - railway station, railroads, bus stop, bridge, intersection, highways, el-
evated highway - elevated road and road under construction; while SCHOOLS
AND LIBRARIES consists of umversities, institutes and libraries. The complete
list of location types and subtypes are shown in Table 3.1. For a given loca-
tion type and subtype, there can be multiple instances of domain-specific data
entries. For example, the location type of TRANSPORTATION and subtype of

street will include all the street names on the map.

location type (LOC_TYPE) subtypes

TRANPORTATION train station - railway station, railroads, bus
stop, bridge, intersection, highways, elevated
highway, road under construction, elevated

road, street and road

LAND AND WATER occupied land, unoccupied land, lake, river

and catch-water
POLITICAL FEATURES capital city and district office

LEISURE FACILITIES scemc shop, scenic spot, hotel, stadium, mu-
seum, theater, exhibition center, recreational

area, green area and parks
PUBLIC FACILITIES AND SERVICES news agency, hospital, temple and heritage
SCHOOLS AND PUBLIC LIBRARIES university, institute and library

MAJOR BUILDINGS shopping center, hotel and building

Table 3.1: A complete listing of location types and their corresponding subtypes.
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Figure 3.1: The map of the Beijing City. The coverage of the maps we downloaded
from the Internet is highlighted in blue. They are Haidian District, Xicheng Dis-

trict, Dongcheng District, Chaoyang District, Fentai District, Xuanwu District and

Chongwen District.
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Figure 32: A map downloaded from the Internet. The numbers highlight some
examples of location icons for the LOC_TYPE of TRANSPORTATION including sub-
types of (1) railroad, (2) tram station, (3) elevated highway, (4) railway station, (5)
intersection, (6) bridge and (7) highway\ location icons for LOC-TYPE of LEISURE
FACILITIES, including subtypes of (8) exhibition center, (9) green area and (10) mu-

seurrr, and location icon of PUBLIC FACILITIES AND SERVICES, including (11) temple
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We also conducted a quick survey involving ten people regarding typical
inquiries from users who are trying to navigate around Beijing. The survey
can be found in Appendix A. These inquiries generally target nine information

goals, including:

% BUS INFORMATION

CHOICE OF VEHICLE

« MAP COMMANDS

« OPENING HOURS

* RAILWAY INFORMATION
« ROUTE FINDING

« TIME CONSTRAINT

« TRANSPORTATION COSTS
+ TRAVEL TIME

Based on these information goals, we designed specific tasks (32 tasks covering
7 location types) such that each induces a subject to compose multimodal
inquiries. The tasks cover various numbers of locations (which increases from
zero to six locations) and different combination of location types (multiple
locations in the same location types or multiple locations in different location
types). Table 3.2 shows an example task and a multimodal input composed

by a subject during data collection.

3.2 Data Collection Procedures

We invited 23 Mandarin-speaking subjects to participate in data collection.

In an initial briefing session, each subject is provided with the background
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Information goal: TRAVEL TIME

Task: &R ZFRFTERINL E > BRI 2 S5 NUFr RE R LRI -
Specify your current location. Find the time it takes to travel to four universities of

your choice.
Multimodal input (¢ denotes a point and —denotes a stroke)

SHAE “JLES” -

P .
sfE “EET HREIEFE] EERET “EERET EERET "EERET EHAY
P: 0 0 H

I'm at “BUPT”. From “here”, | want to visit “this university”, "this university",

“thw university™ and “this university” in order. How long will it take?

Table 3.2: An illustrative example for multimodal data collection with speech (5)

and pen gestures (P). Translations are italicized.
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information of the current work and the tasks he/she is requested to perform.
Each subject is presented with an instruction sheet listing the set of 32 tasks
(as shown in Appendix B). For each task, the subject is asked to formulate
a multimodal input that may involve up to n locations.5 The subject may
refer to locations by speech (i.e. spoken locative references) and/or by pen
gestures. Both speech and pen inputs are recorded directly by a Pocket PC.
In some of the tasks, the Pocket PC provides a specific piece of contextual
information, i.e. the current location indicated with a red cross on the map.
This is illustrated by icon (1) in Figure 3.3. The subjects are also informed of

several possible options:

. that a spoken locative reference may be deictic® (e.g.i2#  here/iElY
}E‘ﬁ‘j(% these four unwersihesy, eIIiptic7 (eg?ﬂﬁ{é}%%%ﬁ\ how
long does it take to walk to this park) Or anaphoric® (e.qg.{¢FHNIATE
iﬂz%ljfﬁ #%%7\ how long does it take to go from my current location
to Wangfujing) where the subject's current location can be found from

contextual information;

» that a pen gesture may be a point, a circle or a stroke (with a pen-down

gesture followed by a pen-up gesture).

During the briefing session, we showed the subjects a few examples of dif-
ferent types of spoken reference and sample usage of different pen gesture

~n is constrained to a maximum value of 6.
"deictic phrase" is a "a key phrase specifying identity or special or temporal location
from the perspective of a speaker or hearer in the context in which the communication  OCOMS'

-WordNet® [58]
AAn “elliptic phrase" means “there is a omission of a word or phrase that is necessary for a

complete syntactical construction  but not necessary for understanding"- WordNet® [581
AAnaphoric refers to “the use of a pronoun or similar word instead of repeating a word used
earher" - WordNet® [581 where the interpretation of an anaphora can be from the same input,

contextual information or dialog history.
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types. This is based on the examples listed in Table 3.3.9 Then, we sent
the instruction to the subjects and asked them to write down the multimodal
inquiries they decided. They are also allowed to revise and re-compose their
multimodal inquiries during the recording session, in order to clearly express
the intended task semantics and constraints. However, they are not allowed
to have discussion among themselves. This is used to avoid the subjects from
copying the multimodal inquiries decided by another. Subjects are asked to
indicate (based on their original intentions) the correspondences between the
spoken locative references (e.g. here, the nearest station, etc.) and pen ges-
tures after the recording session by marking on the instructions they provided
-it is used as the reference for our annotation on cross-modality pairings. An

example of the instruction provided by a subject is shown in Appendix C.

3.3 Data Collection Setup

The recording session is carried out individually for each of the 23 subjects
in an open office (which has normal level of background noise). The data
collection setup involves a Pocket PC with a system interface (Figure 3.3).
Speech input is recorded by the built-in microphone of the Pocket PC. Pen
gestures are input with a stylus. The Pocket PC interface includes several soft
buttons: The START button should be pressed to launch the automatic system
logging procedure that records the speech signal, the pen gestures and the
timing information between the two modalities. The interface also contains a
STOP button (which will only be visible after clicking the START button). It is
only used to stop the logging procedure and save all the system log and audio
file. Table 3.4 shows the logged data corresponding to the example given in

AThe map used in Table 33 is borrowed from the website of DiscoverHongKong Dis-
coverHongKong - Touring Around - Hong Kong Walks - Yau Ma Tei and Mong Kok
http //www discoverhongkong com/eng/tourmg/hkwalks/ta_walk_Imap02 pdf
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Gestures

Select a location

(1) Point

(e.g. point on the Temple St. Night Market)
(2) Circle

(e.g. circle the Tin Hau Temple)

(3) Stroke

(e.g. highlight the label of the Jade Market)
Select multiple locations

(1) Point

(e.g. point on four MTR exits)

(2) Circle

(e.g. circle seven MTR exits)

(3) Stroke

(e.g. highlight two MTR exits)

Indicate a route

(1) Point (e.g. sequentially point at the icons of three

locations, i.e. la, Ib and Ic)

(2) Circle (e.g. circle the labels of three
locations, i.e. 2a, 2b and 2b, sequentially)
(3) Stroke (e.g. use a multi-stroke to link

up the three locations)

[llustrations

H k& #

Pnr?

YaiMiTe
I Rie Sn

T %
o

1

64

w

0,

=

JOp™hieiph
A lakes A

1

Table 3.3: Examples given to subjects as illustrations of the use of different pen

gestures.
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Table 3.2. Pressing the NEXT button displays the map of the next task.

Start button

Next button

Figure 3.3: Data collection interface of the Pocket PC, augmented with soft but-
tons for logging functions (START/STOP) and loading the NEXT map. The numbers
highlight some examples of location icons: (1) subject's current location (i.e. the

red cross); (2) a university; (3) a road and (4) a hospital.

3.4 Corpus Statistics

We have collected 1,518 inputs from 23 subjects in all. Among these, 1,442 are
multimodal and 76 are speech-only inquiries. All speech and pen data have
been manually transcribed. The transcription was done by one transcriber.
The process of transcription begins by transcribing of speech part of an input
(i.e. listen to the audio file recorded). Then, the transcriber marks all the

pen gestures and labels the multimodal pairings by looking at the multimodal
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Log for speech with stat and end times and the audio filename)

start: 46019 end : 46030 \Program Files\DC\AudioFilel0.wav

Log for pen (with each gesture numbered in the order of occurrence, the recog-
nized gesture type, start and time times and x-y coordinates of the pen down and
pen up  actions

0- point start: 46022 end: 46022 from: (152,182) t() : (152,182)

1- stroke start: 46022 end: 46024 from: (152,182) t;a (69,69)

2- stroke start: 46024 end: 46025 from: (69,69) to: (70,24)

3- stroke start: 46025 end: 46026 from: (69,24) to: (95,12)

4- stroke start: 46026 end: 46028 from: (93,12) to: (101,61)

Table 3.4: Example of logged data for multimodal input based on Table 3.2. Ex-

planations are in italics.

input rendered by a home-grown visualizer.”® An example of the manual tran-
scription output is shown in Table 3.5. Utterance lengths range from 2 to
54 Chinese characters, covering a vocabulary of size 521 with domain-specific
named entities and spoken locative references (SLRs). A user input may con-
sist of between zero (i.e. speech only input) to six pen gestures. Pen gestures
may be consisted of the types of point, circle or stroke. Short inputs are typ-
ically map commands (e.g.4E<1l, zoom in). In general, long inputs include
several direct locative references. Both of the longest and shortest inputs are
multimodal inquiries. Details of the multimodal corpus are given in Table 3.6.
We randomly divide the 23 subjects into two disjoint data sets. The training
set consists of 16 subjects and has 1002 inputs (i.e. 70% of the multimodal
inquiries). The test set consists of 7 subjects and has 440 inputs (i.e. 30% of

video of the multimodal input rendered by a home-grown visualizer is shown at

http //www se.cuhk edu hk/~pyhui/visualizer htm
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the multimodal inquiries). The training set of our corpus has 2,425 spoken
locative references and 2,564 instances of pen gestures in total. Figure 3.4
shows the distribution of multimodal inquiries with different numbers of man-
ually transcribed SLRs and pen gestures in the training set. It shows that
around 74.5% (746/1002) of the multimodal inquiries in the training set have
an equal number of SLR and pen gestures. Further analysis will be done on

the one-to-one correspondence between the two modalities.

Reference transcription:
S EHUEAE B ¢ EE B “ErUERDTT w]DUEEE ?
I'm now at ‘here”. How can | go from ‘"here" to ‘'these four places"?

P: 2

%

Manual transcription output:
5T IBEE <E> 7 <s#) 3 <sEMUETT> FLUEREE

P: <POINT> <POINT>1POINT[I <POINT=POINT>

Table 3.5: An example of manual transcription output. All the SLRs and pen

gestures are indicated with <... [0 .

3.5 Manual Annotation of Cross-Modality Pairings

We have also manually annotated the cross-modality pairings between an SLR
and a pen gesture for the multimodal expressions for performance analysis.
These pairings are decided based on human judgment (i.e. our oracle), with
the objective of obtaining a holistic and coherent semantic interpretation for
the bimodal input. The cross-modality pairings annotated are considered as
our oracle transcriptions because the annotator is regarded as the "human”
system that we are targeted to develop. An illustration on the nature of the

annotator is shown in Figure 3.5.
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Number of subjects 23 subjects
Number of inquiries collected 1,518 inquiries
Number of speech-only inquiries 76 inquiries
Number of multimodal inquiries 1,442 inquiries
Number of multimodal inquiries in the training set 1002 inquiries
Number of multimodal inquiries in the test set 440 inquiries
Minimum number of characters in an inquiry 2 characters

e.Q.4E/_] ~ zoom inJiTK  zoom out{¥/E move to the left

Maximum number of characters in an inquiry 54 characters
e.g. WIEFE "L EEBKRE" - & "B - HEWRIE
AEEMIERTRRE” ~ "thEBERE” ~ “dERHRORE”
LR ERIRET o AU A B AR Y

Pm at the "Beijing University of Post and Telecommunica-
tions". From ‘here", | want to go to the “Beihang University",
“China  University of Geosciences", "University of Science and

Technology  Beijing" and "Beifing Medical University" in se-

quence. What are the routes available?

Table 3.6: Details of the multimodal corpus collected.
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Number of SLR(s) in a multimodal inquiry

Figure 3.4: The distribution of multimodal inquiries with different numbers of non-
spurious SLRs and pen gestures (i.e. manual transcriptions) in the training set. The
number inside a bubble is the number of multimodal inquires with that particular

number of SLRs and pen gestures.
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System
(Cross-modality
Integration Framework)

Figure 3.5: An illustration on the nature of the annotator.
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We have made the following assumptions during the manual annotation

The speech and pen inputs are in temporal order This is true as all of

the subjects are cooperative subjects

Each of the point and stroke is labeled with the location name of its

nearest icon in distance

A circle can be interpreted as multiple locations, i e all the icons and

labels that "overlap"” with the area of the circle

Each of the SLRs are labeled with the location(s) given m the task (i e
in the instruction) whenever available Otherwise, it is labeled with the

location(s) with the same location type and subtype

It IS possible to align a single SLR with zero, one or multiple pen gestures

and vice versa

Manual annotation follows the steps below

Ignore disfluencies in the speech modality (e g filled pauses and repairs)
and spurious gestures in pen modality (e g due to jittery hands) In this
example with a speech repair, i et iE @ P E#H A EEHE
#wE[l E# | want to go from here to here No  Should be from here to
nere, we will only consider the utterance after "no" (ie two “iE#E” here

instead of four)
Record available contextual information (i e the current location)

If the SLR refers to starting location (eg {& XX from xx* F XX from
XXH XX BE$E begm with xx, etc) , the annotator will first look for
contextual information of "current location” Otherwise, it is labeled as

the current location mentioned in the same inquiry
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» Compare the location(s) referred by a SLR as given in the task with each

of the unpaired pen gesture.

e Pair up the SLR and unpaired pen gesture if the locations referred by
them match. Continue to compare the locations referred by both modal-

ities until the number of locations referred by the SLR is satisfied.

» Leave the unpaired pen gesture alone and continue with the next one if

none of the locations referred by both modalities match.

The fulfillment of the number of locations referred is necessary for correct
alignment since a SLR can correspond with multiple pen gestures (and vice
versa). Figure 3.6 is an illustration of the manual annotation process.

Comparison between the annotation obtained with the subject's initial in-
tention (i.e. the pairing indicated by the subject during data collection) shows
that there can be multiple possible multimodal pairings of the same inquiry
that convey the same meaning. A possible extension on this work can be on
the analysis of mismatch between subject's multimodal pairings (i.e. subject's

initial intention) and annotator's multimodal pairings.

3.6 Chapter Summary

In this chapter, we present the process of design and collection of a multimodal
corpus with speech and pen gestures. The corpus is a collection of 1,518
multimodal navigational inquiries around the Beijing area. The speech and pen
data of the corpus is manually transcribed. We have also manually annotated
the domain-specific named entities and SLRs in the transcribed speech and
manually annotated the cross-modality pairings between an SLR from speech
and a pen gesture. An SLR may map to zero, one or multiple pen gesture(s)
and vice versa. With the multimodal corpus, we can analyze the characteristics

of each modality, their relationship and how should they be integrated.
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iLocation given:
7 B 5 S AR L
China Architectural
iCultural Center

V

s HEEEPFLFHER _FE—-—ELAEHES EKME
I'm at this center. How much time will it takefrom here to this park

P. o » o) .
Possible interpretations: Possible interpretation:
o i 8 5 S AL o S B

China Architectural Cultural Cente Purple Bamboo Park
= HJApgSanlihe Road

Multimodal Pairings:  (1,1) (2°) (3,2)

Figure 3.6: An illustration of the process of manual annotation of cross-modality
pairings. The input contains three SLRs which correspond to two locations on the
map, together with two circling pen gestures. The locations in the boxes are the
possible interpretations of an input event. The boxes with the same border are paired
up and the underlined locations are the matched locations between the paired, cross-
modal events. The indices of SLRs and pen gestures begin at zero. (1,1) means that
the first SLR is aligned with the first pen gestures. In this example, the second SLR

"liere” does not align with any pen gesture so its pairing is labeled as (2,).



Chapter 4

Unimodal and Cross-modal

Characterizations

This section describes our findings in an exploratory data analysis of the col-
lected multimodal corpus. Unimodal characterization is referring to character-
izing speech and pen gestures and cross-modal characterization is referring to
the cross-modality associations between speech and pen gestures. Our aim is
to understand how individual modalities encode partial semantics that should
later be conjoined to decode the holistic meaning of the user's multimodal
input. Results from the analysis are used to devise unimodal interpretation
strategies for individual modalities. We have also analyzed the associations
between the two modalities, which include the correspondence between modal-
ities and their temporal relationships. According to the characteristics of spo-
ken locative references (SLRs), pen gestures and their temporal relationships,
we can design the format of a multimodal term, which is used to represent the
cross-modality integration patterns adopted by the user.

Table 4.1 shows the overview statistics of the multimodal corpus collected.

74
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Number of unimodal inquiries (speech only): 76

Number of inquiries with spoken locative references 9

e.0 WEEEM “BRE" (11.8%)
| wish to look at the whole "Haidian District"

Number of inquiries without spoken locative references 67

e.q. AL A H (88.2%)

| wish to take the bus.

Number of multimodal inquiries: 1442

Number of inquiries with spoken locative references 1402
e.9.f& “EESUEFL” <point>F] “E{E/NE" [ poid % A ? (97.2%)

How long does it take to travel from  "this center" <point> to  ‘this

park" <point) ?

Number of inquiries without spoken locative references 40
e.g. <stroke>fHR/EREE ? (2.8%)
(stroke) What is the fastest route?

Table 4.1: Overview statistics of the Multimodal Corpus. Translations are italicized.
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4.1 Characterization of Spoken Inputs

The collected data offers over 3,421 (count by token) and 177 (count by type)
occurrences of spoken locative references (SLRs) for analysis, from which we

can characterize the SLRs in two different ways:
* by the referent of SLRs
¢ by the numeric feature of SLRs

We can derive the following characterizations by considering the referent

of SLRs :

(1) Direct references These involve the use of the full name of a location
(e.g. LEZE BT K2 for Beijing University of Post and Telecommumca-
twns), its abbreviated name (e.g.dL#or BUPT),  or acontextual phrase
(e.g. HFIHYFTAEHY » my current  location).  Recall that the subject's "cur-
rent location” is indicated by a red cross on the map. There are 1,529
occurrences of direct references involving 76 unique tokens/phrases in our

corpus.

(2) Indirect references The user may also refer to a location through deixis
or anaphora, e.g.i2# here, IMIE L) that centeris={Eit: these

three shopping  centers, etc. Hence, indirect references may contain nu-

meric features (as indicated with a numeric expression, e.g. .  three,#
few, it some, etc.) and/or location type features (e.g.[E park,
B university). Both attributes may also be left unspecified in the SLR

(e.g.#75 placestE 5 location). The location type feature may also be
ambiguous (e.g.l5 station/stop). There are 1,892 occurrences of indirect

references involving 101 unique SLR expressions in our corpus.

In comparison with previous work, the SLRs corresponds to the Givenness

Hierarchy with four cognition statuses as mentioned in [41] (see Section 2.2.2),
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where the direct references are the uniquely identifiable referents and the indi-
rect references are the activated or familiar referents. Their distributions are

shown in Figure 4.1

indirect
reference
73%

Figure 4.1: Distribution of SLRs according to the types of referent in the training

set.

We can derive the following characterizations by considering their  numeric

features:

(1) Singular references A singular reference can be a direct reference with
a full name or an abbreviated name. It may also be a singular indi-
rect reference (e.g.i={@/NE this park) which may optionally include

information about the location type (i.e. a park in the given example).

(2) Aggregated references An aggregated reference is an indirect reference
with a specific numeric value (which is greater than one) and an optional

location type feature (e.g.iZ VUfEHL these four locations).

(3) Plural references A plural reference is an indirect reference with the

numeric feature set to plural (i.e. NUM=plural), as well as an optional
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location type feature (e.g.i8 25 K2  these universities).

(4) Unspecified references An unspecified reference is an indirect reference

with unspecified numeric and location type features (e.g.iZ2#  here).

Their distributions are shown in Figure 4.2.

plural
references
2.6%

aggreg rated
references
2.1%

Figure 4.2: Distribution of the types of SLRs according to their numeric features in

the training set.

4.2 Procedure for Interpreting Spoken Locative Refer-

ences

Based on the above observations, we devise a three-step strategy for interpret-
ing transcribed spoken inputs. These can be applied on manual as well as

automatic transcriptions of speech.

Step 1. Chinese word tokenization The Chinese language does not have
an explicit word delimiter. We perform word tokenization using a greedy

algorithm with a home-grown Chinese lexicon with 43,000 entries, cov-
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ering nouns, verbs, phrases and SLR expressions. Should speech recog-
nition transcripts be used, the SLR should already be tokenized based
on the recognizer's vocabulary, but may be re-tokenized by the current

procedure.

Step 2. SLR Extraction We extract the SLR expressions by referring to
our lexicon, which includes 177 unique SLR expressions. The extraction
algorithm also parse the numeric expression and location type expression
from the parsed SLR expression. The parsed numeric expression and
location type expression are used to fill in the numeric feature attribute

and location type feature attribute of the SLR respectively.

Step 3. Hypotheses generation This step generates a hypothesized st of
locations ~ corresponding to a given SLR. A single location is typically
generated for direct references, based on the name of the location or
the current location from context. The list of hypothesized locations
generated for an indirect reference typically includes all icons present
on the map. This list may be narrowed down according to a matching
location type, if the feature is specified. Furthermore, if the numeric
feature is specified, it is stored along with the generated hypothesis list.

Rank ordering of the hypothesized locations is not considered for SLRs.

4.3 Characterization of Pen Inputs

The training set of our corpus contains 2,564 pen gestures in total. Of these,
1805 (70.4%) are pointing gestures (POINT), 470 (18.3%) are circling gestures
(CIRCLE) and 289 (11.3%) are strokes (STROKE). Analysis of the corpus also

sheds light on the usages of the different pen gestures as illustrated in Table 4.2.

(i) POINT This is mostly used to indicate a single location. This occurs
99.8% (1801/1805) of the time in our corpus and the remaining occur-
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rences are map rendering commands.

(i) CIRCLE This includes two possible cases - small circles indicate a single
location (70% of corpus statistics, 329/470) and large circles indicate

multiple locations (30% of corpus statistics, 141/470).

(iii) STROKE These include three possible cases - a stroke referring to a street
or bridge (45.3% of corpus statistics, 131/289), the start and end points of
a path (32.4%, 94/289) and multiple strokes constituting a route (22.3%,
64/289).

Analysis of the training set shows that 95% of the multimodal terms contain a
single pen gesture, i.e. POINT, CIRCLE or STROKE. The remaining multimodal
inputs (i.e. 5%) contain multiple pen gestures, to which we refer as MULTI-
POINT, MULTI-CIRCLE and MULTI-STROKE. Table 4.3 shows examples of pen

gestures and their semantics.

4.4 Interpreting Pen Inputs

Pen inputs are interpreted based on the gesture type and its coordinates, which
are compared with the positional coordinates of the icons on the map. Inter-
pretation of each gesture type generates a ranked hypothesis list of locations,

according to the following protocol:

(i) POINT : icons lying within 42 pixels from the point are considered possible
semantic interpretations of the gesture. These are ranked according to

distances away from the point. Shorter distances are given higher ranks.

(ii) CIRCLE : the circle's area is defined by the pair of coordinates corre-
sponding to the pen-down and pen-up gestures. Icons with overlapping
areas are considered possible semantic interpretations and are ranked ac-

cording to their distances away from the estimated center of the circle.
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Gesture  Semantics lllustration(s)

Indicates a single location, NUM=1,

POINT _ _

e g. a university

A small circle indicates a single lo-

cation, NUM=1, e.g. a park
CIRCLE

—y33, A mww W

A large circle indicates multiple lo-

cations, NUM=plural, e.g. 2 univer-

sities

A single stroke indicates a single lo-

cation, NUM=1, e.g. a street e I 5H5E
STROKE

A single stroke indicates the start

and end points of a path, NUM~1

Table 4 2. lllustrations of the usages of different pen gesture types.
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Gesture

MULTI-POINT

MULTI-CIRCLE

MULTI-STROKE

Table 4.3: Illustrations of the usages of multiple pen gestures.

Semantics

Indicates multiple locations,
NUM-=1, e.g. four points correspond

to one SLR

Indicates multiple locations,
NUMZI1, e g. four circles correspond

to one SLR

Indicates multiple locations,
NUM=1, e.g. three strokes corre-

spond to one SLR

Multiple strokes or a long stroke
with one or more turning points to
indicate a route, NUM=1 - e.g. a long
stroke passing through four univer-

sities

Illustration(s)

82
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Again, shorter distances are given higher ranks.

(iii) STROKE : a hypothesis list is generated for each endpoint of a stroke,
where hypotheses are ranked by their distances from the endpoint. If we
compare the hypothesis list of two adjacent endpoints (from one stroke or
two sequential strokes) and find significant similarity (i.e. either the top
three entries are identical, or the two lists have over 75% overlap), the
two hypothesis lists will be merged into one according to their common
entries. Using this method, we can distinguish between interpreting a
single stroke as one location, from the other alternative of a connecting
stroke between two locations. In the case of multiple sequential strokes,
such as the three strokes in Table 4, this method enables us to interpret

them as a route connecting four locations.

Table 4.4 illustrates the process of interpreting speech and pen gestures

interpretation procedure.

4.5 Temporal Relationships

As mentioned in Section 3.5, we annotate the correspondence between SLRs
and pen gestures based on temporal ordering and semantic compatibility (i.e.
type and the number of location(s) referred). Since there can be one-to-many
mapping between the SLR and its associated pen gestures, the pen gestures are
considered together as a group (i.e. MULTI-POINT, MULTI-CIRCLE or MULTI-
STROKE). The reverse is also true when mapping a pen gesture to multiple
SLRs. Analysis of the training data shows that in a multimodal input, SLR
and pen gesture that (jointly) refer to the same intended location may not
always overlap in time.

As observed in our training set, temporal integration patterns [17] between

corresponding SLRs and pen gestures include two main types: simultaneous
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Multimodal input

S.HIRAEAE ACEY PREEE] BN SRS DI
| am now at "BUPT" and | need to get to '"these four universities'
How much time will it take?

P: (a long stroke with three turning

TumgPS

Hypothesis lists of speech input
SLRI: ABBREVIATION: L&  BuPT

jt}?‘?++§€j(% Beijing University of Posts and Telecommunications

SLR2: DEICTIC=3E VUl KE these four universities
NUM—4
LOC_TYPE=SCHOOLS AND PUBLIC LIBRARIES
subtype=university

HHERHE KA

Bl TN

points)

jt}?—fﬁﬁ%jﬁ% ', {all universities on the map  shown) continue.

84
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Hypothesis lists of pen input (locations ranked by distance m pixels)

PenDown: TYPE=STROKE

It EEHELE-1 Beijing  University ~ of Posts and Telecommunications
e IR 5.4 Xitucheng  Road

TurningPtl: TYPE=STROKE

JE TR ZE TR REE -1 Beihang University
Jbg i ZetE 5.0 Beijing Aviaton  Museum

TurningPt2: TYPE=STROKE
ER I E KEL1.9 China  University ~ of  Geosciences
e 11.0 Xueyuan Road

TurningPtS- TYPE=STROKE

:[[] j‘}'? ﬂ- B'Z j( % 0.6 University of Science and Technology Beijing
BB 11.4 Xueyuan  Road

PenUp : TYPE=STROKE

It EER AE-1 Beijing  Medical University
JEEE =[5 7.02 Peking University — Third Hospital

Table 4.4: An illustration of the procedure for hypothesis lists generation in the
speech and pen modalities respectively. Translations are italicized. Distance labeled
with "-1" means the pen gesture is triggered inside the area of icon/label of that

location.
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(SIM) and sequential patterns (SEQ). Simultaneous SLRs and pen gestures
have temporal overlap between an SLR and its corresponding pen gesture(s)
(no matter when is the start/end time). Sequential associations do not have
temporal overlap between the duration of SLR and its corresponding pen ges-
ture. A 3-tuple that consists of corresponding SLR(s) and pen gesture(s),
together with their temporal relationship, i.e. <SLR | pen_gesture_type | tem-
poralLrelationship> is referred as a multimodal term. Among the 2261 mul-
timodal terms found in the training set, 74% are simultaneous and 26% are

sequential. For example, consider the multimodal expression:

S:E “HPTERTHTT B ST ATDUETEEE ?

How can | go from ‘my current location” to ‘here - > ?
P: . -Z222.

Since the four points are considered as a group as MULTI-POINT and temporally
overlapped with the SLR Z# here, the temporal relationship between them is
simultaneous. Therefore, the multimodal terms of this multimodal expression
include <EFRIEE/JM T | POINT | SIM O and<iZff | MULTI-POINT | SIMD .

Further classification of simultaneous input patterns shows that there are
nine logically possible overlap patterns [17]. Statistics of the nine overlap
patterns are shown in Table 4.5. Input patterns with speech showed temporal
precedence (the third column of Table 4.5) accounts for the majority (i.e.
87.68% of the total).

Sequential patterns can be further classified into two: speech precedes pen
(72.5%) and vice versa with pen precedes speech (27.5%). Statistics are shown
in Table 4.6. In this work, the maximum lag time between speech and pen is
around seven seconds and the distribution of the lag time of the two sequential
patterns (i.e. speech precedes pen and vice versa) are shown in Figures 4.3
and 4.4 respectively. It shows that around 80% of the sequential inputs have

lag ranging between zero and one second.
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Neither Precedes (2.09%) Pen Precedes (10.23%)  Speech Precedes (87.68%)

S | S: S
P:
(0%) (0.63%) (1.25%)
S s

P B P:

(0%) (1.25%) (19.21%)
St S, s
P:

(2.09%) (8.35%) (67.22%)

Table 4.5: Nine logically possible temporal overlap patterns between speech and pen

gestures for simultaneous inputs.

Speech Precedes (72.5%) Pen Precedes (27.5%)
S: S:
Pi P:

lag time lag time

Table 4.6: Two temporal patterns between speech and pen gestures for sequential

inputs.
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Figure 4.3: Distribution of lag times between end of speech and onset of pen

(i.e. speech precedes) in sequential inputs.

65

60%

o

A%

0 > NKT+I<CED—=003—0

0%

0%

0% AANA
0—0.50.5_11 51 22525_3 335 5ﬂ4_4545-5 5—5555_6 6—6%5_7

Time lag in seconds

Figure 4.4: Distribution, of lag times between end of pen and onset of speech (i.e. pen

precedes) in sequential inputs.
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Further analysis on the subjects’ multimodal input integration patterns
shows that most of the subjects have adopted either a dominantly simultaneous
or sequential temporal patterns between speech and pen gestures [59] [60 .
Table 4.7 shows the statistics of subjects' temporal patterns. Statistics show
that subjects have a relatively high consistency (82.6%) in their integration
patterns. These findings are important for further development of the proposed
framework so that it will be able to adopt to subject's dominant integration

pattern.

4.6 Cross-Modal Integration Patterns

As mentioned in Section 4.1, SLRs may be singular, aggregated, plural and
unspecified references. Recall that an SLR may correspond to one or more pen
gestures. We analyze the statistics in the training set as shown in Table 4.8.
From the statistics, we observe that users predominantly prefer to use a single
reference in the SLR (62.5%, as shown in the first row of Table 4.8). Further-
more, a single SLR generally corresponds to a single pen gesture, as none were
found mapping to multiple pen gestures.

As regards aggregated references (e.q.i8 VUf[E KEE these four universities),
78.6% were found to correspond with multiple pen gestures to indicate multiple
locations. The other 16% are used with a circle (i.e. a single pen gesture) that
encompasses multiple locations. An example is the multimodal term <32 Q (i
K # | CIRCLE ISIM > or <these four universities | CIRCLE | SIM>.

For plural references, as shown in the third row of Table 4.8 > 72% are used
with multiple pen gestures to indicate multiple locations. The remaining 28%
are used with a single pen gesture, with the majority (19/21) being circles and
the remaining two are points.

SLRs with an unspecified numeric features should correspond to both single

and multiple pen gestures. Within the training set, however, an unspecified
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Subject SIM SEQ

Subjects with dominant simultaneous integration pattern

1 96.69% 3.31%

2 86.96% 13.04%
3 74.49% 25.51%
4 99.05% 0.95%

5 73.61% 26.39%
6 89.36% 10.64%
7 69.62% 30.38%
9 76.27% 23.73%
10 74.70% 25.30%
11 71.91% 28.09%
12 74.19% 25.81%
14 97.14% 2.86%

15 68.48% 31.52%
16 70.64% 29.36%
18 80.73% 19.27%
19 84.62% 15.38%
20 70.31% 29.69%
21 91.87% 8.13%

22 68.38% 31.62%
23 92.70% 7.30%

Subjects with dominant sequential integration pattern
13 7.14% 92.86%

17 1.00% 99.00%
Subject without dominant integration pattern

8 50.00% 50.00%

Table 4.7: Percentage of simultaneous and sequential temporal patterns for all 23

subjects. Average consistency of user's dominant integration pattern is 82.6%.
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reference predominantly (94%) occurs in association with a single pen gesture.

The above refers to SLRs that are deictic or anaphoric expressions. Deictic
expressions need to be interpreted jointly with the associated pen gestures.
Anaphoric references are interpreted based on contextual information and do
not correspond to any pen gestures. The first row in Table 4.9 presents ex-
amples of these two types of expressions. Additionally, there are also ellip-
tic expressions, where the SLR is completely omitted but the pen gesture is
present. For such cases, the cross-modal temporal relationship is irrelevant
(and indicated by "0"). Table 4.9 shows some examples.

The number of multimodal terms is much fewer than the exhaustive com-
binations between SLRs and pen gestures. Some of the terms are not found

in the corpus, while others may be implausible combinations, such as:

» A singular reference with multiple pen gestures (e.g. (ZEZFEKE | MULTI-
POINT I SIM(this university = | MULTI-POINT | SIM>) - a singular SLR
refers to one location and corresponds to one pen gesture. Multiple pen
gestures should correspond to an aggregated or plural reference. There-
fore, this combination involves incompatibility in the numeric feature.
This constraint can be used to mutual disambiguation. This is because if
is an impossible combo. Soif it occurrs, probably it means that there is a
recognition error. We will make use of this in our work on cross-modality
integration (i.e. semantic compatibility on numeric feature which will be

describe in Chapter 5).

» An aggregated reference with a single point or a single stroke (e.g. (&
="[&H T IPOINT ISIMO(these three places | POINT | SIM>) - an aggre-
gated SLR refersto multiple locations and should correspond to multiple
pen gestures or a circle. Again, this combination involves incompatibility

in the numeric feature.

* An unspecified reference with multiple circles or strokes (e.g. (iE#E
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Speech (as parsed Pen (as transcribed gess Temporal Relationship Count
SLR from transcribed ture) (SIM / SEQ)
speech)

SIM (1024/1417, 72.3%) 1024
Single (1417/1550 » 91.4%)
SEQ (393/1417, 27.7%) 393

Singular SIM 0
Multiple (0/1550, 0%)
(1550/2480, 62.5%) SEQ 0
0 (133/1550, 8.6%) 0 133
Single (9/56 > 16%) SIM (7/9, 77.8%) 7
SEQ (2/9’ 22.2%) 2
Aggregated Multiple (44/56, 78.6%) SIM (25/44 > 56.8%) 25
(56/2480 - 2.3%) SEQ (19/44, 43.2%) 19
0 (3/56, 5.4%) 0 3
Single (21/75 » 28%) SIM (12/21 > 57.1%) 12
SEQ (9/21, 42.9%) 9
Plural Multiple (54/75, 72%) SIM (35/54, 64.8%) 35
(75/2480, 3%) SEQ (19/54, 35.2%) 19
0 (0/75: 0%) 0 0

Single (715/761, 94%)  SIM (569/715, 79.6%) 569

SEQ (146/715, 20.4%) 146

Unspecified Multiple (1/761, 0.1%) SIM (1/1 > 100%) 1
(761/2480, 30.7%) SEQ (0/1, 0%) 0
0 (45/761>5.9%) 0 45
Single (34/38, 89.5%) 0 34

0 (38/2480, 1.5%)
Multiple (4/38, 10.5%) o 4

Table 4.8: Statistics of cross-modal integration patterns in the training set. There
are altogether 2480 multimodal terms (count by token) in total. Among them, 2261
contain both SLR and pen gesture, 181 contain only SLRs and 38 of them contain

only pen gestures.
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User input with deictic and anaphoric references (the second *“/lere™

is an anaphora to the first "/lere™):

SAAE “EM” 1€ EAT T EET BEEA

P. . @)

I'm now ‘here.” How much time will it take to go from  ‘here” to "here"?
Annotated user input with multimodal terms:

A <iS# | POINT 1ISIMBE (3Z#8 [ 0| 0F] <iZ#| CIRCLE | SEQ>H %
A

Fm now at <here |POINT | SIM>. How much time will it take from (here | 0 |

0> to (here | CIRCLE | SEQ>?

User input with elliptic locative references (the SLR is omitted in
speech):

5: Fi 5 I Opening hours?

P oo e

Annotated user input with a multimodal term:

<0 IMULTI-POINT 10> GafHHE

<0 I MULTI-POINT 10> Opening hours?

Table 4.9: Examples on 3-tuple multimodal term annotation with speech (5) and

pen gesture (P). Translations are italicized.



CHAPTER 4. UNIMODAL AND CROSS-MODAL CHARACTERIZATIONS 94

MULTI-STROKE | SIM(here | MULTI-STROKE | SIM>) - empirically,
we have found that about 94% of the unspecified references are used to
indicate a single location (as shown in Table 4.8). A possible reason may
be that unspecified SLRs have short durations, during which the subjects

may find it difficult to gesture multiple circles or strokes simultaneously.

4.7 Chapter Summary

In this chapter, we present the characteristics of spoken and pen inputs. Spo-
ken inputs can be categorized as direct or indirect references according to
their referents or as singular, plural, aggregated or unspecified references ac-
cording to their numeric features. We have devised a processing sequence for
extracting SLRs from the manually transcribed spoken input and interpreting
each SLR by generating a hypothesis list of possible semantics (i.e. locations).
Pen inputs can be illustrated as point, circle or stroke (and also multiple oc-
currences of each pen gesture). We have also devised a processing sequence
for interpreting pen gestures and generating a hypothesis list for every ges-
ture. We have analyzed the temporal patterns between the two modalities
and found that there are two main types of temporal integration patterns,
including simultaneous and sequential patterns. The majority (74%) of the
temporal relationships found are simultaneous pattern. For the sequential
pattern, the maximum time lag speech speech and pen gestures is seven sec-
onds. Statistics also show that over 95% of the subjects (22/23) have their
dominant integration pattern and the average consistency of user's dominant
integration pattern is 92.6%. According to the characteristics of SLR, pen
gesture and their temporal relationship, we have designed a representation for
multimodal term using a 3-tuple, which consists of an SLR, pen gesture and
their temporal relationship. Such multimodal terms is used to represent the

cross-modality integration patterns adopted by the user.



Chapter 5

Cross-Modality Semantic

Integration

As described in Chapter 4, each of the two (speech and pen) modalities ab-
stracts the user's intended message into a sequence of input events, i.e., in
terms of spoken locative references (SLRs) or pen gestures. Each event carries
semantic meaning but may contain ambiguity. The interpretation procedures
for speech and pen inputs presented in the previous chapter (Sections 4.2
and 4.4) derive partial semantics for each event, represented as a hypothesized
list of locations. This chapter presents a cross-modality integration procedure
that attempts to integrate the partial interpretations across modalities in or-
der to generate a unimodal paraphrase that is semantically equivalent to the
original multimodal user input. We perform the cross-modality integration
by Viterbi alignment which enforces the constraints of temporal order and se-
mantic compatibility constraints between speech and pen gestures. We apply
the cross-modality integration procedure on manual transcription (i.e. perfect
recognition outputs) and top-scoring automatic recognition outputs so as to
obtain the upper and lower bound of the integration performance. Besides,

in order to gain an empirical understanding of the inter-relations between the

95
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speech and pen modalities, this chapter also presents a comparative analysis
of multimodal user inputs with their generated, semantically equivalent uni-
modal paraphrase based on class trigram perplexities Analysis shows two
categories of data (ie eprmvm < prumv and ppvm = prum)  Will also be

described in this chapter

5.1 Cross-Modality Integration on Perfect Transcrip-

tions

Statistics m Section 3 4 show that around 74 5% (746/1002) of the multimodal
inquiries m the training set have an equal number of SLR and pen gestures
However, in these cases, there may not be a one-to-one correspondence be-

tween the SLRs and pen gestures For example

Ste “FriEHt” F “EREMTTT FEE A
P
How long will it take to travel from "my current location” to '"these two loca-

tions™

There are two SLRs and two pointing gestures m the inquiry However,
the first SLR is an anaphora referring to the user's current location, and the
two pointing gestures both correspond to the second SLR If we consider only
the inquiries with SLR(s) in the training set, there are 968 (out of 1002)
multimodal inquiries contain both SLR(s) and pen gesture(s) An overly bold
assumption of one-to-one correspondence between SLRs and pen gestures can
correctly interpret only around 67 3% (651/968) of the perfectly transcribed
multimodal inquiries m the training set

Statistics m Section 4 5 shows that 74% (1673/2261) of the multimodal
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terms in the training set have simultaneous timing relationships between cor-
responding SLRs and pen gestures The remaining 26% (588/2261) have se-
quential timing with a maximum time lag of seven seconds If we simply look
for a pen input that occurred closest in time to the SLR [61], this can only
correctly interpret 75 1% (727/968) of the perfectly transcribed multimodal
inquiries (which contain SLR(s)) in the training set

Therefore, we perform cross-modality integration by Viterbi alignment [62
with a scoring function that enforces the temporal ordering between the se-
guence of SLRs and the sequence of pen gestures The scoring function also

enforces the semantic compatibility in terms of numeric (NUM) and location

type (LOC—TYPE) features (see Figure 5 1)

5.1.1 Enforcing Temporal Order

Analysis of our training data shows that in a multimodal input expression, the
spoken locative reference (SLR) and pen gesture that correspond to the same
intended location may not always overlap in time In fact, about one-forth
(see Section 4 5) of cases in the training set show the pen gesture occurring
either before or after its corresponding spoken reference (i e sequential in-
puts) Hence in the current work, we only attempt to maintain the temporal
order of locative references between the speech and pen inputs A Viterbi
alignment a ~ ai aZas a” can easily accommodate for this as we align the
sequence of R hypothesis lists in temporal order of the SLRs S = S/ S2 SR
with the sequence of Q hypothesis lists in temporal order of the pen gestures
P = Pl P2 PQ Note that it is possible for a single SLR to align with
multiple pen gestures (e g ‘these three universities" is a single SLR that cor-
responds to three pointing inputs), as well as vice versa (e g “Xueyuan Road
and North Huyuan Road” corresponds to one circling gesture) The Viterbi

alignment algorithm can support this by advancing the position in one hy-
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PJU] PilU] m  Aju]

PJ2,IJ PiPJ] 28]
P3[3JJ . PJAl

Pipl " 3l

w1 J jy K" P 3 i [ N,

Figure 5.1: The cross-modality integration procedure. Each input event (a spoken
locative reference or a pen gesture such as POINT/CIRCLE/STROKE) in each modality
produces a list of hypothesized locations. There are aligned across modalities by the
Viterbi algorithm while incorporating semantic compatibility and temporal order.
Sr[N] is the iV-best recognition hypothesis of the r*" SLR and Pg[M, Kg”u] is the M-
best recognition hypothesis of the qgf/; pen gesture instance with Kq,M hypothesized

locations.
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pothesis sequence (either Sr to 5V+ior Pg to P~+i as indicated in Figure 5.1)

while maintaining the position in the other.

5.1.2 Enforcing Semantic Compatibility

Cross-modality integration also seeks to enforce semantic compatibility. If the
r{. SLR is a direct reference expression, the hypothesis list Sr should contain
only one element and the integration procedure seeks to match the specified
location with hypotheses for the aligned pen gesture in Pg. The matching cost
is defined such that if no match is found, a cost of one is incurred. If the SLR is
an indirect reference expression, the hypothesis list Sr should contain multiple
elements and the location type (LOC_TYPE) or numeric (NUM) features may be
specified. The integration procedure checks for compatible LOG-TYPE among
the hypotheses for the aligned pen gesture in Pq. A matching  cost (Tm(»SV > Pq)
of one is incurred if there is mismatch in LOC_TYPE between Sr and Pq (see
Equation 5.3 in Table 5.1). Enforcing compatibility in NUM is a little more
elaborate > especially when the value of NUM specifies multiple locations that
need to be matched with the hypothesis sequences from recognized pen ges-
tures. Hence we use a transition cost CV(SV - PqlSr-t-, Pg) which is set to the
deficit/excess in the NUM value during the transition from (5V-1, Pq)
or {Sr-1"Pg~i) to {Sr, Pg) as showii in Equation 5.4 (see Table 5.1). This is
used to indicate that there are too few or too many pen gestures aligned with
one SLR or vice versa. The matching cost of location type and transition of
numeric feature are determined with the training set. As mentioned, an SLR
may align with one or more pen gestures, corresponding to one or more Pgq and
each may contain a different number of hypotheses. Should we encounter a tie
in the conditional cumulative costs Cc{Sr, Pq\Srt, Pgq-) at (Sr, Pg) from dif-
ferent positions (srt Pg-) during the course of alignment, we pick the back

pointer B(Sr, Pg) in the following order of precedence:
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1. Return one step in Sr while maintaining the position in Pq (i.e. i = 1 and
j = 0leading to SV-i and Pq). This order aims to handle the occurrence
of anaphoric reference to the user's existing location, i.e. the anaphora

does not need to pair up with a pen gesture.

2. If the above path is not available, return one step in both Pg and Sr (i.e.
2= 1land; = / leading to sr~i and Pg-). This order aims to handle
the one-to-one correspondence between speech and pen gestures - around
67.2% of the SLR has one-to-one correspondence with pen gesture and

can be correctly interpreted.

3. If the above path is not available, return one step in Pq while maintaining

the position in sr (i.e. i = 0andj — 7 leading to Sr and Pg-i)-

Details of the Viterbi algorithm are provided in Table 5.1. An illustrative

example is shown in Figure 5.2.

5.1.3 Identifying Intended Locations

This alignment procedure generates the "best" path in attempting to find an
alignment between an SLR with a pen gesture in the multimodal input. The
cross-modality integration procedure extracts the common location(s) found
in each pair of hypothesis lists {Sr and Pq) derived from the aligned SLR
and pen gesture. The number of locations extracted follows the value of the
NUM feature and the ranking of locations follows those from the hypothesis
list Pg from the pen modality (as described in Section 4.4). The top ranking
location(s) is identified as the user's intended location(s). By substituting the
identified locations in place of the SLRs in the speech input, we can generate a
unimodal,  verbalized paraphrase  that is semantically equivalent to the original

multimodal expression. For example,
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Notations:

Sr is the list of hypothesis of the rf, SLR.
Pg is the list of hypothesis of the g/ pen gesture instance.
CM(Sr, Pq) is the matching  cost between Sr and Pq.

cj*s”  Pg\Sr-i, Pg-3. is the transition  cost from {Sri, Pg-) to the current
position {Sr, Pqg). It indicates the deficit or exceed in the NUM value for

z" = {0'I}.

CA{Sr, Pq) is the cumulative  cost (the best partial alignment) up to the

position of (Sr, Pq) from (5i, Pi).

Cc{Sr, Pq\Sr-i Pqg4) IS the Conditional  cumulative  cost at {Sr, Pq) from
the position Pg—j) for = {0,1}, such that cc/sr, PqiSrz Pqj)

CM[Sr, Pq) + CA. St—i, Pg+j) + Pq\Sr-i, Pg-j).

B(*Sr,Pq) is the back pointer of the position (Sr: pPg) determined by the

local minimization of C/(Sr,Pq)-

~(r, g) is the backtracking path obtained from the back pointer B, sr,Pq).
PQ) is the cumulative cost at the final position {SR, PQ).

R isthe total number of SLRs in the inquiry.

Q is the total number of pen gesture instances in the inquiry.

Initialization:

CA{Si,Pl)==CM{SI,PI) (5.1)

B{Si,Pi) = nil (5.2)



CHAPTER 5. CROSS-MODALITY SEMANTIC INTEGRATION 102

Recursion (V(r,¢ = {(1,1),..., (i?- L,Q), R @-1),{R-1,Q- 1)}

0O SrnPqg”O
CM{SR,PQ)— (5.3)
sv n =0

CxiSri Pq\Sr-t, Pqg-j) = absolute value of deficit or excess in the NUM value

for {i,j} = {@.1) > (1> 0) (Lh}

, (5.4)
‘Cc{Sr,Pq\Sr,P,-i) ifr = 1
Cc{Sr,Pq\Sr-1,P,) if b 1
CAB SR,PG)
Cc{Sr,Pq|\Sr, Pg-i)} othevwise
‘ (5.5)
(5.6)
for 1,q9),(r,g-1),(r-1,7~- 1))
Termination:
(Sr'PQ)
=mm{C7¢c(577, PQISRY,  PQ-), CC{SR, PQIIPQ), (5.7
CC{SR,PQI\SR,Pg-i)}
X (5.8)
forx = 1,(5-1)}

Path Backtracking:

while i > 0, do {*(r[j] > gy]) := B S, P£L]) i := j]}
for (1, gfD) = {(i?, Q),.... ')}

Table 5.1: Details of the Viterbi Alignment Algorithm.
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/am now at this center. | need to go from this center to
this park. How much Ume will it take?
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7ﬁ¢/T|3/u/A>.%%7\

| am now at the China Architectural

| need to go from Uie China Architectural

Aot — -

Culture Center
Culture

Center to the Purple Bamboo Park. How much

time wilfit take?

P3 : stroke NUM=I
P3EOI : &i7HiE -1
PsMI @ Fg&H 15.5

P2 : Stroke NUM=1
P2EO] : HhEEE S b1
P2[1l : = HJmEg 8

Pi:point NUM=I
P110] © HREEEE L1
PrLl] /TE% 20

Generated hypotheses
lists of speech and pen
gestures

CM(1,3)=1
Cr(1, 3¥1, 2)=1
CA(1.2)11 |

CR(1,2\T:1)=R

CA(1. 2}=r1
CMiIDf

Sf. NUMW=1
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Cr (2, 3¥1, 2)=0

Chrt g 2

Cn (2, 2)=0

Clii=0
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Cr (3, 3¥2, 2}=0

] C“3,2M
Cr(3,2¥2,1) 0

Cm(3,1)=1

Cr(3, 1¥2, 1)=1

Ll 2Mh
CA(3.1)=3

S3 : NUM=1
KEERHE N

I

Figure 5.2: An lllustrative Example on the Viterbi Alignment Algorithm. The ar-

rows are the back pointer of (Sr4Pq), which has minimum cumulative cost Pq)-
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Multimodal input
SyWRIEAE “EEFT LT /8 "EEPL” B EEAET EEBA
I am now at ‘'this center”. | need to go from "this center" to ‘this park'

How much time will it take?

Unimodal paraphrase generated

WIEE “hEESEET O /& "PEESESET LT B RN AET E
E/N

| am now at ‘the China Architectural Culture Center”. | need to go from
“the  China  Architectural Culture Center" to ‘the Purple Bamboo Park".

How much time will jt take?

Details will be described in Section 5.2. For an indirect SLR that does not have
any corresponding aligned pen gesture, it will remain intact in the expression
and will be further disambiguated through context inheritance in the dialog
model of the spoken dialog system (SDS). An illustrative example is given in

Table 5.2.

5.1.4 Evaluating the Cross-Modality Integration Procedure

We applied the cross-modality integration procedure to both the training and
test sets. Recall that thus far we have been working with hand-transcribed
speech input (with perfect SLR extraction performance), together with manu-
ally annotated gesture types for pen input. The transcriptions for speech and
pen are regarded as perfect. For each multimodal inquiry, we manually anno-
tate the alignment between an SLR and a pen gesture. Based on the alignment,
the user's intended location(s) can be identified. Similarly, the Viterbi align-
ment is applied to each multimodal inquiry so as to obtain a system generated
alignment. A multimodal inquiry is considered as correct if the following two

criteria are satisfied: (1) if the oracle (i.e. the manually annotated alignment)
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MMI: 5f¢fk “Frferyit s F] “Ef” EHX ?

P. e {point to a hotel on the map)
How much time will it take to travel from ‘my current location" to  ‘here”?
UMERE “Frfest” 2 “gloRREE" EEA P
How much time will it take to travel from  “my current location” to the “Gloria

Hotd” ?

Remarks: ~ The system understands  that  “IREEENIHNTT” s referring  to the  "cur-

rent location, -’ which can be obtained from the dialog discourse.  Also,iE# "here “
can be jointly  interpreted with the pointing  gesture, due to high semantic compat-
ibility ~ (based on scoring). Therefore, UMI  contains  the interpretations for  both
SLRs.

MM2: S “EEEE" F “EET" AR LIS ?

P —(a stroke to indicate a street)
Which  means of transportation can | use to travel from ‘this  hotel » - to “this
place"?
UM2:4¢ “SEEE" B “ERFHRE" AR DS ?
Which means of transportation can | use to travel from ‘"this hotel” to "Wangfu-
png Street?"
Remarks: The system can match = f[E# )5 "this place “ with the stroke, due to
high semantic =~ compatibility (based on scoring). However, the indirect reference
SfEVELE  “this hotel” cannot be matched with any pen gesture.  Therefore, this

SLR remains intact in UM2.

Table 5.2: An example illustrating the unimodal paraphrases generated from the
multimodal expressions from two dialog turns. MMI| and MM2 are the multimodal
expressions from dialog turns 1and 2. UMI and UM2 are the unimodal paraphrases

generated from MMI and MM2 respectively. Translations are italicized.
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and system generated alignments completely agree with each other; and (2)
if the manually identified locations and the automatically identified intended
locations completely match with each other. The cross-modality integration
accuracy is defined as:

Q
Cross-modality integration accuracy = — (5.9)

where G is the total number of multimodal inquiries with perfect match
between the oracle and system generated alignments and identified
locations; and
M is the total number of multimodal inquiries with SLRs in the

(training or testing) data set.

The cross-modality integration procedure generated correct alignments be-
tween SLRs and pen gestures for 98.1% (950/968) of the training inquiries and
95.9% (416/434) of the testing inquiries that contain SLR(s). The incorrect
pairings shed light on possible future work, including the need to use timing
information across modalities for some multimodal inputs; as well as the need
to apply pragmatic knowledge to infer the value of the NUM feature (i.e. in
the case NUM= nil) and to filter out redundant SLRs in the speech input. An
example with redundant SLRs is shown in Table 5.3, In the example, the user
says =f[E(i.e. this) for four times to indicate four locations but he also men-
tions “IEVU(EMN "  (i.e. these four places) to confirm the number of locations
he indicated. Incorporation of temporal information (i.e. temporal difference)

may generate correct alignment.
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Reference transcription:

S "B EE EMET EMET  EEEE EUETT - HRFEL DR

D. ¢ N
# . % 5
=
How much time will %\t take from ‘here” to ‘this”, “tfus >, “this » » and'this", “theses
places” ?

Result of Cross-Modality Integration:

four

SFpe s =R EET EET TEEEE EEtTT ARV

P: e o o o

Table 5.3: An example on the incorrect alignment due to the presence of redundant

SLRs (i.e. four ‘this, and one ‘these four places”) in the speech input.

5.2 Analytical Comparison between Parallel Multimodal

and Unimodal Expressions

In order to investigate the relationships between speech and pen gestures and
their effects in the joint interpretation, we performed an analytical comparison
between collected multimodal expressions and their automatically generated
unimodal paraphrases [63]. In order to do so, we ran the cross-modality in-
tegration procedure on the multimodal expressions. For each pair of aligned
SLR and pen gesture, we can identify the user's intended location(s). If we
replace each of the SLRs with the full name of the identified location(s), we
obtain the unimodal paraphrase. The correct paraphrases (over 98% of the
entire data set) are extracted and combined with their semantically equiva-
lent multimodal counterparts to form parallel corpora. More specifically, we
obtain 984 multimodal and unimodal expression pairs from our training set
and 422 pairs from our testing set. Comparative statistics of the multimodal
and unimodal inputs from our training set are shown in Table 5.4. The total

number of words are different due to the may due to the use of plural and ag-
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gregated references in the multimodal inputs. For example,iE ffE EY 4 &
(i.e. these two shopping  centers Will generated the full name of two shopping
centers,¥riiZ M5 (i.e. Xtndong'an Plaza) and  FES(i.e. the Oriental
Plaza) in the unimodal paraphrases. We see that the spoken components of
multimodal inputs are generally shorter and cover a smaller vocabulary than
their unimodal counterparts. The difference is less pronounced than expected.
One reason, based on our observation, is the diversity of spoken deictic expres-
sions and Chinese measure words. For example, ‘my current  location” may
be verbalized in many ways (such asZ &L - ArfEHE » BRIFFERHE T » IRFE
Hysth 7 > BAEEME - RLE - REVERIE > ERIVAE - IR 3K

IRFERVHLEE » I ERi{z & » etc.) Chinese measure words relating to location
types (includingfdl, (|, By - %, 32 58,4, 7 » 77, 858, 8L > oK > [& > #25, etc.)

also contribute towards alternatives in verbalization.

Multimodal input Unimodal paraphrase

Total number of words 12,748 12,853
Average utterance length (in words) 8.8 8.9
(in chars.) 179 20.8
Range of utterance length (in words) 1to 19 1to 19
(in chars.) 2to 4 21to 58
Vocabulary size (number of words) 473 492

Table 5.4: Parallel multimodal and unimodal corpora statistics. The difference in
the total number of words in multimodal input and unimodal paraphrase may due

to the use of plural and aggregated references in the multimodal input.
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5.2.1 Language Modeling

We pooled the multimodal and unimodal spoken expressions together (1,450 in
all as presented in [56]) to train a class tiigram language model. We classified
the proper names (i.e. location names) into 12 equivalences classes, e.g. UNI-
VERSITY, HOSPITAL, STREET, etc. We also have 4 other equivalences classes
including: ARTICLES, NUMBERS (i.e. implicit/explicit numeric expressions,
eg. — one# fewt:t  some, etc.), MEASURE—WORDS and LOCATION.TYPE
(e.g. the words K= university  /N[E parks, etc.) The language model was
developed using the CMU SLM toolkit [64]. The resulting model contains 290
unigrams, 1,375 bigrams and 2,795 trigrams. The probabilities are smoothed
by Katz backoff smoothing [65] with discount ratios 0.04 for unigrams, 0.36
for bigrams, and 0.38 for trigrams. The discounting thresholds for unigrams,
bigrams and trigrams are 1-5and 7 respectively. The discount ratios and dis-
counting thresholds are determined by the CMU SLM toolkit automatically
using the inquiries from the training set. We computed the class trigram per-
plexities for the multimodal and unimodal test sets respectively. Results are

shown in Table 5.5.

Comparisons in Class Trigram Test Set Perplexities

Multimodal Input Unimodal Paraphrases

Total number of utterances 422 422
Number of words 4,505 4,555
Perplexity {PP) 16.5 29.5

Table 5.5: Comparisons in perplexities between the parallel multimodal (MM) and
unimodal (UM) inputs. The difference in the number of words is less than expected

due to the diversity of Chinese measure words and contextual phrases mentioned.

We observe that for the semantically equivalent, parallel multimodal and
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unimodal corpora, the unimodal paraphrases have significantly higher perplex-
ities We also observe from Table 56 that the test set may be divided into
two subsets according to comparisons in per-utterance perplexities between

the multimodal ¢ppvm) and unimodal inputs prum)  for further analysis

Comparisons m Per-Utterance Perplexities
PPMM < ppum  349/422 utterances (82 7%)

PPMM =  PPUM 73/422 utterances (17 3%)

PPMM > PPUM 0

Table 56 Comparison of per-utterance perplexities between the multimodal inputs

and their unimodal paraphrases

5.2.2 Data Analysis
(A) Category pvm = prUM)

As shown in Table 56, the testing data subset with this inequality contain
17 3% (73/422) of the expressions For this category, we found that the major-
ity (66%, 48/73) of the expressions involve redundancy ~ between the speech and
pen modalities Redundancy means "the same piece of information/semantic
content is earned by both modalities “ As shown in Example 1 of Table 57,
each pair of (X,y) coordinates of each pointing gesture in the multimodal in-
put matches with the abbreviation of the location name that was uttered
The unimodal paraphrase incorporates the full name of each location dur-
ing generation However, since our class-based language model gives the same
probability values to both the abbreviated and full names of the same location,
the per-utterance perplexity values are the same

Example 2 in Table 57 illustrates the use of ellipsis, which occurred for

(833%, 24/73) of the cases in this testing data subset The subject inputs four
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pen strokes that connects four locations and simply uttered £ JtHY A2 i PR 45
"the fastest route". We interpret that the subject wishes to obtain the fastest
route that traverses the four indicated locations. However, the speech modality
does not mention the locations at all. Hence the cross-modality integration
framework cannot capture the ellipsis and generate a unimodal paraphrase
that ignores the pen gestures, resulting in an equal perplexity value. This
is an artifact because in reality the multimodal expression conveys a greater
amount of information when compared to its unimodal paraphrases. Ellipsis
should be a case of complementarity across modalities where certain semantic
content appears in one modality and is completely omitted from the other
modality.

Example 3 illustrates the occurrence of a spoken locative reference ex-
pression that is redundant with the pointing gesture, followed by an ellipsis.
Again, we observe equal per-utterance perplexities and the explanations are
consistent with the two previous examples. Redundancy between the speech
and pen modalities should be very useful in face of imperfect recognition out-
puts, e.g., in automatic speech and pen gesture recognitions. Handling ellipsis
merits further investigation for automatic interpretation of multimodal input.
A possible method to handle ellipsis is to integrate the semantics from pen

gesture to the recognized speech input according to the time of  occurrence.

(B) Category (pvm < pPaM) -

There are 422 expressions in the test set, of which, the testing data subset
with this inequality contains 349 (82.7%, 349/422) expressions. Expressions in
this category involve complementarity between the speech and pen modalities.
Complementarity means "a piece of information/semantic content is carried
across multiple modalities, i.e. either modality alone is semantically ambigu-

ous and a clear semantic meaning can be obtained when semantics across
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Example 1:
Multimodal Expression, ppvmv = 3.61

(Note redundancy across modalities)

771 c | o s (1 T = WA= 1 & 7 N 1 R Ly S /R

How much time will it take from  "BUPT" to "Beihang", ‘cUG - », “USTB -, and
‘BIMU?

P 2

Unimodal Paraphrase, rrum 3.61

e “IUREERE B “ILZENTROREE TREERE” CIERHSORER”
AEBRIRE EEA

Example 2:

Multimodal Expression, ppvm = 4.93

(Note ellipsis)

5 AR E & 43 The fastest  route.
P. -H-K

Unimodal Paraphrase, rpruv = 4.93

R YRS L 4 The fastest  route.

Example 3:

MM Expression, pemm - 654.3

5 ‘@ZE/U{E’ ﬁﬁﬁ%f%"my current  location”. Travel route  please.
P. . 4
UM Paraphrase, rruv = 654.3

“E’ J}%%E” ﬁﬁﬁ%%%"my current  location”. Travel route  please.

Table 5.7: lllustrative examples from the testing data subset with (prvm

PPUM)-
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modalities are combined." We present illustrative examples in Table 5.8. As
shown in Example 1, the speech and pen modalities complement each other in
specifying a group of intended locations. Either modality alone is semantically
ambiguous, e.g., the spoken expression ‘here” that is corresponds to the point,
or the expression ‘these unwersities” that correspond to the circle. However,
when the semantics across modalities are combined, the semantic meaning is
clear. Hence we can see that part of intended message is conveyed via the
speech modality, while the remaining part is conveyed via the pen modality.
The unimodal paraphrase, however, capture the full semantics of the subject's
intended message. Consequently, the perplexity of the spoken component in
the multimodal expression is less than that of the unimodal paraphrase.

Example 2 in Table 5.8 illustrates the possibility that a multimodal expres-
sion can exhibit both redundancy and complementarity in sequential locative
reference expressions. The first rendition shows five reference expressions,
all of which exhibit complementarity between the speech and pen modalities.
Among the 349 expressions in this data subset involve complementarity, there
are 321 (92%, 321/349) similar cases (i.e. complementarity across modalities)
in this data subset. The second rendition shows redundancy in the first refer-
ence expression, while the remaining four expressions exhibiting complemen-
tarity. Hence the per-utterance perplexity rose slightly (c.f. the first rendition)
even though both renditions are semantically equivalent. There are 28 (8%,
28/349) similar cases (i.e. combined redundancy and complementarity) in this
data subset. The third rendition is the unimodal paraphrase, which has the
highest per-utterance perplexity value. Table 5.9 shows the overall statistics
of the categories.

The example in Table 5.10 also illustrates the advantage of perplexity re-
duction by virtue of complementarity across the speech and pen modalities,

through comparison between the speech components in a multimodal expires-
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Example 1:
Multimodal Expression, ppmmv  — 4.53
(Note complementarity across modalities)
- PHAEAE EE AR RIE ERATRE AURPEEAELRES n] DU
I am now ‘"here". | want to visit ‘these universities". What are the possible
travel  routes?
P: . O
Unimodal Paraphrase, rpruv  6.50
HHEAE AU Ehe” B8 hlE IUiiEiARE”  "IERHORE”
BRE AR "IEERIRET AR AR i DU

I am now at '"Beiing  Film Academy". | want to visit ‘Beihang University",
“China University of Geosciences”, "University of Science and Technology Bei-
jing" and "Beijing  Medical  University’. What are the possible travel routes?
Example 2:

First rendition - Multimodal Expression, ppvm = 5.71

(Note complementarity across modalities)

54t EM F EAT EE EE 2R B ATESCEERSE

What IS the travel route from “here” to "here- - - ‘“here- > - “here - > and "here"?
P: . . . . Z=
Second rendition - Multimodal Expression, ppmvmv — 9.08

(Note redundancy in the first reference expression and complementarity in the

remaining four expressions)

S “ILE T EE EMT Sl BE S AHTESCHERRR

P. . . . . .

Unimodal paraphrase pruv = 9.21

7 “IEE R B “ILEMZENTRORE”  ILRHORE”  hEMERE” 2
A IUEERRE AHEAOERRAR

Table 5.8: lllustrative examples from the testing data subset with rervm -

PPUM)-
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Total number of expressions 422
pPM < pPum Complementarity 321/349

(349 expressions) Complementaxity and Redundancy  28/349

pPMM =  ppum Redundancy 48/73
(73 expressions)  Ellipsis 24/73
Redundancy and Ellipsis 1/73

PPMM >  PPUM

(0 expression)

Table 5.9: Overall statistics of different categories found by comparison of per-
utterance perplexities between the multimodal inputs and their unimodal para-

phrases.

sion with its counterpart in a unimodal expression. In particular, the unimodal
expression in Example 1 in Table 5.10 has a perplexity of 25.1, which is re-
duced to 5.9 in a multimodal expression (see Example 2) with complementary
speech and pen inputs. However, if the speech and pen inputs are redundant,
as shown in Example 3, there is no perplexity reduction. If there is a mix-
ture of complementary and redundant inputs between the two modalities (see

Example 4) > then there is a smaller reduction in perplexity from 25.1 to 8.8.

(C) Findings and Implications

Categorization of the test set based on perplexity values, followed by anal-
ysis of the categories enables us to visualize the effects of complementarity
and redundancy [43] across the speech and pen modalities in multimodal user
inputs.

Complementarity offers expressive power, because the user is free to dis-

tribute various parts of the message to different modalities to ease (complex)
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Example 1 - prumv : 25.1 (generated unimodal paraphrase)

e LSRR B CICERTENTARE”  ThEME R IEEEERERER”
IEERHIRE” B

How much time will it take from  "Beijing University of Posts and Telecommuni-
cations" to “Beihang University", "China  University of Geosciences" > "Beijing
Medical  University" and "Beijing University of Science and Technology"?
Example 2 - vy = 59 (complementarity)

S/t “EE” T EIUATRE" HEA
P. . e o o o
How much time will it take from “here, - to ‘"these four universities"?
Example 3 - PPy = 25.1 (redundancy)

{7 L S = s 1 /7N (1~ S s (7 S 279
P: . o % & .
How much time will it take from  "BUPT" to "BUAA", “‘cuG’, "BMU" and
‘BUST” ?
Example 4 - PPy — 8.8 (complementarity and redundancy)

S.4¢ “ILES” F] EMURTRE” HEA
p: . P,
How much time will it take from ‘BUPT” to ‘"these four universities?

Table 5.10: Examples illustrating perplexity reduction in different cases. Transla-

tions are italicized.
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communication and to reduce cognitive loading [42] Semantic decoding of an
individual modality generates a partial interpretation of the intended message
and these partial semantics need to be integrated in order to gam a complete
understanding of the user's intent This motivates us to use a late semantic
fusion architecture for multimodal input interpretation

Redundancy occurs when both the speech and pen modalities carry the
same semantic content As a preliminary step, the current work only deals
with perfect transcriptions of the speech recordings and filtered pen gesture
recognition outputs However, we may conceive that in real applications, the
recognition outputs (that will be presented in Section 5 3) corresponding to
different input modalities may be erroneous Redundancy across modalities
motivates the use of mutual disambiguation techniques [66] In addition, we
also observe occurrences of ellipses, where some locative references are omitted
from the speech component in the multimodal expression and is expressed only
with the pen component Ellipses motivate further investigations in the syntax
of the multimodal language, as well as the use of such multimodal integration

approaches as finite-state transducers [50

5.3 Cross-Modality Integration on Imperfect Transcrip-

tions

The cross-modality integration procedure has demonstrated reasonable per-
formance in perfect transcriptions in Section 5 1, which is acted as the upper
bound of the integration performance However, under practical situations,
captured inputs are much more problematic, due to disfluencies in the speech
modality (e g filled pauses and repairs), spurious pen gestures and recogni-
tion errors in both modalities These imperfections have adverse effects on

cross-modality integration Therefore, in this section, we attempt to apply
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the cross-modality integration procedure on imperfect transcriptions.

5.3.1 Transcribing the Spoken Inputs

We transcribed the speech signals in the multimodal corpus with a Mandarin
speech recognizer [67] that is developed with the HTK toolkit [68]. This rec-
ognizer was originally trained with 75 hours of read-speech recorded in a clean
environment from a general open domain (i.e. newspaper). Hence, we replaced
the recognizer's general-domain lexicon with a domain-specific version of 637
entries that contain names of locations in Beijing as well as frequent spoken
deictic expressions. We also incorporated a domain-specific bigram language
model trained from manual transcripts of the training data set. The acoustic
models remain unchanged. Speech recognition performance evaluated based
on the top-scoring recognition hypotheses gave overall character accuracy of
44.6%. In particular, we observe that performance is especially poor for four
of the subjects who spoke Mandarin with an accent. Further degradation was
due to background noise. Speech recognition performance evaluated based
on the top-scoring recognition hypotheses across subjects are shown in Fig-
ure 5.3. Application of the SLR extraction procedure (see Section 4.1) to the
top-scoring recognition hypotheses shows substitution, deletion and insertion
errors in the SLRs, SLR deletion and substitution are the most prominent,
frequently caused by short duration of i= 5. (meaning here and pronounced
as /zher/) and phonetic confusion between iZ(meaning this and pronounced
as /zhel/) and #(meaning car and pronounced as /che/). Another example
of phonetic confusion is between the second character #(meaning insidie and
pronounced as /li/) of iZf(meaning rere and pronounced as /zheli/) and >
(meaning rice and pronounced as /mi/).

For each spoken input expression, we compare the list of parsed SLR(s)

with its oracle transcription with the list of parsed SLR(s) from its speech
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recognition transcription in order to check the SLR recognition performance.

The SLR recognition accuracy is defined as:

SLR  Recognition Accuracy = NSLR——AAAM_SSIR——DSLR (5.10)

where wstris the total number of SLRs in the oracle transcriptions;

IstR, sstkand pstR are the numbers of insertion, substitution and
deletion errors from the speech recognition transcriptions respectively.

Overall, the SLR recognition accuracies (each SLR is treated as a word)
for the training and test sets are 38.5% and 39.3% respectively. Furthermore,
only 55.6% of the direct references and 29.1% of the indirect references can
be recognized correctly in the training. In other words, over half of the SLRs
have not been correctly extracted. However, the majority (>60%) of the incor-
rectly recognized SLRs involves confusion with other SLRs carrying the same
semantic meaning. In this work, the confusion between SLRs during speech
recognition may involve only the measure word and abbreviation and hence
does not alter the semantic meaning. For example, both & {f A2 and & K2
mean this university, and both FEE~BT and Fr{EHE mean current location.
Hence, these incorrectly recognized SLRs will not affect the subsequent cross-
modality integration process. Overall, 50.9% and 51.7% of the recognized SLR

in training and test sets were interpreted with correct semantics.

5.3.2 Recognizing the Pen Inputs

We have developed a pen gesture recognizer, based on a simple algorithm that
proceeds through a sequential procedure of recognizing a point, a circle and a

stroke, as follows.

(i) Recognizing Points: If the pixel distance between the pen down and pen

up coordinates is fewer than q (= 6) pixels, which is the width of a square
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Figure 5.3: Speech recognition performance (character accuracies) across subjects

in the training set of the multimodal corpus.

icon on the map, the input is considered as a point. Detected pointing
actions with temporal difference less than 0.25 second are considered
repetitive and the redundancy will be discarded. If the pen gesture is not
classified as a point, it will be evaluated as a circle or stroke, described

as follows.

(ii) Recognizing Circles: A pen gesture is recognized as a circle if 80% of
its Xand y coordinates appears at least twice and if it contains no more
than two convex hulls (Figure 5.4 shows an example of convex hull). If
the pen gesture is not classified as a circle, it will be evaluated as a stroke,

described as follows.

(iii) Recognizing Strokes: Since strokes are directional, a pen gesture is
recognized as stroke if one or both of the x and y coordinates shows

directional migration towards pen down coordinates, also the radius of
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A convex hull

Figure 5.4: An illustration of convex hull in a circle.

curvature (ROC) cannot below a preset threshold of 24 [23]. The ROC
of a circle formed by three points x, y and z as shown in Figure 55 is
given in Equation 5.11.12 jf the pen gesture is not classified as a stroke,

it will be rejected.

X —yll — 2zl —X
ROC =r(x,y,z)= ad i (5.11)

where A(x, y, z) is the area of triangle formed by x, y and z and

denotes the Euclidean distance between the two coordinates.

Figure 5.5: A circle formed by three points, a:, y and z and the radius of curvature.

This simple pen gesture recognition algorithm can only generate a single
output hypothesis, which will be the top best pen gesture recognition output.
Overall pen gesture recognition accuracy is 86.6%. Table 5.11 shows some pen

2Figure 55 IS borrowed from [69]
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gesture recognition errors. The incorrectly recognized pen gestures include
confusions that may carry the same semantic meaning and hence the pen
recognition error will not affect the subsequent integration process. Overall,
91.3% of the recognized pen gestures can be interpreted with correct semantic

meaning.

A flat circle is mis-recognized as STROKE. m

A distorted stroke with low ROC,

which is rejected by the recognizer.

Table 5.11: lllustrative examples on the recognition errors of circle and stroke.

5.3.3 Evaluating the Cross-Modality Integration Procedure

We applied the cross-modality integration procedure to each multimodal in-
quiry of both training and test sets of imperfect speech and pen transcriptions
(which contain speech and pen gesture recognition errors and repetitive pen
gesture inputs) so as to obtain a system generated alignment. Comparison
between the system generated alignments with the manually annotated align-
ments shows that the cross-modality integration procedure generated correct
alignments between SLRs and pen gestures for 51.1% (495/968) of the training
inquiries and 54.4% (236/434) of the testing inquiries. Performance statistics
of the cross-modality integration procedure are shown in Table 5.12 and Fig-
ure 5.6. The performance achieved is better than expected at a speech recog-
nition accuracy of 44.6%. Analysis shows that this is because of the comple-
mentarity relation between speech and pen modalities, where the two modali-
ties mutually disambiguate [70] with each other in the presence of recognition

i~If we assume that the two modalities are independent of each other, the expected performance

is (Accuracyspeech Recognition X Accuracyp™" Recogmtion = 44.6% X 86.6% = 38.6%.
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errors. Integration of the hypothesis lists generated from the mis-recognized
SLR and pen gestures shows that the cross-modality integration procedure
can still extract the common location(s) found, which may be correct. Ta-
ble 5.13 shows an illustrative example on mutual disambiguation between the
two modalities in cross-modality integration with the presence of recognition

errors.

100%

90%

80%

60%

50%

30%

20%

10%

0%

Training Set

Test Set

« CMI of oracle transcriptions
in both modalities based on
temporal order only

« CMI of oracle transcriptions
in both modalities based on
the closest time only

B3 CMI of oracle transcriptions
in both modalities based on
the Viterbi Alignment

+ CMI of top-scoring speech
and pen input recognition
hypothesis based on
temporal order only

M CMI of top-scoring speech
and pen input recognition
hypothesis based on the
closest time only

0 CWIl of top-scoring speech
and pen input recognition
hypothesis based on the
Viterbi Alignment

Figure 5.6: Performance of the cross-modality integration (CMI) in the training and

test sets.

We also applied the cross-modality integration procedure to each multi-
modal inquiry in both training and test sets, according to manual (which is
considered as perfect) and imperfect speech and pen transcriptions (which
contain errors). In this way, we can analyze the reliance of the cross-modality

integration procedure on speech and pen gestures recognition accuracies. Per-
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formance statistics of the cross-modality integration procedure are shown in
Table 5.14 and Figure 5.7. Since the overall pen gesture recognition accuracy
is relatively high (i.e. 86.6% of the pen gesture inputs can be recognized cor-
rectly) ,the performance difference between cross-modality integration with
oracle transcriptions (i.e. perfect) and recognition hypothesis (i.e. imperfect)
of pen inputs is small (i.e. comparison between the third and forth rows; and
the last two rows of Table 5.14). However, since the overall speech recogni-
tion accuracy is relatively low (i.e. speech recognition character accuracy of
44.6%), the performance difference between cross-modality integration with
oracle transcriptions (i.e. perfect) and recognition hypothesis (i.e. imperfect)
of speech input is larger (i.e. comparison between the third and fifth rows;
and the forth and the last rows of Table 5.14). If we assume that there is
linear correlation between the performance of cross-modality integration and
overall speech recognition accuracy, the goal of overall speech recognition accu-
racy need to be 77.3% and 90% so as to achieve an cross-modality integration

performance of 80% and 90% respectively (as shown in Figure 5.8).

5.4 Chapter Summary

In this chapter, we have described our work in semantic integration of mul-
timodal user inputs that consist of speech and pen gestures. Partial inter-
pretations from individual modalities are combined using Viterbi alignment,
which enforces the constraints of temporal order and semantic compatibil-
ity constraints in its cost functions to generate an integrated interpretation
across modalities for overall input. Experiments show that this approach can
correctly interpret around 98% and 96% of the multimodal inquiries in our
training and test sets respectively. We have also performed a comparative
analysis of multimodal (MM) user inputs together with their semantically

equivalent unimodal (UM) counterparts. These are generated by the cross-
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E CMI of oracle transcriptions

in both modalities based on
the Viterbi Alignment

CMI of oracle transcriptions
of speech and pen input
recognition hypothesis
based onthe Viterbi
Alignment

CMI oftop-scoring speech
recognition hypothesis and
oracle transcriptions of pen
input based onthe Viterbi
Alignment

CMI oftop-scoring speech
and pen input recognition
hypothesis based on the
Viterbi Alignm ent

Figure 57 Performance of the cross-modality integration (CMI) in the training and

test sets
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Figure 5.8: Plot of the relation between the performance of cross-modality integra-

tion procedure and overall speech recognition accuracy.



CHAPTER 5. CROSS-MODALITY SEMANTIC INTEGRATION 127

modality framework proposed. We trained a class trigram language model
with 1,450 multimodal and unimodal speech utterances and compared the
perplexities (PP) between parallel multimodal and unimodal test sets (with
422 utterances each). We observe that the speech components of multimodal
expressions are generally shorter with lower lexical variability than their uni-
modal counterparts. Comparison with, per-utterance perplexities affirms the
relationships of complementarity and redundancy across the speech and pen
modalities. One subset of our data exhibits the equality of ppmm = PPUM)
and consists mainly of multimodal expressions where speech and pen modal-
ities carry redundant semantics. The other subset exhibits the inequality of
{PPMM < PPUM) where the speech and pen modalities carry complemen-
tary semantics. We also observe the occurrences of ellipsis, where certain
semantics appear in one modality but not the other, and forms a special case
of complementarity. These observations have implications on the choice of
fusion architectures for multimodal input interpretation. In practical situa-
tion, speech and pen gesture inputs contain recognition errors and spurious
inputs. Our Mandarin speech recognizer has an overall character accuracy of
44.6% and the pen gesture recognizer has an overall gesture type recognition
accuracy of 86.6%. Application of the cross-modality integration framework
on the imperfect recognition outputs shows that the proposed framework can
correctly generate alignments between SLRs and pen gestures for around 51%
and 54% of the multimodal inquiries in the training and test sets respectively.
Analysis shows that complementarity relation between SLRs and pen gestures
can salvage the performance of cross-modality integration in the present of

recognition errors.
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Number of multimodal inquiries
Number of multimodal inquiries that contain SLR(S)

Cross-modality integration of oracle transcriptions in
both modalities based on temporal order only (i.e.
align one-by-one)

Cross-modality integration of oracle transcriptions in
both modalities based on the closest time only (i.e. si-

multaneous or smallest time lag)

Cross-modality integration of oracle transcriptions in
both modalities based on the Viterbi Alignment in
Chapter 5

Cross-modality integration of top-scoring speech
and pen input recognition hypothesis based on

temporal order only

Cross-modality integration of top-scoring speech
and pen input recognition hypothesis based on
the closest time only (i.e. simultaneous or smallest
time lag)

Cross-modality integration of top-scoring speech
recognition hypothesis and recognized pen inputs
based on the Viterbi Alignment in Chapter 5 and in

the Table 5.1 in Section 5.1

Training Set
1002
968

67.3%
(651/968)

75.1%
(727/968)

98.1%
(950/968)

28.8%
(279/968)

34.3%
(332/968)

51.1%
(495/968)

128

Test Set
440
434

64.1%
(278/434)

74.4%
(323/4349)

95.9%
(416/434)

27.4%
(119/434)

32.9%
(143/434)

54.4%
(236/434)

Table 5.12: Performance of the cross-modality integration, measured in terms of

percentage of correctly aligned expressions in the training and test sets.
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Reference transcriptions:
Si0E “HRATERVHIEL B EPUERE" HEA 7
P: 0000
{four repeated circles)
How much time will it take from  "my current loca-

tion" to ‘"these four universities ?"

Top-scoring speech and pen recognition hypotheses:

SIPERT “HRAERIMLTT” B CiEsk T B Y
P: O +O(two repeated
How much time will it take from ‘'here" to these
Hypothesis lists of recognized speech input:
SLRI: EXISTING_[ OCATION=IE EHJH T current

Fi 7€ #. my current  location
SLR2: DEICTIC=3= #&([&#l. /7 these locations
NUM"plural
LOC_TYPE=nil

bww University of Science and Technology

qjﬂﬁ%fj(% China  University of Geo sciences

B % B& Xueyuan Road
s\ R N R Bahang  University
t‘:‘;_r'_\%‘j@]'j@ Beijing Medical University
ERZEI Bejing  Aviation Museum
EEE=[5E Peking  University =~ Third Hospital

ftE;j BB% Huayuan  North  Road

(all locations on the map  shown)

CROSS-MODALITY SEMANTIC INTEGRATION

and two

locations"?

location

Beijing

129
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Hypothesis lists of recognized pen input: ({ocations ranked by distance m
pixels)
Penl : TYPE=CIRCLE
; 'b,_‘%‘?ﬁf‘@:zfﬁ‘wﬁ University
[:;‘%‘?H%ﬁg Beijing  Aviation Museum
Pen2 : TYPENPOINT
qji{ﬂ%fj('% China  University of Geosciences
B % }& Xueyuan Road
Pen3: TYPE—POINT
; 't}?ﬁ\lﬁﬁ@ University of Science and Technology Beijing
B 52 B% Xueyuan Road
Perd :  TYPE=CIRCLE
CEREERERE. Beipng  Medical University
A-B2=[5 Peking  University =~ Third Hospital
Generated unimodal paraphrase:
fEM CFTER” 2 CIUREATENIARE” TREBE RS dERTRHSORE”
FERE BHZA 7

How much time will it take from "my current  location" to “Beihang University",
"China  University of Geosciences" » "University of Science and Technology Beijing",
"Beijing  Medical University"?

Remark: Mis-recognition of SLRI  does not change its semantic meaning and does

not affect the integraiion process. The lost of LOC.TYPE feature of SLR2 leads to
generation of a longer hypothesized list of locations. The alignment between four
pen gestures and SLR2 can compensate the lost of NUM feature of SLRZ2. Due to
the complementarity between speech and pen modalities, we can generate correct

ummodal paraphrase.

Table 5.13: Examples on the correct integration with the present of SLR recognition

error.

el



CHAPTER 5. CROSS-MODALITY SEMANTIC INTEGRATION

Number of multimodal inquiries
Number of multimodal inquiries that contain SLR(S)

Cross-modality integration of oracle transcriptions in
both modalities

Cross-modality integration of oracle transcriptions of
speech and recognized pen inputs

Cross-modality integration of top-scoring speech
recognition hypothesis and oracle transcriptions of pen
inputs

Cross-modality integration of top-scoring speech

recognition hypothesis and recognized pen inputs

Training Set
1002

968

98.1%
(950/968)
94.5%
(915/968)
53.7%
(520/968)

52%
(506/973)

Test Set
440

434
95.9%
(416/434)
92.4%
(401/434)
55.8%
(242/434)

52.4%
(225/429)

Table 5.14: Performance of cross-modality integration, measured in terms of the

percentage of correctly aligned expressions in the training and test sets based on

the Viterbi Alignment in Chapter 5 and Table 5.1 in Section 5.1.
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Hypothesis Rescoring for
Robustness towards Imperfect

Transcriptions

The cross-modality integration procedure has demonstrated reasonable per-
formance (around 97% accuracy) in aligning spoken locative reference (SLR)
expressions with pen gestures in oracle-transcribed multimodal inputs. These
transcriptions are essentially perfect. However, the performance drops to
around 50% under practical situations with spurious pen gestures and recog-
nition errors in both modalities. These imperfections have adverse effects on
cross-modality integration. Therefore, in this chapter, we describe our attempt
to extend the cross-modality integration procedure with the use of multiple
recognition hypotheses in order to achieve robustness towards recognition er-
rors. Consider the scenario in which a speech recognizer generates iV-best
hypotheses based on the speech input, while the pen gesture recognizer gen-
erates M-best hypotheses based on the pen input. The hypotheses are rank
ordered according to their recognition scores in each individual modality. As

such, we will have N x M possible candidates for cross-modality integration.

132
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In designing a rescoring mechanism for comparing these candidates for inte-
gration, we should consider such elements as the quality of the recognized
spoken locative references, the quality of the interpreted pen gestures and the
quality of the alignment. Figure 6.1 shows the system architecture of the
extended cross-modality integration framework (i.e. cross-modal integration
with hypothesis rescoring). We will elaborate on these points in the following

subsections.

Client

interface (with pen .
gesture recognizer) Top~scoring Cross-modsd  Interpretation

Figure 6.1: The system architecture of cross-modality integration with hypothe-
sis rescoring, which can be the front-end multimodal processing framework for an

existing unimodal dialog system.

6.1 Pruning and Scoring the Recognized Spoken Inputs

The speech recognizer can generate an iV-best hypothesis list of speech recog-
nition transcripts. However, the recognizer may generate non-sensical hy-
potheses in the TV-best hypothesis list. We devise a pruning strategy based on

perplexity to filter out non-sensical transcriptions. A recognition transcript
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with a small value of perplexity is more likely to have a reasonable interpre-
tation. This is because the hypothesized word sequence generally conforms to
the predictions by the n-gram language model. Hence our pruning strategy
targets the opposite cases-hypotheses with large perplexity values exceeding a
preset threshold are filtered.

The speech component of a multimodal input expression may be tran-
scribed by speech recognition as a hypothesized word sequence with R spoken
locative references (SLRs). For a segment of the speech signal with specific
start and end times, we may observe transcriptions across the iV-best (iV = 100
in this work) speech recognition hypotheses. Let denote the rf/, SLR in one
of the speech recognition hypotheses, which is also the transcription of a spe-
cific speech signal segment. We may score the quality of this transcription by
defining the normalized cost (7)) SV[?V) for the recognized SLR V) a shown
in Equation 6.1. is the number of times the speech segment is tran-
scribed as Sr across the TV-best speech recognition hypotheses {N = 100) and
I ]AH is known as the iV-best purity  of the SLR s where purity values range
between zero and one. The higher the purity, the more preferable the SLR S”
and the lower is the normalized cost of the speech transcription
Table 6.1 presents an illustrative example on the normalized cost
for recognized SLR Sr while the complete list of speech recognition hypotheses

is shown in Table D.l in Appendix D.

= 6.1)

lit is conceivable that should a pen gesture recognizer be used to generate M-best recognition

hypotheses, a similar M-best purity may be incorporated in the cost function for the pen modality.
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Reference transcription
& B RIGER] EAET —HFEZAX
How much time will it take from ‘'here", to ‘these places” in  sequence?
Speech recognition hypotheses
& B RICER] “ERERTT R HEESA
& “ER RIGER] ERENTTT SHBEZA

47 f& “EH RICER] "B EREEEZA
48 # ES RICER] EAERTTT MIRERES A

68 & “EBH" IRICGERIRME “EHT EIR—-HBESA
69 f& “ER RIGER] "ERERTTT FEHRBEZA
70 fe "B IRIGEFIRITS "EAET ER—HEEZA
7 B CER RICER] BT FREHEES A
72 fie "ERT RIGERIGHE EET R HAFESIA

77 & "B RICERIRME "EET EEHFEIA
8 fie "B RICER] EREM T RRIFEEZ A
79 & "B IRICER] "B EREEESA
80 fie “ERT RICERIRITSS BT EEHBEESIA
81 & "B IRICERIGHE EE FEEFEZA
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98 e BT RTGER] “ERER T M HLFEEZ A
99 7t ERT MRIGERITE “BREMTTT AARE
100 ff ERTKIGER] EAENE ABARHA

Remarks In this example, the first SLR has been transcribed as “’Z5.” (i e here)

S

for 100 times across A™-best speech recognition hypotheses (TV = 100) Therefore,

its cost IS

The second SLR has been transcribed as “i2%&({E} 75" (i e these places) or “ig
# (1 e nere) for 94 and 6 times respectively across iV-best speech recognition
hypotheses Therefore, the cost for “iZ 2&([E il /5" (i € these places) is

CsiSTf[N]) =1- 7 =1-2=0 006

PTREN

and the cost for “iZ#" (ie here) is

CsiSrIN])) = 1- 7 =1—4 =0%

Table 6 1 An example showing the normalized cost of each recognized SLR based

on Equation 6 1 for the A*-best {N = 100) recognition hypotheses
6.2 Filtering and Scoring the Recognized Pen Inputs

We find that subjects tend to repeat a pen gesture in referring to a location
until it IS highlighted on screen We have designed a filtering mechanism
to remove the repetitions The filtering mechanism references the time and

distance between two gestures as follows

point If a pen gesture shows the x and y coordinates within a short amount

of time and a short distance, the later one is filtered out

circle If a pen gesture shows the four corners (ie maximum and minimum
values of x and maximum and minimum values of y) within a short

amount of time and a short distance (as illustrated in Figure 6 2), the
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later one is filtered out.

stroke If both of the endpoints (i.e. one for pen up and one for pen down)
show the X and y coordinates within a short amount of time and a short

distance, the later one is filtered out.

Difference between maximum value of y
for two circles

Difference between t«
minimum value of x I
for two circles ;

Difference between
maximitm value of x
for two circles

Difference between minimum value of’)»
for two circles

Figure 6.2 An illustration on the comparison between the four corners (i.e. max-
imum and minimum values of x and maximum and minimum values of y) of two

circles.

The simple pen gesture recognition algorithm mentioned in Section 5,3.2
can only generate a single output hypothesis. In order to generate the M-best
pen gesture hypotheses,” we relax the constraints in pen gesture recognition
and generate all possible pen gesture types as the pen gesture hypotheses.

A multimodal input expression may be transcribed as a sequence of Q pen
gestures with recognized pen gesture type. Each is interpreted as a list of
hypothesized locations, i.e. Pg for the g“* pen gesture in the input expres-

sion. The interpretations are based on locations on the map that lie within

AThe maximum value of M (i.e. the maximum number pen gesture hypotheses generated) is 4

in this work.
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a maximum distance dmax (empirically set at 42 pixels based on the training
data) from the coordinates of the pen gesture and are rank ordered based
on these distances <4g->m>where k indexes the hypothesized locations in Pq
and may range from 1 to Kg'm\ and m indexes the hypothesized pen gesture
types generated by the pen gesture recognizer and M = in current work.
To score a particular interpretation Pg[m,j] in the hypothesized list of the
m hypothesized pen gesture type of interpreted pen gesture g, we define the
normalized cost of interpretation for the pen modality CpfPqim,j) as shown
in Equation 6.2. The smaller the distance dig 'm, the lower the normalized cost
Cp{Pq[m.j]) and the more preferable the interpretation for the pen gesture.
The normalized costs of the Kg-m hypothesized locations in Pq will sum to 1.
Table 6.2 shows an illustrative example of the normalized costs of different in-
terpretations of a pointing gesture. Hypothesized locations for the circle must
have their coordinates enclosed by the circle. The locations are rank ordered

based on their distances away from the circle's center.

Cp{P,[m,j])= Kd — (6.2)

=/

where dkgm is the distance between the coordinates of the pen gestures and
hypothesized location k
Kg'm is the total number of hypothesized locations for pen gesture g
within a maximum distance of d”*ax
M is the total number of pen gesture type hypotheses recognized by

our pen gesture recognizer

"We choose M = 4 because the pen gesture recognizer can generate four pen gesture type,

including POINT, CIRCLE, STROKE and MULTI-STROKE.
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Reference:

5 “iBEF” BIBARCEERE  opening  hours of  "here’
P.

List of hypothesized locations:

1 %%Q} Shuangxiu Park

2 O 4 K Xmjiekou Outer  Street

3 4t =8 North

Third Ring  Road

4 jtkzﬁféj North  Taiping Bridge

5 B ASEHPE North  Taipingzhuang Road
6 DT HHIELAER Bejing  Normal University
KA Qo 1=
E = 4,1,1 0+9+10+11+28+46 = 104
Co{Pall ]
Cp(Pqfl,2 = = 009
0.

Cem . N
ORl .5 —_10I4 ) nUZZ7
Cp{Pgll,6 T E T 0.45

TOWARDS IMPERFECT TRANSCRIPTIONS 139

dk,gm (“n  pixels)
dijiji = 0

M211 - 9

Table 6.2: An illustrative example for the calculation of normalized cost for the

top-scoring (i.e. m — 1) recognized pen gesture. In this example, the multimodal

is transcribed as a sequence of one pen gesture (i.e.

hypothesized locations in total (i.e. Kghi = 6)

Q — 1) and there are six
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6.3 Pruning and Scoring Cross-Modality Integrations

The cross-modality integration procedure described in Chapter 5 incorporates
a simple cost function for the Viterbi algorithm that penalizes for mismatches
m directly referenced locations, Loc_TyPeE and Num features High accura-
cies in cross-modality alignment were obtained based on near-perfect multi-
modal input transcriptions However, in handling the imperfect N-best speech
recognition and M-best pen recognition outputs, we need to enforce tighter
constraints on semantic compatibility We have established via the perplexity
measure (in Section 5 2) that direct references should be semantically redun-
dant Wwith the corresponding pen gestures Additionally, indirect references
should be semantically compatible  With their corresponding pen gestures
Hence we propose to incorporate a pruning  mechanism  for candidate inte-
grations which involve mismatches in locations between interpreted pen ges-
tures and direct references in speech, or mismatches in the Loc—TYPE and NUM
features between interpreted pen gestures and indirect references m speech
Table 6 3 presents an illustrative example The top-scoring speech recognition
hypothesis contains the direct reference & % {BMU, Bejing  Medical Univer-
sity) while the second best contains % (BUPT, Beijing  University of Post
and  Telecommunications) instead However, since the corresponding pen ges-
ture (first gesture) is a point with positional coordinates that coincide with the
BUPT icon (such that the distance di = 0), cross-modality integration prunes
the top-scoring speech recognition hypothesis and selects the second-ranking
speech recognition hypothesis due to its compatibility with pen gesture
Candidate integrations that survive the pruning mechanism will each have
a Viterbi alignment cost cAsR  pQ) (see Chapter 5, Table 51) sr s the
hypothesized transcription of the speech input that contains R recognized
spoken locative references PQ IS the hypothesized transcription of the pen

input that contains Q interpreted pen gestures We define the normalized
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Top-scoring {n — 1) speech recognition hypothesis (pruned because of the  mismatch

in location  between the first interpreted  pen gesture and the first direct  SLR)
5oy tIbET EEE] MR F) JRRPRT F) CIONT R ER CIhEET AR
P:

Second best (n = 2) speech recognition hypothesis

5. “JRES”T B “HORT F] IERERT ] CILAT EAREIES AR AA(HEE

P. . . . . .

Interpretation of the first pen gesture

Point
) ]t‘j‘}‘?ﬁﬁ%‘éﬂ(@ Beijing University of Post and Telecommunications d =Q
P8 I & Fresi Tucheng Road m=18
B E& JCuyuan South Road Mm-27.79
1 CEETELAEE Bejmg  Normal — University ar = 31

Table 6.3: An illustrative example of the pruning mechanism for candidates for
cross-modality integrations. The first SLR of the top-scoring speech recognition
hypothesis is the abbreviated name of ‘Bejing  Medical ~ Unwersity” while the first
SLR of the second-best speech recognition hypothesis is the abbreviated name of

‘Beipng University of Post and Telecommunications
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cost of integration CSR" Pq), where the subscript / denotes "integration", as
shown in Equation 6.3. maxjCyi} is the maximum possible Viterbi alignment

cost that is empirically obtained from training data.

N fQ p CA{Sr,PQ) (63)

6.4 Rescoring Cross-Modality Integrations

Recall that in the current work, the speech recognizer is set to generate N-
best hypotheses {N = 100) and the pen gesture recognizer generates M-best
pen gesture hypotheses (M = 4). Cross-modality integration begins with a

pruning process:

For each candidate, we apply cross-modality integration to its pair of
hypothesis lists (SR*PQ). Should these include incompatible semantics,

the candidate is pruned (see Section 6.3 for details).

Surviving candidates (i.e. pairs of recognized speech and recognized pen hy-

pothesis) are rescored with the following procedures:

1. If the candidate survives, we compute its normalized cost of integration

cl{sR,pPQ based on Equation 6.3.

2.  We focus on the hypothesized transcription of the pen input PQ For
each of the Q interpreted pen gestures (indexed by g), we select the
interpretation jq that is semantically compatible with its aligned SLR
and compute the normalized cost of pen interpretation Cp{Pqg[m,jq])
(see Equation 6.2). Should there be multiple semantically compatible
interpretations, their normalized costs are summed. The overall cost of
interpreted pen gestures for PQ is defined as:

1 a



HYPOTHESIS RES CORING FOR ROBUSTNESS

CHAPTER 6. TOWARDS IMPERFECT TRANSCRIPTIONS 143
3. We focus on the hypothesized transcription of the speech input SR. For
each of the R recognized SLRs (indexed by r), we compute its normal-

ized cost of recognized SLR, i.e. (see Equation 6.1), which is
derived from the iV-best purity. The overall cost of recognized SLR for

SR is defined as:

1 H:
(6.5)

r=1
4. The rescoring function that is used to evaluate each candidate for cross-
modality integration is a linear combination of the three normalized cost
functions relating to the alignment, interpreted pen gestures and recog-

nized SLRs, i.e.

CTOASR PQ = WICKHSR PQ) + wpCpiCp) +  wsCsiSji) (6.6)

where 0< W/,wp,ws < | and Wj wp+ ws = |

We select values for the weights wj, wp and ws, by grid search to maximize
cross-modality alignment accuracies based on the training data. The values
selected are w/ = 0.5, wp = 0.35 and ws = 0.15. The "optimized" weight
of the pen modality is higher than that of speech modality, possibly due to
higher pen gesture recognition accuracies, as compared with the speech recog-
nition accuracies. All candidates for cross-modality integration are rescored
according to Equation 6.6 and re-ranked in ascending order of scores. As men-
tioned in Section 6.1, a recognition transcript with a small value of perplexity
is more likely to have a reasonable interpretation. Therefore, if there is a tie
in the scores after re-ranking, the candidates will be ranked in ascending order
of their perplexity. The candidate with minimum overall cost CTOASR PQ) is
identified as the preferred cross-modality alignment. An illustrative example
is shown in Table 6.4 and complete list of speech recognition hypotheses and

their overall costs cromise,  rPq) is shown in Table E.l of Appendix E.
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Reference transcription

S;fE "ER RIGER] EREHTT —HFEZA

P:

W

How much time will it take from here, to these places in sequence?

SR Hypothesis Pairs and cromise,  rq) HR
rank rank
1 SHE TERT RIGER] BT R—HEESA 8
P . T
CTOASR.PQ) = WICI{SR,PQ) + WPCP(PQ)  + WSCS{SR)
=0.5 = ? + 0.35. (otot+poto) +0.15-(%F" - A) — 0.0045
pevm = 23.03
2 508 "R IRIGEE] “EAMEM T GHBEZA 20
P: - A
CROTISRPQ) = 0.5.? + 0.35. (ototg+0+0) + 0.15. = 0.0045
pPvm - = 30.89
a7 SHE TERT RIGER] “EAMEMTT ERHEEES A 36
p:

CTOTISN, Pqg) = 0.5 «+ ? + 0.35 + (ot+ot+/ o+0) + 0.15 . (0+0.06) = " QQ"S

pPvm = 45.36
48 S;# “IEH RIGER] “E&EH T IREREES A 88
P: . . .mE

cromisk,  Pq) = 05. 7 + 0.35 ¢ (otot'ototg) +0.15- (%[ [=60.0045

v = 124.07
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68 5: "ERT RICEEIRME B EIR—HFEZIA 9%

P:

ctotisn, pPg) = 0.5-f + 0.35. (o+totg+o+o) + 0.15 «( - + 7 - H=00706

PPMM = 79.69
69 5:0¢ "B RIGET] BREH ST FREFEZ A 45
P:

CTotfSRPQ) = 05. 7 + 035 (, 0 0+0) + 015. ( -+ ) =0.0045

P MM = 51.11
70 SHE “BR MIGERRITS BT R —HFEEZ A 98
P: . 2B

ctotisr,Pg) = 05 ? + 0.35.C+o+"0+0) +0.15-(1)+" I =Q

PPMM = 102.15
71 58 “EH RICER] ERMEMTT REHEEZ A 86
P..

crorisr, Pa) = 05. 7 + 0.35 ¢ (HOHB0+H0H0) 0151 K7 © o ...=0.0045

pPvMm = 11551

72 S5:/f¢ “EHT IRICER SR EET ER—RFEEEX 96
P: . EZ
crotisr,pqgg =05.7? +035. (o+°4 240 +0.15- - %)= QOB
PPMM = 84.15

1 Sift “EHT MRAIGETEME EET FAETEES X 97

P . e o o o

: CTotiSR, PQ) = 0.5 F + 0.35 « (404 °40) +0.15 - (°+ ¥) " 0.0705

s PPMM = 99.8442
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8 S “ERT IRICER] BT KR FFEL A 29
P . s &
crotisr.  Pg) -0.5. ? 4-0.35. (EA+00 + 0.15 . = 0.0045
PPmm = 42.46

7 S “ERT IRICER] BT R HFES A 48
P: 5
ctot{sr,Pgg =05. 7?7 + 035 (oto+tgtot+o) +0.15- . 0.0045
PPmm = 55.80

80 5.0 "ERT IRTCGERIRITS EET EEHREESA 100
P: .

81

CTot{Sn, PQ) = 0.5. ? + 0.35 « ¥+ e o)+ 0.15. A~ A~ = 0.0705

PPmm = 127.99
5,78 “ERT IRIGEFGHE EET FEETEESA )
crotisR, PQ - 05.7? +035¢_+g+0+0) + 015« = 0.0705

ppmm = 10544

St "ERT RGER] EAERT M-HEESA

P . o Ee
crotisR, PQ) = 0.5.?7+ 0.35. (ototgt. +0) + 0.15. - 0.0045
PPmm = 3.03

P CER IRIGERIE ERERTTT BAREA 71
P.
CTot, SR, PQ) = 0.5« ? + 0.35 + (0+0+™0+°) +0.15-~ ~ = 0.0045

PPMM = 81.89
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W sk BR RIUES ERETT AATEA &
P: . .. .
CTOl(SR.PQ) 05.f+03H ¢ (otot+0) + Q15 « (, +Y - 0006
e = 11516

Table 6.4: An example illustrating the hypothesis rescoring process of based on the
N-hest  speech recognition hypotheses (v = 100) listed in Table 6.1. The second
SLR, these places, should have NUM=plural, which can be aligned with more than
one pen gestures. Another possibility of the second SLR is nere, which should have
NUM-=nil and can be aligned with any number of pen gestures. All the five pen ges-
tures incur no cost because their coordinates coincide with the respect icons/labels.
Each candidate for cross-modality integration is rescored and then the updated rank

is shown for each candidate. The 98i}j hypothesis pair ranked top after rescoring.
6.5 Evaluating the Rescoring Procedure

The application of the rescoring procedure to the candidate hypotheses for
cross-modality integration has brought some improvements to the alignment
accuracies in the training and test sets of our multimodal corpus. Table 6.5
and Figure 6.3 summarizes the results of the percentage of correctly aligned
expressions. These are expressions for which our framework can generate uni-
modal verbalized paraphrases that are semantically equivalent with the orig-
inal multimodal expressions. Improvement in integration accuracies brought
about by cross-modality hypotheses rescoring is statistically significant from
51.1% to 71.8% for the training set and from 54.4% to 72.8% for the test
set. Further analysis of our results (see Table 6.6) shows that there can be
correct cross-modality integration despite recognition errors in speech and/or
pen modalities. The TV-best hypothesis rescoring framework can effectively

re-rank the hypothesis pairs to obtain correct integration, as illustrated by the
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examples in Table 6.7

100%

90%

80%

30%

20%

10%

a1 81| Nl N[ QB[ ]
— —_—E— e >

iy
v

4

Training Set

Test Set

B CMui of oracle transcriptions
m both modalities based on - -
the Viterbi Alignment

* CM| of top-scoring speech
and pen input recognition
hypotheses based on the
Viterbi Alignment

H Top candidate obtained
after CM | with hypothesis
rescormg of top-sconng
speech and M-best iM=4)
pen recognition hypotheses

¢ Top candidate obtained
after CM | with hypothesis
rescormg ofA/-best (AM 00)
speech and top-scoring pen
recognition hypotheses

m Top candidate obtained
after CM | with hypothesis
rcsconng ofAZ-best (N=100)
speech anddthest (4=4) !
pen recognition hypotheses

Figure 6 3 Performance of cross-modality integration (CMI) in the training and

test sets

In addition, analysis of the incorrect alignments (as shown in Table 6 8)

after re-scoring and re-rankmg suggests that the incorporation of finer cross-

modality timing information will be helpful

Such timing information should

be used judiciously since the modalities are not necessary simultaneous and

user's integration pattern may vary during the interaction [51] A possible

extension on this work is to detect the subject's integration pattern (i e si-

multaneous integrator or sequential integrator) and incorporate the timing

information in the semantic integration framework for simultaneous integra-

tor
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Furthermore, a good number of the errors are associated with the recog-
nized SLR 72 5.(i.e. nerey having an unspecified NUM feature and can thus
be aligned with an arbitrary number of pen gestures. Making the assumption
of NUM= 1 should be helpful for error recovery. This is because analysis of
the cross-modal integration patterns in the manually  transcribed ~ training set
(see Table 4.8) shows that 94% or the unspecified reference (i.e. here) is used
to referring single location. Application of this assumption (i.e.ZZ# or here
has NUM=1) shows that although it cannot improve the performance of the
cross-modality semantic integration framework, it can provide a more specific

alignment cost for the hypothesis pairs for rescoring as shown in Table 6.9.

6.6 Chapter Summary

In this chapter, we present a hypothesis rescoring framework pertaining to
achieve robustness towards imperfect transcripts. For each multimodal ex-
pression, this procedure considers all candidates for cross-modality integra-
tion based on the iV-best {N = 100) speech recognition hypotheses and the
M-best (M = 4) pen input recognition hypotheses. Note that the single rec-
oghized pen gesture can generate Q location hypotheses that are fed into the
cross-modality hypothesis rescoring procedure (see Equation 6.2). Rescoring
combines such elements as the integration scores obtained from the Viterbi
algorithm, TV-best purity for recognized spoken locative references, as well as
distances between coordinates of recognized pen gestures and relevant icons
on the map. Experiments using the TV-best {N = 100) speech recognition
hypothesis and top-scoring (M = 4) pen recognition hypotheses show that
the rescoring and re-ranking helped improve the performance of correct cross-
modality interpretation from 51.1% to 71.8% for the training set and from

54.4% to 72.8% for the test set.
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Number of multimodal inquiries
Number of multimodal inquiries that contain SLR(S)

Cross-modality integration of oracle transcriptions in both
modalities based on the Viterbi alignment in Chapter 5

Cross-modality integration of top-scoring speech and pen
gesture recognition hypotheses based on the Viterbi align-

ment in Chapter 5

Top candidate obtained after cross-modality integration and
rescoring of the top-scoring speech recognition hypothesis
and M-best pen recognition hypotheses (M = 4)

Top candidate obtained after cross-modality integration and
rescoring of the iV-best speech recognition hypotheses (N =
100) with the top-scoring pen gesture recognition hypothesis
Top candidate obtained after cross-modality integration and

rescoring of the n-hest  speech recognition hypotheses v =

100) with the M-best pen recognition hypotheses (M = 4)

Training
Set

1002

968
98.1%
(950/968)

51.1%
(495/968)

55.3%
(535/968)

65.9%
(638/968)

71.8%
(695/968)
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Test Set

440
434
95.9%
(416/434)
54.4%
(236/434)

57.6%
(250/434)

67.1%
(291/434)

72.8%
(316/434)

Table 65: Performance of cross-modality integration, measured in terms of the per-

centage of correctly aligned expressions in the training and test sets. Improvements

in integration accuracies brought about by cross-modality hypotheses rescoring is

statistically significant from (1) top-scoring hypotheses from speech and pen to top-

scoring hypotheses from speech and M-best hypotheses from pen; (2) top-scoring

hypotheses from speech and pen to iV-best hypotheses from speech and top-scoring

hypotheses from pen; (3) top-scoring hypotheses from speech and pen to iV-best hy-

potheses from speech and M-best hypotheses from pen (a: 0.01, two-tailed z-test)

as shown in Appendix F.
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Pen recog-

nition

Correct
Correct
Incorrect

Incorrect
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SLR recog-

nition

Correct
Incorrect
Correct

Incorrect

Number of in-
quiries in the test

set (440 in total)

98/434 (22.6%)
260/434 (59.9%)
421434 (9.6%)
34/434 (7.9%)

Overall

Correct integra-
tion with top-
scoring hypothe-

ses from each

modality

98/98 (100%)

98/260 (37.7%)
29/42 (68.3%)
11/34 (32.4%)

54.4%

151

Correct integra-

tion with iV-best
(N = 100) speech
recognition  hy-
potheses and
M-best (M —4)
pen recognition

hypotheses
98/987 (100%)
159/260 (61.1%)
39/42 (92.7%)
20/34 (58.8%)

72.8%

Table 6.6: Detailed performance statistics of the test set. Improvements in integra-

tion accuracies brought about by cross-modality hypotheses rescoring is statistically

significant in the presence of speech and/or pen recognition errors (q;= 0.01, two-

tailed z-test) as shown in Appendices F.4, F.5 and F.6.
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Example 1 (with SLR recognition errors):

Reference transcriptions :

5:1¢ “iEH” B ENERE" HEHA P

How much time will it take from  ‘here” to ‘'these four universities ?"
Top-scoring speech and pen recognition hypotheses :

5.0 B B BT WHA?

P: . e . &

how much time will it take from "here" to ‘"these locations* ?

Remark: the reference  SLR,iE#,has the same semantic meaning  as i K
(ie. "here") and does not affect the subsequent cross modality  integration. The

numeric  and the location type features are lost during recognition of the second
SLR ‘these locations - ,. The proposed framework can find out the correct align-
ment and extract the name of the four universities based on the complementary

relation  between the modalities.

Example 2 (with pen gesture recognition error!(]
Reference transcriptions:

SHE “EH E-EEZA?

P: Ofuser drew a flat circle to indicate a street)
how long will it take to stroll around ‘here"?
Top-scoring speech and pen recognition hypotheses:

St “EMAT E-EESA?

P. —A [pen gesture  mis-recogmzed as a stroke to indicate a street)
how long will it take to stroll around ‘here” ?
Remark: The pen interpretation method in Section 4-4 can identify the street as

indicated by the mis-recogmzed pen gesture and hence the recognition error  does

not affect the cross-modahty semantic  integration process.
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Example 3 (with SLR and pen gesture recognition errors):

Reference transcriptions

5. “EBEAE" TR B

P: « (a big point within the icon of a park)

what IS the opening hours of 'this park"?

Top-scoring speech and pen recognition hypotheses:

S0 "ERT AEMTERER T

P . O (a circle within the icon of a park)

what IS the opening hours of ‘here” park?

Remark: Although the numeric and location type features are missed in the rec-
ognized SLR and the point is mistaken as circle by the pen gesture recognizer,

the framework can integrate the two modalities correctly  and identify the park

indicated by the user.

Table 6.7: Examples on the correct integration with the present of SLR and/or pen

recognition error.
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Reference transcription:
5.3fF "EMT 1 TEAT =HE s —4t

P. . o oo .

e

EE 2N

I'm now at ‘here-,. How much time will it take from ‘"here 6 to ‘theses  places”?
Result of Cross-Modality Integration after Hypothesis Rescoring:
HWAE BT ERT =R RS —HFERZIA

P. . . o o .

Table 6.8: An example on the incorrect alignment due to the presence of NUM=plural
(from “these places,) and missing of timing information during integration. Since
NUM feature of these places 1is plural, which can align with more than one pen
gestures  Without a specific number, our framework align one of the pen gesture to

the anaphora (i.e. the second ‘here,. in the spoken input.

Reference transcription:

5.8] B 5" M BT AR EE

P: ry )

Visit  “these places" and ‘here’. What are the possible routes?

Result of Cross-Modality Integration after Hypothesis Rescoring:
5.7 “iEibih " Al “IEHET AT AREE

P: e c s

Table 6.9: An example on the incorrect alignment due to the presence of unspecified
NW feature (i.e. NUM=nil). Since NUM feature of here is unspecified, it can align

With any arbitrary  number of pen gestures Without penalty.



Chapter 7

Latent Semantic Analysis for
Multimodal User Input with

Speech and Pen Gestures

This chapter describes our attempt in developing a semantic analysis frame-
work for multimodal user input with speech and pen gestures. More specif-
ically, our aim is to infer the domain-specific task goal(s) of the multimodal
input. The task goal is characterized by terms used in the spoken modality, as
well as particular term co-occurrence patterns across modalities. Previously,
we have applied Belief Networks [71] [72] for task goal inference based on uni-
modal (speech-only) inputs. Since multimodal input usually has a simpler
syntactic structure than unimodal input [73] and the order of semantic con-
stituents is different in multimodal and unimodal input [17], we apply latent
semantic modeling (LSM) in capturing the latent semantics of the multimodal
user inputs as well as the task goals. As such, LSM is a data-driven approach
that models the underlying semantics of word usages from available corpora.
It has been applied unimodally to text or transcribed speech for language mod-

eling [74], document clustering [75], spoken document retrieval [76], document

155
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summarization [77], etc. This is carried out with the objective of uncover-
ing the associations between (unimodal or multimodal) terms and task goals
through a data-derived latent space.

In LSM, the association between terms (including both lexical and multi-
modal terms) and task goals is represented as a term-task goal matrix. This
can be factorized into a term-semantics and a task goal-semantics matrix us-
ing singular value decomposition (SVD). These two matrices associate terms
and task goals through an automatically derived space of semantics, instead
of directly relating the terms with task goals. Based on the latent semantic
space, we can reconstruct the space of terms and task goals. We can then
examine the structural relations between terms and task goals in the recon-
structed space. There are atotal of nine task goals in our experimental domain.
In the following, we introduce latent semantic analysis, present the collected
multimodal corpus and discuss the process of task goal inference and related

exp erimentation.

7.1 Latent Semantic Modeling of Cross-modal Integra-

tion Patterns

We apply latent semantic modeling (LSM) [78] to capture regularities in terms
(including both lexical and multimodal terms) from a multimodal expression,
in relation to their usage contexts (i.e. task goal in this work). LSM uses
singular value decomposition (SVD) to derive a latent semantic space that
relates terms (combined lexical, gestural and multimodal terms™?) with the
task goals.

AExamples of lexical terms are % X (i e how long),/NEi(i e bus), examples of gestural terms
are < 0 IPOINT | 0 > and < 0 | CIRCLE j O >, and examples of multimodal terms are < & |
STROKE | SIM> (i e <thts street | STROKE | siM>) and <iZ{E#i[E | CIRCLE | SEQ> (le <this area |
CIRCLE j SEQ) )
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7.1.1 Association Matrices

Associations between terms (including both lexical and multimodal terms) and
task goals can be summarized in a term-task goal matrix B. Given M terms
(details of the multimodal terms are presented in Section 4.6) and A task
goals, we form M x A matrix B. Each row represents a term. Each column
represents a task goal. The element bm,a, is the weight (i.e. normalized term
frequency using term frequency-inverse document frequency (TF-IDF™) [79
for the term m in the ajf task goal. The training set consists of 881 terms (i.e.

M = 881). The statistics of lexical and multimodal terms in the training set

are shown in Table 7.1.1). There are nine task goals (i.,e. = 9) in this work.
h, & A

B YMA (7.1)
™M bM, AMA

AMThe term frequency (TF) can be used to indicate the term importance with the assumption
that frequent terms are more important. The inverse document frequency (IDF) can be used to
discount non-discriminative terms - e.g. function words of fy(i.e. of),i(i.e. oh) and E(i.e. is),
etc. This is based on an assumption that discriminating power of a term decreases with the number

of times that the term occurs in the data set.
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where 6nca = (I —Em)=
1 \VERRUN al At
a—? Tm Tm
is the term frequency of term m,
log'~ is the inverse document frequency of term m,
Kma denotes the number of times the term m occurs in the aT-"task goal,
Aqg is the total number of terms in the ar "task goal,
Em denotes the normalized entropy of term m in the data set; and
T-m is the total number of times that term m occurs in the training set.
(7.2)

Number of multimodal terms 567

(SLR and pen) 508

(SLR only) 53
(Pen only) 6
Number of lexical terms 314
Total number of terms 881

Table 7.1: Statistics of lexical and multimodal terms in the training set.

B can be decomposed into a product of three matrices, with methods such
as singular value decomposition (SVD) [78], probabilistic latent semantic anal-
ysis (PLSA) [80] and latent Dirichlet allocation (LDA) [81]. We propose to

focus on the use of SVD of order R, as shown in Equation 7.3.
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B = usvT
;
o Si'i 0 0
o (7.3)
0 .- 0
UMBR UM,R O O SR,R VAR

where U is the term-semantics matrix of dimensions M x R,
S is the diagonal matrix of singular values sorted in descending order
with dimensions R x R,
V is task goal-semantics matrix of dimensions A x R,
R — mm{M, A} is the order of decomposition and

T is the transpose of the matrix.

U and V are the left unitary matrix and right unitary matrix respectively.
Each column of U contains the estimated weight of each term m that corre-
sponds to the latent semantic category r while each column of V"4 contains the
estimated weight of each task goal a that corresponds to the latent semantic
category r. Equation 7.3 projects the space of terms and task goals onto a
reduced i?-dimensional space which is defined by the orthonormal basis given
by the column vectors Um and Vafrom matrices U and V respectively. In
order to collapse the terms that are "semantically similar", we always choose
R' < R. The smaller the value R’ the more pronounced the reduction of se-
mantic redundancy in the latent semantic space. Based on the latent semantic
space, we may re-construct the space of terms and task goals, denoted as B in

Equation 7.4.

BAB = USVT (7.4)
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where S is the reduced diagonal matrix of singular values with optimized

value of R' (i.e. with dimensions R' x BI).

We need to find an "optimal" choice of B! that minimizes the distortion
between the re-constructed space G and the original space G, in the imple-
mentation of Equation 8.4 in the training procedure. Since we have nine task
goals in this work and we aim to analyze the structural relations between terms
and each task goal, we simply choose R' = R = 9, We re-construct the space
of terms and task goals based on Equation 7.4 and examine the structural

relations between terms and task goals in the reconstructed space.

7.2 Task Goal Inference

In Chapter 4, we examined the characteristics of SLR and pen gestures and
the cross-modality associations between SLRs and pen gestures, leading to the
definition of a multimodal term that captures cross-modal integration patterns
and their temporal relationships. In this section, we present a framework for

inferring the task goal based on an input inquiry.

7.2.1 Performance Baseline using Vector-Space Model

As a reference baseline, we apply the vector-space model [82] for task goal
inference. For each task goal a, we consider all of its training expressions and
their multimodal terms. We create a vector ja of weights, using the normalized
term frequency TF-IDF of the multimodal terms. For a task goal, we create
a vector similar to the column vector of B in Equation 7.1. The similarity
between bn and ja is calculated as the inner product of the two vectors (see
Figure 7.1). Long inquiries contain more terms. Since the dot product favors

long inquiries by generating higher similarity scores, we apply cosine normal-
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ization (i.e. divide the dot product by the Euclidean Distance [82] [83] between
the two vectors) to reduce the adverse effect of term repetition. Equation 7.5
shows the similarity calculation using the dot product between the unit vector

of ja and the unit vector of bn.

Figure 7.1: Similarity between vector ja and bn captured by the cosine of the angle 0
between them. The angle 9 bewteen the two vectors is 0, corresponding to maximal

similarity.

similaritycosineUa, K) = I I‘i (7-5)
ja bn I

where ja is the weight for all terms in the af/, task goal and

bn is the weight for all terms in the n," task goal.

The task goal vector is assigned to the task goal a* which has the maximum

similarity score, as shown in Equation 7.6.

fln = argmgi:}c{similaritycosine{ja, K)} (7.6)

Experiments show that the vector-space model can correctly infer task
goals for all of the task goal vectors in training and test sets respectively.
Table 7.2.1 shows the performance of task goal inference using vector-space
model based on different weighting methods. Due to the adverse effect of non-

discriminative terms, task goal inference performance based on TF (the first
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two rows of Table 7.2.1) is lower than the one based on TF-IDF (the last two
rows of Table 7.2.1). Moreover, due to the adverse effect of term repetition
and the fact that dot product favors long inquiries, the task goal inference
performance using dot product (the first and third rows of Table 7.2.1) is
lower than the one using cosine normalization (the second and forth rows of

Table 7.2.1). The best performance is achieved using cosine similarity based

on TF-IDF.

Training set  Test set
Dot product (without cosine normalization) based on 33.3% (3/9) 25% (2/8)
term frequency (see Equation 7.2)
similaritycos%ne{3ai On) (see Equation 7.5) based on 66.7% (6/9) 62.5% (5/8)
term frequency
Dot product (without cosine normalization) based on 77.8% (7/9) 75% (6/8)
TF-IDF

similaritycosine(3a*> Qn) based on TF-IDF 100% (9/9) 100% (8/8)

Table 7.2: Task goal inference accuracy using vector-space model based on different
weight methods. Please note that the test set lacks expressions in task goal CHOICE

OF VEHICLE (i.e. only contains 8 task goal vectors).

7.2.2 Performance Evaluation

Overall performance in task goal inference for the training and test sets are
100% (9/9) and 100% (8/8) respectively since the test set lacks expressions

that fall under the task goal cHOICE OF VEHICLE.
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7.2.3 Analysis of the Re-constructed Space for Identification of Key

Terms

We examine the term weights in the re-constructed space to identify key terms
that are indicative of each task goal. Lexical and multimodal terms with
high LSM weights and the identified key terms for each task goal are shown
in Table 7.2.3. Figures 7.2 to 7.10 are the plots of term weight (for both
lexical and multimodal terms) from matrix B against lexical and multimodal
terms for each of the task goals. The key terms identified can be used for the

understanding and interpretation of the user input.

Figure 7.2: A plot of term weight from matrix B against lexical and multimodal

terms (M = 881) for the task goal BUS INFORMATION.
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INAZELH pus*EKif* pass hyl {T8%* pass by* s route*,
INEFRIE*  bus route™ iy within®*,

Wof,frAFall, Mt which, —Hk100m,HF ha/ue,#iHF haue

A take* RE* not*//NALE* bus* g+ railway* 3 take,
NI *E bus*tig take*,

B/, <]E5UE CIRCLE 1 SIM) <Beying Station ~ CIRCLE  SIM)
#H“¥wish, >EMEEhow should | go, BEAIEm, Fgo, HIiEnow,
<HTHZEYS POINT SIM) (Xmdong'an Plaza  POINT | SIM>,
Z owant <iE# POINT SEQ> (here POINT SEQ>,

< 0 1STROKE 10 >4 M

if(jﬁ* zoom in* i map*EEsy H* detailed* 4D, * zoom out*,
BN ¥ show*EH* screen*, < 0 | POINT 0 >*,

<iZ# CIRCLE SEQ>* <here CIRCLE | SEQ>*,

M of ¥k Y] to,=7% pleasef& - wish, 5 still % get
2g Bk when* BB ET* opening  hours* 5+ time*,
FAJIR opening*/&i#EiE T H’ opening  hours* {1 &+ what*,

frt ofi2 IS, | f Pd please &k 11 and /K8 wish

HrgEunh*  raiway  station*, %/ bFIE* how many*[iff3* nearby*,
faHI* area”, name*  JHHI* surroundings* * within®,
VOEK* 400mI7 50+ 500m*,

Hhave,Wof, 5% please,fiHall, k]

F* tonfEx from” i the fastest’/E/k* how should | go*,
<iE# POINT SIM>* (here POINT SIM>*,

<iE 5 POINT SIM>* (here POINT SIM>*,

Qé{j(% POINT SIM>* <this university POINT j SIM>*,

1,8 o0f
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TIME T 4r8EF 20 mms.xp wzthinl  FIEE* amive  at* fH* wish?,
CONSTRAINT JIN* within,  <i2f POINT 1 SIM>* (here POINT sM) *>

2+ tor,
<EH[ZREN)E POINT SIM> <international Hotel ~ POINT | SIM>,

A LA zn

TRANSPORTATION  Z/D§E* how much will it cost* %+ to*#hfk* railway* £ from”,

COSTS M take*,E E * need* L+ need*,

<3 # 1POINT 1SIMO(here | POINT | SIM>ZEH™[15 please

TRAVEL TIME FIF to*ft*x  from, EIER*  how long*ZE* need, FE*  need*,

250 * how long* 2%/ VI RE* how long*, —ILFETEX need in  all,
FZED* then go*, <iZfE POINT SIMO Xhere POINT sM) *>

<a{EAKEZ.  POINT 1SIML *<this university POINT SIM>*,

H/

Table 7.3: Lexical and multimodal terms with the highest LSM weights for each

task goal. Terms with an asterisk (i.e. *) are the identified key terms.

7.3 Chapter Summary

In this chapter, we have extended our study to the usage pattern and latent se-
mantic analyzes of multimodal user inputs with speech and pen gestures. Our
investigation is based on a multimodal corpus that we have designed and col-
lected, which consists of over a thousand navigational inquiries. The inquiries
cover nine task goals. The task goal of each multimodal input is hand-labeled
as a gold standard. We use a non-negative term-task goal matrix to capture
the associations between terms (lexical and multimodal) and task goals. De-
composition of the term-task goal matrix using singular value decomposition
(SVD) captures the associations between terms and task goals through a la-

tent semantic space. We can then reconstruct the space of terms and task
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Figure 7.3: A plot of term weight from matrix B against lexical and multimodal

terms (M 881) for the task goal CHOICE OF VEHICLE.

goals based on the latent semantic space. Examination of the term weights

in the re-constructed space can identify key terms that are indicative of each

task goal.
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Figure 74 A plot of term weight from matrix B against lexical and multimodal

terms (M = 881) for the task goal MAP COMMANDS
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Figure 7.5: A plot of term weight from matrix B against lexical and multimodal

terms (M = 881) for the task goal OPENING HOURS.
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Figure 76 A plot of term weight from matrix B against lexical and multimodal

terms (M = 881) for the task goal RAILWAY INFORMATION
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Figure 77 A plot of term weight from matrix B against lexical and multimodal

terms (M = 881) for the task goal ROUTE FINDING
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Figure 7.8: A plot of term weight from matrix B against lexical and multimodal

terms (M = 881) for the task goal TIME CONSTRAINT.
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Figure 79 A plot of term weight from matrix B against lexical and multimodal

terms (M —— 881) for the task goal TRANSPORTATION COSTS
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Figure 7.10: A plot of term weight from matrix B against lexical and multimodal

terms (M = 881) for the task goal TRAVEL TIME.



Chapter 8

Latent Semantic Analysis for

Task Goal Inference

This chapter describes our attempt in extending the semantic analysis frame-
work presented in Chapter 7 for multimodal user input with speech and pen
gestures on the associations between terms and inquiries. More specifically,
our aim is to infer the domain-specific task goal(s) of the multimodal input
with another formulation of the association matrix in latent semantic model-
ing (LSM). We can represent the associations between terms and inquiries as a
term-inquiry matrix in LSM. This can be factorized into a term-semantics and
an inquiry-semantics matrix using singular value decomposition (SVD). These
two matrices associate terms and inquiries through an automatically derived
space of semantics, instead of directly relating the terms with inquiries. We
represent a multimodal input by means of lexical or multimodal terms. We
then perform LSM to analyze the content of a multimodal input. Each input
is associated with every latent semantic category by a weight. The weights
are used for task goal inference. We would like to uncover the associations

between terms and task goals through a data-derived latent space.

174
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8.1 Latent Semantic Modeling for Task Goal Inference

In the previous Chapter, we apply latent semantic analysis to capture regu-
larities in terms based on task goal. Similarly, we can apply latent semantic
analysis for task goal inference based on multimodal input. LSM uses SVD to
derive a latent semantic space that relates terms (combined lexical, gestural
and multimodal terms) with the users' inputs. Correlations between cross-
modal terms are captured from the training data. During testing, multimodal
terms are extracted from the input and the vector is projected into the latent
space. Thereafter, the task goal is inferred based on a combination of latent

semantics.

8.1.1 Association Matrices

Associations between terms and inquiries can be summarized in a term-inquiry
matrix G. Given M terms (details of the multimodal terms are presented in
Section 4.6) and N inquiries, we form an M x N matrix G. Each column
represents an inquiry. The element gm,ni is the weight (i.e. normalized term

frequency using TF-IDF) for the term m in the n{/; inquiry.

91, 9h 9N

G = 9m,N (8. 1)

I, IMn gMN
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where gmn = {l - £r
N

= "
7\

AN s the term frequency of term m,

I"g™ihiL is the inverse document frequency of term m,
Tm

Km,nn denotes the number of times the term m occurs in the nf/ inquiry,
An is the total number of terms in the n#/ inquiry,
£m denotes the normalized entropy of term m in the data set; and

Tm is the total number of times that term m occurs in the training set.

8.2)
S can be decomposed into a product of three matrices using SVD of order
R85 shown in Equation 8.3.
G= usvT
.
ur ULR Sii 0 0 VIR
" (8.3)
0 00 0
um, 0 0 Y% VN,R

where U is the term-semantics matrix of dimensions M x R,
S is the diagonal matrix of singular values sorted in descending order
with dimensions R x R,
V is inquiry-semantics matrix of dimensions N x R,
R = min{M, N} is the order of decomposition and
T is the transpose of the matrix.
U and V are the left unitary matrix and right unitary matrix respectively.
Each column of U contains the estimated weight of each term m that corre-

sponds to the latent semantic category r while each column of VA contains
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the estimated weight of each inquiry n that corresponds to the latent seman-
tic category r. Equation 8.3 projects the space of terms and inquiries onto a
reduced i?-dimensional space which is defined by the orthonormal basis given
by the column vectors Um and Vn from matrices U and V respectively. In
order to collapse the terms that are "semantically similar", we always choose
B! < R. The smaller the value R/, the more pronounced is the reduction of se-
mantic redundancy in the latent semantic space. Based on the latent semantic
space, we may re-construct the space of terms and inquiries, denoted as G in

Equation 8.4.

GAG = USVA (8.4)

where S is the reduced diagonal matrix of singular values with optimized

value of R' (i.e. with dimensions B! x BI!).

We need to find an "optimal" choice of R' that minimizes semantic re-
dundancy in the latent space, as well as minimizes the distortion between
the re-constructed space G and the original space G, in the implementation
of Equation 8.4 in the training procedure. We plan to optimize R' through

empirical analysis of the latent space.

8.1.2 Relating Task Goals with Latent Semantics

In the training procedure, we represent the ns/ inquiry by the column vector On
(Equation 8.5). The weights for latent semantic category r (i.e Wh, as shown
in Equation 8.7) can then be obtained by a dot product between #]] and the
corresponding column vector of the left unitary matrix U, Ur (Equation 8.6).
Therefore, from the vector g”, we can obtain a vector of weights Wn for each

latent semantic category by Equation 8.8:
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9i,
9n = (8.5)
oM,
Ur (8.6)
Wn,r = gnUr (8-7)
ﬁ{\n = glu (8 8)
where Wh =, wwr  and

Wh-ris the weight of latent semantic category r for the nf/ inquiry.

We use A to denote the total number of task goals within the application
domain,—to denote the task goal of the n* inquiry, and R' to denote the
number of dimensions in the latent semantic space. We attempt to compute
a projection matrix F that can transform the vector of weights for the la-
tent semantic categories Wnh into a vector of weights for the A task goals (see

Equation 8.9).

fu. =  WnF (8.9)
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/1, /1,
where F =
IR e fRA
fr,a is the weight of a latent semantic category r that would correspond
to a task goal a,

hr= hpa and
hn,a is the weight of the n*inquiry would correspond to a task goal a.

According to Equation 8.9, associations between inquiry and latent se-
mantic categories can be summarized in an inquiry-latent semantic categories
matrix W (an N x R' matrix) and the associations between inquiry and task
goal can be summarized in an inquiry-task goal matrix H (an N x A matrix).

Therefore, we can obtain Equation 8.10 as follows.

H = WF (8.10)
m Wi, I,
where W — - . . and
WN Whn, 1
—_ h ‘ All
H = °

fIN

—1 .

Mathematically, the projection matrix F can be found using Equation 8.11.

F = W-H' (8.11)
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h K h
where H'=
h' h' h'

is a vector of manually labeled task goal for nf/; inquiry,

a is the manually labeled task goal of inquiry n, in which
a—A

K a= {0,1} and = 1 and

W4 is the pseudo inverse of the matrix W.

Through the projection matrix F and Equation 8.9 we can obtain the
weight of each inquiry that would correspond to each task goal. A task goal
a* will be assigned as the automatic derived task goal for inquiry n where
a; = argmaax{/i,,’a}.

The performance of task goal inference of the training data can then be
evaluated by comparing a* to the manually annotated task goal Moreover,
we may examine the structural relations between latent semantic category and
task goals in the transformation matrix F.

In the testing procedure, we also represent the nf/ inquiry by a vector Qn
We obtain the weights for the r latent semantic categories by Equation 8.8
where the left unitary matrix U is obtained from the training procedure. The
vector of weights for each latent semantic category lies in the dimensional
space. We transform it to A-dimensional space and automatically derived
task goal a* for the nf/ inquiry using Equation 8.9. The task goal inference
performance can be evaluated by comparing the a* assigned and task goal
manually annotated of the nf/; inquiry. The TG inference accuracy is defined

as:
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8.2 Task Goal Inference

In this section, we present the framework for inferring the task goal based on

an input inquiry.

8.2.1 Performance Baseline using Vector-Space Model

As a reference baseline, we apply the vector-space model [82] for task goal
inference as mentioned in Section 7.2.1. For each task goal a, we consider all
of its training expressions and their multimodal terms. We create a vector ja
of weights, using the normalized term frequency TF-IDF of the multimodal
terms. For an input multimodal expression, we create a vector %1 - similar to
the column vector of G in Equation 8.1. The similarity between an inquiry n
and task goal vector ja is calculated as the inner product of the two vectors.
Equation 8.12 shows the similarity calculation using the dot product between
the unit vector of ja and the unit vector of Qn

similarity(3)Bt(Ja, gn) - (8.12)

T 11T,

where ja is the weight for all terms in the task goal and

gn is the weight for all terms in the nf/ inquiry.

The input expression is assigned to the task goal a* which has the maximum

similarity score, as shown in Equation 8.13.

a* = arg inax{simiiaritycoszne(ja, ffn)} (8.13)

a
Experiments show that vector-space model can correctly infer task goals
for 84.5% (847/1002) and 82.5% (363/440) of the inquiries in training and test

sets respectively.
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8.2.2 Optimization of B!

Recall that the proposed approach using LSM involves setting up a term-
inquiry matrix G. We include both lexical (unimodal, speech only) terms and
multimodal terms with speech and pen gestures. There are a total of 314
unimodal terms and 567 multimodal terms in our training corpus. Hence the
non-negative matrix G (in Equation 8.1) is of dimensions 881 x 1002. As
described in Section 8.1, we apply SVD to G and factorize it into U, S and V.

As mentioned before, the total number of lexical and multimodal terms
sum fo R = 881l. We may consider that the original semantic space to be
determined by these terms and attempt to determine the optimal number of
dimensions for the latent space. We may choose the order of SVD approxima-
tion {R') with reference to the percentage of the cumulative sum of retained
singular values over the maximum at R' = 881. We plot the percentage of the
cumulative sum of preserved singular values over the total sum of all singular
values (i.e. at R' = 881). In Figure 8.1, we show the R' values corresponding
to the cumulative sum of singular values, at multiples of 10%.

We also perform task goal inference on the multimodal inputs in the train-
ing set at different values of R’ (see Figure 8.2). The performance of task goal
inference increases with R’ The rate of increase slowes down as R' becomes
higher, reaching saturation approximately at R' = 309 with a performance of
task goal inference at 99.2% correct.

We also perform cross-validation of the performance of task goal inference
in the training set at different values of B! between 235 and 309 (see Figure 8.3).
The performance of task goal inference reaches saturation at R’ = 263. The
choice of R' = 263 as the dimensionality of the latent space implies a reduction

of 70% with respect to the original space oi R = 881.
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Figure 8.1: A plot of the cumulative percentage of the singular values against the

order of SVD approximation.
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Figure 8.2: A plot of task goal inference accuracy of multimodal inputs in training

set against the order of SVD approximation.
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Figure 8.3: A plot of task goal inference accuracy of multimodal inputs in training

set against the order of SVD approximation for the optimization of R"
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8.2.3 Performance Evaluation

Overall performance in task goal inference for thetraining and test sets are
99.2% and 98.6% respectively. Detailed analyzes of the results are shownin
Figure 8.4. The test set lacks inquiries that fall under the task goal of CHOICE
OF VEHICLE (i.e., asking the user what type of vehicle he/she wishes to take).
Performance oftask goal inference remains high for all the other task goals (at

96% or above).
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Figure 8.4: Performance of task goal inference for each of the nine task goals in the

application domain. Results are based on the latent space with 406 dimensions.
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8.3 Task Goal Inference with Spoken Terms Regular-

ization
8.3.1 Spoken Terms Regularization

Analysis of the spoken inputs in Section 4.1 shows that there are many syn-
onymous terms and aliases. For example, the word "route" in Chinese consists
of two characters (i.e.B&#%) , which may also be reversed (as ## ) and the
meaning of the word remains the same. Similarly, SLRs may have synonymous
terms. For example, the full name bEREZE KZ(i.e. Bejing University
of Post and Telecommumcahons) may be abbreviated as b E(i.e. BUPT).
There is also a variety of verbalization to express the contextual phrase of
"current location", including: BRI FTEH , BERMNNVE , FIEMNS |, A
£ » etc. Other contextual phrases may differ by a "measure word" which
is characteristic of Chinese, e.g.,.EE X2 and EEFT K2 both mean "this
university". In order to simplify processing, synonymous terms and aliases are
collapsed into a single category. In other words, we have created a category
for each group of semantically equivalent terms. It is conceivable that this
categorization may be implemented through the use of SVD if sufficient data
is available. Since we only have limited training data for the time being, we
choose to design regularization rules (56 rules in all) for categorization."® As
such, we have reduced the number of lexical terms significantly.** Since we
also have pen gestures with their corresponding SLRs, we are still able to form
"multimodal terms". Each is a 3-tuple consisting of an SLR, the corresponding
pen gesture and their temporal relationship as mentioned in Section 4.6.

19This step forms equivalence classes that group together terms with the same meaning We
expect that this step should help task goal inference because it reduces term diversity given the

limited amount of training data
A lexical term refers to a tokenized Chinese word from the speech modality but which is not

an SLR Examples include BERHEEM] opening hours,f&4g routef from, etc
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Before  term After term reg-

regularization ularization

Number of Multimodal terms 567 261
(SLR and pen) 508 233
(SLR only) 53 22
(Pen only) 6 6

Number of Lexical terms 314 216

Total number of terms 881 477

Table 8.1: Statistics of the lexical and multimodal terms (count by type).

The statistics of the lexical and multimodal terms in the training set are
shown in Table 8.1. After regularization, the number of multimodal terms
can be reduced to around 54.1% (477/881)). The number of (SLR and pen)
multimodal terms is fewer than expected. There are 22 multimodal terms that
contain only an SLR with no pen gesture. This is because of an anaphoric
reference (which can be resolved with contextual information). There are also
6 multimodal terms that contain pen gestures only and no SLR, due the use

of ellipsis.

8.3.2 Performance Baseline using Vector-Space Model

As a reference baseline, we apply the vector-space model (see Section 8.2) for
task goal inference. For each task goal a, we create a vector ja of weights,
using the normalized term frequency TF-IDF of the multimodal terms. For
an input multimodal expression, we create a vector %1 - similar to the column
vector of G in Equation 8.1. The similarity between an inquiry Qn and task
goal vector ja is calculated as the inner product of the two vectors with cosine
normalization (see Equation 8.12). The input expression is assigned to the

task goal a* which has the maximum similarity score (see Equation 8.13).
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Experiments show that vector-space model can correctly infer task goals
for 90% (902/1002) and 87.5% (385/440) of the inquiries in training and test
sets respectively. Table 8.3.2 shows the performance of task goal inference
using vector-space model based on different weighting methods. Application
of spoken terms regularization can reduce term diversity (especially reduce
the term diversity between training and testing sets) and improve the task
goal inference performance when compare the task goal inference performance

obtained in Table 8.3.2 with the results presented in Table 7.2.1.

Training set  Test set

Dot product (without cosine normalization) based on  79.2% 77.7%
term frequency (see Equation 8.2) (794/1002)  (342/440)
similaritycosineijai on) (see Equation 8.12) based on 85.1% 85%
term frequency (853/1002)  (374/440)
Dot product (without cosine normalization) based on 87.8% 86.6%
TF-IDF (880/1002)  (381/440)
similaritycosinefjai on) based on TF-IDF 90% 87.5%

(902/1002)  (385/440)

Table 8.2: Task goal inference accuracy using the vector-space model approach based

on different weight methods with spoken terms regularization.

8.3.3 Optimization of B!

Recall that the proposed approach using LSM involves setting up a term-
inquiry matrix G. After spoken terms regularization, there are a total of 216
unimodal terms and 261 multimodal terms in our training corpus. Hence the
non-negative matrix G (in Equation 8.1) is of dimensions 477 x 1002. We then

apply SVD to G and factorize it into U, S and V.
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As mentioned before, the total number of lexical and multimodal terms
sum fo R = 477. We attempt to determine the optimal number of dimensions
for the latent space (i.e. order of SVD approximation. R!) with reference to the
percentage of the cumulative sum of retained singular values over the maximum
QX. R' = R = 477. We plot the percentage of the cumulative sum of preserved
singular values over the total sum of all singular values (i.e. at R' = 477).
In Figure 8.5, we show the R' values corresponding to the cumulative sum of

singular values, at multiples of 10%.

*«100%1

1 51 101 151 201 251 301 351 401 451
Order of SVD Approximation

Figure 8.5: A plot of the cumulative percentage of the singular values against the

order of SVD approximation.

We also perform task goal inference on the multimodal inputs in the train-
ing set at the different values of R’ (see Figure 8.6). The performance reaches
saturation approximately at R’ = 286 » with accurate task goal inference for

99.2% of the multimodal inputs.
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Figure 8.6: A plot of the task goal inference accuracy of multimodal inputs in

training set against the order of SVD approximation.

We also perform cross-validation of the performance of task goal inference
in the training set at different values of R’ between 218 and 286 (see Figure 8.7).
The performance of task goal inference reaches saturation at B! = 263. The
choice of B! = 263 as the dimensionality of the latent space implies a reduction

of around 45% with respect to the original space oi R = 477.

8.3.4 Performance Evaluation

Overall performance in task goal inference for the training and test sets are
99.2% and 99.1% respectively. Table 8.3.4 shows the performance of task goal
inference with and without spoken terms regularization. Detailed analysis of
the results are shown in Figure 8.8. The test set lacks inquiries that fall under
the task goal of cHOICE OF VEHICLE. Performance of task goal inference

remains high for all the other task goals (at 98% or above).
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Figure 8.7: A plot of the task goal inference accuracy of multimodal inputs in

training set against the order of SVD approximation for the optimization of R

Performance without spoken terms

(M —881and Rl = 263)

regularization

Performance with spoken terms regularization (M

477 and rR' = 263)

Training set

99.2%

99.2%

Test Set

98.6%

99.1%

Table 8.3: Task goal inference accuracy before and after applying spoken terms

regularization.
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application domain. Results are based on the latent space with 263 dimensions.
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8.4 Analysis of the Latent Semantic Space for Task Goal

Inference

8.4.1 Sub-categorization of task goals

Analysis of the latent semantic space shows that it has sub-divided some of the
task goals into logical sub-types. For example, the task goal BUS INFORMATION

contains two latent semantic categories (see Figure 8.9 for the distribution):

* The latent semantic category (r = 13) refers to BUS INFORMATION along

a street;
» The category (r = 19) refers to BUS INFORMATION Within an area.

Table 8.4.1 shows the example of inquiries that belong to the latent semantic

categories 13 and 19 in the training set for task goal BUS INFORMATION.

Figure 8.9: Percentage of multimodal inputs that belong to different latent semantic
categories, within the task goal BUS INFORMATION. The numbers inside the bars

are the labels (indexed by r) of the latent semantic categories.

Another example is the task goal OPENING HOURS, which contains six

latent semantic categories (see Figure 8.10 for their distribution):

* The latent semantic category (r = 11) refers to OPENING HOURS of one

location;
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Latent Semantic Category (r = 13) — BUS INFORMATION along a street
«FERB T <ERI STROKE | SEQ>M AR E IR

What are the bus routes that pass through (here | STROKE |SEQ> ?

<88 <iE#I POINT I SIM) MIFIE L XHEE

What are the bus routes that pass through (here | POINT | SIM) ?

B HE AT E KB <ERI CIRCLE 1 SIM>H A H5E

List out all the bus routes that pass through (here | CIRCLE | SIM> ?

<K AMHMEKLIB <E#EI STROKE 1 SIM>HFT B M N X B #F

| would like to know the bus routes that pass through <here | STROKE |SIM> ?

CEEFRMAKLA (BRI CIRCLE I SEQ>H N #RE

T

Please tell me the bus routes that pass through <here |CIRCLE | SEQ> ?

BB (GEMRAHI STROKE I SEQ>HATEAXREK 2 WLk

What are the bus routes that pass through <this street | STROKE |SEQ> ?

ff <EMEHI STROKEI SEQ>LEM AN EAH ML

What are the bus routes that drive along (this street | STROKE |SEQ> ?

AT ERIB <ERAXHI POINTTI SIMBAHRRE

List out all the bus routes that pass through <this street |POINT | SIM) ?
CRBHAMERMABAMNITR <EMRAHI STROKE 1 SIM>H AR R

| would like to know the bus routes that pass through <this street | STROKE | SIM) ?
EFRBEABTR <EMRMHI STROKE 1 SIM M 2 X #% #2

Tell me the bus routes that pass through <this street | STROKE | SIM) ?

s

ERBEFTELRERLRIB <E—HRAHI STROKE 1 SEQ>H KT

Please tell me the bus routes that pass through <this street | STROKE | SEQ> ?

KB AMEMABERKIB <BRWAHI ciIRCLE 1 SEQ>HW A HARE

| would like to know the bus routes that pass through <Jianguomen Inner  Street | CIRCLE

I SEQ>?
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« <EMW KM STROKE | SIM) A ML LR

What are the bus routes that pass through <Jianguomen Inner  Street | STROKE | SIM> ?
«ft (3B STROKE | SEQ>FEM N EHF B

What are the bus routes that pass through <this side |STROKE | SEQ> ?
Latent Semantic Category (r — 19) - BUS INFORMATION within an

« <JE5| STROKE | SIM>HIEH WL A XERLKIB

What are the bus routes that pass through the area around (here | STROKE | SiM> ?
« <ENMRAMHI STROKE 1SEQ> — BHXHNKEBMN AR EF WL

What are the bus routes that pass through the area of 100m from < Chongwenmen East
Street | STROKE | SEQ> ?

« <EERAHI STROKE iSEQ> —HXARBHNLXRERA P L

What are the bus routes that pass through the area of 100m from <this street | STROKE
I SEQ>?

« <iE5I| STROKE| SEQ>ZF R —BXAHAE WL AKX

What are the bus routes that pass through the area of 100m east from <here | STROKE
/ SEQ>?

BEBEIRRE <EMRH | CIRCLE 1seQ> —BXAWAXRERR

Would you tell me the bus routes that pass through the area of 100m from <this street
| CIRCLE | SEQ>?

ERBERFMAELE <EMEEE ciRcLE | SIM>TTEMN QAR KR

Tell me What are the bus routes that pass through <this area | CIRCLE | SIM> ?

« <JERI STROKE | SIM>KIEEHHL AR E

What are the bus routes near the area around <here 1 STROKE I SIM) ¢

Table 8.4: Examples of the inquiry that belong to the latent semantic categories 13

and 19 in the training set for task goal BUS INFORMATION.
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* The category (r = 46) refers to OPENING HOURS of single or multiple

locations using ellipsis;

 The categories (r = 7 and 29) refer to OPENING HOURS of multiple

locations using multiple singular SLRs;

e The category (r = 9) refers to OPENING HOURS of multiple locations

using one aggregated SLR;

The category (r = 12) refers to OPENING HOURS of multiple locations

using one plural SLR.

Figure 8.10: Percentage of multimodal inputs that belong to different latent semantic
categories, within the task goal OPENING HOURS. The numbers inside the bars are

the labels (indexed by r) of the latent semantic categories.

We observe that latent semantic modeling has produced subcategories of
specific task goals based on the ways in which users compose their inquiries.
This is potentially advantageous because finer semantics categorization can
enhance understanding and will facilitate automatic generation of system re-

sponses.
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Latent Semantic Category (r = 11) - OPENING HOURS of one location
<M (BRI CIRCLE 1 SEQ> 1 BE B % B X

What IS the opening hours of <here | CIRCLE |SEQ> ?

KRB HME <E®I poINT 1 SIM) KB KK

| want to know the opening hours of <here | POINT | SIM>.

« <EERI POINT I SIM>#) B8 ik B S

The opening hours of <here | POINT | SIM) .

« <EE#I1 PONT I SEQ)> WHERKBERZD

What IS the opening hours of < here | POINT | SEQ) ?

- <RI CIRCLEI SIM>H B MR R 4%

What IS the opening hours (here | CIRCLE | SIM> ?

« <JER1STROKET SIM>H R B EHE R LML

The opening hours of <here | STROKE | SIM>.

cHRBHME <EMBLEI poiNT 1 SIM> KB K KB

I would like to know the opening hours of <this park | POINT | SIM>.
« <EEMEM AT POINT 1 SEQ) 1t B B 8 B 1K

What IS the opening hours of <this location | POINT |SEQ> ?

M (EFLETD CIRCLE 1 SEQ> A B B i

What IS the opening hours of <Shuangxiu Park | CIRCLE | SEQ> ?
H B AME <EMEI roiNT 1 SIM)> WEKEE

| would like to know the opening hours of <this | POINT | SIM>.

Latent Semantic Category (r = 46) —OPENING HOURS of single or multiple

locations using ellipsis

< 0 IPOINT 10 >BIREH
< 0 ITPOINT 10 > Opening hours.

< 0 IMULTI-POINT 10 >%EBEE 2 3 21 F

A

0 IMULTI-POINT 10 > Opening hours of each.
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Latent Semantic Category (r — 7 and 29) - OPENING HOURS of multiple loca-
tions using multiple singular SLRs

HKAEME <ERMMBI PoINT 1sIM> <IEEHI PoINT 1sIM> <EBEBE®H |
POINT I SIM>H & & B &

| would like to know the opening hours of <this plaza | POINT | SiM) - <this plaza j
POINT I1SIMiand <this shopping center | POINT | SIML .

CBEE R <EM@WHHI roINT | SIMRIEEES| POINT 1sIM> <E BB B
POINT I SIM #9 B ik B 8 05

Can you tell me the opening hours of <this plaza | POINT [ SIM>; <this plaza |POINT
I SIM> and <this shopping center | POINT | SIM>.

« <JE# | POINT ISIM<IiE#1 POINT ISIM> <iE4 | POINT | SIM>HAJBIMES B/

| would hke to know the opening hours of <here | POINT | SIM>, (here | POINT | SIM[
and (here | POINT | SIM>.

KRB EH <HRZEZMHEI POINT ISIMSER A EH| poINT | SIMKERSBEY H O

| POINT | SIM B IE &M

| would like to enquire the opening hours of <Xmdong‘an Plaza | POINT | SIM>, <the
Oriental ~ Plaza | POINT |SIM> and <the Scitech Plaza | POINT | SIMI[J.

B H <FHEZI POINT ISIM> (RAEHBI POINT ISIM>EH (E4| POINT | SIM>
9 B A B RS

List out the opening hours of <Xindong‘an | POINT | SIM>, <the Oriental Plaza |

POINT I SIM) and <Scitech | POINT | SIM>.
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Latent Semantic Category (- = 9) - OPENING HOURS of multiple locations

using aggregated SLR

BMEMREHFR (E=ZME# ST MULTI-POINT I SIM>H & %85

Please tell me the opening hours of (these three places | MULTI-POINT | SIM>.
+ <EE={EPHBI MULTI-POINT I SEQ>{HERS R & %

The opening hours of (these three plazas | MULTI-POINT | SEQ>.

KB ME <E=ME#SI MULTI-POINT I SEQ>HM & ¥ 55/

| want to know the opening hours of (these three places | MULTI-POINT | SEQ>.

+ <EE=EPJEI MULTI-POINT 1 SEQ>ft Bl £ £JF

What IS the opening hours of (these  three shops | MULTI-POINT | SEQ>.
+ <IE=Z{EMH1 MULTI-POINT 1 SIMM E X KE R

The opening hours of these < three plazas are | MULTI-POINT | SIM) ?
<M (GE=E# AT MULTI-POINT I SEQ>ft B B % B AL

What are the opening hours of (these three places | MULTI-POINT | SEQ> ?

Latent Semantic Category (R = 12) OPENING HOURS of multiple locations

using one plural SLR

cRMEAE <EEH ST MULTI-POINT 1 SEQ>H & B

| would like to know the opemng hours of <these locations | MULTI-POINT | SEQ>.

o <iEL#h AT MULTI-POINT I SEQ>HEXKBEEZ D

What are the opening hours of (these  locations | MULTI-POINT | SEQ> ?

c (E4EBYRMEAI MULTI-POINT 1 SEQ>HEXBEEZ D

What are the opemng hours of (these shopping plazas | MULTI-POINT | SEQ>

R <EMEM ST MUUN-CIRCLE I SEQ>HI B MBS R 2 10 4 2 3 4 2

?

The opemng hours of < these locations | MULTI-CIRCLE | SEQ> are from when to when?

e <IEXMEREIHI MULTI-POINT I SIMSH A ERE R L2 3 4E

The opening hours of <these plazas | MULTI-POINT | SIM> are from when tfo

Table 8.5: Examples of the inquiry that belong to the latent semantic categories

9, 11, 12, 29 and 46 in the training set for task goal OPENING HOURS.

when?

7y
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8.4.2 Capturing key terms for task goals

We examine the term weights in the latent semantic space to identify key terms

that are indicative of each task goal Illustrative examples include

» For the task goal MAP COMMANDS, key terms with the highest LSM wei-
ghts are TR K(ie zoom in) 4. (i e zoom out)HIiE( € zoom  out),
as well as related standalone pen gestures expressed as the multimodal

terms < 0 | POINT | O > and <0 | CIRCLE | 0 >

* For the task goal ROUTE FINDING, key terms with the highest LSM
weights are ) (ie to),# (i e fom) BHE( e how to get  to)&
R (1 e the fastest) R e m sequence) as well as the multimodal
terms <JE# |POINT | SEQ> (Ie (here | POINT | SEQ>) and <JE{E X

2 | POINT | SIM> (Ie <this umversity | POINT | SIM>)

Figures 8 11 and 8 12 are the plots of term weight from matrix G against
terms (both lexical and multimodal terms) for the task goal MAP COMMANDS
and ROUTE FINDING respectively

Moreover, the key terms identified through the latent semantic space be-
tween terms (both lexical and multimodal terms) and inquiries is consistent
with the key terms identified through the latent semantic space between terms

and task goals in Section 723

8.4.3 Generalizing across related multimodal terms

Upon further examination of the LSM weights, we observe their ability to
generalize across related multimodal terms, even if the correlations are not
directly found in the training data To describe the underlying mechanism -
the LSM framework draws upon the co-occurrences between terms A and B, as
well as the co-occurrences between B and C, m order to obtain the correlation

between terms A and C
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Figure 8.11: A plot of term weight from matrix G against lexical and multimodal

terms (M = 477) for the task goal MAP COMMANDS.



LATENT SEMANTIC ANALYSIS
CHAPTER 8. 204 FOR TASK GOAL INFERENCE

Figure 8.12: A plot of term weight from matrix G against lexical and multimodal

terms (M = 477) for the task goal ROUTE FINDING.
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As an illustration, we can refer to two multimodal inputs by which the user

wishes to zoom in on a map

* B K CIRCLE (le the verb phrase “zoom m, followed by a circle), corre-
sponding respectively to the lexical and multimodal terms 7&K and < 0
CIRCLE | 0 >

« & & POINT (le the verb phrase ‘zoom m" followed by a point), corre-
sponding respectively to the lexical and multimodal terms F&K and < 0
POINT 10 >

The column vectors of these two input expressions, as extracted from the
original term-inquiry matrix, are shown in Table 8 6 We compare these vectors
with their counterparts m the reconstructed term-inquiry matrix G (with R'=
263), as shown in Table 8 7 We observe that the reconstructed column vector
of the multimodal input “5&K CIRCLE" in Table 8 7 carry additional weighting

(> 006) for several additional multimodal terms, namely

<Ef@#h 5 1CIRCLE ISIM>

- <JEf@#E ICIRCLE ISEQ>

<JEMH#E ICIRCLE I SIM and
« <iEEE iPOINT I SIM[

These additional multimodal terms with non-zero weights (see Table 8 7)
did not appear in the original user inputs (see Table 8 6) But these terms
are commonly used to convey the task goal MAP COMMAND, according to
the training data (13 out of 40 multimodal inputs) LSM captures the new
correlations among < 0 | CIRCLE | 0 >, K (i e zoom m), <EfEH#AH
CIRCLE 1SIM> (le (this location | CIRCLE 1SIM[] )<iEfE£E I CIRCLE
SEQ> (le (this area | CIRCLE | SEQ>), <IE{E & E |cIRCLE I SIM[(1 e <this
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JicAklie.  zoom m) FRK(i.e. zoom in)

< 0 | CIRCLE 10 > < 0 1POINT 10 >

<0 1CIRCLE10 > 0.44 0
< 0 POINT 10 > 0 0.34
MK (i.e zoom in) 0.37 0.37
<JEE#t5 CIRCLE SEQ> 0 0

<this  location CIRCLE SEQ>

<iEfE#A 1 CIRCLE 1 SIM> 0 0
<this  location CIRCLE | SIM>

<EE# 51 POINT I SEQ> 0 0
<this location | POINT SEQ>

<EfE#t7 POINT SIM> 0 0
<this  location POINT | SIM>

<JE{EEE 1 CIRCLE 1SEQ> 0 0
<this area | CIRCLE | SEQ>

<JEME&E | CIRCLE 1SIM> 0 0
<this area CIRCLE SIMI[]

<EE#E roINT sIM> 0 0
<this area | POINT | SIM>

<jiEfEZE 1 STROKE 1 SEQC 0 0
<thzs area STROKE SEQI]

<JEE B 1POINT SIM> 0 0

<this map POINT SIM>

Table 8.6: An excerpt of the term-inquiry matrix G corresponding to two multimodal
inputs. The weights (shown up to 2 decimal places) are obtained using Equation 8.1.

Translations are italicized.
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FRKGe. zoom in) R K(i.e. zoom in)
< 0 1CIRCLE 10 > < 0O POINT 10 >

< 0 CIRCLE10 > 0.18 0.11
< 0 IPOINT | 0 > 0.06 0.28
T Adie. zoom in) 0.51 0.44
<EM@# 51 CIRCLE SEQ> 0.00 0.00
<this  location CIRCLE SEQ>

<EM@# 51 CIRCLE SIM> 0.07 0.05
(this location | CIRCLE | SiM>

<E@# 51 POINT 1SEQ> 0.00 0.00
<this  location | POINT SEQ>

<iE{E#FF 1 POINT 1SIM> 0.03 0.05
<this  location POINT SIM>

<JE{EZE 1 CIRCLE 1SEQ> 0.07 0.04
<this area j CIRCLE SEQ>

<EEEME | CIRCLE 1SIM> 0.07 0.04
<this area CIRCLE SIM)

<JEEEE1 POINT 1SIM> 0.00 0.00
<this area POINT SIM>

<JE{EEE 1 STROKE 1SEQ> 0.00 0.00
<this area STROKE SEQ>

<iEM@E 1POINT 1SIM) 0.06 0.06
<this map POINT SIM>

Table 8.7: An excerpt of the reconstructed term-inquiry matrix G corresponding
to two multimodal inputs as in Table 8.6. The estimated weights (shown up to 2
decimal places) of G are obtained using Equation 8.4 with R' = 263. Translations

are italicized.
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area | CIRCLE |SIM> and <EEM&E | POINT | SIM> (i.e. <this map | POINT |
SIM ] angut them into correlated latent semantics. The weights in Table 8.7
reflect that the circling action can be used to indicate a single location (i.e.iE
Btz 75 ) or an area (i.e. EEEE ) .

Similarly, we also observe that the feature vector of the multimodal input
“BFRAR POINT" in Table 8.7 introduces additional multimodal terms with non-

zero weights (e.g. 0.05) for several additional multimodal terms:

« <iE{fi# 5 ICIRCLE I SIM[

« <iEf@i#5 IPOINT I SIMI[] and
« <iEW@E lproINT | STM>

These additional multimodal terms with non-zero weights (see Table 8.7)
did not appear in the original user inputs (see Table 8.6). But these terms
are commonly used to convey the task goal MAP COMMAND (11 out of 40
multimodal inputs). LSM captures the new correlations among < 0 | POINT

004 A (i.e. zoom in, <E{E#F | CIRCLE | SIM> (i.e. (this location
CIRCLE I SIM>) , <iEfE# A 1POINT |SIM> (i.e. <this location | POINT
SIM [ ynd <iEfEE IPOINT ISIM> (i.e. (this map | POINT | SIMI[] and put
them into correlated latent semantics. The weights in Table 8.7 reflect that

the pointing action can be used to indicate a single location (i.e.iEf@# 7).

8.5 Error Analysis of the Latent Semantic Space for
Task Goal Inference
Error analysis of the latent semantic space shows that task goal inference errors

is mainly due to the ambiguity of a specific time expression (e.g. =1+ % & ,

i.e. “20 minutes”) .
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During data collection, one of the tasks is SHRHKEREE =+ 2 ERN F

iz BR AR JE (i e ftell the system that you have fto arrive at the InternaUonal
Hotel m 20 minutes) Since we did not randomize the duration of the time
phrase — 1 7 #& (i e 20 minutes) it has become a key term of the task goal

TIME CONSTRAINT With relatively high term weight Therefore, whenever
an inquiry contains the time phrase — + % & (i € 20 minutes) it has been
inferred as the task goal TIME CONSTRAINT In order to prevent the same
problem, we should randomize all the numeric values (including time expres-
sions) in the future data collection Table 8 8 shows the example of inquiries
that belong to the task goal ROUTE FINDING but incorrectly infer as the task

goal TIME CONSTRAINT

8.6 Chapter Summary

In this chapter, we have extended our study to the usage pattern analysis and
automatic task goal inference of multimodal user inputs with speech and pen
gestures We use a non-negative term-inquiry matrix to capture the associ-
ations between terms (lexical and multimodal) and inquiries Decomposition
of the term-inquiry matrix using singular value decomposition captures the
associations between terms and inquiries through a latent semantic space We
project the latent semantic space into the space of task goals through a ma-
trix derived from training data An input multimodal inquiry can be projected
into the latent semantic space and then into the task goal space This gives a
vector with which we can use the highest weighting element to select the in-
ferred task goal We experimented with this approach based on the manually
transcribed multimodal corpus Analysis shows structural relations between
latent semantic categories for certain task goals Furthermore, the weights of
the lexical and multimodal terms in the latent semantic space an also help

us identify key terms for specific task goals The latent semantic approach
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CERE=-TSEARNIE <EMEKIEL POINT I SIM)

How can | to go to <this hotel | POINT | SIM> within 20 minutes?
CEERE=-T2EMNIE (BEKMKRE | CIRCLE | SEQ)

How <can | to go to <the International Hotel | CIRCLE | SEQ> within 20 minutes.
MAE=+HERNIE <BBRED POINT 1 SIM)

How can | to go to <the International Hotel | POINT | SIM> within 20  minutes?

s T+ ENE <EMEERIE] poINT 1 SIM) BEE

Go to <the International Hotel | POINT | SIM> within 20 minutes. How can | go?
*E#E <ER|CIRCLE ISIM) B=+ 2 <BKRK/EI 010) BEEE

Fm now at <here | CIRCLE | SIM>. Want tfo go to <the International Hotel |0 |0 >
within 20 minutes, how can | go?

FRREH —EE=-+TDERNIE <BEMRMRIE] CIRCLE 1 SEQ>HI R

Please suggest a route that can arrive at <the International Hotel ) CIRCLE | SEQ>

within 20 minutes ?

Table 8.8: Examples of inquiries that belong to the task goal of ROUTE FINDING

but are incorrectly infer as TIME CONSTRAINT. Translations are italicized.



LATENT SEMANTIC ANALYSIS
CHAPTER 8. for TASK GOAL INFERENCE 210

achieves around 99% accuracy in task goal inference, for both the training and
test sets. This is significantly higher that the reference baseline obtained with
a vector-space model, which achieves 90% and 87.4% for the training and test

sets respectively.



Chapter 9

Conclusions and Future Work

9.1 Thesis Summary

This thesis explored the cross-modality semantic integration method with hy-
pothesis rescoring for robust interpretation in multimodal interface. Correct
cross-modality semantic integration enables our framework to the multimodal
input expression to be paraphrased as a unimodal (speech-only) input, for
subsequent processing of our existing spoken dialog system [72] [85] [86] with
dialog and discourse modeling and natural language generation components.
Hence the cross-modality semantic integration framework offers an elegant
front-end extension to our dialog system, to enable it to handle both unimodal
(speech-only) as well as multimodal (speech and pen) inputs.

In order to support our investigations in:

¢ characterization and extraction of features from speech and pen modali-

ties;

* recognition of input events from each modality (i.e. spoken locative ref-

erences in speech and pen gestures in pen input) ;

* interpretation of the recognition output of spoken locative references and

pen gestures as their partial semantics;

211
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* integration of the partial semantics across modalities ;

* maintaining robustness against imperfectly captured inputs and mis-

recognitions; and

» interpretation of the user's intention by integration across the multiple

modalities,

we designed and collected a multimodal corpus in domain of city navigation
around the Beijing area. This corpus contains 1,518 multimodal expressions
with frequent locative references. The speech and pen modalities have been
transcribed by hand. The inquiries cover nine pre-defined task goals. The
task goal of each multimodal input is hand-labeled as a gold standard. We
have also manually annotated the domain-specific named entities and SLRs
in the transcribed speech and manually annotated the cross-modality pairings
between an SLR from speech and a pen gesture. An SLR may map to zero,
one or multiple pen gesture(s) and vice versa. We begin with an analysis of
the usage patterns and designed the format of a multimodal term to be a
3-tuple, consisting of an SLR, pen gesture(s) and their temporal relationship
(i,e. <SLR | pen—gesture-type | temporal—relationship) ) . Such multimodal
terms can represent the cross-modality integration patterns adopted by the
user. Characteristic cross-modal integration patterns are derived from the
training set to form multimodal terms. We also derive lexical terms from the
speech portion of the multimodal expression. Processing of the speech and
pen input modalities with automatic speech and pen recognition components
shows that the overall Mandarin speech character recognition and pen gesture
type recognition accuracies are 44.6% and 86.6% respectively.

After characterization of the multimodal input with speech and pen ges-
tures, we present a framework pertaining to automatic semantic integration
of the multimodal inputs. The two input modalities (speech and pen) ab-

stract the user's intended message differently into input events (i.e. key
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terms/phrases in speech and different gestures in the pen modality). The
semantics of an input event may be imprecise (e.g. a pen stroke on a map may
denote a street or demarcation), incomplete (e.g. use of anaphora in ‘how
about the previous  one?")  Or erroneous due to mis-recognitions. The proposed
framework begins by generating (partial) interpretations for each input event,
which are represented as a ranked list of hypothesized interpretations. We
devise a cross-modality semantic integration procedure to align input events
in the speech modality with those in the pen modality using the Viterbi align-
ment algorithm [62]. Cost functions are designed to enforce the constraints of
temporal ordering of the input events in each modality, as well as the semantic
compatibility between hypothesized interpretations across modalities. Hence
the alignment integrates across modalities and disambiguates among possible
interpretation alternatives to decode the user's holistic communicative intent.
Application of cross-modality integration to these near-perfect transcripts (i.e.
manual transcription) generated correct unimodal paraphrases for over 97% of
the training and testing sets. However, if we replace this with the top-scoring
speech and top-scoring pen recognition transcripts (which contain errors), the
performance drops to 52% for both training and test sets. Analysis shows that
complementarity and redundant relations between SLRs and pen gestures can
salvage the performance of cross-modality integration in the presence of recog-
nition errors through mutual disambiguation and mutual reinforcement [17.
In order to achieve robustness towards imperfect transcripts, we extend
our framework with a hypothesis rescoring procedure. For each multimodal
expression, this procedure considers all candidates for cross-modality integra-
tion based on the n-hest (v = 100) speech recognition hypotheses and the
M-best (M = 4) pen input recognition hypotheses. Note that a recognized
pen gesture can generate Q location hypotheses that are fed into the cross-

modality hypothesis rescoring procedure. Rescoring combines such elements
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as the integration scores obtained from the Viterbi algorithm, iV-best purity
for recognized spoken locative references (SLRs), as well as distances between
coordinates of recognized pen gestures and relevant icons on the map. Exper-
iments using the n~-hest (N = 100) speech recognition hypothesis and M-best
(M —4) pen recognition hypotheses show that the rescoring and re-ranking
helped improve the performance of correct cross-modality interpretation sig-
nificantly to 71.8% and 72.7% for the training and testing sets > respectively.

In order to analyze the correlations between the two modalities, we have
also performed a comparative analysis of manually transcribed multimodal
{MM) user inputs together with their automatically generated, semantically
equivalent unimodal {UM) counterparts. These are generated by the cross-
modality framework proposed. We trained a class trigram language model
with 1,450 multimodal and unimodal speech utterances and compared the
perplexities (PP) between parallel multimodal and unimodal test sets (with
430 utterances each). We observe that the speech components of multimodal
expressions are generally shorter with lower lexical variability than their uni-
modal counterparts. Comparison with per-utterance perplexities affirms the
relationships of complementarity and redundancy across the speech and pen
modalities. One subset of our data exhibits the equality of (ppPmm = PPUM)
and consists mainly of multimodal expressions where speech and pen modal-
ities carry redundant semantics. The other subset exhibits the inequality of
v < ppum)  Where the speech and pen modalities carry complementary
semantics. We also observe the occurrences of ellipses, where certain seman-
tics appear in one modality but not the other, and form a special case of
complementarity. These observations have implications on the choice of fusion
architectures for multimodal input interpretation.

On the interpretation of the multimodal inputs, we have applied latent

semantic analysis for task goal inference of the multimodal inputs. We use a
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non-negative term-inquiry matrix to capture the associations between terms
(lexical and multimodal) and inquiries. Decomposition of the term-inquiry
matrix using singular value decomposition captures the associations between
terms and inquiries through a latent semantic space. We project the latent
semantic space into the space of task goals through a matrix derived from
training data. An input multimodal inquiry can be projected into the latent
semantic space and then into the task goal space. This gives a vector with
which we can use the highest weighting element to select the inferred task goal.
We experimented with this approach based on the multimodal corpus. Anal-
ysis shows structural relations between latent semantic categories for certain
task goals. Furthermore, the weights of the lexical and multimodal terms in
the latent semantic space can also help us identify key terms for specific task
goals. The latent semantic approach achieves around 99% accuracy in task
goal inference, for both the training and test sets. This is significantly higher
that the reference baseline obtained with a vector-space model, which achieves

90% and 87.4% for the training and test sets respectively.

9.2 Contributions

The contributions of this thesis can be summarized as follows:

* Propose a cross-modality semantic integration framework for
robust interpretation of multimodal input with speech and pen
gestures
The framework begins by generating partial interpretation of each modal-
ity and integrating them by the Viterbi alignment algorithm by incor-
porating temporal order and semantic compatibility constraints. The
framework then considers the ranked confidence of multiple recognition
hypotheses in both modalities based on the elements of TV-best purity

of speech, distance measure of pen gesture and their integration score.
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The framework is able to handle multiple multimodal input events in
a complex input expression (e.g. a navigational inquiry that involves a

composition of singular, plural and aggregated locative references).

* Implement a prototype of the framework
A prototype of the cross-modality semantic integration framework on
the task of navigation around Beijing is implemented. The client-side
interface of the prototype is developed on a Pocket PC, which is used
to show the map of Beijing and results of integration. It also contains
a home-grown pen gesture recognizer. The server-side of the prototype
is developed on a notebook PC which consists of a Mandarin character
recognizer [67], speech and pen gesture interpretation components, in-
tegration components and the hypothesis rescoring component. Once a
user makes a multimodal input on the Pocket PC on the client-side, the
recorded speech and the recognized pen gesture information are trans-
mitted to the server through socket for processing. The final result will

be sent back to the client-side Pocket PC when ready.

* Investigate the relationships of complementarity and redun-
dancy across modalities
We have performed a comparative analysis between multimodal inputs
with their corresponding semantically equivalent unimodal paraphrases.
The unimodal paraphrases are generated by the cross-modality semantic
integration framework mentioned before using Viterbi alignment algo-
rithm. We trained a class trigram language model and compare the per-
utterance perplexities (PP) between parallel multimodal (MM) and uni-
modal (UM) test sets. Comparison affirms the relationships of comple-
mentarity ppvv < ppum)  and redundancy {ppmm = PPUM)  @CrosS
speech and pen modalities. We also observe the occurrences of ellipses,

where certain semantics appear in one modality but not the other, and
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forms a special case of complementarity.

* Apply latent semantic modeling for task goal inference of mul-
timodal user inputs
We use a non-negative term-inquiry matrix to capture the associations
between terms (lexical and multimodal) and inquiries. Decomposition of
the term-inquiry matrix using singular value decomposition captures the
associations between terms and inquiries through alatent semantic space.
An input multimodal inquiry can be projected into the latent semantic
space and then into the task goal space for the selection of inferred task
goal through a matrix derived from training data. Analysis of the latent
semantic space shows structural relations between latent semantic cate-
gories for certain task goals. Furthermore, the weights of the lexical and
multimodal terms in the latent semantic space can also help us identify

key terms for specific task goals.

9.3 Future Work

According to the error analysis, the majority of errors that are due to the pres-
ence of redundant SLR(s) can be solved by incorporating timing information.
In the future, attention should be paid to detection of a user's integration
pattern. Whenever a user is detected as a simultaneous integrator, timing in-
formation (i.e. temporal difference between a SLR and a pen gesture) should
be incorporated into the cost function of the Viterbi alignment algorithm.
However, it can only be applied to simultaneous integrators but not sequential
integrators since the integration pattern of a sequential integrator is mainly
based on temporal order.

Analysis on the use of ellipsis in multimodal input is also suggested as an

area for future work. Correlation between SLR(s) and pen gesture(s) does not
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exist in the multimodal input with the use of ellipsis (due to the omission of
SLR(s) in the multimodal input). A pen gesture input is ambiguous to the
multimodal system (e.g. is a "drag-and-drop" action recognized as a stroke or
a map movement?). Currently, we use the "click-to-speak” method to handle
the case where all pen actions occur after the click of the "start" button, such
that they will be considered as part of the multimodal input and otherwise
considered as map movement.

Moreover, since our current framework is focused on the alignment be-
tween SLR(s) and pen gesture(s), integration methods between semantics from
speech and pen modalities in the presence of ellipsis (i.e. in the absence of
SLR) is also challenging as we do not know which semantics should be inte-
grated. Analysis of the syntactic structure of multimodal input may be useful
for the handling ellipsis.

A possible direction is the analysis of the phonological peak of the spo-
ken input. As mentioned in McNeill [1], pen gestures are integrated into the
phonology of the spoken input. Chen [39] also showed that there is corre-
lation between the delta pitch value in the speech signal and occurrence of
deictic-like gestures. It is possible for us to analyze the "peak" of the spoken
input and investigate the possibility of integrating a pen gesture into those
"peaks" even though an SLR cannot be recognized during that duration of
spoken input. We may analyze the recognition errors of the spoken input and
generate a confusion matrix for the expansion on phonetic confusion during
speech recognition, especially for the phone(s) that is/are at the peak(s) of the
spoken input.

On the extension of a pen gesture recognizer, it is suggested to support more
pen gesture types (e.g. arrow and different types of encircling). Moreover,
our current pen gesture recognizer can automatically filter out redundant pen

gestures of the same pen gesture type based on the difference in time and
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distance. The ability to filter redundant pen gestures in different pen gesture
types is also a possible future work.

Another possible direction is to extend the framework to motion-sensing
input, which can support gesture input with greater variations. Extending the

framework to other types of devices is also a possible direction [25 .



Appendix A

A Survey on Information

Categories

The survey that we conducted regarding typical inquiries from users who are

trying to navigate around Beijing is shown below:

Please go through the scenario and the set of interactions corresponding to it. After

that, please help answer the questions below.

Scenario

Cindy arrives at the Beijing International Airport. She is a new visiting student

from Hong Kong. She wants to go to the Training Center  of Beijing University of

Aeronautics and Astronautics (BUAA or Beihang) to leave her Iluggage. She has
an lunch  appointment with  her mentor in Microsoft Research  Asia (MSRA) in the
morning and needs fto visit a professor in Tsmghua University m the afternoon. She

also plans to have dinner with her friends in Lotus Lane. She took out her  Pocket
PC, which can access information about the Haidian District and Xicheng District

of Beijing as well as some traffic  informahoa updates.

(continue...)
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Interactions
System 1:
Cindy 1:

System 2:

Cindy 2:

System 3:
Cindy 3:
System 4:
Cindy 4:

System 5:
Cindy 5:

System 6:

Cindy 6:
System 7:
Cindy 7:
System 8:
Cindy 8:

System 9:

Cindy 9:

System 10:
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Welcome to travel enquiry system. How can | help you?

I am in Beijing International Airport. How can | go to BeiHang?
We suggest that you take the airport bus or a taxi to the Beijing
University of Aeronautics and Astronautics.

Taxi is better. Please show me the fastest way to walk to MSRA
then.

I'm sorry that | do not know MSRA. May | know the location?
hmm, Sigma Center please.

Here is the suggested path on foot.

Afterwards, how can | go here <circle=FIT Building of Tsinghua
University ) ?

Do you wish to get there by walking, subway, bus or taxi?
Subway please.

Here is the information. Please get off at Wudaokou station and
then walk westwards about ten minutes.

Can | walk to here <point=Peking University>?

It takes about thirty minutes.

Oh! No. Too far for me! How about Lotus Lane?

Do you want to go there by subway?

Sure.

Here is the information. Please get off at Jishuitan station, take
exit C than turn left walk to the south about fifteen minutes.
Thank you very much. Good-bye.

Thank you for using the system. Good-bye.

(continue.



APPENDIX A. A SURVEY ON INFORMATION CATEGORIES 222

Questions

1. Who are the users?

2. What are their needs?

3. What kind of inputs can be supported by the system?

(e.g. speech, pen gesture, facial expression, body gesture, etc.)
4, Which language(s) can be supported by the system?
5. Please write down three kinds of information that you expect the

system can provide.



Appendix B

User Tasks for Data Collection

Tables below show the 32 tasks listed in the instruction of data collection. The
subjects follow the task given and use either speech and/or pen modalities to
indicate the locations requested. In the tables, "location requested" is the
location indicated in the "task" and the Loc_TYPE and subtype are indicated

by the icons on the map.
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Information category: BUS INFORMATION

Task EMERXFARAH-BRKAMBITRENLARERLR,

Find out the bus routes that pass through the area of 100m from the Chongwenmen

East Street
Location requested: 5 FIRARHA  Chongwenmen  East  Street
LOC-TYPE : TRANSPORTATION
subtype: street

Task : EFTREBEFI A KEHNIAE L RXERRK,

The bus routes that pass through the Jianguomen Inner Street.
Location requested: 2BIFIR KH  Jianguomen  Inner  Street
LOC-TYPE : TRANSPORTATION

subtype: street

Information category: CHOICE OF VECHICLE
Task : ERIRBIRFLEHLLNRE , TRFMH,
Inform the system that you want to take bus instead of  railway.

Location requested: nil
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Information category: MAP COMMANDS
Task: S EEMFLFE —EBULE
Zoom m to a specific point.
Location requested: nil
Task: i EEHEEEE —E/N&EE
Zoom in to a specific area.
Location requested: nil
Task: #EMEAE , BEREANESE,
Zoom out to show larger area of the map.
Location requested: nil
Task : Rt EEFEENE D
Show the west side of the map.

Location requested: nil
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Information category: OPENING HOURS

Task EHEFT LENRBEE,

Inquire  about the opening hours of the Shuangxiu Park.
Location requested: ¥ FNE  shuangxiu Park
LOC_TYPE: LEISURE FACILITIES
subtype: parks

Task : ERFRZHH, RABSRERBYHONEERRE,

Inquire about the operation hours of the Xmdong'an Plaza, the Oriental

and the Scitech Plaza.

Locations requested: ¥ REZ M Xindong-an  Plaza
REES oriental Plaza
BERHEBYWH L Scitech Park
LOC_TYPE : MAJOR BUILDINGS

subtype: shopping center

226
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Information category: RAILWAY INFORMATION
Task. ERRATEENBEXEERNE S DEBE
Find out the number of railway stations  within the area of 400m from the Oriental
Plaza.
Location requested: R 5 &35 oOriental  Plaza
LOC_TYPE: MAJOR BUILDINGS
subtype: shopping center
Task. EHBEMRREMII A B KEENFRELEUN B,
Find out the name of the stations  within the area of 500m from the International

Hotel.
Location requested: fflI*Mifi  international Hotel
LOG-TYPE : MAJOR BUILDINGS
subtype: hotel

Task: HARJAENAENE , YEHRITWBEIEE B,

Inform the system on your existing location and ask the name of the  nearest

station.
Location requested : FRTEfLE existing  location
LOG-TYPE: nil

subtype: nil



APPENDIX B. USER TASKS FOR DATA COLLECTION 228

Information category: ROUTE FINDING

Task : HHMRBREEFEBZELHO , BEHRBEINENRLE , JUEE
By 328 B AR o

Inform the system that you are now at the China Architectural Culture Center.
Inquire  about the route from the China Architectural Culture  Center to the  Purple
Bamboo Park.

Location requested: FBIEE XL E. China Architectural ~ Culture  Center

LOG-TYPE :  LEISURE FACILITIES

subtype:  museum

Location requested: 81Tt AE Purple Bamboo  Park

LOC_TYPE : LEISURE FACILITIES

subtype: parks
Task : FHARFREELTHEARE  EHARLETBERSBMRRBETMERRK
KRB, HEBERE, IERRNEAERIERERNKE  JUEENRBERERR.

Inform the system that you are now at the Beijing University of Posts and
Telecommunications. Inquire  about the route from the Beijing University of Posts
and TelecommumcaUons to the Beihang  Umverszty, the China Umversity @ of Geo-
sctences, the Umversity of Science and Technology  Beijing, the Beijing Medical

University in  order.
Locations requested: :!|EREEZEAZ
Beijing Umversity of Posts and Telecommunications
,]bjﬁ\ﬁ?ﬁjﬁ%jﬁ% Beihang University

FEEKRE Cchina University of  Geosciences

ERBEKE
University of Science and Technology Beijing

JERERI KR Beijing  Medical Umverstty
LOC-TYPE : SCHOOL AND PUBLIC LIBRARIES

subtype: university

Remark: A task may contain up fto six locations.
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Task: EHRIREFELRBERE  EHRMBEINFEBEARE, LERBEX
B, tZMEMRABRIETENARE | WLEENRERR.

Inform the system that you are now at the Beijing University of Posts  and
Telecommunications. Inquire  about the route from the Beijing University of Posts
and Telecommunications to the China  University of Geosciences, the University

of Science and Technology  Beijing, the Beihang University, the Beijing Medical
University.
Locations requested: :|LFEZKE
Beijing University of Posts and Telecommunications

':F iﬂ_ﬂ, E j( %ﬂ; China  University of  Geosciences

B KE
University of Science and Technology Beijing
tEMZERRKE Beihang University

,]b_'?tgiﬁ—‘\-l-j(% Beijing  Medical University
LOC_TYPE : SCHOOL AND PUBLIC LIBRARIES

subtype: university

Remark: A task may contain up to six locations.

Task: ERRMREENE (EE LOX)IPEARKE  SRENKER
#xo

Inquire  about the fastest route from your existing location to the Renmin Umver-

sity of  China.
Location requested: B RHIME 5  existing  location
LOG—TYPE: nil
subtype: nil
Location requested: FBIARKE  Renmin  University ~ of China
LOG-TYPE : SCHOOL AND PUBLIC LIBRARIES

subtype:  university
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Task: EARMEEN R (BIHE EWX)KRESLERMZEMRAE, H
WERE, tEBMEABRILTRENAE  HRENTBEERE.

Inquire  about the fastest route from your existing location to the Beihang Univer-
sity, the China  University of Geosciences, the University of Science and Technol-

ogy Beijing, the Beijing  Medical  University in  order.
Location requested: BIRAAMEL  Existing location
LOG-TYPE : nil
subtype: nil
Locations requested: : !EFRZERAKREZER  Beihang University

EF' iH_J, E j( % China  University of Geosciences

FERERBHRKRE
University of Science and Technology Beijing

D BRI Bejing  Medical University
LOC-TYPE : SCHOOL AND PUBLIC LIBRARIES
subtype: university
Task EARMREGENHE (B LENX)BPEHMERE, EtREMEKRE,
EEMZEMRARERIETENAE | HFRENZERKR.

Inquire  about the fastest route from your existing location to the China University
of Geosciences, the University of Science and Technology Beijing, the Beihang
University, the Beijing  Medzcal University.

Location requested: # &Mt R A5 Existing location
LOC_TYPE : nil
subtype: nil
Locations requested: P Bl E KE china University  of  Geosciences
B KRE
University of Science and Technology Beijing
BBt AKEE  Beihang University
: ] tﬁ%ﬂké“i Beijing  Medical University
LOG-TYPE : SCHOOL AND PUBLIC LIBRARIES

subtype-  university
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Task:

FRMER - RREAREEYE. ARKGERTEEGELBUENRKR,
Inquire about the route to walk through the Palace Museum, the Great Hall of the
People and the Military Museum of Chinese  People's Revolution.
Location requested: i S {EYI#E theof Chinese People 's  Revolution
Military Museum
LOC_TYPE : LEISURE FACILITIES
subtype:  museum
Location requested: AR KEE  the Palace  Museum
LOC_TYPE : PUBLIC FACILITIES AND
SERVICES
subtype: — heritage —msswm. The Palace Museum )
LOC-TYPE : LEISURE FACILITIES
subtype: museum
Location requested:
Rl E RS SR
the Great Hall of the  People
LOC-TYPE : POLITICAL FEATURES
subtype: district office
LOC-TYPE : LEISURE FACILITIES

subtype:  theater

Remarks: A location  may classify into multiple location type and subtype; a loca-

tion type and subtype include  multiple locations.
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Task: & 5 20 B & B A8 [E 2RI A b & vk .

Inquire  about the route from the Jinlang Hotel to the nearest railway station.
Location requested: €BAASBIE Jinlang  Hotel
LOCATYPE:MAJOR BUILDINGS
subtype: hotel

Task: ERRMER —RFRREHER,

Inform the system that you need a route which takes the shortest time.

Location requested: nil

Information category: TIME CONSTRAINT

Task. EHRRIREE =+ 2 ERNIEBEKRRIE

Inform the system that you have to arrive at the International Hotel m 20 mins.
Location requested:BBRERIE  international Hotel

LOC-TYPE : MAJOR BUILDINGS

subtype: hotel

Information category: TRANSPORTATION COSTS

Task. EAREFALWBEINEZREAMTES D E.

Inquire  about the transportation cost with railway from the Wangfujing station  to
the Jmnhuomen station.
Locations requested: ERFH  Wangfujing station
B EPM  Jmnhuomen station

LOC_TYPE : TRANSPORTATION

subtype: railway station
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Information category; TRAVEL TIME
Task. ZEARRIEN R (B LAX)IPBEARKERE-FR, FE
ZORME,
Inquire  about the travel time from your existing location to 200m east from the
Renmin University of  China.
Location requested: HEEHIthBE  ecistmg  location
LOC—TYPE: ml
subtype : nil
Location requested: FEI AR K2  Renmin  University ~ of  China
LOG—TYPE: SCHOOL AND PUBLIC LIBRARIES
subtype:  university
Task EARNRIEN R (B EWX)RXEREEMEMRKE, F
WEARE, LtENBEABRIEIRENAE —HEESZRKEH,
Inquire  about the travel time from your existing location to the Beihang Univer-
sity, the China  University of Geosciences, the University of Science and Technol-

ogy Beijing, the Beijing  Medical  University in order.
Location requested: FEEH MR  eMstmg  locatwn
LOG—TYPE: nil
subtype: nil
Locations requested: EREMZEMAKE  Beinang University

FEIE KE  China University of  Geosciences

ERERBRAE
University of Science and Technology Beying
ERERKE Beijjmg  Medical University

LOC_TYPE : SCHOOL AND PUBLIC LIBRARIES

subtype:  university



APPENDIX B. USER TASKS FOR DATA COLLECTION 234

Task: EHRFRFEN I (BB LNX)ERIFEABERE, ERBEKX
B, tEMEMRAAZRIEZABENAE  —HEESZREM[,

Inquire  about the travel time from your existing location to the China University
of Geo sciences, the University of Science and Technology Beijing, the Beihang
University and the Beijing  Medical University.

Location requested: B BRHIME &5 Existing location
LOC_TYPE : nil
subtype: nil
Locations requested: P Bl E K2  china University — of  Geosciences
lf;‘-iiﬁil—ﬁj(égi University of Science and Technology
Beipng
ERERMEMRKE
Beihang University
; ]bﬁ%ﬁ#ﬁ% Beijing  Medical University
LOC_TYPE: SCHOOL AND PUBLIC LIBRARIES
subtype: university
Task FHRMAREPHERE L , EARPBEINETRELE , EEZ LR
o

Tell the system that you are now at the China Architectural Culture Center.

Inquire  about the ftravel time from the China Architectural Culture  Center to the

Purple  Bamboo Park.
Location requested: PEIEE{LH ) B, China Architectural ~ Culture ~ Center
LOC_TYPE: LEISURE FACILITIES
subtype:  museum
Location requested: 52T Bt /A @ Puple Bamboo  Park
LOC_TYPE : LEISURE FACILITIES

subtype: parks
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Task. EARIERBEREBRRERILEMEMAAE, FEBERE, 4R
BERERLIAENKRE  —HAFEZREB.

Inquire  about the travel time from the Betjing University of Posts and Telecom-

mumcations to the Beihang University, the China  University of Geo sciences, the
University of Science and Technology Beijing and the Beijing  Medical University
in  order.

Locations requested-lt REE K28

Beijing University of Posts and Telecommumcahons
jERMZMKRKE  Beihang University

FEHEKRE China University of  Geosciences

EERBEARE
University of Science and Technology Beijing
[ EFEERIKER  Bejing  Medical University

LOC_TYPE: SCHOOL AND PUBLIC LIBRARIES
subtype:  university

Task: BEHRIIRBEXRBIPE®REAR, ERPNEKRE, tEMEMRAE
REtRBRAE K —HFESZREH,

Inquire  about the travel time from the Beijing University of Posts and Telecommu-
mcations to the China  Umverstty of Geosciences, the University of Science  and
Technology  Beijing, the Beihang University and the Beijing  Medical University.

Locations requested:Jt REFE K2

Beijing University of Posts and Telecommunications
FEItEKE China University of  Geosciences
J EroR AR University of Science and Technology
Beijing
EERMZEMRKE
Beihang University
bﬁgfﬁil-jigi Beijing Medical University
LOC_TYPE SCHOOL AND PUBLIC LIBRARIES

subtype, university
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Task : 23 i B BRAR)E B &L Y it 88 v B PR B BF A

Inquire about the travel time from the International Hotel to the nearest
station.
Location requested;BIBRERJE  international Hotel

LOC_TYPE : MAJOR BUILDINGS
subtype: hotel

Task. EHFRESREBFT T BEEIFHKE,

Inquire  about the time to ramble around the Wangfujtng.
Location requested: EfFH KETF  international Hotel
LOC_TYPE : LAND AND WATER
subtype: occupied  land

Task EHZFESRIEBAEATERHKH,

Inquire  the time to walk through the Wangfujing Avenue.
Location requested:f)ﬁ‘#j(?ﬁ International Hotel
LOC_TYPE : LEISURE FACILITIES
subtype: scenic  spot
LOC_TYPE: TRANSPORTATION

subtype: street

Remarks: A location can be classified into multiple location type and subtype

vice versa.

railway

and



Appendix C

An Instruction Provided by a

Subject

Figures below is an example of the instruction provided by one of the subjects.
The subject typed the speech part of the multimodal inquiries and marked the
pen gestures using a pencil. During the data collection, he revised the speech
part of multimodal inquiries (e.g. inquiries 49, 50 and 51). Inquiries without
pencil marking, including inquiries 64, 65 and 66, are unimodal (speech-only)

inputs.
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Appendix D

An Illustrative Example on the
Normalized Cost Cs{Sr, N) for
the Recognized SLR Sr

Table D.| shows anillustrative example on the scoring of the recognized spoken
locative references (SLRs). In this example, the first SLR has been transcribed
as “IE 5" hnere for 100 times across TV-best speech recognition hypotheses
{N = 100). Therefore, its cost is:

Cs(5;, AO=1 — % =1 -

The second SLR has been transcribed as “JE%{E#tb 75" these places or “iE
#” here for 94 and 6 times respectively across N-hest speech recognition
hypotheses. Therefore, the cost for “EL"fE# 5" these places is:

Cs(6;’A0 = — ¥ =1-—M=0.06

and the cost for “JE#" here Iis:

CsiA, = = 0.94
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AN ILLUSTRATIVE EXAMPLE ON
THE NORMALIZED COST CS{SR, N)
APPENDIX D. FOR THE RECOGNIZED SLR SR 249

Reference transcription
?ﬁn(E%:yﬁ;ﬂtEUuE%1i&En _%%E%R

How much Ume will it take from "here", to ‘'these places" m  sequence?

Speech recognition hypotheses

1 RERMRET ELBAHAR-—HFEZX
2 RERMAEFN ELEEA"HBATESA

3 MERMREIN ELER A" HBLOXRZA

4 ROER"MREI ELBH A" RK-—HFTESA
5 RERMRAEI ELBAAFE-—HEFEZX
6 RERMRNEI ELBAHFT " REXTESA
7 MERMRAEI ELEH T RBAFTESZA
8 ROER"MAREIN ELBEHF W -—HFTESA
9 ROERERERNELE A B —HEFESZA
10 MERMAEIN ELEL S KREFTESA
11 BERMARAEIN ELBAHAER—HFTESZA
12 RERMRAEIN ELBAH A R-—HFESZA
13 RERMREIN EXLEHA"HKR—HFTESZX
14 MERMRERNELB/MEL"R-—HKES XA
15 BERMAERN ELELSR/ATESA
16 RERMAERNELBEHS " BREFESA
17 RERMRXEFN ELBEIRBLARZA
18 MERMRNEI ELBA®F" KEHRFTESA
19 RERMMREFELEHFT " ERHEFTEZA
20 BMABRERREINELBAE " R-HAFTESZA
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21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

i

s

il

ﬁ\%

(ai

4

il

ﬁ\%

(@i

s

i

F‘r\f:

(@i

i

H

A

B

i

"

i

"
N

G6OOmE w6 mh W W
S Y S Y S R

i

i Wi i i

il

% ’

>
=

o

AN ILLUSTRATIVE EXAMPLE ON
THE NORMALIZED COST CS{SR, N)
FOR THE RECOGNIZED SLR SR

R EREEE S REAFTESZ A

TR EREREHFBHRATESA

TRREIBOELBE S R-HREESZX
THRREICELBER A AKBRATES A
RREFEHZBER S R-HLEZX
RXEREHEEM S EBAETES A
RRETE BB SR —HEES A
TRREFEREHLF ERBEFESX
TRREIEHEEBEBAT-ZAX
TRREFEREHLTEARATFES A
TRREINBRERBEM S HATESZA
TRREF T ELBH A R-HEESA
"TRRERE BELERSE RATES X
TRREFEHEHETELIRZA
THRREREXBEHAEBARZAR
TRRERCEXAEHET K -HATESXA
TRREITE ELERET BATESAX
TRREDCELABEH S EBATES X
TRRERELELT E-AEFRS X
"HRETEHEBAHER-—HEFESZ X
THRRERELEBETE-HAFES XA
RRERGCELBR AR -HEESA
"R E E
TRREEEREHTE-AFTESA

EEBLHT K-—HFEZX

(@i

faif
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THE NORMALIZED COST CS{SR, N)

APPENDIX D. FOR THE RECOGNIZED SLR SR 251
45 RERMARET ELBEHF MRBEATES X
46 RERMRERN " ELBERF" RBEFTESX
47 RERMRERN " ELBERF BBHATESX
48 EERKAERN ELEEw S REMEESZ X
49 RERMAEINELEH A" RERFESZX
50 RERHMREI ELE " REAKS X
51 MERMARET ELE/AER-—HFTESZX
52 RERHMRET ELEEE"RELIXRZA
53 BHAER"MAERELBHEEF" BKARZA
4 RERKRET ELEHF" RK-—HBKES A
55 RERMAEI ELBEHEL"E-—HESA
56 RERMAEINELEF E-—HFESZX
57 RERKREI T ELBE®AT " KHFESZA
58 RERMREIELBHEES"XKBLARSZA
59 RERHMRXNEIN ELBEHEAEBLIRZA
60 RER"MAERN SEEEHF RRERUEFES X
61 BMHAERMRERNELELA" K-—HFTESZ A
62 MU ER"MAEIN ELEES E-HTFEZX
63 RERHMRXNEIN ELBEHEA BHAFESZX
64 RERMRAET ELEBAHLS"ER—HEFESZ X
65 RERMAEIB ELEBU A" BLARZA
66 BHA"ERMARERN ELEHE T REAFTES X
67 ERMREEIN BELBALAS R-—HEFESZ X
68 RERKAXEINBHWE ER"ETR-—HAFEZTA
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69 f#E
70 #’t“3E
71 g8
72 #®’t &
73 f’t 38
74 RUE
75 g8
76 RE
77 #®’t 38
78 #®E
79 ®’iE
80 't 38
81 #®’E
82 f’t“3E
83 #’tiE
84 #’t“3E
85 '8
86 g
87 '8
88 iEE
89 ®’E
20 #®’ 38
91 f’t“3E
92 "5E

EHIE I R T - R

AN ILLUSTRATIVE EXAMPLE ON
THE NORMALIZED CcOST Cs{Sr, N)
FOR THE RECOGNIZED SLR SR 252

R EECELBEM S ERATES A
"RREFRER ERAER—HEFEESZ X
"RREREXBE ST RBAETES A
TR ERRE ERB EIR—HEEZ X
"R EDE EREBH T RARSZA
RRERCEHEBEM S RBRAEESLA
"TRREFEXLBE S -—HEFTES A
R ERCELEE® S —HEES A
"TRRERSEHME EEARREES X
"HREEFEEBABARKRATESZ A
THREEEHEE S ERAZTESZAX
"RREIRER ERERHATESA
RRERGHE EEAEARREES X
R EECELE® S KBHRAEES X
R EFRECELBEHE K —HRBEES X
"TRREFELBE S E-HEFESZA
R EFECEL BB -HREESZ X
TOREECELEME —HREEZX
IR EFCELBEHE KR -—HESZX
ORERCEHEM S BE—REEZ A
R EF EXLBEM S E-HESZ X
IOREFCELBEH A -HESX
TR EERELBAM S RATES A
IR EEEEEM A E—RHREESX
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93 FER"MAERN ELEH A R-—HFTESZX

94 MERMAEINBA ELEL S HRERFESZ X

95 ERKRAET ELEEL S E-—HEESZA

% RERMAEINBE ELEEH A" K-—HFESZX

97 RERMAEINE ELEBEE LT E-HFTESZA

98 ERKRET ELEL S B-—HEESZA

99 RER"MRAEIZT ELBHEBELIREA

100 REZERAEINEZEHFT"BABLRZA

Table D.I: An example showing the normalized cost of each recognized SLR based

on Equation 6.1 for the nN-hest v = 100) recognition hypotheses.



Appendix E

An Illustrative Example on the
Hypothesis Rescoring

Procedure

Table E.l shows an illustrative example on the hypothesis rescoring procedure
for candidates of cross-modality integration listed in Table D.l. The first
column of Table E.lis the rank of the speech recognition hypothesis (labeled
as "SR rank” ) - the second column is the details of the hypothesis pair and
the score obtained according to Equation 6.6 and the third column is the new
rank of the hypothesis pair obtained after the hypothesis rescoring procedure

(labeled as “HR rank").

Reference transcription
SRERMAET EXLEHE —HEEZX
P . .. #E .

How much time will it take from here, fo these places in sequence?

254
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SR Hypothesis Pairs and cromisr,  ra) HR
rank rank
1 S ERINER ERMBU T IR—HFESZX 8

P . cm .
CROTISR,  PQ) = WICI{SR, PQ) + WPCP{PQ) + WSCS{SR)

—05 f+ 035 (0+0+0+0+0)+0 15 M = (00045

PPMM = 23 03

2 SRHBER'MAEF ELBAH A BHEES X 20
p . o oo o
CTot(SR,PQ) = 05 ?+035 = 00045
pPMM = 30 89

3 SRER"MAREF ELBHI"B/BLIRZIA 57
p . oo e
CTOT{SR,PQ) =05 f+ 035 (0+0+"0+0)+0 15 (0+"6) = Q 0045
PPMM = 60 44

4 SRBERMAER EXLBHAE" XK-—HFEZ X 5
, . PR
CTOTISR,PQ) =og f+ 035 (0+0+"0+0)+0 15 M = 00045
PPMM = 21 44

5 SERMMRER EREL T E-HFEZX 17
P . 222

CTOASR, PQ) = 05 f+ 035 (0+0+>0F0) + 015 ..+ -BE) —. QQ"S

PPMM = 28 95
6 SRRERMAREDELBHL I REHRHEFEZ A 37
, . Cwe
CTot{SR,PQ) = 05 ?+035 (0+0+>0+0) +o 15 ()+A(3)6) =+ 0045

PPMM  Z 47 14
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7 S ERRAEHN ELBHT RBERBES X 39
p: . « . .z
CTOTISR,PQ) 05¢ >+ 035.({i+ F0+0) + 0.15 «(1)+ & ) =0.0045

10

11

12

PPMM = 47.93

5o RERKARERT ELBH M —HEESZA 18
p: . e o o o

CTot(SRPQ) =: 0.5+ 2 + 0.35 ¢ (0+0+ > 0+0) + 0.15 .(1)+AA) = 0.0045

PPMM = 28.95

SRER'MAERN ELBH A B—HFESZAX 6
P: . PR

cromisk, Pq) = 0.5 f + 0.35 ¢ ((HOH05+H0H0) + 0.15 «()+ [ = 0 0045
PPMM = 21.68

5 RERMAER ELEHF KREFTESZA 38
p: . oo oo

crorisr,  Pq) = 0.5-? + 0.35 (@j+r4n .- + 0.15 {1421 6) = 0.0045
ppmMM = 47.69

SEER"MARET ELE AT R-—HEESZX 58
P . Cm.

CtoASr*Pq) = 0.5-1 + 0.35+(0+Gt+>o+{0) + » M . (o+tooe) = 00045
PPMM = 60.63

SRERMAEI ELBHE A" R-—HFESZAXA 60
p: . HED

CTOTISR"Pq) = 0.5.7 + 0.35. (0+0+"0+0) + 0.15 (1}, ., ® = 0.0045

PPMM = 63.16
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13 SRERMAEINELBEBH A K —HEFESZX 11
P . 2 e

14

15

16

17

18

CrotiSR"PQ) = 0.5.? + 0.35. (o+o+g+o+0) + 0.15 (1#?(31) = 0.0045

ppmmv = 2447

SR ERMRETN ELBEHAE MR- HAKES A 72
CTOT(SR,PQ) = 05.? + 0.35 ¢ (ototpo+o) + A A (142 - -®) = (0.0045
ppMM = 83.92

5B ERMREIN ELELS BKATESZA 70
p: . o o

CTo{SR,PQ) = 0.5. ? + 0.35. (0+0+ F0+0) + A A « (0+006) = Q QQ'S
PPMM = 81.28

SRERMAEIN ELE AT BHATFTEZX 73
p: . o oo e

cromisR.  Pg)-0.5-? + 0.35 - (o+o+ To+o) + 0.15 - (, +g 06) = 0.0045

ppvv = 84.67
S ERKARAER ELBH A RBLARZA 79

N

cromisR, Pg) = 0.5« f + 0.35 ¢ (0to+tg+0+0) + 0.15 * (, 1g 6 = 0.0045
pPMM = 91.64

5o RERKRERN ELBH S KREEEZ A 31
p: . oo e

croTisR. pq) = 05 F+ 035 .(M+ 2+, )+ o0.05....+") = 0.0045

ppPmMm = 43.87
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19 SRR ERMRET " ELBAH T ERHUFTES X 54
. . R
Cto ASR,PQ) =05.f+035.( 0t t0+ 0.15. (-+> ) = 0.0045
ppmm  — 59.24
20 SRHABER"MRET ELBAHE R-—HFESZX 61
p: . & - B k5

crot(sk,  pqg) = 0.5 .5 + 0.35. (o+0o+po+0) + Q ™ . (0tg. 6) - 0.0045

ppmm = 67.55

21 SRERMAERNBELEHw S RERAZTES A 35
P: . .o B
ctoasr, PQ) = 0.5-? + 0.35. (o+o+g+o+0) +0.15., & ) =0.0045

ppmm = 45.34
22 5 BAHAERMAERN SLERS BAFTEZTA 78
P: . C

CTot{SR,PQ) = 05. ? + 0.35. (o+to+po+0) + A M | (ot"oe) = + 0045

ppmm = 90.56

23 SRERKAREIBA ELBHA"R-—HAFESZX 25
P . cE
crotisr, Pq)-0.5-? + 0.35 . (o+o+"o+0) +0.15. 0y=0.0045
pPmm . 39.12

24 SIRERHMREIN ELBH A" XKBRAEESZ X 34
P . C s

crotisr,pq) — 0.5.7+ 0.35 ¢ (0oto+"0+0) + 0.15 «(1)+* - ) — 0.0045

ppmv = 44.89
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25

26

27

28

51t “EBH” IRIGER] “EAMEM T IR—HES A

P: . S5 e

cTotisR, Pg) = 0.5-f + 0.35. (, +o+ Foto) +015. (o+o 06) = 0 0045
pPvv - . 23.68

S “ER IRIGER “EREM YT EBREFRESZA

P: . Zre

crorsir, pq) = 05.f + 0.35 ¢ (o+totgtoto) +0.15

prvv - = 5899

548 “EHT IRICGEFIE EAEM T R—HFEZA

p: . S e

crornsr, pq) = 05 F + 0.35 « (ototgototo) H0.15{(1 2 - H)) _ 0.0045
PPMM = 41.66

S “ERT IRIGEE]

P:
CTASR,
PPMM
SAE
P:
CROTISR,
PPMM
S
P:
CROTISR.

PPMM

ER RIGER] B (EHT

AN ILLUSTRATIVE EXAMPLE ON

THE HYPOTHESIS RESCORING

P =05.f+ 035> +, +,
- 4437

PQ)-0.5-? + 035 (24> o+

= 163.97

pq) — 05 % + 035. s —- .«

= 59.24

PROCEDURE

“EAEH T EHRAERE S A

o o ) +0.1541), °

BT

GER” RICET] EREMTTT HEARE S A

) +0.15-( = +A

- 0.0045

) - 0.0045

+) +0.15-(4)+A Q§ = 0.0045

Hh) =0.0045

259

10

52

28

33

91
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31

32

33

34

35

36

AN ILLUSTRATIVE EXAMPLE ON

SAE ER IRIGERIR ERMEMTT SIHEES A

P: . o %n
CROTISR, PQ) =0.5-? + 0.35 * (o+o+g+to+to)

J"PRE=51.07

THE HYPOTHESIS RESCORING PROCEDURE

(- +:® 0.0,

e ER IRIGETISE BT R—HEES A

P: . %'%‘

CTCASR, PQ) =0.5-? + 0.35, (o+o+ foto) +0.15-#F ; 06) = Q0745

pPMM = 33.14

S “ER IRICERIE “ERMEMTT GHREEZSA

P: . g -2

CROTISR, PQ) = 0.5 «? + 035« ( +, + [, +9 +0.15- ( +gl= o THAYG

PPMM = 54.38
S “ER IKIGER] ERERTT AT
P: . ogo .

crotisR, Pa) = 0.5-? + 0.35 . (0+0O+"Q+0) +0.15-

PPMM = 177.1207
SR EHT RICER] EREHTTT BARKEA
P: L] e o o o

cromisR, pP@) =0.5-2 + (.35 . (o+o+fo+0) + Q M (1K » ---=0.0045

PPMM = 185.35

SHE ER RIGER] “EAENTTT B IR S A

P . ..%o

CTASR,  Pg) =0.5-17 + 0.35 . @Qt0t0H0t0) +0.15-

PPMM = 21.03

° &) =0.0045

0.0045

260

43

22

47

92

93



AN ILLUSTRATIVE EXAMPLE ON
APPENDIX E, THE HYPOTHESIS RESCORING PROCEDURE 261

37 SRRERMAREI " ELBRLSBHATEESZX 30

P: o e o o o
crotisr, Pg) = 0.5.?2 + 035+ + T folg + Q ™ . (o+ 76) = Q QUS

PPmm = 43.27

38 SHRERMERNGER ERER T HBRATES A 53
p: s . s
crotisr.  Pg) = 05.f + 0.35, (o+0+A+0) + 0.15. = 0.0045
PPmm = 58.99

39 SR ERMAEREXLEHL BE-—HFESZX 12

CTMR, PQ) = 05 4+ 0.35. (0+0+50+0+0) + 0.15 . 02 o § - 0.0045
PPmm = 27.01

40 5B ERKRET ELBEH LS K—HKHFEZ X 49
p: . Hooo o
crotisr, Pg) - 05¢? + 0.35¢ (o+o+"o+o) + 0.15 .(EM~ B ) =0.0045
PPmm = 56.414

41 5, @ ERMREINERESE-—HRAEESX 65
p: . c oo
crotisr, Pg) = 05+f + 035 . (o+o+fo+0) + 0.15 . (H006) — 0.0045

PPmm = 76.19

42 SIERMORER I ELE SR —REELX 26
CTOTISN, PQ) = 0.5-f-h 0.35. (o+o+, oto) +0.15- Bb ) =00045

PPMM = 39.15
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43 SRER"MAEEELBEBH " K—HEEZX 51
P z o EE

CW(#I , Pgq) =05 ?+035 (o+o+g+o+0)+0i5 (o+ 6) — « QQ"

PPmm = 58 77
44 SRER"HMRET EXEwA " B -—HEESZ X 69

CTotiSR,PQ) = 05 2+ 035 (o+o+ To+0)+0i5 (0+006) »* Q QQ'S

PPmm = 79 37
45 SRBERMAERN ELBEH I RAELFTESZ A 32
P

CTOt(SR.PQ)=05 ?+035 (0+0+0+0+0)+0 15 MA A0 0045

PPmm = 44 35
46 SRER"KAETN ELBAH T RBEFTESZ A 63
P . CsHg

ctot{sr,pg)=05 ?+035 (0+0+70+0)+0 15 (1#?, = « 0045

PPmm = 71 14

47 SHERMREIN EXLBH LT EBAFTESZX 36
P
CTot{SR PQ)=0b ?+035 (0+0+20+0)+0 15 (1+ F6) =, 0045
PPmm = 45 36

48 SEERMAET EXLEHL " REHRFTES X 88
Grot #.PQ) =05 ?+035 (¥F o )+015 ..+7[JAU=0 0045

PPmm = 124 07
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49 5,8 “EH" RIGER “EREM T REEFEEZS A 89
P . EXRE

50

51

52

53

54

= 0.5. f+0.35. (11 +0 +A+QP.15 « (1 +1)= 0.0045

ppPMM = 129.25

S:fe "R RICER] BT IR R A 77
p: . Se o

CTot{SRPQ) = 0.5.f + 0.35. (ototg+oto) + 0.15 ¢ A 0.0045
ppMM = 90.30

578 "B IRICER "EREMTT R—HBEZA 9

P: . o o o o

crotisk,  Pq) . 05.f + 035 ¢ (ototg+0+0) + 0.15. ( @ = 0.0045

ppMM - = 23.04

S;4¢ “EHT RWET EREMTTT IREAKEA 76
P: e .

CROTISR, PQ) = 0.5-2 + 0.35 « (otot+>o+0) +0.15. oM = 0.0045

pPMM = 86.208
5464t “iE5" IRRER “EBREMTT LA 94
. . 2 -8

crotisR, PQ) — 0.5.f + 0.35. C+o+g+o+o) + 0.15 «1H(3)9— 0.0045

PPMM = 199.72
5:%8 ERT IRIGER] "ERMEM T OR—IHEZ A 67
P: . S ke

Cto ASr, P — 0.5 F + 0.35¢(o+to+"0+0) + 0.15. (0.0 06)  Q "045

PPMM = 78.09
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55

56

57

59

60

St ERMAET ELE®E E-HESX
P: ° e o 00
CTot{SR,PQ) = 0.5 «f + 0.35 + (o+o+ To+o) + 0.15 * (

PPmm = 105.4648

SRERMAEI ELERLT B -—HEFESZX

P: . » » .z

+) = Q QS

CrotiSR*PQ) = 05 .f + 0.35. (o+o+ Toto) + 0.15. (o +") = 0.0045

PPmm = 27.04

St ER"MAEIN G ELBH A BKHEEZAX

P . PO

CTotiSR,PQ) = 05. ? + 0.35¢(0+0+po+o) + * .(o+1 6)= gQqg"S
PPmm = 51.10

SRERMAEF ELEHA" RBLARSZA

P . BTN

CTotiSR,PQ) = 05 .f + 035+ 0+ +,+ )+0.15. (0+r) = 0.0045

PPmm = 85.27
SHERMRER ELBEHHF EBLARZA

p: . 2 . . &

CrotiSR, PQ) = 05 F + 0.35 * (o+o+ To+o) +0.15- (o+1 6)- 0.0045

PPmm = 115.16

SR ERMRER EXLBAFT RREMRTESA

P: . 225

CMSRAPQ) = 05 «f + 0.35 « (0+, +r+0) + 0.15 .(EM®) * 0.0045

PPMM = 50.08

264

83

75

41
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61 SR ERMAETN ELBEwF" X—HEFEZAX 59
P. . 285

62

63

64

65

66

croTIsR, PQ) = 05.f + 0.35 ¢ (0+Q+, o+o) + 0.15 .(1)+", ~) = 0.0045
PPMM = 62.85
SBHER"MRET ELBAH T E-—HEESZX 74

P: . E IR

®

CTotiSRAPg) - 0.5+ ? + 0.35. (0+0+5ENH0) + 0.15 <1+, ®) = 0.0045
PPMM = 84.88

S ERMARERIN ELBEHA"BHEESZ X 21
I . %o B

cromisR. PQ) = 05  + 0.35 ¢ (o+o+, o+0) +0.15-(1)+", o “) = 0.0045

PPMM = 30.89
S5 ERMAEIN EXBAHLE ER-—HFESX 27
P . 22 - %

CTot{SR, PQ) = 0.5. ? + 0.35 - (oc+o+\oto+o) + 0.15 (1)+; , B ) =00045

i"pBE=39.15

SRER'KREINBBELEBEHA"BLAREZA 80
CTot{SR,PQ) -0.5-? + 0.35 . (, +o+, 0+Q) + 0.15 . (0+"6) —— 00045
PPMM = 98.27

5, BMHERMAEIELBHE I REHREEZ X 90
P: 225

CrotiSR, PQ) -0.5-0.35 . +0.15- ( 4% 6 — 0.0045

PPMM  ~138.23
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67 S “EHT RIGEET EXRMEMT R—HBESA 3
P % EE 3
crotisr,pq) = 05.f + 0.35. (oto+tg+toto) +0.15- —O 0045

68

69

70

71

72

PPMm —19.73
SAE “BRT IRTCEFIEME BT FIR—HEEIEA 95

P . e o o o

crotisr.pgg — 05.7+035. (4% Y of-°)+ 015 (-f?-- H— 0.0705

ppmm = 79.69
5.8 “ER” MRET “BREHT FLEHELEFEZX 45
P. . B

crotisr,pg = 0.5+f + 0,35 . (0+0+50+0+0) + 0.15 (-2 -G _ 0.0045

PPMmM = 51.11
578 “EH” A EFRALLE “EH FIIR—EFESZX 98
P. . &2 2%

crotisr,pg) = 0.5-? + 0.35. (o +0+&0+0) +0.15 «(1)+ ? - - 0.0705
ppmm = 102.15

5.9 “ERT IRIGEE “EREM T BT ESZ A 86
P. . o oo o

crOTISN.  PQ) -0.5.7 + 0.35. (0+0+/"ot0) + « 15. (0+0 06) = 0.0045

ppmm = 115.51

S:f¢ “ER"RIETGME “EHT ER-HEJFEZIX 96
P. O o o o o
CtoASr*pq) = 05+ ? + 0.35. (o +to+r+o) + 0.15 .(1)+ ? %) =0.0705

PPMmM = 84.15
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73 5:% "B MAEFE "EREMTT GALEBA 81
P . Y X

CtOASRNPQ)  ="0.5-" + 0.35 . (0+0+ > 0+0) + 0.15 <14+ E.) =0.0045

PPMM 105.31

74 5: 3 “ER" MRIEF “EREMTTT RBEETFESX 87
p: . c oo
cromise. P g)=0.5-f + 0.35 « (o+o+ To+o) +0B{1}? - - L) = 0.0045
PPMM = 119.88

75 S ERT RIGER] EAERTT M- HEES A 66
b . RN

cromise,  Pq) = 0.5. f 4-0.35 . (o+o+g+o+0) +0.15-(1)+~ 06) = 00045

PPMM = 76.19
76 S5;R"EHR" IRIGER “EREN T M- HBES A 68
P . #E -2

CTotiSR. PQ) = 0.5-2+ (.35 . (0+0+po+0) + 0.15 (1#, o ) — 0.0045

PPMM = 79.37

77 S5 “ERT IRIEREME EET FTEHEFEZX 97
p: . TYL
cror{sr.  PQ)-0.5-? + 0.35 . (oto+"Q+0) +0.15- o - 0.0705

PPMM = 99.8442
8 5,0 "R RIGEE] BT R EIBEZ A 29

P: . HEH. ©
CTot{SR,PQ)-0.5-? + 0.35 s (0+0+r+0) + 0 15. (0+006) — * 0045

PPMM = 42.46
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79 SHEERMMAERELELFEREFTES A 48
P : ° e o 00

CtoASr, Pg) -0.5.2 + 0.35 * (ototgtoto) + 0.15 (1)+; 06) =0045

PPmm = 55.80
80 SWERMAERRERERFRATESZA 100
P: ° e 0o oo

CtoASr,Pq) — 0.5 <F+ 0.35 ¢ (o+o+r+o) + 0.15. (1 +2_¥ 0.0705
PPmm = 127.99

81 SHER MR ER R E SR ERHATESA 99
P: . Fze @0
CTotiSR,PQ) = 0.5.f + 0.35 . (+H0+50+0+)) + 0.15 . (0+2[1 945 0.0705
PPmm = 105.44

82 SRR ERMAERN ELBAH A BBATES X 42
p: . * g

CTot{SR,PQ) =0.5-? + 0.35. (0+0+/~  + 0.15. (1 +2004 : 0.0045

PPmm = 50.63
83 S ERMARERNE ELBHE XK-—HKFTESZX 23
P : (] oo 00

CtoASrPQ) = 0.5. 2 + 0.35. (0+0+(1 0+0F AMA (o T 2F%) =0.0045

PPMM =35.54
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84

85

86

87

88

89

90

SAEIE R HOREFE K Eih HE- -HEEZ X
CTot(&,PQHO0.5.? + 0.35.(1] +11 +50+0£0§-15.(0+20 06)=0.0045
PPmm = 27.04

SRERMAEIB ELEHR S E—HEEZ XA

P. D) e 00 @

(#1,PQ) = 0.5.2 + 0.35.(0 +0 +A+Q)15. ( T ) =0.0045

PPmm =48.15

5498 BMRIRE B E B 75" —FNEFEZAX

P: . o ...

Oto#%i? » F0.5. ¥+0.35. ([ +[1 + [++021p5. = 0.0045
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91 5:48 "B IRTGEEF “EREHTTT GHFHZAX 16
P: . g8 25
croTisR,  PQ) = 0.5.2 + 0.35. ( 4 H o4o )+ . (o+0.0e) = 0.0045
ppmm = 27.33
92 S5;H BT RICEF EREMTT B-EFHEZA 56
P: EE

crotisn, Pg) — 0.5 F + 0.35- (o +o+"0+0) + 0.15 «---4AFE ) =0.0045

ppmm = 59.45
93 S;’ “EBHT A ET “EHREME R—ILTFBHEZX 62
p: . 2. %

CIUSR, PQ) = 05 «F + 035. (o # 040 ) +0.15. (0 06) =< fj1 ‘-

pPmm = 67.68
94 5,7 "B IKKEEM “EREM T MEEFEEZ A 64
p: . e oo

croTisR,  Pg) = 0.5-1+ 0.35 {4pW¥Fo—- )+ 0.15- (, + T6) =, 0045

ppmm = 75.02
95 5,7 "B RAXER "BHEMTT g—HFEHEZX 13

crorisn, Pg) = 05.2 + 035+ (0+0+]"_) + 0.15. (o+ T6) » 0.0045

ppmm = 27.02
96 518 “BH" KW EFE “EHKMEM T RKR—HEFEEIX 24
P' o L] L] L] L]

CTOASR,  PQ) 05.? + 035+ (0+0+ F0+0) +015- (L + 6) = Q QUS

ppvv = 39.02
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p: . o % .

cror(se, PQ) = 05. 7 + 0.35. (0+0+"0+0) + Q ™ . (o+tg 1 = Q QQ'S

PPMM = 51.28
98 SRERKAEZNELELA B—HEEZ X 1
P. . ge_&8

CTotiSR, PQ) = 05-9? + 0.35 ¢ (o+o+fo+o) + 0.15. ¢ £ . §= 0.0045

PPMM = 3.03

99 SR ERIGER R EREF IR LREA 71
p: . oo e
crotisr,pqg) = 05 .f + 0.35. (o+to+ > oto) + 0.15. o = 0.0045
PPMM = 81.89

100 SR ER'MARERELB A WMBLAREZA 85
p: . 2
CTotsr, prQ) = 0.5-2+ 0.35. (0o+o+ > o+t0) +0.15- ij=0-0045

MM = 115.16

Table E.I: An example illustrating the hypothesis rescoring process of based on
the iV-best speech recognition hypotheses (N = 100) listed in Table D.l. The first
and the second SLRs here, should have the numeric feature NUM=nil, which can be
aligned with any number of pen gesture. The second SLR, these places, should have
the numeric feature NUM—plural, which can be aligned with more than one pen ges-
tures. All the five pen gestures incur no cost because their coordinates coincide with
the respect icons/labels. Each candidate for cross-modality integration is rescored
and then the updated rank is shown for each candidate. The 98*" hypothesis pair

ranked top after rescoring.



Appendix

Significance Tests

Different numbers of speech recognition hypothesis (N — 1 or 100) and pen
recognition hypothesis {M =1 or 4) are used in the rescoring procedure,
Results are compared and the statistical significance of the differences are

assessed.
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F.1 Cross-modality hypotheses rescoring of the First
Best Recognized Speech Hypotheses and M-Best
Pen Recognition Outputs (M = 4)

We have performed significance test on cross-modality hypotheses rescoring
of the first best recognized speech hypotheses and M-best pen recognition
outputs (M = 4) from the training set. We have formulated a paired Z-
test to test the significance of the experimental results. The performance
obtained for each multimodal inquiry with first best pen recognition hypothesis
and M-best pen recognition hypotheses is 77 = (r/i, r/2, ?MNges) and | 1J—
(rmi, fTn2;--- > "m9%68) respectively. The difference between the two results sets is
Td= {rmi-rfi,rm2-rf2, -A"I/ges)- Table F.l shows the procedures for
the significance test on cross-modality hypotheses rescoring of the first best
recognized speech hypotheses and M-best pen recognition outputs (M = 4)

from the training set.
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The sample mean ofthe performance's difference is equals tor® — 0.032888 with

sample deviation —=0.178435.

The parameter ofinterest is  which is the mean difference between the perfor-
mance for each multimodal inquiry with M-best pen recognition hypotheses and

first best pen recognition hypothesis.

Ho - 10O
Hi :
a=0.01

The test statistic iszQq=T""'"

Reject Ho if za> zaoos = 2.58 or if zoa< —20006 = -2.58.

Since u = 0.032888 > cr™ = 0.178435 and n = 968,
» —0.032888-0 G O-

A—0.176435N" — [

Since zo— 5.81 > 2.58, we reject Hg : fA = 0 ai the 0.01 level of significance.

We conclude that the mean difference between the performance with M-best and
first best pen recognition outputs differs from 0. The experiments are performed
based on first best speech recognition hypothesis and M-best pen recognition

outputs in a sample of 968 multimodal inquiries from the training set.

Table F.lI: A significant test on the cross-modality hypotheses rescoring of the first
best recognized speech hypotheses and M-best pen recognition outputs (M = 4)

from the training set.
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We have performed significance test on cross-modality hypotheses rescor-
ing of the first best recognized speech hypotheses and M-best pen recogni-
tion outputs (M = 4) from the test set. We have formulated a paired Z-
test to test the significance of the experimental results. The performance
obtained for each multimodal inquiry with first best pen recognition hypoth-
esis and M-best pen recognition hypotheses is r; ~ n72,...,7434) and
'm= 1T 2., respectively. The difference between the two results
setsisu = (/[\1- rfi,rm2 - r/2,] §l434 _ ?7434). Table F.2 shows the pro-
cedures for the significance test on cross-modality hypotheses rescoring of the
first best recognized speech hypotheses and M-best pen recognition outputs

(M = 4) from the test set.
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The sample mean of the performance's difference is equals to r* = 0.051282 with

sample deviation o™ = 0.22083.

The parameter of interest is  the mean difference between the performance for
each multimodal inquiry with M-best pen recognition hypotheses and first best

pen recognition hypothesis.

a - 0.01

The test statistic is z2qQ = L/ f;"

Reject Ho if ZqQ > zgoos = 2.58 or if zq < -20.005 — -2.58.

Since A = 0.051282,=0.22083 and n - 434,

—0.051282-0 — 4 84
H1-0.22083vA

Since 7Q = 4.84 > 2.58, we reject i"o :  —. 0 at the 0.01 level of significance.

We conclude that the mean difference between the performance with M-best and
first best pen recognition outputs differs from 0. The experiments are performed
based on first best speech recognition hypothesis and M-best pen recognition

outputs in a sample of 434 multimodal inquiries from the test set.

Table F.2: A significant test on the cross-modality hypotheses rescoring of the first
best recognized speech hypotheses and M-best pen recognition outputs (M = 4)

from the test set.
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F.2 Cross-modality hypotheses rescoring of the iV-Best
Speech Recognition Hypotheses (N = 100) and First

Best Pen Recognition Outputs

We have performed significance test on cross-modality hypotheses rescoring
of the iV-best speech recognition hypotheses (N — 100) and first best pen
recognition outputs from the training set. We have formulated a paired Z-
test to test the significance of the experimental results. The performance
obtained for each multimodal inquiry with first best speech recognition hy-
pothesis and A”-best speech recognition hypotheses is r/ = (r/i, r/2,r/ggQ)
and vm = {rmi, rmoes) respectively. The difference between the two
results sets is u = (rmi — — /2, *+MO68 — r/ges). Table F.3 shows
the procedures for the significance test on cross-modality hypotheses rescoring
of the Nhest  speech recognition hypotheses (v = 100) and first best pen

recognition outputs from the training set.
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The sample mean of the performance's difference is equals to 75=0.138746 with

sample deviation ar®* = 0.398388.

The parameter of interest is the mean difference between the performance
for each multimodal inquiry with TV-best speech recognition hypotheses and first

best speech recognition hypothesis.

o : A =0
iJi 1/ V 0
a = 0.01

The test statisticiszq~ J"”)
Reject Hq if z@ > z0.005 = 2.58 or if za< -zQ.oos = -2.58.

Since A = 0.138746, c’™ = 0.398388 and n = 968,

—0.138746-0 — iQ 04
2.0 —0.398388/x/" —i’\ 3]
Since zQ ~ 10.84 > 2.58, we reject HQ ' * = 0 a,t the 0.01 level of significance.

We conclude that the mean difference between the performance with iV-best
and first best speech recognition hypotheses differs from 0. The experiments
are performed based on iV-best speech recognition hypotheses and first best pen
recognition outputs in a sample of 968 multimodal inquiries from the training

set.

Table F.3: A significant test on the cross-modality hypotheses rescoring of the N-
best speech recognition hypotheses (N = 100) and first best pen recognition outputs

from the training set.
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We have performed significance test on cross-rnodality hypotheses rescor-
ing of the iV-best speech recognition hypotheses {N = 100) and first best
pen recognition outputs from the test set. We have formulated a paired Zz-
test to test the significance of the experimental results. The perfoimance
obtained for each multimodal inquiry with first best speech recognition hy-
pothesis and iV-best speech recognition hypotheses is 77 = (771,772, « - - »'"78)
and T™Vvh = (r?i, rm2, Tmd34) respectively. The difference between the two
results sets is u = (r*i — — * W34 —r/434). Table F 4 shows
the procedures for the significance test on cross-modality hypotheses rescormg
of the iV-best speech recognition hypotheses [N = 100) and first best pen

recognition outputs from the test set
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The sample mean of the performance's difference is equals to 5. 0.146853 with

sample deviation ar® — 0.379831.

The parameter of interest is the mean difference between the performance
for each multimodal inquiry with iV-best speech recognition hypotheses and first

best speech recognition hypothesis.

Ho :P - 0
Hi:  f570
a = 0.01

The test statistic is zQ= ARV

Reject HQ if ZQ > 2p00b = 258 or if zq < 2;0006= -2.58.

Since r* —. 0.146853, a—=0.379831 and n = 434 >

fi-0-146853-0 _ o ng
A1 —0.379831/v/A —E.UO
Since zQ = 8.05 > 2.58, we reject : A = 0 at the 0.01 level of significance.

We conclude that the mean difference between the performance with iV-best
and first best speech recognition outputs differs from 0. The experiments are
performed based on iV-best speech recognition hypotheses and first best pen

recognition outputs in a sample of 434 multimodal inquiries from the test set.

Table F.4: A significant test on the cross-modality hypotheses rescoring of the N-
best speech recognition hypotheses {N = 100) and first best pen recognition outputs

from the test set.
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F.3 Cross-modality hypotheses rescoring of the iV-Best
Speech Recognition Hypotheses {N —— 100) and M-
Best Pen Recognition Outputs (M = 4)

We have performed significance test on cross-modality hypotheses rescoring of
the iV-best speech recognition hypotheses {N = 100) and M-best pen recog-
nition outputs (M = 4) from the training set. We have formulated a paired
Z-test to test the significance of the experimental results. The performance
obtained for each multimodal inquiry with first best speech recognition hy-
potheses and first best pen recognition outputs isr/ = (r/i, 772,--- > r/968). The
performance obtained for each multimodal inquiry with TV-best speech recog-
nition hypotheses (N = 100) and M-best pen recognition outputs (M = 4) is
fm = {vmi, m2; ... ] mOB) respectively. The difference between the two results
sets is v = (nni — rfirn2 - 2, — ?7968). Table F.5 shows the pro-
cedures for the significance test on cross-modality hypotheses rescoring of the
N-hest ~ speech recognition hypotheses N = 100) and M-best pen recognition

outputs {M = 4) from the training set.
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The sample mean of the performance's difference is equals to f* = 0.168551 with

sample deviation 1 =0.423533.

The parameter of interest is the mean difference between the performance
for each multimodal inquiry with AT-best speech and M-best pen recognition

hypotheses and first best speech and pen recognition hypotheses.

FO:P=0
H1:/V O
0.01

The test statistic is ZQ — <5k

Reject Ho if za > zo.005 = 2.58 or if za < 270005 = — 2.58.

Since A]=0.168551, = 0.4123533 and n = 968,

_ 0.168551-0 _ 10 0O
20 — 0.423533/v~r _

Since ZQ = 12.38 > 2.58, we reject (% =0 at the 0.01 level of significance.

We conclude that the mean difference between the performance with iV-best
speech and M-best pen hypotheses and first best speech and first best pen recog-
nition. outputs differs from 0. The experiments are performed based on TV-best
speech recognition hypotheses and M-best pen recognition outputs in a sample

of 968 multimodal inquiries from the training set.

Table F.5: A significant test on the cross-modality hypotheses rescoring of the N-
best speech recognition hypotheses {N — 100) and M-best pen recognition outputs
(M = 4) from the training set.
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We have performed significance test on cross-modality hypotheses rescor-
ing of the TV-best speech recognition hypotheses (TV = 100) and M-best pen
recognition outputs (M = 4) from the test set. We have formulated a paired
Ztest to test the significance of the experimental results. The performance
obtained for each multimodal inquiry with first best speech and first best pen
recognition hypotheses is r/ = (r/i> 772,+- > *7434). The performance obtained

for each multimodal inquiry with N-hest speech and M-best pen recognition

hypotheses is r {Jl = (W, ©R2,- " ;1434) respectively. The difference between
the two results sets is r* = (rfl1—r/i, — T2 5 o "'m434 — 777434y Table F.6

shows the procedures for the significance test on cross-modality hypotheses
rescoring of the TV-best speech recognition hypotheses (N = 100) and M-best

pen recognition outputs (M = 4) from the test set.

F.4 Improvements in the Integration Accuracy brought
about by Cross-Modality Hypotheses Rescoring in

the Presence of Speech Recognition Errors

We have performed significance test on cross-modality hypotheses rescoring of
the TV-best speech recognition hypotheses (N = 100) and M-best pen recog-
nition outputs (M = 4) from the test set in the presence of speech recognition
errors. We have formulated a paired Z-test to test the significance of the exper-
imental results. The performance obtained for each multimodal inquiry with
first best speech recognition hypotheses and first best pen recognition outputs
is Vf = (r/i, r/2,...,1j260)- The performance obtained for each multimodal in-
quiry with iV-best speech recognition hypotheses {N — 100) and M-best pen
recognition outputs (M = 4) is Vm = {rmi, , respectively. The dif-
ference between the two results setsisr* = (tfjl1—r/i, r JLr»2 6 0 —

Table F.7 shows the procedures for the significance test on cross-modality hy-



APPENDIX F. SIGNIFICANCE TESTS 284

The sample mean of the performance's difference is equals to  — 0.204651 with

sample deviation o™ = 0.415298.

The parameter of interest is the mean difference between the performance
for each multimodal inquiry with A*best speech and M-best pen recognition

hypotheses and first best speech and first best pen recognition hypotheses.

Ho - M - o
HI :
a = 0.01

The test statistic is zq =: 7 -/

Reject HQ if zQ > ;20006 = 2.58 or if zZQ < 20005 = —2.58.

Since r* = 0.204651, o™ = 0.415298 and n = 434,

v, — 0.204651-0 _ in 97
7-0.415298/Ar/4~ - JK 4 7

Since zQ — 10.27 > 2.58, we reject :# =0 at the 0.01 level of significance.

We conclude that the mean difference between the performance with  N-hest
speech and M-best pen recognition hypotheses and first best speech and first best
pen recognition outputs differs from 0. The experiments are performed based on
iV-best speech recognition hypotheses and M-best pen recognition outputs in a

sample of 434 multimodal inquiries from the test set.

Table F.6: A significant test on the cross-modality hypotheses rescoring of the N-
best speech recognition hypotheses {N = 100) and M-best pen recognition outputs

(M = 4) from the test set.
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potheses rescoring of the TV-best speech recognition hypotheses (TV = 100) and
M-best pen recognition outputs (M —4) from the test set in the presence of

speech recognition errors.

The sample mean of the performance's difference is equals to r* = 0.264591 with

sample deviation a** — 0.441976.

The parameter of interest is M, the mean difference between the performance
for each multimodal inquiry with iV-best speech and M-best pen recognition

hypotheses and first best speech and pen recognition hypotheses.

Ho
H1:/V 0
a — 0.01

The test statisticisza = : #- / «

Reject Ha if za > ao0s = 2.58 or if za < -ZzQOOoOs = —2.58.
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Since u = 0.264591,—=0.441976 and n = 260,

— 0264591-0 — Qar:

Since ZQ = 9.65 > 258 - wereject HQ :  ‘—. 0 at the 0.01 level of significance.

We conclude that the mean difference between the performance with iV-best
speech and M-best pen hypotheses and first best speech and first best pen
recognition outputs differs from 0 (i.e. improvement in integration accuracies
brought about by cross-modality hypotheses rescoring is statistically significant
from 33.6% to 56.1% in the presence of speech recognition errors). The experi-
ments are performed based on iV-best speech recognition hypotheses and M-best
pen recognition outputs in a sample of 260 multimodal inquiries from the test set

in the presence of speech recognition errors.

Table F.7: A significant test on the cross-modality hypotheses rescoring of the N-
best speech recognition hypotheses {N — 100) and M-best pen recognition outputs

(M = 4) from the test set in the presence of speech recognition errors.

F.5 Improvements in the Integration Accuracy brought
about by Cross-Modality Hypotheses Rescoring in

the Presence of Pen Recognition Errors

We have performed significance test on cross-modality hypotheses rescoring of
the iV-best speech recognition hypotheses {N = 100) and M-best pen recog-
nition outputs (M = 4) from the test set in the presence of pen recognition
errors. We have formulated a paired Z-test to test the significance of the exper-
imental results. The performance obtained for each multimodal inquiry with
first best speech recognition hypotheses and first best pen recognition outputs

is Tf = (r/i, r/2jT/42)- The performance obtained for each multimodal in-
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quiry with TV-best speech recognition hypotheses (N = 100) and M-best pen
recognition outputs (M = 4)isr® » ¢mr 2. . . 1 n42) respectively. The dif-
ference between the two results setsis » =( T'mi — 2 —7 /2 [ m42—+ 2%
Table F.8 shows the procedures for the significance test on cross-modality hy-
potheses rescoring of the iV-best speech recognition hypotheses (N = 100) and
M-best pen recognition outputs (M = 4) from the test set in the presence of

pen recognition errors.

The sample mean of the performance's difference is equals to = 0.243902 with

sample deviation a™ = 0.434769.

The parameter of interest is the mean difference between the performance
for each multimodal inquiry with N-nest speech and M-best pen recognition

hypotheses and first best speech and pen recognition hypotheses.

Ho: =0

Hi :

a - 0.001

The test statisticiszqQq -7

Reject Ho if zQ> 20005 = 2.58 or if ZzZQ< -2:0.005 = —2.58.

Since r® = 0.243902, Or=z(=0.434769 and n = 42,

— 0.243902-0 ~ OCA
M—0.434769/~/42 —
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Since zQ — 3.64 > 2.58, we reject HQ : P' — 0 at the 0.001 level of significance.

We conclude that the mean difference between the performance with  N-hest
speech and M-best pen hypotheses and first best speech and first best pen recog-
nition outputs differs from 0 (i.e. the improvement in integration accuracies
brought about by cross-modality hypotheses rescoring is statistically significant
in the presence of pen recognition errors). The experiments are performed based
on iV-best speech recognition hypotheses and M-best pen recognition outputs
in a sample of 42 multimodal inquiries from the test set in the presence of pen

recognition errors.

Table F.8: A significant test on the cross-modality hypotheses rescoring of the N-
best speech recognition hypotheses (iV = 100) and M-best pen recognition outputs

(M = 4) from the test set in the presence of pen recognition errors.

F.6 Improvements in the Integration Accuracy brought
about by Cross-Modality Hypotheses Rescoring in
the Presence of both Speech and Pen Recognition

Errors

We have performed significance test on cross-modality hypotheses rescoring of
the N-hest  speech recognition hypotheses (v — 100) and M-best pen recog-
nition outputs {M = 4) from the test set in the presence of both speech
and pen recognition errors. We have formulated a paired ztest to test
the significance of the experimental results. The performance obtained for
each multimodal inquiry with first best speech recognition hypotheses and
first best pen recognition outputs is rj = (r/i,772,--- > A734). The perfor-

mance obtained for each multimodal inquiry with iV-best speech recogni-
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tion hypotheses (TV — 100) and M-best pen recognition outputs (M = 4)
is rJ\=(TVrti, r- JK2,...7 7134) respectively. The difference between the two results
sets is Td = (Tmi — T-fi,r m2 — -1 n34 — r/34). Table F.9 shows the proce-
dures for the significance test on cross-modality hypotheses rescoring of the
TV-best speech recognition hypotheses {N = 100) and M-best pen recognition
outputs (M = 4) from the test set in the presence of both speech and pen

recognition errors.
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The sample mean of the performance's difference is equals to  — 0.264706 with

sample deviation = 0.447811.

The parameter of interest is the mean difference between the performance
for each multimodal inquiry with iV-best speech and M-best pen recognition

hypotheses and first best speech and pen recognition hypotheses.

HQ-.PO
1 :~0
& = 0.001

The test statistic is zQ -- J"" )

Reject o if za> 2;0b = 258 or if za< -zom = -2.58.

Since r* = 0.264706, (Trix=0.447811and n = 34,

7" — 0.264707-0 , q
AN-0.447811/v34 - 145

Since zQ~ 3.45 > 2.58, we reject 1: - : = 0 at the 0.001 level of significance.
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We conclude that the mean difference between the performance with iV-best
speech and M-best pen hypotheses and first best speech and first best pen recog-
nition outputs differs from O (i.e. improvement in integration accuracies brought
about by cross-modality hypotheses rescoring is statistically significant in the
present of both speech and pen recognition errors). The experiments are per-
formed based on TV-best speech recognition hypotheses and M-best pen recog-
nition outputs in a sample of 34 multimodal inquiries from the test set in the

presence of both speech and pen recognition errors.

Table F.9: A significant test on the cross-modality hypotheses rescoring of the N-
best speech recognition hypotheses {N — 100) and M-best pen recognition outputs

(M = 4) from the test set in the presence of both speech and pen recognition, errors.



Appendix G

Abbreviations

Table G.I includes abbreviations that occur in this thesis for quick reference.

ARG Attribute Relational Graph

BUAA Beijing University of Aeronautics and Astronautics
BUPT Beijing University of Post and Telecommunications
CAC Character Auto-Completion

CMI Cross-Modality Integration

CMIP Cross-Modal Integration Pattern

CUBRICON CUBRC Intelligent CONversationalist

FST Finite-State Transducer

GPS Global Positioning System

HCWP Human-Centric Word Processor

HMM Hidden Markov Model

HTK Hidden Markov Model Toolkit

IDF Inverse Document Frequency

IR Information Retrieval

292
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LDA Latent Dirichlet Allocation

LSM Latent Semantic Modeling

MATCH Multimodal Access To City Help

MiPAD Multimodal Interactive Personal Assistance Device
MM Multimodal

MSRA Microsoft Research Asia

NLG Natural Language Generation

NLU Natural Language Understanding

PLSA Probabilistic Latent Semantic Analysis

POSMDS POStech Multimodal Dialog System

PP Perplexity

SDS Spoken Dialog System

SEQ Sequential

SIM Simultaneous

SLR Spoken Locative Reference

SVD Singular Value Decomposition

TF Term Frequency

UM Unimodal

WITAS Wallenberg laboratory for research on Information Technology

and Autonomous Systems

Table G.I: A list of abbreviations used in this thesis.
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