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Abstract of thesis entitled: 
Global Robust Output Regulation for Nonlinear Output Feedback Systems and Its 

Applications 
Submitted by XU, Dabo 
for the degree of Doctor of Philosophy 
at The Chinese University of Hong Kong in February 2010 

The thesis is concerned with the global robust output regulation for nonlinear systems 
in the output feedback form by using output feedback control. For the nonlinear output 
feedback systems, we mainly study three typical output regulation problems. The first 
one is the output regulation problem with unknown control directions and input-to-state 
stable (ISS) inverse dynamics using a direct approach. The second one is the adaptive 
output regulation problem with an uncertain exosystem and ISS inverse dynamics. The 
third one is a case study on the solvability of the systems with integral input-to-state 
stable (iISS) inverse dynamics. 

The nonlinear output regulation is a central control problem that involves nonlinear 
stabilization, tracking control and disturbance rejection as special cases. The control ob-
jective is to find a feedback controller to achieve asymptotic tracking and/or disturbance 
rejection while maintaining closed-loop stability. The output regulation study has expe-
rienced rapid developments in the past two decades or so. It is now well known that the 
problem can be systematically approached according to the general framework of tackling 
nonlinear output regulation that is composed of the following two steps. The first step 
is the problem conversion: from nonlinear output regulation to stabilization. The output 
regulation is generally more complicated than the stabilization problem. Therefore the 
problem conversion indeed reduces the complexity and makes it possible to be handled. 
In this step, the output regulation is converted into the stabilization of an augmented sys-
tem consisting of the original plant and a suitable dynamic compensator called internal 
model. The second step is the stabilization of the augmented system whose solvability 
implies solvability of the output regulation problem. 

In the past ten years or so, the output regulation of the strict output feedback systems 
has attracted a lot of attention. In contrast with the strict output feedback systems, the 
output feedback systems is more general since it not only involves the nonlinearity of the 
system output but also the unmodeled dynamics. Therefore, the usual design method 
is not applicable, which motivates us to develop some new methodology for the output 



regulation design of the output feedback systems. 
The main results of the thesis are outlined as follows. 
i) A direct approach is proposed for the output regulation of the systems with ISS 

inverse dynamics and unknown control directions. The internal model is first designed 
for the control input. The output feedback control design is further achieved based on a 
type of partial state observer which is designed for the transformed augmented system. 
The Nussbaum function technique is successfully incorporated in the stabilization design 
to deal with the case of unknown control directions. 

The result is applied to solve a tracking control problem associated with the well known 
Lorenz system and a class of generalized fourth-order Lorenz systems. By certain system 
decomposition, it is proved that the Lorenz system contains certain ISS inverse dynamics 
and the output feedback control is successfully realized. 

ii) An adaptive output regulation design is proposed for the systems with ISS inverse 
dynamics and an uncertain exosystem. When the exosystem contains uncertain parame-
ters, the direct approach can not be implemented any longer. To deal with this issue in 
the general case, by introducing an observer, we first derive an extended system composed 
of the plant and the observer. Then the output regulation problem of the extended system 
is solved. It is further shown that the unknown parameter vector of the exosystem can 
be exactly estimated if a controller containing a minimal internal model is employed. 

The application of the result leads to the solution of several interesting control prob-
lems such as the global disturbance rejection of the FitzHugh-Nagumo (FHN) system 
and the robust output synchronization of the generalized third and fourth-order Lorenz 
system and the Harmonic system. 

iii) A sufficient solvability condition of the global output regulation for the systems 
with iISS inverse dynamics is proposed. Since the concept of iISS is strictly weaker than 
the ISS one, the result allows us to handle a much larger class of nonlinear systems. 

One of the motivations of the case study is to deal with the output regulation prob-
lem of a shunt-connected DC motor whose inverse dynamics is iISS but not ISS. As an 
illustration, a disturbance rejection problem of the shunt-connected DC motor is solved. 
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摘 要 

本文针对非线性输出反馈控制系统，研究基于输出反馈的全局鲁棒输出调节问题.针 

对非线性输出反馈控制系统，主要研究了三类典型的输出调节问题.第一类设计问题是, 

利用一种直接的方法，在控制方向未知并且系统的逆动态具有输入到状态稳定 ( ISS)的性 

质的情况下的输出调节问题 .第二类设计问题是，针对具有不确定外部系统和输出到状 

态稳定的逆动态的非线性系统的自适应输出调节问题 .第三类设计问题是，是进一步考 

虑了具有积分输入到状态稳定 ( i i s s )的逆动态的控制系统的一种输出调节问题. 

非线性系统的输出调节问题是一个核心的控制问题，涵盖了非线性系统的镇定控制, 

跟踪控制和干扰抑制等特殊的控制问题 .输出调节问题的目标是寻找一种反馈控制器 , 

实现渐进跟踪或者渐进干扰抑制，同时可以保持闭环系统的稳定性 .在过去大约二十年 

的时间里，非线性输出调节问题的研究经历了快速的发展.现在我们已经知道，该问题可 

以利用输出调节问题的一般求解框架来系统的解决 .该框架包含了两个基本步骤，第一 

步是问题的转化：从输出调节问题到镇定控制问题.一般情况下，输出调节问题要比镇定 

控制问题复杂困难的多，因此通过问题转化，输出调节问题将大大简化，并且更可能得到 

解决.经过这一步转化，输出调节问题转化成了关于增广系统的镇定问题，该增广系统是 

由原被控系统和适当设计的动态补偿器构成，这样的动态补偿器称为内模 .第二步是关 

于增广系统的镇定控制，该镇定问题的可解性决定了输出调节问题的可解性. 

在过去的十年左右的时间里，相关严格输出反馈系统的输出调节问题吸引了研究人 

员的广泛注意.相对于严格输出反馈系统，输出反馈系统更具有一般性，体现在该类系统 

不仅具有输出的非线性形式，还具有未建模动态的非线性形式.因此，现有的严格输出反 

馈系统的输出调节求解方法将无法直接的运用于问题的求解，我们将针对一般的输出反 

馈系统给出输出调节问题的设计方案. 

本文的主要结论概括如下： 

i )针对具有未知控制方向以及输入到状态稳定的逆动态的输出反馈控制系统，我们 

提出了一个直接方法 .首先对控制输入设计了内模，然后通过设计适当的部分状态观测 

器，实现了增广系统的输出反馈控制.Nussbaum函数方法成功的运用于镇定设计过程中, 

解决了控制方向未知的问题. 

该设计方法可以应用于解决广义的三阶和四阶Lorenz系统的跟踪控制问题.经过分析 

证明，Lorenz控制系统具有输出到状态稳定的逆动态，因此输出反馈控制得以实现. 

i i )针对具有不确定外部系统以及输入到状态稳定的逆动态的输出反馈控制系统，我 

们提出了一个自适应输出调节设计方法 .当外部系统具有不确定参数的时候，先前的直 

接方法将不再有效.为了解决这个问题，针对一般形式的输出反馈系统，我们首先通过引 

入了某种类型的观测器，得到一个新的扩展了的系统，由原系统和该观测器构成.然后针 

对扩展系统考虑了输出调节问题.我们还进一步考虑的参数收敛性问题，同时指出，如果 

控制器包含了一个最低阶的内模，那么外部系统的未知参数将可以得到精确的估计. 

该设计方法可以应用于解决若干个有意义的控制问题，比如F H N系统的全局干扰抑 

制问题，广义Lorenz系统与谐振系统的同步控制问题等等. 

i i i )针对具有积分输入到状态稳定的逆动态的输出反馈控制系统，我们提出了一类输 



IV 

出调节问题的可解性的充分条件 .相对于输入到状态稳定，由于积分输入到状态稳定的 

概念更具有一般性，该结论使得更广泛的一类输出反馈系统的输出调节问题得以解决. 

该结果可以用来处理一种并励直流电机的干扰抑制问题，可以证明这种并励直流电 

机具有积分输入到状态稳定的逆动态 .作为应用，我们给出了该干扰抑制问题的仿真实 

验. 
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Chapter 

Introduction 

1.1 Literature overview 

The output regulation or the servomechanism problem is a central control problem in the 
area of automatic control. A general formulation of the problem is design of a feedback 
control law for an uncertain control plant to achieve asymptotic tracking and/or distur-
bance rejection for a class of references and/or disturbances while maintaining closed-loop 
stability. What makes the problem interesting and important is that it involves several ba-
sic control problems such as stabilization, asymptotic tracking, and disturbance rejection 
as special cases. In the problem setting, both the references and disturbances are sup-
posed to be unavailable for feedback design, but they can be generated by an autonomous 
differential equation called the exosystem. In contrast with the similar problems, such 
as synchronization and trajectory tracking, where the desired trajectories can be fully 
used in the feedback design, a fundamental feature of the output regulation problem is 
that the reference inputs and disturbances are supposed to be unmeasurable but it can 
be generated by an exosystem. 

The output regulation problem for linear systems was well studied during the 1970s 
15] [20]. The problem for nonlinear systems has been a central control problem since the 

early 1990s. The problem aims at achieving, by feedback control, asymptotic tracking 
and disturbance rejection in an uncertain nonlinear plant where the reference inputs and 
disturbances are generated by an autonomous system called exosystem. The study of 
this problem for nonlinear systems was initiated in the early 1990s, name a few [24] [25 
27] [35] [38] [48]. In the past two decades or so, it has led to a powerful control design 

method called the internal model approach [4] [31] [32] [49] [77]. Various versions of this 
problem have been solved so far for several types of nonlinear systems as follows. The 
global state feedback output regulation for lower triangular systems was studied in [7] [9] 
31] [32] [52]. The global state feedback output regulation for upper triangular systems 
vas studied in [6]. The global output feedback control for strict output feedback systems 



.2. CONTRIBUTION OF THE THESIS 

with a known exosystem [8] [17] [18] [58] [61] [67] [76]. The semi-global output feedback 
output regulation for lower triangular systems can be found in [37] [47], and with an 
unknown exosystem [72] [77]. The practical output regulation problem was studied in 
[26] [66] [86]. Among them, applications of nonlinear output regulation can be found in 
[10] [31] [59] [60] [65]. 

A framework for handling the output regulation problem for a general nonlinear system 
has been given in [32]. According to this framework, the output regulation problem can 
be handled in two steps. In the first step, an appropriate dynamic compensator called 
internal model is designed. Attachment of the internal model to the given plant leads to 
an augmented system. The internal model has the property that the stabilization solution 
of the augmented system will lead to the output regulation solution of the given plant and 
exosystem. In the second step, the stabilization problem of the augmented system needs 
to be tackled. It is now quite clear what are the conditions under which the first step 
can be accomplished. Therefore, we will place the emphasis of the work on the second 
step. It should be noted that, in this general framework, the stabilization design for the 
augmented system is generally much more challenging than the original plant with the 
exogenous signals set to zero due to the introduction of internal model dynamics. 

The class of systems studied in the thesis is more general than the strict output 
feedback systems in that the zero dynamics of the system is not linear. For this reason, 
the study of this class of systems will also be more interesting and meaningful. On one 
hand, this extension makes it possible to cover a larger class of nonlinear systems, and on 
the other hand, the existing design methodologies are usually not applicable to solve the 
new problems. This motivates us to investigate the solvability of the output regulation 
problems of nonlinear output feedback systems using output feedback control. The control 
of output feedback systems has gained a lot of attentions recently and most of the results 
are on the stabilization problem using output feedback control, see [41] [44] [45] [46] [71] 
for instances. 

1.2 Contribution of the thesis 

The contribution of the thesis is twofold. Firstly, based on the two-step general framework 
for tackling nonlinear output regulation, some new design methodology is developed for 
the output regulation of nonlinear output feedback systems by using output feedback 
control in the cases of unknown control direction, uncertain exosystem, and iISS inverse 
dynamics respectively. Secondly, the results in the present work are successfully applied 
to solve several interesting tracking control, synchronization, and disturbance rejection 
problems associated with the well known Lorenz system, FHN model and shunt-connected 
DC motor. Compared with the existing results on these applications, our design is output 
feedback control and the tracking or synchronization trajectory can be unmeasurable. In 
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summary, there are three typical problems studied in the thesis. 
i) We propose a direct approach to the output regulation problem of the systems with 

ISS inverse dynamics and an unknown control direction. In this case, the internal model is 
first designed for the control input. The resulting augmented system is not in the output 
feedback form. However, it can be transformed into a specific lower triangular form. The 
Nussbaum function technique is also successfully incorporated to deal with the case of 
unknown control directions. 

The result is applied to solve a tracking control problem associated with the well 
known Lorenz system and a class of generalized fourth-order Lorenz systems. By certain 
system decomposition, it is proved that the Lorenz system exactly contains an ISS inverse 
dynamics and this makes the output feedback control design possible to be done. 

ii) We propose an adaptive output regulation design methodology for the systems with 
ISS inverse dynamics and an uncertain exosystem. When the exosystem contains uncer-
tain parameters, the direct approach can not be implemented any longer. To deal with 
this issue of the general case, by introducing a specific type of observer, we first derive 
an extended system composed of the plant and the observer. Then the output regulation 
design is performed for the extended system. We further show that this unknown param-
eter vector can be asymptotically estimated if a controller containing a minimal internal 
model is employed. 

The main advantage of the design method is that it allows certain parameter uncer-
tainty of the exosystem, and the parameter convergence issue is further discussed in this 
chapter. However, the sign of the control gain has to be known as a prerequisite. 

The application of the result leads to the solution of several interesting control prob-
lems such as the global disturbance rejection of the FitzHugh-Nagumo (FHN) model and 
the robust output synchronization of the generalized Lorenz system and the Harmonic 
system. 

iii) We present a case study on a sufficient solvability condition of the global output 
regulation for the systems with iISS inverse dynamics and unknown control directions. 
Since the iISS condition is strictly weaker than the ISS one, the extension allows us to 
handle a much larger class of nonlinear systems. We further point out that under certain 
conditions, the output regulation problem with an uncertain exosystem can be possibly 
solved by using a similar approach proposed in Chapter 4. 

As an illustration, the result is applied to solve a disturbance rejection problem of the 
shunt-connected DC motor. It is shown that its inverse dynamics is iISS but not ISS. 

1.3 Organization of the thesis 

The remaining part of the thesis is organized as follows. 
Chapter 2\ Some fundamental background materials are collected and summarized, 
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which is useful for deriving the results in the thesis. Some preliminary results as prepa-
rations for proving the results in the thesis are also placed in this part. 

Chapter 3: The output regulation problem with unknown control directions and ISS 
inverse dynamics using output feedback control is solved in this chapter. Applications of 
the result to the tracking control of third and fourth-order Lorenz systems with unknown 
control directions are given in this chapter. 

Chapter 4' The output regulation problem with an uncertain exosystem and ISS 
inverse dynamics using output feedback control is solved in this chapter. Applications of 
the result to the disturbance rejection of FHN model and the synchronization of Lorenz 
system and Harmonic oscillator are given in this chapter. 

Chapter 5: For the systems with iISS inverse dynamics, the global output regulation 
problem is solved by using the developed changing supply function technique for iISS 
stable systems. It is pointed out that the design methods in Chapters 3 and 4 can be 
implemented under certain conditions. 

An application of the result to a disturbance rejection problem of a shunt-connected 
DC motor is illustrated in this chapter. 

Chapter 6\ Some concluding remarks including the future work are given in this 
chapter. 

The result presented in Chapter 3 is included in [87] [88]，and the result in Chapter 4 
is included in [89] [90；. 

The simulations throughout the thesis were performed by using MATLAB. 
The thesis was typeset using M ^ . 

Notation and 

The notations and 

Acronym 

acronyms used in the thesis are collected in Table 

• End of chapter. 
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Table 1.1: Notations and Acronyms 

Symbol Meaning 
R 
R+ 
C 
E" 
脱mxn 

IMI 
M 
a t 

入⑷ 

In 
I 
C^ 
p.d. 

JC 
厂oo 
£ 

KC 

BIBS 
ISS 
iISS 
GAS 
PE 
CLF 
FHN 

The set of all real numbers 
The set of all nonnegative real numbers 
The set of all complex numbers 
n-dimensional Euclidean space 
The set of all real m x n matrices 
The Euclidean norm of a vector x 
The induced Euclidean norm of a real square matrix A 
The transpose of a matrix A 
The compound column vector [vi ^v^Y' for any column vectors vi and V2 
The spectrum of a square matrix A 
n-dimensional identity matrix 
Identity matrix of an appropriate dimension 
The class of continuously differentiable functions 
The class of continuous functions / : R"' IR+ satisfying /(O) — 0 and 
I{x) > 0, V a; 0 
The class of strictly increasing p.d. functions f : ] R + 
The class of unbounded class K, functions 
The class of continuous, strictly decreasing, positive functions f : E+ i—1R+ 
satisfying f{s) > 0, V s > 0 
The class of continuous functions /? : IR+ x R+ i—> IR+ satisfying for each fixed 
s G R+,风•，s) e /C, and for each fixed r G M+, j3{r, •) E £ 
Bounded-input bounded-state 
Input-to-state stability/stable 
Integral input-to-state stability/stable 
Globally asymptotically stable 
Persistence of excitation 
Control Lyapunov function 
The FitzHugh-Nagumo model 



Chapter 2 

Background and preliminaries 

In this chapter, we review some fundamental definitions and results that will be extensively 
used in the thesis. These materials are well known and can be found in many books such 
as [21] [31] [36] [50] [51] [78]. Some preliminary results that will be referred to in the 
subsequent chapters are also presented in this chapter. 

2.1 Fundamentals of nonlinear systems 

2.1.1 Stability of nonlinear systems 

We begin with the general nonlinear system described by 

X = f(x,t), x(to) = Xo (2,1) 

where a; E is the system state with initial state xq at initial time to, and f is locally 
Lipschitz in x and is piecewise continuous in t. Suppose system (2.1) has an equilibrium 
at a: = 0, i.e. 

/ ( 0 ’ i ) = 0, y t > t o 

Definition 2.1 The equilibrium = 0 of system (2.1) is stable if for each £ > 0, there 
exists a constant ^(^o, £) > 0 such that the trajectory of system (2.1) satisfies 

(力，亡0’0；0)丨| < £ 

for all llajoll < and all t > to > 0. If, in addition, the above <5 > 0 can be chosen 
independent of 亡o, then x = 0 is uniformly stable. 

The equilibrium o; = • is asymptotically stable if it is stable and there exists a constant 
c(to) > 0 such that for all ||:ro|| < c 

lim x{t, to^xo) = 0 



2.1. FUNDAMENTALS OF NONLINEAR SYSTEMS ^ 

The equilibrium x — 0 is uniformly asymptotically stable if there exists a class JCjC 
function /?(-,.) and positive constant c > 0 which is independent of to, such that for all 
llâ oll < c 

\\x{t,to,Xo)\\<m^oLt-to). t > to >0 (2.2) 

If (2.2) holds for any initial state xq G M", then the equilibrium 3： = 0 is globally uniformly 
asymptotically stable. i 

Theorem 2.1 [50] Let a: = 0 be an equilibrium of (2.1) and D C M" be a domain 
containing x = 0. If there exists a C^ positive definite (p.d.) function V{t, x) be a C^ 
function satisfying Wi{x) < V{t, a:) < W2{x) for some p.d. functions and W2{x) 
on D, such that along the trajectory of (2.1) 

T + T 離 0 (2.3) 

then = 0 is uniform stable. i 

Theorem 2.2 [50] Suppose that the assumptions of Theorem 2.1 are all satisfied with 
inequality (2.3) strengthened to 

T + 勢 ( … - 剛 

for some p.d. function W^^lx) on D, then a; = 0 is uniform asymptotically stable. If 
D = IRn and V{t, x) is radially unbounded, then x = 0 is globally uniformly asymptotically 
stable. I 

Theorems 2.1 and 2.2 provide the sufficient conditions to determine the (uniform) 
stability or asymptotic stability of an equilibrium point of a (time-varying) uncontrolled 
nonlinear system. A function V{t, x) is also called positive definite if V{t, x) > Wi(x) 
with Wi(x) being p.d., and V{t,x) is radially unbounded if Wi{x) radially unbounded. 

In some cases, the function V(t,x) in Theorems 2.1 and 2.2 can be chosen to be time-
invariant for some time-varying nonlinear systems, that is V ~ y { x ) which is independent 
oil. 

Particularly, consider the nonlinear system described by 

X - f{x,i^(t)), x{to) - xo (2.4) 

where x G is the system state with an initial state Xq and ji{t) G S with E being a 
compact subset of M"^. Suppose system (2.4) has an equilibrium at a: = 0, i.e. / ( 0 , / i ) = 
0 for all II E E, the following theorem is sufficient to guarantee the global (uniform) 
asymptotic stability of a: = 0. 
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Theorem 2.3 [50] Let 工 = 0 be an equilibrium point of (2.4) and f is locally Lipschitz 
in X and uniformly in /i G E. If there exists a C^ function V{x) satisfying 

for some class /Coo functions a(-) and a(-), 

dVjx) z ( � 

for some p.d. function a � ’ then a; = 0 is 

2.1.2 ISS and iISS 

such that along the trajectories of (2.4) 

V a; G M", V/ i G E (2.5) 

globally asymptotically stable. i 

In this section, we review some basics of the iISS, iISS Lyapunov function and the issue 
of changing supply functions. 

Consider a controlled nonlinear system described by 

X = f(x,u,jj,), x(0) = xo (2.6) 

where a: G M" is the system state with an initial state Xq, u 6 is the control input, 
li{t) G E is a piecewise continuous disturbance varying in a compact set E C and f 
is locally Lipschitz in x and u. 

Definition 2.2 [9] (ISS) The x system (2.6) is robust ISS stable with state x and input 
u with respect to E, if there exist a class KC function /?(-, •) and a class JC function 7 such 
that for any xq € M" and any trajectory x(t) = x{t, Xq) 

||a;W||</?(||2:o||,t)+7( sup |Kr)||) (2.7) 

where 7(.) is called the ISS gain function. 1 

Definition 2.3 [81] (iISS) The x system (2.6) is robust iISS with state x and input u 
with respect to S, if there exist a class KC function /?i(-, •) and class K functions q;i(-) 
and 7i(-), such that for any Xq G E" and any trajectory x(t) ^ x(t,XQ) 

a,(Mt)\\)<m^o\\,t)^ [\,{\\u{s)\\)ds (2.8) 
Jo 

where 7i(.) is called the iISS gain function. 1 

Remark 2.1 The relationships between ISS, iISS and BIBS are shown as follows. 

ISS 今 iISS, ISS 4 BIBS, iISS 挣 BIBS 
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Notice that for an iISS stable system, the bounded input may make the system state 
unbounded. 

The concepts of ISS and iISS are also closely related to the concept of 0-GAS. System 
(2.6) is called 0-GAS if a: = 0 of the system 

± = 

is globally asymptotically stable. Known from (2.7) and (2.8), we have the following 

ISS 0-GAS, iISS 0-GAS 

That is to say, each ISS or iISS system is 0-GAS. i 

Definition 2.4 [1] (iISS Lyapunov function) A C^ function Vo{oc) is called a robust iISS 
Lyapunov function with respect to I； for system (2.6), if it satisfies ao(IWI) < K � < 
ao(||a;||) for some class /Coo functions and �(•)，and for any p G S, along the 
trajectory of system (2.6) 

< -ao{\\x\\) ^ 6ojo(u) (2.9) 

where both ao{-) and 7o(.) are p.d. functions, and Ŝ  is an unknown positive constant, i 

Proposition 2.1 System (2.6) is robust iISS stable with state x and input u w.r.t S, if 
and only if it has a robust iISS Lyapunov function Vo{x) w.r.t S. i 

The proof of Proposition 2.1 is omitted and it can be easily modified from [1]. 

Remark 2.2 In (2.9), 7o(-) is also an iISS gain function for system (2.6) [1], and we call 
lo) the iISS supply pair for system (2.6). 

A specific property of system (2.6) having an iISS Lyapunov function satisfying (2.9) 
is that, if 7o(-) is integrable over [0, oc), i.e. 7o(ti(5))ds exists, then x(t) will approach 
zero as 艺—+oo [81]. i 

Example 2.1 Consider the bilinear system described by 

x = + xu, X G ueR (2.10) 

System (2.10) is not BIBS, so it is not ISS. But, it can be verified that (2.10) is iISS 
with state x and input u. In fact, choose V(x) — \ ln(l + x'^x) which satisfies along the 
trajectory of (2.10) 

T� —x'^x + x'^xu \\x 2 
v = ^ r — ^ — — < , , , 2 + — 1 + 

Known from Proposition 2.1, it is iISS with state x and input u but clearly not BIBS. 
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2.1.3 Stability of cascade-connected nonlinear systems 

Consider the interconnected nonlinear system taking the following form 

±1 = 

±2 = Ax2 + ^P2{XI,U,ijl) (2.11) 

where (xi, 3:2) G x R"^ jg the system state, u e M"̂  is the input, and /x e E with E c 
M"̂  being a compact set. Both ifi and 仍 are smooth functions satisfying (/?i(0,0, = 0, 
(^2(0，0，"）= 0 for all p G S . 

Proposition 2.2 If xi subsystem of (2.11) is iISS stable with state Xi and input u, then 
(xi,X2) system (2.11) is iISS stable with state (xi,x2) and input u. 1 

Proof: For Xi subsystem, by using the definition of iISS and inequality (2.8), we have 

ll^iWII < sup ||:ri(r)|| 
0<T<t 

< a^ri(/?i(lki(0)ll，0) + i ' 7 i ( I W 4 l ) & ) 

< c^i-io2/5i(||a:i(0)||，0) + c ^ r i ( l ' 2 7 i ( H s ) | | ) d s ) (2.12) 

Since A is Hurwitz, we get that X2 subsystem is ISS stable with state X2 and input 
{xi ,u) and satisfies 

1^2^11 < /?2(||a:2(0)|| ,t)+72i( sup l l x i M I l ) 

+722( sup llli(T)ll) (2.13) 

for some class KL function /?2(•，•) and class K ^ functions 721 (.) and 722(.)-
Substituting (2.12) into (2.13) gives 

11:^2�II < /?2(|k2(0)||，0) + 722( sup ||u(r)||) + 7 2 i o 2 a r ' o 2 / ? i ( | | x i ( 0 ) | | , 0 ) 

+721 o ( j : 27i(|kW||)d5) (2.14) 

From (2.12) and (2.14), we have 

II工1 � I I + 11 工 2 � I I < ao(||a:i(0),a:2(0)||) + 722( sup W r ) | | ) 

+702 7i(||n(5)||)ofs) (2.15) 

for some suitable functions ao(.) and 702(•) 
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Known from estimates (2.12) and (2.13), (xi, X2) system is 0-GAS, i.e. the equilibrium 
of (xi, 3:2) system (2.11) with it 三 0 is globally asymptotically stable. This in conjunction 
with estimate (2.15) implies system (xi, 2:2) system (2.11) is iISS stable with state (xi,x2) 
and input u according to Proposition 3.2 of [2], The proof is completed. 

Remark 2.3 To our knowledge, it is now not clear about how to construct an iISS 
Lyapunov function and its supply pair for {xi,x2) system (2.11) by using the property 
shown in Proposition 2,2 directly. In order to obtain the iISS Lyapunov function of this 
case, we need one more condition. The result will be shown later by Lemma 5.1 on a 
changing iISS supply function technique. 1 

The following lemma is on a property of two interconnected ISS systems. It will be 
used several times in the subsequent chapters. 

Lemma 2.1 Consider system (2.11). Assume, given any compact subset E C there 
exists a C: function Vzi(zi) satisfying < Vz^{zi) < az^dl^iH) for some class /Coo 
functions a^^(-) and、（-) such that, for any ji{t) G E, along the trajectory of system 

= ifl {Zi.U.IJ,) 
K < + (2.16) 

for some class JCqq function satisfying linis—0+ < 00, some positive 
number 5u, and some known smooth p.d. function 7奴(-). 

Then there exists a C^ function ^(zi,2^2) satisfying 

<az(lki,22II) 

for some class JĈ o functions 么(•）and �(.）such that, for any fi(t) G S, along the 
trajectory of system (2.11), 

K < - P i l l ' - 1 1 ^ 2 f + (2.17) 

where 6u is some positive number and is some known smooth p.d. function. • 

Remark 2.4 A class K ^ function «(•) satisfying the condition lim卜�+ sup(Q;~^(s^)/s) < 
00 is said to be locally quadratic. The assumption (2.17) implies that the subsystem 
Zi — n, fi{t)) is ISS with state Zi and input u � a n d the equilibrium zj = 0 of the 
system Z\ = (/?i(zi，0,/•i⑴）is locally exponentially stable for any /x G S if tt(-) and q;(-) 
are also locally quadratic. 

Under the condition (2.17), by applying the changing ISS supply functions technique 
in [80], for any smooth function A(2:i) > 0, there exists a C^ function t^i (2̂ 1) satisfying 
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for some class /Coo functions ai^^(-) and 名i(-) such that, for any // E S, along the 
trajectory of system zi = /j,) 

K A ⑷ II 之 1 "2 + � ( 2 . 1 8 ) 

where constant & � 0 and %(•) is some known smooth positive function, i 

Proof of Lemma 2.1: Since 仍[ZhU.ij) is smooth and satisfies (/?2(0，0’/x) = 0，by 
Lemma 2.4 shown later, there exist some real constant c > 0，smooth positive functions 
•0i(zi) and '4>2(u) such that, for all zi G u G R, and /i G E, 

| | ( ^ 2 G 2 M ， 权 ， S c l ^ i ( 么 � M ) (2.19) 

Next, by Remark 2.4，given any smooth function A(zi ) > 0，there exists a C^ function 
VzA^i) satisfying 

由 z i ( I M ) 浏 之 1 ) 仏 』 M ) 
for some class /Cqo functions 由 a n d 屯2i(.) such that, for any ii(t) E E, along the 
trajectory of system i i = (zi,u, /x), 

K < - A ( ^ i ) I N | 2 + (2.20) 

for some positive number Su and some known smooth positive function %(•). 
Let 

where I is some positive number to be specified later, and P is the positive definite solution 
of the Lyapunov equation 

PA + A^P = -In, (2.21) 

It can be seen that K(:i，^2) is C^ satisfying 

for some class JĈ o functions 么(•) and a^(-). Using (2.20) and (2.21), Vz{zi,z2) satisfies, 
for any / / � G E, along the trajectory of system (2.11) 

Vz < ll^if + I6^%{u)u'' - 2 P2II' + 

Letting 

> 1 + 咖 1 ) 
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and 

I > max{ l，8c2�||2} 

> max{Z4，8c2||P||2} 

yields (2.17). Thus the proof is completed. 

2.2 Stabilization of nonlinear systems 

2.2.1 Control Lyapunov function 

Consider the controlled system described by 

X = J{x,u), X e W, ueMT 

where / (0 ,0 ) = 0，and f{x,u) is a smooth function of x and u. 

(2.22) 

Definition 2.5 [21] (CLF) A C^ p.d. function V{x) is a control Lyapunov function 
(CLF) of (2.22) with respect to a controller u = vanishing at 5； = 0 if 

V ( 工 ） ( � = . /(工，利工)）<0， V x ^ O (2.23) 
u=(i){x) ox 

The above standard CLF definition can be easily modified to robust CLF defined for 
uncertain nonlinear systems such as (2.11). The existence of CLF implies the equilibrium 
of the system can be made globally asymptotically stable by a static feedback controller. 
Roughly speaking, the stabilization design methods in the thesis is essentially based on 
the CLF method. It should be noted that the above defined CLF is with respect to a 
full state feedback controller, which is generally not necessary. As we will shown in the 
following chapters, for certain stabilization problem, the partial state feedback controller 
is sufficient to achieve the above condition (2.23). 

2.2.2 Global stabilization by recursive design 

By virtue of the above defined CLF function, we have a review of the basic backstepping 
design of nonlinear systems in triangular form. 
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Consider the nonlinear system described by 

i 二 f[z) + g{z)xi 

= h{z,Xi) + gi{z,xi)x2 

= f2(z,Xi,X2) + g2(z,Xi,X2)x2, 

土n—1 一 5 • • • 5 n̂—1) ; ••••> n̂—1 

士n — /n("̂ ，工1,…，工n) + 工 1 ， . ， . ， ( 2 . 2 4 ) 

where z € E" , G M, z = 1, • • • ,n, and u eR. All the functions in (2.24) are supposed 
to be globally defined and smooth in their arguments, satisfying fi{0, - • •，0) = 0 and 
gi(z,xi,-.. ,Xi) for any {z,xi, • •. ,Xi) G i = I,-.. ,n. 

It can be seen that (2.24) can be put in the standard form 

x = f { x ) + 9{x)u (2.25) 

with X = co\{z, Xi, • • • , Xn). The basic idea of backstepping is to derive a state feedback 
controller u = 0 (x ) such that the equilibrium x 二 0 of (2.25) can be made globally 
asymptotically stable. By virtue of CLF of Definition 2.5, under certain conditions, we 
can obtained such a controller recursively. 

We begin with a simple nonlinear system (2.26) and perform the control design pro-
cedure by using the CLF method. 

Lemma 2.2 [51] Consider the following nonlinear system 

^ = /(之）+ g(之)工1 

xi = ui (2.26) 

where z G M"，Xi G M, Ui G M, /(O) — 0, and the functions f(z) and g(z) are smooth. 
If z subsystem (2.26) has a CLF Vz{z) with respect to state feedback Xi = ^(z), then 

the system described by (2.26) has a CLF 

with respect to state feedback 

刚 7 ( 之 ） + 9{z)x,] - — k{x, — (2.27) dz dz 

where k〉0. 
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Thus the equilibrium point of the closed-loop system 

^ = f{z) + g(z)oci 

- Mz^^ i ) (2.28) 

is AS. Moreover, if Vz(z) is radially unbounded, so is Va(z, Xi). Thus, the equilibrium 
point of (2.28) is GAS. i 

Using Lemma 2.2, the backstepping design for system (2.24) can be summarized as 
the following steps. 

Initial Step: If tz = 1 in (2.24), that is u = 

^ 二 /(之）+ "(之)2：1 

= fi{z,xi) gi{z,xi)u (2.29) 

by using Lemma 2.2, we have the following result. 
Using the input transformation 

u = Ua - fl{z,Xi) 

gives 

^ = fiz)+9iz)xi 

xi = Ua (2.30) 

Therefore, by Lemma 2.2, if z subsystem of (2.30) has a CLF V{z) with respect to 
state feedback xi = 4>{z), then (2.30) has a CLF 

with respect to 

<Uz, = ^ i m + - ^ f f ( ^ ) — K工 1 — 綱 

where /c > 0. Therefore, (2.30) has the same CLF with respect to 

u = —^r[0a(2, Xi) - fi(z, Xi)] (2.31) 

Mathematical Induction: Suppose when n = i, the following system 

Xi = fi{z,Xi) +giiz,xi)x2 

i i = + gi{z,xu. . . ,xi)xi+i (2.32) 
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has a CLF Vi{z, Xi, • • • , Xi) with respect to a state feedback controller Ui = 4>i(z, Xi, - • • ,Xi). 
Consider the system described by 

乞 = f ( z ) -^g{z)xi 

= + gi(z,Xi)x2 

士i — fii^i 工1，…， î) + 工1，…’工i)工i+1 

二 /i+1 (之，Zl，…，而+】)+ •̂ i+l(2，a;i，...，：3；么+1)2；<+2 (2.33) 

which can be put into the following form 

C = / ( C ) + 沉 

Xi+i 二 /i+i(C，a:i+i) + 乐+i(C,工 (2.34) 

Using Lemma 2.2 again, similar with the method in the initial step, we conclude that 
there exists a CLF with respect to a controller Ui+i = 

Therefore, as a result of mathematical induction, the global stabilization problem of 
(2.24) can be solved by a recursive design procedure. 

Remark 2.5 The above global stabilization design is for nonlinear systems without un-
certainties and based on a static full-state feedback controller. In general, the nonlinear 
systems may involve both parameter uncertainty and unmodeled dynamic uncertainty. 
So the design method can not be applied directly in many cases. The stabilization prob-
lems in the thesis are involved with both static uncertainty and dynamics uncertainty. 
Therefore, we need to find some robust, dynamic partial state/output feedback controller 
to solve them. 1 

2.3 Output regulation of nonlinear systems 

In this section, we review some basics of the nonlinear output regulation. For a specific 
class of nonlinear systems, we first formulate the problem of nonlinear output regulation 
and review the general framework for handling nonlinear output regulation [31]. The plant 
is an output feedback nonlinear system in simple case of relative degree one described by 
(2.35). 

2.3.1 Problem description 

Consider the single-input single-output nonlinear system described by 

i 二 / (2，y,” ,— 

y = 9(z,y,v,w) + u 

e = y-q{v,w) (2.35) 
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with an exosystem described by 

V = Ai((7)V, V(0) = vo (2.36) 

where (z,y) G R" x M is the system state, e(t) € K is the tracking error to be regulated, 
and u(t) G M is the control input to be designed, w, a are the parameter vectors of the 
plant and exosystem which may be uncertain and for each a € R"�，all the eigenvalues of 
Ai((7) are distinct with zero real parts. All the functions in (2.35) and (2.36) are supposed 
to be sufficiently smooth and satisfying /(0，0,0, w) = 0, 0,0, w) = 0 and q(0, w) = 0 
for all w e 

The output regulation problem can be formulated as follows. 

Problem 2.1 (Global Output Regulation) The global output regulation problem is to 
find a control law in the form 

i -知(<e，e) (2.37) 

where ^ G is the controller state and g^ are smooth functions, such that the 
closed-loop system composed of (2.35), (2.36) and (2.37) has the properties that, for any 
initial state and any system uncertainty 

i) the trajectory of the closed-loop system exists and is bounded over [0, +oo) , and 

ii) the tracking error e{t) asymptotically decays to zero as time t tends to infinity. 

I 

The controller (2.37) solving Problem 2.1 is called a dynamic error output regulator. 
It has been known that the solvability of the regulator equations of the plant (2.35) and 
exosystem (2.36) is a necessary condition [31] [38]. To fulfill this condition, we need the 
following standard assumption. 

Assumption 2.1 (Solvability of Regulator Equations) There exists a solution composed 
of z{v,w,a), q{v^w) and u{v,w,a) satisfying the following regulator equations 

dz{v,w,a) 

0 = w^ (j), g(f, w)^ v^ w) + u(?;, w, a) 

for all (i;, w, a) G R"^ X x i 

Existence of the output zeroing manifolds [31 
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is necessary to achieve the solvability of the output regulation problem. In particular, the 
zeroing output manifold w, a) provides the necessary feedforward control information 
to the controller. Nevertheless, u{v, w, a) cannot be directly used for designing feedback 
control law as it depends on the exogenous signal v and unknown parameter (w, a). We 
need to design a dynamic compensator called internal model which can asymptotically 
provide the information of u(t;, w, a). 

2.3.2 Tackling output regulation via problem conversion 

To achieve the problem conversion, we need the following definitions of steady-state gen-
erator and internal model 

Definit ion 2.6 (Steady-State Generator) [32] Under Assumption 2.1, the plant (2.35) and 
exosystem (2.36) is said to have a steady-state generator with output u if there exists a 
triple with 0 : a ： E"^ h-> and 13 : R""' ^ R, all vanishing 
at the origin, satisfying 

de{v,w,a) 
=a{6(v,w,a)) 

u{v,w,a) = l3{d{v,w,a)) 

for all (v,w,a) G IR彻 x R � x R"- . i 

Definition 2.7 (Internal Model)[32] Suppose Assumption 2.1 is satisfied and there exists 
a steady-state generator with output u for the plant (2.35) and exosystem (2.36). The 
following dynamics is called internal model 

f] = ^(r],u,e) (2.38) 

if function 7 vanishes at the origin and satisfies 

7(0(1!, w, cr), u(v, w, cr), 0) = a(9(v, w, a)) 

for all {v, w, a) € x x 耿“". i 

It has been shown in [32] that the steady-state generator will lead to some well defined 
internal model. Note that the internal model is not unique. Therefore, design of the 
internal model in some suitable form is a key problem to achieve the solvability of the 
output regulation problem. 

Using the internal model in the general form (2.38), we next illustrate the procedure 
of problem conversion. The augmented system is described by 

i 二 f{z,y,v,w) 

n 二 liVyU.e) 

y = giz,y,v,w) + u (2.39) 
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To formulate our stabilization problem, by performing the following coordinate transfor-
mations 

乏 = ^ - z{v, w, a) 

fj = ?7 — 6(v,w,a) 

we get the transformed augmented system described by 

I = f{z,e,v,w) 

力 二 j(fj,e,u,v,w,a) 

e = g(z,e,v,w)- p{fj + e)-\-u (2.40) 

where 

f{z + z(t j， (7) ’ e + q{v, w),v, w) - f{z{v, w, a), q(v, w) 

g(z,e,v,w,a) = g(z + w, cr), e + q{v, w),v, w) - g{z(v,w, a), q(v,w),v,w) 

Notice that the state f) is not available for feedback design any longer. The stabilization 
problem of the augmented system (2.40) can be formulated as follows. 

Problem 2.2 (Global Robust Stabilization) Find a control law of the following form 

C = 说 e , " ) (2.41) 

where û^ and g^ are globally defined and continuous such that, for any initial state and 
all (v, w, a) G IR"” x x the solution of the closed-loop system composed of (2.40) 
and (2.41) exists and is bounded over [0，oo), and 

Hm pll + + N = 0 

That is to say, the control objective is to make the point [z, fj,e) = 0 globally asymptoti-
cally stable. I 

It is obvious that if Problem 2.2 is solvable, we can get a solution of Problem 2.1. 
Thus, the problem conversion is achieved. 

2.4 Some useful lemmas 

In this section, we summarize some useful lemmas that will be referred to frequently 
throughout Chapters 3 to 5. 
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Lemma 2.3 (Barbalat' Lemma) [51] Suppose f{t) is continuously differentiable for t > to 
for some to, f{t) has a finite limit as t — oo, and f{t) is uniformly continuous. Then 
f(t) — 0 as t — oo. I 

Corollary 2.1 If the differentiate function f(t) has a finite limit as i oo, and is such 
that / exists and is bounded, then f{t) 一 0 as t 一 oo. i 

Corollary 2.2 If a function a:: R+ i-^ is uniformly continuous, and there exists a p.d. 
quadratic function V{3；) such that 

roo 
/ V(x{t))dt < oc 

Jto 

then x{t) tends to zero as t oo. i 

The following theorem can be proved by using Lemma 2.3. 

Theorem 2.4 (LaSalle-Yoshizawa)[51] Consider system (2.1) and suppose f is locally 
Lipschitz in x uniformly in t. Let : x IR — 1R+ be a C^ function such that, for some 
class /Coo functions a(-), a(-), and a continuous nonnegative function a(x) > 0 

i) a{\x\)<Vix,t)<a{\x\) 

ii) V{x,t) ^ + < V i e 『 ， \ f t > t o 

Then all solutions of (2.1) are globally uniformly bounded and satisfies 

lim a(x(t)) = 0 

Moreover, if in addition a(x) is p.d., then the equilibrium a: = 0 is globally uniformly 
asymptotically stable. i 

The following lemma is adapted from [31] which will be used several 
the dominating functions for an uncertain function. 

times to derive 

let fi : X 

with S being a 
Lemma 2.4 (Dominating Functions' Inequality) For each i 二 1，… 

X ST" H ]R be a C^ function satisfying 力（0，0，== 0 for all // G S 
compact set and 

f{xi,X2,/l) = •： 

Then there exist smooth p.d. functions (/)i : E"^ h IR+ and (p2 : h E+ such that 

||/(:ri，:C2,M)ll < 01(2^1) +(^2(3^2) 

for all G X2 €『。，and ju G S. i 
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The Nussbaum function, for instances, Af{s) = exp(s^) cos(7rs/2) or exp(s^) cos(s), was 
first introduced in [70]. We will use the Nussbaum function to deal with the stabilization 
problems in the case of unknown control directions. The following lemma collected from 
[58] will be used in Chapters 3 and 5. 

Lemma 2.5 [58] Let U{t) > 0 and k(t) be smooth functions defined on [0,T), J\f{-) be 
an even smooth Nussbaum-type function, and 6 be a nonzero constant. If it holds that 

ft / X . 
ims / [bN(k(T))^l)k{T)dr + p, te[0，T) 

Jo \ / 

where p is some constant, then U{t), k(t) and J (^bj\f(k{r)) + 1) k(T)dT are all bounded 

over [0,T). i ° 

The following result will used to analyze the parameter convergence issue of the adap-
tive output regulation problem studied in Chapter 4. 

Definition 2.8 A bounded piecewise continuous function f 
persistence exciting (PE) if there exist positive constants e， ‘ 
row vector c of dimension n, and any t > to, 

1 ft+To 

〒丄 丨c/⑷丨办 

Or equivalently, 
r-i+To 

: R + M" is said to be 
To such that, for any unit 

1 广十Jo 
瓦 jt f{s)ris)ds > el 

Lemma 2.6 [61] Let 分：K+ h M^ be a C^ function and / : IR+ is PE. Then 

lim git) 二 0 (2.42) 

if 
lim g(t) = 0 (2.43) 
f—oo 

and 
lim " T � / � = 0 (2.44) 

Remark 2.6 This lemma gives the convergence condition of the function g{t) to the 
origin based on two asymptotic properties (2.43) and (2.44) of g{t) and the PE condition 
of / � . T h e result is of interest in that it does not assume that g{t) has to be governed 
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by some linear differential equation as assumed in the literature of adaptive control of 
linear systems. Thus, it also applies to adaptive control of nonlinear systems. It should 
be noted that the fact that lim^^oo g{i) = 0 alone plus the PE condition of f does not 
necessarily imply the existence of lim“oo ff�. • 

• End of chapter. 



Chapter 3 

Global output regulation using 
output feedback control 

In this chapter, we address the global output regulation problems for output feedback 
systems (3.1) and (3.29) with unknown control directions and ISS inverse dynamics using 
output feedback control. The class of output feedback systems described by (3.1) is 
in a simple form and has a relative degree equaling one. We first present the solution 
for this special case in Section 3.1. In the general case, the class of output feedback 
systems described by (3.29) has a relative degree larger than one and the problem is then 
considered in Section 3.2. For the general case, to achieve the output feedback control, 
we need to introduce some type of partial state observer. 

3.1 Special case 

In this section, we study the global robust output regulation problem for an output 
feedback systems described by (3.1) and an exosystem described by (3.2). This problem 
aims at designing a feedback controller for an uncertain nonlinear plant such that the 
output of the closed-loop system will asymptotically track a class of reference inputs 
and rejects a class of disturbances. Here both the reference inputs and disturbances are 
generated by a linear neutrally stable system described by (3.2). Various versions of the 
problem related to (3.1) have been studied for ten years or so, see [5] [16] [17] [18] [37 
[58] for instances. 

Some special cases of the system of the form (3.1) have been studied in [16], [58]. 
Compared with the result in [16], [58], the main feature of system (3.1) is that we allow 
the inverse dynamics z 二 f(z) y, 0，w) to be nonlinear both in z and y so that our result 
applies to a larger class of systems. It will be seen later that the Lorenz system does 
not belong to the class of systems studied in [16], [58]. Technically，the approach in [16], 
58] cannot handle the nonlinear zero-dynamics, and we need to apply Lemma 2.1 to deal 

23 
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with the nonlinear zero-dynamics. On the other hand, the output regulation problem of 
system (3,1) with unstable zero dynamics is studied in [5]. However, our result is global 
as opposed to the semi-global result in [5]. Moreover, we will not assume the knowledge 
of the sign of the high frequency gain b. 

In Section 3.1.1, we formulate the problem and introduce a set of basic assumptions 
on system (3.1) so that the robust output regulation problem of system (3.1) can be 
converted into a global robust stabilization problem of an augmented system based on 
the general framework as shown in Chapter 2. Section 3.1.2 presents the main result. A 
design example is illustrated in Section 3.1.3. 

3.1.1 Problem formulation and preliminaries 

Consider the class of uncertain nonlinear systems described by 

i = f{z,y,v,w) 

y = g{z,y,v,w) -hbu 

e = y _ q{v,w) (3.1) 

where [z,y) E M" x R is the state, e G E is the error output and u e U is the control 
input. If； € W C with W nonempty is a constant uncertain parameter vector, and 
v{t) 6 K"” represents the time-varying reference and/or disturbance. The functions / , g 
and q are assumed to be sufficiently smooth of their arguments satisfying 

/(0,0,0，—二 0， g{0,0,0,w) = 0, q{0,w) = 0, V w G W 

and the uncertain gain b is nonzero with an unknown sign. 
It is assumed that v{t) is generated by a linear exosystem 

V = Aiv, i;(0) 二 1；0 (3.2) 

where Ai is a known constant matrix with all its eigenvalues distinct with zero real parts. 
As a result, the general solution of the exosystem is a sum of finite sinusoidal functions 
with the amplitudes and phase angles depending on the initial condition vq. 

The problem of the global robust output regulation problem is precisely formulated as 
follows: For any given W, design an output feedback control law of the form: 

C = 9K((,e) (3.3) 

where both uk and gn are sufficiently smooth vanishing at the origin such that, for any 
initial condition (2(0)，^ (̂0)，v(0)，C(0)), and any constant parameter w E W, the solution 
of the closed-loop system composed of (3.1) to (3.3) exists and is bounded over [0, +oo) 
and the error output e(t) asymptotically approaches zero as 亡 +oo. 
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The subsystem z 二 / ( z , 0, 0, w) is called the zero dynamics of system (3.1) with v 
set to zero. For the special case where the zero dynamics is a linear stable system, 
i.e., f{z, 0,0, w) = H(w)z with H{w) a Hurwitz matrix for all w, the output regulation 
problem of system (3.1) with relative degree greater than or equal to 1 has been studied 
in several papers, e.g., [16], [58]. More recently, the semi-global robust output regulation 
problem of system (3.1) is further studied which allows the origin z — 0 of the system 
i = f{z, 0，0’ w) to be unstable [5 . 

Let us first list two standard assumptions to achieve the problem conversion. 

Assumption 3.1 There exists a globally defined smooth function z ： E"^ x M"^ R" 
with z(0, w;) = 0 such that 

dz(v,w 
dv 

(3.4) 

for all (!；，！(；) e R"” X i 

Under Assumption 3.1, let y(v, w) = q{v,w) and 

u ( ? ; ， 切 ) = w ) / d v ) A i V 一 g(z(v^ w),v, w)) (3.5) 

Then, {z(v,w}, y(Vjw), u(ti，u*)} is the solution of the regulator equations associated 
with (3.1) and (3.2). For the existence of an suitable internal model, we make another 
assumption. 

Assumption 3.2 u(v,yj) is a polynomial in v with coefficients depending on w. i 

Remark 3.1 Under Assumption 3.2, there exists an integer s such that u{v, w) satisfies, 
for all trajectories v{t) of the exosystem and all li； G W 

d^u(v, w) , � du(v,w) 
� ’ ^ = aiu{v,w) + a2~^T^—^ + + 

where ai,0,2, CLs are real scalars such that all the roots of the polynomial 

P(A) = Â  - ai - aaA a^A^"' 

distinct with zero real parts [31 . 
n T . 1 

and r = [1,0 

(3.6) 

Let r(t), w) ~ col(u, u, • • • ’ •一”)’ $ = 

Then t(v, w), $ and F satisfy the following equations 

driv, w) 

_ 0 Is-l 

ai . • I x s . 

dv 
•Aiv = 

u(v,w) = rT(v,w) (3.7) 
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Remark 3.2 System (3.7) can be used to generate the steady-state input u(7；, w)^ and 
thus called a steady-state generator with output u in the sense of Definition 2.6. Since 
(r , is observable and the eigenvalues of $ have zero real parts, for any controllable 
pair (M, N) with M G M'®̂ ^ a Hurwitz matrix and N E R^^^ a column vector, there is a 
unique nonsingular matrix T satisfying the Sylvester equation 

T屯-MT 二 NT 

Let 0{v, w) = TT(V, W) which satisfies 

e(v,w) = � M + N 卵{v,w� 

u(v, w) = w) 

with 少 “ T h e n we can define a dynamic compensator as follows: 

f] = M7] + Nu (3.8) 

which is an internal model with output u in the sense of Definition 2.7. 露 

Attaching the internal model (3.8) to (3.1) and performing the following coordinate 
and input transformation: 

z = z — z{v, w), fj = 7] — 9{v, w) — e = y — q{v, w), u = u — (3.9) 

gives a system as follows: 

77 = Mfj + MNh-^e - e, y) 

e = g{z, e, fi) + + "^Ne + bu (3.10) 

where = (v,w), /(乏，e’//) = /(乏 + z ’ e + q,v,w) ~ f(z,q,v,w), and 歹(乏，e,/i) = g{z + 
z,e + — g(z;,q,v,w). It can be verified that / ( 0 ,0 , / i ) = 0 and ^(0,0,^) = 0 for 
any // e K"” x W. 

Let z = col(z, fj) and F{z ,e , i i ) = co l ( / ( z , e, fi), Mf i+MNb~^e-Nh'^g^z, e, ji)). Then 
system (3.10) takes the following form: 

e = g{z, e, fi) + b-^fj + ^A^e + bu (3.11) 

Remark 3.3 System (3.11) is the desired augmented system. The quantity ii{t) in the 
augmented system (3.11) can be viewed as an unknown time-varying disturbance. It can 
be seen that if there exists a control law of the form 

C 二 9dC,e) 
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that solves the global robust stabilization problem of system (3.11) in the sense that, for 
any initial condition of the closed-loop system and the exosystem, and any fixed unknown 
parameter w G W , the solution of the closed-loop system is bounded for all i > 0, and 
the state of the augmented system (3.11) tends to zero as 亡一 +oo , then the following 
control law: 

u = fc“C，e) +师 

7) = Mt] + Nu 

C = 9c(C,e) 

solves the global robust output regulation for the original system (3.1). i 

3.1.2 Main result 

In this section, we will consider the global robust stabilization problem of system (3.11) 
without the knowledge of the control direction, that is the controller can be independent 
of the sigh of parameter b. For this purpose, we need one more assumption as follows. 

Assumption 3.3 For any compact subset S C R"” x >V, there exists a C^ function Vz 
satisfying a(||z||) < Vz{z) < a(||z||) for some class /Coo functions q(-) and such that, 
for any /i G S, along the trajectory of the subsystem z = f(z, e, fi) 

+ (3.12) 

where S is some unknown positive constant, a(-) is some known class /Coo function satis-
fying liiHs—0+ sup(a- i (s2) /s ) < oo and 7(,) is a known smooth p.d. function, i 

Remark 3.4 Assumption 3.3 is modified from what was used in [42]. This assumption 
is slightly stronger than ISS condition of the subsystem z — / ( z , e, with state z and 
input e. 

When V = 0, the subsystem 乏=/(乏,e，/z) reduces to i — 0,0, w) which can be 
viewed as the zero dynamics of system (3.1) with y as the output and v set to be zero. 
Thus Assumption 3.3 implies that system (3.1) is minimum-phase, i 

Lemma 3.1 Consider system (3.11). Under Assumption 3.3，there exist a smooth posi-
tive function p[e) > 1 and a controller of the form 

u = J\f{k)p{e)e 

k 二 p(e)e2 (3.13) 

such that the closed-loop system composed of system (3.11) and controller (3.13) has the 
property that, for any v{t) generated by the exosystem (3.2), and any w G W , there exists 
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a C^ function V{z, e) satisfying a{\\ z,e\\)<V< a(|| z, e ||) for some class JC^o functions 
«(•) and «(•), such that, along the trajectory of the closed-loop system 

1/ < (bM(k)-hp^k (3.14) 

where p is a positive constant, i 

Proof： Consider the subsystem z = F{z,e,fi) which can be decomposed into the form 
(2.11) with Zi = z, Z2 = fj, and u — e. Let S C E"̂ ^ x W be a compact subset such that 
H(t) = (v{t),w) G E for all t > 0. Recall that M is Hurwitz, and f(0,0,v,iu) = 0 and 
列0,0, v,w) 二 0 for all {v, w) G M""- x W. 

Thus, by Lemma 2.1, under Assumption 3.3, there exists a C^ function Vz(z) satisfying 
< \4(z) < Qizdl^ll) for some class /Coo functions 由名(.）and aiz(-) such that, 

for any /u G S, along the trajectory of system z = F(z, e, /i) 

< - Ik l l '+ (5e7e(e) (3.15) 

for some positive number Se and smooth p.d. function 7e(-)-
Further, by Remark 2.4, given any smooth function A(z) > 0, there exists a C^ 

function U(z) satisfying 逊z(IMI) < < q;2^(||z||) for some class /Coo functions 逛 

and a2z(-) such that, for any /i G S, along the trajectory of system z = F(z, e, fi) 

U<-A(z) \lzf + 6e%ie)e' (3.16) 

for some positive number Se and some known smooth positive function %(•). Let 

which satisfies, for any // G E, along the trajectory of the closed-loop system composed 
of (3.11) and (3.13) 

V < e{g{z, e, fi) + 网 + ^Ne + bAf{k)p(e)e) 一 A{z) ||zf + Se%(e)e^. (3.17) 

In (3.17)，denote fj) := g{z, e, ju) + b'^fj + 句Ne which satisfies ^(0,0,fi) = 0 for all 
fi e E . Using Lemma 2.4 again yields 

for some positive smooth functions Ai (z ) and pi{e), and some constant pi > 0. Thus, by 
completing the squares, we have 

< P2(A2(Z)||Z||2 + P2(e)e2) (3.18) 
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where p2 > pi ^2(2) > Af{z) and /?2(e) > pl(e) + 去.Substituting (3.18) into (3.17) 
gives 

V < bAf(k)p{e)e' + ( P 2 A 2 � - A ( z ) ) \\zf+p2p2{e)e' + (3.19) 

Choosing functions A(z ) , p{e) such that 

> P2A2{Z) + 1’ ^(e) > max{p2(e), 7e(e), l } 

and constant p > Pi + 5e gives 

V = ( 6 歸 ) + — ||z||2 (3.20) 

Hence, we have (3.14). The proof is completed. 

Theorem 3.1 Under Assumptions 3.1 to 3.3, let p{e) be what is defined in Lemma 3.1. 
Then the following controller 

u = M{k)p{e)e-\- ^77 

77 = Mr] + Nu 

k = p{e)e^ (3.21) 

solves the global robust stabilization problem of system (3.11). 1 

Proof: For any given VQ G and w E W, there exists a compact subset E such that 
/i(t) = {v{t),w) e S for all t > 0. Thus, inequality (3.20) holds for this pair of v{t) and 
w. Integrating both sides of (3.14) over [0, t), V i > 0, gives 

V{t) < L (^bAf(k{r))-hpy(r)dT-\-V{0) (3,22) 

By Lemma 2.5，the above inequality shows that V{t) and k{t) are bounded over each time 
interval [0,T) with 0 < T < +00. So the solution of the closed-loop system composed of 
system (3.11) and controller law (3.13) is defined and bounded over [0，+00). 

We now show e � will approach the origin as t +00. Since k{t) is bounded over 
0, +00) and k{t) = p(e)e^ with p(e) > 1，e is square integrable over [0, +00). Furthermore, 

both e{t) and e(t) are bounded over [0’ +00)• By using Lemma 2.3，we conclude that e{t) 
tends to zero as t —̂  +00. This completes the proof. 

Remark 3.5 The control law (3.21) utilizes the well known universal adaptive high gain 
employed in, say, [34] [73]. This type of controller works well in a noise-free environment. 
However, in the presence of noises or repeated disturbances, the gain k might drift to in-
finity since the derivative of k is always nonnegative. This phenomenon is called "bursting 
phenomenon" in some literatures. The authors of [34] [73] have addressed this issue by 
employing the deadzone technique. Nevertheless, employment of such technique can only 
guarantee that the output of the closed-loop system will asymptotically approach, instead 
of the origin, some sufficiently small neighborhood of the origin. 1 
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Figure 3.1: 3-D plot of Lorenz system. 

3.1.3 Application 

Consider the controlled Lorenz system [13] described by 

xi = —LiXi + L1X2 

±2 = L3X1 - X2- X1X3 + bu 

X3 = L2X^ + X1X2 

and an error output e = X2 — F{t) where (Li,Z/2,Z/3,b) is a constant parameter vector 
satisfying Li > 0, L2 < 0 and 6 ^ 0 . F{t) = Aj^ sm{ujt + is the reference input with 
known frequency cj and unknown amplitude Am > 0 and initial phase 4>. When u 三 0, 
system (3.23) is the well-known Lorenz system [62] which exhibits a chaotic behavior with 
Li = 10, L2 = —8/3, and L3 = 28 as shown in Figure 3.1. We consider the problem of 
the global asymptotic tracking by output feedback with e as the output for any sinusoidal 
reference input F{t) without knowing the sign and value of b. 

First note that F{t) == Vi{t) which can be generated by 

A Vl 0 LJ Vl 1̂0 Am sin (j) 
= = ， v o = A-m COS (j) V2 V2 - u j 0 V2 V20 A-m COS (j) 

(3.23) 

By letting {zi ,z2,y) = {xi,x3,x2), we can put system (3.23) in the standard form (3.1) 
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as follows 

i i = -Lizi + Liy 

Z2 二 L2Z2 + ziy 

y ^ hu + L^zi — y — ziz2 (3.24) 

To make our problem more interesting, we allow the parameter (Li, L 2 , � 3 ) to undergo 
some perturbation. To be more specific, let 

L = (Li,L2,L3) + (JjUi,W2,W� 

where (Zi , L2, L3) represents the nominal value of L and ivs) the uncertainty of 
L. To guarantee Li > 0 and L2 < 0, we define 

W = {w I e R3’ 乙1 + � 0 , L2 + W2 < 0} 

Now it is clear that if we can solve the global robust output regulation problem for 
system (3.24) with exosystem (3.23) and W as described above, we can solve the global 
robust asymptotic tracking problem for system (3.23) by output feedback control for 
any sinusoidal reference input F{t) in the presence of the parameter variation w G W. 
Moreover, since the inverse dynamics of system (3.24) contains a nonlinear term ziy, the 
result in [58] does not apply to this example. 

We now verify that the composite system (3.23) and (3.24) satisfies Assumptions 3.1 
to 3.3. From the last equation of (3.24), we have y ( f , w) = vi. Substituting y(i', w) into 
the first equation of (3.24) yields 

Zi{v,w) = rnvi + ri2V2 

where 

= _ ) = - ； ^ 
Substituting y{v, w) and Zi{v, w) into the second equation of (3.24) gives 

Z2(V’ — = r2ivl + r22vl + r23ViV2 

where 

r2i{w) = -—r23 
Z/9 L 

, � -n2么2 — - 2u;rii 
= ^ Z f T ^ ^ 



M = 
‘ 0 h _ 

—mi _m2，-ms, -7714 
iV = col(0，0，0’l) 

and the parameter (mi,7712,ms,7714) being such that M is Hurwitz. By solving the 
Sylvester equation — MT — N with (mi,7712,ma, m^) = (4，12，13,6)，we have 

少 = r T - i = [4 — 9a;4,12,13 — lOcj^, 6 

Now performing the coordinate and input transformation (3.9) for the augmented 
system composed of (3.24) and (3.8) gives 

Zi = —LiZi + Lie 

h = L2Z2 + {zi + Zi)(e + vi) - ZiVi 
7) = Mfj + MNb-^e - Nb-^g{zi, e, fi) 

e = -e + L3Z1 - {zi + zi)(z2 + Z2) + Z1Z2 + + ^iVe + bu (3.25) 

We now verify that system (3.25) satisfies Assumption 3.3. In fact, for any fixed 
compact subset E C x W , let 

Finally, substituting y ( f , w) to Z2(v, w) into the third equation of (3.24) gives 

=b~^{uJV2 + t；! - L3Z1 + Z1Z2) [V, w 

= r ^ i V i + r 321̂ 2 + + 3̂4 + + r^GVivj 

where 

r3i(w) = + Lani) 
r32{w) = - L^r 12) 

rssiu)) = 6~Viir2i, r34(w;) = 6~Vi2r22 
rssi'w) = &-1 (7-127̂ 21 + ?̂ 11厂23) 

『36 — ) = +。2”23) 

Thus both Assumptions 3.1 and 3.2 are satisfied. It can be further verified that 

By Remark 3.1，the steady-state generator of the form (3.7) is given by 

T{V,W) = col(u，ii，u(2),u⑶） 

$ = ^ ^ ^ ^ ^ ^ ^ ， r = [1,0,0,0 
_ 0 h . 

- 9 a / 0 ’-10a;2,0 

which leads to the internal model described by (3.8) with 
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for some h> 0 which satisfies along the trajectory of (乏!，乏2) subsystem 

Vz = —hLiZi + hLiZie — hL\z\ + HLiz^e + L2Z2 + z2({zi + Zi)(e + vi) — ZiVi) 

= — h L i z f 4- hLiZie — hLiz\ + HLiz^e + L2Z2 + + V1Z2Z1 + ZiZ2e (3.26) 

In (3.26), using Young's inequality gives, for any e > 0 

hLiZie < 
J游-— 2 ' 

g2 

hLizle < 
— 4 • 

VlZ2Z\ < 1 , 2 
+ 2 A 

？2 
'2 

Zi 乏2e < —Zo -
2 2 

乏2乏le < -tZ^ -
2 2 

1 2 - 4 , 1 4 
zj + ^T^e (3.27) 

Substituting (3.27) into (3.26) gives 

1 

2 + 

丨e2 + 

- h u + i)zt + (L2 + £ H 

+ ( 2 + 2e) 
丨e2 + Cf (3.28) 

Since S is compact, for all {v G S , there exist a sufficiently small 左 : > 0, a sufficiently 
large > 0, and constants • • • > 0 such that 

V-, < -^izl — i2zi - + + 

As a result, by Theorem 3.1, the global robust output regulation problem for the 
composite system (3.23) and (3.24) is solvable by an output feedback controller. In fact, 
following the design method detailed in Section 3.1.2, we can obtain a controller of the 
form (3.21) with p{e) 二 + 1). 

Simulation is performed for the closed-loop system composed of (3.2), (3.11) and (3.12) 
with LU = 0.8 and Li = 10, L2 = —8/3, L3 = 28, and initial conditions VQ 二 col(l，0)， 

x(0) = (—1,1,2)，7]{0) = 0 and k(0) = 1. Some results are shown in Figure 3.2 and 3.3 
with &二 1 and b — —1, respectively. It shows that the controller is independent of the 
control direction and the control objective is achieved. 
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Time t (second) 

Figure 3.2: Responses of k(t), and (xi(t),x2(t), X3(t)) when b = 

乂2 、 

2 3 4 5 
Time t (second) 

Figure 3.3: Responses of e � ’ k(t), and (xi(t),x2(t),x3(t)) when b =-. 
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3.2 General case 

In this section, we consider the global robust output regulation problem of the nonlinear 
output feedback systems in the following general form 

i = f{z,y,v,w) 

Xi = gi{z,y,v,w), i = I , - - - , r - l 

Xr = bu + gr{z^ y, V, w) 

y = xi 

e = xi — q(u, w] (3.29) 

y G M is the output, 
uncertain parameter 
E"^ is an exogenous 

where (z,x) G M" x E"" with r > 2 is the state, n G M is the input, 
6 is a nonzero constant with an unknown sign, if； G W C is an 
vector with W an arbitrarily prescribed subset of IR"叫,and f (i) G 
signal representing both reference input and disturbance. 

It is assumed that v[t) is generated by a linear system of the form (3.2) where all 
the eigenvalues of matrix Ai are simple with zero real parts. All functions in (3.29) 
are supposed to be globally defined, sufficiently smooth, and satisfy / ( 0 , 0 , 0 , w) = 0， 

ffi(0’ 0 ,0 , w ) = 0, and q(0, w) = 0 for all w € W . 
The quantity e represents the tracking error. The precise statement of our problem is 

given as follows. 

Problem 3.1 Design a dynamic output feedback control law of the form 

权= MC，e)，C = (3.30) 

where C G R打（for some integer n ‘ > 0. u^ and g^ are globally defined sufficiently smooth 
functions vanishing at the origin such that, for all initial conditions, and all w eW, the 
trajectory of the closed-loop system composed of (3.29) to (3.30) exists and is bounded 
over 0, +oo), and the error output e{t) asymptotically approaches zero as 力—+oo. 

The global robust stabilization problem for the output feedback systems with î o 二 0 
has been studied in [42] [44]. A subclass of (3.29) is given as follows 

i： = H{w)z-^ go{y,w) 

Xi = Xi+i-\- gi{y,w), i = ,r - 1 

Xr = bu + Q{w)z + griy.yj) 

y = xi (3.31) 

where H(w) and Q{w) are matrices of appropriate dimensions, and H{w) is Hurwitz for 
each constant uncertainty w [58] [67]. A disturbance rejection problem for system (3.31) 
has been studied in [16] which can be viewed as a special case of the output regulation. A 
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special feature of (3.31) is that its zero dynamics z = H{w)z is a linear stable system. This 
special feature lends itself to an effective approach to designing an output feedback control 
law. In contrast, system (3.29) does not possess this feature and hence the approach in 
16] is not applicable here. Therefore, we need to employ a different technique to tackle 

our problem which involves the use of some type of observer. Moreover, unlike [16], we 
will not assume the knowledge of the sign of the high frequency gain b. 

In Section 3.2.1，we introduce a set of basic assumptions on system (3.29) and convert 
the problem into a global robust stabilization problem of an augmented system. Section 
3.2.2 will give the main result of this section, and a design example will be illustrated in 
Section 3.2.3. 

3.2.1 Assumptions and problem conversion 

To achieve the problem conversion as shown in [32], we will first list some standard 
assumptions as follows. 

Assumption 3.4 There exists a smooth function z(ti, w 
such that 

d~z{y�w 
dv 

for all (v,w) e R … x W. i 

H 股n with z(0,0) = 0 

AlV = f{z{v,w),q{v,w),v,w) (3.32) 

Let 
x(r；, w) = C o l ( x i ( v , Kj), • • • , X r ( v , w ) ) 

with Xi(?;, w) = q{v, w) and for z = 2, • • • , r 

Xi(v,w) = LAW—i(v,w)-g“i(z(v,w),q(v，w�,u,w) 

u{v,w) = - gr{z{v,w),q{v,w),v,w) 

where L如^^(”，w)=如(义—成认 Then, under Assumption 3.4, the solution of the regulator 
equations associated with system (3.29) and exosystem (3.2) is provided with z(t;,w), 
x(v, w) and u{v, w). 

Assumption 3.5 There exist an integer n ” a sufficiently smooth function r : 
脱…vanishing at the origin, and a pair of matrices $ e and ^̂  G such that 

drfv, w) ^ , , , � T / � 
=$T(V’K；)’ u[v, w)=屯T[V,W) 

at 

for all {v,w) e R"” X W. Moreover, the pair is observable and all the eigenvalues 
of $ are simple with zero real parts, i 
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Assumption 3.5 guarantees the existence of the internal model. In fact, under As-
sumption 3.5, the Sylvester equation 

T^-MT = N 切 

has a unique nonsingular solution T for a given controllable pair (M, N) with M a Hurwitz 
matrix and N a vector of appropriate dimensions. Let d{v, w) = Tr{v, w). Then, we have 

e{v,w) = {M N^T-^)0(v,w) 

Therefore, we can define the following dynamics 

r) = Mrj + Nu 

(3.33) 

(3.34) 

as an internal model with output u. 
Attaching the internal model (3.34) to system (3.29) and performing the following 

coordinate and input transformation 

yields 

Z = 2： — 7.{v, w), X = X — x(v, w), f] — 7] ~ 9{v ^ w), U = U — �?] 

f = f(z,e,v,w] 

f) = (M + + Nu 

全i = Xi+i gi(z,e,v,w) 

(3.35) 

Xr — bu + b'^oV + e, V, w) 

where x 二 col(5i，•..，Xr) and 

f{z,e,v,w) 二 f(z -\-z{v,w),e-\- q{v,w),v, 

-f{z{v,w),q{v,w),v, w) 

w 

gi{z,e,v,w) = gi{z + z(v, w), e + q{v, w), v, w) 

(3.36) 

(3.37) 

for i = 1，... ,r. 
System (3.36) is called augmented system and it has the following property: 

for all (v,w) e R"” X W. Therefore, the global robust output regulation problem of 
system (3.29) as described in Problem 3.1 will be solved if the following global robust 
stabilization problem is solvable. 
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Problem 3.2 Design a dynamic output feedback control law of the form 

e), C = g^{C€) u (3.38) 

where C G for some integer n^ > 0. u^ and g^ are globally defined sufficiently smooth 
functions vanishing at the origin such that, for any fixed tu G W and any v(t) generated 
by (3.2)，the solution of the closed-loop system composed of (3.36) and (3.38) is bounded 
and xi(t){= e(t)) approaches zero asymptotically, i 

3.2.2 Main result 

A specific difficulty with the global robust stabilization problem of system (3.36) is that 
it is not in the output feedback form as displayed in (3.29) due to the presence of the 
internal model. Moreover, like the state f) is not available for feedback. Nevertheless, 
performing, as in [43], the following coordinate transformation on (3.36) 

where Cr 二 

v,w. 

ff = 7] — CrXj. — • • • — CiXi 

1 = Mci for i = 2 , … , r , gives 
T 

fj = Mfj + Mcie - e 

X = AgX + bB'^oV + e, v, w) + bBu 

where g(z,e,v,w) ^ co\{gi(z,e,v,w),' • • ,gr{z,e,v,w)) 

A. 

(3.39) 

(3.40) 

_ 0 Ir-1 . 
Sr …,Si 

and real scalars Si = fo^o^r+i-i for i = 
transformation on S-system 

, B = 1) 
r~l 

r. Further performing another coordinate 

where 

IL 二 

C = b-^U, • X 

. 1 0 

1 
• • 

— Sr-2 —S卜 3 
-Sr^l —St-2 

(3.41) 

0 0 

0 0 

1 0 

-51 1 
gives 

玄=f{z,e,v,w) 
r 

V = Mfj + Mcjc - y^ CiQiiz, e, 

( = A ^ ^ + B^o^ + G{z, e, 1；, w) + Bu 
(3.42) 
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where Ar = 
0 

Ir-

0 
and 

G(z, e,v, w):— 

Gi(z,e,v,w)= 

for i = 2, 

Gi{z,e,v,w) = Sie - b~^^Sjgj{z,e,v,w) + b~^gi{z,e, 

,r. It is noted that Us is such that 

UsAsUr'= 

V�w, (3.43) 

Ir-1 ‘ 

Sr 0 

where = col(si, • •. , s^-i), and e ^ Xi = b^i. 
As our purpose is to design an output feedback control law that only relies on e⑷， 

we need to introduce some sort of observer to estimate the state ^{t). We will adopt a 
standard observer such as what can be found in [42] as follows: 

where A = col(Ai: 

C = A：! + A(e - l i ) + Bu 

Xr) is chosen such that the matrix 

(3.44) 

/ 卜 1 “ 

_ —入r 0 - - - 0 

is Hurwitz. The observation error ^ = ^ — ^ satisfies 

i = Aoi - A ( l - + B^oV + G{z, e, z;, w] (3.45) 

Attaching (3.45) to (3.42) and replacing the state variable vector ^ by … A r ) 
gives the following system 

乞=F(z’e,fi� 

e = bi2-\-bi2 + bGiiz,e,ii) 

ii 二 ii+i + K{e - I i ) , 1 = 2, ••‘ , r - 1 

ir 二 ii + A “ e - & ) (3.46) 

where z 二 col(乏，仏f), fi = (v, w), and 

f{z,e,v,w) 
Mfj + Mcie - YJi^i Cigi(z, e, v, w) 

Aoi - A(1 - b - � e + B^^f] + G{z, e, v, w) 
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It can be seen that system (3.46) is in a standard lower triangular form. The global 
stabilization problem for such a system is solvable if the subsystem z 二 F(z, e, n) has 
certain ISS property. To apply Lemma 2.1 to system (3.46)，we need one more assumption 
as follows. 

Assumption 3.6 For any compact subset E C x W , there exists a C^ function Vz{z) 
satisfying < V^iz) < 5：乏(||乏||) for some class /Coo functions and such 
that, for any (?;, w) G E, along the trajectory of z subsystem 

dV^ _ - _ _ 
— {z)-f{z,e,v,w) < -a^dl^ll) + (5e7e(e) 

where Ŝ  is some unknown constant, a乏(•) is some known class /Coo function satisfying 

l imsup(af i (s2) /s ) < oo 
s—0+ 

and 7e(-) is a known smooth p.d. function, i 

Remark 3.6 Assumption 3.6 implies that the subsystem 

^ = f{z,e,v,w) (3.47) 

is ISS with state 乏 and input e and the equilibrium z = 0 oi z = f{z, 0, v, w) is locally 
exponentially stable if the functions a and a are also locally quadratic. Under Assumption 
3.6, by Remark 2.4, for any smooth function A{z ) > 0, there exists a C^ function Vz{z) 
satisfying a ^ l 11-̂ 11) < t^(^) < 乏(||乏||) for some class /Coo functions a^^(-) and a u ( ' ) such 
that, for any {v, w) G S, along the trajectory of system (3.47), 

where 5e is some unknown positive constant and %{•) is some known smooth positive 
function. i 

We are now ready to construct our control law using a recursive method modified 
from the tuning function approach described in [51]. For this purpose, we introduce the 
following notation. 

k) = M{k)p{e)e 

= -20；! - A2(e - ；̂) - 6£；16 - cJiE^ - K, 

dhii-i 
-�i-2 -站-1 - A i ( e - | i ) + V — 

db ^ 
(pi-i + i = 3 (3.48) 
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where, for i 二 1 , … , r , Ei = 一蟹 and Kj = — 蟹 、 f c is a variable governed by the 
second equation of (3.50)，J\f{k) is a Nussbaum-type function, b is an estimate for b and 
governed by the third equation of (3.50)，and p{e) is a positive continuous function to be 
specified later by (3.62). Also, for i = 1，…，r - 1 

A. A A A 八 A. 

For convenience, we let ov = 0 and 二 U. The derivative of Ui satisfies 

= - ki=uj2-\-n2-\- A2(e — l i ) + 丑 + bi2 + bGi) + Ki 

= ii+i - K i = 0；̂ +! + Ki+i + Ai+i(e - l i ) + Eie 

-i：寧广 (3.49) ^ d^j db 

for z = 2, • • • ,r — 1. 

Lemma 3.2 Under Assumptions 3.4 to 3.6, there exist a sufficiently smooth function 
p(e) > 1, a control law of the form 

k = 

i> = </v(e，、&<fi，…，Ir) (3.50) 

and a C^ function V{z, e, b, cui, •. • , cj^-i), where b{t) — b — b{t), satisfying 

a(\\ z ,e ,b,uJir- -，叫 - i II) < < 到 II z,e,b,uju • • •，叫-i II) 

for some class /Coo functions a(-) and a(-), such that, for any {v, w) E S where S is as 
specified in Assumption 3.6, along the trajectory of the closed-loop system composed of 
system (3.46) and control law (3.50), 

V < ( W � ( 3 . 5 1 ) 

with p a positive constant, i 

Proof: Consider the subsystem z = F(z, e, / /) which can be decomposed into the form 
(2.11) with zi = 之2 == I) , and u = e. Recall that both M and Ao are Hurwitz, and 
the functions / ( 0 ,0 , v, w) = 0, 0, v,w) = 0，and (9^(0,0, v, w) = 0 for i = 1，• • •，r’ 
and for all (v,w) G 比 x W . 

Thus, by Lemma 2.1, under Assumption 3.6, there exists a C^ function Vz(z) satisfying 
这iz(l|z||) < < (Si^dlzll) for some class K^o functions 迅丄)and aiz(-) such that, 
for any // G S, along the trajectory of system z = F(z, e,/i) 
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for some positive number Ŝ  and smooth p.d. function 7 e ( - ) . 

Further, again by Remark 2.4, given any smooth function A{z) > 0，there exists a C^ 
function U(z) satisfying 这2z(lkll) < q;2z(||2||) for some class /Coo functions 这22(.) 
and a2z{') such that, for any G E, along the trajectory of system z 二 F[z,e, fi) 

U<-A(z)\\zf^S,%ie)e^ (3.52) 

for some positive number and some known smooth positive function %(•). The function 
U will be used later in constructing the function V in (3.60). 

Next, we will construct a Lyapunov-like function for the subsystem of (3.46) governing 
the state variables . . . The spirit of the approach is similar with that in [44 . 

Step 1 Let Vi(e) = Then, by completing the squares, the derivative of Vi along 
the trajectory of the e subsystem is 

= e[bi2 bi2 + bGi(z,e,v,w) 

=b[uji J\f{k)p{e)e]e bi2e bGie 

< bU(k)p{e)e^ + n i ( z , e, fi) (3.53) 

where n i ( z , e,/i) is defined as follows: 

Step 2 Let ^2(6, b,uji) = Vi(e) + + ^cof. Then, by completing the squares, the 
derivative of V2 along the trajectory of the (e, lo\) subsystem is 

V2 = Vi-\- uJiLOi — h'h 

= 1 4 + Ui{oj2 + 1^2) + wiA2(e -《1) + uJiKi + u;iEi{b^2 + &I2 

< bM{k)p{e)e^ + uj^ + Tli(z, e, n) + UJ1U2 + + a;iA2(e - ^1) 

-{-iOiKi + koiEiia + buJiEii2 + -(c^i 丑 1)2 + h'^il 

< bAf(k)p{e)e^ + cjj + cc;ia;2 + U1K2 + - ^1) + uiKi 

+buJiEii2 + (ĉ i丑 1)2 - b(b - cJi^ils) + 1X2(2, e,/x) 

where 112(2, e, /i) is used to denote the following function 

n2(z，e’/i) = ni(z，e’/Li) + no(2’e，"） 

n。(z’e’/i) = ^b ' i i l + G?) 
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Further using the expressions of /c, U i , !2) and fc，as given in (3.48) 
yields 

V2 < bN(k)p{e)e^ + 0；10；2 - ul - 6(6 — (^�+ n2(z, e, /i) 

If r = 2，we have I3 : u. The proof is completed by letting lu2 = 0. Otherwise, continue 
the design as follows. 

Step i (3<i<r) Let 

1 [ 2 
Vi-i{z, e，石’ ，. • •，0；“2) = (e) + + - uj] 

Assume the derivative of Vi-i along the trajectory of the (e,a;i, • • •，a;i—2) subsystem 
satisfies 

i-2 . 

K-1 < b糊p(e)e、uJi ‘2⑴ i - i - Y ^ i - 妨 — 也 + ni-i(z,e’"） （3.54) 
3 = 1 

where 
Ui-i{z,e,(i) = Ui(z,e,v,w) + (i — 2)noO’e，/2) 

Next, define 

Vi(z,e,b,uJi, - • • ,uJi-i) = + 

Then, the derivative of V̂  along the trajectory of the (e,iJi, - - • subsystem satisfies 

Vi 二 •^i-i + cJi-1 [^i + + Ai(e — l i ) ] + Ui-iEi_ie 一 uji^i ̂  S^ 
j=i叱 

-uJi-i 加二 1 b + uJi-iKi_i (3.55) 
db 

By completing the squares, we have 

uJi—iEi—id 二 buJi-iEi-i{i2 + 6 + Gi ) 

< boJi_iEi^ii2 + ~buJi-iEi-i‘ + + n。(z，e, /i) 
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This inequality together with (3.55) and (3.54) yields 

Vi < Vi-i + uji_i [oji + /^i + Xi{e - li)] + luJi—iEi一丄2 + bui_iEi_i^2 

, 2 tp2 V ^ 彻 p dtvi^i I 
一 l E ^ i - oJi-i — ^ 

db 

< hJ\f{k)p(e)e^ + 0；“2站-i " j + 叫 - i站 + ^i-i i^i + \i(e -

加 “1 ^ dnii-
+ uJi-ifti - - 号 b + K,., 

J^I dCj db 

- 4>i-\ - uji一iEi-1^2) + ni_i(z,e,/i) + no(z,e,/i) 
Further using the expressions of K,i{e, k, 6, ̂ 1,(̂ 2) and (pi = (e, k, 6,12) as given in (3.48) 
yields 

Vi < hJ\f{k)p{e)e^ + iOi—iLJi — X] 4 + e, /i) 
j - i 

where IIJz, e, fi) = e, f , w) {i — l)no(z，e, /x). 
Noting ^r+i 二 u and ov = 0，we have 

K < bAf{k)p(e)e^ - + ”̂(？‘ “) (3.56) 

We will now obtain an upper bound for function e, fi). To this end, again by Lemma 
2.4, there exist some number pi > 0 and known smooth positive functions (pz{z) and (f人e) 
such that, for any (v, to) e S 

lGi(z, e, V, w)l' < Pi II乏||2 + (3.57) 

Using the inequality (3.57), an upper bound for the function Ur(Zye,jLi) can be given as 
follows 

nr(z,e,JLl) 

=Hi(2, e, + (r - l)no(z, e, /Lt) 

\ 4 / z 

< (1̂ 1 +
 

2
2
 

2
 

+
 

-2 P + 2\b\ e2 + ( r - l + H) 

乏)11 判2 + 

< Pni^zi^) \\4' + <Peie)e') (3.58) 
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for any /i G E, where 罗冗 is some sufficiently large number and <pz{-) is some known smooth 
positive function. 

Using (3.58) in (3.56) gives 
r - l 

K < bJ\f(k)p(e)e' - + (3.59) 

for any /i G S. Finally, let 

V{z,e,b,uji , • • • ,Ur-i) = . . . ,uJr-i) ^ U { z ) (3.60) 

Clearly, V satisfies 

a(|| z,e’~b’LJi,…，ov—1 II) < V < Qf(|| z，e’�a?i，-.，0；『-1 ||) 

for some class /Coo functions a(-) and a(-). Furthermore, from (3.52) and (3.59)，the 
derivative of V satisfies, for any ^ G E 

r - l 

^ < bAr(k)p(e)e' - Ikll' + <pe(e)e') 

- ( A ( Z ) | | Z | | 2 -输 ) e 2 ) 

< bM{k)p{e)e' - -

+ (3.61) 

Letting A{z) > p^(pz{\\z\\) + 1, p > p̂ r + 4 and 

p(e) > max {%(e ) , <^e(e)} (3.62) 

gives, for any ^ G S 

(3.63) 

Hence, (3.51) is obtained. The proof is completed. 

Theorem 3.2 Under Assumption 3.4 through 3.6, Problem 3.2 is solvable. i 

Proof: For any given VQ E and it; e W，there exists a compact set S such that 
fj,(t) = {v{t), w) G S for all ^ > 0. Thus, inequality (3.63) holds for this pair of v{t) and 
w. Integrating both sides of (3.51) over [0, t), V i > 0 gives 

V{t) < j : (bAf{k{T)) + p)k(T)d丁 + 1^(0) 
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By Lemma 2.5, the above inequality shows that V(t) and k(t) are bounded over each time 
interval [0, T) with 0 < T < +oo. So the solution of the closed-loop system composed of 
system (3.46) and control law (3.50) is defined on [0, +oo) and bounded over [0, +oo). 

We now show e{t) will approach the origin as t +oo. Since k{t) is bounded over 
0 ,+oo) and k{t) = the function p[e)e^ is integrable over [0, +00). Furthermore, 

p{e)e^ is uniformly continuous since both e{t) and e(t) are bounded over [0, +00). In fact, 
the boundedness of e(t) can be induced from the boundedness of the right-hand side of 
the e subsystem equation. Using Lemma 2.3 concludes that k(t) tends to zero, that is, 
e{t) tends to zero as i 一 +oo. This completes the proof. 

Remark 3.7 As a result of the above theorem, the following control law 

u = 

k = 

h = 

V = M7]+ NU 

i = Aci + A(e -

(3.30) solves the g 

X
/
 

(3.64) 

system (3.29). 

3.2.3 Application 

The controlled single-input single-output hyperchaotic Lorenz system [39] is described by 
the following equations: 

i i = anZi + ai2Xi 

Z2 = + ZiXi 

Xi = X2 + a2lZi + a22Xi - Z1Z2 

±2 = hu 4- a^Zi (3.65) 

where (an, ai2,a2i,022,CI3,a4) is a constant parameter vector satisfying an, 03 < 0 and 
b is some unknown nonzero constant. A detailed analysis of this system with li = 0 
has been given and various types of chaotic behaviors for different values of parameter 
(ttii, (212，（221，<^22，are exhibited. Also, a full state feedback stabilization of this 
system is studied in [39]. Here, by designating an output y — xi and defining a tracking 
error e 二 y — F{t) where F{t) = A^ sin(ut + (/>), we will consider a more challenging 
control problem of designing an error output feedback control law such that all the states 
of the closed-loop system are bounded and the tracking error e asymptotically approaches 
zero. 
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To make the problem more interesting, we allow the amplitude Am to be an arbitrary 
positive number and initial phase 小 an arbitrary real number. We will show that the 
above problem can be formulated as the global robust output regulation problem. 

Let V = col(Di,t»2) and a linear autonomous system in the form (3.2) has been shown 
by (3.23) for some a; > 0 with (力）=F( t ) . Also, we allow the parameter vector 
( f t i i，a22，0^3，Oi) to undergo some perturbation. To be more specific, let 

a = {an,di2,a2i,a22,as,a4) + {wi, - • •，？1；6) 

where (an, ai2, ^4) represents the nominal value of a and • • •, wq) the 
uncertainty of a. To guarantee an, as < 0，we define W as W — {w\w € M®, an wi < 
0,茂3 -\-W5 < 0}. 

System (3.65) is in the form (3.29) with r = 2 and it cannot be transformed into the 
form (3.31). Therefore, none of existing results, e.g., the design method in [16], can solve 
Problem 3.1 for system (3.65). 

It can be easily verified that the regulator equations associated with (3.65) and (3.23) 
are solvable. In fact, from the error equation e = a；! — t；!, we have 

:x.i{v,w) = vi (3.66) 

Substituting (3.66) into the first equation of (3.65) yields 

Zi(v,w) = ruVi + ri2V2 (3.67) 

where 
OLllOL\2 OLn^ 

厂 11 = ^ ~ r i 2 == - • 9 , 2 

Substituting (3.67) and (3.66) into the second equation of (3.65) gives 

Z2(v, w) = r2\vl + r22V\V2 + r2zvl (3.68) 

where 
oj r i i —ri2a3 — 2up- — 2ujrii uj 

T2I = T22 ，『22 = 2 , q ? ’『23 = —T22 
as as 0,3 + as 

Substituting (3.66) and (3.68) into the third equation of (3.65) gives 

X2(y’ w) = UJV2 — ^22^1 — <221Zi + Z1Z2 
=rsi^^i + r^2V2 + rzzvl + ruvlv2 + r^bvxvl + 3̂61̂ 2 

where 

r3i = —<222 -仅21厂11，r32 = 0； - a2iri2, rss = 

3̂4 = ri2r2i + ri ir22,�35 = rnr2z + ri2r22, r^Q =厂12厂23 
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Thus yi2{v, w) can be put into the following form 

(3.69) 

where ^；⑴=col(tii,V2), v�=q .o\(v\,v\v2,VivI ,vI ) , and are appropriate 
row vectors. Finally, substituting (3.69) into the fourth equation of (3.65) gives 

n{v, w) = ^ ？ + a4Zi(v, w) 

=ruVi + r42V2 + + r44vfv2 + r45ViV2 + r4QV2 

where 

ij --
0 LJ 
- u 0 

义3]( CJj = 

0 0 0 

-LU 0 2oj 0 
0 - 2 o j 0 u 
0 0 - 3 c j 0 

and 

^41 = -Ujr32 + = iorsi + a^r 12, r^^ = ZUJTZA 

�44 = -cjr33 + 2a;r35, 7̂45 = -2a;r34 + cjrse, r̂ 46 = 一 3 " 3 5 

Therefore, the steady-state generator described by (3.33) can be constructed as follows 

^ = 
‘ 0 

0，—10a;2，o 

^ 二 M，o，o] (3.70) 

Hence, Assumption 3.4 and Assumption 3.5 are satisfied. So we can define the following 
internal model 

= M7J + Nu 

where 

M = 
0 

-mi —7712, —7713, —7724 
iV = COl(0, 0,0,1) 

and parameters ny > Q are such that M is Hurwitz. 
Performing transformation (3.35) gives 

zi — ail 乏 1 + ai2e 

玄2 = ash + + z i ) (e + vi) - ZiVi 

fj = (M + N句 o)fi + NU 
'0 

X = 
0 0 

9i 
^o'n-\-u + 92 
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where 
gi = CL21Z1 + a22e - [zi + zi)(z2 + Z2) + Z1Z2，92 = a^zi 

It can be seen that Assumption 3.6 is satisfied for the (乏1，乏2) subsystem. By Theorem 
3.1, the global robust output regulation problem for this system is solvable. In fact, by 
choosing 

c i = b-^MN, C2 = b-iN, Si - 中。 N , 52 = 句 O M N 

performing the transformations (3.39) and (3.41), and incorporating the observer (3.44), 
we can obtain system (3.46) as follows 

zi = <211̂ 1+0126 

Z2 = azZ2 + + Zi)(e + i;i) - ZiVi 

V = 

I = 

Mfj + (Mc ie - ciQi - 0292) 

- A i 1 
-A2 0 +

 
e = + H2 + bGi 

I2 = u-^oV'^Me-ii) 

where Gi 二 Sie + 6—工歹！ and G2 = S2e — + According to the design procedure 
detailed in Section 3, we can obtain a specific control law in the form of (3.64) with various 
design functions as follows 

= i - A T ⑷/9(e)e 
N(k) = k^ cos(/c), p(e) = 5(e® + 1) 

K,2 = -2uji - \2{e - ii) - bEi^2 - -

<f)2 = E l 二―5A/"(A;)(7e6 + l ) 

Ki = [fĉ  sin(A;) - 2k cos{k)]kp{e)e (3.71) 

Simulations are performed for the closed-loop system composed of system (3.65) and 
a controller in the form (3.64). Various parameters are chosen as follows. 

A = col(2,3), (mi,7712’7723,爪4) = (4,12,13,6), 0； = 1，b = 1 

( a i l , a i 2 ， a 4 ) = ( — 10，10, 2 8 , - 1 , - 8 / 3 ， - 1 ) 

The initial conditions are (^i(O),^2(0),a;i(0), 0:2(0)) = ( - 2 , 1 , 2 , 1 ) , vq = col( l ,0) , 7j(0)= 
A 八 

0, ^(0) = 0, 6(0) = 0，and A;(0) = 1. The responses of the tracking error, control input, 
and the plant state variables are shown in Figures 3.4 and 3.5. 
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Tracking error e(t) 

35 40 
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15 20 25 
Time t (second) 

Figure 3.4: Profiles of tracking error e{t) and control input u{t). 
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Figure 3.5: State responses of {zi, Z2, xi,x2). 
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3.3 Conclusion 

In this chapter, we have presented the solvability conditions for the global robust output 
regulation problem for nonlinear systems (3.1) and (3.29) by output feedback control. 
Since the zero dynamics of our system is not linear, the existing approach as used in 
[16] is not applicable here. Moreover, our approach does not assume the sign of high 
frequency gain is known. To illustrate the effectiveness of our approach, we have applied 
our approach to the global robust asymptotic tracking problem of the well known third-
order and fourth-order Lorenz systems. 

• End of chapter. 



Chapter 4 

Global adaptive output regulation 
using output feedback control 

In this chapter, we address the global adaptive output regulation problem of output 
feedback systems. As the exosystem described by equation (4.2) contains some uncertain 
parameter, the approach presented in Chapter 3 is not applicable here. However, the 
problem can still be solved by a new approach. We present the solution with two cases. 
In Section 4.1, we derive the solution for the systems in a special form. Then in Section 
4.2, the solution for the general case is given. 

4.1 Special case 

In this section, we consider the output feedback system in the following simple form 

i = f{z,y,v,w) 

y = g{z,y,v,w) + b(w)u 

e = y - q{v,w) (4.1) 

where {z, y) G M" x M is the state, e G M is the error output and i/ € M is the control 
input, tf € W C M""" with W nonempty is a constant uncertain parameter vector, 
and v{t) G 股“” represents the time-varying reference and/or disturbance. The functions 
f , g and q, and b are supposed to be sufficiently smooth in their arguments satisfying 
/ ( 0 , 0 , 0 , w) = 0, ^ (0 ,0 , 0 , w) = 0, ^(0, w) = 0’ and b{w) > 0, respectively, for any w eW. 

It is also assumed that v{t) is generated by a linear exosystem 

？) = = vo (4.2) 

where cr e § C R"^ represents the uncertainty in the exosystem. To have our problem 
well posed, we also assume that all the eigenvalues of Ai {a ) are distinct with zero real 
parts for all <7 G S. 

52 
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As a result, the general solution of the exosystem is a sum of finitely many sinusoidal 
functions with their frequencies depending on the eigenvalues of Ai (a ) and amplitudes 
and phase angles on the initial condition vq. 

Briefly, the problem can be stated as follows: Given W and S, design an output 
feedback control law of the form: 

u^UK(C,e } , C = (4.3) 

where both uk and qk are sufficiently smooth vanishing at the origin such that, for any 
initial condition (z(0),y(0)，v。，((0)), and any constant parameter (w,a) E W x §, the 
solution of the closed-loop system composed of (4.1) to (4.3) exists and is bounded over 
0，+oo) and the error output e � asymptotically approaches zero. 

As the exosystem can generate a trigonometric polynomial of arbitrary amplitudes, 
phase angles, and frequencies, the problem includes the asymptotic tracking of an un-
known sinusoidal signal, or asymptotic disturbance rejection of an unknown sinusoidal 
signal as special cases. It also includes the global stabilization problem as a special case 
if the initial condition vq is set to zero. Moreover, if one considers the exosystem (4.2) 
as a master system and the plant (4.1) as a slave system, then the problem can also be 
interpreted as the global robust output synchronization of these two systems. 

This class of systems is general enough to include some well known systems such as 
the controlled FHN model, Lorenz system, and Chua's circuit as special cases [14] [19 
57] [59] [74] [85] [93]. On the other hand, the formulation of our problem is also general 

enough to include several interesting control problems such as global robust stabilization, 
global robust output synchronization/asymptotic tracking, global disturbance rejection, 
etc., as special problems. Thus, the solvability of the problem described in this section 
will automatically lead to the solution of several interesting control problems involving 
such systems as the controlled FHN model and the controlled Lorenz system. 

Section 4.1.1 lists some assumptions and some preliminaries. In Section 4.1.2, we will 
present the solution of the problem formulated in Section 4.1.1. The problem is solved by 
combining the internal model approach and some adaptive control technique. In Section 
4.1.3，as applications of the main result obtained in Section 4.1.2，we solve two typical 
control problems associated with two well known systems, i.e., the FHN model and the 
Lorenz system. 

4.1.1 Assumptions and preliminaries 

To accomplish the problem conversion, we need two standard assumptions in the following. 

Assumption 4.1 There exists a globally defined smooth function z : x M"^ x W "̂ h 
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with z(0,to,c7) = 0 such that 

dz{v,w,a) . , . " , � / � � 
—————Ai{a)v = f{z{v,w,a),q[v,w),v,w) (4.4) 

for all {v, w, C7) e X W X §. i 

Under Assumption 4.1, let y{v, w, a) = q{v, w)^ and 

u…，w, a) = 6—1 [CA,{a)vq{v, w) - g{z{v, w, a) , q{v,w), v, ti；)] (4.5) 

where Cai((7)vQ{v, = {9q(v, w)/dv)Ai{a)v. Then, z(v, w, cr), w, a) and u{v,Wja) 
is the solution of the regulator equations associated with (4.1) and (4.2). For the existence 
of the internal model, we need one more assumption. 

Assumption 4 .2 The function u(v’ w, a) is a polynomial in v with coefficients depending 
on w and a. i 

Remark 4.1 Neither Assumption 4.1 nor Assumption 4.2 is restrictive as it might appear 
to be. As will be seen later, all the systems considered in this section satisfy these two 
assumptions. • 

Remark 4.2 Under Assumption 4.2，there exists an integer s such that u(i;,u;,cr) satis-
fies, for all trajectories v{t) of the exosystem, all {w, cr) G W x S, 

d^u(v,w,a) / � / � / .du(v, w,a) 
、 ’ ’ 2 = ai(t7)u(i;，tt;’cr) + a2(cr), 、’ , 乂 dt 

[V.W^G. 

where ai(c7), a2(<7: a , cr, real scalars such that all the roots of the polynomial 

(4.6) 

as[o)\' 

are distinct with zero real part for all cr G S [30 
L e t T ( V , W, cr) = C O l ( u , ’ 

for any integer i > 1, and 
^ X U ^ ) where/：仏” 1 

(4.7) 

广：41(—u/彻) 

Then riv, w, a) satisfies 

阶 ） = 
0 Is-l 

阶 ） = ai(f7) a2(cr),…，a“cr) _ 
r = 

dr{v,w,a] 
dv 

•Ai{a)v =$(c r ) r ( v , w, a 

u ( =rr('U, w, a) 

(4.8) 

(4.9) 
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Remark 4.3 System (4.9) is used to generate the steady-state input u{v, w, (j), and thus 
it is a steady-state generator with output u according Definition 2.6. Since, for each 
cr E (r, $(cr)) is observable and the eigenvalues of 屯(a) have zero real part, for any 
controllable pair (M, iV) with M G M^̂ ^ a Hurwitz matrix and N € a column vector, 
there is a unique nonsingular matrix T(cr) satisfying the following Sylvester equation: 

T V ) 岭 ） - M T { G ) - Nr (4.10) 

Let w, (j) = T(a)T(v, w, a) which satisfies 

台= [M + N妒、Q, u = 少 

with 少"=FT—1((7). Then we can define the internal model as follows: 

f] 二 Mr]~\~ Nu (4.11) 

Attaching the internal model (4.11) to (4.1) and performing the following coordinate 
transformation: 

z = z — z ( f , u;, a), fj = T] — 0{v, w, a) — Nb~^e (4.12) 

gives a system as follows: 

* = /(乏’ e ’ / i ) 

V = M � + /2(^，e’/x) 
e = ge{z,f},e,fi) -\-b{u - ^''r/) (4.13) 

where fj, = (v, w, a) and 

/(乏,e，"）= 

f2{z,e,fi)= 

ge{z,7],e,/i)= 

歹(乏,e，"）= 

/(乏 + z{v, w，a), e + q{v, w), v, w) 

MNb-^e- Nb-^g{z,e,fi) 

歹(乏,e，"）+ 6 屯 l + r^iVe 

g{z + z(t), If, (j), e + q(v, w),v, w) 

-g(z{v,w,a),q(v,w),v,w) 

It can be verified that, for any G x W x § 
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Remark 4.4 The quantity fi{t) in the augmented system (4.13) can be viewed as an 
unknown time-varying disturbance. It can be seen that if there exists a control law of the 
form 

u = /c((C’"，e) 

C = (4.14) 

that solves the global robust stabilization problem of system (4.13) in the sense that, for 
any initial condition of the closed-loop system and the exosystem, and any fixed unknown 
parameter (it;, cr) 6 W x S, the solution of the closed-loop system is bounded for all t > 0 , 
and the state of the augmented system (4.13) tends to zero as t tends to infinity, then the 
following control law 

u 二 A;((C"，e) 

t) = Mr] + Nu 

C = "c(C，"，e) 

solves the global robust output regulation of the original system (4.1). i 

4.1.2 Main result 

We will consider the global robust stabilization problem of system (4.13). For this purpose, 
we need one more assumption as follows. 

Assumption 4.3 For any compact subset S C 股〜 x W x S, there exists a C^ function 
Vz satisfying 这(||乏||) < Vz{z) < 对||乏||) for some class /Coo functions a(-) and a(-) such 
that, for any /i 6 S, along the trajectory of the subsystem 乏=/ (乏，e , / i ) 

where is some unknown positive constant, a(-) is some known class /Coo function satis-
fying linis—0+ s u p ( Q ； 一 < CO and 7(-) is a known smooth p.d. function, i 

Next, we will derive a stabilizability property for the following auxiliary system 

兔 = / ( 乏 ’ e ’ / i ) 

V = M77 + /2(z ,e , / i ) 

e = ge{z,fj,e,fi) + bu (4.15) 

which is obtained by letting u = u~ 妒rj in (4.13). 
Lemma 4.1 Consider system (4.15). Under Assumption 4.3, there exist a smooth posi-
tive function p{e) > 1, a controller of the form 

u = -kp{e)e, k = p{e)e^ (4.16) 
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such that the closed-loop system composed of (4.15) and (4.16) has the property that, 
for any given G M"^ x W x §, there exists a C^ Lyapunov function candidate 
V(z, fj, e, k) such that 

II 到 |2 —I 丨別 2 (4.17) 

I 

Proof: For the given {vo,w,a) G x W x S , let S be a compact subset of R"^ x W x S 
containing {v{t), w, a), t>0, with v(t) being generated by (4.2) with initial state vq. 

Consider the (z, rj) subsystem of the system (4.15) which is in the form of (2.11) with 
Zi = z^ Z2 = f], u = e and (j.{t) = col(v(t), w, a). Since M is Hurwitz, / ( 0 , 0 , fi) = 0 and 
^(0,0,/i) = 0，by Lemma 2,1, there exists a C^ function Vi(z, fj) satisfying 由（||乏,别）< 
Vi{z^ fj) < <5；1(||乏，引I) for some class JC^ functions 还（.）and di(-) such that, for any /i € E, 
along the trajectory of (乏 , f j ) subsystem 

for some positive constant 6e and smooth p.d. function 7e(.). 
Let 1 = col(乏,fj). By Remark 2.4, for any smooth function A ( z ) > 0, there exists a C^ 

function Vz{z) satisfying 这2(II"̂ 11) < V^z(z) < a2(||̂ ||) for some class /Coo functions 这2(.) 
and <5；2(-) such that 

V , < - A { z ) \ \ z f - h S e % i e ) e ' (4.18) 

for some positive constant Sg and smooth positive function %{•). 
Let 

Viz, V, e, k) = V,(z) + -e^ + -b(k — kf (4.19) 

for some real constant 左〉0. Then by completing the squares, the derivative of V along 
the trajectory of system (4.15) under the control law (4.16) satisfies 

V = Vz + ^ fj, e, }jb) — hkp{e)e\ + hk{k — k) 

< Vz + ^fe + - ^^P^^y + -
By Lemma 2.4, we have, for all /i G I； 

for some positive constant and smooth positive functions and 4>2(̂ ] 
Using inequalities (4.18) and (4.21) in (4.20) gives 

+02(e)e2) + - bkp{e)e^ + bk(k -石） 
Zd 

(4.20) 

(4.21) 

+ y 0 2 ( e ) + - ) e 2 - hkp{e)e^ + hk{k - k) 
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Letting A(z) and p(e) be smooth functions satisfying 

p{e) > max{7e(|e|), 02(e)， 

r 、 ， 1 1 + 6、 

+ 1 

1} 

and k be such that 
(4.22) 

gives 
V <-\\zf^b{k-p{e)e')(k~k) 

Hence, the function V{z,fj, e, k) defined by (4.19) satisfies (4.17) for system (4,15) under 
the controller (4.16). 

Remark 4.5 Note that Lemma 4.1 implies that the trajectory of the closed-loop sys-
tem composed of (4.15) and (4.16) is bounded and limf—oo(||乏(t)|| + ||々 (亡)li) = 0. The 
boundedness of e{t) and e(t) implies k{t) is bounded and uniformly continuous. Thus by 
Lemma 2.3，k{t) = p(e)e^ tends to zero as t +oo, that is, e � tends to zero as t 一 +oo. 
Therefore we have the following result, i 

Corollary 4.1 Under Assumptions 4.1 to 4.3, if the parameter a is known, then the 
controller 

u = -kp{e)e + 妒 7), k = p{e)e^ (4.23) 

solves the global robust stabilization problem of system (4.13) in the sense described in 
Remark 4.4. i 

Remark 4.6 The global robust stabilization of system (4.1) with v set to zero can be 
viewed as a special case of the global robust output regulation. In fact, when v is set to 
zero, there is no need to introduce an internal model. We can set the dimension of fj in 
(4.13) to zero. Then system (4.13) reduces to system (4.1) with v set to zero. The control 
law (4.23) reduces to the following simpler control law 

u = -kp{e)e, k = p(e)e^ (4.24) 

Remark 4.7 In control law (4.23), k is called dynamic gain and is introduced to generate 
a high gain independent of v(t), w, and a. This control technique is called self tuning 
regulator in literature. When (v(t)^ w, a) is contained in some known compact subset, 
k can be taken to be some sufficiently large number determined by the boundaries of 
the compact subset. In this case, control law (4.23) can be further reduced to zi = 
—kp(e)e + 妒Tj where A: is a known positive number, i 
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In the case where a is unknown, the control law (4.23) is not implement able. Nev-
ertheless, we can still solve the problem by further incorporating the adaptive control 
technique into our design method. 

Theorem 4.1 Under Assumptions 4.1 to 4.3, let p(e) be the same as in (4.23). Then the 
following controller 

u = —kp{e)e + 金 77 

金 = k = p(e)e^ (4.25) 

solves the global robust stabilization problem of system (4.13) in the sense described in 
Remark 4.4. As a result, the following controller 

u = —kp(e)e + ^7) 

T] Mr] + N u , 金 = k = p{e)e^ (4.26) 

solves the global robust output regulation for system (4.1). 1 

Proof: Let V(z,r],e,k) be defined as in (4.19), and 齿 ⑷ = ~ 金⑴ where ^ is 
viewed as the estimation of 少 L e t U be defined as follows: 

U(z, fj, e, k) = V(z, fj, e, k) + 金齿丁 

Then the derivative of U along the trajectory of system (4.13) and (4.26) satisfies 

" l(4.13)+(4.26) = V|(4.13)+(4.26) — 6 金盃 T 
dV 

(4.15)+(4.16) + - ^ 
. dv - 二 ~ 

= - I k f 

Now using the same argument as Remark 4.5 completes the proof. 

Remark 4.8 We will now consider the convergence issue of the parameter 金 which is 
related to the dimension of the internal model used. Recall from [61] that a monic polyno-
mial (4.7) is called a global zeroing polynomial of u{v, w, a) on if, along all trajectories 
v(t) of the exosystem (4.2) and all (w^ a) G W x S, u{v, w, a) satisfies a differential equa-
tion of the form (4.6). A monic polynomial 严 ( A ) is called a minimal zeroing polynomial 
of u(v,w,a) on S if P'^(A) is a zeroing polynomial of u(i；, w, a) on S of least degree. An 
internal model whose dimension is equal to the degree of the minimal zeroing polynomial 
of u(i;, w, a) is called the minimal internal model. To determine the minimal zeroing 
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polynomial, assume the nonzero eigenvalues of Ai {a ) be 士jc^i, •..，士ju;^? with coi > 0, 
i = 1，• • • , Tifc where Uk = n^/2 if Uy is even and rik — {riy — l ) / 2 if Uy is odd. Then, it 
can be deduced from the result of [30] that，there exist a set 

^ = H 1- Ink⑴…人k= 0，士1，. 

an integer r, and r distinct members of ^ denoted by lji, I = 
all trajectories v{t) of the exosystem, for any {w, a) G W x S, 

r 

±00} 

• • , r, such that, along 

(4.27) 

where Ci(uq, w,a) eC are not identically zero for all w, a). Thus, the minimal zeroing 
polynomial of w, a) is 尸"(A) — 11[=1(入 + B y Lemma 2.6, under Assumptions 4.1 
to 4.2, if the internal model is of minimal dimension, and VQ, W and O are such that none of 
Ci{vo,w,a) is zero, then the feedback controller (4.26) is such that limt_»oo(金一屯。）=0. 
I 

R e m a r k 4.9 Clearly, the dimension of the minimal internal model cannot be less than 
the dimension of the matrix Ai{a). Thus, any internal model whose dimension is equal 
to the dimension of the matrix Ai {a ) is a minimal internal model. As will be seen in the 
next section, both of the two examples will employ minimal internal model. 1 

4.1.3 Applications 

Global disturbance rejection of FHN model 

Consider the controlled FHN model described by the following equations: 

xi = Xi - ia；! - 0：2 4- Xa 4- F{t) + F^ 
O 

X2 = £i(xi + ai - a2X2) 

X3 = + a3 - 043:3) (4 .28) 

where F(t) 二 AnSin(ct；亡 + 0) is the external disturbance, F^ is the control input, and 
• • • ,a4, and £2 are given positive constants. The system with = 0 is taken from 

74] which studies the bursting mechanism in excitable systems. Without the control Fu, 
the system may exhibit chaotic behavior as shown in Figure 4.1 where £i — £2 = 0.1, 
ai = • • • " a4 ~ 1, and (Am： cj, (/>) = (0.5,0.2, -27r/3) 

Here by introducing a control input we aim at achieving global disturbance re-
jection in the sense that the control can guarantee that the trajectory of the closed-loop 
system starting from any initial condition is globally bounded and all states {xi,X2, x^) of 

I Throughout this thesis, let j :— be the imaginary unit. 
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Figure 4.1: 3-D plot of FHN model with initial state a;(0) = (1.2，0.5, -0.5). 

the plant (4.28) converge to the point (0, a^ja^, a-^ja/^ as t ^ +oo . To make the problem 
more interesting, we allow the amplitude Am and frequency cu to be arbitrary positive 
numbers and phase angle • an arbitrary real number. Also, we allow the system parame-
ters Si and £2 to be arbitrary positive numbers. We will show that the above problem can 
be formulated as the global robust output regulation problem described in Section 4.1.1. 

Let V — col(t;i,ti2) and define a linear autonomous uncertain system in the form (4.2) 
as follows: 

V2 
=Ai{uj) 

where 

0；= 

V20 

U UJ 

-LO 0 

Am sin (f) 
Ajn cos (f) 

(4.29) 

which has a pair of distinct eigenvalues 士ju for all a; G § = {a;|a; > 0}. It can be seen 
that vi{t) = F{t). Also, let £i ~ ii wi and £2 = + W2 with Ei and £2 the nominal 
values of £i and £2，respectively, and with wi and W2 being uncertainties. 
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To put system (4.28) in the form (4.1), letting 

zi ~ X2 - ai/a2 

Z2 = Xs - «3/<24 
e = y = xi 

u = Fu — ai/a2 + 03/^4 

gives 

= 

= 

y = 

e = y 

—£ia2Zi + £ie 

(4.30) 

Thus, system (4.30) is in the form (4.1) with a = uj and W — {(tt；!, > 0，u»2 > 0}. 
Clearly, if we can solve the global robust output regulation problem for system (4.30) 
described in Section 4.1.1 with q{v, it?) = 0, W and S defined above, we can also solve the 
global disturbance rejection problem described above. 

We now verify that system (4.30) satisfies Assumptions 4.1 to 4.3. From the last 
equation of system (4.30), we have y(v^w,uj) = 0, and from the first two equations of 
(4.30)，we have 

zi(z；, W^uj) = 7.2(V, W, LO) - 0 

It follows from the third equation of (4.30) that u(v, w, cu) = —Vi. Thus Assumptions 4.1 
and 4.2 are satisfied. Also it can be easily verified that 

(fu{v,w,uj) , _ 2 

dt^ 
u \i(v,w,uj) = 0 

Thus, by Remark 4.2, the steady-state generator can be obtained with 

$ = _ 0 1 r = 1 0 

—UJV2 ？ ̂  -LJ‘ ！ 0 
)丄 丄 \j 

(4.31) 

(4.32) 

Given any controllable pair (M, N) of the form 

M = 
0 1 

， N = 
'0 

— mi —7712 1 

where mi,m2 > 0，we can obtain an internal model as follows: 

f) = Mt] + Nu (4.33) 
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Solving the Sylvester equation (4.10) gives 

mi — u/ m2 

屯w = 

-7722̂ 2 mi — (jP 

mi — U) 7712 (4.34) 

Attaching the internal model (4.33) to (4.30) and performing the coordinate transforma-
tion (4.12) gives the augmented system as follows: 

玄1 = 一 £1^2 乏 1 + qe 

去2 = — £ 2 « 4 乏 2 -

？) = Mfj + MNe_ N豆 

e = giz, e, fi) + + Ne) -h {u - (4.35) 

where e ’ = e _ _ 乏1 + 乏2. 

Using the Lyapunov function candidate V{zi ,z i ) = 0.5z^ + 0.5苟，it can be shown 
that the first two equations of (4.35) satisfy Assumption 4.3. Hence, all the conditions 
for Theorem 4.1 are satisfied. A control law of the form (4.26) can be constructed with 
p(e) = e4 + 1. 

Simulation is performed for the case where (mi,7712) = (2,3), u) = {wi ,W2)= 
(0.4，0.3), £1 = 0.1, 82 = 0.2, a2 = (24 = 1. The initial values are randomly pro-
duced as follows: ^(0) = [0.6589;-1.3279], e(0) - 0.2439, vq - [2.1579;-0.8240], " ( 0 ) = 
0.7777; -0.5405], = [0.6366,0.9954], k{0) = -0.5141. Figures 4.2 and 4.3 show the 

profiles of various states of the closed-loop system. 
Next, we show that 金⑴ will converge to its real value For this purpose, we need 

to prove that (4.33) is the minimal internal model. In fact 

l(l；, W^uj) = —Vi 

=-(学+?)叫 
1̂0 2̂0 
2 

-JU^t 

j'^it 

with lDi’2 = ±0；. By Remark 4.8, the minimal zeroing polynomial is 
2 

Consequently, the internal model (4.33) is the minimal one. Moreover, for any Vq • 0， 

any w G W, and any cj > 0, 
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Figure 4.2: Responses of states z(t) and ?7(t). 

As a result, for any vq + 0, any w G W , and any a; > 0 

lim f m - 少。 

The simulation shown in Figure 4.4 validates this conclusion. 
Using (4.34)，the estimated frequency Cj can be determined by 

CJ mi —金] 

with 金 1 the first component of 金.Thus the convergence of 金 to its true value also 
implies the convergence of the estimated frequency u to the true frequency u. Figure 4.5 
illustrates the convergence property of the frequency uj. 

Tracking control of the generalized Lorenz system 

Consider the following system [55] described by 

Xi = aiiXi + ai2X2 

±2 = a2\Xi + a22X2 - Xix^ + bu 

X3 asxs + X1X2 

e 二 X2 - F(t) (4.36) 
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Figure 4.3: Responses of tracking error e{t) and state k{t). 
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Figure 4.4: Response of 金(i). 
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Figure 4.5: Response of estimated frequency u). 

where (an, ai2, <221, ^22, i>) is a constant parameter vector satisfying an, < 0, & > 0, 
e G M is the error output, and F(t) = Am sin(a；/： + (j)) is the reference input. When 
ail — —ai2 — —Li < 0， (221 二 丄3 > 0， ci22 -- — 1, <3,3 - —L2 < 0, and u = 0, system 
(4.36) reduces to the following form 

士 1 = - ^1) 

±2 = L3X1 - X 2 - X1X2, 

= - L2X3 (4.37) 

which is the well known Lorenz system discovered by Edward N. Lorenz [62] where Li > 0 
is called the Prandtl number, > 0 is a geometric factor and L3 is called the Rayleigh 
number. This system is known to exhibit chaotic behavior as we have shown in Figure 3.1. 
In the past decades, the Lorenz system has become a popular model for testing various 
control design problems [13] [33] [53] [56] [64] [84] [92；. 

For example, in [53] [92], a single control input is added to the second equation of 
(4.37) leading to a controlled Lorenz system. 

System (4.36) is called a controlled generalized Lorenz system. Let us first point 
out that the problem of designing a control law to asymptotically track the reference 
input F(t) for system (4.36) is an output regulation problem. In fact, by performing the 
coordinate transformation {zi,z2, y) = (xi, 2:3,0:2) and noting that F(t) = Vi where vi is 
the first state of the same exosystem (4.29), we can put system (4.36) in the standard 
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form (4.1) as follows: 

iri = auZi + a^y 

Z2 = + ziy 

y = bu-\- (221 之 1 + CL22y - Z1Z2 

e = y-vi (4.38) 

Again, we allow the parameter (an, ai2, a2i, 022,^3) to undergo some perturbation. To 
be more specific, let 

a = {an,ai2,a2i,a22,as) + {wi, • •. ’ li；。) 

where (^n, ai2,621，^22’ ^3) represents the nominal value of a and (wi, • • • , 1̂ 5) the uncer-
tainty of a. To guarantee an, 03 < 0，we define W = {w\w~^ G M ,̂ an + < 0,03 + W5 < 
0}. Also let S = {lu\u > 0}. 

Now it is clear that if we can solve the global robust output regulation problem for 
system (4.38) with the exosystem (4.29) and W and § as described above, we can solve 
the global robust asymptotic tracking problem for system (4.36) with X2 as the output 
for any sinusoidal reference input F{t) in the presence of the parameter variation w € W. 

We now verify that the composite system (4.38) and (4.29) satisfies Assumptions 4.1 
to 4.3. From the last equation of (4.38), we have 

y{v,w,uj) = vi 

Substituting (4.39) into the first equation of (4.38) yields 

Zi{v,w,uj) = rnVi 

where 
aiiai2 , � ai2CJ 

(4.39) 

(4.40) 

/ \ ^ l i ^ i Z / \ 
rn{w,u)) = — ~ ^ ~ ^， r i 2 { w , u J ) = -• , ^ 

uj^ + afi cj^ + afi 
Substituting (4.40) and (4.39) into the second equation of (4.38) gives 

Z2(v,w,uj) = r2ivl + r22vl + r23ViV2 

where 
alrn - a^curu + 2u;^rii 

(4.41) 

r2i{w,uj) = - • 
as{al + 4a;2) 

, � w , � ruas + 2a;rii 
= ， r 2 3 — ) = - 以 • + 

Finally, substituting (4.39) to (4.41) into the third equation of (4.38) gives 

U(V, = b~^{LUV2 - <122̂ 1̂ - a2lZl + Z1Z2) 

= r z i V i + r^2V2 + rszvl + r^^v^ 

+ rsQVivl (4.42) 
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where 

r3i(w,a;) = —6—1(«22 + tt2irii) 

3̂2 
r33(?i;，Cc； 

- b ~ \ u j - 021^12) 

=&-1厂11厂21，r34{w,Uj) = 6-1厂12广22 

= b ~ \ r i i r 2 2 + ri2r23) 

Thus both Assumptions 4.1 and 4.2 are satisfied. It can be further verified that 

+ 9uj^u(v,w,u;) + lOo/ = 0 
dt^ ‘ 、”… / •—— 浙 

By Remark 4.2, the steady-state generator of the form (4.9) is given by 

) l ( u ， u ’ A ^ m + u， £ “ ) ” u ) 

=[1 ,0 ,0 ,0] 

二 

‘ 0 
h _ 

—9cj4 0，-10cj2,o ^(cj)= 

which leads to the internal model as follows: 

7) = Mr] + Nu 

where (M, iV) is any controllable pair of the form 

0 

r 

(4.43) 

M = 
—mi —m2, -7713, -7714 

iV = col(0，0,0,1) 

and the parameter (mi’ 爪2’ 爪3，爪4) is such that M is Hurwitz. Solving the Sylvester 
equation (4.10) with (mi,m2,ma,m^) = (4，12，13,6) yields 

T [ 0 0 ] = 

_4 一 9a;4 12 13 - lOcc；̂  6 
-54u;4 4 一 9cj4 12 — 60cj2 13 - IOcĵ  

-54a;4 (̂2) 12 — 6(Xj2 

• *(3) *(1) *(4) • 

where 

*(i) 13)，*(2) 

*(3) 108a;4(5Lj2 一 1) 

- 13CL;2 + 4 

Hence, we have 

*(4) := — 20) 

少u； 二 F T — = 4 —9a;4 12 13 - lOa;̂  6 (4.44) 



for any e > 0. Substituting (4.47) into (4.46) gives 

2. 
2 Vz < (^an + 2 + + + + + ^ + ^ 

+ + + (4.4S) 

Since E is compact, it can be seen that there exist constants £(> 0, i = 1, - •• ,5, such 
that, for all (v, w, a) G E 

V, < -i2zl 一 iszt - + + (4.49) 

Thus, by Theorem 4.1, the global robust output regulation problem for the composite 
system (4.38) and (4.29) is solvable by an output feedback control law. In fact, following 

hai2Zie < 

hai2zle < 

乏2乏le 

V1Z2Z1 

zi^oe 

< 
< 
< 
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To verify Assumption 4.3, performing the coordinate transformation (4.12) 

= zi — zi, Z2 = Z2 ~ Z2, 7] = 7] — 6 — Nb~^e 

for the system composed of (4.38) and (4.43) gives the following augmented system 

= ail 乏 1 + ai2e 

Z2 = a^Z2 + (̂ 1 + zi)(e + t;：) - ZiVi 

fj = Mfj + MNh-^e - Nb-^g{zi,z2, e, //) 

e = g{zuz2, e, 11) + ^^{bv + Ne) + b(u ~ ^^r]) (4.45) 

where g 二 a22e + 021^1 -(乏1 + Zi)(乏2 + Z2) + Z1Z2. 
We are now ready to verify that the (乏 1,^2) subsystem satisfies Assumption 4.3. In 

fact, for any fixed compact subset E C x W x let Vz ~ ^zf + ^zf + - 苟 for some 
h> 0 which satisfies, along the trajectory of (乏1，乏2) subsystem 

Vz = haiizj + hauZie + hawz^ + hai2zle 

+03^2 + 乏2 乏 le + V1Z2Z1 + zi 乏26 (4.46) 

In (4.46)，using Young's inequality gives 

(4.47) 

h^a 
2 

h^a 

+ 

+ 

+
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Output y(t) 
Reference F⑴ 

A 

10 15 25 30 35 40 45 

Time t (second) 

Figure 4.6: Tracking performance. 

the design method detailed in Section 4.1.2, we can obtain a controller of the form (4.26) 
with the design function p(e) = 2(e® + 1). 

The simulation is performed with uj = 0.8, a = (—10,10, 28, - 1 , —8/3) and 6 = 1 . 
Various initial values are randomly chosen to be (zi(0), 2:2(0), y(0)) = (3, —1, —2), VQ = 
col(9,0), 77(0) = ^ (0 ) 
closed-loop system. 

0 and k{0) = 1. Figures 4.6 and 4.7 show the performance of the 

Remark 4.10 The global stabilization problem associated with (4.37) was studied in [53] 
92] by using state feedback. Similar results on the control of the Lorenz system can also 

be found in [13] [33] [64] [63] [84]. The stabilization problem in [53] [92] can be viewed 
as a special case of global robust output regulation of this section by having F{t)三 0. 
In such a case, as pointed out in Remark 4.6, the stabilizing controller can be given by 
(4.24) with p{y) = 5(y® + 1). Simulation results are shown in Figures 4.8 and 4.9 with 
initial values (a:i(0), ^(0), 3:3(0), A;(0)) = (2，一1.5’ 一1.8，1.2). It can be seen that all the 
state variable of the plant converge to the origin while the dynamic gain k(t) tends to a 
constant gain as the time goes to infinity. Also, the tracking control problem studied in 
13] is also a special case of our problem where Am and a are known nonzero numbers. 
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0 5 10 15 35 40 45 

Figure 4.7: Responses of tracking error e(t) and state k(t). 

Time t (second) 

Figure 4.8: Responses of xi{t) and x^{t). 
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Time t (second) 

Figure 4.9: Responses of y{t) and k{t). 

Next, we show the convergence of 4f{t) to i.e., 

l i m 金⑷ = 屯 w 

+00 

To this end, we will show that (4.43) is the minimal internal model. In fact, from 

M ,广外0 ^20 \ 

(4.50) 

2 — 

, 仍 0 

2 ^ 
- (• 

-jcjt 

2 

we can put u(v, w, u) in the form (4.42) with r = 4，0)1,2 = 士^̂  and u^a — 士 w h e r e 
none of the coefficients CI{VQ, W,lo),1 — 1, • • • ,4 is identically zero for all (t̂ o, w.lo) 6 
R"" X W X S. In particular, none of the coefficients Ci{vo,w,uj),l 二 l，...，4 is zero 
for the given Vq, w and u. By Remark 4.8, the control law guarantees the parameter 
convergence property (4.50). Figures 4.10 and 4.11 confirm this property for uj 二 0.8 and 
屯 w = [0.3136，12’ 6.6’ 6 : 

From (4.44)，the estimated frequency LJ can be related to the third component 金3 of 
if as follows: 

UJ = y V l ( l 3 - 命 3 ) 

Thus, the estimated frequency LJ will also approach the true frequency as shown in Figure 
4.12. 
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40 50 60 

Time t (second) 

Figure 4.10: Response of estimation 金(t) (first two components), 

40 
Time t (second) 

Figure 4.11: Response of estimation 金⑴(last two components). 
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Figure 4.12: Response of estimated frequency Cj. 

4.2 General case 

In this section, we consider the system in the general form with relative degree n>2 

z = f(z,y,v,w) 

Xi =工许1 + 9i(z,y,v,w)，i = 1,’ n 

Xn = hu + n > 2 

y 二工 1 

e — Xi — q(v,w) (4.51) 

where (z,x) G R^^ x is the state with x 二 col(;z;i’ • • • , Xn), u G M is the input, and 
e e E is the error output. 6 > 0 is an uncertain constant, w e W C is the parameter 
uncertainty, and v{t) G IR”" represents the time-varying reference and/or disturbance. The 
functions f , gi and q are sufficiently smooth in their arguments satisfying /(0，0,0, w) = 0’ 

0,0，If；) = 0 and g(0, w) = 0 for all w^W. 
It is also assumed that v{t) is generated by a linear exosystem described by (4.2) 

where a G § C R � r e p r e s e n t s the uncertainty in the exosystem. To have our problem 
well posed, we assume all the eigenvalues of Ai(cr) are distinct with zero real parts for all 
a G S. 

We will describe the control problem for system (4.51) and (4.2) as follows. 
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Problem 4.1 Given W and §, design an output feedback control law of the form: 

u = u^{C,e), t = 〜（C，e) (4.52) 

where both u^ and 知 are sufficiently smooth vanishing at the origin such that, for any 
initial state ( : (•), a:(0), ？；。，((•)) and any constant parameter (w, a) G W x S, the solution 
of the closed-loop system composed of (4.51) to (4.52) exists and is bounded over [0, +oo) , 
and the error output e � approaches zero as t tends to infinity. i 

Compared with the relative degree one case, the current case involves some specific 
technical difficulties. First, an observer has to be introduced to estimate the state variables 
X i r ' •,工n. Thus, we actually need to deal with the output regulation problem for the 
extended system (4.56) composed of (4.51) and the observer (4.54) instead of system 
(4.51). Even though the extended system is more complicated than the original system 
(4.51), we have managed to show that, under some standard assumptions on the original 
system (4.51), the output regulation problem of the extended system can still be converted 
into a stabilization problem of an augmented system consisting of the extended system 
and a canonical linear internal model. Second, the augmented system can also be put in a 
lower triangular form with the relative degree n . The augmented system contains a linear 
parameterized uncertainty incurred by the unknown parameter in the exosystem. We need 
to employ a recursive adaptive control design method to handle the adaptive stabilization 
problem of the augmented system and to obtain the estimation of the unknown parameter 
in the exosystem. 

Section 4.2.1 introduces some standard assumptions and shows that the output regu-
lation problem for system (4.51) and (4.2) can be converted into an adaptive stabilization 
problem of an augmented system composed of the original system, a partial state ob-
server, and the internal model. Section 4.2.2 further considers the stabilization problem 
of the augmented system. An adaptive control law will be derived via a recursive design 
method. In Section 4.2.3, we will apply the design method to solve a tracking control 
problem related to a generalized fourth order Lorenz system. 

4.2.1 Problem conversion 

To derive the augmented system associated with the plant (4.51), we repeat the following 
two standard assumptions. 

Assumption 4.4 There exists a globally defined sufficiently smooth function z : E"̂ ^ x 
Rn记 X M" with z(0，it;，CT) 二 0 such that 

ĈZ (U UU C7") 

Q”' AI{CF)V = f(7.{v,w,(j),q[v,W),v,W) (4.53) 

for all {v,w,a) G x W x i 
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Under Assumption 4.4, let x办,w,a) = q(v, w), and 

Xi(v,w,(7) = - w), z = 2, • - - ,n 

u(v,w,a) = [£Ai(a)vXn(v,w,a) - gn(z(v,w,a),q(v,w),v,w) 

where = w)/dv) Ai{(j)v. Then, z(v, w, a), w, a) := col(xi(t;, w, a] 
• •, Kn{v, w, a)) and u{v, w^ a) constitute the solution of the regulator equations associ-
ated with (4.51) and (4.2). 

For the existence of the internal model, we need one more assumption. 

Assumption 4.5 The function u{v, w, cr) is a polynomial in v with coefficients depending 
possibly on w and a. i 

Remark 4.11 Assumption 4.5 holds if the solution z(v,w) of (4.53), the function q(v, w) 
are polynomials in v, and the functions gi(z,y,v,w) are polynomials in (z,y,v). i 

As we need to design an output feedback control law, as in [44], we will first introduce 
an input driven filter to system (4.51) as follows: 

where 

九 = 

4 - + Bu, C 

B= 0 

(4.54) 

一入[n_l] 
—Ki 0 

0, 

:= col(Ai, •. • , A„_i), and Ai, • • •，入̂^ are given positive constants such that A^ is 
Hurwitz. This filter can also be viewed as an observer for the subsystem governing the 
state variables Xi, i = 1, • • • , n. 

Next, by performing the following coordinate transformation 

d = h~ Xi- z = 1, • • • 

we get the following extended system 

i = f{z,y,v,w) 

e = AcC 4- h(z,y,v,w) 

y = K2 + he2 + gi[z,y,v,w) 

ii = &+1 - i = 2,-" ,71-1 

in = U-

where e==col(ei，-.. h i {z ,y ,v ,w) = + b-^gi{z,y,v,w), 

hiz,y,v,w)- ； 

(4.55) 

(4.56) 

n, and 
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It can be seen that if the global robust output regulation problem for the extended 
system (4.56) is solvable by a control law depending on the partial states e and ^ only, 
then this control law together with (4.54) is in the form (4.52) and solves the global 
robust output regulation problem of system (4.51). Thus, in what follows, we only need 
to consider the global robust output regulation problem for the extended system (4.56). 

Remark 4.12 It is necessary to verify the solvability of the regulator equations associ-
ated with (4.56) and (4.2). Under Assumptions 4.4 and 4.5, \I(V,W,(J) can be uniquely 
expressed as follows: 

K 

u(v,w,a) = (4.57) 
1=1 

where K is some positive integer, d � = v = [Vi，…，?̂ 几」丁，and for each I > 2， 

t ; � = 

and Ui{w,a) is a suitable constant coefficient vector. Moreover, from Chapter 4 of [31], 
for each I > 1, there is a matrix Mi{(7) whose eigenvalues are of zero real part such that 

Thus, for each Z = … , K , the following Sylvester equation 

M 阳 , = A^Pdiiw, a) + BUi(w, a) 

has a unique solution <J) since Ac is Hurwitz. Let 

K 

I =1 
E ( f , w, a) = w, a) — E(v； w, a) (4.58) 

and y(ti, w, a) = w). It can be verified that {z，E，y,S，u} is the solution of the 
regulator equations associated with the extended system (4.56) and exosystem (4.2). i 

Remark 4.13 Under Assumption 4.5, each component of H(f, w, a) is also a polynomial. 
Thus, there exists an integer s such that 三2(v’ w, a), the second component of S(7；，w, a), 
satisfies, for all trajectories v(t) of the exosystem (4.2), all (w,<t) G W x § 

孙 = • ) 三 2 ( 釋 

+ … � … (4.59) 

where ai(cr)，a2(a),…，ajo") are real scalars such that all the roots of the polynomial 

( 入 ） = 入 s - a i ( ( j ) - a2(a)入 (4.60) 
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Let T{V,W,G) = co l(三2，三2’ . . .，>^工[。)幻三2 ) where 广义�⑷”三2 = ^ ^ ^ 成 （ o > 

are distinct with zero real part for all cr G § [30 
Let r ( f , w, a) = col (B 

for any integer i > 1, and 

0 Is-i ‘ 

ai(CT) a2((J), • • •，a“(7) _ 
r = [i’o Ixt 

Then T(V, W, a) satisfies 

dr(v, w, a) 
dv 

AI((T)V ~ 少(<7)T(i；，W, a), 82(1', W, a) = W, a] 

(4.61) 

(4.62) 

Remark 4.14 Since, for each cr E (P, $(cr)) is observable and the eigenvalues of < (̂cr) 
have zero real part, for any controllable pair (M, N) with M G M̂ ®̂ a Hurwitz matrix 
and N e IR以 1 a column vector, there is a unique nonsingular matrix T(a) satisfying the 
following Sylvester equation [69] 

T(o-)$(cr) - MT{a) = NT 

Let 9(v, w, a) = T((T)T{V, W, a) which satisfies 

0 = (M + 三2 = 屯 ％ 

with 屯 "— r T - i ( a ) . Then we can define the internal model as follows 

7) = M77 + 

(4.63) 

(4.64) 

Therefore, attaching the internal model (4.64) to (4.56) and performing the following 
coordinate transformations 

^ = z — z{v,w,o-), e = e — 'E{v,w,a), fj = r] — d{v,w,a)-Nb~^e, e - y — q(v, w) (4.65) 

yields a system described by 

i = F{z,e,ii) 

ii = — M l , i = 2, . . .，n — 1 

Cn = ^̂  - (4.66) 

where z(t) = col(z, e,fj), ij.{t) — co\{v,w,a), 

/(乏丄 e’/u) 
F{z,e,fi) = Aci + /i(z,e,/i) 

Mfj + MNb—ie - Ne2 - e, fi) 
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/(乏，l s，") 

歹1(乏，1 s，") 

h(z,( S，") 

2，") 

Remark A [•15 

and 

= f (乏 + z(i>，w,cj)’e + q(v,w),v,w) - f(z(v,w,cj),q(v,w),v,w) 

= + + q(v, w), v, w) - gi(z(v, w, u;),g(v, w), v, w) 

=h(z + z{v,w,uj),e + q{v, w), v, w) — h{2.{v, w, u),q{v, w) 

= b ^ " " ? ) + -^"Ne 4- 662 + 9\ e, /i) 

System (4.66) is called the semi-translated augmented system. The quan-
tity /i(t) in (4.66) can be viewed as an unknown time-varying disturbance. It can be 
easily verified that for any yu G M"^ x W x S, F ( 0 , 0 , / i ) = 0 ’ / ( 0 , 0 , /i) = 0 ,夕 i ( 0 , 0 , / i ) = 

0, = 0 and ^e(0,0,/z) = 0. i 

For system (4,66), we can define a stabilization problem as follows. 

Problem 4.2 Given (4.66) with ？7 any bounded piecewise continuous function of time t, 
find a control law in the form 

u = C = gdC^VA^e) (4.67) 

where both i/^ and are sufficiently smooth vanishing at the origin such that for any 
initial state and any (it;, a) € W x the solution of the closed-loop system composed of 
(4.2), (4.66) and (4.67) exists and is bounded over [0, +00). Moreover, liin“oo(||z(t)|| + 
丨e⑴丨) = 0. • 

Remark 4.16 It can be readily seen that if Problem 2.1 for system (4.66) is solvable, 
then the following control law 

u = 

C ^ 农(C，"乂，e) 

k = A:<e + 5\(C，"’<e，e), f} = M 0 N � 2 (4.68) 

which is in the form (4.52) solves Problem 1.1，for the plant (4.51) and exosystem (4.2). 
Thus, we have completed the conversion of the output regulation problem of the given 
plant into the stabilization problem of the system (4.66). 1 

4.2.2 The stabilization problem 

System (4.66) is a lower triangular system with relative degree n. What makes this system 
special is that it contains dynamic uncertainty z, static uncertainty 少 T h e dynamic 
uncertainty z can be handled in the same way as what has been done in the last section 
with following condition. 



and for z = 2, n 

X i - i ( % M，金’“ 

= 6 + 1 -

= — X i - l —— — 6 - 2 
i —1 rjZ 

- - A 心 + E 奢 6 
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Assumption 4.6 For any compact subset E C x W x §，there exists a C^ function 
Vz satisfying 这(||乏||) < Vzi^) < for some class /Cqo functions a{-) and q(-) such 
that, for any /i G E, along the trajectory of the subsystem 乏 = f { z , e, fi) 

(4.69) 

where 6 is some unknown positive constant, «(•) is some known class K � function satis-
fying lims_o+ sup(Q:-i(s2)/s) < oo and 7(,) is a known smooth p.d. function, i 

We are now ready to carry on the recursive design. For this purpose, we introduce the 
following notations: 

她 ， 、 東 e ) = 

(fhijhe)= 

6 - ki(A;，"’ 金,e) 
— kp{e)e + 

+ 導 h 季 0 连 屯 

dk dj] 

A i ( z ， e ， A t ) = 歹 e(z，e，/i)e (4.70) 

= A , - (4.71) 

where for convenience, we let (fo := & := 0, ^r+i ' = u, and Ei d^i/de, i — 
1，•. • ,n — 1. A: is a variable governed by (4.72), and 金，h are estimations of b with 
their estimation errors denoted by 齿 = 金 一 少 � a n d b = b — b, respectively. p(e) is a 
continuous positive design function which is determined by (4.81). Additionally, we will 
introduce a variable k := k — k with k being some real positive constant to be specified 
by (4.81). 

dli 
db 

6, e 
i

 1
2
 

( l i -hEi. 

dii dii 
din 

dii-
dk 

+ 
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Theorem 4.2 Under Assumptions 4.4 to 4.6，there exist a continuous function p{e) > 1 
and a control law of the form 

b = k = p(e)e^ (4.72) 

that solves Problem 4.2. i 

Proof: First, notice that for any given (vq, W, a) G R"” x W x S and v{t) being generated 
by (4.2) with initial state fo, there exists a compact subset E of x W x § containing 
(v(t),w,a) for all t > 0. Let zi 二乏，= col 

be put in the following form (2.11) with A = 

6,7；). Then the z subsystem of (4.66) can 
Ar 0 
N M 

N satisfying Ne = -Ne2, and 

= /(之 i,e，"⑴） 

妳， 

Since both Ac and M are Hurwitz, and <^1(0,0，/u) = 0 and 0，//) = 0, by Lemma 2.1, 

there exists a C^ function Vi{z) satisfying 由（||z|l) < Vi(z) < q:i(||z||) for some class /Coo 
functions ai ( - ) and 巧（-)such that, for any /y, G E, along the trajectory of z subsystem 

11^11'+ (5e7e(e) (4.73) 

for some positive constant Ŝ  and smooth p.d. function 7e(-). 
Further, by Remark 2.4, given any smooth function A(z) > 0，there exists a C^ 

function Uz(z) satisfying ^ Uz(z) < a2z(||̂ ||) for some class /Coo functions 

Q,2z(') and a2z(-) such that, along the trajectory of system z = F(z , e, /x) 

U,<-A(z)\\zf-^l%(e)e' (4.74) 

for some positive number Se and some known smooth function 7e(-) > 1. The function Uz 
will be used later in constructing the function U in (4.77). 

Next, define 

Vi = Vi-i + lih, 2<i<n 

Then, using (4.70), Vi satisfies along the trajectory of e subsystem 

Vi < biie - bkp(e)e^ + + (̂ i)金丁 + 么丄 + S (4.75) 
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and for 2 < z < n, Vi satisfies along the trajectory of (e,细）subsystem 

i-l . , 

j=i 

At i = n, we have, along the trajectory of system (4.66) 
n—1 

Vn < - 欣“⑷e2 + A „ ( z , e, 

Now let 
U = U,-\-Vn-\- -be 

(4.76) 

(4.77) 

which satisfies along the trajectory of the closed-loop system composed of (4.66) and 
(4.72) 

U = (/z + 14 + bk(k - k) 
n - l 

< - A � ||z||2 + 一 — bkp{e)e'^ + e,/i) + bk(k - ^).(4.78) 
i=i 

It is easy to verify that the above defined U satisfies 

Mil l l ) < ^ < «(ll II) 

for some class /Coo functions a(-) and a(-). 
Since e, /i) defined by the last equation of (4.71) satisfies A “ 0 , 0 , /x) — 0 for any 

/Li G S, using Lemma 2.4，one can show that 

An{z, e , < Ao(z) + hA,(e)e' (4.79) 

for some positive continuous function Ao(z), some real positive constant h, and some 
known positive continuous function Ae(e). Using (4.79) in (4.78) gives 

n - l 

U<-{A(z)- A , ( z ) ) l|z||' hk(k _—k)- bkp(e)e^ + + (4.80) 
i=i 

Choosing 

in (4.80) and noting k = p{e)e^ gives 

Pie) > m a x { % ( e ) , A e ( e ) , l } 

A � > Ao(z) + 1 
k > Se-hh (4.81) 

)e2 gives 

U < (4.82) 
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By (4.82)，the solution of the closed-loop system composed of (4.66) and (4.72) is defined 
on [0, +oo) and is bounded over [0, +oo) , and z{t), & converge to zero as t +oo. 

We now show e(t) will approach the origin as t ^ +oo . Since k(t) is bounded over 
0, +oo ) and k{t) = with p{e) > 1, e is square integrable over [0，+oo). Furthermore, 

both e{t) and e{t) are bounded over [0, +oo) . Using Lemma 2.3 concludes that e(t) tends 
to zero as t ^ +oo . This completes the proof. 

Remark 4.17 The controller (4.72) is in the form (4.67). By Remark 4.16, this controller 
will lead to the controller (4.68) which solves Problem 4.1 of systems (4.51) and (4.2). In 
what follows, we summarize the main design procedure for Problem 4.1 by the following 
steps: 

Step 1 Solve the regulator equations associated with systems (4.51) and (4.2) to get 

Step 2 Introduce the filter (4.54) and rewrite u(f, w, a) in the form (4.57); 

Step 3 According to Remark 4.12, get w, a) described by (4.58); 

Step 4 Calculate the polynomial (4.60) and construct the internal model (4.64); 

Step 5 Choose the design function p{e) according to (4.81); 

Step 6 Determine the design functions <?!>„ and 也几 according to (4.70) or (4.71). 

Note that Assumptions 4.4 and 4.5 can be verified at Step 1. If these two conditions 
are fulfilled, after Step 1, it is ready to test condition (4.69) for subsystem z — f{z, e, p,) 
of the augmented system (4.66). i 

We will now consider the convergence issue of the parameter 金 which will in turn de-
termine the convergence of the unknown parameter a in the exosystem. For this purpose, 
let us establish a lemma. 

Lemma 4.2 Under Assumptions 4.4 to 4.6，the closed-loop system composed of (4.66) 
and (4.72) has the following properties 

lim ^ - 0 (4.83) 

lim -妒)r(cr)r( i；’ w，cr) = 0 (4.84) 
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Proof: From the third equation of (4.72)，^ is a linear function of e and ‘ i = 
1, • • • , n — 1. Thus linif—oo 金(力)=0 since limt_oo e{t) = 0 and limt^oo iiit) = 0 for 
f = 1，…，n — 1. 

To show (4.84), note that from the convergence of & and e, i.e. 

lim = lim + kp{e)e - 金 = 0 

we have 

Since linif— 
2.3 gives 

which implies 

lim fe - ^77) = 0 (4.85) 

ge{z, e, /i) = 0 and both e and e are bounded over [0, +00), using Lemma 

lim e 二 lim (6^2 一 ^ 屯 、 + 歹e) = 0 
龙一+00 t~^+oo \ , 

lim (̂ 2 —少、）=0 (4.86) 

Therefore, (4.84) can be derived from (4.85), (4.86) and the fact that 金 is bounded for 
allt > 0 and 

lim {r] — 0) = lim 巧 = 0 
t~*+oo t—+oo 

Remark 4.18 Since 企 satisfies conditions (4.83) and (4.84), by Lemma 4.1 of [61j, ^(t) 
will converge to 屯"asymptot i ca l ly provided that r(v(t),w,a) is PE. To give conditions 
under which T(v(t),w,a) is PE, recall from [61] that a monic polynomial (4.60) is called 
a zeroing polynomial of E2{v,w,cr) on S, if, along all trajectories v{t) of the exosystem 
(4.2) and all {w, cr) € W x 三2(义 w, a) satisfies a differential equation of the form (4.59). 
A monic polynomial P'^(A) is called the minimal zeroing polynomial of E2(v,w,a) on S 
if is a zeroing polynomial of E2(v^ w, a) on S of least degree. An internal model 
whose dimension is equal to the degree of the minimal zeroing polynomial of S2(v, w, a) 
is called the minimal internal model. As 三2(^^ w, cr) is a polynomial in v, it is known from 
[61] that there exists an integer r such that, along all trajectories v(t) of the exosystem, 
for any (i/;, cr) e x § 

r 

^2(v(t},w, ( 卯 , 川 , ( 4 . 8 7 ) 

1=1 

where j = a>i, • • • , cD/ are determined by the eigenvalues of Ai and are distinct, 
and Ci{vo,w, a) G C are not identically zero for all (î o, w, cr). Thus, the minimal zeroing 
polynomial of E2(v,w,cr) is P'^(A) = HLil '^ + • 

Combining Lemma 4.2 and Remark 4.18 gives the following result. 

Theorem 4.3 Under Assumptions 4.4 to 4.6, if the internal model is of minimal dimen-
sion, and vo, w and a are such that none of Ci(Vo’ w, a) is zero, then the feedback controller 
(4.72) is such that l i m t — ^ o (金 — = 0. 1 
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4.2.3 Application 

Consider a class of nonlinear systems in the form (4.51) described by the following equa-
tions; 

i i = auZi + auXi 

h ~ a^Z2 + ZiXi 

Xi ~ X2 + a2\Zi + -之 1之2 

X2 = u + a^\Zi + (242-^2^1 

y - aJi (4.88) 

where a = col(aii，ai2,<^21，<^22，o^i,“42) is a parameter vector. To make system (4.88) 
general enough, we choose d = col(—10,10,28,1，—8/3,0，—0.2) as the nominal value of 
parameter a and assume a = a + w where w G W is some uncertainty and the set W C 
is defined as follows: 

>V = { u ; I It; G M ^ - 1 0 + wi < 0, - 8 / 3 4- W5 < 0 } 

In particular, when it 三 0 and w = 0, system (4.88) in terms of (•̂ i,之2, —X2) is the 
hyperchaotic Lorenz system in [22 . 

Our objective is to design an output feedback controller such that for any constants 
> 0, w G W , for any initial conditions, the solution of the closed-loop system exists 

and is bounded over [0, +00) and the output y asymptotically tracks the class of reference 
signals F(t) = Am + (f). 

Notice that the class of reference signals F(t) can be generated by a linear autonomous 
system in the form (4.2) described by (4.29). Let § = {a; | cj > O} and 

e ^ x i - v i (4.89) 

This tracking problem has been formulated as Problem 4.1. 
We now verify that systems (4.88) to (4.89) satisfy Assumptions 4.4 to 4.6. From 

equation (4.89), we have 

Xi(w,Lf；) = vi (4.90) 

Substituting (4.90) into the first equation of (4.88) yields 

zi{v, w,Lu) = ruVi + ri2V2 (4.91) 

where 
aiiai2 , � ai2UJ 

u)^ + afi u)^ + ail 
Thus, Assumption 4.4 is verified. 
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Substituting (4.91) and (4.90) into the second equation of (4.88) gives 

Z2(V，W, U) = r2ivl + r22ViV2 + r23t̂ 2 (4.92) 

where 

7-21 = -
air 11 — a^uru + 2uj'^ru 

+ 4a;2) 
ri2a3 + 2a;rn cj 

flg + as 

Substituting (4.90) to (4.92) to the third equation of (4.88) gives 

X2(V,W,uy) = CJV2 — a22V\ — a2lZl + Z1Z2 

where 

= r z i V i + rz2V2 + + r34v1v2 + rs^vivl + r^evl (4.93) 

r3i{w,u) = —a22-a2irn 

r32{w,u)) = u) - a2iri2, r33(w,uj) = rur2i 

rs4(w,uj) = ”2�21 + rur22 

r35(w,u;) = riir"23 + n2^-22，r36(w,cj) = ri2r23 

So X2(v,iv,uj) can be put into the form (4.57) as follows: 

[1] X2(V,W,lj) = ‘ + A'23(t/;,a;)f ’ [3] 

where ^；⑴=\viiV2\^ ̂  问 = VIV2,VIVI,VI and 

(4.94) 

LUI = 
UJ 

- u 0 
A问( UJ = 

0 3a； 0 0 
-u) 

0 

0 2a; 0 
-2uj 0 u 
0 0 

Finally, substituting (4.94) into the fourth equation of (4.88) gives 

u(l；, W^Lo) = ^ ^ 一 , W, u) — a42Z2{v, W, Uj):Ki(v, W) 

= r 4 i z ; i + r42V2 + r4svl + ruvlv2 4- U^Vivl + UqV^ (4.95) 

where 

= -{ujr 32 + a4ini), r42i'w,u) = ujr^ — ^41^12 

厂43(^^ = - 0427^21,『44 — , Cj) 二 0；(3厂33 “ 2厂35) — £142^22 

r45(10,0/) = Cj(2r34 一 3厂36) - a42r23, r46('W,Cj) 二 0；厂35 
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Thus, Assumption 4.5 is also verified. 
For system (4.88), we introduce the input driven filter described by 

^ = Ae-e + Bu, (4.96) 

where 

儿 = 
- A i 1 
-A2 0 

B = 
0 

with 入 1,入2 > 0, and the e = col(3:i — — ^2) dynamics as described in (4.56) is 

e = Ace-\- h(z,xi,v,w), e G M^ (4.97) 

where 

h{z, Xi, f , w) 
Ai^i + a2iZi + a22 工 1 — ZiZ2 

入2 工 1 + ^ 4 1 之 1 + ^ 4 2 ^ 2 ^ 1 

To calculate the solution E(v,w,uj) of the regulator equations associated with (4.88). 
(4.29) and (4.96)，put u(i;, w.cu) into the form: 

where Ui =[厂41，厂42] and U3 = [ � 4 3 ’ 7-44，7-45,厂46]. Then, 

E{v, w,u)) = tSi(w;，+ «S3(it;，a;)t»[3] 

where Si{w, lu), / — 1,3, are governed by the Sylvester equation: 

Si(w, = AcSi(w, u) + BUi(w, lo) 

Put 

S2\{W,UJ] 

Then 

As 三2(v，切，w) is also a polynomial in v, it can be verified that 

= - 9 u E2{V,W,uj) — lOct；' 
dt^ —— dt^ 

By Remark 4.13, the steady-state generator in the form (4.62) is given with 

‘ 0 h _ r = [1,0,0,0 (4.98) 
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which leads to an internal model as follows: 

fj 二 Mr} + 

where (M, iV) is any controllable pair of the form 

M = 

(4.99) 

‘ 0 /3 -
—mi -7712, - m a , -7714 

N = [0,0,0, 

and the parameter ( m i , 7 7 7 , 2 , ^ 4 ) = (4,12,13,6) is such that M is Hurwitz. Solving 
the Sylvester equation (4.63) yields 

T - ' H = 9a/(i0a;2 — 13) 

12 13 - 10a;2 
4 - 12 -
-54a;4 91u;4 - ISOcc；̂  + 4 

•108a/(5a;2 — 1) 9^4(^2 —叫 5^2(91^2 _ 20) 91uj 

Hence, we have 

6 

13 - lOuĵ  
12 — 60U;2 
4 — + 4 

4 —9a/ 12， 13 - lOoA 6 (4.100) 

Performing the coordinate 
system as follows: 

transformation (4.65) gives the transformed augmented 

h = <̂ 3̂ 2 + 

= -A ie i 

where 

£2 

V 
e 

歹 i(乏，e,/i) 

歹2(乏,e，") 

9e(z,e,ii) 

aiiZi + ai2e 

(乏1 + zi)(e + t;i) - 7.1V1 

+ £2 + h\{z,e,ii) 

-A2ei + Ji2�2,e,fi) 

Mfj + MNe - NI2 - Ngi (z, e, /i) 

u - A26 

a2i 乏 1 + a22e —(乏1 + Zi)(乏2 + Z2) + 乏 1̂ 2 

041^1 + a42(乏2 + Z2)(e + Vi) - a42Z2t̂ i 

f f j + f N e + €2 + 91 (乏’ e, fi) 

let 

hi�乏,e,/j) = Xie + gi{z,e,fi), i = 1,2 

It remains to verify Assumption 4.6. In fact, for any fixed compact subset E C IR…x W , 

^ 9 ^ A 1 O 
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for some sufficiently large h > 0. It can be shown that, for all (v, w) E S, along the 
trajectory of (乏i，乏2) system 

< —A乏？ - - + + (4.101) 

for some constants ii > 0, i = 1, • • • , 5. 
As a result of Theorem 4.2，we conclude the problem is solvable. Using the design 

method detailed in Section 4.2.2 gives the controller as follows. 

if == -77丁6 —7]丁&丑1， k = p{e)e^ (4.102) 

where p{e) = 9(e® + 1). 
Next, we show the convergence of 金(t) to 屯 i . e . 

lim � = ^ f w (4.103) 
t —+ 00 

To this end, we will show that (4.99) is the minimal internal model. In fact, from 

we can put w,uj) in the form (4.95) with r = 4, cDi，2 = 士̂ ^ and 0)3̂ 4 = 士3co> where 
none of the coefficients CI[DO’UJ,IO),L = 1,…，4 is identically zero for all (VQ, W,LO) E 

股n” X W X S. By Theorem 4.3，for any given t;。，uj and u, the control law guarantees the 
parameter convergence property (4.103) as long as none of the coefficients Ci{vo, w,uj)J = 
1, • • • ,4, is zero. 

From (4.100), the estimated frequency LU can be related to the third component 金3 of 

命 as follows: 

Thus, the estimated frequency a> will also approach the true frequency. For a; = 1, A[2]= 
col(2,3), a = c o l ( - 1 0 , 1 0 , 3 , 5 , - 4 , 1 , 1 ) , and initial value (^i(O),^2(0),a;i(0),0:2(0))= 
( 1 , - 2 , 2 , - 1 ) , vo = col(5，0)，A:(0) 二 1 and r ; ( 0 ) =金 ( 0 ) = 0, the simulation is per-
formed and some results are shown in Figures 4.13 and 4.14. The real value of ^̂ ^ is 
—5,12,3,6]. The control goal is achieved. 

4.3 Conclusion 

This chapter has presented the solvability conditions for the global robust output reg-
ulation problem of the output feedback systems by using output feedback control. An 
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Figure 4.14: Responses of estimation vector ^(t) and variable k(t). 
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Figure 4.13: Responses of system output xi(t) and states (21 (i), Z2(t), X2(t)). 
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adaptive control technique is used to handle the unknown parameter vector in the exosys-
tem. It has been shown that this unknown parameter vector can be exactly estimated 
asymptotically if a controller containing a minimal internal model is employed. Applica-
tions of our result to the FHN model and the generalized third and fourth-order Lorenz 
system have been illustrated. 

It should be noted that the design methods in this chapter rely on the ISS property of 
the inverse dynamics. This implies the system is minimum-phase, that is the equilibrium 
of the zero dynamics is asymptotically stable. In some case, this condition will not be 
satisfied. For instance, consider the controlled Chua's circuit in [59] described by the 
following equations: 

Ci 

Ck 

dVc, 

dt 
dVc, 

dt 
dh 

L 
dt 

=^{Vc, - Vc,) - f,{Vc,) 

=-Vca — Roh + U (4.104) 

where the cubic function 

/d(VcJ = aiFc, + asK?, 
with ai < 0 and aa > 0 and the nominal values of the various parameters are R = I, Ci = 
1/9.5, C2 二 1, = 0， ai = - 8 / 7 . li y ~ II is taken as the output, the system is 
non-minimum phase. In fact, letting 

么 1 = V b i , 之 2 = Vc2 

gives 

幻 = 

Z2 = 

y = 

•Rai — 
Ra 

•Z2 - —2；! 
C 广 

RC2 RC2 
1 1 Ro 

+ 巧 " 

y (4.105) 

The Jacobian matrix at the origin of the first two equations with y 二 0 is 

Jo = RCi RCi 

RC2 RC2 

9 . 5 / 7 9.5-
1 一 1 

The eigenvalues of the matrix JQ are 

Ai = 3.4784’ A2 = - 3 . 1 2 1 3 

Thus, the system is non-minimum phase. 

• End of chapter. 



Chapter 5 

Global output regulation for systems 
with iISS inverse dynamics 

This chapter presents a case study of the systems with iISS inverse dynamics. We will 
further study the problem in Chapter 3.1 of the output feedback systems with iISS inverse 
dynamics. As we have shown in Chapter 2, iISS concept is strictly weaker than ISS. Thus, 
the result of this chapter allows us to handle a much larger class of nonlinear systems. 
In fact, one of the motivations is to handle the disturbance rejection problem of a shunt-
connected DC motor to be described in Section 5.4, where it will be seen that the inverse 
dynamics of this system is iISS and the problem can be solved. 

5.1 Introduction 

As a case study, we consider the class of output feedback systems in the special case 
follows 

i = f{z,y,v,w) 

y = 9{z,y,v,w) + bu 

e = y - q(v,w) (5.1) 

where {z,y) G E" x R is the state, e € M is the error output and u G E is the control 
input. 16) e W C M""" with W nonempty is a constant uncertain parameter vector, and 
v(t) G 股“•” represents the time-varying reference and/or disturbance. The functions / , g 
and q are supposed to be sufficiently smooth in their arguments satisfying for any w G W, 
/(0，0’ 0, w) = 0，g{0,0,0，w) = •，^(0, w) = 0，and the control gain 6 > 0 is uncertain. 

It is assumed that v{t) is generated by a linear exosystem 

V = ^it;, t;(0) = vo (5.2) 

and all the eigenvalues of the system matrix Ai 6 M"”xni；肌 distinct with zero real parts. 
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The problem concerned in this chapter is precisely formulated as follows: For any 
given W； design an output feedback control law of the form: 

u = UK{C,e), Q = gK(C„e) (5.3) 

where both UK and QK are sufficiently smooth vanishing at the origin such that, for any 
initial state a:(0), ！；。, and any w E W, the solution of the closed-loop system 
composed of (5.1) to (5.3) exists and is bounded over [0,+oo) and the error output e{t) 
asymptotically approaches zero as t tends to infinity. 

Technically, the current problem is most relevant to [44] where the global stabilization 
problem of the output feedback systems, described by (5.1) with fo = 0 and an iISS 
inverse dynamics is studied. The problem here is more challenging than the problem in 
[44] in that we need to handle asymptotic tracking and disturbance rejection problem for 
(5.1) with the disturbance and reference input being generated by the exosystem (5.2). 

For convenience, we use the following notation. For a pair of p.d. functions '• 
R+ IR+, G 0[K.2{S)) means that < c / ^ 2 � for some constant c > 0 and all 
s in a neighborhood of the origin, and if � is bounded over [0, +oo) , so is Ati(s). 

5.2 Problem conversion 

As in Chapter 3, the first step of our approach is to form the desired augmented system 
composed of the original plant and a suitable internal model. For completeness, we repeat 
the following two standard assumptions and the problem conversion procedure similar 
with what has been done in Chapter 3. 

Assumption 5.1 There exists a globally defined sufficiently smooth function z :股“” x 
W t^ E" with z(0, w) = 0 such that 

( /111] 

’ -Aiv = f(z(v, w), q{v, w) (5.4) dv 

for all u;) G x W. i 

Under Assumption 5.1, let y{v,w) = q(v,w) and 

u(z;, w) = b—i (dq(v, uj)/dv)Aiv — g(z(v, w),q(v, u'),v, w] 

Then, {'z,{v, w), y{v, w), il*)} is the solution of the regulator equations associated 
with (5.1) and (5.2). 

Assumption 5.2 The function u{v,w) is a polynomial in v with coefficients possibly 
depending on w. • 
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Remark 5.1 Under Assumption 5.2, by Remark 3.2 in Chapter 3, we can define the 
following dynamic compensator 

f] = Mr] + Nu (5.5) 

as in internal model with output u in the sense of Definition 2.7. i 

Attaching the internal model (5.5) to (5.1) and performing the following coordinate 
and input transformations 

乏 = 2； _ z{v, w), fj = Tj — w) — Nb—ie, u = u —少77 

yields a system described by 

I = /(乏’ 

7) = Mfj + MNb-^e - Nb-^g{z, e, /i) 
e = g{z, e, /i) + b'^frj + ^A/'e + bu 

(5.6) 

(5.7) 

where /i = (v, w) and 

歹(乏,e 

lA = / ( ^ + w), e + q{v, w), V, w) 

-f(z(v,w),q(v,w),v,w) 

aO = + + g(v, w), v, w) 

-g{z(v,w),q(v,w),v,w). (5.8) 

In (5.8), it can be verified that, / (0 ,0 , / i ) = 0 and ^(0,0,//) = 0 for any /i G x W. 
Denote z = col(乏，fj) and 

/(乏，e，"） 

Mfj 4- MNb—ie - Nb-'^g{z, e, fi) 

Then, system (5.7) takes the following form 

e = 总 ( 乏 , + 1)屯+屯Ne + bn (5.9) 

Remark 5.2 We have obtained the augmented system (5.9). It can be seen that if there 
exists a control law of the form 

奴 = � ( C ’ e ) ， C = (5.10) 

that solves the global robust stabilization problem of system (5.9) in the sense that, for 
any initial state of the closed-loop system and the exosystem, and any fixed unknown 
parameter w e W, the solution of the closed-loop system is bounded for all ^ > 0, and 
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the state of the augmented system (5.9) approaches zero as t tends to infinity, then the 
following control law 

u = + f} = Mr)-^ Nu, 二 5fdC，e) (5.11) 

solves the global robust output regulation problem of the original plant (5.1) and exosys-
tem (5.2). i 

5.3 Main result 

We have shown that system (5.9) is a time-varying output feedback system with relative 
degree one by viewing ii{t) an unknown external signal. The existing approaches such 
as that in Chapter 3 require that the inverse dynamics 2 = F(z, e，/i) be ISS. In this 
section, we will further show that the ISS condition on z = F{z, e,ii) can be weakened to 
iISS condition. Moreover, what makes our problem more interesting is that we actually 
can prove that the inverse dynamics z = F(z, e,ii) is iISS provided that the subsystem 
乏=/(乏，e，/i) is iISS as it can be shown by Proposition 2.2 and later by Lemma 5.2. 

For this purpose, let us first make an ilSS-like assumption as follows. 

Assumpt ion 5.3 The subsystem 乏 = f ( z , e, is (robust) iISS with state 乏 and input e 
in the sense that, for any compact subset E c K"” x W, there exists a C^ function Vo{z) 
satisfying < Vo{z) < <5;o(||f||) for some class /Co© functions 仏 ( . ) a n d ao(-) such 
that, for any G S, along the trajectory of system z = f{z, e, /i) 

^ { z ) ‘ < - a o ( P I I ) + (5.12) 

where ao(-) is p.d.’ 7o(.) > 1 is continuous and positive, and 5o is an unknown positive 
constant, i 

Remark 5.3 In order to consider a system subject to a time-varying uncertainty function 
fi{t), we have slightly modified the iISS concept by introducing an unknown constant 6o 
in (5.12) to account for the unknown boundary of S, as it has been shown in Chapter 2. 

The function ao(-) in (5.12) is called a supply function. As the supply function ao(-) 
in (5.12) is generally bounded, the inverse dynamics 'z = F{z, e, n) of (5.9) is not ISS. 
Therefore, in this case, the design methods in Chapters 3 and 4 are not applicable. Never-
theless, we can show, under Assumption 5.3，that z = e, /u) is ilSS. For this purpose, 
we will first generalize the changing supply function result of [80] from ISS system to iISS 
system as follows. 議 

For convenience, we rewrite the augmented system (5.9) as follows 

i2 = MZ2 + <f2(zi,e,^) 

e = ipe{zi,z2,e, ji) + bu (5.13) 
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with zi =乏，2；2 = f}, ipi = (p2 = MNb~^e — e, fi) and Lpe ~ e,ii) + 
ly^fj + 屯 iVe. 

Before stating the main theorem, we first give the following key lemma of a changing 
iISS supply function technique. 

Lemma 5.1 (Changing iISS Supply Function) Assume, Zi subsystem 
stable with state zi and input e and has an iISS Lyapunov function 
(5.12) with an iISS supply function ao(.). 

For any p.d. function IIJ(\\ZI\\) € 0(Q!o(||<zi|j)), there exists a C^ 
satisfying < Vẑ î Zi) < 屯“丨丨之丄丨丨）for some class /C ĉ functions 
such that for any ^ G S, along the trajectory of Zi system 

for a continuous function %(•) > 1 and a positive constant Ŝ  > 0. i 

of (5.13) is iISS 
Vo(zi) satisfying 

function 
«zi(-) and 

(5.14) 

Remark 5.4 When q;o(-) in (5.12) is unbounded, the zi subsystem of (5.13) is actually 
ISS. Thus, this lemma can be viewed as a generalization of the changing supply functions 
technique of [80] from ISS to ilSS. It should be noted that a result similar to this lemma 
has been given in [44] without a detailed proof. Moreover, the result here is more specific 
in that the iISS gain function can still be chosen with %{•) = 7o(.) given by (5.12). For 
completeness, we give a proof for the case that ao(-) is bounded over [0, +oo) . i 

Proof: Suppose q;o(-) is p.d. and bounded over [0, +oo) . As in [80], with the given 
Vo{zi) satisfying (5.12), define 

14i(2;i) = koK(2:i)， n{s) ^ f <;[T)dT, s > 0 

where > 0 for all s � 0 is some bounded, continuous and nondecreasing function to 
be determined. Clearly, the above defined function V̂ ^ satisfies a2zi(lkill) < Ki(Zi) < 
<̂ 221 (丨1:111) for some class /Cqo functions and ^2zi(') such that, for any /i G S, along 
the trajectory of zi system 

< -<;(Vo{zi))ao(\\zi\\) + 5 � � K ( M ) 7 o ( e ) e 2 (5.15) 

In (5.15), since <;(•) is bounded and <;{Vzi(zi)) > <; o (ll̂ î||), we have 

< + (5.16) 

for some positive constant So > 0. 
By virtue of ？ G C>(ao(||之11|))，we can define the following function 

/ l i m s u p s — 0 + 幾， 5 = 0; 
S^s)—、 功〜） 

[SUPt€((M 赫 s � 0 . 
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which is a well defined, positive, continuous and increasing function and satisfies 

(5.17) 

Using the above constructed function《.），further define 

= se [0，+oo ) (5.18) 

Substituting (5.18) into (5.16) and using (5.17) yields (5.14) with 7o(-) ~ 7o(.)- The proof 
is completed. 

Next we will establish a result on the iISS property of the interconnected (zi,2:2) 
subsystem of (5.13). For this purpose, we recall that, by Lemma 2.4, there exist a class JC 
functions •]_(.)’ a continuous function (/>2(') > 1 and some (unknown) positive constants 
P21, P22 > 0 such that, for any " � e S 

\\^2{zue,fM{t))\\<p2iMM)'^P22Me)\e\ (5.19) 

Lemma 5.2 For {zi,z2) subsystem of (5.13), assume zi subsystem satisfies Assumption 
5.3 with Zi = z, and G C?(ao(||zi|l)). Then there exists a C^ function Vz(zi, Z2) 
satisfying 么（||:i，^；之丨丨）< Vz{zi,z2) < a^djzi, Z2||) for some class /Coo functions a^(-) and 
az(-) such that, for any fj,{t) e E, along the trajectory of system (5.13) 

？+ (5.20) 

where 7e(-) > 1 is a positive and continuous function and is an unknown positive 
constant. 1 

Proof : First, suppose the conditions in Lemma 5.1 for z\ subsystem are all fulfilled 
and 之ill) G (9(0；0(||2：11|))，by applying Lemma 5.1’ we immediately have t^i satisfying 

t,<-(pl{\\zi\\) + 5 M e ) e ' (5.21) 

with ip{') = (^j(-). Next, define 

V,{zuZ2) = lV,,{zi) + 2zJPz2 

where I is some positive number to be specified and P is the positive definite solution of 
the Lyapunov equation 

PM + M T p = (5.22) 

It can be seen that the above defined function 14(^1,22) is C^ satisfying 这2(11之1，之2||) < 
^z(zi,Z2) < az{\\zi,Z2\\) for some class /Coo functions a^(-) and az{-). Moreover, using 
(5.21), ^2) satisfies, along the trajectory of system (5.13) 

K < -l(f>\{\\zi\\) + fSele{e)e^ - 2 ||z2||' + ") 
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In the above inequality, using (5.19) and completing the squares gives 

< - /0? (|N|) + /“e(e)e2-||A||2 

Finally, choosing 

I > 8 I 略 , 1 + 1 

k > max{Z‘8| |P| |2f4} 

7e(e) > max{7e(e),<^^(e)} 

yields (5.20). This completes the proof. 

Remark 5.5 Lemma 5.2 suggests that, when Zi subsystem is iISS in the sense of As-
sumption 5.3，and the condition 0f(||zi||) G 0(ao(||之i||)) holds, the (2̂ 1,2:2) subsystem is 
also iISS with state (zi,Z2), input e, and an iISS gain function %{e)e'^. 1 

We are now ready to consider the stabilization problem for the augmented system 
(5.13). 

Theorem 5.1 Consider the augmented system (5.13). Under Assumption 5.3，if <;zi>f(||z||) G 
0(a:o(||2;||)), there exist a positive and continuous function p(e) > 1 and a controller of 
the form 

u = -kp{e)e, k = p(e)e^ (5.23) 

such that the closed-loop system composed of the augmented system (5.13) and control 
law (5.23) has a property that, for any given (vo，w) G R"” x W , there exists a C^ function 
V(z, e, k) satisfying e,k\\) < V < ac(\\z, e,石||) such that 

列(5.13)+(5.23) ^ 一 (5.24) 

where k = p — k with p being some positive constant. 1 

Proof: Consider the augmented system (5.13). For any (vo, w) 6 K"” x W, let E C 
R"幻 X W be a compact subset such that fi{t) = {v(t), w) G S for all t > 0. Recall that 
M is Hurwitz, and the functions ( /?i(0,0, / i) = 0, z = 1,2，and 0 , 0 , / i ) 二 0 for all 

/i G X W . 

Thus, by Lemma 5.2，under Assumption 5.3 and condition G 0(ao[\\zi\\)), 
there exists a C^ iISS Lyapunov function Vz{z) satisfying a^^dl^ll) < V z � < 屯 
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for some class /Coo functions 这 a n d aiz(-) such that, for any G E, along the trajectory 
of system z = F(z, e, fi) 

+ (5.25) 

for some positive constant 5e and a known positive and continuous function 7e(.) > 1. 
Using the above obtained V^, we further define 

V(z, e, ~k) = hV^ + “ 2 + i f t p (5.26) 

for some /I > 0 to be specified. Then for any /i e S, the above defined V satisfies 

+e(^Pe{zi,Z2,e,iJL) — hkp(e)e) — bkk 

(5.27) 

In (5.27), by using Lemma 2.4 again, we have 

Ii)\ < piMW^iW) + P2 II之2II + PeMe)\e\ (5.28) 

for a p.d. function (j)i{-), a continuous function (f)e(-) > 1 and some positive constants 
P i , P 2 , P e � 0 - Note that we have chosen the same function 么（.）as that in (5.19) to 
simplify our derivation. 

Using (5.28), by completing the squares, we have 

Substituting (5.29) into (5.27) gives 

^ < -{h-pV)m^i\\) - {^-VD Ik2f + (Me7e(e) 

+pl4>l(e) + i)e2 — bkp{e)e^ — bkk 

In (5.30), choosing function p(e) such that 

p(e) > max{(f)l{e),je{e)} 

and constants 

yields 

V < - - bk(k - p(e)e') 

This completes the proof. 

(5.29) 

(5.30) 

(5.31) 

(5.32) 



5.4. APPLICATION 100 

R e m a r k 5.6 By Theorem 5.1 and Theorem 2.4, k{t), z{t), e{t) are globally uniformly 
bounded over [0 ’+oo) and z(t) approaches zero as t ^ +oo. Since k = p(e)e^ > e^, ê  
is integrable over [0，+oo). Also, the boundedness of e and e implies that ê  is uniformly 
continuous. By Lemma 2.3, e(t) tends to zero as t — +oo. Thus, the global robust 
output regulation for the plant (5.1) and the exosystem (5.2) has been solved as a result 
of Remark 5.2. i 

Remark 5.7 Our result can also be extended to the case where the sign of the control 
gain b is unknown by utilizing the Nussbaum function technique, similar with the result 
in Chapter 3. In fact, if the sign of the control gain b is unknown, modify the control law 
(5.23) to the following 

u 二 N\k)f)�e�e, k = p{e)e^ (5.33) 

where J\f{k) = exp(fc^) cos(A;) is a Nussbaum-type function. It can be seen that the same 
Lyapunov function V(z, e, k) satisfies 

V | ( 5 . 1 3 ) + ( 5 . 3 3 ) S # ( 幻 ( 5 . 3 4 ) 

Using Lemma 2.5 shows that the control law (5.33) solves the stabilization problem of the 
augmented (5.13). i 

5.4 Application 

A shunt-connected DC motor as shown in Figure 5.1 is described by the following equa-
tions [50] 

dif 
” f 

Vn 

n T dif 

C\ifUJ + La-^ + Ra 

J ^ = C2ifia - t l (5.35) 

where in the first equation VF,IF, RF, and LF are the voltage, current, resistance, and 
inductance of the field circuit, and in the second equation, Va, ia, ^a? and La are the 
corresponding variables for the armature circuit. The third equation is a torque equation 
for the shaft, with J as the rotor inertia, t l = c^uj as the load torque and C3 as a damping 
coefficient [50 . 

As shown in [50], the field and armature windings of the shunt-connected DC motor 
are connected in parallel and an external resistance R^ is connected in series with the 
field winding to limit the field flux, that is 

Va = Vf + Ra:if 
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Figure 5.1: A shunt-connected DC motor. 

0 cr 巧0 Am sin Q 
-cr 0 

V, Vo ：二 
y2Q Am COS g 

where vj is seen as the system input. 
In [11] [12], the feedback and input-output linearization methods are applied to control 

a shunt DC motor. We consider the control problem for system (5.35) in the presence of 
certain input disturbances by using output feedback control. 

Suppose Hf = Uf + d{t) where Uf is the actual control input and d{t) = Am sm(at + Q) 
with AmyCr > 0 is the input disturbance with an unknown amplitude and initial phase. 
Notice that the class of disturbances d{t) can be generated by 

(5.36) 

with V = col(Vi,V2) and Vi = d{t). In particular, when d{t)三 0, i.e. VQ = 0，the 
disturbance rejection problem reduces to certain stabilization problem as in [11] [12]. 

It is assumed that J, La,Lf, Ra, c^, a > 0 and all the other parameters in (5.38) and 
(5.39) are arbitrary. In addition, the parameter vector (J, La, Ra, C3, Ci, C2, R f . L f , R^) is 
defined by 

(J，La, Ra, C3, C i , C2, Rf, Lf.Ra；) + W^ 

withti； e w SindW = { w e J, L^, L / , i?a, C3 > O} where (J, Ra, C3, ci, C2, R f , L f , Rx] 
denotes its nominal value, say J = 0.0007046, Rf = 1, Z / 0.1236, La = 0.0917, 
Ra = 2.5, Ci — 1, C2 = 1, C3 = 0.0004, Rx = 7.2. Here all the (nominal) parameter values 
are borrowed from [68 . 
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Letting Xi = î ^ X2 = ia, = and u = Uf gives 

±1 = 一 Lji RfXi + Ljiu + Ljid 

±2 == -L-^ciXiXs - L-^RaX2 + L-^Rx^i 

^L-'u + L-'d 

±3 = J~^C2XiX2 - J—1�32：3 

To transform system (5.37) into the form (5.1), further letting 

Zi = 3:3’ Z2 = X2- y = xi 

(5.37) 

gives 

ii = -J~^C3Zi + J~^C2(Z2 + L~^Lfy)y 

Z2 = -L-^RaZ2 - L'^CiZiy 

y = -Lj^Rfy + Lj^d + 

in a compact form 

where b — Lj^ and 

i = A,z + H,zy + f,(y) 

y = 9{y,v) + bu 

H , = 

m = 

= 

The conditions in Theorem 5. 

(5.38) 

- J - ' c s 0 
0 凡 

0 J-ic2 

- L - ^ c , 0 

-J-'L-'Ljc^y^ 

L:�Rz + Rf — RaL:iLfyy. 

-LfRfy-^Lj'vi 

are all satisfied. In fact, Assumptions 5.1 and 5.2 
are satisfied with {z(v, w) = y(jj，w} = 0, u(z;, w) = - i^ i } which is the solution of the 
regulator equations associated with (5.38) and (5.39). Since ii = 
steady-state generator matrices as follows 

"(J u, we have the 

$ 二 
0 1 

0 
r = 0 
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For any controllable pair (M, N) of the form 

M = 
0 1 "0 

， N = —mi —7712 1 

where mi,m2 > 0，we obtain the internal model (5.5) and further calculation shows that 
屯 = m i — a^ 7712 . 

To verify Assumption 5.3, consider the inverse dynamics described by 

z = + + (5.39) 

We state that system (5.39) is iISS with state z and input y. To show this fact, define 
Vz — ln(l 4- z^Pz) where matrix P > 0 is such that PA^ + A^P = —I which satisfies 
along the trajectory of system (5.39) 

In (5.40), completing the squares gives 

2zTp{jhzy + Uy)) 
1 + z^Pz 

< 

1 + ZTPZ 

1 + zTPz 

for any real number 0 < Ci < 1. Moreover, since there exist real numbers £2, 63 > 0 such 
that 

1 + z'^Pz 
we have 

T ； ； - 」 、 ： � 2 + 锁 2 + • � " 2 (5.41) 

Therefore, q;o(||2;||) = in (5.41) corresponding to (5.12) is bounded and p.d. and 
Assumption 5.3 is verified. Consider function 歹(乏，e，/x) 二 一 L 广 c o r r e s p o n d i n g to 
(5.8). The condition (5̂>叫|之||) G (9(ao(lkll)) in Theorem 5.1 is certainly satisfied. As a 
result, the problem is solvable. 

The simulation is performed for system (5.38) and (5.39) under a controller in the 
form (5.11) with p{y) = # + 1，(mi,ma) = (2,3)，o" = 1.2, and = [0.56,3], The initial 
value is (之i(0)，22(0),y(0)) = ( 2 , 3 , - 1 ) , VQ = col(2,0), A;(0) = 7?(0) = 0. Some results are 
shown in Figure 5.2 with w = col(0.01, • • •，0.01). 



0 5 10 15 20 25 30 35 40 
Time t (second) 

Figure 5.2: Profiles of {z{t),y{t)), / c � and u{t). 

5.5 Conclusion 

We have presented the solution to the global robust output regulation problem for output 
feedback systems in the special case with iISS inverse dynamics by using output feedback 
control. Based on the iISS changing supply function technique, a sufficient condition has 
been obtained to achieve the output regulation design. As an illustration, a disturbance 
rejection problem of a shunt-connected DC motor was solved. For output feedback systems 
in general form and the similar problems studied in Chapter 4，it is possible to modify 
the current approaches to achieve the output regulation design under certain conditions. 
They are left for future study. It should be noted that the main result of this chapter, 
together with those of Chapters 3 and 4，can be seen as a design paradigm that contains 
many other control results in literature as special cases. 

•I r' T . - .- 1 
1 Zi� -
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• End of chapter. 
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Chapter 6 

Conclusions 

The global robust output regulation for nonlinear output feedback systems has been stud-
ied and the results have been applied to solve several tracking and disturbance rejection 
problems related to well known Lorenz system, FHN model and DC motor. The proposed 
design methodology strictly extends the results on the output regulation for strict output 
feedback systems. The result has been presented to cover a larger class of output feedback 
systems with iISS inverse dynamics, which are strictly larger than the systems with ISS 
inverse dynamics. 

We first studied the output regulation problem for the output feedback systems with 
ISS inverse dynamics and presented a direct design approach. By designing an internal 
model in a suitable form, we then obtained an augmented system. Although the aug-
mented system is not in the output feedback form, we have shown that the system can be 
transformed into a system in a special lower triangular form. Without the knowledge of 
the sign of the uncertain control gain, the stabilization problem has been solved by using 
a dynamic output feedback controller, based on a type of observer which is constructed 
for the transformed augmented system. The result has been applied to solve a tracking 
control problem of the Lorenz system. In contrast with the previous results on the control 
of Lorenz systems, the developed design is output feedback control and independent of 
the control direction. Moreover, the tracking trajectory can be immeasurable. 

Then we studied the output regulation problem with an uncertain exosystem. The 
design procedure for the general output feedback systems has been presented involving 
three steps. In the first step, by introducing an input driven filter, an extended system 
was obtained. Then the output regulation design was equivalently performed for the 
extended system. In the second step, the internal model was designed and in the last 
step, an adaptive backstepping design was successfully performed for the transformed 
augmented systems. We have shown that the parameter convergence is guaranteed if a 
controller containing a minimal internal model is employed. Three applications of the 
result to the disturbance rejection of FHN model, the synchronization of the Lorenz 
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system and Harmonic oscillator, and the tracking control of generalized Lorenz system 
has been illustrated. 

Finally, we have presented the solution of the global output regulation problem of the 
output feedback systems with iISS inverse dynamics using output feedback control. A 
changing iISS supply function technique was shown as a key lemma to achieve the iISS 
for the augmented system, which would be useful for further study of the output regula-
tion problem or stabilization problem of the iISS nonlinear systems. As an application, 
using the current result, we have obtained a solution of a disturbance rejection problem 
associated with a shunt-connected DC motor. 

We close the thesis with some prospects of the future research related to the current 
work. As it has been pointed out that the presented results are provided with the ISS 
or iISS property of the inverse dynamics. This means the system is minimum-phase, 
that is the equilibrium of the zero dynamics is asymptotically stable. The minimum-
phase condition is necessary for the current design. However, this condition may not be 
satisfied in some case, such as the example (4.104) that we have shown in Chapter 4. It 
is, therefore, interesting to further develop a design method that does not rely on the 
minimum phase assumption. Another interesting work is to extend the presented results 
of single-input single-output output feedback systems to multi-input multi-output output 
feedback systems. 

• End of chapter. 
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