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Abstract 

Two topics of modern control are investigated in this dissertation, namely receding horizon control 
(RHC) and cooperative control of networked systems. We apply learning techniques to these two top-
ics. Specifically, we incorporate the reinforcement learning concept into the standard receding horizon 
control, yielding a new RHC algorithm, and relax the stability constraints required for standard RHC. 
For the second topic, we apply neural adaptive control in synchronization of the networked nonlinear 
systems and propose distributed robust adaptive controllers such that all nodes synchronize to a leader 
node. 

Receding horizon control (RHC), also called model predictive control (MPC), is a suboptimal con-
trol scheme over an infinite horizon that is determined by solving a finite horizon open-loop optimal 
control problem repeatedly. It has widespread applications in industry. Reinforcement learning (RL) is 
a computational intelligence method in which an optimal control policy is learned over time by evalu-
ating the performance of suboptimal control policies. In this dissertation it is shown that reinforcement 
learning techniques can significantly improve the behavior of RHC. Specifically, RL methods are used 
to add a learning feature to RHC. It is shown that keeping track of the value learned at the previous 
iteration and using it as the new terminal cost for RHC can overcome traditional strong requirements for 
RHC stability, such as that the terminal cost be a control Lyapunov function, or that the horizon length 
be greater than some bound. We propose improved RHC algorithms, called updated terminal cost re-
ceding horizon control (UTC-RHC), first in the framework of discrete-time linear systems and then in 
the framework of continuous-time linear systems. For both cases, we show the uniform exponential sta-
bility of the closed-loop system can be guaranteed under very mild conditions. Moreover, unlike RHC, 
the UTC-RHC control gain approaches the optimal policy associated with the infinite horizon optimal 
control problem. To show these properties, non-standard Lyapunov functions are introduced for both 
discrete-time case and continuous-time case. 

Cooperative control of networked systems (or multi-agent systems) has attracted much attention 
during the past few years. But most of the existing results focus on first order and second order leaderless 
consensus problems with linear dynamics. The second part of this dissertation solves a higher-order 
synchronization problem for cooperative nonlinear systems with an active leader. The communication 
network considered is a weighted directed graph with fixed topology. Each agent is modeled by a higher-
order nonlinear system with the nonlinear dynamics unknown. External unknown disturbances perturb 
each agent. The leader agent is modeled as a higher-order non-autonomous nonlinear system. It acts as 
a command generator and can only give commands to a small portion of the networked group. A robust 
adaptive neural network controller is designed for each agent. Neural network learning algorithms are 
given such that all nodes ultimately synchronize to the leader node with a small residual error. Moreover, 
these controllers are totally distributed in the sense that each controller only requires its own information 
and its neighbors' information. 



摘要 

本文研究了现代控制理论中的两个专题，即滚动时域控制和多智能体系统的协同控制。我们 

将学习算法引入到以上两种控制中。具体来讲，我们将强化学习的概念引入到滚动时域控制， 

提出了一种新的控制算法，该算法减少了传统滚动时域控制的稳定性限制条件。对于协同跟踪 

控制，我们引入了神经网络自适应控制，提出了一种分布式鲁棒自适应控制算法，使得所有智 

能体成功地跟踪了目标智能体。 

滚动时域控制又称模型预测控制，是一种无穷时域上的次优化控制算法。它的本质是在无 

穷时域上反复求解一个有限时域优化问题。它在工业上有着广泛的应用。强化学习是一种计算 

智能方法，其最优控制律通过评价次优控制律而得。该论文阐述了如何通过强化学习来改善传 

统的滚动时域控制。也就是说，利用强化学习的技术，将学习的概念引入到了传统的滚动时域 

控制中。具体来讲，我们利用上次求解有限时域优化问题所得的成本函数值来更新本次优化问 

题的终端成本函数。事实证明该算法减少了传统滚动时域控制所需要的稳定性终端约束。我们 

将提出的新算法命名为更新终端成本函数的滚动时域控制。我们分别将该算法运用到了离散时 

间线性控制系统和连续时间线性控制系统中。在两种情况下，闭环系统均为…致指数稳定。并 

且，其控制律最终趋于最优值。在证明中，我们运用了非常规的李亚普诺夫函数。 

多智能体系统的协同控制近些年得到了广泛的关注。但多数现有结果仅考虑了一阶或二阶线 

性系统的协调问题。该论文的第二部分研究了高阶非线性多智能体系统的跟踪问题。所研究的 

多智能体网络可表示为具有固定拓扑结构的加权有向图。每个智能体均为高阶非线性系统，并 

且其非线性函数未知，此外还有外部扰动。目标智能体是高阶非自制非线性系统。目标智能体 

仅能向其他部分智能体传达命令。我们针对每个智能体，设计了其独有的神经网络鲁棒自适应 

控制器。其中神经网络的引入抵消了智能体未知的非线性作用，从而使得每个智能体最终均可 

很好的跟踪目标智能体。该控制器属于分布式控制器，即所有智能体的控制器均只用到该智能 

体本身以及它的邻居的信息。 
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Chapter 1 

Introduction 

1.1 Motivations and contributions 

Two topics of modem control are investigated in this dissertation, namely receding horizon control 
(RHC) and synchronization of networked systems. We apply learning techniques to these two topics. 
Specifically, we incorporate the reinforcement learning (RL) concept into the standard receding horizon 
control, yielding a new RHC algorithm, called updated terminal cost receding horizon control (UTC-
RHC). With UTC-RHC, the stability constraints for standard RHC algorithms are relaxed. For the sec-
ond topic, we apply neural adaptive control to synchronization of the networked nonlinear systems and 
propose distributed robust adaptive controllers such that all nodes synchronize to a leader node. 

1.1.1 Receding horizon control 

Receding horizon control (RHC), also known as model predictive control (MPC), is a suboptimal control 
scheme that solves a finite horizon open-loop optimal control problem repeatedly in an infinite horizon 
context. This is an on-line method that effectively provides a measured state feedback control law. RHC 
is popular in industry, especially in the process control industries. Many stories have been told about 
its successful applications in the past three decades, see [61] for an excellent survey of industrial MPC 
technology. 

Extensive attention has been paid to the stability issues of RHC (see [50] for a survey), leading to 
various stability conditions involving constraints on either the terminal state, or the terminal cost, or the 
horizon size, or their different combinations. Some approaches require the terminal state to be zero ([34], 
[35], [49]); some approaches impose constraints on the terminal cost ([7], [11], [15], [32], [38]); it is also 
shown that by taking sufficiently large horizon size, the stability of RHC algorithm is guaranteed without 
constraints on the terminal cost ([8], [17], [23]). To our best knowledge, the standard RHC contains 
no ingredient of learning. Most existing efforts have been devoted to finding a suitable terminal cost 
function such that the resulting RHC algorithm is stabilizing. 

Reinforcement Learning (RL) is a computational approach which leams through interaction with the 
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environment [73]. Generally speaking, at a given state, the agent takes an action, observes a reward, 
updates the value function and then use the new value function to search for a better action. RL is well 
known in the computational intelligence community and has a wide applications from computer game 
playing to robotics. The applications of RL to feedback control were highlighted in a recent special issue 
of IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics (SMCB) [42]. Recently, 
many RL algorithms have also been developed to solve the optimal control problems. Such algorithms 
are known generally as approximate/adaptive dynamic programming (ADP) ([83], [84], [85], etc), also 
known as neuro-dynamic programming (NDP) [6]. This includes a school of methods, to name a few: 
policy iteration (PI), value iteration (VI) or heuristic dynamic programming (HDP), generalized policy 
iteration (GPI) and Q-learning [82] or action dependent learning [84], etc. ADP has gained a lot of 
attention for the past few decades; interested readers are referred to the SMCB special issue on ADP for 
feedback control ([2], [39], [42], [85]，etc.), the survey paper [79], and the references therein. 

Inspired by the key idea of RL, i.e. the agent keeps interacting with the environment to get enough 
information to update the value function, and then constructs a better policy using the updated value 
function, we incorporate this learning feature into the standard RHC and propose a modified RHC al-
gorithm, which we call updated terminal cost RHC (UTC-RHC). In this algorithm, instead of using the 
fixed terminal cost function, we update it at each stage by the optimal cost function obtained from the 
previous stage. It should be pointed out that the updated cost function is "learned" from the system 
model, instead of the environment (i.e. the system). By integrating this "learning" ingredient into the 
standard RHC scheme, it can be shown that the performance of RHC is significantly improved. Specif-
ically, the UTC-RHC algorithm ensures the closed-loop stability while imposing constraints on neither 
terminal state, nor terminal cost function, nor the horizon size. Also, the resulting feedback control law 
approaches the optimal value corresponding to the infinite horizon optimal control problem. 

In this dissertation, we apply the UTC-RHC algorithm to two classes of systems, i.e. discrete time 
(DT) linear time invariant system, continuous time (CT) linear time invariant system. Two specific 
algorithms are proposed respectively. 

1.1.2 Synchronization of networked systems 

In the past few years, researchers in control community are getting more and more interested in systems 
consist of a group of agents, called multi-agent systems or networked systems. The group of agents are 
not isolated, but form a communication network. Some agents can pass or receive information to or from 
other agents. This research is motivated by widespread applications which include the spacecraft [37], 
unmanned air vehicles (UAVs) ([3] ’[64])’ mobile robots [89], sensor networks [12], etc. Some seminal 
works are ([13], [24], [55], [65], [75], [76]), to name a few. 

Considerable effort has focused on two subjects of the networked systems, i.e. cooperative regulator 
problem and tracking problem. For cooperative regulator problem, controllers are designed to drive all 
the agents / nodes to a common value, i.e. consensus equilibrium, which is not prescribed and depends 
on initial conditions. To be precise, the consensus equilibrium depends on the initial states values of 
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those agents who have a directed path to all the other agents [67]. This is also known as the leaderless 
consensus or synchronization problem in literature [24]. As for the tracking problem, there is a leader 
node and it acts as a command generator, ignoring all information of the other nodes. The leader node 
only gives commands to a small portion of the other nodes, which means only that small portion of agents 
can get information from the leader node. All the nodes are trying to track the trajectory of the leader 
node. This is called consensus with a leader or synchronization to a leader in literature ([18], [52], [68]). 
Numerous results on these two topics have been published in the past few years and readers are referred 
to survey papers ([54], [66], [67]) and the references therein. 

Our research focuses on the tracking problem of higher-order nonlinear dynamics and is motivated 
by several points. First, most existing work on networked systems studies the first order or second or-
der dynamics. So far, only a few results exist for the general higher-order {greater than two) systems 
([26], [68], [80], [86], etc.), but most of them only consider linear dynamics. For example, [26] and [80] 
study the leaderless consensus problem of higher-order linear dynamics. Although [80] also considers 
the nonlinear case, they deal with that by transforming it into a linear system using coordinate transfor-
mation. [68] presents the idea of higher-order consensus with a leader, called model reference consensus 
algorithm, also for linear dynamics. 

Second, even for the first order or second order synchronization problems, dynamics are often chosen 
to be single integrators or double integrators (see [66] for a survey), while synchronization of multi-
agent system with complicated nonlinear dynamics has not been fully investigated yet. A recent work 
[90] studies the second order leaderless consensus problem of nonlinear dynamics, which is a double 
integrator incorporated with a nonlinear term. They introduce a new concept about the generalized 
algebraic connectivity and provide sufficient conditions for consensus to be reached. But they only 
analyze the frequently used second-order consensus protocol, instead of designing a protocol. Pinning 
control has been introduced for controlled synchronization of interconnected dynamical systems with 
identical nonlinear dynamics ([45], [46], [47], [81]). A control or leader node is connected (pinned) into 
a small percentage of nodes in the network. Analysis shows that with suitable design, all nodes converge 
to the state of the control node, which may be time-varying. Analysis has been done using Lyapunov 
techniques by assuming either a Jacobian linearization of the nonlinear node dynamics or a Lipschitz 
condition. But in practice, the node dynamics may not be identical, or even may be unknown. Many 
factors result in imprecision of the models of the networked agents, e.g. modeling the friction as a linear 
model for design purpose; system parameters drifting with time; and imperfect plant data. 

Third, external disturbances are often neglected for the current research. However, disturbances exist 
almost in every practical application, such as white noise, gust to the aircraft. 

Motivated by the above facts, we consider the higher-order synchronization problem of networked 
nonlinear systems with a time-varying active leader agent. The communication network considered is a 
weighted directed graph with fixed topology. Each agent is modeled by a higher-order nonlinear system 
with the nonlinear dynamics unknown. External unknown disturbances perturb each agent. The leader 
agent is modeled as a higher-order non-autonomous nonlinear system. It acts as a command generator 
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and only give commands to a small portion of the networked group. To the best of our knowledge, 
this problem has not been investigated in the literature. A robust adaptive neural network controller is 
designed for each agent. Neural network learning algorithms are given such that all nodes ultimately syn-
chronize to the leader node with a small residual error. Moreover, these controllers are totally distributed 
in the sense that each controller only requires information of itself and its neighbors. 

1.2 Organization of the dissertation 

The rest of the dissertation is organized as follows. 

Chapter 2: 

To make the dissertation self contained, in this chapter, some background of matrix theory and some 
results of stability theory are briefly introduced. 

Chapter 3: 

Integrating the learning feature in the standard receding horizon control, this chapter proposes an im-
proved algorithm, called updated terminal cost receding horizon control (UTC-RHC) for unconstrained 
discrete linear time invariant systems. Stability constraints are relaxed. Rigorous proof and the simula-
tion examples show the advantages of UTC-RHC against the standard RHC. The results of this chapter 
have been published in [91] and [92]. 

Chapter 4: 

UTC-RHC algorithm is extended to the unconstrained continuous linear time invariant systems, yielding 
a sampled-date UTC-RHC. Proofs and examples are provided. This chapter is based on the work [93]. 

Chapter 5: 

This chapter considers a synchronization problem for a higher-order networked nonlinear system with an 
active leader. The system dynamics are nonlinear and unknown. External disturbances are considered. 
The leader agent has a non-autonomous nonlinear dynamics which is unknown to all the follower nodes. 
Using neural adaptive control technique, we propose robust adaptive control laws, which are totally 
distributed and can be implemented locally. This chapter is based on the work [94] and [95]. 

Chapter 6: 

A conclusion is drawn and future works are discussed in this chapter. 

• End of chapter. 



Chapter 2 

Mathematical background and 
preliminaries 

To be self contained of this dissertation, in this chapter, some basic matrix properties that are frequently 
used in the control theory, are presented. Also we briefly overview some fundamental stability concepts 
and results for both linear systems and nonlinear systems, which will be used in this dissertation. The 
contents in this chapter are standard and fundamental, and can be found in many textbook, such as [4], 
[10], [20], [28], [70], [71]. 

2.1 Some basic results of matrix theories 

We begin with the norms of vectors and matrices. Like the absolute value for a real number, norms are 
used to measure the magnitude of a vector or matrix, they maps a vector or matrix to a positive real 
number. Norms are used in control theories to describe the concepts of stabilities. 

Definition 2.1 [20] (vector norm) 
Let be a vector space over the field R. The mapping ||-|| : E"- -)• R is a vector norm, if G 
the following properties hold. 

VI) ||a;|j > 0. Nonnegative 

V2) ||:l || = 0 if and only if x = 0. Positive 

V3) ||a:r|| = \a\ ||.7：||, Va G M. Homogeneous 

V4) llx + y\\ < ||2：|| + ||y||. Triangle inequality 
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A mapping that only satisfies properties (VI), (V3) and (V4), but not necessarily (V2), is called a 
seminorm. A seminorm allows some nonzero vectors to have zero magnitude. 

A very useful class of vector norms are the Holder norms. 

Definition 2.2 [4] (Holder norms) 
Vx = [xi,x2, • • •，Xnf̂ ^ G R", the Holder norm is defined by 

a : r = i (而 y f z p , i < p < oo； 
I N p = 

m a x 帥， 2’ …，„} I a:丄 p = oo 

The most frequently used vector norms are Holder norm when p = 1, 2, oo. When p = 1, Holder 
norm is known as the sum norm (or li norm), i.e. 

||.x||i = |.7:i| + |.X2| + --- + |.Xn|. (2.1) 

When p = 2, Holder norm is known as the Euclidean norm (or I2 norm), i.e. 

||X||2 = + + + 丨2 - V ^ . (2.2) 

When p = oo. Holder norm is known as the max norm (or l^o norm), i.e. 

IMIoo = max{\xi\, |x2i,…， |xn|}. (2.3) 

Definition 2.3 [4] (matrix norm) 

A function {|-|| : 4 股 is called a matrix norm if it satisfies the following conditions: 

Ml) P l l > 0 for all A G Nonnegative 

M2) P l l = Oifand only if A = 0. Positive 

M3) ||aX|| =丨a| for all a G M and A G IT^xn. Homogeneous 

M4) IIA + 511 < 11 All + | |5 | | , for all A, Be Triangle inequality 

Different matrix norms may be defined as long as they satisfy the matrix definition 2.3. Similar to 
vector norms, matrix norms can be defined entry wisely, such as the matrix Holder norms. 

Definition 2.4 [4] (Holder norms) 
MA = [aij] e lR"xm，the Holder norm is defined by 

1 < p < oo: 

p = oo. 1 L’2’…, 

(flij 

n}, 

E
 

7
 T
 

⑵
i
 

X—<—V
 

I

I
 



2.1. SOME BASIC RESULTS OF MATRIX THEORIES 

Note we use the same notation for both vector Holder norms and matrix Holder norms. The 
context will make it clear. The most familiar matrix Holder norms are when p = 1,2, oo. When p = 1， 

the Holder norm is known as the h norm 

m i i i ^ E E K I -
2 — 1 j=\ 

When p = 2, the Holder norm is known as the Euclidean norm (or I2 norm, or Frobenius norm). 

(2.4) 

\ EE la 
When p = 00, the Holder norm is known as the max norm (or loo norm), i.e. 

I 丨浏 00 =max{|aij+|}. 

(2.5) 

(2.6) 

Another way to define the matrix norm is to derive it from the vector norms. This is called the 
induced norm, or operator norm. 

Definition 2.5 [4] (induced norms) 
Let IHIp be a vector norm on both 脱几 and then € 股几乂爪 and \/x e 股爪，the induced norms on 
肢nxm is defined as 

| |A | |p= max IIArllp, (2.7) 

or equivalently, 

丨丨為= (2.8) 

Since both Holder norm and induced norm use the same notation to eliminate the confusion, 
throughout this dissertation we shall use for the Frobenius norm (2.5), and ||.||2 for the induced 
norm (2.7) when p — 2. We also use the simplified notation ||.|| for the Frobenius norm of a matrix or a 
Euclidean norm of a vector. 

Denote the eigenvalues of a matrix A e R " ^ " (who has real eigenvalues) as A i � > 入 2 � > 
• • • > An(A). Then the singular values of a matrix is defined accordingly. 

Definition 2.6 [4] (singular value) 
Let A e IRnxm. Then the singular values of A are min{n, m} nonnegative numbers, denoted by 

�’…，(^min{n，m}(�’ where 

o • 训 = V a 從 ⑷ = 恤 ” 

and cri{A) > (T2(A) > • • • > <7min{n’m}(力)> We also denote the largest singular value as a = ai 
and the smallest singular value as £ = cTminfm•，n}- • 
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Some useful results of the matrix theory, which are used in this dissertation, will be listed as follows. 

Lemma 2.1 [4] Let A^ = A E R"xn，t^en Xmin{A)I < A < Xmax{^)I, where / G is the 
identity matrix. i 

Lemma 2.2 Vx G IR 打 and let A^ = A e ]R 似 " b e positive definite, then Xrmn{A) \\xf < x^^ Ax < 
A聰⑷丨|工||2. • 

Lemma 2.3 [4] Vx G the following monotonicity property of vector norms holds, 

N I o o S … 引 1 4 遍 1 . 

Lemma 2.4 [4] (Holder inequality) 
Vx, y gM^ andVp,gG [1,2,--- , oo], if l / p + l/q = 1, then 

Note l /oo = 0. When p = q = 2, this is known as Cauchy-Schwarz inequality. 

Lemma 2.5 [4] Let A e IR"m ^^d .x G R爪，then || Ar | | < \\A\\j, |1.t||. 

Lemma 2.6 [4] G IR•爪，we have 

I I ^ I I f = ] / t r (ATA) \ 
min{m’n} 

E cr? 

.where tr(-) is the trace of a square matrix. 

Lemma 2.7 t r(A) = X]r=i M ^ ) ’ VA e 

Lemma 2.8 [4] Let A e then a(A) < < y/rank(A)a(A). 

Lemma 2.9 [4] Vx e M^ and Vy G W^, then a{xy'^) = xyT = ||a;|| ||y||‘ 

(2.9) 

(2.10) 

Lemma 2.10 [4] VA € R"xm’ denote (A) = vWA, then 

t r ⑷ 二 � + (72 � + ^minfm.n 

Proof. Let B = (A) = VA^A, then B > 0 (i.e. B is positive semidefinite) and B � = A^A. Then 
KiA^A) = = (A“S))2’ i.e. 二 |A“B)| = A,(B). Thus tr(B) = tr(A) = Ai(B) + 

••• + Amin{m,n} (B) = (7!(…+ • • • + (A). • 
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Lemma 2.11 If A'^ = ^ € then aiiA) = and tr{A) < tr{A). 

Lemma 2.12 [4] If A e IT'x肌’ then P I I2 = a{A). 

[4] Let A E ITxm and B e R饥"，then Lemma 2.13 

Lemma 2.14 [4] Let A,� 

Lemma 2.15 [4] Let A,. 

Lemma 2.16 [4] Let A € 

Lemma 2.17 [4] Let A € 

• If m < n, then ami 

• If m < I, then \\A\\ 

耐 >1) P I I F 
^(AB) < \\AB\\j. < \\Aya{B) ^ 

tr{AB) 

B e IR打xm，then a{AB) < a{A)a{B). 

B G IR"xm，then tr[A^B) < 

if … : “ h e 科 “ 二 ： 

2.2 Fundamental stability theory 

Stability is a major concern for a control system. Many stability concepts are defined to describe every 
detail of the stability properties of systems. We only list some stability concepts and results that will be 
used in this dissertation. These are classical materials and can be found in many textbooks, e.g. [10], 
[28], [70], [71], etc. 

2.2.1 Definitions of stability 

We put the definitions of stability in the context of the most general case, i.e. continuous time non-
autonomous nonlinear system. Linear systems and autonomous nonlinear systems are special cases of 
non-autonomous nonlinear systems. Stabilities of discrete-time systems are conceptually the same with 
stabilities of continuous-time systems. 

Consider the continuous-time non-autonomous nonlinear system 

X = f{t,x), X e R", (2.11) 
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where / : [0, oo) x D — R is piecewise continuous in t and locally Liptschitz in x on [0, oo) x D and 
C is a domain that contains the origin x = 0. 

Definition 2.7 [71] (equilibrium point) 
A state Xq is an equilibrium point of the system (2.11), if once x{t) is equal to Xg, it remains equal to Xe 
for all the future time. This implies / (xg, t) = 0 for all t > 0. i 

The origin a: = 0 is an equilibrium point of system (2.11) at t = 0 if / ( t , 0) = 0 for all t > 0. In 
this dissertation, we only consider the case when x = 0 is an equilibrium point. Stability is defined with 
respect to the equilibrium point of system (2.11). 

Definition 2.8 [28] The equilibrium point rr = • of system (2.11) is 

• stable if, V e � 0 ’ 35 = (5(e,io) > 0, such that ||x(to)|| < ^ l|x(t)|| < e, Vi > io > 0 

• asymptotically stable if, it is stable and 3c = c(io), such that ||x(to)|| < c ||冗�II 0 as 
t ^ oo 

• uniformly stable if, Ve > 0, = (5(e) > 0 which is independent of to, such that ||x(to)|| < 5 
| | x ( t ) | | < e , V t > t o > 0 

• uniformly asymptotically stable if, Ve > 0, 3(5 = (5(e) and T = T{e), such that ||:r(to)|| S 5 
||工⑷丨丨<eyt>to + T 

• globally uniformly asymptotically stable if, Ve > 0 and \/S > 0 (<5 can be arbitrarily large), 

3T = T(e, 6), such that ||x(io)!l < 5 \\x{t)\\ < e,\/t > t o T 

• exponentially stable if, 3c, k,X> 0 such that ||x-(t)l| < k ||x(io)|| 6-入(力一�’ Vx-(to) < c 

• globally exponentially stable if, 3A:,A > 0 such that |jx(t)|| < k ||x(to)|| e—^ “一如）’ V2;(to) G 胶" 

Remove to and "uniformly" in Definition 2.9，similar stabilities (i.e. stable, asymptotically stable, 
globally asymptotically stable) can be defined for autonomous system x = /(.x). 

A more advanced stability concept is uniformly ultimately boundedness, which describes the prop-
erty of the solutions of the system (2.11). 

Definition 2.9 [28] The solutions of (2.11) is 

• uniformly bounded if 3c > 0，independent of to, and Va G (0, c), 3/3 = j3(a) > 0，such that 

\\x{to)\\ < Vt > to. 
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• uniformly ultimately bounded by b if 36, c > 0 which are independent of to, and \/a e (0,c), 
3T = T{a,b), such that ||x(to)|| < a � | | < b, Wt >T + to. 

Remark 2.1 For linear time invariant (LTI) systems, under either discrete time or continuous time frame-
works, when we say stable, it always means asymptotically stable (or equivalently exponentially stable). 
Moreover, it is always uniform and global for LTI system. i 

Stability criteria for a LTI system can be described by the eigenvalues of the system matrix. 

Lemma 2.18 [10] Consider continuous time LTI system x = Ax, where ；r e and A is nonsingular. 
The equilibrium point a: = 0 is said to be asymptotically stable (or exponentially stable) if and only if all 
the eigenvalues of A have negative real parts. i 

Lemma 2.19 [10] Consider discrete time LTI system x{k + 1) = Ax{k), where x{k) e R" and A is 
nonsingular. The equilibrium point a: = 0 is said to be asymptotically stable (or exponentially stable) if 
and only if all the eigenvalues of A are within the unit disc. I 

2.2.2 Lyapunov function 

The eigenvalue criteria do not apply to linear time-varying systems nor nonlinear systems. In these cases, 
we have to resort to a more general stability analysis approach, called Lyapunov function approach, 
which is named after the Russian mathematician Alexandr Mikhailovich Lyapunov. Two Lyapunov's 
methods are used in the stability analysis, i.e. Lyapunov direct method and Lyapunov indirect method. 
Lyapunov indirect method is also known as Lyapunov linearization method, which analyze the local 
stability of a nonlinear system. Lyapunov direct method is an energy like stability analysis method and 
is most widely used in analyzing the stability of nonlinear systems, which include linear systems as 
special cases. We shall focus on the Lyapunov direct method in this dissertation. An introduction to 
Lyapunov direct method can be found in almost every modem control or nonlinear control textbook, 
such as [10], [28], [70], [71]. We only list some Lyapunov stability results relevant to this dissertation. 
Before proceeding, some definitions are needed. 

Definition 2.10 [28] Let V̂  : Z) ^ M be a continuous differential function, where Z) C is a domain 
containing x = 0. Then V(x) is said to be positive semi-definition if V{x) > 0, Vx € D\ it is said 
to be positive definite if V{x) > 0, V.x e D and V{x) = 0 if and only if x = 0; it is said to be 
negative semidefinite (negative definite) if - V{x) is positive semidefinite (positive definite); it is said to 
be radially unbounded if .t —> oo V{x) oo. I 
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Definition 2.11 [28] Let V : [0, oo) x D R be a continuous differential function, where D C IR'̂  is a 
domain containing x = 0. Then the time-varying function V{t, x) is said to be positive semi-definition if 
V{t,x) > 0, Vt > 0 and Vx G D\ it is said to be positive definite if V{t, x) > Wi{x) for some positive 
definite function Wi{x) \ it is said to be radially unbounded if Wi{x) is radially unbounded; it is said to 
be decrescent if V{t, x) < W2{x) for some positive definite function W2{x)\ it is said to be negative 
semidefinite (negative definite) if —V{t, x) is positive semidefinite (positive definite). I 

Note Definition 2.10 and 2.11 are defined locally on a domain D. They can also be defined globally 
by making D = R"-. Throughout this dissertation, we do not indicate whether the positive definiteness 
of V{x) (or V{t,x)) is defined locally or globally, for the context will make it clear. 

Definition 2.12 [28] A continuous function a : [0, a) [0, oo) is said to belong to class K, if it is strictly 
increasing and q;(0) = 0. Moreover if a = oo and a{r) oo as r —> oo, it is a class JCoo function. I 

Theorem 2.1 [28] The equilibrium point re = 0 of system (2.11) is uniformly stable, if there exists a 
positive definite function V{t, x) which is also decrescent, and V{t, x) is negative semidefinite, Vt > 0 
and Vx G D. • 

Theorem 2.2 [28] The equilibrium point 工 = 0 of system (2.11) is uniformly asymptotically stable, if 
there exists a positive definite function V{t, x) which is also decrescent, and V{t, x) is negative definite, 
Vi > 0 and Vx e D. i 

Theorem 2.3 [28] The equilibrium point a: — 0 of system (2.11) is globally uniformly asymptotically 
stable, if there exists a positive definite, decrescent and radially unbounded function V{t, x), and V{t, x) 
is negative definite, Vf > 0 and Vx G I 

Theorem 2.4 [28] The solution of system (2.11) is uniformly ultimately bounded if there exists a con-
tinuous differentiable function F : [0, oo) x D -> R, such that Vt > 0 and \/x e D 

• V{ t ,x) < -iy3(.x),V||,T|| > fi > 0, 

where a i and a2 are class K. functions and ^3(2：) is a positive definite function. I 

For LTI systems, the Lyapunov theory can also be expressed by the following lemmas, where V{x)= 
x^Px is the Lyapunov function. 

Lemma 2.20 [10] Consider the continuous LTI system x = Ax. Its equilibrium point x = 0 is asymp-
totically stable, or all the eigenvalues of system matrix A have negative real parts, if for any positive 
definite matrix Q > 0，the Lyapunov equation 

= (2.12) 

has a unique solution P and P is positive definite. • 
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Lemma 2.21 [10] Consider the discrete LTI system x{k 4- 1) = Ax{k). Its equilibrium point rc = 0 
is asymptotically stable, or all the eigenvalues of system matrix A are within the unit circle, if for any 
positive definite matrix Q, the Lyapunov equation 

A^PA -P= Q (2.13) 

has a unique solution P and P is positive definite. i 

Remark 2.2 Note that all the Lyapunov stability results only provide sufficient conditions. If a suitable 
Lyapunov function is found, stability of the system is guaranteed by the above results. Otherwise, nothing 
can be said about the stability property of the system. Non-existence of a suitable Lyapunov function not 
necessarily implies instability. • 

2.2.3 Control Lyapunov function 

While Lyapunov function techniques are used to analysis the stability of a given system (or closed-loop 
control system), the control Lyapunov function (CLF) techniques are used to design the controller for a 
control system. CLF technique is used in Chapter 5 when we design the distributed adaptive controllers. 

Consider the system 

(2.14) 

where x € R^, u £ R and / ( 0 , 0 ) = 0. Our goal is to find a feedback control law u = k{x) such that 
the equilibrium point rr = 0 of the closed-loop system x = f{x, k{x)) is globally asymptotically stable. 
This goal can be achieved if we can find a control Lyapunov function for system (2.14). 

Definition 2.13 [30] A smooth positive definite and radially bounded function : IR is called a 
control Lyapunov function for system (2.14) if 

inf i.^{x)f{x,u) \ <Oyx^O. (2.15) 
UGE OX 

From the definition, it is clear that the existence of a CLF is equivalent to the statement that there 
exists a positive definite Lyapunov function V{x), whose derivative V{x) is negative definite, thence the 
existence of a CLF implies system (2.14) is globally asymptotically stable. 

• End of chapter. 



Chapter 3 

UTC-RHC for discrete time linear systems 

In this chapter, inspired by reinforcement learning (RL), we propose a learning featured receding horizon 
control algorithm, named updated terminal cost receding horizon control (UTC-RHC). As the beginning 
of our journey, we develop this algorithm in the framework of unconstrained discrete linear time-invariant 
(LTI) systems. It is not just because this system is easier to begin with, but because a great deal of analysis 
for standard RHC has been performed for such systems, allowing for a meaningful comparison of the 
new algorithm and a clear understanding of its improved performance. Existing work on RHC for LTI 
systems includes, to name a few, Kwon et al. ([31][32][34]), Quan et al. [63] and Bitmead et al. ([7][8]). 
These important contributions clarified the structure of RHC, including terminal requirements on cost or 
state, and/or requirements for a long enough horizon. 

This chapter is organized as follows. Section 3.1 presents the standard algorithm of receding horizon 
control, together with some relevant stability results and performance bound; Then we review in Section 
3.2 the general concepts of reinforcement learning and lists some basic algorithms of RL. Section 3.3 
describes the new algorithm, i.e., UTC-RHC, and provides its stability and convergence proof, and also 
investigate the relation between UTC-RHC and value iteration; Simulation results comparing the perfor-
mance of RHC and UTC-RHC are shown in Section 3.4; Finally we end this chapter with a conclusion 
in Section 3.5. 

3.1 Receding horizon control 

To be self contained and for the convenience of illustration, we start with the linear quadratic (LQ) 
optimal control or LQR [44], which is probably the most fundamental approach to modern control design, 
to which RHC is closely related. The LQ optimal control problem is often put into either infinite horizon 
or finite horizon framework. 

Consider the LTI dynamical system 

Xk+i 二 Axk + Buk, x{ko) = xo (3.1) 

15 



where r(x", u) = x^Qx + u Ru is the stage cost, also known as the reward function in computer science 
or utility in economics. This is an infinite horizon quadratic energy-based cost function that quantifies the 
performance of any control sequence. Good control sequences result in smaller costs. The cost function 
provides a basis for comparison of the goodness of different control inputs, and so forms the basis for 
applying reinforcement learning methods to (3.1). 

3.1.1 Infinite horizon linear quadratic optimal control 

The infinite horizon LQ optimal control problem can be formulated as 

Problem + /cq): 

Find an infinite control sequence & such that (3.2) is minimized where Xk is the current state at the 
current stage k + ko. i 

By LQR theory [44], the infinite horizon optimal control is a stationary feedback control law given 
by 

= - { B ^ P o c B + Ry^B^PooAxk = LooXk： (3.3) 

where Poo is the unique maximal positive semidefinite solution of the associated algebraic Riccati equa-
tion (ARE) 

P = A^PA + Q - ATpBi^BTpB + i ? ) - � ^ ' ^ P A . (3.4) 

The optimal cost is 

k + k o ) ^ x l P ^ X k . (3.5) 

Under control law (3.3)，the closed-loop system is 

Xk+i = { A - [B^PooB + R)-^B^PooA)xk. (3.6) 

The following Lemma is an important property of the stability of ARE. 
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where x^ G M" is the state vector, ko is the initial time / stage, Uk G R"^ is the control input, A G 

and B G are constant matrices. We also make the following assumptions. 

Assumption 3.1 

Al) Q G R"xn’ R e 股mxm’ Q QT > Q̂  R = RT〉Q 

A2) {A, B) is stabilizable 

A3) {A, VQ) is detectable 

I 

To this dynamical system associate the cost function 

3.2) =X]巾 2 V{x, 
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Lemma 3.1 (Theorem 4.1 in[7] or Theorem 2.4-2 in [44]) 
Suppose Assumption 3.1 holds. Then 

1) There exists a unique positive semidefinite solution Pqo to the algebraic Riccati equation (3.4). 

2) The closed-loop system (3.6) is asymptotically stable, i.e., 

A - (B'^POOB + B.Y^B'^P^A 

has all its eigenvalues strictly within the unit circle. 

I 

3.1.2 Finite horizon linear quadratic optimal control 

The finite horizon LQ optimal control problem can be formulated as 

Problem + KO, N, PQ): 

Find a control sequence such that the following summation is minimized 

k+N-l 

XI (工TQ工2 + ufRUi) + xl^j^PoXk+N, 
i=k 

(3.7) 

where Xk is the current state at the current stage k + kQ, N is the horizon length and Pq > 0 is the 
terminal cost weighting matrix. I 

Denote the finite horizon optimal control sequence as x^.k + fco, N, , then 

T 1 T (3.8) 
=-{B^PN-j-IB + E.y^B^PN-J-IAXK+j, J. = 0，1’ … ’ TV - 1, 

where Pt is the t-th term in the solution sequence of the Riccati difference equation (RDE) (3.9) with 
initial condition PQ. 

PT+I = A^PTA + Q - A^PTB[B^PTB + 

Denote the optimal cost as V^^{XK, K + KO, N, PQ), then 

k+N-l 
= m i n { ^ {xjQxi + ujB.Ui) + xl^j^PoXk+N} = x^PNXk, 

i=k 

(3.9) 

(3.10) 

where Ui = . •. ,Uk+N-i}-
Two well known properties of the RDE, i.e., convergence property and monotonicity property, 

presented below. 
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Lemma 3.2 [7] Consider the RDE (3.9). Suppose Assumption 3.1 holds and PQ > 0. Then Pt -> Poo 
as i — 00, where 尸⑴ is the unique maximal positive semidefinite solution to the ARE (3.4). I 

Lemma 3.3 [7] If the positive semidefinite solution Pt of the RDE (3.9) is monotonically non-increasing 
(non-decreasing) at one time, then Pt is monotonically non-increasing (non-decreasing) for all subse-
quent times. I 

3.1.3 Receding horizon control 

The finite horizon optimal control can deal with the input and state constraints by using mathematical 
programming, such as quadratic programming and semidefinite programming. However, the industry 
processes, especially the chemical reaction processes, are often slow and run for hours, days or even 
weeks. In these cases, infinite horizon optimal control is more practical than finite horizon optimal 
control. Although the infinite horizon optimal control algorithm ensures stability for any linear system 
under mild conditions (stability and detectability), it can not deal with constraints, model uncertainty, 
etc., which are common in industry [61]. This leads to a mixed-mode optimal control problem between 
finite horizon and infinite horizon, i.e., receding horizon control. 

Receding horizon control is a suboptimal control strategy for an infinite horizon optimal control 
problem. It applies the finite horizon optimal control repeatedly in an infinite time context. At each 
stage, an open-loop finite horizon, say N, optimal control problem is solved, yielding an optimal control 
sequence. Only the first control in the resulting control sequence is applied at the current stage. At the 
next stage, the horizon is shifted forward and the same procedure is repeated. The detailed RHC scheme 
under LQ framework is stated as follows: 

At the current stage k KG, -a. finite horizon LQ optimal control problem ^[XK, k + K^.N, PQ) is 
solved, yielding the optimal control sequence (3.8). Taking the first control in the sequence (3.8), the 
receding horizon optimal control law at current stage k + kois 

= uF,A;;:rfc’/c + fco,iV，Po) (3.11) 

二 -(bTPN-IB + R)-^B^PN-iAxk = L^^xk. 

The controller (3.11) drives the system (3.1) to the next stage fc + /cq + 1. 

At the next stage K+KO^L, the iV-horizon LQ optimal control problem .^(.x^+i, /c+I + Zcq, N, PQ) is 
re-solved for the measured new state x^+ii and again the first control in the control sequence is applied. 
Thus 

=UFH(K + L-XK+UK + 1 + KO, N, PQ) (3.12) 

= - { B ' ^ P N - I B + RyB'^PN-^iAxk+i = L^^xk+i. 
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For fixed horizon N and PQ, the receding horizon control gain is constant, as shown by Eqs. (3.11) and 
(3.12). The RHC closed-loop system takes the following form 

xk+i = i A - + (3.13) 

By Lemma 3.2，Pjv-i —> Poo as Â" —> oo, thus L兔H L^o as N oo. This also means the 
receding horizon control is not optimal unless iV —oo. 

3.1.4 Stability of R H C 

Closed-loop stability has been an important issue in the RHC literature. Almost all the stability results 
put requirements on the terminal state XK+N and/or the terminal cost weighting matrix PQ and/or the 
horizon length N. This chapter has no intention to give a thorough review of the existing stability 
results. Readers may refer to [50] for an excellent survey about the RHC stability issue. Here we only 
list some of the stability approaches that are related to our algorithm and put them into the following 
three categories. 

Constraint on the terminal state 

This approach falls into two subcategories. One requires the terminal state to vanish at the origin, i.e., 
Xk+N = 0, which is also known as the terminal equality constraint (see, for example, [27], [34]). But 
this condition is somewhat strong. The other requires the terminal state to enter a neighborhood of the 
origin, and in this neighborhood, a local stabilizing controller is applied [51]. 

Constraint on the terminal cost function 

The choice of terminal cost weighting matrix Pq is important for the stability of RHC. Ideally, one should 
choose PQ = POO- In that case the finite horizon LQ optimal control problem K+KO, N, Pq) would 
be the same as infinite horizon LQ optimal control problem ^{xk, k + ko), therefore the closed-loop 
stability can be automatically guaranteed. When P^o is hard to get due to nonlinearities or constraints, 
researchers show that closed-loop stability can still be obtained by choosing the terminal cost properly 
([7], [8], [23]). For discrete linear time-invariant systems, Bitmead et al. [7] obtained the following 
result: 

Lemma 3.4 (Theorem 4.7 in [7]) Consider the RDE (3.9) and suppose Assumption 3.1 holds. If P.n+\ < 
Pn for some integer n > 0, then the closed-loop system (3.13) is stable for all A'' > n + 1. i 

A special case is when the terminal cost weighting matrix satisfies PQ > F\, then the RHC closed-
loop system (3.13) is asymptotically stable for all iV 2 1. 

Theorem 1 in [38] implies that if Q > 0 and PQ satisfies 

Po > + BHFPO{A + BH) + Q 4 - H^RH (3.14) 
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for some H e the stabilizing RHC controller can also be obtained for any TV > 1. This is a more 
relaxed condition than PQ > F\. Condition (3.14) says the terminal cost V{x) = X^PQX is a control 
Lyapunov function (CLF) with the associated stabilizing feedback control gain H, which provides an 
incremental upper bound on the cost-to-go in the sense that AV{xk) < —{xJ^Qxk + ujRu^^). 

Constraint on the horizon length 

When there is no terminal cost (i.e., PQ = 0) or for a general terminal cost (i.e., PQ > 0), the relationship 
between stability and the horizon size is tricky. Since P j will eventually approach P^o, which leads to a 
stabilizing closed-loop system, one may conjecture that if for some N, PN leads to a stable closed-loop 
system, then for any n > N , P^ will also lead to a stable closed-loop system. However this is not true. 
Readers may refer to [9] and [60] for some examples. 

But research also shows that when the horizon size N is chosen to be long enough, the stability of 
RHC scheme can be guaranteed. Primbs and Nevistic [59] showed that, for constrained discrete LTI 
systems, picking the terminal cost as PQ = Q, there exists a finite horizon length N*, such that for all 
N > N*, the RHC closed-loop system is asymptotically stable. They also indicate that the same result 
holds even for arbitrary PQ > Q; Jadbabaie et al. [23] showed that, for input constrained nonlinear sys-
tems, exponential stability can be obtained for RHC scheme with general positive semidefinite terminal 
cost if a sufficiently long horizon is adopted; Grimm et al. [17] showed that, for both unconstrained 
discrete time nonlinear system and input-constraint linear system, a long enough horizon can ensure the 
exponential stability of the MPC scheme without particular requirements on the terminal cost. 

For unconstrained discrete LTI systems, Bitmead et al. [8] obtained the following result: 

Lemma 3.5 (Theorem 10.17 in [8]) Suppose PQ > 0. Then there exits an N* < oo such that the RHC 
closed-loop system (3.13) is asymptotically stable for all N > N*. i 

This result only guarantees the eventual stability of RHC scheme for arbitrary PQ > 0，yet does not 
indicate how big N* should be. Recently, an explicit expression of stability guaranteed RHC horizon 
size for discrete LTI system is given in [63]. 

3.1.5 Ties between R H C and rollout algorithm 

One goal of this chapter is to relate RHC more closely to methods of approximate dynamic program-
ming (ADP) and reinforcement learning (RL). In [5] and [6], Bertsekas presents a one-step lookahead 
algorithm known as rollout algorithm. Therefore in this section, we present the next result, inspired by 
Proposition 3.1 in [5], which shows a cost improvement property for rollout algorithms. The next result 
extends Bertsekas' Proposition to the case N > 1 for LQR problems, and also provides a bound for the 
performance of RHC. 
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First note that under Assumption 3.1，for any stabilizing feedback control law Ui = Lxi, we claim 
that there exists a Pq > 0 such that for all k and x^, 

oo 

xlPoXk = "^{xjQx^ + ufRui), (3.15) 
i=k 

and PQ can be computed using the Lyapunov equation 

Po = {A + BLfPoiA + DL) + (Q + L^EL). (3.16) 

This can be seen from the following derivation. Since L is a stabilizing control gain, i.e., A + BL 
has all its eigenvalues strictly inside the unit disc, by Lyapunov theory, Pq > 0 exists and is unique. 
Furthermore, the solution Fq can be expressed as 

oo 

Po = + BLfy{Q + L^RL){A + Biy. (3.17) 
j=o 

Then ^x^, noting Xj+k = {A + B L y x k for j > 0，we have 

oo 

xlPoXk = + BLfy(Q + L^RL){A + BLyxk 
3=0 

OO 

i二 k 
oo 

: y ^ . i ^ l Q ^ i + ujBUi). 
i=k 

Lemma 3.6 Consider system (3.1). Suppose Assumption 3.1 holds. Let Ui = Lx^ be a stabilizing 
feedback control law and Pq satisfies (3.15). Define V紐(cck, k + ko, N, Pq) as the cost-to-go by using 
RHC control, i.e., 

oo 

l/—(:rfc，/c + ko,N, Po) = ^{xjQxi + (Lf-Ti) 了风 仔而)}. 

Then 

V^^ixk. k + Po) < xlPMXk < < xlPoXk, ViV > 1, (3.18) 

where PJ ( j = 0,1, - • •，N) is the J-th term in the solution sequence of RDE (3.9) with initial value PQ. 

Proof-. 
Since (3.15) can be written in the recursive form 

x^PoXk = xlQxk + u^Ruk + xl^-^PoXk+i, (3.19) 

then for all k and x^, 

uim{xlQxk + ijTRu + xl^^PoXk+i} < XIPOX^. (3.20) 



(3.23) 

(3.24) 
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Also by LQR theory [44], 

mm{xlQxk + v^B.u + xl^^PjXk+i} : x^p j+ ixk , .?• = 0，1，2 … . (3.21) 

(3.20) and (3.21) imply PI < PQ, and it follows that PJ+I < PJ for j = 0，1，2, •. •，by the monotonicity 
property of RDE (e.g., Lemma 3.3). Thus x^Pj-^ix^ < x^PjX^ for all k and Xk, i.e., 

mm{xlQxk + u ^ R u + < xlPjXk, j = 0,1,2，•.. . (3.22) 

Denote the one-step lookahead policy 

？4 = arg uiin{xlQxk + v^ B.u + x^^-^PjXk+i} 

= j . = 0，1,2，…. 

Then by Proposition 3.1 in [5], the cost-to-go corresponding to u^. satisfies for all x^ and k, 

oo 

i=k 

< x l P j ^ i X k < xlPjXk, Vj = 0’ 1，2,…. 

Observing = 21冊(Xk, k + ko,j + 1, PQ), we have 
oo 

^{xjQx^ + {u>fEu>} = k + koJ + 1, Po). 
i=k 

Thus (3.24) implies 

k + k o J + 1, Po) < 工k < xlPjXk, Vj 二 0,1，2’ … . (3.25) 

With non-increasing monotonicity of the sequence {Pj}, we can draw the conclusion that 

V^^ixk, k + ko, A^ Po) < x^Pim < xlPN-iXk < • • •< xlPoXk, \/N>l. 

• 

Remark 3.1 The importance of this result is that it shows RHC can always improve on, or at least is as 
good as, the performance of any initial stabilizing feedback control law ui = Lxi for any iV > 1，in the 
sense that K + KO^N, PQ) < XLPOXK- • 

Remark 3.2 One may conjecture from (3.18) that under the condition PI < PQ, RHC may perform 
better in the sense that V^^{x^, k + ko, N, PQ) gets smaller, as N gets bigger. However, this is not 
the case. In fact (3.18) only means that V^^[x^, k + kQ,N, Pq) is upper bounded by 工fc and 
says nothing about the monotonicity of k + ko,N, PQ), although {PJ} is monotonically non-
increasing, as shown by the following counterexample. i 
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Counter example 3.1 Consider the open-loop unstable system [63] 

Xk+l = 
0 3 

- 4 5 
Xk + Uk- (3.26) 

.3 0 
0 1.4 

Let Q = 

ARE (3.4) is Poc = 

R = 0.1. Obviously, A, B, R and Q satisfy Assumption 3.1. The solution of the 

> 0. Pick Po = 2Poo. Computing RDE (3.9) gives Pi = 

It is easy to check that Pi < PQ. Picking an initial state xq = [-10，18p，’ 

114.6619 —56.4269 

-56.4269 29.7112 

227.7368 -112.9642 
-112.9642 5 7 . 9 7 9 9 � 

by applying the RHC control law from the beginning KO — 0’ one obtains 0,1, PQ) = 41407， 

V^^ixo , 0，2，Po) = 42369 and 0，3, Pq) = 41413 for iV = 1’ iV = 2 and iV = 3 respectively. 
Obviously, V^^^ixo, 0’ 2’ Pq) > 0, 
the horizon gets longer. 

Po), so the performance does not necessarily improve 

3.2 Reinforcement learning 

Reinforcement learning (RL) is a method of machine learning that is based on learning mechanisms 
observed in mammals [58][73]. Every living organism interacts with its environment and uses those 
interactions to improve its own actions in order to survive and increase. Reinforcement learning refers to 
an actor or agent that interacts with its environment and modifies its actions, or control policies, based on 
stimuli received in response to its actions. This is based on evaluative information from the environment 
and could be called action-based learning. RL is a means of learning optimal behaviors by observing the 
response from the environment to nonoptimal control policies. Note control policy is an alias of control 
law and it is frequently used in the computational intelligence community. We do not differentiate them 
in this dissertation. 

Our objective is to apply RL techniques for feedback control of dynamic systems that can be de-
scribed in terms of difference equations. 

Define a control policy u^ = h{xk) as a mapping from the state space to the control input space 
For the LTI system one is concerned with linear state variable feedbacks so that Uk 二 h(Xk) = Lx^ 

for some feedback gain matrix L. We say a policy is admissible if it stabilizes the system (3.1)，i.e., 
closed-loop system x^^i = 4- BL)xk has all its eigenvalues inside the unit circle, and also renders 
the cost function finite. If a policy Uk = h{xk) is admissible, then 

i—k 
(3.27) 

is called the value of the policy. For admissible policies, one may write the difference equation equivalent 
to (3.2) as 

V{xk) = r{xk, h{xk)) + V{xk+i). (3.28) 
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That is, the value of the policy can be determined either by evaluating (3.27) along the system trajectories, 
or by solving (3.28) with the condition V^(0) = 0. Equation (3.28) is known as the Bellman equation. 

For the LQR, it is known that the value of an admissible control policy is quadratic in the state, that 
is 

V{xk) = r(而’ A ( 而 ） ） = ( 3 . 2 9 ) 
i=k 

for some kernel matrix (or cost weighting matrix) P G . Then the Bellman equation is a Lyapunov 
equation that can be written in the form 

x l P x k = r{xk, h{xk)) + xl^-^Pxk+i. (3.30) 

According to Bellman's principle of optimality, the minimum value V*{xk)，corresponding to the 
optimal control policy that minimizes the cost (3.27), may be found by solving the Hamilton-Jacobi-
Bellman (HJB) equation 

V^ixk) = min{r(xA., h{xk)) + (3.31) 
H-) 

Then, the optimal policy is given by 

h*{xk) = argmin{r(a:A；, h{xk)) + V*{xk+i)}. (3.32) 
H) 

For the LQR, the HJB equation (3.31) is a Riccati equation. 

Determining the optimal value and optimal control using the HJB equation is an off-line procedure 
that requires knowledge of the system dynamics to solve (3.31). By contrast, in this chapter one is 
concerned with finding online methods of learning good control policies. The Bellman equation (3.28) 
or (3.30) provides the basis for developing RL methods for finding the optimal value and policy using 
online learning techniques. Here are given three standard RL methods ([58], [73], [83]). They give 
insight on how to improve RHC by adding a learning feature, as detailed in Section 3.3. 

The HJB equation is a fixed-point equation. Therefore, it can be solved using the method of succes-
sive approximations based on contraction maps. Write the HJB equation in the form 

0 - min{-y*(xfc) + r{xk, h{xk)) + V*{x,,+i)}. (3.33) 
/i(.) 

This fixed-point equation can be used to define a contraction map that leads to a method of solution 
known as policy iteration (PI), as given in the next well known algorithm. 

Policy iteration (PI) algorithm 
Initialization. Select a stabilizing control policy ho{xk) = LqX/j； 

Policy evaluation step. Determine the value of the current control policy hj{-) by 

x lP j+iXk = r (xk,hj(xk)) + Xk+iFj+iXk+i, Vxk E R " (3.34) 



3.2. REINFORCEMENT LEARNING ^ 

Policy improvement step. Improve the policy using 

hj+i{xk) = argmin(r(a:;fc,/i(.Tfc)) + V.Tfc G R " (3.35) 
/i(-) 

then increase j by 1，go to the policy evaluation step and repeat until hj converges. i 

PI is an online reinforcement learning method, since at each step j one evaluates the current policy to 
determine its value using the Bellman equation (3.34). Then, based on the newly determined value, the 
control is updated using policy update (3.35). It is shown in [5] that (3.35) always leads to an improved 
policy in the sense that the value of using the new policy is less than or equal to the 
value Vj+i {xk) of using the former policy hj{xk). 

PI requires an initial stabilizing gain, since only for admissible policies do there exist meaningful 
solutions to (3.34). It has been shown by Hewer [19] that for the LQR this algorithm converges to the 
optimal policy h*{xk) and value V*{xk) under Assumption 3.1 if started with a stabilizing initial policy. 
That is, PI leams the optimal policy and value by evaluating the performance of intermediate suboptimal 
policies hj{xk) through solving (3.34), It is well known how to solve (3.34) online using data measured 
along the system trajectories using methods such as recursive least-squares (RLS) or batch least-squares. 

Considering the HJB equation in the form (3.31), one can define a different contraction map for solv-
ing the fixed-point HJB equation. This leads to a method of solution known as value iteration (VI)，as 
given in the next well known algorithm. 

Value iteration (VI) algorithm 
Initialization. Select an arbitrary control policy /lo(-) and initial value function Vo(-) 
Value update step. Update the value function using 

x \P j+ iXk = r{xk, hj{xk)) + Vxfc € W (3.36) 

Policy improvement step. Improve the policy using 

hj+i{xk) = argiam{r{xk,h{xk)) + Vxfc G (3.37) 

then increase j by 1, go to the value update step and repeat until hj converges. i 
VI algorithm is based on performing (3.36) at each step, which is not an equation but simply a 

replacement iteration. Therefore, VI does not require an initial stabilizing gain. It has been shown 
by Lancaster and Rodman [36] that for the LQR this algorithm converges under Assumption 3.1. VI 
was also called heuristic dynamic programming (HDP) by Werbos ([83], [84]), who defined a family of 
optimal control learning algorithms for general nonlinear systems, based on the idea of VI，which are 
known generally as approximate dynamic programming (ADP). 

Considering the fact that the Bellman equation (3.30) is also a fixed point equation, one can solve it 
also by using successive approximation using a contraction map. This allows us to replace the solution 
of (3.34) by an iterative procedure, as in the next generalized PI (GPI) algorithm. 
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Generalized policy iteration (GPI) algorithm 
Initialization. Select an arbitrary control policy ho{xk) = Lqx^ and value function Voixk) = x^pQXk 
Value update step. Update the value function for all x^ G IR"' by iterating on 

= hj{xk)) + 4 + 1 巧:Tfc+i, ？: = 0,1，2，…，M - 1 (3.38) 

for some finite positive integer M，where the initial condition is P^ = Pj. Set Pj+i = PJM . 
Policy improvement step. Improve the policy using 

hj+i(xk) = argmm(r(xk,h(xk)) + Vj+i{xk+i)), Vx^ G (3.39) 

then increase j by 1，go to the value update step and repeat until hj converges. i 

Remark 3.3 PI, VI’ and GPI have been discussed from a computational intelligence point of view in 
[6], [58], [73], and elsewhere. GPI provides an unified expression of PI and VI. When M = 1, (3.38) 
turns out to be (3.36), which relates to value iteration; On the other hand, when N oo, (3.38) provides 
a method for solving (3.34), which associates with policy iteration. Note in the latter case, the initial 
control policy /io(工fc) “ LoXk should be stabilizing. i 

To investigate the relation of RL and RHC, we present the following result, which provides an alter-
native way to compute the value function (or equivalently Pj+i) in (3.38). 

Lemma 3.7 Consider (3.38) and the following equation 

fc+M-l 
xlWj+iXk = ^ r{xi, hj{xi)) + xl_^_MWjXk+M, Va:̂  G M". (3.40) 

l=k 

IfWj = Ff = Pj, then Wj+i = P^^ = Pj+i. In other words, the value update step (3.38) in GPI can 
be replaced by 

fc+M-l 

xlPj+iXk = ^ r(xi, hj{xi)) + xl^MPjXk+M, Vxfc € R'^ (3.41) 
l=k 

Proof: 
This can be proved by mathematical induction as follows. 
1) When M = 1, it is obvious that Wj+i = Pj. 
2) Assume when M = n> 1 , = Pp, i.e., 

k+n-l 
Y^ r{xi,hj{xi)) + = r(xk, hj(xk)) + •工A： e R". (3.42) 
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This implies that 

k+n 
J ] r{xt,hj{xi)) + = r{xk+uhj{xk+i)) + :r【+2尸:[卜工孙+2- (3.43) 

/=fc+i 

Then when M = n + 1, for any x/̂  G M", we have 

OCIP广Tk = r{xk, hj{xk)) + xl^^p^xk+i 

=r{xk, hj{xk)) + [r{xk+i,hj{xk+i)) + 
k+n 

=r{xk, hj{xk)) + Y] r{xi, hj{xi)) + 
i=k+i (3.44) 

k+n 
= ^ r{xi, hj{xi)) + 

l=k 

= x l W j + i X k . 

• 

Remark 3.4 Comparison of Eq. (3.41) and Eq. (3.36) suggests that GPI can be regarded as multi-step 
VI. It is also easy to verify that Lemma 3.7 holds for M ^ oo when GPI becomes PI. i 

3.3 Updated terminal cost receding horizon control 

In this section, we show how to integrate the concept of reinforcement learning into the standard RHC 
scheme, so that the performance of RHC is improved in two senses. First, the restrictive stability condi-
tions in Section 3.1 are removed; and second, the modified algorithm converges after enough stages to 
the optimal infinite horizon control law. 

The key idea for incorporating learning into RHC is to compare (3.10) with (3.41) which updates 
the terminal cost function at each step. To make this more specific, the RHC algorithm is described in a 
different way. This is justified by applying the principle of optimality [44] to (3.10). Suppose the initial 
terminal cost function is Vo{x) — x^Pqx, initial stage is ko and the horizon is N. At stage k + ko 
(k > 0)，the following three steps are equivalent to equation (3.10): 

51) Solve for an (N - 1)-horizon optimal cost function V^lxk) for all Xk G R'"' by 

. . . . , / + Vo(xk^jv-i)}, N > 2; 
W J = 1 T " 、 AT 1 ( j .4》 

[Vo{xk), N = 1. 

52) Compute the RHC control law by 

u^^ixk, k-\-ko,N., Po) = argmin{r(a:fc, u) + ^^(xfc+i)}. (3.46) 
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S3) Compute the optimal cost function for the current state by 

y 2 M = r ( x k , u ^ ^ ( x k , k - h k o , N , F o ) ) + V,*(xk+i). (3.47) 

Obviously, the RHC control law given by (3.46) is the same as (3.11). This standard RHC contains no 
ingredient of learning. It solves the same finite horizon optimal control problem at each stage (see (3.45) 
and (3.46)). On the other hand, the RL algorithm solves a different optimal control problem at each 
step. Specifically, the value learned from the previous policy hj(-) is used as a basis for finding 
the new policy as in (3.35)，(3.37) and (3.39). A comparison of (3.39) to (3.46)，and (3.41) to 
(3.45) suggests a modified RHC scheme, which we call updated terminal cost RHC (UTC-RHC). In this 
modified scheme, the terminal cost in (3.45) (or equivalently in (3.7) and (3.10)) is updated at each step 
by the value learned in the previous stage. Again by using the principle of optimality, the UTC-RHC 
algorithm can be presented in a traditional way as follows. 

3.3.1 Algorithm 

At the initial stage ko, the corresponding iV-horizon LQ optimal control problem solved by UTC-RHC 
is ^(xo, KO, N, Pq). Solving problem ^{xq, ko, N, Pq) yields the optimal control sequence 

x-o, ko, N, PQ) = {'u仲(',；x-o, ko, N, PO)}£o' 

and the optimal cost 

Then the UTC-RHC control law at stage ko is given by the first control in the sequence, i.e. 

ko, N, Po) =7/付(0; x-o, ko, N, PQ) 

(3.48) 

(3.49) 

(3.50) 

At the stage ko + 1, we modify the terminal cost weighting matrix of the corresponding iV-horizon 
LQ optimal control problem to Pn, which is obtained at stage k = ko as in (3.49). Solving the problem 
^ { x i , k o + 1, iV, Pat) yields an optimal control sequence 

fi纽（•; x u k o + 1’ N, P n ) = xi^ko + h N , PN}}f=i, (3.51) 

and the optimal cost 

+ l,iV,PAr) = xfP2NXi. (3.52) 

Then the UTC-RHC control law at stage kg 1 is given by 

+ 1，iV，PN) = xi,ko-h 1，N, Pjv). (3.53) 
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Similarly, at stage k + ko{k > 1), the corresponding TV-horizon LQ optimal control problem solved 

by UTC-RHC is k + ko, N, PkN), i.e., 

k+N-l 

= min{ V [x fQx i + u j R u i ) + xl_^_^PkNXk+N}- (3.54) 
Wi 

Note the terminal cost weighting matrix is updated at each stage k-Yk^ to P^N (k > 1), which associates 
with the optimal cost function V^^{xk~i,k - l + /co, N, -i)n) solved at the previous stage. Solving 
problem ^ ( x k , k + ko, N, PkN) yields the following optimal control sequence 

U^^i-, Xk. k + ko, N, PkN) = {uF � ; X k , k + ko, N, (3.55) 

The UTC-RHC control law at stage k k o {k > 1) is 

尺Orfc, k + ko, N, PkN) = Xk, k + fco, N, PkN). (3.56) 

The following lemma shows that updating the terminal cost weighting matrix is equivalent to length-

ening the horizon. 

Lemma 3.8 
k + ko, N, PkN) = k + ko, {k + 1)N, Po) (3.57) 

I 

Proof: By knowledge of LQR, it is straightforward to have the result that k + A;o, N, Pt)= 

ailPt+N工k for all A; > 0 and all t > 0. Then by principle of optimality [44], one obtains 

V F � k , k + ko,N,I^N) 
k+N-l 

=min{ ^ {xjQxi + ujRui) + xl^j^PkN^k+N] 
i—k 

k+N-l 
= rmn{ ^ { x j Q x i + u f R m ) + k + N + k o , N , P^k-i )N)} 

i=k 
h.+N-l 

=niin{ ^^ {x[Qxi + ujRui) 
i=k 
k+2N-l 

+ rain{ V {x jQxt + u j R u t ) + xl^2NP{k-i)NXk+2N}} 
t 二 k+N 

k+2N-\ 

= ^ {xjQxi + ujRui) + xl^2NP{k-l)NXk+2N] 
i=k 

(3.57) follows by induction. 

(3.58) 

• 
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Remark 3.5 The terminal cost weighting matrix is updated at each stage k + ko(k > 1) to the N horizon 
LQ optimal cost weighting matrix computed at the previous stage. Equation (3.57) shows that this is in 
fact equivalent to effectively making the horizon longer by N at each stage; that is, (3.54) is equivalent 
to 

{k+l)N~l 
^ {xjQxi + uj Rui) + (3.59) 
i—k 

As will be seen in Theorem 3.2, for arbitrary initial terminal cost weighting matrix PQ > 0，our algorithm 
generates a trajectory that converges to the origin exponentially. I 

Noting equation (3.57), the UTC-RHC control law at stage k + ko {k > 1) can be written as 

=uFH(k; XK, k + ko, {k + l)iV, PQ) (3.60) 

--{B'^Pik+i)N-iB + = 

Clearly, when A: = 0, equality (3.60) still holds. 
Therefore, the UTC-RHC closed-loop system is 

Xk+i - B ( B T p � i ^ + ” N _ i B + A; = 0,1, 2 , … ’ （3.61) 

where PT is the t-th term in the solution sequence of the RDE (3.9) with the initial condition PQ. Note 
that system (3.61) is a linear time-varying system, and uniform in ko. 

3.3.2 Stability and convergence 

In this section, it shows in Theorem 3.2 that the UTC-RHC algorithm has significant advantages over 
standard RHC for unconstrained LTI systems. The next result shows that UTC-RHC guarantees stability 
under a standard assumption made in RHC. This result is established using a proof technique adopted 
from [50] which shows the closed-loop stability under RHC scheme. The objective is to tie UTC-RHC 
firmly to the mode of thinking prevalent in standard RHC. 

Theorem 3.1 Consider the UTC-RHC closed-loop system (3.61) with the initial state XQ. Suppose As-
sumption 3.1 holds with Q > 0. Let PQ satisfy the following inequality 

PQ > A^PQA + Q - A^PoB{B^PoB + Ey^B^^^PoA (3.62) 

Then ViV > 1, the closed-loop system (3.61) is uniformly exponentially stable. i 

Proof: Taking 
^ { x k ) 卯 ( x f c， k + /CO, N, PkN) 

=V^"{xk,k + + l)iV, Po) = xlP^k+i)NXk 
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as a Lyapunov function candidate, where P(k+i)N is the {{k + 1)7V) - th term in the solution sequence 
of RDE (3,9) with initial condition PQ. By monotonicity of RDE (Theorem 4.4 in [7]), condition (3.62), 
i.e., Pq > PI, implies the non-increasing monotonicity of sequence {P^}. Thus ^ [ X ^ ) < xl POXK for 
all Xk e E " . 

To simplify the notations, let u{xk) = k + ko, N, PkN). It is trivial to show that 

> r(xfc,u(xfc)) > xlQxk, Vxfc G � . 

Hence, ^ [x^) is positive definite and decrescent. 
Now we show A ^ [xk) = ^ ( x ^ + i ) — {^k) is negative definite. By principle of optimality [44], 

we have 

/ { x k ) = r{xkM'^k)) + ^ ' " { x k + i . k + l + + l ) N - 1，Po). (3.63) 

Then 
^i^k+i) - + r{xk,u{xk)) 

= — V^^IXK+I, + + 1)N — 1’ Po) (3.64) 

=工尸( fc+2)iV - P{k+l)N-l)^k+l < 0, 
since the sequence {Pi} is monotonically non-increasing. Therefore, 

A ^ ( x f c ) = j f { x k + i ) - / { x k ) < ~r{xk,u{xk)) < - x l Q x k , (3.65) 

i.e., A is negative definite. 
By Lyapunov stability criteria (Theorem 23.3 in [70])，the closed-loop system (3.61) is uniformly 

exponentially stable. • 

Remark 3.6 Theorem 3.1 shows the stability of our algorithm under condition PQ > Pi, which is a 
standard assumption in RHC [50] ‘ One should note that, the condition PQ > Pi may not be replaced 
by Po > Poo. From the monotonicity and convergence properties of RDE (Theorem 4.2 in [7])，one 
may naturally conjecture that PQ > P � implies PT > PT+I for all i > 0. However, this is not the case 
[9]. Since the non-increasing monotonicity of the sequence {Pt} is required in the proof, the condition 
Po > Pi can not be replaced by Pq > Poo. i 

Further investigation reveals that UTC-RHC guarantees the uniform exponential stability under much 
more relaxed conditions, and it obtains the optimal performance eventually, as shown by the following 
Theorem. 

Theorem 3.2 Consider the UTC-RHC closed-loop system (3.61) with initial state X{KQ) = XQ. Then 
VIV > 1 and VPq > 0， 

a) the closed-loop system (3.61) is uniformly exponentially stable in the sense that 

where 0 < < 1 and or is a finite positive number. 
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b) the UTC-RHC state feedback control gain converges to that of the infinite horizon optimal control 
law (3.3), i.e.,碌工i)jv L � as k ^ oo. 

Proof. 
a) System (3.61) can be written as 

Xk+i = d + XQ = x(ko) (3.66) 

with 

Aoo =A ~ B{B^PooB + 

Ak =B{B^PooB + - B(bTP_�n-IB + R)''B'^P^^+dn-IA ’ 

where P � is the unique maximal positive semidefinite solution of the associated ARE (3.4). 
It is well known that x^+i = AooX^ is exponentially stable (Theorem 4.1 in [7]). By Lyapunov 

theory (Theorem 8-22 in [10]), there exists a unique positive definite symmetric matrix P* such that 

P* = AlP^'A^ + I, (3.68) 

where I is the identity matrix of appropriate dimensions. Thus we have 

ril = \min{P*)I <P* < Xmax{P*)I = (3.69) 

where 77 and 7 are positive real numbers. 
Choose V{x) = x^P*x as a Lyapunov function candidate for system (3.66). Now we show AV{xk) 

satisfies 
AV^(xfc) - V{xk) = 4 + 1 广补+1 - '4P� 

= [ ( ^ o c + + - x l p * x k 

=xl{AlP*A^ + AlP^Ak + + AjP^Ak - P*)xk 

+ + + AlP*Ak)xk (3.70) 

= - x l x k + xjMkXk 

<-\\x,f + \\Mk\\\\xkf 

where Mfc = + A I P * A ^ + AlP*Ak. 
By convergence property of RDE (Theorem 4.2 in [7])’ f \k+i)N_i Poo as A: 00. Thus A^ -> 0， 

and thence M/c 0 as fc ^ 00. Then V 0 < < 1’ there exists 0 < K < 00, which is only determined 
by A, B, R, Q, ^ and PQ, such that ||Mfc|| < ^ for all k>K. Thus 

AF(xfc) < - ( 1 - 0 , " i k ^ K . (3.71) 
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Using essentially the same technique as in Theorem 23.3 in [70], one obtains 

Ikitii < \ \ x K \ \ y k > K , (3.72) 

where P = yl ^ and 0 < P < 1. Since (3.66) is linear system, a few steps further yields 

\\xk\\ < ap''\\xoh V/c > ko, (3.73) 

where a = is a finite positive number, w = = 爪 + A ; � , a n d k) is the 
transition matrix of system (3.66), Therefore, system (3.61) is uniformly exponentially stable. 

b) This is implied immediately from the result that — Poo as /c -)• oo, as shown in part 
a). • 

Remark 3.7 In this proof, we do not use the finite horizon optimal cost j {xk) as a Lyapunov function, 
which is prevalently adopted in the literature ([38], [50], etc.), as in the proof of Theorem 3.1. In fact, 
J^{xk) does not qualify as a Lyapunov function for Theorem 3.2，because the arbitrary Pq > 0 cannot 
ensure the non-increasing monotonicity of the sequence {Pt], which is a must for A J ^ {xk) to be nega-
tive definite. By decomposing the system matrix into two parts (i.e., a stable part ^oo and a perturbation 
part Ak), we find V{x) = x^P*x as a Lyapunov function candidate. The difference of this function 
along the trajectory of the closed-loop system is negative, and hence guarantees the uniform exponential 
stability. This proof is rooted in the convergence property of RDE and the stability property of ARE. i 

Remark 3.8 UTC-RHC can be viewed as a RHC algorithm with varing terminal cost weighting matrix. 
There is a generalized stability result for RHC with varying terminal cost weighting matrix by Lee et al. 
[38] (Theorem 1)，which implies that if the terminal cost weighting matrix PkN satisfies the following 
inequality for some H j G 

PkN + BHkfP^k+i)N{A + BHk) + Q + H[RHk, V/c > 0 and ViV > 1 (3.74) 

where Q > 0, then UTC-RHC control law exponentially stabilizes the system (3.1). However, the expo-
nential stability conditions for UTC-RHC scheme is more relaxed than the stability conditions required 
by [38] in the following aspects: 

a) Matrix Q is required to be positive definite in [38] to ensure the positive definiteness of the Lya-
punov function they choose. Since we choose V^(.t) = x^P*x as the Lyapunov function, the 
positive definiteness of P* is guaranteed by Assumption 3.1，in which Q > 0 and {A, a/Q) is 
detectable. 

b) Theorem 1 in [38] requires all the terminal cost weighting matrices PkN (Vfc > 0，ViV > 1) to be 
positive definite, more exactly, PkN > Q for condition (3.74) to hold. While our result holds for 
arbitrary PQ > 0，even for Pb = 0，and this benefits from the convergence property of RDE and 
the different Lyapunov function we choose. 
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c) Even when Q > 0 and P^n > Q, to investigate the stability of UTC-RHC by [38], one has to 
check the condition (3.74) for every k > 0 and Â  > 1. This is not a trivial job, since for UTC-RHC 
both Pq > 0 and N k 1 can be arbitrary. In this sense, our analysis is more germane. 

3.3.3 Relation between VI and UTC-RHC 

In this section, we disclose the relation between value iteration (VI)，also known as heuristic dynamic 
programming (HDP) by Werbos [84], and UTC-RHC by comparing their underlying iterations. Note 
that for system (3.1), equation (3.37) of VI is equivalent to 

hj+i{xk) = - { B ^ P j + i B + R ) - ' B ^ P j + i A x k , Nxk G r \ (3.75) 

Equation (3.36) of VI is equivalent to RDE 

Pj+i = A^PjA + Q- A^PjB{B^PjB + (3.76) 

for j > 1. Note one can also start the VI algorithm from the policy improvement step, i.e., (3.37), then 
(3.36) is equivalent to RDE from j — 0. 

On the other hand, when iV = 1，the UTC-RHC control law (3.60) is 

片(rrfc，k + ko, 1, Pk) = -{B^PkB + R)-'B^PkAxk, (3.77) 

where P/^ is computed from RDE with initial condition FQ. Therefore, the underlying iteration of UTC-
RHC and VI are actually the same. However, UTC-RHC and VI differ in the way in which they are 
implemented. In VI, one takes enough samples along the system trajectory using the same control until 
(3.36) can be solved, e.g. if a: G R", one requires at least n(n + l ) / 2 samples of triple 工知，Xk+i and 
r(x/j, Ufc), and a persistence excitation condition. The value update step does not require the knowledge 
of any system dynamics A or B [1], though A and B are needed in the policy improvement step. On the 
other hand, in UTC-RHC, one assumes full knowledge of the plant dynamics A and B and solves RDE 
with N iterations at each time k. 

3.4 Simulation results 

Two examples are presented to compare the stability and optimality performances of the standard RHC 
and UTC-RHC algorithm. The first example is a single input open-loop unstable LTI system which is 
adopted directly from [29]. In the second example, we apply our algorithm to a discretized two-mass 
translational mechanical system. This is a two-input two-output system. 



e -O 

5 1 0 

time (k) 
1 5 

Figure 3.1: State trajectory of RHC closed-loop system for N=3 

3.4.1 Example 1 

Consider the single input open-loop unstable system (3.26). Q and R take the same values as those in 
Counterexample 3.1. Poo solves the ARE (3.4) and corresponds to the optimal infinite horizon cost, and 
Loo is the optimal control gain given by (3.3). 

Then 

Poo 二 
114.6619 -56.4269 
-56.4269 29.7112 

and Lnn = 
-1 .6938 
-0.6519 

For RHC, [63] shows that the stability guaranteed horizon size takes its maximal value when the 
terminal cost weighting matrix PQ = 0. So for this example, we choose PQ — 0. For simulation, we pick 
an initial state to be XQ = [ — 6 , w h i l e noting that XQ can be chosen arbitrarily. 

Stability of RHC and UTC-RHC 

For this example, by standard RHC algorithm, [63] gives the smallest stability guaranteed horizon size 
N* with A''* > 5 and it also points out that the proposed stabilizing horizon size may be conservative. In 
fact, this system is also stable for Â  = 4 but unstable for N < S, AS shown in Fig.3.1 and Fig.3.2. 

On the other hand, by applying the UTC-RHC algorithm, the closed-loop system is always stable for 
arbitrary A'' > 1, as shown in Fig.3.3 and Fig.3.4. 

3.4. SIMULATION RESULTS 35 

16 
10̂  RHC: Pp=0 and N= 

6 
/ 

/ 
！ 

P 

0
 8

 6

 4
 

1
 X

J
O
P
a
f
e
J
】
①
l
e
i
s
 



a 
� � . 

1 0 1 5 

time (k) 

Figure 3.2: State trajectory of RHC closed-loop system for N=4 

UTC-RHC: Po=0 and N: 
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Figure 3.48: State trajectory of the UTC-RHC closed-loop system for N=2 
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RHC: PQ=0 and N= 

Q 

Q
,
 A

,
 

u
 o

 o

 o

 o
 

u
 5

 4

 3

 2
 

\ 

6 
6 K 

a
.
 A
,
 

uu 

o
 o

 o
 

o
 5

 o
 

2
 

1

1
 

5 0 

0去, 



-10 
10 

time (k) 
1 5 

Figure 3.4: State trajectory of UTC-RHC closed-loop system for N=4 

Convergence o fRHC and UTC-RHC 

When iV = 3，the RHC control gain is given by (3.11) as L = [Z/ii,Li2] 二 [—0.3988,-1.2938]; when 
N = 4，the RHC control gain is L = [Ln, L u ] = [-1.5397, -0.7283]. For a fixed horizon N，the RHC 
control gain is constant and not optimal unless N oo. On the other hand, the UTC-RHC control gain 
eventually approaches its optimal value LQ© for all Â  > 1, which is illustrated in Fig.3.5 and Fig.3.6. 

3.4.2 Example 2 

In this example, we consider a two-mass translational mechanical system [87] shown in Fig.3.7, where 
mi and m2 are two masses; ki and k2 are spring coefficients; ci and C2 are damping coefficients; ui and 
U2 are force inputs; yi and 奶 are displacement outputs of the two masses. 

Define the states as Xc = [xci,xc2, ^'c^•> where Xd = y\, Xc2 = iji — •士ci’ = 112 and 
•Tc4 = y2 = •士c3. Define the output as y = [？/1，"2]�-The state space representation of this mechanical 
system is 

y 二 CcXc + DcUc 
(3.78) 
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UTC-RHC: Pp=0 and N: 
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Figure 3.5: Control gain of UTC-RHC algorithm for N=1 

UTC-RHC: PQ=0 and N= 
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Figure 3.6: Control gain of UTC-RHC algorithm for N=4 
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Figure 3.7: The two-mass translational mechanical system 

_ 0 1 
—(Cl+(:2) 

0 
J^ 

0 _ ‘ 0 0 _ 
丄 0 

"l o' 
0 0 

where A^ 二 m i mi mi m i m i 
’ Cc = 

0 0 0 1 0 0 
’ Cc = 

0 1 
-h —C2 0 丄 0 0 _ 爪2 7712 m2 m2 _ - rn2 J 

T 

and Dr = 
0 0 
0 0 

This is a 4th-order two-input two-output L t l system. For the convenience of illustration, we let the 
system parameters be ci = C2 = 0, mi = 1 kg, m2 = 1 kg, ki = 1 N/m and k2 = I N/m, then 

A . = 

0 1 0 0 
— 2 0 1 0 

0 0 0 1 

1 0 - 1 0 

and Br — 

0 0 

1 0 

0 0 

0 1 

The open-loop system is marginally stable, for all the eigenvalues of Ac are on the imaginary axis. 

Picking a sampling time Ts = 0.1s, the discrete time system is obtained by using the zero-order-

hold technique as follows Ad — 

Cd = 
1 0 0 0 

0 0 1 0 
and Dd = 

0.9900 
-0.1992 
0.0050 
0.0995 

0 0. 

0 0 

0.0997 
0.9900 
0.0002 

0.0050 
0.0995 
0.9950 

0.0002 
0.0050 
0.0998 

0.0050 -0 .0997 0.9950 

Bd = 

0.0005 0 
0.0997 0.0002 

0 0.0050 
0.0002 0.0998 

We consider the above discrete-time system. Choose Q and R to be the identity matrices with 
appropriate dimensions. P � and Loo are obtained similarly as in Example 3.4.1， 

Poo = 

28.8229 3.2635 -7 .2967 2.2451 
3.2635 13.2579 2.2451 1.6630 

-7 .2967 2.2451 21.5262 5.5086 
2.2451 1.6630 5.5086 14.9209 

Lnn ~ 

'0.1868 -1 .2057 -0.2610 —0.1568 
'0.2610 -0.1568 -0.4478 —1.3625 
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Figure 3.8: State trajectory of the open-loop system 

Open-loop system 

Obviously, the discrete-time open-loop system is marginally stable, for the eigenvalues of the system 
matrix A are on the unit circle. Given the initial state XQ = [—2，2,1, - 1 ] ^ , the state trajectory of the 
open-loop system is shown in Fig.3.8. This is a periodic oscillation movement. 

Stability ofRHC and UTC-RHC 

Let the terminal cost weighting matrix Pq = 0. We plot the state trajectory of the RHC closed-loop 
system and UTC-RHC closed-loop system for iV = 1 and N = 2 respectively, as shown in Fig.3.9-
Fig.3.12. 

As illustrated by these figures, the RHC closed-loop system is not stable when N = 1，while the 
UTC-RHC closed-loop system is stable. In fact, when N = 1, the RHC control gain is 0, which will 
be shown in Fig.3.13，and in this case the closed-loop system is the same as the open-loop system, see 
Fig.3.8 and Fig.3.9. When N = 2 , both the RHC closed-loop system and UTC-RHC closed-loop 
system are stable, but the state approaches the origin much faster for UTC-RHC closed-loop system than 
for RHC closed-loop system. 
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Figure 3.9: State trajectory of the RHC closed-loop system for N=1 

UTC-RHC: Pg= 
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Figure 3.10: State trajectory of the UTC-RHC closed-loop system for N=1 
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RHC: PQ=0 and N= 

X" 

time (k) 

Figure 3.11: State trajectory of the RHC closed-loop system for N=2 

UTC-RHC: Pg=0 and N=2 

X守 

100 

time (k) 

Figure 3.12: State trajectory of the UTC-RHC closed-loop system for N=2 
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time (k) 

Figure 3.13: Control gain of RHC algorithm for N=1 

Convergence of RHC and UTC-RHC 

As shown in Fig,3.13 and Fig.3.14, the control gain of the RHC algorithm is constant and not optimal for 
iV = 1 and N = 2. But for any positive integer N, the control gain of the UTC-RHC algorithm is time 
varying and converges to the optimal value LQO as A; ^ OO, which is illustrated by Fig.3.15 and Fig.3.16 
for the case TV = 1 and iV = 2. 

3.4. SIMULATION RESULTS 35 

RHC: Pg=0 and N= 

u
!
e
6
 l
o
J
J
U
O
O

 0
1
^
 



- 0 . 1 
0 100 600 800 

time (k) 

Figure 3.14; Control gain of RHC algorithm for N=2 

UTC-RHC: PQ=0 and N 
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RHC: PQ=0 and N=2 
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Figure 3.15: Control gain of UTC-RHC algorithm for N=1 
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Figure 3.16: Control gain ofUTC-RHC algorithm for N=2 

3.5 Conclusion 

In this chapter, we incorporate a learning feature in standard RHC, proposing an updated terminal cost 
RHC (UTC-RHC) algorithm under the framework of discrete linear time-invariant system. The closed-
loop system under the UTC-RHC scheme is uniformly exponentially stable without imposing any con-
straints on terminal state, or terminal cost, or the horizon size. Thus the design of a stable RHC closed-
loop system becomes more flexible. Moreover, the UTC-RHC control gain converges to the optimal 
value. 

n End of chapter. 
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Chapter 4 

UTC-RHC for continuous time linear 
systems 

In practical applications, most physical systems are inherently continuous time systems, for example, 
mechanical systems, electrical systems and thermodynamic systems. They are described by differential 
equations, instead of difference equations. Therefore, in this chapter, we extend the discrete time UTC-
RHC algorithm, developed in Chapter 3, to continuous linear time invariant systems. 

4.1 Introduction 

In the framework of continuous-time (CT) systems, two categories of RHC schemes are investigated in 
the literature, namely instantaneous RHC (e.g., [8], [33], [50]) and sampled-data RHC (e.g., [11], [14], 
[15], [23]). The instantaneous RHC solves instantaneously an associated finite horizon optimal control 
problem at any time t and applies the first control continuously, thus yielding a state feedback control 
law. On the other hand, the sampled-data RHC only measures the state information at discrete sampling 
instants, and solves an open-loop optimal control problem with the measured state as the initial condition, 
and then repeatedly applies the first portion of the resulting control trajectory in the sampling intervals. 
We focus on the sampled-data RHC for CT systems, since sampled-data RHC is more amenable to 
practical applications where computation times are non-negligible and the states are sampled and not 
measured continuously. 

As for the stability property, similar with the case for discrete time (DT) RHC, most existing continu-
ous time RHC schemes also put constraints on either the terminal state, or the terminal cost or the horizon 
size. To name a few, some results require the terminal state to be zero [49] (which is often referred to as 
the zero terminal constraint); some require the terminal state to enter into a neighborhood of the origin 
[51]; some put constraints on the terminal cost [11][15], and usually the terminal cost is chosen to be 
a proper control Lyapunov function [25]; some researchers also point out that the stability can also be 
obtained given a enough long horizon, even without the use of terminal cost or terminal constraints [23]. 

47 
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To relax the various stability constraints proposed in the continuous RHC literature, we extend the 
discrete time version of UTC-RHC to continuous linear time invariant systems. Sampled-data UTC-RHC 
requires treatment of a certain hybrid CT/DT system as well as a consideration of the inter sampling 
behavior, as detailed in the proof of Proposition 4.1. This is inspired by [11] and [15]. By choosing a 
novel Lyapunov function, we show in Theorem 4.1 that exponential stability of the UTC-RHC closed-
loop system is guaranteed for arbitrary horizon length T with T > ^ > 0 (5 is the constant inter-sampling 
time) and arbitrary terminal cost weighting matrix PQ > 0. Moreover, the control gain converges to the 
optimal value corresponding to the infinite horizon optimal control problem. 

The chapter is organized as follows. Section 4.2 reviews the algorithm of receding horizon control 
and this provides a conceptual and notational basis. Section 4.3 presents the sampled-data UTC-RHC 
algorithm and its stability and convergence results, and this is the main body of this chapter. Simulation 
results are given in Section 4.4 to show the properties of the algorithm. Section 4.5 ends this chapter 
with a conclusion. 

4.2 Sampled-data receding horizon control 

The principle of sampled-data receding horizon control (RHC) is presented in [14] and [15] in the frame-
work of general nonlinear systems. In this section, we briefly revisit the sampled-data RHC in the 
framework of CT linear systems. 

Consider the CT linear time-invariant (LTI) system 

= Ax{t) + Bu{t), (4.1) 

R爪 is the control input, 

xt = x{t) and ut = u{t) 

where x{t) G M" is the state vector with the initial state x{to) = XQ, u{t) G 
A G and B G are constant matrices. For convenience, we denote 
in the sequel. 

The following assumptions are supposed to hold throughout the chapter. 

Assumption 4.1 

Al) Q e R"xn，R e IRmXm，Q 二 QT > Q，R = RT > Q 

A2) {A, B) is stabilizable 

A3) (A, ^/Q) is detectable 

For sampled-data RHC schemes, the states are only measured at discrete sampling instants. At each 
sampling instant, an open-loop optimal control problem is solved with the current measured state as the 
initial condition, yielding an open-loop optimal control trajectory. The first portion of the optimal control 
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trajectory is applied to the system until the next sampling instant. In this chapter, the inter-sampling time 
5 is supposed to be a positive constant, which is frequently assumed in the literature. 

Let ti = to + iS (i = 0 ,1 ,2 , • • •) be the sampling instants; xt^ be the actual state measured at 
each sampling instant tf, be the open-loop optimal trajectory pair; {xl,Uf) be the closed-loop 
trajectory pair resulting from the sampled-data RHC algorithm. For convenience, we denote r{x, u)— 
xTQx + uTb.u and M(x) ~ x^Qx in the sequel. The algorithm of sampled-data RHC in the framework 
of continuous LTI systems can be illustrated as follows. 

Algorithm of sampled-data RHC 

Step 1) At the current sampling instant ti, measure the state Xt̂  

Step 2) Solve the open-loop optimal control problem ^(a:^., W): 

mm 
UT 

i<r<ti+T 

fti+T 

{ / Ur)dT + W{xt,+T)} (4.2) 

subject to 
xt = Axt + But, xti = xti, (4.3) 

where T is the horizon length; W{x) = x^PQX is the terminal cost function with PQ being the 
terminal cost weighting matrix; the bar as in x and u denotes predicted variables. The solution 
to the problem ti, T, W) is denoted as u*{t; xt^.U, T, W) and the open-loop optimal state 
trajectory x*{t; W) is generated by the model (4.3) with W) being the 
control input. The open-loop optimal cost is 

V * i x t J = = 广 ( 无 ; + (4.4) 
Jti 

Step 3) Apply u*{t\ Jc“,ti,T，W) to the plant (4,1) in the interval t G [U, U+i) and drive the system 
to the next sampling instant ti+i. Then go to Step 1 and repeat. 

I 

By standard theory of linear quadratic regulator (LQR) [44], this control is given by 

W) = t e [ti,ti + T), x^ = (4.5) 

where P{t) is the solution of the Riccati differential equation (RDE) (4.6) with initial condition P ( 0 ) = 

Po > 0 . 
P{t) = j T p � + P � A + Q — p�t~)BR-iBTp�t~) (4.6) 

The open-loop state trajectory is generated by the following system 

= {A- +T- t))xl te [ti,U-hT),无I 二工t,. (4.7) 
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For general cases, the sampled-data RHC closed-loop trajectory x* does not necessarily coincide 
with the predicted open-loop optimal trajectory xl . But for nominal case (i.e., the plant model is exact 
and there is no disturbance) which is considered in this chapter, x* = x* during the sampling intervals 
[“，ti+i) and X*. = XTI = X*.. Therefore, the sampled-data RHC closed-loop system can also be written 
as 

- (A - BR-^B^P{ti +T- t))xl, t G [ti,U+i], i = 0 , 1 , 2 , . (4.8) 

A general framework to design a stabilizing sampled-data RHC is provided by [15], where the termi-
nal cost function W{x) is required to be a control Lyapunov function (CLF). Similar constraints on the 
terminal cost function are required by most of the DT RHC schemes and instantaneous RHC schemes 
(see [50] and the references therein). In the next section, we extend the DT UTC-RHC scheme to 
sampled-data continuous time systems and propose a sampled-date UTC-RHC (or UTC-RHC for short). 
This allows one to obtain uniform exponential stability without imposing constraints on the terminal 
state, or the terminal cost function, or the horizon length. 

4.3 Sampled-data UTC-RHC 

4.3.1 Algorithm 

Different from that of the standard sampled-data RHC presented in Section 4.2 (here by standard we 
mean the terminal cost function W and the horizon length T are fixed), the corresponding open-loop 
optimal control problem solved by UTC-RHC scheme keeps the horizon length T fixed, but has its 
terminal cost function updated at each sampling instant by the open-loop optimal cost function computed 
at the last sampling instant. 

More exactly, at the initial time TO, the associated open-loop optimal control problem is ^{XQ,TO,T, WQ) 

with WQ[X) = ；rTPorr，and the optimal cost is computed by 

^o'(^'o) = min { / r{xr,Ur)dT + Wo{xt^+T)}- (4.9) 
UT 

to<T<to+T 'to 

At sampling instant ti {i > 1), we solve the corresponding open-loop optimal control problem W^) 
with modified terminal cost function Wi{x) — and compute the new optimal cost function 
� : r ) by 

fti+T 
= min { / r{xr ,Ur)dr + Wi{xt,+T)}- (4.10) 

UT I + • 
ti<r<U+T J � 

Comparing (4.10) to (4.4), it is seen that the terminal cost function is updated at each sampling instant. 

Lemma 4.1 

V̂ * (；!、, t,, T, Wi) 二 V̂ * (^rt,, 1 H/Q ) (4.11) 

where Wi{x) = i 
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Proof: 
Consider (4.9) and (4.10), by LQR theory, Wi{x) = By the principle of optimality [44], we 
have 

rti+T 
=rain { I r{xr,Ur)dT + xJ.TP{iT)xi^+T} 

Ut 14 
,<T<fi+T 

rU+r 
= m i n { / Ur)dT 

UT IF 
t i < T < t i + T 

产+ 2 T (4.12) 

Li+T<T<ti+2T ."i+T 
rti+2T 

= m i n { / r{Xr:Ur)dT + - l)T)xt^+2T} 
UR IF. 

ti<T<ti+2T J � 

By induction, (4.11) is straightforward. • 

Remark 4.1 Lemma 4.1 shows that the optimal control problem using the varying terminal cost function 
Wi(x) and the fixed horizon T is equivalent to that using the fixed terminal cost function Wo{x) and 
the lengthened horizon {i + 1)T. In this sense, our algorithm effectively lengthens the horizon by T 
incrementally at each sampling instant, compared with the standard sampled-data RHC. As will be seen 
in Theorem 4.1, for arbitrary terminal cost weighting matrix PQ > 0，our algorithm always generates a 
state trajectory that uniformly converges to the origin exponentially. i 

Noting equation (4,11), the UTC-RHC control trajectory in the interval t e [U, U+i) is given by 

u{t-, xt,, ti, T, Wi) = u*{t-, {i + l ) r , Wo) (4 ⑶ 

= + (i + 1)T - t)xl, t e [、 t i+i) , i = 0，1, 2，•.-， . 

where P(ti + (i + 1)T - t) is computed from RDE (4.6) with initial condition PQ > 0. 
Since we consider the nominal case, similar with the development in Section 4.2, we can write the 

UTC-RHC closed-loop system as 

X； - (A - + (i + 1)T - t))xl = L^^xl, te [“’ii+i]，i = 0，l，2，.-.， (4.14) 

while keeping in mind that x^ is generated by the real plant which is driven by the open-loop control 
trajectory (4.13). 

4.3.2 Stability and convergence 

In this section we demonstrate the stability and convergence properties of UTC-RHC. We follow two 
lines of thoughts. First, we show that UTC-RHC algorithm guarantees -> 0 as i —> oo under 
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the standard assumption used for RHC in the literature, namely that the terminal cost function Wo{x) 
satisfies a control Lyapunov function (CLF) condition as in [15], [33] and [50]. This first development 
leads to Proposition 4.1, which places UTC-RHC in the context of standard approaches to RHC. Next, it 
is shown in Theorem 4.1 that UTC-RHC in fact guarantees uniform exponential stability for any positive 
semidefinite terminal cost function WQ and any horizon length T > S, and the UTC-RHC control actually 
converges to the infinite horizon optimal control law u'^{t) which solves the infinite horizon optimal 
control problem ^ { x t , t ) : 

roo 
min / r{xr, Ur)dT (4.15) 
•Ut /. 

subject to system (4.1). It is well known that 

‘心⑴=-R-iBTPmXt 4 LooXt, (4.16) 

where PQO is the maximal positive semidefinite solution of the associated algebraic Riccati equation 
(ARE) 

0 = A^Poo + PooA + Q- PooBR-^BTp… (4.17) 

and the optimal cost is V^{x) = x^POQX. 
Similar with "MPC value function" defined in [15], for t G [U, tj+i)，we first define Vt-{t, x*) as the 

value function for the optimal problem ^(a:*, t ,T — {i — U), Wi) or equivalently {i + l)T — 
{t - ti), WQ). By the principle of optimality, 

+ f r { x % u ; ) d T , (4.18) 
Ju 

where u* = u*(r; xt^, ti, T, Wi) for r € [U, t]. Then we define the "UTC-RHC value function" as 
xl) = V-n{t, X*) where tt = max.i{ti : U < t } . 

The following sequence of Lemmas provide the machinery for Proposition 4.1. 

Lemma 4.2 Pick an initial value PQ > 0 such that 

A^Po + PoA + Q - PoBR-^B^Po < 0. 

By applying Ut — -Rr^B'^PoXt to system (4.1) in the interval [a, 6] with 0 < a < 6, 

rh 
/ r{xt,ut)dt + xlPoXb < X^PoXa 

J a 

is satisfied. 

Proof: 
With K = -RR^B^PO, inequality (4.19) can be written as 

{A + BKFPO + PO{A + BK) < 一(Q + K'^RK). 

(4.19) 

(4.20) 

(4.21) 
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It follows that 

which implies 

XL[{A + BKFPO + POIA + BK)]xt 

< -xJ{Q + K^RK)xt = -r{xt,u,X V Xf G R" and t e [a, 6], 

PoXt) ^ xJPoXt + xJPoXt < -r{xt,ut). 

(4.22) 

dt 

Integrating (4.23) in the interval [a, b] yields (4.20) 

(4.23) 

• 

Remark 4.2 Since P{t) satisfies the RDE (4.6) and P(0) = PQ, inequality (4.19) is equivalent to 
P(0) < 0. This ensures the monotonically non-increasing property of P{t) (Theorem 10.11 in [8])， 

which is usually a key condition to ensure stability of instantaneous RHC [33]. Condition (4.19) is also 
the LTI equivalent of the conditions on terminal cost function required in [15] and [50]. i 

Lemma 4.3 Pick P(0) = î o 2 0 which satisfies the Riccati inequality (4.19), then 

/ fi+i 

where x^ denotes the UTC-RHC state trajectory. 

Proof: 

^uiU.xl) = / r{x*^,u*)dr + +(i+i)T 

(4.24) 

(4.25) 

where u*, x* is the open-loop trajectory pair solving the problem 少{x;�t“ {i + 1)T, WQ). Note x^.= 
x^. and the UTC-RHC state trajectory coincides with x^ during the interval [力“ t i^i) . 

Extend x^, u^ to the interval [U, tj+i + {i -f- 2)T] by concatenating to the controller ut ~ Kxf = 
-R~^BTPQ于]for t e [ti + {i + l ) r , ti+i + {i + 2)T]. Thus .去,={A + BK)xt for t e [h + (?； + 
l ) r , ti+i + (?； + 2)T] and Xu+(i+i)T = Define 

人 i+1 ./t,+(t+i)T (4.26) 
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Then, 

线 + i ( ( m ’ 4 + i ) - V ^ 〜， 

J t-： '''�… 
i+i 

• f'i 十 1 

[ ' K , O d T + {^f 伐 i+(仔 2)r 尸0 而…+ (i+2)T 

JtMi+\)T 

< - / r « , < ) c ? T 

(4.27) 

"ii+i < 

The first inequality in (4.27) is due to the optimality of V^.^j { U + i ， ) ； the second inequality is derived 
straightforwardly from Lemma 4.2; the third inequality follows from R > 0. • 

Lemma 4.4 

/ M{x;)dT <V'{to,xo), \/t>to 
Jto 

(4.28) 

Proof: 
Lemma 4.3 implies 

V t A k ^ x l ) - V t , { t Q , x o ) < - / M ( 4 ) d r , V t > to-
Jto 

Without loss of generality, we assume t e [t“ ij+i), then 

u*)dn 

(4.29) 

制 t ” 4 ) - / M{x;)di 

<Vt^{to,xo)- / M{x;)dT 
Jto 

=V\to.xo)- f M{x;)dr. 
Jto 

M{x;)dn 
(4.30) 

The first inequality in (4.30) follows from R > 0; the second inequality in (4.30) is obtained by consid-
ering (4.29). • 
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Based on these constructions, we are now ready to present the next result that shows UTC-RHC 
guarantees the convergence of the state under the same control Lyapunov function assumption used in 
standard RHC control. The proof of Proposition 4.1 is inspired by and adopts a technique similar to that 
used in [11] and [15], which is effective when the control trajectory is not continuous. 

Proposition 4.1 Under assumptions A1-A3 (except for Q > 0), and suppose there exists an initial value 
Po > 0 with the property specified in inequality (4.19), then the state generated by the UTC-RHC 
closed-loop system (4.14) will converge to the origin, i.e., — 0 as t ^ oo. i 

Proof.. 
Given an initial state xq at initial time to, it is clear that 0 < V^{to,xo) < oo. Since V^{t,x*) > 0 
and M{x) = x] Qx is positive definite, Lemma 4.4 implies 0 < f二 M{x*)dT < oo for any t > to. 
Since x* is generated by solving ^{xt^.ti, {i + 1)T, WQ), x*{t) is continuous and bounded for t € 
[U, ti + {i l)T). Therefore the UTC-RHC state trajectory x^ is also continuous and bounded for all 
t > to, for Xf is concatenated by x^ for t G [ti,ti+i) where i = 0,1，2,.... This together with the 
boundedness of u* for t E [ti,ti {i + 1)T) implies the boundedness of S* for t € [U, U + (i + 1)T). 
Thus, X* is bounded for all t > to, which means x* is uniformly continuous for t > to- Considering the 
fact that 0 < f:�M(x*)dT < oo, the convergence of 工 f o l l o w s straightforwardly from the Barbalet's 
lemma [28], • 

Remark 4.3 Condition (4.19) is a special case of condition (9) in [33], which is used to ensure mono-
tonicity of P(t), thence the stability of instantaneous RHC. 

Similar stability conditions for RHC algorithms for nonlinear systems are given in [11] and [15]. 
Lemma 1 shows that by properly picking the initial condition PQ, the stability condition SC5 in [15] is 
automatically satisfied while the condition on S (i.e., 0 < <5 < e) is relaxed to arbitrary > 0 as long as 
we pick a long horizon T satisfying 6 < T. i 

Proposition 4.1 is put here to relate our algorithm to the standard RHC. The next Theorem is our 
main result in this chapter. The proof technique is similar with that in [91]. It shows that UTC-RHC 
guarantees a stronger stability under milder conditions that possible for standard RHC methods, and our 
control gain will ultimately converge to the infinite horizon optimal control gain Loo-

Theorem 4.1 Under assumptions A1-A3, for arbitrary PQ > 0 and T > 0 with T > S > 0, 

1. UTC-RHC closed-loop system (4.14) is uniformly exponentially stable in the sense that 

\\x;\\ < llxoll, t>to 

for some positive real constants a and 

2. The UTC-RHC control gain converges to the control gain of the infinite horizon optimal control 
problem ^{xt, t), i.e., L^^ Loo as t oo. 
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Proof: 
l )Let 

Aoo =A - BR-^B'^Poc, 

At =BR-¥POC - BR-~^BTp〔TI + (i + 1)T 一 t). 

Then system (4.14) can be rewritten as 

if = (^oo + Afjx't (4.31) 

By LQR theory (Theorem 10.15 in [8])’ ^oo is stable, i.e., all the eigenvalues of A^o have negative real 
parts. Therefore, there exists a unique positive definite matrix P* such that the Lyapunov equation 

is satisfied, where I is the identity matrix with appropriate dimensions. Then we have 

pi - Kun[P"V < XmaAP*)! = ”！, (4.32) 

where p and 7] are positive real numbers. 
Let V{x) — x^P*x be a Lyapunov function candidate for the system (4.31). The derivative of V{x) 

along the closed-loop trajectory x^ is 

={<f{Aoo + AtfP*x； + + At)xl 

=xfiA^P* + AjP* + PMoo + P''At)xl 

= - { x * Y x l + {xtfiAjP^ + P*A,)x* 

<~\\x;f + \\x;f-\\AjP* + P*A 

AfP* + P*A 

*T 

(4.33) 

Since t G [U, U+i), ti = to + i5 and 0 < d < T, it follows that 

iT<ti + {i + l)T-t<{i + 1)T. 

o (for to + i5 < t < to {i + 1)5), hence 

(4.34) 

+ {i + 1)T - t ^ oo. When t oo, i also tends t( 
considering (4.34). 

By convergence property of the solution ofRDE (4.6) (Theorem 10.10 in [8])，P{ti-h{i + l)T~t) -)• 
Poo , thence ^ 0 as t oo. This implies that WAJP* + P*At\\ -> 0 as ^ oo. Then, for any 
0 < £ < 1’ there exists TQ > 0 which only depends on A, B, Q, R, PQ and £，such that for all t > TQ, 



Let ^{t, to) be the state transition matrix of system (4.14). Since (4.14) is linear, $(£, to) {to < t < TQ) 
is bounded. Denote FL = ma,^to<t<TQ 少(《，to), then || < ||:co|| for to < t < Tq. Since r] > p, WE 
have y / ^ n ||xo|j > || , Q UxoH}. It follows straightforwardly that 

丨丨：̂⑶ S a e 普 , � ) M , T>TO 

where a = > 0 and j3 = ^ ^ > 0. Therefore, system (4.14) is uniformly exponen-

Thus LYR Lno as 
tially stable, 

2) As shown in the above proof, P{ti + (i + 1)T — t) Poo as t 
t — oo. • 

Remark 4.4 The closed-loop system (4.31) is a hybrid switched system, 
in the proof is effective for this system, and it is not the standard Lyapunov 
literature. 

The Lyapunov function used 
function used in the CT RHC 

4.4 Simulation results 

In this section, we compare the performances of standard sampled-data RHC scheme with UTC-RHC 
scheme. Consider an open-loop unstable system 

X = 
2 

-0.64 -0.16 
(4.35) 

Let Q = / E be the identity matrix, B. — 1, the terminal cost weighting matrix PQ == 0 and the 
'35.6959 11.3680. 

initial state XQ 二 [ - 3 5 ] � . I n this case, the solution of ARE (4.17) is Poo 

the infinite horizon optimal control gain is Loo 
We select T 

= [ - 1 1 . 3 6 8 0 -4 .7146] . 
11.3680 4.7146 

and 

trajectory 

0.5 and 5 = 0.3 in this example. Using standard RHC control algorithm, the state 
T 
，the control gain L — LII L 12 and the control trajectory u* are shown 

in Fig.4.1. Using the UTC-RHC control scheme, the state trajectory x*, the control gain L and the control 
trajectory u* are shown in Fig.4.2. 

The figures show that under the same T and S, the state of the standard RHC closed-loop system 
diverges while that of the UTC-RHC closed-loop system converges to the origin. 

The figures also show that the RHC control gain repeats its value during each sampling interval, 
which does not converge to the optimal value Loo at all; while the UTC-RHC control gain gets improved 
with time and converges to the optimal value Loo after a few seconds. 
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\AjP* + P*At\\ < £ and V{xl) < - ( 1 - e) which means ^(a;*) is negative definite when 
t > TQ. Using essentially the same proof as that of Theorem 7.4 in [70], it can be shown that 

>TO ^TO 
To] < 
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-1000 

Figure 4.1: Profiles of x*, L and u* for the standard sampled-data RHC algorithm 

Also, under UTC-RHC scheme, the control trajectory u gets smoother as time t increases, and the 
control trajectory under RHC scheme is discontinuous at each sampling instant unless the state converges 
to the origin. 
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Sampled- RHC: Pq=0, T=0.5 and 5: 
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Figure 4.2: Profiles of x , L and u* for the sampled-data UTC-RHC algorithm 

4.5 Conclusion 

In this chapter, we extend the discrete time UTC-RHC algorithm in Chapter 3 to continuous-time LTI 
systems under the sampled-data system framework. Parallel stability and convergence results are ob-
tained. 

• End of chapter. 
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Sampled-data UTC-RHC: Pp=0, T=0.5 and 8=0.3 
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Chapter 5 

Synchronization of networked nonlinear 
systems 

5.1 Introduction 

This chapter is devoted to the second topic of the dissertation, i.e. synchronization for higher-order 
systems or consensus of higher-order multi-agent systems with a leader. 

Considerable effort has focused on two subjects of the networked systems, i.e. cooperative regulator 
problem and tracking problem. For cooperative regulator problem, controllers are designed to drive 
all the agents / nodes to the consensus equilibrium, which depends on the initial states values of those 
agents who have a directed path to all the other agents [67]. This is also known as leaderless consensus 
or synchronization problem in literature. As for the tracking problem, there is a leader node who only 
gives commands to a small portion of the other nodes. All the nodes are trying to tracking the trajectory 
generated by the leader node. It is called consensus with a leader, or synchronization to a leader, or 
pinning control in literature. Our research focuses on the tracking problem of higher-order nonlinear 
dynamics and is motivated by several points. First, most existing work on networked systems studies the 
first order or second order dynamics. Second, even for the first order or second order synchronization 
problems, dynamics are often chosen to be single integrators or double integrators (see [66] for a survey), 
while synchronization of multi-agent system with complicated nonlinear dynamics has not been fully 
investigated yet. Third, in literature, the dynamics of each agent of the multi-agent system is often 
assumed to be known exactly, but this is often not the case in practice. Many factors result in imprecision 
of the model, e.g. modeling the friction as a linear model for design purpose; system parameters drifting 
with time; and imperfect plant data. Finally, external disturbances are often neglected for the current 
research. However, disturbances exist almost in every practical application, such as white noise, gust to 
the aircraft. 

Due to the universal approximation property of the neural network [21], it has been applied to control 
systems for more than two decades. Adaptive neural control of centralized (compared to networked sys-

61 
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terns) nonlinear systems has been well developed with Lyapunov based stability analysis. Nonlinearities 
of the system, either known or unknown, can be compensated by NNs and the NNs weights are tuned in 
an adaptive online fashion. Some representative works are, to name a few, [16], [40], [43], [53], [56], 
[57], [78], [96], etc. 

Motivated by the above facts, we consider the higher-order synchronization problem of networked 
nonlinear systems with a time-varying active leader agent. Each agent is a higher-order system with a 
totally unknown nonlinear dynamics and an unknown external disturbance. The leader node is a higher-
order non-autonomous nonlinear system, whose dynamics is unknown to all the other nodes. The leader 
node gives commands to only a small portion of the follower nodes. The communication graph studied 
in this chapter is a weighted digraph with fixed topology, which is general than undirected graphs. Using 
neural networks to approximate the unknown dynamics and a sliding mode control scheme to handle 
the higher-order model, we propose a robust adaptive controller for the multi-agent system. We derive 
distributed controllers and adaptive NN tuning algorithms to guarantee that all the nodes synchronize to 
the leader node. The NN is tuned on-line and no off-line tuning phase is needed. Moreover, the controller 
is totally distributed in the sense that each agent is controlled by its own controller, and these distributed 
controllers can only use their own information and information from their neighbors, which depends on 
the topology of the communication graph. 

A notable recent work [22] also studies the consensus problem of multi-agent systems with unknown 
nonlinear dynamics and unknown external disturbances. Robust adaptive distributed NN controllers are 
proposed. The major distinctions between our work and their work are as follows. First, our commu-
nication graph is a directed graph, which is more general than the undirected graph studied by [22], 
since the communication between the nodes may not be mutual; Second, we study the tracking problem 
(or synchronization to a prescribed time-varying leader), while [22] studies the leaderless consensus or 
cooperative regulator problem, where the steady state consensus equilibrium depends on the initial con-
ditions; Third, we deal with the higher-order dynamics with sliding mode control scheme, while [22] 
proves the case for the first order dynamics, and shows the method can be extended to higher-order sys-
tems using backstepping technique. As is well known, backstepping is a recursive design procedure and 
the complexity increases drastically with the order of the systems [78]. In this sense, our design is more 
elegant, especially when the order of the dynamics gets very high. 

This chapter is organized as follows. First, background of graph theory is presented in Section 5.2; 
In Section 5.3, the higher-order consensus problem is formulated; Section 5.4 is the main part of this 
chapter, an robust adaptive synchronization controller for higher-order nonlinear systems is designed us-
ing Lyapunov technique, and rigorous proof is provided; Examples in Section 5.5 show the effectiveness 
of our algorithm; Section 5.6 ends this chapter with a conclusion. 



5.2. BASIC GRAPH THEORY AND NOTATIONS ^ 

5.2 Basic graph theory and notations 

A graph is usually expressed by ^ = {V, E) . V is a nonempty set of nodes/agents V = {vi,V2,…，v/v} 
and E is the set of edges/arcs E CV xV, where x is the Cartesian product, (vj, vj) G E means there is 
an edge from node i to node j，i.e. node j can get information from node i, but not vice versa. An edge 
from node i to node j is represented by an arrow which starts from node i and ends at node j. If weights 
are associated with edges, then the graph is called a weighted graph. The topology of a weighted graph 
is often represented by the adjacency/connectivity matrix A = [aij] G R^^^ with ajj the weights of 
edges, and aij > 0 if {vj.vi) G E ； otherwise Uij = 0 . Throughout this chapter, we assume there is 
no self loop, i.e. an = 0. A digraph is a directed graph, whose adjacency matrix A is non-symmetric; 
while a symmetric adjacency matrix A implies an undirected graph. Define a nonnegative matrix as a 
matrix whose entries are all nonnegative. Then the adjacency matrix is a nonnegative matrix. (One 
should distinguish nonnegative matrix from nonnegative definite matrix. The latter is a matrix with all its 
eigenvalues nonnegative). The i-th row sum of A , i.e. di = Ylf=i ^ij is the weighted in-degree of node 
i. Define the in-degree matrix as D = diag{di} G The graph Laplacian matrix is L — D - A . 

Clearly, the row sum of matrix L is zero. Let 1 = [1,1, • • • , 1] be a vector of elements 1 with appropriate 
dimension. Then L\ = 0. 

The set of neighbors of node i is denoted as iV! = Vi) e E}. If node j is a neighbor of 
node i, then node i can get information from node j, not necessarily vice versa for directed graph. For 
undirected graph, neighborhood is a mutual relation. 

For directed graph, a direct path from node i to node j is a sequence of successive edges in the form 
{(队"̂ fc)，（叫，巧），…，（'"m> '"j)}- A directed graph is said to be strongly connected, if for any pair of 
nodes {vi,vj) with i • j, there is a direct path from node i to node j. The following definition, fact and 
lemmas are standard in graph theory. 

Definition 5.1 [62] A matrix A = [aij] e is said to be reducible if its indices can be divided into 
two disjoint nonempty sets {zi, Z2, • • • , ip] and {ji, j2, • • • ,jq} with p^q = n , such that ai^i" = 0 for 
a 二 1,2，-.. ,p and /? = 1,2, • • • , q. Matrix A is called irreducible if it is not reducible. i 

Another frequently used definition of irreducible is: 

Definition 5.2 A matrix A — [aij] € is irreducible if it is not cogredient to a lower triangular 
matrix, i.e., there is no permutation matrix U such that 

A = U U T 

Lemma 5.1 [88] A graph Q is strongly connected if and only if its adjacency matrix A (or Laplacian 
matrix L) is irreducible. i 
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Definition 5.3 (diagonally dominant)([62][77]) A matrix A — [aij] G is said to be diagonally 
dominant, if an > l^ijl for a lH = 1, 2, • • • , n. It is said to be strictly diagonally dominant, if 
the above inequality holds strictly for all i = 1, 2, • • • , n. A is irreducibly diagonally dominant if A is 
irreducible and diagonally dominant, with strict inequality holding for at least one i. I 

Lemma 5.2 [74] If A is irreducibly diagonally dominant, then A is nonsingular. i 

Lemma 5.3 [62] Let the graph be strongly connected and at least one node can get information from the 
leader node, i.e. BI > 0 for at least one I. Then L + 5 is nonsingular. Moreover, define 

[91,92,... ,QNF = + 

P = diag{pi] = diag{l/qi], 

Q = P{L + B) + {L + B f P , 

(5.1) 

(5.2) 

(5.3) 

then P > 0 and Q > 0. 

5.3 Higher-order synchronization: problem formulation 

Consider a group of N {N > 1) agents with non-identical dynamics. The dynamics of the i-th (I = 
1,2, • • • , N) is described by the following system of nonlinear differential equations, 

— 

土? = 4 

： (5.4) 

i 严 = F I { X ^ ) + Wi + Ct, 

where x f ^ O G 此（m = 1’ 2，…’ Af) is the m-th state of node i; Xi =[工^ . . . ’ x ^ Y ^ 肢财 is the 
state vector of the i-th node; f i[xi) is locally Lipschitz and it is assumed to be unknown; UI{T) G R is the 
control input/protocol; Q[t) € R is an external disturbance, which is also unknown, but assumed to be 
bounded. Define x''' = [ x f , 4 � … ， e (m = 1’ 2，… , M ) as the m-th global states vector. 
Specifically, x^, x^ and are the global position vector, global velocity vector and global acceleration 
vector, respectively. Define f{x) = [ / i( :ci) , /2O2)’ …，//v(工AOF ^ R"，w = [ui,u2, • • • ’ w/vF € 

and C — [C11 C2, • • •，Ov]^ G R^. Then one has the global dynamics of the group of agents, 

— X^ 

= 

： (5.5) 

=f{x) + u + C 



5.3. HIGHER-ORDER SYNCHRONIZATION: PROBLEM FORMULATION ^ 

The dynamics of the leader/control node is given by 

— 工 0 

= 

(5.6) 

丄0 一 丄 0 

M 
士 0 = fo{xo,t), 

where fo{xo,t) is piecewise continuous in t and locally Lipschitz in XQ for all i > 0 and all XQ € 
RM, and it is unknown to all the nodes in graph Q-, a;o = [ 站 ’ , G is the state 
vector of the leader node. Denote = x ^ ' l =[均“’对〜…,x'^'f G E ^ and fo = M = 
[/o(xo, t), fo{xo, t), - • •，/o(工0，£ It is assumed that the leader node can give commands to 
at least one node i {i = 1，2，…，N). Let bj be the weight of the edge from the leader node to node i, 
then > 0 for all i, and bi > 0 for at least one i. When bi > 0，the leader node 0 is considered as a 
neighbor of node i and the node i is said to be a controlled node. The control node dynamics (5.6) can 
be considered as an exosystem that generates a desired command trajectory. The problem confronted in 
this chapter is the following. 

Definition 5.4 (Higher-order synchronization problem) 
Design control protocols UI for all the nodes in graph Q, such that —)• X^^, Vi = 1,2, • • • , N and 
m = 1’ 2， … ’ M . I 

Define the m-th disagreement vector as — x ^ — then all nodes are said to synchronize to the 
leader node if l i in“oo <5"̂  = 0 for all m = 1,2, • • • , M. 

Definition 5.5 [29] (Neighborhood synchronization error) 
Consider the leader node 0，the neighborhood synchronization error for i-th node is defined as: 

ej - ^ aij{x] - x\) -f- h^{xl - x]) 

e? = aiM - 工 h + bi{xl — .xf) 
jeA î (5.7) 

Note that although (5.7) looks similar with the state update law in [24], it is not the state law, but syn-
chronization error. Note, defining the local synchronization error in this form is a key to analyzing the 
directed graph. 



66 CHAPTER 5. SYNCHRONIZATION OF NETWORKED NONLINEAR SYSTEMS 

Define e"^ = [f ,771 ,771 
.1 '匕 2， e別 .Specif ica l ly , e^, e^ and e^ can be regarded as the global position 

error vector, global velocity error vector and global acceleration error vector, respectively. Considering 
LI = 0, a straightforward computation gives e^ = —{L + B)[x^ — x ^ ) . Derivation is shown below 

EjeNi + 

一 N. EjeN^ - X^) + b^ix^ —工 

ai l 0,12 • • ’ 

Q'21 0-22 • • • 

• • • 

aNl CLN2 • • • 

+ -

+ 
6i 0 0 
0 62 0 

0 0 63 

0 0 0 

0 

0 

0 

H 

UL - X ' 

aiiv 
A2N 

ayvTV�L工 

aij 0 

0 EyeN2 «2i 

0 0 

=Ax"^ — D t T + B (左? — a:爪）=-Lx 爪 + B (王� — x ^ ) + L x ^ 

- - ( L + + (L + B)成=-(L + B)(x爪-王『） 

Then we have the global error dynamics in a vector form as 

e = e 

(5.8) 

e^ = -{L + = -{L + B){f{x) + w + C _ 企)， 
M 

where B = diag{bj} e 

Remark 5.1 In this chapter, we do not use disagreement vector S^ for the distributed controller de-
sign, because it is global information that can not be accessed locally at each node, in contrast to the 
neighborhood synchronization error in (5.7). This will be clearly shown in the proof of Theorem 5.1. 1 

Lemma 5.4 Let the graph Q be strongly connected and B # 0 . Then 

P I < \\e^\\/a{L + B),m^l,2,---

where a{L + B) is the minimum singular value of matrix (L + B). 

(5.9) 
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Proof. 
Since the graph Q is strongly connected and B ^ 0, L + B is nonsingular. Noticing 严=—[L + 
it follows that = -(L + B)' 

丨|严丨| ML + B). 

therefore = (L + B) 
• 

Remark 5.2 Lemma 5.4 implies that as long as ||e爪|| is bounded, p爪|丨 is bounded. Moreover, e 肌 0 

implies 5肌 0， i . e . x^'' XQ \ and consensus to the leader is reached. i 

5.4 Robust adaptive synchronization: Lyapunov design 

In this section, using the control Lyapunov function technique, we show how to design the distributed 
controllers for each node, such that the higher-order synchronization problem is solved. 

5.4.1 Sliding mode error 

To deal with the higher-order synchronization problem, we introduce the sliding mode error Vi for each 
node 

"I = AieJ + A2e? + ••• + A M - i e f " ' + = 1 , 2 ’ N. (5.10) 

The design parameter A! is chosen such that the polynomial + + • • • + AI is 
Hurwitz. Then on the sliding surface r^ — 0, ej ^ 0 exponentially. To ease the design and analysis, 
we obtain such XI by writing + + • • • + A I = ( S - AI){S - 0 : 2 ) • • • ( § — CTM-I) and 
choosing positive real numbers ai . Define the global sliding mode error as r = [ri,r2, • • •，ryv]^, then 
r = Aiei + A2e2 + ... + Am - ic …+ e 义 

Define E"^ = , E^''] € rWx(m-i ) ’ 五 2 =[已之’ ...，^M] ^ jgNx(M-I)^ 

=[0，0’ …，0’ i f G and A = 

Then we have 

0 

0 

0 0 0 
—Ai -A2 —A3 

0

0
 …
1

 M
 A

 

E 股 ( M - 1 ) X ( M — 1). 

(5.11) 

Since matrix A is Hurwitz, given any positive real number there exists a positive definite matrix 
Pi，such that the following Lyapunov equation holds, 

A^Pi + FiA = -/?/, (5.12) 

where I G R(M- I)X(M- I) ^̂  an identity matrix. 
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1 
7；, 

1 y f , 广 2 1 

5 + a , S + A2 
1 

Figure 5.1: Block diagram showing relation between r,； and 

The dynamics of the sliding mode error r is 

=Aie^ + 入2# + ••• + 入 Af—I 合 M-I + 

=Aie2 + A2e3 + ... + Am-ic^ - (L-h B){f{x) + u + C -

= p-{L + B){f{x) + u + C-fo)^ 

•M 

where 

(5.13) 

(5.14) p = Aie2 + A2e^ + ••• + AM-I^^ = E'^X 

with A = [Ai, A2, • • • , AM- I]^. 
Next lemma shows that if r is bounded, then e ^ is bounded for every rn = 1, 2, • • • , M. 

Lemma 5.5 If r is bounded by j), i.e., Vt > 0，||r|| < 也 or in other words, each r^ is bounded by Xi 
with ip = JXi + XI + h XA/' then each e爪(m = 1,2, • • • , M) is ultimately bounded by 

with ao = 1. I 

Proof. The proof adopts essentially the same technique used in Section 7.1 in [71]. To be self contained, 
details are shown as follows. 

First, we derive the bound for e]. For i-th node, we have 

n = Aie； + hef + ••• + AM—lef -1 + e 严 

= A i e J + A 2 h . . + A M - i e ; ( M - 2 ) + e r - i ) ’ 

where el—') denote the m-th derivative of e}. Consider the zero initial condition (i.e. 
the Laplace transform to (5.15) gives 

r “ � = ( A i + A25 + • • • + Am-1 广 2 + … ) 

where s is the Laplace operator. (5.16) can be written as 

ri[s) ri{s) 
• � = Ai + A2S H——+ AM—IS似-2 + '�s + ai)(s + a2)…{s + aM-

(5.15) 

= 0 ) , applying 

(5.16) 

- T , (5.17) 

which means the local position error ej is obtained from 7\ through a series of low-pass filters, 
Fig.5.1. 



Note that for the nonzero initial condition cases, the bounds can still be obtained, but asymptotically, 
because the polynomial Ai + A25 + … + Aa/—is射—2 + s好-1 is Hurwitz. • 

Remark 5.3 Lemma 5.5 implies that for a given bound of r, larger poles aj can make a smaller bound 
f o r e " \ I 
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Figure 5.2: Block diagram showing relation between r^ and g 

1 

y丨, , 
1 y r \ s 

• _ _ 

s + a , 

Figure 5.3: Block diagram showing relation between r j and 

Let y j be the output of the first filter, then 

Vi = 

Then 

ai \y}\<xi 
J\ 

Similarly, applying the same reasoning all the way to ef’ we have 

)- ^ 
e l K 

(5.18) 

(5.19) 

—aia2 --aM -I 
Next, we derive the bound for e ^ when m > 1. Before proceeding, we need to show a fact that if 

？) r ,(s), then 1^(01 < 2 x i . 

As show by Figure 5.2, g = gi + Q2. By previous derivation, one has = J j 

Then I Pi I < Oxi £ 叩 — = Xi(l _ e — , < Xi‘ Thus M = + 1 < + H < 2x” 

Note that ef — ej can be expressed by Figure 5.3. Then < . _ _ and thus “ 

I明 < … 乂 By induction, | < "丨 = — ”丨 < TW- Xi 

Xi 
aia2---aM-

where ao = 1. 

The bound of global error e爪 is given by 

V) 2m 

m ̂  
a n; 

N 

r(x.； \ 
2m 

\ 
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Input layer Hidden layer Output layer 

Figure 5.4: A two layer neural network 

5.4.2 Linear in parameter neural network 

Function approximation property makes neural network a useful tool for solving the control problem 
[41]. It is well known that two layer neural network is a universal approximator [21]. A two layer neural 
network with v neurons in the hidden layer is depicted in Fig.5.4 with the mathematic expression be 

z = ip{W^a{V'y)) (5.20) 

where y = [yi,y2, • • • , ynP is the n inputs vector, a = [ai, cr2, • • • , a^^^ is the activation function 
vector for the hidden layer; V G jg the input layer weights matrix; W 6 is the output layer 

weights vector; cp is the activation function for the output layer. According to the NN approximation 
literature [21], for different applications, a variety of NN activation functions can be selected such as 
sigmoids, Gaussians/radial basis function (RBF), etc. A list of frequently used activation functions can 
be found in Fig. 1.1.3 in [41]. 

To avoid the distraction from the main issues being introduced, in this chapter, we assume a linear-
in-parameter (LIP) NN, i.e. the hidden layer activation functions (Ji(-) and the input layer weights matrix 
V are fixed, the output layer activation function is simply a summation function, only the output weights 
W are tuned. The following development can be extended to a two-layer NN as in [41]. 

Assume the unknown nonlinearities fi{xi) in (5.4) can be expressed on a compact set ft cR^ by 

Mxr) = WlUx,) + e, 

where 0iO‘）= cri{V'^Xi) e M^̂  with cJj = [o"u，(Ti2,. • • ’ crî J^^ E 
functions; Wi G is the idea neural network (NN) output weights vector; and Ci is the approximation 
error. 

(5.21) 

be a suitable set of Vj activation 
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Remark 5.4 By Stone-Weierstrass approximation theorem [72], in the compact set fi C R^, V î > 0， 

there exist a large enough positive integer v*, ideal weights Wi and suitable basis set </>《（.）such that for 
Vi > V*, max.j;.^Q llcill < £{. Then there exist positive numbers Wim > 0 and (f)iM > 0, such that 
||tVi|| < WiM and maxx^^n ||0i|| < 4>iM- As is often done in literature, this prescribed compact set fl 
is assumed to be as large as necessary. i 

We also assume the ideal weights vector Wi in (5.21) to be unknown. Each node maintains a neural 
network locally to keep track of the current estimates for its unknown nonlinearities. Since the NN are 
maintained locally at each node, they need only to approximate the local nonlinearities in the dynamics 
of that node. Therefore, the number of neurons needed at each node is reduced compared to centralized 
neural adaptive control. 

Define the approximation of the nonlinearity fi(Xi) as 

fiM = w f (̂ 工- (5.22) 

where Wi e K � i s the current estimate of the NN weights for i-th node. fi{xi) is the actual output of the 
LIP NN. The NN tuning law is shown in Theorem 5.1 using only the local information available to node 

Denote 

W = 

'Wi 0 … 0 _ V i 0 … 0 “ 

0 IV2 0 • » « • 
* » • • 

, w = 
0 W2 0 • • • • 

« • • • 

, e = 
£2 

，（K 工）= 
02(2:2) 

_ 0 0 … W j V - _ 0 0 … W n _ .ew. 如 { X N ) _ 

then the global nonlinearity f{x) can be written 

f{x) = W'^(t){x) + e (5.23) 

and the approximation is 

The error of the NN weights is defined by 

f{x) = (5.24) 

W = W~W. (5.25) 

It is important to note that matrices W, W and W are all block diagonal, a fact that is used in the proof 
of Theorem 5.1. 

Remark 5.5 By Remark 5.4 and the definitions of W, (j) and e, there exist positive numbers Wm,否m 

and EM, such that < WM-, \\(P\\ < and ||e|| < CM- Later in the proof of Theorem 5.1, we 
will see that bounds WM and EM are actually not used in the controller design, thus they do not have to 
be known. They only appear in the ultimate error bounds in the proof of Theorem 5.1 and so affect the 
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performance of the controller. The bound 4>m is needed to choose the design parameter c as in (5.31). 
It can be expressed explicitly if we choose the squashing functions as the activation functions, such as 
the sigmoids, Gaussians, hyperbolic tangents. For example, if we choose sigmoid functions 丄十“ as the 
activation functions and Vi neurons are used for the NN of node i, then ||0i|| < ^Jvl and ||0|| < yJNvi. 

5.4.3 Distributed controller design: Lyapunov approach 

This section presents the main result. We show how to design the distributed control law Ui and the 
distributed NN weights tuning law, such that all nodes synchronize to the leader node, i.e. Xi — xq, Vi 

The following definition extends the standard concept of uniformly ultimately bounded (UUB) ([28], 
[40]) to cooperative control systems. 

Definition 5.6 For any m = 1, 2, • • • , M, the tracking errors 們=x'''"'—are said to be cooperative 
uniformly ultimately bounded (CUUB) if there exist compact sets fl饥 E R which contain the origin, so 
that for any 广(如)G (Vi - 1,2, • • • , AT), there exist bounds B爪 and time T 爪 s u c h 
that ||(5^(t)|| < B"^, Vi > io + T"^- • 

Before proceeding, we make the following assumptions, 

Assumption 5.1 

a) The trajectory of the leader node is bounded, i.e., there exists a positive number XM > 0 such 

that| |xo(t)| | < XM, Vt > 0. 

b) There exists a continuous function g{x) : R^ ^ R, such that |/o(.x, t)| < \g{x)\, Vx G R^ and 
W > 0. 

c) For each node i, the disturbance Q is unknown, but bounded. Thus the overall disturbance vector 
C is also bounded by ||C|| < CM with CM a known constant. 

Since node 0 acts as the command generator, Assumption 5.1 (a) is reasonable. 
The main result of this chapter is given by the following theorem, which shows how to design the 

distributed controller Ui and the NN tuning law such that the tracking errors are cooperative uniformly 
ultimately bounded, thereby showing synchronization and cooperative stability for the whole graph Q. 

Theorem 5.1 Consider the distributed system (5.4) and the leader node (5.6). Design the distributed 
control law for each node i as 

Ui 二 + Asef + . . . + A w - i e f ) - M工i) + cr“ (5.26) 
Ui + Oi 



5.4. ROBUST ADAPTIVE SYNCHRONIZATION: LYAPUNOV DESIGN 11_ 

where c is the control gain; fi{xi) = W/ (j)i{xi) with Wi the current estimate of the NN weights for i-th 
node, and (j)i the suitable basis set as in Remark 5.4. With p defined in (5.14), controller (5.26) can be 
written collectively as 

u = [D + B)-^p - f + cr. (5.27) 

Let the NN adaptive tuning law for each node i be 

m = --Fict)inpi{di + bi) - KFiWi, (5.28) 

or collectively 
W = -F(f>rP{D + B)- kFW, (5.29) 

where the design parameters Fi — F'/ G xvi can be arbitrary positive definite matrices, 
F — diag{Fi, F2, • • •，F^} € , and vi is the suitable number of the neurons defined 
in Remark 5.4; K > 0 is a scalar tuning gain; P is defined in Lemma 5.3 and depends on the topology of 
the graph. 

Choose the NN tuning gain K and the control gain c such that 

K > 0 (5.30) 

and 

e � 5 f e ( W " 2 + " ) (5.31) 

僅 7 = h = ||A|| and g 二 ― 臺 l | A | | ^ ||A|| + a{P,)), where P, 
is defined in (5.12) for any (3 > 0, Q is defined as in Lemma 5.3 and is defined in Remark 5.5. 

Then under Assumption 5.1’ we have the following results 

1) the sliding mode error r is ultimately practically bounded according to (5.48), and the NN ap-
proximation error matrix W is bounded according to (5.50). Thence, the disagreement vectors 
S'^, Vm = 1 , 2 , . . - , M are cooperative uniformly ultimately bounded, which implies all nodes in 
graph Q synchronize to the leader node 0. 

2) the states Xi{t) are bounded Vi and\/t > 0. 

Proof. 

(1) Consider the Lyapunov function candidate 

= Vi + 1/2 + (5.32) 

with = i / ^ P r , V2 = and V̂s = ^ t r { E ^ P i ( E Y } -
First we compute the derivative of Vi along the closed loop state trajectory. 

= r^Pr = r^Plp - (L + B)(f(x) + u + (-企)] (5.33) 
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To simplify the notation, we denote f{x) as /， f{x) as / and (j){x) as <p in the sequel. Substituting (5.27) 
into (5.33), and considering (5.23)，(5.24), and L = D - have 

=r^P[-{L + B){f + C - / g - / + cr) + A(D + B) —V] 

=r'^P[-{L + + e + C - ^ + cr) + ^ ( D + B)-'p] 

=-rTp�L + B)W(j) - r^P{L + + C _ 企）—cr7>(L + B)r + r^PA{D + B)-ip 

=-rTP{L + B){e + C - /o) - + B)r - TTP(J) + 

+ + r'^PA{D + B)'^ p. 

Note the fact that x^ y — tr{yx^] if x, y € R'^, and consider (5.3), 

Ki = - T ^ P { L + ^ ) ( e + C - / o ) - i c r ^ Q r — TR{W(^RTP(D + B)} 
一 2 

T 

Since W=IV-W=-W 

+ = -r^F(L + B){e. + C - - ^cr^Qr 一 tr{W<j)r^P{D + B)] 

+ tr{W^4>r^PA] + PA{D + B)-'p - tr{W'p-'W] T T 

Substitute (5.29) into (5.36) yields 

(5.34) 

(5.35) 

(5.36) 

Vi + V2 = -^crTQr - P{L + B){e + C -/b) 

+ Ktr{W^W] + tr{W'^(l)r^PA] + r^PA{D + 

Considering (5.14) and (5.11), (5.37) is 

W 

(5.37) 

(5.38) 
Vi + V2 = --cr' Qr - — P{L + B){e + C -企）+ W} - K 

+ trilV^cpr^PA} + rTpA(D + + r^PA{D + 

Denote Qq = {xq € R^ : ||a:o(t)|| < XM}, then by Assumption 5.1 (a), XQ G QQ for all t > 0. 
Assumption 5.1 (b) implies the boundedness of |/o(a;o, t)\. Suppose \fo{xo, t)\ is bounded by /om» then 

/o < VN foM- Denote VN/om = FM- Let TM = CM + CM + FM, then 

+ < -^CA{Q) " r f + A{P)A{L + B)TM | |r | | + KWM W VF IMI 

— K . W 

FL 

十丨丨丨I a{D + B ) 

HPMA) 
- a{D + B) 

A 

\ 

II 
/ 

r f - K W 

斤 (印⑷ |丨』 2 丨丨 ,丨 | T 

+ kWM W 

F H 

lk!l • 
(5.39) 
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Next we compute the derivative of V3. Noting that tr{A + A^] — 2tr{A} for any square matrix A, we 
have 

^ = + E'PI{EY} = tr{E''PiiEY}. (5.40) 

Substituting (5.11) into (5.40) and considering (5.12) gives 

Thus, 

\>3 = + tr{rl^Pi(B^f} 

= + PIA)(FY} + tr{rrP:(FY} 

ZT 

%$-書11五1||2尸 + 茂(尸1)川1 IMIII" 

(5.41) 

2 
£；1||2厂 +斤(尸i) | |r | | | |£;i 

(5.42) 

F 

Therefore, 

/ I 
K < -

r 啦 ) _ ^ { D T T ) 
A IM|2 — 

2 P 
丑 1 i + ^MHpm^) 

||A | |f A l + a ( F i ) l|r|| .. + a{P)aiL + B)TM \\r\\ + KWM 

W 

w 

Ikll 

(5.43) 
To simplify the notations, let 

7 = 

h ^ P M A ) 

and 

then (5.43) is written 

9 = 

^{D + B) 

fHPMA) 
2 + 

V < —ZTKZ + UJT 

where z — W 
T 

F 
IkllJ ,K = 

5
 

o
 «

 7
 

«
M
-
2
 o

 5
 

(5.44) 

11 = \cg_{Q)—h2Lnduj = [0, kWM, 

B)TMV. 

Then V < 0 if the following two conditions CI and C2 hold, 

CI) K is positive definite. 

C2) p l l > where g_{K) > 0 is the smallest singular value of matrix K. 
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According to Sylvester's criterion, K is positive definite if all its leading principle minors are positive, 
i.e., 

/3 > 0 (5.45) 

PK > 0 (5.46) 

• - 2 g " � - l 3 千 > 0 (5.47) 

Solving the above system of equations gives conditions (5.30) and (5.31). Consider a property of vector 
norm, i.e. > |1̂1；|[2 > • • > condition C2 holds if either 

,11 > 
ll^lli a{P)a{L + B)Tm + I^WM 

五] 

W 

> 

辽 ⑷ 

IMI: 

这 ⑷ ’ 

—a{P)a[L + B)TM + K^WM 

� I M I i _ a{P)a{L + B)TM + i^WM 

(5.48) 

(5.49) 

(5.50) 
^{K) a{K) ‘ 

Therefore, as long as the design parameter K and c satisfy (5.30) and (5.31), then sliding mode error r and 
the NN weights approximation error W are ultimately practically bounded by Bd =刚)^眾沙.m 

It then follows from Lemma 5.4 and Lemma 5.5, that the synchronization error is cooperative uni-
formly ultimately bounded and all nodes in graph Q synchronize to the trajectory of the leader node 工。�. 

(2) Similar to standard neural adaptive control (e.g. not for networked systems) results, trajectories 
of all nodes x八t) are bounded, Vt > 0. The proof technique is adopted from [16]. Thus details are 
omitted and only some flavors are shown as below. Straightforward computation of (5.32) implies 

where F = diag | 
implies 

^ ( r ) rf 例 ) s •丨之 " 2 ’ 

警 卜 E3X3 and T = — { 竿 ’ 赤 

V<-a{K)\\zf + M ||z||. 

Then the combination of (5.51) and (5.52) gives 

dt^ ) - 2A{Ty 

(5.51) 

宰 } e 股3 X 3 . (5.44) 

(5.52) 

(5.53) 

Thus V{t) is bounded by Corollary 1.1 in [16]. Since (5.32) implies i|r||^ < it then follows 
the boundedness of r{t). By Lemma 5.5 and Lemma 5.2, S ^ ( t ) is also bounded. Since = x^ - XQ^ 
and considering Assumption 5.1 (a), we can see Vm = 1，2，…,M, are bounded all the time, i.e. 

are bounded. The bounds depend on the initial conditions V(0). Bigger initial condition results 
in bigger bounds for x^{t) [16]. Therefore given any initial condition F(0) , our result holds as long as 
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the compact set Q, on which the NN approximation property holds, is chosen to be large enough to make 
sure the states Xi{t) G Q, Vi, m and \/t > 0. In this sense, our stability result is semiglobal. Similarly W 
can also be shown bounded. • 

Remark 5.6 Note that the gains > 0 in NN tuning law (5.28) are computed using Lemma 5.3, which 
requires global information of the graph for computing (L + Therefore, they are not known 
locally and the controller Ui can not be implemented in a distributed fashion. However, NN tuning gain 
matrices > 0 are arbitrary, which implies PIF-i are arbitrary. This finally implies that we can pick an 
arbitrary pi > 0 for the NN tuning law. This is demonstrated by the example in Section 5.5. Therefore, 
the proposed controller Ui is thoroughly distributed, as one can see from (5.26) and (5.28), For design 
purpose, the control gain c can be smaller than in the condition (5.31)’ for (5.31) provides an conservative 
upper bound of the control gain c. i 

From the proof of Theorem 5.1, it is obvious that the bound Bd is conservative, i.e. it is larger than 
the actual bound for the sliding mode error r. We now show how to choose the design parameters c 
and K, such that the bound Bd is minimized. Note that once the topology of the graph and the design 
parameters c and K are fixed, the actual ultimate bound on the sliding mode error is also fixed. Also note 
that 0 is NOT a controller design parameter, it is only used to show boundedness. Choosing different j3 
does not affect the actual bound, nor the guide of how to choose the design parameter c and K. SO to ease 

" l 0 g 

0 ^ 7 
9 11^ 

the following analysis, we let = 2, Then K = 

Define c^i�0，such that 

= ^ + + h + (5.54) 

Note that for symmetric positive definite matrix K, its smallest singular value ( t ( ^ ) is equal to its 
smallest eigenvalue. One of the lower bound of the smallest eigenvalue [48] of the positive definite 
matrix K is given by 

+ M Arn ~ V ^ I -3^- — 2 V 4 K (5.55) 

= � ( ( " + VI) - + ’ 
where 771 is the smallest eigenvalue of the submatrix .e. 7/1 = m m { l , K,}. Using the lower 

0 

0 K 
bound of the singular value we can have a conservative expression for bound Bd as follows.Two 
cases are considered with respect to the value of K. 

Case 1: 1 < At 
Then 771 = 1 and the bound is 

2a{P)a{L-\- B)TM + 2kWM ^ 
na = . O.Db) 

(苦 + f + + 1) — 苦 + + + 1)2 — 4d-i 
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Case 2: 0 < < 1 
Then r]\ = k and the bound is 

Bd = 
2a[P)u{L + B)Tm + 2kWM 

(苦 + + 知 + ^c) - y^(苦 + + + K)2 — 
(5.57) 

For both cases, when K is fixed, increase (or equivalently increase the control gain c) can decrease the 
bound Bd; But when (or c) is fixed, to decrease the bound Bd, K should be designed properly case by 
case (i.e. it depends on all the other parameters in the expression of Bd). Loosely speaking, smaller K 
can decrease the effect of WM, thus decrease Bd to some extent. 

Remark 5.7 Another interesting thing is that the controller designed in Theorem 5.1 can even control 
a networked systems with switching graph topology, as long as the switched topology is also strongly 
connected and the leader node can still give commands to at least one node. This can be intuitively 
justified from the forms of controllers (5.26) and adaptive NN tuning laws (5.28), since they consider 
the information of the topology of the graph. When the topology changes, control laws (5.26) and NN 
tuning laws (5.28) changes accordingly. An example is given in Section 5.5 to demonstrate this ability. 

5.5 Simulation results 

Two examples are presented to demonstrate that the designed controller works not only for communica-
tion graph with a fixed topology, but also for communication graph with switching topology. 

5.5.1 Example 1: case for graph with fixed topology 

Consider a 4-node strongly connected digraph Q given in Fig.5.5. 
by a third order nonlinear dynamics. The leader node, labeled 0. 
the weighted edge 61 = 5. Then the adjacency matrix is 

A 二 

0 0 2 0 

1 0 0 0 

0 4 0 1 

3 0 0 0 

and B = 

Let the dynamics of the leader node be 

T2 

Each node z (z = 1, 2, 3,4) is modeled 
only gives commands to node 1 with 

=工 0 (5.58) 

工0 = - + 1 + 3sin{2t) + 6cos(2i) - + a:o - + 4x0 + 
o 1)， 



3.4. SIMULATION RESULTS 35 

Figure 5.5: Topology of the communication graph Q 

which is obtained from FitzHugh-Nagumo model [69] by applying coordinate transformation. System 
5.58 exhibits a chaotic behavior as shown in Fig.5.6-5.7 with initial condition XQ = [3,4, Ij「厂.The 
trajectory is bounded, thus satisfying Assumption 5.1 (a). 

Nodes i {i = 1 ,2 ,3 ,4) are described by third order nonlinear systems (5.4) with M = 3 and 

if = xfsin(xl) + + m + Ci 

±2 = + cos(x^) + (x^f + W2 + C2 

= + + U3 + C3 

~ ^ - + 0.5sin(2t) + cos(2t) - 3(xJ -h x j - 1)2(工1 ^ x l + x \ - I ) + u^-V Ct, 

(5.59) 

XA = 

where disturbances are taking bounded but randomly as Q = 0.2sin(randn) {randn is a MATLAB 
function, which generates normally distributed random numbers with mean be 0 and variance be 1). 
Note that open-loop system of node 3 (without disturbance) has a finite escape time. Open-loop system 
of node 4 is also a transformed FitzHugh-Nagumo model with different parameters from the leader node 
and it also has a chaotic behavior. See Fig.5.8 and Fig.5.9 when initial condition be X4(0) — [1,1,0广. 

The initial values of the states for each node i, Vi = 1, 2,3,4, are randomly chosen as long as Xi (0) e 
Q., which is as large as desired. In simulation, we take xi(0) = [4’ 1.6,0.9]^, 0:2(0) = [2’ - 3 , 
0:3(0) = [0.4, 0 ， a n d 2:4(0) = [1,1, Op . During simulation, we find NNs with only a small amount 
of neurons can give good performance. In this example, only 6 neurons are used for each NN. Initialize 
the NN weights be zero, i.e. Wi{0) = [0,0,0,0，0’ 0]^, Vi. To qualify (f)i as a basis set, sigmoid basis 
functions are used and the input signal of each NN is preprocessed by a random matrix v = randn(3,6) 
(randn(3,3) is a MATLAB function, which generates a 3 x 3 matrix with each entry be a random number 
generated by MATLAB command randn), then fi{xi) = W/ (f)i{v^Xi). 

Choosing design parameter as a i = 0:2 = 10, then Ai = a i a 2 = 100 and A2 二 + 0:2 = 20; 
c = 600; K = 0.01; Fi ~ 2000/ with I be the identity matrix with appropriate dimensions; pi in the 
NN adaptive tuning law (5.28) is chosen arbitrarily as pi = 50(1 + sin{randn)). Note, for the design 
purpose, Pi can be chosen arbitrarily, as long as it is positive. 
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Figure 5.6: Phase plot of the leader node 0 
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Figure 5.7: State trajectory of the leader node 0 

)x� 

80 

9
F
>
o
u
 j
a
p
i
e
a
i

 a
£
 j
o

 A
J
0
J
3
9
【
2
1

 a
i
e
j
s
 



Figure 5.8: Phase plot of the open-loop system of node 4 
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Figure 5.9: State trajectory of the open-loop system of node 4 
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Figure 5.10: Profiles of the global position vector 

Applying controller (5.26) to the networked system considered, the profiles of the state trajectory for 
each node is shown in Fig.5.10-Fig.5.15. Profiles of the disagreement vector are shown in Fig.5.16-
Fig.5.21, where Fig.5.17，Fig.5.19 and Fig.5.21 show that the disagreement vectors do not converge 
to zero, but are ultimately bounded by small residual errors. For example, {Sj \ < 6 x 10—5. These figures 
demonstrate the fast tracking performance of our algorithm. 

5.5.2 Example 2: for graph with switching topology 

Let the dynamics of the considered networked system be the same as in Example 5.5.1. For the first 10 
seconds, the topology of the communication graph is the same as in Example 5.5.1 as shown in Fig.5.5; 
during the time t = lO.s to t = 205, the topology of the communication graph Q switches to Fig.5.22, 
which is also strongly connected. Let the number of the neurons for each NN be 6，and the other design 
parameter be the same as in Example 5.5.1. 

Then the profiles of the state trajectory for each node is shown in Fig.5.23-Fig.5.28. As we expected, 
fast tracking is obtained and affects of the switching topology can not even be observed in these figures. 

Profiles of the disagreement vector are shown in Fig.5.29-Fig.5.34, which also show the fast 
tracking ability and small tracking residual errors. It can be seen from Fig.5.30, Fig.5.32 and Fig.5.34 
that at the switching instant, i.e. t = 10s, the disagreement variables Sf^ changes instantly, but are also 
bounded with different bounds from that during t = [0,10]. The different ultimate bounds is caused by 
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Figure 5.93: Profiles of the global acceleration vector a;' 
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Figure 5.11: Profiles of the global position vector x^ for t = [0’ 3] 
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Figure 5.13: Profiles of the global velocity vector x^ for t = [0, 3] 
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Figure 5.14: Profiles of the global acceleration vector 
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Figure 5.95: Profiles of the global acceleration disagreement vector for t = [0,3] 
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Figure 5.15: Profiles of the global acceleration vector x^ for t = [0,3] 
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Figure 5.96: Profiles of the global acceleration disagreement vector for t = [0, 3] 
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Figure 5.17: Profiles of the global position disagreement vector for t = [2, 20] 
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Figure 5.20: Profiles of the global acceleration disagreement vector for t = [0,3] 
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Figure 5.19: Profiles of the global velocity disagreement vector for t = [2，20] 
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Figure 5.21: Profiles of the global acceleration disagreement vector ĉ ^ for t = [2, 20] 

different topologies. These figures demonstrate that our algorithm may apply to networked systems with 
switching topology. The rigorous proof is under investigation. 
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CD 
Figure 5.22: Topology of graph Q fort = [10, 20] 
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Figure 5.23: Profiles of the global position vector x] 
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Figure 5.14: Profiles of the global acceleration vector 
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Figure 5.24: Profiles of the global position vector x^ for t = [0,3] 
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Figure 5.27: Profiles of the global acceleration vector a;' 
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Figure 5.26: Profiles of the global velocity vector x"^ for t = [0,3] 
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Figure 5.29: Profiles of the global acceleration disagreement vector for t = [0, 3] 
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Figure 5.28: Profiles of the global acceleration vector x^ for t = [0, 3] 
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Figure 5.31: Profiles of the global acceleration disagreement vector for t = [0,3] 
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Figure 5.33: Profiles of the global acceleration disagreement vector for t = [0, 3] 
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Figure 5.32: Profiles of the global velocity disagreement vector for t = [2, 20] 
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Figure 5.34: Profiles of the global acceleration disagreement vector S^ for t = [2, 20] 

5.6 Conclusion 

In this chapter, we consider a higher-order (the order is greater than 2) synchronization problem with 
unknown nonlinear dynamics and unknown disturbances, which is not investigated in the literature, to 
the best of the author's knowledge. A robust adaptive control law is proposed and it is totally distributed. 
The communication graph we investigated has a fixed topology. The future work is to extend our result 
to a graph with time varying topology，which will be more practical in the sense that the links between 
nodes may fail or created as they moving, considering the distance constraint of the transmitters and 
receivers. 

• End of chapter. 
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Chapter 6 

Conclusions 

In this dissertation, we have investigated two topics of the modem control, i.e. receding horizon control, 
and cooperative control of networked systems. 

For the first topic, inspired by the reinforcement learning scheme, we incorporate a learning feature 
into the standard receding horizon control algorithm and propose a new receding horizon control algo-
rithm, named updated terminal cost receding horizon control (UTC-RHC). In particularly, we propose 
UTC-RHC in the framework of discrete-time linear time invariant systems and sampled-data UTC-RHC 
in the framework of continuous-time linear systems. We show under both cases, the stability conditions 
required for standard receding horizon control are relaxed; the yielding closed-loop systems are uni-
formly exponentially stable; and the UTC-RHC control gains ultimately converge to their optimal values 
corresponding to the infinite horizon optimal control problems. 

Since a merit of RHC is to handle the input and / or state constraints, our future work on UTC-RHC 
will be extending it to nonlinear and / or constrained systems. 

For the second topic, we solves a tracking problem of networked higher-order nonlinear systems 
with an active leader. Each agent is a higher-order nonlinear systems with unknown nonlinear dynamics, 
and is perturbed by an unknown external disturbance. The leader node itself is also a higher-order 
non-autonomous nonlinear systems. We apply neural adaptive control techniques to eliminate the effect 
of the unknown nonlinear dynamics of each agent. Sliding mode control scheme is applied to handle 
the higher-order of the agents dynamics. Using the control Lyapunov function technique, we design 
distributed robust neural adaptive controllers such that all nodes synchronize to the leader node with 
small residual errors. 

Our work focuses on the communication graph with fixed topology. Although we show by simulation 
that our algorithm may work for graph with switching topologies, rigorous proof is need. Our future work 
will consider the graph with time-varying topologies. Moreover, it will be desired to find a more tighter 
bound of the synchronization errors. 

• End of chapter. 
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