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ABSTRACT

This dissertation contains two parts: a non-zero-sum game approach of con-
vertible bond and exotic options pricing under exponential-type jump-diffusion
model.

In the first part, we propose a non-zero-sum stochastic game approach of
pricing convertible bond under the framework that the capital structure of the
firm involves tax rebate and endogenous default policy. Convertible bond is a
hybrid security which embodies characteristics of both straight bond and equity.
Beyond the bond provisions, it endows a conversion option for the bondholder
to convert the bond for the equity of the issuing firm and a call option [or the
firm to buy the debt back. The conflict of interests between bondholder and
shareholder affects the security prices significantly. In Chapter 2, we investigate
how to use a non-zero-sum game framework to model their interaction and to
evaluate the convertible bond accordingly. Mathernatically, this problem can
be reduced down to a system of variational inequalitics. After we clarify the
structure of the optimal exercise region of both parties, we manage to explicitly
derive a unique Nash equilibrium to the constraint game and specify the asso-
ciated optimal exercise strategies. Our model shows that tax benefit and credit
risk can produce considerable impact on the optimal strategies of both parties.
The firm may issue a call when the debt is out-of-the-money or in-the-money.
This is consistent with the empirical findings of “late and ecarly calls” (Ingersoll
(1977), Mikkelson (1981), Cowan et al. (1993) and Ederington et al. (1997)) . In

addition, the optimal call policy under our model offers an explanation to some



n

stylized patterns related to Lhe returns of the company value as well.

In the second 1-)art, we use Laplace transform to study the pricing problems
of various path-dependent exotic options with the underlying asset following
an exponentially distributed jump diffusion process. These exotic options in-
clude double-barrier option and some occupation-time-related derivatives such
as step options, corridor options, and quantile options. The result about double
barrier options is presented in Chapter 3, where we prove non-singularity of a
related high-dimensional matrix, which guarantees the existence and unique-
ness of the solution. Chapter 4 is our work on occupation-time-related op-
tions, which presents an extension of the Black-Scholes setting to Kou's double-
exponential jump diffusion model. We derive the closed-form Laplace transform
of the joint distribution of the occupation time and the terminal value of the
double-exponential jump diffusion process, and apply the result to price various
occupation-time-related derivatives. This is done by solving the associated two
correlated ordinary integro-differential equations, thanks to the special property
of the exponential. All the Laplace transform-based analytical solutions can be
inverted easily via Euler Laplace inversion algorithm, and the numerical results

illustrate that our pricing methods are accurate and efficient.

»*

Key words: Convertible Bond; Non-zeto-sum Differential Game; Tax Benefit;
Credit Risk; Early/Late Calls; Positive/Negative Stock Return; Double-barrier
Options; Step Options; Corridor Options; Quantile Options; Occupation-Time;

Jump-Diffusion Process.
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CHAPTER 1

OVERVIEW

This dissertation contains two parts: a non-zero-sum game approach of con-
vertible bond and exotic options pricing under exponential-type jump-diffusion
model.

The first part concerning convertible bond is the key point of this disserta-
tion, the result of which is presented in Chapter 2. Convertible bond is a hybrid
security which embodies characteristics of both straight bond and equity. Like
straight bond, it distributes coupons continuously to the owner up to the matu-
rity. However, unlike straight bond, it also entitles the owner the right to convert
the security for a pre-specified portion of equity at her disposal. A typical con-
vertible bond also contains a callable feature that the firm reserves a right to
buy the debt back.

This mixed feature complicates the analysis of convertible bond. On one
hand, the firm asset value is shared between bondholder and shareholder. The
former should choose an optimal conversion strategy and the latter should set up
optimal bankruptcy and call policies to maximize the values of their respective
holdings. On the other hand, the firm can enjoy tax deductions from the gov-
ernment by serving interest payments to the bondholder. Hence, a non-zero-sum
game approach should be a reasonable choice for handling the convertible bond
problem.

Beyond the evaluation problem, 2 lot of studies try to explain two empirical

1



Chapter 1. Overview 2

puzzles regarding the convertible bond, that is, “early call and late call” puzzle
and “positive and negative” stock return puzzle. The empirical studies show
that the firm may issue a call when the conversion value- the equity value the
convertible bond can exchange for- is significantly bigger or smaller than the
call price, diversing the classic academic result that the firm should call the
convertible bond back if and only if the conversion value equals the call price.
This is called “early call and late call” puzzle to the out-of-the-money and in-the-
money convertible bond, respectively. The “positive and negative” stock return
puzzle is associated with the “early and late " call announcement. It is observed
that there is a significantly positive stock return associated with the “early” call
announcement and statistic negative stock return assoctated with the “late” call
announcement.

To valuate the convertible bond and explain these puzzles, we propose a non-
zero-sum stochastic game approach of pricing convertible bond under the frame-
work that the capital structure of the firm involves tax rebate and endogenous
default. We firstly transform the conventional non-zero-sum game formulation to
a system of variational inequalities. An additional condition is imbedded to en-
sure our Nash equilibrium is non-trivial and more reasonable in a sense of Pareto
optimality. Based on this variational inequalities, we derive the structure of op-
timal exercise region of each parties, which gives enough necessary conditions for
us to construct the solution of the game. By simplifying the underlying firm value
process to be a geometric Brownian motion and setting the bond with infinite
time maturity, we derive the semi-analytic solutions for the game together with
the specified optimal exercise strategies. Rigorous calculus show the existence
and uniqueness of our candidate solution. Moreover, we derive diverse optimal
call strategies, containing out-of-the-money “early” call, in-the-money “late” call
and the classic call, according to different initial parameter setting. Especially,
our optimal “early” call time for an out-of-the-money convertible bond is a first
passage time of the underlying asset process to an upside flat barrier, and our

optimal “late” call time for an in-the-money convertible bond is a first passage



Chapter 1. Overview 3

time of the underlying asset process to a downside flat barrier. These may also
give an explanation of the “positive and negative” stock return puzzle.

It is worth mentioning that the candidate solution of the convertible bond
problem is closely related to the first passage time of the underlying process to a
double-side flat barrier. Hence in the second part of this dissertation, we use La-
palce transform technique to investigate the double-barrier option, which relates
to the first passage time of double-barrier directly, and its extension, the occu-
pation time related options, whose exercise payoff depending on the cumulative
time spent by the underlying asset in a predetermined region. In this disser-
tation, we consider the exotic option pricing under Kou’s double-exponential
jump diffusion model. The model assumes the underlying asset return follows
a jump diffusion process with Poisson jump intensity and double—exponent-ially
distributed jump sizes. It is appealing in two respects. The associated asset
returns have heavier tails than normal distributions and hence the model is ca-
pable of generating asymmetric leptokurtic feature for asset retugns and volatility
smiles for equity options, matching the empirical data better than the geometric
Brownian motion model. The model also yields analytical solutions to many
pricing problems., including both European and path-dependent derivatives, in
terms of Laplace transforms. By applying numerical inversion anorithms we can
easily obtain the prices. The result about double-barrier options is presented in
Chapter 3. And the results about occupation-time-related options are delivered
in Chapter 4. All the results can be applied to the hyper-exponentially jump
diffusion model, an extension of Kou (2002)’s double-exponential jump diffusion
model, proposed by Cai and Kou (2008), for the purpose of providing sufficient
flexibility to capture the heaviness of the asset return tails.

Each chapter is organized self-contained with no reference to the others.



CHAPTER 2

A NON-ZERO-SUM GAME
APPROACH TO CONVERTIBLE
BoND: TAX BENEFIT, BANKRUPT
CosT AND EARLY/LATE CALLS

2.1. Introduction

Convertible bonds are hybrid securities that have the characteristics of both
straight bonds and equities. The bondholder receives coupons periodically and
is entitled to a right to exchange the security at her discretion for part of the
issuing company’s equity. How many shares of common stock one bond can be
converted for is pre-specified through a conversion ratio at its issuance. A typical
convertible bond also contains a callable feature - the issuer retains the right
to call the debt back. Upon calling, the company offers a price, which is also
specified in the bond contract in advance, to the bondholder and forces her to
either surrender the security for that price or to convert immediately.
Convertible bonds are quite popular as fund-raising tools among smaller
and more speculative companies. Because they lack stable credit histories, the
companies have to pay high interest to their debt holders if they choose to raise
funds through straight bonds. Meanwhile, their stock are usually undervalued

because the capital market is uncertain about the prospective of their business.
4
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Convertible bonds may help to achieve financing with lower coupon, which is
justified by the conversion right entitled to the bondholders. When the business
turns out to be successful, the bondholders will opt to convert to equity volun-
tarily or compulsorily. This in turn will strengthen the company’s capital base.
However, the original shareholders of the company will suffer from a dilution
after conversion. From the perspeclive of investors, convertible bonds are also
attractive to some extent. They offer equity-like returns and put a “bond-floor”
protection against the downside risk when the business of the issuing company
furns sour,

In this paper, we investigate how to price convertible bonds. According to
the preceding discussion, the interaction between bondholders and shareholders
will affect the bond price significantly. If the bondholders convert earlier than the
call announcement issued by the company, then the shareholders lose a chance
to force the bondholders to surrender to their interest; if the company calls first,
then the bondholders may have no way to act optimally. Hence, any rational
pricing model should incorporate the interaction between the two parties. We

use a game theoretic approach to tackle this problem.

2.1.1. Literature Review: a Tale of Two Puzzles

The pioneering work on convertible bond pricing dates back to Brennan and
Schwartz {1977, 1980) and Ingersoll (1977a). These authors initiate a struc-
tural approach to analyzing the optimal call and conversion rules and evaluating
convertibles. The key idea is to regard the bond as a contingent claim on the
company’s asset. They argue that a company should announce a call if and only
if the conversion value — the equity value convertible bonds can be exchanged
for — equals the call price.

However, later empirical studies do not support this conclusion. Ingersoll
(1977b) finds that a majority of companies under examination (170 out of 179)
significantly deviate from the theoretical “optimal” call policy. The median

company does not issue a call until the conversion value is 43.9% in excess of the
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call price. This finding is also confirmed by a series of papers such as those of
Constantinides and Grundy {1987), Asquith (1995) and so on. This phenomenon
is well known in the literature as an “in-the-money call” or “late call” puzzle.
More recent research, including those of Cowan et al. (1993) and Sarkar (2003),
present empirical evidence which shows that a few convertibles are called when
the conversion value is significantly smaller than the call price, which is known
as an “out-of-the-money call” or “early call”. The challenge lies in determining
how to reconcile the discrepancy between the two puzzles in practice and the
optimal policy in theory.

The second group of stylized facts we consider in this paper is related to
returns of the stock and the total assets of the issuing company at the call
announcement. Mikkelson (1981) reports that the average daily returns on the
announcement day and one day before were around —1% for all 113 in-the-money
calls tested, in contrast to the small returns of the market portfolio during the
same period. This finding raises an interesting question: what motivates these
companies to make a capital structure decision that reduces shareholders wealth?
Cowan et al. (1993) document positive and statistically significant common stock
price reactions to the announcement of out-of-the-money calls.

Extensive attempts have been made to explain these two puzzles. To name
a few, Ingersoll (1977b), Asquith and Mullins (1991), Asquith (1995), Altintig
and Butler (2005), and Dai and Kwok (2005) attribute the in-the-money call
phenomenon to the call notice period, a 30-day window in which the issuing
company allows the bondholders to ponder over their decision. Harris and Raviv
(1985) and Kim and Kallberg (1998) suggest that the reason for in-the-money
calls and negative security returns may be rooted in the asymmetric status of
market participants and shareholders in their ability to access the company’s
asset information. Cowan et al. (1993) explain that the positive reaction on
stock returns for out-of-the-money calling occurs because managers receive fa-
vorable private information about the value of the firm. Dunn and Eades (1984)

think that the call delay is caused by passive investors and argue that an in-the-
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money call benefits the company if enough investors are expected to delay their
voluntary conversions.

Other empirical evidence reveals that tax shields and credit risk play a role
behind the scenes in the two puzzles (see, c.g., Mikkelson (1981), Asquith and
Mullins (1991), Campbell et al. (1991), Jalan and Barone-Adesi (1995) and
Sarkar (2003)). The interest payments of a company to its debt holders are tax-
deductible expenses under the current tax codes. This may induce the company
not to call the debt back even if the conversion value of the bond exceeds its call
price. When the company calls, loss of the tax shield will decrease its after-tax
value and yield negative return on the securities of the company, as suggested by
Mikkelson (1981). In addition, Rosengren (1993) and Indro et al. (1999), among
others, point out that credit risk significantly affects the pricing of convertible
bonds in general. Impending danger of bankruptcy may prompt companies to

call earlier.

2.1.2. Contribution of Our Paper

In this paper, we develop a two-person game model to incorporate the interaction
between the shareholders and bondholders of an issuing company. We highlight
a tradeoff of two major concerns, tax deduction on interest payments and the
losses due to credit risk. On the one hand, the tax benefit entices companies to
borrow from bondholders, which may explain why they make in-the-money calls.
On the other hand, too much debt will give rise to the significant possibility
of bankruptey in the future. The costly reorganization procedure may prompt
out-of-the-money calls to mitigate the impending credit risk facing the company.
Encouraged by this intuition, we consider the effects of the combination of tax
shield and bankrupt costs on the strategies and pricing of convertible bonds.
Our model is capable of generating both in-the-money and out-of-the-money call
phenomena. Furthermore, the special structure of the optimal call policy under
the mode! yields a possible explanation for the above mentioned patterns on the

security returns at calling.
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Mathematically, the model can be formulated as a game involving two cou-
pled optimal stopping problems. With the help of the theory of variational in-
equality systems, we explicitly solve the Nash equilibrium of the game and prove
its uniqueness. Closed-form pricing formulae for both convertible bonds and
common stocks are then obtained and the corresponding optimal call, bankrupt
and conversion strategies are specified explicitly. The results provide a rigor-
ous mathematical framework to accommodate the empirical evidence in Section
2.1.1

The papers of Sirbu et al. (2004) and Sirbu and Shreve (2006) are closely
related with ours. They discuss how to use a game model to price convertible
bonds. However, due to the absence of tax eflects, their setting is zero-sum:
what the shareholders gain is what the bondholders lose. Thus, the two parties
will try their best to minimize the size what the other party can acquire. The
shareholders will never call in-the-money in their model. Bielecki et al. (2008)
consider a general defaultable game-option formulation of convertible bonds un-
der an abstract semimartingale market model. Kallsen and Kithn (2005) use a
framework of game contingent claims to study convertible bonds, and introduce
a mathematically rigorous concept of no arbitrage price for this kind of deriva-
tives. However, both of the papers ignore tax effects and resembles a framework
of game option discussed in Kifer (2002). In this paper we take tax effects into
account, which leads to a non-zero-sum game described by a system of varia-
tional inequalities. In addition, we aim to obtain closed form price formulae and
explain the empirical puzzles in convertible bonds.

We should acknowledge that there are many other factors which can influ-
ence the optimal strategies related to convertible bonds. The purpose of this
paper is definitely not to claim that our model is complete. Instead, we intend
to emphasize the impact of the tradeoff of tax and bankrupt costs and focus on
the mathematical modeling of the problem, especially the application of game
theory to convertible bond pricing. As the empirical literature in Section 1.1

points out, this tradeoff should not be the unique determinant, and introduc-
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ing other factors may accentuate its effect. We leave this direction for futurc

investigation.

2.1.3. Some Other Literatures: Reduced Form Approach

Most of the aforementioned literature can be classified under the structural
approach, viewing convertible bonds as contingent claims on the company's
asset value. The main criticism of this approach is that the company value is
not directly observable. Practitioners would like to build up models that can
be calibrated to liquid benchmark securities. Some studies thus suggest another
approach: to decompose the security into fixed income and equity components
and then to discount the associated cash Aows in each component at different
rates. Early papers in this area include McConnell and Schwartz (1986), Cheung
and Nelken (1994), Ho and Pteffer (1996), Tsiveriotis and Fernandes (1998),
Yigitbasioglu (2002). More recently, some researchers have introduced the
effect of defaults on equity to this approach, stimulated by the progress of the
intensity-based reduced-form modeling in the study of general credit risk. One
can refer to the work of Takahashi et al. (2001), Davis and Lischka (2002),
Ayache et al. (2003), Andersen and Buffum (2003} and Kovalov and Linetsky
(2006) for further discussion.

This chapter i1s organized as follows. We specify our model in Section 2.
Section 3 reduces the problem to a variational inequalities formulation and
presents some preliminary results. A complete description on the Nash
equilibrium is included in Section 4. The numerical experiments in Section
5 demonstrate sensitivity analysis on various parameters. We conclude this

Chapter in section 6. All the proofs are deferred to the Appendix A.
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2.2. Our Model

2.2.1. Asset Process, Debt Structure and Endogenous

Default

Consider a company issuing two kinds of securities '

, common stock and per-
petual convertible bond 2, at time 0. There are two players in the game: one
bondholder and one shareholder. Assume the un-leveraged asset value of this
company follows a geometric Brownian motion:

av

= (r — 8)dt + 0dW,, Vy =V, (2.1)

under the risk neutral probability measure. Here r is the constant risk-free
interest rate, W, is a standard Brownian motion and ¢ is a positive constant.
The company liquidates a portion of the total asset continuously to pay out to
its bondholder and shareholder as interest payments and dividends, respect,iv.ely.
The liquidation rate is supposed to be §V,dt (after-tax) within (¢,¢ + dt) for all
t>0. '

Denote P to be the total par value of the convertible bond issued at time 0.
Assume that the company will not change its capital structure any more after-
wards, until the moment of call, default or voluntary conversion. The bond pays
out a strearmn of coupon flow to its holder continuously. Denote the coupon rate
to be ¢. In every time interval (t,¢ + dt), the bondholder will receive an amount
of $¢Pdt coupon payments up to the first time when the bond is converted/called

or the company is in default.

ISince the firm uses the convertible bond as an alternative method to raise capital instead of
straight bond, usually there is no straight bond out-standing for a firm which issues convertible

bond.
2 Although the assumption of the infinite time horizon here is in purpose of simplifying the

analysis and getting explicit solutions, it would be reasonable for practice since there is in
general a very long time maturity for the issuing convertible and it is usually exercised long

time before the maturity.
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The bondholder is entitled a right to convert the security for some amount of
common shares at her discretion. The conversion factor A, 0 < A < 1, is defined
as what percentage of the company asset value the bond can exchange for. For
instance, if the company value is worth $V at conversion, then the bondholder
will obtain AV after converting *. Meanwhile, the convertible bond is subject
to redemption calls issued by the company at a preset strike price K. When
calling, the bondholder must opt to surrender the security for $K or exercise the
conversion immediately by force, that is we don’t consider the call notice period
here.

One important feature of our model is endogenous default, i.e., the stock-
holder can determine when to bankrupt. In the default event, the company
will lose a portion p of the total asset due to its reorganization procedure. The
bondholder will take over the rest part. We assume that 1 —p > X 4.

Suppose that the corporate tax rate is k. The company is assumed to enjoy
tax exemption by serving its coupon payments. It can claim a tax credit of xkcPdt
from the government for the total due interest payment, cPdt, in (t,¢ + dt). We
incorporate this tax benefit in the model by simply assuming that the actual
coupon payment for the company is (1 — k)cPdt. Recall that an after-tax cash
flow 8V,dt is available to both bond and shareholder according to (2.1). The
remaining cash flow after coupon obligation is then (6V; — (1 — k)cP)dt and will
be distributed to the shareholder as dividends. The quantity §V; — (1 —«)cP may
be negative. In this case, additional new equity is issued to finance the coupon

payments. Such capital structure specification is quite standard. For instance,

3People call the conversion rate A we define here as dulution ratic. Assume our convertible

bond can be converted to X share of stock. At conversion, the firm issues ) share of new stock
to replace the convertible bond and the bondholder gets a proportion A = T}K of the firm
value,

4Gince the bondholder can still convert. the bond for equity at the default, if the recovery
rate 1 — p is less than the conversion rate A, bondholder always has an incentive to convert the
bond to equity before the default, which in consequence remove the debt obligation and the

frm will never default.
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Leland (1994) and Leland and Toft (1996) consider optimal leverage level and
the pricing of straight bond under this framework; Hilberink and Rogers (2002)
and Chen and Kou (2009) incorporate jump risk to the same capital structure

to explain non-zero credit spreads of short-term straight bond.

2.2.2. A Non-Zero-Sum Game Between Bondholder and
Shareholder

We follow a game-theoretic approach to model the conflict of interest between
the bondholder and shareholder. According to the model description in the last
subsection, the bondholder can choose when to convert and the shareholder have
freedom to select both default and call times. Assume that both the two parties
are risk neutral and hence they will behave to maximize the values of their own
Holdings at time 0. All the decisions are made at time 0. For the simplicity’s
sake, both parties are supposed to have equal access on the information regarding
the company. We neglect information asymmetry in the model to concentrate
our attention on the effects of tax benefits and bankrupt costs on the behavior
of convertible bond.

Now, let us formulate the objective functions of the bondholder and share-
holder respectively. Once the two players fix the conversion time 7 and the
bankruptcy and call time 7, and 7., the present value of the convertible bond
can be decomposed into a sum of three components: coupon payments, conver-
sion value and bankrupt recovery. The present value of coupon payments, up to

the call/conversion or default, is equal to
TeATeatATeon
E [ / e "cPdt| .
0

When the default occurs, the bondholder will receive an amount of recovery
payment by taking over the company’s post-reorganization asset. Its present

value should be given by

Ele™™(1 = p)Vny * Lry<raainreon})
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When the call occurs first, the bondholder is forced to make a choice between
K and AV, . Under the risk-neutral assumption, the bondholder surely prefers
to the one which yields a better outcome in terms of the bond value. Thirdly,
the bondholder can initiate a conversion voluntarily which brings her a payoff of
AV;..,- The present values of the cash flows associated with these two events is

given by
E[e_rTCOHAVcn" ' 1{1'(.0,1(1"},!\1"__‘,;}] + E{e et ma'x{K‘ /\VT.-_,,;} ) 1{Tca!<'rfnﬂnn}]'
In summary, the value of the convertible bond at time 0 is then given by
Tean ATp A Teal
D(V;Tb|7ca!‘;Tcon) :EI:/ e "tePdt
0

+e—r(fcanf\fbf\fcuf) B (1 —_ p)vfbl{‘rbc'rcan J’\'l‘cat}

+e t‘{Tcan J'\Tbi'\‘-"r:al') . max{K, Av‘rcnl}l{fcnqur_anﬂrb}

—FTean ATy ATea
+eé ( > t) ‘ A“/;'cr.in1‘{'-"::.’.“1‘:‘rb""\'rcl:ll)

Vo = v]. (2.2)

Following the trade-off theory of capital structure (see, e.g., Brealey and
Myers (2008), pp. 503 - 504), the market value of the equity of a company should
be the difference between the market values of its total asset and outstanding
debts. In the presence of corporate tax and bankruptcy cost, the former equals
to the company’s un-leveraged asset value plus the present value of tax shield
minus the bankruptcy cost. The tax shield, which is defined as the present value

of tax deductions, is given by
ThATeal NTeon
E [/ e "rePdt| .
0

The default will force the shareholder out of the business and incur a loss of pV,,

for the company. Thus, the present value of the bankrupt cost is
E[e_’r‘rbpv'rb ) I{Tb“:fcal-"'\fcon}]‘
Hence, the market value of the company at time 0 equals to

TMTeal MToon
TFE(V; 7, Teat; Teon) =V + E [/ e " kePdt| — Efe "™ pVa, - Lin<reaAteon})
0
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and the equity market value is
E(V, Tb, Teals Tcon) = TF(V, Ty Teals Tctm) - D(V, Thy Tealy chm)-

By substituting D into the expression of function £, we may rewrite the equity

value as follows:
Tbhfcnfh‘rca“
E(V; Ty, Teat' Teon) =E[/ e "8V, — (1 — k)cP)dt
0

+e_r(?bhrt‘-ﬂ*"\n‘°“] ) 0 ) l{'rb{‘-"mlf\fcon}
4e r{TpATeat ATcon) . (Vfcnl — ma‘x{K’ AVTcul }) . I{Tcnl‘:‘rr,nn ATs)

+e T(7pATeat ATean) ' (1 - A)‘/‘n".r:t.w:]‘{‘ﬂ-:m-'l<1I'.:¢-.ua"'\"'t;]'“/0 = V] . (23)

The equation (2.3) has a clear interpretation too. The shareholder receives
a random dividend flow, (6V, — (1 — k)cP)dt, in every time interval (¢, + dt)
until one of the conversion, call and default events occurs. In the default event,
the shareholder loses the total equity value. When the bondholder converts, the
equity value will become (1 — )V, after the conversion. When the company
calls, the bondholder takes max{ K, AV;,,,} and leaves the rest to the shareholder.
Suppose that neither of the bondholder and shareholder is allowed to peer into
the future. Then, all of the three times, 75, Tear and 7eom, must be stopping times
with respect to the information filiration generated by {V;,t = 0}. Denote T
to be the set of all stopping times adaptive to the filtration of V. Then, we
can formulate a game between the bondholder and shareholder as follows: both
parties will take actions as a Nash equilibrium, in which 7¢,, and (7, 72,) satisfy

that all of them are in 7 and

Teon = Ig MAX D(V'; 14, Teat' Teon) (2.4)
and
(75, Toy) = arg max E(V; Ty, Teals Toon)- (2.5)
Tbnfcn!eT

For any fixed V such that V > K/, it is easy to see that Ty A Tear = 0 and

T.m = 0 is a Nash equilibrium of game (2.4-2.5). And the corresponding bond
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value D(V) = AV and equity value E(V) = (1 — M)V, that is, in this equilibrium,
both players only get the minimum intrinsic value. It is clear that for any other
Nash equilibrium of game (2.4-2.5) (if it exists), both players can get at least as
much as they get in the equilibrium 7y A Teet = 0 and Teon = 0. Hence in the
following, we throw off this the trivial equilibrium (Ty A Tew = 0 and Teon = 0),
and aim to find the non-trivial equilibrium point which can advance both the
bond value and the equity value 3. From now on, for each V, we consider the

following constraint game problem

o= ar max D(V:7y. T ™ 2.6
con g(rm.r,;nr;at)aé(o,tl) ( b+ Teats Tcon) (2.6)

and

To, T ) = ar max E(V: 7y, Teal; Tonn)- | 2.7
(5 Teat) g("r:o...nhfcad#(ﬂ.ﬂ) ( 5s Teal’ Toon ) (2.7)

It is worth pointing out that the game (2.6-2.7) is of non-zerc-sum feature.
Given the un-leverage company value V at time 0, the sum of the market values

of the equity and bond is
TaN\Teat ATean
E+D=V+E U e "'wcPdt| — Ele oV - Yncraanreont]s (28)
0

which is not a constant. The right hand side of the above equality reflects two
layers of concerns for the shareholder in determining his call and default policies.
On one hand, keeping a proper level of debts may help to boost the market value
of the company with the existence of the tax shield, the second term in right
hand side of {2.8). On the other hand, too much debt amplifies the threat of
default (cf. the third term in right hand side of (2.8)). In the later sections, we
will see that this non-zero-sum feature plays a key role in the forming of optimal

strategies, especially the optimal call and default strategies of the shareholder.

5The aimed equilibrium is actually called Pareto optimal Nash equilibrium, that is, it is
Pareto optimal among all Nash equilibrium of game (2.4-2.5). And finally our uniqueness of

the solution is also in the sense that there is a unique Pareto optimal Nash equilibrium.
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At the end of this subsection, we emphasize the effect of the tax benefits. Let
{E*(V), D*(V)} be a pair of optimal equity value and bond value. If the tax
rate = 0, then by (2.8),

E'(V)+D*(V) =V — Ele ™pVs, - Lincranreamt] < V.
On the other hand, if V > K/J, it is easy to see that
E(V)z>2(1-XAV and D*(V) > AV.
Hence on {V > K/A},
E'VY=01-NV and D*(V) = AV.

Hence “late call” never happens in absence of tax benefit. This result is quite
robust with the detail model setting, which is also the reason why there is no

“Yate call” in Sirbu, Pikovsky and Shreve (2004), Gapeev and Kiihn (2004}, etc.

2.3. A Variational Inequalities Formulation

From now on, let us turn to solving (2.6-2.7) for a Nash equilibrium. Mathemat-
ically, the problem can be regarded as two optimal stopping problems coupled
with each other. This observation leads us to reduce it down to a system of
variational inequalities. We will present some preliminary results in this section
on the structure of optimal policies by analyzing the inequalities. The work of
Bensoussan and Friedman (1977) investigates non-zero-sum stochastic differen-
tial games defined by stopping times. We first rewrite the objective functions
(2.2} and (2.3), following the general formulation provided by that work. This
step assists to formulate the variational inequalities a lot.

Note that the company will not have sufficient funds to pay the bondholder
off if the asset value is less than X when the shareholder calls. Thus, a rational
shareholder never declares a call in that case. On the other hand, he will not

issue a bankrupt announcement when the asset value is larger than K since this
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action leaves nothing to him. In light of these observations, we introduce two
new functions as follows:
0, V < K;
R(VYy=min((V-K)',(1-M)V)=<¢ V-K, K<V <K/X
(1-AV, V>K/A

and

g(V) =

(1-p}V, V<K,
V-hV) V2K

Functions h and g represent the respective payoffs of equity and bond securities
upon call or default. With the help of these two notation, we can rewrite (2.2)

and (2.3) to

Teon ATEATeal .
D(V) = E[f e ePdt + e T - AV reon <raATear)
0

+e—r(rbnrcn¢)g(vnmml) ) l{rc.mwbn-rma}wﬂ = V] (2,9)

and
Teon AT ATeal
BW) = Bl e T8V, — (1 — K)cP)dt
0
+e_r(rbh‘rc°l)h(vﬁ,f\f¢n;) : 1{"’cnn>"b"\fcﬂl}
+e TTeon . (1 - /\)V-rco“ : 1{f¢°n<'rbh'rmg}|% = V]! (210)
respectively.

The objective functions {2.9) and (2.10) distinguish the payoffs due to
voluntary and compulsory actions. For instance, in (2.9), g gives the payoff
of the bondholder when the shareholder takes actions; AV, . is how much the

bondholder can obtain when she converts voluntarily.

Under (2.9-2.10), it is straightforward to mimic the work of Bensoussan
and Friedman (1977) to achieve a system of variational inequalities to formulate

the game (2.6-2.7). Define an operator L as follows: it maps any function (with
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proper smooth conditions) f on [0, +00) into

Lf(v)=—=z0™v —v-('v) —(r - 6)1}%(11) + rf(v).

We consider the following variational inequality system: find two functions d and

e such that

(S

Cd(V) > AV, e(V) > h(V) for all V > 0.

2. 1f d(V) = AV for some V, then e(V) = (1 - A)V.

3. If e(V) = h(V) for some V, then (V) = g(V).

4. On the set {V 2 0:¢(V) > h(V)}, the function d satisfies

min{d(V) — AV, Ld(V) - cP} =G,

5. On the set {V > 0:d(V) > AV}, the function e satisfies

min{e(V) — h(V), Le(V) - (8V - (1 - k}cP)} = 0.

6. On the set {V > 0:e(V) = (1 — A)V, d(V) = AV}, either
Le(VY—(0V—(1 —K)cP)20

or
Ld(V) —cP >0,

and they could not hold simultaneously.

Remark 2.1. For the variational inequalities from 1 to 6, the value funclions
may not have the classic first-order and second-order derivatives at some points.
Then we use the week derivatives. For ezample, f" is defined as the second-order

week derivative of [ if

[_ " f(2)g(e)dz = [ " f()g" (x)dz

for all second-order continuously differential function g, which have compact sup-

pori.
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Remark 2.2. According to Bensoussan and Friedman (1977), Condition 1-5 s
actually equivalent to the conventional game formulation (£2.4-2.5). Condition 6
corresponds {o our aim of finding non-trivial Nash equilibrium or a more reason-
able optimal value functions, this s, the constrainl game formulation (2.6-2.7).
From Condition 6, we can intuitively see that, on the stopping region, either
bondholder or shareholder voluntarily behavior optimal, and the situation that

both parties behavior optimal is excluded.

Heuristically, we can argue that the optimal bond and equity value functions
D* and E* should satisfy the preceding system of variational inequalities. First,
it is easy to see that the bond value equals to AV when the bondholder picks
T.on = 0 as her conversion strategy. Due to the sub-optimality of this strategy,
D*(V) > AV for all V. On the shareholder side, the sub-optimality of 7, =0
and 1, = 0 will lead to E*(V) > h(V) for all V. These two observations implies
Condition 1 in the inequality system. The second condition states that if the
bondholder chooses to convert at time 0 when the company asset value is V/,
then this action will leave (1 — A}V to the shareholder. Condition 3 describes
the payoff of the bondholder when the shareholder declares a default or call to
stop the game at time 0.

Conditions 4 and 5 concern about the optimality of the respective strategies
taken by both parties. In Condition 4, when the initial asset value satisfies
E*(V) > h(V), the shareholder will not issue call and default announcements
immediately at time 0; that is, the optimal strategy set up by the shareholder
10 AT > 0. Given the action of the counterpart, the bondholder faces to
an optimal stopping problem to maximize the debt value by choosing a proper
Teon. It is well known that such optimal stopping problem can be described by a

variational inequality. In particular, in our case D* should be a solution to
min{D*(V) — AV, LD*(V) —cP} =0. (2.11)

In a similar manner, we can obtain Condition 5.

Condition 6 means that a conversion in the game must be triggered by a
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proactive action from either of the two parties. For a V such that E*(V) =
(1 - A)V and D*(V) = AV, the bondholder converts at time 0, either voluntarily
or by force. Suppose that it is a voluntary conversion, i.e., 75, = 0. By the
game formulation in (2.6), 77 A7, > 0, which implies that the optimal call
and default announcements will not happen at time 0. Similar as Condition 4,
the optimal bond value D*(V) should satisfy the variational inequality (2.11) in
the neighborhood of V. Specially D*(V) is smooth at V and LD*(V) > cPin
this case. On the other hand, if the conversion is compuisory, then 77, = 0 and
7%, > 0. The optimality of 7, in the interval [0, 72 ] will yield that LE*(V) >
8V — (1 — k)cP.

Once we know the solutions to the system of variational inequalities 1-6, we can
proceed to construct the Nash equilibrium to the game (2.6-2.7). According to
the discussion in condition 6, the company asset value at a voluntary conversion
is characterized by two properties: D*(V) = AV and LD*(V) > cP. Hence, we
may define

72 =inf{t > 0: D*(V}) = AV,,LD*(V;) 2 cP}.

As for the shareholder, natural candidates for the optimal bankruptcy and call
times are 77 = inf{t > 0: E*(V}) =0, LE*(V}) 2 8V — (1 — x)eP), W, € K}

and
i, = inf{t > 0: E*(V,) = h(V), LE (V) > (6V — (1 - &)cP), Vi 2 K},

respectively.

It is possible to present a clearer characterization for the structures of the
aforementioned stopping times, even without solving the system 1-6 explicitly.
Related results are summarized in the following proposition. They provide useful
clues to how to find the optimal E* and D*, which is the main task in the next
section.

Denote

Sp:={V 20:D(V) = AV, LD"(V) > cP},
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Sgp i ={V >0: E*(V)=0, LE(V) > (6V — (1 — k)cP), V < K},

and

Spc = {V >0 E'(V) = h(V), LE(V) > (8V — (1 — k)cP), V > K}.

Game formulation (2.6-2.7) indicates that Sp N (Sga U Sgc) = 8. We have

Proposition 2.3. Suppose that two functions E*(V') and D* (V') solve the system
of variational inequalities 1-6. Then, the following conclusions hold:

(1). There exists a unique V), € [(cP)/(8A), +00) such that Sp = [V, +00)
and D*(V) is smooth at V..

(11). There ezists a unique V" € (0,min{K, (1 — &)cP/d}) such that Sgg =
(0, V"] and E*(V) 1s smooth at V.

(ii3). Spc N [K,K/X) # 0 only of K < (1 — &)cP/r and Sgc N (K/A, +o0) # 0
only if K < (1 —&)cP/8. Moreover, if Sgc # 0, then K/ A € Sgc and there exist
unique Vi € (K, K/) and V},, € [K/) (1 — &)cP/(Ad)] such that Sgc =
Vi1 Viaua)- E*(V) is smooth at V3, | if Vi, < K/A; E*(V) is smooth at V5,
if Vs > K/A

We can interpret the meaning of Proposition 2.3 as follows. Conclusion (i)
indicates that the bondholder should convert when the company asset value in-
creases to a sufficiently large level. A default will occur if the company asset
value is low enough, as shown in conclusion (ii). The call strategy of the share-
holder depends on the magnitude of call price K. For a large K, conclusion (iii)
indicates that Sge = 0, i.e., the shareholder should not call at all during the life
of the bond. This makes financial sense because he has to pay a high pricé in
exchange for the bond security in this case. Conclusion (iii) also indicates that

K/ must be contained in Sgc if it is not empty.
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2.4. Nash Equilibrium

In this section, we will present a complete description on the Nash equilibrium
of the game (2.6-2.7). According to the guidance of Proposition 2.3, there are
only two possibilities: Sgc = @ when K is large and Spc # § for a small K.
How to form the equilibria in each scenario is specified in the subsections 2.4.1
and 2.4.2.

We need several notations to simplify the presentation. Introduce them here
for later reference. For any three real numbers such that 0 < b < v < d, let ¢ be

the first passage time of V, across double boundaries V = b and V' = d, ie.,
¢=inf{t >0:V, <bor V, >d}.

Define functions p and g to be the present values of two Arrow-Debreu securities,

paying one dollar on the events of V, = band W = d, respectively. In other words,
p(v;b,d) = Ele™1v.—j)Vo =v] and ¢(v;b,d) = Ele " Liv=g|Vo = v}.

Under the specification of geometric Brownian motion (2.1), both of them admit

closed-form solutions:

dﬁ+'7 - vﬁ” (b yB+T — pe+Y (d)"

.
p(vib,d) = —o—5y ;) and  g(v;b,d) = g5y

v

where two parameters g and 7 are given by

—(r—-6-0%2)+ A ?=(r—5—02/2)+A

6= 2 (2.12)

o? o

and A = /(r — 6 — 02/2)? + 2ro?.

2.4.1. No Voluntary Calls

As illustrated in Proposition 2.3, Sgc will be an empty set if K is sufficiently

large. In this case, the bondholder should choose to convert at the moment

e, =inf{t>0:V, 2V, }
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and the optimal default time for the shareholder should be in the form of
n =inf{t>0:V, <V'}.

We can find the bond value function explicitly under the above stopping
times. The bond value function satisfies that D*(V) = (1 — p}V when V < V¢
and D*(V) = AV when V > V3 . In the interval (V*, V. ), it solves an ODE
LD*(V) = cP. Appendix A.2 provides a general solution to this equation such
that

P
D*(V) = c—r— +aVP + eV,

where J and v are given by (2.12). Constants ¢, and ¢, are determined by
boundary conditions D*(V},.) = AV}, and D*(V}") = (1 — p)}(V}'). Some te-
dious calculation will yield that D*(V)} = Dy(V; V', V:,.), where Dy(v;b,d) is a
function defined as follows:

Ditwibd) = 5+ (1= oo = <) plwstid) + (M- ) qwibia) 213)
for0<b<u<d |

The equity value function E*(V') is solvable in a similar manner. It equals to

0 when V < V)* and (1 - A)V when V > V. Meanwhile, E*(V),V € [V, V2]

satisfies an ODE LE*(V) = 6V — (1 — &)cP, whose general solution is given by

1 — K)cP
T

E(v)=v-t + VP + eV

according to Appendix A.2. With the help of boundary conditions E*(V.: ) =
(1 - A)Vz:, and E*(V,*) =0, we can fix the values of constants c3 and ¢4 so that
E<(V) = Ey(V, V7, V2,), where E is a function given by

Ey(v;b,d) = v — Gl

T

(L2 ) s+ (L2 sd) vy 219

The optimal boundaries V;" and V_;,. can be determined through the prin-
ciple of “smooth pa.sting”‘. E* is differentiable on the whole interval {0,V |, in
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particular, at V = V,’. Hence, V; should satisfy

dE*
dV

(Vllvayy =0, (2.15)

where 0 is the left derivative since E*(V) = 0forall V € [0, V,’}. In the meantime,
note that D*(V) = AV for V > V. . V. should be a solution to another smooth
pasting condition

dD*
dv (V)iV=V;m = A. (2.16)

Both (2.15) and (2.16) constitute a system of equations regarding V;* and V..

We show in the following lemma that this system admits a unique solution.

Lemma 2.4. There exist unique V' and V., satisfying (2.15) and (2.16) simul-
taneously. Vy < (1 — k)cP/d and V3, > cP/(0)). Substitute them into (2.13)

and (2.14) and consider an equation
BV Vg, Van) = (1 = WV.

It has at most a unique solution, V = k,, within the interval (V;", V). Define
K\ = Ak; if such solution exists or Ky = AV, otherwise. Then, when K > Kj,
we have

B (ViVi Ve 2 h(V) and D™ (ViV;, Vi) 2 AV
for any V € [V, V).

The following theorem is the main result of this subsection. It shows that
for K > K, the stopping times discussed at the beginning of the subsection
constitute the Nash equilibrium and the explicit forms of the bond and equity
values are obtainable through (2.13) and (2.14). |

Theorem 2.5. Suppose that K > K, and V' and V. are solutions o the equa-
tions (2.15) and (2.16). Then, in an equilibrium the bondholder should convert
at

., =inf{t>0:V, >V, }
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and the shareholder never calls and should announce a defaull at the moment
n=inf{t>0:V, <V}

Furthermore, the optimal equity and bond value at time 0 are given by

(0,(1 = p)V) fV <V
(E°(V), D' (V)) = ¢ (E((V Vo Vo), Di(V, VA Ve ) Ve <V SV
((1 = NV, AV), V>V

In Theorem 2.5, the optimal default and call boundaries are specified through
the smooth pasting conditions (2.15) and (2.16). Computing the anticipated
appreciation in equity value around the bankrupt trigger V,* casts more financial
insight on the optimality of the bankruptcy policy. Applying Ito’s lemma to the

equity value function E* with respect to V;, we have

. dE" 1, ,8%E OE & E
dE* (Vi) = =dVi + 2v,2 Syt = avl dV, + —a2v3 avz‘l

when V; > V. As V; | V", OE\/8V converges to 0 according to (2.15). After

dt

substituting (2.14), the expression of E), into 82E,/8?V, we can easily show that

V)) — (1 — k)eP — 6V,

Consequently, the expectation of dE*(V;) should satisfy
lim E[dE* (V)] = [(1 — k)eP — §V}'|dt.
VilVy

The left hand side of the above equality may be interpreted as the expected
capital gain for the shareholder at the default boundary V; = V' if he puts
off the default to 2 moment later. The right hand side is the additional cash
flow required from him to keep the company solvent for this mébment. It is the
difference between the after-tax coupon payment and the cash flow available for
paying out by liquidating a portion of the company’s asset. From this equality,
we can see that the smooth pasting condition (2.15) implies that at V = V),

the equity capital gain just equals to the amount of cash flow which must be
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provided by the shareholder to meet the debt obligation. Hence, he should
choose to announce a default when V, = V;" because it will not be an attractive
option any longer to continue contributing new capital to make the company
run.

Following similar calculation, we can show as well that under the smooth
pasting condition (2.16),

V:lri{’?a,. E{dD*(V;} + cPdt] = rAV_ dt.

Its left hand side means the expected sum of the capital gain in bond value
and received coupon payments, if the current company value is V;, and the
bondholder opts to postpone the conversion decision until d¢. The right hand side
is the total value appreciation under the risk neutral probability if the bondholder
chooses to convert at V2 and carries the post-conversion value over (0,dt).
Both ways offer her the same payofls and she should convert immediately at V
consequently.

The financial explanation of the pricing formulas in Theorem 2.5 is very
clear too. If the default and conversion never occurred during the whole life of
the company, the present value of the total debt obligation for the company at
time 0 would be

+00 -
/ (3 — k)cPe ™ "dt = (= r)eP
0

in the presence of the corporate tax exemption. Accordingly, the equity value
would be V — (1 — k)cP/r at time 0. Upon the moment the conversion happens,
the company’s capital structure changes and it is released from a continuous
debt payment flow whose value is worth (1 — x)cP/r. At the same time, the
shareholder has to give up AV, to the bondholder. The net equity value change
for the shareholder when converting is then

(1 —K)eP

T

AVeon.

When the default occurs, the shareholder loses the total asset value due to the

bankruptcy, albeit he does not need to serve the debt obligation any longer.
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Hence, the net equity value change at that time will be

(1 — k)cP

T

— V.

Recall the probabilistic meaning of p and q. The last two terms in the expres-
sion of E(V;V;*, V. ) reflect the present values of these two changes. Similar
observation applies to the bond value as well. We leave detailed discussion to

the readers.

2.4.2. Early and Late Calls

In this subsection, we consider the cases with cheap strike price, more specifically,
K < K,. For such K, the shareholder will keep calling the debt back as an
option, i.e., Sgc # @. According to Proposition 2.3, there exist two critical
points K < V3, | < K/A < V3, s0 that Spc = [V, Viay 2] Meanwhile, he will
announce default on the company’s debt obligation if the company value is lower
than V" < K. On the other hand, the bondhoider’s conversion region is specified
by [V.5,., +00), which does not have any overlapping with Sgc, Vi, > V.-

In two disjoint intervals (V;",V,,) and (Vg5 Vi), both parties of the
game do not take actions to stop the running of the company. Therefore, the

bond and equity value functions should follow the ODEs
LD (V)=cP
and
LE" (V)= 6V — (1 —k)cP

respectively. Some boundary conditions are needed to fix their solutions. Take
the interval (V;*, V.3, ,) for instance. Since D*(V) = (1 ~ p)V, E*(V) =0 for
V<Vyand D(V)= K, E'(V)=V — K for V € |V}, |, K/)], the continuous
property of D* and E* requires that

D (V) = (1 - p)Vy and D* (Vo) = K
E"(y) =0 E*(Viya) = Vo - K.
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It is straightforward to verify that D*(V) = Di(V; V), V3,,) and E°(V) =
Ex(V; V), Vi), where

Dav; b, d) = "—? + ((1 — o)b— g) p(v;b,d) + (K - —P) q{v; b, d)

and

Ey{v; b,d) =v — LI*TR)CQ

+ ((_l:ﬂ —b)p(v;b,d)+ (“—‘—fﬁ - K) q(v; b,d)

T T

forall0<b<v<d

The financial interpretation of D, and E; is achievable as well, following
similar analysis as what we did for D, and E,. The only difference is that
at V2, ,, the bondholder prefers to settling the call with cash. She receives K
and terminates the coupon payment whose present value is given by cP/r. The
shareholder saves (1 — x)cP/r for the company but he needs to pay K to the
bondholder.

For the interval (V3 ;, Vi.,), introduce two functions

Di(v;b,d) = cf’ (Ab - f) p{v; b,d) + (/\d - 5:2) g{v; b, d)
and
Es(v;b,d) = v — (iif)—cp

+ (il;flff - ,\b) p(vsb,d) + ((1 T")CP - Ad) q(v; b, d)

for all 0 < b < v < d. The boundary conditions of D* and E* at Vg, , and VI,
D (Vau2) = AWz D*(Vin) = AVoon
’ and
E'(Vc:u,z) = (1 /\) mtz E'(Vc:m) = (1 - )‘)Vc:m

can help us to determine bond and equity value functions in the interval
(Viasz Vitm) 88 D*(V) = Ds(V; V5, Van) and E7(V) = E3(V; V30, Vign). One

may figure out the corresponding interpretation to E3 and Dj by itself.
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Invoke the principle of smooth pasting once again to look for the optimal
boundaries V', V3, ,, Ve, and V7, Note that E*(V) = 0 for V < V' and
E*(V)=V - K for V € [V, K/X]. We can use
dt” dE*
Vilvay- =0
T Vlv=y; and

to determine V' and V3, ,.

v Vlvay,,, =1 (2.17)

As shown in the next lemma, substituting the ex-
pression of E, into (2.17) will generate the solutions. In the meantime, since
E*(V) = (1 -V for V € [K/) V5, and D*(V) = AV for V € [V, +oo},
Vo2 and V. should satisfy

dE* daD*
— L) e —_— d
v (Vlvay.,,=1-X an

v (Vlv=rz, = A (2.18)

where E* and D* are given by F3 and D; respectively.

However, the V%, and V3, , obtained through equations (2.17) and (2.18)
may not satisfy the requirement that V3, | < K/A <V, ,, which guarantee that
the smooth-pasting condition holds at V3, , and V,,. In the following lemma,

we show that this is true only for small strike price K.

Lemma 2.6. (i). For each K < (1 — k)cP/r, the equation (2.17) has unique
solutions V;* and V3. Vy < min{K, (1 — x)cP/d} and V3, > K. Notice that
the definition of E; involves K. View such obtained V3, as a function of K

and consider an equation .

Va1 (K} = K/X

There erists a unigue root Ky < (1 ~ £)}cP/r to this equation. Ky < K,. Fur-

thermore, when K < Ka, we have V3, < K/A,
Ex(ViVy, Vi) 2 (V= K)' and  Do(ViVg, Vi) 2 AV

forallV € [V, V3]
(it). The equation (2.18) yields unigque solutions Vg, and V. V3, <
(1 — k)eP/(A8) and V!, > cP/(A0). For allV € (V3 5, Vin),

Es(Vi Vg Vin) 2 (1= NV and  Ds(V; Vg, Vam) 2 AV.
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Notice that both of the definitions of Dy and F3 are independent of K. Such
obtained V., , and V3, does not depend on K either. Let K3 = AV, ,. For any
K < K3, we have K/A < V3, ,.

Proposition 2.3 states that K/X is an interior point of Sgc = (Vi1 Vi ol
when K is small. For K > K, the left boundary of Sgc for the shareholder
degenerates to K/A. In this case, we use the continuity of the value function at
the boundary instead of the smooth-pasting principle. The boundary conditions

for E* and D* will change to
D*(K/)) =K and E*(K/X\)=K/A-K.
Combining with the boundary conditions of E* and D* at V = V;*, we have
D*(V) = Do(V;Vy, K/X) and E°(V) = Ex(V V' K/A)

for V' <V < K/A. The optimal default boundary V' is once again determined

by a smooth pasting condition

dE* dEsy

S Wlvay; = 57 (G5 Vi, K/X) = 0. (2.19)

In a similar way, one can establish the corresponding results under the scenario
K; < K < K, if K3 < K;. The right boundary of Sgc, Vo, degenerates to
K /). The bond and equity value functions should be given by

D (V)= Ds(V; K/A\ V. and E*(V) = E3(V;K/A, Vin)

for all K/XA <V <V, respectively. The optimal conversion boundary V_, is a

solution to

dD* dD
(Vlyoys = ——

We summarize some related properties of functions E* and D* for such

intermediate sized K in the following lemma:
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Lemma 2.7. (i). When K € |K2, K1), we can find a unique Vy' < min{K, (1 -
k)cP/8} satisfying (2.19). Furthermore, once we substitute such V" in the func-

tions Fy and Doy,
EdV VS K/X) 2 (v— K)' and Da(V V), K/A) = AV

for V e (V" K/A.
(i2). Suppose that K3 < K,. For any K € |K3, K1) and K < cP/d, equation
(2.20) yields a unique solution V.. Vi > cP/(6)A). In addition,

EyV:K/A\V: )> (1 =XV and D3(V, K/ V) > AV
for any V € (K/A V2,).

Now, we are ready to present the main conclusions in this subsection. The
following theorem builds up a Nash equilibrium in the case of K < K, using the

aforementioned stopping regions and the critical points in call prices.

Theorem 2.8. When K < K, a Nash equilibrium to the game (2.6-2.7) 1s

formed if the bondholder converts her security at the moment
T = inf{t 202V, 2 Vi)
and the shareholder declares bankruptcy and call at
n=if{t>0:V, <V} and 75, =inf{t 20:V, € [Va 1 Vauol}

respectively. Under such equilibrium, the equity and bond value functions should

be given by
(0.0 -p)V), V<V
(B2(V; Vi, Vi), D2V Vi, Vi), Vo <V < Vo
V — K, K), Ve <V < KA
)0y = 0  Vea /
(1 = NV, AV), FK/N<V < Vi
(Es3(V; Vc::.!,2! Veon)s Dy(V; Va2 Vin))s Vi < V < Vini
(1= 2V, V>V
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In addition, when K < K, V; and V3, are determined by equation (2.17)
and the endpoint of the call region V3, < K/A; when K2 < K < Ky, Vi,
degenerates to K/A and V;? is determined by equation (2.19); when K < Kj,
Vaso ond V., are delermined by equation (2.18) and the endpoint of the call
region V5, , > K/, when K3 < K < K\, V3, degenerates lo K/X and V5, is
deterraned by equation (2.20).

Finally, we show that the Nash equilibrium in both scenarios is unique.

Theorem 2.9. For all K > 0, the bond and equily value functions in any Nash
equilibrium of the game (2.6-2.7) should be identical with the functions gwen in
Theorems 2.5 and 2.8.

Some observations on Theorem 2.8 are of special interest to us. First, K/ is the
optimal call boundary only in some cases. Note that if the shareholder opts to call
the debt back when the company value V; = K/, the bond's conversion value
equals to the call price. This is exactly corresponding to the optimal conversion
policy established by Brennan and Schwartz (1977, 1980) and Ingersoll (1977a)
under an ideal market assumption. However, our model reveals that this policy
may not be necessarily optimal if we take the tax benefit and credit risk into
account.

Second, our model is capable of generating out-of-the-money calls. When
K < K, the shareholder should make a call announcement at the first time
when the asset value surges up to Va1, & level less than K/A. When he calls, the
conversion value of the bond is less than K. The return rate of the company asset
at this out-of-the-money calling must be positive because the call is triggered by
an up-crossing of the asset process. This is consistent with the empirical finding
we mentioned in the introduction.

Third, sometimes the shareholder may also call the debt back when it is
in-the-money. For K < Kj, if the company starts with an initial value larger
than K/), the shareholder will issue a call at Von 2. The conversion value of the

bond at the call is then AVion 2, exceeding its call price K. The asset return of
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the company on in-the-money calls in our model is negative, since such calls are
triggered by a down-crossing of the asset process. Consequently, our model can
reproduce late calls and associated negative returns, consistent with the pattern
found by Mikkelson (1981} and so on.

Finally, we find that there will not be a consistent pattern for the asset
return when the convertible bond is called at the moment when the company
asset value first reaches K/A. The return could be positive if the company starts
from an initial value less than K/ and could be negative if the company starts

from an initial value more than K/A.

2.5. Numerical Results

In this section, we will use some numerical experiments to demonstrate the im-
pacts of various parameters on the equity and bond values and the optimal call

policy. Table 1 summarizes the parameters we use in the base case. In addition,

Macroeconomic parameters: 7 = 8%, x = 35%.

Company-specific parameters: § = 6%, ¢ = 22%, p = 50%.

Bond Contract parameters: ¢ = 7%, A = 20%, P = 100.

Table 2.1: Basic parameters for numerical illustration. The risk-free rate r = 8% is close to
the average historical treasury rate during 1973-1998, and the corporate tax rate x = 35% is
chosen according to Leland and Toft (1996). We set the paying-out ratio at § = 6%, which is
consistent with the average coupon and dividend payments in the US during 1973-1998 (Huang
and Huang (2003)}. The diffusion volatility ¢ = 0.22, which is reported as the average asset
volatility for companies with credit rating A to Baa by Schaefer and Strebulaev (2007). The
recovery ratio after the default is assumed to be 50%, i.e., p = 50%. The coupon rate ¢ = 7%.
Note that this is slightly lower than the risk free interest rate, We choose it to reflect low
coupon payment for the convertible bond. The conversion ratio and the bond face value are

20% and $100 respectively.

we assume that one year is equal to 252 trading days.
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2.5.1. No Call and In-the-Money, Out-of-the-Money
Calls: The Impact of K

In the base case given by Table 1, we can calculate that there is no voluntary
call if and only if the strike price K is larger than $87.51. Figure 2.1 shows
the convertible bond value function with respect to the company value V' when

we take K = 100. The shareholder will announce a default at the first time

No Calt

250 T v

150}
Convertible Bond Valua

100}

VY 200 400 600 800 V;m 1000 1200

Figure 2.1: The convertible bond value in a case with large call price. The default barrier
V,; = 36.43 and the conversion barrier V;,, = 914.62. The shareholder will never call the debt

voluntarily.

when the company value drops down to V" = 36.43 and the bondholder opts to
convert at V2. = 914.62. From this figure, we can see that the bond value will
converge to its conversion value as V is large, because the bondholder has more
incentive to convert when the company value increases. This will lead that the
bond behaves more like an equity security. On the other hand, when V is close

to V;, the convertible bond is similar as a regular defaultable bond because of
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Figure 2.2: The equity value in a case with large call price. The default barrier V' =36.43

and the conversion barrier V.5, = 914.62. The shareholder will never call the debt voluntarily.

the influence of credit risk. Figure 2.2 illustrates the equity value function in this
case that firm never calls.

Figure 2.3 illustrates the bond value function in a case with smaller call
price. We choose K = 50, which is less than K, = 55.73 and K; = 53.90.
The default barrier V;*, forcing surrender barrier Vg, |, forcing conversion barrier
V1 2, and conversion barrier Vo, divide the whole range of the company value V
into five segments. If the initial company value falls between V' and V3, ,, the
shareholder will call the debt back when V, crosses V3, for the first time. Note
that V3, ; < K/A = 250. Such call must occur out of the money. However, if the
company starts somewhere between V%, , and V,,,, then the debt-calling will be
in-the-money since it occurs at V3, and V3, , > K/A. Figure 2.4 illustrates the

equity value function in this case with smaller call price.
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Figure 2.3: The convertible bond value in a case with smaller call price. The default barrier

is V; = 35.44. The forcing surrender and conversion barriers are Vg, | = 97.90 and V5, , =

269.51, respectively. The conversion barrier is V5, = 782.00. The horizontal straight line
between V3, ; and K/X indicates that the bond value equals to $50. This is because the
shareholder will call the debt once the company value falls in this interval and the bondholder
responds to this call by a forced surrender. The bond value function ceincides with AV in
the interval (K/X,Vear2). The shareholder will issue a call as well in this interval but the

bondholder opts to convert in response.

2.5.2. Comparative Statics

This subsection reports the effects of variation in selected parameters on the op-
timal strategies of both parties and the convertible bond value. The parameters
are the risk free interest rate r, the bond coupon rate ¢, the paying-out rate 4,
and the corporate tax rate .

Table 2.2 displays the changes of default, conversion and call barriers in
response to changes of the parameters. To clarify the interpretation on the

results in the table, we consider two companies in the following discussion. Both
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of them are identical except their initial asset values. Company A starts with
Vi = 300 and B starts from V, = 70.

Effect of Tisk-free interest rate. When 7 increases, we can see that the opti-
mal call region V3, |, Vi3, 5] shrinks in its size, converging to K/ = 250, the call
barrier predicted by the classical literature. Under all r, Company A falls in a
region in which only in-the-money calls are possible. For larger r, the call barrier

w2 18 farther away from Vp. It will take longer for V; to hit the barrier. There-
fore, the company tends to delay the call decision when r is high. Meanwhile,
this observation applies for Company B too. The call for this company will be
out-of-the-money. As we raise r, V;, | increases. Thus, given all other parame-
ters unchanged, Company B will wait longer until it issues a call announcement,
under a higher . The economic intuition of this conclusion is fairly apparent: for
a given coupon rate, a higher interest rate environment means that the company
is paying the bondholder a relatively lower coupon. This makes the convertible
bond more attractive to the company and leads to a delayed call.

In addition, a higher r also implies a lower default barrier V" and a smaller
conversion barrier V2 , as shown in Table-2.2. This is also what we can ex-
pect. Relatively low coupon payments in the settings of high r encourage the
bondholder to convert for the equity sooner, because staying in bond to receive
coupons is not attractive in that case. From the perspective of the shareholder,
less coupon payments means less debt obligation. Thus, the shareholder post-
pones the default by pushing the barrier down.

Effect of coupon rate. The bond coupon rate ¢ affects the optimal strategies
in a way totally reverse to the risk free interest rate. When ¢ increases, the
optimal call region {V,3; |, V%, ,] is enlarged and both companies tend to call in a
shorter period of time after time 0. Accordingly, high coupon payments prompts
a call decision because the convertible bond becomes an expensive fund-raising
tool for the company for a higher ¢. Moreover, if c is large, the shareholder will
also adopt a higher V}* to interrupt the cash flow of coupons to the bondholder,
while the bondholder will be attracted to holding the bond for a longer time,
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Vi Vo Ve Vs
r
0.07 3649 80.49 271.20 795.59
0.08 3544 97.90 269.51 782.00
0.09 33.98 250.00 268.14 768.97
C
0.06 30.96 250.00 250.00 656.96
0.07 3544 9790 269.51 782.00
0.08 3849 74.11 308.01 893.72
]
0.06 3661 92.71 318.83 928.80
0.06 3544 9790 269.51 782.00
0.07 34.17 104.33 250.00 664.61
12"
0.15 40.84 65.28 423.86 675.69
0.25 38.68 73.22 339.04 733.19
035 3544 97.90 269.51 782.00
0.45 30.58 250.00 250.00 795.60
p
0.2 3544 9790 269.51 782.00
0.5 3544 9790 269.51 782.00
0.8 3544 97.90 269.51 782.00

Table 2.2: Effects of various parameters on the optimal strategies. The defaulting parameter

used is K = 50. We vary the parameter of interest each time and keepall the other parameters

the same as those in Table 1,
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L 3
o

which implies a higher V,

’Eﬂect of paying-out rate. Given the coug{‘)n rate unchanged, the effect of
higher paying-out rate is to augment the dividends paid to the shareholder and
in turn, to reduce the value of the bond. Under a high § setting, the shareholder
will have less incentive to eliminate the bondholder from the game since the bond
value does not shift too much wealth away. This intuition is consistent with the
observation on Table 2.2. No m’atter Vo = 300 or 70, the distance between the
call barriers and V, tends to be larger as § rises. In other words, the call will
be delayed if § is high. The effect of 4 on the default and conversion policies is
similar as those of 7. A high § tempts the bondholder to convert sooner and the
shareholder to announce a bankruptcy later.

Effect of taz rate. In our model, the tax shield is an important factor for
the shareholder to borrow. Therefore, we expect that a high corporate tax will
encourage the company to put off the call announcement. Table 2.2 illustrates
that V3, , and V,, are increasing and decreasing functions of x, respectively.
Hence, the convertible bond should be called in an early stége if k is small.

Effect of default cost rate. For the small st;rike price, the default cost rate
doesn’t affect the optimal exercise strategies. For any default cost rate, share-
holder get nothing at default. And the default and forcing surrendering polices
are determined by the shareholder, hence they are not affected by the default
cost rate.

In summary, the above numerical experiments project that delayed calls
should be associated with low coupon rate, high corporate tax, high paying-out
ratio and high risk free interest rate. These implications are supported by some

empirical tests done by Sarkar (2003).

Table 2.3 provides a sensitivity analysis of the value of an in-the-money
convertible bond at time ( with respect to risk-free interest rate, coupon
rate, paying-out rate and corporate tax rate. It shows that the bond value

is positively related to the coupon rate, tax rate and conversion ratio, and

]
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Interest rate v 0.06 0.07 0.08 0.09
Bond value 105.60 105.25 104.88 104.49
Equity Value 405.70 40548 405.22 404.93
Coupon rate c 0.06 0.07 0.08 0.09
Bond value 101.88 104.88 107.12 108.57
Equity Value 404.46 405.22 404.52 403.37
Paying out rate 4 0.05 0.06 0.07 0.08
Bond value 106.62 104.88 102.39 100.45
Equity Value 403.55 405.22 405.43 403.26
Tax rate s 0.15 0.25 0.35 0.45
Bond value 100.67 102.42 104.88 105.74
Equity Value 400.33 402.04 405.22 408.67
Default Cost p 010 030 050  0.70
Bond va.lfile 104.88 104.88 104.88 104.88
Equity Value 405.22 405.22 405.22 405.22

Table 2.3: Effects of various parameters on the convertible bond value. The defaulting
parameters used are K = 50 and Vg = 500. We vary the parameter of interest each time and

keep all the other parameters the same as those in Table 1.

negatively related to the interest rate and payout rate. The former factors
determine the cash inflows for the bondholder. Thus, higher values in those
factors would boost the security value. The latter two factors push down the
bond value as they rise. High risk free interest will discount the cash flow of
the bond more, which generates a lower present value. High paying-out ratio
implies a high dividend payment to the shareholder, which will shift the wealth
away from the bondholder. Equity Value is positively related to the tax rate.
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2.5.3. Negative and Positive Stock Returns

This subsection illustrates that our model can generate negative stock returns at
an in-the-money call and positive stock returns at an out-of-the-money call.

In our investigation, we use Monte Carlo method to simulate the stock price
changes for a specific company around the debt-calling date. More precisely,
consider the default parameters in Table 2.5 and Company A starting with V; =
300. Simulate daily sample paths of V,, following the geometric Brownian motion
(2.1). The equity value for each day is obtained if substitute V; in the equity
function ¥. According to our calculation, such ¥ falls in the interval between

al2 = 26951 and V_, = 782, When a call occurs, the call must be in-the-
money for Company A. We choose the discrete time unit to be 1 trading day
(i.e., 1/252 year) to simulate the call and conversion time. Record the sample
path of the stock daily values, in which a call occurs. Figure 2.5 shows a typical
realization of such path in a time window from 60 days before the call to 60 days
after. We can see that the daily returns of the company’s stock is not significant
at all (less than 0.5%) except for the day in which a call announcement is issued.
The daily return on calling drops down almost 2%. Note that the call is in-
the-money because it happens when V, = V3, , = 269.51, which is larger than
K/A = 250.

Figure 2.6 shows the daily stock returns in a 121-day time window centering
on the day in which an out-of-the-money call is issued. In this figure, we consider
Company B with V5 = 90. There is a significant positive stock return at the
calling day, which is larger than 3.5%. However, the returns of the rest days are

less than 1%.
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2.6. Conclusion and Future Work

We have established a non-zero-sum game framework to study the pricing prob-
lem of callable convertible bond. The impact of a trade-off, tax shield and
bankrupt costs, is highlighted in the dissertation. Taking this trade-off into ac-
count will significantly change the strategies of the bondholder and shareholder,
compared with the zero-sum setting in Sirbu et al. (2004) and Sirbu and Shreve
(2006). In the presence of tax benefits and credit risk, the shareholder may call
the debt in-the-money or out-of-the-money. The corresponding stock returns
on the calling day exhibit some patterns consistent with the well-documented
empirical results.

These results show that we should be in the right direction to study the
convertible bonds. Then we have the motivation to extend the underlying process
to be the general diffusion process or consider the convertible bonds with finite
time maturity.

For the more general diffusion process with infinite maturity, we can use
Dayanik and Karatzas (2003)’s method on the optimal stopping problem for
one-dimensional diffusions. The extra efforts should be paid to the interaction of
the two optimal stopping problems. Explicit formula may be possible for some
cases and it can be expected that the effects of tax and default will stili diverse
the optimal call strategies.

Other extension within infinite time horizon is the case of Sirbu, Pikovsky
and Shreve (2004), in which it assumes that the dividend is proportional to the
equity value, such that the underlying firm value process involves the unknown
value function of convertible bonds. This involves a nonlinear ODE, or equiva-
lently an invariant solution of a parameterized linear ODE.

The optimal stopping problem with finite horizon is more challenging. The
explicit solution may be impossible. But it’s worth working on characterizing
the optimal stopping boundaries of the bondholders and shareholders. According

to our results in infinite time horizon, the optimal call boundaries may include
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double curves in finite time horizon, which differ from the standard American
option problem.

We have to stress again that the corporate tax and credit risk are among
many factors that have influence over the decisions related with convertible bond.
Introducing other factors may accentuate the effect of the aforementioned trade-
off and this leaves several possible directions for future investigation. For in-
stance, the indentures of many convertible bond prohibit the issuers from calling
for a certain period of time. Our model can be extended to cover such prohibition
by viewing the problem as a two-stage sequential game. The first stage is the
call protection period, in which the two parties interact with each other choosing
optimal conversion and default policies. The analysis in this chapter constitutes
the second stage. Another possible extension is to incorporate the asymmetric
status in information access for the bondholder and shareholder. In reality, bond
investors cannot observe the company’s asset directly and suffer from imperfect
accounting information (see, e.g., Duffie and Lando (2001)). A game framework

with imperfect information would be an appropriate model under this setting.



Chapter 2. Convertible Bond 44

Earty Call and Late Call
Bw 1 L) T T L] L] L T T

00+

400}

100

0 = ‘y L M| 1 t 1 I —l 1
" Vv
0 v, V1% 200KAVI0 400 500 60D 700V, 800 800 1000
Firm Value: V

Figure 2.4: The equity value in a case with smaller call price. The default barrier is V' =
35.44. The forcing surrender and conversion barriers are V3, | = 97.90 and V3, , = 269.51,
respectively. The conversion barrier is V5, = 782.00. The horizontal straight line between

i1 and K/A indicates that the bond value equals to $50. This is because the shareholder
will call the debt once the company value falls in this interval and the bondholder responds
to this call by a forced surrender. The bond value function coincides with AV in the interval
(K /A, Vear,2). The shareholder will issue a call as well in this interval but the bondholder opts

to convert in response.
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Figure 2.5: Daily returns of equity in a time window from 60 days before the call to 60 days
after. We use the default parameters in Table 2.5 and let V5 = 300. The call price is 50. The
call boundary is V3, , = 269.51 and the conversion boundary is V%, = 782. We simulate 100

£On

sample paths and draw the average.
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Figure 2.6: Daily returns of equity in a time window from 60 days before the call to 60 days
after. We use the default parameters in Table 2.5 and let V5 = 90. The call price is 50. The

call boundary is V%, , = 97.90 and the default boundary is V; = 35.44. We simulate 100

cal,l

sample paths and draw the average.



CHAPTER 3

PRICING DOUBLE-BARRIER
OPTIONS UNDER A
HYPER-EXPONENTIAL JUMP
DIFFUSION MODEL

3.1. Introduction

Barrier options are among the most popular exotic options traded in financial
markets. A barrier option offers the holder a payoff like that of a vaniila option,
contingent on whether or not the underlying asset price process crosses some
level(s)  called the barrier(s)  before or at the maturity date. In this chapter
we are going to study the pricing problem of double-barrier options under a
flexible jump diffusion process for the underlying asset price.

The research of barrier options has been attracting a lot of attention in
computational finance. It is motivated by both practical and theoretical reasons.
In practice, barrier options are actively traded in the markets, especially in the
Over-the-Counter markets (See Das (2004) and Zhang (1998)). In comparison
with vanilla options, they have at least two advantages as argued by Derman
and Kani (1996,1997). First, they may more closely match investor beliefs about
the future behavior of the asset price. Second, they are always cheaper than

vanilla options and hence are more attractive for investors. Meanwhile, barrier
47
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options also provide a useful tool to some theoretical studies outside the context
of literal options. For example, Sircar and Xiong (2000) used a double-barrier-
option framework to model executive stock options; the work of Goldstein, Ju
and Leland (2001) on optimal dynamic capital structure was based on a dou-
ble barrier structure, one barrier for firm bankruptcy and the other for capital
readjustments.

Most studies on barrier option pricing are conducted under the Black-Scholes
model (BSM). Closed form pricing formulae for double-barrier options can be eas-
ily derived under this setting. One may refer to Kunitomo and lkeda (1992), Ge-
man and Yor (1994), Pelsser (2000), and Schroder (2000). Despite its simplicity,
the BSM has obvious shortcomings to be a good description for the movements
of the underlying asset prices. It assumes the asset returns are normally dis-
tributed and their variances remain constant. Empirical studies invalidate such
assumptions by suggesting two observations for asset returns: the asymmetric
leptokurtic feature, i.e., the actual return has much heavier tails than normal,
and the volatility smile, i.e., the volatility implied from equity option prices is not
a constant but presents a curve resembling a “smile”. To overcome the difficulties
encountered by the BSM, many alternative models have been proposed in the
literature to incorporate both of the empirical phenomena and correspondingly,
the pricing problem of barrier options is needed to be re-investigated.

It is inappropriate to give a comprehensive overview of all models in such
a chapter and here we shall focus on the double-barrier option pricing under
a hyper-exponential jump diffusion model (HEM) proposed by Cai and Kou
(2008) recently. Their model assumes the asset return follows a jump diffusion
process with Poisson jump intensity and hyper-exponentially distributed jump
sizes. As a result, the empirical asset returns have heavier tails than normal
distributions. But, as shown in Heyde and Kou (2006), it may be very difficult
to distinguish empirically the exponential-type tails from power-type tails even
given a long period of daily data. So, a sensible asset model should be with more

Aexibility about the heaviness of the asset return tails. The HEM is appealing
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in this sense, thanks to the property of hypo-exponential distribution that it can
approximate various distributions ranging from power tails to exponential tails
(see, e.g., Feldmann and Whitt (1998)).

Mathematically, the contributions of our work are two-fold. First, we obtain
analytical solutions to the prices of the standard double-barrier options in terms
of Laplace transforms and then are able 10 invert them numerically via some effi-
cient and accurate algorithms such as the Euler inversion algorithm proposed by
Abate and Whitt (1992) and Choudhury, Lucantoni and Whitt (1994). Second,
we show the existence and uniqueness of the solutions. More precisely, our ana-
tytical pricing formulae involve solutions of some high-dimensional linear systems
and thus their existence and uniqueness are reduced down to the non-singularity
of the associated high-dimensional matrix. We manage to prove the matrix is
invertible in this chapter.

It is worth pointing out that similar technical issues also arise in some re-
lated work such as Cai and Kou (2008) and Sepp (2004). Cai and Kou (2008}
considered the single-barrier option pricing. They also showed the existence and
uniqueness of their solution through non-singularity of a simpler matrix, which
turns out to be a sub-matrix of ours in the double-barrier case. As a by-product
of our work, we can duplicate their conclusion with a new proof. Sepp (2004)
priced standard double barrier options under the Kou’s double exponential jump
diffusion model (Kou (2002), Kou and Wang (2004)). The Kou’s model assumes
a double exponential distribution for jumps and therefore it is a special case of
the HEM. In addition, Sepp (2004) did not prove the existence and uniqueness
of his solution.

Beyond the jump diffusion model and Laplace transforms, there is a bulk
of research on pricing barrier options under different models or with different
methodologies. For instance, Davydov and Linetsky (2001) derived analytipal
solutions for both single- and double-barrier options under the CEV model;
Broadie, Glasserman, and Kou (1997), Broadie and Yamamoto (2005), Feng
and Linetsky (2008), Howison and Steinberg (2005}, Petrella and Kou (2004),
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etc. developed many numerical methods to pricing discrete barrier options.
The rest of the chapter is organized as follows. In Section 2, we introduce
the hyper-exponential jump diffusion model. Section 3 concentrates on deriving
a general analytical formula relating to the joint distribution of the first passage
time of the HEM to two flat barriers and the value of the HEM at the first passage
time. Section 4 presents the analytical solution to the pricing problem of standard
double-barrier options. Meanwhile, numerical results are also provided via the
Euler inversion algorithm. Section 5 concludes this chapter. The main proof

about the non-singularity of a high-dimensional matrix is given in the Appendix
B.

3.2. The Model

Under the HEM, the asset price process {S, : { > 0} under the risk-neutral
probability measure P is defined as S, := Soe*t and the log-return process {X, :

t > 0} follows

N
X, =t + oW, + Y Y, (3.1)

i=1

where o > 0, y := r—02/2— A{ with risk-free rate r > 0, ( = Ele™|, {W, : t > 0}
is a standard Brownian motion, {N, : t > 0} is a Poisson process with intensity
A and {Y, : i = 1,2,...} is a sequence of independent identically distributed
hyper-exponential random variables with a probability density function given by

fr@) =3 pme ™lgzo + Y 46,67 Liyco, (3.2)

=1 5=1

wherep; > 0,7, > 1foralli=1,...,m,q,>0,8, >0forallj=1,...,n, and
S p+ Y1 q = 1. From (3.2), we can see that there are m up-jumps and n
down-jumps, among which the it" up-jump occurs with probability p, and then
has an exponentially distributed size with mean 1/7, forany i =1,2,--- ,m, and
the 7** down-jump occurs with probability ¢, and then has an exponentially dis-
tributed size with mean 1/6, for any j = 1,2,--- ,n. We also assume {W,}, {N;}
and {Y;} are independent.
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Due to the jumps, the risk-neutral measure is not unique. Here we assume
the risk-neutral measure P is chosen within a rational expectations equilibrium
setting such that the equilibrium price of an option i1s given by the expectation
under P of the discounted option payofl. For details, we refer to Lucas (1978),
Naik and Lee (1990), and Kou {2002).

Thus, it is casy Lo sce that the infinitesimal generator of { X, } is given by
t 2.4 :
(Lu)(x) =50u () + pu'(x)
o
+ )\/ [uz + y) — ulz)] fv {y)dy,

{or any twice continuously differentiable function u(x} and the the Lévy exponent

of {X.} is given by
1
G(rx) =7 log Efexp(z X/,)]

L onm v gf
=1p + §I2(72—+-)\( .7 + 4,7, _ 1)

for any € (—0,,7). By somec elementary calculus, we can show for any

given a > 0, the equation G(x) = a has exactly m + n + 2 real roots
)811 s :,Umﬂ 1y =Tl e ooy T nvd Sat’iSfying
D<h<m<By< <Ny < POmir < 00, (3.3)
D<mn <t <y < <y <myr <00 (3.4)

We record this result for later references.

3.3. Distribution of the First Passage Time to

Two Flat Barriers

Define the first passage time 7 of a general HEM {X, := Xy+put+oW,+ 3, Y.}

to two flal barriers h and H (h < H) as follows

T:=mf{t >0: X, > Hor X, <h}. (3.5)
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Here { X,} slightly differs from that given in (3.1) in that it starts from the point
X, rather than 0. From now on, we use EF and P* to represent the expectation
and the probability, respectively, when { X} starts from X, = r.

The joint distribution of 7 and X, plays a crucial role when pricing double-

barrier options. Our idea is to get it via the Laplace transform
E,r[{, nT+9.X7]

The following theorem reaches a more general result for any expectations in the
form of E*[e °" f(X,)], where f could be any nonnegative measurable function.

The Laplace transform then becomes a direct corollary.

Theorem 3.1. Consider any nonnegative measurable funciion [ such that
fo*mf(y + H)e ™¥dy and ono fly + h)ebvdy are integrable for all 1 < @ < m
and 1 < j <n. Foranya >0 and x € (h, H), we have

E*le " J(X.)] = w(z)N 'f, (3.6)
where w(z) 15 a row vector defined as

tU(:I:):(eﬁ'(xFH),... Bnilz H]‘

¥

€ -'fl(-‘r h)1 NPT ‘*“*I(I_h}) 1 (37)
f is a column vector such that £ = (f&,. .., fe, f&, ..., fH7Y,
1 00
fo=f(H), = fly+ H)e ™dy, 1 <1< m,
4]

0
f& = f(h), fjd = fly+ hyeP¥dy, 1<j<m (3.8)
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To prove Theorem 3.1, the most difficult part is to show the non-singularity
of the matrix N. We summarize the conclusion in the following proposition and

defer its proof to the Appendix B.1.

Proposition 3.2. For any {8, and {v,}"}] satisfying (3.3} and (3.4}, the

J:

matriz N is non-singular.

With the help of Proposition 3.2, we can show Theorem 3.1 now.
Proof of Theorem 8.1. Notice that r is the first time the process X exits the
band (h, H). It may leave the band at the boundaries, i.e., X, = H or X; = h;
or it may jump across the boundaries when leaving. Therefore, we introduce a
sequence of events: Fy := {w: X, = H}, Go := {w : X; = h}, indicating two
possibilities that X leaves the band at the boundaries;, ¥, = {w : X; - H >
0,Yn, ~ Exp(p)} for i = 1,2, - ,mand G, = {w: X; —h <0,-Yn ~
Exp(6,)} for j = 1,2,--- ,n, indicating with which type of jump the process
jumps across the boundaries when leaving. By the law of total probability, we

have

E'le “"1(X.)) =Y E*le " [(X)1R] + Y Efle T f(X;)1g,]. (3.9)
=0 1=0
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Emulating the proofs of Proposition 2.1 in Kou and Wang (2003) and The-
orem 3.1 in Cai (2008a), we can casily show that conditional on £, 7 and X, are
independent and moreover the overshoot X, — H is still exponentially distributed
with mean 1/7,, thanks to the memoryless property of exponential distribution.

Thus, forany i =1,2.-- - ,m,

E*[e * f(X,)1g] = Ele “LR]E[f(X, — H + H)|F)

=] EI[(' m.].p‘] . Thf':‘, (310)
Similarly, for any j = 1,2,--- , n, we have
Ele * [(X.)l¢| = E*le “1g,| 6,/ (3.11)

Combining (3.9), (3.10) and (3.11),

Efle “f(X)] =Y Ele “1g]-nf" +3 E*le “ig,) - 6,f;, (3.12)
1=0

7=0
with g = g = 1.

On the other hand, we are also able to obtain closed-form expressions for
E*[e %" 1g,| and E*[e *"1¢,]. Note that for any a > 0 and imaginary number b

with the real part being 0,
t
M, : = exp(—at + bX,) — exp(bXy) — (G(b) — a)/ exp(—as + bX;)ds
0

is a zero-mean martingale. By the optional sampling theorem, we know E*|M,| =

0.1i.¢.,
0 = E*exp(—ar + bX,)| — £ — (G(b) — a]E“’[/ exp(—as + bX,)ds].
0
Applying (3.12) in the first term on the right hand side of the above equality,

0 =Effe “T1pJe + Y Effe “1p)et

=1 T — b
- ¢
T ar bh [, of Lok 4
+ Efle “"1g,le" + E E’le “"1g e .

=1

— T —(G(b) - a)E’:[,[1r exp(—as + bX,)ds). (3.13)
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Denote the right hand side of (3.13) by A(b) and define H{b) = {[.~ {m—b)
[1;_,(6, + b) - h(b). Then H(b) is well defined and analytic in the whale complex
domain C. By (3.13), H{(b) cquals zero when b is a purc imaginary number.
By the identity theorem of analytic functions in the complex domain {Theorem
10.18, Rudin {1987)), we get H{b) = 0 for all b € C. Accordingly, h(b) = 0 for
all be C\ {-6,... ., ., Tt

Replace b by 3, and -4, in A(b) = 0, respectively. Note that 3, and -, are
all the roots 1o G{x) = a. We have the following linear equations with respect

to E*[e “"1g] and E¥le “"1¢; |-

[,.i,.r —EJ{{ url n d H+ ZEI[( a*rl ]ﬁ,” ™
1=1

- .»dl

I a7 ;i. x ar doh BJ'
+ E [ 1 + z E [(’ 1( ]C m
1=1 !

and
e T =Efle “Tlgle wH o E¥le “"1F, i _h
| Z | ——
é
o - Wh : 1h
+E®[e “1g,Je +J;E"[e 1, )e ﬁ.

Proposition 3.2 shows the non-singularity of N. It follows that the vector

(Ex[e 1l Efle T1p.],

Efle “"1g,],....E[e MIG,,])

i 1 1 |
~w(z)N 'Dia {-——,...,-——-,—-,...,—}, 3.14
( ) & Tio B 9(] 9:1 ( )

where Diag {%, L 5%-7’ G t?L.} is a diagonal matrix. Plugging {3.14) into

(3.12) yiclds (3.6) immediately. O

From Theorem 3.1, we can obtain a variety of closed-form expressions for
expectations of some functions with respect to 7 and X,. For instance, choosing
f{x) to be €% with @ € (—8,,7) in the above theorem, we are able to derive

ar +8Xr

the Laplace transform E*[e |, which is presented in Corollary ?7. Fixing
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f(z) to be 1(;>y) and 1i;<ny), respectively, we then have Ef(e “"1ix,»>4}) and
Efle “"1(x.<n}), which reflect the present values of $1 received when the un-
derlying asset price crosses the upper boundary A and the lower boundary A,

respectively. This result is given in Corollary 3 4.

Corollary 3.3. For any 8 € (—6y,m), we have

m+ 1 ntl
E*[e ar 40X} oOH (Zw‘eﬂ.(x H) 4 Zule nx A) (3.15)
1==1 =1
where
(Ldl ----- W!rliltuls----un#l)'l.:N 13(9)
and

l 1, T i

= {1, . , T, N
O = o= T T g 6 G 1 6

)"

Corollary 3.4.

m+ 1 n+l

Ef[e “71{)(,2”}] = Zw,meﬁ‘(" 4 Z ujl)e Tz h) (3.16)
=1 =1
mil ntl )
Efle  1(x,<n)) = _weP= M43 "B mt N (3.17)
=1 1=1
where
() () (1) T 1 ! ! T
(wl !"'r“”m+hu1 ""‘Uﬂ}l) =N J‘l wzth-]l:(I,E“,...,T’O,...,O) ¥
1 m
and
- _ 1 1 .
W, W BT = NI, wth 3 = (0,0, 1,5,...,5-)’,
1 7

Remark 3.5. We can also show Corollary 3.1 and Corollary 3.2 through another

route. Actually, consider the following two ordinary integro-differential equations

(OIDEs)

Lu(z) = au(z), h<z<H;
(3.18)
u(z)=€e%, z<horz>H

7
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and
Lu{r) = au(x), h<r < H;
wlx) = 1, > H: (3.19)
u{x) =0, r<h
First, it can be proved thalt under the condition that u(h) = u(h+) and

u(H) = u(H-), the right hand sides of (3.15) and (3.16), denoted by vo(zx)
and vy(x), are unique solutions to (3.18) and (3.19), respeciively. Second,
applying the martingale method, we can show that vo(z) = E*[e %] and
n(z) = Effe " 1x,>m). Sumilarly, we can obtain (3.17). Thus we complete
the proofs for Corollary 3.1 and Corollary 3.2 in a different way. Meanwhile, the
non-singularily of N guaraniees the uniqueness of such solutions. For detaus of

this route of arqument, we refer to Car and Kou (2008).

3.4. Pricing Double-Barrier Options

In this section, we are going to derive pricing {ormulae for standard double-barrier

options, based on the theoretical resuits obtained in the last section.

3.4.1. Standard Double-Barrier Options

The payoff of a standard double-barrier option is activated (knocked in} or ex-
tinguished (knocked out) when the price of the underlying asset crosses barriers.
For example, a knock-out put option will not give the holder the payoff of a Eu-
ropean put option unless the underlying price remains within some pre-specified
range before the option matures. More precisely, consider an interval (L,U) and
the initial asset price Sy is in it. The holder will receive (K — Sr)* 1,57} at the
maturity 7', where 7 = inf{t > 0: S, < Lor 5, > U}. Under the risk-neutral
measure P and the assumption that the underlying asset follows the HEM, the

price of such an option is given by

P(K,T)=e "TE|(Sr — K)'1{r>1}|50]. (3.20)
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We may use Corollary 3.3 to obtain a double Laplace transform for the
expectation in P(K,T). For this purpose, change some variables in (3.20) first.
Let h ;= log (L/Sy}, H := log (U/Ss) and & := —log K. Then, the expectation
in P(K,T) can be represented as

C(E‘T) = EI [(S(](’XT — € n)l{-‘-)'[‘.‘gﬂe"{‘f‘)p "}] »

where 7 = inf{t > 0: X, < hor X, > H}. Conduct a double Laplace transform
on the new function C(x,T) with respect to k and T. Note that the definition
domains for x and T are (—o0, o0) and (0, oo), respectively. We have the following

theorem:

Theorem 3.6. For any 0 < ¢ <7 — 1 and a > max{G(p + 1),0}, let

glp,a) = fom fw e ¥~ TC(k, T)drdT. (3.21)
Then,
1 1 mil nEl
(3.22)
where
(W1, way s Wi 15 Vs V2, - - )T =N W(p+1).

Proof. For any fixed T, by the Fubini theorem,

o0 [ )
./ e *C(x, T)dr =E7| (Soe*Te ¥ —e WIN)dK - Loy
-eo - log (Sae*T)
Sao+l (ot} X
x 1} X
ek [ (1 = Liremy)).

From the definition of the Lévy exponent, we know E*[e@ ! DX7] = exp(G(yp +

1)T). Then, using the Fubini's theorem again,

sl <
g(“o’ 0.) — 0 ) / ¢ af EI[e[‘Pil)X‘r (1 - 1{757})1dT
0

wlp +1
Sg”l 1 So‘pvll
T+ 1) a-Glo+1) wlp+]

) </0 E:J:[e—a'r‘[aoil),\‘-;-l{-r('r}]dr}n‘
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Conditional on the filtration up to 7, the expectation in the above equality should

be the same as
EI[f‘ aT E.Tl()(p-l !)‘\"I‘lf.r]].{,-('[‘}] :E:r[e aT+ Gle+ 1T 71+{pt 11X, 1{7_{‘1.}]‘

where the equality holds due to the Markovian property of { X}, the fact X, —
X, £ X; .. and the definition of the Lévy exponent. In swnmary, g{p,a) is
then equal to

gt 1
Pl + 1) a-Gle+1)

(1 _ EI{H urw(‘prl).)\'r])_
Applying Corollary 3.3 here, we can immediately obtain the conclusion. 0

Once we have the double Laplace transform, we apply some numerical in-
version algorithm to recover the value of the function C(x,T') at some specific &
and T we want to price. There are several other double-barrier options such as
knock-out put, knock-in call or put traded in the market. The pricing formulae
for them can be obtained through similar derivations and we leave all the details

for interested readers.

Remark 3.7.

1 1
" plp+a-Gle+1)

mz+:1 S i ntl L Y
Sett -yt ( W, (—0) + >y v (—) )) , (3.23)
( =1 v 1 "\ So

b

g(p, a)

1

then

Og(p,a) 1 1
S plp+1)a—Glp+1)

Ulp_,,l mil ' S i, ntl L o
((‘P + I)S(f - S (Z wh i (DE) - Z”J’YJ (S_U) )) . (3.24)
1 J=1

1=
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3.4.2. Numerical Examples

In this section, we intend to price the above standard knock-out call options
by inverting the associated Laplace transforms (3.21) numerically via the Fuler
inversion algorithm. This algorithm was introduced by Abate and Whitt (1992)
and Choudhury, Lucantoni and Whitt {1994) and a few new developments are
accumulated in the literature based on their work. Since we need to invert a
two-sided Laplace transform with respect to x, we suggest to use Petrella (2004),
which is faster and more stable numerically than the original Euler inversion
when dealing with two-sided transforms, due to the introduction of a scaling
factor.

In our numerical example, m and n are both 2 in the hyper-exponential
distribution (3.2). The numerical results for the standard double-barrier options
(denoted by EI Price) are given in Table 3.1, where we also show the Monte
Carlo simulation result (denoted by MC Value) as a benchmark together with
the associated 95% confidence interval (denoted by 95% CI). We can see that
all the EI Prices stay within the 95% confidence intervals of the associated MC
Values. Besides, based on a PC with Pentium(R) 4 CPU 2.80GHz, 1 GB of RAM,
the CPU time to produce one numerical result via Euler inversion algorithmn is
only around 6 seconds, while it takes about 20 minutes to generate one MC
Value. Consequently, we draw the conclusion that the pricing method based
on our analytical pricing formulae as well as the Euler inversion algorithm is
accurate and efficient. It is worth mentioning that in Table 3.1, MC Values tend
to be greater than EI Prices partly because the Monte Carlo simulation method
overestimates the option prices due to the systematic discretization bias. Since
our main purpose is to study the analytical solution rather than the Monte Carlo
simulation method. We refer the interested readers to Metwally and Atiya {2002)
for more detailed discussions on the systematic discretization error reduction.

From the table, we can also see that the option price descreases as the strike

K increases. This is intuitive because the payoff is a decreasing function in K.
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Meanwhile, when either ¢ or A increases, the option price depreciates. That is
because the option tends to be more likely knocked out when the underlying is

more volatile.

3.5. Conclusion

in this Chapter, we investigate the pricing problem of double-barnier options
under a flexible, hyper-exponential jump diffusion model. Specifically, we derive
the closed form expression for the double-Laplace transform of the standard
double-barrier option by studying the joint distribution of the first passage time
of a hyper-exponential jump diffusion process to two flat barriers and the value
of this process at the first passage time. Moreover, this closed form double-
Laplace transform can be inverted numerically via a two-sided Laplace inversion
algorithm. Numerical examples indicate that the pricing algorithm is accurate,
efficient, and casy to implement. One of our theoretical contribution is that we
show the non-singularity of a complicated, high-dimensional matrix, therefore

guaranteeing the existence and uniqueness of our analytical pricing formula.
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Pricing Knock-Out Call Options
K X EIPrice MC Value 95% CI
0.1052 0.1063  (0.1019,0.1107
105 3 0.1156 0.1189  (0.1142,0.1236
I 0.1270 0.1300  (0.1252,0.1348
0.3456 0.3471 (0.3375,0.3567
100 3 0.3804 0.3847  (0.3746,0.3948)
0.4191 0.4210 (0.4105,0.4315)
(
(
(

o

)
)
)
)

o

—

0.7812 0.7831 0.7666,0.7996)
0.8606 0.8676 (0.8499, 0.8847)
)

w ot

95
1 0.9487 0.9478 0.9298, 0.9658

Table 3.1: The Laplace inversion (EI Price) vs. the Monte Carlo simulation (MC
Value). For unvarying parameters, the default choices are r = 0.05,0 =0.2, m=
n=2m =230 1 =500 =300 =40, p =p:=q = ¢ = 0.25, Sp = 100,
U =115 L =80, T = 1, and p = 1. Parameters for the Laplace inversion method
are A, = A, = 28.3, (n;,ny) = (11,38), and the scaling factor X = 1000; while
the MC values along with the associated 95% confidence intervals are obtained
by using 60,000 time steps and simulating 100,000 sample paths. To generate
one numerical result, the CPU time is about 6 seconds for the Laplace inversion
method and is about 20 minutes for Monte Carlo simulation method. “oreover,
we can see that all the EI prices stay within the 95% confidence intervals of the

associated MC values.



CHAPTER 4

OCCUPATION TIMES OF
JUMP-DIFFUSION PROCESSES WITH
DOUBLE EXPONENTIAL JUMPS AND
THE PRICING OF OPTIONS

4.1. Introduction

QOccupation-time-related derivatives are recently introduced products that have
been attracting much attention from investors and researchers. A defining char-
acteristic of these contracts is an exercise payoff that depends on the time spent
by the underlying asset in a predetermined region(s). Typically, the specification
of the occupation regions involves flat barrier(s). In that sense, these contracts
can be viewed as a generalized type of barrier option.

The payoffs of barrier options are activated or extinguished as soon as the
underlying asset prices cross barriers. This discontinuity at the barriers poses
an obstacle to the risk management of both option writers and buyers. Take
the knock-out barrier option as an illustration. Even if the buyer has a correct
view on the overall market trend, an accidental price jump across the barrier
can easily wipe out his or her entire investment in the options. Furthermore, as
Chesney, Jeanblanc-Picqué and Yor (1997) and Linetsky (1998) argued, market

manipulators also like to take advantage of the fact that the payoffs are associ-
63
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ated with barrier crossing, driving the underlying price to trigger a crossing and
profiting from the massive losses of the other party to the transaction.

Several scholars have proposed a series of occupation-time-related options to
alleviate the risk management difficulties inherent in barrier options caused by
the discontinuity around the barriers. The payoffs now depend not only on the
barrier crossing; but also on how long the underlying price spends above/below
the barrier. Thus, option buyers can receive or lose value more gradually. One of
the most popular examples is the step option suggested by Linetsky (1998,1999).
This derivative’s payoff is discounted at a rate defined by the occupation time.
Under the geometric Brownian motion (GBM} model, Linetsky (1999) derived
closed-form pricing formulae for various single-barrier step options, while Davy-
dov and Linetsky (2002) investigated the pricing of double-barrier step options
via Laplace inversion. A second example is the corridor option traded in the
foreign exchange and interest rate markets. This option pays an amount at ma-
turity that is associated with the time spent by a reference index, usually an
exchange or interest rate, below a given level or inside a band. Fusai (2000)
priced this derivative under the GBM model by studying the distribution of the
time spent by a Brownian motion with drift inside a band. Another impor-
tant type of occupation-time-related option is the quantile option, which Miura
(1992) suggested as an alternative to the standard barrier option. A quantile
is the minimum barrier to ensure Lhat the fraction of the occupation time dur-
ing the lifetime of the option exceeds a given level. Dassios (1995) provided a
formula for the quantile distribution of a Brownian motion with drift, as did
Embrechts, Rogers and Yor (1995) and Yor (1995). Akahori (1995) and Dassios
(1995) calculated the prices of a-quantile options for the GBM model. Kwok
and Lau (2001) developed a pricing algorithm for quantile options based on the
forward shooting grid method under the GBM model. Leung and Kwok (2006)
derived the distribution functions of occupation times under the constant elas-
ticity of variance (CEV) process. Using an identity on quantiles of the processes

with stationary and independent increments developed by Dassios (1996), Cai
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(2008b) priced both the fixed- and Hoating-strike quantile options numerically
by applving Laplace inversion twice under a hyper-exponential jump diffusion
model.

In reality. many ocenpation-time-related options are based on a discrete
time monitoring. In other words, such derivatives specify a series of reference
dates, The oceupation time is defined through the portion of wmouitoring dates
in which the underlying price is below/above some level or between two levels.
Some research is devoted to the study of such kind of options. However, the
comunon feature of such rescarch is that the underlying asset price is assumed
to follow a GBM model. For instance, Atkinson and Fusai (2007) studied dis-
crete quantile options using the Spitzer identity of Brownian motious; Fusai and
Tagliani (2001) applicd some numerical methods of PDEs to price discrete cor-
ridor options; and Davydov and Linetsky (2002) considered step options under
the discrete monitoring scheme.

In this article, we investigate the pricing and hedging problems of
occupalion-time-related options under Kou's double exponential jump diffusion
model Kou (2002). The model assumes the underlying asset return follows a
jump diffusion process with Poisson jump intensity and double-exponentially dis-
tributed jump sizes. It is appealing in two respects. The associated assel returns
have heavier tails than normal distributions and hence the model is capable of
generating asymimetric leptokurtic feature for asset returns and volatility smiles
for equity options, matching the empirical data better than the GBM model.
The model also yields analytical solutions Lo many pricing problems, including
both European and path-dependent derivatives, in terms of Laplace transforms.
By applying numerical inversion algorithms we can casily obtain the prices.

The main result of this article is to derive the Laplace transform of the
distribution of occupation times regarding one barrier under Kou’s model, which
cnables us to calculate the prices of various related options such as step options,
corridor options, and quantile options. It turns out that the Laplace transform

solves a partial integro-differential equation (PIDE). We manage to reduce the
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equation to an ordinary integro-differential equation {OIDE) using an integral
transform. Note that derivatives of exponential functions are still exponential.
Then we can transform the OIDE into an ODE and rigorously show the existence
and uniqueness of the solution to the OIDE. This article contributes to the
literature of occupation-time-related options by generalizing the formulac for
the GBM model 1o a model with discontinuous sample paths. It is simple to
recover all of the classical results oblained with the GBM model from ours by
letting the jump intensity be zero. The closed-form expressions of the Laplace
transforms of the option prices also facilitate the caleulation of price sensitivities
in relation with market variables and model parameters. As shown in Section
1. not much extra effort is needed to obtain deltas, the price sensitivity with
respect to the change of the underlying price. Such sensitivities play a vital
role in risk management of derivatives, and traders can use it to rebalance the
portfolio accordingly to achieve a desired exposure. In addition, our PIDE-QIDE
approach can casily be extended to derive a close form solution for the Laplace
transform of the distribution of occupation times spent within two barriers {a
corridor).

Beyond financial settings, we should emphasize that the mathematical re-
sults about occupation times of a jump diffusion process may find potential appli-
cations in other branches of applied probability more generally. One candidate
ase we can think of is in queuing theory. When service times or interarrival
times have heavy-tailed distributions, heavy-traflic limits for the queue-length
process usually are given by jump diffusions (sce Whitt (2002), Chapter 6). The
results presented in this chapter may be of interest to those who want to study
the oceupation time above/below single level or between two levels for a heavy-
traffic queue. The literature accumulates some progress in this direction. For
instance, Cohen and Hooghiemstra (1981) discussed occupation times of Brown-
ian excursions, a special kind of diffustons, and their link with the M/M/1 queue.
We hope that our results may stimulate further investigation in jump-diffusion

selting.
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The organization of this article 15 as follows. Section 2 introduces Kou's
model and some of its elementary properties. Section 3 demonstrates how to solve
the PIDE to obtain the Laplace transform of the distribution of the occupation
umes. Section 4 applies the results of Section 3 Lo pricing various derivatives
imcluding step options. corridor options, and quantile options. Numerical results
are given in Section 5. Appendices (U 1-C.3 are included to deal with some
technical tssues anse in the body text and Appendix C.4 discusses the extension

of our approach 1o the occupation times 1 a corridor.

4.2. Kou’s Model and Its Basic Properties

Consider a market consisting of three securities only: a risk-free bond, a stock,
and an occupation-time-related option contingent upon the stock. The bond
offers investors risk free interest rate v In Kou's double-exponential jump dif-
fusion model {DISM), the stock price under the physical probability measure 1s

governed by the following dynamic,

(.5, Ni
B;—;i = pdt + odW, +d IE;(V' -1,

where 1 and @ are coustants, {W, : ¢ > 0} is a standard Brownian motion, {N,:
t > 0} is a Poisson process with arrival rate A, and {V, : i = 1,2, .. .} is a sequence
of independent identically distributed (i.i.d.) random variables. According to the
model, the instantaneous asset return rate is subject to the effects of three factors:
a deterministic trend g, small fluctuations described by the Brownian motion,
and large market shocks captured by the Poisson-arrival jump part. To make
the model more mathematically tractable, we further assume that Y, := log(V,)
follows a double exponential distribution, the probability density function (pdf)
of which s
() = pne ™ sop + 98¢% 1y0),

where 7 > 1,8 > 0, p > 0. ¢ > 0, and p+ g = 1. In other words, there are

two types of jumps in the process: upward jumps with occurrence probability p
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and average jump size 1/n, and downward jumps with occurrence probability ¢
and average jump size 1/6. Both types of jumps are exponentially distributed.
We also assume that {W, - ¢ > 0} {N, - ¢ > 0} and {Y, 0« = 1,2, }
are independent.  This model, proposed by Kou (2002) and Kou and Wang
(2003.2004), is known as the double-exponential jump diffusion model in the
financial engineering, literature.

We need to work on a risk-neutral probability measure to calculate the op-
tion price. However, that measure is not unique because of the jump diffusion as-.
sumption. Following Lucas {1978) and Naik and Lee (1990). Kou (2002) showed
that there is a particular probability measure P* so that the equilibrium price
of an option is given by the expectation under this measure of the discounted
option payoff if we consider a representative agent economy with a HARA-type
utility function. We point out that our argument will work under any equivalent
martingale measure that prescrves the model structure, particularly the expo-
nential type of the jumps. Under this risk-neutral probability measure P75

follows another double-exponential jump diffusion model. More specifically, S

obeys
N.
1S '
;,t’ = rdt + o dW, +d ;(V,' - 1)

Under /*, {W; :t > 0} is a standard Brownian motion, {N; : ¢ > 0} is a
Poisson process with arrival rate A°, and {Y," := Jog(V,") 1 ¢ = 1,2,-- } is also
a sequence of i.i.d. double-exponentially distributed random variables, but with

different parameters. The distribution of ¥,* is given by

fro(y) = pnte "V + ¢ 0 V1,
where the new set of parameters satisfy 77 > 1, 6 > ¢, p* > 0, ¢° > 0, and
pt gt = 1 Moreover, {W, : t > 0}, {N, ¢ >0}, and {¥; ¢ = 1,2, }
arc also independent under P*. As we are only interested in option pricing, the
difference between the physical and risk-neutral probability measures plays no
role. From now on we drop the superscript *, with the understanding that all of

the processes and parameters in the subsequent discussions arc under P
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Let X, be the log-return of the asset. e, X, = log(S/8). By 1to's formula

(ef Protter (2005), Theorem 11 32, p. 78), one can casily obtain

N
* * l P - 4 » -
Ne = Xo+(r - 5(73 — A + oW, + ;S_ ! Y., Xo=0, (4.1)

where ¢ 15 the mean percentage jump size

Sy ) q6
S EleY 1) = + -
N I | n-1 6+1

An additional requirement n > 1 is needed to ensure that E[Vi] = EjeY] < o0

1.

and EleY] < > this essentially means that the average upward jump cannot
exceed 100%. which is quite reasonable in the reality ol stock markets. For
notational simpheity, denote y .= r — %02 - Al

Mathematically, the double-exponential jump diffusion process (4.1) is a
special Lévy processes because it has stationary and independent increments.

Its Lévy exponent is defined as

1 : 7 Z
G(z) = ~ log Elexp(z X )| Xo =0} = T2y BT + A /N 7).
t 2 n—r 6+
(4.2)
Consider an algebraic equation G(x) = r + a for any given a > —r. It is easy to
show that all four roots of the equation are real numbers (¢f. Lemma 2.1, Kou

and Wang (2003)). Denote them by £y 4, 824, — V1.4, — V2.« These roots satisfy
0< ha< < Bra<0o0, 0<yu<t <y2e <00

We will use these roots frequently when we derive the distributions of occupation
times of (4.1} in Section 3. Explicit formulae for the four roots are also presented
in Appendix C.1 for reference.

Another important tool to establish the key results of the article is the
infinitesimal generator of X,. Note that X, is a Markovian process and its in-
finitesimal gencrator is given by

(Lu)(x) = 1!‘1{:]1 E{“(Xt)IXnt‘—‘ z] — u(z)

Ol

= %ozu”(:c] + pu'(z) + A / [u(x + y) — u(z)] [y {y)dy (4.3)

o]

for any twice continuously differentiable function .
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4.3. Distribution of the Occupation Times

In the section, we will present the main results of the article the Laplace
transforms of the distributions of occupation times of the double-exponential
jump diffusion process {X,} given by {4.1). Once it is known, in principle we
are able to calculate any option prices related with occupation times. Consider
a constant barrier k and let 7, denote the occupation time the log-return process
{X.} spends below h until ¢, 1.¢.,
4

1, = n{h) = -A l{xu(h}du. (4.4)
An occupation time related option with maturity T usually has a payoff associ-
ated with 7 and Xp. Suppose it is given by f(7r, X7) for a general function
{. Then pricing the option is equivalent to cvaluating the following discounted

expected payoff
e "TEf(rr. X7)| Xy = 1] (4.5)

under the risk neutral probability. This section is devoted to the calculation of
the expectation.

Before jumping into mathematical details, we would like to motivate readers
by the intuition behind the scenes first. If the joint probability distribution of
(7¢, X,) is available explicitly for all ¢, the expectation in (4.5) is obtainable by

numerically integrating

ELf (rr, X1)| Xo = 2] = / ] " Js.y)F(ds, dy: T, 2),

where F(ds,dy;T.z) = Prr € ds, Xr € dy|Xo = z}. So our pricing strategy
starts from finding a closed-form expression for the distribution F(ds, dy; T, z).
The Laplace transform is a powerful tool in characterizing probability distribu-
tions. We can invert the transforms to recover distributions easily, either using
transform tables when possible or resorting to other numerical methods. For any

p > 0 and v € R, define V{p,v;t,z) as the Laplace transform of F(ds,dy;t, )
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with respect to s and y, lLe.,
t o0 .
1/'({).'}(:{‘,{) = / / e PS1 “fy!p(ds‘dy; f.,.’]’) — 1,:[(,. p'n-l‘rz\tlxn — .E],
0 oo

As mentioned in the introduction section, V can be determined by the so-
lution of a PIDE for any fixed pair of p and 7. A heuristic approach is now
presented to obtain the equation and a much more rigorous treatment is deferred
to Theorem 4.2 below. Choose a short time duration 4. 7, can be decomposed

into two parts, the contribution of 1{x, <) prior to § and the contribution after

&
i 4 t
Ty :[ l{xug,}du=/ l{x-“gh}dqu/ I{X.‘gh}du-
0 0 &

By the Markovian property and the Lévy properties of {X,} we have,
b‘[e A l[r: l{xuﬁ"ldur‘r'\'llxé = ;Ijl — E[(_’ ﬂ,'(; ! l{"'u‘E"}du*‘rx‘ J|XU = I] = V(f — 6‘1-)_
If applying the Taylor expansion on V(¢ — 4, X5},

V(t,r) = Ele ™%X, = z]
= Ele oo Mxusnd v - 5 X5)| Xp = 2
~ FEle pJ3 Lyxy,cmdu | (V(t, Xs5) — 5%2-/—@, Xs))| Xo = x] + 0(6).(4.6)

Note that e* = 1 + z + o(z). Hence, (4.6) can be rewritten approximately as

V(t,z) ~ E[V({t, Xs)| Xo = 2} = — 8E [%u, X5)| Xo = 1]

&
- pE Uﬂ l{xugh}du-V(t,X.g)]+o(6). (4.7)

Divide both sides of (4.7) by & and take it to 0. The left-hand side converges to
—LV(t,z), thanks to (4.3), the definition of the infinitesimal generator £. The
right-hand side converges to

544
——E(t, T} - pl{zgh}V(t, :1:)‘

In addition, we also know one boundary condition for the function V such that

V{0,z) = ¢,
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in summary, ¥ should solve the following PIDE with Cauchy boundary

condition

Q(% + plpenyV =LV, forte (0,T) and x € R;
V(0,z) = €%, for r € R.

(4.8)

Theorem 4.1 rigorously establishes the relationship between the Laplace trans-

form V and the solution to PIDE (4.8) via the martingale problem formulation.

Theorem 4.1. Assume that V : [0,T] x R — R s a solution to PIDE (4.8),
which is of class C*' on {0,T] x R and C*? on [0,T) x R\ {h}. Moreover, the
left and might second derivatives al h, 82V (t, h—)/0x* and OV (L, h+)/0x?, exst
and V 1is bounded by

max |V (L, 1)] < Cy e, z€R, (4.9)

0<t<T

for constants C; > 0 and 0 < C; < min{n,8}. Then V admats the follouwing

stochastic representation:
V(t,z) = Ele fo txssmdse X Xy = ], 0<t<T, zeR. (410
And such a solution s unigue.

Proof: Introduce v(t,z) = V(T — t,z) for any t € (0,7]. Following
the arguments leading to the Feynman-Kac formula (cf. cg Theorem
4.4.2, Karatzas and Shreve (1991)), we attempt to apply Ité's formula on
v(t, X ) exp(—p f(: 1{x,<nds) to calculate its expectation. However the irregular-
ity of v(t, ) at barrier h forbids us from doing so directly. From Lemma C.lin Ap-
pendix C.2 we know that there exist a series of functions {valt,z) i =1,2,--}
such that: (1). va(t, ) converges to v(t,z) as n — oo for any ({,x) € [0, 7] x R;
(2). valt, ) is of class C*2 in {0, T) x R for any n; (3). va(t,x) = v(t, ) for any
(t,z) € [0, T] x (-—oo, hJU[h+1/n, 0o); and (4) for any (t,z) € [0, T x (h,h+1/n)
and any n € N, max {|v,l1(t,:1:)|, |Bua(t, )/ 0|, |Ov.(t, ) /0|, |Pua(L, x)/0z%} <

M, where M is a positive constant independent of ¢, z, and n.
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Define

duy,
ralt.r) = '13}-(-!..!:) — pliemvn(l, ) + Lu,(t, x).
ot

According to the construction of {v, (¢, )} and (4.9}, some routine algebra ma-
nipulation will yield that there exist positive constants M, and Az, independent
of n. t, and r. such that

i¥]
ealt, | < Zl e too, for (L)€ [0.7] x {(—oo, kU R+ l00) (4.11)
n n

and

1
len(t,2)] < My < +o0, for (t,z) € [0,T] x (h,h+ —). (4.12)
T

Now we are able to apply [t0's formula to v, (t+a, Xq)e # 1o Lix 48 hecause
v, is twice differentiable on the whole real line with respect to x. Let Ty, :=
inf{t € [0,T] : |X,| > m} for any m € N. Itd’s formula for jump diffusions (cf.
Protter (2005), Theorem I1. 32, p. 78) implies that

MG™ (a) :=v,(t + a A Ty, XanT. )€ Pl ™ Lixaghyds

ah Ty <

—~ / e Potixesm®e (14 s X, Vds

0
is a local martingale for any fixed t € (0,7}, m,n € N, and 0 < a < T - t.
In other words, there should be a nondecreasing sequence of stopping times
{7k, k =1,2,---} such that P(limy .40 m = +00) = 1 and (MG (o A 1y}
a € [0,T - t]} is a true martingale. It follows that for any 0 < s <a < T - ¢,
we have

E[MG™™ (a A m)|F,) = MG™™ (s A mi). (4.13)

Fix n € IN and a sufficiently large m such that m > |h| + 1. We intend to
show that {MG™™(a) : a € [0,T — {|} is actually a true martingale. It suffices
to show that sup,eipr ¢ IMG™™{(a)| is integrable. Indeed, if this is true, we
can apply the dominated convergence theorem on (4.13). Letting & — +o0o will
yield

EMG™™ (a)|F,] = MG™™)(s)
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forany 0< s < a < T -t ie., MG™™(a) is a martingale.

Fortunately, the integrability of sup,cio7 ¢ IMG™™(a)]| is implied by the
observation that the two terms in the expression of MG™™ (&) can be bounded
as follows. For the second term, we can show that

anTm - 21
/ ¢ I Ve B (s X Vs
{

b+

artm
S/ lenlt + 5= Xy Nlix, cnneipds
0

+

anty
+/ |f‘-n(f+-‘>’"vX‘---)|]{x, €] m.h|U|h+ﬁ.m}}dS
Q

t

anT,
™ M M
5M?/0 Iix, C[h.h+%]}d“"+?l(a/\Tm_) < (1"‘424‘?1)7' (4.14)

+
where the second inequality holds due to (4.11) and (4.12). For the first term, it

is easy to see that exp(—p fUMT'" 1(x.<nyds) is always bounded by 1. Thus,
el
|Un{t + & A T, Xant,, )€ ? Jo Yxesmi® | < yp(t + @ A Ty Xaar, )| (4:15)

When o < T, vt + @ A T, Xaar,.) = valt + @, X,), which is bounded by
MaXse[0,7],2¢| mm] |un(s, )| because |X,| < m by the definition of T,,. When
a > T, Un(t + & AT, Xoar, ) = vn(t + T, X1,,). By (4.9), its absolute value
is bounded by

|I-'[f + T, X'fl,.)l < Cle(-zmdxnmg; 1 X < Cl(_,02|1|!('2|u”(,('20 maxg <7 [Wal 02 PR A

Now we intend to show E[|v(t + T, X4, }|] < 400, On the one hand, some

calculation illustrates that

(T2 Eh N — oxp 4 A Ll @ _ 4.16
Ele ] pr{ T(T}—Cg+6—02 < 400, (4.16)

thanks to 0 < €, < min{n,8}. On the other hand, we also have
Ele@2omaxacasrIWel} o« 40, (4.17)

Actually, notice that €27 m@xc.srWal < 7. 7 where

Z, = (_,(1'20' maxg<, <y Wa and Z = eC'zﬂ maxge <y - W.-J_
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Since both maxge.cr W, and maxgcscr(—W,) have the same distribution as

W, it follows that
EZ? = EZ% = Ee?CriWrl = 2,203 T 9200 VT,

where ®(r) is the cumulative normal distribution function.  According to

Minkowski's integral inequality, we can obtain that

< % E(Z, + 7 1))

< [l
3 BZD] 7 ¢ 5 [z
= [E(

[150€ 20 maxon oo 1 15 172

E(Z, 2 )"

l/\

. 3 o2 1/2
(7)) = 22 9200V < oo

Then (4.17) 1s proved.

From (4.16) and (4.17), we then have E{lv({ + T, X1.,,.)|] < +00. Therefore,
the right-hand side of (4.15) will be bounded by

n(t + @A Ty Xaar )l < |oalt + a, Xa) Liacrn)l]
+Efvp(t + T, X10,) a7}

< max |vn(s, )| + |v{t + T, X1 )l
sC|0 1, zCf m,m}

Note that the right-hand side of this inequality has nothing to do with a. It
follows that sup,ejor o [Un(t + a A Tim, Xaar,)| is integrable. Combining with
(4.14), we have already shown that sup,cor ¢ IMG™(a)| is integrable. Con-
sequently, {MG™™(a) : a € [0,T — ]} is a true martingale.

The martingale property of MG™™) (a) implies that

EMG™™(a)| Xy = z] = EIMG™™(0)| Xy = z} = valt, ).
In other words,

v, z) = E [v,,(t + a A T, Xan,, )€ Pl Lixasmids) X = J,]

A}

[LTLY
_Elf eru l(xg‘:h}d{ (t-{-t,—-— X )dlen _I] (418)
0

t
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Let 7 go to +oo in {4.18). The left-hand side converges to v. Meanwhile, (4.14)
and (4.15) allow us to apply the dominated convergence theorem on the right-
hand side. Note that the second term on the right-hand side of (4.18) goes to

zero. After taking the limit, (4.18) becomes
ot z) = E [v(t b AT Xanr e Pl dxaemds) X = I] . (4.19)
Note that the term inside the expectation of (4.19) is bounded by

s o
[U(£+QATTR'X“«A"("_")P er(jA l(X,‘(h}dsl

tA

[v(t + a A T, Xaar, )]

- . . N
< C ecziIl + Clp|T P_Czo MAXG< s 7" 1W-|6C2 oy

and the right-hand side can be shown to be integrable. We may be able Lo apply
the dominated convergence theorem again on (4.19) to get the limit as m goes

to +0o. It follows that
v(t,z) = E[v(t + a, Xa)e ol Lix,enyds],
Let a« = T — ¢ in the last equation and recall the definition of v. We have

V(T ~ t,2) = v(t,2) =E@(T, Xr e *lo Hoxeend]

EV(0, Xy Je P Norenide]

The right-hand side 1s equal to EfjerXr- 2lo l1“‘-‘:’“‘“]. As t is arbilrary, the
proof is completed. O

Equation (4.8) is a PIDE with a Cauchy boundary, noting that £ involves
both differential and integral operators. We intend to use the Laplace transform
once again to convert it into an OIDE, which is much casier to solve. Consider
the first equation in (4.8). Introduce the following Laplace transform on the
(discounted) value of V:

+00
u{z;a) = f e ™ .e "V(L z)dt

0
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for a sufficiently large positive a. Routine calculation shows that u must satisfy

(Plizeny +r +a)u(ria) — e =Lu(z:a) =

—o’u"(z,a) + pu'(z; )

+A/ (r +yia) — ulx;a)]fy(y)dy.

(4.20)

Thus. we have successfully removed the partial derivative in (4.8). For a general

jump density fy

sulution.

explicitly. We summarize the solution in the following theorem.

Theorem 4.2. For any 0 <y < min{n.8}, p > 0 and

1 0
a+r o>y 20790 4/\( N —l),
n-v 0-x

the Laplace transform

where

% and

W =

Wwoy =—

vy =

by =

with

o]
U‘(I;IL Fraavh) =/ o4 (aif)lE[e ﬂﬁ*"r-’thU = I]dt

4]

wleﬁl.uiﬂ(x h] _+__ wzeﬁlu I'.IJ(I h‘) —_ Cl c"!(I_h)‘

._._V]e "fl,u(-r h) — U,ze 72.:1(: h) —_ (:26"'(1-_"[}‘

h h

e? e’

o = ; C2 =

Gyv)-a-r-p

(ﬁ?,aip - 7](_71,0 - ‘Y)(_’T?‘a - 'T)(T? - 6l.aip (9 + ﬁl,ahﬂ)

Gy)—a-1’

T < h

T > h,

)
(ﬁ2,a-{p - ﬁl,a HJ)(_’TI.& - ﬁl,aip)(_72.a - ﬁl,a-i p)(n - 7)(9 + ’T)
(ﬁl,cﬁp - 7)(_71,3 - 7)(*72@ - ’T)(Tl - 62,(1?9)(9 + 62.0. i—p)

125

(ﬁl.a tp ﬁ2,a+p)(_71‘a - ﬁ‘l.m-p)(_’h,a - 52.a+p)(71 - 7)(9 + '7)

(Brasp = V(Braso = YN =722 — VN + M) — 710)
(Bratp + Ma)(Brats + Ma)(—72u + M) = YHE + V)
(Brate = V) (Bratp — YH =710 = V0 + 120 — 72.0)
(Brave + 126)(Braip + 1200 (=T + 120) (0 = V)0 +7)

L pel”
PTG —a-r-ACH) —a-7)

12,

12

C12,

it could still be very difficult Lo solve (4.20) for a closed-form

However, when fy is a double exponential density, (4.20) is solvable

(4.21)

(4.22)
(4.23)
(4.24)

(4.25)

(4.26)
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Proof: Fix constants p. v, a, and h. Define

w{z), r<h
u(r) = (4.27)
uz(z), > h
Then the non-homogenous OIDE (4.20) can be rewritten as two scparate equa-
tions in the regions (—oo, k) and (h, +00). For x < A,
2

{
%u'{(z] +pui(z) - (A+a+r+p)ulz)+ )\/ w (2 + y)ghe®dy

h 400
+[ u (T + yypne '”‘dy+/ up (7 + y)pme "”’dy] = —e% (4.28)
0 h

I
and for r > h,
2 h

%ug(x) + pup(x) — (A +a + riuglz) + /\/ u{r + y)qﬂegydy

0 toc
+/ uy(x + y)qﬁ’eeydy+f uz(z + y)pne Mdy| = —e’". (4.29)
h I

0
We claim that the solution u,(x) and uy(x) must be of the following form
w(x) = wleﬁx.“p{:- h) +d2€ﬁz.am{r h)y _ Cleﬁ(r' h}, r < h;

(4.30)

wo(T) = —ye MaER e Melz MY perlE A g s by

where wy, ws, V1, V2, C1, and ¢y are constants to be determined. Indeed, for
equation (4.29), under a change of variable z =z + y, it is transformed further
to

h

—uy(z) = —puy(x) + (A + a + rus(z) - Ae'gI/ uy (2)g6e?* dz

Lo &)

- oo
~ de BI/ uy(2)qfe®*dz — ’\BHI/ uy(z)pme "dz + . (4.31)
h T

Our purpose is to remove the three integrals in (4.31), one by one, to reduce
the OIDE to an ODE in order to make use of the theory of ODEs to solve the
equation completely and to show the uniqueness of the solution at the same time.
First, any solution to {(4.31) must have the third-order derivative. This point is

easily seen from the right-hand side of (4.31) because all terms are differentiable
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and so is u”(z). Multiplying both sides of {4.31) by 7,

02 h

Eeoxu’g'(;r) = —pe’uy(x) + (A + a + ) uy(x) - ,\/ u,(2)q0e*dz

* { oo
- )‘_/ u2(3)f1960‘dz - ,\eiﬂ*n)x/ uqg(2)pne Mdz + e+
h I

Take differentiation on both sides of this equation to remove the first integral.

Dividing the resulting OIDE by e % yields
2 2

52 () = —(%9 + g () — (8 — A — a — uy(x)

oo
+ [{A + )8 — Mgl + Aprj|ua{z) + A(n + 6’)(3’”[ uz(z)pne Tdz + (0 + v)e™.
(4.32)
From (4.32), u should also be fourth-order differentiable. Hence, we can take a

similar step to remove the integral in (4.32) to obtain a non-homogeneous ODE

with constant coefficients as follows:

2 0.2 0.2
%—ug”(r) + =5 = 0) + pluy(2) + (=m0 — puln = 0) - A —a - rlus()
+{(n— 6)(A+a+r1)— anb + A — Apnjuy(z) + anbus(z) = (1 — ¥)(0 + 7)e™*.
(4.33)

On one hand, it is easy to see that cze™ is a particular solution to the ODE
(4.33) for a constant ¢;. On the other hand, the characteristic equation of the

corresponding homogeneous ODE turns to be

(Gly) —a—r){y+8)(y—n) =0,

which has four real roots as mentioned in Section 2. Therefore, any solution to

(4.33) can be expressed as

uy(z) = Uleﬁ:,u(x—h) + pzeﬁz.a(x hy _ e Talz-h) _ Uze—'n.a(z—h} — 026'7(-‘5-"1)‘

for any x > h,with &, vs, 1y, 13, and ¢; undetermined. Furthermore, we can
argue that the first two coefficients &, and v, should be 0. In fact, we know that

us(x)
ers

_ /~w . _(a+r)tE[eA pﬂ+1(X;—:|:)|X0 —_ :I:ldt
0

=/ e“-(a+f)¢E[e~m: +"r-\’f|X0 = 0]d,
0
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where the last equality is because of the Lévy property of X. The right-hand

side of the above equality is less than

w !
/ e 1T Gy < +o0,
i a1 —C()

because Elexp(—pr, + vX1)]Xo = 0] < Elexp(vX,)| X = 0] = exp(G(7)). Thus,
M, oo u2(Z)/€7® < +00. Note Bz, > B4 > 7y, which implies £4 and v, must

be 0. Consequently, any solution to the OIDE in (4.29) can be expressed as

{(z h) {z—h) (z -h)

ug(z) = —ve” M — e The — cp€” for x > h,

with ¢, v, and v, to be determined. Similarly, we also can show any solution

to the first OIDE in (4.28) is expressed as
wy(z) = wyePraralz=h) o pPreial® R oYER) oy 1 < b,

with ¢;, w;, and wy to be determined.
Now we need six equations to determine these coefficients. Substituting

u1(z), uz(x) into (4.28-4.29) yields Lhat for any z < A,

[cle"”"'(G('y) —a-r—p)-1]e”*

[ [, 1% i Cy — ¢
+ Apn [ — 21 4= 2] en=h = Q..
N—Platpr N—Brarp N+MNe N+Y2a N—7%

and for any = > h,
— [c26™(G(y) —a—7) - 1] e

o V) Va2 S Cz] p-8z-h) _

+ Agf [ et S + +
g
9+ﬁl.a+p 9+ﬁ2,ai—p' 0 — M.a 9 = T2e 9+'}(
Therefore, u is a solution if and only if the coefficients wy, wa, 11, 12, €1, and ¢

satisfy the following four equations:

a(G(y) ~a—1—p) =™

wh i Vo _ Cy — Ca

Wwa
+ + + ,
n“ﬁl.a}p 7?‘ﬂ2.a+p T+ YNe N+ T2 n—-v
c2(G(v) ~a~r) = 67",
h o 141 ) Cp — Cy
+ + + = :
6 + 61 -t 8 + ﬁ?,tﬂ—p 8 ~ fl,a 8 — Y2.a 0 + Y
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In addition, we can also obtain another two equations from the fact that u(z) is

continuously differentiable at barrier h:

W) +wy — 0y = =V — Ve — (g,

ﬁtm g T ﬁ'z,u 2 — C1Y = N + Y2ade — CrY.

All of these equations are linear with respect to the undetermined parame-
ters. To solve them, first we can easily obtain that
et eth

CEEm a-r=p M TG e

Substituting these two into the above linear system will reduce it further to

A(p)e(p,7) = I(p,7), (4.34)

' r
W]t.l]. C(p!FY] - ({.dl‘u)z,lll,VQ)r, J({), F}() =12 (lvﬁY: ;1 ﬁ) ’ a'nd

77 T

- -

i 1 1 1
ﬁl.a tp ﬁ‘z.u tp T T2

A(p) B 1 1 1 1
7-Bla+p N -Bra+e Nt7a Tm2a

1 1 i 1
&+ ﬁl,ﬂ+ﬂ 0*'5‘2.01:} ¢-- Yl.a 8- Y2a ]

pe™

where ciz = 61~ 2 = G G e Appendix C.3 shows that the matrix

A(p) is non-singular and the coefficients defined by (4.22)-(4.25) solve the linear
equations (4.34). O

We also can extend the above approach to derive the distribution of oc-
cupation times the process spends within two barriers. A minor technical gap

remains. All detailed discussion is included in Appendix C.4.

Remark 4.3. The key step in the whole proof lies in (4.31). The assumption of
exponential-type jump distribuiions in Kou’s model allows us to differentiate the
OIDE in order to transform the OIDE to an ODE. It seems that our method does
nol apply for any jump distribution other than ezponential-type distributions. For
instance, this transformation will not be workable for Merton’s jump diffusion

model.
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Remark 4.4. Cai and Kou (2008} studied a similar OIDE under a more general

hyper-exponential jump diffusion model as follows.

(Lu)(z) ~ (@ +r)u(z) =0, <z (4.35)

ﬂ.(.’f:) = g(I)! Xz 2 Xg,
where a > 0 and g(x) is a known function. By transforming (4.35) inio a
homogeneous linear ODE with constant coefficients, Cai and Kou managed to

show that the solulion to (4.85) must be of the form
u(r) = yefre@ T} 4 ePralz Tl 4 G0 Tele T0) 4 GoeMrals =0

Despite the similanty, (4.8) is much more complicated because it s “non-
homogeneous"and furthermoere it contains two OIDESs in two disjoint regions that
are intertwined together due to the integral parts. We are still able to reduce i
down to a linear ODE, applying the same technigque as in Car and Kou (2008)

after some modification.

Remark 4.5. Note that several structured products issued on the real financial
market have a payoff writlen on the occupation time, bul with an interest rate
or a spread of swap rates with different maturities as underlying. These under-
lying processes are usually of mean reversion structure. However, our approach
would be hard to be extended lo the mean reversion jump diffusion cases. The
primary technical barrier lies in the fact that the corresponding OIDE, in which
the coefficient of the first deriwative is not a constant but a linear function of

stale variable, is difficult to solve explicitly.

4.4. Pricing Occupation-Time-Related Options

In this section, several examples of occupation-time-related options accumulated
in the literature are considered, including the step options suggested by Linetsky
(1998), the corridor opt;ions studied by Fusai (2000), and the quantile options
proposed by Miura (1992). Thanks to Theorem 4.2 and the special structures
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of these options, we can obtain closed-form expressions for the option prices in
terms of their Laplace transforms and then make it possible to suggest hedging
strategies accordingly. Furthermore, we are also able to calculate the price sen-
sitivities very easily from the Laplace transforms, which is convenient for risk
management on the options. This section uses delta as an example. The calcu-
lation of other greeks is similar and thus omitted due to the space limitation.

. From now on, we assume that L is the constant barrier Lo define the occu-
pation times. Define h = log(L/Sy) as the associated barrier for the log-return

process { X, }.

4.4.1. Pricing Step Options

As mentioned in the introduction, Linetsky (1999) introduced the step option to
overcome the hedging problem inherent in standard barrier option around the
barrier. For down-and-out step call options, the payoff at maturity is defined as
the payoff of a standard European call option discounted at a rate that depends
on the amount of time spent by the underlying asset below a pre-specified barrier.
We can classify these options into proportional step options, simple step options,

and delayed barrier options according to different discounting schemes used.

Proportional (Geometric) Step Options

In this section, we focus on pricing a proportional step call option, which has the
payoff

e P (SpeXT — K)*,

where p is the non-negative knock-out rate, S is the initial underlying asset
price, Xr is the log-return value of the underlying asset price at maturity T', and
rr(h) is the occupation time as defined in (4.4). The pricing method also applies
to proportional step put options.

In some sense the proportional step option can be regarded as an extension

of the standard barrier option and the vanilla European option. With a finite
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positive knock-out rate p, it is obvious that
(o >7{See™" — K)* < & P (SpeXT — K)' < (See™ — K)',  (4.36)

where ¢, is defined as the first passage time of {X,} to the barrier &, i.e., ¢ =
inf{t > 0: X, < h}. The payoff of the proportional step call option is sandwiched
by the payoff of the vanilla European call on the right- hand side of (4.36} and
the payoff of the down-and-out barrier call on the left-hand side of (4.36). When
p = 0, the payoff of the step option coincides with that of the vanilla call. As p
approaches 400, it tends to the payoff of the down-and-out barrier call.

Additionally, {4.36) also reveals one advantage of the step option over the
standard barrier option. The down-and-out barrier call eliminates the payoff to
the investor immediately if the underlying process { X,} touches the barrier & at
or before T, i.e., 1(,>7} = 0. However, the payoff of the step option does not
disappear when X crosses the boundary. Investors still receive a portion of the
original payoff, discounted depending upon the length of the period that {X,}
spends below h. This mollifies the discontinuity of the barrier options around 4,
which eases the difficulty of risk management on barrier options to some degree.
We have discussed it briefly in the introduction section and Linetsky (1999) has
offered more details.

Under the risk-neutral probability measure, the proportional step call option
price is

C](K, T) = E_rTE[G m(h}(SQEXT — K)+|SQ]

Make a change of variable x = —log K for the convenience of later applying

Laplace transforms. Then, we have
Ci(k, T) = e "TE[e P (SpeXt — e *)*| Sy

Taking double Laplace transforms on the price function C)(x, T) with respect to

x and T, respectively, and applying the Fubini theorem to interchange the order
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of the expectation and the integral with respect to x, we obtain

f de e # °TC (x, T)dx

S‘p{l =]
_hw(fp m 1)/ aTE[e fn k(X. )ds+(§oll)X;]dT (437)

Using Theorem 4.2, we can derive an explicit closed-form expression for the

double Laplace transform above.

Theorem 4.6. With the initial underlying asset price Sy and barrier L, assuming
that (4.21) 15 satisfied, then for anya > 0 and 0 < ¢ < min{n, 8} — 1, the double

Laplace transform of the proportional step call option price C1(k,T) s

wtl

__ "6 .
gl((p!a) _99(50 + l)u(oi o4 + l,ﬂ,log(L/Sg)),

where u(z; p,v,a, h) is given by Theorem {.2.

The delta of an option is defined as the derivative of the option price with
respect to the current underlying price Sg. Taking differentiation under the

integral (4.37), we can easily see that

s = [Car [ e # T2 C (. T)dr.
O

Accordingly, the transform of the delta is just the derivative of the transform of
the price function with respect to Sp. Hence, the delta of the step option is also

obtainable through the Laplace transform.

Simple (Arithmetic) Step Options and Delayed Barrier Options

In addition to the proportional step options, Linetsky (1998} also discussed two
other kinds of step options, simple {arithmetic) step options and delayed barrier
options. Laplace transform techniques can also lead to analytical solutions to
pricing problems of these two step options.

The simple step option uses a discounting scheme that is different from what
is used for the proportional step option. The payoff of a simple step call option
is defined as

(1 = 7r(R)/9)* - (Sr = K)*.
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With a positive knock-out rate 1 /9, investors will lose the option payolff gradually
until the occupatlon tlme accumulates up to ¥, when they will lose all of the value.
This i is a major differcnce from the proportlonal step option, where investors will
never lose the entire option value.

It is simple to convert the pricing problem of simple step options into that of
the proportional step options we discussed in Section 4.1.1 via Laplace transform.

Note that for any p > 0,
/ ICLK, T, 9)e " dv
0
_ TR / I = r(R)/B) e P dI - (Soc*™ — K)'|S0]
4 1]
-rT 1

p Ele #1o(See*" — K)*| = Ecl(,o; K,T).

The right-hand side of the formula above is calculable via double Laplace inver-

sion. Thus, we can essentially apply triple Laplace iriversion Lo obtain C3, The
numerical experiment in Section 5 indicates that the computation is still very
efficient.

The delayed barrier option poses an alternative discount factor 1(r.(n)<s)
on the payoff of the vanilla European call. Hence, the option value is wiped out
completely if and only if 77(h) > 9. We can also convert the associated pric-
ing problem into that of a proportional option formulation by taking a Laplace

transform with respect to 9.
/ e Cy(K, T, 9)dd = e—f""E[/' Lcoye P dd - (Soe™™ — K} *|Sol
0 0
1
= -Cy(pK,T).
P

Hence, triple Laplace inversion can also be applied to price delayed barrier op-

tions numerically.
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'4.4.2. Pricing Corridor Options

The corridor option is anather example of occupation-time-related options. It
pays an amount at the maturity, dependent upon the time spent by a reference
market variable below (or above) a given barrier or inside an interval. The former
.option, i.e., the corridor option with single barrier, is usually referred to as the
hurdle option. In this subsection, we will concentrate on hurdle options only.
Corridor options with double barriers can be priced similarly. For details, see
Appendix C.4. It is worth mentioning that Fusai (2000} studied the pricing of
corridor opiioris with double barriers under the GBM model. His approach relied
on the special properties of Brownian motion.

A corridor option with single barrier has the payofl max{rr(h) — K,0} for

a gi\}en strike K < T, and its price at time 0 is thus given by
Cor(K,T) = e "T E[max{rr(h) — K,0}].

We need the expectation of r(h) to proceed the price calculation. A nice prop-
erty of the Laplace transform of a probability distribution is that we can obtain
any order moments of the distribution through the derivatives of its Laplace
transform at zero. Keeping this property in mind and using the notations in

Theorem 4.2, we have

f e (a'}r)TE[TT(h)]dT _.:f e-(a+r)T_€_ E[e -prr{h) HX:lXO = ;c]dT
o 0 3,0 p=0
=% (2:0,7,a, h). (4.38)
Op

Then, taking a double Laplace transform of Cor(K,T) with respect to K and
T, e,

9eor(p,a) = -/*00 /we"wx TCor (K, TYdKdT,
we can obtain Theorem 4.7 asufoll(()]ws:

Theorem 4.7. For any ¢ and a > 0, we have

1 Ou
wrlo,a) = ——=—(0;0,0,a,log(L/S
Geor (. G) (,oap( a,log(L/Ss}))

1 1
+7u(05,0,a,log(L/5)) -

m. (4.39)



Chapter 4. Occupation Times 88

Proof: Applying the Fubini theorem to interchange the order of expectation and

integrals in g.-, we have

Grlipra) = [ ¢ @ TATEL[ e #Kmax(rr(h) - K,0}4K]
0 0

1 oo .
= --f e @I E[rr(R))dT
¥ Jo
1 had . 1
+— (atn)T g2 wrrh g — ——
= S T

The integral in the second term on the right-hand side above can be represented
by u(0;,0,a, h). In addition, we know from (4.38) that the integral in the first
term is Ou(0; p,0,a, h)/8p. The theorem is proved. O

What is interesting here is that we can also obtain a closed-form expression

for du/0p, which is convenient when calculating geor-

Proposition 4.8. For any a > 0, we have

~ 5 & ~ (%o 82,0 1
% 0.0,0,a,log(L/So)) = 4 " ()7 +én( ) e o< by )
dp (&) -n(E)" So > L,
where
631 =ﬁ2,a7l,a’72,a (ﬁl.a - n)(ﬁl,a + 9)
n6{a +7)2 (Bra — Bea)(Bra + N.a)(Bra + Y20)’
Ty zﬁl,a’h.a'}fz.a (P20 — )2 +6)
n8(e +7)2 (B2 — B1.0)(B2a + M) (Bra + Y20)
Dl =ﬁl,aﬁ2,a”f2,n (71,0. + n)(’h,a - 9)
n0(a +7)2 (Ma + Bra)(Na + Bea) (Ve — V2u)
5 _ﬁl aP2aMa (120 + 1720 — )

B 7?9(0- + T)z (72.0 + ﬁl.a)('}'?,a + ﬁ2.a)(’72.a - ’Tl.a) '
Proof: According to Theorem 4.2, u is a piecewise-defined function. To em-
phasize their dependence on p and v, we rewrite ¢y, €2, w, Wz, ¥, and v

as a1(p,7), c2(7), wi(p,7), walp,7), vilp,7), and va(p,7), respectively. When
z < h = log(L/Sy), by the product rule of function derivative, we have

Ou Awi(p: ) 0B

Ot Biere(z-n) [ FU2TY) Latp

- Ow (p: ’Y) aﬁ2a acl(pa’}’) -
B2,a4p(x -h) V2 ate y t(x—h
+e ( 5 + wa(p, ) 25 5 © {4.41)
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Letting £ = p = v = 0 and noting that w; (0, 7) = w2(0,v) = 0 (cf. (4.22), (4.23),
and (4.26)), we obtain that when Sy < L,

du _ (@)ﬁ"“ dwy (p, ) N (§g)ﬁ“'“ Aw2(p, )
adplp=0 L dp (p.7)=(0.0) L dp (7)) =(0,0)
dei{p,v)
A LA , 4.42
dp  lpm=(00) (4.42)

Similarly, when when Sy > L, we have

- (i) 9nlp,v) _ (i) valp, 1) (4.43)
p=0 So dp  lem=00) So dp  lpm=wn

Note c(p,7) = (wi(p,¥), walp, ¥}, v1(p, 7),v2(p, 7)) is the solution of the linear
system {4.34), 1.e., A(p)c(p,v) = J{p,7). Then,

u
Op

dA(p) dc(p, ) 8J{p,7)
0,0) + A(O = —" }
dp |p=0c( ) (0) dp  ltem=to0 dp  Hem=00.0)
The fact that c(0,0) = 0 implies
dc(p, ) 0J(p,7)
A(0)—=L L === .
© Op |(P.’r)={0.0) dp ‘(p,-n=(o.o)

. a ,
In other words, we can obtain 22

i , 1.e., the partial derivatives of

(p7)=(0.0)
(wilp, ), w2(p,7), (e, ), v2(p, 7)) at (0,0) by solving the above equations.

Then substituting the result back into (4.42) and (4.43) yields {4.40) imme-

diately, which completes the proof. O

4.4.3. Pricing Quantile Options

Miura (1992) introduced a-quantiie options as an extension of lookback options.
Its payoff depends on the a-quantile of the underlying asset price process, which

is defined as
g(a, T) = inf{h : 7r(h) > oT}, for any a € [0, 1]

Following Dassios (1995), we will investigate the pricing of the fixed-strike o-

quantile call option with payoff {Spe®T) — K)*. It is worth mentioning that
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when o = 0 and v = 1, g(o, T) is the running maximum of {X,} over (0,7} so
that the quantile option is reduced to the lookback option.

Forany 0 < v < T, let
Qua(v.T) = e " E[(Soe™/T) — K)']
be the (v/T)-quantile option price. A key observation that
{rr(h) < v} =A{q(v/T.T) > h} (4.44)

links the quantile options with occupation times. The Laplace transform of 7r(h)
helps us again to establish a theorem as follows on the closed-form double Laplace
transform of the quantile option price. Inverting the transform can then produce

numerical prices.

Theorem 4.9. Assume that 0 < v < min{n,8}. For.anya > 0 and p > 0 such
that G(v) < a+ p+7, the double Laplace transform of Qualv, T} wunth respect to

v and T is given by

thlﬂ(pla)
=[ / e'””e"“TQua(v,T)I{v<T}dev
o Jo
f w Bratp w B2.04p .
ot (So/K) ™7 + Mg (So/K) T if K > Sy;

ol 2% e _30_m (] (K/Sp)5)

P Prave- P Brare - P Maty
_YSo_ vz _ 22077 5o—K .
u 02— (1 = (K/So)” ) + @rrfarea) if K < Sp,

where wy, wa, ) and vy are gwen by Theorem 4.2 with both v and h replaced by

0.

Proof: With the change of variable s = T — v, we have

9Qua(p: @) =/ / e e -9Qua(v,v + s)dsdv. (4.45)
o Jo

Note that for any random variable Y,

E[(Y — K)*] = ]; Py > wdu.
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In particular,

t oo
Qua(v,v +s) =e "W /;\ Plg(

U
v+ 8

U+ 8) > %log(u/so)]du.

Introduce another change-of-variable such that & = log(u/5)/~. Then,

Qua(v, v+ s) = e "WrIyS5e" / Plq( v+ 8) > hldh,

1
X v+ 8

where k = log{ K/Sy)/v. The equivalence (4.44) implies
Qua{v,v+s) =e r["”]'ySoe"""/ Plr,,o(h) < v]dh. {(4.46)
k
Substituting (4.46) back into (4.45) leads to

9qua(p, a) = f v Spe™™ ( f / e*[“*’(”*)—PUP[TW(h)<-u]dsdv) dh.
k 0 0
(4.47)

The double integral (4.47) becomes

/ [ e letnlvts) wple (k) < v|dsdv
o Jo

oo ¢

= / e_(“""}‘dtf e ™ Plr(h) < v]dv
0 0

1 1

_ _/we-{aw)tE[e—pﬁ{hJ]dt_______
2 Jo oa+1+0)

under a change of variable t = v + s. The integral on the right-hand side of this

equality is equal to u(0, p, 0, a, h) by Theorem 4.2. Hence,

f [ e latrivrs) pple | (h) < v]dsdy
o Jo

-}; (wie Preteh 4 ge Preveh) h >0

—‘-1, (vreMeh 4 ppeT2ah) 4 h <.

1

Plugging this into (4.47), routine calculation will complete the proof. O

Remark 4.10. Caz {2008b) developed a method to price both the fized- and
floating-sirike quantile options numerically using Laplace inversion twice under
a more general hyper-exponential jump diffusion model. Our method improves
the efficiency because it requires inversion once only. His method can also be
used to price floaling-strike quantile options under a more general jump diffusion

todel.
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4.5. Numerical Results

In this section we present numerical results of the options prices and hedging
parameters. For numerical pricing and hedging of options via Laplace inversion,
we use the analytical formulac in Section 4.4 and the multi-dimensional Euler
inversion algorithm, which was introduced by Choudhury, Lucantoni, and Whitt

(1994) and was extended to the two-sided case by Petrella (2004).

4.5.1. Proportional Step Options

We use the modified two-sided Euler inversion algorithm of Petrella (2004) to
invert the two-sided Laplace transform with respect to x for the proportional step
option. This ‘algorithm is faster and more stable numerically than the original
Euler inversion when dealing with two-sided transforms, due to the introduction
of a scaling factor. The numerical resuits for the proportional step option prices
(denoted by EI Price) are given in Table 4.1, where we also show the:Monte Carlo
simulation results (d&hoted by MC Value) as a benchmark together with the
associated 95% confidence intervals (denoted by 95% CI). The numerical prices
are given at the top and the delta values are given at the bottom. We can See
that all the EI Prices stay within the 95% confidence intervals of the associated
MC Values. The pricing method based on our analytical pricing formulae as well
as the Euler inversion algorithm is accurate and efficient.

As X approaches 0, the double exponential jump diffusion model will con-
verge to a geometric Brownian motion. Therefore, we can expect both the price
and delta of occupation-time-related options ﬁnder the DEM should also con-
verge to those under the GBM. Table 4.2 verifies this intuition. Furthermore, it
shows that our numerical method works for GBM as well because it replicates

Linesky’s result when we take A = 0.
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Prices of Proportional Step Options under the DEM

S K EI price MC value Std Err
90 13.81882988 13.84674076  0.01999824
100 100  9.42438004 945073300  0.02077236
110  5.97920056  6.00093565  0.02087176
90 19.04025239 19.06851901  0.01933582
105 100 13.45926395 13.48746393  0.02121837
110 8.90133738 8.93024825  0.02272951

Deltas of Proportional Step Options under the DEM

Se K El price MC value Std Err
90  0.96243741  0.96296267  0.00149024

100 100 0.73048307 0.73064749  0.00128122
110 0.51700296 0.51785311  0.00122150

90 1.07858913 1.07768208  0.00156524

102 100 0.82650108 0.82629754  0.00133499
110 0.59299438 0.59407950  0.00126350

Table 4.1: The double Laplace inversion (EI price) vs. Monte Carlo simulation (MC value)

under the DEM. The default choices are A=3,r =005,0=0.2,n=30,6 =20, p =q = 0.5,

L =102 p=1andt = 1.

The CPU time for the Laplace inversion method is around

3.5 seconds. MC values along with the associated standard errors (denoted by Std Err) are

obtained by using 50,000 time steps and simulating 100,000 sample paths, and the CPU time

is around 10 minutes. This table shows that all of the EI prices stay within the 95% confidence

intervals of the associated MC values.

4.5.2.

Quantile Options

Simple Step, Delayed Barrier, Corridor, and

The numerical prices and delta values of other occupation-time-related options,

including simple step, delayed barrier, corridor, and quantile options, are given
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Numerical Results When the Jump Intensity is Small

Prices Delias
A P A

0.1 6.802016390247875 0.616344715465678
0.01 6.782466159399428 0.616240150248286
0.001 6.780507945848759 0.616229613080276
0.0001 6.780312092511664 0.616228558551593
0.00001 6.780292506857593 0.616228453089914
0.616228441372041

0 6.780290330669454

Table 4.2: How the prices and deltas of a proportional step option change as A goes to 0.
When A — 0, both of the prices and deltas converge to those under the GBM model. The
parameters we use are the same as the setting in TABLE 5.3 of Linetsky (1999): r = 0.05,
o =06, L =95, So = 100, K = 100, and ¢ = 0.5. The jump parameters are n = 30, 8 = 20,

and p = g = 0.5. When X = (, our results are the same as Linetsky’s.

in Table 4.3-4.6.

For the pricing and hedging of the simple step and the delayed barrier op-
tions, we need to do triple Laplace inversions. First, we use a two-dimensional
Euler inversion formula for the complex-valued function (Formula (2.7) in Choud-
hury, Lucantoni, and Whitt (1994) with [, = l; = 1) and then we do an extra
one-dimensional Euler inversion (Formula (4.6) in Abate and Whitt (1992}). Our
results show that the average time spent by one triple Laplace inversion is around
9 minutes, which is still very efficient compared to the Monte Carlo simulation.
For the numerical results of corridor and quantile option prices, it suffices to use
a two-dimensional Euler inversion algorithm. Qur method is more efficient than

Cai’s method Cai (2008b).
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Prices of Simple Step Options under the DEM

S5 K EI price MC value Std Err
90  9.67457995  9.70774495 0.02985213

100 100 7.07669587  7.10395013 0.02529039
110 4.75390837 4.77502124 0.02191003
90 12.16683520 12.20418981 0.03073929

102 100 892866361 8.95838153 0.02642060
110 6.03645208 6.05956925 0.02348342

Prices of Delayed Barrier Options under the DEM

Soe K El price MC value Std Err
G0 14.25719729 14.28598897 0.03006500

100 100 10.08003700 10.10164481 0.02591103
110 6.52095740 6.53852537 0.02366194
90 16.39440581 16.43625061 0.02796657

102 100 11.63440011 11.66789910 0.02483299
110 7.59164287 7.61545252 0.02366583

Table 4.3: The Laplace inversion (EI price} vs. Monte Carlo simulation (MC value). For the
simple step and delayed barrier options, the default parameter choices are A = 3, » = 0.05,
o0=021=2308=20p=q=05 L=102 9 =05 and ¢t = 1. All Monte Carlo values
(denoted by MC value) along with the associated standard errors (denoted by Std Err) are
obtained using 50,000 time steps and simulating 100,000 sample paths. The CPU time of our
numerical methods for generating one price of simple step or delayed barrier options is around
2 minutes. The CPU time for Monte Carlo simulation is ar8und 10 minutes for the two type
of options. The table indicates that all the EI prices stay within the 95% confidence intervals

of the assaociated MC values.

4.5.3. Discretization Frequency Effect

Our EI price is given under an assumption that the underlying price is continu-

ously monitored. However, in reality a sizable portion of contracts specify fixed
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reference times for monitoring and the occupation time is defined according to
the number of the monitoring dates in which the underlying price is above/below
some level or within a band. This may introduce substantial differences between
the two monitoring schemes. Some scholars have already studied the effect of
discretization frequency on the pricing of occupation-time-related options under
GBM models. The main literature includes Atkinson and Fusai (2007}, Davydov
and Linetsky (2002) and Fusai and Tagliani (2001).

In this subsection, we aim to investigate how the discretization frequency
will affect the pricing resuits under the double exponential jump diffusions. Table
4.7 and Figure 4.1 compare our continuous-time outcomes in one proportional
step option example with the prices under discrete time monitoring, which are
obtained through Monte Carlo simulation, for various initial underlying prices.
The monitoring frequencies we use are monthly, biweekly, weekly and daily. That
is, the time horizon, 1 year, is divided into 12, 26, 52 and 252 subintervals, respec-
tively. For discrete monitoring contracts, define the occupation time as follows:

N

TL = Z(t: —ti 1) ls, <1}

=1
where 0 = &g < -+ - < iy = T are the reference dates.

It is clear to see that the relative differences between the two schemes re-
duce significantly when the discretization becomes more frequent. Therefore,
the continuous results should be a good approximation to those contracts un-
der high-frequent monitoring (say, daily or weekly). However, we should admit
that significent differences exist (e.g., more than 9% for Sy = 105 in the case of
monthly monitoring) between the continuous-time scheme and the less-frequent
discrete monitoring. It will then be important to distinguish these two under
this scenario.

A similar convergence can be observed for the delta too. As the discretiza-
tion becomes finer and finer, the deltas under discrete monitoring will converge
to the delta under continuous monitoring. Table 4.8 and Figure 2 demonstrate

the related mumerical experiments.
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Figure 4.1: Comparison of continuous and discrete momtoring results under the DEM model.
As the discretization becomes finer, the discrete-time monitoring option prices converge to the
continuous-time option prices under all initial stock prices. The default parameters of the
underlying process are r = 0.05, 0 = 02, A =3, =6 = 15 and p = ¢ = 0.5. Consider
a proportional step option with the parameters L = 102, K = 100, ¢ = 1, and ¢t = 1. The
occupation time refers to the time the underlying price spends under L = 102. And we use

100,000 sample paths to sitnulate the discrete prices.
4.5.4. Robustness of Our Pricing Algorithm

We point out that our Laplace inversion based pricing algorithm is robust. As
illustrated in Figure 4.3, our pricing algorithm retains its accuracy when some
model parameters vary within realistic ranges. More precisely, when 7 (8 and p,
respectively) changes in [15,100] ([15,100] and [0, 1], respectively), the relative
errors between our numerical prices and MC prices are all less than 0.3%. These
ranges cover most cases in reality. For example, n € [15,100] and 8 € {15, 100]
mean that the expected upward and downward jump sizes of return are between
1% and 6.67%. Note that the minimum and maximum daily returns of S&P 500
from Aug 1, 2007 to Oct 26, 2009 (during the ongoing financial crisis) are -4.76%
and 4.11%, respective. Absolute values of them are both smaller than 6.67%.
Consequently, we draw the conclusion that our pricing algorithm is robust and

thus reliable.
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Figure 4.2: Comparison of continuous and discrete monitoring deltas under the DEM model.
As the discretization becomes finer, the deltas of discrete monitoring converge to those of
continuous monitoring under all initial stock prices. The default parameters of the underlying
process are r = 0.05, 0 = 0.2, A\=3,p=6 = 15 and p = ¢ = 0.5. Consider a proportional step
option with the parameters L = 102, K = 100, p = 1, and ¢t = 1. The occupation time refers
to the time the underlying price spends under L = 102. And we use 100,000 sample paths to

simulate the discrete deltas.

4.6. Conclusion

In this Chapter, we investigate pricing and hedging problems of occupation-time-
related options such as step options, corridor options, and quantile options under
Kou’s double-exponential jump diffusion model. By studying the occupation-
time distribution, we derive the Laplace transform-based analytical solutions to
these pricing problems, which can be inverted numerically via the Euler Laplace
inversion algorithm. The numerical results indicate that our pricing formulae are

both accurate and efficient.
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Figure 4.3: The relative errors between the Euler Inversion and MC Simulation for varying
p, 8 and 7. We test the robustness of our method using the proportional step option. The
default parameters of the jump diffusion processes are 7 = 0.05,0 = 0.2, A= 1,7 =60 = 15 and
p = ¢ = 0.5. The current underlying asset price is Sp = 105. The option contract parameters
are p = 1, K = 100 and L = 90. The occupation time is accumulated when the underlying

price is Jess than 90.
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Prices of Corridor Options with single barrier under the DEM

K 5 El price MC value Std Err
95 0.46627793  0.46580529 0.00060334

0.2 100 0.34654861  0.34620580 0.00064820
105 0.22446654  0.22460171 0.00061260
95 0.31194613 0.31159386 0.00050566

0.4 100 0.22032156 0.22018846 (.00052382
105 0.13161829  0.13177739 0.00046635

Prices of Quantile Options under the DEM

a K El price MC value Std Err
50 6.98491715  7.00339911 0.01605925

0.2 100 208465538 2.09972912 0.01122946
110 0.37724012  0.38423388 0.00552578
90 12.59539246 12.61168267 0.02098495

0.5 100 5.90331831  5.92048348 0.01876866
110 2.29109044  2.30873387 0.01459738

Table 4.4: The Laplace inversion (EI price) vs. Monte Carlo simulation (MC value). For
the corridor options with single barrier, the delault parameter choices are A =3, =005,
6=021n=2300=20p=4qg=05 L=102 and t =1 Forthe quantile options, the
default parameter choices are A = 3, r = 005, 0 = 0.2, n = 34, 0 = 34, p = 0.6, ¢ = 04,
Sp = 100, y = 1, and ¢t = 1. All Monte Carlo values (denoted by MC value) along with
the associated standard errors (denoted by Std Err) are obtained using 50,000 time steps and
simulating 100,000 sample paths. The CPU time of our numerical methods for generating one
price of corridor options, and quantile options is around 3 seconds and 3 seconds, respectively.
The CPU time for Monte Carlo simulation is around 22 minutes for the quantile options and
around 10 minutes for the corridor options. The table indicates that all the EI prices stay

within the 95% confidence intervals of the associated MC values.
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Delta of Simple Step Options under the DEM

S5 K El value MC value Std Err
90 1.13763436 1.13898389 0.00377164

100 100 0.84343613 0.84598812 0.00282432
110 0.58164514 0.58407656 0.00219618
90 1.35962149 1.35725685 0.00391806

102 100 1.01249653 1.01289927 0.002901876
110 0.70396190 0.70573895 0.00226845

Delta of Delayed Barrier Options under the DEM with A =3

Se K EI value MC value Std Err
90 1.04040458 1.00570473 0.02406215

100 100 .0.75353143 0.73751457 0.01574238
110 0.51485647 0.50789855 0.00969742
90 1.09523707 1.07269986 0.02342268

102 100 0.79990286 0.78274507 0.01498936
110 0.55545444 0.54777543 0.00905981

Table 4.5: The Laplace inversion (EI value) vs. Monte Carlo simulation (MC value). For
the simple step and delayed barrier options, the default parameter choices are A = 3, ¢ = 0.2,
r=00517=2306=20,p=q=05 L=102 9 =05 AS, =0.1, and ¢t = 1. Mente Carlo
values for simple step and delayed barrier options along with the associated standard errors
(denoted by Std Err) are obtained by using 100,000 time steps and simulating 100,000 sample
paths. The CPU time of our numerical methods for generating one price of simple step or
delayed barrier options is around 100 seconds. The CPU time for Monte Carlo simulation is
around 25 minutes for the simple step or delayed barrier options. The table indicates that all

the EI values stay within the 95% confidence intervals of the associated MC values.
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Delta of Corridor Options with single barrier under the DEM

K 5 El value MC value Std Err
100 -0.02563184 -0.02556980 (0.00008900

0.2 102 -0.02669485 -0.02658852 0.00008981
104 -0.02209558 -0.02199631 0.00008277
100 -0.01912417 -0.01908412 0.00008163

0.4 102 -0.01957286 -0.01956383 0.00008143
104 -0.01569789 -0.01561718 0.00007313

Delta of Quantile Options under the DEM

a S El value MC value Std Err
90 0.06855937 0.06908873 0.00077633

0.2 100 0.33498655 0.33507900 0.00118391
110 0.62926410 0.62827708 0.00108407
90 0.25471549 0.25497213 0.00115890

0.5 100 0.57434958 0.57383915 0.00121216
110 0.82522134 0.82466107 0.00096239

Table 4.6: The Laplace inversion (EI value) vs. Monte Carlo simulation (MC value). For
the corridor options with single barrier, the default parameter choices are A =3, r = 005
0=021n=308=20p=gq=05 L =102 ASy = 0.1, and t = 1. For the quantile options,
the default parameter choices are A =3, r =0.05, 0 = 02,7 =34,0 = 34, p= 06,9 =04,
So =100, vy = 1, ASp = 0.1, and ¢t = 1. Monte Carlo values for corridor and quantile options
along with the associated standard errors (denoted by Std Err) are obtained by using 20,000
time steps and simulating 100,000 sample paths. The CPU time of our numerical methods for
generating one price of corridor options and quantile options is around 3 seconds. The CPU
time for Monte Carlo simulation is around 4.3, and 9 minutes for the corridor, and quantile
options, respectively. The table indicates that all the EI values stay within the 95% confidence

intervsis of the associated MC values.
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Monitoring frequency

Relative differences

Se Monthly Biweekly Weekly Daily Continuous Prices
95 4.698% 1.974% 1.011% 0.922% 7.22634078
100 3.489%  1.583% 0.998% 0.783% 10.35784700
105 9.458%  4.049% 2.027% 0.828% 14.37387610
110 8.940%  3.918% 2.003% 0.720% 18.50956926
115 8.866% 3.947% 1.982% 0.616% 22.75134627
120 8841% 3.95™% 1.975% 0.534% 27.12165429

Table 4.7: Comparison of continuous and discrete step option pricing. The relative difference

is defined as (discrete price — continuous price)/continuous price. The default parameters of

the underlying process are r = 0.05, ¢ = 0.2, A= 3, 7 =0 =15 and p = ¢ = 0.5. Consider

a proportional step option with the parameters L = 102, K = 100, p = 1, and ¢t = 1. The

occupation time refers to the time the underlying price spends under L = 102. And we use

100,000 sample paths to simulate the discrete prices.
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Monitoring frequency

Relative differences

Ss Monthly Biweekly Weekly Daily Continuous Delta
95 3.990% 2366% 1.368% 0.361% 0.53553845
100 -3.411% -1.907% -0.643% 0.275% 0.72754990
105 4.342% 2.670% 1.752% 0.466% (0.82098985
110 8.048% 4.428% 1.915% 0.256% 0.83620619
115 8.850%  3.936% 1.824% 0.195% 0.86111472
120 8.935%  3.986% 2.108% 0.138% 0.88675445

Table 4.8: Comparison of the deltas of the continuous and discrete step options. The rela-

tive difference is defined as (discrete delta — continuous delta}/continuous delta. The default

parameters of the underlying processare r = 0.05,0 = 0.2, A =3, 7= ¢=15andp =g =05

Consider a proportional step option with the parameters L = 102, K = 100, p = 1, and { = 1.

The occupation time refers to the time the underlying price spends under L = 102, And we

use 100,000 sample paths to simulate the discrete deltas.
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APPENDIX FOR CHAPTER 2

A.1. Proof of Proposition 2.3

To begin with, let us prove some preliminary properties of Sp, Sgp and Sgp:

Sp C [cP/{8N), +00), (A1)
Sgg C (0,min (K, (1 — k)cP/é)], (A.2)
Sec N{K,K/X) C |K, (1 — &)eP/(Ar)} if Spe O [K, K/A) # 0, (A.3)

Sge O (KA, +00) C [K/A, (1 — &)eP/ ()] if Spe N (K/A +00) # 0. (A.4)

Consider the set Sp first. For any V € Sp, it must be a local minimum of the

function D*(v) — Av because D*(v) > Av for all v > 0. This implies that !

-C-£-D' | =A d E“z—D‘( | >0
dv (VHo=v = an ) V)|y=v 2 U.
Hence,
cP < LD (V) = —l 2V2—£—£—2—-D‘(V) —(r— J)V—Ei-D“(V) +rD*(V) < oAV,
- =727 G dv - ’

that is, V' > ¢P/(8A). This implies (A.1).

I'The classic first order derivative of D* at V exist and the second crder derivative of D* at
V may refer to week derivative, However the second order derivative of D* at V always exist.
This is because by Condition 4 and 6, D* satisfies a variational inequality on the neighborhood

of V. The similar results hold for £* in the following argument.

105
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The proof of (A.2)-(A.4) is similar. For any V € Sgg, Using Condition 5,

we then have
LCE(V}Y> 6V — (1 —k)cP (A.5)

for such V. On the other hand, £* achieves its local minimum at V, which
irnplies't.hat

d &
=B ()ley =0 and S E(@)ly 20 (A.6)

(A.6) implies that

1 d
LEY(V) = 7&1”%3‘(1/) —(r - 5)1/55'(‘/) +rE(V)
_ L@
=-50 vV d’qu (V) <o

Combining it with (A.5) will lead to a conclusion that V € {0,(1 — &)cP/d).
It is clear that V < K. These leads to (A.2). For any V € Sge N [K, K/A),
E*(V) = V — K. Consider a function E*(v) — (# - K). v = V is a local
minimum of the function and therefore,

d d?
—E" Ly o= —FE* =y = 0.
d'ub (v)jp=v =1 and d'v?E (V)|v=v =2 0

Then, we have

LE*(V) = —%ﬁv*’%g-m —(r - J)V-:—UE’(V) +TE(V)

< —(r -8V +r(V-K)=6V-rK.

Note that LE*(V) > §V — (1 ~ k)cP, which implies Sgc N [K, K/)) # @ only if
K < (1 — k)cP/r. That is, (A.3) follows. For any V € Sgc N (K/A, +00), it is
a local minimum of E*(v) — (1 — A)v on the interval [K/A, +00). From this, we

may derive that
LE (VY —(r=8)(1 =NV +r(1 - X))V =451 -1V

Combining it with LE*(V) > §V ~ (1 — k)cP, we have V < (1 — &)cP/{Ad).
Note that V > K/ in this case. The strike price K should satisfy that K <
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(1 — K)cP/é. Consequently, a necessary condition for Sgc N (K/A, +00) # 0 is
that K < (1 — k)cP/é. Furthermore, (A.4) holds. It is worth pointing out that
the first sentence of part (iii) has been proved meanwhile.

We now prove part (i). First we claim that Sp # 0. Suppose that it
is not true, i.e., Sp = @. Consider a sufficiently large number C such that
C > max{K/A, (1 — k)cP/(A8),(1 — )cP/(Ar)}. For any V > C, it cannot be

an clement in Sg¢ according to (A.3) and (A.4). Hence, either
E(V)=(1-A)V, LE(V)<éV —(l-k)cP

or E*(V) > (1 — A)V holds for such V. If the first case is true, D*(V) = AV. By
condition 6, LD*(V) > cP, which means V € Sp. However, this contradicts to
the assumption that Sp = 0. Hence, the second case holds for all V > C'. Using
condition 4, it is easy to see that LD*(V) > cP. The assumption of Sp = 0
implies D*(V) > AV. We may reach that LD*(V) = cP for all V > C with the
help of condition 4 again. According to Appendix A.2, the ODE LD*(V) = cP

admits a general solution in the form of

P
D'V)= 4V + eV,

T

where > 1 and v > 0. On the other hand, by (2.2}, we have that

+oo
D'(Vy= sup D(V;7, 7wt Teon) < E [/ e "cPdt+ sup eV, + K)]
0

T+ TratrTeon 0<t<+oo

< cP +K+VE [ sup e‘(‘”%“n)”"w‘] :
T 0<t<oo

It is straightforward to argue the finiteness of the expectation on the right hand
side of the above inequality. This implies that D* grows at most linearly and ¢
should be 0. As V tends to +oo, D* converges to cP/r. Contradicting to the
condition that D*(V) > AV. Therefore, Sp # 0.

Second, we show that if some V; € Sp, then [V}, +o0} C Sp. Following
the arguments leading to the conclusion Sp # @, we can see that there is a

unbounded, monotonically increasing sequence {f/’N} such that D‘(‘?N) = AWy
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for all N. It suffices to prove that (V1,17N) C Sp for any N. We claim that
D* (V) satisfies the variational inequality problem

min {£LD*(V) — c¢P,D*(V) — AV} = 0 in (Wi, V)
D*(V)) = AV, D*(Vn) = AVy.

Actually for any V € (V,, ‘:/N), V ¢ Sgc. Hence, either
E(V)=(1~AV, LE(V)<dV~(1-kK)P

or E*(V) > (1 - A)V holds for such V. If the late case is true, (A.7) follows from
condition 4. If it is the first case, E*(V) = (1 — A)V implies D*(V) = AV, and
together with condition 6, (A.7) holds.

By (A.1), we have Vi > cP/(8}), thus V > cP/(8)) for all V € (Vi, Vi),

which indicates
LOV) ~cP =8\ —cP > 0in (V;, Vx).

As a result, AV is a supersolution to problem (A.7), i.e., D*(V) < AV in (W, V),
which leads to the desired results D*(V) = AV and LD*(V)—cP > 0in (V;, V).
Let V2, =inf {V : V € Sp}, then Sp = [V, +00) and V,;,, > cP/(8A) because
of (A.1).

We now move to the proof of part (ii). The nonemptyness of Sgg can
be proved in a similar way as we did for Sp. Indeed, if Sgp = @, consider a
sufficiently small number C such that C < min{K, cP/(A8)}. For any V < C, it

cannot be an element in Sp according to (A.1). Hence, either
D'(V)y=xV, LD'(V)<cP

or D*(V) > AV holds for such V. If the first case is true, E*(V) = {1 — A}V >
h(V). By condition 4, £LD*(V) > cP. Contradiction. Hence, the second case
holds for all V < €. Using condition 5, we have LE*(V) > 6V — (1 — x)cP
and E*(V) > h(V). Then E*(V) > h(V) since the assumption of Spg = @
and V < K. We the get that LE*(V) = 6V — (1 — k)cP for all V < C with
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the help of condition 5 again. According to Appendix A.2, the ODE LE*(V) =

dV — (1 — k)cP admits a general solution in the form of

(1 - k)elP (1 — k)eP

T

E(V)=V — VP - - as V — 0,

a contradiction! Second, we will show that if some V € Sgg, then v € Sgp
for all v < V. For this purpose, consider the interval [0, V]. Suppose that

max, E*(z) > 0 and denote the maximum point by z*. Thus,

d &?
el - *y — . el - - < .
d:rE (z') =0 and dI2E (z*) <0

They imply that £E*(z*) > 0. Furthermore, note that z* < V and V € Sgg C
[0, (1 — k)cP/8]. Therefore, 6z* — (1 — k)cP < 0 < LE*(z*).

On the other hand, E*(z*) > 0 = h(z") implies that LD*(z*) > cP accord-
ing to condition 4. Since z* ¢ Sp, we know that D*(z*) > Az*. By condition
5, LE*(z") = 8z* — (1 — k)cP because of the assumption E*(z*) > 0. Contra-
diction. Consequently, E*(z)} = 0 for all z < V. Define V' = supSp. We have
Sp =[0,V;]. Due to (A.2), V; < min (K, (1 — x)cP/d).

It remains to prove part (iii) when Sgc # 0. In this case, either Sgc N
(K, K/ or SgcN(K /A, +00) is not empty. For the first case SecN(K, K/A] # 0,
suppose V € Sgc N (K, K/)\]. We might as well assume Vj # K/A. It suffices to
prove E*(z) = x — K for all z € (W, K/}]. Owing to part (i) and part (iii), we
have V2. > K/Aand E*(V.,) = (1—-XNV., < V.- K. Noticing E*(z) 2 z-K
in z € (Vj, K/)], we then infer that there exists a point V2 € [K/A, V) such
that £*(V3) = V, — K. Consider the interval (}}, V2) in which E*(V'} is governed
by the variational inequality problem

min {LE*(V) — 6V + (1 ~ k)cP, E*(V) — h{V)} = 0,

(A.8)
E‘(Vl) = Vl - K, E‘(‘/z) = V2 - K

Thanks to part (iit)we infer K < (1 — x)cP/r, thus

LV-K)-8V+(1-k)eP=-rK+(1-£K)cP 20
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which, combined with V — K > h(V) in (V}, V3}, implies that the function V - K
is a supersolution to the problem (A.8) in (W}, V2), ie, E*(V) <V — K for all
V € (V, V2). We then deduce E*(V} =V - K forall V € (Vy, K /Al

For the second case Sgc N (K/A, +00) # @, suppose Vi € SgcN(K/ A, +00).
It suffices to prove E*(z) = (1 — M)z for all z € [K/X, V;]. Owing to part (ii),
we have V;* < K/ and E*(V;") = 0 < (1 — A\)V;". Noticing £*(z) = (1 — M)z in
z € [K/A, V4], we then infer that there exists a point V2 € {V;7, K/A] such that
E*(V3) = (1 — X)V,. Consider the interval (V2,V;) in which E*(V) is governed
by the variational inequality problem

min {LE* (V) — 8V + (1 — K)eP, E*(V) — h(V)} =0, (A.9)
E*(Va) = (1 - NVa, E"(Vi)) = (1 - WV '

Thanks to (A.4), we have V < V] < (1 — &)cP/(Ad), thus
L1 =AV)=6V+ (1—-K)eP=~AV+(1-x)cP 20

which, combined with (1 — A)V > A(V) in (V,, V1), implies that the function
(1—A)V is a supersolution to the problem (A.9) in (V;, Vi), i.e,, E*(V) < (1 -V
for all V € (V,, Vi). We then deduce E*(V) = (1 — AV for all V € [K/A W]
The proof is complete. O

A.2. The Euler-Cauchy ODE

Consider two second-order non-homogeneous ODEs such as

LD(v) = ——%cr%zg-;D(v) —(r— (5)‘0%1)(‘0) + rD{(v) = cP
and
LE(v) = ——lazvziE(‘u) —(r - J)UE-E(U) +rE@W) =dv - (1 — K)cP.
2 dv? dv B '

Explicit general solutions to both equations are known (Zwillinger (1997}, p.

120). The general solution to the former equation is given by

cP
D(‘U) = T + Cl‘i‘J'6 + Cg’U_‘T;
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and the solution to the latter is

(1 — &k)cP

T

Ev)=v -

+ c3v? + cqv 7

where ¢,,1 <1 < 4 are constants to be determined by the boundary conditions

we introduce. It is also easy to see that 3 > 1 and v > 0.

A.3. Properties of Some Elementary Functions

To simplify the proof of some technique Lemmas, we summarize the properties

of some elementary function here. The functions are defined by

filz) = B+ — (B + )2,
Joz) = v + B2 — (B + )2’
fs(@X) =X ((B - 1) + (v + 1Dz”7) = (B + 1)z,
fa@md) = (v+ 1)+ (B -1z - X(B+ 1)z
fs(z) = BB - 1)~ (B—1){(v+ 1}(B+~)z”
+By(B + 1)z — Ay + 1),
fo(z; N) =7 +1) = ABY(B + 7)2”!
+ (8- 1)(v+ 1)(B+ 1)z’ — B(B - 1)z,
qi(xz;a,€) = (8~ 1)(y + Dz fi(z) — aByfa(z; 1) + b0v(B + M)z,
92z A, b) = Bz fa(z; A) — (B — D)(v + 1) f2(2),
g3(z; A) =z (B(y + 1) —¥(B - )27 — (B + 7)z")
—A(v(B-1) - By + )27 + (B +7)zf)
as(z;a) = (1—a) (B — Dyz?*" = (v + 1)) + (B+ 1)’
gs(xz; @) = Byzfa(z; 1) — a(8 — 1)(7y + 1) f2(2),
gs(zi A, &, p) = xfi(z) falz; X) — (1 — K) fal)(falz; A) + p(B + 7)z™")
) = zfi(z) falz; 1) — (1 - &) folz) f3(z; 1).

g7(z; K
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Lemma A.l. For parameters 3 > 1,7 > 0,A € (0,1),a € (0,1),x € (0,1),1 -
p> A b>0,e>0, considering x as variable, we have that 1). f1, f2, fas fs, fe, fr
and fy(x;1), fo(z; 1), —ga(x; 1) are all positive on (0,1); 2) —f3,0.(1 €£21<6) all

have a unique zero point on (0, 1), negative on the left and positive on the right.

Proof. Fixed 8> 1,7 > 0.

(1.1) For fited X € (0,1), fi(x), folz), falz; 1), falz; 1), fa(z; A) are positive for
any z € (0,1). The derivative of fi(z) is given by

filz) = (B+ )" (2" —1) < 0,vz € (0, 1),

That is fi(z) is strictly decreasing on (0,1). Then fi(z) > fi(1) = 0 for all
z € (0,1).
By similar process, we have f(z), fa(x; 1), fa(z;1) are positive on (0,1).

And then fi(z; M) is positive on (0, 1) since fo(x;A) > fa(z;1) for all z € (0,1).

(1.2) For fized X € (0,1), fs(z), fo(z; 1), fo(x; A) are positive for any x € (0,1).
The derivative of f;(z) is given by

fiz) = —(B+ vy + D(a? + (8- 1) - Bz) < 0,Vz € (0, 1),

since it is easy to verify that =7 + (8 — 1) — fx > 0,Vz € (0,1). Then fs(z) >
f5(1) = 0 for all z € (0,1).

By similar process, we have fg(z;1) is positive on (0,1). And then fs(z; A)
is positive on (0, 1) since fe(z; A) > fo(z; 1) for all z € (0,1).

(1.3) —gs(z;1) > 0 for all z € (0,1). Denote w(z) = —ga(z;1). w(0) =
(B —1) >0, w(l) =0 and

w'(z) = Y8 — 1)(B +v + )27 — By + 1)(B + v)=”* !

+ (8 + P+ (v + 1)27) = By + 1)
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w'(0) = —=B(y+ 1) < 0, w' (1) = 0 and w'(z) = (B + )= 1w (z), where

w(z) = (B~ B+ v+ 1)2®7 — By + (B +v - 1)z}

+ 0(8 — 1) 4+ y(y + Da.
If 8 < v+1,let w®(z) = wz)/z?"!, that is

w(z) =B - DB +y+ D" - By + 1B+ — 1)2"

+ B(8 — 1) + y(y + Dzt E,
w@(0) = 8(8-1) >0, w?P(1) =0 and (w?Y(x) = y(v + 1)z" Pw(z), where
w(z) = (B - DB +v+ D)2 - BB+v- 1T+ (v +1-6).

w®0) =v+1-8>0 w1) =0 and (W) (zx) = (6 - 1)BzH(B+ 7+
Dz ~ (8 + v —1)). Hence w™®(x) is firstly strictly decreasing and later strictly
increasing on (0,1), with w®(0) > 0 and w®(1) = 0, w®(z) = 0 has only
one root on (0,1). Hence w'®(z) is firstly strictly increasing and later strictly
decreasing. With w@(0) > 0, w®(1) = 0, we have w®(z) > 0 on (0,1), and so
is w”(z). Then w'(z) is strictly increasing from w'(0) < 0 to w'(1) = 0. That
is w'(z) < 0 for all (0,1). Then w(0) is strictly decreasing from w(0) > 0 to
w(1) = 0, which implies that w(z} > 0 for all (0, 1).

If 3 >~ + 1, by the similar process as above, we also get that w(z) > 0 for
all (0,1).

(2.1) For fired A € (0,1), fa(z;A) = 0 has o unique solution z* € (0,1) and
fa(z;A) > O for z € (0,2*), fa(z;A) < O for z € (2°,1). It is true since
that f3(0;A) = MB —1) > 0, fa(1,A) = —(1 = A)(B + ) < 0 and fi(z;A) =
(v+ DB+t -1) <0

(2.2) For fixed a € (0,1) and b > 0, gi(z;a,b) = 0 has a unique solution
z* € (0,1) and gi(z;a,b) < 0 for z € (0,2%), qa(z;0,6) > 0 for x € (z*,1).
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Define u(z) = (8 — (v + 1)z fi(z) — afvfs(z; 1) and then gi(x;a,b) = u(z) +
b3v(B 4+ v)z" . u(0) = —By(B - 1) < 0,u(1) =0 and

o' (z) =(8 - Dy + 1) (B+ (B +7+ 12?7 = (B+7)(y+ Dz")

— afBy(B + 1)y + (P - 27),

which gives u/(0) = (8 — 1)(y + 1)8 > 0 and w/(1) = 0. «"(z) = (B+ (v +
1)z7 'u@(z), with

u®(z) = (G- 1) (B +7+ 1 ~ (y+1)) —aB((B+7 -1z —7),
w0} = afy — (B — (v + 1), u®(1) = (B — 1)}(1 —a) > 0 and
WY (z) = BB - 12?2 ((B+y+ Dz —a(B+v-1)).

In (0, 1), (u®Y(z) is firstly negative and later positive, which implies that u®(x)
is firstly strictly decreasing and later strictly increasing to u®(1) > 0. Then
u®(z) = 0(u"(x) = 0) has at most two roots in (0, 1). If there is no root or one
root (local minimum of u‘?(z)), then u@(z) > 0(u"(z) > 0) in (0, 1), except at
most one point, which implies that «'(z) is strictly increasing. That contradicts
with the fact that «/(0) > 0 = w/(1); If there is exactly one root x; (not local
minimum), then uv® (z)(v"(z)) < 0 for z € (0,z;) and u@(z) > 0(u"{x) > 0} for
z € (z;,1), which implies that v'(z) is firstly strictly decreasing and later strictly
increasing. With w'(0) > 0,u/(1) = 0, we have u'(x) = 0 has a unique solution z,
in (0,1) and «/(z) > 0 for z € (0,z2), u'(z) < 0 for = € (z2, 1); If there is exactly
two roots 0 < I, < 2 < 1, then u@(x) > 0(uw”(z) > 0) for z € (0,21) U (x2,1)
and u®@(z) < 0(x'(z) < 0) for z € (x),2), which implies that u'(z) is firstly
strictly increasing in (0, z,) , then strictly deceasing in (z1,z2) and later strictly
incressing in (xz,1). With «/(0) > 0,¢'(1) = 0, we have «'(z) = 0 has a unique
solution z3 in (0,1) and «/(z) > 0 for z € (0,z3), w'(x) < 0 for z € (z3,1). In
all, v/(z) is firstly positive and later negative. With »(0) < 0,u(1) = 0, we have
u(z) = 0 has a unique solution z4 in (0, 1) and u(z) < 0 for z € (0, z4), u(z) > 0

for = € (x4,1); u(x) is strictly increasing on [0, 24).
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If6 =0, fi(z;a,b) = u(z) has a unique solution on (0, 1} and is negative on
the left and positive on the right. If b6 > 0 then the function b3v{3 + y)z?*! is
strictly positive in the interval (0,1). Since u(z) is positive in (z4, 1), fi(z;a,b)
should also be strictly positive in this interval. In other words, fi(z;ae,b) = 0
has no roots in (z4,1). However, f;(z;a,b) is increasing in (0, r4) because both
of ug(z) and bBv(6 +v)x**! are increasing on this region. Note that f,(0;a,b) =
up(0) < 0 and fy{z4;a,b) > 0. Thus, the equation fi(z;a,b) = 0 has a unique
solution in (0, z4). Denote it by z*. We know from the preceding discussion that

fi{z;a,b) < Ofor x € (0,z2°) and fi(x;a,b) > 0 for z € (z*,1).

(2.8) For fired A € (0,1) and b > 0, g2(z; M, b) = 0 has a unique solution
z* € (0,1) and g2(z;X,0) < 0 for z € (0,2%), go(z; A, D) > O for x € (z%,1).
Denote ga(z} = g2(z; A, b). Since go(0) = —(8 — 1){v + 1)y < 0 and g(1) =
b(1 — X)Bv(B +v) > 0, go(z) = 0 has solutions in (0, 1). Next we show that the

solution is unique.

go(z) =bBy (v + 1) + (B~ 1B+ + 1)z — AB(B + 7)z"")

— (8- Dy + BB +7) (7 — 2.

93(0) = b8y(y + 1) > 0, g3(1) = b(1 — \)B*¥(B +~) > 0 and g3(z) = B(8 —
1)(8 + 7)z%2¢ (z), where

0P () =by (B+ v+ 1a"™ = 28) — (v + (B +~~ 1)z — (B-1)).

(@Y () =y(v + D" BB+ + Dz~ (B+7 - 1)).

Then in (0,1), (g57)'(z) is firstly negative and later change its sign at most once,
which implies that 952) (z) is firstly strictly decreasing and later may be strictly
increasing. Then g2 (z) = 0(g(z) = 0) has at most two roots in (0,1). And
then gj(z) has at most three monotonic interval. With g5(0) > 0,g5(1) > 0,
we have that gj{z) = 0 has at most two roots in (0,1). If there is no root or

one root (local minimum of gh(x)), then g5(z} > 0 on (0, 1), except at most one
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point, which implies that gz(z) is strictly increasing and only has one zero point
on (0,1); If there is one root x;(not local minimum of g?)(:r)) , 1t contradicts
to g5(0) > 0,g5(1) > 0; If there is exactly two roots 0 < z; < z2 < 1. Then
gy{x) is positive at the intervals (0,z;) and (z2,1) and negative at the interval
(x1, z2). Then gy(z) is strictly increasing at the intervals (0, ,) and (z2,1) and
strictly decreasing at the interval (z;,T2). Since g;(0) < 0 and g2(1) > 0, to
show ¢2(z) = 0 has a unique solution between 0 and 1, we only need to show
that ga(x2) > 0. Actually gh(z2) = b8v(z2 fa(z2; V)Y — (8 — V(v + 1) fo(z2) =0,
then

g2(z2) = bBvza fa(za; A) — (B — 1)(v + 1) fulz2)
bGy(x2 fa(x2; A))

= by fulazi A) — =T T fola)
fffry)(fz(xz)(hf‘l(xw\)) = folz2)(z2fa(z2; A)))

_ b3y
BB+ )2y '(1- 1))

(1 — 28%) fo(aa; A) > 0

(2.4) For fited A € (0,1), ga(z;A) = 0 has a unique solution z* € (0,1) and
gs(z; M) < O for = € (0,2*), gs(z; ) > 0 for z € (z*,1). Denote v(z) =
—g3(z; 2). v(0) = Ay(6—-1)>0,v(1) =0 and

v(z) = ¥(B - 1)(B+ v+ D)z = AB(y + 1)(B + )=

+ (B+7)AB2 7 + (v +1)27) = By + 1),
v'(0) = ~B(y+1) < 0,v'(1) = (1-2)8v(6+7) > Oand v"(z) = (B+7)z " v!V{z),
where
v(z) = y(6 — 1B+ + 1?7 —AB(y + 1)(B +y - D7
+AB(8 - 1) + y(y + 1)z

If B <~+1,let v@(z) = vV (z)/zP!, that is

v@(z) = (B - (B +v+ D™ = A3y + )(B + 7 - 1)2”

+AB(B — 1) + (v + D7
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v?(0) = AF(6 - 1) > 0, vP(1) = (1 ~ A)B¥(B + 1) > 0 and (V@Y(z) =
(¥ + 1)2" Pu3(x), where

VO z) = (8- 1)(B+v+ 1)z’ - MBB+~y-1’ '+ (v+1-0).

v0) = y+1-8>0 v¥1) = (1 ~NBB+7-1) >0and (v¥)(z) =
(B - DBz 2((B+~v+ Dz — MB+7—1)). Hence v¥(z) is firstly strictly
decreasing and later strictly increasing on (0, 1), and v®({z) = 0 has at most two
roots on (0,1}, With v¥(0) > 0, v/¥(1) > 0, if there are no root or one root,
then v@®{z) > 0 on (0, 1), except at most one point. Hence v?(z) is strictly
increasing, with v2(0) > 0, v™®(1) > 0, we have v®(z) > 0 on (0, 1), and so
is v"(z). Then v'(0) is strictly increasing from ¢'(0) < 0 to v'(1} > 0. Then
v(0) is firstly decreasing from v(0) > 0, and later increasing to v{1) = 0, which
implies that v(z) = 0 has a unique root on (0, 1). If (3 (z) = 0 has exactly two
roots £, < xz on (0, 1), then v*2(x) is strictly increasing on (0, z,) U {2, 1) and
strictly decreasing on (x, o), that is, v!¥(z) has a local minimum at z = z,. If
v12)(z,) > 0, then it refers to the previous case. If v!?)(z;) < 0, then v (z) =0
has exactly two roots 3 < z4 on (0,1), and so is v”(z). Hence v'(z) has a local

maximum at x = z3. Since v"(z3) = 0, we have

Y(B-1)(B+7+1)25 " = AB(y+1)(B+7~- 1)z = AB(B-1)z§ ' —v(y+1)z].
Then
v'(z3) =7(8 — )(B+ 7+ 15+
~AB(y + D)(B+ )25+ (B + M(ABE T + (v + D) — By + 1)
=AB(y+ DB+ - 1 = A8(8 — 25" — (v + 1)z}
— A+ DB +METT + (B+NABE T+ (v+ 1)3) - By + 1)
= By + 1) (A2 = aaf ! - 27 +1)
=—f(y+ 11 -Af Y1 -2 <0

Hence v(z) is firstly decreasing from v(0) > 0, and later increasing to v(1) = 0,

which implies that v(z) = 0 has a unique root on (0, 1) and positive on the left
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and negative on the right. Consequently g3(z; A} = 0 has a unique root on (0,1)
and negative on the left and positive on the right.
If > v+ 1, by the similar process as above, we also get that g3(z; A) = 0

has a unique root on (0, 1) and negative on the left and positive on the right.

(2.5) For fited a € (0,1), ga(z;a) = 0 has e unique solution z* € (0,1)
and go(z;0) < O for = € (0,x%), gs(z;a) > 0 for z € (z*,1). g4(0;a) =
—(1 -a)8(y+1) < 0, g4(1;a) = a(B + ) > 0 and dg(z;0)/0z = (B +
)z (1 — a)(B — 1)zf + 1) > 0, we get that g4(z;a) = 0 has a unique root on
(0,1) and negative on the left and positive on the right.

(2.6) For fized a € (0,1), gs(z;a) = 0 has a unique solution z* € (0,1) and
gs(z;a) < 0 forz € (0,z*), gs(z;a) > 0 for z € (z*,1). Denote gs(z) = gs(z; a)-
Since g5(0) = —a(8 — 1){y + 1)y < 0 and gs(1) = 0.

gi(z) =By (v + )+ (B - 1)(B+7+ 1) — B(B +7)z” )

—a(f - (v +1)BB+7) (& - 2°).
g(0) = Sr(y+1) > 0, g5(1) = 0 and g¥(z) = B(B ~ 1)(B + 7)z°2gs” (), where
¢ (z) =y ((B+y+ 1)z = B) —aly+ ) ((B+v - 1)z" - (B-1)).
#?(1) = (1 -a)y(y+1) >0, and
02) (@) =y(v+ Dz (B+v+ Dz —a(B+7-1)).

Then in (0, 1), (géz))’(:r) is firstly negative and later positive, which implies that
_géz)(z:) is firstly strictly decreasing and later strictly increasing. Then géz) (z) =
0(g?(x) = 0) has at most two roots in (0, 1). If there is no root or one root(local
minimum), then g,(,z)(a:) > 0(g5(z) = 0) since géz)(l) > 0, which implies that g; ()
is increasing, contradicting to the fact that g{(0) > gs(1); If there is one root
z{not local minimumy), then g?’ (z) < 0(g5(x) < 0) for z € (0,x,;) and gf)(:r) >

0(gt(z) > 0) on {(z1,1), which implies that gg(z) is firstly strictly decreasing
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and later strictly increasing. With g{(0) > 0, ¢5(1) = 0, we have g;(x) is firstly
positive and later negative on (0, 1). Then gs(z) is firstly strictly increasing from
g5(0) < 0 and later strictly decreasing to gs5(1) = 0. Hence gz(z) = 0 has a
unique solution on (0, 1) ; ¥f there is exactly two roots 0 < z; < x, < 1, then
g?)(a:) > O(gi(z) > 0) for x € (0,2,) U (x2,1) and gg](:r) < 0{g5(x)} < 0} for
x € (z,,z,), which implies that gi(z) is firstly strictly increasing in (0,z,) ,
then strictly decreasing in (z, ;) and later strictly increasing in (x7,1). With
gt(0) > 0,v3(1) = 0, we have gi(x) is firstly positive and later negative on
(0,1). Then gs(x) is frstly strictly increasing from gs(0) < 0 and later strictly

decreasing to gs(1) = 0. Hence gs(z) = 0 has a unique solution on (0, 1) .

(2.7) For fixed A € (0,1),k € [0,1},p € [0,1 — )], gs{z: A, &k, p) = 0 has a unique
solution z* € (0,1) and gg(z; ), k,p) < 0 for x € (0,2*), ge(z; A, K, p0) > 0 for
z € (z*,1). Note that

(1 — 287 ga(z; A) =z fi(z) falz; A) — falz) falz; N); (A.10)

ol N) + 6B + 2 =(1 - o) ol

). (A.11)
It is easy to verify that

96(zi A, &, p) =(1 — 27*7)ga(z; A) = p(B +7)z"™" fo(z)
+ 5 fo(z)(f3(z: A) + p(B + 7)) _ (A.12)
=z f1(z) fa(z; A) — (1 — &) fal@)(fa(z; X) + p(B + 7)2"")  (A.13)
=&z fi(z) fa(z; A) + (1 — w)pz fi(z) fa(z; A)

+(1 =K1 )1 = P )galas 7).

(A.14)

Denote the roots of gz(z; A) = 0, g3(z; l—f—‘-,) = 0, fa(z; l—f—p) = () as y,Z2,T3 €
(0,1), respectively. Firstly we show that z; < z2 < z3. Actually by equation
(A.10), g3(z2; —l-f—‘;) = 0 implies that f3{z,; Ti“,?) = zp fi(22) fa(x2; r};)/fz(Iz) > 0.
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By the property of fi(x; -1-:\—9), we have 9 < r3. Again, by g3(z2; ﬁ) =0, i.e.

l_i; (08 = 1) = By + D" + (B+ )25

=22 (B(r+ 1) = 7(8 — V2" — (B+)33)
we have

ga(z5: N) =22 (By +1) = (B~ 1)z§* = (B+ )z}
~A (VB = 1) = By + DI + (B +7)af)
=2 (B(y +1) = (8 = 1)z = (B+)a})
~ (1 paz (BCy + 1) = 2B = 1)z ~ (B+)a})
=pz; (B(y+1) = /(B - 1)a§*" — (B+v)2}) 20,

where the last inequality holds since for any z € (0, 1), we have

Bly+1)— (B -1z~ (B+7)z" > 0.

By the property of g3(x; A), we have z; < z3.

By (A.14) and the property gs(z; '11\_;:)’ for any z € (24, 1),

g6(z; M, 5, p) = Kz fi(z) falz: A) + (1 — )pzfilz) falz; N)

+ (1 = K)(1 = p)(1 - 5%+ )gs(z;

1_p)>0.

With g6(0; A\, &, p) = —A(1 — k)y(8 — 1) < 0, we have that g¢(z; A, &, p) = 0 has
roots on (0,1). Fixed A € (0,1) and p € {0,1 — )], denote the largest root of
ge(z; A\, k,p) = 0 as * = 2*(k), that is, a function of &, then z*(x) € (0,z,], for
any x € [0,1). Since gs(z; A\, &, p) can only have zero points on (0, Z,], from now
on we will restrict z € (0, ;]

For « = 0, reminding that g3(z,; A) = 0, by (A.12} we have

g6(z1: 1,0, p) = —p(B+ 721" falx) < 0.

Then z; < 2°(0) < x;. For k — 1, by (A.13) we have gg(z1; A, 1,p) —
zfi(z)fe(z; N). Then z*(1~) = 0. Next we show that x — z*(k) : [0,1) =
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(0, 2°(0)] is a strictly decreasing bijective function, that is, 8z*(x)/8x < 0, for
any & € [0,1). Actually for z € (0,25}, 0 < 5, < k2 < 1, by equation (A.12), we
have
g6(; A K2, ) — 965 A, 81, ) =(k2 — 1) falz) (falz; A) + p(B + )2 ")
A
=(ky — x1)(1 — p) f2(z) fa(z; ITP) >0,

where f;3(x; l%p) > 0 since £ < 7, < z3. By the definition of z*(k), we have

that z°(x2) < z°(x,). Then dz*(k)/0k < 0, for any « € [0,1). It follows that
g6(Z: A, Kk, p) has a unique zero point on (0,1), for any « € [0,1). Otherwise,
assume for some &3 € [0,1), ge(Z; A, &3, p) has other zero point y* € (0,1) and

y* < z*(k3). Then there exists a k4 € (%3, 1), such that z*(x4) = y*. And

0=gs(y"; A k4, p) — 96(y" A, K3, p) = (K4 — w3) (1 — p)2(¥") f3(y"; 1%,0) > 0.

Contradiction.

(2.8) For fized x € (0,1), g7(z;5) = 0 has a unique solution z° € (0,1) and
g7(z; k) < 0 forz € (0,2%), g7(x; k) > 0 for x € (z*,1). Note that

(1 — ) ga(x; 1) =z fi(x) falz; 1) — fo(z) fa(z; 1) (A.15)
Then
gr(zi &) =(1 — 27" ")ga(x; 1) + wfo(z) fa(z; 1) (A.16)

Note that g7(0;x) = —(1 — x)¥(8 — 1) < 0. And ¢{’(1;x) =0,i=0,1,2,3,
aV(1; k) = kBv(B — )(v + 1)(B +7)? > 0. We have that gr(z; k) = 0 has roots
on (0,1). Denote the largest root of g7{z; k) = 0 as z* = z*(x), that is, a function
of k, then z*(k) € (0,1), for any € (0, 1).

For k — 0, reminding that gs(z;1) < 0, for any z € (0, 1), we have

gr(z; k) = (1 — 2P¥7)g3(z; 1) < 0, for any z € (0,1).

Hence z*(0+) = 1. Fork — 1,

gr(z; k) = zfi{z) fa(z;1) > 0, for any z € (0,1).
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Then z*(1-) = 0. Next we show that x — z"(x) : (0,1) + (0,1) is a strictly
decreasing bijective function, that is, 8z°(x)/0x < 0, for any x € (0, 1). Actually
for z € (0,1), 0 < k) < Ky < 1, by equation (A.12), we have

97(x; K2} — gr{zi K1) =(K2 — k1) fox) f3(z; 1) > 0.

By the definition of z*(x), we have that z°(k;) < 2"(x,). Then 0z*(x)/8x < 0,
for any x € (0,1). It follows that gs(z; k) has a unique zero point on (0, 1), for
any = € (0,1). Otherwise, assume for some k3 € (0,1), g7(z; x) has other zero
point ¥* € (0,1) and y* < z*(x3). Then there exists a x4 € (kg, 1), such that
*{kq) =y". And

0 = g7(y"; 54) — g2(¥"; K3) = (Kq — ra)kf2(y" ) f3(y*; 1) > 0.

Contradiction.

A.4. Properties of the Candidate Value
Functions

Lemma A.2. When \b < Pc/8, the smooth pasting condition

6D
a—v‘(v; b, d)|yed = A (A.17)

determines a unique finite number d* = d(b) > b, satisfying Ad* > Pc/6, such
that Dy(v,b,d) > M, for any b < v < d < d*. Specially if 1 — p = A, let
z(b) = b/d(b), then Ox(b}/8b > 0, for b < Pc/(d)).

Proof. Note that

i)
6—r=§§,(ﬁ—1)(v+1)=%

It is easy to verify that

6D1 0'20P

W(v;b,d)l.,:d —A= T 26rb(1 — 2817) iz w,6),
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where z = b/d,w = 8Ab/cP € {0,1),e = (1 — p ~ AMw/A = 0 and gi(z;w,¢€) is
defined in Appendix A.3. Furthermore, g,(z;w,¢) has a unique solution z* €
(0,1). Hence, for any given b < Pc/dA, if we define d* := b/z* > b, it is a unique
solution to (A.17).

To prove that Ad* > cP/4, that is b/d* < dAb/cP or z* < w, it is sufficient to
show that

gi{w;w,€) >0 forany 0 <w <1,¢ >0, (A.18)

due to the fact that on (0,1), ¢i(x;w,€) is strictly negative on the left side of
its zero point z* and strictly positive on the right side of its zero point z*. And
(A.18) is true, since g{w;w,€) > wfs(w) > 0 for all w € (0,1), where f5(z) is
defined in Appendix A.3.

By the definition, Dy(v;b,v) = Av for any v > b. If we show that, for fixed
b,v and b < v, D,{v;b,d) is strictly increasing on [v,d"] with respect to d, then
Dy(v;b,d) > Dy(v;b,v) = dv for all d € (v,d"}. Actually when taking a partial
derivative on the function D, (v;b, d) with respect to d, we get

BDx( b.d) = d ¥ .Uﬁ+"r_bﬂ+7' o2cP e
ad Y v ag+y — po+v 26‘Pb(1 —'Iﬂ+7) flr,w, ).

Foranyv < d < d*, z = b/d > b/d* = z*. By the property of g,(z;w, ¢), we have

gi{z;w,€) > 0 for any z € (z*,1) and so does 8D, /0d for any b < v < d < d°.

If 1 — p= A let x(b) = b/d(b), then g;(z(b);w,0) = 0. Solving b in term of z(b),

. cPzd) iz
we have b = rA-}(,—a)(—z‘T%ﬁl—P. Then

dz(b) _ 1 _rA_ (fa(=(b);1))
Ob  Rlomzy P (1 (z(®))7) f5(2(8)

[

Lemma A.3. (i). For any given d > 0, the smooth pasting condition

0F,

Sy (Vibdlu=s =0 (A.19)
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determines a unigue finite number b* = b(d} < d, satisfying b* < (1 — &) Pc/d,
such that E\(V,b*,d) > 0 for any v € (b*,d), (4i). For any given d > K , the
smooth pasting condition

OE
_é-;?(v;b, d)|yes =0 (A.20)

delermines a unique finite number b* = b{d) < d, satisfying b* < (1 — k) Pc/é,
such that E5(V,b*,d) > 0 for any v € (b*,d).

Proof. (1). We can verify that,

651 . _ 0'2(1 - K.)CP
By ibd)| = 2réz(l — z9+7)d

where z = b/d,v = §d/((1 — k)cP) > 0 and g2(x; A, v) is defined in Appendix

) 92($§ /\1 U):

A.3. Furthermore, g;(z; A, v) has a unique solution z* € (0,1). Hence b* := dxz*

is the unique solution to (A.19).

When d < (1 —k)cP/d, b = dx* < (1 —k)cP/é. When d > (1 - «)cP/$, to prove
that b* < (1 — x)cP/é, that is b*/d < (1 — k)cP/dd or 2° < 1/v, it is sufficient
to show that

ga(1/v; A, v) >0forany A€ (0,1},v > 1, (A.21)

due to the fact that on (0,1), g2(z; A, v) is strictly negative on the left side of
its zero point z* and strictly positive on the right side of its zero point z*. And
(A.21) is true, since ga(1/v; A, v) = fs(1/v;A) > O for all A € (0,1),v > 1, where
fe(x; A) is defined in Appendix A.3.

To show E,(v;b*,d) > 0 for any b" < v < d, we take a partial derivative on
E;(v; b, d) with respect to b,

OEy, b\7 df*r — Pt g%(1 — k)P _
W(U’b’ d) = - (_) CdBY —bFY  2réz(1 — 2P)d g2 A ),

where z = b/d,v = §d/((1 — k)cP) > 0. For b* < b < d, z =b/d > ¥b"/d = z..
Hence g;(z; A,v) > 0. Then %E;l < 0. Consequently, £1(v;b,d) > Ei(v;v,d) =0
for any v € (b*,d).
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(i1). The proof is the same as the (i). We only need to replace A by K/d. O

Lemma A.4. Let b(d) be given as in Lemma A.3 for each d. (i). The smooth

pasting condition
3k,
v

detertnines a unique finite number d3 > 0, such that for fized v > b(d),

o0 b(d), )] =1 - A (A.22)

v=d

Ei(v,b(d), d) 1s strictly decreasing on [0,d3) and strictly increasing on (d3, 00).
For d > dj, there exists a unique ky € (b(d),d3), such that E\(k,;b(d),d) =
(1 — Ak, and E\(v;b(d),d) > (1 — A for any v € (k;,d). Let z(d) = b(d)/d,
then 0x{d)/0d < 0 for d < dj.

(i2).If K > gl—_—’:-k:f, Es(v; b{d), d) s strictly increasing with respect tod > K
and then Ep(v;b(d),d) > v — K for any v € (K,K/\). If K < {4=8F e

smooth pasting condition

E
52wbu)@ =1 (A.23)
determines a unique finite number dj > K, such that for fized v € (b(d)},d),
E(v, b(d), d) s strictly increasing on |K,d;) and sirictly decreasing on (d}, 00),
following that Ex(v; b(d3),d3) > v — K for any v € (K, d3).

Proof. (i). It is easy to verify that

0E, 1

1 —x)cP
T W@, ~01-% = s (S e ) - b i) ).

where z = b(d)/d. By the proof of Lemma A.3 (i), z also satisfies go(x; A, ) = 0,
where v = 6d/((1 — kK)cP). Then

OE, (1—K)cP

Ov rz fi(z; A)d
where fi(z; A), g3(x; A} are defined in Appendix A.3, fi(z; A) > Oforallz € (0,1)
and gs{z; A) has a unique solution z3§ € (0,1). Plugging into g(z; A,v) = 0, we

get d = J;’;%f:(f)"— is the unique solution to (A.22).

——(v; b(d}, | -(1-XA= g3(z; A),
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Letting x3 = z3(d) = b(d)/d, take a partial derivative on E;(v; b(d), d) with
respect to d,
OE,(v;b{d),d) JOE;(v;b,d) ob{d) OFE;(v,b,d)
5~ ob  laTpg t T gg I
_ (5)7 vt — b(d)PHY g3(z3(d); M)
v/ d%* —b(d)Atr fa(zs(d))

where we have used the fact thay 2Eudd) s=t(q) = 0 since b = b(d) is a local
ob (d)

maximum of E|(v;b,d) with respect to b. For vy < v, g2(x; A 1) < ga(Z; A, 12)
for any € (0,1). Then by the property of g2(x;A,v) and the fact that
92(z3(d); A, 8d/((1 — k)cP)) = 0, we have that Z < 0 for all d > 0. When
0 < d < dj, zz > z3. Then g3(z3;A) > 0 and then a—‘g—‘('gz—@‘—dl < 0. Hence
E\(v; b(d),d) is strictly decreasing on [0,d}). When d > dj, z3 < z3. Then
g3(z3; A) < 0 and then -@‘—(%@'—dz > 0. Hence E\{v;b(d),d) is strictly increasing
on {d3, 00).

By the monotonicity, if d > dj, for any v € [d},d), E\(v;b{d),d) >
Ey(v; b(v),v) = (1 — A)v. On the other hand, E;{b(d); b(d),d) = 0 < (1 — A)}b(d).
Hence F)\(v; b(d),d) will intersect with (1 — A)v on (b(d), d3). The uniqueness of
the intersection follows from the monotonicity of E,(v; b(d), d) on (0, d3) with re-
spect to d. Denoting the unique intersection as k;, then E\ (v, d(d),d) > (1 - A)v,
for any v € (ky,d).

(ii). It is easy to verify that
O0FE, 1 _ ((1 — Kk)cP

5o Wit d)| |~ 1= hi(z)

— K(B+12") +d(B+7)z™),

T

where z = b(d}/d. By the proof of Lemma A.3 (ii), z also satisfies g,(x; K/d,v) =
0, where v = 6d/((1 — x)cP). That is,
(1 — k)cP

da((y+ 1)+ (8- D7) - K(B+7)2" - —

faz) = 0. (A.24)

Then

0F; B (1 - &)cP o
T @b D| 1= e (i),
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where w = Kr/{(1 — x)cP) and gq4(x; w) is defined in Appendix A.3.
HK < (1-k)eP/r, i.e. w€ (0,1), g4(z;w) has a unique solution z3 € (0, 1).
That is
(1 = K)eP/r = K/v(z3),

where

s By +1) = (B~ 1)yxP*7 — (B +v)2”
| I S (A29)

Plugging into {A.24), we get dj = K/u(z}) is the unique solution to (A.23),

where
u(z) & LB+ 1) = (B - 1)ya?7 — (B + 7))
By(1 — zh+) ‘

is a strictly increasing function from (0, 1) to (0, 1}, since «{0}) = 0,u(1) = 1 and

w(z) = Br{(y + 1) + (8 — DYz)") fi(z)
(By(1 - (z)8+7))?

(A.26)

> 0.

Hence d; > K.
Letting 2, = x2(d)} = b(d)/d, take a partial derivative on E5(v; b(d), d) with
respect to d,

OB, (v; b(d), d) _ (5) vy - b(d) 94(72iw)
od ds+y — b(d)ﬂ+'r (y+ 1)+ (8- l)xg+'r'

(A.27)

v

Similarly as the first part proof, we have &gdd < 0 for all d > K. Further
more we get that E,{v;b(d),d) is strictly increasing on [K,d}) and is strictly
decreasing on (d3, 00). And then E,(v;b(d3),d5) > Ex(v; b(v),v) = v— K for any
v € (K,d3).

If K > 11_—':2'33, that is w > 0, then g4(z;w) is strictly positive on (0,1).
By equation (A.27), ";E’L'-gi—(‘—im > 0. Hence E(v;b(d),d) is strictly increasing
with respect to d > K. And then E,(v; b(d),d) > E3(v;b(v),v) = v — K for any
ve(K,d). D

Lemma A.5. Let & = d5(K) be given by Lemma A.4, which is a function
of strick price K for K € (0,(1 — k)cP/r). There exists a unique Ky €
(0, (1 — k)cP/r), satisfying d3( K;) = K3/X and, d3(K) < K/A, for K € (0, K3),
d3(K) > K/A, for K € (K2,(1 - k)cP/r).
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Proof. By the proof of Lemma A 4, d5 = K/u{x}). Then d5 = K/X impiies
that A = u(z}), where u(z) defined by equation (A.26) is strictly increasing
bijective function from (0, 1) to (0, 1). Hence for any A € (0,1), there is a unique
z3 € (0, 1) satisfying A = u(%3).

For any K € (0,(1 — x)cP/r). Let 3 = z3(K) be the unique solu-
tion of gs(x; Kr/{(1 — kK)eP))=0, where g4 is defined in Appendix A.3. Then
K= U"—:)—Efv(xa), where v(z) , given by (A.25), is a strictly decreasing bijective
function from (0,1) to (0, 1) since v(0) = 1,2(1) =0 and

o(z) = BT Wy + 1) + (B - DaPh)
(B(y +1) = (8 - 1)yzF*7)?

Hence z3(K) = q=5m?” '(K) is a strictly decreasing bijective function from

(0, (1 — k)eP/r) to (0,1). Following that there exists a unique K, € (0, (1 —

< (.

k)cP/r), such that z4 is the unique solution to fs(z; Kor/((1 — x)cP)) = 0 on
(0.1), and d3(Ka) = Ko/A.

Recalling that K/d3(K) = u(z3(K)), taking derivative with respect to K
on both side, we get that

I(K/d3(K)) _ dulz)

ox5(K) T

_ t * ~ 154
aK am |I=I§ aK - (1 — K)Pcu (:rQ)(v ) (K) < 0.

Hence for any fixed A, when K < K, K/d}(K) > K,/d;(K3) = A, which implies
dy(K) < K/A. Similarly, &2 > K > K, = K(X), we have dj(K) > K/, O

Lemma A.6. When Ad > (1 — k) Pc/é, the smooth pasting condition

oL,

3 (v;b(d), )|,y =1— A, (A.28)

determines a unique finite number b* = b(d) < d, satisfying Ab* < (1 — k)Pc/d,
such that E3(v;b,d) > v, for any b* < b < v < d. Furthermore, fixed v > b(d),
Es(v; b{d), d) s strictly increasing with respect to d for d > (1 — k)Pc/éA.

Proof. 1t is easy to verify that

6E3 /\02

E(vl b: d)|v=b - (1 - /\) = 27'1'(1 _ Iﬁ+1) ' gS(x;w):
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where x = b/d,w = (1 — K)cP/dé)d € (0,1} and gs(z;w) is defined in Appendix
A.3. Furthermore, gs(x;w) has a unique solution z* € (0,1). Hence, for any
given d, if we define b* := d z*, it is a unique solution to (A.28).

To prove that Ab® < (1 — k)Pc/d, that is b"/d < (1 — k)Pc/éAd or z* < w,

it is sufficient to show that
gs(wiw) >0forany 0 <w<1, (A.29)

due to the fact that on (0,1), gs(z;w) is strictly negative on the left side of its
zero point z* and strictly positive on the right side of its zero point z*. And
(A.29) is true, since gs(w;w) = wfe(w; 1) > 0 for all w € {0,1), where fe(x; 1) is
defined in Appendix A.3.

Fix v < d, taking a partial derivative on the function F3(v;b, d) with respect
to b,

OF; b d b\ dftT — Pt Ao?
W(v’ )= - (;) APt —BFT 2rz(1 — 2P+ * 95(T; w)-

For any b > &, z = b/d > b*/d = z*. By the property of gs(z;w), we have
gs(z;w) > 0 for any z € (z*,1) and then 0E3/0b < 0 for any b* < b < d.
Consequently, if fix v < d and regard E3 as a function of b, it should be
strictly decreasing on [b*,v]. We then have E3(v;b,d) > Es(viv,d) = Av for all
be (b*,v].
Take a partial derivative on E3{v;b(d),d) with respect to d, the last state-

ment follows from,

OE3(v; b(d),d) GE;(v; b, d)l ab(d) N AE;(v; b,d)I
od - ob b=t 5d od b=bld)

- d\ 7T Bt —b(d)ﬂﬂ (—gs(z4; 1)) 0
=MD b fo(za) lzo=bla/a > 0,

where —g3{z; 1) and fy(z) are defined in Appendix A.3, which are both positive
forz€(0,1). O

Lemma A.7. For K < K,, we have
E*(K/A-) 2 E*(K/A+),

where E* is the equity value function defined by Theorem 2.8.
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Proof. In Theorem 2.8, there are four cases. Let € > 0 be positive and small
enough.

Case 1: K < K, and K < Kj.
E'(V)=V — Kon (K/A—g,K/\) and E*(V) = (1 = A)V on (K/X\ K/A +).
Hence
(EY(K/A=)=1>1- A= (EY(K/ ).

Case 2: K < K, and K > K.

E*(V)=V — K on (K/A—¢,K/))

E*(V) = E3(V; K/A d(K/))) on (K/3, K/X +¢).
Hence

(E"Y(K/A=) = 1 > BE3/8V (K[ ; K/, d(K/)\)) = (E*) (K[ +),

where 8E;/0V (K /A+; K/ X, d(K/))) < 1 follows from (A.35) with the condition
that K < Ky < (1 — k)cP/r.
Case 3: K > K, and K < Kj.
E* (V)= E|(V;bK/X),K/ ) on (K/X—¢e, K/))
E*(VY=(1-XVon (K/X\K/X+¢).
By Lemma A .4, E\(v;b(d),d) is strictly decreasing on (0, d3), with respect to d.
Since K/A < K\/A < d}, we get that Ey(v;b(K/A), K/A) < E\(v; b(v),v) = (1 -
Mvforv € (K/A—e, K/)). Together with the fact that Ey{K/A 6(K/A), K/A) =
(1 — A)K/ A, we get that

(E*)Y(K/A-) = 8E\/OV (K[ A b(K/)A), K/A) 21— A = (E")(K/A+).
Case 4: K > K, and K > K.

E*(V) = E\(V;b(K/)),K/)) on (K/X — €, K/)\)
E*(V) = E3(Vi K\ d(K/\) on (K/X\ K/X +¢).
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We need to show
OFE\ (K/XA= bK/X),K/XN) OV 2 OE;( K/ A+, K/A, d(K/)X))/OV.

Similar as Lemma A 4,

JF, ] . _ _ (1 — K‘)CP ] 'y
T WO KN = (=0 = e s gl ) (1.0)

where z7 = b(K/A)/(K[/)), satisfying go(z$; A, 8(K/X) /({1 — k)cP)) = 0. And
OE;(V, K/ A d(K/A)) cP .
] —- A} = .
av ‘v:x,u (1-4) r f3(xg; 1)(K/,\)97($6'K)’
where zz = (K/\)/d(K/)), satisfying g1(zg; 8K /(cP),0) = 0. Numerical test
shows that the right hand side of (A.30) is always bigger than the right hand
side of (A.31). O

(A.31)

A.5. Proof of Lemma 2.4, 2.6 and 2.7

Proof of Lemma 2.4. Please note that the definition and properties of elementary
functions fi(1 <1 <6),g;(1 < j <7) ar all given in Appendix A.3.

Let z = V' /V .. Substituting the expressions of D, and E, into (2.15) and
(2.16). The smooth pasting condition (2.16) gives

alz;w,(1 —p—ANw/A) =0,
where w = §AV," /cP; The smooth pasting condition (2.15) gives
92(:‘:; )‘: 'V) = (,

where v = 8V, /((1 — k)cP). Note that w = A(1 — k)zv = A(1 — &k}{F — 1){7 +
1) fo(x)/ (B fa(z; A)). Plugging into g;, we have
o _B-1)r+1)
0 =0 (:E,(.d, (1 — P ’\)w/’\) - f4($; )\) gﬁ(Is ’\aKw p)'

Furthermore, gs(x; A, &, p} = 0 has a unique solution zj € (0,1). Plugging =}

into g; and g2, we get

{ Vb. . (1-w)eP YHB(z1PH Y~ (B} (=)

r (Y HDHB-HEDAY - ABH (=P A
Ve eP B4z} —(B+1)(=1)” ( '32)
con

T AP DR EDPIT - (1-pH A1) (1) D
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with z} = Vg /V.... Besides, V' = V4(Vi,) < (1 - k)cP/8 and Ey(V; Vi, Va,) >
0, for any V," < V < V2,
Vy < (1 — w)eP/é < cP[§, by Lemma A2, Vi, = Viu(V)) > cP/dA and
Dy(V; V' V) > AV, forany Vi <V < V.

For the given V., , k;, which satisfies E\(k1; V', Vo) = (1 — A)ky, is given
by Lemma A4 (If Vi, < d}, let ky = V3,). For K > Mk, to show that

Ey(V; Ve, Ve ) > h(v) = min{(v — K)*,(1 = AV}, for any V" < V <V, we

cont

according to Lemma A.3. Furthermore, AVy <

still need to show that
EV, vV vi )2V -—Kior K; < K<V <k, (A.33)
E VvV, Vi )2 (1-AViork <V <V, (A.34)

The equation (A.34) follows from the definition of k; and Lemma A.4. Define
K, =Mk, If Ky > (1 ~ k)eP/r, by Lemma A.4 (ii),

E WV, VS, Vo )>V-K 2V -K, forany K} < K <V < k.

If K < Ki < (1 — s)cP/r (K, is given by Lemma A.5), by Lemma A.5,
Vo (K1) > Ky /2. By Lemma A.4 (it), we also have

E\WV, VS Vi I)>V K 2V -K, forany K} £ K <V < k.
Hence if K, > K,, the equation (A.33) holds. Inversely, consider K < K.
E\(V; Ve Ve ) = Ea(V; Ve(ki), k) vk k=k, + E3(Vi K, Vi) Lk <veve,, )
If K, = K,, then the left hand side derivative of E\(V;V}", V;,) at ki equals 1;

If K, < Ky, V‘l,l(Kl) < Kl//\ = k]. B}’ Lemma A 4, E?(V;‘/b(kl):kl)lK=K| <

BV (V) V)lk=k, =V — ky for any V € (V3 (K1), Ki/}). Following that
the left hand side derivative of E\(V;V;*,V..) at k; is no less than 1. On the
other hand, consider the right hand side derivative of £,(V; V", V) at k;. With

I = kl/Vc‘on)
OE; _ ey gy Kiufa(z; 1) — (1 - K)eP/r fo(z)

(B +7)2? (1 - 2)

<A-—A 0 — 28+7)

<A (A.35)
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where we have used K, € K3 < (1 —&)cP/r. Then the right hand side derivative
of E3(v; k1, V3,) at ky is strictly less than 1, and so does Ey(V; V", V:,.}. This
is a contradiction since E,(V; Vi, V) should be smooth at k,. Hence K, > K,
always holds. D

Proof of Lemma 2.6. (i). Most results follow from Lemma A.3 (ii), Lemma

A4 (i1) and Lemma A.5 in Appendix A.4. We only need to show that, when
K < Ky,

Dy(V; Vi Vo) 2 AV forall Vo€ [V, Vi) (A.36)

Before we show (A.36), we firstly give some formulas for computing the critical

references. The critical early call reference K is given by

K, = (1= K)PcBy+1) — (B — 1)y(23)"* — (B + 7)(z5)"

A37
; Bl + 1) — (B— Dr@)P (37
where z} is the unique solution on (0, 1) of the following equation
By +1) = (8= Dyr®*T = B+ )2 _ |
Br(1 — zP+7) |
If K < (1 — k)cP/r, the equation,
i = (L= R)eP By +1) = (B = 1)yz?*7 — (B +v)2”
S By +1) = (8 — 1)yxf* ’
has a unique solution 3 € (0,1), z3 = V;’/V;,, and
._ Byl —(z3)8+7)
W = K g -G (A.38)
Ve = K By(1-(x3)P*) '
cal,1 ™ T (@ HB(v+ 1)~ (B~ 1)r(z3)P Y —(B+yHz3))”

Now let us return to prove {A.36). When K < K;, by Lemma Ad4
(i), B(V;Vy, Vi) > E(ViV(K/A),K/)) for V. > Vy(K/A). Then
Ex(V; V', V) will intersect (1 — A)V at some V e (Vai1 K/2). Then
V< K/) < Ky/A < k. Denoting Vo = Veon(d*), if Vo > , by Lemma
A2, we have Dy(V; V', Vo ) 2 AV forall V € [V, V3, ]

Now we show that V.on > V. Note that V" = Vi(V). Letting = V;*/V, by
Lemma A.3(i), g2(F; \,v) = 0, where v = §V/((1 — k)cP). To show Vo > V,
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that is V' /Veon < Vi /V = Z. By the definition of Vi, and Lemma A 2, V' /V
satisfies g1 (V" /V con;w, €) = 0, where w = AV /cP € (0,1),e = {1 —p—Nw/A >
0. By Lemma A.l in Appendix A.3, g, has a unique solution V;'/V, € (0,1),
and is negative on the left, positive on the right. Hence V' /V .., < T is equivalent
to that g, (T, w,¢) = 0.

Note that w/v = A1 —&)Z. Plugging g2(Z; A, v) = 0 into g, (T;w, €), we have

~ oy _ By +1) o
gl(:r,w,f) - f4(~:E; /\) gﬁ(‘r)'

Since V < k; < d3}, where dj is given by Lemma A 4,7 = V;/V > Vilk))/ k1 2 27
due to 8z(V,)/8V, < 0 in Lemma A 4, where z] is the root of gg(x) =0 on (0, 1).

Similarly by Lemma A.1 in Appendix A.3, g¢ has a unique solution z] € (0, 1),
and is negative on the left, positive on the right. T > z} implies g5(T} > 0, and

so does g, (T; w, €).

(ii). Let z = V3, ,/ V., The smooth pasting conditions (2.18) give

a(z;w,0) =0, where w =38V ,/cP

gs(z;v) =0, where v = (1 — K)cP/(0AV.,)

Note that w = (1 — k)x/v = (1 = &)(8 — 1){v + 1) foz) /(B fa(z; 1)). Plugging

in to ¢;, we have

-1 +1)
0 =gr(aiw,0) = LD (@ 0 pi(es1) - (1 - ) fola) S 1)
f4 (Ia 1)
g-1D(y+1
) Al T
f4($1 1)
where g7(z; k) is defined in Appendix A.3. Further more, g;(z;x) = 0 has a
unique solution z} € (0, 1). Plugging =} into ¢, and gs, we get =3 = V3,,/Vii.
and
Ve = (=meP y+8(z3)? 7 (B+7)(=3)°
cal2 = T ar (yFDHB-DE)DFH - (Ba))P T (A.39)
Ve —¢P A+y(z)? T - (B+y)=z3)” '
con = Ar BN+ {4+ 1) (=3P —(B+ 1) (=)

The other statements follow from Lemma A.2 and Lemma A.6. O
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Proof of Lemma 2.7. (i). Most results follow from Lemma A.4 (ii) in Ap-
pendix A.4. We only need to show that, when K; < K < K,

DoV Vy Viaa) 2 AV for all Ve [V, Vi), (A.40)

Again before we show (A.40), we firstly give some formulas for computing the
critical references. The optimal default barrier V," in this case is given by
(1 - x)cP v+ B(x3)Pt = (B + )(z3)

T (r+ )+ (B - 1)) = MB N as) T
where 3 is the unique solution on (0,1) of go(x; A, v), with v = §(K/A)/((1 -
K)cP}.

vy = (A.41)

Now let us return to prove (A.40). When K € (K3, K)), let V = K/X, then
V< K1/ = k1. Denoting Veon = Vign(b*), if Vion > V, by Lemma A.2, we get
(A.40). The proof for V on > ¥ is the same as that in the proof of Lemma 2.6.

(ii). Most results foilow from Lemma A.6 (ii) in Appendix A.4. We only need to
show that, when K3 < K < Kj,

EV,K/\ V2 )>{1—A)Viorall Vel[K/A\V,] (A.42)
Again before we show (A.42), we firstly give the optimal exercise barriers
{K/XV2.} in this case:

e e _ P B (@)t — (B y)(m)
on = Ve = N - D+ (r + DEPrT - (B M@+

where z§ is the unique solution on (0, 1) of g(z;w,0), with w = §K/(cP).

(A .43)

Now let us return to prove (A.42). When K3 < K < cP/§), denote V oy =
Vear2(Ve,). To show (A.42), by Lemma A6, we only need to show that
Veaz < K/A By definition and Lemma A.6, Vear2/ Ve, is the unique solu-
tion of gs(z;v) = 0, where v = (1 - k)cP/(6AV,,). Since gs is positive if and
only if it is on the right hand side its unique solution, to show Veat2 < K/X, we

only need to show that gs5(Z;v) > 0 where T = (K/A)/V5,- .
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Consider 1 — p = X in Lemma A.2. Note that Vj = Vo (K/A). T =
(K/X\)/ V., satisfies ¢1(T;w,0) = 0, where w = §K/(cP). Note that v = (1 -
REfw = (1 — &) a(E /(B - (7 + 1)f1(D). Plugging it into g5(Z; v), we

have

sy By e
gS(Iv ) fl(

3 a7(T; k).
Since Vi, < K/ < ¢P/(M), 23 < T due to 0z(V,)/0V, > 0, where V3, is
given in (A.39) and £} is the unique root of g:(x;k} = 0. Since g7 is positive if
and only if it is on the right hand side its unique solution, we get g;(Z) > 0 and

s0 does gs(z;v). D

A.6. Proof of Theorem 2.5, 2.8 and 2.9

Proof of Theorem 2.5. We first prove that 77, solves the optimization problem
(2.6), given 7, and 7, defined in the theorem. Note that the function D* defined
in the theorem is differentiabie on the interval (V;*, +00) and has a second-order
derivative except at V = V. Thus, it must be a difference of two convex
functions. Applying Ito’s formula for linear combination of convex functions
(see, e.g., Karatzas and Shreve (1991), Problem 3.6.24 and Corollary 3.7.2), we
have

daD*

d—V(Vu)qu

To AT
e—-r(r;Af)D-(VT;AT) =D-(V)+-/b e-—rugvu
0

'rba‘\'r
_/ e ruﬁD'(Vu)l{Vu#Vf'nn}du
0

for any stopping time 7 > 0. Taking expectations on both sides and rearranging

the order of the terms in the last equatity,

can

Ty AT
D-(V) — E[e— r(TEA‘r)D-(VT‘:AT) + ‘[; e ‘ru.CD'(Vu)l{Vu#V' }d‘u“/o = VI

i

'r;A'r dD-
—E| / eIV (VAW Vo = V). (A.44)
0
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D*(V) satisfies LD*(V) = ¢P in the interval (V" Vz..). When V > V_ ,
D*(V) = AV and hence

LD (V) = LAV] = 6AV > AV,

con

> cP,

where the last inequality is due to AV > cP/4 by Lemma 2.4. Consequently,
LD*(V) > ePforall V € {V,;, 00). Furthermore, the boundedness of the function
dD /dV implies that

Ty AT dD-
E : oW, V)dW, ivg =V] =0,
[ e ren D awive = v] <o

From all the above observation and (A .44), we obtain that
Ty AT
D'(V)>E [e‘f(ﬂ?”)D'(v,;M) + f e ™cPdulVy = v]
0

for any stopping time 7. Note that when 7y < 7, D*(Vizas) = D*(V) = (1 -
p)Vre; when 7 < 7y, we have Vienr > V, and hence D*(V.x,) = D*(V.) > AV,

according to Lemma 2.4. Therefore,
D*(v) 25[6‘""0 — PV Limp<ry + €AV - Lirpnny
TR AT
-+-[ e ™ePdulVp = V]. (A.45)
0

The inequality (A.45) becomes an equality when we take 7 to be 77,,. Indeed,
the right hand side of (A.45) equals to, once we let 7 = 77,

o rry . cP ~FTy
b[{e t(1-pVy+—[l-e "]}'1{r,:<r;m.}
. P .
+ {B- "con ’\V:c:;n + C_T'_[]‘ —€ r'rm,,]} ) 1{1‘:)7;9'1}] )

Note that 7y and 7, are respectively the first passage times of V, hitting a lower
boundary V;" and an upper boundary V.. With the help of notations p and g,
it is easy to verify that the right hand side equals to D*(V). In summary, we

have already shown that 77, solves the following optimization problem

T, AT
supE e 75 (1 — PWVerlizecry +€ 7 AV - Lienny + f e"'“cPdulVo =V
€T 0
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and D" is the corresponding optimal value function. In other words, 7, is the
best response of the bondholder, given that the shareholder chooses 7, and 75,

defined as in the theorem statement.

Fix r2, = inf{t > 0 : V, 2 V;,}. The optimality of 7; and 77, can be
argued in a similar fashion. The function E* defined in Theorem 2.5 is twice
differentiable on (0,V.,), except at V = V;'. Invoking the generalized Ito’s

formula again, for any stopping times 7, and 7., we have
(V) E [ f‘OﬂAT’,ATcﬂ'}E‘ (VT;mw A‘rbhfral)
TeonATBATcal
=+ / e rUCE'( )l{v""lévh }dUlVg = :I (A46)
0

From Lemma 2.4, we know that V" < (1—«)cP/§. ForallV € (0,V}), E*(V} =0
and thus
LE*(V)=L[0]=02 48V — (1 - k)cP.

For V € (V' Vo),
LE* (V)= LE,(V}=40V — (1 - k)cP.
Combining these two facts with (A.46) yields that

E*'(V)> sup E[eF'(T’T"“A“M‘”“')E‘(VT- ATy ATaar)

TbnTcalGT on
co“f\‘rbf\fcﬂl
+ / e 8V, — (1 — k)cP)du|Vp = V].
0
In addition, we have
E‘(Vfc.onf\fbf\fcnl) 2 (1 - /\)VC:Jﬂl{T;ﬂn‘chATcal} + h(vrbﬂrrnl) ’ l{rﬂﬂﬂ >Tbhfrﬂl}
because E*(V) > h(V) for all V < V2, according to Lemma 2.4. Therefore,
E*(V) > sup Ele (1l - MV, lire cnara)

TbnTcnIET

+e- r{TbATcel}h(Vbe\Tcu!) ’ I{Tc.on >TbAT"“I}

{:ﬂﬂh‘r
+/ e (Vi — (1 — K)eP)du|Vp = v]‘
0
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On the other hand, it is straightforward to verify that the equality holds in the
preceding inequality if we choose 7, = 7y and 7 = +00. Consequently, we have
established the optimality of 7y and 7, under the given 77,. Theorem 2.5 is
proved. O

Proof of Theorem 2.8. The proof of this theorem is highly similar as the last
one. We provide some sketch only. Suppose that the shareholder has already set

up his policies such as
m=inf{t>0:V, <V} and 75, =inf{t >0:V, € [V, Vi)

When the company asset value V falls in [0,V;] or [V, Va2, the game is
stopped immediately and the bond and equity values should be given by the
theorem statement.

Consider a case when V € (V;,Vz5,,). The function D* defined in the
theorem is twice differentiable in this interval. Suppose that V, starts from
Vo = V. Applying Ito’s formula, we have

. TATY AT, dD*
e—r(?nl"\'r,J ATCGI)D‘(VTI\T;AT:OI) xD-(V) + / e—rugvu—d-—‘;-(vu)dwu
0

TATS AT,
- [ e ™MLD'(V,)du (A.47)
0

for any stopping time 7.
When V, € (W, Va,), D*(V)) = Ds(Vi; V), Vg, ). which satisfies
LD*(V,) = cP. Therefore,

7Ty AT, TAT ATy
/ e ™MLD(V,)du =f e TcPdu. (A.48)
0 0
Take expectations on both sides of (A.47). Combining with (A.48), we have
TATE AT, .
D'(V)=E [ / e TcPdu + e TN DY Vo pge s J Vo = V|
0

In addition, Lemma 2.6 and Lemma 2.7 shows that D*(V) = D3(V; V', Vo 1) 2
AV when V € (Vy, V., ), no matter whether or not V3, , = K/A. If 7 <77 ATZ,,

we have Viareare, € (V)', Vg, ) and hence

D’ (VTAT;AT:M ) Z /\Vrh-r;n-r;ﬂl .
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On the other hand, if 7 > 73 A 70y, D*(Viarzars, ) €quals to either D*(V;;) or
D*(V;- ). By the definitions of 7y and 72, we know D*(V;.) = (1 — p)V;’ and
D*(Vye } = g(Vy). In summary,

Teat

)1{7 AT =T} + e )‘Vr ‘ l{rb‘f\‘rc‘nl)f}

cal
TJ'\Tb A.rca!
+/ e ™cPdulVy = V.
0

It is straightforward to verify the equality is achieved when we take 7 = 75,

D*(V) zE[e AT (Vi prs

So far we have proven that the optimal action for the bondholder is to convert
at 72 .. Emulating the above arguments, we also can establish the optimality of

2 when the initial company asset value is in (V3,5 Vi )-

Now turn to investigate the optimal behavior for the shareholder, given
that the bondholder converts her security at V.. Note that the equity function
E* defined in the theorem is differentiable on (0, V), except for at the point
K/A. Apply the generalized Ito’s formula for convex functions (see, e.g.,
Problem 3.6.24, p. 215, Karatzas and Shreve (1991)),

I"(Tb!'\'rc.,;d'\fm,,) E. ( ToATeat AT, )
ce con

TaATeat M on dE‘ TpATcatNTion
— E"(V)+ / e oV T (Va)dW, — ] e T LE(V,)du
0

. dE* dE"
—"(ﬂ:"'\fcn! ""\Tcon) — 3 RN
+e A (V) 1Vl”r{r})‘ G V)]

TeATcat N ion l: 1m (A49)

ViK/a dV
for any stopping time 7, and 7., where {A.,t > 0} is the local time process of

{V,,t > 0} at K/). According to Lemma A.7, we have that

dE* . dE”

vlllflfr})\ W(V) vtllrcl}). dV

(V) <0,
If taking expectations on both sides of (A.49), term rearrangement will lead to

ToMTeal NTeon
E*(V) zE[ f e~ LE*(V,)du
4]

+ e— T(TbATcntnTc.on)E‘(VTQ,J'\TC,-_.U'\T;‘,") l % = V] . (A.ﬁo)
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When V € (0, V),
SV - (1 = k)eP <8V — (1 - k)eP <0

according to Lemma 2.6 and Lemma 2.7. On that interval, E*(V) = 0 and hence
LE*(V) =0. Accordingly, LE*(V) > 6V — (1 —&)cP. When V € (V", V) or
Vel(Vy, V.. E"satisfies

cal 2" Ycom
LE(V) =6V — (I - v)cP.

When V € [V, |, Vi, there are two possibilities for the value of E*(V): it
equals to either V — K or (1 — A)V. No matter which possibility it is, £*
satisfies CE*(V) > 8V — (1 — k)cP on the interval [V, ,, Vi, ,]. Indeed, by the
discussion in Appendix A.1, £*(V) = V — K only in the interval (V3 ,, K/})
and this interval is not degenerate only if K < K>. When K < K,, LE*(V) =
8V —rK > 6V — (1 — k)cP because K < K, < (1 — k)Pc/r according to Lemma
2.6. On the other hand, the equity value E*(V) = (1 — A)V in the interval
(K/A, Vg4 2). Therefore, '

LE'(V) = L[(1 = NV] =6V — MV > 6V — A6V, > 8V — (1 - K)cP

since V3,5 < (1 — k)cP/(d)) from Lemma 2.6.
So far we have already established

LE*(V)> 6V — (1 —K)cP

forall V € (0,Vz,). In addition, Lemma 2.6 and Lemma 2.7 prove that E*(V) >
h{V) for all V € (0,V_). Consequently, (A.50) implies

ToATat AT on
E*(V) ZE[/ e " (6V, — (1 — rcP))du
0

+ e_r(Tthcat)h(Vﬂ.ﬁfcol) - 1{‘./.“‘“,\,.‘:“I <Teont

+ B-PT;"“ - (1 - /\)Vf;‘m ' l{fgmd.n,!\‘rm,}lv() = V] -

Furthermore, it is easy to verify that the equality holds in the above inequality
if substituting 77 and 77, specified in the theorem to its right hand side.
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Thus, both of them are respectively optimal default and call times under the
assumption that the bondholder converts at 7,,. We have shown that a Nash

equilibrium should be given by what the theorem states. D

Proof of Theorem £.9. The uniqueness of the value functions in equilib-
rium is self-evident. Proposition 2.3 proves necessary conditions for a function
being the bond or equity value function. Lemmas 2.4, 2.6 and 2.7 further con-
firms that these necessary conditions can determine the value function uniquely.
Theorems 2.5 and 2.8 verify the optimality of the equity and bond functions
we find from the necessary conditions in Proposition 2.3. Consequently, the

equilibrium value functions should be unique. O
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APPENDIX FOR CHAPTER 3

B.1. The Non-Singularity of the Matrix N.

Note that N can be divided into four blocks

A BX,
N = ,
CX; D
where A, B, C, and D are given by
1 - 1 1 . 1
1 e 1 1 .. 1
m~5 M —Bm+1 m+m M +ne1
- - i - . '
1 . 1 1 - 1
[ tm—Dh tm—Bmi1 ] | m4+m T+ Int1
1 ... 1 1 - 1
S S S 1 - 1
G +5 B1+8m+i -7 & -1
- - ’ - - )
-t ... 1 1 ... 1
| In+D1 8atBmat fn—m B~ Yl

respectively, Xg = Diag{z®,..., 7%}, and X,, = Diag{z™,...,T™"*"'}.
To facilitate showing Proposition 3.2, we first notice a famous result about

the diagonal dominance matrices in Lemma B.1 and then prove the other two

lemmas: Lemma B.2 and Lemma B.4.

143
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Lemma B.1. (Lévy-Desplanques, Theorem 6.1.11, Roger and Johnson (1985))

T

If a complex matric P = (py)nan satisfies [pu| > 327, L Pyl fori=1,...n,

then P ts non-singular.
Lemma B.2. For anym > 1, n 2 1, and {G;}72%! and {v,}}2} satisfying (3.3)

and (3.4), the determinants of the two matrices A and ID are given by

Hl<=<}<fﬂ+l(ﬁj — B h<icy<m(mi — 03)
det(A) = ——=—= S 2 0,
( ) nl<i<m,l(j(m+1(ni - 53) 7&

and

det(D) — Hlsaqgnﬂ(‘b - ’r:)nlgiqgn(@i - 93) £0.

Mi<i<nagicnsr (B — )
Proof. Due to the analogy between A and D, we only consider the matrix A.
To explicitly describing the dependence of the matrix A on the parameters,
we rewrite A as Apa(m, - 9m; By Bma) for any m = 0,1, where
(m + 1} in the subscript denotes the dimension. When m = 1, it is trivial
that det (Al(;ﬁl).) = 1. When m > 1, to calculate its determinant, a natural
idea is to perform elementary operations such that the first m elements in the
last column of A becomes zero. Subtract the (m + 1)** linear equation times
(Wm ~— Bms1) from the first linear equation, and subtract the (m + 1)** linear
equation times (7, — Bms1) from the (i + 1)** linear equation times (7 — Bms1)
fori=1,2,---,m—1. Then after eliminating the last row and the last column,

we obtain an m x m matrix as follows.

( Bmii—B1 Beny1 —Bm \
e ~5 T N ~Bm
Bmis1—B1 71 —nm Bm41=Bm 7 —1m
nm-81 m-/ Om—Bm M —Om
Bmir =81 h—9m Bmi1=Bm m2—1m
nm—01 m—fh m~Bm 12— Bm
Brn41—B1 Bmeo1—fim Brmi1—Bm Gm_1=fm )
MTm—B w1051 o im —Bm fm-1~0m
where for any j = 1,2,--- ,m + 1, the (7,j) element equals g—:‘—:ll:—gj- ifi =1

Bt —Bi Bi— 1 —Nm ¢
als qﬂl_ﬁj 'Tt—l“.g: ]f?.

ﬁ"‘ﬂ:—j’- out of the j** column for all j = 1,2,--- ,m and taking the common
£

and equ = 23,---,m+ 1. Taking the common factor
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factor {7,-1 — 7m) out of the i** row for all ¢ = 2,3, .- ,m, we can obtain the

following recursion for any m=1,2---.

Hm=1(ﬁm+l - ﬁ_)) ::_11(7?1 - nm)
d Am! 1" 2 T, y DT v Mmntd == ™
Et'( i(’? 7 ﬁl ﬁ )) l—IJ=l(7}'m _ Bj)

x det (Am(m, - Dm-1:01, -+, Bm)) -

Noting that det (A,(;51)) = | when m = 1 and applying the above recursion

repeatedly for m times, the argument is completed immediately. 0O

Remark B.3. [t is easy to establish a simple relationship between the matriz
A in Lemma B.2 and the matriz A in Cai and Kou (2008). Then the non-
singularities of these lwo matrices are equivalent. Accordingly, here we actually
provide a different approach to show the non-singularity of the matriz A in Cai
and Kou (2008). Cai and Kou (2008) achieved this objective by construcling a

polynomial function and analyzing tts roots.

Lemma B.4. Let Q := (D7 'CX3A'BX))T = (¢i;)ne1)ent1). We have gy > 0
and E?:ll g < 1.

Proof. Consider the matrix A “!B. Let zy be the k** row, I'* column element of

the matrix A~!B, then by Cramer’s rule,

_ det{Aw)

2kl = m: (Bl)

where Ay is the matrix formed by replacing the £** column of matrix A by the

I** column of matrix B, that is

1 e l(k”‘ column) 't 1

1 i 1 v 1
Ay = QI’.'BI ‘ m-.l-‘n . M —Bm4t

1 1 . 1
L "m0 fm-+T N —Bm+1

-
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Since A, has the same structure as matrix A, similar as Lemma B.2, we have,

H (ﬁJ - 3) H (= —B)

1<i< E€m+ 1tk jAk 1<i<k

(ni'_ﬁj)
[T Bi+v) I (m—n)

k<j<m+1 I<i<jem

[T (m+w)

I<i<m

det(Ay) =

Then :

k_l:[ll(—m - Bi) mﬁl (8, + ) _Ij(m — k)

j=k+1

2k = 5 o - >0 (B.2)
(8- 8) T1 (8~ 8 [n+ )

Furthermore, since the elements of the first row of matrices A and B are all 1,
by matrix multiplication, we have

1
Y a=11<l<n+1. (B.3)
k=1

Let ; be the i** row, j** column element of the matrix D' C, since matrices D
and C have the same structure as matrices A and B, by the similar process as
ahove, we have

ntl

9 >0,y Yy =11<i<n+lL1<j<m+1 (B.4)

k=1
By direct computation, the it* row, j** column element of the matrix XgA™'BX,
is z;;77*%. Hence

m+1

gu = (D'CXA 'BX,), = Y ynzaT™ ™ >0,

=1
and

n+l nt+1 m+1 m+1 nt+l mtl

Z‘?kl = Zzyriszfﬁ'ﬂ" < z Zik(Zyu) = Z zg = 1,
=1 1=1 i=1

=1 =1 =1
due to equations (B.2), (B.3), (B.4) and the fact that 0 <T < 1. Lemma B4 1s
proved. |
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Based on the three lemmas above, we start to show Proposition 3.2.
Proof of Proposition 3.2. Since both the matrix A and D are non-singular, we

can perform elementary operations on the matrix N as follows.

I N I BX,
~CXgA! 1 0 D({I- D !CXzA 'BX,)

where I denotes the identity matrix. It follows that
det(N) = det(A)det(D)det(I - D 'CXzA 'BX,).

From Lemma B.1 and Lemma B.4, we can easily see that det(I —

D !CXgA'BX,) # 0. Therefore, det(N) # 0, which completes the proof.
0
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C.1. Roots of the Equation G(z) =r + a.

The equation G(z) = r + a, with G(z) defined as (4.2), can be reduced down to
a 3 2 =
3 +azzt T +art+ap = 0,

where

ay =02, az=2u—0(n—=0), ay= -0’50 —2u(n—0)—2x—-2(r +a),

ay = —2unf — 22p(n+6) + 2An+ 2(r + a)(n — 0), ap = 2(r + a)nsb.

It has four roots given by

ag P —Pps az  PL+Ps
[+ = - + L] = - + y
A, day 2 Pro 4a, 2
as P — Pz a3 P t+p2
a = ] = + ]
IS da, + 2 T2.0 da, 2
where
y B5 85
p=vVBi+Co+C, p2= 34*00—01—31-)-, p3 = B4—Cg—Cl+E,
1 1

By = a2 — 3aya3 + 120004, By = 2d3 — 9a,800; + 27a%a, + 27aga} — 72000204,

2 2 3
a 2a; a 4a, 4a,a3 8a;, a

B, = /32_433, By =% = By = —% - £, B = —22 - _ 232
2 ! 0 7 4a?  3a, 17 22 3, ° al ag a

V2B, Bs
Bo= Bt B Co=220 = .
6 1+ B> ° = 2B, ' 30

148
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C.2. Lemma C.1.

Lemma C.1. Let f : [0,7] x R — R be a function of class C! on [0,T] x R
and C'? on [0,T] x R\ {h}. The left and mght second derwatives g—i{;(t,h*),
%(t. h+) exist. Then, we can find a sequence of {f.} € C**([0,T] x R) and a
positwve constant M, mdependent of t, x, and n, such that (1) fn(L, x) converges
to f(t,z) as n — oo for any ({,x) € [0.T) x R; (2) f.(t,x) = f(t,z) for any
(£,7) € [0, 7] x (=00, KU [ + %,00); and (3) max{|fal. %21, 1521, 15H 1} < M
Jor any (t,z) € [0,T) x (h,h+ ).

Proof: Introduce a polynomial to smooth the irregular point at = = h for
the function f. Let fu(t,z) = f(t,x) for (¢,z) € [0,T] x (—oo, h] U [h + L, 00)
and fn(t,z) = Pa(t,n{z — h)) for (t,z) € [0,T] x (h,h + %), where P, is a fifth
order polynomial given by

b . Lt h- (s b
Pn(f,I)=%:r5+-—:c"+%x"+ 5’-:4(2 5 ):1:2+ az(n )
n

n2
f. must be twice differentiable at x = h and x = h+1/n. It is easy to check that

x + V(t, h).

f has second order derivative at = = h and its differentiability at = = h + 1/n
is equivalent to requiring a, b, c to satisfy P.(f,1) = f(t,h +1/n),
OF.(t,1) _ Of(t,h+32) i PPt 1) O f(t,h+ 1)

Az Bz B2 B2

That is, {a, b, c} is a set of roots of the following linear equations:
wtb+e=nmn(fLh+ %) — J(th) - ?—f%ﬂ) - %g}fg(z, h-): (C.1)
5a+4b+3c=n(%;;ﬁ—%(t,h))ngi—{(t,h—); (C.2)
20a + 12b + 6c = 82“3;‘; ») _ g?; (t, h—). (C.3)

Note that the foregoing linear equations are solvable for any ¢ and n. Using
the conditions of f, we can show that the right hand sides of {C.1-C.3) are in the
order of o(1) as n — +00. Thus, the coeflicients a, b, and ¢ are also in the order
of o(1), which yields the property (3). From our construction it is also easy to

see that such f, satisfies (1) and (2). O
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C.3. The Property of the Matrix A.

By Gauss elimination of elementary column operation, we can show that the

3

determinant of the following matrix

1 1 1 1

) ] a3 €y
A= ,

1 1 1 1

nom n--4a2 n-daj a4
1 1 1

|_ 8 tay fta; 84as 84 aq N
is given by
(Tj+9[11(<<4 t, — @@
det(A) = Mhegele —a)

A is thus non-singular. Let b = (1,6, ,,_1"31 }¥, then the linear equations

-

-]

]

=2

Ax =

: - H — * - - T :
have a unique solution x* = (xi, x5, 23, 1;)", with

. izla; = b){(n—a.)(8 +a,)

‘= . i=1,2,3,4.
[, (e, — a)(n - 6)(0 + )

x

C.4. Occupation Times with Double Barriers

Qur Euler-inversion-based approach can be extended to cover the occupation
time that the underlying process spends inside two flat barriers, i.e., a corridor
with double barriers. There is one minor technical difficulty remaining: we
cannot show non-singularity of an 8 x 8 matrix rigorously, which we believe is
true. However we can choose the Laplace transform parameter ‘a’ big enough to
ensure the non-singular property of the matrix B (please refer to Remark C.2
below). Note that numerical experiments demonstrate that the matrix should
be invertible. Moreover, it turns out that this does not affect the validity of our
numerical methods for pricing occupation-time-related options.

In this subsection we first presents the closed-formn Laplace transform of the

joint distribution of the occupation time with double barricrs and the log-return
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of the underlying at the maturity. Then this result is applied to price corridor
options with double barriers, and numerical results are provided in Table C.1.
To price other options related o occupation times with two barriers, readers may
mimic the arguments in Section 4.

Consider two barriers h and H with h < H and let 7, y4) denote the occu-
pation times spent between the lower barrier A and the upper barrier H until

the maturity T, that is,

.
T(h,H) i'—/ Lihex, <)t
0

Given any 0 < v < min{n, 8} and p > 0, our objective is to compute the following

Laplace transform of 7 gy and Xy

VIT, ;v b H) i=¢ ™ - Ele #7nm P X = ). (C.4)
Following similar derivation as in Theorem 3.1, we can show that such V uniquely
solves the following PIDE system:

Q—f+p1{h<m"}v =LV, for t € (0,T] and z € R\ {h, H};

(C.5)
V(0,z) = e, for r e R.

For a > 0 satisfying (4.21), consider the Laplace transform of V(T, z;p,7)
with respect to the maturity T

a(x;p,v,a;h, H) £ fo TY(T, x,p,7)dT.

Similarly as in the case of occupation times with single barrier, we can transform
the PIDE (C.5) into an OIDE. Some algebra can yield the closed-form solution

for @ as follows

w(z; p,v,a;h, H)

4

w!.eﬁl,‘.{: hy 4 u_)Leﬁ‘Z.n{I' W epemE B < h
—uh Deflatolz H) — W OpB2.arpls H) _ Ulf’ “Yatalz k)

- — e TrarrlTh) etz M) h<z< H:
u{"e Tl H) +u e~ ralz M) ooz HY r > H,

\
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where

h H e'yH

e” e
and ¢y = )
TG —a-r

CHl—a—r T CH-a-r-p

€y =
In other words, the solution # is a linear combination of exponential func-
tions. The coeflicients vector

4L L0000 U L UNT
d = (wy,wy, vy, vy, W), wy, vy, ¥y )

satisfies a linear system

Bd

Il
&
‘0
=

Here R is an 8-dimensional vector

) ”
ol ol 1 l
R= CU_CU)'(I‘T:'TjT! ,—*——,1,"}‘,—,—) y
( n-vy 6+~ n—v 8+~

where z .= e 7. B is an 8 x 8 matrix

M NZg
MZ, N

B =

where Zg and Z, are two 4 x 4 diagonal matrices with the diagonal elements
being {F% =42, %240 0,0} and {0,0, 77+, T72e+r}, respectively, and M and N

are given by

1 1 | 1
M = ﬁl.u ﬁ?.a ~Matg ~Vatp ‘
1 [ 1 1
n—03i.a 7- 2., N Yatp TtY2a+p
1 1 1 1
L ei"ﬁl.‘q 0‘*'3‘2.& [ T.a4p 0 Ta+p
and _ -
1 1 1 1
N _ ﬁl,a tp ﬁz.ai-p _'71@ —~Y2a

1 1 1 1
n ﬂl.a -] n'ﬁ?‘n-ip 74 Yt nt¥2.a
1 1 1 1
L B+Ba1p 841 82.a1p -7 O-v2u J

Remark C.2. To guarantee that the linear system (C.6) has a unique solution,

we need the condition that the Malriz B is non-singular. Actually this appears to
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be the most different parl when gencralizing to the double barriers. We haven't

proven it rigorously mght now. However we can choose the Laplace transformn

parameter ‘a’ big enough to ensure the non-singular property of the mairiz B,
Note thal we can compule the determinant of matriz M and N, which are

non-zer0. And B, 44 p0 —Traep ! = 1,2 are four solulions Lo
(?(.!.‘) =a+ p,
and By, ~Via b = 1,2 are four solutions to
G{x) = a.

When a > 2, 6;.a+p ~ ﬁt,as Yiarp = 7r,avi = 1,2 ' then

M NZg M NZg | [1 -2,
det(B) = det = del
MZ, N MZ, N 0 I
M (N—M)Z M (N—M)Z |
= det ( ) g = dei ( ) A
MZ, N - MZ Z; MZ, N

= det(M) * det(N)

is non-zero, where we have used the facts that Z,Zg = 0 and all the comnponents
of matrir N — M are quite close lo zero as a >»> p. With numerical verificalion,
further more, we conjecture that when a satisfies the inequality (4.21) in Theorem

4.2, the matriz B is non-singular.

The conclusion that B is invertible for large a is good enough for
our objective of option pricing. Taking inversion on the Laplace transform
u(z; p,v,a; h, H),

1 atiM
V(T,z,p,v;h, H) = T Mlirgmf e*Ta(x; p, v, s h, Hds,
- a-1M

The integration in the right hand side is done along any contour path Re(s) = a
on the complex plane as long as a is greater than the real part of all singularities of

u. Therefore, we can choose such a large a to complete the inversion. Numerical
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experiments indicate that it works quite well for the ISuler inversion. Moreover, it
turns out that our pricing methods for occupation-time-related options based on
the Laplace transiorm result of the joint distribution of X'z and 7, 4y should be
valid. Next we apply the result to price corridor options with double barriers to
illustrate the effectiveness of our pricing method. Due to similarities, pricing of
other options related to occupation times with two barriers is omitted. Consider

a corridor call option with double barriers, whose price is given by
Cor(K,T) = e Efmax{Tgog(t/so)tos(Lrson — K0},

where [ and L (I < L)} are two barriers of the underlying asset price process S
that starts from Sp. Mimicking the proofls of Theorem 4.7 and Proposition 1.8,

the double Laplace transform of Cor(K, T') with respect to K and T

o3 (o]
Jeor () @) = / f e K T Cor(K, TYdKdT (C.7)
o Jo
should be equal to
) | 94 . ,
Jeor (wya}) = —Ea—p(O;O,O,u;log(l/.So),log(L/.ﬁn))
1 1
+—u(0;9,0,q; log{l/Sq), log(1L./Sy)) — ————.
P (a~ r)p?
where
(hi .
;)-5(0; 0,0, a;log(t/ Sa), log(L/So))
OF - (/D) +@f - (Sl Sy <l
) ot (Sof LYPre = &5 - (Sof LY — 5 (1] So)™e
-5 - {1/ S0)™* — o < Sy < L
| (L So)mm + By (L) Sp) e, Sp 2 L
and d = (oF, ok, 50, 58,09,08, 0V, o) satisfies the following lincar system:
~ 1 11 1 I\T
BO)d=-7——"- 11 7“:_1110:_1'—' .
(0) (@ +r)? (0179 ??9)

Her B(0) is B with p = 0. Inverting the Laplace transform (C.7) via the Buler
inversion algorithm, we can price corridor options with double barriers numer-

ici...v. Numerical results are given in Table C.1, where we can sec that all the
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numerical prices obtained using our pricing method (denoted by El value) stay
within the 95% confidence intervals of the associated MC simulation estimates
{denoted by MC value). This demonstrates that our pricing method is also ac-
curate for pricing corridor option with double barriers. In addition, similarly as
in the case of corridor options with single barrier, we can also calculate deltas
for corridor options with double barriers numerically. Numerical results are also

given in Table C.1, which also indicate the effectiveness of our numerical method.
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Prices of Corridor Options with Double Barriers under the DEM

KNSy K1 value MC value Std Err
95 (0.19444505  0.45360862 0.00075583

0.2 100 0.45098018  0.45017582 0.00073051
105 0.37305021  0.37252713 0.00070721
a5 (.32304472  0.32235313 (0.00065997

0.1 100 0.28990787  0.28934707 (.00062511
105 0.23235612 0.23187688 0.00058409

Deltas of Corridor Options with Double Barriers under the DEM

K 5 El value MC value Std Err
100 -0.01853381 -0.01852545 0.00007402

0.2 102 -0.02008015 -0.02014496 0.00007719
104 -0.02149747 -0.02153631 0.00007988
100 -0.01499858 -0.01496464 0.0000715&

0.4 102 -0.01588576 -0.01590179 0.00007396
104 -0.01664286 -0.01667591 0.00007538

Table C.1: Prices and deltas of corridor options with double barriers (denoted by El value).

The default parameter choicesare A =3, 7=005,0=02,7=30,8=20,p=¢ =05, =%

for pricing part or { = 50 for delta part, L = 110, and ¢ = 1. The Monte Carlo simulation

estimates (denoted by MC value) along with the associated standard errors (denoted by Std

Err) are obtained by using 50,000 time steps for pricing part or 20,000 time steps for delta part

and by simulating 100,000 sample paths. The CPU time of our numerical method for generating

one corridor option price or delta is around 3 seconds. The CPU times for producing one MC

value of corridor option price and one MC value of delta are around 10 minutes and 4.3 minutes,

respectively. The table indicates that all the El values stay within the 95% confidence intervals

of the associated MO values.
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