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ABSTRACT 

This dissertation contains two parts: a non-zero-sum game approach of con-

vertible bond and exotic options pricing under exponential-type jump-diffusion 

model. . 

In the first part, we propose a non-zero-sum stochastic game approach of 

pricing convertible bond under the framework that the capital structure of the 

firm involves tax rebate and endogenous default policy. Convertible bond is a 

hybrid security which embodies characteristics of both straight bond and equity. 

Beyond the bond provisions, it endows a conversion option for the bondholder 

to convert the bond for the equity of the issuing firm and a call option for the 

firm to buy the debt back. The conflict of interests between bondholder and ‘ 

shareholder affects the security prices significantly. In Chapter 2, we investigate 

how to use a non-zero-sum game framework to model their interaction and to 

evaluate the convertible bond accordingly. Mathematically, this problem can 

be reduced down to a system of variational inequalities. After we clarify the 

structure of the optimal exercise region of both parties, we manage to explicitly 

derive a unique Nash equilibrium to the constraint game and specify the asso-

ciated optimal exercise strategies. Our model shows that tax benefit and credit 

risk can produce considerable impact on the optimal strategies of both parties. 

The firm may issue a call when the debt is out-of-the-money or in-the-money. 

This is consistent with the empirical findings of “late and early calls” (Ingersoll 

(1977), Mikkelson (1981)，Cowan et al. (1993) and Ederington et al. (1997)) • In 

addition, the optimal call policy under our model offers an explanation to some 
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stylized patterns related to the returns of the company value as well. 

Ill the second part, we use Laplace transform to study the pricing problems 

of various path-dependent exotic options with the underlying asset following 

an exponentially distributed jump diffusion process. These exotic options in-

clude double-barrier option and some occupation-time-related derivatives such 

as step options, corridor options, and quantile options. The result about double 

barrier options is presented in Chapter 3, where we prove non-singularity of a 

related high-dimensional matrix, which guarantees the existence and unique-

ness of the solution. Chapter 4 is our work on occupation-time-related op- > 

tions, which presents an extension of the Black-Scholes setting to Kou's double-

exponential jump diffusion model. We derive the closed-form Laplace transform 

of the joint distribution of the occupation time and the terminal value of the 

double-exponential jump diffusion process, and apply the result to price various 

occupation-time-related derivatives. This is done by solving the associated two 

correlated ordinary integro-difFerential equations, thanks to the special property 

of the exponential. All the Laplace transform-based analytical solutions can be 

inverted easily via Euler Laplace inversion algorithm, and the numerical results 

illustrate that our pricing methods are accurate and efficient. 

Key words: Convertible Bond; Non-zeco-sum Differential Game; Tax Benefit; 

Credit Risk; Early/Late Calls; Positive/Negative. Stock Return; Double-barrier 

Options; Step Options; Corridor Options; Quantile Options; Occupation-Time; 

Jump-Diffusion Process. 



摘要 

本论文主要包含两个方面的内容：可转换债券的非零和博弃模型和双边指数型 

跳跃扩散模型下的奇异期权定价. . 

在第一部分，考虑到利息退税优惠和内在破产策略对公司资产结构的影响， 

我们提出了可转换债券的一个非零和随机傅弈模型.可转换债券是一种混合证 

券，它同时具有了一般债券和股票的特点.除了债券的特征，债券持有人具有在 

到期日前将其转换为可转换债券发行公司的股票的权利，另一方面，可转换债 

券发行公司具有在到期日前将其召回的权利.债券持有人与发行公司之间的利 

益冲突对可转换债券价格有着显著的影响.在第二章中，我们探讨了如何使用 

非零和博弈去研究这种相互作用，并以此来对可换股债券进行定价.数学上，这 

个问题可以转换到一组变分不等式.我们首先利用变分不等式研究了债券持有 

人和股东各自的最优执行区域，然后我们成功的解决了相关的博奔问题：得到 

了解的存在唯一性，给出了解的显式表达式，并且指定了相关的最优执行策略. 

我们的模型表明，利息退税优惠和内在破产策略有可能对双方的最优策略产生 

相当大的影响 .公司的最优策略包括召回处于价内或者处于价外的可转换债 

券.这与实证研究得出的公司“提前”或者“推迟”召回可转换债券的结论一致(参 

见Ingersoll (1977)，Mikkelson (1981)，Cowan et al. (1993)和 Ederington et al. 

(1997)等).牌外’我们给出的最优召回策略也对公司股票回报率在公司召回可 

转换债券时的系统性偏差提供了一个可能的解释• 

在第二部分’在假设标的资产的价格过程服从一个双边指数型跳跃扩散 

下，我们使用Laplace变换来研究一些路径相关奇异期权的定价问题.这些奇异 

期权包括双边障碍期权和一些与occupation-time相关的衍生产品，例如梯级期 

权，走廊期权和分位数期权等.在第三章我们介绍双边障碍期权的结果’在那 
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里我们证明一个相关高维矩阵的非奇异性，从而保证了解的存在唯一性 .第 

四章我们将occupation-time相关的衍生产品的研究从Black-Scholes模型扩展到 

了Koii的双指数跳跃扩散模型.我们给出了occupation-time与终端标的资产联 

合分布Laplace变换的解析解，并运用这个结果给出了一些occupation-Ume相关 

的衍生产品的定价.得到此结果主要是用了指数分布的独特性质来解决了两个 

相互关联的常积分微分方程.最后我们通过Laplace逆变换得到了期权价格，数 

值试验结果表明我们的定价方法是准确和有效的. 

关键字：可转换债券；非零和随机博萍；利息退税；信用风险；提前/推迟召 

回；正/：^、股票回报率；双边障碍期权；梯级期权；走廊期权；分位数期权； 

occupation-time;跳跃扩散. 
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CHAPTER 1 

O V E R V I E W 

This dissertation contains two parts: a non-zero-sum game approach of con-

vertible bond and exotic options pricing under exponential-type jump-diffusion 

model. 

The first part concerning convertible bond is the key point of this disserta-

tion, the result of which is presented in Chapter 2. Convertible bond is a hybrid 

security which embodies characteristics of both straight bond and equity. Like 

straight bond, it distributes coupons continuously to the owner up to the matu-

rity. However, unlike straight bond, it also entitles the owner the right to convert 

the security for a pre-specified portion of equity at her disposal. A typical con-

vertible bond also contains a callable feature that the firm reserves a right to 

buy the debt back. 

This mixed feature complicates the analysis of convertible bond. On one 

hand, the firm asset value is shared between bondholder and shareholder. The 

former should choose an optimal conversion strategy and the latter should set up 

optimal bankruptcy and call policies to maximize the values of their respective 

holdings. On the other hand, the firm can enjoy tax deductions from the gov-

ernment by serving interest payments to the bondholder. Hence, a non-zero-sum 

game approach should be a reasonable choice for handling the convertible bond 

problem. 

Beyond the evaluation problem, a lot of studies try to explain two empirical 
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Chapter 1. Overview 2 

puzzles regarding the convertible bond, that is, “early call and late call" puzzle 

and “positive and negative" stock return puzzle. The empirical studies show 

that the firm may issue a call when the conversion value- the equity value the 

convertible bond can exchange for—is significantly bigger or smaller than the 

call price, diversing the classic academic result that the firm should call the 

convertible bond back if and only if the conversion value equals the call price. 

This is called "early call and late call" puzzle to the out-of-the-money and in-the-

money convertible bond, respectively. The "positive and negative" stock return 

puzzle is associated with the "early and late “ call announcement. It is observed 

that there is a significantly positive stock return associated with the "early" call 

announcement and statistic negative stock return associated with the "late" call 

announcement. 

To valuate the convertible bond and explain these puzzles, we propose a non-

zero-sum stochastic game approach of pricing convertible bond under the frame-

work that the capital structure of the firm involves tax rebate and endogenous 

default. We firstly transform the conventional non-zero-sum game formulation to 

a system of variational inequalities. An additional condition is imbedded to en-

sure our Nash equilibrium is non-trivial and more reasonable in a sense of Pareto 

optimality. Based on this variational inequalities, we derive the structure of op-

timal exercise region of each parties, which gives enough necessary conditions for 

us to construct the solution of the game. By simplifying the underlying firm value 

process to be a geometric Brownian motion and setting the bond with infinite 

time maturity, we derive the semi-analytic solutions for the game together with 

the specified optimal exercise strategies. Rigorous calculus show the existence 

and uniqueness of our candidate solution. Moreover, we derive diverse optimal 

call strategies, containing out-of-the-money "early" call, in-the-money "late" call 

and the classic call, according to different initial parameter setting. Especially, 

our optimal "early" call time for an out-of-the-money convertible bond is a first 

passage time of the underlying asset process to an upside flat barrier, and our 

optimal "late" call time for an in-the-money convertible bond is a first passage 
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time of the underlying asset process to a downside flat barrier. These may also 

give an explanation of the "positive and negative" stock return puzzle. 

It is worth mentioning that the candidate solution of the convertible bond 

problem is closely related to the first passage time of the underlying process to a 

double-side flat barrier. Hence in the second part of this dissertation, we use La-

pake transform technique to investigate the double-barrier option, which relates 

to the first passage time of double-barrier directly, and its extension, the occu-

pation time related options, whose exercise payoff depending on the cumulative 

time spent by the underlying asset in a predetermined region. In this disser-

tation, we consider the exotic option pricing under Kou's double-exponential 

jump diffusion model. The model assumes the underlying asset return follows 

a jump diffusion process with Poisson jump intensity and double-exponentially 

distributed jump sizes. It is appealing in two respects. The associated asset 

returns have heavier tails than normal distributions and hence the model is ca-

pable of generating asymmetric leptokurtic feature for asset returns and volatility 

smiles for equity options, matching the empirical data better than the geometric 

Brownian motion model. The model also yields analytical solutions to many 

pricing problems, including both European and path-dependent derivatives, in 

terms of Laplace transforms. By applying numerical inversion algorithms we can 

easily obtain the prices. The result about double-barrier options is presented in 

Chapter 3. And the results about occupation-time-related options are delivered 

in Chapter 4. All the results can be applied to the hyper-exponentially jump 

diffusion model, an extension of Kou (2002)，s double-exponential jump diffusion 

model, proposed by Cai and Kou (2008), for the purpose of providing sufficient 

flexibility to capture the heaviness of the asset return tails. 

Each chapter is organized self-contained with no reference to the others. 



CHAPTER 2 

A NON-ZERO-SUM G A M E 

A P P R O A C H TO CONVERTIBLE 

BOND： T A X BENEF IT , B A N K R U P T 

COST AND E A R L Y / L A T E CALLS 

2.1. Introduction 

Convertible bonds are hybrid securities that have the characteristics of both 

straight bonds and equities. The bondholder receives coupons periodically and 

is entitled to a right to exchange the security at her discretion for part of the 

issuing company's equity. How many shares of common stock one bond can be 

converted for is pre-specified through a conversion ratio at its issuance. A typical 

convertible bond also contains a callable feature — the issuer retains the right 

to call the debt back. Upon calling, the company offers a price, which is also 

specified in the bond contract in advance, to the bondholder and forces her to 

either surrender the security for that price or to convert immediately. 

Convertible bonds are quite popular as fund-raising tools among smaller 

and more speculative companies. Because they lack stable credit histories, the 

companies have to pay high interest to their debt holders if they choose to raise 

funds through straight bonds. Meanwhile, their stock are usually undervalued 

because the capital market is uncertain about the prospective of their business. 

4 
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Convertible bonds may help to achieve financing with lower coupon, which is 

justified by the conversion right entitled to the bondholders. When the business 

turns out to be successful, the bondholders will opt to convert to equity volun-

tarily or compulsorily. This in turn will strengthen the company's capital base. 

However, the original shareholders of the company will suffer from a dilution 

after conversion. From the perspective of investors, convertible bonds are also 

attractive to some extent. They offer equity-like returns and put a "bond-floor" 

protection against the downside risk when the business of the issuing company 

turns sour. 

In this paper, we investigate how to price convertible bonds. According to 

the preceding discussion, the interaction between bondholders and shareholders 

will affect the bond price significantly. If the bondholders convert earlier than the 

call announcement issued by the company, then the shareholders lose a chance 

to force the bondholders to surrender to their interest; if the company calls first, 

then the bondholders may have no way to act optimally. Hence, any rational 

pricing model should incorporate the interaction between the two parties. We 

use a game theoretic approach to tackle this problem. 

2.1.1. Literature Review: a Tale of Two Puzzles 

The pioneering work on convertible bond pricing dates back to Brennan and 

Schwartz (1977, 1980) and Ingersoll (1977a). These authors initiate a struc-

tural approach to analyzing the optimal call and conversion rules and evaluating 

convertibles. The key idea is to regard the bond as a contingent claim on the 

company's asset. They argue that a company should announce a call if and only 

if the conversion value — the equity value convertible bonds can be exchanged 

for — equals the call price. 

However, later empirical studies do not support this conclusion. Ingersoll 

(1977b) finds that a majority of companies under examination (170 out of 179) 

significantly deviate from the theoretical "optimal" call policy. The median 

company does not issue a call until the conversion value is 43.9% in excess of the 
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call price. This finding is also confirmed by a series of papers such as those of 

Constantinides and Grundy (1987), Asquith (1995) and so on. This phenomenon 

is well known in the literature as an "in-the-money call" or “late call’’ puzzle. 

More recent research, including those of Cowan et al. (1993) and Sarkar (2003), 

present empirical evidence which shows that a few convertibles are called when 

the conversion value is significantly smaller than the call price, which is known 

as an "out-of-the-moriey call" or “early call". The challenge lies in determining 

how to reconcile the discrepancy between the two puzzles in practice and the 

optimal policy in theory. 

The second group of stylized facts we consider in this paper is related to 

returns of the stock and the total assets of the issuing company at the call 

announcement. Mikkelson (1981) reports that the average daily returns on the 

announcement day and one day before were around —1% for all 113 in-the-money 

calls tested, in contrast to the small returns of the market portfolio during the 

same period. This finding raises an interesting question: what motivates these 

companies to make a capital structure decision that reduces shareholders wealth? 

Cowan et al. (1993) document positive and statistically significant common stock 

price reactions to the announcement of out-of-the-money calls. 

Extensive attempts have been made to explain these two puzzles. To name 

a few, Ingersoll (1977b), Asquith and Mullins (1991), Asquith (1995), Altintig 

and Butler (2005), and Dai and Kwok (2005) attribute the in-the-money call 

phenomenon to the call notice period, a 30-day window in which the issuing 

company allows the bondholders to ponder over their decision. Harris and Raviv 

(1985) and Kim and Kallberg (1998) suggest that the reason for in-the-money 

calls and negative security returns may be rooted in the asymmetric status of 

‘ market participants and shareholders in their ability to access the company's 

asset information. Cowan et al. (1993) explain that the positive reaction on 

stock returns for out-of-the-money calling occurs because managers receive fa-

vorable private information about the value of the firm. Dunn and Eades (1984) 

think that the call delay is caused by passive investors and argue that an in-the-
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money call benefits the company if enough investors are expected lo delay their 

voluntary conversions. 

Other empirical evidence reveals that tax shields and credit risk play a role 

behind the scenes in the two puzzles (see, e.g., Mikkelson (1981), Asquith and 

Mullins (1991), Campbell et al. (1991), Jalan and Barone-Adesi (1995) and 

Sarkar (2003)). The interest payments of a company to its debt holders are tax-

deductible expenses under the current tax codes. This may induce the company 

not to call the debt back even if the conversion value of the bond exceeds its call 

price. When the company calls, loss of the tax shield will decrease its after-tax 

value and yield negative return on the securities of the company, as suggested by 

Mikkelson (1981). In addition, Rosengren (1993) and Indro et al. (1999), among 

others, point out that credit risk significantly affects the pricing of convertible 

bonds in general. Impending danger of bankruptcy may prompt companies to 

call earlier. 

2.1.2. Contribut ion of Our Paper 

In this paper, we develop a two-person game model to incorporate the interaction 

between the shareholders and bondholders of an issuing company. We highlight 

a tradeoff of two major concerns, tax deduction on interest payments and the 

losses due to credit risk. On the one hand, the tax benefit entices companies to 

borrow from bondholders, which may explain why they make in-the-money calls. 

On the other hand, too much debt will give rise to the significant possibility 

of bankruptcy in the future. The costly reorganization procedure may prompt 

out-of-the-money calls to mitigate the impending credit risk facing the company. 

Encouraged by this intuition, we consider the effects of the combination of tax 

shield and bankrupt costs on the strategies and pricing of convertible bonds. 

Our model is capable of generating both in-the-money and out-of-the-money call 

phenomena. Furthermore, the special structure of the optimal call policy under 

. the model yields a possible explanation for the above mentioned patterns on the 

security returns at calling. 
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Mathematically, the model can be formulated as a game involving two cou-

pled optimal stopping problems. With the help of the theory of variational in-

equality systems, we explicitly solve the Nash equilibrium of the game and prove 

its uniqueness. Closed-form pricing formulae for both convertible bonds and 

common stocks are then obtained and the corresponding optimal call, bankrupt 

and conversion strategies are specified explicitly. The results provide a rigor-

ous mathematical framework to accommodate the empirical evidence in Section 

2.1.1. 

The papers of Sirbu et al. (2004) and Sirbu and Shreve (2006) are closely 

related with ours. They discuss how to use a game model to price convertible 

bonds. However, due to the absence of tax effects, their setting is zero-sum: 

what the shareholders gain is what the bondholders lose. Thus, the two parties 

will try their best to minimize the size what the other party can acquire. The 

shareholders will never call in-the-money in their model. Bielecki et al. (2008) 

consider a general defaultable game-option formulation of convertible bonds un-

der an abstract semimartingale market model. Kallsen and Kiihn (2005) use a 

framework of game contingent claims to study convertible bonds, and introduce 

a mathematically rigorous concept of no arbitrage price for this kind of deriva-

tives. However, both of the papers ignore tax effects and resembles a framework 

of game option discussed in Kifer (2002). In this paper we take tax effects into 

account, which leads to a non-zero-sum game described by a system of varia-

tional inequalities. In addition, we aim to obtain closed form price formulae and 

explain the empirical puzzles in convertible bonds. 

We should acknowledge that there are many other factors which can influ-

ence the optimal strategies related to convertible bonds. The purpose of this 

paper is definitely not to claim that our model is complete. Instead, we intend 

to emphasize the impact of the tradeoff of tax and bankrupt costs and focus on 

the mathematical modeling of the problem, especially the application of game 

theory to convertible bond pricing. As the empirical literature in Section 1.1 

points out, this tradeoff should not be the unique determinant, and introduc-. 
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ing other factors may accentuate its effect. We leave this direction for future 

investigation. 

2.1.3. Some Other Literatures: Reduced Form Approach 

Most of the aforementioned literature can be classified under the structural 

approach, viewing convertible bonds as contingent claims on the company's 

asset value. The main criticism of this approach is that the company value is 

not directly observable. Practitioners would like to build up models that can 

be calibrated to liquid benchmark securities. Some studies thus suggest another 

approach: to decompose the security into fixed income and equity components 

and then to discount the associated cash flows in each component at different 

rates. Early papers in this area include McConnell and Schwartz (1986)，Cheung 

and Nelken (1994), Ho and Pteffer (1996), Tsiveriotis and Fernandes (1998), 

Yigitbasioglu (2002). More recently, some researchers have introduced the 

effect of defaults on equity to this approach, stimulated by the progress of the 

intensity-based reduced-form modeling in the study of general credit risk. One 

can refer to the work of Takahashi et al. (2001), Davis and Lischka (2002), 

Ayache et al. (2003), Andersen and Buffum (2003) and Kovalov and Linetsky 

(2006) for further discussion. 

This chapter is organized as follows. We specify our model in Section 2. 

Section 3 reduces the problem to a variational inequalities formulation and 

presents some preliminary results. A complete description on the Nash 

equilibrium is included in Section 4. The numerical experiments in Section 

5 demonstrate sensitivity analysis on various parameters. We conclude this 

Chapter in section 6. All the proofs are deferred to the Appendix A. 
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2.2. Our Model 

2.2.1. Asset Process, Debt Structure and Endogenous 

Default 

Consider a company issuing two kinds of securities ^ ’ common stock and per-

petual convertible bond 2, at time 0. There are two players in the game: one 

bondholder and one shareholder. Assume the un-leveraged asset value of this 

company follows a geometric Browriian motion: 

^ = {T-S)dt + adWt, = V̂ , (2.1) 

under the risk neutral probability measure. Here r is the constant risk-free 

interest rate, Wt is a standard Brownian motion and a is a positive constant. 

The company liquidates a portion of the total asset continuously to pay out to 

its bondholder a,nd shareholder as interest payments and dividends, respectively. 

The liquidation rate is supposed to be SVtdt (after-tax) within (t, t + dt) for all 

t > 0. . 

Denote P to be the.total par value of the convertible bond issued at time 0. 

Assume that the company will not change its capital structure any more after-

wards, until the moment of call, default or voluntary conversion. The bond pays 

out a stream of coupon flow to its holder continuously. Denote the coupon rate 

to be c. In every time interval (i,亡十 di)’ the bondholder will receive an amount 

of $cPdt coupon payments up to the first time when the bond is converted/called 

or the company is in default. 

* Since the firm uses the convertible bond as an alternative method to raise capital instead of 

straight bond, usually there is no straight bond out-standing for a firm which issues convertible 

bond. 

^Although the assumption of the infinite time horizon here is in purpose of simplifying the 

analysis and getting explicit solutions, it would be reasonable for practice since there is in 

general a very long time maturity for the issuing convertible and it is usually exercised long 

time before the maturity. 
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The bondholder is entitled a right to convert the security for some amount of 

common shares at her discretion. The conversion factor A, 0 < A < 1, is defined 

as what percentage of the company asset value the bond can exchange for. For 

instance, if the company value is worth at conversion, then the bondholder 

will obtain XV after converting Meanwhile, the convertible bond is subject 

to redemption calls issued by the company at a preset strike price $/C. When 

calling, the bondholder must opt to surrender the security for $K or exercise the 

conversion immediately by force, that is we don't consider the call notice period 

here. 

One important feature of our model is endogenous default, i.e., the stock-

holder can determine when to bankrupt. In the default event, the company 

will lose a portion p of the total asset due to its reorganization procedure. The 

bondholder will take over the rest part. We assume that 1 - p > A 

Suppose that the corporate tax rate is K. The company is assumed to enjoy 

tax exemption by serving its coupon payments. It can claim a tax credit of KcPdt 

from the government for the total due interest payment, cPdt, in (i, t + dt). We 

incorporate this tax benefit in the model by simply assuming that the actual 

coupon payment for the company is (1 - K,)cPdt. Recall that an after-tax cash 

flow SVtdt is available to both bond and shareholder according .to (2.1). The 

remaining cash flow after coupon obligation is then (6Vt - (1 - K)cP)dt and will 

be distributed to the shareholder as dividends. The quantity (5V；-(1- K)CP may 

be negative. In this case, additional new equity is issued to finance the coupon 

payments. Such capital structure specification is quite standard. For instance, 

^People call the conversion rate A we define here as dulution ratio. Assume our convertible 

bond can be converted to X share of stock. At conversion, the firm issues A share of new stock 

to replace the convertible bond and the bondholder gets a proportion A = of the firm 

value. 

4Since the bondholder can still convert the bond for equity at the default, if the recovery 

rate 1 - p is less than the conversion rate A, bondholder always has an incentive to convert the 

bond to equity before the default, which in consequence remove the debt obligation and the 

firm will never default. 

、 

/ 

I 
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Leland (1994) and Leland and Toft (1996) consider optimal leverage level and 

the pricing of straight bond under this framework; Hilberink and Rogers (2002) 

and Chen and Kou (2009) incorporate jump risk to the same capital structure 

to explain non-zero credit spreads of short-term straight bond. 

2.2.2. A Non-Zero-Sum Game Between Bondholder and 

Shareholder 

We follow a game-theoretic approach to model the conflict of interest between 

the bondholder and shareholder. According to the model description in the last 

subsection, the bondholder can choose when to convert and the shareholder have 

freedom to select both default and call times. Assume that both the two parties 

are risk neutral and hence they will behave to maximize the values of their own 

holdings at time 0. All the decisions are made at time 0. For the simplicity's 

sake, both parties are supposed to have equal access on the information regarding 

the company. We neglect information asymmetry in the model to concentrate 

our attention on the effects of tax benefits and bankrupt costs on the behavior 

of convertible bond. 

Now, let us formulate the objective functions of the bondholder and share-

holder respectively. Once the two players fix the conversion time Tcon and the 

bankruptcy and call time n and T â/，the present value of the convertible bond 

can be decomposed into a sum of three components: coupon payments, conver-

sion value and bankrupt recovery. The present value of coupon payments, up to 

the call/conversion or default, is equal to 

E / e-rtcPdt . 

Jo 

. When the default occurs, the bondholder will receive an amount of recovery 

payment by taking over the company's post-reorganization asset. Its present 

value should be given by 
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When the call occurs first, the bondholder is forced to make a choice between 

K and Under the risk-neutral assumption, the bondholder surely prefers 

to the one which yields a better outcome in terms of the bond value. Thirdly, 

the bondholder can initiate a conversion voluntarily which brings her a payoff of 

AI/tco,. The present values of the cash flows associated with these two events is 

given by 

In summary, the value of the convertible bond at time 0 is then given by 

fTconATb 八 Teal 

^Jo 

+ e - r (一〜 ) . ( 1 -

. î，AV；。。, } 1 { t 如 八 … 

一 r ( w A T b A T c 。 。 . 一 。 , } | V b = V] • (2.2) 

Following the trade-off theory of capital structure (see, e.g., Brealey and 

Myers (2008), pp. 503 - 504), the market value of the equity of a company should 

be the difference between the market values of its total asset and outstanding 

debts. In the presence of corporate tax and bankruptcy cost, the former equals 

to the company's un-leveraged asset value plus the present value of tax shield 

minus the bankruptcy cost. The tax shield, which is defined as the present value 

of tax deductions, is given by 

TfcATcaJ AXcon ‘ 
e—rtKcPdt . 

_ -

The default will force the shareholder out of the business and incur a loss of pYr̂ , 

for the company. Thus, the present value of the bankrupt cost is 

Hence, the market value of the company at time 0 equals to 

-广 TfcATcaJ 八 Tcon "j 
TF(V； T^I； Tcan) = V + E / e'''KcPdt — • 1 Ar_} l 

Jo 」 
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and the equity market value is 

E(V\Tt,T^l]rcon) = TF{V]n,T^i\Tcan) — D(V \ U, Tcon) • 

By substituting D into the expression of function E、we may rewrite the equity 

value as follows: 

/ 「 fTb八Teal 八Tcon 
二丑 / 一（1 一 ^)cP)dt 

L Jo 

+ ( 一 一 . 0 . 1 { 价 a � „ } 

+ 广 ( 一 一 一 .(1 _ = . (2.3) 

The equation (2.3) has a clear interpretation too. The shareholder receives 

a random dividend flow, (SVt - (1 - K)cP)dt, in every time interval (tj + dt) 

until one of the conversion, call and default events occurs. In the default event, 

‘ t h e shareholder loses the total equity value. When the bondholder converts, the 

equity value will become (1 一 X)VRCON after the conversion. When the company 

calls, the bondholder takes max{K, AV；̂ ,̂} and leaves the rest to the shareholder. 

Suppose that neither of the bondholder and shareholder is allowed to peer into 

the future. Then, all of the three times, rt, R^AI and T_ must be stopping times 

with respect to the information filtration generated by {Vt,t > 0}. Denote T 

to be the set of all stopping times adaptive to the filtration of V. Then, we 

can formulate a game between the bondholder and shareholder as follows: both 

parties will take actions as a Nash equilibrium, in which r ^ and satisfy 

that all of them are in T and 

"Cn = arg max D{V\ 丁“丁^、^con) (2-4) 
Tcon G i 

and 

二 arg mo:̂  (2.5) 

For any fixed V such that V > K/X, it is easy to see that Tb 八�〔《/ = 0 and 

Tcon = 0 is a Nash equilibrium of game (2.4-2.5). And the corresponding bond 
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value D(l/) = XV and equity value 'E{V) = (1-X)V , that is, in this equilibrium, 

both players only get the minimum intrinsic value. It is clear that for any other 

Nash equilibrium of game (2.4-2.5) (if it exists), both players can get at least as 

much as they get in the equilibrium �b A Tcai = 0 and = 0 . Hence in the 

following, we throw off this the trivial equilibrium (t{, A T̂ ai = 0 and =0 ) , 

and aim to find the non-trivial equilibrium point which can advance both the 

bond value and the equity value 5. From now on, for eax:h V, we consider the 

following constraint game problem 

丁:on = arg • 二 ；’ T二厂’ Teon) (2.6) 

and 

(T二 T:/) = arg max E(V ;̂Tb，Teai;T":). (2.7) 
("on.nATc„‘M(0’0) 

It is worth pointing out that the game (2.6-2.7) is of non-zero-sum feature. 

Given the un-leverage company value V at time 0’ the sum of the market values 

of the equity and bond is 

TbATco/ATcon "1 

e-�cPdt - • (2.8) 
_ -

which is not a constant. The right hand side of the above equality reflects two 

layers of concerns for the shareholder in determining his call and default policies. 

On one hand, keeping a proper level of debts may help to boost the market value 

of the company with the existence of the tax shield, the second term in right 

hand side of (2.8). On the other hand, too much debt amplifies the threat of 

default (cf. the third term in right hand side of (2.8)). In the later sections, we 

will see that this non-zero-sum feature plays a key role in the forming of optimal 

strategies, especially the optimal call and default strategies of the shareholder. 

5The aimed equilibrium is actually called Pareto optimal Nash equilibrium, that is, it is 

Pareto optimal among all Nash equilibrium of game (2.4-2.5). And finally our uniqueness of 

the solution is also in the sense that there is a unique Pareto optimal Nash equilibrium. 
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At the end of this subsection, we emphasize the effect of the tax benefits. Let 

{E*(V), D*(V)} be a pair of optimal equity value and bond value. If the tax 

rate k 二 0, then by (2.8), 

On the other hand, if V > K/X, it is easy to see that 

E*(V) > (1 - X)V and D*(V) > 入K 

Hence on {V > K/X}, 

E*{V) = (1 — \)V and D*{V) = AK 

Hence “late call" never happens in absence of tax benefit. This result is quite 

robust with the detail model setting, which is also the reason why there is no 

"late call" in Sirbu, Pikovsky and Shreve (2004)，Gapeev and Kuhn (2004), etc. 

2.3. A Variational Inequalities Formulation 

Prom now on, let us turn to solving (2.6-2.7) for a Nash equilibrium. Mathemat-

ically, the problem can be regarded as two optimal stopping problems coupled 

with each other. This observation leads us to reduce it down to a system of 

variational inequalities. We will present some preliminary results in this section 

on the structure of optimal policies by analyzing the inequalities. The work of 

Bensoussan and Friedman (1977) investigates non-zero-sum stochastic differen-

tial games defined by stopping times. We first rewrite the objective functions 

(2.2) and (2.3), following the general formulation provided by that work. This 

step assists to formulate the variational inequalities a lot. 

Note that the company will not have sufficient funds to pay the bondholder 

off if the asset value is less than K when the shareholder calls. Thus, a rational 

shareholder never declares a call in that case. On the other hand, he will not 

issue a bankrupt announcement when the asset value is larger than K since this 
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action leaves nothing to him. In light of these observations, we introduce two 

new functions as follows： 

‘ 0 , V < K; 

h{V) = min{(V - K)\(l — X)V) 二 V - K, K <V < K/\\ 

(1 - X)V, V > K/X. 
V 

and 

9{V)= 
V -h(V), V>K. 

< 

Functions h and g represent the respective payoffs of equity and bond securities 

upon call or default. With the help of these two notation，we can rewrite (2.2) 

and (2.3) to 

fTcon 八 Tb 八 Teal 

D{V) = El I e-rtcPdt + e-rTc。n . AV；^ . 

+e—小bATc。,)"(AATcJ . 二 (2.9) 

and 

rTcon^Tb/^Tcal 

E(V) = E[ e-''\6Vt - {I - t^)cP)dt 
Jo 

( 一 ) M K J . 一 

+e〜.(1 _ A)V;_ . 1{一〜}|^) = n (2.10) 

respectively. 

The objective functions (2.9) and (2.10) distinguish the payoffs due to 

voluntary and compulsory actions. For instance, in (2.9), g gives the payoff 

of the bondholder when the shareholder takes actions; AKcon is how much the 

bondholder can obtain when she converts voluntarily. 

Under (2.9-2.10), it is straightforward to mimic the work of Bensoussan 

and Friedman (1977) to achieve a system of variational inequalities to formulate 

the game (2.6-2.7). Define an operator C as follows: it maps any function (with 
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proper smooth conditions) f on (0, +00) into 

Cf(v) = 一 (r - S)vf^(v) + rf(v). 

We consider the following variational inequality system: find two functions d and 

e such that 

1. d(V) > XV, e{V) > h{V) for all V>0. 

2. If d(V) = XV for some K, then e{V) = (1 - \)V. 

3. If e{V) = h{V) for some V, then d{V) = g(V). 

4. On the set {V >0 : e{V) > h(V)}, the function d satisfies 

mm{d(V) - AV, Cd(V) - cP} = 0. 

5. On the set {V > 0 : d(V) > XV}, the function e satisfies 

MM{e(V) - h{V), Ce(V) - {SV -（ 1 - K)CP)} = 0. 

6. On the set {V > 0 : e{V) 二（1 一 d{V) = XV}, either 

Ce(V) - {SV - {I - K>)cP) > 0 

or 

Cd{V) - cP > 0, 

and they could not hold simultaneously. 

R e m a r k 2 .1 . For the variational inequalities from 1 to 6, the value functions 

may not have the classic first-order and second-order derivatives at some points. 

Then we use the week derivatives. For example, f" is defined as the second-order 

week derivative of f if 

r r{x)g(x)dx 二 「 f { x ) 9 ' ' { x ) d x 
J ~OO J-00 

for all second-order continuously differential function g, which have compact sup-

port. 
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R e m a r k 2.2. According to Bensoussan and Friedman (1977), Condition 1-5 is 

actually equivalent to the conventional game formulation (2.4-^-5). Condition 6 

corresponds to our aim of finding non-trivial Nash equilibrium or a more reason-

able optimal value Junctions, this is, the constraint game formulation (2.6-2.7). 

From Condition 6, we can intuitively see that, on the stopping region, either 

bondholder or shareholder voluntarily behavior optimal, and the situation that 

both parties behavior optimal is excluded. 

Heuristically, we can argue that the optimal bond and equity value functions 

D* and E* should satisfy the preceding system of variational inequalities. First, 

it is easy to see that the bond value equals to XV when the bondholder picks 

Tcon = 0 as her conversion strategy. Due to the sub-optimality of this strategy, 

D*(V) > XV for all V. On the shareholder side, the sub-optimality of Tcai = 0 

and t6 = 0 will lead to E*{V) > h(V) for all V. These two observations implies 

Condition 1 in the inequality system. The second condition states that if the 

bondholder chooses to convert at time 0 when the company asset value is V, 

then this action will leave (1 - X)V to the shareholder. Condition 3 describes 

the payoff of the bondholder when the shareholder declares a default or call to 

stop the game at time 0. 

Conditions 4 and 5 concern about the optimality of the respective strategies 

taken by both parties. In Condition 4, when the initial asset value satisfies 

E*{V) > h[V), the shareholder will not issue call and default announcements 

immediately at time 0; that is, the optimal strategy set up by the shareholder 

丁;八 T"̂ / > 0. Given the action of the counterpart, the bondholder faces to 

an optimal stopping problem to maximize the debt value by choosing a proper 

Tcon- It is well known that such optimal stopping problem can be described by a 

variational inequality. In particular, in our case D* should be a solution to 

Tnin{D*(V) - XV, CD*{V) - cP} = 0. (2.11) 

In a similar manner, we can obtain Condition 5. 

Condition 6 means that a conversion in the game must be triggered by a 
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proactive action from either of the two parties. For a V such that E*{V) 二 

(1 - X)V and D*{V) 二 AV"’ the bondholder converts at time 0’ either voluntarily 

or by force. Suppose that it is a voluntary conversion, i.e., t : 卯 = 0 . By the 

game formulation in (2.6)，r； A t ^ > 0, which implies that the optimal call 

and default announcements will not happen at time 0. Similar as Condition 4， 

the optimal bond value D*{V) should satisfy the variational inequality (2.11) in 

the neighborhood of V. Specially D*(V) is smooth at V and CD*(V) > cP in 

this case. On the other hand, if the conversion is compulsory, then 丁二 = 0 and 

r ^ > 0. The optimality of t二 in the interval [0, r^] will yield that CE^{V) > 

5V k)CP. 

Once we know the solutions to the system of variational inequalities 1-6, we can 

proceed to construct the Nash equilibrium to the game (2.6-2.7). According to 

the discussion in condition 6’ the company asset value at a voluntary conversion 

is characterized by two properties: D*{V) = AV and CD*(V) > cP. Hence, we 

may define 

T:抓 二 > 0 : D^iVt) = XVtXD'iVt) > cP}. 

As for the shareholder, natural candidates for the optimal bankruptcy and call 

times are r； 二 inf{f > 0 : E'{Vt) = 0’ CE'(Vt) > {SV 一 (1 一 < K} 

and 

T^ = ini{t > 0 : E*(Vt) = h(Vt). CE\Vt) > (5V 一（ 1 一 /c)cP), K > K), 

respectively. 

It is possible to present a clearer characterization for the structures of the 

aforementioned stopping times, even without solving the system 1-6 explicitly. 

Related results are summarized in the following proposition. They provide useful 

clues to how to find the optimal E* and D*, which is the main task in the next 

section. 

Denote 

Sd:={V>0 ： D*(V) = AK, CD'(V) > cP} , 
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Seb :={V>0: E*(V) = 0. £E^(V) > {5V — (1 — K)CP), V/ < K } , 

and 

Sec :={V>0: = h(V), CE\V) > {8V - (1 - k)C/^)，K > K). 

Game formulation (2.6-2.7) indicates that SO A (SEB U SEC) = 0- We have 

P r o p o s i t i o n 2 .3 . Suppose that two functions E*{V) and D*{V) solve the system 

of variational inequalities 1-6. Then, the following conclusions hold: 

(i). There exists a unique V*^^ € [{cP)/(5X), + o o ) such that Sp = [Vcon^ -\-oo) 

and is smooth at V^. 

(ii). There exists a unique V^ € (0, min{/( ' , (1 - k)cP/6]) such that Seb ~ 

0, V;1 and E*{V) is smooth at V；*. 

(Hi). Sec H [K, K/X) + 0 only if K < (I - F<i)cP/r and Sec A 、KI\ + o o ) + 0 

only if K < {1- K,)CP/S. Moreover, if SEC — 0, then K/X E SEC and there exist 

unique V^i^^ 6 {K, K/X] and V^^ ^ ^ 一 T^)cP/(X6)] such that SEC = 

[K;,,i，丑•(VO is smooth at V；,,^, < 叫；E^iV) is smooth at K；口 

We can interpret the meaning of Proposition 2.3 as follows. Conclusion (i) 

indicates that the bondholder should convert when the company asset value in-

creases to a sufficiently large level. A default will occur if the company asset 

value is low enough, as shown in conclusion (ii). The call strategy of the share-

holder depends on the magnitude of call price K. For a large K, conclusion (iii) 

indicates that Sec = 0，i e., the shareholder should not call at all during the life 

of the bond. This makes financial sense because he has to pay a high prici in 

exchange for the bond security in this case. Conclusion (iii) also indicates that 

K/A must be contained in Sec if it is not empty. 
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2.4. Nash Equilibrium 

In this section, we will present a complete description on the Nash equilibrium 
J 

of the game (2.6-2.7). According to the guidance of Proposition 2.3, there are 

only two possibilities: Sec == 0 when K is large and Sec / 0 for a small K. 

How to form the equilibria in each scenario is specified in the subsections 2.4.1 

and 2.4.2. 

We need several notations to simplify the presentation. Introduce them here 

for later reference. For any three real numbers such that 0 < 6 < f < d, let <; be 

the first passage time of K across double boundaries V = b and V = d, i.e., 

^ = in[{t > 0 : Vt < b or Vt > dj. 

Define functions p and q to be the present values of two Arrow-Debreu securities, 

paying one dollar on the events of ^ = 6 and K = d, respectively. In other words, 

p{v\b,d) 二 r《l{v/《=f»}|K) 二 and q(v]b, d) = = ” , 

Under the specification of geometric Brownian motion (2.1), both of them admit 

closed-form solutions: 

dP-^y _ n y 一 + 7 - fcty 

v { v A d ) ^ (^-J and = j ’ 

where two parameters /3 and 7 are given by 

厂 — ( 卜 “ 严 A ” ( 卜 二 / 2 ) + A (2.12) 

and A 二 y / { r-S- (7y2y+2ra ' . 

2.4.1. No Voluntary Calls 

As illustrated in Proposition 2.3, Sec will be an empty set if K is sufficiently 

large. In this case, the bondholder should choose to convert at the moment 

TeVn = in({t >0:Vt>V：^} 



Chapter 2. Convertible Bond 30 

and the optimal default time for the shareholder should be in the form of 

We can find the bond value function explicitly under the above stopping 

times. The bond value function satisfies that D*(V) = (1 — p)V when V < V^* 

and D*{V)=入V when V > V；•卯.In the interval V；；̂), it solves an ODE 

jCD*(V) = cP. Appendix A.2 provides a general solution to this equation such 

that 

r * 

where (3 and 7 are given by (2.12). Constants Ci and C2 are determined by 

boundary conditions = XV^ and D*(Vf；) = (1 - p)(V；”. Some te-

dious calculation will yield.that D*{V) = Di{V\Vf；where Di(v\b,d) is a 

function defined as follows: 

cP / cP\ ( cP\ 
Di{v; = — 4 - \^{l-p)b- —j p(v; b, d) + (Ad - — j q{v', 6，d) (2.13) 

{oTO<b<v<d. 

The equity value function E*(V) is solvable in a similar manner. It equals to 

0 when V < V* and (1 - X)V when V > V^. Meanwhile, V € [V；, V；^ 

satisfies an ODE jCE*{V) = SV — {I - N)CP, whose general solution is given by 

E*{V) = (1 一 咖 尸 + C^V^ + C4I/” 
r 

according to Appendix A.2. With the help of boundary conditions E * ( V ^ ) = 

(1 — \)Vcon and =0，we can fix the values of constants C3 and C4 so that 

E*{V) = EI(V\ V；, V；;)’ where EX is a function given by 

El (v\ b,d) = V -
r 

+ ((1 一 广 尸 - 咖 M + - Xdj qiv-b,d). (2.14) 

The optimal boundaries VJ,* and V*̂ ^ can be determined through the prin-

ciple of "smooth pasting". E* is differentiable on the whole interval [0, V^], in 
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particular, at V = V̂ *. Hence, should satisfy 

J厂* 

0, (2.15) 

where 0 is the left derivative since E*{V) = 0 for all V e [0, V；”. In the meantime, 

note that D*{V) = XV for V > V*^. V*^ should be a solution to another smooth 

pasting condition 

霧 ( V O “ ； =A . (2.16) 

Both (2.15) and (2.16) constitute a system of equations regarding V̂ * and V*^. , 

We show in the following lemma that this system admits a unique solution. 

L e m m a 2 .4 . There exist unique V^* and V^ satisfying (2.15) and (2.16) simul-

taneously. V；' < (1 - K)CP/6 and V；•抓 > cP/(6X). Substitute them into (2.13) 

and (2.14) cmd consider an equation 

It has at most a unique solution, V = ki, within the interval Vcon)- Define 

Ki 二 Xki if such solution exists or Ki = XVotherwise. Then, when K > 

we have 

E'{V;K\V:^)>h(V) and > XV 

for any V e 

The following theorem is the main result of this subsection. It shows that 

‘ for K > Ki, the stopping times discussed at the beginning of the subsection 

constitute the Nash equilibrium and the explicit forms of the bond and equity 

values are obtainable through (2.13) and (2.14). 

T h e o r e m 2 .5 . Suppose that K > Ki and V^* and V^ are solutions to the equa-

tions (2.15) and (2.16). Then, in an equilibrium the bondholder should convert 

at 

丁:。n = > 0 : K > 
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and the shareholder never calls and should announce a default at the moment 

T； = [n({t>O.Vt<V：}. . 

Furthermore, the optimal equity and bond value at time 0 are given by 

‘(0，(1 -p)vo z /vs V；•； • 

( 哼 ) ， 哼 ) ) = 1 (聊 ; V ； • ’ K : ) ’ 柳;V；•，K-on)) 

((1-A)l/,AV/), ifV>V:on-

In Theorem 2.5, the optimal default and call boundaries are specified through 

the smooth pasting conditions (2.15) and (2.16). Computing the "anticipated 

appreciation in equity value around the bankrupt trigger V^ casts more financial 

insight on the optimality of the bankruptcy policy. Applying Ito's lemma to the 
、 

equity value function E* with respect to V；, we have 

— 。 = 装 … 一 宗 “ l ^ d v 斗 V 综 A 

when Vt > V；. As V；丄 V；•’ dEi/dV converges to 0 according to (2.15). After " 

substituting (2.14), the expression of Eu into d^Ei/d'^V, we can easily show that 

1 pfi p 

去 ？ 蒜 K ) - ( 1 - 咖 P - 恥 ， 

Consequently, the expectation of dE*{Vt) should satisfy 

. lim E[dE*(Vt)] = [(1 一 K)cP 一 
VtiV； 

The left hand side of the above equality may be interpreted as the expected 

capital gain for the shareholder at the default boundary Vt = Vf,* if he puts 

off the default to a moment later. The right hand side is the ailditional cash 

. flow required from him to keep the company solvent for this miment. It is the 

difference between the after-tax coupon payment and the cash flow available for 

paying out by liquidating a portion of the company's asset. From this equality, 

we can see that the smooth pasting condition (2.15) implies that at V = V":， 

the equity capital gain just equals to the amount of cash flow which must be 
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provided by the shareholder to meet the debt obligation. Hence, he should 

choose to announce a default when Vt = Vf,* because it will not be an attractive 

option any longer to continue contributing new capital to make the company 

run. 

Following similar calculation, we can show as well that under the smooth 

pasting condition (2.16), 

lim EldD'(Vt) + cPdt] = rXV^dt. 

Its left hand side means the expected sum of the capital gain in bond value 

and received coupon payments, if the current company value is V*^ and the 

bondholder opts to postpone the conversion decision until dt. The right hand side 

is the total value appreciation under the risk neutral probability if the bondholder 

chooses to convert at V ^ and carries the post-conversion value over 

Both ways offer her the same payoffs and she should convert immediately at V*^ 

consequently. 

The financial explanation of the pricing formulas in Theorem 2.5 is very 

clear too. If the default and conversion never occurred during the whole life of 

the company, the present value of the total debt obligation for the company at 

time 0 would be . 

f (1 一軟 

in the presence of the corporate tax exemption. Accordingly, the equity value 

would heV -(I- K)cP/r at time 0. Upon the moment the conversion happens, 

the company's capital structure changes and it is released from a continuous 

debt payment flow whose value is worth (1 — K)cP/r. At the same time, the 

shareholder has to give up X V ^ to the bondholder. The net equity value change 

for the shareholder when converting is then 

• ( l - ^ ) c P w 
^ycon-T 

When the default occurs, the shareholder loses the total asset value due to the 

bankruptcy, albeit he does not need to serve the debt obligation any longer. 
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Hence, the net equity value change at that time will be 

r 

Recall the probabilistic meaning of p and q. The last two terms in the expres-

sion of Ei{V] l^*, V ^ ) reflect the present values of these two changes. Similar 

observation applies to the bond value as well. We leave detailed discussion to 

the readers. 

2.4.2. Early and Late Calls 

In this subsection, we consider the cases with cheap strike price, more specifically, 

K < Ki. For such A: the shareholder will keep calling the debt back as an 

option, i.e., SEC 0- According to Proposition 2.3, there exist two critical 

points K < V；•从 1 < K/X < so that SEC = (Kii.i, V^IAV Meanwhile, he will 

announce default on the company's debt obligation if the company value is lower 

than V^ < K. On the other hand, the bondholder's conversion region is specified 

by [V^二’ -foo), which does not have any overlapping with Sec^ Kin〉Kii.2-

In two disjoint intervals (V；•’ V"二, and (Ki/,2，KTon)’ both parties of the 

game do not take actions to stop the running of the company. Therefore, the 

bond and equity value functions should follow the ODEs 

CD*{V) = cP 

and 

== -（1 一 

respectively. Some boundary conditions are needed to fix their solutions. Take 

the interval for instance. Since D'(V) = (1 — p)V, E*{V) = 0 for 

V < V^* and D'{V) = K、E*{V) = V - K ioiV e [Vcan,u 厂/入1，the continuous 

property of D* and E* requires that 

《 ’ D ^ W ) = and / 化 = K 

\ an j E^Ki/ . i ) = Ki/.i " 
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It is straightforward to verify that D*(V) = V ； . ， a n d E*{V)= 

where 

D2(v; = ^ ( l - p ) b - p(v; 6, cO + (/^ — 宇)g(v； b, d) 

and 

, , , 、 (1 -
E2{v\ 6, d) =v -

+ ( ( 1 少 _ 咖 ； + ^ ( L z ^ - K) 6 ’ d ) 

for all 0 < 6 < I； < d. 

The financial interpretation of D2 and E2 is achievable as well, following 

similar analysis as what we did for Di and E：. The only difference is that 

at V^ p the bondholder prefers to settling the call with cash. She receives K 

and terminates the coupon payment whose present value is given by cP/r. The 

shareholder saves (1 一 K,)cP/r for the company but he needs to pay K to the 

bondholder. 

For the interval K i J ’ introduce two functions 

Ds(v,b,d) = ^ + - ^ ^ p{v\ b, d) + ^Ad - ^ ^ g(v; 6, d) 

and 

她 … — — I L z ^ 

+ ( (1-，/ 一 咖;…+ ( i L z ^ 一 Ad) 6’ d) 

for all 0 < 6 < V < d. The boundary conditions of D* and E* at 2 and V*^ 

/ D'iV^aia)=斤二2 and / ".(Vc-on) = AV；^ 

< ‘ = (1- I E^ iV^ ) 二（1 一 

can help us to determine bond and equity value functions in the interval 

^ = and E^(V)=约(l^; K；^). One 

may figure out the corresponding interpretation to E3 and D3 by itself. 
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Invoke the principle of smooth pasting once again to look for the optimal 

boundaries ,̂ V；；̂ 2 and V^. Note that E*(V) = 0 for V < K； and 

E*(V) = V-K for V e K/\]. We can use 

and = 1 (2.17) 

to determine Vf,* and V^i! • As shown in the next lemma, substituting the ex-

pression of E2 into (2.17) will generate the solutions. In the meantime, since 

E*(V) = (1 — X)V for V e [ i ^ / A ’ K k 2 ] and D*{V) = XV for V G [K.on’+oo)’ 

V*ai,2 and V*^ should satisfy 

= and = A, (2.18) 

where E* and D" are given by E3 and D3 respectively. 

However, the V二！ and 2 obtained through equations (2.17) and (2.18) 

may not satisfy the requirement that ^ < K/X < V":口’ which guarantee that 

the smooth-pasting condition holds at V"二！ and V"二2. In the following lemma, 

we show that this is true only for small strike price K. 

L e m m a 2 .6 . (i). For each K < (I - K,)cP/r, the equation (2.17) has unique 

solutions V；. and V；* < m\n{K,(l - K,)CP/S} and V^i^^ > K. Notice that 

the definition of E2 involves K. View such obtained V^i^i as a function of K 

and consider an equation • 

There exists a unique root K2 < (1 — K.)cP/r to this equation. K2 < K\. Fur-

thermore, when K < K2, we have 1 < K/X, 

for 

(ii). The equation (2.18) yields unique solutions V"二 2 肌 " K i n - < 

( 1 - K)CP/{XS) and V^ > cP/(XS). For all V € (<^2’ KTOJ, 
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Notice that both of the definitions of D^ and E3 are independent of K. Such 

obtained 2 and V^ does not depend on K either. Let K3 == AV；.。, 2- For any 

K < Kz, we have K/X < 

Proposition 2.3 states that K/X is an interior point of Sec = ĉai,2 

when K is small. For K > K2�the left boundary of SEC for the shareholder 

degenerates to K/X. In this case, we use the continuity of the value function at 

the boundary instead of the smooth-pasting principle. The boundary conditions 

for E* and D* will change to 

D'{K/\) = K and E'{K/X) K/\ - K, 

Combining with the boundary conditions of E* and at V = V；.，we have 

= D2(V]V:.K/X) and E*(V) = E2{V\V,\ K/\) 

for V^* <V < K/\. The optimal default boundary V；* is once again determined 

by a smooth pasting condition 

二 $ W; K/X) 二 0. (2.19) 

In a similar way, one can establish the corresponding results under the scenario 

Kz < K < Ki ii K3 < Ki. The right boundary of SEC, degenerates to 

K/X. The bond and equity value functions should be given by 

= and E^{V) = K/ 

for all K/X <V < Ktm respectively. The optimal conversion boundary V*^ is a 

solution to 

装 ⑷ “ ； 二 K l \ 、 。 = A. (2.20) 

We summarize some related properties of functions E* and D* for such 

intermediate sized K in the following lemma: 
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L e m m a 2 .7 . (i). When K € [K2, Ki), we can find a unique Vf,* < min{/C, (1 -

K)CP/5} satisfying (2.19). Furthermore, once we substitute such V^* in the func-

tions E2 and D2, 

E2(V\V:,K/X) > {v- K)'- and D2{V;V,\K/X) > Al/ 

forV e K.K/X]. 

(ii). Suppose that K^ < Ki. For any K G Ki) and K < cP/S, equation 

(2.20) yields a unique solution V^. V*^ > cP/{6X). In addition, 

E,{V-K/X,V:^)>(l-\)V and D,{V- K/X, V：^) > XV 

for anyV 

Now, we are ready to present the main conclusions in this subsection. The 

following theorem builds up a Nash equilibrium in the case oi K < Ki, using the 

aforementioned stopping regions and the critical points in call prices. 

T h e o r e m 2 .8 . When K < Ki, a Nash equilibrium to the game (2.6-2.7) is 

formed if the bondholder converts her security at the moment 

丁:an = inf{i > 0 ： K > v：^,} / 
and the shareholder declares bankruptcy and call at 

T; = inf{t > 0 : K < V：] and r^, = in({t > 0 : V； G [Kk” K ^ J } 

respectively. Under such equilibrium, the equity and bond value functions should 

be given by 

‘ ( o ， ( i - 刺， i i ^ 

( ( l - A ) l / ， A n 州 化 , 2 ; 

K ^ n ) . V：^,,, < ^ < K ^ n ； 

((1-A)1/,AV), ifV>V:on-
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In addition, when K < K2, V^ and V^^ are determined by equation (2.17) 

and the endpoint of the call region V^:,丄 < K/X; when K2 < K < Ki, V^。, ！ 

degenerates to K/X and V^* is determined by equation (2.19); when K < K3, 

V^ 2 and V^ are determined by equation (2.18) and the endpoint of the call 

region 2 > K/X; when Ks < K < Kx, \/丄 2 degenerates to K/X and V；^ is 

determined by equation (2.20). 

Finally, we show that the Nash equilibrium in both scenarios is unique. 

T h e o r e m 2.9. For all K > 0, the bond and equity value functions in any Nash 

equilibrium of the game (2.6-2.7) should be identical with the functions given in 

Theorems 2.5 and 2.8. 

Some observations on Theorem 2.8 are of special interest to us. First, K/X is the 

optimal call boundary only in some cases. Note that if the shareholder opts to call 

the debt back when the company value Vt = K/X, the bond's conversion value 

equals to the call price. This is exactly corresponding to the optimal conversion 

policy established by Brennan and Schwartz (1977, 1980) and Ingersoll (1977a) 

under an ideal market assumption. However, our model reveals that this policy 

may not be necessarily optimal if we take the tax benefit and credit risk into 

account. 

Second, our model is capable of generating out-of-the-money calls. When 

K < K2, the shareholder should make a call announcement at the first time 

when the asset value surges up to Vcai,i, a level less than K/X. When he calls, the 

conversion value of the bond is less than K. The return rate of the company asset 

at this out-of-the-money calling must be positive because the call is triggered by 

• an up-crossing of the asset process. This is consistent with the empirical finding 

we mentioned in the introduction. 

Third, sometimes the shareholder may also call the debt back when it is 

in-the-money. For K < K3, if the company starts with an initial value larger 

than K/X, the shareholder will issue a call at Vcon,2- The conversion value of the 

bond at the call is then AKcan.2, exceeding its call price K. The asset return of 
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the company on in-the-money calls in our model is negative, since such calls are 

triggered by a down-crossing of the asset process. Consequently, our model can 

reproduce late calls and associated negative returns, consistent with the pattern 

found by Mikkelson (1981) and so on. 

Finally, we find that there will not be a consistent pattern for the asset 

return when the convertible bond is called at the moment when the company 

asset value first reaches K/X. The return could be positive if the company starts 

from an initial value less than K/X and could be negative if the company starts 

from an initial value more than K ! 

2.5. Numerical Results 

In this section, we will use some numerical experiments to demonstrate the im-

pacts of various parameters on the equity and bond values and the optimal call 

policy. Table 1 summarizes the parameters we use in the base case. In addition, 

Macroeconomic parameters: r = 8%, /c = 35%. 

Company-specific parameters: 6 = 6%, a = 22%, p — 50%. 

Bond Contract parameters: c = 7%, A = 20%, P = 100. 

Table 2.1: Basic parameters for numerical illustration. The risk-free rate r = 8% is close to 

the average historical treasury rate during 1973-1998, and the corporate tax rate K — 35% is 

chosen according to Leland and Toft (1996). We set the paying-out ratio at <5 = 6%, which is 

consistent with the average coupon and dividend payments in the US during 1973-1998 (Huang 

and Huang (2003)). The diffusion volatility a = 0.22, which is reported as the average asset 

volatility for companies with credit rating A to Baa by Schaefer and Strebulaev (2007). The 

• recovery ratio after the default is assumed to be 50%, i.e., p = 50%. The coupon rate c = 7%. 

Note that this is slightly lower than the risk free interest rate. We choose it to reflect low 

coupon payment for the convertible bond. The conversion ratio and the bond face value are 

20% and $100 respectively. 

we assume that one year is equal to 252 trading days. 
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2.5.1. No Call and In-the-Money, Out-of-the-Money 

Calls: The Impact of K 

In the base case given by Table 1，we can calculate that there is no voluntary 

call if and only if the strike price K is larger than $87.51. Figure 2.1 shows 

the convertible bond value function with respect to the company value V when 

we take K = 100. The shareholder will announce a default at the first time 

No Call 
2501 1 1 1 1 1 

200 - ^ ^ 

Convertible Bend Value ^ ^ ^ 

100- Z \ 

心z 
n l — 1 1 1 ‘ ‘ 

0 v ' 200 400 600 800 V 1000 1200 
b Firm Value: V 

Figure 2.1: The convertible bond value in a case with large call price. The default barrier 

V* = 36.43 and the conversion barrier = 914.62. The shareholder will never call the debt 

voluntarily. 

when the company value drops down to V^ 二 36.43 and the bondholder opts to 

convert at V ^ = 914.62. From this figure, we can see that the bond value will 

converge to its conversion value as 1/ is large, because the bondholder has more 

incentive to convert when the company value increases. This will lead that the 

bond behaves more like an equity security. On the other hand, when V is close 

to Vb, the convertible bond is similar as a regular defaultable bond because of 
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No Call 
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Figure 2.2: The equity value in a case with large call price. The default barrier V^' = 36.43 

and the conversion barrier V；；̂  = 914.62. The shareholder will never call the debt voluntarily. 

» 

the influence of credit risk. Figure 2.2 illustrates the equity value function in this 

case that firm never calls. 

Figure 2.3 illustrates the bond value function in a case with smaller call 

price. We choose K = 50，which is less than K^ = 55.73 and /C3 = 53.90. 

The default barrier V；•’ forcing surrender barrier ^ forcing conversion barrier 

and conversion barrier V^ divide the whole range of the company value V 

into five segments. If the initial company value falls between V^ and V"丄’” the 

shareholder will call the debt back when V； crosses V^^ i for the first time. Note 

that V^i 1 < K/X = 250. Such call must occur out of the money. However, if the 

company starts somewhere between V二2 and V ^ , then the debt-calling will be 

in-the-money since it occurs at V；二口 and V â口 > KjX. Figure 2.4 illustrates the 

equity value function in this case with smaller call price. 
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Early Call and Late Call 

200 f 1 1 1 1 1 1 I " ‘ 

180 - ^ ^ 

160 -

140 -

。 ^ ^ 
100 - Convertible Bond Valuê ^̂ ^ ^ ^ ^ -
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Figure 2.3: The convertible bond value in a case with smaller call price. The default barrier 

is V* = 35.44. The forcing surrender and conversion barriers are V^^/.i = 97.90 and V'^i ^ = 

269.51, respectively. The conversion barrier is V^on = 782.00. The horizontal straight line 

between V；；̂  ^ and K/X indicates that the bond value equals to $50. This is because the 

shareholder will call the debt once the company value falls in this interval and the bondholder 

responds to this call by a forced surrender. The bond value function coincides with AV̂  in 

the interval (K/A, Vcoi.2)- The shareholder will issue a call as well in this interval but the 

bondholder opts to convert in response, 

2.5.2. Comparative Statics 

This subsection reports the effects of variation in selected parameters on the op-

timal strategies of both parties and the convertible bond value. The parameters 

are the risk free interest rate r, the bond coupon rate c, the paying-out rate 6, 

and the corporate tax rate K. 

Table 2.2 displays the changes of default, conversion and call barriers in 

response to changes of the parameters. To clarify the interpretation on the 

results in the table, we consider two companies in the following discussion. Both 



Chapter 2. Convertible Bond 30 

of them are identical except their initial asset values. Company A starts with 

V() = 300 and B starts from VQ = 70. 

Effect of risk-free interest rate. When r increases, we can see that the opti-

mal call region [Vc:u，K^u] shrinks in its size, converging to K/X = 250，the call 

• barrier predicted by the classical literature. Under all r, Company A falls in a 

region in which only in-the-money calls are possible. For larger r, the call barrier 

Kii 2 is farther away from VQ. It will take longer for VI to hit the barrier. There-

fore, the company tends to delay the call decision when r is high. Meanwhile, 

this observation applies for Company B too. The call for this company will be 

out-of-the-money. As we raise r, increases. Thus, given all other parame- ‘ 
I 

ters unchanged, Company B will wait longer until it issues a call announcement 

under a higher r. The economic intuition of this conclusion is fairly apparent: for 

a given coupon rate, a higher interest rate environment means that the company 

is paying the bondholder a relatively lower coupon. This makes the convertible 

bond more attractive to the company and leads to a delayed call. 

In addition, a higher r also implies a lower default barrier V^ and a smaller 

conversion barrier V ^ , as shown in Table^.2. This is also what we can ex-

pect. Relatively low coupon payments in the settings of high r encourage the 

bondholder to convert for the equity sooner, because staying in bond to receive 

coupons is not attractive in that case. From the perspective of the shareholder, 

less coupon payments means less debt obligation. Thus, the shareholder post-

、 pones the default by pushing the barrier down. . 

Effect of coupon rate. The bond coupon rate c affects the optimal strategies 

in a way totally reverse to the risk free interest rate. When c increases, the 

optimal call region [K^/,” is enlarged and both companies tend to call in a 

shorter period of time after time 0. Accordingly, high coupon payments prompts 

a call decision because the convertible bond becomes an expensive fund-raising 

tool for the company for a higher c. Moreover, if c is large, the shareholder will 

also adopt a higher VJ," to interrupt the cash flow of coupons to the bondholder, 

while the bondholder will be attracted to holding the bond for a longer time, 
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% 

K:；/.! V̂ on 

r 

0.07 36.49 80.49 271.20 795.59 

0.08 35.44 97.90 269.51 782.00 

0.09 33.98 250.00 268.14 768.97 

c 

0.06 30.96 250.00 250.00 656.96 

0.07 35.44 97.90 269.51 782.00 

0.08 38.49 74.11 308.01 893.72 

h 

0.05 36.61 92.71 318.83 928.80 

0.06 35.44 97.90 269.51 782.00 

0.07 34.17 104.33 250.00 664.61 

K 

0.15 40.84 65.28 423.86 675.69 

0.25 38.68 73.22 339.04 733.19 

0.35 35.44 97.90 269.51 782.00 

0.45 30.58 250.00 250.00 795.60 

P 

0.2 35.44 97.90 269.51 782.00 

0.5 35.44 97.90 269.51 782.00 

0.8 35.44 97.90 269.51 782.00 

Table 2.2: Effects of various parameters on the optimal strategies. The defaulting parameter 

used \s K = 50. We vary the parameter of interest each time and keep all the other parameters 

the same as those in Table 1. 
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which implies a higher 

Effect of paying-out rate. Given the coupon rate unchanged, the effect of 

higher paying-out rate is to augment the dividends paid to the shareholder and 

in turn, to reduce the value of the bond. Under a high S setting, the shareholder 

will have less incentive to eliminate the bondholder from the game since the bond 

value does not shift too much wealth away. This intuition is consistent with the 
« 

observation on Table 2.2. No matter VQ = 300 or 70, the distance between the 

call barriers and VQ tends to be larger as 6 rises. In other words, the call will 

be delayed if 6 is high. The effect of S on the default and conversion policies is 

similar as those of r. A high S tempts the bondholder to convert sooner and the 

shareholder to announce a bankruptcy later. 

Effect of tax rate. In our model, the t ^ shield is an important factor for 

the shareholder to borrow. Therefore, we expect that a high corporate tax will 

encourage the company to put off the call announcement. Table 2.2 illustrates 

that and 2 are increasing and decreasing functions of /c, respectively. 

Hence, the convertible bond should be called in an early stage if K is small. 

Effect of default cost rate. For the small strike price, the default cost rate 

doesn't affect the optimal exercise strategies. For any default cost rate, share-

holder get nothing at default. And the default and forcing surrendering polices 

are determined by the shareholder, hence they are not affected by the default 

cost rate. 

In summary, the above numerical experiments project that delayed calls 

should be associated with low coupon rate, high corporate tax, high paying-out 

ratio and high risk free interest rate. These implications are supported by some 

empirical tests done by Sarkar (2003). . 

Table 2.3 provides a sensitivity analysis of the value of an in-the-money 

convertible bond at time 0 with respect to risk-free interest rate, coupon 

rate, paying-out rate and corporate tax rate. It shows that the bond value 

is positively related to the coupon rate, tax rate and conversion ratio, and 

i 
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Interest rate r 0.06 0.07 0,08 0.09 

Bond value 105.60 105.25 104.88 104.49 

Equity Value 405.70 405,48 405.22 404.93 

Coupon rate c 0.06 0.07 0.08 0.09 

Bond value 101.88 104:88 107.12 108.57 

Equity Value 404.46 405.22 404.52 403.37 

Paying out rate S 0.05 0.06 0.07 0.08 

Bond value 106.62 104.88 102.39 100.45 

Equity Value 403.55 405.22 405.43 403.26 

Tax rate K 0.15 0.25 0.35 0.45 

Bond value 100.67 102.42 104.88 105.74 

Equity Value 400.33 402.04 405.22 408.67 

Default Cost p 0.10 0.30 0.50 0.70 

Bond value 104.88 104.88 104.88 104.88 

Equity Value 405.22 405.22 405.22 405.22 

Table 2.3： Effects of various parameters on the convertible bond value. The defaulting 

parameters used are K" = 50 and VQ = 500. We vary the parameter of interest each time and 

keep all the other parameters the same as those in Table 1. 

negatively related to the interest rate and payout rate. The former factors 

determine the cash inflows for the bondholder. Thus, higher values in those 

factors would boost the security value. The latter two factors push down the 

bond value as they rise. High risk free interest will discount the cash flow of 

the bond more, which generates a lower present value. High paying-out ratio 

implies a high dividend payment to the shareholder, which will shift the wealth 

away from the bondholder. Equity Value is positively related to the tax rate. 

< 
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2.5.3. Negative and Positive Stock Returns 

This subsection illustrates that our model can generate negative stock returns at 

an in-the-money call and positive stock returns at an out-of-the-rnoney call. 

In our investigation, we use Monte Carlo method to simulate the stock price 

changes for a specific company around the debt-calling date. More precisely, 

consider the default parameters in Table 2.5 and Company A starting with VQ = 

300. Simulate daily sample paths of Vt, following the geometric Brownian motion 

(2.1). The equity value for each day is obtained if substitute Vt in the equity 

function E. According to our calculation, such VQ falls in the interval between 

V*ai 2 — 269.51 and V*^ 二 782. When a call occurs, the call must be in-the-

money for Company A. We choose the discrete time unit to be 1 trading day 

(i.e., 1/252 year) to simulate the call and conversion time. Record the sample 

path of the stock daily values, in which a call occurs. Figure 2.5 shows a typical 

realization of such path in a time window from 60 days before the call to 60 days 

after. We can see that the daily returns of the company's stock is not significant 

at all (less than 0.5%) except for the day in which a call announcement is issued. 

The daily return on calling drops down almost 2%. Note that the call is in-

the-money because it happens when VJ = 2 = 269.51, which is larger than 

K/X = 250. 

Figure 2.6 shows the daily stock returns in a 121-day time window centering 

on the day in which an out-of-the-money call is issued. In this figure, we consider 

Company B with Vq = 90. There is a significant positive stock return at the 

calling day, which is larger than 3.5%. However, the returns of the rest days are 

less than 1%. 

4 
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2.6. Conclusion and Future Work 

We have established a non-zero-sum game framework to study the pricing prob-

lem of callable convertible bond‘ The impact of a trade-off, tax shield and 

bankrupt costs, is highlighted in the dissertation. Taking this trade-off into ac-

count will significantly change the strategies of the bondholder and shareholder, 

compared with the zero-sum setting in Sirbu et al. (2004) and Sirbu and Shreve 

(2006). In the presence of tax benefits and credit risk, the shareholder may call 

the debt in-the-money or out-of-the-money. The corresponding stock returns 

on the calling day exhibit some patterns consistent with the well-documented 
p 

empirical results. 

These results show that we should be in the right direction to study the 

convertible bonds. Then we have the motivation to extend the underlying process 

to be the general diffusion process or consider the convertible bonds with finite 

time maturity. 

【�For the more general diffusion process with infinite maturity, we can use 

Dayanik and Karatzas (2003)'s method on the optimal stopping problem for 

one-dimensional diffusions. The extra efforts should be paid to the interaction of 

the two optimal stopping problems. Explicit formula may be possible for some 

cases and it can be expected that the effects of tax and default will still diverse 

the optimal call strategies. 

Other extension within infinite time horizon is the case of Sirbu, Pikovsky 

and Shreve (2004), in which it assumes that the dividend is proportional to the 

equity value, such that the underlying firm value process involves the unknown 

value function of convertible bonds. This involves a nonlinear ODE, or equiva-

lently an invariant solution of a parameterized linear ODE. 

The optimal stopping problem with finite horizon is more challenging. The 

explicit solution may be impossible. But it's worth working on characterizing 

the optimal stopping boundaries of the bondholders and shareholders. According 

to our results in infinite time horizon, the optimal call boundaries may include 
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double curves in finite time horizon, which differ from the standard American 

option problem. 

We have to stress again that the corporate tax and credit risk are among 

many factors that have influence over the decisions related with convertible bond. 

Introducing other factors may accentuate the effect of the aforementioned trade-

off and this leaves several possible directions for future investigation. For in-

stance, the indentures of many convertible bond prohibit the issuers from calling 

for a certain period of time. Our model can be extended to cover such prohibition 

by viewing the problem as a two-stage sequential game. The first stage is the 

call protection period, in which the two parties interact with each other choosing 

optimal conversion and default policies. The analysis in this chapter constitutes 

the second stage. Another possible extension is to incorporate the asymmetric 

status in information access for the bondholder and shareholder. In reality, bond 

investors cannot observe the company's asset directly and suffer from imperfect 

accounting information (see, e.g., Duffie and Lando (2001)). A game framework 

with imperfect information would be an appropriate model under this setting. 

.*t 
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Figure 2.4: The equity value in a case with smaller call price. The default barrier is V；'= 

35.44. The forcing surrender and conversion barriers are = 97.90 and V'^i ^ = 269.51, 

respectively. The conversion barrier is Vcon = 782.00. The horizontal straight line between 

V^ j I and K/X indicates that the bond value equals to $50. This is because the shareholder 

will call the debt once the company value falls in this interval and the bondholder responds 

to this call by a forced surrender. The bond value function coincides with XV in the interval 

{K /\, Veal,2)- The shareholder will issue a call as well in this interval but the bondholder opts 

to convert in response. 
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Slock Returns in a Time Window from -60 to +60 around an In-the-Money Call 
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F igure 2.5: Daily returns of equity in a time window from 60 days before the call to 60 days 

after. We use the default parameters in Table 2.5 and let Vb = 300. The call price is 50. The 

call boundary is V；；, ^ = 269.51 and the conversion boundary is V；；̂  = 782. We simulate 100 

sample paths and draw the average. 
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stock Returns in a Time Window from -60 to +60 around an Out-of-the-Money Call 
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F igure 2.6： Daily returns of equity in a time window from 60 days before the call to 60 days 

after. We use the default parameters in Table 2.5 and let VQ = 90. The call price is 50. The 

call boundary is V^i ^ = 97.90 and the default boundary is V '̂ = 35.44. We simulate 100 

sample paths and draw the average. 

I 



CHAPTER 3 

PR IC ING D O U B L E - B A R R I E R 

OPT IONS UNDER A 

HYPER-EXPONENT IAL J U M P 

D IFFUSION M O D E L 

身 

3.1. Introduction 

Barrier options are among the most popular exotic options traded in financial 

markets. A barrier option offers the holder a payoff like that of a vanilla option, 

contingent on whether or not the underlying asset price process crosses some 

level(s) - called the barrier(s) —- before or at the maturity date. In this chapter 

we are going to study the pricing problem of double-barrier options under a 

flexible jump diffusion process for the underlying asset price. 

The research of barrier options has been attracting a lot of attention in 

computational finance. It is motivated by both practical and theoretical reasons. 

In practice, barrier options are actively traded in the markets, especially in the 

Over-the-Counter markets (See Das (2004) and Zhang (1998)). In comparison 

with vanilla options, they have at least two advantages as argued by Derman 

and Kani (1996,1997). First, they may more closely match investor beliefs about 

the future behavior of the asset price. Second, they are always cheaper than 

vanilla options and hence are more attractive for investors. Meanwhile, barrier 

47 
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options also provide a useful tool to some theoretical studies outside the context 

of literal options. For example, Sircar and Xiong (2000) used a double-barrier-

option framework to model executive stock options; the work of Goldstein, Ju 

and Leland (2001) on optimal dynamic capital structure was based on a dou-

ble barrier structure, one barrier for firm bankruptcy and the other for capital 

readjustments. 

Most studies on barrier option pricing are conducted under the Black-Scholes 

model (BSM). Closed form pricing formulae for double-barrier options can be eas-

ily derived under this setting. One may refer to Kunitomo and Ikeda (1992), Ge-

man and Yor (1994), Pelsser (2000), and Schroder (2000). Despite its simplicity, 

the BSM has obvious shortcomings to be a good description for the movements 

of the underlying asset prices. It assumes the asset returns are normally dis-

tributed and their variances remain constant. Empirical studies invalidate such 

assumptions by suggesting two observations for asset returns: the asymmetric 

leptokurtic feature, i.e., the actual return has much heavier tails than normal, 

and the volatility smile, i.e., the volatility implied from equity option prices is not 

a constant but presents a curve resembling a "smile". To overcome the difficulties 

encountered by the BSM, many alternative models have been proposed in the 

literature to incorporate both of the empirical phenomena and correspondingly, 

the pricing problem of barrier options is needed to be re-investigated. 

It is inappropriate to give a comprehensive overview of all models in such 

a chapter and here we shall focus on the double-barrier option pricing under 

a hyper-exponential jump diffusion model (HEM) proposed by Cai and Kou 

(2008) recently. Their model assumes the asset return follows a jump diffusion 

process with Poisson jump intensity and hyper-exponentially distributed jump 

sizes. As a result, the empirical asset returns have heavier tails than normal 

distributions. But, as shown in Heyde and Kou (2006)，it may be very difficult 

to distinguish empirically the exponential-type tails from power-type tails even 

given a long period of daily data. So, a sensible asset model should be with more 

flexibility about the heaviness of the asset return tails. The HEM is appealing 
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in this sense, thanks to the property of hypo-exponential distribution that it can 

approximate various distributions ranging from power tails to exponential tails 

{see, e.g., Feldmann and Whitt (1998)). 

Mathematically, the contributions of our work are two-fold. First, we obtain 

analytical solutions to the prices of the standard double-barrier options in terms 

of Laplace transforms and then are able to invert them numerically via some effi-

cient and accurate algorithms such as the Euler inversion algorithm proposed by 

Abate and Whitt (1992) and Choudhury, Lucantoni and Whitt (1994). Second, 

we show the existence and uniqueness of the solutions. More precisely, our ana-

lytical pricing formulae involve solutions of some high-dimensional linear systems 

and thus their existence and uniqueness are reduced down to the non-singularity 

of the associated high-dimensional matrix. We manage to prove the matrix is 

invertible in this chapter. 

It is worth pointing out that similar technical issues also arise in some re-

lated work such as Cai and Kou (2008) and Sepp (2004). Cai and Kou (2008) 

considered the single-barrier option pricing. They also showed the existence and 

uniqueness of their solution through non-singularity of a simpler matrix, which 

turns out to be a sub-matrix of ours in the double-barrier case. As a by-product 

of our work, we can duplicate their conclusion with a new proof. Sepp (2004) 

priced standard double barrier options under the Kou's double exponential jump 

diffusion model (Kou (2002), Kou and Wang (2004)). The Kou's model assumes 

a double exponential distribution for jumps and therefore it is a special case of 

the HEM. In addition, Sepp (2004) did not prove the existence and uniqueness 

of his solution. 

Beyond Jhe jump diffusion model and Laplace transforms, there is a bulk 

of research on pricing barrier options under different models or with different 

methodologies. For instance, Davydov and Liiietsky (2001) derived analytical 

solutions for both single- and double-barrier options under the CEV model; 

Broadie, Glasserman, and Kou (1997), Broadie and Yamamoto (2005), Feng 

and Linetsky (2008)，Howison and Steinberg (2005), Petrella and Kou (2004), 
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etc. developed many numerical methods to pricing discrete barrier options. 

The rest of the chapter is organized as follows. In Section 2’ we introduce 

the hyper-exponential jump diffusion model. Section 3 concentrates on deriving 

a general analytical formula relating to the joint distribution of the first passage 

time of the HEM to two flat barriers and the value of the HEM at the first passage 

time. Section 4 presents the analytical solution to the pricing problem of standard 

double-barrier options. Meanwhile, numerical results are also provided via the 

Euler inversion algorithm. Section 5 concludes this chapter. The main proof 

about the non-singularity of a high-dimensional matrix is given in the Appendix 

B. 

3.2. The Model 

Under the HEM, the asset price process {St ： t > 0} under the risk-neutral 

probability measure P is defined as St ：= SQC^' and the log-return process [Xt : 

t > 0} follows 
— J N. 

Xt = + (3.1) 
t=i 

where a > 0, ^ := r - a ^ l 2 - K with risk-free rate r > 0, C = …，{Wt ： t > 0} 

is a standard Brownian motion, {Nt ： t > 0} is a Poisson process with intensity 

A, and {V； : z = 1,2,...} is a sequence of independent identically distributed 

hyper-exponential random variables with a probability density function given by 
m n 

fviy) = + I>j0j^yi{y<o}， (3-2) 

1=1 j=i 

where p, > 0, 77, > 1 for alH = 1 , . . . , m, > 0, > 0 for all j = 1 , . . . , n, and 

Z)二 1 Pt + Qj = Rom (3.2)，we can see that there are m up-jumps and n 

down-jumps, among which the i认 up-jump occurs with probability p, and then 

has an exponentially distributed size with mean 1/t]^ for any i = 1’ 2’ … , m , and 

the jth down-jump occurs with probability q] and then has an exponentially dis-

tributed size with mean l/dj for any j•二 1’ 2’. . .，n. We also assume {Wt}, {Nt} 

and {y^} are independent. 
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Due to the jumps, the risk-neutral measure is not unique. Here we assume 

the risk-neulral measure IP is chosen within a rational expectations equilibrium 

setting such that the equilibrium price of an option is given by the expectation 

under IP of the discounted option payoff. For details, we refer to Lucas (1978), 

Naik and Lee (1990), and Kou (2002). 

Thus, it is easy to see that the infinitesimal generator of {X^} is given by 

(Lu)(x) + fiu(x) 

+ A / [u{x + y) - u{x)]fY{y)dy, 
J oo 

for any twice continuously ciifTerentiablc function u{x) and the the Levy exponent 

of {A'J is given by ‘ 

C{x) : — j log E[exp(xXt) 

二工“+ “ V + A ( f ： + V # - 1 、 

for any x G (—^i, r/i). By some elementary calculus, we can show for any 

given a > 0, the equation G(x) = a has exactly tti -f n + 2 real roots 

A，…’ +1 ’ -7i，…，—7n+i satisfying 

0 < < < "2 < • • • < "m < 0m+l < OO, (3.3) 

0 < 7l < < 72 < • • • < 6'n < 7n+l < oo. (3.4) 

We record this result for later references. 

3.3. Distribution of the First Passage Time to 、 

Two Flat Barriers 

Define the first passage time r of a general HEM {X^ := + + J 晰 + [二 ' i ” 

lo two flat barriers h and H (h < H) as follows 

T := inf{« >0 : Xt> H or Xt< h}. (3.5) 
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Here { X J slightly differs from that given in (3.1) in that it starts from the point 

A'o rather than 0. From now on, we use E工 and P^ to represent the expectation 

and the probability, respectively, when { X J starts from X^ 三 t . 

The joint distribution of r and Xr plays a crucial role when pricing double-

barrier options. Our idea is to gel it via the Laplace Iraiisforni 

• E 卞 伙 、 

The following theorem reaches a more general result for any expectalioiis in the 

form of E工[e """"/(Xr)], where / could be any noimegative measurable function. 

The Laplacc transform then becomes a direct corollary. 

T h e o r e m 3.1. Consider any nonnegative measurable function f such that 

+ / / ) e — 办 and /二/(" + h)e权】吻 are iniegrable for all I < i < m 

and \ < j < n. For any a > 0 and x G (/i, / / ) , we have 

(3.6) 

where tu{x) is a TOW vector defined as 

e—飞“T--h),...’e—、…(I-巧 ’ (3.7) 

f IS a column vector such that f = {/• , • • •, /m' fo^ • • • > fn)^ ‘ 

广务oo 

fS = / ( / / ) , /" = / f{y + • 办 ’ 1<1< m, 
JQ 

= /(/0’ ff = /() f{y + 凡 y 办’ 1 < J < "； (3.8) 
J —OO 
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and N is a (m + r/ 4- 2) x (m + 7i + 2) non-singular matmx given by 

1 … 1 r^' … ！pnM 

I . . . L_— ？,1 . . . x̂ " + ‘ 
‘/l - fh -/3m • 1 »7l • 71 f 7n • I 

• . • • . • 
. • . . • . 

1 • . • 1 . • x'̂ " * 1 

Vm Pni » I r]rn "f 7l m̂ i 7n f I 

X^ •• J ^ H 1 •… 1 

x "̂' • ‘ 1 1 

"1 .. • flTTE^ 0\ -71 •.. fli—"YTM 1 
• * ‘ • 
« ‘ . 暑 • . 

X � • ‘ 1 1 
,On -f On 71 Orx 'Irx+l _ 

With X :— — ". 

To prove Theorem 3.1，the most difficult part is to show the non-singularity 

of the matrix N. We summarize the conclusion in the following proposition and 

defer its proof to the Appendix B.l. 

Proposition 3.2. For any and satisfying (3.3) and (3.4), the 

matrix N is non-singular. 

With the help of Proposition 3.2, we can show Theorem 3.1 now. 

Proof of Theorem 3.1. Notice that 丁 is the first time the process X exits the 

band (/i, H). It may leave the band at the boundaries, i.e., XT 二 H or XT = h\ 

or it may jump across the boundaries when leaving. Therefore, we introduce a 

sequence of events:厂o { 『 ^ T = H], GQ := {u; : X! = fi), indicating two 

possibilities that X leaves the band at the boundaries; F, := {u : Xr - H > 

0,yyv.�Exp(7/,)} for t = 1’2’ . . ’m and G] {uj : Xr - h < 0, - K / v , � 

Exp(0j)} for j ； 1,2, • • • , 71, indicating with which type of jump the process 

jmiips across the boundaries when leaving. By the law of total probability, we 

have 

rn n 

= + E 卞 ( 3 . 9 ) 

t=0 j=o 
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Emulating the proofs of Proposition 2.1 in Kou and Wang (2003) and The-

orem 3.1 in Cai {2008a), we can easily show thai conditional on F\、r and Xr are 

independent and moreover the overshoot X ! - H is still exponentially distributed 

with mean l/r", thanks to the memoryless property of exponential distribution. 

Thus, for any = 1, 2, • • • , rn, 

= — H + H)\F,] 

- E t a r i f j . ” , / ; " . (3.10) 

Similarly, for any j = 1，2’ … ’ n’ we have 

= (3.11) 

Combining (3.9), (3.10) and (3.11)， 

rn n 

E 工 二 X^E l̂e。-丄厂,} . + 二 E 卞 • (3.12) 

1=0 尸 0 

with 770 = = 1-

On the other hand, we are also able to obtain closed-form expressions for 

and Note that for any a > 0 and imaginary number b 

with the real part being 0, 

Mt ： = exp(-ai + bXi) - exp(6Xo) - (G{b) - a) f exp(-as + bX,)ds 
Jo 

is a zero-mean martingale. By the optional sampling theorem, we know E^lM^j 二 

0, i.e., 

0 = E^[cxp(-ar + 6X^)1 — e^工-(G{b] — a)E^[ [ cxp(-as + bXs)ds . 
I Jo 

Applying (3.12) in the first term on the right hand side of the above equality, 

m 

- $ TH-b 

+ E工[e "^Icole"' + T E工[e一"]cje'h^"^ 

. —一一（(：；⑷-a)Eq / exp(-as bX,)ds]. (3.13) 
Jo 
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Denote the right hand side of (3.13) by h(b) and define H(b) := —外 

+ b). h{b). Then H(b) is well defined and analytic in the whole complex 

domain C. By (3.13), H(b) equals zero when 6 is a pure imaginary number. 

By the identity theorem of analytic functions in the complex domain (Theorem 

10.18, Rudin (1987)), we gel //(fo) = 0 for all h e C. Accordingly, h(b) = 0 for 

all he C \ {-On,-6^1,771,.. . 

Replace b by /?，and —7) in h{b) = 0, respectively. Note that A and — are 

all the roots to G(x) - a. We have the following linear equations with respect 

to and 

m 

十 " ^ I c o l e ^+ Y l E ' l 广 一 

and 

m 

I oJ ^ + 
1=1 

Proposition 3.2 shows the non-singularity of N. It follows that the vector 

(E:[e-尸。 j ’ … . ’ E卞 

E ’ - a T l c o l , . . ’ E : [ e _ � l ) 

二 G7(:r)N- iDiag < [ 丄 ’ . . . ， 丄 ’ ， （3.14),， 

where Diag . . . , . . . , ̂  | is a diagonal matrix. Plugging (3.14) into 

(3.12) yields (3.6) immediately. • 

From Theorem 3.1, we can obtain a variety of closed-form expressions for 

.expectations of some functions with respect to r and Xr- For instance, choosing 

f{x) to be e没I with 6 € 7?i) in the above theorem, we are able to derive 

the Laplace transform + 没入rj’ which is presented in Corollary ??. Fixing 
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f(x) to be and l{x<h}, respectively, we then have and 

which reflect the present values of $1 received when the un-

derlying asset price crosses the upper boundary H and the lower boundary h, 

respectively. This result is given in Corollary 3.4. 

Corollary 3.3. For any 9 G (-^1,771), we have 

m+ 1 nI 1 
E工[e-"”"A�j = ÔH . 叫e汰(I-") + f M) (3.15) 

1=1 j=i 

where 

(u; i，...，u;m-u’" i,...，"rui)7 = N-iJ ( " ) 

and 
1 1 x^ ^ r 

糊 二 ( 1 ’ ; ^ ’ … ’ ； ^ ； ^ ^ " ^ ’ 工 ’ … ， • 

Corollary 3.4. 

m+l n + 1 

E ^ e — = ； ^a ; : (V“ i- " ) + (3.16) 

1=1 j=i 

= 茫 (工-")+ 茫 " f ) e - ( 3 . 1 7 ) 
1二1 j=i 

where 

(u^i ) ’ . • •，u;i;ii’ ... ’ = N - ^ J i with J i = (1’ 丄’ . . . ’丄，0 ’ . . • ’ o r , 
Vl Vm 

and 

(U;P)’ • • .，u42“，t/P), ， 二 N-1J2 With J2 = (0，…，0’ 1 ， . • • ， ^ 广 

R e m a r k 3.5. We can also show Corollary 3.1 and Corollary 3.2 through, another 

route. Actually, consider the following two ordinary inlegro-differential equations 

(OIDEs) 

i l^u(x) = au(x), h<x<H\ (3 18) 

I u(x) = e"、 X <h or x> H 
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and 

‘ 

Lu[x) — au(x), h < X < H\ 

< u(x) = 1， x> (3-19) 
u(3：) = ()’ X < h. 

< 

First, it can be proved that under the condition that u[h) — u(/i-f) and 

u{H) 二 U(H-), the right hand sides of (3.15) and (3.16), denoted by VQ{X) 

and t’i(:r)’ are unique solutions to (3.18) and (3.19), respectively. Second, 

applying the martingale method, we can show that t»o(工)三 权Xt! ancl 

v\{x)三 Similarly, we can obtain (3.17). Thus we complete 

the proofs for Corollary 3.1 and Corollary 3.2 in a different way. Meanwhile, the 

non-singularity of N guarantees the uniqueness of such solutions. For details of 

this route of argument, we refer to Cai and Kou (2008). 

3.4. Pricing Double-Barrier Options 

In this section, we are going to derive pricing formulae for standard double-barrier 

options, based on the theoretical results obtained in the last section. 

3.4.1. Standard Double-Barrier Options 

The payoff of a standard double-barrier option is activated (knocked in) or ex-

tinguished (knocked out) when the price of the underlying asset crosses barriers. 

For example, a knock-out put option will not give the holder the payoff of a Eu-

ropean put option unless the underlying price remains within some pre-specified 

range before the option matures. More precisely, consider an interval (L, U) and 

the initial asset price SQ is in it. The holder will receive {K - SV) — 1{t>t} at the 

maturity T, where r = inf{《> 0 : St < L or St > U}. Under the risk-neutral 

measure IP and the assumption that the underlying asset follows the HEM, the 

price of such an option is given by 

P{K, T) = 一 K) • 1{.>t}|5O]. (3.20) 
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We may use Corollary 3.3 to obtain a double Laplace transform for the 

expectation in P{K,r). For this purpose, change some variables in (3.20) first. 

Let h := log(L/5o), H := log {U/SQ) and K. := -\ogK. Then, the expectation 

in P(A', T) can be represented as 

where r = inf{^ > 0 : Xt < h or Xt > H). Conduct a double Laplace transform 

on the new function C{K,T) with respect to K and T. Note that the definition 

domains for K and T are (-oo, OO) and (0, oo), respectively. We have the following 

theorem: 

Theorem 3.6. FOT any 0 < v̂  < r;i - 1 and a > max{G'((p + 1)，0}, let 

roo roo 

= / / e-…Tc(^t^,T、dKdT. (3.21) 
JQ J-OO 

Then, 

C^+i 1 ( 严 H ；^ \\ 

= (1 - 一 ”" fe-e—a" ^ E . - ^ ) ) ’ 
(3.22) 

where ‘ 

( u ; i ， u ; 2， . . .， U ^ n + i , " l ， " 2 ’ .• .， "《“)了 = 1 ) . 

Proof. For any fixed T, by the Fubini theorem, 

roo fOO 

/ / ( S 。 e 和 — . l{.>r}l 
J-oo J-\og{Soe^T) 

From the definition of the Levy exponent, we know Ei[e(川)入厂 1 = exp(G(v? + 

\)T). Then, using the Fubini's theorem again, 

g(仏 a) ( � - Q T E i l e ( 州 ) 和 ( 1 — llr<T})]dT 
* + 1) Jo 

CvH 1 1 1 fOO 
- / 

1 ) a-G{ip-^\) Jo 
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Conditional on the filtration up to r, the expectation in the above equality should 

be the same as 

E工[E-uT . E卞(《+i)x'r|jrTll{Tsr}] - E 卞 — “ 了 ― ； ^ 了 口 . } “ 

where the equality holds due to the Markovian property of { X J , the fact X'/’ — 

Xr = Xr T, arid the definition of the Levy exponent. In summary, a) is 
ft " 

then equal t̂ o 

‘ (1 一 E^ ) 

^{if + 1) l y 】 

“ Applying Corollary 3.3 here, we can immediately obtain the conclusion. • 

Once we have the double Laplace transform, we apply some numerical in-

‘ version algorithm to recover the value of the function C(/t, T) at some specific k 

and T we want to price. There are several other double-barrier options such as 

knock-out put, knock-in call or put traded in the market. The pricing formulae 

for them can be obtained through similar derivations and we leave all the details 

for interested readers. 

Remark 3.7. 

如 ) 、 ( : + l ) a — 

/ Z'̂ +i / Q \ / I \ ^A \ 

then 

二 1 1 

dSo — 1) 

/ / � 1 / c \ ^ / r \ A \ 
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3.4.2. Numerical Examples 

In this section, we intend to price the above standard knock-out call options 

by inverting the associated Laplace transforms (3.21) numerically via the Euler 

inversion algorithm. This algorithm was introduced by Abate and Whitt (1992) 

and Choudhury, Lucantoni and Whitt (1994) and a few new developments are 

accumulated in the literature based on their work. Since we need to invert a 

two-sided Laplace transform with respect to K, we suggest to use Petrella (2004), 

which is faster and more stable numerically than the original Euler inversion 

when dealing with Iwo-sided transforms, due to the introduction of a scaling 

factor. 

In our numerical example, m and n are both 2 in the hyper-exponential 

distribution (3.2). The numerical results for the standard double-barrier options 

(denoted by EI Price) are given in Table 3.1’ where we also show the Monte 

Carlo simulation result (denoted by MC Value) as a benchmark together with 

the associated 95% confidence interval (denoted by 95% CI). We can see that 

all the EI Prices stay within the 95% confidence intervals of the associated MC 

Values. Besides, based on a PC with Pentium(R) 4 CPU 2.80GHz, 1 GB of RAM, 

the CPU time to produce one numerical result via Euler inversion algorithm is 

only around 6 seconds, while it takes about 20 minutes to generate one MC 

Value. Consequently, we draw the conclusion that the pricing method based 

on our analytical pricing formulae as well as the Euler inversion algorithm is 

accurate and efficient. It is worth mentioning that in Table 3.1, MC Values tend 

to be greater than EI Prices partly because the Monte Carlo simulation method 

overestimates the option prices due to the systematic discretization bias. Since 

our main purpose is to study the analytical solution rather than the Monte Carlo 

simulation method. We refer the interested readers to Metwally and Atiya (2002) 

for more detailed discussions on the systematic discretization error reduction. 

From the table, we can also see that the option price descreases as the strike 

K increases. This is intuitive because the payoff is a decreasing function in K. 
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Meanwhile, when either a or A increases, the option price depreciates. That is 

because the option tends to be more likely knocked out when the underlying is 

more volatile. 

3.5. Conclusion 

In this Chapter, we investigate the pricing problem of double-barrier options 

under a flexible, hyper-exponential jump diffusion model. Specifically, we derive 

the closed form expression for the double-Laplace transform of the standard 

double-barrier option by studying the joint distribution of the first passage time 

of a hyper-exponential jump diffusion process to two flat barriers and the value 

of this process at the first passage lime. Moreover, this closed form double-

Laplace transform can be inverted numerically via a two-sided Laplace inversion 

algorithm. Numerical examples indicate that the pricing algorithm is accurate, 

efficient, and easy to implement. One of our theoretical contribution is that we 

show the non-singularity of a complicated, high-dimensional matrix, therefore 

guaranteeing the existence and uniqueness of our analytical pricing formula. 

* 
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Pricing Knock-Out Call Options 

K A EI Price MC Value 95% CI 

5 0.1052 0.1063 (0.1019,0.1107) 

105 3 0.1156 0.1189 (0.1142,0.1236) 

1 0.1270 0.1300 (0.1252，0.1348) 

5 0.3456 0.3471 (0.3375,0.3567) 

100 3 0.3804 0.3847 (0.3746’ 0.3948) 

1 0.4191 0.4210 (0.4105,0.4315) 

5 0.7812 0.7831 (0.7666,0.7996) 

95 3 0.8606 0.8676 (0.8499,0.8847) 

1 0.9487 0.9478 (0.9298,0.9658) 

Table 3.1: The Laplace inversion (EI Price) vs. the Monte Carlo simulation (MC 

Value). For unvarying parameters, the default choices are r = 0.05, a = 0.2, m 二 

‘ n 二 2，7̂1 = 30, t)2 = 50, == 30, 62 = 40, p! = p2 二仍=92 二 0.25’ So = 100, 

t/ = 115’ 二 80, 7" = 1’ and p = Parameters for the Laplace inversion method 

are AI = A2 = 28.3, (711,712) = (11,38), and the scaling factor X = 1000; while 

the MC values along with the associated 95% confidence intervals are obtained 

by using 60,000 time steps and simulating 100,000 sample paths. To generate 

one numerical result, the CPU time is about 6 seconds for the Laplace inversion 

method and is about 20 minutes for Monte Carlo simulation method. Moreover, 

we can see that all the El prices stay within the 95% confidence intervals of the 

associated MC values. 



CHAPTER 4 

OCCUPATION T IMES OF 

JUMP-DIFFUS ION PROCESSES WITH 

D O U B L E EXPONENTIAL JUMPS AND 

THE P R I C I N G OF OPT IONS 

4.1. Introduction 

Occupation-time-related derivatives are recently introduced products that have 

been attracting much attention from investors and researchers. A defining char-

acteristic of these contracts is an exercise payoff that depends on the time spent 

by the underlying asset in a predetermined region(s). Typically, the specification 

of the occupation regions involves flat barrier(s). In thai sense, these contracts 

can be viewed as a generalized type of barrier option. 

The payoffs of barrier options are activated or extinguished as soon as the 

underlying asset prices cross barriers. This discontinuity at the barriers poses 

an obstacle to the risk management of both option writers and buyers. Take 

the knock-out barrier option as an illustration. Even if the buyer has a correct 

view on the overall market trend, an accidental price jump across the barrier 

can easily wipe out his or her entire investment in the options. Furthermore, as 

Chesney, Jeanblanc-Picque and Yor (1997) and Linetsky (1998) argued, market 

manipulators also like to take advantage of the fact that the payoffs are associ-

63 
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aled with barrier crossing, driving the underlying price to trigger a crossing and 

profiting from the massive losses of the other party to the transaction. 

Several scholars have proposed a series of occupation-time-related options to 

alleviate the risk management difficulties inherent in barrier options caused by 

the discontinuity around the barriers. The payoffs now depend not only on the 

barrier crossing; but also on how long the underlying price spends above/below 

the barrier. Thus, option buyers can receive or lose value more gradually. One of 

the most popular examples is the step option suggested by Linetsky (1998,1999). 

This derivative's payoff is discounted at a rate defined by the occupation time. 

Under the geometric Brownian motion (GBM) model, Linetsky (1999) derived 

closed-form pricing formulae for various single-barrier step options, while Davy-

dov and Linetsky (2002) investigated the pricing of double-barrier step options 

via Laplace inversion. A second example is the corridor option traded in the 

foreign exchange and interest rate markets. This option pays an amount at ma-

turity that is associated with the time spent by a reference index, usually an 

exchange or interest rate, below a given level or inside a band. Fusai (2000) 

priced this derivative under the GBM model by studying the distribution of the 

time spent by a Brownian motion with drift inside a band. Another impor-

tant type of occupation-time-related option is the quantile option, which Miura 

(1992) suggested as an alternative to the standard barrier option. A quantile 

is the minimum barrier to ensure that the fraction of the occupation time dur-

ing the lifetime of the option exceeds a given level. Dassios (1995) provided a 

formula for the quantile distribution of a Brownian motion with drift, as did 

Embrechts, Rogers and Yor (1995) and Yor (1995). Akahori (1995) and Dassios 

(1995) calculated the prices of a-quantile options for the GBM model. Kwok 

and Lau (2001) developed a pricing algorithm for quantile options based on the 

forward shooting grid method under the GBM model. Leung and Kwok (2006) 

derived the distribution functions of occupation times under the constant elas-

ticity of variance (CEV) process. Using an identity on quantiles of the processes 

with stationary and independent increments developed by Dassios (1996), Cai 
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(2()08b) priced both the fixed- and floating-strike quantilc options niiniorically 

by applying Iviiplaco inversion twicc uncior a hypcr-exponenlial jump diffiusion 

model. 

In roality, many occ ii pal ion-lime-rclalod options are baswl on a discrete 

time monitoring. In other words, such derivatives specily a series of reference 

dales. The occupation time is defined through the portion of moiiitoriiig dates 

in which the underlying prico is below/above some level or between two levels. 

Some r(\s(、ar(、h is devoted to the sludy of such kind of options. However, the 

coiiiinon feature of such research is thai the underlying asset price is a.ssinned 

to follow a GBM model. For instance, Atkinson and Fusai (2007) studied dis-

crete quanlilo options using the Spitzer idenlily of Brownian motions; Fusai and 

Fagliani (2001) applied some numerical methods of PDEs to price discrete cor-

ridor options; and Davydov and Linelsky (2002) considered slop options under 

the discrete monitoring scheme. 

In this article, we investigate the pricing and hedging problems of 

occupalion-tiiiie-related options uncier Kou's double exponential jump ciifTiision 

model Kou (2002). The model assumes the underlying asset return follows a 

jump difrusion process with Poisson .jump intensity and doublo-exporientially dis-

tributed jump sizes. It is appealing in two respects. The associated asset returns 

have heavier tails than normal distributions and hcncc the model is capable of 

generating asymmetric leptokurtic feature for asset returns and volatility smiles 

for equity options, inatdiing the empirical data better than the GBM model. 

The model also yields analytical solutions to many pricing problems, including 

both European and palh-depcndent derivatives, in terms of Laplace transforms. 

By applying numerical inversion algorithms we can ea ĵily obtain the prices. 

The main result of this article is to derive the Laplace Iransiorin of the 

distribution of occupation times regarding one barrier under Kou's model, which 

enables us to calculate the prices of various related options such â i step options, 

corridor options, and quaiitile options. It turns out that the Laplace transform 

solves a partial inlegro-clifferential equation (PIDE). We manage to reducc the 
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equation to an ordinary inlcgro-differential equation (OIDK) using an integral 

transform. Nolo that derivatives of exponential funclioiis arc still exponential. 

Then we can transform the OlDE into an ODE and rigorously show tlie existence 

and uniqueness of the solution to the OlDE. This article contributes to the 

literature of occupation-lime-related options by generalizing the formulae for 

the GBM model to a model with discontinuous sample paths. It is simple lo 

recover all of the classical results obtained with the GBM model from ours by 

letting the jurnp inleiisily be zero. The closed-form expressions of the Laplace 

traHsfoniis of the option prices also facilitate the calculation of pricc sensitivities 

in relation with market variables and model parameters. As shown in Section 

4, not much extra effort is needed lo obtain deltas, the price serisilivily with 

rcspecl to the change of iho underlying price. Such sensitivities play a vital 

role in risk management of derivatives, and traders can use it to rebalance the 

portfolio accordingly to achieve a desired exposure. In addition, our PIDE-OIDE 

approach can easily be extended to derive a close form solution for the Laplace 

transform of the distribution of occupation times spent within two barriers (a 

corridor). 

Beyond financial settings, wc should emphasize that I ho iiuilhoinalical re-

sults about occupation times of a jump diffusion process may find potential appli-

cations in olhcr branches of applied probability more generally. One candidalo 

Cikse we can think of is in queuing theory. When service limes or iiiterarrival 

limes have heavy-tailed distributions, heavy-traffic limits for the queue-length 

process usually are given by jump diffusions (see Whitt (2002), Chapter (i). The 

results presented in this chapter may be of interest lo llioso who want to study 

the occupation lime above/below single level or between two levels for a hoavy-

traffic queue. The literature accuiniilales sonic progress in this diroclioii. For 

instance, Cohen and Hooghieinslra (1981) discussed occupation times of Brown-

iaii excursions, a special kind of (i if fusions，and Ihoir link with the M/M/1 queue. 

We hope that our results may stimulate further investigation in jimip-difrusion 

setting. 
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The organization ot this art irk、is cus follows. Section 2 introduces Kou's 

model ami some of its eleinentary proporties. Section 3 denioiislrates how to solve 

tlio PIDK to obtain th(、l.aplaco tninsfonn of the ciislrihutioii of I.he occupation 

tunes. Section 1 applies the rosulls of Sod ion 3 lo pricing various derivalivos 

iiK-hiiling stop options, corridor options, and quaiUile options. Numerical results 

aro givoii in Soct.ion 5 App(、miic(?s C. 1-C'.3 arc im、lii(it、(i lo deal with soino 

technical issues ariso in the body lex I and Appendix C.4 discusses the oxtonsion 

of our approach L() the occiipalion limes in a corridor. 

4.2. Kou's Model and Its Basic Properties 

Consider a market, consisting of three securities only： a risk-free bond, a slock, 

and an occupalioii-liine-related option contingent upon I ho slock. The bond 

odors investors risk free interest rate r. In Kou's (iouble-cxponent.ial jump dif-

fusion riiodd (DKM), the slock prico undor the physical probability iiio<usiire is 

governed by {.hv. following dynamic, 

^ = "(It + cjdW, + d - 1 ) , 
St— ) 

where “ and a are coiislanls, (\\\ : / > ( ) } is a slandarci Brownian motion’ {Nt ： 

I > 0} is a Poisson process with arrival rate A, and {V； : z = 1，2’. ..} is a sequence 

of independent identically distributed (i.i.d.) random variables. According lo the 

model, the instaiilancoius â s(、t return rale is subject to the effects of three factors: 

a (iekTminisUc trend /i, small fluctuations described by the Brownian motion, 

and large market shocks captured by the Poisson-arrival jump part. To make 

the model more mathematically tractable, we further assume that Ŷ  := log(V；) 

follows a double exponential distribution，the probability density function (pdf) 

of which is 

fviv) 二 + g彻外l{y<o}’ 

where 7/ > I, fJ > 0, p > ()’ q > 0, and p + r/ = 1. In other words, there arc 

two types of jiiinps in the process: upward jumps with occurronce probability p 
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and average jump size 1 /?/, and downward jumps with occurrence probability q 

and average jump size I/O. Roth types of jumps are exponentially distributed. 

We also a^ssunie that { ： i > 0}, {Nt : t > ()}，and {V； ： i = 1,2,...} 

are indopciulent. This model, proposed by Koii (2002) and Kou and Wang 

(2003,2004), is known âs the double-exponential jump (iiffiisioii model in the 

financial engineering literature. 

We need to work on a risk-ne\itral probability measure to calculate llie op-

tion price. However, thai measure is not unique because of the jump diffusion as-, 

suiiiplion. Following Lucas (1978) and Naik and Lee (1990), Kou (2002) showed 

thai there is a particular probability measure P* so that the equilibrium price 

of an option is given by the expectation under this measure of the discounted 

option payoff if we consider a representative agent economy with a HARA-typc 

utility function. We point out that our argument will work under any equivalent 

martingale meajsure that preserves the model structure, particularly I ho expo-

nential type of the jumps. Under this risk-neutral probability measure P•’ St 

follows another double-exponential jump diffusion model. More specifically’ 

obeys 
^ / N; \ 

^ = rdt -f a'dW： + d ^{V； - 1 ) . 

、 、'二 1 / 

Under P\ {W； : > 0} is a standard Brownian motion,、N; : t > 0} is a 

Poisson process with arrival rale A', and {V,* log(V；*) ： i = 1,2, • • } is also 

a sequence of i.i.d. doubk^exponentially distributed random variables, but with 

different parameters. The distribution of Y； is given by 

/”(/y) 二 P 、 " … 浏 + … " 、 k v < ( ” ’ 

where the new set of parameters satisfy rj* > > 0, p* > 0’ (f > 0, and 

= I. Moreover, {Wt : t > ()}，{N； : t > 0}, and {Y； : i 二 1,2，...} 

arc also independenl under /)•. As we arc only interested in option pricing, the 

difference between the physical and risk-neutral probability measures plays no 

role. From now on we drop the superscript with the underslanding that all of 

the processes and parameters in the subsequent discussions are under P*. 
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Lei Xt bo the log-return of the tî ssel, i.e., Xt ：二 log{5(/5o). By Ilo's formula 

(cf P rot lor (2005), llieoreni II. 32, p. 78), one can easily obtain 

1 Nt 

X, = Xo + (r - -a' - \C,)l + aVV, + ；̂’ ’、) =。’ (4-1) 

t — 1 

where ( is the mean percentage jump size 

( 考 — 1 卜 + 
77 — 1 没 + 1 

All additional requirernonl /? > 1 is needed lo ensure that E[Vx] = < 00 

and < 00; this essentially means that the average upward jump cannot 

exceed 100%, which is quite reasonable in the reality of stock markets. For 

notational simplicity, denote fi :— r — ^a^ — Â -

Mathematically, the double-exponential jump diffusion process (4.1) is a 

special Levy processes because it has stationary and independent increments. 

Its Levy exponent is defined as 

1 . 、 ci^ ‘) , / mj qO A 
G(x) ：二 - log E[exp(xX,)|Xo = Oj 二 了：̂:』+ + A + ^ — 1厂 

(4.2) 

Consider an algebraic equation G{x) = r -t- a for any given a > -r. ll is easy to 

show that all four roots of the equation are real numbers (cf. Lemma 2.1, Kou 

and Wang (2003)). Denote them by "i,„’"2,a, -7i’“，—72’《. These roots satisfy 

0 < I3i,a <v < 02,a < 0 0 , 0 < 7 l , a < ^ < 72,a < OO. 

We will use these roots frequently when we derive the distributions of occupation 

times of (4.1) in Section 3. Explicit formulae for the four roots are also presented 

in Appendix C.l for reference. 

Another important tool to establish the key results of the article is the 

infinitesimal generator of Xt. Note that Xt is a Markovian process and its in-

finitesimal generator is given by 

(Cu)(x) := lini — 
\ no i 

1 严 
=-o''u"[x) + /W(x) -f A / Hx + y)-u{x)\fY{}))dy (4.3) 

丄 J -OO 

for any twice continuously diflereriLiable function u. 
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4.3. Distribution of the Occupation Times 

In the section, wc will present the main results of the article the Laplace 

transforms of the distributions of occupation times of the double-exponential 

jump diffusion process {A、} given by (4.1). Once it is known, in principle we 

are able to calculate any option prices related with occupation limes. Consider 

a constant barrier h and let Tt denote the occupation time the log-return process 

{ X J spends below h until t, i.e., 

n 三 丁tW •= f (4.4) 

JQ 

An occupation time related option with maturity T usually has a payoff associ-

ated with TT and Xr- Suppose it is given by /(r^, X r ) for a general function 

/ . Then pricing the option is equivalent to evaluating the following discounted 

expected payoff 

= x) (4.5) 

under the risk neutral probability. This section is devoted to the calculation of 

the expectation. 

Before jumping into mathematical details, we would like to motivate readers 

• by the intuition behind the scenes first. If the joint probability distribution of 

{Tt,Xt) is available explicitly for all t, the expectation in (4.5) is obtainable by 

numerically integrating 

E[/(Tr, Xr)\Xo :工、=f f / (s , y)F(ds, dy\T, x), 
JQ J-OO 

where F {ds, dy\R, x) 二 P[tt e ds, Xt G dy\Xo = x\. So our pricing strategy 

starts from finding a closed-form expression for the distribution F{ds,dy\T,x). 

The Laplace transform is a powerful tool in characterizing probability distribu-

tions. We can invert the transforms to recover distributions easily, either using 

transform tables when possible or resorting to other numerical methods. For any 

p > 0 and 7 G R, define \/(p, 7; x) as the Laplace transform of F{ds,dy\t,x) 
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with respect to s and y、i.e., 

V(pn\t.x) = f f e-P一F((/s，办"，;r) = Ele卞'”A''|;Co = 4 

Jo J - oo 

As mentioned in the introduction section, V can be determined by the so-

lution of a FIDE for any fixed pair of p and 7. A heuristic approach is now 

presented to obtain the equation and a much more rigorous treatment is deferred 

to Theorem 4.2 below. Choose a short time duration 6. 丁t can be decomposed 

into two parts, the contribution of l{x..<h} prior to S and the contribution after 

丁t 二 l[x^<h}du = / l{x.<h}du + / l{Xr.<h}du. 

Jo Jo Js 

By the Markovian property and the Levy properties of { X J we have, 

幼 e - 二 :rj = E[e卞f 训‘+飞乂.-”;̂ 。= x] = V{t — 6,x). 

If applying the Taylor expansion on V{t - <5, X^), 

V{t,x) = 厂 = 工 1 

=Ele-^^o . - & Xs)\Xo = X 

^ . Xs) - Xs))\Xo =工！ + o⑷ . (4.6) 

Note that ê  ^ 1 + x 4- o(x). Hence, (4.6) can be rewritten approximately as 

「抓 1 
V{t,x) - E[V(t,Xs)\Xo 二 工 卜 - — { t , X s ) \ X o = x 

:r石 1 
-pE / ⑷ . ( 4 . 7 ) 

Jo -

Divide both sides of (4.7) by 6 and take it to 0. The left-hand side converges to 

-CV{t,x), thanks to (4.3), the definition of the infinitesimal generator L. The 

right-hand side converges to 

dV 

In addition, we also know one boundary condition for the function V such that 

K ( 0 , x ) = e)工. 



Chcipter 4 Occupation Times J]_ 

In summary, V should solve the following PIDE with Cauchy boundary 

condition 

‘ % + pl{x<h}V = for t e (0,T] and x € R; (4 8) 

\ V(0,x) = e 、 for x e R . 

Theorem 4.1 rigorously establishes the relationship between the Laplace trans-

form V and the solution to PIDE (4.8) via the martingale problem formulation. 

Theo r em 4.1. Assume that V : [Q,T] x R R is a solution to PIDE (4.8), 

which is of class on [0,T] x R and C^'^ on [0,T] x R\{h}. Moreover, the 

left and right second derivatives at h, h-)/dx^ and exist 

and V is bounded by 

max \V{t,x)\ < Cie^^'"', x G R , (4.9) 

0< t<7' 一 

for constants Ci > 0 and 0 < C2 < rnin{",6>}. Then V admits the following 

stochastic representation: 

V(t,x) = 训 心 e 飞 不 = x], 0 < i < T, x G R. (4.10) 

And such a solution is unique. 

Proof: Introduce v{t,x) = V{T - t,x) for any t e [0,T]. Following 

the arguments leading to the Feyriman-Kac formula (cf. e.g. Theorem 

4.4.2，Karatzas and Shreve (1991)), we attempt to apply Ito's formula on 

Xt) exp(-p Jo l{x,<h}ds) to calculate its expectation. However the irregular-

ity o(v(t,') at barrier h forbids us from doing so directly. From Lemma C.l in Ap-

pendix C.2 we know that there exist a series of functions {Vn(t, x) : n = 1,2, • • • } 

such that: (1). Vn(t,x) converges to v(t,x) as n — 00 for any € (0,T] x R; 

(2). Vnit.x) is of class C^'^ in [0,T) x E for any n; (3). Vn{t,x) = v{t, x) for any 

(t,x) e [O,rlx(-oo,/ilu[/i+l/n,oo); and ⑷ for any {i,x) € [0, T) x ( / i , 1 / n ) 

and any n G IN, max{\vn{t,x)l\dvn{t.x)/dt\,\dvn{t,x)/dx\,\d^vr^{t,x)/dx^\} < 

M, where M is a positive constant independent of t, x, and n. 
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Define 

e.n(t,x) := - pi“浏”„(/。:r) + Cvn[i.x). 

According to the construction of {fnl^x)} and (4.9), some routine algebra ma-

nipulation will yield that there exist positive constants Mi and M〗，independent 

of n, t、and x, such that 

< — < +00, for (t,x) e (0,T1 X (-oo,/i]u[/i + -,00) (4.11) 
n ^ 

and 

|e„(i,x)| < M2 < +00, for (t,x) € (0,7] x (/i’/i+ -). (4.12) 

Now we are able to apply Ito's formula to i{x‘,y}山 because • 

Vn is twice differentiable on the whole real line with respect to x. Let Tm ：= 

inf{^ G [0,T] : > m) for any m G IN. Ito's formula for jump diffusions (cf. 

Protter (2005), Theorem II. 32, p. 78) implies that 

ra/\Tm 
— / e — " 。、例〜 „ ( … s -人— 

Joi 

is a local martingale for any fixed t € [0,T], m, n G IN, and 0 < a < T - t. 

In other words, there should be a nondecreasing sequence of stopping times 

{TTk̂k 二 1’2，--.} such that P(limjt”+oo TTfc = +00) = 1 and (a A tt^): 

a e [0,T - t]} is a true martingale. It follows that for any 0 < s < a < r - ^ 

we have 

E[MG(","^)(a 八 = MG("，"̂ )(s 八 Tr̂ t). (4.13) 

Fix 71 6 IN and a sufficiently large m such that m > \h\1. We intend to 

show that {MG(n,爪）(a) : a G [0,T- t]} is actually a true martingale. It suffices 

to show that sup妖|o,7、_tj |MG("’"^>(a)| is integrable. Indeed, if this is true, we 

can apply the dominated convergence theorem on (4.13). Letting k 一 +oo will 

yield 
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for any 0 < s < a < - t; i.e., MG("’爪)(a) is a martingale. 

Fortunately, the integrability of supae|o,T-tj |MG(","")(a)| is implied by the 

observation thai the two terms in the expression of can be bounded 

as follows. For the second term, we can show that 

RA/\T„I -

/ e 一 “ 九 ” 、 … 〜 卜 ， 

/oA7Vn -

+ —’ )|/{A、—引長 
_ + 

/ O A T m -

Cn{t + S-,Xs-)\ / { ; f， _ e卜m ’ … u | / u 去,mj}么S 
_ + 

raATrr,- JLf 

< M , / + (4.14) 

where the second inequality holds due to (4.11) and (4.12). For the first term, it 

is easy to see that exp(-/y /广了“* l{x,<h}ds) is always bounded by 1. Thus, 

卜“ B q A T ； ^人八： r j e - "广、丨入， S M ’ < Mt+aATm^X^^rJl (4.15) 

When a < T^, Vr̂ {t + a 八 了 爪 人 八 厂 爪 ） = + which is bounded by 

max^efo.Tl.xGl-m.m) because \Xa\ < rn by the definition of 了爪.When 

Q > Tm、Vr^(t + a AT^, XaA'rJ = Vnit + 了爪’ X r J- By (4.9), its absolute value 

is bounded by 

？，" + T X丁 )| < (̂ jgC'2maxo<,<-r|X.,i < QgC2|i| ̂  C2\^\T^C2a maxo<,<r EJ '̂i 

Now we intend to show E[\v(t + Tm,Xr„,)\] < +oo. On the one hand, some 

calculation illustrates that 

= exp/AT ( + ^ - l ) | <+oo, (4.16) 
I \r} -C2 o - C2 J J 

thanks to 0 < C2 < min{77,^}. On the other hand, we also have 

< +⑷. (4.17) 

Actually, notice that eC-2arnaxo<,<T < z、Z—、where 

^C^cr maxo<s<T 肌(1 Z maxo<. ,<r ( - ) 
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Since both maxo他 t W � a n d rnaxo<s<7 (~ W.,) have the same distribution as 

|ViV|, it follows that 

KZj 二 EZ ! = Ee2。2—H = 

where 4>(x) is the cumulative normal distribution function. According to 

Minkowski's integral inequality, we can obtain that 

1 1/2 
=[E (Z� ) ] " 2 二 2 e 2 啊 ， < +0O. 

. -

Then (4.17) is proved. 

From (4.16) and (4.17), we ihen have E[\v{t-[-Tm. XwJI] < +oo. Therefore, 

the right-hand side of (4.15) will be bounded by 

Vn{t + O； A T i n人八 t J < \Vn{t + a人 )1{0<7^丨 

+ Tm, ^rm)l{a>Trn} 

< max |?;„(s,x)| + + Tm^Xr^). 

selOTl.iGl-m.m) 

Note that the right-hand side of this inequality has nothing to do with a. It 

follows that I � ( 《 + a 八 T̂m, ̂：0八7；„)| is integrable. Combining with 

(4.14), we have already shown that sup̂ êloT—ti 

|MG(n’"^)(a)| is integrable. Con-

sequently, {MG(n’爪)(a) : Q G [0, T - i]} is a true martingale. 

The martingale property of MG(n’爪）(a) implies that 

£;[MG(n’爪)(cO|知=x] = E[MG(".m)(0)|;Co =工1 二 ”n((’工)• 

In other words, 

Vnit.x) 二 E \v^{t + Q A T^ , X^^Tje = x 
L \ 

• FOATM , 
-E / + .S-, = x .(4.18) 

.VOf 
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Let n go to + 0 0 in (4.18). The left-hand side converges to v. Meanwhile, (4.14) 

and (4.15) allow us to apply the dominated convergence theorem on the right-

hand side. Note that the second term on the right-hand side of (4.18) goes to 

zero. After taking the limit, (4.18) becomes 

v(t.,x) = E \v{t + a "广， "M x ,训卞 • = x] . (4.19) 

Note that ihe term inside the expectation of (4.19) is bounded by 

\v{t + a A r 爪， X 氣 ) e - “ 广 ‘ i … 例 ’ 

< \v(t a A Trn^XaATm) 

< CieC2丨小哪丨了6匚2" n,axo<.,</- |M/，丨々  丨Y.I 

and the right-hand side can be shown to be integrable. We may be able to apply 

the dominated convergence theorem again on (4.19) to get the limit a.s m goes 

to +00. It follows that 

4 

Lei a = T - I in the last equation and recall the definition of v. We have 

V(T -t,x) = v(t, x) =E{v(T, 

ft 

The right-hand side is equal to 兄 厂 M ( ， y > & j . As t is arbitrary, the 

proof is completed. • 

Equation (4.8) is a PIDE with a Cauchy boundary, noting that C involves 

both differential and integral operators. We intend to use the Laplace transform 

once again to convert it into an OIDE, which is much easier Lo solve. Consider 

the first equation in (4.8). Introduce the following Laplace transform on the 

(discounted) value of V: 

r + ao 

Jo 
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for a sufficiently large positive a. Routine calculation shows that u must satisfy 

(pl{x<h} + r + a)u{x\a) - e)工=Cu{x\a) 二 一u〃(：r;a) 4- jlu{x\a) 

roo 
+ A / [u{x^y\a) - u(x\a)]fY{y)dy. (4.20) 

J oo 

Thus, wc have successfully removed the partial derivative in (4.8). For a general 

jump density /y, it could still be very difficult to solve (4.20) for a closed-form 

solution. However, when fy is a double exponential density, (4.20) is solvable 

explicitly. We summarize the solution in the following theorem. 

Theorem 4.2. For any 0 < 7 < minfry, p > 0 and 

a + r〉|A|7 + l o W + A f - ^ - l ) , (4.21) 
\r\-l 0-1 J 

the Laplace transform 

roo 
u(:r;p，7，a’/i) 二 / e-⑷作广 "1乂1；^0 = 

Jo 
f 
的 e 召 + …2e仇’。+乂工—-一八)’ x < h; 

— 

— 仅"（工 h} — C2e乂工—“），x > /i, 

where 

— — 

G{y) - a - r - G(7) - a -

and 

^ — {132,a,P - 7)(-7l.a - 7)(-72,a — 7)(巧 ft,afp)(<9 + A.g^p) ^ 」 " 2 2 ) 

^ _ (Pl,a-^p - 7)(-7l,a — 7)(-72.a — 7)(" — p)(0 + fe.a fp) ^̂ ^ (4 33) 

" {Pi,a, p 一 02,a+p)(-ll,a — 02,a, p){-l2,a — 一 7 ) ( " + 7 ) ⑵ 

“ _ (A.ai/> - l)iP2,a+p - 7)(-72.a " + 7l.a)(<9 - 71.q) ^̂ ^ (4 24) 

" ( A .a IP + 7l,a)(/?2.a+p + 7l,a)(—72,« + — l){0 + 7) 

“—(/^l’afp-7)(ftz,a+p-7)(-7l,a-7)(y? + 72.a)(0 — 72,a) ^̂ ^ (4 25) 

"(/?i.afp + 72.a)(/32.a4p + 72.a)(-7l.a + 72,a)(" — l)(0 + 7) . 

with 

= ^ (4.26) 

C12 (G(7)-a — r - p 斷 ) - a - r ) 
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Proof: Fix constants p, 7 , a, and h. Define 

咖 = 卜 ) ’ … (4.27) 
U2(x), X > h 

\ 

Then the non-homogenous OlDE (4.20) can be rewritten â j two separate equa-

tions in the regions { - 0 0 , h) and (/i，+oo). For x < h, 
2 厂 0 

— u[{x) + /iu;(x) - (A + a + r + p)u^[x) + X u i (x + y)q6e^My 
J -00 

PH X 广 + 0 0 -1 

+ / + 办 + / U2(x + y、pr)e~”ydy = (4.28) 
Jo Jh-x 

and for x > h, 

—liiix) + - (A + a + r)u2(x) + X f "“工 + y)qOe'^dy , 
^ J - 0 0 

+ f U2{x + y)qOe^'^dy + [ U2(:r + y ) p " e - ”吻 ] =— e ) : . (4.29) 
Jh-x Jo 

We claim that the solution Ui(x) and U2(x) must be of the following form 

‘ui(x) = 召 + u;2e九。- h)’ x < h.、 30) 

U2{x) = 一i/ic —礼。(i-h) — "2e-�2."(z—— x > h, 
< 

where o^i, 0；2, i^i’ "2, Ci, and C2 are constants to be determined. Indeed, for 

equation (4.29), under a change of variable 2 = x + y, it is transformed further 

to 

-u'^(x) = -ilu'^(x) + (A + a + r)u2{x) - Ae""" [ u,{z)qee''dz 
i J -00 

-Ae-办 j : U2{z)qee''dz — X e ” 义 … 以 “ 之 一 - ” 油 + e):. (4.31) 

Our purpose is to remove the three integrals in (4.31), one by one, to reduce 

the OlDE to an ODE in order to make use of the theory of ODEs to solve the 

equation completely and to show the uniqueness of the solution at the same time. 

First, any solution to (4.31) must have the third-order derivative. This point is 

easily seen from the right-hand side of (4.31) because all terms are differentiable 
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and so is u"(x). Multiplying both sides of (4.31) by e。工， 

rh 

— e^^u^ix) = 〜办） + (A + a + r )e�2(工）-A / u,{z)qee^'dz 
J - OO 

rx p \ OO 
- A y � / 2 — Ae ⑷” )zy ”：“之 + e(〜作. 

Take differentiation on both sides of this equation to remove the first integral. 

Dividing the resulting OlDE by e—好工 yields 

2 2 

^ 14〃 (工）=- ( y ^ + fi)u'i{x) — {fie — A — a — r)u'^{x) 

r \ OO 

+ [(A + a)e - XqO + Xwi\u2{x) + + <9)e”工 / U2{z)pr]e~'''dz + ((9 + 

(4.32) 

From (4.32)，u should also be fourth-order differentiable. Hence, we can take a 

similar step to remove the integral in (4.32) to obtain a non-homogeneous ODE 

with constant coefficients as follows: 

2 2 2 

+ ! - y ( 7 ? -9)+ fL]u'^(x) + [—rjO 一 - - A — a - r]u'i{x) 

+ [{77 — e)(\ + a 4- r) - p/qd + XqO - \jrri\u2{x) + aT)0u2{x) = (rj - + 

(4.33) 

On one hand, it is easy to see that is a particular solution to the ODE 

(4.33) for a constant Oi. On the other hand, the characteristic equation of the 

corresponding homogeneous ODE turns to be 

—a — 十 沒 二 0’ 

which haa four real roots as mentioned in Section 2. Therefore, any solution to 

(4.33) can be expressed as 

U2{X) = +。2e彻.“:r — h) _ —…已―双。0r‘/0 _ C2e">^(:"i)’ 

for any x > /i,with i>i’ i^i, 1^2, and C2 undetermined. Furthermore, we can 

argue that the first two coefficients Pi and 1/2 should be 0. In fact, we know that 

^ = 厂 e - ( 。 + r ) 卞 二 咖（ 
e，： Jo 

=j。e-(一 厂‘+ 认 |Xo = 0]dt, 
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where the last equality is because of the Levy property of X . The right-hand 

side of the above equality is less than 

foo 1 
/ e 如 r -G⑴ )W = i — — < + 0 0 ’ 

Jo a + r — G(7) 

because E{exp(-pTt + = 0] < E[exp(7Xt)|Xo = 0] = exp(G(7)). Thus, 

< + 0 0 . Note 02,a > P\,a > 7，which implies and i>2 must 

be 0. Consequently, any solution to the OIDE in (4.29) can be expressed as 

U2{x) = 一 _ — C2e7(i-")， for x > h, 

with C2, i^i, and 1/2 to be determined. Similarly, we also can show any solution 

to the first OIDE in (4.28) is expressed as 

tii(x) = u ; i e 召 + u ; 2 e 九。作 ( 工 - 一 " ) ’ for x < /i, 

with Ci, cji, and uj2 to be determined. 

Now we need six equations to determine these coefficients. Substituting 

iti(x), 2̂(2：) into (4.28-4.29) yields that for any x < h, 

Cie-7、G(7) - a - r - p) - 1 ] e^^ 

[V - 0\,a+p ” - 02,a+p V + 7l.a Tj + 72.a V - -y 

and for any x > h, 

-C2e”八(G(7) - a - r) - 1] e^^ 

.XnG [ 的 + ⑴2 … + _ - 叫 二 0 

q [e + e + • 0 - 72.a 沒 + 7 J ‘ 
Therefore, tx is a solution if and only if the coefficients cji, cj2, "1，"2，ci, and C2 

satisfy the following four equations: 

ci(G(7) - a - r - p ) 

(jJl UJ2 "2 Ci — C2 

7?-A.afp r] 一 (h、a+p 1 -f 7i,a V + 72,a ” 一 1、 

C2(G(7) - a - r) = 、 

UJi U2 l^l "2 _ Ci — C2 

0 + 01,a ,p + 没 + P2,a+p + 沒一71,a 0 — 72.a —没 + 7 • 
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In addition, wc can also obtain another two equations from the fact that u(x) is 

continuously (lifTerentiable al barrier h: 

CJi + 0；2 - Ci = —/̂ i 一 "2 - f'2, 

+ fh,a、(MJ2 - Cl7 = + l2,a^2 _ C2I• 

All of these equations are linear with respect to the undetermined parame-

ters. To solve ihorn, first we can easily obtain that 

q = 777-̂  and C2 = 777-7 • 
6 ( 7 ) - a - r - p 6 ( 7 ) - a - r 

Substituting these two into the above linear system will reduce it further to 

A(P)C(P，7) = J(P’7)， (4.34) 

with c(p’7) = (cJi’a;2’"i，"2)'厂，J("，7) =('.12 ，and 

1 1 1 1 

• , 、 A.afp /?2,afp -71,a —72,a 
A ( p ) = 

1 1 1 1 
n-Pl.a^p n-02,a+p T； f -yi.o Tj f -ya.o 

1 1 1 1 

where Cn = c! -C2 = (g⑷-a-二c⑷-a-r). Appendix C.3 shows that the matrix 

A(p) is non-singular and the coefficients defined by (4,22)-(4.25) solve the linear 

equations (4.34). • 

We also can extend the above approach to derive the distribution of oc-

cupation times the process spends within two barriers. A minor technical gap 

remains. All detailed discussion is included in Appendix C.4. 

R e m a r k 4.3. The key step in the whole proof lies in (4.31). The assumption of 

exponential-type jump distributions in Kou's model allows us to differentiate the 

OIDE in order to transform the OWE to an ODE. It seems that our method does 

not apply for any jump distribution other than exponential-type distributions. For 

instance, this transformation will not be workable for Merton's jump diffusion 

model. 
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R e m a r k 4.4. Cai and Kou (2008) studied a similar 01DE under a more general 

hyper-eTponential jump diffusion model as follows. 

t 
(£?z)(a:) - (a + r)w(x) = 0, x < Xq 

< (4.J5) 

u{x) = g{x), X > xo, 

where a > 0 and g{x) is a known function. By transforrmng (4-35) into a 

homogeneous linear ODE with constant coefficients, Cai and Kou managed to 

show that the solution to (4-35) must be of the form 

Despite the similarity, (4.8) is much more complicated because it is "non-

homogeneous "and furthermore it contains two OIDEs in two disjoint regions that 

are intertwined together due to the integral parts. We are still able to reduce it 

down to a linear ODE, applying the same technique as in Cai and Kou (2008) 

after some modification. 

R e m a r k 4.5. Note that several structured products issued on the real financial 

market have a payoff written on the occupation time, but with an interest rate 

or a spread of swap rates with different maturities as underlying. These under-

lying processes are usually of mean reversion structure. However, our approach 

would be hard to be extended to the mean reversion jump diffusion cases. The 

primary technical barrier lies in the fact that the corresponding OIDE，in which 

the coefficient of the first derivative is not a constant but a linear function of 

state variable, is difficult to solve explicitly. 

\ 

4.4. Pricing Occupation-Time-Related Options 

In this section, several examples of occupation-time-related options accumulated 

in the literature are considered, including the step options suggested by Linetsky 

(1998)，the corridor options studied by Fusai (2000), and the quantile options 

proposed by Miura (1992). Thanks to Theorem 4.2 and the special structures 
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of these options, we can obtain closed-form expressions for the option prices in 

terms of their Laplace transforms and then make it possible to suggest hedging 

strategies accordingly. Furthermore, we are also able to calculate the price sen-

sitivities very easily from the Laplace transforms, which is convenient for risk 

management on the options. This section uses delta as an example. The calcu-

lation of other greeks is similar and thus omitted due to the space limitation. 

丄From now on, we assume that L is the constant barrier to define the occu-

pation times. Define h = \og{L/So) as the associated barrier for the log-return 

process {Xt}. 

4.4.1. Pricing Step Options 

As mentioned in the introduction, Linetsky (1999) introduced the step option to 

overcome the hedging problem inherent in standard barrier option around the 

barrier. For down-and-out step call options, the payoff at maturity is defined as 

the payoff of a standard European call option discounted at a rate that depends 

on the amount of time spent by the underlying asset below a pre-specified barrier. 

We can classify these options into proportional step options, simple step options, 

and delayed barrier options according to different discounting schemes used. 

Proportional (Geometric) Step Options 

In this section, we focus on pricing a proportional step call option, which has the 

payoff 

e-們’⑷OSoe朴-K)+， 

where p is the non-negative knock-out rate, SQ is the initial underlying asset 

price, XT is the log-ret urn value of the underlying asset price at maturity T, and 

Tr(h) is the occupation time as defined in (4.4). The pricing method also applies 

to proportional step put options. 

In some sense the proportional step option can be regarded as an extension 

of the standard barrier option and the vanilla European option. With a finite 
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positive knock-out rate p, it is obvious that 

- /O十 < e-m⑷(SoeX'r — K ) ' < (4.36) 

where ĥ is defined as the first passage time of {Xj} to the barrier h, i.e., = 

inf{( > 0 : Xt < h}. The payoff of the proportional step call option is sandwiched 

by the payoff of the vanilla European call on the right- hand side of (4.36) and 

the payoff of the down-and-out barrier call on the left-hand side of (4.36). When 

p = 0’ the payoff of the step option coincides with that of the vanilla call. As p 

approaches +oo, it tends to the payoff of the down-and-out barrier call. 

Additionally, (4.36) also reveals one advantage of the step option over the 

standard barrier option. The down-and-out barrier call eliminates the payoff to 

the investor immediately if the underlying process { X J touches the barrier h at 

or before T, i.e., = 0. However, the payoff of the step option does not 

disappear when X crosses the boundary. Investors still receive a portion of the 

original payoff, discounted depending upon the length of the period that {Xt} 

spends below h. This mollifies the discontinuity of the barrier options around h, 

which eases the difficulty of risk management on barrier options to some degree. 

We have discussed it briefly in the introduction section and Linetsky (1999) has 

offered more details. 

Under the risk-neutral probability measure, the proportional step call option 

price is 

Make a change of variable K, = - log K for the convenience of later applying 

Laplace transforms. Then, we have 

CI{K,T) = e—rTEle—PTr ⑷ 和 — 

Taking double Laplace transforms on the price function CI(K,T) with respect to 

K and T, respectively, and applying the Fubini theorem to interchange the order 
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of the expectation and the integral with respect to /c, we obtain 

roo roo 
‘ • ’ a ) ：二 / dT (〜了 )如 

JO J-OO 

=广利厂/。r;^-(X.,)ds + ( … ( 4 37) 

1 ) Jo 

Using Theorem 4.2, we can derive an explicit closed-form expression for the 

double Laplace transform above. 

T h e o r e m 4.6. With the initial underlying asset price So and barrier L, assuming 

that (4.21) IS satisfied, then for any a > 0 and 0 < (p < min{77,6} - 1，the double 

Laplace transform of the proportional step call option price T) is 

ov? f 1 

/ M a a) = , ° , 1 、 • " ’ # + l ,a , log(L/5o)), 

where u[x\ p, 7 , a, h) is given by Theorem 4-2. 

The delta of an option is defined as the derivative of the option price with 

respect to the current underlying price SQ. Taking differentiation under the 

integral (4.37), we can easily see that 

f ) foo roo Q 

• g i M 叫0 dT J e - 了 两 

Accordingly, the transform of the delta is just the derivative of the transform of 

the price function with respect to SQ. Hence, the delta of the step option is also 

obtainable through the Laplace transform. 

Simple (Ar i thmet ic) Step Opt ions and Delayed Barrier Opt ions 

In addition to the proportional step options, Linetsky (1998) also discussed two 

other kinds of step options, simple (arithmetic) step options and delayed barrier 

options. Laplace transform techniques can also lead to analytical solutions to 

pricing problems of these two step options. 

The simple step option uses a discounting scheme that is different from what 

is used for the proportional step option. The payoff of a simple step call option 

is defined as 

{I - TTih)/'dy ' (ST - K)"-. 
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With a positive knock-out rate 1 /i9, investors will lose the option payoff gradually 

until the occupation time accumulates up to when they will lose all of the value. 

This is a major difference from the proportional step option, where investors will 

never lose the entire option value. 

It IS simple to convert the pricing problem of simple step options into that of 

the proportional step options we discussed in Section 4.1.1 via Laplace transform. 

Note that for any /? > 0, 
roo 

Jo 
roo 

, =e一rT^El / 例 1 — TT{h)ld)'-e-^dd • - K) ‘ |So] 
‘ J o 

= 所 ⑷ OSoe 和 - K r i = i c “ p ; / c ’ : r ) . 

The right-hand side of the formula above is calculable via double Laplace inver- ‘ 

sion. Thus, we can essentially apply triple Laplace inversion to obtain C2、The 

numerical experiment in Section 5 indicates that the computation is still very 

efficient. 

The 4elayed barrier option poses an alternative discount factor l{rr(/i)<i?} 

- o n the payoff of the vanilla European call. Hence, the option value is wiped out 

completely if and only if 7"7，(/i) > d. We can also convert the associated pric-

ing problem into that of a proportional option formulation by taking a Laplace 

transform with respect to d. 
r 

P 

Hence, triple Laplace inversion can also be applied to price delayed barrier op-

tions numerically. 

• t -‘ 
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4.4.2. Pricing Corridor Options 

The corridor option is anather example of occupation-time-related options. It 

pays an amount at the maturity, dependent upon the time spent by a reference 

market variable below (or above) a given barrier or inside an interval. The former ‘ • * 

.option, i.e., the corridor option with single barrier, is usually referred to as the 

hurdle option. In this subsection, we will concentrate on hurdle options only. 

Corridor options with double barriers can be priced similarly. For details, see 

Appendix C.4. It is worth mentioning that Fusai (2000) studied the pricing of 

corridor options with double barriers under the GBM model. His approach relied 

on the special properties of Brownian motion. 

A corridor option with single barrier has the payoff max{T<r(") — /C, 0} for 

a given strike K < T, and its price at time 0 is thus given by 

Cor(K, T) = e-"^E[max{rT(/i) — K, 0} . 

We need the expectation of t•'尸(/i) to proceed the price calculation. A nice prop-

erty of the Laplace transform of a probability distribution is that we can obtain 

any order moments of the distribution through the derivatives of its Laplace 

transform at zero. Keeping this property in mind and using the notations in 

Theorem 4.2, we have 
roo roo ^ 
/ e - ( " 付 了 = / e - ( a + 。 ' 厂 = x]dT 

Jo Jo 

(4.38) 
op 

Then, taking a double Laplace transform of Cor[K, T) with respect to K and 

T, i.e., 
roo roo 

gcorM 二 / 
‘ Jo Jo 

we can obtain Theorem 4.7 as follows: 

Theorem 4.7. For any </? and a > 0, we have 

1 du 
" c o r — ) = --^(0;0 ,0 ,a , log(L/5o)) 

+‘tx(0;(^,0’a，log(LAS。)）- (a +1”一 • (4.39) 
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Proof: Applying the Fubini theorem to interchange the order of expectation and 

integrals in gear, we have 

roo roo 

gc^o) = / e — ⑴ 7 ’ d r E [ / - K,0}dK] 

JQ JO 
1 

二 -- / 厂 
9 Jo 

+ 广 e 如 r / ’ £ ; [ e - — ^ _ _ L ^ . 
人 （a + 

The integral in the second term on the right-hand side above can be represented 

by 72(0; v?�0’a,/i). In addition, we know from (4.38) that the integral in the first 

term is du(0] p,0,a,h)/dp. The theorem is proved. • 

What is interesting here is that we can also obtain a closed-form expression 

for du/df)、which is convenient when calculating Qcor-

P r o p o s i t i o n 4.8. For any a > 0, we have 

^(0;0,0 , a , log(L/5o))= I - A ⑷ 。 ⑷ - 。 ’ s 。 〉 产 40) 

where 

�—fe，a7l,a72,a (A.a - + 6) 

“ 讽 a + r)2 a - /?2.a)(/?l.a + 7l.a)(A.a + 72,a) ’ 

�_/?l.a7l.a72,a (fea - + 0) 

…2 —讽a + r)2 (/h’a — /3l,am.a + 7l.a)(02,a + 72’a)， 

~ _A.a/?2.a72.a (7l,a + ")(7l,a - 没) 

— J]Q{a + r ) 2 (71,„ + A , a ) ( 7 l , a + 02,a){ll,a 一 72.a)‘ 

~ _A.a/?2.a7l.a (72，a + 7?)(72,a — 0) 

二 r]e(a + r)2 ( 7 2 ,。+ A,a)(72,a + P2,a)h2,a — 7l’a). 

Proof: According to Theorem 4.2, u is a piecewise-defined function. To em-

phasize their dependence on p and 7 ’ we rewrite ci, C2, uji, 0̂ 2, and "2 

as ci(p，7)，C2(7)’ 的(P’7)’ ^̂ i(P，7)’ and • n ) , respectively. When 

X < h~ log(L/5o), by the product rule of function derivative, we have 

dp \ dp dp y 
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Letting X = p = 7 = 0 and noting that a;! (0,7) = ^̂ 2(0’ 7) = 0 (cf. (4.22), (4.23), 

and (4.26)), we obtain that when So < L, 

^ 二 p 。 广 au;i(P’7) I r d u 2 { p n ) 

dp p=o V L / dp (p.7)=(o,o) \ L J dp (p,7)=(o,()) 

-机! f，… (4.42) 
op (⑶=(o’()） 

Similarly, when when SQ > L, we have 

警 — ( 去 广 毕 I - ( A V - ^ I .(4.43) 

op P二0 J op (p.7) = (0.0) J op (p.7)=(0.0) 

Note c(p, 7) = (a;i(p，7)，Lj2(P，7)’î i(P’7)，"2(P’7)) is the solution of the linear 

system (4.34), i.e., A(p)c[p, 7) = J(p, 7). Then, 

学 c(0’0) + A ( 0 ) 毕 二 华 . 

op p = o dp (p.7)=(o,o) dp (p.7)=(o.o) 

The fact that c(0,0) = 0 implies 

A(o 产(P，7) = 叫 P，7) 
dp (p,7)=(0,0) dp (p,7) = (0.0)" 

In other words, we can obtain 彻 力 ,i.e., the partial derivatives of 

(a;i(/9’7)’a;2(p,7)，î i(p，7)，î 2(p，7)) at (0,0) by solving the above equations. 

Then substituting the result back into (4.42) and (4.43) yields (4.40) imme-

diately, which completes the proof. • 

4.4.3. Pricing Quantile Options 

Miura (1992) introduced a-quantile options as an extension of lookback options. 

Its payoff depends on the a-quantile of the underlying asset price process, which 

is defined as 

q{a, T) 二 inf {/i : tt(/i) > aT}, for any a G [0，1 • 

Following Dassios (1995), we will investigate the pricing of the fixed-strike a-

quantile call option with payoff 乃 - K ^ . It is worth mentioning that 
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when Q = 0 and 7 = 1 ’ g(a,T) is the running maximum of { X J over [0,T] so 

that the quantile option is reduced to the lookback option. 

For any 0 < t' < 7", let 

Qua(v,T) = 厂门—/O 十 1 

be the (f/T)-quantile option price. A key observation that 

{Tr(h) <v} = {q(v/T,T) > hj (4.44) 

links the quantile options with occupation times. The Laplace transform of 丁 

helps us again to establish a theorem as follows on the closed-form double Laplace 

transform of the quantile option price. Inverting the transform can then produce 

numerical prices. 

Theo r em 4.9. Assume that 0 < 7 < min{7;,6^}. For any a > 0 and p > 0 such 

that G(7) < a + p + r, the double Laplace transform of Qua(v,T) with respect to 

V and T is given by 

9Qua(p,a) 

roo roo 

Jo Jo 

‘ + 仆 Mo'、 

— _ + iil—(1 - (K /Sn ) ^ ' ^ ) 

P 丁 P (H,A今P 7 1 . a V / u/ / 
‘ - 學 • ( I - ( ^ / ^ o ) ^ ) + ( . ^ f e ) ' 扑 < So’ 

where cji, 0^2, and 1/2 are given by Theorem 4-2 with both 7 and h replaced by 

0. 
Proof: With the change of variable s = T - f , we have 

"(3u“P, a)=厂厂 e-(a 一e-贴Q—i;，v + s)dsdv. (4.45) 
JQ JO 

Note that for any random variable Y, 

广+00 

E[{Y - Ky] 二 / P(Y > u)du. 
JK 
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In particular, 

Q?m(”’" + s) =e—r(”"）f + > - log(w/5o)]t/w. 

JK ^ + 7 

Introduce another chaiige-of-variable such that h = \og、u/SQ)/’. Then, 

+ = e- r(。")7Soe7h / P[q( , i； + 5) > h]dh, 

Jk ^^ + 

where k = \og(K/SQ)/^. The equivalence (4.44) implies 
厂00 

, Qua{v,v + s) = e — — / Plr,.,,{h) < v]dh. (4.46) \ 
Jk 、 

Subsliluling (4.46) back into (4.45) leads lo 

roo / roo roo \ 

9QUA(p,a) = I ’Soe八 j J < v\dsdv] dh. 

(4.47) 

The double integral (4.47) becomes 

roo poo 
/ / 卜0P1t”+、,（/i) < v\dsdv 

Jo Jo 

= , < v]dv 
Jo Jo 
1 1 

= - e — … 付 卞 ‘ ⑷ 口 力 - - i — — -

P Jo p(a + r + p) 

under a change of variable i = v + s. The integral on the right-hand side of this 

equality is equal to ti(0, p, 0，a, h) by Theorem 4.2. Hence, , 

roo roo 
/ / 厂 … 士 卜 州 ⑷ < y]dsdv 

Jo Jo / 
i ( c j i e - h + 决 , ’ /i > 0; 

Plugging this into (4.47), routine calculation will complete the proof. • 

R e m a r k 4 .10. Cai (2008b) developed a method to price both the fixed- and 

floating-strike quaniile options numerically using Laplace inversion twice under 

a more general hyper-exponential jump diffusion model. Our method improves 

the efficiency because it requires inversion once only. His method can also be 

used to price floating-strike quaniile options under a more general jump diffusion 

model. 
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4.5. Numerical Results 

In this section we present numerical results of the options prices and hedging 

parameters. For numerical pricing and hedging of options via Laplace inversion, 

we use the analytical formulae in Section 4.4 and the multi-dimensional Euler 

inversion algorithm, which was introduced by Choudhury, Lucantoni, and Whitt 

(1994) and was extended to the two-sided case by Petrella (2004). 

4.5.1. Proportional Step Options 

We use the modified two-sided Euler inversion algorithm of Petrella (2004) to 

invert the two-sided Laplace transform with respect to K for the proportional step 

.opt ion . This 'algorithm is faster and more stable numerically than the original 

Euler inversion when dealing with two-sided transforms, due to the introduction 

of a scaling factor. The numerical results for the proportional step option prices 

(denoted by EI Price) are given in Table 4.1, where we also show the.Monte Carlo 

simulation results (d§hoted by MC Value) as a benchmark together with the 

associated 95% confidence intervals (denoted by 95% CI). The numerical prices 
f 

are given at the top and the delta values are given at the bottom. We can see 

that all the EI Prices stay within the 95% confidence intervals of the associated 

MC Values. The pricing method based on our analytical pricing formulae sls well 

as the Euler inversion algorithm is accurate and efficient. 

As A approaches 0，the double exponential jump diffusion model will con-

verge to a geometric Brownian motion. Therefore, we can expect both the price 

and delta of occupation-time-related options under the DEM should also con-

、 verge to those under the GBM. Table 4.2 verifies this intuition. Furthermore, it 

\ shows that our numerical method works for GBM as well because it replicates 

Linesky's result when we take A == 0. 
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Prices of Proportional Step Options under the DEM 

So K EI price MC value Std Err 

90 13.81882988 13.84674076 0.01999824 

100 100 9.42438004 9.45073300 0.02077236 

110 5.97929056 6.00093565 0.02087176 

90 19.04025239 19.06951901 0.01933582 

105 100 13.45926395 13.48746393 0.02121837 

110 8.90133738 • 8.93024825 0.02272951 

‘ Deltas of Proportional Step Options under the DEM 

So K EI price MC value Std Err 

90 0.96243741 0.96296267 0.00149024 

100 100 0.73048507 0.73064749 0.00128122 

110 0.51700296 0.51785311 0.00122150 

90 1.07858913 1.07768208 0.00156524 

102 100 0.82650108 0.82629754 0.00133499 

110 0.59299438 0.59407950 0.00126350 

Table 4.1： The double Laplace inversion (EI price) vs. Monte Carlo simulation (MC value) 

under the DEM. The default choices are A = 3, r = 0.05, <J = 0.2, r? = 30, 0 = 20, p = <? = 0.5’ 

L = 102, p = 1, and t = 1. The CPU time for the Laplace inversion method is around 

3.5 seconds. MC values along with the associated standard errors (denoted by Std Err) are 

obtained by using 50,000 time steps and simulating 100,000 sample paths, and the CPU time 

is around 10 minutes. This table shows that all of the EI prices stay within the 95% confidence 

intervals of the associated MC values. ^ 

4.5.2. Simple Step, Delayed Barrier, Corridor, and 

Quanti le Options 

The numerical prices and delta values of other occupation-time-related options, 

including simple step, delayed barrier, corridor, and quantile options, are given 
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Numerical Results When the Jump Intensity is Small 

Prices Deltas 

A P A 

0.1 6.802016390247875 0.616344715465678 

0.01 6.782466159399428 0.616240150248286 

0.001 6.780507945848759 0.616229613080276 

0.0001 6.780312092511664 0.616228558551593 

0.00001 6.780292506857593 0.616228453089914 

0 6.780290330669454 0.616228441372041 

Table 4.2: How the prices and deltas of a proportional step option change as A goes to 0. 

When A 0, both of the prices and deltas converge to those under the G B M model. The 

parameters we use are the same as the setting in TABLE 5.3 of Linetsky (1999): r = 0.05’ 

o = 0.6’ L = 95, SQ = 100，K = 100, and t = 0.5. The j ump parameters are r; = 30, 0 = 20， 

and p = q = 0.5. When A = 0, our results are the same as Linetsky's. 

in Table 4.3-4.6. 

For the pricing and hedging of the simple step and the delayed barrier op-

tions, we need to do triple Laplace inversions. First, we use a two-dimensional 

Euler inversion formula for the complex-valued function (Formula (2.7) in Choud-

hury, Lucantoni, and Whitt (1994) with h = k = 1) and then we do an extra 

one-dimensional Euler inversion (Formula (4.6) in Abate and Whitt (1992)). Our 

results show that the average time spent by one triple Laplace inversion is around 

2 minutes, which is still very efficient compared to the Monte Carlo simulation. 

For the numerical results of corridor and quantile option prices, it suffices to use 

a two-dimensional Euler inversion algorithm. Our method is more efficient than 

Cai's method Cai (2008b). 



Chapter 4. Occupation Times 102 

Prices of Simple Step Options under the DEM 

So K EI price MC value Std Err 

90 9.67457995 9.70774495 0.02985213 

100 100 7.07669587 7.10395013 0.02529039 

110 4.75390837 4.77502124 0.02191003 

90 12.16683520 12.20418981 0.03073929 

102 100 8.92866361 8.95838153 0.02642060 

110 6.03645208 6.05956925 0.02348342 

Prices of Delayed Barrier Options under the DEM 

So K EI price MC value Std Err 

90 14.25719729 14.28598897 0.03006500 

100 100 10.08003700 10.10164481 0.02591103 

110 6.52095740 6.53852537 0.02366194 

90 16.39440581 16.43625061 0.02796657 

102 100 11.63440011 11.66789910 0.02483299 

110 7.59164287 7.61545252 0.02366583 

Table 4.3: The Laplace inversion (EI price) vs. Monte Carlo simulation (MC value). For the 

simple step and delayed barrier options, the default parameter choices are A = 3, r = 0.05, 

o = 0.2’ r; = 30, 0 = 20, p = 9 = 0.5’ L = 102，d = 0.5，and t = 1. All Monte Carlo values 

(denoted by MC value) along with the associated standard errors (denoted by Std Err) are 

obtained using 50,000 time steps and simulating 100,000 sample paths. The CPU time of our 

numerical methods for generating one price of simple step or delayed barrier options is around 

2 minutes. The CPU time for Monte Carlo simulation is arSund 10 minutes for the two type 

of options. The table indicates that all the EI prices stay within the 95% confidence intervals 

of the associated MC values. 

4.5.3. Discretization Frequency Effect 

Our EI price is given under an assumption that the underlying price is continu-

ously monitored. However, in reality a sizable portion of contracts specify fixed 
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reference times for monitoring and the occupation time is defined according to 

the number of the monitoring dates in which the underlying price is above/below 

some level or within a band. This may introduce substantial differences between 

the two monitoring schemes. Some scholars have already studied the effect of 

discretization frequency on the pricing of occupation-time-related options under 

GBM models. The main literature includes Atkinson and Fusai (2007), Davydov 

and Linetsky (2002) and Fusai and Tagliani (2001). 

In this subsection, we aim to investigate how the discretization frequency 

will affect the pricing results under the double exponential jump diffusions. Table 

4.7 and Figure 4.1 compare our continuous-time outcomes in one proportional 

step option example with the prices under discrete time monitoring, which are 

obtained through Monte Carlo simulation, for various initial underlying prices. 

The monitoring frequencies we use are monthly, biweekly, weekly and daily. That 

is, the time horizon, 1 year, is divided into 12，26’ 52 and 252 subintervals, respec-

tively. For discrete monitoring contracts, define the occupation time as follows: 

N 

丁L = - ^t-l)l{S(,<L}, 
t=l 

where 0 == to < … < (n = 了 are the reference dates. 

It is clear to see that the relative differences between the two schemes re-

duce significantly when the discretization becomes more frequent. Therefore, 

the continuous results should be a good approximation to those contracts un-

der high-frequent monitoring (say, daily or weekly). However, we should admit 

that significant differences exist (e.g., more than 9% for SQ = 105 in the case of 

monthly monitoring) between the continuous-time scheme and the less-frequent 

discrete monitoring. It will then be important to distinguish these two under 

this scenario. 

A similar convergence can be observed for the delta too. As the discretiza-

tion becomes finer and finer, the deltas under discrete monitoring will converge 

to the delta under continuous monitoring. Table 4.8 and Figure 2 demonstrate 

the related numerical experiments. 
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F i g u r e 4.1: Comparison of continuous and discrete monitoring results under the D E M model. 

As the discretization becomes finer, the discrete-time monitoring option prices converge to the 

continuous-time option prices under all initial stock prices. The default parameters of the 

underlying process are r 二 0.05，a = 0.2’ A = 3, t? = 0 = 15 and p = q = 0.5. Consider 

a proportional step option with the parameters L = 102, K = 100，p = 1, and t = 1. The 

occupation time refers to the time the underlying price spends under L = 102. And we use 

100,000 sample paths to simulate the discrete prices. 

4.5.4. Robustness of Our Pricing Algorithm 

We point out that our Laplace inversion based pricing algorithm is robust. As 

illustrated in Figure 4.3, our pricing algorithm retains its accuracy when some 

model parameters vary within realistic ranges. More precisely, when t] (6 and p, 

respectively) changes in [15,100) ([15,100) and [0,1]，respectively), the relative 

errors between our numerical prices and MC prices are all less than 0.3%. These 

ranges cover most cases in reality. For example, T] G [15，100] and 6 G [15,100 

mean that the expected upward and downward jump sizes of return are between 

1% and 6.67%. Note that the minimum and maximum daily returns of S&P 500 

from Aug 1, 2007 to Oct 26，2009 (during the ongoing financial crisis) are -4.76% 

and 4.11%, respective. Absolute values of them are both smaller than 6.67%. 

Consequently, we draw the conclusion that our pricing algorithm is robust and 

thus reliable. 

4 
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Figure 4.2: Comparison of continuous and discrete monitoring deltas under the DEM model. 

As the discretization becomes finer, the deltas of discrete monitoring converge to those of 

continuous monitoring under all initial stock prices. The default parameters of the underlying 

process are r = 0.05, o = 0.2，A = 3, r/ = 0 = 15 and p = g = 0.5. Consider a proportional step 

option with the parameters L = 102，K = 100, p = 1, and i = 1. The occupation time refers 

to the time the underlying price spends under L = 102. And we use 100,000 sample paths to 

simulate the discrete deltas. 

4.6. Conclusion 

In this Chapter, we investigate pricing and hedging problems of occupation-tirne-

related options such as step options, corridor options, and quantile options under 

Kou's double-exponential jump diffusion model. By studying the occupation-

time distribution, we derive the Laplace transform-based analytical solutions to 

these pricing problems, which can be inverted numerically via the Euler Laplace 

inversion algorithm. The numerical results indicate that our pricing formulae are 

both accurate and efficient. 
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Figure 4.3: The relative errors between the Euler Inversion and MC Simulation for varying 

p, e and 7]. We test the robustness of our method using the proportional step option. The 

default parameters of the jump diffusion processes are r = 0.05, <T = 0.2’ A = 1,77 = 0 = 15 and 

p = q = 0.5. The current underlying asset price is So = 105. The option contract parameters 

a.ve p = I, K = 100 and L = 90. The occupation time is accumulated when the underlying 

price is less than 90. 
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Prices of Corridor Options with single barrier under the DEM 

K So EI price MC value Std Err 

95 0.46627793 0.46580529 0.00060334 

0.2 100 0.34654861 0.34620580 0.00064820 

105 0.22446654 0.22460171 0.00061260 

95 0.31194613 0.31159386 0.00050566 

0.4 100 0.22032156 0.22018846 0.00052382 

105 0.13161829 0.13177739 0.00046635 

Prices of Quantile Options under the DEM 

a K El price MC value Std Err 

90 6.98491715 7.00339911 0.01605925 

0.2 100 2.08465538 2.09972912 0.01122946 

110 0.37724012 0.38423388 0.00552578 

90 12.59539246 12.61168267 0.02098495 

0.5 100 5.90331831 5.92048348 0.01876866 

110 2.29109044 2.30873387 0.01459738 

Tab le 4.4： The Laplace inversion (EI price) vs. Monte Carlo simulation (MC value). For 

the corridor options with single barrier, the default parameter choices are A = 3, r = 0.05, 

a = 0.2, 77 = 30, 0 = 20, p = 9 = 0.5, L = 102’ and t = 1. For the quantile options, the 

default parameter choices are A = 3, r = 0.05, a = 0.2’ 77 = 34, 0 = 34, p = 0.6，q = 0.4’ 

SQ = 100’ 7 = 1, and i = 1. All Monte Carlo values (denoted by M C value) along with 

the associated standard errors (denoted by Std Err) are obtained using 50,000 time steps and 

simulating 100,000 sample paths. The CPU time of our numerical methods for generating one 

price of corridor options, and quantile options is around 3 seconds and 3 seconds, respectively. 

The CPU time for Monte Carlo simulation is around 22 minutes for the quantile options and 

around 10 minutes for the corridor options. The table indicates that all the EI prices stay 

within the 95% confidence intervals of the associated MC values. 
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Delta of Simple Step Options under the DEM 

So K EI value MC value Std Err 

90 1.13763436 1.13898389 0.00377164 

100 100 0.84343613 0.84598812 0.00282432 

110 0.58164514 0.58407656 0.00219618 

90 1.35962149 1.35725685 0.00391806 

102 100 1.01249653 1.01289927 0.00291876 

110 0.70396190 0.70573895 0.00226845 

Delta of Delayed Barrier Options under the DEM with A = 3 

So K EI value MC value Std Err 

90 1.04040458 1.00570473 0.02406215 

100 100 ,0.75353143 0.73751457 0.01574238 

110 0.51485647 0.50789855 0.00969742 

90 1.09523707 1.07269986 0.02342268 

102 100 0.79990286 0.78274507 0.01498936 

110 0.55545444 0.54777543 0.00905981 

Table 4.5： The Laplace inversion (EI value) vs. Monte Carlo simulation (MC value). For 

the simple step and delayed barrier options, the default parameter choices are A = 3, cr = 0.2’ 

r = 0.05’ 7] = 30, 0 = 20, p = q = 0.5，L = 102’ d = 0.5，A5o = 0.1, and < = 1. Monte Carlo 

values for simple step and delayed barrier options along with the associated standard errors 

(denoted by Std Err) are obtained by using 100,000 time steps and simulating 100,000 sample 

paths. The CPU time of our numerical methods for generating one price of simple step or 

delayed barrier options is around 100 seconds. The CPU time for Monte Carlo simulation is 

around 25 minutes for the simple step or delayed barrier options. The table indicates that all 

the EI values stay within the 95% confidence intervals of the associated MC values. 
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Delta of Corridor Options with single barrier under the DEM 

K So EI value MC value Std Err 

100 -0.02563184 -0.02556980 0.00008900 

0.2 102 -0.02669485 -0.02658852 0.00008981 

104 -0.02209558 -0.02199631 0.00008277 

100 -0.01912417 -0.01908412 0.00008163 

0.4 102 -0.01957286 -0.01956383 0.00008143 

104 -0.01569789 -0.01561718 0.00007313 

Delta of Quantile Options under the DEM 

a So El value MC value Std Err 

90 0.06855937 0.06908873 0.00077633 

0.2 100 0.33498655 0.33507900 0.00118391 

110 0.62926410 0.62827708 0.00108407 

90 0.25471549 0.25497213 0.00115890 _ 

0.5 100 0.57434958 0.57383915 0.00121216 

110 0.82522134 0.82466107 0.00096239 

Table 4.6: The Laplace inversion (EI value) vs. Monte Carlo simulation (MC value). For 

the corridor options with single barrier, the default parameter choices are 入==3’ r = 0.05， 

a = 0.2,77 = 30, 0 = 20, p = 9 = 0.5, L = 102, A5o = 0.1, and t = 1. For the quantile options, 

• the default parameter choices are A = 3, r = 0.05’ a = 0.2, r? = 34, 0 = 34, p = 0.6’ q = 0.4， 

So = 100, 7 = 1 , A5o = 0.1, and t = 1. Monte Carlo values for corridor and quantile options 

along with the associated standard errors (denoted by Std Err) are obtained by using 20,000 

time steps and simulating 100,000 sample paths. The CPU time of our numerical methods for 

generating one price of corridor options and quantile options is around 3 seconds. The CPU 

time for Monte Carlo simulation is around 4.3, and 9 minutes for the corridor, and quantile 

options, respectively. The table indicates that all the EI values stay within the 95% confidence 

intervals of the associated M C values. 
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Monitoring frequency 

Relative differences 

SQ Monthly Biweekly Weekly Daily Continuous Prices 

95 4 .698% 1.974% 1.011% 0 .922% 7.22634078 

100 3 .489% 1.583% 0 .998% 0 .783% 10.35784700 

105 9 .458% 4 .049% 2 .027% 0 .828% 14.37387610 

110 8 .940% 3 .918% 2.003% 0 .720% 18.50956926 

115 8 .866% 3 .947% 1.982% 0 .616% 22.75134627 

120 8 .841% 3 .957% 1.975% 0 .534% 27.12165429 

Table 4.7： Comparison of continuous and discrete step option pricing. The relative difference 

is defined as (discrete price - continuous price)/continuous price. The default parameters of 

the underlying process are r = 0.05, a - 0.2, A = 3, 77 = 0 = 15 and p = q - 0.5. Consider 

a proportional step option with the parameters L = 102，K — 100’ p = 1, and t = 1. The 

occupation time refers to the time the underlying price spends under L — 102. And we use 

100,000 sample paths to simulate the discrete prices. 
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Monitoring frequency 

Relative differences 

So Monthly Biweekly Weekly Daily Continuous Delta 

95 3.990% 2.366% 1.368% 0.361% 0.53553845 

100 -3.411% -1.907% -0.643% 0.275% 0.72754990 

105 4.342% 2.670% 1.752% 0.466% 0.82098985 

110 8.048% 4.428% 1.915% 0.256% 0.83620619 

115 8.850% 3.936% 1.824% 0.195% 0.86111472 

120 8.935% 3.986% 2.108% 0.138% 0.88675445 

Table 4.8: Comparison of the deltas of the continuous and discrete step options. The rela-

tive difference is defined as (discrete delta - continuous delta)/continuous delta. The default 

parameters of the underlying process are r = 0.05，o = 0.2，A = 3, 77 = 0 = 15 and p = <? = 0.5. 

Consider a proportional step option with the parameters L = 102, K = 100’ p = 1, and t = 1. 

The occupation time refers to the time the underlying price spends under L = 102. And we 

use 100,000 sample paths to simulate the discrete deltas. 
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A.l. Proof of Proposition 2.3 

To begin with, let us prove some preliminary properties of SO, SEB and SEB-

SDC [cP/(a),+oo), (A.l) 

SEB C (0，min {K, (1 一 (A.2) 

‘ Sec n [/^’ K/X) C [K, (1 一 ^)cP/(Ar)) if A A'/A) / 0, (A.3) 

SEC n ( K / A , + o o ) C [K/X, (1 - «:)cP /(AJ)] if <Sec n、K/\、+oo ) + 0. (A.4) 

Consider the set So first. For any V e So, it must be a local minimum of the 

function D*(v) - A?; because D*(v) > Xv for all ？; > 0. This implies that ! 

, d (f 
= A and > 0. 

Hence, 

cP S CD\V) = 一（r 一 5)V^D\V) + TD'(V) < 6XV, 
一 2 dv么 dv 

that is, V > cP/(6X). This implies (A.l). 

^The classic first order derivative of D* at V exist and the second order derivative of D* at 

V may refer to week derivative. However the second order derivative of D* at V always exist. 

This is because by Condition 4 and 6，D* satisfies a variational inequality on the neighborhood 

of V. The similar results hold for E* in the following argument. 

‘ 105 
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The proof of (A.2)-(A.4) is similar. For any V e Seb^ Using Condition 5, 

we then have 

—( l-K)cP ‘ (A.5) 

for such V. On the other hand, E* achieves its local minimum at V, which 

implies that 

. •^E-Mlvsv^ = 0 and ^ E ^ v ^ ^ v > 0. (A.6) 
dv dv^ 

(A.6) implies that 

CE\V) 二 一 丑 . （ V ) 一（r 一 + TE\V) , 
2 dv^ dv 
1 (f •. 

Combining it with (A.5) will lead to a conclusion that V G [0, (1 - K)CP/6). 

It is clear that V < K. These leads to (A.2). For any V e Sec n [/̂ ，K/A)， 

E*(V) = V - K. Consider a function E*(v) - - K). v = V is a local 

minimum of the function and therefore, 

= 1 and > 0. 
dv dv^ 

Then, we have 

CE*{V) = -{r- 6)V-fE*(V) + rE*{V) 
2 dv^ dv 

< -(r — 6)V + r(V - K) == SV - rK. 

Note that CE*{V) > SV - (\ - K)CP, which implies SEC 门[^^’ K/X) + 0 only if 

< (1 - «:)cP/r. That is, (A.3) follows. For any W € SEC 门(/<^/A,+oo), it is . 

a local minimum of E*{v) - (1 - \)v on the interval [K/X, -foo). From this, we 

may derive that 

CE\V) < -(r - 5)(\ - X)V + r(l - X)V = 6(1 一 \)V. 

Combining it with CE*{V) > SV - {I - K,)CP, we have V < {I - K)CP/(XS). 

Note that V > K/X in this case. The strike price K should satisfy that K < 
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(1 — K)CP/S. Consequently, a necessary condition for SEC n {K/X, 4-oo) ^ 0 is 

that K < {\ - K,)CP/6. Furthermore, (A.4) holds. It is worth pointing out that 

the first sentence of part (iii) has been proved meanwhile. 

We now prove part (i). First we claim that So + 0. Suppose that it 

is not true, i.e., So = 0. Consider a sufficiently large number C such that 

C > inax{/C/A, (1 - K)CP/{X6), (1 - K:)cP/(Ar)}. For any K > C, it cannot be 

an element in SEC according to (A.3) and (A.4). Hence, either 

E^V) 二（1 - X)V, CE*{V) <SV - { I - K)CP 

or > (1- \)V holds for such V. If the first case is true, D*{V) = \V. By 

condition 6，CD*{V) > cP, which means V E So- However, this contradicts to 

the assumption that So = 0- Hence, the second case holds for all V > C. Using 

condition 4, it is easy to see that CD*{V) > cP. The assumption of 5/) = 0 

implies D*{V) > XV. We may reach that = cP for al\ V > C with the 

help of condition 4 again. According to Appendix A.2，the ODE CD*(V) = cP 

admits a.general solution in the form of 

PP 

r 

where P > \ and 7〉0 . On the other hand, by (2.2), we have that 

-广 + 0 0 -

D*{V) = sup < E / e'^'cPrft + sup -h K) 

<2£. + K + VE\ sup 内 晰 . 
r [o<t<oo • 

It is straightforward to argue the finiteness of the expectation on the right hand 

side of the above inequality. This implies that D* grows at most linearly and Ci 

should be 0. As V tends to + 0 0 , D* converges to cP/r. Contradicting to the 

condition that D*(V) > XV. Therefore, SD + 0. 

Second, we show that if some VI E SO, then [Ki, + 0 0 ) C SD- Following 

the arguments leading to the conclusion So # 0, we can see that there is a 

unbounded, monotonically increasing sequence such that D*(VN) = XV^ 
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for all N. It suffices to prove that {VUVN) C SD for any N. We claim that 

D*(V) satisfies the variational inequality problem 

I m in {CD'{V) — cP, D*{V) -XV}=0 in (l/i，fV) (八 了） 

\ D*(V,) = XVu = XVn. 

Actually for any V 6 (Vi, VW), ^ i Sec. Hence, either 

E\V) = (1 一 X)V, CE\V) <6V - ( I - K)cP 

or E*(V) > (1 - X)V holds for such V. If the late case is true, (A.7) follows from 

condition 4. If it is the first case, E*{V) = (1 - A)V implies D*{V) 二 入V̂  and 

together with condition 6, (A.7) holds. 

By ( A . l ) , we have Vi > cP/(6\), thus V > cP/(SX) for all V G (Vi,VW), 

which indicates 

C{\V) -cP = 6XV-cP>0 in (Vi, V^)-

As a result, XV is a supersolution to problem (A.7), i.e., D*(V) < XV in (Vi，^W)’ 

which leads to the desired results D^iV) = XV and CD*(V)-cP > 0 in (Vi, VW). 

Let V^ = inf {V : V E Sp} ’ then SD = [Ktm，十⑴)and > cP/{6X) because 

of (A.l). 

We now move to the proof of part (ii). The nonemptyness of SEB can 

be proved in a similar way as we did for So- Indeed, if SEB = 0, consider a 
�� 、 � 

sufficiently small number C such that C < m\n{K, cP/(\S)}. For any V <C/ii 

cannot be an element in SQ according to (A.l). Hence, either 

D*{V) = XV, LD*{V) < cP 

or D*{V) > \V holds for such V. If the first case is true, E*(V) = (1 - X)V > 

h{V). By condition 4’ CD*{V) > cP. Contradiction. Hence, the second case 

holds for all V < C. Using condition 5, we have CE*{V) > SV - {I - K)CP 

and E*{V) > h{V). Then E*{V) > h{V) since the assumption of Seb = 0 

and V < K. VJe the get that CE*(V) = SV - {I - K)CP for all K < C with 
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the help of condition 5 again. According to Appendix A.2, the ODE CE*{V) 二 

6V — (1 — K,)cP admits a general solution in the form of 

T r 

a contradiction! Second, we will show that if some V G SRB^ then v € SEB 

for all V < V. For this purpose, consider the interval [0, V]. Suppose that 

maxi E*{x) > 0 and denote the maximum point by x*. Thus, 

I i2 

— = 0 and < 0. 
ax dx^ 

They imply that CE*{x*) > 0. Furthermore, note that x* <V and V G SEB C 

0,(1 - «:)cP/(51. Therefore, - (1 - «:)cP < 0 < 

On the other hand, > 0 = h(x*) implies that > cP accord-

ing to condition 4. Since x* ^ we know that D*(x*) > Aa;*. By condition 

5, JCE*(X*) = Sx* - (1 - K)CP because of the assumption E*(x*) > 0. Contra-

diction. Consequently, E*(x) = 0 for all x < V. Define Vf,* = sup So- We have 

SD = [0, V；̂]. Due to (A.2)，V； < min (K, (1 - K)CP/6). 

It remains to prove part (iii) when SEC / 0. In this case, either SEC 门 

{K, K/X] or SEC^(KIX, +oo) is not empty. For the first case «SEcn(/ir’ K/X] + 0, 

suppose VI € SEC 门("^，/^/A]. We might as well assume VI + K/X. It suffices to 

prove E*{x) = x - /C for all x G (VuK/X]. Owing to part (i) and part (iii), we 

have V^ > K/X and = ( l -A ) l / ^ < Noticing E^(x) >x-K 

in x € (Vi, /C/A], we then infer that there exists a point V2 G [K/X, V*^) such 

that E'{V2) = V2-K. Consider the interval (Vi’ I/2) in which E*(V) is governed 

by the variational inequality problem 

’ min {CE^IVY-6V(I - K)CP, E*(V) - /i(V)} = 0 , 
i (A.o) 

E*(Vi) 二 Vi — 
\ 

Thanks to part (iii)we infer K < (\ - K)cP/r, thus 

C{V -K)-SV-\-(\- K)CP = ~rK + (1 — K)CP > 0 
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which, combined with V~K > h(V) in (V î’ V2)，implies that the function V-K 

is a supersolution to the problem (A.8) in (V î’ l^)’ i e., E*{V) < V - K ioT all 

V e (Vi, V2). We then deduce E*(V) = V ~ K ior a\\ V e (VuK/X. 

For the second case «Se(7 A (/<7久’+00) + 0, suppose Vi G <Sec7 n (/<7久，+00). 

It suffices to prove E*{x) = (1 - X)x for all x G [K/X,Vi]. Owing to part (ii), 

we have V； < K/X and E*(V^') = 0< (1 - A)V；-. Noticing E*(x) > (1 - X)x in 

X G [K/X,Vi], we then infer that there exists a point V2 G [V^\K/X] such that 

E'(V2) = (1 - A)V2- Consider the interval (V2.V\) in which E*{V) is governed 

by the variational inequality problem 

: m i n {CE'(V) - j y + (1 - /c)cP, E*{V) - h{V)} = 0, (八 9) 

< E*{V2) = (1 - A)K2, = (1- A)Vi 

Thanks to (A.4), we have V < VI < {I - K)CP/{XS), thus 

£ ( ( 1 - X)V) -SV + {1- K)CP = -X6V + (1 - K)CP》0 

which, combined with (1 - A)V > h(V) in (1̂ 2, implies that the function 

{L-X)V is a supersolution to the problem (A.9) in (V2, Vi), i.e., E*{V) < ( l-A)V 

for all V e (V2,V\). We then deduce E*(V) 二（1 - X)V for all V e \K/X,Vi . 

The proof is complete. • 

A.2. The Euler-Cauchy ODE 

Consider two second-order non-homogeneous ODEs such as 

CD{v) = - i a V ^ D M 一（r — S)v^D(v) + rD{v) = cP 

and 

CE(v) = - i a V ^ E ( ^ ) - (r - + RE{v) = 6v - (I - K)CP. 

Explicit general solutions to both equations are known (Zwillinger (1997), p. 

120). The general solution to the former equation is given by 

cP 
D(v) = — + CiV^ + 
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and the solution to the latter is 

E{v) =v- (1 —咖 P + C3”。+ 
r 

where c ,̂ 1 < z < 4 are constants to be determined by the boundary conditions 

we introduce. It is also easy to see that > 1 and 7 > 0. 

A.3. Properties of Some Elementary Functions 

To simplify the proof of some technique Lemmas, we summarize the properties 

of some elementary function here. The functions are defined by 

h(x) = P +-yx^^-" - iPi)x\ 

/ 2 ( 工 ) = 7 + / ? ： ^ " " - ( " + 7)工召’ 

/3(:r; A) 二 A {{0 - 1) + (7 + 1 ) 工納） - ( / ? + 7)工州’ 

/4(工;A) = (7 + 1) + (/? - 1 )工州-A ( / ? + 

h{x) = _ - 1) - (/? - 1)(7 + m + 7)工 1 

+ (HP + 7)3:7+1 _ + 1)工"+7’ 

/6(工;A) 二 7(7 + 1) - + 7)工召—1 

+ (/?- 1)(7 + m + 7 ) 工 召 - _ - 1)工州， 

a, e) = (/? — 1)(7 + l)xA(x) - afhff叔 1) + b _ + 7)工”1’ 

92{x-, A, b) = 工;A) - 05 - 1)(7 + l ) / 2⑷， 

93(X; A ) = X (/?(7 + 1) - - 1 产 - + 

- A - 1) - + 1)工州 + (/? + 7)工卢)’ 

g4(x; a ) 二（1 - a ) ( ( 卢 一 - / ? (7 + 1)) + + 7 )工 \ 

g5(x; a) = J3jxf4(x; 1) - a(/3 - 1)(7 + l)/2⑷， 

9e(x; A, K, p) = xS,{x)U[x- A ) - ( l - K)h{x){h[x-, X) + p{0 + 7)工付 

97{X\ K) = xfi{x)U(x\ 1 ) - ( 1 - « 0 / 2 (工 ) / 3 ( 2： ; !)• 
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Lemma A . l . For parameters f3 > 1 , 7 > 0, A € (0,1)’ a € (0, !),«; € (0，1)’ 1 -

p > A,6 > 0,e > 0, considering x as variable, we have that 1). / i , /2, ,4’ h、/e，/? 

and h(x\l)Je(x;l),-93{x\l) are all positive on (0,1); 2) < i < all 

have a unique zero point on (0,1), negative on the left and positive on the right. 

Proof. Fixed > 1,7 > 0-

(1.1) For fixed X € (0,1), / i (x ) , /2(x), hix] 1), ^ ( x ; 1), ^ ( x ; A) are positive for 

any x G (0,1). The derivative of /i(x) is given by 

f[[x) = (P + ̂ hx-'-'iT^ - 1) < 0,Vx G (0’ 1), 

That is fi(x) is strictly decreasing on (0,1). Then /i(x) > / i ( l ) = 0 for all 

xG (0,1). 

By similar process, we have /2(x),/aCx; 1), ̂ ( x ; 1) are positive on (0,1). 

‘ A n d then /4(x; A) is positive on (0’ 1) since /‘(a：; A) > 1) for all x G (0’ 1). 

(1.2) For fixed A € (0,1), /sW,/el^：; 1),/eCx; A) avne positive for any x e (0,1). 

The derivative of fs{x) is given by 

f,(x) = -iP + 7)7(7 + 1)(工"+ ( / ? - ! ) - < 0 , V x € (0,1)， 

since it is easy to verify that x^(l3 - I) - I3x > 0,Va: G (0’ 1). Then f^(x) > 

/5(1) = 0 for all :r e ( 0 ’ 1 ) . 

By similar process, we have /6(x; 1) is positive on (0’ 1). And then fe(x\ A) 

is positive on (0,1) since fe{x\ X) > fe(x\ 1) for all x G (0，1). 

(1.3) -gzix] 1) > 0 for all x € (0,1). Denote w{x) = -53(2：； 1). ？^(0)= 

j ( p - l ) > 0, = 0 and 

w'{x) 二 7(/? — • + 7 + 1)工和飞 一 /?(7 + • + 7)工抑飞 

+ + + (7 + 1)：^” - P h + 1). 
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u/(0) = -/?(7 + 1) < 0’ = 0 and w"ix) = (j3 + 7)0:—⑴（工），where 

= - l)(j3 + 7 + 1 )工召 - /?(7 + + 7 - -1 

-h - -h 7(7 + l)x\ 

If /? < 7 + 1’ let w ⑵ (工 )二 lu⑴(i)/:c召-1, that is 

⑵(工）二 乂 0 - l)(j3 + 7 + 1)工丫—1 — 0(7 + 1)(P + 7 - 1)工飞 

+ 师-1) + 7(7+1)工於 

7i;(2)(0) 二 - 1) > 0, i/;(2)(l) = 0 and (71；⑵）'(:r) = 7(7 + I)：!：，一召工），where 

讼 ⑶ ⑷ 二 iJ3- + 7 + - + 7 - 1 ) 工 + ( 7 + 1 - P)-

⑶（0) = 7 + 1 一 〉 0 ， ⑶ （ 1 ) = 0 and (Ti；⑶）'(re) = (/? - + 7 + 

l)x - (/? + 7 - 1)). Hence is firstly strictly decreasing and later strictly 

increasing on (0,1), with iw⑶(0) > 0 and ly⑶(1) = 0，it;⑶(:r) = 0 has only 

one root on (0，1). Hence iz;⑵(a:) is firstly strictly increasing and later strictly 

decreasing. With ii;(2)(0) > 0，ii;⑵(1) = 0’ we have ti;⑵(re) > 0 on (0,1), and so 

is w"(x). Then w'(x) is strictly increasing from u/(0) < 0 to = 0. That 

is w'(x) < 0 for all (0,1). Then w(0) is strictly decreasing from w(0) > 0 to 

?i;(l) =0，which implies that w(x) > 0 for all (0，1). 

If /? > 7 -f 1, by the similar process as above, we also get that w(x) > 0 for 

all (0,1). 

(2.1 J For fixed A G (0,1)，h(x;X) = 0 has a unique solution x* € (0’ 1) and 

h{x;X) > 0 for X e h{x\ A) < 0 for x e (x%l). It is true since 

that /3(0;A) = X{p- 1) > 0,/3(1;A) = -(1 - A)(/? + 7) < 0 and / ^ (x ;A)= 

( 7 + l)(/3 + - 1 ) < 0 . 

(2.2) For fixed a G (0,1) and b > 0, gi{x]a,b) = Q has a unique solution 

X' e (0,1) and giix\a, b) < 0 for x e (0’a:.), 9I(x;a,b) > 0 for x e {x\l). 
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Define u(x) = (P - 1)(7 + l)xfi(x) — a/?7/3(x; 1) and then gi(x;a,b) = u{x) + 

+ w(0) = -0l((3 - 1) < = 0 and 

u'(x) ={0 - 1)(7 + 1) (/? + 70^ + 7 + 1)工扣飞-(0 + 7)(7 + 1)工” 

- a _ + 7)(7+l)(工。…-工”， 

which gives 7/(0) 二、P - 1)(7 + 1)/?〉0 and u'(l) = 0. u"(x) = ( " + 7)7(7 + 

with 

u ⑵ ⑷ = (/?-l)((/? + 7 + 1)工召一 (7 + 1)) 一 a/3 ((/? + 7 — 1)工召-1 — 7)， 

ii(2)(0) = a"7 -W- 1)(7 + 1), tx ⑵（1) = (5{(3 - 1)(1 - a )〉0 and 

(u⑵)'(T) = P(J3 - ((/? + 7 + - a i P + j - 1)) • 

In (0，1)’（w⑵)'(:r) is firstly negative and later positive, which implies that u^'^^x) 

is firstly strictly decreasing and later strictly increasing to u⑵(1) > 0. Then 

1/(2)(x) = 0(iz"(x) == 0) has at most two roots in (0，1). If there is no root or one 

root (local minimum of w⑵(a:))，then > > 0) in (0,1)，except at 

most one point, which implies that u'(x) is strictly increasing. That contradicts 

with the fact that u'{0) > 0 = li'(l); If there is exactly one root Xi (not local 

minimum), then u⑵(:r)K'(a：)) < 0 for x € (0,xi) and u^^'^x) > 0{u"(x) > 0) for 

X e (xu 1), which implies that u'(x) is firstly strictly decreasing and later strictly 

increasing. With w'(0) > 0，u'(l) = 0, we have u'(x) = 0 has a unique solution X2 

in (0’ 1) and u'(x) > 0 for x G (0,X2), u'(x) < 0 for x G (x2,1); If there is exactly 

two roots O < X 1 < X 2 < I , then u⑵(:c) > 0(u''(x) > 0) for x e (0,xi) U (x2,1) 

and u(2)(:e) < 0(it''(x) < 0) for x 6 (xi,x2), which implies that u'(x) is firstly 

strictly increasing in (0,a:i) ’ then strictly deceasing in (xi,x2) and later strictly 

increasing in (x2,1). With w'(0) > 0，u'(l) = 0, we have u'(x) = 0 has a unique 

solution X3 in (0，1) and u'(x) > 0 for x G (0,X3), u'(x) < 0 (or x E (xg, 1). In 

all, u'(x) is firstly positive and later negative. With u(0) < 0,u(l) = 0，we have 

u(x) = 0 has a unique solution X4 in (0,1) and u(x) < 0 for x G (0’ X4), u(x) > 0 

for X e (x4,1); u{x) is strictly increasing on [0,2:4 • 
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If 6 = 0, fi{x; a, b) = u(x) has a unique solution on (0,1) and is negative on 

the left and positive on the right. If 6 > 0 then the function + is 

strictly positive in the interval (0，1). Since u{x) is positive in (x4, 1), /i(x;a,6) 

should also be strictly positive in this interval. In other words, fi{x\a,h) = 0 

has no roots in (X4,1). However, f\{x\ a, b) is increasing in (0, X4) because both 

of Wo(工）and bpy{p are increasing on this region. Note that /i(0; a, b)= 

ito(O) < 0 and fi{x4\ a,b) > 0. Thus, the equation /i(x; a, b) = 0 has a unique 

solution in (0, X4). Denote it by x*. We know from the preceding discussion that 

/ i (x ;a ,6 ) < 0 for x € (0,x*) and fi(x\a,b) > 0 for x € {x\ 1). 

(2.3) For fixed A G (0,1) and 6 > 0, g2[x\ A, 6) = 0 has a unique solution 

X* e (0,1) and 2̂(2：; A, 6) < 0 for x e (0’a;”，92{x\\,b) > 0 for x e (x%l). 

Denote 2̂(2：) = g2(x-\,b). Since g2(0) = -{0 - 1)(7 + 1)7 < 0 and p2 ( l )= 

6(1 - A)/?7(/? + 7 ) 〉 0 ，仍 ( r r ) = 0 has solutions in (0’ 1). Next we show that the 

solution is unique. 

g , 2 ⑷ ( ( 7 + 1) + (" - • + 7 + 1 广 - 聊 + 7)工 

- ( / ? - 1 ) ( 7 + mp+7) - x^-'). 

= 6/37(7 + 1 ) > 0, ^ i ( l ) = 6 ( 1 — X)f3HP + 7 ) > 0 and g ' 狀 = _ -

1)(/? + 7)工"-2"42)(0；)’ where 

" 〜 ) ( 0 0 + 7 + 1 )工州-A/5) - (7 + 1) ( ( " + 7 - 1)工飞-{P- 1)). 

(d2)y ⑷ = 7 ( 7 + 1)工 _ + 7+1)X-( / ? + 7-1 ) )-

Then in (0，1)，{g^^Yix) is firstly negative and later change its sign at most once, 

which implies that is firstly strictly decreasing and later may be strictly 

increasing. Then 92 = 0(p《:c) 二 0) has at most two roots in (0,1). And 

then g2{x) has at most three monotonic interval. With p乂0) > 0’夕“1) > 0, 

we have that g'2(x) = 0 has at most two roots in (0，1). If there is no root or 

one root (local minimum of 分办 ) )， t h e n 夕 办 ） 〉 0 on (0’ 1)，except at most one 



/ 

Appendix A. Appendix for Chapter 2 1_1_9 

point, which implies that 仍(a：) is strictly increasing and only has one zero point 

on (0’ 1); If there is one root xi(not local minimum of g^ (工)），it contradicts 

to ^2(0) > 0,^2(1)〉0; If there is exactly two roots O < X 1 < X 2 < I . Then 

g'2(x) is positive at the intervals (0,Xi) and (x2,1) and negative at the interval 

(xi,X2). Then 仍(:r) is strictly increasing at the intervals (0,Xi) and (x2,1) and 

strictly decreasing at the interval (xi,x2). Since p2(0) < 0 and ⑴ > 0, to 

show 仍(工）=0 has a unique solution between 0 and 1，we only need to show 

that ^2(3:2) > 0. Actually g')⑷=6/?7(工2/40^2; A))' - {0 - 1)(7 + l)/2(^2) 二 0, 

then 

分2(工2) = b/S狗M:C2.、A) - (/? - 1)(7 + l)/2(工2) 

72 w ) 

二 扣 A ) ) - f2{X2)(x2U{X2'.m 
/ 2 (工 2 ) 

= - 工 工 2 ; A ) > 0 

-f {l-xD 

(2.4) For fixed A € (0,1), g3{x\X) = 0 has a unique solution x* e (0,1) and 

g3(x;X) < 0 for X e (0,x.), g^ix] A) > 0 for x £ Denote v{x) 二 

A). i;(0) = Xj{p - 1) > 0, ?;(1) = 0 and 

v'(x) = - 1){I3 + 7 + 1 ) 工 - my + + 

+ (/? + + (7 + - P h + 1). 

t/(0) 二 一 < 0’ t/(l) = (1-A)/?7(/?+7) > 0 and v"{x) = 

where 

t ； ⑴ ⑷ = 一 \){p 4 - 7 + 1)工 +々"" - •A/?(7 + IW + 7 - 1)工卢 

+ 入/?(/?-1)3："-1+7(7+1)工7. 

If/? < 7 + 1 , let = that is 

= j i p - 1)03 + 7 + 1 ) 工 - A/?(7 + l){0 + 7 — 1)工7 

+ 卵 _ 1) + 7 ( 7 + 1 ) 工 於 ” 
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v(2)(0) = Xp{j3 - 1) > 0, i/2)(l) = (1 — + 7) > 0 and (”⑵) '(:r)= 

7 ( 7 + 1)工’-�⑶(工)’ where 

^；⑶⑷= (J3— + 7 + 1 ) 工 。 - 聊 + 7 - 1)工。]+ (7 + 1 - 外 

1；⑶(0) = 7 + 1 - > 0, I；⑶（1) = (1 - 入 卿 + 7 - 1) > 0 and …⑶) '(:r)= 

(/? - + J + l)x - \(/3 + -f - 1)). Hence t;⑶(工）is firstly strictly 

decreasing and later strictly increasing on (0,1), and ⑶（工）=0 has at most two 

roots on (0,1). With ？；⑶(0) > 0, ⑶(1) > 0, if there are no root or one root, 

then Li(3)(:r) > 0 on (0,1), except at most one point. Hence i'^^^(x) is strictly 

increasing, with ?;(2)(0) > 0，i/2)(l) > 0，we have > 0 on (0,1), and so 

is v"(x). Then ？/(O) is strictly increasing from t/(0) < 0 to i/( l) > 0. Then 

v(0) is firstly decreasing from t;(0) > 0，and later increasing to f ( l ) = 0, which 

implies that v{x) = 0 has a unique root on (0，1). If — 0 has exactly two 

roots Xi < X2 on (0，1), then ⑵ ⑷ is strictly increasing on (0, Xi) U (工之’ 1) and 

strictly decreasing on (工1’工2)，that is, ？;⑵⑷ has a local minimum at x = X2- If 

^̂ (2)(工2) > 0，then it refers to the previous case. If ”…(工之）< 0, then ？;(2)(:c) = 0 

has exactly two roots X3 < X4 on (0，1)，and so is v"{x). Hence v'(x) has a local 

maximum at x = X3. Since v"{x3) = 0，we have 

Then 

v'ixs) =7(/?-1)(" + 7+1)工?+" 

一 m i + m + 7 ) 工 + + + ( 7 + 1 ) 工 - /3(7 + 1 ) 

=A/?(7 + m + 7 - — _ - 1)4'' 一 7(7 + 1)工] 

- A " ( 7 + 1)(/? + 7 ) 工 ? … + (/? + 7 释 ? - 1 + (7 + 1)工D - 风 7 + 1) 

= 一 " (7 + 1 ) ( A 4 + ” I - Azf-i — 工 … ） 

Hence v{x) is firstly decreasing from ？;(0) > 0，and later increasing to f ( l ) 二 0， 

which implies that v{x) = 0 has a unique root on (0’ 1) and positive on the left 
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and negative on the right. Consequently gsî o; A) = 0 has a unique root on (0’ 1) 

and negative on the left and positive on the right. 

If ^ > 7 + 1, by the similar process as above, we also get that 仍(工；A) 二 0 

has a unique root on (0’ 1) and negative on the left and positive on the right. 

(2.5) For fixed a G (0，1), gA{x\a) = Q has a unique solution x* € (0,1) 

and g4{x]a) < 0 for x e 9A{x\a) > 0 for x e {x\ 1). ^ ^ l ( 0 ; a ) = 

- ( 1 — a)j3(j + 1) < 0’ g4(l;a) = a(P + 7 ) > 0 and dg4(x]a)/dx = + 

7)0:7-1 ((1 - _ + 1)〉0’ we get that a) = 0 has a unique root on 

(0，1) and negative on the left and positive on the right. 

(2.6) For fixed a e (0,1), p5(x;a) = 0 has a unique solution x* G (0,1) and 

g5(x]a) <0 for X e 9^{x\a) > 0 for x e (x\ 1). Denote 奶 ( a : ) � g^(x\a). 

Since 55(0) = -a(J3 - 1)(7 + 1)7 < 0 and 仍(1) = 0. 

你 ) ( ( 7 +!) + (/?-• + 7 + 1 广 - P { 0 + 7)工卢-1) 

-a{/3 — 1)(7 + mP + 7) 仰 - x^-'). 

9',{0) = Plil + 1 ) 〉 0 ’ 9',(1) = 0 and g'l{x) = _ - l)(P + where 

= 7 + 7 + 1)工计 1 -/?) - a(7 + 1) ( (" + 7 - 1)工7 -(P- 1)) • 

y f ( l ) = ( l - a ) 7 ( 7 + l ) > 0 , and “ 

(^f ) ' (x) =7(7 + 1 ) 工 飞 ( ( 好 7 + l)x - + 7 - 1)). 

Then in (0,1),(分盖2))'(不)is firstly negative and later positive, which implies that 

is firstly strictly decreasing and later strictly increasing. Then p f ̂  ( x )= 

0(^5(0;) = 0) has at most two roots in (0,1). If there is no root or one root (local 

minimum), then > Oig'^ix) > 0) since )(1) > 0, which implies that 

is increasing, contradicting to the fact that p^O) > ^5(1); If there is one root 

j:i(not local minimum), then < 0{g'^{x) < 0) for x G (0,xi) and pf^(x) > 

0(^5(2:) > 0) on (xi, 1), which implies that g^ix) is firstly strictly decreasing 
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and later strictly increasing. With g'5(0) > 0’ 沿 1) = 0’ we have 沿工）is firstly 

positive and later negative on (0,1). Then 仍(工）is firstly strictly increasing from 

^5(0) < 0 and later strictly decreasing to ^5(1) = 0. Hence 分5(工)=0 has a 

unique solution on (0, 1) ； If there is exactly two roots 0 < Xi < 0:2 < 1, then 

> > 0) for x E (0,x,) U (x2,1) and < < 0) for 

X G (xi,x2), which implies that g'^(x) is firstly strictly increasing in (0,Xi) ’ 

then strictly decreasing in (0:1,0:2) and later strictly increasing in (工2’ !)• With 

^5(0) > 0,1^3(1) = 0, we have 95(1) is firstly positive and later negative on 

(0，1). Then 仍(工）is firstly strictly increasing from P5(0) < 0 and later strictly 

decreasing to (1) = 0. Hence gsix) = 0 has a unique solution on (0,1). 

(2.7) For fixed X € (0, !) ,«; G [0, l ) , p G [0,1 - A], g 6 ( 工 ; = 0 has a unique 

solution X* e (0,1) and ge{x\X,K,,p) < 0 for x e (0,x*), > 0 for 

X € (X•，1). Note that 

=x/i(x)/4(x;A) - f2{x)Mx;\)- (A.IO) 

/3(工;A) + p{0 + 7 )工州 = ( 1 - P ) / 3 (工 ;T^ )- . (A.ll) 
1 一 

It is easy to verify that 

夕3⑷ A) -p(/? + 7)工州/2⑷ 

+ «/2(x)(/3(x; A) + p(P + 7 ) 工 州 ） , (A.12) 

二工/i(工)/4(工;A) - (1 - /c)/2(x)(/3(x; A) + p{P + 7 ) 工 ( A . 1 3 ) 

=/cx/i(x)/4(x; A) + (1 - K)pxfi{x)U(x; A) 

+ (1 - /c)(l 一 p)(l 一 (A.14) 

丄一 P 

Denote the roots of 3̂(2：； A) = 0’ "3(2：; j ^ ) = 0, /3(x; ：^) = 0 as xux2,x3 G 

(0,1)，respectively. Firstly we show that x\ < X2 < X3. Actually by equation 

(A.IO), 9̂ [x2\ y ^ ) = 0 implies that /afe; y ^ ) = x2fx{x2)h{x2\ t ^ ) / ^ ^ ) > 0. 
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By the property of /3(工;六)’ we have X2 < X3. Again, by 仍(2:2; y ^ ) = 0，i.e. 

(->(/? - 1) _ + + (/? + 7 ) 4 ) 

=X2 (风7 + 1 ) - 7(0 — -(/? + 7)^2) ’ 

we have 

仍(工2; A) (0(7 + 1) - i W - -(/? + …工】) 

一 A (7(/? - 1) - + + (/? + 

二工2 {pil + 1 ) - 7(/? - 1 广 - + 7)工0 

一（1 一 p)x2 {Ph + 1) - liP - + 1W2) 

. =PX2 {P i l + 1) - 7(/? 一 1 ) 工 - (/? + > 0’ 

where the last inequality holds since for any x G (0,1), we have 

Pi-y + 1) - 一 1 ) 工 召 - ( / ? + 7)工7 > 0. 

By the property of 仍(:r; A), we have Xi < X2. 

By (A.14) and the property 卯(re; y^ ) , for any x G (x2,1), 

ge(x]X,K,p) 二 + (1 - K,)pxfi{x)f4(x\X) 

+ (1 - k)(1 一 p)(l - x�+”夕3(x; > 0. 
丄 — p 

With ^6(0； A, /€’ p) = -A( l — — 1) < 0，we have that ff6(工;\ = 0 has 

roots on (0,1). Fixed A G (0,1) and p € [0,1 - A], denote the largest rpot of 

g%(x\X,K,p) — 0 OS X* = that is, a function of /c, then x*{i<i) G (0,X2], for 

any « G [0,1). Since p6(工;A, /c, p) can only have zero points on (0’ X2\, from now 

on we will restrict x G (0’ X2 

For = 0, reminding that g-sixuX) 二 0, by (A.12) we have ‘ 

夕6(工1; A，0，p) == + ⑷ < 0. 

Then xi < x*(0) < X2. For /t -> 1, by (A.13) we have 如(工！；久,1，"）— 

x / i ( x ) / 4 ( x ; A ) . Then x^( l-) = 0. Next we show that K : [0,1) 
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(0,x*(0)l is a strictly decreasing bijective function, that is, dx*(K,)/dK, < 0, for 

any k € [0, 1). Actually for x e (0’工21，0 < «：! < < 1, by equation (A.12), we 

have 

A, p) - 96{X\ a, ，p) =(k2 - «i)/2W(/3(a：； A) + p{P + 7)工 

= - « l ) ( l - P ) / 2 ( X ) / 3 ( 工 ; 7 ^ ) > 0 , 

i - p 

where /3(x; y ^ ) > 0 since x < %2 < x：^. By the definition of we have 

that :r.(K2) < x*(Ki). Then dx*(K)/dK < 0，for any G [0,1). It follows that 

g6(x;A,K,p) has a unique zero point on (0,1), for any k 6 [0,1). Otherwise, 

assume for some Kg G [0,1)，ge(x;A,K3,p) has other zero point y* G (0，1) and 

y* < x"(/C3). Then there exists a «：4 ^ («3’ 1), such that = y*. And 

Contradiction. 

(2,8) For fixed K € (0’ 1), ^7(1;«;) = 0 has a unique solution x" € (0’ 1) and 

g7(x]K) <0 for xe g7(x;K,) > 0 for x e Note that 

(1 - 1) =xh(x)U(x-1) - /2(x)/3(x; 1). (A.15) 

Then 

P7(x;«) 二（1 - 1) + Kf2(x)Mx-, 1) (A.16) 

Note that 仍(0; /c) = — (1 - 一 1) < 0. And /c) = 0’ i = 0’ 1，2’ 3， 

分广（1; K) = 一 1)(7 + l)(/3 + 7)2 > 0. We have that grix; K) = 0 has roots 

on (0’ 1). Denote the largest root of gjix; K) = 0 as x* = a：•⑷’ that is, a function 

of K, then i . ⑷ G (0’ 1), for any K G (0’ 1). 

For /c — 0，reminding that gsix; 1) < 0，for any x G (0，1), we have 

g7(x; «；) = (1 — ：!：肝”仍Or; 1) < 0’ for any x G (0’ 1). 

Hence 二 1. For k — 1， 

grix; k) = xfi(x)f4(x] 1) > 0, for any x € (0，1). 
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Then x ' ( l- ) 二 0. Next we show that K, X*(K) : (0,1) (0,1) is a strictly 

decreasing bijective function, that is, dx*(K)/dK < 0，for any k € (0,1). Actually 

for X e (0’ 1), 0 < < /C2 < 1, by equation (A.12), we have 

97(X； K2) - 97(X\ =(«2 - Kl)/2(a:)/3(a：; 1) > 0. 

By the definition of X*(K), we have that 工幸⑷ < Then DX*(K,)/DK, < 0, 

for any k, e (0,1). It follows that 分7(工；has a unique zero point on (0,1)，for 

any G (0’ 1). Otherwise, assume for some K,^ G (0,1), gjix] K) has other zero 

point y* e (0,1) and y" < x^i^^). Then there exists a /C4 e 1)，such that • 

x*{k4) = y*. And 

0 = giiy*] AC4) - 97{y*\ /ta) = -代3)尺/2(2/.)/3(2/••’ 1) > 

‘ Contradiction. 

A.4. Properties of the Candidate Value 

Functions 

L e m m a A . 2 . When Xb < Pc/6, the smooth pasting condition 

= A (A.17) 
ov 

determines a unique finite number d* 二 d(b) > b, satisfying Xd* > Pc/6, such 

that Di(v,b,d) > Xv, for any h < v < d < d\ Specially i/ 1 — p = A, let 

x(b) = b/d(b), then dx{b)/db > 0, for h < Pc/、5X). 

Proof. Note that 

2r 26 

It is easy to verify that 

dDi, L J 、 、 a'^cP ( 、 

一 A = 一 2 扣 … — 工 州 ） • 分 i ( 工 ; … 4 
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where x = b/d,uj 二 6\b/cP 6 (0, = (1 - p - > 0 and pi(i;u;,e) is 

defined in Appendix A.3. Furthermore, gi{x\ijj, t) has a unique solution x* € 

(0，1). Hence, for any given b < Pc/6\, if we define d* := b/x* > 6, it is a unique 

solution to (A.17). 

To prove that Xd* > cP/S, that is b/d* < S\b/cP or x* < cj, it is sufficient to 

show that 

gi{uj\uj, 6) > 0 for any 0 < a; < 1, e > 0, (A. 18) 

due to the fact that on (0,1), g\{x;LJ, e) is strictly negative on the left side of 

its zero point x* and strictly positive on the right side of its zero point x*. And 

(A.18) is true, since gi{u\uj,e) > uf^iuj) > 0 for all lj G (0,1)’ where fs{x) is 

defined in Appendix A.3. 

By the definition, Di(v\b,v) = At; for any v > b. If we show that, for fixed 

h,v and b < v, Di(v] b,d) is strictly increasing on [v,d*] with respect to d, then 

Di{v\b,d) > Di{v\b,v) = Xv for all d 6 Actually when taking a partial 

derivative on the function Di(v] 6, d) with respect to d, we get 

dD” t 力 ( d \ 7 ； 抑 飞 飞 G^cP , 、 

For dLuy V < d < d*, X = b/d > b/d* == a:'. By the property of gi{x\u,€), we have 

> 0 for any x E 1) and so does dDx/dd for any b < v < d < d\ 

If 1 - p = A, let x{b) = 6/d(6), then c/i(x(6);a;,0) = 0. Solving b in term of x{b), 

wp havp h - cPx(b)/i(i(b)) Then we nave o - ^^似工⑷；”.上“� 

dxjb) _ 1 _ rA (/3(x(6);1))2 

• , 

L e m m a A . 3 . (i). For any given d > 0 , the smooth pasting condition 

= 0 (A.19) 
ov 
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determines a unique finite number h* 二 b((f) < d, satisfying b* < (1 — ti)Pc/6, 

such that Ei(V,b\d) > 0 for any v € {b\d); (ii). For any given d > K , the 

smooth pasting condition 

fi p 

= 0 (A.20) 
ov 

determines a unique finite number b* = b(d) < d，satisfying b* < ( 1 - K,)PC/6, 

such that E2(V，b*,d) > 0 for any v G {b\d). 

Proof, (i). We can verify that, 

dEi. u 、 a^l - K)CP ( \ 、 

dv v=b 2rdx(l - x^^^jd 

where x = b/d,i/ = 6d/{{l - K,)CP) > 0 and 仍(:c;A，") is defined in Appendix 

A.3. Furthermore, g2(x] A, ") has a unique solution x* 6 (0，1). Hence b* := d*x* 

is the unique solution to (A.19). 

When d<{l-K,)CP/5, B* = dx* < (1- TI)cP/6. When d > (1- K,)CP/6, to prove 

that < (1 - K)CP/6, that is b*/d < (1 - n)cP/5d or x* < 1/"，it is sufficient 

to show that 

P2(1/";A，"）〉0 for any A € ( 0 , 1 ) , > 1, (A.21) 

due to the fact that on (0,1), 52(2：; A , i s strictly negative on the left side of 

its zero point x" and strictly positive on the right side of its zero point 工^ And 

(A.21) is true, since 92(^/1^] A , = /6(1/"; A) > 0 for all A G (0，1),"〉1，where 

/6(x; A) is defined in Appendix A.3. 

To show Ei{v\b*,d) > 0 for any b* < v < d, v/e take a partial derivative on 

E\ (V; 6, d) with respect to b, 

dE,^ t j、 / b y d扣7一”々十7 a2 ( i - K)CP , \ 、 

where x = b/d, u = 6d/{(\ 一 K)CP) > 0. For < 6 < d, x = b/d > b^/D = x.. 

Hence P2(r’ A，i/) > 0. Then 管 < 0. Consequently, E^{v\h,d) > Ex{v\v,d) = 0 

for any v G (b*,d). 
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(ii).The proof is the same as the (i). We only need to replace A by K/d. • 

L e m m a A . 4 . Let b{d) be given as in Lemma A.3 for each d. (i). The smooth 

pasting condition 

尝…;6⑷，d)L = l - A ’ （A.22) 

determines a unique finite number d j > 0, such that for fixed v > b{d), 

Ei{v, b{d), d) IS strictly decreasing on [0, dj) and strictly increasing on (dj, oo). 

For d > d^, there exists a unique k\ G (6(ci), d^), such that E\(k\\h{d), d)= 

(1 - A)/ci and Ei{v',b{d),d) > (1 - A)?; for any v e {ki,d). Let x{d) = b{d)/d, 

then dx{d)/dd < 0 for d < dj. 

is strictly increasing with respect to d > K 

and then E2(v;b{d),d) > v - K for any v € [K, K/\). If K < U：：^，the 

smooth pasting condition 

^ { v M d \ d ) = 1 ’ （A.23) 
OV v=d 

determines a unique finite number d^ > K, such that for fixed v G (b{d), d), 

E2{V] b{d), d) is strictly increasing on [K^ d^) and strictly decreasing on {d^, cx)), 

following that E2{v\ 6(d5)，d^) > v — K for any v 6 (/C, d^)-

Proof, (i). It is easy to verify that 

尝 M ( d ) ， 4 = 厂 ( 1 - A ) = = 劝 二 卞 ⑷ - 頓 — ， 

where x = b(d)/d. By the proof of Lemma A.3 (i), x also satisfies "2(工；A, i/) = 0, 

where = 6d/({l - K)CP). Then 

where /“(工；A),̂ 3(x; A) are defined in Appendix A.3 , /‘(工；A) > 0 for all x € (0,1) 

and gsix; A) has a unique solution xj G (0，1). Plugging into 仍(a:; A, i/) = 0，we 

get d* = 二》二货尸 is the unique solution to (A.22). 
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Letting X3 = 0 :3⑷= b { d ) / d , take a partial derivative on Ei{v\ b{d), d) with 

respect to d� 

dE^{v\b{d),d) _dEx{v\b, d) dbjd) dEi(v-b, d) 
^ 二 Wb + ^ � 

_ 广 。 7 召”一 6 ⑷ � ” ff3(工3⑷;A) 

— V ^ y d0” - b ⑷ f 2 ( x 3 ( d ) ) ， 

where we have used the fact that 叫盜句 \b=b{d) = 0 since b 二 b(d) is a local 

maximum of Ei(v\ 6, d) with respect to b. For 1/1 < "2，没2(工；< 双2(工；入，"2) 

for any x e (0,1). Then by the property of g2(x; A, i/) and the fact that 

g2(x^{d)]X,Sd/((l - K)CP)) = 0，we have that ^ ^ < 0 for all d 〉 0 . When 

0 < d < dl X3 > Then g^ix^] A) > 0 and then 肪 “盟外…< 0. Hence 

£'1(1'； 6(d), d) is strictly decreasing on [0, d^). When d > dj, X3 < xj. Then 

(X3； A) < 0 and then 鄉 ⑦ ’ … > 0. Hence Ei(v;b(d),d) is strictly increasing 

on (£Q,oo). 

By the monotonicity, if d > d^, for any v € [dj, d), Ei(v] b{d), d) > 

Ei{v\ b(v),v) = (1 - A)v. On the other hand, Ei{b(d)\b{d),d) = 0 < {l-X)b(d). 

Hence Ei(v; b{d), d) will intersect with (1 — A)^ on (b(d)^d^). The uniqueness of 

the intersection follows from the monotonicity of Ei(v; b{d),d) on (0, d^) with re-

spect to d. Denoting the unique intersection as /ci, then E\{v\ b{d), d) > {I — X)v, 

for any v G {ki,d). 

(ii). It is easy to verify that 

巧啦)，句 w - 1 = ( 1 - 工叫 d • 乂i(力 

-K { P + 72："+，）+ dip + 计 1) ’ 

where x = b{d)/d. By the proof of Lemma A.3 (ii), x also satisfies g2(x\ Kjd, v)= 

0, where V = - K)CP). That is, 

d x((7 + 1) + (卢-1)0： +々7) - K(P + - (1 - 咖 ⑷ = 0 . (A.24) 
r 

Then 

尝 ( _ ) ’ " ) L - 1 = � ( ( 二 二 一 卞 . 剩 ， 
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where LJ = Kr/((1 — K,)CP) and G4{X\U)) is defined in Appendix A.3. 

If /C < (1 — FI)cP/r, i.e. UJ 6 (0,1), G^ix; UJ) has a unique solution xj G (0,1). 

That is 

(1 - «:)cP/r = K/v{x*2), 

where 

A ^ I) - (0 - Ihx^--- iP + 

Plugging into (A.24)，we get d^ = is the unique solution to (A.23), 

where 

A 工斷 + 1 ) - ( / 3 - 1 ) 7 工扣飞一 ( / 3 + 7)工” (A 26) 

"7(1-工叫 . （ ） 

is a strictly increasing function from (0，1) to (0,1), since u(0) = 0,12(1) = 1 and 

( y _ /?7( (7+1)作—1)(工广 ) / l⑷、 . 
()二 (/?7(1 —⑷叫)2 〉 

Hence d^ > K. 

Letting X2 = X2[d) = b{d)/d^ take a partial derivative on E2{v] b(d), d) with 

respect to d, 

dE2(v.MdU) 二 fdy 飞-6(ci 广 g,{x2-.uj) 

dd ~\vj + + ( . 、 

Similarly as the first part proof, we have 彻J广 < 0 for all d > K. Further 

more we get that E2{v\ b(d),d) is strictly increasing on [K^ d^) and is strictly 

decreasing on (dj, 00). And then E2{v\ 6(^5), dj) > £'2(1'； 6(tO，v) = v — K ior any 

li K > (1 二)cP, that is a; > 0, then 仇 i s strictly positive on (0,1). 

By equation (A.27),犯2、v恐d),d)〉q Hence E z K b{d),d) is strictly increasing 

with respect to d > K. And then E2{v\ b{d),d) > Eiiy、b(v), v) = v — K [or any 

ve(K,d). • 

L e m m a A . 5 . Let d^ = d^iK) be given by Lemma A.4y which is a function 

of sirick price K for K € (0,(1 — K,)cP/r). There exists a unique K2 € 

(0，(1 - K)cP/r), satisfying = K2/X and, d*2(K) < K/X, for K G (0，K2)； 

> K/\，for K G {K2, (1 一 «:)cP/r). 
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Proof. By the proof of Lemma A.4, d^ 二 Then = K/\ implies 

that A = u(x5), where u(x) defined by equation (A.26) is strictly increasing 

bijective function from (0’ 1) to (0，1). Hence for any A G (0,1), there is a unique 

±2 e (0’ 1) satisfying A = it(iG). 

For any K E (0, (1 — K)CP/T). Let Xj = 工 认 ！ b e the unique solu-

tion of g4(x; Kr/((1 — «;)cP))=0’ where 夕4 is defined in Appendix A.3. Then 

K = (1-p)�(3：;)，where v(x)，given by (A.25), is a strictly decreasing bijective 

function from (0,1) to (0’ 1) since , = 1 ’ 二 0 and 

,,、_ - 缚 + 7)工”1((7 + 1) + (卢-1)工召”)^ . 

Hence = is a strictly decreasing bijective function from 

(0, (1 - K)CP/T) to (0’1). Following that there exists a unique K2 G (0,(1 — 

K)cP/r), such that xj is the unique solution to /5(a:;/^2广/((1 - «)cP)) = 0 on 
< , 

(0,1), and d狀 2 ) = K2/\-

Recalling that K/d^{K) = u^x^iK)), taking derivative with respect to K 

on both side, we get that 

释 狀 ) ) = = ( ”、D 彻 ) ⑷ < 0. 
dK dx z 一 服 (1 — /c)尸c 、 2 八 ) 

Hence for any fixed A, when K < K2, Kjd^^K) > K^jd^^K-^ = A, which implies 

< K/X. Similarly, > K > K^ = K{\), we have > K/X. • 

Lemma A.6. When Xd > {1 — K,)PC/S, the smooth pasting condition 

尝 ( 魂 ) ， 礼 = 广 1-A， (A.28) 

determines a unique finite number b* = h{d) < d, satisfying < (1 - K)PC/6, 

such that d) > Xv, for any b* < b < v < d. Furthermore, fixed v > b{d), 

E3(V] h{d), d) is strictly increasing with respect to d for d > {1 — K)PC/6\. 

Proof. It is easy to verify that 

尝 - (1 — A) = 广：二).分5(工；…， 
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where x = b/d、uj = (1 - K)cP/6Xd e (0,1) and gs{x\uj) is defined in Appendix 

A.3. Furthermore, gs{x\u) has a unique solution G (0,1). Hence, for any 

given d, if we define b* := d x", it is a unique solution to (A.28). 

To prove that < (1 - k、Pc/5、that is b^/d < (1 - K)Pc/SXd or x* < a;, 

it is sufficient to show that 

gsi^^'.Lj)〉0 for any 0 < cj < 1, {A.29) 

due to the fact that on (0,1), gs{x]uj) is strictly negative on the left side of its 

zero point x* and strictly positive on the right side of its zero point x*. And 

(A.29) is true, since "5(0;;cj) 二 1) > 0 for all u e (0，1), where fe{x] 1) is 

defined in Appendix A.3. 

Fix V < d, taking a partial derivative on the function 6，d) with respect 

to 6, 

dE^. ^ .. (by dP” - 一 7 Aa2 

For any b > b*, x = b/d > b*/d = x*. By the property of Qsix^uj), we have 

g5(x]ijj) > 0 for any x e 1) and then dE^/db < 0 for any b* < b < d. 

Consequently, if fix v < d and regard as a function of b, it should be 

strictly decreasing on v]. We then have d) > E^{v\v,d) — \v for all 

be{h\v\. 

Take a partial derivative on b{d),d) with respect to d, the last state-

ment follows from, 

dE^{v;b(d),d) dE^{v'Ad) dbjd) dE3(v;b, d) 

M 二 F b " ⑷ + ^ " ⑷ 

= H 力 dP” - b(d)卢” Mx,) ⑷A^〉0’ 

where 1) and /之⑷ are defined in Appendix A.3, which are both positive 

for X G (0,1). • 

L e m m a A.7 . For K < we have 

E^K/X-) > 

where E* is the equity value function defined by Theorem 2.8. 
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Proof. In Theorem 2.8, there are four cases. Let e > 0 be positive and small 

enough. 

Case I: K < K2 and K < K3. 

E\V) = V - K on (K/X - e、K/X) and E*(V) = (1 - on {K/X, K/\ + e). 

Hence 

{E*y(K/X-) = 1 > 1 - A = {E'Y{K/X+). 

Case 2: K < K2 and K > K3. 

E*(V) = V-K on (K/\ - £, K/X) 
t 

E*(V) = E3(V; K/X, d(K/X)) on {K/X, K/X + e). 

Hence 

(E'YiK/X-) = 1 > dEs/dV{K/X+; K/\, d(K/X)) = (E*Y{K/\+), 

where dE3/dV(K/X-]-] K/X,d(K/X)) < 1 follows from (A.35) with the condition 

that K < K 2 < i l - K)cP/r. 

Case 3: K > K2 and K < K3. 

E*{V) = Ei(V]b(K/X),K/X) on {K/X-e, K/X) 

E*{V) 二（ 1 一 \)V on ( K / X , K/X + e). 

By Lemma A.4，Ei{v] b{d),d) is strictly decreasing on (0, dj), with respect to d. 

Since K/X < Ki/X < dj, we get that Ei(v] b(K/\), K/X) < Ei{v\ b{v), ?;) = (!-

for V e (K/X-e, K/X). Together with the fact that E八K/》、h{K/\), K/X) 二 

(1 - X)KI\, we get that « 

{E*)\KI\-) = dE^ldV{KIX-\b(K/X), K/X) > 1 - A = {E*y(K/\-\-). 

Case 4: K〉K2 and K > K3. 

E\V) = Ex(V\h{KIX),Kl\) on {K/\ - e, K/\) 

E\V) = E^{V',KLKD{K/X)) on [K/X,K/X + E). 
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We need to show 

dE,{hyX-,b{K/\),K/X)/dV > dE:i{K/X+, K/X, d{K/X))/dV. 

Similar as Lemma A.4, 

^ {V-b{K/X ) ^K /X ) - (1 - A) = • ^3(̂ 5； A), (A.3(\ 
dV v=K/\ rxlf4(xl;X){K/X) 

where x； = 6(A7A)/(K/A)，satisfying g2{xl； \,6{K/X)/((l 一 «;)cP)) = 0. And 

- 1 - A = • i、,Y/\、P7(:r6;/c， A.31 
I 

where xj = (K/X)/d(K/X), satisfying gi(xl]6K/{cP),0) = 0. Numerical test 

shows that the right hand side of (A.30) is always bigger than the right hand 

side of (A.31). • 

A.5. Proof of Lemma 2.4, 2-6 and 2.7 

Proof of Lemma 2.4- Please note that the definition and properties of elementary 

functions /‘(I <i < 6),pj(l < j <1) ar all given in Appendix A.3. 

Let X = V^/Y^' Substituting the expressions of D\ and E\ into (2.15) and 

(2.16). The smooth pasting condition (2.16) gives 

9\{x\u,{\ - p- \)u/\) = 0 , 

where uj 二 bW: jcP'、The smooth pasting condition (2.15) gives 

g2(x\\,v) = 0, 

where v = - K)CP). Note that a; = A(1 - K)XV = A(1 — «:)(/? - 1)(7 + 

l)/2(a:)/(/?7/4(a：； A)). Plugging into g^ we have 

0 =gi{x;u,{l - p- X)ijj/\)=(卢 Mx^)^ ^^g6(x\X,K,p). 

Furthermore, gs{x] = 0 has a unique solution x\ e (0,1). Plugging x\ 

into Qi and g2, we get 

- r (7 + l)-f(/9-l)(xI)。+，-A()3+7)(xI)�-1 ’ (A 32� 

!/• - cP 、.， 
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with X； = Besides, V； = VUKtJ < (1 " 咖 a n d E,[V- V；•’ V；^) > 

0，for any V^* < V < V*^, according to Lemma A.3. Furthermore, AV；* < 

V； < (1 - K)CP/S < cP/S, by Lemma A.2, V；•卯=Kon(V； )̂ > cP/S\ and 

V；•，V̂ ) > XV, for any V；' < V < 

For the given V ^ , kj, which satisfies Ei(ki； V； )̂ = (1 - X)ku is given 

by Lemma A.4 (If V ^ < d^ let ki = For K > A/ci, to show that 

Ei{V\Vb\V;an) > Kv) = min{(t; - - A)V}, for any V̂； < K < Ktm，we 

still need to show that 

> V - K for Ki < K < V < ki, (A.33) 

V；, V； )̂ > ( 1 - A)V for / c , < V < V^ . . (A.34) 

The equation (A.34) follows from the definition of ki and Lemma A.4. Define 

Ki = Afci. If Ki > ( 1- K)cP/r, by Lemma A.4 (ii), 

‘ E i (V ; V；, -Kr>V - K , for ^ny K^ < K < V < /ci. 

If K2 < Ki < (1 - K,)cP/r (K2 is given by Lemma A.5), by Lemma A.5， 

V^^i(Ki) > Ki/X. By Lemma A.4 (ii), we also have 

Ei(V- V;^)>V-Ki>V- K, for a.ny Ki < K < V < k^. 

Hence if Ki > / ^ ’ the equation (A.33) holds. Inversely, consider Ki < K2. 

V：, \CN) = E2{V\ + ku �•。„}. 

If Ki = K2、then the left hand side derivative of Ei{V\ V:, V ^ ) at ki equals 1; 

If Ki < K 2 、 < Kx/X = ki. By Lemma A.4, < 

E2{V\Vb(V),V)\K=K, = V-ki for any V e ATi/A). Following that 

the left hand side derivative of Ei{V\ V ^ ) at ki is no less than 1. On the 

other hand, consider the right hand side derivative of Ei{V; V *̂, V*^) at ki. With 

< " " 口 R ) < A ’ (A.35) 
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where we have used KI < K2 < {I — K)CP/T. Then the right hand side derivative 

of J?3(v； ki, K ^ J at ki is strictly less than 1, and so does Ei{V] V *̂, ĉon)- This 

is a contradiction since Ei{V\ V^, ^con) should be smooth at ki. Hence Ki > K) 

always holds. • 

Proof of Lemma 2.6. (i). Most results follow from Lemma A.3 (ii), Lemma 

A.4 (ii) and Lemma A.5 in Appendix A.4. We only need to show that, when 

K < K'i, . 

D^iy-. V：. K i u ) > AV̂  for all K G [1/；, K'ai.il- (A.36) 

Before we show (A.36), we firstly give some formulas for computing the critical 

references. The critical early call reference K2 is given by 

一 (1 - K)Pc/?(7 + ! ) - ( / ? - 1 ) 7 ( 工 - ( / 3 - f 

、仏 二 ̂ r /3(7 + 1 ) - ( / 3 - 1 ) 7 ⑷州 • (A.3 ) 

where xj is the unique solution on (0，1) of the following equation 

+ 1 ) - - 1 ) 7 工 � + 1 - ( “ + 7 ) 工 ” 一 ^ 

. /?7(1 一 00口”) - ‘ 

If /C < (1 - K)cP/r, the equation, 

(1 - K)cP + 1) - Qg - 1)73："+，-(/? + 7)工飞 

= r -h 1) - (/3 - ‘ 

has a unique solution xj G (0，1)，xj = and 

‘ 一 u /W-Qr;严) 

K (a.此） 

Now let us return to prove (A.36). When K < K2, by Lemma A.4 

( i i ) , 长 • ， > E^{V',V,{K/X),K/X) for V > V,{K/X). Then 

E2(V\Vb\y^i,i) will intersect (1 - X)V at some V e (Ki^.”/^/A). Then 

V < K/X < K2/X < KI. Denoting VCON = V^om(⑴，if VCON > by Lemma 

A.2, we have Z^V^; V^,^,) > \V for all V 6 [V；-’ V；:/,」. 

Now we show that Vcon > V' Note that V；* = Vb{V)- Letting x = Vb/V, by 

Lemma A.3(i), g2(x;X,i^) = 0’ where u = 6VI[{\ — To show Vcon > V. 
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that is V；/Vcon < Vd^ =茫.By the definition of Kcon and Lemma A.2, Vb/Vcon 

satisfies = 0, where a; = SWC/cP G (0, l),e = (l-p-A)a;/A > 

0. By Lemma A.l in Appendix A.3, g\ has a unique solution V^jVcon e (0，1)， 

and is negative on the left, positive on the right. Hence V^/Vcon < X is equivalent 

to that gi[x\uĵ  e) > 0. 

Note that U/V = X{1-K,)X. Plugging 分2(壬；A，"）二 0 into yi(£;cj’ e)，we have 

, 八 、 ( / 3 - 1 ) ( 7 + 1 ) 广 、 
如 … = 麻 ） 她 ’ 

Since V < ki < dj, where d^ is given by Lemma A.4, x = V^V^ > Vb(ki)/ki > 

due to dx{Vc)/dVc < 0 in Lemma A.4, where xj is the root of ge{x) = 0 on (0,1). 

Similarly by Lemma A.l in Appendix A.3, ge has a unique solution x\ € (0,1), 

and is negative on the left, positive on the right, x > x\ implies 讲(x) > 0，and 

so does gi{x;LJ, e). 

(ii). Let X = The smooth pasting conditions (2.18) give 

^i(x;ct;,0) = 0，where u == 5XV^i2/cP 

95(X\ LY) 二 0, where " = (1 一 K)CP/{6XV^) 

Note that cj = (1 - k)小=(1 - 一 1)(7 + \)f2{x)/{P^U{x-1)). Plugging 

in to gi, we have 

0 = y i ( x ; u ; , 0 ) = ( 卢 ( X / 1 ( X ) / 4 ( X ； 1) 一（1 一 K)/2(X)/3(X； 1)) 
/4(工;1) 

- /4(x;l) 工， 

where gjix; k.) is defined in Appendix A.3. Further more, 97(00; k,) = 0 has a 

unique solution x； G (0’ 1). Plugging xj into gi and 仇’ we get xj 二 

and 

《Vca/,2 - Ar (7+l)+09-飞-斷K^；；)。— ‘ (A 39) 
1/傘 CP K … 乂 

The other statements follow from Lemma A.2 and Lemma A.6. • 
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Proof of Lemma 2.7. (i). Most results follow from Lemma A.4 (ii) in Ap-

pendix A.4. We only need to show that, when K2 < K < Ki, 

D2{V\ Kiz.i) > AK for all K G K , K；,.,]. (A.40) 

Again before we show (A.40), we firstly give some formulas for computing the 

critical references. The optimal default barrier V^ in this case is given by 

( 1 - ^)cP 7 + + l){xl? 

‘ — ― “ r ~ h + 1) + (/? — 一 \{0 + . 、.) 

where xj is the unique solution on (0,1) of g2(x; A, i/), with v = (5(/<'/A)/((l -

Now let us return to prove (A.40). When K € let V == K/X、then 

V < KI/X = KI. Denoting VCON = VCON{B*), if VAM > V, by Lemma A.2，we get 

(A.40). The proof for Vcon > V" is the same as that in the proof of Lemma 2.6. 

(ii). Most results follow from Lemma A.6 (ii) in Appendix A.4. We only need to 

show that, when K^ < K < KI, 

E3(V\ m、V：^) > ( 1 - X)V for all V G [K/A. K t J . (A.42) 

Again before we show (A.42), we firstly give the optimal exercise barriers 

{^A^Ktm} in this case: 

!/• P + + (A 43、 

where xj is the unique solution on (0，1) of gi(x;LJ,0), with uj = SK/{cP). 

Now let us return to prove (A.42). When K^ < K < cP/S), denote Vcaia 二 

VcaiA^^)' To show (A.42), by Lemma A.6, we only need to show that 

Veal,2 < By definition and Lemma A.6, Vcaia!^^ is the unique solu-

tion of = 0’ where " = (1 一 K)CP/{6\V*^). Since 仍 is positive if and 

only if it is on the right hand side its unique solution, to show Vcaia < K/\、we 

only need to show that g^ix] u) > 0 where x = (K/\)/V^.。 
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Consider 1 - p = A in Lemma A.2. Note that V；"̂  = Vconi^/^)- x = 

(A7A)/V;;„ satisfies gi(x;a;,0) = 0, where a; = 6K/(cP). Note that " = (1 -

k)x/lj = (1 - ti)(3ih{x- l)/((/3 - 1)(7 + l)/i(x)). Plugging it into u), we 

have 

Since < ^VA < cP/(A(5), < x due to dx[Vi,)ldVb > 0 , where 二.2 is 

given in (A.39) and xj is the unique root of g7(x\ /t) = 0. Since ĝ  is positive if 

and only if it is on the right hand side its unique solution, we get g^{x) > 0 and 

so does i/). • 

A.6. Proof of Theorem 2.5, 2.8 and 2.9 

Proof of Theorem 2.5. We first prove that T*^ solves the optimization problem 

(2.6), given 丁： and T^I defined in the theorem. Note that the function D* defined 

in the theorem is differeiitiable on the interval •，+oo) and has a second-order 

derivative except at V = V*on- Thus, it must be a difference of two convex 

functions. Applying Ito's formula for linear combination of convex functions 

(see, e.g., Karatzas and Shreve (1991), Problem 3.6.24 and Corollary 3.7.2), we 

have 

rT̂  At J r\* 

Jo 

for any stopping time r > 0. Taking expectations on both sides and rearranging 

the order of the terms in the last equality, 

Jo 
RT^ AT J 

-E[ / = K]. (A.44) 
Jo dV 
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D*{V) satisfies CD'(V) = cP in the interval When V > V；^, 

D*{V) = AV/ and hence 

CD'{V) = C[XV] = a v ^ > > cP, 

where the last inequality is due to XV^ > cP/6 by Lemma 2.4. Consequently, 

CD^CV) > cP for all V e [V；；，oo). Furthermore, the boundediiess of the function 

dD*/dV implies that 

厂 dD* 1 
E / = 1/ = 0 . 

Jo dV J 

From all the above observation and (A.44)，we obtain that 

D*{V) > E e-r("AT)D-(i/、.AT) + / e … = V 

L Jo 

for any stopping time 丁. Note that when T^ < r, D*(VV-at) = = (1 一 

p) VT» ； when t < t二 we have VT^AT > 
and hence D^IK.-Ar) = D'[Vr) > AV； 

according to Lemma 2.4. Therefore, 

= V . (A.45) 

The inequality (A.45) becomes an equality when we take 丁 to be Indeed, 

the right hand side of (A.45) equals to, once we let 丁 = r:卯， 

^•(l-p)K； + - • ••二 

+ {e-r"。nAV；•卯 + 字[1 - e - ^ " ] } • . 

Note that 丁； and r*^ are respectively the first passage times of Vt hitting a lower 

boundary V^* and an upper boundary V^. With the help of notations p and q, 

it is easy to verify that the right hand side equals to D*{V). In summary, we 

have already shown that T*^ solves the following optimization problem 

「 f 丁：八T 1 

SUpE e—厂：“ —p)v;,l{r-<r} + e-'^Wr . l{r->r} + / C … = V 
r€T L 九 -
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and D* is the corresponding optimal value function. In other words, t*^^ is the 

best response of the bondholder, given that the shareholder chooses t : and t；̂^ 

defined as in the theorem statement. 

Fix T ^ = inf{i > 0 : V； > V^}. The optimality of T； and T^I can be 

argued in a similar fashion. The function E* defined in Theorem 2.5 is twice 

differentiable on (0, V；；̂), except at V = Invoking the generalized Ito's 

formula again, for any stopping times n and Tea/, we have 

+ / = V • (A.46) 
Jo J 

From Lemma2.4, we know that V；* < (1-K)CP/S. For all V E (0, V；”，E'(V) 二 0 

and thus 

JCE*(V) = £[0] = 0>SV-(1- K)CP. 

For v e ( v ; * ’ K i J ’ 

CE*{V) = CEx{V) = 5V k)CP. 

Combining these two facts with (A.46) yields that 

E ^ V ) > sup 巾 

+ / e - � - （ 1 — t'i)cP)du\V^ = V̂  • 
Jo 

In addition, we have 

丑'(Vtc•抓ATbATc。,) > (1 - + (̂̂ TbAr^aJ . l{rcon>T6AT,„,} 

because E\V) > h{V) for all V < according to Lemma 2.4. Therefore, 

E^(V) > sup £;[e-rTr.。n(l 二l{T:。„<r̂ Ar⑶ 

+ e - 一 』 " ( V W J . l{r:。„一 

/-TCON^r 1 

- (1 - K,)cP)du\VQ = V . 
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On the other hand, it is straightforward to verify that the equality holds in I he 

preceding inequality if we choose n = 丁： and r^ai = + 0 0 . Consequently, we have 

established the optimality of r: and under the given t:抓.Theorem 2.5 is 

proved. • 

Proof of Theorem 2.8. The proof of this theorem is highly similar as the last 

one. We provide some sketch only. Suppose that the shareholder has already set 

up his policies such as 

T； = i n … > 0 : V t < V ： } and r；,, = in{{t > 0 : K G [ K i u ’ K i J } . 

When the company asset value V falls in [0，V；.] or [V: 1’ V;:“2l，the game is 

stopped immediately and the bond and equity values should be given by the 

theorem statement. 

Consider a case when V E (V；•’ The function D* defined in the 

theorem is twice differentiable in this interval. Suppose that Vt starts from 

VQ = V. Applying Ito's formula, we have 

/ • t a t : AT:。, dD* 

E - 一 + Y。 — 

- / (A.47) 
Jo 

for any stopping time 丁. 

When Vt G (V;.’l/^,i), D*{Vt) = V；*，l/:’i)’ which satisfies 

CD*{Vt) = cP. Therefore, 

/ / e-rucPdu ‘ (A.48) 
Jo Jo 

Take expectations on both sides of (A.47). Combining with (A.48), we have 

•广 r AT: AT二, ‘ 

L«/o 

In addition, Lemma 2.6 and Lemma 2.7 shows that D ' iV ) = D^iV; V；•，V̂om) > 

XV when V e (V；*, V；；̂,!)，no matter whether or not V^i^ = K/X. If r < r； At^^I, 

we have Kat^-at^ ,̂ € (V；', and hence 

� A T : 》 > 

c‘ 
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On the other hand, if r > T; A 丁：以卜 equals to either or 

D*(Vr^J. By the definitions of r； and r；̂,, we know = (1 - P )K and 

= In summary, 

e … c 叫 K) = V • 
— 

It is straightforward to verify the equality is achieved when we take r = r*^. 

So far we have proven that the optimal action for the bondholder is to convert 

at T ^ . Emulating the above arguments, we also can establish the optimality of 

T二 when the initial company asset value is in (K i u ’ Kin). 

Now turn to investigate the optimal behavior for the shareholder，given 

that the bondholder converts her security at V ^ . Note that the equity function 

E* defined in the theorem is difFerentiable on (0, except for at the point 

K/X. Apply the generalized Ito's formula for convex functions (see, e.g., 

Problem 3.6.24’ p. 215, Karatzas and Shreve (1991)), 

/.TbATcajAT-^ JfP* fTbATcal 乂on 

=E^(V) + L e-rVK 苦 ( K J — u — y。 

. 士 气 ― . [ J I ^ / ^ I V ) - 風 盖 ( 叫 ， （ A . 4 9 ) 

for any stopping time n and Taxi, where {A^t > 0} is the local time process of 

{K，之 > 0} at K/X. According to Lemma A.7’ we have that 

lim ^ { V ) - lim 監(V) < 0, 

VIK/A dV V]K/X dV 

If taking expectations on both sides of (A.49), term rearrangement will lead to 

/TfcATcoiAr:抓 

+ e - r ( 一 … 一 。 , A " J I K ) 叫 . (A.50) 
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When V e (0,V；), 

SV - ( I - 咖 P < AV: 一（1 — k)CP < 0 
according to Lemma 2.6 and Lemma 2.7. On that interval, B*(V) = 0 and hence 

jCB̂iV) = 0. Accordingly, jCE*(V) > SV ~ (1 - K)CP. When V G (K；, or 

^ satisfies 

When V € (K^/.i, there are two possibilities for the value of E*(V): it 

equals to either V - K or (1 - X)V. No matter which possibility it is, E* 

satisfies /:E*{V) > - (1 - K)CP on the interval [V；；̂,” V^^ jj. Indeed, by the 

discussion in Appendix A.l, E*{V) = V - K only in the interval {V^i^x^K/X) 

and this interval is not degenerate only if K < /G. When K < K2, CE*{V)= 

6V -TK > 5V K)CP because K < K2 < {I - K,)Pc/r according to Lemma 

2.6. On the other hand, the equity value E*[V) 二（1 - in the interval 

Therefore, 

CE*[V) = £[(1 — X)V] = 5V- X5V > SV - > SV - (I - /c)cP 

since V"二 2 < (1 - K.)CP/{6X) from Lemma 2.6. 

So far we have already established 

— ( 1 一 

for all V e (0’ V^). In addition, Lemma 2.6 and Lemma 2.7 prove that E'(V) > 

h(V) for all K G Consequently, (A.50) implies 

「FN/^TCAL 八TSOTX 
E*(V) >E / e … - (1 - '^CP))DU 

+ 一 。 一 J . 1{、〜〈”。 

+ e — • (1 - . 1{‘<T6Atco,}|K) = V̂  • 

Furthermore, it is easy to verify that the equality holds in the above inequality 

if substituting 丁： and 丁^ specified in the theorem to its right hand side. 
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Thus, both of them are respectively optimal default and call times under the 

assumption that the bondholder converts at 丁：抓.We have shown that a Nash 

equilibrium should be given by what the theorem states. 口 

Proof of Theorem 2.9. The uniqueness of the value functions in equilib-

rium is self-evident. Proposition 2.3 proves necessary conditions for a function 

being the bond or equity value function. Lemmas 2.4, 2.6 and 2.7 further con-

firms that these necessary conditions can determine the value function uniquely. 

Theorems 2.5 and 2.8 verify the optimality of the equity and bond functions 

we find from the necessary conditions in Proposition 2.3. Consequently, the 

equilibrium value functions should be unique. • 



APPENDIX B 

A P P E N D I X F O R C H A P T E R 3 

B.l. The Non-Singularity of the Matrix N. 

Note that N can be divided into four blocks 

A BX^ 

N = , 
CX卢 D 

where A, B, C, and D are given by 
� 

r 1 r • 
1 ••• 1 1 … 1 

1 … 1 1 . . . 1 
m-P\ r/l-ZWl m+7l »7i+7n+l 

• . • ‘ . . ： ‘ 
• . • • • • 

. • . . • • 
1 1 1 … 1 

_ rjm-Pl ‘ . ”m-)9m+l L Vm+'yi T;m+7n+l . 

r r -
1 … 1 1 … 1 

1 … 1 1 … 1 
01 +01 … 01+/9m+l ^1-71 0i-7n + i 

. . . ‘ • . ： ‘ 
• • _ • • • 
• • • • ‘ • 

1 … 1 1 … 1 
_ drt+Pl . • . J L "̂-^n+l _ 

respectively, X 卢 = D i a g ^ f 仇， . . . ，无知 a n d X ^ = •. 

To facilitate showing Proposition 3.2，we first notice a famous result about 

the diagonal dominance matrices in Lemma B.l and then prove the other two 

lemmas: Lemma B.2 and Lemma B.4. 

143 
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L e m m a B . l . (Levy-Desplanques, Theorem 6.1.11, Roger and Johnson (1985)) 

If a complex matrix P = {pij)n*n satisfies |p“| > I Pol' for i = 1 ’ . . . ’n , 

then P is non-singular. 

L e m m a B.2. For any m > I , n > and {ft}二V and {7；}二 satisfying (3.3) 

and (3.4), the determinants of the two matrices A and D are given by 

det(A) 二 八 〈化爪 + “ / ^ ^；—达 )尸二 — �) + 0， 1 
ni<t<m,l<j<m+l('?» 一 Pj) 

and 

« 

Proof. Due to the analogy between A and D, we only consider the matrix A. 

To explicitly describing the dependence of the matrix A on the parameters, 

we rewrite A as A 爪+i(r/i，-..、r}m;/3i、…,/?m+i) for any m = 0’ 1 . . . , where 

( m + l ) in the subscript denotes the dimension. When m = 1, it is trivial 

that det (Ai(;/?i)) = 1. When m > 1’ to calculate its determinant, a natural 
參 

idea is to perform elementary operations such that the first m elements in the 

last column of A becomes zero. Subtract the (m + 1 产 linear equation times 

(77m - Pm+i) from the,first linear equation, and subtract'the (m + 1 产 linear 

equation times (”爪-/?m+i) from the {i + 1 产 linear equation times (rji - Pm+i) 

for 2 = 1,2, • • • ,771-1. Then after eliminating the last row and the last column, 

we obtain am m x m matrix as follows. 

/ 0m+l-01 0m+l-0m \ 
Im-Pl • . . Vnx-^m 

0m+l-0i m-Vm "m+l -0m m-Vm 
T)m~0l VI-01 ... Tfm-Pm »7l" An 

0Tn+l-01 T]2-T1m 0Tn+\-0m T?2-”m 

T}m-0\ M-(h . . . RIM-0m »72 —/3m 
• . • • • • 

• * • 

"m+l-"I ”m-l-”m 0m + l-0m T?m-1 -̂ m 
\ Vm-01 Vm-l-0\ . . . Vm-Pm Vm-l-0m / 

where for any j = 1,2, • • • , m + 1, the ( i j ) element equals 二二免 if i = 1 

and equals 々 二 ， : : 二 ; if i = 2,3’...，m + 1. Taking the common factor 

知 + 二 o u t of the 产 column for all j 二 1,2,…，m and taking the common 
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factor (77t_i - 77 )̂ out of the z认 row for all z = 2,3, • • • , m, we can obtain the 

following recursion for any m 二 1，2 . •.. 

det (A爪+1(771，•. • • • . , Pm-fl j) = T-rm / 
11^=1 (^m - Pj) 

X det(A„i(77i’... 、0m)). 

Noting that det (Ai(;/^i)) = 1 when m = 1 and applying the above recursion 

repeatedly for m times, the argument is completed immediately. • 

Remark B.3. It is easy to establish a simple relationship between the matrix 

A in 'Lemma B.2 and the matrix A in Cai and Kou (2008). Then the non-

singulaniies of these two matrices are equivalent. Accordingly, here we actually 

provide a different approach to show the non-singularity of the matrix A in Cai 

‘ and Kou (2008). Cai and Kou (2008) achieved this objective by constructing a 

polynomial function and analyzing its roots. 

Lemma B.4. LetQ := (D一iCX/jA—iBX^y^ 三（gij)(„+i).(„+i). We have Qki > 0 

and Y17=\ Qfd < L 

, Proof. Consider the matrix Let Zki be the A;(八 row, /队 column element of 

the matrix then by Cramer's rule, 

, det(Afcf) , 、 
= - d ^ ' (B.l) 

where Aki is the matrix formed by replacing the k*-̂  column of matrix A by the 

/队 column of matrix B, that is 

• • 

1 . . . column) . . . 1 

1 1 1 
I • • • I • • • yil"'"' 

Jj^ki = Vl~0l T71+T7 m-Pm-H 
擎 鲁 • 參 • 

. • • “ 
1 … 1 … 1 

_ Vm+'yi r}m-0Tn¥\ . 

I 
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Since Aki has the same structure as matrix A, similar as Lemma B.2, we have, 

n 明 广 阶 n ( - 7 / - ft) 
det(A,。= n 

1 化 m,l 化 m + 

n ipj^-yi) n ( ”广 
fc<j<m+l l<i<j<m 

n ivi+7/) 
l<i<m 

Then : 

fc-l m+l m 

n(-7/-ft) n (ft+7,) n(〜一 A) 
z,, = ^ — > 0 (B.2) 

kl k-l m+l m \ ‘ 
u W k - P i ) n i P j - P k ) u i v i + l l ) 
1=1 j 二 fc+l i=l 

Furthermore, since the elements of the first row of matrices A and B are all 1’ 

by matrix multiplication, we have 

m+l 

^2fc/ = l , l < / < n + l . (B.3) 

k=\ 

Let Vij be the i认 row,产 column element of the matrix D ' ^C , since matrices D 

and C have the same structure as matrices A and B, by the similar process as 

above, we have 

n+l 

y r j > 0 , ^ y k j = l A < i < n - ^ l A < j < m - \ - l . (B.4) 

By direct computation, the i认 row,产 column element of the matrix X^A ' ^BX^ 

is 於 . Hence 

m+l 

qu = (D-^CX^A-^BX^)^, = 认 无 风 > 0, 

1=1 

and 

n+l n+l m+l m+l nfl mH 

E 办,=E E 产 < E yio = E …1， 
1=1 1=1 t=l i=l i=l 

due to equations (B.2), (B.3), (B.4) and the fact that 0 < x < 1. Lemma BA is 

proved. 口 
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Based on the three lemmas above, we start to show Proposition 3.2. 

Proof of Proposition 3.2. Since both the matrix A and D are non-singular, we 

can perform elementary operations on the matrix N as follows. 

I 0 A BX^ 

N = ^ ， 

- C X 卢 A-i I 0 D ( I - D - i C X卢 A- iBX^) 

where I denotes the identity matrix. It follows that 

det(N) = det(A)det(D)det(I - D- 'CX^A-^BX^) . 

From Lemma B.\ and Lemma BA, we can easily see that det(I -

D-^CX^A-^BX^) • 0. Therefore, det(N) + 0, which completes the proof. 

• 
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A P P E N D I X FOR C H A P T E R 4 

c. l . Roots of the Equation G{x) 二 r + a. 

The equation G{x) = r + a, with G{x) defined as (4.2)，can be reduced down to 

â x"̂  + a^x^ + a2X^ -f aix + ao = 0, 

where 

a4 = a2, aa = 2/i - - 6>), a】=-(j'^rje - 2/i(” - (9) - 2A - 2(r + a), 

ai = -2/1770 - 2Ap(r/ + 沒）+ 2XT) + 2(r + a){'N - B), a。= 2(r + A、T]0. 

It has four roots given by 

03 Vl- P3 ^ 仅3 Pi +P3 
Pi,a = 一:r~ + ~~o~~‘ = -J— + ~ 5 ’ 

4a4 2 4a4 2 
as _ Pi 一 P2 Pi + P2 

• 九a 二 + 九a = + 

where 

Pi = ^Bs + Co + Cu P2 = y/54-Co-Ci P3 = + 

Bo = al - Saiaa + 12aoa4, Bi = 2al - 9aia2a3 + 27a?£14 + 27aoa^ — 72aoa2a4, 

D o 4 2a2 ai 4a2 — 40303 8ai a^ 
B2 = \/Bf - = 7-9 - 厂 ， 召 4 = TTT 一 战 2 r " 一 3 ' 

148 
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C.2. Lemma C.l. 

Lemma C . l . Let f : [0,7̂ ] x R R be a function of class C^'^ on [0,T] x R 

and C*】’2 on [0, T] x R \ {h}. The left and right second derivatives / i-) , 

0 ( f ' ’ / i + ) exist. Then, we can find a sequence of {/„} G x M) and a 

positive constant M, independent of t, x, and n, such that (1) fri{t, x) converges 

to f(t, x) as n — oo for any {/,,x) G [0, T] x R; (2) Jn{t,x)三 /((，工)for any 

{t.x) e 10,71 X (-oo,/ i]u[/i+i,oo); and (3) max{|/„|, < M 

for any {t,x) G [0’T] x {hji + 

Proof: Introduce a polynomial to smooth the irregular point at x = h for 

the function /• Let fn(t,x) = /⑷工）for (t,x) e [0,T] x (-oo,h] U [/i + 

and fnit.x) = Pn{t,ri(x - h)) for (t’x) G [0,T] x (h,h+ • ) ’ where P„ is a fifth 

order polynomial given by 

x ) = 4 x 5 + 与 ？ + 4 , 3 + + i m ) , + v / ( / ” / o . 

n』 ri'^ n^ 2n 么 n 

/„ must be twice differentiable oX x = h and x = /i+ 1/n. It is easy to check that 

/n has second order derivative at x = /i and its differentiability ata: = / i+ l / n 

is equivalent to requiring a,b,c lo satisfy 1) = J\t、li + 1/n), 

聯 , 1 ) ― 抓 J 护 

dx = ~ 細 dx^ “ " " " ^ ~ • 

That is, {a, b, c} is a set of roots of the following linear equations; 

a + 6 + c = n(n(f(t, h + - f(t, h)) - —臺0“，“一); (。•” 

5« + 46 + 3c 二 n严⑷：十。-^{t, h)) 一 岛、t, h-); (C.2) 
2 0 a + 1 2 “ 6 e = — ; + [ _ ( “ — ) , (C.3) 

Note that the foregoing linear equations are solvable for any t and n. Using 

the conditions of / , we can show that the right hand sides of (C.1-C.3) are in the 

order of o(l) as n —> +oo. Thus, the coefficients a, 6, and c are also in the order 、 

of 0(1), which yields the property (3). From our construction it is also easy to 

see that such /„ satisfies (1) and (2). • 
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C.3. The Property of the Matrix A. 

By Gauss elimination of elementary column operation, we can show that the 

determinant of the following matrix 

1 1 1 1 
tt 丨 a2 as a4 

A = , 
1 1 1 1 

t;-QJ T)-a2 Tf~a3 r}-a4 
I 1 1 1 

_ 0 fai 0 » 02 as 0 + a-i _ 

is given by 

det(A) = + 广 ( � - … ) + 0. 

A is thus non-singular. Let b = (1,6，六，点广，then the linear equations 

Ax = b 

have a unique solution x* = (xj,xj,xj,x^J)^, with 

^ 一 + 之-“A山碌• 

C.4. Occupation Times with Double Barriers 

Our Euler-inversion-based approach can be extended to cover the occupation 

time that the underlying process spends inside two flat barriers, i.e., a corridor 

with double barriers. There is one minor technical difficulty remaining: we 

cannot show non-singularity of an 8 x 8 matrix rigorously, which we believe is 

true. However we can choose the Laplace transform parameter ‘a’ big enough to 

ensure the non-singular property of the matrix B (please refer to Remark C.2 

below). Note that numerical experiments demonstrate that the matrix should 

be invertible. Moreover, it turns out that this does not affect the validity of our 

numerical met hods for pricing occupation-time-related options. 

In this subsection, we first presents the closed-form Laplace transform of the 

joint distribution of the occupation time with double barriers and the log-return 
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of the underlying at the maturity. Then this result is applied to price corridor 

options with double barriers, and numerical results are provided in Table C.l. 

To price other options related to occupation times with two barriers, readers may 

mimic the arguments in Section 4. 

Consider two barriers h and H with h < H and let 丁(hjf) denote the occu-

patjon times spent between the lower barrier h and the upper barrier H until 

I he inalurily T, lhal is, 

JG 

Given any 0 < 7 < inin{”’ 0} and p〉0’ our objective is lo compute the following 

Laplace transform of r^^,^) and Xr： 

V{T,x\pn\K H) . = x]. (C.4) 

Following similar derivation as in Theorem 3.1, we can show that such V uniquely 

solves the following PIDE system: 

f + pl(h<x<//}^ = >Cl/, for/,€(0,Tl andxGR\{/i,//}； (。5) 

V(0,x) = e，：’ for x € R. 

For a > 0 satisfying (4.21), consider the Laplace transform of l/(T,x;p, 7 ) 

with rcspect to the maturity T 

P, 7’ a； /I’ / / )全 J T x; p、i)dT. 

Similarly as in the case of occupation times with single barrier, we can transform 

the PIDE (C.5) into an OIDE. Some algebra can yield the closed-form solution 

for u as follows 

u(x]p,^,a\h, H) 

‘ 召 + _ x < /i; 

‘ — 一 h<x < H\ 
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where 

— e^" 一 e''" 

「力 = G ( 7 ) - a —r 一 p’ — = 。 ⑷ … , 

In other words, the solution u is a linear combination of exponential func-

tions. The coefficients vector 

satisfies a linear system 

Bd = R (C.6) 

Here R is an 8-diniensional vector 

/ _ x^ x^ 1 1 
R = {cv -CQ)- , ̂ , 1 , 7 ， > , 

\ 7 7 - 7 0 + 7 7 7 - 7 0 + 7 乂 

where x := e^"". B is an 8 x 8 matrix 

M NZfl 

MZ^ N 

where Zp and Z^ are two 4 x 4 diagonal matrices with the diagonal elements 

being { 无 仇 〜 无 决 � 0 ， 0 } and {0，0，『1.。》^，”2,«+-}，respectively, and M and N 

are given by 

1 1 1 1 

” A,a 02,a -7l,afp -l2,a\p 
M = , 

1 1 1 1 

r}-0l.a n-lh.a V^fl.a+p V^Ti.a+p 
1 1 1 1 

and 

1 1 1 1 

_ _ A.afp -ll .a "72,0 
N = 

I 1 1 1 
r}-0\,ai-p + p n + ^ + 

1 1 1 1 

. 0 + 0 1 . … 0 - 7 1 .a 0 — 72.1 . 

R e m a r k C . 2 . To guarantee thai the linear system (C.6) has a unique solution, 

we need the condition that the Matrix B is non-singular. Actually this appears to 
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be the most different pari when generalizing to the double ba/mers. We haven't 

proven it rigorously right now. However we can choose the Laplace trans/onn 

parameter 'a ‘ big enough to ensure the non-singular -property of the matrix B . 

Note that we can compute the determinant of matrix M and N , which mc 

non-zero. And /3i,«+p，一7i,a+p, = 1 , 2 are four solutions to 

C{x) = a + /,’ 

and pi^a, —7,.q, z 二 1，2 are four solutions to 

G{x) = a. 

When a》p, 13、�̂ A.a,7«,a+p ~ 7:,a’2 = 1, 2，then 

M NZ " 1 [ M NZfl ] 「 I - z j ) 
det(B) = det ^ = del { ^ ^ } 

MZ^ N J [ [ MZ^ N J [ 0 I J J 

[ M ( N - M ) Z 卢 1 [ M ( N - M ) Z " 
— d e t ‘―— det 

MZ^ N - MZ^Z^ MZ^ N 
det{M) * det{N) 

is non-zero, where we have used the facts that Z ^ Z ^ = 0 and all the components 

of matrix N — M are quite close Lo zero as a》p. With numerical verification, 

further more, we conjecture that when a satisfies the inequality (4.21) in Theorem 

4.2, the matrix B is non-singular. 

The conclusion that B is invertible for large a is good enough for . 

our objective of option pricing. Taking inversion on I he Laplace transform 

I ra iiM 

l/(T，X] p, 7 ; / i , / / ) = — lim / p, 7 ’ s\ " ， H ) d s , 

27rz M—+00 Ja-、M 

The integration in the right hand side is done along any contour path Re{s) = a 

on the complex plane as long as a is greater than the real part of all singularities of 

u. Therefore, we can choose such a large a to complete the inversion. Numerical 
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experiments indicate that it works quite well for the P]uler inversion. Moreover, it 

turns out that our pricing methods for occupation-time-related options based on 

the Laplace transform result of the joint distribution of AV and T(h,H) should be 

valid. Next we apply the result to price corridor options with double barriers lo 

illustrate the effectiveness of our pricing method. Due to similarities, pricing of 

other options related to occupation times with two barriers is omitted. Consider 

a corridor call option with double barriers, whose price is given by 

Cor{R\T) = e~^^/:;[max{T(iog(//5o).io6(L/5o))"八、。}], 

where I and L (I < L) are two barriers of the underlying asset price process Si 

thai starts from So. Mimicking the proofs of Theorem 4.7 and Proposition 4.8， 

the double Laplace transform of Cor{K,T) with respect to K and T 

r e-补—aTCoiiK/iyiKdT (C.7) 
Jo Jo 

should bo equal to 

-gcorM = — 一 T ^ ( 0 ; 0 , 0 , a ; l o g ( / / 5 o ) , l o g ( / V 6 o ) ) 

+ 9、0’ a； iog(//5o), log(/V5o)) - 7 ^ ， 

！̂么 [a 十 

where 

—(0;0,0,a;log(//5'o),Iog(L/5o)) . 

‘ . {SO/IF''" + QJK . ("Ŝ o//产。’ SQ < /； 

_ —c：̂  • - •、S…和—时 . ( / /5"0产。 

-、 一巧.（"̂“。产•。一 1 < 5o < \A 

and ci = satisfies the following linear sysLeiii: 

… 〜 1 ( 1 1 ^ 1 1 、 了 

B 0 d = - i ， o ， -， z ’ l ’ 0 ’ - ’ - . 
(a + r)2 \ T] 9 Tj 0 J 

Her BCO) is B with p = 0. Inverting ihe Laplace transform (C.7) via the Kult、r 

inversion algorithm, we can price corridor options with double barriers numer-

icaJy. Numerical results are given in Table C.l, where we can see that all the 



Appendix A. Appendix for Chapter 2 1_1_9 

iiuinerical prices obtained using our pricing method (denoted by value) stay 

within the 95% confidence intervals of the associated MC simulation estimates 

(denoted by MC value). This demonstrates that our pricing method is also ac-

curate for pricing corridor option with double barriers. In addition, similarly as 

ill the case of corridor options with single barrier, we can also calculate deltas 

for corridor options with double barriers numerically. Numerical results are also 

given ill Table C.l, which also indicate the effectiveness of our numerical method. 

I 
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Prices of Corridor Options with Double Harriers under the DKM 

K So value MC value ‘ Std Err 

95 0.49444505 0.49360862 0.00075583 

{)：! 100 0.45098018 0.45017582 0.00073051 

1(35 0.37305021 0.37252713 0.00070721 

95 0.32304472 0.32235313 0.00065997 

O.J 100 0.28990787 0.28934707 0.00062511 

105 0.23235612 0.23187688 0.00058409 

Deltas of Corridor Options with Double Barriers under the DKM 

K So value MC value Std Err 

100 -0.01853381 -0.01852545 0.00007402 

0.2 102 -0.02008015 -0.02014496 0.00007719 

104 -0.02149747 -0.02153651 0.00007988 

100 -0.01499858 -0.01496464 0.00007158 

0.4 102 -0.01588576 -0.01590179 0.00007396 

104 -0.01664286 -0.01667591 0.00007538 

Table C . l : Prices and dellas of corridor options with double barriers (denoted by EI value)-

The default parameter choices are A = 3, r = 0.05, o = 0.2, t? = 30, 9 = 20，p = q = 0.5, I = 8(.) 

for pricing part or Z = 50 for delta pari, L = 110, and t = 1. The Morile Carlo simulation 

estimates (denoted by MC value) along with the associated standard errors (denoted by Sid 

KIT) are obtained by using 50,000 time steps for pricing part or 20,000 time steps for delta pari 

and by simulating 100,000 sample paths. The CPU time of our numerical method for generating 

one corridor option price or delta is around 3 seconds. The CPU times for producing one MC 

value of corridor option price and one MC value of delta are around 10 minutes and '1.3 minutes, 

respectively. The table indicates that all the KI values stay within the 05% confidence intervals 

of ihe associated MC values. 
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