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Integrating many processing elements (PE) in a single chip is inevitable as 

silicon technology allows more than one billion of transistors in a single piece of 

silicon. Networks-on-Chip (NoCs) has been proposed as a scalable solution to both 

increasing bandwidth requirements and physical design problems for multi-PE chips. 

However, as multi-PE chips drive the design focus to shift from the computation-

centric to communication-centric, area and power costs consumed by communication 

has become comparable to what computation consumes. 

This thesis tackles design and implementation of cost-efficient NoCs along two 

orthogonal directions. The first direction is to reduce area and power costs of a single 

virtual channel router. Through ASIC implementations, we find that allocator logic, 

including both virtual channel allocator (VA) and switch allocator (SA)，consumes a 

large amount of costs. Based on RTL simulations for the entire NoCs, we identify 

great opportunities to reduce design costs of VA and then propose two low-

complexity allocators: look-ahead VA and combined switch-VC allocator (SVA), 

Evaluations are performed for a wide range of traffic patterns and router parameters. 



Results show that both proposed architectures significantly reduce area and power 

costs of allocators without penalties on network performances. 

The second direction is to reduce hop counts of packets when they travel from 

sources to destinations, and thus to reduce power consumption of NoCs, The 

reduction of hop counts is realized by using a recently proposed express virtual 

channel (EVC) technique to virtually bypass intermediate routers. We study the EVC 

technique in two domains. The first domain is to present a high-level, application-

specific methodology to improve power efficiency of EVC paths early in the design 

stage. The methodology includes three steps. Firstly, aggregate communication loads 

between routers are calculated. Secondly, an energy reduction model and an energy 

overhead model are developed. Finally, energy savings of all possible EVCs path are 

calculated and a greedy algorithm is applied to insert EVCs paths in an iterative way. 

The second domain is to exploit the EVC flow control in design and 

implementation of low-power NoCs. We firstly present cost-efficient hardware 

components for both EVC source and EVC bypass routers, then propose a statistical 

approach to customize buffer architectures for EVC networks, then describe creative 

use of low-power circuit techniques such as clock gating and operand isolation for 

EVC routers, and finally evaluate EVC NoCs through detailed ASIC 

implementations. Results show that EVC NoCs can save up to 34.26% of power 

compared to baseline NoCs. 



摘要 

随着单块芯片上集成的晶体管达到十亿级，在单芯片上进行多核处理成为 

必然。多核芯片的通信结构需要巨大的带宽，物理实现上也非常困难。因此， 

研究者提出了片上网络来处理芯片内多个内核间的通信。然而，多核芯片使芯 

片设计从传统的以计算为中心向以通信为中心转变，从而使通信结构的成本上 

升到与计算结构的成本相提并论的地步。 

本论文在两个相互正交的方向上研究低成本的片上网络的设计与实现。其 

一，减少单个包交换路由器的实现成本。通过A S I C实验，我们发现虚通道分 

配器和交换带宽分配器的成本很高。通过R T L仿真，我们发现虚通道分配器 

可以大大简化。因此，我们提出了两种低成本的分配器结构： look-ahead虚通 

道分配器和组合的交换带宽一虚通道分配器。大量实验表明这两种结构能有效 

地减少分配器的成本，但并不会降低网络性能。 

其二，通过减少包在传输过程中所经过的路由器的数量来减少功耗。快速 

虚通道技术是一种新近提出的流控技术，它能在逻辑上旁路包所经过的路由 

器。我们在两个方面对快速虚拟通道技术进行了研究。第一个方面，提出了一 

种上层的，基于应用的方法。该方法能在设计初期快速提高快速虚拟通道网络 

的能效，主要分为三个步骤。首先，计算路由器间的累计通信量。其次，对快 

速虚拟通道的节能模型进行建模。最后，计算所有可能的快速虚拟通道所能节 

约的能量，然后采用贪婪算法通过迭代来确定加入到网络中的快速虚拟通道。 

第二个方面，为低功耗片上网络实现快速虚拟通道技术。我们为快速虚拟 

通路由器设计了低成本的功能模块，为快速虚拟通道网络提出了一种基于统计 

的存储单元优化方法，讨论了传统低功耗技术（如门控时钟和门控电路）在快 

速虚拟通道路由器中的应用，并通过A S I C实现对快速虚拟通道网络和基准网 

络进行了比较。结果表明快速虚拟通道网络最大能减少 3 4 . 2 6 %的功耗。 
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CHAPTER 1. INTRODUCTION 1 

CHAPTER 1. INTRODUCTION 

Driven by DSM technologies, on chip interconnection structure is becoming the 

bottleneck for future SoCs and CMPs. NoCs, which is adapted from traditional off-

chip networks, has been proposed as a promising solution to this problem [1-5]. 

However, design costs of NoCs are clearly a gap between today's technologies and 

those needed by future systems. This thesis aims to address cost-efficient design and 

implementation of NoCs. The introduction provides a brief overview of NoCs and 

the scope of this thesis. 

1.1 THE EMERGENCE OF NOCS 

Scaling down of silicon technology will allow chip complexities of more than one 

billion transistors on a single piece of silicon [6]. In order to efficiently utilize the 

exploding number of transistors, integrating multi PEs (or IP cores) in a single chip 

becomes inevitable. According to [7], the number of PEs in a SoC will increase to 

about 80 in 2010，270 in 2015, and 880 in 2020. The communication infrastructure 

for such a SoC has to meet the following requirements: 

• High throughput. 

• Low latency. 

• Low area and power costs. 

• Scalable. 

• Reusable. 

Figure 1.1 shows examples of communication architectures: bus, FTP links, and 

NoCs. Let's analyse the pros and cons for them. 
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Figure 1,1. Examples of communication architectures, (a) Bus. (b) PTP links. (C) NoCs. 

Busses can not provide high throughput for two reasons. First, there can be at most 

one transaction over busses at any point of time. Second, there are many global 

control signals for global arbitrations, which have long delay and then make the 

maximum operating frequency of busses low. Those using standard lightly pipelined 

interconnects are usually in the range of 80 to 150MHz, while the highest reported 

frequencies for pipelined interconnects are inching towards 250MHz [8]. Meanwhile, 

it is hard for busses to achieve low latency because of low operating frequencies. In 



addition, busses fan out their wires to all targets because every data transfer is 

broadcast. As a result, power usage per data transfer is large due to the large 

capacitive load. What is more, the above bottlenecks will become more and more 

critical as more cores are attached to busses. Thus, busses are poor at scalability. 

Finally, busses are reusable since there are many well-developed bus standards. 

Dedicated PTP links are optimal in terms of throughput, latency, and costs as they 

are designed specially for a given purpose. Nevertheless，they axe bad in scalability 

because the number of wires, which becomes more and more costly, increases 

sharply {0{n'^fn)) as the number («) of cores increases [9]. Additionally, they are 

not reusable because they are fully customized for a given application. Designers 

have to completely change PTP architectures when applications are different. 

NoCs can easily supply high throughput. First，many packets are allowed to 

traverse concurrently in a network. Second, the design frequency can be very high 

because of local processing and regular, short wires. In addition, NoCs is inherently 

scalable since it is a distributed communication architecture, which uses distributed 

routers, network interfaces, and structured wires. NoCs is reusable because it is based 

on the OSI protocol stack that decouples computation (cores) from communication 

(network). It makes the network transparent from the point of computing resources. 

Meanwhile, standard components library can be built for routers and network 

interfaces to reduce design efforts. However, although frequency is high, latency is a 

challenge because a packet has to pass multi hops from a source to a sink. In addition, 

power and area costs are critical challenges due to high design complexity of packet-

switching routers. 



In summary, share busses and PTP links can not meet requirements of future 

interconnection infrastructure to interconnect hundreds of cores. NoCs is a promising 

solution but can not be widely used unless some critical challenges are resolved [10]. 

1.2 NOCS BASICS 

Figure 1.2 shows the layered architecture of a NoCs. The system includes a lot of 

processing elements. The work at this level is similar to that in a general large-scale 

SoC design, including mapping, task scheduling, modelling etc. At this level, 

messages or transactions are the basic datagram and design details of the network are 

not considered. The network interface decouples computation (the system) from 

communication (the network) and makes the network transparent from the point of 

the system. It handles the end-to-end flow control and break messages or transactions 

to packets that are delivered in packet-switching networks or streams that are 

delivered in circuit-switching networks. The network consists of routers and links. It 

sends packets from source routers to sink routers. Packets are further divided into 

flits or phits that are transferred along links. Flits are the flow control units whereas 

phits are the physical units that are the minimum size of datagram that can be 

transmitted in one link transaction. A flit could be made up of a series of phits. 

However, most commonly flits are equivalent to phits (We assume this throughout 

the thesis). The link level deals with the encoding/decoding, reliability and 

synchronization issues. 



OSJ piotocol mcl 

Figure 1.2. The layered architecture of a NoCs [11] 

This thesis focuses on issues at the network level. A network is defined by the 

topology, routing, and flow control. The connection patterns of routers and links 

define the network's topology. Once a topology has been chosen, there can be many 

possible paths that a message could take through the network to reach its destination. 

Routing determines which of these possible paths a message actually takes. Once a 

path has been selected, flow control dictates which messages get access to particular 

network resources (channels and buffers) over time. The network is analogous to the 

traffic network in reality. The topology determines the roadmap, the routing method 

steers the car, and the flow control controls the traffic lights [12]. 

1.2.1 Network Topology 

A NoCs is composed of a set of routers and links, and the topology of a network 

refers to the arrangement of these routers and links. In general, there are three classes 

of topologies: regular, semi-customized, and customized. 

The mesh is the most simple and popular among regular topologies. Both the size 

of routers (except those on edges) and the length of links are regular. The torus is 

another popular regular topology. The difference between a mesh and a torus is that 



in a torus network, there is a wrap-around channel that connects the two edge nodes 

at each dimension, so that the hop count of the two edge nodes reduces to one. 

Regular topologies provide structured global interconnects that ensure well-

controlled electrical parameters. However, they may become less attractive for 

application-specific designs. 

On the other hand, customized topologies are specially designed for specific 

applications [13-16], They improve network performances at the cost of altering the 

regularity of routers and channels. As shown in Figure 1.3 (c), there are two 4-port 

routers, one 6-port router, and one 8-port router. In addition, the length of channels 

varies largely. 

These two extreme classes do not cover the whole design space of interconnection 

networks. In reality, many networks are neither completely regular nor completely 

customized. Thus, semi-customized topologies were proposed to explore the 

potential of using regular topologies in conjunction with a few customized long-

range links, to improve performances with moderate overheads [17，18]. 
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Figure 1.3. Examples of network topologies, (a). A 4x4 mesh. (b). A 4x4 torus, (c). A 
customized topology, (d). A semi-customized topology. Circles, lines, and boxes respectively 
denote routers, channels, and PEs. For simplicity, a pair of channels, one in each direction, is 
represented by one line. The bold, red lines are express physical channels. For clarity, PEs are 
only shown for the customized topology. 

1.2.2 Routing schemes 

The routing scheme employed by a network determines the path taken by a packet 

from a source to a destination. In general, routing schemes can be classified into two 

categories: deterministic and adaptive. In a deterministic routing scheme, the 

traversal path of a packet is determined by its source and destination alone. 

Dimension-order routing is a popular deterministic routing, in which the packet 

follows one dimension first, then moves along another dimension toward the 

destination. In an adaptive routing scheme，the routing path of a packet not only 

depends on the source and destination of that packet, but also depends on the 

dynamic network status like link congestion. Deterministic routing has small design 

cost and traffic flows can be predicted well whereas adaptive routing can deal with 

network congestion by dynamically using alternative paths but has large design 

complexity. 



1.2.3 Flow control 

Flow control determines how resources of a network, like buffer space and channel 

bandwidth, are allocated to messages traversing the network. There are generally two 

categories of flow control strategies: circuit switching and buffered flow control. 

Furthermore, the buffered flow control includes three popular techniques: store-and-

forward, virtual cut-through, and wormhole [19]. 

In circuit switching, a physical path from a source to a destination is reserved prior 

to the transmission of a message. This is accomplished by injecting the header flit 

into the network. This header flit contains the destination address and some 

additional control information. The header flit progresses toward the destination, 

reserving physical links as it traverses intermediate routers. When the header flit 

reaches the destination, a complete path has been set up and an acknowledgment is 

sent back to the source. The message contents may now be transmitted at the full 

bandwidth of the physical path. The circuit may be released by the destination or by 

the last few bits of the message. Circuit switching is well suitable for transferring 

infrequent and long messages that have much longer transmission time than the path 

setup time. 

Alternatively, a message can be partitioned and transmitted as packets. Each 

packet is individually transferred from the source to the destination. In store-and-

forward flow control, a packet is completely buffered at each intermediate router 

before it is forwarded to the next router. In order to buffer complete packets, large 

buffers have to be used. In addition, the transfer of a packet across the physical 

channel often takes multiple cycles. Although the routing information is typically 

available after the first few cycles, the routing decision can not be made before the 

entire packet is received. Thus, the latency of SAF flow control is high. In virtual 



cut-through flow control, as soon as the next router has enough buffers for an entire 

packet, the current router can make routing decision and forward the header and 

following data bytes of the packet to the next router before the entire packet has been 

received at the current router. As a result, packets are pipelined through routers so 

that latency is small. But it also needs large buffers to save complete packets. In 

wormhole flow control, packets are also pipelined through routers. However, buffer 

requirements within routers are substantially reduced over the requirements for VCT 

flow control. A packet is partitioned into a set of flits and buffers within a router are 

required to store a few flits instead of complete packets. 

Virtual channel flow control [20], which associates multi virtual channels with a 

single physical channel have many advantages. Firstly, it can avoid deadlocks. Since 

VCs are not mutually dependent to each other, one may break cycles in the resource 

dependency graph by adding VCs. Secondly, it can remove HoL blocking and 

increase utilization of physical channels. HoL means that a packet at the head of a 

VC whose designated output channel is busy will block subsequent packets in that 

VC from being transmitted even if their own designated output channels are free. As 

a result, VC flow control reduces packet latency and improves network throughput. 

In addition, VC flow control can be used to and provide QoS by allowing high 

priority message streams overtake those of lower priority. Therefore, although some 

researchers don't use VCs in their NoCs [1，4], VC flow control is the prevailing 

scheme for NoCs [21-25]. However, implementing VC flow control results in area 

and possibly power and latency overhead because it requires more buffers and larger 

control logics to manage the VCs. 



1.2.4 Router microarchitecture 

Figure 1.4 (a) and (b) demonstrate the microarchitecture and the pipeline of a VC 

router. The router has pi input and po output physical channels/ports, supporting V 

VCs per port. The FIFOs in input ports buffer arriving flits (BW stage). The routing 

computation directs the head flit of an incoming packet to the appropriate output 

physical channel (RC stage). The VC allocator arbitrates among all input VCs (VCs 

of input ports) which request the same output VCs (VCs of output PCs. In fact, VCs 

of an output PC are VCs of the connected input port at the downstream router.) and 

assigns available output VCs to successful input VCs (VA stage). The switch 

allocator distributes output PCs and the crossbar to input VCs (SA stage). The 

crossbar passes flits to appropriate output PCs (ST stage). Finally, flits traverse 

output PCs to the next router (LT stage). Each head flit passes five pipeline stages 

whereas each body/tail flit passes four pipeline stages. There is no RC stage in the 

pipeline because the look-ahead routing computation [26] is applied, where the route 

of a packet is computed one hop in advance. 
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Figure 1.4. A virtual channel router, (a) Microarchitecture, (b) Pipeline. 

1.2.5 Buffer organization 

Buffers are one of the most important structures in a router [24]. On the one hand, 

buffers have large impacts on network performances. On the other hand, in by far the 

most NoCs architectures, buffers account for the main parts of area and power costs 

in the router [2, 27-29]. There are generally two types of buffer organizations (Figure 

1.5): a central buffer and a separate buffer. 



In a central buffer organization, a large memory pool is shared across all virtual 

channels of a physical channel. In a separate buffer organization, a small buffer 

memory is provided for each virtual channel. The central buffer always uses the 

dynamical allocation mechanism that realizes sharing of memory spaces and leads to 

good memory utilization. However, control logic for dynamic allocation is very 

complex, generating high latency and power costs. On the contrary, the separate 

buffer organization requires very simple control logic because memory spaces are 

allocated statically but it has poor buffer utilization since memory spaces of idle 

virtual channels cannot be allocated to busy virtual channels. In general, if a NoCs 

aims to support a range of applications and traffic characteristics of these 

applications are unknown, the dynamically allocated central buffer structure is 

preferred in order to provide flexible, efficient use of memory spaces. However, if 

traffic characteristics of a given application can be well predicted, the statically-

allocated separate buffer structure is better because memory spaces for each virtual 

channel can be customized to significantly improve buffer utilization. 
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Figure 1.5 Buffer organization, (a) A central buffer, (b). A separate buffer. 

.2.6 Network performance metrics 

Latency for a packet is the time required for it to traverse the network from source 

to destination, including the time that the packet buffers in the source queue before it 

enters the network. Generally, graphs of average latency vs. offered traffic are used. 



The average latency is the mean value of the latencies of all measured packets. The 

offered traffic is the rate at which packets are generated by packet sources, which is 

also known as applied load, generation rate, or injection rate. We use injection rate 

throughout this thesis and calculate it in two steps. Firstly, injection rate for each 

node is computed by counting the number of flits (a packet has a number of flits) 

entering the network from this node and dividing it by the time interval (cycles). 

Then, injection rate for the network is calculated as the mean value of injection rates 

of all nodes. Thus, its unit is flits/(node*cycle) (or flits/node/cycle). 

Throughput is the rate at which packets are delivered by the network. It is also 

called accepted traffic that is contrasted with the offered traffic. Generally, graphs of 

average throughput vs. offered traffic are used. Like the injection rate, we calculate 

average throughput for the network by firstly calculating throughput for each node 

and then computing the mean value of all throughputs. Thus, its unit is also 

flits/(node* cycle). 

1.3 COST-EFFICIENT DESIGN FRAMEWORK 

1.3.1 Motivations 

Interconnection networks have been used in off-chip domain (chip-to-chip, board-

to-board, etc.) for many years, where the only goal is to achieve the highest possible 

performances (packet latency, network throughput, etc.). However, as 

interconnection networks shift to on-chip domain, a critical challenge is to keep their 

design costs (area and power) small, especially when they are applied for portable 

SoCs or embedded devices. 

Costs of NoCs have become comparable to on-chip computation costs. On the one 

hand, NoCs consumes a large portion of the chip area. For example, TeraFLOPS has 



3 mm^ (in 65nm technology) tiles and 53-kiiogates routers account about 17% of the 

transistors [30]. In general, the 3 mm" tiles are large. Thus, on-chip routers will 

account more percentage of the chip area when PEs are modest-sized [31]. On the 

other hand, NoCs consumes a large amount of the chip power. For instance, in the 

MIT Raw microprocessor, the on-chip networks consume 36% of the total chip 

power, only 9% lower than what the main processor consumes [32]. These examples 

demonstrate the importance to reduce area and power costs ofNoCs. 

Virtual channel flow control is widely applied in NoCs to obtain high throughput 

by efficiently sharing network physical channels. However, it comes with high area 

and power costs because of the hardware complexity of VC routers. As shown in 

Figure 1.4 (a), in a VC router, a number of VCs are associated with a single physical 

channel. Since each VC is implemented as a separate memory, a large number of 

buffers are needed that are the major part of the router area. Meanwhile, complicated 

control blocks such as the virtual channel allocator and the switch allocator are 

required to handle sharing of buffers and crossbar bandwidth. Both the buffers and 

the control blocks include many registers. These registers and their associated clock 

tree consume a certain amount of power even when the network is idle and no 

packets are travelling in it, which is referred to standby power [33, 34]. In addition, 

as a packet travels from a source to a sink，it dissipates additional stream power for 

buffer access (write and read), arbitration (routing computation, VC allocation, 

switch allocation, etc.), and crossbar traverse. Therefore, routers dominate NoCs 

power. Implementation results show that routers consume two to three times more 

power than physical links in deep submicron technologies [35]. 



In summary, we concentrate on reducing area and power costs of routers in this 

thesis because they are much more costly than links. In addition, as mentioned before, 

we do not address network interfaces. 

1.3.2 Contributions 

This thesis aims to achieve cost-efficient design and implementation of NoCs in 

two levels: router microarchitecture and network architecture. 

In the router microarchitecture level, low-cost hardware implementations for the 

VC allocator and the switch allocator, which are the largest two components in the 

control path of a VC router, are proposed. By running simulations for the entire 

NoCs and investigating utilization statistics of arbiters in a generic VA, we find big 

opportunities those cannot be identified by analysing the generic VA in isolation, to 

simplify design complexity of the generic VA. Then, we propose two low-cost 

allocators: a look-ahead VA and a combined switch-VC allocator (SVA). However, 

arbiters sharing in the SVA leads to deadlock problem. Thus, we study deadlock 

problem for the SVA. Finally, we present the effects of VA simplifications on the 

critical paths of the VA and the SA. 

In the network architecture level, we exploit a new flow control mechanism, 

express virtual channel [36], to reduce power. We propose a novel methodology to 

insert EVC paths in an-application specific manner by exploiting communication 

characteristics of various applications, with the main objective to reduce stream 

power as much as possible. The AS-EVC method consists of three steps. First, 

calculate the aggregate communication volumes between any pair of routers. Second, 

calculate power savings for all possible EVC paths based on analytical energy 

models. Third, insert EVCs using a greedy algorithm subject to several insertion 



rules. Because all the calculations are based on analytical models, the AS-EVC 

method can help designers quickly insert power-efficient EVC paths for applications 

in the early design stage. 

Furthermore, we study design and implementation issues for NoCs with the EVC 

flow control in three aspects. First, we design special hardware components for EVC 

source and bypass routers. Second, we propose a simulation-based, statistical 

approach to customize buffer organization after EVCs insertion. Third, we explore 

low-power circuit techniques like clock gating and operand isolation to save power 

as much as possible when an EVC flit travels an EVC bypass router. 

The rest of this thesis is organized as follows. Chapter 2 presents two cost-efficient 

allocator implementations for NoCs routers. Chapter 3 proposes an application-

specific EVC insertion methodology for power-efficient NoCs. Chapter 4 presents 

design and implementation of cost-efficient NoCs with the EVC flow control. Next, 

chapter 5 concludes this thesis. Finally, Appendix A describes the application-

specific EVC insertion tool, Appendix B shows the application-specific buffer 

customization tool, and Appendix C presents the folly-synthesizable parameterized 

NoCs library. 
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CHAPTER 2. COST-EFFICIENT ALLOCATOR 

IMPLEMENTATIONS 

2.1 INTRODUCTION 

Virtual channel flow control is the prevailing scheme for NoCs because it provides 

high throughput through multiplexing of physical channels and it has smaller costs 

than store-and-forward and virtual cut-though flow control schemes. However, costs 

of VC routers are still too large to be used in NoCs for practical CMPs, especially for 

cost-sensitive portable SoCs and embedded devices. 

Many researchers have made efforts to reduce area and power costs of on-chip 

routers. However, they only focused on components in the data path of a router such 

as buffers and a crossbar. Some power-efficient components like a segmented-

crossbar, a cut-through crossbar, and a write-through input buffer were proposed in 

[37]. Buffers for input ports were customized to reduce large buffer costs in [29，38]. 

Although it is indeed reasonable to preferentially study components in the data path 

of a router because they consume the largest parts of costs, costs of components in 

the control path are not negligible. Nevertheless, few researchers address reducing 

costs for components in the control path. 

Design costs of a generic virtual channel allocator and a generic switch allocator 

are comparable to buffers and a crossbar in a VC router. This chapter focuses on the 

reduction of their design costs. The contributions include the following aspects. 

• We study virtual channel and switch allocators in the context of the entire 

NoCs. This is different from previous studies where they were addressed in 

isolation. By running simulations for the complete NoCs and investigating 

utilization statistics of arbiters in the allocators, we find great optimization 



opportunities to reduce design costs of the allocators. These opportunities 

would not be found if we just investigate the allocators themselves. 

• We propose three methods to simplify the generic VC allocator gradually. 

First, the piV V:1 arbiters in the first stage are totally removed and the 

number of piV:l arbiters in the second stage is decreased from poV to po‘ 

Second, the number of V:1 arbiters at each input port is reduced from po to 1 

through logic sharing. Third, the simplified VA and the generic SA share a 

V:1 arbiter at each input port and a pi:l arbiter at each output port, 

• Sharing arbiters by the generic VA and the generic SA make VA requests 

and SA requests dependent on each other. This dependency may lead to 

deadlock problem. We study the deadlock problem and two kinds of 

solutions to it. 

• We present effects of the three simplification methods on the critical paths 

of the VA and SA pipeline stages. 

• We evaluate performances，delay, area, and power costs of the generic 

architecture, the look-ahead architecture, the combined architecture through 

RTL-level simulations and VLSI implementations for a wide range of 

design parameters and traffic patterns. 

The structure of this chapter is as follows. Section 2.2 reviews the generic VA and 

SA architectures and describes the motivations. Following, Section 2.3 illustrates 

how to simplify the generic VA in a step-by-step way. Next, Section 2.4 handles 

deadlock problem for the SVA. After that, Section 2.5 presents effects of 

simplification methods on the VA and SA pipeline stages. Then, Section 2.6 



demonstrates evaluations in terms of both network performances and implementation 

costs. Finally, Section 2.7 concludes this thesis chapter. 

2.2 RELATED WORK 

2.2.1 Basics of allocators 

An allocator performs a matching between a group of resources and a group of 

requesters, each of which may request one or more of the resources. The allocator 

can be considered as accepting a «x m request matrix R containing the individual 

requests, ry and generating a grant matrix G containing the individual grants, gij. R is 

an arbitrary binary-valued matrix. G is also a binary-valued matrix that only consists 

ones in entries corresponding to non-zero entries in R (This ensures that a grant can 

be asserted only if the corresponding request is asserted), has at most one one in each 

row (This ensures that at most one grant for each requester may be asserted), and at 

most one one in each column (This ensures that at most one grant for each resource 

can be asserted.) [12]. Examples of request and grant matrices for a 4x3 allocator 

are as below. 

R = 

1 0 1 
1 1 0 
0 0 1 
0 1 1 

G = 

0 0 1 
0 1 0 

0 0 0 
0 0 0 

An allocator can be implemented in an exact or separable way. Figure 2.1 (a) 

shows a 4 x 3 exact allocator, in which a maximum matching can always be found 

through iteratively augmenting a sub-maximum matching [12]. However, it is too 

slow and its design complexity is too high. Figure 2.1 (b) demonstrates a 4x3 

separable allocator, in which allocation is performed as two sets of arbitration: one 

across the requesters and one across the resources. The separable allocator admits a 



much simple implementation while sacrificing a small amount of matching efficiency 

compared to the exact allocator. Therefore, separable allocators are generally applied 

in routers where allocators must make allocations with low latency and low design 

costs. 
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Figure2.1. (a) A 4 x 3 exact allocator, (b). A 4 x 3 requester-first separable allocator. [12] 

2.2.2 The generic virtual channel allocator 

The generic architectures of a virtual channel allocator and a switch allocator were 

presented in [39]. The range of the routing function determines the complexity of a 

VA. If the routing function returns at most one! VC of a single output PC, the VA 

needs only arbitrate among input VCs that are competing for the same output VC. If 

1 If there are idle output VCs at the output PC, one of them will be returned. If there 
output VCs at the output PC, no output VC will be returned. 

idle 



the routing function is more general and returns any candidate VCs of a single output 

PC, the VA needs additionally arbitrate among V output VCs for each input VC. If 

the routing function is the most general and returns all possible candidate VCs of all 

output PCs, the VA needs additionally arbitrate among poV output VCs for each 

input VC. The routing function that returns any candidate VCs of a single output PC 

is the most general possible in a router with deterministic routing [39]. Thus, the 

allocator architecture shown in Figure 2.2 (the generic VA in this chapter) is widely 

used in VC routers [21, 24]. 

The generic VA performs arbitration in two stages. In the first stage, each input 

VC selects one available VC from returned output VCs. Since there are at most V 

available VCs in an output PC, a V:1 arbiter is needed for each input VC. In the 

second stage, each output VC grants one from the winning requests of the first stage 

allocation. The number of requests to an output VC is piV in the worst case, so each 

output VC needs a piV:l arbiter. As shown in Figure 2.3, a large piV: 1 arbiter is 

generally simplified by organizing it as a tree of smaller arbiters [21]. The V:1 

arbiters arbitrate between requests from the same input ports and the pi:l arbiter 

determine the winning input port. The tree architecture much reduces design costs 

with some penalty of matching efficiency. 
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Figure 2.3. Tree architecture of a large PiV:l arbiter. 

2.2.3 The generic switch allocator 

A SA allocates crossbar bandwidth to input VCs. The generic architecture of a SA 

is designed in two stages as well (Figure 2.4). The first stage reflects sharing of a 

single crossbar input port by V input VCs. This requires a V:1 arbiter for each input 

port. The second stage arbitrates among winning requests from pi crossbar input ports 

for a crossbar output port. It needs api:l arbiter at each output port. 



Figure 2.4. Complexity of the generic SA. 

2.2.4 Motivations 

Table 2.1 shows the proportions of area and power^ demanded for the allocation 

logic, including the generic VA，the generic SA and associated logics for different 

numbers of ports and VCs in a router. Other router parameters are stated in Table 2.7. 

Area was taken from Synopsys [40] DC synthesis report under worse case conditions. 

Power was obtained from Synopsys PrimeTime PX with UMC 130mn library files, 

post-synthesis netlist, wire load model, and post-synthesis switching activities as 

inputs. The switching activities of routerao (a 3-port router. We define the left-bottom 

router as routeroo for the 4 x 4 mesh throughout the paper.), router3i (a 4-port router), 

and router2i (a 5-port router) were derived from simulations of an complete NoCs 

assuming uniform traffic running at saturation points ^. It can be seen that the 

allocation logic consumes significant amounts of area and power for all cases. 

2 Unless otherwise stated, power results in the thesis include both leakage power and dynamic 
power. 

3 Unless otherwise stated, results in the chapter are obtained when router radix is 5，the number of 
VCs is 4，packet length is 4, and network runs at the saturation point of uniform traffic at 250MHz. 



Furthermore, the allocation logic cost proportionally increases with the number of 

ports or VCs. Therefore, it is important to reduce this cost. 

Obviously, a VA is much more costly than a SA because it includes a large 

number of big {piV:l) arbiters. To our credit, it is possible to totally remove all 

arbiters in a VA and to make a VA and a SA share the same arbiters, the one shown 

in Figure 2.4. The sharing is identified after a careful study of the working principle 

of a VA and utilization statistics of VA arbiters. This will be explained in detail in 

the next section. 

Table 2.1. COSTS PERCENTAGES OF ALLOCATION LOGIC IN VC ROUTERS 

Router parameters Area Power 

Pi =3，V=4 26.91% 28.06% 

Pi =4，V =4 34.64% 30.79% 

p, =5，V =2 21.62% 20.81% 

p, 二5，V =4 41.36% 32.65% 

Pi =5, V=6 57.27% 37.28% 

2.3 SIMPLIFICATION OF A GEINECRIC VA 

2.3.1 Representations 

Many parameters are used in this chapter. They are defined in Table 2.2 for 

reference. 

Table 2.2. PARAMETER LIST 

Parameter Description 

^mn 
The request from the n̂ ^ VC at 

the kth output port. The value is 1 
the value is 0. 

the mth input port to the 产 VC at 
if the request is valid. Otherwise, 

^mn 
The request from the nth input VC at the m^ input port to any VC 

at the kth output port. The value is 1 if the request is valid. Otherwise, 
the value is 0. 

r" Whether there are valid requests to the VC of the k̂ ^ output port. 



It is 0 when 玄 r二）= 0, Otherwise, it is 1. 

The number of simultaneously requested VCs at the k̂ h output port 

( i > ” ‘ 
1=1 

rt 

Whether there are valid requests from any VCs at the m̂^̂  input 
F 

port to any VC at the k̂^̂  output port. It is 0 when ^ = 0 . 
n=l 

Otherwise, it is 1 ‘ 

厂m 

The number of output ports where a VC is requested by any VCs 

in the m̂ '̂  input port ( ^ ). 
k=\ 

The probability that one VC at the k^ output port is requested. 

The probability that multi VCs at the k̂ ^̂  output port are 
concurrently requested. 

PBLM The probability that VCs in the m^ input port request VCs at one 
output ports. 

PK 
The probability that VCs in the m̂^̂  input port request VCs at multi 

output ports. 

Let us start simplification of a generic VA from its second stage that is the most 

costly. The second stage of a generic VA allocates poV output VCs to piV input VCs. 

Design complexity of the second stage can be represented as a piV x poV request 

matrix: 

R = 

尸ly 

Po^ 

f.Po'^ yPo^ 
• 'ir 

fPcA y. 
. � 

POV 

� 
P�1 . < 

Where, each row represents requests from an input VC while each column represents 

requests to an output VC. Since an input VC is not allowed to simultaneously request 



multi output VCs, there is at most one valid request in each row. As a result, a row 

does not require an arbiter. However, there are at most piV requests to an output VC, 

so a column requires a piV:l arbiter. 

2.3.2 Changing the output-VC-selection function 

When an output port returns any output VCs in the output-VC-selection function"^, 

at most V output VCs in this output port may be requested simultaneously. Thus, V 

piV: 1 arbiters are assigned to the output port with each one handling requests to one 

output VC. However, if we change the output- VC-selection function so it returns at 

most one output VC of a single output port, there will be at most one requested 

output VC at the output port. As a result, only one piV: 1 arbiter is needed for the 

output port^. Furthermore, since at most one output VC is returned to each input VC, 

the first stage of the generic VA is unnecessary and can be completely removed. 

Nevertheless, returning only one output VC of a single output port decreases 

matching efficiency of the VA, which is illustrated by the following example. 

Figure 2.6 shows the case that the output-VC-selection function returns any 

candidate output VCs of a single output port (We assume pi and p � a r e five, and V is 

four in all examples of this chapter unless otherwise stated.). We take the output port 

4 The term “routing function" is used in [39] since the function to return output VCs is performed in 
the RC pipeline stage. We also use this term in Section 2.2 in order to be consistent to the reference 
paper. However, it has a drawback that once an idle output VC is returned to an input VC, the input 
VC can not change the output VC even when the output VC is allocated to another input VC in the 
VA pipeline stage. Hence, the input VC has to wait for the allocated output VC to be released. 
Therefore, we change to run this function in the VA pipeline stage and thus use the new term "output-
VC-selection function" from here on to avoid confusion. 

5 It is possible that multi output VCs of a single output port are requested simultaneously if the 
function to return at most one output VC of the output port is done in the RC stage. This is why there 
are still VPiV:l arbiters for each output port in [39]. 



0 for example. Figure 2.6 (a) shows the VA requests. There are only two valid 

requests, one to output VCO and the other to output VCl. In the generic VA, a 20:1 

arbiter is assigned to each output VC. Thus，the request to output VC 0 and the 

request to output VC 1 enter the corresponding 20:1 arbiters respectively. Both 

requests will succeed in the arbitrations because all the other requests to the arbiters 

are invalid. As a result, tvi'o input VCs will be successfully allocated output VCs and 

can enter the SA pipeline stage in the next clock cycle. Figure 2.6 demonstrates the 

case that the output-VC-selection function returns at most one output VC of a single 

output port. In this case, at most one output VC of the output port 0 is requested at 

each clock cycle (Figure 2,6 (a)). Thus, at most one input VC can be successfully 

allocated an output VC. Therefore, returning at most one output VC of a single 

output port sacrifices VA efficiency, and decrease of the efficiency depends on the 

probability (ph^) that multi VCs at the output port are simultaneously requested. 

(a) 

Output VC 0 

20:1 arbiter for 

Output VC 0 

20:1 arbiter for 

• 
20:1 arbiter for 

• 
INVALID 20:1 arbiter for 

• 

參 output VC 0 • 
• 
• • 

INVALID INVALID 

Output VC 

INVALID 

鲁 
鲁 

INVALID 

20:丨 arbiter foi 
output VC 1 

(b) 

Figure 2.5. An example of the second stage of VA when any candidate output VCs of a single 
output port are returned, (a). VA requests to output port 0. (b). Assign a 20:1 arbiter to each 
output VC at output port 0. For clarity, arbiters for the other two output VCs are omitted. 



(a) (b) 

Figure 2.6. An example of the second stage of VA when at most one output VC of a single 
output port is returned, (a). VA requests to output port 0. (b). Assign a 20:1 arbiter to the 
output port 0. 

We ran simulations for a 4 x 4 mesh NoCs under uniform, hotspot, and transpose 

traffic patterns and calculated pb^ by counting the number of cycles when / is 2 or 

above and then dividing by the number of simulation cycles. The results show that 

pbfk remains small for all routers for all injection rates. Hence, for each traffic pattern, 

only the pb^ for output PCs of the router2i (we define the left-bottom router as 

routeroo for the 4 x 4 mesh throughout this chapter.) at saturation point (the saturation 

points are at 0.652, 0.603, and 0.248 flits/(node*cycle) for uniform, hotspot, and 

transpose traffic patterns respectively.) is shown (Table 2.3). It can be seen that all 

pb^ are smaller than 0.50% for all tested traffics. In other words, in each output PC, at 

most one VC is requested in more than 99.50% of all cases. The key reason for small 

pb^ results is that pb^ represents the probability that two or more VCs in an output 

port are simultaneously requested. To validate this claim, we also calculated pbl^ for 

the three traffic patterns (Table 2.4). We can see that results of pbl^ are much larger 

than results of plA Thus, changing the output-VC-selection function from returning 

any candidate output VCs to retuning at most one output VC sacrifices the VA 

efficiency very tiny. After that, the second stage is simplified to a piVxp�matrix. In 

addition, piV V:1 arbiters of the first stage are removed and p�output-VC-sdection 



blocks are added. Design of the output-VC-selection block will be described in 

Section 2.6. 
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Table 2.3. RESTULS OF 

Traffic 
Output PC 

Traffic 
West North East South Local 

Uniform 0.21% 0.23% 0.32% 0.33% 0.16% 

Hotspot 0.23% 0.10% 0.30% 0,48% 0.30% 

Transpose 0 0 0 0.01% 0 

Table 2.4. RESTULS OF pbf 

Traffic 
Output PC 

Traffic 
West North East South Local 

Uniform 13.78% 12.43% 16.28% 17.53% 15.43% 

Hotspot 12,68% 11.26% 16.78% 13.88% 13.41% 

Transpose 0 7.90% 0 16.48% 0 

2.3.3 Sharing of V:1 arbiters at each input port 

The VA after the above simplification now requires po厂-.7 arbiters. This can be 

similarly organized as a tree architecture which has a set of po arbiters for every 

input port and one pi:l arbiter for each output port. This is also too generous because 

there are totally V VCs in an input port and many of them do not have VA requests 

most of the time. Design costs will be much saved if we assign only one V:1 arbiter 
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to an input port. However, it will sacrifice the VA efficiency as well, which is 

illustrated as below. 

We assume there are two valid VA requests at input port 0 (Figure 2.7 (a)): one 

requests an output VC of output port 2 while the other requests an output VC of 

output port 3. The requests to different output ports are sent to different 4:1 arbiters 

in separated architecture (Figure 2.7 (b)) whereas they are sent to the same 4:1 arbiter 

in the shared architecture (Figure 2.7 (c)). In the separated architecture, both VA 

requests are certainly successful in the arbitrations. However, in the shared 

architecture, only one of them succeeds. If there are no VA requests to output port 3 

from other input ports, an idle VC at output port 3 will be certainly assigned to the 

input VC (blue colour) at input port 0 in the separated architecture. However, this 

idle VC at output port 3 will be wasted at the current clock cycle if the request to 

output port 3 fails in the shared arbiter at input port 0. In summary, decrease of the 

VA efficiency by sharing one arbiter across VA requests to various output ports is 

determined by the probability (pbm) that input VCs at an input port request output 

VCs at different output ports. 

-Output port 2 

INVALID 

INVALID 

(a) 



(b) (c) 

Figure 2.7. An example of sharing V:1 arbiters at an input port. (a). VA requests generated at 
input port 0. (b). Assign five 4:1 arbiters for VA requests generated at input port 0. Each 
arbiter handles VA requests going to an output port. For brevity, arbiters serving requests to 
the other output ports are omitted, (c). Assign one 4:1 arbiter for all VA requests generated at 
input port 0. 

From simulations as described previously, we calculated pbm by counting the 

number of cycles when r,„ is 2 or above and then dividing by the number of 

simulation cycles. Table 2.5 shows pbm for input PCs of the routerai at saturation 

points. The largest pbm is 0.75% for uniform traffic and 0.28% for hotspot traffic. 

All the pbm are zeros for transpose traffic (no packets enter the north, south, and local 

input PCs. Packets entering the west (east) input PC only go to the north (south) 

output PC.). Similar to p b � t h e key reason for small pbm is that pbm represents the 

probability that VCs in an input port request VCs at two or more output ports 

simultaneously. We can see that results of pblm (Table 2.6) are significantly larger 

than results of pbm. Therefore, making all VCs of an input port to share one V:1 

arbiter decreases VA efficiency by only a small amount. As a result, it is possible 

with negligible performance cost to reduce the number of V:1 arbiters at a single 

input port from po to L 

Table 2.5. RESTULS OFpb„ 

Traffic 
Input PC 

Traffic 
West North East South Local 
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Uniform 0.20% 0.23% 0.75% 0.33% 0.15% 

Hotspot 0.20% 0.15% 0.13% 0.15% 0.28% 

Transpose 0 0 0 0 0 

Table 2.6. RESTULS OF pbl„, 

Traffic 
Input PC 

Traffic 
West North East South Local 

Uniform 13.18% 15.91% 17.76% 16.91% 17.06% 

Hotspot 11.01% 12.36% 15.31% 15.53% 20.91% 

Transpose 7.99% 0 16.75% 0 0 

2.3.4 Combining VA and SA arbiters 

After the above two simplifications, a VA will consist of one V:1 arbiter at each 

input port and one p,:! arbiter at each output PC, which is obviously the same as the 

SA shown in Figure 2.4. Moreover, VA arbiters have the same functions as the 

corresponding SA arbiters: a V:1 arbiter handles requests from VCs at an input port 

while a pi：! arbiter deals with requests from various input ports to an output PC. The 

only difference is the type of requests (VA or SA requests). Thus, a VA and a SA can 

share their arbiters if VA and SA requests are processed concurrently. This leads to 

a further 50% reduction of arbiters. 

Note that the concurrent processing means to process VA requests from some 

input VCs and to process SA requests from other input VCs in the same clock cycle. 

It is because an input VC can only be at one of three states, namely, making no 

request, making a VA request, and making a SA request. This is explained in Figure 

2.8. 



(a) 

(b) (c) 

Figure 2.8. An example of sharing VA and SA arbiters at an input port. (a). VA and SA 
requests generated at input port 0. (b). Assign separated 4:1 arbiters for VA requests and SA 
requests, with one arbiter handling VA requests whereas the other arbiter handling SA requests, 
(c). Assign one 4:1 arbiter for both VA and SA requests. 

More importantly, as shown in Figure 2.9，combining a VA and a SA and 

processing VA and SA requests simultaneously removes the VA pipeline stage for 

head flits, and thus reduces packet latency. Nevertheless, processing VA and SA 

requests concurrently may lead to deadlock and will be discussed in the next section. 

VA 

SA 

SA 
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Head flit 

Head flit 

BW VA SA ST LT 

Body/tail 
flit BW SA ST LT 

(a) 

BW SVA ST LT 

Body/tail 
flit BW SA ST LT 

(b) 

Figure 2.9. (a). Router pipeline when using separated VA and SA. (b). Router pipeline when 
using combined VA and SA. 

2.4 DEADLOCK 

2.4.1 Free output VC check 

An input VC is successfully allocated an output VC when two requirements are 

met. One is that VA request of the input VC wins in the SVA, and the other is that 

there is a free output VC in the destined output PC. Free output VC check may be 

done in a speculative (Figure 2.10 (a)) or non-speculative (Figure 2.10 (b)) way. In 

the speculative architecture, we speculate that a VA request will successfully find a 

free output VC in the destined output port. Thus, the free output VC check is done in 

parallel with the SVA. In the non-speculative architecture, we must ensure that there 

is a free output VC for a VA request before it enters the SVA. Therefore, the free 

output VC check is done in series with the SVA. The speculative architecture 

removes the free output VC check from the critical path and is often selected when a 

generic VA is used. However，if the SVA is used, we found that the speculative 

architecture is not deadlock free and we have to use the non-speculative architecture. 
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(a) 

Free output 
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VA request SVA ) ‘ SVA 
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(b) 

Figure 2.10. (a). A speculative architecture, (b). A non-speculative architecture. 

2.4.2 Allocation and release of an output VC 

If the head flit of a packet succeeds to be allocated an output VC in the VA stage, 

the output VC is held for the whole packet (or the input VC that buffers the packet) 

until the tail flit of this packet is successful in the SA stage and then releases the 

output VC. In other words, a logic connection between an input VC and an output 

VC is established by the VA operation for the head flit and released by the SA 

operation for the tail flit. The output VC can not be allocated to any other head flits 

until it is released. Figure 2.11 shows the timing diagram of output VC reallocation 

through a two-flit packet A followed by the head flit of packet B (assume the packet 

B requests the same output VC as the packet A.). At cycle 2, the head flit of the 

packet A succeeds in the VA pipeline stage and is allocated the output VC. At cycle 4’ 

the output VC is released when the tail flit of the packet A succeeds in the SA stage. 

Although the BW stage for the head flit of the packet B is finished at cycle 3 and the 

VA stage for it can be performed at cycle 4, this head flit has to stall for one cycle, 

waiting for the packet A to release the output VC. Then, at cycle 5, the released 

output VC is reallocated to the head flit of the packet B. If the tail flit of the packet A 



would never succeed in the SA, the output VC would be always held by the packet A 

and thus never be reallocated to the packet B. 

Cycle 1 2 3 4 5 6 7 8 

Head of packet A 

Tail of packet d 

Head of packet B 

BW VA SA ST LT 

BW SA ST LT BW SA ST LT 

TDW VA SA ST LT Jj w VA SA ST LT 

Figure 2.11. Timing diagram of reallocating an output VC. 

2.4.3 Deadlock problem 

After a VA and a SA is combined, there will be two groups of requests: the VA 

group and the SA group. Also, there will be two groups of resources: the output VC 

group and the priority group (In general, the round-robin algorithm is applied in both 

VA and SA arbiters to achieve fairness. A priority table is used to accomplish the 

round-robin algorithm by setting the priority of the request that is just served the 

lowest.). Requests and resources are related by hold and wait-for relations. As shown 

ill Figure 2.12 (a), the VA group holds the priority group and waits for the output VC 

group. Similarly, the SA group holds the output VC group and waits for the priority 

group. If a request group holds a resource group, then that resource group is waiting 

on the request group to release it. Thus, each hold relation induces a wait-for relation 

in the opposite direction [12]. Redrawing the hold edges as wait-for edges in the 

opposite direction gives the graph of Figure 2.12 (b). The cycle in this graph shows 

that the architecture is deadlocked. 

Let us illustrate the deadlock by a router in a mesh network (Figure 2,13). In the 

west input port, the VCO has a VA request for any VCs in the east output PC while 
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the other three VCs have already held the VCl, VC2, and VC3 in the east output PC 

respectively. Similarly, in the north input port, the VCO has a VA request for any 

VCs in the east output PC, the VCl holds the VCO in the east output PC, and the 

VC2 and VC3 occupy the VCs in other output PCs. In both the west and the north 

input ports, the VCO has the highest priority. Therefore, in the speculative 

architecture, the SA requests at the two input ports always fail in the SVA, causing 

that four held VCs in the east output PC are no longer released. On the other hand, 

although the two VA requests always succeed in the SVA, they always fail to find a 

free output VC because all four VCs in the east output PC are always being occupied. 

As a result, they always keep the highest priorities in the corresponding input ports. 

V 

S A ^ 
Tou^y 

；
I
卿
 

;
o
 ̂

 

5
 

V
 p
 

Hold Wait for 

(a) (b) 

Figure 2.12. Hold and wait-for relationships. 



North 

West 

Input VC 

-> Hold ——• Wait for 

Figure 2.13. An example of the deadlock. 

2.4.4 Solutions to deadlock 

There are two approaches to deal with deadlock: deadlock recovery and deadlock 

avoidance. For the deadlock recovery (Figure 2.14), a counter is used to counting the 

number of consecutive cycles when a VA request succeeds in the arbitration but fails 

to find a free output VC. Once the deadlock is detected (The counter hits the pre-set 

threshold), the priority of this VA request will be set to the lowest to recover from the 

deadlock. The recovery approach works at low and moderate loads but leads to 

serious starvation problem at high loads. 

Figure 2.15 illustrates the starvation problem at high loads. On the one hand, it is 

often that no free VC is found when the VA request has the highest priority 

(normally 3 or 4 cycles). On the other hand, it is usual that an output VC is allocated 

to some input VC as soon as the output VC is released. As a result, it is possible that 

the two requirements (highest priority and free output VC) can not be simultaneously 

met for the VA request, leading to the starvation problem. 



Figure 2.14. Deadlock recovery. 

Clock 
VA request 

Highest priority 
Free output VC 

VA success 
o 

In order to recovery from deadlock, a VA At high loads, it is usual that an 
request only keep the highest priority for o ^ u t VC is immediately occupied 
a certain number of cycles if there is nc it is released, 
free output VC. 

Figure 2.15. Starvation problem caused by deadlock recovery. 

Since the deadlock recovery approach may result in the starvation problem, we use 

the deadlock avoidance method by breaking the cyclic dependence. In the non-

speculative architecture, the two VA requests (Figure 2.13) are considered as invalid 

because there is no free output VC for them. As a result, they do not win in the SVA 

arbitration although they have the highest priorities. Instead, the four SA requests for 

the east output PC win the SVA in a round-robin way until one of them sends a tail 

flit and releases the output VC held by it. Then, at the next cycle, the two VA 

requests are all valid and one of them is allocated the released output VC. In 

summary, the VA group does not hold the priority group when there is no free output 

VC and thus breaks the cyclic dependence-
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•5 CRITICAL PATH ANALYSIS 

2.5.1 Critical paths for the generic VA/SA 

Figure 2.16 (a) shows the critical path for the generic VA. Firstly, an input VC 

checks whether there are free output VCs in the destined output PC. Then, it selects 

one from all free output VCs using the arbiter in the stage. After that, a VA 

request is generated and sent to the stage arbiter for the selected output VC. Once 

the input VC is successfully allocated the selected output VC, status of this output 

VC is updated to be busy. Figure 2.16 (b) demonstrates the critical path for the 

generic SA. In the beginning, all stage SA requests generated in the previous 

clock cycle enter the stage arbiters for arbitration. Then, requests for the stage 

arbiters are generated and arbitrated. After that, the stage requests for the next 

cycle are produced. The max frequency for a router with generic VA/SA 

architectures is determined by the critical path of the generic VA because it is longer 

than that of the generic SA. 

(a) 

”'stage 
arbitration 

2nd Stage SA request 
2nd Stage 

arbitration 

�St stage SA 

A 

”'stage 
arbitration — > generation for the 

current cycle 

2nd Stage 

arbitration 
request generation 
for the next cycle 

——• 

A 

(b) 

Figure 2.16. Critical path for the generic VA (a) and the generic SA (b). 

2.5.2 VA simplification effects on critical paths 

As described in Section 2.3, there are three methods for VA simplification: 

changing the output-VC-selection function, sharing of V:I arbiters, and combining 



VA and SA arbiters. In the following, we explain their effects on the VA/SA critical 

paths one by one. 

Firstly, reducing the number of piV:l arbiters from V to 1 in an output PC does not 

produce additional delay for the VA because no logic is needed to detect conflicts. 

After changing the output-VC-selection function to return a single free VC of an 

output PC, at most one VC in an output PC will be requested at each cycle. Thus, one 

PiV: 1 arbiter is enough and no additional logic is required to determine which VC is 

to use the single piV:l arbiter. On the contrary, the critical path of the VA can be 

reduced in two aspects. One is that the arbitration stage is removed. The other is 

that logics for VA request generation are simplified because the number of PiV:l 

arbiters is largely reduced. 

Secondly, sharing V:1 arbiters in an input port increases the critical path of the VA. 

Before sharing, a piV:l arbiter in the arbitration stage of the VA is implemented 

as the tree architecture shown in Figure 2.3 where the V:1 arbiter and the pi:l arbiter 

are in parallel. After the sharing, a piV:l arbiter is realized as the architecture shown 

in Figure 2.4 where the V:1 arbiter and the pi:l arbiter are in serial. Meanwhile, 

additional logics after the V:1 arbiter are required to generate requests for the pi：! 

arbiter. 

Finally, combining VA and SA arbiters increases the critical path of the SA. 

Before the combination, the stage SA requests directly enter the stage arbiters 

for arbitration. After the combination, the stage SA requests have to wait for the 

results of the free output VC check block before they enter the stage arbiters in 

order to avoid the deadlock problem described in Section 2.4. 



In summary, total effects on the VA/SA critical paths depend on which 

simplification methods are applied. 

2.6 EVALUATIONS 

2.6.1 Design parameters 

In summary, simplification of a generic VA includes three steps: 1). Change the 

output-VC-selection function, then reduce the number of PiV:l arbiters and remove 

the first stage of the generic VA (Section 2.3.2). 2). Share the V:1 arbiters at each 

input port (Section 2.3.3). 3). Combine the generic VA and the generic SA arbiters 

together (Section 2.3.4). 

We evaluated three allocation architectures: a generic VA and a generic SA (the 

generic), a look-ahead VA and a generic SA (the look-ahead), and a combined VA 

and SA (the SVA) by simulations for the entire NoCs instead of the allocation 

components themselves. In the look-ahead VA, only the first simplification step is 

performed. The output-VC-selection block at an output port works as follows. First, 

no output VC is selected if all VCs of the output port are busy. Second, if some 

output VCs are idle and empty, select the first one of them. Third, if some output 

VCs are idle but none of them is empty, select the idle VC that has the most number 

of free buffer spaces. In the SVA, all the three simplification steps are performed. All 

other components of the NoCs are the same in the three architectures studied. The 

network and process parameters are shown in Table 2.7. 

Table 2.7. NETWORK AND PROCESS PARAMETERS 



Traffic Uniform / Hotspot^ / Transpose 

Topology 4x4 mesh 

Flow control Virtual channel 

Routing XY 

Buffer management Credit-based 

Pipeline Generic VC pipeline^ 

Router radix 3/4/5 

Buffer architecture 2/4/6 VCs per port, 4 flits per VC 

Packet length 4/8/16 flits 

Flit size 32 (random payload) + 4 (overhead) 

Technology 130nm, HS 

Frequency 250MHz 

2.6.2 Network performances 

Network performances were obtained by a simulator modelled in SystemVerilog. 

Evaluations were performed for various network sizes, various Vs, various packet 

lengths, and a range of traffic patterns to validate whether the conclusion that the VA 

simplification presented in section IV has small effect on network performances is 

general. Saturation is defined as the highest level of injection rate for which the 

average throughput equals to the injection rate [12]. We only compared latencies 

before saturation. 

Average packet latency as a function of traffic injection rate is plotted for different 

traffic patterns in Figure 2.17. The curve of the generic architecture nearly overlaps 

that of the look-ahead architecture for all tested traffic patterns. It means that the pb^ 

The hotspot routers are routern, router�〕，routersi. They inject packets to the network with a 1.5x 
rate. 

7 Separated VA and SA stages for the generic and the look-ahead architectures whereas combined 
VA and SA stages for the SVA architecture. 



remains small and arbiter reduction has little impact on network latencies for 

different traffic patterns. The latency of the SVA is significantly smaller than the 

other two architectures at low and moderate network loads and becomes almost the 

same at high network loads. Figure 2.18 shows results when packet length is 8 and 16 

flits respectively. We can see that reduction of latency by the SVA remains 

significant at high injection rates. Figure 2.19 describes results for 6x6 mesh. The 

trend is similar to that for 4x4 mesh. The SVA can reduce latency because it 

removes the VA pipeline stage for head flits. In addition, similar trends can be 

observed for various Vs (keeping the 4x4 network size, uniform traffic pattern and 4 

flits per packet). The results for various Vs are not shown for clarity. 
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Figure 2.17. Average packet latency for various traffic patterns when network size is 4 x 4, 
and packet length are 4. (a). Uniform (b). Hotspot. (c). Transpose. 
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Figure 2.18. Average packet latency for other packet lengths when network size is 4 x 4, V is 
and traffic pattern is uniform, (a) Sflits. (b) 16 flits. 
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Figure 2.19. Average packet latency for 6x6 mesh when V is 4，packet length is 4 and traffic 

pattern is uniform. 

2.6.3 Maximum router frequency 

Table 2.8 summarizes maximum router frequencies for the three allocation 

architectures. The frequencies were obtained from Synopsys DC with worst case 

synthesis condition. The generic architecture and the SVA have similar frequencies 

while the look-ahead architecture has higher frequencies than the others. The reason 

is that only the simplification method of changing the output-VC-selection function 

is used in the look-ahead architecture while all three simplification means are applied 

in the SVA. As presented in Section 2.5，the method 1 reduces the critical path delay 

whereas sharing of V:1 arbiters {method 2) and combing VA and SA arbiters {method 

3) increase the critical path delay. Therefore, router speed for the look-ahead 

architecture is always the highest while the speed for the SVA depends on the total 

effects of all the three methods. For example, when pi is three and V is four，the SVA 

is faster than the generic because the delay reduction caused by method 1 is larger 

than the delay increase caused by method 2 and method 3. When pi is four and V is 



four, the SVA is slower than the generic because the delay reduction is smaller than 

the delay increase. 

Table 2.8. MAX ROUTER FREQUENCY (MHz) 

Router parameters Generic Look-ahead SVA 

Pi =3, V =4 427 526 442 

Pi =4’ V =4 403 476 388 

Pi =5, V =2 435 526 435 

Pi =5, V =4 385 435 385 

Pi =5, V =6 323 385 333 

2.6.4 Area and power costs at a certain frequency 

Table 2.9 shows area costs of the three allocator architectures at the frequency of 

250MHz. The look-ahead architecture reduces area by decreasing the number of 

PiV:l arbiters from poV to p�and removing all the first stage arbiters of a generic VA. 

The SVA reduces even more area through sharing V:1 arbiters at each input port for a 

generic VA and combining arbiters of a generic VA and arbiters of a generic SA. 

Higher proportion of area is reduced as pi or V increases. For a 5-port, 4-VC router, 

the look-ahead architecture and the SVA reduce allocator area by 57.17% and 

68.43% respectively. They reduce router area by 23.65% and 28.30% respectively 

because the generic architecture consumes 41.36% area in the router. 

Table 2.9. AREA (GATE COUNT) OF THE THREE ALLOCATORS 

Router parameters Generic Look-ahead SVA 

Pi =3, V =4 5355 2525 2123 

Pi =4, V 二4 10433 4586 3785 

Pi 二5’ V =2 3697 2973 2437 

Pi =5, V =4 17676 7570 5581 

Pi =5, V =6 49314 13581 9873 

In the same way as described in Section 2.2, we calculated power consumption at 

250MHz for many injection rates of uniform traffic because power is highly related 



to network loads. Tabk 2.10 demonstrates power consumed by the three allocator 

architectures at zero-load and saturated-load. The look-ahead architecture reduces 

power at both zero-load and saturated-load for all tested parameters. The SVA has 

the smallest power at zero-load for all cases because it has the lowest logic area. 

However, power consumption of the SVA at saturated-load surpasses that of the 

look-ahead architecture for the three 5-port cases and even surpasses that of the 

generic architecture for the 5-port, 2-VC case. The reason is as follows. On the one 

hand, the SVA reduces logic gates and thus reduces power consumption (positive 

effect). On the other hand, the sharing of logics in the SVA associates more logics 

together, and thus makes it possible that a logic transition of a net will lead to logic 

transitions of more nets. As a result, it increases average logic transition and 

therefore increases power consumption (negative effect). For most cases, the positive 

effect is larger and thus the SVA consumes smaller power consumption. For other 

cases, the negative effect is larger and thus the SVA consumes larger power 

consumption. 

Power versus injection rate for the 5-port, 4-VC case is plotted in Figure 2.20. It 

can be seen that the difference in power between the look-ahead architecture and the 

SVA is small. On average, the look-ahead architecture and the SVA save allocator 

power by 27.18% and 30.78% respectively. Considering that the generic allocators 

consume 32.65% power in the router, the look-ahead architecture and the SVA 

reduce power by 8.87% and 10.05% respectively for the router. The router power 

savings increases to 16.44% (the look-ahead) and 17.07% (the SVA) for the 5-port, 

6'VC router. 

Table 2.10. POWER (mW) OF THE THREE ALLOCATORS (ZERO-LOAD | 
SATURATED-LOAD) 

Router parameters Generic Look-ahead SVA 
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Pi = 3 , V = 4 0.54 1 2.13 0.39 1 1.65 0.32 1 1.58 

Pi =4，V = 4 0.67 1 3.51 0.46 1 2 .67 0.36 1 2.64 

Pi =5，V =2 0.45 1 1.44 0.43 1 1.44 0.34 11.61 

p, =5, V =4 0.81 | 4 .93 0.52 1 3.80 0.41 1 3.96 

Pi =5, V =6 L20 18.65 0�56 1 5.23 0.44 1 5.46 

0.2 0.3 QA 0.5 

Injection rate (fUts/(node* cycle)) 

Figure 2.20. Power of the allocators at various injection rates 

2.6.5 Discussion 

When networks run at frequencies which can not be met by the SVA, the look-

ahead architecture is the only reasonable choice. Otherwise, if networks run at 

frequencies which can be achieved by the SVA, the SVA is better because it provides 

lower packet latency (in cycles), as well as lower area and power costs for most 

design cases. 

2.7 SUMMARY 

This chapter presents implementations of low-cost switch and VC allocators. 

Instead of studying the allocators in isolation, we study them in the context of the 

entire NoCs. Opportunities to reduce design costs are identified for the generic 

architectures through analyses and statistics. As a result, three simplification methods 



including changing the output-VC-selection function, sharing V:1 arbiters for the VA 

at each input port and combining VA and SA arbiters are described and two low-cost 

allocators are proposed. 

Sharing of arbiters by the VA and the SA makes VA requests and SA requests 

dependent on each other, possibly leading to a deadlock problem. Checking free 

output VC after VA requests entering arbiters is not deadlock free. The deadlock 

recovery scheme may lead to starvation problem. Thus, the deadlock avoidance 

scheme is used by checking free output VC before VA requests entering arbiters. 

In addition, the three VA simplification methods affect the critical paths of the VA 

and SA pipeline stages. The first method to change the output-VC-selection function 

to return a single output VC from an output port reduces the critical path of the VA. 

However, the sharing of V:1 arbiters in an input port increases the critical path of the 

VA, and the sharing of VA and SA arbiters increases the critical path of the SA. 

Overall effects on the critical paths depend on which methods are used. 

We did comprehensive evaluations for the allocators, including network-level 

performances, frequency, area, and power. Results show that both the look-ahead 

architecture and the SVA architecture achieve lower costs than the generic 

architecture without any adverse effects on network performances. The look-ahead 

architecture and the SVA have different application domains that are determined by 

the frequency constraint. 

This chapter only addresses the separable iSLip allocator [41]. However, there are 

other advanced allocator schemes like separable lonely output allocator and 

wavefront allocator that have higher matching efficiency and are used in off-chip 



networks [42, 43]. Thus, it is interesting to study these advanced allocators and 

reduce their design costs for NoCs. 

In addition, this chapter shows great effectiveness to study router components in 

the context of the complete NoCs rather than the components themselves. This is a 

good research method that can be used to explore other components of a router. 
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CHAPTER 3. POWER-EFFICIENT EVC INSERTION 
METHODOLOGY 

3.1 INTRODUCTION 

Total router energy consumption when a flit travels from a source to a destination 

can be denoted as E伸=Erouter x H, where E,-outer is average energy consumed by a 

router and H is the hop count. Thus, there are two directions to reduce the total router 

energy. One is to reduce Erouter and the other is to reduce H. We work along the first 

direction to reduce Erouter by designing cost-efficient virtual channel and switch 

allocators in Chapter 2 while work along the second direction to reduce H in this 

chapter. 

The hop count is the number of routers that a flit traverses from the source router 

to the destination router. It is determined by network topology and routing algorithm. 

In a 2D mesh network, the hop count is equal to the Manhattan distance when 

deterministic routing is applied. It is a popular way to reduce the hop count of 2D 

mesh network through inserting some express physical channels to bypass 

intermediate routers, such as express cubes [37，44, 45] and application-specific long 

links [17, 46]. However, inserting a new physical channel means adding a port for 

routers at both ends of the channel, which increases Erouter. Thus, the key is to reduce 

H while keeping overhead of Erouter small. 

A new flow control mechanism, express virtual channel, was recently proposed to 

reduce H through virtually bypass intermediate routers [36], The overhead of Erouter is 

small because express channels are not built physically, but built virtually. The 

authors presented express pipelines, EVC router microarchitectures and evaluated 

EVC flow control by high-level models. However, they did not address EVC 



insertion and assumed that EVC paths were added regularly. Thus, how to optimize 

the EVC insertion is still an open problem. 

We optimize the EVC insertion with the main objective to reduce power 

consumption by exploiting communication characteristics of applications. We 

believe that emphasizing the role of communication characteristics increases the 

optimization room for EVCs insertion. This idea is based on two observations. Firstly， 

Q 

as the aggregate traffic load of a router pair is generally different from that of 

another pair, they should be distinguished. Secondly, more power is saved if more 

traffic loads pass through it after an EVC path is inserted. Let's illustrate it by a 4x4 

mesh with XY routing for transpose traffic (Figure 3.1)9. 丁̂已 normalized aggregate 

communication loads of router pairs demonstrate large variances, from zero to three. 

In the static EVC insertion, two EVC paths will be inserted. (In fact, totally sixteen 

EVC paths will be inserted. Only two of them are shown for clarity in this example). 

One is from router 00 to router 02，and another is from 02 to 00. However, the EVC 

path from 00 to 02 has definitely no power saving since its traffic load is zero. This 

bad EVC is added due to the insertion is done in a blind way. The EVC path from 02 

to 00 has power saving of two units. On the contrary, in our AS-EVC insertion 

scheme, the router pair with the largest aggregate load (from 01 to 10) is found and 

an EVC path is inserted there, thereby leading to power reduction of three units. 

Clearly, a 1.5x power saving is obtained by only one smart EVC path compared to 

that by two static EVC paths. 

8 Note that a router pair is directed. Thus, the pair from to r) is different from the pair from t) to r,. 

9 For simplicity, the cost caused by the aggregate communication volume traveling an EVC source 
router is not considered in the illustration. 
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Figure 3.1. Illustrations of static EVC insertion and AS-EVC insertion, (a). Aggregate 
communication loads of router pairs, (b). An example of static EVC insertion, (c). An example 
of AS-EVC insertion 

In order to further improve the efficiency of EVC insertion, we remove some 

limitations in the static EVC insertion. 1). EVC paths are not limited to be straight 

along X or Y dimension. Switch-dimension EVC paths can be inserted. 2). Two 

paths between r,： and r, are considered separately. In this way, inserting an EVC path 

from Fi to Vj does not mean an EVC path will be inserted reversely from r； to r,：. 3). A 

maximum interval instead of a fixed interval is set. The length of an EVC path can be 

any value smaller than the pre-set maximum interval. 4). EVC source and sink 

routers are allowed to be bypassed. 
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Our other contribution is to evaluate power consumptions through low-level VLSI 

implementations instead of high-level models. We performed evaluations for a wide 

range of traffic patterns including uniform, transpose, and TRIPS OCN traffics to 

show that the AS-EVC NoCs are generally better than static EVC and baseline NoCs. 

In addition, we performed evaluations for various network sizes such as 4 x 4 mesh, 

6x6 mesh, and 10x4 mesh to show the AS-EVC method is scalable. 

The structure of this chapter is as follows. Section 3.2 reviews related work. 

Following, Section 3.3 gives an overview of express virtual channel flow control. 

Section 3.4 presents application-specific EVC insertion methodology. Then, Section 

3.5 demonstrates evaluations on power consumption. Finally, Section 3.6 concludes 

this thesis chapter. 

3.2 RELATED WORK 

Express cube was firstly proposed to improve network performances of k-ary n-

cube off-chip interconnection networks that are node-limited [47]. The main idea of 

the express cube technology is to connect non-adjacent nodes with long express 

physical channels, so that long-distance traffic can mainly travel along the EPCs and 

skip intermediate routers. As a result, delay to traverse intermediate routers can be 

removed. 

When packets travel along express physical channels, power consumed by 

intermediate routers can also be saved. Thus，Wang et al. in [37, 44, 45] applied the 

express cube for power and energy efficient NoCs designs. Express physical 

channels are regularly inserted in the express cube. Figure 3.2 (a) depicts an express 

cube based on a 5x5 mesh. Express physical channels are those channels that 

connect a subset of routers to their v-router away neighbors, v denotes the number of 



routers spanned by an express physical channel and is two in the example. Totally 

twenty express physical channels are added. 

Different from the express cube in which express physical channels are inserted in 

a regular way, Ogras et al. [17, 46] inserted express physical channels in an 

application-specific fashion with the main objective to reduce packet latency and 

improve network throughput. Communication volumes were used to calculate critical 

traffic values so that only few most beneficial express physical channels were 

inserted. Figure 3.2 (b) shows a 5x5 mesh with application-specific long links. Only 

three express physical channels are added. 

O ~ 0 ^ ^ 0 ~ 0 ~ o 

O 6 

O ^ O - X D 

Physical channel 

(a) 

O ~ O ~ O o ~ o 

Express physical channel 

(b) 

Figure 3.2. Bypass through express physical channels, (a). Express cube. (b). Application-

specific long link. 

After express physical channels are inserted, many packets will travel along them 

and skip intermediate routers. As a result, average hop count is reduced and energy 

consumption is saved. However, adding an express physical channel means to add a 

new port at both end routers of this channel (The two routers are called EPC router). 

Figure 3.3 compares microarchitectures of a non-EPC router and an EPC router. A 
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non-EPC router has five ports (west, north, east, south, and local) and a 5x5crossbar. 

An EPC router with an EPC has six ports and a 6x6crossbar. The added port (it 

requires extra buffer space and associated control logic) and the larger crossbar result 

in large overhead at the EPC router. FPGA prototypes in [46] show that 3-port, 4-

port, 5-port, and 6-port routers utilize 219, 304, 397, and 503 slices respectively. This 

is to say, moving from 3-to-4, 4-to-5, and 5-to-6 increases the router area by 38.8%, 

30.6%, and 26.7% in respective. Clearly, EPC routers consume more energy than 

non-EPC routers because of their area overhead, thus partially offset energy savings 

caused by reduction of average hop count. 

n n N 

w 

(a) (b) 

Figure 3.3. Router microarchitectures, (a). A non-EPC router (b). An EPC router with 
EPC. 

Low-power and energy-efficient are two sometimes confusing concepts. Low-

power refers to absolute low power consumption, while energy-efficient pursues low 

energy cost per unit work. Although these two concepts are not necessarily mutually-

exclusive, it is important to make clear which one is the optimization target. Wang et 

al. compared express cube and 2D torus using analytical power models [44], When 

flit size remains unchanged, the express cube consumes larger power consumption 

than 2-D torus because of extra wires and complicated EPC routers. However, it can 



sustain even higher throughput and the energy cost per flit is reduced when network 

size is large. Hence, the express cube is not a low-power, but an energy-efficient 

topology. Ogras et al. compared a 4x4mesh and a 4x4 mesh with application-

specific long links by FPGA prototypes in [46, 48]. The results show that the mesh 

with express physical channels is energy-efficient, but not low-power. Although an 

energy-efficient NoCs can be changed to a low-power NoCs through flit size 

reduction or frequency/voltage scaling techniques to reduce the high throughput to 

the just-meet-requirement value, these techniques have overheads. In our opinion, 

bypass through express physical channels, either the express cube or the application-

specific long links, is suitable for energy-efficient NoCs designs, but not for low-

power NoCs designs. In order to obtain low-power NoCs designs, we need a bypass 

technique that has only small router overhead when reducing average hop count. In 

the next section, we will introduce such a technique. 

3.3 EXPRESS VIRTUAL CHANNEL FLOW CONTROL 

Unlike the previous two bypass techniques (the express cube and the application-

specific long links) in which intermediate routers are bypassed through express 

physical channels, express virtual channel is a new technique to bypass intermediate 

routers through express virtual channels. Both the previous techniques are 

topological technique because they change network topologies whereas EVC is a 

flow control technique where express virtual channels are built through smart control 

on flit flows. We have an overview of the EVC flow control in this section because 

our work in this and the next chapters are based on this technique. The details about 

it can be found in [36]. 



3.3.1 EVC router pipelines 

Some special notations are used in the thesis. They are described as follows and 

illustrated in Figure 3.4. 

• EVC source router. The router at which an EVC path originates. The 

corresponding output port is called an EVC source port. 

• EVC sink router. The router at which an EVC path terminates. The 

corresponding input port is called an EVC sink port. 

• EVC bypass router. The intermediate routers covered by an EVC path. The 

corresponding input/output port is called an EVC bypass input/output port. 

• NVC lane. The VC lane which is allocated in a similar fashion as in the 

traditional VC flow control and is responsible for buffering packets through a 

single-hop physical channel. 

• EVC lane. The VC lane which buffers packets travelling along an EVC path. 

Thus, only EVC sink routers have EVC lanes. 

In addition, a flit is an EVC flit when it is travelling intermediate routers along an 

EVC path. Otherwise, it is a NVC flit. 

An EVC path 

NVC lane 3 EVC lane 

Figure 3.4. Illustration of EVC components 



Figure 3.5 shows EVC router pipelines. The non-express pipeline is used for NVC 

flits. Functions of the pipeline stages are described in Section 1.2.5. The SVA stage, 

which combines the VA and SA stages together, is presented in Section 2.3. When an 

EVC flit arrives at an EVC bypass router, it goes through either the express pipeline 

or the aggressive express pipeline, depending on micro architecture of the EVC 

bypass router. In the express pipeline, the EVC flit skips BW，VA and SA，and 

advances directly to the ST stage. The BW stage can be skipped because the EVC flit 

does not need to be buffered in the bypass router. The VA stage can be skipped 

because the EVC flit is not required to be saved in NVC lanes of the next router. The 

SA stage can be removed due to the EVC flit always have higher priorities over NVC 

flits and are thus able to pass through the crossbar switch without any contention. In 

the aggressive express pipeline, the ST stage is further skipped. In this case, the EVC 

flit will bypass the crossbar switch as well. The aggressive express pipeline removes 

all pipeline stages in a traditional VC router and is only left with the LT stage, which 

makes the one hop to pass the VC router be reduced. 

Head flit BW SVA ST LT 

Body/tail 
flit BW SA ST LT 

00 

Head flit ST LT Head flit LT 

Body/tail 
flit ST LT Body/tail 

flit LT 

(b) (c) 

Figure 3.5. EVC router pipelines [36]. (a) Non-express pipeline, (b) Express pipeline, (c) 
Aggressive express pipeline. 

As many packets going through EVC paths skip pipelines of intermediate routers, 

average hop count is reduced and thus average packet latency is decreased. Given a 



particular topology and routing scheme, network throughput is largely determined by 

the flow control mechanism. The EVC flow control is able to build particular 

communication flows in the network, thereby improves resource utilization and 

reduces contention, and thus pushes network throughput. In addition, the total energy 

that a flit consumes at a router is given as [49]: 

E router = ^wrt + ̂ read + ̂ arb + ̂ xb � 

where E^n and Bread are the energy dissipated by buffer write and read, Earb is the 

energy consumed by control logic, including routing computation, VC allocation, 

switch allocation etc., Exb is the energy to traverse the crossbar switch. Ideally, Ewrt, 

Bread, and Earb Can be entirely saved for an EVC flit when the express pipeline is used. 

Even Exb can be saved if the aggressive express pipeline is applied. 

3.3.2 EVC router microarchitectures 

Some router components are added/changed to realize the EVC flow control 

compared to the generic VC router micro architecture that is shown in Figure 1A (a). 

Figure 3.6 presents EVC router microarchitectures. Differences of EVC source, sink, 

and bypass routers from the generic VC router are filled by different patterns. 

For an EVC source router, a separate EVC allocator is added to allocate EVC lanes 

for packets that will travel EVC paths. For an EVC bypass router, the crossbar switch 

will remain unchanged in the express pipeline. Otherwise, it will be aggressively 

designed to bypass the ST stage as well in the aggressive express pipeline. For an 

EVC sink router, some NVC lanes are changed to EVC lanes to buffer packets 

travelling on EVC paths. 
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Figure 3.6. EVC router microarchitectures. 

3.3.3 Static EVCs network 

Figure 3.7 presents a static EVCs network based on a 5x5 mesh. Like the express 

cube network that is demonstrated in Figure 3.2 (a), express channels are those 

channels that connect a subset of routers to their v-router away neighbors. The only 

difference is that express channels in a static EVCs network are virtual channels 

whereas those in an express cube network are physical channels. Express virtual 

channels are inserted regularly along X and Y dimensions and all of them have a 

uniform interval. Thus, the uniform interval, v, is the most important parameter for a 

static EVCs network when network topology and routing strategy are defined. 

Let us illustrate how to utilize EVC paths by an example. Assume that the PE 

connected to router 01 sends packet A to the PE connected to router 34. Packet A 

travels form the source to the destination in the following steps. 1). It flows from 

local port of router 01 to west port of router 02, going through all pipeline stages of 



router 01. It is then buffered in an NVC lane at west port of router 02 because it does 

not travel along the EVC path that is from router 00 to router 02. 2). Since the EVC 

path from router 02 to router 04 is on the routing path of packet A (assume XY 

routing scheme is used), packet A travels from west port of router 02 to west port of 

router 04 along this EVC path. It goes through router pipelines of router 02, skips 

router pipelines of router 03，and is finally buffered in an EVC lane at west port of 

router 04. 3). Like the step 2, packet A goes through the EVC path from router 04 to 

router 24. It propagates router pipelines of router 04，skips router pipelines of router 

14，and is buffered in an EVC lane at south port router 24. 4). Packet A flows from 

south port of router 24 to south port of router 34. 5). Like step 1, packet A goes from 

south port to local port of router 34. In summary, packet A goes through five hops 

(01, 02，04，24, and 34) and skips two hops (03 and 14). Compared to the generic 

mesh network, two hops are reduced. 

啊 ^ 一 一乂 

physical channel 

Express virtual 
channel 

Figure 3.7. Example of a static EVCs network. 

Many rules are used to constrain insertion of EVCs in a static EVCs network. They 

e summarized as follows. 

EVC paths are inserted in a bidirectional manner. It means that an EVC path 

will be inserted from vj to r, if an EVC path is inserted from n to rj. For 

simplicity, a pair of EVC paths, one in each direction, is represented by one 



green and dotted line in Figure 3.7. This is the same as insertion of EPC paths. 

However, inserting EPC paths in a bidirectional fashion aims to keep the 

number of input ports equal to the number of output ports for EPC routers. 

Nevertheless, this is unnecessary when EVC paths are inserted because adding 

an EVC path does not add any input port. This rule often leads to bad EVC 

paths to be inserted, for example, the EVC path from router 00 to 02 in Figure 

3.1. 

• All EVC paths have a uniform interval. The uniform interval, v, is the only 

one parameter to determine architecture of a static EVCs network for a given 

topology. Efficiency of EVC paths is heavily dependent on their utilizations. 

In other words, higher efficiency will be achieved if more traffic loads travel 

along EVC paths. However, although the uniform interval makes the EVC 

insertion algorithm very simple, it always leads to low efficiency because 

routers that have large communication loads between each other do not have 

the uniform interval in most networks. 

• EVC paths are restricted to be along one dimension, either X or Y dimension. 

Thus, packets have to go through all router pipelines when turning to a 

different dimension. 

• Routers are distinguished as either an EVC source/sink router or an EVC 

bypass router. This is to say, an EVC source/sink router can never be bypassed. 

This rule prevents some good EVC paths from being inserted as well. 

Especially, bypassing an EVC source router always saves more energy 

because an EVC source router consumes more energy than a generic VC 

router (normal router) due to added control logic. 
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3.4 APPLICATION-SPECIFIC EVCS INSERTION 
METHODOLOGY 

3.4.1 Problem formulation 

Given an application communication graph CG, a topology graph TG and a 

mapping function M [50], communication volumes between network routers can be 

calculated, where is the start point of our work. A 2D mesh topology with mx« tiles 

is studied. However, the proposed algorithm can be applied to other topologies with 

small modifications. 

Simply stated, assuming a reasonable mapping (it means that the mapping is 

optimized for some objective) has been done from an application to a network 

topology, our objective is to decide which router pair should an EVC is inserted to, 

such that the maximum power saving is achieved. We firstly make some definitions 

to formulate the problem. 

Definition 1: A router communication graph, RCG = G(R’C), is a directed graph, 

where R is the set of routers and C is the set of communications. For a 

communication Cy ^ C, Cij represents the communication volume from a source 

router n to a sink router r；. In other words, Cjj only includes the traffic generated 

from Vi and consumed by rj. 

Definition 2: A router aggregate communication graph, RAG = G (R, A, B), is a 

directed graph, where R is the set of routers, A is the set of aggregate 

communications between router pairs, and B is the set of aggregate communications 

travelling routers. For an aggregate communication atj ^ A, atj means the aggregate 

communication load from n to r；. Note that a^ includes all the traffics flowing from 

n to rj. For an aggregate communication bi E B, bj denotes the aggregate 



communication travelling r,. The calculations for aij and bi are explained in Section 

3.4.2. 

In addition, many parameters are used in this thesis chapter. They are listed in 

Table 3.1 for reference. 

Table 3.1. PARAMETER LIST FOR AS-EVC INSERTION 

Parameter Description 

DM 
Manhattan distance travelled by a message. 

DMij ^\ix-Jx\ + \iy'Jy I 

DV Virtual distance travelled by a message. The computation is 
illustrated in Figure 3.8. 

E Energy consumption of a component. 

/ 
c支/ 

The normalized inter-router communication volume, j) = 
I,] ll.CiJ 

I J 右I “ 

g The routing algorithm related coefficient. 

a 
Aggressive express pipeline: a=0. 
Non-aggressive express pipeline: a=l . 

P The energy ratio of a crossbar to a router. 

入 The energy ratio of an EVC source router to a normal router. 

y" The average inter-node distance. 
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Figure 3.8. Illustration of DVij computations. DVi2,i4 
skipped. Similarly, DV1441 is 1 because r" is skipped. 

(DM12,14 minus 1) because rjj 

Using these notations, the problem to insert EVCs in an application-specific way 

can be formulated as follows. 

Given 

• The router communication graph RCG 
• The deterministic routing algorithm 
• The EVC insertion rules 

Determine 

• The set of EVCs to be added 

Such that 

• The power saving is maximized, subject to the EVC insertion rules. 

Our algorithm inserts the most beneficial EVC at every iteration and it stops as 

soon as a pre-set threshold is checked. For low-power NoCs, the pre-set threshold is 

the minimum energy saving by an EVC path. It is set as zero in our experiments to 

achieve the maximum total energy saving for a network. Also, it can be defined as a 

non-zero value to prevent EVC paths with low energy savings from being inserted. 

Besides, other objectives，such as minimizing average packet latency, can be set to 

replace the goal of maximizing power saving. 
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3.4.2 Determination of the most beneficial EVC 

The Qij and b! in a. RAG are denoted as 

� 

(3) 

卞q EC 

where g(i,j,p,q) is 1 when the routing path from r； to rj is covered by the routing path 

from Vp to rq. Likewise, z{i,p,q) is 1 if n is covered by the routing path from rp to � . 

Otherwise, they are zeros. The computations for ay and b,- are illustrated in Figure 3.9. 

Both traffics from rj4 to r^ and traffics from ru to is have to flow from rl3 to r8, so 

a 13J is the sum of Ci4j and c；̂ ,̂ , say 200MB. However, only traffics from ri4 to r^ 

flows from rj2 to r- so that a u j is 100MB. bis is 300MB because all of Ci4j, c!3,8, 

and C]3j3 must traverse n3. 
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Figure 3.9. Illustration of â - and bi computations. 

a flit travels from a source router to a sink router, total energy consumption 

energy consumed by routers and energy consumed by links. Energy 

consumed by links is the same whether or not a flit uses EVC paths because the total 



distance of links traversed by the flit remains the same. Therefore, it is unnecessary 

to analyse energy models of links. Only energy reduction and overhead models of 

routers are required to be built. 

Figure 3.6 presents microarchitectures for EVC source, sink, and bypass routers. 

At an EVC source router, control logics are the main overhead. We expect energy 

cost of the added control logics is small since router energy is dominated by data path 

instead of control path [33]. At an EVC sink router, there is no buffer overhead when 

we assume total buffer lanes in sink input ports remain unchanged. They are divided 

into EVC lanes and NVC lanes. Meanwhile, there is no control logic cost because 

packets stored in EVC lanes are processed in the same manner as those stored in 

NVC lanes. Therefore, there is no energy cost. At a bypass router, there are little 

additional bypass setup logic and wires when aggressive express pipeline is applied. 

To simplify the following analysis, we ignore little energy cost at a bypass router and 

only take into account energy cost at an EVC source router. 

EVC path 

N: a normal router 
B: a bypass router 
Source: an EVC source router 
Sink: an EVC sink router 

(t: 

Figure 3.10. EVC reduces energy consumption. 

Figure 3.10 illustrates the application of an EVC to a linear array. A regular linear 

array is shown in Figure 3.10 (a). The Manhattan distance is DMq and the aggregate 



communication volume is a". Router energy consumption to transmit aij from to rj 

isio 

Ea\ = X D M i j X Eyouter (4) 

A linear array with an EVC path is shown in Figure 3.10 (b). Energy consumption 

to traversing Oy from r； to rj is 

Ea2 = %j X Erouter + x 一 1) x a x 五义办(5) 

where the first component is the EVC sink router energy dissipation and the second 

component is the energy to bypass the DMjj-l intermediate routers. Therefore, the 

energy reduction is 

^ a = aijx{DMij - l ) x ( l - a y ? ) x £•購胁 (6) 

On the other hand, the energy cost caused by the EVC router r, is 

AE^=bix(A-l)x Erouter 0) 

Totally, the energy saving of this EVC insertion is calculated as: 

H D I ^ j - l M \ - a J ^ - b i ^{X-l )yEroute} (8) 

The equation (8) shows that energy saving is highly related to the aggregate 

communication volumes ciij and bi, which highlights the significance to insert EVCs 

in an application-specific fashion. Also, it shows that a longer EVC path has larger 

energy reduction. However, the interval for EVC insertions should be carefully 

� The energy dissipation to travel the EVC source router r, is not included in Eg. Instead, it is 
included in Et,. 



selected because a long EVC path occupies many physical channels of intermediate 

routers. 

3.4.3 EVC insertion flow 

The flow of a greedy insertion algorithm is described in Figure 3.11. When no pre-

set threshold is hit, the algorithm keeps inserting the most beneficial EVC path in the 

rest EVC paths. 

The flow consists of two processes: EVC evaluation and EVC insertion. In the 

EVC evaluation process, a RAG is firstly calculated based on a RCG and routing 

algorithm inputs. Then, EVCs are inserted for all possible pairs of routers. Next, 

energy saving for each EVC path is computed using the energy models. Meanwhile, 

an EVC table is generated, with the most beneficial EVC being on the top while the 

least one being at the bottom. 

The EVC paths in the EVC table are then inserted in the EVC insertion process in 

an iterative way. At each time, the top one in the EVC table is firstly selected. Then, 

it is checked whether or not this EVC violates any EVC insertion rule. If no violation 

happens, the information about this EVC is stored in the inserted-EVC set. Otherwise， 

this EVC is removed from the top of the EVC table and the next EVC is selected. 

This procedure repeats until a pre-set threshold is hit. Once this takes place, output 

the inserted-EVC set. 



� R C G ) (Routing algorithm^ 

Figure 3.11. Greedy insertion algorithm. 

Each EVC insertion has to comply with several rules. Firstly, it can not contend 

physical channels which have been already occupied by the previously inserted 

EVCs. That is to say, no EVC overlapping is allowed. Secondly, a router can have 

maximum four EVCs, including both EVCs sourcing from it and EVCs sinking at it. 

These rules reduce the EVC insertion flexibility, and thus result in some good EVCs 

can not be added. However, they make EVC control logics simple to be implemented. 

Thirdly, an EVC path can not exceed the maximum insertion interval because a long 

EVC path occupies many physical channels. Although it reduces large energy 

consumption, it prevents a lot of following EVCs from being inserted. Totally，it 

always leads to bad results. 
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3.5 EVALUATIONS 

3.5.1 Experimental infrastructure 

The AS-EVC insertion methodology was evaluated for both synthetic and real 

traffic loads. We compared normal mesh networks (baseline), mesh networks with 

static EVC insertions (static EVCs) [36], and mesh networks with AS-EVC 

insertions for each traffic pattern. We estimated power savings using proposed high-

level models for each topology and traffic pattern as the interval of static EVCs 

changes from two to five and found that the maximum power savings are all obtained 

at the interval of two. Thus, the interval of static EVCs is fixed as two for all traffics. 

Similarly, the maximum AS-EVC intervals for various topologies and traffic patterns 

are determined (Table 3.2). X is set as 1.05 and p is defined as 0.25 empirically. 

Table 3.2. THE MAXIMUM EVC INTERVALS FOR AS-EVC. 

Topology Traffic Max interval 

A ^ A 
uniform 2 

4 x 4 
transpose 4 

uniform 2 
0 X 0 

transpose 4 

10x4 apsi, gzip, swim, parser 4 

A baseline router has five ports, four FIFOs per input port, and four-flit deep 

buffers for each FIFO. A flit is 69-bit wide, consisting of 64-bit payload and 5-bit flit 

control overhead. Some router microarchitecture optimizations such as look-ahead 

routing, combined VC and switch allocation were incorporated in the baseline router. 

If an input port is the sink port of an EVC path, four FIFOs at this port are divided 

into two EVC lanes and two NVC lanes. Aggressive express pipeline was used 

unless otherwise stated. 



NoCs supporting EVC flow control was modelled using SystemVerilog. After 

EVC insertions, corresponding input ports at EVC sink routers have two NVC lanes 

and two EVC lanes. Thereby, the numbers of NVCs at input ports are no longer 

uniform. Some of them have two NVC lanes whereas others have four NVC lanes. 

Our models handle this problem by setting the number of NVCs at each input port as 

a parameter. All arbitration logics for NVCs are also controlled by the parameter to 

reduce control logic redundancy. 

Instead of using high-level models for fast power evaluations, power evaluations 

were performed in post-synthesis stage for two reasons. Firstly, the accuracy is 

acceptable because we don not need to calculate power dissipations of inter-router 

physical links that consume the same power for the three compared architectures. 

Secondly, effort to do post-layout evaluations for a wide range of traffic patterns is 

unacceptable. UMC 130nm library with 1.2V power supply voltage was applied. All 

simulations run at 250MHz. For each traffic pattern, to ensure the compared three 

NoCs have nearly the same throughput when their power profiles were obtained, the 

injection rate was set before any of the three NoCs enters saturation. 

3.5.2 Synthetic traffic loads 

We considered uniform and transpose as synthetic traffics. Uniform traffic 

assumes randomly distributed destinations. Transpose traffic assumes the destination 

node for packets generated by a node is always the symmetric node with respect to 

the diagonal. Therefore, it achieves the maximum degree of temporal locality. 



The average inter-node distance is an important dynamic property of networks 

because it represents the average number of routers travelled by packets. It is 

computed aŝ ^ [46]: 

^ = % Z f i j i D V i j + l ) (9) 
I J共 

Clearly, fj. determines average packet delay without contention, and power 

dissipation of routers. A larger reduction of jj, indicates that larger power reduction 

may be obtained. Meanwhile, it is easy to be computed. Hence, it is a useful metric to 

estimate the power effect of EVCs insertion in the early stage. However, a larger n 

decrease does not definitely mean a higher power saving because it assumes an ideal 

condition where power consumption of a router can be entirely removed if it is 

bypassed and no power overhead is generated by EVCs insertion. 

Let us firstly demonstrate the impact of EVCs for a 4x4mesh network (Figure 

3.12). Compared to the baseline, static EVCs reduces total router power by 6.81% for 

uniform traffic. This reduction increases to 7.41% when using AS-EVC. For 

transpose traffic, the power reduction is 8.44% and 23.49% for static EVCs and AS-

EVC respectively. 

Compare AS-EVC with static EVCs. When the traffic changes from uniform to 

transpose, power decrease by static EVCs shifts a little from 6.81% to 7.41%. 

However, power reduction by AS-EVC increases significantly from 8.44% to 

23.49%. This claims that AS-EVC effectively exploit the characteristics of the 

highly-specific transpose traffic whereas static EVCs loses a huge optimization room 

Use DVij + 1 instead of DVij because we assume that a packet takes one hop to eject out at the 
sink router. 



because it considers transpose traffic in the same way as uniform traffic. Normalized 

average inter-node distance (Figure 3.13) supports this conclusion as well. Reduction 

of u by static EVCs only grows from 15.68% to 16.73% while it rises significantly 

from 18.96% to 39.80% when applying AS-EVC. Figure 3.12 (b) compares total 

router power savings of the two methods for the same traffics. AS-EVC outperforms 

static EVCs by 23.98% for uniform traffic, and 216.99% for transpose traffic. 

Scalability analysis. To evaluate the scalability of AS-EVC, we investigate a 

6x6mesh network under the same two traffics (Figure 3.14). As can be seen, AS-

EVC continues to show a considerable power gain as compared to the baseline, with 

the power reduction of 11.01% under uniform traffic and 20.48% under transpose 

traffic. However, the gain over static EVCs decreases when network size increases. 

AS-EVC only reduces power 2.45% more than static EVCs for uniform traffic. It 

implies that static EVCs scheme is enough for large networks with randomly 

distributed loads. However, the improvement is still pronounced for transpose traffic 

where static EVCs saves 17.6mW while AS-EVC reduces 36.5mW, with 107.31% 

more power saving. 

It is interesting to observe that power saved for a 6x6network (20.48%), under 

transpose traffic, is smaller than a 4x4 network (23.49%) although the former 

(48.31%) obtains a bigger u reduction than the latter (39.80%). It indicates that 

although power reduced by bypassing intermediate routers for a 6x6 network is 

bigger than a 4x4 network, power overhead caused by EVC source routers for a 

6x6network is bigger than a 4x4 network, and the second effect overwhelms the 

fist effect. 
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Figure 3.12. The entire NoCs power for a 4x4 mesh network. 
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Figure 3.14. The entire NoCs power for a 6x6 mesh network. 

Impact of express pipelines. Figure 3.15 shows power for a 4 x 4 mesh network 

when the express pipeline is applied. As expected, compared to the aggressive 

express pipeline (Figure 3.12 (a)), less power consumptions are saved for both 

uniform traffic and transpose traffic. For instance, the express pipeline reduces power 

by 5.85% whereas the aggressive express pipeline saves power by 8.44% for uniform 

traffic when the AS-EVC scheme is used. The main reason is that packets flowing 

through an EVC path have to traverse crossbar switches at intermediate routers at the 

express pipeline. 
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Figure 3.15, Power at express pipeline. 

3.5.3 Real traffic loads 

The benchmarks in the Minne-SPEC suit [51] were used to evaluate the impact on 

realistic traffics. Firstly, a benchmark in the Minne-SPEC suit was fed into the 

TRIPS on-chip network {OCN) simulator to capture an OCN traffic trace. This OCN 

trace was then applied to a traffic decoder to generate a RCG. OCN is a wormhole 

routed, 4x10 mesh network with YX routing. It serves as an infrastructure to 

interconnect the two TRIPS processor cores, the individual banks that form the 

second level cache and the I/O units [52, 53]. We equivalently mapped OCN to a 

10x4 mesh with XY routing since our AS-EVC algorithm and router models are 

based on XY routing. 

Figure 3.16 present simulation results of Minne-SPEC benchmarks. These graphs 

follow the same trend as the experiments for synthetic traffics，with AS-EVC clearly 

outperforming both baseline and static EVCs structures. Power reduction compared 

to the baseline architecture is above 12% for all tested benchmarks, with the most 

(15.82%, 31.3mw) for gzip and the least (12.99%, 30.1mw) for apsL This is a 

significant improvement because the power reduction is not over power of a single 

router component, but over total power of all routers in a NoCs. The gain over the 

static EVCs is bigger than 35% for all traffics, with an average value of 57,14%, The 

largest improvement is seen for gzip. While the static EVCs reduces 17.5mw, the 
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Figure 3.16. The entire NoCs power for TRIPS OCN traffics. 

3.5.4 Detailed area and power profiles 

To further demonstrate how EVCs technique reduces power, we analyze total 

standby power and total stream power. Since consistent results have been obtained 

for the TRIPS OCN traffic loads, we report only the results for swim benchmark. 

Total power of NoCs consists of standby power and stream power. NoCs 

dissipates a lot of standby power even when it is completely idle. It is a fixed cost for 

a specific architecture. Stream power represents additional power when packets 

stream from their sources to their sinks. More stream power is consumed if more 

packets are processed. 
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The principle of the EVC flow control is to skip some operations in intermediate 

routers as packets flow along EVC paths. In other words, the EVC technique can 

only save stream power. No power can be reduced by the EVCs technique if no 

packets are routing. On the other hand, it increases standby power because it requires 

some extra control logics. As seen in Figure 3.17, standby power overhead is 1.50% 

for the AS-EVC. It increases to 3.22% for the static EVCs in which more EVC paths 

are inserted. However, stream power is reduced by 20.09% and 12.43% for the AS-

EVC and the static EVCs respectively. 

The number of logic gates of the entire AS-EVC NoCs for swim traffic goes up 

from 1683.13K to 1720.74K, which only increases 2.23%. A single normal router has 

47604 logic gates. The area of EVC source routers with different number of source 

paths and EVC bypass routers with various number of bypass paths is summarized in 

Table 3 (EVC sink routers have the same area as a normal router, so the area of them 

is not reported.). It shows that adding four source paths only increases area by 7.89% 

and area overhead of adding bypass paths is even smaller. The area overhead is 

significantly smaller than that caused by the EPC technique (changing a five-port 

router to a six-port router increases the area by 26.7% [46]). Thus, the EVC 

technique is highly scalable in terms of area. 

Table 3.3. AREA OF SOURCE AND BYPASS ROUTERS. 

12.43% 
20.09% 

_ -3.22% 
1 » 1 r 1 • 'r ' I ' 

- 1 . 50% 
；! * > * 

baseline 

static E， 

AS-EV( 

Standby Stream 

Figure 3.17. Power profile for the TRIPS OCN swim traffic 
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Source router Gate count Bypass router Gate count 

1-EVC 49295 (3.55%) 1-bypass 47781 (0.37%) 

2-EVC 50179(5.41%) 2-bypass 47960 (0.75%) 

3-EVC 51092 (7,33%) 3-bypass 48140(1.13%) 

4-EVC 51359 (7.89%) 4-bypass 48347(1.56%) 

3.6 CONCLUSIONS AND DISCUSSIONS 

We have proposed a novel, application-specific methodology to insert EVC paths 

for low-power NoCs in this thesis chapter. A RAG is firstly defined to help designers 

clearly know communication characteristics of an application. Then, simple power 

reduction and power overhead models are built to calculate power savings for all 

possible EVC paths. Finally, a greedy algorithm is applied to add EVC paths in an 

iterative way, subjecting to some insertion rules. In a word, for an application, the 

AS-EVC method is able to quickly insert appropriate EVCs early in the design stage. 

We compared power consumptions of the baseline NoCs, the static EVCs NoCs, 

and the AS-EVC NoCs through VLSI implementations. Experiments on both 

synthetic and realistic workloads show that the AS-EVC NoCs achieve great 

improvements over total power of all routers compared to both the baseline and the 

static EVCs NoCs. 

However, there are several directions to improve or extend the AS-EVC 

methodology. They are described as follows. 

3.6.1 Build accurate power models 

The main purpose of this thesis chapter is to study the effect of exploiting 

communication characteristics of applications during EVCs insertion on power 

consumptions. Although high-level power models are built to estimate power savings, 

they are inaccurate and are just used to compare different EVC paths. The models 



emphasize the impact of communication volumes but ignore accuracy of router 

power consumptions. Therefore, power estimations using the high-level models are 

not accurate. Table 3.4 shows router power savings of the AS-EVC NoCs over the 

baseline NoCs for TRIPS OCN traffics. Power savings estimated using the high-level 

models are much exaggerated. For example, the high-level models estimate a power 

saving of 28.29% for the apsi traffic. But the real power saving obtained from ASIC 

tools is only 12.99%. 

Table 3.4. ROUTER POWER SAVINGS FOR TRIPS OCN TRAFFICS BY AS-EVC NOCS. 

Traffic patterns Estimations through 
high-level models 

Evaluations through 
ASIC tools 

Apsi 28.29% 12.99% 

Gzip 39.07% 15.82% 

Parser 32.01% 14.20% 

Swim 33.85% 15.65% 

The high-level power models are inaccurate because we make several assumptions 

to simplify analyses. First, router energy is entirely saved when an EVC flit skips an 

EVC bypass router. This assumption is too optimistic because only part of router 

energy can be reduced in reality although an EVC flit skips all pipeline stages of an 

EVC bypass router. Second, when a NVC flit traverses an EVC source router, it 

consumes 1.05x energy than traversing a normal router no matter how many EVC 

paths originate from this router. Actually, an EVC source router with more EVC 

paths consumes more energy. Third, when a NVC flit goes through an EVC bypass 

router, it consumes the same energy as what it consumes to pass a normal router. In 

fact, the NVC flit consumes more energy because some logic is added in an EVC 

bypass router. 

Thus, an important improvement is to build accurate high-level energy saving and 

overhead models. It will have two advantages. First’ it can help designers evaluate 



power savings of EVCs insertion in early design stage. Second, it helps to compare 

EVC paths accurately and thus insert better EVC paths. 

3.6.2 Allow EVC overlapping 

Currently EVC insertion does not allow any kind of EVC overlapping. This is to 

say, two EVC paths can not share the same physical port. Let us illustrate this rule by 

an example (Figure 3.18). Assuming EVC 1 (from r； to r^) has already been inserted, 

neither EVC 2 nor EVC 3 can be inserted because they overlap with EVC 1. 

However, in fact, conflictions only happen when two EVC flits simultaneously ask 

for the same output port at an EVC bypass router. Therefore, rules for EVC 

overlapping should be: 

• An EVC source port and an EVC sink port can definitely be overlapped 

since an EVC flit is processed in the same way as a NVC flit at EVC 

source/sink routers. 

• All EVC bypass input port can certainly be overlapped because at most 

one EVC flit arrives at the input port in each clock cycle. 

• An EVC bypass output port at an EVC bypass router can be overlapped if 

the EVC paths share the same EVC bypass input port at the same EVC 

bypass router. 

Under the new EVC overlapping rules, both EVC 2 and EVC 3 can be inserted 

after EVC 1 is inserted. It is obvious that the new rules increase flexibility of EVCs 

insertion and do not lead of conflictions. Although control logic will become more 

complicated, we believe that gains are significantly larger than overheads. 
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Figure 3.18. Illustration of EVC overlapping. 

3.6.3 Compare the EVC with the EPC 

Another future direction is to compare application-specific EVCs with application-

specific EPCs. On the one hand, inserting EVCs obtains latency, throughput, and 

energy gains with low costs. However, as a flow-control technique, the EVC benefits 

global packets at the cost of increasing contention delay of packets those are locally 

buffered in EVC bypass routers due to the shared buffers, crossbar and physical links. 

On the other hand, inserting EPCs reduces latency for global packets without 

blocking packets that are traversing EPC bypass routers. Nevertheless, power and 

area costs of fatter routers are too high. We suppose that the EPC is better for 

performance-driven designs whereas the EVC is better for power-driven designs 

although both the EPC and the EVC techniques can reduce latency and power. Thus, 

it is an interesting direction to make a comparison of them or explore a mid-way 

between them to exploit the best of both techniques. 
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CHAPTER 4. COST-EFFICIENT EVC NOCS 

IMPLEMENTATIONS 

4.1 INTRODUCTION 

Express virtual channel is a new flow control mechanism to reduce H through 

virtually bypass intermediate routers [36]. The authors presented express pipelines, 

EVC router microarchitectures and evaluated the EVC flow control by high-level 

models. However, they did not address several important issues that are towards 

implement the EVC flow control in realistic NoCs designs. 

Optimization of EVCs insertion. 

Hardware designs for EVC routers. 

Buffer architecture for EVC networks. 

Low-power techniques to realize power savings of EVC bypass routers. 

Accurate and detailed prototypes and evaluations. 

In Chapter 3，we concentrate on the optimization of EVCs insertion through an 

application-specific method. Evaluations were performed for a wide range of 

network sizes and traffic patterns because the objective is to validate the 

effectiveness of the AS-EVC method. Thus, they were done in the post-synthesis 

stage that is not the most accurate. Meanwhile, buffer architecture remains uniform 

for simplicity. In this chapter, we will address the rest of the important issues and 

contribute in the following aspects. 

• We present detailed hardware designs for both EVC source routers and EVC 

sink routers. At an EVC source router, a head flit process block is designed to 



identify whether a flit goes though an EVC path and to load parameters for 

new packets, A combined switch-VC allocator and its associated logic are 

designed to allocate NVC and EVC lanes simultaneously, to control network 

starvation, and to generate flags of EVC flits. At an EVC bypass router, 

bypass setup logic and bypass datapath are designed for both express and 

aggressive express pipelines. 

• We propose a statistical approach to customize buffer architecture for 

networks with EVCs. In this approach, the number of EVC/NVC lanes at each 

input port is fully customized according to utilization statistics of these lanes. 

Likewise，the buffer depth of EVC lanes at each input port is customized. 

• We explore several conventional low power techniques to show how power 

can be saved when an EVC flit is bypassing an EVC bypass router. Clock 

gating is comprehensively studied to reduce both clock power and data-input 

power of buffers. Operand isolation is explored to save power for control 

components such as the RC and the SVA. 

• We evaluate the baseline NoCs and the AS-EVC NoCs for the TRIPS OCN 

under swim benchmark and a 4x4 mesh under transpose traffic. The 

customized EVCs insertion is obtained through the AS-EVC method 

presented in chapter 3. The customized buffer architecture is gotten by the 

statistical approach. Accurate, detailed evaluations are performed on latency, 

throughput, area and power based on RTL-level simulations and physical 

implementations. 

This thesis chapter is organized as follows. In Section 4.2，we describe related 

work. In Section 4.3 and 4.4, the components for EVC source routers and bypass 



routers are presented respectively. Section 4.5 proposes a statistical approach to 

optimize the buffer architecture. Section 4,6 discusses several low-power techniques 

for EVC routers. After that，the physical implementations for the entire NoCs are 

presented in Section 4.7 and the results are reported in Section 4.8. Finally, we 

conclude the chapter in Section 4.9. 

4.2 RELATED WORK 

4.2.1 Topological techniques 

Design and implementation of an entire NoCs using technology below lOOnm 

were explored in [35]. Lee et al. designed a low-power NoCs for high performance 

Systems-oii-Chip [13, 54]. The physical implementation in ISOnm CMOS 

technology shows that the NoCs consumes 51mW of power. In these works, the 

topologies are fully customized to maximum network performances and to reduce 

power costs. Accordingly, the number and size of routers are customized. 

Although fully customized topologies can achieve high performance，they lead to 

non-structured wiring which can be problematic. Problems like crosstalk and timing 

closure may offset the advantages expected from customization. Also, many realistic 

networks are not completely irregular. Hence, Ogras et al [17, 18] implemented a 

4x4 mesh NoCs with application specific long links insertion. However, inserting a 

new physical link adds a new port to both the end routers of the link, resulting in high 

power and area costs. 

We suggest a better approach so that customization can be fully exploited while 

keeping the benefits of structured wiring and avoiding high-radix routers. On the one 

hand, we improve network performances and reduce power through customized 

EVCs insertion and customized buffer architecture. On the other hand, because long 



virtual paths instead of long physical links are added, wiring remains structured and 

the radix of routers is not changed. 

4.2.2 Clock gating 

Clock gating (CG) is one of the most successful and widely used techniques for 

power reduction [55-58]. It dynamically shuts off the clock to blocks of a design that 

are idle or not producing meaningful results. Power reduction of CG depends on 

power consumed by the blocks and time to turn off them. 

The basic idea of CG is to AND/OR the clock with an enable signal, so that a flip-

flop only receives the clock when the enable signal is logic high. Although adding an 

AND/OR gate along the clock path is the simplest method, glitches on the enable 

signal are propagated to the clock pin of the flip-flop and thus generate errors. Thus, 

designers usually use integrated CG cells provided in standard libraries. As shown in 

Figure 4.1, there are two kinds of CG cells: logic low disabled and logic high 

disabled. The logic low disabled cell turns off the clock by keeping the gated clock 

pin (gclk) logic low, which is generally used to disable positive edge-triggered flip-

flops. The logic high disabled cell is the opposite and is usually used to disable 

negative edge-triggered flip-flops, 

enable — _ enable 
D 

LATCH 

CK 

D 

LATCH 

CK 

(a) (b) 

Figure 4.1. CG cells, (a). Logic low disabled, (b). Logic high disabled. 

Power consumption of a positive edge-triggered flip-flop is described as follows 

assuming transitions on the data input signal D and a stable clock signal CK. In 

gclk 
Ik 

x
y
 

AND 
Ik 



Figure 4.2 (a), the clock signal is logic high (CK=' 1'). Since the master latch is not 

transparent in this case，only the input gate capacitances (marked bold) are reloaded. 

Figure 4.2 (b) shows the situation when the clock signal is logic low (CK='0'). 

Transitions on the data signal affect the internal nodes (marked bold) of the master 

latch and the gate capacitances of the slave latch. For this reason, the power 

consumption of the flip-flop is much higher if the clock signal is stabilized as logic 

low. 

Master latch Slave latch 

CK CKN 

(a) 

Master latch 

CKP 

CKN CKN 

CKP 

Slave latch 

CKN 

CKP 
CKP 

CKN 

(b) 

Figure 4.2. Schematic of a positive edge-triggered D flip-flop [59], (a). CK is equal to 1. (b). CK 

is equal to 0. 
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4.3 EVC SOURCE ROUTER 

At EVC source routers, the control components need to handle both NVC flits and 

EVC flits. Thus, special functions for EVC flits are added in some control 

components. In this section, we present their designs. 

4.3.1 Head flit process block 

The format of a head flit is shown in Figure 4.3 (a). The packet type is used for 

special purpose such as QoS. The output port ID (i?。）directs the head flit to the 

appropriate output port of the current router. The hop counts in X direction and Y 

direction are used to determine the appropriate output port ID in preparation for use 

in the next router. Each input VC has a head flit process block. For normal routers, 

the head flit process block (Figure 4.3 (b)) only extracts Ro and saves it to registers. 

For EVC source routers, it needs to additionally detect whether a head flit can take 

advantage of the EVC paths available by comparing the hop counts in the head flit to 

the hop counts representing the EVC paths originating from this router. If an EVC 

path is covered by the required route of the head flit, the head flit will go through the 

EVC path. Otherwise, it will traverse a normal path. 

The head flit process block determines when to update the R � a n d EVC identifier 

registers and where to get the head information for update. It updates the registers for 

a new packet at the cycle right before the tail flit of a packet is leaving. The R � a n d 

EVC identifier registers are updated according to the input buffer and the Finite State 

Machine (FSM) status of the input VC. When the head flit of a new packet is already 

queued up in the buffer, Ro and H from this buffer are used. When a head flit destined 

for this input VC is coming in, R�and H from this coming head flit are used. In cases 
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Figure 43. (a). Head flit format, (b). Head flit process block. 

4.3.2 Switch-VC allocator 

The block diagram of a switch-VC allocator (SVA) and its associated logics are 

depicted in Figure 4.4, The SVA combines VC allocation and switch allocation 

together. 

Each output port has an output VC control sub-block. The NVC status table keeps 

detailed information of all output NVCs in the output port q, such as busy, empty, 

full etc. The NVC selector searches for a NVC which is free to be allocated and saves 

other than the two previously described situations, any invalid Ro and H (out of the 

known range) are used. 

i Packet 
1 1 
• Outent ^crt m 丨 X Hop count Y Hop count 

1 ) 
‘ Pay!oad ‘ 

(a) 

Rc from input channel 
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its ID to the free-NVC FIFO. The output of the free-NVC FIFO indicates which 

NVC can be first made available to those input VCs that are connected to the output 

port q. If the output port g is an EVC source port, a set of EVC modules are required 

to control the EVC lanes at the corresponding EVC sink port. Functions of the EVC 

modules are the same as those in the NVC counterparts. 

Each input VC has a resource availability check sub-block. It verifies whether the 

input VC meets the requirements to generate a request based on the information from 

the output VC control blocks. The NVC/EVC allocation check module works only on 

head flits. A signal is set to be true if the free-NVC/free-EVC FIFO is not empty. 

Otherwise, it is set to be false. Checking allocation condition has to be done before 

generating requests for the input port arbiter because a check performed afterward 

may cause deadlock dependency between the input VCs. The NVC/EVC credit check 

module operates on all flits. It verifies whether there are buffer spaces available in 

the assigned output NVC/EVC. 

Each input port has a request generator for input port arbiter, an input port arbiter, 

and a request generator for output port arbiter. The request generator for input port 

arbiter creates valid requests for the input VCs which meet all the resource 

requirements. The input port arbiter grants one of the requests. The request generator 

for output port arbiter then determines which output port arbiter the winner will go to. 

The winners from each input port proceed to the output port arbiter which selects one 

among the winners. The NVC/EVC status table of the corresponding output VC 

control block will be updated accordingly. In summary, NVCs and EVCs are 

processed separately in both output VC control blocks and resource availability 

check blocks. However, the arbitration blocks do not separate EVCs from NVCs. In 

other words, they treat all input VCs the same way no matter which kind of output 



VCs an input VC is eventually allocated. In addition, the NVC/EVC allocation and 

the switch allocation share the same arbitration blocks. Thus, our proposed 

architecture will have much lower design costs than that using separate arbitration 

logics for NVC allocation’ EVC allocation, and switch allocation as presented in 

[36J. 

Each EVC path is provided a starvation avoidance block. At high injection rates, it 

is possible that an EVC source router always sends EVC flits along an EVC path, 

leading to NVC flits locally buffered at each EVC bypass router on this path may 

never get a chance to use the crossbar and the physical channel. The starvation 

avoidance block counts the number of EVC flits going to an EVC path. Once the 

number hits a threshold, it stops sending EVC flits by blocking the corresponding 

input VC requests. After stopping for some cycles, it resumes sending EVC flits and 

the count. The avoidance logic is located at an EVC source router instead of EVC 

bypass routers. As a result, no reverse starvation signals are sent from the bypass 

routers to the EVC source router. This reduces wire costs and is really different from 

the starvation con trol policy presented in [36]. 

Each EVC path is provided an EVC flit flag generation block as well. It generates 

a signal each time an EVC flit wins the arbitration. It is sent out one cycle ahead the 

EVC flit to set up each EVC bypass router in advance. 



Figure 4.4. Switcli-VC allocator and the associated logics. 
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4.4 EVC BYPASS ROUTER 

In this section, we describe the bypass setup and the necessary changes to the data 

path for EVC bypass routers under both express and aggressive express pipelines. 

4.4.1 Express bypass router 

Figure 4.5 presents the EVC bypass router microarchitecture under express 

pipeline. We assume that an EVC path goes through the router input port io to the 

router output port 02. Since a single crossbar input/output port is provided for each 

router input/output port, the input/output port index of a crossbar is the same as that 

of a router. The 2-1 multiplexes are added at the crossbar input port io to select 

between EVC flits and NVC flits. EVC flits have priority over NVC flits so that an 

EVC flit traverses the crossbar as soon as it arrives. To achieve this, the bypass setup 

block must configure the crossbar to logically connect 02 to ig one cycle before the 

EVC flit arrives. In this case, both io and 02 of the crossbar are reserved for the EVC 

flit. As a result, no NVC flits can be sent from io and no NVC flits can be sent to 02 

when the EVC flit is traversing the router. The bypass setup block informs the SVA 

to stop granting any input VC in k and any input VC which is requesting an output 

VC in 02. 
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EVC_flit flags 

Figure 4.5. Express bypass router microarchitecture. 

4.4.2 Aggressive express bypass router 

Figure 4.6 shows the EVC bypass router microarchitecture under aggressive 

express pipeline. The 2-1 multiplexes are added not at ig, but at o?. As an EVC flit 

arrives, it advances directly to the multiplexes and thus skips the ST stage. In this 

architecture, the crossbar input port io is not reserved. It means that it is possible for a 

flit buffered in input VCs of io to traverse the crossbar while an EVC flit is going 

through the router. The crossbar output port 07 may not necessarily be reserved, 

depending on when the EVC flit comes. 

• A NVC flit f i traversed the crossbar and was saved in the ST pipeline 

registers at 02 in the previous cycle. In the current cycle, an EVC flit f} 

arrives and occupies the output channel. Hence,/； remains being buffered in 

the ST pipeline registers. In this case, 02 must be reserved to prevent a new 

NVC flit fs from going to it. Otherwise,/； will be overridden by力. 

• No NVC flit was saved in the ST pipeline registers at 02 in the previous cycle. 

In this case, there is no need to reserve 02’ which allows a NVC flit to travel 

the crossbar to 02 when an EVC flit is passing the router. 
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Figure 4.6. Aggressive express bypass router microarchitecture. 

4.5 CUSTOMIZED BUFFER ARCHITECTURE 

As an EVC path is inserted, the buffer architectures of the input ports along this 

path should be changed since the expected traffic will also change. As shown in 

Figure 4.7, at the EVC sink port, some EVC lanes are added to store EVC flits. 

Meanwhile, some NVC lanes are removed because less traffic is expected on the 

NVC lanes. In addition, since EVC flits do not take up buffers in the EVC bypass 

input ports, the number of NVC lanes in these bypass input ports can be reduced for 

the same reason. Thus, it is important to determine how many EVC lanes will be 

inserted so that the number of NVC lanes in the EVC sink port and in the EVC 

bypass input ports can be optimized. Buffer optimization can then be extended to 

other normal routers with small performance penalties. 



EVC flits flow 

NVC lane EVC lane 

Figure 4.7. EVC flits flow. 

We propose a statistical approach to customize buffer architecture. This idea is 

based on two observations. First, buffer utilizations are widely different at various 

input ports because they have different traffic characteristics. Second, assuming that 

there are four buffer lanes in an input port but only two of them are utilized in most 

cases, say 95%, removing two buffer lanes from this port will hardly affect network 

performances. 

Figure 4.8 presents a procedure to customize the number of EVC/NVC lanes for 

input ports. Buffer architecture is initially set to be uniform. In step 2，we calculate pi 

for each input port, pi is the probability that totally i EVC/NVC lanes are utilized in 

an input port. In step 3, we determine the minimum number of EVC/NVC lanes for 

each input port so that the accumulative utilization probability at each input port 

reaches th‘ This process is represented in equation (10) where th is an adjustable 

threshold, and M is the maximum number of EVC/NVC lanes allowed for an input 

port. The parameter M is a design constraint because a large M generates costly 

control logic. In steps 4 and 5，we evaluate network performances for the new 

customized buffer architecture. If performances are acceptable, output the 

customized buffer architecture in step 6. Otherwise, increase th and rerun steps 3, 4， 

and 5. Likewise, the buffer depth for each input port can be customized. In this case, 



we need to have the probability that totally i buffer spaces are utilized in an 

EVC/NVC lane. 

Figure 4.8. Buffer customization flow graph. 

m 
min(m), subject to X! Pi ^ th and \ <m<M (10) 

We compared the uniform buffer architectures and the customized buffer 

architectures for the TRIPS OCN under swim traffic and a 4x4 mesh under 

transpose traffic. In the uniform architecture, each input port has four VC lanes in 

total, with each lane accommodating four flits. If an input port is an EVC sink port, 



four lanes will be equally divided into two EVC lanes and two NVC lanes for the 

swim traffic but into three EVC lanes and one NVC lane for the transpose traffic. 

The customized architectures are described in Figure 4.9 (a) and (b) respectively. A 

threshold of 0.95 is used. The configuration for a local input port is given at the 

comer of each box while the configurations for other input ports are placed against 

the related edges. The number of EVC/NVC lanes for each input port is fully 

customized. The depth of EVC lanes is also customized for each input port, ranging 

from the maximum of six flits to the minimum of two flits. However, NVC lanes of 

all the input ports have the uniform depth of four flits. 
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Figure 4.9. Customized buffer architectures for the TRIPS OCN swim traffic (a) and a 4x4 
mesh with transpose traffic (b). 

Table 4.1 and Table 4.2 summarize the results. For the swim traffic, the total 

buffer size drops from 2752 flits to 1112 flits, showing a big reduction of 59.59%. 

For the transpose traffic, the total buffer size is reduced by 31.64%. There is no 

deterioration in saturation throughputs for both traffics. It means that the customized 

buffer architecture can achieve the same saturation throughput with much less buffer 

than the uniform buffer architecture. Our synthesis results show that buffers account 

for 78.95% of router area when a flit width of 69 bits is used. Thus, a customized 

buffer architecture can save router area significantly with no performance 

degradation. Besides, a NoCs consumes a certain amount of standby power that 

mainly consists of leakage power and clock tree power. Thus, a customized buffer 

architecture can save a large amount of standby power because buffers usually 

dominate the leakage and clock tree power consumptions. Furthermore, control logic 

of routers becomes smaller as buffers reduce, which leads to more area and power 

savings. 



Table 4.1. RESULTS FOR THE TRIPS OCN SWIM TRAFFIC. 

Saturation 
throughput 

NVC 
buffers 

EVC 
buffers 

Total 
buffers 

Uniform 0.175 2536 216 2752 

Customized 0.175 936 176 1112 

Reduction 0.00% 63.09% 18.52% 59.59% 

Table 4.2. RESULTS FOR THE TRANSPOSE TRAFFIC 

Saturation 
throughput 

NVC 
buffers 

EVC 
buffers 

Total 
buffers 

Uniform 0.249 184 72 256 

Customized 0.249 119 56 175 

Reduction 0.00% 35.33% 22.22% 31.64% 

Not only applicable to a single application system, the customized buffer idea can 

be applied to a multi-application system through reconfiguration. In a multi-

application system, the buffers will be sufficiently sized so that all intended 

applications can be adequately served. Then, customized buffer architecture for each 

application will be obtained off-line and be stored in a look-up table. As the system 

switches from one application to another, it looks up the customized buffer 

architecture from the table for the new application and logically reconfigures the 

physical buffers through power gating technique to turn on/off some buffers. In this 

scenario, only power consumption is benefited because buffers are not physically 

removed, but are only turned off. Since the customized buffer architectures are 

calculated off-line and reconfigured on-line, no complex logics are needed to monitor 

network loads and to adjust buffer architectures dynamically. Thus, area and power 

costs are expected to be small. Compared to customized topologies [13-16, 35], the 

customized buffer does not affect the structures of both routers and links so is easy to 

be reconfigured. In short, the customized buffer can complement a regular topology 



such as a mesh to support a large range of applications with reduced power 

consumptions. 

4.6 LOW POWER TECHNIQUES 

The total power consumed when a flit proceeds through a router is expressed in 

equation (1). Ideally, as an EVC flit skips an EVC bypass router, the Erouter for this 

flit can be entirely saved. But this is not the case in real designs. In this section, we 

present low power techniques to save power for router components. 

4.6.1 Buffers 

Input buffers are partitioned by virtual channel, with a separate FIFO being 

provided for each VC. Each FIFO is implemented as a register file. In our example, 

an input port has v VC lanes and each VC lane is capable of buffering d w-bit flits. 
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Figure 4.10. Clock gating at different levels, (a). Port level and VC level, (b). Flit level. 

Ewrt mainly consists of two components: clock power and data input power. Clock 

power includes both power dissipated by clock tree and power consumed by clock 

pins of registers. Clock gating (CG), a well-know low-power technique, is often 

applied to reduce clock power of buffers. As can be seen in Figure 4.10, CG may be 

used in three levels: port level, VC level，and flit level. For simplicity, the inputs for 

only one CG cell are shown at each level. A port level CG cell enables/disables the 

clock for all registers in a port (vx Jxw bits). A port clock is enabled (Eni) when 

there is a valid NVC flit at the input port. Once a port clock is turned off, it saves a 

large amount of power. A VC level CG cell enables/disables the clock for registers in 

a VC lane {d^w bits). A VC clock is enabled (En�) when a valid NVC flit is being 

stored to any flit slot in the VC lane. When a VC clock is disabled, it saves a 

moderate amount of power. A flit level CG cell enables/disables the clock for 

registers of a flit (w bits). A flit clock is enabled (Ens) when a valid NVC flit is 

addressing the particular flit slot. Disabling the flit clock saves only a relatively small 

amount of power. However, the likeliness that a particular level of clock can be 

turned off goes the opposite way. In other words, a flit level CG has the highest 

probability of imposing itself while a port level CG has the least probability. Since 



actual probabilities vary largely with network load, adopting an appropriate strategy 

for a particular CG level highly depends on traffic scenarios. 

To evaluate the effectiveness of the three CG levels, we built a 5-port router, with 

4 FIFOs per port, 4 flits per FIFO, and 69 bits per flit. The router was physically 

implemented in a conventional ASIC flow. Total power consumed by buffers of a 

router was calculated based on back-annotated netlist and switching activities 

generated from simulations. All simulations were run at 250MHz using uniform 

traffic. Figure 4.11 shows the buffer power consumption for different CG levels. As 

expected, all three CG levels save power in all traffic conditions. However, port level 

CG only works well when injection rate is extremely low. As injection rate increases, 

the power consumption increases quickly because the probability to disable a port 

level clock reduces sharply. Both VC level CG and flit level CG are better than port 

level CG for most injection rates. Also, VC level CG is better than flit level CG when 

injection rate is smaller than 0.2. After that, flit level CG is better. On average, VC 

level CG and flit level CG reduce power by 78.1% and 80.2% respectively compared 

to the case that no CG is applied. Flit level CG is used in the implementation exercise. 

50 
—No CG 
-A-Flit level 
分 VC level 

-t-Port level 

0.2 0.3 0.4 0.5 0.6 

Injection rate (flits/(node*cycle)) 
0.7 0.8 

Figure 4.11, Comparison of different CG levels. 
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Figure 4.12. Compare of different CG cells. 

In a FIFO, only registers for one flit will change values at each clock cycle while 

the remaining registers are not altered. To reduce power consumed by the data inputs 

to the remaining registers, we simply change logic low disabled CG cells to logic 

high disabled CG cells. This works because the master latch of a flip-flop is not 

transparent when a logic high clock signal is applied. As shown in Figure 4.12, logic 

high disabled CG saves more power than logic low disabled CG in all traffic 

conditions. On average, 13.35% more power is saved. However, using logic high 

disabled CG cells leads to tight timing constraints on CG enable signals. The enable 

signal is just required to be ready before the end of the whole previous cycle for a 

logic low disabled CG cell because the enable signal can be passed to the output of 

the latch when the clock signal is logic low (Figure 4.1 (a)). However, it has to be 

ready in the first half phase of the previous clock cycle for a logic high disabled CG 

cell because it can only be passed to the output of the latch when the clock signal is 

logic high (Figure 4.1 (b)). Fortunately, the enable signal for the flit level CG cell of 

a flit slot can be simply obtained by checking whether a valid NVC flit is destined for 

this slot, and thus is early enough. 
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4,6.2 Control logic 

When the head flit of a new packet arrives at a router, RC is performed to 

determine the output port in the direction of the destination. The body/tail flits of the 

packet will follow the head flit to the same output port. Therefore，no RC operations 

are needed for body/tail flits. As a result, operand isolation can be applied to isolate 

RC blocks for body/tail flits. Likewise, even the RC operation for the head flit can be 

isolated if it is an EVC flit. 

When an EVC flit arrives at a bypass router, it skips VA and SA operations. As 

mentioned in Section 4.4, both io and 02 of the crossbar are reserved for the EVC flit 

in the case of express pipeline. Thus, the router will ignore the results of the arbiters 

serving io and 02. Likewise, the router does not use results from the arbiter serving 02 

in the case of aggressive express pipeline. We isolate the arbiters in these conditions 

to reduce their power consumptions. 

Figure 4,13 presents how operand isolation is implemented. An AND2 gate is 

inserted for each input signal. When isolation enable signal is asserted, all isolated 

input signals remain at logic 0. Therefore, no power is consumed by the block 

because there are no switching activities on its isolated input signals. To isolate a RC 

block, the isolation enable signal is asserted when a flit is not a NVC head flit. To 

isolate an arbiter, the isolation enable signal is asserted when the corresponding 

input/output port is reserved. These enable signals have to be ready before the 

corresponding input signals to avoid large delay overhead. 

We evaluated the effectiveness of operation isolation for a RC block that 

implements a simple XY routing algorithm using the same method in the clock 



gating evaluations. Figure 4.14 shows that applying operand isolation saves RC 

power by 62.85% on average. 

Isolated 
Input 0 

Input (m-1) 

Isolation enable 

N input 0 Output 0 

• 

Isolated block 
春 
• 

• Isolated 
\ input (m-1) Output (n-1) 

Figure 4.13. Operand isolation. 
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Figure 4,14. Power consumption for a RC block. 

4.7 IMPLEMENTATION 

4.7.1 Prototype architectures 

We evaluated the baseline NoCs and the AS-EVC (application-specific EVC) 

NoCs for a realistic case (TRIPS OCN with the swim traffic) and a synthetic case 

(4x4 mesh with the transpose traffic). AS-EVC had been proved to have similar 

effectiveness on tested Minne-SPEC benchmarks like apsi, gzip, parser and swim in 

Chapter 3. Thus, without loss of generality, we selected the swim benchmark for the 

TRIPS OCN. 
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We prototyped a baseline NoCs and an AS-EVC NoCs for each case. The network 

and process parameters for the baseline NoCs are listed in Table 4.3. The AS-EVC 

NoCs has the same parameters as the baseline NoCs except that it uses aggressive 

express pipeline, the customized EVC paths (Table 4.4 for the swim traffic and Table 

4.5 for the transpose traffic), and the customized buffer architecture (Figure 4.9 (a) 

for the swim traffic and Figure 4.9 (b) for the transpose traffic). 

Table 4.3. BASELINE NETWORK AND PROCESS PARAMETERS 

Traffic TRIPS OCN swim; transpose 

Topology 10x4 mesh; 4x4 mesh 

Flow control Virtual channel 

Routing XY 

Buffer management Credit-based 

Pipeline Non-express pipeline 

Router radix 5 

Buffer architecture 4 VCs per port, 4 flits per VC 

Packet length 4 flits 

Flit size 32 (payload) + 4 (overhead) 

Technology nOnrn, HS 

Frequency 250MHz 

Tile size 1mm X 1mm 

4.7.2 Customized EVCs insertion 

We inserted EVC paths in an application-specific manner. Firstly, all possible 

EVC paths were evaluated based on communication volumes of any two tiles and 

power models. Then, EVC paths were inserted by a greedy algorithm subject to 

several insertion rules. The details for the insertion method are presented in Chapter 

3. In this way, we inserted totally 23 EVC paths for the swim traffic and 6 EVC paths 

for the transpose traffic. Table 4.4 and Table 4.5 list these EVC paths with each path 



identified by its source router and sink router indexes (the left-bottom router is 

represented as too throughout the thesis). 

Table 4.4. EVC PATHS FOR THE SWIM TRAFFIC 

source sink source sink source sink source sink 

ri2 ri6 r32 r20 r26 r28 rai r35 

ri5 r22 roo ro4 r38 ri9 ri9 ri5 

r36 r32 ro5 ri8 r34 ro4 1*22 rii 

1*22 r26 ri8 r38 1"20 r22 ri6 ri8 

r26 r22 r33 ro3 1"28 r26 rss r38 

ro4 r34 r38 r36 1"20 Too 

Table 4.5. EVC PATHS FOR THE TRANSPOSE TRAFFIC 

source sink source sink source sink source sink 

r32 no roi r23 rio r32 r23 roi 

1"20 r3i ri3 ro2 

4.7.3 Physical implementation 

We performed floorplanning, place and route for the NoCs using Synopsys Astro. 

Without loss of generality, we assumed that each router was located at the right-top 

comer of a tile. Thus, location of a router was determined when the corresponding 

tile was located. Each router was assigned to a rectangular plangroup where all logic 

cells for this router were only allowed to be placed within the plangroup area. In a 

realistic NoCs-based chip, each tile includes a router and an IP core. However, we 

implemented only a router for each tile because designing and implementing realistic 

IP cores require two much effort and are unnecessary in this exercise. Large spaces 

supposedly occupied by an IP core are included in each tile. To make the layout more 

realistic, we intentionally built hard blockages to prevent using these available 

spaces and reserved only a few rows for placing top-level standard cells (for example, 

registers for pipelined physical links) and routing between routers. 



For clarity, only the layout micrographs for the TRIPS OCN swim traffic are 

shown in Figure 4.15. Since uniform buffer architecture was used, the routers in the 

baseline NoCs have the same size except for those at the comers or along the borders 

of the 10x4 mesh. But, toe routers in the AS-EVC NoCs are varied in sizes due to 

customized EVCs insertion and customized buffer architecture. Only two links are 

shown in a single tile for simplicity. To the best of our knowledge, this is the first 

time a near-realistic regular mesh NoCs with variable number of VCs and depths at 

different input ports has been physically implemented. 

(a) 

I
 

f
s
m
 

(b) 

_ 



Link to 
the left router 

Blockage 

Blockage 

Router 

Blockage 

Link to 
down router 

(c) 

Figure 4.15. Layout micrographs, (a). The baseline NoCs. (b). The AS-EVC NoCs. (c). A 
single tile. 

4.8 RESULTS 

4.8.1 Network performances 

We evaluated average packet latency and average throughput using SystemVerilog 

models. Figure 4.16 shows results for the swim traffic. The AS-EVC outperforms the 

baseline at all injection rates. Saturation is improved from 0.163 to 0.175 

flits/(node*cycle), showing a 7.36% increase. Likewise, the latency at 0.163 

flits/(node*cycle) drops from 53.62 to 38.55 cycles, giving a 28.2% reduction. Figure 

4.17 demonstrates results for the transpose traffic. The AS-EVC has lower latency 

than the baseline at low and moderate injection rates. However, they have similar 

latencies at high injection rates and thus similar saturated throughputs. 
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Figure 4.16. 
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Average throughput (a) and average packet latency (b) for the swim traffic. 
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Figure 4.17. Average throughput (a) and average packet latency (b) for 4 x 4 mesh with the 
transpose traffic. 

4.8.2 Area, power and energy 

The performance improvements are obtained by using much smaller area and 

power costs. Syiiopsys DC results under worst case synthesis scenario show that the 

gate count decreases from 1095.49K to 538.45K (a reduction of 50.85%) for the 

10x4mesh with the swim traffic and drops from 405.24K to 239.72K (a reduction of 

40.84%) for the 4x4 mesh with the transpose traffic. 

Power figures were obtained from Synopsys PrimeTime PX using UMC 130nm 

library files, post-layout netlist, extracted RC, and post-layout switching activities as 

inputs. Standby and total power consumptions were calculated using the switching 

activities at zero-load and saturation point (0.163 flits/(node*cycle) for the swim 

traffic and 0.249 flits/(node*cycle) for the transpose traffic) respectively. Stream 

powers were obtained by subtracting standby powers from total powers. 

Table 4.6 and Table 4.7 present power consumptions of the complete NoCs. 

Compared to the 10x4 baseline NoCs, the 10x4 AS-EVC NoCs reduces total power 

from 298.9mW to 196.5mW (34.26%), with total standby power reducing from 
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145.0mW to 89.6mW (38.21%) and total stream power decreasing from 153.9mW to 

106.9mW (30.54%). Also, compared to the 4x4 baseline NoCs，the 4x4 AS-EVC 

NoCs reduces total standby power by 19.8mW (34.49%) and total stream power by 

26.7mW (32.56%), and thus total power by 46.5mW (33.36%). The standby power 

savings are mainly resulted from large area reduction through customized buffer 

architecture. The stream power reductions are caused by a combination of area 

reduction, customized EVC paths to virtually bypass intermediate routers for many 

packets, and low-power techniques. It is clear that routers dominate in both standby 

power and stream power. This is mainly because a smaller flit size is used due to a 

large flit size will require too much computing resource in placing and routing the 

entire NoCs. In addition, total power and stream power savings reported here are 

much larger than the post-synthesis results reported in Chapter 3. For example, total 

power and stream power savings of all routers are 38.68% and 32.58% respectively 

for the swim traffic while they are 15.65% and 20.09% in respective in Chapter 3. 

The main reason is that experiments in Chapter 3 used uniform buffer architecture 

instead of customized buffer architecture. The customized buffer architecture not 

only reduces standby power of routers, but also increases stream power reduction of 

routers because load capacitances decreases as logic area reduces. Thus, we suppose 

that much larger power reductions will be achieved for other traffic patterns tested in 

Chapter 3 after their buffer architectures are customized. 

Table 4.6. POWER CONSUMPTIONS FOR THE TWO ENTIRE 1 0 x 4 NOCS FOR THE 

SWIM TRAFFIC. 

Component 

Power (mW) Baseline | AS-EVC 

Component Standby Stream Total 

Routers 101.6 154.5 128.0 186.3 229.6 1 140,8 

Others 43.4 |35.1 25.9 120.6 69.3 1 55.7 

Total 145.0 1 89.6 153.9 1 106.9 298.9 1 196.5 



Table 4.7. POWER CONSUMPTIONS FOR THE TWO ENTIRE 4 x 4 NOCS FOR THE 
TRANSPOSE TRAFFIC 

Component 

Power (mW) Baseline j AS-EVC 

Component Standby Stream Total 

Routers 39.3 |23.7 70.6 1 45.2 109.9 1 68.9 

Others 18.1 113.9 11.4 1 10.1 29.5 1 24.0 

Total 57.4 1 37.6 82.0 1 55.3 139.4 1 92.9 

Table 4.8 shows area and standby power breakdowns for the router r24. Area of 

buffers reduces from 20635 to 5149 (75.05%) and standby power drops from 

l.lSOmW to 0.266mW (77.46%) because a large number of NVCs/EVCs are 

removed by customization. Since design complexity of the SVA highly depends on 

number and depth of NVCs/EVCs, its area and standby power decreases significantly 

by 70.53% and 44.54% respectively. The crossbar and related logic consume little 

standby power because there are few registers in them. Area for the top-level clock 

network and logic is not reported in synthesis results. But, we can see that they 

consume a large amount of standby power (power is reported in post-layout results) 

for both NoCs. Reduction of total buffers simplifies much the top-level clock 

network, and then reduces its standby power from 1.077mW to 0.498mW. 

Table 4.8. AREA AND POWER BREAKDOWNS FOR THE ROUTER (BASELINE | AS-
EVC) 

Component Area (gate count) Power (mW) 

Buffers + logic 2063515149 1.180 丨 0.266 

Crossbar + logic 2859 1 2679 0.058 1 0.057 

SVA + logic 715412108 0.485 1 0.269 

Top-level clock network and logic NA 1.077 10.498 

Total 3091519994 2.800 1 1.090 

Table 4.9 presents stream flit energy breakdown for the router r24. Stream flit 

energy for each component was determined through multiplying the component's 
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stream power by simulation time and dividing by the number of flits travelling the 

router. For the AS-EVC case，we assumed that a NVC flit consumes the same stream 

energy as an EVC flit to simplify calculations. Calculation errors are small because 

NVC flits travelling the router n4 account for only 4% of total flits. It can be seen 

that total stream energy is 16.15pJ and 3.62pJ respectively when a flit travels or 

bypasses the router, showing a 77.59% reduction. Given effective clock gating and 

area reduction, a flit consumes 88.75% less energy when it bypasses the buffers. 

Likewise, combination of clock gating, operand isolation and area reduction saves 

the SVA energy by 96.74%. As seen in Figure 4.6, when a flit bypasses the crossbar, 

it skips the 5x5 switch fabric but has to go through the wires and the 2-1 multiplexes. 

As a result, only 46.3% energy is saved. 

Table 4.9. STREAM FLIT ENERGY BREAKDOWN FOR THE ROUTER � . 

Component Baseline 

(pJ) 

AS-EVC 

(pJ) 

Reduction 
(%) 

Buffers + logic 5.18 0.58 88.75 

Crossbar + logic 4.87 2.62 46.3 

SVA + logic 5.86 0.19 96.74 

Top-level clock network and 
logic 

0.24 0.23 3.75 

Total 16.15 3.62 77.59 

4.9 SUMMARY 

In this chapter, we have proposed methods to design and to implement a NoCs 

supporting the EVCs technique with low power as the main objective. We have 

described cost-efficient hardware components, optimized buffer architectures, 

creative use of low power techniques and near-realistic ASIC prototypes to 

demonstrate how the EVCs flow control can be best exploited in practice. 



Detailed physical implementations show that the AS-EVC NoCs has much smaller 

power and area costs than the baseline NoCs. Furthermore, significant savings are 

obtained with no network performance penalties but a small sacrifice in attaining the 

maximum speed. 

Given the impressive results, we plan to implement realistic NoCs-based systems 

using the EVCs technique. Also, based on the power consumption results extracted 

from physical implementations, more accurate power saving and cost models than 

those used in Chapter 3 are expected to be built to help designers estimate power 

savings of EVCs insertion in early design stage. 
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CHAPTERS. CONCLUSIONS 

As interconnection networks are shifted from off-chip domain to on-chip domain, 

a critical challenge is to keep their design costs (area and power) small. This thesis 

concentrates on this challenge to explore cost-efficient NoCs architectures and design 

cost-efficient NoCs components. 

5.1 CONTRIBUTIONS 

This thesis focuses on cost reduction of routers because routers are much more 

costly than links when packet switching and virtual channel flow control are applied. 

The contributions are in two orthogonal aspects: router microarchitecture and 

network architecture. 

In terms of router microarchitecture, we studied cost-efficient allocators for a 

router. Through investigating simulation results of a complete NoCs, we found large 

opportunities to reduce design costs of the generic virtual channel and switch 

allocators and then proposed two low-cost allocators: the look-ahead allocator and 

the combined switch and VC allocator. Evaluation results show that the proposed 

allocators can significantly reduce area and power costs compared to the generic 

allocator architecture without performance penalties. The cost-efficient allocators are 

orthogonal to cost-efficient router datapath components like buffer and crossbar, and 

thus combing them together will reduce more design costs for a router. 

In terms of network architecture, we studied the express virtual channel flow 

control along two directions. The first direction is the high-level application-specific 

methodology to achieve maximum power savings for given applications. Based on 

calculations of communication volumes between routers and simple high-level power 



models, the high-level method can quickly determine power-efficient EVC paths and 

thus is useful to explore a large design space in early design stage. Evaluation results 

for a wide range of design parameters and traffic patterns demonstrate that AS-EVC 

NoCs are more power efficient than both the baseline and the static EVCs NoCs. 

The second direction is to study design and implementation issues for low-power 

NoCs supporting the EVC flow control. It includes four aspects. First, we designed 

power-efficient hardware components for EVC networks. Second, we optimized 

buffer architectures to reduce both area and power costs for EVC networks by a 

statistical approach. Third, we explored conventional low-power techniques like 

clock gating and operand isolation for EVC routers. Four, we performed accurate and 

detailed evaluations by ASIC implementations. Results show that up to 34.26% 

NoCs power is saved by the proposed techniques. 

5.2 FUTURE WORK 

There are many interesting topics for future directions inspired by the work 

described in the thesis. 

Two topics may be further studied based on the results of low-cost allocators. On 

the one hand, the generic VA is actually a separable iSLip allocator. This architecture 

is widely applied in NoCs domain because its low implementation costs. However, 

there are other advanced allocator schemes like separable lonely output allocator and 

wavefront allocator that have higher matching efficiency and are used in off-chip 

networks. Thus, it is interesting to study these advanced allocators and reduce their 

design costs for NoCs. On the other hand, large opportunities to simplify the generic 

VA are identified by simulations for the entire NoCs. They would never be found if 

we just run simulations for the allocators themselves. Thus, the research method of 



studying a component in the context of the entire NoCs can be used to explore other 

components. 

We presented an application-specific methodology to smartly insert power-

efficient EVC paths for NoCs. However, several problems can be further studied to 

optimize the methodology. First, modify the EVC insertion rule to allow overlapping 

of EVC paths in some cases. It can improve flexibility of EVC insertion, and thus 

allow some power-efficient EVC paths to be inserted. Second, simple power models 

currently used in the AS-EVC method are lack of accuracy. The energy cost when a 

flit travels an EVC source router and the energy saving when a flit skips an EVC 

bypass router can be accurately obtained from the ASIC implementations. Thus, 

more accurate power models can be built to estimate power saving for an EVC path. 

Third，the greedy algorithm currently used for EVC insertion is very simple, but not 

good to achieve the maximum overall value. Therefore, a more advanced algorithm 

is expected to be used for EVC insertion. 

ASIC implementation results show that the AS-EVC NoCs save a large amount of 

area and power costs without performance penalties compared to the baseline NoCs. 

Inspired by them, an interesting future topic is to design a NoCs-based system for a 

realistic application with application-specific EVC paths. In addition, besides the 

single-application system, NoCs is expected to be widely used in systems that will 

support a variety of applications. Hence, it is a significant direction to study 

reconfigurable AS-EVC networks and reconfigurable customized buffer architectures 

to support multi-application systems. 

In essential, EVC is a flow control technique where EVC flits and NVC flits share 

the same resources such as crossbar and physical channels. Thus, if physical links are 

the bottleneck in some hotspot regions of a network, using EVC paths in these 



regions can not solve the bottleneck and thus will not improve network performances. 

Instead, adding costly EPC paths is effective to improve network performances in 

this case. As a result, it is an interesting topic to combine the EPC technique and the 

EVC technique for NoCs. 



APPENDIX A. APPLICATION-SPECIFIC EVC 
INSERTION TOOL 

The application-specific EVC insertion tool (named EVC customize) is 

accomplished through a Matlab program (as_evc_ideal.m). As shown in Figure A.l, 

EVCcustomize uses traffic pattern of an application (traffic_pattem.log) as the input 

and generate a list of EVC paths (evc_paths.log) and report parameter settings and 

estimated power savings (evc_insertion_report.log). 

Traffic pattern 

EVCcustomize 
(as_evc_ ideal.m) 

List of inserted 
EVC paths 

EVC insertion 
report 

Figure A.l. The flow to use EVCcustomize 

Many parameters are defined in EVCcustomize, They are described in Table A.l 

Table A.l. PARAMETERS IN EVCcustomize 

Parameter name Description 

mesh—rows The number of rows in a mesh network. In current, only mesh 
topology is supported. 

mesh columns The number of columns in a mesh network 

xb_to_router The energy ratio of a crossbar to a router 

energy—cost 
_percentage 

The energy ratio of the overhead of an EVC source router to a 
normal router 

pipeline—bypass 
The type of bypass pipelines. 0: aggressive express pipeline, 
1: express pipeline 

maximum—interval The allowable maximum interval of EVC paths 
maximum—eve 
_perrouter 

The maximum number of EVC paths (including both source 
EVC paths and sink EVC paths) that can be inserted in a 



router 

bypass_evcrouter 

一 enable 

Whether an EVC source router can be bypassed. 1: enabled, 
0: disabled 

delta—energy—low 
-bound 

The low bound (a threshold) for EVC insertion. An EVC path 
will not be inserted if its energy saving is smaller than the 
threshold. 

Traffic pattern (traffic_pattem.log) for a mesh is a mnxmn matrix. The 

value at the 产 row a n d , column of the matrix represents the traffic volume that are 

generated at the i'' router and consumed at the router. Figure A.2 shows an 

example of the traffic pattern (traffic_pattem.log) for a 4x4 mesh with transpose 

traffic. It is a 16x16 matrix. 
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Figure A.2. An example of the trafficjiattern.log 



Figure A.3 (a) shows an example of the list of inserted EVC paths (evc_paths.log) 

for the 4x4 transpose traffic. Each path is identified by its source router index (the 

first column) and sink router index (the second column). Figure A.3 (b) describes the 

index method used in the evc_paths.log file. The left-top router has an index of 1, the 

router at the top row and the second column has an index of 2, and so on. 
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Figure A.3. Examples of the evc_paths.log (a) and the index method for routers (b) 

Figure A.4 shows an example of the report file (evc_insertion_report.log) for the 

4x4 mesh with transpose traffic. In the example, we investigate the sensitivity of 

energy saving to the parameter of maximum—interval. The first column is the name 

of the traffic pattern. The second and third columns describe numbers of rows and 

columns respectively for a mesh network. The fourth column represents the 

allowable maximum interval for EVC paths. We sweep this parameter in the example. 

The fifth column is the threshold of energy saving to insert EVC paths. Any EVC 

path that has a positive energy saving may be inserted in the example. The sixth 

column reports the energy saving calculated based on simple high-level energy 

models. 



traffic—name row col max—interval del_energy_min energy_saving 
transpose 
transpose 
transpose 
transpose 
transpose 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

0.27226 
0.28578 
0.37259 
0.37259 
0.37259 

Figure A.4. An example of the evc_insertion_report.log 
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APPENDIX B. APPLICATION-SPECIFIC BUFFER 
CUSTOMIZATION TOOL 

The application-specific buffer customization tool (named BUFcustomize) is 

implemented through Matlab programs (nvcs_customization_variable.m and 

evcs_customization_variable.m). Figure B.l shows the flow to use BUFcustomize. 

Inputs include buffer utilization statistics files (generated in BUFFER一MODE RTL 

simulations described in Appendix.C), and the list of inserted EVC paths 

(evc_paths,log, only for EVC networks). Outputs are customized NVC architecture 

(customized_number_of_nvcs_inports.log) and customized EVC architecture 

(custoinized_number_of_evcs_evcpaths.log, only for EVC networks). 

Buffer utilization 
statistics 

List of inserted 
EVC paths 

(nvcs 
eves 

BUFcustomize 
—customization—variable .m, 
—customization—variable .ni) 

1 ‘ 1 t 
Customized NVC 

architecture 
z ^ 

Customized EVC 
architecture 

Figure B.l. The flow to use BUFcustomize 

Table B.l describes parameters used in BUFcustomize, It only supports mesh 

topologies with various network sizes now. 

Table B.l. PARAMETERS IN BUFcustomize 

Parameter name Description 

Parameters in nvcs customize variable.m 

MESH_ROWS The number of rows in a mesh network 

MESH—COLUMNS The number of columns in a mesh network 

MESH_NODES The number of nodes (routers) in a mesh 
network 



NVCS_PERPC The uniform number of NVC lanes of each input 
port 

NVC_BUFFER—DEPTH The depth (specified in flits) of each NVC lane 

TOTALBUFFERSPERPC Total buffers (specified in flits) of each input 
port 

WARM—UP 一 PERCENTAGE 
A value from 0 to 1. It represents what 
percentage of the simulation period is 
considered as warm up period. 

CUMSUM_PROBABILITY 
THRESHOLD 

A value from 0 to 1. It specifies the threshold to 
determine how many VC lanes are enough for 
an input port. 

Additional parameters in eves customization—variable.m 

EVCS_PERPC The uniform number of EVC lanes of each EVC 
path 

EVC—BUFFER-DEPTH The uniform depth (specified in flits) of each 
EVC lane 

TOTALBUFFERS-PEREVC Total buffers (specified in flits) of each EVC 
path 

Figure B.2 (a) and (b) show the customized NVC architecture and the customized 

EVC architecture for a 4x4 mesh with transpose traffic. The NVC results are a 

16x5 matrix with each row representing a router and each column representing an 

input port (west, north, east, south, and local input ports from left to right). For 

example, the value of 4 at the row and column means that there are 4 NVC 

lanes in the east input port of the router 1. The EVC results are a 6x1 matrix because 

there are totally six EVC paths in the network (Figure A‘3 (a)). 



(a) (b) 

Figure B.2. Examples of a customized—number一of_nvcs一inports.log (a) and 

customized_number_of_evcs_evcpaths.log (b) 



APPENDIX C. A FULLY-SYNTHESIZABLE 
PARAMETERIZED NOCS LIBRARY 

C.1 INTRODUCTION 

A fully-synthesizable parameterized NoCs library (named NoClib) is implemented 

through SystemVerilog and Verilog HDL. Therefore, NoClib can be used for both 

NoCs simulations and NoCs implementations on FPGA/ASIC. It has two significant 

features. 

It supports a wide range of router microarchitectures (pipelines). A baseline 

VC router with separate VC and switch allocations (Figure 1.4 (b)), a VC 

router with combined VC and switch allocation (Figure 2.9 (b)), a VC router 

with express pipeline (Figure 3.5 (b)), and a VC router with aggressive 

express pipeline (Figure 3.5 (c)). NoClib is the first NoCs library that 

supports the recently proposed express virtual channel flow control. 

• It supports customized buffer architectures. In other words, it allows that 

different router input ports have different numbers of virtual channels and 

various EVC lanes have various depths of buffers. Furthermore, control logic 

of input ports will be also customized accordingly. NoClib is the first 

synthesizable library that can be used to implement NoCs with customized 

buffer architectures. 

C.2 GLOBAL PARAMETERS 

As described in Table C.l, many global parameters are used to define network 

topology, router micro architecture, simulation environment, and implementation 
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environment. They are global parameters that are effective for an entire NoCs. All 

global parameters are defined in a file named parameters.v. 

Table C.l. GLOBAL PARAMETERS IN NoClib 

Parameter name Description 

Network parameters 

MESH-ROWS The number of rows in a mesh network. 
Currently, only mesh topologies are supported. 

MESH-COLUMNS The number of columns in a mesh network 

HOP—COUNT—BITS 

The number of bits used to describe the interval 
of an EVC path. The most significant bit 
represents the direction and the rest bits represent 
the number of hops. 

HX-BITS 

The number of bits used to describe routing 
information along X dimension. The most 
significant bit represents the direction (0 for west 
and 1 for east) and the other bits represent the 
number of hops. 

HY_BITS 

The number of bits used to describe routing 
information along Y dimension. The most 
significant bit represents the direction (0 for north 
and 1 for south) and the other bits represent the 
number of hops. 

Link/Channel parameters 

LINK—PIPELINE-STAGE Determines number of pipeline stages of links 
between routers 

CHANNEL_DATA_WIDTH 

Width of payload data (specified in bits) in a 
flit. Thus, width of links between routers is the 
sum of width of payload data and width of control 
information (including VC identifier and flit type) 
in a flit. 

Basic router parameters 

MAX_ROUTER_RADIX 
Specifies the allowable maximum number of 

router input/output ports. At most five ports are 
supported now. 

MAX_ROUTER_RADIX 
_INDEX_BITS 

The number of bits used to describe the 
allowable maximum router radix 

LOCAL_PORT_INDEX 
The index for the local input/output port of a 

router that connects the local processing element 
and the router 

MAX-TOTAL—VCS_PERPC Specifies the allowable maximum number of 



VC lanes (including both NVC and EVC lanes) in 
router input ports. Currently, the supported range 
is from one to seven. 

MAX_TOTAL_VCS_PERPC 
INDEX-BITS 

Number of bits used to represent the allowable 
maximum number of VC lanes. 

N V C B U F F E R D E P T H Specifies uniform depth (in flits) of NVC lanes 

N V C B U F F E R D E P T H 
BITS 

Specifies number of bits used to represent the 
depth of NVC lanes 

NVC_BUFFER一 COUNTER 
-BITS 

Determines number of bits for counting 
numbers of flits in NVC lanes 

FLIT_TYPE_BITS 
The number of bits used to represent types of 

flits. Currently there are four types of flits: 
INVALID, HEAD, DATA, and TAIL. 

VCSR—GBITS The number of bits used to describe the status 
of VC lanes 

UTURN一DISABLED 

If set (1), U-tum is disabled in the routing 
algorithm. As a result, designs for other 
components can be simplified also. Currently only 
disabled U-tum is supported. 

Router parameters for EVC flow control 

EVC-ENABLE If set (1), the EVC flow control is supported 

AGGRESSIVE 
BYPASSPIPELINE 

If set (1), aggressive express pipeline is used. 
Otherwise, express pipeline is used. 

NORMAL, SOURCE, SINK, 
SOUSIN 

Types of routers. SOUSIN means that the 
router is not only an EVC source router, but also 
an EVC sink router. 

Simulation parameters 

PACKET-LENGTH Length (specified in flits) of packets. Currently, 
only uniform-length packets are supported. 

PACKETTYPEBITS Specifies number of bits used to describe types 
of packets 

PACKET_DATA_BITS 
The number of bits of payload data (excluding 

all control fields like packet type, routing 
information, etc.) in a packet 

DEBUG—MODE 
If defined, all the assertions in the 

SystemVerilog codes will take effect to detect 
simulation errors in Questasim 

LATENCY-MODE 
If defined, the files for function simulations and 

network performance calculations will be 
outputted 

BUFFER一MODE If defined, the files to do statistics of buffer 



utilizations will be outputted 

PATH 
Specifies the path (a directory in the local 

computer) for all output files generated by RTL 
simulations 

IRNAME Defines the name of an injection rate 

CONTROL一POINT_IR Specifies the number to realize an injection 
rate 2 

Design and implementation parameters 

CLK一 GATING—MODULE If set (1), module-level clock gating is enabled 

C L K G A T I N G R T L If set (1)，RTL-level clock gating is enabled 

L O G I C H I G H C G F O R R F 
If set (1), use logic high disabled clock gating 

cells for register files. Otherwise, use logic low 
disabled clock gating cells. 

MATRIX-CROSSBAR 
If set (1)，matrix-based crossbar architecture is 

used. Otherwise, mux-based crossbar architecture 
is used 

MATRIX—CROSSBAR 
SEGMENT 

If set (1), enable to segment matrix-based 
crossbars 

SEGMENT Determines number of segments of a matrix-
based crossbar 

We realize an injection rate by comparing a random number with a pre-set threshold 
(CONTROL_POINRT_IR). A packet at a router will be injected if the random number is no bigger 
than the threshold. For example, assuming the random number is in the range from zero to 100,000, 
the PACKET_LENGH is 4, and we want to set an injection rate of 0.5 flits/(node*cycle), the threshold 
(CONTROLJ»OINRT_IR) is calculated as 100000 * 0.5 / 4. 
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C.3 SIMULATION FRAMEWORK 
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Figure C.l. Simulation framework using NoClib 

Figure C.l describes the framework to run NoCs simulations using NoClib. In the 

parameter generation stage, parameters are generated though a Matlab program 

(parameter_gen.m) based on network, router, buffer, and EVC configurations (EVC 

paths are only needed for EVC networks). The parameters are then used to configure 

the global parameters (parameters.v) shown in Table C.l and the top-level blocks 

such as mesh_noc_router, mesh_noc_ni and testbench (mesh_noc_tb_[traffic 

namej.v). The mesh_iioc_router block includes all routers and links between routers 

in a mesh network while the mesh_noc_ni block includes all interfaces to inject/eject 

packets to/from routers. All other blocks such as packet generators, source queues, 

and so on are implemented in the top-level testbench block. After that，RTL 

simulations are run through tools like Questasim, which saves input/output packets 

and input/output packet timings to files. Finally, these files are used in the 



performance measurement stage. The flinction simulation block checks whether all 

measured packets arrive at their sinks without any errors. The performance 

measurement block calculates average packet latency and average network 

throughput. The EVC path utilization block checks whether EVC packets go through 

EVC paths correctly and calculate the number of EVC packets travelling each EVC 

path. It is only used for EVC networks. In addition, we write a Perl program to 

automatically run the three simulation stages. 

Since NoClib is developed using SystemVerilog, simulation tools must support 

syntax of SystemVerilog. In addition, many multi-dimension arrays are used in the 

top-level blocks (mesli—noc_router.v and mesh_noc_ni,v) to realize parameterized 

designs. Thus, simulation tools have to support multi-dimension arrays as well. To 

our knowledge, both Questasim by Mentor Graphics and VCS by Synopsys support 

most syntax of SystemVerilog. But VCS do not support multi-dimension arrays now 

(we tested the version of VCS.A-2008,09). Thus, we suggest to use Questasim for 

RTL simulations (we run RTL simulations using Questasim 6.3f and find no errors.). 

In addition, there is a way to run simulations for NoClib-ba.sed designs using tools 

that support only Verilog HDL. Firstly, synthesize designs through synthesis tools 

like Synopsys DC (we tested the version of DC.A-2007.12. It works.) and generate 

the gate-level netlist that is in the format of Verilog HDL. Then, run simulations 

using the gate-level netlist. 

As mentioned before, NoClib is a fully-synthesizable library and thus can be used 

to implement NoCs on FPGA/ASIC for accurate area and power evaluations. The 

framework to implement NoCs using NoClib is the same as the conventional 

FPGA/ASIC implementation fi-amework. 
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C.4 FUTURE WORK 

NoClib can be enhanced in several directions to support more network/router 

architectures and wider range of parameters. 

• Support multi network topologies. Various topologies require different sizes 

(numbers of input/output ports) of routers and different routing algorithms. 

If NoClib is used for simulations only, it will be easy to provide different 

sizes of routers through setting router radixes as parameters and to design a 

deadlock-free routing algorithm that supports multi topologies. However, if 

NoClib is also used for implementations, it will be difficult because costs of 

many router components will increase largely as router size increases. 

• Enlarge the maximum allowable number of VC lanes in an input port. 

Currently, at most seven VC lanes (including both NVC and EVC lanes) are 

allowed in each input port. We can easily increase the maximum number by 

changing the two parameters (MAX—TOTALVCS—PERPC and 

MAXjrOTAL_VCS_PERPC—INDEX-BITS) if NoClib is used for 

simulations only. However, allowing a large number of VC lanes in input 

ports will generate very large control logic such as arbiters (for example, a 

8:1 arbiter is much larger than a 4:1 arbiter). Thus, tree architecture based 

control logic is required for cost-efficient implementations. 

• Support reconfigurable EVC architectures and buffer architectures. In 

current, EVC architectures and buffer architectures are both physically 

customized. This is to say, once a NoCs is customized for an application, 

EVC paths and buffer architectures for the NoCs can not be changed. As a 

result, the NoCs may not work well for other applications. However, it is 



probable for a NoCs to support multi applications. Thus, it is important to 

design cost-efficient components to support reconfigurable EVC 

architectures and buffer architectures. 
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