
Design and Implementation of Networks-on-

Chip: A Cost-Efficient Framework

ZHANG, Min

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

in

Electronic Engineering

The Chinese University of Hong Kong

March 2010

UMI Number: 3436638

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed.

a note will indicate the deletion.

UMI
Dissertation Publishing

UMI 3436638
Copyright 2010 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

uesf
ProQuest LLC

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor. Ml 48106-1346

Abstracts of thesis entitled:

Design and Implementation of Networks-on-Chip:

A Cost-Efficient Framework

Submitted by Min ZHANG

for the degree of Doctor of Philosophy

in Electronic Engineering

at The Chinese University of Hong Kong

in March 2010

Integrating many processing elements (PE) in a single chip is inevitable as

silicon technology allows more than one billion of transistors in a single piece of

silicon. Networks-on-Chip (NoCs) has been proposed as a scalable solution to both

increasing bandwidth requirements and physical design problems for multi-PE chips.

However, as multi-PE chips drive the design focus to shift from the computation-

centric to communication-centric, area and power costs consumed by communication

has become comparable to what computation consumes.

This thesis tackles design and implementation of cost-efficient NoCs along two

orthogonal directions. The first direction is to reduce area and power costs of a single

virtual channel router. Through ASIC implementations, we find that allocator logic,

including both virtual channel allocator (VA) and switch allocator (SA)，consumes a

large amount of costs. Based on RTL simulations for the entire NoCs, we identify

great opportunities to reduce design costs of VA and then propose two low-

complexity allocators: look-ahead VA and combined switch-VC allocator (SVA),

Evaluations are performed for a wide range of traffic patterns and router parameters.

Results show that both proposed architectures significantly reduce area and power

costs of allocators without penalties on network performances.

The second direction is to reduce hop counts of packets when they travel from

sources to destinations, and thus to reduce power consumption of NoCs, The

reduction of hop counts is realized by using a recently proposed express virtual

channel (EVC) technique to virtually bypass intermediate routers. We study the EVC

technique in two domains. The first domain is to present a high-level, application-

specific methodology to improve power efficiency of EVC paths early in the design

stage. The methodology includes three steps. Firstly, aggregate communication loads

between routers are calculated. Secondly, an energy reduction model and an energy

overhead model are developed. Finally, energy savings of all possible EVCs path are

calculated and a greedy algorithm is applied to insert EVCs paths in an iterative way.

The second domain is to exploit the EVC flow control in design and

implementation of low-power NoCs. We firstly present cost-efficient hardware

components for both EVC source and EVC bypass routers, then propose a statistical

approach to customize buffer architectures for EVC networks, then describe creative

use of low-power circuit techniques such as clock gating and operand isolation for

EVC routers, and finally evaluate EVC NoCs through detailed ASIC

implementations. Results show that EVC NoCs can save up to 34.26% of power

compared to baseline NoCs.

摘要

随着单块芯片上集成的晶体管达到十亿级，在单芯片上进行多核处理成为

必然。多核芯片的通信结构需要巨大的带宽，物理实现上也非常困难。因此，

研究者提出了片上网络来处理芯片内多个内核间的通信。然而，多核芯片使芯

片设计从传统的以计算为中心向以通信为中心转变，从而使通信结构的成本上

升到与计算结构的成本相提并论的地步。

本论文在两个相互正交的方向上研究低成本的片上网络的设计与实现。其

一，减少单个包交换路由器的实现成本。通过A S I C实验，我们发现虚通道分

配器和交换带宽分配器的成本很高。通过R T L仿真，我们发现虚通道分配器

可以大大简化。因此，我们提出了两种低成本的分配器结构： look-ahead虚通

道分配器和组合的交换带宽一虚通道分配器。大量实验表明这两种结构能有效

地减少分配器的成本，但并不会降低网络性能。

其二，通过减少包在传输过程中所经过的路由器的数量来减少功耗。快速

虚通道技术是一种新近提出的流控技术，它能在逻辑上旁路包所经过的路由

器。我们在两个方面对快速虚拟通道技术进行了研究。第一个方面，提出了一

种上层的，基于应用的方法。该方法能在设计初期快速提高快速虚拟通道网络

的能效，主要分为三个步骤。首先，计算路由器间的累计通信量。其次，对快

速虚拟通道的节能模型进行建模。最后，计算所有可能的快速虚拟通道所能节

约的能量，然后采用贪婪算法通过迭代来确定加入到网络中的快速虚拟通道。

第二个方面，为低功耗片上网络实现快速虚拟通道技术。我们为快速虚拟

通路由器设计了低成本的功能模块，为快速虚拟通道网络提出了一种基于统计

的存储单元优化方法，讨论了传统低功耗技术（如门控时钟和门控电路）在快

速虚拟通道路由器中的应用，并通过A S I C实现对快速虚拟通道网络和基准网

络进行了比较。结果表明快速虚拟通道网络最大能减少 3 4 . 2 6 %的功耗。

ACKNOWLEDGEMENTS

I would like to express my thanks to all those who have supported me in finishing

this thesis. Foremost, I feel deep sense of gratitude to my advisor, Professor CHOY

Chiu Sing，for his invaluable guidance throughout the course of my research.

Without his vision, patience, inspiration, stimulating suggestions and encouragement,

this thesis would have never been possible.

I am grateful to my wonderful committee members Professor KUMAR Shashi,

Professor LEUNG Ka Nang，and Professor PUN Kong Pang for their insightful

suggestions and comments on my research.

I am pleased to express my thanks to laboratory technician, Mr. YEUNG Wing

Yee, who has helped me a lot for CAD tools. I am also grateful to other members in

the VLSI and ASIC Laboratory for discussions and friendship. Special thanks to Dr.

XU Ke who has helped me much in general ASIC designs. I am also thankful to AI

Yan Qing for his help during chip physical implementations.

I am truly indebted to Dr. GRATZ Paul in the TRIPS team of the University of

Texas at Austin for providing me the TRIPS OCN traffic traces of Minne-SPEC

benchmarks and answering me many questions on how to process them.

Thanks to my friends who have made my time at CUHK enjoyable. I have had

many memorable moments besides my research, such as badminton, soccer, and

computer games.

Last but most importantly, my deepest thanks go to my parents ZHANG Yun Hai

and TANG Yin Xiang, my brother ZHANG Liang, and my wife MA Li for their

endless love, continuous encouragement, and unselfish support. This dissertation is

dedicated to them.

TABLE OF CONTENTS
ACKNOWLEDGEMENTS I

TABLE OF CONTENTS II

LIST OF FIGURES VI

LIST OF TABLES XI

ABBRIEVATIONS XIII

CHAPTER 1. INTRODUCTION 1

1.1 THE EMERGENCE OF NOCS 1

1.2 NOCS BASICS 4

1.2.1 Network Topology 5

1.2.2 Routing schemes 1

1.2.3 Flow control 8

1.2.4 Router microarchitecture 10

1.2.5 Buffer organization 11

1.2.6 Network performance metrics 12

1.3 COST-EFFICIENT DESIGN FRAMEWORK 13

1.3.1 Motivations 13

1.3.2 Contributions 15

CHAPTER 2. COST-EFFICIENT ALLOCATOR IMPLEMENTATIONS •…17

2.1 INTRODUCTION 17

2.2 RELATED WORK 19

2.2.1 Basics of allocators 19

2.2.2 The generic virtual channel allocator 20

2.2.3 The generic switch allocator 22

2.2.4 Motivations 23

2.3 SIMPLIFICATION OF A GEINECRIC VA 24

2.3.1 Representations 24

2.3.2 Changing the output-VC-selection function 26

2.3.3 Sharing of V:1 arbiters at each input port 29

2.3 A Combining VA and SA arbiters 32

2.4 DEADLOCK 34

2.4.1 Free output VC check 34

2.4.2 Allocation and release of an output VC 35

2.4.3 Deadlock problem 36

2.4.4 Solutions to deadlock 38

2.5 CRITICAL PATH ANALYSIS 40

2.5.1 Critical paths for the generic VA/SA 40

2.5.2 VA simplification effects on critical paths 40

2.6 EVALUATIONS 42

2.6.1 Design parameters 42

2.6.2 Network performances 43

2.6.3 Maximum router frequency 47

2.6.4 Area and power costs at a certain frequency 48

2.6.5 Discussion 50

2.7 SUMMARY 50

CHAPTER 3. POWER-EFFICIENT EVC INSERTION METHODOLOGY. 53

3.1 INTRODUCTION 53

3.2 RELATED WORK 56

3.3 EXPRESS VIRTUAL CHANNEL FLOW CONTROL 59

3.3.1 EVC router pipelines 60

3.3.2 EVC router microarchitectures 62

3.3.3 Static EVCs network 63

3.4 APPLICATION-SPECIFIC EVCS INSERTION METHODOLOGY 66

3 A 1 Problem formulation 66

3.4.2 Determination of the most beneficial EVC 69

3.4.3 EVC insertion flow 72

3.5 EVALUATIONS 74

3.5.1 Experimental infrastructure 74

3.5.2 Synthetic traffic loads 75

3.5.3 Real traffic loads 79

3.5.4 Detailed area and power profiles 80

3,6 CONCLUSIONS AND DISCUSSIONS 82

3.6.1 Build accurate power models 82

3.6.2 Allow EVC overlapping 84

3.6.3 Compare the EVC with the EPC 85

CHAPTER 4. COST-EFFICIENT EVC NOCS IMPLEMENTATIONS

4.1 INTRODUCTION 86

4.2 RELATED WORK 88

4.2.1 Topological techniques 88

4.2.2 Clock gating 89

4.3 EVC SOURCE ROUTER 91

4.3.1 Head flit process block 91

4.3.2 Switch-VC allocator 92

4.4 EVC BYPASS ROUTER 96

4.4.1 Express bypass router 96

4.4.2 Aggressive express bypass router 97

4.5 CUSTOMIZED BUFFER ARCHITECTURE 98

4.6 LOW POWER TECHNIQUES 104

4.6.1 Buffers 104

4.6.2 Control logic 108

4.7 IMPLEMENTATION 109

4.7.1 Prototype architectures 109

4.7.2 Customized EVCs insertion

4.7.3 Physical implementation.....

4.8 RESULTS

4.8.1 Network performances

4.8.2 Area, power and energy

4.9 SUMMARY 118

CHAPTER 5. CONCLUSIONS 120

5.1 CONTRIBUTIONS 120

5.2 FUTURE WORK 121

APPENDIX A. APPLICATION-SPECIFIC EVC INSERTION TOOL.….....124

APPENDIX B. APPLICATION-SPECIFIC BUFFER CUSTOMIZATION
TOOL 128

APPENDIX C. A FULLY-SYNTHESIZABLE PARAMETERIZED NOCS
LIBRARY 131

C.l INTRODUCTION 131

C.2 GLOBAL PARAMETERS 131

C.3 SIMULATION FRAMEWORK 135

C.4 FUTURE WORK 137

REFERENCES 139

LIST OF FIGURES

Figure 1.1. Examples of communication architectures, (a) Bus. (b) PTP links.

(C) NoCs 2

Figure 1.2. The layered architecture of a NoCs [11] 5

Figure 1.3. Examples of network topologies, (a). A 4x4 mesh, (b). A 4x4

torus, (c). A customized topology, (d). A semi-customized

topology. Circles, lines, and boxes respectively denote routers,

channels, and PEs. For simplicity, a pair of channels, one in each

direction, is represented by one line. The bold, red lines are express

physical channels. For clarity, PEs are only shown for the

customized topology 7

Figure 1.4. A virtual channel router, (a) Microarchitecture, (b) Pipeline 11

Figure 1.5 Buffer organization, (a) A central buffer, (b). A separate buffer 12

Figure 2.1. (a) A 4 x 3 exact allocator, (b). A 4 x 3 requester-first separable

allocator. [12] 20

Figure 2,2. Complexity of a VA given a routing function returns any candidate

VCs of a single output PC 22

Figure 2.3. Tree architecture of a large piV:l arbiter 22

Figure 2.4. Complexity of the generic SA 23

Figure 2.5. An example of the second stage of VA when any candidate output

VCs of a single output port are returned, (a). VA requests to

output port 0. (b). Assign a 20:1 arbiter to each output VC at

output port 0. For clarity, arbiters for the other two output VCs are

omitted 27

Figure 2.6. An example of the second stage of VA when at most one output

VC of a single output port is returned, (a). VA requests to output

port 0. (b). Assign 2l20:1 arbiter to the output port 0 28

Figure 2.7. An example of sharing V:1 arbiters at an input port. (a). VA

requests generated at input port 0. (b). Assign five 4:1 arbiters for

VA requests generated at input port 0. Each arbiter handles VA

requests going to an output port. For brevity, arbiters serving

requests to the other output ports are omitted, (c). Assign one 4:1

arbiter for all VA requests generated at input port 0 31

Figure 2.8. An example of sharing VA and SA arbiters at an input port. (a).

VA and SA requests generated at input port 0. (b). Assign

separated 4:1 arbiters for VA requests and SA requests, with one

arbiter handling VA requests whereas the other arbiter handling SA

requests, (c). Assign one 4:1 arbiter for both VA and SA requests 33

Figure 2.9. (a). Router pipeline when using separated VA and SA. (b). Router

pipeline when using combined VA and SA 34

Figure 2.10. (a). A speculative architecture. (b). A non-speculative

architecture 35

Figure 2.11. Timing diagram of reallocating an output VC 36

Figure 2.12. Hold and wait-for relationships 37

Figure 2.13. An example of the deadlock 38

Figure 2.14. Deadlock recovery 39

Figure 2.15. Starvation problem caused by deadlock recovery 39

Figure 2.16. Critical path for the generic VA (a) and the generic SA (b) 40

Figure 2.17. Average packet latency for various traffic patterns when network

size is4x4, V and packet length are 4. (a). Uniform (b), Hotspot.

(c). Transpose 45

Figure 2,18. Average packet latency for other packet lengths when network

size is4x4, V is 4, and traffic pattern is uniform, (a) 8flits, (b) 16

flits 46

Figure 2.19. Average packet latency for 6x6mesh when V is 4, packet length

is 4 and traffic pattern is uniform 47

Figure 2.20. Power of the allocators at various injection rates 50

Figure 3.1. Illustrations of static EVC insertion and AS-EVC insertion, (a).

Aggregate communication loads of router pairs, (b). An example of

static EVC insertion, (c). An example of AS-EVC insertion 55

Figure 3.2. Bypass through express physical channels, (a). Express cube. (b).

Application-specific long link 57

Figure 3.3. Router microarchitectures, (a). A non-EPC router (b). An EPC

router with one EPC 58

Figure 3 A Illustration of EVC components 60

Figure 3.5. EVC router pipelines [36]. (a) Non-express pipeline, (b) Express

pipeline, (c) Aggressive express pipeline 61

Figure 3.6. EVC router microarchitectures 63

Figure 3.7. Example of a static EVCs network 64

Figure 3.8. Illustration of DVfj computations. DVi2,i4 is 1 (DM12,14 minus 1)

because ru is skipped. Similarly, DVhj i is 1 because r " is

skipped 68

Figure 3,9. Illustration of aij and bt computations 69

Figure 3.10. EVC reduces energy consumption 70

Figure 3.11. Greedy insertion algorithm 73

Figure 3.12. The entire NoCs power for a 4x4 mesh network 78

Figure 3,13. Normalized \x for synthetic traffics 78

Figure 3.14. The entire NoCs power for a 6x6 mesh network 78

Figure 3.15. Power at express pipeline 79

Figure 3.16. The entire NoCs power for TRIPS OCN traffics 80

Figure 3.17. Power profile for the TRIPS OCN swim traffic 81

Figure 3.18. Illustration of EVC overlapping 85

Figure 4.1. CG cells, (a). Logic low disabled, (b). Logic high disabled 89

Figure 4.2. Schematic of a positive edge-triggered D flip-flop [59]. (a). CK is

equal to 1. (b). CK is equal to 0 90

Figure 4.3. (a). Head flit format, (b). Head flit process block 92

Figure 4.4. Switch-VC allocator and the associated logics 95

Figure 4.5. Express bypass router microarchitecture 97

Figure 4.6. Aggressive express bypass router microarchitecture 98

Figure 4.7. EVC flits flow 99

Figure 4.8. Buffer customization flow graph 100

Figure 4.9. Customized buffer architectures for the TRIPS OCN swim traffic (a)

and a 4x4 mesh with transpose traffic (b) 102

Figure 4.10. Clock gating at different levels, (a). Port level and VC level, (b).

Flit level 105

Figure 4.11. Comparison of different CG levels 106

Figure 4.12. Compare of different CG cells 107

Figure 4.13. Operand isolation 109

Figure 4.14. Power consumption for a RC block 109

Figure 4.15. Layout micrographs, (a). The baseline NoCs. (b). The AS-EVC

NoCs. (c), A single tile 113

Figure 4.16. Average throughput (a) and average packet latency (b) for the

swim traffic 114

Figure 4.17. Average throughput (a) and average packet latency (b) for

4x4mesh with the transpose traffic 115

Figure A. 1. The flow to use EVCcustomize 124

Figure A.2. An example of the traffic_pattem.log 125

Figure A.3. Examples of the evc_paths.log (a) and the index method for routers

(b) 126

Figure A.4. All example of the evc_msertion_report.log 127

Figure B.l. The flow to use BUFcustomize Error! Bookmark not defined.

Figure B.2. Examples of a customized—number—of—nvcs_inports.log (a) and a

customized_number_of_evcs_evqpaths.log (b)Error! Bookmark not defined.

Figure C.l. Simulation framework using NoClib Error! Bookmark not defined.

LIST OF TABLES

Table 2.1. COSTS PERCENTAGES OF ALLOCATION LOGIC IN VC

ROUTERS 24

Table 2.2. PARAMETER LIST 24

Table 2.3. RESTULS OFpb^ 29

Table 2.4. RESTULS OF pbl^ 29

Table 2.5. RESTULS OFpbm 31

Table 2.6. RESTULS OF pblm 32

Table 2.7. NETWORK AND PROCESS PARAMETERS 42

Table 2.8. MAX ROUTER FREQUENCY (MHz) 48

Table 2.9. AREA (GATE COUNT) OF THE THREE ALLOCATORS 48

Table 2.10. POWER (mW) OF THE THREE ALLOCATORS (ZERO-LOAD |

SATURATED-LOAD) 49

Table 3.1. PARAMETER LIST FOR AS-EVC INSERTION 67

Table 3.2. THE MAXIMUM EVC INTERVALS FOR AS-EVC 74

Table 3.3. AREA OF SOURCE AND BYPASS ROUTERS 81

Table 3.4. ROUTER POWER SAVINGS FOR TRIPS OCN TRAFFICS BY

AS-EVC NOCS 83

Table 4.1. RESULTS FOR THE TRIPS OCN SWIM TRAFFIC 103

Table 4.2, RESULTS FOR THE TRANSPOSE TRAFFIC 103

Table 4.3. BASELINE NETWORK AND PROCESS PARAMETERS 110

Table4.4. EVC PATHS FOR THE SWIM TRAFFIC I l l

Table 4.5. EVC PATHS FOR THE TRANSPOSE TRAFFIC I l l

Table 4.6. POWER CONSUMPTIONS FOR THE TWO ENTIRE 10x4

NOCS FOR THE SWIM TRAFFIC 116

Table 4.7. POWER CONSUMPTIONS FOR THE TWO ENTIRE 4x4 NOCS

FOR THE TRANSPOSE TRAFFIC 117

Table 4.8. AREA AND POWER BREAKDOWNS FOR THE ROUTER ”4

(BASELINE I AS-EVC) 117

Table 4,9, STREAM FLIT ENERGY BREAKDOWN FOR THE ROUTER r24-

118

Table A.l. ？ ARAMETERS IN EVCcustomize 124

Table B.l. PARAMETERS IN BUFcustomize Error! Bookmark not defined.

Table C . l . GLOBAL PARAMETERS IN NoClib…Error! Bookmark not defined.

xin

AS-EVC

ASIC

BW

CG

CMP

DSM

EVC

FIFO

FPGA

HoL

LT

NoCs

NVC

OSI

PC

PE

PTP

QoS

RAG

ABBRIEVATIONS

application-specific express virtual channel

application specific integrated circuit

buffer write

communication graph

chip multi-processor

deep sub-micron

express virtual channel

first in first out

field programmable gate array

head-of-line

link traversal

networks-on- chip

normal virtual channel

open system interconnect

physical channel

processing element

point to point

quality-of-service

router aggregate communication graph

RC

RCG

SA

SAF

SoC

ST

SVA

TG

VA

v c

VCT

WH

routing computation

router communication graph

switch allocation/allocator

store-and-forward

system-on-chip

switch traversal

switch-virtual channel allocation/allocator

topology graph

virtual channel allocation/allocator

virtual channel

virtual cut-through

wormhole

CHAPTER 1. INTRODUCTION 1

CHAPTER 1. INTRODUCTION

Driven by DSM technologies, on chip interconnection structure is becoming the

bottleneck for future SoCs and CMPs. NoCs, which is adapted from traditional off-

chip networks, has been proposed as a promising solution to this problem [1-5].

However, design costs of NoCs are clearly a gap between today's technologies and

those needed by future systems. This thesis aims to address cost-efficient design and

implementation of NoCs. The introduction provides a brief overview of NoCs and

the scope of this thesis.

1.1 THE EMERGENCE OF NOCS

Scaling down of silicon technology will allow chip complexities of more than one

billion transistors on a single piece of silicon [6]. In order to efficiently utilize the

exploding number of transistors, integrating multi PEs (or IP cores) in a single chip

becomes inevitable. According to [7], the number of PEs in a SoC will increase to

about 80 in 2010，270 in 2015, and 880 in 2020. The communication infrastructure

for such a SoC has to meet the following requirements:

• High throughput.

• Low latency.

• Low area and power costs.

• Scalable.

• Reusable.

Figure 1.1 shows examples of communication architectures: bus, FTP links, and

NoCs. Let's analyse the pros and cons for them.

< core 0 core 1 core

Bus

core 6 core core 8 core 9 core 10 core 11

(a)

core
5

core
10

core
5

core
10

> r
core

4
core

0
core

4
core

0

(b)

R
i k core

9

R

core
0

R

10
A core

11

R

> r
R

R

(c)

Figure 1,1. Examples of communication architectures, (a) Bus. (b) PTP links. (C) NoCs.

Busses can not provide high throughput for two reasons. First, there can be at most

one transaction over busses at any point of time. Second, there are many global

control signals for global arbitrations, which have long delay and then make the

maximum operating frequency of busses low. Those using standard lightly pipelined

interconnects are usually in the range of 80 to 150MHz, while the highest reported

frequencies for pipelined interconnects are inching towards 250MHz [8]. Meanwhile,

it is hard for busses to achieve low latency because of low operating frequencies. In

addition, busses fan out their wires to all targets because every data transfer is

broadcast. As a result, power usage per data transfer is large due to the large

capacitive load. What is more, the above bottlenecks will become more and more

critical as more cores are attached to busses. Thus, busses are poor at scalability.

Finally, busses are reusable since there are many well-developed bus standards.

Dedicated PTP links are optimal in terms of throughput, latency, and costs as they

are designed specially for a given purpose. Nevertheless，they axe bad in scalability

because the number of wires, which becomes more and more costly, increases

sharply {0{n'^fn)) as the number («) of cores increases [9]. Additionally, they are

not reusable because they are fully customized for a given application. Designers

have to completely change PTP architectures when applications are different.

NoCs can easily supply high throughput. First，many packets are allowed to

traverse concurrently in a network. Second, the design frequency can be very high

because of local processing and regular, short wires. In addition, NoCs is inherently

scalable since it is a distributed communication architecture, which uses distributed

routers, network interfaces, and structured wires. NoCs is reusable because it is based

on the OSI protocol stack that decouples computation (cores) from communication

(network). It makes the network transparent from the point of computing resources.

Meanwhile, standard components library can be built for routers and network

interfaces to reduce design efforts. However, although frequency is high, latency is a

challenge because a packet has to pass multi hops from a source to a sink. In addition,

power and area costs are critical challenges due to high design complexity of packet-

switching routers.

In summary, share busses and PTP links can not meet requirements of future

interconnection infrastructure to interconnect hundreds of cores. NoCs is a promising

solution but can not be widely used unless some critical challenges are resolved [10].

1.2 NOCS BASICS

Figure 1.2 shows the layered architecture of a NoCs. The system includes a lot of

processing elements. The work at this level is similar to that in a general large-scale

SoC design, including mapping, task scheduling, modelling etc. At this level,

messages or transactions are the basic datagram and design details of the network are

not considered. The network interface decouples computation (the system) from

communication (the network) and makes the network transparent from the point of

the system. It handles the end-to-end flow control and break messages or transactions

to packets that are delivered in packet-switching networks or streams that are

delivered in circuit-switching networks. The network consists of routers and links. It

sends packets from source routers to sink routers. Packets are further divided into

flits or phits that are transferred along links. Flits are the flow control units whereas

phits are the physical units that are the minimum size of datagram that can be

transmitted in one link transaction. A flit could be made up of a series of phits.

However, most commonly flits are equivalent to phits (We assume this throughout

the thesis). The link level deals with the encoding/decoding, reliability and

synchronization issues.

OSJ piotocol mcl

Figure 1.2. The layered architecture of a NoCs [11]

This thesis focuses on issues at the network level. A network is defined by the

topology, routing, and flow control. The connection patterns of routers and links

define the network's topology. Once a topology has been chosen, there can be many

possible paths that a message could take through the network to reach its destination.

Routing determines which of these possible paths a message actually takes. Once a

path has been selected, flow control dictates which messages get access to particular

network resources (channels and buffers) over time. The network is analogous to the

traffic network in reality. The topology determines the roadmap, the routing method

steers the car, and the flow control controls the traffic lights [12].

1.2.1 Network Topology

A NoCs is composed of a set of routers and links, and the topology of a network

refers to the arrangement of these routers and links. In general, there are three classes

of topologies: regular, semi-customized, and customized.

The mesh is the most simple and popular among regular topologies. Both the size

of routers (except those on edges) and the length of links are regular. The torus is

another popular regular topology. The difference between a mesh and a torus is that

in a torus network, there is a wrap-around channel that connects the two edge nodes

at each dimension, so that the hop count of the two edge nodes reduces to one.

Regular topologies provide structured global interconnects that ensure well-

controlled electrical parameters. However, they may become less attractive for

application-specific designs.

On the other hand, customized topologies are specially designed for specific

applications [13-16], They improve network performances at the cost of altering the

regularity of routers and channels. As shown in Figure 1.3 (c), there are two 4-port

routers, one 6-port router, and one 8-port router. In addition, the length of channels

varies largely.

These two extreme classes do not cover the whole design space of interconnection

networks. In reality, many networks are neither completely regular nor completely

customized. Thus, semi-customized topologies were proposed to explore the

potential of using regular topologies in conjunction with a few customized long-

range links, to improve performances with moderate overheads [17，18].

O o ~ o ~ o € 5 >

(b)

6
o o -

(a)

(>

(>

(>

Q
(>

(>

o

(c)

C ^ - O ~ o ~ 0

Figure 1.3. Examples of network topologies, (a). A 4x4 mesh. (b). A 4x4 torus, (c). A
customized topology, (d). A semi-customized topology. Circles, lines, and boxes respectively
denote routers, channels, and PEs. For simplicity, a pair of channels, one in each direction, is
represented by one line. The bold, red lines are express physical channels. For clarity, PEs are
only shown for the customized topology.

1.2.2 Routing schemes

The routing scheme employed by a network determines the path taken by a packet

from a source to a destination. In general, routing schemes can be classified into two

categories: deterministic and adaptive. In a deterministic routing scheme, the

traversal path of a packet is determined by its source and destination alone.

Dimension-order routing is a popular deterministic routing, in which the packet

follows one dimension first, then moves along another dimension toward the

destination. In an adaptive routing scheme，the routing path of a packet not only

depends on the source and destination of that packet, but also depends on the

dynamic network status like link congestion. Deterministic routing has small design

cost and traffic flows can be predicted well whereas adaptive routing can deal with

network congestion by dynamically using alternative paths but has large design

complexity.

1.2.3 Flow control

Flow control determines how resources of a network, like buffer space and channel

bandwidth, are allocated to messages traversing the network. There are generally two

categories of flow control strategies: circuit switching and buffered flow control.

Furthermore, the buffered flow control includes three popular techniques: store-and-

forward, virtual cut-through, and wormhole [19].

In circuit switching, a physical path from a source to a destination is reserved prior

to the transmission of a message. This is accomplished by injecting the header flit

into the network. This header flit contains the destination address and some

additional control information. The header flit progresses toward the destination,

reserving physical links as it traverses intermediate routers. When the header flit

reaches the destination, a complete path has been set up and an acknowledgment is

sent back to the source. The message contents may now be transmitted at the full

bandwidth of the physical path. The circuit may be released by the destination or by

the last few bits of the message. Circuit switching is well suitable for transferring

infrequent and long messages that have much longer transmission time than the path

setup time.

Alternatively, a message can be partitioned and transmitted as packets. Each

packet is individually transferred from the source to the destination. In store-and-

forward flow control, a packet is completely buffered at each intermediate router

before it is forwarded to the next router. In order to buffer complete packets, large

buffers have to be used. In addition, the transfer of a packet across the physical

channel often takes multiple cycles. Although the routing information is typically

available after the first few cycles, the routing decision can not be made before the

entire packet is received. Thus, the latency of SAF flow control is high. In virtual

cut-through flow control, as soon as the next router has enough buffers for an entire

packet, the current router can make routing decision and forward the header and

following data bytes of the packet to the next router before the entire packet has been

received at the current router. As a result, packets are pipelined through routers so

that latency is small. But it also needs large buffers to save complete packets. In

wormhole flow control, packets are also pipelined through routers. However, buffer

requirements within routers are substantially reduced over the requirements for VCT

flow control. A packet is partitioned into a set of flits and buffers within a router are

required to store a few flits instead of complete packets.

Virtual channel flow control [20], which associates multi virtual channels with a

single physical channel have many advantages. Firstly, it can avoid deadlocks. Since

VCs are not mutually dependent to each other, one may break cycles in the resource

dependency graph by adding VCs. Secondly, it can remove HoL blocking and

increase utilization of physical channels. HoL means that a packet at the head of a

VC whose designated output channel is busy will block subsequent packets in that

VC from being transmitted even if their own designated output channels are free. As

a result, VC flow control reduces packet latency and improves network throughput.

In addition, VC flow control can be used to and provide QoS by allowing high

priority message streams overtake those of lower priority. Therefore, although some

researchers don't use VCs in their NoCs [1，4], VC flow control is the prevailing

scheme for NoCs [21-25]. However, implementing VC flow control results in area

and possibly power and latency overhead because it requires more buffers and larger

control logics to manage the VCs.

1.2.4 Router microarchitecture

Figure 1.4 (a) and (b) demonstrate the microarchitecture and the pipeline of a VC

router. The router has pi input and po output physical channels/ports, supporting V

VCs per port. The FIFOs in input ports buffer arriving flits (BW stage). The routing

computation directs the head flit of an incoming packet to the appropriate output

physical channel (RC stage). The VC allocator arbitrates among all input VCs (VCs

of input ports) which request the same output VCs (VCs of output PCs. In fact, VCs

of an output PC are VCs of the connected input port at the downstream router.) and

assigns available output VCs to successful input VCs (VA stage). The switch

allocator distributes output PCs and the crossbar to input VCs (SA stage). The

crossbar passes flits to appropriate output PCs (ST stage). Finally, flits traverse

output PCs to the next router (LT stage). Each head flit passes five pipeline stages

whereas each body/tail flit passes four pipeline stages. There is no RC stage in the

pipeline because the look-ahead routing computation [26] is applied, where the route

of a packet is computed one hop in advance.

Credit out

Input chani el 1

Credit out

FIFO

FIFO V

Inputch

Input poll

Input port Pi

Routing computation

VC allocator

Switch allocator

Crossbar pjxpc

Credits in

Output channel

Output channel pc

(a)

Head flit BW VA SA ST LT

Body/tail
flit BW SA ST LT

(b)

Figure 1.4. A virtual channel router, (a) Microarchitecture, (b) Pipeline.

1.2.5 Buffer organization

Buffers are one of the most important structures in a router [24]. On the one hand,

buffers have large impacts on network performances. On the other hand, in by far the

most NoCs architectures, buffers account for the main parts of area and power costs

in the router [2, 27-29]. There are generally two types of buffer organizations (Figure

1.5): a central buffer and a separate buffer.

In a central buffer organization, a large memory pool is shared across all virtual

channels of a physical channel. In a separate buffer organization, a small buffer

memory is provided for each virtual channel. The central buffer always uses the

dynamical allocation mechanism that realizes sharing of memory spaces and leads to

good memory utilization. However, control logic for dynamic allocation is very

complex, generating high latency and power costs. On the contrary, the separate

buffer organization requires very simple control logic because memory spaces are

allocated statically but it has poor buffer utilization since memory spaces of idle

virtual channels cannot be allocated to busy virtual channels. In general, if a NoCs

aims to support a range of applications and traffic characteristics of these

applications are unknown, the dynamically allocated central buffer structure is

preferred in order to provide flexible, efficient use of memory spaces. However, if

traffic characteristics of a given application can be well predicted, the statically-

allocated separate buffer structure is better because memory spaces for each virtual

channel can be customized to significantly improve buffer utilization.

Physical
channel

Physical
channel

^ Memory >

> Memory ‘ •

• Memory >

• • • Memory •

(a) (b)

Figure 1.5 Buffer organization, (a) A central buffer, (b). A separate buffer.

.2.6 Network performance metrics

Latency for a packet is the time required for it to traverse the network from source

to destination, including the time that the packet buffers in the source queue before it

enters the network. Generally, graphs of average latency vs. offered traffic are used.

The average latency is the mean value of the latencies of all measured packets. The

offered traffic is the rate at which packets are generated by packet sources, which is

also known as applied load, generation rate, or injection rate. We use injection rate

throughout this thesis and calculate it in two steps. Firstly, injection rate for each

node is computed by counting the number of flits (a packet has a number of flits)

entering the network from this node and dividing it by the time interval (cycles).

Then, injection rate for the network is calculated as the mean value of injection rates

of all nodes. Thus, its unit is flits/(node*cycle) (or flits/node/cycle).

Throughput is the rate at which packets are delivered by the network. It is also

called accepted traffic that is contrasted with the offered traffic. Generally, graphs of

average throughput vs. offered traffic are used. Like the injection rate, we calculate

average throughput for the network by firstly calculating throughput for each node

and then computing the mean value of all throughputs. Thus, its unit is also

flits/(node* cycle).

1.3 COST-EFFICIENT DESIGN FRAMEWORK

1.3.1 Motivations

Interconnection networks have been used in off-chip domain (chip-to-chip, board-

to-board, etc.) for many years, where the only goal is to achieve the highest possible

performances (packet latency, network throughput, etc.). However, as

interconnection networks shift to on-chip domain, a critical challenge is to keep their

design costs (area and power) small, especially when they are applied for portable

SoCs or embedded devices.

Costs of NoCs have become comparable to on-chip computation costs. On the one

hand, NoCs consumes a large portion of the chip area. For example, TeraFLOPS has

3 mm^ (in 65nm technology) tiles and 53-kiiogates routers account about 17% of the

transistors [30]. In general, the 3 mm" tiles are large. Thus, on-chip routers will

account more percentage of the chip area when PEs are modest-sized [31]. On the

other hand, NoCs consumes a large amount of the chip power. For instance, in the

MIT Raw microprocessor, the on-chip networks consume 36% of the total chip

power, only 9% lower than what the main processor consumes [32]. These examples

demonstrate the importance to reduce area and power costs ofNoCs.

Virtual channel flow control is widely applied in NoCs to obtain high throughput

by efficiently sharing network physical channels. However, it comes with high area

and power costs because of the hardware complexity of VC routers. As shown in

Figure 1.4 (a), in a VC router, a number of VCs are associated with a single physical

channel. Since each VC is implemented as a separate memory, a large number of

buffers are needed that are the major part of the router area. Meanwhile, complicated

control blocks such as the virtual channel allocator and the switch allocator are

required to handle sharing of buffers and crossbar bandwidth. Both the buffers and

the control blocks include many registers. These registers and their associated clock

tree consume a certain amount of power even when the network is idle and no

packets are travelling in it, which is referred to standby power [33, 34]. In addition,

as a packet travels from a source to a sink，it dissipates additional stream power for

buffer access (write and read), arbitration (routing computation, VC allocation,

switch allocation, etc.), and crossbar traverse. Therefore, routers dominate NoCs

power. Implementation results show that routers consume two to three times more

power than physical links in deep submicron technologies [35].

In summary, we concentrate on reducing area and power costs of routers in this

thesis because they are much more costly than links. In addition, as mentioned before,

we do not address network interfaces.

1.3.2 Contributions

This thesis aims to achieve cost-efficient design and implementation of NoCs in

two levels: router microarchitecture and network architecture.

In the router microarchitecture level, low-cost hardware implementations for the

VC allocator and the switch allocator, which are the largest two components in the

control path of a VC router, are proposed. By running simulations for the entire

NoCs and investigating utilization statistics of arbiters in a generic VA, we find big

opportunities those cannot be identified by analysing the generic VA in isolation, to

simplify design complexity of the generic VA. Then, we propose two low-cost

allocators: a look-ahead VA and a combined switch-VC allocator (SVA). However,

arbiters sharing in the SVA leads to deadlock problem. Thus, we study deadlock

problem for the SVA. Finally, we present the effects of VA simplifications on the

critical paths of the VA and the SA.

In the network architecture level, we exploit a new flow control mechanism,

express virtual channel [36], to reduce power. We propose a novel methodology to

insert EVC paths in an-application specific manner by exploiting communication

characteristics of various applications, with the main objective to reduce stream

power as much as possible. The AS-EVC method consists of three steps. First,

calculate the aggregate communication volumes between any pair of routers. Second,

calculate power savings for all possible EVC paths based on analytical energy

models. Third, insert EVCs using a greedy algorithm subject to several insertion

rules. Because all the calculations are based on analytical models, the AS-EVC

method can help designers quickly insert power-efficient EVC paths for applications

in the early design stage.

Furthermore, we study design and implementation issues for NoCs with the EVC

flow control in three aspects. First, we design special hardware components for EVC

source and bypass routers. Second, we propose a simulation-based, statistical

approach to customize buffer organization after EVCs insertion. Third, we explore

low-power circuit techniques like clock gating and operand isolation to save power

as much as possible when an EVC flit travels an EVC bypass router.

The rest of this thesis is organized as follows. Chapter 2 presents two cost-efficient

allocator implementations for NoCs routers. Chapter 3 proposes an application-

specific EVC insertion methodology for power-efficient NoCs. Chapter 4 presents

design and implementation of cost-efficient NoCs with the EVC flow control. Next,

chapter 5 concludes this thesis. Finally, Appendix A describes the application-

specific EVC insertion tool, Appendix B shows the application-specific buffer

customization tool, and Appendix C presents the folly-synthesizable parameterized

NoCs library.

CHAPTER 2. COST-EFFICIENT ALLOCATOR IMPLEMENTATIONS 17

CHAPTER 2. COST-EFFICIENT ALLOCATOR

IMPLEMENTATIONS

2.1 INTRODUCTION

Virtual channel flow control is the prevailing scheme for NoCs because it provides

high throughput through multiplexing of physical channels and it has smaller costs

than store-and-forward and virtual cut-though flow control schemes. However, costs

of VC routers are still too large to be used in NoCs for practical CMPs, especially for

cost-sensitive portable SoCs and embedded devices.

Many researchers have made efforts to reduce area and power costs of on-chip

routers. However, they only focused on components in the data path of a router such

as buffers and a crossbar. Some power-efficient components like a segmented-

crossbar, a cut-through crossbar, and a write-through input buffer were proposed in

[37]. Buffers for input ports were customized to reduce large buffer costs in [29，38].

Although it is indeed reasonable to preferentially study components in the data path

of a router because they consume the largest parts of costs, costs of components in

the control path are not negligible. Nevertheless, few researchers address reducing

costs for components in the control path.

Design costs of a generic virtual channel allocator and a generic switch allocator

are comparable to buffers and a crossbar in a VC router. This chapter focuses on the

reduction of their design costs. The contributions include the following aspects.

• We study virtual channel and switch allocators in the context of the entire

NoCs. This is different from previous studies where they were addressed in

isolation. By running simulations for the complete NoCs and investigating

utilization statistics of arbiters in the allocators, we find great optimization

opportunities to reduce design costs of the allocators. These opportunities

would not be found if we just investigate the allocators themselves.

• We propose three methods to simplify the generic VC allocator gradually.

First, the piV V:1 arbiters in the first stage are totally removed and the

number of piV:l arbiters in the second stage is decreased from poV to po‘

Second, the number of V:1 arbiters at each input port is reduced from po to 1

through logic sharing. Third, the simplified VA and the generic SA share a

V:1 arbiter at each input port and a pi:l arbiter at each output port,

• Sharing arbiters by the generic VA and the generic SA make VA requests

and SA requests dependent on each other. This dependency may lead to

deadlock problem. We study the deadlock problem and two kinds of

solutions to it.

• We present effects of the three simplification methods on the critical paths

of the VA and SA pipeline stages.

• We evaluate performances，delay, area, and power costs of the generic

architecture, the look-ahead architecture, the combined architecture through

RTL-level simulations and VLSI implementations for a wide range of

design parameters and traffic patterns.

The structure of this chapter is as follows. Section 2.2 reviews the generic VA and

SA architectures and describes the motivations. Following, Section 2.3 illustrates

how to simplify the generic VA in a step-by-step way. Next, Section 2.4 handles

deadlock problem for the SVA. After that, Section 2.5 presents effects of

simplification methods on the VA and SA pipeline stages. Then, Section 2.6

demonstrates evaluations in terms of both network performances and implementation

costs. Finally, Section 2.7 concludes this thesis chapter.

2.2 RELATED WORK

2.2.1 Basics of allocators

An allocator performs a matching between a group of resources and a group of

requesters, each of which may request one or more of the resources. The allocator

can be considered as accepting a «x m request matrix R containing the individual

requests, ry and generating a grant matrix G containing the individual grants, gij. R is

an arbitrary binary-valued matrix. G is also a binary-valued matrix that only consists

ones in entries corresponding to non-zero entries in R (This ensures that a grant can

be asserted only if the corresponding request is asserted), has at most one one in each

row (This ensures that at most one grant for each requester may be asserted), and at

most one one in each column (This ensures that at most one grant for each resource

can be asserted.) [12]. Examples of request and grant matrices for a 4x3 allocator

are as below.

R =

1 0 1
1 1 0
0 0 1
0 1 1

G =

0 0 1
0 1 0

0 0 0
0 0 0

An allocator can be implemented in an exact or separable way. Figure 2.1 (a)

shows a 4 x 3 exact allocator, in which a maximum matching can always be found

through iteratively augmenting a sub-maximum matching [12]. However, it is too

slow and its design complexity is too high. Figure 2.1 (b) demonstrates a 4x3

separable allocator, in which allocation is performed as two sets of arbitration: one

across the requesters and one across the resources. The separable allocator admits a

much simple implementation while sacrificing a small amount of matching efficiency

compared to the exact allocator. Therefore, separable allocators are generally applied

in routers where allocators must make allocations with low latency and low design

costs.

goo

goi

g02

f

gio

gll

gu

4x3 allocator
g20

g21

g22

1
i

丨 i g30

g31

g32

4:1
Arbiter

goo

4:1
Arbiter

gio
4:1

Arbiter g20
4:1

Arbiter
g30

/

4:1
Arbiter

goo

4:1
Arbiter

gio

g20

g30

(a) (b)

Figure2.1. (a) A 4 x 3 exact allocator, (b). A 4 x 3 requester-first separable allocator. [12]

2.2.2 The generic virtual channel allocator

The generic architectures of a virtual channel allocator and a switch allocator were

presented in [39]. The range of the routing function determines the complexity of a

VA. If the routing function returns at most one! VC of a single output PC, the VA

needs only arbitrate among input VCs that are competing for the same output VC. If

1 If there are idle output VCs at the output PC, one of them will be returned. If there
output VCs at the output PC, no output VC will be returned.

idle

the routing function is more general and returns any candidate VCs of a single output

PC, the VA needs additionally arbitrate among V output VCs for each input VC. If

the routing function is the most general and returns all possible candidate VCs of all

output PCs, the VA needs additionally arbitrate among poV output VCs for each

input VC. The routing function that returns any candidate VCs of a single output PC

is the most general possible in a router with deterministic routing [39]. Thus, the

allocator architecture shown in Figure 2.2 (the generic VA in this chapter) is widely

used in VC routers [21, 24].

The generic VA performs arbitration in two stages. In the first stage, each input

VC selects one available VC from returned output VCs. Since there are at most V

available VCs in an output PC, a V:1 arbiter is needed for each input VC. In the

second stage, each output VC grants one from the winning requests of the first stage

allocation. The number of requests to an output VC is piV in the worst case, so each

output VC needs a piV:l arbiter. As shown in Figure 2.3, a large piV: 1 arbiter is

generally simplified by organizing it as a tree of smaller arbiters [21]. The V:1

arbiters arbitrate between requests from the same input ports and the pi:l arbiter

determine the winning input port. The tree architecture much reduces design costs

with some penalty of matching efficiency.

V:] arbiter] • • V:] arbiter] • • V:] arbiter]

• •

V：] arbiter V •
• V：] arbiter V • •

J

V:1 arbiter] • • V:1 arbiter] • • V:1 arbiter]

• •

V:1 arbiter V • • V:1 arbiter V • • V:1 arbiter V

”I stage 2nd Stage

Figure 2.2. Complexity of a VA given a routing function returns any candidate VCs of a single
output PC.

requests foi
an output VC

requests from
an input port

Figure 2.3. Tree architecture of a large PiV:l arbiter.

2.2.3 The generic switch allocator

A SA allocates crossbar bandwidth to input VCs. The generic architecture of a SA

is designed in two stages as well (Figure 2.4). The first stage reflects sharing of a

single crossbar input port by V input VCs. This requires a V:1 arbiter for each input

port. The second stage arbitrates among winning requests from pi crossbar input ports

for a crossbar output port. It needs api:l arbiter at each output port.

Figure 2.4. Complexity of the generic SA.

2.2.4 Motivations

Table 2.1 shows the proportions of area and power^ demanded for the allocation

logic, including the generic VA，the generic SA and associated logics for different

numbers of ports and VCs in a router. Other router parameters are stated in Table 2.7.

Area was taken from Synopsys [40] DC synthesis report under worse case conditions.

Power was obtained from Synopsys PrimeTime PX with UMC 130mn library files,

post-synthesis netlist, wire load model, and post-synthesis switching activities as

inputs. The switching activities of routerao (a 3-port router. We define the left-bottom

router as routeroo for the 4 x 4 mesh throughout the paper.), router3i (a 4-port router),

and router2i (a 5-port router) were derived from simulations of an complete NoCs

assuming uniform traffic running at saturation points ^. It can be seen that the

allocation logic consumes significant amounts of area and power for all cases.

2 Unless otherwise stated, power results in the thesis include both leakage power and dynamic
power.

3 Unless otherwise stated, results in the chapter are obtained when router radix is 5，the number of
VCs is 4，packet length is 4, and network runs at the saturation point of uniform traffic at 250MHz.

Furthermore, the allocation logic cost proportionally increases with the number of

ports or VCs. Therefore, it is important to reduce this cost.

Obviously, a VA is much more costly than a SA because it includes a large

number of big {piV:l) arbiters. To our credit, it is possible to totally remove all

arbiters in a VA and to make a VA and a SA share the same arbiters, the one shown

in Figure 2.4. The sharing is identified after a careful study of the working principle

of a VA and utilization statistics of VA arbiters. This will be explained in detail in

the next section.

Table 2.1. COSTS PERCENTAGES OF ALLOCATION LOGIC IN VC ROUTERS

Router parameters Area Power

Pi =3，V=4 26.91% 28.06%

Pi =4，V =4 34.64% 30.79%

p, =5，V =2 21.62% 20.81%

p, 二5，V =4 41.36% 32.65%

Pi =5, V=6 57.27% 37.28%

2.3 SIMPLIFICATION OF A GEINECRIC VA

2.3.1 Representations

Many parameters are used in this chapter. They are defined in Table 2.2 for

reference.

Table 2.2. PARAMETER LIST

Parameter Description

^mn
The request from the n̂ ^ VC at

the kth output port. The value is 1
the value is 0.

the mth input port to the 产 VC at
if the request is valid. Otherwise,

^mn
The request from the nth input VC at the m^ input port to any VC

at the kth output port. The value is 1 if the request is valid. Otherwise,
the value is 0.

r" Whether there are valid requests to the VC of the k̂ ^ output port.

It is 0 when 玄 r二）= 0, Otherwise, it is 1.

The number of simultaneously requested VCs at the k̂ h output port

(i > ” ‘
1=1

rt

Whether there are valid requests from any VCs at the m̂^̂ input
F

port to any VC at the k̂^̂ output port. It is 0 when ^ = 0 .
n=l

Otherwise, it is 1 ‘

厂m

The number of output ports where a VC is requested by any VCs

in the m̂ '̂ input port (^).
k=\

The probability that one VC at the k^ output port is requested.

The probability that multi VCs at the k̂ ^̂ output port are
concurrently requested.

PBLM The probability that VCs in the m^ input port request VCs at one
output ports.

PK
The probability that VCs in the m̂^̂ input port request VCs at multi

output ports.

Let us start simplification of a generic VA from its second stage that is the most

costly. The second stage of a generic VA allocates poV output VCs to piV input VCs.

Design complexity of the second stage can be represented as a piV x poV request

matrix:

R =

尸ly

Po^

f.Po'^ yPo^
• 'ir

fPcA y.
. �

POV

�
P�1 . <

Where, each row represents requests from an input VC while each column represents

requests to an output VC. Since an input VC is not allowed to simultaneously request

multi output VCs, there is at most one valid request in each row. As a result, a row

does not require an arbiter. However, there are at most piV requests to an output VC,

so a column requires a piV:l arbiter.

2.3.2 Changing the output-VC-selection function

When an output port returns any output VCs in the output-VC-selection function"^,

at most V output VCs in this output port may be requested simultaneously. Thus, V

piV: 1 arbiters are assigned to the output port with each one handling requests to one

output VC. However, if we change the output- VC-selection function so it returns at

most one output VC of a single output port, there will be at most one requested

output VC at the output port. As a result, only one piV: 1 arbiter is needed for the

output port^. Furthermore, since at most one output VC is returned to each input VC,

the first stage of the generic VA is unnecessary and can be completely removed.

Nevertheless, returning only one output VC of a single output port decreases

matching efficiency of the VA, which is illustrated by the following example.

Figure 2.6 shows the case that the output-VC-selection function returns any

candidate output VCs of a single output port (We assume pi and p � a r e five, and V is

four in all examples of this chapter unless otherwise stated.). We take the output port

4 The term “routing function" is used in [39] since the function to return output VCs is performed in
the RC pipeline stage. We also use this term in Section 2.2 in order to be consistent to the reference
paper. However, it has a drawback that once an idle output VC is returned to an input VC, the input
VC can not change the output VC even when the output VC is allocated to another input VC in the
VA pipeline stage. Hence, the input VC has to wait for the allocated output VC to be released.
Therefore, we change to run this function in the VA pipeline stage and thus use the new term "output-
VC-selection function" from here on to avoid confusion.

5 It is possible that multi output VCs of a single output port are requested simultaneously if the
function to return at most one output VC of the output port is done in the RC stage. This is why there
are still VPiV:l arbiters for each output port in [39].

0 for example. Figure 2.6 (a) shows the VA requests. There are only two valid

requests, one to output VCO and the other to output VCl. In the generic VA, a 20:1

arbiter is assigned to each output VC. Thus，the request to output VC 0 and the

request to output VC 1 enter the corresponding 20:1 arbiters respectively. Both

requests will succeed in the arbitrations because all the other requests to the arbiters

are invalid. As a result, tvi'o input VCs will be successfully allocated output VCs and

can enter the SA pipeline stage in the next clock cycle. Figure 2.6 demonstrates the

case that the output-VC-selection function returns at most one output VC of a single

output port. In this case, at most one output VC of the output port 0 is requested at

each clock cycle (Figure 2,6 (a)). Thus, at most one input VC can be successfully

allocated an output VC. Therefore, returning at most one output VC of a single

output port sacrifices VA efficiency, and decrease of the efficiency depends on the

probability (ph^) that multi VCs at the output port are simultaneously requested.

(a)

Output VC 0

20:1 arbiter for

Output VC 0

20:1 arbiter for

•
20:1 arbiter for

•
INVALID 20:1 arbiter for

•

參 output VC 0 •
•
• •

INVALID INVALID

Output VC

INVALID

鲁
鲁

INVALID

20:丨 arbiter foi
output VC 1

(b)

Figure 2.5. An example of the second stage of VA when any candidate output VCs of a single
output port are returned, (a). VA requests to output port 0. (b). Assign a 20:1 arbiter to each
output VC at output port 0. For clarity, arbiters for the other two output VCs are omitted.

(a) (b)

Figure 2.6. An example of the second stage of VA when at most one output VC of a single
output port is returned, (a). VA requests to output port 0. (b). Assign a 20:1 arbiter to the
output port 0.

We ran simulations for a 4 x 4 mesh NoCs under uniform, hotspot, and transpose

traffic patterns and calculated pb^ by counting the number of cycles when / is 2 or

above and then dividing by the number of simulation cycles. The results show that

pbfk remains small for all routers for all injection rates. Hence, for each traffic pattern,

only the pb^ for output PCs of the router2i (we define the left-bottom router as

routeroo for the 4 x 4 mesh throughout this chapter.) at saturation point (the saturation

points are at 0.652, 0.603, and 0.248 flits/(node*cycle) for uniform, hotspot, and

transpose traffic patterns respectively.) is shown (Table 2.3). It can be seen that all

pb^ are smaller than 0.50% for all tested traffics. In other words, in each output PC, at

most one VC is requested in more than 99.50% of all cases. The key reason for small

pb^ results is that pb^ represents the probability that two or more VCs in an output

port are simultaneously requested. To validate this claim, we also calculated pbl^ for

the three traffic patterns (Table 2.4). We can see that results of pbl^ are much larger

than results of plA Thus, changing the output-VC-selection function from returning

any candidate output VCs to retuning at most one output VC sacrifices the VA

efficiency very tiny. After that, the second stage is simplified to a piVxp�matrix. In

addition, piV V:1 arbiters of the first stage are removed and p�output-VC-sdection

blocks are added. Design of the output-VC-selection block will be described in

Section 2.6.

R =

厂11

4

VPO
Ml

•^Fo

�

�
Po

Table 2.3. RESTULS OF

Traffic
Output PC

Traffic
West North East South Local

Uniform 0.21% 0.23% 0.32% 0.33% 0.16%

Hotspot 0.23% 0.10% 0.30% 0,48% 0.30%

Transpose 0 0 0 0.01% 0

Table 2.4. RESTULS OF pbf

Traffic
Output PC

Traffic
West North East South Local

Uniform 13.78% 12.43% 16.28% 17.53% 15.43%

Hotspot 12,68% 11.26% 16.78% 13.88% 13.41%

Transpose 0 7.90% 0 16.48% 0

2.3.3 Sharing of V:1 arbiters at each input port

The VA after the above simplification now requires po厂-.7 arbiters. This can be

similarly organized as a tree architecture which has a set of po arbiters for every

input port and one pi:l arbiter for each output port. This is also too generous because

there are totally V VCs in an input port and many of them do not have VA requests

most of the time. Design costs will be much saved if we assign only one V:1 arbiter

o

3

to an input port. However, it will sacrifice the VA efficiency as well, which is

illustrated as below.

We assume there are two valid VA requests at input port 0 (Figure 2.7 (a)): one

requests an output VC of output port 2 while the other requests an output VC of

output port 3. The requests to different output ports are sent to different 4:1 arbiters

in separated architecture (Figure 2.7 (b)) whereas they are sent to the same 4:1 arbiter

in the shared architecture (Figure 2.7 (c)). In the separated architecture, both VA

requests are certainly successful in the arbitrations. However, in the shared

architecture, only one of them succeeds. If there are no VA requests to output port 3

from other input ports, an idle VC at output port 3 will be certainly assigned to the

input VC (blue colour) at input port 0 in the separated architecture. However, this

idle VC at output port 3 will be wasted at the current clock cycle if the request to

output port 3 fails in the shared arbiter at input port 0. In summary, decrease of the

VA efficiency by sharing one arbiter across VA requests to various output ports is

determined by the probability (pbm) that input VCs at an input port request output

VCs at different output ports.

-Output port 2

INVALID

INVALID

(a)

(b) (c)

Figure 2.7. An example of sharing V:1 arbiters at an input port. (a). VA requests generated at
input port 0. (b). Assign five 4:1 arbiters for VA requests generated at input port 0. Each
arbiter handles VA requests going to an output port. For brevity, arbiters serving requests to
the other output ports are omitted, (c). Assign one 4:1 arbiter for all VA requests generated at
input port 0.

From simulations as described previously, we calculated pbm by counting the

number of cycles when r,„ is 2 or above and then dividing by the number of

simulation cycles. Table 2.5 shows pbm for input PCs of the routerai at saturation

points. The largest pbm is 0.75% for uniform traffic and 0.28% for hotspot traffic.

All the pbm are zeros for transpose traffic (no packets enter the north, south, and local

input PCs. Packets entering the west (east) input PC only go to the north (south)

output PC.). Similar to p b � t h e key reason for small pbm is that pbm represents the

probability that VCs in an input port request VCs at two or more output ports

simultaneously. We can see that results of pblm (Table 2.6) are significantly larger

than results of pbm. Therefore, making all VCs of an input port to share one V:1

arbiter decreases VA efficiency by only a small amount. As a result, it is possible

with negligible performance cost to reduce the number of V:1 arbiters at a single

input port from po to L

Table 2.5. RESTULS OFpb„

Traffic
Input PC

Traffic
West North East South Local

2

3

Uniform 0.20% 0.23% 0.75% 0.33% 0.15%

Hotspot 0.20% 0.15% 0.13% 0.15% 0.28%

Transpose 0 0 0 0 0

Table 2.6. RESTULS OF pbl„,

Traffic
Input PC

Traffic
West North East South Local

Uniform 13.18% 15.91% 17.76% 16.91% 17.06%

Hotspot 11.01% 12.36% 15.31% 15.53% 20.91%

Transpose 7.99% 0 16.75% 0 0

2.3.4 Combining VA and SA arbiters

After the above two simplifications, a VA will consist of one V:1 arbiter at each

input port and one p,:! arbiter at each output PC, which is obviously the same as the

SA shown in Figure 2.4. Moreover, VA arbiters have the same functions as the

corresponding SA arbiters: a V:1 arbiter handles requests from VCs at an input port

while a pi：! arbiter deals with requests from various input ports to an output PC. The

only difference is the type of requests (VA or SA requests). Thus, a VA and a SA can

share their arbiters if VA and SA requests are processed concurrently. This leads to

a further 50% reduction of arbiters.

Note that the concurrent processing means to process VA requests from some

input VCs and to process SA requests from other input VCs in the same clock cycle.

It is because an input VC can only be at one of three states, namely, making no

request, making a VA request, and making a SA request. This is explained in Figure

2.8.

(a)

(b) (c)

Figure 2.8. An example of sharing VA and SA arbiters at an input port. (a). VA and SA
requests generated at input port 0. (b). Assign separated 4:1 arbiters for VA requests and SA
requests, with one arbiter handling VA requests whereas the other arbiter handling SA requests,
(c). Assign one 4:1 arbiter for both VA and SA requests.

More importantly, as shown in Figure 2.9，combining a VA and a SA and

processing VA and SA requests simultaneously removes the VA pipeline stage for

head flits, and thus reduces packet latency. Nevertheless, processing VA and SA

requests concurrently may lead to deadlock and will be discussed in the next section.

VA

SA

SA

CHAPTER 2. COST-EFFICIENT ALLOCATOR IMPLEMENTATIONS

Head flit

Head flit

BW VA SA ST LT

Body/tail
flit BW SA ST LT

(a)

BW SVA ST LT

Body/tail
flit BW SA ST LT

(b)

Figure 2.9. (a). Router pipeline when using separated VA and SA. (b). Router pipeline when
using combined VA and SA.

2.4 DEADLOCK

2.4.1 Free output VC check

An input VC is successfully allocated an output VC when two requirements are

met. One is that VA request of the input VC wins in the SVA, and the other is that

there is a free output VC in the destined output PC. Free output VC check may be

done in a speculative (Figure 2.10 (a)) or non-speculative (Figure 2.10 (b)) way. In

the speculative architecture, we speculate that a VA request will successfully find a

free output VC in the destined output port. Thus, the free output VC check is done in

parallel with the SVA. In the non-speculative architecture, we must ensure that there

is a free output VC for a VA request before it enters the SVA. Therefore, the free

output VC check is done in series with the SVA. The speculative architecture

removes the free output VC check from the critical path and is often selected when a

generic VA is used. However，if the SVA is used, we found that the speculative

architecture is not deadlock free and we have to use the non-speculative architecture.

3

-
令
令
-

Grant

(a)

Free output
VC check

VA request SVA) ‘ SVA
Grant

(b)

Figure 2.10. (a). A speculative architecture, (b). A non-speculative architecture.

2.4.2 Allocation and release of an output VC

If the head flit of a packet succeeds to be allocated an output VC in the VA stage,

the output VC is held for the whole packet (or the input VC that buffers the packet)

until the tail flit of this packet is successful in the SA stage and then releases the

output VC. In other words, a logic connection between an input VC and an output

VC is established by the VA operation for the head flit and released by the SA

operation for the tail flit. The output VC can not be allocated to any other head flits

until it is released. Figure 2.11 shows the timing diagram of output VC reallocation

through a two-flit packet A followed by the head flit of packet B (assume the packet

B requests the same output VC as the packet A.). At cycle 2, the head flit of the

packet A succeeds in the VA pipeline stage and is allocated the output VC. At cycle 4’

the output VC is released when the tail flit of the packet A succeeds in the SA stage.

Although the BW stage for the head flit of the packet B is finished at cycle 3 and the

VA stage for it can be performed at cycle 4, this head flit has to stall for one cycle,

waiting for the packet A to release the output VC. Then, at cycle 5, the released

output VC is reallocated to the head flit of the packet B. If the tail flit of the packet A

would never succeed in the SA, the output VC would be always held by the packet A

and thus never be reallocated to the packet B.

Cycle 1 2 3 4 5 6 7 8

Head of packet A

Tail of packet d

Head of packet B

BW VA SA ST LT

BW SA ST LT BW SA ST LT

TDW VA SA ST LT Jj w VA SA ST LT

Figure 2.11. Timing diagram of reallocating an output VC.

2.4.3 Deadlock problem

After a VA and a SA is combined, there will be two groups of requests: the VA

group and the SA group. Also, there will be two groups of resources: the output VC

group and the priority group (In general, the round-robin algorithm is applied in both

VA and SA arbiters to achieve fairness. A priority table is used to accomplish the

round-robin algorithm by setting the priority of the request that is just served the

lowest.). Requests and resources are related by hold and wait-for relations. As shown

ill Figure 2.12 (a), the VA group holds the priority group and waits for the output VC

group. Similarly, the SA group holds the output VC group and waits for the priority

group. If a request group holds a resource group, then that resource group is waiting

on the request group to release it. Thus, each hold relation induces a wait-for relation

in the opposite direction [12]. Redrawing the hold edges as wait-for edges in the

opposite direction gives the graph of Figure 2.12 (b). The cycle in this graph shows

that the architecture is deadlocked.

Let us illustrate the deadlock by a router in a mesh network (Figure 2,13). In the

west input port, the VCO has a VA request for any VCs in the east output PC while

7

3

the other three VCs have already held the VCl, VC2, and VC3 in the east output PC

respectively. Similarly, in the north input port, the VCO has a VA request for any

VCs in the east output PC, the VCl holds the VCO in the east output PC, and the

VC2 and VC3 occupy the VCs in other output PCs. In both the west and the north

input ports, the VCO has the highest priority. Therefore, in the speculative

architecture, the SA requests at the two input ports always fail in the SVA, causing

that four held VCs in the east output PC are no longer released. On the other hand,

although the two VA requests always succeed in the SVA, they always fail to find a

free output VC because all four VCs in the east output PC are always being occupied.

As a result, they always keep the highest priorities in the corresponding input ports.

V

S A ^
Tou^y

；
I
卿

;
o
 ̂

5

V
 p

Hold Wait for

(a) (b)

Figure 2.12. Hold and wait-for relationships.

North

West

Input VC

-> Hold ——• Wait for

Figure 2.13. An example of the deadlock.

2.4.4 Solutions to deadlock

There are two approaches to deal with deadlock: deadlock recovery and deadlock

avoidance. For the deadlock recovery (Figure 2.14), a counter is used to counting the

number of consecutive cycles when a VA request succeeds in the arbitration but fails

to find a free output VC. Once the deadlock is detected (The counter hits the pre-set

threshold), the priority of this VA request will be set to the lowest to recover from the

deadlock. The recovery approach works at low and moderate loads but leads to

serious starvation problem at high loads.

Figure 2.15 illustrates the starvation problem at high loads. On the one hand, it is

often that no free VC is found when the VA request has the highest priority

(normally 3 or 4 cycles). On the other hand, it is usual that an output VC is allocated

to some input VC as soon as the output VC is released. As a result, it is possible that

the two requirements (highest priority and free output VC) can not be simultaneously

met for the VA request, leading to the starvation problem.

Figure 2.14. Deadlock recovery.

Clock
VA request

Highest priority
Free output VC

VA success
o

In order to recovery from deadlock, a VA At high loads, it is usual that an
request only keep the highest priority for o ^ u t VC is immediately occupied
a certain number of cycles if there is nc it is released,
free output VC.

Figure 2.15. Starvation problem caused by deadlock recovery.

Since the deadlock recovery approach may result in the starvation problem, we use

the deadlock avoidance method by breaking the cyclic dependence. In the non-

speculative architecture, the two VA requests (Figure 2.13) are considered as invalid

because there is no free output VC for them. As a result, they do not win in the SVA

arbitration although they have the highest priorities. Instead, the four SA requests for

the east output PC win the SVA in a round-robin way until one of them sends a tail

flit and releases the output VC held by it. Then, at the next cycle, the two VA

requests are all valid and one of them is allocated the released output VC. In

summary, the VA group does not hold the priority group when there is no free output

VC and thus breaks the cyclic dependence-

CHAPTER 2. COST-EFFICIENT ALLOCATOR IMPLEMENTATIONS

•5 CRITICAL PATH ANALYSIS

2.5.1 Critical paths for the generic VA/SA

Figure 2.16 (a) shows the critical path for the generic VA. Firstly, an input VC

checks whether there are free output VCs in the destined output PC. Then, it selects

one from all free output VCs using the arbiter in the stage. After that, a VA

request is generated and sent to the stage arbiter for the selected output VC. Once

the input VC is successfully allocated the selected output VC, status of this output

VC is updated to be busy. Figure 2.16 (b) demonstrates the critical path for the

generic SA. In the beginning, all stage SA requests generated in the previous

clock cycle enter the stage arbiters for arbitration. Then, requests for the stage

arbiters are generated and arbitrated. After that, the stage requests for the next

cycle are produced. The max frequency for a router with generic VA/SA

architectures is determined by the critical path of the generic VA because it is longer

than that of the generic SA.

(a)

”'stage
arbitration

2nd Stage SA request
2nd Stage

arbitration

�St stage SA

A

”'stage
arbitration — > generation for the

current cycle

2nd Stage

arbitration
request generation
for the next cycle

——•

A

(b)

Figure 2.16. Critical path for the generic VA (a) and the generic SA (b).

2.5.2 VA simplification effects on critical paths

As described in Section 2.3, there are three methods for VA simplification:

changing the output-VC-selection function, sharing of V:I arbiters, and combining

VA and SA arbiters. In the following, we explain their effects on the VA/SA critical

paths one by one.

Firstly, reducing the number of piV:l arbiters from V to 1 in an output PC does not

produce additional delay for the VA because no logic is needed to detect conflicts.

After changing the output-VC-selection function to return a single free VC of an

output PC, at most one VC in an output PC will be requested at each cycle. Thus, one

PiV: 1 arbiter is enough and no additional logic is required to determine which VC is

to use the single piV:l arbiter. On the contrary, the critical path of the VA can be

reduced in two aspects. One is that the arbitration stage is removed. The other is

that logics for VA request generation are simplified because the number of PiV:l

arbiters is largely reduced.

Secondly, sharing V:1 arbiters in an input port increases the critical path of the VA.

Before sharing, a piV:l arbiter in the arbitration stage of the VA is implemented

as the tree architecture shown in Figure 2.3 where the V:1 arbiter and the pi:l arbiter

are in parallel. After the sharing, a piV:l arbiter is realized as the architecture shown

in Figure 2.4 where the V:1 arbiter and the pi:l arbiter are in serial. Meanwhile,

additional logics after the V:1 arbiter are required to generate requests for the pi：!

arbiter.

Finally, combining VA and SA arbiters increases the critical path of the SA.

Before the combination, the stage SA requests directly enter the stage arbiters

for arbitration. After the combination, the stage SA requests have to wait for the

results of the free output VC check block before they enter the stage arbiters in

order to avoid the deadlock problem described in Section 2.4.

In summary, total effects on the VA/SA critical paths depend on which

simplification methods are applied.

2.6 EVALUATIONS

2.6.1 Design parameters

In summary, simplification of a generic VA includes three steps: 1). Change the

output-VC-selection function, then reduce the number of PiV:l arbiters and remove

the first stage of the generic VA (Section 2.3.2). 2). Share the V:1 arbiters at each

input port (Section 2.3.3). 3). Combine the generic VA and the generic SA arbiters

together (Section 2.3.4).

We evaluated three allocation architectures: a generic VA and a generic SA (the

generic), a look-ahead VA and a generic SA (the look-ahead), and a combined VA

and SA (the SVA) by simulations for the entire NoCs instead of the allocation

components themselves. In the look-ahead VA, only the first simplification step is

performed. The output-VC-selection block at an output port works as follows. First,

no output VC is selected if all VCs of the output port are busy. Second, if some

output VCs are idle and empty, select the first one of them. Third, if some output

VCs are idle but none of them is empty, select the idle VC that has the most number

of free buffer spaces. In the SVA, all the three simplification steps are performed. All

other components of the NoCs are the same in the three architectures studied. The

network and process parameters are shown in Table 2.7.

Table 2.7. NETWORK AND PROCESS PARAMETERS

Traffic Uniform / Hotspot^ / Transpose

Topology 4x4 mesh

Flow control Virtual channel

Routing XY

Buffer management Credit-based

Pipeline Generic VC pipeline^

Router radix 3/4/5

Buffer architecture 2/4/6 VCs per port, 4 flits per VC

Packet length 4/8/16 flits

Flit size 32 (random payload) + 4 (overhead)

Technology 130nm, HS

Frequency 250MHz

2.6.2 Network performances

Network performances were obtained by a simulator modelled in SystemVerilog.

Evaluations were performed for various network sizes, various Vs, various packet

lengths, and a range of traffic patterns to validate whether the conclusion that the VA

simplification presented in section IV has small effect on network performances is

general. Saturation is defined as the highest level of injection rate for which the

average throughput equals to the injection rate [12]. We only compared latencies

before saturation.

Average packet latency as a function of traffic injection rate is plotted for different

traffic patterns in Figure 2.17. The curve of the generic architecture nearly overlaps

that of the look-ahead architecture for all tested traffic patterns. It means that the pb^

The hotspot routers are routern, router�〕，routersi. They inject packets to the network with a 1.5x
rate.

7 Separated VA and SA stages for the generic and the look-ahead architectures whereas combined
VA and SA stages for the SVA architecture.

remains small and arbiter reduction has little impact on network latencies for

different traffic patterns. The latency of the SVA is significantly smaller than the

other two architectures at low and moderate network loads and becomes almost the

same at high network loads. Figure 2.18 shows results when packet length is 8 and 16

flits respectively. We can see that reduction of latency by the SVA remains

significant at high injection rates. Figure 2.19 describes results for 6x6 mesh. The

trend is similar to that for 4x4 mesh. The SVA can reduce latency because it

removes the VA pipeline stage for head flits. In addition, similar trends can be

observed for various Vs (keeping the 4x4 network size, uniform traffic pattern and 4

flits per packet). The results for various Vs are not shown for clarity.

o

5

o

5

o

5

o

6
 5

 5

 4

 4
 3

 3

(
S
3
P
X
0
)
 X
O
U
O
I
B
I

 ̂
w
^
o
r
t
a

-0-Generic
••^Look-ahead

2(
0.3

Injection
0.4 0.5

丨（flits/(node*cycle))

(a)

分 Generic
-A-Look-ahead
-^SVA

-©-Generic
^Look-ahead

二 "0 0.05 0.1 0.15
Injection rate (flits/(node*cycle))

(c)

0.2 0.25

Figure 2.17. Average packet latency for various traffic patterns when network size is 4 x 4,
and packet length are 4. (a). Uniform (b). Hotspot. (c). Transpose.

^b. l 0.2 0.3 0.4 0.5 0.6
Injection rate (flits/(node*cycle))

(b)

V

65

60

55

50

45

L
 1

I

1

J

o

5

 o

5

C

4
 3

 3

2

r

(
s
s
p
x
o
)
 x
o
u
^
i
e
l

 S
S
B
J
U
A
V

L___.̂
^

5

o

5

4
 3

 3

2

(
S
3
P
/
;
C
I
)
 X
U
U
S
J
B
I

 1
3
>
I
O
B
d

60

55

50

45

0

(b)

Figure 2.18. Average packet latency for other packet lengths when network size is 4 x 4, V is
and traffic pattern is uniform, (a) Sflits. (b) 16 flits.

1{！05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Injection rate (fUts/(node*cycle))

220

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Injection rate (flits/(node*cycle))

-©-Generic
Look-ahead

女S V A

-©"Generic
-^Look-ahead
•SVA

o

o

o

o

o

o

o

o

8

6

4

2

o

8

2
 1
1

1
i

1
1

1

 1—_

(
S
3
1
C
>
X
3
)

 ̂
o
l
r
t
^

o

o

o

o

o

o

o

o

9
 8

 7

 6

 5

 4

(
S
3
{
0
i
<
3
)

 ̂
o
c
^
^
r
t
-
》
9
:
>
I
O
B
d

(
S
3
P
X
。
)
 X
0
U
3
J
B
】

 J
O
B
d
 昏
J
3
A
V

0.15 0.2 0.25 0.3 0.35 0.4

Injection rate (flits/(node*cycle))
0.45

Figure 2.19. Average packet latency for 6x6 mesh when V is 4，packet length is 4 and traffic

pattern is uniform.

2.6.3 Maximum router frequency

Table 2.8 summarizes maximum router frequencies for the three allocation

architectures. The frequencies were obtained from Synopsys DC with worst case

synthesis condition. The generic architecture and the SVA have similar frequencies

while the look-ahead architecture has higher frequencies than the others. The reason

is that only the simplification method of changing the output-VC-selection function

is used in the look-ahead architecture while all three simplification means are applied

in the SVA. As presented in Section 2.5，the method 1 reduces the critical path delay

whereas sharing of V:1 arbiters {method 2) and combing VA and SA arbiters {method

3) increase the critical path delay. Therefore, router speed for the look-ahead

architecture is always the highest while the speed for the SVA depends on the total

effects of all the three methods. For example, when pi is three and V is four，the SVA

is faster than the generic because the delay reduction caused by method 1 is larger

than the delay increase caused by method 2 and method 3. When pi is four and V is

four, the SVA is slower than the generic because the delay reduction is smaller than

the delay increase.

Table 2.8. MAX ROUTER FREQUENCY (MHz)

Router parameters Generic Look-ahead SVA

Pi =3, V =4 427 526 442

Pi =4’ V =4 403 476 388

Pi =5, V =2 435 526 435

Pi =5, V =4 385 435 385

Pi =5, V =6 323 385 333

2.6.4 Area and power costs at a certain frequency

Table 2.9 shows area costs of the three allocator architectures at the frequency of

250MHz. The look-ahead architecture reduces area by decreasing the number of

PiV:l arbiters from poV to p�and removing all the first stage arbiters of a generic VA.

The SVA reduces even more area through sharing V:1 arbiters at each input port for a

generic VA and combining arbiters of a generic VA and arbiters of a generic SA.

Higher proportion of area is reduced as pi or V increases. For a 5-port, 4-VC router,

the look-ahead architecture and the SVA reduce allocator area by 57.17% and

68.43% respectively. They reduce router area by 23.65% and 28.30% respectively

because the generic architecture consumes 41.36% area in the router.

Table 2.9. AREA (GATE COUNT) OF THE THREE ALLOCATORS

Router parameters Generic Look-ahead SVA

Pi =3, V =4 5355 2525 2123

Pi =4, V 二4 10433 4586 3785

Pi 二5’ V =2 3697 2973 2437

Pi =5, V =4 17676 7570 5581

Pi =5, V =6 49314 13581 9873

In the same way as described in Section 2.2, we calculated power consumption at

250MHz for many injection rates of uniform traffic because power is highly related

to network loads. Tabk 2.10 demonstrates power consumed by the three allocator

architectures at zero-load and saturated-load. The look-ahead architecture reduces

power at both zero-load and saturated-load for all tested parameters. The SVA has

the smallest power at zero-load for all cases because it has the lowest logic area.

However, power consumption of the SVA at saturated-load surpasses that of the

look-ahead architecture for the three 5-port cases and even surpasses that of the

generic architecture for the 5-port, 2-VC case. The reason is as follows. On the one

hand, the SVA reduces logic gates and thus reduces power consumption (positive

effect). On the other hand, the sharing of logics in the SVA associates more logics

together, and thus makes it possible that a logic transition of a net will lead to logic

transitions of more nets. As a result, it increases average logic transition and

therefore increases power consumption (negative effect). For most cases, the positive

effect is larger and thus the SVA consumes smaller power consumption. For other

cases, the negative effect is larger and thus the SVA consumes larger power

consumption.

Power versus injection rate for the 5-port, 4-VC case is plotted in Figure 2.20. It

can be seen that the difference in power between the look-ahead architecture and the

SVA is small. On average, the look-ahead architecture and the SVA save allocator

power by 27.18% and 30.78% respectively. Considering that the generic allocators

consume 32.65% power in the router, the look-ahead architecture and the SVA

reduce power by 8.87% and 10.05% respectively for the router. The router power

savings increases to 16.44% (the look-ahead) and 17.07% (the SVA) for the 5-port,

6'VC router.

Table 2.10. POWER (mW) OF THE THREE ALLOCATORS (ZERO-LOAD |
SATURATED-LOAD)

Router parameters Generic Look-ahead SVA

o

5

Pi = 3 , V = 4 0.54 1 2.13 0.39 1 1.65 0.32 1 1.58

Pi =4，V = 4 0.67 1 3.51 0.46 1 2 .67 0.36 1 2.64

Pi =5，V =2 0.45 1 1.44 0.43 1 1.44 0.34 11.61

p, =5, V =4 0.81 | 4 .93 0.52 1 3.80 0.41 1 3.96

Pi =5, V =6 L20 18.65 0�56 1 5.23 0.44 1 5.46

0.2 0.3 QA 0.5

Injection rate (fUts/(node* cycle))

Figure 2.20. Power of the allocators at various injection rates

2.6.5 Discussion

When networks run at frequencies which can not be met by the SVA, the look-

ahead architecture is the only reasonable choice. Otherwise, if networks run at

frequencies which can be achieved by the SVA, the SVA is better because it provides

lower packet latency (in cycles), as well as lower area and power costs for most

design cases.

2.7 SUMMARY

This chapter presents implementations of low-cost switch and VC allocators.

Instead of studying the allocators in isolation, we study them in the context of the

entire NoCs. Opportunities to reduce design costs are identified for the generic

architectures through analyses and statistics. As a result, three simplification methods

including changing the output-VC-selection function, sharing V:1 arbiters for the VA

at each input port and combining VA and SA arbiters are described and two low-cost

allocators are proposed.

Sharing of arbiters by the VA and the SA makes VA requests and SA requests

dependent on each other, possibly leading to a deadlock problem. Checking free

output VC after VA requests entering arbiters is not deadlock free. The deadlock

recovery scheme may lead to starvation problem. Thus, the deadlock avoidance

scheme is used by checking free output VC before VA requests entering arbiters.

In addition, the three VA simplification methods affect the critical paths of the VA

and SA pipeline stages. The first method to change the output-VC-selection function

to return a single output VC from an output port reduces the critical path of the VA.

However, the sharing of V:1 arbiters in an input port increases the critical path of the

VA, and the sharing of VA and SA arbiters increases the critical path of the SA.

Overall effects on the critical paths depend on which methods are used.

We did comprehensive evaluations for the allocators, including network-level

performances, frequency, area, and power. Results show that both the look-ahead

architecture and the SVA architecture achieve lower costs than the generic

architecture without any adverse effects on network performances. The look-ahead

architecture and the SVA have different application domains that are determined by

the frequency constraint.

This chapter only addresses the separable iSLip allocator [41]. However, there are

other advanced allocator schemes like separable lonely output allocator and

wavefront allocator that have higher matching efficiency and are used in off-chip

networks [42, 43]. Thus, it is interesting to study these advanced allocators and

reduce their design costs for NoCs.

In addition, this chapter shows great effectiveness to study router components in

the context of the complete NoCs rather than the components themselves. This is a

good research method that can be used to explore other components of a router.

CHAPTER 3. POWER-EFFICIENT EVC INSERTION METHODOLOGY 53

CHAPTER 3. POWER-EFFICIENT EVC INSERTION
METHODOLOGY

3.1 INTRODUCTION

Total router energy consumption when a flit travels from a source to a destination

can be denoted as E伸=Erouter x H, where E,-outer is average energy consumed by a

router and H is the hop count. Thus, there are two directions to reduce the total router

energy. One is to reduce Erouter and the other is to reduce H. We work along the first

direction to reduce Erouter by designing cost-efficient virtual channel and switch

allocators in Chapter 2 while work along the second direction to reduce H in this

chapter.

The hop count is the number of routers that a flit traverses from the source router

to the destination router. It is determined by network topology and routing algorithm.

In a 2D mesh network, the hop count is equal to the Manhattan distance when

deterministic routing is applied. It is a popular way to reduce the hop count of 2D

mesh network through inserting some express physical channels to bypass

intermediate routers, such as express cubes [37，44, 45] and application-specific long

links [17, 46]. However, inserting a new physical channel means adding a port for

routers at both ends of the channel, which increases Erouter. Thus, the key is to reduce

H while keeping overhead of Erouter small.

A new flow control mechanism, express virtual channel, was recently proposed to

reduce H through virtually bypass intermediate routers [36], The overhead of Erouter is

small because express channels are not built physically, but built virtually. The

authors presented express pipelines, EVC router microarchitectures and evaluated

EVC flow control by high-level models. However, they did not address EVC

insertion and assumed that EVC paths were added regularly. Thus, how to optimize

the EVC insertion is still an open problem.

We optimize the EVC insertion with the main objective to reduce power

consumption by exploiting communication characteristics of applications. We

believe that emphasizing the role of communication characteristics increases the

optimization room for EVCs insertion. This idea is based on two observations. Firstly，

Q

as the aggregate traffic load of a router pair is generally different from that of

another pair, they should be distinguished. Secondly, more power is saved if more

traffic loads pass through it after an EVC path is inserted. Let's illustrate it by a 4x4

mesh with XY routing for transpose traffic (Figure 3.1)9. 丁̂已 normalized aggregate

communication loads of router pairs demonstrate large variances, from zero to three.

In the static EVC insertion, two EVC paths will be inserted. (In fact, totally sixteen

EVC paths will be inserted. Only two of them are shown for clarity in this example).

One is from router 00 to router 02，and another is from 02 to 00. However, the EVC

path from 00 to 02 has definitely no power saving since its traffic load is zero. This

bad EVC is added due to the insertion is done in a blind way. The EVC path from 02

to 00 has power saving of two units. On the contrary, in our AS-EVC insertion

scheme, the router pair with the largest aggregate load (from 01 to 10) is found and

an EVC path is inserted there, thereby leading to power reduction of three units.

Clearly, a 1.5x power saving is obtained by only one smart EVC path compared to

that by two static EVC paths.

8 Note that a router pair is directed. Thus, the pair from to r) is different from the pair from t) to r,.

9 For simplicity, the cost caused by the aggregate communication volume traveling an EVC source
router is not considered in the illustration.

Source router ID

(a)

~ (1 0

勢…. 2 .一办

V --热

(b)

U X X X

(C)

physical channel

Express virtual
channel

Figure 3.1. Illustrations of static EVC insertion and AS-EVC insertion, (a). Aggregate
communication loads of router pairs, (b). An example of static EVC insertion, (c). An example
of AS-EVC insertion

In order to further improve the efficiency of EVC insertion, we remove some

limitations in the static EVC insertion. 1). EVC paths are not limited to be straight

along X or Y dimension. Switch-dimension EVC paths can be inserted. 2). Two

paths between r,： and r, are considered separately. In this way, inserting an EVC path

from Fi to Vj does not mean an EVC path will be inserted reversely from r； to r,：. 3). A

maximum interval instead of a fixed interval is set. The length of an EVC path can be

any value smaller than the pre-set maximum interval. 4). EVC source and sink

routers are allowed to be bypassed.

p
e
o
l

 u
q
J
e
a
p
n
s
E
O
O

Our other contribution is to evaluate power consumptions through low-level VLSI

implementations instead of high-level models. We performed evaluations for a wide

range of traffic patterns including uniform, transpose, and TRIPS OCN traffics to

show that the AS-EVC NoCs are generally better than static EVC and baseline NoCs.

In addition, we performed evaluations for various network sizes such as 4 x 4 mesh,

6x6 mesh, and 10x4 mesh to show the AS-EVC method is scalable.

The structure of this chapter is as follows. Section 3.2 reviews related work.

Following, Section 3.3 gives an overview of express virtual channel flow control.

Section 3.4 presents application-specific EVC insertion methodology. Then, Section

3.5 demonstrates evaluations on power consumption. Finally, Section 3.6 concludes

this thesis chapter.

3.2 RELATED WORK

Express cube was firstly proposed to improve network performances of k-ary n-

cube off-chip interconnection networks that are node-limited [47]. The main idea of

the express cube technology is to connect non-adjacent nodes with long express

physical channels, so that long-distance traffic can mainly travel along the EPCs and

skip intermediate routers. As a result, delay to traverse intermediate routers can be

removed.

When packets travel along express physical channels, power consumed by

intermediate routers can also be saved. Thus，Wang et al. in [37, 44, 45] applied the

express cube for power and energy efficient NoCs designs. Express physical

channels are regularly inserted in the express cube. Figure 3.2 (a) depicts an express

cube based on a 5x5 mesh. Express physical channels are those channels that

connect a subset of routers to their v-router away neighbors, v denotes the number of

routers spanned by an express physical channel and is two in the example. Totally

twenty express physical channels are added.

Different from the express cube in which express physical channels are inserted in

a regular way, Ogras et al. [17, 46] inserted express physical channels in an

application-specific fashion with the main objective to reduce packet latency and

improve network throughput. Communication volumes were used to calculate critical

traffic values so that only few most beneficial express physical channels were

inserted. Figure 3.2 (b) shows a 5x5 mesh with application-specific long links. Only

three express physical channels are added.

O ~ 0 ^ ^ 0 ~ 0 ~ o

O 6

O ^ O - X D

Physical channel

(a)

O ~ O ~ O o ~ o

Express physical channel

(b)

Figure 3.2. Bypass through express physical channels, (a). Express cube. (b). Application-

specific long link.

After express physical channels are inserted, many packets will travel along them

and skip intermediate routers. As a result, average hop count is reduced and energy

consumption is saved. However, adding an express physical channel means to add a

new port at both end routers of this channel (The two routers are called EPC router).

Figure 3.3 compares microarchitectures of a non-EPC router and an EPC router. A

8

5

non-EPC router has five ports (west, north, east, south, and local) and a 5x5crossbar.

An EPC router with an EPC has six ports and a 6x6crossbar. The added port (it

requires extra buffer space and associated control logic) and the larger crossbar result

in large overhead at the EPC router. FPGA prototypes in [46] show that 3-port, 4-

port, 5-port, and 6-port routers utilize 219, 304, 397, and 503 slices respectively. This

is to say, moving from 3-to-4, 4-to-5, and 5-to-6 increases the router area by 38.8%,

30.6%, and 26.7% in respective. Clearly, EPC routers consume more energy than

non-EPC routers because of their area overhead, thus partially offset energy savings

caused by reduction of average hop count.

n n N

w

(a) (b)

Figure 3.3. Router microarchitectures, (a). A non-EPC router (b). An EPC router with
EPC.

Low-power and energy-efficient are two sometimes confusing concepts. Low-

power refers to absolute low power consumption, while energy-efficient pursues low

energy cost per unit work. Although these two concepts are not necessarily mutually-

exclusive, it is important to make clear which one is the optimization target. Wang et

al. compared express cube and 2D torus using analytical power models [44], When

flit size remains unchanged, the express cube consumes larger power consumption

than 2-D torus because of extra wires and complicated EPC routers. However, it can

sustain even higher throughput and the energy cost per flit is reduced when network

size is large. Hence, the express cube is not a low-power, but an energy-efficient

topology. Ogras et al. compared a 4x4mesh and a 4x4 mesh with application-

specific long links by FPGA prototypes in [46, 48]. The results show that the mesh

with express physical channels is energy-efficient, but not low-power. Although an

energy-efficient NoCs can be changed to a low-power NoCs through flit size

reduction or frequency/voltage scaling techniques to reduce the high throughput to

the just-meet-requirement value, these techniques have overheads. In our opinion,

bypass through express physical channels, either the express cube or the application-

specific long links, is suitable for energy-efficient NoCs designs, but not for low-

power NoCs designs. In order to obtain low-power NoCs designs, we need a bypass

technique that has only small router overhead when reducing average hop count. In

the next section, we will introduce such a technique.

3.3 EXPRESS VIRTUAL CHANNEL FLOW CONTROL

Unlike the previous two bypass techniques (the express cube and the application-

specific long links) in which intermediate routers are bypassed through express

physical channels, express virtual channel is a new technique to bypass intermediate

routers through express virtual channels. Both the previous techniques are

topological technique because they change network topologies whereas EVC is a

flow control technique where express virtual channels are built through smart control

on flit flows. We have an overview of the EVC flow control in this section because

our work in this and the next chapters are based on this technique. The details about

it can be found in [36].

3.3.1 EVC router pipelines

Some special notations are used in the thesis. They are described as follows and

illustrated in Figure 3.4.

• EVC source router. The router at which an EVC path originates. The

corresponding output port is called an EVC source port.

• EVC sink router. The router at which an EVC path terminates. The

corresponding input port is called an EVC sink port.

• EVC bypass router. The intermediate routers covered by an EVC path. The

corresponding input/output port is called an EVC bypass input/output port.

• NVC lane. The VC lane which is allocated in a similar fashion as in the

traditional VC flow control and is responsible for buffering packets through a

single-hop physical channel.

• EVC lane. The VC lane which buffers packets travelling along an EVC path.

Thus, only EVC sink routers have EVC lanes.

In addition, a flit is an EVC flit when it is travelling intermediate routers along an

EVC path. Otherwise, it is a NVC flit.

An EVC path

NVC lane 3 EVC lane

Figure 3.4. Illustration of EVC components

Figure 3.5 shows EVC router pipelines. The non-express pipeline is used for NVC

flits. Functions of the pipeline stages are described in Section 1.2.5. The SVA stage,

which combines the VA and SA stages together, is presented in Section 2.3. When an

EVC flit arrives at an EVC bypass router, it goes through either the express pipeline

or the aggressive express pipeline, depending on micro architecture of the EVC

bypass router. In the express pipeline, the EVC flit skips BW，VA and SA，and

advances directly to the ST stage. The BW stage can be skipped because the EVC flit

does not need to be buffered in the bypass router. The VA stage can be skipped

because the EVC flit is not required to be saved in NVC lanes of the next router. The

SA stage can be removed due to the EVC flit always have higher priorities over NVC

flits and are thus able to pass through the crossbar switch without any contention. In

the aggressive express pipeline, the ST stage is further skipped. In this case, the EVC

flit will bypass the crossbar switch as well. The aggressive express pipeline removes

all pipeline stages in a traditional VC router and is only left with the LT stage, which

makes the one hop to pass the VC router be reduced.

Head flit BW SVA ST LT

Body/tail
flit BW SA ST LT

00

Head flit ST LT Head flit LT

Body/tail
flit ST LT Body/tail

flit LT

(b) (c)

Figure 3.5. EVC router pipelines [36]. (a) Non-express pipeline, (b) Express pipeline, (c)
Aggressive express pipeline.

As many packets going through EVC paths skip pipelines of intermediate routers,

average hop count is reduced and thus average packet latency is decreased. Given a

particular topology and routing scheme, network throughput is largely determined by

the flow control mechanism. The EVC flow control is able to build particular

communication flows in the network, thereby improves resource utilization and

reduces contention, and thus pushes network throughput. In addition, the total energy

that a flit consumes at a router is given as [49]:

E router = ^wrt + ̂ read + ̂ arb + ̂ xb �

where E^n and Bread are the energy dissipated by buffer write and read, Earb is the

energy consumed by control logic, including routing computation, VC allocation,

switch allocation etc., Exb is the energy to traverse the crossbar switch. Ideally, Ewrt,

Bread, and Earb Can be entirely saved for an EVC flit when the express pipeline is used.

Even Exb can be saved if the aggressive express pipeline is applied.

3.3.2 EVC router microarchitectures

Some router components are added/changed to realize the EVC flow control

compared to the generic VC router micro architecture that is shown in Figure 1A (a).

Figure 3.6 presents EVC router microarchitectures. Differences of EVC source, sink,

and bypass routers from the generic VC router are filled by different patterns.

For an EVC source router, a separate EVC allocator is added to allocate EVC lanes

for packets that will travel EVC paths. For an EVC bypass router, the crossbar switch

will remain unchanged in the express pipeline. Otherwise, it will be aggressively

designed to bypass the ST stage as well in the aggressive express pipeline. For an

EVC sink router, some NVC lanes are changed to EVC lanes to buffer packets

travelling on EVC paths.

Credit out 0

Input chanr

Credit out 4

Input chanr el 4

e]0

EVC lane

EVC lane
^ ^ ¥

NVC lane

N V C i ane

Route computation

N V C allocator N V C allocator

Switch allocator Switch allocator

Input port 0

Output

Input port 4 Crossbar(5 x 5)

Credit in

Output c liannel 0

channel 4

Change at a source router Change at a bypass router Change at a sink router

Figure 3.6. EVC router microarchitectures.

3.3.3 Static EVCs network

Figure 3.7 presents a static EVCs network based on a 5x5 mesh. Like the express

cube network that is demonstrated in Figure 3.2 (a), express channels are those

channels that connect a subset of routers to their v-router away neighbors. The only

difference is that express channels in a static EVCs network are virtual channels

whereas those in an express cube network are physical channels. Express virtual

channels are inserted regularly along X and Y dimensions and all of them have a

uniform interval. Thus, the uniform interval, v, is the most important parameter for a

static EVCs network when network topology and routing strategy are defined.

Let us illustrate how to utilize EVC paths by an example. Assume that the PE

connected to router 01 sends packet A to the PE connected to router 34. Packet A

travels form the source to the destination in the following steps. 1). It flows from

local port of router 01 to west port of router 02, going through all pipeline stages of

router 01. It is then buffered in an NVC lane at west port of router 02 because it does

not travel along the EVC path that is from router 00 to router 02. 2). Since the EVC

path from router 02 to router 04 is on the routing path of packet A (assume XY

routing scheme is used), packet A travels from west port of router 02 to west port of

router 04 along this EVC path. It goes through router pipelines of router 02, skips

router pipelines of router 03，and is finally buffered in an EVC lane at west port of

router 04. 3). Like the step 2, packet A goes through the EVC path from router 04 to

router 24. It propagates router pipelines of router 04，skips router pipelines of router

14，and is buffered in an EVC lane at south port router 24. 4). Packet A flows from

south port of router 24 to south port of router 34. 5). Like step 1, packet A goes from

south port to local port of router 34. In summary, packet A goes through five hops

(01, 02，04，24, and 34) and skips two hops (03 and 14). Compared to the generic

mesh network, two hops are reduced.

啊 ^ 一 一乂

physical channel

Express virtual
channel

Figure 3.7. Example of a static EVCs network.

Many rules are used to constrain insertion of EVCs in a static EVCs network. They

e summarized as follows.

EVC paths are inserted in a bidirectional manner. It means that an EVC path

will be inserted from vj to r, if an EVC path is inserted from n to rj. For

simplicity, a pair of EVC paths, one in each direction, is represented by one

green and dotted line in Figure 3.7. This is the same as insertion of EPC paths.

However, inserting EPC paths in a bidirectional fashion aims to keep the

number of input ports equal to the number of output ports for EPC routers.

Nevertheless, this is unnecessary when EVC paths are inserted because adding

an EVC path does not add any input port. This rule often leads to bad EVC

paths to be inserted, for example, the EVC path from router 00 to 02 in Figure

3.1.

• All EVC paths have a uniform interval. The uniform interval, v, is the only

one parameter to determine architecture of a static EVCs network for a given

topology. Efficiency of EVC paths is heavily dependent on their utilizations.

In other words, higher efficiency will be achieved if more traffic loads travel

along EVC paths. However, although the uniform interval makes the EVC

insertion algorithm very simple, it always leads to low efficiency because

routers that have large communication loads between each other do not have

the uniform interval in most networks.

• EVC paths are restricted to be along one dimension, either X or Y dimension.

Thus, packets have to go through all router pipelines when turning to a

different dimension.

• Routers are distinguished as either an EVC source/sink router or an EVC

bypass router. This is to say, an EVC source/sink router can never be bypassed.

This rule prevents some good EVC paths from being inserted as well.

Especially, bypassing an EVC source router always saves more energy

because an EVC source router consumes more energy than a generic VC

router (normal router) due to added control logic.

CHAPTER 3. POWER-EFFICIENT EVC INSERTION METHODOLOGY 66

3.4 APPLICATION-SPECIFIC EVCS INSERTION
METHODOLOGY

3.4.1 Problem formulation

Given an application communication graph CG, a topology graph TG and a

mapping function M [50], communication volumes between network routers can be

calculated, where is the start point of our work. A 2D mesh topology with mx« tiles

is studied. However, the proposed algorithm can be applied to other topologies with

small modifications.

Simply stated, assuming a reasonable mapping (it means that the mapping is

optimized for some objective) has been done from an application to a network

topology, our objective is to decide which router pair should an EVC is inserted to,

such that the maximum power saving is achieved. We firstly make some definitions

to formulate the problem.

Definition 1: A router communication graph, RCG = G(R’C), is a directed graph,

where R is the set of routers and C is the set of communications. For a

communication Cy ^ C, Cij represents the communication volume from a source

router n to a sink router r；. In other words, Cjj only includes the traffic generated

from Vi and consumed by rj.

Definition 2: A router aggregate communication graph, RAG = G (R, A, B), is a

directed graph, where R is the set of routers, A is the set of aggregate

communications between router pairs, and B is the set of aggregate communications

travelling routers. For an aggregate communication atj ^ A, atj means the aggregate

communication load from n to r；. Note that a^ includes all the traffics flowing from

n to rj. For an aggregate communication bi E B, bj denotes the aggregate

communication travelling r,. The calculations for aij and bi are explained in Section

3.4.2.

In addition, many parameters are used in this thesis chapter. They are listed in

Table 3.1 for reference.

Table 3.1. PARAMETER LIST FOR AS-EVC INSERTION

Parameter Description

DM
Manhattan distance travelled by a message.

DMij ^\ix-Jx\ + \iy'Jy I

DV Virtual distance travelled by a message. The computation is
illustrated in Figure 3.8.

E Energy consumption of a component.

/
c支/

The normalized inter-router communication volume, j) =
I,] ll.CiJ

I J 右I “

g The routing algorithm related coefficient.

a
Aggressive express pipeline: a=0.
Non-aggressive express pipeline: a=l .

P The energy ratio of a crossbar to a router.

入 The energy ratio of an EVC source router to a normal router.

y" The average inter-node distance.

12

(3 0)

(2 0)

(1 0)

0
(0 0)

1 3 1 4

i (3 1) i (3 2)

1 9 ； ' 1 0

1 (2 1) 丨 1 (2 2)

1

5 {

(”） i

6

(1 2)

1

(0 1) —

2

(0 2)

1 [3 ? L

(2 3)

(1 3)

physical channel

. E V C path

3

(0 3)

DM,2 7=5
DVi2^ =DVi

=1 H
= 3

DV�4II + DV]]
1

Figure 3.8. Illustration of DVij computations. DVi2,i4
skipped. Similarly, DV1441 is 1 because r" is skipped.

(DM12,14 minus 1) because rjj

Using these notations, the problem to insert EVCs in an application-specific way

can be formulated as follows.

Given

• The router communication graph RCG
• The deterministic routing algorithm
• The EVC insertion rules

Determine

• The set of EVCs to be added

Such that

• The power saving is maximized, subject to the EVC insertion rules.

Our algorithm inserts the most beneficial EVC at every iteration and it stops as

soon as a pre-set threshold is checked. For low-power NoCs, the pre-set threshold is

the minimum energy saving by an EVC path. It is set as zero in our experiments to

achieve the maximum total energy saving for a network. Also, it can be defined as a

non-zero value to prevent EVC paths with low energy savings from being inserted.

Besides, other objectives，such as minimizing average packet latency, can be set to

replace the goal of maximizing power saving.

CHAPTER 3. POWER-EFFICIENT EVC INSERTION METHODOLOGY

3.4.2 Determination of the most beneficial EVC

The Qij and b! in a. RAG are denoted as

�

(3)

卞q EC

where g(i,j,p,q) is 1 when the routing path from r； to rj is covered by the routing path

from Vp to rq. Likewise, z{i,p,q) is 1 if n is covered by the routing path from rp to � .

Otherwise, they are zeros. The computations for ay and b,- are illustrated in Figure 3.9.

Both traffics from rj4 to r^ and traffics from ru to is have to flow from rl3 to r8, so

a 13J is the sum of Ci4j and c；̂ ,̂ , say 200MB. However, only traffics from ri4 to r^

flows from rj2 to r- so that a u j is 100MB. bis is 300MB because all of Ci4j, c!3,8,

and C]3j3 must traverse n3.

Cn,i5.
•Cl4�4

• Cis.s

• ai3,8
• bi3

12
(3.0)

13
(3.1)

14
(3,2) 一 �

15

�(¥)

8
(2,0)

9
(2.1)

10
(2,2)

11
(2.3)

4
(1.0)

5
(1.1)

6
(1,2)

7
(1.3)

0
(0.0)

1
(0,1)

2
(0,2)

3
(0,3)

Clijs = WOMB
ci4j = lOOMB
ci3,s = 100MB

Then:

=200MB
ai2,4= Cuj^l + Cb.8

=WOMB
bl3 = C 13,15 xi + Ci4,4 xi + CJS.S xJ

=300MB

When

includes

Figure 3.9. Illustration of â - and bi computations.

a flit travels from a source router to a sink router, total energy consumption

energy consumed by routers and energy consumed by links. Energy

consumed by links is the same whether or not a flit uses EVC paths because the total

distance of links traversed by the flit remains the same. Therefore, it is unnecessary

to analyse energy models of links. Only energy reduction and overhead models of

routers are required to be built.

Figure 3.6 presents microarchitectures for EVC source, sink, and bypass routers.

At an EVC source router, control logics are the main overhead. We expect energy

cost of the added control logics is small since router energy is dominated by data path

instead of control path [33]. At an EVC sink router, there is no buffer overhead when

we assume total buffer lanes in sink input ports remain unchanged. They are divided

into EVC lanes and NVC lanes. Meanwhile, there is no control logic cost because

packets stored in EVC lanes are processed in the same manner as those stored in

NVC lanes. Therefore, there is no energy cost. At a bypass router, there are little

additional bypass setup logic and wires when aggressive express pipeline is applied.

To simplify the following analysis, we ignore little energy cost at a bypass router and

only take into account energy cost at an EVC source router.

EVC path

N: a normal router
B: a bypass router
Source: an EVC source router
Sink: an EVC sink router

(t:

Figure 3.10. EVC reduces energy consumption.

Figure 3.10 illustrates the application of an EVC to a linear array. A regular linear

array is shown in Figure 3.10 (a). The Manhattan distance is DMq and the aggregate

communication volume is a". Router energy consumption to transmit aij from to rj

isio

Ea\ = X D M i j X Eyouter (4)

A linear array with an EVC path is shown in Figure 3.10 (b). Energy consumption

to traversing Oy from r； to rj is

Ea2 = %j X Erouter + x 一 1) x a x 五义办(5)

where the first component is the EVC sink router energy dissipation and the second

component is the energy to bypass the DMjj-l intermediate routers. Therefore, the

energy reduction is

^ a = aijx{DMij - l) x (l - a y ?) x £•購胁 (6)

On the other hand, the energy cost caused by the EVC router r, is

AE^=bix(A-l)x Erouter 0)

Totally, the energy saving of this EVC insertion is calculated as:

H D I ^ j - l M \ - a J ^ - b i ^{X-l)yEroute} (8)

The equation (8) shows that energy saving is highly related to the aggregate

communication volumes ciij and bi, which highlights the significance to insert EVCs

in an application-specific fashion. Also, it shows that a longer EVC path has larger

energy reduction. However, the interval for EVC insertions should be carefully

� The energy dissipation to travel the EVC source router r, is not included in Eg. Instead, it is
included in Et,.

selected because a long EVC path occupies many physical channels of intermediate

routers.

3.4.3 EVC insertion flow

The flow of a greedy insertion algorithm is described in Figure 3.11. When no pre-

set threshold is hit, the algorithm keeps inserting the most beneficial EVC path in the

rest EVC paths.

The flow consists of two processes: EVC evaluation and EVC insertion. In the

EVC evaluation process, a RAG is firstly calculated based on a RCG and routing

algorithm inputs. Then, EVCs are inserted for all possible pairs of routers. Next,

energy saving for each EVC path is computed using the energy models. Meanwhile,

an EVC table is generated, with the most beneficial EVC being on the top while the

least one being at the bottom.

The EVC paths in the EVC table are then inserted in the EVC insertion process in

an iterative way. At each time, the top one in the EVC table is firstly selected. Then,

it is checked whether or not this EVC violates any EVC insertion rule. If no violation

happens, the information about this EVC is stored in the inserted-EVC set. Otherwise，

this EVC is removed from the top of the EVC table and the next EVC is selected.

This procedure repeats until a pre-set threshold is hit. Once this takes place, output

the inserted-EVC set.

� R C G) (Routing algorithm^

Figure 3.11. Greedy insertion algorithm.

Each EVC insertion has to comply with several rules. Firstly, it can not contend

physical channels which have been already occupied by the previously inserted

EVCs. That is to say, no EVC overlapping is allowed. Secondly, a router can have

maximum four EVCs, including both EVCs sourcing from it and EVCs sinking at it.

These rules reduce the EVC insertion flexibility, and thus result in some good EVCs

can not be added. However, they make EVC control logics simple to be implemented.

Thirdly, an EVC path can not exceed the maximum insertion interval because a long

EVC path occupies many physical channels. Although it reduces large energy

consumption, it prevents a lot of following EVCs from being inserted. Totally，it

always leads to bad results.

CHAPTER 3. POWER-EFFICIENT EVC INSERTION METHODOLOGY 74

3.5 EVALUATIONS

3.5.1 Experimental infrastructure

The AS-EVC insertion methodology was evaluated for both synthetic and real

traffic loads. We compared normal mesh networks (baseline), mesh networks with

static EVC insertions (static EVCs) [36], and mesh networks with AS-EVC

insertions for each traffic pattern. We estimated power savings using proposed high-

level models for each topology and traffic pattern as the interval of static EVCs

changes from two to five and found that the maximum power savings are all obtained

at the interval of two. Thus, the interval of static EVCs is fixed as two for all traffics.

Similarly, the maximum AS-EVC intervals for various topologies and traffic patterns

are determined (Table 3.2). X is set as 1.05 and p is defined as 0.25 empirically.

Table 3.2. THE MAXIMUM EVC INTERVALS FOR AS-EVC.

Topology Traffic Max interval

A ^ A
uniform 2

4 x 4
transpose 4

uniform 2
0 X 0

transpose 4

10x4 apsi, gzip, swim, parser 4

A baseline router has five ports, four FIFOs per input port, and four-flit deep

buffers for each FIFO. A flit is 69-bit wide, consisting of 64-bit payload and 5-bit flit

control overhead. Some router microarchitecture optimizations such as look-ahead

routing, combined VC and switch allocation were incorporated in the baseline router.

If an input port is the sink port of an EVC path, four FIFOs at this port are divided

into two EVC lanes and two NVC lanes. Aggressive express pipeline was used

unless otherwise stated.

NoCs supporting EVC flow control was modelled using SystemVerilog. After

EVC insertions, corresponding input ports at EVC sink routers have two NVC lanes

and two EVC lanes. Thereby, the numbers of NVCs at input ports are no longer

uniform. Some of them have two NVC lanes whereas others have four NVC lanes.

Our models handle this problem by setting the number of NVCs at each input port as

a parameter. All arbitration logics for NVCs are also controlled by the parameter to

reduce control logic redundancy.

Instead of using high-level models for fast power evaluations, power evaluations

were performed in post-synthesis stage for two reasons. Firstly, the accuracy is

acceptable because we don not need to calculate power dissipations of inter-router

physical links that consume the same power for the three compared architectures.

Secondly, effort to do post-layout evaluations for a wide range of traffic patterns is

unacceptable. UMC 130nm library with 1.2V power supply voltage was applied. All

simulations run at 250MHz. For each traffic pattern, to ensure the compared three

NoCs have nearly the same throughput when their power profiles were obtained, the

injection rate was set before any of the three NoCs enters saturation.

3.5.2 Synthetic traffic loads

We considered uniform and transpose as synthetic traffics. Uniform traffic

assumes randomly distributed destinations. Transpose traffic assumes the destination

node for packets generated by a node is always the symmetric node with respect to

the diagonal. Therefore, it achieves the maximum degree of temporal locality.

The average inter-node distance is an important dynamic property of networks

because it represents the average number of routers travelled by packets. It is

computed aŝ ^ [46]:

^ = % Z f i j i D V i j + l) (9)
I J共

Clearly, fj. determines average packet delay without contention, and power

dissipation of routers. A larger reduction of jj, indicates that larger power reduction

may be obtained. Meanwhile, it is easy to be computed. Hence, it is a useful metric to

estimate the power effect of EVCs insertion in the early stage. However, a larger n

decrease does not definitely mean a higher power saving because it assumes an ideal

condition where power consumption of a router can be entirely removed if it is

bypassed and no power overhead is generated by EVCs insertion.

Let us firstly demonstrate the impact of EVCs for a 4x4mesh network (Figure

3.12). Compared to the baseline, static EVCs reduces total router power by 6.81% for

uniform traffic. This reduction increases to 7.41% when using AS-EVC. For

transpose traffic, the power reduction is 8.44% and 23.49% for static EVCs and AS-

EVC respectively.

Compare AS-EVC with static EVCs. When the traffic changes from uniform to

transpose, power decrease by static EVCs shifts a little from 6.81% to 7.41%.

However, power reduction by AS-EVC increases significantly from 8.44% to

23.49%. This claims that AS-EVC effectively exploit the characteristics of the

highly-specific transpose traffic whereas static EVCs loses a huge optimization room

Use DVij + 1 instead of DVij because we assume that a packet takes one hop to eject out at the
sink router.

because it considers transpose traffic in the same way as uniform traffic. Normalized

average inter-node distance (Figure 3.13) supports this conclusion as well. Reduction

of u by static EVCs only grows from 15.68% to 16.73% while it rises significantly

from 18.96% to 39.80% when applying AS-EVC. Figure 3.12 (b) compares total

router power savings of the two methods for the same traffics. AS-EVC outperforms

static EVCs by 23.98% for uniform traffic, and 216.99% for transpose traffic.

Scalability analysis. To evaluate the scalability of AS-EVC, we investigate a

6x6mesh network under the same two traffics (Figure 3.14). As can be seen, AS-

EVC continues to show a considerable power gain as compared to the baseline, with

the power reduction of 11.01% under uniform traffic and 20.48% under transpose

traffic. However, the gain over static EVCs decreases when network size increases.

AS-EVC only reduces power 2.45% more than static EVCs for uniform traffic. It

implies that static EVCs scheme is enough for large networks with randomly

distributed loads. However, the improvement is still pronounced for transpose traffic

where static EVCs saves 17.6mW while AS-EVC reduces 36.5mW, with 107.31%

more power saving.

It is interesting to observe that power saved for a 6x6network (20.48%), under

transpose traffic, is smaller than a 4x4 network (23.49%) although the former

(48.31%) obtains a bigger u reduction than the latter (39.80%). It indicates that

although power reduced by bypassing intermediate routers for a 6x6 network is

bigger than a 4x4 network, power overhead caused by EVC source routers for a

6x6network is bigger than a 4x4 network, and the second effect overwhelms the

fist effect.

6 81% 6C.

| i
£ g 2 0 0

I f
5 S IOC

7 4] %
23 49®.

c
 c

4
 2

T
 一)

s

1

216 99%
23 1 98% ~1

‘ f H »,. •pJ
5 rrr

• • 1
1

~ ‘ •

I~~j baseline

• static EVCs

！~ i AS-EVC

ifonn Transpose

(a) (b)

Figure 3.12. The entire NoCs power for a 4x4 mesh network.

w

7
 5

o

L
 n
^

 n
^

 n
^

9
P
C
U

3
浮
J
9
A
E
 p
9
Z
一
I
B
U
U
O
f
s
l
^

15.68%
18.96%

16.73%
39.80%

25.22%
27.10%

26.05%
48.31%

Uniform
4x4

Transpose
4x4

Uniform
6x6

baseline

static EVCs

AS-EVC

Transpose
6x6

Figure 3.13. Normalized ^ for synthetic traffics.

l |
g. i

芒.
S 3 c/> C
8

B

400

200

IC 73%

11 0】％

6C

9 86%
2C 48%

4C

=X)

2 45%

107 31%

I _ I baseline

园 static EVCi

• AS-EVC

Umform Transpose ” Uniform ‘ Transpose

(a) (b)

Figure 3.14. The entire NoCs power for a 6x6 mesh network.

Impact of express pipelines. Figure 3.15 shows power for a 4 x 4 mesh network

when the express pipeline is applied. As expected, compared to the aggressive

express pipeline (Figure 3.12 (a)), less power consumptions are saved for both

uniform traffic and transpose traffic. For instance, the express pipeline reduces power

by 5.85% whereas the aggressive express pipeline saves power by 8.44% for uniform

traffic when the AS-EVC scheme is used. The main reason is that packets flowing

through an EVC path have to traverse crossbar switches at intermediate routers at the

express pipeline.

600

o

o

o

o

4

2

L
u
)
 u
o
f
l
d
L
u
n
s
c
o

J
9
M
0
d

3.04%
5.85%

4.58%
19.10%

baseline

static EVCs

AS-EVC

Uniform Transpose

Figure 3.15, Power at express pipeline.

3.5.3 Real traffic loads

The benchmarks in the Minne-SPEC suit [51] were used to evaluate the impact on

realistic traffics. Firstly, a benchmark in the Minne-SPEC suit was fed into the

TRIPS on-chip network {OCN) simulator to capture an OCN traffic trace. This OCN

trace was then applied to a traffic decoder to generate a RCG. OCN is a wormhole

routed, 4x10 mesh network with YX routing. It serves as an infrastructure to

interconnect the two TRIPS processor cores, the individual banks that form the

second level cache and the I/O units [52, 53]. We equivalently mapped OCN to a

10x4 mesh with XY routing since our AS-EVC algorithm and router models are

based on XY routing.

Figure 3.16 present simulation results of Minne-SPEC benchmarks. These graphs

follow the same trend as the experiments for synthetic traffics，with AS-EVC clearly

outperforming both baseline and static EVCs structures. Power reduction compared

to the baseline architecture is above 12% for all tested benchmarks, with the most

(15.82%, 31.3mw) for gzip and the least (12.99%, 30.1mw) for apsL This is a

significant improvement because the power reduction is not over power of a single

router component, but over total power of all routers in a NoCs. The gain over the

static EVCs is bigger than 35% for all traffics, with an average value of 57,14%, The

largest improvement is seen for gzip. While the static EVCs reduces 17.5mw, the

9 Am
12.99% 8.85%

15.82%

10.0
14.20°/c

9.22%
\5.6tVc

baseline

static EVCs

AS-EVC

AS-EVC decreases 31.3mw (78.86% more). The AS-EVC obtains this improvement

by inserting only 20 EVC paths for gzip, 32 less than the static EVCs.

Apsi Gzip Parser

(a)

Swim

o

o

o

o

6

4

2

1
)

 d
y
v
d

A
q

如
u
 一
>
B
S
 J
9
M
o
d
 J
S
J
n
c
y

38.07% 78.86% 41.85%
69.77% baseline

static EVCs

AS-EVC

Apsi Gzip Parser Swim

(b)

Figure 3.16. The entire NoCs power for TRIPS OCN traffics.

3.5.4 Detailed area and power profiles

To further demonstrate how EVCs technique reduces power, we analyze total

standby power and total stream power. Since consistent results have been obtained

for the TRIPS OCN traffic loads, we report only the results for swim benchmark.

Total power of NoCs consists of standby power and stream power. NoCs

dissipates a lot of standby power even when it is completely idle. It is a fixed cost for

a specific architecture. Stream power represents additional power when packets

stream from their sources to their sinks. More stream power is consumed if more

packets are processed.

c

o

o

o

o

3
 2

 1

<
M
u
i
)

 u
o
p
d
l
u
n
s
u
o
o

j
3
A
v
o
d
 J
w
l
n
o
-
y

The principle of the EVC flow control is to skip some operations in intermediate

routers as packets flow along EVC paths. In other words, the EVC technique can

only save stream power. No power can be reduced by the EVCs technique if no

packets are routing. On the other hand, it increases standby power because it requires

some extra control logics. As seen in Figure 3.17, standby power overhead is 1.50%

for the AS-EVC. It increases to 3.22% for the static EVCs in which more EVC paths

are inserted. However, stream power is reduced by 20.09% and 12.43% for the AS-

EVC and the static EVCs respectively.

The number of logic gates of the entire AS-EVC NoCs for swim traffic goes up

from 1683.13K to 1720.74K, which only increases 2.23%. A single normal router has

47604 logic gates. The area of EVC source routers with different number of source

paths and EVC bypass routers with various number of bypass paths is summarized in

Table 3 (EVC sink routers have the same area as a normal router, so the area of them

is not reported.). It shows that adding four source paths only increases area by 7.89%

and area overhead of adding bypass paths is even smaller. The area overhead is

significantly smaller than that caused by the EPC technique (changing a five-port

router to a six-port router increases the area by 26.7% [46]). Thus, the EVC

technique is highly scalable in terms of area.

Table 3.3. AREA OF SOURCE AND BYPASS ROUTERS.

12.43%
20.09%

_ -3.22%
1 » 1 r 1 • 'r ' I '

- 1 . 50%
；! * > *

baseline

static E，

AS-EV(

Standby Stream

Figure 3.17. Power profile for the TRIPS OCN swim traffic

VC;

c

t_

I

o

o

o

3
 2

 1

(
A
v
l
u
)
 u
o
j
l
d
l
u
l
l
s
u
o
o

j
S
A
v
o
d
 j
s
j
n
o
y

Source router Gate count Bypass router Gate count

1-EVC 49295 (3.55%) 1-bypass 47781 (0.37%)

2-EVC 50179(5.41%) 2-bypass 47960 (0.75%)

3-EVC 51092 (7,33%) 3-bypass 48140(1.13%)

4-EVC 51359 (7.89%) 4-bypass 48347(1.56%)

3.6 CONCLUSIONS AND DISCUSSIONS

We have proposed a novel, application-specific methodology to insert EVC paths

for low-power NoCs in this thesis chapter. A RAG is firstly defined to help designers

clearly know communication characteristics of an application. Then, simple power

reduction and power overhead models are built to calculate power savings for all

possible EVC paths. Finally, a greedy algorithm is applied to add EVC paths in an

iterative way, subjecting to some insertion rules. In a word, for an application, the

AS-EVC method is able to quickly insert appropriate EVCs early in the design stage.

We compared power consumptions of the baseline NoCs, the static EVCs NoCs,

and the AS-EVC NoCs through VLSI implementations. Experiments on both

synthetic and realistic workloads show that the AS-EVC NoCs achieve great

improvements over total power of all routers compared to both the baseline and the

static EVCs NoCs.

However, there are several directions to improve or extend the AS-EVC

methodology. They are described as follows.

3.6.1 Build accurate power models

The main purpose of this thesis chapter is to study the effect of exploiting

communication characteristics of applications during EVCs insertion on power

consumptions. Although high-level power models are built to estimate power savings,

they are inaccurate and are just used to compare different EVC paths. The models

emphasize the impact of communication volumes but ignore accuracy of router

power consumptions. Therefore, power estimations using the high-level models are

not accurate. Table 3.4 shows router power savings of the AS-EVC NoCs over the

baseline NoCs for TRIPS OCN traffics. Power savings estimated using the high-level

models are much exaggerated. For example, the high-level models estimate a power

saving of 28.29% for the apsi traffic. But the real power saving obtained from ASIC

tools is only 12.99%.

Table 3.4. ROUTER POWER SAVINGS FOR TRIPS OCN TRAFFICS BY AS-EVC NOCS.

Traffic patterns Estimations through
high-level models

Evaluations through
ASIC tools

Apsi 28.29% 12.99%

Gzip 39.07% 15.82%

Parser 32.01% 14.20%

Swim 33.85% 15.65%

The high-level power models are inaccurate because we make several assumptions

to simplify analyses. First, router energy is entirely saved when an EVC flit skips an

EVC bypass router. This assumption is too optimistic because only part of router

energy can be reduced in reality although an EVC flit skips all pipeline stages of an

EVC bypass router. Second, when a NVC flit traverses an EVC source router, it

consumes 1.05x energy than traversing a normal router no matter how many EVC

paths originate from this router. Actually, an EVC source router with more EVC

paths consumes more energy. Third, when a NVC flit goes through an EVC bypass

router, it consumes the same energy as what it consumes to pass a normal router. In

fact, the NVC flit consumes more energy because some logic is added in an EVC

bypass router.

Thus, an important improvement is to build accurate high-level energy saving and

overhead models. It will have two advantages. First’ it can help designers evaluate

power savings of EVCs insertion in early design stage. Second, it helps to compare

EVC paths accurately and thus insert better EVC paths.

3.6.2 Allow EVC overlapping

Currently EVC insertion does not allow any kind of EVC overlapping. This is to

say, two EVC paths can not share the same physical port. Let us illustrate this rule by

an example (Figure 3.18). Assuming EVC 1 (from r； to r^) has already been inserted,

neither EVC 2 nor EVC 3 can be inserted because they overlap with EVC 1.

However, in fact, conflictions only happen when two EVC flits simultaneously ask

for the same output port at an EVC bypass router. Therefore, rules for EVC

overlapping should be:

• An EVC source port and an EVC sink port can definitely be overlapped

since an EVC flit is processed in the same way as a NVC flit at EVC

source/sink routers.

• All EVC bypass input port can certainly be overlapped because at most

one EVC flit arrives at the input port in each clock cycle.

• An EVC bypass output port at an EVC bypass router can be overlapped if

the EVC paths share the same EVC bypass input port at the same EVC

bypass router.

Under the new EVC overlapping rules, both EVC 2 and EVC 3 can be inserted

after EVC 1 is inserted. It is obvious that the new rules increase flexibility of EVCs

insertion and do not lead of conflictions. Although control logic will become more

complicated, we believe that gains are significantly larger than overheads.

EVC 2

！ 1

rs rs EVC 3 rs rs
/

rs

Overlappings

Figure 3.18. Illustration of EVC overlapping.

3.6.3 Compare the EVC with the EPC

Another future direction is to compare application-specific EVCs with application-

specific EPCs. On the one hand, inserting EVCs obtains latency, throughput, and

energy gains with low costs. However, as a flow-control technique, the EVC benefits

global packets at the cost of increasing contention delay of packets those are locally

buffered in EVC bypass routers due to the shared buffers, crossbar and physical links.

On the other hand, inserting EPCs reduces latency for global packets without

blocking packets that are traversing EPC bypass routers. Nevertheless, power and

area costs of fatter routers are too high. We suppose that the EPC is better for

performance-driven designs whereas the EVC is better for power-driven designs

although both the EPC and the EVC techniques can reduce latency and power. Thus,

it is an interesting direction to make a comparison of them or explore a mid-way

between them to exploit the best of both techniques.

CHAPTER 4. COST-EFFICIENT EVC NOCS IMPLEMENTATIONS 86

CHAPTER 4. COST-EFFICIENT EVC NOCS

IMPLEMENTATIONS

4.1 INTRODUCTION

Express virtual channel is a new flow control mechanism to reduce H through

virtually bypass intermediate routers [36]. The authors presented express pipelines,

EVC router microarchitectures and evaluated the EVC flow control by high-level

models. However, they did not address several important issues that are towards

implement the EVC flow control in realistic NoCs designs.

Optimization of EVCs insertion.

Hardware designs for EVC routers.

Buffer architecture for EVC networks.

Low-power techniques to realize power savings of EVC bypass routers.

Accurate and detailed prototypes and evaluations.

In Chapter 3，we concentrate on the optimization of EVCs insertion through an

application-specific method. Evaluations were performed for a wide range of

network sizes and traffic patterns because the objective is to validate the

effectiveness of the AS-EVC method. Thus, they were done in the post-synthesis

stage that is not the most accurate. Meanwhile, buffer architecture remains uniform

for simplicity. In this chapter, we will address the rest of the important issues and

contribute in the following aspects.

• We present detailed hardware designs for both EVC source routers and EVC

sink routers. At an EVC source router, a head flit process block is designed to

identify whether a flit goes though an EVC path and to load parameters for

new packets, A combined switch-VC allocator and its associated logic are

designed to allocate NVC and EVC lanes simultaneously, to control network

starvation, and to generate flags of EVC flits. At an EVC bypass router,

bypass setup logic and bypass datapath are designed for both express and

aggressive express pipelines.

• We propose a statistical approach to customize buffer architecture for

networks with EVCs. In this approach, the number of EVC/NVC lanes at each

input port is fully customized according to utilization statistics of these lanes.

Likewise，the buffer depth of EVC lanes at each input port is customized.

• We explore several conventional low power techniques to show how power

can be saved when an EVC flit is bypassing an EVC bypass router. Clock

gating is comprehensively studied to reduce both clock power and data-input

power of buffers. Operand isolation is explored to save power for control

components such as the RC and the SVA.

• We evaluate the baseline NoCs and the AS-EVC NoCs for the TRIPS OCN

under swim benchmark and a 4x4 mesh under transpose traffic. The

customized EVCs insertion is obtained through the AS-EVC method

presented in chapter 3. The customized buffer architecture is gotten by the

statistical approach. Accurate, detailed evaluations are performed on latency,

throughput, area and power based on RTL-level simulations and physical

implementations.

This thesis chapter is organized as follows. In Section 4.2，we describe related

work. In Section 4.3 and 4.4, the components for EVC source routers and bypass

routers are presented respectively. Section 4.5 proposes a statistical approach to

optimize the buffer architecture. Section 4,6 discusses several low-power techniques

for EVC routers. After that，the physical implementations for the entire NoCs are

presented in Section 4.7 and the results are reported in Section 4.8. Finally, we

conclude the chapter in Section 4.9.

4.2 RELATED WORK

4.2.1 Topological techniques

Design and implementation of an entire NoCs using technology below lOOnm

were explored in [35]. Lee et al. designed a low-power NoCs for high performance

Systems-oii-Chip [13, 54]. The physical implementation in ISOnm CMOS

technology shows that the NoCs consumes 51mW of power. In these works, the

topologies are fully customized to maximum network performances and to reduce

power costs. Accordingly, the number and size of routers are customized.

Although fully customized topologies can achieve high performance，they lead to

non-structured wiring which can be problematic. Problems like crosstalk and timing

closure may offset the advantages expected from customization. Also, many realistic

networks are not completely irregular. Hence, Ogras et al [17, 18] implemented a

4x4 mesh NoCs with application specific long links insertion. However, inserting a

new physical link adds a new port to both the end routers of the link, resulting in high

power and area costs.

We suggest a better approach so that customization can be fully exploited while

keeping the benefits of structured wiring and avoiding high-radix routers. On the one

hand, we improve network performances and reduce power through customized

EVCs insertion and customized buffer architecture. On the other hand, because long

virtual paths instead of long physical links are added, wiring remains structured and

the radix of routers is not changed.

4.2.2 Clock gating

Clock gating (CG) is one of the most successful and widely used techniques for

power reduction [55-58]. It dynamically shuts off the clock to blocks of a design that

are idle or not producing meaningful results. Power reduction of CG depends on

power consumed by the blocks and time to turn off them.

The basic idea of CG is to AND/OR the clock with an enable signal, so that a flip-

flop only receives the clock when the enable signal is logic high. Although adding an

AND/OR gate along the clock path is the simplest method, glitches on the enable

signal are propagated to the clock pin of the flip-flop and thus generate errors. Thus,

designers usually use integrated CG cells provided in standard libraries. As shown in

Figure 4.1, there are two kinds of CG cells: logic low disabled and logic high

disabled. The logic low disabled cell turns off the clock by keeping the gated clock

pin (gclk) logic low, which is generally used to disable positive edge-triggered flip-

flops. The logic high disabled cell is the opposite and is usually used to disable

negative edge-triggered flip-flops,

enable — _ enable
D

LATCH

CK

D

LATCH

CK

(a) (b)

Figure 4.1. CG cells, (a). Logic low disabled, (b). Logic high disabled.

Power consumption of a positive edge-triggered flip-flop is described as follows

assuming transitions on the data input signal D and a stable clock signal CK. In

gclk
Ik

x
y

AND
Ik

Figure 4.2 (a), the clock signal is logic high (CK=' 1'). Since the master latch is not

transparent in this case，only the input gate capacitances (marked bold) are reloaded.

Figure 4.2 (b) shows the situation when the clock signal is logic low (CK='0').

Transitions on the data signal affect the internal nodes (marked bold) of the master

latch and the gate capacitances of the slave latch. For this reason, the power

consumption of the flip-flop is much higher if the clock signal is stabilized as logic

low.

Master latch Slave latch

CK CKN

(a)

Master latch

CKP

CKN CKN

CKP

Slave latch

CKN

CKP
CKP

CKN

(b)

Figure 4.2. Schematic of a positive edge-triggered D flip-flop [59], (a). CK is equal to 1. (b). CK

is equal to 0.

CHAPTER 4. COST-EFFICIENT EVC NOCS IMPLEMENTATIONS 91

4.3 EVC SOURCE ROUTER

At EVC source routers, the control components need to handle both NVC flits and

EVC flits. Thus, special functions for EVC flits are added in some control

components. In this section, we present their designs.

4.3.1 Head flit process block

The format of a head flit is shown in Figure 4.3 (a). The packet type is used for

special purpose such as QoS. The output port ID (i?。）directs the head flit to the

appropriate output port of the current router. The hop counts in X direction and Y

direction are used to determine the appropriate output port ID in preparation for use

in the next router. Each input VC has a head flit process block. For normal routers,

the head flit process block (Figure 4.3 (b)) only extracts Ro and saves it to registers.

For EVC source routers, it needs to additionally detect whether a head flit can take

advantage of the EVC paths available by comparing the hop counts in the head flit to

the hop counts representing the EVC paths originating from this router. If an EVC

path is covered by the required route of the head flit, the head flit will go through the

EVC path. Otherwise, it will traverse a normal path.

The head flit process block determines when to update the R � a n d EVC identifier

registers and where to get the head information for update. It updates the registers for

a new packet at the cycle right before the tail flit of a packet is leaving. The R � a n d

EVC identifier registers are updated according to the input buffer and the Finite State

Machine (FSM) status of the input VC. When the head flit of a new packet is already

queued up in the buffer, Ro and H from this buffer are used. When a head flit destined

for this input VC is coming in, R�and H from this coming head flit are used. In cases

I
f
e
 蕭

業

-
4
’
"

聽 鍾 • 丨 _ i

M l i i l R l l
Input VC

(b)

Figure 43. (a). Head flit format, (b). Head flit process block.

4.3.2 Switch-VC allocator

The block diagram of a switch-VC allocator (SVA) and its associated logics are

depicted in Figure 4.4, The SVA combines VC allocation and switch allocation

together.

Each output port has an output VC control sub-block. The NVC status table keeps

detailed information of all output NVCs in the output port q, such as busy, empty,

full etc. The NVC selector searches for a NVC which is free to be allocated and saves

other than the two previously described situations, any invalid Ro and H (out of the

known range) are used.

i Packet
1 1
• Outent ^crt m 丨 X Hop count Y Hop count

1)
‘ Pay!oad ‘

(a)

Rc from input channel

6H
_ {•>1.、

_

its ID to the free-NVC FIFO. The output of the free-NVC FIFO indicates which

NVC can be first made available to those input VCs that are connected to the output

port q. If the output port g is an EVC source port, a set of EVC modules are required

to control the EVC lanes at the corresponding EVC sink port. Functions of the EVC

modules are the same as those in the NVC counterparts.

Each input VC has a resource availability check sub-block. It verifies whether the

input VC meets the requirements to generate a request based on the information from

the output VC control blocks. The NVC/EVC allocation check module works only on

head flits. A signal is set to be true if the free-NVC/free-EVC FIFO is not empty.

Otherwise, it is set to be false. Checking allocation condition has to be done before

generating requests for the input port arbiter because a check performed afterward

may cause deadlock dependency between the input VCs. The NVC/EVC credit check

module operates on all flits. It verifies whether there are buffer spaces available in

the assigned output NVC/EVC.

Each input port has a request generator for input port arbiter, an input port arbiter,

and a request generator for output port arbiter. The request generator for input port

arbiter creates valid requests for the input VCs which meet all the resource

requirements. The input port arbiter grants one of the requests. The request generator

for output port arbiter then determines which output port arbiter the winner will go to.

The winners from each input port proceed to the output port arbiter which selects one

among the winners. The NVC/EVC status table of the corresponding output VC

control block will be updated accordingly. In summary, NVCs and EVCs are

processed separately in both output VC control blocks and resource availability

check blocks. However, the arbitration blocks do not separate EVCs from NVCs. In

other words, they treat all input VCs the same way no matter which kind of output

VCs an input VC is eventually allocated. In addition, the NVC/EVC allocation and

the switch allocation share the same arbitration blocks. Thus, our proposed

architecture will have much lower design costs than that using separate arbitration

logics for NVC allocation’ EVC allocation, and switch allocation as presented in

[36J.

Each EVC path is provided a starvation avoidance block. At high injection rates, it

is possible that an EVC source router always sends EVC flits along an EVC path,

leading to NVC flits locally buffered at each EVC bypass router on this path may

never get a chance to use the crossbar and the physical channel. The starvation

avoidance block counts the number of EVC flits going to an EVC path. Once the

number hits a threshold, it stops sending EVC flits by blocking the corresponding

input VC requests. After stopping for some cycles, it resumes sending EVC flits and

the count. The avoidance logic is located at an EVC source router instead of EVC

bypass routers. As a result, no reverse starvation signals are sent from the bypass

routers to the EVC source router. This reduces wire costs and is really different from

the starvation con trol policy presented in [36].

Each EVC path is provided an EVC flit flag generation block as well. It generates

a signal each time an EVC flit wins the arbitration. It is sent out one cycle ahead the

EVC flit to set up each EVC bypass router in advance.

Figure 4.4. Switcli-VC allocator and the associated logics.

s
n
s
s
s
s
j
w
s
p
d
n
 I
S
J
U
S
S

？

u
o
l
u
q
j
v

s
j
j
o
d
)
n
d
u
j

J
3
l
{
J
0

 i
J
J
 S
J
3
U
U
!
乡

3
cr

o
S
0

1

I" ；3
O

e

复
1 1

个
-t—»
D-
1—<

t：
o

u.
B

cd

个
"S

1
1
C
&X)

a.

<2

t；
a-

Urn

B

.c3

b
 p
o
d
 j
n
d
j
n
o

j
o
j
 O
J
g
o
l

 u
o
f
j
B
.
a
i
q
.
i
v

d
 j
j
o
d
 j
n
d
u
f
 j
o
j

 U
J
如
q
 U
O
J
J
B
.
l
)
J
<
J
J
V

A
 j
j
o
d
 J
n
&
u
l

3
1
1
1

i
q

S
U
A
 J
S
i
p
o
 J
O
J

 S
1
§
S
J
S

罢
 pa
s
a
l

 J
I
B
A
V

n
 i
o
l
l
v

I

I

1
0
s

二
P
3
J
3

 u
>
z

l l
I

>
p
。
l
p

=
0
1
0
=
«

S
J
§
O
J
)
X
3
U

s
 芸
l
〕
A
.
3

i
o
J
4
i
 u
>

 1
鲁
0

S
J
S
J
n
s
 J
X
9
U
 s
j
f
p
9
j
;
3

i
 5
1
1
〕
A
3

5
3
B
S
〕
>
«

I
1

I
Q
T
 O
A
W
 O
J
I
J

 u
s

3
S
B
J
 S
5
B
4
S
〕
>
2

i
s
o
A
M

J
5
3
3
1
3
S

 3
>
N

O

二

2：

S

I X

—

O

二

2：

S

I X

—

O

二

2：

S

I X

O

二

2：

S

I X

b

 r
o
d

 j
n
d
j
n
o
 j
o
j

 o
一
w
o
l

一
O
J
l
u
o
o
 u
>

 I
s
d
j
n
o

A
 t
o
d
 j
n
d
u
j

 u
!
 <
t

 U
>

 L
^
l
d
u
j

 J
O
J

>
p
3
i
p
 y
C
j
二
}
q
B
l
!
B
A
B

 8
J
n
o
s
3
>
{

S
3
B
J
S

 u
>
m
o
>
z

3
A
3
0
A
N
 u
o
^

 }
X
3
N

4.4 EVC BYPASS ROUTER

In this section, we describe the bypass setup and the necessary changes to the data

path for EVC bypass routers under both express and aggressive express pipelines.

4.4.1 Express bypass router

Figure 4.5 presents the EVC bypass router microarchitecture under express

pipeline. We assume that an EVC path goes through the router input port io to the

router output port 02. Since a single crossbar input/output port is provided for each

router input/output port, the input/output port index of a crossbar is the same as that

of a router. The 2-1 multiplexes are added at the crossbar input port io to select

between EVC flits and NVC flits. EVC flits have priority over NVC flits so that an

EVC flit traverses the crossbar as soon as it arrives. To achieve this, the bypass setup

block must configure the crossbar to logically connect 02 to ig one cycle before the

EVC flit arrives. In this case, both io and 02 of the crossbar are reserved for the EVC

flit. As a result, no NVC flits can be sent from io and no NVC flits can be sent to 02

when the EVC flit is traversing the router. The bypass setup block informs the SVA

to stop granting any input VC in k and any input VC which is requesting an output

VC in 02.

CHAPTER 4. COST-EFFICIENT EVC NOCS IMPLEMENTATIONS

EVC_flit flags

Figure 4.5. Express bypass router microarchitecture.

4.4.2 Aggressive express bypass router

Figure 4.6 shows the EVC bypass router microarchitecture under aggressive

express pipeline. The 2-1 multiplexes are added not at ig, but at o?. As an EVC flit

arrives, it advances directly to the multiplexes and thus skips the ST stage. In this

architecture, the crossbar input port io is not reserved. It means that it is possible for a

flit buffered in input VCs of io to traverse the crossbar while an EVC flit is going

through the router. The crossbar output port 07 may not necessarily be reserved,

depending on when the EVC flit comes.

• A NVC flit f i traversed the crossbar and was saved in the ST pipeline

registers at 02 in the previous cycle. In the current cycle, an EVC flit f}

arrives and occupies the output channel. Hence,/； remains being buffered in

the ST pipeline registers. In this case, 02 must be reserved to prevent a new

NVC flit fs from going to it. Otherwise,/； will be overridden by力.

• No NVC flit was saved in the ST pipeline registers at 02 in the previous cycle.

In this case, there is no need to reserve 02’ which allows a NVC flit to travel

the crossbar to 02 when an EVC flit is passing the router.

EVC_flit flags

EVC flits

8

9

k

Bypass setup SVA Bypass setup SVA

Figure 4.6. Aggressive express bypass router microarchitecture.

4.5 CUSTOMIZED BUFFER ARCHITECTURE

As an EVC path is inserted, the buffer architectures of the input ports along this

path should be changed since the expected traffic will also change. As shown in

Figure 4.7, at the EVC sink port, some EVC lanes are added to store EVC flits.

Meanwhile, some NVC lanes are removed because less traffic is expected on the

NVC lanes. In addition, since EVC flits do not take up buffers in the EVC bypass

input ports, the number of NVC lanes in these bypass input ports can be reduced for

the same reason. Thus, it is important to determine how many EVC lanes will be

inserted so that the number of NVC lanes in the EVC sink port and in the EVC

bypass input ports can be optimized. Buffer optimization can then be extended to

other normal routers with small performance penalties.

EVC flits flow

NVC lane EVC lane

Figure 4.7. EVC flits flow.

We propose a statistical approach to customize buffer architecture. This idea is

based on two observations. First, buffer utilizations are widely different at various

input ports because they have different traffic characteristics. Second, assuming that

there are four buffer lanes in an input port but only two of them are utilized in most

cases, say 95%, removing two buffer lanes from this port will hardly affect network

performances.

Figure 4.8 presents a procedure to customize the number of EVC/NVC lanes for

input ports. Buffer architecture is initially set to be uniform. In step 2，we calculate pi

for each input port, pi is the probability that totally i EVC/NVC lanes are utilized in

an input port. In step 3, we determine the minimum number of EVC/NVC lanes for

each input port so that the accumulative utilization probability at each input port

reaches th‘ This process is represented in equation (10) where th is an adjustable

threshold, and M is the maximum number of EVC/NVC lanes allowed for an input

port. The parameter M is a design constraint because a large M generates costly

control logic. In steps 4 and 5，we evaluate network performances for the new

customized buffer architecture. If performances are acceptable, output the

customized buffer architecture in step 6. Otherwise, increase th and rerun steps 3, 4，

and 5. Likewise, the buffer depth for each input port can be customized. In this case,

we need to have the probability that totally i buffer spaces are utilized in an

EVC/NVC lane.

Figure 4.8. Buffer customization flow graph.

m
min(m), subject to X! Pi ^ th and \ <m<M (10)

We compared the uniform buffer architectures and the customized buffer

architectures for the TRIPS OCN under swim traffic and a 4x4 mesh under

transpose traffic. In the uniform architecture, each input port has four VC lanes in

total, with each lane accommodating four flits. If an input port is an EVC sink port,

four lanes will be equally divided into two EVC lanes and two NVC lanes for the

swim traffic but into three EVC lanes and one NVC lane for the transpose traffic.

The customized architectures are described in Figure 4.9 (a) and (b) respectively. A

threshold of 0.95 is used. The configuration for a local input port is given at the

comer of each box while the configurations for other input ports are placed against

the related edges. The number of EVC/NVC lanes for each input port is fully

customized. The depth of EVC lanes is also customized for each input port, ranging

from the maximum of six flits to the minimum of two flits. However, NVC lanes of

all the input ports have the uniform depth of four flits.

(000； (iOC；

1 0 C : (1 0 C :

(IOC： (I O C

(ioc:(io(:

(IOC： (1 2 4

(loc'doc;

(124：

0 : (IOC：

I I O C : (I O C :

(IOC；

(IOC； (IOC：

: : 1 1 0 C :

(IOC；

(114； (22

3 0 0 ; (1 2 e；

(IOC；

000： (IOC：

10C;(10C：

112：；

(IOC： (I O C

400； (IOC：

0； (IOC：

(2 0 0 : (1 0 C；

(113；

(000； (IOC

300：(000；

(IOC：

(IOC； (IOC

IOC； (000；
(IOC：

(000；

lO：： (200：

(000；

(IOC； (40C；

(000：

(21:； (200：

lOC 'J lOC； (300；(!2«： � 4 0 0 : (1 0 C :

(IOC： (IOC； (IOC；

200： (400； (200： (IOC； (200； (IOC；

3 0 0 : (1 0 C： (4 0 0 ' (1 0 C； i i o c : m c :

(IOC； HOC； (IOC：

IOC； (IOC： (IOC； (IOC； (IOC； (212；

10C;(10C： (1 0 C : (1 0 C : [2 0 0 : 1 IOC:

(123： (114； (IOC：

IOC； (IOC；

300： (000；

226： (IOC；

300；(000：

(300； (IOC：

(1 0 C : (0 0 0；

HOC： (124：

3 0 0 : (1 0 C：

(IOC； (IOC：

(ioc;aoc;

(IOC：

(125： (226；

(IOC；

(IOC： (IOC；

300： (IOC：

(IOC：

(1 2 f； (IOC：

300 丨（IOC:

<10C：

(IOC； (IOC：

10C: (10C：

(IOC：

(IOC：

(IOC； (IOC：

lOCIOOO；

112； (201

200：(226：

(IOC； (0 0

(2 0 0 : 1 IOC:

(IOC；

125； (IOC：

200： (IOC：

(IOC：

；(I2e；

(IOC；

X ' (IOC：

(000：

(IOC：

(I M ;

oo'doc;

(OOP：

(did:d3) d]: the number of NVC lanes; d:: the number of EVC lanes; d.-?: the depth of an EVC lane;

(a)

(400) (IOC) (IOC) (IOC)

(000) (100) (IOC) (30C) (IOC) (IOC) (100] (OOC)

(20C)(10C) (lOOKlOOl (300)(30C) (200(134)

(000) (000) (000) (OOO)

000.) (40C) (IOC) (100) (IOC) (40C) (100) (OOC)

100)(10C) (40C)(J24) (400(124) (40C)(20C)

(134) (300] (IOC) (IOC)

(000) (100) (IOC) (100) (30C) (IOC) (100) (OOC)

(20C)(10C) (400(100) (100(100) (20C)(40C)

(20C) (124) (124) (IOC)

(OOO) (100) (40C) (100) (IOC) (IOC) (400) (OOC)

(400(0001 (4 0 0 (0 0 0 (40C)(000) (10C)(00C)

(b)

Figure 4.9. Customized buffer architectures for the TRIPS OCN swim traffic (a) and a 4x4
mesh with transpose traffic (b).

Table 4.1 and Table 4.2 summarize the results. For the swim traffic, the total

buffer size drops from 2752 flits to 1112 flits, showing a big reduction of 59.59%.

For the transpose traffic, the total buffer size is reduced by 31.64%. There is no

deterioration in saturation throughputs for both traffics. It means that the customized

buffer architecture can achieve the same saturation throughput with much less buffer

than the uniform buffer architecture. Our synthesis results show that buffers account

for 78.95% of router area when a flit width of 69 bits is used. Thus, a customized

buffer architecture can save router area significantly with no performance

degradation. Besides, a NoCs consumes a certain amount of standby power that

mainly consists of leakage power and clock tree power. Thus, a customized buffer

architecture can save a large amount of standby power because buffers usually

dominate the leakage and clock tree power consumptions. Furthermore, control logic

of routers becomes smaller as buffers reduce, which leads to more area and power

savings.

Table 4.1. RESULTS FOR THE TRIPS OCN SWIM TRAFFIC.

Saturation
throughput

NVC
buffers

EVC
buffers

Total
buffers

Uniform 0.175 2536 216 2752

Customized 0.175 936 176 1112

Reduction 0.00% 63.09% 18.52% 59.59%

Table 4.2. RESULTS FOR THE TRANSPOSE TRAFFIC

Saturation
throughput

NVC
buffers

EVC
buffers

Total
buffers

Uniform 0.249 184 72 256

Customized 0.249 119 56 175

Reduction 0.00% 35.33% 22.22% 31.64%

Not only applicable to a single application system, the customized buffer idea can

be applied to a multi-application system through reconfiguration. In a multi-

application system, the buffers will be sufficiently sized so that all intended

applications can be adequately served. Then, customized buffer architecture for each

application will be obtained off-line and be stored in a look-up table. As the system

switches from one application to another, it looks up the customized buffer

architecture from the table for the new application and logically reconfigures the

physical buffers through power gating technique to turn on/off some buffers. In this

scenario, only power consumption is benefited because buffers are not physically

removed, but are only turned off. Since the customized buffer architectures are

calculated off-line and reconfigured on-line, no complex logics are needed to monitor

network loads and to adjust buffer architectures dynamically. Thus, area and power

costs are expected to be small. Compared to customized topologies [13-16, 35], the

customized buffer does not affect the structures of both routers and links so is easy to

be reconfigured. In short, the customized buffer can complement a regular topology

such as a mesh to support a large range of applications with reduced power

consumptions.

4.6 LOW POWER TECHNIQUES

The total power consumed when a flit proceeds through a router is expressed in

equation (1). Ideally, as an EVC flit skips an EVC bypass router, the Erouter for this

flit can be entirely saved. But this is not the case in real designs. In this section, we

present low power techniques to save power for router components.

4.6.1 Buffers

Input buffers are partitioned by virtual channel, with a separate FIFO being

provided for each VC. Each FIFO is implemented as a register file. In our example,

an input port has v VC lanes and each VC lane is capable of buffering d w-bit flits.

I ~ ‘ En2 - 1
CG ~ [> VClaneO"

VC clock L _ J

r ^ ：

Input port clock

E n � CG o

EVC_flit flags

Valid_flit flags

D>

t >

CG CG — > V C lane (v-l) CG

(a)

5
 o

1
1

Flit w .

l i

(b)

Figure 4.10. Clock gating at different levels, (a). Port level and VC level, (b). Flit level.

Ewrt mainly consists of two components: clock power and data input power. Clock

power includes both power dissipated by clock tree and power consumed by clock

pins of registers. Clock gating (CG), a well-know low-power technique, is often

applied to reduce clock power of buffers. As can be seen in Figure 4.10, CG may be

used in three levels: port level, VC level，and flit level. For simplicity, the inputs for

only one CG cell are shown at each level. A port level CG cell enables/disables the

clock for all registers in a port (vx Jxw bits). A port clock is enabled (Eni) when

there is a valid NVC flit at the input port. Once a port clock is turned off, it saves a

large amount of power. A VC level CG cell enables/disables the clock for registers in

a VC lane {d^w bits). A VC clock is enabled (En�) when a valid NVC flit is being

stored to any flit slot in the VC lane. When a VC clock is disabled, it saves a

moderate amount of power. A flit level CG cell enables/disables the clock for

registers of a flit (w bits). A flit clock is enabled (Ens) when a valid NVC flit is

addressing the particular flit slot. Disabling the flit clock saves only a relatively small

amount of power. However, the likeliness that a particular level of clock can be

turned off goes the opposite way. In other words, a flit level CG has the highest

probability of imposing itself while a port level CG has the least probability. Since

actual probabilities vary largely with network load, adopting an appropriate strategy

for a particular CG level highly depends on traffic scenarios.

To evaluate the effectiveness of the three CG levels, we built a 5-port router, with

4 FIFOs per port, 4 flits per FIFO, and 69 bits per flit. The router was physically

implemented in a conventional ASIC flow. Total power consumed by buffers of a

router was calculated based on back-annotated netlist and switching activities

generated from simulations. All simulations were run at 250MHz using uniform

traffic. Figure 4.11 shows the buffer power consumption for different CG levels. As

expected, all three CG levels save power in all traffic conditions. However, port level

CG only works well when injection rate is extremely low. As injection rate increases,

the power consumption increases quickly because the probability to disable a port

level clock reduces sharply. Both VC level CG and flit level CG are better than port

level CG for most injection rates. Also, VC level CG is better than flit level CG when

injection rate is smaller than 0.2. After that, flit level CG is better. On average, VC

level CG and flit level CG reduce power by 78.1% and 80.2% respectively compared

to the case that no CG is applied. Flit level CG is used in the implementation exercise.

50
—No CG
-A-Flit level
分 VC level

-t-Port level

0.2 0.3 0.4 0.5 0.6

Injection rate (flits/(node*cycle))
0.7 0.8

Figure 4.11, Comparison of different CG levels.

40

30

20

(
z
v
v
s
)

 u
o
p
d
i
s
u
s
 j
s
M
o
d
 j
s
j
j
n
g

-©-Logic low disabled
^Logic high disabled

0,2 0.3
Injection i

0.4 0.5 0.6
(flits/(node*cycle))

0.7

Figure 4.12. Compare of different CG cells.

In a FIFO, only registers for one flit will change values at each clock cycle while

the remaining registers are not altered. To reduce power consumed by the data inputs

to the remaining registers, we simply change logic low disabled CG cells to logic

high disabled CG cells. This works because the master latch of a flip-flop is not

transparent when a logic high clock signal is applied. As shown in Figure 4.12, logic

high disabled CG saves more power than logic low disabled CG in all traffic

conditions. On average, 13.35% more power is saved. However, using logic high

disabled CG cells leads to tight timing constraints on CG enable signals. The enable

signal is just required to be ready before the end of the whole previous cycle for a

logic low disabled CG cell because the enable signal can be passed to the output of

the latch when the clock signal is logic low (Figure 4.1 (a)). However, it has to be

ready in the first half phase of the previous clock cycle for a logic high disabled CG

cell because it can only be passed to the output of the latch when the clock signal is

logic high (Figure 4.1 (b)). Fortunately, the enable signal for the flit level CG cell of

a flit slot can be simply obtained by checking whether a valid NVC flit is destined for

this slot, and thus is early enough.

2

o

^

^

^
 2
<

1
 1
-

(
y
\
\
l
u
)

 u
o
p
d
i
u
n
s
u
o
o
 J
^
M
O
d
 J
s
j
j
n
g

4,6.2 Control logic

When the head flit of a new packet arrives at a router, RC is performed to

determine the output port in the direction of the destination. The body/tail flits of the

packet will follow the head flit to the same output port. Therefore，no RC operations

are needed for body/tail flits. As a result, operand isolation can be applied to isolate

RC blocks for body/tail flits. Likewise, even the RC operation for the head flit can be

isolated if it is an EVC flit.

When an EVC flit arrives at a bypass router, it skips VA and SA operations. As

mentioned in Section 4.4, both io and 02 of the crossbar are reserved for the EVC flit

in the case of express pipeline. Thus, the router will ignore the results of the arbiters

serving io and 02. Likewise, the router does not use results from the arbiter serving 02

in the case of aggressive express pipeline. We isolate the arbiters in these conditions

to reduce their power consumptions.

Figure 4,13 presents how operand isolation is implemented. An AND2 gate is

inserted for each input signal. When isolation enable signal is asserted, all isolated

input signals remain at logic 0. Therefore, no power is consumed by the block

because there are no switching activities on its isolated input signals. To isolate a RC

block, the isolation enable signal is asserted when a flit is not a NVC head flit. To

isolate an arbiter, the isolation enable signal is asserted when the corresponding

input/output port is reserved. These enable signals have to be ready before the

corresponding input signals to avoid large delay overhead.

We evaluated the effectiveness of operation isolation for a RC block that

implements a simple XY routing algorithm using the same method in the clock

gating evaluations. Figure 4.14 shows that applying operand isolation saves RC

power by 62.85% on average.

Isolated
Input 0

Input (m-1)

Isolation enable

N input 0 Output 0

•

Isolated block
春
•

• Isolated
\ input (m-1) Output (n-1)

Figure 4.13. Operand isolation.

-©-w/o isolation
isolation

- A - -ji

.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
Injection rate (flits/(node*cycle))

Figure 4,14. Power consumption for a RC block.

4.7 IMPLEMENTATION

4.7.1 Prototype architectures

We evaluated the baseline NoCs and the AS-EVC (application-specific EVC)

NoCs for a realistic case (TRIPS OCN with the swim traffic) and a synthetic case

(4x4 mesh with the transpose traffic). AS-EVC had been proved to have similar

effectiveness on tested Minne-SPEC benchmarks like apsi, gzip, parser and swim in

Chapter 3. Thus, without loss of generality, we selected the swim benchmark for the

TRIPS OCN.

7

6

5

4

3

2

(
M
J
O
 J
3
A
\
o
d

 u
^

We prototyped a baseline NoCs and an AS-EVC NoCs for each case. The network

and process parameters for the baseline NoCs are listed in Table 4.3. The AS-EVC

NoCs has the same parameters as the baseline NoCs except that it uses aggressive

express pipeline, the customized EVC paths (Table 4.4 for the swim traffic and Table

4.5 for the transpose traffic), and the customized buffer architecture (Figure 4.9 (a)

for the swim traffic and Figure 4.9 (b) for the transpose traffic).

Table 4.3. BASELINE NETWORK AND PROCESS PARAMETERS

Traffic TRIPS OCN swim; transpose

Topology 10x4 mesh; 4x4 mesh

Flow control Virtual channel

Routing XY

Buffer management Credit-based

Pipeline Non-express pipeline

Router radix 5

Buffer architecture 4 VCs per port, 4 flits per VC

Packet length 4 flits

Flit size 32 (payload) + 4 (overhead)

Technology nOnrn, HS

Frequency 250MHz

Tile size 1mm X 1mm

4.7.2 Customized EVCs insertion

We inserted EVC paths in an application-specific manner. Firstly, all possible

EVC paths were evaluated based on communication volumes of any two tiles and

power models. Then, EVC paths were inserted by a greedy algorithm subject to

several insertion rules. The details for the insertion method are presented in Chapter

3. In this way, we inserted totally 23 EVC paths for the swim traffic and 6 EVC paths

for the transpose traffic. Table 4.4 and Table 4.5 list these EVC paths with each path

identified by its source router and sink router indexes (the left-bottom router is

represented as too throughout the thesis).

Table 4.4. EVC PATHS FOR THE SWIM TRAFFIC

source sink source sink source sink source sink

ri2 ri6 r32 r20 r26 r28 rai r35

ri5 r22 roo ro4 r38 ri9 ri9 ri5

r36 r32 ro5 ri8 r34 ro4 1*22 rii

1*22 r26 ri8 r38 1"20 r22 ri6 ri8

r26 r22 r33 ro3 1"28 r26 rss r38

ro4 r34 r38 r36 1"20 Too

Table 4.5. EVC PATHS FOR THE TRANSPOSE TRAFFIC

source sink source sink source sink source sink

r32 no roi r23 rio r32 r23 roi

1"20 r3i ri3 ro2

4.7.3 Physical implementation

We performed floorplanning, place and route for the NoCs using Synopsys Astro.

Without loss of generality, we assumed that each router was located at the right-top

comer of a tile. Thus, location of a router was determined when the corresponding

tile was located. Each router was assigned to a rectangular plangroup where all logic

cells for this router were only allowed to be placed within the plangroup area. In a

realistic NoCs-based chip, each tile includes a router and an IP core. However, we

implemented only a router for each tile because designing and implementing realistic

IP cores require two much effort and are unnecessary in this exercise. Large spaces

supposedly occupied by an IP core are included in each tile. To make the layout more

realistic, we intentionally built hard blockages to prevent using these available

spaces and reserved only a few rows for placing top-level standard cells (for example,

registers for pipelined physical links) and routing between routers.

For clarity, only the layout micrographs for the TRIPS OCN swim traffic are

shown in Figure 4.15. Since uniform buffer architecture was used, the routers in the

baseline NoCs have the same size except for those at the comers or along the borders

of the 10x4 mesh. But, toe routers in the AS-EVC NoCs are varied in sizes due to

customized EVCs insertion and customized buffer architecture. Only two links are

shown in a single tile for simplicity. To the best of our knowledge, this is the first

time a near-realistic regular mesh NoCs with variable number of VCs and depths at

different input ports has been physically implemented.

(a)

I

f
s
m

(b)

_

Link to
the left router

Blockage

Blockage

Router

Blockage

Link to
down router

(c)

Figure 4.15. Layout micrographs, (a). The baseline NoCs. (b). The AS-EVC NoCs. (c). A
single tile.

4.8 RESULTS

4.8.1 Network performances

We evaluated average packet latency and average throughput using SystemVerilog

models. Figure 4.16 shows results for the swim traffic. The AS-EVC outperforms the

baseline at all injection rates. Saturation is improved from 0.163 to 0.175

flits/(node*cycle), showing a 7.36% increase. Likewise, the latency at 0.163

flits/(node*cycle) drops from 53.62 to 38.55 cycles, giving a 28.2% reduction. Figure

4.17 demonstrates results for the transpose traffic. The AS-EVC has lower latency

than the baseline at low and moderate injection rates. However, they have similar

latencies at high injection rates and thus similar saturated throughputs.

-©-baseline
AAS-EVC

7.36%

-e-e-®

0.145 0.15 0.155 0.16 0.165 0.17 0.175 0.18 0.185
Injection rate (flits/(node*cycle))

(a)

Figure 4.16.

(b)

Average throughput (a) and average packet latency (b) for the swim traffic.

0^02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Injection rate (flits/(node*cycle))

150

-©-baseline
-«^AS-EVC

0.05 0.1 0.15 0.2
Injection rate (flits/(node*c>de))

0.25

�

-©-baseline
•AS-EVC

28.11%

o
 o

 o

 o

 o

(
(
q
o
&
*
9
p
o
u
)
/
S
J
!
s
 一
n
d
q
S
n

昏
J
。
>
v

o
 o

 r
i

o

5

1
1

(
s
s
p
x
o
)
 Z
C
U
U
S
J
B
l

 U
M
2
0
>
<

处

a

S

a

I

0.05 0.1 0.15 0.2 0.25
Injection rate (flits/(node*cyde))

(b)

Figure 4.17. Average throughput (a) and average packet latency (b) for 4 x 4 mesh with the
transpose traffic.

4.8.2 Area, power and energy

The performance improvements are obtained by using much smaller area and

power costs. Syiiopsys DC results under worst case synthesis scenario show that the

gate count decreases from 1095.49K to 538.45K (a reduction of 50.85%) for the

10x4mesh with the swim traffic and drops from 405.24K to 239.72K (a reduction of

40.84%) for the 4x4 mesh with the transpose traffic.

Power figures were obtained from Synopsys PrimeTime PX using UMC 130nm

library files, post-layout netlist, extracted RC, and post-layout switching activities as

inputs. Standby and total power consumptions were calculated using the switching

activities at zero-load and saturation point (0.163 flits/(node*cycle) for the swim

traffic and 0.249 flits/(node*cycle) for the transpose traffic) respectively. Stream

powers were obtained by subtracting standby powers from total powers.

Table 4.6 and Table 4.7 present power consumptions of the complete NoCs.

Compared to the 10x4 baseline NoCs, the 10x4 AS-EVC NoCs reduces total power

from 298.9mW to 196.5mW (34.26%), with total standby power reducing from

-9-basdine
^AS^EVC

沉

8

S

 卻

2

1
1
 (

s
p
x
o
)
 ̂
o
s
^
^

 9
S
2
9
A
V

145.0mW to 89.6mW (38.21%) and total stream power decreasing from 153.9mW to

106.9mW (30.54%). Also, compared to the 4x4 baseline NoCs，the 4x4 AS-EVC

NoCs reduces total standby power by 19.8mW (34.49%) and total stream power by

26.7mW (32.56%), and thus total power by 46.5mW (33.36%). The standby power

savings are mainly resulted from large area reduction through customized buffer

architecture. The stream power reductions are caused by a combination of area

reduction, customized EVC paths to virtually bypass intermediate routers for many

packets, and low-power techniques. It is clear that routers dominate in both standby

power and stream power. This is mainly because a smaller flit size is used due to a

large flit size will require too much computing resource in placing and routing the

entire NoCs. In addition, total power and stream power savings reported here are

much larger than the post-synthesis results reported in Chapter 3. For example, total

power and stream power savings of all routers are 38.68% and 32.58% respectively

for the swim traffic while they are 15.65% and 20.09% in respective in Chapter 3.

The main reason is that experiments in Chapter 3 used uniform buffer architecture

instead of customized buffer architecture. The customized buffer architecture not

only reduces standby power of routers, but also increases stream power reduction of

routers because load capacitances decreases as logic area reduces. Thus, we suppose

that much larger power reductions will be achieved for other traffic patterns tested in

Chapter 3 after their buffer architectures are customized.

Table 4.6. POWER CONSUMPTIONS FOR THE TWO ENTIRE 1 0 x 4 NOCS FOR THE

SWIM TRAFFIC.

Component

Power (mW) Baseline | AS-EVC

Component Standby Stream Total

Routers 101.6 154.5 128.0 186.3 229.6 1 140,8

Others 43.4 |35.1 25.9 120.6 69.3 1 55.7

Total 145.0 1 89.6 153.9 1 106.9 298.9 1 196.5

Table 4.7. POWER CONSUMPTIONS FOR THE TWO ENTIRE 4 x 4 NOCS FOR THE
TRANSPOSE TRAFFIC

Component

Power (mW) Baseline j AS-EVC

Component Standby Stream Total

Routers 39.3 |23.7 70.6 1 45.2 109.9 1 68.9

Others 18.1 113.9 11.4 1 10.1 29.5 1 24.0

Total 57.4 1 37.6 82.0 1 55.3 139.4 1 92.9

Table 4.8 shows area and standby power breakdowns for the router r24. Area of

buffers reduces from 20635 to 5149 (75.05%) and standby power drops from

l.lSOmW to 0.266mW (77.46%) because a large number of NVCs/EVCs are

removed by customization. Since design complexity of the SVA highly depends on

number and depth of NVCs/EVCs, its area and standby power decreases significantly

by 70.53% and 44.54% respectively. The crossbar and related logic consume little

standby power because there are few registers in them. Area for the top-level clock

network and logic is not reported in synthesis results. But, we can see that they

consume a large amount of standby power (power is reported in post-layout results)

for both NoCs. Reduction of total buffers simplifies much the top-level clock

network, and then reduces its standby power from 1.077mW to 0.498mW.

Table 4.8. AREA AND POWER BREAKDOWNS FOR THE ROUTER (BASELINE | AS-
EVC)

Component Area (gate count) Power (mW)

Buffers + logic 2063515149 1.180 丨 0.266

Crossbar + logic 2859 1 2679 0.058 1 0.057

SVA + logic 715412108 0.485 1 0.269

Top-level clock network and logic NA 1.077 10.498

Total 3091519994 2.800 1 1.090

Table 4.9 presents stream flit energy breakdown for the router r24. Stream flit

energy for each component was determined through multiplying the component's

8

1
1

1
1

stream power by simulation time and dividing by the number of flits travelling the

router. For the AS-EVC case，we assumed that a NVC flit consumes the same stream

energy as an EVC flit to simplify calculations. Calculation errors are small because

NVC flits travelling the router n4 account for only 4% of total flits. It can be seen

that total stream energy is 16.15pJ and 3.62pJ respectively when a flit travels or

bypasses the router, showing a 77.59% reduction. Given effective clock gating and

area reduction, a flit consumes 88.75% less energy when it bypasses the buffers.

Likewise, combination of clock gating, operand isolation and area reduction saves

the SVA energy by 96.74%. As seen in Figure 4.6, when a flit bypasses the crossbar,

it skips the 5x5 switch fabric but has to go through the wires and the 2-1 multiplexes.

As a result, only 46.3% energy is saved.

Table 4.9. STREAM FLIT ENERGY BREAKDOWN FOR THE ROUTER � .

Component Baseline

(pJ)

AS-EVC

(pJ)

Reduction
(%)

Buffers + logic 5.18 0.58 88.75

Crossbar + logic 4.87 2.62 46.3

SVA + logic 5.86 0.19 96.74

Top-level clock network and
logic

0.24 0.23 3.75

Total 16.15 3.62 77.59

4.9 SUMMARY

In this chapter, we have proposed methods to design and to implement a NoCs

supporting the EVCs technique with low power as the main objective. We have

described cost-efficient hardware components, optimized buffer architectures,

creative use of low power techniques and near-realistic ASIC prototypes to

demonstrate how the EVCs flow control can be best exploited in practice.

Detailed physical implementations show that the AS-EVC NoCs has much smaller

power and area costs than the baseline NoCs. Furthermore, significant savings are

obtained with no network performance penalties but a small sacrifice in attaining the

maximum speed.

Given the impressive results, we plan to implement realistic NoCs-based systems

using the EVCs technique. Also, based on the power consumption results extracted

from physical implementations, more accurate power saving and cost models than

those used in Chapter 3 are expected to be built to help designers estimate power

savings of EVCs insertion in early design stage.

CHAPTER 5. CONCLUSIONS 120

CHAPTERS. CONCLUSIONS

As interconnection networks are shifted from off-chip domain to on-chip domain,

a critical challenge is to keep their design costs (area and power) small. This thesis

concentrates on this challenge to explore cost-efficient NoCs architectures and design

cost-efficient NoCs components.

5.1 CONTRIBUTIONS

This thesis focuses on cost reduction of routers because routers are much more

costly than links when packet switching and virtual channel flow control are applied.

The contributions are in two orthogonal aspects: router microarchitecture and

network architecture.

In terms of router microarchitecture, we studied cost-efficient allocators for a

router. Through investigating simulation results of a complete NoCs, we found large

opportunities to reduce design costs of the generic virtual channel and switch

allocators and then proposed two low-cost allocators: the look-ahead allocator and

the combined switch and VC allocator. Evaluation results show that the proposed

allocators can significantly reduce area and power costs compared to the generic

allocator architecture without performance penalties. The cost-efficient allocators are

orthogonal to cost-efficient router datapath components like buffer and crossbar, and

thus combing them together will reduce more design costs for a router.

In terms of network architecture, we studied the express virtual channel flow

control along two directions. The first direction is the high-level application-specific

methodology to achieve maximum power savings for given applications. Based on

calculations of communication volumes between routers and simple high-level power

models, the high-level method can quickly determine power-efficient EVC paths and

thus is useful to explore a large design space in early design stage. Evaluation results

for a wide range of design parameters and traffic patterns demonstrate that AS-EVC

NoCs are more power efficient than both the baseline and the static EVCs NoCs.

The second direction is to study design and implementation issues for low-power

NoCs supporting the EVC flow control. It includes four aspects. First, we designed

power-efficient hardware components for EVC networks. Second, we optimized

buffer architectures to reduce both area and power costs for EVC networks by a

statistical approach. Third, we explored conventional low-power techniques like

clock gating and operand isolation for EVC routers. Four, we performed accurate and

detailed evaluations by ASIC implementations. Results show that up to 34.26%

NoCs power is saved by the proposed techniques.

5.2 FUTURE WORK

There are many interesting topics for future directions inspired by the work

described in the thesis.

Two topics may be further studied based on the results of low-cost allocators. On

the one hand, the generic VA is actually a separable iSLip allocator. This architecture

is widely applied in NoCs domain because its low implementation costs. However,

there are other advanced allocator schemes like separable lonely output allocator and

wavefront allocator that have higher matching efficiency and are used in off-chip

networks. Thus, it is interesting to study these advanced allocators and reduce their

design costs for NoCs. On the other hand, large opportunities to simplify the generic

VA are identified by simulations for the entire NoCs. They would never be found if

we just run simulations for the allocators themselves. Thus, the research method of

studying a component in the context of the entire NoCs can be used to explore other

components.

We presented an application-specific methodology to smartly insert power-

efficient EVC paths for NoCs. However, several problems can be further studied to

optimize the methodology. First, modify the EVC insertion rule to allow overlapping

of EVC paths in some cases. It can improve flexibility of EVC insertion, and thus

allow some power-efficient EVC paths to be inserted. Second, simple power models

currently used in the AS-EVC method are lack of accuracy. The energy cost when a

flit travels an EVC source router and the energy saving when a flit skips an EVC

bypass router can be accurately obtained from the ASIC implementations. Thus,

more accurate power models can be built to estimate power saving for an EVC path.

Third，the greedy algorithm currently used for EVC insertion is very simple, but not

good to achieve the maximum overall value. Therefore, a more advanced algorithm

is expected to be used for EVC insertion.

ASIC implementation results show that the AS-EVC NoCs save a large amount of

area and power costs without performance penalties compared to the baseline NoCs.

Inspired by them, an interesting future topic is to design a NoCs-based system for a

realistic application with application-specific EVC paths. In addition, besides the

single-application system, NoCs is expected to be widely used in systems that will

support a variety of applications. Hence, it is a significant direction to study

reconfigurable AS-EVC networks and reconfigurable customized buffer architectures

to support multi-application systems.

In essential, EVC is a flow control technique where EVC flits and NVC flits share

the same resources such as crossbar and physical channels. Thus, if physical links are

the bottleneck in some hotspot regions of a network, using EVC paths in these

regions can not solve the bottleneck and thus will not improve network performances.

Instead, adding costly EPC paths is effective to improve network performances in

this case. As a result, it is an interesting topic to combine the EPC technique and the

EVC technique for NoCs.

APPENDIX A. APPLICATION-SPECIFIC EVC
INSERTION TOOL

The application-specific EVC insertion tool (named EVC customize) is

accomplished through a Matlab program (as_evc_ideal.m). As shown in Figure A.l,

EVCcustomize uses traffic pattern of an application (traffic_pattem.log) as the input

and generate a list of EVC paths (evc_paths.log) and report parameter settings and

estimated power savings (evc_insertion_report.log).

Traffic pattern

EVCcustomize
(as_evc_ ideal.m)

List of inserted
EVC paths

EVC insertion
report

Figure A.l. The flow to use EVCcustomize

Many parameters are defined in EVCcustomize, They are described in Table A.l

Table A.l. PARAMETERS IN EVCcustomize

Parameter name Description

mesh—rows The number of rows in a mesh network. In current, only mesh
topology is supported.

mesh columns The number of columns in a mesh network

xb_to_router The energy ratio of a crossbar to a router

energy—cost
_percentage

The energy ratio of the overhead of an EVC source router to a
normal router

pipeline—bypass
The type of bypass pipelines. 0: aggressive express pipeline,
1: express pipeline

maximum—interval The allowable maximum interval of EVC paths
maximum—eve
_perrouter

The maximum number of EVC paths (including both source
EVC paths and sink EVC paths) that can be inserted in a

router

bypass_evcrouter

一 enable

Whether an EVC source router can be bypassed. 1: enabled,
0: disabled

delta—energy—low
-bound

The low bound (a threshold) for EVC insertion. An EVC path
will not be inserted if its energy saving is smaller than the
threshold.

Traffic pattern (traffic_pattem.log) for a mesh is a mnxmn matrix. The

value at the 产 row a n d , column of the matrix represents the traffic volume that are

generated at the i'' router and consumed at the router. Figure A.2 shows an

example of the traffic pattern (traffic_pattem.log) for a 4x4 mesh with transpose

traffic. It is a 16x16 matrix.

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 0

0 0

0 0

0 0

Figure A.2. An example of the trafficjiattern.log

Figure A.3 (a) shows an example of the list of inserted EVC paths (evc_paths.log)

for the 4x4 transpose traffic. Each path is identified by its source router index (the

first column) and sink router index (the second column). Figure A.3 (b) describes the

index method used in the evc_paths.log file. The left-top router has an index of 1, the

router at the top row and the second column has an index of 2, and so on.

3

H

8
 9

 5

^

9

8

^

3

2

^

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a) (b)

Figure A.3. Examples of the evc_paths.log (a) and the index method for routers (b)

Figure A.4 shows an example of the report file (evc_insertion_report.log) for the

4x4 mesh with transpose traffic. In the example, we investigate the sensitivity of

energy saving to the parameter of maximum—interval. The first column is the name

of the traffic pattern. The second and third columns describe numbers of rows and

columns respectively for a mesh network. The fourth column represents the

allowable maximum interval for EVC paths. We sweep this parameter in the example.

The fifth column is the threshold of energy saving to insert EVC paths. Any EVC

path that has a positive energy saving may be inserted in the example. The sixth

column reports the energy saving calculated based on simple high-level energy

models.

traffic—name row col max—interval del_energy_min energy_saving
transpose
transpose
transpose
transpose
transpose

0.00000
0.00000
0.00000
0.00000
0.00000

0.27226
0.28578
0.37259
0.37259
0.37259

Figure A.4. An example of the evc_insertion_report.log

8

2

1
1

APPENDIX B. APPLICATION-SPECIFIC BUFFER
CUSTOMIZATION TOOL

The application-specific buffer customization tool (named BUFcustomize) is

implemented through Matlab programs (nvcs_customization_variable.m and

evcs_customization_variable.m). Figure B.l shows the flow to use BUFcustomize.

Inputs include buffer utilization statistics files (generated in BUFFER一MODE RTL

simulations described in Appendix.C), and the list of inserted EVC paths

(evc_paths,log, only for EVC networks). Outputs are customized NVC architecture

(customized_number_of_nvcs_inports.log) and customized EVC architecture

(custoinized_number_of_evcs_evcpaths.log, only for EVC networks).

Buffer utilization
statistics

List of inserted
EVC paths

(nvcs
eves

BUFcustomize
—customization—variable .m,
—customization—variable .ni)

1 ‘ 1 t
Customized NVC

architecture
z ^

Customized EVC
architecture

Figure B.l. The flow to use BUFcustomize

Table B.l describes parameters used in BUFcustomize, It only supports mesh

topologies with various network sizes now.

Table B.l. PARAMETERS IN BUFcustomize

Parameter name Description

Parameters in nvcs customize variable.m

MESH_ROWS The number of rows in a mesh network

MESH—COLUMNS The number of columns in a mesh network

MESH_NODES The number of nodes (routers) in a mesh
network

NVCS_PERPC The uniform number of NVC lanes of each input
port

NVC_BUFFER—DEPTH The depth (specified in flits) of each NVC lane

TOTALBUFFERSPERPC Total buffers (specified in flits) of each input
port

WARM—UP 一 PERCENTAGE
A value from 0 to 1. It represents what
percentage of the simulation period is
considered as warm up period.

CUMSUM_PROBABILITY
THRESHOLD

A value from 0 to 1. It specifies the threshold to
determine how many VC lanes are enough for
an input port.

Additional parameters in eves customization—variable.m

EVCS_PERPC The uniform number of EVC lanes of each EVC
path

EVC—BUFFER-DEPTH The uniform depth (specified in flits) of each
EVC lane

TOTALBUFFERS-PEREVC Total buffers (specified in flits) of each EVC
path

Figure B.2 (a) and (b) show the customized NVC architecture and the customized

EVC architecture for a 4x4 mesh with transpose traffic. The NVC results are a

16x5 matrix with each row representing a router and each column representing an

input port (west, north, east, south, and local input ports from left to right). For

example, the value of 4 at the row and column means that there are 4 NVC

lanes in the east input port of the router 1. The EVC results are a 6x1 matrix because

there are totally six EVC paths in the network (Figure A‘3 (a)).

(a) (b)

Figure B.2. Examples of a customized—number一of_nvcs一inports.log (a) and

customized_number_of_evcs_evcpaths.log (b)

APPENDIX C. A FULLY-SYNTHESIZABLE
PARAMETERIZED NOCS LIBRARY

C.1 INTRODUCTION

A fully-synthesizable parameterized NoCs library (named NoClib) is implemented

through SystemVerilog and Verilog HDL. Therefore, NoClib can be used for both

NoCs simulations and NoCs implementations on FPGA/ASIC. It has two significant

features.

It supports a wide range of router microarchitectures (pipelines). A baseline

VC router with separate VC and switch allocations (Figure 1.4 (b)), a VC

router with combined VC and switch allocation (Figure 2.9 (b)), a VC router

with express pipeline (Figure 3.5 (b)), and a VC router with aggressive

express pipeline (Figure 3.5 (c)). NoClib is the first NoCs library that

supports the recently proposed express virtual channel flow control.

• It supports customized buffer architectures. In other words, it allows that

different router input ports have different numbers of virtual channels and

various EVC lanes have various depths of buffers. Furthermore, control logic

of input ports will be also customized accordingly. NoClib is the first

synthesizable library that can be used to implement NoCs with customized

buffer architectures.

C.2 GLOBAL PARAMETERS

As described in Table C.l, many global parameters are used to define network

topology, router micro architecture, simulation environment, and implementation

2

3

t
l

environment. They are global parameters that are effective for an entire NoCs. All

global parameters are defined in a file named parameters.v.

Table C.l. GLOBAL PARAMETERS IN NoClib

Parameter name Description

Network parameters

MESH-ROWS The number of rows in a mesh network.
Currently, only mesh topologies are supported.

MESH-COLUMNS The number of columns in a mesh network

HOP—COUNT—BITS

The number of bits used to describe the interval
of an EVC path. The most significant bit
represents the direction and the rest bits represent
the number of hops.

HX-BITS

The number of bits used to describe routing
information along X dimension. The most
significant bit represents the direction (0 for west
and 1 for east) and the other bits represent the
number of hops.

HY_BITS

The number of bits used to describe routing
information along Y dimension. The most
significant bit represents the direction (0 for north
and 1 for south) and the other bits represent the
number of hops.

Link/Channel parameters

LINK—PIPELINE-STAGE Determines number of pipeline stages of links
between routers

CHANNEL_DATA_WIDTH

Width of payload data (specified in bits) in a
flit. Thus, width of links between routers is the
sum of width of payload data and width of control
information (including VC identifier and flit type)
in a flit.

Basic router parameters

MAX_ROUTER_RADIX
Specifies the allowable maximum number of

router input/output ports. At most five ports are
supported now.

MAX_ROUTER_RADIX
_INDEX_BITS

The number of bits used to describe the
allowable maximum router radix

LOCAL_PORT_INDEX
The index for the local input/output port of a

router that connects the local processing element
and the router

MAX-TOTAL—VCS_PERPC Specifies the allowable maximum number of

VC lanes (including both NVC and EVC lanes) in
router input ports. Currently, the supported range
is from one to seven.

MAX_TOTAL_VCS_PERPC
INDEX-BITS

Number of bits used to represent the allowable
maximum number of VC lanes.

N V C B U F F E R D E P T H Specifies uniform depth (in flits) of NVC lanes

N V C B U F F E R D E P T H
BITS

Specifies number of bits used to represent the
depth of NVC lanes

NVC_BUFFER一 COUNTER
-BITS

Determines number of bits for counting
numbers of flits in NVC lanes

FLIT_TYPE_BITS
The number of bits used to represent types of

flits. Currently there are four types of flits:
INVALID, HEAD, DATA, and TAIL.

VCSR—GBITS The number of bits used to describe the status
of VC lanes

UTURN一DISABLED

If set (1), U-tum is disabled in the routing
algorithm. As a result, designs for other
components can be simplified also. Currently only
disabled U-tum is supported.

Router parameters for EVC flow control

EVC-ENABLE If set (1), the EVC flow control is supported

AGGRESSIVE
BYPASSPIPELINE

If set (1), aggressive express pipeline is used.
Otherwise, express pipeline is used.

NORMAL, SOURCE, SINK,
SOUSIN

Types of routers. SOUSIN means that the
router is not only an EVC source router, but also
an EVC sink router.

Simulation parameters

PACKET-LENGTH Length (specified in flits) of packets. Currently,
only uniform-length packets are supported.

PACKETTYPEBITS Specifies number of bits used to describe types
of packets

PACKET_DATA_BITS
The number of bits of payload data (excluding

all control fields like packet type, routing
information, etc.) in a packet

DEBUG—MODE
If defined, all the assertions in the

SystemVerilog codes will take effect to detect
simulation errors in Questasim

LATENCY-MODE
If defined, the files for function simulations and

network performance calculations will be
outputted

BUFFER一MODE If defined, the files to do statistics of buffer

utilizations will be outputted

PATH
Specifies the path (a directory in the local

computer) for all output files generated by RTL
simulations

IRNAME Defines the name of an injection rate

CONTROL一POINT_IR Specifies the number to realize an injection
rate 2

Design and implementation parameters

CLK一 GATING—MODULE If set (1), module-level clock gating is enabled

C L K G A T I N G R T L If set (1)，RTL-level clock gating is enabled

L O G I C H I G H C G F O R R F
If set (1), use logic high disabled clock gating

cells for register files. Otherwise, use logic low
disabled clock gating cells.

MATRIX-CROSSBAR
If set (1)，matrix-based crossbar architecture is

used. Otherwise, mux-based crossbar architecture
is used

MATRIX—CROSSBAR
SEGMENT

If set (1), enable to segment matrix-based
crossbars

SEGMENT Determines number of segments of a matrix-
based crossbar

We realize an injection rate by comparing a random number with a pre-set threshold
(CONTROL_POINRT_IR). A packet at a router will be injected if the random number is no bigger
than the threshold. For example, assuming the random number is in the range from zero to 100,000,
the PACKET_LENGH is 4, and we want to set an injection rate of 0.5 flits/(node*cycle), the threshold
(CONTROLJ»OINRT_IR) is calculated as 100000 * 0.5 / 4.

APPENDIX C. A FULLY-SYNTHESIZABLE PARAMETERIZED NOCS LIBRARY

C.3 SIMULATION FRAMEWORK

Matlab,

Questasim,
ŷsteinVeiilog

Matlab, C

Simulation staaes
Parameter generation stage

Network Routei
microarchitecture LHichitectLire

Network/route simulation parameters
geueratoi i paraiiieter_gen lu

RTL simulation stage

Input packel ！

tui'mig ！

generate
Source
queue

Sink Pact
(Diitpui

packet timing
{mesh JtiafSc name].'

fjuesh noc 1
FUts

Flits

EVC
paths

Mesh-
(mesh J]

J
Performmce measurement stage

Fimction simulation
(fur siiD multi irm�

Performance ineasiuenient
{averagelatenc> _al I ivs m]

EVC path utilization
；gc_evc_pat!i_omot m:

Outputs

r ^
>1 Paimneters

V

Input packei,
Iiipui packet timing,

Output packet,
Output packet tiininj

Function simulation report.
Average packet latency,

Average network throughput,
EVC path utilizatiou

Figure C.l. Simulation framework using NoClib

Figure C.l describes the framework to run NoCs simulations using NoClib. In the

parameter generation stage, parameters are generated though a Matlab program

(parameter_gen.m) based on network, router, buffer, and EVC configurations (EVC

paths are only needed for EVC networks). The parameters are then used to configure

the global parameters (parameters.v) shown in Table C.l and the top-level blocks

such as mesh_noc_router, mesh_noc_ni and testbench (mesh_noc_tb_[traffic

namej.v). The mesh_iioc_router block includes all routers and links between routers

in a mesh network while the mesh_noc_ni block includes all interfaces to inject/eject

packets to/from routers. All other blocks such as packet generators, source queues,

and so on are implemented in the top-level testbench block. After that，RTL

simulations are run through tools like Questasim, which saves input/output packets

and input/output packet timings to files. Finally, these files are used in the

performance measurement stage. The flinction simulation block checks whether all

measured packets arrive at their sinks without any errors. The performance

measurement block calculates average packet latency and average network

throughput. The EVC path utilization block checks whether EVC packets go through

EVC paths correctly and calculate the number of EVC packets travelling each EVC

path. It is only used for EVC networks. In addition, we write a Perl program to

automatically run the three simulation stages.

Since NoClib is developed using SystemVerilog, simulation tools must support

syntax of SystemVerilog. In addition, many multi-dimension arrays are used in the

top-level blocks (mesli—noc_router.v and mesh_noc_ni,v) to realize parameterized

designs. Thus, simulation tools have to support multi-dimension arrays as well. To

our knowledge, both Questasim by Mentor Graphics and VCS by Synopsys support

most syntax of SystemVerilog. But VCS do not support multi-dimension arrays now

(we tested the version of VCS.A-2008,09). Thus, we suggest to use Questasim for

RTL simulations (we run RTL simulations using Questasim 6.3f and find no errors.).

In addition, there is a way to run simulations for NoClib-ba.sed designs using tools

that support only Verilog HDL. Firstly, synthesize designs through synthesis tools

like Synopsys DC (we tested the version of DC.A-2007.12. It works.) and generate

the gate-level netlist that is in the format of Verilog HDL. Then, run simulations

using the gate-level netlist.

As mentioned before, NoClib is a fully-synthesizable library and thus can be used

to implement NoCs on FPGA/ASIC for accurate area and power evaluations. The

framework to implement NoCs using NoClib is the same as the conventional

FPGA/ASIC implementation fi-amework.

APPENDIX C. A FULLY-SYNTHESIZABLE PARAMETERIZED NOCS LIBRARY 137

C.4 FUTURE WORK

NoClib can be enhanced in several directions to support more network/router

architectures and wider range of parameters.

• Support multi network topologies. Various topologies require different sizes

(numbers of input/output ports) of routers and different routing algorithms.

If NoClib is used for simulations only, it will be easy to provide different

sizes of routers through setting router radixes as parameters and to design a

deadlock-free routing algorithm that supports multi topologies. However, if

NoClib is also used for implementations, it will be difficult because costs of

many router components will increase largely as router size increases.

• Enlarge the maximum allowable number of VC lanes in an input port.

Currently, at most seven VC lanes (including both NVC and EVC lanes) are

allowed in each input port. We can easily increase the maximum number by

changing the two parameters (MAX—TOTALVCS—PERPC and

MAXjrOTAL_VCS_PERPC—INDEX-BITS) if NoClib is used for

simulations only. However, allowing a large number of VC lanes in input

ports will generate very large control logic such as arbiters (for example, a

8:1 arbiter is much larger than a 4:1 arbiter). Thus, tree architecture based

control logic is required for cost-efficient implementations.

• Support reconfigurable EVC architectures and buffer architectures. In

current, EVC architectures and buffer architectures are both physically

customized. This is to say, once a NoCs is customized for an application,

EVC paths and buffer architectures for the NoCs can not be changed. As a

result, the NoCs may not work well for other applications. However, it is

probable for a NoCs to support multi applications. Thus, it is important to

design cost-efficient components to support reconfigurable EVC

architectures and buffer architectures.

REFERENCES

[1] p. Guerrier and A. Greiner, "A generic architecture for on-chip packet-

switched interconnections," in Design, Automation and Test in Europe, 2000, pp.

250-256.

[2] W. J. Dally and B. Towles’ "Route packets, not wires: On-chip

interconnection networks," in Design Automation Conference, 2001，pp. 684-689.

[3] L. Benini and G. De Miclieli, "Networks on chips: a new SoC paradigm,"

Computer, Vol. 35, No. 1，2002, pp. 70-78.

[4] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C. A. Zeferino,

"SPIN: A scalable, packet switched, on-chip micro-network," in Design, Automation

and Test in Europe, 2003, pp. 70-73.

[5] D. Bertozzi and L. Benini, "Xpipes: A network-on-chip architecture for

gigascale systems-on-chip,“ IEEE Circuits and Systems Magazine’ Vol. 4, No. 2,

2004, pp. 18-31.

[6] "ITRS, International Technology Roadmap for Semiconductors," 2002.

[7] "ITRS，International Technology Roadmap for Semiconductors," 2007.

[8] Arteris Company, ”A comparsion of network-on-chip and busses," 2005.

[9] E. Bolotin, 1. Cidon, R. Ginosar, and A. Kolodny, "Cost considerations in

network on chip,,’ Integration, the VLSI Journal, Vol. 38, No. 1, 2004, pp. 19-42.

[10] J. D. Owens et al., "Research challenges for on-chip interconnection

networks," IEEE Micro, Vol. 27, No. 5，2007, pp. 96-108.

[11] T. Bjerregaard and S. Mahadevan, "A survey of research and practices of

Network-on-chip,“ ACM Computing Surveys, Vol. 38, No. 1，2006.

[12] W. J. Dally and B. Towles, Principles and Practices of Interconnection

Networks, Morgan Kaufinann Publishers, 2004.

[13] K. M. Lee et al.，"A 51mW 1.6GHz on-chip network for low-power

heterogeneous SoC platform," in International Solid State Circuits Conference, 2004，

pp. 152-518.

[14] D. Bertozzi et al., "NoC synthesis flow for customized domain specific

multiprocessor systems-on-chip,” IEEE Transactions on Parallel and Distributed

Systems, Vol. 16, No. 2, 2005, pp. 113-129.

[15] J. Xu and W. Wolf, "A design methodology for application-specific

networks-on-chip," ACM Transactions on Embedded Computing Systems, Vol. 5, No‘

2, 2006, pp. 263-280.

[16] V. D. Ngo, H. W. Choi, Y. Bae, and H. Cho, "The optimized tree-based

network on chip topologies for H.264 decoder design," in International Conference

on Computer Engineering and Systems, 2006, pp. 343-347.

[17] U. Y. Ogras and R. Marculescu, "Application-specific network-on-chip

architecture customization via long-range link insertion," in International Conference

on Computer Aided Design, 2005, pp. 246-253.

[18] U. Y. Ogras and R. Marculescu, "It's a small world after all: NoC

performance optimization via long-range link insertion," IEEE Transaction on Very

Large Scale Integration (VLSI) Systems, Vol 14，2006, pp. 693-706.

[19] J. Duato, S. Yalamaiichili, and L. Ni, Interconnection Networks: An

Engineering Approach, Morgan Kaufiiiami Publishers, 2003.

[20] W, J. Dally, "Virtual-channel flow control," in International Symposium on

Computer Architecture, 1990, pp. 60-68.

[21] R. Mullins, A. West, and S. Moore, "Low-latency virtual-channel routers for

on-chip networks," in International Symposium on Computer Architecture, 2004, pp.

188-197.

[22] N. Kavaldjiev, G. J. M Smit，and P. G. Jasen, "A virtual channel router for

on-chip networks," in IEEE International SoC Conference, 2004, pp. 289-293.

[23] J. M. Kim et al., "A gracefully degrading aiid energy-efficient modular router

architecture for on-chip networks," in International Symposium on Computer

Architecture, 2006, pp. 4-15.

[24] C. A. Nicopoulos, D. Park, and J. Kim, "VichaR: A dynamic virtual channel

regulator for networks-on-chip routers," in International Symposium on

Microarchitecture, 2006, pp. 333-346.

[25] H. Matsutani, M. Koibuchi, D. Wang, and H. Amano, "Adding slow-silent

virtual channels for low-power on-chip networks," in International Symposium on

Networks-on-Chip, 2008, pp. 23-32.

[26] M, Galles, "Spider; A high-speed network interconnect," IEEE Micro, Vol,

17，No, 1，1997, pp. 34-39.

[27] T. T. Ye, L. Benini, and G. De Micheli, "Analysis of power consumption on

switch fabrics in network routers," in Design Automation Conference’ 2002, pp. 524-

529.

[28] X. Chen and L. S, Peh, "Leakage power modeling and optimization in

interconnection networks," ii International Symposium on Low Power Electronics

and Design’ 2003, pp. 90-95.

[29] J. Hu, U. Y. Ogras, and R. Marculescu, "System-level buffer allocation for

application-specific networks-on-chip router design," IEEE Transaction on

Computer-A ided Design of Integrated Circuits and Systems, Vol. 25, 2006，pp. 2919-

2933.

[30] S. R. Vangal et al.，"An 80-tile sub-lOO-W teraFLOPS processor in 65-nm

CMOS，” Journal of Solid-State Circuits, Vol 43, No. 1，2008, pp. 29-41.

[31] E. Salminen, A. Kulmala, and T. D. Hamalainen, "Survey of network-on-chip

proposals," in OCP-IP White Paper, 2008.

[32] M. B. Taylor et a l , "The RAW microprocessor: A computational fabric for

software circuits and general-purpose programme," IEEE Micro, Vol. 22, No. 2,

2002, pp. 25-35.

[33] A. Banerjee, R. Mullins, and S. Moore, ”A power and energy exploration of

network-on-chip architectures," in International Symposium on Networks-on-Chip,

2007, pp. 163-172.

[34] A. Baneijee et al., "An energy and performance exploration of network-on-

chip architectures," IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, Vol. 17, No. 3，2009，pp. 319-329.

[35] A. Pullini et al., "NoC design and implementation in 65nm technology," in

International Symposium on Networks-on-Chip’ 2007, pp. 273-282.

[36] A. Kumar, L. S. Peh, P. Kundu, and N. K. Jlia, "Express virtual channels:

Towards the ideal interconnection fabric," in International Symposium on Computer

Architecture (and IEEE Micro Top Picks 2008), 2007, pp. 150-161.

[37] H. S. Wang, L. S. Peh, and S. Malik, "Power-driven design of router

microarchitectures in on-chip networks," in International Symposium on

Microarchitecture, 2003, pp. 105-116.

[38] T. H. Huang, U. Y. Ogras, and R. Marculescu, "Virtual channels planning for

networks-on-chip," in the 8th International Symposium on Quality Electronic Design,

2007, pp. 879-884.

[39] L. S. Peh and W. J. Dally, "A delay model and speculative architecture for

pipelined routers," in International Symposium on High-Performance Computer

Architecture, 2001, pp. 255-266.

[40] "Synopsys Company, httv:/7ww\v.svnomvs, com/home, aspx, “ 2009.

[41] N. McKeown, ”The iSLIP scheduling algorithm for input-queued switches,"

IE EE/ACM Transactions on Networking, Vol. 7，No. 2, 1999，pp. 188-201.

[42] Y. Tamir and H. C. Chi, "Symmetric crossbar arbiters for VLSI

communication switches," IEEE Transactions on Parallel and Distributed Systems,

Vol. 4, No. 1，1993, pp. 13-27.

[43] S. S. Mukherjee et al., "A comparative study of arbitration algorithms for the

Alpha 21364 pipelined router," in International Conference on Architectural Support

for Programming Languages and Operating Systems, 2002, pp. 223-234.

[44] H. S. Wang. Power-efficient design for on-chip interconnection networks.

PhD thesis, Princeton University, 2005.

[45] H. S. Wang, L. S, Peh, and S. Malik, "A technology-aware and energy-

oriented topology exploration for on-chip networks," in Design, Automation and Test

in Europe, 2005, pp. 1238-1243.

[46] U. Y. Ogras, R. Marculescu, H. G. Lee, and N. Chang, "Communication

architecture optimization: Making the shortest path shorter in regular networks-on-

chip," in Design, Automation and Test in Europe, 2006, pp. 712-717.

[47] W. J. Dally, "Express cubes: Improving the performance of k-ary n-cube

interconnection networks," IEEE Transaction on Computers，Vol. 40, No. 9, 1991,

pp. 1016-1023.

[48] U. Y. Ogras et al, "Challenges and promising results in NoC prototyping

using FPGAs," IEEE Micro, Vol. 27, No. 5, 2007, pp. 86-95,

[49] H. S. Wang, X. Zhu, L. S. Peh, and S. Malik, "Orion: A power-performance

simulator for interconnection networks," in International Symposium on

Microarchitecture, 2002, pp. 294-305.

[50] M. Palesi et al., "Design of bandwidth aware and congestion avoiding

efficient routing algorithms for networks-on-chip platforms," in International

Symposium on Networks-on-Chip, 2008, pp. 97-106.

[51] A. J. Kleinosowski and D. J. Lilja, "MinneSPEC: A new SPEC benchmark

workload for simulation-based computer architecture research," Computer

Architecture Letters, Vol. 1, 2002.

[52] P. Gratz et al,, "Implementation and evaluation of on-chip network

architectures," in International Conference on Computer Design, 2006, pp. 477-484.

[53] P. Gratz et al., "On-chip interconnection networks of the TRIPS chip," IEEE

Micro, Vol 27, 2007, pp. 41-50.

[54] K. M. Lee, S. J. Lee, and H. J. Yoo, "Low-power network-on-chip for high-

performance SoC design," IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, Vol. 14, No. 2，2006, pp. 148-160.

[55] M. Domio, A. Lvaldi, L. Benini, and E. Macii, "Clock-tree power

optimization based on RTL clock-gating," in Design Automation Conference, 2003,

pp. 622-627.

[56] P. Babighiaii, L. Benini, and E. Macii, "A Scalable algorithm for RTL

insertion of gated clocks based on ODCs computation," IEEE Transactions on

Computer-A ided Design of Integrated Circuits and Systems, Vol. 24, No. 1，2005, pp.

29-42.

[57] C. Piguet, Low-power Electronics Design, CRC Press, 2005.

[58] R. Mullins, "Minimising dynamic power consumption in on-chip networks,"

in International Symposium on System-on-Chip, 2006, pp. 1-4.

[59] M. Mueller et al , "The impact of clock gating schemes on the power

dissipation of synthesizable register files," in International Symposium on Circuits

and Systems, 2004, pp. 609-612.

