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Abstract

Today, High-Definition (HD) videos become more and more popular with many ap-
plications. This thesis analyzes the characteristics of HD videos and develops the
appropriate coding and processing techniques accordingly for hybrid video coding.

Firstly, the characteristics of HD videos are studied quantitatively. The results
show that HD videos distinguish from other lower resolution videos by higher spatial
correlation and special power spectral density (PSD), mainly distributed along the
vertical and horizontal directions.

Secondly, two techniques for HD video coding are developed based on the afore-
mentioned analysis results. To exploit the spatial property, 2D order-16 transforms are
proposed to code the higher correlated signals more efficiently. Specially, two series
of 2D order-16 integer transforms, named modified integer cosine transform (MICT)
and non-orthogonal integer cosine transform (NICT), are studied and developed to
provide different trade-offs between the performance and the complexity. Based on the
property of special PSD, parametric interpolation filter (PIF) is proposed for motion-
compensated prediction (MCP). Not only can PIF track the non-stationary statistics
of video signals as the related work shows, but also it represents interpolation filters
by parameters instead of individual coeflicients, thus solving the conflict of the accu-
racy of coefficients and the size of side information. The experimental results show
the proposed two coding techniques significantly outperform their equivalents in the
state-of-the-art international video coding standards.

Thirdly, interlaced HD videos are studied, and to satisfy different delay constraints,
two real-time de-interlacing algorithms are proposed specially for H.264 coded videos.
They adapt to local activities, according to the syntax element (SE) values. Accuracy
analysis is also introduced to deal with the disparity between the SE values and the
real motions and textures. The de-interlacers provide better visual quality than the

commonly used ones and can de-interlace 10807 sequences in real time on PCs.
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Chapter 1

Introduction

A digital video comprises a sequence of two-dimensional (2-D) digital images represent-
ing a dynamic three-dimensional (3-D) scene on certain sampling grids and at regular
time intervals. Digital video is more robust against channel disturbance and provides
higher visual quality and more functionalities, compared with analog video.

In digital video communication, raw video signals, which consist of a huge amount
of data, have to be compressed to a bit-rate constrained by the channel capacity. Hence,
video compression, a.k.a. video coding, is mainly targeted at the best rate-distortion
(R-D) performance, although also providing other functionalities, such as scalability,
error resilience, random access, and random switching, in order to adapt to various ap-
plications and network/terminal conditions. The distortion herein is measured almost
exclusively by pixel-wise fidelity, mean squared error (MSE) or peak signal-to-noise
ratio (PSNR), because of mathematical tractability and feasibility of optimization. Re-
cently, visual quality metric (VQM) based on the characteristics of human visual system
(HVS) has received increasing attention, as it correlates better with perceived distor-
tion. Nevertheless, how VQM influences the design of video coding scheme is still an
open research issue. In this work, PSNR is used as the distortion measure.

Video coding systems may greatly differ from each other, as they consist of compli-
cated functional modules and each module can be realized in different ways. For the
interoperability in communication, video coding standards are developed to restrict
various video coding systems, such that manufacturers can successfully interwork with
cach other by producing compliant encoders and decoders, and at the same time still
have the freedom to develop competitive and innovative products. Generally speaking,
a video coding standard provides a significant amount of innovations and represents

the state-of-the-art technology at the time.
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Video coding standards have been developing for about 20 years, driven by appli-
cations and advances in hardware capability. All the standards essentially follow the
block-based hybrid coding scheme, where the designation “block-based” means each
video frame is divided into non-overlapped blocks and each block is the unit the hybrid
coding applies to. In hybrid coding, raw video signals are modeled as realizations of a
random field, of which the statistical redundancy is removed by joint predictive coding
and transform coding. Predictive coding reduces the temporal and spatial correlation
of successive frames of a video sequence, whereas transform further exploits the spa-
tial redundancy of the prediction error. The phrase “hybrid coding” will refer to the
block-based hybrid coding scheme here and subsequently in this thesis for convenience.
The development of hybrid coding is mainly reflected in the evolution of video coding
standards. From H.261 [1] published in 1990 to the latest H.264/AVC {2], the coding
efficiency has been improved mare than five times.

Apart from the rapid development of video coding technology, the digital video
representation has also been experiencing a tremendous growth in the past two decades.
The typical video formats, such as common intermediate format (CIF) and quarter-
CIF (QCIF) for mobile applications and standard-definition (8D) for broadcast and
storage media, are gradually superseded by high-definition (HD) videos. Today, HD
video formats have been adopted for broadcast all over the world and are also popular
with many other applications, including high-density storage media, filmmaking, video
gaming, and surveillance.

Generally speaking, HD video refers to any video of higher spatial resolution than
SD video. Nonetheless, the HD video formats commonly used in communication are
specified by [3). Table 1.1 compares various formats of digital video source in different
aspects. As indicated in the table, HD videos have higher spatial/temporal/color sam-
pling rate, higher bit depth, and wider aspect ratio (16:9), and therefore provide richer
details, more brilliant color, and more content. On the other hand, the raw data rate
of HD video becomes two to six times higher than that of the SD videos, which makes
HD video coding very challenging and also the key enabler of HD applications.

The state-of-the-art video coding technology, represented by H.264/AVC, is pow-
erful enough to provide satisfactory quality of HD videos subject to the bit-rate con-

strained by today’s nctwork capacity. Nevertheless, the R-D performance can be further



Format | Full resolution | Color subsampling | Bit depth | Frame rate
QCIF [1] 176 x 144 4:2:0 8 bits 30p
CIF [1] 352x 288 4:2:0 8 bits 30p
SIF [4) 352x240/288 4:2:0 8 bits 30p/25p
SD [5] 720x480/576 | 4:2:0/4:2:2/4:4:4 | 8-10 bits 30i/251
1280720 o A A . 24p/30p/60p
HD [3] 1950 % 1080 4:2:0/4:2:2/4:4:4 | 8-12 bits 34p/30p/30i
Digital 4096 x 2160 .
cinema [6] { 2048x1080 4 12 bits 24p/48p
7680x4320 .
UHD (7] 13402160 4:2:0/4:2:2/4:4:4 10 bits 60p

Table 1.1: Formats of digital video source

improved, since the technical developments in H.264/AVC are all originally designed
as general coding tools for videos of various resolutions and do not fully exploit the
special properties of HD videos. Actually, little research effort has been made to find
the statistical difference between HD and other low resolution videos, although the
characteristics of HD videos are intuitively expected to be unique.

In this work, the statistical characteristics of HD videos are studied quantitatively.
The results show that HD videos distinguish from other lower resolution videos by
higher spatial correlation and special power spectral density (PSD): the signal varies
more slowly and the high frequency energy is mainly distributed along the vertical and
horizontal directions. These findings are instructive to improve the coding tools in the
latest hybrid coding scheme and make them more efficient for HD videos.

Based on the above analysis results, two techniques for HD video coding are devel-
oped. To exploit the spatial property, 2D order-16 transforms are proposed to code the
higher correlated signals more efficiently. Specially, two series of 2D order-16 integer
transforms, named modified integer cosine transform (MICT) and non-orthogonal inte-
ger cosine transform (NICT), are studied and developed to provide different trade-offs
between the performance and the complexity. Based on the property of special PSD,
parametric interpolation filter (PIF) is proposed for motion-compensated prediction
(MCP). Not only can PIF track the non-stationary statistics of video signals as the
related work can, but also it represents interpolation filters by parameters instead of

individual coeflicients, thus solving the conflict of the accuracy of coefficients and the
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size of side information. The proposed two techniques are integrated into the state-
of-the-art international video coding standard, H.264/AVC, and compared to their
equivalents therein. The experimental results show the proposed coding techniques can
significantly improve the overall R-D performance of H.264/AVC, i.e., on average about
10% bit-rate reduction at the same PSNR.

In the near future, video materials with even higher definitions, such as ultra-high-
definition {(UHD) (see Table 1.1), will be captured and distributed, but their bit-rates
produced by the latest coding technology will go up faster than the increased capacity
of the wireless or wired network infrastructure [8]. Therefore, high-performance video
coding techniques specially for UHD videos are required. The study results in this work
are quite instructive to imply the trend of coding strategy with increasing definition.

In addition te coding tools, processing technique like de-interlacing is also studied for
interlaced HD videos. To satisfy different delay constraints, two real-time de-interlacing
algorithms are proposed specially for H.264 coded videos. They adapt to local activities,
according to the syntax element (SE) values. Accuracy analysis is also introduced to
deal with the disparity between the SE values and the real motions and textures. The
de-interlacers provide better visual quality than the commonly used ones and can de-

interlace 10804 sequences in real time on PCs.

Organization of the Work

The work is organized as follows. Chapter 2 reviews the fundamentals of hybrid coding,
which will be used later for HD video characterization and performance evaluation. A
detailed survey on the history of hybrid coding standards is provided in Chapter 3,
where the state-of-the-art video coding standard H.264/AVC, the platform on which the
proposed coding and processing techniques are evaluated, is emphasized. In Chapter 4,
the methodologies of analyzing the statistical characteristics of HD videos are described
and the results are reported as well. Based on the analysis results in Chapter 4, two
coding techniques for HD videos, 2-D order-16 integer transform and PIF, are proposed
in Chapter 5 and Chapter 6, respectively. In Chapter 7, two real-time de-interlacing
techniques are presented for H.264 coded interlaced HD videos, as post-processing tools.
The thesis is concluded in Chapter 8, where the contributions of the Ph.D. work are

summmarized and the future research directions are pointed out as well,



Chapter 2

Fundamentals in Hybrid Video Coding

This chapter begins with a brief introduction of the digital video source, including
formation and representation. Since in hybrid coding the digital video source is modeled
as a random process, basic elements of probability theory and random process are then
reviewed in Section 2.2. Three fundamental techniques for hybrid coding, predictive
coding, transform coding, and entropy coding, are introduced in Sections 2.3, 2.4,
and 2.5, respectively. Then, in Section 2.6, the concept of the hybrid coding is presented,
which is essentially the core of all the video coding standards.

For further reading on probability theory and random process, the readers are

referred to [9]. Fundamentals in hybrid video coding are given by Wang et al. {10].

2.1 Video Formation and Representation

Digital video is captured in pictures, which are actually the snapshots of a dynamic
scene taken at regular time intervals. Each picture is represented by a rectangular array
of pixels. In monochrome videos, the value of each pixel is the luminance intensity at
the corresponding sampling position in the scene, whereas in color videos, each pixel
carrying luminance and chrominance information is made of the combination of the
intensities of primary colors, e.g., YCbCr, RGB, or YUV. In other words, each color
picture is composed of three rectangular arrays for three color channels. The samples
in each color channel have discrete and finite magnitudes, which typically have 256
levels, i.c., 8-bit bit depth.

The formats of digital video source widely used in communications are summarized
in Table 1.1. In Sections 2.1.1 and 2.1.2, two characteristics of raw video related to color
representation and raster scan are introduced, respectively. Section 2.1.3 introduces the

quality measurement for distorted digital videos.
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2.1.1 Color Space and Subsampling

Color Spaces

The red, green, and blue (RGB) primary is widely used in video capture and display
systems. However, in video transmission, signals in the RGB space is usually converted
into other color spaces with luminance/chrominance coordinates, such as YUV for
PAL and SECAM TV systems and YIQ for NTSC TV systems, in order to reduce
the bandwidth requirement and be compatible with monochrome video applications.
The value of the Y component represents the brightness of a pixel, while the other two
componenis bear the chrominance information. The specifications of the color space
conversion from RGB to YUV and YIQ are given in (2.1) and {2.2), respectively,
0299 0587 0.114

Y R
U |=] -0147 —0.289 0.436 G (2.1)
v 0.615 —0.515 -—0.100 B
Y

0.299  0.587 0.114 R
I |=1]05% -0275 -0.321 G (2.2)
Q 0212 -0523 0.311 B

where R, G , and B are normalized gamma-corrected values, so that (R, @, B ) equal to
(1,1,1) corresponds to white. The color space defined in BT.601 [5] is known as YCbCr,
which is the scaled and shifted version of the analog YUV space. The transformation

matrix for deriving YCbCr coordinate from the RGB coordinate is given as in (2.3),

Y 0.257 0504 0.098 R 16
C, | =| ~0148 -0291 0.439 G+ | 128 (2.3)
C, 0.439 -0.368 —0.071 B 128

where R = 255R, G = 255G, and B = 2558 are the digital equivalents of the
normalized RGB primary RGB. If the bit depth of the video source is 8-bit, the scaling
and shifting operations guarantees that the resulting Y, Cb, and Cr components take
values in the range of (0, 255). The color space transformation for 10-bit representation

of the video source is also defined in [5].

Color Subsampling

Since HVS is less sensitive to color than to brightness, the chrominance components,

Cb and Cr, may be subsampled without much degradation of the perceived video
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Figure 2.1: Color subsampling formats. (a) 4:4:4. (b) 4:2:2. (¢} 4:2:0.

Figure 2.2: Raster scan formats for analog video. (a) Progressive scan. {b) Interlaced Scan.

quality. The color subsampling format is indicated by a triple of digits separated by
colons. In 4:2:2 format, the horizontal sampling rate for the chrominance components
reduces to half but the vertical sampling rate keeps unchanged. To further reduce the
data rate, the sampling rate for chrominance components is reduced to half in both
horizontal and vertical directions; the subsampling format is known as 4:2:0. However,
for applications requiring very high quality, the chrominance components should have
exactly the same sampling rate as for the luminance component, which is known as 4:4:4
format. The sampling grids of the luminance and chrominance samples for different

color subsampling formats are shown in Fig. 2.1.

2.1.2 Progressive and Interlaced Scan

Progressive and interlaced scans are two types of raster scan first introduced in analog
video capture, storage and display. With raster scan, analog video is represented by a

continuous one-dimensional (1-D) waveform, of which the intensity values are captured
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along contiguous scan lines over consecutive pictures. A picture refers to either a frame
with progressive 