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Abstract 

Keeping abnormal motion for long time will ultimately lead to pain in the feet, ankles, 

legs and skeletal disease, and badly influences the skelecton growth especially for children 

and adolescents. In biomedicine, gait analysis has been proved as an useful approach 

in revealing helpful insights into the recognition of motion abnormalities. Analysis of 

gait is commonly used as a routine procedure in identifying movement or posture related 

abnormalities of humans and aiding the therapeutic processes. Our goal is to monitor and 

study gaits of humans in order that proper motion adjustments can be advised to improve 

their posture style and long-term well being. 

Most currently utilized measurement systems for motion and gait analysis have the 

shortcomings of that the monitoring and analysis of motion is constrained in a limited 

environment and human-related assistance is essential. All of them cannot be acceptable 

for the purpose of long-term monitoring and studying of motion abnormalities. In this 

thesis, a new concept of an inexpensive, compact, and lightweight shoe-integrated platform 

is introduced. The shoe-integrated system is composed of a suite of sensors for wirelessly 

capturing gait parameters and generating well qualified analysis results. The ideal platform 

requires no specialized equipment or lab setup, allowing data to be collected not only in 

the narrow confines of a research lab, but essentially anywhere, both indoors and outdoors. 

Assessment of different gait patterns of daily living could provides useful information in 

studying one individual's stability and mobility during locomotion. As the foundation for 

better assessment of different gait patterns, the ability to automatically identity different 

patterns and walking surroundings provide valuable information for further understanding 

the relations between gait pattern and energy consumption. We apply Discrete Wavelet 



Transform (DWT) for feature generation and Fuzzy-logic based approach for designing 

the multi-class classifier to identify gait patterns among flat walking, descending stairs, 

and ascending stairs based on continuous kinematic signals. 

To be one of the common postural abnormalities, postural kyphosis is studied and 

modeled. We apply Cascade Neural Networks with Node-Decoupled Extended Kalman 

Filtering (CNN-NDEKF) to train the model for this binary classification problem. This 

proposed study is of particular significance to provide feedback in the application of pos-

tural kyphosis rectification. 

Falls in the aging population has always been one of the most challenging problems 

in public health care. We propose ar�automatic falling detection algorithm based on the 

analysis of plantar force on both feet, because plantar forces are an important parameters 

directly associated with postures of human locomotion. The proposed two-stage algorithm 

efficiently overcome the shortcomings of the widely proposed accelerometer or gyroscope 

based algorithms and could provide efficient assistant for automatic detection of falls once 

they occur. 

Finally, the research of studying gait abnormalities is introduced. We develop the 

methodology for modeling and classifying abnormal gaits including toe-in, toe-out, over-

supination, and heel walking via machine learning algorithms, hidden Markov models 

(HMM) and support vector machine (SVM) based on a suite of gait parameters. The 

trained classifiers can classify abnormal gait patterns mentioned above and the proposed 

methodology will make it possible to provide realtime feedback to assist persons with gait 

abnormalities in the development of a normal walking pattern in their daily life. 



摘要 

长时间的不良运动姿态将最终引发足部、脚碟、腿部的疼痛以及骨豁疾病。特别对 

于儿童和青少年，不良姿态将严重影响骨豁的发育。在生物医学领域，步态分析早已被 

证明其在识别不良运动姿态方面的功用，是…种行之有效的测量以及辅助治疗方法。我 

们的研究目标是通过监控和学习步态,实现实吋的正确姿态指导，以便人们改进不正确的 

运动姿态。 

目前普遍应用的运动姿态以及步态分析测量系统都存在…些缺点。运动行为的监测 

以及分析被制约在有限的空间
)�
1屮，并且专业人士的辅助是不可缺少的。这些传统的系 

统不能为长吋间的运动检测提供良好的平台。在这种情况下，我们提出了• •种新的测量 

理念：智慧鞋测量平台。这个系统具备价格低廉、质轻等优点。其奥成了- •系列传感器 

可以进行无线的步态数据采_以及被应用于高质量的步态分析。这个理想的测量平台不 

需耍特殊器械以及实验室的辅助。运动数据的采集不再局限在狭小的实验室，而被扩展 

到更加广阔的室外空间。 

在日常生活屮，对不同步态模式的评估可以为人类运动过程屮的稳定性以及移动性 

提供有效的分析信息。作为步态模式的有效评估基础，自动检测、辨识不同的步态以及 

行走环境为进• •步理解步态模式同能量消耗之间的联系提供了有效的信息。我们运用离 

散小波变换对连续的运动信号进行了特征提取，并且提出了基于模糊逻辑的方法来实现 

多种步态模式的辨识，其屮包括，平地行走、上楼梯、下楼梯的行走步态。 

作为• •种常见的姿态异常，我们对姿态型泥背进行了分析与建模。我们应用了- •种 

有效的神经网络学习体系来建立模型以解决姿态型驶背与正常姿态之间的辨识问题。此 

方面的研究在姿态型蛇背矫正方面具有特殊的意义。 

老年人的摔倒问题…直是公共健康护理的•个难题。考虑到在人类的运动。屮，脚 

底乐力是表明姿态特征的_ •个重要参数，我们提出了基于双足压力分析的自动摔倒检测 
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方法。所提出的两阶段分析算法有效的克服了目前基于加速度以及角速度传感器的摔倒 

检测力•法的不足，能冇效的实现对摔倒瞬间的检测。 

M / u ,我们介绍了在异常步态方面的研究。运用隐马尔可夫模型和支持向量机，我 

们提出了对儿种常见异常步态建模及分类的方法。通过_ •系列步态参数，训练后的分类 

器可以有效的分辨出我们所关注的异常步态。此方法为异常步态者在日常生活屮改进行 

走姿态提供了良好的辅助功能。 

IV 
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Chapter 

Introduction 

1.1 Motivation 

Hum an motion, the physical movement in the position of a body relative to a reference 

point, can be generally divided into normal and abnormal ones. Human motion is influ-

enced by many factors, including general health, body build, strength, personal habits, 

envirormient and so on. Ideal motion is associated with the continuous posture defined 

as the balance state of muscles and skeletons which protects the supporting structures 

of the body against injuries and deformities. Under these conditions, the muscles will 

function most efficiently and the optimum skeletal positions are aflbrded for thoracic and 

abdominal organs. However, prolonged abnormal motion will ultimately lead to pain in 

the feet, ankles, legs and skeletal disease, and badly influence the skelecton growth espe-

cially for children and adolescents. In biomedicine, gait analysis has been proved as an 

useful approach in revealing helpful insights into the recognition of motion abnormalities. 

Analysis of gait is commonly used as a routine procedure in identifying movement or pos-

ture related abnormalities of Immans and aiding the therapeutic processes. Our goal is to 

monitor and study the gaits of humans in order that proper motion adjustments can be 

advised to improve their posture style and long-term well being. 

Currently, motion and gait aiial3''sis are generally carried out relying on either of the 

two ways, including clinicians' visual observations and motion lab systems. For the first 
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approach, no extra equipments are needed. Subjects are observed in clinician's office and 

required to finish some locomotion, such as walking with their free-selected posture and 

speed, walking around an obstacle, climbing up and down stairs, and so on. During the 

processes, the trained specialist observes the subject's locomotion and makes the con-

clusion about gain analysis based on his/her expert experience. For the second one, the 

laboratory is equipped with highly accurate computer-based optical tracking systems, elec-

tromyography (EMG) systems, force platforms and so on, which can produce reliable and 

accurate analysis for whole body segments during subjects' locomotion. The clinician's 

observation method is inexpensive, however, the analysis results is unreliable and qualita-

tive. While, the motion lab system can provide accurate results relying on the expensive 

set-up and maintenance. The shortcomings of both methods are that the monitoring and 

analysis of motion is constrained in a limited environment and human-related assistance 

is essential. Consequently, neither of them can be acceptable for the purpose of long-term 

monitoring and studying of motion abnormalities. The new concept of gait analysis plat-

form that is inexpensive, can be applied in a variety of environments, and generates well 

qualified analysis results, needs to be brought out. 

In recent years, researchers have begun to focus on the study of wearable sensor and 

computer interfaces. However, one domain of wearable devices named the design and 

implementation of sensor and computer-equipped intelligent shoes, has remained relatively 

unexplored. The on-going revolution in electronics, sensor, and battery miniaturization, 

driven largely by mobile hand-held device markets, has made it possible that an intelligent-

shoe implementation is compact and lightweight such that users will notice little if any 

difference between their normal shoes and the proposed intelligent shoes. This proposed 

shoe-integrated system provides an ideal platform for cmr research on studying human 

motion abnormalities. Unlike other more intrusive motion capture technologies, based on 

cameras or magnetic motion trackers, the intelligent shoe system requires no specialized 

equipment or lab setup, allowing data to be collected not only in narrow confines of a 

research lab, but essentially anywhere, both indoors and outdoors. 

The study and analysis of human gait has always been a challenging attempt due to 
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the intrinsic characteristics of gait data. Firstly, human gait need to be well represented 

replying on liigh-dimensioiial parameters, including kinetic, kinematic, electromyography 

(EMG) and so on. This high-dimensional problem is intractable via typical statistical 

analysis methods. Secondly, gait data is non-deterministic. Trial environments and in-

strumentation unavoidably result in the variabilities of gait data recordings. Besides, gait 

data shows variabilities between subjects, between trials, even for one subject in the same 

trial. Thirdly, it exhibits nonlinear relationship between the gait variables and the corre-

sponding human motions. Recently, new developments in computational intelligence and 

machine learning algorithms lead to the increase applications in the fields of biomedicine 

and human motion analysis. The progresses overcome the limitations of the existing 

quantitative techniques in modeling and make possible the analysis and interpretation of 

complex, multi-channel gait data. 

We propose methodologies for studying arid modeling human motion abnormalities 

under the framework of the intelligent shoe-integrated system from which the information 

acquired can give efficient a.ssistarice in determining and alarming the users associated 

with abnormal motion patterns. The research work for this thesis mainly focuses on the 

following parts: 

1. Design and implementation of the inexpensive, compact, robust shoe-integrated plat-

form for capturing a variety of gait-related parameters wirelessly. 

2. Study and classify gait patterns, including flat walking, descending stairs, and as-

cending stairs. 

3. Detection of postural kyphosis which is one of the most common postural abnormal-

ities. 

4. Methods for studying and automatically disciiminating fall-events from activities of 

daily living tasks based on plantar force information. 

5. Classification of normal gaits and the abnormal ones including toe-in, toe-out, over-

supination, and heel walking. 
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1.2 Related Work 

In order to provide a better understanding for the need of applying shoe-integrated 

system for monitoring and studying motion abnormalities, we will discuss the motion 

measurement techniques widely used in clinical analysis. Additionally, the prior work for 

gait analysis based on on-shoe systems will be introduced. 

1.2.1 Human Motion Measurement Techniques 

In the past decade, as more and more studies on human motion have been conducted, 

numerous systems for human motion data acquisition and analysis are proposed. A typical 

motion analysis procedure generally relies on using a variety of measurement techniques for 

acquiring a nimiber of biomedical variables about kinematics, kinetics, and electromyo-

graphy (EMG) information. This section will mention some of the main measurement 

techniques used for motion analysis. 

Kinematics 

Kinematics analysis is related to describe how the object moves in space. There are 

mairjly three types of kinematics analysis systems: video-based reflective marker systems, 

optoelectronic systems, and electromagnetic tracking systems. 

For the video based reflective maker systems, reflective markers which are also called 

passive markers are attached to subjects. Multiple video cameras whose lens are sur-

rounded with infrared flash illuminators are utilized for tracking the reflections from the 

markers. Infrared illuininatois send out infrared lights which are reflected back into the 

lens by the passive markers. The two major corporations for manufacturing such systems 

are Motion Analysis and VICON (Fig. 1.1). 

The Eagle Digital RealTime System of Motion Analysis Corporation [1] is widely used 

in the applications of gait anah^sis and rehabilitation, which consists of Eagle Digital 

Cameras and Cortex software. The Eagle Digital Camera, with a resolution of 1.3 million 

pixels at 1280 x 1024 full resolution, can capture speeds of up to 500 frames per second. 
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(a) 
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(b) 

(d) 

Figure 1.1 

Reflective 

: ( a ) VICON camera [3] (b) Eagle digital camera of Motion Analysis [1] (c) 

markers attached at various segments of the horse and human [4] (d) Gait 

analysis interface of Motion Analysis [5] 

The latest innovation of Vicon, T160 [2], with a resolution of 16 megapixels, can capture 

10-bit grayscale using 4704 x 3456 pixels at up to 2,000 frames per second. Such high 

resolution means that the details of participants can be tracked accurately even in a larger 

volumes with more markers. 

Different the video-based reflective maker .systems, from optoelectronic systems cap-

ture 3D motion information via attaching active markers, light emitting diodes (LEDs), on 

the segments of participants. Optotrak Certus motion capture system (Fig. 1.2(a)), with 

an accuracy of up to 0.1 mm and the resolution of 0.01 mm, is a commercially available 

optoelectronic system. The maximum number of markers is 512 per system and the maxi-

mum update rate reaches 4600 Hz [6], The position sensor of the Optotrak Certus System 

which is pre-calibrated involves three cameras mounted in a rigid housing (Fig. 1.2(b)). 

Electromagnetic tracking systems involve a transmitter emitting magnetic fields and 

sensor coils mounted on the participant for detecting the fields. Each sensor coil tracks 
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(a) 

Figure 1.2: (a) Optotrak Smart Markers attaching to 

Certus position sensor [8] 

(b) 
the participant [7] (b) Optotrak 

the object's position and orientation and delivers a six degrees-of-freedom measurement. 

Better than the video-based approaches, there is no cameras or tripods need to be aligned 

and calibrated. However, since the sensor coils must be within the range of the magnetic 

field emitted by the transmitter, the tracking space is limited. The operation range for the 

commercially used electromagnetic system, MotionSTAR Wireless LITE (manufactured 

by Ascension Technology Corporation) is 士3.0 m [9]. Besides, electromagnetic systems are 

not suitable for detailed tracking of 3D motion due to the less receiver points compared 

with video-based systems. 

Kinetics 

Kinetics concern the forces that produce movement. The ground reaction force (GRF) 

representing the force exerted by the supporting surface onto the body through the foot, is 

generally measured by force platforms. AMTI multi-axis force platforms (Advanced Me-

chanical Technology, Inc) are commercially available force platforms widely utilized in gait 

and biomechanics laboratories [10]. The force platform based on strain-gauge transduc-

ers is floor-mounted. Each platform measures three-dimensional forces [Fx, Fy, F.) and 
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three-dimensional moment components (A'4,., My, Af^)- The coordinate axes of AMTI force 

platform are shown in Fig. 1.3(a). Motion laboratories usually utilize two or three force 

platforms for kinetics analysis. The limited number of platforms confines the operation 

range and less consecutive gait cycles can be monitored for one trial. As the alternative 

system for kinetics analysis, plantar pressure insoles, are suitable for investigating a va-

riety of long-term activities, such as running, climbing stairs, or even playing basketball. 

The main commercially available system, Pedar insole (Novel Gmbh, Munich, Germany), 

involves 99 capacitance transducers for measuring pressure distribution between the foot 

and shoe in the dorsal, medial and lateral areas. 

(a) (b) 

Figure 1.3: (a) AMTI force platform coordinate axes [10] (b) Pedar insole [11] 

Electromyography (EMG) 

Electromyography (EMG), as one part of comprehensive motion analysis, is conducted 

in some motion laboratories. EMG measurements have been incorporated into studies of 

human motion since the early 1950s [12]. EMG refers to measurements of the electrical 

activity of muscles. The recordings of EMG is helpful to determine muscles' function 

and their working sequence of the corresponding movements. The studies involving the 

presence and absence for the particular muscle's activities, the EMG envelope shape with 

respect to the muscle's on-off activity, and the relationship between EMG signal intensity 

and muscle effort, have drawn interests of motion laboratories. The information obtained 
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from specific iniiscles during their activities may be useful in developing effective injury 

prevention and rehabilitation. 

The two types of EJVIG are surface electromyography (SEMG) and fine-wire electromyo-

graphy (FWEMG). SEMG replies on taping electrodes on the skin surface over the in-

terested muscle. The main disadvantage of SEMG is that it is more subject to cross-talk 

generated by muscles lying between the surface electrode and the deep muscle we inter-

ested. FWEMG overcomes this problem by injecting needle electrode directly into the 

deep muscles. Although both types of EMG disrupt gait in some way, SEMG is more 

often used due to less invasive than FWEMG. 

1.2.2 Gait Analysis Based On On-Shoe Systems 

Among all available systems for human motion analysis, on-yhoe devices are most 

utilized due to the outstanding advantage of extending the usable space for human gait 

study. 

Some initial multi-sensor based on-shoe systems have been prototyped. An iii-shoe 

multisensory data acquisition system was developed by Morley et al. in 2001 [13] ‘ In 

this system, four pressure sensors, two temperature sensors, and one humidity sensor were 

located under the special positions inside a shoe for recording the corresponding informa-

tion, which was later downloaded to the host computer for data analysis. The hardware 

design and on-shoe data acquisition have been realized. The system has the potential 

application to provide feedback to patients with diabetes and peripheral neuropathy who 

are at high risk of foot skin breakdown. The reliability and validity of the developed 

system has been investigated in [14]. Morris et al. [15] [16] developed a wireless wearable 

system that was designed to provide quantitative and long-term gait analysis aiming for 

clinical applications. The proposed "GaitShoe" system has been proved in the application 

of lieel-strike and toe-off timing detection. 

The goal to directly measure the pressure distribution between the foot and shoe drove 

many early on-shoe systems. Zhu et al. [17] [18] developed a portable microprocessor-

based data acquisition system for measuring discrete plantar pressures beneath foot from. 
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ambulatory subjects. For each insole, seven pressure sensors were located under seven, 

bony prominences, including the anterior and posterior heel, the five met a,tarsal heads, and 

the hallux of each foot. They also studied foot pressure distribution during walking and 

shuffling based on the proposed repeatability and portability in-shoe device [19]. Another 

wireless in-shoe force system was reported by Lawrence arid Schmidt [20]. In this system, 

four thick-film force sensors were installed under the major weight-bearing points of each 

foot to estimate the approximate total normal force and the center of pressure (COP) on 

each foot. The experiment results of total force and COP component measurement were 

compared with the results of the AMTI force plate. 

Gait phase/event analysis has become one of the most prevalent applications for on-

shoe systems in recent years. Skelly and Chizeck [21] presented a two-level rule-based 

gait event detection algorithm. For the lower level, force sensitive resistors' signals and 

the progression information of the stimulator were processed for estimating the phase of 

gait based on a, fuzzy logic classifier. The upper level acted as the supervisory function 

for monitoring and modifying these estimations provided by the lower level and gener-

ated the time sequences of gait events. They concluded that two force sensitive resistors 

(FSRs) per insole were sufficient for detecting the gait： events of a single leg. Pap pas 

et al. proposed a gait phase detection system based on a portable device including one 

gyroscope and three force sensitive resistors [22]. The knowledge-based and rule-based 

algorithm can distinguish the gait phases of stance, heel-off, swing, and heel-strike in 

realtime. The experimental results demonstrated the gait phase detection system was 

insensitive to perturbations caused by non-walking activities. Subsequently, Pappas et 

al. [23] presented the experimental results of combing the gait phase detection system 

and a programmable functional electrical stimulation (FES) system for subjects with the 

dysfunction of drop-foot gait pattern. The use of gait phase detection system associated 

with FES improved the gait-kinematics of the affected leg, which showed the potential 

application in rehabilitation training. 
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1.3 Thesis Overview 

The coming chapters of this thesis are organized as follows： 

• Chapter 2: Shoe-integrated Platform Design 

In this chapter, the design of the shoe-integrated platform is introduced. The imple-

mentation of the main subsystems, including the insole, the Inertial Measurement 

Unit, the microprocessor-based data gathering board, and the wireless communica-

tion module are described respectively. The shoe-integrated system we designed is 

an ideal platform for studying human motion abnormalities by modeling abnormal 

motions which will introduced in the following chapters. 

• Chapter 3: Gait Pattern Classification 

We aim to study human gait patterns and present the design of the classifier for 

identifying gait patterns among flat walking, descending stairs, and ascending stairs 

based on continuous kinematic signals. We apply Discrete Wavelet Transform (DWT) 

for feature generation and Fuzzy-logic based approach for designing the niulti-class 

classifier. Anteroposterior accelerator, vertical accelerator, and the sagittal plane 

gyroscope are demonstrated to provide useful information for classifying the gait 

patterns we focus on. The compact, wireless, and wearable system has the promis-

ing application for assisting to evaluate walking energy expenditure. 

• Chapter 4: Postural Kyphosis Detection 

We present a methodology for detecting postural kyphosis under the framework 

of the shoe-integrated system. Eight force sensing resistors (FSRs) for gathering 

the pressure information under the eight bony prominences are utilized. Based on 

the gathered plantar pressure information, we apply Cascade Neural Networks with 

Node-Decoupled Extended Kalman Filtering (CNN-NDEKF) for training the model 

for this binary classification problem. The proposed methodology has the potential 

application for detecting postural kyphosis in order to assist persons in developing 

proper walking posture in their daily life. 
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• Chapter 5: Falling Detection based on Plantar Force 

A novel falling detection algorithm based on the analysis of plantar force on both 

feet is proposed in this chapter. Two-stage analysis algorithm is presented. For 

St age-One analysis, the candidate sequences will be generated if force values of the 

four positions in both feet are simultaneously less than the corresponding prede-

fined thresholds and last for a while. For Stage-Two analysis, we apply support 

vector machine (SVM) with genetic algorithm (GA) for generating optimal training 

parameters to determine whether there really exists a fall event. 

• Chapter 6: Abnormal Gait Modeling 

We present the method for modeling abnormal human gait using hidden Markov 

model. The intelligent system focuses on modeling the following patterns: normal 

gait, toe in, toe out, oversupination, and heel walking abnormalities. The "similarity 

distance measure" criterion which reflects the similarity degree between models is 

introduced. Besides, the methodology of optimal SVM classifier is also applied for 

the problem of this chapter. 

• Chapter 7: Conclusions 

In this chapter, the major contributions of this thesis are summarized and the future 

work are discussed. 



Chapter 2 

Shoe-integrated Platform Design 

The foundation of this thesis is to design and implement of the shoe-integrated plat-

form for motion analysis. This chapter introduces the design and implementation, of such 

a platform in detail, including selection of sensors, physical implementation, and irjter-

pretatioii of sensor data with respect to physical parameters. Section 2.1 discusses the 

functional requirements of the design and introduces the overall architecture of the shoe-

integrated system. Section 2.2 and Section 2.3 respectively describe the insole subsystem 

and Inertia! Measurement Unit (IMU) subsystem. In these two sections, the detailed func-

tions of the sensors are presented. Section 2.4 describes the microprocessor-based data 

gathering subsystem, arid Section 2.5 introduces the wireless communication and system 

interface in detail. 

2.1 Overview 

In designing the shoe-integrated system, the fundamental requirements should be con-

sidered as follows: 

First and foremost, the system should have no efFect on humans' movement. Thus, the 

compact and lightweight sensors and electronic hardware, which subtly effect on a shoe's 

weight should be selected. As mentioned in previous studies, the lower-extremity loading 

12 
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on the order of 1 - 2% of body weight can have subtle effects on gait [24]. Considering the 

studied subjects for our experiments are adolescents and adults who are weighted more 

than 30 the weight of the prototype less than 300 g (30 kg weight x 1%) is acceptable. 

Secondly, the shoe-integrated system should be convenient to wear and socially ac-

ceptable. In order to meet this requirement, the hardware is designed to be an additional 

part of users' normal shoe (e.g. insole) or attached on the surface of shoes aiming not to 

damage the shoes and interfere in humans' gait at the same time. 

Thirdly, the use of the shoe-integrated system is not constrained in a relatively small 

environment. Wireless communication based on radio frequency (RF) is proposed to 

satisfy this requirement. For each shoe-integrated system, a pair of transceiver and receiver 

is utilized for transferring data to the remote host PC for analyzing the user's motion in 

real-time. 

Fig. 2.1 shows the schematic diagram of the system architecture, including four major 

components: insole, Inertia! Measurement Unit (IMU) board, microprocessor-based data 

gathering module, and wireless communication subsystem. The whole system is compact 

and lightweight (90 g) so that it can be easily integrated with a user's shoes. 

Subsystem 3 

Subsystem 

Transmiiler 

Subsystem Subsystem 4 

Host Computer 

Figure 2.1: Outline of the system design 

Subsystem 1 is for sensing the parameters of the insole. A suit of sensors are installed 
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inside the insole, including force sensing resistors and the bend sensor. For the ease of 

use. we limit the size of each sensor as small as possible. 

Subsystem 2 is used for acquiring kinematic information from the Inertial Measurement 

Unit (IMU), including three single-axis gyroscopes and one three-axis acceleronieter to 

detect the angular rates and accelerations for the x, y, and z axes while the participant 

moves. 

Subsystem 3 is for gathering data from the insole and IMU. Furthermore, the micro-

processor based module will transform the analog voltage information into scaled digital 

data before sending them to the host PC. The operation power of the microprocessor is 

limited to 5V. 

Subsystem 4 is for wireless communication. This communication system is composed 

of a transmitter and receiver. The receiver is for collecting the data from the circuits 

described in subsystem 3 while the transmitter is utilized for sending the data to the host 

computer for further analysis. 

2.2 Insole Subsystem 

Insole subsystem shown in Fig. 2.2 is a, flexible instrumented part for sensing the force 

and flexion parameters inside the shoe. Eight FSRs (Interlink Electronics, Santa Barbara, 

CA) and one bend sensor (Images SI, Inc.) are installed on one side of a thin insole made of 

foam. The bend sensor is located at the center of the insole in order to provide the flexion 

information of foot. Since the weight of the body is mainly supported by the metatarsal 

heads and toes in the front of the foot and the calcaneus in the back of the foot, the FSRs 

are installed underneath subcutaneous bony prominences: 1-5 metatarsal heads, hallux 

(big toe), and the heel (which is divided into a posterior and inside positions). Considering 

the different sizes of bony prominences, we select two kinds of FSRs. Two FSR-402s are 

installed in the first metatarsal head and hallux. Six FSR-400s are placed under the other 

positions. 
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Figure 2.2: Photograph of the insole subsystem 

2.2.1 Force Sensing Resistor 

Force Sensing Resistors (FSRs) are polymer thick film (PTF) devices that experience 

a decrease in electrical resistance along with an increase in normal force applied to the 

active area of the sensor. Structurally, FSRs manufactured by Interlink Electronics [25] 

consists of three layers shown as Fig. 2.3. The bottom layer is a flexible substrate coated 

with printed semi-conductor material. The middle layer is a spacer adhesive providing 

spacer opening and vent for the active surface. The top area is a flexible substrate with 

printed interdigitating electrodes. The area containing the electrodes is the active area of 

the sensor. FSR-402 has the circular active surface of 12.7 mm diameter and 0.46 mm 

thickness. FSR-4()0 is with the circular sensing area of 5.0 mm diameter and 0.30 rum 

thickness. Table 2.1 lists the general characteristics of FSRs manufactured by Interlink 

Electronics. 

Although FSR shows less actuate than a load cell or strain gauge, we select FSRs for 

sensing force parameters inside the shoe due to their inexpensive price and thin thickness. 

Besides, within the relatively small force range, FSRs show approximate linearity response. 

In Fig. 2.4, the inverse of resistance, conductance, is plotted versus force in the range of 

0-10%. We simply use voltage divider to measure the resistance change of FSRs. After 

several experimental tests, it turns out that a IKH resistor is suitable to be the upper 

resistor which are placed between the FSR-402 and the power supply (5V) in the voltage-

divider, and 2.2Kn resistor is suitable for the FSR-400 to be used in the voltage-divider. 

The implementation of either FSR-402 or FSR-400 obtains nearly the full range output of 
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n.FXIBl.F RUBSTRATF WITH PRJNTED SEMI-CONDUCTOR 

SPACER ADHESIVE 

FLEXllBLe SUBSTRATE vMThl PRINTED 
|NT£RD)G|TAT|NQ ELECTRODES ACTIVE AREA 

TAJL 

Figure 2.3: Force sensitive resistors by Interlink Electronics [25] 

Table 2.1: General characteristics of Interlink FSRs [25] 

Parameter- Value 

Force Sensitivity Range 

Pressure Sensitivity Range 

Part-to-Part Force Repeatability 

Single Part Force Repeatability 

Force Resolution 

Break Force 

Lifetime 

Temperature Range 

< 100 g to > 10 kg 

< 0 . 1 kg/cm- to > 10 kg/crn^ 

土 15% to 士 25% of established nominal resistance 

± 2 % to ± 5 % of established nominal resistance 

Better than 0.5% full scale 

20 g to 100 g 

> 10 million actuations 

-30°C to +70°C 

0-5V throughout humans' motion. The relationship between the FSR output, Void, and 

the resistance of the FSR, Rfsr, is described by: 

Vout = Rfsr 
Rfsr + R. 

VCC (2.1) 

where R is the upper resistor, and Vcc is 5V power supply. 



0 2000 4000 6000 8000 10000 

FORCE (g) 

Figure 2.4: Conductance vs. force of Interlink FSR (O-lOkg) [25] 

2.2.2 Bend Sensor 

Bend sensors, also called flexion sensors, measure the amount of deflection caused by 

bending the sensor. The bend sensor is characterized by an intrinsic resistance, when it 

is laid flat. For the iini-directional bend sensor, its resistance increases as the deflection 

increases in one direction, and is unchanged if bent happens in the opposite direction. We 

install one nni-directional bend sensor at the center of the insole for measuring the amount 

of flexion at the inetatarsal-phalaiigeal joint. The output of the bend sensor contains rich 

information about human motion, especially the loading and uploading of feet. 

The uni-directional bend sensor, FLX-01, manufactured, by Images SI company [26], 

is 0.25" wide, 4.5" long, and 0.02" thick. An unflexed sensor has a nominal resistance of 

lOKQ. As the sensor is bent in the sensitive direction, the resistance gradually increases. 

When the sensor is bent to 90 degrees (full deflection) in the sensitive direction, its re-

sistance will range from 30KQ to 40Kn, shown as Fig. 2.5. Table 2.2 lists the general 

characteristics of FLX-01. The working characteristic of the bend sensor is similar, to that 

of FSR. A voltage divider is used to measure the change in resistance of the bend sensor 

with the voltage-divider resistor set to lOKO. 
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Phys i ca l Dimentions 
Length 4.5" 
Width .25" 
Th ick .020" 

degrees 35,000 o h m s 

Figure 2.5: FLX-01 bend sensor (Images SI, Inc.) [26] 

Table 2.2: General characteristics of FLX-01 (Images SI, Inc. 

Parameter Value 

Physical Dimensions 

Sensitivity Range 

Operating Tfemperature 

0.25” wide, 4.5” long, and 0.02” thick 

0 to 90 degrees 

-45F to 125F 

2.3 IMU Board 

In biomechanics, kinematic data are important parameters for gait analysis, therefore, 

we design the Inertial Measurement Unit (IMU) as one of the essential parts for the whole 

system. Thanks to the development of MEMS technology, environmentally safe, mini-

sized, and low-cost sensors are available. The IMU board (51x25x7 mm in size) mainly 

consists of two parts: the MEMS sensors and an analog-to-digital converter. We select 

three single-axis gyroscopes and one three-axis accelerometer to detect the angular rates 

and accelerations of foot motion for the X，Y, and Z axes. A 8-channeL 12-bit sampling 

analog-to-digital converter (ADC), ADS7844, manufactured by Texas Instruments, is used 

for transforming the analog voltage into the digital signal which is then transmitted to the 



CHjVPTER 2. SHOE-INTEGRATED PLATFORM DESIGN 19 

microprocessor for data packaging. Fig. 2.6 displays the photographs of the two sides of 

the Il\'lU board. The left photo refers to the implementat-ion of tlie 3D accelerometer., and 

the right one is relevant to the implementation for the 3D gyroscopes and AD conversion. 

/j. 

Figure 2.6: Photographs of the two sides of the IMU board 

^ 0 3 o Accelerometer Sensor 

To measure the 3D accelerations, a ±1.5-6g, three-axis accelerometer, MMA7260Q, 

niarmfactured by Freescale Semiconductor [27] is selected. The MMA7260Q is a low-cost 

surf ace-micromachined integrated-circuit accelerometer. This capacitive accelerometer has 

the features such as signal conditioning, a 1-pole low pass filter, teinperature compensation, 

and g-Select which allows for selecting among 4 sensitivities. The sleep mode of this sensor 

makes it ideal for battery operated electronics for providing significant reduction of the 

operating current. Table 2.3 lists the general characteristics of MMA7260Q. 

MMA726()Q is composed of two surface-micromachined capacitive sensing cells (g-

cell) which can be modeled as a set of beams. The movable central beams located between 

fixed beams can be deflected from their neAitral position when the system is subjected to 

acceleration. During the acceleration process, the distance from the movable center beams 

to one side fixed beams increases while the distance t;o the other side fixed beams decreases. 

Since the structure of beams is served as back-to-back capacitors whose capacitance will 

change along with the change of the distance between the beams resulted from acceleration, 

the difference between capacitances is then converted into voltage output which reflect the 

acceleration data. 



Sleep 
Mode 

N/C 

N/C 

N/C 

Z-Axis 

MMA7260Q 

X-Axis 

Y-Axis 

(b) 

8-Sclectl 

g-Select2 

''•'DO 

Vss 
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Table 2.3: General characteristics of MMA7260Q [27 

Parameter Value 

Sensitivity 

Operation Voltage 

Package Dimension 

Temperature Range 

Low Current Consumption 

Sleep Mode 

±1.5g/2g/4g/6g 

2 .2V-3 .6V 

6 mm X 6 mm x 1.45 mm 

- 2 0 to + 8 5 � C 

500 " A 

3 //A 

Top View 

Figure 2.7: MMA726()Q 3-axis accelerometer (a) Pin connections [27] (b) Definitions of 

axes 

MM A7260Q can measure not only dynamic acceleration, but also static acceleration 

resulting from gravity. Naturally, we utilize the gravitational acceleration to establish the 

relationship between the voltage output of the accelerometer and the acceleration unit, 

m/s". Each uniaxial signal is calibrated by measuring the outputs of +1/; and -Ig (g = 

9.8:lm/«2) under the control of rotating its sensitive axis orthogonal to the earth's surface 

and 180° rotation. During the rotation, the maximum and mininmm values of voltage 

output are respectively corresponding to the values of and V,寸 The relationship 

between the voltage output, Voutput (unit: V), and the Acceleration value, A (unit: ni/s"), 
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is described by: 

21 

Vcjut 二 Kffsct + . 4 

In the above equation, the sensitivity, S (unit: V/rn/s- ) , is described as: 

S 二 _ ( 〜 — V ’ 

(2.2) 

'2g 

The zero offset, V;"�e亡(unit: V), is defined as; 

(2.3) 

Kffset = {y+9 + (2.4) 
2 

For each uniaxial sensor, we make six calibration tests, and for each test, eight full 

rotations are carried out to get eight pairs of maximum and minimum values. One full 

rotation means the rotation starts from the sensitive axis orthogonal to the earth's surface 

and ends at the sensitive axis orthogonal to the earth's surface again. The average results 

of the eight full rotations are regarded as the results for each calibration test. 

2.3.2 Gyroscope Sensor 

Two types of gyroscopes are selected to measure three-axis angular rates. They are the 

Analog Devices ADXRS150 [28] and the Murata ENC-03M [29]. The ADXRS150 is a yaw 

gyroscope which measures the rotation about the axis perpendicular to the top surface of 

the package. Clockwise rotation generates the positive voltage of the output. In contrast, 

the rotating axis of ENC-03M is parallel to the long side of the sensor. In order to measure 

three-axis rotation on one plane of circuit board, two ENC-03M gyroscopes (ENC.-03MA 

and ENC-03MB) are placed perpendicularly to each other on the opposite corners of the 

board, with the ADXRS150 placed in the same plane. Fig. 2.8 displays the locations for 

the three gyroscopes on the circuit board. 

Table 2.4 lists the relevant parameters of ADXRS150. The implementation of ADXRS150 

is shown in Fig, 2.9. Since the electrostatic resonator is operated with 14 V to 16 V, the 

two capacitors 6\, Co-, and the decoupling capacitor C3 specified as 22iiF, 22nF, and 47nF, 



ENC-03MA 

ADXRS150 

Figure 2.8: Top-side view of the PCB board for the 3D gyroscopes 

espectively, are used for the charge pump to supply 16V power. Capacitors C4 and C5 

set as lOOnF are u 

Capacitor Ce of 100 

ed to minimize the noise injection resulting from the charge pump. 

nF is utilized to limit high, frequenc}^ artifacts ahead of the final am-

plification. The bandwidth limit capacitor, Cput (22 nF), is used to set for 40 Hz pass 

bandwidth. 

Table 2.4: General characteristics of ADXRS150 [28 
Parameter Value 

Measurement Range ±150 y .s 

Sensitivity Min: 11.25 Type: 12.5 Max: 13.75 ( m V / � / s ) 

Nonlinearity 0.1% of full scale 

Rate Noise Density 0.05 "/s/^Hz 

Initial Null 2.50 V 

Frequency Response 40 Hz 

Power Supply Min: 4.75 Typ: 5.00 Max: 5.25 (V) 

Package Dimension 7 mm X 7 mm x 3 mm 
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Figure 2.9: Application circuit of ADXRS150 yaw gyroscope [28] 

The other type of angular velocity sensor we selected is ENC-03M which is a surface-

mounted-device. ENC-03M detects angular velocity utilizing the Coriolis force and Mu-

rata's unique ceramic bimorph vibrating unit which extremely simplifies the equipment 

structure and circuit configuration. Two types of ENC-03M sensors are selected, ENC-

03MA and ENC-03MB, which are in charge of detecting two axes angular velocities. Both 

of the two types have the same characteristics other than their resonant frequencies. Aim-

ing to avoid resonant coupling happening between the two sensors, we use one ENC-03MA 

and one ENC-03MB instead of using two ENC-03MAs or two ENC-03MBs. The typical 

circuit for the implementation of ENC-03M is displayed in Fig. 2.10. In this circuit, the 

dashed borders represent the high-pass filter and low-pass filter respectively. In order to 

minimize bias drift, the high-pass filter is applied for cutting low-frequency components 

(<0.3 Hz), and the low-pass filter is used for suppressing high-frequency components (>1K 

Hz) which result in output noise. Table 2.5 lists the characteristics of ENC-03M gyro-

scope. 
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Figure 2.10: Implementation of ENC-03M gyroscope 

Table 2.5: General characteristics of ENC-03M gyroscope [29 

Parameter Value 

Measurement Range ±300°/A' 

Linearity ±5% of full scale 

Scale Factor 0 .67mV/� / s 

Initial Null 1.35 V 

Frequency Response 50 Hz 

Operating Temperature Range - 5 � C to 7 5 � C 

Power Supply 2.7-5.25V 

Package Dimension 12.2 mm x 7.0 mm x 2.6 mm 

Weight 0.4 g 

2.4 Microprocessor-Based Data Gathering Subsystem 

The microprocessor-based data gathering subsystem controls the collection and trans-

mission of the data gathered from the insole and TMU. Fig. 2.11 shows the subsystem 

attached to a battery. It mainly includes a microprocessor anci peripheral components (re-

sisters, capacitors, etc.). The low-power and high-performance 8-bit AVR microprocessor, 



Switch 

Figure 2.11: Photo of the Microprocessor-Based Data Gathering Subsystem 

2.5 Wireless Communication Subsystem and System Inter-

face 

2.5.1 Wireless Communication Subsystem 

The aim of this subsystem is to wirelessly transfer the digital data processed by the 

ATmegal6L to the host computer in realtime. There were two major transfer methods of 

previous in-shoe data acquisition systems. One was to restore the original information in 

FLASH RAM and then download the data to PC after the gait trial through a parallel 

port for further analysis [18]. The other method was to transmit the data immediately 

via the RS232 serial port [131. Both approaches introduce few transmission errors which 
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ATrnegalGL, manufactured by Atmel Corporation is selected. The 44-lead ATmegal6L 

is with Thin Profile Plastic Quad Flat Pa,ckage (TQFP) of 10 mm x 10 mm body size 

and 1.0 mm body thickness. The microprocessor runs at a clock frequency of 8 MHz with 

the typical operating voltage of +5 V. In our design, one 7.4 V/Li-ion cell phone battery-

is used as the power supply due to its long life cycles and compact size. The positive 

regulator, LM78L05, is applied for converting the power supply to the fixed output of +5 

V. We use ADC channels with 10-bit resolution to transform the analog voltage signal 

generated from the FSRs and bend sensor into digital data. 
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make the analysis result relatively stable. Despite this, there are some limitations. For the 

former, it is impossible to moni tor liimian mot i on and provide the feedback in realtime. 

For the latter, the wire between the data acquisition system and the host computer makes 

it difficult to perform detection in a relatively large space. 

In our system, the small amount of digital data makes it possible to use wireless trans-

mission with a high sampling rate. Thus, a pair of low-power radio frequency (RF) commu-

nication modules, GWIOOB, manufactured by Unitel Pty Ltd. are selected. The operating 

frequency of GWIOOB is adjustable for 16-channel from 414.995MHz to 444.061MHz. The 

band rate can be adjusted from 1200bps to 19200bps. The GWIOOB is in the size of 

56X 27.5 X 12 mm, with the operating distance up to 300m in the outside space. The 

GWIOOB supports both RS232 and TTL interface. Therefore, the RF transmitter and 

receiver are connected with the microprocessor and the host computer directly. Addition-

ally, the Forward Error Correction (FEC) processing of GWIOOB allows for a low Bit Error 

Ratio (BER), which enhances the whole system reliability. The photography of GWIOOB 

wireless module is displayed in Fig. 2.12. 

Antenna 

Figure 2.12: Photography of GWIOOB wireless communication module 

2.5.2 System Interface 

A friendly interface has been developed for displaying the corresponding sensor infoi‘-

matioii acquired by the shoe-integrated system via wireless communication (Fig. 2.13). 

The received data is stored and displayed in real-time on the screen of the host computer. 
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This visual interface can be used for further applications. 

n 
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160 180 

Figure 2.13: Real-time interface for displaying sensors' output 

2.6 Summary 

In this chapter, we present the design of the shoe-integrated platform. The iniplenien-

tation of the main subsystems, including the insole, the Inertial Measurement Unit (IMU), 

the microprocessor-based data gathering board, and the wireless communication module 

are described respectively. Considering the fundamental requirements of the platform de-

sign, the compact and lightweight sensors and electronics are selected as the components 

for each subsystem. The whole system is compact and light so that it is easily integrated 

with a user's shoes and he/she will notice little if any difference between his/her normal 
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shoes and the proposed intelligent shoes. Wireless communication based on radio fre-

quency (RF) makes it possible to capture and analyze human gait in a relatively extensive 

environment. The shoe-integrated system we designed is an ideal platform for studying 

human motion abnormalities by modeling abnormal motions which will be discussed in 

the following chapters. 



Chapter 3 

Gait Pattern Classification 

3, Introduction 

As one of the most common daily activities, walking motion has been studied exten-

sively. Monitoring ambulatory patterns is of significance, especially for children and elders. 

Some adolescents are with the problem of inappropriate walking habits, resulting in sk-

electon deformities. Most elders face the risk of falling which, has become the potential 

killer for them in recent years. Assessment of different gait patterns of daily living could 

provides useful information in studying one individiiaPs stability and mobility during lo-

comotion. As the foundation of better assessment for different gait patterns, the ability 

to automatically identity different patterns and walking surroundings provides valuable 

information for further understanding the relations between gait pattern and energy con-

sumption. Classification of gait patterns in daily activity is also helpful for evaluating" 

the amount of daily exercise especially for elders. Besides, the ankle-foot orthotic device, 

which is designed for the patients of foot problems, can work better with the ability to 

understand the gait pattern with which the individual is walking. 

In our daily activities, most of the gait patterns are related to flat walking, descend-

ing stairs, and ascending stairs. Therefore, classification of gait patterns including fla.t 

29 
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wajking, descending stairs, and ascending stairs is the primal ability for the gait pattern 

classification system we proposed. Several studies ha,ve been proposed for gait pattern 

classification. VVervey et al. studied the plantar pressure characteristics of level walking, 

stair climbing, and stair descent using force sensing resistors [30]. Considering kinematic 

signals provide useful information for estimating energy expenditure, the kinematic sen-

sors were selected by most researchers to monitor different gait patterns. Mantyjarvi et 

al. used acceleration sensors to investigate the use of principal component analysis (PCA) 

and independent component analysis (ICA) with wavelet transform for feature genera-

tion in the problem of human activity recognition [31]. Sekine et al. studied the walking 

patterns by using the wavelet-based fractal analysis method based on a triaxial accelerom-

eter unit attached on the subject's back [32]. Nyan et al. classified gait patterns in the 

time-frequency domain by installing the vertical and anteroposterior accelerometers on 

the shoulder position of a garment [33]. 

In this chapter, we aim. to study and classify gait patterns among flat walking, de-

scending stairs, and ascending stairs using Inertial Measurement Unit (IMU) including 

triaxial accelerometers and gyroscopes. Different from tlie previous works, the kinematic 

sensors are fixed on the surface of a shoe which provides the method for studying the 

kinematic characteristics of foot with different gait patterns. Besides, the shoe-integrated 

system realizes the non-intrusive monitoring without attaching any hardware onto the 

body. Discrete wavelet transform (DWT) is applied for generating and extracting the 

useful features for our application. Based on the generated features, fuzzy logic based 

classifier is designed with the inembersliip functions and rules associated with the distri-

bution of selected features. Experimental results demonstrate the proposed methodology 

is efficient for classifying gait patterns during humans' daily activity. 

This chapter is organized as follows. In Section 3.2 and 3.3, the architecture of the 

shoe-integrated system and the experimental design for gait pattern classification are in-

troduced. We describe the proposed methodology of how to extract gait segments, apply 

DWT for feature generation and reduction, as well as design fuzzy logic based classifier in 

Section 3.4. Experimental results are discussed in Section 3.5. We draw the summary of 
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this chapter in the final Section. 

3�2 Measurement System 

Fig. 3.1 shows the system architecture, including Inertia] Measurement Unit (IMU) 

board, microprocessor-based data gathering module, and wireless communication subsys-

tem. The whole system is compact and lightweight so that it is easily integrated with the 

individual's own shoe. 

Figure 3.1: Experimental set-up 

Kinematic data are important parameters for gait analysis, therefore, we design the 

IMU board as one of the most essential parts of the system for gait pattern classification. 

The 3-axis acceleration sensor MMA7260Q (Freescale Semiconductor) is selected due to 

its low power, high sensitivity with low noise, and small package. Each uniaxial signal is 

calibrated by measuring the outputs of +!_(/ and -Ig (,/ = 9.81m/.S'^) under the control 

of positioning its sensitive axis orthogonal to the earth's surface and 180° rotation. Two 

types of angular rate sensors are utilized for our application. They are Analog Devices 

ADXRS150 gyroscope and the Murata ENC-03M gyroscope. The ADXRS150 is a yaw 

gyroscope which measures the rotation about the axis perpendicular to the plane of the 

sensor. In contrast, the rotating axis of ENC-03M is parallel to the long side of the sensor. 

In order to measure three-axis rotation on one plane of circuit board, two ENC-03M 
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(ENC-03MA and ENC-03MB) gyroscopes are placed perpendicularly to each other, with 

the ADXRS150 placed in the same plane. 

The IMU is connected to the microprocessor-based data gathering module which in-

cludes a low-power and high-performance 8-bit AVR microprocessor-ATmegal6L, periph-

eral components (resisters, capacitors, etc.). and one battery. In the IMU board, the 

analog-to-digital converter (ADS7844, Texas Instruments) is used for transforming ana-

log voltage generated from IMU into digital data. Furthermore, these digital data are 

packaged via microprocessor-based data gathering module which effectively decreases the 

transmission error and increases the sampling frequency. 

In our system, the small amount of digital data makes it possible to use wireless 

communication at a high sampling rate of 100 Hz. Thus, a low-power radio frequency 

(RF) communication module, GWIOOB, is selected for realizing wirelessly transmission in 

realtime. The RF transmitter and receiver are connected with the microprocessor and a 

laptop respectively. 

3.3 Experimental Design 

The experiments were performed on six subjects (four females and two males) with 

age between 24 and 31 years. Their heights and weights are ranged from 1.62 to 1.74 m, 

and 50 to 65 kg. The IMU is securely attached to the side of the (right) shoe with glue 

in order to ensure the fastness and consistency of the sensors' sensitive axes during the 

experiments. The IMU location and reference axes & planes for the acceleration sensor 

& gyroscopes are shown as Fig. 3.2. According to the sensor placement, the .r-axis of 

the acceleronieter records acceleration signals regarding the anteroposterior movement; 

the y-axis records the vertical movement; and the z-axis records the lateral movement. 

The ADXRS150 is applied to measure the angular rate of the foot in the sagittal plane. 

The sensitive axes of ENC-03MA and ENC-03MB gyroscopes are perpendicularly to the 

transverse and coronal planes respectively. 

Gait pattern data were recorded for each subject wearing the integrated shoe in three 

steps. In the first step, they were asked to walk continuously under outside environment 
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Figure 3.2: IMU location and reference axes & planes for acceleronieters & gyroscopes 

oil the flat ground at their own selected walking speeds. In the second step, the subjects 

walked down the staircases at a slope of 34° continuously. In the last step, they walked 

lip the same staircases as the second step. 

3.4 Methodology 

3.4.1 Gait Segments Separation 

In order to detect which gait pattern the coming signal belonged to, firstly, we sepa-

rate gait signals into gait segments which are further used as the units for gait pattern 

classification. Based on the knowledge of gait, in order to provide basic functions and 

minimize required energy, all locomotion of horizontal walking, stair ascending, and stair 

descending involves the gait event called “foot flat". During the foot-flat period, the foot 

is with its entire length in contact with the ground, which results in the moment of all the 

kinematic sensors keeping the faint change. Therefore, we define the gait signal between 

the consecutive two foot-flat periods as the gait segment. The problem of separating gait 

segments is transformed into how to weil define "foot-fiat period”. 

As mentioned in section 3.3, each subject used free speed to finish the gait patterns of 

flat walking, stair ascending, and stair descending. Besides, even for the same gait pattern, 
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they were not required keeping the regular speed. On this condition, it is unreasonable 

to define the uniform length of the foot-flat period based on the experience. To solve 

this problem, firstly, the data of .x-axis acceleration are low-pass filtered, with 10-order 

Butter worth coefficients and lOHz cutoff frequency. We extract the symbol points (e.g. the 

peaks) of each gait cycle (shown as Fig. 3.3). The distance between each two consecutive 

pea.ks is defined as the factor of length (FOL) changing along with different subjects, 

different； patterns, or different speeds. 

1〒32 134 136 140 142 144 146 
Time (s) 

150 152 

Figure 3.3: Symbol points extraction 

During the period of each two consecutive symbol points, the successive gait sampling 

points of which the amplitudes vary in a small range and the data length is more than 1/5 

of FOL are selected. The center of the above selected segment is regarded as the center of 

the foot-flat segment. The start point of the foot-flat segment is 1/6 length of FOL ahead 

of the center, and the end point is 1/6 length of FOL after the center point. The start and 

end points of each foot-flat segment are applied as the reference points of gait segment 

separation for each, of the six sensor signals. Fig. 3.4 shows the results of separating gait 
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Figure 3.4: Results of separating gait segments for one subject's fiat walking. Red points 

denote the foot-flat periods. The blue curves between eac;h two consecutive foot-flat peri-

ods are gait segments 

3.4.2 Discrete Wavelet Transform Based Feature Extraction 

Discrete Wavelet Transform Theory 

Wavelet decomposition in the application of signal feature reduction and extraction 

has been proved as an useful tool in the field of gait analysis [34] [35]. Compared with, 

frequency-based approaches, such as Fourier transform, wavelet transform shows main 

advantage of illuminating both frequency and time domain information simultaneously. 
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segments for one subject's flat walking pattern. Ail of the six sensor signals are low-pass 

filtered with 30 Hz cutoff frequency. 
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Using wavelet decomposition, it is possible to describe and extract localized signal features 

as well as the global characteristics. 

Discrete wavelet transform (DWT) decomposes the original signal s{t) into the approx-

imations aj{k) and the details dj{k) which relies on scaling function (pj^k{t') and wavelet 

function 4)j�k�t.�, respectively: 

讀 、 二 2-]〜crn — k：) (3.1) 

. 0 从⑴ = 2 1 � i T h - k) (3.2) 

Here, j represents the scaling factor which controls the compression or dilation for both 

scaling function ^ and wavelet function 水 The shifting parameter k denotes the position 

shifting along the time axis. 

The approximations and details of DWT are then defined as follows: 

调 二 j 物:j,.k{t�dt (3.3) 

d j i h ) = 卜 跳 推 (3.4) 

where the operator (*) indicates the complex conjugate. 

Therefore, the original signal s{t) can be reconstructed by the sum of the approximation 

at the depth of decomposition level J and the details from level 1 to level J: 

J 
<t) = + j2jyAk)i，#[t) (3.5) 

kez kez j=i 

Since the wavelet function '(/, and scaling function ip are determined by the high-pass 

and low-pass filters respectively, the DWT can be efficdently implemented by iteratively 

convolving the signals with a pair of high-pass and low-pass finite impulse response filters 

denoted as g{n) and "(n). The outputs of the filters are then downsampled by 2. 

rtj(n) 二 ^ aj^i(k)h(k — 2n) (3.6) 
keZ 

dj{n) = aj_i{k)g{k 一 2n) (3.7) 
kez 
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Table 3.1： Kinematic parameter definition 

i Kinematic Parameter 

1 Anteroposterior Acceleration 

2 Vertical Acceleration 

3 Lateral Acceleration 

4 Sagittal Plane Angular Rate 

5 Transverse Plane Angular Rate 

6 Coronal Plane Angular Rate 

Feature Extraction 

For each gait pattern, every extracted gait segment for each kinematic parameter at 

the same period is decomposed into six scales by haar mother wavelet. The average .sum 

of squares of approximation coefficients at level 6 {El ) and the detail coefficients from 

level 1 to level 

the parameter 

6 J - 1 , 2 , 3 , 

i (listed as Table 

..,6) are composed as the candidate feature vector T̂ . for 

3.1): 

r = E, de' di (3.8) 

pt-— 
^(16 -

"0 � . 
E [ 4 � fe二1 

no 
(3.9) 

E 躺 
1,2’ 3’ 6 (3.10) 

where uq represents the number of the approximation coefficients at level 6, nj denotes 

the number of the detail coefficients at level j . 

By observation, from all the candidate features, the obvious features are selected as 

the common ones for representing the characteristics of the gait patterns that we study. 



CHAPTER 3. GAIT PATTEB.N CLASSIFICATION 38 

They are E^^ (the average sum of squares of approximation coefficients at level 6 for the 

Anteroposterior Acceleration), E.^ (the average sum of squares of detail coefficients at 

level 6 for the Anteroposterior Acceleration),丑毛(the average sum of squares of detail 

coefficients at level 6 for the Vertical Acceleration), E^^ (the average sum of squares of 

approximation coefficients at level 6 for the Sagittal Plane Angular Rate),五丄(the average 

sum of squares of detail coefficients at level 5 for the Sagittal Plane Angular Rate), and 

E�‘2 (the average sum of squares of detail coefficients at level 2 for the Sagittal Plane 

Angular Rate). Fig. 3.5 to Fig. 3.10 display the normalized distribution of each selected 

feature for the gait patterns of flat walking, descending stairs, and ascending stairs. 

Figure 3.5: Normalized F^^ for flat walking, descending stairs, and ascending stairs from 

the six. subjects and their relationship in classification 

3.4.3 Fuzzy Logic Classifier 

Based on the selected features, a simple approach for gait pattern classification is the 

threshold-based method. However, considering the number of selected features and the 

overlap of distribution region happening for some features, fuzzy logic provides a suitable 

method for feature fusion and generates the classifier for our propose. 

For designing the fuzzy logic classifier, two major problems are considered: 1) how to 

determine the degree of which input features belong to each of the predefined linguistic 
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Figure 3.6: Normalized E�^ for flat walking, descending stairs, and ascending stairs from 

the six. subjects and their relationship in classification 

Figure 3.7: Normalized E知 for flat walking, descending stairs, and ascending stairs from 

the six subjects and their relationship in classification 

Flat walking 
Descending stairs 
Ascending stairs 

H
I
 



、！ 
Bat walking 
Descending stairs 
Ascending stairs 

0 7 

Figure 3.8: Normalized E^^ for flat walking, descending stairs, and ascending stairs from 

the six subjects and their relationship in classification 

Figure 3.9: Normalized 功 � f o r flat walking, descending stairs, and ascending stairs from 

the six subjects and their relationship in classification 
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Figure 3.10: Normalized for flat walking, descending stairs, and ascending stairs from 

the six. subjects and their relationship in classification 

variables ("low" and "high") and 2) how the classification rules are defined and interpreted 

in progTammable logic. 

Membership Function 

Solving the first question is equivalent to design the membership functions (MFs) for 

each input. For our problem, each input has two MFs displayed as Fig. 3.11. Table 3.2 lists 

the types of membership functions applying for each input. Based on the understanding 

of the feature distributions in Fig. 3.5 to Fig. 3.10, two kinds of membership functions 

are applied i.e. Z-shaped membership function {z — shaped) and two-sided Gaussian 

curve membership function (Gaussian'Z). Z-shaped membership function describes the 

asymmetrical polynomial curve expressed as (3.11): 

1, J- < a 

产 ⑷ = 

a+h 

2(： 
\2 a+h 

(3.11) 
< :r < b 

f
o
 

>
 

X
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Table 3.2: Membership functions for inputs 

Input No. MF 1 (low) MF 2 (high) 

1 Gau.'^sian2 Gav,sstan2 

2 z — shaped Gaussian/! 

3 z — shaped Gaussi(in2 

4 Gaussian2 Gmissian2 

5 z — shaped z — shaped 

6 z — shaped Gaussian2 

where the parameter a is the threshold value smaller than which the degree of membership 

is equal to 1 and larger than which the degree begins to decline. The parameter h locates 

the position from where the degree reaches the miriiniuin zero. 

Two-sided Gaussian membership function depends on two Gaussian functions which 

are denoted as (3.12) and (3.13)： 

I 
.評f I 

-(a-—C;i 

(3.12) 

(3.13) 

The first function specified by the parameters ci and (Xi decides the left-most shape of the 

two-sided Gaussian membership function. The second one specified by C2 and 02 deter-

mines the right-most shape. If ci is smaller than C2, the degree of the membership function 

is at unity (1.0) in case the interval is between ci and C2. Otherwise, the membership value 

is the product of the two Gaussian functions. 

Rule 

If-then rules are established to formulate the conditional statements of fuzzy logic 

classifier. The "iP part of rules describes the inputs' situations. The corresponding "then" 
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Figure 3.11: Input membership functions 
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Table 3.3: If-then rules 

IF THEN 

pi 丑I 
p4 

么而 Gait Pattern 

high low low low high high Flat Walking 

high high low high low high. Descending 

low low high high low low Ascending 

part describes the fuzzy system's output in these situations. A set of rules for classifying 

gait patterns are listed in Table 3.3. For example, If E]̂ . is in the range of 'high', Ejj‘(�is 

'low', Ej^ is 'low', E ^ is，low，，E么 is 'high', and 五么 is 'high'; then the human is with the 

locomotion of 'flat walking'. 

3.5 Experimental Results 

We classify gait patterns into flat walking, descending stairs, and ascending stairs 

based on the fuzzy logic classifier we propose. The detailed classification results for all the 

six subjects are listed in Table 3.4. The classifier's performance is evaluated using the 

common measures: sensitivity (Se) and specificity (Sp): 

TP 
Se = 

Sp = 

TP + FN 
TN 

(3.14) 

(3.15) 
TN + FP 

In the above equations, TP, FN, TN, and FP denotes the number of true positives, 

false negatives, true negatives, and false positives, respectively. Take the sensitivity and 

specificity of "Flat Walking" for example, TP is equivalence to the number of segments 

for flat walking that are correctly classified as flat walking. Whereas, F N is the number of 

segments for flat walking which are wrongly assigned a.s the other two classes (descending 

or ascending stairs). TN is equal to the number of segments for the other two classes that 

are correctly identify as the corresponding class. Whereas, F P represents the number of 

segments for the other two classes which are incorrectly assigned as ficit walking. 
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Table 3.4 :Classification results 
Flat W a l k i n g D e s c e n d i n g St,; airs A s c e n d i n g Stairs 

S u b j e c t N o . S e g m e n t Se ( % ) S p { % ) S e g m e n t Se ( % ) S p ( % ) S e g m e n t Se ( % ) S p ( % ) 

1 271 90.04 98 .03 123 96 .75 93 .27 135 96 .30 98.91 

2 275 98 .18 97 .64 143 96 .50 97 .98 71 97 .18 100 

3 207 92 .75 97.48 126 94 .44 92 .42 123 91 ,87 99 .68 

4 195 88.21 94.5:3 111 85 .59 92 .07 95 100 98 .16 

5 3 4 5 96 .52 94.06 119 91 .60 94 .09 115 84 ,35 100 

6 270 97 .78 90 .58 127 84 .25 95 .99 105 90 .48 100 

T o t a l 1563 - - 749 - - 644 - -

A v g . 260 93.91 95 .38 124 91 .52 94. 107 93.36 99 .45 

Sensitivity denotes the ability of the classifier that can successfully recognize the seg-

ments of a certain class without wrongly treated them as another ones. Only sensitivity 

is not enough to demonstrate the performance of the classifier. The measure of specificity 

is needed to represent how well the classifier can predict other classes. 

As listed in Table 3.4, for the six subjects, the overall gait segments of flat walking, 

descending stairs, and ascending stairs are 1563, 749, 644’ respectively. It is found that the 

average sensitivity is 93.91% for flat walking segments, 91.52% for descending segments, 

and 93.36% for ascending segments. While the values of specificity are 95.38% for fiat 

walking segments, 94.30% for descending segments, and 99.45% for ascending segments. 

Except for the six subjects whose gait data were analyzed for designing the fuzzy logic 

classifier, another four subjects were invited to evaluate the performance of the system. 

Table 3.5 lists the classification results of the four test subjects. 

3.6 Summary 

In this chapter, we study human gait patterns and design a classifier for identify-

ing gait patterns among flat walking, descending stairs, and ascending stairs based on 

continuous kinematic signals. Firstly, gait signals of the six sensors in the same period 

are separated into gait segments which are further used as the units for pattern feature 
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Table 3.5: Classification results for the test subjects 

S u b j e c t N o . 

F la t W a l k i n g 

S e g m e n t Se { % ) Sp ( % ) 

D e s c e n d i n g Stairs 

S e g m e n t Se ( % ) S p ( % ) 

A s c e n d i n g Stairs 

S e g m e n t Se ( % ) Sp ( % ) 

1 183 91 .80 96 ,88 115 93 .91 94 .22 112 97 .32 99.64 

2 245 90 .61 92 .83 140 86 .43 91 .12 93 92 .47 99 .13 

3 257 94 .16 97 .07 144 93 .75 95 .88 134 97.01 98.95 

4 229 91 .70 98 .16 123 96 .75 92 .40 101 93 .07 99 .70 

To ta l 914 - - 522 - - 4 4 0 - -

A v g . 228 92 .06 96 .23 130 92.71 93 .40 110 94 .96 99.3.5 

analysis. We apply discrete wavelet transform (DWT) for feature generation and fuzzy 

logic based approach for designing the multi-class classifier. Anteroposterior acceleration, 

vertical acceleration, and sagittal plane angular rate are demonstrated to provide useful 

information for classifying the gait patterns on which we focus, and the other kinematic 

parameters are almost useless. Experimental results of the six training and four testing 

subjects demonstrate that the selected features of the average sum of squares of wavelet 

coefficients efficiently represent the characteristics of the gait patterns we study. Also fuzzy 

logic based classifier well describes the distribution of the features. The compact, wireless, 

and wearable system has the promising application for assisting to evaluate walking energy 

expenditure. 



Chapter 4 

Postural Kyphosis Detection 

4.1 Introduction 

Kyphosis generally refers to an increased curvature of the thoracic spine in the sagit-

tal plane. Long-term kyphosis will result in thoracic deformity accompanied by pain. 

Since spine is of a consecutive multi-segmented structure, kyphosis can affect, not only the 

thoracic spine, but also the cervical (upper) and lumbar (lower) spine. The exaggerated 

curves of cervical and lumbar spine happen in the inward direction to compensate for the 

increased outward curve in the thoracic spine. 

To be one of the most common types of kyphosis, postural kyphosis is mainly attributed 

to slouching posture. Different from Scheuermann's kyphosis, postural kyphosis presents a 

smooth curvature while the patient bends forward. Postural kyphosis is usually diagnosed 

in adolescents and young adults. The traditional treatment for postural kyphosis is with 

education of proper posture and suitable exercises to strengthen the back and abdomen 

muscles so as to support proper posture. After long-term postural training, postural 

kyphosis will be effectively corrected and lead to no problem in the patients' future life. 

Keeping proper posture in daily life is the key to amend postural kyphosis. However, 

few adolescents can self-consciously correct their slouching posture. In this condition, the 

47 
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brace is introduced for cuive correction which is custom-made for each patient. Besides, 

E. Lou et a!, iiitroduccd r gariiiGiit; including two 3-axis acceleroiiicters to ^noiiitor the 

kyphosis angle and provide vibration feedback to children [36]. The limitation for both 

brace and garment approaches is to affect the upper body appearance so as to make 

patients feel uncomfortable during the wearing process. Based on the study of plantar 

pressure for human walking, the plantar pressure distribution will shift along with the 

increase of curvature for the thoracic spine. That is to say, gait analysis especially based on 

plantar pressure provides an indirect approach for detecting postural kyphosis. We propose 

an intelligent shoe-integrated system from which the pressure information derived can 

give efficient assistance in determining and alarming the persons associated with postural 

kyphosis. Fig. 4.1 displays the postures of slouching and propjer walking. 

il I' ‘ 

Figure 4.1: (a) Slouching walking (b) Proper walking 

In this chapter, a cost-effective shoe-integrated system for detecting postural kyphosis 

is introduced. Eight FSRs are used for gathering the pressure information under the 

eight bony prominences of each foot. Based on the gathered plantar pressure information, 

the methodology of Cascade Neural Networks with Node-Decoupled Extended Kalnian 

Filtering (CNN-NDEKF) is applied for training the model of detecting the gait pattern 

associated with postural kyphosis. 

This chapter is organized as follows. In Section 4.2, the measurement system based on 

the architecture of the shoe-integrated system is briefly introduced and the methodology 
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for detecting postural kyphosis is described. Experimental results are discussed in Section 

4.3. We draw the summary of this chapter in the final section. 

4.2 Methodology 

4.2.1 Measurement System 

The measurement system includes three major components: insole, microprocessor-

based data gathering module, and wireless communication subsystem. 

Insole subsystem is a flexible instrumented part for sensing the force parameters inside 

the shoe. Eight FSRs (Interlink Electronics, Santa Barbara, CA) are installed on one side 

of a thin insole under subcutaneous bony prominences: 1-5 metatarsal heads, hallux (big 

toe) and the heel (which is divided into a posterior and inside portion). Considering the 

different sizes of bony prominences, we select two kinds of FSRs. Two FSR-402s are used 

in the first metatarsal head and hallux. Six FSR-400s are placed under the other positions. 

FSR is a type of polymer thick film (PTF) device exhibiting a decrease in resistance when 

an increase in the force is applied to the active area. In our circuit design, a voltage divider 

is used to measure the resistance change of the FSR in order to obtain the relationship 

between the applied force and the voltage. 

The microprocessor-based data gathering subsystem used to gather information from 

the insole is mainly composed of a microprocessor-based circuit board. It includes a 

low-power and high-performance 8- bit AVR microprocessor-ATmega:16L, peripheral com-

ponents (resisters, capacitors, etc.), and one battery. The microprocessor runs at a clock 

frequency of 8 MHz. All circuitry operates with 5 V power which is generated by a 

LM78L05 regulator and powered by one 7.4 V/Li-ion battery. We use 8 ADC channels 

with 10-bit resolution to transform the analog voltage information generated from the 

FSRs into scaled digital data. 

The utilize of wireless communication subsystem realizes to wirelessly transfer the 

digital data processed by the ATmegalGL to the host computer in realtime. A low-power 

radio frequency (RF) communication module, GWIOOB, is selected. The RF transmitter 



Figure 4.2: One FSR-402 calibration curve 

Equation (4.1) describes the relationship f between one FSR-402 digital output .r and 

the applied force in newton, the values of the coefficients are listed in Table 4.1. 

/ = + 如： (4.1.) 

200 300 400 500 600 700 800 900 

FSR402 Digital Output 
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and RF receiver are connected with the microprocessor and the host computer individually. 

4.2.2 F S R Sensor Calibration 

In order to compensate for the nonlinearity of FSR, each sensor needs to be calibrated 

after it has been located on the surface of the insole. The popular digital force gauge 

DPS-20 (IMADA CO., LTD) is used to detect a discrete force in the range from 0 to 10 

kg for the FSR-400 and 0 to 20 kg for the FSR-402. The digital outputs of the force gauge 

are stored in the PC via RS232. Then we can get the calibration result for each sensor 

according to the relationship between the applied force and the corresponding digital 

output of the FSR. Experimental results demonstrate that the exponential function fits 

well to the calibration data. One calibration curve of the FSR-402 under the big toe of 

the right foot is displayed in Fig. 4.2. 
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Table 4.1: The values for the coefficients 

Coefficient Value 

a 7324 

b -0.02291 

c 136.4 

d -0.004305 

4.2.3 Cascade Neural Networks with Node-Decoupled Extended Kalrnan 

Filtering for Gait Modeling 

Gait analysis based on plantar pressure distribution provides an indirect way for de-

tecting postural kyphosis. Human gait of either proper or kyphosis walking is regarded as 

the measurable stochastic process. The methodology that we are considering is to model 

human gait for realizing postural kyphosis detection. The CNN-NDEKF is applied to 

generate the classifier for this binary pattern recognition problem. 

Nechyba and Xu proposed a new learning architecture of neural network, which com-

bines (1) cascade neural networks (CNN), dynamically improving the architecture of the 

neural network to be part of the training process, and (2) node-decoupled extended Kalmaii 

filtering (NDEKF), an efficient convergent alternative to gradient-descent training al-

gorithms. They analyzed the computational complexity of the proposed approach and 

demonstrated the significant improvement in learning times and/or error convergence of 

CNN-NDEKF compared with other machine learning approaches [37]. 

In our research group, CNN-NDEKF has found successful applications in modeling 

various human functions including learning human control strategy [38], modeling human 

strategy in controlling a dynamically stabilized robot [39], modeling human sensation in 

virtual environments [40], and learning human navigational skill for smart wheelchair [41]. 

In the following, we briefly summarize the CNN-NDEKF algorithm and the reason for 

us to adopt this algorithm for modeling human gait associated with proper and postural 
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kyphosis walking. 

First, there is no a priori network architecture is assumed. Hidden units will be dy-

naniically added into an initially minimal network once at a time. Fig. 4.3 illustrates 

the growth process for the initial two-input, one-output network with two hidden units 

installed one by one. Note that each new hidden unit will not only receive one input-

connection from each input unit, but also from each pre-existing hidden unit. Therefore, 

a cascade neural network with r??,,； input units (including the bias unit), r?/./i hidden units, 

and rrio output units, has m,.� connections where, 

nhu = mmo + 'm.i丄m^ 十 m�) + (.m" — 1) 
m.h 
~2 

(4.2) 

Figure 4.3: The cascade learning architecture： adding hidden units once at a time to the 

initial two-input, one-output network 

Secondly, the activation function of each hidden unit is not constrained to be the 

particular type. For each new hidden unit, the activation function, which mostly reduces 

RMS error { c r m s ) for the training data will be selected. Sinusoidal, Bessel, and Gaussian 

functions are the typical alternatives to the standard sigrnoidal activation function. 

Thirdly, node-decoupled extended Kalmaii filtering (NDEKF) [42] fits seamlessly within 

the cascade learning framework, which shows better convergence properties with less com-

putation than gradient-descent techniques (e.g. backpropagatiori and qiiickprop algo-
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rithm). 

Suppose P is a w x w conditional error covariance matrix storing the interdependence 

of every pair of w weights in the given neural network. The weight-update recursion of 

NDEKF is given by 

= + (4.3) 

where cj.̂  is denoted as the input weight vector at iteration n, for unit i E {0 ,1 , . . . , m � } . n̂ 

is the m-o-dimensional error vector for the current training mode, is the -dimensional 

vector for the partial derivatives of the output unit signals related to the ith unit's net 

input, and 

= KCn (4.4) 

m ( > 

(4.5) 

P“1 = Pn - + nql (4.6) 

where Q is the u?i;-dimensional input vector for the ith node, P; is the Wi x Wi conditional 

error covariance matrix for the zth node, and rjq is used to alleviate singularity problem 

of P^. In (4.3) to (4.6). []'s, {} 's, and ()'s respectively represent matrices, scalars, and 

vectors. 

The flexible architecture of cascade neural network is ideal for modeling human gait 

which is characterized by dynamic, stochastic, and nonlinear properties. No a priori 

model structure is assumed. The model parameters are updated during the learning pro-

cedure which ensures the model to get the best classification performance. The process for 

CNN-NDEKF-based learning algorithm is summarized as follows. Initially, the network 

architecture begins with some inputs and one or more output units based on the require-

ment of special applications. There are no hidden units in the network architecture. Every 

input unit is directly connected to each output unit through a connection with pre-trained 
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Figure 4.4: Force wciveforms under eight right root regions during proper walking posture 
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weight. With no significant crms reduction, the first hidden unit is picked up from the 

pool of candidate units. As soon as the hidden unit is installed, all input weights to the 

hidden unit are frozen, while the weights to the output units are trained using NDEKF. 

The process will repeat until the ejiMS reduces sufficiently or the number of hidden units 

achieves the predefined maximum number. 

4.3 Experiments and Analysis 

4.3.1 Data Acquisition and Database Formation 

After A / D transformation, the digital data of all FSRs are packaged, which effectively 

decrease the transmission error and increase the sampling frequency to 50 Hz which is 

adequate for the activity of walking [43]. Then in the host computer, we obtain the corre-

sponding information applied for each sensor based on data reconstruction and calibration. 

Fig. 4.4 and Fig. 4.5 individually display the force waveforms under each FSR for proper 

and kyphosis walking as a function of time. 
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Figure 4.5: Force waveforms under eight right foot regions during kyphosis walking (Ml 

= 1 s t metatarsal head, M2 = 2nd metatarsal head, M3 二 3rd metatarsal head, M4 = 4th 

metatarsal head, M5 = 5th metatarsal head, PH = posterior heel, and IH : inside heel) 

One young volunteer with no kyphosis was invited for this investigation. The training 

data with 1.0000 sampling points (5000 sampling points for either positive or negative 

sample) is gathered in outdoor environments which is then used for training the CNN-

NDEKF model. Since we do data analysis by examining both the left and right feet, the 

dimension of the original data is 16. 

4.3.2 Data Preprocessing 

It is necessary and important to apply feature extraction in data preprocessing for 

modeling proper walking gait and the kyphosis one, since failures in feature generation 

can significantly diminish the efficiency of the system performance. Among the several 

feature extraction methods, Fast Fourier Transform (FFT), Principal Component Analysis 

(PCA), and Independent Component Analysis (ICA) are widely used in the application 

of pattern recognition. 

In order to obtaiD the best performance of detecting postural kyphosis, different pre-

processing approaches are utilized, including only using the original data, FFT, PCA, 

ICA, F F T + P C A . and FFT+ICA. After that, the retrieved data is applied to be the input 
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for training CNN-NDEKF model. Table 4.2 lists the generated data dimension after pre-

processing, errors of detecting proper walking, errors of detecting postural kyphosis, and 

the average success rate of classification corresponding to each preprocessing method with 

the same training and testing samples (1500 sampling points for either positive or negative 

sample). We can find that the preprocessing approach of FFT is most effective for real-

izing the best classification performance compared with the other approaches mentioned 

above. 

Table 4,2: Testing results using different preprocessing approaches 

Preprocessing 

Method 

Data Di-

niension 

Errors of 

Proper 

Walking 

Errors of 

Postural 

Kyphosis 

Avg. Suc-

cess Rate 

Original Date 16 98 38 95.4% 

FFT 48 18 0 99.4% 

PCA 10 259 126 87.1% 

ICA 10 276 95 87.6% 

FFT+PCA 16 256 158 86.2% 

FFT+PCA 10 320 123 85.2% 

FFT+ICA 16 86 14 96.6% 

FFT+ICA 10 410 156 81.1% 

4.3.3 Testing Results 

The classification results for the volunteer based on the trained CNN-NDEKF model 

with three order FFT preprocessing are listed in Table 4.3. For either proper walking or 

kyphosis walking, 1500, 2500, and 3500 sampling points are respectively selected as the 

testing data. The total success rate can reach 98% which demonstrates the shoe-integrated 
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system we build is efficient for the problem of detecting postural kyphosis. 

Table 4.3: Testing results 

Gait Pattern Total Correct Failed Success Rate 

Proper Walking 1500 1482 18 98.8% 

2500 2416 84 96.6% 

3500 3342 158 95.4% 

Postural Kyphosis 1500 1500 0 100% 

2500 2495 5 99.8% 

3500 3479 21 99.4% 

TOTAL 15000 14714 286 98% 

4.4 Summary 

In this chapter, we present a methodology for detecting postural kyphosis under the 

framework of the shoe-integrated system. Eight force sensing resistors (FSRs) for gath-

ering the pressure information under the 8 bony prominences are utilized. Based on the 

gathered plantar pressure information, we apply Cascade Neural Networks with Node-

Decoupled Extended Kalnian Filtering (CNN-NDEKF) to train the model for this binary 

classification problem. Different preprocessing approaches are utilized and experimental 

results demonstrate that Fast Fourier Transform (FFT) is the suitable data preprocessing-

approach for our problem. The proposed methodology has the potential application for 

detecting postural kyphosis in order to assist persons in developing proper walking posture 

in their daily life. 



Chapter 5 

Falling Detection based on Plantar 

Force 

5.1 Introduction 

Since the past two decades, falls in the aging population has always been one of the 

most challenging problems in public health care. Several studies show that approximately 

one third of the adults aged 65 or older fall every year and the number of falling tends 

to an upward trend year after year [44] [45] [46]. Falls have become the leading cause 

that results in injury-related hospitalization for elders [47]. Fall-related injuries include 

skin cuts and abrasions, fractures, damages to muscles and ligaments, and so on [45] [46] 

[48]. In many countries' health care, the medical cost associated with fall-related injuries 

is more than any other types and becomes the heavy financial burden [49] [50]. In this 

situation, a lot of fall prevention strategies have been proposed [51] [52] [53]. On the other 

hand, detection of fall events once they occur is more important. It is reported that more 

than 20% elders remain lying on the ground without any external support for 20 minutes 

or more after falling, which is called "long-lie" [54] [55]. "Long-lie" can result in serious 

consequences such as hypothermia, pressure sores and so on. Detection of falls in time 

58 
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will shorten the time from a falling to the medical assistance and minimize the fall-related 

injuries. 

A number of automatic falling detection systems have been proposed in recent years, 

which mainly consist of three types, vision based [56] [57], audio based [58), and wearable 

sensor based systems. Due to the shortcoming of vision and audio based systems that 

limits the effective space of falling detection, wearable sensor based approaches are widely 

accepted. Most of the researchers demonstrated that accelerometers and gyroscopes were 

applicable sensors for wearable systems of fall-event automatic detection. Bourke and 

Lyons [59] introduced the threshold-based fall detection algorithm which utilized a bi-axial 

gyroscope mounted on the trunk for measuring three thresholds of the angular acceleration, 

angular velocity, and change in trunk-angle. The study that investigated fall dynamics 

using gyroscopes was explored by Nyan et al. [60]. Gyroscopes were attached to different 

positions of sternum, waist, and underarm, for measuring the parameters of angular rates. 

A fall detector based on head worn 3-axis accelerometers was evaluated by Liridcmann et 

al [61]. The fall-events were recognized via identifying the high velocity of motion before 

impact. Kangas et al. presented the study aiming to determine acceleration, thresholds 

for placing 3-axis accelerometers at the waist, wrist, and head respectively [62]. The 

experimental results of two subjects showed that head and waist were optimal positions 

for fall detection and wrist was not. 

Most of researches for falling detection based on wearable accelerometer or gyroscope 

systems focus on two problems. The first problem is to investigate the placements of 

sensors, since different location will result in different signal patterns leading to different 

detection algorithm. Furthermore, the second problem is how to accurately define the 

thresholds, which is affected by different subjects and the database of simulated falls and 

activities of daily living (ADL). Both of the two problems highly influence the sensitivity 

and specificity of falling detection. Besides, most of the accelerometer and gyroscope 

based detection algorithms are working on the assumption that the tilt degree of human 

body will change significantly when fall-events happen. However, in some situations, this 

assumption, is not valid. For example, when people bend to pick up sornethirig from the 
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ground, the body position will change from upright to nearly horizontal position rapidly, 

however, no fall-event happens. On the other hand, not all of fall-events are accompanied 

with obvious change of tilt degree. 

In this chapter, we propose a novel falling detection algorithm based on the analysis 

of plantar force on both feet, because plantar force is an important parameter directly 

associated with postures of human locomotion. Two force sensing resistors (FSRs) are 

installed on each foot's two positions (1st metatarsal head and heel position) for acquir-

ing the force change information during subjects' locomotion. The fall-event detection 

algorithm consists of two stages. For Stage-One analysis, candidate sequences will be 

generated if force values of the four positions in both feet are simultaneously less thai], 

the corresponding predefined thresholds and last for a while. For Stage-Two analysis, we 

apply support vector machine (SVM) with genetic algorithm (GA) for optimal training-

parameters generation to determine whether there really exists a fall-event. Linear and 

nonlinear parameters of each candidate sequence are generated as the feature vector, which 

is further reduced to be more efficient features for discrimination by applying Generalized 

Discriminant Analysis (GDA). Considering the events of “moment of sitting" take signifi-

cantly percentage in the database of non-fall events after Stage-One analysis, we separate 

the events of "moment of sitting" from the whole database of non-fall events to be the 

particular class we study. The detection results demonstrate the two-stage algorithm we 

proposed for fall-event detection is efficient. 

This chapter is organized as follows. In Section 5.2, the materials and subjects associ-

ated with the proposed methodology are introduced. We describe the proposed two-stage 

falling detection algorithm in detail in Section 5.3. Experimental results are discussed in 

Section 5.4. We draw the summary of this chapter in the final section. 

5.2 Materials and Subjects 

One pair of shoe-integrated systems are designed for falling detection. Each system 

includes three major coniporients: insole, microprocessor-based data gathering module, 

and wireless communication subsystem. 
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For insole subsystem, two force sensing resistors (FSRs) (Interlink Electronics, Santa 

Barbara, CA) are installed on one side of a thin insole under the first ineta,tarsal head 

and inside heel position. The type of FSR-402 (12.7 mm diameter active surface, 0.46 

mm thick) is applied for the first metatarsal head and FSR-400 (5 mm diameter, 0.3 mm 

thick) is placed under the heel position. FSR is a type of polymer thick film (PTF) device 

exhibiting a decrease in resistance when an increase in the force is applied to the active 

area. In our circuit design, a voltage divider is used to measure the resistance change of 

the FSR in order to obtain the relationship between the applied force and the voltage. 

Microprocessor-based data gathering subsystem includes a low-power and high-perfor-

mance 8-bit AVR microprocessor-ATmegal6L, peripheral components (resisters, capaci-

tors, etc.), and one battery. We use 2 ADC channels with 10-bit resolution to transform 

the analog voltage information generated from the FSRs into scaled digital data. 

For each shoe-integrated system, a pair of low-power radio frequency (RF) comniiini-

cation modules, GWIOOB (56X27.5X12 mm in size), are selected for wireless cornmuni-

cation. The RF transmitter and receiver are connected with the microprocessor and the 

host computer respectively. The host computer receives the force signals from, the pair of 

shoe-integrated systems simultaneously. 

The force readings beneath feet are recorded during the activities of daily living (ADL) 

and simulated falls via subjects wearing the shoe-integrated systems. In the first, study, 

nine healthy subjects are invited to perform ADL tasks. In the second study, four of the 

nine subjects perform simulated falls in a safe controlled environment. The ages of the 

subjects including seven males and two females are from 23 to 32 years old (27.5±3.2years 

old), the heights are from 1.62 to 1.82 m (1.72±0.06ni). and the weights are from 50 to 77 

kg (65.1 士9.5kg). 

The ADL tasks involves the activities that often happen in our daily lives and the 

ones that could result in false detection due to the similarity as the locomotion of falling 

down. Each of the nine subjects is asked to perforin the ADL tasks listed as Fig. 5.1 for 

several times. The four subjects are monitored to perform simulated falls onto a large 

airbed during the process of walking. Each of the four subjects performs fall events with 
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free selected types and orientations for several times. Fall events and ADL tasks were also 

documented using a digital video camera. 

Figure 5.1: Activities of daily living (ADL) tasks 

5.3 Two-Stage Fall Detection Algorithm 

5.3.1 Stage-One Fall Analysis 

From the study point of the force change beneath feet, the process of falling includes 

three phases. We call Phase One as the motion period. Since we focus on the study of 

the fall happening during locomotion, the forces under feet should vary for a period aliead 

of the moment of falling. For Phase Two, at the moment of falling, the forces under the 

monitored positions will be no more than the threshold values. Phase Three is defined 

as motionless period. In this phase, the value of each force position is still less than its 

predefined threshold value, which will last for a while. 

The flowchart of St age-One fall analysis is shown as Fig. 5.2. We monitor force values 

of the four positions in both feet simultaneously (LM: left 1st metatarsal head, LH: left-

heel position, RM: right 1st metatarsal head, RH: left heel position). If each force value 
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is no more than the corresponding predefined threshold value for a period of 1/5 seconds 

and the force varies during the last two seconds, we will consider the subject suffers from 

falling. 

The threshold values for the four force positions are predefined for each subject indi-

vidually. Wearing the pair of shoe-integrated systems, each subject is asked to sit with the 

posture of 90-degree thigh-to-calf angle, 90-degi-ee hip angle, and 90-degree ankle angle by 

adjusting the chair height. The force value of each monitored plantar position is recorded 

as the threshold value regarding to this placement. 

Letting Iq to be the first sampling point that all force values are no more than their 

thresholds, we backdate and forward-date data for 2 and 4 seconds from /;()，and define the 

sampling points during this period [/'0-2，力0+4] as the candidate sequence. The definition of 

candidate sequences can be referred to Fig. 5.3. In the following, we will apply classification 

algorithm to determine whether there really exists a fall event. 

5.3.2 Stage-Two Fall Analysis 

After Stage-One analysis, we obtain the generated candidate sequences which consist 

of both fall and non-fall events. Furthermore, we propose the algorithm for Stage-Two 

analysis in order to improve the detection of fall-events. The brief introduction for Stage-

Two analysis is displayed in Fig. 5.4. 

Feature Generation 

As mentioned in the above section, each candidate sequence { L M [1̂ 0-2• î o+4], Lif [/.0-2, 

/.o+‘ij, […—2，,0+4]’ R-Hl^o-o, ^0+4]} includes 600 sampling points for each force sensor. 

In our work, a combination of both linear and nonlinear features of force signals is consid-

ered. For linear analysis, 600 sampling points of each sensor is further divided into seven 

segments, each of which includes 150 sampling points and 75 overlapping points between 

the successive segments. For each segment, three time domain parameters are considered. 

They are mean, standard deviation (SD), and root mean square (RMS). Besides, two non-

linear parameters of each candidate sequence are studied in this work, which are described 



Figure 5.2: Flowchart of Stage-One fall analysis algorithm 
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Training Candidate 
Sequences generated 
by Stage-One analysis 

Figure 5.4： Block diagram of the software design for Stage-Two analysis 
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as follows. 

Approximate entropy (ApEri) [63] is a nonlinear dynamics parameter to quantify the 

unpredictability of fluctuations in a time series. ApEii measures the creation of information 

in a time series and reflects the complexity of system, which is suitable for finite data 

sequences. A relatively small value of ApEn indicates that the time series is detenninistic, 

while a relatively large value indicates a more irregular (random) time series. 

Given a sequence Sjv. consisting of N sampling points, we set the pattern length m = 

2 and the criterion of similarity r = 20% of the standard deviation of the sequence. To 

calculate ApEn(m, r, Sn)，first, Sm is divided into a series of embedding vectors with m 

sampling points along the observed time series, i.e., v(7i} = [Sn(?''•), S\r(n -f m — 1)], n = 

1,2,..., N — rn + 1. N„�r(J,) is counted if the difference between any pair of corresponding 

measurements in •?;(?') and v{j) ( j = 1 , 2 , N - m + 1), is less than r. 

We define Cm,r(0 as the probability to find a vector differing from ?;(?；) with the distance 

less than r: 

(5.1) 

(5.2) 

N — m + 1 
And the average natural logarithm over all Cm,r(J.) probability is: 

IV — m+.L 

E LOG(CV,.(I)) 
广 _ 

vV — m + 1 

Repeat the above procedure for pattern ler]gth=rn + 1. and obtain C-m+i, 

ApEn is given by: 

ApEn = Cm, 一 Crrt+ij- (5.3) 

Spectral Entropy (SpEn) measures the complexity of the observed time series in the 

frequency domain. We convert the spectrum into a probability density function (PDF), 

pf, by normalizing the power spectral density (PSD) Pf at frequency / : 

Pf = - ^ . f = h . . . , N (5.4) 

t P f 
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Spectral Entropy is estimated as: 

H ^ - J 2 p f \ o g { p f ) (5.5) 
f 

Feature Extraction and Reduction via GDA 

After feature generation, each candidate sequence is transferred into a 92-dimensional 

feature vector. On the one hand, it will increase the computational cost for directly 

sending the high-dimensional feature as the input for SVM classifier. On the other hand, 

much more discriminable features rather than the original vectors need to be extracted as 

the input vector for SVM classifier for obtaining better classification performance. Linear 

Discriminant Analysis (LDA) is a traditional dimensionality reduction technique which, has 

been proved useful in the classification problem, especially in the filed of face recognition 

[64] [65]. LDA searches a set of vectors that maximize the between-class measure and 

minimize the within-class measure based on the class information rather than the data. 

However, LDA cannot perform well for nonlinear problems. Generalized Discriminant 

Analysis (GDA) [66], is developed for dealing with nonlinear discriminant problem by 

utilizing kernel operators. GDA includes two processes. Firstly, the input data is mapped 

into a high-dimensional space with nonlinear function, while the linear combination in the 

higii-dimensional space is corresponding to the nonlinear combination in the input space. 

Secondly, in the new feature space, the classical LDA method is applied for the linearly 

distributed data. 

Mathematically speaking, the input set X consists of M feature vectors Xj (J = 

1,2, . . .，M ) out of N classes. By mapping the input space into a high-dimensional feature 

space F via a nonlinear function (/), the intra-class scatter matrix V and the inter-class 

scatter matrix B representing the within-class and between-class scatters of data can be 

defined as follows: 

N Up 

(5-6) 
p二 1 q=l 



CHAPTER. 5. FALLING DETECTION BASED ON PLANTAR FORCE 69 

, A , n j , rip 

B 二 J ^ T M I T A 〜 ( 5 . 7 ) 

p—l ^ q—l t 7=1 

where Xpg denotes the qth feature vector of the class p. rip is the number of feature vectors 

in class p. 

As such for LDA, the goal of GDA is to find tlie projection vector v in order to 

maximize the between-class inertia while minimize the within-class inertia in the higher 

dimensional space F. Dealing with this maximization problem is equal to solving the 

following eigenvalue resolution: 

Al/z; = Bv (5.8) 

V is an eigenvector of associated to the eigenvalue A = All of the solutions 

of V lie in the span of Let us consider the expansion coefficients the eigenvector 

V can be expressed as: 

M 

V = ai(j){xi) (5.9) 
i^i 

The normalized coefficients o = , “ can be calculated by performing eigenvector 
VQ'̂  K a • 

decomposition for K = (k,j)i=�...’M�j=i’...’M. 

The the projection of a feature vector x on the eigenvector can be computed via: 
M M 

= 'if(p{x) = = Y^(yik{xj,x) (5.10) 

Support Vector Machines 

The feasibility of support vector machine in the application of classification problem 

has been proved in the fields of musical genre classification [67] [68] [69], image classification 

[70] [71], gender classification [72] [73] and so on. 

(1) Support Vector ClassificaiAon (Binary Case) 

The basic training principle of SVMs is to map a set of training data yi),…，（a:“识）}: 

(.7：J e X C R\ € { — 1,1}, / is the total number of training samples) from the input space 
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X into a high-dimensional feature space via a nonlinear function cj) so that the optimal 

separating hyper plane (OSH) can be found with the maximum margin between the two 

classes. A separating hyper plane in canonical form [74] [75] determines a function that 

can classify unseen examples accurately with the following constraints： 

: / / “ � a v 7 " � + 6] > 1, 7： = 1,... (5.11) 

where (•, •) denotes the dot product in X . 

Among several separating hyperplanes, the optimal one is given by maximizing the 

margin which is the distance between the hyperplane and the closet point of each class. 

Since the distance is with the constraints of (5.11), finding the OSH is equivalent to 

minimizing the following equation: 

= \ (5.12) 

Considering in most cases, the data is linearly nonseparable, we introduce positive 

slack variables = 1 , , . . Equation (5.12) can be transformed into the following 

equation: 

m m = + (5.13) 

I 
where ^ ||a;|| denotes the regularized and ^ represents the empirical risk. 

一 1=1 

We then construct a Lagrange function under the constraints of (5.14) in order to solve 

the optimization problem of (5.13): 

I I. I 

L = - Y ^ i + 6] - 1 + ：̂) (5.15) 
？;=1 1 = 1 i — l 

where a, 13 are the Lagrange multipliers. Because classical Lagrangian duality can solve 

the primal problem, (5.15) can be transformed to its dual problem given by, 
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I I I 

i= l i = l j = l 

(5.16) 
0 S S C ？: = 1 , … ， 

,s‘丄 I 

E AIM = 0. 
?;=i 

By replacing x with its mapping in the feature space (5.16) can be rewritten as: 

I I. I 

•i=l 't=l j=l 
I. 1 [ I 

= - 2 X I X ] (、I 叩 IY3K、XI, XJ) (5.17) 
i—l i—l j = l 

As shown in (5.17), the dot product can be replaced with a function K[xi, x-j) defined as 

the kernel function. Radial Basis Function (RBF) kernel XJ) = exp(—7 ||.x'j — XJ\\ 7 > 

0 and polynomial kernel K{xi, Xj) = (.？；̂ • Xj + l)'^ are the commonly used kernel functions 

in nonlinear SVMs. 

The decision function for identifying the class of the input data x is obtained by 

？yO) = sfjnC^ x) + b) (5.18) 
i=l 

(2) Multi-Classification with SVMs 

Two of the conventional approaches that apply SVMs to nmlti-classification problem 

are one-against-one and one-against-rest. The kernel concept of each approach, is to convert 

the multiple problem into several binary ones. In order to reduce the training time, we 

select the one-against-one method in which �八；一丄)classifiers are created for N total 

classes. 

The binary classilicatioii problem for training data .Xĵ  from class i and class j can be 

shown in the following equation: 
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min 少(w，（”.）二 5 11 ll^ + C'E^fc 
k 

( � c y V T / c � + /)”）> 1 — Tk e c/a.s-.s- t (5 19) 

{{uj'^.Xk) + b力 < + 了:k e class j 
( � 

Each binary classification is regarded as a voting. The test observation sequence, Xf, 

will be designated into the class with, maximum number of votes. If more than one class 

has the identical number of votes, we comply with the strategy of selecting the class with 

the smallest index. 

Genetic Algorithm for SVM Model Optimization 

SVM model and parameter selection are very important for obtaining the best perfor-

mance in SVM training. Genetic algorithm (GA) is a heuristic searching algorithm based 

on the mechanics of natural approximate solutions for optimization and search problems 

[76]. In our work, we aim to apply GA approach to optimize the SVM classifier for the 

problem of fall-event detection. 

(1) Chromosome Representation 

The first work to apply GA for SVM classifier optimization is to choose the appropri-

ate chromosorae representation which defines the proposed solution to the optimization 

problem. Chromosome representation describes each individual of the population in the 

genetic algorithm. 

C-SVM proposed by Vapnik and u-SVM by Scholkopf et al. [77] are two kinds of 

commonly used SVM algorithms. We consider the optimization processes of the two kinds 

of SVM algorithms respectively. In C-SVM algorithm, we mainly pay attention to the 

influence of the cost parameter C which controls the balance between model complexity 

and the training error. The value range of C is usually from 0 to infinity, however, a 

large C will result in an overfitting problem. Relatively, in u-SVM, “ is the regularization 
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parameter varying through [0, 1]. It limits the lower bound of the total support vectors 

and the upper bound number of the ones that lie on the wrong side of the hyperplane. 

The performance of each kind of SVM algorithm is also sensitive to the selection 

of kernel function. In comparison with other generally used kernel functions, such as 

linear, polynomial, and sigmoid functions, RBF kernel is selected for our experiments 

because of the following reasons. Firstly, unlike the linear kernel function, RBF kernel 

can nonlinearly map training data into the high-dimensional feature space in order to 

solve the problem when the relationship between attributes and different classes is not 

linear. The second reason is that the RBF kernel function has less hyperpararnters that 

influence the complexity of model selection than polynomial and sigmoid kernel functions. 

In the optimization process, the parameter Gamma (7) for RBF kernel function needs to 

be considered for performance comparison. 

Based on the analysis of SVM model and optimization variables, we define the chro-

mosomes for the two kinds of optimization processes with the following data structures: 

• C-SVA4 Model Optimization: (C, 7) 

• /y-SVM Model Optimization: 7) 

Table 5.1 lists the optimization variables and their boundary values of the two kinds 

of optimization processes. 

Table 5.1: Optimization variables and boundary values for the two kinds of optimization 

processes 

Model Type Variable Boundary Value 

C-SVM C 0-100 

7 0-1 

i^-SVM u 0-1 

1 0-1 
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(2) Fitness Function 

The fitness function is applied for evaluating the optirnality of each chromosome in the 

population. More optimal chromosomes will be selected to breed and mix their datasets 

in order to produce a new generation that will be even better. 

The fitness function .f{xi) for the problem of SVM classifier optimization can be de-

scribed by the following equation: 

/(.r.i) = min{l 一 .̂ (.t,；)) (5.20) 

where g{xi) C (0,1) is defined as the SVM classification result for each chromosome. 

(3) Computational Procedure 

According to the genetic algorithm, the computational procedures are listed as follows: 

a) Initialization. Set the initial values of the following parameters for the genetic 

algorithm: 

1) the maximum number of generations MAXGEN, 

2) the population size Np, 

3) the crossover fraction P^ C [0,1] (the mutation fraction =1-Pc), 

4) the number of individuals that are guaranteed to survive into the next generation 

ELITE COUNT. 

Create a random initial population via a uniform distribution. 

b) Fitness Value Scaling. Compute the fitness value f {x i ) for each chromosome in the 

Ith generation. Scale each fitness value in a range based on the rank of its position in the 

sorted scores. 

c) Selection. The motivation of the selection function is to choose parents for generating 

the next offspring based on the scaled fitness value. Each parent holds a certain length in 

a line proportional to its expectation. The algorithm moves along the line with uniform 

step and selects one parent for each landing. 

d) Crossover. The top P(.% of parents are selected to form a new individual for the next 

generation in turn. The crossover algorithm randomly creates a binary vector including 
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elements as the same number as the chromosome's genes. Select the genes from the first 

parent where the vectors are “1”； and select the genes from the second parent where the 

vectors are “0”. For example, 

Parent 1=[a b c d e] 

Parent2-[f g ii i j] 

Random Vectors [1 0 1 1 0] 

Child=[a g c d j] 

The new individuals generated by crossover function randomly inherit the character-

istics of its parents. 

e) Mutation. The remaining selected parents undergo mutation. The mutation func-

tion makes small random changes of the individuals in the population, which effectively 

avoids a local maximum and enables the GA to search in a broader space. The algorithm 

acids a random value with a Gaussian distribution centered on zero to each gene of an 

individual's chromosome in order to create a new offspring. 

f) Stopping Criteria. If the present generation number 1仇 reaches the predefined 

maximum number of generations MAXGEN, the optimization process will stop, otherwise, 

the process will stop before Ith reaches MAXGEN if the difference of the average fitness 

value between generations is less than 1.0—6 for 50 consecutive generations. 

5.4 Experimental Results 

5.4.1 Experimental Results of Stage-One Analysis 

We record threshold values of the four force sensors for each subject listed as Table 5.2. 

After applying the Stage-One analysis algorithm displayed a.s the above mentioned flow 

chart (Fig. 5.2), most of the ADL tasks are filtered out and candidate sequences for Stage-

Two analysis are formed up. Table 5.3 lists the candidate sequences for each subject, which 

are composed of all fall-events and a set of non-fall events. The candidate sequences of 

non-fall events generated from St age-One analysis include: 
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Table 5.2: Threshold values of the four force sensors for the nine subjects 

Subject Threshold Val.ue{N) Subject 
LM LH RM RH 

imHov) 0 .7164 0 .1719 0 .0072 0 .1483 

mve) 0 .0960 0 . 1 6 4 0 0 .0960 0 .0071 

料Chung] 0 .6456 0 .1719 0 0 . 2 9 4 8 

料Yang") 0 .0659 2 .8872 0 .7061 0 . 1 6 4 0 

# 5 ( L a m ) 0 .2546 0 .1798 0 0 .5595 

0 0 .1878 0 0 .2779 

#7[Ycm：) 0.0884 0 .1719 0 .0510 0 .0724 

讽 Chen) 0.7474 2 .2434 0 .0884 0 . 5 9 9 0 

0 .8213 0 .2281 0 .0072 0 

• Moment of jumping: refers to the moment of jumping up. 

• Moment of squatting: refers to the moment of squatting down. 

• Moment of walking: refers to the moment of walking or turning. 

• Moment of upstair: refers to the moment of climbing stairs up. 

• Moment of sit-stand: refers to the moment of posture transition from sitting to 

standing up. 

• Moment of sitting: refers to the moment when the body touches or just before 

touches a chair. 

• Movement after sitting: refers to the movements while sitting on a chair. 

• Fall-followed movement: refers to the movements after falling down. 

It is noticed that the events about “moment of sitting" take significant percerita.ge 

in the database of all non-fall events, which illuminates there is much similarity between 

the events of moment of sitting and fall-events. Therefore, we further divide candidate 

sequences of non-fall events into two classes: the events of "moment of sitting" and the 

other non-fall events. Our purpose is also to investigate the probability to classify the 

events of ”moment of sitting" and fall-events. Under this condition, the problem of falling 

detection is transferred into a multi-classification case aiming to discriminate the candidate 
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Table 5.3: Generated categories after Stage-One analysis (Jump: Moment of jumping, 

Squat: Moment of squatting, Walk: Moment of walking, Sit Move: Movement after sitting, 

Upstair: Moment of upstair, Sit-Staiid: Moment of sit-stand, Fallfo]lowed: Fall-followed 

movement, Sitting: Moment of sitting) 

S u b j e c t Non -Fa l l Fall S u b j e c t 

J ump Squat Walk. SitMove Upstair Sit — Stand Fail followed Sitting 

Fall 

#1(/細,） 16 1 28 16 

imYe) 1 •2 

1 1 3 15 

iHiVang) 6 1 3 7 11 

# 5 ( L a m ) 5 1 5 

mshi) 7 2 4 13 3 16 38 52 

1 2 5 23 

讽 Chen) 10 6 1 9 17 27 

# 9 ( L u ) 8 9 17 3 4 16 22 

Total 194 120 124 
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Feature 1 

Figure 5.5: Distribution of the two new training features for three classes (Non-Fall (Non-

fall events except the ones of "moment of sitting"), Fall (Fall-events), and Sitting (the 

events of "moment of sitting")) in GDA-based feature space 

For what has been discussed in above section, SVM model and parameter selection 
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sequences into three classes: non-fall events (except the ones of "moment of sitting"), the 

events of “moment of sitting", and fall events. 

5.4.2 Experimental Results of Stage-Two Analysis 

After extracting both linear and nonlinear features for candidate sequences, each of 

them is transferred into a 92-dimensional feature vector. Applying GDA for feature re-

ductioD, each of 92-dimensional feature vector is projected into two subspaces. Fig. 5.5 

and Fig. 5.6 respectively depict training and testing vectors' first two most discriminating 

features extracted by GDA. It is obviously shown that the features for the same class 

are relatively close to each other and far away from the ones related to the other classes. 

Therefore, the new extracted and reduced features after GDA, provide better inputs for 

next classification procedure of SVM. 

0.05 

0 

0.05 

1
1
s
d
 



CHAPTER. 5. FALLING DETECTION BASED ON PLANTAR FORCE 79 

-0.1 -0.05 0 0.05 0.1 0.15 0.2 
Feature 1 

Figure 5.6: Distribution of the two new testing features for three classes (Non-Fall (Non-

fall events except the ones of moment of sitting), Fall (Fall-events), and Sitting (the events 

of moment of sitting)) in GDA-based feature space 

are very important for obtaining the best perfonnance in SVM training. We apply ge-

netic algorithm (GA) for generating the most suitable SVM training parameters in order 

to obtain the optimal SVM classifiers for the problem of fall-event discrimination. We 

randomly select training samples for the three classes from their databases and the left 

ones are regarded as the testing samples. 

For generating the optimal SVM classifier, the optimization processes of C-SVM and 

v-SVM with R.BF kernel function are considered respectively. The optimization processes 

of fitness values for the two kinds of SVM algorithms are displayed in Fig. 5.7. It is 

noticed that after more than 50 generations, the "best fitness value" of y-SVM converges 

to 0.038793, which is smaller than the one of C-SVM (0.043103). The SVM training 

parameters cxDrresponding to the "best fitness value'' are regarded as the optimal solution 

for the multi-classification problem. As a result, for the optimal SVM classifier, we apply 

for u-SVM algorithm with the regularization parameter u equal to 0.287 and the kernel 
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function of RBF with the parameter 7 equal to 0.187. The sensitivity and specificity 

results related with the optimal SVM classifier are listed in Table 5.4, which demonstrate 

the optimal SVM classifier we build is efficient for the problem of fall-event detection. 

Best: 0.043103 Mean: 0.11422 
(C-SVM with RBF kernel function) 

0.6 

Best: 0.038793 Mean: 0.039655 
(\-SVM with RBF kernel function) 

0.0435 

0.043: 

0.0425 

0.042 

Mean fitness 
Best fitness 

0 10 30 40 
Generation 

60 
0.0385. 

10 30 40 
Generation 

50 60 

Figure 5.7: Optimization process of fitness value 

Table 5.4: Sensitivity and specificity of multi-classification results 

Mean fitness 
Best fitness 

Category Sensitivity {%) Specif icily {%) 

Non-Fall 95.53 (107/112) 96.66 

Fall 96.96 (64/66) 98.75 

Sit 96.29 (52/54) 98.27 

Avg. 96.26 97.89 

4
 3
 

d
 
d
 

9
n
l
e
>

 w
s
①
u
£
 



CHAPTER. 5. FALLING DETECTION BASED ON PLANTAR FORCE 81 

5.5 Summary 

Falls in the aging population has alwa3,s been one of the most challenging problems in 

public health care. Most of the automatic fall detection systems are based on accelerome-

ters and gyroscopes for detecting the rapid change of the body's tilt degree. Considering 

the assumption of acceleronieter and gyroscope based algorithms are not always valid, we 

propose a novel falling detection algorithm based on the analysis of the plantar forces of 

both feet. Two force sensing resistors (FSRs) are installed on each foot's two positions 

(1st metatarsal head and heel position) for acquiring the force change information during 

subjects' locomotion. For Stage-One analysis, candidate sequences will be generated if 

force values of the four FSRs beneath both feet are siimiltaneously less than the corre-

sponding predefined thresholds and last for a while. For Stage-Two analysis, we apply 

support vector machine (SVM) with genetic algorithm (GA) for generating optimal train-

ing parameters to determine whether there really exists a fall event. Linear and nonlinear 

parameters of each candidate sequence are generated to be the feature vector, which is 

further reduced to be more efficient input features for discrimination by applying GDA, 

Considering the events of "moment of sitting" take significantly percentage in the database 

of non-fall events, we separate the events of "moment of sitting" from the whole database 

of non-fall events to be the particular class we study. The detection results demonstrate 

the two-stage algorithm we propose for failing detection is efficient. 



Chapter 6 

Abnormal Gait Modeling 

6.1 Introduction 

Human gait can be generally divided into normal and abnormal ones. Keeping abnor-

mal gait patterns will ultimately lead to pain in the feet, ankles, legs and even skeletal 

disease if prolonged. By monitoring the gait pattern of a human, proper motion ad-

justments can be advised so as to improve their walking style and long-term well being. 

Considering the variet), of gait abnormalities, we select the typical ones including eas-

ily observed abnormalities ( "toe in" and "toe out“ ) and inconspicuous ones ( “heel 

walking“ and "oversupination" - walking on the lateral portion of the foot). For toe 

in/out gait, the subjects walked with an increased internal/external foot progression an-

gle (FPA) compared with normal gait. All of them are known as the most common gait 

abnormalities generated either by inborn reason or ill habit. We propose an intelligent 

shoe-integrated system from which the information derived can give efficient assistance 

in determining and alarming the persons associated with abnormal gaits focusing on the 

above gait abnormalities. This system is of particular significance to provide feedback in 

the application of gait abnormality rectification. 

In the past decade, as more and more studies on human gait are conducted, numer-

ous systems for gait data acquisition and analysis are proposed, including camera-based 

[78] [79] [80], floor-mounted [81], and in-shoe configuration systems. However, among all 

82 
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the available systems, the in-shoe device is most utilized due to the outstanding merit of 

extending the usable location for human gait study. An in-shoe multisensory data acqui-

sition system has already been developed [13]. In the system, except for pressure sensors, 

temperature and humidity sensors were located in a shoe to monitor the corresponding 

information. However, they mainly focused on the hardware design and little discussion 

on data interpretation and analysis was introduced. Morris et al. [15] [82] developed a 

wireless sensor system for realtime data acquisition which had potential use in clinical 

gait analysis. More introductions about prototype design were presented, but the pattern 

recognition method was not mentioned in detail. In addition, the Pedar insole system 

(Novel, Munich) is a commercially available system which is widely used in clinic sites and 

laboratories due to its repeatability and accuracy [83]. Ray and Snyder utilized the Novel 

Pedar in-shoe system for gait analysis on subjects with overpronated (fallen arches) and 

oversupination [84]. They also investigated gait-line velocities taken on various subjects to 

establish dynamic patterns during normal gait using Pedar insole for data collection [85]. 

However, the limitations of the Pedar insole system still exist, including a heavy wireless 

and memory storage module, a thick insole, and an expensive price. 

In this chapter, we present a methodology for human abnormal gait modeling via hid-

den Markov model under the framework of cost-effective shoe-integrated systems. The 

proposed pattern recognition approach is mainly based on Principal Conipoiient Analysis 

(PCA) for feature generation and hidden Markov model (HMM) for multi-pattern model-

ing. Besides, the methodology of optimal SVM classifier introduced in Chapter 5 is also 

applied for the problem of detecting abnormal gait patterns. This intelligent system has 

the potential application for gait abnormality rectification. Fig. 6.1 displays the outside 

view of the prototype. 

This chapter is organized as follows. In Section 6.2, we describe the proposed approach 

of how to apply PCA for feature extraction and HMM for abnormal gait modeling and 

evaluation. Experimental results are discussed in detail in Section 6.3. We draw the 

summary in final Section 6.4. 
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Figure 6.1: Outside view of the intelligent shoe 

6.2 Human Gait Modeling and Evaluation via Hidden Markov 

Model 

We aim to model liiinian gaits including both normal and abnormal ones into five 

classes: normal, toe in, toe out, oversupination, and heel walking, according to a group of 

gait features. The process of gait model generation and evaluation which is illustrated by 

a block diagram in Fig. 6.2 mainly consists of the following four procedures: 

(1) Set up gait database of "normar', "toe in”，"toe out", "oversupination", and "heel 

walking" based or� the data obtained from subjects wearing the shoe-integrated systems; 

(2) Use Fast Fourier Transform (FFT) to convert data from the time domain to the 

frequency domain; 

(3) Apply Principal Component Analysis (PCA) for feature generation; 

(4) Model and evaluate human gait patterns via hidden Markov model (HMM). 

6.2.1 PCA for Feature Generation 

It is necessary and important to apply feature generation and reduction in data pre-

processing for modeling human gait patterns, since failures in feature selection can signifi-

c;antly diminish the efficiency of system performance. In addition, even though the present 

features contain enough information about the classification problem, they cannot be used 
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Figure 6.2: Block diagram of the software design 

for predicting the output result correctly since the dimension of the feature space is so 

large that it requires large numbers of instances to determine the result. Among several 

feature extraction methods, Principal Component Analysis (PCA) is widely utilized in the 

field of pattern recognition and in many signal processing applications. PCA generates a 

new set of variables, called principal components (PCs), by projecting the original vari-

ables to mutually orthogonal axes. In the routine, singular value decomposition (SVD) is 

applied to efficiently computer PCs [86]. 

6.2.2 Training and Evaluation by H M M 

Hidden Markov model (HMM) is a trainable statistical model with an underlying 

stochastic process which is unobservable. The internal properties of HMM can only be 

represented via another set of stochastic processes generating the observation sequences. 

The appealing feature of HMM is that no a priori assumptions are made about the sta-

tistical distribution of the data. Due to the rich mathematical structure. HMM can form 
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the theoretical basis using in a wide range of signal processing applications, from the wide 

application in speech recognition [87] to the field of action skill learning [88] and human 

gesture recognition [89]. 

The reasons to utilize HMM in the analysis of gait abnormalities aie as follows: 

• HMM is a doubly stochastic model. Gait data shows variabilities for one individuars 

same walking pattern between trials, even in the same trial. HMM has the capability 

to characterize the immeasurable stochastic process that represent the same gait 

pattern. 

• HMM treats observations without explicit physical understanding. This makes it 

possible to model gait abnormalities regardless of less psychological and biological 

understanding of the stochastic process. 

• HMM parameters can be optimized via efficient algorithms. The incrementally up-

dated HMM is much flexibility in modeling gait patterns. 

We develop five 6-stat,e left-right HMMs for modeling normal gait and four kinds of 

abnormal ones (toe in, toe out, oversupination, and heel walking) for each subject. 

A hidden Markov model is a collection of finite states S = { 5 i , 52, Sn) intercon-

nected by transitions. Each state has a number of distinct observation symbols V = 

{?；!, V 2 , v m } corresponding to the physical output of the system being modeled. A 

HMM can be specified by the following notation; 

^ = (A,B,7r) (6.1) 

1. A - The state transition probability distribution A = {a?:j}，where a^ denotes the 

probability of transition from S.i to Sj. 

2. B - The observation symbol probability distribution at the given state Si, B = 

删 } • 

3. TT - The initial state probability distribution vector tt =- {兀丄}. 
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Figure 6.3: 6-state left-right HMM 

From the above discussion, it can be seen that a complete description of a HMM 

requires the selection of model parameters: iV-the number of states in the model, M-the 

number of distinct observation symbols per state; description of observation symbols; as 

well as three probability matrices A, B, and tt. 

The state transition coefficients of left-right HMM have the fundamental property： 

<Hj = 0, i > j 

Furthermore, the initial state probabilities satisfy: 

(6.2) 

Tti (6.3) 
1 if 7： = 1. 

0 if 7； ^ 1 

which means the state sequence in list start in state 1 and finish in state N. In our 

designed left-right HMMs for human gait patterns, no more than 2 jumps are allowed for 

state transition coefficients in order to avoid large changes in state indices (shown in Fig. 

6.3). 

The state transition matrix in this case is 

"11 0 0 0 

0 «22 023 «24 0 0 

0 0 ".34 "'35 0 

0 0 0 "'45 

0 0 0 0 «55 

0 0 0 0 0 «66 

( 6 . 4 ) 
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Aiming to model human gaits and to preform similarity measure based on the models 

designed, we particularly focus on the problems of learning and evaluation (or recogni-

tion) . T h e problem of learning is to adjust the probability matrices A, B. and TT SO as 

to maximum the likelihood P{0\X) based on the given observation sequences. Although 

there is no analytical approach known to obtain the model with the maximum probability 

of the given finite observation sequences, an iterative algorithm such as the Baum-Welch 

algorithm [90], the Expectation Maximization (EM) method [91] or gradient techniques 

can be used to iteratively reestimate HMM parameters so as to achieve the local niaximuni 

P(0|A). The definition of the evaluation problem is that given a defined hidden Markov 

models A = {Ai, Ao,..., A,；}, and a. sequence of observations Ok, calculate the probabilities 

P(0/j|A.j) for all the given models, then the gait pattern with the highest probability will be 

selected. Forward-Backward algorithm [92] [93] provides an efficient approach for solving 

the evaluation problem. 

6.3 Experiments and Analysis 

6.3.1 Data Acquisition and Database Formation 

After A / D transformation, the digital data of all sensors are packaged, which effectively 

decreases the transmission error and the sampling frequency is increased to 50 Hz which 

is adequate for the activity of walking. In the host computer, we obtain the corresponding 

information applied for each sensor based on data reconstruction and calibration. Fig. 6.4 

shows the location of the IMU board attached to the shoe-integrated system with the def-

inition of reference axes for gyroscopes and accelerometer. Fig. 6.5 to Fig. 6.9 respectively 

displays the force waveforms under each FSR, the voltage change of the bend sensor, and 

3D inertial parameters as a function of time for Subject^l 's five gait pa.tterns mentioned 

above. 

Since we do data analysis by examining both the left and right feet, the training data in 

a 4575x22 matrix and testing data in a 11325x22 matrix for each of the five gait; patterns 

are produced. After applying Fast Fourier Transform (FFT) processing, we transfer the 
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Figure 6.5: Force waveforms under 4 right foot regions, bend parameter, and 3D inertial 

parameters during normal walking (Ml = 1st metatarsal head, M4-5 = the position be-

tween 4th and 5th metatarsal heads, PH = posterior heel, and IH = inside heel, Bend = 

bend sensor, AX-AZ = 3D accelerations, GX-GZ — 3D angular rates) 
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Figure 6.4: IMU location and reference axes for gyroscopes and acceleronieter 
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Figure 6.6: Force waveforms under 4 right 

parameters during toe-out walking (Ml — 

tween. 4th and 5th metatarsal heads, PH = 

foot regions, bend parameter, and 3D inertial 

1st metatarsal head, M4-5 = the position be-

posterior heel, and IH = inside heel, Bend = 

bend sensor, AX-AZ = 3D accelerations, GX-GZ 二 3D angular rates) 

training and testing data into a 900x66 and a 2250 x 66 matrix respectively with three 

primary coefficients selected. In order to reduce the dimension of the input data, we apply 

Principal Component Analysis (PCA) for feature generation. The PC A process reduces 

the dimension from 66 to 10. As a result, the final dimensions for the training and testing 

sequences are 900x 10 and 2250x10. Furthermore, both the training and testing data are 

divided into a suit of segments, each of which contains 50 sampling points. 

6.3.2 Human Gait Modeling 

A discrete 6-state left-right HMM is employed to model each gait pattern, denoted as 

{Fl(/：) - F4(t), B(fJ, Ax-y- z{t),Gx - y - z(/;)}, where Fl{t) - F4(/：) denote the force 

information under four plantar positions, B(t) denotes the flexibility infonneition of foot, 
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Abnormal Gait of Oversupination 
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Figure 6.7: Force waveforms under 4 right foot regions, bend parameter, and 3D inertial 

parameters during oversupination walking (Ml = 1st metatarsal head, M4-5 = the position 

between 4th and 5th metatarsal heads, PH = posterior heel, and IH = inside heel, Bend 

= b e n d sensor, AX-AZ = 3D accelerations, GX-GZ = 3D angular rates) 

AT — y — z{t) represents the values of three-dimensional accelerations, and Gx — y — z{t) 

represents the values of three-dimensional angular rates. 

Four healthy adult subjects, three females and one male, with normal weight and 

height, were invited for this investigation. We train five 6-state left-right HMMs of the 

five gait patterns mentioned above based on each subject's walking data. HMM parame-

ters including the three probability matrices A, B, and tt are initialized using a uniform 

segmentation for each training sequence. Each sequence is split into N successive sec-

tions, where N is the state number of the HMM structure. The vectors of each state are 

utilized to obtain the initial HMM parameters of the iY-conditional distributions. The 

Baum-Welch algorithm is used to iteratively reestimate the parameters according to the 

forward and backward variables. 60 iterations are run for each training process. 
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Figure 6.8: Force waveforms under 4 right foot regions, bend parameter, and 3D inertial 

parameters during toe-in walking (Ml = 1st metatarsal head, M4-5 = the position between 

4th. and 5th metatarsal heads, PH = posterior heel, and IH = inside heel, Bend = bend 

sensor, AX-AZ = 3D accelerations, GX-GZ = 3D angular rates) 

Fig. 6.10 shows all 20 HMMs' estimation results denoted as the log-likelihood versus 

the learning iteration index. Eventually the log-likelihood converges to a critical point. 

During the training process, the increase of the log-likelihood indicates the improvement 

of the model parameters. After the learning iterations, 20 HMMs representing the five 

gait models for the four subjects are retrieved based on the training data samples. 

6.3.3 Similarity Analysis: Model to Model 

In order to evaluate the five trained gait models (A1-A5) for eacii subject, each model 

randomly generates two observation sequences which have the same size as the ones for 

the training and testing purpose. 

We apply those generated observation sequences O.i as the test data to all trained 
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Abnormal Gait of Heel Walking 
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Figure 6.9: Force waveforms under 4 right foot regions, bend parameter, and 3D inertia! 

parameters during heel walking (Ml = 1st metatarsal head, M4-.5 = the position between 

4th. and 5th metatarsal heads, PH = posterior heel, and IH = inside heel. Bend = bend 

sensor, AX-AZ = 3D accelerations, GX-GZ = 3D angular rates) 

models Xj { j = 1 , 5 ) one by one. Then we compute the probability P{Ot\Xj) of each 

generated observation sequence with respect to the model, using Forward-Backward algo-

rithm. After calculating P { O i \ X j ) , it is normalized by the length of the sequence T , then 

a l.o(] scale is applied in order to avoid the underflow problem of data. 

As listed in Table 6.1 and Table 6.2, it is obviously shown that the log-likelihood 

reaches the maximum (marked with grey), when i = j . That is to say, each generated 

observation sequence is much more similar to the model generating it than all the other 

models. The same investigation results happen for all four subjects. 

Besides, we also introduce the similarity distance measure to evaluate model to model 

similarity. The similarity measure A.̂ ) for model Xj to Â  is defined as (6.5). Ck is the 

observation sequence generated by model Â . _P(0?:|A.i) and P { O i \ \ j ) are the log-likelihood 
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Figure 6.10: Log-likelihood versus learning iteration index in the training processes for 

the four subjects with N=6 
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Table 6.1: Log-likelihood of randomly generated sequences to the trained HMMs for sub-

jects with N=6 {Ml: Heel Walking, M2: Toe-in, MS: Normal Gait, M4: Toe-out, A'f5: 

Oversupination) 

Log — likelihood 

(7S’#1 - 1 
GS#1 — 2 

(;,S#‘2 - 1 
GSm — 2 
GS#'i — 1 

- 2 

CS#4. — 1 
G S I , � - 2 

GS#5 — 1 
G‘S,#5 - 2 

Log — likelihood 

G‘9#l - 1 
GS#1一 2 

GS#2- 1 

GS拟—2 

GS’#3 - 1 
GS#-i - 2 
GS#4： - 1 

- 2 

G5,#5 - 1 
6�6”#5 — 2 

Ml 
Subject#l(Chen) 

M2 M3 M4 

-819.3 

- 8 4 1 : 3 : 

- 1 6 7 1 . 0 

- 1 7 4 0 . 8 

-1226.2 

-1271.5 
- 1 6 7 4 . 0 

- 1 7 6 0 . 3 

- 1 5 7 9 . 7 

- 1 6 3 7 . 2 

- 1 5 7 5 . 4 

- 1 5 0 1 . 6 

- 8 8 7 . 4 

' - 8 6 9 . 5 丨 

- 1 3 1 8 . 9 

- 1 3 0 6 . 1 

- 1 9 8 4 . 5 

- 2 0 3 7 . 6 

- 1 2 9 3 . 0 

- 1 2 0 0 . 7 

- 1 1 5 0 . 7 

-1120.8 

- 1 3 5 8 . 6 

- 1 4 6 7 . 9 

- 8 3 1 . 8 

- 8 4 3 . 8 

-1722.9 

- 1 8 3 2 . 4 

- 1 7 7 9 . 6 

- 1 6 0 4 . 0 

- 1 5 9 2 . 6 

- 1 6 8 8 . 3 

- 2 7 5 9 . 0 

- 2 8 5 7 . 0 

- 1 7 5 9 . 4 

- 1 8 6 1 . 5 

- 8 3 8 . 9 

-866.0 

- 2 7 5 5 . 9 

-2820.8 

Ml 

S 却)ct#2('ron5) 
M2 M 3 MA 

-820.1 , 

- 8 2 5 . 0 

- 1 7 3 7 . 0 

- 1 7 1 5 . 3 

- 1 4 5 1 . 5 

- 1 4 2 8 . 8 

- 1 2 3 7 . 4 

- 1 2 4 6 . 7 

- 2 1 9 2 . 4 

- 2 2 1 9 . 8 

-1774.5 

- 2 1 9 3 . 3 

- - 7 6 9 . 0 : 

- 8 0 4 . 1 丨 

- 1 2 7 8 . 2 

- 9 1 1 . 1 

- 1 8 8 6 . 5 

- 1 8 3 8 . 3 

- 1 5 0 1 . 3 

- 1 4 1 8 . 1 

- 1 2 8 4 . 4 

- 1 5 4 8 . 5 

- 9 8 1 . 3 

- 1 0 1 4 . 6 

- 9 3 9 . 0 

- 7 8 6 . 1 ' 

- 1 2 5 2 . 1 

- 1 2 5 4 . 6 

- 1 7 1 4 . 0 

- 1 7 4 7 . 4 

- 1 1 7 1 . 9 

- 1 5 0 6 . 1 

- 1 6 9 5 . 6 

- 1 8 0 4 , 3 

- 1 3 8 1 . 8 

- 1 3 4 2 . 8 

-868.0 

- 8 6 9 . 3 

- 2 3 0 7 . 9 

- 2 3 7 3 . 3 

Mb 

- 2 0 6 3 . 9 

-1S4S.9 
- 1 5 3 4 . 6 

- 1 5 1 7 . 4 

- 2 0 9 4 . 8 

- 2 1 2 6 . 9 

- 3 6 5 9 , 5 

- ; 3 6 5 9 . 1 

- 8 2 3 . 3 

-818,0 

Mb 

- 2 0 1 3 , 9 

- 2 3 1 0 . 6 

- 1 4 2 1 . 2 

- 1 3 3 2 . 9 

- 1 8 2 2 . 7 

- 1 8 5 8 . 8 

- 1 9 3 3 . 7 

- 2 0 2 3 . 8 

- 7 4 5 . 0 

- 7 0 4 . 3 
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Table 6.2: Log-likelihood of randomly generated sequences to the trained HMMs for sub-

jects with N=6 ( M l : Heel Walking, M2: Toe-in, Af3: Normal Gait, M4: Toe-out, Mb: 

Oversupination) 

Log — likelihood 

GS#l — 1 
G6�#l - 2 
GS#2 — 1 

CS#2- 2 

- 1 

- 2 
GS#A— 1 

GS#4- 2 
- 1 

GS#rj - 2 

Log — likelihood 

GS#1- 1 

GS#1一 2 

GS#2- 1 

GS 脊2 - 2 

GS科-1 

G S # i - 2 
- 1 

G 5 # 4 - 2 

GS#5 - 1 
G6’#5 — 2 

Ml 
Subject^-i{Liu) 

M2 MS MA 

-735 .1 

-754.4' 
-2738 .5 

-2565.1 

-2033 .3 

-2.'152.0 

-1396.3 

-1584.8 

-1812.9 

-1569.5 

-2548 .0 

-2195 .0 

- 8 9 9 . 8 

-901 .9 

-1530 .0 

-1；382.4 

-2693 .0 

-2873.6 

-1366.4 

-1479.0 

-1481.7 

-1543.6 

-1575.4 

-1582.8 

-821.2 

-1718.3 

-1858.6 

-1238.4 

-1205.8 

-1569 ,6 

-1756 .2 

-3078 ,5 

-3052 .7 

-2365 ,8 

-2819 .6 

-746 .9 

- 6 9 1 . 7 

-2579 .3 

-2238 .5 

Ml 
Svbjtu:t#4^{Qian� 

M2 M3 MA 

-656 .1 

-702 .5 

-3961 .0 

-3451 .2 

-1653 .5 

-1528 .2 

-1724 .0 

-1814.2 

-3806.1 

-3963.4 

-2938 .5 

-2822.4 

-703 .9 

-C70.1 

-1653 .2 

-1742.4 

-2664 .7 

-2214 .0 

-3026,4 

-2972.6 

-1535,6 

-1610.1 

-2283.8 

-1925.2 

-762 .7 

-764 .7 

-1097.3 

•1215.3 

•450S.3 

-4702.7 

- 1584 .5 

- 1483 .1 

-2235 .7 

-2038 .6 

-1136 .4 

-1552 .4 

- 7 2 8 . 7 ‘ 

-785 .1 

-3104 .9 

-3066 .0 

9 

0 

9 

0 

Mb 

-5836 .5 

-5800 .4 

-2703 .2 

-2725 .4 

-4029 .8 

-4288 .0 

-5311 .7 

-5047 .0 

-682.8 

- 653 .9 
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for Oi to 入,：and Xj. The results of the similarity distance measure are shown in Table 6.3 

and Table 6.4. 

a (A” A,) = io[^(0.|A,)-P(0,.|A,)1/P{0.|A.) (6.5) 

6.3 .4 Similarity Analysis: Human to M o d e l 

Besides using randomly generated observation sequences to evaluate trained HMMs, 

we also apply test observation sequences for human to model similarity evaluation. As 

introduced above, the test data in a 2250x10 matrix for each gait pattern is divided into 

45 data segments, each of which including 50 sampling points. Totally 225 test segments 

for five gait patterns are used to evaluate the five gait models we build for each subject. 

In the model to model similarity evaluation, the trained models are all based on the 

HMM structure of 6-state. For the hum an to model similarity evaluation , we also consider 

the selection of HMM parameter N, since different state numbers rna,y influence obtaining 

the best identification performance. Fig. 6.11 displays the identification results based 

on different state numbers ranging from 5 to 14 for each subjects's five gait patterns. A 

conclusion can be made that the identification result will drift within a small range with the 

state number N ranging from 5 to 14. Considering that a larger state number will increase 

the model complexity, we select the smaller one if it can equal the best performance as the 

HMM structure with higher state number. Based on the above rule, the state numbers 

for Siibject#l , Subject#2, Siibject#3, and Siibject#4 are 5, 6, 5，and 8. 

The identification rates for the four subjects based on the optimal state numbers 

are shown in Table 6.5. Taking the identification rate of Subject#2 ’s toe-in gait as an 

example, we utilize 45 test segments of toe-in gait [M2 — TS) to calculate the log-likelihood 

values for all of the five gait models we built for Subject#2. The vote is designated to 

the model with the maximiirn log-]ikelihood. As a result, 43 of 45 test segments are 

successfully recognized as toe-in gait abnormality, and the other two segments are falsely 

considered to be normal gait (M3). The average success rate for all the four subjects' five 

gait patterns reaches 99.33%. 
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Table 6.3: Model to model similarity distance measure via randomly generated sequences 

for subjects with N=Q {Ml: Heel Walking，M2: Toe-in, M3: Normal Gait, MA: Toe-out, 

M5: Oversupination) 

GS#1- 1 

GS#1- 2 

GS#2- 1 

GS#2- 2 

GS# ‘i - 1 

- 2 

GS#‘A — 1 
GSiH - 2 

- 1 

G S # 5 - 2 

Ml 
Subject#l(j::hen) 

M2 MS M 4 

1.0000 

1.0000 

0.1309 

0.0995 

0 .3357 

0.3113 

0.1010 

0.0927 

0.1206 

0.0996 

0.1194 

0.1641 

「1.0000 

； 1 . 0 0 0 0 

0.2597 

0.2833 

0.0431 

0.0444. 

0.26S9 

0.3405 

0.3939 

0.4653 

0.2944 

0 .2050 

1.0000 

l.OQOO 

0.0883 

0.0765 

0.0689 

0.1094 

0.1138 

0.0984 

0.0078 

Q.t)052 

0.0767 

0.0622 

1.0000 

1.0000 

0.0045 
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Table 6.4: JVIodel to model similarity distance measure via randomly generated sequences 

for subjects with iV=6 {Ml: Heel Walking, M2: Toe-in, M3: Normal Gait, Af4: Toe-out， 

MS: Oversupination) 
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Figure 6.11: The identification rate vs different state number for the four subjects 
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Table 6.5: The success rate of identification for the four subjects with optimal state number 

{Ml: Heel Walking, M2: Toe-in, M3: Normal Gait, M4: Toe-out, M5: Oversupination) 

Count 

Ml 一 TS 

Ml - TS 

M3 — TS 

MA 一 TS 

M5 - TS 

'aunt 

Ml - TS 

M2 — TS 

MS — TS 

M4 - TS 

M 5 - TS 

Count 

- TS 

-TS 

M 3 — TS 

-TS 

-TS 

Subject.liJJht 

M 3 A / 4 M5 Identification Rate 

0 0 0 1 0 0 % 

0 0 0 ；100% 

4 5 0 0 1 0 0 % 

0 ；45" 0 ；L00% 

0 0 4 5 1 0 0 % 
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4 5 
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0 

0 

0 
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' 4 3 
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0 

0 

0 
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0 

0 

0 

0 

0 

4 5 

0 

100% 

95 .5 .5% 

1 0 0 % 

1 0 0 % 

1 0 0 % 

Count Ml M2 
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Ml --TS .44- 0 1 0 0 97.77% 

A / 2 --TS 0 45^ 0 0 0 100% 

M 3 --TS 0 0 4 5 : 0 0 100% 

M 4 - -TS 0 0 0 4 5 0 1 0 0 % 

M 5 --TS 0 0 0 0 4 5 1 0 0 % 

Subject#4(Qiun") 

Ml M 2 M 3 M 4 A'/5 Identification Rate 

0 0 0 0 1 0 0 % 

4 4 1 0 0 9 7 . 7 7 % 

0 45 ： 0 0 1 0 0 % 

0 0 ： 0 9 7 . 7 7 % 

0 1 0 i 4 4 " 97 . 7 7 % 
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6.3.5 Support Vector Machine Approach 

In addition to modeling and evaluating human abnormal gaits via hidden Markov 

models, the intelligent learning algorithm mentioned in Chapter 5, i.e. support vector 

machines (SVM) associated with genetic algorithm (GA) for optimizing SVM classifiers is 

also introduced to build multi-pattern model for the problem of abnormal gait detection. 

For the training data segment, a 4575x22 matrix for eacli of the five gait patterns is 

produced. After applying Fast Fourier Transform (FFT) processing, we transfer each data 

segment into a 900x66 dimension matrix with three primary coefficients selected. After 

that, the PCA process reduces the data segments from 66-D to lO-D. The original testing 

data for each the five gait patterns is with 11325x22 matrix. After data preprocessing 

which is the same as the approach we apply for the training data, the total test segment for 

estimating the generated multi-classification model is with 11250 x 10 (2250x10 for each 

gait pattern). 

For what has been discussed in Chapter 5, SVM model and parameter selection are 

very important for obtaining the best performance in SVM training. For the problem of 

abnormal gait detection, we also apply genetic algorithm (GA) for generating the most 

suitable SVM training parameters so as to obtain the optimal SVM classifier for each 

subject. The optimization processes of C-SVM and v-SVM with RBF kernel function are 

considered respectively. 

The optimization processes of fitness values for the two kinds of SVM algorithms are 

displayed from Fig. 6.12 to Fig. 6.15 for the four subjects. The SVM algorithm with 

smaller "best fitness value" will be selected as the optimal model type. The SVM training 

parameters corresponding to the best fitness value listed in Table 6.6 for the four subjects 

are regarded as the optimal solutions. The multi-classification results for the four subjects 

based on the optima� SVM classifiers are shown in Fig. 6.16. The average success rates 

listed in Table 6.7 demonstrate the SVM classifiers we build are robust and efficient for 

the problem, of detecting abnormal gaits. 
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Figure 6.12: Optimization process of fitness value for Subject#l 

Table 6.6: Optimal training parameters for the four subjects 
Subject ID Optimal Parameters Subject ID 

Model Type Variable Value 

y-SVM u 0.174 y-SVM 

7 0 .0157 

# 2 u-SVM ly 0.128 # 2 u-SVM 

7 0 .035 

# 3 C-SVM C 0 .162 # 3 C-SVM 

7 0 .0081 

# 4 u-SVM u 0 .033 # 4 u-SVM 

7 0 .001 

6.4 Summary 

This chapter presents the methodology for modeling" abnormal human gaits using 

den Markov model under the framework of shoe-integrated systems. The intelligent 
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tein focuses on modeling the following patterns: normal gait, toe in, toe out, heel walking, 

and oversupination abnormalities. In the developed prototype, an Inertial Measurement 

Unit (IMU) consisting of three-dimensional gyroscopes and accelerometers is employed 

to measure the angular velocities and accelerations of the foot. Four force sensing re-

sistors (FSRs) and one bend sensor are arranged on the insole of each foot for force 

and flexion information acquisition. The proposed method is mainly based on Principal 

Component Analysis (PCA) for feature generation and hidden Markov model (HMM) 

for multi-pattern modeling. The "similarity distance measure" criterion which reflects the 
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Figure 6.13: Optimization process of fitness value for Subject#2 

Table 6.7： Average success rates i :br the our subjects 
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Figure 6.14: Optimization process of fitness value for Subject#3 

similarity degree between models is introduced. Besides, the methodology of optimal SVM 

classifier introduced in Chapter 5 is also applied for the problem of detecting abnormal 

gait patterns. Experimental results of both HMM and SVM methodologies demonstrate 

the shoe-integrated system is robust and efficient in detecting abnormal gait patterns. Our 

goal is to provide a cost-effective system for detecting gait abnormalities in order to assist 

persons with abnormal gaits in developing a normal walking pattern in their daily life. 
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Figure 6.15: Optimization process of fitness value for Subject#4 
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Chapter 7 

Conclusions 

This thesis has investigated some significant problems related to the study of human 

motion abnormality under the framework of the intelligent shoe-integrated platform. In 

the final chapter, we summarize the research and briefly describe some areas of future 

research. 

7.1 Conclusions 

The design of the shoe-integrated platform has realized a wireless wearable system 

including a suite of sensors for capturing huinaii gait parameters. The system architec-

ture consists of four major subsystems: the insole, the Inertial Measurement Unit, the 

microprocessor-based data gathering subsystem, and the wireless cornraiinication mod-

ule. Considering the fundamental requirements of the platform design, the compact and 

lightweight sensors and electronics are selected as the components for each subsystem. 

The whole system is compact and light so that it can be easily integrated with a user's 

shoes and he/she will notice little if any difference between his/her normal shoes and the 

proposed intelligent shoes. Wireless comrimnication based on radio frequency (RF) makes 

it possible to capture and analyze human gait in a relatively extensive environment. The 

designed shoe-integrated system is an ideal platform for studying human motion abnor-

malities. 

1.07 
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We studied human gait patterns and presented the design of the classifier for identi-

fying gait patterns among fiat walking, descending stairs, and ascending stairs based on 

continuous kinematic signals. Kinematic parameters in the same period were separated 

into gait segments which were further used as the units for pattern feature analysis. We 

applied discrete wavelet transform (DWT) foi_ feature generation and fuzzy logic based 

approach for designing the multi-class classifier. Anteroposterior acceleration, vertical 

acceleration, and sagittal plane angular rate were demonstrated to provide useful infor-

mation for classifying the gait patterns we focused, and the other kinematic parameters 

were almost useless. Experimental results of the six training and four testing subjects 

demonstrated that the selected features of the average sum of squares of wavelet coeffi-

cients efliciently represented the characteristics of the gait patterns we studied. Also fuzzy 

logic based classifier well described the distribution of the features. 

The methodology for detecting postural kyphosis under the framework of the shoe-

integrated system has been presented. Eight force sensing resistors (FSRs) for gathering 

the pressure information under the eight bony prominences were utilized. Based on the 

gathered plantar pressure information, we applied Cascade Neural Networks with Node-

Decoupled Extended Kalman Filtering (CNN-NDEKF) for training the model for this 

binary classification problem. Different preprocessing approaches were utilized and exper-

imental results demonstrated that Fast Fourier Transform (FFT) was the suitable data 

preprocessing approach for our problem. 

In addition, we developed a novel falling detection algorithm based on the analysis 

of plantar force on both feet. Two FSRs were installed on each foot's two positions (1st 

metatarsal head and heel position.) for acquiring the force change during subjects' loco-

motion, For Stage-One analysis, the candidate sequences were generated if force values 

of the four positions in both feet were simultaneously less than the corresponding prede-

fined thresholds and lasted for a while. For Stage-Two analysis, we applied support vector 

machine (SVM) with genetic algorithm (GA) for generating optimal training parameters 

to determine whether there really existed a fall event. Linear and nonlinear parameters 

of each candidate were generated to be the feature vector, which was further reduced to 
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be more efficient, input features for discrimination by applying Generalized Discriminant 

Analysis (GDA). The detection results demonstrated the two-stage algorithm we proposed 

for fall-event detection was efficient. 

For gait abnormality study, we proposed the methodology for modeling abnormal hu-

man gaits using hidden Markov model. The intelligent system focused on modeling the 

following patterns: normal gait, toe in, toe out, heel walking, and oversupination abnoi-

malities. In the developed prototype, an Inertial Measurement Unit (IMU) consisting of 

three-dimensional gyroscopes and accelerometers was employed to measure the angular ve-

locities and accelerations of the foot. Four force FSRs and one bend sensor were arranged 

on the insole of each foot for force and flexion information acquisition. The proposed 

method was mainly based on Principal Component Analysis (PCA) for feature generation 

and hidden Markov model (HMM) for multi-pattern modeling. The "similarity distance 

measure" criterion which reflected the similarity degree between models was introduced. 

Besides, the methodology of optimal SVM classifier was also applied for this problem. Ex-

perimental results of both methodologies of HMM and SVM demonstrated the proposed 

shoe-integrated system was robust and efficient in detecting gait abnormalities and had 

the potential application for assisting persons with abnormal gaits in developing a normal 

walking pattern in their daily life. 

7,2 Contributions 

The contributions of this thesis are concluded as follows: 

• The inexpensive, compact, and lightweight shoe-integrated platform has been de-

signed and implemented for capturing a variety of gait-related parameters. Com-

pared with the traditionally utilized human motion measurement systems, the shoe-

integrated platform shows well performances in non-invasive and wireless motion 

data acquisition in a relatively extensive space, wliicli is demonstrated as the ideal 

platform for the study of human motion abnormalities. 

• A new gait pattern classification system has been built, based on the study of foot 
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movement during flat walking, descending stairs, and ascending stairs. We study the 

characteristics of kinematic parameters and demonstrate the parameters of antero-

posterior acceleration, vertical acceleration, and sagittal plane angular rate provided 

useful information for gait pattern discrimination. The designed fuzzy-logic based 

classifier well describes the distribution of the corrimori features generated by Dis-

crete Wavelet Transform (DWT) of different gait patterns. The proposed system 

will make it possible for assisting to evaluate walking energy expenditure. 

• The methodology of automatically detecting postural kyphosis has been investigated. 

The basic idea is to monitor and study the pressure distribution of feet during lo-

comotion. We demonstrate gait analysis relying on plantar pressure provided an 

indirect but efficient approach for detecting postural abnormality of the upper body. 

The proposed system from which the pressure information derived could give effi-

cient assistance in determining and alarming the persons associated with postural 

kyphosis. 

• An automatic method for discriminating fall events from activities of daily living 

tasks based on plaritai. force information has been developed. By using the two-

stage analysis algorithm we proposed, fall events could be detected efficiently in 

various situations. 

• The methodology for modeling and classifying gait abnormalities has been presented, 

via machine learning algorithms, hidden Markov model (HMM) and support vector 

machine (SVM) based on a suite of gait parameters. The trained models after 

learning could realize gait abnormality identification. 

The intelligent shoe-integrated system is a novel research tool diflerent from the tra.-

ditional measurement systems, which realizes realtime investigation in outdoor environ-

ments. It provides a good human-computer interface to understand human motion be-

havior. The proposed data, processing methodologies lit to solve complex human motion 

data with the shoe-integrated system. Through use of pattern recognition, the proposed 
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system can provide eflicieiit assistants in the applications of kinetic analysis of gait, reha-

bilitation assessment and so on. The conclusions of abnormality detection are valuable to 

biomedical and rehabilitation study. The shoe-integrated system has a great potential to 

be commercialized especially for adolescents and elders, 

7.3 Future Work 

Human motion analysis is a challenging mission. This thesis mainly addresses the 

fundamental problems of how to design an intelligent shoe-integrated platform and how to 

study and mode� human motion abnormalities under this measurement system. However, 

there are still some improving works and research ideas: 

For the current falling detection trials, young volunteers were invited for gathering 

samples of activities of daily living (ADL) tasks and simulated falls. Considering the 

motion patterns of elderly people are different from younger ones' due to their reduced 

muscle strength with old age, in. the future work, we will also invite elderly subjects 

to perform, ADL tasks, which will enrich the database and increase the robustness of 

the detection methodology. Besides, the optimal number and position of force sensing 

resistors (FSRs) installed beneath foot for falling detection will be discussed. For the 

further study of postural kyphosis and gait abnormalities, we will investigate the effect on 

the classification result cased by different ground situations. 

The proposed robust and scalable platform, also allows the intelligent shoe to act as a 

programmable control interface. Based on our current research, that we can identify gait 

patterns among flat walking, descending stairs, and ascending stairs, we can utilize these 

movements to be the specific control signals. And other simple motions such as tapping 

the foot can also be modeled, recognized and, finally, defined to control specific external 

devices. 

We wil� develop algorithms for estimating the Cartesian path of an individual wearing 

the intelligent shoe. Compared with other portable devices, shoe-integrated system seems 

more suitable for tracking the motions of elderly and children, since they may not feel 

uncomfortable for using it and have less chance of missing it. We propose to embed 
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the localization system into ordinary shoes such, that the location of the wearer can be 

determined and their motion path can be identified. Under the slioe-integrated system, 

we will combine the proposed methodology of falling detection with the ability of user 

localization. 

We believe, based on our research, with the endeavor of our colleagues and other 

researchers and engineers, with the further development of MEMS technologies, embed-

ded system technologies, data processing algorithms and so on, the day when the shoe-

integrated system is widely used will come soon. 
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Figure A.3: Layout of the main board 
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Figure A.4: Layout of the IMU board 
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grated Shoes," The 2009 lEEE/RSJ International Conference on Intelligent Robots 

and Systems, pp. 833-839, St. Louis, USA, October 11-15，2009. 

[2] Merig Chen, Bufu Huang, and Yangsheng Xu, "Intelligent Shoes for Abnormal Gait 

Detection," 2008 IEEE International Conference on Robotics and Automation, pp. 

2019-2024, Pasadena, CA, USA, May 19-23, 2008. 

[3] Meng Chen, Bufu Huang, and Yangsheng Xu, "Postural Kyphosis Detection Using 

Intelligent Shoes," 2008 IEEE Inter-national Conference on Robotics and Automa-
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