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摘要 

由于無線媒介的廣播效應，鏈路間的同時通信會互相幹擾（這個現象對鄰近鏈路 

尤其明顯)，因此會嚴重影響網絡的數據率和服務質量。所以抗幹擾是下一代無 

線網絡中一個必須解決的問題。一個重要的抗幹擾技術是合理地控制各鏈路的傳 

輸功率。由于寬帶無線數據服務的普及，系統效益通常被用來衡量功率控制的 

好壞。 

由于鏈路間的互相幹擾，通過功率控制最優化系統效益一般是一個NP困難問 

題。因此，盡管功率控制對優化系統效益狠重要，但是狠難被解決。這個論文的 

第一個目的就是用單調性優化的技術爲一系列的系統效益最優化問題找到最優 

的功率分配。不同于直接處理非凸問題，我們可以通過開發功率控制問題的單調 

性來避開非凸問題。在單波及多波網絡中，我們建立一個單調優化構架去通過功 

率控制最優化系統效益。相應地，爲了有效地獲得最優的功率分配，我們爲單波 

網絡提出MAPEL算法以及爲多波網絡提出M-MAPEL算法。這兩種算法的主要 

好處是可用作衡量其他解決相同問題的啓發式算法的性能。基于這兩算法的幫 

助，我們評估了幾個存在的算法。另一方面，通過調整MAPEL和M-MAPEL算 

法中的參数，我們能夠實現一個性能與收斂時間之間的折中。 

然而，在鄰近鏈路同時通信時嚴重互相幹擾的幹擾受限無線網絡，單獨的功率 

控制不足以減輕鄰近鏈路間的強烈幹擾。在這種情況下，鄰近的鏈路輪流通信， 

即調度，將會對提高系統性能起到一個重要的角色。然而，通過聯合的功率控制 



和調度最優化系統效益一直是一個富有挑戰性的問題。通信鍵路間的信噪比稱合 

以及不同時段通信功率變化的靈活度致使聯合的功率控制和調度是一個非凸優 

化問題，因此最優解狠難獲得。所以，這個論文的第二個目的是找到聯合的功率 

控制和調度的最優解。具體地，我們利用此問題的單調性而不是凸性提出 

S-MAPEL算法，從而有效地獲得最優的聯合的功率控制和調度策略。爲了進一 

步降低計算複雜度，我們在S - M A P E L的基礎上提出了一個加速算法， 

A-S-MAPEL�這個算法主要利用了聯合的功率控制和調度中的對稱性。這些算 

法獲得的最優的聯合的功率控制和調度策略可以作爲一個有用的標准去衡量其 

它存在的算法。基于提出的算法的幫助，我們發現對現階段的無線設備來說，開 

關調度就系統效益最優化方面狠有實際意義。 

隨著無線分布式網路（如Ad hoc網絡，傳感器網絡）的普及，狠需要設計 

一個分布式功率控制的算法。一般來說，分布式功率控制由于缺少中央控制器而 

變得更加複雜。因此，我們的第三個目的就是爲無線Ad hoc網絡設計一個分布 

性的功率控制算法，這個算法允許每個鏈路根據一定量的鍵路間交互分布且異步 

地更新自己的傳輸功率。盡管功率控制的非凸性，然而這個算法可以獲得最優化 

系統效益的功率分配。相對于其它存在的算法，我們這個算法對系統效益函数的 

定義沒有嚴格要求。 



Abstract 

Due to the broadcast nature of wireless medium, simultaneous transmissions 

interfere with each other (especially transmissions on nearby links), thus ad-

versely affecting data rates and Quality of Service (QoS) in the system. Interfer-

ence mitigation is therefore a fundamental issue that must be addressed in next 

generation wireless networks. An important technique for this is to control the 

links' transmission power. Driven by the wide spread of broadband wireless 

data services, a system-wide efficiency metric (i.e., system utility) is typically 

used to characterize the advantage of power control. 

Maximizing a system-wide utility through power control is an NP-hard prob-

lem in general due to the complicated coupling interference between links. 

Thus, it is difficult to solve despite its paramount importance. The first goal of 

this thesis is to find global optimal power allocations to a variety of system util-

ity maximization (SUM) problems based on the recent advances in monotonic 

optimization. Instead of tackling the non-convexity issue head on, we bypass 

non-convexity by exploiting the monotonic nature of the power control prob-

lem. In particular, we establish a monotonic optimization framework to max-

imize a system utility through power control in single-carrier or multi-carrier 

wireless networks. Furthermore, MAPEL and M-MAPEL are respectively pro-

posed to obtain the global optimal power allocation efficiently in single-carrier 

or multi-carrier wireless networks. The main benefit of MAPEL and M-MAPEL 



is to provide an important benchmark for performance evaluation of other 

heuristic algorithms targeting the same problem. With the help of MAPEL or 

M-MAPEL, we evaluate the performance of several existing algorithms through 

extensive simulations. On the other hand, by tuning the approximation factor 

in MAPEL and M-MAPEL, we could engineer a desirable tradeoff between op-

timality and convergence time. 

In interference-limited wireless networks where simultaneous transmissions 

on nearby links heavily interfere with each other, however, power control alone 

is not sufficient to eliminate strong levels of interference between close-by links. 

In this case, scheduling, which allows close-by links to take turns to be active, 

plays a crucial role for achieving high system performance. Joint power control 

and scheduling that maximizes the system utility has long been a challenging 

problem. The complicated coupling between the signal-to-interference ratio 

of concurrently active links as well as the flexibility to vary power allocation 

over time gives rise to a series of non-convex optimization problems, for which 

the global optimal solution is hard to obtain. The second goal of this thesis 

is to solve the non-convex joint power control and scheduling problems effi-

ciently in a global optimal manner. In particular, it is the monotonicity rather 

than the convexity of the problem that we exploit to devise an efficient algo-

rithm, referred to as S-MAPEL, to obtain the global optimal solution. To fur-

ther reduce the complexity, we propose an accelerated algorithm, referred to 

as A-S-MAPEL, based on the inherent symmetry of the optimal solution. The 

optimal joint-power-control-and-scheduling solution obtained by the proposed 

algorithms serves as a useful benchmark for evaluating other existing schemes. 

With the help of this benchmark, we find that on-off scheduling is of much 

practical value in terms of system utility maximization if "off-the-shelf" wire-

less devices are to be used. 



With the proliferation of wireless infrastructureless networks such as ad hoc 

and sensor networks, it is increasingly crucial to devise an algorithm that solves 

the power control problem in a distributed fashion. In general, distributed 

power control is more complicated due to the lack of centralized infrastructure. 

As the third goal of this thesis, we consider a distributed power control algo-

rithm for infrastructureless ad hoc wireless networks, where each link distribu-

tively and asynchronously updates its transmission power with limited mes-

sage passing among links. This algorithm provably converges to the optimal 

strategy that picks global optimal solutions with probability 1 despite the non-

convexity of the power control problem. In contrast with existing distributed 

power control algorithms, our algorithm makes no stringent assumptions on 

the system utility functions. In particular, the utility function is allowed to be 

concave or non-concave, differentiable or non-differentiable, continuous or discontin-

uous, and monotonic or non-monotonic. 
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Chapter 1 

Introduction 

Driven by the increasing popularity of wireless broadband services, future wire-

less networks are expected to provide high-data-rate services to densely pop-

ulated user environments. Due to the broadcast nature of wireless medium, 

simultaneous transmissions interfere with each other (especially transmissions 

on nearby links), thus adversely affecting data rates and Quality of Service 

(QoS) in the system. Interference mitigation is therefore a fundamental issue 

that must be addressed in next generation wireless networks. 

Transmission power control in wireless networks has been extensively stud-

ied over the last two decades as an important mechanism to mitigate the ad-

verse effect of interference (see a recent survey [1]). The research in this area 

can be divided into two main threads. The first thread is concerned with achiev-

ing fixed SINK (SINR: signal to interference-plus-noise ratio) targets with min-

imum transmission power. This formulation is motivated by traditional voice 

communications, where an SINR higher than a prescribed value is not helpful 

in terms of further improving user-perceived QoS. The second thread is con-

cerned with achieving maximum system efficiency with power control. This 

formulation is motivated by data communication applications, where higher 



SINR means higher data rate and better QoS. Such an optimization becomes 

more important as data applications will be dominant in next generation wire-

less networks (e.g., 4G and all IP-based communication systems). 

In this chapter, we first discuss the technical challenges for implementing 

efficient power control in Section 1.1. We then give an introduction to related 

work in the area of power control in Section 1.2. Finally, in Section 1.3, we give 

an overview of the main contributions of this thesis. 

1.1 Challenges and Motivations 

Due to the convex nature, the fixed SINR target case has been well studied 

and implemented in the context of wireless cellular communications (e.g., [2-

10]). Thanks to the explosive growth of wireless data services, there has been 

tremendous recent interest in finding an optimal transmission power allocation 

that maximizes a system-wide efficiency metric (i.e., utility) while satisfying 

the individual user's QoS requirements (e.g., [10-14]). However, due to the 

complicated interference coupling between links, optimal power control in a 

general SINR region is known to be a non-convex optimization problem, and 

hence is more difficult to solve despite its paramount importance. 

A majority of efforts in solving the system utility maximization (SUM) prob-

lem aim to convexify it through transformation [11], reparameterization [14], 

relaxation[12], and approximation [11], oftentimes compromising the global 

optimality. To address the issue, we first propose the MAPEL algorithm (MO-

bAsed PowEr aLlocation) algorithm, which is the first algorithm in the litera-

ture that can achieve the global optimal solution of the SUM problem in the 

general SINR regime [15]. Then, to solve the SUM problem in multi-carrier 

wireless networks, we propose the M-MAPEL (where the prefix "M" stands for 



Multi-carrier) algorithm [16]. The key idea of these two proposed algorithms 

largely come from the latest development of monotonic optimization (MO) [18]. 

In dense networks, power control alone is not sufficient to eliminate strong 

levels of interference between close-by links. In this case, scheduling, which al-

lows close-by links to take turns to be active, is indispensable. This is illustrated 

in the following motivating example. 

Motivating Example: Consider a two-link network as shown in Fig�1.1 , 

where links are close to each other. Assume that the maximum allowable trans-

mission power of each link is l.OW. Meanwhile, the noise power at each re-

ceiver is In this case, the achievable data rate region by using power 

control only is given in Fig. 1.2(a), where each point in the data rate region 

corresponds to a feasible power allocation strategy. On the other hand, if we 

integrate power control with scheduling, the achievable data rate region is 

considerably enlarged and becomes convex, as shown in Fig. 1.2(b). For fur-

ther illustration, let us take a specific utility, namely proportional fair utility 

ll(ri,r2) = log(ri) + log(r2), as an example, where ri and ,2 denote the data 

rates of link 1 and link 2, respectively. The optimal power-control and joint-

power-control-and-scheduling strategies that maximize the utility function are 

shown in Table 1.1. It can be seen that without scheduling, the data rates as well 

as the system utility are low due to severe co-channel interference. In contrast, 

the joint-power-con仕ol-and-scheduling strategy leads to much higher utility 

and data rates. This motivating example suggests that it can be spectrally in-

efficient to operate with power control alone in dense wireless networks. Joint 

power control and scheduling is a natural remedy to alleviate interference in 

this case. 

Joint power control and scheduling is by nature much more challenging than 

pure power control, for the problem involves not only complicated coupling 
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Figure 1.2: The data rate regions obtained by (a) pure power control strategy 

and (b) joint power control and scheduling strategy, respectively. 

between mutual interference of concurrently acti ve links, but also that between 

the power allocation during different time periods. Notably, optimal joint power 

control and scheduling that maximizes a system utility in a general SINK region 

has remained an open problem to this day, despite the tremendous efforts that 

have been devoted to this subject (e.g., [19-22]). In this thesis, we address this 

problem by proposing an efficient algorithm, referred to as S-MAPEL (where 

the prefix "S" stands for Scheduling), to obtain the global optimal solution of 

the joint power control and scheduling problem [17]. The proposed algorithm 



Table 1.1: Comparison of pure power control versus joint power control and 

scheduling 

Power control without scheduling 

Optimal transmission power 

Pi = l.OW Pi =0.71W 

Data rate r* = 1.9294bps/Hz 二 1.9390bps/Hz 

Overall utility 13194 

Joint power control and scheduling 

Optimal transmission power and scheduling 

pl{t) = LOW, Vf e [0,0.5T) p*{t)=OW,yte [0,0.5T) 

Pf(0 =OW,Vf € [0.5T,T] = 1.0W,Vf E [0.5T,T] 

Data rate rl = 4.9836bps/Hz r| = 5.4833bps/Hz 

Overall utility 3.3079 

* T is a given period of time, in which the channel gains keep constant. 

complements our work MAPEL [15] that has only considered power control 

without scheduling. One key distinction of the problem formulation is that the 

system utility function is allowed to be either concave or non-concave, as long 

as it is monotonic. The results of this work address the following important 

questions: (i) given a wireless network, which links should transmit together 

and which should not; (ii) how much power and for how long should each 

link transmit to maximize the overall system utility while satisfying individual 

user's QoS requirements? 

However, MAPEL, M-MAPEL and S-MAPEL can not be applied to infras-



tructureless ad hoc wireless networks, because they are largely centralized al-

gorithms. With the proliferation of wireless infrastructureless networks such 

as ad hoc and sensor networks, it is increasingly crucial to devise an algorithm 

that solves the power control problem in a distributed fashion. In general, dis-

tributed power control is more complicated due to the lack of centralized in-

frastructure. Recently, distributed power control has attracted a lot of research 

interests (e.g., [13,14,23-25]). However, due to the non-convex nature of power 

control problems, it is hard for existing work to find the optimal power control 

solution in a distributed manner. Therefore, it is significant for us to propose 

a SEER (asynchronous distributEd powEr contRol) algorithm to achieve the 

global optimal power allocation in a distributed fashion. The key idea of SEER 

largely comes from Gibbs Sampling, which is a well-studied optimization algo-

rithm in fields such as statistical physics and image processing [50,51]. 

To the best of our knowledge, power control in wireless networks has been 

a well-known topic for a long time. In the literature, there have been signifi-

cant amount of efforts spent on it. In what follows, some related work will be 

introduced, from which we get a lot of insights and inspiration to conduct our 

research. 

1.2 Background and Related Work 

In this section, we review state-of-art work with respect to wireless power con-

trol, including pure power control, joint power control and scheduling, and 

distributed power control. 



1.2.1 Pure Power Control 

Due to the wide spread of broadband wireless data services, pure power control 

without scheduling generally aims to maximize a system-wide utility through 

allocating constant optimal power levels to links for the entire period of interest 

T. The existing work is broadly classified into the following categories in single-

carrier wireless networks. 

• Optimal Solutions: Convexiflcation through Logarithmic Transforma-

tion 

The celebrated theorems in [8, 10, 28] show that the feasible SINK region, 

although not convex, is log-concave. This implies that the seemingly non-

convex power control problem can be turned into a convex one by logarithmic 

transformation of SINR if the system-wide utility is log-concave in the feasi-

ble SINR region. This important finding greatly simplifies the task of handling 

the problem. It is based on this convexification that many distributed and con-

vergent algorithms have been developed in recent years [13, 14]. However, 

such convexification only applies to special utility functions that satisfy the log-

concave requirement. In particular, utility functions that fall into this category 

only include max-min fair utility, proportional fair utility, and a-fairness utility 

functions with a > 1. Many utility functions, including simple ones such as 

throughput maximization, do not satisfy these properties. 

• Suhoptimal Solutions: Convexification through Approximation 

When the system-wide utility is not log-concave in SINR, maximizing a system-

wide utility through power control is difficult to solve despite its paramount 

importance. Most previous work solves it through convexifying the power con-

trol problem with approximation [11] and iterative approximation [12]. Due 



to the non-convex nature of power control problems, however, the algorithms 

proposed in [11,12] are likely to converge to a suboptimal solution. 

In particular, ref. [11] tackles the weighted throughput maximization (WTM) 

problem by making the high SINR assumption where the SINR of each link is 

much larger than OdB. Based on the high-SINR assumption, the individual data 

rate log2(l + SINR/) can be approximated by log2(SINR,), where SINR, corre-

sponds to the SINR of link i. Under such approximation, the WTM problem can 

be transformed into a convex one in the form of geometric programming (GP) 

by proper change of variables, and thus can be solved efficiently in a central-

ized fashion. Unfortunately, the high-SINR assumption is not valid in general 

for practical wireless adhoc networks when nearby links heavily interfere with 

each other. As a result, standard GP often yields a solution that is far from op-

timum due to possible strong interferences between links nearby. Compared 

with GP, the work in [12] does not require the high-SINR assumption. In par-

ticular, the authors in [12] first transform the WTM problem into an equivalent 

signomial programming (SP), which is provably NP-hard to solve. Then the au-

thors adopt a successive convex programming method, SP Condensation (SPC) 

algorithm to solve SP. Similar to many algorithms used to solve non-convex 

optimization, the SPC algorithm only guarantees local optimal solutions. An 

improper initialization may considerably degrade the system throughput. To 

date, achieving a global optimal solution of the WTM problem still is an open 

problem, not to mention maximizing a system-wide utility through power con-

trol. 

Not only in single-carrier wireless networks but also in multi-carrier wire-

less networks, many efforts [29-38, 40, 4 2 ^ ] have been spent on the power 

control problem. For example, most of the prior work (e.g., [29-38]) considers 

OFDMA (Orthogonal Frequency Division Multiple Access) to avoid co-channel 



interference, in which case no more than one link can transmit non-zero power 

on the same subcarrier simultaneously. This overly conservative assumption 

may lead to significant underutilization of radio spectrum when links are suf-

ficiently apart, implying that frequency can be reused without causing severe 

co-channel interference. Contrary to [29-38], work [40, 42-44] focuses on the 

power control problem where frequency spectrum is reused whenever it yields 

a better system performance. In particular, work [40, 42-44] aims to maximize 

the total throughput through power control in multi-carrier wireless networks. 

In [44], an iterative water filling (IWF) scheme is proposed, where each link 

repeatedly measures the aggregate interference received from all other links, 

and then greedily water-pours their own power allocation without regard for 

the impact that would be had on other links. In [42], a Successive Convex Ap-

proximation for Low-complExity (SCALE) algorithm is presented to allocate 

transmission power through successive approximations until a KKT (Karush-

Kuhn-Tucker) point is reached. Although SCALE performs significantly better 

than IWF, both algorithms are only capable of finding a sub-optimal solution, 

due to non-convexity of the optimization problem. On the other hand, several 

global optimization algorithms are also proposed in [40, 43] at the cost of pro-

hibitively high complexity. The Optimal Spectrum Balancing (OSB) algorithm 

[43] makes use of a grid-search (exhaustive search) to find the optimal power 

allocation. Another approach [40] is to find the global optimum by searching 

all the roots of first-order necessary conditions and boundary points. However, 

this approach cannot be generalized to networks with more than 2 links, and 

searching all roots of a set of nonlinear equations is a computationally challeng-

ing task as well. So far, efficiently achieving the global optimal power alloca-

tion to system utility maximization is still an open problem, even for a objective 

function as simple as throughput maximization. 



1.2.2 Joint Power Control and Scheduling 

Driven by the fact that joint power control and scheduling can alleviate inter-

ference more efficiently than pure power control, the tremendous recent ef-

forts have already been devoted to this subject. In [19] and [20], the authors 

aimed at scheduling as many link transmissions as possible in a given period 

of time, subject to the constraint on the minimum SINR requirement of each 

link. Utility-maximizing power controlled scheduling was previously studied 

in [21] and [22] under different contexts. Ref. [21] studied a downlink code 

division multiple access (CDMA) system, where a dual problem was solved to 

obtain the solution. Due to the non-convexity of the problem, however, the du-

ality gap is non-zero. Hence, the solution obtained in [21] is not guaranteed to 

be optimal. Cruz et al investigated joint routing, scheduling and power con-

trol in multihop wireless networks in [22]. This paper focuses on a low-SINR 

regime, so that the data rate is a linear function of SINR. In this case, the opti-

mal solution is simply a linear combination of extremal points, and hence easy 

to obtain. However, the low-SINR assumption may not be valid in practice, 

as links tend to maintain a reasonably high SINR for signal reception quality. 

Notably, optimal joint power control and scheduling that maximizes a system 

utility in a general SINR region has remained an open problem to this day, de-

spite significant amount of efforts on it. 

1.2.3 Distributed Power Control 

Recently, distributed power control has attracted a lot of research interests due 

to its paramount importance. The power control problem is generally formu-

lated as a noncooperative pricing game [23-25] or as a KKT decomposition 

[13, 14]. Due to the non-convex nature of power control problems, the dis-

s
 



tributed power control algorithms are likely to converge to a suboptimal so-

lution. For example, the algorithms proposed in [13, 14] can obtain a global 

optimal solution only when the utility functions are strictly increasing, twice 

differentiable and strictly log-concave in the feasible SINR region. In practice, 

however, many utility functions, including simple ones such as throughput 

maximization, do not satisfy these properties. In this case, it is hard to for ex-

isting algorithms to find the optimal power control solution in a distributed 

manner. Furthermore, existing distributed algorithms require all links to up-

date their transmission power at the same time. However, synchronous update 

is generally difficult to achieve due to the lack of a central clock in the system. 

Asynchronous update is therefore more preferable. 

Even though much work has been done on power control issues in wireless 

networks, we still lack a systematic framework for maximizing a system util-

ity through power control alone (or joint power control and scheduling). In 

this thesis, we focus on not only devising algorithms that can find the global 

optimal power allocation to the pure power control problem either in a central-

ized fashion or in a distributed fashion, but also proposing algorithms that can 

obtain the global optimal solution to the joint power control and scheduling 

problem. The main contributions are listed in the next section. 

1.3 Overview of Contributions 

We address the following specific questions in this thesis: 

1. Given a single-carrier wireless network, how much power should each 

link transmit to maximize a system utility while satisfying individual user's 

QoS requirements? How can we efficiently solve the SUM problem in a 



centralized fashion? 

2. Given a multi-carrier wireless network, how much power on each sub-

carrier should each link transmit to maximize a system-wide utility while 

satisfying individual user's QoS requirements? How can we efficiently 

obtain the global optimal power allocation in a centralize fashion? 

3. Given a single-carrier wireless network, which links should transmit to-

gether and which should not, as well as how much power and for how 

long should each link transmit to maximize the overall system utility 

while satisfying individual user's QoS requirements? How can we effi-

ciently obtain a optimal joint power control and scheduling strategy? 

4. Given a single-carrier wireless network, how can we maximize a system-

wide utility through power control in a distributed fashion? 

This thesis is structured as follows. 

• We propose the MAPEL algorithm in Chapter 2, which is the first algo-

rithm in the literature that can achieve the global optimal solution of the 

SUM problem in the general SINR regime. There are three key observa-

tions that enable MAPEL to efficiently solve the non-convex optimization 

problem. First, the objective function of SUM is monotonically increas-

ing in (1+SINR). Second, the feasible set of the corresponding equiva-

lent transformed problem, although may be not convex, is always normal 

These two observations imply that the SUM problem can be transformed 

into a monotonic optimization (MO) problem [18]. Third, the monotonic-

ity of the problem implies that the optimal solution always occurs at the 

upper boundary of the feasible (1+SINR) region. This, together with the 

normality of the feasible region, allows us to construct a sequence of poly-

blocks to approximate the (1+SINR) region boundary with an increasing 



level of accuracy. Given an arbitrary small and finite error tolerance level, 

MAPEL is guaranteed to find one global e — optimal solution of the SUM 

problem within finite amount of time. On the other hand, a global optimal 

solution is guaranteed if we do not enforce a finite running time. A flexi-

ble tradeoff between performance and convergence time can be achieved 

by tuning the approximation factor. 

MAPEL provides an important benchmark for all algorithms that are de-

signed to tackle the SUM problem in single-carrier networks, whether it is 

existing or to be proposed, centralized or distributed, optimal or heuris-

tic. In this thesis, we show how such benchmark is useful in evaluating 

the performance of two state-of-art centralized and distributed algorithms 

([12,13]) in this area. 

Finally, we note that some work has been done (e.g., [4, 9]) on the prob-

lem of maximizing the minimum achievable SESFR of each link in wireless 

networks. This is motivated partially by fair allocation among various 

users in the network. All existing algorithms for solving this problem are 

centralized. Interestingly, our MAPEL algorithm can be easily adapted 

to solve the same max-min optimization problem in a different and also 

centralized manner. We will briefly discuss this extension as well. 

• We then endeavor to maximize a system utility through power control in 

multi-carrier wireless networks. Based on the ideas behind MAPEL, we 

propose M-MAPEL algorithm in Chapter 3 to achieve the global optimal 

power allocation of the SUM problem in multi-carrier networks. Simi-

lar to MAPEL, M-MAPEL can strike a tradeoff between performance and 

convergence time by flexibly tuning the approximation factor. The main 

benefit of M-MAPEL is to provide a benchmark for other (mostly heuris-

tic) algorithms that are designed to tackle the power control in multi-



carrier networks, whether it is existing or to be proposed, centralized 

or distributed. In Chapter 3, we show how such benchmark is useful 

in evaluating the performance of the state-of-art algorithm ([42]) in this 

area. Besides, we show through M-MAPEL that the power control that al-

lows frequency reuse can significantly improve the network performance 

over the traditional power control with exclusive subcarrier allocation in 

multi-carrier networks. 

• In Chapter 4, we start with formulating the non-convex joint power con-

trol and scheduling problem into a MO problem that is amenable to an 

efficient global optimization algorithm. There are three key observations 

that lead to such a formulation. First, by a standard convexity argument, 

the joint power control and scheduling problem is equivalent to seeking 

a piecewise constant power allocation that has M + 1 (M: the number 

of links) degrees of freedom in the time domain. Second, the objective 

function of the optimization problem is monotonically increasing in both 

SINR and scheduling period. Last, the feasible set of the equivalent trans-

formed problem, although may be not convex, is always normal. These 

properties allow us to bypass the non-convexity of the problem and ex-

ploit monotonicity to devise efficient solution algorithms. 

Next, we propose an algorithm, referred to as S-MAPEL, to obtain the 

global optimal solution of the joint power control and scheduling prob-

lem. The MAPEL algorithm proposed for solving pure power control 

problems cannot be directly applied to the joint power control and schedul-

ing problem due to convergence issues that will be discussed later. Being 

a non-trivial extension of MAPEL, S-MAPEL guarantees to converge to 

the global optimal solution even for non-concave system utilities. By tun-

ing a small error tolerance, we can engineer a flexible tradeoff between 



system performance and convergence time. 

To further reduce the computational complexity, an accelerated algorithm, 

referred to as A-S-MAPEL, is proposed based on the inherent symmetry of 

the optimal solutions. Our results show that A-S-MAPEL greatly reduces 

the convergence time, while yielding a negligible performance degrada-

tion compared with S-MAPEL. 

Finally, we use the optimal and near optimal solutions obtained by the 

proposed algorithms as a benchmark to evaluate the performance of ex-

isting heuristics. An interesting conclusion is that on-off power control 

achieves dose-to-optimal performance when it is integrated with schedul-

ing. On the other hand, without scheduling, on-off power control can be 

far from optimal. This implies that scheduling is an indispensable com-

ponent in wireless system designs, if off-the-shelf wireless devices that do 

not offer the freedom to adjust transmission power are to be used. 

In Chapter 5, we propose a SEER (asynchronous distributEd powEr contRol) 

algorithm to achieve the global optimal power allocation in a distributed 

fashion. The key idea of SEER largely comes from Gibbs Sampling, which is 

a well-studied optimization algorithm in fields such as statistical physics 

and image processing [50, 51]. SEER has four distinctions from previous 

work. First, SEER maximizes the system utility function by exploring the 

function's entire surface, and thus it has a provable convergence to the 

optimal strategy that picks global optimal solutions with probability 1 for 

any system utility function. In particular, the system utility function is al-

lowed to be non-concave, discontinuous, and non-monotonic. Second, SEER 

achieves the optimal power control noticeably faster than the centralized 

algorithm MAPEL we proposed earlier. As such, the algorithm can effi-

ciently handle large-scale wireless networks, as shown in our simulations. 



Third, SEER requires only limited message passing among links and small 

memory storage at each link. Last, SEER allows asynchronous power up-

date and message passing. 

• In Chapter 6, we draw conclusions and discuss possible extensions of the 

work covered in this thesis 



Chapter 2 

MAPEL: Achieving Global 

Optimality for Non-convex Wireless 

Power Control Problems 

In this chapter, we start with a single-hop single-carrier wireless ad hoc net-

work where simultaneous transmissions interfere with each other and limit the 

wireless network performance due to the broadcast nature of wireless commu-

nications. Transmission power control has attracted extensive research inter-

ests as one important interference mitigation technique. However, maximizing 

a system utility through power control has been a long standing open problem 

in interference-limited wireless networks. The complicated coupling between 

the mutual interferences of links gives rise to a non-convex optimization prob-

lem. Previous work has considered the SUM problem in the high SINR regime 

or for some special utility functions that are log-concave in the feasible SINR 

region, in which case the problem can be approximated and transformed into a 

convex optimization problem through proper change of variables. In the gen-

eral SINR regime, however, the approximation and transformation approach 



does not work for the utility functions that are not log-concave in the feasi-

ble SINR region. To address this issue, we propose the MAPEL algorithm that 

achieves the global optimal power allocation of the SUM problem in the general 

SINR regime, through exploiting the hidden monotonicity of the SUM problem. 

MAPEL provides an important benchmark for performance evaluation of other 

heuristic algorithms targeting the same problem. With the help of MAPEL, we 

evaluate the performance of several existing algorithms through extensive sim-

ulations. 

The remainder of this chapter is organized as follows. System model is dis-

cussed in Section 2.1. In Section 2.2, we transform the SUM problem into a 

MO problem. Some properties of the feasible region in the MO problem are 

also discussed. The MAPEL algorithm is proposed and analyzed in Section 2.3. 

A brief discussion on the extension to the max-min SINR problem is also pro-

vided. In Section 2.4, we evaluate the performance of MAPEL through several 

simulations. With the benchmark established by MAPEL, we evaluate the per-

formance of two existing algorithms in Section 2.5. Section 2.6 concludes this 

chapter. The proofs for the global convergence of MAPEL and that MAPEL 

obtains an e-optimal solution are discussed in Section 2.7. 

2.1 System Model and Problem Formulation 

We consider a wireless ad hoc network with a set M = {1, •. • , M} of distinct 

linksi. Each link includes a transmitter node T,- and a receiver node Rj. The 

channel gain between node Ti and node Rj is denoted by G!y, which is deter-

mined by various factors such as path loss, shadowing and fading effects. The 

ipor example, this could represent a network snapshot under a particular schedule of trans-

missions determined by an underlying routing and MAC protocol. 



complete channel matrix is denoted by G — [G"]. Let pi denote the transmis-

sion power of link i (i.e., from node Tj), and n,- denote the received noise of link 

i (i.e., measured at node Rj). The received SINR of link i is 

= (2.1.1) 

/卢 

and the data rate r! calculated based on the Shannon capacity formula is log2(l + 

Jiip)) 2. To simplify notations, we use p = {piM G M ) , pmax = (pmax^vi 6 

M) and y(p) = (7/(;?),Vz G M) to respectively represent the transmission 

power vector, the maximum transmission power vector and achieved SINR 

vector of all links. 

We want to find the optimal power allocation p* that maximizes a system 

utility subject to individual data rate constraints. Mathematically, we want to 

solve the following optimization problem: 

maximize U{r) 

subject to ri > r f ^ , V/ G M. (P2.1) 

variables 0 < pi < P厂,Vi e M, 

where rf^^ > 0 is the minimum data rate requirement of link i (including the 

special case of rf^^ — 0, i.e., no rate constraint), and U(r) represents the system-

wide utility, with r being the vector of r/. In general, U{r) is assumed to be 
M 

additive across links, i.e., U(r) = E 叫广/)' with Uf(rf) being the utility of link 
1=1 

i. Notably, most previous work assumes that LIj(r/) is a concave and increasing 

function [11-14]. In practice, however, Ui(/i) is not necessarily concave. Typ-

ically, Uf(r!) is either a concave non-decreasing function for elastic traffic or a 
2To better model the achievable rates in a practical system, we can re-normalize Ji{p) by 

Fi7i(p), where T) e [0,1] represents the SINR gap indicating the difference between the SINE 

needed to achieve a certain data rate for a practical modulation and coding scheme and the 

theoretical limit. Such modification, however, does not change the analysis in this chapter. 



non-concave non-decreasing function for delay-sensitive traffic. In our work, 

we do not impose the concavity assumption on li/(rj). The only assumption is 

Ui{ri) being increasing, which is a valid assumption for most applications. By 

appropriately choosing the utility function Ui{ri), we can strike different bal-

ances between spectrum efficiency and fairness. For elastic traffics, a general 

form of the utility function lii (r,) is the generalized a-fairness utility function, 

i.e., 

log(ri) if a = 1, 
Ui(ri)= 1 . (2.1.2) 

^ ^ ^ i f a > O a n d a ^ l . 

Maximizing the objective function as given in (2.1.2) will correspond to maxi-

mizing throughput as a —> 0, proportional fairness as a — 1, and max-min fairness 

as a ^ oo. This implies that increasing a. leads to fairer allocation. For delay-

sensitive traffics, sigmoidal utility functions U/(r,) as given in Fig. 2.1 capture 

the "happiness" of links. In general, such utility function in the standard form 

is expressed as: 

Ui{ri) 二 K — ^ r (2.1.3) 

where {ui, bj} are constant positive integers. From Fig. 2.1, it can be seen that 

bi can be regarded as a kind of threshold such that U/(ri) is concave when r! is 

beyond bi, and convex otherwise. On the other hand, Ui can be regarded as an 

indication of slope such that the larger Uf, the steeper the curve of l//(rj). 

Notice that if r f^ 's are too large, there may not exist a feasible solution to 

Problem (P2.1). Therefore, we have to check the feasibility of Problem (P2.1) 

before proceeding further. For a user i, its received SINK value needs to be at 

least 7产 = 2广厂— 1 in order to satisfy its minimum rate requirement. Con-
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Figure 2.1: An example of sigmoidal function. 

sider the following matrix B with 

R"— DlJ — 
0, 
irGji 

Gii • 

According to Theorem 2.1 in [1], if the maximum eigenvalue of B is larger than 

1, then there is no feasible solution to Problem (P2.1). Otherwise, we can find a 

power allocation p as follows: 

= ( I - (2.1.4) 

where I is the M x M identity matrix and « is a M x 1 vector with elements 

�m m ” . 

n . . 

By Theorem 2.2 in [1], Problem (P2.1) is feasible if and only if the components 

of p satisfies 0 < pi < Pf^x for all i. Therefore, the procedure of checking the 

feasibility of Problem (P2.1) is as follows: 

It has been shown that (e.g., [11-14]) Problem (P2.1) is a non-convex opti-

mization problem in terms of the transmission power p. Thus, it is difficult to 



Procedure 1 Feasibility check of rate constraints r j^ ' s in Problem (P2.1) 
1： Transform minimum data constraints into minimum SINR constraints 

through = 产 _ i foj. all i. 

2： Compute the maximum eigenvalue of matrix B and check if it is smaller 

than 1. If not, rf^ 's are infeasible. Otherwise, go to step 3. 

3： Compute the power allocation p according to (2.1.4) and check if it satisfies 

0 < pi < JP广ax for all i. If so, r � h ' s are feasible. Otherwise, rf'^'s are 

infeasible. 

find a global optimal solution efficiently even in a centralized fashion. In Sec-

tion 2.2, we will show Problem (P2.1) can be transformed to a Monotonic Op-

timization (MO) problem, which can then be solved efficiently by the MAPEL 

algorithm presented in Section 2.3. 

2.2 Power Control as Monotonic Optimization (MO) 

Due to the non-convex nature of Problem (P2.1), it is impossible to find the op-

timal solution based on the theory of convex optimization [47]. Fortunately, 

it is recently found in operations research that monotonicity is another impor-

tant property besides convexity that can be exploited to efficiently solve an op-

timization problem. By exploiting the hidden monotonicity of optimization 

problems, we can bypass the non-convexity issue and obtain the global optimal 

solution efficiently. In this section, we first introduce the definition of MO, and 

then show how Problem (P2.1) can be transformed into a MO problem. We fur-

ther discuss several key properties of the reformulation that are critical for the 

design of the MAPEL algorithm that solves the optimization problem. 

Definition 2.1 (Box). Given any vector v e 1R+, the hyper rectangle [0,v] = {jt|0 ^ 



X :<v} is referred to as a box with vertex v. 

Definition 2.2 (Normal). An infinite set T C R ^ is said to be normal if for any 

element v the box [0, v] C •F. 

Proposition 2.1. The intersection and the union of normal sets are still normal sets. 

Remark 2.1. A box is normal. 

Definition 2.3 (MO). An optimization problem belongs to the class of MO if it can be 

represented by the following formulation: 

maximize 
^ (PM) 

variables x 

where set H C R̂ JF is a nonempty normal closed set and function (̂AR) is an increasing 

function on [18]. 

Definition 2.4 (Upper boundary). A point y € R ^ is an upper boundary point of 

a bounded normal set T if y G T while Ty c \ T. The set of upper boundary 

points of T is the upper boundary ofT. 

Proposition 2.2. The optimal solution of the MO Problem Pm (if it exists) is attained 

on the upper boundary ofTi [18]. 

The proof of Proposition 2.2 is similar to that of Proposition 7 in [18], and 

thus is omitted here. Interested readers are referred to the Proposition 7 in [18]. 

Now we are ready to reformulate Problem (P2.1) into a MO problem. 

Let z be vector (zi, • • • ,ZM)- Since the function Ii,(rj) is increasing, it is easy 
M 

to see that the function 0 (2 ) = [ LIz (log2(z!)) is an increasing function on R^ . 
1=1 

That is, for any two vectors zi and Z2 such that zi is component-wise larger than 

or equal to 22 (denoted by zi ^ 22), we have 0(zi) > <I>(Z2). We further note 



that 1 + jiip) is positive for all i due to the existence of positive noise power rij 

Based on these observations. Problem (P2.1) can be rewritten as 

M 
maximize •(z) = [ LI,(log2(z/)) 

1=1 

variables z ^G, 

where the feasible set 

Q = {2|0 < Z,- < 1 + eM,pe V}. 

with 

V = {p\0 < Pi < p r � 樂 > 2严,€ Mh 
gi(P) 

(P2.2) 

(2.2.1) 

(2.2.2) 

Since 0 (2 ) is an increasing function in z, the optimal solution to Problem (P2.2), 

denoted by z*, must occur at places where Zj = 1 + yi{p) for all i. If we can find 

a power allocation p* corresponding to the optimal solution z* such that z* = 

Jiip*) for all i, then such p* is clearly the optimal solution to Problem (P2.1). 

Finding such p* requires solving M linear equations zjgi{p*) — fi{p*) = 0 with 

M variables p^r • • ,Vm, where fi{p*) = GupJ + £ GjipJ + tif and gi{p*)= 
/卢 

Gjip^ + rii. As the coefficients of fi{p*) and gi{p*) consist of random channel 
/卢 � 

gains Gij's, we can show with probability 1 that the M equations are linearly 

independent, implying there is a unique solution p*. Hence, Problems (P2.1) 

and (P2.2) are both equivalent with each other. VSle will focus on how to solve 

Problem (P2.2) efficiently in the rest of this chapter. 

Before attempting to solve Problem (P2.2), it is critical to understand several 

important properties of the feasible set Q in (2.2.1). 

According to the definition of box, the feasible set Q can be characterized as 

a union of infinite number of boxes with vertices of all boxes belonging to the 

set {c\ci = e M,p e V}. Each element in this set is determined by 

a power vector p that is feasible in Problem (P2.1). Since the feasible set Q of 



Problem (P2,2) is the union of infinite number of boxes, it is a normal set by 

Proposition 2.1 and Remark 2.1. This, together with <I>(z) being an increas-

ing function in z, implies that Problem (P2.2) is a MO problem. Therefore, by 

Proposition 2.2, the optimal solution to Problem (P2.2), must occur at the upper 

boundary of set Q. 

Fig. 2.2 illustrates one possible example of the shape of ^ in a 2-link network. 

Note that ^ is in general a non-convex set. However, this work shows that con-

vexity of the feasible set is not important in obtaining the global optimal solution. It is 

the monotonicity of the objective function as well as the normality of the feasi-

ble set in the reformulated problem (P2.2) that facilitates efficient calculation of 

the global optimal solution. 

0 With data rate constraints 
Chimin，̂2.min ) 

Figure 2.2: Shapes of Q and 0 for a two-link network 

Before leaving this section, note that is lower bounded by for p eV. 

Consequently, the optimal solution z* to Problem (P2.2), which occurs only at 

places where z, = ^ ^ for all i, is also lower bounded by € M). 

In other words, the optimal solution z* must reside in the set 口 门 where 



CHAPTER 2 . M A P E L： ACHIEVING GLOBAL OPTIMALITY FOR NON-CONVEX 
WIRELESS POWER CONTROL PROBLEMS 

2.3 The MAPEL Algorithm 

In this section, we propose a novel algorithm, MAPEL, to solve Problem (P2.2) 

based on the special characteristics of MO. The key idea of MAPEL largely 

comes from the recent advances in global optimization including monotonic 

optimization and fractional programming [45,46]. Some mathematical prelim-

inaries will be introduced first before we present the algorithm. 

2.3.1 Related Mathematical Preliminaries 

Definition 2.5 (Polyblock). Given any finite set T c R ^ with elements Vi, the 

union of all the boxes [0, vi] is a polyblock with vertex set T. 

Definition 2,6 (Proper). An element v e T is proper if there does not exist v e T 

such that V ^ V and v ^ v. If every element v e T is proper, then the set T is a 

proper set. 

Proposition 2.3. If<^{v): — 1R+ is an increasing function ofv, then the maxi-

mum of<^(v) over a polyblock occurs at one proper vertex of this polyblock. 

Proof: Let v* be a global optimal solution of 4>(z；) over a polyblock S. If v* 

is not a proper vertex of S, then v ^ v* for some proper vertex v ^ v*. Since 

<I>(z;*) < ^ ( v ) due to the increasing property of it follows that v is also 

a global optimal solution of which is a contradiction to v* being a global 

optimal solution. Hence, Proposition 2.3 follows immediately. • 

Definition 2.7 (Projection). Given any nonempty normal set T C K ^ and any v € 

\ {0} , 7Z^{v) is a projection ofv on T if 7t^{v) = A.v with 入 = G 

T^. In other words, is the unique point where the halfline from 0 through v 

meets the upper boundary of J^. 



We illustrate the above concepts in Fig. 2.3(a). In Fig. 2.3(a), the rectangles 

a^cvi 3 and b0dv2 represent boxes [0,vi] and [0,i?2], respectively. vi and V2 

are the respective vertices of these two boxes. The area consisting of rectangles 

aOcvi and h0dv2 represents polyblock S = [O'z;!] U [0,i?2] with proper vertex 

set T = {vi, V2}- If we choose any point V3 e S, it is obvious that the rectangle 

eOfv^ belongs to polyblock S, i.e., [0,1̂ 3] c S. Hence, polyblock S is said to be 

normal. Being the only intersection of the halfline from 0 through V4 and the 

upper boundary of <S, 7r'^(v4) is a projection of V4 on S, Moreover, if <I>(i;) is 

an increasing function on S, then < max{<I>(z?i),巾(z?2)} for all v e S. 

In other words, the maximum of the increasing function occurs only at 

either v\ or a proper vertex of <S. 

Now let us use the above concepts to illustrate how we can construct a series 

of polyblocks that approximate a set T with an increasing level of accuracy. 

Proposition 2.4. Let S C R+ be a polyblock with a proper vertex set T. Also let T 

be a nonempty normal closed set that is contained in S, i.e., J^ d S d R^. For a 

given vertex v! € T, let T' be the set obtained from T by replacing the vertex Vi with 

M new vertices, {vn,.. • Here the new vertex Vfj = Vi — — nj^ 

where Cj is the jth unit vector o/R^, Vi,j is the jth element of the old vertex Vi, and 

71^ (vi) is the jth element of the projection 7t^{vi). Note that some of the new vertices 

(vii, •. • fViM) might not be proper. If we further remove all improper elements from 

set and obtain a new set T*, then the polyblock S* with vertex set T* satisfies 

T C S* C S. In this way, we have constructed a smaller polyblock S* that still 

contains T. 

The proof of Proposition 2.4 is similar to that of Proposition 3 in [45], and 

thus is omitted here. Interested readers are referred to Proposition 3 in [45]. 

^The rectangle is denoted using four letters representing its four vertices. 



We use Fig. 2.3(b) to illustrate the above procedure. As shown in Fig. 2.3(b), 

given T and S such that ^ C 5 C we can obtain a polyblock S* with 

proper vertex set T* — {vu.vz} satisfying J^ C S* C S. T* = {1^11,1^2} is 

obtained by replacing vi inT — {v\,v2} with v\i = v\ — (vij — n f {vi))ei, 

i = 1,2, and then deleting the improper element Vu from T ' = {vu, Vu, 1^2}. 

vf 
.V, 

7 

• : c 

.(b) An Example of shrinking the Polyblock 

S .'polyblock with vertex s e t T = l v , , v , } 
“ 

T = (v„, V,,, Vj} by replacing v, i n T = { v , , v , } w i t h 

T* = { V „ , v , } by deleting improper element v,, f r o m T 
S': polyblock with vertex set T', satisfying T a cS 

Figure 2.3: Illustration about related mathematical preliminaries for MAPEL 

algorithm 

2.3.2 The MAPEL Algorithm 

The MAPEL algorithm works as follows. We first check the feasibility of the 

minimum data rate requirements rf^^'s by Procedure 1. If the requirements 

's are infeasible, there is no feasible power allocation and hence the algo-



入 = max {a\ocZ]c G Q} 

= m a x {oL 0L< min ^̂  (巧)�, 

“\<i<MZk,igi{p) 

= m a x min � P^V l<i<M Zk,igi(p) 

rithm is terminated at once. Otherwise, we construct a polyblock Si that con-

tains the feasible set of Problem (P2.2), Q. Let 7] denote the proper vertex set 

of Si. By Proposition 2.3, the maximum of the objective function of Problem 
M 

(P2.2) (i.e., <I>(z) = E LZf (log2(z,)) over set S\ occurs at some proper vertex z\ 
i=\ 

of S\, i.e., z\ € T\. If z\ happens to reside in ^ as well, then it solves Prob-

lem (P2.2) and z* = z\. Otherwise, based on Proposition 2.4 we can construct a 

smaller polyblock Si c Si that still contains Q but excludes zi. This is achieved 

by constructing the vertex set by replacing zi in 7i with M new vertices 

(zi i , . . . , ZiM), where zy = zi — {zî j — 7t^{zi))ej, and then removing improper 

vertices. We can repeat this procedure until an optimal solution is found. This 

leads to a sequence of polyblocks containing Q: Si D S2 D " - ^ G- Obviously, 

0(21) > <I>(Z2) 2 … 2 <l>(z*), where Zj is the optimal vertex that maximizes 

0 ( z ) over set Sj. The algorithm terminates at the A:th iteration if z^ € Q. For 

practical implementation, we say z^ ^ Q when max{ (zĵ j — 7rp(2jt))/Zjt,r} < ^ 

where > 0 is a small positive number representing the error tolerance level. 

We can further expedite the above process by selecting zjt from a smaller set 

n G>, where © = {z\zi > 2 � , V z . G M } . This will not affect the convergence 

or optimality of the algorithm since the optimal solution z* is lower bounded 

by (2产,V/ G M). 

A critical step in constructing new polyblocks and checking the termination 

criterion is calculating the projection This is, however, by no means 

trivial, since the upper boundary of Q is not explicitly known. In particular, 

= Aj-Zfc is obtained by solving the following max-min problem for Ajt: 

(2.3. 6
 

w
r
 



This is a fractional programming problem by the definition in [46]. We solve this 

problem using the Dinkelbach-type algorithm in [46] with slight modifications. 

The details are shown in Algorithm 2.1^: 

Algorithm 2.1 Max-Min Projection Algorithm (for finding 7r^(zfc)) 
Initialization: Choose p(。）G [O'pmax] and let; = 0. 

repeat 

Given 尸⑴,solve = ^m^^-^^^^jjy. 

Given solve ；;(什” =argmax - •幻(尸））, 

/ = / + l. ‘ � — 

until max rmn(//(/?) - •(;?)) < 0. 

The projection is TT口 (zjt)=入̂乂―工)：̂ . 

Definition 2.8 (Q珊super linear convergence [46]). A sequence {sj,j = 1,2,. •. } e 

M with the limit Soo converges Q-super (quotient super) linearly if 

sy+i — Soo 
lim /—+00 = 0 . (2.3.2) 

Sj — Sc 

Theorem 2.1. The sequence { A ^ , / 二 1 ,2 , . . . } converges Q-super linearly to the 

optimal solution. 

Proof: Immediate from Theorem 8.7 in [46]. 

Having introduced the basic operations, we now formally present the MAPEL 

algorithm in Algorithm 2.2. 

2.3.3 Global Convergence 

The following theorem is proved in Section 2.7.1 and it shows that MAPEL is a 

global optimal algorithm of solving the SUM problem. 

^In fact, each step 4 of Algorithm 2.1 is a linear programming in the convex power domain. 



Algorithm 2.2 The MAPEL Algorithm 
1： Initialization: Check the feasibility of minimum data rate requirements 

rf^^'s based on Procedure 1. If rp^'s are infeasible, terminate the algorithm. 

Otherwise, choose the approximation factor ^̂  > 0, and let k — 1. 

2: repeat 

3： Uk = 1, construct the initial polyblock Si with vertex set TJ = {b}, where 

the ith element of vector b is 

p e [ 0 , J p m a x j 幻 ( 尸 ） m 

It is clear that polyblock <Si is a box [0, h] containing Q. If k > 1, con-

struct a smaller polyblock <Sjt with vertex set by replacing z^-i in ! 

with M new vertices (z^-i!,... , z^-i M), where z/T-I j = Zjt-I 一 (zjt-I,/ — 

兀f(Zk—i))勺'and removing improper vertices. 

Find Zfc that maximizes the objective function of Problem (P2.2) over set 

n 0 , i.e., 
M 

Zfc = argmax{0(2) = J ] liKlog^fe))|z G T^nG}. (2.3.3) 
i=l 

Find TT口 (2jt) based on Algorithm 2.1. 

k = k-hl. 

until max{(zfc_y — zrf < 

8： Compute the optimal power allocation p* (i.e., optimal solution to Problem 

(P2.1)) by solving zrf (Zfc—i) = for aU i. 



Theorem 2.2. The MAPEL algorithm globally converges to a global optimal solution 

of Problem (P2.2). 

Before leaving this subsection, note that although MAPEL is proved to con-

verge to the global optimal solution, the convergence speed is still an open 

problem. 

2.3.4 Trade-off between Performance and Convergence Time 

The convergence time of MAPEL is infinite if the approximation factor <5 = 0. 

However, it can be easily shown that MAPEL always terminates with finite 

steps when <5 > 0 [45]. Next, we analyze the influence of the approximation 

factor 5 on performance. 

Definition 2.9 (e-optimal solution). Given an e > 0, we say that a vector y ^ Q is 

an e-optimal solution of Problem (P2,2) if^{z*) < (1 + £)0(i/). 

M 
Theorem 2.3. For the weighted throughput maximization U(r) = WiTj the 

1=1 
solution obtained by MAPEL is an e-optimal solution with e g 

The proof of the above theorem is relegated to Section 2.7.2. 

Remark 2.2. Yh note that ^ S when S 1. Furthermore, is generally a 

conservative estimate ofe. In practice, the algorithm often yields an error that is much 

smaller than 3. 

An advantage of the MAPEL algorithm is that we can trade off performance 

for convergence time by tuning S. The smaller 5, the longer the algorithm runs 

and the more accurate the solution is. 
^Wi > 0 is the priority weight of link f. Without loss of generality, the weights w/s 

M 
normalized so that E •二 1. 

/ 二 1 



2.3.5 Extension to Max-min SINK Power Control 

As discussed in the Introduction, some previous work on power control aimed 

at maximizing the minimum SINR of all links. Mathematically, they tried to 

solve the following problem 

G.'z?‘ 
max min yAp) = max min ^ ^ “ . (2.3.4) 
per i "�厂）pev i E GjiPj + rii � ’ 

Obviously, this is again a fractional programming problem by the definition in 

[46]. In fact, this formulation is similar to the one in described (2.3.1). Hence, 

the Dinkelbach-type algorithm (Algorithm 3.1) that is adopted to solve (2.3.1) 

can be easily extended to solve the max-min SINR problem in (2.3.4). 

2.4 Performance Evaluation of MAPEL 

To the best of our knowledge, maximizing the total weighted throughput through 

power control is a "representative" non-convex but monotomc power control 

problem. In this section, we therefore illustrate the effectiveness of the MAPEL 

algorithm applied to the WTM problem through several examples . 

Example 1 (Performance and convergence time tradeoff through the approxi-

mation factor 5)\ We consider a four-link network where the links are randomly 

placed in a lOm-by-lOm area. The resultant channel gain matrix is 

0.4310 0.0002 0.2605 0.0039 

0.0002 0.3018 0.0008 0.0054 

0.0129 0.0005 0.4266 0.1007 

0.0011 0.0031 0.0099 0.0634 

Assume that 0.8 0.91.0)mW, ui = 0.1"W for all link i, and the priority 

weights g I J). Also we do not consider minimum data rate constraints 

Gi = (2.4.1) 



Approximation Factor 6 
�0 � 

Figure 2.4: Obtained weighted sum throughput and number of iterations for 

different approximation factor S 

in this example. 

In Fig. 2.4, we plot the optimal weighted-sum throughput obtained by MAPEL, 

together with the needed number of iterations versus 5. It is not surprising to 

see that the algorithm performance improves with a decreasing value 5, which 

has been predicted by Theorem 2.3. On the other hand, the total number of iter-

ations increases when 5 decreases, and the change is drastic when 6 is close to 0. 

Moreover, the algorithm performance is not sensitive to the value of d. For ex-

ample, when S = 0.1, we achieve a weighted-sum throughput of 4.655bps/Hz 

that is only 0.025% away from the exact optimum. This illustrates that the per-

formance bound obtained in Theorem 2.3 is quite loose, and the actual perfor-

mance could be much better than the bound. It is also clear that parameter S 

provides a tuning knob for achieving various trade-off between algorithm per-

formance and convergence time. 

Example 2 (Global optimal power allocation): MAPEL enables us to easily 
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characterize the global optimal solution^ of the WTM problem for an arbitrary 

wireless network. This is not possible before without exhaustive search. We 

consider a different 4-link network in Fig. 2.5 as a simple illustrating example. 

The length of each link is 4m, while the distances between T,- and Rj for i + j, 

denoted by d”, are proportional to d. The four links have different channel 

gains: Gil = 1, G22 = 0.75, G33 = 0.50, G44 = 0.25. The priority weight of each 

link is equal. Meanwhile, G" = d ? 产 , 0 . 8 0.9 1.0)mW, n,- = O.l/iW for 

all L In Fig. 2.6, the optimal transmission power of each link is plotted against 

the topology parameter d. It can be seen that when the links are very close to 

each other, only the link with the largest channel gain (i.e.. Link 1) is active with 

maximum transmission power PĴ ax, while all the other links keep silent. When 

d increases, a quantum jump in p2 from 0 to P^^ is observed?. As d further in-

creases, Link 3 starts to transmit, followed by Link 4. In this particular example, 

it can be seen that when sum throughput is to be maximized, priority is always 

given to the link with a larger channel gain. Although the result is neither sur-

prising nor general, this toy example illustrates the possibility of using MAPEL 

as a tool to investigate the characteristics of global optimal solutions to power 

control problems. 

2.5 Providing Benchmark For Existing Power Con-

trol Algorithms 

A key application of MAPEL is to provide performance benchmark for other 

centralized or distributed algorithms that have been (or to be proposed) to solve 

^MAPEL will only find one of the possible many global optimal solutions, depending on the 

choice of initial conditions. 
7ln fact, if there are only two active links, they must both transmit at the maximum power. 
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Figure 2.6: The relationship between optimal transmission power and distance 

d 

the SUM problem. With MAPEL, we are able to give quantitative measure-

ments of these algorithms' performance (e.g., the chances of achieving global 

optimal solution and the gap of sub-optimality) under a wide range of network 

scenarios (e.g, different network densities and topologies). 
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Figure 2.5: A network topology with four links 
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2,5.1 Review of Existing Power Control Algorithms 

As we mentioned in Introduction, the current existing power control algorithms 

are essentially divided into two categories: centralized and distributed. Here 

we w i l l review one "representative" algorithm from each category that repre-

sents the state-of-art in this area. Notice that the focus here is to show how 

MAPEL can be used to provide effective benchmark for the algorithms that 

tackle the same problem (i.e.. Problem (P2.1)). Readers can choose your fa-

vorite algorithm to conduct the study. Our choice in this section may be biased, 

and the selected algorithms may not be "the best". 

• Centralized algorithm: Signomial Programming Condensation (SPC) 

Algorithm [12] 

SPC Algor i thm is considered to be one of the best existing centralized algo-
M 

rithms for solving weighted throughput maximization (i.e., U{r) = X] in 
1=1 

Problem (P2.1)). It utilizes the fact that the W T M problem can be rewritten as 

minimizing a ratio between two posynomials (i.e., a SP): 
AsTip) minimize n 
f=\fPiP) (2.5.1) 

variables p £ V � 

The key idea of SPC Algori thm is to improve the solution of Problem (2.5.1) 

through successive approximations unt i l a KKT point is reached. During each 

step, the SP is approximated by a GP, which can be solved efficiently using a 

centralized interior point method. 

• Asynchronous Distributed Pricing (ADP) Algorithm [13] 

ADP Algor i thm is a distributed algorithm that can be used to maximize the 

weighted total throughput without min imum data rate constraints. In ADP, 



each l ink announces a price that reflects its sensitivity to the received interfer-

ence, and updates its own transmission power based on the prices announced 

by other links. The price and power values need to be updated iteratively and 

asynchronously unt i l a convergent point is found. To implement the updates, 

each l ink only needs to acquire l imited information f rom the network. We ob-

serve that ADP algorithm converges very fast in our numerical experiments, 

mainly because no stepsize is used in the updates. Its theoretical convergence 

to the global optimal point, however, is difficult to prove in general. 

2.5.2 Performance Study of SPC Algorithm and ADP Algorithm 

In this subsection, we evaluate the performance of both algorithms through 

serval examples by ut i l iz ing the benchmark provided by MAPEL. 

Example 3 (Probability of achieving global optimal solution): MAPEL always 

guarantees the global optimality of the W T M problem, while the SPC algorithm 

and the ADP algorithm fail to do so. Using the same 4-link network given 

in Example 1 (topology G\), we simulate both algorithms from 500 random 

initializations and show the results in Fig. 2.7 and Fig. 2.8, respectively. Then 

we change the topology to G2 wi th channel matrix illustrated in (2.5.2), and 

simulate both algorithms again in Fig. 2.9 and Fig. 2.10, respectively. 

G2 = 

0.1476 0.0105 0.0018 0.0402 

0.0034 0.1784 0.0013 0.2472 

0.0014 0.0017 0.3164 0.0046 

0.0048 0.4526 0.0012 0.6290 

(2.5.2) 

Other system parameters are the same as in Example 1. The figures show that 

MAPEL always converges to the global optimal solution, regardless of the ini-

tial power allocation. On the other hand, the SPC algorithm and the ADP al-
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Figure 2.7: Maximal weighted sum throughput achieved by MAPEL algorithm 

as well as SPC algorithm for 500 different initial feasible power al-

locations in Gi network 

gorithm are trapped in local optimal solutions from time to time. For example, 

Fig. 2.7 and Fig. 2.8 show that SPC and ADP algorithms achieve the global op-

timal solution 70.8% and 62.6% of the time, respectively. However, Fig. 2.9 and 

Fig. 2.10 show that in a different topology SPC and ADP algorithms achieve the 

global optimal solution 96% and 93.6% of the time, respectively. In these four 

figures, we can f ind that the probability of achieving global optimal solution for 

SCP (or ADP) is sensitive to the network topology. 

Example 4 (Average algorithm performance without min imum data rate con-

straints): In Fig. 2.11, we compare the average performance of the SPC algo-

rithm, the ADP algorithm and the GP algorithm, wi th MAPEL under differ-

ent network densities. Compared wi th SPC and ADP, GP [11] approximates 

and solves the W T M problem based on high-SINR assumption. For each fixed 

total number of links n, we place the links randomly in a lOm-by-lOm area. 

The length of each l ink is uniformly distributed wi th in [ Im, 2m]. The priority 

weight of each l ink is equal. Meanwhile, we have Uj = 0.1 ̂ W, 

-SPC Algorithm 

(
Z
H
/
s
d
q
)

 3
d
q
6
n
l
 I
S
M

 

雾
 

l
i
 



Figure 2.9: Maximal weighted sum throughput achieved by MAPEL algorithm 

as well as SPC algorithm for 500 different initial feasible power al-

locations in G2 network 

and initial power allocation is fixed at We vary the total number of 

links n f rom 1 to 10. Each point is obtained by averaging over 500 different 

topologies of the same link density. On average, the performance loss of SPC 

Figure 2.8: Maximal weighted sum throughput achieved by MAPEL algorithm 

as well as ADP algorithm for 500 different initial feasible power 

allocations in Gi network 
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Figure 2.10: Maximal weighted sum throughput achieved by MAPEL algo-

rithm as well as ADP algorithm for 500 different initial feasible 

power allocations in Gz network 

w i th respect to the global optimality is about 2%, thus is quite small. Notice 

that the performance loss of each particular realization might be smaller (e.g., 

0% when reaching the global optimality) or much larger (when trapped in a 

local optimal). The average performance degradation of the ADP algorithm is 

about 10%, which implies that ADP is trapped in local opt imum more often 

than SPC. Noticeably, the gap between SPC (or ADP) and the global optimum 

is not known before this work, as there is no previous algorithm that can guar-

antee the global optimal solution. This is in fact one of the key contributions of 

MAPEL. In addition. Fig. 2.11 shows that GP works reasonably wel l when the 

network density is low, where all (or most) links are active and some of them 

are indeed in the high SINK regime. However, the gap f rom the global opti-

mum is much bigger when the network density becomes higher, where many 

links need to be silent in order to avoid heavy interferences to their neighbors。 

Table 2.1 gives more detailed statistics about the performance of the two al-

gorithms. As shown in Table I, SPC achieves the global optimality wi th a prob-

- A D P Algorithm 

(
Z
H
/
S
 且
)
I
n
d
l
l
n
n
o
j
q
i
 E
n
 坊
 P
9
1
M
6
!
9
/
^

 P
9
u
!
e
1
q
0
 



2 3 4 

Figure 2.11: Average sum throughput of different algorithms in n-link net-

works 

ability that is always larger than 65% wi th the number of links up to 10. In 

contrast, the probability of ADP achieving the global optimality can be very 

low, e.g., only 0.6% in 10-link networks. It suggests that the init ial power allo-

cation of pmax/2 is a good init ial point for SPC, but may not for ADP. On the 

other hand, we f ind that SPC has a high-mean and low-variance average perfor-

mance compared to the global optimality, which implies that SPC can achieve 

close-to-optimal performance w i th the initial power allocation of for 

most topologies. However, ADP has a low-mean and high-variance average 

performance, which implies that ADP maintains a large degradation for some 

topologies. 

Example 5 (Average algorithm performance w i th min imum data rate con-

straints): We consider a series of 4-link networks w i th min imum data rate con-

straints on each link. The four links are randomly placed wi th in a lOm-by-lOm 

area, and the length of each l ink is uniformly distributed wi th in the interval 

[ Im, 2m]. pmax=(o 7 q.S 0.9 1.0)mW, tii = O.lffW for all L Meanwhile, the pri-

ority weight of each l ink is equal. In Fig. 2.12, the performance of MAPEL, GP, 
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Table 2.1: Optimality of SPC Algorithm as well as ADP Algorithm 

Number 

of Links 

SPC Algorithm 

Number 

of Links 

Probability of achieving 

global optimality 

Average 

performance 

Coefficient 

of variation 

2 69.8% 96.9% 7.22% 

4 80.4% 98.7% 3.91% 

6 77.2% 98.9% 3.13% 

8 69.4% 98.8% 2.58% 

10 65.6% 98.7% 2.81% 

Number 

of Links 

ADP Algorithm 

Number 

of Links 

Probability of achieving 

global optimality 

Average 

performance 

Coefficient 

of variation 

2 50.6% 89.6% 17.8% 

4 25.0% 94.3% 8.79% 

6 6.0% 93.4% 7.89% 

8 1.4% 92.7% 7.42% 

10 0.6% 92.1% 8.18% 

and SPC is plotted against the data rate constraint of each link. Each point for 

sum throughput on the curves is an average over 500 different topologies. We 

eliminate the topologies that are not feasible. Since ADP algorithm performs 

poorly in this case, we do not show its performance here. 



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Data Rate Constraint (bps/Hz) 

Figure 2.12: Average sum throughput of different algorithms versus the data 

rate constraint in 4-link networks 

It is not surprising to see that the sum throughputs of all algorithms drop as 

the data rate constraints become more stringent. One interesting observation 

is that the gap between GP and MAPEL becomes smaller when the data rate 

constraints are high. This is due to the fact that l inks are forced to operate in 

the high SINR regime when a high data rate is to be ensured. The assumption 

made by GP becomes more reasonable in this case. 

2.6 Summary 

In this chapter, we proposed the MAPEL algorithm that solves the open prob-

lem of system ut i l i ty maximization in general interference-limited wireless net-

works. The MAPEL algorithm is guaranteed to globally converge to an optimal 

solution despite the nonconvexity of the problem. The key idea behind the 

algorithm is to reformulate the SUM problem into a M O problem, and then 

construct a sequence of shrinking polyblocks that eventually closely approxi-

mate the upper boundary of the feasible region around the global optimum. 
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We have also established the tradeoff relationship between performance and 

convergence time of the MAPEL algorithm. 

Being a centralized algorithm, MAPEL provides an important benchmark for 

performance evaluation of existing and newly proposed power control heuris-

tics in this area. For example, by comparing w i th MAPEL through extensive 

simulations, we have gained deeper understanding of two state-of-the-art cen-

tralized and distributed power control algorithms: SPC algorithm and ADP 

algorithm. Simulations show that both algorithms achieve close-to-optimal av-

erage performance in the general SINR regime. 

The MAPEL algorithm presented in this chapter is not the only way to effi-

ciently obtain the global optimal solution. Variants of the algorithm can be de-

veloped to expedite the convergence and reduce the computational complexity. 

For example, it can be proved that the projection of a vertex of <S on ^ must 

contain at least one element equal to P严乂 Such characteristics could be used 

to design a faster projection algorithm to replace Algor i thm 2.1. Another possi-

bi l i ty is to exploit the shape of the feasible region Q. 

1.7 Appendix 

2.7.1 Proof of Theorem 2.2 

The MAPEL algorithm generates a sequence {2； }̂ for fc = 1,2, • • •. Each compo-

nent is calculated as (2.3.3) for each newly constructed polyblock. We can f ind 

a subsequence {z^^} wi th in the sequence {zjt} such that 

= — ( z i , o - 7 r 脚 ) ( 2 71 ) 



where 1 < k i < k 。 < .. • < kn < .. • • denotes the z'„th element of 

vector zjt„, where in is the only position in which Zk̂ ^̂  differs from 2大”.This 

subsequence can be thought as the "off-springs" of vertex zi through a series 

of projections, and they are not necessarily adjacent since there might be pro-

jections of other vertices happening in between. It can be shown that there is 

at least one such subsequence that has infinite length. With a slight abuse of 

notation, let Vw > 1} denote one such subsequence. Since 7t^{zk„) :< 

(2.7.1) implies that Zi h Zk^ h • • • h Zk„ h " • t (2严,Vf € M). Hence, 

l im ||zjt„ — Zfc”+i 11 — 0. From (2.7.1) we know that zjt„ and Zfc”+i only differ in 

the in's position, thus 

W^kn - II = Zk„j„ — = Zk„4„ - nl(Zfcj — 0 when n ^ co. (2.7.2) 

Since 7r^(zjtJ = 入 k A andzfc„ ^ G M ) , (2.7.2) implies that J m Ajt„ 二 

1. That is, 

l i m z , „ - 7rHzk„y (2.7.3) 

Eqn. (2.7.3) implies that the subsequence {zfc„} converges to the boundary of 

the feasible region Q. Since it is a maximizer over the set <Sjt„, it is also the global 

opt imum of Problem (P2.2). Note that the MAPEL algorithm terminates once 

the optimal solution to Problem (P2.2) is found. Therefore, the convergence 

of the subsequence {z^^} guarantees the convergence of the algorithm to the 

global optimal solution. • 

2.7.2 Proof of Theorem 2.3 

MAPEL terminates when max^*"''"^'" ( :。< S. Consequently, together wi th [ WI = 
i 1=1 



leading to 

硕 -

Note that 0 (2 * ) < <I>(z/t) implies 

Cl>(z*)-<l>(7r^(2fc)) 

Consequently, 

<6. 

S 
-5’ 

which leads to the fol lowing inequality that proves Theorem 3: 

< l> (z ”SO(7 rWzfc ) ) ( l + A ) . 



Chapter 3 

M-MAPEL: Monotonic 

Optimization for Non-concave 

Power Control in Multi-carrier 

Wireless Networks 

In this chapter, we consider a multi-carrier wireless networks where more than 

one l ink can transmit non-zero power on the same subcarrier simultaneously. 

As discussed in Chapter 2, power control is still an important component for 

resource allocation and interference management in this context. However, due 

to the complicated coupling between the mutual interferences of links on each 

subcarrier, maximizing the overall system uti l i ty through power control is in 

general an NP-hard problem. Thus, it is diff icult to solve despite its paramount 

importance. In this chapter, we present M-MAPEL based on the ideas of MAPEL, 

to find the optimal power allocation that maximizes the overall system uti l i ty 

while satisfying individual data rate constraints. The M-MAPEL algorithm is 

guaranteed to converge to a global optimal solution, as long as the uti l i ty func-



t ion of each l ink is monotonically increasing w i t h its data rate. Therefore, M -

MAPEL can be used as an important benchmark for performance evaluation 

of other heuristic algorithms targeting the same problem. Wi th the help of M -

MAPEL, we evaluate the performance of a state-of-the-art algorithm through 

extensive simulations. 

This chapter is organized as follows. System model and problem formulation 

are discussed in Section 3.1. In Section 3.2, we transform the power control opti-

mization problem into a M O problem. Some properties of the feasible region of 

M O problem are also discussed. The M-MAPEL algori thm is proposed and an-

alyzed in Section 3.3. In Section 3.4, we evaluate the performance of M-MAPEL 

through several simulations. Addit ionally, w i t h the benchmark established by 

M-MAPEL, we evaluate the performance of a state-of-the-art algorithm. Sec-

t ion 3.5 summaries our conclusions. The global convergence of M-MAPEL is 

proved in Section 3.6. 

3.1 System Model and Problem Formulation 

We consider a multi-carrier ad hoc network w i t h a set = { 1 , …，M } of dis-

tinct links. Each l ink consists of a transmitter node T/ and a receiver node Ri. 

We assume that each l ink can transmit information over L parallel subcarriers 

(subchannels). Let £ = { ! , • • • , L } denote the subcarrier index set. The chan-

nel gain between nodes Tj and Rj over subcarrier I is denoted by Q,"-, which 

is determined by various factors such as path loss, shadowing and fading ef-

fects. Thus, the complete channel matrix is denoted by G = [Gi, • • • , Gi], 

where G/ = [G/力]is the channel submatrix over subcarrier I. Let pn denote 

the transmission power of l ink i over subcarrier I. For l ink i, the transmission 

power over each subcarrier I is subject to the constraints 0 < pn < PĴ ax and 



L 
E Pi,i < P严X. Herein, P f f x the maximum power that can be transmitted 

1=1 ‘ 

over subcarrier I by l ink i and Pf^^^ is the upper bound on the total power trans-

mitted by l ink i on all the L subcarriers. With loss of generality, assume that 
L J 

P 广 is smaller than £ Pf̂ ax • for otherwise the constraint Yli=i VH ^ P「狀 can 
1=1 ‘ 

simply be removed. For notational convenience, we use Pi = € M) and 

p = (p i , i , . • • / PI,M' • . . ' Pl,v ... / Plm) to represent the transmission power 

vector over subcarrier I and the transmission power vector over all subcarriers, 

respectively. Likewise, let n^i denote the received noise of l ink i over subcarrier 

I. The received SINR of l ink i over subcarrier I is 

/卢 

and the corresponding data rate r i j (p i ) calculated based on the Shannon capac-

ity formula is log2(l + Thus, the obtained total data rate on l ink i is 

denoted as 

L L 

/=1 /=1 

We endeavor to find the optimal power allocation p* that maximizes the 

overall system ut i l i ty subject to individual user's QoS requirements. To satisfy 

the QoS requirement, each l ink must maintain a min imum data rate 厂广.Math-
1 As discussed in Chapter 2, to better model the achievable rates in a practical system, we can 

re-normalize J tAPl) by ^ i l u i P l ) ' where r , G [0,1] represents the SINR gap. Such modification, 

however, does not change the analysis in this chapter. 



ematically, the optimal power control is formulated into the fol lowing form: 

maximize U{r) 
L 

subject to n = [ log2(l + 7u{p i ) ) > r 产 

L M (P3.1) 

1=1 

variables 0 < p^ < P 『 y i e M M G L, 

where U(r) represents the system-wide utility, w i th r being the vector of r/。It 
M 

is often assumed to be additive across links, i.e., ll(r) = [ l i i ( r j ) , w i th Ii,(r,) 
1=1 

being the ut i l i ty of l ink i. Notably, most previous work assumes that Lli(rj) is a 

concave and increasing function [29-44]. In practice, however, li,•⑴）is not nec-

essarily concave. Typically, Uj(rj) is either a concave non-decreasing function 

for elastic traffic or a non-concave non-decreasing function for delay-sensitive 

traffic. In our work, we do not impose the concavity assumption on Ui(ri). 

The only assumption is Lli(ri) being increasing, which is a val id assumption for 

most applications. By appropriately choosing the ut i l i ty function l i j ( r i ) , we can 

strike different balances between spectrum efficiency and fairness. Some pos-

sible uti l i ty functions have been introduced previously, and interested readers 

are referred to Chapter 2. 

Due to the complicated coupling of the mutual interferences across links 

Problem (P3.1) is in general non-convex even if Ui(r j ) is a concave function, 

let alone the cases w i th non-concave Lr, (r, )'s. Thus, i t is difficult to find a global 

optimal solution p* efficiently even in a centralized fashion. 

Note that if r - ^ is too large, there may not exist a feasible solution to Problem 

(P3.1). However, the feasible region of Problem (P3.1) has a complicated shape, 

and thus the feasibility check procedure proposed in Chapter 2 cannot be ap-

plied to Problem (P3.1). Before proceeding further, we address this problem by 



defining Ui(ri) to be 
f 

Uiivi) if r, > rj 
Qiiri)= 

mm 

‘ (3.1.2) 
—00 otherwise. 

Similar to Ui{r i), Ui(r i) is a monotonically increasing function. With (3.1.2), 

Problem (P3.1) can be rewritten as 

M 
maximize Qi (r,-) 

1=1 

subject to 亡 pii < P严X, vf € M (P3.2) 
/=i ‘ 

variables 0 < p^ < e My I G C. 

Notably, Problem (P3.1) is equivalent to Problem (P3.2) when Problem (P3.1) is 

feasible. On the other hand, the objective function of Problem (P3.2) is equal to 

—CO if and only i f Problem (P3.1) is infeasible. 

Al though Problem (P3.2) is still a non-convex optimization Problem, we w i l l 

show that Problem (P3.2) can be transformed to a M O problem, which can then 

be solved efficiently by the M-MAPEL algorithm presented in Section 3.3. 

3.2 Power Control as Monotonic Optimization 

Due to the non-convex nature of Problem (P3.2), i t is impossible to f ind the op-

timal solution based on the theory of convex optimization [47]. Fortunately, 

it is recently found in operations research that monotonicity is another impor-

tant property besides convexity that can be exploited to efficiently solve an op-

timization problem. By exploiting the hidden monotonicity of optimization 

problems, we can bypass the non-convexity issue and obtain the global optimal 

solution efficiently. In this section, we first show how Problem (P3.2) can be 



transformed into a M O problem. We then discuss several key properties of the 

reformulation that are critical for the design of the M-MAPEL algorithm that 

solves the optimization problem. 

Let z denote the vector {z\\, • . . ,ZIM, • • • ,ZLI/ • . . /ZLM)- Since the function 
A M L 
U/(rf) is increasing, it is easy to see that the function 0 ( z ) = E U/( E 

i=\ 

is an increasing function on R，L That is, for any two vector z\ and Z2 such 

that z\ y 22/ we have <l>(zi) > 少(Z2). We further note that 1 + for all i 

and / is strictly positive due to the existence of positive noise power tin. Based 
L ‘ 

on these two observations and the fact that = E log2(l + l i i i p i ) ) ' Problem 
/=i ‘ 

(P3.2) can be rewritten as 
M L 

maximize = log2(z")) 
i=l 1=1 (P3.3) 

variables z E Q, 

where the feasible set 

G = {z\0 < Zii + e M/il e L,v e V} (3.2.1) 

w i th 

V = {p\0 < Pu < P z y x , 5；； p, . < p 尸 a x , V / eMyie C}. 
1=1 

Since 0 ( z ) is an increasing function in z, the optimal solution to Problem (P3.3), 

denoted by z*, must occur at places where Zu = 1 + yi, i{pi) for all i and I. If 

we can f ind a power allocation p* corresponding to the optimal solution z* 

such that zfi = 1 + 7i,i{pi) for all i and I, then such p* is clearly the opti-

mal solution to Problem (P3.2). Finding such p* requires solving M x L linear 
M 

equations z*-{J2 ^hjiPij + "/,/) 一 ( E ^ijiVh + "/,/) = • with M x L variables 
/ 卢 ‘ ‘ ；=1 ‘ ‘ ‘ 

V\,v • • • / Ptv • •. ‘ PiM' • • • ‘ Plm- AS the channel gains Gij/s are generally ran-

dom, we can show w i th probability 1 that the M x L equations are linearly 

independent, implying there is a unique solution p*. Hence Problems (P3.1), 



(P3.2) and (P3.3) are all equivalent w i t h each other. We will focus on how to solve 

Problem (P3.3) efficiently in the rest of the chapter. 

Before attempting to solve Problem (P3.3), i t is critical to understand several 

important properties of the feasible set Q in (3.2.1). 

According to the definit ion of box, the feasible set Q can be characterized as a 

union of infinite number of boxes w i t h vertices of all boxes belonging to the set 

{c\cii = 1 + G My I e JC,p e V}, where c is denoted by the vector 

(c i i ,…，ciM/ … ， c l i , … ， c l m ) - Thus, by Proposition 2.1, the feasible set G is a 

normal set. This, together w i t h 0 ( z ) being an increasing funct ion in z, implies 

that Problem (P3.3) is a M O problem. Therefore, by Proposition 2.2, the optimal 

solution to Problem (P3.3), must occur at the upper boundary of set Q. 

Note that set ^ is a non-convex set. However, convexity is not important in 

obtaining the global optimal solution. Since Problem (P3.3) is a M O problem, 

i t is the monotonicity of the objective function and the normal i ty of the feasible 

set in the reformulated problem (P3.3) that facilitates efficient calculation of the 

global opt imal solution. 

Before leaving this section, notice that 1 + Ji^i(pj) is lower bounded by 1 for 

any feasible pj. Consequently, the opt imal solution z* to Problem (P3.3), which 

occurs only at places (i.e., the upper boundary of set 口）where z// = 1 + J i^ iPi) 

for all i and I, is also lower bounded by 1. That is, the opt imal solution z* must 

reside i n the set where 0 = {z|z/f > l , V i G M V / € C}. 

3.3 The M-MAPEL Algorithm 

In this section, we propose a novel algorithm, M-MAPEL, to solve Problem 

(P3.3) based on the special characteristics of such problem. 



3.3.1 The M-MAPEL Algorithm 

Based on some mathematical preliminaries introduced in Section 2.3.1 of Chap-

ter 2, the M-MAPEL algorithm works as follows. We first construct a polyblock 

Si that contains the feasible set of Problem (P3.3), Q. Let TJ denote the proper 

vertex set of <Si. By Proposition 2.3, the maximum of the objective function 
M L 

of Problem (P3.3) (i.e., <I>(z) = J] E log2(z/!))) over set «Si occurs at some 
1=1 1=1 

proper vertex zi of i.e., 2i G 71. I f z i happens to reside in ^ as well, then 

i t solves Problem (P3.3) and z* = zi. Otherwise, based on Proposition 2.4, we 

can construct a smaller polyblock S: C Si that still contains Q but excludes 

2i. This is achieved by constructing the vertex set TJ by replacing z\m.T\ w i th 

M X L new vertices { z n , … / Z I ( L X M ) } and then removing improper vertices, 

where zy = zi — ( 〜 — n ^ { z \ ) ) e j . We can repeat this procedure unti l an op-

timal solution is found. This leads to a sequence of polyblocks containing Q: 

〕 〕 . . . 〕 口 . Obviously,巾(2i) > <̂ >(22) > • • • 4>(z*), where 2„ is the 

optimal vertex that maximizes <I>(z) over set S„. In addit ion to obtaining the op-

timal vertex Zn, we set the current best solution (CBS) zĵ  = argmax{<I>(y)|i/ G 

{7t^(z„) , 2 j j _ i } } and the current best value (CBV) at each iteration. Spe-

cially, z'l == 7r^(zi). Then, we have < <I>(z^) < . . . <I>(z*). The algorithm 

terminates at the nth iteration if Zn G Q. For practical implementation, we say 

Zn ^ Q when (1 + £)<I>(zJj) > <I>(2„), where e 〉 0 is a small positive number 

representing the error tolerance level. 

We can further expedite the above process by selecting z„ from a smaller set 

7； n o , where © = {z\zii > l,Vz € e £ } . This w i l l not affect the 

convergence or optimality of the method since the optimal solution z* is lower 

bounded 1. 

A critical step in constructing new polyblock and checking the termination 



criterion is the calculation of the projection 7r^(z„). This is, however, by no 

means trivial, since the upper boundary of Q is not explicitly known. In partic-

ular, 7r^{zn) 二 入nZfx is obtained by solving the fol lowing max-min problem for 

入„ = max{A|Az„ € Q} 

= m a x { A | A < min 工 + 九“尸》,p € 7：>} 

M 
E ^IjiPKj + 叫, (3.3.1) 

- ^ i v i G ^ e C Zn^iiiE GijiPij + nii) 
/卢 

州 flijPi) 
max mm 7 r 
pep iGM,l€JC Zn,iigii{pi) 

This is a fractional programming problem by the definition in [46]. Hence, we 

can solve this problem using the Dinkelbach algorithm in [46] wi th slight mod-

ifications. The details are shown in Algorithm 3.1: 
Algorithm 3.1 Max-Min Projection Algorithm (for f inding K^{ {zn} ) ) 

= m a x 

Initialization: Choose /?(。）G V and let m = 0. 

repeat 

Given ；;(讲),solve 4 放 ) = m i n 广(I . 

U Zn,ligliip}) 
Given solve (讲+” = argmax mm{f i i (p i ) —A，)2„,“卵(;?》). 

per ''' 
m = m + 1. 

until max - A广"z”,咖(;;,)）< 0. 
p^V 1,1 

The projection is 7r^(2„) = 

Theorem 3.1. The sequence m = 1 ,2, . . . } converges Q-super linearly to the 

optimal solution. 

Proof: Since fuiPi) and z„,//卯(p,) are linear affine functions on pi for all i and 

I and there is a unique optimal solution to (3.3.1), Theorem 3.1 is immediate 

from Theorem 8.7 in [46]. 



Having introduced the basic operations, we now formally present the M -

MAPEL algori thm in Algor i thm 3.2. 

3.3.2 Global Convergence 

The fo l lowing theorem is proved in Section 3.6.1 and it shows that M-MAPEL is 

a global opt imal algorithm of solving the system ut i l i ty maximization problem. 

Theorem 3.2. The M-MAPEL algorithm globally converges to a global optimal solu-

tion of Problem (P33). 

Before leaving this subsection, note that although M-MAPEL is proved to 

converge to the global optimal solution, the convergence speed is stil l an open 

problem. 

3.3.3 Trade-off between Performance and Convergence Time 

The convergence time M-MAPEL is infinite if the error tolerance £ = 0. How-

ever, i t can be easily shown that M-MAPEL always terminates w i t h finite steps 

as long as e > 0 [18]. Next, we analyze the influence of error tolerance e on 

performance. 

Theorem 3.3. The solution obtained by M-MAPEL is an e-optimal solution. 

Proof: M -MAPEL terminates when (1 + > <I>(z„). Consequently, 

According to Definit ion 2.9, this leads to Theorem 3.3 and z'̂  is an e-optimal 

solution. • 

Remark 3.1. £ is generally a conservative estimate. In practice, we often yield an error 

that is smaller than e since <I>(z*) < 0 (2„) . 



Algor i thm 3.2 The M-MAPEL Algor i thm 
Ini t ia l izat ion: Choose the error tolerance e > 0, and let n = 1. 

repeat 

3： U n = 1, construct the init ial polyblock S\ w i t h vertex set TJ = {b}, 

where the ( M x (/ — 1) + f ) th element of vector b is 

hi = m a x ^ l = 1 + Vi G MM € L. 
V^v gliiPl) Hi 

I t is clear that polyblock <Si is a box [0,b] containing Q. If n > 1, con-

struct a smaller polyblock <S„ w i t h vertex set Tn by replacing z „ _ i in 

Tn- i w i t h M X L new vertices u , . . . , 2 „ - i ( l x M ) } / where Zn-y = 

Zn- i — (zn-i,/ — ^ f and removing improper vertices. 

4： Find Zn that maximizes the objective function of Problem (P3.3) over set 

Tn n 0 , i.e., 

z„ = argmax{0(z) |2 e ？；̂ n €)}. (3.3.2) 

5： Find 7t^{zn) based on Algor i thm 3.1. 

6： Determine CBS z^ and CBV ^ ( z ^ ) , where z'̂  = a rgmax{0(y ) |y e 

{ t t口 ( z „ ) , < — J } . Specially, z[ - 7r^(2i). 

w = w + 1. 

un t i l (1 + £)<E>(Z;_I)><I>(2„_I). 

If <I>(zJj—1) > — oo, the compute the optimal power allocation p* (i.e., op-

timal solution to Problem (P3.1) by solving z'”—】山.=二；丨” for all i and I. 

Otherwise, there is no feasible solution of Problem (P3.1). 



CHAPTER 3 . M - M A P E L： MONOTONIC OPTIMIZATION FOR NON-CONCAVE POWER 
CONTROL IN MULTI-CARRIER WIRELESS NETWORKS 

3.4 Performance Evaluation 

We illustrate the effectiveness of the M-MAPEL algorithm through several ex-

amples. 

3.4.1 Performance Evaluation of M-MAPEL 

Example 1 (Performance and convergence time tradeoff through the error tol-

erance e): We first consider a network of four subcarriers w i th two links (i.e., 

M = 2 and L = 4). We assume that the channel gains are i.i.d. (indepen-

dent and identically distributed) wi th exponential distribution wi th mean 

where dji denotes the distance between the transmitter node Tj and the receiver 

node Rf. We consider a realization of the channel gains, i.e., the resultant chan-

nel gain matrix is 

G a = 

0.0154 0.0017 0.0633 0.0022 0.0379 0.0227 0.0182 0.00291 

0.0015 0.2955 0.0055 0.1080 0.0314 0.0215 0.0163 0.4791-
(3.4.1) 

For this realization, we run the M-MAPEL algorithm wi th different error tol-

erance e, and plot the attained system uti l i ty as wel l as the number of iter-

ations needed for convergence in Figs. 3 and 4. In particular, Ui{ri) = r,-

in Fig. 3.1 and 胁 ） = w i t h {«,-々} = {1,10} in Fig. 3.2. As-

sume that Pj^狀'I ~ 0.5mW and n\ = O.lf/W for all l ink i and subcarrier I, and 

jjfnax _ L6mW for all l ink i. The min imum data rate constraints are set to be 

zero in this example. 

From these two figures, we see that the convergence time of M-MAPEL can 

be quite different for different objective functions. Regardless, the total number 

of iterations increases when e decreases in both figures, and the change is drastic 

when £ is close to 0. Moreover, the algorithm performance is not sensitive to the 
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Figure 3.1: Obtained total throughput and number of iterations for different 

error tolerance e 

value of £. As shown in Fig. 3.1, when e = 0.2, we achieve a total throughput 

of 37.54bps/Hz that is only 2.2% away from the best value obtained when e = 

0.10. Additionally, Fig. 3.2 also shows that when £ = 0.01, the summation loss 

is only 0.35%, compared wi th the exact optimum. This observation illustrates 

that the performance bound obtained in Theorem 3.3 is quite loose, and the 

actual performance could be much better than the bound. It is also clear that 

parameter e provides a tuning knob for achieving various trade-off between 

algorithm performance and convergence time. 

Example 2 (Global optimal power allocation): M-MAPEL attains the global 

optimal solution^ of the objective function as given in (P3.1) for an arbitrary 

wireless network. This is not possible before without exhaustive search. The 

effectiveness of M-MAPEL provides us w i th a convenient tool to observe the 

characteristics of optimal power control solution, which may serve as a guide-

line for the design of heuristic algorithms. In this example, we use a simple 

^M-MAPEL will only find c 

the choice of initial conditions. 

of the possible many global optimal solutions, depending on 



Figure 3.2: Obtained summation of sigmoidal functions and number of itera-

tions for different error tolerance e 

4-subcarrier 4-link network in Fig. 5 to illustrate how M-MAPEL can be used 

to study the optimal power control strategy. Assume that the channel gains 

are i.i.d. with exponential distribution with mean Herein, we take one re-

alization of the channel gains as a simple illustrating example. Note that link 

4 has the best average channel quality, whereas link 1 has the worst average 

channel quality. Consider four different objective functions, including the total 

throughput function (TTF), the proportional fairness function (PFF), the max-

min fairness function (MFF) and the summation of sigmoidal functions (SSF). 

Assume that P广! = 0.5mW and n\ = 0.1"W for all link i and subcarrier I, and 

ppax 二 i .6mW for all l ink i. The minimum data rate constraints in this example 

are set to l.Obps/Hz for all links. 

Table 3.1 shows the optimal power allocation and the corresponding data 

rates obtained by M-MAPEL for the different objective functions. As shown 

in Table 3.1, maximizing TTF leads to a highly uneven resource distribution: 

the good links (e.g., l ink 4) are allocated more transmission power. As a result, 

the best l ink (link 4) has the highest data rate whereas the worst l ink (link 1) has 

0° 

• Summation of Sigmoidal Functions 
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Figure 3.3: A network of four subcarriers with four links 

the lowest data rate. Meanwhile, to achieve max-min fairness (i.e., MFF in Table 

I), more power is allocated to links wi th small channel gains, so that the data 

rates of different links are equalized. Proportional fair allocation (i.e., PFF), 

on the other hand, strikes a balance between total throughput and fairness. 

Furthermore, it is interesting to note that SSF endeavors to keep the data rate 

of each l ink beyond the threshold bi whenever possible, as shown in the case 

when bi = 10. When bi is too high to be exceeded by all links (e.g., the case wi th 

bj = 20), the worst l ink (link 1) is sacrificed first. As shown in the table, l ink 1 

only gets the min imum required data rate l.Obps/Hz. 

3.4.2 Providing Benchmark for Existing Algorithms 

A key application of M-MAPEL is to provide performance benchmark for other 

algorithms that have been (or to be) proposed to maximize the objective func-

tions as given in (P3.1). With M-MAPEL, we are able to give quantitative mea-

surements of these algorithms' performance (e.g., the probability of achieving 

global optimal solution) under a wide range of network scenarios (e.g. different 
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network densities and topologies). Notice that the focus here is to show how 

M-MAPEL can be used to provide effective benchmark for the algorithms that 

tackle the same problem (i.e., Problem (P3.1)). Readers can choose your favorite 

algorithm to conduct the study. Our choice in this subsection may be biased, 

and the selected algorithm may not be "the best". 

SCALE algorithm is considered to be one of the best existing algorithm for 

maximizing the total throughput in the multi-carrier networks. The key idea of 

SCALE algorithm is to improve the solution of throughput maximization prob-

lem through successive convex approximation unt i l a KKT point is reached. 

Example 3 (Benchmark provided by M-MAPEL): M-MAPEL always guaran-

tees global optimality, while the SCALE algorithm fails to do so. We consider 

two networks of four subcarriers w i th two links (i.e., M = 2 and L = 4). The 

dj'i^] matrices of two networks are as follows: 

Di = 
0.1295 0.0036 

0.0018 0.2277 
D2 = 

0.7508 0.2963 

0.2589 0.4933 
(3.4.2) 

respectively. We assume that the channel gains are i.i.d. w i th exponential dis-

tribution of mean dj-^. Other system parameters are the same in Example 1 

except that there is no constraints on P广乂‘、Herein, the P广 c o n s t r a i n t s are 

not considered. For each network, we simulate both algorithms wi th 100 ran-

dom realizations of the channel gains and show the results in Fig. 3.4 and Fig. 

3.5, respectively. The figures show that M-MAPEL always converges to the 

global optimality, regardless of the choice of channel gains. On the other hand, 

the SCALE is trapped in local optimality from time to time. For example. Fig. 

3.4 shows that SCALE algorithm achieves the global optimality 94% of the time. 

However, Fig. 3.5 shows that in a different topology SCALE algorithms achieve 

the global optimal solution 62% of the time. In these two figures, we can find 

that the probability of achieving global optimal solution for SCALE is sensitive 



SCALE Algorithm 

Figure 3.5: Maximum total throughput achieved by M-MAPEL as well as 

SCALE for 100 channel gain realizations in D2 network 

to the network topology. 

35o 

Figure 3.4: Maximum total throughput achieved by M-MAPEL as well as 

SCALE for 100 channel gain realizations in Di network 
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CHAPTER 3. M - M A P E L： MONOTONIC OPTIMIZATION FOR NON-CONCAVE POWER 
CONTROL IN MULTI-CARRIER WIRELESS NETWORKS  

3.5 Summary 

In this chapter, we proposed the M-MAPEL algorithm that solves the power 

control problem in multi-carrier wireless networks. The M-MAPEL algorithm 

is guaranteed to converge to an global optimal solution despite the noncon-

vexity of the problem. The key idea behind the algorithm is to reformulate an 

power control problem into a MO problem, and then construct a sequence of 

shrinking polyblocks that eventually closely approximate the upper boundary 

of the feasible region around the global optimum. We have also established 

the tradeoff relationship between performance and convergence time of the M -

MAPEL algorithm. 

Guaranteed to converge to the global optimal solution, M-MAPEL provides 

an important benchmark for performance evaluation of other power control 

heuristics in this area. For example, by comparing w i th M-MAPEL through 

extensive simulations, we have gained deeper understanding of the state-of-

the-art power control algorithm: SCALE algorithm. Simulations show that the 

SCALE algorithm achieves the close-to-optimal power allocation. 

3.6 Appendix 

3.6.1 Proof of Theorem 3.2 

The M-MAPEL algorithm generates a sequence { 2 „ } for n = 1,2,. • •. Each 

component is calculated as (3.3.2) for each newly constructed polyblock. We 



can find a subsequence } wi th in the sequence { z „ } such that 

= Z l - (2l,fo -

(3.6.1) 

Zn/,1 = Zn： — (Zn,-,i, _ 7lf(Zn.))ei -ny+i — ̂ rij — K^rijAj K^rijJJ'^ij, 

where 1 < < W2 < . • . < 〜 • < • • • . Znŷ î  denotes the ijth. element of vector 2„., 

where ij is the only position in which z 〜 d i f f e r s f rom z„厂 This subsequence 

can be thought of as the "off-springs" of vertex zi through a series of projec-

tions, and they are not necessarily adjacent since there might be projections of 

other vertices happening in between. It can be shown that there is at least one 

such subsequence that has infinite length. With a slight abuse of notation, let 

{zn^/V; > 1} denote such one subsequence. Since ^ (3.6.1) implies 

that z i y Zn̂  ' • • y Zrij ^ ' ' ' h ' ^ ' Hence, Hm |丨2”,‘ — z ….+i || — 0 . From (3.6.1) 

we know that 2〜.and only differ in the f ,s position, thus 

WZnj - II = Zn.,i. _ 力=— TT和n�—0 when； — C O . (3.6.2) 

Since =入n产”,and ^ 1, (3.6.2) implies that Hm 入〜.=1. That is, 

l im Zn： TZ^izm) (3.6.3) 
/—CO ‘ ’ 

and 

(3.6.4) 

Eqn. (3.6.3) implies that the subsequence converges to the boundary of 

the feasible region Q. Since is a maximizer over the set S ’ , eqn. (3.6.3) also 

implies that Znj is the global opt imum of Problem (P3,3) when j oo. Since the 

CBS subsequence {zj,^.} satisfies <l>(zny) > ^{z'nj) ^ 0(7r^(2„ . ) ) for any rij, it 

follows f rom (3.6.4) that 

l im <I>(z„.) — l im — 0(7r、z„》). （3.6.5) 

j—OO , j—¥O0 � ‘ 



Together w i th being the global optimal of Problem (P3.3) when j —oo , 

eqn. (3.6.4) implies zjj). is also the global opt imum of Problem (P3.3) when j 

oo. Note that the M-MAPEL algorithm terminates once the optimal solution to 

Problem (P3.3) is found. Therefore, the convergence of the subsequence {z„ . } 

guarantees the convergence of the algorithm to the global optimal solution. • 



Table 3.1: The optimal data rates and power allocations obtained by M-

MAPEL for different objective functions 

Objective 

Function 

Optimal Data Rates 

尺3,尺 4)bps/Hz 

Optimal Power Allocations 

P = {Phu …’Pw … ， … ， 

'nv (5.1433 28.8597 

4.9351 49.4050) 

(0 0.1440 0.0144 0.2122 0 

0.5 0.0115 0.2845 0.3298 0.0914 0.0312 

0.1411 0.0010 0.5 0.0001 0.0990) 

MFF (15.5743 17.2929 

15.6316 15.8840) 

(0.3070 0.1418 0.0405 0.0098 0 

0.4720 0.0018 0.0003 0.5 0 0.0063 

0.0009 0.0882 0 0.1443 0.0037) 

PFF (14.1539 13.7719 

16.8192 31.8451) 

(0.0014 0.5 0.0334 0.0433 0.0735 

0.2894 0.3682 0.1159 0.5 0.0016 0.0458 

0.0353 0.5 0.0009 0.0146 0.0172) 

SSF 

Uhbi} 

={1 ,10} , Vf 

(15.108116.0493 

15.3895 20.2449) 

(0.2638 0.1974 0.1581 0.3321 0 

0.5 0.0065 0.0010 0.3598 0.0062 0.0005 

0 0.2774 0.0045 0.1753 0.0202) 

SSF 

{dubi} 

={1 ,20} , \fi 

(1.0008 21.8800 

22.9110 30.8631) 

(0 0.1819 0.2228 0.0216 0 

0.3596 0.5 0.0023 0 0.5 0 

0.0158 0.23 0.270 0.1488 0.2644) 



Chapter 4 

S-MAPEL: Monotonic Optimization 

for Non-convex Joint Power Control 

and Scheduling Problems 

In this chapter, we start w i th a interference-limited wireless network where si-

multaneous transmissions on nearby links heavily interfere w i th each other. 

The motivating example in Chapter 1 reveals that power control alone is not 

sufficient to eliminate strong levels of interference between close-by links in 

this context. Correspondingly, scheduling, which allows close-by links to take 

turns to be active, plays a crucial rule for achieving high system performance. 

Joint power control and scheduling that maximizes the system uti l i ty has long 

been a challenging problem. The complicated coupling between the signal-to-

interference ratio of concurrently active links as wel l as the flexibility to vary 

power allocation over time gives rise to a series of non-convex optimization 

problems, for which the global optimal solution is hard to obtain. Our work 

is a first attempt to solve the non-convex joint power control and scheduling 

problems efficiently in a global optimal manner. In particular, i t is the mono-



tonicity rather than the convexity of the problem that we exploit to devise an 

efficient algorithm, referred to as S-MAPEL, to obtain the global optimal so-

lution. To further reduce the complexity, we propose an accelerated algorithm, 

referred to as A-S-MAPEL, based on the inherent symmetry of the optimal solu-

tion. The opt imal joint-power-control-and-scheduling solution obtained by the 

proposed algorithms serves as a useful benchmark for evaluating other existing 

schemes. Wi th the help of this benchmark, we find that on-off scheduling is of 

much practical value i n terms of system ut i l i ty maximization i f "off-the-shelf" 

wireless devices are to be used. 

The rest of this chapter is organized as follows. Section 4.1 introduces the 

system model and the problem formulation. In Section 4.2, we reformulate the 

joint power control and scheduling problem into a M O problem w i th finite size. 

Some properties of the feasible region of M O problem are also discussed. The S-

MAPEL algori thm is proposed and analyzed in Section 4.3. Section 4.4 presents 

an accelerated algorithm, referred to as A-S-MAPEL, to reduce the computa-

tional complexity for the joint power control and scheduling problem. In Sec-

t ion 4.5, we evaluate the performance of the proposed algorithms through sev-

eral simulations. We show that the p r ima l /dua l decomposition fails to achieve 

the global optimal solution of joint power control and scheduling in Section 4.6. 

The conclusions are drawn in Section 4.7. The global convergence of S-MAPEL 

is proved in Section 4.8. 

4.1 System Model and Problem Formulation 

We consider a single-hop wireless ad hoc network w i t h a set = { 1 , …，M } 

of distinct links. Each l ink consists of a transmitter node T/ and a receiver node 

Rj. The channel gain between node T, and node Rj is denoted by G”, which is 



determined by various factors such as path loss, shadowing and fading effects. 

To condense the notation, we write the channel gains into a channel matrix form 

G = [Gij]. Assume that the channel gains are constant dur ing the time interval 

T under consideration. For such a network, there are typically two strategies in 

the current literature, to maximize the overall system util ity, namely pure power 

control and joint power control and scheduling. We have already shown how the 

pure power control strategy can be formulated into monotonic optimization 

problems in Chapter 3. In what follows, we further show how the joint power 

control and scheduling strategy can be formulated into monotonic optimization 

problems. Notably, the joint power control and scheduling problem is much 

more complicated due to the additional freedom in the time domain, although 

pure power control is already an NP-hard problem by itself. 

Let pi(t) denote the transmission power of l ink i (i.e., f rom node Tj) at time 

instant t, w i t h P 广 being its maximum allowable value. For notational con-

venience, we wri te p{t) = (pi(t),Vi G M ) and pmax 二 (pmax^Vi e M ) as 

the transmission power vector at time instant t and the max imum transmission 

power vector, respectively. Likewise, let the received noise on l ink i be rtj. Thus, 

the received SINR of l ink i at time instant t is 

测 = (4.1.1) 

and the corresponding data rate r i { t ) calculated based on the Shannon capacity 

formula is log2(l + T^i{p{t))), where T G [0,1] is the SINR gap that reflects 

a particular modulat ion and coding scheme. Without loss of generality, we 

assume F = 1 hereafter. 

As the motivat ing example shows in Chapter 1, power control alone is not 

sufficient to eliminate strong levels of interference between close-by links when 

links are close to each other. In dense networks, joint power control and schedul-



ing leads to much higher system uti l i ty and throughput than pure power con-

trol schemes. We aim to f ind the optimal joint power control and scheduling 

that maximizes the overall system uti l i ty subject to individual user's QoS re-

quirements. To satisfy the QoS requirement, each l ink must maintain a min-

imum data rate Mathematically, the joint power control and scheduling 

problem can be formulated as follows 

maximize U(r) 
{pit)} 

subject to n•二 •义 log2(l + ⑴ > rf^, Vi e M (P4.1) 

0 ：̂  p(t) j p m a x ' v t e [0,r ] , 

where U(r) represents the system-wide utility, w i th r being the vector of r,. It 
M 

is assumed to be additive across links, i.e., U(r) = [ ^^/⑷，with Ui(ri) being 
1=1 

the uti l i ty of l ink i. Typically, l/f (r! ) is either a concave non-decreasing function 

for elastic traffic or a non-concave non-decreasing function for delay-sensitive 

traffic. In our work, we do not impose the concavity assumption on Ui{ri). 

The only assumption is Uf(r/) being increasing, which is a valid assumption for 

most applications. By appropriately choosing the ut i l i ty function Ui{ri), we can 

strike different balances between spectrum efficiency and fairness. Some pos-

sible uti l i ty functions have been introduced previously, and interested readers 

are referred to Chapter 2. Note that scheduling has been integrated into the 

time-varying power allocation p{t), as choosing a subset of links to transmit 

during a certain time interval is equivalent to allocating zero transmit power to 

the unscheduled links and positive power to the scheduled ones. 

Joint power control and scheduling in (P4.1) is much more challenging than 

pure power control in (P3.1) because of the fol lowing two reasons. First, the 

problem size of (P4.1) is infinite as t is continuous during [0,7]. Second, the 

shape of the feasible set is further complicated by the coupling between p{t) at 



different t. Fortunately, a close look at (P4.1) reveals that i t possesses similar 

hidden monotonicity as the power control problem (P3.1), due to the fact that 

the problem maximizes an objective function monotonically increasing wi th 

SINR. This opens the possibility to solve the problem through MO methods. 

4.2 Joint Power Control and Scheduling as Mono-

tonic Optimization 

Before we can formulate Problem (P4.1) into a M O problem that is amenable to 

efficient solutions, we must address the two challenges mentioned in the last 

sections, namely, infinite problem size and complicated shape of the feasible re-

gion. In the next subsection, we show how Problem (P4.1) can be reformulated 

to get r id of the hurdles. 

4.2.1 Discretization 

• The issue of inf inite problem size 

The issue of infinite problem size can be addressed by the fol lowing Lemma 

and Theorem. Before presenting the Lemma and Theorem, we first define the 

achievable instantaneous data rate set 1Z(t) and the achievable average data 

rate set 

n{t) = | r ( f ) | n ( 0 = log2(l + v{pm and 0 p{t) ^ pm狀,Vf G A ^ j , 

(4.2.1) 

and 

“ [ I n = 辜 / 、 o g 2 ( l + 7“尸⑷))办 

and 0 �p { t ) d 产ax, W e M,\/t e [0, T 
(4.2.2) 



The instantaneous data rate set Tl{t) is the set of all data rates achievable by 

power allocation at t ime instant t. On the other hand, the average data rate set 

1Z is the set of all achievable average data rates dur ing a scheduling period T 

through t ime-varying power allocation. 

Remark 4.1. Notably, 1Z{t) is the samefor all t e [0, T], since the channel is constant 

during the period ofT. 

By the standard convexity argument. Remark 4.1 leads to Lemma 4.1 [47]. 

Lemma 4.1. The achievable average data rate set IZ is the convex hull of the instanta-

neous data rate set 1Z(f), i.e, K = Convex Hull{R{t)}. 

Theorem 4.1. By Caratheodory theorem [47] and Lemma 4.1, the number of elements 

in 7Z� that is needed to construct an arbitrary average data rate vector r = {vf, V/ € 

M) in 1t is no more than M H-1. 

Theorem 4.1 implies that an arbitrary average data rate vector r can be achieved 

by d iv id ing [0, T] into M + 1 intervals w i t h lengths • • • , P m + i and assigning 

power vectors P i , - - - , P m + i to these intervals. In particular, i f less than M + 1 

intervals are needed for the optimal solution, then some 卢fc's and pj^'s are equal 

to zero. Therefore, the constraints of Problem (P4.1) can be replaced by 

M+l 
ri = E + liiPk)) > 产 ' V z . e M 

k=l 
M+l (4.2.3) 

O^Pk^ Pmax,v大 { 1 , 2 , . • _ , M + 1}, 

where we have normalized ^^ w i t h respect to T. By doing so, we have turned 

an infinite number of variables p{t) to a finite number of variables pj^ wi th-

out compromising the opt imal i ty of the problem. The joint power control and 



scheduling optimization problem is now equivalent to f ind a piecewise con-

stant power allocation that has M + 1 degrees of freedom in the time domain. 

• The issue of complicated feasible region 

Having transformed the problem into one w i th a finite number of variables, 

we are still confronted w i th the problem that the feasible region specified by 

(4.2.3) has a complicated shape. We address this problem by defining Uj(ri) to 

be 
f 

Ui(ri) if ri> 
Mrd = 

,min 
‘ ‘ (4.2.4) 

-00 otherwise. 

Similar to Ui{r i) , Uf(rj) is a monotonically increasing function. With (4.2.4), 

Problem (P4.1) can be rewritten as 

M M+1 
maxirmze X ]仏（ I ] hlog2(l + 7iiPk))) 

^'{PkW 1=1 k=i 

subject to (P4.2) 
k=l 

P臓,Vfc G /c. 

Note that Problem (P4.2) is equivalent to Problem (P4.1) when Problem (P4.1) 

is feasible. On the other hand, the objective function of Problem (P4.2) is equal 

to —CO if and only if Problem (P4.1) is infeasible. 

4.2.2 Monotonic Optimization 

Due to the non-convex nature of Problem (P4.2), i t is impossible to f ind the opti-

mal solution based on the theory of convex optimization [47]. As introduced in 

Chapter 3, monotonicity is another important property besides convexity that 

can be exploited to efficiently solve an optimization problem. In this subsection, 



we first show how Problem (P4.2) can be transformed into a M O problem by 

exploiting its hidden monotonicity. We further discuss several key properties 

of the reformulation that are critical for the design of the S-MAPEL algorithm 

that solves the optimization problem. 

Let (S, z) denote the concatenation of two vectors S = {Si, •. • and 

2 = (ZII, ••• / Z I M / - " / Z ( M + I ) I / . . • ' Z ( M + I ) M ) . Since the function 胁 i s non-
M , M+1 

decreasing in r" it is easy to see that the function z)) = E E 4 log2 
i=l k=l 

(1 + zjt,)) is a non-decreasing function on R ? +2M+1) 丄弓,for any two 

vectors ( J i ,2 i ) and ((^2/22) such that {S i ,z i ) h {^2,22)/we have 0 ( ( J i , z i ) ) > 

22))' We further note that JiiPk) for all i and k is nonnegative and the 

time fraction vector is nonnegative as well. Based on these observations. 

Problem (P4.2) can be rewritten as 
M M+1 

ma^mize z)) = Ui( ^ 4 l o g 2 ( l + Zjt/)) 
( W 1=1 k=i (P4.3) 

subject to z) e Q, 

where the feasible set 

Q <4< ^fcandO< Zki < G M,\fk e G P^j 

(4.2.5) 

w i th 

r M+1 ^ 
V 资 { P r P ) \ I ' h > O a n d O < < p ^ " ' 明 e M ^ k G/C 

L fc=i J 
(4.2.6) 

Here, is the concatenation of vectors j6 = ( j6 i , . . . and p = {pi,i, 

. . . / P i ' M , … � � + 1 , 1 ,… ， P m + i m ) ' ^ the following, we establish the equiva-

lence between Problems (P4.3) and (P4.2). 

The feasible set Q of Problem (P4.3) is essentially a union of infinite number 

of boxes w i th vertices of all boxes belonging to the set {(T,c)|Tjt — ̂ k and Ck,i = 



7i{Pk)yi e M,\/k e e V^}. Thus, by Proposition 2.1, the feasible 

set is a normal set. This, together wi th the fact that <I>((f^,z)) is an increas-

ing function of (J, z), implies that Problem (P4.3) is a MO problem. Thus, by 

Proposition 2.2, the optimal solution of Problem (P4.3), denoted by 

must occur at the upper boundary of set Q where 3]̂  = and zj^ = 7/(尸女）for 

all i and k. If we can find a joint time fraction and power allocation , p*) cor-

responding to the optimal solution {S*,z*) such that = jSjJ and z -̂ = J i {p l ) 

for all i and k, then such (/S*,^*) is clearly the optimal solution to Problem 

(P4.2). Finding such requires solving M + 1 uncoupled sets of M lin-

ear equations • + «/) = • w i th M variables p^,... M. ^ 
卢 ‘ ‘ ‘ 

the channel gains Gfy's are generally random, we can show wi th probability 1 

that the M^ + M equations are linearly independent, implying that there is a 

unique solution {p'^,... '/^Xi+i). Hence, Problems (P4.1), (P4.2) and (P4.3) are 

all equivalent w i th each other. Vie will focus on how to solve Problem (P4.3) effi-

ciently based on the recent advance in monotonic optimization in the rest of the chapter. 

Before leaving this section, note that set ^ is a non-convex set. However, 

convexity is not important in obtaining the global optimal solution. In the next 

section, we show that it is the monotonicity of the objective function and the 

normality of the feasible set in the reformulated Problem (P4.3) that facilitates 

efficient calculation of the global optimal solution. 

4.3 THE S-MAPEL ALGORITHM 

In this section, we propose a novel algorithm, S-MAPEL, to solve Problem 

(P4.3) based on the special characteristics of the problem. We first review the 

general M O algorithm before presenting the algorithm for joint power control 

and scheduling. 
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4.3.1 General MO Algorithm 

As discussed in Chapter 3, an algorithm that solves a general M O problem Pm 

works as follows. We first construct a polyblock Si that contains the feasible 

set H of Problem Pm- Let TJ denote the proper vertex set of Si. By Proposition 

2.3, the maximum of the objective function of Problem Pm (i.e., over set 

occurs at some proper vertex x i of Si , i.e., x i e TJ. If jci happens to reside in 

set H as well, then it solves Problem Pm and the optimal solution x* is equal to 

x i . Otherwise, based on Proposition 2.4, we can construct a smaller polyblock 

&i C Si that sti l l contains H but excludes xi. This is achieved by constructing 

the vertex set by replacing xiinTi w i th N new vertices {xu, • • • and 

removing improper vertices, where x y = x i — — nj^{x i ) )e j . We can repeat 

this procedure unt i l an optimal solution is found. This leads to a sequence of 

polyblocks containing H : S i D S2 D - " D H . Obviously, 0( :c i ) > <1>(3£：2) > 

• • • > <I>(A;*), where Xn is the optimal solution that maximizes over the 

polyblock S„. The algorithm terminates at nth iteration if x„ E Ti. This general 

algorithm is guaranteed to converge to a global optimal solution only if the 

optimal solution x* has a positive lower bound xi (i.e., xi >- 0) [18] [45]. 

The MAPEL algorithm proposed in Chapter 3 is one of the successful appli-

cations of M O to engineering designs in wireless networks. The M O problem 

formulated in Chapter 3 has a nice property that the optimal solution is lower 

bounded by a positive value, which guarantees the convergence of MAPEL to 

the global optimal solution. On the contrary. Problem (P4.3) does not impose 

a positive lower bound on the optimal solution In fact, some S^'s and 

z^l's can be equal to zero at the optimal solution. Consequently, the general M O 

algorithm described above (and hence MARL) cannot be directly applied even 

though Problem (P4.3) is a M O problem. In the next subsection, we propose an 

enhanced algorithm, referred to as S-MAPEL, to obtain the global optimal so-



lution of (P4.3) through non-trivial modifications of the general MO algorithm. 

4.3.2 The S-MAPEL Algorithm 

In the general MO algorithm, a critical step to construct new polyblocks is cal-

culating the projection 7r^{xn) as defined in Definition 6. To regain the con-

vergence that was destroyed due to the absence of a positive lower bound on 

the optimal solution to (P4.3), S-MAPEL adopts a modified projection Ttoi-) 

where a vertex is projected onto the upper boundary of the feasible set along a 

line connecting the vertex and a negative point o 0. To make sure that the 

projection always exists, the projection region Q is extended to a new region 

= {{S',z')\o � G G} without sacrificing the op-

timality of (P4.3). Mathematically, the modified projection is 7r^ ' ( (Jn/Zn))= 

A„( (J„ , 2„) 一 o) + o, where A„ = max{A|A„((<^„, Zn) — o) -h o} G This is il-

lustrated in Fig. 4.1. Without loss of generality, set o = —1 hereafter. Note that 

the optimal solution (J*, z*) to (P4.3) is always component-wise larger than or 

equal to 0. This implies that the optimal solution {S*, z*) has a "positive" lower 

bound w i th respect to the "new origin" —1. This crucial modification guaran-

tees the convergence of S-MAPEL, as we w i l l prove in the next subsection. 

The projection 2„))=入”((<̂ ”，2：”) + 1) — 1 is obtained by solving 

the fol lowing max-min problem for 入„: 

A„ = m a x | A | A ( ( J „ , z „ ) + l ) - l € 

==max (A |A< min 
I “ iGMJcelC { l+2„ , j t i 1+知,fc 

= m a x mm ‘ ^ 

(4.3.1) 

This is known as a generalized fractional linear programming problem and can 

be directly solved by the Dinkelbach-type algorithm [46] w i th slight modifica-
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Figure 4.1: The modified projection n^ {z). 

tion. For the max-min problem (4.3.1), the Dinkelbach-type algorithm is a serial 

algorithm involving ( M +1)2 variables. A close look at (4.3.1) indicates that the 

terms in the max-min operation are uncoupled functions of either or pj^'s, but 

not both. Hence, we can further write (4.3.1) as follows. 

A — … ； 上 + 她 ） 飞 
An = max mm< irun< — > , • • • , 

( M A b ' e - ^ l l + J 

t 1 + 2„,(M+1)/ 
. F . I + T K P I ) 

= m m < max mm— • • • , 
ieM l+2n,h' 

max nun  

max m m - — — > M+i kelC 1 + On,k J 
Jfc=l 

= m i n | A „ , i , • • • , A„,M+I, A„,々， 

where 入„ t = max min 义) f o r fc = 1,. . _ , M + 1 , and 入„,6 = 

min^^p^. Eqn. (4.3.2) indicates that the calculation of 入„ can be decomposed 

(4.3.2) 

max 
M+l 
E 
k--



into calculating /V„,jt's and 入„,卢.This suggests the possibility of a parallel al-

gorithm for fast computation. In particular, each 入can be obtained through 

the Dinkelbach-type algorithm w i th M variables 尸jt/s, and 入„ 卢 can be obtained 

through Dinkelbach-type algorithm wi th M + 1 variables ^k's. Since 入„j/s and 

A„,卢 are all the generalized fractional linear programming, their calculations are 

polynomial time solvable [46]. The calculations of A„,jt's and 卢 are presented 

in Algor i thm 4.1, where we have focused on an arbitrary 入„,无 without loss of 

generality. 

Having calculated A „ys and 卢 through Dinkelbach-type Algori thm (i.e.. 

Algor i thm 4.1), we can obtain the projection TT̂ j((知,z”)）=入”({Snf z”) +1)— 
1 w i th A„ = m in {A„ , i , . . • , /V«,AI+1/ 入” 

Algor i thm 4.1 Dinkelbach-type Algori thm (for f inding 入„,；̂) 
Init ial ization: Choose ；?f) G [O'pmax] ^nd let m =： 0. 

repeat 

Given solve 入(:【)=min 
(m) 

r 丄 V C 

M 
Given A^ solve 

Hi = argmax min(( E GjiPKj " 

4%’诉 + 1 ) ( E Gj我j + Hi)) for all k. 
‘ j—i 

5： m = m + 1. 

6: unt i l mm(( E Gj.p^^r'^ + m ) - ( 石 Gjipj：；—” + 打0) < 0. 

„ A X (m—1) 
7: Kk = Kk _ 

With the modif ied projection, the execution of the S-MAPEL largely follows 

the general M O algorithm. Specifically, in the nth iteration, the optimal vertex 

(SrifZn) is selected from the vertex set % of the outer polyblock <S„ through 

{Sn,Zn) = argmax{0(({J, z)) | (J, 2) G Then, the new polyblock is 
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obtained by replacing (J, 2) in % w i th ( M + 1)2 new vertices {(<^ni,Zni)/.. • 

(^n(M+l)2/ Z„(M+1)0}/ where {Snj, z^j) = {Sn^Zn) - {{Sn,Zn)j - Zn)))ej, 

and removing improper vertices and all vertices (<^,2) that do not satisfy {S,z) ^ 

0. 

S-MAPEL terminates at the nth iteration if Zn) G G- In practice, we say 

(Sn.Zn) G Q when (1 + > • ( (<^„ ,z„ ) ) , where e > 0 is a small 

positive number representing the error tolerance level, and zj,) G Q is the 

current best feasible solution (CBS) that is known so far. Such a stopping cri-

teria can guarantee to obtain an e-optimal solution, as shown in MAPEL. In 

particular, CBS is updated in each iteration as {Sn,Zn) = argmax{<I>(i/)|i/ G 

otherwise. The corresponding objective function value is referred 

to as the current best value (CBV). For initialization, {S^, = if 

^ 0,and = 0 otherwise. Obviously, we have ( z j ) ) < 

Having introduced the basic operations, we now formally present S-MAPEL 

in Algor i thm 4.2. 

4.3.3 Global Convergence 

With the modified projection 7to{'), Theorem 4.2 shows that S-MAPEL con-

verges to the optimal solution of Problem (P4.3). 

Theorem 4.2. The S-MAPEL algorithm globally converges to a global optimal solution 

of Problem (P4.3). 

The proof of Theorem 4.2 is relegated to Section 4.8.1. 

Before leaving this subsection, note that although S-MAPEL is proved to con-



Algorithm 4.2 The S-MAPEL Algor i thm 
1： Initialization: Choose the error tolerance e 〉 0 , and let n = 1. 

2: repeat 

3： I f n — 1, construct the init ial polyblock Si w i t h vertex set 7 i 二 {(b,v)}, 

where Zjjt 二 1 for al l k, and 

Q..pmax 
Vki= max J i i p . ) = M e M y k e J C . 

It is clear that polyblock <Si is a box [0, {b,v)] containing G. 

If n > 1, construct a smaller polyblock Sn w i t h vertex set 

%i by replacing in i w i t h ( M + 1)2 new vertices 

• • (<^n-i(M+i)2/Zn-i(M+i)2)} and removing improper 

vertices and all vertices {S, z) which do not satisfy [5, z) ^ 0. Herein, 

{5n-\j, Zn-\j) = (Sn-lrZn-l) _ {{Sn-l, Zn-l)j 一 Zn-l)))ej, 

4： Find {Sn, Zn) that maximizes the objective function of Problem (P4.3) over 

set Tn, i.e., 

{dn,Zn) = argmax{<D((fJ,z))|((J,2) G (4.3.3) 

5： Find TT^'{{Sn,Zn)) based on Algor i thm 5. 

6： Determine CBS and CBV 乂))，where z ' ^ ) = 

argmax{0(y)|y G OCi'z；^—i)}} if ^ 0, 

and =(《—i,^ / ”—i ) otherwise. For init ialization, {S[,z[)= 

i f 7r。(((^i ,z i )) ^ O'and = 0 otherwise. 

7： n = n + l. 

8: until + > <^{{Sn-VZn-l)). 

9： I f > —〜，then compute the opt imal t ime fraction and 

power allocation (/S*, p*) (i.e., opt imal solution to Problem (P4.1)) by solv-

ing J二—1 jt = PI and ki = 7i{Pk) for all i and k. Otherwise, there is no 

feasible solution of Problem (P4.1). 



verge to the global optimal solution, the convergence speed is still an open 

problem. It is, however, proved in [18] that a M O algorithm is guaranteed 

to converge wi th in finite iterations as long as e > 0. A n advantage of the S-

MAPEL algorithm is that we can trade off performance for convergence time 

by tuning e. The smaller e, the longer the algorithm runs and the more accurate 

the optimal solution is. 

4.4 An Accelerated Algorithm for Joint Power Con-

trol and Scheduling 

In S-MAPEL, the size of the vertex set %i grows quickly in each iteration when 

M is large. This could potentially lead to long convergence time, as a best ver-

tex has to be selected by comparing all vertices in Tn in each iteration. Such a 

problem is not avoidable if the global optimal solution is to be guaranteed, as 

Problem (P4.3) is essentially NP-hard. In this section, we present an acceler-

ated algorithm A-S-MAPEL (where the prefix "A" stands for accelerated) that 

prevents the size of the vertex set from growing quickly w i th each iteration. 

By doing so, the convergence of the algorithm is drastically expedited. Our 

numerical results w i l l show that the gap between the solution obtained by A-S-

MAPEL and the global optimal solution is negligible. 

The intui t ion behind A-S-MAPEL algorithm is as follows. Consider an opti-

mal solution to Problem (P4.3) {5*, z*) = • • • . •. 

.• • '2(m+i)m)- A close look at Problem (P4.3) suggests that a new vector ob-

tained by swapping the values of …•，4M) and (dj, z ; , . . . , Zy^) for any 

pair of i and j is also an optimal solution. This is because the ordering of the 

time segments does not affect the average data rate of each user, and hence does 



not affect the value of the ut i l i ty functions. This inherent symmetry implies 

that there could exist more than one equally optimal polyblock vertex (Sn, Zn) 

at each iteration of the S-MAPEL algorithm. Specifically, these equally optimal 

vertices wou ld lead to the same optimality just w i t h different ordering for the 

time segments. Therefore, selecting any one of these vertices at each iteration 

whi le eliminating the others wou ld not affect the opt imal i ty of the algorithm. 

One dif f iculty in carrying out this idea lies in the identification of symmetric 

vertices f rom all vertices that yield the same optimal value at an iteration. To 

address this issue, A-S-MAPEL makes a simpl i fy ing assumption that all equally 

optimal vertices are symmetric vertices. Denoting the equally optimal vertices 

at the nth iteration as = {(<J,z)|<I>((<J,2：)) = and {S,z) e %}, 

where (S,z) = argmax{0((<5,z))|(iJ,z) € % } . A-S-MAPEL then selects the 

one w i th the smallest difference between <I>((J,z)) and and 

deletes all other vertices in Zn. 

For practical implementation, we allow the existence of an error tolerance tol 

to further expedite the computational speed. Thus, the set Zn is extended to 

= + tol) X a > ( ( ^ , z ) ) > 0 ( ( 5 , 2 ) ) a n d (在6 %}. (4.4.1) 

Wi th the above notions, A-S-MAPEL is the same as S-MAPEL except for Step 4, 

which is modif ied as follows. 

Step 4. Select (Sn^Zn) according to 

{Sn.Zn) = argmin{<D((J,2；)) -<i>(7r?'i((么2;))) |(J,z) G (4.4.2) 

and delete all other vertices in Zn-

Similar to S-MAPEL algorithm, an advantage of the A-S-MAPEL algorithm 

is that we can trade off performance for convergence time by tuning e and tol. 

The smaller e and tol, the longer the algorithm runs and the more accurate the 



optimal solution is. In addition, i t is due to the tolerance tol and the assumption 

that all equally optimal vertices are symmetric vertices that A-S-MAPEL is a 

suboptimal method instead of an optimal one. 

4.5 Performance Evaluation 

4.5.1 Near Optimality of A-S-MAPEL 

We first consider a four-l ink network as shown in Fig. 4.2, where d = 5 me-

ters. Assume the channel gain between the transmitter node T/ and the receiver 

node Rj is djj^, where d” denotes the distance between the two nodes. Assume 

that pmax = (10 10 1.0 1.0)mW, and n/ 二 O.lpW for all links. There are no 

min imum data rate constraints in this example. In Fig. 4.3 and Fig. 4.5, we 

investigate the system utilities obtained by A-S-MAPEL under different error 

tolerances e and tol when LZ/(r,) = log Vf and 17/(r/) = i+exp(i-r+2)' r̂espectively. 

For comparison, the optimal system utilities are also plotted. Correspondingly, 

the numbers of iterations for convergence are plotted in Fig. 4.4 and Fig. 4.6, 

respectively. 

From Figs. 4.3 and 4.5, i t can be seen that the A-S-MAPEL algorithm can per-

form very close to the global optimal solution. For example, when tol = 0.0005, 

A-S-MAPEL obtains a system uti l i ty that is only 0.33% away from the opt imum 

for proportional fair util ity, and 0.17% away from the opt imum for sigmoidal 

utility. On the other hand, i t is not surprising to see that the algorithm perfor-

mance improves w i th the decrease of either e or tol. In general, the algorithm 

performance is not sensitive to the value of e when tol is small enough. For 

example, when tol = 0.0005, the obtained system ut i l i ty at any e G [0,0.5] is the 

same for both proportional fair ut i l i ty and sigmoidal utility. This observation 
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Figure 4.2: A network topology with four links. 

• Total Proporttonal Fairness atto/=O.Of 
•Total Proportional Fairness attol=0.00t 
丨 Total Proportional Fairness atto/=O.OOOS 
• Optimal Total Proportional Fairness 

Figure 4.3: Obtained total proportional fairness for different error tolerance e. 

illustrates the algorithm performance can be guaranteed as long as choosing 

small enough e and tol. It can be seen from Figs. 4.4 and 4.6 that the conver-

gence time of A-S-MAPEL can be quite different for different objective func-

tions. Regardless, the total number of iterations needed increases when either 

€ or tol decreases, and the change is drastic when tol is close to 0. Obviously, 

parameters e and tol provide a tuning knob for achieving various trade-off be-

tween algorithm performance and convergence time. 
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Figure 4.5: Obtained summation of sigmoidal functions for different error tol-

erance e. 

4.5.2 Optimal Joint Power Control and Scheduling vs. Node 

Density 

In this subsection, we vary d in Fig. 4.2 to investigate the effect of node density 

on the optimal power control scheduling. As an example, we set Ui(r j) = log r,, 

Summation of Sigmoidal Functions at tot^O.01 
-Summation of Sigmoidal Functions at tof=0.001 
• Summation of Sigmoidal Functions at tof^O.0005 
_ Optimal Summation of Sigmoidal Functions 

-o - Number of Iterations at foMO.01 
- • -Number of Iterations at lol=0.001 
- • - N u m b e r of Iterations at lol=0.0005 

Figure 4.4: The number of iterations needed for different error tolerance e 

when obtaining total proportional fairness. 
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• -O- ‘ Number of Iterations at tol=0.01 
• • • Number of Iterations at tot=0.001 

Number of Iterations at tol=0.0005 

Figure 4.6: The number of iterations needed for different error tolerance e 

when obtaining summation of sigmoidal functions. 

and let the min imum data rate constraints be 1.0bps/Hz for all links. Other 

settings are the same as the previous example. In Fig. 4.7, we let d = 5,10,15 

meters, and set the scheduling period to be 10 seconds for each d. 

It is not surprising to see from Fig. 4.7 that the optimal power and scheduling 

heavily depends on the node density. Specifically, when the four links are close 

to each other (e.g., d = 5m, from 0 to 10 seconds), the optimal transmission 

power varies w i th time, implying that scheduling is an indispensable compo-

nent in dense networks. On the other hand, scheduling is no longer necessary 

when the node density is small. For example, when d = 10m (i.e., from 10 to 20 

seconds), the optimal transmission power does not vary w i th time any more. 

Furthermore, when links are enough far away from each other (e.g., d = 15m, 

from 20 to 30 seconds), i t is optimal to have all links transmit at the maximum 

power at the same time. 



1 1 
Lfnk 3 d=5m d-10m J d=15m 

Link 4 d=5in 

Figure 4.7: The optimal allocation vs. node density (P.A.: Power Allocation). 

4.5.3 Performance Study of On-off Power Control, Pure Power 

Control and On-off Scheduling 

One key application of S-MAPEL and A-S-MAPEL is to provide a benchmark to 

evaluate the performance of other schemes. As an illustration, we evaluate the 

performance of three widely accepted schemes in the literature, namely pure 

power control, on-off power control, and on-off power control w i th scheduling 

(also referred to as on-off scheduling). In particular, MAPEL is used to obtain 

the optimal power control solution. With on-off power control, each transmitter 

either transmits at the maximum power level P严乂 or does not transmit at all. 

Meanwhile, on-off scheduling is the same as joint power control and scheduling 

except that transmitters either transmit at the maximum power P严〇『do not 

transmit at all. I t can be seen that Theorem 1 also applies to this case, and hence 

no more than M + 1 slots are needed to achieve the optimal performance of 

on-off scheduling. 

We consider a collection of w-link networks^. Links are randomly placed in 

iHere, on-off scheduling with scheduling is calculated through exhaustive search with 

_ Link 2 
d=5rti 山 d=OOm j d=15m > 

-Link 1 
d=5m 

d=10m 
丄 d=15m • 
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Figure 4.8: Average system performance of pure power control vs. joint power 

control and scheduling in n-link networks. 

a 15m-by-15m area. The length of each l ink is uniformly distributed wi th in 

[ Im, 2m]. Meanwhile, set and n,- = O.l^W. In Table 4.1, the per-

formance of optimal joint power control and scheduling, pure power control, 

on-off power control, and on-off scheduling are given for different uti l i ty func-

tions when n = 3 and w = 4. Besides, the performance of joint power control 

and scheduling and pure power control can also be found in Fig. 4.8 when n is 

from 3 to 8. Each value in Table 11 and Fig. 4.8 is an average over 50 different 

topologies. 

It is not surprising to see that without scheduling, both power control schemes 

are outperformed by the ones w i th scheduling. This is because in a dense net-

work, power control alone is not sufficient to eliminate strong levels of inter-

ference between close-by links. Interestingly, Fig. 4.8 shows that the perfor-

mance gap between joint power control and scheduling and pure power con-

( 2 ^ — convex programming. Thus, the calculation is unavailable when the number of 

links increases, which is why we only consider the network with 3 links or 4 links for on-off 

scheduling. 



Table 4.1: Comparison of pure power control, on-off scheduling versus joint 

power control and scheduling 

Stratigies 

(Algorithm) 

Average Performance 

Stratigies 

(Algorithm) 

UiiTi) = log ⑷ 胁)=I+A+2) 胁)-1+A-) Stratigies 

(Algorithm) 3-link 4-link 3-link 4-link 3-link 4-link 

On-off Power Control 

without scheduling 

(Exhaustive Search) 

4.4476 4.2951 2.6324 3.4315 1.7123 2.9151 

Pure Power Control 

(MAPEL) 

4.6801 5.9330 2.6750 3.4935 2.3273 2.9864 

On-off Scheduling 

(Exhaustive Search) 

5.1668 6.5933 2.8361 3.7103 2.3413 3.0047 

Joint Power Control 

and Scheduling 

(A-S-MAPEL) 

5.2276 6.7021 2.8450 3.7255 2.3752 3.0444 



trol is wider for L[j(r,') = log r! than it is for U/(rf) = ！+—工-广 +之)when n grows 

large. This is because for concave uti l i ty functions, the derivative of l / ,(rf) is 

larger for smaller r,-. Hence, the pure power control scheme would force all 

links to be active but w i th a low data rate when the network is dense. In this 

case, scheduling can play an important role in improving the overall system 

utility. On the other hand, w i th sigmoidal ut i l i ty function, the optimal strategy 

in dense networks is to deactivate some links so that the data rate of other links 

can exceed the threshold bi (i.e., 2 in Fig. 4.8), no matter whether scheduling is 

employed or not. In this case, scheduling does not make a big difference. 

Another interesting observation is that without scheduling, on-off power 

control may lead to a much lower system uti l i ty compared w i th the optimal 

power control solution. In contrast, the performance gap between on-off schedul-

ing and optimal joint power control and scheduling is negligible. This is due 

to the fact that the links that are scheduled to transmit in the same time slot 

are typically far from each other and do not impose excessive interference on 

one another. As a result, it is likely to be optimal for the links to transmit at 

the maximum power level. In practice, most off-the-shelf wireless devices are 

only allowed to either transmit at the maximum power (i.e., be on) or remain 

silent (i.e., be off). Therefore, scheduling is an indispensable component for sys-

tem ut i l i ty maximization if "off-the-shelf" wireless devices are to be used. We 

conclude this section by noting that the design of efficient algorithms for opti-

mal on-off scheduling is more challenging than that for joint power control and 

scheduling, due to the combinatorial nature of the on-off scheduling problem. 

It w i l l be part of our future work to design efficient algorithms to solve (P4.1) 

when only two power levels (_pmax and 0) are allowed. 
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4.6 Discussion 

There has been a lot of recent work using the pr imal /dua l decomposition ap-

proach to devise low-complexity and distributed algorithms for optimal re-

source allocation problems. These algorithms are guaranteed to converge to 

the global optimal solutions as long as the optimization problem satisfies the 

slater, s condition [12, 22, 48, 49]. Lemma 4.1 suggests that Problem (P4.1) is 

convex in terms of average data rate r. Recently, there have been emerging in-

terests in solving similar problems using pr imal /dua l decomposition, such as 

[48,49]. In this section, we w i l l show that the pr imal /dua l decomposition fails 

to achieve the global optimal solution of (P4.1) although it is convex in r. 

As mentioned previously. Problem (P4.1) can be rewritten as 

M 
maximize Y\ ⑶ i^i) 

M+1 
subject to Vi < ^ G M 

k=l 
M+l 
X； = 
k=l 

(4.6.1) 

pmax'VA： e K. 

Therefore, it seems that Problem (4.6.1) can be solved based on the concept of 

primal decomposition [48]. More specifically, consider first a primal decompo-

sition of (4.6.1) by fixing the transmission power p^'s and the time fraction jS. 

Problem (4.6.1) becomes M independent subproblems, one for each l ink i, i.e., 

maximize iJf(r,-) 
f.'^j.mm 
- M+l (4.6.2) 

subject to Vi < ^k r i {Pk )y i ^ M . 
k=l 

It is easily seen from (4.6.2) that the optimal Lagrange mult ipl ier fi* associated 

w i th the constraints in (4.6.2) is equal to ^ ^ ^ Ir产”,，({；?J,釣'where r ^ ( {Pkhf i ) is 



the optimal solution to (4.6.2). 

Then consider the master primal problem of (4.6.1), which is 

M 
maximize J ] 聰 

MPk} 1=1 
M+l 

subject to = (4.6.3) 
fc=] 

O^pj^^ pmax,谈 e � 

The master primal problem (4.6.3) can now be solved w i th a subgradient method 

by updating the transmission power and the time fraction as 

M 
+ = 

and 

+ 1 ) = 

a , . ⑷ + “ 知 響 “ ⑷ V左, 
n 

(4.6.4) 

M 
h{n) + hY,ri{p,{n)) Vfc, 

n 
(4.6.5) 

where a and b are the positive step sizes, n is the number of iterations, and 
A M+l 

denotes the projection onto the feasible set H such that Ti — {pg\ 玲k = 
P 

hPhO, and 0 ^ ；;；̂ ^ P^/ik € /C}. After the updating in (4.6.4) and (4.6.5), 

we use the obtained transmission power and time fraction to update again 

through solving (4.6.2). By doing so, a local optimal solution to Problem (4.6.1) 

can be achieved at least. 

Note that the feasible set H enjoys the property of naturally decomposing 
M+l 

into a Cartesian product H = B xV x • • • xV, where B is the set E Pk 二 
k=i 

^ 0} and V is the set {p\0 ：< p ^ P"^^} . This implies that a local opti-

mality of Problem (4.6.1) can be achieved w i th polynomial time [48]. Due to 
M+l 

the nonconvex property of each function E h^i iPk)^ however, the global op-
k=l 

t imality cannot be guaranteed, even though the objective function is concave in 



I n addit ion to pr imal decomposition, we might want to reduce the computa-

tional complexity of Problem (4.6.1) through resorting to dual decomposition. 

The key idea of dual decomposition is as follows: 

A t each iteration n: 

• The data rates of l inks are determined by 

r i {n) = argmax[U,(ri) — ^^r,]. (4.6.6) 

The transmission powers of l inks at A:th t ime fraction are determined by 

M 
P k M = argmax 〜log2( l + 7!•(厂jt)). (4.6.7) 

0 水 Z ^ p m a x 

M+1 
The Lagrange mult ip l ier j i associated w i t h the constraints r, < E 

k=l 
i n (4.6.1) are updated by 

M n + 1 ) = - Si{n) log2(l + 7i{pkM)) 一 ri(n) 

+ 
(4.6.8) 

where Sj(n) is a sufficiently small positive stepsize, and [•]+ denotes the 

projection onto the nonnegative orhant (i.e., max(., 0)). 

As mentioned in [49], i f the stepsizes are chosen such that s, (n) = hnsf, hn 一 
00 

0 as w — 00 and YL hn = H-oo, then r{n) r* as f —̂  oo. I t implies that after 
n=l 

obtaining the global op t imum r* using the above dual decomposition, i t is easy 

to achieve the opt imal solution •. ,p*M+i) of Problem (P4.1) as well , 
M+l 

according to r* = E Pt log2( l + 7i{Pk)) for all i. However, our simulations 
k=l 

show that the dual decomposition cannot guarantee to converge, even though 

we choose the stepsizes satisfying the requirements. Here, we consider a four-
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Number of Iterations n 

Figure 4.9: Various stepsizes are used for the dual decompositioi 

l ink network w i th the fol lowing channel gain: 

Gi = 

0.2321 0.1086 0.0.0671 0.0083 

0.0124 0.3390 0.0123 0.0027 

0.1159 0.0481 0.1579 0.0036 

0.0030 0.0018 0.0010 0.2255 

(4.6.9) 

Other system settings are the same as in Example 1. We use the dual decom-

position to obtain the proportional fairness. From Fig. 4.9, it is seen that the 

dual decomposition cannot converge, let alone obtaining the global optimum. 

Accordingly, the dual decomposition is not appropriate to solve Problem (P4.1). 

4.7 Summary 

In this chapter, we have proposed the S-MAPEL algorithm that efficiently solves 

the joint power control and scheduling problem in wireless networks. S-MAPEL 

is guaranteed to converge to an global optimal solution despite the nonconvex-

ity of the problem. The key idea behind the algorithm is to reformulate the non-

S j ( n ) = 0 . 0 1 when n^100; Sj<n)=1/n when i 
s,(n)=5/(n-i-100) 
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convex problem into a M O problem, and then construct a sequence of shrink-

ing polyblocks that approximate the upper boundary of the feasible region w i th 

increasing precision. We have also established a convenient tradeoff between 

performance and convergence time of the algorithm. By exploiting the inherent 

symmetry of the optimal solutions, an accelerated algorithm, A-S-MAPEL, has 

been proposed. 

Guaranteed to converge to the global optimal solution, S-MAPEL provides 

an important benchmark for performance evaluation of other joint power con-

trol and scheduling heuristics in this area. Using this benchmark, we find that 

the performance gap between on-off scheduling and joint power control and 

scheduling is negligible. This implies that scheduling is a crucial component 

in wireless system design, if off-the-shelf wireless devices that only support 

binary transmit power levels (on or off) are to be used. 

We have briefly discussed the sub-optimality of applying decomposition meth-

ods to solve the joint power control and scheduling problem. It is shown that 

the pr imal /dua l decomposition fails to achieve the global optimal solution of 

(P4.1) although i t is convex in r. We also f ind that the pr imal decomposition 

can be used to obtain a local optimal solution to Problem (P4.1) in polynomial 

time, whi le the dual decomposition is not guaranteed to converge. 

4.8 Appendix 

4.8.1 Proof of Theorem 4.2 

The S-MAPEL algorithm generates a sequence {{Sn,Zn)} f o r n = 1,2,- • •. Each 

component is calculated as (4.3.3) for a newly constructed polyblock. We can 
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find a subsequence 2n；)} wi th in the sequence {(<^n/2«)} such that 

： (4.8.1) 

二 i^nifZni) - {{Sni,Zni)i^ 一 TT î/̂  

where 1 < ni < «2 < •. •〈打/ < . . . . i^ni,Zni)ii denotes the //th element of vec-

tor {Sni, Zni), where the indices ii denote the only position in which ) 

differs from (Sm, This subsequence can be thought of as the "off-springs" 

of vertex {Si,Zi) through a series of projections, and they are not necessarily ad-

jacent since there might be projections of other vertices happening in between. 

It can be shown that there is at least one such subsequence that has infinite 

length. With a slight abuse of notation, let : ” , ) , • / > 1} denote such one 

subsequence. Since y (4.8.1) together w i th the non-

negativeness of the vertex set % implies that {Si ,z i ) y (Sn^rZn^) h " - h 

i^nifZni) t •. • t 0. Hence, l im - ⑷，z„, )|| 0. From (4.8.1) 

we know that {Snj, Zn,) and {Sm^^, Zn/+i) only differ in the z/'s position. Thus 

= — (4.8.2) 

={Sni,Zni)it - 7t^iij{{SnirZni)) — 0 w h e n I 00. 

Together w i th ( z „ , ) ) = ( “ z„ J + 1 ) - 1 implying ( 印 J ) 

1 = Ani({^nifZni)ij + 1 ) and (SnirZni) — 0 implying + 1 > 1, it follows 

from (4.8.2) that l im A„, 二 1. That is, 
/—CO 

I~>00 
and 

(4.8.3) 

(4.8.4) 



Eqn. (4.8.3) implies that the subsequence converges to the boundary 

of the region Q' where any point satisfies (<^,2) >z 0. Since the nonneg-

ative boundary of the region Q' is clearly equivalent to the upper boundary 

of the feasible region Q, (4.8.3) also implies that the subsequence { ( 〜 z „ , ) } 

converges to the upper boundary of the feasible set Q. Since {Sm, z”,) is a maxi-

mizer over the set it is also the global opt imum of Problem (P4.3) when the 

sequence converges. Since the CBS subsequence {zg^^} satisfies 2„^)) > 

^ { ( K i ' ^ n i ) ) for any it follows from (4.8.4) that 

l im 0 ( ( 、 " 2 „ , ) ) 4 0 ( 7 r ? ' i ( ( ‘ z „ , ) ) ) > l im 0((<,z；^》). （4.8.5) 
/-+00 I—^00 ‘ ‘ 

On the other hand, according to the computation of (Jjj^, zj,^), we can get 

l im <!>((‘‘)）> 0 ( 7 r ? ' i ( ( 万 印 ( 4 . 8 . 6 ) 
I—^00 ‘ 

Together w i th ZnJ) being the global optimal of Problem (P4.3) when 

I —> 00, eqns. (4.8.5) and (4.8.6) imply is also the global opt imum of 

Problem (P4.3) when I — 00. Note that the S-MAPEL algorithm terminates once 

the optimal solution to Problem (P4.3) is found. Therefore, the convergence of 

the subsequence {(Sm, Zn；)} guarantees the convergence of the algorithm to the 

global optimal solution. • 



Chapter 5 

SEER: Globally Optimal Distributed 

Power Control for Nonconcave 

Utility Maximization 

In this chapter, we address the issue of maximizing a system-wide uti l i ty through 

distributed power control for a single-carrier ad hoc wireless network. In par-

ticular, we propose a SEER {asynchronous distributEd powEr contRol) algorithm 

to distributively and asynchronously achieve the global optimal power alloca-

tion. The key idea of SEER largely comes from Gibbs Sampling, which is a well-

studied optimization algorithm in fields such as statistical physics and image 

processing [50,51]. SEER has four distinctions from previous work. First, SEER 

maximizes the system uti l i ty function by exploring the function's entire surface, 

and thus i t has a provable convergence to the optimal strategy that picks global 

optimal solutions w i th probability 1 for any system ut i l i ty function. In partic-

ular, the system ut i l i ty function is allowed to be non-concave, discontinuous, and 

non-monotonic. Second, SEER achieves the optimal power control noticeably 

faster than the centralized algorithm MAPEL we proposed earlier. As such, the 



algori thm can efficiently handle large-scale wireless networks, as shown in our 

simulations。Third, SEER requires only l imited message passing among links 

and small memory storage at each l ink. Last, SEER allows asynchronous power 

update and message passing. 

The rest of this chapter is organized as follows. Section 5.1 introduces the 

system model and problem formulation. SEER is proposed and analyzed in 

Section 5.2. We evaluate the performance of SEER through several simulations 

in Section 5.3. We discuss the effect of message loss and message delay on the 

performance of SEER in Section 5.4. Section 5.5 concludes our conclusions. 

5.1 System Model and Problem Formulation 

We consider a snapshot of wireless ad hoc network w i t h a set •M = { V • • , M } 

of distinct l inks. Each l ink consists of a transmitter node T/ and a receiver node 

Ri. The channel gain between node T； and node Rj is denoted by G”, which is 

determined by various factors such as path loss, shadowing and fading effects. 

We wri te the channel gains into a channel matrix fo rm G = [G/y]. Let pi denote 

the transmission power of l ink i (i.e., f rom node T,), w i t h P「狀 being its maxi-

m u m allowable value. For notational convenience, we wr i te p = (pi, Vz € M) 

and pmax _ (pjnax, G M ) as the transmission power vector and the maxi-

m u m transmission power vector, respectively. Likewise, let the received noise 

on l ink i be w/. Thus, the received SINK of l ink i is 

咖 = (5.1.1) 

and the corresponding data rate r i {p) calculated based on the Shannon capac-

i ty formula is log2( l + T i j i { p ) ) , where r , is the SINK gap that indicates the 

difference between the SINR needed to achieve a certain data rate for a pirat-



ical modulation and coding scheme and the theoretical l imit. Without loss of 

generality, we assume 1) = 1 hereafter. 

We aim to find the optimal power allocation p* that maximizes the overall sys-

tem uti l i ty L I ( j i ( p ) , ' ‘ • , J m ( p ) ) ' Mathematically, the optimal power control is 

formulated into the fol lowing form: 

U M : maximize U(ji(p),... ,Jm(p)) 
P (5.1.2) 

subject to 0 < Pi < Pf^ax, vz G M . 

In most previous work (e.g., [11-14]), the function U( ' ) is often assumed to 
M 

be additive across links, i.e., U{ji(p),…，7m⑷）=E 叫 ⑷ ) ' w i t h 
i=l 

being the ut i l i ty of l ink L Furthermore, Ui(-) is assumed to be strictly increasing, 

twice differentiable, and strictly log-concave in the feasible SINK region. Unlike 

the previous work, we do not impose any assumptions on the function l i ( - ) . In 

particular, l i ( - ) does not need to be additive. Besides, i t can be non-concave, 

discontinuous, and non-monotonic. Thus, we have fu l l freedom to choose the 

uti l i ty function l i ( - ) that accurately reflects system performance. Interested 

readers are referred to [52] for some commonly used ut i l i ty functions. 

Due to the complicated coupling of SINR across links. Problem (UM) is in 

general non-convex even if the objective function U{-) is a concave function, 

let alone the cases w i th non-concave U(-)'s. Therefore, it is difficult to find a 

global optimal solution efficiently even in a centralized fashion, not to mention 

solving the problem distributedly. 

5.2 The SEER Algorithm 

In this section, we propose a novel algorithm, SEER, to solve Problem (UM) 

distributedly. Based on the concept of Gibbs Sampling [50], we first derive a 



Discrete-SEER algorithm in Section 5.2.2, where the prefix "Discrete" stands for 

discrete power control, which means each l ink i can only choose its transmis-

sion power level f rom a discrete and finite set bounded between 0 and P严狀.In 

Section 5.2.3, we extend the algorithm to continuous power control, referred to 

as Continuous-SEER. Some mathematical preliminaries about Gibbs Sampling 

w i l l be introduced first in Section 5.2.1 before we present the algorithm. 

5.2.1 Mathematical Preliminaries Related to Gibbs Sampling 

Gibbs Sampling was originally introduced by Gibbs in 1902 to model physical 

interactions between molecules and particles. Later, i t was used as an optimiza-

tion algorithm to maximize the posterior mode estimate in image processing 

[50]. In particular, Gibbs Sampling solves a global optimization problem w i th 

the fol lowing form 

h* =mm H⑷， (5.2.1) 
xgA： \ ' 

where the variable is a N -d im row vector w i th element Xn,n = 1, • • • the 
N 

feasible domain X = Yl ^n C IR^ is a compact set f rom the Cartesian product 
«=i 

of the discrete sets Xn corresponding to and the objective function H{x) 

does not require any stringent assumptions. 

The key idea of Gibbs Sampling is that the value of each Xn is updated iter-

atively and asynchronously according to a probability distribution, which by it-

self is also adjusted at each iteration according to the observations o i x i , • • • 

Xn+i, • • • Presumably, the value of Xn that yields a smaller H{x) is more 

likely to be picked. The details of Gibbs Sampling is given as follows. 

In (5.2.2), d reflects the degree of greediness. A very small d causes all values 

of Xfi to be chosen (nearly) equiprobably. On the contrary, when 0 -> oo, the 

algorithm becomes a greedy one. Only the XnS that minimize H{x) for given 



Algorithm 5.1 Gibbs Sampling [51] 

Initialization: Randomly select an init ial point x e 

loop 

for all n's in any order do 

The element Xn is updated by a sample f rom the probability disixibu-

t ion \n{x-n) = {An{Xn\X-n)r^Xn € 礼）with 

e x p ( -附 

L expl-eH{x'„,x-n) 

(5.2.2) 

where 0 is a positive constant, and X-n = ( x i , . . . , Xn-v Xn+u • •. , ̂ N)-

5： end for 

6： end loop 

x -n w i l l be picked. To avoid being trapped in a local optimal solution by being 

too greedy, a large enough but finite 6 is usually adopted. I t allows the algo-

r i thm to explore non-greedy actions w i th small probabilities. Note that Gibbs 

Sampling does not make any assumptions on H{x), as long as it can be eval-

uated. Furthermore, the updates of each element are ful ly asynchronous and 

distributed. 

5.2.2 Discrete-SEER 

We first consider Problem (UM), assuming that each pi can only take values 

f rom a discrete set Vf = {0, A P f , 2 A P " … ， P ^ } . In this case, Gibbs Sampling 

can be straightforwardly applied to solve the problem. In what follows, we 

present the Discrete-SEER algorithm and prove its convergence to the global 

optimal solution. 



Rewrite Problem (UM) into 

UM — EQD minimize 
P (5.2.3) U M p ) ) 

subject to Pi € Vi, Vi e M, 

where 7 (p ) is the vector of 7!(尸).A close look at (5.2.3) shows that i t is similar 

to (5.2.1) considered in Gibbs Sampling. 

The key idea of Discret-SEER is as follows. Each l ink i picks a sequence of 

time epochs { f / i , ti2,. •. } , at which its transmission power is updated. In partic-

ular, at the t ime epoch tik, the transmission power is updated to Pi{tik) accord-

ing to the probabil i ty distribution A , = (Aj{p i \p^ i { t ik- ) ) ,Vp,- G 

Vi) , i.e_. 

(…丨•广))) 
(5.2.4) 

where p_ i { t i k~) = { p i { t i k - ) r • • , P i - i i t i k - ) . P i + i { t i k - ) ^ •. • rPAi iUk-) ) is the 

transmission power of other l inks before the time instant 亡汝，and y{p i , p_i{tik—)) 

is the vector of 7i{pifP-i(tik-)), which is the SINR of l ink i under transmis-

sion power vector (p"尸_,(亡汰一)).Note that, the vectors 7 { p u P - i { t i k - ) ) and 

yiPi'P-iiUk-)) i n (5.2.4) can be calculated at the transmitter side of l ink i, 

through 

7j(puP-i{Uk-))= 

7j{PuP-i{Uk-))= 

lj{^ik-)pi • _ ‘ 
Piitik-)‘�-I 

Sjitik-) 
L 纖 + G 咖 

l}iUk-)Pi ‘ 
Piitik-)‘] 

SjiUk-

(5.2.5) 

where 7 / ( “ j t _ ) and sy(“)t一) = G力乃(“.fc-) are the received SINR and received 

signal power (RSP) of l ink j just before the time instant tik, respectively. As-



sume that each l ink knows the system uti l i ty function U( •) and has the memory 

of transmission power used before the time instant tik (i.e., Pi i t ik-))- Then, all 

that l ink i needs to calculate 汝一))are the SINRs the RSPs 

sj{tik—ys, and the channel gains G"'s for all links j. In particular, the SINK 

and the RSP of l ink j can be measured at the receiver side of l ink j. This in-

formation is broadcast to other links in a control packet every time the receiver 

of l ink j senses a change in its SINK or RSP. Moreover, assuming reciprocity 

of the channel, the transmitters can measure Gf,s by measuring the received 

power of control packets. Note that the convergence of Discrete-SEER would 

still be guaranteed even if the information about )'s and Sy (〜紀一)'s is not 

updated in time. This w i l l be discussed later. 

Having introduced the basic operations, we now formally present the Discrete-

SEER algorithm in Algor i thm 5.2. 

• Global Convergence 

In what follows, we take into consideration the convergence of Discrete-

SEER. Contrary to the convergence to a global optimal solution in determinis-

tic algorithm design, Discrete-SEER has a provable convergence to the optimal 

strategy that picks global optimal solutions w i th probability 1. The fol lowing 

Theorem 5.1 shows that given 9, Discrete-SEER converges to a strategy that 

picks all feasible solutions to Problem (UM) in a unique stationary distribution. 

Especially, as 9 becomes large, the strategy corresponds to the one that only 

selects each global optimal solution to Problem (UM) equally likely. 

Theorem 5.1. Starting from any initial power allocation •. • /p(^Mi))/ 

Discrete-SEER corresponds to a Markov chain that converges to a stationary distribu-

1
 



Algorithm 5.2 The Discrete-SEER Algori thm 
The implementation at each transmitter node Tj 

1： Initialization: pick a sequence of time epochs … } in continuous 

time. 

2： Choose some feasible power G Vi. Let k = 1. 

repeat 

Transmit the data packet w i th the power level Pi{tik). 

Keep sensing the control packets broadcast by receivers, and then update 

the information of y,s and sfs. 

6： k 二 k + 1. 

7： Update the feasible power /?/(亡汝）G Vi according to the probability distri-

bution given in (5.2.4). 

8： until Link i decides to leave the network 

The implementation at each receiver node Rj 

1： repeat 

2： Keep measuring the SINK and the RSP, and broadcast them in a control 

packet when a change in SINR or RSP is sensed. 

3： until Link i leaves the network 



tionCl = {n{p)ypeV)J.e., 

exp(-e/U{y{p)) 
n ⑷ = — — S = 

E exp ⑷ ) 
p'eV \ 

(5.2.6) 

where V = {p\pi G P!, Vf}. When 6 ^ oo, Cl{p) becomes 

l im = 
VP � 

0 otherwise, 
(5.2.7) 

where V* is the set of global optimal solutions to Problem (XJM), and \V*\ denotes the 

cardinality ofV*. In other words, Discrete-SEER converges to an optimal strategy that 

selects the global optimal power allocation with probability 1. When there are several 

equally good global optimal solutions, they are selected equally likely. 

Proof: A close look at the Discrete-SEER algorithm shows that a transition 

from one transmission power vector p^ to another p2 occurs only when some 

link, say l ink i, updates its transmission power according to its observation on 

the other entries of p^. In other words, the transition does not depend on the 

power vectors before p^. Hence, Discrete-SEER can be modeled as a Markov 

chain whose transition matrix corresponding to l ink i's update is defined as 

n = [Ui{p^,p2)ypirp2 6 V], where 

^iiPvPi)^ 
if Ph-i = r>i,-i' (5 2 8) 

0 otherwise. 

Here, = ( p i ' i , . . . , P u + i , • •. , P i , m ) is the transmission power vec-

tor of l ink Vs opponents, and p2-i is defined likewise. Due to the lack of a 

central clock in the ad hoc network, each l ink schedules their power updates at 

arbitrary time epochs in continuous time. Therefore, there are no simultaneous 



updates w i th probability 1. The resulting Markov chain is actually a composi-

t ion of single-link transition probabilities. To prove the former part of Theorem 

5.1, we just need to prove that for any updating order, the Markov chain speci-

fied in (5.2.8) has a stationary distribution O. 
M 

A close look at (5.2.8) reveals that IT H, is strictly positive, which implies that 
1=1 

the Markov chain is ergodic. Therefore, its stationary distribution exists. Given 

an arbitrary updating order { i i , i i , h , • • • } , where the sequence is a permuta-

tion of { 1 , 2 , … , M ) w i th repetition, the distribution O given in (5.2.6) always 

satisfies 

n n 、 = n n,^ • n.^ 11,3 = n . (5.2.9) 
n 

> • 

n 
n 

Consequently, O is the stationary distribution of the Markov chain (i.e., the 

stationary distribution of Discrete-SEER) for any updating order. 

Next, we prove the latter part of Theorem (5.1). Let U* = max E 
P印 ieM 

and AU{p) = jj^：^ - Then, 

exp(-0/UMp))) 
n ⑷ = 

E exp(-e/U(7(pO) 
p'GP \ 

exp(-9AU(p)) 

E exp 
p':U{y{p'))<W \ ‘ 

(5.2.10) 

— > 

0 otherwise. 

Consequently, the latter part of Theorem 5.1 follows. • 

Remark 5.1. W/zen A Pi is set to be P广ax y^r each link. Problem (XJM) reduces to 



on-ojf power control for the system utility maximization. 

We note that when APj becomes very small (close to zero), Discrete-SEER 

asynchronously approximates continuous power allocation, where pi is any 

real number in However, one consequence of having small AP,s is 

that each l ink must have an excessively large memory space to store the prob-

ability distribution (亡！广)).To avoid this stringent requirement, we are 

motivated to propose a continuous power allocation scheme that does not need 

a large memory space. 

5.2.3 Continuous-SEER 

We now consider Continuous-SEER, where each l ink performs continuous power 

allocation for the system uti l i ty maximization. Correspondingly, Problem (UM) 

is converted into 
1 

U M — EQC : minimize 
P U M p ) ) (5.2.11) 

subject to 0 < Pi < P厂,yi e M. 

To avoid the excessively large memory space required by Discrete-SEER, we 

note that Aj(pilp_f(tik—)) can be written into the fol lowing form when APj 

0, 

Mpilp-i(^ik-)) 

exp ( 咖 二 , 『 ) ) ) ) A f i 
— l i m 

(5.2.12) 

exp 
= l i m , 

APi—Q - P m a x / 

U{y{pup.i{tik-))) 

JqP' exp ( U(y(p;,p_%,-))))却,i 
\ 

111 



This can be transformed into a probability density function (PDF) 

" I “ � � r MPuP-ii^ik-)) 
fi{Pi\P-i{ti,-)) = h m ^ ^ ^ ^ 

' Pi e 巧 (5.2.13) 

0, otherwise, 

where Vi = {pi\0 < pi < if^ax} vVith (5.2.13), Continuous-SEER works as 

follows: each l ink i updates its feasible transmission power € Vi at each 

time instant f/jt w i th the PDF (5.2.13). Thus, we can avoid the requirement for 

memory space. The other necessary interactions for each l ink i are the same as 

that needed in Discrete-SEER. Thus, the algorithm of Continuous-SEER is the 

same as Discrete-SEER except for Step 7, which is modified as follows. 

Step 7. Choose some feasible power pi{tik) e Vi according to the PDF given 

in (5.2.13). 

• Global Convergence 

The fol lowing Theorem 5.2 shows that the optimal solution to Problem (UM) 

can be achieved through Continuous-SEER w i th large 6. 

Theorem 5.2. Starting from any initial power allocation p{l), Continuous-SEER cor-

responds to a Markov chain that converges to a stationary joint PDF 

f{p) = 

exp -e/U{y{p)) 
/ •rpeV 

(5.2.14) 

0, otherwise 

where V = {p|0 < pi < P广yi e M}. When 0 — oo, f(p) becomes 



where the function Sp{V*) satisfies 

h i v i = 
+00, i f p e V' 

0, otherwise 
(5.2.15) 

pmax 

and Jq Sp(V*)dp ~ \V*\. In other words, Continuous-SEER converges to an 

optimal strategy that only selects global optimal power allocation equally likely. 

The proof of Theorem 5.2 is similar to that of Theorem 5.1, and thus omitted 

here. 

5.3 Simulation Results 

In this section, we conduct simulations to illustrate the effectiveness of SEER. 

Due to space limitation, we focus on Continuous-SEER in this section. 

5.3.1 Effect of e 

This example is to observe the effect of 0 on the performance of Continuous-

SEER. We consider a six-link network where the links are randomly placed in 

a lOm-by-lOm area. Let the channel gains G" to be equal to df广,where d” 

denotes the distance between the transmitter node 7} and the receiver node Rj. 

The resultant channel gain matrix is 

0.2595 0.0014 0.0180 0.0553 0.0010 0.0116 

0.0124 0.4886 0.0011 0.0024 0.0018 0.0123 

0.0055 0.0016 0.2601 0.6455 0.0160 0.1787 

0.0250 0.0009 0.1677 0.5629 0.0016 0.0147 

0.0020 0.0025 0.0107 0.0153 0.7786 0.1091 

0.0048 0.0158 0.0049 0.0107 0.0454 0.6347 

G = 



• Optimal Profortional Fairness 

Figure 5.1: Obtained Proportional Fairness and number of iterations for differ-

ent 0. 

From these two figures, we see that both the frequency and the amplitude of 

oscillations decrease when 6 increases. This result is due to the fact that 6 re-

flects the degree of greediness. Wi th a small 6, Continuous-SEER converges to a 

strategy i n wh ich links are more w i l l ing to explore power allocations other than 

the opt imal ones. Therefore, there are more oscillations when the algorithm 

converges. On the other hand, w i th a large enough 9, the oscillation dimin-

ishes. In this case, Continuous-SEER converges to a strategy that only picks the 

global optimal power allocations. Besides, it can be seen f rom these two figures 

that Continuous-SEER achieves the optimal power control noticeably fast (i.e.. 

For this realization, we run Continuous-SEER w i th different and plot the 

attained system ut i l i ty as wel l as the number of iterations needed for conver-
M 

gence in Figs. 5.1 and 5.2. In particular, ll(y(p)) = E log(7,(;;)) in Fig. 5.1 
1=1 

M 
and U(y(p)) = E log2(l + 7i(p)) in Fig. 5.2. Assume that P 严 = l . O m W 

1=1 

and Hj = 0.1 ̂ W for all l inks i. In these two figures, the optimal system ut i l i ty 

achieved by MAPEL is also plotted for comparison. 
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Figure 5.2: Obtained Total Throughput and number of iterations for different 

e. 

the number of iterations needed for the convergence to the optimal strategy is 

smaller than 10). 

The above figures suggest that a large 6 is preferred than a small 6 in terms 

of the quality of the solution when the algorithm converges. In fact, as Theo-

rem 5.2 states, the algorithm converges to a point where only global optimal 

solutions are selected w i th non-zero probability when 9 is very large. In prac-

tice, however, 6 also has an effect on the convergence time. A large 6 may lead 

to slower convergence, as discussed in [50]. On the other hand, too large a 0 

may lead to numerical problems when calculating the probabilities in (5.2.4) 

or (5.2.13). More details about the selection of 9 w i l l be discussed in the next 

section. 

5.3.2 Comparison with Existing Distributed Algorithms 

As we mentioned in Introduction, the current exiting distributed power con-

trol algorithms only apply to special ut i l i ty functions that are log-concave in 
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SINR. Otherwise, when the system ut i l i ty function is not log-concave in SINR, 

these algorithms may converge to a local opt imal solution. Here, we com-

pare the performance of one "representative" algor i thm (i.e.. Asynchronous 

Distributed Pricing (ADP) A lgor i thm [13]) in this area. The purpose is to show 

that Continuous-SEER always achieves the global opt imal i ty even though the 

ut i l i ty funct ion is not log-concave in SINR, but ADP fails to do so. Besides, 

Continuous-SEER does not have a higher message passing complexity, com-

pared w i t h ADP. 

In this subsection, we simulate both algorithms w i t h 100 random initializa-

tions for a fifteen-link network, where the links are randomly placed in a 20m-

by-20m area. Other system parameters are the same as i n the above example. 
M 

Suppose that U{y{p)) = E log2(l + Fig. 5.3 shows that Continuous-
1=1 

SEER can guarantee the global optimali ty regardless of the ini t ial power alloca-

tion, as long as theta is sufficiently large. On the other hand, the ADP algorithm 

is always trapped in local optimal solutions for the considered fifteen-link net-

work. This is not surprising, as ADP only applies to system ut i l i ty functions 

that are log-concave in SINR. 

Fig. 5.4 shows that Continuous-SEER not only converges much faster than 

the centralized algor i thm MAPEL, but also has a convergence speed similar 

to ADP. We simulate a fifteen-link network and the simulation parameters are 

the same as Fig. 5.3. The figure shows that Continuous-SEER converges as 

fast as ADP (i.e., both w i th in a few iterations). Due to the fact that ADP and 

Continuous-SEER need similar message passing at each iteration, the similar 

convergence speed between Continuous-SEER and ADP implies that the mes-

sage passing complexity of Continuous-SEER is similar to that of ADP. More-

over, we find in Fig. 5.4 that, Continuous-SEER is guaranteed to converge to the 

global opt imal solution, whi le ADP is trapped in a local opt imal solution. On 
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Figure 5.3: Maximal Total throughput achieved by Continuous-SEER algo-

r i thm as wel l as ADP algori thm for 100 different init ial feasible 

power allocations. 

so 

Figure 5.4: The complexity comparison between Continuous-SEER and 

MAPEL. 

the other hand. Fig. 5.4 also shows that MAPEL is f肚 from convergence even 

with 100 iterations. This implies that Continuous-SEER is a preferable choice 

for fast convergence in large-scale networks even if there exists a centralized 

controller. 



CHAPTER 5 . SEER： GLOBALLY OPTIMAL DISTRIBUTED POWER CONTROL FOR 
NONCONCAVE UTILITY MAXIMIZATION 

5.4 Discussion 

In this section, we first discuss how to select 0, and then observe the effect of 

message loss and message delay on the performance of Continuous-SEER. 

5.4.1 Selection of 0 

As already mentioned above, a large 6 is preferable in terms of the quality of 

the solution when the algorithm converges. Especially, when 0 becomes infi-

nite, the algorithm converges to an optimal strategy that only picks each global 

optimal solution equally likely. However, 6 also has an effect on the conver-

gence time. In particular, given too large a fixed 6, the algorithm may have a 

slow convergence to the optimal strategy. This is because too large a 6 may lead 

to the result that the algorithm is unwi l l ing to explore solutions that does not 

appear to be good when it happens to reside in a local optimal solution. There-

fore, to avoid being trapped in a local optimal solution by being too greedy, 6 

should be appropriately selected instead of using a fixed large 6. 

In particular, the choice of 0 involves first using a small value at the beginning 

of the algorithm, and then repeatedly increasing the value. This is because that 

first a small 0 makes the algorithm far away from the local optimal solutions, 

and then a large 6 expedites the convergence to the global optimality. In the 

literature [53], the recipes of selecting 6 include: 

Exponential Schedule: 

e{k) = % (5.4.1) 
/Vrv 

where k is the number of iterations for each l ink, Oq is a small init ial value, 

and a is a constant satisfying 0 < a < 1. 



• Logarithmic Scheduling 

= ( 5 . 4 . 2 ) 
c 

where c is a positive constant independent of k. 

Based on these two schemes, the solutions generated by the algorithm con-

verges to those of global optimal solutions w i th probability converging to one. 

On the other hand, too large a 6 may lead to numerical problems when calcu-

lating the probabilities in (5.2.4) or (5.2.13). Specifically, the numerical problems 

largely come from the constraint of computational precision of the simulation 

software. To avoid the numerical problems, a reasonable 6 is necessary. How-

ever, in a random infrastructureless wireless network, a reasonable 6 is gener-

ally diff icult to guarantee. Therefore, it is crucial to adaptively adjust 6 along 

wi th the update of transmission power. In what follows, we w i l l show that 

SEER stil l can be guaranteed to converge to the global optimality even though 

each l ink adaptively chooses 9 at each iteration. 

For the practical implementation, at the time epoch 亡汝，lirik i first determines 

a reasonable 0{k) based on piUk—) and (5.4.1) or (5.4.2), and then updates its 

transmission power to PiiUk) according to the distribution 

^""^[uiyipup^k'))) 
MPilPiiUk-)) 二 7~~ 

為exp(馳丨二『))) 
(5.4.3) 

for Discrete-SEER or according to the PDF 

fi{Vi\Vi{Uk-))= “ 
pmax 

o' 

0, otherwise 

119 

Pi e Vi 
(5.4.4) 



for Continuous-SEER. In particular, 9{k) is set to be 

0{k) = m m { U { y { p ( t i k - ) ) ) x K, (5.4.5) 

a氏 
or 

m = mm{U(y{p{ti,-))) X K (5.4.6) 

according to the recipe of selecting 6. Herein, IC is a parameter reflecting the 

computational precision of the software used to run SEER. In general, there 

exists a l imi t R for K, which implies that the numerical problems is possible 

to happen once K > K. This is because of the fact that too large a K leads to 

(5.4.3) or (5.4.4) being § due to the computational precision of software itself. 

Hence, to avoid numerical problems, K has to not be larger than 爱,which can 

ensure the denominator of (5.4.3) or (5.4.4) to not be equal to zero. We assume 

that each l ink is equipped w i th the same software, and thus it is reasonable to 

set the same K for each link. Compared w i th a fixed 9, adaptively adjusting 

6 facilitates the achievement of a reasonably large but finite 0 for each link. 

More importantly, taking Discrete-SEER for example, we can prove that, w i th 

an adaptive 6, Discrete-SEER still corresponds to an ergodic Markov chain that 

converges to a stationary distribution f l satisfying 

n 111 — r iM = n , 

where 11/ = [ ^ i { P i f P 2 ) y P v P 2 ^ w i th 

(5.4.7) 

^iiPvPi)= 
MPIAPU) ^Ph-i = Px-i' 

0 otherwise. 
(5.4.8) 

The fol lowing simulation shows that as a large enough K, but smaller than 

is chosen, SEER converges to the global optimal solution to Problem (UM). 

iln this thesis, Matlab 7.0 is used as the simulation software, whose K is equal to 745. 



We consider a eight-link network where the links are randomly placed in a 

lOm-by-lOm area. Let the channel gains G" to be equal to djj^, and the resultant 

channel gain matrix is 

G = 

0.7648 0.0046 0.0086 0.0052 0.0131 0.0040 0.0024 0.0110 

0.2713 0.0848 0.0388 0.0240 0.0392 0.0285 0.0230 0.0168 

0.0931 0.0058 0.5152 0.1668 0.0020 0.0017 0.0053 0.0014 

0.0160 0.1104 0.4544 0.8802 0.0034 0.0066 0.2532 0.0020 

0.0297 0.3983 0.0132 0.0105 0.1106 0.2520 0.0432 0.0311 

0.0016 0.0079 0.0009 0.0008 0.0552 0.1794 0.0033 0.0386 

0.0030 0.0427 0.0248 0.0459 0.0015 0.0039 0.3772 0.0009 

0.0026 0.0077 0.0011 0.0010 0.3460 0.1628 0.0030 0.2852 

The remaining setting is the same as that in the first simulation of this chap-

ter. For this realization, based on the exponential schedule and different K, we 

run Continuous-SEER wi th adaptively adjusting 9, and plot the attained total 

throughput as wel l as the number of iterations needed for convergence in Fig. 

5.5. In Fig. 5.5, the optimal total throughput achieved by MAPEL is also plotted 

for comparison. 

From Fig. 5.5, we see that both the frequency and the amplitude of oscilla-

tions decrease when K increases. This result is due to the fact that K reflects the 

degree of greediness. With a small K, links are more wi l l ing to explore power 

allocations other than the optimal ones. Therefore, there are more oscillations 

when the algorithm converges. On the other hand, w i th a large enough K, the 

oscillation diminishes. In this case, Continuous-SEER converges to a strategy 

that only picks the global optimal power allocations. 

On the other hand, we know that the numerical problem may appear when 

Continuous-SEER uses a fixed 6. This is because that the choice of 6 heavily 

depends on the network topology. It is diff icult for each l ink to estimate the 
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Figure 5.5: Obtained Total Throughput and number of iterations for different 

adaptive 6. 

whole network topology, and thus a 0 resulting in numerical problems is chosen 

wi th high probability. On the contrary, the adoption of adaptive 9 can avoid the 

numerical problems, because (5.4.5) can avoid too large 6, as long as K does 

not exceed the computational precision K of software. As the matter of fact, the 

case of K being smaller than K can easily be guaranteed. 

5.4.2 Effect of Message Delay 

In this subsection, we observe the effect of message loss on the convergence and 

performance of SEER. Due to the existence of propagation delay, transmitters 

generally cannot be informed the information of SINR and RSP in time when 

the corresponding receivers sense a change in SINR or RSP. This implies that 

the information of SINR and RSP obtained by the transmitter may correspond 

to the previous transmission power allocation, rather than the current transmis-

sion power allocation. In this case, some links have to update their transmis-

sion power according to the out-of-date SINR and RSP information, which may 
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affect the convergence and performance of SEER. In the following, we would 

observe the effect of message delay. 

• Convergence 

In this thesis, we observe the effect of message delay on the convergence of 

SEER when the setting of wireless network is as follows: 

1. Each l ink i picks a sequence of time epochs { “ i , tn + I, tn + 2Z,…}, at 

which its transmission power is updated; 

2. For all links, all first time epochs of updating transmission power satisfy 

亡 11 < < … < tMi < /； 

3. Message delay dj satisfies 0 < di < I for each l ink i. 

For such a wireless network, the following lemma can be easily obtained. 

Lemma 5.1. If\ti-n — Ui\ > difor each link i > 1 and \tMi — ^n — / | > di, then 

the message delay has no effect on the convergence and the performance of SEER. 

Lemma 5.1 is followed due to the fact that each l ink always updates its trans-

mission power according to the information of SINK and RSP reflecting the 

current transmission power, when the message delay satisfies — tn] > di 

for each l ink i > 1 and \tMi — hi —^ > (h. 

On the other hand, when the message delay of some links j happens to be 

tj-ii — tji\ < dj in the case o f ; > 1 or \tMi - hi — l\ < di in the case of j = 1, 

the fol lowing simulation would show that the performance of SEER may be 

degraded, although the convergence is still guaranteed. This is because a such 

l ink j updates its transmission power according to the information of SINK and 



RSP corresponding to the previous transmission power allocation, rather than 

the current transmission power allocation. 

We consider a ten-link network where the links are randomly placed in a 

lOm-by-lOm area. Let the channel gains G” to be equal to and the resultant 

channel gain matrix is 

= 1 0 一、 

63.3147 

< 

0.0085 0.0128 0.0734 3.0482 0.0052 0.0053 0.0137 0.1181 0.0214 

0.0050 22.5749 9.6020 0.1459 0.0141 2.1076 0.0181 0.0070 0.0046 0.0037 

0.0052 40.9412 11.5358 0.1584 0.0147 1.6196 0.0171 0.0069 0.0046 0.0036 

0.0173 1.8899 22.5381 7.7901 0.0789 0.2865 0.0235 0.0148 0.0133 0.0083 

3.7268 0.0115 0.0188 0.1351 38.0668 0.0075 0.0080 0.07?? 0.2113 0.0330 

0.0027 0.1574 0.2721 0.0385 0.0078 40.3408 0.0635 0.0111 0.0043 0.0045 

0.0054 0.0284 0.0712 0.0548 0.0221 0.1944 8.2551 0.1834 0.0216 0.0324 

0.0059 0.0060 0.0115 0.0171 0.0207 0.0156 0.7768 43.3574 0.0769 0.4113 

0.0300 0.0062 0.0115 0.0340 0.1464 0.0089 0.0459 1.2286 9.4236 6.4360 

0.0172 0.0064 0.0124 0.0301 0.0781 0.0111 0.0962 11.4590 1.1122 7.5392 

Likewise, let { h u h u " • J m i } be {0.1187,0.3291,0.3392,0.3427,0.4186,0.4865, 

0.5186,0.6933,0.8565,0.9716}, I be 1 millisecond, and K=600. Other system pa-

rameters are the same as that in the first simulation of this chapter. 

For this realization, we run Continuous-SEER w i th different message de-

lay, and plot the attained total throughput as wel l as the number of iterations 

needed for convergence in Fig. 5.6. In Fig. 5.6, the optimal total throughput 

achieved by MAPEL is also plotted for comparison. According to Lemma 5.1, 

the parameter setting of this simulation shows that the message delay has no 

effect on the convergence and the performance of SEER, as long as the delay 

di, J m ] h [0.1471 0.2104 0.0101 0.0035 0.0759 0.0679 0.0321 0.1747 0.1632 

0.1151]. In Fig. 5.6, the third curve (i.e., di = 0.003 for each l ink i) reveals this 
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Figure 5.6: The effects of message delay on the convergence and the perfor-

mance of Continuous-SEER I 

conclusion. It can be seen that from Fig. 5.6, the message delay has few effects 

on the convergence and the performance of SEER for this network topology. 

We consider another ten-link network w i th the channel gain matrix 

G = 10-2x 

80.3148 0.0983 0.0051 0.0022 0.0038 0.0027 0.0071 0.1430 0.0113 0.0124 

0.3092 11.0005 0.0091 0.0069 0.0038 0.0114 0.0145 0.0726 0.0081 0.1216 

0.0047 0.0052 13.7289 0.0471 0.0769 0.0082 5.0069 0.0173 0.0277 0.0168 

0.0022 0.0055 0.0337 35.5289 0.0048 0.0823 0.0425 0.0041 0.0033 0.0418 

0.0091 0.0038 0.3451 0.0048 23.6047 0.0020 0.2116 0.0692 2.4270 0.0052 

0.0037 0.0192 0.0124 1.1172 0.0026 8.7495 0.0185 0.0048 0.0024 0.4994 

0.0174 0.0199 1.4559 0.0424 0.0483 0.0137 12.0851 0.0862 0.0490 0.0658 

0.8926 0.0271 0.0194 0.0031 0.0189 0.0026 0.0270 51.4990 0.1178 0.0113 

0.0117 0.0037 0.1083 0.0032 3.0174 0.0016 0.0846 0.1029 58.7692 0.0042 

0.0187 0.1430 0.0332 0.0900 0.0059 0.1125 0.0653 0.0261 0.0076 17.0980 

L e t 仏 • • ,tMi}be{0.0468,0.1126,0.1846,0.1971,0.3935,0.4565,0.6334,0.7256, 

0.7661,0.8430}, I be 1 millisecond, and K=600. Other system parameters are the 
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Figure 5.7: The effects of message delay on the convergence and the perfor-

mance of Continuous-SEER II 

same as that in the first simulation of this chapter. 

For this realization, we run Continuous-SEER wi th different message de-

lay, and plot the attained total throughput as well as the number of iterations 

needed for convergence in Fig. 5.7. In Fig. 5.7, the optimal total throughput 

achieved by MAPEL is also plotted for comparison. From Fig. 5.7, we find that 

the results in the third curve verify Lemma 5.1. On the other hand, we further 

find that the convergence and the performance of SEER is not sensitive to the 

message delay. 

5.4.3 Effect of Message Loss 

In this subsection, we observe the effect of message loss on the performance of 

SEER. Due to the signal strength attenuation and the mutual interference be-

tween wireless signals, the transmitter perhaps cannot decode the information 

of SINR and RSP involved in the control packet, which is regarded as message 

loss. In this case, the transmitter has to update its transmission power accord-
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Figure 5.8: The effects of message loss on the convergence and the perfor-

mance of Continuous-SEER I 

ing to the out-of-date SINK and RSP information, which may have effects on 

the convergence and the performance of SEER. Denote by p the probability of 

message loss. In what follows, we observe the relationship between p and the 

convergence and the performance of SEER. 

Based on the above two network topologies, we run Continuous-SEER wi th 

different p, and plot the attained total throughput as wel l as the number of 

iterations needed for convergence in Figs. 5.8 and 5.9. From these two figures, 

we find that Continuous-SEER can always converge to the global optimality 

even though there exists the message loss. However, the message loss may 

affect the convergence speed of Continuous-SEER, 

5.5 Summary 

We have presented a distributed power control algorithm, SEER, which effi-

ciently converges to the global optimal solutions despite the non-convexity of 
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Figure 5.9: The effects of message loss on the convergence and the perfor-

mance of Continuous-SEER II 

the power control problems. Built upon Gibbs Sampling, the key idea of SEER 

is that each l ink iteratively and asynchronously update its transmission power 

by opportunistically exploring the entire surface of the system uti l i ty function. 

Our results show that SEER converges much faster to the global optimal solu-

tion than the centralized algorithm MAPEL. This implies that the algorithm is 

a preferable choice even in systems w i th a centralized controller. Besides, we 

find that SEER is robust against message delay and losses. 
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Chapter 6 

Conclusions and Future Work 

The final chapter summarizes the major contributions of this thesis and high-

lights some extensions to this work. 

6.1 Summary of Thesis Contributions 

This thesis investigates the pure power control issue as wel l as the joint power 

control and scheduling issue in interference-limited wireless networks. The 

main contributions of this thesis are summarized as follows: 

In Chapter 2, a monotonic optimization framework for the system uti l i ty 

maximization problem is established, which allows us to bypass the non-convexity 

issue of the problem and exploit monotonicity to devise an efficient algorithm, 

MAPEL. Being a global optimal algorithm, MAPEL provides an important bench-

mark for performance evaluation of existing and newly proposed power con-

trol heuristics in this area. For example, by comparing w i th MAPEL through ex-

tensive simulations, we can gain deeper understanding of some existing state-

of-the-art centralized and distributed power control algorithms for the same 



target. 

In Chapter 3, the work is extended to maximize the total system uti l i ty in 

multi-carrier wireless networks. Based on the monotonic optimization frame-

work, we present M-MAPEL to achieve the global optimal solution to the SUM 

problem in multi-carrier wireless networks. As a global optimal algorithm, M -

MAPEL can be used as a benchmark to evaluate the performance of exiting 

power control algorithms for the same target. 

Due to the fact that power control alone is not sufficient to eliminate strong 

levels of interference between close-by links in dense networks, we investi-

gate maximizing a system uti l i ty through joint power control and scheduling 

in Chapter 4. We first reformulate the non-convex joint power control and 

scheduling problem into a MO problem, and then propose the S-MAPEL algo-

r i thm to efficiently obtain the global optimal joint power control and schedule 

strategy. By exploiting the inherent symmetry of the optimal solutions, an ac-

celerated algorithm, A-S-MAPEL, is also proposed. Guaranteed to converge to 

the global optimal solution, S-MAPEL provides an important benchmark for 

performance evaluation of other joint power control and scheduling heuristics 

in this area. Using this benchmark, we f ind that the performance gap between 

on-off scheduling and joint power control and scheduling is negligible. Besides, 

we show that the pr imal /dua l decomposition fails to achieve the global optimal 

solution to the joint power control and scheduling problem. 

Finally, in Chapter 5, we present a distributed power control algorithm, SEER, 

which efficiently and optimally maximizes a system ut i l i ty despite the non-

convexity of the power control problem. Moreover, in SEER, each l ink distribu-

tively and asynchronously updates its transmission power w i th l imited mes-

sage passing among links. Our results show that SEER converges much faster 

to the global optimal solution than the centralized algorithm MAPEL. Besides, 



we find that SEER is robust against message delay and losses. 

In summary, this thesis is a deep and systematic study on power control 

and scheduling in interference-limited wireless networks. Four key issues of 

particular interest are investigated: (i) the establishment of a monotonic op-

timization framework for non-convex power control problems; (ii) the gen-

eralization of the proposed framework to joint scheduling and power control 

in dense networks; (iii) the development of low-complexity algorithms by ex-

ploit ing the special features of the formulated problems; (iv) the development 

of distributed power control based on the concept of Gibbs Sampling. To the 

best of our knowledge, this is a first attempt at exploiting the hidden mono-

tonicity to solve a nonconvex engineering problem efficiently. We believe the 

new framework opens up many interesting avenues for researchers to devise 

global optimization algorithms for problems that have been open for years, as 

most optimization problems in communications and networking are essentially 

monotonic, although not convex. 

6.2 Future Work 

We propose the fol lowing extensions to the work presented in this thesis. 

The results in Chapter 3,4, and 5 are largely based on the recent advances in 

monotonic optimization. The idea behind these results help us to pray the way 

for studying non-convex resource allocation problems in communications and 

networking. We believe that monotonicity is another important property be-

sides convexity that can be exploited to efficiently solve an optimization prob-

lem. By exploiting the hidden monotonicity of optimization problems, we can 

bypass the non-convexity issue and obtain the global optimal solutions effi-

ciently. 



Joint scheduling and power control problem is by nature NP-hard. Hence, 

it requires exponential computational complexity w i th any solution method, 

as long as the global optimal solution is to be obtained. Correspondingly, as 

a global optimal algorithm, S-MAPEL, has a considerably high computational 

complexity. In our future work, variants of the algorithms w i l l be developed to 

expedite the convergence and reduce the computational complexity. 

In our current work, we only consider the case of single-hop wireless net-

works. I t wou ld be an interesting future research to extend the joint power 

control and scheduling work to a mult ihop network. As such, we can first 

formulate the flow control problem into a joint power control and scheduling 

optimization problem, and then solve the corresponding problem by exploiting 

its hidden monotonicity. 

Besides the centralized resource allocation discussed in this thesis, there are 

also interesting problems on distributed resource allocation in wireless net-

works. With the proliferation of wireless infrastructureless networks such as ad 

hoc and sensor networks, it is increasingly crucial to devise a scheme that im-

plements resource allocation in a distributed fashion. SEER is an attempt that 

each l ink distributively and asynchronously updates its transmission power 

w i th l imited message passing among links to maximize the overall system util-

ity. In our future work, we would endeavor to reduce message passing among 

links under the constraint of meeting the performance requirements. Besides, 

we would analyze the effect of message loss and message delay on the perfor-

mance of power control. 

In this thesis, we assume that the channels are slow fading. In our future 

work, we can extend the current work to wireless networks w i th time-varying 

fading channels. In such a case, the stochastic resource allocation has to be 

taken into consideration. 
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