
t 

* 

A Hub-to-hub Network Revenue 

Management Model 

H E , Hongzhi 

A Thesis Submitted in Partial Fulfillment 

of the Requirements for the Degree of 

Doctor of Philosophy 

in 

Systems Engineering and Engineering Management 

The Chinese University of Hong Kong 

July 2010 



i 

UMI Number: 3446024 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

: In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

UMI 
Dissertation Publishing 

UMI 3446024 
Copyright 2011 by ProQuest LLC. 

All rights reserved. This edition of the work is protected against 
unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



< 、 

Acknowledgements 

I would like to thank Professor Yoiiyi Feng, who initiated this thesis project and 

guided me in its direction. Thanks to Liuxin Chen, Zhan Pang, Ying Wei and 

Lijun Ma, my fellow senior researchers in the SEEM Department at CUHK. They 

provided me with a lot of help by sharing their personal research experience. I also 

acknowledge a debt of thanks to the generous help of Professors Shuzhong Zhang 

and Frank Chen, who spent much time reading and giving comments on both the 

technical aspects and the presentation of this thesis. I would like to express my 

sincere gratitude to Professor Houmin Yan for his critical comments made during 

• the progress presentations on improving this thesis from which I have greatly 

benefited. I would also like to thank experts in the field of optimization Professor 

Shuzhong Zhang and his PhD student, Simai He, for their insights and technical 

assistance. I especially thank Simai He, who, on an occasional Easter holiday 

trip, provided me with the central idea of the primal-dual technique leading to 

the proofs of the main theorems in the fourth chapter of this paper. 

And thanks to my parents for their great support during my five years' absence 

from home. Without any one of these persons, this thesis project would never 

have come into being. Last but not least, I give my heartfelt thanks to the divine 

presence of the Lord Jesus Christ for the miracles and signs during my five years 

of study at CUHK. 



• • 

Abstract 

4 

The subject of this study is the revenue management problem in hub-to-hub 

airline networks. The network consists of two hubs and a connecting flight be-

tween them with spoke cities expanding outwards. The airline produces various 

itineraries within the network, and its flights compete with each other for lim-

ited flight capacities during a fixed booking period. Although stochastic dynamic 

network revenue management has been theoretically established, in reality its im-

plementation is still heavily dependent on linear programming-based heuristics. 

Simpson (1989) and Williamson (1992) proposed bid price control, which is now 

widely adopted by major airlines. Bertsimas and de Boer (2003) proposed cer-

tainty equivalent control, which has been little studied by RM researchers. In this 

thesis, bid price control is first explained, and then the structural properties of the 

hub-to-hub network are investigated. Using the Lagrange dual-function and the 

primal-dual relationship, it is shown that the threshold values used in bid price 

control have some monotone properties in the network's capacity states. The cer-

tainty equivalent control is then applied to the hub-to-hub network. By linking 

the network revenue management problem with a maximum-weight circulation 

problem in network flow, the optimal value function is shown to be supermod-

ular in certain capacity dimensions, and submodular in other dimensions. This 

leads to the monotonicity of CEC thresholds on some short-haul itineraries. The 

notion of L^ concavity developed by Murota and Shioura (2005) is applied to this 

work, and it is shown that even the CEC thresholds on some two-leg or three-leg 

long-haul itineraries are monotonically increasing or decreasing in certain legs' 

“ i 



capacities. It is hoped that the new structural properties found in this thesis can 

lead to a reduction of the computational work in the implementation of both the 

bid price control and the certainty equivalent control in the hub-to-hub airline 

network. 

keywords: Hub-to-hub network, bid-price control, certainty equivalent control, 

combinatorial optimization, structures, prirnal-dual, revenue management, air-

line network； monotone thresholds, supermodularity/submodularity, L̂  concav-

ity, Lagrange dual. 
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摘要 

c 

在本文中我们研究一个从枢纽至枢纽的航空网络之收益管理问题。我们的焦点 

将放在它的结构性质上。此网络由两个y枢纽城市和一条中间联线，以及周边的 

福射城市和枢纽到它们之间的航班所组成。一个航空公司经营多条在各城市对 

之间的航线。在一个固定期限内，各航线之间为有限的航班资源而竞争座位分 

配额。虽然随机动态网络收益管理理论已被建 i ,但在现实中它的实行在很大 

’程度上依赖于基于线性规划的启发式算法。于是我们将注意力放在两个启发式 

方法上：一个是由Simpson (1989)和Williamson (1992)提出的所谓bid-

price控制（BPC)，另一个是由Bertsimas和de Boer (2003)提出的所谓 

certainty equivalent控制（CEC)。我们先解释什么叫BPC,接着我们研究它在我 

们的枢纽至枢纽网络中的结构性质。通过使用Lagrange对偶函数与原有对偶关 

系，我们可以证明在BPC里使用的阈值有一些关于网络存量的单调性。然后我 

们应用CEC到这个网络。通过将网络收益管理问题和一个网络流中的最大加权 

环路问题相连接，我们揭示最优目标函数在一些存量维度上分别具有超模和次 

-模性质。它们导致了一些短途航线上CEC阈值的单调性。接着我们将Murota 

和Shioura (2005)所发展的L-natural凹性概念引入到我们的工作。通过他们的 

-些结果，我们可以证明一些双联程和三联程航线上的CEC阈值也同样具有不 

同的单调性。希望通过这些新的结构性质本论文可以为有关行业带来一些系统 

上的新见解以及为航空公司管理人员提供一些直觉上的帮助。 

关键词：枢纽至枢纽网络，bid price控制，certainty equivalent控制，组合优 

化，结构，原有对偶，收益管理，航空网络，华调阈，超模/次模，L-natiira丨凹 

性，Lagrange 对偶。 



» 

/ 

• ‘ > 

Contents 

Glossary - 1 

Notat ions 6 

1 In t roduct ion 8 

1.1 Motivation 8 

1.2 Basic description of the model 11 

1.3 Basic solution procedure 12 

« « 

• . 1.4 Our contri]:)utions 13 

1.5 Structure of thesis 14 

2 Literature review 16 

2.1 An introductory note 16 

iii 

. “ 



• -

2.2 Single-leg revenue managcinciit models 17 

2.2.1 Static models 17 

2.2.2 Dynamic models 17 

2.3 Two-leg network revenue iriaiiageiii(;iit, modds 18 

2.4 Large network revenue management models 19 

3 Network bid-price control 23 

3.1 Introduction to network BP control 23 

3.2 Our model 24 

3.3 Aggrc'gato the rcveinios on an ()D and smoothing 28 

3.4 Concluding remarks 34 

• . 

4 .Structures in the main model 36 

4.1 KKT conditions 37 

4 

4.2 Monotone thresholds 38 

4.3 Extension back to the original inodol 67 

4.4 Concluding remarks • 69 

< 

iv 

* 



( * 

V • 

5 On network C E control 71 

5.1 Introduction to net work CE control ‘ 72 

t 

5.2 Suponnodiilarity, concavity and the CE:C tlirosholds 72 

5.2.1 Rtilatod literature in network Hows 73 

5.2.2 For a two-leg network 75 

5.2.3 CEC thresholds for the hub-to-hub network 79 

1 

5.3 Chapter siiriiinary 85 

6 Numer ica l examples 87 

6.1 Tost for allocation variables 87 

6.2 Numerical test for BP control 90 

6.3 Numerical test for CE control 93 

6.4 Chapter summary 94 

7 Conclusion 107 

‘ 7.1 Summary of research findings 107 

7.2 Contributions 108 

7.3 Future work 11() 

V 

‘ f! 



Bibl iography 110 

i v i 

、 



f 

I 

A 
\ 

List of Figures : 

1.1 Early hub-and-spoke network 9 

1.2 A hiib-to-liub network 10 

3.1 A liub-to-liul) network 30 

4.1 Illustration for Loirirria 1 41 

4.2 Illustration for Theorem 3 42 
-4 

4.3 Illustration for Leinina 2 48 

4.4 Illustration for Lemma 3 51 

4.5 Illustration for Theorem 4 53 

4.6 Illustration for Theorem 5 56 

4.7 Illustration for Theorem 6 58 

vii 
/ 

- * 



• 4 
\ ‘ 

4.8, Illustration for Theorem 7 '. , 59 

" » ‘ 

4.9 Illustration for Corollary 0 . . 60 

‘ 

、 4.10 Illustration for Theorem 8 . . . ‘ G3 

、 
4.11 Illustration for Tlieorcni 9 65 

4.12 Illustration for Theorem 11 66 

‘ 5.1 A circulation problem 76 

5.2 A liul)-t,o-hub network 79 

5.3 The network flow (circulation) roj)rosoiitatioii of the hub-to-hub 

‘ HM network 8(J 

6.1 A simple network 88 

6.2 Example 1 of dual values 90 

fi.3 Example 2 of dual values 91 

6.4 Example 3 of dual values 92 

» 

6.5 Example 4 of dual values 93 

viii 



.. J . . . 

• . -

\ . 、 • ，’ . . 

List of Tables 

0.1 Allocations change as side leg's capacity changes 96 

6.2 Allocations change as middle log's capacity cliaiiges 97 

6.3 Change of dual varial)los 98 

6.4 Fare data 99 

6.5 Demand data 100 

6.6 Example 1 of threshold price 101 

6.7 Example 2 of threshold price 102 
/ 

/ z 
6.8 Example 3 of threshold price ‘ • 103 

6.9 Example 4 of threshold price 104 
J 

6.10 Illustration 1 for the subrnodularity of value function 105 

6.11 Illustration 2 for the subrnodularity of value function 105 

Ik 

ix 

« 



- S . 

'6 .12 Illustration for the siiperrnodularity of value function lOB ‘ 

‘ , 

6.13 niuslrat ioii for the; L" concavity of value function 106 

、 ? 
！ 

、 • 

I 

X 一 
* 

j 
K 



•？ 

Glossary 、 
• 

. B i d price: A net value for a certain leg in an airline network. | 

‘ ‘ I 

B id price control: A method used in controlling airline scat inventory in that \ 

it sums all the bid prices across a certain itinerary and use that as a threshold 
9 •< 

value for making accept/deny decisions on customer fare request. Only the higher 

value customers are accepted. ： 

‘ • 為 • 

* ^ 

Book ing l imi t : The maxirnurn number of seats that can be sold to a particular 

booking class and the booking classes lower that it. 

Cancel lat ions: Events that customers cancel their air ticket bookings. 

态> 

Circu la t ion : In a graph, a flow is called a circulation if in every node the total 

. amount of entering flows equals the that of leaving flows. 

Code-sharing: A contract between two airline companies to form an alliance in 
» 

: that they can list .the other airline's flight by using their own code. 

» » 

‘， Con t ro l a lgor i thm: To employ a math program to approximately represent an 
- ‘ 

會 • • 

MDP and use its optimal solution to heuristically instantiate the parameters of ‘ 

‘ the decision rules of a given class of control policies. 

Cutof f level: A threshold in the fare-class list. Any fare higher than this value " 

is accepted'a request. Also referred to as threshold price, threshold value.‘ 
A " 

- < 

c . 
. Cycle: A dosed (simple) path in a graph, with no -other repeated vertices or 

’ ‘ 表 
edges other than the starting and ending vertices. This may also be called a 

、 
.• ^ - / 

、， ’ 

‘ • 1 

• t 
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simple cycle. • 

Displacement cost: The opportunity cost of consuming a consecutive set of 

flight legs' capacities by one customer. ‘ 
^ 、 

D L P model : The deterministic linear programming model. 

i 

Dynam i c models: Models in revenue management that take future booking 

process into account. 

to 

Expected marg ina l seat revenue ( E M S R ) : The expected marginal revenue ‘ 

of a seat if held open. 

Fare class: A class divided by airlines with corresponding restrictions. 

Fleet assignment: Most airlines have a variety of aircraft types and sizes in their 

- fleets. The Meet assignment process attempts to allocate aircraft to routes in the 

airline network to maximize contribution to profit. There are strong potential 

linkages between fleet assignment and revenue management processes because 

. aircraft assignments determine leg capacities in the network. 

Flight leg: A section of flight that involves a single takeoff and landing. 

Hub-and-spoke network: Airline network with passengers transfer at major 

hub cities to arrive at their destinations. 

I t inerary: A route that a passenger travels through via an airline network from 

his origin city to his destination city. Also called OD. 

2 ‘ 

\ » 



Leg: See flight leg. 

L^ concavity: A function v : R " — R u {+oc} is called L^-concave if v{x — .toI) 

is supermodular in (2，3:0) for V(X,.TO) G R " X R . 

Load factor: The ratio of seats filled during a flight, compared with the full 

capacity of the flight. 

Low-before-high fares: The sequential arrival pattern of customers when low ‘ 

fare customers book before high fare ones. 

M a r k - u p / m a r k d o w n problems: Pricing problems that effect price changes in 

low-to-high or high-to-low order. 

M" concavity: A function t； : R " Ru{+oc} is called AP-concavc if it satisfies 

、 
the following property: £ R " , Vi e supp^(x — y), 3j € supp~{x - y) U 

{0} ’3A。> 0 : + < v{x - A(X： - XJ)) + Hv + a{Xi - Xj)) (VA G [0,QO1). 

Nesting: A seat inventory control approach that makes sure that higher fare 

customers have higher priority in accessing to airline seats. 

No-shows: The events that booked passengers don't show up when the scheduled 

flight departs. 

O D : See itinerary. 

O D F control: Origin-destination fare control. An approach to revenue man-

agement that accounts for all passenger bookings at origin destination level and 

differentiated by fare classes. 

3 
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Oppor tun i ty cost: See displacement cost. 

Overbooking: The practice of selling tickets beyond the airline's capacity in 

case no-shows occur. . * * 

Parallel arcs: In network fiow, two arcs are said to be 'parallel' if every (undi-

rected) simple cycle containing both of them orients them in the opposite dircc-
V 

tion. 

Path: A sequence of consecutive arcs in a graph with no repetition of nodes. 

Simple cycle: Sec cycle. 

Protect ion levels: The seats protected for a certain fare class and higher level 

fare classes. Also referred to as protection limits. 

Restrictions: Conditions that the discount-fare customers are required to meet. 

Revenue management : The practice of controlling seat availability and pricing 

decisions for different booking classes during a ticket-sclling process. 

Seat inventory control: The practice of controlling scat availability to cus-

tomer requests based on current inventory status. 

Series arcs: In network flow, two arcs are said to be ’series，if every (undirected) 

simple cycle containing both of them orients them in the same direction. 

\ 

Static models: Models that set scat protection levels withj^it considering future 

adjustment. (Compare with dynamic models.) 、 ’ 

4 
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Structural properties: Monotonicity of control thresholds and the sup/siibmodularity ^ 

‘ of the optimal value function in OR/MS field. Here we specifically indicate those | 

properties in revenue management field. ！ 
1 1 
-i 
i 

Supermodular i ty: A function f : X ^ IZ is called supcrniodular if /(x) + \ 

/(y). < / (x V y) + /(X A y) for any x ,y € X . 1 
•3 

1 

Submodular i ty : A function f : X ^ is called submodular if /(x) + /(y) > 』 

/(X Vy) + /(X A y) for any x ,y G X . ] 

•1 

Threshold price: (See cutoff level) 1 

Yield management : The synonym of revenue management. 5 
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Notation 

ft fare for fare class i. 

n in dynamic network models means tlio capacities-state of tlie network; 

in other parts of this thesis moans a counter. 

X means the decision variable in static models as how many scats to 

allocate to all the airline network's itineraries, a vector. 

k the remaining time periods. 

m a certain itinerary. 

R( demand realization vcctor; 

detailed explanation see Talluri and van Ryzin (1998). 

u〕k decision variable as whether or not to accept a request for itinerary j at. 

tiine-to-go k. 

Jfc(n) the rnaxiniiini expected revenue (cost-to-go) for a given seat inventory state n 

at time k. ‘ 

(I” the number of seats on leg i used by itinerary j. 

A the matrix [uij . 

the mth column vector in matrix A. 

the demand-to-coine process. 

V^ the aggregate demand-to~comc over the remaining periods after t. 

F the number of flight legs in a network, 

odf an arbitrary origin-destination-fare class combination. 

Q the capacity of leg /. 

fodf the fare for odf. 

6 



Vodf the decision variable of how many scats to allocate to odf. 

dodf the estimated demand-to-come in odf. 

C the network's capacities vector space in tho DLP model. 

A the vector space of the network's dual variables for all legs in the DLP model. 

X a lattice or tho vector spacc of tlio network's allocation variables for all itineraries 

in the DLP model. 

G a graph. 

V the vertex set in graph G. 

A the arc set in graph G. 

P a parallel arc set. 

S a scries arc set. 

wp the weight vector of an arc set P. 

cp the upper bound vector of capacity constraint on an arc set P. 

dp the lower bound vcctor of capacity constraint on an arc set P. 
f 

ws the weight vector of an arc set S. 

cs the upper bound vector of capacity constraint on an arc set S. 

ds the lower bound vector of capacity constraint on an arc set S. 

Xs takes value in {0, 1”，the characteristic vector of S e A. 

7 
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Chapter 1 

Introduction 
It 

Network rcveiiiio iiianageinont (NRM) is a scientific subject that tries to con-

trol the availability and/or pricing of travel scats in different hooking classes to 

maximize the cxpcctod revenues or profits of the net.work. In this tlinsis, only 

hub-to-hub airline networks arc considered (see Figure 1.2 below). 

1.1 Motivation 

Hub-and-spoke networks are a mainstay of the glpbal airline market. Hub cities 

are"found across the world, such as Washington Dulles International Airport and 

Detroit Metropolitan Wayne County Airport in North America, Durban Inter-

national Airport and Bole International Airport in Africa, Beijing Capital Inter-

national Airport and Narita International Airport in Asia, Dublin Airport and 

/ 
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London Heathrow Airport in Europe, and so on. Around such hubs ‘spoke citios 

further expand airline networks. Figure 1.1 illustratos a simple huh-and-spokc 

network. 

Figure 1.1: Early liub-and-spoke network 

Scheduling, fleet assignment and revenue management are the three major opera-

tional aspects in this kind of airline network. Good revenue rnanagcniont decisions 

adds most value to the bottom lino of an airline company, providing 4% - 10% 

increases in company revenues (Fuchs 1987). This thesis considers the network 

revenue management problem in which is a single company manages t he whole 

network's revenue decisions. 

Dynamic hub-and-spoke network revenue iiiariagcinont is theoretically well un-

derstood, but the iiripleriieiitation of the dynamic model is problematic. The 

solution is to focus on a specific network structure and explore the structural 

properties of the model, which may lead to a reduction in the computation work. 

Shifting attention to a specific hub-to-hub network structure, Figure 1.2 illustrates 

I 
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the two domestic hubs of Dallas/Fort Worth and Detroit Metropolitan airports 

in the U.S. operated by American Airlines. 

Figuro 1.2: A hul>to-h\ib network 

Similarly, the figure represents the KLM-Northwest alliancc that connects tlu^ 

inter-continental hubs of Amsterdam Schipliol and London Heathrow airports. 

It's believed that through code-sharing or merger between two large airline com-

panies such as the recent pairings of Air China with Cathy Pacific and British 

Airways with Iberia Airlines, ever more hub-to-hub networks will emerge in the 

global airline market. Efficient hub-to-hub network revenue management is es-

sential in such a globalized contcxt. Nevertheless, remarkably little research into 

hub-to-hub networks has been done in the revenue management field. 
r 

Although this thesis originaUy set out to study the structural properties of dy-

namic models, only the structural properties of static models are hero considered, 

t 

becausc of the time limitations of a PhD program. Future work will extend cov-

erage to dynamic models. 

- 10 
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1.2 Basic description of the model 
# 

The object of my study is the specific hub-to-hub network shown in Figure 1.2. 

The model tries to control the availability of soat inventory for various OD prod-

ucts across the whole network. In the network, customers depart from western 

cities and arrive at oaustern citios, which the airline operates through socallcd 

'waves'. One wave of customers from different origins arrives at Ha in a short 

time interval. Some of them are transferred into another airplane (usually a large 

one), and arrive at destination hub Hjj. Some passengers will then continue to fly 

« 

to the Bi arcsLS via another seamlessly schcdulod departure plan. An airline may 

operate several such waves on the same network oach day. The revenue manage-

ment decision in the model assigns cut-off levels (also callcd threshold price) to 

the fares list for every origin-destination (OD) city pair. Any faros higher than 

this level are accepted, and any fares lower than this level are rcjectod. Many 

researchers have used the future expected value of a marginal seat as the cut-off 

value. A later development was to use the opportunity cost (OC) of the leg capac-

ity as the cut-off value. The size of this practice becomes very large in a dynamic 

network situation, and is usually intractable using the optimal value differences 

as the opportunity cost. To solve this difficulty, two static heuristics are utilized 

in this thesis: the bid-price control (BP control) proposed by Simpson (1989) ‘ 

and Williamson (1992), and the certainty equivalent control (CEC) proposed by 

Y Betsimas and Popescu (2003). Emphasis is placed on the BP control. 

、 
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1.3 Basic solution procedure 

I adopt the bid-price control proposed by Simpson (1989) and Williamson (1992), 

and tho certainty equivalent control (CEC) by Bert.sinias and Poposcu (2003). 

The former is used extensively in today's airline industry, though the latter re-

portedly offers better performance (Bertsimas and Popescu, 2003). The BP con-

trol heuristic works as follows. We first divide the booking horizon into multiple 

stages. For the beginning of each stage wc then forecast the demand in that stage 

and do a mathematical programming-based optimization to optimize the capac-

ity allocations over the entire airline's network. Then the dual problem is solved 

and we get a set of bid-prices for each leg in the airline network which is the 

shadow price of cach leg's capacity constraint in the mathematical programming 

formulation. Bid-price control is a method that sums acrpss a certain route all its 

component legs' bid priccs as the cut-off value for making axxcpt/reject decisions. 

Any fare request lower than this value is roj(3cted, and higher fare roquests are 

accepted. A shortcoming in bid-price control is that it needs to he frequently 

r()-optimized in order to be asymptotically optimal. Williamson (1992) mainly 

discusscd tlie usage of bid price control via illustrations on a three-leg network 

and a one-hub network with four spoke cities. In contrast, tho model adopted 

here considers a more complex and realistic hub-to-h\ib network from which in-

sights into the behavior of bid price controls in more general networks can bo 

determined. 

* 

Certainty equivalent control (CEC) is another way to approximate the optimal 

thresholds and works as follows. Like the bid-price schemc, CEC aggregates 

. 12 
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‘ the future demands and uses the LP value function to approximate the optimal 

value function. The value difference between two capacities is then computed 

as the threshold value. As in Williamson (1992), Bertsiinas and Popescu (2003) 

confined their illustration to a thrce-lcg and one-hub network, whereas the model 

considered here coiicentratcs on a more general network, i.e. the hub-to-hub 

network. It is hoped that the theoretical analysis and numerical illustration 
鲁 

offered here can readers can provide enhanced understanding into the behaviour 

of the two control schemes in more general network environments. ‘ ‘ 

Both of the above methods need to be re-optimized frequently since they per- ’ 

广 

rnit large group bookings even when the accepted fare class has very low value. 

Search-space reduction is thus essential in designing these algorithms. I therefore 

explore the structural properties of the basic optimization models embedded in 

- the two control heuristics, e.g. some kind of monotonicity concerning the hcniris-

• tical thresholds. It is hoped that such properties can reduce the search space 

when re-optimizing the model and re-solving the corresponding dual variables. A 

further contribution is that the results concerning the BP and the CEC heuris-* 

tics may help better understand the properties concerning the optimal threshold 

values. 

» 

1.4 Our contributions 

This thesis makes four contributions. Firstly, it offers a new object in network 

revenue management for the two-hub network which has not previously been 

13 

< 

/ 

V 



se 

explicitly studied by any RM resoarchers. Second, it is shown that the model is • 

equivalent to a network flow problem, and thus has integer solutions. Third, I 

adopt the bid-price control method proposed by Simpson (1989) and Williamson 

(1992), and the certainty equivalent control method proposed by Betsiinas and 

Popescu (2003) to solve the problein. Fourth, the structural properties within 

those controls are studied. In exploring thos(i properties, new methodologies 

are devised, which may provide a now way for studying structural properties in 
iy ‘ ‘ 

dynamic models. 

、 
1.5 Structure of thesis 

The following part of the "thesis is divided into four chapters. Chapter 2 con-

tains a literature review. I first review、the historical development of airline yield 

manageinent research, from the early low-hofore high single-leg models to the 

later dynamic network iiiodeLs. The study of structural properties of revenue * 

management models is then reviewed. r 

. • • - •i. 

Chapters 3 and 4 are the most substantive parts. Chapter 3 restricts attention 

Y 、 

to a network revenue management rnociol and describes the BP control in detail. 

Chapter 4 then explores the structural properties of BP control and illustrates its 

potential usage. The focus here is on the monotone properties of the threshold 

values. Such monotonicity results may lead to algorithmic simplifications and 

• can provide .intuitive understarifding into the controls of the network. 

… 、 14 . 
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Chapter 5 first explains the certainty equivalent control developed by Bertsirnas 

and Popescu (2003) and then adapts it to the hub-to-hub network revenue man-

agement pcoblem. The structures of the certainty equivalent control are then 

studied. This is done by connecting the NRM problem with a inaximiiiii weight 

circulation formulatic^n. 

Chapter 6 serves as a numerical test component for the results in the previous 

chapters. This chapter applies real fare data drawn from airline web sites to 

extensively alter the capacity settings of the network. Tests are conducted with 

Matlab to gain more concrete understanding of the theoretical results obtained 

in the previous two chapters. 

Chapter 7 concludes this dissertation, summarizing the research findings and 

contributions. The thesis ends by identifying some future research directions. 

4 
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Chapter 2 

Literature review 

The purpose of this chapter is to provide a literature review for relevant works 

in the field of revenue management. I first review single-leg revenue management 

models. Then I review multi-leg and network revenue management models. 

2.1 An introductory note 

Airline RM can be classified as quantity-based and price-based. Talluri and van 

Ryzin (2004) offer a detailed account of price-based RM and show how it differs 

from quantity-based RM. Quantity-based RM include single-leg capacity control, 

network capacity control and overbooking, as classified in Talluri and van Ryzin 

(2004). This thesis focuses on the network-capacity control problem. 

16 
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2.2 Single-leg revenue management models 

Work in single-leg revenue management has utilized static or dynamic models. 

2.2.1 Static models 

Most static models in yield/revenue management assume that low-fare customers 

arrive before high-fare ones (see Littlewood (1972) for the first model of this kind), 

‘ and must decide when to switch the opening to the higher fare classes. Littlewood 

(1972) proposed an EMSR approach which indicates that as long as the future 

expected marginal seat revenue excceds the current low fare value, then one should 

stop accepting low-fare discount requests. This was applied by Buhr of Lufhansa 

m 1982 to the two-leg airline network seat allocation problem. Belobaba (1987, 
t 

1989) generalized the Littlewood model (1972) to a multiple fare-classes situation. 

Brumelle and Mcgill (1993) further established that the optimal EMSR approach 

is to determine a set of protection levels. These protection levels are determined 

via EMSRs, as done by Littlewood (1972) and Belobaba (1987). 

2.2.2 Dynamic models 

Feng and Gallego (1995), Feng (2000), Feng and Xiao (2000) extended the low-

before-high model to incorporate mark-up/markdown and reversible price changes 

with a continuous-time dynamic-programming formulation. Hereafter, the as-

sumptions that low fare customers arrive before high fare ones or vice versa 

. 17 
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are dropped. Instead, the decision to accept or deny a fare request is made in 

real-time by allowing the opeahig of multi-fares simultaneously. This is done by 

establishing a threshold value (cut-off level) on the fares list. The multi-fares 

refer to classes with restrictions such as refundability, upgradability, and trans-

ferability etc. This class of models is considered by Diamond and Stone (1991), 

Lee and Hersh (1993), Liang (1999), Robinson (1995), Lautcnbachor and Stidham 

(1999), van Slyke and Young (2000), and Feng and Xiao (2001). For example, 

Lautenbacher and Stidham (1999) formulated the single-leg problem via Markov 

decision process (MDP), where they studied the structural properties of the op-

timal threshold value. After showing that the threshold value decreases in the 

current capacity, Lautenbacher and Stidham (1999) deduced that the optimal 

threshold policy is equivalent to the known booking-limit policy iii the single-leg • 

case. Other rcscarchers obtained similar results. For example, Feng and Xiao 

(2001) obtained the same structural property results as Lautenbacher and Stid-

ham (1999) under a continuous-tirne framework. 

2.3 Two-leg network revenue management mod-

els 

The two-leg network revenue management problem is that there are three itineraries 

competing for limited resources of two-leg flights. Each itinerary is further con-

stituted of multi-fares. The decision in each period is whether or not to accept 

a customer request on each itinerary. You (1999) applied dynamic pricing to 

18 
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two-leg revenue management. Feng and Lin (2004) and Morton (200(3) studied 

the structural properties of the two-leg revenue management problem by using 

continuous-time and discrete-time models. The former put eniphgusis on the mono-

tonicity of the decision variable/control thresholds, while the latter focused on 

studying the second-order properties of the optimal-value function. 

2.4 Large network revenue management models 

The study of large airline networks originated with Glover et al. (1982), who 

formulated the passenger mix problem in a complex airline network into network 

flows. Wollmer (1986) first proposed the linear programming model for large 

‘ network revenue management. 

• ， 

Curry (1990) extended the low-before high model and the EMSll principle de-

veloped by Littlewood and Belobaba to the entire network. Curry first allocated 

the whole network's capacity into all the OD pairs. He then did the one-leg low-

before-high allocation restriction in that specific OD pair based on the EMSR 

‘ principle. 

Williamson's (1992) doctoral dissertation proposed both the booking-limit and 

bid-price control to solve the nesting problem in network revenue management, 

de Boer et. al (2002) further compared the difference between booking-limit and 

bid-price control. 

Bertsimas and Popescu (2003) compared the bid-price control with the certainty 
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equivalent control. They used LP value function to approximate the optimal value 

function. And the marginal value J/l'J(n) - J ^-M 一 is used to approximate 

the optimal marginal value Jt-i(n) - J,,_i(n — /!"”. 

For randomized linear programining in computing bid-prices, see Talluri and van 

Ryzin (1999). 

In theoretical aspect of hid-pricc control, Talhiri and van Ryzin (1998) have shown 

that bid-price control is not optimal. They formulated the optimal control for 

the network revenue management problem by dynamic programining: 

Jk[n) = max E[RkUk{n, /?丄‘）+ A- i (n - Auk{n, Rk))) 

Talluri and van Ryzin established that the structure of the optimal control is: 

/ * 

0 otherwise. 
< 

Jk-i{n) - Jfc-i(n - A^) is called the opportunity cost (OC) on itinerary rn. Here 

we also call it the optimal threshold. Williamson's BP control can bo seen as 

a heuristic for approximating these optimal thresholds. Talluri and van Ryzin 

used a counter example to show that bid-prico control is not actually optimal. 

However, they also showed that the BP control is asymptotically optimal. Thus 

in practice BP control still works rather well. For recent advances in computing 

bid prices, see Adelman (2007) and Topaloglu (2008, 2009). 

For recent advances in computing booking-limits, see Bertsimas and de Boer 

(2005) and van Ryzin and Vulcano (2008). 
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III other aspects of network revenue rnaiiageinent, sec van Ryziii and Mcgill (2000) 

for protecting-limit updates with adaptive algorithms, and see Secoiriandi (2005) • 

for applying the control algorithm, approach to the NRM prohloiii. Robust controls 

for network revenue inanageinent can be found in Porakis and Rods (2010). 

Although many rcscarchcrs have studied various mathematical prograiiiiniiig-

based network revenue management models, they generally do not explore the 

special structure of a specific airline network, as pointed out in [52] :"We use the 

now- standard term network RM-though the term is something of a iiiisnoiner 

because the theory and methodology do not require an explicit network structiiro 

as such." An exceptional case is Morton (2006). He studied substitutability and 

complementarity in network revenue management models and, particularly, in a 

network as shown in Figure 1.1, which he called a bipartite network. His model 
* 

was similar to the model used liere, i.e. the detorininistic linear progiairiiiiiiig 

model (DLP model). 

For the deterministic static network ease, suppose there an、K flight legs in the 

west and L flight legs in the cast. Then the model is: 

max JodfVodj (2.1) 

odf 

s.t. y^ yodf < Cij = 1,2,---，/( + L 

leodf 

, Vodf < (Ldf. 

Morton obtained results that resemble those presented in Chapter 5. Morton 

utilized certain results in network flows and proved that the optimal value function 

is siipermodular in series arc pairs and submodular in parallel arc pairs. 
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Morton's approach was grouncled in economics, i.e. the series arcs an: (K.oiioinic 

complements while the parallel ones arc ocononiic substitutes. Morton did not, 

however, interpret these properties into the iiionotonicity of control thresholds. 

F\irthcririore, he did not get the L^ concavity of the optimal value function in the 

capacities of a pair of scuios arcs, such as (/Ij, H) and (//, B]). 

. However, tlie concern hero is more operational, in that by the siip(ir/sul)inocliilarity 

»aiid L'̂  concavity it is shown that tlie CEC thresholds are monotone on some ca-

pacity parameters, and thus anticipate the reduction of computational work in 
/ 

the implementation process of the CEC. Fuithmiiorc, Morton did not obtain 

results on a multi-hub network such a»s shown in Figure 1.2. In comparison, 

ba.s(;d on this more complicated network, th(; model proposed hon? allows for 

IcMig-route itinerary (three legs). To summarize, a now approach (different from 

Morton's (2006)) to studying network revomio management problems is here pro-

posed which exploits the full structure lying behind a specific network. Therefore, 

it is hoped that it can both provide technical insights for algorithm desigiuMs and 

‘ intuitive understanding of the huh-aiid-spoko systems for aiiliiio network man-

agers. 

I 

。 I 

f 
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Chapter 3 

Network bid-price control 
• . 

• This chapter is a technical preparation for the next chapter. Chapters 3 and 4 

contain the main structural properties for network BP control. 

3.1 Introduction to network BP control 

To reduce the computational effort to get the optimal thresholds Ji{n)—.人(n — 

yl”i) as introduced in Chapter 2, one possible approximation is to associate cach 

leg with a shadow price; then, for itinerary m, the sum of those shadow prices . 

on its legs yields an approximation of Ihe threshold. This is the essence of the " . 

so-called bid-price (BP) control. “ 

The BP control heuristic works as follows: first let D^ denote the demand-to 
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， come process and T>t denote the aggregat(i deiiiand-to-coino over the roniaining 

periods after t. Then we take its expectation (the aggregate demand-to-come) hus 

Dt = E[t>^]. Then foriiuilato 

= max ^ f„df ?；«,//} 
. odf 

s.t. ^ Vodf 1,2 … . , F 

leodf 

as a heuristic allocation model for tho original problem. Then tli(，dual LP of 

the above heuristic iiiodol is forimilatcd. We thon siiiii across a certain route 

with all its dual variables as its threshold price and use this dual value a.s an 

approximation to the optimal opportunity cost .人_i(n) — J<—i(n — /I"'); any fare 

clauss request on that route less tliaii the route's tlir(\sh()ld pdcc will r(ij(^cted. , 

、 - / 

3.2 Our model 

The model is rost-ricted to the hub-to-hiib airline network shown in Figure 1.2. 

This kind of networks oimorgcd in tho air lino indvistry during tho past two decades 
4. 

due to tho emergence of airline alliances or nationwide airline carriers such a.s 

American Airlines. Such networks are mostly used by iiitornatiorial airlines that 
i 

operate code-sharing agreerrieiits between two or more airlines that coinbine thoir 

respective networks together, such as the Northwest-KLM alliance. 

There are three groups of citics in the network shown in Figure 1.2, two groups 

. of spoke citics on the side and two hub cities in the middle. Between each city 
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pair ill ( / !“ H^) , {Ha , Hu ) and (//"，Bj) there is an aircraft ninning this route. A 

customer can travel from /I, to Ha, and tlion switch to another airplane to travel 

to H13, which is his destination city or even further switch to another aircraft to 

the cities located in the Bj region. • 

Some notations arc explained hero, q denotes tho capacity of log I for I = 

1, • • • , /C + 1 + L, which is a given constraint, jjodf denotes the capacity allocation 

into an ODF , which is a decision variable. Collectively, let c = (ci, C2,…，c/^+l+i). 

Although forecasting is very important in the iniplementation of NRM, the issue 

of how to do good forecasting is boyoiid the scope of this work t,o cover and I 

just simply denote the forecasted demand os d„(ij for each odf combination. And 

wc lot m 3 / to denote that itinerary m passes leg / and / € rn to derate tht; 

vice versa. The integer prograininirig version of tho network rc^venue management 

problem is now addrossod: 

inax ^ fodsVodf (3.1) 

odf 

s.t. Vodf < Q, / = , A' + L 卜 1 

leodf 

Vodf < dodf 

Vodf integer 

or 

max ^ Jodf min{4d/, Vodf] (3.2) 

odf 

s.t. yodf < Cij = - , A' -f L + 1 

l^odj 

Vodf integer. 
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Before presenting the main res\ilts in Chapter 4 some preparatory work is pro-

sentcd. 

Firstly, Model (3.1) is a network flow problem with the following form (see Sub-

section 5.2.3 for the graphical illustration) containing the artificial variables: 

z iJ = + L + 1, 

max ^ fod/yodf 

odf 

S.t. yo(V — 2/ 二 0, / = 1’ 2, • •. ’ /( + L + 1 

leodf 

Vodj ^ (Ltij 

zt < Ct 

yodf, Zi integers. 

This immediately l(，ads to: 

P r o p o s i t i o n 1 We have an integer solution by solving the LP rdaxatioii of 

Model (3.1) when all the parameters are integers. 

» 

This will greatly cut clown the computational effort in solving Model (3.1). 

The LP relaxation of Model (3.2) is: 

max ^ fod/yodf (3.3) 

odf 

‘ s.t. yodf < Q , / = 1, 2 , • • • , A ' + L + 1 

leodf 

VodJ ^ 山)df、 
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which is called the DLP model for network revenue iiianagcnient. Proposition 1 

indicates that it has the same optimal solution as Model (3.2). 

The dual linear programming model for Model (3.3) is: 

mill Y " A/q + y ^ fiodfdodf (3.4) 

I odf 

. S.t. ^^ A; + ^iodf > fodf, 

l^odf 

where A/ and fiodf arc the dual variables associated with the leg capacity con-

straints and the demand constraint in Model (3.3). A/ is also called the bid-price 

for leg I. The bid-prico control heuristic is obtained by summing across a certain 

route m all its bid prices: A„i = ^ A/； this is then used as a threshold value; any 

i 广 '任 

\j fare class request on that route whose value is less than the route's threshold value 

is rejected, and any fare class request above that threshold value is accepted. 

It is easy to see that the threshold value A^ defines a minimal acceptablc fare on 

route m. This is denoted as fk here. 

The KKT conditions for the LP Model (3.3) and its dual (3.4) are: 

\人 Y^yoH! - Cl) 二 0 ”3.5 ) 

leods 

f^odfiVodf - (iodf) = 0 

Vodfi y ^ A/ -f- fiodf - f o d f ) = ( ) . 

l^odf 

\ 
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3.3 Aggregate the revenues on an O D and smooth-
噢 

ing 
• > 

It is a little cumborsoiric for the above models to bo expressed in tcrins of 从,办 

• and dodf ‘ I therefore aggregate the total revenues on an O D route and now 

rewrite Model (3.3). Let us first order the fare classes on a specific O D pair m as 

/ i， /2 ,…、 f j、and let, (l\, d2, • • • , dj b6 the corresponding demands. In addition, 

• let = ^ y„df. Then the aggregate revenue function on the mth O D pair 

TmiXm) is a pieccwiso linear concavc function which is of the following form: 

/i.T for 0 < X < dI 

. f2工 + (/i — f2)d\ for di <x < di + (k 

‘ = <. /3X + (/2 — h)d2 + ( / , — h)di for ri, + ris < x < t/j + fl^s + 尚（3.6) 

f j d j + fj-idj-i H h fid\ for x > d] + "2 H + 
\ 

Given the value of , there will be a specified threshold level k on the O D pair ‘ 

m, such that / i ’ … , f k arc opened, but A+i，…、 f j arc closed. Thus we can 

--•» 

convert Problem (3.3) into the following form: 

max ^ (3.7) 

X \<m<2K-\-KL+2L-^\ 、 

• S.t. ^ X,n <C/,/ = l ,2 , - - - , /V ' + L - } - l . . K 
17131 

Let drm{Xjn) denote the subdifFcrential of r爪(工”,）.The next theorem addresses 

the optimality conditions for the reformulated problem (3.7): 
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T h e o r e m 1 The KKT conditions (3.5) in Model (3.3) are equivalent to the fol-

lowing conditions in Model (3.7); ‘ 

- q ) = 0 (3.8) 

lem 

XmliY^Xi e dTrniXrr.)) 二 0. ^ (3.9) 

mBl 

/ ( ^ A/ € drm(Xm)) is the indicator function with 
lem 

I = OifY^Xie drm{xm) 

<em 

/ = 1 i/ else. 

Proof . We classify x'^ into two cases: 

• At (Dk, Dk+i), then drm(xm) = fk+i- From the KKT conditions (3.5), 

Since 0 < yĵ +i < by assumption, we have = 0 and A„, + /î '+i -

t /二 1 = 0. i.e. A 爪 = / ^ j = drm(xm), condition (3.9) is satisfied. Therefore 

the two conditions are equivalent. 

• If a:: = Dk for some k, then 彻m(工m) = [fk+ijk]- Obviously /i^Vi = 0’ 

from constraint in (3.4) A^ > / ^ ” and from condition (3.5) Am < f]^. 

The condition (3.9) is satisfied. Conversely, if < Am < /广，then we 

just let /ij" = - A^ for 1 < z < k. The KKT condition (3.5) is still 

satisfied for the original solution y^^j. 

29 



In conclusion, the KKT conditions are equivalent to (3.8)~3.9 in the transforiTied 

problem. • 

From the above discussion it can be seen that if x^ € (D/t, Dk+\] then = 

fk+i'i if ~ Df̂  then 彻m(工m) = [A+1, Al- Thus the bid-pricc either equals 

fr+\ or takes value in [fk,fkn.-

Figure 3.1: A hub-to-hub network 

Because with those piecewise linear revenue functions it is hard to perform our 

subsequent analysis, we first prove that the piecewise linear revenue functions can 

be approximated by a sequence of difFerentiable, strictly concave functions. This 

is illustrated in the following smoothing theorem: 

T h e o r e m 2 There exists a sequence of differentiable, strictly concave and strictly 

increasing functions that uniformly converges to the piecewise linear 

revenue function 厂m (工m). 

.7 

Proof . By construction. Let Dx = di, £>2 = c/! + c/2, - ••，D., = ^ dj. We first 
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select a small interval [Dk — Dk/n, Dk]. Then we let 

g{x) = ax^ + bx'^ + cx 4- f/ for x G [/A- — Dk/n, Dk] (3.10) 

satisfying 

g(D, - D,/n) = r{D, - D,/n) (3.11) 

9{D,) = r{D,} 

. (/(Dk - Dk/n) = A - i 

= fk. 

Let 00 = Dk — Dk/n + tOk/n, t e [0, 1], then let 

Pi ⑴=g{x) = a't^ + h't^ + ct + d' 

and a = r(Dk — Dk/n) , P == r(Dk). From Equation (3.11) we have 

d' = Q 

+ + + = p 

c = fk-\Dk/n 

3a + 26' + c' = fkD,/n. 

It reduces to 

+ + = (3 

3a + 26' + c = D k / n f k , 
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and so 

a = Dk/nfk + Dk/Tifk-\ 

Y = 3/3 — I - D F C / N A 

c = Dklnfk-\ 

d' = a 

and 

" " ⑷ = 

= + 6Dk/rih-i + 12q - l2P)t + 6 卢 - 6 a — ④ k / n h - x — 2Dk/nU). 

"'I'(O) = ^ ( 6 / 3 - 6Q - 4D ,- /NA_ I - 2D , /NA-) 

r//(l) = ^Dk/nfk + 2Da:/7IA-i + 6Q - 6/3. 

Since P - a = r{Dk) — r{Dk 一 Ok/n) = Dk/nfk-], the last equations are trans-

formed into 

y'liO) = - h) = ̂ (A-, - A) 

gW = - A-,) = ̂ (A- - A-i). 
•k 

To make it concave, let h{x)= 
gi(t) - Me{\ - It is easy to verify that h{x) 

still satisfies Equation (3.11). 

h " { x ) = 盖 ( 刺 - M ( 1 2 , 2 - 1 2 … ) ） 

, - . = — — 3^) - M{12t' 一 m + 2)). 

32 



The above is maxiiiiuiii at t = -ri/{DkM){fk-\ - fk) + 1/2. Lot fk-、- A = A, 

n/Dk = 0\ then the optimum value is expressed as -OA-A^/M-I-M. Becausc 

we can take M arbitrarily in [20A, oo], we just take it as '29A here. In this case: 

-OA - 66>2A2/M + M = -6>A - 36>A + 26IA = -20A < 0. 

Therefore by adopting M at 26A we can assure that fi{x) is strictly concave. 

Notice that this together with (3.11) indicate that h(x) is also strictly increasing 

in {Dk — Dk /n , Dk]. We smooth For each k and then get a differentiable concave 

function that only takes different values at [Dk — Dk/n, Dk) from r„,(3:„,). Suppose 

it is Then 

KJxm) - < max { 7 . 爪 — - D,/n)}. (3.12) 
1 ̂  Aĉ  *y 

As n —cx), the above uniformly tends to zero. Therefore converges 

uniformly to 口 

Now we have a sequence of strictly concave, differentiable and strictly increasing 

functions (^m(^m)). Let us take out a specific set of functions fC(x„^) for m = 

1,2，…,KL + 1 + + L in the sequences here and temporarily omit the super-

script n. Now let us substitute the revenue functions Tmi^m) in (3.7) with the 

strictly concave, differentiable and strictly increasing functions for rn = 

1’ 2 ’ . . . , K L -f 1 + /C -h L. Then we get the following model: 

max ^ hrriixm) (3.13) 

X l<m<2K-\-KL+2L+l 

s.t. Y^Xrr^ < Q,/ = ’ A' + L + 1. (3.14) 

m3l 

Notice that on each of the single leg routes {A^, Ha). (Ha , ///?), (Hb . Bt) there is 
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a strictly increasing revenue function. Thus each log's capacity iimst be used up. 

This reduces to the next formulation, i.e. Problem (3.13) can be rewritten fus: 

max ^ hrni^rn) (3.15) 

X \<m<2K + KLi2L+l 

S.t. = = + (3.16) 

Tn3l 

which is called the mam model in our thesis. 

3.4 Concluding remarks 

This chaptcr first examined the general bid pricc control schome proposed by 
r 

Simpson (1989) and Williamson (1992). The specific hulvto-hub NRM problem 

was then addressed. In investigating tho specific structures in our hub-to-hub 

NRM problem, wc found that the IP model of the problem can bo recast into a 

network flow formulation. This assures that the LP relaxation of the IP model 

has integer solutions. This immediately leads on to restricting the focus oii the 

DLP model for the hub-to-hub NRM probloni. 

To uncover tho spccial structure of tho hub-to-huh BP control, the total revenues 

on an OD were aggregated and a smoothing theorem was derived in which the 

piecewisc revenue function for an OD can be approximated by a sequence of 

strictly increasing, strictly concave and infinitely difFcrentiable revenue functions. 

Those functions are easier to deal with when doing subsequent analysis. It is 

hoped that by studying the structural properties in the reformulated problem 

with such revenue functions replacing the original ones we can also derive results 
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from the original problem. This will be done in the next chapter. 
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Chapter 4 
« 

Structures in the main model 

Til is chapter contains the main results of the tliesis. In line with tlio previous 

chaptcr, we now consider the reformulated problem: 

The ma in mode l 

niax ^ /im(-Tm) (4.1) 

s.t. = CiJ = 1, 2, • • • , A' + L -I- 1. (4.2) 

m3l 

Scction 4.3 of this chapter will show that properties obtained in this model can 

be extended to the same properties in Model (3.7) and thus give insights into the 

BP control. 
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We describe the Lagrangian function of Problem (4.1) as: 

L(x，A)= (4.3) 

l<m<2K + KL-^ 2L I ^ thM) , 

To establish the dual function of Problem (4.1), let 

/(A) = max L(x，A). 
x > ( ) 

Then,' solving the probleni 

inin L(X) 
A>0 

gets the iTiiniinizcr of tho dual function. We denote an optimal primal-dual pair by 

(x.，A” or equivaloiitly (x•，A*). In later discussions we may noglcct tho asterisk 

sign and still use it to denote an optimal solution pair if confusion does not arise. 

4.1 K K T conditions 

The optimal shadow prices and optimal allocations for the rc{)lac(;(l Problem (4.1) 

satisfy the following KKT conditions (necessary and sufficient conditions for op-
f 

timality here): 

、 = + (4.4) 

工 ” ' ( I ] A / = ( ) , (4.5) 

"“（工m) < = 1，2’... ,2/\' +A'L + 2L. (4.6) 

tern 

37 



t 

We let A„i = ^ A/ denote the shadow value for OD pair (also calUxl the 
lem 

threshold price for O D pair /爪）.By adopting the notation of w() can rowrite 

Equation (4.5) as 

T̂m ^Am - " “ (工m) ) = () (4.7) 

and rewrite (4.6) as 

Am - fLiXrn) > (). 

Then we study the monotone properties of the optimal solutions (allocation vari-

ables, bid prices, thresholds) to the transforiruxi problems, with tlic original rev-

enue functions replaced by difTcrentiable, strictly coricavc functions. 

4.2 Monotone thresholds 

This section studios the irionotonicity of the threshold values in the hub-to-hub 

network. Although structural properties (nionotoiK? throsholds) have been ex-

tensively studied ill the literature, these kinds of structural properties in general 

ruitworks have been overlooked. We thus focus on tliis issue and study the struc-

tural properties in a more gcnoral network model. The main results that woro 

obtained are based on the dotorininistic LP model. Extension to dynamic models 

will be explored in future work. Apart from the considerations such as algorith-

mic simplification or to gain intuitive understanding, the rnonotonicity properties 

of those threshold values also have other applications. In his two-leg model, You 

(1999) summarized the optimal policy as critical hooking capacities from the 
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monotonicity of one leg's average scat value in another leg's capacity. This dif-

fers somewhat from virtue nesting (nested booking limit) since it depends on a 

set of threshold-curves in joint-variables. The optimality of the threshold curve 

policy relies on the sub/superinodularity of the optimal value function and the 

monotonicity of the average seat value in another leg's capacity. In the following 

, by 'inonotonically incroasing' wc mean 'noiulecroasing'. 

The main proof steps are suinmaf#.ed here: (1) We first project, by contradiction, 

that the dual value is not changed according to the assumed direction. (2) Then 

wc show that the new allocation scheme will overflow the capacity constraints if 

any of them are different from the previous optimal allocation decision. (3) Then 

it must hold that all the allocations in tho now system status an) unchanged. (4) 

Then we change the dual variable under investigation to the opposite direction 

of the current change direction. (5) Wc then show that such a change will cause ‘ 

the dual Lagrange function /(A) value to be decreased, which contradicts the " 

minimality of the function value at the optimal dual variables. (6) Thus the 

dual variable can only change in accordance with the pro-assumed directions. 

(7) By Lemma 1，the corresponding allocation decision's c h a n i r e c t i o n can be 

determined. I am indebted to Sirriai He, a former fellow Ph.D. student and now 

an assistant professor at City University of Hong Kong, who sketched the above 

proof scheme for rnc. Our technique differs from that of Topkis (1978, 1998) and 

Granot and Vcinott (1985), where the former did it in lattice programming and 

the latter did it in network flows. In a complicated environment, such as the NRM 

problem, neither method is entirely satisfactory (see Figure 1.2). In Topkis (1997), 

his prerequisite assumptions are too restrictive, requiring the objective function 
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to be supermodular in all tlie state variables and the constraint region to be a 

lattice, conditions which are violated by the proposed network model. Although 

Granot and Veinott (1985) studied the inonotono optimal solution in a network, 

they restricted their attention to the monotoiiicity of the optimal solution on 

parameters merely appearing in the objective function. But the proposed network 

model is in the constraint region. Although in tho linear objective ease the 

paramctor in the constraint region can be transferred to the objective function 

by a dual-transform, the general objective is however a nonlinear one. Thus the 

vehicle adopted here is t,he Lagrange dual function, which stitches the objective 

function and the constraint region together. 

Of specific interest is how a change in the capacity constraint of Model (3.3) will 

change the optimal allocations arid bid-priccs. Firstly, we found that the bid-

price and allocation have the following inverse direction of change. This result is 

formally stated as: 

L e m m a 1 In Problem (3.13), 

f 

i/入m > K i , Xrn < OT = = 0 . 

if Kn = Ki，the几 im = 

if Kx < A；̂ , then > or = a：；；, = 0. 

Proof . In view of Equation (4.5) in the KKT conditions of the problem, — 

= (). If A„, > and > then together considering the concavity 
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ĵ"̂、：：：：：：：;：：̂  Ha HU 
力 J l r ^ ^ 

Bl 

Ak 

、 
Figure 4.1: Illustration for Lemma 1 

of hrn{xrr^), WO gct K、— > A；, — /^(x；,) > 0. By viitue of tho KKT 

condition, = 0, and so a:: = 0. Therefore, when 入„1 > A : ’ either < 工：、 

7 or Xm = x^ = 0. Next, we assume that K爪=八；"„. If x爪 > > 0, then, in view ^ 

of the KKT conditions,入”！ — /i'^(xm) = 0. Because hrn{xm) is concave, we have 

Am — > A^ — ^^mi^rn) ^ • ’ wtiich is a coiitiadictioii. Thus, Xrji < By 

symmetry, we also have > 工：.It turns out that if = A ; … = By 

symmetry with the first case, the last assertion also holds .̂ • 

This can be understood intuitively as: the marginal value of a product decreases 

when its production quantity gets an increase. 

Now wc demonstrate that the bid price on the leg {Ha , Hb) is iiionotonically 

increasing in the capacities of (yl^, Ha)^ k = 1, 2 , . . . , K . Because of the combi-

natorial nature of the problem the proof here is also rather combinatorial. 

T h e o r e m 3 The threshold A ^ for /„, = {Ha, Hu) is increasing in capacities q , 

/ = 1，...，/\：，on = + 2，...，A' + 1 + 乙. 

This is illustrated in Figure 4.2. 
% 

41 



Figure 4.2: Illustration for Theorem 3 

, P r o o f . Because of symmetry, we only consider 1=1. We suppose Ci is replaced ‘ 

by Cl > Cl and show that in the new set of optimal solution A , Aĵ +i > 八⑷ .T o J 

show this, we denote by U and V the cities in the origin and destination regions i 

respectively. We then divide U into U\ and "2，where Ui — {Ak . k < /(, A人-> \l} 

(Afc and XI arc the shadow priccs of flight Fk = (Ak, H/^j) and U2 = U\U\. We 

divide V into Vj and V2, where = : 1 S / S L’A/^'+i+/ > 入；“,.“} (Ak+i+i 

and arc the shadow prices of flight = (H/j, Bj)), and V2 = V\V\. 

Further, wc denote by V{ = {Bi : Bt £ VuKn > Ki for = {Ha, Bi)}. 

We suppose, contrarily, that < A 了 T h e n wc let A'；̂  —, = + 

A； - A„ - (5 for Fn € {U^Ha ) and A； = A„ - (5 for F„ e {Hn^V；). In addi-
〜 • 

tioii, wc let Ayj = A„ for any other flight F„. It, will be shown that A' is still 

feasible with sufficiently small b under x and that (x, A') still satisfy the KKT 

conditions (4.4)^ (4.5). 

Then, we explore how the allocation variables of itineraries that pass through 

flight Hb) are changed. We break down the detailed discussion in terms of 

• three groups. Group' 1 consists of itineraries included in [U], Hb) and ([/i, V). 

Group 2 consists of itineraries in (U2, Vi) and (Ha , V î)，and Group 3 consists of 
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itineraries in ("2，"/?), ("2，V"2)’ and (Ha, Vi)-

1. In Group 1，consider Ak € Ui and I j = (Ak, Ha) . By virtue of Lemma 1， 

Xj < X* or Xj = X* — 0. By Equation (4.4), if Xj < x*, then 

Z > E ^m (4.8) 

If Xj = X* = 0 for I j = (Ak, Ha ) then 

[ [ X；. (4.9) 
Irr.e{Ak,HB)^{Ak,V) ue(Ak.HMAky) 

2. In Group 2, we divide our analysis into two subgroups 

(a) If Im e {Ha, V,\V{) U {U2, Vi\V(). K < A；., then by Lemma 1 > 

工；or Xm = = 0. 

, (b) If Bt e then A ^ > A；̂  for 1爪 G (///?, Bt) U {Ui,Bt) and thus, by 

Lemma 1 Xm < or Xm = = 0. By applying Equation (4.4) to 

the flight (Hj3, Bt), if x ^ < 工•爪 for any /爪 G (Ui ,B i ) U (Hfj, Bt), then, 

[ X m 〉 [ X；. (4.10) 
Ime(HA,Dt)U(U2,Bt) . Ime{HA,I3,)U(U2Jh) 

• If i m = = 0 for all /爪 6 (Uu Bt) U ( / / / , , B,)’ then, 

E E 工 (4.11) 
- ‘ ‘ Ime{HA,DtMU2,I3t) Irn€{HA,Ot}U(U2,IJ,) 

$ 

3. In Group 3，we consider /爪 e (U2, Hb) U ("2, U (Ha, 1,2). By definition, 
- 、” 

Am < A ^ , and so, by Lemma I, Xm > x*, or Xm — =() . 
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Aggregating the allocation variables of all the itineraries in the above groups, by 

noting that flight Fk'+i is OD pair (//,4, ///?), yields 

^ in . > E 工 ( 4 - 1 2 ) 

(HAMli)e/m,fm7^(HAM/i) ( A M H )€ fm Jrrr / ( H M ) 

For Im = (Ha , ///?), by Lemma 1 

im > or 士m 二 工;n = (4-13) 

n te 

If Xrn > xj^, Equation (4.4) disproves (4.12). Thus Xm = = 0. By Equa-

tion (4.4) 

{HA,HB)eIm,U7t{HA,HB) {HAMB)eIm,Im^{HA,HB) 

and thus all the inequalities of optimal allocations in the three groups must be 

equations. Specifically, = = 0 for itineraries (UI, Ha)U{Hb, V{)U{U\, 

队 H N ) U (F/2,1/2) U ( / / 丄 H B ) U ( / / 丄 V2). 

Now consider the new set of solution A'. Since 入 爪 — = 入 ” ! — /Ci(^m)〉 

K - > 0 for Im e (UuHa) U (///i,V；) U (f/,,l/；), when is suffi-

ciently small 入„1 — 6 — > 0 i.e. Equation (4.6) still holds for (A'’x) 

on these itineraries. As for other itineraries passing {U\, H^) and V/), 

A^ = A„i. Thus Equation (4.6) obviously still holds. And from the above analysis 

XM = X*^=Q for itineraries U {HB. V{) U { U X , V { ) U 队 H^) U 队 U 

{Hy\, His) U (///i，V^2)，Equation (4.5) also holds on these itineraries for the pair 

(X, A'). For other itineraries, it obviously remains true since nothing is changed. 

Thus A' is also optimal in the new constraint state. This is a contradiction in 

that A is the unique optimal solution. Thus it must be that Xk+i > AJc+i. This 

completes the proof of the theorem. • 
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Since the shadow price measures the value of a component in a system, the above 

theorem reveals the complementary nature between the side leg and the value of 

the route Hb)- That is, the shadow value of the route Hb) increases ‘ 

as a side leg's capacity increases. 

As a direct consequence, we have 

C o r o l l a r y 1 The optimal allocation x^ on route /爪 二 Hjj) in Model (3.7) 

is monotonically decreasing in ci, I = 1, • • • , K and the minimal acceptable fare 

level fk on leg Hu) is increasing in q. 

Proof . By virtue of Lemma 1, the above theorem implies that x„, < for 

Im = [Ha, Hb ) . Prom the definition of the piecewisc linear revenue function, this 

means that the minimal acceptable fare level on {Ha , //«) is increased. • 

The following two lemmas are given to prove Theorem 4. The main result is that 

a large group of itineraries have unchanged capacity allocations under a certain 

capacities change. 

L e m m a 2 Consider a capacity change in Problem (3.13) that changes c to c. 

Then, suppose Cn > Cn for the flights {U, Ha) and Cn < c^ for the flights {Hb, V) 

while the capacity change in the middle flight is arbitrary. If > for Im = 
r - f* 

V 

(As, Ha) and Im = (^s, Hb) simultaneously for some k = 1, • • • , K, then, the 

capacity allocations to all the itineraries departing from the city As are unchanged, 

i.e. Xm = for IM e {AS, HA ) U (人’ HB) U {A^, V). 
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Proof. We prove this by a contradiction argument. First we define A„ = — 

A*, Fn e T. If there exists /l., G U that 入 > A*, for /„, = (/i.,, Ha) and 

* 

Im — (As, /f/j), and that an itinerary passing (y\s, H^) has a different allocation 

from the original state, then we define A] as the group of all such origin cities. 

We suppose that A^ for = (/l^, Ha) is tho maximal among all such quantity 

for the flights departing from origin cities in Ai and arriving at hub Ha- Since 

入m > Ki for Im = (/Is, Ha) and 1爪 二 (/U,片w)，then by Lciiiina 1 x…< x；, for 

these two itineraries. 

• If it is the itinerary (/l.^, H t h a t has a different allocation, then it must 

be that Xj < x* for I j = (As, Ha). By Equation (4.4) 

[ > [ X；, (4.14) 

(A, )e / m ， W / j (As.Ha )€ In,, Im # f j 

But Xm < x*^ for Im = (Ag, Hb), thus there must exist B! G V' that i … > i二 

for Jrn = (A , ,Bt) . 

• If it is not (/1.S, H^) but (/！̂, Hb) has a different allocation, then i] = x* 

for I j = (及” / / j ) but Xj < Xj for I j = {As, Hn). Again by applying 

Equation (4.4) to the flight {Ag, Ha) we have 

E > Y^ An- (4.15) 

But Xj < X* for IJ = {As, H^) , we can deduce that there must also exist a 

B t ^ V that > x*̂  for I爪=(As,召 t ) . 

• If not (/I.,, Ha) or {Ag, Hji) but an Bs) G V) has a different allo-

cation, i.e. Xj - x' for Ij = (yl^, H^) and Ij = (yl^, Mb) but Xj x* for 
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Ij = (As、Bs), then either i] > x* or Xj < x* for I〕= /i,). Again by 

applying Equation (4.4) to the flight (A” Ha), WC have 

E E <1- (4•叫 

If Xj < X* for I J = (As, Bs), from the above inequality wc can deduce that 

there must also exist 'a Bt £ V that > x*, for /„i = (/l.,, Bt). 

Thus in all the above cases there is always a Bt €： V that Xm > for ！川 二 

{As, Bt) and hence by Lemma 1 A„, < f6r = (A^, Bt). Since 入”，> A:丨 

for Im = (i4s, Ha ) and / 爪 = H u ) , wc immediately dcducc that 入 < A*̂  

for Im = {Ha , Bt) and /„, = {Hn, Bt). Thus > x*,^ or = x；, = () for 

Im = ("/!，Bt) and 1爪=(/ / / i , Bt). Applying Equation (4.4) to the flight (//"’ Bi) 

we have 

E E (4.17) 
(Ho,Bt)eU,Imjf^iHBMJm=/=(HA,I3,) {H n ME! o Jh) J A ,Bt) 

But Xm > x*̂  for Im = (/Is, -^t). We conclude from the above inequality that there 

must exist /爪 二（yly, Bi) that < x^. Because > x*, for / „ 【 = B t ) , we 

get k' / k. Notice also that 入”，> h;、for 1爪=Bt). Because 入“丨 < A:, for 

/爪={As, Bt), we have 入,„ - A;」/”,—、，，风）> - i . e . 

An — K\Fn = (A,,,HA) > K- K\Fn = iAk,HA)- (4.18) 

Note that from Kj^ < A*̂  for Im = {Ha, Bt) and /„, (7//^, Bi) we deduco 

入,n > A^ for /„i = {As', H^) and Im = (/ls'，"《) and there is an itinerary 

/„i = (i4s/, Bt) passing (凡'，H^) that has a different allocation as in the original 

state {xjn < x*̂  for /爪=(As、Bt)). Thus Ag' also belongs to the group of cities 

47 



«4i. But Agf > A.s-. This is in contradiction with the rnaxiriiality of A., for 

Fs — (As, H^) ill all such side flights. This in turn shows that all the itineraries 

departing from tho city /l.s in the new capacity state inust have ( he same allocation 

as in the original state. • 

Cn 小 ^.f^ Cfi 小 

工m -

Figure 4.3: Illustration for Lemma 2 

Following tho similar line of rea.soiiing, we can draw the followi叩 conclusion 

which is symmetric to the previous one cxcept for a minor diangc. 

L e m m a 3 Consider a capacity change m Problem (3.13) that changes c to c. 

Suppose that C\ > c】，and c^ = c^ for n > If 入…< A*^ for I爪=(/I.,, Ha) 

and I爪={A^, Hb) for some k = 2、…、K and 入”，> A二 for / … = ( / l i ’ / / " ) ’ 

then, the capacity allocations to all the itineraries departing Jtojti the city AS (ire 

unchanged, i.e. = x；^ for-1爪 G (/I,, Ha) U (As, / /«) U (/I,, V"). 

Proof . Wc prove this by contradiction. First we define A„ = — A*, € T. 

If there exists A^ e U that A„i < A；,, for /爪=(y l . , , Ha) and / 川 = ( / ! ‘ ” / / " ) ， 

• and that an itinerary passing (/l^, Ha) has a different allocation from the original 
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state, then we define A2 as the group of all such origin cities. Wc suppose that A., 

for F, = {As, Ha ) is minimal among all such quantities for the flights departing 

from origin cities A2 and arriving at hub //小 Bccausc Aj > 0 for f] = (ylj, Hy\), 

we have A., < Aj . Since < for = {A,, Ha) and /川= ( / I , , //"), tlien 

by Lemma 1 Xm > x*, for these two itineraries. 

• If the itinerary {A^, Ha) has a different allocation, then it must be that 

Xj > X* for I J = (As, Ha). By applying Equation (4.4) to tlic flight Ha) 

whoso capacity is unchanged we get 

[ im < 工 工；n (4.19) 

But Xrn > x*, for Im = (/!.,，//"); tlius, tlioie must exist Bt e V that 

Xru < ^rn ^Or / …= (及 , ， 

• If not {As, Hj\) but {As, H[j) has a different allocation, i.e. 5'。— x* for 

Ij = (yl.s, Ha) but Xj > X* for I] = [A^, //")，then again by (4.4) 

Z < [ :C (4.20) 

can deduce that there must also exist a B( e V that < x*^^ for / „ , = 

[As^Bt). 

• If not {As, Ha) or (/l.” Hb) but an (/!‘” B.,) G V) has a different allo-

cation, i.e. Xj = X* for Ij = (yl.,, Ha) and 1] = Hb) but Xj — x* for 

Ij = (/Is, Bs), then either Xj > x* or Xj < x* for I〕= (/l^, Bs). If Xj > x* 

for Ij = {As, Bs) again by applying (4.4) to the flight (/!.,, H^) we have 

E < E 工 ( 4 . 2 1 ) 
(A,,NA)e/mJrn9^(A,,HA) (/I, )6/,„ ,/m ,//^ ) 
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We can deduce that then.、iinisl also exist a B, G V that < x*, for 

/m = (As^Bt). 

Thus in all the above casos, there; is always ix B, e V tliat i:,„ < rr:, for /,„ 二 

(As, Bt) and hcnce by Lciniiia 1 入„, > A'^ for /„, = (yl.̂ , Bi). Since 入”，< A*̂  

for Im = {As, Ha) and /„, = (/1‘”//")’ we iiistaiiLly doduce tiiat > A； 

for Irn = {Ha, Bt) and I爪=(Hu, B,). Thus < x；,, or i’„, = x；, = 0 for 

Irn = UlA.Bt) and Irn = [Hu.Bt). By applying (4.4) to the flight ( / /" ’B,) w(、 

have 

E E (4.22) 

But < X；, for IM = {AS, BI) and < x；, for /„, = (/7,a, BI) and / … = 

[Hji, Bt). We concliicki from the above iii(K}ualit,y that there must (;xi.st / „ , = 

(/I.,', Bi) that Xrn > B(^causo Xrn < 工:„ foi" /„, = (yH.̂ ., B,), WO get k' + k. Bo-

cause > for Irn = 召f), wo Havo 入m < A*, for /„, 二（/!、"，B̂ ). Bocaiis(； 
一 — � 

八m > Kx for m̂ = (A,, Bt) we hav(，A”, - >̂ ;|/„,=(/̂ ’",）< 八…—…二（/U,"小 i.(，. -

乂” - \:k,=(/、,,’",、）< - K\i-'„ .̂(a,,Ha) (4.23) 

Note that from 入„, > A二‘ for /„, = 13() and = (Hn .B t ) , w(、（k)du(:(、 

入„1 < A ; for /„, = /-/A) and /„, = (/l、’/, " " ) ’ and then? is an itinerary 

Irn = Bi) passing (/!.,/, Ha) that, has a different allocation as in the original 

state(x„, > x*̂  for I 川 = ( / ! « ' ’ B,)); thus, e A2. But A.,/ < A,、’. This 

contradicts the niinirnality of A., for F^ = (A” HA) in all such side flights. Thus 

all the itineraries passing the flight (yl^, Hj^) in the now capacity state must, hav(， 
I 

the same allocation as in the original state. • 
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Figure 4.4: Illustration for Lemma 3 

Note that it is possible that when 入 < A : for /„‘ = (yli, H/[) and I 川 / / " ) 

the itineraries passing the flight {Ai, Ha ) have different allocations, siricc its ca-

pacity is increased, and Xm > x^^ for = (i4i, Ha) or /„, = (Ax, Hn) will 

possibly not violate tlio capacity constraint. Thus in Ihv. assumption of Loiiiina 3 

we singled out tho ease where K 爪 < A*, for /„, = (/Ij, 11 a) and = ( / l i ’ / / " ) 

from tlie general side legs. 

The above two lemmas are very important since they comprise a major block in 

proving Theorem 4 and Theorem 5. 

When the first side arc's capacity increases, as Theorem 3 states, the middle arc 

would be of higher marginal value. Thus for the combining mutes of left-side 

flight and middle-flight, they would have less accessibility to the middle-flight 

leg's capacity. Therefore the OD markets that just using a side leg on the left 

should have increased allocations on themselves. And thus thry have decrciasod 

marginal value (or shadow price). Below is a theorem to address this fact. 

Theorem 4 The bid-pnce 八川 for any Jm = (/l.s, HA),S = 1 ’ . . . , K is monoton-
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ically decreasing in any q, 1 < / < 

Proof. Without loss of generality, wc suppose 1 = 1 . And wc pick up two 

capacities Ci > Ci, but = c„ for other capacities 71 ^ 1. We ‘suppos(、by 
— 

contradiction, that there is F„ G (U, Ha) that A„ - A* > 0. Let A = max{A„ 一 

A；, Fn € (U, Ha)}. Then obviously A > (). Wo let A； = A,, - <5 for F, € J^i, A；= 

+ for Fn G and = for € \ (7*1 NoU^ that the iiioiiotoiie 

relation statod in Theorem 3, i.e. < A* for = (//,、’/-/") is prcservtKl imdei. 

such adjustment. It, shall shown that A' is still feasible with sufficienUy small 

S under x and (x, A') still satisfies the KKT conditions (4.4)^ (4.5). 

Let = {F„|F„ G ( " ’ H a ) . 、 - A； = A}. If E T",, then K、> A；, for 

/„i = Ha) and by Thcoreiii 3 for / … = ( / l ” //"). By LtMiiiiia 3 x,,, = .7;*, = 0 

for /„. = {A,,, Ha) and /„, = (/!.”//")，Xm = for all /…e (.4,, V). Further 

if - = 0 for Irn = {/I.,, Bf), then by Equation (4.G) A„, < A:，which 

implies Kn < A；, for /„. G (//"，B,) U B,) U Bt). By Loimna 3 

and Lemma 1 x„i =工：！ = () for these itineraries. Thus wo can conclude that 

八〉 K n i ^ m ) for these itineraries. 

.To characterize such k)i T'l — {F„|F^ = {Hn, Bt) € {Hb, V), there exists 

(As, Ha) e T", that 入,„ - (•于m) = • for /„, = (As, B,)}. 

Since = K爪 for /，" 6 U ((As. H^) U (As, //")) U ((As, Bt) U 

• (Ha , Bt) U (IIJ}, Bt)) U (IfA, Hb), still satisfy Equation (4.5) for tliese 

itineraries. Sincc AJ„ =入”‘ for /„, = (/Is, Bt) whore (A‘s, H^) G J^\、[H…Bt) G 

7*2, (AJ,J, Xjn) still satisfy Equation (4.5) for these itineraries. Since x„i ~ 0 for 
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Figim! 4.5: Illustration for Theorem 4 

/m e U Ha) U (As, Hb) U (As, Bi)) (By the definition of 

= 0 for Irn € (A”Bf ) wheio {H,i,Bi) C 7~；2)，(八;,"i,,,) still satisfy Equa-

tion (4.5) for these itineraries. Since . 

= x；, = 0 for /„. € U {{I-Ia,B,) | J 

(A'爪’ still satisfy Equation (4.5) for these itineraries as long as S is sufficiently 

small. Thus A' is also optimal in the now constraint state. This is in contradiction 

with the uniqueness of the optimal dual solution.' Thus it must hold that An < A* 

for Fn e {U, Ha). By Lemma 1 无…> x；, for /„, G {U, Ha). • 

This is illustrated in Figure 4.5. 

The thresholds of the left side legs are decreased. The economic interpretation 

of this theorem is that the shadow value of those flights is decreased and they 

would become less important to the whole network. 

C o r o l l a r y 2 In Model (3.7) , the optimal allocation x*, to the route /…= 

(yl/, Ha) is monotonically incTmsing in any Cg, 1 < .s < K and the minimal 

acceptable fare level fk on route (yl/, H/^) is dacreasmg in Cg. 
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Proof. Since Theorem 4 says A*, for any /„i 6 (U, If a ) is decreasing in c,, 1 < 

s < K in Model (3.7), by Lciniiia 1 it indicates that x*, is increasing in Cs- By 

the construction of 7.m ( 而 w e know that the minimal acceptable fare level fk is 

decreasing in (v • 

Now wc study how a side flight's capacity change would affect a long-haul market 

travelling that side flight. 

Theorem 5 The threshold A,” for = (/l^., Hb) is monotomcally decTcasmg in 

Ck for any A: = 1, • • • , A'. , 

Proof. Without loss of generality, we take k == L Wc suppose A already satisfy 

the monotone relation vStated in Theorems 3, 4. If A„, > for /,„ = (/Ii, //^), 

then it is obvious that 入 > A:, for I 爪 = { H a , Hh ) . 

Now in the new constraint state, we let = A„ - (5 for F^ == (//j，///力；let 

7、= {F„|F„ = (A,, HA) or ("仏 B,)，入”，—“；“无川）=0 for I爪=(/^’//") and 
� 、 

/„i = ( H a , lot 入 = A ’ ， + (5 for F„ € T、. Note that the iiioiiotoiio relations 

stated in Thooroiris 3 , 4 7 arc preserved under such adjust,iiieiit a«s long as S is 

sufficiently small. It shall be shown that A' is still feasible under x and (x, A') 

still satisfy the KKT conditions (4.4)^ (4.5). 

Consider other itineraries in ((/, Hjs). If for /川=(/!、”//") e (U, Hb), A„i < A*,, 

‘ then by Lomma 3 .t„i = = 0 for /…=(/l.^, Hn) and /川=(/ I . , , H^). If for an 

_ » 
G (U, Hi3),A„i > 八r,i，t.iien by Lemma 1 < x；̂  for /爪. 

Now consider a flight F„ = (/-/«,召<)G (//^, K). If > A；., then 入”，> A；, 
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for I爪 E (AI,BI) U (HA, BT) U (///j, B,), by tho same procedure as in Lemma 2 

we can show that x„i = = 0 for all these itineraries. If A,, < A:’ then 

无m > X*^ for / … = { H I I , B T ) . Since < x；, for all /„. G {U, HB) and < 

K i or x„i = = 0 for I川=(JJa、Hb、、by applying Equation (4.4) to the 

flight { H A . H B ) we have Y. 云m > E <广 But for 1爪= 

(Hb. Bt) with A„i > A : all I川 e (As, Bt) U ( H a ^ B i ) we have = x；,. Therefore 

X] ^m > Y1 x^.Tlius once Xm > x*^ for any itinerary 

G (///i, the total allocation on the right side flights overflows the total capacity 

of these flights, which contradicts Equation (4.4). Therefore Xm = x*^ for all 

itineraries G {Hn, V). 

If 入„1 = A；̂  for Im = (/!.” //z^)’ then it is obvious that < A； for = {A^, Ha ) . 

By Leinriia 3 = = 0 for I川=(A^, H A ) . 

If K > A； for = {HB, Bt) then by Lemma 3 = = 0 for /„, = (HA, Bi). 

Thus Am — > 0 for /„. = {HA^Bt). Therefore if 入…-/心“无…）二（）for 

Irn = ( H a , B i ) then it must hold that < A； for F], = {Hb, Bt). Since the 

above analysis says that it must be = it must hold that = x*, = 0 

for /„, = [Hu, Bt). In addition, if 入…-Ii'^,{xrn) = () for /„, = (As, Hn) , then 

< for Im = {A^yBi). By Lemma 3 Xm = x*^ = () for /„. = {As^Bt). 

Therefore, by the above analysis (4.5) still holds for (A', x) as long as S is suffi-

ciently small. 

This means X is also optimal in the new constraint state. This is a contradiction 

� M 

with the uniqueness of A. Thus it must hold that A ^ < A*^ for / 爪 = ( A i , Hb ) . 
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This is illustrated in Figure 4.6. 

f 

Figuro 4.6: Illustration for Theorem 5 

C o r o l l a r y 3 In Model (3.7) ， the optimal allocation x^, to the route /,,,= 

(At, Hfj) is monoionically increasing in (my Q for any I < I < K and the minimal 

acceptable fare level ft, on route {Ai, Hu) is decreasing in Q. 

Proof . By Leninia 1 x*̂  for /…e (/!/’ Hu) is increasing In c/’ 1 < I < I\. And by 

“the construction of r„i(x„i) we know that the minimal acceptable faro level •八-on 

the route H^ ) is decreasing in Q. • 

The following theorem addresses how a side flight's capacity change would affect 

a through market that travels that side flight to a destination city in the Bi 

(/ = 1 ,2 ’ . . . , L) area. 

T h e o r e m 6 The threshold A„, for Im = (/U-, Bt) is rnonotonically decreasing m 

Ck for any A： = 1 , … ’ /(, ( = 1,...，L. 
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Proof . Without loss of generality, we take A: = 1 ami let C[ > ci to replacc ci. 

Suppose the corresponding optimal solution (A, x) already satisfy the monotone 

relation stated in Theorems 3, 4 , 5. If there is = Bt) that — A^ > 0, 

by Theorem 6 this means — AĴ ^ > 0. Then wc let A — inax{A„ — 

K , Fn e V)} and = G {Hjs, V), K - K == A}, = = 

{As, > 0 for any /爪 € {A^, Bi), {Hb, Bt) G T.x}. Now in t|pincw con-

straint state, we let = 6 for F^ € 7^4, A'„ =入„ + <5 for F„ E Note that 

the monotonicity relations stated in Theorems 3，4 , 5 arc prosorvcd under such 

adjustment. We shall show that is still feasible with sufficiently small S under 

X and (x，A') still satisfy the KKT conditions (4.4)^ (4.5). 

If (Hj), Bt) e then K讯 > 八;(for Im = {A^ Bt) and by Theorem 5 for 

Im = ("«，Bt), by Theorem 4 for Im = (Ha, Bt). By tiie same line as in Lemma 2 

Xm = X*, = 0 for these itineraries and x^ = x*, for all G (U, Bt). If x^ = > 

0 for Im = (/Is, Bi), i.e. {Ag, Ha ) € •Fs, then by Equation (4.5)入„1 = A^, which 

implies A„. < A；, for I爪 e (A,, Ha) U (AS, Hb) U (AS, Bt). By Lemma 2 

Xm = = 0 for these itineraries. 

From the above analysis, (x, A') still satisfy the KKT conditions (4.4卜(4.5). 

Thus X is also optimal in the new constraint state. This is a contradiction with 

the uniqueness of A as the optimal dual solution. Therefore it must hold that 

入m S /爪 G Mi ’VO. • 

t 

This is illustrated in Figure 4.7. 
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Figure 4.7: Illustration for Theorem 6 

C o r o l l a r y 4 In Model (3.7) , the optimal allocation x^j to the route 1„、= (A/’ Bi) 

is monotonically increasing m any c! for any I < I < h\l < t < L and the 

minimal acceptable fare level fk on route (Ai, Bt) is decreasing m q. 

Proof . By Lemma 1 for 1„1 = Bi) is increasing in c/, 1 < I < K. And by 

the construction of we know that the minimal acceptable fare level level 

fk on the route (/I/, Bt) is decreasing in Q. • 

. T h e o r e m 7 The threshold A", for =(“山 Bt), t = 1，• • • , L is monotonically 

increasing in Q for any I = 1,. • • , K. 

Proof. Suppose A already satisfies the monotone relation stated in Theorems 3, 4. 

If < Âm for Im = (HA^Bt), then because Kn > A；, for / 爪 = H b ) it 

, must be that 入,„ < A^ for Im = {Hb , Bi). Since 入,几 < A*̂  for /…G {U, //^), we 

also get A„i < A；̂  for /爪 G {U, Bt). By applying Lemma 3 to the flight (///y，Bt) 

we know that x^ = = 0 for I 爪 — { H u , Bt), {H^, Bi) and for itineraries 

Im € {U, Bt). This is impossible as all the itineraries passing the flight {Hb , Bt) 
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Figure 4.8: Illustration for Theorem 7 

have a null allocation. The capacity of it is not used at all, which is contradictory 

with Equation (4.4). Therefore it. must be that 入爪 > A；； for = Bi). By 

Lemma 1 Xm < x；, for / 爪 = 汉 ） . • 

Figure 4.8 illustrates this. 

Corol lary 5 In Model (3.7), the optimal allocation x；,^ to the route /„, = Bi) 

IS monotonically decreasing in any C/ for any 1 < / < A', 1 < < L and the min-

imal acceptable fare level /人-on route (Ha, Bt) is increasing in Q . 

Proof. By Lemma 1 x*, for = {Ha , Bt) is decreasing in Q, 1 < / < K. And 

by the construction of we know that the minimal acceptable fare level 

level fk on the route (HA, f^t) is increasing in q . • 

Likewise, the monotonicity property of the thresholds on the middle leg's capacity 

are as follows. Preparatory work is first done. From Lemma 2，wc take out the 

special case whore ^ = c„ for the flights {U, Ha) and V), while for the 

flight Hb) is changed and can immediately draw out the following corollary: 
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Figure 4.9: Illustration for Corollary 6 • 

C o r o l l a r y 6 If == for the flights (U, H^) and {Hu, V), while for tfie 

flight {Ha, f^n) is changed. Then, if A„, > for /爪=(.4/, H^) and == 

{Ai, Hb) simultaneously'for some I = 1 , • • • , K, then, the capacity allocations to 

all the itineraries passing the flight (Ai, H^) (ire unchanged, i.e. = j*, for 

Irn = dTld for all Irne{Ai,V). 

See the illustration in Figure 4.9. 

By symmetry we can draw other conclusions a.s well. Now we arc ready to prove 

the theorems below, which are illustrated consecutively and through a sot of 

graphs. The first is Theorem 8，which addresses the monotonicity of the threshold 

on the route (Ha , Hu). 

T h e o r e m 8 The threshold for == (I!a,Hi“ is rnonotonically decreasiruj 

in Cf^^i. 

Proof. Similar to the proof of Theorem 3，we let U：̂  and U4 divide the cities in the 

origin region by U：^ = {A^IA^ G £/, < A* for = {As, Ha)} and U4 = U/U\ 
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respectively. Meanwhile, let V3 = {Bt\Bi G K, A,. > A； for = (//"，战）}, and 

V4 = V'/Vi divide those cities in the destination region, respectively as well. And 

K = {^tlBt e < A；, for I 爪 ={HA^B t ) } . We suppose, by contradiction, 

that Km > 八；；1 for lyn = (Ha , Hb ) . We classify the allocation of itineraries tliat 

pass flight (IfA, ///i) into three groups: 1. The aggregate- allocation of itiiierarios 

(f/3, ///i) and (U:i,V); 2. That of itineraries K,) and (//a ,V ,}; 3. That of 

itineraries ( f ^ ， / / " ) ， ( ^ a . H i j ) and 

1. For /I, € ， Im = (/t.s, //a) , by Loniina 1 ， > x；, or 二 = (). By 

Equation (4.4), if > x*^ for /„, = (/!.,, Ha) then 

Z < [ X；. (4.24) 

ime(A>,,Hfi)u{A,y) I,„€{A.,,HhMA,,V) ‘ 

If Xm = X；,=【）for I爪=(As, Ha) then 

i,ne{A.s,Hn)u{A,y) i„,e(A,,Hii)u(A.sy) 

2. (a) If Bt e V^ then < A；, for I爪=(//"，/? J and 入…< A；, for 

Im € {U:i, Bt). Thus, by Lornina 1 > or = x*, = 0 for 

frn e {U:i,Bt) U {H,j,Bt). By Equation (4.4) if x„, < for any 

Im e (U3, Bt) U ( / / " ’ Bt) then 

E 元"〉 L 工:n. (126) 
)u(U4 ,Bi) /,„ e ( HA , lit )u(ai，B,) 

If = X；, = 0 for all I爪 e 队 Bt) U ( / / " ’ Bt) then 

E = E <「 (4.27) 
Im_A,I3t )U{U4 , Ih) /m € ( Ha ’ B, )u(/；., , li,) 

G1 
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(b) If /爪 e ( H a . V^/Vi) u ("4’ VVKO，入m > Kn, then by Loinina 1 i … < 

^m or im =工；二 (). 

3. For Im e ("4’ KOU("丄 / / " )U ( "小 V , ) , 入 > A;,,, by Lemma 1， 

^m < 工m ()r 王m 二 工…~ ()• 

To sum up all the above groups, 

E .云”'< E ( [圳 

and 

im < Ki or Xrn = Ki = () ̂“！' = (HA, H,i). (4.29)( 

If Xrn < 工二I for Ijri = (Z/^, ///i), tlieii by Equation (4.4) 
« 

[ ^m > [ (4.30) 

This contradicts inequality (4.28). If = x*, = 0 for /„, = (Ha , Hii), then 

by (4.4) 

y ^ im = Q o i > CKn- (4.31) 

This also contradicts (4.28). Therefore，it must hold that A … < A*̂  for /„, 二 

{Ha.Hj,). • 

This is illustrated in Figure 4.10. 

As a direct consequence, 、 
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Figuic 4.10: Illustration for Theoiein 8 

Corollary 7 In Model (3.7)，the optimal allocation x；；, to the route /…={HaJ^d) 

IS monotomcaUy increasing in any c^ ^ i and tfie mmmial acceptablc fan-. Icval /人. 

on route {Ha^ Hb) decTeasnig in cj^^ |. 

Proof. The same as the proof of Corollary 3. • 

Tlic theoroiii below ad(ir(\SH(;s aiiotlier result, about, t,li(; iiioiiotonirity of t he t.hi (\sli-

olds in the left side routos 11^). 

T h e o r e m 9 The threshold A„, for /„, 二 (/I/, H^) is monoiomcally nicreaHing in 

Proof. Suppose the optimal solutions (A, x) already satisfy the inonolonc rolatioii 

stated in Theoroin 8. If there is € ( U J I / ) that — A* < ()’ then lot 

A = rnin{A,, — A；, G Let T , = 6 ("’"力),、一入：二 A}. 

If (/I5, /^a) € then 入,„ < A；̂  for I 爪=(A”//》and by Theorem 3 for 

Irn = (As, H/j)- By the same logic as in Corollary 6’ = x*, 二 0 for / … = 、 
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{As, Ha) and /„, = {A, J i n ) , f…=.x；, for all /…G V). H = > () 

for Im = (/Is, Bt), tlicn by ( 4 . 5 ) , 入 = which implies 入,,, > 八：口 for /,„ G 

{Hfi, Bt) U (Ha, Bt) IJ (yl,, B(). By tlio same logic as in Corollary 6 and 

Lemma 1, = = () for /…G {HnJS,) U {Ha, B,) U {A, B,). 

To explicitly cliaracterizo the? ai)()vc type of /Vs, let = { 1 = (//"，B,), 

there exists /爪=( / l ^ , Bt) where (八” “/O ^ T、、that x*, > ()}. 

Let = A„ + (5 for all F,, G Ĵ (i，A；̂  = A„ - for all f]、G Tj. Note that tho 

monotone relation stated in Theorem 8 is prcisei vod under such adjustment,. 

SINCE = G for /„. G T j I J ( (凡’ "A) U ( / I , , U ( A s ,权 ) ) 

_ (As,HA)eJ'r„HA) {HuJhKTi 

and 入„| > 八;I for these itineraries, (4.5) and (4.6) still hold for (A：/：*,) on 

theiii as long AS S is sufficiently small. Sincc A'", = A*̂  for / 川 = ( A ^ , Bt) W1K、I-(、 

{A,, Ha) G Jo,(//"，环）G JV， (4.5) also holds for (A;„,j:;J on this kind of 

itinerary. Since = .x；, = () for I…e Tj U IJ (“/i，召,) U (A” 

(4.5) also holds for x* J a«s long as S is sufFicicritly small. 

Thus A' is also opUmal in Ihe new constraint state. But, from the coiistruction of 

A' wc know that A' > A. This is a contradiction with the iiiii(}iicncss of A cLS t,h(、 

optimal dual solution. Then from the above analysis, it must hold that, A„ > A* 

for F„ e (i/,HA). • 

This is illustrated in Figure 4.11. 

As a direct consoqiienc(], 

. G4 * 



^ ^ z � 

Figure 4.11: I l lustrat ion for Theorem 9 

C o r o l l a r y 8 In Model (3.7)，the optimal allocation x*^ to Ike. route /川=(/!/, Ha ) 

IS monotonically decreasnig in c/^.,, mid the minimal acceplablc. fare level /人-on 

nmte {Ai, HA) i^s increasing in c八卜 

P r o o f . The same as the proof of Corollary 3. 口 

By symmetry wo got: 

T h e o r e m 10 The threshold 八川 for I川=(Hn, B() is monotonically increasnu) 

in c/c + i. 

C o r o l l a r y 9 In Model (3.7), the optimal allocation x*, to the route /,,, = {H^, Bt) 

is monotonically mcreasimj in any c/v +1 and ike irmmnal acceptahle fare level fk 

071 route ( H j j , Bi) is decreasing in ck + \-

Now the op t ima l al locations on the; two set of itineraries {U, Ha) aiul (Hn, V) are 

all decreased. The next theorem addresses the. i i ionotonicity of the threshold on 

route Bi). 
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Figure 4.12: Ilhistration for Theorem 11 

T h e o r e m 11 The ihrashold A,„ for I川=(/7,4, /i,) is nwnoloiiically dc.crcasnig . 

in CK+I. 

Proof. Suppose A already satisfy the inoiiotoiic relation stated in Theorems 8, 9. 

If 入…> for /„, = (Ha, B,), then from Th(、()i(、m 9 入二 > A,二 for all /,„ e 

[U, Bi). And from Tlieoroin 8，入川 > A*̂  for I … = ( H n , Bi) as well. Tims by tho 
* t 

same logic as in Corollary 6, :c„, = = 0 for all itijieraries parsing (///“ Bt). 
• i 

This is impossible by applying (4.4) to tho flight, ("/《，/?/). Tli(T(、f()i(、it must, b(、 . 

that 入…< A；, for = {IlA,Bt). • 

This is illustrated in Figure 4.12. 

As a direct coiiseqiienco, 

Corol lary 10 In Model (3.7), the optimal allocation x*, to the. route /,,,= 

(Hj\, Bt) is niojioionically mcreasing in +1 and the. minnnol acceptahlc fare 

level fk on route (11八，Bi) is decTcasnig in ]. 
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Proof. The same as the proof of Corollary 3. • 

By syininetry wc get: 

Theorem 12 The threshold A„, for /„, = (/!/，//") is inonoUmically df.creasing 

C o r o l l a r y 11 In Model ( 3 . 7 )， t f i a optimal allocation ；r*, to the route = 

( / I / , Hj3) is monotonically incraasim) in any (.八+ 1 and the innmnal acceptable fare 

level fk on joute ( / I / , / / / ) ) is decreasing in c•八-•卜 

4.3 Extension back to the original model 

Now wc get back to the original Problem (3.7). Wo first prove that the optimal 

sohitioiKS to a sequence of problein instances (4.1) with the smoothed i,(、venu(、 

functions converge to an optimal solution of ProbkMii (3.7)(with piecewise linear 

rovemio functions). Th is is i l lustrated in the following optimal solution conver-

gence theorem. 

T h e o r e m 13 Any sequence ( x • �A * " ) obtained in PivMr.m (4.1) has a subse- 、 

quence that converyes to the optimal solution pair of Problem (3.7) as 

tends to r by our prescribed constiiLcA,ion. 

Proof. There must be a subsoquence that converges. Suppose the limit is (x, A). 

Then if X has no component in the points D^, it is olwioiis that I hey still satisfy 

67 

* 



the optiinality conditions (3 .8 )� ( 3 . 9 ) . If a component of such as Xm, equals 

Djji，then obviously from (4.6) that > J厂二广 In the scqm、nc(、after some large 

enough yV，for each (A*,, .t*,), they satisfy that A”, —- Tlun-oforo it should 、 

he that 入”,< /广 siiux^ < by the construction of h"i(x川）.Th(n,efoi,(、 

the optiinality conditions ( 3 . 8 )� ( 3 . 9 ) arc still satisfied, i.e. (;r, A) is tlie optimal 

solution to the original Problem (3.7). • 

Then we reduce t heso results back to the original prohleiii hy utilizing the follow-

ing monotone property pTcscT-imu) theorem：. 

T h e o r e m 14 If in the optimal solution ( A " , x " ) of Model (3.13), some covi-

porumts , ), (A*,.^, J：*^,^), • • •,(八!"„，，丄二，) (ITC vumotonically tncTcasnuj (or 

den easing) in some components of c, then there exists a pro jection C —> A x X 

that, (A(c), x ( c ) ) IS an optimal solution pair to Modal (3.7) untJi capacities state. 

c (171(1 that , 二 ) , 广:T:,”」，•.. , (A*, , J preserve Uiose. vwnotoiie prop-

erties ill the cornispoiidnig components of c. 

Proof . For cach capacities state c we take out a limit point of (A", x"). Suppose 

it is (A, X； c). By Thoorein 13 it is the optimal solution pair of Problem (3.7) 

under constraint c. We now prove that (A, x; c) still preserves those monotone 

lelations as (A", x") do. To show this, consider two capacities stato, c and c. 

Wo suppose the optimal solutions are denoted l)y (A, x) and (A, x) lespcct.ively. 

Without loss of geiiorality, we just, assume ci > q and others in (he capacities 

are unchanged, and there is an arbitrary /„, that holds a monotone relation. 

Without loss of generality, we suppose that;入;;之 > A",, .x", < x；̂  for eacli n. Since 
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liin 入 > lini A",, we have A„, > A,,,. In tlie sanu! way < x,,,. • 
n n “ 

This assures that the irionotonicity results we obtained within Modol (3.13) still 

hold for an optimal selection of the original Problem (3.7). 

r 

4.4 Concluding remarks 

This chapter focused attention on the main model for the hub-to-hiib network RM 

problem. After explicitly presoiitiiig the Lagrange function of tlie main model, 

the primal-dual argument was applied by utilizing the K KT conditions to derive 

certain structural properties on the BP control thresholds for this model. 

The main observation is tliat the BP threshold on a long-haul route are decrc^aaing 

in the individual legs' capacity of that route. Interestingly, the BP threshold in 

the hub-to-hiib route is increasing in two side logs' capacities. Furthciinorc, the 

BP threshold on the side single-leg route is decreasing in the same side leg's 

capacities. Even iiiorc iiilorestiiig is that a long haul route's threshold, such 

as on ( H a , Bi), is also increasing in side log {A^, capacity. It is hoped 

that all these structural properties can render inanagonicnt insight for the RM 

department in airline companies. 

On the technical side, the primal-dual argiiineiit employed here is new in exploring 

structural properties in revenue inanageinent probl()iiLs. It will hopefully further 

widen the toolkit for doing monotone properties/coinparativo statics analysis in 

• OM/MS field. The technique is briefly summarized here. In investigating the 
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change, ill directions of the decision variables after a constraint status change, 

we first disclose that the change direction of the optimal allocation is inherently 

related to that of the dual optimal solution, as illustrated in Leniina 1. By 

studying the change in direction of the dual solution, wc. can draw the conclusions 

for the primal solution. Since the probloin is a nonlinear one, the Lagiaiigc dual 

function was employed to incorporate both the primal variablos and the dual ‘ 

variables. 
m 

Beyond this, most literati ire on hid-price control has addrcssc^d the re-optimization 

issue. It is said that only when the bid-prices are frequently ro-optiiiiized (up-

dated in near n)al-tiin(，）can the BP control scheme work nearly optimally. See 

Williamson (1992), Talluri and van Ryzin (1998, 2004), Bertsimas and do Boer 

(2003) for detailed account of this issue. The problem is how those bid-prices can 

be ro-calculated in near real-time? This is a challenging question given the cur-

rent capability of major airlines' coiiipulatioii systems. The structural i)rop(n tU\s 

provided here give hint for deeper niuicrstaiKling into Uii、patterns that l)id-pric(\s 

produco ill a (iynairiic situation. And by such proper ties it is hopeful that, the 

difficulty in the real-tirno updating of bid-prices may be overcornc. 

I 
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Chapter 5 

On network CE control 

This cfiapter focuses on the CE control. Since the emphcusis of this thesis is on BP 

control, the materials in this chapter arc necessarily shorter and arc not intended 

to be comparable to those in the previous two chapters. This is because, rather 

than doing analysis from scratch as in Chapter 3 and Chapter 4，this chapter 

attempts to bridge ex is t ing results in network flows with the structures in 

network CE control thresholds. This chapter on the CE control is not, however, 

unimportant as it .may point to future research directions which arc ^ven more 

important than its BP control counterpart. 
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5.1 Introduction to network CE control 

One way to approximate the optimal marginal value threshold .入一 i (n) — .人—i (n — yl^) 

is to use the so-called certainty equivalent, control. This was proposed by Bertsi-

mcLS and Popcscii (2003) and works as follows. As with the bid-price schcme, one 

still aggregates the future demands and uses the LP Equation (3.1) to approxi-

mate the optimal value function. The marginal value J/i'J(n) - — Aj) is 

used to approximate the optimal marginal value J , _ i (n ) — J ( _ i (n — Aj). This is 

the so-called certainty equivalent control. 

Having examined the structure of network BP control in the previous cliapt.ei,， 

it is natural to enquire if the thresholds in network CE control exhibit the same 

patterns as the thresholds in network BP control? The following sections aim to 

address. The key is to establish the relationship between supor-/sub-niodularity 

and L、concavity of the optimal value function with the monotone proporty of 

those CEC thresholds. 

5.2 Supermodularity, L^ concavity and the CEC 

thresholds 

In exploring the super-/sub-modularity and other sccoiid order properties of the 

optimal value function of Model 3.3，we link the analysis with results in network 

flows. Other researchers in this field are Glover et al. (1982) and Morton (2006). 
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Section 5.2 elaborates on the difference between the present study and Morton's 

(2006). 

〔5.2 .1 Related literature in network flows 

In network flows, G = (V̂ , A) represents a graph whore V is the nodes sot and A 

is the arcs set. 

The maximum-weight circulation problem requires one find a circulation that 

maximizes the weighted sum of arc flows subject to capacities constraints on tho 

arcs. Readers are referred to Murota and Shioura (2005) and the Appendix for 

its standard formulation. 

Gale and Politof (1981) showed the super-/siib-modiilarity of the optimal value 

function in its series/parallel arcs capacities. Murota and Shioura (2005) also 

showed that the optimal value function is L^ concave in its series capacities di-

mensions, and M" concave in its parallel capacities dimensions. 

‘ T h e o r e m 15 (Gale and Politof (1981)). In a maximum weight circalation prob-

lem, 

• the optimal value function is submodular in the upper and lower bounds of 

parallel arcs，capacity constraints; 

• the optimal value function is supermodular in upper and lower bounds of 

series arcs，capacity constraints. 
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T h e o r e m 16 (Murota and Shioura (2005)). In a maximum weight (:ir(:ulat,ion 

problem, 

• the optimal value function is U- concave in the upper and lower bounds of 

series arcs ‘ capacity constraints; 

• the optimal value function is M^ concave in the uppar and lower hounds of 

parallel arcs ’ capacity constrmnts. 

In addition to these, there is a large body of literatiiro on discrete? convex aiialysin 

addressing the .suporrnodularity/L^ concavity issues. Interested reader can find a 

full account in Murota (2003, 2005). 

For convenience, in this section the DLP Model (3.3) is restated to study its 

behavior; 

max (5.1) 

odf 

s.t. ^ 工odf < C/,/ = 1 , 2 , • • • , A ' + L + 1, 

leodf 

^odj < dodf, 

Xodf integer. 

We represent the optimal value of the above modd fLs V^(c)’ whore c is tlio 

capacities vector. 
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5.2.2 For a two-leg network 

The first task in this part is to reformulate the DLP model for network revenuo 

management into a graphical illustration of the network flow problem and iden-

tify parallel/series arcs. We write tlio DLP inodol for two-log network rc?venue 

management as: 

V{cuC2) = max Y^fod/Xodj. (5.2) 

odf 

s.t. ^ Xadf < Q, / = 1, 2 
l€odf 

工 odf ^ (‘(iJ 

Xodf integer. 

It can be formulated into a weighted circulation problem, by adding artificial 

variables ?//, / = 1,2: 

\/(Ci ’ C2) = max J odf X odf, (5.3) 

odf 

•s.t. ^ 工以if - yi = 0 

leodf 

yi < QJ = 1,2 

工 odf < (Ldf 

Xodf integer. (5.4) 

See Figure 5.1 for illustration. All the passengers in each original itinerary arc 

considered a flq^ in Figure 5.1. Furthermore, because tho LP relaxation of net-

work flow problems have integer solutions, the integer constraints (5.4) can be 

dropped. 
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Figures 5.1: A circulation pmbl(、⑴ 

Tlie two arcs S A represent the original flows in {A, F3) and {A, C) respectively; 

arc {/I, B) is the capacity arc. Tims in iiodo A the flow (x)nscrvati(m law is 

satisfied. The arc S ^ B represents the original fiow in [B, C)\ t he back arc 

B S represents an artificial arc to carry back the flow (/I, B) with infinite 

capacity. Thus in nodo B、the flow conservalion law is sa,tisfte(l. The arc C —> S 

is to carry back the original flow in itinerary (B, C) and (/I, C) with infiriito 

capacity. Thus in node C the flow conservation law is also satisfied. As for node 

5, the S ^ A arc carrying the original flow in (A, B) t.raclcs off with the arc 

(j5, S)\ the S A arc carrying the original flow in (/I, C) plus arc S B trafi(\s 

off with the arc (C, S). Therefore Ihc flow conservation law is again preserved at 

the auxiliary nodo S. 

Therefore by such transformation on every node, the flow conservation balancx^ is 

satisfied. This ensures that Model (5.3) fits into the maximum weight circulation 

problem framework. 

« 

L e m m a 4 In the maximum weight circidation Model (5.3) ,(/!, B) and (B, C) 

are semas arcs. 
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Proof. Since every simple cycle containing both of tho two arcs (/!, B) ami (B, C) 

orients thern in the same direction, by (Icfiiiitiori, they aro series arcs. • 

From the above theorem, the following thcoroin directly follows. 

T h e o r e m 17 The value function V(c|, C2) of Model (5.2) is concave in ci, (：2 

separately and supeTinodular in (cj, C2) jointly. 

Proof. The former part follows from tlic well known result in paraiiK^tric liiu^ar 

programming that t,li(，optimal value of a liiioar program is concavc in its capaciti(;.s 

parameters. By Loinina 4，{A, B) and (B、C) are soii(\s arcs. I3y Tli(，oi(、m 15, the 

optimal value function of a maximum wdght circulation i)n)hl(、in is siip(M in()(I»ilar 

in the capacity upper-bounds of a s(，t of scries arcs. Horc q and (：2 an，the t wo 

upper bounds. Therefore the theorem follows. • 

C o r o l l a r y 12 The CEC threshold value V[c\,c2) — V(r i — 1, r：̂) to control the 

fare requests on ititiermij {A, B) is decreasim) in c•卜 

Proof. From the first part of Theorem 17 it follows t'hat, 

V{ci.C2) 一 V(c, - l ,c , ) < l/(c, - 1,^2) - V(r, - 2,r,). 

This completes the proof. • 

C o r o l l a r y 13 The CEC threshold value V(01,02) — V((:i — 1 , c^) to confjol fme 

requests on itinerai^ (yl, B) is increasing in c^-
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Pro9f. From the definition of sup)orrno(liilarity Theorem 17 indicates 

V{cuC2 + 1 )- v(c, - + 1) > - V{c, - 1,^2). 

This completes tho proof. • 

Taking this further, because (/I, B) and (B, C) ai,(、‘s(、ii()‘s arcs, wc have 

T h e o r e m 18 The value function V{ci, C2) of Model (5.2) is f) concave in its 

dimensions. 

Proof. From Tlicorom 16 this theorem follows. ‘ • 

C o r o l l a r y 14 The thrfishold value V{c\, C2) — V(c\ — 1, c-i — 1) to control fare, 

requests on itniejary {A, C) is deci^easing in either of tfw. capacities r, and r-i. 

Proof. From the definition of L" concavity Theorem 18 i川pli(，s: 

V(CUC2) - - - 1) > l/(r, + l’r2) — - 1) 
# 

and 

V{cy.02) - V{c, - 1,02 - 1) > + 1) - V{cuC2). 

This coinplotcs the proof. • 

Theororii 17 and Theoroiri 18 are the same propcMties as ohtaiiKxl in Morton 

(2006). Corollaries 12，13 and 14 arc the same results 011 iiionotonc Ihrosholds 

as obtained in Feng and Liii (2004). They differ in that Morton (2006) did not 
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draw conclusions concerning the inoiiotoiiicity of Iho threshold values. However, 

they both adopted dynamic models and nogloct(Hl to prove those properl ios in a 

static model. This research gap is hero satisfied. 

5.2.3 C E C thresholds for the hub-to-hub network 

The hub-to-luil) network in Figure 5.2 is now stiidiod: 

‘ 

Figuro 5.2: A hub-to-hub nctwoik 

As illustrated in previous parts of this thesis, we can i,()pi(、s(mt. Model (3.3) with 

a niaxiiniiiii weight circulation forimilation: 

max y^JodjXoaj, 

odf ‘ 

s.t. ^ Xadf - Vi = ( ) , / = 1,2, ••• , K -}- L -f 1 

iQodf 

工 mif < (Ldf 

Vi < 

The graphical illustration is as follows: 
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Figure 5.3: The network flow (circulation) roprosontation of the hub-to-luil) IIM 

network 

Let all the artificial nodes and Bi's bo combined into om) node. Then t.h(、pn)h-

loni is transformed into a maximum weight ciiculat ioii i)ml)k、m. Th(、ihiee arcs 

entering A^ represent the throe kind of flows in (/I,, Ha)'- ( A ’ a)»(A’ and 

(/I,, BJ)\ the two upper arcs entering Ha roprosonts l.hc flow {Ha, I IN) and the 

flows (Ha , Bj) with infinite capacities; the lower arc exiting Ha i.()|)i.(\s(、nt‘s Ui(、 

flows (/I,, H^) with infinite capacity; tj^c upper arc ontoring I I^ rcproseiits Uk、 

flows [Hb, BJ) with infinite capacity; the lower arcs exiting / / " represent t’h(、 

flows (Ha , Hii), (yl,, Hn) rcvspoctivoly with infinite capadUas . 

Bdow is the main t hooreiii in this chaptcu'. 

T h e o r e m 19 By the above (paphical const/niction, Model (5.5) Jits into a inaxi- 、 

TJimri weight circxdation frmnework. 
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Proof. Similarly as in tho two-log Ciise, ono can (vusily verify that, by such trans-

formation the flow conservation balance on each node is satisfied, Thorcforo, this 

indeed fits into the iruixiiiiuni weight circulation problem framework. • 

For tho same reason as in the proof of Loinnia 4, wo have the following lemma: 

Lemma 5 hi Model arcs {A^, Ha), ( , //") and (//"，B/), k = 1,2，... , A', I = 

1,2，…,L arc pairwisc. series arcs. 

Proof. Obviously, every simple cycle would orient arcs (/U，/7,、）ami (".4，//") 

ill the sanio direction. Thus tliey an! series arcs. For tho saiiio rcuusoii ( , Hn) 

and (//" , F3i) arc also series arcs. Now w(、show that (/^，Ha) and (//", 5/) arc 

scries arcs also. In tho above graph，every path containing both (/U,//,、) and 

{H[i, Bi) would be either going tlirougli /U —)• Ha —> / / " Bi or going through 

Ak — H/i — S — Hb — Bi, However, since it, is a cycle, the latter case cannot 

occur. Thus it can only go througli /U Ha — IIb —— Bi. Thoicforc (A^, Ha) 

and (Hii, Bi) are series arcs. • 

Lemma 6 In Model (5.5), the aiTs (•/', j ) , 1 < i, j < 1\ and (/"i, j i ) , I\ + '2 < 

iiyji < + 1 + L (iTc paralUd arcs. 

\ 

Proof. This is a direct result from Granot and Vciiiott (1985). • 

As a coiisoquonce of Loinina 5 and Lcinina 6, wc have the following theorciii: 
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Theorem 20 The value function V{c) of Model (3.3) for the network m Fiq-

ure. 5.2 is sujmmiodular in dimensions (q, ckh i), i < L and dimensions {̂ -/v+i, Tj), + 

2 < j < A' + l + L; submodular in dimensions {ci, c,), 1 < i、j < K and submodular 

in dmicnsions (c,, Cj), /\ 4- 2 < j < A' + 1 + L. 

Proof . Bccaiisc in tlie network flow fonnulalion, (/I”//,、)，(//.,、，arc sorios 

arcs, Ha), Ha) ar(、parallel arcs and (//"，B,), ( / / " ’ Bj ) are parallel arcs, 

^ it directly follows from Gale and Politof (1981) that, this th(，()i,(、m holds. • 

This result is similar to the result on a bipartite network obtained in Morton 

. (2006). His approach wa«s similar in that ho also reprosoiitod the DLP model (5.1) 

with a iiuixiiniiiii weight circulation foniiulation (his reprcstMitat,ion is a liUl(、 

(lifFerciit) and applied llic results developed by Gale and Politof (1981). 

And therefore we liavo 

Coro l l a ry 15 The thnislwld value V{c\, c-i, • • • , Ck, • • •，r八1, r/、1, /J — V{c\ — 

1, C2, • • ‘ , Ck, • • • ，<̂ '/\-+i，... 八十I f/,) tx) control the itmerarii (A\, Ha) is increasing 

in Cf^ 1.1 lohtUi dccreasniif in r人,,1 < A: < A'. 

Proof . Prom the definition of siipor/subinodularity Thcoroiii 20 indicates: 

V(c\ ’ … , a - , … ， • 1 ’ … ， 1 < l) 

- 1’(.2’ … , ( : k ’ . - . “:八-+ 1’ …“•/、.+14 /J > 

,<-2, • • • • • • , 1 - 1 ’ . . . , <"/x 4 1 1 l ) 

一\/((:1 - , Ck, ‘ • •，r/oi - 1,- •，r/、-fi +厂)• (53.5) 

82 

‘ I 



This completes the proof. • 

Sco tlio same illustration as in the bid price control part in Figure 4.11 and 

Figuro 4.5. 

Further, 

C o r o l l a r y 16 The threshold value \/((、，…，f:人，…’ c八'+ !，…，('/“ i f/,) —V((、i ’ …，c^ 

’ . . . , c / v + i — 1, • • •，C/v-f-i + zJ to control the itinerary IIn) is decTc.asmg in Ck ^ \ 

while incTeasing in 1 < A： < K and nicrmsmg m ('kw^h 1 < I < L. 

i 

Proof . The same as the above corollary. • 

Since {A/,-, Ha)^ {Ha, Hh ) and (""，B/) arc scries arcs, w(、have 

T h e o r e m 21 Tfie value /miction V{c) for Model (5.1) is U concave in r八,(•/、 '+1 +/) 

、k < A'，/ < L. 

Proof . The same in Thoorein 18 (This is from Miirota and Shioiira (2005)). • 

Consequently, wo have: 

/ 

Corol lary 17 The threshold value V{ci,... , C^-, • • • ’ + I ’ 八+.2，…，CR + H l) 一 

V[c\,... , c'a： — 1, • • • ’ C/̂ r+i — 1，（:/(+2’.. • ，Ca + i + l ) to control the Jare requests on 

itinerai^ (yl^., Hu) is decreasing in 1 < A： < K mid 卜 

Proof . The samci as the proof in Corollary 15. • 
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Coro l l a ry 18 Tka CEC threshold value ^(ci,.. • , , • • • , (:/、- +1 

，…,f'A'fU-h • • • ,<^/(+H/J-V^((:l，... , • • •，C 八- +「1，-.. ’(.八-+1+「1，... ’ f,/、- + i + /J 

to control the fair, requests on itineranj (A^, Bi) is dcav.asing ni (、, 1 < A： < 

/V,CK + I and c-k wm 

Proo f . The same a»s the proof in Corollary 15. • 

Coro l l a ry 19 The CEC threshold value V{c\，. • • , c^, • • • ’ r八'+1 ’ +；{,. . • , ck i i + /J — 

V(c\r- • ， （ ‘ 人 . ’ . . . — 1, (-K+2 - l，r/、+3，... , J./J to control the Unumn-i) 

B\) is increasing in \ < k < K. 

a 
Proo f . The saino as the prooi in Corollary 15. • 

Those patterns arc the same in bid price control (ChapUn- 4). Seĉ  the illustra-

tions ill Figure 4.6, Figure 4.7 and Figuro 4.8 in that chapter. 

However, tlie answer for other monotone results remains unknown, such as whether 

CEC tlirosholcl on ("/、，B\) is iiici(、asiiig in capacity C\ (leg [A], I IaV^ capacity). 

This requires other second order properties beyond t he siiper/siihinodiilarity and 

Jĵ  concavity developed by Gale and Politof (1981), Murota and Shioura (2005). 

This roinains an important question for fiituro research. 
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5.3 Chapter summary 

The main contribution of this chapter is that the notions of sviper/subinodiilatiry 

and 1} concavity were bridged with tho monotonicity of CEC thresholds. This 

was clone by first reformulating the DLP.model into a network flow representation. 

.Secondly, the parallel and series axes were identified. Thirdly, the results devel-

oped by Gale and Politof (1981) and Murota and Shioura (2003) were applied 

to show the value function's supcrrnodularity in series arcs' capacities, its suh-

inodiilarity in parallel arcs' capacities, its L二 concavity in series arcs' capacities. 

Finally, those properties were translated into the CEC thresholds' monotonicities. 

Network CE control roportodly has better performance than bid price control 

(sec Bertsirnas and do Boer (2003)). Hero the structures of the CEC threshold 

‘ . v a l u e s , which have the similar pattern as those of bid price thresholds, were 

analyzed. For example，the threshold on itinerary {11/̂ , Hq ) is increasing in leg 

I's capacity, and the threshold on {Ai, Hb ) is decreausing in leg 1, {/li, Ha) and 

leg A' + 1, (Ha , HisYs capac-ities. In obtaining these results, the methodology and 

results developed by Gale and Politof (1981) and Murota and Shioura (2005) were 

utilized. These properties will add intuitive iindrstanciing to CEC and provide 

technical insights. 

Appendix 

Formula t ion of t he m — m u m weight c irculat ion prob lem Lot G = (V,,/I) 
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be a directed graph with vertex set V' and arc set A. We add some additional ^ 

‘ I 
notation here: | 

•p 

a an arc. ^ 
» 4 

‘ I 

V a node. * ‘ i 

‘ w the weight vector. ] 
•A 

c the upper bound vector of capacity constraints. ^ 
i 

d the lower bound vector of capacity constraints. ： 

4 a feasible flow. 

Murota and Shioura (2005) forinulated the maximum, weight circulation problem ^ 

in a network as: 

niax{it''^ I leaves i'} — enters v} = 0 (?• € V,). d < ^ < (.}. 

• > 

» 
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Chapter 6 
0 

% 

Numerical examples 

In this chapter mathematical programs are nin using Matlab to determine how 

the thresholds mentioned in the previous chapters behave in real data-driven 

systems. 

6.1 Test for allocation variables 

This section considers a simple network as shown in Figure 6.1. 

This network contains just two cities, /I2, on the left side, and two cities. 

Bi , B2, on the right side, with Ha , Hb still being the two connecting hub-cities. 

For simplicity, we assume that there is just one fare class on each OD pair market. 

‘ We set c as the capacities of the network, and b = (1,3, 5, 5,1,3,5,5,1,3,3,1,1) 
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Figure 6.1: A simple network 

as the unit revenues for the 13 itineraries in the network. 

For simplicity，we first verify the allocations variables' change as specified from 

Corollary 1 to Corollary 10. By changing the values of the capacities c, we can 

see the change directions of the allocation variables x, as illustrated in Tabl(、6.1 

and Table 6.2. / means the objective function value in the table. 

t 

It can be seen from Table 6.1 that a»s leg I's capacity increases from (5, 3, 11,5,6) 

to (8, 3，11,5,6), the route allocations to itineraries 1,2,3 and 4 are non-decrcasing, 

as stated in corollaries 2，3 and 4. Flow on itinerary 5,(^42, Ha)^ is also nondo-

creasing (remaining at 0) as stated in Corollary 2; on itinerary 9, {Ha . Hb) stays 

0; on itinerary 10, ("‘4，Z?i) decreases from 0.8372 to 0. These results equate to 

the theoretical results obtained in Chapter 3. It is also interestingly to note that, 

as stated in Corollary 2, the allocation to ilineiary 5, (.42, is increasing in 

leg I's capacity, as the capacity increases from (7，7,11, 5, 7) to (10, 7，11，5, 7). 

Intuitively, as leg I's capacity increases, its usage on itineraries 1,2,3,4 would 

naturally increase. Consequently, leg {H a , HbYs capacity is less used on other 

itineraries. This therefore results in a decrease in the sum of allocations on 

itineraries (A2, / /«) , B i ) , (A2, B2), • • • , (A-Zy B i ) . Tliis causes an increase in 

the allocation of leg {A2, "‘4)’s capacity on its own leg route, itinerary (/I2, "4)-
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In other cases (not proven in these theorems or corollaries), the thresholds still 

behave in patterns. For example, tlie allocation to itinerary 6, (A2, fZ/i), increases 

from 2.6592 to 2.6888 as the capacity increases from (5, 13,15,7) to (8, 13, 15, 7), 

while at the same time allocation to itinerary 7 decreases; Uie allocation to 

itinerary 12, ( / /« , B\), increases as the capacity increases from (7, 7, 11, 5,7) to 

(10,7,11,5, 7), while the allocation on itinerary 13’ (///多，召2)，ciecreâ ses at the 

same time. It will be noted that these patterns might be violated in other 

cases since wc observe that on itinerary 8, {A2, B2), from capacity (5, 13,15,7) 

to (8,13, 15,7), the allocation first increases from 6.1944 to G.1981, and then 

drops to 6.1930. 

Now in case of degeneracy (multiple solutions), let b = (1,5,8,9,2,9, 10，11, 5, 10’ 7, 5,4). 

As wo change'the middle log's capacity, we can see the'change directions of the 

allocation variables a.s illustrated in Table 6.2. 

Let b = (1,3, 5, 5, 1,3，5，5，1,3,3，1, 1). By altering c incrementally, wo can see 

the change directions of the five dual variables for the five flight legs, as illustrated 

in Table 6.3. 

This table shows that as the middle leg's capacity increases from (2,3,4,5,6) to 

(2,3,100,5,6), and tlie dual price on tho middle leg decreases from 3,2.4', • • • to 

1. At the same time, the dual variables 011 legs 1,2,4,5 all increaise. Furthermore, 

as leg l，s capacity increases from (2,3,11,5,6), (3,3,11,5,(3) to (8,3’ 11,5,6), we 

see that the middle leg's dual variable increases from 1.4385,1.4385 to 1.8811. At 

the same time, the dual variables on legs 1 and 2 decrease from 2.0000 to 1.3920. 

These results agree with the theoretical assertions in Theorems 8，9，3 and 4. 
i 
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6.2 Numerical test for BP control 

i « 
Now the BP control is coiisidc^r in a largoi network. These data have been ex- ； 

1 

tracted from wob-sitcs. Fare data is given in Table 6.4, and demand data in 
m J 

Table 6.5. ‘ j 

J 

In the run, lot ； 

c = (50 142 189 350 189 142 142). 
i 

Wo input all the parameters into Model 3.3 and obtain the following dual variable 

solution shown in Figure 6.2. The luiinbers on the legs represent tho optimal dual 

variables of DLP Model 3.3. ) 

… V ^ 朽 I 

w 

Figure 6.2: Example 1 of dual values 

We then get tho values given in Threshold Price Tabic 0.6. 

This threshold pricc shows which ODF is opoii and which is closed. For example, 

the Chang Chun to Shang Hai (itinerary 2) threshold price is 1610; therefore, all 

three classes on this route are closed. In addition, the Chang Chun to Hang 
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Zhou (itinerary 4) threshold price is 1750; therefore?, only the higher class V 

is opened for booking. Since the focus is on the structural properties of tlieso 

threshold values rather than the control rnochaiiisriis, readers iiitcrcsto(i in how 

these controls work may wish to pursue this ds(，wherc. Table Table 6.9 are 

given for implementation purposes. 

In the second run, lot 

c = (100 142 189 350 189 142 142). 

We get tlio following optimal dual variables shown in Figuro 6.3: 

Figure 0.3: Example 2 of dual values 

We get the values given in the second Threshold Price Table 6.7. A comparison 

of Table 6.6 and Table 6.7 shows that itineraries 1,2,3,4 and 5 all have decreased 

threshold prices that comply with theorems 4, 5 and 6; itinerary 11 also has 

a decreased threshold price, from 910 to 830; itinerary 6 stays unchanged at 

530, complying with Theorem 4; itineraries 16,17’ 18 and 19 all have increased 

threshold prices, in accordance with theorems 3 and 7. 
-
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‘ III the run, let • 

c = (189 142 189 350 189 142 142). 

‘ We get A in Figure 6.4， 

Figure 6.4: ISxainple 3 of dual values 

and w(、Threshold Price Tabic 6.8. ohs(»i that ihv threshold prices still 

behavo in a iiiaimer a»s piGscrihcd in the monotonicity results of tlioorcins 3>--7. 

f 

III the run, w(、let 

c = (189 142 189 550 189 112 142). 

We A as shown in Figure 6.5 and threshold Price Tabl(、G.9. 

Comparing Table 6.8 with Tahlo 6.9 reveals that the hid prices oii (/U,片/0’ 丸= 

1,2,3 arc considora})ly improved, while those on (Jf^uHf“ art? greatly leducod. 

Thresliold prices on it iiu^rarios 2, 7,12,17,18 and 19 all (iecrwis(、’ aus stated in 

Theorem 12 and Theorem 11. For three-leg itineraries, there is no fixed pattern 

since the threshold price on {Au 月丨）remains unchange<l, while it grows larger on 

(/I2，B'z) and smaller on {A^, 3：̂). 
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A.O • _ _ _ ： ： ： ^ 111? ^ ^ ^ ^ 

Figure 6.5: Example 4 of dual values 

6.3 Numerical test for CE control 

As Chapter 5 on network CE control siipploirients chaptors 3 and 4, a imiiiorical 

tost is (iono luiro for the structures in network CE control as a siipplcm(mtary 

part, to the numerical t(^st part of network BP control (Soction 6.2). 

As Corollaries 15 19 indicate, the inonotonicity of many CEC t.liresholds r(v 

(iuces to the siiper/suhiriodularity and concavity of the optimal value function 

of Model (3.3). It is therefore nec(\ssaiiy to verify these secoiicl-ordci properties. 

We first verify tliat it is submodular in (f‘i’f.2). Taking four different capacities 

states, we get Table 6.10. We calculate fi + f:、- fi- f.\ = 0. The suhinodiilarity 

of value function in capacities (fi，c*2) is satisfied. We then calculate f-z — f\ — 190, 

which moans, the threshold vahio in controlling fare requests on itinerary (/l。，"/O 

when flight leg I's capacity is 188，is 190. Wc then calculate f:、- = 190, which 

* means, the threshold value in controlling fare requests on itinerary (A2, H^) when 

* — 

flight leg I's capacity is 189, is again 190. Thus in this scenario the threshold 

value is not changcd. 
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» 

Taking another four difforont capacitios states gives Tabic 6.11. Wc now calculate 

、 
/s + /fi — /? — /k = —1.1850n + n(M. Tho siibinocliilarity of the vahu; funct ion in 

(Ci’（?2) is obvious. Tlio tlirosliolcl values c;alculatic)ii is ncglect(!d h(;r(;after sinco 

tho einpliasis is on the s(;cond-or(lor pr()perti(;‘s of tho opt imal value function. 

Thoii w(; verify that, t ho optimal value function is sup(Tinofliilar in {('2, 礼s 

‘stated by Theorem 20. This is shown in Tables G. 12 
< 

Wc now calculaUi 十 /i2 — /lo - /n = 2.4880e + 004 > 0. Thus the suixM inod-

ularity of tho optimal value function in (r'2,at) is verified. 

^Finally, w(、verify that thc! optinial value function is L® c:oiK:av(? in (r.i，Ci). Note 

that 1} concavity implies the U"(，slK)l(i in itiiH'fary ( / l ! , / / " ) by using CEC that 

is (lecrt;a.sing in C] ()i Now wc calciilatt; /13 — /M = 1320, /15 - /", 二 1610. 

Because fi:、— fu < /ir> —/"“ concavity of th(' optimal value function in (r'l, ci) 

< is vrrificKl, addnisscd in Thoorern 21. By Corollary 17，it means that the 

threshold on {A\, / /") is decreasing in r! and 

6.4 Chapter summary 

This chaptcr began with a simple test to (heck that all the allocations variabl(\s 

b(ihave in the ord(?r(Ki way prescribed by corollaries in Chapter 3, and that all 

tho dual variables also hehave in a |)ropor way a.s pmscribed in the main tho-

oreins of Chapter 3. The numerical test wa-s then cxtemM to a m()r(、realistic 

network, with far(、data drawn from websites and (ioiiiand data based on realistic 
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estimations. The LP associated with this network RM iriodol was then calculated 

through Matlal) to sum out all the threshold prices on the ru^twork's itineraries 

in four capacities scenarios. By comparing different scenarios^ all i\w thresh-
» 

- old i>ric(« were shown to behave in ax;cordanco with the main t̂ (、(）r(;nis stated in 

Chapter 3. Such a pattern may long have b(?en observed by airline yield riiariagers 

in real NRM applications, yet this thesis establishes tiic theoretical foundation 
“ * 

for such an orclcjied phenomenon in T(;al life. ‘ 

For c(?rt.ainty equivalent control, the supcnnodiilarity/siihirKKliiIarit.y of the 

optimal value function has been verified as has the IJ concavity in consocMitivc? 

flight legs' capacities. These properties Icacl to the assertion that some threshold 

values in CEC have nioiiotoiiicity with rosfXTt to certain legs' capacities. 

A. 

In suiniiiary, those iminc;rical tests have [provided more conciet(» understanding of 

the theoretical projxM tics obtained in the previous chapters. 
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Table 6.1: Allocations chariRO a.s side log's capac ity changes » 

O X f 

(r),3’ll’r>’fi> (0 ()()(K),0.()(K){),2,(isr,3,2 3147,0 rKMK),() ()(KK),1 477r,, 

1.r,225,().(KM)(),().8372,2 102H,()()(K)(),().()(K)0) 49 

((i,;i,ll,r),()) (()0()()(),()(M)()(),:Mr,21,2.8479,()()0(M),{)0(M)(),l 4423, 

1 丨 rj944,(UKK)()’n.00{>{’） M 

(7,3,11 .fj.f)) (0 ()()()(),() («M)(),3 4874,3.512f>,n ⑶KMUUMKM’’丨 2407 
丨 7r>fyi’0 U(KM>,a2719,() 7281’(>州)0化0 (M>()0) 53 

(8,3,11,5,0) {()()(WK),()()(H)().4()749,3.92r)l,()(M)(M),(),0(KM),09251, 
2.074!),() {MK)0, (J.(M)0(),().()(K)(),() (KIOO.O (M)(M)) 

(7,7,11,5,7) (1 r,{)()(),() ()(M)0,2 422r),;j.()77r,,l .r»()(M),0 ()(MM),2 4225, . 
：$0775,0 (KJOO, ().()()(X),().(KKM),0 155I,0.H449) 59 

‘ (8.7,11,5,7) (2.4Hi;i,(),()(M«),2 4f)47,;}.()891,1.5837,().()()()(),2 2704, 
» 

;M 399,0 (KKM). ().(KMM),().000()’().2289,0 77丨丨） ⑷ 
(9,7,丨丨 ’r,,7) {3.()4:i4,().(KK)().2.r)713,3.3853,l.%66,0.{)(KK),2 18Hfi, 

2.8.'j4S,().(KKK),().(K)(M),0 (M)(K),0,2401,(}.7r)fW) 01 
(10,7,11,5,7) (:i.()r)03,().(KK)(),2.(i841.3.Wi5(),2.3497,().(KK)0,2{)725, 

2.r)778,().(KM)(),().(K)(M),() (MK)(),0 2434,0 75(>()) 02 
(r,, I 1 ̂ ),r>,7) (;i()(M)(),() :t408.().Hr,:i7.().W»%,0 (H)(M),2.(ir)92,4 14(i:i. 

()1<J44,()(MH)(),()(K)(MI,()()(KK),0(KH)0,0()(KH)) 
((i,i:i.l 5,'),7) (4.(HKK).().3:i59,().8(i22,().8()19.().fK)(K),2 6041,4 1378, 

fi 1981,().{MH)0,(),()0(M).().(KKM),0.(KKM),0()()(K)) 99 
» 

{ 7 , 1 3 , 1 5 , f ) , 7 ) (5.(HMM),() 32:i2.().8()f>9,().8()7().().{K)(K),2.G7()«,4 K i O l , 

6.19；«),() ()(MM),() (MKK),0.(MMK),() (KMM),0 (KMK)) 100 

( 8 , 1 3 , 1 5 , 5 , 7 ) (G.(KKM),().3112,0.87(>0,().8r21,U{MM)(),2fi888,4.I234, 

()1879,0 (KM)(),0.0(MK),(̂.0(KK),() (KKK),0 (MX)()) 101 

(-••) ( … ） （ … ） 
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Table 6.2: Allocations change as middle log's capacity changes 

. ^ 

c X f 

(8,3,12,5,6) (8.0000,0.0000,0.0000,0.0000,0.0000,3.0()()(),0.0000, 

. p.OOOO,7.8222,1.1778,0.OOOO,3.8222,G.OOOO) 129 

(8,3,13,5,0) (8.()()()()，0.(KK)()，a()(KK)，0.0(K3()，(J.0()()()’3.(K)()()，().()()00， 

().()()()(),8.8079,1.1921,().()()()(),3.8079,6.0000) 134 

(8,3,14,5,()) (8.()0()()，().()00()’().()000，0.()()()()，().0(}()()，3.(}0()()，().()00()， 

O.OOOO,9.7800,1.2194,0.0000,3.7806,6.0000) 139 

(8,3,15,5,6) (8.mKK)，0.(K)0()，a(X)(K)，().00()0,a(X)()0’3.()()()()，0.()m)0’ 

0.0000,10.7459,1.2541,0.OOOO,：^. 7459,e.OOOO) 144 

(8,3,16,5,6) (8.()(>00’(J.()()(K)’().()()()()’().()()()0，0.()0()()’3.(K)00’0.()()()0， 

0.0000,11.7065,1.2935,0.0000,3.7065,6.0000) 149 

^ (8；3,17,5,6) (8.()()()0’().00()(),0.00()0’(U)()0()，0.()()0()’3,0()()()，().()()0()， 

0.0000,12.6938,L30G2,().()()()0,3.6938,6.0000) 154 

( . . . ) ( . . . ) ( . . . ) 

J 
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Tabic ().3: Change of dual variables 

• c A 

(2,3,4,5,(3) (1.()()()(), 1 .()()(K),3.()()()(), 1.()()()(), 1.()()()()) 

(2,3,5,5,6) (1.5968,1.5968,2.4032,1.()()()(), 1.()()()()) 

(2,3,0,5,6) (2.()()()(),2.()0()(),2.0000, l.OOOO,!.()()()()) 

(2,3,7,5,6) (2.()()0(),2.0000/i.OOOO, 1.0000,1.0000) 

(2,3,10,5,6) (2.()0()(),2.0000,2.()0()(),r.()()()(), 1.0000) 

(2,3,30,5,(5) (2.()()()(),2.()()0(),1.0()0(),2.()()()(),2.()()()()) 

• (2 ,3,50,5,6) (2.()()()(),2.()0()(),1.()00(),2.()()()(),2.()(){)())“ 

. (2,3,15,5,6) (2.()()0{),2.0000,1 .OOOO,2.0000,2.()()()()) 

(2,3,12,5,6) (2.0000,2.()0()(),1.0000,2.0()()(),2.0000) 

(2,3,11,5,6) (2.()()()(),2.()()()(),1.4385,1.5615,1.5615 ) 

(3,3,11,5,6) (2.()()()(),2.()()()(), 1.4385,1.5615,1.5615) 

(4,3,11,5,6) {2.0()()(),2.0()()(),1.1385,1.5615,1.5615) 

(5,3,11,5,6) (2.()()()0,2.0000,1.4409,1.5591,1.5591) 

(6,3,11,5,6) (2.()()0(),2.0()()(),1.4473,1.5527,1.5527) 

(7,3,11,5,6) (2.()()()0,2.()0()(),1.4655,1.5345,1.5345) 

(8,3,11,5,6) (1.3920,1.3920,1.8811，1.7269’ 1.7269) 

( • • • ) ^ 
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‘ Table 6.4: Fare data 

Bei Jing Shang Hai Nan Jing Hang Zhou Fu Zhou 

Y 960 Y 1600 Y 1460 Y 1750 Y 1810 

Chang Chun • B 860 R 960 S 950 S 1140 K 1450 

K 770 W 640 R 880 Q 1050 M 1270 . 

Y 700 Y 1300 Y 1460 Y 1590 Y 1830 

Shen Yang K 600 B 1170、 T 1310 T 1430 S 1190 

S 460 M 910 G 1020 K 1270 Q 1100 

。 Y 960 Y 1760 Y 1650 Y 1900 Y 1990 

Ha Erbin T 860 “ L 1320 M 1160 R 760 K 1590 、 

‘ L 770 V 880 Q 990 M 

Y 1130 Y 930 K 850 U 570 

Bei Jing ‘- B 1020 K 750 Q 750 

y- • ‘ \ L 850 Q 650 G 630 

‘ Y Y 800 Y 200 Y 780 

“ Shang Hai R W 320 S N 510 

‘ K W R Q R 310 
% 
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Table 6.5: Demand data | 

i 
Be i j i ng Shang Hai Nan Jing Hang Zhou Fu Zhou 

i 
Y 30 Y 60 Y 80 Y 30 Y 50 j 

* •： 

Chang Chun B 40 R 20 S 90 S 20 K 40 j 

• K 50 W 70 R 10 Q 10 M 60 ； 

Y 70 Y 30 Y 80 Y 33 Y 100 1 

Shell Yang K 80 “ B 40 T 90 T 45 S 200 | 

‘ S 10 M 60 G 12 K 66 Q 34 | 
. 

Y 85 Y 110 Y 37 Y 49 Y 43 | 
i 

Ha Erbin T 67 L 23 M 38 R 41 K 44 ； 
I 

L 29 V 24 Q 39 M 

Y 46 Y 49 K 52 U 55 

Bd Jing B 47 K 50 Q 53 

L 48 Q 51 G 54 1 

Y Y 58 Y 61 Y 64 . 

Shang Hai R W 59 S N 65 ； 

K W R Q R 66 ‘ 

£ 

_ 1 

100 , 
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Table 6.6: Example 1 of threshold price 

Itinerary Threshold Price 

I 760 

‘ 2 1610 

3 1690 

• 4 1750 • 

5 2060 

• 6 530 

7 1380 

8 1460 

9 1520 

10 1830 

I I 910 

12 1760 

13 1840 

14 1900 

15 2210 

16 850 

17 930 

. 18 990 

19 -1300 

20 80 

21 140 

22 450 
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. Table 6.7: Example 2 of threshold price 

‘ Itinerary Threshold Price ‘ 

1 670 ； 

2 1600 

3 1600 

4 1730 ^ 

5 1970 

6 530 

7 1460 

8 14G0 

9 1590 

10 1830 

11 830 

12 1760 

13 1760 

‘ ‘ 14 1890 

15 2130 

16 930 

17 930 

18 1060 

19 1300 

20 0 ‘ 

21 130 , 、、 

22 370 -

f ‘ . 1 0 2 

r ‘ • 

‘ . • 、 

< - . 
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. “ . . . . . 
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Table 6.8: Example 3 of threshold price 

Itinerary Threshold Price 

1 190 

2 1320 

3 1460 

4 1460 

5 1890 

6 190 

7 U20 

8 . 1460 

9 . 1460 

10 1890 

11 , 630 

！ —、_ 

12 1760 

. 13 1900 
14 1900 • 

“ 15 2330 
t 

16 1130 . -

. 17 1270 

• 18 1270 

‘ “ 19 1700 

. . 20 ‘ 140 

21 140 

22 570 
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, Table 6.9: Example 4 of threshold price 
V i 

Itinerary Threshold Price ： 

1 540 、 

.‘ 2 1280 ：； 

3 1460 

4 1480 

5 1810 1 

G 560 

7 1300 
::‘ 

8 1480 ：̂  
‘ ‘‘ 一 ― “ ‘ • 、 

, 9 1680 J 
10 2010 
"“ II I “ 9 

‘ 11 960 
； 

12 1700 

13 1880 
‘ •<! 

14 1900 、 

15 2230 1 

16 740 \ 

, 1 7 920 

18 940 」 

19 1270 丨 

20 180 ] 

21 200 -1 

22 530 

1 
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Table 6.10: Illustration 1 for the subinodiilarity of value function 

Number c f 

1 [188 141 189 350 189 142 142) 882320 

2 [188 142 189 350 189 142 142] 882510 

3 [189 142 189 350 189 142 142] 882700 

4 [189 141 189 350 189 142 142) 882510 

Table 6.11: Illustration 2 for the subinodiilarity of value function 

Number c f 

5 [50 50 189 350 189 142 142] 751310 

6 [149 149 189 350 189 142 142] 874910 

7 [50 149 189 350 189 142 142] 815290 

8 [149 50 189 350 189 142 142) 822779 

Table 6.12: Illustration for the supcrmodularity of value function 

Number c f 

9 [189 50 189 150 189 142 142) 577979 

10 [189 50 189 350 189 142 142] 843439 

11 [189 142 189 150 189 142 142] 591979 

^ [189 142 189 350 189 142 142] 882699 
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‘ Table 6.13: Illustration for the 1} concavity of value function | 

/I 

Nuinbor c f j 

• I 
13 [189 142 189 350 189 142 142) 882700 ！ 

• .1 •丨丨•• I I I 丨丨丨•丨 I ••丨丨, I ^ 

14 [188 142 189 349 189 142 142] 881380 i 
i 

15 [50 142 189 350 189 142 142] 811580 | 

16 (49 142 189 349 189 142 142] 809970 -J 
1 • I I • ii_ •••• II i_ • • I - I J； 

• f. 
• J 

. 1 

t 

• J 
-

. . . 
. "'l 

r 
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Chapter 7 

Conclusion 

« 

Chapter 2 of. this thesis began by introducing the optimal control of the network 

revenue management formulated by Talluri and van Ryzin (1998). Subsequent 

chapters then focased on two heuristic control methods, the bid price control and 

the certainty equivalent control, and applied them to the so-called Imh-tohub 

airline network. 

7.1 Summary of research findings 

This study of the bid price control first aggregated the revenues on each OD 

and disclosed an optimality condition in terms of the sub-differentials of the 

aggregated piecewise-linear revenue functions. Attention was then shifted to the 

monotone structure of the bid price control thresholds. By applying a priiiial-
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dual argiiinent, proof was cloinonstraU^fl that, tho BP thresholds arc monotone in 

some legs' capacities. 

The study of the certainty oqiiivalont control investigatfxl the probloiri from a 

combinatorial optimization perspective, bridging the DLP inodol for network r(、v-

ciiiio manageineiit, with network flows. By applying the notion of fJ concavity 

(l(ivolop{；d by Murota (2003, 2005), it is dc^inonstratcd that tlie CEC thresholds 

(ixhibit tho same inonotone pattcriiK as t hose of th(； BP thresholds. 

The nurnorical tost part ‘studied the intricate interrelationship l)(?twocn the differ-

ent flights in the multi-hub network via numerical exploration. More specifically, 

it clernonstratod how a change in the network configuration affects tlie allocation 

balance, and how tho dual pricc of th(; itinorarios changes, given that the eco-

iioinic features (fare structure, (estimated {lemaiid, etc.) of tlie various markets 

arc fixed. These nurnorical tests make two valuable contributions: 1) To gain 

more concrete management, insight into the relationships between the network 

flights; 2) To suggest possibilities for the reduction of computational work of tho 

decision making jjiocoss. Moniover, tho niiinorical coiiiparisoiis shown to 

agree with the structural properties obtained in Chapter 4 and Chapter 5. 

7.2 Contributions 

The principle contribution of this thesis is that it offers the first explicit model 

and study of the structure of a specific type of multi-hub airline network, the 
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hub-tohuh network. Another is that it adopts the use of a priinal-dual tech-

nique to analyze monotone structural properties. This novel approach may ben-

efit researchers in the mathematical programming field siiicc many traditional 

primal-dual techniques are applied in algorithm design or in merely proving the 

optimality of some solutions. This thesis also fully exploited tho use of Lagrange 

dual variables and the primal-dual relationship to d(，riw the monotone propcr-

ties of the bid pricc control thresliolds. This can be viewed a.s a good example of • 

merging analytical intricacy with geoinotric simplicity. 

Chapter 5 clarified the relationship between the DLP model in a hub-to-hub 

network RM context with the iiiaxiirium weight circulation problem in network 

flows. This method was first proposed in a simple form by Glover et al. (1982) 

and later exteruicci by Morton (200(3) to a more general 'bipartite' network. This 

thesis has oxtondoci the method to a more complex hub-to-huh network. It is 

hoped that this will ii»vcal new ways of handling largo-scale revenue inanagcrneiit 

problems. 

The notion of L^ concavity in network flows was developed by Murota and Shioura 

(2003,2005) in the discrete convex analysis field, and has been used by Zipkin 

(2008) to study a lost-sales inventory model. This thesis provides another concrete 

example demonstrating its power to explore structural properties in the OM/MS ‘ 

field. 
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7.3 Future work 

Tlio cinpha.sis of this tlicsis is on tlie thcjorctical side of r(w(、iiij(3 management 

models. Future work will focnis on its iriiplcinontation. One promising direction 

is the extension of the structural properties obtained here to (iynamic models. 

This may facc difficulty since stochastic dynamic models differ considerably from 

static ones. However, wo will try t,o adopt the spirit in this thesis and may merge 

it with another kin(丨 of inothodology. 

Another possibility would ho to try to exploit such properties to enhance tho com-

putational efficiency in the heuristic dynamic-programming proccss. These pr()p~ 

nrties may also characteriz(» tho optimality of certain control policies as threshold 

curves^ as is done hy You (1999). The model could also bo further devdoptxi to 

incorporate cancellations, no-sliows and overbooking. 

Regarding tho relationship between NRM problems and network flows invosti-

gate(i in Chapter 5，strengthening the relationship between RM network and 

network flows opens up a rich rcscarch direction in revenue management field. 

An int(3ro.sting question to ask in future work is what kind of network RM prob~ 

Icms can be recast into network flow representations and whether those can load 

to the promotion of higher computational cfficicucy. 

w 
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