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Abstract 

Information Extraction (IE) aims at identifying specific pieces of information 

(data) in a unstructured or semi-structured textual document and transform-

ing unstructured information in a corpus of documents or Web pages into a 

structured database. It can be applied to different types of text, such as 

newspaper articles, Web pages, medical notes, etc. There are several repre-

sentative tasks in IE: named entity recognition (NER), which aims at identi-

fying phrases that denote types of named entities, entity relation extraction, 

which aims at discovering the events or relations related to the entities, and 

the task of coreference resolution, aims at determining whether two extracted 

mentions of entities refer to the same object. IE is useful for a wide variety 

of applications. 

Recently, probabilistic graphical models for sequence data have become 

the predominant formalism for IE, achieving state-of-the-art performance. 

We have investigated and developed a cascaded framework in an attempt to 

consider entity extraction and qualitative domain knowledge based on undi-

rected, discriminatively-trained probabilistic graphical models. This frame-

work consists of two stages and it is the combination of statistical learning 

and first-order logic. As a pipeline model, the first stage is a base model and 

the second stage is used to validate and correct the errors made in the base 

model. We incorporated domain knowledge that can be well formulated into 

first-order logic to extract entity candidates from the base model. We have 

applied this framework and achieved encouraging results in Chinese NER on 

the People's Daily corpus. We have participated in the Chinese NER shared 

task of the fourth SIGHAN Chinese language processing bakeoff (SIGHAN-

6), which provides large-scale benchmark data for evaluation. Among all the 

groups participating the official evaluation, we obtained the best performance 

on the CityU corpus and the fourth place on the MSRA corpus. Moreover, 

we were the only group that obtained consistently over 90 F-measure on all 

the benchmark corpora in the NER open track. 

The cascaded framework is ubiquitous in IE and it is in pipeline or de-

coupled architecture - attempting to perform compound IE tasks in several 



separate, and independent stages. While comparatively easy to assemble 

and computationally efficient, this pipeline approach is highly ineffective and 

suffers from several problems such as error propagation. Typically, pipeline 

models fail to produce highly-accurate final output. On the other hand, there 

has been growing interest in integrated or joint models which explore mutual 

benefits and perform multiple subtasks simultaneously to avoid problems 

caused by pipeline models. However, building such systems usually increases 

computational complexity and requires considerable engineering. We present 

a general, strongly-coupled, and bidirectional architecture based on discrim-

inatively trained factor graphs for information extraction, which consists of 

two components 一 segmentation and relation. First we introduce joint fac-

tors connecting variables of relevant subtasks to capture dependencies and 

interactions between them. We then propose a strong bidirectional Markov 

chain Monte Carlo (MCMC) sampling inference algorithm which allows in-

formation to flow in both directions to find the approximate maximum a 

posteriori (MAP) solution for all subtasks. Notably, our framework is con-

siderably simpler to implement, and outperforms previous ones. It is also 

general and can be easily applied to a variety of probabilistic models without 

considerable modifications. 

The cascaded framework for Chinese NER is a simple integration of se-

quence labeling and logic models. Typically, probabilistic graphical models 

can deal well with uncertainty, but they are less expressive and flexible than 

logical or symbolic systems. Usually, they involve propositional, rather than 

first-order representations. First-order logic, on the other hand, is a powerful 

paradigm to represent a wide variety of knowledge. It is a more expressive 

formalism and allows the representation of variables and n-ary predicates, 

i.e., domain and relational knowledge. While highly expressive, this type of 

model lacks a sophisticated treatment of degrees of uncertainty and fuzziness, 

which permeates real-world domains, especially the ones usually associated 

with intelligence. Clearly, probabilistic graphical models and first-order logic 

offer complementary strengths and weaknesses for sequence data, and the 

integration of both is highly desirable. 

Inspired by this motivation, we combine the advantages of both proba-

bilistic graphical models for sequence data and first-order logic in a princi-

pled way, resulting in an integrated discriminative probabilistic framework 

which models both segmentations io sequence data and relations of differ-

ent segments simultaneously for IE tasks. This integrated model offers a 

great flexibility to capture uncertainty for sequence modeling, as well as a 

variety of first-order domain knowledge. We illustrate the benefits of this 

model for mining implicit relations and new relation discovery, and captur-

ing sub-structures in named entities. We propose the Metropolis-Hastings 



(MH), a theoretically well-founded approximate MCMC algorithm to enable 

Qfficient and tractable inference for this model. This algorithm performs ef-

ficient sampling from segmentations via Markov chains, anchit is guaranteed 

to converge. Joint parameter estimation in this model can be too expensive 

or even intractable. We perform parameter estimation somewhat separately 

for this integrated model. 

The end-to-end performance of high-level IE systems for compound tasks 

is often hampered by the use of cascaded frameworks. The integrated model 

we proposed can alleviate some of these problems, but it is only loosely 

coupled. Parameter estimation is performed independently and it only allows 

information to flow in one direction. In tl^is top-down integration model, the 

decision of the bottom sub-model could.guide the decision of the upper sub-

model, but not vice-versa. Thus, deep interactions and dependencies between 

different tasks can hardly be well captured. 

Based on these observations and analysis, we propose a joint discrimina-

tive probabilistic framework to optimize all relevant subtasks simultaneously. 

This framework defines a joint probability distribution for both segmenta-

tions in sequence data and relations of segments in the form of an exponen-

tial family. This model allows tight interactions between segmentations and 

relations of segments and it offers a natural way for IE tasks. Since exact pa-

rameter estimation and inference are prohibitively intractable, a structured 

variational inference algorithm is developed to perform parameter estima-

tion approximately. For inference, we propose a strong bi-directional MH 

approach to find the MAP assignments for joint segmentations and relations 

to explore mutual benefits on both directions, such that segmentations can 

aid relations, and vice-versa. 

We perform extensive experiments on three important IE tasks using real-

world datasets, namely Chinese NER, entity identification and relationship 

extraction from Wikipedia's encyclopedic articles, and citation matching, to 

test our proposed models, including the bidirectional model, the integrated 

model, and the joint model, ^perimental results show that our models sig-

nificantly outperform current state-of-the-art probabilistic models, such as 

decoupled and joint models, illustrating the feasibility and promise of our 

proposed approaches. In addition, the effectiveness of the bi-directional MH 

algorithm over the greedy, •/V-best list, and uni-directional MH sampling al-

gorithms is also discussed and compared. More importantly, these promising 

results will significantly further the applicability of our proposed approaches 

to other large-scale real world IE tasks. 
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摘要 

信m抽取（ IE)的0的是在非结构化或半结构化文本文件中识别具体信思 

(数据）以及转化语料库文档或网页中的非结构化信息到结构化数据库。 

它可应用于不同类型的文本，如报纸文章，网页，医话等。IE有几个代表 

性任务：命名实体识别（NER) , Q的是确定表示命名实体的词组或短 

语：实体关系杣取（entity relation extraction)，其tl的是发现与实体相 

关的?Jt件或关系；以及共指消解（coreference resolution)的任务，目的是 

确定楚否两个抽取出的实体暗指同一个对象。IE对多种应用领域都有实用 

价值。 

最近，序列数据的概率图模型（probabilistic graphical models)成为 

解决 IE问题的主要形式， j1•达到了先进的性能。在无向，区别性训练 

(discriminatively-trained)的概率图模型甚础上，我们研究幵发了一个 

级联（cascadcd)框架，考虑实体抽取和定性领域知识（domain knowl-

edge) 。这个框架包括两个阶段，它是统计学习和一阶逻辑（first-order 

logic)的结合。作为一个管道（pipeline)栈型，第一阶段是猫本模型，第 

二阶段用来验证和纠正基本模型中的错误。我们纳入领域知识从基本栈型 

中抽取候选实体，这些领域知识可以很好地由一阶逻辑公式表示。我们应 

用这个框架，在人民FI报语料库的中文命名实体识别取得了令人鼓舞的结 

果，我们参加了第四届S1GHAN中文处理竞赛（SIGHAN-6)中的中文命 

名实体识别任务，此竞赛提供大规模的盛准数据作为评价。在所有参与官 

方评价的小组中，我们在城大（CityU)语料库上取得了最佳性能，在微 

软亚洲硏究院（MSRA)语料阵上取得第四名。此外，我们是唯一一个在 

所有命名实体识别幵放测试鞋唯语料库中系统F值都超过90的小组。 

级联框架在IE中普遍存在，它是管道或非锅合架构一意图将复合的IE任 

务分为儿个単独的，独立的阶段。里然比较容易组合及便于计錄，这种恃 

道方法效率很低，同时存在几个严重的问题，如错误繁殖。通常情况下， 

管道栈型不能产生高度精确的最终输出。另一方面，有R益增长的集成或 

联合校型的研究兴趣，将多个子任务同时进行，子任务间互想互利，互相 

帮助，以避免山管道模型造成的问题。然而，要述造这样的系统通常增加 

计算复杂度，而且需要大量的工程。我们提出一个荡于区别性训练因子图 

(factor graph)的普遍的，强锅合双向（bidirectional)架构用于信息抽 

取。此架构存两个组成部分一分割（segmentation)和关系（relation)。 

IV 



首先我们引入选接相关T任务变量的联合因了 (joint factor)捕获了任务 
之间的依赖关系和它们之阿的相互作用。然后，我们提出了一个岛没双肉 
的马尔可夫链蒙特卡罗（MCMC)釆样推理算法以使信息流在两个方丨�《J, 
为所有子任务找到近似最大后验（MAP)解。值得注总的造，我们的框架 
相当简单，便于实现，效果优于以前的模型。此框架适用性广，不需要大 
的修改就可以很容揚地应用到各种概率模型。 

用于中文命名实体识别的级联框架是序列标注和邀辑模逝的简审媒成。 
一般来说，概率图校型可以处理好不确定性，但他们不如巡辑或符号系统 
的表达性与灵活性。通常情况下，它们是ilU义或命题式的，而不是一阶巡 
姆表述。而另一方面，一阶辑是一个强大的范式表达各种各样的知i只。 
它是一个更有表现力的形式，可表示变债和n-元调词，即领域和关系知 
识。里然对很好的表达性，这种枚型缺乏先进的不确定性和校糊性度欺。 
不确定性和模糊性广泛存在于现实世界，特别是与智慈有关的领域。报明 
品，概率图模逝和一阶邀辑对于序列数据优势互补，故樂成两者足非常可 
取的。 

在此动机的激励下，我们有原则地结合概率阁校型和一阶巡組对于序 
列数据的优势，形成了一个集成的（integrated)概率枢架校塑。此枚型 
同时考虑信息抽取中序列数据的分割与分割片段间的关系。此拔成校型 
对序列数据建栈能很灵活地处理不确定性，以及多种一阶巡料领域知i只。 
我们阐明此模型在挖掘隐含和发现新的关系，以及捕获命名实体了•结构方 
而的优势。我们提出Metropolis-Hastings ( M H ) , 一个打理论站础的近 
似MCMC錄法，使此模型可进行高效推理。此算法通过马尔可夫链对丨列 
数据的分割进行有效的采样，其收敛性得到保证。此模型中的联合参数佔 
计过于复杂，葚至难以解决。我们对此枚型中的子结构进行独立的参数佔 
计0 

.°高级IE系统对于复杂任务终端到终端的性能往往受到级联框架的阻碍。 
我们上面提出的煤成模型能减轻其中一些问题，但它只是松锅的。此校 
型中的参数佔计独立执行，而且只允许信息流在一个方向流动。在这利"”白 
上而下”的煤成模型中，底部了-模型的判断可以指导顶部子校型的判断，但 
反之不然。因此，不同任务间深层次的相互作用和依赖关系难以很好地捕 
捉。 

基于这些观察与分析，我们提出了一个联合（ joint)概率框架同时优 
化所有相关的了•任务。此框架定义了一个序列数据分割和分割片段间关 
系的指数形式的联合概率分布。这个模型考虑分割之间紧密的相互作用与 
分割片段间的关系，为IE任务提供了一个理想的方法。山于粘确参数佔计 
与推理也极为棘〒•，我们提出一种结构化变分推理（structured variational 
inference)算法进行近似参数估计。对于推理，我们提出了 一个高度双向 
的MH算法选找分割和关系的朕合MAP解以求双方的互利互忠，这样分割 

.可以帮助关系，反之亦然。 
我们对三个代表性的IE任务：中文命名实体识别，Wikipcdia百科全书 

文章中的实体识别和关系抽取，以及引文匹配在现实世界数据银上进行了 



大量广泛的实验，以测试我们提出的枚型’包括双向校型’集成模型及联 
合枚型。实验结来表明，我们的模型明显优于u前扱先进的概率枚型’如 
非锅合和其它朕合模型。这说明我们提出的校型是可行的’有希望的。此 
外’双向MH鲜法优于贪焚法’ yv-最好列表法（N-bestlist),車向MH錄 
法的性能也经过讨论和比较。更为重要的是’这些可喜的成果将使我们捉 
出的方法进一步应用到:其它大规校现实世界IE任务中。 
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Chapter 1 
/ 

Introduction 

1 Information Extraction 

Information Extraction (IE) [19] is the process of filling the fields and records 

of a database from unstructured or loosely formatted text by automatically 

extracting sub-sequences of human readable text. It can be applied to differ-

ent types of text, e.g., Web pages, corporate memos, news articles, research 

reports, e-mail, blogs, and historical documents. IE involves some major 

tasks: (1) finding the starting and ending boundaries of the text snippets 

that will fill a database field. For example, in the U.S. Department of Labor's 

continuing education extraction problem, the course title must be extracted, 

and segmentation must find the first and last'words of the title, being careful 

not to include extra words ("Intro to Linguistics is taught”）or to chop off 

too many words ("Intro to"). (2) determining which database field is the 

correct destination for each text segment. For example, "Introduction to 

Bookkeeping" belongs in the course title field, "Dr. Dalian Qiiass" in the 

course instructor field, and ‘‘This course covers..." in the course description 

field. (3) determining which fields belong together in the same record. For 

example, sbme courses may be described by multiple paragraphs of text, and 

other courses by just one; extraction must determine which field values from 

which paragraphs are referring to the same course. (4) putting information 

in a standard format in which it can be reliably compared. (5) collapsing 

redundant information so you don't get duplicate records in your database. 

For exa邮le, a course may be cross-listed in more than one department, and 

thus appear on more than one Web page; it will then be extracted multiple 

times, but we want only one record for it in our database. 

IE is useful for a wide range of applications. It has made much progress 

in the past decade, and further research and industrial creativity continue 



Abraham L i n c o l n 刊 ( [ F e b r u a r y 12)DATE. (1809 

IYEAK — (April 15]DATE, |18651YEAR) was the 16th 

(President of the United StatesjMisCt and the first 
president from the【Republican Party]ORG- He was 

born to (Thomas Lincolii|pEn and (Nancy HanksjpEfi. 
two farmers in southeast (Hardin County) LOG-

When Lincoln was nine, his father remarried to 

(Sarah Busli JOHIISTOIILPER. In [1841]YEAR. Lincoln 

entered law practice with jWilliain HerndonjpER, 
a fellow member of the (Whig Party)ORG- On 

[November 4jDATE. (18'12jYEARi Lincoln married 

(Mary Todd)PER- Lincoln survived an a^isassination 

attempt in (Baltiniore)LOC- He successfully led the 

(American Civil War jMisc to end slavery. 

N a ^ H a n i ^ 

Figure 1.1: An example of entity identification (left figure) and relation ex-
traction (right figure) from Wikipedia. In the left figure, the principal entity 
Abraham Lincoln is boxed and all secondary entities are bracketed as l-j 

The notations DATE) YEAR, PER, LOG, ORG, and [-IMISC denote that 
the entities are date, year, person, location, organization, and miscellaneous, 
respectively. In the right figure, the principal entity is in green (darker) and 
identified secondary entities are in yellow. 

to push this progress. Extraction is being applied to increasingly complex 

problems and is being designed for more sophisticated yet easy use by non-

technical end users. 

1.2 Problem Statement for Joint IE 

Most high-level IE consists of compound, aggregate subtasks. For exam-

ple, relation extraction between entities consists of recognizing structured 

information about entities (e.g., person, location, and organization names) 

94][102] and extracting the relationships between entities (e.g., visited, as-

sociate, and executive) [21][97][106], Citation matching reqiHres extracting 

bibliographic records froin^citation lists in technical papers (segmentation), 

and then identifying duplicate records (entity resolution) [88] [67). For such 

IE tasks, the availability of robust, flexible, and accurate systems is highly 

attractive. 

The problem of joint information extraction is to solve all relevant sub-

tasks in information extraction simultaneously, that is, all relevant IE sub-

tasks are optimized at the same time and decisions of them are made together 

in a single coherent manner., This problem is usually very challenging', and 

often increases the model complexity. 

Take the task of identifying entities and discovering semantic relation-
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ships between entity pairs from English encyclopedic articles in Wikipedia' 

for example. The basic document is an article, which mainly defines and de-

scribes an entity (known as principal entity). This document mentions some 

other entities as secondary entities related to the principal entity. Clearly, 

our task consists of two subtasks — first, for entity identification, we need 

to recognize the secondary entities (both the boundaries and types of them) 

in the document^. Second, after all the secondary entities are identified, our 

goal for relation extraction is to predict what relation, if any, each secondary 

entity has to the principal entity. We assume that there is no relationship 

between any two secondary entities in one document. 

As an illustrative example, Figure 1.1 shows the task of entity identifica-

tion and relationship extraction from encyclopedic documents in Wikipedia. 

Here, we use a part of the document about Abraham Lincoln. Our task 

consists of assigning a set of pre-defined entity types (e.g., YEAR, DATE, 

and PER) to segmentations in encyclopedic documents and assigning a set 

of pre-defined relations (e.g., birth.day, birth.year, and job—title) for each 

identified secondary entity to the principal entity. For example, February 12 

is identified as a DATE and Republican Party is identified as an ORG. And 

their relations to the principal entity Abraham Lincoln are birth-day and 

member_of、respectively. As shown in Figure 1.1, some secondary entities 

may not have any relation to the principal entity. 

1.3 Graphical Models for IE 

Graphical models bring together graph theory and probability theory in a 

powerful formalism for capturing complex dependencies among random vari-

ables, and building large-scale multivariate statistical models. In various 

applied fields including information extraction, statistical models have long 

been formulated in terms of graphs, and algorithms for computing basic sta-

tistical quantities such as likelihoods and score functions have often been 

expressed in terms of recursions operating on these graphs. Graphical mod-

els provide a natural tool for formulating variations on these classical archi-

tectures, as well as for exploring entirely new families of statistical models. 

Accordingly, in fields that involve the study of large numbers…f interacting 

variables^ graphical models are increasingly in evidence. 

A graphical model consists of a collection of probability distributions 

that factorize according to the structure of an underlying graph. The main 

^ http://www.wikipedia.org/ , 
^Since the topic of an article usually defines a principal entity (e.g., a famous person) 

and it is easy to identify. In this thesis we only fociis on secondary entity identification. 

http://www.wikipedia.org/
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⑷ (b) 

Figure 1.2: (a 

on its vertices, 

and 7 edges. 

A directed acyclic graph (DAG) that defines a partial order 

(b) An example of undirected graphical model with 6 vertices 

idea is to represent a distribution over a large number of random variables 

by a product of local functions that each depend on only a small number of 

variables. We consider probability distributions over sets of random variables 

V = X U y, where y be a set of output variables that we wish to predict, 

and X be a set of input variables that are observed. Every variable v ^ V 

takes outcomes from a set V，which can be either continuous or discrete. A 

graph Q = {V, E) is formed by a collection of vertices V = {1，2，•..，m}’ 

and a collection of edges E C V y^V, Each edge consists of a pair of vertices 

Syt e Ey and may either be undirected, in which case there is no distinction 

between edge (s, t) and edge {t, s), or directed, in which case we write (s — t) 

to indicate the direction. 

1.3.1 THrected Graphical Models 

A directed graphical model, also known as a Bayesian network, is based on a 

directed graph. See Figure 1.2(a) for an illustration of. In directed graphs, 

the edges s i^ i fy asymmetric relations between the variables, loosely speaking 

the edges follow causal effects. Now suppose that ^ is a directed acyclic graph 

(DAG), meaning that every edge is directed, and that the graph contains no 

directed cycles. Given a DAG, for each vertex v and its parents pa(v), let 

P(v|pa(i;)) denote a nonnegative function over the variables (v,pa(v)), nor-

malized such that f P(v\pa(v))dv = 1. In terms of these local functions, a 

directed graphical model consists of a collection of joint probability distribu-

tions (densities or mass functions) that factorize in the following way: 

P{y,x) = llP(v\pa{v)) (1.1) 

vev 



(a) (b) 

a Figure 1.3: Illustration of undirected graphical models and factor graphs 

An undirected graph on 7 vertices, (b) Equivalent representation of the undi-

rected graph in (a) as a factor graph, assuming that we define compatibility 

functions only on the maximal cliques in (a). The factor graph is a bipar-

tite graph with vertex set and factor set, one for each of the compatibility 

functions of the original undirected graph. 

We use the term generative model to refer to a directed graphical model 

in which the outputs topologically precede the inputs, that is, no x can be 

a parent of an output y. Essentially, a generative model is one that directly 

describes how the outputs probabilistically "generate" the inputs. 

1.3.2 Undirected Graphical Models 

In the undirected case, as shown in Figure 1.2 (b), the probability distribution 

factorizes according to functions defined on the cliques of the graph. A clique 

C is a fully connected subset of the vertex set V, meaning that (5, t) £ E for 

all s,t e. C. With this notation, an undirected graphical model — also k^own 

as a Markov random field (MRF), or a Gibbs distribution — is a collection 

of distributions that factorize as ^ 

(1.2) 

C G C 

for any choice of factors F = {ipc}, where i/'c ： V" —• {These functions 

are also called local functions or compatibility functions.) 

The constant Z is a normalization factor defined as Z = I lcec 功c(yc’ 
Xc), which ensures that the distribution sums to 1. The quantity Z, consid-

ered as a function of the set F of factors, is called the partition function in 

the statistical physics and graphical models communities. Computing Z is 

intractable in general, but much work exists on how to approximate it. 
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Graphically, we represent the factorization 1.2 by a factor graph. A factor 

graph is a bipartite graph G = (V, F, E) in which a variable node e K is 

connected to a factor node Tpc € F if Va is an argument to ipc- An example of 

a factor graph is shown graphically in-Figure 1.3. In that figure, the circles 

are variable nodes, and the shaded boxes are factor nodes. We will assume 

that each local function has the form 礼(y。Xc、= Xc)} for 

some real-valued parameter vector 0c、and for some set of feature functions or 

sufficient statistics {fck}- This form ensures that the family of distributions 

over V parameterized by 9 is an exponential familj^. Muoh of the discussion 

in this thesis actually applies to exponential families in general. 

* 

1.4 Conditional Random Fields 

Directed graphical models are generative, and they assign a joint probabil-

ity P(y, x) to paired observations; the parameters are typically trained to 

maximize the joint likelihood of training instances. To define a joint proba-

bility over observations, a generative model needs to enumerate all possible 

observation sequences, typically requiring a representation in which observa-

tions are task-appropriate atomic entities. In particular, it is not practical 

to represent multiple interacting features or long-range dependencies of the 

observations, since the inference problem for such models is intractable. 

This difficulty is one of the main motivations for looking at conditional 

models as an alternative. A conditional model specifies the probabilities 

P(y|x) of possible label sequences y given an observation sequence x, and it 

is also called discriminative. A discriminative model does not expand mod-

eling effort on the observations. The principal advantage of discriminative 

modeling is that it is better suited to rich, overlapping and agglomerative 

features. The probability of a transition between labels may depend not 

only on the current observation, but also on past and future observations, if 

avjailable. In contrast, generative models must make very strict independence 

assumptions on the observations, for instance conditional independence given 

the labels, to achieve tractability. 

Conditional random fields (CRFs) [47] [82] are undirected graphical mod-

els trained to maximize the conditional probability of the desired outputs 

given the corresponding inputs. CRFs have the great flexibility to encode 

a wide variety of arbitrary, overlapping, and non-independent features and 

to straightforwardly combine rich domain knowledge. Furthermore, they are 

discriminatively trained, and are often more accurate than generative mod-

els, even with the same features. Let Q he a. factor graph over y and x with 

factors C = {^c(yc>*c)}> where Xc is the set of input variables that are ar-
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guments to the local function 4>c, and similarly for y^. CRFs are defined as 

follows: 

Definit ion 1 (conditional random fields): Let C = {^dVcy ^c)} a 

set of factors over graph Q. Then the distribution P is a conditional random 

field if and only if 

P(双丨工)二 巾c(yc，4 (1.3) 
^，cec 

where Z(x) = U y Flcec ^c(2/c' is a normalization factor over all state 

sequences for the sequence x. 

We assume the potentials factorize according to a set of features { /“y。乂c)} 

as 

^cCYC, XC) = exp ^ Ajt/fc(yc,Xc) I, (1.4) 
\ k 

so that the family of distributions {P} is an exponential family. And we 

assume that the features are given and fixed. The model parameters are a 

set of real-valued weights A = {Afc}, one weight for each feature. < 

Practical models rely extensively on parameter tying and we can partition 

the factors of Q into C = {Ci, C2, • • • , Cp}, where each Cp is a clique template 

whose parameters are tied. Each clique template Cp is a set of factors which 

has a corresponding set of sufficient statistics {/pki'^p^Yp)} and parameters 

Op e Then the CRF model can be written as 

(̂y|x) = ̂  n n (1.5) 
cpec 屯ceCp . 

where each factor is parameterized as 中c(yc，Xc; Op) = ^pklpkiVc^ Xc)} 

and the normalization function is Z(x) = ^ ^ OcpGC Ovi/cGCp 屯c(yc’Xc;�)• 

CRFs have been successfully applied to a number of real-world tasks, 

including NP chunking [75], Chinese word segmentation [62], information 

extraction [64’ 63], named entity identification [54，74], and many others. 

1.4.1 Linear-chain CRFs 

One of the most important CRFs is the linear-chain CRFs in which a first-

order Markov assumption is made among labels. In this case, the cliques 

of the conditional model are the nodes and edges, so that there are feature 

functions /fc(2/t, 2/t-i)X) for each label transition. Feature functions can be 

arbitrary (Here we write the feature functions as potentially depending on 

the entire input sequence). Linear-chain CRFs have efficient exact training 

7 



^Parameter estimation for general CRTs is essentially the same as for linear-chains, 
except that computing the model expectations requires more general inference algorithms. 
Any inference algorithm for graphical models, such as the exact junction tree algorithm 
or various approximate inference can be exploited. 

8 

and inference algorithms, as we will show below^. We first give the formal 

definition of linear-chain CRFs: 

Defini t ion 2 (linear-chain CRFs): Let A = {Ajt} G IH" be a parameter 

vector, and fk(y, be a set of real-valued feature functions. Then a 

linear-chain conditional random field is a distribution P{y\x) that takes the 

form 

1 / K \ 

= ； ^ ^ e x p l ^ g Afc/fc(yt，"t-i’aOj， (1-6) 

where Z{x) is an instance-specific normalization function and Z{x) = ^yGxp 

(E f= i Afc/“2/t，yt-i，aJt))-

Parameter Est imat ion 

We discuss how to estimate the parameters A = {Afc} of a linear-chain 

CRF. Given independent and identically distributed (IID) training data 

T> = {x:，y*}J^i’ where each x* = {x\,x2, • • • , is a sequence of inputs, 

and each y* = {yj，yj，•.. , y j ] is a sequence of the 'desired predictions. Pa-

rameter estimation is typically performed by penalized maximum likelihood 

or conditional log likelihood of the data as: 

N 
‘ (1.7) 

After substituting in the CRF model 1.6 into 

the following expression: 

the likelihood 1.7, we get 

N T K N 
m 二 x;z;X>J�i，"h，xi) - (1.8) 

t=i t=i fc=i t=i 

To avoid over-fitting, we use regularization and a common choice of 

penalty is based on the Euclidean norm of A and on a regularization param-

eter 1/2(7^ that determines the strength of the penalty. Then the regularized 

log likelihood is 

1.9) 
2a 

K N K T N 
入 kMyi’yl. E E E 



The parameter is a free parameter which determines how much to 

penalize large weights. Determining the best regularization parameter can 

require a computationally-intensive parameter sweep. Fortunately, often the 

accuracy of the final model does not appear to be sensitive to changes in cr̂ . 

The partial derivatives of 1.9 are 

^p N T N T K 
芬=E E fM，“ xi)- - E E E /“"，"'，xi)p("’ -E ^-

k 1=1 t=l i=l t=l y,y' jt = l 
. . (1.10) 

The function ^(A) is concave, and adding regularization ensures that 

£ is strictly concave, thus it can be efficiently maximized by second-order 

techniques such as conjugate gradient and L-BFGS algorithms. Both the 

partition functibn Z(x) in the likelihood and the marginal distributions 

P{yt,yt-i\x) in the gradient can be computed by forward-backward, which 

uses computational complexity 0{TM'^) for each training instance and a total 

training cost of 0(TM'^NG), where N is the number of training examples, 

and G the number of gradient computations required by the optimization 

procedure. “ 

Inference 

There are two common inference problems for CRFs. First, during train-

ing, computing the gradient requires marginal distributions for each edge 

P(yt, Vt-i |x), and Computing the likelihood requires Z(x). Second, to label an 

unseen instance, we compute the most likely labeling y* = argmaxy P(y|x). 

In linear-chain CRFs, both inference tasks can be performed efficiently and 

exactly by variants of the staxidard dynamic-programming algorithms for 

HMMs. These standard inference algorithms are described in more detail by 

68). A final inference task that is useful in some applications is to compute 

a marginal probability P(yt,yt+i^ •..，2/t+fc|x) over a range of nodes. For ex-

ample, this is useful for measuring the model's confidence in its predicted 

labeling over a segment of input. This marginal probability can be com-

puted efficiently using constrained forward-backward, as described by [20]. 

We omit these inference algorithms in this thesis. 

1.4.2 Semi-CRFs 
‘ . • ‘ 
The semi-Markov conditional ̂ random fields (semi-CRFs) [18, 72] are an ex-
tension of the linear-chain C^lFs [47] for sequence data segmentation and 
labelmg. In this model, x is a token sequence and |x| is the length of the 

\ 
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(a) general CRFs 

OO-O CX)^ 
(b) linear-chain CRFs (c) semi-CRFs 

Figure 1.4: Illustration and comparison of (a) general CRFs, (b) linear-chain 

CRFs, and (c) semi-CRFs. The gray (darker) nodes represent input vari-

ables (e.g., sequence tokens) and the blank nodes represent output variables 

(e.g., labels). In (c), each ellipse represents a segment consisting of several 

consecutive sequence tokens. 

sequence (i.e., number of tokens). The vector s =〈si，S2,…，6、〉is a seg-

mentation of X，and each entry is a segment which is a triple Si = (ij, /ij, y,), 

with ti as a start position, fii as an end position, and yi as the label of this 

segment. Thus, a segment Si means that the label jji is assigned to all the 

observations between the start position U and the end position fii in the 

.observation sequence x. It is reasonable to assume that segments have pos-

itive lengths and adjacent segments touch, that is, 0 < U < f^i < |x| and 

ii+i = /ii + 1. Let gk be a feature function, and it depends on the current 

segment, the whole observation, and the label of previous segment, that is, 

9矢(i，x，s) = 9̂ (yi-i，2A，<“/Xi，x). Let g = • • • be a vector of fea-

ture functions and a = (ai, •..，ock) be the corresponding weight vector. 

As a CRF model, the probability distribution P(s|x) is also of the form but 

with the traditional label assignment y replaced by a segmentation s and the 

cliques are replaced by segments: 

- 1 
= Yl 

⑷ t=l:|a| ‘ 
(1.11) 

where (pi{i,x,s) = exp(ai • g{i,x, s)), and Z(x) = n ' ^ i V'tC?, x, 5). 

The semi-CRF model is capable of measuring properties of segments, and 

transitions within a segment can be non-MarkoviaH. Parameter estimation 

•and finding the maximum a posterior segmentation can be efficiently carried 

out via a dynamic programming algorithm. The computational complexity is 

a constant factor more than that of the traditional linear-chain model when 
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the maximum length of the segments is assumed to be fixed. 

Besides linear-chain and semi-CRFs, several special cases of conditional 

random fields are of particular interest. For example, relational Markov net-

works (RMNs) [85] are a type of general CRF in which the graphical structure 

and parameter tying are determined by an SQL-like syntax. Dynamic con-

ditional random fields (DCRFs) [84，83] are sequence models which allow 

multiple labels at each time step, rather than single labels as in linear-chain 

CRFs. 2D CRFs [107] are two-dimensional conditional random fields in-

corporating the two-dimensional neighborhood dependencies in Web pages. 

And the graphical representation of the 2D CRF model is a 2D grid. Hier-

archical CRFs [108] [48] are a class of CRFs with hierarchical structure and 

they are suitable for hierarchical classification problems such as Web data 

mining and Web page understanding. When observation data have distinct 

sub-structurc, models that exploit hidden state are advantageous. A related 

model is presented in [31, 51], who build a hidden-state CRF (HCRF) which 

can estimate a class label given a segmented sequence in a phone classifi-

cation task. A similar model for natural language parsing is shown in [44 . 

More recently, a hidden dynamic conditional random field (HDCRF) [96] 

model which can capture both internal and external class dynamics to label 

sequence data is presented. [96] introduces a small number of hidden state 

variables to model the sub-structure of a observation sequence and learn 

dynamics between different class labels. 

* 

1.5 Markov Logic Networks 

A Markov network (also known as Markov random field) is a model for the 

joint distribution of a set of variables [61]. It is composed of an undirected 

graph G = {V, E) and a set of real-valued potential functions A first-

order knowledge base (KB) [28] is a set of sentences or formulas in first-order 

logic. 

A Markov logic network (MLN) [69] is a KB with a weight attached 

to each formula (or clause). Together with a set of constants representing 

objects in the domain, it species a ground Markov network containing one 

feature for each possible grounding of a first-order formula F, in the KB, 

with the corresponding weight Wi. The basic idea in MLNs is that: when a 

world''violates one formula in the KB it is less probable, but not impossible. 

The fewer formulas a world violates, the more probable it is. The weights 

associated with the formulas in an MLN jointly determine the probabilities 

of those formulas (and vice versa) via a log-linear model. 

Definit ion 3 (Markov logic networks): A Markov logic network L is a 
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P{X = x) = — exp 
Zi 

^Wini(x) 

where n^ (x) is the number of true groundings of Fi in x, X{i) is the true value 

of the atoms appearing in Fi、and 4>i (工⑴)二 e切，. 

12 

Table 1.1: Example of a KB and generated features 
First-order Logic (KB) Generated Features 

V x,y Employ(x,y)=> 

Person(X),Company(y) 

Employ (Peter, IBM) =i»Person (Peter) , Company (IBM) 

Employ(Smith,IBM)=>Person(Smith),Company(IBM) 

V x,y,z Colleague(x,y) 

Employ (x,z)AEmploy(y,z) 
Colleague(Peter,Smith) Employ(Peter,IBM) 

AEmploy(Smith,IBM) 

set of pairs (Fj, Wi), where Fi is a formula in first-order logic and Wi is a 

real number. Together with a finite set of constants C — {ci，C2，• • • , c\c\}, it 

defines a Markov network A4l,c (Equation 1.12) as follows: 

1. Mi^c contains one binary node for each possible grounding of each pred-

icate appearing in L. The value of the node is 1 if the ground atom is 

true, and 0 otherwise. 

2. contains one feature for each possible grounding of each formula 

Fi in L. The value of this feature is 1 if the ground formula is true, 

and 0 otherwise. The weight of the feature is the Wi associated with F、 

in L. 

An MLN is a statistical relational model that defines a probability distri-

bution over Herbrand interpretations (possible worlds), and can be thought 

of as a template for constructing Markov networks. Given different sets of 

constants, it will produce different networks. These networks will have cer-

tain regularities in structure and parameter given by the MLN and they are 

called ground Markov networks. Suppose Peter (A), Smith (B) and IBM(X) 

are 3 constants, a KB and generated features are listed in Table 1.1. The 

formula Employ(x,y)=>Person(x),Company(y) means x is employed by y 

and Col league (x,y)=J>- Employ (x, z) AEmploy (y, z) means x and y are col-

leagues if they are employed by the same company. Figure 1.5 shows the 

graph of the ground Markov network defined by the formulas in Table 1.1 

and the 3 constants Peter (A), Smith (B) and IBM(X). The probability distri-

bution over possible worlds x specified by the ground Markov network Mi^c 

is given by 
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<Coll^gue(A^  

Employ( 

Figure 1.5: A ground Markov network defined by the formulas in Table 1.1 

and the constants Peter(A)，Smith(B) and IBM(X). 

1.5.1 Parameter Estimation 
4 

Given a relational database, MLN weights can in principle be learned gen-

eratively by maximizing the likelihood of this database on the closed world 

assumption. The gradient of the log-likelihood with respect to the weights is 

'd 

dw, 
log尸如(X =x) = n, {x) — = x')n^(x') (1.13) 

where the sum is over all possible databases x', and Pxu(X — x') is = x') 

computed using the current weight vector w — {wi, ...，Wi,...). Unfortunately, 

computing these expectations can be very expensive. Instead, we can maxi-

mize the pseudo-log-likelihood of the data more efficiently. If x is a possible 

database and Xi is the /th ground atom's truth value, the pseudo-log-likelihood 

of X given weights w is 

logP:(X = x) = Y . l o g 戶 " 》 I MBAX i ) (1.14) 

where MBx (Xi) is the state of X/'s Markov blanket^ in the data. Corre-

spondingly, the gradient of the pseudo-log-likelihood is' 

d 

dwi 

(1.15) 

''The Markov blanket of a node is the minimal set of nodes thai renders it independent 
of the remaining network; in a MLN, this is simply the node's neighbors in the graph. 
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where ni(x[A',=ol) is the number of true groundings of the i-th formula when 

we force X/ = 0 and leave the remaining data unchanged, and similarly 

for ni(x(x,=i)). Computing Equation 1.14 and its gradient does not require 

inference over the model, and is therefore much faster. We can optimize the 

pseudo-log-likelihood using the limited-memory BFGS algorithm [49]. The 

MLN parameters can also be learned discriminatively via efficient algorithms, 

as m 78] and [35] 

1.5.2 Inference 

If Fi and F2 are two formulas in first-order logic, C is a finite set of constants 

including any constants that appear in Fi or F2，and L is an MLN, then 

尸 |F 2 ， L ， C ) = /^(Fi |F2，MZ ,̂C) 

=P(F, A F2 I Ml,c) 

— P i F 2 I Mẑ .c) (1.16) 

— = ^ I 

where xf\ is the set of worlds where Fi holds, and P(x | ML,C) is given by 

Equation 1.12. The question of whether a knowledge base entails a formula 

F in first-order logic is the question of whether | LKB> CKB .F ) = 1，where 

LKB is the MLN obtained by assigning infinite weight to all the formulas in 

KB, and CKB.F is the set of all constants appearing in KB or F. 

A large number of efficient inference techniques are applicable to MLNs. 

The most widely ised approximate solution to probabilistic inference in 

MLNs is Markov chain Monte Carlo (MCMC) [29). In this framework, the 

Gibbs sampling algorithm is to generate an instance from the distribution of 

each variable in turn, conditional on the current values of the other variables. 

The key to the Gibbs sampler is that one only considers univariate condi-

tional distributions — the distribution when all of the random variables but 

one are assigned fixed values. The probability of a ground atom Xi when its 

Markov blanket Bi is in state bi is 

P{Xi = xi\Bi = bi)= 

^wiUf^eFi ^ifii^i =工I, Bi = bi))  

切iMXi 二 0，场=bi)) + Wifi(Xi = l’Bi = bi)) 

(1.17) 

where F/ is the set of ground formula^ that Xi appears in, and fi{Xi = 

X/, Bi = bi) is the value (0 or 1) of the feature corresponding to the z-th 
t 
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ground formula when Xi = x/ and Bi = bi. The estimated probability of a 

conjunction of ground literals is simply the fraction of samples in which the 

ground literals are true, after the Markov chain has converged. 

One way to speed up Gibbs sampling is by Simulated Tempering [52], 

which performs simulation in a generalized ensemble, and can rapidly achieve 

an equilibrium state. [66] proposed MC-SAT, an inference algorithm that 

combines ideas from MCMC and satisfiability. MC-SAT works well and is 

guaranteed to be sound, even when deterministic or near-deterministic de-

pendencies are present in real-world reasoning. Besides MCMC framework, 

maximum a posteriori (MAP) inference can be carried out using a weighted 

satisfiability solver like MaxWalkSAT. It is closely related to maximum like-

lihood (ML), but employs an augmented optimization objective which incor-

porates a prior distribution over the quantity one wants to estimate. MAP 

estimation can therefore be seen as a regularization of ML estimation. 

1.6 Contributions 

This thesis addresses the problem of joint information extraction, which is 

generally challenging and offers new opportunities investigating. We 

propose several probabilistic graphical models, from case绝ed to joint ap-

proaches, to deal with this problem. We focus on exact algorithms as well 

as approximate techniques where exact inference is intractable. We also pro-

pose tractable and efficient algorithms, including parameter estimation and 

inference, for these models. We perform extensive experiments on three rep-

resentative IE tasks, and compare with current state-of-the-art models, to 

exhibit the feasibility and effectiveness of our proposed models. We now 

summarize the major contributions of this thesis as follows: 

• We conduct preliminary investigation on a cascaded framework at-

tempting to consider entity extraction and qualitative domain knowl-

edge. This framework consists of two stages incorporating domain 

knowledge to capture the essential features of the Chinese named en-

tity recognition (NER) task via MLNs. To the best of our knowledge, 

this is the first attempt at using MLNs for the NER problem in the 

NLP community. Compared to current state-of-the-art models for Chi-

nese NER, this framework achieves promising results on both People's 

Daily corpus and official datasets (open Irack) in the Chinese NER 

shared task of the fourth SIGHAN Chinesq language processing bake-

off (SIGHAN-6). 

• We propose a highly-coupled, bidirectional apprdach to integrating 
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r 
probabilistic pipeline models for information extraction. Joint fac-

tors are introduced to explore tight correlations between subtasks to 

aid each other, and parameter estimation can be performed collabora-

tively and efficiently to boost the performance. A strong bidirectional 

Metropolis-Hastings (MH) sampling algorithm is proposed to enable 

approximate inference, and this algorithm allows information to flow 

in both directions to capture mutual benefits. Notably, o^r model is 

considerably simpler to implement and requires much less^gineering. 

It is also general and can be easily applied to a wide range of proba-

bilistic models. 

• We propose an integrated discriminative probabilistic approach to mod-

eling both segmentations in sequence data and relations of segments 

simultaneously. This model combines the advantage of both probabilis-

tic sequence models and first-order logic, and it offers a great flexibility 

to deal with uncertainty for modeling sequence data, and a variety 

of domain knowledge which can be concisely and easily formulated by 

first-order logic. This paradigm offers a natural way for information ex-

traction which requires uncertainty modeling as well as dependency and. 

deeper knowledge representation. We propose the Metropolis-Hastings, 

a theoretically well-founded MCMC algorithm, which consists of effi-

cient sampling from segmentations to perform the maximum a poste-

riori (MAP) inference of this^model. We also illustrat^he benefits of 

this model for implicit relation extraction and new rq '̂ation discovery, 

and sub-structures modeling in named entities. I 

• We propose a discriminative framework defining a joint probability dis-

tribution for both segmentations in sequence data and possible worlds 

of segment relations in the form of an exponential family. This joint 

model has several advantages over previous probabilistic graphical mod-

els. Since exact parameter estimation in this model can be too expen-

sive or even intractable, we propose a structured variational inference 

algorithm to conduct approximate learning for the model's parame-

ters. The variational inference method provides a fast, deterministic 

approximation to otherwise unattainable posteriors. Also its conver-

gence time is independent of dimensionality. Moreover, we propose a 

highly-coupled, bi-directional Metropolis-Hastings (MH) sampling al-

gorithm to enable efficient and tractable inference for this model, which 

allows information to flow in both directions and explores mutual ben-

efits. Compared to the integrated model mentioned above, this joint 

model has several strong points: the integrated model is only loosely-
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coupled in a "top-down" architecture, since the parameter estimation 

is performed independently for the two components. For inference, the 

information can only flow in one direction. In this joint paradigm, pa-

rameters for all subtasks are optimized simultaneously via structured 

variational approximation to capture deep interactions between differ-

ent subtasks. Moreover, the inference is strongly bi-directional, thus 

information can flow in both directions to exploit mutual benefits. 

1.7 Thesis Outline 
e 

Chapter 1 introduces the joint IE task, and graphical models for this task. 

We give some basics and necessary backgrounds, including directed and undi-

rected graphical models, several variants of CRFs and MLNs. The rest of 

the chapters in the thesis is organized as follows: 

Chapter 2. .Related Work: In this chapter," we review some closely re-

, l a t e d models for IE tasks, including pipeline models, models incorpo-

rating probability with logic, integrated and joint models. We compare 

our approaches with these models, pointing out some shortcomings of 

these models and the superiority of our proposed approaches over these 

models. 

Chapter 3. A Prel iminary Study: We develop a cascaded architecture 

incorporating probabilistic graphical models and first-order logic for 

Chinese NER, as a preliminary study. This architecture captures a va-

. riety of linguistic characteristics in Chinese NEs as domain knowledge, 

and formulates them into first-order logic easily and concisely.‘ Us-

ing linear-chain CRFs as a base model, we do error analysis, describe 

well-engineered features and domain knowledge, and show how the do-

main knowledge can be represented into first-order logic to conduct 

relational learning. We apply and test our framework on both People's 

Daily corpus and official datasets in the Chinese NER shared task of 

the fourth SIGHAN Chinese language processing bakeoff (SIGHAN-6), 

and our proposed model outperforms previous state-of-the-art models 

and achieves consistently high performance. For example, our system 

won the first place on the CityU open track and fourth place on the 

MSRA open track in the SIGHAN-6, respectively. Our proposed frame-

work can also be extendable to NER for other languages, due to the 

simplicity of the domain knowledge we could access. 

Chapter 4. Bidirectional Integrat ion of Pipel ine Models: We present 
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a highly-coupled, bidirectional integrated architecture based on discrimi-

natively-trained factor graphs for IE tasks, which consists of two com-

ponents —segmentation and relation. We introduce joint factors con-

necting variables of relevant subtasks capturing tight interactions be-

tween them. And parameter estimation can be performed efficiently 

using evidences from multiple subtasks, such that they aid each other 

to boost the performance. We then propose a strong bidirectional al-

gorithm based on efficient Markov chain Monte Carlo (MCMC) sam-

pling to enabl^ractable inference, which allows information to flow 

bidirectionally and mutual benefits from different subtasks can be well 

exploited. Our framework is considerably easier to build and requires 

much less engineering. It is also general and can be easily applied to a 

wide range of probabilistic models and other real-world IE tasks. 
/ 

Chapter 5. A n Integrated Discriminatiye Probabil istic Approach: 

Motivated by mining implicit relations and new relation discovery, and 

capturing sub-structures in named entities, in this chapter, we combine 

the advantages of both probabilistic graphical models for sequence data 

and first-order logic in a principled way, resulting in an integrated dis-

criminative probabilistic framework which models both segmentations 

in sequence data and relations of different segments simultaneously for 

IE tasks. We propose the Metropolis-Hastings, a MCMC algorithm 

for approximate Bayesian inference to find the maximum a posteriori 

(MAP) assignment of all the variables of this model. We perform pa-

rameter estimation somewhat separately for this integrated model, to 

reduce the model complexity. • 

Chapter 6. Jo in t Models Incorporat ing Logic: In this chapter, we for-

mally define the problem of joint optimization of information extrac-

tion, and propose a joint ^discriminative probabilistic framework to op-

timize all relevant subtasks simultaneously. This framework offers a 

great flexibility to incorporate the advantage of both uncertainty for 

sequence modeling and first-order logic for domain knowledge. The 

first-order logic model provides a more expressive formalism tackling 

the issue of limited expressiveness of traditional attribute-value repre-

sentation. Our framework defines a joint probability distribution for 

both segme中tions in sequence data and possible worlds of relations 

between segments in the form of an exponential family. Since exact pa-

rameter estimation and inference are prohibitively intractable in this 

model, a structured variational inference algorithm is developed to per-

form parameter estimation approximately. For inference, we propose a 
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highly-coupled, bi-directional Metropolis-Hastings (MH) algorithm to 

find the maximum a posteriori (MAP) assignments for both segmenta-

tions and relations. 

Chap ter 7. Exper iments : We apply and test our proposed models, in-

cluding the bidirectional integrated models in Chapter 4，the integrated 

discriminative probabilistic models in Chapter 5，and the joint models 

incorporating first-order logic in Chapter 6，on three important real-

world IE tasks, namely Chinese NER, entity identification and rela-

• tion extraction from Wikipedia, and citation matching. Extensive ex-

perimental study shows that our proposed models achieve substantial 

improvement over current state-of-the-art models, demonstrating the 

effectiveness and feasibility of our approaches. In addition, the su-

periority of the bi-directional MH algorithm over the greedy, TV-best 

list, and uni-directional MH sampling algorithms is also analyzed and 

compared. 

Chapter 8. Conclusions and Future Work : We review the main con-

tributions of the thesis and summarize their significance and applica-

bility. We discuss extensions and future research directions not ad-

dressed in the thesis. For example, these proposed models allow exten-

sive further investigation, both for parameter learning and inference 

algorithms. Feature engineering is also an important issue to seek fur-

ther gains of these models. We plan to apply and test our models to 

other real-world IE applications. 

1.8 Publications Generated 

Some of the work described in this thesis has been published. The content 

of Chapter 3 was published in [94, 100] and in [101] which mainly presents 

the official results in SIGHAN-6. Work on bidirectional integrated models 

(Chapter 4)，integrated models combining probabilistic graphical models for 

sequence data and first-order logic (Chapter 5) was published in [98) and 

102], respectively. Some content in Chapter 7 using MLNs for encyclopedia 

relation extraction with multiple features was also published in [97). A pa-

per on probabilistic joint models incorporating first-order logic and learning 

via structured variational approximation (Chapter 6) [99] is currently under 

review. 

In addition to the above publications directly generated from this research 

work, some other indirectly related publications have not been included. A 
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cascaded approach based on discriminative probabilistic models for biomed-

ical named entity recognition was published in [13] and [14] (joint work with 

Shing-Kit Chan). A hidden dynamic conditional random field (HDCRF) 

model which can capture both internal and external class dynamics to label 

sequence data was presented in [96]. And work on using expressive logic 

models for coreference resolution was published in [12] (joint work with Ki 

Chan). 

20 



Chapter 2 

Related Work 

2.1 Pipeline Models for IE 

Most existing approaches to compound, aggregate IE problems are in pipeline 

or decoupled architecture — attempting to perform compound tasks in sev-

eral separate, and independent stages. This decoupled strategy is ubiquitous 

in IE [94] [25] [34], in which stages are run in some order, and later stages 

have access to the output of completed earlier stages. The simplest way 

is the 1-best feed forward architecture which greedily takes the best out-

put at each stage in the pipeline and pass it on to the next stage. While 

comparatively easy to assemble and computationally efficient, this pipeline 

approach is highly ineffective and we summarize the shortcomings as follows 

[25] [67]-: (1) Error Propagation: since many stages are performed separately 

and independently in decoupled architecture, errors accumulate as informa-

tion progresses through the pipeline, and an error once made in the previous 

stages can hardly be corrected in the current stage. It is therefore disap-

pointing, but not surprising, that the overall performance is limited and 

upper-bounded. For example, if we naively use the single most likely output 

of a part-of-speech tagger as the input to a syntactic parser, and those parse 

trees as the input to a coreference system, and so on, errors in each step will 

propagate to later ones: each components 90% accuracy multiplied through 

six components becomes only 53%. (2) Lack of Mutual Interactions: the 

pipeline architecture does not capture the dependencies and interactions be-

tween different stages. In the relation extraction task, for example, knowing 

the entities (both entity types and boundaries) is very helpful for extracting 

relations between them. Also, knowing the relation between two entities is 

useful for entity identification (e.g., the employment relation can only exist 

between an organization and a person, and cannot exist between an or-
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ganization and a location, or a location and a person). Unfortunately, the 

pipeline architecture does not achieve these interactions, resulting in reduced 

performance. (3) Lack of Long-distance Dependency Modeling: in informa-

tion extraction, long-distance dependencies always exist between different 

attribute elements. And there are always many irrelevant elements or noise 

elements appearing between the attributes. However, flat models like linear-

chain CRFs [47] cannot incorporate long-distance dependencies because of 

their first-order Markov assumption. 

A common improvement on this ar<Siitecture is to pass TV-best lists be-

tween processing stages, and this usually gives useful improvements. How-

ever, efficiently enumerating TV-best lists often requires very substantial cog-

nitive and engineering effort [86]. At the other extreme, one can maintain 

the entire space of representations (and their probabilities) at each level, and 

use this full distribution to calculate the full distribution at the next level. 

In most cases, maintaining entire probability distributions is usually infeasi-

ble, because for most intermediate tasks, there is an exponential number of 

possible labelings. Doing this normally also involves a very high cognitive 

and engineering effort, and in practice this solution is infrequently adopted. 

Some work focused on improving the pipeline architecture [25] [34]. Finkel 

et al. [25] modeled pipelines as Bayesian networks, with each low level task 

corresponding to a variable in the network. This framework samples the 

output for each component, then the pipeline is run repeatedly so that dif-

ferent combinations of output throughout the pipeline are evaluated. This 

architecture has the drawback that it only allows information to flow in 

one direction. Hollingshead and Roark [34] proposed an approach that uses 

output from later stages of a pipeline to constrain earlier stages of the same 

pipeline iteratively. All these approaches suffer from inherent inferiority such 

as brittle accumulation of errors caused by their pipeline architecture. 

2.2 Incorporating Probability with Logic 

Some work dedicated to combining probability and first-order logic. One 

major challenge of logic is its insufficient handling of uncertainty and fuzzi-

ness. One early work is probabilistic logic programming (PLP) which places 

constraints on distributions [32]. It makes use of a logic program syntax 

and the concept of least Herbrand model to specify the random variables. 

A recent approach known as Bayesian logic programming (BLP) [41] treats 

atoms as random variables whereas PLP treats atoms as states of random 

variables. Besides, two common models that received some attention are re-

lational Bayesian networks (RBNs) |38] and probabilistic relational models 
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(PRMs)、[26]. RBNs are basically Bayesian networks whose nodes are the 

extensions of first-order predicates. In other words, each node is the assign-

ment to the set all atoms of a certain predicate. Needless to say, inference 

in such a network would be extremely inefficient since each node would have 

an extremely large number of values. PRMs make use of directed graphical 

models that bring a notion of causality. The need to avoid cycles in PRMs 

causes significant representational and computational difficulties. Inference 

in PRMs is done by creating the complete ground network, which limits their 

scalability. PRMs require specifying a complete conditional model for each 

attribute of each class, which in large complex domains can be quite bur-

densome. In relational domains it is often the case that random variables 

depend on each other without a clear notion of causality. For this reason, 

relational Markov networks (RMNs) |85) recast PRMs so they generate undi-

rected graphical models (Markov networks) instead of Bayesian networks. 

RMNs use database queries as clique templates, and have a feature for each 

state of a clique. RMNs are exponential in clique size, and do not specify 

a complete joint distribution for the variables in the model. The disadvan-

tage of RMNs is that learning in undirected graphical models is harder than 

in directed ones. RMNs use MAP estimation with belief propagation for 

inference, which makes learning quite slow, despite the simplified discrimi-

native setting. However, these models have not been applied to large-scale 

IE problems. 

Another branch of models is first-order probabilistic languages (FOPLs) 

60] which explicitly represent objects and relations between them. BLOG 

[57] is one such approach based on generative models and has been applied 

to solve text mining problems |11]. A BLOG model is basically defined by a 

generative process for tackling situations where possible worlds with varying 

pbject sets and identity uncertainty. However, BLOG does not allow first-

order knowledge to be easily incorporated. BLOG is generative and is con-

strained to assume independence or explicitly model the causal interactions 

between features of data. Our proposed model is discriminative, and can 

capture complex dependencies among inputs. Culotta et al. [22] attempted 

to incorporate domain knowledge into CRFs. They designed "a^stricted 

form of first-order logic, which is basically cluster-wise compatibility of the 

observed tokens. Such logic is then incorporated into CRFs in the form of 

features which can only capture some raw facts observed from data and are 

unable to conduct logical inference. Consequently, both expressiveness and 

reasoning power are very limited. 

Markov logic networks (MLNs) [69] combine first-order logic and proba-

bilistic graphical models in a single framework, and a joint inference method 

based on MLNs was proposed in [67), where segmentation of all records and 
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entity resolution are performed together in a single MLN framework for ci-

tation matching This method mainly consists of designing some logical 

formulas to capture interactions between segmentation and resolution. How-

ever, the inference is not strongly bi-directional but only weakly-coupled, and 

do not enforce transitivity. Since the logic formulas only examine pairs of 

eonsecutive labels, not whole fields. For this reason, citation coreference com-

patibility is measured using features of the un-segmented citation. Our pro-

posed model is strongly-coupled and enforces transitivity, an (insignificantly 

outperforms the single MLN model in [67]. Zhu et al. [106] used MLNs to 

extract relationships between entities and built an entity relation extraction 

system called StatSnowball. Similar to [21] [97], the entities were extracted 

and known in advance in [106]. Our tasks involving joint entity identifica-

tion and relation extraction, and joint segmentation and entity resolution are 

more difficult, and offer new opportunities for information extraction. 

2.3 Integrated and Joint Models for IE 

Integrated and joint models exploring mutual benefits on different tasks 

have shown great promise in many areas including natural language pro-

cessing, data mining and information extraction. Some early work includes 

{59, 53，9，88]. Pasula et al. [59] developed a "collective" model for citation 

matching, but performed segmentation in a pre-processing stage, allowing 

boundaries to occur only at punctuation marks. This model required aan-

siderable engineering. [59] combined several models with separately learned 

parameters, a number of hard-wired components, and data from a variety of 

sources (including a database of names from the 2000 US Census, manually-

segmented citations, and a large Al BibTex bibliography). Bunescu and 

Mooney [9] employed relational Markov networks (RMNs) [85] to represent 

influences and dependencies between different extractions. Dependencies 

must be defined in the model structure and |9] used crude heuristic part-

of-speech patterns. Another disadvantage of this approach is that it uses 

loopy belief propagation and a voted perceptron for approximate learning 

and inference - ill-founded and inherently unstable algorithms which are 

noted by the authors to have caused convergence problems. Using first-order 

logic formulism, our model allows a much broader class of relations and de-

pendencies. The experiment in [9] applied joint segmentation to protein 

name extraction, but did not perform entity resolution. We perform two IE 

tasks using real-world data from Wikipedia and Cora. Mccallum and Jensen 

53] advocated the use of joint probabilistic models that perform extraction 

and data mining in an integrated inference procedure — the evidence for an 
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outcome being the result of simultaneously making inferences both "bottom 

up" from extraction, and "top down" from data mining. And Wellner et 

al. [88] proposed one such model for citation matching. Wellner et al. [88] 

extended the pipeline model by passing uncertainty from the segmentation 

phase to the entity resolution phase, and by including a one-time step from 

resolution to segmentation. However, this model is not a real joint model 

since it did not “close the loop" by repeatedly propagating information be-

tween different substructures. Separate learning and inference is employed 

to reduce 1;he model complexity. The used N-best list for inference is a re-

stricted approximation for the full distribution of large-output components. 

In contrast, by training all parameters simultaneously, our model captures 

deep interactions betw^n substructures from two relevant tasks. Using MH 

sampling for inference bi-directionally, the full probability distribution can 

be better approximated and mutual benefits can be gained. 

Recently, Zhu et al. [Ill] proposed an integrated probabilistic approach 

to Web page understanding. In this "top-down" integration model, the deci-

sion of the upper hierarchical CRF model [108] [48] could guide the decision of 

the bottom semi-CRF model. However, the drawback of the top-down archi-

tecture is that the decision of the'semi-CRF model can hardly be used by the 

hierarchical CRF model to refine its decision-making. Later they proposed 

dynamic, hierarchical models to incorporate structural uncertainty'ibr Web 

data extraction [109]. A simple variational mean field approach is exploited in 

their method. As stated in Section 6.2.4, the structured variational approx-

imation in our model is more general than the simple variational approach 

by exploiting tractable substructures. The superiority is that, deep inter-

actions between entities and relations can be captured and mutual benefits 

between two tasks can be exploited better. Moreover, one major difference 

between our model and [111]|109] in that our model has the advantage of 

incorporating the expressiveness of first-order logic and a variety of domain 

knowledge. 

More recently, Yang et al. [93] improved the model in |111] by intro-

ducing additional potential functions capturing dependencies between two 

sub-models in [111]. The resulting framework is a bi-directional integration 

of page structure understanding and text understanding. Our work differs 

by several modeling choices: combining probability with first-order logic in-

stead of pure probability, joint parameter learning via structured variational 

approximation instead of separate training, bi-directional sampling instead 

of 1-best iteration. Luo et al. [50] combined Web classification and Web in-

formation extraction based on the CRF model. However, since it was defined 

according ^̂o the DOM tree structure, this model cannot be applied to our 

task. 
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Chapter 3 

A Preliminary Study 

3.1 A Cascaded Approach 

Named entity recognition (NER) [65] is the task of identifying and classifying 

phrases that denote certain types of named entities (NEs), such as person 

names (PERs), locations (LOCs) and organizations (ORGs) in text docu-

ments. The NER task is, given a sentence, first to segment which words 

are part of entities, and then to classify each entity by type (PER, LOG, 

ORG, and OTHER (meaning not an entity)). The challenge of this problem 

is that many named entities are too rare to appear even in a large training 

set,.and therefore the system must identify them based only on context. It 

is a well-established task in the NLP and data mining communities and is 

regarded as crucial technology for many higher-level applications, such as 

information extraction, question answering, information retrieval and knowl-

edge management. The NER problem has generated much interest and great 

progress has been made，as evidenced by its inclusion as an understanding 

task to be evaluated in the Message Understanding Conference (MUC) [2], 

the Automatic Content Extraction (ACE) evaluation [l], and the Conference 

on Computational Natural Language Learning (CoNLL) |4)[3). 

CRFs [47] [82] have been the state-of-the-art model adopted in a variety 

of IE tasks (e.g., NER), achieving very good performance. The basic idea of 

CRF-based methods is to formulate the IE problem as a sequence labeling 

task. However, one disadvantage of sequence labeling models, such as CRF-

based methods, is the limited expressiveness of attribute-value representation 

of features. While attribute-value representation is suitable for statistical 

learning approaches. They cannot handle text mining problems involving 

complex knowledge which requires richer representational power facilitating 

logical inference or reasoning. 
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Another major limitation of sequence labeling models is their incapability 

of incorporating entity-level domain knowledge commonly found in practical 

situations. For example, one useful feature is the degree of matching between 

the candidate entity and the entries found in a specialized lexicon. Such 

feature requires the processing of the entire candidate entity. On the other 

hand, sequence learning methods operate on the token level, while this kind 

of feature needs to work on the whole entity level. So there is a fundamental 

mismatch in representation resulting in difficulty in adopting such kind of 

feature. 

Logic is a powerful paradigm that can overcome the knowledge represen-

tation problems mentioned above found in sequence learning methods. It 

provides much more expressive power than attribute-value representation of 

features. It can capture complex entity-level domain knowledge commonly 

found in human experts or in practical situations. Generally, incorporating 

logic into text learning models is quite challenging. One major challenge of 

logic is its handling of uncertainty and fuzziness which is common in text. 

We have investigated and developed a two-stage cascaded framework in 

an attempt to consider entity extraction and qualitative domain knowledge 

based on the combination of statistical learning and first-order logic. First, 

we employ conditional random fields (CRFs), a discriminatively trained undi-

rected graphical model which has theoretical justification and has been shown 

to be an effective approach to segmenting and labeling sequence data, as our 

base system. We then exploit a variety of domain knowledge into Markov 

logic networks (MLNs)，a powerful combination of logic and probability, to 

validate and correct errors made in the base system. We show how a variety 

of domain knowledge can be formulated as first-order logic and incorporated 

into MLNs. We use three Markov chain Monte Carlo (MCMC) algorithms, 

including Gibbs sampling, Simulated Tempering, as well as MC-SAT, and 

Maximum a posteriori/Most Probable Explanation (MAP/MPE) algorithm 

for probabilistic inference in MLNs. 

3.2 Framework Overview 

We propose a framework based on probabilistic graphical models with first-

order logic. As shown in Figure 3.1, the framework is composed of three 

main components. The CRF model is used as a base model. Then we incor-

porate domain knowledge that can be well formulated into first-order logic 

to extract entity candidates from CRF results. Finally, the MLN, an undi-

rected graphical model for statistical relational learning, is used to validate 

and correct the errors made in the base model. 
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Figure 3.1: Framework overview 

3.2.1 Applying to Chinese NER 

Compared to European-language NER, Chinese NERi seems to be more 

difficult [95]. Recent approaches to Chinese NER are a shift away from man-

ually constructed rules or finite state patterns towards machine learning or 

statistical methods. However, rule-based NER systems lack robustness and 

portability. Statistical methods often suffer from the problem of data spar-

si ty, and machine learning approaches (e.g., Hidden Markov Models (HMMs) 

Maximum Entropy (Max-

variants of them) 

6’ 104], Support Vector Machines (SVMs.) [36 

Ent) [7，17], Transformation-based Learning (TBL) [8 

might be unsatisfactory to learn linguistic information in Chinese NEs. Cur-

rent state-of-the-art models often view Chinese NER as a classification or 

sequence labeling problem without considering the linguistic and structural 

information in Chinese NEs. They assume that entities are independent, 

however in most cases this assumption does not hold because of the existing 

relationships among the entities. They seek to locate and identify named 

entities in text by sequentially classifying tokens (words or characters) as to 

whether or not they participate in an NE, which is sometimes prone to noise 

and errors. 

In fact, Chinese NEs have distinct linguistic characteristics in their com-

position and human beings usually use prior knowledge to recognize NEs. 

For example, about 365 of the highest frequently used surnames cover 99% 

Chinese surnames [81 j. Some LOCs contain location salient words, while 

some ORGs contain organization salient words. For the LOG “香港特 

区/Hong Kong Special Region"，‘‘番港/Hong Kong" is the name part and “ # 

Mn this thesis we only focus on PERs, LOCs and ORGs. Since temporal, numerical 
and monetary phrases can be well identified with rule-based approaches. 
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区/Special Region" is the salient word. For the ORG “香港特区政府/Hong 

Kong Special Region Government", “香港/Hong Kong” is the LOG name 

part, “1^区/Special Region" is the LOG salient word and “政府/Government” 

is the ORG salient word. Some ORGs contain one or more PERs, LOCs and 

ORGs. A more complex example is the nested ORG “；!匕二It市海淀区清平 

大学计算机学院/School of Computer Science, Tsinghua University, Haid-

ian District, Beijing City" which contains two ORGs “淸堆大学/Tsinghua 

University" and “计算机学院/School of Computer Science" and two LOCs 

“北京市/Beijing City” and “海淀区/Haidian District". The two ORGs con-

tain ORG salient words “大学/University” and “学院/School”，while the two 

LOCs contain LOG salient words “市/City” and “区/District” respectively. 

In the case of Chinese NER, a named entity can be connected to another 

named entity for instance, because they share the same location salient word. 

Thus in an undirected graph, two node types exist, the LOG nodes and the 

location salient word nodes. The links (edges) indicate the relation (LOCs 

contain location salient words) between them. This representation can be 

well expressed by MLNs. ‘ 

However, one problem concerning relational data is, how to extract use-

ful relations for Chinese NER. There are many kinds of relations between 

NEs, some relations are critical to the NER problem while others are not. 

Another problem that we address is whether these relations can be formu-

lated in first-order logic and combined in MLNs. In Section 3.2.5，we exploit 

domain knowledge. We will show how these knowledge can capture essential 

characteristics of Chinese NEs and can be well and concisely formulated in 

first-order logic in Section 3.2.6. 

3.2.2 CRFs as Base Model 

Recently, CRFs have been shown to perform exceptionally well on Chinese 

NER shared task on the third SIGHAN Chinese language processing bake-

off (SIGHAN-04) ([105], (15), [16]). We follow the state-of-the-art CRF 

models using features that have been shown to be very effective in Chi-

nese NER, namely the current character and its part-of-speech (POS) tag, 

several characters surrounding (both before and after) the current charac-

ter and their POS tags, current word and several words surrounding the 

current word, and dictionary features. In addition, we exploit clue word 

features which can capture non-local dependencies. We employ 412 career 

titles (e.g.,总统/President,教授/Professor,警察/Police)，59 family titles 

(e.g.,爸爸/Father，妹妹/Sister), 33 personal pronouns (e.g.,你介J/Your’ 我 

^f]/We) and 109 direction words (e.g.,以;I匕/North,南部少South) to represent 

non-local information. Career titles, family titles and personal proneuos may 
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Susam is an American economics professor 

ra是一名美国经济学 _ 

Figure 3.2: An example of non-local dependency. The career title “教授” 

indicates a PER “苏姗” 

imply a nearby PER and direction words may indicate a LOG or an ORG. 

Figure 3.2 illustrates an example of non-local dependency. This gives us a 

competitive baseline CRF model using both local and non-local information 

for Chinese NER. 

We also observe some important issues that significantly influence the 

performance as follows: 

W i n d o w size: The primitive window size we use is 5 ( 2 characters preced-

ing the current character and 2 following the current character). We extend 

the window size to 7 but find that it slightly hurts. The reason is that CRFs 

can deal with non-independent features. A larger window size may introduce 

noisy and irrelevant features. 

Feature representation: For character features, we use character identi-

ties. For word features, BIES representation (each character is beginning of 

a word, inside of a word, end of a word, or a single word) is employed. 

Label ing scheme: The labeling scheme can be BIO, BIOE or BIOES rep-

resentation. In BIO representation, each character is tagged as either the 

beginning of a named entity (B), a character inside a named entity (I), or 

a character outside a named entity (O). In BIOE, the last character in an 

entity is labeled as E while in BIOES, single-character entities are labeled 

as S. In general, BIOES representation is more informative and yields better 

results than both BIO and BIOE. 

3.2.3 Error Analysis 

Even though the CRF model is able to accommodate a large number of 

well-engineered features which can be easily obtained across languages, some 

NEs, especially LOCs and ORGs are difficult to identify due to the lack of 

linguistic or structural characteristics. Since predictions are made token by 

token, some typical and serious tagging errors are still made, as shown below: 

• O R G is incorrectly tagged as LOC: In Chinese, many ORGs contain 

location information. The CRF model only tags the location information 

(in the ORGs) as LOCs. For example, “廣山理工学院/Tangshan Techni-
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cal Institute" and “海南将街委/Hainan Provincial Committee ” are ORGs 
and they contain LOCs “唐山/Tangshan” and “海南街/Hainan Province", 
respectively. “唐山/Tangshan” and “海南将/Hainan Province" are only in-
correctly tagged as LOCs. This affects the tagging performance of both 
ORGs and LOCs. 

• LOG is incorrectly tagged as ORG: The LOCs “悉尼歌剧院/Sydney 
Opera" and “北京体育馆/Beijing Gymnasium" are mistakenly tagged as 
ORGs by the CRF model without taking into account the location salient 
words “歌剧院/Opera” and “体育馆/Gymnasium". 

• The boundary of entity is tagged incorrectly: This mistake occurs for 
all the entities. For example, the PER “汤姆.克#斯/Tom Cruise" may be 
tagged as a PER “汤姆/Tom”； the LOG “不4梅/Bremen，，may be tagged 
as a LOG “来梅/Laimei”，which is a meaningless word; the ORG “平为公 
司/Huawei Corporation" may be tagged as an ORG “平为/Huawei”. The 
reasons for these errors are both complicated and varied. However, some of 
them are related to linguistic knowledge. 

• Common nouns are incorrectly tagged as entities: For example, the 
two common nouns “现代数学/Modern Mathematics" and “格兰士微波 
炉/Galanz Microwave Oven" may be improperly tagged as a LOG and an 
ORG. Some tagging errors could be easily rectified. Take the erroneous ORG 
“市委组织’ /City Committee Organizes’” for example, intuitively it is not 
an ORG since an entity cannot span any punctuation. 

3.2.4 MLNs as Error Correction Model 

We model the linguistic and structural information in Chinese named entity 

composition. We exploit a variety of domain knowledge which can capture 

essential characteristics of Chinese named entities into MLNs, a powerful 

combination of first-order logic and probability, to (1) validate and correct 

errors made in the base system and (2) find and extract new entity can-

didates. These domain knowledge is easy to obtain and can be well and 

concisely formulated in first-order logic and incorporated into MLNs. 

MLNs conduct relational learning by incorporating first-order logic into 

probabilistic graphical models under a single coherent framework [69). Tra-

ditional first-order logic is a set of hard constraints in which a world violates 

even one formula has zero probability. The advantage of MLNs is to soften 

these constraints so that when the fewer formulae a world violates, the more 

probable it is. MLNs have been applied to tackle the problems of gene in-

teraction discovery from biomedical texts and citation entity resolution from 

citation texts with state-of-the-axt performance ([70], [79]). 
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3.2.5 Domain Knowledge 

We incorporate various kinds of domain knowledge via MLNs to predict 

the newly extracted NE candidates from C R F hypotheses. We extract 165 

location, salient words and 843 organization salient words from Wikipedia^ 

and the L D C Chinese-English bi-directional NE lists compiled from Xinhua 
\ ‘  

News database, as shown in Table 3.1. We also make a punctuation list which 

contains 18 iten^^ and some stopwords which Chinese NEs cannot contain. 

The stopwords are mainly conjunctions, auxiliary and functional words. We 

extract new NE candidates from the C R F results according to the following 

consideration: 
__ 、 

• Definitely, if a chunk (a series of continuous characters) occurs in the training 

data as a PER'or a LOG or an ORG, then this chunk should be a PER or a 

y LOG or an ORG in the testing data. In general, a unique string is defined 

as a PER, it cannot be a LOG somewhere else. 

• Obviously, if a tagged entity ends with a location salient word, it is ^ LOG. 

If a tagged entity ends with an organization salient word, it is an ORG. 

• If a tagged entity is close to a subsequent location salient word, probably 

they should be combined together as a LOG. The closer they are, the more 

likely that they should be combined. 

• If a series of consecutive tagged entities are close to a subsequent organiza-

tion salient word, they should probably be combined together as an ORG 

because an ORG may contain multiple PERs, LOCs and ORGs. 

• Similarly, if there exists a series of consecutive tagged entities and the last 

one is tagged as an ORG, it is likely that'^all of them should be combined as 

an ORG. 

• Entity length restriction: all kinds of tagged entities cannot exceed 25 Chi-

nese characters. 

• Stop word restriction: intuitively, all tagged entities cannot comprise any 

stopword. 、 

• Punctuation restriction: in general, all tagged entities cannot span any punc-

tuation. 

Since all NEs 

words. 

proper nouns, the tagged entities should end with noun 

^http://en. wikipedia.org/wiki/. 
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Table 3.1: Domain knowledge for Chinese NER 
Location Salient Word Organization Salient Word 

自治区/Municipality 百货公司 /Department Store 
火车站/Railway Station 理 T：学院/Technical Institute 

宾馆/Hotel 旅行社/Travel Agency • 

公园/Park 出版社/Press 

高原/Plateau 人事部/Personnel Department 

省/Province 银行/Bank 

镇/Town 大学/University 

市/City 市委/City Committee 

Stopword Punctuation 

仍然/still o 

促是/but 

非常/very » f 
的/of . V r 

} , 

等/and so on 4 

那/that ， ！ 

• The CRF model tags each token (Chinese character) with a conditional prob-

ability. A low probability implies a low-confidence prediction. For a chunk 

with low conditional probabilities, all the above assumptions are adopted 

(The marginal probabilities are normalized, and probabilities lower than the 

user-defined threshold are regarded as low conditional probabilities). 

All the above domain knowledge can be formulated as first-order logic to 

construct the structure of MLNs. And all the extracted chunks are accepted 

as new NE candidates (or common nouns). We train an MLN recognize 

them. 

/ ~ \ 

3.2.6 First-order Logic Construction 

We declared 14 predicates (per son (candidate), locat ion (candidate), org 

anizat ion(cai id idate) , endwith(candidate, salientword), closeto(ca 

ndidate, sal ientword), containstopword(candidate), containpunctua 

t ion(candidate) , etc) and specified 15 first-order formulas (See Table 7.5 

fQF some examples) according to the domain knowledge described in Section 

3.2.5. For example, we used person (candidate) to specify whether a can-

didate is a PER. Formulas are recursively constructed from atomic formulas 

using logical connectives and quantifiers. They are Constructed using four 

types of symbols: constants^ variables^ functions, and predicates. Constant 

symbols represent objects in the domain of interest (e.g., “北京/Beijing’’ and 
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Tab e 3.2: Examples of NE candidates and first-order formulas 
Mis-tagged NEs New NE Candi-

dates 

First-order Logic 

希拉里 [ c o m m o n 

noun] 
希拉欺-

J 

occurperson(p)=»person(p) 

凡尔赛P E R 凡尔赛 occurlocatioii(p)=»location(p) 

—汽集团[common 

noun] 
一汽集团 occurorganizat ion(p)organizat ion(p) 

乌市lORGl 乌市 endwith (r , p) Alocsalientword (p) =>local:ion (r) 

英政府LOC . 英政府 endwith (ff,p)Aorgsalientword(p)=>orgaiiization(r) 

北海 L O C花园 北海花园 closetoCr ,p) Alocsalieiitword(p)=>location(r) 

瑞士 LOCI联邦 瑞士联邦 closetoCr ,p) Aorgsalientword(p)=:>orgaiiization(r) 

市区的酒店LOCI 市区的酒店 containstopword(p)=>!(person(p) v location(p) 

V organizationCp)) 

“ 百 帮 ” 服 务 中 
心[ORG] 

“百帮”服务中心 containpunctuation(p)=J•！(person(p) v 

locationCp) v organization(p)) 

“上海/Shanghai" are LOCs). Variable symbols (e.g., r and p) range over the 

objects in the domain. To reduce the size of ground Markov Network, vari-

ables and constants are typed、for example, the variable r may range over 

candidates, and the constant “：!匕京/Beijing” may represent a LOG. Func-

tion symbols represent mappings from tuples of objects to objects. Predicate 

symbols represent relations among objects (e.g., person) in the domain or 

attributes of objects.(e.g., endwith). A ground atom is an atomic formula all 

of whose arguments are ground terms (terms containing no variables). For 

example, the ground atom locationU匕京市）conveys that “；!匕京市/Beijing 

City" is a LOG. 

For example in Table 7.5, “乌市 /Wu City" is mis-tagged as an ORG 

by the CRF model, but it contains the location salient word “市/City". 

So it is extracted as a new entity candidate, and the corresponding for-

mula endwith(r, p)Alocsalientword(p)=>location(r) means if r ends 

with a location salient word p, then it is a LOG. Besides the formulas listed 

in Table-7.5, we also specified logic such as person(p) ! (location(p) v 

organization(p))，which means a candidate p can only belong to one class. 

We assume that the relational database contains only binary relations. 

Each extracted NE candidate is represented by one or more strings appearing 

as arguments of ground atoms in the database. The goal of NE prediction 

is to determine whether the candidates are entities and the types of entities 

(query predicates), given the evidence predicates and other relations that 
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can be deterministically derived from the database. As we will see, despite 

their simplicity and consistency, these first-order formulas incorporate the 

essential features for NE prediction. 

3.2.7 Implementation and Model Development 

We use CRF++ toolkit (version 0.48) [46] for the base model in our imple-

mentation. We find that setting the cut-off threshold f for the features not 

only decreases the training time, but improves the NER performance. CRFs 

can use the features that occurs no less than / times in the given training 

data. We set / = 5 in our system. We use the Alchemy system (Beta version) 

43] for the error correction model, which is a software package providing a 

series of algorithms for statistical relational learning and probabilistic logic 

inference, based on the Markov logic representation. To avoid over-fitting 

for the CRF model, we penalized the log-likelihood by the commonly used 

zero-mean Gaussian prior over the parameters. Also, the MLNs were trained 

using a Gaussian prior with zero mean and unit variance on each weight to 

penalize the pseudo-likelihood, and with the weights initialized at the mode 

of the prior (zero). We performed holdout methodology to develop both the 

base and error correction models. 

3.3 Experiments on People's Daily Corpus 

3.3.1 Data 

We used People's Daily corpus (January-Jun, 1998) in our experiments, 

which contains approximately 357K sentences, 156K PERs, 219K LOCs and 

87K' ORGs, respectively. We did some modifications on the original data 

to make it cleaner. We enriched some tags so that the abbreviation proper 

nouns are well labeled. We preprocessed some nested names to make them 

in better form. We also processed some person names. We enriched tags for 

different kinds of person names (e.g., Chinese and transliterated names) and 

separated consecutive person names. To reduce the training time, we use 

one-month corpus for training and 9-day corpus for testing. 

3.3.2 The Baseline NER System 

We use CRFs to build a character-based Chinese NER system, with fea-

tures described in Section 3.2.2. We do not take the advantage of using the 
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golden-standard word segmentation and POS tagging provided in the origi-

nal corpus, since such information is hardly available in real text. Instead, 

-we use an off-the-shelf Chinese lexical analysis system, the open source ICT-

CLAS [103], to segment and POS tag the corpus. This module employs 

a hierarchical hidden Markov model (HHMM) and provides word segmenta-

tion, POS tagging (labels Chinese words using a set of 39 tags) and unknown 

word recognition. It performs reasonably well, with segmentation precision 

recently evaluated at 97.58%. The recall of unknown words using role tagging 

is over 90%. 

3.3.3 Experimental Results 

To test the effectiveness of our proposed model, we extract all the NEs (19,879 

PERs, 25,661 LOCs and 11,590 ORGs) from the training corpus, and then 

convert them to the first-order logic representation according to the domain 

knowledge. An MLN training database, which consists of 14 predicates, 

16,620 constants and 97,992 ground atoms was built. We also extract new 

entity candidates from CRF results and construct MLN testing database in 

the same way. During MLN learning, each formula is converted to Conjunc-

tive Normal Form (CNF), and a weight is learned for each of its clauses. The 

weight of a clause is used as the mean of a Gaussian prior for the learned 

weight. These weights reflect how often the clauses are actually observed in 

the training data. ‘ 

We extract 529 entity candidates to construct the MLN testing database, 

which' contains 2,543 entries and these entries are used as evidence for infer-

ence. Inference is performed by grounding the minimal subset of the network 

required for answering the query predicates. We employed 3 MCMC algo-

•rithms: Gibbs sampling (GS), Simulated Tempering (ST) as well as MC-SAT, 

and the MAP/MPE algorithm for inference and the comparative NER results 

are shown. The probabilistic graphical rnodels greatly outperform the CRF 

model stand-alone by a large margin. It can be seen from Table 3.3 and Table 

3.4，the probabilistic graphical models integrating first-order logic improve 

the precision and recall for all kinds of entities, thus boosting the overall F-

measure. We achieve a 23.75% relative error reduction (RER) on F-measure 

by using 3 MCMC algorithms and a 20.54% RER by using MAP/MPE al-

gorithm, over an already competitive CRF baselii\e. We obtained the same 

results using GS, ST and MC-SAT algorithms. MCMC algorithms yields 

slightly better results than the MAP/MPE algorithm. 
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3.3.4 Significance Test 

Ideally, comparisons among NER systems would control for feature sets, 

data preparation, training and test procedures, parameter tuning, and es-

timate the statistical significance of performance differences. Unfortunately, 

reported results sometimes leave out details needed for accurate comparisons. 

We give statistical significance estimates using McNemar's paired tests^ 

30) on labeling disagreements for CRF model and graphical probabilistic 

models that we evaluated directly. 

Table 3.5 summarizes the correctness of the labeling decisions between 

the models with a 95% confidence interval (CI). These tests suggest that the 

graphical probabilistic models are significantly more accurate and confirm 

that the gains we obtained are statistically highly significant. 

Table 3.5: McNemar's tests on labeling disagreements 
Null Hypothesis 95% CI p-value 

Proposed Model (GS) vs. CRFs 

Proposed Model (ST) vs. CRFs 

Proposed Model (MC-SAT) vs. CRFs 

Proposed Model (MAP/MPE) vs. CRFs 

5.71-9.52 

5.71-9.52 

5.71-9.52 

4.50-7.37 

< 1•10’6 

< 1 • 10-6 

< 1 • 10-6 

< 1 • 10一G 

3.4 Official Results in SIGHAN-6 

Recently, we have participated in the Chinese named entity recognition (NER) 

task for the fourth SIGH AN Chinese language processing bakeoff (SIGHAN-

6) [39], which provides Igirge-scale benchmark data for evaluation. We sub-

mitted results for the open track of the NER task. Among all the groups 

participating the official evaluation, we obtained the best performance on 

the CityU corpus and the fourth place gri the MSRA corpus. Moreover, we 

were the only group that obtained consistently over 90 F-measure on all the 

benchmark corpora in the NER open track. 

3. Data and Preprocessing 

The training corpora provided, by the SIGHAN bakeoff organizers were in the 

CoNLL two column format, with one Chinese character per line and hand-

annotated named entity chunks in the second column. The CityU corpus was 

^Most researchers refer to statistically significant as p < 0.05 and statistically highly 
significant as p < 0.001. 
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Table 3.6: Statistics of SIGHAN official NER training and testing corpora. 
Corpus Training NEs PERs/LOCs/ORGs Testing NEs PERs/LOCs/ORGs 

Ci tyU 66255 16552/36213/13490 13014 4940/4847/3227 

M S R A 37811 9028/18522/10261 7707 1864/3658/2185 
NEs: number o ‘named entities; PERs: number of person names; 

LOCs: number of location names; ORGs: number of organization names. 

Table 3.7: OQV Rate of NER testing corpora. 
Corpus Overall (IVs/OOVs/OOV-R) PER (IVs/OOVs/OOV-R) LOG (IVs/OOVs/OOV-R) ORG (IVs/OOVs/OOV-R) 
CityU 6660/6354/0.4882 1062/3878/0.7850 3947/900/0.1857 1651/1576/0.4884 
M S R A 6056/1651/0.2142 1300/564/0.3026 3343/315/0.0861 1413/772/0.3533 

IVs: number of IV (named entities in vocabulary); OOVs: number of OOV (named 

entities out of vocabulary); OOV-R: ratio of named entities out of vocabulary. 

traditional Chinese. We converted this corpus to simplified Chinese and we 

used UTF-8 encoding in all the experiments so that all the resources (e.g., 

word dictionary and named entity dictionary) are compatible in our system. 

Table 3.6 shows the statistics of NER training and testing corpora and 

Table 3.7 shows the OOV (Out of Vocabulary) rate of NER testing corpora^. 

The number of NEs in CityU corpus is almost twice as many as that in MSRA 

corpus. The OOV rate in CityU corpus is much higher than in MSRA corpus 

for PERs, LOCs and ORGs. These numbers indicate that NER on CityU 

corpus is much more difficult to handle. 

3.4.2 Features and Model Development 

We use similar features and domain knowledge described in Section 3.2.2 and 

Section 3.2.5 for our model. For word segmentation and POS features, we 

train our own model for conducting Chinese word segmentation and POS 

tagging. We employ a unified framework to integrate cascaded Chinese word 

segmentation and POS tagging tasks by joint decoding that guards against 

violations of those hard-constraints imposed by s6gmentation task based on 

dual-layer CRFs introduced by [76]. We separately train the Chinese word 

segmentation and POS tagging CRF models using 8-month and 2-month 

PKU 2000 corpjis, respectively. The original PKU 2000 corpus contains 

more than 100 different POS tags. To reduce the training time for POS 

tagging experiment, we merge some, similar tags and obtain only 42 tags 

finally. For example, {ia, ib, id, in, iv}—i. We use the same features as 

^The NER on the PKU corpus 
inconsistency of this corpus. 

cancelled by the organizer due to the tagging 
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described in [76], except that we do not use the HowNet features for word 

segmentation. Instead, we use max-matching segmentation features based on 

a word dictionary. This dictionary contains 445456 words which are extracted 

from People's Daily corpus (January-June, 1998), CityU, MSRA, and PKU 

word segmentation training corpora in SIGHAN-6. For decoding, we first 

perform individual decoding for each task. We then set 10-best segmentation 

and POS tagging results for reranking and joint decoding in order to find the 

most probable joint decodings for both tasks. For dictionary features, we 

obtain a named entity dictionary extracted from People's Daily 1998 corpus 

and PKU 2000 corpus, which contains 68305 PERs, 28408 LOCs and 55596 

ORGs. We use the max-matching algorithm to search whether a string exists 

in this dictionary. Besides the unigram feature template, CRFs also allow 

bigram feature template. With this template, a combination of the current 

output token and previous output token (bigram) is automatically generated. 

We extend the BIO representation for the chunk tag which was employed 

in the CoNLL-2002 and CoNLL-2003 evaluations. We use the BIOES rep-

resentation, which is more informative and yields better results than BIO 

representation. We performed holdout methodology to develop our model. 

We randomly selected 5000 sentences from CityU training corpus for devel-

opment testing and the rest for training. We did the same thing for MSRA 

training corpus. We found an optimal value for the parameter ĉ  for CRFs. 

Using held-out data, we tested all c values, c € |0.2,2.2], with an incremental 

step of 0.4. Finally, we set c = 1.8 for CityU corpus and c = 1.0 for MSRA 

corpus. 

3.4.3 Official Results 

Table 3.8 and Table 3.9 show the top 5 systems in SIGHAN NER open track 

on CityU and MSRA corpus, respectively. Our results are consistently good: 

we obtained the first place on the CityU open track (90.33 overall F-measure) 

and fourth place on the MSRA open track (92.88 overall F-measure) respec-

tively. The lower F-measure obtained on CityU corpus can be attributed to 

the higher OOV rate of this corpus. 

®This parameter trades the balance between over-fitting and under-fitting. With larger 
c value, CRF tends to overfit to the give training corpus. The resulls will significantly be 
influenced by this parameter 
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Table 3.8: Top 5 systems in SIGHAN NER open track on CityU corpus 

ID R P F RpER PpER FpER Rloc Ploc Floc 知RG PORC Forc 
23 87.43 93.42 90.33 95.26 97.21 96.23 93.42 92.35 92.88 66.44 88.05 75.73 
02 85.79 91.79 88.69 88.22 94.49 91.25 93.36 90.99 92x16 70.72 88.52 78.62 
28 88.26 88.26 88.26 91.68 89.47 90.56 93.29 89.42 91.^2 75.46 84.11 79.55 
24 89.75 86.16 87.92 94.74 91.53 93.11 93.89 89.66 <75.89 72.74 74.28 
39 71.63 80.00 75.59 71.80 81.94 76.53 83.89 7845 81.08^ 79.86 63.69 

of HK; 28: State Key Laboratory of Machine Perception, Pekinjg 

University; 24: France Telecom R&D Beijing, Co. Ltd; 39: Language 

Computer Corporation. 

Table 3.9: Top 5 systems in SIGHAN NER open track on MSRA corpus 

ID R P F J^PER PpER FpEii I^LOC Ploc Floc fi^RG PORG PoRG 
24 99.95 99.82 99.88 1 99.89 99.95 99.97 99.75 99.86 99.86 99.8^ 99.86 

02 99.61 99.56 99.58 1 1 1 99.92 99.29 99.60 98.76 99.63 99.20 

01 93.77 96.03 94.89 96.57 95.74 96.15 95.93 97.69 96.80 87.78 93.38 90.49 

23 91.11 94.71 92.88 94.58 98.33 96.42 93.36 93.97 93.66 84.39 92.80 88.40 

18 91.35 93.21 92.27 95.60 96.01 95.81 92.21 93.88 93.04 86.27 89.59 87.90 

24: France Telecom R&D Beijing, Co. Ltd; 02: City University of HK; 01: 

Chinese Academy of Science; 23: The Chinese University of Hong Kong 

(our group)^ 18: Institute of Computational Linguistics, Peking University. 

Note: Group 24 and Group 02 obtained extremely high F-measures close 

to 100，because they used corpora which contain the SIGHAN official 

testing set, to train their models. 

3.5 Conclusion^nd Discussion 

As a well-established task, Chinese NER has been studied extensively and a 

number of techniques for this task have been reported in the literature. Most 

recently, the trend in Chinese NER is to use improved machine learning 

approaches, or to integrate various kinds of useful evidences, features, or 

resources. 

27] presented a lexicalized HMM-based approach to unifying unknown 

word identification and NER as a single tagging task on a sequence of known 

words. Although lexicalized HMMs was shown to be superior to standard 

HMMs, this approach has some disadvantages: it is a purely statistical model 

and it suffers from the problem of data sparsencss. And the model fails to tag 

some complicated NEs (e.g., nested ORGs) correctly due to lack of domain 

adaptive techniques. The-F-measures of LOCs and ORGs are only 87.13 and 
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83.60, which show that there is still a room for improving. 

A method of incorporating heuristic human knowledge into a statistical 

model was proposed in [90]. Here Chinese NER was regarded as a prol> 

abilistic tagging problem and the heuristic human knowledge was used to 

reduce the searching space. However, this method assumes that POS tags 

are golden-standard in the training data and heuristic human knowledge is 

often ad hoc. These drawbacks make the method unstable and highly sen-

sitive to POS errors; and when golden-standard POS tags are not available 

(this is often the case), it may degrade the performance. 

18) proposed a semi-Markov model which combines a Markovian, HMM-

like extraction process and a dictionary component. This process is based 

on sequentially classifying segments of several adjacent words. However, this 

technique requires that entire segments have the same class label, while our 

technique does not. Moreover, compared to a large-scale dictionary, our 

domain knowledge is much easier to obtain. 

However, all the above models treat NER as classification or sequence 

labeling problem. We first view and formulate Chinese NER as a ^statisti-

cal relational learning problem and propose a new framework incorporating 

probabilistic graphical models and first-order logic for Chinese NER which 

achieves state-of-the-art performance. We incorporate domain knowledge to 

capture the essential features of the NER task via MLNs, a unified frame-

work for SRL which produces a set of weighted first-order clauses to predict 

new NE candidates. To the best of our knowledge, this is the first attempt at 

using MLNs for the NER problem in the NLP community. And our proposed 

framework can be extendable to language-independent NER, due to the sim-

plicity of the domain knowledge we could access. Despite our promising em-

pirical results, this two-stage framework is a simple integration of sequence 

labeling and logic model. Directions for future work include developing a 

new framework founded on better theoretically motivated models. 
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Table 3.4: Chinese NER by graphical models 

Table 3.3: Chinese NER by 

Precision Recall 

Character features 

PER 92.88% 79.42% 85.62 

LOG 90.95% 82.88% 86.73 

ORG 88.16% 83.86% 85.96 
Overall 90.92% 82.07% 86.27 

Character+Word 

PER 93.27% 82.99% 87.83 

LOG 91.49% 85.16% 88.21 

ORG 88.94% 84.79% 86.82 

Overall 91.48% 84.46% 87.83 

Character+Word+POS 

PER 92.17% 90.64% 91.40 

LOG 90.56% 89.74% 90.15 

ORG 89.15% 85.19% 87.12 

Overall 90.76% 89.13% 89.94 

All features 

PER 92.12% 90.57% 91.34 

LOG 90.62% . 89.74% 90.18 

ORG 89.72% 85.44% 87.53 

Overall 90.89% 89.16% 90.02 

Precision Recall - RER 

CRF Baseline 

PER 92.12% 90.57% 91.34 

LOG 90.62% 89.74% 90.18 
ORG 89.72% 85.44% 87.53 

Overall 90.89% 89.16% 90.02 

Graphical Models (GS Inference) 

PER 93.52% 93.32% 93.42 

LOG 93.19% 91.91% 92.55 
ORG 90.16% 90.71% 90.43 

Overall 92.70% 92.09% 92.39 23.75% 

Graphical Models (ST Inference) 

PER 93.52% 93.32% 93.42 

LOG 93.19% 91.91% 92.55 

ORG 90.16% 90.71% 90.43 

Overall 92.70% 92.09% 92.39 23.75% 

Graphical Models (MC-SAT Inference) 

PER 93.52% 93.32% 93.42 

LOG 93.19% 91.91% 92.55 

ORG 90.16% 90.71% 90.43 

Overall 92.70% 92.09% 92.39 23.75% 

Graphical Models (MAP/MPE Inference) 

PER 92.87% 93.15% 93.01 

LOG 93.15% 91.61% 92.37 

ORG 90.56% 89.10% 89.82 
Overall 92.57% 91.58% 92.07 20.54% 
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Chapter 4 

Bidirectional Integration of • 
Pipeline Models 

4.1 A Brief Introduction 

Most IE consists of compound, aggregate subtasks. Typically, two key sub-

tasks are segmentation which identifies candidate records (e.g., word seg-

mentation, chunking and entity recognition), and relation learning which 

discovers certain relations between different records (e.g., relation extraction 

and entity resolution). For such IE tasks, the availability of robust, flexible, 

and accurate systems is highly desirable. 

Traditionally, the most common approach to IE is a pipeline which is 

highly ineffective and suffers from inherent inferiority such as brittle accu-

mulation of errors, thus the overall performance is limited and upper-bounded 

[67, 110]. In contrast, there has been increasing interest in using integrated or 

joint models across multiple subtasks as a paradigm for avoiding the cascad-

ing accumulation of errors in traditional pipelines. Setting up such models 

is usually very complex, and the computational cost of running them can be 

prohibitively intractable. While a number of previous researchers have taken 

steps toward this direction, they have various shortcomings: high computa-

tional complexity [83); the number of uncertain hypotheses is severely limited 

88]; subtasks are only loosely coupled [111, 102]; or the approach is feed-

forward or top-down integrated and it only allows information to flow in one 

direction [25). Joint models can sometimes hurt accuracy, and fully joint 

approaches are still rare. 

A significant amount of recent work has shown the power of conditionally-

trained probabilistic graphical models for IE tasks [82]. Let ^ be a factor 

graph defining a probability distribution over a set of output variables y 
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conditioned on observation sequences x. {^j} is a set of factors in Q, and 

each factor is defined as the exponential family of an inner product over 

sufficient statistics {/tfc(xi, y^)} and corresponding parameters Aik as <E>i = 

Aifc/ifc(xt, Yj)}. Let Z(x) be the normalization factor, then the proba-

bility distribution [47] over Q can be written as P(y|x) = ^ ^ 

Aifc/iA:(Xi，yJ}. Practical models rely extensively on parameter tying to use 

the same parameters for several factors. 

We propose a higj^ly-coupled, bidirectional integrated architecture based 

on discriminatively-trained factor graphs for IE tasks, which insists of two 

components - segmentation and relation. We introduce 贫int factors connect-

ing variables of relevant subtasks capturing tight interactions between them. 

And parameter estimation can be performed efficiently using evidences from 

multiple subtasks, such that they aid each other to boost the performance. 

We then propose a strong bidirectional algorithm based on efficient Markov 

chain Monte Carlo (MCMC) sampling to enable tractable inference, which 

allows information to flow bidirectionally and mutual benefits from different 

subtasks can be well exploited. Notably, our framework is considerably sim-

pler to implement, and outperforms previous ones. It is also general and can 

be easily applied to a variety of probabilistic models and other real-world IE 

problems without considerable modifications. ^ 

4.2 Model 

Let X be a document containing N observation sequences: X = {Xi，. . .，Xyv } 

each Xt consists of p tokens: X^ = {xn , . . . ,Xjp}. Let Ŝ  = {sii, • • • , Stq} be 

a segmentation assignment of observation sequence X*. Each segment Sij is a 

triple Sij — {Qij^pij, yij}, where otij is a start position, pij is an end position, 

and yij is the label assigned to all tokens of this segment. The segment Sij 

satisfies 0 < otij < A j < |Xi| and aij+i = 0ij + 1. Let e^ and e„ be two 

arbitrary entities in the document X，and 厂賺 be the relation assignment 

between them. And R is the set of relation assignments of all entity pairs 

within document X . For example, and e„ can be entity candidates from 

segments or entire observation sequences. And r訓 can be a semantic rela-

tion (e.g., member.of) between entity candidates or the boolean coreference 

variable indicating whether or not two sequences (e.g., paper citations) are 

referring to each other. 

To enable a bidirectional integration of two components - segmentation 

and relation in our framework, we introduce joint factors capturing inter-

actions between variables in these components. The hypotheses from one 

component can be used for another to guide its decision making iteratively. 
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The information flows between the two components form a closed loop. The 

two components are optimized in a collaborative manner such that both of 

their performance can be enhanced. We describe this framework formally as 

follows, and the parameter optimization will be discussed in the next section. 

4.2.1 Segmentation 

Due to its iterative manner, we use the superscript j to indicate the de-

cision in the j-th iteration. Besides the conventional segmentation factor 

^ ( S ^ X ) , the joint factor R^^S^"^) involves both relation hypothe-

ses in the j-th iteration and segmentation assignments from the last itera-

tion. We assume that all potential functions facMize according to a set of 

feature functions and a corresponding set of real-valued weights. Suppose 

L, I and K are the number of observation sequences in document X , the 

number of segments, and the number of feature functions. Ajt, fik and î k 

are corresponding weights for feature functions gk{-), Tk(') and qk{-), reaper-

tively. The factor <^(S>,X) = exp{Ef E J Hk X,)}. Similar 

to semi-CRFs [72], the value of segment fea^re function 纵(.）depends on 

the current segment <‘，the previous segment sf ‘蠡” and the whole obser-

vation X/. And transitions within a segment can*e non-Markovian. The 

joint factor 巾•(S)’ X ’ R ^ S^"^) = e x p f ^ f E ! E f < ‘ ’ R ^ X , ) + 

^ k ^kQk(s{i_iy s{‘，S•̂一 1，X)}. The newly introduced feature function 

rjt(-) uses the decision of relation component in the j-th iteration IV as it^ 

additional input. The function qk(-) includes observation sequences in the 

entire document X and segmentation results in the last iteration. Us-

ing qk{')i the segmentation and labeling evidences from other occurrences all 

over the document can be exploited by referring the decision S)一 i. Thus ev-

idences for the same entity segments are shared among all their occurrences 

within the document. This can significantly alleviate the label consistency 

problem caused in previous probabilistic models. According to the celebrated 

Hammersley-Clifford theorem, the factor of the segmentation component in 

the j-th iteration is defined as a product of all potential functions over cliques 

in the graph: 

^(Sj,X’R;，S—i) = <KSj，X) .^v(Sj ,X，R; ,S” i ) 

f L I K L I K 
=exp i ^ ^ ^ sj,。Xi)H Y ^ ^ Y . 險 

( I i k I i k 

( ‘ 1， s {‘，R ^ X O + E E E 鳴 K i- i，SH，X) I (4.1) 

I i k ) 
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Then the probability distribution of the segmentation component in the 

j-th iteration can be defined as 

P ( S 饥 R;，SJ-” 二 耶 丄 S " i 、 n _ ， X ， R 、 S ” i ) ‘ (4.2) 

where = J]；̂) FI 少(S)’ X ’ R)’ S尸i) is the normalization fac-

tor. 

4.2.2 Relation 

In the j-th iteration, the traditional relation factor 中 ( R ^X ) in this compo-

nent is written as exp{ J；二„ E f e „ ， X ) + Em.t.n E f 一kijint 

，^t) X)} to model relations r^^ between all possible entity pairs {cm, 

in the document X and to enforce transitivity for relations, where M is the 

number of arbitrary entities in the document X and K is the number of 

feature functions. 1 < m, n < M,m ^ t,t ^ n, and m • n. The joint fac-

tor ^>v(IV，X,Sj-i) is defined as E k X)}, 

taking the segmentation hypotheses in the ( j — l)-th iteration as its 

input. This joint factor captures tight dependencies between segmentations 

and relations. For example, if two segments are labeled as a location and a 

person, the semantic relation between them can be birth.place or visited, but 

cannot be employment Such dependencies are crucial and modeling them 

often leads to improved performance. /*：(.)，Wk(') and hk(-) are feature func-

tions and Ok, ^k and jk are their corresponding weights. Then the factor of 

the relation component in the j-th iteration can be written as follows: 

^ ( R ^ X , Sj-i) = <E>(R;，X) •巾•(R;，X，Sj-i) 

f M K M K 

= expi ^kfkiem, e„，r j ^ n，X) + ^ ^ 一k 

M K 

(rint, r L —mn，X) + E H議，S]-丨，X) (4.3) 

Similarly, we can get the conditional distribution of this component in 

the j-th iteration as follows: 

、 ( x l s ” n — ， X ’ S " i ) (4-4) 

where Z (X , S-'"^) = E r j 11 少(R)，X, S—” is the normalization factor to 

make P(R-^|X, S-'"^) a probability distribution. 
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C = log 难 J ’ X ， S , log 

C = log [<J>(S^ X ’ R : S—1)] — log [z (X , R : S”1)1 - ^ 

and the derivative of this function with respect to the parameter r从 is as 

47 

To simplify the expression, let R-*, S-'"^ X ) be the general 

form of functions rk{-) and qk{-), and let Sk be the general form of 

weights Ajt,/ifc and i/k- Taking derivatives of this function over the parameter 

6k yields: 

批k , K r 
Ok 

(4.6) 

Let bk(em’en’7ixt，—ntirim,S”\X) be the general form of / “ . ) ’ Wk(-) and 

hk(-), and let rjk be the general form of parameters Ok, ^k and Similarly, 

for the relation component, the log-likelihood function C is defined as 

/ 

4.2.3 Collaborative Parameter Estimation 

Although both segmentation and relation components contain new variables, 

we show that they can be trained efficiently in a collaborative manner. Once 

we have trained a component, the decision of this component can guide the 

learning and decision making for another component. The two components 

run iteratively until converge. Such iterative optimization can boost both 

the performance of the two components. 

Assume that tlie training instances are independent and identically dis-

tributed (IID). Under this assumption, we ignore the summation operator 

in the log-likelihood during the following derivations. To reduce over-

fitting, we use regularization and a common choice is a spherical Gaussian 

prior with mean 0 and covariance o^l . Then the regularized log-likelihood 

function L for the segmentation component on the training document X is 

defined as 
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follows 

QQt M M 

dvk 

―爪“心心义'’X) X P(R)|X，S”i) (4.8) 

m,t： 
K 

Both of functions C and C are concave, which follows from the convex-

ity of functions of the form /(x) = log exp(xi). Convexity is extremely 

helpful for parameter estimation, because it means that every local optimum 

is also a global optimum. Adding regularization ensures that C and C are 

strictly concave, which implies that they have exactly one global optimum. 

Both of functions £ and C can therefore be efficiently maximized by 

standard techniques such as stochastic gradient and L-BFGS algorithms 

which make approximate use of second-order information. L-BFGS uses the 

Broyden-Pletcher-Goldfarb-Shanno update to approximate the Hessian ma-

trix. It is particularly well suited for optimization problems with a large 

number of dimensions. This is because L-BFGS never explicitly forms or 

stores the Hessian matrix, which can be quite expensive when the number 

of dimensions becomes large. Instead, L-BFGS maintains a history of the 

past m updates of the position and the gradient, where generally the history 

m can be short, often less than 10. These updates are used to implicitly do 

operations requiring the Hessian (or its inverse). 

The segmentation component is optimized by using both the relation 

hypotheses from the relation component and the segmentation and label-

ing results from its last iteration as additional feature functions. If relation 

hypotheses are not available, it can work without such information. The 

relation component benefits from the segmentation component by using the 

segmentation and labeling results explicitly in its feature functions. If seg-

mentation results are not available, it can also work without such information. 

For initialization, we run segmentation component first without relation as-

signments. Since it is powerful enough to make a reasonable segmentation 

decision. The two components are optimized iteratively until convergence 

criteria is reached. And the performance of both components can be boosted 

in this optimization procedure. 

4.2.4 Markov chain Monte Carlo 

The Markov chain Monte Carlo (MCMC) methods are a class of algorithms 

for sampling from probability distributions based on constructing a Markov 
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Algorithm 1: The collaborative parameter estimation algorithm 

Input: A set of training data T>, feature sets Ck and and iteration 

number L 

Output: Trained segmentation component with optimized weights Sj., 

and trained relation component with optimized weights r]̂ . 

begin 

Train the segmentation component defined by 

P(S°|X) = 威 n少(S。，X) where 

巾(S。’ X ) = exp iE f E f X,)}. 

for j = 1,2’ … , E do 

Compute the most likely (Viterbi) segmentation assignment 

SQ-”* = ar&maxs；-! 

Train the relation component to maximize log P(R-' |X, S-'"^) 

given SO-i)•’ yielding weights Tyj; 

Compute the most likely (Viterbi) relation assignment 

= argmaxR, P(R^|X,S^"^); 

Train the segmentation component to maximize 

given R；•，yielding weights 61； 

end 

return 

Segmentation component with optimized weights 61 defined as 

P{SP\X, R\ SP-') = z(足只S’岁-丨)n X 、 f f - ' ) , and 

relation component with optimized weights r)*^ defined as 

P{R'\X, =瓦〕“ n 中(i«J，X、 
end 

chain that has the desired distribution as its stationary distribution. In 

practice, it means that we can construct a Markov chain whose states are 

the objects we wish to sample. The state space S includes all possible seg-

mentations and relations of the entire dataset in our cose. And the transition 

probabilities are specified via a scheme guaranteed to converge to the desired 

distribution. We can walk the Markov chain, occasionally outputting sam-

ples. These samples are likely to be in high probability areas, increasing our h 

chances of finding the maximum. After the chain has run long enough for \x) 

to approach its stationary distribution, the expectation Et^IJ] of any functior 

f(S) of the state S will be approximated by the average of that function over 

the set of sample states produced by the MCMC algorithm. 
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4.2.5 Bidirectional M C M C Sampling Inference 

Ideally, the objective of inference is to find the most likely segmentation 

assignments S* and corresponding most likely relation assignment R*, that 

is, to find (S, R)* = arg max(s,R)尸(S，R|X) such that both of them are 

optimized simultaneously. Unfortunately, exact inference to this problem 

is generally intractable, since the search space is the Cartesian product of 

all possible segmentation and relation assignments. Consequently, approxi-

mate inference becomes an alternative. Instead of solving the joint optimiza-

tion problem described above, we can solve two simpler inference problems 

S* == argmaxs P(S|R, X ) and R* = argmaxR P(R|S,X) to optimize S and 

R iteratively. This means that we can find the optimal segmentation as-

signments given the relation assignments in the document, and the optimal 

relation assignments conditioned on the segmentation assignments in the 

document. 

We propose a bidirectional MCMC sampling algorithm to find the maxi-

mum a posteriori (MAP) assignments for both segmentations and relations. 

This algorithm is strongly coupled to inference based on efficient Metropolis-

Hastings (MH) sampling 156] [33] from both segmentations and relations to 

find an approximate solution of (S ,R) ' . This algorithm is a theoretically 

well-founded MCMC algorithm, and is guaranteed to converge. And it al-

lows inference information to flow bidirectionally, such that mutual benefits 

from segmentations and relations can be well captured. 、 

The MCMC methods are an efficient class of methods for approximate 

inference based on sampling. We can construct a Markov chain whose states 

are the variables we wish to sample. And the transition probabilities are 

specified via a scheme guaranteed to converge to the desired distribution. We 

can walk the Markov chain, occasionally outputting samples, and that these 

samples are guaranteed to be drawn from the target distribution. Let be 

the current state of one segmentation sequence S and be the next state 

of S. We assume that the current relation samples R^ have already been 

drawn. To draw segmentation samples from P{S\R\ X ) in the model, we 

define the Markov chain as follows: from each state sequence we transfer to a 

state sequence obtained by changing the state at a particular segment Si. In 

other words, the transition probability of the Markov chain is the conditional 

distribution of the attribute (boundary and label) at the segment Si given 

the rest of the segmentation sequence. If \Si\ = 1, we only change the label 

of this segment. If 1 < |5i| < L where L is the upper bound on segment 

length, we divide Si into k sub-segments Sn Si2... Sik with different labels. 

Thus the distribution over these possible transitions from state to state 
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•S'+i is defined as: 

= |S•！_,，X) (4.9) 

where Si = (Sn ‘ • • Sik), S_、is all segments except S,, and = . If 

fc = 1，we assume Si\ = Si. 

‘We can walk the Markov chain to loop through segment 5, from i 二 1 

to i = I，and the attribute (boundary and label) of every segment can be 

changed dynamically. And for each one, we re-sample the state at segment 

Si from distribution given in Equation 4.9. Let yij be the label of the sub-

segment < j < k) and be the label set, after re-sampling all I 

segments, we can sample the whole segmentation sequences from the condi-

tional distribution 

Pfct+iict v>t X、-
IS 儿 X ) - E讲)Q 戶 ( ( ^ … ^ t + i ’ 记,’尺,，X) (4.10) 

An MH step of the target distribution X) and the proposal dis-

tribution Q{S\S^, Rt, X ) "involves sampling a candidate sequence S given the 

current value according to R\ X)^ and uses an acceptance/rejection 

scheme to define a transition kernel with X). The Markov 

chain then moves towards S (as the next state S…）with acceptance proba-
A ^ 

bility A(S\ S) and with probability 1 — S) it is rejected and the next 

state remains at S、As described above, the (random) sampling is still inef-

ficient, since the state space is extremely non-convex. Moreover, to perform 

global optimization, a more principled strategy is to adopt simulated anneal-

ing [42] in the MH algorithm, and the acceptance probability A{S\S) is 

written as 

^ ( p i / c . _ ， X ) Q _ ’ / ^ 。 X ) I 

where Ct is a decreasing cooling schedule with limf_»oo Q = 0. As q —• 0 

the distribution becomes sharper, and when Cf = 0 the distribution places 

all of its mass on the maximal outcome, having the effect that the Markov 

chain always climbs uphill. Thus if we gradually decrease q from 1 to 0，the 

Markov chain increasingly tends to go uphill. And this annealing technique 

has been shown to be very effective for optimization. 

The proposal distribution X)�can be computed via Equation 

4.10，and Q(SM5，/?'，X) can also be easily computed as 

Q(S'IS,R',X) = 二 (412) 

尸(• î’*^-“尺,入） 
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After we obtain the segmentation sample …，we can draw relation sam-

ples from 尸(7?||5…，X). Similar MH procedure can also be exploited, and we 

omit the description. In summary, this bidirectional MH sampling algorithm 

will work as follows. Given initialized segmentation and relation assign-

ments S^ and HP, and a user-defined sample size N, it draws samples S from 

…|/?*，X) (0 < t < N) while computing A(S',S) and setting S … = 5 

with probability 5); otherwise setting < 9 … = a n d draws samples 

R from X) via similar procedure. We run this algorithm to 

perform sampling for both segmentat^ns and relations bidirectionally and 

iteratively for enough time, and it is gimranteed to converge to its stationary 

distribution. Thus it will find an approximate MAP solution for the most 

likely pair (S,R)V ^ 

Note that the proposed algorithm is different from Finkel et al. [24], 

who incorporated a limited number of constraints into probabilistic sequence 

models by Gibbs sampling, which is just a special case for the MH sampler; 

and Finkel et al. [25], who modeled pipelines as Bayesian networks which are 

feed-forward and only allow information to flow into one direction. Exploring 

bidirectional information is appealing, especially during the'inference proce-

dure. And we will demonstrate and analyze its efficiency in the experiments. 
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Chapter 5 

An Integrated Discriminative 
Probabilistic Approach 

5.1 A Brief Introduction 

Recently, probabilistic graphical models for sequence data have become the 

predominant formalism for IE, achieving the state-of-the-art performance 

82]. Typically, probabilistic graphical models can deal well with uncer-

tainty, but they are less expressive and flexible than logical or symbolic 

systems [80] [23]. More specifically, a major disadvantage of probabilistic 

graphical models, is the limited expressiveness of attribute-value representa-

tion of features. Attribute-value vectors have the same level of expressiveness 

as prepositional formalisms, that is, they only allow the representation of 

atomic propositions and constants. While attribute-value representation is 

suitable for statistical machine learning approaches, they can hardly handle 

IE problems involving complex knowledge which requires richer representa-

tional power facilitating logical inference or reasoning. 

Another limitation is that, a unique representation for all examples is 

needed, resulting in a quite sparse data representation. The problem of data 

sparscness increases as more knowledge is exploited and this can cause prob~ 

lems for large scale real-world tasks. Finally, in this kind of representation, 

equivalent features may have to be restricted to distinct identifiers. For exam-

ple, the sentence "John and Bob show Kate a picture.” contains a coordinato 

subject, namely, John and Bob. To capture the interaction between subject 

and action, two features, namely subj 1-verbl, subj2-verbl are required. 

However, each feature typically is assigned a unique identifier. They will be 

treated 閱 two independent pieces of information by graphical models. 

First-order logic [28], on the other hand, is a powerful paradigm to rep-
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resent a wide variety of knowledge. It is a more expressive formalism and 

allows the representation of variables and n-ary predicates, i.e., domain and 

relational knowledge. It can also capture complex and implicit properties 

through rich expression of conditions. Therefore, dependency and deeper 

relations can be more adequately described. First-order formalisms allow 

a generic predicate to be created for every possible example, relating two 

or more elements (80) [12]. For example, the predicate work_f or (person, 

company) could have several instantiations such as work_f or (John, Microsoft) 

and w9rk_for(Bob, IBM), etc. While highly expressive, this type of model 

lacks a sophisticated treatment of degrees of uncertainty and fuzziness, which 

permeates real-world domains, especially the ones usually associated with in-

telligence. Clearly, probabilistic graphical models and first-order logic offer 

complementary strengths and weaknesses for sequence data, and the integra-

tion of both is highly desirable. -

However, incorporating logic into probabilistic models is generally quite 

challenging. This is because probabilistic graphical models operate on the 

token level, and they are incapable of incorporating entity-level commonly 

found domain knowledge. There is a fundamental mismatch in representation 

resulting in difficulty in the integration. We solve this problem by relaxing 

probabilistic graphical models with the introduction of segments, and the 

labels of tokens inside a segment arc assumed to be the Same. Given the 

segments in observation sequences, various kinds of relational or domain 

knowledge can be easily and concisely formulated into first-order logic, and 

logical learning can be conducted. 

Inspired by this motivation, in this chapter we combine the advantages 

of both probabilistic graphical models for sequence data and first-order logic 

in a principled way, resulting in an integrated discriminative probabilistic 

framework which models both segmentations in sequence data and relations 

of different segments simultaneously for IE tasks. This integrated model 

offers a great flexibility to capture uncertainty for sequence modeling, as well 

as a variety of first-order knowledge. We illustrate the benefits of this model 

for mining implicit relations and hew relation discovery, and capturing sub-

structures in named entities. We propose the Metropolis-Hastings [56], [33], 

an approximate Markov chain Mbnte Carlo (MCMC) algorithm to enable 

efficient and tractable inference fpr this model. This algorithm performs 

efficient sampling from segmentations via Markov chains, and it is guaranteed 

to converge. Joint parameter estimation in this model can be too expensive 

or even intractable. We perform parameter estimation somewliat separately 

for this integrated model. 

• r 
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5.2 Motivating Examples 

High-level information extraction requires both probabilistic modeling and 

complex and deeper knowledge representation. In this section, we show the 

shortcomings of sophisticated probabilistic approaches to sequence modeling, 

and illustrate the advantages of the Integrated -^odel incorporating proba-

bility with first-order logic for two real-world IE tasks. 

5.2.1 Implicit Relation Extraction and New Relation 

Discovery 

A large number of engineered systems were developed for identifying relations 

of interest. However, reliably extracting relations between entities in text 

is still a difficult and unsolved problem. Traditional probabilistic systems 

extract relations assuming that entities are already known or extracted from 

text. They rely on the assumption that entity extraction has been solved 

without errors. Unfortunately, such assumption is not valid in practice. 

Another major limitation is that, implicit relations can hardly be dis-

covered in these models. Implicit relations are those that do not have direct 

contextual evidence and generally exist in different paragraphs, or even across 

documents. They require additional, knowledge to be detected. Notably, they 

are ubiquitous and are the sorts of relations that are likely to have signifi-

cant impact on performance. Unfortunately, extracting implicit relations is 

challenging even for current state-of-the-art relation extraction models. 

In particular, consider the following'4 sentences: 

1. Rosemary Forbes is the mother of John Kerry. 

, 、 2 . Rosemary Forbes has a sibling James Forbes. 

3. James Forbes^s son is Stuart Forbes. 

4. John Kerry celebrated with Stuart Forbes on the graduation ceremony. 
State-of-the-art relation extraction systems may be able to detect the son 

and sibling relations (as shown in Figure 5.1) from local contextual clues. 

However, the cousin relation is only implied by the text and requires addi-

tional knowledge to be extracted. 

We show that our approach can enable this technology. First-order for-

malism allows the representation of deep and relational knowledge. By em-

ploying the logic parent(x,z)Asibling(z,w)Achild(w,y)=>cousin(x,y), 

the implicit relation can be easily extracted and new relation can be discov-

ered ultimately. Since these formulas will not always hold, we would like 
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Rosemary Forbes 
Sibling James Forbes Rosemary Forbes James Forbes 

Son Son 

John Kerry 
Cousin 

Stuart Forbes John Kerry Stuart Forbes 

Figure 5.1: An example of implicit relation extraction. The real lines show 

explicit (general) relations and the dashed line shows an implicit relation. 

to handle them probabilistically by estimating the confidence of each for-

mula. Our approach can incorporate rich dependencies between entities. It 

can also exploit relational autocorrelation, a widely observed characteristic 

of relational data in which the value of a variable for one instance is highly 

correlated with the value of the same variable on another instance. 

5.2.2 Modeling Sub-structures in Named Entities 

Structured data are widely prevalent in the real world. Observation se-

quences tend to have distinct internal sub-structure and indicate predictable 

relationships between individual class labels. For example, in the named en-

tity recognition task, many named entities have particular characteristics in 

their composition and human beings usually use prior knowledge to recog-

nize them. A location name can optionally end with a location salient word 

(such as City、Province, etc.), but cannot end with any organization salient 

word (such as Government, University’ etc.). A complex, nested organiza-

tion name may be composed of a person name, a location name, or even 

another organization name. All entities cannot comprise any stopword or 

punctuation. These complex and expressive structures can largely influence 

predictions. For example, the organization name U.S. Government consists 

of a location name U.S. and an organization salient word Government that 

implies the organization class label. This characteristic is crucial, and with-

oi^'mddeling it may lead to an incorrect location label for U.S. Government 

However, the efficiency of probabilistic sequence models, such as the linear 

chain CRF-based |47] approach heavily depends on its first-order Markov 

property ~ given the observation, the label of a token is assumed to depend 

only on the labels of its adjacent tokens. The CRF approach models the 

transitions between class labels to enjoy advantages of both generative and 
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discriminative methods, thus capturing external dynamics, but unfortunately 

it lacks the ability to represent internal sub-structure. 

Fortunately, these sub-structures can be modeled well by first-order logic 

in the integrated model. For example, the logic formulas endwith(r, p) Aloes 

a l ient (p) =>loc(r) and endwith(r ,p) Aorgsalient (p)=^org(r) convey that 

if an entity candidate ends with a location salient word, then it is a location 

name; if it ends with an organization salient word, then it is an organization 

name, containstop (p) =>non_entity (p) and containpunc(p)=>non_entity 

(p) illustrate stopword and punctuation restrictions in named entities. These 

logic formulas can be designed easily and concisely to capture and model the 

essential sub-structures. 

5.3 Model 

Let X be an observation sequence of tokens and |X| be the length of the 

sequence (i.e., number of tokens). Let S = (Si, . . . , Sl) be a segmentation 

of the input sequence X , and each entry is a segment which is a triple 

Si = (<,, /it, Vi), with ti as a. start position, fii as an end position, and y, as 

the label of this segment, yi £ y where y is the label set. Thus, a segment 

Si means that the label y、is assigned to all the observations between the 

start position U and the end position /x, in the observation sequence X . 

It is reasonable to assume that segments have positive lengths and adjacent 

segments touch, that is, 0 < U < fii < |X| and ti+\ = fii + l. S can essentially 

model entity candidates to be considered. Let R — /?2,. ..，Rm) be a 

first-order logic possible world of segment relations expressed as a set of 

ground predicates Ri with truth value assigned. When only one segment 

candidate appears in the arguments of Ri, it represents a particular segment 

constraint (e.g., sub-structure in its composition). When more than one 

segment candidate appears in the arguments of Ri, it represents relations of 

segments. 

We now describe in detail our proposed model. We jointly consider seg-

mentations S in observation sequence X and possible worlds of segment 

relations R. Therefore, an assignment of all the variables in the integrated 

model is a pair {R, S). A valid assignment (/?, S) must satisfy the condition 

that both of the two assignments are optimized, that is, the assignments of 

the segments and the assignments of the relations of segments are maximized 

simultaneously. Let R and S denote the most likely relation assignment and 
• A A 

segmentation assignment, respectively. By applying chain rule, R and S can 
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be obtained as follows: 

{R,S) = argmaxp((/?,5)|X) 
n,s 

=arg maxp(R\S, X) . p(5|X) (5.1) 
R,S 

Clearly, our model consists of two sub-structures 一 segmentations S con-

ditioned on observation sequence X、represented by p(5|X), and relations R 

of segments given a segmentation S and observation sequence X、represented 

by X ) . Note that this model is quite general, and has potential to 

integrate a variety of probabilistic segmentation and logic models. 

In particular, we investigate the use of undirected, discriminatively-trained 

probabilistic graphical models, known as Semi-Markov conditional random 

fields (Semi-CRFs) [72], to effectively model segmentations S in sequence 

data. Besides the modeling flexibility similar to conventional CRFs, Semi-

CRFs arc capable of measuring properties of segments, and transitions within 

a segment can be non-Markovian. For segment relations, we employ the idea 

of Markov logic networks (MLNs) [69], a recently introduced framework for 

first-order logic, to model relations R of segments. An MLN is a set of 

first-order knowledge base (KB) with a real-valued weight assigned to each 

formula. Together with a finite set of constants representing objects in the 

domain, it defines a ground Markov network containing one feature for each 

possible grounding of a first-order formula in the KB, with the correspond-

ing weight. The weights associated with the formulas in an MLN jointly 

determine the probabilities of those formulas (and vice versa) via a log-linear 

model. 

The KB is a set of general constraints C — {Ci,C2,...、Cn) expressed 

as first-order logic formulas. Each Ci contains some predicates representing 

constraints on elements in the domain. When only one segment variable 

appeiars in C“ it represents certain attribute or characteristic of that type 

of segment. When more than one segment variable appears in Ci、it repre-

sents certain relations among segments. Some Ci may not contain segment 

variable modeling relations or characteristics of non-segment objects in the 

domain. Formulas are constructed using constants, variables, functions, and 

predicates. Constant symbols represent objects in the domain of interest 

(e.g., people such as John and Bob). Variable symbols range over the objects 

in the domain (e.g., x and y). Function symbols represent mappings from 

tuples of objects to objects and predicate symbols represent relations among 

objects (e.g., person) in the domain or attributes of objects (e.g., endwith). 

Variables and constants are typed, in which case variables range only over 

objects of the corresponding type, and constants can only represent objects 
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of the corresponding type, to reduce the size of ground Markov networWr^or 

example, the variable x may range over people (e.g., John, Bob, etc.) and 

the constant Microsoft may represent a company. Formulas are recursively 

constructed from atomic formulas (predicates applied to a tuple of terms) 

using logical connectives and quantifiers. The formulas in a KB are implic-

itly conjoined. A ground atom is an atomic formula all of whose arguments 

are ground terms (terms containing no variables). 

Markov logic is a highly expressive language to specify the connectivity 

and template of a Markov network. The nodes in the network structure of 

an MLN are atomic formulas, and the edges are the logical connectives used 

to construct the formula. Each formula is considered to be a clique, and 

the Markov blanket is the set of formulas in which a given atom appears. 

However, atomic formulas do not have a truth value until they are ground 

atoms with a Herbrand interpretation. Thus, an MLN becomes a Markov 

network only with respect to a specific grounding and interpretation, and 

the resulting Markov network is called the ground Markov network. Given 

different sets of constants, it will produce different networks. In the graphical 

structure of a ground Markov network, the nodes are ground atoms. There 

is an edge between two nodes iff the corresponding ground atoms appear 

together in at least one grounding of one formula in the KB. The atoms in 

each ground formula form a clique in the ground Markov network. Each 

state of the ground Markov network represents a possible world. Under 

several reasonable assumptions [69], the set of possible worlds is finite, and 

the ground Markov network represents a unique, well-defined probability 

distribution over those worlds, irrespective of the interpretation and domain. 

The segments from the Semi-CRF sub-structure are considered to be en-

tity candidates. Given these entity candidates and the first-order logic KB, 

the ground Markov network can be constructed to learn the relations be-

tween them.' The MLN sub-structure attempts to provide logical inference 

on the entity candidates. It is constructed via grounding the first-order log-

ical formulas associated with entity candidates. It also consists of a graph-

ical structure derived from the formulas instantiated with the data and the 

weights. Consequently, the entities can be identified and the entity relations 

can be learned from the integrated model. 

Let B be the ground predicates generated from the input sequence X. 

In other words, B contains atomic formulas whose arguments are not vari-

ables. Given a particular segmentation S、Evidence predicates are a set of 

ground atoms with known truth values. Take the NER task for example, 

for the first-order KB listed in Table 7.1, some predicates such as per, loc, 

org, and non_eiitity arc entity or query predicates. These predic£».tes are 

used to predict whether an entity candidate is a PER, a LOC, an ORG, or 
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a non-entity. The remaining predicates such as endwith(r ,p) are Evidence 

predicates. X) in Equation 5.1 can be computed efficiently by calcu-

lating p(R\Evidence, B, S). Therefore, Equation 5.1 can be rewritten as: 

{R.S) 

=a rg maxp{R\Evidence, B, S) • p(5|A') 
H.5 

arg max 
R,s 

p{R, Evidence\B^ S) 

p(Evidence\B, S) 
piS\X) 

/ 
=a rg maxp(/?, Evidence\B, S) • p(5|X) 

R,S 
=8.rgm^xp{Wn\B,S) • p{S\X) 

n,s 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

where W^ is a set of segments, a set of functions, and a set of relations of 

segments; together with an interpretation, they determine the truth value 

of each ground atom. Equation 5.3 can be inferred to Equation 5.4, due to 

the fact that for a constructed ground Markov network, p{Evidence\B, S) is 

constant. 

As described above, the model consists of two types of sul)-structures: (1) 

a semi-Markov chain on the segmentations S conditioned on the sequences 

X ] (2) an undirected graph constructed via grounding the first-order KB 

associated with segments (entity candidates). As shown in Figuie 5.2, the 

nodes in this graph are ground atoms with a possible world or Herbrand 

interpretation assigning a truth value to each node. For the node Fi{A, C), 

A and C are segments from observation sequence X and F\ is a predicate. 

Therefore, our model can be formally derived as follows: 

〈/?’ 5) = arg max — 
R,s 乙 s 

arg max 
R,s 乙 s 

exp 

\i 
Zvv 

exp 

n M h X ^ s ) Zvv / 
(5.6) 

where g = . . . , g^) is a vector of segment feature functions. Each 

gk depends on the current segment, the whole observafion, and the label of 

previous segment, that is, X, S) = 9 (̂2/1-1,2/,, ti, fii, X). X, S)= 

exp(Aip(z, X, S)) is the potential function conditioned on features of X for 

segmentations. ni{WR) is the number of true groundings of a formula in the 

2-th first-order logic formula, = e®. is the potential function for 
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Figure 5.2: Graphical representation of the integrated discriminative proba-

bilistic model consisting of two types of repeated sub-structures: (1) a semi-

Markov chain on the segmentations conditioned on the observation sequences, 

the segments from this structure are considered to be entity candidates; (2) 

given these entity candidates and the first-order logic KB, an undirected 

graph is constructed via grounding process for learning relations. The nodes 

in this graph are ground atoms with a possible world or Herbrand interpre-

tation. 

) ‘ 

the z-th logical formula. A potential function is associated to each formula, 

and takes the value of 1 when the formula is true, and 0 when it is false. 

VK/?⑴ IS the truth value of the grounded predicate appearing in the formulas. 

A = (Ai,入2，..., A/̂ -) and 9 =〈没i, 02，...，^l) are parameter vectors of the 

two sub-structures respectively. Zs and Zw are normalization factors of the 

Semi-CRF and MLN sub-structures respectively. As can be seen, this model 

offers a sound theoretical foundation for uncertainty, and has the advantage 

of combining the expressiveness of first-order logic. 

5.4 Inference and Training 

We discuss in detail the inference and training algorithms for our model in 

this section. We propose the Metropolis-Hastings (MH) algorithm, which 

consists of efficient sampling from segmentations, to enable approximate and 
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tractable inference for this model. Joint parameter estimation in this model 

is prohibitively intractable, and we perform parameter estimation separately 

for each of the two sub-structures. 

5.4.1 Inference 

The objective of inference is to find the most likely assignments of variables 

in the integrated model, that is, the pair {R, S) that has the maximum pos-

terior probability. Unfortunately, exact inference by computing the posterior 

probability of all possible segmentation 紐signments S and world of rela-

tion assignments R is generally intractable, as evaluating the normalization 

factors Zs and Zw for this distribution requires summing over all possible 

segmentations for the entire dataset and evaluating all possible world of re-

lations. , 

Consequently, approximate inference becomes an alternative by relax-

ing the requirement (e.g., computing the distribution explicitly) of exact 

inference. We propose the Metropolis-Hastings algorithm, a specific Markov 

chain Monte Carlo (MCMC) approach in which a Markov chain is used to 

sample from the segmentations (p(5|X)) (as shown in Figure 5.3), to per-

form the maximum a posteriori (MAP) estimates for the inference of this 

model. Since MCMC and the bidirectional MH algorithm are discussed in 

Section 4.2.4 and Section 4.2.5, here we only focus on how to sample seg-

mentation sequences efficiently from the conditional distribution defined by 

the Semi-CRF sub-structure. This algorithm runs similar procedure to the 

bidirectional MH algorithm, and the difference is that this algorithm does 

not iteratively sample from both segmentations and relations, it only draws 

samples from segmentations. 

We adopt similar notations and formulations in Section 4.2.5. Note that 

the length of all segments at state 5"(…）should not exceed the upper bound 

L. From Equation 4.9 we know that the segment 5, may be divided into sev-

eral sub-segments, and this may change the boundary (length) of adjacent 

segments and Si+i. The number of possible sub-segments can be large 

for long segment S、, Instead of exhaustively enumerating the list of all pos-

sible sub-segments, we restrict our targets to limited {k < 3) sub-segments 

to enable efficient computation, based on the assumption that for a long seg-

ment, it is more likely that this segment be separated into a small number 

of sub-segments than into a large number of sub-segments. Note that it is 

possible that the total number of segments in is less than that of ⑴ 

if 广 1). or 广 1) is merged with the neighboring segments in 5•⑴.We can 

walk the Markov chain to- loop through segment Si from i = 1 to i = L, 

and the attribute (boundary and label) of every segment can be changed 
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so •” L 

Figure 5.3: The transition probability of the Markov chain from state S⑴ 

to state SC'+i) is the conditional distribution of the attribute (boundary and 

label) at the segment ⑴(1 < i < L) given the rest of the segmentation 

sequence S i t 炉 is divided into k sub-segments (Si\Si2 • • • in the 

state 

dynamically. And for each one, we re-sample the state at segment S、from 

distribution given in Equation 4.9 mentioned above. 

For each sample drawn from p(S\X), the most probable relation assign-

ment R that maximizes the probability p(i?|5, X) can be efficiently computed 

by the MC-SAT algorithm [66]. Thus, this approximated procedure will max-

imize the joint probability p(〈R, S〉IX) of the integrated model. After many 

samples are drawn, it will converge to (R, 5), that is, the most likely seg-

mentation assignment 5 and corresponding most likely relation assignment 

R can be obtained. 

5.4.2 Parameter Estimation 

Given annotated data, training can be performed to estimate the parameters 

in the integrated model. Each training sample in D = { ( ^ A 工 i s a pair 

((R, and the log-likelihood function is 

N 
(5.7) 

where A and 6 are parameter vectors of the 

Substituting the distribution in Equation 5 

get 

two sub-structures, respectively. 

1 into the log-likelihood and we 

N N 
£(A’ = logp(尺‘丨？’ S 、 、 A , 0) (5.8) 
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Ideally, we would perform parameter estimation by numerically climbing 

the gradient of the full, joint likelihood. However, optimizing parameters 

A and 6 simultaneously is too expensive or even intractable for large-scale 

IE problems. Previous research indicated that learning parameters by max-

imizing a product of local marginals provides equal or superior accuracy to 

stochastic gradient ascent on an approximation of the full joint likelihood 

55], |88], [111]. ‘ 

Following this idea, we assume that A and 0 are independent. There-

fore we train each sub-structure of the model separately, either as structured 

pseudo-likelihood, or simply independently, and existing algorithms are suffi-

cient for the training procedure. In all cases, estimation is iterative, consist-

ing of dynamic programming algorithms to maximize the log-likelihood of the 

correct segmentation sequence [72] and limited-memory BFGS on optimizing 

the pscudo-log-likelihood of relations of segments [69]. To avoid over-fitting, 

the Gaussian prior with mean /x = 0 and variance matrix E = S"̂ ! is used to 

penalize the log-likelihood (or pseudo-likelihood) when training each part of 

the model. 
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Chapter 6 

Joint Models Incorporating 
Logic 

6.1 A Brief Introduction 

To address problems occurred in pipeline approaches for higher-level IE teusks, 

there has been increasing interest in integrated and joint probabilistic models 

to explore mutual benefits and perform multiple tasks simultaneously, show-

ing feasibility and promise in information extraction [9^88) (111) |102] |109) |67) (93) |50 

While several previous researchers have taken steps in this direction, they 

have various disadvantages: the number of uncertain hypotheses is severely 

limited for the full distribution of large output space [88], the subtasks are 

only loosely coupled [67], or the approach is feed-forward or top-down in-

tegrated and it only allows information to flow in one direction (111]|102|. 

Exploring bi-directional information is intuitively appealing, especially dur-

ing the inference procedure [93]. For example, correct coreference of a messy 

citation with a clean citation provides the opportunity to help the model 

correctly segment the messy one, and entity resolution can also benefit from 

correctly segmented citations. 

Inspired by this motivation and to address the above problems, we pro-

pose a joint information extraction paradigm based on discriminatively-

trained, undirected probabilistic graphical models for all relevant subtasks 

simultaneously. This framework models both segmentations in sequence data 

and relations of different segments jointly, allowing tight interactions between 

segmentations and relations of segments, and it combines the advantages of 

both probabilistic graphical models for sequence data and first-order logic in 

a principled way. More specifically, we make the following major contribu-

tions in this chapter: 

65 



1. First, we incorporate the advantages of both probabilistic sequence 

models and first-order logic, offering a great flexibility to capture un-

certainty for sequence modeling, as well as a variety of domain knowl-

edge which can be concisely and easily formulated by first-order logic. 

This paradigm offers a natural way for information extraction which 

requires uncertainty modeling as well as dependency and deeper knowl-

edge representation. • 

2. Second, we propose a discriminative framework defining a joint proba-

bility distribution for both segmentations in sequence data and possible 

worlds of segment relations in the form of an exponential family. This 

joint model has several advantages over previous probabilistic graphical 

models. 

3. Third, since exact parameter estimation in this model can be too ex-

pensive or even intractable, we propose a structured variational infer-

ence algorithm [73][89] to conduct approximate learning for the model's 

parameters. The variational inference method provides a fast, de-

terministic approximation to otherwise unattainable posteriors. Also 

its convergence time is independent of dimensionality [S?]. Moreover, 

we propose a highly-coupled, bi-directional Metropolis-Hastings (MH) 

sampling algorithm [56) [33] to enable efficient and tractable inference 

for this model, which allows information to flow in both directions and 

explores mutual benefits. 

Qur earlier work includes the cascaded approach (chaptcr 3) and the in-

tegrated discriminative approach (chapter 5). In chapter 3，we combined 

entity extraction and qualitative domain knowledge in a two-stage pipeline 

model: the first stage is a base model and the second stage is used to val-

idate and correct the errors made in the base model. In |97|, we applied 

Markov logic networks (MLNs) (69] for relation extraction, assuming that 

golden-standard entities are already known. In chapter 5，we integrated 

serni-CRFs [72] and MLNs for information extraction. However, this model 

is only loosely-coupled in a "top-down" architecture, since the parameter es-

timation is performed independently for the two components. For inference, 

the information can only flow in one direction. This chapter proposes a joint 

paradigm for IE and it is a major extension of the integrated model in chap-

ter 5 in that parameters for all subtasks are optimized simultaneously via 

structured variational approximation to capture deep interactions between 

different subtasks. Moreover, the inference is strongly bi-directional, thus 

information can flow in both directions to exploit mutual benefits. 
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6.2 A Joint Model 

6.2.1 Preliminaries and Notations 

Let X be an observation sequence of tokens and |X| be the length of the 

sequence (i.e., number of tokens). Let S — (5i, 52,. . . , Si) be a segmentation 

of the input sequence X、and each entry is a segment which is a triple 

Si = (ij, /ij, 7/j), with U 3S sl start position, fii as an end position, and y, a.s 

the label of this segment. Vi E y where y is the label set. Thus, a segment 

Si means that the label yi is assigned to all the observations between the 

start position ti and the end position fii in the observation sequence X . It 

is reasonable to assume that segments have positive lengths and adjacent 

segments touch, that is, 0 < U < < |X| and = /Xj + 1. A segment 

Si can be a non-entity (e.g., a punctuation), it can also be an entity (e.g., 

the person name Nancy Hanks in Figure 1.1). S can essentially model entity 

candidates to be considered, since they are not the final entity output in 

our model. We will consider possible worlds of relations between thcni, JLS 

described below. 

Our model allows the user to specify or construct a set of first-order logic 

formulas [28] known as a knowledge base {KB). More specifically, the KB 

in our model is a set of general constraints C = {Ci, C2,. . . , C/v} oxprossod 

as standard first-order logic formulas. Each Cj contains some predicates 

representing constraints on elements in the domain. When only one segment 

variable appears in Ci、it represents certain attribute or characteristic of that 
� • � 

type of segment. When more than one segment variablAppears in C,, it rep-

resents certain relations among segments. Some Ci may not contain sogriient 

variable modeling relations or characteristics of non-segment objects in tlie 

domain. Formulas are constructed using constants, variables, functions, and 

predicates. Constant symbols represent objects in the domain of interest 

(e.g., people such as John and Bob). Variable symbols range over the objccts 

in the domain (e.g., x and y). Function symbols represent mappings from 

tuples of objects to objects and predicate symbols represent relations among 

objects (e.g., person) in the domain or attributes of objects (e.g., endwith). 

Variables and constants are typed, in which case variables range only over 

objccts of the corresponding type, and constants can only represent objccts 

of the corresponding type, to reduce the size of ground Markov network. For 

example, the variable x may range over people (e.g., John, Bob, etc.) and 

the constant Microsoft may represent a company. Formulas are recursively 

constructed from atomic formulas (predicates applied to a tuple of terms) us-

ing logical connectives and quantifiers. The formulas in a K B are implicitly 

conjoined. Some sample formulas are given in Table 7.4. 

67 



A ground atom (or ground predicate) is an atomic formula all of whose ar-

guments are ground terms (terms containing no variables). A possible world 

(or a Herbrand interpretation) determines a truth value assignment to each 

ground predicate. Let R = {/?i, /?.2,..., Rm) be a first-order logic possible 

world of segment relations expressed as a set of ground predicates Ri with 

truth value assigned. R allows a variety of relations and dependencies, and it 

is built upon the segmentation S which models entity candidates. When only 

one segment candidate appears in the arguments of Ri，it represents a partic-

ular segment constraint (e.g., sub-structure in its composition). When more 

than one segment candidate appears in the arguments of lii, it represents 

relations of segments. 、 

Let Y = {R, 5} be the pair of segmentations S and possible worlds 

in first-order logic of segment relations R for an observation sequence X. 

Therefore, an assignment of all the variables is a pair Y. A valid assignment 

Y must satisfy the condition that both of the two assignments are optimized, 

that is, the assignments of the segments and the assignments of the relations 

of segments are maximized simultaneously. We formally define the task of 

joint information extraction as follows: 

Definition 4 (Joint Optimization of Information Extraction): Given 

an observation sequence X, the goal of joint mfonnation extraction is to jind 

the assignment Y* 二 {/r，《S*} that has the maximum a posicnoH (MA P) 

probability 

、 V =argmaxP(r|X) , (6.1) 
V' 

‘where R* and S* denote the most likely relation assignment and segmentation 

assignment, respectively. 

Note that this definition is different from traditional two-stage pipeline 

models performing segmentation and relation in sequential order, that is, op* 

timizing and P(R\S) independently without capturing interactions 

bctwqen them. 

6.2.2 Model Formulation 

We now describe in detail our proposed model. We define a joint conditional 

distribution for segmentations S in observation sequence X and possible 

worlds of segment relations R in undirected, probabilistic graphical models 

(also known as Markov random fields or Markov networks). Let ^ be a 

factor graph [45] defining a probability distribution over a set of output 

variables Y conditioned on observation sequences X. A factor if、computes 

a scalar value over the subset of variables Y i and X、that are neighbors 
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of (fi in the graph G- Usually this real-valued function is defined as the 

exponential family of an inner product over sufficient statistics {/,A;(Xj, Vj)} 

and corresponding parameters {/丄认} as = f-ikfiki^i, ^t)}- Lot 

Z{X) be the normalization function, then the probability distribution over 

Q can be written as: 

P{Y\X) = n exp I ‘ (6.2) 

、 、 \ k J 

For factor graphs we can group several factors of similar nature using 

the same parameter and this is called pamineter tying. The nature of our 

modeling enables us to partition the factors of Q into two sets of factors Ĉ  -

{̂ c(<Ŝ c’ -X'c)} and Cr = Sd、•Xd)}, Xc is a set of input variables and 

Sc is a set of output variables, and they are arguments to the non-negative 

potential functions <t>c. Similarly, Xd and S^ are sets of input variables, Ra 

is a set of output variables. These are arguments to In other words, C., is 

a collection of cliques, and Xc and Sc are sets of variables corresponding to 

the nodes in the clique c. According to the celebrated Harnmersley-Clifford 

theorem [5], the joint conditional distribution P is factorized as a product of 

potential functions over cliques in the graph Q â j： ‘ 

P(y\X) = n Xe) n 巾乂尺山 S这、X")’ (6.3) 

^ ) c£Cs rfeCr 

where Z(X) = E y Ocec. Xc) YldeCr ^d, X^) is the iiorinal-

ization factor over all states for the observation sequence X . 

We assume the potential functions factorize according to a set of features 

and a corresponding set of real-valued weights. More specifically, the poten-

tial Xc) factorizes over a set of features Xc、Sc) and weight, vector 

A = {Aj,入2，...，AA'}, one weight for each feature, as: 

f丨•̂丨 1 
M S c . X , ) = exp I ^ Xc’ S,) | ’ (6.4) 

where g = . . . is a vector of segment feature functions. To 

effectively capture properties of segmentations S in sequence data and in-

spired by the idea of semi-CRFs [72], we relax the first-order Markov as-

sumption to semi-Markov such that each g^ depends on the current seg-

ment, the whole observation, and the label of previous segment, that is, 

Xc, Sc) — g乂yi-1, yi, ti，fii, Xc). Also transitions within a segment can 

be non-Markovian.巾“*^^，Xc) is the potential conditioned on features for 
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segmentations Sc、and it defines a semi-Markov chain over the input sequence 

Xc. 

The potential Sd, Xd) factorizcs according to the number of true 

groundings of a formula in the j-th first-order logic formula，fjiWj^^), and 

the corresponding weight vector d = {^1,^2，..., as: 

= exp { ； ^ � 尺 」 } ’ （6.5) 

possible worlds of segment relations Jt小 And it is a set 

of segments, a set of functions, and a set of relations of segments; together 

with an interpretation. They determine the truth value assignment of cach 

possible ground predicate of segment relations. The network contains 011c 
feature for cach possible grounding of each formula, and the feature takes 

the value of 1 when the ground formula is true, and 0 when it is false. 

Note that thus formulation shares some resemblance with Markov logic 

networks (MLNs) [69], which can be used for constructing the graphical 

model for the potential and segment relations R^. Given a finite set 

of constants representing objects in the domain, we can construct a Markov 

network via specific grounding process and interpretation, and the resulting 

Markov network is called the gjvund Markov network. A ground Markov not-

work contains one feature for each possible grounding of a first-order formula 

ill the KB, with the corresponding weight. The atoms in each ground for-

mula form a clique in the ground Markov network. Each state of the ground 

Markov network represents a possible world. Here we make several assiinip-

tioiis: the set of possible worlds is finite, and the ground Markov network 

represents a unique, well-defined probability distribution over those worlds, 

irrespective of the interpretation and domain. These assumptions are rea-

sonable for most problems, and'significantly simplify the model complexity. 

Now we can formally define tllte proposed joint discriminative probabilistic 

model tus follows: 

Definit ion 5 (A Joint Model for Information Extraction): Given 

observation sequences X and a set of jirsi-OTder logic knowledge base (KB). 

Let {g(i, X, 5)} be a set of feature fmictiojis and {f(Wn)] be the number of 

hue groundings in the KB, and 0 = {Ai, A2,...，入k,9、，没2，• • • ， € IH八 

be a set oj real-valued weights. Then the joint conditional distribution P for 

segmentations S and possible worlds of segrncjit relations R is in the Jonn of 
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Ground atoms modeling segment 
relations with a possible world or 
Herbrand interpretation 

C i > ~ 0 O O — < 

# w 

candidf t 
its modeling entity 

Token sequences from input text 

Figure 6.1: An instance of graphical representation of the joint discriminative 

probabilistic model for segmentations in observation sequence and possible 

worlds of segment relations. It consists of a semi-Markov chain on the seg-

mentations S conditioned on the observation sequences X , and a ground 

Markov network constructed via grounding the first-order logic K B â ssoci-

atcd with segments (entity candidates). 

an exponential family if and only if 

1 r 丨SI 

Z(X) 

rec. 

exp 

t=i 

J deCr I J 

(G .6) 

IS the ^here Z(X) = E v exp A"(2/,-i’ 仏 ’ " , ’ A") + Y^j^jfA^^ii) 

normalization factor of the joint model. 

An instance of the graphical representation of the joint model is shown 

in Figure 6.1. The gray nodes represent token sequences from input observa-

tions X . The yellow nodes (e.g., the node Si, S4, and Sg) express segments 

Si which model entity candidates to be considered. Given the first-order 

logic KB, the red (darkest) nodes in this graph are ground atoms with a 

possible world or Herbrand interpretation assigning a truth value to cach 

node. For example, consider the node Ri(S\,Sg), S\ and Ss are segments 
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from observation sequence X and R\ is a predicate. It represents certain 

relation between segment S\ and Ss. It is also possible that some nodes 

contain only one segment (e.g., the node It means that there is no 

relation between this segment and other segments. 

As mentioned above, the formulation of our model shares some similarity 

with scmi-CRFs [72] and MLNs [69] in that we use semi-Markov chains to 

model segmentations and first-order logic KB to represent possible worlds 

of segment relations. However, several major elements make our model dif-

ferent. The semi-CRF model cannot capture long-distance dependencies, 

nor expressive knowledge representation. The MLN model can conduct re-

lation learning between entities, however, this model cannot be applied to 

token-level learning since all entities are unknown in our task. As can be 

seen, our model offers a sound theoretical foundation for uncertainty, and 

\ms the advantage of combining the expressiveness of first-order logic. By 

modeling both segmentations in sequence data and relations of segments si-

multaneously, our proposed model offers a natural way for joint information 

extraction，avoiding the problems such astrror propagation occurred in de-

coupled approaches. Using first-order logic formalism, this model can capturc 

a rich class of relations and dependencies (e.g., long-distance dependencies). 

Using tractable substructures in the structured variational inference approx-

imation, deep interactions between entities and relations can be captured,' 

Moreover, the bi-directional MCMC inference allows information to flow iif 

both directions, and makes use of mutual benefits from different tasks to 

boost the performance. 

6.2.3 Exact Parameter Estimation 

Given a set of training data V = {(A"'，V^J)}/^。and a first-order logic KB 

containing k formulas, where X ' is the l-th sample, and Vj is the corre-

sponding label and Kj = the objective of learning is to estimate 

0 = {Ai, A2,... , A/c, 01,^2) • •) ̂ l} which is the vector of moders parame-

ters. Without loSvS of generality, R^ and S^ are observed variables (labels), 

while R and S are viewed as hidden variables. Assume that the samples arc 

independent and identically distributed (IID) and the log-likelihood of the 

data is: 

c ( e ) = ^ iogP(v;'|x') = 

l=0-.N 
=Y1 

l-0:N Y 
(6.7) 

/ = 0 : N s,n 
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|5| 

l=0:N i=\ 

- Y 1 l o g Z ( X ' ) -

-.O.N 
The derivative of this function with rcspcct to parameter Â  is 

E 乂-1，以！人/A’义'）一 I： E 5 > ( 5’， S ' 

K 
/=0:N i=\ l=0:N 1=1 S,S' 

X ' 

(7， 

(6.9) 

Similarly, the partial derivative of the log-likelihood with respect to param-

eter 9j is 
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=0:N 
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(T l=0:N j l=0:N j j 
. (6.10) 

Computing the expectations in the log-likelihood can be very expensive, 

since counting the number of true groundings of a formula in a domain is 

intractable. Instead we can take the derivative of the pseudo-log-likelihood 

as 

^ = log 广“义尺'二 H M I 叫 = J r ( E i o g P ( X _ | M B . „ ( X . 
3 ^ /=0:N 〕 c=\ 

J n 

j C=1 

1 J 0 

i � 
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To reduce over-fitting, the Gaussian prior with mean // = 0 and vari-

ance matrix E = cr^/ is used to penalize the log-likelihood (or pseiido-log-

likelihood). After substituting in the joint model (Equation 6.6) into the 

log-likelihood (Equation 6.7), we obtain the following expression: 
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where MBw^ iXc ) is the state of the Markov blanket of Xc in the training 

data. 

However, gradient-based exact parameter estimation requires computing 

the marginal probabilities (e.g., P{5, and the normalization constant 

Z ( X ) , which are prohibitively intractable in our model. In that case, approx-

imate techniques can be applied to compute the gradient. In the following, 

we will discuss approximate parameter estimation in oar model. 

6.2.4 Approximate Parameter Estimation via Struc-

tured Variational Inference 

As we shown, working directly with the above function using the maximum 

likelihood (ML) estimation is typically precluded by the need to compute the 

normalization constant Z(X) of the model. Unlike ML learning, the basic 

idea of variational inference [40] [37] [87], is to reformulate the computation of 

a marginal or conditional probability in terms of a simplified optimization 

problem, especially in the context of the exponential family. Solving this 

problem gives an approximation of probabilities of interest. 

Let Q(Y\Yo, X) be the variational distribution and it serves as an ap-

proximation of P(Y\Yo, X). Under the IID assumption, we ignore the sum-

mation operator the log-likelihood during the following derivations 

since there is no essential difference between one sample and a set of sam-

ples. According to the variational mean field theory, the optimal solution 

is the distribution that has the minimum Kullback-Leibler (KL) divergence 

between the two distributions Q and P, where the KL divergence is defined 

as follows: 

K i m p ) = I ： Q o ^ i n , X ) log 忠 丨 冗 丨 

哪 ， 寧 。 ’ ( 6 1 2 ) 
SyR 

Given the non-negativity property of the KL divergence, and take log P{y\ 

Yo,X) = \ogP[Y,Yo\X) - log P{Yo\X) into Equation 6.7, we can easily ob-
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tain: 

^ ( e ) = logP(5,, Ro\X) - KL{Q\\P) 

= ⑵ " ^ ， 尺 1*̂。’ Ro, X ) - log R\So. H�’ X) 
S,R 

+ logP(S,/?,So,i?o|X)] (6.13) 

= I H I ( Q ) + E Q { l o g P ( 5 , R, So, / ? O | X ) } ( 6 . 1 4 ) 

< C ( e ) ( 6 . 1 5 ) 

where M(Q) = — Es,/?Q("5’ R\So, Ro, X ) log Q(5, R\So, X ) is the entropy 

of the variational distribution, and Egjlog P(5, /?, 5o, Ro\X)} = YIs、rQ、S、 

So、Ro, X) log P{S, R, So, is the expectation with respect to Q(S, R\So, 

Ro, X). Clearly, J^{9) is the lower bound of the log-likelihood C{Q). Thus 

by maximizing J^ (6) we will always recover the log-likelihood of the data 

In statistical physics, T = — ( 0 ) is call the variational free energy and 

the lower bound J^(G) can be expressed as the difference of two free energies 

as = J^oo — where Too = — log Z(X) is the free energy when 

we use model distribution with all variables free, and JFq the free energy 

when we use data distribution with observable labels clamped to their values. 

Intuitively, to optimize the lower bound, we take derivatives of Jif(O) with 

respect to A/：'-

d^(e) d 
(logF(S,/?,5o, Ro\X)) 

dXk d\k \ / Q{S,R\So,Ro,X) 

= 十 （ 6 . 1 6 ) 

where {•)Q is the expectation under distribution Q. Similarly, the derivatives 

with respect to Ok is: 

= + (6-17) 

Unfortunately, in both Equation 6.16 and 6.17，the derivatives of the free 

energy ！F沈 are prohibitively intractable in our model. 

Approximate inference methods rely on additional structure in the joint 

distribution beyond what is already explicated by the graph. For example, 

the probability model corresponding to a fully connected graph may factor 

into a product of pairwise potential functions depending only the variables 
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associated with each undirected edge. Note that we can easily collect to-

gether the edge potentials into larger clique potentials. Mean field and other 

approximate inference algorithms heavily exploit this type of additional fac-

torization structure (the clique potentials or conditional probabilities may 

also possess useful additional parametric structure, other than factorization 

discussed above). 

It is important to choose a family of Q such that we can tractably optimize 

the KL divergence in Equation 6.12. The simplest naive variational mean 

field theory assumes a fully factorized distribution (the interacted variables 

are independent and the joint distribution is a product of single variable 

marginal probabilities) and leads to computational tract ability as 

Ro, X) = Y.哪1，RjlSo, Ro, X) 

=；r R…X) ^ Q{Rj\So. Ro, X) (6.18) 

However, the assumption of a completely factorized distribution is a very 

strong one, and it may not yield sufficiently accurate results [37). The es-

sential principles underlying the mean field approach are not limited to fully 

factorized distributions, and a natural approach to improving over this sim-

ple mean field method is to combine it with exact probabilistic calculations. 

More generally, we can consider classes of tractable distributions that incor-

porate additional substructure which could be readily handled with exact 

methods. In this structured mean field approach, exact probability calcula-

tions on tractable substructures are combined with variational methods to 

capture the interactions betw.een substructures [73][89]|37 . 

Let s be an instantiation of the variable set S, and r be an instantiation 

of the variable set i?,. respectively. Recall that the target distribution of our 

model P{Y\X) = ^ [L where =exp [ E S I 入"(2/卜i ’ Vi、 

X) + ^jfji^n)，and d、is the projection of the instantiations s and r to 

the variables in KL、C {H, 5}, and the subsets { K L f二 c a n be overlapped. 

Suppose Vi, • . . , VM are subsets (clusters) of variables {R, 5}, and Vm is the 

projection of the instantiation {r, s} to the variables in Kn. The entropy 

IHI(Q) in Equation 6.12 can be rewritten as the following well-known form: 

VVn 

- E Q ( ” m ) 5 Z Q{Vn\Vm)\0gQ{Vr,\Vm) (6.19) 

Vm n 

76 



Similarly, the expectation Egflog P(S, H|5o, R。, X ) } is written as 

EQ{\ogP{S,R\So,Ro,X)}= ’ 

Z Q(r f iK) loga(dO-log{Z(X) ) (6.20) 
Vm i /<L,\Vm 

Therefore, the KL divergence defined in Equation 6.12 can be rewritten as 

乙 = -M(Q) - Egilog P(S, RISo, Ra, X ) } 

= l o g Q ( V m ) - Q K 

X l o g Q ( i g i ; 爪 ） + E Q ( d , l v m ) l o g Q , ( d , ) 

i KL,\Vm 

= ； E Q ⑷ l o g ： ^ ^ + log (Z⑷） 
1 

log(Z(X)) 

(6.21) 

where T^(vm) = exp - E n Ev„\Kn 卜m) + J；, T.klav„, 

Q{(U\vm)\ogQ^{di). 

With a little abuse of notations, we use Q(S, R) to denote Q{S, R\So, Ro, A"). 

To find a distribution Q minimizing the KL divergence between Q and P, 

we assume that it can be factorized as Q{S, R) = Q{S)Q{R), and we fur-

ther assume Q(S) to be of the form Q(S) = H； 4>j、iij、and Q{R) to be 

Q{R) = -zir" rifc i^kiii^k)- Zqs and Zq^ a0e two local nortnalization factors. 

...,Uj are possibly overlapped subsets of th^^ariable S, and 

are possibly overlapped subsets of the variable Tt、then Uj is the 

ZQn 
Suppose Ui, 

projection of the instantiation s to the variables in JJj and Wk is the projection 

of the instantiation r to the variables in Wk, respectively. We also denote the 

un-normalized distributions as Q{S) = Hj ^ii'^j) and Q{R) = IIa：功“祀人•)， 

Q(S) oc Q{S) and Q{R) oc Q{R). We define Q{um\uj) = for in-

stantiations Uj 二 Uj for which Q(uj) = 0. Thus, all terms in the equality 

Q{um,uj) 二 are well defined. And J2um\Uj Q('̂ m\uj) = 1. 

We propose an iterative converging algorithm to find distributions Q(S) 

and Q{R) based on [89], such that in each iteration the KL divergence be-

tween Q and P decreases until Q reaches an equilibrium state. This struc-

tured variational inference algorithm is shown in Algorithm 2: for Q(S), it 

iterates over all clusters Uj(l < j < J) and corresponding instantiations uj 

via Equations 6.22 and S.23 to update potentials <f>j{uj), where hmj and e*) 

are two indicators, and they aie defined as: 
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“ = j o ， U m n Uj = 0, ^ ^ fo, i<L、nu] =边、 

爪 3 yiy otherwise. ’ ” 1 1, otherwise. 

At each step, this algorithm uses an inference procedure to compute con-

ditional probabilities and Q{di\uj) from an un-normalized distri-

bution Q where Q = ^ji'^j)- This is accomplished by using any inference 

algorithms such as the sum-product algorithm [45]. For example, to compute 

Q(um\uj), the algorithm first computes Q{um, Uj) and then Q{uj). Q(wm|wj) 

is the ratio of these two quantities since the normalization factor cancels. 

More importantly, for Q the calculation of these conditional probabilities 

is not affected by multiplying any (f)j(uj) by a constant. For the distribu-

tion Q(R), similar algorithm can be performed to iterate over all clusters 

Wk{l < k < K ) to update potentials ipk(wk)^ where h'̂ ^ and e'-̂ . are two 

indicators, analogous to /i爪j and e”’ respectively. Similar algorithms de-

scribed in [91][92] can be used to generate the clusters Uj{l < j < J) and 

Wk{l <k< K) for our model. 

Note that the structured mean field algorithm described above generalizes 

the naive mean field algorithm, which is just a special case of this algorithm 

in that each Uj or Wk contains only one variable. Note that 丁爪(1；爪）does not 

depend on potentials (t>j{uj) or ipki^ik) being optimized. This algorithm com-

putes (t>j(uj) and ipk(yJk) hence decreases the KL divergence in each iteration 

by improving (pj(uj) and rM旭k) while holding all other potentials fixed. Con-

sequently, it converges to an equilibrium state of the KL divergence between 

Q and P among all distributions Q of the given form Q(S) =• H j ^ji^j) 

and Q{R) ； ^ ^ YLK I'D'^K)- This shows that the algorithm is theoretically 

sound and correct. 

Now, we summarize the whole parameter estimation procedure as follows: 

first the distribution Q{S) is computed iteratively via Equations 6.22 and 

6.23，and Q{R) is updated via Equations 6.24 and 6.25. We can obtain 

the variational distribution indexed by a set of variational parameters as 

R). Then, the EM or gradient-based optimization algorithms can 

be applied to update these variational parameters in the model. In particular, 

we exploit the limited memory quasi-Newton (L-BFGS) algorithm [49] in the 

learning procedure since this algorithm is efficient and works well for many 

optimization problems. 

6.2.5 Bidirectional M C M C Sampling for Inference 

For inference, the objective is to find the most likely segmentation assign-

ments S* and corresponding most likely relation assignments /?*, that is, 
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y* = {R',S*} = argmaxy P{Y\X). Unfortunately, the exact inference 

for Y* is general intractable, since we need to search a huge number of 

possible segmentation assignments S and worlds of relation assignments R. 

Consequently, approximate inference becomes an alternative. We propose 

a bi-directional MCMC sampling algorithm to find the maximum a poste-

riori (MAP) assignment of all the variables of this model. This algorithm 

is strongly coupled to joirit inference based on efficient Metropolis-Hastings 

(MH) sampling [56] [33] from both semi-Markov chains and ground Markov 

networks in an iterative manner to find an approximate solution for Y\ 

It allows information to flow in both directions, such that evidences from 

segmentations and relations can be well exploited. It is a theoretically well-

founded MCMC algorithm, and is guaranteed to converge. 

The MCMC methods are a class of algorithms for sampling from proba-

bility^ distributions based on constructing a Markov chain that has the desired 

distribution as its stationary distribution. Let <S⑴ be the current state of 

segmentation sequence S and 5•(…）be the next state of S. We assume that 

the current relation sample R⑴ has already been drawn and we keep it un-

changed. To draw segmentation samples from ⑴’ A") in the model, we 

define the Markov chain as follows: from each state sequence we transfer to 

a state sequence obtained by changing the state at a particular segment 5,. 

If |5i| = 1，we only change the label of this segment. If 1 < < L where 

L is the upper bound on segment length, we divide Si into k sub-segments 

Si、Si2 • •' Sik with different labels. Thus the distribution over these possible 

transitions from state ⑴ to state ^St'+i) is defined as: 

( … ⑴ ’ ⑴，X) = Q((5„ . . . S,jt)“+i)|«S _̂�)’ H⑴’ X) (6.26) 

where is all segments except Si, S-i = (5 i , . . . , Si_i, . . . , S^) and 

= 处 I f fc = 1’ we assume = Si. 

We can walk the Markov chain to loop through segment 5, from 2 = 1 

to 2 = L, and the attribute (boundary and label) of every segment can be 

changed dynamically. And for each one, we re-sample the state at segment S、 

from distribution given in Equation 6.26. This distribution is easy to compute 

in the semi-Markov chains. Let yij be the label of the sub-segment Sij{l < 

j < k) and y be the label set, after re-sampling all L segments, we can 

sample the whole segmentation sequences from the conditional distribution 

…)| 沪 ) ’ ⑴’ X ) = 
！：,.)^^ . . .Si,)(…)，6l?，H⑴，X) 

To avoid low grade samples, an MH step of the target distribution Q(S•(…)| 

⑴，JV) and the proposal distribution ⑴，⑴，X) involves sampling a 
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candidate sequence S given the current value according to ⑴’ ⑴’ A"), 

and uses an acceptance/rejection scheme to define a transition kernel with 

Q(S“+i)|S⑴，/?⑴’ A"). The Markov chain then moves towards S (as the 

next state S“+i)) with acceptance probability «4(5"('.)，5) and with probabil-

ity 1 — «4(S⑴，S) it is rejected and the next state remains at S•⑴.Moreover, 

to perform global optimization, a more principled strategy is to adopt sim-

ulated annealing [42] in the MH algorithm, and the acceptance probability 

is written as 

^(5(0,5) 二 m i n j l , Q "e ' ( _ )，柳 (沪丨々，浙 ) ’ X ) 1 (6.28) 

where Ct is a decreasing cooling schedule with limt_̂ oo Q = 0. As q —> 0 

the distribution becomes sharper, and when Cf = 0 the distribution places 

all of its mass on the maximal outcome, having the effect that the Markov 

chain always climbs uphill. Thus if we gradually decrease Q from 1 to 0, 

the Markov chain increasingly tends to go uphill. The proposal distribution 

⑴’ ⑴ ,X) can be computed via Equation 6.27, and n ( S ⑴ ⑴ ’ X) 

can also be easily computed as 

(6.29) 

After we obtain the segmentation sample ⑷)，we can draw relation 

samples from Q(/?|«S(t+i)’ X ) , which is defined by the ground Markov network 

in the model. And similar MH procedure can also be exploited. The basic 

step consists of sampling one ground atom given its Markov blanket. The 

Markov blanket of a ground atom is the set of ground atoms that appear 

in some grounding of a formula with it. Let // : /»(/?/ = r/’M丑⑴）be the 

truth value of the feature corresponding to the i-th ground formula when 

Ri = ri and its Markov blanket MB⑴ at state t. Let f} = fi{Ri = 1’ A^B⑴） 

and Jf = fi{Ri = 0’ M办 ' ) ) .The probability of a ground atom Ri for M办 ” 

is I 

Q{Ri = r�|MB⑴）=二想从,0V (6.30) 

When all ground atoms are sampled, we can obtain the relation sample at 

state t as ⑴.Sampling the next state t + I can be done according to the 

transition probability (计”⑴，•？“+”’ A：)’ which is defined by changing 

the truth value assignment of one ground atom while keeping others the 
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same as before. Similarly, a candidate relation sample R is accepted with 

probability as 

乂 ⑴ ， A ) i i n < [ l ’ 《 ； ⑴ 丨 反 梦 ⑷ ) ， X ) I 
\ ⑴…)’A:)7r(/?|7?⑴’(…)，X) J 

and rejected with probability 1 — R). CJ is another decreasing cooling 

schedule similar to Q. 

Algorithm 3 summarizes the bi-directional MH inference procedure, which 

performs efficient sampling for both segmentations and relations bi-directionally 

and iteratively to capture mutual benefits between them. We run this algo-

rithm to sample enough number of segmentations and relations, and this 

algorithm is guaranteed to converge to its stationary distribution. Thus, it 

will produce an approximated solution of the most likely pair Y* = {/?*, 5*}. 
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Algor i thm 2: The structured variational inference for distributions 

Q(S) and Q{R)  

Input : A set of potentials 0.i{di) defining the target distribution 

P{Y\X), a set of clusters Uj (1 < j < J) with initial 

potentials (}>j{uj), and a set of clusters Wk{l < k < K) with 

initial potentials ipkî Jk)-

Outpu t : Revised sets of potentials (f>j{uj) and ipk('^k) defining 

distributions Q{S) = FIj為(〜）and 

Q{R) = FL IM⑴A : )%uch that Q{S,R) = Q{S)Q{R) is 

an equilibrium state of the KL divergence KL(Q\\P). 

while not converge do 
foreach instantiation uj of clwiter Uj do 

OijiUj) < ^ Q{Um\Uj)\ogQ{Um\Uj) 

{m:hmj = \} U,n\Uj 

+ X] Z Q{d,\uj)\ogQ,{d.) (6.22) 

"pjiuj) — exp [aj(7勺)] (6.23) 

end 

foreach instantiation w^ of cluster W^ do 

+ E E Q(diM\ogni(d,) (6.24) 

ipkiiiJk) — exp (6.25) 

end 

end 
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Algorithm 3: The bi-directional Metropolis-Hastings sampling infer-

ence algorithm 

Input: Initialized segmentation and relation assignments and 

iteration T as sample size. 

Output: Approximated most likely pair { , 5*} taken from S^ 

and H。…R'^. 

fo r i = 0,1,2,- • ,T do 

Draw ⑴’ X ) 

Compute 乂⑴， 

With probability set 5•(…）=S, 

otherwise set 二 ⑴ 

Draw � ( …) ’ A ： ) 

Compute A'(_、k) 

With probability ⑴，A) set H(⑷）=R, 

otherwise set = /?⑴ ‘ 
end 

• • ‘ST 
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Chapter 7 

Experiments 

In this chapter, we perform experimental study by applying our proposed 

models, including the bidirectional integrated models (bidirectional mod-

els) in chapter 4，the integrated discriminative probabilistic models (integrated 

models) in chapter 5, and the joint models incorporating logic (joint mod-

els) in chapter 6, to three well-investigated IE tasks 一 Chinese named en-

tity recognition (NER), entity identification and relation extraction from 

Wikipedia's encyclopedic articles, and citation matching. Empiricial results 

on real-world datasets show that our proposed models achieve substantial 

improvements over current state-of-the-art probabilistic models, illustrating 

the promise of our approaches. We compare an.d discuss the merits of our 

models against others. Several interesting issues, such as the superiority of 

the bidirectional MH inference algorithm, are also investigated. 

7.1 Chinese N E R 

7.1.1 Data 

We used one-month data from People's Daily (January-Jun, 1998) corpus 

for Chinese NER experiments, which contains 44818 sentences, with tagged 

entities of 19879 person, 25661 location, and 11590 organization names, re-

spectively. See Section 3.3.1 for more details of this corpus. 

7.1.2 Methodology 

We used features that have been shown to be very effective for NER, namely 

the current character and its POS tag, several characters surrounding the 

current character and flieir POS tags, current word and several words sur-

rounding the current word, and some clue word features which can capture 

. t 
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non-local dependencies. In addition, we take the advantage of using entity-

level dictionary features. This gives us a rich feature set using both local and 

non-local information. 

We extracted 165 location salient words and 843 organization salient 

words from Wikipedia and the LDC ^ Xinhua News database. We also made a 

punctuation list which contains 18 items and some stopwords that named en-

tities cannot contain. The stopwords are mainly conjunctions, auxiliary and 

functional words. We introduced various types of domain knowledge which 

can capture essential characteristics of NER and can be well and concisely 

formulated in first-order logic. The considered domain knowledge is listed £LS 

follows, and the corresponding first-order logic is shown in Tabic 7.1. The 

goal of logical inference is to determine whether the candidates are entities 

and the types of entities by answering the query predicates (e.g., per, loc, 

org, and non.entity) given the Evidence predicates (e.g., endwithCr,p)) 

and other relations that can be deterministically derived. 

• Occur in Train: Definitely, if an entity occurs in the training data a.s 

a PER or a LOC or an ORG, then this entity should be a PER or a 

LOC or an ORG in the testing data. 

• L O C + S W : If an entity candidate ends with a location salient word, 

then it should be a LOC. 

• O R G - f S W : If an entity candidate ends with an organization salient 

word, then it should be an ORG. 

• Label Consist: If two entity candidates are exactly the same, tliey 

should be consistently labeled to the same entity type. 

• Restriction: Intuitively, all entity candidates cannot comprise any 

stopword or punctuation. 

• Noun: Since all entities are proper nouns, each entity candidate should 

be a noun or a noun phrase. 

We perform 10-fold cross-validation on this dataset, and take the average 

performance. For performance evaluation, we use the standard measures of 

Precision (P), Recall (R), and F/3=i which is the harmonic mean of P and 

R (F/3=I = p ^ ) . We compare our approaches with three models: CRFs , 

Semi-CRFs, and M L N s for this task. All these models exploit standard 

parameter learning and inference algorithms. We set the sample size to 10000 

for both MH and bidirectional MH inference algorithms for our models. To 

iThe Linguistic Data Consortium, see http://www.ldc.upenn.edu/ 
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Table 7. 

NER： 

Domain knowledge and corresponding first-order formulas for 

Occur in Train 

occur-per(p)=>per(p) 

occur _loc (p) (p) 

occur_org(p)=>org(p) 

L O C + S W endwith(r,p) Alocsalient (p) =>loc (r) 

O R G + S W endwithCr ,p) Aorgsalient (p) =>org(r) 

Label Consist same.str (p, q)=»same_label (p, q) 

Restriction 
containstop (p) =»non_entity (p) 

containpunc (p) =^non_entity (p) 

Noun notnoun(p)=>non_entity (p) 

make accurate and fair comparison, we use the same set of features for all 

these models. For C R F s and Semi-CRFs, the first-order domain knowledge 

is transformed into binary features. For MLNs , all features are presented 

via first-order logic. The ground Markov network in our models (e.g., the 

integrated models and the jo in t models) consists of 14 predicates, 16620 

constants and 97992 ground atoms. It also contains a total of 9878 tuples 

(i.e., there are 9878 true ground atoms). 

7.1.3 Experimental Results and Analysis 

The comparative performance is summarized in Table 7.2. As can be seen, 

our proposed models yield substantially better results than all the three 

baseline models. Notably, the jo int model obtains the best performance, 

leading to a relative error reduction of up to 34.07% on the overall F-measure 

over the C R F model, a relative error reduction of up to 33.67% on the overall 

F-measure over the Semi-CRF model, and a relative error reduction of up 

to 49.31% over the M L N model, respectively. All the improvements are 

statistically significant according to McNemar's paired tests (p-value < 0.05 

with a 95% confidence interval). 

It is worth noticing that our proposed models boosted the performance 

for all 3 entity types. For example, when compared to the C R F model, the 

improvement for the jo in t model on the F-measure is 2.91% for person, 

1.98% for location, and 3.31% for organization, respectively. This can be 

explained by the fact that there are much more sub-structures existing in 

organization names than in person or location names. In that case, modeling 

the internal sub-structures is more helpful for organization names in the NER 

task. This phenomenon also demonstrates the advantage and capability of 

our model for effective sub-structure modeling in named entities. 

The Semi-CRF model slightly outperforms the C R F model (90.08 vs. 
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Table 7.2: Comparative performance of our models, CRFs, Semi-CRFs, and 

Entities 
C R F s Semi-CRFs MLNs 

Entities 
P R F, P R F, P R Fi 

person 92.12 90.57 91.34 92.10 90.67 91.38 92.85 79.99 85.94 

location 90.62 89.74 90.18 90.53 89.96 90.24 91.79 84.23 87.85 

organization、 89.72 85.44 87.53 89.62 85.78 87.66 88.60 84.68 86.60 

Overall 90.89 89.16 90.02 90.82 89.35 90.08 86.55 87.49 87.02 

Entities 
Bidirectional Integrated Joint 

Entities 
P R Fi P R F, P R Fi 

person 93.90 93.03 93.46 93.90. 93.54 93.72 94.55 93.95 94.25 

location 92.10 90.75 91.42 92.38 91.07 91.72 92.77 91.55 92.16 

organization 90.92 89.40 90.15 91.21 89.55 90.37 91.75 89.95 90.84 

Overall 92.50 92.06 92.28 92.90 92.35 92.62 93.92 92.93 93.42 

90.02 on the overall F-score), since the Semi-CRF model captures segments 

instead of tokens for named entity recognition, thus entity-level dictionary 

features can be better exploited. It is not surprising that the Semi-CRF 

model performs better than the M L N model, since the NER task can be for-

mulated as a sequence labeling problem, and can therefore be effectively mod-

eled by probabilistic sequence segmentation approaches such as Semi-CRFs. 

The M L N model, however, can hardly capture the first-order Markov prop-

erty in sequence data, leading to reduced pe^rmance on the NER task. 

The bidirectional model substantially outperforms the three baseline 

models, however, its performance is worse than that of integrated and joint 

models. We analyze and explain the main reasons as follows. The power 

of bidirectional model extensively depends on the bidirectional nature of 

joint factors connecting variables of multiple subtasks. However, Chinese NEs 

have distinct linguistic characteristics or substructures in their composition. 

These substructures can be well modeled via first-order domain knowledge. 

In that case, taking into consideration these substructures will be more help-

ful. As can be seen, both integrated and joint models exploit substructures 

in Chinese NEs, resulting in enhanced performance consequently. 

7.1.4 Bidirectionality 

We study and test the advantages of our proposed bi-directional MH inference 

in the jo int model by comparing it with the greedy, TV-best list, and uni-
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Figure 7.1: 

nese NER. 

Performance comparison of different inference algorithms on Chi-

directional MH sampling algorithms described in detail as follows: 

• Greedy: this algorithm is a special case of the TV-best list algorithm 

when N = I, that is, it greedily takes the best output of segmentations 

and corresponding relations. 

• TV-best list: for this inference algorithm, we restrict our re-ranking tar-

gets to the N-hest list L = {Li, L2, . . . , Lyv}, where {L\, L2,…、Ln、is 

ranked by the conditional probability Q(5|X). For a sequence X , we 

maintain N-best segmentations over this sequence. For each segmen-

tation S in this list, we can find a relation assignment R over S that 

\ maximizes the probability Q(H|S, X ) . Given a particular segmentation 

. assignment S、the most probable relation assignment R and its proba-

bility Q(R\S, X) can be inferred. Having the TV-best list of segmenta-

tion assignments and their corresponding relation assignments, the ap-

.proximated solution that maximizes the joint probability Q({R, 5}|X). 

And the most probable relation assignment along with this segmenta-

tion is our final output. ‘ 

• Uni-directional MH: for this algorithm, we'draw segmentation sam-

ples from (5(5|X) and then we draw relation samples frorii Q{R\S, X), 

given the generated segmentation samples. Note that unlike the bidi-

rectional MH algorithm, this algorithm does not iteratively draw sam-

ples from both segmentations and relations. It only draws relation 
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samples based on the segmentation samples which have already been 

drawn. The inference information in this algorithm can only flow into 

one direction. 

As'shown in Figure 7.1, tKe bidirectional MH inference algorithm con-

sistently and significantly outperforms the other three inference algorithms 

in the joint model for overall Chinese NER performance, except that com-

pared to the uni-directional MH algorithm, the overall recall is slightly worse 

(92.94 vs. 92.93). B、ut we found that this result is not statistically significant. 

As can be seen in Figure 7.1, the overall F-measures for the greedy, TV-best 

list, uni-directional MH, and bidirectional MH sampling inference algorithms 

are 92.66, 92.79, 93.34, and 93.42, respectively. The greedy algorithm is very 

easy to implement, and it is computationally efficient, however, this algo-

rithm cannot make use of the whole probability distribution as defined in 

the joint model. The A^-best list and uni-directional MH algorithms can 

lead to useful improvement over the greedy algorithm. Here, we set N = 10 

according to the holdout methodology. However, one disadvantage of the 

uni-dir^tional MH algorithm is that it is only feed forward and informa-

tion can only flow into one direction (from segmentation to relation), thus 

relation cannot guide segmentation for inference and decision making. The 

bidirectional MH algorithm achieves the best performance for capturing bidi-

rectional information flow and sharing mutual benefits for both segmentation 

and relation. 

7.2 Entity Identification and Relation Extrac-

tion From Wikipedia 

7.2.1 Wikipedia 

Wikipedial is the world's largest free online encyclopedia, representing the 

outcome of a continuous collaborative effort of a large number of volunteer 

contributors. Virtually any Internet user can create or edit a Wikipedia web 

page, and this "freedom of contribution" has a positive impact on both the 

quantity (fast growing number of articles) and the quality (potential mistakes 

are quickly corrected within the collaborative environment) of this online 

resource. Currently Wikipedia has approximately 9.25 million articles in 

more than 200 languages. Moreover, Wikipedia has the category hierarchy 

structure Vhich is used to classify articles according to their content. All 

these characteristics make Wikipedia an appropriate resource for information 

extraction. Figure 7.2 gives a snapshot of Wikipedia Web page about the 
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Figure 7.2: A snapshot of the encyclopedic article about Abraham Lincoln 

in Wikipedia. 

great person Abraham Lincoln. 

We investigate the problem of identifying entities and discovering seman-

tic relationships between entity pairs from English encyclopedic articles in 

Wikipedia, which is a joint IE problem (see Section 1.2 for more details of 

this problem). 

7.2.2 Data 

We conducted experiments on entity identification and relation extraction 

from Wikipedia. The original dataset comes from [21]. However, all the 

entities are hyper-linked within the documents and the locations of them 

are already known. Another problem is that, the entity types are not clas-

sified. This dataset was used only for Wikipedia relation extraction, as in 

21]. Thus, the original dataset is not directly suitable for our evaluation 

since our focus is on both secondary entity identification and the relation to 

the principal entity. ‘ To make this dataset appropriate for our experiments, 

we deleted all the hyper-links which define secondary entities in the docu-

ments, and we classified all secondary entities into fine-grained categories. 

The resulting dataset consists of 1127 paragraphs' from 441 pages from the 

online encyclopedia Wikipedia. We labeled 7740 secondary entities into 8 

categories, yielding 1243 person、1085 location, 875 organization, 641 date, 

1495 year, 38 time, 59 number, and 2304 miscellaneous names. This dataset 
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Figure 7.3: An example of entities and relations in the data. 

also contains 4701 relation instances and 53 labeled relation types, as shown 

in Table 7.3. The 8 entity categories and 53 relation types are label sets for 

secondary entity identification and relation .extraction in our model. Note 

that our task involving joint secondary entity identification and relation dis-

covery is more challenging and cannot be easily solved as a sequence labeling 

problem described in [21]. Figure 7.3 illustrates an example of entities and 

relations between these entities in the data. 

7.2.3 Feature Set and Domain Knowledge 

We use features that have been shown to be very effective, namely contex-

tual features (e.g., current word and several words surrounding the current 

word), part-of-speech (POS) tags, morphological features (e.g., whether the 

word begins with a capitalized letter or all'letters are capitalized, whethci 

it contains a hyphen or digits, and whether it ends in some special suffixes), 

entity-level dictionary features, and some clue word features which can cap-

ture non-local dependencies. This gives us a rich feature set using both local 

and non-local information. 

A reasonable number of first-order logic can be easily and concisely for-

mulated to construct the domain knowledge KB. Some representative first-

order formulas in the KB are listed in Table 7.4. These formulas are gener-

ally simple, and allow the representation of deep and relational knowledge^. 

For example, if two secondary entities x and y occurred consequently and 

accompanied by conjunctions such as "and" or “,”，then probably they may 

have the same relation to the principal entity p, represented by conjunction 

(x,y) same_relation(x,y). Some keywords provide crucial clues for re-

lationships between entity pairs. The keyword such as found or create implies 

2 We designed 

mulas. 

more than 40 formulas in total, and we list representative for-
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Table 7.3: Statistics of relation types and corresponding frequencies 
Relation FVeq Relation FYeq 
job.title 379 daughter 35 
visited 368 husband 33 
birth-place 340 religion 32 
a^ociate 326 influence 31 
birth-year 287 underling 27 
memberujf 283 sister 20 
birthuiay 283 grandfather 20 
opus 267 ancestor 19 
death-year 210 grandson 18 
death-day 199 inventor 15 
education 185 cousin 13 
nationality 148 descendant 11 
executive 127 role 10 
employer 111 nephew 9 
death-place 
awdrd 

93 
OA 

uncle 6 

father 
no f>f 1 广i n A nf 

oD . 
84 
Q1 

supported -person 
granddaughter 

o 
6 
A 

brother 
O i 
71 
CO 

owns 
great-grandson 4 

A son 
associate-competition 

Do 
58 

aunt 
supported.idca 3 

wife 57 great-grandfather 3 
superior 54 gpe.compctition 3 
mother 50 brotherJnJaw 2 
political_a filiation 44 grandmother 1 
friend 43 discovered 1 
founder 43 Overall 4701 

a founder relation between x and p, represented by founderJcey (x,p)=> 

founder(x,p). Similarly, some morphological suffixes such as -eer and -ician 

of entity x may probably show a j ob . t i t l e relation to the principal entity 

p. Entity type is very helpful for relation extraction. If x is a location, its 

relation to p can only be vis i ted, birth_place, or death-place. If x is an 

organization, its relation can only be education, member_of, or employer. 

Using first-order logic, we can also discover new relations (e.g., x's father's 

father is the grandfather.) and handle the label consistency problem (e.g., 

if X and y are the same string, their relations to p should be the same.). More 

importantly, some formulas capture coherent interactions and dependencies 

between entities and relations. For example, if x is identified as a location 

candidate, then it has high probability of relation visited, birth.place 

or death-place to the principal person p, and vice versa. Since these for-

mulas are not always true, our model can learn them under uncertainty by 

estimating the confidence of each formula. 
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Table 7.4: Some representative first-order formulas. 
con junction (x,y) same_relatioii(x,y) 

foiinder-key(x,p) founder(x,p) 

person(p)八job-suffix(x) =>job_title(x,p) 

person(p) A date(x) birth_day(x,p) V death-day (x,p) 

personCp) A year(x) birth_year (x,p) V death—year (x,p) 

person(p) A location(x) => visited(x,p) V birth_placG (x ,p) 

Vdeath-place (x, p) 

person(p) A organization(x) => education(x,p) Vmember.of 

(x,p) V employer(x,p) 

father(x,y) A father(y,z) => grandfather(x,z) 

husband(x,y) A daughter (z.x) =>• mother (y ,z) 

father(x,y) ^ son(y,x) V daughter(y,x) 

_str (x, y) =>s2une jrelationCx, y) 

7.2.4 Implicit Relation Extraction 

Implicit relations are those that do not have direct contextual evidence. Im-

plicit relations generally exist in different paragraphs, or even across docu-

ments. They require additional knowledge to be detected. Notably, these 

are the sorts of relations that are likely to have significant impact on per-

formance. A system that can accurately discover knowledge that is implied 

by the text will effectively provide access to the implications of a corpus. 

Unfortunately, extracting implicit relations is challenging even for current 

state-of-the-art relation extraction models. 

We show that our models can enable this technology. By employing the 

first-order logic formalism, the implicit relations can be easily discovered 

from text. Since these formulae will not always hold, we would like to handle 

them probabilistically by estimating the confidence of each formula. 

Consider the following 2 sentences in Wikipedia articles (the principal 

entity is boxed and the secondary entities are in italic font): 

On November 4，1842 Abraham Lincoln married Mary Todd 

2. Abraham Lincoln had a son named Robert Todd Lincoln and he was 

born in Springfield, Illinois on 1 August 1843. 

State-of-the-art extraction models may be able to detect the wife relation 

between Mary Todd and Abraham Lincoln，and the son relation between 

Robert Todd Lincoln and Abraham Lincoln successfully from local con 

textual clues. However,"in the descriptive article of Robert Todd Lincoln 
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Table 7.5: Examples of first-order logic for implicit relation extraction 
wife(x,y) => husband(y,x) 

father(x,y) =>• son(y,x) V daughter(y,x) 

brother(x,y) brother(y ,x) V sister(y,x) 

husband(x,y)A daughter(z,x) mother(y,2) 

father(x,y)A fatherCy,z) => grandfather(x,z) 

founder(x,y)八superior(x,z) => employer(z,y) 

associate (X, y) A member_of (x, z) member_of (y, z) 

executive(x,y)A •of (z,y) =>• superior (x,z) 

in Wikipedia, Robert Todd Lincoln becomes the principal entity, and the 

mother relation between Mary Todd and Robert Todd Lincoln is only im-

plied by the text and it is an implicit relation. First-order formalism al-

lows the representation of deep and relational knowledge. Using the logic 

wife(x,y) A son(z,y) mother(x,z), the relational knowledge in the 

above example can be easily captured to infer the implicit relation. These 

formulae are generally simple, and capture important knowledge for implicit 

relation extraction. Examples of first-order logic to infer implicit relations 

are listed in Table 7.5. 

7.2.5 Methodology 

We set the upper bound of the segment length L to 4 to enable efficient 

computation, since over 95% of the entities are within this threshold. That 

is, for each segment Si, we have 1 < \Si\ < 4. And we set the sample 

size to 10000 for both MH and bidirectional MH inference algorithms. The 

L-BFGS algorithm converged within 200 iterations for parameter learning. 

We perform four-fold cross-validation on this dataset, and take the average 

performance. Performance is evaluated by the standard measures of Precision 

(P), Recall (R), and F/3=i for both entity identification and relation extraction 

tasks. We compare our approaches with two pipeline models CRF-fCRF , 

C R F + M L N , and one joint model Single M L N , described in detail as 

follows: 

• C R F + C R F : since we only extract relations between the principal en-

tity and each mentioned secondary entity, this formulation allows us 

to view relation extraction as a sequence labeling task such as part-

of-speech tagging. This model uses one linear-chain CRF [47] for en-

tity recognition, and another linear-chain CRF for relation prediction. 

Here, relation extraction is viewed as a sequence labeling problem. 
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Each secondary entity's label is its relation to the principal entity, and 

we can capture the dependency between adjacent labels. 

C R F + M L N : this model uses Markov logic network (MLN) [69], a re-

cently introduced framework for first-order logic, for relation extraction 

given the entity candidates from the CRF model. 

Single M L N : this model performs joint inference for both entity iden-

tification and relation extraction in a single MLN framework. We follow 

67] to design som^ formulas capturing interactions such as "identify 

one entity can help to identify similar ones" in this model. 

For the CRF-f C R F model, for example, in the dataset it is common to 

see phrases such as ‘‘ Albert Einstein (1879 - 1955) was born in Germany 

for which the labels birth-year、death^year, and birth.place occur consecu-

tively. Sequence models are specifically designed to handle these kinds of 

dependencies. , 

We exploit standard parameter estimation and inference algorithms for 

all these models. To avoid over-fitting, penalization techniques on likelihood 

are also performed. Note that for the second CRF in the C R F + C R F model, 

the first-order domain knowledge described in the above subsection is trans-

formed into bii^ry features, since CRF cannot handle first-order logic. For 

Single M L N , all features are formulated via first-order logic. Using typed 

variables and first-order domain knowledge described above, the total num-

ber of possible ground atoms in our integrated and joint models is 254966. 

The ground Markov iji^work also contains a total of 10588 tuples (i.e., there, 

are 10588 true ground atoms). 

7.2.6 Performance of Entity Recognition 

Table 7.6 shows the performance of entity identification and Table 7.7 to 

Table 7.8 show the performance of relation extraction of different models, re-

spectively. FYom these results, we can see that our proposed models achieve 

the best performance for both tasks. In particular, the joint model obtains 

the overall F-measure of 94.11 on entity identification, and 68.59 on relation 

extraction task. For entity identification in Table 7.6，our joint model out-

performs C R F + C R F and C R F + M L N by 4.99% on the overall F-measure, 

and Single M L N by 3.66% on the overall F-measure, respectively. For re-

lation extraction in Table 7.7 and Table 7.8，our joint model outperforms 

C R F + C R F by 5.08%, C R F + M L N by 4.51%, and Single M L N by 3.62% 

on the overall F-measure, respectively. The improvement demonstrates the 

merits of our approaches by exploring tight interactions between entities and 
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Table 7.6: Comparative performance of our models, the CRF+CRF, 

CRF-fMLN, and Single MLN models for entity identification from 

Wikipedia. 

Entities 
C R F + C R F C R F + M L N Single M L N Entities 

P R A P h f^x P R Fi 
person 75.33 83.22 79.08 75.33 83.22 79.08 75.94 83.93 79.74 
location 77.03 69.45 73.04 77.03 69.45 73.04 77.42 70.13 73.59 
organization 53.78 47.76 50.59 53.78 47.76 50.59 54.11 47.06 50.34 
date 98.54 97.53 98.03 98.54 97.53 98.03 97.79 95.68 96.72 
year 97.14 99.10 98.11 97.14 99.10 98.11 98.01 99.03 98.52 
time 60.00 20.33 30.37 60.00 20.33 30.37 50.00 15.38 23.53 
number 98.88 60.33 74.94 98.88 60.33 74.94 100.0 66.07 79.57 
miscellaneous 77.42 80.56 78.96 77.42 80.56 78.96 79.81 84.14 81.92 
Overall 89.55 88.70 89.12 89.55 88.70 89.12 90.45 90.45 90.45 

Entities 
Bidirectional Integrated Joint 

Entities 
P R K, P R Fi P R 1•、-

person 85.12 86.58 85-84 84.91 ‘ 86.26 85.58 85.38 87.85 86.60 

location 82.90 80.82 81.85 82.94 80.52 81.71 82.95 81.44 82.19 
organization 65.45 65.50 65.47 64.63 65.61 65.12 72.43 63.69 67.78 
date 98.60 95.98 97.27 98.60 95.98 57.27 98.90 96.24 97.55 
year 98.06 99.12 98.50 97.15 99.42 98.27 97.36 99.55 98.44 

time 100.0 30.00 46.15 100.0 25.00 40.00 100.0 33.00 49.62 

number 100.0 65.00 78.79 100.0 60.00 75.00 100.0 65.52 79.17 

miscellaneous 85.79 90.46 88.06 85.69 88.16 86.91 85.77 90.36 88.01 

Overall “ 94.03 93.89 93.96 93.35 93.37 93.36 94.17 94.06 94.11 

relations such that both of them can be optimized in a collaborative man-

ner to aid each other, resulting in improved performance. We conducted 

statistical significance estimates using McNemar's paired tests and our mod-

els were found to be statistically significantly better (p-value < 0.05 with a 

95% confidence interval). The improvement demonstrates the merits of our 

models. 

As shown in Table 7.6, our joint model obtains the best performance 

on 4 entity categories, and the bidirectional model obtains the best per-

formance on 2 categories {year and miscellaneous). The C R F + C R F and 

C R F + M L N obtain the best performance on date’ and Single M L N ob-

tains the best performance on number. However, for the three baseline mod-

els, the performance on these entities is slightly higher than that of our 

models. Unlike the Chinese NER task, it is particular interesting that the 

bidirectional model outperforms the integrated model on both entity 

identification (93.96 vs. 93.36 on the overall F-score) and relation extraction 

(68.27 vs. 68.15). This is due to the bidirectional nature of this model (e.g., 

use joint factors to connect variables for entities and entity relations, perform 

collaborative parameter estimation such that entities and entity relations can 

help each other to boost the performance). 
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7.2.7 Performance of Relation Extraction 

For relation extraction in Table 7.7 and Table 7.8, the performance varies 

widely for different relation types. All the systems perform quite well on 

death-day, death.year, birth-day and birth-year. This is because these rela-

tions are generally more distinctive than other types and can be easily ex-

tracted. Another reason is that, these relations are closely related to entities 

date and year, which can also be well recognized using contextual evidences 

for all models. Consequently, relation extraction benefits from good entity 

identification results. However, some relation types (e.g., aunt and discov-

ered) can hardly be extracted. 19 relation types cannot be extracted by all 

models. This may be due to the lack of training data since these relations 

occur rarely in the dataset. For the 34 relation types listed in Table 7.7 and 

Table 7.8，the C R F + C R F model obtains the highest F-measure on 2 rela-

tion types, C R F + M L N obtains the highest F-measure on 2，Single M L N 

obtains the highest F-measiire on 3. For our proposed models, the bidi-

rectional model, integrated model, and the joint model achieves the 

highest F-measure on 8，3，and 16 relation types, respectively. Compared to 

entity identification, our models perform much worse on relation extraction 

task (e.g., 94.11 vs. 68.59 for the joint model), which shows that accurately 

extracting relations between entities is still a difficult and open problem for 

future research. ^ 

7.2.8 Analysis and Discussion 

Our proposed joint model is superior to the pipeline models C R F + C R F 

and C R F + M L N by modeling segmentations in sequence data for entity 

identification and relations of different segments for relatiop es^tractioh jointly. 

The C R F + C R F model performs relation extraction sequentially without 

considering connections between entities. It cannot capture long-distance 

dependencies and may cause the label consistency problem. These disad-

vantages limit the ability of CRFs for relation extraction to a large extent. 

The C R F + M L N model can alleviate some of these problems by model-

ing relations between entities via first-order logic, however, it does not con-

sider the mutual interaction or correlation between entities and relations. 

As pipeline models, C R F + C R F or C R F + M L N cannot/correctly extract 

relations between mis-recognized entities from the CRF. Fpr example, in our 

experiments, both of the two models cannot extract the member.of relation 

between the secondary entity Republican and the princ pal entity George 

W. Bush, since the organization name Republican is incorrectly labeled as a 

miscellaneous. Since knowing the secondary entities is Helpful for their re-Ijel 
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lations to the principal entity and vice versa, modeling both simultaneously 

is highly desirable. Our proposed joint model can correctly label the or-

ganization name Republican and predict the member.of relation to George 

W. Bush. This modeling can incorporate rich dependencies between entities 

and relations, it can also exploit relational autocorrelation, a widely observed 

characteristic of relational data in which the value of a variable for one in-

stance is highly correlated with the value of the same variable on another 

instance. 

Our joint r^odel combines the advantages ^f both probabilistic graphical 

models for sequence data uncertainty modeling, and a variety of first-order 

logic for domain knowledge. The efficiency of the purely probabilistic graph-

ical model CRF-fCRF heavily depends on its first-order Markov property, 

which is important for sequence modeling. However, our compound task re-

quires expressive and deeper knowledge representation which CRF+CRF 

cannot handle well. As illustrated in Table 7.7，the CRF+CRF model 

performs very poorly on 5 relations: fuend, sister, grandfather、grandson, 

and cousin, resulting in reduced overall t-measure. Since these relations are 

likely to have significant impact on performance and they require higher-

level domain knowledge to be extracted. The Single M L N model, on the 

other hand, can compactly represent a wide variety of knowledge via first-

order logic. This model t^a^ures correlations between entity relations, and 

it outperforms C R F + C R F and C R F + M L N models using joint inference. 

However, the power of MLN alone for modeling sequence data is limited. 

Limitations of first-order logic make it difficult to specify a relation factor 

that uses the uncertain output of segmentation [77]. Joint inference in Sin-

gle M L N is only weakly coupled, and does not enforce transitivity, since the 

logic formulas only examine pairs of consecutive labels, not whole fields. By 

model如g segmentations and relations between segments simultaneously, our 

model strengthens the mutual interactions between entities and relations. 

Note that the structured variational inference algorithm captures interac-

tions between substructures in our model. Thus, deep interactions between 

entities and relations are well modeled, and they are optimized properly. 

� 

7.2.9 Comparison with Other Methods 

Table 7.9 compares our results with some recently published results on the 

same dataset. Notably, our approaches outperform previous ones given that 

we deal with a fairly more challenging problem involving both entity iden-

tification and relation extraction. All other listed systems assume that the 

golden-standard entities are already known and they only perform relation 

extraction (due to this reason, we only compare the performance on relation 
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epctraction.). However, such assumption is not valid in practice. And our 

models are more applicable 0 real-world IE tasks. 

Culotta et al. [21] proposed a probabilistic model based on CRFs to inte-

grate extraction and data mining tasks perjormed on biographical \yikipedia 

articles. Relation extraction was treated as a sequence labeling problem and 

relational patterns were discovered to boost the performance. However, this 

model extracts relations without considering dependencies between entities, 

and the best reported F-measure is 67.91, which is significantl}^4ower than 

our systems when evaluated on the same training and testing sets. 

i^guyen et al. (58) proposed a subtree mining approach to extracting 

relations from Wikipedia by incorporating information from the Wikipedia 

structure and by the analysis of Wikipedia text. In this approach, a syntactic 

tree that reflects the relation between a given entity pair was built, and a 

tree-mining algorithm was used to identify the basic elements of syntactic 

structure of sentences for relations. This approach mainly relies on syntactic 
* 

structures to extract relations. Syntactic structures are important for relation 

extraction, but.insufficient to extract relations accurately. The obtained F-

mcasure was only 37.76, which shows that there is a large room for improving. 

We mention some other related work. [10] presented an approach to 

extract relations from the Web using minimal supervision. [71] presented a 

method for improving semi-supervised relation extraction from the Web using 

corpus statistics on entities. Our work is different from these research work. 

We investigate supervised joint IE tasks based on probabilistic, graphical 

•models. . ‘ 

7.2.10 Bidirect ionality 

We als6 examine the effectiveness of our proposed bi-directional MH infer-

ence algorithm in the joint model and Figure 7.4 demonstrates its feasibility 

by comparing it with the greedy, TV-best list, and uni-directional MH sam-

pling dlgorithms/The detailed description of these algorithms is presented in 

Subsection 7.1.4. It shows that the bi-directional MH algorithm consistently 

outperforms other-algorithms on both entity identification and relation ex-

traction tasks from Wikipedia. The greedy algorithm is very simple, but it 

only makes use of 1-best list of segmentaJtions and corresponding relations, 

losiog much useful information. This algorithm produces the worst perfor-

mance: 93.36 Fi on entity identification and 67.76 Fi on relation extraction. 

The TV-best list gives useful improvements over the greedy. We set N = 20 

according to the holdout methodology for our model. However, iV-best list 

does not necessarily correspond to the best N list, and the N-best list is a 

very limited approximation for the full distribution of the model. The uni-
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Figure 7.4: Performance comparison of different inference algorithms on en-

tity identification (left) and relation extraction (right) from Wikipedia. 

directional MH algorithm outperforms N-besi list when enough samples (we 

set sample size = 10000) are drawn, since sampling gives more diversity at 

each state and the full probability distribution can be better approximated. 

But this algorithm is only weakly coupled since it is feed-forward and infor-

mation can only flow in one direction from segmentations to relations. The 

bi-directional MH algorithm achieves the highest performance: 94.11 F] on 

entity identification and 68.59 F、on relation extraction. It is a bi-directional 

highly-coupled joint inference and enforces transitivity, thus mutual benefits 

from both segmentations and relations can be well captured. 

7.3 Citation Matching 

7.3.1 Task De跃ription ‘ 

Consider the task of citation matching in which we are given a large col-

lection of citation strings from the "References" section of research papers. 

They may have different citation styles, different abbreviations, and typo-

graphical errors. Many of the citations refer to the same underlying papers. 

Our job is to identify the AUTHOR, TITLE, and VENUE fields of each ci-

tation (segmentation) and also find the citations referring to the same paper 

(coreference or entity resolution). As shown in Figure 7.5 which contains 3 

citations, C l and C2 are coreferent. since they refer to the same paper. C l 

and C3, C2 and C3 are not coreferent. 
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Cl : (Parag Singla]AUTHOR and【Pedro Domingos)AUTHOR. "(Memory-Efficient 

Inference in Relational DomainsjTiTLE" ((AAAI-06]VENUE)-

C2: [Singla, P . I AUTHOR’ &： (Domingos, P . ] A U T H O R (2006). [Memory-efficent 

inference in relational domainsjTiTLE. In (Proceedings of the Twenty-First 

National Conference on Artificial Intelligence]VENUE (PP. 500-505). Boston, 

MA: AAAI Press. 

C3: [H. Poon)AUTHOR & [P. Domingos]AUTHORI (Sound and Efficient Inference 

with Probabilistic and Deterministic DependenciesjTiTLE, in [Proc. AAAI-06 

IvENUEj Boston, MA, 2006. 

Figure 7.5: An example of citation matching. The notations 丨 . JAUTHOR， 

'1 TITLE) and [-jvENUE denote that the fields are author, title, and venue, 

respectively. C l and C2 are coreferent, C l and C3, C2 and C3 are not 

coreferent. 

7.3.2 Data and Methodology 

We use the Cora dataset to evaluate our proposed models. This dataset 

contains 1295 citations and 134 clusters (sets of citations that refer to the 

same paper), and each citation has three fields - author, title, and venue. 

The dataset is divided into the same three folds as in [67] such that they 

are distributed as evenly as possible and no clusters are split across different 

folds. We also set the iteration number T to 10000 for the bi-directional 

MH inference algorithm. We run three-fold cross-validation on this dataset. 

Segmentation is evaluated by P, R, and Fi. For entity resolution, we measure 

both pairwise P, R, f\ and cluster recall, which is the fraction of clusters that 

are correctly predicted. 

Accurate segmentation enables features that are naturally expected to be 

useful to boost coreference. A wide range of rich, overlapping features can be 

exploited in our models. These features largely consider field-level similarity 

using a number of.string and token-based comparison metrics (e.g., string 

edit distance, tfidf over tokens and n-grams, etc). We also include feature 

conjifnctions, specialized features for author and title fields matching, and 

global features based on distance metrics for entire citations. In leveraging 

coreference to improve segmentation, we use a combination of local (e.g., 

contextual and morphological), layout, lexicon membership features. 

For performance comparison, the C R F + C R F model uses first CRF for 

segmentation, and another CRF for resolution. The CRF- fMLN uses MLN 
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for resolutioiv' For Single M L N , we follow [67] to design it, using features 

mentioned above. In addition, we also compare the performance of our mod-

els with some recently published results on the s呼e dataset. 

7.3.3 Experimental Results and Analysis 

Our experimental results on Cora are shown in Table 7.10 and Table 7.11, 

demonstrating the promise of our approaches with significant improvements 

on both segmentation and coreference, comparing with the three baseline 

models C R F + C R F , C R F + M L N , Single M L N and other previously pub-

lished results. All improvements of our proposed models over the three base-

line models are statistically significant using McNemar's paired tests. 

Table 7.10 shows improvements on F-measure for the segmentation task. 

We list both the overall performance and the performance on the three fields. 

Our bidirectional model obtains the best overall performance (98.66 on 

the F-score), and it outperforms earlier results, namely, Isolated M L N [67 

and Single M L N [67], providing an overall relative error reduction in Fi 

of 25.56% and 16.25%. Compared to our three baseline models, the error 

reduction is 42.74%, 42.74%, and 15.72% respectively. The performance of 

the jo int model is slightly worse (by 0.03 on the F-score) than that of the 

bidirectional model. Note that the difference between our Single M L N 

model and the one in [67] is that we used different features. Although the 

performance of the integrated model is worse than Isolated M L N and 

Single M L N , it still performs reasonably good and outperforms the baseline 

systems such as C R F + C R F and C R F + M L N . 

Table 7.11 compares the performance of entity resolution for different 

m o ^ ^ o n both metrics. Our jo int model, which concurrently solves the ci-

tation matching task, easily outperforms previously published results in [79] 

and [67]. It also outperforms our three baseline models by 3.34%, 1.61%, and 

1.19% in pairwise f]. Even though the Single M L N model in [67] captures 

interactions between segmentation and coreference, it is only a weak inter-

action. First, the logic formulas in [67] only examine pairs of consecutive 

labels, not whole fields - failing to use information from predicted field range 

and non-consecutive words in the field. Second, the frequency with which 

the Jn t i n f Candidate feature appears is quite data-dependent. If the feature 

occurs too often, it can be harmful for coreference. As can be seen, our joint 

model achieves stronger interaction between tasks, leading to improved per-

formance for citation matching. In addition, Table 7.11 shows that our joint 

approach allows cluster recall to improve substantially, resulting in an im-

provement of up to 9.44% compared to our Single M L N model. This is 

particularly notable given that cluster recall is more strict than the pairwise 
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Figure 7.6: Performance comparison of different inference algorithms on seg-

mentation (left) and entity resolution (right) for citation matching. 

F\ metric. 

7.3.4 Bidirectionality 

Figure 7.6 illustrates the benefits of the bi-directional MH inference algo-

rithm over the greedy, AT-best list, and uni-directional MH algorithms for 

citation matching. We set TV = 20 for the TV-best list and sample size to be 

10000 for the uni-directional MH algorithm. For segmentation task, we com-

pare both the overall F-measure and F-measures on the three fields for these 

algorithms. As shown in Figure 7.6，the bi-directional MH algorithm obtains 

the best performance on the fields title aqd venue. For author, its perfor-

mance is slightly worse than that of uni-directional MH (99.41 vs. 99.5). For 

the overall performance, the greedy algorithm obtains the lowest Fi of 98.2 

and the TV-best list can hardly improve it. The uni-directional MH slightly 

improves to 98.4，and the bi-directional MH algorithm enhances this number 

to 98.63 further. For entity resolution task, we compare both the pairwise 

F-measure and cluster recall metrics, and the bi-directional MH algorithm 

achieves the highest performance. Compared to the pairwise F-measure, the 

cluster recall is boosted substantially by this algorithm. This is particularly 

interesting and it shows that the bi-directional MH algorithm is much more 

accurate than the other three under the strict metric. This figure demon-

strates the bi-directionality of our inference algorithm using segmentation to 

aid coreference and vice-versa, which is highly coupled and strong interac-

tions between segmentation and resolution can be achieved. 
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Table 7.7: Performance of the CRF+CRF，CRF+MLN，and Single MLN 

models for relation extraction from Wikipedia. Hete, poli_aff and ass.comp 

denote_gplitical-affiliation and associate-cx^mp^tition^ respectively. 

Relations 

death-day 

death-year 

birth-year 

birth-day 

national i " ^ 

birth-pla 

job-title 

education 

father 

wife 

mother 

husband 

visited 

daughter 

founder 
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executive 

brother 

participant 

employer 

religion 
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grandfather 

other 
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79.00 81.83 
79.03 

85.33 

65.35 75.33 
71.82 77.14 
63.77 

77.33 

83.33 72.04 
100.0 37.76 

100.0 73.15 
83.33 

52.37 58.22 55.14 

71.00 51.89 

71.17 52.39 60.35 

37.17 .15 

45.21 
46.15 43.24 

39.19 51.21 

46.15 
51.87 

65.42 42.33 .40 
65.17 

52. 

26.61 
25.67 14. 
16.67 9.33 11.96 

0 0 

59.53 

T 
Single M L N 

R  
98.18 

98.18 95.58 
92.59 

.57 
79.07 81. 
79.17 

88.18 
.90 72.22 

70.91 76.47 
71. 

76.92 62.50 

82.35 53.85 65.12 

100.0 
100.0 73.94 
83.33 50.00 62.50 

52.17 56.07 54.05 

71. 45.45 55.56 

77.78 
52.31 

56.52 .11 
46.67 

53.33 53.33 53.33 

72.41 41.18 52.50 

34.43 • 1 4 

37.21 55.65 

47.37 

18.18 28.57 

33.33 25.00 
10.33 18.73 

40.09 23.33 29.50 

24.17 12.50 

16.67 16.67 16.67 

18.00 7.76 10.84' 

11.67 7.67 9.26 

0 0 0 

68.54~STTS 64.97 
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Table 7.8: Performance of the bidirectional model, the integrated, and joint 

models for relation extraction from Wikipedia. Here, polLaff and ass_comp 

denote political-affiliation and associate-competition, respectively.  

TT "7T" 
Jo in t 
—IT" TT 

death-day 98.20 94.85 96.50 98.10 94.70"' 96.37 100.0 94.55 9T.20 
death-year 96.30 94.60 95.44 96.10 94.38 95.23 96.43 93.20 94.79 
birth-year 95.06 93.90 94.48. 94.88 93.55 94.21 94.94 91.66 33.27 
birth-day 93.98 96.30 95.12 93.77 96.12 94.93 94.47 96.50 95.47 
national it> 88.64 97.50 92.86 88.50 96.22 92.20 88.77 95.22 91.88 

birth.place 88.12 88.97 88.54 88.37 89.41 88.89 87.60 86.28 86.93 

job.tltle 86.73 89.09 87.89 86.73 89.09、87.89 87.95 88.48 88.21 
,death-place 93.75 71.43 81.08 93.90 72.00 81.50 94.12 77.90 85.25 
education 69.49 87.23 77.36 70.00 87.25 77.68 73.23 87.25 79.63 

father 75.00 84.00 79.25 75.00 83.25 78.91 75.00 84.00 79.25 

wife 72.22 81.25 76.47 72.33 81.00 76.42 72.89 82.25 77.29 
award 94.44 65.38 77.27 94.00 66.45 77.86 94.44 68.30 79.27 
mother 86.00 40.33 54.91 85.77 41.56 55.99 85.71 42.86 57.14 
poli-aiT 100.0 60.00 75.00 100.0 46.67 63.64 87.80 48.87 62.79 
husband 85.71 60.00 70.59 84.98 60.00 70.34 85.71 62.00 71.95 

visited 66.27 51.40 57.89 66.18 51.33 57.82 68.75 51.40 58.82 

daughter 76.67 63.33 69.36 77.78 63.64 70.00 70.00 64.88 67.34 
founder 80.33 40.57 53.91 81.82 47.37 60.00 81.82 47.37 60.00 
member_of 52.54 • 43.66 47.69 52.39 43.33 47.43 63.97 57.89 60.78 
executive 68.00 47.22 55.74 68.87 47.33 56.10 68.66 48.37 56.76 

superior 72.73 42.11 53.33 65.00 42.34 51.28 63.54 42.95 51.25 
brother 60.00 60.00 60.00 53.33 53.33 53.33 40.65 40.00 43.07 
opus 68.75 21.57 32.84 67.00 20.49 31.38 69.70 52.55 59.92 
son 52.94 39.13 45.00 56.67 36.74 44.58 57.75 34.98 43.57 
associate 48.33 46.89 47.60 45.61 45.22 45.41 43.96 43.82 43.89 
participant 45.45 23.81 31.25 45.67 22.33 29.99 44.44 19.05 26.67 
employer 50.00 24.24 32.65 50.00 26.78 34.88 53.63 44.84 48.84 
ass-comp 66.93 53.21 59.29 50.00 46.67 48.28 40.00 40.00 40.00 
religion 80.00 12.33 21.37 75.00 12.00 20.69 70.00 16.67 26.93 
friend 50.00 32.33 39.27 47.76 32.33 38.56» 45.50 38.90 41.94 
sister 27.87 16.33 20.59 30.00 16.00 20.87 26.90 16.67 20.58 

grandfather 100.0 14.29 25.00 30.00 15.50 20.44 20.50 16.67 18.39 
grandson 20.00 16.67 18.18 20.00 15.00 17.14 25.00 15.33 19.00 

cousin 15.00 7.67 10.15 12.00 7.67 9.36 15.00 9.50 11.63 
other types 0 0 0 0 0 0 0 0 0 
Overall 72.89 64.20 68.27 75.29 62.25 68.15 75.95 62.53 68.59 

Table 7.9: Performance comparison with other systems on relation extrac-

tion. , 
System Precision Recall F-measure 

Culotta et al. [21] 75.53 61.69 67.91 

Nguyen et al. [58] 29.07 53.86 37.76 

Bidirectional 72.89 64.20 68.27 

Integrated 75.29 62.25 68.15 

Jo int 75.95 62.53 68.59 
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Table 7.10: Comparative performance of different models for segmentation 

Method Author Title Venue Total 

Isolated MLN、67 99.30 97.30 98.20 98u20 

Single M L N 67] 99.50 97.60 98.30 98.40 

C R F + C R F 98.77 97.02 97.56 97.66 

C R F + M L N 98.77 97.02 97.56 97.66 

Single M L N 99.39 97.79 98.36 98.41 

Bidirectional 99.45 •98.00 98.70 98.66 

Integrated 98.90 97.12 97.67 97.71 

Joint 99.41 98.00 98.68 98.63 

Table 7.11: Comparative performance of different models for entity resolution 

in citation matching. 

Method P R F\ Cluster 

Recall 

Fellegi-Sunter 79] 78.00 97.70 86.70 62.70 

Single M L N [67] 94.30 97.00 95.60 78.10 

C R F + C R F 93.10 94.65 93.87、 76.32 

C R F + M L N 94.14 97.11 95.60 78.89 

Single M L N 94.84 97.22 96.02 85.15 

Bidirectional 95,10 &7.58 96.32 , 85.78 

Integrated 94.24 97.31 95.75 82.33 

Jo int 96.20 98.25 97.21 94.59 
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Chapter 8 
% 

Conclusions and Future Work 

8.1 Conclusions 

This thesis presents several statistical frameworks, including the cascaded 

model, the bidirectional integrated model, the integrated discriminative prob-

abilistic model, and the joint model incorporating first-order logic for the 

problem of joint information extraction, which is generally very challenging 

and promising. Fundamentally, we rely on the uncertainty power of undi-

rected, conditionally-trained probabilistic graphical models for sequence data 

modeling as well as the expressiveness of first-order logic formalism for deep 

and relational domain knowledge representation which is essential for higher-

level IE tasks as we investigated. We investigate exact algorithms as well as 

approximate techniques where exact inference is intractable in some of these 

models, resulting in several efficient learning and inference formulations. For 

example, we propose the collaborative parameter estimation based on the L-

BFGS algorithm for bidirectional model learning. We propose a structured 

variational inference algorithm for tractable and. approximate parameter es-

timation for the joint model, which exploits substructures and captures in-

teractions between them. And we propose a strongly-coupled, bidirectional 

MH sampling algorithm to enable efficient inference to find the MAP assign-

ments for all the subtasks in the joint model, such that inference information 

can flow in both directions and mutual benefits between cjifferent subtasks 

can b6 well exploited. 

As shown in this thesis, our approalches has several theoretical and practi-

cal advantages over standard state-of-the-art probabilistic‘mddels, offering a 

natural way for joint infotmatibn extraction tasks. The cascaded framework 

considers entity extraction'and qualitative domain knowledge. This architec-

ture captures a variety of linguistic characteristics in Chinese NEs as domain 
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knowledge which can be easily and concisely formulated via first-order logic. 

The bidirectional framework is highlighted by introducing joint factors to 

connect variables of relevant subtasks capturing tight interactions between 

them, such that evidences from multiple subtasks can be shared and they aid 

each other to enhance the performance. The integrated framework combines 

the advantages of both probabilistic graphical models for sequence data and 

first-order logic in a principled way. We emphasize its capability of mining 

implicit relations and new relation discovery, and capturing sul>structures 

in named entities. The joint model defines a joint probability distribution 

for both segmentations in sequence data and possible worlds of relations be-

tween segments in the form of an exponential family, to optimize all relevant 

subtasks simultaneously. 

We develop theoretical foundations for our approach and show a wide 

range of experimental applications, including Chinese NER, entity identi-

fication and relationship extraction from Wikipedia's encyclopedic articles, 

and citation matching. Extensive experimental study on real-world datasets 

demonstrates the feasibility and effectiveness of our approaches. We analyze 

and discuss potential merits and advantages of our proposed models. In ad-

ditional, some interesting issues, such as the superiority of the bidirectional 

MH inference algorithm, are also presented. 

8.2 Future Work 

Our proposed models allow extensive further investigation, both for param-

eter learning and inference algorithms. And there are several applications, 

extensions, and open problems for our estimated frameworks. We organize 

and list directions for future work in the following main areas: 

• We plan to improve the scalability of our approaches and apply them to 

other large-scale real-world problems, especially for some novel tasks. 

參 

參 

We plan to conduct further theoretical analysis of these models, and 

propose new optimization and/or inference algorithms. 

We plan to extend our approaches to more general learning settings, 

such as semi-supervised or unsupervised learning., 
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