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Abstract 

Following the initial study of Brody and Hughston on applying information geometry 

to interest rate modeling, we propose a novel term structure model and investigate 

its application in the US swap market. Different from the traditional term structure 

models that impose assumptions on either bonds or rates, the newly proposed model 

is characterized by the evolution of a density function which is obtained from the 

derivative of the discount function with respect to the time left till maturity. We 

prove that such a density function can be interpreted as interest return on the 

discount bond. 

The introduction of the term structure density turns the problem of yield curve 

dynamics into a problem of the evolution of a density distribution. There are at least 

three steps to model the dynamics of the density function: calibrate the initial term 

structure density, specify the market risk premium, and choose a proper volatility 

structure. First, we introduce two initial calibration methods, one by maximizing 

the Tsallis entropy and the other by the notion of superstatistics. By use of either 

method, we deduce a power-law distribution for the initial term structure density 

function. The entropy index q in this function, which is a well-known physics quan-

tity, now finds its financial interpretation as the measure of departure of the current 

term structure from flatness on a continuously compounded basis. Our empirical 

experiments in the US swap market fully demonstrate this observation. Next, given 
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the calibrated initial density, we develop the term structure dynamics in the risk-

neutral world and prove that the market risk premium is immaterial. To deduce a 

concise martingale representation for the bond pricing formula, we choose a density 

volatility that possesses zero mean. Finally, as an illustration of the importance of 

volatility structure, the HJM volatilities are redesigned for interest rate positivity 

under the framework of the current model. 

An important application of term structure models is to measure the difference 

between the evolutions of two yield curves starting from the same initial point. Such 

a geometric problem can be tackled by use of the notion of information geometry 

after the mapping of yield curves to density functions on a Hilbert space. We prove 

that a pair of yield curves with large initial Bhattachaxyya spherical distance would 

diverge from each other with a significant probability. 

Finally, we implement the proposed model with initial data in the US swap 

market for 15 Feb, 2007. To test our model improvements over the traditional 

models, we also run the simulation with the Hull-White model and compare these 

two no-arbitrage models in various major characteristics. It shows that the proposed 

model forms a bridge linking interest rates and discount bonds, namely, given the 

initial term structure density and the volatility structure, we are able to reconstruct 

the short rate process and the bond price process. Our term structure density model 

is thus a unification of traditional models each having its own advantage. 
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摘 要 

本文基于Brody和Hughston的工作（应用信息几何研究利率模型）提出了一 

个新的利率结构模型并将其应用于美国外汇掉期市场。与传统模型不同，该模型 

并非对债券价格或利率直接提出假设，而是刻画了一个概率密度函数的演化过 

程。此密度函数正是通过对贴现函数关于期限求导而得。我们证明了该期限密度 

函数可表示为贴现函数的年利息。 

通过引进期限密度函数，我们将对收益率曲线的动力学研究转化为对该密度函 

数的动力学硏究。要刻画该期限密度函数的动态过程，至少需要三个步骤：确定 

初始期限结构、给出市场风险溢价、以及选择合适的波动率期限结构。首先，我 

们提出了两种估计初始结构的方法，一种是基于Tsallis熵的最大化方法’另一种 

则受到超统计这一概念的启发。无论运用哪种方法，我们得到的初始期限密度函 

数都服从幕率分布。而此分布中的一个重要物理统计量一一熵指数，在我们模型 

中则用于度量当前期限结构与连续复利计算的平坦期限结构之间的距离。我彳门在 

美国外汇掉期市场上的实证研宄充分证明了熵指数的这一金融涵义。其次，给定 

初始期限函数之后，我们研究了利率期限结构在风险中性世界中的动态过程，并 

证明了整个期限结构的演变与风险溢价无关。此外，通过限制波动率过程均值为 

零，我~们得到了一个简洁的鞅表示作为债券定价公式。最后，为了说明波动率结 
• • 

构在利率期限结构研究中的重要性，我们在当前新模型的构架下重新设计7HJM 

模型中的波动率结构，以确保其所得利率非负。 

期限结构模型不仅可用于单一收益率曲线的动力学研究，还可以用来刻画两 

条不同收益率曲线间距离的演变过程，因而提出了一个几何学问题。由于收益率 

曲线己经转化为一个希尔伯特空间上的期限密度函数，我们可以应用统计学领域 

的信息几何方法解决这个距离度量问题。我们证明了两条收益率曲线如果其初 

始Bhattacharyya球面距离过大，则他们必然以大概率渐行渐远。 

最后，我们以美国外汇掉期市场2007年2月15日的数据为初始数据运行了新的 



i v 

模型，并与传统模型之一的Hull-White模型进行了比较。实验证明给定初始期限 

密度函数和波动率期限结构，通过刻画期限密度函数的动态过程，我们可以得到 

短期利率和债券价格的演变过程。因此，新的期限结构模型可以对传统模型取长 

补短，并将传统模型统一在了同一框架之下。 

i 
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Chapter 1 

Introduction 

1.1 Background of •Research 

1.1.1 Bonds, Rates, and Xerm Structures 

People have come tq realize the time value of money in a world of excess liquidity and 

. stubbornly high oil prices. One hundred dollars in ten years is worth only seventy-

four in today's dollars in the context of purchasing power assuming a 3% interest 

rate per annum. This drives people to seek for more sophisicated protection in the 

capital markets rather than simple bank deposits. In the following paragraphs, we 

will introduce an important investment vehicle — bonds, together with the role of 

interest rates in bond pricing, and the benefits and limitations of traditional rate 

models. 

There are plenty of investment instruments depending on the risk. A risk-seeking 

investor tends to buy high-yield instruments, such as stocks and equity derivatives. 

Whereas a risk-averse investor prefers safer instruments with lower yields, such as 
* � 

Treasury bonds. Two types of bonds are most active in the US market, US Treasury 

bills and US Treasury bonds. The difference is their maturities and coupons — a US -

Treasury bill is a short-term and zero-coupon instrument, whereas a US Treasury 

bond fe long-term and coupon-bearing.‘ 

- 1 
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2 1.1. B A C K G R O U N D O F R E S E A R C H 

A zero-coupon bond is a paper to guarantee the holder the face value at maturity. 

Therefore, the price of the bond at any time before the maturity, or the initial value, 

should be lower than its face value. Investors earn the price difference between the 

initial value and the face value. 

In real markets, most bonds are, however, coupon-bearing. In addition to the 

principal returned at maturity, a coupon-bearing bond also pays "coupons" periodi-

cally during its life. Therefore, the initial cash price for purchasing such a bond may 

exceed its face value. A coupon-bearing bond can always be stripped as a portfolio 

of zero-coupon bonds. It is therefore sufficient to consider only zero-coupon bonds 

for our theoretical study. 

The bond valuation is a hard problem because of the dependence of a bond price 

on various kinds of rates. In principle, the price of a bond is simply the sum of the 

present value of future cash flows. However, the rate to discount the future flows is 

usually not a constant and may follow a complex time series. It is thus difficult to 

predict the future value of a bond based on the current price. 

In financial markets, an interest rate is defined essentially in two ways: 

1. The first way to define an interest rate is related to its credit risk, namely, the 

higher the credit risk, the high the interest rate. By this definition interest 

rates fall into three categories: Treasury rates, LIBOR rates, and repo rates. 

First, Treasury rates are rates at which a government borrows in its own 

currency. Second, LIBOR rates are rates at which a large international bank 

lends its money to another. Finally, the repo rate is quoted in a repurchase • 

agreement in which an investment dealer agrees to sell its securities and then 

buy them back later at a slightly higher price. A government, backed by 

its power to collect taxes and to issue money, usually has the highest credit 
I 
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grading and should, in theory, never default. Therefore, Treasury rates are 

often treated as risk-free rates and have in general lower value than the other 

two rates. ‘ 

2. The second way to define an interest rate is related to its settlement date. 

In this way interest rates are classified as spot rates or forward rates. The 

i-year spot rate (also called the i-year zero rate) is the rate of interest earned 

on a zero-coupon bond that is settled today and lasts for t years. Implied 

by current spot rates, forward rates are the rates for future periods of time 

whilst currently contracted. According to the expectation theory, a forward 

interest rate for a future period is equal to the expected future spot rate for that 

period. However, this theory could result in excessive interest rate risk because 

investors would tend to deposit their funds for periods as short as possible, 

whereas borrowers would tend to borrow for periods as long as possible. The 
V 

^ liquidity preference theory has been proposed to fix this problem by requiring 

that forward rates should always be higher than expected future spot rates. 

Interest rates, no matter how they are defined, are taken usually not as constant 

when one values bonds of different maturities. The concept of�term structure is thus 

introduced to describe the relationship between interest rates and bond maturities. 

By plotting spot rates against the time to maturity, one can derive a yield curve. 

A term structure model describes the evolution of the yield curve through time and 

thus depicts the evolution of spot rates. In academic research [30,32,37,42,52), term 

structure models always focus on the evolution of the instantaneous short-term risk-

free rate n (or short rate for simplicity), which is the annualized interest rate at 

which an entity can borrow money for an infinitesimally short period between t and 

t + At. In some academic research [25], short rates and spot rates are sometimes 

» 
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exchangeable. The difference is subtle — a t-year spot rate is the constant rate over 

0 to t years whilst a short rate is the rate at year t. 

The study on interest rate models has flourished since Merton's initial investiga-

tion in 1973. Researchers in this area are broadly divided into two camps. The first 

camp builds term structure models with simple assumptions on rates (for example, 

a short rate is assumed to behave like a stock price). The other camp builds models 

with strong pre-conditions on rates, trying to characterize the economic properties 

of rates as completely as possible. In general, the interest rates generated by a good 

term structure model should possess the following four features: 

1. The fluctuation of the interest rates should be restricted within a reasonable 

range. The behavior of an individual rate is more complex than that of a stock 

price. It can neither infinitely grow nor endlessly decline. 

2‘ The interest rates should converge towards a long-term average level as time 

evolves. Such a phenomenon, known as mean reversion, can be observed fre-

quently in our economy. When rates are too high, the economy tends to slow 

down and the model will have a negative drift that can pull the rates back to 

an appropriate level. Conversely when rates are too low, more people would 

like to borrow funds and the government would implement tight monetary 

policies, for example, rising the rates, to fight inflation. This property is a 

major difference between the behavior of interest rates and stock prices. 

3. The volatilities of different points on a yield curve are different. This is because 

interest rates always reflect borrowers' uncertainty on inflation expectations. 

4. An interest rate model should not be too complicated to perform real-time 

pricing calculation. 
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Traditional interest rate models fall into two groups — the equilibrium models 

and the no-arbitrage models, each having its own merits and limitations. In the 

family of equilibrium models, a pioneer model was proposed by Vasicek [37] in 

1977. This is a mean-reverting model and provides an explicit form for the short 
/ 

^ rate process. The major problem of the Vasicek model is that it allows negative 

interest rates. The Rendleman-Bartter (RB) model [42] is built on a very simple 

assumption — the short rate process is the same as a stock price process. But this 

model ensures neither interest rate positivity nor mean reversion. In the wake of 

Vasicek's and RB's work, Cox-Ingersoll-Ross [32) modified the diffusion coefficient in 

the Vasicek model to guarantee interest rate positivity. A major problem with these 

models is, however, that they cannot provide a good fit to today's term structure. 

In contrast, no-arbitrage models are designed to be consistent with today's term 

structure. In 1986, Ho and Lee [52] proposed the first no-arbitrage model, which 

automatically fits the initial term structure by following the arbitrage-free principle. 

However, this model fails to incorporate mean reversion. In 1990, the Hull-White 

model [30] finally solved this problem by applying an analogous drift as in the 

Vasicek model to the HoLee model. 

Both the equilibrium models and the no-arbitrage models address the evolution 

of short rates. The Heath-Jarrow-Morton (HJM) model [15], however, focuses on 

forward rates. It proves that the instantaneous forward rate process can be fully 

and only determined by the initial term structure and the volatility structure of 

the associated discount bonds. The disadvantage of the HJM model is that the 

rates may be non-positive if one freely specifies the volatility structure. Besides, the 

calculation of the HJM model is quite time-consuming because the rate process is 

non-Markov and one has to use the Monte Carlo simulation. 
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1.1.2 Notations in Interest Rate Theory 

Before discussing the details of interest rate theory, we first introduce a set of no-

tations for easier reading. In this subsection, we first express interest rates on a 

simple or continuous basis, next introduce the principle of risk-neutral valuation, 

and finally reveal the relationships among bonds, short rates,"and forward rates. 

We write Pit for the price at time i of a discount bond with principal $1 maturing 

at time T (T > i > 0). Let Lit denote the simple interest rate at time t for a term 

T ~ t . Then the relation between the bond price and the simple interest rate is given 

by 

二 )‘ (1.1) 

When the bond is continuously oompounded, the relation between the bond price 

and the continuously compounded interest rate Rtr (also called the yield to maturity) 

is given by 

p^^ = e-^^TiT-t) (1.2) 

A simple case, assuming the yield is a constant r over the bond life, gives rise to 

- i^tr = e-r(T-0， ， (1.3) 

which determines a flat term structure. Here we have to point to a fact: Eqn. (1.3) 

is actually a special case of bond pricing formulas based on the so called risk-neutral 

valuation principle. 

The principle of risk-neutral valuation states that, in a risk-neutral world, a 

derivative can be valued by discounting its expected payoff at the risk-free short rate 

TV A risk-neutral world is an environment in which all individuals are indifferent to 

risk and all investors require no compensation for risk. In such a world, the average 
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return in a very short time period between t and i + Ai is expected to be r^Ai. 

As an illustration of the valuation principle, Eqn. (1.3) is obtained based on three 

assumptions: 1) the short rate is a constant r over the life of a bond; 2) the bond is 

a derivative of the rate; and 3) the expected payoff of the bond at maturity equals 

one Ptt = 1-

In reality, the interest rates are most often stochastic and there exist various risk-

neutral worlds, each defined by a market price of risk X (also called the market risk 

premium) of interest rate. A functions as the excess return over the risk-free interest 

rate, expressed by per unit of risk in bonds. In fact, the risk-neutral world in which 

bonds are valued by (1.3) is referred to as the traditional risk-neutral world with the 

market risk premium being zero. Unless specified otherwise, in this thesis we will 

use the risk-neutral world to indicate the world with zero market risk premium, and 

call other risk-neutral worlds with non-vanishing risk premiums the original worlds 

or the real worlds. 

Now we introduce forward rate and its relationship with short rate. We write 

PtTiT2 for the forward price at time i of a contract for delivering a discount bond at 

time Ti that matures at time Tz (Tz > Ti > i > 0). According to the no-arbitrage 

condition, 

PiTiT2 = 
尸tT\ 

Define FtTiT2 肪 the forward interest rate contracted at time t for the period between 

Ti and Ti and expressed on a simple basis. Its relation with the forward price Ptiyri 

is given by 

so that 
F , rT = P t T � P t n (1.5) 
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If we set Ti = T, T2 = T + At, and let At 0 in the above equations, then the 

instantaneous forward short rate ftr is defined by 

ftT = lim FtTT+^t-
A t - f O 

ftT is related to Pit by 
d In PtT 

ftT = qjT-, (1.6) 

or equivalently 

PtT = exp ( - jt fta ds) . (1.7) 

Moreover, if we set i T in (1.1) and t — T = T\ = T2 in (1.4), respectively, then 

we find the short rate Vt is related to Lit and f t r by 

n 二 Ltt� (1.8) 

rt = ftt. (1.9) 

1.2 Motivations of Research 

Almost all the term structure models target at a single issue 一 modeling the evo-

lution of yield curves (Dynamical Problem). The yield curve is of tremendous 

importance both in concept and in practice. From a conceptual viewpoint, the yield 

curve is the base for asset pricing and economic policy decisions since the curve 

determines the value that investors place today on nominal payments at all future 

dates. From a practical viewpoint, the yield curve of US Treasuries are extensively 

used as the benchmark for the asset pricing around the world. 

An important application of term structure models is to measure the differ-

ence between the evolutions of two yield curves starting from the same initial point 

(Distance Problem). Such a difference arises in the following three cases. First, 

the yield curves are depicted by different term structure models. Second, the yield 
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curves are characterized by the same model but different set of parameters, such 

as the volatility structure and the market risk premium process. Finally and most 

subtly, the initial term structure is calibrated with different methods. 

The first problem — Dynamical P rob l em — has been studied extensively in 

various models. The most intuitive idea is to model the evolution of bond prices 

directly by a stochastic differential equation. However, in such models the bond 

prices can inconveniently become negative or even be larger than their face value. 

To tackle these problems, researchers try to model rates rather than bond prices, 

such as short rates [30’32，37’42，52] or instantaneous forward rates [15). But these 

models are still far from perfect. For example, among the models of short rates, 

the equilibrium models [32,37,42] generate the initial term structure rather than 

take the actual initial term structure as the input. Although the no-arbitrage mod-

els [30,52] solve this problem by setting the drift coefficient as a time variable in 

the underlying stochastic equation, other desirable properties of rates, for instance, 

mean reversion or interest rate positivity, cannot be incorporated simultaneously. 

The HJM model [15] is carefully built to fulfill most of these requirements. However, 

the Achilles heel of HJM is the resulting non-positive rates if the volatility structure 

is freely specified. 

An intuitive thought is to place all the models above into a uniform framework. 

The starting point is to translate the financial variables, such as bond prices, short 

rates, and instantaneous forward rates, to the same mathematic variable. Our idea 

is inspired by Brody and Hughston's contribution [17-19], namely, to translate a 

family of discount functions to a term structure density process: 

where Bt{x) = Pt,t+x denotes the bond price at time t with time x left till maturity 
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(thu8 T = i 十 a; is the maturity date). Then we study the evolution of the term 

structure density with the help of some powerful tools such as stochastic calculus 

and information geometry. Finally, we translate the dynamics of the term structure 

density back to the dynamics of the financial variables. With this method, we could 

link the above discussed models together and fix their drawbacks. 

The second problem — Distance Problem — is also addressed in Brody and 

Hughston's study. The key idea is to find a space with proper metric such that the 

difference between two yield curves becomes a distance measure between the points 

in the space that associate with the yield curves. In their study, the space chosen 

to accommodate such a comparison is the Hilbert space H — C?{ jV�of square-

integrable functions. The metric is defined by the spherical distance function of 

Bhattacharyya. 

M ' � 

h O戶2 

\ n = c' / 

Figure 1.1: Connections of spaces 

Figure 1.1 illustrates how we measure the distance between two yield curves 

(points) in H. First, in the original space M of all the yield curves, each yield curve 
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could be regarded as one point P. Second, by virliie of (1.10)，each point P in M 

could be mapped ink) a positive doiisity function p on ihe positive real line. VW 

denot e the space of dciisily functions as ). Finnlly, cadi cleiisily fuiict.ion /> in 

- � � � could be mapped into a unit vcc.lor i, - , /p \n U or equivalently a point, 

on the unit sphere S in 'H. These mapping prot-esses convmi the disUiice Ijetvweri 

two yield curves in M Lo ihc angle bolvvecii the corresponding Lwo vert.ors and (2 

ill S. Since 5 is a unit sphere、，the value of the angle equals the spherical (lisiaiic:e 

between the poinis on S deteriuiiied by the vectors�1 and (2. 
* 

The discussion on the lorm slnicture density is not the end of our sUuly. A Lerni 

structure model should eventually tell us the knowledge of the financial variables 

bond prices, short rates, and forward rates rather than the features of a density 

function. It is thus desirable to show how the tenri slnicUire density is c-oiivertcd 

back to those financial variables. That is why all the arrows in Figure 1.1 are in ‘ 

both ways. 

The l)ac'kward mapping is presented in Figure 1.2. The node at the center 

represents the term structure density function. \Vc will prove in Chapter 3 that 

it stands for the annualized interest return of the bond under consideration. Nolo 

that all the arrows except the upward one in Figure 1.2 are one way. In Step 1 ol' 

our research, we translate an individual discount function to a density fuiiclioii. By 

interpreting this density function in financial backsets，in Step 2 we reformuUite the 

value of the instruments like bonds, short rates, and instanlaiieous forward rates as 

functions of the term structure density.. 

Given the equivalence between the term sLruclure density and the bond value, � 

Brody and Hughston have coiLslructcd a geometric measure for the difference 

twceii two term structures and characterized tlie evohit,i()miry trajectory of the term 
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Bond Price 
？,10= I f.\ifUif 

9 

毐 
, Step 1 t 

— z ���� 
i 

、、、 
Forward Interest SUjp2 , _ 、、、 siep? Short Rate 

income . < Density Function ‘ T T ^ f n . 
= \ 广“丨二-祉 Z ‘ r - M 

! 、、(、.'、 c V 

Step 2 

i . \ ； 

Instantaneous 
Forward Rate ,,⑶ 

Figure 1.2: Tlic term structure (lonsily and interest rale derivatives 

structure as a riieai>urt>valued process. However, some probleiris in the Brocly-

Ilughston model deserve our further study: 

1. The. term structure density definod via (1.10) has not boon interpreted from 

the liiiaiicial viewpoint. 

2. Brody and Hughston have introduced a. term structure calibration melliod [19 

hamed on maximizing the Shannon entropy. But is the Shannon entropy the 

best candidate for the initial calibration? • 

3. When Brody and Hughston solved t,he dynamical equation that depicts the ‘ 
* 

evolution of the term structure density, they eliminated the market risk pre-

niiuiii by incorporating it into the volatility structure. But we are still inter-

ê steci in the dynamics with a different risk premium process. 

4. Brody and Ilughston's study on the distance problem focuses on a static slate, 
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i.(\ a I a fixrd tim<�. It is a challongc to dcwlop a flyii anneal t.h(�m�v of the yield 

curv(�cUstancc. 

5. Brody and Hughslon have noil,her aMeiiipled nor mentioned an iinplcnicnta-

tion of their model. 

1.3 Objectives, Results, and Contributions 

1.3.1 Objectives and Results 

Following the initial study [17 19] of Brody and Ihighstoii, our research aims to 

further develop the model of the density function (1.10) that; generates the teriii 

slnicture. We siiminarize the roadmap of our research in Figure 1.3. 

Each node in the figure represents a>i objective of our research and is labdcd 

with the chapter number where it is considered. The numbers enclosed in the boxers 

correspond to the item numbers of the objective list in the below. There are four 

major objectives: ‘ Z 

0. to interpret the term structure density in the language of interest rate theory; 

1. Dyiiaiiiical Problem - to characterize the evolutionary trajectory of t he lerm 

Structure: ‘ 
f 

(a) lo calibrate the initial term structure; 

(b) to specify the market risk premimn process; and 

(c) to choose a proper volatility structure; 

2. Distance Problem - to detect the distance evolution for a pair of yield curvcs 

with the current model; and 

3. to implement the model in real markets. 
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Motivations 
(Chap1) 

» 

� Fo" 
‘ i 

“ Interpretation of 
“ Term Structu/e Density 

(Chap 3》 

T " i 2 

Dynamical Problem Distance Problem 
—- (Chap 4-5,7) (Chap 6) 

- - . : 、 . . . . I 
.4 » _ >•. 

1.a , l.b i 1.C 

Initial Market Risk Volatility 
Calibration premium Structure 

‘ (Chap 7) (Chap 4) (Chap 5) ^ 
• -

< I , 
* I 

Model Implementation 
(Chap 8) 、 

• « 

Figure 1.3: Development of the proposed model 
‘ IL 

The key methods and results in this thesis are summarized in the same order as 

in the objective list. , 

(t 

O b j 0. At the first outset of our research, wo need to interpret both the term structure 

‘ d e n s i t y (defined via (1.10)) and its nomializatioii coiidition in the language of 

interest rate theory. The interpretation is (iiscussed in Chapter 3 by" use of 

series expansion and other calculus theories. 'Hic discussion simply starts with 

a fiat term structure and then generalizes to a non-flat term structure. 

1 ’ . 

V »• 
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We prove in the general case that the term structure density p associated with 

a discount bond represents the annualized interest earned on the bond. The 

integral p{x) dx provides the interest earned during successive periods of 

one bond that matures in an infinity future. Therefore, the normalization 

condition is satisfied because the whole return of interest on a bond purchased 

* initially at no cost (a bond with an infinity maturity is assumed to possess a 

vanishing initial value) should equal the face value one. 

Obj 1-a. For Objective 1 — Dynamical Problem, the first step is the initial calibration,— 

namely, to translate the current market information to the initial term struc-

ture density. This is accomplished in Chapter 7 by use of two approaches — 

Tsallis entropy maximization and superstatistics. 

(i) Based on maximizing the Tsallis entropy, we determine the initial term 

structure density that is consistent with multiple bond price data and 

the value of a perpetual annuity. The idea is to treat the Tsallis entropy 

. a s a functional of the term structure density and express the known data 

as constraints on the density function. With the calculus of variations 

and Lagrange multipliers, we obtain a piecewise power-law distribution 

for the initial density. 

The initial distribution is parameterized by 1 — q, where q is the entropy 

index, a physical measurement originally used in thermodynamics. In the 

power-law distributed term structure density, the power-law exponent 

N is defined via ^ = I ~ q. We prove that N is nothing new but 

the compounding frequency of the observed bonds. When we are given 

the prices of continuously compounded bonds, N oo or equivalently 

g -> 1. At this time, the calibrated density function reduces to the 
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piecewise exponential form. In this sense, the entropy index q essentially 

measures the departure of the current term structure from flatness on a 

continuously compounded basis. � 

(ii) Inspired by the concept of superstatistics, we initially suppose that the 

term structure in a short term is flat associated with a constant contin-

uously compounded rate /?, and further assume that the rate follows a 

X^-distribution. Therefore, the whole term structure could be regarded 

as a superposition of local flat structures, and proves to follow the same 

power-law distribution as the entropic method indicates if the only source 

of information available is the existence of a perpetual annuity. 

The power-law exponent N in the initial term structure density is defined 

via ^ =击，w h e r e n is the degree of the x^-distribution for the local 

short rate. We prove that N accounts for the compounding frequency of 

the underlying bonds. Many interesting properties of the current model 

are observed when we are given the prices of continuously compounded 

bonds, namely, N oo. First, the calibrated initial term structure 

becomes flatter on a continuously compounded basis as N increases. Sec-

ond, in the limit N — oo the mean value Pq of the ^^-distributed local 

short rate tends to be the long-term rate. Third, for an arbitrary N the 

perpetual annuity price does not equal but differs a little from the recip-

rocal of the mean value po of short rate. In the limit N —>• oo, however, 

the annuity is valued precisely at 悬. 

Obj 1-b. For Objective 1 — Dynamical Problem, the second step is to specify the world 

where the yield curve evolves — the risk-neutral world with a vanishing market 

risk premium or the real world with a specified risk premium? Our study 
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begins in the risk-neutral world and we apply stochastic calculus to develop 

the dynamics of the term structure density. The results could be immediately 

extended to the real world with the aid of Girsanov's Theorem, a theory of 

change of probability measure. 

We prove that the term structure dynamics in the risk-neutral world is fully 

and only determined by two processes: the initial term structure and the 

volatility structure. To obtain the bond pricing formula in a concise mar-

tingale representation, the volatility of the term structure density that is pa-

rameterized by the tenor variable should possess zero mean. The market risk 

premium proves to be irrelevant when the model is used to price interest rate 

derivatives in the risk-neutral world. However, in the real world we should 

prominently specify the risk premium process. 

Obj 1-c. For Objective 1 — Dynamical Problem, the third step is to choose a proper 

volatility structure. The volatility structure is of tremendous importance in 

determining the ultimate properties of the resulting rates. For example, t he� 

bond volatility under the current framework should be vanishing both at the 

initial time and in the infinity future. It leads to the zero-mean constraint 

on the density volatility and thus guarantees interest rate positivity. On the 

contrary, an improper volatility structure may result in undesirable properties 

for the underlying model. For example, if the bond volatility of the HJM 

model is freely specified, the resulting rates may be non-positive. 

This inspires us to impose certain constraints on the HJM volatilities to ensure 

interest rate positivity. First, we show that the HJM bond volatility in 

the risk-neutral world can be regarded as the "normalized" weighted average 

of the density volatility cht of the new model. Second, the HJM instantaneous 
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forward rate volatility is dominated by the difference between atr and 

. It follows that for interest rate positivity of the HJM model we only 

- need to define the HJM volatilities in terms of the initial term structure density 

and the density volatility under the current framework. 

Besides, for convenience of simulation, we also develop the dynamics of the 

HJM bond volatility and ours, both under the current framework. It provides 

a way to update the volatility structures timely and precisely in the two models 

so that the models can promptly reflect the latest market information. 

Obj 2. After solving the Dynamical Problem, we come to tackle the Distance Problem. 

Since the input of our term structure model is a density function rather than 

any raw data in real markets, the initial term structure density is different, 

no matter how small，from the real distribution. For this reason, we need to 

study whether the initial error in term structure densities would disappear 

over time. 

. To begin with, we provide a derivation to the stochastic differential equation 

that governs the distance evolution for two yield curves. This equation was 

first proposed by Brody and Hughston in [17] without proof. 

As an illustration, we consider the relative dynamics of two yield curves with 

different initial flat terra structures but the same volatility structure and mar-

ket risk premium. Each yield curve is initially dominated by a constant con-

tinuously compounded rate. By use of confidence interval, we prove that the 

given yield curves tend to diverge with a significant probability under two 

conditions: 1) the initial difference is large enough (such that the initial Bhat-

tacharyya spherical distance is larger than the arc cosine of the ratio of the 

geometric and arithmetic means of the two short rates); 2) the market risk 
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premium is bounded within a certain range. In other words, if we want the 

evolution of the yield curve to be indifferent from the initial calibration error, 

the initial density should be as close to the real distribution as possible. This 

in return requires a more precise calibration algorithm. 

O b j 3. Based on the above theoretical study, we implement the proposed model with 

initial data in the US swap market for 15 Feb, 2007. 

(i) The initial zero curve indicates an expectation of interest rate cuts (an 

economic decline) in 2008 and rate hikes (an economic recovery) in 2012. 

(ii) We calibrate the initial term structure density with two approaches, one 

based on maximizing the Shannon entropy as Brody and Hughston sug-

gested [19], the other based on maximizing the Tsallis entropy as we 

propose. By performing experiments with the compounding frequency 

of 1, 2，and 6 months, we observe that the Tsallis density function ap-

proaches the Shannon exponential distribution as the frequency increases. 

This observation confirms our theoretical results in Chapter 7，that the 

entropy index which parameterizes the Tsallis entropy actually measures 

the departure of the current term structure from flatness on a continu-

ously compounded basis. 

(iii) We implement the proposed model using the Monte Carlo simulation. 

Except for a time-consuming calculation, the implementation has satis-

factory performance on the resulting rate values and bond prices. In order 

to find out the improvements over classical models, we also implement 

the Hull-White model by constructing the Black-Karasinski tree. 
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1.3.2 Contributions 

Our work is developed along the line of Brody and Hughston's contribution to the 

term structure theory. However, our extension to the proposed model is unprece-

dented in the following aspects. 

- 1. The financial roles of the term structure density (defined via (1.10)) and its 

integrals over various time intervals have not been explored systematically in 

the literature. Our work is the first attempt to interpret the term structure 

density as the annualized interest return of the underlying bonds. 

2. We develop an initial calibration approach based on maximizing the Tsallis 

entropy. The involved entropy index g is a physical measurement traditionally 

used in thermodynamics. We are the first to introduce this physical vari-

able to measure the departure of the current term structure from flatness on a 

continuously compounded basis. As a result, the piecewise power-law distribu-

tion parameterized by q provides the most general model for the initial term 

structure density. Besides, our work is original in explaining the power-law 

exponent N =六 as the compounding frequency of the observed bonds. 

3. The application of superstatistics in the initial term structure calibration is 

original. To our best knowledge of literature, it is the first attempt to link 

superstatistics and entropy maximization under the framework of interest rate 

theory. Most properties of the resulting term structure density, such as the 

relationship between the long-term rate and the mean of the local short rate, 

are thus new findings. 

4. The study on the term structure dynamics in the risk-neutral world and the 

^ design for the HJM volatility structure under the current framework are sup-
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plements to the work of Brody and Hughston. By comparing our results with 

those of Brody and Hughston, our work fully demonstrates the role of the 

market risk premium in modeling the term structure dynamics. 

5. We explore the uncharted territory of the relative dynamics of a pair of yield 

curves, though our study on the distance evolution problem is preliminary and 

deserves further study. 

6. Our simulation with real market data is the first attempt to show how this 

model calibrates with the initial market information and predicts the future 

bond prices or yields. 

1.4 Organization of Thesis 

This thesis consists of four main parts, each aiming to accomplish one of the four 

major objectives listed in Section 1.3.1. The first part, Chapter 3，interprets the 

term structure density (defined via (1.10)) from the financial viewpoint. The second 

part, consisting of Chapter 4’ 5 and 7’ addresses the theoretical study of the term 

structure dynamics. The third part, Chapter 6，studies the distance evolution for 

a pair of yield curves. The fourth part, Chapter 8, introduces an implementation 

scheme of the proposed model. 

Chapter 2 We briefly review traditional models, and introduce in detail a new 

term structure model on a density function proposed by Brody and Hughston. 

Chapter 3 We explore the financial roles of the term structure density (1.10) 
N 

together with its integrals over different time intervals. The investigation starts with 

a flat term structure in Section 3.1 and then extends to a non-flat term structure 

in Section 3.2. A comparison between these two cases, as shown in Table 3.1 in 

Section 3.3’ reveals a broader connection between the term structure density and 
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financial instruments. 

Chapter 4 We develop first in Section 4.1.1 the term structure dynamics in the 

risk-neutral world and then extend our discussion to the real world in Section 4.1.2. 

A comparison with the results obtained in a world where At = —Vt (as Brody and 

Hughston proposed [17,19); Vt denotes the expectation of a freely specified process 

Vi{x) with respect to (w.r.t) the term structure density) is presented in Table 4.1 in 

Section 4.1.1. The properties of the proposed model are elaborated in Section 4.2 

and 4.3. Finally, we compare the new model with the traditional models in Table 4.2 

in Section 4.4. 

Chapter 5 We redesign the HJM volatility structure for interest rate positivity. 

In Section 5.1, by showing up the connections between the HJM volatilities and ours, 

we impose direct conditions in the risk-neutral world on the HJM volatilities to en-

sure interest rate positivity. Besides, for convenience of simulation, we also develop 

in Section 5.2 the dynamics of the HJM bond volatility and ours, both under the 

current framework. Parallel results in the world with Â  = —Vt (as Brody and Hugh-

ston proposed [17,19]) are obtained in Section 5.3. A comparison of observations in 

these two worlds is given in Table 5.1 in Section 5.4. 

Chapter 6 We get down to the distance evolution problem. Our aim is to depict 

the influence of initial error from term structure calibration on the subsequent yield 

curve evolution. To begin with, in Section 6.1 we supplement a proof to a key propo-

sition in the study of distance evolution. As an illustration of the proposition, we 

consider in Section 6.2 the relative dynamics of two yield curves with different initial 

flat term structures but the same volatility structure and market risk premium. 

Chapter 7 We design two calibration algorithms for the initial term structure 

density, one based on the Tsallis entropy maximization and the other based on su-
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perstatistics. To begin with, we introduce in Section 7.1 several types of entropy and 

highlight the superiority of the Tsallis entropy to others. In Section 7.2, we present 

an iterative algorithm, which is based on the Tsallis entropy maximization, to de-

termine the initial density in terms of the short rate and multiple bond price data. 

In Section 7.3，we propose another initial calibration approach by use of the super-

statistics concept. Many interesting properties concerned with the entropy index, 

the mean of the short rate, and the annuity price are elaborated in Section 7.3.4. 

Chapter 8 We implement the proposed model using the US swap market data 

for 15 Feb, 2007. First, we analyze in Section 8.1 the raw data and the bootstrapped 

zero rates. Next, in Section 8.2 we calibrate the initial term structure by maximizing, 

respectively, the Shannon entropy and the Tsallis entropy. Finally, we implement 

the proposed model in Section 8.3 and obtain the evolutions of short rates and bond 

prices over a long term. To test our model improvements over the traditional models, 

we also run the simulation with the Hull-White model. A comparison of these two 

no-arbitrage models is presented in Table 8.7 in Section 8.3.3. 

Chapter 9 We conclude our research and present future research directions. 

Guides for reading At the beginning of each chapter (except Chapter 1), we 

briefly explain the significance of the study in the current chapter and provide a 

roadmap. At the end of each chapter (except Chapter 1), Section Summary and 

Discussion highlights the key results in that chapter. An exception is Chapter 4, 

which summarizes its key results in the last section Comparison With Tradi-

t ional Models . Such an arrangement is for readers to have a quick and complete 

idea of each chapter and soonest establish the whole picture of our thesis. 

• End of chapter. 
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Chapter 2 

Literature Review 

The problem of valuation of bonds and their derivatives is a big deal for investors. 

At the first onset, researchers tend to study the evolution of bond prices directly 

by a stochastic differential equation. However, in such models the bond prices can 

inconveniently become negative or even be larger than their face value. To overcome 

these problems, models of various kinds of rates have been proposed when researchers 

recognize the relationship between the rates and bond prices. 

A yield curve provides the rates of return of zero-coupon bonds for different 

investment periods. Every day this curve changes as bond prices change. Figure 2.1 

shows the possible shapes of a yield curve: upward sloping, downward sloping, 

4 YUilU on Y U l i l o n \ Ylul«l o n 
a i l ^ m b o n a d U c o u n . b o n . 1 U U c o u r U b o m i 

M a l u r l l y M o i w l l y J M o i u r l i y _ 

Figure 2.1: Yield curves 

or slightly "humped". A normal yield curve would be upward sloping, showing 

that yields rise as maturity lengthens. This pattern reflects the liquidity preference 

theory that long-term securities are general more risky than short-term securities and 

2 5 
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thus demand higher yields. The inverted yield curve with downward slope appears 

usually when investors believe the economy will slow or even decline in the future and 

prefer longer-term securities. This pattern reflects the market segmentation theory 

conjecturing that the supply and demand in the markets for short-term and long-

term instruments is determined largely independently. In practice, a yield curve 

is most often humped especially since the US government began to issue bonds 

with maturities larger than 20 years. The downward tilt to yields at long horizons 

most likely reflects the nonlinear relation between bond prices and yields: the price 

increase induced by a decline in the yield is larger than the price decrease induced 

by an equal-sized increase in the yield. 

Term structure models are designed to explain these changes in yield curves. To 

begin with, in Section 2.1-2.3 we will briefly review several well-known models of 

short rates or forward rates. Following them in Section 2.4 is an introduction to a 

new model put forward by D.C. Brody and L.P. Hughston [18). Different from the 

classical models, this new term structure model focuses on the evolution of a density 

function which is derived from the derivative of the discount function w.r.t the time 

left till maturity. 

2.1 Models of Short Rates 

According to the principle of risk-neutral valuation, the price at time i of a discount 

bond with principle $1 maturing at T is determined by the short rate process N via 

, _ (2.1) 

A 

where Q is a martingale measure and EQ denotes the conditional expectation w.r.t 

the filtration in the risk-neutral world [29). Considering the relation (1.2) between 

the bond price and the yield to maturity, we can express the yield FUt in terms of 
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the short rate r̂  as 

Rtr = -；^ In Eq [e - /� r，ds J",] • (2.2) • 

1 — t L 

It shows that the short rate process r̂  defines everything about the initial zero curve 

and the term structure of interest rates at any time. In this section we will review 

some classical models of short rates, including equilibrium models, martingale model, 

and no-arbitrage models, and discuss the benefits and limitations of each. 

2.1.1 Equil ibrium Models 

The short rate process n is usually described by a stochastic differential equation 

drt = m{r) dt + s(r) dWt, 

‘ where Wt denotes the Wiener process (or Brownian motion as some physicists pre-

fer). The drift coefficient m(r) and the diffusion coefficient s{r) are functions of r 

but independent of time t. In financial research, s(r) is called the standard deviation 

of the underlying security r. Specifically when s(r) = or, a is called the volatility 

of r. ‘ 

We will illustrate three one-factor equilibrium models in the below: 

1. The Vasicek Model [37]: 

drt = a{b-rt) dt-^-adWt. (2.3) 

2. The Rendleman and Bartter Model [42): 

drt = iiTt dt + GTt dWt. (2.4) 

3. The Cox, Ingersoll, and Ross Model [32]: 

drt = a(b - n) dt + Gy/ndWt. (2.5) 

m 

« 
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In the Vasicek model, Eqn. (2.3) is in the form of the Langevin equation and the 

Ornstein-Uhlenbeck process. We solve the equation and obtain 

n = b ^ e-^'ib - ro) + a f dW,, 
Jo 

E[rt] = b - - Tq) — b. 

It shows that the short rate rt is pulled to a mean level b at rate a. If we take 

account of the market risk premium Â , Eqn. (2.3) becomes 

- ( j A \ -
drt = a b- ( r^ + — ) d t a {dWt + Xt dt) 

L V J\ \ 
=a{b* - n ) dt-^adW；, 

/ 
I 

where W^ = Wt / J Â  ds denotes the Wiener process corresponding to the risk-

neutral measure. Since b* = b — ^ involves At, it shows that the market risk 
a ••‘ 

premium process At needs to be specified independently and exogenously when we 

price interest rate derivatives in the risk-neutral world. The major disadvantage of 

this model is that it allows negative interest rates. 

Vasicek also proved that the bond price PtT can be expressed as 

PiT = Are-^ '^^S (2.6) 

where functions Atr and Bit are determined by the parameters a, b, and a only but 
< 

irrelevant to the initial term structure. By use of (2.2), we obtain the yield process 

- r. 1 … 1 ID RtT = ~~7 In Atr + -Bit n, 
1 — t I — t 

indicating that the entire term structure is defined by the short rate process, and 

, the initial term structure is generated as an output. 

In the RB model (2.4), both the drift and the diffusion coefficients are propor-

tional to r — the same assumption as for stock prices. Therefore we obtain an 

- • 
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explicit expression for the short rate process: 

However, such a concise expression comes at a price: this model neither ensures -

interest rate positivity nor incorporates mean reversion. 

.In the CIR model (2.5)，the diffusion coefficient is proportional to y/r and thus 

interest rate positivity is guaranteed. Cox, Ingersoll, and Ross also verified that 

the bond Pit is priced by the same formula (2.6) as in the Vasicek model but with 

different forms for Ait and Bit- Besides, the initial term structure is still generated 

as an output. 

2.1.2 Martingale Mode l 

All the models listed above could be uniformly generalized into the so-called martin-

gale model (2.1). There Q is a martingale measure in the risk-neutral world which 

is equivalent to the measure P in the real world. Applying the technique of change 

of measure, we can transform the bond price process from the risk-neutral world to 

the real world and obtain the following pricing formula for Ptr'. 

1 . r f fT \1 
PtT = T~Ep At exp - / r^ds , (2.7) 

At L, V Jt / . 

At = exp ( - [ [ Xl d s \ (2.8) ‘ 
\ Jo ^ Jo / 

Here EP denotes the conditional expectation w.r.t the original measure P. The 

density martingale At is not only an exponential martingale in terms of — Jq Â  dWg 

but is also the Radan-Nikodym derivative of measure Q w.r.t measure P [25 . 

With the martingale model, the bond price process in the real world is determined 

by two factors only: the short rate process rt and the market risk premium process 

/ 
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The disadvantage of this model is obvious — the conditional expectation is 

generally difficult to calculate. 

2.1.3 No-arbitrage Models 

In Section 2.1.1 we find that the equilibrium models cannot provide a good fit to 

today's term structure. This shortcoming can be successfully overcome by the choice 

of a time function as the drift coefficient in the stochastic equation that depicts the 

interest rate process. Following this line, no-arbitrage models are developed. In this 

subsection we will introduce two representatives of this model family: the Ho-Lee 

Model [52] and the Hull-White Model [30 . 

The Ho-Lee model makes assumptions on the short rate process: 

‘ drt = Ot dt + adWt 
(2.9) 

et = fot + ah� 

where /ot is the instantaneous forward rate as seen at the present time 0 for a 

maturity t, and f denotes a partial derivative w.r.t to t. The drift coefficient dt in 

Eqn. (2.9) is a function of time chosen to ensure the fitting of initial term structure. 

There are two major disadvantages of the Ho-Lee model: the volatility structure 

is not flexible and mean reversion is not incorporated. They are both due to the 

drift expression in (2.9). The slope of forward curve defines the average direction 

of the short rate movement at any time. Therefore, the changes in both short rates 

and forward rates during a short period have the same standard deviation, which 

gives model users very little flexibility in choosing the volatility structure. 

To incorporate mean reversion of the short rate, Hull and White extended the 
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Vasicek model by setting the long-term rate level to be a time-dependent function: 

drt 二 (0t - art) d t a dWt 

=a ( � - r t ) dt +a dWt (2.10) 

2 

Compared with the Vasicek model (2.3), the modified drift coefficient in the Hull-

White model guarantees the fitting of initial term structure. Compared with the 

Ho-Le^ model (2.9), the drift coefficient in (2.10) enables the short rate to converge 

towards a long-term average level at rate a. 

The other improvement of the Hull-White model over the Ho-Lee model is that 

the former involves a richer volatility structure determined by both a and a. Specifi-

cally when the parameter a equals zero, the Hull-White model reduces to the Ho-Lee 

model. 

2.2 Models of Discount Bonds and Forward Rates 

We now present the HJM model [15), which intends to model the process followed 

by instantaneous forward rates. 

Assume the process for Pit in the risk-neutral world follows the stochastic equa-

tion 

学 二 rtcif + ri/^/M + （2.11) 
PtT 

where denotes the discount bond volatility and the superscript HJM is used 

to distinguish the HJM volatilities from those applied in other term structure models. 

If we let VV7 — Wt-\- Jo Â  ds�it proves to be a Wiener process in the risk-neutral 

world after a change of measure from the real world. 
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By the relation (1.7) between the discount bond price Pit and the instantaneous 

forward rate f t r � t h e risk-neutral process for f t r is characterized by 

dftT = n^T^^^?'^ dt - dW*, (2.12) 

where QJ}--^^ denotes the partial derivative of QHJM w.r.t T, 

Eqn. (2.12) shows that there is a close relation between the drift and the standard 

deviation of f t r . If we define the standard deviation cr^'^^ of f t r via the bond 

‘ volatility ^s 

鄉M 二一 (t a^^JM ds, (2.13) 

then Eqn. (2.12) becomes 

dftT = cJtfJM j : ^HJM 办 + 沿JM d ( 2 . 1 4 ) 

The HJM model possesses several ideal properties. First, as a consequence 

of (2.13), the discount bond volatility tends to zero in the limit t -y T as the 

bond matures. Second, the HJM model is consistent with the initial term structure 

Pot and the forward rate process is dominated by the bond volatility Q各�气 This 

can be clearly observed if we rewrite (2.14) as 

At = - j : ds + j : dW：. 

Finally, the HJM framework has no reference to the market risk premium A when 

we price interest rate derivatives in the risk-neutral world. This is a major difference 

between the HJM model and other models of short rates (for example, recall the 

Vasicek model (2.3) for comparison). � 

Yet the Achilles heel of HJM is the resulting non-positive interest rates if the 

volatility structure is freely specified. In Chapter 5 we will impose a constraint on 

the bond volatility of the HJM model to ensure interest rate positivity . 
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Equilibrium Models No-arbitrage Model^ 
R.B. Vasick C.I.R. "HoLee Hull-White HJM 

Mean 
Reversion x 丄 ^ 丄 

Degrees of X�t r 
Freedom A, r A, r A, r Ppx ^ Pqx 
Initial 
Term 
Structure x x x 丄 V V 
Positivity 
Definite x x V x x x 

Non-
Others Markov Markov Markov 

Table 2.1: Comparison among traditional term structure models 

2.3 Comparison Among Traditional Term Struc-
ture Models 

Table 2.1 unfolds a comparison among the various models discussed in Section 2.1-

2.3. Our focus is on the fitting of initial term structure, the role of volatility struc-

ture, and the function of market risk premium in determining the term structure 

dynamics. 

First, the essential difference between an equilibrium model and a no-arbitrage 

model consists in the fitting of initial term structure. In an equilibrium model, the 

initial term structure is an output, whereas a no-arbitrage model takes the actual 

initial term structure as an input. 

Next, The HJM model is the only one that discount bond volatility 幡“财 enters 

as an independent parameter when we model the interest rate process. 

Finally, when we price interest rate derivatives in the risk-neutral world, the HJM 

model is the only one that has no reference to the market risk premium process Â . 

The traditional models discussed here all make assumptions on the short rate 
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or the forward rate. In the next section 2.4 we will present a new model proposed 

by Brody and Hughston [18], which focuses on the evolution of a density function 

that is derived from the derivative of the discount function w.r.t the time left till 

maturity. 

2.4 Term Structure Model Proposed by Brody 
and Hughston 

All the traditional models reviewed in Section 2.1-2.3 target at a single issue — 

modeling the evolution of yield curves (Dynamical Problem): Yet another important 

application of term structure models is to tell how differently one yield curve is from 

the other (Distance Problem). Both the two problems were tackled by Brody and 

Hughston [17-19] using the notion of information geometry. 

Information geometry is the study of probability and information from the ge-

ometric viewpoint, simply by considering the statistical models as geometric ob-

jects. As early as in the 1930s, P.C. MahaJanobis [38,39], an Indian physicist and 

statistician, had applied the geometric methods to define a measure of mutual sep-

axation in the study of statistical data arising from anthropometric measurements. 

Later till the 1980s, information geometry reached maturity through the work of 

Amari [48,49], The key idea is to regard a parametric statistical model as a differ-

ential manifold equipped with a metric and then study the structure of this manifold 

by way of differential geometry We take a term structure model as an example. As 

illustrated in Figure 2.2，the starting point of the information geometry approach 

is to map every yield curve into a probability density function (pdf) in a Hilbert 

space we view as a manifold. The correspondence between the two spaces — the 

space of yield curves and the space of pdfs 一 is indicated by the both-way arrow in 
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Information geometry 

� • . � _ • • • • I — — “ 

Figure 2.2: Space transformation between discount functions and pdfs 

Figure 2.2. Then we apply information geometry to the space of density functions, 

as the upward arrow shows in the figure. The evolution of the yield curve is thus 

depicted by a process in the Hilbert space. The difference between two yield curves 

becomes a metric defined on the Hilbert space for two distribution functions. 

Brody and Hughston fixed both the Dynamical Problem and the Distance Prob-

lem by following three steps: 

Step 1. Deduce a pdf from the derivative of the discd\int function w.r.t the time left 

to maturity. This will be shown in Section 2.4.1. 

Step 2. View each density function as a point embedded in the space of all probability 

distributions. Define a geometric measure on this space for every two points 

(pdfs). This will be discussed in Section 2.4.2. 

Step 3. Given an initial point (initial term structure) in the structured space, model 

the dynamics of the yield curve as a random trajectory. We will outline the 

major procedures in Section 2.4.3 and present the key results in Section 2.4.4. 

F 
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2.4.1 Term Structure Densities 

The starting point of the Brody-Hughston model is to define a term structure density 

process: 

华 (2.15) 

where Bt(x) = Pt,t+x denotes a family of bond prices at time t with time x left 

till maturity (thus T = i + x is the maturity date). The tenor variable x is intro-

duced according to the "Musiela parametrization" [35]. pt{x) proves to be a density 

function, i.e. 
roo 

Pt{x) > 0, / pt{x)cix = 1, ‘ 
Jo 

if we consider an admissible term structure with which interest rates should always 

be positive: 

lim Bt{x) = 0, 0 < Bt{x) < 1， ^ ^ ^ < 0. (2.16) 
X—¥00 OX 

It follows that each yield curve is associated with a density function on the positive 

real line, as illustrated in Figure 2.3. We denote the space of density functions as 

V{1Z\.) and have the following characterization of this space [17，19 . 

Proposition 2.1. The system of admissible term structures is isomorphic to the 

convex space of everywhere positive smooth density functions on the positive 

real line. 
• % 

Yield 

curve 1 V { n \ ) 

. curvc2 
^"--^^Curvc 2 ^ 

yield 
•curve I 

Mai imty 

Figure 2.3: Mapping from yield curves to density functions 
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2.4.2 Information Geometry Applied to Statistical Models 

In the previous subsection we have shown that the derivative of the discount function 

w.r.t the time left till maturity gives rise to a density function. The difference be-

tween two yield curves is thus turned to a comparison between the associated density 

functions. The theory of information geometry proves to be crucial in comparing 

the term structure densities. 

In mathematics and especially in statistical inference, information geometry is 

the study of statistical models by way of differential geometry. A statistical model is 

a set of probability distributions to which we believe the true distribution belongs. 

Usually statistical models fall into two classes — parametric and non-parametric, 
、 • 一 

each having its own geometric measure. 

In the parametric family of pdfs, the parameter space has a Riemannian structure 

induced by the embedding of the family into the Hilbert space of square-integrable 

functions, and is characterized by the Fisher-Rao metric [18’ 50]. In the non-

parametric family of pdfs, the geometry structure is determined by the spherical 

distance function of Bhattachai-yya. In the Brody-Hughston model, our focus is on 

the non-parametric family since the term structure density defined via (2.15) is a 

non-parametric pdf. 

Let X be a continuous random variable taking values on the positive real line 

and p[x) be a density function w.r.t X. The square-root likelihood function is 

defined by 

制 = V ^ . (2.17) 

Since p[x) is non-negative and has integral unity, ^(x) satisfies the following condi-
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tions: 

a^) > 0 r dx 二 1. 
J —oo 

We see that ^(x) can be regarded as a unit vector in the Hilbert space U = C?{jV~�or 

equivalently a point lying on the unit sphere S of U. This is illustrated in Figure 2.4. 

\ w / 
\ H 二 

Figure 2.4: Unit sphere in the Hilbert space U = 

Given two yield curves, we let pi{x), p2[x) denote the associated term structure 

densities on and 工)the corresponding Hilbert space elements. The 

inner product be tween�i and “ can be calculated via two ways： 

< > = ll6lllk2||cOS</> = COS0 

where (p is the angle between the two vec to rs�i a n d � 2 ’ or 

fOO 
= / dx. 

J —00 

Therefore 

0 = arccos ( f 胁 )胁 ) c t e ) . (2.18) 
\J-00 ) 

defines an angle 0 that can be interpreted as the distance between pi and p2- More 

precisely, since «S is a unit sphere, the value of 小 equals the spherical distance between 

< • 

s 
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the points on S determined by the vectors and <̂2: 

= = (2.19) 

This is illustrated in Figure 2.5. We call the angle (j) the Bhattacharyya distance 

Figure 2.5: Bhattacharyya spherical distance 

between the given yield curves. 

As an illustration of the principles set forth above, we will discuss several exam-

ples to show the calculation of distance between two yield curves. Consider a family 

of discount bonds given by 

P o t 二 + I ) ， (2.20) 

which determines a "flat" term structure for a constant annualized interest rate r 

compounded at the frequency k over the life of each bond. 

Example 2.1. Let k — +00 in (2.20). Hence r becomes a continuously compounded 

rate. By virtue of (2.15) and (2.17), we obtain the density function and square-root 

function 

p(T) = r e - r T , 肌 = y / r e - ^ T ^ , 

Given two yield curves dominated by, respectively, ri and T2�we calculate the spher-

ical distance to be 

cos 012 = I 
J - 0 0 

==> 012 = COS — . 
\ri + r 2 / 
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It shows that the Bhattacharyya distance between the continuously corapoundecl 

flat yield curves is determined by the arc cosine value of the ratio of the geometric 

and arithmetic means of the flat rates. 

Example 2.2. Let /c = 1 in (2.20). Hence r reduces to a simple interest rate. The 

density function becomes 

p(T) = r ( l + rr)—2. 

The spherical distance between two yield curves in this family is calculated to be 

, - 1 / y / ^ , ri\ 
012 = cos I — In — • 

Vn -r2 r s / 

2.4.3 Dynamics of the Term Structure Dens i ty 

The distance measure between two yield curves as discussed above is a static prob-

lem. Now we turn to develop the dynamics of the term structure density. We give in 

the below a brief outline of Brody and Hughston's work [17-19]. For easier reading, 

we divide the modeling process into four steps. ^ 

S tep 1. Assume that the dynamics of the bond price Ptr follow the stochastic differ-

ential equation 

dPtT = /itr dt + UtT dWt, (2.21) 

where Wt is a Wiener process and ^ t r and EtT are, respectively, the drift and 

the diffusion processes. Then, by virtue of Bt: = Pt,t+x, Eqn. (2.15), and 

Eqn. (2.21), we obtain the dynamics of pt{x) as 

• 眷 销 ， 令 

\ ) a ( \ \ (2.22) 
^ = ( 成 ⑷ + ^^J也叫⑷d队 

where we write = 一 a n d Ut{x) = 一 t o simplify the notations. 
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Step 2. Impose the arbitrage-free condition by constraining the drift coefficient such 

that 

MtT = uPtT + StrAt, (2.23) 

where r\ is the short rate process and At is the market risk premium process. 

Under this condition, Eqn. (2.22) becomes 

.dpt{x) = [rtPiix) + ^ ^ ^ dt + ut{x) {dWt + At dt). (2.24) 

S tep 3. Verify that the normalization condition dx = 1 on pt{x) is preserved 

in the density dynamics (2.24). We just need to integrate the drift and the 
> -r 

*diffusion terms of (2.24) (w.r.t x) and see if both the integrals exactly equal 

zero： 
「 学 d:c = Q (2.25) 

Jo 彻 

and � 

[a;“:c)d:E = 0. (2.26) 
Jo 

Actually Eqn. (2.25) is satisfied because pt{x) — 0 as x oo and 

rt 二 约(0)， (2.27) 

which will be clarified in Section 4 after we interpret pt(x) from the financial 

viewpoint. Additionally, condition (2.26) is fulfilled by virtue of the definition 

for cjt(x) and observing that Ht.t+x vanishes both as x 0 and as x oo. 

The conditions (2.25) and (2.26) lead further to the following results: 

1. Ti can be expressed as either (2.27) or 

r {��np办）二 , \d\npt{x)] 
rt ——i … ) " ^ ^ dx [ - ^ ^ J ， (2-28) 

where we use Ep to denote the expectation w.r.t pt(x). 
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2. ujt{x) can be expressed in terms of an exogenously specified process "“rc): 

^tM = Pt{^) Mx) - Ep h ( x ) ] ) . (2.29) 

S tep 4. Eqn. (2.24) can be written as 

dpAx) (d\npt{x) \ , , � 
= ( ^ ― + dt + Mx) — Ep h (x) ] ) {dW, + A, dt) (2.30) 

with Tt expressed as either (2.27) or (2.28). This completes the derivation of 

the Brody-Hughston model. 

2.4.4 Formulas for Processes 

As a consequence of (2.29)，the standard deviation T.t,t+x of pt[x) is unchanged 

under the transformation //^(x) "t(工）+ _，where i9(t) is independent of 2:. This 

{feedom allows Af to be specified as -l?t [17,19]. With this substitution, Brody and 

Hughston have derived the formulas for the density process, the bond price process, 

and some related rate processes [17,19]. We summarize the major results as follows. 

Proposition 2.2. The general admissible term structure evolution based on the 

filtration generated by a Brownian motion Wt on the Hilbert space H = JC?(jV�is a 

measure-valued process pt{x) on T>{71\) that satisfies 

^ ^ =(⑴n/丨工)+ PtW) dt + Mx) 一 i?t) (dW, - Dt dt), (2.31) 

where Pt = ^^^"“工)).The volatility structure (工)can be specified exogenously along 

with the initial term structure density po(x). 

The associated short rate process r̂  = Pt(0) satisfies 

, ( , d p A x ) i \ 
drt = rf + J ^ ) dt-tn MO) — Dt) {dWt — h dt). (2.32) 

V 。工 x=0/ 

Proof. See [19]. • 
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Strictly speaking, the volatility of Pt{x) is ^(a;) — \>t rather than � . H o w e v e r , 
• 

for convenience in the Brody-Hughston model we call (工）the volatility of pt[x). 

An alternative expression for (2.31) is given by 

^ 二 一 Ep [ ^ i ^ ] ) dt + - P.) - . . dty (2.33) 

This expression is sometimes more suggestive smce we can evidently inspect the 

normalization condition on pti^:) by observing that 

Ep [ 樂 1 = 0. (2.34) 
L ptW J 

The appearance of r^ in the drift of (2.32) might seem abnormal. As pointed 

out by Brody and Hughston [17], this is compensated by the second term in the 

drift bracket and ensures the mean reversion behavior, for example, in the CIR 

model |32]. 

Proposition 2.3. The solution of the dynamical equation for Pt{x) in terms of the 
I 

volatility structure lyt(x) and the initial term structure density po{x) is 

Pi{r - t ) = po{T)--—— " \ ’ (2.35) 
r PoM exp (/o dW, - i /J VI ds) du 

where Vm = — t). The corresponding formula for the bond price process is 

It PoM exp (FO Vsu dW,-金 /J V丄 ^s) du 
PtT = ) ( ^ . (2.36) 

r PO� exp ( f o V.U dW, - i /J Kl ds) du 

• Proof. See (19). • 

We observe t h a t ^ ^ t h the term structure density process and the bond price ^ 

process are dominated by two factors only: the initial term structure density po (工） 
i 

and the volatility structure (工).In particular, by setting T = t in (2.35) we obtain 
T 

the formula for the short rate process. 
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Prd^osit ion 2.4. The short rate process r^ = pt(0) is given by 

r = p ⑴ exp ^ ^^ 

rt r PoM exp ( f o Vsu dW, - i /J VI ds) du ‘ 

In particular, in a determimstic model with V^t = 0，we obtain 
roo 

Tt - Po⑴/ j t A ) ( …血= / o r (2.38) 

We know that in a stochastic model, n = which means the instantaneous 

•forward rate at time t for an infinitely near future is exactly the short rate at that 
I 

time. However, Eqn. (2.38) shows that in a deterministic model, fu — fo“ owing to 

‘ the vanishing of randomness. 

Proposition 2.5. By virtue of Xt = —Ot = /q°° Pi[x)i't{^) dx, the market risk pre-

mium process is given by 

. i r A ) � � e x p (/J Kn. dW, - i /J Ki ds) du 
At = 7— V . (2.39) 

i r PoM exp (/o V^.. dWs - i /o VI ds) du 

Proposition 2.4 and Proposition 2.5 show that, given the initial term structure 

density PQ{X) and the volatility structure "“工)，we can reconstruct the short rate 

process and the market risk premium process. 

Proposition 2.6. The money market account Bt satisfying dBt = rtBt dt and Bq = 

1 follows the dynamical process 

Bt = — 1 \ • (2.40) 
JT A ) � exp {Jo V,^ dW, 一 i /o VI dsj du 

Proposition 2.7. By the relationship (1.6) ftr = - � - � , t h e instantaneous for-

ward rate process is given by 

exp ( f ^ s T d W ^ - U y ^ ^ d s ) 
fiT = Pq[T) ^ . (2.41) 

It A)⑷ exp [J^ Ku dW, - i /J ds) du 
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Note that when T = t�Eqn. (2.41) becomes (2.37). In other words, the instan-

taneous forward rate process reduces to the short rate process as T —> 

2.5 Summary and Discussion 

Before proceeding to present our own work, let us summarize other researchers' study 

we have reviewed in this chapter. To begin with, we have introduced the models of 

short rates in Section 2.1. Among them equilibrium models stand out usually for 

the simple assumptions imposed on short rates but suffer from the inconsistence of 

initial term structure. A 1% error in the price of the underlying bond may lead to 

a 25% error in an option price [29]. On the contrary, no-arbitrage models earn a 

reputation for automatically fitting the initial term structure. 

Next, we have presented the HJM model in Section 2.2，which focuses on the 

evolution of instantaneous forward rates. The HJM model proves to excel the short 

rate models in some aspects. First, the HJM model is consistent with the initial 

term structure. Second, the rate process is determined by two factors only: the 

initial term structure and the volatility structure. Finally, the HJM model has no 

reference to the market risk premium when we price interest rate derivatives in the 

risk-neutral world. 

All the traditional models attempt to characterize the shape change of yield 

curves. Yet another application of term structure models is to tell how differently 

a yield curve evolves from the other. With this end in mind, Brody and Hughston 

proposed a new term structure model of a density function which is derived from the 

derivative of the discount function w.r.t the time left till maturity (see Section 2.4). 

By embedding the family of probability distributions into the Hilbert space of square-

integrable functions, the Bhattacharyya spherical distance is defined to measure the 
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difference between two yield curves. Besides, Brody and Hughston have also derived 

a dynamical equation to depict the evolution of the density process. By solving this 

stochastic equation, Brody and Hughston obtained the formulas for the density 

process, the bond price process, and other related rate processes. 

• End of chapter. 



Chapter 3 

Interpretation of Term Structure 
Density 

Associated with every positive interest term structure there is a probability density 

function over the positive real line. This makes the Brody-Hughston model stand 

out. Brody and Hughston have explored the "mathematical role" of the term struc-

ture density: it is obtained from the derivative of the discount function w.r.t the 

time left till maturity, and proves to satisfy the normalization condition (the inte-

gral of the density over the positive real line equals one). However, neither the term 

structure density itself nor its normalization condition has been endowed with a "fi-

nancial role" in practice. Practitioners in finance would hence have little confidence 

in applying this model to practice. For this reason, we aim to interpret the abstract 

density and its normalization condition in the language of interest rate theory. 

The interpretation will start with a flat term structure in Section 3.1, where we 

will consider a family of bonds that are continuously compounded at a constant 

interest rate. Then our discussion will generalize to a non-flat term structure in 

Section 3.2, where the bonds are priced via an instantaneous forward rate process. 

A comparison between these two cases, as shown in Table 3.1 in Section 3.3，reveals a 

broader connection between the term structure density and the financial instruments 

4 7 
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like bonds and rates. 

3.1 Interpretation With a Flat Term Structure 

To investigate the physical meaning of term structure densities from the financial 

viewpoint, we start with the simplest case — a flat term structure for which a bond 

is continuously compounded at a constant rate. The yield curve corresponding to 

such a bond may be seldom used in practical modeling. Nevertheless, it is sufficient 

for our preliminary research. 

3.1.1 Term Structure Densit ies 

Consider a family of discount bonds represented by 

Po{T) = e"-^, (3.1) 

which determines a flat term structure with a constant continuously compounded 

rate r for each maturity date T. Here we have chosen the notation Po(^) to make the 

tenor variable, T, more prominent. Definition (2.15) of the term structure density, 

P o ( T ) = 一 gives rise to 广 

Po(T)==rPo(n (3.2) 

For the people working in finance, Eqn. (3.2) indicates everything — the resulting 

density function means nothing but the annualized interest earned on the discount 

bond. However, this may not be evident for those having not been working in the 

financial industry. It is therefore appropriate here to analyze (3.2) purely from the 

technical viewpoint. 

By virtue of Taylor's expansion and (3.1), the short rate can be treated as the 
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rate of return of the bond: 

A,广 P“T - At) - JMT) 
A i r — 戶0(了） ’ 

if here At is an infinitesimal. This is obvious in the risk-neutral world, where 

investors are assumed to earn on average rAt in a very short time period At. Now 

suppose that the maturity T is also an infinitesimal. Substitution of (3.3) into (3.2) 

gives rise to 

Tpo(T) = rTP^{T) = Pt(0)-尸o(T) 

Po(T) = « ^ ， (3.4) 

by which PQ[T) can be interpreted as the annualized interest earned on the bond. 

Most often the maturity T takes ten years or above for long-term bonds. In this 

case, the term structure density given by (3.4) will be interpreted as the averagely 

annualized interest on account of flatness of the term structure. 

3.1.2 Normalization Condition 

With the physical meaning of P Q { T ) being reveled, we come to prove that the normal-

ization condition is fulfilled not only because of the mathematical nature of po{T) 

but also because of the financial nature of the density integral. To interpret the 

^ normalization condition 

/ P O { x ) dx — I (3.5) 
Jo 

from the financial viewpoint, we suggest to discretize. it as 
oo 

lim ^ p o ( n A i ) At = 1. (3.6) 
n = 0 

In the following analysis, we just need to keep in mind the financial function of 

p as annualized interest and temporally forget its mathematical role as a density 

function. 
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As pointed out in the preceding section, po{nAt) represents the annualized inter-

est of a bond maturing at nAt so that AtpQ{n^t) is the interest gained during the 

first time interval At (here we divide the whole maturity nAt into n equal intervals). 

This can be clarified by the following derivation: 

= = ( " 二 拳 ” •尸o(nAt) 
J^o{nAt) 

=PAtinAt — At) - Po(nAt). 

At the first glance the summation in (3.6) seems peculiar because it intends to 

add up the first-p办iod interest of a portfolio of bonds maturing at different time. 

Now we assume that the bonds in the portfolio are all continuously compounded at 

an identical interest rate, for which the term structure density ptix) depends on x 

only and is independent of time t: 

‘ AtpQ[nAt") = AtpAtinAt) = Atp2At{nAt) = . . • ’ 

‘ < = + = ... ’ （3.7) 

� • 

In this sense, the first-period interest gained on a bond maturing at nAt equals the 

(i + l)t/i-period interest gained on another bond maturing at (n + i)At, i.e. 

Atpo{nAt) = Atpi^tinAt), (3.8) 

where the density function on the left hand side (l.h.s) corresponds to the bond 

maturing at nAt, whereas the density function on the right hand side (r.h.s) corre-

sponds to the bond maturing at (n + i)At. Figure 3.1 illustrates this finding. The 

segments with the same color indicate the equivalent amount of interest earned on 

different bonds. Following this line, the l.h.s of (3.6) becomes the summation of 

interest earned during successive periods of an individual bond that matures in an 
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A/Po(«A/) 
I I I 

A； ntU 

I I 1 I 
A/ 2 A/ («+l)A/ 

I I I 1 I 
LI 2At 3 A/ («+ 2)A/ 

Figure 3.1: Illustration of interest earned on different bonds 

infinity future: 

oo n 
lim y^po(nAt)At = lim V^ pi^t ((n - z)At) At. 

n=0 71—>oo i=0 

The arbitrage-free condition requires that all the interest one earns on a discount 

bond which is purchased initially at no cost should equal the face value one. Thus 

we complete the interpretation of the normalization condition (3.5). 

In addition, we consider the density integral on a specific time interval [Ti, . 

Taking the discretization form (3.6) into consideration, we obtain 

rTi b 
/ Poioo) dx = lim } po{nAt) At 

Jr. S 
(3.9) 

= l i m y PiAt At 
i=0 

二 /V2 - T i (T i ) -Po( r2)， 

where aAt = Ti and bAt = TV The last equality in (3.9) is not plain to see and 

needs to be illustrated with the help of Figure 3.2. The segments with the same color 
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] 1 * I 
Li <7 A/ 

LtPuiatii) 

1 I 1 I 
Li 2 A/ (fl+l)A/ 

I 1 I I I 
^ 3A/ (̂  + 2)Ar 

參 

Aip„((A - 1)A0 t̂ fhu ((̂  - • • • 叫“•�*> 购) 

1 I 1 1 I I I I 
A/ 2AJ 3Ai 4 A/ Q>-a)til = 7̂ -7； = Tj 

% 

Figure 3.2: Illustration of density integral 

indicate the equivalent amount of interest earned on different bonds. Note that the 

l.h.s of the second equality in (3.9) means to add up the first-period interest earned 

on a portfolio of bonds maturing differently from to T2 — just as the red segment 

for the first bond maturing at aAt = 7\, the blue for the second bond maturing at 

(a + l)At, and so on. Whereas the r.h.s of the last equality represents the interest 

earned on an individual bond maturing at T2, during successive periods from the 

very beginning till T2 — T\. This is indicated by the colorful segments at the bottom 

in Figure 3.2. Such a "transfer" of interest from a portfolio of bonds to an individual 

bond is caused by the relation between forward rates and forward bond prices. 

Specifically, by setting Ti = 0 in (3.9), we obtain 
厂T2 
/ po(x) d x = l - P o ( T 2 ) , 

Jo 

which stands obviously for the reason that the interest accumulated during the life 

of a bond (T2 is arbitrary) is what one expects to earn by investing this bond. 
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3.2 Interpretation With a Non-flat Term Struc-
ture 

The analysis presented in the previous section shows that if the discount bond 

possesses a flat term structure, then the term structure density (2.15) can find its 

financial interpretation, so does the normalization condition (3.5). In this section, 

we will handle a general case in which the bond is valued via an instantaneous 

forward rate process ftr-

PQ{T) = e—几〜。，心 （3.10) 

3.2.1 Term Structure Densities 

According to the law of variable upper limit integral, for the term structure density 

Po(T) = we obtain 

Po(T) = forPoin (3.11) 

Comparing (3.11) with the flat term sructure density (3.2), we see the only difference 

lies in the rate — its value is currently not a constant but depends on time. In 

fact, the instantaneous forward rate /or, as seen at the present time 0 for a contract 

maturing at time T, is precisely the T-year spot rate used in real markets. Therefore 

the terra structure density given by (3.11) shares an analogous meaning as in the 

flat case, namely, that it represents the annualized interest earned on the bond. 

3.2.2 Normalization Condition 

With the term structure density PQ{X) being interpreted, we turn to find an ex-

planation for the density integral just as what we have discussed for the flat term 

structure. Integrate po{x) over time interval [Ti, T2] and we obtain 

[ % o { x ) d x = Po{T,)-Po{T2). (3.12) 
JTI 
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On the other hand, based on the relation (1.5) between forward rates and bond 

prices, we obtain the expression for Po{Ti) — Po(^2) as 

Po(Ti) - PO(T2) = Fot,t,Po(T2)(T2 一 Ti). (3.13) 

In connection with (3.12), Eqn. (3.13) shows that the integral of term structure 

density over [Ti, T2] provides the interest earned during Ti and Ti on a discount 

bond maturing at T2. 

Recall the flat case, in which the integral of term structure density provides, 

however, the interest gained during the initial time 0 and T2 - T\. It indicates that 

‘ if the interest rate is a constant independent of time t, then the interest received 

during [Ti, T2] is equivalent to the amount collected from the beginning till T2 — 7]. 

Such a "parallel shift" of interest income occurs only in the case of flat term structure 

since the rate there is independent of time t and so does the term structure density. 

Specifically, we set T： = 0 and T2 = 00 in Eqn. (3.12) and Eqn. (3.13). For a 

bond maturing in an infinity future, its initial price equals zero. The whole return 

of interest on such a bond should equal the face value one. Thus we complete 

the interpretation of the normalization condition (3.5) in the case of non-flat term 

structure. 

An alternative explanation for the normalization condition arises when we realize 

the relation between the instantaneous forward rate and the term structure density: 
二 dlnPojx) = po(x) 

a i = _ (3.14) 

Po{x) = foxPoi^)-

Hence the normalization condition (3.5) turns to 

r Po{x)fo.dx= I, (3.15) 
Jo 

which implies that the initial value of a continuous cash flow that pays the small 

amount foxdx during [x, x 4- dx] is unity. 
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Flat Term Structure Non-flat Term Structure 
Bond Value Function Po{T) = e"''^ Po(T) = e—仏仏如 

Term Structure Density po{T) = rPo{T) po(T) = forPoiT) 

Annualized Annualized 
Financial Interpretation interest interest 

Jr" PoM dx Pt,-TATI) _ 尸0(1̂ 2) 厂(̂了2户0仍)(了2 - T,) 

Table 3.1: Financial interpretation of term structure density and its integrals: a compar-
ison between the flat term structure and the non-flat term structure 

3.3 Summary and Discussion 

In this chapter we have interpreted the term structure density and its integrals in 

the language of interest rate theory. The discussion simply starts with a flat term 

structure and then generalizes to a non-flat term structure. Table 3.1 unfolds a 

comparison between these two cases. 

First, the bond value function differs from one case to the other. For a flat term 

� � 美 structure, the bond is continuously compounded at a constant rate r. For a non-flat 

term structure, the bond is valued via an instantaneous forward rate process ftr-
% 

Furthermore, because of the different expressions for the discount function, the 

resulting term structure density function po{T) possesses different forms in each 

case. However, in both cases PQ{T) represents the annualized interest earned on the 

corresponding bond, 

Last of all, as an illustration of the financial nature of p, we try to interpret its 

integral over [Ti, T2]. For a flat term structure, the integral provides a series of 

interest accumulated from the beginning until T2 — Ti on a bond maturing at T2. 

For a non-flat term structure, however, the integral gives the interest earned during 

T\ and T2 of a discount bond maturing at T2. We observe that when the interest 
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rate becomes a constant in the flat case, the interest gained during 7\ and Ti is 

equivalent to the amount earned during 0 and T � — T \ . Such a "parallel shift" of 

interest income occurs only in th'e flat case since the rate there is independent of 

time t and so does the term structure density. 

All interesting phenomenon is worth mentioning. The integral J^^ Po{x) dx itself, 

in whatever case, is seemingly to add up the first-period interest of a portfolio 

of differently-maturing bonds. However, the integral results actually account the 

interest earned during successive periods on an individual bond maturing at TV 

Such a "transfer" of interest from a portfolio of bonds to an individual bond is 

resulted by the relationship between forward rates and forward bond prices. 

Specifically, let the integration interval to be (0, oo]. The integral result should 

be one since the whole return of interest on a bond that is purchased initially at 

no cost (a bond with an infinity maturity is assumed to possess a vanishing initial 

value) should equal the face value one. Thus we have interpreted the normalization 

condition from the financial viewpoint. 

� 

• End of chapter. 
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Chapter 4 

Analysis of the Proposed Term 
Structure Model 

In Chapter 2 we have briefly introduced the Brody-Htighston model, which makes 

assumptions on a density function pt[x) that is obtained from the derivative of the 

discount function w.r.t the time left till maturity. In the process of characterizing the 

evolution of PT{X), Brody and Hughston have introduced a freely specified volatil-

ity process "“工).By the incorporation of market risk premium into the volatility 

structure Â  = —Dt {Dt denotes the expectation of "“rr) w.r.t pt[x)), the resulting 

dynamics proves to be dominated by two factors only: the initial term structure 

density PQ[X) and the volatility structure //^(x). 

There are two reasons for the choice Â  = —i>f First, the volatility process 

. "t(工）is freely defined, which gives model users a flexibility in specifying the risk 

premium process. More important, when we solve the stochastic equation for the 

, term structure density, the choice of —Dt could cancel the integral of some cross 

terms like J j Vs{T — s)Ds ds�leaving a concise martingale representation for discount * 

bond prices. * 

However, several problems also arise with the choice A, = —Dt. First, the relation 

A( = —i>t does not always hold. When we price risk-free securities such as US Trea-

. 57 

t � • 
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sury bills, the risk-nevitral world is preferred and Â  = 0. At this time, however, the 

volatility should not be vanishing; otherwise the evolution of the term structure will 

follow a deterministic trajectory. Second, study in the risk-neutral world provides a 

common ground for the comparison with traditional term structure models — see 

if the market risk premium is involved (just like in the models of short rates) or not 

(just like in the HJM model). 

To fix the problems mentioned above, we will develop first in Section 4.1.1 the 

dynamics of the term structure density in the risk-neutral world, and compare our 

results with those obtained in the world where \ 二 —i>t Brody and Hughston ’ 

proposed) in Table 4.1. Next, in Section 4.1.2 we extend our discussion to the real 

world where the market risk premium At is prominently specified. The properties of 

the proposed model are elaborated in Section 4.2 and 4.3. Finally, we compare the 

new term structure model with traditional models in Table 4.2 in Section 4.4. 

4.1 Dynamics of the Term Structure Density 

4.1.1 Dynamics in the Risk-neutral World 

To begin with, we restate the key notations and definitions used in the Brody-

Hughston model to refresh readers' memory. 

1. We write Pit {T > t > 0) or Bt{x) = Pt,t+x {T = t + x) for the random value 

at time ^ of a discount bond with principal $1 maturing at time T. The initial 

time is set to be 0. 

2. Consider an admissible term structure for which the bond price satisfies 
f 

lim Bt{x) = 0, 0 < Bt[x) < 1 , 卵 产 ) < 0. 
x-*oo ox 

3. Additionally, we impose the asymptotic condition lima:_>oo 二 ()， 

« 
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4. Associated with every term structure, we define a probability density function 

Pt{x) = (Eqn. (2.15)) w.r.t the tenor variable x = T -t . 

Now we develop the dynamics of the term structure density pt{x) in the risk-neutral 

world. To avoid a repeat of expressions used in Section 2.4.3，we just give their 

equation numbers when necessary. 
\ 

Assume for each maturity T that PIT is an Ito process on the interval t e (0, T . 

Ill the underlying stochastic equation (2.21), the diffusion process Etr denotes the 

standard deviation of the bond and the drift process mtT is subject to the arbitrage-

free condition (2.23). Hence the bond price under this condition follows the equation 

dPtT = r J \ T d t + EtTdW;, (4.1) 

where r^ is the short rate process and W^ = Wt-\- f^ Â  ds is a Wiener process in the , » 
risk-neutral world after a change of measure from the real world. 

By virtue of Eqn. (3.14) = and Eqn. (4.1), the stochastic equation 

for Bt{x) is given by 

dBtix) = ( d / W l r 二 机 (4.2) 

={rt - ft,t-,.)Bt{x)dt + (4.3) 

We observe that the drift coefficient is the difference between the short rate r̂  at 

time t and the instantaneous forward rate ft,t+x as seen at time t but for a future 

time t + X. As the bond approaches its maturity, namely, in the limit t — T, the 

drift vanishes as a consequence of the relation (1.9) r̂  = Moreover, the standard 

deviation T>t,t+x also tends to vanish since no uncertainty exists for a maturing 

bond with a definite value. Therefore both sides of (4.3) equal zero when the bond 

matures. 



75 4.1. D Y N A M I C S O F T H E T E R M S T R U C T U R E D E N S I T Y 

For the term structure density pt{x) 二 — we obtain 

dpt{x) = -f dt + LJtix) dW,\ (4.4) 

where we have written 

-.(X) 二 (4.5) 

to simplify the notation. Because of the normalization condition on the drift 

and the diffusion processes are subject to the conditions (2.25) and (2.26), respec-

tively. As a result, Vt can be expressed as either (2.27) or (2.28), and ujt{x) can 

be expressed in terms of an exogenously specified volatility process i^t(工)as (2.29) 

shows. Alternatively, we recommend to introduce the volatility process crf(x) such 

that 

c^t(工）=pt(x)crt(x). (4.6) 

By virtue of the condition (2.26) f^LJt(^) dx — 0, the volatility cr^(x) is constrained 

to zero mean w.r.t Pt{x): 

E,[at{x)] = 0. (4.7) 

Proposition 4.1. The general admissible term structure evolution based on the 

filtration generated by a Brownian motion W^ in the risk-neutral world is given by 

a measure-valued process Pt{x) on VCIZ^.) that satisfies 

dpt{x) = + dt + Pt{x)at{x) dW；, (4.8) 

where the volatility structure at{x) is specified exogenously subject to the zero-mean 

constraint (J^.l) and the initial term structure density po(x) is determined by the 

current yield curve. 

The associated short rate process rt = pt(0) satisfies 

drt = ( r f + ^P^ ) d力 + rtatix) dW：. (4.9) 
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Proposition 4.2. The solution of the dynamical equation in the risk-neutral world 

for pt(x) in terms of the volatility structure at{x) and the initial term structure 

density PQ(X) IS 

PT{T - � 二 poCn , (4.10) 
ir A ) � exp (/o CTsu dW； - I /o dsj dit 

where atu = — The corresponding formula for the bond price process is 

J7 PoM exp ( f o C73U dW； — \ ds) du 
PiT = y-- —̂—• (4.11) 

i r PoM exp [ f o (^su dW； - I Jo du 

To avoid overuse of notations, we apply the same symbol for a term that is 

parameterized by the maturity T sometimes or by the time left to maturity x else-

where. For instance, crt(x), crt,t+i，and OtT are all referred to the same volatility 

when 了二 t + 工. 

Proof. The second term in the drift on the right of (4.8) can be eliminated by setting 

X = T - T, which gives us 

dpt{T - 0 = rtPtiT -t)dt + pt{T — t)at(T 一 t) dW；, 
(4.12) 

^Pt[T-t)dXu 

where dXt = n dt + a八T - t) dW^. We observe that pt[T - t) is the stochastic 

exponential of X with initial value PQ(T) and thus can be solved as 

Pi[T-t)= po{T) exp (J: r , ds -f j : a 人 T 一 s) dW： - \ j : — s) ds). (4.13) 

If we rewrite (4.13) as pt{T - t) = po{T)警，where 

MtT = exp ( J : - s) dW： o]{T — s) ds) ’ （4.14) 

then Zt here plays a role as the normalization factor, indicating that 

exp ( - j � r , ds) = J^ po{u) exp « a,{u - s) dW； - \ j�<J人u- s ” ds ) du. 

0 ‘ ‘ (4.15) 
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The World With Specified 
Market Risk Premium 
Xt = — t̂ The Risk-neutral World 

Market 
Risk 
Premium Af = —i>t At = 0 = —dt 
Degrees of 
Freedom "t⑷，M工) at (工)’ Po (工) 

MtT exp (j^ K t dlV, — i f^ Vtr ds) exp ( f ^ dW： - ^ /J a �了 ds) 
Volatility~~ 
Structure i/t(x) with no constraint crt(x) s.t. Ep [cr“:c)j = 0 

Table 4.1: Formulas for processes: a comparison between the world with specified market 
risk premium Â  = —Dt and the risk-neutral world 

Substituting (4.15) into (4.13) and noting that Gm — — t), we immediately 

obtain (4.10). As a consequence of the relationship between bond prices and term 

structure densities 

PtT = IT Pt{u-t)du, (4.16) 

the formula (4.11) for the bond price process is instantly deduced. • 

Comparing Proposition 4.1 (Â  = 0) with Proposition 2.2 (Â  = -i^t), we see 

the density volatilities in the two worlds — the risk-neutral world and the world 

with At = -Dt are linked via at{x) = ut{x) — Dt, which also verifies the zero-mean 

constraint on at{x) in the risk-neutral world. Comparing Proposition 4.2 (Â  = 0) 

with Proposition 2.3 (Af = -Dt), we list our findings in Table 4.1. 

First, in whatever pricing world, the resulting processes for the density func-

tion and the bond price are both determined by two factors only: the initial term 

structure density po(?) and the volatility structure yi{x) or crt(x). 
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Second, the bond pricing formulas in these two worlds are both expressed in a 

concise martingale representation, dominated by the exponential martingale Mtr 

but associated with different volatility structures. In the world with Â  = -Pt , the 

volatility structure i't{x) is freely specified. Whereas in the risk neutral world, the 

volatility structure at{x) should possess zero mean w.r.t pt{x). 

Last of all, the market risk premium process Xt proves to be irrelevant in both 

cases when we price interest rate derivatives but because of different reasons. In 

Brody and Hughston's work, Af is eliminated by incorporating it into the volatility 

structure. In our work, Xt is immaterial because all individual are indifferent to risk 

in the risk-neutral world and all investors require no compensation for risk. 

The differences and similarities between density processes in the two worlds, as 

revealed in Table 4.1’ also exist' for the short rate process and the forward rate 

process. We will derive in the below the rate processes in the risk-neutral world. 

Proposition 4.3. The short rate process rt = pt{0) is given by 

exp 册 ; - l i X � ,,口、 
rt = po{t) 令 , 、 • (4.17) 

r PoM exp ( f o osu dW： — i S, < ds) du 

In particular, in a deterministic model with ast = 0, we obtain 

T O O 

n = Po(0/ J^ Po{u)du=fot. (4‘18) 

We know that in a stochastic model, n = ftt, which means the instantaneous 

forward rate at time t for an infinitely near future is exactly the short rate at that 

time. However, if follows from (4.18) that in a deterministic model, fu = fot�owing 

to the vanishing of randomness. 

Proposition 4.4. The money market account Bt satisfying dBt = nBt dt and BQ 二 
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1 follows the dynamic process 

= — 1 r • (4.19) 
ir Po(u) exp (/o dW； - l / o cr^ dsj du 

Proof. This formula follows directly from (4.15). • 

Recall the definition (2.8) of density martingale At，which is introduced when 

we discuss the martingale model in Section 2.1.2. It is kown that ZtBt =八w h e r e 

Zt is the state price density. Following this line and surveying Proposition 2.6, we 

obtain the density martingale At in Brody and Hughston’s work as 

A( = exp ( 义 〜 - \ IQ 伊S . (4.20) 

It verifies that the market risk premium in Brody and Hughston's preference is 

chosen to be —v̂ . On the other hand, indicated by (4.19)，the density martingale 

At in the risk-neutral world is unity. This follows as a result of the vanishing risk 

premium in the risk-neutral world. In fact, our density martingale can also be 

expressed in an analogous form as (4.20): 

At = exp (义 I dW： - I 义 4 ds) , (4.21) 

where at = Ep[cjt{^)] is, however, constrained to be zero. 

Proposition 4.5. By the relation ftr =-⑴炉’,the instantaneous forward rate 

process is given by 

, , 加 exp (/o (JsT dW： 一 \ /o ds) 
ftT = Po{T)— - t . (4.22) 

/t A ) � exp (/o - l/o al^ ds) du 

Note that when T 二 t, Eqn. (4.22) becomes (4.17). In other words, the instan-

taneous forward rate process reduces to the short rate process as T — t. Besides, it 

follows from (4.10), (4.11), and (4.22) that ptiT - i) = PtrftT, which confirms our 

finding in Section 3.2.1 that pt{T — t) can be interpreted in financial practice as the 

annualized interest earned on a discount bond. 
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4.1.2 Dynamics in the Real World 

With the aid of Girsanov's Theorem, a theory of change of probability measure, we 

immediately extend our discussion to the real world, where the market risk premium 

Xt is prominently speicifed. 

Proposition 4.6. The solution of the dynamical equation in the real world for pt{x) 

in terms of the volatility structure at{x), the initial term structure density po{x), and 

the market risk premium process At is 

exp ( / J a,T dWs + /J ct̂ tA^ ds - | cĵ V ds) 
Pt(T -1) = po(T) ； r n （ ^ - ^ ^ ) 

r PoM exp (/o asu dW, + f,' ds - \ /J a i ds) du 

where a^ = — i). The corresponding formula for the bond price process is 

—It pM exp (/o � d W , + /J ds - | Jj al ds) du ^^^ 

PtT - /-poHexp [slo^^dWs + /o ds - \ f,' ds) du 

Proposition 4.7. The short rate process n = Pt(0) is given by 

exp (/o dWs + /o A, ds 一 | / J a^ ds) 
r = pJt) ^̂  ^——. (4.25) 

‘ r Po (n) exp ( / � ' dW, + J^ ds - | / J ds) du 

In particular, in a deterministic model with cTst == 0 ,观 obtain 
foo 

n = P o � / jt PoM du = fot. (4.26) 

Proposition 4.8. The money market account Bt satisfying dBt 二 n^t dt and BQ 二 

1 follows the dynamic process 

B i r . (4.27) 
t jr Po{u) exp ( /� t a 抓 dW, + f^ g丄 ds - | / J ds) du 

Proposition 4.9. By the relationship ftr = - � - � t h e instantaneous forward 

rate process is given by 

_ exp ( / J g.T dW, + J j a.rA^ ds - | / J d s ) (‘ 则 

ftT = " o ( � ) 广 " � � exp ( J j � d W , + fo' ds - i / J ds) du 
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Compare each process in the real world with the corresponding process in the 

risk-neutral world, for example, the bond price processes (4.24) and (4.11). We 

observe that in addition to the initial term structure density po{x) and the volatility 

structure CFt{oo), the market risk premium Â  also plays a crucial role in determining 

the term structure dynamics. 

4.2 Martingale Representations 

Now let us turn to study the representations for the term structure density (4.10), 

the bond price (4.11), and the related rates (4.17) (4.22) in the risk-neutral world. 

The term Mtr, which is defined by (4.14), plays a crucial role in all the formulas. 
* 

For each maturity T, the process Mtr (0 < t < T) is the exponential martingale of 

the volatility structure OIT with initial value MQT = 1，satisfying 

dMtr = MtT(JtT dW^. 

With this martingale family, the formula (4.10) for pt{T — t) can be alternatively 

expressed as 

PtiT - t ) = po{T) , (4.29) 
Jt PoM^tu du 

and the discount bond family has the representation 

(4.30) 
it PQ{u)Mtudu 

Obviously, if we can specify the initial term structure density po{x) and choose 

certain martingales Mtr such that the integrals in (4.29) and (4.30) can be carried 

out explicitly, then we will obtain the closed forms for pt{T — t) and PIT- Brody 

and Hughston have provided an example in [17,19], semilinear models, to illustrate 

this idea. However, we should point out that the form of the initial density given 
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in [17,19] is short of rationality. Only a litter modification on it deserves a more 

reasonable explanation. 

In [17’ 19] Brody and Hughston wrote 

roo 

Po{u) = / e—树 r ) d r (4.31) 
Jo 

for the initial term structure density, where (pir) is the inverse Laplace transform of 

po{u). Nevertheless, we suggest to write 
( 

POO 

Po{u) = / re-1 咖 r (4.32) 
Jo 

instead, where we use re"""" to replace in (4.31). This is because associated 

with po{u,r) = re""'" there is a flat discount bond Po{u,r) = e"""" with maturity u 

for a constant continuously compounded rate r. In other words, the initial discount 

function corresponding to (4.32) is given by 

POO ‘ 

Po(u) = / dr, - (4.33) 
Jo 

which can be regarded as a weighted superposition of elementary discount functions 

e—ur. Taking w 0, we find the function 0(r) should satisfy the normalization 

condition as a density behaves. Indeed, if we restrict our consideration to non-

negative functions, then 0(r) can be interpreted as a density function to characterize 

the distribution of the short rate r. Such a notion inspires us to treat the whole 

term structure as a superposition of "local" flat term structures on a continuously 

compounded basis. We will develop this idea further in Chapter 7, specifically when 

we try to explain why the Tsallis entropy is superior to the Shannon entropy in 

initial calibration. 

In order to complete the example on semilinear models, we will follow a similar 

procedure as shown in [17’ 19]. In the risk-neutral world we choose the martingale 
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family 

MTT = exp {{A + BT)MT — + BTFQ^ , (4.34) 

where Qt is the associated quadratic variation satisfying (dMt? == dQt. This model 

is obtained by setting Git = (A + BT)'di in Proposition 4.2, where the process dt is 

defined by dMt = t̂dW；. , 

Then the u-integrals in (4.29) and (4.30) can be carried out explicitly for pt{T-t) 

and PIT： 

约 ( 厂 � = j r m r { i r e - M . . d u ) dr 測 

—Jo'^Wr- dr 

J = S-mrUr^-^iudu) dr (4.36) 

Here the bracket expression in the integrand in the numerator is given by 

1 FIM* - \ 

where YtT = 土似‘洛、干(A + BTjy/Qt, and denotes the standard normal 

distribution. The sign 土 in YTR is chosen according to the sign of B. 

As an illustration of semilinear models, we take a Dirac function <^(r) = 6{T - R) 

as the distribution function for r and obtain the initial discount function PQ{T)= 

e-灯，corresponding to a flat term structure with a constant continuously com-

pounded rate R. As time t passes, the initial flat discount function evolves, however, 

randomly: 
" ( 土 干 （ A + B T ^ v ^ ) 

PIT = - 4 ^ f . (4.37) 
AA ( 土 干 （ A + 叫 

Finally, we have to write a few words about the similarity between our results 

and those obtained in [17,19]. Although the martingale family Mtr we choose here 

appears in an analogous form as Brody and Hughston’s, they are essentially different. 

MtT, defined by (4.14) in our work, is the exponential martingale associated with 
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the volatility structure atr in the risk-neural world, whereas Brody and Hughston's 

NtT�defined via 

NtT = exp ( J : V,T dWs V}r ds^ ’ 

is the exponential martingale associated with the volatility structure Vtr in the 

specified world with Â  二 一i^ These two martingales are linked by 

Nrr 
• ， （4.38). . 

where Nt = exp ( f^ Dg dWa - | J j ds) is the exponential martingale associated 

with Pt in the world with Â  = -i/f . 

4.3 Properties of the Pmposed Model 

Some properties of the proposed model have been briefly discussed in Chapter 2 but 

far from enough. In this section, some intrinsic properties will be further explored 

based on the formulas we have deduced in Section 4.1. Our focus is on the expressions -

and features of the short rate process. 

First, let us answer the question left behind in Chapter 2 — why the relation 

rt = pt(0) stands. In Section 2.4.3 when we verify the preservation of the normal-

ization condition in density dynamics given by (2.24), the relation (2.27) rt = P((0) 

has already been taken into use but without explanation. Here we attempt to an-

alyze this expression based on our discussion in Chapter 3. We have proved in 

Section 3.2.1 that the term structure density pt{x), associated with a b^nd priced at 

time t and maturing in x units of time, is actually referred to the annualized interest 

accumulated on the bond just after time t till the maturity. Mathematically, 

Pt{x) = /t.t-fxPt(x). (4.39). 
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In particular, when the bond is maturing, pt{0) represents the instantaneous interest 

of the maturing bond, i.e. pt{x)=几卜 By virtue of the relation (1.9) rt = /«，we 

clarify the relation =,々 （0). ‘ 

Second, an alternative expression rt 二 —Ep �"左：⑷ for the short rate process 

is more suggestive when we depict the evolution of the density process. In this form, 

Tt is actually minus the expectation of the gradient of the log-likelihood function 

w.r.t pi{x). Following this line, the evolution of the density function is alternatively 

characterized by 

dfh(工) fdinptix) 「川 n /9“ : r ) ]� 

An advantage of this representation is that the normalization condition on f)t{x) can 

be evidently inspected by observing 

Ep [ 樂 1 = 0. 
L PtM. 

Finally, by virtue of either expression for r^, Eqn. (2.27) or Eqn. (2.28), we find 

that the modeled short rates under the current framework are positive. Furthermore, 

the expression (2.28) rt = pf(0) ensures an reasonable range for the fluctuation of 

short rates. This is because is derived from an admissible term structure and 

its value is thus restricted within [0，1 . 

% 

4.4 Comparison With Traditional Models 

In order to find out the improvements over traditional term structure models, we 

compare the proposed model with the traditional models and present the key results 

in Table 4.2. Our focus is on the object of study, the role of market risk premium, 

the choice of volatility structure, and interest rate positivity of each model. 
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t(»rin strucliire deiLsity. S(h-oiuI, many powerful l(u>ls in sl alistics such as inl'oriTiat ioii 

gcHJinotry an�applicablo to ihc bliuly t>ii Finally, many <H,uii(miit: pn )p('rtio.s of 

rates, such as the proper findualioii raugt? anci intficsl rate posilivily, arc giiarantc(乂i 
. . . . - . . . 

• by t lu' liiaihornat k ai milure of tli<�term stnu tiire dciibity. 
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det.onniii«1 by two r«u lors: llit�initial lorin sli ucturo density /形(J) ami the volatility 
偽 

striRtiirr whi'rciii> tho iiuirket risk preiuium A, is innnaterialj lierall in the 

IIJM Miodcl. tho risk pmniiuiiiaLso provi^ to he irrelevant wlu-n we'price iiit eresi 
！ ‘ 

irtlc (i(Mivativi!s in tho risk-u<'Uiral worltl. This is a major (liiicroiuo l>(�t,\veeii tlic 

ILIM model and tlie nuxlels of short rates. It f"(»lk>w« thai more common grounds 

exist l)('tw(H'n tlu�pri>iKKSo(i model and the II.IM 川(><h�l. 

Moreover, the volatility siructuro wc rcroniiiKMui to use in t he risk-neutral 

world possesses zoro moan. By use of this vola.lilily structure, w«�- can obLaiii a 

.ronchsc marl iiigalc represent at ion Ibr discuimt bunds. 

Filially, by virtue of (2.27) r, 二 /)<((J). we can iiKorporat,e t't diretaly into the 

dynamics of pt{s) and thus guarautw interest, rate positivity in Lho proposed iikkIcI. 

It follows from the above discussion that it is the dual role of the Utmi struclnrf； 

(ItMusily as tlie probability dtULsiiy fiiiiclioii in mathematical research ami as the 

Hiiinializeti interest in financial practicc�一 that makes the proposed IIUHIoI stancl out. 

One more thing to b(�ineiitioned is that the initial term structure (iciisily raiinol 

straight Iy told from real markots. In Chapttr 7, we will iulroduco an initial 
'•r；'.； 

锋 ( alibrat ion riH'thod. whicli is (m the iiiaxitnizatioti of the J sallis eiitropv, io 

t raiL^lale Ihtf c urreiit iiiarkel. iiifonriaiiDii to the initial term structure (iensity. 
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Chapter 5" 

Design of the HJM Volatility 
Structure 

In a term structure model, the volatility structure is of tremendous importance in 

determining the ultimate properties of the resulting rates. For example, the bond 

volatility under the current framework should be vanishing both at the initial time 

and in the infinity future. It leads to the zero-mean constraint on the density 

volatility and thus guarantees interest rate positivity. On the contrary, an improper 

volatility structure may result in undesirable properties for the underlying model. 

For example, if the bond volatility of the HJM model is freely specified, the resulting 

rates may be non-positive. 

With this end in mind, in Section 5.1 we redesign the HJM volatility structure 

in the risk-neutral world for interest rate positivity. Besides, for convenience of 

simulation, we also develop in Section 5.2 the dynamics of the HJM bond volatility 

and ours, both under the current framework. Parallel results in the world with 

At = -v t (as Brody and Hughston proposed [17,19]) are obtained in Section 5.3. A 

comparison of observations in these two worlds is given in Table 5.1 in Section 5.4. 
’： 

7 3 

J 
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5.1 HJM Volatilities in the Risk-neutral World 

Comparing the HJM model and the proposed model, we find they both start with 

an assumption on the bond price process following the arbitrage-free condition. 

However, by use of different volatility structures, the proposed model successfully 

ensures interest rate positivity, whereas the HJM model fails. This inspires us to 

seek for the relationship between the HJM volatilities and ours, and then use it to 

redesign the HJM volatility structure for interest rate positivity. Our discussion will 

start in the risk-neutral world. 

To begin with, we review the key notations and stochastic equations (SDEs) in 

both models. All of them have appeared in the previous chapters and are listed 

• below only for convenient reference. The number on the left of each item is the 

equation number for each reviewed process. 

In the HJM model: 

(2.11) SDE for the bond value process Ptr'. 

祭 斜 n f 严 
nr 

(2.13) The bond volatility and the instantaneous forward rate volatility。(^似: 

昭M 二一 j : all〜s, 

(2.14) SDE for the instantaneous forward rate process ftr'. 

d f t T = a『严 J\HJM & + C —,’ 

In the proposed model: 
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(4.1) SDE for tht, bond value process 丁： 

» dPrr 二 十 y:tTd\V]\ 

( l.r)) k (1.()) The bond volatility and the term structure density volatility 

- • - ⑷ 二 - 夢 • 

一⑷ = p , { x ) f T , i x ) . 

(4.8) SUK for the term structure density process /�(.t): 

• . dpM = � + dt - Mx)nr,{x) dW；, 

• }• 

y � 
(4.16) The relation betvvt^ii the bond price and the term structure cleiisity: 

‘ . PtT 二 r fhi't - . 
JT 

In the MJM model，t he dynamics for I \ r in the risk neutral-world follow SDE (2.11), 

where iVfiĵ ^̂  denotes the discount bond volatility. The risk-neutral piocoss for f t r 

is (iiaraclerized by SDE (2.14). The forward rate volatility is coniicctcd lo 

the bond volatility via the integral (2.13), oi. ecjuivaleiitly. 
.、： -

HJM _ Oi^lr''^^ 卜 - n 

'7, '一 dT ‘ I ) 

‘ In the proposed model, the dynamics for PtT in tlie risk neutral-world follow . 

SDE (4.1), where E/r denotes the standard deviation of the bond. However, for 

convoiiioiue in our thesis we call EtT the bond volatility. The risk-neutral process 
for pf{x) is depicted -by SDR ( f.8)’ where <7,(jr) dfjnotes the density volatility. By 

» 
virtue of (4.5) arid (4.6), we find the relation between 1^"’ aiici <7“，（(T,'/ = a,(了 —/)): , 

•二 / fh(ti.- iWudu. (5.2) 
JT 

. R \ 
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Mr 

« 

Equations (2.11) and (4.1) arc used respectively in the two models to govern the 

bond price processes. If we assume the fsaino random source in both models, we can 

link their bond volatilities via 
寺 (5.3) 

i LT 

Surmning up matters so far, wc illustrate in Figure 5.1 the connections between 

P r o p o s e d M o d e l . HJM Model 
Voiatilities Volatilities . 

” r ‘ 1 n匪--"'T HJM ('丄 
、〜•山 I [ ； 一 I T < = - “ “ ^ ， 

^^ ’ i IT cT 
..•• •—•—••-— —- — —•— 知 • 命 '\ ̂  ^ ^ ^ ^ 1 

� f [• ZJ^J ^ 善 (JR丁 

f.\{T - h c T ’T —T UT -"'7- 一 厂如 

Figure 5.1: Volatility connections ^ 

the volatilities employed in the propose model and tlie IIJM model. The left part 
� 

enclosed in the yellow box exhibits the volatility connections within the proposed 

model, whereas the right part enclosed in the green box reveals the volatility con-

nect ions within the HJM model. The bridge linking both sides is equation (5.3). 

SubstiUiting (4.16) and (5.2) into, rtispectively, the denoiiiiiiator and the numerator 

of (5.3), we obtain • ‘ 
O/UM _ ^tr 一 It f'tju - t)atu du 
如 - 一 J-Mu-l)du ‘ (1) 4) 

which expresses the HJM bori(] volatility 严 in terms of the term structure (ieiisit.y 

process Pt{x) and the density volatility process cJtT under the current framework. 

- ‘ . r 

\ \ ‘ 1 
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Furthermore, applying the formula (4.10) for pt(x), we can define Q^tT^ via the 

initial term structure density 厂0(工)and the density volatility structure GIT-

St PM^iu exp (/o cTs. dW； - i cr^ ds) du 
^HJM 一 \ z 

— Ir PoM exp (/o dW： - i /J ds) du (5.5) 

- g t A p o , a ) . 

Here we use gtriPoyCr) to denote a process under the current framework that is 

parameterized by po and a. The notation gtT(po,(^) is chosen to make the {pq,(j) 

dependence more prominently. 

It follows from Eqn. (5.4) that the HJM bond volatility Vt^r^ can be regarded 

as the "normalized" weighted average of the density volatility atr w.r.t pt{x) under 

the framework of the proposed model. We use quotation marks here to indicate 

that it is not a standard normalization since the integral starts from T rather than 

t. As a consequence, for interest rate positivity the proposed model accommodates 

a richer volatility structure than the HJM model. This is because atr employed in 

the proposed model does not need to follow the asymptotic condition atr 0 as 

the bond matures T - t 0. Nevertheless, owing to the zero-mean constraint (4.7) 

on cTtr, in the HJM model is restricted to this asymptotic condition. 

So far we have derived the expression for the HJM bond volatility Q沪射 under 

the current framework. Next, We will probe the HJM instantaneous forward rate 

volatility and seek for its relationship with the proposed model. At the first 

step, for ô t冬J似 we need to take the derivative of Q洛�似 w.r.t T according to (5.1). 

The calculation would be complicated if we directly take the derivative of g in (5.5). 

Instead, we consider (5.3) and obtain 

^ = (5.6) 



7 8 5.1. H J M V O L A T I L I T I E S IN T H E R I S K - N E U T R A L W O R L D 

Noting the relation (3.14) ftT = w e deduce the representation for a芬"似 as 

(^tT^ = ftT [cTtT - ^tT^) 
(5.7) 

=ftT (CTtT — 9tT(po,cr)). 
The results established above can be summarized as follows. 

Proposition 5.1. For interest rate positivity of the HJM model, we define the gen-

eral HJM bond volatility in terms of the initial term structure density PQ{X) and the 

density volatility crt(x) under the framework of the proposed model: 

ahjm ^ , X -fr PoH^tu exp (/„ a，, dW： 一 | / J cr̂ ^ ds) du 
难 M A g t T ( j ^ � c j � = — 六 (5.8) 

IT Po � exp (/o cr,̂  dW：—去 / � d s j du 

where atu = (Tt(zx — t) is subject to the zero-mean constraint (4-7). gtripo, denotes 

a process under the current framework parameterized by po and a. 
The corresponding ^JM instantaneous forward rate volatility structure is 

= ftT {(JtT - gtriPo. (t)) , (5.9) 

where the instantaneous forward rate process ftr under the current framework is 

given by (4-22). ‘ 

As an application of Proposition 5.1，we will derive the risk-neutral process for 

ftT under the current framework. Recall in Chapter 3 we only provide the formula 

for ftT. The stochastic equation for f t r given in the below is thus more suggestive 

in simulation. 

Proposition 5.2. The evolutionary process for the instantaneous forward rate, 

which is associated with an admissible term structure and based on the filtration 

generated by a Brownian motion W^ in the risk-neutral world, is governed by the 

stochastic differential equation 

dftT 
-J- = -9tT{(^tT - gtr) dt + (otT - Qtr) dW*, (5.10) 
JtT 
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where the density volatility Otr = cftiT - t) can be specified exogenously subject to 

the constraint (4.7) and 仍T(Po’cr) is given by (5.8). 

Proof. This follows directly from equation (2.14) and Proposition 5.1. • 

5.2 Volatility Dynamics in the Risk-neutral World 

Because of Eqn. (5.2), the bond volatility Etr under the current framework is actu-

ally a stochastic process even when the density volatility process atr is determinis-

tic. Besides, based on the relation between and E^t, the HJM bond volatility 

对严 also follows a stochastic trajectory as the term structure density randomly 

evolves. For convenience of simulation, we develop the dynamics of T t̂r and 

as follows. 

Proposition 5.3. Assume in the proposed model the density volatility atr follows a 

deterministic process. Let a^ denotes the partial derivative ofatu 雷-t time t. Then 

the evolutionary process for the general bond volatility structure, which is associated 

with an admissible term structure and based on the filtration generated by a Browman 

motion W^ in the risk-neutral world, satisfies 

dLtT = [rtT^tT + J Mu_t�&tudu) dt+(J^ pt{u - t)al dv^ dW*, (5.11) 

where the term structure density pi{T - t) follows the dynamical equation (4-i2). 

The associated HJM bond volatility process = Qtr satisfies 

… 請 ” [ f 2 I? Pti^ - du\ f-Mu -物u 叫 
d路=^9tT 二 gtT [9tT ^ j + ^ 也 

— • 二 (5.12) 
V PtT ) 

where gtr is given by (5.8). 
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Proof. Taking the operation of the differentiation under the integral sign in ( 5 . 2 ) ， 

we obtain 
roo 

dEtr = J d{pt{u - t)atu) du. (5.13) 

Applying Ito's lemma and substituting the dynamical equation (4.12) for dpt{u - t) 

into (5.13), we immediately deduce Eqn. (5.11). 

For the process ^ ^ ^ ^ — gtr, we have 

^tT 
^tT 

by (5.4). For the risk-neutral process we obtain 

by Ito's lemma. Therefore, Eqn. (5.12) follows as a consequence of Ito's lemma and 

equations (5.11) and (5.14). • 

Proposition 5.3 provides a way to update the volatility structures timely and 

precisely in the two models so that the models can promptly reflect the latest market 

information. 

5.3 HJM Volatilities and Volatility Dynamics in 
t h e S p e c i f i e d W o r l d w i t h Xt = —i>t 

Proposition 5.1-5.3 are all presented in the risk-neutral world, where investors re-

quire no compensation for risk and thus the risk premium Â  == 0. In Brody and 

Hughston's work [17,19], however, At is specified by incorporating it into the volatil-

ity structure At = —Pf Here the density volatility process i/t(x) is freely specified 

and Ut denotes the expectation of w.r.t the term structure density pt(x). It 

is therefore natural to extend our discussion on volatility into the specified world 
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with At = -Dt. In the paragraphs that follow, we will develop a parallel theory of 

Proposition 5.1-5,3. First, for interest rate positivity we redesign the HJM volatility 

structure in the specified world. Next, for convenience of simulation, we develop the 

dynamics of the HJM bond volatility and ours, both under the current framework. 

As pointed out in Table 4.1 in Chapter 4, a major difference between the term 

structure dynamics in the two worlds — with At 二 -Pt and At 二 0 — lies in the 

volatility structure. If we use iyt{x) to replace at(x) in the formulas resulted in the 

risk-neutral world and change the risk-neutral measure to the original measure, then 

we will immediately obtain parallel results in the specified world. This inspire us to 

make necessary modifications only on the volatility structure and the risk premium 

in Section 5.1-5.2. To avoid a repeat of expressions appeared in the previous sections, 

we just restate the key expressions in the below and divide our discussion into four 

steps. 

Step 1. In the HJM model the instantaneous forward rate volatility 严 is still con-

nected to the bond volatility f l ^ r ^ via (5.1) 

� — w 

In the proposed model Eqn. (5.2), which is used in the risk-neutral world 

to describe the relationship between the bond volatility E^r and the density 

volatility A IT, is now revised to be 
/•oo 

Etr = J Pt{u - t){Vtu ~ iyt) du, (5.15) 

where Vm = This is due to the equivalence at{x) = ut{x) -Ut, as pointed 

out in Section 4.1.1. 

Step 2. The bridge linking both models, as shown in Figure 5.1’ is still (5.3) 

aHJM _ 
^HT — 

JtT 
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By virtue of Eqn. (5.15) for E^t, Eqn. (2.36) for Ptr, and Eqn. (2.35) for 

pt{T - t), we obtain the formula for QPp^^ in the specified world: 

炉JM 二 J T A ) � V k exp ( J j dW, - I f^ Kl ds) du _ 

tT !t P M exp (/o V^u dW, - \ Si VI ds) du 
- U t T - yu (5.16) � 

where 

/ r A ) � K u exp dW, — i fo' ds) du 
UtT = ^ ~ ~ . (5.17) 

ST Po(n) exp dW, - i / J V^ ds) du 

Step 3. For the HJM instantaneous forward rate volatility a 乐 , w e take the deriva-

tive of the bond volatility w.r.t time T and deduce (5.7) 

= ftT {cj,T - nti.'^) 

Substituting at{x) = Ut{x) 一 Dt and (5.16) into the above equation, we deduce 

the formula for af^JM the specified world: 

= ftT {VtT - Utr). (5.18) 

Step 4. We follow an analogous procedure as in Section 5.2 to develop the volatility 

dynamics of both models in the specified world with Â  = -Dt. To simplify 

some notations such as the derivative of Vtr — i>t w.r.t t�we remain the use of 

(JtT as the density volatility. 

The results established above are Slimmarized as follows. 

Proposition 5.4. For interest rate positivity of the HJM model, we define the gen-

eral HJM bond volatility in terms of the initial term structure density PQ{X) and the 

density volatility i/t(x) under the framework of the proposed model: 

^ t T ^ = UtT - (5.19) 
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where Utr 访 given by (5.17) and Dt denotes the expectation of VtM w.r.t pt{x). 

The corresponding HJM instantaneous forward rate volatility structure is 

^ 4 � = - "tiO ’ (5-20) 

where ftr given by (2.41) and Vtr = 一 t). 

Proposition 5.5. The evolutionary process for the instantaneous forward rate, 

which is associated with an admissible term structure and based on the filtration 

generated by a Brownian motion Wt in the specified world with At = -Dt, is gov-

erned by the stochastic differential equation 

• ^ = - UtT){ViT - Utr) dt + (VtT — Utr) {dWt - i>t dt), (5.21) 
JtT 

where the density volatility Vtr = - t) is freely specified and Dt denotes the 

expectation of i/t{x) w.r.t pt{x). Utr is given by (5.17). 

Proof. This follows directly from (2.14) and Proposition 5.4. • 

Proposition 5.6. Assume in the proposed model the density volatility atr follows a 

deterministic "process. Let dt^ denotes the partial derivative ofatu w.r.t time t. Then 

the evolutionary process for the general bond volatility structure, which is associated 

with an admissible term structure and based on the filtration generated by a Brownian 

motion Wt in the specified world with Xt = satisfies 

ciEtT = {rt^iT + AT) dt + Btr {dWt - Pt dt). (5.22) 

where Atr = f f Pt(u — t)(7tu du and Bit 二 /；̂  Pt{u — O^^tu The term structure 

density pt{T - t) follows the dynamical equation (2.31). The density volatility Otu = 

ai{u — t) is subject to the zero-mean constraint (4.7). 

1 
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The associated HJM bond volatility structure process =UtT — h satisfies 

d昭M = f (f/,^ - - dt 

. V ^tT J 尸tT • 

-{i^tT - - ^ ^ {dWt-Ptdt), (5.23) � 

where UtT is given by (5.17) and I't denotes the expectation of a freely specified 

process w.r.t pt{x). 

Equation (5.20) in Proposition 5.4 was first proposed by Brody and Hughston [19 

without proof. Proposition 5.6 provides a way to update the volatility structures 

timely and precisely in the two models so that the models can promptly reflect the 

latest market information. 

5.4 Summary and Discussion 

In this chapter we have redesigned the HJM volatility structure to ensure interest 

rate positivity. For convenience of simulation, we have also developed the dynamics 

of the HJM bond volatility and ours, both under the current framework. Our dis-

cussions starts in the risk-neutral world and then extends to the world with specified 

market risk premium At = -i>t (as Brody and Hughston proposed [17,19])’ where i?t 

denotes the expectation of a freely specified process i/t(工)w.r.t pt(工).Table 5.1 un-

folds a comparison between observations in the specified world and the risk-neutral 

world. This table is completed based on Table 4.1 in Chapter 4 by adding our new 

discoveries to the last three rows. 

First, we compare Eqn. (5.19) in Proposition 5.4 with Eqn. (5.8) in Proposi-

tion 5.1. It shows that in either world the HJM bond volatility structure is 

determined by a process under the current framework: UtT corresponding the spec-

ified world or gtr corresponding to the risk-neutral world. We call UtT or gtr the 
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The World With Specified F 
Market Risk Premium 
入尤=-Pj The Risk-neutral World 

Market 
Risk 
Premium Xj — —Ot • 
Degrees of 
Freedom “力⑷’ Pojx) crtjx), pojx) 

Mtr exp ( / J dW,-丨 J j V/t ds) exp {j^ a^r dW； - | J^ a^r ds) 

Volatility 
Structure "t(工）with no constraint (Jt(x) s.t. Ep [c7-t(a;)l = 0 J 

嗽M IhT - 口t (Ut丁 = 识:(-丄)仍r (财= 

g y ^ fiT(ViT - Utr) ItTi^iT - 9iT) 

d f t T K t . UtT GtT、9tT J 

Table 5.1: HJM volatilities for positive rates: a comparison between the world with 
specified maxket risk premium Xt 二 - h and the risk-neutral world 

’ dominant process. As shown in the bracket beside either UtT or gtT, the dominant 

process can be regarded as the "normalized" weighted average of the associated 

density volatility. In the specified world the density volatility process Vtr is freely 

specified, whereas in the risk-neutral world the density volatility CHT is restricted to 

possess zero mean. It is due to the zero-mean constraint on atr that we can rewrite 

识T as gtT - Oi for in the risk-neutral world, which appears in an analogous 

form as in the specified world. 

Next, we compare Eqn. (5.20)" in Proposition 5.4 with Eqn. (5.9) in Proposi-

tion 5.1. For the HJM instantaneous forward rate volatility 广,its process in 

either world is dominated by the difference between the associated density volatility 

or atr) and the dominant process {Utr or gtT). 
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Finally, we compare Proposition 5.5 with Proposition 5.2. For convenience of 

simulation, we have developed the dynamics for the instantaneous forward rate under 

the current framework. In either world, the forward rate process is also determined 

by the associated density volatility [Vtr or A IT) and the dominant process [UIT or 

‘ Qtr)-

To sum up, we find that in either world the dominant process and the density 

volatility process under the current framework are of most importance in redesign-

ing the HJM volatility structure. Since both the dominant processes Uit and gtr 

are further determined by the initial term structure density and the density volatil-

ity structure of the proposed model, the whole HJM volatility structure is thus 

controlled by two factors under the current framework; the initial term structure 

density and the density volatility structure. 

• End of chapter. 



Chapter 6 

Distance Between Yield Curves 

Since Chapter 3 our focus has been on the Dynamical Problem of the proposed 

model — to characterize the evolutionary trajectory of the term structure with a 

given initial point (initial term structure density po{x)). In this chapter, we will get 

down to the Distance Problem — to detect the distance evolution for a pair of yield 

curves. 

Typically there are three factors — models, parameters, and initial calibration 

methods — that would cause a pair of yield curves starting in the same market 

environment to progress differently as time evolves. 

First, when we apply different term structure models, a distance process would 

arise from the modeled yield curves. In this case, we study the distance evolution 

mainly for comparing the employed models and finding out the advantages of each. 

For example, as we have discussed in Table 4.2 in Chapter 4，models of short rates, 

the HJM model, and the proposed model all differ from one another in some aspects. 

Second, the distance process occurs when the yield curve dynamics are depicted 

by the same model but different set of parameters. Our discussion in Chapter 4 and 5 

has fully demonstrated the roles of volatility structure and market risk premium in 

determining the term structure dynamics. In this case, by studying the distance 

87 
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evolution we target at selecting a proper volatility structure in accordance with the 

risk premium process. 

Finally and most subtly, the distance process arises when the initial terra struc-

ture needs to be specified as an input and is calibrated with different methods. For 

example, the input of our term structure model is a density function rather than any 

raw data in real markets. Therefore, no matter what approach we use to translate 

the current market data to the initial density, the input will be different from the 

real distribution. For this reason, we need to study whether the initial error in term 

structure densities would disappear over time. 

For the choices of models and parameters (like volatility structures and risk pre-

miums) ,we have studied their influence on the term structure dynamics in Chapter 4 

and 5，respectively. In this chapter our aim is to depict the influence of different 

initial term structures on the subsequent evolution under the framework of the 

proposed model. To begin with, in Section 6.1 we supplement a proof to a key 
t 

proposition (first proposed by Brody and Hughston in [17]) in the study of distance 

evolution. As an illustration of this proposition, we consider in Section 6.2 the rel-

ative dynamics of two yield curves with different initial flat term structures but the 

same volatility structure and market risk premium. 

6.1 Distance Dynamics for a Pair of Yield Curves 

In Section 2.4.2 we have defined the spherical distance function of Bhattcharyya 

to measure the .difference between two yield curves. Given a pair of yield curves, 

we let pi(x) and denote the associated term structure densities on 7l\. The 

Bhattcharyya spherical distance is defined by 

<h2 = arccos ( ^ j 胁 乂 2 � ĉ a;)， （6.1) 
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where = The map p{x) — ^{x) associates with every yield curve in 

the real world a unit vector in the Hilbert space H = or equivalently a point 

in the positive orthant <5+ of the unit sphere in U. (pu is actually the angle between 

� 1 a n d � 2 . Because both the vectors have norm one, the value of (pn equals the 

spherical distance between the points on determined by the vectors & and 

At any time t, formula (6.1) provides the distance measure between the given 

yield curves. However, we are more interested in the dynamics of the distance, 

namely, see how differently one yield curve evolves from the other. We thus need 

to generate a process for the cosine of the spherical distance (f)i2 between the corre-

sponding yield curves given in formula (6.1). Obviously, an increase in cos(/)i2 means 

a decrease in the distance. 

Proposition 6.1. The evolution of the Bhatacharyya spherical distance </>i2 between 

a pair of yield curves, which is based on the filtration generated by a Brownian motion 

Wt in the world with market risk premium Xt, is given by a process for cos (pu defined 

via (6.1) that satisfies 
- 1 roo 

d COS 012 = i (n+r2)cOS(/»i2- x / ^ - o / (CTl � - 內 ⑷ ) 2 � 1 ( 工 � 工出 
[2 o Jo � 

+ i r {(Ji{x) + a2{x))^,{x)U^)dx {dWt-i-Xtdt), (6.2) 
2 [Jo -

where n = pi(0) and T2 = P2(0) denote, respectively, the short rate processes for 

the given yield curves, ai (i = 1,2； is the volatility structure of the term structure 

density process pi, which is constrained to the zero-mean condition (4.7). = y/Pi 

is regarded as a point evolving on the unit sphere S in the Hilbert space n = 

Note that the parameters in Proposition 6.1, such as r：, a,, a n d � { i = 1,2), are 

not constants but evolving with time t. The distance function (pu itself is also a 

time-dependent variable. Here we omit the subscript t to simplify the notations. 
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As we have discussed in the opening words of this chapter, our aim is to depict 

the influence of different initial conditions, rather than parameters, on the subse-

quent yield curve dynamics. Hence we employ the same volatility structure and 

risk premium for the yield curves. Specifically, as a consequence of the zero-mean 

condition (4.7) on crt, we set 

ĉ t = - Pt, (6.3) 

where Pt denotes the expectation of a freely specified process î t(工）w.r.t pt(x). More-

over, we assume lyi(x) = 1/2(2：) = //(x) and define 

POO 

i>i2 = jt U^MxMx) dx. (6.4) 

« 

Proposition 6.2. The Bhattacharyya distance process for two yield curves subject 

to the same underlying interest rate dynamics satisfies 

(\ 1 _ \ 
d = -(n +r2)cos0i2 - y / r ^ - -(i/i - P2) cos0i2 dt 

o / 
( 1 \ 

+ �i^i2 - + h)cos</)i2j {dWt + Aidt). (6.5) 

Proof. Since Proposition 6.2 is a special case of Proposition 6.1, it is appropriate to 

prove the more general result in Proposition 6.1. 

First, we rewrite the cos (pu definition (6.1) in terms of the term structure den-

sities Pi (i 二 1,2) as 
roa 

COS(p\2 — / y/pi{x)p2{x) dx. (6.6) 
» Jo 

By virtue of differentiation under the integral sign, we obtain 

poo 

d cos (pi2 = I dy/pi{x)p2{x) dx. (6.7) 
Jo 

Let /(Pi’P2) — \/pi(a:)p2(aO to simplify the notation. It follows from Ito's lemma 
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that the stochastic differential equation for d/(pi，p2) is given by 

� df J df � 
df[pup2) = — dpi + — dp2 

opi op2 
1 q2 j 1 f 

+ dpidp2 [ 如 [ d p u d p i ] + - — 2 [dp2,dp2], (6.8) 

where [X, Y] is calculated as the quadratic variation of ltd processes X and Y. 

Next, for the term structure density p： [i = 1,2), our results in Chapter 4 show 

that its process in the real world follows the stochastic equation 

dpi{x) = (^iPi[x) + ^ ^ ^ dt + Pi{x)ai{x) {dWt + � d t ) , (6.9) 

where the risk premium process Xt assumes to be identical for both density processes 

Pi and p2. Substituting SDE (6.9) [i — 1,2) into (6.8), we deduce 

+ i {ai{x) + a2{x)) f {dWt + � d t ) , (6.10) 

where the integral of 全 ( 缓 ^ ^ + 桌 ( w . r . t x) over the positive real line 

proves to be — y / r ^ after an integration by parts. Substituting this result along 

with (6.10) into (6.7), -we immediately obtain (6.2) and thus prove Proposition 6.1. 

Specifically, consider a pair of yield curves with different initial conditions but 

governed by the same volatility structure and market risk premium. A direct calcu-

lation leads to (6.5) in Proposition 6.2. • 

6.2 Divergence of Yield Curves With Large Initial 
Distance 

Observing Proposition 6.2, we find that the ratio of the geometric and arithmetic 

means of the short rates plays a critical role in determining the behavior of cos0i2. 
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If the initial yield curves are not so close to each other that the spherical distance 

in between satisfies cos (pu < T ^ ^ y then the drift coefficient in (6.5) is non-

positive. In particular, for the deterministic process for cos 012, namely, without the 

interference of the random source dWt + Xt dt, its evolution will be characterized by 

the ordinary differential equation 

f l — 1 \ 
^ cos 012 = +7^2)COS012 — \/̂ 1厂2 - g(厂1 — i^2)2cos0i2) dt 

which indicates an increase in the distance. 

However, the real challenge arises when the random source is taken up and adds 

uncertainty to the deterministic evolution. Specifically when we specify a market 

risk premium Xt such that the product [Pu 一 l{Pi + 1/2) cos ^12) Xt is positive, it 

will be hard to determine the sign of the real drift in (6.5). In what follows, we will 

investigate the complicated stochastic behavior of cos0i2. As the first attempt in 

this area, we will narrow our focus to a pair of flat initial yield curves, each initially 

dominated by a continuously compounded rate ( i=l , 2) but governed by the same 

volatility structure, i.e. 

Pi(2；) = 7\e-r口，2 = 1, 2; n ^ r2 (6.11) 

and 

"1(工）="2(2：) 二 ae七, (6.12) 

where a and b are positive constants. 

First, we obtain a lemma about the sign of the diffusion coefficient in (6.5). 

Lemma 6.1. Given two continuously compounded flat yield curves, for which the 

initial term structure densities are given in the form of (6.11) and the volatility 

structure is set via (6.12), suppose that the initial Bhattcharyya spherical distance 
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012 between is not sufficiently small such that 

cos 012 < 1 � • (6.13) 

Then the diffusion coefficient in the distance equation (6.5) is non-negative. Specifi-

cally, it vanishes if and only if the given yield curves (6.11) are identical, i.e. r\ 二 r). 

Proof. A simple calculation from (6.11) and (6.12) gives rise to 

- — 

Pi (6.14) 
6 + ri 

_ ar^ 
b + r2 

Substituting (6.14) into the diffusion term of (6.5)，we obtain 

1 d ( 7*2 \ 

-{i>\ + i^2)cos0i2 = - ( “ r i + h-\-T2j � ^ 如2. (6.15) 

Note that function f{r) = ^ (b > 0) is concave for r > 0. Then we deduce 

圣(Pi + i>2)cos<^i2 =a Q/{ri) + 臺 / � ) c o s 0 i 2 

<a • f (臺n + 臺厂2) C0S(/)i2 
1 / 、 丄 ( 6 . 1 6 ) 

一圭(n +r2)C0S(/>i2 

“ 全 ( n + � 2 ) 

where the first inequality is due to the concave property of function /(•) and the 

second inequality holds upon the assumption. It follows that the diffusion coeffi-

cient (P12 — + p2)cos(/>i2) in (6.5) is non-negative. It equals zero if and only if 

both the two inequalities become equalities simultaneously, namely, n 二 T2 for two 

identical yield curves. • 



9 4 6.2. D I V E R G E N C E O F Y I E L D C U R V E S W I T H L A R G E I N I T I A L D I S T A N C E 

The result given in Lemma 6.1 is only applicable to the initial state since the 

yield curves afterwards will not be continuously compounded flat any more. Now 

let us analyze the evolution of cos 0i2 when it just leaves the initial state, namely, 

during the first time interval [0, dt]-. 

First, we let 

=臺(厂1+r2 )cos0 i2 — 臺(î i — i^2)2cos0i2， （6.17) 

M0) = ^u - +i^2)cos0i2, (6.18) 

denote, respectively, the drift and the diffusion coefficients in (6.5). At the initial 

time t = 0, the drift coefficient can be further simplified as 

= - hfcos(/>i2, (6.19) 

since the initiaJ spherical distance is calculated to be cos ^lo = This in-

dicates a fulfillment of condition (6.13) in Lemma 6.1 with the equality sign. The 

diffusion coefficient /i(0) is strictly positive and will be vanishing when n = � 2 . 

Next, it is known that dWt, the infinitesimal displacement of a standard Brown-

ian motion, is normally distributed with mean zero and variance dt. For the distance 

equation d cos (̂ 12 = /4<p�dt + h((p)(dWt + A^di), we hence obtain 

力】， d cos (f)i2 - fi((p)di — h{d>)Xtdt ~ 
dVV, = ！ ^ ^ ^ ^ � d t ) . (6 .20) 

Furthermore, by dividing dWt by the standard deviation y/di, we normalize dWt 

and deduce a standard normally distributed term 

U = 一 『 二 � 1 ) (6 21) 

Given a probability 1 - a, where a usually takes a small value over the interval 

(0，1), we can always find the numbers -us. and us. such that U lies in between 
2 2 
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these two with probability i — a: 

< u ! } = 1 - a. ‘ (6.22) 

In fact, the positive number u^ is the upper a quantile of the standard normal 

distribution satisfying 

= (6.23) 

As is often the case, us. = 1.96 for a 二 0.05 and we call the interval [—1.96, 1.96] the 
2 * 

95% confidence interval of U. This means that with probability 0.95 the standard 

normally distributed variable U lies in the interval [—1.96, 1.96), or in statistics 95% 

of the sample following the standard normal distribution will fall into the interval 

—1.96, 1.96). Following this line, we conclude that the inequality below holds with 

probability 1 — a: 

d cos (j)i2 — fi{4))dt - h[(f))Xtdt\ < (6.24) 

or equivalently, 

{fi{(l)) + h{(t))Xt) dt - u号h�(f)�y/It < dcos012 < ("(0) + /i(0)Af) dt + u^h{(j))\fdt. 

(6.25) 

Moreover, if the market risk premium is bounded such that 

… 截 - 為 ’ (6.26) 
then d cos cpn < 0 with a probability no less than 1 — a. It follows that two yield 

curves with large initial distance (such that condition (6.13) is satisfied) would tend 

to diverge in a second after the initial time with a significant probability. ‘ 

From the above discussion we find that condition (6.13) in Lemma 6.1 still holds 

at time dt since cos (pu decreases during the first time interval [0’ dt]. The diffusion 
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/• 
i 

coefficient h{(p) in SDE (6.5) at time dt is, however, not guaranteed to be positive 

any more. This is because Lemma 6.1 is unavailable at arbitrary time when the 

term structure densities pi {i = 1,2) evolve away from the initial flat term struc-

tures (6.11). At any time 亡〉0’ the 1 — a confidence interval for dcoscp becomes 

(/i(0).+ h(^}\t) dt - ？ + dt + . ( 6 . 2 7 ) 

If the market risk premium Â  is bounded such that 

aid)) us. 

u{(b) U9. (6.28) 
、 & 識 + 7 1 ， … w < o � 

then the yield curves will continue to diverge from each o t i w with a probability no 

less than I - a . The results established above will be sumrrAized as follows. 

Proposition 6.3. Consider two continuously compounded flat yield curves with im-

磁 term structure densities (6.11) and the same volatility structure (6 .12) . Assume 

仇at the initial Bhattacharyya spherical distance (pi2 in between 'is not sufficiently 

small such that condition (6.13) is fulfilled: 

全(n + ”2) 

o.Tid that the market risk premium Xt is bounded such that 

• X < " � H f , n 
• … • ， … = 0 ; 

* � iiich) U9. 
for h{(f>) > 0 and t > 0; (6.29) 

� a((j)) Us. 
At > + for hicj)) < 0 and t > 0. 

Here and /i((/>) are given by, respectively, (6.17) and (6.18). The •parameter h 

w an arbitrary constant in (0, 1) and u^ is the upper a quantile of the standard 

normal distribution. Then the given yield curves will tend to %veTge as time passes 

with a significant probability no less than 1 - q, 

A 
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6.3 V Summary and Discussion 

In this chapter we have investigated the relative dynamics of two yield curves with 

different initial flat term structures but the same volatility structure and market 

risk premium. Each yield curve is initially dominated by a constant continuously 

compounded rate. By use of confidence interval, we have proved that the given yield 

curves tend to diverge with a significant probability under two conditions: 1) the ini-

tial difference is large enough (such that the initial Bhattacharyya spherical distance 

is larger than the arc cosine of the ratio of the geometric and arithmetic means of the 

two short rates; see condition (6.13) in Lemma 6.13 ); 2) the risk premium process Â  

is bounded within a certain range (see condition (6.29) in Proposition 6.3). For the 

given flat initial yield curves, the initial distance condition is always fulfilled. As for 

the boundary condition on Xt, we have to admit that it is not easy to fulfill in either 

theory or practice. A particular case arises in the risk-neutral world where 入t = 0 

and the condition (6.29) in Proposition 6.3 is thus satisfied. As a consequence, two , 

flat yield curves in the risk-neutral world would diverge as long as their initial rates 

differ (no matter how little) from each other. 

The phenomenon of divergence between two yield curves indicates that the initial 

error in term structure densities will lead to a significant bias in the subsequent 

predication for bond prices. For this reason, the initial term structure calibration is 

of tremendous importance in the whole term structure modeling. In the next chapter 

we will exert ourselves to developing a new initial calibration algorithm based on 

the maximization of the Tsallis entropy. 

• End of chapter. 
I 
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Chapter 7 

Initial Calibration of the Proposed 
Model � 

The first step to implement a term structure model is initial calibration — in our 

proposed model we need to translate the current market data to the initial term 

- structure density. Brody and Hughston [19] have introduced a model-independent 

calibration method based on maximization of the Shannon entropy. The idea is 

to treat the Shannon entropy as a functional of the term structure density and 

express the given market data as constraints on the density function. The advantage 

of such an entropic method is that it avoids over fitting of model parameters by 

imposing only minimal assumptions on the initial density. However, the use of the 

logarithmic entropy measure of Shannon leads to a grave drawback — if the only 

source of information used to maximize entropy is prices of multiple bonds with 

, different maturities together with the value of a perpetual annuity, then the resulting 

density function is necessarily of exponential form. Actually, the exponential form 

exactly describes the initial term structure density only when the underlying bonds 

are continuously compounded. Otherwise, it only approximates the initial density 

when the bonds are compounded at other specific frequencies. This shows that th台 

Shannon entropy is not a good candidate for the initial calibration. 

99 尸 
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In order to provide a general (no matter how frequently the observed bonds are 

compounded) description for the initial term structure density, we propose here use 

of the Tsallis entropy as the basis for entropy maximization. The form of the Tsallis 

entropy was first introduced by Havrda and Charvat in 1967 [28], parameterized by 

a constant a (also called the a-order entropy), in the context of quantifying clas-

sification schemes. It is initially applied to define the distance between parametric 

probability densities on a statistical manifold, and gives rise to the Fisher-Rao met-

ric [43]. In the current problem of initial calibration, the maximum Tsallis entropy 

distribution proves to be power-distributed and to be a general attribute in the sense 

that it reduces to the exponential distribution as a — 1 [14 . 

Interestingly, the power-law distribution for the initial term structure density 

can be identified from another viewpoint — the notion of superstatistics. We ini-

tially suppose that the term structure in a short term is flat associated with a 

constant continaously compounded rate, and further assume that the rate follows a 

X^-distribution. Therefore, the whole term structure could be regarded as a super-

position of local flat structures, and proves, to follow the same power-law distribution ‘ 

as the entropic method indicates if the only source of information available is the 

existence of a perpetual annuity. 

• This chapter is organized as follows. To begin with, we introduce in Section 7.1 

several types of entropy and highlight the superiority of the Tsallis entropy to the 

others. In Section 7.2, we present an iterative algorithm, which is based on the 

Tsallis entropy maximization, to determine the initial density in terms of the short 

rate and multiple bond price data. More observations from the comparison between 

the calibration algorithms proposed by Brody-Hughston and us could be found in 

Table 7.1 in Section 7.2.4. In Section 7.3，we propose another initial calibration 
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approach by use of the superstatistics concept. Many interesting properties con-

cerned with the entropy index, the mean of the short rate, and the annuity price are 

elaborated in Section 7.3.4. 

7.1 Introduction to Tsallis Entropy 

The family of Tsallis entropies of the density function p{x) is defined by 

5F)[PL = - 1 - ( l - r p'{x) d x ) . (7.1) 
q <7 - 1 V J~oo J 

Here q is the entropy index, a physical measurement originally used in thermody-

namics. In the limit g -> 1, the Tsallis entropy (7.1) reduces to 

roo 

5"[p] = - p(x) In p{x) dx, (7.2) 

J —OO 

which defines the Shannon entropy. In this sense, q actually quantifies the departure 

from the logarithmic entropy measure. 

In what follows we will first review the history of entropy in Section 7.1.1, par-

ticularly introducing the background of development of the Tsallis entropy. Then 

in Section 7.1.2 we will outline the general procedures for the maximization of the 

Shannon and the Tsallis entropies under simple constraints. Finally in Section 7.1.3 

we will explain why the Tsallis entropy stands out from the others that also produce 

power-law distributions. 

7.1.1 History of Entropy 

The concept of entropy has developed in a history of more than two hundred years, 

originated from a measure of lost energy in physical systems to a functional of 

density function in statistical studies. Roughly speaking, the history of entropy can 

be divided into four pe r iods : ‘ 
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1. 1800s — 1860s: entropy in classical thermodynamics; 

2. 1870s 一 1890s: entropy in statistical thermodynamics; 

3. 1940s — 1950s: entropy in information theory; 

4. 1960s — present: entropy in statistics and cybernetics. 

The concept of entropy was originally defined in the context of classical ther-

modynamics, to measure the amount of energy in a thermodynamic system that 

cannot be used to do work. Based on the work of Lazare Carnot and his son Sadi 

Carnot [l), Rudolf Clausius [2] was the first in history to name the quantity of 

lost energy S "entropy" and presented the first-ever mathematical formulation of 

entropy in a paper he published in 1865 [41]. Clausius continued to develop his 

ideas on entropy and stated in 1862 the second law of thermodynamics, that in any 

irreversible process a small amount of heat energy AQ is incrementally dissipated 

across the system boundary. Quantitatively, let AQ denote the changed heat of a 

body in the system, T the absolute temperature of the body, and define the entropy 

by 

S=等. (7.3) 

Then the equation 

Jf>0 (7.4) 
must hold for any cyclical process, where the equality holds for reversible cycles. 

We see that Clausius's definition for entropy is given purely from the macroscopic 

aspect. 

Nearly a half century later, an alternative definition of entropy was given in 

the context of statistical mechanics from the microscopic aspect. The most general 
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form for the statistical entropy 5 of a thermodynamic system is the Boltzmann-

Gibbs entropy, which is defined by J. Willard Gibbs [34] in 1878 after earlier work 

of Boltzmann: 

S 二 -kBY^PiYnpi. (7.5) 
i 

Here pi is the probability of the microstate i taken from an equilibrium ensemble and 

kg is a physical constant known as Boltzmann's constant If all the microstates are 

equiprobable in the thermodynamic system, Eqn. (7.5) will reduce to the form [22,24 

of 

S = kB Infi, (7.6) 

which was defined by Ludwig Boltzmann as early as in 1977. Here Q represents 

the number of microstates consistent with the observed macrostate. The statistical 

entropy (7.6) corresponds to the equilibrium configuration of the thermodynamic 

system and is therefore the parallel expression of the classical entropy (7.3) at the 

thermodynamic equilibrium from the microscopic aspect. 

An analog to thermodynamic entropy is information entropy. It was defined in 

1948 by Claude E. Shannon [21], an electrical engineer at Bell Telephone Laborato-

ries: 

H{X) = -KJ2 logfa P⑷). （7.7) 
i 

Here p(xi) is the probability of identifying an outcome value Xi out of a set of 

possibilities X, and b is the base of the logarithm, commonly taken as 2 if the 

entropy is measured in bits, e for nats, and 10 for digits. K here is merely a 

constant corresponding to the choice of measurement units. Consider a coding 

scheme in which a message is coded to identify a value Xi with probability 

p{xi) = r “ 
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over the whole phrase space X ’ where U is the length of the code for Xi in units b. 

Then the Shannon entropy (7.7) can be interpreted as the average message-length 

per datum that is needed to encode. 

An application of the Shannon entropy (7.7) in modern statistics is to measure 

loss of information when the exact value of a random variable X is unknown. At this 

time, log{, in (7.7) is regarded as the information content (or uncertainty) of X 

w.r.t output Xi. To extend this idea to the continuous case, the continuous entropy 

(also called the differential entropy) is defined [51], just as in the form of (7.2). There 

p{x) denotes a probability function w.r.t a continuous random variable X�and the 

logarithm is taken with the nature base unless otherwise specified (the choice of base 

does not affect the nature of entropy). Although the extension is carried out simply 

by replacing summation with integral, we should point out that the differential 

entropy loses some properties that the Shannon discrete entropy possesses. For 

example, the differential entropy (7.2) can be negative. Besides, it is not invariant 

under continuous coordinate transformations. However, such imperfections cannot 

reduce people's attachment for the differential entropy, and most often it is still 

called the Shannon entropy without confusion. 

It is worth noting that the other scientist who makes a big contribution to in-

formation theory is Norbert Wiener, a contemporary mathematician of Shannon. 

Norbert Wiener invented the filed of cybernetics, and articulated in his 1948 book 

Cybernetics [36] the close relation between communication and control. Although 

the cybernetic theory was first attached to biology, in Wiener's later work he at-

tempted to bring together Shannon's concept of entropy as a measure of uncertainty 

in communication [16], and defined the amount of information as “the negative of 

the quantity usually defined as entropy in similar situations" [36 • 
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Up to now, we have briefly introduced the entropy definition from three view-

points: classical thermodynamic views, statistical thermodynamic views, and infor-

mation theory views. A common ground among them is to assume entropy quantities 

like energy or information as extensive variables [3], namely, that the total energy 

of a system or information about an event is proportional to the system size. Such 

an assumption is reasonable most often, for example, when the energy exists among 

short-range interactions which hold matters together. However, suppose that we 

deal with long-range interactions, for example, gravity, and we can then find that 

energy is not extensive. It is therefore necessary to define another kind of entropy 

that can also cover the nature of non-extensive systems. The most eminent type 

of those desirable entropies is the Tsallis entropy (7.1), named after the physicist 

Tsallis. 

7.1.2 Maximization of Shannon and Tsallis Entropies 

We have shown that entropy, whatever definition is applied, is nothing more than 

the lost energy or lost information within a system. It follows that entropy is 

maximized when the information at hand is least. This is justified in an example 

where we employ the discrete Shannon entropy. Assume a gambler is trying to 

make money by toiling a coin and betting on the outcome. Let X be the random 

variable denoting the possible outputs {Head, Tail). If the coin is fair, the gambler 

would be in a hard plight since he could make no preference on the outcome. The 

information content of the outcome is null at this time and the entropy arrives at 

its maximum value one if the logarithm base is taken to be 2 and == 1 as we 

usually do in practice. On the contrary, if the coin is unfair, the gambler would bet 

preferentially on the most frequent result. In this case, the uncertainty is lower and 

correspondingly the Shannon entropy is lower. Just as G.N. Lewis pointed out in 
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1930, "Gain in entropy always means loss of information, and nothing new." 

The most eminent principe that reflects the information nature of entropy is the 

principle of maximum entropy. The principle was first explained by E.T. Jaynes in 

two papers in 1957 [22,23], where he explored a correspondence between the statis-

tical entropy and the information entropy. It states that the probability distribution 

that maximizes the information entropy is the only true distribution reflecting the 

information prescribed. Inspired by this idea, we attempt to determine the initial 

term structure density of our proposed model by maximizing some entorpy. To 

choose a distribution with a lower entropy would be to assume excessive informa-

tion we do not posses; to choose a distribution with a higi:|er entropy would violate 

the constraints of information we do possess. Thus the maximum entropy distribu-

tion would precisely reflect the current market information and is chosen to be as 

uninformative as possible. 

As an illustration of the principle of maximum entropy, we will outline the general 

procedures for the maximization of the Shannon and the Tsallis entropies under 

simple constraints. 

Shannon Entropy Maximization 

Given a set of functions { f j { X ) } for j = 1，...，n of a random variable X, we are 

told that the expectation of f j ( X ) w.r.t to an unknown distribution p equals af 

/ fj{x)p(x) dx = aj, for j = 1, - • • ,n. (7.8) 
J —oo 

Our aim is to determine the density p{x) that is consistent with the information 

given in the form of (7.8). Additionally, we also have the normalization condition 

f p{x) dx = l. (7.9) 
J —OO 
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Subject to these constraints we intend to maximize the Shannon entropy (7.2). This 

is accomplished straightforward by introducing Lagrange multipliers {Aj} and i/, and 

solving the variational equation 

Y- — / pM In p{x) dx - Va,- / fj{x)p{x) dx - aj 
op J-oo 丫 \J-oo / 

-iy( r p{x) dx - l ) = • . (7.10) 
\J-OQ J . 

The solution gives rise to an exponential density function 

1 i \ 

^ 1 , , exp I - E , (7.11) 

Z( / i，...，AnJ y j / 

where Z is known as the partition function and acts as the normalization factor: 

割Al,…，^^)二 r exp dx, (7.12) 
二 oo \ j J 

and {Aj} are determined implicitly by 

= a,. (7.13) 
OAj 

All the analysis presented above are summarized in the following theorem by Boltz-

mann. 

Theorem 7.1. Suppose U is a closed subset of the real numbers R and we are given 

n measurable functions / i , . •. ’ /n with n numbers a i ’ . . . ’ a„. We consider the class 

C of all continuous random variables which are supported on U and satisfy the n 

expected value conditions 

= for j=l’…，n. 



1 0 8 “ 7.1. I N T R O D U C T I O N T O T S A L L I S E N T R O P Y 

If there is a member in C whose density function is positive everywhere in U, and 

if there exists a maximum entropy distribution for C, then its probability density 

function p{x) is given in the form of (7.11), where the parameters Z and Xj are 

determined by, respectively, (7.12) and {1.13). Conversely, if constants Xj and Z 

like these can be found, then p{x) is indeed the density of the unique maximum 

entropy distribution for our class C. 

We observe that the resulting maximum Shannon entropy distribution is of ex-

ponential form. 

Tsallis Entropy Maximization 

Now we show how a power-law distribution is deduced by maximizing the Tsallis en-

tropy. Note that during the procedure of the maximization of the Shannon entropy, 

the available information, as shown in (7.8), is expressed as expectation constraints 

w.r.t the density function p{x). Under the framework of the Tsallis entropy, however, 

the single expectation constraint is expressed as the "generalized mean" value 

r f{x)p,(x)dx = a,, (7.14) 
J 一 OO 

W.r.t a new “escort” distribution pq [14,45] defined by 

咖 = (7.15) 

In conjunction with the normalization condition (7.9) on the original distribution 

p{x), our aim is to find the density p{x) that maximizes the Tsallis entropy (7.1). 

Introducing Lagrange multipliers a and we obtain the variational equation 

r f(x)Pg{x) dx - a , ) I = 0. (7.16) 
\J-oo J • 
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The solution of Eqn. (7.16) is 

全 （7-17) 

where the partition function Zg(P) is determined by the normalization condition as 

Z,{I3) = r [ 1 - P{q — dx, (7.18) 
J—oo 

and the Lagrange multiplier P is implicitly determined by the expectation con-

straint (7.14). It is immediately verified that in the limit q — 1 the power-law 

distribution (7.17) reduces to an exponential distribution 

p(x) = ^exp(-/3/(.T)) (7.19) 

with 

Z,= j exp ( -" / ( re) ) cb. 
J —oo 

Obviously, the limit case is exactly the maximum Shannon entropy distribution. 

The use of the escort density Pq here seems peculiar since the information we 

obtain from real markets, such as the prices of bonds or perpetual annuity, are 

mostly expressed in the form of traditional expectations w.r.t the original density p. 

Therefore, we introduce in the below an alternative manner for the Tsallis entropy 

maximization subject to the traditional expectation constraint 

r f{x)p{x) dx = a, (7.20) 
J —OO 

Here we have used the original density p to replace the escort density Pq in (7.14). 

Then we follow an analogous procedure as in the Shannon case by introducing the 
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Lagrange multipliers a, and defining the functional 

cPip) = ^ ( 1 - 厂 P'{x) dx^ - a ( J p(x) dx - 1) 
/ roo \ 

-aP{l -q)( f{x)p{x)dx-a] , (7.21) 
\J-oo / 

which is written this way for further calculation convenience. Solving the variational 

equation 器 二 0’ we immediately obtain the density function in the same form 

as (7.17). 

Since the distribution (7.17) is parameterized by the entropy index q, we often 

call it ^-distribution. It is important to emphasize that different choices of q deter-

mine different nature of the distribution. If f(x) = xm (7.17), then as g ^ oo, the 

g-distribution appears as a "window" function which is a constant over a finite sup-

port; as g — 1，the g-distribution reduces to the ordinary exponential distribution; 

whereas for 0 < g < 1, the distribution has power-law tails and p is used to control 

the width of the distribution. 

It is noticeable that some recent researchers [11,12] prefer to write the g-distribution 

in the form of 

p(x) = ^ (7.22) 

where q is defined by 

q-l = -{q-l), (7.23) 

Thus for 1 < g < 2, the fdistribution (7.22) with f{x) = x follows the power-law 

distribution. In the text afterwards we tend to adopt the popular form (7.22) instead 

of (7.17) unless specified otherwise. 

Before proceeding further, let us introduce other designations and major char-

acteristics of the maximum Tsallis entropy distribution (7.17) or (7.22). 
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First, the resulting power-law distribution is sometimes called the q-exponential 

distribution since it can be rewritten in an analogous form as the ordinary exponen-

tial form: 

P � = ^ e x p “ — 测 ) • （7.24), • 

The only difference lies in the definition of the exponential function, which is now 

replaced by the ^-exponential function 
I 

exp^(t) = [1-i-(g - , (7.25) 

which reduces to the ordinary exponential- form as g -> 1. Accordingly, the q-

exponential distribution (7.24) reduces to the ordinary exponential distribution as 

g — 1，just like the Tsallis entropy includes the Shannon entropy as a special case. 

Second, the ^-distribution (7.17) with f(x) = x^ is also called the q-Gaussian 

distribution. The motivation is illustrated as follows. It is known that the sum of a 

large number of small displacements in a Brownian motion is Gaussian distributed 

with a variance that grows with 'lime. This follows as a consequence of the central 
• * 

limit theory and is essentially valid when the elementary displacements are suffi-

> ciently decor related. However, the Gaussian is not the only limit distribution for 

the sum of random variables, especially in some complex systems in which the cor-

relations between variables are too strong to be omitted. Actually the g-Gaussian 

distribution is most often applies for the study of strongly correlated systems. 

Finally, the maximum Tsallis entropy distribution and the entropy itself re-

flect the information prescribed in a system from, respectively, the microscopic and 

macroscopic aspects. In Section 7.1.1, we have elucidated that the Tsallis entropy is 

used as a measure of the nonlinearly growing or dissipating energy in non-extensive 

systems from the macroscopic aspect. Meanwhile, in the level of microstates, the 

maximum Tsallis entropy distribution (7.17) is applied to characterize the distribu-

/ 
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tion of the sum of a number of strongly correlated variables in the non-extensive 

systems. In brief, the g-distribution (7.17) is the parallel expression of the Tsallis 

entropy in the microscopic world. 

7.1.3 W h y Tsallis Entropy 

-Treating the Tsallis entropy as a functional of the term structure density and ex-
(i) 

pressing the current market data as constraints on the density function, we can 

calibrate the initial term structure by maximizing the Tsallis entropy. But why the 

Tsallis entropy, and not else? 

In the preceding section we have explained why we prefer the Tsallis entropy to 

the Shannon entropy as the basis for our initial calibration. Depending on the value 

of entropy index g, the maximum Tsallis entropy distribution has quite a large fitting ^ 

spectrum and specifically reduces to the maximum Shannon entropy distribution as 

g ->• 1. Therefore, the Tsallis entropy allows for a richer structure for the initial 

term structure density. 

However, the Tsallis entropy is not the only one that produces the g-distribution. 

There exist three well-known different entropies, listed as follows, that are maximized 

by the g-distribution (7.17) under the single g-expectation constraint (7.14). 
1. The Renyi entropy [4,5]: 

_1 fOO 
Si用[pj = — I n / p'̂ (x) dx. (7.26) 

q 々 9 - 1 j-oo 

2. The Tsallis entropy [14]: 

勢 1 二 A (1 - / : 彻 — . （7.27) 

3. The normalized Tsallis entropy [7’ 40]: 

= 点 1 ) . (7.28) 
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The Renyi entropy is conventionally used for the definition of the generalized di-

mension in multifractals [13), and the Tsallis entropy plays a central role in non- -

extensive statistical mechanics [46]. Obviously, the Tsallis entropy can be regarded 

as the truncated form of the Renyi entropy or the normalized Tsallis entropy by 

eliminating the higher order terms in the series expansions of the latter two. All of 

‘ them converge to the Shannon entropy as the entropy index q tends to one. 

Following the standard procedure of entropy maximization as presented in Sec-

tion 7.1.2，the Renyi, Tsallis, and normalized Tsallis entropies all lead to the q-

distribution of the same type. This means that mere fittings of observed market 

data into the ^-distribution tells nothing about the kind of entropy we use. Thus 
( 

a question arises naturally: would it make no difference to use whatever kind of 

entropy? The answer is no. 

When we attempt to determine a density function by use of the entopic method, 

we should pick a "stable" entropy to maximize. Taking our proposed model as 

an example, we can elaborate the reason. An entropy is said to be stabje if 

the amount of its change under an arbitrary small deformation of the distribution 

remains small. In our model, let p denote the real distribution for the initial term 

structure and p denote an approximation to the real one. We measure the size of 

deformation from p to p by the l\ norm: 
roo 

\P- P\\i = / \p{x) - p{x)\dx. 
J-oo 

Suppose that the associated entropic basis in our initial calibration is unstable, 

namely, the functional 5[/?] has to possess the following property: 
% 

. . 3 e > 0 , V ( 5 > 0 , s.t. Hp-pill <S ^ 一 [ “ � > g. (7.29) 
^max 

where Smax denotes the maximal value of the entropy. Since entropy measures the 

information at hand, property (7.29) indicates that the information used to obtain p 
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and p differs quite a lot from each other. However, the market information (assume 

that all the information in markets is free for investors) are indifferent to all the 

investors. Thus a contradiction occurs. 

S. Abe [44] has shown that the Renyi entropy and the normalized Tsallis entropy 

are unstable and therefore cannot reproduce experimentally observable quantities, 

whereas the Tsallis entropy is stable and can provide an appropriate entropic basis 

for the g-distribution. 

To sum up, we have proved that the Tsallis entropy produces a richer term 

structure (compared with the Shannon entropy) and provides a stable entropic basis 

(compared with the Renyi entropy and the normalized Tsallis entropy) for our initial 

calibration. In the next section, we will introduce an initial calibration approach 

based on the Tsallis entropy maximization . 

7.2 An Initial Calibration Approach Based on Tsal-
lis Entropy Maximization 

In this section, we will.first show in Section 7.2.1 how the Tsallis entropy is applied 

in our proposed model to determine the initial term structure density subject to 

the prices of multiple bonds and a perpetual annuity. Next, in Section 7.2.2 we will 

explore the characteristics of the reulting distribution and particularly interpret the 

entropy index from the financial viewpoint. Following it in Section 7.2.3 we will 

design an iterative algorithm for determining the initial term structure in terms of 

the short rate and the specified bond prices. Finally, in Section 7.2.4 we compare 

our entropic calibration approach with Brody-Hughston's and present our discussion 

results in Table 7.1. 
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7.2.1 Maximization of Tsallis Entropy With Market Data 

To begin with, let us see how the principle of maximum entropy works with the 

proposed model when we are given a set of data points on the initial yield curve 

together with tb value of a perpetual annuity. The problem is to calibrate the 

initial term structure with the given data. . 

Recall that the term structure density p[x) in our proposed model is deduced by 
I 

the introduction of the tenor variable x (the time left to maturity). Assume that a 

set of bond prices prices {PoTfc} with different tenors {Tk} (k = 1, 2’ • • • , n, T^ > 0) 

are observed from real markets. As a consequence of the relation (4.16) between 

bond values and the term structure density function, Pon- can be expressed as the , 

expectation of step function /t^ w.r.t p[x): 

r pix)lT,{x)dx = Pot,, for /c = 1，2 …n， (7.30) 
Jo 

where the step function is defined by 

{ 二 ？ 会 . （7•叫 

In addition, we are given the initial value C of the perpetual annuity, which can be 

expressed as the mean of p(x): 

/ p[x)x dx — C- (7.32) 
Jo 

Without loss of generality, we will use the expectation constraint on an abstract 

function g(X) instead, which is given by 

r p(x)g{x) dx = U. (7.33) 
Jo 

Obviously, constraint (7.33) reduces to (7.32) when g{x) = x. � 

Subject to the constraints (7.30) and (7.33), together with the normalization 

condition (3.5) f ^ p(x) dx = 1, we then determine the density p{x) that maximizes 



7.2. A N I N I T I A L C A L I B R A T I O N A P P R O A C H B A S E D O N T S A L L I S E N T R O P Y 
1 1 6 M A X I M I Z A T I O N 

the Tsallis entropy (7.1). Following the similar procedure as in Section 7.1.2’ we 

introduce Lagrange multipliers a, A, and {/3知}’ and define the functional 

1 / . \ / \ 
cf>{p) 二 r 1 - / p'{x)(lx] -a( p{x) d x - l ] 

9 - 1 V Jo / \J0 J 

/ 广 、 — q : A ( 1 - q) / p{x)g(x) dx - U 
\Jo / 

“ / fOO \ 
- U P (x) / t ,W da:-Pox. j • (7.34) 

k—1 

Solve the variational equation = 0 and we obtain the density function in the form 

of 

* r “ 
p{x) 二 Cq \ - X [ q - m 工)-YMq - � > (7-35) 

L . J 
or equivalently, 

p{x) ^ (7.36) 
[1 + - l)9{x) + E L i 隨 - � 1 只 ‘ 

if we define q by (7.23) as most researchers prefer. Here the normalization factor Cg 

"is determined by 

r 1 ^ 
roo r “ 1 

Q = / 1 + \{q — l)9(x) + 豆 一 1)知J工） dx. (7.37) 
Jo L A:=l -

The Lagrange multipliers A and {j3k} are implicitly determined by, respectively, the 

the annuity constraint (7.33) and the bond price constraint (7.30). 

7.2.2 Interpretat ion of Entropy Index in the Proposed Model 

As a consequence of (7.36), we see that the pointwise calibration to the discount 

bond prices along with the information of the expectation of function g(X) gives a 

piecewise power-law distribution. Let us consider a special case in which the entropy 

index q tends to one. Comparing the limiting distribution with the one given by 
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Brody and Hughston [19] based on the maximization of the Shannon entropy, we 

can find more interpretations of the Lagrange multipliers A, {/5fc}, and the entropy 

index q from the financial viewpoint. 

Let q I. Then we have 

p{x) — Cg-e-辽=1 似 Tfc � ⑷， a s q - ^ l . (7.38) 

Specifically, when 0 < x < Ti, 

p{x) — (%-e-她. 

When n < x < Tk+i (/c= 1’. . . ,n), 

p{x) — Cg-e-(仇+...+如e-Ag�全 Cke-姻. 

where C^ = C^e" 馬.Thus we can write the limiting density in a compact form 

as 

p{x) — � � ’ as q 1， （7.39) 

fc=0 

where To = 0，T„+i = oo, /t^tui = 1 if 工 € [T ,̂ Tk+i) and vanishes otherwise. And 

Ck 一 \ C , e - 亡 f o r n<x< TUi，fc - 0 • 

Given the annuity price, i.e. g{x) = re in (7.39), we observe that the limiting initial 

distribution gives a piecewise exponential form, just as Brody and Hughston have 

obtained in [19]. In what follows we will find further interpretations of the involved 

parameters such as Cjt, A, and q. 

First, we consider the simplest case in which we are given only the value C of the 

perpetual annuity. Then the limiting distribution (7.39) becomes 

p{x) Xe-^, asq-^1, (7.41) 



7.2. A N I N I T I A L C A L I B R A T I O N A P P R O A C H B A S E D O N T S A L L I S E N T R O P Y 
1 1 8 M A X I M I Z A T I O N 

where A = ^ and accordingly Pqi = for the discount function. It follows that 

when the entropy index g -> 1, the maximization of the Tsallis entropy under the 

annuity constraint gives rise to a flat term structure with a constant continuously 

compounded rate A. 

Furthermore, we consider in more detail the case where the observed data consists 

of two pieces of information — the bond price PqTi for a fixed maturity T： and the 

value C of the perpetual annuity. Then (7.39) turns to be a two-piece function 

_ / C�「二 for 0 < x < T , (7.42) 

风工J — \ Cie-AT forTi<x<oo ^ ， � , 

which gives a continuously compounded flat term structure on each interval. Obvi-

ously, the parameter A plays a role as the long-term rate that dominates the trend 

of the term structure, whereas the parameters {Ck} (k = 0,1) reflect the piecewise 

information indicated by the bond prices for different maturities. Specifically, set 

a； = 0 and we obtain p(0) = Co, which indicates that Co is actually the initial short 

rate. All these observations are also available in the general case (7.39)，where more 

bond price data are taken up. 

Summing up matters so far, we observe that in the limit g — 1 the maximum 

Tsallis entropy distribution tends to be a piecewise flat term structure density on a 

continuously compounded basis, and thus recovers the maximum Shannon entropy 

distribution as a special case. In this sense, the entropy index q actually measures 

the departure of the current term structure from the piecewise flat term structure. 

Now let us turn back to the original maximum Tsallis entropy distribution (7.36). 

As discussed in Section 7.1.2, it obeys the power-law distribution only for 1 < g < 2. 

The larger diversity between q and 1，the larger distance from the flat term structure. 

Following this line of argument, we naturally impose an assumption on the value of 

q such that 9 = 1 + 去’ where N >0 and more precisely iV > 1 to guarantee q < 2 . 
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Then the calibrated initial term structure density (7.36), subject to the bond price 

constraint (7.30) and the annuity constraint (7.32), is given by 

pM =亡 ⑷ � 1 R lAM {7-43) 
I -I- i i i . 4 - i i T fc=o 1_丄yv 卞 

where To = 0’ T„+i = oo, ro = 0, Ir^^n^, = \ ii x G [71,’ Tk+i) and vanishes 

otherwise. For the involved parameters we illustrate their physical meanings as 

follows. 

1. Compared with (7.36), here we write C = Q to simplify the notation. It acts 

as the normalization factor in the density function. Moreover, we set x = 0 

in (7.43) and obtain p(0) = C�indicating that C is actually the initial short 

rate. 

2. Compared with (7.36), here we write r^ = Ej=i ft + 0) to simplify the 

notation and more importantly reflect the piecewise information indicated by 

the bond prices for different maturities. 

3. In (7.36), the Lagrange multiplier A is introduced in accordance with the an-

nuity constraint. In (7.43)，however, we use the notation R to replace A, which 

makes its roles as the long-term rate more prominent. 

4. Most importantly, the power-law exponent N in (7.43) accounts for the com-

pounding frequency of the bonds if all the bonds are compounded at the same 

frequency. 

7.2.3 Initial Calibration Algori thm 

In (7.43) we can determine the values of {r/J and R by use of bond prices for different 

maturities {T^} and the initial price C of the perpetual annuity. Then the initial 

t 
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short rate C is inferred since it functions as the normalization factor. Alternatively, 

we can regard the short rate C and the bond prices as the actual independent data, 

and then infer the annuity price This idea leads us to an iterative algorithm for 

determining the term structure in terms of the short rate and the specified bond 

price data. 

There are n + 2 parameters in (7.43): C�R and {r^} for /c = 1，.. •，n. Corre-

sponding to them are the n + 2 constraints, involving n bond price constraints (7.30), 

the annuity constraint (7.32), and the normalization condition (3.5). Alternatively, 

the constraint (7.30) for bond prices can be rewritten as 

广 p { x ) dx = Pot. - Potvm， for /c = 0’ 1，…n. (7.44) 

Note that the normalization condition is incorporated into the bond price constraints 

by adding up the integrals (7.44) over k. 

Substitute the power-law density function (7.43) into the bond price constraint (7.44). 

In order to guarantee the integraWUty of density function over the infinite interval, 

we assume iV > 1. A short calculation gives rise to 

^ [(1 + 5 ^ + V 广 - ( l + “ W ^ = _ (7.45) 

for A: = 0，1，... ’ n. Furthermore，substitution of (7.43) in the integral 位 p ( x ) x dx, 

if we assume N > 2 to guarantee the integrability, results in 
fTk+l 
/ p{x)x dx 
T̂k (7 46) 

_ CW2 + ^ + _ l + ^ + • 
= R^{N-l){N-2) [ ( l + ^ + ^T,)^-^ “ (1 + 诗 + j ’ 

by which the annuity price is given by 

CN^ + ^ + l ) p l l + ^ + 1)旁 

丑 斤 — 1 ) ( 斤 — ( 1 +劳 + 广 - 1 一 (1 +笼 + 旁 T …广 - i j (7 47) 
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Obviously, given the prices of multiple bonds {•PottJ (/c 二 0> 1’...，n) and the price 

of the perpetual annuity (，we can determine the values of C, R, and {r^} by solving 

the equations (7.45) and (7.47). The calculation is, however, quite complicated. In 

our experiment, we can alternatively regard the initial short rate C and the bond 

prices {PoTfc} as the actual information at our disposal. Then as a particular case 

of (7.45), for fc = 0 we obtain 

= ‘ （7.48) 

which can be used to solve for R in terms of the initial short rate C and the bond 

price 尸oTV Then, by substitution of R and further bond price data into (7.45) for 

general k, we can iteratively obtain {n：} (/c = 1, - • • - 1). Specifically, for k = n, 

Eqn. (7.45) becomes 

which determines r^ in terms of C, R�and 尸otv In this procedure, we just assume 

the existence of a perpetual annuity and could infer its implied value by the substi-

tution of the initial short rate and values of rjt and R into formula (7.47). Finally, 

the discount function can be determined by use of the fact that 

1 - Pox = [ pM du 
Jo 

=/ p{u) du + / p{u) du (7.50) 
Jo JTk 

_ CN [ 1 1 
二 1 - P饥k + [(1 + 诗 + 糾 广 1 - (1 + 笼 + , 

when X G [Tjt, Tfc+i). Thus the bond price Poi for x G [T*：, TUi) is given by 

„ CN r 1 1 1 w i � 

尸 。 : = - [(1 + � + 斜 广 1 — (1 + � + 射 “ - 1 j • (7 .5) 
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The results presented so far lead to an iterative algorithm for determining the initial 

term structure in terms of the initial short rate and the specified bond data points. 

Proposition 7.2. Given a set of bond prices {PqtJ (k = 1,2, - • • ,n) and the 

existence of the value of the perpetual annuity, the maximum Tsallis entropy term 

structure density function is given by (7.43), where To = 0, Tn+i — oo, tq = 0， 

I t � 1 = 1 if X e [Tk, Tk+i) and vanishes otherwise. Here N > 1 is the common 

compounding frequency of the observed bonds and defined via the entropy index as: 

N = " A t . (7.52) 
g - 1 

C is the initial short rate. The value of R is determined by equation (7.48). {nj 

(k = 1,2,- • • � n ) are iteratively determined by equation (7.45). The corresponding 

discount function Pqx is given by (7.51) for x E [T̂：, Tfc+i). 

We see that the calibrated initial term structure is piecewise power-law dis-

tributed if the observed bonds are compounded more than one time each year over 

their lives. Interestingly, when we are given the prices of bonds that are compounded 

more frequently, the calibrated term structure will become more flat until it reduces 

to the piecewise exponential distribution attributed to Brody and Hughston [19). 

Clearly, if there is further information at our disposal, then that can also be 

included in the system of constraints to maximize the Tsallis entropy. For example, 

we will consider a case where we are given a set of bond price data as well as 

the second moment of the term structure density, i.e. g{x) = x"^ in (7.33). For 

convenience of calculation, we specify the value of g, for instance, g = In other 

words, the observed bonds are all compounded semiannually. 

Proposition 7.3. Given the prices of a set of semiannually compounded bonds 

{î oTfc} f众=1，2’ • . . � n ) and the existence of the second moment of the term structure 
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density, the maximum Tsallis entropy term structure density function is given by 

P⑷二 E W ⑷ ， 二 2 ， (7.53) 
t^o [ajt + 

where Tq = 0, TN+I 二 oo, ao = 1, /�fcTUi 二 1 i/工 G Pl-, 了fc+i) and vanishes 

otherwise. Here C is the initial short rate. The value of P is determined by 

§ arctan(̂ /；0T )̂ + Y ^ ] = ^ —尸。了,. （7.54) 

{ak} (k = 1,2, •• • ,n) are determined iteratively by 

^ o n - P o n . . = 剖 一 V ? 了 一 - a — y j 了 》 

+ ( _ T t ± l Tk (7.55) 

The corresponding discount bond Pqi is valued by 

+ ( _ ？ , (7.56) 

for X € [Tk, Tfc+i). 

Proof. We obtain the density function (7.53) directly by substituting <7 = | and 

g{x) = into (7.36). 

Insert the piecewise density function (7.53) into the bond price constraints (7.44). 

A simple calculation leads to (7.55) for A; 二 0’ 1, . . •，n. In particular, for /c = 0， 

we obtain (7.54), which can be used to solve for P in terms of the initial shor^ rate 

C and the bond price PoTr Then by use of (7.55) for general /c, we can iteratively 

solve {ak} (fc = 1，2’...，n - 1) in terms of P and further bond prices. Specifically, 

for k = n�Eqn. (7.55) becomes 

^ ( ^ - a r c t a n ( � / ^ T U ) - = POT„. (7.57) 

2an V ^ \2 V a„ 乂 + PT^ 
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which determines Qn in terms of C, and Por„-

Substitution of (7.53) in the integral / � + ' p{x)x'^ dx results in 

[…p{x)x^ dx (aictSin{J—Tk+i) 一 a r c t a n ( \ / ^ T k ) ) 
Jn y ^ \ V a , Vafc / . � _ ( 7 58) 

_ ( n M 

by which the implied value cr̂  of the second moment of p{x) is deduced in terms of 

the initial short rate C and the bond price data {PoTfc}-

Ma, yc., ； (7.59) 

_ { Tm n Y 

Finally, the discount function can be determined by use of the fact that 

1 - Pox = [ P{u) du 
Jo 

pTk rx 
=/ p{u) du + / p{u) du 

r f 广 r ^ X (7.60) 
Q I I fW IP \ \ ‘ 

=1 - + [ ； ^ (^arc tan(^- . ) - a r c t a n { ^ - T , ) j 

+ { “ - Tk 

when X 6 [TFC，TVh). ‘ 口 

7.2.4 Comparison W i t h the Brody-Hughs ton Calibration 
Approach 

In order to find out the improvements of our initial calibration method over Brody 

and Hughstons's [19], we compare the two methods in Table 7.1. The results of 

the comparison are discussed from five perspectives: 1) the entropy form; 2) the 

maximum entropy distribution (MED) subject to a single expectation constraint on 
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The Tsallis Entropy The Shannon Entropy Connection 一 

Entropy 
Form 

^ 吉 ( 1 - IZo pg � 血 ) I Z o In P � dx S�T�—妒） 

MED “ 

With ‘ 
E[g(X)]= 
U 二 — — ^ C exp (-A分(re)) p � — p � as — 1 

n-i-Ma-lh(x)]^ ： 

Initial 
Call- • ‘ 
bration 
P � E L � , ? 广 ⑷ y i T ^ f ^ E : � / 芸 + 1 ( 命 / ： 6 - 彻 产 ） — , 3 5 iv — oo 

L J ^ J C7(” � f ‘ 

Para- - C(乃：initial short rate r^: initial short rate C(T)e-rr)〜jjp 
meters long-term rate /^⑶：long-term rate / ^⑴〜 i l ⑷ as N oo 

Table 7.1: The Tsallis entropy VS The Shannon entropy 

V 

g(X); 3) the MED calibrated against multiple bond price data along with the value 

of a perpetual annuity; 4) the interpretations of the involved parameters; and 5) the 

- connection between each pair of results associated with the two methods. In order 

to avoid overuse of symbols, we use the superscripts 5 or T only in the last row and 
( 

column to distinguish our Tsallis entropic method from Brody-Hughston's Shannon 
r 

entropic method. The step function /公+‘ used here is the same as hkn+i defined 

before but for saving space. 

To begin with, our calibration method is based on the maximization of the 

Tsallis entropy, whereas Brody and Hughston have chosen the Shannon entropy in 

their calibration method. As we have discussed in Section 7.1，the Tsallis entropy 
recovers the Shannon entropy as a special case as the entropy index g 1. 

蠛 Next, by use of the principle of maximum entropy and given the only expectation 
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‘ � . 

constraint on an abstract function g{X){X denotes the random variable), the Tsallis 

entropy produces a power-law maximum entropy distribution, called 夺-distribution 

with a reset entropy index defined via q — I = 1 — g. Here Cq functions as the 
» 

normalization factor, and A is the Lagrange multiplier introduced in accordance with 

- the expectation constraint. On the other hand, the Shannon entropy produces an 

� exponential function, where the normalization factor and the Lagrange multiplier are 

denoted by, respectively, C and A. In the limit q ^ I, the 夺-distribution reduces to 

, the ordinary exponential distribution. Since a exponential distributed term structure 

represents a flat term structure on a continuously compounded basis, the physical 

term q can now find its financial interpretation as a measure of departure from the 

continuously compounded flat term structure. 

Finally, assume that the information at our disposal includes multiple bond price • 

data observed from real markets together with the value of a perpetual annuity. 

Based on maximizing the Tsallis entropy, the initial term structure density proves 

f to be piecewise power-law distributed, where -

1. the normalization factor C is nothing new but the initial short rate; 

‘ • \ 

2. the Lagrange multiplier R in accordance with the annuity constraint proves to 

• be the long-term rate that dominates the trend of the term structure evolution; 
I 

3. the Lagrange multipliers {rjt} reflect the piecewise information indicated by 

， ‘ the bond prices maturing at different t i m e ; . 

4. the power-law exponent N defined via ^ = 1 — g actually counts the com-

pounding frequency of the observed bonds. 

On the other hand, the initial term structure density based on the Shannon entropy > » • 
’�• maximization proves to be piecewise exponentially distributed, where 
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1. ro represents the initial short rate; 

2. the Lagrange multiplier R in accordance with the annuity constraint proves to 

be the long-term rate that dominates the trend of the term structure evolution; 

3. {rfc} {k > 0) reflect a combination of information indicated by the pointwise 

bond prices and the normalization condition. 

Comparing the Tsallis distribution with the Shannon distribution, we see that 

the larger N is in the Tsallis entropy, the more frequently compounded bonds we 

are observing. When we are given the prices of continuously compounded bonds, 

TV — oo and thus the resulting piecewise power-law distribution converges ttr the 

piecewise exponential distribution. Since the piecewise exponential form (derived 

from the Shannon entropy) actually represents a piecewise flat term structure with a 

constant continuously compounded rate for each time interval [T ,̂ TJt+i)’ the entropy 

index q (or equivalently q) measures the departure of our calibrated term structure 

from flatness on a continuously compounded basis. 

7.3 An Initial Calibration Approach Based on Su-
perstatistics 

The entropic method we present in the preceding section suggests a research di-

, rection from the general term structure (with a compounding frequency N) to tip 

continuously compounded flat term structure as the entropy index q 1，or equiva-
f 

lently, N — oo, k question arises naturally: what if we reverse the study direction? 

, for example, we initially suppose that the term structure in a short term is flat 

associated with a constant continuously compounded rate and impose further as-

sumption on the rate. With this end in mind, we assume that the initial term 

t 
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structure density is "locally" characterized by a ordinary Boltzmann factor: 

= (7.61) 

where f { X ) denotes an abstract function and is specified when we are given some 

market information. Here the short rate P is taken as a constant in a short term 

but obeys a certain distribution in a long term. Our aim is to determine the whole 

term structure over a long time. This can be accomplished by use of the notion of 

superstatistics. 

In what follows we will start with an identification of the role of the "local" 

parameter /3 in Section 7.3.1. Subsequently, we will introduce the general idea of 

superstatistics in Section 7.3.2. Following it in Section 7.3.3 we will propose another 

initial calibration algorithm with the information of the price of a perpetual annuity. 

Finally, many interesting observations and properties of the resulting distribution 

are outlined-in Section 7.3.4. 

7.3.1 Clarification of Spatio Parameter 

First of all, let us illustrate the role of in distribution (7.61). 

In Section 7.1.1，we have introduced the major difference between traditional 

entropies and the Tsallis entropy. Traditional entropies are always applied to quan-

tify the energy used only between short-range interactions in a extensive system. 

The corresponding maximum entropy distribution thus reflects the decor relation 

between the variables in the system. The Tsallis entropy, however, can also be used 

to measure the energy between long-term interactions in a non-extensive system. Its 

corresponding maximum entropy distribution thus characterizes the strong correla-

tion between the variables in the system. Therefore, by maximizing the Shannon 

entropy — a kind of traditional entropies 一 subject to the expectation constraint 
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on f { X ) , the resulting ordinary exponential distribution (7.61) would locally stand 

only, namely, feJr a small range of values of the random variable X. 

Such a local density function is parameterized by the spatial parameter which 

can be regarded as a constant rate in a short term. Alternatively, if here the random 

variable is a measure of time, for instance, in our term structure model where X 

denotes the time left to maturity, then we say that distribution (7.61) is available 

only for a small time scale. To avoid confusion on the physical nature of X, we give 

a unified name to the parameter the spatio parameter. 

The role of the spatio parameter p can be further illustrated in the calibration 

method proposed by Brody and Hughston [19]. Assume we are given a set of bond 

prices {PorJ = 1，…’？"̂  expressed by 

r p(x)dx = Pot,. (7-62) 
Jl'k 

and the price of a perpetual annuity, which is expressed as the mean value w.r.t the 

term structure density by 
roo 

/ xp(x) dx = Q. (7.63) 
Jo 

Then the term structure density function that maximizes the Shannon entropy 

proves to be a piecewise exponential function in the form of 

1 / \ 
p{x) 二 � e x p -Aa; - ^ MfcM W ’ (7.64) 

V A:=l / 

where Z{X,fi) = exp ( - A i - X I L i ( 工 ) ) 血 is the normalization factor; A 

and {fik} are determined by, respectively, the annuity constraint (7.63) and the 

bond price constraint (7.62)."“工）is the step function defined by (7.31). Com-

paring (7.64) with (7.61), we find that the spatio parameter P in this case linearly 

grows as the random variable evolves from a short-time scale to a long-term scale. 
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This follows as a consequence of the fact that the step function controls the actual 

number of parameters { � } working on the density function. 

7.3.2 Basic Idea of Superstatist ics 

Inspired by the example illustrated in the previous subsection, we have a more 

general idea, assuming that p follows a particular distribution such that in the 

long-time run the whole term structure is described by a superposition of various 

Boltzmann exponential factors (7.61) with different /3, or in short, a superstatistics. 

Mathematically, the density function given a value of p in local is a conditional 

, probability density function p(x\p) given by the ordinary Boltzmann factor: 

咖 I 列 = 灯 ⑷ ) . (7-65) 

In the long-term run, the whole system is characterized by an average of local 

Boltzmann exponential factors by integrating over p. Thus the joint probability 

/0(rc, P) is given by 

p{x,P) = pix\P)h{P), (7.66) 

where h{/3) denotes the distribution of p. Finally, the marginal probability density 

function p{x) is obtained via 

p{x) = r p{x\m{P) dp 
J —oo 

• 二 [ exp ( - " / � ) d p . (7.67) 

The superstatistics approach has been applied in many physical systems, such aa 

Lagrangian turbulence [6,10,11], Eulerian turbulence [8], and defect turbulence [33 . 

In these turbulence systems, the velocity of a Brownian particle is assumed to follow 

a Langevin equation with the volatility coefficient cr. Thus the stationary probabil-

ity density of the velocity is Gaussian distributed with mean 0 and variance 
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where /3 � c t " ^ and can be physically interpreted as the inverse temperature of 

ordinary statistical mechanics. With a further assumption on /3 that P follows a 义-

distribution, the corresponding superstatistics for the velocity is given by the Tsallis 

statistics (7.22). Based on the power-law distribution, experimentally measured non-

Gaussian stationary distributions are successfully reproduced [9]. Following this line 

of argument, we see a link between the maximum Tsallis entropy distribution and 

the supersatistics. 

7.3.3 Initial Calibration Algori thm 

Now we attempt to design an initial calibration algorithm by use of the superstatis-

tics method presented above. 

At the first step, we should specify the conditional probability density function. 

In the short-term scale, it is plausible to introduce a continuously compounded flat 

term structure, for which a discount bond is priced by 

PQ{x\fi) = (7.68) 

where the local parameter P acts as a constant continuously compounded rate in 

a short term. For the term structure density p[x) = we obtain Pq{x\P)= 

i^e-气 or 

Z{P) = /?， (7.69) 

fix) = X, (7.70) 

if we rewrite the density function in the form of (7.65). It is immediately verified 

that the parameter P has dual roles: 1) the local short rate; and 2) the reciprocal of 

the mean of density function po{x\/3). Furthermore, it is known that the expectation 

of the term structure density is exactly the perpetual annuity so that P finds its third 

role. 
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The second step in the superstatistics approach is to find an approximate distri-

bution for the spatio parameter P. Given the data observed from bond markets, for 

instance, re-year spot rates, we can easily derive the real distribution of P. Here in 

our theoretical research, we assume that P is ^^-distributed with degree n, i.e. 

where r(-) is a gamma function and hence the x�distribution is also called the 

gamma distribution. In fact, the form (7.71) is usually used as the distribution of 

the sum of n squared identified independently Gaussian distributed random variables 

{V }̂ (z = 1,2, • • • , n) with mean zero. We write 

P (7.72) 
i=l 

and its expectation is calculated to be 

P = N (y / ) = r ph{p) dp = A). (7.73) 
Jo 

Here the integration interval starts from zero because we always assume the interest 

rate is positive. . 

Before proceeding further, we should clarify the reason for the choice of x^-
‘ . . � 

distribution. Recall in Section 4.2，we have introduced a Laplace transform expres-

sion for the initial term structure density: 

Po(T) = � P e - T _ d r (7.74) 
Jo 

where (f){l3) is the inverse Laplace transform of po{T). Accordingly, for the discount 

function we have 

Por= r(t>W)e-^dT. (7.75) 
Jo 

The essential idea behind (7.74) or (7.75) is the same as superstatistics 一 they both 

treat the whole term structure as a weighted superposition of local continuously 
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compounded flat term structures if 執 13�here is interpreted as a distribution for the 

short rate P, Specifically, consider the standard gamma distribution with parameters 

M and A 

射奶二 入似"""一 1 exp (一入外 （7.76) 

Substitution of (7.76) into (7.75) gives the formula for the discount bond: 

Pot = ij. (7.77) 
(1 + ？广 

Comparing the gamma distributions given in (7.71) and (7.76), we find A : 繁 and 

M = I. As a consequence, the discount bond with a short rate process which follows 

the x^-distribution (7.71) is priced by 

Por = — — - T 7 . • ‘ (7.78) 
(1 +等 ) M 

We see that with a x^-distributed short rate the discount bond is calibrated to be 

compounded at the frequency M = f over its life, with a constant annualized interest 

一 rate 0o = p. Thus the x^-distribution assumption makes sense in our calibration. 

Now let us turn back to the notion of superstatistics and proceed to the final 

step for determining the marginal distribution. Substitute Eqn. (7.69) for 

Eqn. (7.70) for / (x) , and Eqn. (7.71) for h{P) into (7.67). A short calculation gives 

rise to 

制 = 蒂 令 ‘ (7.79) 

Note that the term equals one for any integer n. Hence for the term structure 
厂(T)" 

density p(x) with a x^-distributed short rate process 卢’ we obtain a power-law 

distribution in the form of 

p{x) ^ ， (7.80)‘ 

1 + 细 - l ) x \ H 
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provided the following identifications are made: 

1 n + 2 - 1 . 2 . . 
^ = — ^ (7.81) 

= ^ 0 卢 二 ( 7 . 8 2 ) 
n 2 — g 

Sum up matters so far. We regard the yields of n differently-maturing bonds Pot^ 

(fc = 1,2, • • • ,n) as given information and assume there exists a perpetual annuity. 

If we further suppose that the yields are x^-distributed, then the calibrated term 

structure density is given in the form of (7.80). We summarize our discussion in the 

following proposition. 

‘ P r o p o s i t i o n 7.4. Given a set of yields {Rk} (k = 1 , 2，. . .，n � t o different matu-

rities {Tjt} and the existence of a perpetual annuity, if we assume the yields are 

X^-distributed with degree n, then the term structure density function is given by 

p{x) = (7.83) 

where C is the initial short rate; the values of q and n are related by (7.81); and P 

is determined via 

C = P[2-q). (7.84) 

The price of the perpetual annuity is inferred via 

where Po is determined by (7.82). The corresponding discount function Pqx is given 

by 

Pox = lEj. (7.86) ^ 
I p { q - i)xy-' 

• J 
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Proof. It follows from our previous discussion that the term structure density is (7.80), 

and can be rewritten as 

= ( U ^ ' (7.87) 

where we write a = P{q - 1) and 6 = to simplify the notations. C functions as 

the normalization factor. Moreover, C = /?{0), indicating that C is the initial short 

rate. 

Note that = = (7.81). Thus Eqn. (7.87) is integrable over [0，oo 

provided that 1 < g < 2. A simple calculation gives rise to 

(7.88) 

Jo (1 + axY a(b - 1) 

Thus the relation (7.84) is proved as a consequence of the normalization condition 
and expressions for a and b. 

Besides, since the price of the perpetual annuity can be expressed as the expec-

tation of the tenor variable: 

‘ E[X] = C , ( 7 . 8 9 ) 

it follows from the law of total expectation that 
roo 1 I n 

E{X] = E_ [E,^.)[X\f3]] = y � - ^ h ( P ) dp = - — . (7.90) 

Thus we have proved (7.85). ‘ 

Finally, the discount bond is valued by use of the fact that 

Pox = 厂 M d u (7.91) 

人 { l + auY 
一 C 1 (7 92) 

for X € [0，oo). Substituting the expressions of a, 6, and C into (7.92), we ob-

tain (7.86). 口 . 
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7.3.4 Observations and Propert ies 

We observe many interesting properties for the resulting distribution. 

First, equations (7.81) and (7.82) imply that 1 < g < 2, which precisely coincides 

with the range given in Section 7.1.2 and thus guarantees the power-law property. 

Second, with the definition N = OT equivalently N = the term structure 

density (7.83) is given in terms of p and N as 

p{x) = 「 1 ” " ， (7.93) 
1 +胜 
^ ^ N 

where TV, just as we have pointed out in the entropic method, still counts the 

compounding frequency of the observed bonds. In the limit N — oo�the calibrated 

term structure converges to the flat term structure on a continuously compounded 

basis. Moreover, as a consequence of (7.81) and (7.82), the mean value Po of the 

X^-distributed short rate tends to the long-term rate 0 as N oo. 

_ ... Furthermore, let us study the annuity pricing formula (7.85). We see that the 

price of the perpetual annuity does not equal, but differs a little from, the reciprocal 

of the mean value ft) of although given any fixed value for /? the corresponding 

annuity price equals If we are given continuously compounded bonds, namely, in 

the limit case iV -> oo or n oo, the annuity will be valued precisely at 吉. 

Moreover, let us study the expectation of the random variable X. For an indi-

vidual discount bond, the tenor variable X is actually the duration of this bond, 

measuring the average time one takes to earn back as much as it has invested on the 

bond. Consequently, E[X] calculates the mean of duration of a portfolio of bonds 

that mature differently and accordingly measures the average time one waits before 

recouping its investment on this bond portfolio. 

Finally, a few remarks about the difference between the superstatistics approach 
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and the entropic approach are outlined here. These two methods are supported by 

different principles, although they produce the same power-law distribution when 

the only source of information is the value of a perpetual annuity. The difference 

can be justified by use of the principle of minimum relative information [47], an 
* 

equivalent principle of maximum entropy. The relative information entropy is a 

non-commutative measure of the difference between two probability distributions p 

and q defined by 
D{p\\q) = (7.94) 

where p typically represents the "true" distribution of observations, while q repre-

sents a model or approximation of p. Given a prior distribution q, the principle of 

minimum relative information suggests to choose a posterior distribution p under 

certain constraints which is as hard to discriminate form the original one q as pos-

sible. Accordingly the information gained in D(p\\q) should be as small as possible. 

Following this line of argument, in our calibration if we assume the prior distribution 

as 

q{x) = Pexp{-Px) 

just as what we do in the superstatistics method, and further impose a constraint 

on the mean value such that 
厂oo 1 
/ xp{x)dx = 
J-oo 

then the minimum relative information distribution is given by 

, p(x) = bexp{—bx). 

It shows that given an exponentially distributed prior, the posterior distribution by 

use of the entropic approach is still exponentially distributed. Whereas the posterior 

distribution by use of the superstatistics approach is power-law distributed. 
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7.4 Summary and Discussion 

In this chapter we have designed two calibration algorithms for the initial term 

structure density, one based on the Tsallis entropy majcimization and the other 

based on superstatistics. 

Tsallis entropic approach 

Based on maximizing the Tsallis entropy, we determine the initial term structure 

density that is consistent with multiple bond price data and the value of a perpetual 

annuity. The idea is to treat the Tsallis entropy as a functional of the term structure 

density and express the known data as constraints on the density function. With 

the calculus of variations and Lagrange multipliers, we obtain a piecewise power-law 

distribution for the initial density. 

The initial distribution is parameterized by 1 - where g � s the entropy index, 

a physical measurement originally used in thermodynamics. In the power-law d i s - " 

tributed term structure density, the power-law exponent N is defined via ^ = l — q. 

We prove that N is nothing new but the compounding frequency of the observed 

bonds. When we are given the prices of continuously compounded bonds, N — 00 

or equivalently q I. At this time, the calibrated density function reduces to 

the piecewise exponential form. In this sense, the entropy index q essentially mea-

sures the departure of the current term structure from flatness on a continuously 

compounded basis. 

More observations from the comparison between the initial calibration algorithms 

proposed by Brody-Hughston and us could be found in Table 7.1 in Section 7.2.4. 

Superstatistics approach 

Inspired by the concept of superstatistics, we initially suppose that the term struc-

ture in a short term is flat associated with a constant continuously compounded rate 

% 
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P, and further assume that the rate follows a x^-distribution. Therefore, the whole 

term structure could be regarded as a superposition of local flat structures, and 

proves to follow the same power-law distribution as the entropic method indicates 

if the only source of information available is the existence of a perpetual annuity. 

The power-law exponent N in the initial term structure density is defined via 

去 二 為 ’ where n is the degree of the x^-distribution for the local short rate. 

We prove that N accounts for the compounding frequency of the underlying bonds. 

Many interesting properties of the current model are observed when we are given the • * 

� prices of continuously compounded bonds, namely, N — oo. First, the calibrated^� 

~ initial term structure becomes flatter on a continuously compounded basis as N 

increases. Second, in the limit iV — oo the mean value Po of the x^-distributed 

local short rate tends to the long-term rate. Third, for an arbitrary N the perpetual 

annuity price does not equal but differs a little from the reciprocal of the mean value 

Pq of short rate. In the limit N oo, however, the annuity is valued precisely at 
丄 ’ 
PO 

Finally, we should point out one future study direction of the superstatistics 

approach. Assuming that we are given more information, for example, the prices 

of multiple bonds for different maturities, we want to see if the calibrated density 

function under the framework of superstatistics is still power-law distributed. 
A 

V* 

• End of chapter. 
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Chapter 8 
# 

Implementation of the Proposed 
Model 

I 

Based on the theoretical study presented in the previous chapters, we implement 

the proposed model with initial data in the US swap market for 15 Feb, 2007. First, 

we analyze in Section 8.1 the raw data and the bootstrapped zero rates. Prelimi-

nary computation based on the US term structure data in swap market gives rise 

to forward swap rates and LIBOR forward rates. Besides, given market quotes for 

• implied cap volatilities, we immediately obtain the Black formula cap prices on 3-

month US LIBOR rates. Next, in Section 8.2 we calibrate the initial term structure 
J � � 

by maximizing, respectively, the Shannon entropy and the Tsallis entropy. Finally, 

we implement the proposed model in Section 8.3 and obtain the evolutions of short 

rates and bond prices over a long term. To test our model improvements over tradi-. 

tional models, we also run the simulation with the Hull-White model. A comparison 

of these two no-arbitrage models is presented in Table 8.7 in Section 8.3.3. 

8.1 Data Description 
t 

To implement the proposed model we use two data ^ets, kindly supplied by a large 

international bank, for 15 Feb, 2007: US term structure data in swap market to 

141 - � 
� 
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determine the underlying term structure of forward swap rates and LIBOR forward 

rates, akd US derivatives data on implied volatilities of caps. 

8.1.1 US Term Structure Data 
0 

The term structure data consist of the raw data observed from the US swap market 

and the zero rates bootstrapped from them. 

The raw data with different maturities up to 30 years are given in Table 8.1. 

The raw data includes spot LIBOR rates in money market, Eurodollar futures, and 

swap rates of different maturities. In the US market, spot LIBOR rates are typically 

used to define short-term LIBOR zero rates. Eurodollar futures are then used for 

maturities up to two years. For longer maturities, swap rates are applied. 

The corresponding zero rates, bootstrapped from the raw data and computed 

using continuously compounding, are provided in Table 8.2. Given these data, we 

plot the initial yield curve in Figure 8.1 together with the corresponding discount 

bond prices. Here the discount bond Pqt with yield y is valued by 

POT = ( 8 . 1 ) 

The blue circles on the initial zero curve represent the data provided in Table 8.2. 

Other zero rates are computed by linear interpolation at time nodes 0 < T\ < 7*2 < 

<Tn = T — 30 years, where T, = 3i months. 
9-

We observe a partially inverted yield curve in Figure 8.1. First, at a very short 

horizon there is a positive sloping segment, represented by the first four circles. 

This indicates a growing economy in the subsequent half a year, namely until Aug, 

2007. This is because a positive slope always reflects investors' expectation for the 

economy to grow in the future and for a rising inflation associated with this growth. 

With this expectation, the central bank will tighten monetary policy by raising short 
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Cash Kales Euro(i()lhii’ lures Swap Rates 
"l\)iiur Haio(%) Expiry Price T e i ^ Halc(%) 

Mar 07 94.610 2 - Y e a r - 5.215 
[-Week 5.30-11 Juii 07 94.()()5 3-War 5.115 
1-Montli 5.3200 Se]) 07 91.765 1-Year 5.130 
2-Month 5.3150 Dec 07 94.900 5-Year 5. MO 
:3-Moiitli 5.3600 Mar 08 95.010 7-Year 5.170 

Jim 08 95.065 8-Year 5.190 
Sop 08 95.105 9-Year 5.210 

10-Year 5.230 
12-Year 5.270 
15-Year 5.320 

- -iO-YoMi- 0.360 
30-Year 5.370 

� 

Tabic 8.1: Raw dala in the US swap market for 15 Feb. 21)(I7 

Zeri) llaXes ’ 
Tenor Rale(%) Tenor Rat(>(% 厂 

1-Day 5.3108 4-Year ‘ 5.0653 
l-Month 5.3695 5-Year 5.0768 
3-Month 5.3931 7-Year 5.1108 
6-Month 5.3853 iO-Year 5.1804 
1-Year 5.3167 15-Year 5.2923 
2-Year 5.1505 20-Year 5.3126 
3-Year 5.0802 30-Year 5.3414 

Table 8.2: US zero rates for 15 IVb. 2007 
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Initial Zero Curve 
0.056 1 1 1 ‘ I 

' 〇 Given data 
Interpolation data 

0.054 力 
( � .--e o 

隨 . 

0 05 1 1 ‘ ‘ 1 
‘ 0 5 10 15 ‘20 25 30 

Disount Bond Prices 
1 1 —I— ‘ 1 ‘ 

0.8 - _ 

0 . 6 - -

� . 4 - -

0 2' ‘ ‘ ‘ ‘ "“““—^ 
• 0 5 10 15 20 25 30 

Time left to maturity (years) 

Figure 8.1: Initial Term Structure 

term interest rates in the future to f̂ low econoiriic growt h and dariipen inflationary 

pressure. Next, starting from tlie fourth circle, the yield curvc is downward sloping 

and readies its lowest point at the eighth circle. This inverted segment indicates an 

expectation of interest rate cuts or oven an economic decline in the subsequent four 

years since 2007, particularly bottomed out in 2011. This is bccausc an inverted 

* yield curve always occurs when long-term investors believe the economy will slow ‘ 

or even decline in the future. With this predication, the central bank will loosen 

monetary policy by lowering rates to stimulate tlie economy. Finally, since the ninth 

circle, the slope of the yield curve becomes positive again, indicating the anticipation 

of a slow economic recovery between 2011 and 2012 and a full recovery afterwards. 
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< 

There are t,wo t uniing points on the initial yield curve Aug, 2007 (the fourth 

circle) and Feb, 2011 (the eighth circle) indicating, respectively, rate cuts and 

hikes. Recall the real economic environment since 2007. We have witnessed the 

� financial crisis V)rea.king out in the third quarter of 2008 and observed certain incli-

calious at the beginning of 2010 of the economic recovery. It remains to be seen 

if the recession has really bottomed out and a full economic recovery will come in 

2012 as expected. 

Moreover, the second graph in Figure 8.1 represents the bond prico as a iiioiiotoiie 

decreasing function of the lime left lo inaUirity. If tlie discount bond matures today, 

its value equals ihe face value one; otherwise its value reduces as maiiirily lengthens. 

Tlie term structure data can be used to evaluate forward swap rates and LI-» • 

BOR forward rates [26, 21]. Consider a forward swap with principle $1, where 

two parties agree to exchange at dates {T)十i,... ,Tj+j} the floating LIBOR rates 

{L(Ti),.. • , L(Ti+j_i)} for a fixed rate. The forward swap rate is the fixed rate that 

gives this contract zero initial value. The value of the forward swap rale al the 

present time 0�with maturity Tk is given by 

Swap = 严 - " 叫 _ . (8.2) 

The LIBOR forward rale as seen at'O for a period [Ti_i, Tjj is calculated by 

‘ J])=”�；厂 f p ' • (8.3) 

‘ Ui - l i - i )尸or , 

Using the discount bond prices c:alculatecl via (8.1)，we obtain the forward swap 

rates inatiiring from 1 year to 30 years and the LIBOR forward rates for various 

time intervals [了卜i, Ti] (Ti = 3i months). We display the values of swap rales 

in Table 8.3, and plot the behavior of swap rales and LIBOR rates in Figure 8.2. 
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Forward Swap Rales 
Tenor Ilate(%) Tenor 
1-Year 0 5 3 7 5.1333""“ • 
2-Year 5.1649 10-Year 5.1956 
3-Year 5.0973 15-Year 5.2860 
�4-Ycar 5.0862 20-Year 5.3256 
5-Year 5.0994 30-Year 5.3344 

Table 8.3: Forward swap rates 

Forward Swap Rates 
0.056 1 ‘ ‘ — ‘ ‘ 

e 

0.054 - J 

0.�5o 5 10 15 20 25 30 

Forward LIBOR Rates 
0.06 j 1 “ ‘ ‘ ‘ 

0.055 - ^ \ ： 

\ r - - ^ 
0.05- V v ‘ 

0 045' ‘ ‘ ‘ ‘ ‘ 
5 10 15 20 25 30 

Time left to maturity (years) 

Figure 8.2: Forward swap rates and LIBOR, forward rates 

In the first graph of Figure wc observe that tho swap rate curve exhibits an 

analogous shape as the initial yield curvc shows in Figure 8.1. The inverted segment 

- d u r i n g the first three years reflects investors' prediction for the economy to decline 

in the future until 2010. The flat curve between the third and the fifth data points 
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implies an economic adjustment during 2010 and 2012. Afterwards, the positive 

sloping curve indicates an economic recovery starting from 2012. In the second 

graph of Figure 8.2，we see that the forward LIBOR rate increases stepwise as 

maturity lengthens, although for very short (less than 2 years) and long (after 2Q 

years) maturities there are some exceptions. The stepwise trend is due to the fact 

that the forward rate is a piecewise function depending on the time interval it relies 

in. The flat trend after 20 years is due to the incomplete information on yields for 

that period — we are given only data on time nodes T = 20 and T 二 30 but without 

any other information in between. 

8.1.2 U S Derivatives D a t a 

The derivatives data we use here are daily quotes for the implied Black volatilities of 

at-the-money-forward (ATMF) US caps. The cap under consideration is a portfolio 

of call options on the 3-month LIBOR forward rate. Each option of the cap is known 

as caplet, which is observed at time T] with the payoff occurring at time Ti+i. The 

strike price of each ATMF cap is taken as the corresponding forward swap rate with 

quarterly compounding. 

The market convention to quote a cap price is to quote the implied volatility 

which sets the Black model price equal to the market price. Actually there are two 

types of implied volatilities, that put into the Black formula. One type is called spot 

volatility, namely, to use a different volatility for each caplet. The other type is called 

flat volatility, namely, to use the same volatility for all the caplets constituting any 

individual cap. The data given on the left side in Table 8.4 are the flat volatilities 

quoted in the market for caps maturing from 1 year to 30 years. 

There is a one-to-one mapping between the flat volatility and the present value 

« 
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Flat Volatilities Cap Prices 
Tenor Rate(%) Tenor Price(%)~ 
1-Year 13.92 1-Year 0.1576 
2-Year 15.39 2-Year 0.5261 
3-Year 15.88 3-Year 0.9854 
4-Year 15.66 4-Year 1.4710 
5-Year 15.30 5-Year 1.9646 
7-Year 14.58 7-Year 2.9619 
10-Year 13.94 10-Year 4.2699 
15-Year 12.71 15-Year 6.4842 
20-Year 12.07 20-Year 8.3716 . 
30-Year 11.48 30-Year 11.1256 

Table 8.4: Flat cap volatilities on 3-month US LIBOR for 15 Feb, 2007 

of a cap for a certain maturity. Specifically, for maturity Tk the cap is priced by 

k 
Cap = ^orATi 一 Ti-i) - BM{4)) , (8.4) 

t=2 

where F�= T-) is the LIBOR forward rate calculated via (8.3) and R 

denotes the forward swap rate given in Table (8.3) for maturity Tk. Af{-) denotes 

the standard normal distribution and 

= — ( l o g ( § ) + • 一 了 0 (8.5) 

4 = 4 - (^y/^u 

where cr denotes the flat volatility for maturity Tk. The cap prices for different 

maturities, each corresponding to the implied volatility given on the left side in 

Table 8.4，axe also listed in the same table on the right side, to make the equivalence 

between caps and implied volatilities more prominent.. 

We plot the implied flat volatilities and their corresponding cap prices in Fig-

ure 8.3. It demonstrates a typical "hump" pattern for the flat volatility curve. The 

peak of the hump appears at the third point, namely, in the year of 2010. A possible 

explanation is given as follows [29]. Typically, it is the central bank that controls 
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Flat Cap Volatilites 
0.18 j 1— 1 ‘ ‘ ‘ 

0.16- 伙 • 

0.14 - \ -
� � � - � 

0.12 - —；) 

0 1 ——————‘ ‘ ‘ ‘ ‘ 

0 5 10 15 20 25 30 

Cap Prices 
0.21 1 ‘ ‘ ‘ ‘ 

0.15 -

0.1 - „ ^ -

0.05 - ‘ 

qI o-^r^ ~ • ‘ ‘ ‘ ‘ 
0 5 10 15 20 25 30 

Time left to maturity (years) 

Figure 8.3: Cap prices and implied flat volatilities 

rates at the short end of the zero ciii vc and the traders determine the 2- and 3-year 

rates. For maturities beyond 3 years, the volatilities tend to dccline because of the 

mean version of interest raters. 

8.2 Initial Calibration 

The first stop to iiiipleiiiciit a tonii structure model is initial calibration. In Chap-

ter 7 we have designed an iterative algorithm, which is baseci on the Tsallis entropy 

maxiriiizalioii, to determine the initial term structure density iii terms of tlie initial 

short rate and the specified bond prices with different maturities. An alt.eniative 

algorithm is proposed by Bordy and Hughston [19] to maximize the Shannon en-
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tropy. Ill this section, given the short rate and bond prices {Pon} (indicated by the 

continuously compounded zero rates given in Table 8.2) with maturities {Tk} 二 1， 

2, 3, 4, 5, 7, 10, 15, 20，and 30 years, we will use these two calibration algorithms 

to calibrate the initial term structure for 15 Feb, 2007. 

This section is organized as follows: 

1. Calibrate the initial term structure density in Section 8.2.1 by maximizing the 

Shannon entropy. The results arc demonstrated in Figure 8.4- Figure 8.6. 

2. Calibrate the initial term structure density in Section 8.2.2 by iriaxiinizing the 

Tsallis entropy. The results are demonstrated in Figure 8.7 Figure 8.9. 

3. Inspect and verify the connection between these t,wo calibration algorithms in ‘ 

Section 8.2.3. The coiivergcncc of the maximum Tsallis entropy distribution 

as the-compounding frequency increases is demonstrated in Figure 8.10. 

4. The key experimental results are displayed in Table 8.5. 

8.2.1 Initial Calibration Based on Shannon Entropy Maxi-
mization 

The initial calibration is performed by the following steps: 

1. Deduce the maximum entropy term structure density p{x) = X^Lo [nT“��T.�rk(r 盼 

and the calibrated bond price Pqx 二 尸on —胁一叫 一 ,化）by following the 

steps indicated in Proposition 8 in [19] (proposed by Brody and Hughston). In 

the simulation, we assume x = Sr, i = , 1200 montlis and take the 

� maximum maturity x = 300 years as an approximation of the infinity future. 

2. Plot the initial term structure density funclion in Figure 8.4. 

I 
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3. Display Uie values of {r^} in TfxHe 8.5 and plot r^ as a function of in 

Figure; 8.5. 

4. Plot the calibrated bond priccs with different maturities up to 30 years in 

Figure 8.6, together with the given data in the same plot. 

5. Test the algorithm accuracy: 

(a) Test if 1；^ p(x) dx = 1; 

(b) Test il><(0) 二 n; 

(c) Test if the calibrated bond priccs coincide with the given data, by calcu-

lating the standard error 

SEE 二 E ( 戶 尸 广 ⑷ ) 2 ’ _ 
NN 

where PPcai denotes the calibrated data and 1)1) denotes the given data. 

N N counts the luiniber of bond price data. In our simulalion, N N == 

1201. 

. All the test values are displayed in Table 8.5. 

Figure 8.4 demonstrates the initial term structure density wil.h maturity horizon. 

The dccoasiiig trend in general is due to its Hiiaiicial role aa iiiK r̂csl return on the 

discount bond. However, (iiffereiit from the smooth trend indicated by the bond 

price curve in Figure 8.1, the density curve decreases stepwise. This is attributed to 

its piecewise nature, namely, over each time interval (Ta-, Tk~i) divided by the given 

maturilies, the density function decreases oxpoiieiitially. 

Figure 8.5 displays the parameter n of the rcsulUng maxirnuiii entropy distribii-

tioii, wliich reilttcts the in formation indicated by the values of available bonds over 
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Figure 8.5: Parameters r(Tfc) in the maximum Shannon entropy distribiitioii 

Tk, Tk+\). At the short end (over [0, 10]), the curve exhibits an analogous shape 

as the zero curve shows in Figure 8.1. However, after maturity 10 years, the curve 

is falling sharply since the bond price for long inaUiritios tends to be vanishing. 
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Figure 8.0: Calibrated bond prices together with the given data 
� 

Figure 8.6 demonstrates tlie initial calibrated values of bonds for different ma-

turities, together with the given data. We find a perfect match in betweon, which 

• shows that the calibrated density is a good camlidale for the initial lenn structure. 

Table 8.5 displays the conipiitod values of the involved paramel.ers and results 
� . . / 

for the tests carried out during the calibration procedure. The cxperimeiiLal val- / 
/ 

lies obtained from the Shannon entropic method are recorded in the third column. , 
f 

There N oo means that the bonds we consider in this experiment arc continu-

ously compounded. Pay particular attentitni lo llie laiit three rows. It shows that 

tho nornializatioii conclitioii is "almost" satisfied. The slight. <Utt(n.(�iK.(: from the the-

orotical vahio one is iiiiavoidciblo siiicx} a density fuiK tioii willi an infinity maturity 

is out (>r roach in siimilatioii. Furllicniiorc, tho zci.o difforciK'c b(�t\veeii "(O) and Vq . 
/ 

verifies that /)“0) actually represent.s t he short rale at time L. Finally, the standard 
t 

« ‘ � . 

error, dp.firied via Eqn.,(8.6), between the calibrated bond pricey and the given data . 

proves to bo negligible, which further (.onfirms our observation in Figure S.6. 
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8.2.2 Initial Calibration Based cm Tsallis Entropy Maxi-
mization 

\ 

The initial rnlihnUioii is performed by tli(�following steps: 

1. Deduce l lio inaxininin entropy lenii strucUiiv densily "(:r) = Y l̂̂ o ( • ' • ) ] - ”v 

. and the caliljrated bond price /)“，二 "on - "'V^n “ ~ ~ X 1 ： ~ ~ — 7 ~ 、 入 - 1 

l)v following tlu' s(;ops indicated in Proposition 7.2 in Chai)t er 7. Here .V de-

notes the compounding frecjiiency of discount bonds. In our .siiimlatioii. wc 

assiiiiie the bonds are coinpoiiiidccl nioiithly, i.e. N = 12. 

2. I Mot the initial tonii structure density function in Figure 8.7. 

3. Display the values of r(Tk) = Ce"^' in Table 8.5 and-plot jls a l.uii(:Lioii 

ol" Tk in Figure 8.8. 

4. Plot the calihratocl bond pric(\'5 with difioront iimturitics up to 3() years in 

Figure 8.9, together with the given data in the same plot. 

5. Test the algorilluii accuracy: 

(a) Tost if f�/)(:r)r/j, = I; 

(b) lest if M()) = n； 
I 

. ((.)lest, if the calibrated bond prices coincide witli the given data, by calcu-

‘ la ting the standard error (8.6). 

• All the tost values arc displayed in lable 8.5. 

Figure 8.7 shows the initial term stnictvire deiLsity with inatiirily liori/.oii. This 

figure looks quite similar to Figure 8.4, wliich {iis})lavs Ui(�iiiaxiiiiiiiii Shaiiiioii en-

Uopy distrihiilioii. In the next siibscclion, will floiiioiistralc liow tho Tsallis 
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> ‘ 

分 (listrihiuion approaclies the Shannon (lislribmioii iho compoiiiuling frequency • 

iiK muses. ‘ ^ 
‘ . 

• FiguR' 8.8 displays r{7l), which is deHiicd via r(J\�= Cr一. Such a tldinitkm 

is made to compare tho paraiiietor in tlu^ Tsallis case wilh /.人.in the Shannon 

I 

* 



1 5 6 8.2. I N I T I A L C A L I B R A T I O N 

Initial bond pr ices with N = 12q=1.0833 
1 r 1 1 t I.I » I • 

、\ PP g iven data 
\ P P - c a l by initial cal ibrat ion 

0.9 - \ ‘ 

0 . 8 - \ • 
\ • 

0.7 - \ \ -
s 

0.6 - .�.�� -
" � � 

0.5 - -
��� 

0.4 - \ 、 . -

> ��� 

0.3 • -

. 
^ O I I - -- i~ I. •.i„4..i ,1. I...I . , I • I II I — • » — . 11 .. • I mi • •• i I • I •“— 

• 0 5 10 15 20 25 30 
T ime left 丨o matur i ty (years) 

Figure 8.9: CalibiatcKl bond prices with the given data tf 

C8LS(' sncli that w(�can clearly observe how the Tsallis distribut ion coiivorges to ( lie 

Shannon dLstribution as the compounding frequeue}' A' iiicrcr\.scs. « 
• / 

Figure 8.0 demonstrates the initial calibrated values of bonds for (liffcrent niatu-
lilies, together with the given data. Wc obstTve a perfect maldi in between, which 
shows that ihc. calibrated density is a good candidate lor the initial ten" st.riiclun\ 

f 

We locorcl the Tsallis oxi)eriiiionlal msulls in ( lie last coluiiiii in Tahle 8.5. riiore 

N — 12 indicaU'S thut- tbe bonds we consider in this cxpeiiinciit ai.(i coiiiixMuided 

iiioiilhly. The paraiiieior values r{Tk) = are lisl.wi in the middle rows. Tlit� 

laxl three rows display the lost, resull..s for IIk; algorit liiii accuracy. First, tin; dciisily 

nature of p{x) is coiiliniicd by bliowiiig tlial llio noriiifilizatioii cuiiditicm . almoisr， 

hatisliod. Fiirtlionnurc, the zoro diflVnciicc hcXmvAi p{0) arid /•(, voiili(,'S that "<(()) 

ar.tiuilly represents the short rate at lime t. Finally, the slinidard error Ix'lween 

th(�calibrated bond pricey and tlie giv(m data pmvws to be negligible, wliidi furt her ‘ 

coiilirins our ol)8(;'i valion in Figure 8.9. 
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8.2.3 Connection Between the Two Calibration Algorithms 

111 Chapter 7 w(�have proved thai the pi(;c<nvise power-law (lisLribiilioii (derived by 

iimxiniizing the Tsallis (mtiopy) provides I he most general model for ilie initial lerm 

structure (loiisiiy l)ecauso the powor-law exponent N functions as the conipoiindiiig 

frequency of bonds. For example, if we are givcui the prices of monthly coiiipouiided 

bonds, vheii N — 12. Specifically, when the bonds are c(mUnuoi.isly compoimded, i.e. 

N — oo, lh(5 power-law dist ribution would reduce to the ordinary exponential form. 

To demonstrate this theoretical finding, we perform exixerirnenrs wit h (.•ompoiuuling 

frequency of, rospcctivoly, 1, 2. and 6 months, i.e. N = 12. 6, and 2. The calibralcd 

initial densities witli difiereiit coiiipouiidiiig frequencies are illustrated in Figure 8.U). 

The key oxperiiiientai results arc displayed in Table 8.5. 

III Figure 8.10 the curvc for N — oo is calibratwl l)y maximizing tho Shannon 

eiilropy and corresponds to the continuously compoimded boiidh. The curves for 

:V = 2，6, mul 12 arc calibrated by maximizing the Tsallis entropy and c.orrespoiicl 

to the bonds (•oiiipouridod, respectively, seiniannually, biinonrhly, and monthly. Wo 

obsene that for short niatiiriTies lass than 10 years il is hard lo distingiiish aiiiong 

lho calibrated term structure densities with ciyFerent coiiipouiKling fre(iiiend(�s. For 

long maturities larger ihaii 20 years, the (list iiictioii is ‘nklent. The semiannually 

coiiipovmdcM] cvirvt̂  Ls farMiesl away from the coiiLinuoiisly ( oiiipcmiidcd curvc. Ab the 
c'oiiipoiindiiig frociuoiicy iV increases, the density curve approaches the coiiliiiuously 

coinpoiiiKlod curve (.loser. 

liis;p(K-tiiig liic (lata rccortl iii Table 8.5. w(} find that for (̂ ac-li maturity Tk the 

value of vCh) (excluding /•(()), which is set to be tl)(i iiiilial .sliorl rate in all eases) 

in tilt? Tsallis caso bcKoiries larg(-r as ；V increases, alllioiigli I hey are always smaller 

than lilt; value obtained in t lie Shannon cas(\ Looking at the test rosiilis, \vb olwerve 

I 
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Figure 8.10: Initial term structure (iciisil.y with N -> oc 
« 

that the density integral with N = 2 diffeis a little from I lie theoretical value one. 

whereas l.lie integral wit.h N = 12 is qnile closc to one. Moreover, we also find that 

the staiulard error hoUvcH；!] the caUl)rat,c(i bond priccs ami the given data is reducing 

•cui tlie compounding frequency N increases. Specifically, the smallest error occurs 

when N "">00. All those phcnoincnoiis verify the relationship between these two 

calibration algoritliras, that the maxiininn Tsallis entropy dislrihutiori converges to 

t he inaxiniurn Shannon entropy distribution a» t he conipoviiiding frequency N tends 

to infinity. ， 

Note that we cannot conclude that the Shaiinoii entropy is a better candidate 

tlian the Tsallis entropy for our initial calibration, even lliougli in (.he Shannon 



C H A P T E R 8 . N E W M O D E L IMPLEMENTATION • ) 1 5 9 

Shannon Tsallis 
= E L � 办 n=�i?广⑷丨 1+“芬 

"parameters (%)' N-^oo N = 2N = 6N = 12 
Tenor I ^ 5.1359 5.1071 5.0998 
0 r(0) 5.3108 5.3108 5.3108 5.3108 
1 r(l) 4.9758 4.9534 4.9685 4.9722 
2 r(2) 4.9376 4.8919 4.9227 4.9302 
3 r(3) 5.0243 4.9608 5.0036 5.0140 
4 r(4) 5.1277 5.0446 5.1007 5.1143 
5 r(5) 5.1947 5.0622 5.1519 5.1734 
7 r(7) 5.3166 5.0752 5.2389 5.2781 
10 r(10) 5.4129 4.8982 5.2478 5.3312 
15 r(15) 5.2806 4.2136 4.9355 5.1096 
20 r(20) 5.0219 2.9413 4.3145 4.6681 
30 r(30) 4.7265 0.0000 1.7520 3.1771 

Test — 
~J^p(x)dx 0.9694 0.9970 0.9991 

p{0) - r(0) 0 0 0 0 
SEE (xlQ-^) II 2.2656 15.417 9.3252 5.8213 

Table 8.5: Experimental results in the initial calibration 

case the density integral is closer to one and the standard error is smaller. This is 
• 

because the original zero rates given in this experiment are computed using con-

tinuously compounding. If the zero rates are calculated using other compounding 

frequency, for example, sepniannually compounding, then the maximum Tsallis en-

tropy distribution with N = 2 will be the best candidate. In conclusion, we should 

select the proper value for N according to the real information on the given rates. 

8.3 Model Implementation in the Risk-Neutral 
World 

Given the calibrated initial term structure density, we come to implement the pro-

posed term structure model using initial data in the US swap market for 15 Feb, 
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2007. In order to test our model improvements over traditional models, we also run 

the simulation with the Hull-White model. This section is organized as follows: 

1. Implement the proposed model in Section 8.3.1 by using the Monte Carlo 

simulation. 

2. Implement the Hull-White model in Section 8.3.2 by constructing the Black-

Karasinski tree. 

3. Compare these two models in Section 8.3.3 in various major characteristics. 

8.3.1 Implementat ion of the Proposed Mode l 

In this section, we will show how to use the proposed model to predict the future 

bond prices. Without loss of generality, we start in the risk-neutral world, where 

the market risk premium is set to be zero. Considering the dynamical equations for 

pt{x) and Ti (see Proposition 4.1): 

dpt{x) = {RTPT{x) + dt + pt{x)at{x) dW：, 

� drt = [rl + ^ ^ ) dt + TtGt{x)dW,\ 

we implement the proposed model by the following steps: 

1. Calibrate the initial term structure Pq{x) by maximizing the Shannon entropy. 

(a) In this experiment, we choose the Shannon entropy, rather than the Tsal-

lis entropy, as our calibration basis because the original zero rates given 

in Table 8.2 are computed using continuously compounding. 

(b) Set Xmax = 300 years to approximate the infinity maturity and Ax =告 

to indicate that the ATMF caps under consideration are options on the 

3-month LIBOR forward rate. 
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2, Trace the evolutions of the density function pt(x) and the short rate n. 

(a) Set Tmax = 30 years since the initial zero rates are provided with maturi-

ties up to 30 years. Set Ai = so that we can predict the yield curves on 

120 time nodes. Divide each time interval [t, t + At] into 90 steps so that 

the evolutionary trajectory is actually daily updated. Pick 1000 paths in 

Monte Carlo for each simulation step so that there are totally 90 x 1000 

trials for each modeled yield curve at time node 7] = 3i months. 

(b) Rewrite at{x) == - Pt on account of the zero-mean constraint on at. 

Here i/tix) can be freely specified. For simplicity we assume i/(x) = ae—办工• 

Although "t(工）is independent of t, the volatility at(x) is still updated 

timely since the expectation i?t w.r.t pt varies as the term structure density 

evolves. To begin with, we use a = 0.1, ！> = 0.15. 

(c) Make a 3-dimensional plot of the term structure density pt(x) in Fig-

ure 8.11. 

.(d) Plot pt(0) and n in the same plot in Figure 8.12 to verify the relationship 

A(o) == rt. 

(e) Verify the normalization condition by calculating the density integral over 

0，oo). The integral results at a set of selective time slots are listed in 

Table 8.6. 

3. Compute the prices of interest rate derivatives. 

(a) Compute the bond prices Bt{x) at different time t with various maturities 

t + X. Make a 3-dimensional plot of Bt{x) in Figure 8.13. 

(b) Compute the yields of Bt(x) at different time t with various maturities 

t + X and make a 3-dimensional plot of it in Figure 8.14. 



1 6 2 8.3. M O D E L I M P L E M E N T A T I O N IN T H E R I S K - N E U T R A L W O R L D ‘ ‘ 

(c) Compute the LIBOR forward rates at different time t for time interval 

[t + Xi-i, t + Xi] and make a 3-dimensional plot of it in Figure 8.15. 

(d) Compute the instantaneous forward rates at different time t for a future 

time t-\- X and make a 3-dimensional plot of it in Figure 8.16. 

4. Auxiliary tests for the initial term structure. 

(a) Calculate the initial values of bonds in three different ways: first by in-

tegrating the initial density function, second by interpolating the market 

data, and third by calibrating with given yields. Plot them in the same 

plot in Figure 8.17. 

(b) Plot the model computed initial yields together with the market data 

(already given in Table 8.2) in the same plot in Figure 8.18. 

(c) Implement the finite difference scheme for the initial prices of caps by use 

of the model computed short rates and forward rates. Plot the resulting 

cap prices and the Black formula prices (already given Table 8.4) in the 

same plot in Figure 8.19. 

(d) Compute the flat volatilities implied by the model computed cap prices. 

Plot them together with the market implied volatilities (already given in 

Table 8.4) in the same plot in Figure 8.20. 

(e) Compute the sum of squared error (SSE. Also called least squares) be-

tween the implied volatilities originally provided and obtained from the 

model: 

= (8.7) 
X 

where dc denotes the model implied volatilities and cTc denotes the market 

data given in Table 8.4. 
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Figure 8.19: Cap price comparison � 
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TvsV ol Noniializatioii C'ondil ion 

1-Year 1.()()() 7-�V�ar l.OOa 
2-Year 1 .(>()() W-Yvav 1.1)0:3 
:i-\'ear 1.0(11 15-Year 1 007 
1-Y(�ar 1.001 20-War 1.01 1 
o-Voar l.()()2 3()-Y(�ar 1.023 

Table 8.()： Noriiiali/alion test 
> 

Figures 8.1 I, 8.12 and ' I able 8.6 (1(,川 llio nvsulls oblaiiuHl Iruin SU、!）2. 

Tilt�U�nn sir net lire density siirCaco in Figure 8.11 displm-s llic cvululioii ol" the 

(Iciisily curve for 0 < / < ."iO years. At any (iino /.. i IK; curve gives rise tu density 

• valuas with dilicncnt. mat iiiit i(>s up to 31)0 yt̂ ars and is sluwii to (.IcH-rciuse stt'invisc 

as iiuiturity Kmigtlions, just ；us llie initial (enii structure cknisity cm���behaves . 

^ Figure 8.12 deinonst rat.es (ho evoluUou of Ihv short rale. Wo obscrvo t hree Uiinj;s 

: hero. First, it. vorilics the relation ",(()) = n, namely, tliat the sliori rat(�can 1"� 

iiicorp()rale(i into t.lic term siructuro density. Socond, wo observe mean' reversion lor 

the short rah�curve. Spociiically, the sliDit rate values within 30 years aro lM)mi(lt'(l 

Imtweeri the niaxiimini value 0.05573 and the iiiiuiiinim value 0.01985. Ti»(Tcfoi(、， 

we c()m.hid(; that, the fliuauatioii of the short rale is l)o川k1(h1 within a rccLSoiiahle 
r 

range. 

. Table 8.() displays \ hv sum of (i isnvto dciisily rnucl ioii values ai. various sclcclivc 

time, all ol. wliicli prove to apijrondi ihv. uiiit IheoreUcal valiu'. Thus va, havr v(�rilie(i 

the nonuali/ation ronditioii ol" />f(:r). 

Figiims 8.13-8.1(3 (ienionstrauniK； results ohtaiiKul IVuiii Stej) 3. for tlic c'vc»liit ions 

of tlie bond price, tlio bond yield, (he forward rate, and the iiistaiilaiieous forward 

rate, rt!spoclivcly. TlK�y arc all iiitcmst mU�（ioiivativrs so tluil \\v n川 iiiiiiKMiiaU'ly 

nioclol their processes once tlie term si nict iin^ density pi.o(.(\ss m. I lie short rate 

{ 
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process is depicted.‘ 

The bond price surface in Figure 8.13 displays the evolution of the bond price 
•m 

curve for 0 < i < 30 years. At any time t’ the curve gives bond prices with different ’ 

maturities up to 300 years and is shown to be a decreasing function w.r.t maturity. 

. S i n c e Figure 8.14, we only display the corresponding values within maturity 30 

years since the values for longer maturities make no sense. Considering an individual 

bond, at time t we would predict its value only with maturities up to 30 - t rather • 

than 300 years. That is why we observe upper triangular shapes for the yield 

surface and the (instantaneous) forward rate surface. We find that the yield curve 

in Figure 8.14 at an arbitrary time t < 30 years still exhibits a partially inverted 
會 

shape as the initial yield curve shows. The (instantaneous) forward rate curve in 

Figures 8.15 (Figure 8.16) still increases stepwise just as the initial curve behaves, 

although the curve is becoming more smooth as time involves. 

Figures 8.17-8.20 demonstrate the results obtained from Step 4, exhibiting per-

fect match between the given market data, for instance, the given initial bond prices, 

yields, or cap values, and the corresponding model computed values. 

In Figure 8.17 we find a perfect fit among the bond prices calculated in three 
4 

ways: first by integrating the density function, second by interpolating the market 

data, and third by calibrating with given yields. 

In Figure 8.18 we compare the given yields with those model computed yields. 

A satisfactory match is observed, although there exists a slight difference for short 

maturities (less than 4 years) and long maturities (more than 20 years). The large 
• ， 

, difference at the long end is probably caused by the .incomplete information on yields 

after 20 years. 

� 
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In Figure 8.19 and 8.20 we compare the model computed cap prices or implied cap 
* 

volatilities with the market data given in Table 8.4. In both figures we find the model 

computed data do not fit the market data quite well. The smallest difference occurs 

at the initial time, indicating that our initial calibration is successful. However, 

since maturity 5 years, the gap is widening significantly and then tends to narrow as 

maturity approaches 30 years. Calculated results show that the sum of squared error ^ 
) 

between the model implied volatilities and the market data is as large as 9.344%. 

This indicates that there will be an error between our predicted values for the future 

bond prices or interest rates and the market data since in the current finite difference 

scheme we have used the predicted values. However, we have to point out that the 

error for bond price or interest rate should be much smaller than the error for cap 

price since a %1 error in the price of the underlying security may lead to a 25% error 

in an option price [29]. Such an error between model computed values and market 

� data is natural and expectable since the volatility structure used in our experiment 

is not carefully chosen. 

8.3.2 Implementat ion of the Hul l -White Mode l 

In this section, we will implement the Hull-White model in the risk-neutral world 

by constructing the Black-Karasinski trinomial tree [31]. Consider the dynamical 

equation for the short rate process r̂ : 
I 

dlnr(i)=剛-a\nr{t))dt + adWt, (8.8) 

where 6{t) = Fo(-f aFoi-|-f^(l — a n d Fqi denotes the forward interest rate seen 

at the initial time 0 for time t. To begin with, we assume the constants a = 0.15 

and a = 0.25 in Eqn. (8.8). The model is implemented by the following steps; 

1. Construct the Black-Karasiniski tree with At = which is calibrated against 

• , 
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• t he init ial yields given in Tahl(�8.2. 

(a) Display ihv l^lack-Kaiiusiuiski Ii.(m�of sliorL rales in Figure 8.21 lor tlm 

first 13 liine iioiles, namely, wit hin 3 years. -

(b) Make a 3-cliiiK'iisi()iial plot of llio sIkhi rales /., iii I ho triH；. Show ilif plot 

in l-ijrun- 8 . 2 2 . ‘ 

2. Coinpiitu the prk.n of a (liscoiiiit, l>omi iiiat.iiriiig in 31) >'(̂ ars at (’m:l» node of 
4 

1 ho t ic.e. “ 

(a) Display the Black-Karasiiii.ski t ree of bond prices i" Figure 8.23 for the 

first 13 time nodes, nainoly. within 3 years. « 

(b) Make a 3-(liiiion.sioual plot of the IkmuI prices Bt{x) in the live. Show Ur� 

plot in Figure 8.24. 
� 

. (c) Coin pan' the model aHiiputed homl jincos P0.30 wil h tlie luarkoi daia by 

calculating the standard error (8.6) in bel.wtMui. 

3. Auxiliarv tests for llio initial term slrvicturo. 

(a) iinpĥ MKUit t.ho iiiiitr <Ufl.(�i.()m.<�scIumik' lor tlu�initial jniccs dC caps by 

use of Uie short rat(\s in tlie Irinoiiiial tioe. Plot the resulting cap piircs 

• and t he Black formula pri(.t，s (Mlroady given Table 8.4) in llic sanio plot 

ill Figure 8.25. • -

(b) Coniputo the Hat volatilities implied by tlie model computed cap pri(.(�s. 
* 

Plot them together with tlie nutrkot impliod volatilities (already given in 

1al)le 8.-1) ill tli(» same plot in Figuro 8.26. 

(c) (Wipute the SSK, (lefinfd by l̂ qri: (8J), l)et\ve(Mi the implied volatilities 

- orii^iiially provided au<l obliiiiiecl from t.ho^iiodol. 

. � 
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1. Calibrate the parameters a and a by miniiniziiig the SSE between the model 

implied cap volatilitit^s and the given market data. 

(a) Redo steps 1 and 3 with difforciil values ol the paraiiKiteris a and rr. Searcli ‘ 

t.lie optiimil pair (a, rr) such that U i ( � S S E ( M i … d v ia Eqn. (8.7) readies 

the iiiiniinuiii. • * 

(I)) Plot tlie model computed cap prices after calibration in Figure 8.27, to-* 

get her with the market data. 

(c) Plot the model implied cap volatilities after calibration in Figure 8.28, 

toget liOT with the market data. • 

0 0 25 0 ̂  0 75 I i 2$ 1 5 1 75 2 2 25 2 5 2 75 3 
1 0 1SC8 0 1̂57 0 1547 0 IS3S 0 14(39 O tl，《 0 0 01 (J I 0 Itt- (I rt U<r 
2 0 1363 0 1254 0 1X6 G 1239 o lU； Q njj.t.4 (f 1110 01136 0 lllf 0 liU «1J0" « HTO 
3 0 1017 0 :010 0 1003 OftOOjt q vW>5? 0 W： OQoU UOSOI 0IV>1? U.ti«>fl6 0 OS®" (in?8» 0 CHM t 
A 0 0319 00813 n(wms 0tmii oo-t»- on,?j 0(i，36 no*：.' no-20 n̂*：： 00-if 
5 0 0 6 6 0 ftOb^l OOfM" m H U H n OoOf OtJ*»n II01»>1； i . � 0 * i t - ft O'^Hl 
6 O Of 0 0 * 2 4 0 0'；：I Q t W ^ f t 0 O l R " Q i W ' O O l r t " 0 0 0 4 V » 0 0 4 f t J i O n i C f c i O i l J " 

7 0 CM38 0 04：：： 0 04：0 0 0401 fl Onr̂Sl flOlS*^ tl O'W 0 01" «Ut-4 (! n;R4 
• 8 0 0345 30342 oouo 0 ojz.-. fi qU** on;o*> 0 o o v i r t nntir n 0̂ )4 oft-uij n 

9 0 0277 30275 0 3274 0 0；-； flCCoO 0 0 t i ^ r 0 0：!^ 0I125O «.0：4- 0 0 M 5 I I U : 4 : 0 0 : 1 " 

10 0 0223 00222 0 02:0 00210 f) urtr, 0 Ofî ai «OOrOl 0 » > C 
n 0 31SU 0 0179 0.0178 00177 0 0169 OtU办* OJMo： OtUMf l t f l l 6 Z OOlra i 0 01A<» U i J l * " ti O l o i 

I-

Figure 8.21: Black-Karasiiiski short rate tree 
i , 

‘ Figures 8.21 and 8.22 deinonstrale tiie results obtained from Slop 1, by construct-

ing the Black-Kariisinski troo. The Black-Karasiiiski tree is a trinomial interest rate 

U.ce. At cach time iiotlc, tho short rate can incroasc (move up), inaiiitairi (keep 

unchanged), or dQciVixav (fall down) with spc'dHcd probalrilitios. Here we use tor-

ward induction to construct the interest rate trw^ and display partial values of tiie 
� 

short rale in Figure 8.21 tm an ilhistrat.ioii. The nodes labeled with small nuriihers 
t 

. � * 
« 
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d l - p e n o d Sho r t Ra te T r e e be fo re p a r a m e t e r ca l i b ra t ion 
• f 

0.1 ” 碌 

1 � 

Matu r i t y (1 un i t =3 m o n t h s ) 
T r e e N o d e s 

• Figure 8.22: dt Period short rales before parameter calibration 

indicate tho growing direction of interest rates, whereas the largo number nodes in-

dicate the declining direction. We find that the resulting interest rates are bouiicled 

between the maxiiTiiini value 0.159 and the ruiiiiiriuni 0.0157. The short rate surface 

ill Figure 8.22 displays the evolution of the short rate curve for 0 < i < 30 years. • . i 

’： 

HoiwVt t rU tl.25 0.5 0.75 i 1.25 1-5 1 75 2 Z 2 5 3 5 2 75 3 

J 0.1244 01263 0 1283 0 130 2 0 1322 0 niO O 0 13-4 O l4iio « 141Z OJ-tSit 014*4 
2 0 H 0 4 O f ^ i S 0 1446 0 H 6 8 ft.J4袖 O . l f l t i tfcl̂ ：^ O . l f i " 0.1 f ^ f 0 0 I r t t i t (I ift；! 

3 0 1563 0 1535 0 U08 (i loM Q lo^f 0 Ju'o ft I，iS 04 " o 0 PcO 01 J OiW： 0 l»：： 

• 4 0 1717 0 1742 if i 0 I n }tio n IH4D 0 lSo.> 0.1 •H)" 0 OlP-^* 0二002 
5 0 O ifSil OJ•兮« 0 0 OIU•？ 0 0 :1:6 0 0 U ” 

6 0 ZUU 0 ZV42 U iO，<3 0 0 U f 4 0 2LSI 0 ：：：1«( 0 1 5 0 U ZZ91 O Z i l ^ 0 二广 

, 7 0 2155 0 2314 0::4“ 0 22'l 0 0 0 fl 二5>1» O UZO 0 Zi'ft ft 0 2<U 
書 

8 0.2291 0 2321 O .'.-Jf： 0 0 ZiXf P ：44' ti iMio 0 SMti ft (J 0 loV. 0 
f-

9 0 2420 0 24S3 0 2485 OZHk U IfJi 0 O-Jvi，0 20fO 0 2t>£S » Z'l' 0 n.M U ： ' i f - 0 ：<：0 . ‘ 

10 n 3545 0 2578 0 2613 0 2M7 l< loBi Q Z'lo 0 ：-_<0 II 0 ：»：0 (I ；»<« U ：*"!： '1 ̂ -JIK « ‘ 
11 0.2664 0 27J4 0 277 0 0 2806 M 0；*"* 0 t> 0 OJOoA 0 K̂it -< 

Figure 8.23: Black-Karasinski bond price tree 
9 

Figures 8.23 ami 8.24 demonstrate the n^sults obtained from Step 2, specifically 

displaying the bond prices in the Black-Kara-sinski tree and plotting thcni in a 3-

t 
t 

% • 
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Bond Pr ices before parameter cal ibrat ion 

• J . _ .I 
一. 

Tree Nodes ° 0 Maturi ty (1 uni t=3 months) 

Figure 8.24: Discount bond priccs before parameter calibration 
I 

dimensional graph. In Figure 8.23, the point at the intersection of the middle node 

• of the tree (node 6) and the initial .time (Year 0) gives the initial price Po,3o of the 
y -

discount, bond maturing at the end of 30 years. Comparing the model computed 

data with the market data indicated by the zero rates in Table 8.2, we calciilatc the 

absolute error to be 7.1524 x 10"^ (relative error is 3.5511 x 10"^), a quite small " 

difference in between. In Figure 8.24 we find that the bond prices at all niaturing 

‘ nodes (at time 120 months aus shown in the figure) tend to 1. The initial bond prices, 

especially those at node 1 with high interest rates, tend to be vanishing since the 

time there left to maturity is quite long. 

Figures 8.25 and 8.26 demonstrate the results obtained from Step 3. In those two 

hgurc wc compare the model computed cap priccs or implied cap volatilities before 

parameter calibration with the market data given in Table 8.4. In either figure we 

observe a large difference in between. Moreover, the SSE between the model implied 

volatilities and tlie market data proves to be as large as 2.175%. 
魯 

‘ i 
1 
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Cap Pr ices before parameter ca l ibrat ion 
0.141 1 1 • ‘ ‘ T 

f：^„ Mode led cap pr ices j 
" " ^ Market data j 

0 . 1 2 - … 一 • -

0.1 - 、广 ， . . ~ 

0 . 0 8 - i) , 十 • 

i " 丨 .令 

0.061- -

0 . 0 4 - 厂 . _ 

. 0.02 - • 
< M 

f ) "i*" I 1 1 ‘ ‘ -
0 5 1 0 1 5 2 0 2 5 . 3 0 

Maturi ty (years) 

Figure 8.25: Cap priccs before paiameter calibration 

Impl ied Cap Volat i l i t ies before parameter cal ibrat ion 
0 22 • r: ‘ • ‘ =n 

/ ^vj —e— Mode led volati l i t ies | 
.’ & ——^——Market data | 

0.2 - \ -

K 
0.18 - \ -

�� 
0.16- > � \ � 

/ 〉、‘ 、‘.、 
/ 、 、 、 ，,、 

0.14 - 4 �� . • 
、、、 ， . 

0.12f- • … 一 . 一 

. I 
I 

. 0 1 ‘ —' ‘ ‘ ‘ 
0 5 1 0 1 5 2 0 2 5 3 0 

Maturi ty (years) 

Figure 8.26： Implied cap volalilifuis heforc para meter calibration 

III order to iniiiiiiiizo the difference bctweoii the inocJel iinpliwl volatilities and 

the market data (equivalently to minimize the SSE), wo use fmi脚ardi fiiiiclioii in 

Matlab and deduce the optimal values for a and cr： 

a = 0.06906, ct = 0.17199. 
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Cap Prices after parameter cal ibrat ion “ 

— t ^ — Mode led cap pr ices 1 
^ Mnrket data 

0 1 - “ 

z 

0 . 0 8 - • 

0.06 - - _ 

0.04 - z ' • 

0.02 - 产 . • 

^ I • _ • 丄 - ‘ 

5 10 15 20 25 30 
Matur i ty (years) 

Figure 8.27: Cap prices after parameter calibration • 

Impl ied Cap Volati l i t ies af ter parameter cal ibrat ion 
0.161 1 1 I - I 

A . ~ e ~ Mode led volati l i t ies 
0 . 1 5 5 - ' ^ ^ 》 ^——Market data -

} r.� 
0.15- i \ -

0.145 - ( I \ -

0 .14 - i N l 
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“ Figure 8.28: Implied cap volatilities after paramotcr calibration 

Then wo find the SSE iiiiinaliatoly diiiiiiiiylics to be 5 x 10"^ Figure 8.27 and 8.28 

demonstrate the comparison after the parameter calibration. The mo(id implied 

volatilities, â  shown in Figure 8.28, fit the market data perfectly fur mast. tiin(»: 

except the s'light difference around 5 years and 15 years. 
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8.3.3 Comparison and Discussion 

Table 8.7 uiifokls a ttoinparison Ix^Uveeii lho proposed model and tlm llull-Whilo 

model in 13 major cliaraclerislics. We will condiicl a discussion in ihe below on the 

advaiiUiges of each model. For easier reading, tho ilein inunbcr l)oforo each del.ailwl 

slatoiiieiil. ('(n-respoiids to Uie nunibor in Table 8.7. 

A. These two models have the following siiiiilariti(!8： 

1. Both arc no-arbitrage models. 

2. Both aiitoiiiatically fit the initial term structure. 

4. Both exhibit mean reversion Cor the inofleled slioil latc evolution. 

B. The newly proposed model owns the following aclvantaftc^s ov(u- t.lio Hull-While 

model: 

3. The new model needs to specify fe\v(�r exienuil processes. Il is mainly 

controlled by Iwo stnicUiros only: llie initial term struct uit' and the 

volatility slructuro. However, tho I lull-While iiioclcl is also doiiiiiiaicd 

by the dynamics of the short rrtt(�. 

5. The new model giiaraiilcos inloresl ra t (�posi t iv i ty . whereas the I lull-

While model fails. 

8. The short rates resulting from the new nio(l<,l evolve with less MucUuitioii 
than those from the Hull-White model. 

9. Compared with the Hiill»\Vhitc iiiodol, the new inodel lewis lo Iv.̂ s rela-

tive; eiTor hcUvocn the iiio<lcl computed bond pricos aiifl t ho* markei data. 

C. The 11 nil-White inodol owns tlio followiiig adx'antagos over the newly proposed 

model: 

t 
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Ilull-Wliito Model New Model Coniriu^ls 

I. Model Typo No-arbitrage model No-arbilrage m o d d 

• 2. Initial Term St iuc turc Input. Input . 

3. Dc.grees o f Fm)(i()m r卜凡(,)，^ “ 

4. Mean R(>vcrsion fe ^ 

5. Positive Definite V ^ 

G. Nimicrical Schciiic IVinoiiiial tree Monte Carlo 

7. Sliort Rates A/.-ratos Instaiit.aiKXjiis rntes 
— less HucTii-

(0.0092, 0.2838] alioii fm 
8. Short. Hale Rmige (aftcir cal) [0.04985，0.05573] new model 

~ — less <.;nor 
6.73 X 1(广5 (after for new 

9. Rclalivo Error of Bond cal) ( U 3 x !()-" mo(ld 
( u ^ n^~~ 

cal); for HW 
10. SSE of Cap Volatility 0.005% (after cal) 9.341% inodel 

“ para cal roquirwl 
to iiiin the SSE of 

I I . Paraiiiet,er Calibration implied cap vol ； 

liiapproi)naU' 
rr i i i l c c i s l.hc atxm- vol s l r u c t u r c ! 

racv; even leadh l.o an more sensi-
12. Dcpcndcnoe but not availaliil- "cxplosioir" and tiv(i for new 
on (7 ity unavailability iiio(i(d 

Lime-

consuming 
- for 丨 lew 

13. Time Nwdcd Lass than 3 川in. iH 32川in. i訓 i( ' l 

Table 8.7: Coinparisoii of the prop(脱(i 川mid and the Hull-White model 
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6’ 7, 13, The most noteworthy advantage of the Hull-White model lies in the im-

plementation speed. Since the Hull-White model is manipulated by con-

structing a trinomial interest rate tree, the model implementation takes 

only a few minutes. Even when the parameter calibration is performed, 

the model implementation takes no longer than 3 minutes. On the other 

hand, the manipulation of the proposed model proves to be quite time-

consuming 一 around 1 hour and 30 minutes for each run. This is because 

here we apply the Monte Carlo simulation. The more trials we use in the 

simulation, the longer it takes to implement the model. • 

10. After the parameter calibration, the model implied cap volatilities in the 

Hull-White model fit the market data perfectly. 

11-12. Comparing the results obtained before and after the parameter calibra-

tion in the Hull-White model, we find that the optimal volatility could 

improve the model accuracy. Whereas in the proposed model an arbi-

trarily specified volatility would lead to unpalatable results. After trying 

• several forms for the volatility structure, we find that an inappropriate 

volatility may even result in an "explosion" during the implementation 

and leads the model to fail to work. In this sense, the new model has 

stronger dependence on the volatility structure. 

Above discussion shows that each model has its own merits and limitations. In order 

to explore more advantages of the proposed model and its availability in practice, 

we need to further refine our designs for the external processes. For example, we 

should choose a more proper form for the volatility structure to precisely reflect the 

volatility of market. Besides, a term structure model is most often implemented 

in a non-risk-neutral world, where the market risk premium should be taken up. 

I 
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However, in the financial industry the value of the risk premium is generally not 

assigned by practitioners but rather calibrated with the market information. That 
« 

is another research topic and deserves further study. 
r 

i 

« 

< 

• End of chapter. 



Chapter 9 

Conclusions and Future Works 
書 

9.1 Conclusions 

Following the initial study of Brody and Hughston on applying information geom-

etry to interest rate modeling, we have proposed a novel term structure model and 

investigated its application in the US swap market. Different from the traditional 

term structure models that impose assumptions on either bonds or rates, the newly 

proposed model is characterized by the evolution of a density function which is ob-

tained from the derivative of the discount function with respect to the time left till 

maturity. We have proved that such a density function can be interpreted as interest 

return on the discount bond. 

The introduction of the term structure density turns the problem of term struc-

ture analysis into a problem of statistical study on probability distributions. In our 

research we have tackled two major problems: 

1. Dynamical Problem — we have characterized the evolutionary trajectory 

of the term structure by developing the density dynamics; 

2. Distance Problem — we have depicted the distance evolution for a pair of I 
yield curves. 
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To fix the Dynamical Problem, we have followed three steps: calibrated the initial 

term structure density, specified the market risk premium, and chosen a volatility 

structure. 

First, we have introduced two initial calibration methods, one by maximizing 

the Tsallis entropy and the other by the notion of superstatistics. With the entropic 

method, the explicit form of the term structure density function proves to be a 

piecewise power-law (Pareto) function, parameterized by 1 — g. The entropy index � 

q here, which is a well-known physics quantity, now finds its financial interpretation 
s 

as the measure of departure of the current term structure from flatness on a contin-

uously compounded basis. Our empirical experiments in the US swap market have 

fully demonstrated this observation. Moreover, we have proved that the piecewise 

power-law distribution provides the most general model for the initial term struc-

ture density since the power-law exponent acts as the compounding frequency of the 

observed bonds. With the superstatistics method, we have initially supposed that 

the term structure in a short term is flat associated with a constant continuously 

compounded rate, and further assumed that the rate follows a x^-distribution. As 

a consequence, the whole term structure is regarded as a superposition of local flat 

structures, and proves to follow the same power-law distribution as the entropic 

method indicates if the only source of information available is the existence of a 

perpetual annuity. 

Next, given the calibrated initial term structure density, we have developd the 

term structure dynamics in the risk-neutral world and proved that the evolution is 

fully and only determined by the initial density and the volatility structure. By 

use of a density volatility that possesses zero mean, we have deduced a concise 

martingale representation for the bond pricing formula. 

-i 
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Finally, as an illustration of the importance of volatility structure in term struc-

ture analysis, we have redesigned the HJM volatilities for interest rate positivity 

under the framework of the current model. Besides, for convenience of simulation, 

we have also developed the dynamics of the HJM bond volatility and ours, both 

under the current framework. 

In the detailed study of the Distance Problem, after mapping yield curves to 

density functions on a Hilbert space, we have used the notion of information geom-

etry to define a metric on the Hilbert space. Thus the difference between a pair 

of yield curves is measured by the Bhattacharyya spherical distance between the 

term structure densities. We have proved that two yield curves with large initial 

Bhattacharyya spherical distance in the risk-neutral world would diverge from each 

other with a significant probability. 

Finally, we have implemented the proposed model with initial data in the US 

swap market for 15 Feb, 2007. To test our model improvements over traditional 

models, we have also run the simulation with the Hull-White model and compared 

these two no-arbitrage models in various major characteristics. It shows that each 

model has its own advantages and disadvantages. For example, the proposed model 

- would not perfectly fit the market quotes for implied cap volatilities if the volatility 

, structure is not carefully chosen. 

9.2 Future Works 

The followings are possible directions of future research. 

1. In the theoretical study of the model, we attempt to 
I 

(a) impose a constraint on the initial condition of term structure such that 

the trajectories associated with two yield curves will converge as time 



1 8 4 9.2. F U T U R E W O R K S 

involves. 

Our research on the Distance Problem is preliminary and deserves further 

study. In the present research, the yield curves are simply assumed to 

be flat at the beginning and their evolutions are governed by the same 

volatility structure and market risk premium. We have only pointed out 

the conditions under which the yield curves tend to diverge rather than 

converge. However, our aim is to bound the initial distance such that 

. the subsequent evolving yield curves would eventually converge as time 

passes. If such a .bound exists, we can conclude that the evolution of the 

yield curve would be indifferent from the initial calibration error. 

(b) explore the connections with various existing term structure models, es-

pecially the HJM model and the LIBOR model. 

The HJM model focuses on the evolution of the instantaneous forward 

rate and the LIBOR model on the forward rate. Given the equivalence 

between the term structure density and bond price or interest rate, we 

could link the traditional term structure models together and fix their 

drawbacks, just as what we have done in Chapter 5 to the HJM model 

i volatility for interest rate positivity under the framework of the proposed 

model. 

. (c) use the Tsallis entropic method to calibrate the risk-neutral distribution 

for the terminal price of an asset. 

^ Brody and Buckley [20] have explored an application of entropy maxi-

mization in the filed of asset pricing. Consider a situation where we are 

given the initial value Sq of an asset, together with the present value Co 

of an option on this asset with strike price Kq and maturity T. To avoid 
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arbitrage opportunities, the following equations must hold: 

rco 
/ xp{x) dx = 了， (9.1) 

Jo 
[ { x - Koyp{x)dx = Coe'T. (9.2) 

Jo 

Here x denotes the terminal price of the underlying asset, r is the risk-free 

constant rate, and p{x) is the risk-neutral probability density function for 

X. Our aim is to evaluate another option C/<- on the same underlying asset 

but with a different strike price K: 

� � x - K)'^p(x) dx = CK^rT. (9.3) 
Jo 

Brody and Buckley [20] have tackled this problem by calibrating the risk-

neutral density p{x) based on the Renyi entropy maximization. However, 

as pointed out in Chapter 7，the Renyi entropy is unstable in the sense 

that a small deformation of the distribution would lead to a great change 

of the corresponding entropy value. Therefore, the Renyi entropy cannot 

reproduce experimentally observable quantities. On the contrary, the 

Tsallis entropy is stable and this inspires us to calibrate the risk-neutral 

density p{x) by maximizing the Tsallis entropy. Study in this direction 

is in progress and deserves further experimental support. 

(d) extend our study to coupon-bearing bonds. 

2. In the practical study of the model, we will focus on the identification of 

external processes such as the volatility structure and the market risk premium. 

(a) Implement our proposed model in non-risk-neutral world. 

In this thesis, our implementation of the proposed model is conducted 

only in the risk-neutral world for simplicity, where the market risk pre-
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mium is immaterial. In practice, however, the risk premium process 

should be modeled and calibrated with available market data. 

(b) Update the volatility structure according to the rule we propose in Propo-

sition 5.3. 

In our model implementation, we have used a time-independent volatility 

structure for simplicity. However, the volatility structure should promptly 

reflect the updated market information. Proposition 5.3 provides a way to 

update the volatility structure timely and precisely based on the current 

term structure in real markets. It is therefore desirable to employ the 

time-varying volatility structure in practice. 

(c) Depict the distance evolution in numerical experiments. 

Although our theoretical study on the distance evolution issue is con-

cerned with simple term structures 一 the initial yield curves are as-

sumed to be flat and their subsequent evolutions are governed by the 

same volatility structure and market risk premium, the distance evolu-

tion for complex term structures can be illustrated in numerical experi-

ments. The experiments may provide inspiration in return for our further 

theoretical study. 
* 

• End of chapter. 



Bibliography 

1] http://en.wikipedia.org/wiki/History-of-entropy. 

2] http://www-history.mcs.st-and.ac.uk/Biographies/Clausius.html. 

[3] Tsallis Statistics, Statistical Mechanics for Non-extensive Systems and Long-

Range Interactions. Technical report, Center for the Study of Complex Systems, 

2007. http://www.cscs.umich.edu/ crshalizi/notabene/tsallis.html. 

4] A. Renyi. On Measures of Information and Entropy. In Proceedings of the 

Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol-

ume 1, pages 547-561, 1960. 

5) A. Renyi. Probability Theory. North-Hollan, Amsterdam, 1970. 

[6] A. Reynolds. Superstatistical Mechanics of Tracer-Particle Motions in Turbu-

lence. Physical Review Letters, 91:084503, 2003. 

7] A.K. Rajagopal and S. Abe. Implications of Form Invariance to the Structure 

of Nonextensive Entropies. Physical Review Letters, 83(9):1711-1714, 1999. 

8] B. Castaing, Y. Gagne, and E.J. Hopfinger. Velocity probability density func-

tions of high Reynolds number turbulence. Physica D: Nonlinear Phenomena" 

46(2):177-200, 1990. 

187 

http://en.wikipedia.org/wiki/History-of-entropy
http://www-history.mcs.st-and.ac.uk/Biographies/Clausius.html
http://www.cscs.umich.edu/


1 8 8 B I B L I O G R A P H Y 

9] C. Beck. Dynamical foundations of nonextensive statistical mechanics. Physical 

Review Letters�87:180601, 2001. 

10] C. Beck. Lagrangian acceleration statistics in turbulent flows. Europhysics 

Letters, 64(2):151-157, 2003. 

11] C. Beck. Superstatistics: Recent developments and applications. In C. Beck, G. 
j 

Benedek, A. Rapisarda, and C. Tsallis, editor, Complexity, Metastability and 

Nonextensivity. World Scientific, 2005. arXiv:cond-mat/0502306. 

12] C. Beck and E.G.D. Cohen. Superstatistics. Physica A: Statistical Mechanics 

and its Applications, 322:267-275, 2003. 

[13] C. Beck and F. Schlogl. Thermodynamics of Chaotic Systems: An Introduction. 

Cambridge University Press, Cambridge, 1993. 

14] C. Tsallis. Possible Generalization of Boltzmann-Gibbs Statistics. Journal of 

Statistical Physics, 52:479-487, 1988. 

15] D. Health, R. Jarrow, and A. Morton. Bond Pricing and the Term Stucture of 

Interest Rate: A New Methodology for Contingent Claims Valuation. Econo-

metrica�60(1):77-105, 1992. 

16] D. Mindell, J. Segal, S. Gerovitch. Prom Communications Engineering to Com-

munications Science: Cybernetics and Information Theory in the United States, 

Prance, and the Soviet Union. In Science and Ideology: A Comparative History, 

pages 66-95. Routledge, London, 2003. 

17] D.C. Brody and L.P. Hughston. Applications of Information Geometry to Inter-

est Rate Theory. In P. Sollich et a/., editor, Disordered and Complex Systems� 

volume 553，pages 281-287. AIP Conference Proceedings, 2001. 



204 B I B L I O G R A P H Y 

18] D.C. Brody and L.P. Hughston. Interest rates and information geometry. In 

Proceedings of the Royal Society of London, Series A^ volume 457, pages 1343-

1363, 2001. 

19] D.C. Brody and L.P. Hughston. Entropy and information in the interest rate 

term structure. Quantitative Finance, 2:70-80, 2002. 

20] D.C. Brody, I.R.C. Buckley, and I.C. Constantinou. Option price calibration 

from Renyi entropy. Physics Letters A, 366:298-307, 2007. 

21] E. Shannon. A Mathematical Theory of Communication. Bell System Technical 

Journal�27:379-423, 623-656, 1948. 

22] E.T. Jaynes. Information Theory and Statistical Mechanics. Physical Review, 

106(4):620-630, 1957: 

23] E.T. Jaynes. Information Theory and Statistical Mechanics II. Physical Review, 

108(2):171-190, 1957. 

24] E.T. Jaynes. Gibbs vs Boltzmann Entropies. American Journal of Physics� 

33(5):391-398, 1965. 

[25] F.C. Klebaner. Introduction to Stochastic Calculus With Applications. Imperial 

College Press, London, 1998. ‘ 

26] F.D. Jong, J. Driessen, and A. Pelsser. LIBOR and Swap Market Models for the 

Pricing of Interest Rate Derivatives: An Empirical Analysis. Technical Report 

2000-35, Center for Economic Research, 2000. 



1 9 0 B I B L I O G R A P H Y 

27] F.D. Jong, J. Driessen, and A. Peisser. On the Information in the Interest Rate 

Term Structure and Option Prices. Review of Derivatives Research, 7:99-127， 

2004. 

28] J. Havrda and F. Charvat. Quantification Method of Classification Processes. 

Kybemetika, 3:30-35, 1967. 

29] J. Hull. Options, Futures, and Other Derivatives. Prentice Hall, 5th edition, 

2003. 

30] J. Hull and A. White. Pricing Interest-Rate-Derivative Securities. Review of 

Financial Studies, 3(4):573-592, 1990. 

31] J. Hull and A. White. Numerical Procedures for Implementing Term Structure 

Models I: Single-Factor Models. Journal of Derivatives, 2(1):7-16, 1994. 

32] J.C. Cox, J.E. Ingersoll, and S.A. Ross. A Theory of the Term Structure of 

Interest Rates. Econometrica, 53(2):385-407, 1985. 

33] K.E. Daniels, C. Beck and E. Bodenschatz. Defect turbulence and generalized 

statistical mechanics. Physica D: Nonlinear Phenomena, 193:208-217，2004. 

34] L. Boltzmann. Lectures on Gas Theory. University of California Press, Berkeley, 

1964. 

35] M. Musiela. Stochastic PDEs and term structure models. Joumees Interna-

tionales de Finance, IGR-AFFI, La Baule, 1993. 

36] N. Wiener. Cybernetics: or Control and Communication in the Animal and the 

Machine. The MIT Press, MA, 1948. I 



206 B I B L I O G R A P H Y 

37] O.A. Vasicek. An Equibrium Characterization of the Term Structure. Journal 

of Financial Economics, 5(2):177-188, 1977. 

38] P.C. Mahalanobis. On tests and measures on group divergence. Journal of the 

Asiatic Society of Bengal, 26:541-588, 1930. 

39] P.C. Mahalanobis. On the generalised distance in statistics. In Proceedings of 

the National Institute of Sciences of India, Series A, volume 2, pages 49-55, 

1936. 

40] P.T. Landsberg and V. Vedral. Distributions and channel capacities in gener-

alized statistical mechanics. Physics Letters A, 247(3):211-217, 1998. 

41] R. Clausius. On the Application of the Mechanical Theory of Heat to the 

Steam-Engine. In The Mechanical Theory of Heat - with Its Applications to the 

Steam-Engine and to Physical Properties of Bodies. John van Voorst, London, 

1865. 

42] R. Rendleman and B. Batter. The Pricing of Options on Debt Securities. 

Journal of Financial and Quantitative Analysis, 15(1): 11-24, 1980. 

43] R.S. Ingarden. Information geometry in functional spaces of classical and quan-

tum finite statistical systems. International Journal of Engineering Science, 

19:1609-1633, 1981. 

44] S. Abe. Stability of Tsallis Entropy and Instabilities of Renyi and Normalized 

Tsallis Entropies: A basis for ^-exponential distributions. Physical Review E, 

66:046143, 2002. 

45] S. Abe and A.K. Rajagopal. Microcanonical foundation for systems with power-

law distributions. Journal of Physics A, 33:8733-8738, 2000. 



/ 

1 9 2 B I B L I O G R A P H Y 

[46] S. Abe and Y. Okamoto. Nonextensive Statistical Mechanics and Its Appli-

cations, volume 560 of Lecture Notes in Physics. Springer-Verlag, Heidelberg, 

2001. 

47] S. Kullback and R.A. Leibler. On Information and Sufficiency. The Annals of 

Mathematical Statistics, 22(l):79-86, 1951. 

[48] Shun-ichi Amari. Differential^geometriacal methods in statistics. Springer, 1990. 

49] Shun-ichi Amari. Methods of information geometry. American Mathematical 

Society, 2000. 

50] Sueli I. R. Costa, Sandra A. Santos, Joao E. Strapasson. Fisher Information 

Matrix and Hyperbolic Geomety. In M.J. Dinneen, editor, Proceeding of IEEE 

ISOC ITW2005 on Coding and Complexity, pages 34-36, 2005. 

51] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley, New 

York, 1991. 

[52] T.S.Y. Ho and S.B. Lee. Term Structure Movements and Pricing Interest Rate 

Contingent Claims. Journal of Finance, 41(5):1011-1029, 1986. 

4 


