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Abstract of thesis entitled: 

Pattern Discovery for Deciphering Gene Regulation Based on 

Evolutionary Computation 

Submitted by CHAN, Tak Ming 

for the degree of Doctor of Philosophy ^ 

at The Chinese University of Hong Kong in July 2010 

Transcription Factor (TF) and Transcription Factor Binding 

Site (TFBS) bindings are fundamental protein-DNA interac-

tions in transcriptional regulation. TFs and TFBSs are con-

served to form patterns (motifs) due to their important roles 

for controlling gene expressions and finally affecting functions 

and appearances. Pattern discovery is thus important for deci-

phering gene regulation, which has tremendous impacts on the 

understanding of life, bio-engineering and therapeutic applica-

tions. This thesis contributes to pattern discovery involving 

TFBS motifs and TF-TFBS associated sequence patterns based 

on Evolutionary Computation (EC), especially Genetic Algo-

rithms (GAs), which are promising for bioinformatics problems 

with huge and noisy search space. 

On TFBS motif discovery, three novel GA based algorithms 

are developed, namely GALF-P with focus on optimization, 

GALF-G for modeling, and GASMEN for spaced motifs. Novel 

memetic operators are introduced, namely local filtering and 

probabilistic refinement, to significantly improve effectiveness 

(e.g. 73% better than MEME) and efficiency (e.g. 4.49 times 

speedup) in search. The GA based algorithms have been exten-

sively tested on comprehensive synthetic, real and benchmark 



datasets，and shown outstanding performances compared with 

state-of-the-art approaches. Our algorithms also "evolve" to 

handle more and more relaxed cases, namely from fixed motif 

widths to most flexible widths, from single motifs to multiple 

motifs with overlapping control, from stringent motif instance 

assumption to very relaxed ones, and from contiguous motifs to 

generic spaced motifs with arbitrary spacers. 

TF-TFBS associated sequence pattern (rule) discovery is fur-

ther investigated for better deciphering protein-DNA interac-

tions in regulation. We for the first time generalize previous 

exact TF-TFBS rules to approximate ones using a progressive 

approach. A customized algorithm is developed, outperform-

ing M E M E by over 73%. The approximate TF-TFBS rules, 

compared with the exact ones, have significantly more verified 

rules and better verification ratios. Detailed analysis on PDB 

cases and conservation verification on NCB I protein records il-

lustrate that the approximate rules reveal the flexible and spe-

cific protein-DNA interactions with much greater generalized 

capability. 

The comprehensive pattern discovery algorithms developed 

will be further verified, improved and extended to further deci-

phering transcriptionial regulation, such as inferring whole, gene 

regulatory networks by applying TFBS and TF-TFBS patterns 

discovered and incorporating expression data. 
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摘要 
香港中文大學工程學院 
計算機科學及工程學系 

哲學博士 
陳德銘 

轉錄因子（TF)和轉錄因子結合位點（TFBS)的結合（bind ing)是轉錄铜控中基 

礎的蛋白贺-脫氡核糖核酸（DNA)相互作用。由於其控制基因表達的重要角色’ TFs 

和TFBSs會形成保守的模式（模體），最终影帶生物功能和外觀。因此’模式發現 

對破譯基因调控甚爲重要，而破譯基因调控對生命的理解，生物工程和治療應用具 

有巨大的影举。本馀文以進化計算（EC) ’特別是遺傳算法（GA)作為基礎框架， 

集中解決TFBS和TF-TFBS結合序列的模式發現問題’因爲GA十分有利於解決牽涉 

到麻大和嗜雜搜索空間的生物信息學問題。 

針對TFBS模艘發現問題，我們開發了三種基於GA的新型算法，即以優化為目標的 

GALF-P，著重建模的GALF-G ’以及處理間隔模體的GASMEN -我們引入新型的文化 

基因算子(me丨neticoperators)，即局部過淚和概率細化，大大提高搜索的效用（如 

比MEME改進73%)和效率（如4. 49倍的提速）。我們對以上算法進行了廣泛全面 

的综合測試，他們較其他尖端方法有更優越的表現。我們的算法也“演變”以能夠 

處理更廣義和寬鬆的情况’如靈活的模體寬度，擁有重希控制的多模體發現，寬鬆 

的模艘個继數目假設’有任意間隔的模體發現等等。 

我們也進一步解決TF-TFBS結合序列的模式（簡稱規則）發現問題’以便日後更好 

地破譯調控中的蛋白質-DNA相互作用。我們使用循序漸進的方式，首次以近似規則 

來廣義化之前的精碟TF-TFBS規則。我們定制的算法比MEhlE改進超過73%。TF-TFBS 

近似規則比精確規則有顯著更多能夠被驗證的規則和更好的驗證率。蛋白贸數據庫 

(PDB)的詳細實例分析以及NCBI蛋白货記錄的保守性驗證表明’近似規則能更廣 

義地揭示蛋白質-DNA相互作用中的靈活性和特定性。 

我們將進一步驗證’改進和擴展之前開發的模式發現算法’進一步破譯轉錄調節’ 

如利用已發現的TFBS及TF-TFBS模式’結合微陣列數據預測整個基因調控網路。 
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Chapter 1 

Introduction 

Summary 

This chapter introduces the brief Bioinformatics back-

ground, presents the major contributions of this thesis, 

and finally gives the thesis outline. 

1.1 Bioinformatics 

In this section, briefings on Bioinformatics related to transcrip-

tional regulation are first introduced, and then our focus on pat-

tern discovery based on evolutionary computation is presented. 

Formal details will be described in the Background chapter. 

1.1.1 Bioinformatics for Deciphering Gene Regulation 

Bioinformatics is the application of informatics (computer sci-

ence) ,usual ly based on mathematics and statistics models, to 

the field of molecular biology. Bioinformatics is an emerging and 

interdisciplinary field exhibiting more and more importance and 

becoming more and more crucial in life sciences. 

In the recent past, Bioinformatics mainly helped to collect 

the massive data in an automatic way, such as creation and 
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maintenance of databases for sequences and annotated genes, 

while major analysis and discovery awaited expensive, labor and 

time intensive biological experiments. Upon entering the post 

genomic era, the wet-lab oriented way is faced with challenges 

rising from the huge amount of data in need of rapid and system-

atic interpretation. As a result, nowadays Bioinformatics (also 

referred as computational biology) serves a critical role to ana-

lyze and interpret the data which are so huge that they cannot 

be handled by specific experiments alone. On the other hand, 

new biological data and discoveries also drive for novel mod-

els and problem formulations in Bioinformatics for insights into 

understanding life mechanisms, engineering biological systems 

and fighting against diseases. As biological data from experi-

ments are usually noisy, rough and specific, Bioinformatics aims 

to bridge them to cleansed (curated), well-organized and gener-

alized information, where patterns, knowledge, and discoveries 

can be further derived using computational techniques. 

The central dogma in molecular biology describes that DNA 

(in a gene) is transcribed to RNA, and RNA is translated to 

make protein which mainly carries out the functionality. De-

spite the simple dogma, genes are not the only determining fac-

tors in real complicated biological systems. Regulation of genes 

also plays a crucial role in controlling the degrees of the genes 

activities (e.g. gene expressions which can be measured as the 

transcription rates of mRNA) , eventually affecting the pheno 

types such as functions and appearances. Therefore, deciphering 

the mechanisms of the gene regulation is crucial not only for the 

understanding of life but also for the bioengineering and thera-

peutic purposes. 
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1.1.2 Pattern Discovery in Transcriptional Regulation 

Based on Evolutionary Computat ion 

Though gene regulation also happens at other levels such as 

post-translational regulation, transcriptional regulation is the 

fundamental and primary one, and will be our focus in this the-

sis. Transcriptional regulation is realized through interactions of 

certain proteins and DNA substrings from DNA sequences prior 

to a target gene, which are called transcription factors (TFs) and 

Transcriptional Factor Binding Sites (TFBSs) respectively. The 

analogy is the combination consisting of keys (TFs) and the con-

trol switches with keyholes (TFBSs) for a production line (gene 

expressions). When TFs bind to specific TFBSs, certain levels 

of gene expressions (transcription rates of m R N A ) are observed. 

It is analogous to that the keys (TFs) insert into specific control 

switches (TFBSs) with the matching keyholes, and then control 

the production rates (gene expressions). However, these match-

ings of keys and/or keyholes have no distinguishing appearances 

with respect to individual residues (simply amino acids and/or 

nucleotides) if they are examined one by one. However, these 

amino acids and/or nucleotides, serving for specific regulatory 

purposes, magically form patterns that are not usual to happen 

in other non-regulatory parts of the sequences. This concept 

is termed "conservation" in biology, because subsequences car-

rying important functions (regulatory ones here) are much less 

likely to change (i.e. are conserved) throughout evolution. Thus 

subsequences related to similar functions or behaviors tend to 

be very similar and can be represented concisely by certain pat-

terns. Therefore, discovering such patterns, e.g. those of the 

TFBSs and TF-TFBS pairs, is critical to decipher gene regu-

lation, for further scientific (life secrets), engineering (synthetic 

biology) and medical (regulatory diseases like cancers) purposes. 

Thanks to the technologies of sequencing and high-throughput 

genomic profiling，now we can readily study transcriptional reg-
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ulation with the sequences potentially containing TFs/TFBSs as 

well as the gene expression profiles. A wide range of problems 

are covered such as TFBS identification (or motif discovery), 

expression clustering/bi-clustering (not our focus) and the in-

ference of transcriptional regulatory networks [7，12]. Due to 

the huge amount of information and data, computational meth-

ods are also essential to verify existing biological observations, 

narrow down only highly testable candidates for biological ex-

periments, model available data for further predictions and dis-

coveries, and gain insights into regulation in a systematic way. 

In light of sufficient data, Evolutionary Computation (EC) 

has been widely applied and shown to be promising for various 

problems in Bioinformatics [28,76]. EC offers a unique and un-

der appreciated advantage to challenging, non-linear，dynamic 

problems in Bioinformatics, and hybridization of local opera-

tors (memetic algorithms) is possible and very useful for some 

problems [27]. In this thesis, we develop and apply novel EC 

based approaches, mainly memetic Genetic Algorithms (GAs), 

i.e. GAs with efficient local operators, for various pattern dis-

covery problems, and try to reveal protein-DNA interactions in 

transcription regulation through discovering TF-TFBS associ-

ated patterns . 

1.2 Contributions 

Concentrating on pattern discovery in transcriptional regula-

tion, we have contributed to various aspects by developing novel 

GA based algorithms to discover TFBS patterns ( T F B S mo-

t i f d iscovery) and approximate TF-TFBS associated patterns 

(TF-TFBS rules). 
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1.2.1 TFBS motif discovery 

On the problem of TFBS motif discovery, challenging with re-

spect to both optimization and modeling, we have developed 

two novel Genetic Algorithm with Local Filtering (GALF) al-

gorithms: GALF-P (post-processing) [19] and GALF-G (gen-

eralized) [20]. More generic and complicated spaced motif dis-

covery has also been handled by the newly developed Genetic 

Algorithm for Spaced Motifs Elicitation on Nucleotides (GAS-

MEN) [17:. 

GALF-P [19], with focus on optimization, combines existing 

motif representations and introduces the memetic operator of lo-

cal filtering, which effectively and efficiently improves the candi-

date solutions toward optimality. Post-processing with adaptive 

adding and removing is developed to handle general cases with 

arbitrary numbers of TFBS instances per sequence. GALF-P 

outperforms the state-of-the-art GA approach, GAME , signifi-

cantly by over 20% in average F-scores and provides much more 

robust and consistent performance (standard deviations one or-

der of mangnitude smaller for certain real datasets). GALF-P 

is also shown to be more efficient than GAME , by 4.49 times on 

average. 

GALF-G [20], with extended focus on modeling, better cap-

tures the input uncertainty (in particular motif widths) in prac-

tice with the proposed generalized model tackling the motif 

width range of interest simultaneously. Moreover, a meta-convergence 

framework for GAs is proposed to provide multiple overlap-

ping optimal motifs simultaneously in an effective and flexible 

way. GALF-G was tested extensively on over 970 synthetic, real 

and benchmark datasets, and is better than the state-of-the-

art methods. The range model shows an increase in sensitivity 

compared with the single-width ones, while providing competi-

tive precisions on the E. coli benchmark. Effectiveness can be 

maintained even using a very small population, exhibiting very 
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competitive efficiency. In discovering multiple overlapping mo-

tifs in a real liver-specific dataset, GALF-G outperforms M E M E 

by up to 73% in overall F-scores. GALF-G also helps to discover 

an additional motif which has probably not been annotated in 

the dataset. 

GASMEN [17]: while existing algorithms mainly handle monad 

(contiguous) motifs, there are more generic and complicated 

spaced motifs with arbitrary non-conserved pot ions (gaps or 

spacers). Current methods for spaced motifs impose various 

constraints on gaps, which may affect the discovery of com-

plex motifs. We develop Genetic Algorithm for Spaced Mo-

tifs Elicitation on Nucleotides (GASMEN), which searches from 

a wide range of possible widths (4-25) and relaxes substan-

tial constraints of previous methods. GASMEN employs sub-

motif indexing to partition the search space into smaller sub-

space for GA to easier reach optimality. Multiple-motif control 

is employed and probabilistic refinements are proposed to im-

prove motif quality respectively. The preliminary results on real 

spaced motifs demonstrate that GASMEN is promising to find 

more accurate motifs and optimal widths, compared with the 

state-of-the-art method, SPACE. GASMEN is also capable of 

finding monad motifs, outperforming both Weeder and SPACE 

on most of the 8 real datasets, and shows the best balance of per-

formance on the eukaryotic benchmark compared with GALF-G， 

M E M E and Weeder. 

1.2.2 TF-TFBS rules 

TF-TFBS binding patterns (TF-TFBS rules) beyond motif 

discovery have also been investigated for a better understanding 

of transcriptional regulation. 

Recent mining on exact TF-TFBS associated sequence pat-

terns (rules) has shown great potentials and achieved very promis-
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ing results. However, the exact rules cannot handle variations 

in real data, resulting in limited informative (verified) rules. In 

this chapter, we for the first time generalize the exact rules to 

approximate ones for both TFs and TFBSs, which are essen-

tial to handle biological variations. A progressive approach is 

proposed to alleviate the computational challenge. Firstly, TF-

TFBS data are grouped by the available TFBS motifs from the, 

representative TRANSFAC database with different approxima-

tion thresholds. Secondly, to target the approximate TF core 
f 

motif discovery, a customized algorithm is developed with over 

73% improvement over MEME. Associating the grouped TFBS 

consensuses and TF motifs we have the approximate TF-TFBS 

rules. 

The rules discovered are evaluated comprehensively with Pro-

tein Data Bank (PDB) data. The approximate TF-TFBS rules 

exhibit a significant edge over the exact ones, with many more 

verified rules and up to 300% better verification ratios. 64% — 

79% of the TF-TFBS rules are shown statistically significant 

(p-values < 0.05). Detailed analysis on PDB cases, homology 

modeling, and independent conservation verification on NCBI 

records demonstrate that the approximate rules reveal the flex-

ible and specific protein-DNA interactions accurately. The ap-

proximate TF-TFBS rules discovered show great generalized ca-

pability of exploring more informative binding rules. Potential 

applications are to predict protein-DNA interactions given ei-

ther side and to better decipher transcriptional regulation. 

We summarize our extensive efforts acnd contributions to TFBS 

motif discovery and TF-TFBS binding pattern discovery in the 

Conclusion chapter, and further introduce the future work for 

better deciphering transcriptional regulation. 
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1.3 Thesis Outline 

The rest of the thesis is arranged as follows. Chapter 2 gives 

the transcriptional regulation background in biology, with focus 

on TF-TFBS bindings, the general related computational back-

ground (search/optimization, Evolutionary Computation (EC)), 

and problem specific background for pattern discovery. 

Chapters 3-6 describe our own research contributions to vari-

ous TFBS motif discovery problems, and approximate TF-TFBS 

associated sequence pattern (rule) discovery. Chapter 3 presents 

GALF-P from the optimization aspect for the motif discov-

ery problem. Chapter 4 further analyzes the problem from 

the modeling aspect and presents GALF-G for more general 

cases. Chapter 5 turns to recent generic spaced motif discovery 

and presents GASMEN which demonstrates outstanding per-

formance. Chapter 6 investigates the approximate TF-TFBS 

associated sequence pattern discovery problem, describes our 

progressive approach and the promising Verification .results on 

real data. 

Finally, Chapter 7 concludes the thesis and provides further 

discussion on future work. 

• End of chapter. 



Chapter 2 

Background 

Summary 

The biological and computational background related 

to pattern discovery for deciphering gene Tegulation is 

provided respectively in this chapter. Problem 丨specific 

background is presented lastly. 

2.1 Biological Background 

In this section, the related biological knowledge on gene reg-

ulation will be briefly introduced in order to provide a basic 

understanding and it serves as a link to the applicable compu-

tational methods. Firstly, the basics of the central dogma are 

introduced. Secondly, transcriptional regulation involving TF 

and TFBS bindings is presented in greater detail, followed by 

the extensions to transcriptional regulatory networks. Finally, 

microarrays measuring gene expressions are mentioned. 

2.1.1 The Biology Basics and the Central Dogma 

DNA (deoxyribonucleic acid) consists of two strands, and each 

strand is made up of phosphates, deoxyribose sugars and nu-
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cleotides (including adenine "A", guanine "G”，cytosine "C" 

and thymine "T") linked in series. The two strands are com-

plementary (A paring with T, C pairing with G) so one strand 

can determine and thus represent the other. Each strand has 

a direction from the 5' end to the 3' end, and the comple-

ment is in a opposite direction, and that is why the two strands 

are called reverse complements. For simplicity, DNA sequences 

are often represented by the strings (from one strand) gener-

ated from the symbol set of nucleotides (called the alphabet) 

E 二 {A, C, G, T}. DNA contains the full genetic blueprint for 

the cell and for all other cells in the organism in the case of 

multicellular eukaryotes [28]. Thus analysis on DNA sequences 

can reveal the most important information of life. 

A gene is a segment of DNA that contains the information 

necessary to produce a functional product, usually a protein. 

However, the information is not directly passed from a gene to 

the corresponding protein, and it needs UNA (in particular mes-

senger RNA mRNA) to be an intermediate template for trans-

fer, and the process is called transcription. When and which 

parts of a gene is transcribed is controlled by the process called 

transcriptional regulation, which will be introduced in the next 

subsection. R N A (Ribonucleic acid) can be represented by the 

symbols {A (adenine), G (guanine), G《cytosine)，U (uracil)}, 

where U is the replacement for thymine (T) in DNA. The mes-

senger R N A (mRNA) serves the template of DNA to carry the 

"encoded" information to make specific protein. 

Protein is the final product of DNA after translation from 

the RNA template. It can be denoted by the sequence of amino 

acids which are defined by the genes and encoded in the genetic 

codes (three-letter codons translated from RNA) . Protein carries 

out particular functions in the cell. One important function of 

protein we focus on is the regulatory function that controls the 

gene expressions (transcription rates), and such protein is called 
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DNA 

、 R N A • Protein 
• Transfers that occur In all cells 

一 • • Transfers that occur 息n special cases 

Figure 2.1: Central dogma. Only the general case (solid arrows) of transfers 

of information is discussed here. DNA — DNA is replication which is not 

discussed. DNA —RNA is transcription, and RNA — protein is translation. 

Transcription Factor (TF). 

The central dogma can be simplified for computer scientist卢 

as the flow of information from genes to their functional products 

in cells: DNA (of genes) generates the template in the form of 

a strand of RNA via transcription, and RNA in turn codes for 

protein in translation [28], which carries out some function in 

the cell. The relation between transcription and translation is 

illustrated in Figure 2.1. 

2.1.2 Transcriptional Regulation with TF-TFBS Bind-

ings 

Despite the previous simple descriptions, in fact transcription is 

a series of complicated events and leads from DNA to messen-

ger RNA (mRNA) with different degrees of the gene activities 

or expressions (transcription rates). For a given gene on the 

DNA sequence,, the gene is also called a coding region and there 

is a regulatory region (non-coding region) prior to it (called up-

stream to it). The coding region is responsible for the tran-

scription into mRNA which is finally translated into protein, 

as mentioned before. On the other hand, the regulatory region 
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contributes to the control information of the gene's expressions. 

In particular, the regulatory region contains one or more 

Transcription Factor Binding Sites (TFBSs), which are noth-

ing other than some short DNA subsequences (usually 5-20 bp). 

They are special in that these DNA subsequences can form (hy-

drogen) bonds with specific regulatory proteins called Transcrip-

tion Factors (TFs), as if they are recognized and bound by 

the TFs. The TFs will bind other regulatory proteins called 

CO-factors, and finally a special protein (enzyme) called RNA 

polymerase is recruited to bind and initialize the transcription 

process. These TF-TFBS bindings, as the major protein-DNA 

interactions, have the effect of regulating the transcription rates. 

TF-TFBS bindings may act positively or negatively, and lead to 

the increase (enhancers) and decrease (suppressors) of expres-

sions 14 The regulatory regions are typically short in prokary-

otes and have a small number of binding sites, while they may 

be very long in eukaryotes and contains sites for multiple TFs. 

Simply speaking, transcriptional regulation describes the in-

formation flow from the regulator(s) such as the TF(s) to the 

regulated gene(s). This process reveals the mechanisms of tran-

scriptional regulation of genes, but they are not fully understood 

yet. A simplified illustrative example with only one TF binding 

one TFBS is shown in Figure 2.2. 

Transcription Factor 
Regulates Gen略轮 
Expression 、 

丁「inscription 

屬 : 
、、：i 萄 , 

TFBS Gene 

Figure 2.2: A simplified example of transcriptional regulation with one TF 

binding the TFBS. 

As mentioned in the Introduction chapter, the analogy is 

the scenario consisting of keys (TFs) and the control switches 
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with keyholes (TFBSs) for a production line (gene expressions). 

When TFs bind to specific TFBSs, certain levels of gene expres-

sions (transcription rates of mRNA) are observed. It is analo-

gous to that the keys (TFs) insert into specific control switches 

(TFBSs) with the matching keyholes and control the produc-

tion rates (gene expressions). However, these matchings of keys 

and/or keyholes have no distinguishing appearances but sim-

ply amino acids and/or nucleotides if they are examined one by 

one. However, these amino acids and/or nucleotides, serving for 

specific regulatory purposes, magically form conserved patterns 

that are not usual to happen in other non-regulatory parts of 

the sequences. Thus discovering such patterns, e.g. those of the 

TFBSs and TF-TFBS pairs, is critical to decipher gene regu-

lation, for further scientific (life secrets), engineering (synthetic 

biology) and medical (regulatory diseases like cancers) purposes. 

Other regulatory mechanisms at different levels exist, such 

as post-translational modification of factors, specific interac-

tions with CO-activators, thermodynamics of protein-protein and 

protein-DNA interactions [12]. This thesis will not go into the 

details and will focus on transcriptional regulation. 

2.1.3 Gene Expression Microarrays 

In order to begin the research on gene regulation, data rep-

resenting their behaviors or interactions must be first obtained. 

Thanks to the new technologies of high-throughput genomic pro-

filing approaches developed over the last few years, large amount 

of DNA gene expression data can be obtained from microarrays. 

Such D N A gene expression microarrays allow biologists to study 

genome-wide patterns of gene expression in any given cell type, 

at any given time, and under any given set of conditions [7，12 . 

In these arrays, total R N A is reverse-transcribed to create ei-

ther radioactive- or fluorescent-labeled cDNA that is hybridized 



CHAPTER 2. BACKGROUND 14 

with a large DNA library of gene fragments attached to a glass 

or membrane support. Imaging techniques are used to produce 

expression measurements for thousands of genes under various 

experimental conditions. 

Application of these arrays is producing large amounts of 

data, potentially capable of providing fundamental insights into 

biological processes ranging from gene function to development, 

cancer, and aging, etc. These data are the essential information 

source for deciphering gene regulation. 

2.1.4 Transcriptional Regulatory Networks 

In real biological systems, there are more complicated interac-

tions than Figure 2.2，involving various TFs, TFBSs and regu-

lated genes since TFs themselves, as proteins, are also products 

of genes. In some particular scale, the related genes sharing reg-

ulatory TFs can be grouped and examined as a unit called a 

network motif, or a module, to describe the regulatory interac-

tions. Common cases of the transcriptional regulatory modules 

are shown in Figure 2.3. For example, the feed-forward loop 

case depicts that one TF regulates the expression of a second 

gene and thus its TF, and both factors together regulate the ex-

pression of a third gene [12]. Such modules to some extend are 

useful for understanding the details of transcriptional regulation 

and distinguishing the different types of complication, such as 

the simple and explicit response of auto-regulation versus the 

subtle and gradual response for multiple inputs. 

However, though modules provide great detail for small por-

tions of the network, in fact they are not totally autonomous 

and may interact with each other, as a result forming a huge 

network with hundreds to thousands of genes. A simple exam-

ple can be a mixture of the modules listed in Figure 2.3，where 

the TF involved in a feed-forward loop may also participate as 
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Figure 2.3： Transcriptional regulatory network motifs adopted from [12 

one of the multiple inputs for another genes or even a node in 

another regulator chain. So the ultimate goal for deciphering 

the gene regulation is to model all the interacting genes in cell 

with a whole network, describing their full causality relation and 

hopefully the dynamics as well at a system level. This is one 

most challenging goals and is likely to remain as a central topic 

of Bioinformatics for long. 

To model the gene-gene interactions either qualitatively or 

quantitatively, gene expressions have to be known as the premise. 

The transcription rates of the genes can be measured by the mi-

croarray technology in a high throughput manner (genomic scale 

profiling) to represent the gene expressions. Microarrays allow 

biologists to study genome-wide patterns of gene expression in 

any given cell type, at any given time, and under any given set of 

conditions [6]. In these arrays, total RNA is reverse-transcribed 

to create either radioactive- or fluorescent-labeled cDNA that is 
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hybridized with a large DNA library of gene fragments attached 

to a glass or membrane support. Imaging techniques are used to 

produce expression measurements for thousands of genes under 

various experimental conditions. Application of these arrays is 

producing large amounts of data, potentially capable of provid-

ing fundamental insights into biological processes ranging from 

gene function to development, cancer, and aging, etc. These 

data are the essential information source for deciphering gene 

regulation. 

2.2 Computational Background 

Because DNA and protein subsequences carrying important func-

tions are less likely to change during evolution and across dif-

ferent species, they are "conserved" and form certain patterns. 

These patterns exhibit high similarities (called conservation) 

and such similarities are not likely to happen by chance from the 

background sequences. Widely available data and annotations 

enable computational methods to be applied to discover these 

patterns. The discovered patterns serve as testable candidates 

with high potentials for experimental verifications to reduce time 

and costs, and are promising for new biological knowledge dis-

coveries. 

Bioinformatics problems, including pattern discovery focused 

in this thesis, have common features such as the the huge amount 

of noisy data and requirement for search/optimization methods 

in huge search space. The related computation background thus 

is introduced. As our research is mainly based on Evolutionary 

Computation (EC), it will be elaborated in greater detail. 
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2.2.1 Heuristic Methods for Search/Optimizat ion 

Optimization refers to choosing the best element(s) from some 

set of available alternatives, for example, choosing the multi-

dimension point(s) to maximize or minimize a multi-dimension 

real function. The process of choosing from the available al-

ternatives can be referred as search. More generally, search in 

computer science is to find an element (or elements) with spec-

ified properties among a collection of elements (available alter-

natives). 

Many problems in Bioinformatics require searching an expo-

nentially growing space with respect to the problem size (NP-

hard problems), such as TFBS motif discovery [53]. Moreover, 

the problem sizes are usually large according to the large amount 

of data available. As a result, some compromise has to be ac-

cepted for an algorithm to find a feasible solution in reasonable 

time, which is called a heuristic method. 

De f i n i t i o n 1 A heuristic is a technique designed to solve a 

problem that ignores whether the solution can be proven to be 

correct，but which usually produces a good solution or solves a 

simpler problem that contains or intersects with the solution of 

the more complex problem. 

Put another way, heuristics reflect knowledge about the do-

main that helps guide the search and reasoning in the domain. 

Following are some general heuristic methods for search or op-

timization: 

Hill Climbing 

The approach looks at all operations and choose the one leading 

to a better state closest to the goal. The process repeats un-

til no improvement can be obtained for certain situation. Hill 
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climbing assumes that local improvement will lead to global im-

provement, which, however, is usually not the case the Bioinfor-

matics problems. The problems with hill climbing are obvious: 

local optima such as local maxima - there exist another peak 

other than the one reached, plateau - the values around are as 

good as each other and it does not know where to go, and ridges 

- o n a ridge leading up when an operation cannot be directly ap-

plied to improve the situation. Many Bioinformatics problems 

such as motif discovery problems are critical to find the global 

or near-global optima. 

Simulated Annealing 

Simulated Annealing (SA) is inspired by the physical process 

of annealing metals to solid minimal-energy states. It can be 

treated as a stochastic variation on hill climbing in which down-

hill moves can be made. The search mainly moves uphill except 

occasionally with low probability it moves uphill instead. The 

probability of making a downhill move decreases with time (or 

steps, analogous to temperatures) so the length of the explo-

ration path from a start state. The problems of SA include 

choosing an initial temperature and the elaborate annealing 

schedule (the rate at which the system cools) varying from prob-

lem to problem. 

Evolutionary Computation 

Evolutionary Computation (EC) is the family of multi-point 

global search approaches inspired by Darwin's theory of nat-

ural selection and evolution. It will be detailed in the following 

subsection. 
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2.2.2 Evolutionary Computation 

Evolutionary Computation (EC), or the Evolutionary Algorithm 

(EA), is a family of heuristic optimization algorithms inspired 

by Darwin's theory of natural selection and evolution. Broadly 

speaking, EC approaches all use a population of competing so-

lutions subjected to random variation and selection to achieve 

certain purpose. These solutions are called individuals and they 

form a population. The fitness of each individual reflects its 

worth in relation to the desired goal. The population is sub-

ject to selection and variations in different generations, yielding 

some offspring and each individual competes for survival. 

There are numerous different techniques in terms of represen-

tations, genetic operators and population dynamics and meta-

level evolutionary techniques such as self-adaptation. There are 

four representative members of EC and they are genetic algo-

rithms (GAs), evolution strategies (ES), evolutionary program-

ming (EP) and genetic programming (GP). 

Components of EC include the representation, which is the 

definition of individuals, the evaluation function which is usually 

called fitness function, a population to maintain, selection mech-

anism for parents, variation operators such as recombination 

(crossover) and mutation, and the survivor selection mechanism 

which is also known as replacement [25]. The main procedure 

of EC is shown in Figure 2.4. 

Genetic Algorithms 

Genetic algorithms (GAs) are the most representative and widely 

used EAs. GAs typically use fixed length strings to represent 

individuals. In early work, the strings are typically binary ones, 

but nowadays different representations such as integers, real 

numbers, as well as problem specific representations are also 

commonly used. Selection is probabilistic and usually propor-
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Figure 2.4: The general scheme of an evolutionary algorithm. Modified from 

[25: 

tionate to fitness. There is some generation gap for the offspring 

to replace their parents. Variation operators include mutations 

and crossovers. 

The working mechanisms of the genetic algorithm (GA) are 

briefly introduced (GALF [19] for motif discovery shown in brack-

ets, which can be referred in the next chapter) as follows. A 

GA (e.g. GALF ) maintains a population of candidate solutions, 

called individuals (e.g. a set of TFBS instances represented by 

their positions A = {pi，p2，•..} in the sequences), and performs 

optimization or search (maximize the fitness / ) iteratively. In 

each iteration named a generation, part of the individuals are 

chosen by parent selection, and generate offspring (new individ-

uals) via genetic operators such as mutation and crossover (ran-

domly changing a TFBS position (p) and mixing two set of TF-

BSs (Aij Aj) respectively in GALF) . The resulting population is 

subject to survivor selection based on fitness f (crowding [66] is 

used in GALF , i.e. keeping the fitter individuals from the pairs 

of similar parents and offspring), where unfit individuals will be 

eliminated to maintain a constant population size. The fittest 
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surviving individual(s), towards convergence, e.g. unchanged 

for a long period, or at the end of all generations, will be output 

as the final solution(s). The balance between convergence (ex-

ploitation) and divergence (exploration) needs to be maintained 

by various general and problem specific operators for good per-

formance. 

Other related methods such as memetic approaches are also 

widely used with hybridization of EC approaches and local search 

techniques [25]. A memetic operator is the local operator (such 

hill climbing and expectation maximization) incorporated in an 

EC approach, and it is able to improve the effectiveness and 

efficiency considerably. The specific EC approaches for the par-

ticular problems related to transcriptional regulation will be re-

viewed in details in the problem specific background. 

2.3 Problem Specific Background 

In this section we will review the background with the specific 

pattern discovery problems for transcriptional regulation. The 

reviews combine both biological and computational points of 

views for the specific problems. . 

2.3.1 TFBS Mot i f Discovery 
^ > 

Since TFBSs are a critical component i n gene regulation, iden-

tification of TFBS patteri;is (TFBS motif discovery) is a central 

problem for .understanding gene regulation in molecular biology. 

TF motif discovery is also important to annotate new TFs for 

their binding domains,-but it has been quite successful [5] while 

TFBS motif discovery is still very challenging [87, 99]. So we 

will focus on TFBS motif discovery extensively. 
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Problem Descriptions 

The DNA binding domain(s) of a TF can recognize and bind 

to a collections of similar TFBSs in a sequence-specific manner, 

from which a conserved pattern called motif can be obtained. 

Based on this phenomenon, de novo motif discovery using com-

putational methods have been proposed to identify and predict 

TFBSs and their corresponding motifs. Motif discovery provides 

significant insights into the understanding of the mechanisms of 

gene regulation. It serves as an attractive alternative for pro-

viding pre-screening and prediction of unknown TFBS motifs 

to the expensive and laborious biological experiments such as 

DNA footprinting [30] and gel electrophoresis [31]. The recent 

technology of Chromatin immunoprecipitation (ChIP) [65, 93 

measures the binding of a particular TF to DNA using microar-

ray technology at low resolution in a high-throughput manner, 

and produces more reliable input data of co-regulated genes for 

motif discovery [57 . 

For bioinformatics, motif discovery data can be retrieved by 

collecting the DNA sequences (hundreds to thousands in length) 

of regulatory regions of co-regulated genes that are considered 

bound by the same of similar TFs, because they should con-

tain the conserved patterns/motifs of the similar TFBSs. The 

regulatory regions are fully available for many organisms with 

their full genomes sequenced already. The collecting criteria for 

co-regulated genes can be based on gene annotations which are 

widely available [89], or gene expression clustering from microar-

ray data [6]. 

Though there are many variations of problem formulations 

for TFBS motif discovery as detailed in the upcoming chapters, 

the problem is generally formulated as follows: 

Input: a set of N sequences S = {5\’ 5^2，".，5W}，each of 

which is from the finite alphabet E ( = [A, T, C, G] for DNA 

sequences), where the length of each sequence is I, and the motif 
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width w with a valid constraint Q < w《I. S is assumed to 

be a set of DNA sequences from regulatory regions of the genes 

bound by the same or similar TFs. 

These genes can be obtained based on existing annotations of 

similar functionality (which are usually vailable) or the similar 

co-regulation patterns of the genes, i.e. similar expression pat-

terns of microarrays (where there are abundant clustering tools 

for the task). The same I is set for each sequence with the pur-

pose of analysis simplicity without lose of generality, and in real 

cases we can choose the minimal length Imin of 5 as /. 

Definition 2 Canonical Motif Discovery: Given the input 

N sequences S andw, find a set of instances M = {mi, m2,m^] 

where each rrii is a subsequence with length w from sequence Si, 

and they form certain pattern (motif) P (called instance/position-

led), or vice versa (find pattern P and then M, called consensus-

led), such that certain scoring function / , applied on M, or P, 

or M, P together, is maximized (or certain loss function d min-

imized). 

It is also called de novo motif discovery because no specific 

knowledge about the motif P is known beforehand, otherwise it 

is termed as motif matching [45] which is considered easier and 

better handled already. The canonical Definition 2 is proved NP-

hard even with the most simplified assumptions [53]. Moreover, 

there axe considerable variations that complex the canonical mo-

tif discovery definition. For example, there are different choices 

of the pattern representations, more descriptive being more dif-

ficult to search; w may be unknown and only a range of possible 

widths [wmim 'iĴ max] IS known; it is not necessary one occurrence 

per sequence (OOPS), i.e. one rrii for sequence Si), and zero 

or OOPS (ZOOPS) as well as any number of occurrences per 

sequence (ANOPS) can happen; and more than one motif are 

expected to be discovered. These complications are addressed 
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in this thesis with novel GA based algorithms presented in the 

following chapters. 

de novo motif discovery can be summarized by the following 

major components: 

1. Motif Representation: the profile describing motif charac-

teristics (e.g. the consensus), usually at a certain width 

w, including the motif occurrences or the retrieval method 

(e.g. all substrings within certain hamming distance from 

the consensus). 

2. Evaluation Function: the quantitative criterion to rank and 

choose the potential optimal motifs from candidate motifs. 

3. Search or Optimization: effective and efficient strategies 

to pick out the optimal motifs from the input sequences, 

according to the evaluation function. 

Existing methods with categorization are reviewed below. 

Categorization 

Because the conservation of motifs is often degenerated due to 

TFBS mutations, the searching is difficult (NP-hard [53]). Ex-

tensive algorithms have been proposed for de novo motif discov-

ery since the last decades. There are two major representations 

for TFBS motifs (conserved patterns): (i) Consensus Represen-

tation and (ii) Matrix Representation; and there are two main 

different searching paradigms: (a) Enumeration Methods and 

(b) Stochastic Searching [65]. They are briefly described as fol-

lows: 

(i) Consensus Represen ta t i on is based on discrete strings. 

A simple model is to minimize the mismatches between the con-

sensus and the TFBS instances [10,55,77,85 . 

(i i) M a t r i x Represen ta t i on is usually a Position Frequency 

Matrix (PFM; see Table 2.1), or a Position Weight Matrix (PWM) 



CHAPTER 2. BACKGROUND 25 

Sequences S SIM A TFBSs R PFM e (4 X 7)) 

S i : acgtCGATTGCctaag 

Sa： taTGATCGAtgacgca 

S3： cgaCAA'ITGAgcttac 

54： gCGCTCGAcaagctgt 

55： cgttTGTGACAgtcta 

5e： tcagcCACACCCagct 

S7.. ccagagCGTCTGAttg 

58： gacttcaCGACTGAgc 

59： gctgcccatCGATTGA 

5io： ccaggtacCGATTGCa 

0000100000000000 

0010000000000000 

OOOIOOOOOOOOOOOO 

0100000000000000 

0000100000000000 

0000010000000000 

0000001000000000 

0000000100000000 

0000000001000000 

0000000010000000 

CGATTGC 

TGATCGA 

CAATTGA 

C G C T C G A 

TGTCACA 

CACACCC 

CGTCTGA 

C G A C T G A 

CGATTGA 

CGATTGC 

A: 0.0 0.2 0.6 0.1 0.1 0.0 0.7 

C： 0.8 0.0 0.2 0.3 0.3 0.2 0.3 

G: 0.0 0.8 0.0 0.0 0.0 0.8 0.0 

T: 0.2 0.0 0.2 0.6 0.6 0.0 0.0 

Background: ©o: 

OoA = 0.24 0OC = 0.29 

0OG = 0.24 OQT = 0.23 

Table 2.1: An artificial example of motif discovery. It shows the sequences S, 

the SIM A, the motif instances R, the PFM 0 and the background frequencies 

00- In sequences S、the nucleotides from the background are shown in lower 

case, while the nucleotides from the motif instances in upper case. 

to show the quantitative frequencies or weights of nucleotides in 

the motif. Representative evaluations for a motif matrix include 

Information Content (IC) [96], maximum a posterior (MAP) [5 

and the Bayesian models [41] (see the probabilistic models in 

Methods section). 

The searching techniques with respect to the two representa-

tions, are discussed below. 

(a) Enumeration Methods are usually applied [10,78-80, 

85] to the consensus representation, but they do not scale up for 

long widths. However, they are useful to provide candidates for 

Weeder [78,79 IS further searching and evaluations [15’ 57,82 

one well-known representative in this category. 

( b )S tochas t i c Search ing is usually applied to align TF-

BSs and obtain the motif matrix for the matrix representa-

tion. Typical techniques can be categorized into local search-

ing [5,57] and g loba l searching, where the latter can be clas-

sified into (S) Single-point and (M) Multi-point or group-

based searching. Global searching is more likely to find the 

global optima compared with local searching. While Gibbs sam-

pling is popular in motif discovery tools: e.g. BioProspec-

tor [56], Align ACE [84] and MotifSampler [98]). Its single-

point nature requires numerous iterations to converge to the 
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Representations 
(i) Consensus 

(ii) Matrix 
and Evaluations 

(a) Enumerations (b) Stochastic Search Representations 
(i) Consensus 

(ii) Matrix 
and Evaluations 

Exhaustive Non-exhaustive Local 

Global 
Representations 
(i) Consensus 

(ii) Matrix 
and Evaluations 

Exhaustive Non-exhaustive Local Single-point 

(Gibbs Sampling) 

Multi-point 

(GAs) 

(i) 
Hamming (10.851 (60 115,82) (55,77) 

(i) Z-score Weeder【78,79! 则 
IC (97) (511 [77], GALF-P 19) 

Bayesian 
BioOptimizer 

140] 

BioProspector |56] 

Motif Sampler (98) 

GAME [101 

MAP 
MEME [5] 

MDScan [57] 

AlignACE [84] 

Table 2.2: Summary of the representative motif discovery methods. The 

methods included in our comparison experiments are shown with their names. 

IC stands for Information Content. 

global optima, otherwise the performance may be affected sig-

nificantly. Alternatively, the multi-point global searching ap-

proach, GAs [33，36]，has shown promising results in motif dis-

covery [19, 21, 29, 55, 61, 77,101]. There is great potential for 

them to be applied to more sophisticated models and provide 

multiple optimal motifs [61]. GAs are more effective than lo-

cally incremental and single-point search methods because GAs 

perform global search while maintaining a population of differ-

ent solutions concurrently. Advantages of GAs compared with 

the conventional motif discovery methods [59] include the global 

search capability, which is more likely to locate global optima, 

the flexibility of representation and scoring, and good scaling 

property. 

Table 2.2 summarizes the representations, the associated mod-

els and the searching techniques employed by the motif discovery 

methods. The table serves to show the representative methods 

in each category including those we have compared in our ex-

periments. 

Other Methods 

Methods out of the scope of de novo motif discovery but worth 

introducing are briefly mentioned as follows: 

Ensembles of multiple motif discovery programs have been 
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recently shown to improve their performance [38,65,104]. How-

ever, modelling TFBS motifs is critically beneficial for better 

understanding and predicting novel motifs, and provides essen-

tial performance improvement for ensembles. As a result, we 

will focus on individual motif discovery methods in this thesis. 

Incorporating additional information sources [24，91] is an-

other trend to improve the motif prediction accuracy. While 

extra requirements are needed for their success, the sequence-

based motif discovery problem remains challenging [37, 87, 99 

and calls for our serious attention because generalization and 

improvement on the sequence-based methods will without doubt 

help the integrated approaches. 

2.3.2 TF-TFBS Associated Patterns 

Protein-DNA interactions play a central role in genetic activities 

62,64]. The bindings of transcription factors (TFs) and tran-

scription factor binding sites (TFBSs) are fundamental protein-

DNA interactions in transcriptional regulation. Therefore, be-

sides motif discovery on TFs or TFBSs, it is also important to 

directly identify TF-TFBS binding rules to understand protein-

DNA interactions and further decipher gene regulation. 

TF-TFBS Data 

It is both expensive and time-consuming to identify accurate 

TF-TFBS binding sequence pairs experimentally either using 

the traditional DNA footprinting [30], gel electrophoresis [31], 

or recent Chromatin immunoprecipitation (ChIP) technology 

65,93]. TRANSFAC [72] is one of the largest and most repre-

sentative databases for such regulatory elements including TFs, 

TFBSs, nucleotide distribution matrices of the TFBSs (TFBS 

motifs), and regulated genes. The data are annotated and cu-

rated from peer-reviewed and experimentally proved publica-
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tions. Other annotation databases of TF families and binding 

domains are also available (e.g. PROSITE [39], Pfam [8]). 

It is even more difficult and laborious to extract high-resolution 

3D protein-DNA interaction (TF-TFBS binding) structures with 

X-ray crystallography or Nuclear Magnetic Resonance (NMR) 

spectroscopic analysis. Nevertheless, the high-quality verified 

structures serve as valuable verification sources for putative bind-

ing discoveries. The Protein Data Bank (PDB) [9] is the most 

representative repository with high resolution structures at atomic 

levels. However, the available 3D structures are far from com-

plete. As a result, there is strong motivation to have automatic 

methods, particularly, computational approaches based on other 

available data, to provide testable candidates of novel TF do-

mains and/or TFBS motifs with high confidence to aid and ac-

celerate the wet-lab experiments. 

Existing Methods 

The first attempt of Bioinformatics methods to decipher TF-

TFBS bindings was TF/TFBS m o t i f discovery. Additionally, 

researchers have been trying hard for the protein-DNA one-

to-one b i n d i n g codes. Data mining methods have also been 

proposed, and recent work on mining exact TF-TFBS associated 

sequence patterns shows promising results. They are briefly re-

viewed as follows: 

M o t i f discovery: as reviewed previously, amino acids from 

TF domains and TFBSs sequences are conserved according to 

their important functional similarities. By exploiting conserva-

tion in the sequences, computational methods called motif dis-

covery has achieved certain success in discovering TF or TFBS 

motifs. Motifs are usually represented as the consensus strings 

53] or position weight matrices (PWMs) of the residue distribu-

tions [96]. de novo motif discovery [65] identifies the conserved 

patterns without knowing their motifs beforehand, based on cer-



CHAPTER 2. BACKGROUND 29 

tain motif models and scoring functions [5,41,96] from a set of 

protein sequences/DNA promoter sequences with similar reg-

ulatory functions. A significant limitation of motif discovery 

to model TF-TFBS binding is the lack of linkage between the 

binding counterparts and thus cannot directly reveal TF-TFBS 

relationships. 

One-to-one b i n d i n g codes: Numerous studies have been 

carried out to analyze existing protein-DNA interaction struc-

tures comprehensively [44，62-64] or with focus on specific fami-

lies (e.g. zinc fingers [48]). Various properties have been discov-

ered concerning, e.g., bonding and force types, TF conservation 

and mutation [64]’ and bending of the DNA [44]. Some are al-

ready applicable to predict binding amino acids on the TF side, 

e.g 43 Alternatively, researchers have sought hard for gen-

eral binding "codes" between proteins and DNA, in particular 

the one-to-one mapping between amino acids from TFs and nu-

cleotides from TFBSs. Despite many proposed one-one binding 

propensity mappings [64,68，69], it has come to a consensus that 

there are no simple binding "codes" between single amino acids 

and nucleotides [88 . 

D a t a raining: Supervised learning approaches have also 

been proposed [107] to mine protein-DNA interactions. De-

rived or transformed information is usually employed such as 

base compositions, structures, thermodynamic properties [1,2 

as well as expressions [81]. However, due to the stringent data 

requirement, many training based data mining methods concen-

trate only on specific families or particular datasets, where the 

generality of the results are limited. Furthermore, these methods 

usually extract complicated features are not trivial to interpret, 

such as neural networks, support vector machines (SVM) [75 

and regressions 

predictions. 

107], and thus are less applicable for general 
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2.3.3 TF-TFBS Associated Pattern Discovery 

Different from complicated transformed features, sequences serve 

as the most handy and abundant primary data, and show great 

potentials to reveal protein-DNA interaction relationships [88 . 

Thus, it is desirable to mine or discover core binding patterns 

of both the TF and the TFBS based on the sequence infor-

mation, since a huge amount of TF-TFBS binding sequences 

are widely available from existing large-scale regulatory element 

databases [72,86 . 

The problem formulation is again based on "conservation", 

namely the binding cores of both TFs and TFBSs should be both 

conserved (associated), such that these associated TF-TFBS se-

quence patterns appear more frequently, preferably with statis-

tical significance, than other randomly combined subsequences 

from the background. In particular, we would like to discover 

the short (about 4-6 nucleotides or amino acids) TF-TFBS as-

sociated patterns (called rules) based on their co-occurring fre-

quency or certain motif models, such that these rules are true 

in real biological interactions of TF-TFBS bindings, i.e. experi-

mentally verified 3D structures at high resolution [83]. This is a 

challenging problem because the given evidence is limited on se-

quence data with hundreds of TF sequences (hundreds of amino 

acids in length) as well as TFBS sequences (tens of nucleotides 

in length), the desired patterns are weak and short signals (4-6 

in length on both sides), and they have to truly reflect the intri-

cate biological properties of TF-TFBS bindings (protein-DNA 

interactions) at high resolution. What makes us delighted is 

that the following recent work and the later chapter do show 

the TF-TFBS rule discovery is very promising to achieve the 

target. 

A recent association rule mining approach [52] exploits the 

exact TF-TFBS associated sequence patterns from TRANSFAC, 

and discovers informative rules verified on both literatures and 
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PDB structures. The study, however, is limited only on exact 

TF-TFBS associated sequence patterns, while variations such as 

mutations and noises are common in real biological data. As a 

result, the approach only generates a handful of exact rules [52], 

while there are still great potentials for many more flexible and 

verifiable rules to be discovered. 

• End of chapter. 



Chapter 3 

TFBS Motif Discovery with 

GALF-P: The Optimization 

Aspect 

Summary 

GALF-P is presented with the concentration on the 

search/optimization aspect of TFBS motif discovery. 

The problem formulation thus follows the existing one 

in order to compare different methods, especially GAs’ 

clearly on the search/optimization performance. 

3 Introduction 

In this chapter, we will in general follow the canonical motif 

discovery definition in order to focus on the optimization as-

pect. As surveyed in the Background chapter, GAs are shown 

to be promising for TFBS motif discovery. The current GA 

methods employ either position-led or consensus-led represen-

tations respectively, while each type has its own disadvantages. 

In this chapter, Genetic Algorithm with Local Filtering (GALF) 

(see [18] for the preliminary version) is proposed employing the 

32 
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combined representation and a novel local filtering operator to 

achieve better effectiveness and efficiency. GALF-P, the exten-

sion of GALF with adaptive post-processing, is developed to 

handle more general cases and shows superior performance to 

the current state-of-arts approaches. 

The rest of this chapter is arranged as follows: in Section 3.2, 

the problem details will be described. In Section 3.3，GALF 

and GALF-P will be presented in detail. Experimental results 

will be reported in Section 3.4，showing the superior and reliable 

performance of GALF-P. The last section will be the discussion 

and conclusion. 

3.2 Problem Formulation 

3.2.1 Definitions 

Generally, the single TFBS identification problem in unaligned 

DNA sequences can be defined as two related motif discovery 

problems corresponding to the position-led and the consensus-

led representations respectively in GAs as follows: 

Input : a set of N sequences S = <52，...，5W}，each of 

which is from the finite alphabet E ( = {A, T, C, G) for DNA 

sequences), where the length of each sequence is I, and the motif 

width w with a valid constraint Q < w 《 I , 

Definition 3 General Consensus Patterns (position-led): 

find a set of instances M = {mi,m2,rnjsi} where each rrii is a 

subsequence with length w from sequence Si, such that the sum 

of information content IC (proposed by [96]) 

w 
hU) 

i=i b Pb 

is maximized, where fb{j) is the normalized frequency of nu-

cleotide b G T, on the column j of all instances in M and pb is 
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the background frequency of the same nucleotide (from S or the 

whole genome). 

De f i n i t i o n 4 Consensus Patterns (consensus-led): find a 

string Sc with length w (which may not exist in S), and a set 

of subsequences M = {爪1,爪2，...,m7v} from S where each rrii is 

with length w from sequence Si, such that the sum of Hamming 

distances (dn) is minimized 

N 

^dHiSc^rrii) (3.2) 

The equivalent definitions of these two problems were given 

by [53] who have proved both of them to be NP-hard. Definitions 

3 and 4 only address a special case of the real single TFBS 

identification problem (fixed motif width w, one occurrence per 

sequence (OOPS)) , where there can be zero or more than one 

motif instance according to the motif type in each sequence. 

This issue will be considered in the following section. There 

may also be multiple TFBSs corresponding to different types 

of motifs or consensuses. However, in this chapter single TFBS 

identification will be our major concern if not specifically stated. 

Further extensions on modeling will be addressed in the next 

chapter. 

3.2.2 Solution Space 

To analyze the search strategies in GAs, the solution/search 

space of TFBS identification is discussed here. 

For the solution representation in Definition 3 (position-led)， 

different assumptions will lead to different number of instances 

ki in Si according to the previous descriptions. For the most 

general case where 0 < ki < I — w + the solution space is 
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as prohibitively huge as 0 ( ( 2 “ 也 [ l o i ] . For the case in 

Definition 3, where ki = 1, the search space is reduced to be 

0{{l — w -i- 1)^). While allowing ki < 1，search space becomes 

0( ( / —iy + 2)^) . To make the computation tractable, all the G A 

approaches are only restricted to the solution space for ki = 1 oi 

ki < 1. We will start with the case of ki = 1 which is uniform and 

widely adopted in GA methods [21,55,77]. Then more general 

cases will be addressed by post-processing in later sections. 

For the solution representation in Definition 4 (consensus-

led), the solution space for all possible consensus strings is 4切， 

which is independent of S and M. This representation is less 

expressive than the one of Definition 3 because the consensus 

string cannot accurately measure the conservation of nucleotides 

when they are not fully conserved in the motif. 

3.3 Methods 

The overall framework, namely GALF-P, which consists of the 

novel Genetic Algorithm with Local Filtering (GALF) and adap-

tive post-processing techniques (-P), is briefly introduced in Ta-

ble 3.1. The details of the framework will be presented in the 

following subsections. 

3.3.1 G A Representations 

According to the two previous problem definitions, G A approaches 

for TFBS identification are categorized into two based on the 

position-led and consensus-led representations respectively. 

For the position-led representation approaches [21,101]，each 

individual is represented by a vector I = { p i ’ p 2 ， s t o r -

ing the set of possible starting positions for the TFBS instances 

in each sequence. I represents a possible solution set M = 

{mi , 7712, •••) t ^n} in Definition 3，because each pi is uniquely 
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Table 3.1: The framework of GALF-P. MAXGEN and MAXRUN are the 

maximal generations of GALF and maximal times to run GALF, respectively 

i — 0; 

Repeat： i — i+1; / / G A L F 

Initialization: 

g 0; 

Generate a random population; 

Repeat: g g+1 ‘ 

Random pairing of the population; 

Single-point Crossover; 

Single-point Mutation; 

Local Filtering triggered every 10 generations; 

Shift Operator on the best individual 

when it stagnates for 10 generations; 

Replacement within the pairs; 

Until (g > M A X G E N or Converged) 

Store the so-far-best individual I Beat', 

Until (i > MAXRUN) 

I I Post-processing: 

/fleat+ 卜 /flcat with adaptive adding; 

^Beat-(Output) 4- IBc9t+ with adaptive removing; 

mapped to instance rrii with w known. Position-led approaches 

have more flexibility to move around in the search space because 

it is free to change any starting position pi with one random op-

eration, and it is easy to simultaneously change all the positions 

in an individual. However, the representation cannot provide a 

detailed view of quality for each TFBS instance because they 

are evaluated as a whole, and thus cannot distinguish a small 

portion of unsuitable positions easily. 

For the consensus-led representation approaches [55,77,94]， 

each individual is encoded as the potential consensus in a string 

pattern C = cic2...c^, which has the same format as Sc in Defi-

nition 4. The individuals of consensus-led methods can be gener-

ated or extracted randomly from the input sequences. One dis-

advantage of consensus-led approaches is the computation need 

to scan all sequences when evaluating a single individual. Fur-

thermore, string patterns are not expressive or accurate enough 

when different nucleotides of the instances are weakly conserved 

at some columns of the motif instances. 
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3.3.2 Representations in GALF 

Although the two GA representations address TFRS identifi-

cation differently, they are closely related to each other. For 

position-led representation, once the optimal I (in other words 

M) is found, C {Sc) can be easily determined by setting the 

most frequent letter at the zth column of M as q . On the other 

hand, once the optimal C {Sc) is discovered, the instance set M 

and I are determined at the same time. 

Intuitively it is possible to improve both effectiveness and ef-

ficiency by combining the two representations and letting them 

complement each other with direct refinement on one represen-

tation based on the other one. As a result, the position- and 

consensus-led Genetic Algorithm with Local Filtering (GALF) 

is proposed. In GALF , the basic representation is based on the 

position-led one (/) for its flexibility to explore the search space 

easily. The evaluation function is the information content IC 

shown in Equation 3.3, which is similar to Equation 3.1 except 

that it only considers the non-zero frequencies. 

U) w 
I C = L l C [ j ) 吃 ^ h U ) log Mj) 

3=1 M3)>0 Pb 

(3.3) 

Meanwhile, the consensus string is not used directly since it 

is not accurate enough to measure weakly conserved instances. 

Therefore a Position-specific Weight Matrix ( PWM) containing 

the consensus statistics will be employed to support more accu-

rate measurement (Figure 3.1). Each cell in the P W M indicates 

the normalized frequency of the nucleotide in a particular po-

sition of the instance set M . Instead of the Hamming distance 

dn in Equation 3.2 for the string pattern, a more accurate sim-

ilarity score for evaluating each instance rrii with respect to the 

P W M can be obtained: 
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An position-led 

Individual (/) 

Extracted motif 

Instances {M) 
Scoresim 

62 AGTAGG 4.0 mi 

387 TCTAGC 3.6 mi 

60 0 AGTACC 3.8 ms 

272 GATCGA 2.6 m4 

366 AGTAGC 4.4 ms 

PWM 

1 2 3 4 5 6 
A 0.6 0.2 0.0 0.8 0.0 0.2 
T 0.2 0.0 1.0 0.0 0.0 0.0 
C 0.0 0.2 0.0 0.2 0.2 0.6 
G 0.2 0.6 0.0 0.0 0.8 0.2 

(Consensus string AGTAGC is not used) 

Figure 3.1: The position-led and consensus-led representations of an artificial 

individual and the Scoresim of its motif instances calculated from the PWM 

w 

Scoresim{mi) 二 fmiU、U) (3.4) 

I ) where mi{j) G S is the nucleotide in column j of instance m 

and fmi{j){3) is the corresponding frequency from the P W M . An 

illustration of the combined representation and the similarity 

score is shown in Figure 3.1. For example, Scoresim{T^2)— 

0.2 + 0.2 + 1.0 + 0.8 + 0.8 + 0.6 = 3.6. 
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3.3.3 Local Filtering Operator 

One dilemma of position-led GA approaches is that an individ-

ual may be made up of a portion of positions (in other words 

motif instances) with high similarities between each other, yet 

another portion is "false positives" which are poorly aligned to 

the potential consensus. They cannot be distinguished nor mod-

ified efficiently by traditional genetic operators. Consensus-led 

approaches address this problem by scanning all the sequences 

each time to evaluate an individual, which imposes heavy com-

putation. Moreover, string representations cannot measure the 

instances accurately. 

Wi th the complementing representations of I and PWM for 

consensus, the "false positives" in I can be efficiently filtered 

out by the novel local filtering operator. Based on Scoresim the 

local filtering operator scans for best replacements only in the se-

quences which contain the current worst instances to be filtered 

out. The procedure is as follows: firstly, the motif instances rrii 

within an individual is ranked by its Scoresimi'^^i)- Secondly, 

the sequence containing the instance with the lowest similarity 

score is scanned to find the replacing instance (i.e. the corre-

sponding position) with the best Scoresim in that sequence. If 

the rank does not change, which means the best instance in this 

sequence is not better than that of the preceding ranked one 

from another sequence, then the local filtering is stopped. Else 

the preceding ranked Scoresim now becomes the lowest, and the 

corresponding sequence containing that instance is selected and 

scanned as in the first step. This step is repeated until the rank-

ing does not change. Note that the P W M will not be updated 

in the local filtering for two purposes. One is to save computa-

tional load compared with on-line update, and the other is to 

try not to be too greedy. The pseudo-code is shown in Table 

3.2. 

Take the instances from Figure 3.1 as an example, after rank-
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Table 3.2: Pseudocode of local filtering operator 

Input: Individual I = {pi ,p2, ••，？"} 

Notation: pi is the starting position of the motif instance ttt^ in 

Sequence i in / ; Scoresi7n(''T^) is the similarity score of m i ; 

N is the sequence number. 

iX)CAL_FILTER(J) { 
Sort all the instances of I by Scoresimi') and obtain the 

order of sequences according to the ranking: 

finJt(l). Rnk{2), ... Rnk{N)\ 
//where 5core5<m {'^Hnk{i)) the highest score and 

//Scoresim{''^Rnk{N)) the lowest score 

for (it = N ; /c < 2. fc . •) 
{ 

Scan sequence Rnk{k) to get qfinh{k) with best 

PRnk{k) = <}Rnk(k)* 
if {Scoresim{PRnk(h)) < Scoresim{pRnk(k-l))) 

Return the new /: 

ing the similarity scores, 7714 (2.6) is the worst instance and its 

preceding ranked instance is 7712 (3.6). So sequence 4 is scanned 

for the best instance against the consensus. Suppose AGTAGG 

(4.0) is found, p4 is updated. Since the score is better than m2，s， 

the sequence corresponding to vcvi will be scanned in the next it-

eration. The iteration goes on until for some sequence, the best 

instance found is still worse than its preceding ranked one. For 

example, if the best instance in sequence 2 is not better than 

ma, local filtering is stopped. 

When an individual is subject to the evolutionary process, 

only a small number of "false positives" need to be filtered and 

only a few sequences need to be scanned. Since this operator 

is greedy to some degree, in order to keep the contribution of 

evolutionary process, it is only triggered at the interval of a 

certain fixed number of generations. 

3.3.4 Evolutionary Process 

GALF showed better performance compared to different meth-

ods including other GAs [18]. Wi th further investigation into the 
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rodgh fitness landscape of motif discovery, we find it necessary 

to explore the search thoroughly to locate the global optima. In 

order to improve GALF, another evolutionary strategy is pro-

posed to achieve more reliable performance. Different from tour-

nament selections [18,21,29,55，77,94，101], pre-selection similar 

to [66] is employed to maintain the diversity in the population. 

The evolutionary process is performed in the position-led rep-

resentation space. All P individuals in the population are ran-

domly partitioned into P/2 non-overlapping pairs. In repro-

duction, each pair of parents P r i , Pr2 are subject to a certain 

crossover rate, generating two offspring Ofi and Of2. Both the 

offspring and individuals not chosen for crossovers are subject 

to mutation with certain mutation rate. Single-point mutation 

(U) and crossover (X ) are used. Therefore, there are 4 possible 

cases, namely, X with U, X without U, U without X , and no 

operation. 

For the first two cases with crossovers (X)，replacement hap-

pens between P r i , Pt2、Oj\, and O/2. Each parent is paired 

with the more similar offspring, e.g. P r i with O/2, based on 

their Hamming distance. Accordingly Pr2 is paired with O / i . 

In each pair the one with better fitness will survive and replace 

the other, thus diversity and certain selection pressure are main-

tained. 

For the third case, U without X , a mutant directly replaces 

its original version. The purpose is to maintain more diversity 

and variations. In order not to lose the potential optimum, the 

best-sofar individual is kept and stored separately. Faster con-

vergence may be achieved if selection is applied where the better 

version replaces the worse one. However, local filtering already 

does the job when it is triggered, removing small variations of 

mutation. If such replacement is also performed, the diversity 

will be significantly decreased and premature convergence may 

happen. 
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Shift operator is also applied as it was in [18] to avoid stag-

nation of the best individual, though the operator will rarely be 

triggered with a very high variation rate. 

3.3.5 GALF-P with Adaptive Post-processing 

GALF and many other GA approaches (e.g. [21,29]) have the 

limitation of assuming /ci 二 1 in each sequence. To further ex-

tend GALF, adaptive post-processing is developed to add motif 

instances and remove false positives, resulting in the GALF-

P framework (Table 3.1). To provide practitioners with more 

reliable output, in GALF-P, GALF can be run several times 

(MAXRUN in Table 3.1) to obtain the overall best individual 

I Best before the post-processing is performed, similar to the way 

of GAME . 

Post-processing in GALF-P includes adding and removing in-

stances based on the information content IC in Equation 3.3. 

IC is widely employed in different TFBS identification approaches 

and many novel scoring functions serve as generalized extensions 

of IC (e.g. [40]). Since our focus is on the more effective and effi-

cient search strategy in GAs, we have just adopted IC and more 

elaborate extensions on problem modeling will be addressed in 

future work. 

Many methods add pseudo-counts to the P W M to avoid the 

error in computing zero logarithm for unobserved nucleotides 

when calculating IC in Equation 3.1. We alleviate this problem 

by ignoring the /^( j) log ^ ^ term when fb{j) = 0 in Equation 

3.3, similar to the idea that events with zero probability do not 

contribute to entropy. This strategy works well for GALF as-

suming one instance per sequence {ki = 1). However, the set of 

instances we get from GALF based on Equation 3.3 tend to be 

the most conserved one, i.e., each instance is the best in terms of 

fitness among all the instances in the same sequence. In order 
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to accept weaker instances and reject false positives correctly, 

pseudo-counts are employed in the post-processing to relax the 

highest conservation from GALF. W i th the best individual I Best 

output from GALF , its fitness is re-calculated to be ICj^^^^ in-

cluding pseudo-counts (1 for each nucleotide at each column). 

Both the adding and removing stages of the adaptive post-

processing are shown in Table 3.3. In the adding stage, the goal 

is to find an additional set M' whose instances on average ⑷ 

increase ICj^^^^ by more than e。，where €o is a small constant 

value, intuitively proportionate to the motif width w, i.e. cq — 

P ^ w. €0 stands for a minimum non-trivial increase in fitness. 

In our experiments, fi is fixed at a small value 0.001. Since 

the adding process adjusts 6 adaptively, small changes in P do 

not affect the results. To include certain weaker instances in 

M ' ’ an initial lower bound is also set as (5 = —eq. Each time 

when a temporary M' is created and it does not satisfy our goal 

of 5 > €o, the adaptive lower bound will be set as IC'j^^^^ + 6 

based on which a new M' will be created for the next iteration. 

The stage will converge as long as the maximal increase A > 

eo, which implies there is a non-empty M' with at least one 

instance to be added. In this case 5 is incremented adaptively 

and definitely will be larger than eo eventually. W i t h M, added 

to I Best we obtain lBest+. 

In the removing stage shown in Table 3.3, I Best- is initialized 

as lBest+, SO is IC'iBe，t-' A new threshold eg = eo * 7 , €0) 

is set. The maximum between S and eo * 7 intuitively ensures 

the removal contributes non-trivially to the increase of IC com-

pared to the adding, and 60 will be the minimum threshold when 

7 = 0. For initialization of the lower bound, f- e'q. The 

stage iteratively removes the instance with greatest increase A ' 

of IC'iBt，t一 among those instances satisfying the threshold cri-

terion id'iB‘ + 5'. If no such instance exists, the removing 

stage will be ended. In each iteration I Best- and the correspond-
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ing IC、BfiBt- are updated accordingly. The adaptive updating of 

5' = (e'o+A')/2 takes into consideration both the current largest 

fitness increase A ' and the initial e^. Finally I Best- is output as 

the solution. 

The adding stage allows certain weaker instances in M' to 

be added and at the same time guarantees that the additional 

set M' on average should contribute positively and non-trivially 

(more than cq) to ICBest. Similarly, the removing stage is strin-

gent so that only the most probable false positives will be re-

moved one by one. The two stages work adaptively to extend 

GALF for more general cases and refine the solution effectively. 

Both simulated and real experiments show that the adaptive 

post-processing is typically effective for identifying additional 

motif instances and removing false positives. 

3.4 Results 

3.4.1 Parameter Setting 

The running configurations of GALF are as follows: there are 

500 individuals in the population; in the experiments a maximal 

generation of 300 is shown to be sufficient and the stopping 

criterion for convergence is that the best individual does not 

change for 50 consecutive generations; and interval to trigger 

local filtering is 10 generations. For fair comparisons, we have 

deliberately set the same number of individuals and convergence 

criterion as GAME 'S . 

In order to find out the optimal parameter settings for GALF, 

54 different combinations of mutation rates (6 values: from 0.1 

to 0.9 with step 0.2 and 1.0) and crossover rates (9 values: from 

0.1 to 0.9 with step 0.1) are tested for the capability to locate 

the optimal results. 4 synthetic datasets are generated to in-

clude different sequence lengths, numbers of sequences, motif 
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Table 3.3: Pseudocode of adaptive post-processing. 

/ / A d d i n g Stage: 

Obtain the best individual I Beat = output by GALF; 

Calculate / C 。 " ^ with peudo-counts; 

eo fi 6 A Co； 
A — - ZC、…）； 

if (A < co) II Which means = 0 

{ 7 0; Return /Be5t+ — lB^at\ } / / Adding stops 

while (5 < Co) 
{ 

} 
7 = |M'|； 

Return lBc3t+ — ^Beat U ^ '； 

I I R e m o v i n g Stage: 

^Beat- ^Beat+； 

«o max(^, 0 *w)] 6' ^ c'o； 

while (1) 
{ 

Calculate /C}^ of ibcsi^ with peudo-counts; 

M'卜{mij\m"/l J > IC'i一 
if ( M ' = 0) 
{ R« tum iBest-; } 

= j -
iBeat- ！Beat- 一 {the instance corresponding to A ' } ; 

—(6'0 + A ' ) /2 ; 

} 
^ is the IC if m^,*： is added to I Best and ^ is the IC if mi . 

is removed from I Beat-- AU IC values are calculated with pseudo-counts. 



1 0 Mutation 
Crossover Rate 

Figure 3.2: The normalized fitness averaged on all the datasets for each 

combination of crossover and mutation rate setting. 

widths and different conservation degrees. Note that they are 

totally different from the synthetic datasets experimented in the 

next section to avoid over-training that may favor our approach. 

GALF is first run 20 times for each setting on each dataset, and 

then the average fitness is normalized for different settings. Av-

eraging the normalized fitness for different datasets we have the 

average normalized fitness for evaluation. Figure 3.2 shows the 

averaged normalized fitness for each setting. In general, GALF 

favors high mutation and moderate crossover rates to keep the 

diversities that local filtering reduces. The best configuration 

is 0.9 and 0.3 for mutation and crossover rates respectively and 

this setting will be fixed in the following experiments. Since 

the post-processing in GALF-P only needs the best output from 

GALF of 20 runs, any setting in the high plateau in Figure 3.2 is 

also acceptable, although lower crossover rates need more time 

to converge. 
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3.4.2 Evaluation with Synthetic Data 

In order to evaluate the performance of GALF-P for TFBS iden-

tification, a total of 800 synthetic datasets with length 300 bp 

for each sequence are generated with the following 8 combina-

tions of scenarios: (1) motif width: short (8 bp) or long (16 bp); 

(2) number of sequences: small (20) or large (60); (3) motif con-

servation: high or low. For each combination, 100 datasets are 

generated and embedded with the instances of a random motif. 

In the high conservation scenario, in every column of the motif 

instances, the dominant nucleotide is generated with 0.91 proba-

bility (while all other 3 with 0.03 each). In the low conservation 

scenario, only 60% of the columns in the motif instances are as 

highly conserved as in the previous high conservation scenario, 

while 40% are lowly conserved, where the dominant nucleotide 

is generated only with 0.55 probability (while all other 3 with 

0.15 each) in every instance. To simulate the noisy situation 

in real data, in each synthetic dataset, the sequences have 10% 

probability of containing no motif instances. In the rest of them 

which contain motif instances, there is 10% probability that the 

sequences have more than one instance. The number of addi-

tional instance(s) in the sequences follows the geometric distri-

bution with p == 0.5，i.e. = (1 — and therefore A: + 1 

instances are embedded in such a sequence. 

The performance of GALF-P is compared with GAME , MEME, 

Bioprospector(BioPro.), BioOptimizers based on M E M E and 

Bioprospector (BioOpt. M. and BioOpt. B. respectively) on 

the synthetic datasets, with fixed motif widths. The metrics for 

evaluation are the precision, recall and the F-scpre for informa-

tion retrieval [90]. Precision and recall are defined as follows: 

Precision 二 and Recall = (3.5) 

where # 。 ， a n d #t are the number of correctly predicted motif 
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sites, the number of all the predicted motif sites and the number 

of all true motif sites embedded in the sequences, respectively. 

Note that shifting up to 3 bp is allowed for a correctly predicted 

site, according to [101]. The F-score combining both precision 

and recall is defined as: 

F 2 * Precision 氺 Recall • � ^ 

Precision + Recall 

A high F-score indicates both precision and recall are high. 

The average results for each combined scenario are shown in 

Table 3.4. Best F-scores are bolded. Since BioOpt.M. does not 

improve any result of M E M E with respect to the evaluation, 

only M E M E results are shown to save space. GALF-P achieves 

the best average F-score and average recall. GALF-P not only 

has comparable performance to the best approaches in the rel-

atively easy scenarios (high conservation), but also gives the 

best results in all difficult ones (low conservation) when other 

approaches deteriorate significantly and find no true motifs in 

some datasets (details not shown). These difficult scenarios are 

more close to the real datasets and the results match well with 

the real dataset experiments in the next section. Thus we be-

lieve that GALF-P is superior to other methods in finding the 

optimal motifs in more realistic (usually difficult) cases. Note 

that the assumption of one instance per sequence {ki = 1) for 

GALF is violated in all the synthetic datasets. However, GALF-

P can still achieve respectively 0.97，0.99 and 0.98 for average 

precision, recall and F-score in one scenario, demonstrating the 

adaptive post-processing is effective to tackle the general as-

sumptions in real motif problems. 

3.4.3 Experiments on Real Datasets 

In this section, the one-run results of GALF-P are compared 

with the reported ones from [101] of GAME , MEME , Bioprospec-
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Table 3.5: The 8 real datasets. N is the number of sequences, I is the sequence 

length, w is the motif width, and is the number of TFBSs embedded. 

“Dataset CREB CRP ERE E2F MEF2 M Y O D SRF TBP~ 

N 17 18 ^ ^ 17 17 20 % 

I 200 105 200 200 200 200 200 200 

w 8 22 13 11 7 6 10 6 

#t 19 23 25 27 17 21 36 95 

tor (BioPro.), BioOptimizers based on M E M E and Bioprospec-

tor (BioOpt. M. and BioOpt. B.) on the 8 real datasets tested 

by [101]. The details of the datasets are shown in Table 3.5. The 

CRP dataset contains the binding sites for cyclic A M P recep-

tor, and has been widely tested since [97] was published. The 

ERE dataset contains the binding sites for the ligand-activated 

enhancer protein estrogen receptor (ER) [47]. The E2F datsets 

correspond to TFBSs of the E2F family from mammalian se-

quences [46]. CREB , MEF2, MyoD, SRF and TBP are cho-

sen from the ABS database of annotated regulatory binding 

site^. [13]. More details of the datasets can be found in [101 . 

Different ranges of motif widths, numbers of sequences as well 

as numbers of embedded TFBSs are covered. The evaluation 

criteria are also the precision, recall and F-score. Again up to 

3 shifts are allowed for a correctly predicted site. 

The results in terms of F-scores are compared in Table 3.6 

(the whole table containing precisions and recalls is not shown 

for simplicity). The best results are bolded. GALF-P has the 

best results in 7 out of the 8 datasets as well as the overall 

average. G A M E is ranked second best in most of the datasets 

with one best F-score. On average, GALF-P (0.83) and G A M E 

(0.77) give significantly better F-scores than the other methods 

(0.56-0.61). Furthermore, GALF-P achieves the best average 

precision (0.81), recall (0.87) and F-score (0.83) while G A M E 

is the second best in terms of all these three metrics (0.78，0.77 

and 0.77 respectively). 
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Table 3.6: Comparisons of F-scores on the 8 real datasets. 

Dataset G A L F - P G A M E B i o O p t . M . B i o O p t . B . M E M E B i o P r o . 

CREB 

CRP 

ERE 

E2F 

MEF2 

MYOD 

SRF 

0 . 7 6 

0 . 8 5 

0 . 7 9 

0.81 
0 . 9 7 

0 . 7 2 

0 . 8 4 

0 . 8 9 

0.73 

0.80 
0.75 

0.00 
0.88 
0.48 

0.80 
0.84 

0.67 

0.72 

0.74 

0.88 

0.00 
0.74 

0.40 

0.67 

0,67 

0.75 

0.74 

0.75 

0.59 

0.67 

0.71 

0.76 

0.88 

0.36 

0.67 

0.78 

0.68 
0. 
0. 
0.00 
0 
0 

0 . 8 3 0.77 0.59 0.61 0.58 0.56 

3.4.4 Comparisons between GALF-P and G A M E 

Since GALF-P and G A M E are the best two methods and our 

focus is on GAs, further experiments are performed to compare 

GALF-P and GAME. To make a detailed comparison, we run 

both GALF-P and G A M E with fixed motif widths on the same 

8 datasets, each run 20 times. In each run, the GA procedures, 

namely GALF, and the GA procedure in G A M E are both run 

20 times to obtain the best individuals, due to the stochastic 

nature of GAs, before post-processing is applied. Their best and 

average performances are compared based on the above metrics. 

The best results in terms of F-scores (with the associated 

precisions and recalls) are shown in Table 3.7. Numeric formats 

for the corresponding precisions and recalls are shown in paren-

theses. The better results between G A M E and GALF-P are 

bolded. 

GALF-P gives better precisions compared to G A M E in 7 out 

of the 8 datasets, thanks to the superior performance of GALF, 

which achieves very high precisions (0.88 on average). On the 

other hand, GALF-P obtains comparable recalls (6 better than 

or the same as GAME) among which the optimal recalls for 

MEF2 and M Y O D are obtained. Moreover, GALF-P achieves 

better precision, recall and F-score than G A M E averaged over 

the 8 datasets. 

For the average performance in 20 runs shown in Table 3.8， 

the differences between G A M E and GALF-P are even larger. 
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Table 3.7: Comparisons of GALF-P and GAME on the 8 datasets for 20 runs: 

Best results (in terms of F-scores, together with the corresponding precisions 

and recalls). Dataset;s satisfying one instance per sequence are labelled with 

u木，， 

CkEB 
CRP 
ERE* 
E2F 

MEF2* 
MYOD 

SRF 
TBP* 

Average 

Precision 
14/18 (0.78) 
18/21 (0.86) 
20/38 (0.53) 
24/30 (0.80) 
17/19 (0.89) 
10/21 (0.48) 
33/45 (0.73) 

81/101 (0.80) 
0.73 

GAME 

Recall 
14/19 (0.74) 

18/23 (0.78 
20/25 (0.80 
24/27 (0.89 
17/17 (1.00 
10/21 (0.48 
33/36 (0.92 
81/95 (0.85 

Oi 

F-
76 
82 
63 
84 
94 
48 
81 
83 

Precision 
16/23 (0.70) 

17/17 (1.00 
19/23 (0.83 
24/29 (0.83 
17/18 (0.94 
21/37 (0.57 
33/43 (0.79 
86/93 (0.92 

GALF-P 
Recall 

16/19( 0.84) 
17/23 (0.74) 
19/25 (0.76) 

24/27 (0.89) 
17/17 (1.00) 
21/21 (1.00) 
33/36 (0.92) 
86/95 (0.91) 

F-
0.76 
0.85 
0.79 
0.86 
0.97 
0.72 
0.84 
0.01 

0.76 .82 0.88 .84 

The better results between G A M E and GALF-P are bolded. 

GALF-P achieves better precisions for all but one dataset and 

better recalls for 5 datasets. In 7 of the 8 sets GALF-P obtains 

better F-score than GAME . As a result, the average precision, 

recall and F-score averaged over the 8 sets are all significantly 

better for GALF-P (by more than 20%). It implies that GALF-

P is more stable and reliable in identifying the TFBSs correctly. 

We discover that during some runs for datasets CREB , MEF2 

and M Y O D , G A M E was trapped in local optima, indicated by 

the lower reported fitness values compared with the best ones 

G A M E achieved in the 20 runs. As a result, G A M E failed to 

identify any of the motifs in some runs. This suggests that 

GAME 'S GA procedure is not elaborately designed or fully op-

timized, producing inconsistent results in difficult problems with 

many local optima. On the other hand, the average results of 

GALF-P (precision 0.80; recall 0.87; F-score 0.82) are consis-

tent and comparable with its best results (precision 0.82; recall 

0.88; F-score 0.84)，demonstrating the robust performance of 

GALF-P, which is also indicated by the generally smaller stan-

dard deviations for CREB , MEF2 and M Y O D in Table 3.8. 
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Table 3.8: Comparisons of GALF-P and GAME on the 8 datasets for 20 runs: 

Average results (precisions, recalls and F-scores are averaged separately). 

With the 士 symbols are the standard deviations. Datasets satisfying one 

instance per sequence are labelled with "*"s. 

Datasct 

C R E B 

C R P 

E R E * 

E2F 

MEF2* 

M Y O D 

SRF 

Precision 

G A M E 

Recall 

GALF-P 

F-

0.43 土 0.36 

0.79 士 0.02 

0.52 士 0.03 

0 . 7 9 士 0.02 

0.52±0_37 
0.14 土 0.20 

0.71 士 0.01 

0.81 土 0.08 

0.42 土 0.,36 

0 . 78 士 0:00 

0 . 78 士 0.08 

0 . 8 7 土 0.02 

0.55±0.40 
0.14士0.19 

0.86 土 0.01 
0.74 士 0.11 

0.42 土 0.35 

0.78 土 0.01 

0.62 土 0.05 

0 . 8 3 土 0 .02 

0.53 士 0.37 

0.14 土 0.20 

0.78 士 0.01 

0.77 土 0.09 

Precision 

0.70±0.00 

0 . 9 9 士 0 .03 

0 . 8 2 土 0.01 

0.77 土 0.02 

0 . 9 1 土 0.09 

0 . 5 7 士 0.00 

0.75±0.03 
0 . 8 7 士 0.04 

0 . 8 4 士 0.00 

0 .73 士 0.02 

0.76 土 0.01 

0_85 士 0.01 

0.98±0.08 
1.00 土 0.00 
0 . 8 9 土 0 .06 

0 . 8 7 士 0.02 

0 . 7 6 士 0.00 

0 . 8 4 土 0.03 

0 . 7 9 土 0.00 

0.81 土 0.01 

0 . 9 5 土 0.09 

0 . 7 2 土 0.00 

0 . 8 2 土 0.05 

0 . 8 7 土 0.02 

0. 0.61 0.80 0. .82 

3.4.5 Complexity and Efficiency 

To evaluate the efficiency, we analyze the complexity of the evo-

lutionary process of the GA in GAME, and GALF in GALF-P. 

Suppose there are N sequences, each with the same length 1. 

Motif width is w. Population size is P which is the same for 

GALF and GAME. 

In summary, the overall complexities for GAME and GALF 

respectively are: 

Cgame = 0{G\ * P * N * w) 

C g a l f = 0{G2 + (log N + L/k))) 

where 0.1 indicates local filtering is triggered once every 10 gen-

erations, l/K is the averaged percentage of sequences scanned 

in local filtering, and Gi and G2 denote the different maximum 

generations required in GAME and GALF respectively. 

In fact, C g a l f has higher complexity than Cgame when the 

same generations are used and N and/or I are sufficiently large. 

However, due to the local filtering, GALF achieves convergence 

within a maximum G2 = 300 generations in the experiments, 

while GAME requires Gi = 3000 as the maximum generations. 

Notice that in real cases, usually w > 5 and I < 1000 in the 

promoter regions. The break even point of C g a l f > Cgame 
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requires: N « 二 when quick sort is used in 

local filtering {N ^ 100 * w even if bubble sort is used), or I ^ 

/c*if ;*Gi/(G2*0.1) = lOO^w^k. k drops significantly according 

to the real dataset experiments, with the average recorded k = 

4.52. So it is seldom that Cqalf >^ Qgame in the real cases {w is 

about 10 to 20 and I is within a fe诱 thousand bp (usually within 

3000 bp)) of TFBS identification and thus GALF is usually more 

efficient than GAME. 

However, it is not easy to compare the efficiency between the 

GA in G A M E and GALF. Subject to premature convergence 

in real problems, the maximal generations may not be used up. 

Another difficulty is that GAME is implemented in JAVA while 

GALF-P is implemented in C. Moreover, G A M E can only be 

timed with the GA and post-processing as a whole (and thus we 

time GALF-P in the same way). The comparison on running 

time is not a reliable indicator of the efficiency of the algorithms, 

thus the result quality rather than computing time is the major 

concern. Nevertheless it can be a reference for the practitioners 

who have arguments on the slow running time of GAs. 

In the previous experiments, GALF-P and G A M E are both 

executed on the same Pentium D 3.00 GHz machine with I G B 

memory, running Windows XP. GALF-P is on average 4.49 

times (3.11 to 10.29 times) faster than G A M E (Table 3.9). GALF-

P and G A M E require 61.91s and 291.11s on average respectively, 

showing that GAs can provide a reasonable computation solu-

tion for the problem. 

3.5 Discussion and Conclusion 

As a GA based method for TFBS identification, G A M E shows 

better performance than other approaches. However, the basic 

GA in G A M E is not elaborately designed or fully optimized. In 

the noisy circumstances for motif discovery in real applications, 
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Table 3.9: Average computation time on the 8 datasets between GAME and 
GALF-P. :、 

GAME GALF-P Speedup 
CREB 133.00 42.75 3.11 
CRP 380.05 98.20 3.87 

ERE 334.20 83.20 4.02 

E2F 288.65 86.95 3.32 

MEF2 112.05 34.40 3.26 
M Y O D 91.05 26.25 3.47 

SRP 

TBP 

224.05 

765.80 

49.10 

74.40 

4.56 

10.29 

Average 291.11 61.91 4.49 

G A M E is likely to be trapped by local optima and the GA results 

significantly affect the final output in despite of any elaborate 

post-processing. 

In this chapter, GALF, employing the combined represen-

tations associated with a novel local filtering operator and ad-

vanced evolutionary process, has been proposed to provide a 

more effective and efficient GA search algorithm than G A M E 

and other approaches. We have further extended GALF to the 

GALF-P framework by integrating carefully designed adaptive 

post-processing. GALF-P gives superior results in the difficult 

(realistic) synthetic datasets and outperforms G A M E in terms 

of precision, recall and 厂-score averaged on the 8 datasets tested 

in 1
 

1
 

Moreover, GALF-P shows more stable and reliable per-

formance than G A M E and hence should be favored by practi-

tioners. A recent version of GALF-P is also available to identify 

instances on both forward and reverse strands. 

Further efforts will be put in for several issues, the most im-

portant one of which is the fitness function. Since our concern in 

this chapter is mainly on improved GA-based searching methods 

rather than developing a new model for the fitness function, the 

widely adopted IC (also serves as a core part of the Ba^esian 

scoring function for GAME) is employed. Nevertheless, w^ be-

lieve appropriate domain knowledge can be incorporated for a 

more realistic fitness model. More complete work on the mod-



CHAPTER 3. TFBS MOTIF DISCOVERY: OPTIMIZATION 56 

eling will be addressed in the future. Another challenging and 

interesting topic is to design a novel multi-modal GA to dis-

cover multiple motifs in a single run, rather than several runs 

with masking techniques. 

• End of chapter. 



Chapter 4 

TFBS Motif Discovery with 

GALF-G: The Modeling Aspect 

Summary 

GALF-G is presented to address the modeling aspect of 

TFBS motif discovery. The modeling generalizes sub-

stantial assumptions, allowing uncertain motif widths, 

relaxing OOPS and ZOOPS assumptions, and discover-

ing multiple TFBS motifs simultaneously. 

Additional file 1 available at: 

http://www.cse.cuhk.edu.hk/%7Etmchan/GALFG/ 

4.1 Introduction 

Although the previous GALF-P shows outstanding results in 

search/optimization based on an existing model, the TFBS mo-

tif discovery problem is still challenging with respect to the mod-

eling. Real TFBSs of a motif may vary in their widths and their 

conservation degrees within a certain range. Deciding a single 

motif width by existing models may be biased and misleading. 

Additionally, multiple, possibly overlapping, candidate motifs 

57 
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are desired and necessary for biological verification in practice. 

However, current techniques either prohibit overlapping TFBSs 

or lack explicit control of different motifs. 

In this chapter, we propose a new generalized model to tackle 

the motif widths by considering and evaluating a width range of 

interest simultaneously, which should better address the width 

uncertainty. Moreover, a meta-convergence framework for ge-

netic algorithms (GAs), is proposed to provide multiple overlap-

ping optimal motifs simultaneously in an effective and flexible 

way. Users can easily specify the difference amongst expected 

motif kinds via similarity test. Incorporating Genetic Algorithm 

with Local Filtering (GALF) for searching, the new GALF-G (G 

for generalized) algorithm is proposed based on the generalized 

model and meta-convergence framework. 

GALF-G was tested extensively on over 970 synthetic, real 

and benchmark datasets, and is usually better than the state-

of-the-art methods. The range model shows an increase in sen-

sitivity compared with the single-width ones, while providing 

competitive precisions on the E. coli benchmark. Effectiveness 

can be maintained even using a very small population, exhibit-

ing very competitive efficiency. In discovering multiple overlap-

ping motifs in a real liver-specific dataset，GALF-G outperforms 

M E M E by up to 73% in overall F-scores. GALF-G also helps 

to discover an additional motif which has probably not been 

annotated in the dataset. 

4.2 Motivations 

Challenges 

Great challenges exist for de novo motif discovery algorithms to 

succeed. Challenges mainly include (i) NP hardness (ii), width 

uncertainty and (iii) multiple (overlapping) motifs, of which the 

latter two demand for more focus. 
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• (i) N P hardness: The most well-known challenge is the 

NP hardness [53] due to the unknown conservation degree, 

where extensive approaches have been proposed to achieve 

optimality under certain models, as surveyed in the last 

sub-sections. 

• (ii) W i d t h uncer ta in ty : An often overlooked challenge 

in real-life problems is the uncertainty in the motif widths. 

In real datasets, it is not easy to determine a single motif 

width (1) experimentally or (2) biologically. (1) Experi-

mental: Annotated TFBSs are often affected by limited 

experimental resolutions, and it is thus difficult to choose 

any single width to fit the TFBSs before a motif can be dis-

covered. (2) Biological: The most conserved binding con-

tacts are between the short binding core of the target TFBS 

and the binding domain of a TF. The binding core may be 

fixed-width (<6bp). However, the short binding core may 

not provide enough binding affinity for its corresponding 

TF to recognize. Instead, a TF contain flexible segments 

of polypeptide chain, and these flexible arms work together 

with the DNA binding domain of the TF to add additional 

affinity [32]. The complication makes the effective width 

not easy to be fixed at a single value. For example, the 

TFBS widths vary in the familial binding cases of the Zn2-

Cys6 motif [74；. ‘ 

Existing methods usually assume a known and fixed TFRS 

motif width or model a distribution around an expected 

width when there are uncertainties involved. The conser-

vation contributed from different motif parts by varying the 

widths may be under-utilized in a single-width approach, 

and the so-called expected value may be misleading and bi-

ased. Statistical significance to rank different widths, e.g. 

E-value [35], is computational intensive and still only picks 
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a single-value width at the end. In the illustrative example 

of a real motif with 19 LexA binding sites in Figure 4.1, if 

a single width is chosen, it may be 5 if only the stringent 

core part (3-7) is chosen; or it may be 12 if considering all 

columns (1-12). In the former case, the short motif may not 

be ranked higher than those non-TFBS frequent patterns 

happening by chance. In the latter case, since both highly 

and weakly conserved columns are evaluated equally, it may 

include additional false positives. On the contrary, mod-

elling those uncertain bases with a range concept can bet-

ter capture the different resolutions for assessing the motif 

signals, and thus potentially better describe the real TFBS 

motif. 

A(w=ll) 

Figure 4.1: An example of the generalized model on the motif of 19 real LexA 

binding sites (the first 12 columns) from the SequenceLogo website. Each 

A{'Wi) is chosen based on the maximal P{A{wi), where the bits bounded by 

the red dashes reflect for illustrative purpose. In practice, PiAiwi) 

can be chosen flexibly. 

(iii) Mult iple (overlapping) motifs: Another challenge 

which is not well handled is the overlapping nature of TF-
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i 

‘ BSs for different motifs because competitive binding ex-

ists amongst different TFs in the same regulatory region. 

Current techniques used are mainly masking/erasing and 

implicit maintaining. 

—Masking/erasing: These techniques can only discover 

one motif in a single execution, and thus several ex-

ecutions are required for outputting multiple motifs. 

Masking/erasing techniques also prohibits the subse-

quent discovery of the TFBSs overlapped with those 

previously masked ones. However, in real cases, differ-

ent kinds of TFBSs may overlap with each other due 

to competitive binding of TFs. 

- Imp l i c i t maintaining: There are existing methods to 

sample different motifs simultaneously but with little 

or no mechanism to explicitly distinguish different so-

lutions or flexibly control the overlapping degrees of 

TFBSs. As a result, highly redundant motifs may be 

produced. If there are limited number of output solu-

tions, redundant top-scored variant motifs will domi-

nate and less-fit but different solutions will be missed. 

If non-redundant and different solutions need to be pro-

vided, a large output number has to be set and post-

processing is required [34] with additional costs. 

Therefore, it is desirable to discover multiple motifs more 

effectively and efficiently with ccrtain flexible and explicit 

overlapping control. 

Chapter Outl ine 

To overcome all these drawbacks of the existing de novo mo-

tif discovery algorithms, we propose t h e genera l ized mode l 

which presents a new angle to handle the variable motif widths 
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to better reflects the biological uncertainty. Then we present 

t he meta-convergence f r amework to support multiple opti-

mal solutions with flexible overlapping control using similarity 

tests. Based on the generalized model and the framework, a new 

algorithm called G A L F - G is developed. 

The rest of the chapter is arranged as follows. The gen-

eralized model, the meta-convergence framework and the new 

algorithm GALF-G are first presented briefly in the Proposed 

Methods section, followed by the Detailed Implementations sec-

tion. Extensive experimental results are then reported in the 

Experiments section, including single/multiple motif discovery 

problems with fixed-width/variable widths inputs. A large num-

ber of both synthetic and real benchmark datasets are used in 

the experiments. Discussion and conclusive remarks are finally 

given. 

4.3 Proposed Methods 

In this section, we present t h e general ized m o d e l and t he 

meta-convergence framework in brief, which form the GALF-

G algorithm. 

4.3.1 The Generalized Mot i f Model 

To tackle the challenge raised from the uncertainty of motif 

widths, we propose a new generalized model by considering a 

width range of interest simultaneously. A range is more practi-

cal and suitable for real biological cases for two reasons: 

• First, it is easier to define a rough range than a particu-

lar width. All widths within contribute accordingly to the 

motif solution, and thus it is less sensitive than a wrongly 

chosen single width. 
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• Second, TFBSs of a motif in reality vary in their widths and 

exhibit certain higher degrees of conservation compared to 

the non-site fragments (the background). A range model 

can more appropriately capture the different conservation 

degrees than any single width. 

Assume the width input is R = [wmin^ '^max] and \R\ = in max — 

Wmin +1，and a candidate solution, i.e. a set of TFBSs to form a 

motif, is defined as A, with the TFBS positions denoted by {pi}. 

The formal problem denotations and formulations are shown 

in the Methods section: The Proposed Model and Evaluation. 

The generalized model evaluates A based on the whole range R. 

An illustrative example is shown in Figure 4.1. The model or 

scoring function (illustrated by the heights of color nucleotides 

in the figure) for a fixed width Wi is well established, e.g. a 

probabilistic model, denoted as P(A(wi)\wi), where P(A(wi)) is 

a part from the complete candidate solution A with respect to 

Wi. The generalized model can then be formulated by summing 

them together as 

P{A) = ^ P(A(wi)lwi)P(w,). (4.1) 

wieR 

For the most common case when there is no prior knowledge 

on which width is more likely to happen, Wi can take a uniform 

distribution, i.e. P{wi) = 1/\R\ for each Wi. On the other hand, 

any prior distribution such as the Poisson one used in Bayesian 

models [40] can be also adopted. For each u>i-component where 

Wmin < < Wmax, there are more than one choice and we 

only pick the component A{wi) by ei.Tgmax{P{A{wi)\wi)) (caps 

in Figure 4.1). The additional computational cost compared 

to a fixed width model is 0(|jRp), which is feasible since motif 

ranges (width variations) are usually short ( < lObp). The ma-

jor difference of the generalized model from the previous ones 

is that all the widths from the input range R contribute to the 
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solution score/fitness in the model, rather than choosing a cer-

tain single width by which has the 

risk of bias on a certain single value. If only one width is input, 

the generalized model reduces to one of the existing fixed-width 

models. 

Intuitively, the generalized model is a weighted sum of the 

probability of different widths from the range R. It is compati-

ble with the existing probability models and is even applicable 

to non-probability models, as long as there is a consistent ex-

pression of P{A{wi))\ here it refers to an evaluation function 

in general. We employ the fixed-width probabilistic model in 

our generalized model, which will be discussed in detail in the 

Methods section. 

4.3.2 The Meta-convergence Framework 

For practitioners in molecular biology and medical research, it 

is desirable that multiple optimal candidate motifs can be pro-

vided concurrently for biological verification. Due to the limita-

tions of masking/erasing and implicit maintaining, it is desired 

to explicitly maintain different solutions with flexible (typically 

overlapping) control efficiently. To address these issues, we pro-

pose a meta-convergence framework employing Genetic Algo-

rithm (GA) with the similarity test as the overlapping control. 

(i) The s im i l a r i ty test is first introduced to fulfill flexible 

overlapping control over different motifs. Positional informa-

tion is considered since the generalized model involves a width 

range R of positions. In particular, to compare two candidate 

solutions/individuals Aa and Ai,, the test calculates the relaxed 

Hamming distance h between each pair of their aligned TFBS 

positions: Pi{Aa) and Pi{Ab) in sequence i, 

, . X J o if \pUa) - < tol 
h [ P i { A a ) , P i { A b ) ) = < . ( 4 . 2 ) 

1 otherwise. 
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where tol is the shift tolerance. The similarity test is passed, if 

rn 

dr = {Y.h{p\{Aa)M{A,)))lm < si (4.3) 

i=l 

,where dr is defined as the difference ratio, m indicates the 

number of sequences, and st is the similarity threshold. When 

dr < st, Aa and A^ are considered to be similar, i.e. belong to 

the same motif kind. The intuitive settings of tol, st for different 

purposes, and how the test is applied are detailed and included 

in Methods: Meta-convergence Framework Details. 

The similarity test proposed allows users to control the differ-

ences between the expected motifs in an easy and intuitive way. 

On the contrary, the other possible comparisons based on the 

PFM involve complicated cut-off which is not trivial to specify 

and counterintuitive for common users. 

(ii) Meta-convergence, with the similarity test, monitors 

the convergence of different optimal solutions and adaptively 

controls the numbers of GA runs rather than using a relatively 

large fixed number of GA runs in previous works [19,101]. Fur-

thermore, only a small number of candidates are subject to the 

similarity test to compete for the multiple optimal motifs, com-

pared with the other method [61] that compares the whole pop-

ulation of solutions with non-trivial overhead. Therefore, the 

efficiency can be significantly improved. More details can be 

found in Methods: Meta-convergence Framework Details. 

4.3.3 GALF-G 

Incorporating Genetic Algorithm with Local Filtering (GALF) 

with the generalized model and the meta-convergence frame-

work, GALF-G (G for generalized) is proposed to discover mul-

tiple optimal motifs with flexible overlapping control using the 

similarity test. To fit into the generalized model with range 
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input, the operators in GALF are extended accordingly and de-

tailed in the Methods section: GALF-G implementations. 

In the following section, we will report the results of GALF-G 

tested on both synthetic and real benchmark datasets for various 

cases, namely fixed-width, variable width, for single motif [with 

single {K = 1) or multiple outputs {K > 1) for single motif 

and multiple motifs {K > 1) discoveries. 

4.4 Detailed Implementations 

4.4.1 The Proposed Model and Evaluation 

Denotations and Formulations 

Wi th our focus on the matrix representation (PFM), the mo-

tif discovery problem is formulated as follows. Defined on the 

alphabet E = {A, T, G, C} for DNA sequences, the input data 

are a set of sequences S = = 1, 2 , m } , where each Si 

is a sequence with length Ij of nucleotides from the alphabet. 

The motif width w is assumed to be known for the time being. 

TFBS instances are represented by R {rf} where each rf is 

the kth instance of width w in Si. If we assume each sequence 

has at most one instance (ZOOPS), then r\"一o,i jg collapsed to be 

Ti {vi 二 null if k = 0) for short. Table 2.1 illustrates an artificial 

example of motif discovery. A site indicator matrix (SIM) A, 

which is also used to represent the solution, locates the TFBS 

instances as sites, where Aij = 1 if a motif instance (site) starts 

at position j of Si and 0 otherwise. Alternatively, we can use 

the position p^ 二 j to represent a instance rf given w. Thus we 

have a compact position representation of A 二 ••••tPm} 

especially for ZOOPS, where some the positions can be NULL. 

A profile of the motif can be built from aligning the TFBS in-

stances indexed by A. The profile is represented as a 4 x u* Po-

sition Frequency Matrix (PFM) Q, where Ojb is the frequency 
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of nucleotide b in column j of the motif. The nucleotides from 

background (non-motif sites) are represented by Go, where Bob 

is the frequency of nucleotide b in the background and is treated 

as known from the input. 

The motif discovery problem (of a known width w) can be 

thus formulated as finding A (with only the TFBS sites being 

considered) and the corresponding PFM 6 such that one of the 

above scoring/fitness functions is maximized according to dif-

ferent assumptions. 

The Probabilistic Models 

To complete our generalized model, the important component 

comes from the existing models handling a known width input. 

In this chapter, we employ the probabilistic models which have 

most intuitive explanation with the generalized model. For a 

candidate solution A (which also indicates 0 ) , the full Bayesian 

model of likelihood [40,411 can be written as 

p (e , 乂 Go) CX K^ IGo , e , A)p{A\po)p{G)p{po) 
yj 

a n n e 》 b n e r p | ) � ( 1 1 。 ) " — � ( e ) P ( P o ) (4.4) 

where 6 is the motif PFM, 6o6 is the background distribution 

of nucleotide 6, rijb is the count of nucleotide b in column j of 

the PFM, nob is the count of nucleotide b in the background, \A 

is the total number of sites in the motif, L* = 二 + 1) is 

approximately the number of all possible sites (the number of 

invalid sites is trivial and can be ignored), and po ~ is the 

estimated abundance ratio which represents the probability of 

any position being a site in the dataset. Qjb 二 (strictly it 

should be Qjb as an estimate, but we just use Qjb for simplicity). 

Similarly 0o6 ~ f^ob/L* (ignoring the relatively small affect of A). 
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In Bayesian analysis, noninformative priors of the indepen-

dent p(B) and p{p) are integrated out for convenience. Alterna-

tively, by assuming them as constant we have the log likelihood 

as follows: 

w 

logp(e,.4|5, 0o) a 
6e>： 

+ log Bo/. 

bel： j二 1 

+ l o g p o + [L* -\A\) l o g ( l - P o ) ) 

4.5) 

(4.6) 

By ignoring the constant parts and approximating L* log(l — 

P o ) ~ — L * * P o 二 —1̂ 1 s i n c e p o i s v e r y s m a l l , t h e e q u i v a l e n t 

score psi, can be written as 

t//(0,/ l|5,0o) 二 ~ — 1). (4.7) 
^ fn^ Bo6 1 - Po 
1=1 

which is exactly the approximation form used in the Bayesian 

analysis [40]. Wi th one step further to ignore the penalty of 

A '101 a n d we have the approximation form for a known p 

it is also coined as the Kiillback-Leibler divergence with param-

eter (we use this form in the generalized model since we find 

the previous one imposes too much penalty on the iiuinber of 

TFBSs): 

IV e 
_ ， 鄰 , B o ) = E e补 log ^ + log T ^ ) (4.8) 

Furthermore, if we assume each sequence Si ha^ exactly one site, 

i.e. one occurrence per sequence (OOPS) , then po also becomes 

constant. As a result we only have to consider part of Equation 

4.8 
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“ u， e 

/ c 二 L / C ⑴ 二 L X e . — g ‘ （4.9) 

.7 = 1 J = 1 o€L, 

which is the well known information content (IC) [96]. IC{j) is 

defined as the positional IC for column j ‘ 

The Fitness Function and Evaluation 

Recalling the generalized model in Equation 4.1，we can now 

choose P{A{wi)\wi) = exp{ip{iUi)) accordingly from the previ-

ous probabilistic models, where V 心 i s a simplified notation 

for exactly 0 ( 0 , Bq) in Equation 4.8 given Wi. For coiripu-

tational convenience, we represent the fitness function f in log 

likelihood form as 

/ = ( 4 . 1 0 ) 

WieR 

III the evaluation, a candidate solution consists of A (and the 

derived B) with the maximal width ⑴耐工.For each particular 

Wi from the range R, we have to choose the fragment (a continu-

ous t/;i-submatrix A{'Wi) from the full matrix 0 ) that maximizes 

ip{wi) (see Figure 4.1). It is equivalent to maximizing IC for 

width Wi since p in Equation 4.8 is now fixed for all A{w^). 

With the log format of / , we can avoid overflow with the exp 
function by taking out the largest log component during mediate 

computation and adding it back upon finishing the evaluation. 

For the convenience of implementations of searching and con-

sistency with other methods for evaluation (which output single-

width motifs), a core fragment, located by the width t t w and 

offset u'o, is to be selected. iVcor and wq are also determined 

based on IC. Starting from the two ends of the maximal PFM 

with Wmax, we iteratively remove each columns j with positional 

IC{j) lower than the average. The remaining submatrix (or 
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- (̂y^ccrr)) is thus with width xucor and offset wo. Complexity of the 

whole evaluation grows quadratic to \R\ = Wmax — ̂ min +1 • Since 

the ranges are usually restricted within 5 - lObp, f is compu-

tationally feasible in practice with additional 0(|/?,p) overhead 

compared with a fixed width model for ŵ nax- The offset wq, 

combined with the position pi of A in the sequence, is also 

used to determine the aligned position {p[{A)) in the similarity 

test in Equation 4.2. 

4.4.2 Meta-convergence Framework Details 

Similarity test settings 

The shift tolerance in Equation 4.2 is set as tol = 3 + (|i?.| — l)/2. 

The first part of tol is chosen for convenience to separate two 

TFBSs and the latter part is the tolerance for the range involved. 

In the case of competition for the same slot in slot dispatch-

ing, the threshold can be flexibly specified by the users (for 

general usage, the default is: st = 0.3, which is used through-

out this chapter). Users can customize st based on their needs, 

either with a large value (e.g. > 0.5) to force solutions of highly 

different motifs, or with a small value (e.g. < 0.1) to allow fine 

variations of the same motif type. On the other hand, for delet-

ing individuals in the case of near convergence, the threshold is 

automatically fixed at the value of st丨=0.5 to make room for 

the other solutions, st' is not sensitive because the similar opti-

mal motifs are finally controlled by the user-specified threshold 

st. However, if st, is set to be too low, many similar variations 

to the converged motif will remain in the population, and time 

will be wasted to converge repeatedly to the same motif kind. 

Meta-convergence 

In greater detail, the meta-convergence framework can incorpo-

rate any GA procedure (Genetic Algorithm with Local Filtering 
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(GALF) [19] in our case). Like in the previous approaches [19， 

101], up to a maximum number of the GA executions, MAXRUN, 

can be run but it will stop running if the convergence test is sat-

isfied. Additionally in met a-convergence, K+1 slots are main-

tained where K is the number of optimal solutions expected. 

Each slot stores the best solution of a different of motif kind, 

and is allocated a counter Cnt, which keeps track of its motif 

convergence count. At the end of each GA run, a number (NUM) 

of best solutions (individuals) will be dispatched and subject to 

the similarity test to the K+1 slots. The corresponding counter 

will increment for each update of a solution of the same motif 

kind and reset if the motif is replaced by a new one. A con-

vergence threshold MAX IND is used to monitor convergence. 

MAX IND is a relatively small number because each dispatched 

solution is already a converged one obtained by GA. In general, 

the meta-convergence framework needs at most MAXRUN GA 

runs to obtain K optimal solutions while the previous meth-

ods such as G A M E and GALF-P need K*MAXRUN runs. The 

whole procedure of meta-convergence is illustrated in Figure 4.2. 

Similarity test applied in the framework 

Solutions that pass the similarity test, i.e. those belong to the 

same motif kind in a particular slot, will compete for the same 

slot based on their fitness. On the other hand, the solution 

of a new motif will occupy an empty slot or the slot storing 

the solution with the worst fitness. After each GA run, when 

a slot is near convergence (we define this situation as Cnt > 

MAXIND/2) , solutions similar to it will be eliminated, again 

based on the similarity test, to make room for the other optimal 

solutions in the'next GA run. When the solution of a particular 

motif in the slot has converged (i.e. Cnt > MAXIND) , the motif 

will be taken out from the search process, i.e. all the exactly 

matched TFBSs belonging to this motif will be deleted, making 
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Figure 4.2: The procedure of meta-convergence. 

room for efficient discovery of other motifs. The extra (K+1 产 

slot is used to keep certain sub-optimal solution in the early 

stage in order not to lose them, because otherwise the Cnt may 

fluctuate especially for the K = 1 case when there are several 

motifs with close fitness competing for the only slot. 

4.4.3 GALF-G Implementations 

We employ the genetic algorithm (GA) based GALF [19] as 

the searching procedure. However, since GALF was previously 

based on simpler assumptions, it has to be extended accordingly 
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to suit the need of the generalized model. 

Extended GALF Operators 

Local filtering (LF) is the feature operator of GALF , which em-

ploys the combined representations for the whole motif (PFM 

6 ) and individual instances (SIM A). However, it was based 

on the simple OOPS and fixed-width assumptions. As a result, 

extensions have to be made for more general cases addressed by 

GALF-G. 

Generally, LF refines each individual (candidate solution) by 

iteratively scanning the sequence containing the currently worst 

instance and choosing the best replacement. To evaluate each 

instance (site) of the individual, the similarity score with the 

consensus concept is proposed. However, the relation between 

this heuristic score and the fitness is implicit. In GALF-G, we 

propose to use the log likelihood ratio for an instance fragment 

starting at the Wq^ column with width 

VjQ+w'-. 
^jTiU) 

l ogp i n ,wo .w ' )= > l o g - ^ (4.11) 

to evaluate each instance r^, where ri(J) G E is the nucleotide in 

column j of Qjri{j) is the corresponding frequency from the 

P F M and 0or“j_) is the corresponding background frequency. It 

measures the ratio of r^ generated by the motif P F M over the 

background, and is more closely related to 讽Wi) in Equation 

4.10. The effectiveness of the log likelihood ratio and the mu-

tation operator are verified (results not included here) on the 

8 datasets tested in [101]. In range input cases, with the Wcor 

core fragment stored, we encourage LF to match instances with 

a longer width ( > Wcor) so that the width w' is chosen randomly 

from [wcarj '̂ max] and thus LF can be applied with fewest mod-

ifications. 
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Because now the fitness f can handle the general case with 

any motif instances, the new GALF-G can now search based 

on zero or one occurrence per sequence (ZOOPS) assumption 

rather than OOPS . However, it is unwise to randomly generate 

null positions for non-sites at the very beginning during search-

ing. It is because when most of the individuals are poor in their 

fitness, fewer instances will be strongly biased and the popu-

lation will suffer from undesirable premature convergence. To 

alleviate this problem, we initialize the population with O O P S 

assumption and refine the abundance ratio (po in Equation 4.8) 

in later generations using a new mode of LF. The convergence 

(CONVER ) mode of LF is triggered when the best individual 

stagnates for more than 1/4 of the convergence count MAX-

C O N V E R , or when it is toward the maximal generation of the 

GA. The convergence mode LF is applied to all individuals to 

adjust the motif abundance. The procedure is similar to normal 

LF except that the full Wmax fragment will be chosen for each 

instance and the worst instances are to be removed rather than 

refined, if eliminating it makes the overall fitness / increase. 

Other Extensions 

We adopt the single-point mutation and pre-selection from GALF-

P [19] and choose multi-point (close to uniform) crossover in-

stead of single-point because it provides higher diversity. Since 

the new model adjusts widths automatically, the shift operator 

in GALF-P [19] is no longer needed. 

To handle general cases other than the ZOOPS assumption, 

where there may be several occurrences in a sequence, we employ 

a refinement process for additional instances upon the meta-

convergence of GALF runs. Generally, if a fixed width is input, 

instances have to increase f in order to be added, while in the 

width range case, the threshold of f is relaxed slightly [see Ad-

ditional file 1 of [201 for the details . 
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Table 4.1: Pseudo-code of the local filtering (LF) operator 

Input: An individual I with the collapsed SIM A = {p i ,p2 ,…’Pm} 

where pi is the site, i.e. position, (may be null) for instance rj； 

m is the sequence number. 

LOCAL_F ILTERING( / ) 
{ ‘ 

Choose a random w' for N O R M A L or C O N V E R {wmax) mode 

Choose the offset uio randomly from (1,u^maz — tz/ + Ij 

Sort all the instances by logp{-, u;o, u;') and obtain their 

corresponding sequence ranking: Rnk{l), Rnk{2), ... Rnk{m.)-, 
where logp{rnnk(i)) > /ogp(rR„fc(2)) -- > lo9P{rnnk(m)) 
II logp of a null instance is set to be —oo 

for {k = m; k <2, k --) 
{ 一 

if ( mode = = N O R M A L ) { 

Scan sequence Rnk{k) to get qHnk{k) with best logp; 

PRnk(k) = QRnk(ky, 

if (logpipiinkik)) < �(p / ?n f c ( f c- i ) ) ) Return ；; 
} 

if ( mode === C O N V E R ) { 

if ( / ( / — {PRnk(k)}) > /(/))) PRnkW = NULL； 

else Return /; 

} 

Combining the meta-convergence framework with extended 

GALF based on the generalized model, as well as the refinement 

procedure, we have the proposed GALF-G to discover multiple 

TFBS motifs. The pseudo-codes of the new LF, the extended 

GALF and GALF-G are shown in Tables 4.1’ 4.2 and 4.3. 

4.5 Experiments 

In this section, The summary of the experiments is introduced, 

and then the experimental results are reported and analyzed in 

corresponding categories. Finally experiments concerning the 

efficiency of GALF-G are presented. 

4.5.1 Experiment Summary 

First of all, the evaluation measurements are introduced here. 

For most expe^^iments except the benchmark ones [37，87]，the 
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Table 4.2: The extended GALF. INTL is the interval of generations to trigger 

LF. MAXGEN is the maximal number of generations to run and MAXCON-

VER is the convergence count. 

for(i=0; i < MAXGEN; i+-f) 
{ 

Evaluation on the population; 

NORMAL mode LF on the population every INTL generations; 

Randomly pair the N individuals into N/2 pairs; 

for(each pair of the individuals) 
{ 

Uniform crossover and Single-point mutation; 

Evaluation and Selection within the pair; 

} 
C = the best individual; 

if(C stagnates for > 1 /4MAXC0NVER) 

CONVER mode LF on the population; 

if(C stagnates for > MAXCONVER) break; 

Output NUM best individual(s) Cj-j; 

Table 4.3: The framework of GALF-G. MAXGEN and MAXRUN are the 

maximal generations of GALF and maximal times to run GALF, respectively. 

MAXIND is the convergence count for best individuals from different runs. 

Initialize K+1 Slot(-) for K motif types and the counters Cntf-); 

Initialize a random population with N individuals; 

for(g=0; g < MAXRUN; g++) 
{ 

Re-initialize the population accordingly; 

Run the extended GALF; 

C(-) = the NUM best individuals output by GALF; / /GALF in Table 4.2 

for(i=0; i < NUM; i++) 
{ 

for(j=0; j < K+1; j++) 
{ 

if(SimilarityTest(C(i), Slotlj]) is passed) 
{ 

Slot[j] = the one with better / between C(i) and Slot[j]; 

吻 Cnttj]++; 

‘ if( Cnt{jl > MAXIND ) 

Mark Slotjjj as converged and erase Slot[j); 

break; 

} ^ 
} 
if (C(i] does not suit any existing slot) 
{ 

if (An empty slot exists) Put C|i] to that slot; 

else C[i) competes with the slot with lowest / ; 

} 
} 
if (The K best solutions of the K+1 slots converge) break; 

} 
Refinement on Slot['] and output the best K ones in terms of / . 
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measurements employed are the site level (prefix s) ones: posi-

tive predictive value/precision sPPV, sensitivity/recall sSn and 

F-score sF with shift restrictions, similar to [19,101]. The ad-

vantage is that they reflect both site level and part of the nu-

cleotide level performances concisely. For the benchmark exper-

iments, we have to follow their standard me^^irements which 

employ looser site level measurements but introduce additional 

nucleotide level (prefix n) PPV [nPPV) and sensitivity (n5n) , 

as well as performance coefficient {PC) [37,80，87，99] and cor-

relation coefficient [CC) [87, 99] on both levels [see Additional 

file 1 of [20] for details of evaluation measurements for different 

experiments . 

(i) Single moti f discovery experiments {K = 1) were 

firstly performed to test the generalized model. GALF-G was 

verified on the 800 synthetic datasets from [19], and compared 

with other state-of-the-art algorithms with fixed-width inputs as 

a special/degenerative case. GALF-G was then further tested on 

the 8 real datasets employed in G A M E [101] with both fixed-

width (the assumed true widths from [101]) inputs and range 

(variable widths) inputs relatively close to the true widths. The 

challenges raised by the eukaryotic benchmark [87,99] are then 

addressed, where there is no dataset-specific prior knowledge on 

the motif widths and only single motif outputs {K ~ 1) and 

compared. 

(ii) Mul t ip le motifs experiments {K > 1) were then 

performed for two scenarios. In the first scenario, since multi-

ple candidates are desirable for biological testing even for single 

motif discovery [37], GALF-G was tested and compared with 

the state-of-the-art algorithms on the 62 E. coli benchmark 

datasets [37], without dataset-specific prior knowledge on the 

motif widths. In the second scenario, since it is also desirable to 

discover different real motifs simultaneously, GALF-G, G A M E 

and M E M E were tested on the real liver-specific dataset with 
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multiple (overlapping) motifs. Investigating into the exceptional 

case of g a m e ' s 8. datasets using GALF-G with multiple motifs 

discovery, we discovered a putative motif not annotated in the 

dataset previously has been identified. 

4.5.2 Parameter Setting 

Besides the parameters discussed specifically (such as motif widths 

and output motif number IC), and except the efficiency experi-

ments (with different PS), the other parameter setting exactly 

follows GALF-P [19] with the purpose of minimum tuning. In 

the extended GALF: default population size PS'. 500; maximal 

number of generations MAXGEN: 300; interval of generations to 

trigger local filtering (LF)-INTL: 10; convergence count MAX-

CONVER: 50; mutation rate: 0.9; crossover rate: 0.3; and max-

imal runs of GALF MAXRUN: 20. The quite large population 

size follows the setting of G A M E for fair and consistent com-

parisons, though it turns out that a smaller population size also 

works comparably well (in the efficiency experiments). 

4.5.3 Single Fixed-width Mot i f Discovery on Synthetic 

Data 

GALF-G was first verified in the special cases of fixed-width ‘ 

single motif discovery [K 1) on the 800 synthetic datasets 

used to test GALF-P in [19], which had performed best for these 

fixed width cases (as shown in the previous chapter). 

We compared GALF-G with GALF-P, GAME , MEME , Bio-

Prospector (BioPro.), and BioOptimizers based on M E M E and 

BioProspector. Weeder was not compared because it cannot be 

run on the long-width (16) datasets due to its width limit of 12. 

Details on generating the datasets were provided in [19]. The 

average F-scores sF on the site level for each scenario are pre-

sented in Table 4.4, with the best results shown in bold. The full 



CHAPTER 4. TFBS MOTIF DISCOVERY: MODELING 79 

Scenarios GALF-G 

Width /Num /Con 

Short /Small /Low 

Short /Large /Low 0 

Long /Small /Low 0 

Long /Large /Low 0 

Short /Small /High 

Short /Large /High 

Long /Small /High 

Long /Large /High 0 

Average 0.81 

GALF-P GAME MEME 

±0.29 

士 0.22 

±0.13 

1 土 0.06 

土 0.07 

5 土0.04 

8 ±0.02 
9 士0.01 

0 . 4 4 士0.27 

0.55 士0.22 

0 . 8 9 士0.14 

0.91 ±0.05 
0.80 士0.09 

0.83 士0.05 

0.98 ±0.03 
0.97 士0.02 

0.30 ± 0.30 
0.36 士 0.30 
0.82 土 0.22 

0.90 士 0.07 

0.75 士 0.23 

0.83 士 0.10 

0.97 士 0.03 
0.98 士 0.01 

0.39 士0.35 

0.42 土0.29 

0.88 土0.14 

0.90 ±0.07 
0.85 土0.07 

0.83 士0.04 

0.98 ±0.02 

0.98 士0.01 

0.39 土 0.31 

0.45 土 0.23 

0.83 士 0.14 

0.80 ± 0.11 

0.78 土 0.12 

0.76 士 0.06 

0.97 士 0.03 

0.96 士 0.02 

0.74 0.74 

Table 4.4: Average site level F-scores for the 800 fixed-width synthetic 

datasets experiments. 土 indicates the standard deviation (over the 100 

datasets generated for each scenario). Width: the motif width, Num: the 

number of sequences and Con: conservation degree. 

Table 4.5: The t-test p-values between GALF-G and MEME for the scenarios 

according to Table 4.4. [ ] indicates the case when the counterpart is better in 

the average sF. 

in bold. 

Those p-values within the significance level 0.05 are shown 

Scenarios 

Short /Small /Low 

Short /Large /Low 

Long /Small /Low 

Long /Large /Low 

Short /Small /High 

Short /Large /High 

Long /Small /High 

Long /Large /High 

GALF-G better 

0.0246 

0.0002 
0.3006 

0.1397 

[0.8432) 

0.0003 

(0.5000) 

0.0000 

MEME better 

[0.97541 

[0.9998] 

(0.6994) 

[0.8603] 

0.1568 

(0.9997) 

0.5000 

[1.0000) 

table with precisions (sPPV"), recalls (s5n), including BioOpti-

mizer results (almost identical to M E M E and BioProspector), is 

not shown. GALF-G and GALF-P are in general the best among 

all scenarios, especially in the difficult scenarios (for example, 

short widths and low conservation). GALF-G is slightly bet-

ter than GALF-P in the last 4 scenarios. To compare GALF-G 

with another close competitor, MEME , the two-sample Welch's 

t-test [102] was employed. The respective p-values of GALF-G 

better than MEME, and M E M E better than GALF-G, with re-

spect to sF for the corresponding scenarios, are shown in Table 

4.5. 

In 4 of the 6 scenarios where GALF-G shows better aver-

age sF (scenarios except 5, 7), GALF-G is better than M E M E 
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within the significance level 0.05. On the other hand, M E M E 

shows no convincing significance of being better than GALF-G 

in the other 2 scenarios. 

We do not expect great differences between GALF-G and 

other algorithms here, because under the fixed-width cases the 

generalized model is similar to other models in representative 

power. The experiments demonstrate the search capability of 

GALF-G is comparable to or better than the previous best 

GALF-P on the synthetic datasets. The main reason is that 

they use similar effective searching techniques based on local 

filtering [19]. The results from the synthetic data can be inter-

preted intuitively with respect to searching difficulties, because 

their respective conservation degrees are explicitly generated. 

For variable-width (range) cases, the complicated nature of 

different conservation degrees of TFBSs is not easy to model or 

evaluate with synthetic data, hence it is more appropriate to 

test different methods with substantial real datasets, and the 

experimental results are presented in the following sub-sections. 

4.5.4 Single Mot i f Discovery on Real Datasets 

In this sub-section, GALF-G was evaluated and compared with 

other methods on the 8 real datasets used to test G A M E [101], 

for both fixed and variable widths cases in single motif discovery 

{K = 1). Information of the 8 datasets is described in Table 3.5 

from the previous chapter. 

The comparison studies for fixed and variable widths cases 

are given as follows: 

(i) Fixed-width single motif discovery {K 二 1) exper-

iments were performed, where GALF-P was previously tested 

and compared with G A M E in a fixed-width manner. GALF-G 

shows comparable overall F-scores sF (0.81) to the best aver-

age results from GALF-P (0.82) and is better than G A M E (0.61) 
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by 33% on average from 20 runs. While GALF-P shows signif-

icantly smaller variations than G A M E in the performance [19], 

GALF-G shows even more stable and robust performance than 

GALF-P, which is discussed further in the Efficiency Experi-

ments. 

We have also tried Weeder [78’ 79] on part of the datasets 

because Weeder can only handle widths 6，8, 10 and 12. Weeder 

is optimized for several width range modes [79] rather than fixed 

widths and will be formally compared in the following range ex-

periments. For the fixed-width experiments, only CREB , MyoD, 

SRF and TBP were tested. The averaged sPPV^ sSn and sF of 

Weeder for the 4 datasets are 0.43, 0.63 and 0.51, respectively. 

On the other hand, GALF-G is better where the corresponding 

values are 0.79，0.83 and 0.81. 

Similar to the conclusion on fixed-width synthetic experi-

ments, GALF-G demonstrates competitive searching capacity 

on the fixed-width real data experiments, while GALF-G makes 

a looser assumption. 

(ii) (K = 1) variable-width (range) experiments were 

performed, where GALF-G was compared with G A M E , MEME , 

Weeder, and FlexModule from CisGenome [42] on the previous 

8 real datasets.- The additional FlexModule is a Gibbs sam-

pling [51] motif discovery module implemented in the recent 

integrated system CisGenome [42] for analyzing transcriptional 

regulation. 

For each dataset, 3 different width ranges were input for test-

ing where 

Ri = [liJmin{{i)^1^max{i)]=[如i — 3’ li；̂  + 3] (z = 1,2,3). (4.12) 

Each range represented variations of 土 3bp on the width Wi 

while the lower bound for was set to 5 because it is 

rare for a motif width being smaller than 5. W i t h increasing 

i, Wi = wtrue + (i — 1) reflects larger divergence of shift from 
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the biological truth Wtme [See Additional file 1 of [20] for the 

running parameters . 

The average results of executing each program 20 times are 

shown in Tables 4.6 and 4.7. Weeder is deterministic, and 

M E M E performs constantly in different runs for a same dataset 

(as contrast to different datasets in Table 4.4)，so there are no 

standard deviations shown for them. 

In most cases (19/24) GALF-G achieves the best F-scores 

sF on the site level, as well as the average sPPV^ sSn and 

sF averaged on all the cases. The overall F-score of GALF-

G is 19% better than G A M E , 14% better than M E M E , 85% 

better than Weeder, and 21% better than FlexModule. The 

standard deviations of GALF-G are also lower than G A M E and 

FlexModule in most cases. The t-test on sF shows that GALF-

G is better than M E M E in 20 cases within significance level 

0.01，and in 1 case within significance level 0.02, while M E M E 

is better in 3 cases within level 0.01. It should be noted that 

GALF-G significantly outperforms the other algorithms in sSn, 

probably because the generalized model not only predicts motifs 

as precise as the other models, but also accepts more correct 

TFBSs based on a wider range than single widths. 

The above experiments demonstrate that with a range rela-

tively close to the true widths, GALF-G with the generalized 

model shows favorable performance even compared with the re-

sults based on E-values. In fact, the performance with the input 

width ranges close to the true widths is comparable to that with 

fixed-width inputs, except for the MyoD dataset. The excep-

tional case of MyoD will be investigated separately and shown 

containing multiple motifs later. 

To summarize, on the 8 real datasets for single motif discov-

ery, GALF-G demonstrates competitive performance in fixed-

width experiments, and provides obvious improvement over other 

methods in variable-width (range) experiments. For the cases 
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0.75 土 0.33 

0.77 士 0.28 

0.83 士 0.03 

0.69 士 0.30 

0.75 士 0.27 

0.88 土 0.01 

0.13 士 0.10 

0.12 士 0.11 

0.13 土 0.12 

0.16 士 0.10 

0.16 士 0.16 

0.14 土 0.15 

0.14 土 0.10 

0.11 士 0.11 

0.13 士 0.14 

0.71 土 

0.66 士 

0.70 士 

0.87 土 0.04 

0.87 土 0.01 

0.77 士 0.05 

0.78 士 0.03 

0.75 土 0.02 

0.73 士 0.02 

0.80 士 0.08 

0.79 士 0.05 

0.71 土 0.17 

0.75 土 0.12 

0.78 士 0.04 

0.74 士 0.18 

0.77 土 0.09 

0.78 士 0.03 

0.72 土 0.18 

Average 0.74 0.75 0. 0.61 0.62 

Table 4.6: Average results (precision (sPPV), recall (sSn) and F-scores {sF) 

are averaged separately) of GALF-G and GAME on the 8 datasets. Each 

range Ri = [lu + (i — 1) — 3，iw + (i — 1) + 3] in general indicates different 

shifts i from the true width w. 土 shows the standard deviation (based on 

20 independent runs of each dataset with each range). The results with best 

sF among this table and Table 4.7 are shown in bold. 
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MEME "WeedeT" FlexModule 

sF 

CREB 

Rl 
Ri 
尺3 

CRP 

Ri 
R3 

ERE 

R2 
Rz 
E2F 

Hi 

R2 
Rz 

MEF2 

Ri 
R2 
Ha 

MyoD 

Hi 

Ha 

Rz 
SRF 

fli 

Rl 
Rz 

TBP 

Hi 

R2 
fl3 

0.73 

0.83 

83 

0.58 

0.53 

0.53 

^
 T
O T
O
 

d
 d
 d
 

88 

88 

88 

0.60 

0.60 

0.67 

0.70 

0.67 

0.82 

0.00 

0.00 

0.00 

65 

70 

70 

88 

88 

88 

00 

00 
00 

74 

78 

0.78 

70 

70 

0.67 

0.67 

0.67 

sPPV sF 

medium 

0.44 

0.44 0.58 

0.41 0.71 

0.41 0.71 

0.41 0.71 

0.52 

0.52 

0.52 

0.29 

0.29 

0.29 

large 

0.40 

0.40 

0.40 

0.23 0.93 

0.23 0.93 

0.23 0.93 

0.37 

0.37 

0.37 

medium 

0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

0.5 

0.5 

0.5 

0.02 
0.02 
0.02 

small 

0.10 
0.10 

0.10 

0.63 

0.63 

small 

0.56 0.90 

0.56 0.90 

0.69 

0.68 士 0.04 

0.62 士 0.22 

0.67 士 0.07 

0.04 士 0.14 

0.97 士 0.07 

0.96 土 0.13 

0.74 士 0.03 

0.73 士 0.02 

0.68 土 0.17 

0.56 土 0.28 

0.60 士 0.29 

0.63 士 0.25 

0.86 士 0.02 

0.79 土 0.27 

0.88 士 0.02 

0.00 土 0.00 

0.00 士 0.00 

0.00 士 0.00 

0.64 士 0.00 

0.63 士 0.01 

0.64 士 0.00 

0.47 士 0.32 

0.41 士 0.34 

0.45 士 0.34 

sSn sF 

0.76 士 0.04 

0.69 士 0.24 

0.72 土 0.07 

0.72 士 0.04 

0.65 士 0.23 

0.69 土 0.07 

0.55 士 0.11 

0.56 士 0.06 

0.50 士 0.10 

0.69 土 0.12 

0.70 士 0.06 

0.65 土 0.11 

0.85 土 0.01 

0.85 士 0.02 

0.77 士 0.24 

0.79土 0.02 

0.79土 0.02 

0.72 土 0.21 

0.58 士 0.29 

0.60 土 0.29 

0.62 土 0.25 

0.57 土 0.28 

0.60 土 0.29 

0.63 土 0.25 

1.00 士 0.00 

0.90 土 0.31 

0.99 士 0.04 

0.93 土 0.01 

0.84 土 0.29 

0.93 土 0.02 

0.00 士 0.00 

0.00 土 0.00 

0.00 士 0.00 

0.00 士 0.00 

0.00 土 0.00 

0.00 士 0.00 

0.87 土 0.02 

0.82 土 0.05 

0.86 土 0.01 

0.73 士 0.01 

0.71 士 0.02 

0.74 士 0.00 

0.59 士 0.40 

0.51 士 0.42 

0.55 士 0.41 

0.53 土 0.35 

0.45 士 0.38 

0.49 士 0.37 

0.71 0.65 0.32 0.60 0.40 0.61 0.63 0.61 

Table 4.7: Average results of MEME, Weeder and FlexModule in the same 

comi^arison experiments described in Table 4.6. Weeder was run with the 

width mode (small: 6，8; medium: 6，8，10; large 6, 8, 10，12) that are closest 

to the ranges R for each dataset. 
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without much prior information on the exact widths, experi-

ments will be described in the next sub-sections. 

4.5.5 Single Motif Discovery Challenges on Eukaryotic 

Benchmarks 

The improved eukaryotic benchmark [87] has thus been em-

ployed for being more suitable than the one by Tompa et al [99 

to evaluate motif discovery algorithms. The algorithm bench-

mark suite [87] extracts motifs from TRANSFAC and includes 

representative eukaryotic species. There are 50 datasets with 

backgrounds generated by Markov models and 50 with real cis-

regulatory region backgrounds. The widths are not given in the 

benchmark and thus a uniform width range input has to be set 

for all experiments. The additional evaluation measure corre-

sponding to this benchmark is the nucleotide level correlation 

coefficient (nCC) [37,87,99 . 

GALF-G was tested on the corresponding algorithm bench-

mark suite [87] and compared with M E M E and Weeder, the two 

most widely used algorithms [see Additional file 1 of [20] for the 

running parameters of GALF-G]. The average results of nSn, 

nPPV, nPC and nCC are shown in Table 4.8. For Markov 

backgrounds, GALF-G is 31% better than MEME, 214% than 

Weeder in nPC, and 42% better than MEME, 165% than Weeder 

in nCC. Similar conclusions can be drawn for the real back-

grounds. It should be noted that while M E M E and Weeder per-

form poorly in one of the two backgrounds, GALF-G maintains 

the competitive performance well in both. 

In the improved eukaryotic benchmark [87], which is consid-

ered more suitable to test motif discovery algorithms, GALF-

G shows superior performance to the widely-used M E M E and 

Weeder, while only top-scored motifs are compared. However, as 

stated in [99], it is more meaningful in practice to provide mul-
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Table 4.8: Average performances (nSn, nPPV, nPC and nCC) of GALF-

G, MEME and Weeder on the algorithm benchmark suite (50 datasets with 

Markov backgrounds and 50 with real backgrounds). 

Algorithms Markov Real 

nSn nPPV nPC nCC nSn nPPV nPC nCC 

GALF-G ~ 0 T 8 4 O I M O l ^ 0 3 l 6 O T ^ " " " O O ^ 0 . 1 2 6 

MEME 0.115 0.107 0.077 0.097 0.103 0.092 0.063 0.083 

Weeder 0.133 0.043 0.032 0.052 0.202 0.071 0.055 0.096 

tiple motifs for testing [57] where the experiments are reported 

as following. 

4.5.6 Mult iple Motifs Outputs on the E.coli Bench-

mark 

In this sub-section, GALF-G was tested, to address a more re-

alistic scenario, where multiple candidate motifs are desired for 

identifying the true TFBSs in biological research, on the E. coli 

benchmark. 

The E. coli benchmark ECRDB62A [37] has 62 datasets, on 

average about 300 bp in the sequence length varying from 86 to 

676 bp, 12 sequences per dataset, around 1.85 sites per sequence 

and the average site width is 22.83 with standard deviation > 10， 

which indicates very diversified widths. 

Specifically, minimal parameter-tuning policy was employed 

as if the programs were run by a common user with min imum 

prior knowledge in practice. Results of Align ACE [84], Bio-

Prospector [56], MDScan [57]，MEME [5], MotifSampler [98 

and Weeder [79] were obtained for comparison. A uniform width 

of 15 was input for those fixed-width algorithms, namely Alig-

nACE, BioProspector, MDScan and MotifSampler. On the other 

hand, M E M E was run with the default setting for widths and 

the optimal one was chosen automatically within. Weeder was 

run with the large width mode. For GALF-G, we ran it on the 

benchmark datasets with both the uniform fixed width 15 and 
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also the widest range accepted for the program of R 二 [10，20 

with \R\ = 10 around the central width 15. For all algorithms, 

5 motifs were output for detailed comparisons. 

We employ the evaluation criteria from [37]，namely precision 

PPV^ sensitivity 5n , performance coefficient PC and F-score 

F , on both nucleotide (prefix n) and site (prefix s) levels (We 

use the standard notation of PPV instead of the non-standard 

specificity definition in their work). In the comparisons shown 

in Table 4.9，the accuracy of the best prediction out of the top 

5 scoring predictions is evaluated with respect to nPC. W i th 

both fixed-width and range inputs, GALF-G outperforms the 

other algorithms in all evaluation criteria. For example, GALF-

G (15) outperforms the best among the other algorithms by 

49% in nPC, 29% in nF, 28% in sPC and 18% in sF. GALF-G 

(rg), with width range input [10,20], outperforms the other best 

algorithms by 46% in nPC, 29% in nF, 25% in sPC and 24% in 

sF. By comparing the two different input settings for GALF-G 

we can see that with little sacrifice in other measures (< 0.01 on 

the nucleotide level and < 0.02 on the site level), the generalized 

model based on the range (rg) demonstrates improved site level 

sensitivity, in particular 15% (or 0.082) in sSn compared with 

GALF-G (15) and 34% (or 0.172) compared with the best among 

other algorithms. 

Besides the best predictions out of the 5 outputs, investiga-

tion was also done to analyze the top-scored motifs as well as 

the rest individually for different algorithms. The statistics in 

terms of nPC, which reflects both nJPPV and nSn, are shown 

in Table 4.10. As indicated before in [37], the top-scored pre-

dictions are not necessarily the best predictions, implying that 

outputting only a single prediction may not be a good choice 

in practice or for comparison studies. However, the top-scored 

predictions from GALF-G are significantly better than the best 

among the other algorithms, by 30% (wl5) and 36% (rg) re-
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Algorithms 
nPC 

Nucleotide level (n) 
nSn nPPV nF 

Binding 
sSn sF 

GALF-G (15) 

GALF-G (rg) 
AlignACE 
BioProspector 
MDScan 

MEME 
MotifSampler 

Weeder 

0.260 
0.254 
0.128 
0.174 
0.149 
0.158 
0.153 
0.152 

0.290 
0.297 
0.198 
0.205 
0.177 
0.259 
0.179 
0.162 

0.300 
0.304 
0.152 
0.270 
0.230 
0.199 
0.237 
0.204 

0.300 
0.301 
0.172 
0.233 
0.200 
0.225 
0.204 
0.181 

0.386 
0.379 
0.234 
0.294 
0.240 
0.295 
0.302 
0.307 

0.538 
0.620 
0.355 
0.424 
0.328 
0.461 
0.331 
0.543 

0.520 0.529 
0.502 0.555 

0.335 0.345 
0.374 0.397 
0.355 0.341 

0.436 0.448 
0.476 0.390 

0.387 0.452 

Table 4.9: Prediction accuracy on the ECRDB62A benchmark of E. Coli at 

nucleotide, binding site levels. GALF-G (15) was run with the fixed width 

15 and GALF-G (rg) was run with the range 

bold. 

10, 201. The best results 

Algorithms Worst Mean STD Top-scored 

GALF-G (15) 

GALF-G (rg) 

AlignACE 

BioProspector 

MDScan 

MEME 

MotifSampler 

Weeder 

0.260 

0.254 

0.128 
0.174 

0.149 

0.158 

0.153 

0.152 

0.094 

0.080 
0.029 

0.097 

0.068 
0.002 
0.010 

0.031 

0.121 
0.129 
0.072 

0.124 

0.106 

0.054 

0.062 
0.081 

0.031 
0.040 

069 

0.169 

0.177 
0.083 

0.130 

0.099 

0.116 
0.069 

0.064 

Table 4.10: The statistics of the top 5 predictions in terms of nPC on the 

ECRDB62A benchmark. GALF-G (15) is run with the fixed width 15 and 

GALF-G (rg) is run with the range [10, 20]. STD is the standard deviation. 

The best mean and top-scored results are bold. 

spectively. We can also see that, for GALF-G, the generalized 

model based on the range provides better performance than on 

the fixed width, with respect to both the top-scored and the 

mean predictions. This implies that the generalized model us-

ing ranges is useful when the prior width information is usually 

not strong in practice. 

On this benchmark for multiple motif outputs, GALF-G out-

performs other state-of-the-art algorithms considerably. The 

generalized model exhibits improved sensitivity while maintain-

ing competitive precision, and thus achieves better overall per-

formance on the site level. 
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4.5.7 Mult iple Moti f Types in Real Datasets 
* 

In gene regulation, TFBSs of different kinds of motifs may ap-

pear in the same promoter region. They either work together to 

regulate the transcription or compete for the TF binding when 

part of the TFBSs overlap with each other. Thus it is meaning-

ful to discovery multiple TFBS motifs，possibly with overlaps 

in some of their TFBSs, from a dataset simultaneously. The 

following experiments tested GALF-G under the corresponding 

scenario. 

The liver-specific dataset 
J-

The liver-specific dataset [49] contains 19 sequences, embedded 

with several major motifs (with 6-19 sites) varying in widths, 

namely HNF-1, HNF-3, HNF-4 and C/EBP , and some other 

motifs with fewer sites, such as ORE, BRF-3 and BRF-4 with 

only one occurrence for each of them. Some TFBSs from differ-

ent types of motifs overlap with each other in the dataset. For 

example, a TFBS of HNF-1 (width 15) overlaps with a TFBS of 

HNF-4 (width 12) with 7 bp in a particular sequence, while co-

occurring TFBSs of HNF-1 and HNF-4 in some other sequences 

do not overlap at all. T h e total number of (overlapping) TFBS 

instances is 60. The widths vary dramatically from 7bp to 31bp. 

On this dataset, GALF-G, G A M E and M E M E were com-

pared using the width range input R = [8，16], which is consid-

ered a common range for TFBSs, to discover different types of 

motifs. The expected width for G A M E was 12，the mean of the 

input range. Different numbers of motifs, K, ranging from 5 to 

20 with step 5, were output and evaluated. 

The site level (with shift restrictions) results of sPPV ^ sSn 

and 厂-scores sF (with shift restrictions) based on all TFBSs 

are shown in Figure 4.3 for different K. M E M E fails to produce 

comparable recalls or F-scores to the others. It is probably 
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Figure 4.3: The results of precision (sPPV), recall (sSn) and F-scores (sF) 

with shift restrictions for different number of output motifs (K = 5,10’ 15,20) 

on the liver-specific dataset. 

caused by the masking techniques not allowing overlapping of 

motifs. G A M E masks TFBSs individually rather than the whole 

motifs, so better sSn (recall) can be obtained from a diverse 

GA population. Wi th overlapping control on the GA, GALF-G 

shows recalls comparable to or better than GAME . Moreover, 

GALF-G has the best sPPV (precision) while G A M E generally 

has the worst. Both GALF-G and M E M E show an increasing 

trend of recalls as K increases. The sudden drop of G A M E for 

= 20 is probably because the expected width no longer suits 

some of the motifs while G A M E actually performs fixed-width 

search in its GA. GALF-G provides the best balance between 

precisions and sensitivities, and thus gives the bestV-scores in 

all cases. Averaged on all K , the F-scores are: GALF-G: 0.54, 

GAME: 0.45 and MEME: 0.31 where GALF-G outperforms the 

other two by 20% and 73% respectively. 

Besides the previous evaluation that treats all the TFBSs as a 

whole, type specific investigation was also carried out on the out-

put results of GALF-G. Wi th the help of STAMP [67], the pre-

dicted motifs with K = 5 GALF-G were searched for matches of 

annotated TFBS motifs from the TRANSFAC database V I 1.3， 
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based on A L L R (Average Log Likelihood Ratio). A L L R was 

considered to be the most effective in comparisons of single 

columns for motifs [671. ‘ 
J * 

The relevant matches for the top 2 motifs are displayed in 

Sequence Logo formats in Figure 4.4. The top 2 high-scored 

motifs, labeled in STAMP by Motif (width: 13) and Motif v2 

(width: 11)，match HNF-1 and HNF-4 in TRANSFAC respec-

tively with high statistical significance, i.e., low E-vahies ( < 

0.05). For Motif v4 (width: 16)，it matches part of HNF-3 alpha 

without high statistical significance (E-value 2.71e-01), because 

only part of the HNF-3 TFBSs are identified in the predicted 

motif. It indicates that, top-scored motifs output by GALF-

G in general match true TFBS motifs with high confidence. 

The other two motifs do not have relevant top 10 matches in 

TRANSFAC. C / E B P cannot be discovered as a- whole motif, 

possibly due to its low conservation compared to the HNF m o 

tifs. STAMP also provides the phylogenetic profile where Motif 

(HNF-1) and Motif v2 (HNF-4) are grouped together, and so 

is Motif v4 (HNF-3), implying they belong to the same HNF 

family. For K = 10, similar results are obtained, with matches 

mainly including HNF-1 and HNF-4. 

In-depth investigation on the MyoD dataset 

The MyoD dataset seems to be an exceptional case among the 

8 real datasets tested by G A M E [101]. Only GALF-G {sPPV\ 

19/22，sSn: 19/21，sF : 0.88) and GALF-P {sPPV: 21/37’ 

sSn: 21/21, sF : 0.72) are able to show acceptable site level 

results (with shift restrictions) in the fixed-width {w = 6) ex-

periments, while in the variable width experiments none of the 

programs succeed in providing good results. 

To investigate into this exception, GALF-G was set to output 

K = 3 different motifs with the annotated width 6. Besides the 

fittest output being the annotated MyoD motif, the other two 
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Motif 
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q
 

(H 

E 

Motif and HNF4J^01031; E-Value: 1.33e-02 

Motif 

HNF1JV100132 

MqIiLyZ and HNFl 一 M O O m ; E-Value: 3.90e-04 

Figure 4.4: The matches from TRANSFAC for the top 2 high-scored motifs. 

The red brackets indicate the aligned blocks. 
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are only marginally lower in their fitness compared to the best 

one (differences < 2%). That is probably the reason why most 

existing algorithms perform poorly in this dataset - they either 

locate a sub-optimal because of the low signal-to noise ratio, 

or obtain inappropriate rankings of the motifs due to the subtle 

differences in the modelling. It indicates that the accurate width 

information is still crucial for such subtle and short motifs. 

We searched the 2nd ranked motif, Motif v2, for matches 

from the TRANSFAC Database using STAMP, based on the 

various column comparison metrics provided by STAMP. Con-

sistent matches, such as E2A [3,11], p53 [105,106], E47 [50] and 

E-box [71] motifs, were obtained with high rankings (within top 

10s), and these motifs are closely related to MyoD for muscle 

cell regulation according to the references [3，11,50,71,105,106 . 

The most consistent matches are shown in Figure 4.5. Thus 

there is a high probability that Motif v2 is a true motif which 

may not have been annotated previously in the MyoD dataset. 

In summary, GALF-G outperforms G A M E and M E M E by 

14% and 73% on average in sF respectively on the liver-specific 

dataset for multiple motifs discovery. Additionally, GALF-G 

sheds light to an additional motif which may not have been 

annotated previously in the MyoD dataset. 

4.5.8 Efficiency Experiments 

Although effectiveness is the major concern for motif discovery, 

practitioners also prefer efficient algorithms which have capabil-

ity for large scale data. In this sub-section, we tested GALF-G 

with different G A population sizes to investigate the trade-off 

between effectiveness and efficiency of meta-convergence. 

Firstly, different population sizes {PS = 500 (default: In the 

previous work, in order to be consistent with GAME ' S PS = 

500, GALF-P employed the same setting as default, and this 
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E-Value: 2.09c-06 (PCQ, l.lle-02 (SSD). 1.97c-02 (KL) 

£ s E-Va]ue: 5.59c-05 (PCC), 2.47c-02 (SSD). 3.28c-02 (KL) 

p 5 3 J V 1 0 Q 2 7 2 

E-Value: 4.40e-04 (PCC), 8.34e-03 (SSD). 1.18e-02 (KL) 

Figure 4.5: The matches from TRANSFAC to the 2nd motif output by 

GALF-G on the MyoD dataset. The red brackets indicate the aligned blocks. 

is followed in GALF-G for the minimum parameter-tuning pur-

pose), 200，100, 50, 10) were used to run GALF-G, GALF-P 

and G A M E (results from [19]) on the 8 real datasets [101] for 

fixed-width single motif discovery. For each PS, they were run 

20 times on the same Pentium D 3.00GHz machine with 1GB 

memory, running Windows XP，and the results were averaged. 

The effectiveness (site F-scores sF) and efficiency are shown in 

Figures 4.6 (a) to (c). 

For the default PS = 500，the average time (in seconds) 

follows that: GALF-G (43.38) < GALF-P (61.91) < G A M E 

(291.11). Since the standard deviation of GAME 'S effectiveness 

is already large with PS = 500，we only focus on GALF-G and 

GALF-P to compare the effects (except the special MyoD case 

better to run with K > I) of different PS. In Figure 4.6 (a), 
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Figure 4.6: Different population sizes: (a) The average site level F-scores sF 

of GALF-G on the 8 real datasets with fixed width inputs, (b) The average 

time of GALF-G according to (a), (c) The average F-scores of GALF-P 

on the 8 real datasets with fixed width inputs, (d) The statistics on both 

nucleotide and site levels on ECRDB62A of GALF-G with range inputs. 

the overall performance for PS = 500 are similar, as well as the 

standard deviations: GALF-G 0.004; GALF-P 0.029. However, 

when the population size drops to PS = 10, the performance 

of GALF-P drops significantly, and the standard deviation be-

comes 0.17 on average, and even > 0.40 for MEF2 and TBP 

datasets (Figure 4.6 (c)). On the contrary, the average per-

formance of GALF-G is maintained, and the overall standard 

deviation is only 0.031, still a very small number. Furthermore, 

the average time of GALF-G for PS 二 10 is just 1.80 seconds, 

which is over 24 times speedup of the default PS, as shown in 

Figure 4.6 (b). 

It is interesting that even with a population size of 10, GALF-
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G still performs comparably well, while GALF-P degenerates 

significantly. The major reason is due to the meta-convergence 

framework with similarity test, which is not used in GALF-P. 

Wi th an extremely small population, GALF may not be able to 

provide the optimal motif in every run. However, since different 

motifs are controlled and maintained on a meta level in GALF-

G, converged sub-optimal motifs will be replaced by better ones 

and eventually the global optimum can be found. 

The above results imply that, GALF-G is able to provide 

comparable and consistent performance for fixed-width single 

motif discovery with a small population for competitive effi-

ciency. 

On the E. coli benchmark for multiple outputs {K = 5) with 

range inputs, we observed similar performance maintenance with 

different PS for GALF-G in Figure 4.6 (d),.thanks to the meta-

convergence mechanism to maintain different optimal motifs in 

the solutions. The average time on each dataset for the three PS 

is 655.80 (500)，74.40 (50) and 16.05 (10) seconds respectively, 

where the PS = 1 0 demonstrates a speedup of over 40 times 

compared to that of the default size [PS = 500). For PS 二 10’ 

the standard deviation of nPC is 0.0098, which is still small 

compared with 0.0070 for the default PS. 

According to the efficiency experiments, GALF-G is able 

to maintain competitive effectiveness with very high efficiency. 

Therefore GALF-G has great potential to work on ever larger 

scale datasets successfully. 

4.6 Discussion and Conclusion 

To conclude, we summarize the proposed work of GALF-G, dis-

cuss about the challenges and point out future directions. 
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4.6.1 Summary 

In this chapter, the generalized motif model is proposed for re-

alistic motif discovery problems. It models a possible range of 

widths rather than any single width. The model has the po-

tential to address the biological uncertainty better and is more 

practical in reality because TFBSs of the same motif may vary in 

widths and exhibit different degrees of conservation. The meta-

convergence framework is proposed to support multiple and pos-

sibly overlapping optimal motifs, based on the flexible and easy 

control of the similarity test for users. GALF-G is developed 

by incorporating the extended GALF searching methodology 

into the meta-convergence framework based on the generalized 

model. 

GALF-G has been tested extensively on over 970 datasets, in-

cluding 800 synthetic datasets, 8 real datasets (further 24 range 

cases), 100 eukaryotic and 62 E. coli benchmark datasets, as 

well as a real liver-specific dataset with multiple overlapping 

motifs. GALF-G has shown its competitiveness and better ef-

fectiveness for different kinds of motif discovery problems with 

both fixed-width and range inputs. The generalized model not 

only predicts the motifs accurately, but also include more cor-

rect TFBSs, The searching capacity for optimal solutions and 

efficiency of the meta-convergence framework have also been 

demonstrated with the synthetic and real datasets. GALF-G 

has also discovered an additional motif which might not have 

been annotated previously in the MyoD dataset. 

4.6.2 Discussion 

However, the motif discovery problem remains challenging due 

to the weak underlying motif signals input data, as well as the di-

versity and complexity of TF binding TFBSs [4]. There are also 

a number of potential improvements for the generalized motif 
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model and GALF-G in our future work, such as further analysis 

on the effect of different width ranges, more efficient evaluation 

when handling different width fragments, flexible width distri-

butions for different motif types, validation of the putative motif 

in MyoD dataset, etc. The candidate fixed-width model for the 

generalized model still needs more investigation to better suit 

the biological observation. Integrating the generalized model for 

motif discovery with additional evidence such as expression data 

to increase the prediction power is another attractive research 

direction to us. 

• End of chapter. 



Chapter 5 

Generic Spaced TFBS Motif 
Discovery with GASMEN 

Summary 

GASMEN based on GAs is presented for spaced TFBS 

motif discovery, as a generic extension for the previous 

contiguous (monad) motif discovery. 

5.1 Introduction 

In the previous two chapters, we have discussed the GALF al-

gorithms for TFBS motif discovery with the assumption that 

motifs appear to be contiguous conserved blocks. In this chap-

ter, we address the more complicated case of generic spaced mo-

tif discovery, where there can be arbitrary non-conserved spac-

ers (wild card portions) within a TFBS motif. In this section, 

spaced motif discovery is first introduced, followed by the brief 

survey of existing methods and GA for motif discovery. Finally 

the chapter outline is presented. 

99 
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5.1.1 Spaced Mot i f Discovery 

During TF-TFBS binding, the DNA binding domains of a TF 

can recognize and bind to a collection of similar TFBSs，from 

which a conserved pattern called motif can be obtained. The 

DNA segments ("binding cores") that directly interact with 

binding domains are more specific and thus more conserved, 

while conservation is not as critical in the portions between bind-

ing cores (the so-called gaps or spacers). There are a number of 

real spaced motifs [103]. Moreover, multiple TF binding, a com-

mon machinery in eukaryotes, also results in longer composite 

motifs with gaps. 

5.1.2 Motivations 

Existing consensus and matrix (position weight matrix P W M ) 

representations are proposed for monad (contiguous) motifs, so 

they may not capture the complex spaced motifs well because 

gaps reduce the total motif scores when evaluated by functions 

for contiguous motifs. 

On the other hand, current algorithms designed for spaced 

motifs have certain constraints on the gaps. They either restrict 

all gaps in a motif to be the same and fixed, or restrict the 

gap number to be 1 and for dyads only (i.e. two monad motifs 

separated by 1 gap) [56,92]. Some of them only accept fixed 

motif widths and specified gaps [56]. Other methods such as 

M I T R A [26] first discover monad motifs and then combine them 

for possible dyads [70]. Beyond the methods for dyads, recently 

SPACE [103] is proposed to employ frequent itemset mining 

techniques to discover generic spaced motifs, with flexible gap 

numbers and ranges. SPACE is shown to outperform the other 

spaced motif algorithms [26，56] on various real and benchmark 

datasets. However, because the complexity of frequent itemset 

mining is unbounded, constraints are imposed in SPACE: all 
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candidate motifs are restricted to be derived exactly from the 

input data occurrences. As a result, SPACE may not be able 

to capture short monad motifs (as shown in the experimental 

results). Multiple values of the minimal conserved percentage 

and the number of occurrences have to be provided beforehand 

carefully and cannot be too small. The computational time can 

still be overwhelmingly long to finish the exponential frequent 

itemset mining. 

Because TFBS motifs are often degenerate, search or opti-

mization is difficult (NP-hard [53]). Evolutionary computation 

has shown great success and potential in motif discovery, in par-

ticular with GA [19，20, 60’ 77, 95,100,101]. G A maintains a 

population of candidate motifs called individuals, and optimizes 

them iteratively through generations. Various genetic operators 

(e.g. mutations and crossovers) are applied to generate offspring 

(new candidates) from the parents (previous population). Ac-

cording to the schemata theory, by selection based on the evalu-

ation function, the fit schemata will gradually dominate and the 

fittest (optimal) individuals will remain. However, previous GA 

methods are mostly applied on discovering only monad motifs 

(e.g. our previous work [19,20]), with few studies on even dyads. 

Furthermore, the input motif widths are either fixed [19,77,95 

or restricted in certain small ranges [20’ 100,101]. Thus it is de-

sired to apply novel G A on generic spaced motif discovery with 

flexible width ranges. 

5.1.3 Chapter Outline 

In this chapter, we propose a novel GA to discover generic spaced 

motifs, which searches a wide range of possible widths (4-25) and 

relaxes substantial constraints of the previous methods. The de-

tailed method is elaborated in Section 5.2. Experimental results 

on various real datasets are reported in Section 5.3. Concluding 
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remarks and future work are available in Section 5.4. 

5.2 Methods 

In this section, the definitions for generic spaced motifs are first 

introduced, and then details of the proposed G A are presented. 

5.2.1 Spaced Mot i f Formulations 

We follow the definitions employed by SPACE [103] for generic 

spaced motifs, with a number of relaxed constraints. A spaced 

m o t i f (or simply a motif) M is a width W {= 25 to adopt 

longest possible motifs) string formed by characters of {A, C， 

G, T, n}，where each maximal substring of consecutive "n" rep-

resents a gap (or spacer) and each maximal substring of other 

characters represents a conserved segment ("binding core”）. 

The width for any conserved segment should be > it; for a pre-

defined minimal width w, and any ^^-segment without "n" is 

called M ' s submo t i f . Different from SPACE, no predefined 

(and relatively large) coverage ratio r is required for segment 

percentage in our definition，only a minimum coverage number 

c = 4 of non-n characters is set to guarantee a non-trivial bi-

ological motif. W i t h this flexible setting users need not worry 

about choosing r (multiple values are tried in SPACE) and the 

definition covers more general motifs, especially for short motifs 

as shown later. The effective spaced motif is thus the substring 

of M with "n” from the two ends eliminated, and as a result 

it covers a sufficient range of widths (4 — 25) for real biological 

DNA motifs. 

Consider a width-VK spaced motif M and any width-VK string 

O formed by characters of {A, C, G, T} from the input se-

quences. O is called an occurrence of M if, for every submotif 

(sliding window with width w) M[i,…，i-\-w-l] e {A, C, G, T广， 
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/[i, is at most d hamming distance H、i.e. H{M[i, 

w — 1), / [ z , z + iL； — 1]) < d. Note that gaps ("n") are not con-

sidered as mismatches because they are not in any submotif by 

definition. In practice, we require the minimal occurrence num-

ber q 二 4 to form a valid motif rather than trying different 

pre-defined occurrence number thresholds [103], because an ap-

propriate evaluation function can automatically suppress poor 

motifs with few occurrences. 、 

The following example illustrates the 5 occurrences for a given 

motif M with W = w = 4： and c? = 1, where the effective mo-

tif is with width 18 (ignoring the “n”s at the end). For example, 

CAGT (0)，AGTT (1)，GTTA (1) from occurrence 01 are all 

within H < d = 1 (H shown in brackets) from the corresponding 

submotifs, so they are valid. On the other hand, GTGTCA" . 

is not valid because H = 2 > d between GTGT and submotif 

CAGT. The example also implies that the consensus of submo-

tifs may not exist in any of the occurrences and submotifs from 

one motif may only match segments from different occurrences 

exactly. Therefore, it would be restrictive to generate motif 

candidates only from occurrences in the input data through re-

placing characters to "n" in the previous method [103]. In our 

proposed methods shown later, different submotifs are able to 

be extracted from different occurrences according to the natural 

definition of spaced motifs, and thus the previous contraints are 

relaxed. 

• M=CAGTCAnnACGTnGACGTnnnimnn 

• 01=CAGTTAccACGTcGACCTgcgcgcg 

• 02=CAGACAggACGTgCAGGTcgctata 

• 03=CACTCAttATGTaGACGTatagcgc 

• 04=GAGTCAttATGTtGACCTtttatat 
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• 05=CTGTCTggACGTgGTCGTtaactct 

5.2.2 Proposed G A S M E N 

Wi th the relaxed constraints, it is even more challenging to 

discover generic spaced motifs effectively and efficiently. To 

tackle the challenge, we propose the novel G A for Spaced Mot i f 

Elicitation on Nucleotides (GASMEN) . G A S M E N employs sub-

motif indexing to partition the search space into smaller sub-

space, making it easier for the G A to reach optimality. Multiple-

motif control and motif refinements are proposed to avoid redun-

dant computation and improve motif quality efficiently. The 

details of G A S M E N are presented as follows. 

Submotif Indexing and Initial Population 

S u b m o t i f I n d e x i n g : The relaxed generic spaced motifs impose 

a huge pattern space compared with the previous method [103 . 

Although direct optimization using G A is possible, it is more 

probable for G A to achieve optimality through partitioning the 

space into smaller sub-space. Given certain w and d, all sub-

motifs M ( ” 6 { A C, G，T广 are enumerated and the input se-

quences are scanned and indexed (with sequence numbers and 

positions) for each M⑷，where for any substring I、附 from the 

indexed set /⑷ of M ⑷， ⑷ ⑷ [ 1 , 2，… ，w]̂  M⑷[1，2，…，It;]) < d. 

Suppose w = 4： and d = 1, all substring occurrences with Ham-

ming distance H <1 from submotif A A A A are indexed accord-

ingly, e.g. substrings starting with AT A A, A A A C , G A A A , etc. 

Then the procedure is repeated for AAAC , A A AG, AAAT，…， 

TTTG, TTTT. For a particular index G A is applied and it 

only needs to optimize spaced motifs with all possible occur-

rences indexed by !{. 

I n i t i a l P o p u l a t i o n : To generate candidate motifs for the 

G A population, two initialization methods are hybridized to 
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cater for both monad and spaced motifs. One half of the popu-

lation is generated using the m o n a d app roach : given submo-

tif M⑷，a substring indexed in /⑷ is selected randomly, with 

width w' randomly chosen from [w^ W]. Note that in the ex-

ample AACAGTACCA , only the substring within [w + 1, it;'] is 

used, because the current index /(。is fixed for submotif AAA A, 

and motifs starting with AACA will be handled in the other in-

dex. The other half of the population is generated using the 

spaced app roach : given submotif M(”，the following part be-

yond M ⑷ ( f r o m + 1 to W) of a candidate motif is initialized 

with "n", and then is assigned with w segments randomly with 

probability 1/2 * c/w^ where c is the minimal non-n coverage 

defined previously. Then for each conserved segment (maximal 

substring of non-n characters), we randomly select a substring 

indexed in /⑷ and fill the segment with the corresponding part 

of the substring. Thus the candidate motif is with conserved 

segments (guaranteed to be valid > w) from different possible 

occurrences rather than from a single occurrence. Genetic op-

erators will add further variations to both monad and spaced 

candidate motifs to cover more complete pattern space. Figure 

5.1 shows the population initialization approaches. 
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Genetic Operators 

To generate offspring from the current generation, mutations 

and crossovers are applied. The genetic operators have to be 

designed such that they will not produce any invalid candidate 

motifs, in particular for the conserved segments ( > w). They 

are illustrated in Figure 5.2 and detailed below. 

M u t a t i o n : A mutation point p is selected randomly from 

w 1J W] (submotif index M ⑴ is not affected because such 

indices are enumerated for optimization; see Table 5.1), if p is 

within a conserved segment, a character is selected randomly 

from {A, C, G , T} to change the motif. If p is within a gap, its 

nearest next conserved segment is obtained, and we change the 

segment end to be "n" if the segment > w, otherwise do the 

same mutation within the segment. 

Crossover: A crossover point p is selected randomly for both 

the candidate motifs PI and P2 as parents, if p is within a gap 

for both P\ and P2, they can be swapped for the parts split 

by p without violating the definitions. Otherwise the segment 

where p is located for either PI or P2 is obtained and the whole 

segment is copied to the other parent (in such a case the parent 

offering the segment is not changed). 

Probabilistic Refinement (memetic operator): To di-

rectly improve individual fitness for efficiency, probability re-

finements are applied every 10 generations, adopting the idea 

of combining consensus-based and matrix-based representations 

19]. In the refinement, a P W M (Position Weight Matrix) is 

generated from the occurrences of each candidate motif, and 

for each position we change each non-n character, or each "n" 

neighboring a conserved segment, with probability of its fre-

quency in the P W M , and accepts the variation if the resultant 

motif is evaluated to be fitter than the original one. The oper-

ator is designed for the situation that, because u?-submotif has 

the flexibility of Hamming distance d from the ly-segments of the 
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occurrences, it may happen that all occurrences are conserved 

to certain nucleotide (e.g. 90% G) at one position while the 

submotif gets the wrong nucleotide, e.g. A. In such cases, the 

probabilistic refinement operator is able to revise the submotif 

in accordance with its occurrence probabilities (frequencies). 

Evaluation Function 

The evaluation function is based on the scoring techniques to 

compute the significance of candidate motifs in Weeder [79] and 

SPACE [103]. The basic concept is that a motif is significant if 

(1) the total number of its occurrences in all input sequences is a 

lot more than expected with respect to the background and (2) 

the pattern is either very conserved or occurs in quite a number 

of the input sequences [103]. As a result, two scores P and a are 

computed for the two purposes respectively. 

(1) Let M be a candidate motif, and Occ(M，e) be the to-

tal occurrences of M as defined in Section 5.2.1, where e is the 

largest Hamming distance of the occurrences from M. Define N 

as the total number of characters (nucleotides from {A, C, G, T}) 

in the input sequences. The frequency of M in the input se-

quences is thus Occ{M, e)/N. Let E{M, e) (calculation shown 

later) be the expected frequency of M with at most Hamming 

distance e from a set of background sequences. j3(M) is defthed 

as the log relative frequency ratio between M and the back-

ground: 

解 ) = 丨 ( 5 . 1 ) 

(2) Assuming the input sequences {{Si}) are independent, for 

a candidate motif M , we consider the most conserved occurrence 

of M in each sequence, and let ê  be the Hamming distance of 

this best occurrence. Naturally ê  < e. Thus l/N(Si) repre-

sents the frequency of the best occurrence in sequence where 
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N(^Si) is its total count of characters. Thus the log relative fre-

quency ratio cr(M) between all best occurrences of M and the 

background is defined as: 

= + ( 5 . 2 ) 

If the pattern is very conserved and/or occurs in many sequences, 

a{M) is large. The final evaluation function is thus f 二 P{M) + 

cr(M). Note that the evaluation function is suitable for both 

monad and space motifs. 

E{M, e) from the background is originally computed by sum-

ming the expected frequency E{M') of M' in the background 

sequences for all M' with at most Hamming distance e from 

M [103]. However, since the nucleotides for core bindings are 

specific in conserved segments of real biological motifs, the mis-

matches of motif occurrences are likely to be restricted in a few 

positions rather than every possible position in a conserved seg-

ment. To capture this property, in the summing procedure we 

only consider all M' having the same possible error positions as 

the occurrences from a motif M. Thus the calculation can cap-

ture the motif conservation more accurately. Similar to previous 

methods [79,103], when M' contains gaps, E{M') equals the sum 

of E{M") among all possible M〃 with all the "n" replaced by 

A , C , G， a n d T . 

For the background statistics, we adopt the same pre-computed 

k-mei [k = 8) background expected frequencies {E{M')) of vari-

ous species as used in both Weeder [79] and SPACE [103]. When 

M' is of width longer than k, we calculate E{M') using a /c — 1th 

order Markov chain. Suppose M ' = piP2”.Pfc' with k' > k, 

k' 

E{M') = E{pip2--Vk) n PiPi\Pi-M-'Vi-\) (5.3) 
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where the conditional probability is 

P(pi-k+i--'Pi) 

110 

P(pi\pi-k+i-"Pi-i)= (5.4) 

The GA Procedure with Multiple-Motif Control 

Probabilistic crowding [66] is employed in G A S M E N to main-

tain diversity. Crowding has been employed and demonstrated 

to be more helpful than canonical selection methods in previous 

work [19], because the optimal motifs lie in a huge and com-

plicated search space. In each generation, individuals are ran-

domly paired to form parent couples P , and each couple com-

petes locally with its own offspring C generated with genetic-

operators applied, according to higher similarity and better fit-

ness. In GASMEN , a parent and its offspring are paired if they 

have smaller Hamming distance H[P, C) than the other possi-

ble pairing. The competing individual survives with probability 

proportional to its fitness. 

In the problem of motif discovery, multiple candidate mo-

tif outputs are desired for practical verifications. We employ 

multiple-motif control mechanism similar to that used in [20 . 

Because multiple motifs are considered different from each other 

in a certain degree, suppose n is the number of output motifs 

(solutions)，a user-defined parameter a is set to control the dif-

ference percentage threshold between various candidate motifs. 

In GASMEN , n solutions are allocated for each w and each 

In each generation, every individual tries to get in one of the cor-

responding n solutions, subject to two criteria: (1) it is different 

( > a ) from all existing solutions and its fitness is better than 

the worst one in the n solutions; or (2) it is similar ( < a ) to cer-

tain solution(s) and its fitness is better than all of them. In the 

latter case, all otlier similar solutions will be eliminated to make 

sure all n solutions are different with percentage > a. To test 
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the difference/similarity of two motifs, we employ the Hamming 

distance H again, but this time the two motif patterns will be 

aligned without gaps to check whether one is a shifted version 

of the other. If in an alignment H j W < a , where W is the 

shorter effective width between the two motifs, they are consid-

ered similar and vice versa. Note that all characters including 

"n" are a.t H = 1 from empty positions made by shifting. W i th 

multiple-motif control, multiple and diverse potential motifs are 

well preserved through generations, with various submotifs and 

different w. 

In the whole G A procedure, there are several w values, and a 

number of submotifs M(i) given each w, we use them as prefixes 

to denote solutions at a certain hierarchy, e.g. if；-M⑴-solutions. 

When all it;-solutions are obtained, a cross-linking procedure 

is applied. Each i£;-solution is assigned different lu's and the 

new w will be accepted if the fitness increases, provided the 

motif is still valid. Cross-linking prevents sub-optimal solutions 

with an inappropriate w for the same motif pattern. The whole 

G A S M E N approach is illustrated in Table 5.1. 

5.3 Experimental Results 

In this section, the experiment settings and comparisons on real 

datasets are reported. GASMEN is first compared with SPACE 

on 2 representative spaced motif datasets, and then compared 

with Weeder and SPACE on 8 real benchmark datasets for gen-

eral motif discovery. 

5.3.1 Experiment Settings 

In all the comparison experiments, G A S M E N was set with W = 

It; = 4，5，d = 1，n = 5 and a — 0.2. For GA , population 

size was 100, mutation rate was 0.5 (to push for more explo-
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Table 5.1: The pseudo-code of GASMEN 

Motif width W^ submotif width u;丨 distance d’ 
motif number n, difference threshold a 

T each w { 

S u b m o t i f i ndex i ng 

for each submotif M ⑴ { 

P o p u l a t i o n I n i t i a l i z a t i on of all w-M^^^ candidate motifs 

Evaluation ( / = ^ + o-) on the population 

for each generation g { 

Perform P robab i l i s t i c Re f i n emen t if g%10==0 
R a n d o m Pa i r i n g to form parent couples 

for each parent couple { 

Generate offspring C from 尸 with Crossovers 

M u t a t i o n s on C based on mutation rate=0.5) 

minimal H(P�C) 
Select ion between the competing P and C 

} 

Fill in ti;-M(i)-solutions with M u l t i p l e - M o t i f Con t r o l 

Check Convergence 

} 
} 
Fill in ii;-solutions with u/-M“)-solutions (Mu l t i p l e-Mo t i f Con t r o l ) 

} 
Refine all lu-solutions with Cross-Link ing different w 
Fill in the n final solutions with all lu-solutions (Mu l t i p l e-Mo t i f Con t r o l ) 

ration in the huge search space), generation number g 二 100’ 

and convergence count was 10. The constants were q = 4： (min-

imal occurrence number) and c = 4 (minimal non-n character 

number) respectively. As a result, GASMEN searched a very 

wide width range of 4-25，which covers most possible biological 

motifs on nucleotides. 

GASMEN was compared with two- representative algorithms, 

SPACE [103] and Weeder [79], which are state-of-the-art algo-

rithms for spaced motif discovery and consensus-based monad 

motif discovery respectively. All three methods are able to 

search wide width ranges rather than requiring specified widths 

19, 56] or small width ranges [20，100，101]. They also share 

similar background models for clear comparisons on the per-

formance. Both SPACE and Weeder are designed to run with 

multiple settings (e.g. different W^ q, c) and vote for the final 

output motifs. We employed the "large" mode of Weeder to 
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cover the widest supported width ranges of 6-12 (unfortunately 

Weeder cannot support longer widths). SPACE was run with 

both default (lu = 5’ c = 0.5,0.8, q = 0.5,1.0, W = 8,15,20) 

and the paper [103] settings (lu = 5, c 二 0.5，0.8, q = 0.5,0.9, 

W 二 10，15). For each dataset, all three algorithms were run 

with the corresponding species background. Other parameters 

were kept default. 

5.3.2 Comparisons on Spaced Motifs 

In this section，we compare GASMEN with the state-of-the-

art method, SPACE [103], for generic spaced motif discovery 

preliminarily. The known representative LexA (W = 20) [22 

and PurR (W = 16) [16] motifs from E. coli are collected, where 

both of them have the characteristics of spaced motifs. LexA 

is the very example used in the Sequence Logo website [22 . 

Both GASMEN and SPACE (both default and the paper [103 

settings) were ran on the corresponding datasets extracted from 

37]. LexA has 9 sequences with sequence lengths from 80 to 

580, and PurR has 12 sequences with sequence lengths from 

100 to 600, respectively. Sequence logos were generated for the 

top ranked output motifs from the two algorithms, and were 

compared with the known motif logos. The results are shown in 

Figures 5.3 and 5.4. 

In the LexA dataset, both GASMEN and SPACE found spaced 

motifs that are similar to the true LexA motif. Note that the 

problem is challenging because GASMEN had to search from 

a wide range of 4-25 and SPACE from 5-20 to find an optimal 

width for the motif. From Figure 5.3 we can see that GASMEN 

is successful to achieve the optimal width VK = 16 with respect 

to conservation by removing the poorly conserved nucleotides at 

the two ends. GASMEN also retrieved a motif closer to the true 

LexA one than SPACE, where SPACE failed to find the correct 
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submotifs of the second conserved segment. 

In the PurR dataset, SPACE, with both default and paper 

settings, failed to find the correct motif logo. On the other hand, 

GASMEN found a motif which is close to the major part (6-16) 

of the true PurR motif. Because the first 4 nucleotides of PurR 

are overall too weakly conserved, GASMEN did not retrieved 

the degenerate part although G and A are well conserved. In 

this preliminary study with comparisons on two representative 

real spaced motifs, GASMEN outperforms SPACE with respect 

to finding the accurate motif logos and choosing the optimal 

widths from a wide possible range. 

5.3.3 Quantitative Comparisons on 8 Real Datasets 

Although GASMEN is designed for finding generic spaced mo-

tifs, it does not mean it is not capable of discovering general mo-

tifs. Moreover, in practice, no one can tell in advance whether a 

dataset has monad or spaced motifs. As a result, it is desirable 

to test the performance of GASMEN on general real datasets 

for motif discovery. 

In this part, 8 real benchmark datasets [101] for testing monad 

motif discovery [19,100] were employed to test GASMEN, Weeder 

and SPACE. The 8 datasets cover different motif properties, 

with species ranging from prokaryotic {E. coli) to eukaryotic 

{homo sapiens), width from 6 to 22, sequence lengths from 105 

to over 300, and total sequences numbers varying from 17 to 95. 

Among the 8 datasets, the CRP (cyclic A M P receptor protein) 

binding site motif in E. coli is a spaced motif with width 22， 

which contains two weakly conserved monad motifs separated 

by a gap [96]. The ERE dataset contains binding sites called 

estrogen response elements (EREs) with high affinity and ac-

tivates gene expression in response to estradiol [47]. The E2F 

family [46] binding sites are from mammalian sequences. The 
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five additional datasets for the TFs of CREB，MEF2, M Y O D , 

SRF and TBP are from the ABS eukaryotic database [13]. The 

binding sites are labeled for the datasets such that quantita-

tive comparisons can be performed. The datasets have been 

well studied where the chance to have some unknown TFBSs 

is small [100], and thus facilitate quantitative comparisons on 

performance. 

We employ the following representative performance mea-

sures: the positive prediction value (precision) P尸V，and sen-

sitivity (recall) Sn, which are defined as follows respectively: 

TP 
PPV = — — (5.5) 

TP FP V 7 

TP 
Sn = — — (5.6) 

TP + FN \ ) 

where TP is true positive, FN is false negative, and FP is false 

positive. F-score and the performance coefficient ( P C ) serve for 

similar purposes to reflect the balanced performance of PPV 

and Sn respectively as follows: 

^ 2 * PPV * Sn 

厂 = P P y - f 5 n (5.7) 

TP 
PC 二 — — — . (5.8) 

TP + FP + FN \ ) 

If T P 二 0 (P尸V^ = SVi = 0 ) ， i s set to 0. All the measures are 

defined on both site (prefix s, and a predicted site has to overlap 

with at least 1/4 of the true one to be a TP) and nucleotide 

(prefix n) levels. 

The performance of GASMEN, Weeder and SPACE on G A M E 

is shown in Table 5.2. Note that except for C R P which has long 

width 22，the other datasets in general have short widths rang-

ing from 6 to 13，and thus Weeder is favored for it supports and 

searches only widths 6-12. The test is tougher for GASMEN and 

SPACE because they search through a wide width range. As a 
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result, SPACE only gives poor performance on those datasets 

with short motifs (we have chosen the best results from the top 

10 outputs with both default and paper settings, if the top re-

sults are 0 in F and PC). On the other hand, with algorithm 

design catering for both monad and spaced motifs, GASMEN 

achieves competitive performance even compared with Weeder. 

In 6 out of the 8 datasets GASMEN has best performance in 

terms of both F-score and performance coefficient PC on both 

site (s) and nucleotide (n) levels. Weeder outperforms GAS-

MEN in TBP dataset probably because TBP is a monad motif 

and has a very short width 6，which represents the best scenario 

Weeder is designed for. The experiments demonstrate the ro-

bust and competitive performance of GASMEN even for general 

monad motif discovery problems. 

For the C R P dataset included, which is in fact a spaced mo-

tif, GASMEN outperforms SPACE in both PC and F on both 

site and nucleotide levels, indicating that GASMEN is still more 

promising for spaced motif discovery when compared quantita-

tively. 

5.3.4 Quantitative Comparisons on the eukaryotic bench-

mark 

We further compare GASMEN with GALF-G, M E M E and Weeder 

on the improved eukaryotic benchmark [87]. There are 3 suites: 

2 algorithm benchmarks and 1 model benchmark, all with real 

TFBS motifs extracted from TRANSFAC and includes repre-

sentative eukaryotic species. The algorithm benchmark suite 

contains motifs that are supposed to be with certain conserva-

tion and the patterns can be learned by training based methods 

(the TFBS motifs have distinguishing power against the back-

ground). The model benchmark is the greatest challenge on 

existing motif models and methods because there is no explicit 
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Table 5.2: The comparisons of GASMEN, Weeder and SPACE on the 8 real 

datasets. n: nucleotide level; s: site level. 

GASMEN Weeder SPACE 

Sn PPV F Sn PPV Sn PPV F 

CREB 

0.41 0.66 0.51 

0.65 0.67 .50 

0.40 0.41 0.41 0.26 

0.79 0.42 0.55 0.38 

0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 

CRP 

0.83 0.52 

0.88 0.70 

.35 

.54 
18 0.39 0.25 0.14 

6 3 0.37 0.46 0.30 

0.26 0.96 0.41 0.26 

0.38 1.00 0.55 0.38 

E2F 

0.42 

0.78 

0.33 

0.41 

0.20 

0.26 

4 8 0.22 0.31 0.18 

8 9 0.22 0.36 0.22 

0.06 0.09 0.07 0.04 

0.11 0.19 0.14 0.08 

0.70 

0.76 

0.76 0.73 

0.76 0.76 .61 

2 6 0.25 0.26 0.15 

5 6 0.25 0.35 0.21 

0.37 0.79 0.51 0.34 

0.44 0.79 0.56 0.39 

MEF2 

0.00 
0.00 

0.00 0.00 

0.00 0.00 

0.00 02 0.01 0.01 0.01 
06 0.01 0.02 0.01 

0.03 0.04 0.03 0 . 0 2 

0.00 0.00 0.00 0.00 
M Y O D 

0.14 

0.14 

0.14 0.14 

0.50 0.22 

0.08 

0.13 
02 

00 0.00 

.10 0.10 卜 0.10 0.05 

.10 0.22 0.13 0.07 

SRF 

0.41 

0.51 

.63 0.50 

.69 0.59 

.33 2 6 0.47 0.34 0.20 

6 3 0,54 0.58 0.41 

0.14 0.51 0.22 0.12 

0.17 0.60 0.27 0.15 

0.72 0.43 0.54 

0.59 

0.37 74 0.52 

9 0 0.56 0.52 
0.05 0.05 0.05 0.03 

0.05 0.10 0.07 0.04 
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Table 5.3: Average performances (nPC and nCC) of GASMEN, GALF-G, 

MEME and Weeder on the eukaryotic benchmark. 

Algorithms Algo Markov Algo Real Model Real 

nPC nCC nPC nCC nPC nCC 

GASMEN 0.091 0.116 0.112 0.167 0.045 0.090 

GALF-G 0.102 0.138 0.095 0.126 0.045 0.070 

MEME 0.077 0.097 0.063 0.083 0.020 0.029 

Weeder 0.032 0.052 0.055 0.096 0.054 0.105 

conservation nor motif in the set. There are 50 datasets with 

backgrounds generated by Markov models and 50 with real cis-

regulatory region backgrounds (more realistic). The real bench-

mark contains 25 datasets with real cis-regulatory region back-

grounds. The widths are not given in the benchmark. The 

additional evaluation measure corresponding to this benchmark 

is the nucleotide level correlation coefficient {nCC) [37,87’ 99 . 

The comparison results are shown in Table 5.3. Wi th the 

maximal width W set to be 16, GASMEN has achieved the best 

performance in the algorithm benchmark with real backgrounds, 

and is better than GALF-G by 33% in n C C , although GASMEN 

is slightly outperformed in the aritifical Markov backgrounds 

(0.116 VS 0.138). The algorithm benchmaxk with real back-

ground shows the most practical scenarios in real data and GAS-

MEN should be considered as the favorable choice (101% better 

than M E M E and 74% better than Weeder in nCC). While 

GALF-G degenerates (0.070 in nCC) in the most challenging 

and difficult real benchmark, GASMEN still maintains compet-

itive performance (0.090 VS 0.105 in nCC), as compared with 

the best Weeder which takes advantage of voting and seaxches 

on a smaller width range. Considering all 3 suites, GASMEN 

has the best balance of performance among them, and shows the 

best performance in the most practical algorithm benchmark. 
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5.4 Conclusions 

In this chapter, we address the challenging problem of generic 

spaced motif discovery on nucleotides. To relax the previous 

constraints on spaced motifs, we have proposed Genetic Algo-

rithm (GA) for Spaced Motifs Elicitation on Nucleotides (GAS-

MEN) , which searches from a wide range of possible widths 

(4-25) for both monad and spaced motifs. To the best of our 

knowledge, G A S M E N is the first G A to address generic spaced 

motif discovery beyond monads and dyads, without stringent 

gap number and range constraints. GASMEN employs submo-

tif indexing to partition the search space into smaller sub-space 

for GA , wherein it is easier to reach optimal motifs utilizing the 

schemata property of GA . Multiple-motif control has been pro-

posed to avoid redundant computation, and is potentially useful 

to discover multiple motifs simultaneously. The probabilistic re-

finement memetic operator has also been developed to improve 

motif quality effectively and efficiently. 

The experimental results, though still preliminary, on real 

representative spaced motifs of E. coli demonstrate the com-

petitive and robust performance of G A S M E N to find accurate 

motifs and optimal widths, compared with the state-of-the-art 

method SPACE. G A S M E N is also capable of finding monad mo-

tifs, outperforming both Weeder and SPACE on most of the 8 

real benchmark datasets，which contains both monad and spaced 

motif datasets from prokaryotic and eukaryotic species. GAS-

MEN also shows the best balance of performance on the eukary-

otic benchmark compared with GALF-G，MEME and Weeder. 

Nevertheless there is still a lot of future work to do to im-

prove generic spaced motif discovery. More real datasets are to 

be tested for comprehensive statistics to analyze the effective-

ness and robustness of G A S M E N for further improvement. The 

multiple-motif control has the potential to be extended to sup-
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Table 5.4: Summary of GALF-P, GALF-G and GASMEN 

GALF-P GALF-G 

Monad (Generalized) 

Range (Pior knowledge) 

Generalized Bayesian 

Local Filtering 

Multiple 

OOPS/ZOOPS 

Post-processing 

Y 

GASMEN 

Motif Type 

Motif Type Width {w) 

Scoring Function f 
Memetic Operator 

Motif No. (K) 
Instance Assumption 

Instance Adjustment 

Similarity Control 

Monad 

Fixed (Known) 

IC 
Local Filtering 

Single 

OOPS 

Post-

N 

Spaced (Generic) 

Any (No prior knowledge) 

Log likelihood ratio 

Probabilistic Refinement 

Multiple 

ANOPS 

No need 

Y 

port multiple optimal spaced motifs effectively and efficiently. 

We will research into reducing the overheads of submotif in-

dexing, because there are many similar and possibly redundant 

submotifs to be pruned. To exploit the sequence information 

for motif discovery, we are also interested in incorporating se-

quence bending properties such as curvature into conservation 

to capture more accurate motif properties. The GASMEN al-

gorithm serves as a promising platform for the future work for 

improvement. 

5.5 Summary 

In this section, the three GA based motif discovery algorithms 

developed by us are summarized, namely GALF-P for optimiza-

tion, GALF-G for modeling, GASMEN for spaced motifs, in 

Table 5.4. All of the proposed GA based algorithms have been 

extensively tested on comprehensive synthetic, real and bench-

mark datasets, and shown outstanding performances compared 

with state-of-the-art approaches. Our GA based algorithms also 

"evolve" to handle more and more relaxed cases, namely from 

fixed motif widths to most flexible widths, from single motifs to 

multiple motifs with overlapping control, from stringent motif 

instance assumption to very relaxed ones, and from contiguous 

motifs to generic spaced motifs with arbitrary spacers. 

• End of chapter, 



Chapter 6 

Discovering Approximate 
Associated Sequence Patterns 
for Protein-DNA Interactions 

Summary 

In this chapter, we further address the pattern discovery 

for TF-TFBS associated sequence patterns (rules), and 

make the first step to generalize the previous exact rules 

to approximate ones for both TFs and TFBSs. 

Supplementary Data available at: 

http://www.cse.cuhk.edu.hk/%7Etmchan/rules/ 

6.1 Introduction 

In the previous chapters, the TFBS motif discovery problems 

we have addressed only consider one side of TF-TFBS binding, 

while discovering the binding patterns of both TF and TFBS 

can provide significantly better insight into protein-DNA inter-

actions and further transcriptional regulation, as surveyed in the 

Background chapter. 
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In this chapter, we generalize the exact TF-TFBS associated 

sequence patterns to approximate ones on both sides. Many 

more informative rules are to be discovered compared with the 

exact ones, and they provide more detailed information to bet-

ter understand protein-DNA binding mechanisms in the verifi-

cation. The chapter layout is as follows: the proposed methods 

are detailed in the next section: Ma t e r i a l s A N D M e t h o d s ; 

experimental results and verifications are reported in section 

Results and Analysis; and finally we have the Discussion 

a n d Conc l u s i o n section for the approximate approach. 

6.2 Materials and Methods 

In this section, we first present the data processed for inves-

tigations, and then elaborate the methodology of discovering 

approximate TF-TFBS associated sequence patterns. 

6.2.1 Data Preparation 

To perform the large-scale discovery on approximate TF-TFBS 

associated sequence patterns (or rules for short)，we employ the 

updated version of TRANSFAC Professional 2009.4 (an older 

public version [72] is also available), which contains 13682 TF 

entries (7664 with protein sequences) and 1225 matrices of the 

TFBS nucleotide distributions (TFBS motif matrices). Each TF 

is associated with the set of TFBSs it binds to, and matrices are 

the aligned and refined profiles of the similar TFBSs bound by 

the same TFs, with the motif consensus represented with lUPAC 

codes, which can be considered as the approximate TFBS motifs. 

Directly modeling (scoring) TF-TFBS associated sequence 

patterns as-a-whole is tempting, but it is computationally chal-

lenging. Alternatively, as the first study, we take advantage of 

the handy information of TFBS matrices (PWMs) , in particular 
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the TFBS motif consensuses, from TRANSFAC as part of the 

rules on the TFBS side. Note that the TFBS motif informa-

tion is derived from TFBS sequence data using de novo motif 

discovery in TRANSFAC, so no extra information beyond typ-

ical TFBS motif discovery datasets is required if users want to 

discover the TFBS motifs themselves. The advantages of the 

available TFBS motifs include that: (i) the matrices are derived 

from datasets with better data integrity; (ii) TFBSs with vary-

ing widths from different experiments have been aligned based 

on Gibbs sampling [98], and a near-optimal width has been cho-

sen for each TFBS motif; (iii) we can accelerate this first study 

for approximate rules based on the widely accepted representa-

tion and data. 

For each TFBS matrix, we use the lUPAC consensus as the 

TFBS motif, and cut all leading and ending "N"s (poorly con-

served and non-informative). Similar motif consensuses are grouped 

with 3 different hamming distance ratio threshold TVs: 0.0, 

0.1 and 0.3, reflecting different levels of approximation criteria. 

In particular, for each motif consensus C of the 1225 matri-

ces from TRANSFAC, we align it (and its reverse complement) 

with every other consensus C丨 for the best ungapped (substitu-

tion errors only) local pairwise alignment based on the hamming 

distance d. If d and the overlapping width w' between C and C丨 

satisfy d/w' < TY, C丨 is grouped into C under threshold TY. 

Repeated consensuses are not processed again. For each TFBS 

consensus group, denoted by C, all the associated non-duplicate 

TF sequences are retrieved and then subject to CDHIT (with 

global sequence identify threshold 0.7) [54] to remove redun-

dancy. Only non-redundant TF datasets with > 5 sequences 

are kept. A summary of the TF datasets is shown in Table 6.1. 
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Table 6.1: The number of TF protein sequence datasets after preprocess-

ing. Raw Group stands for the TF dataset number after TFBS consensus 

grouping; Redundancy Rm stands for the TF dataset number after CDHIT 

redundancy removal and with > 5 protein sequences. 

TFBS TV 

TF Dataaets 0.0 0.1 0.3 

Raw Group 475 490 815 

Redundancy Rm 75 99 506 

6.2.2 Approximate TF Motif Discovery 

Unlike the TFBS matrices and consensuses, there is no read-

ily usable common motifs for the TF datasets retrieved by the 

preparation procedure. The core parts of TFBSs that closely 

interact with TFs are generally considered very short, so it is 

desirable to discover the short and conserved interacting amino 

acids from TFs. MEME, as one of the most widely used tools, 

did discover TF domain motifs which can be matched in veri-

fied conserved domains. However, the motifs were long (without 

specifying the widths) and degenerate with great variations of 

many possible matches, which are neither precise nor concise to 

be verified (shown in the experiments). Thus we have to de-

sign a customized algorithm for the task, and useful features 

such as the hydrophilic properties favoring binding can also be 

incorporated. 

To best fit our objective, a simple customized algorithm is 

developed to discover short approximate TF motifs. The inputs 

are the TF data with n sequences S = {5^}, i 二 1 , n corre-

sponding to a TFBS group C, the specified motif width W and 

the maximal error E. The outputs are the top K (二 10 in our 

experiments) TF motifs Tk {k = 1, and their correspond-

ing matches {tij}k maximizing certain motif scoring function f . 

i is the sequence index of Si, and j = 0,1 is the match index, 

indicating at most one match per sequence [j = 0 means there 
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is no match in Si). Since the binding cores should be highly 

conserved, E is small in the expected target motifs. As a result, 

all W-substrings (W-mers) extracted by a sliding window on 

S are considered feasible to cover most of the probable motifs, 

without enumerating all 20^ possible 14^-mers. For each candi-

date motif T as a W-thqy retrieved by the sliding window, all 

VK-mers within hamming distance (substitution errors) E from 

T are retrieved as the candidate match set {tCij}. i is the se-

quence index, and j = 1,…，qi, is the match index where qi is 

the total number of matches in Si. Exceptionally, qi 二 Q means 

no candidate match for Si. The Blosum matrices are not used 

because they tend to favor complicated degenerate patterns (as 

existing tools do) while we aim at finding the the short and 

highly conserved motifs. To favor the residues that are likely to 

be on the surface for binding, a candidate motif T should have 

at least one hydrophilic amino acid with a scale < 0 (namely R, 

K, D，Q, N, E, H, S and T) from the normalized hydrophobic 

index [23]. 

There can be several approximate matches to the same motif 

T from {tcij}, but only the best match (one actual TF inter-

acting core for one given TFBS core) should be chosen for each 

sequence. This is important but seldom considered by current 

pattern based algorithms. Given the candidate set { tQ j } , we 

employ the Bayesian scoring function [40] used for TFBS mo-

tif discovery to choose the most probable set of matches {Uj} , 

j = 0,1，from {tcij}. A customized iterative refinement ap-

proach is proposed. Firstly all the first candidate matches, if 

any, are selected as the initial instance set {ti j } — {tQ^} to 

build the initial position weight matrix ( P W M ) 9 of the amino 

acid distributions, where ©。力 represents the frequency of amino 

acid 6 G E at column a G [1, W]. The background frequency of 

amino acid b, ©0,6，can be calculated from input S. Then the 
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Bayesian scoring function [40] to be maximized is as follows: 

f = 力 l o g g - 1 ) ( 6 . 1 ) 

a = l 66E 0力 丄 P 

where p = \{t'ij}\/\S\ is the abundance ratio defined as the num-

ber of the matches, over the dataset size |5|. The score 

reflects log posterior probability of having 9 and {"《’】} with a 

non-informative prior, f can capture the over-representation 

and conservation concept of motifs with probability better than 

the simple supports (i.e. counts) [52]，which could be large by 

chance only. 

The algorithm iteratively (maximal 20 iterations) tries the 

other candidates tcij ' one by one at each Si、and accepts the 

change if the new Q improves f . If there is no change after 

trying all the matches from {tci j}. The algorithm stops and 

outputs the top K best T associated with {Uj}. The algo-

rithm converges very fast in experiments because there are only 

a few near-optimal matches to be chosen from each Si with a 

small E set. To speed up, for each TF dataset, only the motifs 

with matches for > n /2 sequences are eligible to be processed 

to reduce computational time. Repeating motifs will not be 

doubly-processed. 

6.2.3 Approximate TF-TFBS Associated Sequence Pat-

terns 

Pairing the TFBS (approximate) consensus C ready in TRANS-

FAC and each of the best TF approximate motifs T discovered 

by the customized algorithm, we have the approximate TF-

TFBS associated sequences patterns as T-C for further eval-

uation. The whole procedure is shown in Figure 6.1. 
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approximate binding rules 
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Figure 6.1: The whole procedure of discovering approximate TF-TFBS as-

sociated sequence patterns. 
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6.3 Results and Analysis 

In this section, the discovered rules from experiments are re-

ported, followed by detailed analysis and independent verifica-

tion. 

6.3.1 Experimental Settings 

With the 3 TY threshold settings of TFBS consensus grouping, 

different settings of Vl̂  = 5,6 and 五 二 0,1 were used to run the 

TF motif discovery to generate different approximate TF-TFBS 

associated sequences patterns (referred simply as rules later on) 

from the extracted TRANSFAC data. 

To evaluate the discovered rules based only on TF-TFBS se-

quences, the 3D protein-DNA complex structures from Protein 

Data Bank (PDB) were employed as the verification evidences. 

In particular, we downloaded 2457 PDB entries labeled with 

prot-nuc (protein-nucleotides) with redundancy removal at 90% 

sequence identity (same as the previoius study [52]). We then re-

moved entries without DNA chains (509 RNA entries), resulting 

in 1948 entries. 

For each downloaded PDB entry, the distances between each 

amino acid on each protein chain and each nucleotide on each 

DNA chain were computed. If the respective residues (amino 

acid and nucleotide) have atoms that are close enough to be 

considered binding (< 3.5 angstrom following [1,2,52]), the se-

quence pair P'D composed of the protein W'-mei P and DNA 

VK'-mer D surrounding the particular close residues in the center 

was output, where W is chosen as 2 * — 1. Thus if a W'-

mer contains a W-mei from the discovered rules, the W-meT 
is guaranteed to contain the close (binding) residue pair. Thus 

W 二 9，11 for W = 5,6 settings respectively. These TF-TFBS 

W'-mei binding pairs {P-D pairs) were collected and compiled 

for the verifications (see Figure 6.2). The summary is shown in 
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Table 6.2. 

Table 6.2: The summary of PDB binding data (P-D pairs) with different 

binding W settings. 

Binding pair W 

9 (for iy=5) 11 (for W=Q) 

PDB Entries 1290 1177 

Protein Chains 2558 2348 

DNA Chains 2989 2630 

P-D pairs 40222 31530 

For each rule T-C specified by W (width only for TF, be-

cause C is retrieved from TRANSFAC) arid error E with the 

TF instance set (optimal matches) { i i j } , there are two levels 

of verification for the PDB binding data, TF : verified on the 

TF side by protein (P) evidences, and TF-TFBS: verified on 

both sides by protein-DNA {P-D) evidences. To be consistent 

with the previous study for comparisons, only rules with > 7 

instances are evaluated. 

T F side: Since both the motif T and the instance set {Uj} 

are obtained, one can directly compare each instance U j with 

protein substring P from the PDB binding data for their pres-

ence. The instance set {Uj} for verification has the advantage of 

being more stringent and concise, as compared to using pattern 

(T, E) which may generate non-existing approximate instances. 

The verification approach is supported by the statistical signif-

icance shown later. A TF instance Uj is verified on P if the 

W-mei tij is present in certain TF W = 2 ^W — l-mer(s) of 

P from the PDB P-D pairs, e.g. Uj = NRAAA present in 

P 二 FLERNRAAA. The T F veri f icat ion ra t io Rtf for a 

rule with TF motif T is defined as the number of verified TF 

instances over the total number of instances Thus if 

£7 = 0, RTF is either 0 or 1 because all instances are the same 

as the TF motif T. 

TF-TFBS sides: A TFBS motif consensus C from TRANS-
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FAC is verified if there exist an Vl^-mer in C , or its reverse com-

plement, with at most E error from a present W-mev of D in 

the P D B P-D pairs. Note that since lUPAC code is employed 

in C , an ambiguity nucleotide can match any of its inclusive 

nucleotides (e.g. S matches C /G ) . For example with W = 5 and 

E = 1,C = TGACGTYA is verified with D = TCGATGACG 

because TGACG (reverse complement CGTCA) matches the 

last W^-mer of D. The TFBS verification is slightly more flex-

ible than TF one, according to the higher variability TFBSs 

exhibit in TF-TFBS binding [64；. 

Thus an approximate {W, E) TF-TFBS rule instance Uj - C 

is verified if both the TF instance Uj and the TFBS motif C 

can be verified on P-D PDB pairs. The T F - T F B S verifica-

t i o n ra t i o RTF-TFBS for a rule T-C is defined as the number 

of verified Uj — C over the total number of rule instances (de-

termined on the T side, i.e. Thus RTF-TFBS < RTF- If 

RTF = 0 (not verified on TF side), RTF-TFBS = 0 (impossible 

to be further verified). The verification procedure is illustrated 

in Figure 6.2. 

6.3.2 Ru le Results 

Table 6.3 shows the verification ratios, Rtf on the TF side and 

RTF-TFBS on both sides, on the corresponding P D B binding 

data, with respect to all TFBS consensus grouping T F , width 

W and error E settings. All detailed results of the rules are 

available in the Supplementary Data. 

To compare with the previous study with exact TF-TFBS 

rules [52], the results for W = (all rules with TF width W 

and TFBS width > W are merged as one W setting for con-

sistency) are collected and evaluated with the same verification 

procedures described above. The most exact setting from the 

approximate rules is 丑 = 0 for TY = 0.0. Note that approx-
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PDB Data 
Protein-DNA P-D Pairs 

with close residues at the centers 
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SSNRAAA 
— N R I A A 

TF 

, . T F T F B S 
i n s ' N N 

、 I 

I 1 i n s j N 

i n s ; Y 

J 6 i n s : Y 

An approximate TF-TFBS rule 
^TF-rFBy^O.9 

Figure 6.2: An illustrative example of generating P-D pairs from PDB and 

verifying the approximate TF-TFBS rules for VK = 5 , 五 = 1 { W = 9). 

imate information is already implicitly included even for this 

setting because of the lUPAC TFBS motifs from TRANSFAC. 

.The approximate rules have uniformly better average verified 

ratios (AVG 凡)，e.g., better R t f by 29% (0.74 VS 0.57，W = b) 

and 300% (0.71 VS 0 . 1 8 ， = 6) respectively, even when exact 

TF motifs are expected {E 二 0).. Similar improvements on 

AVG RTF-TFBS are observed, with 46% (0.64 VS 0.44, W = 

and 226% (0.58 VS 0.18, VK = 6) respectively. The improved 

performance indicates the advantage of grouping approximate 

TFBS consensuses and discovering hydrophilic and probable TF 

motifs, over the exact counts (supports) [52]. Furthermore, with 

the approximate extensions, many more informative rules (rules 

with > 0) than exact ones are found {W = 5: 110 VS 76 

and W = ^： 88 VS 6，on RTF-TFBS > 0), while maintaining 

competitive informative rule ratios (i?* > 0 ratio). The previous 

exact rules [52] become less appealing when W increases because 

there are fewer exact rules reaching the support threshold. Note 
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that AVG 凡 is equal to 凡 〉 0 Ratio when E = 0 because 

all instances U j are the same and they are either "all verified" 

{R^ = 1) or "none verified" {R^ 二 0) for a rule T-C. 

The approximate rules also superset the exact ones in general. 

By summ^ i z i ng all jK = 0 rules across different TY settings, the 

approximate rules for Vt̂  = 5 ， = 0 cover 79% of the W = 5 

exact rules on TF sides, and 79% on both sides. W = E = 1 

rules further cover 85% TF and 82% TF-TFBS exact rules. The 

small portions of the non-overlapping rules are probably due 

to the different data collection methods used (exact: TF ori-

ented and all TFBSs used [52]; ours: TFBS consensu groups 

oriented and some original TFBSs ignored). Approximate rules 

for l y 二 6’ 丑二 0 also cover, 88% TF and 85% TF-TFBS exact 

rules respectively. Examples verified by the exact rules [52] are 

also covered by the approximate rules. The exact rule GGTCA-

C E G C K , representing the P-box within Bp-nhr-2 binding do-

main [73], is contained in 19 approximate rules (by matching the 

motifs)' from all settings, 17 of the approximate rules axe with 

both RTF = 1 and RTF-TFBS = 1, and 2 with RTF = 0.96 and 

RTF-TFBS == 0-96. The corresponding approximate rules have 

other verified TF instances (Uj) such as C E A C K (PDB: I L O l ) 

and CESCK (PDB: 2A66, 2FF0), demonstrating the better gen-

erality to discover real TF-TFBS binding patterns. The exact 

rule AAACA-IRHNL is also contained by 12 approximate rules, 

with oth^^yerified U j such as V R H N L (PDB: 2A07, 2AS5). 

6.3.3 Comparisons with M E M E 

As a representative tool we used, M E M E was also run on the 

same TF datasets with the W, E and TY settings.. M E M E 

uses expectation maximization to discover TF /TFBS motifs in 

the P W M representation, by minimizing the chance of having 

random motifs with better information content (IC) [5]. Hence 
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Table 6.3: The verified rules on PDB binding data pairs) with different 
TYy W and E settings, compared with the corresponding VK = 5,6 exact 
rules in the previous study [52] 

IKr > S, £ a 0 U ' . • 5. £ = 0 U' =5 , £ = 1 

TV 

R, 

Exocl rules 

TF TF-TFBS TF 

U.O 

TF-TFBS TF 
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0.1 

TF-TFUS TF 

0.3 
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Rule No. 

n , > Q Rotio 

0.6， 

39 

173 

0.57 
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70 
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172 

0.7-1 

O.Oi 

110 
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0.78 
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0.7B 

0.70 
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0.07 

0.C3 

2Q1 
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0,73 

0.G2 

287 

300 

0.72 
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3101 
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0.83 

O.CH 

2072 
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0.61 
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TF-TFBS TF 

0.3 
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TF-TFDS TF 

U.l 

TF-TFDS TF 

U.3 

TF-TFBS 

AVC 

/?. > 0 

Rule No. 
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0.18 

0 

31 

0.J8 

0.18 
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0.71 
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0.58 

0.70 

M3 
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0.7G 
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0.05 

bHl 

•MB 

&SS 
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0.07 
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0.07 
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0.07 

05-1 
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0.G2 

0.63 
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0.73 

boo 

222 

310 

0 70 

U.7C 

ICGS 

1020 

0.87 

OOH 

1GI8 

1020 

0.81 

M E M E is likely to produce degenerate motifs (error E can be 

large) with respect to the consensus representation. M E M E 

was set with fixed widths {W = 5’ 6) and ZOOPS (zero or one 

(TF) instance per sequence) for consistency. AVG Rtf, AVG 

RTF-TFBS and R* > 0 Ratio were measured and compared with 

our approach. There is no error E parameter for M E M E , so the 

same set of results for a specific W were measured twice with 

E = 0 and 丑 = 1 , of which the same Rtf results are expected 

because the TF performance measurement is instance oriented 

(matchi)ig {UJ}). On the other hand, RTF-TFBS will increase 

from E" = 0 to more relaxed E = 1. The comparison results are 

shown in Table 6.4. Our approach is 73% —262% better in terms 

of AVG R* than M E M E for all different settings. M E M E did 

find more rules in general because it tends to discover degenerate 

motifs. However, the verification ratios ( 凡 〉 0 Ratios) on all 

settings of our approach are 33% — 79% better than M E M E . 

The significant improvements indicate that our aim for highly 

conserved and short TF core motifs with hydrophilic constraints 

better achieves the goal of this specific problem than M E M E 

which t .rgets for general and degenerate motifs. 
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Table 6.4: MEME results on different TV, W and E settings and the im-

proved ratios of our approach over MEME (Ours better by referring to 

Table 6.3). 

MEMGResulU 

T? 

fl. >0 
Rule No. 

Oura better by 

MEME rUgulta 

T? 

R. 

It̂  = 5. g - 0 tV - 5. g = 1 

00 51 ； ol oio 51 Ol 
TF TF-TFBS TF TF-TFBS TF TF-TFBS TF TF-TFBS TF TF-TFBS TF TF-TFBS 

" 032 030 Ol4 037 030""" 
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S4% S6% 49% 68% 33% 45% 42% 40% 40% 42% 33% 36% 

ll̂  - 6, e = 0 丨= 0, e ~ 1 

by 

fl. >0 
Rule No. 

fl. > 0 FIaUO 
Ours batter by 

0.0 0.1 0.3 0.0 O.l 0.3 

TF TF-TPUS TF TF-TFBS TF TF-TFBS TF TF-TFBS TF TF-TFBS TF TF-TFBS 

"OID 3!22 03i 023 ？m "OM 5!27 OSi 0.2a 059 OlO~ 
142% 163% 145% 181% 178% 262% 07% 00% 102% 104% 142% 157% 

127 90 103 丨21 1194 839 127 丨 20 丨 03 丨 M 119-1 1127 

289 289 334 334 2170 2170 289 289 334 334 2170 2170 

0.44 0.33 0.49 0.30 0 55 0.33 0 44 0.42 0.49 0.4G 0.55 0.52 

01% 73% G7% 79% 4T% 72% 62% 60% 507E< 51% 58% 62% 

6.3.4 Statistical Significance 

To test the statistical significances ( W = 5 results for illus-

tration) on RTF and RTF-TFBS, an empirical method is em-

ployed to simulate if the rules are randomly generated from the 

datasets. For each TV and E setting, each dataset correspond-

ing to a TFBS consensus C is sampled equal times to output 

10 TF motifs (denoted by T'), with m instances j generated 

with at most E from where m is randomly sampled to be 

valid for the above evaluation (i.e. > 7 and > n/2 , i.e. at 

least half of the sequence number). The sampling time for each 

C dataset is set such that there are N > 10000 datasets (e.g. 

TV = 134 * 75 = 10050 for the 75 datasets with TY = 0.0 and 

丑二 0) with totally lO^N rules generated. The empirical p-value 

of a rule is thus the proportion of random rules that has equal 

or better performance of R* than it. The results for statistically 

significant rules (with p-values < 0.05) for 二 5 are summa-

rized in Table 6.5. Note that for 五 ； 0 , each random rule is 

either J^* 二 0 or i^* = 1, and the best achievable p-values on TF 

side (i.e. p{Rtf > 1)) are 0.0625 (Ty=0.0) , 0.0668 (Ty=0 .1 ) 
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and 0.0602 {TY=0.3). In such cases the number of rules with 

the best achievable p-values are shown. It can be seen that the 

majority of the rules (0.64 — 0.79) are statistically significant 

for the TF-TFBS verification ratios RTF-TFBS, indicating the 

competitive performances achieved by the approximate rules are 

not trivial. 

Table 6.5: The statistically significant rules for W = * indicates the 

number of rules with the best achievable P-values when they are > 0.05 (all 

< 0.07). 

H ' - S . E = 0 iv ^ 5. g ^ 1 

f? ^ oT o3 ol 63 
/?. TF TF-TFBS TF TF-TFBS TF TF-TFBS TF TF-TFBS TF TF-TFBS TF TF-TFBS 

I'-vnluc < 0.05 0 <127” MO 0 {1G5') Hi? 0 (03G') 507 "223 m 278 f ^ 2023 

Rule No. 172 丨 72 211 211 774 774 340 3<tC 390 300 2559 2559 

Signinouil lUtio 0 (0.7r) 0.01 0 (0.78.) 0.70 0 (0.82') 0.73 O.G-I 0.C5 0.70 O.GO 0.77 0.7Q 

6.3.5 Detailed Analysis 

In this subsection, we investigate how the approximate rules 

generalize the exact ones with the verified P D B entries for illus-

tration. 

W i t h the setting = 5 and E = 1, we show how ap-

proximate rules generalize and retrieve informative verified ev-

idences on both TF and TFBS sides. Prom the 231 verified 

{RTF-TFBS > 0) TF-TFBS rules for TY 二 0.0, there are 133 

verified rules with > 5 P D B entries (maximum number of ver-

ified entries: 23). An illustrative rule with 5 verified P D B en-

tries is chosen for illustration. The rule is M00041: NRIAA-

T G A C G T Y A (ID 1160), with maocimal E = 1, the different TF 

instances (i.e. {Uj}) discovered by the customized algorithm 

are NK IAA , N R A A A , NREAA , and NR IAA . Except NK IAA , 

other instances have been verified with P D B entries, namely 

1DH3, IFOS , I J N M , 1T2K, and 2H7H. The case with NK IAA , 

is shown to be within TF records of NCBI in next subsection. 

The results are shown using Protein Workshop in Figure 6.3. By 

allowing maximal 1 substitution error, we discover that the TF 
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binding motif NR*AA summarized from our results is flexible 

with the middle amino acid, varying with E, A, and I. Such dis-

coveries supported by the approximate rules give us more clues 

into the TF-TFBS binding mechanisms. 

(a) 1DH3: NREAA-
NGTCA 

(b) 1DH3： 
TGACN 

NREAA- (c) 1T2K: NRAAA-
ATGTC 

(d) 1T2K: NRAAA-
TGACA 

(e) IFOS: NRIAA- (f) IJNM: NRIAA- (g) IJNM: NRIAA- (h) IJNM: NRIAA-
TGACT ACGTC GACGT TGACG 

(i) 2H7H: NRIAA- (j) 2H7H: NRIAA-

AGTCA TGACT 

Figure 6.3: PDB verifications for rule M00041: NRIAA(NKIAA; NRAAA; 

NREAA; NRIAA)-TGACGTYA for = 5, = 1, TV = 0.0 using Pro-

tein Workshop. 

In order to investigate the case of NKIAA, a model was built 

based on the structure of I J N M using homology modeling. As 

shown in Figure 6.4, the change of arginine (R) to lysine (K) 

does not introduce the steric effect and the basic property of 

the amino acid is retained (both are positive charge). NKIAA 

is also shown to be within TF records of NCBI [89] in the next 

subsection. Thus we believe that NKIAA should be a correct 
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TFBS: TGACG TFBS: TGACG 

Figure 6.4: Homology modeling of NKIAA-TGACG which does not have 

PDB records, based on the verified NRIAA-TGACG pair. The model (left) 

was built based on and compared with the structure of IJNM (right). The 

proteins are shown in ribbon diagram with the highlighted TF amino acids in 

ball and stick format. The TFBS sequences in the DNA are also highlighted 

in ball and stick format. The figures are generated using Discovery Studio 

Visualize!, Accelrys. 

prediction. 

We further analyze the rule picked up from setting 14̂  — 5, 

^ = l a n d TV = 0.1. The rule M00217: ERKRR-CACGTG has 

3 different TF instances (i.e. {Uj}) E R K R R，E R Q R R and ER-

R R R , and 5 verified P D B entries: 1AN2, 1AN4, IHLO , I N K P 

and INLW. The results are shown using Protein Workshop in 

Figure 6.5. This case further demonstrates the flexibility in 

specific positions for TF-TFBS binding. E R * R R has the vari-

ations of K，R and Q for the middle amino acid, and these 

variants can appear in the same TF-TFBS binding, for exam-

ple, I N K P ( E R K R R and E R Q R R ) in Figure 6.5. The discovery 

prompts further investigation into the flexibility and specificity 

of protein-DNA interactions. 

6.3.6 Conservation Verification on N C B I Protein Records 

Besides the P D B entries, we further verified the approximate 

rules on NCBI [89] for conservation independently, namely check-
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CACOT 

(a) 1AN2: ERKRR-
CACGT 

(b) 1AN4: 
CACGT 

ERRRR- (c) 1AN4: 
CACGT 
match) 

ERRRR-
(2nd 

(d) INLW: ERKRR-
CACGT 

CACGT 

(e) INKP: ERKRR-
CACGT 

(f) INKP: ERKRR- (g) INKP: ERQRR- (h) INKP: ERQRR-
CACGT (2nd CACGT CACGT (2nd 
match) match) 

(i) IHLO: ERKRR-⑴ IHLO: ERKRR-
CACGT CACGT (2nd 

match) 

Figure 6.5: PDB verifications for rule M00217: ERKRR(ERKRR; ERQRR; 

ERRRR)-CACGTG for VK = 5,五=1，TT = 0.1 using Protein Workshop. 

ing the occurrences of TF motif instances ({ t i j } ) with the re-

lated NCB I TFs (proteins) independently. The previous 134 

rules with RTF-TFBS > 0.9 {W = = 1, TV 二 0.1) were 

compiled (grouped) according to their 39 different TFBS con-

sensus C groups, and the first 10 groups were analyzed for il-

lustration (because of the time-consuming manual inspection). 

For each C, the TF names FA and organisms OS of the re-

lated TFs were retrieved, and TF instances {{Uj}) found in the 

approximate rules were recorded. We then queried proteins in 

NCB I with F A , and check whether any instance in {U j} occurs 
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in protein records of organisms N O T i nc l uded in OS. 

All the 10 groups are conserved within protein records in 

NCBI from organisms not recorded in the TRANSFAC data 

(see supplementary data for details). All of the TF instances 

are within the conserved domains (especially binding domains)， 

except one case where the domain information is missing in 

NCBI, tod overlap with the annotated DNA binding sites. For 

example, NREAA , N R A A A in the 1st, 7th and 10th groups 

are conserved among proteins (TFs) C R E B l , ATF-1 in various 

organisms such as Danio rerio, Oncorhynchus mykiss and Sac-

charomyces cerevisiae, which are beyond the TRANS FAC data 

containing mainly higher mammals. N R E A A and NRAAA , to-

gether with NK IAA and NR IAA in the 2nd group, are also 

conserved in proteins c-jun, ATF-3 from NCBI. VNEAF in the 

3rd group is conserved among MyoD proteins of Sus scrofa and 

Meleagris gallopavo. None of these organisms are included in 

the corresponding TRANSFAC data used to discover the rules. 

There are also NCBI records with partial matches to the TF mo-

tifs we discovered, such as VNDAF (to VNEAF) and NRESA 

(to NREAA) , implying that relaxing the approximation appro-

priately would further improve the results. Furthermore, the 

conserved TF instances are all within consistent conserved do-

mains and overlapping with binding sites according to the NCBI 

annotations. For example, the conserved E R Q R R and E R R R R 

from the 6th group are all within helix-loop-helix (HLH) do-

mains in NCBI although they appear in various proteins such 

as USF, N-Myc and axnt. The conserved IRHNL in the 8th 

group is all within the forkhead (FH) domains. 

NCBI serves as an independent annotation source for verifica-

tion with proteins from organisms not included in the TRANS-

FAC data used for rule discovery. The confirmation of conser-

vation of the discovered TF instances in NCBI records strongly 

indicates the approximate TF motifs are very likely to be real 
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conserved binding cores across different organisms (especially 

when they are within consistent conserved domains and over-

lapping with DNA binding sites), thus demonstrating the accu-

racy and generality of the approximate rules for revealing real 

TF-TFBS interactions. 

6.4 Discussion and Conslusion 

Large-scale sequence patterns show great potentials for discover-

ing TF-TFBS binding patterns for further understanding protein-

DNA interactions. In this chapter, we have for the first t ime gen-

eralized the exact TF-TFBS associated sequence patterns [52 

to approximate ones to discover more informative and intricate 

rules. We have taken advantage of the available TFBS motif 

consensuses C from TRANSFAC. Reliable datasets are ready 

for use through grouping the non-redundant TF sequences cor-

responding to similar TFBS consensuses C, which has greatly 

accelerated the study. A simple customized algorithm has been 

developed to help discover the short {W = 5,6) and well con-

served {E = 0，1) TF motifs in an approximate manner. The 

algorithm better suits our need to have precise and concise rules, 

and significantly outperforms M E M E by over 73%. Comprehen-

sive measures, e.g. both TF and TF-TFBS verification ratios 

(i^*)，verified rule ratios (凡 > 0 ratios), as well as statistical 

significances have been used to evaluate the discovered approx-

imate TF-TFBS rules. 

The discovered approximate TF-TFBS rules have demon-

strated competitive performance with respect to verifications 

ratios (i?*) on both TF and TF-TFBS aspects. The approxi-

mate rules exhibit a strong edge over the previous exact ones 

on both average verification ratios (0.64 VS 0.44 for VK = 5 and 

0.58 VS 0.18 for VK = 6 on AVG RTF-TFBS) and number of 

informative rules (88 VS 6 for 二 6 on RTF-TFBS > 0 rule 
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number). The majority of the discovered rules are shown to be 

statistically significant (over 64% and up to 79% on RTF-TFBS)-

With detailed analysis, the approximate rules are confirmed by 

the P D B binding structures visually and interatomic distances. 

The examples for various settings demonstrate the flexibility 

of specific positions TF-TFBS binding for both proteins and 

DNAs, reinforcing the need to extend exact rules to approxi-

mate ones to better discover TF-TFBS binding patterns. The 

approximate TF instances are conserved in binding domains and 

even binding sites according to the independent verification on 

NCBI records from organisms not included in TRANSFAC data 

used, and hense strongly support the biological significance of 

the discovered rules. 

Compared with the previous study on exact rules, the pro-

posed discovery of approximate TF-TFBS rules has demonstrated 

significantly better generalized capability of exploring more in-

formative binding rules, and potential applications to predict 

protein-DNA interactions given either side for better decipher 

transcriptional regulation. Nevertheless, this study is just the 

first generalization step towards approximate TF-TFBS rule dis-

covery. The revealed potentials drive us for more advanced 

models and algorithms. Future work includes introducing for-

mal models to score the TF-TFBS rules as-a-whole, applying 

and/or developing novel search algorithms based on the new 

scoring functions, associating multiple short TF motifs, as well 

as handling uncertainty such as unknown widths. As the ad-

vanced computational facilities and techniques are being devel-

oped quickly, there will be numerous promising ways to further 

improve approximate TF-TFBS rule discovery greatly. 

• End of chapter. 



Chapter 7 

Conclusion 

Summary 

In this chapter, we conclude the thesis and provide fur-

ther discussion on future work. 

7.1 Conclusion 

In this thesis, we have contributed to various aspects of pat-

tern discovery for deciphering gene regulation, including exten-

sive efforts on developing novel Genetic Algorithm (GA) based 

algorithms to discover Transcription Factor Binding Site pat-

terns, i.e. TFBS motif discovery, with respect to optimization, 

modeling and generic spaced motifs. Moreover, we have de-

veloped approximate TF-TFBS associated patterns (TF-TFBS 

rules) discovery, which is very promising for better understand 

protein-DNA interactions for future applications. 

On TFBS motif discovery, which is a very challenging prob-

lem with respect to both optimization and modeling, we have 

developed two novel Genetic Algorithm with Local Filtering 

(GALF) algorithms: GALF-P (post-processing) and GALF-G 

(generalized), as well as the extra Genetic Algorithm (GA) for 

143 
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Spaced Motifs Elicitation on Nucleotides (GASMEN), to han-

dle recent raised problems for generic and complicated spaced 

motif discovery. All of the proposed GA based algorithms have 

been extensively tested on comprehensive synthetic, real and 

benchmark datasets, and shown outstanding performances com-

pared with the state-of-the-art approaches. Our algorithms also 

"evolve" to handle more and more generalized cases, namely 

from fixed motif widths to most flexible widths, from single mo-

tifs to multiple motifs with overlapping control, from stringent 

motif instance assumption to very relaxed ones, and from con-

tiguous motifs to generic spaced motifs with arbitrary spacers. 

We have further investigate the TF-TFBS binding pattern 

discovery in a generalized manner with approximation. The ap-

proximate TF-TFBS associated sequence patterns (rules) are 

essential to better understand and interpret protein-DNA inter-

actions, which are fundamental for gene regulation. Based on a 

progressive approach taking advantage of existing TFBS motifs 

from TRANSFAC, a customized algorithm is developed to target 

at discovering the approximate TF core motifs, with significant 

improvement over existing MEME. The approximate rules dis-

covered are evaluated comprehensively with experiment-verified 

Protein Data Bank (PDB) data and exhibit a significant edge 

over the exact ones, with many more verified rules discovered 

and significant better verification ratios. The majority of the 

rules are also shown statistically significant (p-values < 0.05). 

Detailed analysis on PDB cases and conservation verification on 

NCBI protein records from other organisms illustrate that the 

approximate rules are important to better reveal the flexible 

and specific protein-DNA interactions. The approximate TF-

TFBS rule discovery demonstrates great generalized capability 

of exploring more informative binding rules, and potential ap-

plications to predict protein-DNA interactions given either side 

for better deciphering of transcriptional regulation. 
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7.2 Future Work 

With the current extensive efforts on TFBS motif discovery 

based on sequences, the future work is to incorporate more com-

prehensive informative data to improve the predictive power for 

identifying TFBSs, including expression data, phylogenetic in-

formation as well as possible protein features. The approximate 

TF-TFBS associated sequence patterns discovery serves as one 

such extension step and can be further applied to deciphering 

gene regulation. The future work is summarized as follows: 

In-depth study and learning on TFBS motif models: Despite 

numerous motif discovery algorithms, the TFBS motif models 

are not yet fully understood and current models mainly concen-

trate on "conservation" and "over-representation". Wi th the 

experience on TFBS motif discovery and comprehensive data 

of TRANSFAC, we will perform large-scale study on the TFBS 

data and try to obtain the comprehensive statistics to learn the 

-appropriate TFBS motif model(s). Learning is one promising 

direction, where we have done some preliminary results using 

genetic programming to learn the TFBS motif scoring func-

tions [58 . 

Incorporation of informative data for motif discovery: As the 

TFBS motif models being better studied and developed, addi-

tional informative data can be incorporated for more powerful 

prediction. Expression data which are widely employed, can be 

incorporated with our novel generalized models and/or spaced 

motif discovery for identifying TFBSs more accurately and com-

prehensively, via multi-variate regressions. Knowledge driven 

learning wil be the future trend. 

Formal approximate TF-TFBS rules modeling: as mentioned 

before, the generalization on approximate TF-TFBS rules using 

a progressive approach is just the first step towards revealing the 

great potential of predicting and understanding the in-depth 
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mechanisms of TF-TFBS sequence patterns. Future work in-

cludes formal models to score the TF-TFBS bindings sequence 

pattern as-a-whole, more advanced search algorithms based on 

the new scoring functions, associating multiple short TF motifs, 

as well as handling uncertainty such as unknown widths on both 

TF and TFBS sides. 

Transcriptional regulatory network inference: with the pat-

terns concerning transcriptional regulation discovered by our 

novel methods, we can further apply these patterns to predict 

more TF and/or TFBS binding relationship, and construct the 

transcriptional regulatory network based on the putative rela-

tionships. Wi th common regulatory network inference data in-

corporated, e.g. expressions, more reliable and insightful tran-

scriptional regulatory networks are to be discovered together 

with pattern discovery results. Large-scale putative gene net-

works are expected to be generated. 

As more and more accurate biological data are available and 

more advanced computational approaches are being proposed, 

pattern discovery for deciphering transcriptional regulation will 

remain its fundamental role in bioinformatics. The proposed 

pattern discovery paradigms and approaches in this thesis, will 

be consistently improved and extended, and generate more promis-

ing outcomes and show better applicability with further novel 

paradigms and approaches by us in the future. 

• End of chapter. 
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