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Abstract 

What makes a good piano performance? An expressive piano performance 

owes its emotive power to the performer's skills in shaping the music with 

nuances. For the purpose of performance analysis, nuance can be defined as 

any subtle manipulation of sound parameters including attack, timing, pitch, 

loudness and timbre. A major obstacle to a systematic computational anal-

ysis of musical nuances is that it is often difficult to uncover relevant sound 

parameters from the complex audio signal of a piano music performance. A 

piano piece invariably involves simultaneous striking of multiple keys, and it is 

not obvious how one may extract the parameters of individual keys from the 

combined mixed signal. This problem of parameter extraction can be formu-

lated as a source separation problem. Our research goal is to extract individual 

tones (frequencies, amplitudes and phases) from a mixture of piano tones. 

‘We propose a Bayesian monaural source separation system to extract each in-

dividual tone from mixture signals of piano music performance. Specifically, 

tone extractions can be facilitated by model-based inference. Two signal mod-

els based on summation of sinusoidal waves were employed to represent piano 

tones. The first model is the traditional General Model, which is a variant of 

-sinusoidal modeling, for representing a tone for high modeling quality; but this 
% 
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model often fails for mixtures of tones. The second model is an instrument-

specific model tailored for the piano sound; its modeling quality is not as high 

as the traditional General Model, but its structure makes source separation 

easier. To exploit the benefits offered by both the traditional General Model 

and our proposed Piano Model, we used the hierarchical Bayesian framework 

to combine both models in the source separation process. These procedures 

allowed us to recover suitable parameters (frequencies, amplitudes, phases, in-

tensities and fine-tuned onsets) for thorough analyses and characterizations of 

musical nuances. Isolated tones from a target recording were used to train the 

Piano Model, and the timing and pitch of individual music notes in the target 

recording were supplied to our proposed system for different experiments. Our 

results show that our proposed system gives robust and accurate separation of 

' signal mixtures, and yields a separation quality significantly better than those 

reported in previous works. 
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摘要 -

優秀的鋼琴演奏為何優秀？情感豐富的鋼琴演奏之所以具感染力， 

全賴演奏者以細微差別呈現音樂。為了將演奏加以分析，「細微差 

別」可定義為細微地操縱任何聲音參數，包括起奏、時間的安排、 

音高、音量和音色。以計算機有系統地分析音樂的細微差別時，最 

大障礙在於鋼琴音樂演奏的音頻信號十分複雜，因此往往很難找出 

相關的聲音參數》鋼琴作品毫無例外地要求同時彈出多個琴鍵，而 

怎樣從多個琴鍵的混合信號提取個別琴鍵的參數，方法也並非一目 

了然。這個提取參數的難題可閲述為「源分離問題」。本研究的目 

標是從混合了鋼琴多個樂音的聲音裡抽取個別樂音（頻率、振幅和 

相位）。 

我們提議採用「貝葉斯單聲道源分離糸統」從鋼琴音樂演奏的混合 、 

信號中提取每個樂音。具體來說，基於模型的推理有助提取樂音， 

而我們則採用兩個根據正弦波相加的信號模型來代表鋼琴樂音。「模 

型一」是傳統的一般模型’是正弦建模的變種，代表樂音的高質素 

建模，但這個模型往往不能應付混合的樂音。「模型二」是專為鋼 

琴聲音而設的特定樂器模型。相較於傳統的一般模型，「模型二J 
的建模質素較低，但其结構fe源分離更容易。為了盡量利用傳统的 

一般模型和我們提出的鋼琴模型的優點’我們在源分離過程使用分 

層貝葉斯框架把這兩種模型合二為一。這樣便能取得適當的參數(頻 

率、振幅、相位、強度和微調聲母）以深人分析和呈現音樂的細微 

差別。「模型二」利用抽取自將要被分析的錄音裡的孤立樂音來訓 

練鋼琴模型，並根據個別樂音的時間安排和音高資料，作為實驗的 

基礎。結果表明我們提出的糸統能清楚準確地將混合的信號分離， 

其分離質素明顯較過去的硏究成果為佳。 
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Chapter 1 

Introduction 

Why do some music performances sound more expressive and alluring than 

others? Why does a particular mfffeic performance exert greater emotional im-

pact to the audience? One approach to answering these age-old questions is 

to compare the audio* signal of an expressive performance with that of an un-

expressive one, and analyze how they differ in their nuances. Nuance may be 

defined ^ the subtle differences in manipulation of sound parameters including 

attack, timing, pitch, loudness and timbre that makes the music sound alive 

and human rather than dead and mechanical [45]. In recent years, researchers 

� from various disciplines including musicology, psychology, neuroscience and 

computer science have tried to quantify musical nuances through these sound , 

parameters in order to unveil the mystery behind expressive music perfor-

mances. j 
— — 

A major obstacle to a systematic computational analysis of musical nu-

ances is that it is often difficult to uncover relevant sound parameters from 

the complex audio signal of a music performance. For instance, a piano piece 

invariably involves simultaneous striking of multiple keys, and it is not obvi-

ous how one may extract the parameters of individual keys from the combined 

mixed signal. This problem can be formulated as a source separation problem. ‘ ‘ 

Source separation of music signals commonly refers to the challenging problem 

1 . 



Chapter 1 Introduction 2 

of separating the signal of an individual instrument from the mixed signal con-

taining sources from various musical instruments, or of extracting individual 

tones from a mixture of musical tones. 

, Here, we propose a Bayesian monaural source separation system to extract 

each individual tone from mixture signals of piano music performance. Specif-

ically, tone extraction can be facilitated by model-based inference. In this 

research, two signal models based on the summation of sinusoidal waves are 

employed to represent piano tones. (1) We use a traditional General Model, 

which is a variant of sinusoidal modeling, to represent a tone for high model-

ing quality; but the model often fail for mixtures of tones. (2) We propose an 

instrument-specific model tailored for the piano sound. Although its modeling 

quality is not as high as the traditional General Model, it makes source sepa-

ration easier. (3) To exploit the benefits of both the traditional General Model 

and our proposed Piano Model, we use the hierarchical Bayesian framework to 

* combine both models in the source separation process. These procedures will 

allow us to recover suitable parameters for thorough analyzes and chaxacteri-

zations of musical nuances, which, in turn, will open up new avenues in many 

applications. 

1.1 Applications 

Performance analysis and manipulation If each individual tone in music 

recordings can be extracted by our source separation method, we can analyze 

the styles of various artists by comparing the similarities and differences in the 

nuances in their performances. In particular, the elements of nuance we are 

mo5t interested in are intensity and timbre. In piano playing, dynamic shaping 

‘ for chords is an important means of expression [31，p. 148]. It is delivered by 

� d e l i c a t e l y controlling the intensity of the tones in a chord and in the melody 
« 

represented by the chord sequence. After tone extraction, each extracted tone 

f 
V 



Chapter 1 • IrUroduclion � 3 • 

can also be individually manipulated for different musical effects. 

> 

Regeneration of high sound quality recordings One can analyze old 

recordings and quantify the nuances of a past master's performing style. Such 

knowledge may enable a computer-controlled instrument (e.g., electric piano) 

to remake high-quality sound track based on the genuine style of the past 

master. The company Zenph Studio has issued commercial recordings based 

on this concept, but the sound parameters of the nuances they used were 

acquired by intensively and carefully tuning the sound parameters of each 

tone by professional musicians with the help of computers [35]. Our source 

separation method may automate this whole labor intensive process. 

Object-based audio coding The extracted information of the tones can 

be stored as an object in a compressed file structure [63]. Under this coding 

scheme, high compression rate with high sound quality can be achieved because 

only the estimated parameters of the tones are stored and transmitted. 

•V 

Music tutorial system When a piano student practicing a piece, the play-

ing of the piano student can be recorded. If each tone in the playing can be 

extracted by our source separation method, the extracted information can be 

used as an input to a music tutorial system which analyzes the playing and 

then gives feedback to the learner. 

1.2 Problem definition (mixtures, tones and par-

tials) 

When a piano key is pressed, the hammer hits the strings and the strings vi-

brate. Then the energy is transferred from the strings to the soundboard, and � 

the sound radiates from here [2]. The sound can be recorded by a microphone 



…：.、••〜， 
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Partials 

,,,•,‘../..,�11 I I I 
Pressing the keys / Tone 1 丨 I 丨丨 I : i 

simultaneously / 

,‘ [ipr 
參 • • A Tone 2 參 I • 

Key Key Key Microphone M i x t ^ e \ " " 

如ipli丨ude j ^ \ „ i r n i 
Time Tone 3 J [ • [ J 

‘ Amplitude ^ ' 
• Magnitude 

. Time ^ " 
Frequency 

Figure 1.1: The generation of a mixture signal and the goal of source sepai a- -
tion. 

and the recorded sound cau be stored -as a limc-doinaiii acoustic signal. The 

signal generated by pressing a piano key is callcd a piano tone. When multi-

pie piano keys are pressed, a mixture signal is generated as shown iii Figure 

. 1.1. The goal of source sep弘atioii is to extract the individual tones from the 

mixture signal. Here, we tackle the problem of monanral source separation in 

which multiple sources were prerecorded by a single microphone or mixed into 

a single audio channel. ^ 

In this research, an individual tone in a mixture is considered as a particulai-
. - ‘ V 

sound source of the conespoiifliug key. We model a mixture signal as a linear 
� ‘ • 

‘ superposition of its corresponding individual tones: 
• • 

t 

' -

, ‘ K 

" � . ‘ y{tn) = ^ M t n ) (1.1) 
、 、 ’ - fc=l 

where y(,) is the observed mixture signal in the time 'domain, K is the number 

of tones in the mixture, is the Arth"individual tone in the mixture, t^ is 

time ill second, and n is an index for discrete time. In this- mixture model, -
« 

‘ 

:::，/. 、 • 
m 

� ; - . . . - � • • 

•々,： r •‘ 
%' • V � 
‘ . . , : : . . • 
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the mixture signal is a sum of the individual tones. The problem of source 

separation is to recover the signal of each individual tone, Xk(t), from the 

observed mixture signal y � . 

Recovering individual tones from a mixture is challenging. In fact, the 
problem is under-determined if no assumption of the signals is made. The 
number of unknown variables (all Xk{tn)) in (1.1) is more than that of the 
knowns (all y(i„)) for more than one tone. This means that appropriate as-
sumptions are essential for solving the problem. Some researchers are using 

- - � / • 

‘’ more than one channel for separation [4，14, 68]. In this dissertation, we only 

focus on the separation of monaural signals. 

Another difficulty arises from the nature of piano tones. When a piano key 

is pressed, the hammer hits the strings. The strings vibrate at their resonance 

frequencies and the result is a set of simultaneously sounding sinusoidals, called 

partials, forming a piano tone. Hence, a piano tone is the sum of its partials. 

The partial with the lowest frequency is called the first partial or fundamental 

frequency. The second lowest frequency is called the second partial, the third 

lowest frequency is called the third partial, and so on. For a piano tone, 

the partials are quasi-harmonic, meaning that the partials are approximate 

multiples of the fundamental frequency. When multiple keys are pressed, a 

mixture signal is formed. The mixture is the sum of all partials from each 

individual tone. As music is usually not entirely dissonant, it is common 

that some partials from different tones may overlap with each other. If two 

partials are overlapping, their frequencies have very close values so that they 

are effectively identical. For example, octave intervals often appear in piano 

music; two tones are in octave if the fundamental frequency of the higlier tone 

is twice as that of the lower. For an octave mixture, the second partial of the 

upper tone overlaps with the first partial of the lower tone, the fourth partial of 

the upper tone overlaps with the second partial of the lower tone, and so on. 

Hence, the frequencies of the upper tone are totally immersed within those 
s 

a . 、 
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I 

(a) Tone 1 (C4) 
0.041 — . . 

1st 
0 0.03 partial 2nd 3rd 
^ I partial partial 屯h ... 
c 0.02 + partial D) 

‘ (0 
2 0.01 i 

o' . J i î J , 

0 500 1000 1500 2000 
Frequency (Hz) 
(b) Tone 2 (C5) 

0.04 r . . , 
1st __^ 

0 0.03 partial 
1 0 02 2nd 3rd O) u.uz partial partial 
tg � 
：^ 0.01 • j 

o' II lJ 

0 500 1000 1500 2000 
Frequency (Hz) 

(c) Mixture of tone 1 (C4) and tone 2 (C5) 
• 0.041 . • , 

‘ Q) 0.03 
B c 0.02 g) 
CO 

2 0.01 -

qI 1 L .J J lJ__ ‘ 
0 500 1000 1500 2000 

Frequency (Hz) 
t 

Figure 1.2: (a) The magnitude spectrum of tone 1 (C4). (b) The magnitude 
spectnim of tone 2 (C5). (c) The spectrum of the mixture of tone 1 (C4) 
and tone 2 (C5). This mixture was obtained by adding the C4 and the C5 in 
the time domain. The duration is 372 ms and Hamming window was applied. 
Note that the magnitude spectrum of the mixture C4 and C5 is not equal to 
the addition of those of individual C4 and C5. 

> 
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of the lower (Figure 1.2). Overlapping partials cause a serious problem in 

separation because a sum of two partials with the same frequency also gives 

a sinusoidal with that same frequency; there are infinite ways to generate 

the resulting sinusoidal, so the amplitude and the phase of an overlapped 

partial cannot be uniquely determined and the overlapping partials cannot 

be resolved. Hence, we cannot recover the original two paxtials if only the 

resulting sinusoidal is given. 

1.3 Overview of our proposed system 

Many existing monaural source separation systems use sinusoidal modeling 

to model musical sounds [71, 46, 32’ 69, 20, 14). In sinusoidal modeling, a 

musical sound is represented by a sum of time-varying sinusoidals. Sinusoidal 

modeling is effective for the sounds generated from pitched musical instruments 

such as piano because the vibrating system of a pitched instrument vibrates 

at the resonant frequencies. The goal of source separation based on sinusoidal 

modeling is to estimate the parameter values of each sinusoidal. The existing ’ 

systems approach the under-determined problem and the overlapping partial 

problem by constraining or favoring certain regions of the parameter values in 

the sum-of-sine model. This can be imposed by the following ways: 

1. Given a target music recording, the whole source separation process is 

divided into two main stages. In the first stage, the timing and sequence 

of music notes played in the piece are first analyzed. This information 

can be obtained by using music transcription systems [41] which find the 

onsets, duration, and pitch or fundamental frequency of each tone in the 

recording. The transcribed result can be further corrected manually with 

the help of an annotation tool [15]. Based on the transcribed results, the 

parameter space of the sum-of-sinusoidal model can be delineated. In the 

second stage, source separation is performed in this parameter space. 

> 
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2. According to the general properties of pitched musical sounds, assump-

tions are made to resolve overlapping partials. For example, the spectral 

envelope of tones is assumed to be smooth (as in [71, 28)). The infor-

mation of neighboring non-overlapping partials can also be utilized to 

estimate the parameters of an overlapping partial. Another assumption 

is that amplitude of partials from the same source are similar [46]. This 

is known as common amplitude modulation (CAM). 

In our source separation system, sinusoidal modeling is used to represent pi-

ano tones. We also follow the two-stage method so that the onset, duration 

and pitch of each tone are fed into the source separation stage for limiting 

the parameter search space. The source separation stage is the focus of our 

research and we propose a source separation system for this stage. Our sys-

tem, however, does not make assumption on the spectral envelope and CAM 

because these assumptions are often violated in piano music signals. For a 

piano tone, the spectral envelope may not be smooth. Moreover, there may 

be lack of neighboring non-overlapping partials. For example, the partials of 

the upper tone in an octave are totally immersed within the frequencies of 

the lower tone as discussed in the previous section. Usually CAM performs 

well in separating mixtures of different musical instruments. However, indi-

vidual tones in a mixture of piano signals have much more contrasting timbre 

than tones from different musical instruments. Thus, CAM cannot resolve the 

overlapping partials of piano tones accurately. 

Instead of formulating assumptions from the general properties of musical 

sounds, we make use of the fact that the input mixtures in question are pi-

ano music signals. This allows us to design an instrument-specific model for 

the piano sound to accurately resolve overlapping partials. In piano music, a 

particular pitch rarely appears only once. The tones of the same pitch share 

some common characteristics which can be captured by our Piano Model. In 

particular, we consider the case when the pitches in the mixtures reappear as 
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isolated tones in the target recording, and when the piano music is performed 

without pedaling. The isolated tones are used as the training data to train the 

Piano Model. The common characteristics captured by the Piano Model do 

not vary when no pedaling is applied. This approach enables high separation 

,quality even for the case of octaves in which the partials of the upper tone com-

pletely overlap with those of the lower tone. The possibilities of training the 

Piano Model with mixtures and separating mixtures generated with pedaling 

will be discussed in Chapter 8. The procedures of the whole source separation 

process are presented below. 

The required input of our source separation algorithm is a set of mixture 

signals. The mbcture signals are obtained from a given target recording of a 

piano piece via two pre-processing steps as shown in the example in Figure 

1.3. The figure shows the signal of the target recording which is a performance 

of the opening of Beethoven's Piano Sonata in Eb, Op. 81a "Les Adieux" 

(Figure 1.4). Note that the musical score is provided here only for clarifying 

the example; the music transcription process does not require the score. In 

the first pre-processing step, the onset, duration and pitch of each tone in 

the recording are found by a music transcription system. In the second pre-

processing step, the signal of the recording is first segmented into a sequence of 

segmented signals according to the transcribed result. The pitches within each 

segment do not change. Each segment may contain different numbers of tone 

and different pitches. For example in Figure 1.3, the first segment contains 

Eb4 and G4, the second, Bb3 and F4, and the third, C2, C3, G3 and Eb4. 

The whole source separation process is summarized in Figure 1.5. The 

segmented signals from the pre-processing steps are divided into two sets. 

These two sets are the inputs to our source separation system. One set contains 

only the isolated tones which are used for training. Another set contains the 

mixture signals. The information gained from training helps to separate the 

mixtures into their individual tones. The outputs of the whole process are the 
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estimated tones, the estimated intensities and the fine-tuned onsets. 

The goals of our source separation system are to separate each individual ^ 

tone from the mixture signal and at the same time, to identify the intensity 

and adjust the onset of each tone for' characterizing the nuance of the music 

performance. The intensity and fine-tuned onset of a tone will be defined in 

Section 3.3. The main steps in our source separation system are depicted in 

Figure 1.6. The whole separation process is divided into the training stage 

and the source separation stage. In the training stage, the inputs are the 

isolated tones from the target recording being investigated. The parameters in 

the Piano Model are estimated. The Piano Model (PM) contains two sets of 

parameters, (i) One set contains parameters invariant to instances of the same 

pitch in the recording, (ii) Another set consists of parameters which may vary 

across instances. The goal of the training stage is to estimate the invariant 

model parameters so that they can be used in the source separation stage. 

If the invariant PM parameters of a mbcture are known, only the varying 

PM parameters are required to be estimated. In the source separation, the 

varying PM parameters, which include the intensity and fine-tuned onsets, are 

estimated. Estimates of these invariant and varying parameters are then fed 

into the procedure for estimating the parameters in the General Model (GM). 

Given the estimated PM parameters, we can favor certain regions of values 

of the GM parameters under the Bayesian framework. The outputs of GM 

parameter estimation procedure are the estimated GM parameters and the 

estimated signals of the individual tones in the mixtures. 

1.4 Thesis organization and contributions 

The rest of the thesis is organized as follows. Chapter 2 gives a literature review 

of music performance research and music source separation. The signal models, 

including the traditional General Model and our proposed Piano Model, will 

< . 
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be presented in Chapter 3. The Bayesian framework integrating both signal 

models will be explained in Chapter 4. Then, parameter estimations in the 

training stage and the source separation will be examined in Chapters 5 and 

6 respectively. We will also present the experimental results of our source 

separation process on real piano signals and compare our system to another 
t 

system. A conclusion will be given in Chapter 8. 

The main contributions of this dissertation are 

o Formulating a mathematical model for representing different sounds of 

the piano in a parametric form using a set of parameters. The complexity 

of our proposed Piano Model will be optimized for tractable parameter 

estimation while not sacrificing the quality of subsequent source sepa-

ration too much. The Piano Model captures the common properties of 

multiple instances of the same pitch, enabling us to resolve overlapping � 

partials. 

• Developing an efficient method for estimating the proposed Piano Model 

which is both high dimensional and nonlinear. 

• Establishing a hierarchical Bayesian framework for the source separation 

problem for the piano' In order to achieve good separation quality, a 

tone will be represented by the traditional General Model which is a 

frame-wise sinusoidal model. The problem's solution will be based on 

constraining the parameters in the frame-wise model by the estimated 

parameters in the Piano Model via a Bayesian framework. 

• Recovering the amplitude, phase and frequency of each partial in a mix-

ture so that the overlapping partials can be resolved. • 

• Designing a spectral pick-peaking method for piano tones for estimating � 

the frequencies of partials in a piano tone. 
I 1 
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Chapter 2 
s 

Literature review 

The goal of our research is to address the monaural source separation of piano 

music signals and to find the nuance of piano music performance. In this 

chapter, some related work is reviewed. In Section 2.1, some empirical studies ‘ 

on music performances are presented. The work on the monaural music source 

separation will be presented in Section 2.2. 

2.1 Research on music performance 

In recent years, there have been many empirical studies on music performances 

‘ in the aspects of measurement of performance, performing styles, models of 

performance, and performance planning and practice [30, 22, 55, 51). One lim-

itation of many published studies in analyzing nuances in music performances 

is that most of them focus on timing including analysis of note inter-onset 

interval, rhythm, tempo and rubato [58]. Research on other sound parameters 

including attack, pitch, loudness, and timbre is relatively rare. Many of them 

obtain data from specific instruments through specialized sensors for detecting 

how the instruments were controlled and manipulated by the artists (such as 
\ 

sensors in digital pianos or computer-monitored pianos) [33]. There are other 

studies which focus on analysis of commercially available music recordings in-

stead of audio data recorded in experimental conditions, but these body of 

14 
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work usually only focuses on analysis of the overall intensity of the mixture 

signals [59]. These limitations motivate our research on source separation of 

piano music signals. 

2.2 Music source separation 

Source separation of music signals commonly refer to the challenging problem 

of separating the mixed signals from various musical instruments or extracting 

the individual tones from a mixture of musical tones. The two major chal-

lenges are that monaural source separation is an imderdeterinined problem 

and overlapping partials often appear in piano music. Different approaches to 

tackle these two challenges are reviewed below. 

2.2.1 Monaural source separation - solving the underde-

termined problem 

Independent Component Analysis (ICA) [36’ 7] is a widely-used technique to 

separate mixture signals into source signals. It can be used to address the blind 
f ；-

source separation problem. The term "blind" is used in the sense that very little 

information is known about the source signals [66]. In our research, we have 

already known that the source signals are piano tones and we will make use 

of this important information for the source separation process. Therefore, we 

refer to our problem as "source separation" instead of "blind source separation". 

ICA aims to extract the source signals from the mixture signals based on some 

general criteria such as by maximizing the statistical independence between 

the estimated source signals. The standard ICA demands that the number of 

observed variable, i.e., the number of microphones or channels, is equal to or 

larger than the number of source signals. In our context, if ICA is applied to 

the time-domain mixture signals, ICA requires that the number of channels is 
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equal to or larger than the number of tones in a mixture. As music signals 

are often available in one channel (monaural) or two. channels (stereo), and 

it is common to have more than two'tones sounding at the same time, the 

requirement of standard ICA cannot be fulfilled. Hence, the standard ICA 

cannot directly be applied to the monaural source separation problem. 

To deal with the underdetermined problem in the case of monaural music 

source separation，one of the major approaches is to assume that the source 

signals exhibit some statistical properties. In [18], Casey and Westner extend 

ICA into Independent Subspace Analysis (ISA) which wdrks with spectrogram 

instead of time-domain signals aiid separates mixtures of monaural audio sig-

nals. ISA assumes the statistical independence of source signals when they are 

represented by a spectrogram. Another technique is sparse coding [70’ 1，'12 
臂 

which represents a mixture signal by a weighted sum of bases from a larger 

set. It is assumed that most of the weights are zero. This means that only 

a few bases are active at a time. The third technique is Nonnegative Matrix 

Factorization (NMF) [43] which factorizes a mixture signal representation into 

the product of the basis function matrix and the gain matrix. Each element in 

both matrices is assumed to be non-negative. NMF has been applied in music 

source separation and music transcription [74, 9, 19, 65’ 72, 73，57 

Another major approach of the underdetermined problem is to use a paxa-

metric model to represent the source signals. Formulating a parametric model 

for representing the sounds of a musical instrument requires a good understand-

ing of how musical sounds can be analyzed and then, artificially synthesized 

6, 60]. Existing methods for synthesizing musical sounds, especially the piano 

sounds, include additive synthesis [38’ 61], FM s3nithesis [21], group synthesis 

44], physical modeling [3’ 37], and sinusoidal modeling [64]. The most com-

mon model in representing music signals for the source separation problem is 

sinusoidal modeling which has briefly mentioned in Section 1.3. In sinusoidal 

modeling, a musical sound is represented by a sum of time-varying sinusoidals. 



_ Chapter 2 Literature review 17 

The mixture is usually segmented into short-time segments called frames. The 

parameters of a sinusoidal, including frequency, amplitude and phase, are as-

sumed to be stationary in the frame. The goal of source separation is to 

estimate the sinusoidal parameters of each source signal. There are numerous 

work using sinusoidal modeling to address the problems of monaural music 

source separation and music transcription [71, 24’ 69, 14, 23, 28, 46’ 27, 5 . 

2.2.2 Resolving overlapping partials 

In Section 1.3, we discuss that overlapping partials often appear in piano music 

and resolving overlapping partials is essential for maintaining high separation 

quality. The techniques of ISA, sparse coding and NMF work with the magni-

tude spectrum of the mixture signals, so phase information is generally ignored 

but the phase information is essential to resolve the overlapping partials. More-

over, these techniques often assume that the sum of magnitude spectrum of 

sources is equal to the magnitude spectrum of the mixture. This assumption is 

only valid for overlapping partials when they are completely in phase. Results 

in [76] shows that this assumption deteriorates the performance of amplitude 

estimation. Hence, ISA, sparse coding and NMF cannot give robust perfor-

.mance of resolving overlapping partials. 

Sinusoidal morleling gives the possibility to retain the phase information. 

A comparison of ISA, sparse coding, NMF and sinusoidal modeling on recovery 

of amplitude and phase is shown in Table 2.1. As mentioned in Section 1.3， 

assumptions of general musical sound properties can be made to resolve over-

lapping partials. For example, spectral envelope is assumed to be smooth in 

71, 28]. The information of neighboring non-overlapping partials can be uti-

lized to estimate the parameters of an overlapping partial. This can be done by 

interpolating the non-overlapping partials to estimate the overlapping partial. 

In [71], Virtanen uses a two-stage method in his monaural source separation 
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Method' Recovery of amplitude Recovering of phase 
ISA, sparse coding and NMF Limited No 

Sinusoidal modeling Possible Possible 

Table 2.1: Comparison of different monaural source separation methods on 
recovery of amplitude and phase. � 

system. In the first stage, the number of tones and their rough frequencies are 

estimated by the multiple frequency estimation method in [42). In the second 

stage, the parameters in the sinusoidal model are estimated and the source 

separation is performed under the least squares criterion. The overlapping 

partials are resolved by considering the smoothness of spectral envelope. It 

is done by modeling the partial amplitudes by a weighted sum of fixed basis 

functions that does not allow large changes between the amplitudes of adjacent 

partials. However, for a piano tone, spectral envelope may not be smooth. 

Another assumption of musical sound properties is that amplitude of par-

tials from the "Same source is similar. It is known as common amplitude mod-

ulation (CAM) [13’ 46]. The CAM-based method in [46], which is based on a 

‘ least squares estimation framework, is performed well in separating the mix-

tures from different musical instruments. To recover the phase of an overlap-

ping partial, the system in [46] uses the information that the change in phase 

of a partial is related to the pitch of the tone. However, for recovering am-

plitudes, the performance of CAM-based method may be significant affected 

when there are many overlapping partials. For example, the partials of the up-

per tone in an octave are totally overlapping with those of the lower tone. It 

is difficult to obtain any non-overlapping partial in the upper tone to estimate 

the overlapping partials by the property of CAM. Moreover, each individual 

tone in a mixture of piano signals exhibits much less contrasting timbre com-

paring to the tones from different musical instruments. Hence，a CAM-based 

method is unlikely to be able to resolve the overlapping partials of piano tones 

accurately. 
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In [69], the continuity of partial amplitude is assumed and it is modeled 

under a Bayesian setting. A tone in [69] is represented as a sum of exactly 

harmonic sinusoidal partials. The noise of the tone is modeled by a weighted 

Gaussian residual prior to minimize the perpetual difference between the orig-

• inal signal and the synthesized signal. The weighting of the frequency bands 

’ follows the distortion measures proposed in [70]. The inference is done by using 

a Maximum A Posteriori (MAP) criterion with an approximate staged infer-

ence procedure. The duration and continuity priors are incorporated to avoid 

perceptually annoying discontinuities. Note that the continuity of partial am-

plitude is imposed by the priors. The prior of partial amplitude is constructed 

by a linear scaling of a fixed spectral envelope. The prior of the scaling factor 

depends on the value of the factor in the previous frame so that the prior 

ensures a smooth change of the factor. However, the fixed spectral envelope, 

which is treated as a point estimate of the hyperpaxameters of the model, is 

learned from a music tone database of various instruments and it is not adap-

tive to for the mixture signals. Moreover, the uniform prior is assigned to the 

phase of a partial. For the case of overlapping partials, the phases cannot be 

estimated accurately. • 

Another work using the Bayesian approach for monaural music source sep-

aration is proposed in [24]. In [24], a tone is represented as a sum of quasi-

harmonic sinusoidaJs and Gaussian noise. The time-varying amplitudes of si-

nusoidals are achieved by successive frame-by-frame windowing. Inhajmonicity 

is also modeled to allow the partials which are not exact multiples of the fun-

. damental frequency. The frequencies within a tone are assumed to be fixed 

and the onsets of the tones are already known. The parameters of the model 

are estimated by a fully Bayesian inference via Markov chain Monte Carlo 

(MCMC) method. Some of the parameters controlling the distributions of the 

parameters in the model, i.e., the hyperpaxameters, are estimated by using 

� the incoming musical signals; while some of them are estimated by inspecting 
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a database of musical tones. A partial in an analysis frame is written in the 

form of A COS{2TTft) + /3 sin(27r/t) where f is the frequency, A and /? contain 

the information of the amplitude and the phase of a partial. The priors of a 

and P are assigned to be the zero-mean Gaussian which do not supply any 

information to resolve the overlapping partials. Hence, overlapping partials 

may not be able to resolve. As we will show in Chapter 4，an appropriate prior 

is essential for resolving overlapping partials. 



Chapter 3 

Signal model represent at ions 

In this research, an individual tone (the sound of hitting one piano key) is 

considered as a particular sound source of the corresponding pitch. When 

multiple piano keys are pressed, a mixture signal is generated. We model 

a mixture signal as a sum of its corresponding individual tones that can be 

expressed as below: 
K 

y � = (3.1) 
fc=i 

where y{t) is the observed mixture signal in the time domain, K is the number 

of tones in the mixture, xjt(i) is the kth. individual tone in the mixture, and t 

is the time in second. This model is called instantaneous linear mixing in the 

literature of general source separation [52,14]. The notation of this dissertation 

can be found in Appendix A. 

The goal of our research is to recover the signal of each individual tone 

Xfc(i) from the mixture signal y(t). For a piano tone, it consists of a set of 

time-varying sinusoidals called partials. We use two sum-of-sinusoidal models 

to represent Xfc(t) - a traditional General Model (GM) and our proposed Piano 

Model (PM). GM is more flexible to represent an isolated tone for better 

quality; while PM can capture the common properties across the reappearance 

of pitches that helps to separate the mixtures. Before discussing these two 

models, properties of piano tones will be introduced first. 

21 . 
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3.1 Properties of piano tones 

When a piano key is pressed, the hammer hits the strings of the corresponding 

key. Then the strings vibrate and the energy transfers from strings to the 

soundboard, and the sound radiates from the soundboard. The resulting sound 

can be analyzed by using the spectrogram which shows how the spectrum 

changes along the time. The spectrogram of a C4 piano tone is depicted 

in Figure 3.1. The spectrogram shows that the piano tone consists of the 

frequency components and the noise. The frequency components, also called 

partials, correspond to the resonance frequencies of the strings. The relation 

among mixtures, tones and partials can be found in Figure 1.1. The frequency 

values of the partials in piano tones are stable against time. In piano sound, the 

partials of a tone are usually not exactly harmonic. If the partials are exactly 

harmonic, the frequencies of the partials are exact multiples of the fundamental 

frequency, and the frequency ratios between the partials are 1 : 2 : 3 : 4 : 5 

and so on. For piano tones, the frequency ratios are slightly stretched. The 

frequency ratios of the first five partials in Figure 3.1 are 1.0000 : 2.0000 : 

3.0033 : 4.0075 : 5.0163. This phenomenon is called inharmonicity and it is 

caused by the bending stiffness of the strings [2]. Inharmonicity is perceptually 

significant for the sound quality of pianos [2 . 

Figure 3.2 shows the extracted partials of the C4 piano tone in Figure 3.1. 

The amplitude of each partial generally follows a rapid rise and then a slow 

decay. The rapid rise is the building up of the sound. The slow decay is the 

damping of the sound and it is exponential-like [54]. Note that each partial 

has its own rate of rising and decaying. The peaks of the partials exhibit a 

general trend that a higher partial has a weaker peak than a lower partial 

but there are irregularities. For the piano tone in Figure 3.2, the fundamental 

frequency has the highest peak. The third partial is stronger than the second 

and the fifth is stronger than the fourth. Figure 3.2 (d) shows the unwrapped 
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Figure 3.1: Spectrogram of a C4 piano tone played moderately loud. 

phase against time. The unwrapped phase is linear and the partials can be 

considered as linear-phase signals. 

3.2 Traditional General Model 

For a music signal, due to its time-varying property, it is commonly analyzed 

in short-time segments called frames. The duration of a frame is usually from 

10 ms to 100 ms. Each segment is multiplied by a window function to smooth 

the boundaries across frames. A mixture y is segmented into frames as below: , 

yr[l] = w[l]y[{r ~ l)D + I] (3.2) 

where 2/r[Z] is the rth frame at the local time index I where I — 0,1,... L — 1 

and L is the window length, w[l] is the window function, and D is the hop 

size. The hamming window is used in this research. The typeface y denotes 

the entire mixture while the typeface y refers to the windowed segment of a 



t 

‘ Chapter 3 Signal model representations 24 

2500, • ,(a) • • (b) 
... 

0 06-. • ！ . 

2000 • • ] 
£ ‘ So.04A r j. 
二 1500’ ^ • • ” " . g \ i ！ . . . 

0.2 0.4 0.6 0.8 卞， 0 „ , ^ 
Time (seconds) Time (seconds) Partial Index 

0 05 ⑷ （d) 

o l l T T 3 r E T / ,, 
|。。3 \ 二 ; f 。 二 ; 
"5. \ —6 S. ——6 X •‘ -

。.。i 1 ^ 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 
TJme (seconds) Time (seconds) 

• T 

Figure 3.2: Extracted partials of t h ^ 4 piano tone in Figure 3.1. The partials 
are extracted by using the method ifl|pection 5.3 with time-varying frequencies, 
(a) The frequencies of the first nine partials against time, (b) The amplitude 
of the first nine partials against time. The partial index one corresponds to 
the fundamental frequency, (c) The amplitude of the first six partials against 
time, (d) The unwrapped phase of the first six partials against time. 
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frame. ., , 

The signal of a frame can be represented^ by sinusoidal modeling which 

uses a sum of sinusoidaJs to represent the signal. Sinusoidal modeling is a 

well-established technique to model audio signals including speech signals [49 

and music signals [64]. A frame-wise sinusoidal model of a piano tone xjt.r of 

the A:th tone at the rth frame can be written as below: 

^fc.rW = X) (^fc.m.r COS{27rfk,m,rtl) + Pk,m,r Sm{27T fk,m,rtl)) (3.3) 
m = l 

where Mk,r is the number of partials, ak̂ rn,r is the amplitude of the cosine com-

ponent, Pk,m�r is the amplitude of the sine component, is the frequency, ‘ 

ti is the time in second at the index I so U — l / f s and 人 is the sampling 

frequency in Hz. In sinusoidal- modeling, the parameters Mk,r, Pk�m�r 

‘ and fk�Tn,r are fixed within a frame but they can be different across frames. 

, This models tjie time-varying properties of music signals. To reconstruct or 

resynthesize the entire signal from the sinusoidal model, the parameter val-

ues between two frames can Ke estimated by some interpolation methods such - ‘ 

as [49]. Another reconstruction approach is to overlap and add all estimated 
{ 

signals in the frames [77]. The overlap-and-add method will be used in this 

research for its simplicity.‘ 
• ‘ . - , 

For a piano tone, the frequencies of the partials are stable so the frequencies 

can be fixed across frames. The number of partials can also be fixed for a tone. 

Then the model in (3.3) can be rewritten as ‘ 
Mfc 

= ⑵⑷(均’饥,cos{2'jrfk,mtl) + sin(27r/fc,^i,)) (3.4) 
m = l • •• 

‘ w h e r e Mk is the number of partials of the A;th tone and fk�m is the frequency of 

the mth partial in tHe kth tone. We refer this model as the traditional General 

Model (GM). * 
\ 

，： . 
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Then the estimated mixture yr[l] at the rth frame is the sum of each esti- , 

mated tone 宏 a s below ‘ 
I' 

K . . 
yr[l] = (3.5) 

V • 

where K is the number of tones in the mbcture. The observed mixture is the 
i 

sum of the estimated mixture and the noise term: 

yr[l] = yr[l]+Vr[l] (3.6) 
K 

= X ] 茫 ⑷ + 叫 ⑷ (3.7) 
fc=l 

where Vr[l] is the noise component. � 

To estimate the parameters in each frame, it is convenient to rewrite the 

model in (3.4) into the matrix form. Let Ha； be the frequency matrix of the 

A:th tone and it is an L-hy-2Mk matrix in the form of 

Z w[l] cos{27rfk,uti) if 1 < w < Mfc, 
Hklhu] = (3.8) 

w[l] sm(27rfk,u-Mkti) if Mk + 1 < u < 2Mk ‘ 
\ 

so the matrix Hjk contains two blocks 

Hfc = H广 (3.9) 

where 

cos (27r/fc,iio) . . . w[0] cos i27rfk,Mjo) 

‘ „ c o s _ Ml ] COS i27rfk,iti) . •. cos (2iTfkM,ti)‘ 
= (3.10) 

• • 
« • • 

_ 1t;[L — 1] cos (27r/fc,itL-l) • • . wlL 一 1] cos {2'Kfk,MjL-l) ‘ 

» 
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and 

— 

1(；[0] sin (27r/fc.ito) . • • sin (2nfk,MM 

， _ wll)m(27rfk,ai) ... wll]sm(27rfk,MM 
Ufc = : 

• I ！ 

ML - 1] sin (27rfk,itL-i) . •. yj[L - 1] sin (^nfk�MjL—i� 

(3.11) 
Then ‘ . 

= w[l] cos {2'jTh,mti) • 、， (3 .12) 

= w[l] sin {27rfk,n,ti). . (3.13) 

The amplitudes of the cosine and the sine terms of the kth tone at the rth 

frame can be expressed as a 2Mfc-(iimensional vector gfc, as below 
« 

Q̂ Jt.u.r if 1 < 1/ < Mfc, 
9k,rM = (3.14) 

‘ 0k,u-M„r ifMk-\-l<u<2Mk 
• V 

* 

- • which gives . ‘ 
• i , > V 

1 gA:,r = Pfc.l.r Q;fc,2,r • . • QJAr.Mjt.r Pk,l,T Pk,2,r . . . Pk,Mk,r] • (3.15) 
. I ' • 

The estimated tone 於,r can be written as 

• • 

Xjt.r = Hfcgfc,^. (3.16) 

‘ To illustrate the matrix form of m (3.16)；'substituting (3.12) and (3.13) 、飞 
、 》 < I • • > � . \ ‘ � 

- ‘ , 
» • 

* ‘ 

.• , ： . 
- ' ’ > ‘ , . -

* » 
« 

- • V 
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into (3.4) gives 

Mk 
XkA^] = ^ w[l] {ak,m,T cos(27rfk,mti) + /3fc.m,r sin(27r/fc’饥tj) 

‘ m=l 
Mk 

: = Y ^ m] + Pk,m,rHr[l^ Tu]) . . (3.17) 
771=1 

Figure^3.3 depicts the matrix form of XA:,r with (3.16) and (3.17). . 

For tlie mixture, the frequency matrices from each tone are concatenated 

into the matrix H: 

H = [ Hi H2 … H k ] (3.18) 

.where H is an L-by-2M matrix, M is the total number of partials and M = 

XlJ^i Mk. The amplitude vectors from of each tone can also be concatenated 

into a vector gr： 

gl,r 

gr = (3.19) 

、 _ S/C.r J 、 • 

where g” is a 2M-by-l vector. The estimated mixture at rth frame can be 

expressed as: 

Yr = Hg , ‘ (3.20) 

and the estimated mixture is related to the observed mixture as below: 
a 

Yr = Yr + Vr 

= H g r + V r (3.21) 

� 

where v^ is the noise term. It is modeled as the zero-mean Gaussian noise 

with the variance crĵ . 

4 



•V
 

1 •-i
 

W
 

B X)
 

Xk
.r

 =
 H

itgA
.丨

 

H
 

'
'

.
.

.
. 

• 
i 

"j
Tf

U
/t

j 
…

 
fll'

"\h
 

M
k]

-

fC
 

'3
 
-；

--
p"

；
 

• 
N.

 

= 
�

//
n

u
丨

，
..

. 
W

H
 

…
 

"i
T

M
".

�
 

"—
M

l 
.. 

••
 

•
丨

 
fC

 
'3
 
-；

--
p"

；
 

• 
N.

 
7/广

[/̂-
1,爪

]，
、
-.
.
 

厂
-1

,11
 •

• .
//
；
.'
"(
/>
-
 l.

m
] •

 

C h a p t e r  3  S i g n a l  m o d e l  r e p r e s e n t a t i o n s  



‘ Chapter 3 Signal model representations 30 

We can further concatenate the parameter vectors from all frames into 

matrices. The observed mixture signal can be expressed in the form 

Y = [yi y2 . . . yyj . (3.22) 

Similarly, the estimated mixture can be written as 

Y = H G (3.23) 

where 

• Y = [yi … y n ] (3.24) 

G = [gi … g / i ] (3.25) 

and R is the number of frames. The goal of our source separation is to esti-

mate both the frequency matrix H and the amplitude matrix G so that each 

individual tone can be reconstructed. Determining the number of partials M^ 

will be discussed in Section 3.4. 

GM of a tone can also be written in the matrix form: 

X , = (3.26) 

where 

Gk = [gfc,i • •. git,ill • (3.27) 

The frequency vector fk and tlC amplitude matrix Gjt can be grouped 

into a parameter set 6k = {ffc, Gfc}. For notational convenience, all ffc are. 

concatenated into the column vector f where 

f = [fi … . (3.28) 
4 

All parameters of kih tone can be grouped into © = . . . , 6K} = { f , G } . 

\ 
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3.3 Proposed Piano Model 

The traditional General Model (GM) gives high quality of resynthesis but 

the parameters of the overlapping partials cannot be accurately estimated. 

Here, we propose the Piano Model (PM) to resolve the overlapping partials 

by exploring the common properties of recurring tones. PM employs a time-

varying sum-of-sinusoid signal model for piano tones, and it describes a tone 

in an entire duration instead of a single analysis frame. For each partial, we 

aim to model the surface the envelope surface against intensity and time. The 

intensity of a tone can be measured by the peak amplitude of its time-domain 

signal. When the key pressing velocity increases, the peak amplitude also 

� increases up to the physical limit of the piano [53]. The envelope surfaces of 

the first four partials are plotted in Figure 3.4. The surface is constructed 

from the extracted partials of the C4 tones from the same piano played with 

12 hitting strengths. The partial amplitude and the peak amplitude of the 

time-domain signal are plotted in the scale that the maximum possible peak 

amplittide of all input wave files is one. 

• Tt is observed that each partial has its own rate of rising and decay but 

the same partial from various instances of the pitch exhibits a similar shape of 

rising and decay. When the peak amplitude of the signal increases, the whole 

partial is also scaled up smoothly. However, this scaling is not the same for all 

partials. The fact is that a loud note is not a linear amplification of a soft note. 

High frequency partials are boosted significantly when the key is hit heavily 
i 

due to nonlinear material property of the piano hammer [2，29]. 

In PM, the values of certain parameters do not change across instances 

of the same pitch. Parameters in the model are divided into two sets: the 

invariant PM parameters (such as frequencies of partials) and the varying PM 

parameters (such as the strength of striking a piano key). The invariant PM 

parameters can be learned from recurring occurrences of the same pitch. The 



Chapter 3 Signal model representations 32 
» 

« 

It ； ' 

(a) 1st partial (b) 2nd partial 
(U I' .. (D •’ • 

. "E O.K - I J - ： 0.02^ i / v /x； , , 
t ! t i ； � 
I 0 . 0 5 . 、 i ‘ ： 、 、 E 0 . 0 1 . V - / I I ； 

i 
Time (seconds) 0 丁 丨 ^ 日 （ s e c o n d s ) 0 ^ - P ^ d e 

(c) 3rd partial (d) 4th partial 
� 0) , - •• ‘ i ..�� (D . - - " T--.. 

E 0.04y • • ‘ i 1 � , 'g 0.02 y - i L • , 
t i t 、丨 I 乂 乂 ；’ 
E 0^2 - j S X f V . i E 0.01. - ； ； 

Time (s^cphds) 0 丨me (seconds) 0 二 二 e 
‘ c esigna ^ ^ • ^ — 

Figure 3.4: Envelope surface against peak amplitude or .he timc-doiriaiii sig-
� nal and rime for i,he first four partials. (a) The, first partial (fmidainonral 

frequency), (b) The second partial, (c.) The third partial, (d) The fourth 
partial. 

• , t 
ft 
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learning process will be fully discussed in Chapter 5. PM is expressed as below: 

Mfc 
X f c U n ) = a f c , m ( t n ) ‘ C O s ( 2 7 r / f c , ^ t „ + (j>k,m) ( 3 . 2 9 ) 

m = l 

where fk�m is the frequency, (j)k,m is the phase, and ajb.mCin) is the time-varying 

amplitude of the partial and it is modeled as a bi-exponential mixture with a 

nonlinear scaling factor: 

o-kA'^n) = a{ir,\Ck,iPk,m) ‘ (3.30) 

= K m � ‘ a,m (exp { - A f c , 爪 - exp {-7A:,mU) (3.31) 

where hk̂ m is the relative amplitude of the mth partial; dkjn controls the sig-

nificance of the intensity factor cjt; Xk̂ rn is the decay rate;、、爪 is the rising 

rate and ̂ 饥 > These envelope parameters are grouped into the param-

eter set = Ajt,m,7fc,m}- The intensity factor cjt is assigned to 

be the peak amplitude of the observed time-domain signal of the tone. The 

rising and decay of the partial magnitude is modeled by the bi-exponential 

function C*:,m (exp { - A ^ . m ^ n } e x p {—7fc，m�}). The term exp {-Xk.mtn}, com-

‘ monly used in the synthesis of musical sounds, models the slow decay. The term 

一 exp models the rapid rising. All ak,m, Pk’m�7)k’m’ are,positive. 

The term is the coefficient to normalize the peak of the bi-exponential 

function to one, and (k,m depends on Â .m and 7fc,m: 

一 (3.32) 
J 

where-the proof the normalization coefficient is shown in Appendix B. 

Substituting (3.30) into (3.29)，we write the estimated signal of a tone in ‘ 

* 
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the form 

Mk 
Mtn) = ^it.m) • cos(27r/fc,^i„ + (3.33) 

m = l 

The onset of each tone in the mixture may not be exactly the same so a 

‘ time-shift factor is introduced for each tone in the estimated mixture y(i„)： 

Mk 
?{tn) = - Tfc) (3.34) 

where r^ is the time shift in seconds. The estimated mixture is related to the 

observed mixture as below: ,’ 
/ 

y{tn) = y{tn) + 
Mk 

= - Tk) + e{tn) (3.35) 
k=l 

where e{tn) is the noise term. This noise is modeled as the zero-mean Gaussian 

noise with the variance o^. 

— … A l l parameters of PM for the A;th tone can be grouped iiiLo a paiameLer 

set 冲 k so 

喻 k = A . m , (h,m、C fc, Tfc} (3.36) 

which can be divided into two sets: the invariant PM parameters tp^ j and the 

varying PM parameters V̂ ^ v. The invariant PM parameters contain parame-

ters invariant to instances of the same pitch in the recording. The varying PM 

parameters consist of parameters which may vary across instances. The invari-

ant PM parameters 功;̂  j contain the envelope parameters the frequency 

fk,m and the phase 0a：’饥，and the invariant PM parameters t/j；̂,! sire defined by 

岭k’ll = {(Pk,m7 fk,m, (Km) (3.37)客 

« 
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Training Source 
. separation 

Envelope parameters 
Invariant PM cp̂ ^̂  = {�’饥，dk,m,�’m，7fe.m} To be Given 

parameters Frequencies fk,m estimated “ 
Phases (t>k,m 

^Varying PM Intensity Ck ~~[] G i v e n T o be 
parameters 礼 y Time shift Tk estimated 

Table 3.1: Invariant PM parameters and varying PM parameters. 

for m = 1，2，…，Mk. 

The varying PM parameters ip/̂ y include the intensity Ck and the time shift 

Tk and they are defined by 

•ky = � C k � T k � , (3.38) 

These two sets of the parameters give 

•k = bl\i�^k;sA (3.39) 

and all i/?̂ . can be grouped into 

^ = (3.40) 

The role of the invaxiaot PM parameters i/jf^j and the varying PM pa-

rameters is shown in Table 3.1. The key idea is that the invariant PM 

parameters are estimated from the training data. Given a mixture, only the 

varying PM parameters of the mixture are required to be estimated. It is ex-

pected that the overlapping partials can be resolved. This will be verified by 

the experiments presented in Chapter 7. The details of training and source 

separation will be explained in the next three chapters. 
» 

Note that the varying PM parameters ipf̂ y = {cjt, Tk} including the inten-

sity and the time shift are significant for characterization of musical nuance. 
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As mentioned in the opening of this section, when the key pressing velocity 

increases, the peak amplitude of the tone in the time domain also increases. 

Hence, the peak amplitude of the tone can be used as the intensity factor so 

that the intensity of a tone can be found. The inputs of our source separation 

system are the mixtures with the onsets detected by a music transcription 
« 

system. However, existing music transcription systems may not be able to 

estimate the onsets accurately, and the individual tones ra a mixture may not 

., start to sound exactly at the same time. The time shift can be used to obtain 

the fine-tuned onsets by adding the time shift to the detected onset. 

3.4 Estimation of the number of partials 

In both GM and PM, we have assumed that the number of partials Mk of 

each tone is known. In this section, we will show how Mk can be found. The 

values of Mk are different ‘from pitches. Lower pitch usually has more partials 

than the higher pitch. In some research such as [23, 24，27], Mk is dynamically 

estimated. However, this estimation is very computationally intensive. As 

we have already known that the mixtures are piano signals, we estimate the 

, average number of partials required for each pitch from different pianos. The 

piano tone database in [39] is used for estimating Mk. The database contains 

piano tones from 7 different pianos. Note that this database will only be used 

in estimating Mk and it will not be used in evaluating the performance of our 

source separation system described in Chapter 7. Once Mk is determined, it 

will be fixed f j all experiments in Chapter 7. 

For each instance of tones with the same pitch, we estimate the frequency 

values of partials up to fs /2 where fs is the sampling frequency. The frequency 

estimation is done by our proposed spectral peak-pick method tailored for 

. p i a n o tones. Then we choose the number of the partials that contains 99.5% 

of the power of all partials picked. 
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The steps for picking the spectral speaks are described below: 身 

1. Perform Discrete Fourier Transform (DFT) of a tone. 

2. Find the first partial (fundamental frequency) j\: 

(a) Set to the equal-tempered fimdamentaJ frequency of the pitch. 

For example, the pitch A4 is with = 440 Hz. 

(b) Set fi to the frequency corresponding to the peak of the magnitude 

spectrum in the frequency range [2—i/48y*jnid，2i/48yimid 

3. Set the inharmonicity coefficient B(o) = 0 which is defined in (3.41) and ‘ 

(3.42). 

等 

4. Find fm for m > 2 where fm is the frequency of the mth partial: 

(a) Find f二记 by 

which is the general formula to model the inharmonicity effect for 

» pianos (29, p. 363]. A typical value for the inharmonicity coefficient 

B is 0 . 0 0 0 4 in the middle range of piano keys. 

‘ (b) Set fm to the frequency corresponding to the peak of the mag-

nitude spectrum in the frequency range If 

21/48jmid〉JJ2, set the upper bound to / , / 2 . 

5. Update B 

• = • (3.42) 

以2 - ( f u / u f i ) 

Set 召(计 1) to the median of all for 1 < w < m. 
� 

6. Repeat the steps 4 - 5 until f : ^ > fs/2 so the frequencies of all partials 

can be estimated. 

. * . 
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70 p . . . . . . rn 

^ 50. \ 
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I 2�. V 
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Q • I • M_| • I • * • •„• • t i , . 

C1 C2 C3 C4 C5 C6 C7 C8 
Pitch 

Figure 3.5: The nuinbcr of partials M^ of each pitch. 

After picking all the partials, we choose the number of the partials that coriLains 
« 

99.5% of tho power of all partials picked on average. Tlic result is shown in 

Figure 3.5. Then the numbors of parameters in GM and PM can be calculated 

from Uie number of partials. For the estimated mixture Y in (3.23), Lhe 

number of parameters in GM is M (27? + 1) where M is the total number of 

partials and M == M*., and R is the number of frames. For the estimated 

mixture y in (3.35)，the number of parameters in PM is 6M + 1. For instance, 

if a mixture coiilaius the tones G4 and G4, tho total number of partials in the ——--

estimated mixture is 9 + 7 = 16 according to Figure 3.5. If the duration of 

the mixture is 0.5 second and the window length is 11.61 ins (L = 128) with 

50% overlapping window, the number of frames R is 87. Then the number of 

parameters in GM is 2800. For PM, the number of parameters is 97. Although, 

the number of parairietcrs for GM is much greater than thai for PM, paianieler 
w 

estimation in GM is more computationally efficient than that in PM because 

PM is highly nonlinear. The experiment of investigating the coiiipiilation time 

. for both GM and PM will be discussed in Section 7.3.4. 

m , 
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Chapter 4 

Bayesian framework for source 
separation 

In the previous chapter, two signal model representations are introduced but 

how do these two models link together to separate a mixture into its individual 

tones and to resolve overlapping' paxtiaJs? This chapter will explain how the 

Bayesian framework integrates these two models and incorporates the training 

data to resolve overlapping partials. The two' models have their merits and 

shortcomings as shown in Figure 4.1. The traditional General Model (GM) 

is more flexible and has better modeling quality, comparing to our proposed 

Piano Model (PM). If the mixture does not contain overlapping partials, GM 

gives higher separation quality. If the mixture contains overlapping partials, 

unless more information is provided, GM cannot resolve the overlapping par-

tials and it fails to separate the mbcture. On the other hand, PM is able to 

resolve the overlapping partials and outptit the estimated tones, provided that 
V . 

the values of the invariant PM parameters estimated from the training data 

given. Estimation of the invariant PM parameters will be discussed shortly. 

. A simple solution to the source separation problem is that if there is no 

overlapping partial, GM is used; otherwise, PM is used instead. However, GM 

has better modeling quality and it is highly desirable tHat GM can be used 

even if there are overlapping partials. In other words, the ultimate goal of our 

� 39 
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» 

(a) z > 

General Model Estimated tones 
< ( G M ) (higher quality) 

-
. 

Piano Model Estimated tones 
. (PM 厂 (lower quality) 

^ (b) 

Mixture with General Model p̂  " 

— ^ ^ j ^ ； ] ^ a, . 
Estimated invariant Piano Model , Estimated tones 

PM parameters ^ (PM) ^ (overlapping partials 
^ 、 ‘ are resolved) 

Figure 4.1: Comparison between the General Model and the Piano Model, (a) 
Mixture without overlapping partials. (b) Mixture with overlapping partials. 
The invariant PM parameters are estimated from training data. -

source separation process is to estimate the parameters in GM for any mixtures 

no matter there are overlapping partials or not. The goal can be achieved by 
r 

• our proposed source process illustrated in Figure 4.2 which will be explained 

in the next section. ‘ 
., 

4:1 Summary of our main idea … , -
The main idea is to use the training data to estimate the invariant PM pa-

rameters as shown in Figure 4.2. As the invariant PM parameters capture 

^ the common properties across instances of tones, they can be used to resolve 

. the overlapping partials in GM. The process is divided into two stages: the - > 
training stage and the source separation stage. Here are the major steps: 

‘ / 
1. In the training stage, the invariant PM parameters 屯l are estimated by 

using the training data ^ 

» 
2. The source separation stage contains two steps: * 
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Training Source separation 
I i I 1 . 
i I r — “ — i Outputs：] , 

I I I i GM 〜 

二 ̂ ^ i Piano i Invariant j Piano Varying General 1 Parameters 
ir^ming Model — ^ PM - 4 - + Model • PM » Model —!-» 

1 T j ™ i parameters | (PMi parameters (GM) j estfmlted 
I i 屯• i ‘‘ «Vv •‘ i • tones 
L„ 丨 L— „ — — � S c ； 

广 “ I n p u t : ^ 
V mixture y J 

Figure 4.2: Flow of our source separation process, 

(a) Given the estimated invariant PM parameters 少i and the mixture 

y, the varying PM parameters 屯y v in PM for y are estimated. � 
‘ : 

(b) Given 中！’ v and y, the parameters © y in GM for y are estimated. 

The estimated tones can be reconstructed from the estimate Sy. ‘ 

The estimation of all these parameters can be formulated under the Bay,esian 

framework. Before introducing the Bayesian framework, we will discuss how 

overlapping partials make parameter estimation in GM fail. 

4.2 Motivation: problems of parameter estima-

tion in the General Model 

Estimating the parameters in GM of a mixture means that both the frequency 

matrbt H and the amplitude matrix G in (3.23) are to be estimated in order 

to find the estimated mixture Y = HG. To illustrate the difficulties of the � 

estimation, we first consider a simplified case of a frame that the frequency 

matrix ̂ H is already known and only the amplitude vector g of the frame is to 
‘ 拳 

be estimated. This is written as 
4* 

« . 

, y = Hg + V . (4.1) 
» 
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If H is known, GM becomes a linear model. A widely-used estimation method 
V 

is the least squares which minimizes the sum-of-error squares 

<、 E = ||y —Hg||2 (4.2) 

一 ^ = ； ^ ( 2 / �一卯;g l ) 2 . ’ (4.3) 

Then the least-squares solution is 

g = ( H T H ) - i H T y (4.4) 

which is a unique solution when H is full column rank. 

For music signals, H is often rank deficient. This happens when some of 

the partials from different tones in the mixture are overlapping. Overlapping 

partials frequently occur as discussed in Chapter 1. When there are overlapping 

- partials, these overlapping partials have very close frequencies that cannot be 

effectively distinguished. If two sinusoidals have an identical frequency, the 

sum. of these two sinusoidals gives a sinusoidal with the same frequency and 

the two sinusoidals cannot be recovered from their sum. This problem can 

be further analyzed from the perspective of matrix analysis. Recalling H is a 

concatenation of the frequency matrix H^ of each individual tone in (3.18) so 

H = [ Hi H2 …H；^ ] . (4.5) 
t 

Following the definitions in (3.9), (3.10) and (3.11), each matrix H^ contains 

the cosine block matrix and the sine block matrix 

Hfc = [ H f ] (4.6) 

i m ^ 

where. � ’ 

V 

\ 
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‘ J 

- « _ 

M^] cos (27r/fc,ito) . . . MO] cos {27Tfk,MM 
„ c o s — 秘⑴ COS {27Tfk,lti) • • . COS (27r / fc ,Mfci l ) 
tlfc = (4.7) 

1U[L - 1] COS(27r/fc,iiL-l) . . . - 1] cos {27Tfk,MjL-l) 

and 
• 

^[0] sin (27r/fc,iio) •.. w[0] sin {2nfk,MM 

. ushi � 1] sin (27r/fc.iti) . •. sin {2TTfk,M,ti) . � � 
Hfc = . . - (4.8) 

ml - l]sin {27rfk,itL-i)…w[L ~ 1] sm{27Tfk,MJl-i) 

If a pair of partials overlaps, their frequency values are very close so their 

corresponding columns in the frequency matrix H are almost identical. Then 

H^H' are nearly singular. If H^H is nearly singular, the resulting solution 

may greatly depart from the desirable solution. In the case of singular H^H, 

there are infinite number of solutions. An example of rank deficient H is 

shown in Figure 4.3. Suppose there are two tones in the mixture. Hence, 

H contains the blocks of Hi and H2, and each of them contains its cosine 

and sine blocks. If there exists a pair of overlapping partials, i.e., a partial 

^ from the 1st tone has the same frequency of a partial from the 2nd tone, 

the columns corresponding to the overlapping partials in HJ"® and H � a r e 
‘ . 

identical. Similarly； the columns corresponding to the overlapping partials in 

, and Hg" are also identical. Hence, a pair of overlapping partials gives 

, , t w o pairs, of identical cdlumn^in H. As a result, H is rank deficient. 

Another case of singul^ B F H is that the total number of partials in a 
一 mixture is large. This may happens when the mixture contains several tones 

* f 

. > 

/ I ‘ ‘ 
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• 

Tone 1 Tone 2 A . , ‘ 

H = [ Hi i H2 j ‘ 
‘ Tone 1 Tone 2 

Tone 1 Tone 2 
‘ * -、一、一 、广 • r n i i • : i ： i . ) 

i I 
• ； I 

： I 

= i I 
1 t 1 
： t 

I 一 • 
I--' 、., . 

Identical Identical 
columns columns 

Figure '4.3: Rank deficient H. 

and/or the tones arc low in pitch so I hey have many partials. Note that H is 

an L-hy-2M matrix wiiere L is the window length and M is the total imnibcr of 

paitials. If L is less than 2A'/, the matrix H^H is also singular. Increasing llic 

window lengt h may solve the problem but this will decrease the t ime n^solnlioii - * 
and sHcrificc rhc sopararion qimliry. 

These two situations give an important, implication - if only the mixture 

1 is given, and there arc overlapping partials and /or L is less than 2 A / , the 

‘ niixtiue cannot, be Hoparatcd into its individual toiicb unless inure iTiforinatioii * 

is provided. 
• ； 

Tins pi.ohleiii arising from singular H ' H can he solved by using the training 

data as Uic prior iiifonnatioii under llie Bayesiaii frainewoik. Tlie following 

simple example of straight-line fitting adapted from |11, p. 154| will ilhisr.ratc 

how the Baycsi«Ji framework works. 

_ _ « 
** • ‘ 

f 

« 

* • 

• V 
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4.2.1 Example to illustrate rank deficient H 

Suppose we have some data generated from a linear model of the form 

= a + (4.9) 

where t is the input variable, y is the output variable, a and (3 are the coeffi-

cients of the linear model and they are grouped into g = [o； . There are N 

data points observed and they are denoted by the vector y = [2/i 2/2 …VN] • 

The input variable of each y^ is tn. The observed data is contaminated by the 

noise w = [vi V2 • • • wn] . The observed data can be written in the matrix 

form 

y = Hg + V (4.10) 

where 
1 t i 

1 t2 

H = . (4.11) 
‘ ‘ / 
1 tN 

‘ T h e goal is to estimate the coefficient vector g given the noisy data y. 

In addition to the least squares estimation, another widely-used estimation 

method is maximum likelihood which estimates the value of g by maximizing 

the likelihood function p(y|g). Given that the noise v is the zero-mean Gaus-

sian with the variance crj and Vn is independent and identically distributed, 

the likelihood function is in the form 
N 

p(y|g) = J{M[yn\yn.al) (4.12) 
n = l 

- 二 — e x p { - 由 " y - H g | | 2 } (4.13) 
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where is the estimate of yn in the form 

= a + (4.14) 

and jV(-) denotes the Gaussian distribution. For the case of a single variable 

y、the Gaussian distribution is defined by 

樣 一 (4.15) 

where fx is the mean and cĵ  is the variance. For the case of an TV-dimensional 

vector y, which will appear in later sections, the Gaussian distribution is de-

fined by 

“ ( • ’ 勾 = ( 2 ^ ) ^ / 2 e x p { - i ( x - / x r E ( x - / x ) | (4.16) 

where /x is the AT-dimensional mean vector and E is the N x N covaxiance 

matrix. 

Prom [11, p. 142], maximization of (4.12) gives the majdmum likelihood 
I 

solution in the form 

g = ( H T H ) 一 IjHTy (4.17) 

which is equivalent to the least-squares solution. Note that maximum like-

lihood and least squares give the same solution when the noise is zero-mean 

Gaussian [11]. 

Synthetic data is generated to visualize the likelihood function and study 

how H affects the likelihood function. Four data sets are generated from the 

function y{t, gtrue) with the same gtrue = [—0.2 O.Sp but different sets of t. The 

zero-mean Gaussian noise Vn with the standard deviation ay of 0.1 is added to 

gtrue) to obtain the observed value 2/n. Each data set contains three data 

points and the results are shown in Figure 4.4. In Figure 4.4(a), the input 

ft 
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values tji axe -0.5, 0 and 0.5 so 

. 1 - 0 .5 
H = 1 0 (4.18) 

1 0.5 

The input values are well separated. The likelihood is sharply peaked and the 

location of the peak is close to the true values gtme. 

In Figure 4.4(b), the input values tn are 0.1，0.3 and 0.5 so 

1 0.1 , 

H = 1 0.3 . (4.19) 

1 0.5 

The input values are closer. Although the likelihood is elliptical and the like- . 

lihood is less sharply peaked, the location of the peak is still close to the true 

‘ values. 

In Figure 4.4(c), the input values tn are 0.4, 0.45 and 0.50 so 

1 0.4 

, H 二 1 0.45 . (4.20) 

1 0.5 

The-input values are very close to each other so H^H is nearly singular. The 

likelihood is highly elliptical and the likelihood of the true values has very 

similar values at many locations. 

In Figure 4.4(d), all inputs are set to 0.5 so 

1 0.5 
•9 

‘ H = 1 0.5 (4.21) 

1 0.5 
- J 
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and H^H is singular and there are infinite number of solutions. In such case, 

if only the data is given, the true line cannot be found unless some prior 

knowledge is given. The next section will show how the Bayesian framework 

makes use of the prior knowledge to solve the problem. 

4.3 Bayesian analysis for source separation 

The example of straight-line fitting illustrates that maximum likelihood or least 

squares cannot handle the case that H is not full column rank. The Bayesian 

framework does not require H to be full column rank by incorporating the prior 

knowledge of the parameters. Back to the source separation problem, given a 

mixture y, our aim is that to estimate both the frequency matrix H and the 

amplitude matrbc G. The frequency matrix H is generated by the frequencies f 

of all partials from (3.8). Let © be the parameter set containing all parameters 

such that 0 = { f ’ G } . The prior knowledge of © can be quantified by the prior 

probability distribution p(&). The prior p{Q) represents our prior knowledge 

of © before observing the mixture y. The likelihood function p(y|©) describes 

how likely the observed mbcture y is generated by the parameter set ©. The 

prior and the likelihood can be linked up by Bayes' theorem in the form of 

剩 = (4.22) 

where p(©|y) is the posterior probability distribution that expresses the prob-

ability distribution of © after observing the mixture y. The denominator p{y) , 

in (4.22) is a normalization constant. It makes the integral of p(©|y) with 

respect to © equal to one so p(©|y) a valid probability distribution. As p(y) 

is a normalization constant, the Bayes’ theorem can be rewritten as 

p(0|y) oc p(y|0) p ( 0 ) (4.23) 
posterior likelihood prior 
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» . 

Figure 4.4: The likelihood functions of the four data sets. The plots in the left 
, column show the data spacc. The red line is the line generated by gtrutv Tlie 

/ plots in 丄he right column show the corresponding likelihood in the parameter 
space. The white crosses show the true parameter values gtrue. . 

_ 
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^ (a) Prior (b) L ike l ihood (c) Poster ior 

1 i ‘ -

i (\ I I I I I i I 
. J l \ I Ir I丨 il I I _ _ J l _ 

u laie U true U true 

’ Figuie 4.5: (a) The likelihood function, (b) The prior distribution, (c) The 
I)Oslei ior distribution. This schematic diagram shows that an appropriate prior 
gives the desirable MAP solution. The vertical line shows the trno value of B. • 

which iiK âns the posterior is directly proporUoiial to the product of tlie like-

lihood ami the prior. The goal of Bayesian analysis in Uic source separaXioii 

probleiii is Lo find 0 that maximizes the posterior p(B|y) so 

� * 0 = a.rgmjJcp(B|y) (4.24) 

where 0 is called the Maximum. A Posteiior (IVTAP) solution. 

Tlie key issue of Bayesian soiuce separation is how to set up the prioi. p(©). 

If overlapping partials are prosoiit, the matrix H] H is nearly siiigiilai', iiiany 

choices of © can give similar values of the likelihood. Hence, there aro many 

peaks in the likelihood funcUoii as shown in the schematic diagram (Figure 

4.5(b)). In order to find the desirable MAP solution, ir. is desirable thai the 

prior distribution has a high density around the correct vahio of (-). In Figure 

4.5(a), the prior is appropriate so thai the MAP solution, i.e. the peak of 

the posterior, can be located correctly as depicted in Figure 4.5(c). Before 
« % 

(iisciissing how to find the appropriate prior, we illustrate how Uie prior affects 

the posterior in the straight-line fitting example. 
» 

f 
• « 

66 
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4.3.1 Example to illustrate how the Bayesian framework 

works 

In Section 4.2.1, we show that maximum likelihood fails to handle the case that 

H is not full column rank. In this section, we continue to discuss the example 

of straight-line fitting and show how Bayesian analysis handles such case. In 

the example of straight-line fitting, the goal is to estimate the coefficient vector 

g = [oi P]^ given the observed data y and its input vector t. Let the prior 

p(g) be a Gaussian with the mean Hg and the covariance so 

P(g) = (4.25) 

= e x p | - i ( g - mJT Sg-i (g - Mg) } . (4.26) 

The likelihood p(y|g) is the same as (4.12) and it is restated here for conve-

nience 

� . 咖 g) = ‘ e x p { - 4 l | y - ( 4 . 2 7 ) 

The resulting posterior p(g|y) is also a Gaussian as shown in [11，p. 153]. It 
< 

is in the form 
. • p(g|y) =:7V(g|m„S,) (4.28) 

where 

m , = S, ( S j V , + ^v-'H^y) (4.29) 

S, = ( S ; I + ( 2 h T h ) - I . (4.30) 

The mode of a Gaussian distribution coincides with its mean. Therefore, the 

MAP solution g is equal to the posterior mean m^. Substituting (4.30) into 

(4.29) gives 

g = (S广 + a^-^H^H) -1 + � - 2 H T y ) . (4.31) 
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Note that finding a unique g does not require that H is full column rank. The 

relationship between MAP and maximum likelihood can be studied through 

the prior. Here we consider is a diagonal matrix in the form 

0 " 

� _ 0 ^^ _ 

where a三 and <t| are the variances of the prior for a and P respectively. If the 

prior is infinitely broad, both crj and cr| tend to infinity then = 0 and 

g = (RFH) 1 HFy. Thus the MAP solution is the same as the maximum 

likelihood solution given in (4.17). An infinite broad prior indicates that prior 

knowledge of g is unavailable. In such case, H is required to be full column 

rank for the unique estimate of g. 

We illustrate the importance of the prior when H is not full column. This 

is the case in Figure 4.4(d) when all inputs are set to 0.5. This case is further 

investigated in Figure 4.6. Suppose we have the prior knowledge of g that 

fjLg = [0 0.7]T and a^ = = 0.2. The prior is plotted in Figure 4.6(b). This 

prior is appropriate in the sense that its center is not far away from the true 

value of g (gtrue = [ -0 .3 0.5]t). The MAP solution shown in Figure 4.6(d) is 

near to the true values. In Figure 4.6(a), the line generated by the prior mean 

does not pass through the data points. After observing the data, the likelihood 

can be calculated to quantify the influence of the data. Both the prior and the 

likelihood affeot the posterior as shown in (4.23). The line generated by the 

posterior mean, i.e. the MAP solution, passes close to the data points and its 

direction is also close to the line generated by the prior mean as well as the 

true line. 

The importance of the prior can be further illustrated by an inappropriate ‘ 

prior. Suppose the prior mean is changed to � = [ 0 — 0.5]^ with the same 

standard derivation c r � = 二 0.2. This prior is plotted in Figure 4.7(b). The 
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likelihood in Figure 4.7(c) is the identical to that in 4.6(c). The posterior in 

Figure 4.7(d) does not give a good MAP solution. In Figure 4.7(a), the line 

generated by the MAP solution passes close to the data points but its direction 

is close to the line of the prior mean. Both the lines of the posterior mean and 

the prior mean are wrongly directed. The result is not surprising because the 

MAP solution comes from the likelihood and the prior. The likelihood is only 

able to provide a soft constraint as in Figures 4.7(c) and 4.6(c). If H is not 

full column and the prior is wrongly specified, no good MAP solution can be 

found. Therefore, in the case of overlapping partials, an appropriate prior is 

crucial for resolving the overlapping partials. How to find an appropriate prior 

will be discussed in the next section. 
/ 

� P r o b l e m formulation for source separation 

In the previous section, we show that an appropriate prior is crucial for re-

solving the overlapping partials. The prior can be found by using the training 

data. In piano music, a particular pitch rarely appears only once. The tones 

of the same pitch share some common characteristics which are captured by 

- our proposed Piano Model (PM) to resolve the overlapping partials. In our 

research, we focus on the case that given a mixture y, all the pitches in the 

mixture reappear as isolated tones in the target recording. These isolated tones 

are extracted from the target recording as discussed in Section 1.3 to form the 

training data X. If no training data is available, source separation may be 

performed with other methods discussed in Chapter 8. ‘ 

To include the training data in the Bayesian framework, ‘ the posterior 

、 p(0|y) in (4.24) is rewritten as p(©y|y, AT) where Qy is the parameter set 

of the traditional General Model (GM) for the mixture y. Then the goal of 
« 

‘ . source separation is to find the MAP solution, i.e. to find 0y that maximizes 
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Figure 4.6: Illustration of Bayesian analysis for the data set in Figure 4.4(d) 
with an appropriate prior, (a) Data space. The blue circles are the observed 
data. The red solid line is the true line. The blue dotted line is generated 
from the prior mean by setting g = AV The dashed black line is generated 
from the posterior iiieaii by setting g (b) The prior distribution, (c) 
The likelihood function, (d) The posterior distribution. All the white crosses 
in (b), (c) and (d) are the location of gtrue. 
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Figure 4.7: Illustration of Bayesian analysis for Mie data sel in Figure 4.4(d) 
with ail inappropriate prior, (a) Data sy)iu:e. The blue circlcs ixiv. ihv ()hs(�i vr(l 
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fi oiii I he i)rioi moan by soiling g = //,". The (laslunl black Hik; iy guucniLed 
fmiii Uio [)o.s(,eri()r nioan l)y s(Ut,iiig g —iiiy. (b) The prior distrihiitiou. . 
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the posterior p(©y|y, X) so 

0y 二 axg maxp(0y|y, X) (4.33) 
©V 

and by Bayes' theorem, the posterior can be written in the form 

p(©�y’；tr) oc p{y\&y,X)p{&y\X) (4.34) 

� =p{y\Qy)p{ey\X) . (4.35) 

The last step makes use of the likelihood depending on the parameter set Sy 

and independent of X . The functional form of p ( y | 0 y ) will be discussed in 

Chapter 5. The remaining section will focus on how to find the prior p(&y\X). 

The prior p(Sy\X) expresses the probability distribution of the parameter 

set ©y of the mixture y given the training data X and before the mixture y 
0 

is observed. The key problem is that how to make use of the training data 

X and t,o find a functional form for the prior p{&y\X). This comes our PM. 

In PM for a mixture y, the parameter set 中y is divided into two sets: the , 

invariant PM parameter set 中yj and the varying PM parameter set 中y,v. For 

the training data X , the parameter set 中 ; i s divided into the invariant PM 

parameter set 中 ; a n d the varying PM parameter set 中;t’v. Note that both 

the mixture and the training share the same set of the invariant PM parameters 

The subscripts y and X for the invariant PM parameters can be omitted for 

^ clarity so 中,=少衫,！ = ^at.b. 

Before deriving the prior p(©y|Af), the sum and product rules of probability 

^ will be discussed first. In addition to Bayes' theorem, the sum and product 

‘rules of probability will be extensively used in the Bayesian framework. It is 

worth to restate Bayes' theorem and define these basic rules of probability. If 

A and B and two real continuous random variables, the Bayes' theorem can 

‘ 
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1 

be stated in the form 

入 眷 管 . （ ,36) 

C V -
The sum rule is 

p(A) = J p{A,B)dB. (4.37) 

I 
, The product rule is 

v{A,B)^V{B\A)V{A). (4.38) 

The posterior p(©y|y, AT) of the GM parameters can be linked up with the 

PM parameters by using the sura rule: 

p(e„|y, X � = j j piSy,中y’v，^fl|y, (4.39) 

Integrating out 中y’v and 中n from p{Sy^ ^y.v, is called marginaliza-

tion in Bayesian analysis [11]. The noise variance cr^ of the mixture is omitted 

in the derivation for clarity. The estimation of the noise variance will be dis-

- cussed in Chapter 6. Then by the product rule, (4.39) can be put into 

p(€gy’Ar) = JJ p(egy’A^^&v，^H)P(^y,v，^n|y’AOt/^y,v^! 

=JJ p(Sy\y.中y.V，^lIV, (4.40) 

where p(©y|y,中y,v，中0 i汉 the posterior of the GM parameters ©y given the 

mixture y, and the PM parameters 屯y,v and 中n; while is 

the posterior of the PM parameters 中y,v and 中g given the mixture y and the 

training data A'. Here we have omitted X in p(©y|y,中y,v，中d) because the 

dependence of X has been expressed via 中d. 
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Changing the posterior from p(©y|y, Af) to p(©y|y,少y’v,少n) is crucial be-

• cause now the posterior p(©y|y,少y,v，屯n) depends on the invariant PM pa-

rameters 屯n which is conditioned on the training data X in the form of 

p(少中 i|y，Y) . Hence, the posterior p(©yly，屯y,v’ 中n) is able to use the 

training data to resolve the overlapping partials. 

Finding the MAP solution involves evaluating the integration over all pos-

sible values of 屯y,v and 中b in (4.40). PM is a highly dimensional and nonlinear 

model that makes the integration analytically infeasible. Different approxima-

tion methods can be used to find the MAP solution including the deterministic 

methods (e.g. evidence approximation |47, 48] and variational approxima-

tion [67]) and the probabilistic methods (e.g. Markov chain Monte Carlo [62 

and particle filtering |26]). For computational efficiency, here we will use the 
. ‘ • 

evidence approximation. It is also called type-II maximum likelihood |8] or 

empirical Bayes [16]. 
The evidence approximation has two main steps. The first step is to eval-

% 

uate the posterior p(©y|y,中y,v，中i) at the most probable values of 中y,v and 

中n to avoid from performing the integration^ . The second step is to find the 

most probable values of 中y’v and 屯n. The main idea of these two steps will 

be discussed below. 

Following the derivation of the evidence approximation in [10，p. 408], let 

us suppose that the posterior p(中y,v，屯njy’ X ) is sharply peaked around their 

most probable values 中仏v and 中n- Then (4.40) can be written 
、 

= p ( 0 y | y , $ y , v , $ i ) . (4.41) 

iln the evidence approximation, it is usually to be said that the posterior is evaluated at 
the most probable values of the hyperparameters. The concept of hyperparameters will be 
introduced in Chapter 6. 
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Hence, the MAP solution of ©y becomes 

= arg ma:)cp(0Jy, (4.42) 

The most probable value 中 y’v can be "estimated by maximizing the posterior 

p ( � v i y ’ A O 
= argmaxp(^%v|y，AO. (4.43) 

Then the sum rule and the evidence approximation can be applied in the same 

fashion 

~ K屯y，v|y,$B) j 

= ( 4 . 4 4 ) . 

The most probable value ^̂ h can be estimated by maximizing the posterior 
洲 y , … 

= argmaxp(^ii|y, AT). (4.45) 
中I 

This can be approximated by finding the posterior only given the training data 

so 

(4.46) 

According to these results, the whole source separation process is summa-

rized in Figure 4.8. The whole process is divided into the following steps: 

1. Given the training data, find the most probable value of the invariant 

PM parameters 屯n in (4.46). 
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Figure 4.8: Bayesian framework for the source separation. 

2. Given the most probable value 中 n and the mixture y, find the most 

probable value of the varying PM parameters "̂ y y of the mixture y in 

(4.44). 

3. Given the most probable values 少 a n d 屯n, find the MAP solution ©y 

, in (4.41). . 

， The first step is the training stage which will be discussed in Chapter 5. The 

second and third steps perform the source separation with PM and GM re-

spectively. These two steps will be explained in Chapter 6. 

I 
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Chapter 5 

Training: parameter estimation 

This chapter will show how 4o use the training data to train our proposed 

Piano Model (PM). The goal of the training stage is to estimate the invariant 

PM parameters given the training data. The major difficulty of estimating the 

invariant PM parameters is that PM in (3.33) is nonlinear. A good initial guess, 

which.is close to the optimal solution, is crucial for accurately estimating the 

parameters. The procedures for finding a good initial guess will be discussed 

in Sections 5.2 to 5.4. The main idea is to extract the partials of each isolated 

tone in the training data, so that the initial guess for the PM parameters for 

each partial can be found independently. Before discussing how to find the 

initial guess, the problem of estimating the invariant PM parameters will be 

formulated first. 

5.1 Problem formulation for training 

The goal of the training stage is to estimate the invariant PM parameters 

屯i，which contain a set of common parameters defined in Section 3.3 for the 

training data X and the mixture y. The training data X is used to estimate 屯n 

so that source separation of y can be performed. The stage of source separation 

will be discussed in Chapter 6. Before formulating the training problem, we 

will introduce the notation first. 

61 
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A mixture signal y consists of K individual tones. The index k denotes the 

index of /cth tone in the mixture and k = 1 ,2 , . . . , / f . Let pk be the pitch of the 

fcth tone. The training data contains the isolated tones of each pk. Hence, the 

training data can be divided into K sets, i.e., X = . . . , P^k], and each 

Xk consists of the isolated tones of pitch pk. Moreover, each Xk may contain 

more than one instance of the pitch pk. We introduce the index i to denote 

the quantities associated with the zth instance. The time-domain signal of the 

ith instance of the pitch pk is written as xj. so ^k — . . . where 

h is the number of instances of pitch pk in the training data. For example, 

a mixture y contains two simultaneous tones. The first tone is C4 and the 

second is G5 so pi = C4 and p2 = G5. In the training data AT, there are 

three isolated tones for C4 and two for G4 so /i = 3 and I2 — 2. The training 

data X can be written as AT = {A'l,^'2}. The data set contains the three 

isolated tones of C4 and = {xj，x?，xf}. The data set X2 contains the two 

isolated tones of G4 and X2 = {x》，x訂. 

In the previous chapter, it states that the goal of the training stage is to find 

the most probable invariant PM parameters 中夏 that maximizes the posterior 

of the invariant PM parameters By Bayes' theorem, the posterior 

can be rewritten as 

(5.1) 

The prior of the invariant PM parameters ？(屯i) reflects our prior knowledge 

of 屯B. The values of 屯i can greatly vary from different pitches and pianos. If 

we have little idea on suitable values for a parameter, it is safe to assign a prior 

which is very insensitive to the values of that parameter [11]. Therefore, we 

choose a very insensitive prior for 中h. Then maximizing the posterior 

is effectively equivalent to maximize the likelihood 中u) so the most prob-

able parameters 屯b are equivalent to the maximum likelihood solution. Hence, 

the goal of the training stage becomes to find 中i that maximize the likelihood 

- A . . . 
v 
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so ‘ 

$n = argmaxp(A'I^D). (5.2) 

The invariant PM parameters 少b are also divided into K sets as the training 

data AT so 屯夏=•[功i，！, V 2̂,fl，... ， E a c h g corresponds to the invariant 

PM parameters of the pitch pk- The maximum likelihood solution of 中n is 

defined by 中里={"0i’n，"02,11，...，功Note that each pair of Xk is indepen-

dently from each other and ？ o n l y depends on 冲 k j so the likelihood 中n) 

can be factorized into the product of p(叫么 ’ b ) 

K 

‘ 中 0 = (尼 (5.3) 

where is the likelihood for Xk given i/jĵ î- This implies that max-

imizing can be done by maximizing each independently. 

Then the maximum likelihood solution of ipf ĵ is 
I ^ , 

= (5.4) 

This means that the training process is performed pitch-by-pitch and each 

is processed independently. In this chapter, the index k is omitted for brevity. 

Hence, Xk 

is rewritten os X = {x , x，...，x j and i/̂ ĵ  i is rewritten as ipi. 

Each tone x* is represented by its PM x*. Adding the instance index i to 

(3.31) and (3.33), we rewrite PM in (3.31) and (3.33) into 
M 

》 ( ‘ ) = ^ ^ ^rn) . COS{27Tfmtn + 4>m) ( 5 . 5 ) 
•m—l 

and 

a { tn ] c\ ip j = 6 “ c ” d " ^ C m ( e x p { - � ‘ } - e x p { - 7 ^ } ) (5.6) 
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where 

Cm = —— — — . (5.7) 
乂 7 m 乂 \jmJ 

• 一 

, The definition of each parameter is restated for convenience. The function a(-) 

represents the envelope of the partials. The variable tn is the time in second, 

n is the time index and n = 0， l，...， iV< - 1 where AT' is the length of x\ 

The variable d is the intensity factor which is equal to the peak amplitude of 

the time-domain signal x̂  so d is known. The variables (p爪 are the envelope 

parameters of the mth partial. They include the relative amplitude 6爪， t h e 

decay rate \k,m, the rising rate and the control of the intensity factor dk�m' 

Thus, the variables ip^ can be written as ip^ = {bm.dm, Xmylm]• The term 

Cfc.m is the normalization coefficient governed by A^ and 7爪.The variables /爪 

and (j)m are the frequency and the phase of the mth partial respectively. The 

index m is from 1 to M where M is the number of partials given in Section 

3.4. 

Following (3.34), the observed tone and the estimated tone are related 

by 

Atn) = + (5.8) 

where is the noise term which is modeled as the zero-mean Gaussian 

noise with the variance a � . Note that the time shift factor in (3.34) is 

omitted by setting r* = 0. It is because each x* is an isolated tone so its onset 

can be detected by using onset detection algorithms such as the algorithm in 

75] or manually annotated via a graphical interface (such as [15]). Then x̂  

can be adjusted to start from the time zero. 

In smnmaxy, the invariant PM parameters t/?! = 爪，/m, are esti-

mated in the training stage. The varying PM parameters 功• = are 

given. The likelihood is rewritten as cr )̂ to include the noise 



Chapter 5. Training: parameter estimation 65 ‘ 

variances a^ where (t\ = {ofi , of。，...，of,}. The likelihood is 

expressed in the form 

I • 

i=l 

‘ = ( 5 . 0 ) 

The goal of the training stage is to find the optimal solution 如，For efficient 

computation, the maximum likelihood solution of iĵ i will be approximated by 

the weighted least-squares solution. The noise variance a^ is replaced by a 

fixed value which will be estimated before finding 知 . T h e details will be 

explained in Section 5.5. As mentioned in the beginning of this chapter, PM 

is nonlinear. A good initial guess, which is close to the optimal solution, is 

crucial for accurately estimating the parameters. The initial guess is obtained 

by the following procedures: 

1. Estimate the frequencies of the partials for each x\ (Section 5.2) 

• 

2. Given the estimated frequencies, extract the partials from each x̂  by 

using GM. (Section 5.3) 

3. Given the extracted partials, find the initial guess of 如 for PM. (Section 

. 5.4) . . 

4. Given the initial guess of ip ,̂ find the optimal solution for PM. (Sec-

tion 5.5) ‘ 

The procedures are summarized in Figure 5.1. The parameters will be defined 

and explained in the later sections. 
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• 

「 Input: 
training data 

v _ _ i _ J -
I 

Frequency estimation \ 
by peak-picking J 

J 
{fm GM} 
‘ 

Extraction of partials 

^ I c 

\ r 

.Find the initial guess for 
the piano model 

I 

i • 
Parameter estimation of 

the piano model 

• . 丁 
Outputs: 

estimated instance-
Invariant parameters 

V ii J 

‘ Figure 5.1: The system flow of the training stage. 
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5.2 Frequency estimation by peak-picking 

The method of extracting partials in each training tone, which will be dis-

cussed in the next section, starts with an initial guess of the partial frequencies. 

This initial guess caflT be found by using the frequency estimation method in 

Section 3.4. In Section 3.4, the partial frequencies are estimated by picking 

the peaks in the frequency spectrum and locating the frequencies of the peaks. 

Given an isolated tone x* in the training data A', we first find the frequency 

spectrum by discrete Fourier transform (DFT), the peaks are chosen by the 

iterative method described in Section 3.4. The locations of the peaks axe a set 

of frequencies {/二,pp} where m = 1 , 2 , . . . ,M and M is the number of partials 

which has been determined in Section 3.4. 

The initial guess of a partial frequency for extracting a partial is the average 

of the frequency from peak-picking of all instances. This gives the initial guess 

in the form 

/m,GM — y/m,PP (5.10) 

which will be used as the input for the extraction of partials described in the 

next section. 

5.3 Extraction of partials with the General Model 

The traditional General Model (GM) in Section 3.2 can be used to extract 

the partials of the isolated tones in the training data. Based on the extracted 

partials, we can find the initial guess of each partial for the Piano Model (PM) 

independently. This section will explain how to extract the partials from the 

training data with GM. Finding the initial guess for PM will be discussed in 

the next section. 

In the training data there are multiple instances of isolated tones with 
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一 

. the same pitch. As frequencies of the partials are the invariant PM parameters 

in PM, frequencies are also modeled as invariant PM parameters in GM. This 

means that the instances in X have the same values of frequencies so they -

share the same frequency matrix H in (3.26). Based on the notation in (3.26)， 

we introduce the instance index i and rewrite (3.26) into 

X ' = (5.11) 

I 

where XMs an L x matrix, L is the window length, and B} is the number of 

frames for the zth instance. The matrix H is the frequency matrix defined in 

(3.9). The matrix G^ is the amplitude matrix of the zth instance and the size 

is 2M X R} where M is the number of partials. Following (3.4), an element in 

is in the form 
M 

= E M ' ] cos{27rfmti) + s m ( 2 i T U i ) ) . ‘ (5.12) 
m=l 

The matrix X* can also be expressed as the concatenation of the column vectors 

so that • 

文 [ X i 54 … ( 5 . 1 3 ) 

where xj. is rth column of ‘ 

JU 

K 
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The amplitude matrix G^ is written as 

Qfi.i … a ; , … • • • • 

^m.l … … a ； ^ ’ / ! , 

… � r … 々 / ^ 丨 (5.M) 

, PU . . . 织 , T . … / ^ u 

> -

_ ft\l、\ . . . Pll，r • • • 

and G^ can be viewed as the concatenation of the column vectors gj. so that 

G^ = [gj Si … g y (5.15) 

where gj. is rth column of G\ 

The estimated X^ is related to observed X ' in the form 

- � Xi = X ‘ + V (5.1G) • 
< 

where each element in V^ is the zero-mean Gaussian noise with the variance 

ayi. Note that in (3.21), the noise variance can be different from frames. In 

applying GM in extracting the partials in this section, the noise variance a'yi 

is the same for all frames for simplicity, but each instance has its own noise • 

variance. , 

All instances in (5.11) can be written as ‘ 

X = H a ( 5 . 1 7 ) . 

• . 
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where 

X = -[x^ . . . 父 ( 5 . 1 8 ) 

= [ x i … X j X2 . . . x ^ l . . . x( . . . X 么/] (5.19) 

and 

G = [Gi G2 … G 厂 

r̂ il ；‘ •；<2 1 * - = g l g2 … g R i gl- g2 • • … g i g2 … S R I • 

. The size of the matrix X is L x 7? and that of the matrix G is 2M x R where 

• R = 兄.The matrix X is governed by = { f , G } where f is the 

frequency vector and f = [/i /2 . . . /mF. The frequency matrix H depends 

on f. The noise variances are grouped into (Ty == cr̂ z .. • cr̂ ；]̂ . 

The goal of the extraction of partials is to estimate f, G and cry. Weighted 

least-squares method is used to estimate these parameters. The weights are 
r ‘ 

the inverse of the noise variances a'yi. The objective function to be minimized 

is written as • 
^ 1 2 

EGM(t\G,a'y) V — X ' - X ^ (5.20) 

= ( 5 . 2 1 ) 

where || • ||尸 denotes the Probenius norm. For an m x n matrix A, the Probe-

nius norm of A is defined as 
‘ s 

m n 
I|A|If=\ E I ] ( 邓 ’ ( 5 . 2 2 ) 

\ t=l J = 1 • 
• 泰 

- ‘ 
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Then (5.20) can also be written 

/ /.-I . 2 
^GM(f, G, crl) ( X 卞， - 又 ' [ � ’ 7�]) . (5.23) 

• (7 f / \ / 
1=1 r = l y 

The summation operation in (5.20) can be expressed in matrix form. Let 

Tiy be the covaxiance matrix so that ‘ 

i 

^ v = 出 ag(c7blL/?i ’�?^aL/i2,...，cr�l /� / ) (5.24) -

where l^iii denotes the Li?^-climensional column vecix)r filled with I's. Then 

(5.20) can be presented as 

^GM(f, G.CTI) = (Xvec - Xvcc(f))||'. ~ (5.25) 

In [25), an iterative least-squares scheme is developed to alternatively up-

date the frequencies and amplitudes of GM for one single frame. Based on this 

scheme, we propose a scheme to handle the frames of all instances together 

by using iterative-reweighted least-squares[17, 11|. Here are the procedures 

summarized in Figure 5.2: 

‘ 1. Given f, update G. ‘ 
一 a 

• - 2. Given f and G, update cry. 

3. Given G and cry, update f. , 

4. Repeats steps 1 to 3 until convergence. 
• -r 

z The iterative- update starts with the input frequencies'''̂ QM found in (5.10) 

which are estimated by the-peak-picking method described in Section 5.2. We 

, find that 100 iterations are good for convergence. In the followings, each step 

will be discussed in details. 

4 
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- ‘ ( 

"i 

Input: 

、{/I.gm}) 
. . ‘ I 

• Update G 
— ^ t 

G 
. I 

Update (T\, • 
— t 

Update f 

. . f 

� No ^^Exceed 
^"^Jferations?^^ 

Yes 
Jf — 

Output: 

义{/m,GM» ̂ .r.GM'杀In.r.GM，̂ V*} j 
Figure 5.2: The procedures for extracting partials with GM. 
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5.3.1 Step 1: update the amplitude matrix G 

In Step 1, the frequency matrix H is calculated from f by (3.8), Given H 

and the observed tones X，GM becomes a linear model. Then the solution to 

• (5.20) for updating G is 

G — (HTH)HTX. (5.26) 

Note that the noise variances a y are not involved in updating G because given 

H, each X^ has its independent 

5.3.2 Step 2: update the noise variances cry 

Given the updated G in St^p 1, the new estimate X can be calculated 

X — HG. (5.27) 

Then each noise variance is estimated as follows 

. — —父‘2 . (5.28) 
L l \ F 

5.3.3 Step 3: update the frequencies f 

Given the updated G and cr^, the aim of Step 3 is to update the frequency • 

vector f. However, GM is nonlinear with f. The nonlinear GM model can 

be linearized by using Taylor's expansion. In [25, 40], a single frame of GM, 

in which X , X and G are only vectors instead of matrices, is linearized by 

Taylor's expansion. The Gauss-Newton method is used to update f. Based on 
9 

the work in [25’ 40], we derive the update equation using the weighted least-

squares for f. The derivation involves two steps. The first step is to vectorize 

the matrix X and the second step is to linearize the vectorized X . 

’ To -vectorize X , we introduce the vec operator and Uie Kronecker product. 
‘ For an m X 71 matrix A = [a! … a ^ l where â  is the zth column of A , the 

<••� V 
' • . • 
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vec operator converts the matrix into a column vector by stacking the columns 

of A , 

ai 

vec(A) = ’ (5.29) 

to obtain an mn-dimensional column vector [50, p. 428]. For notational ‘ , 

venience, we denote vec (A) by A vec- • 

Let A be an m X n matrix and B be a p x g matrix. The Kronecker product 

of A and B is 

-

A[1,1]B A[1,2]B … ^ [ l , n ] B 

, _ A[2, 1]B A[2,2]B …42’n]B 
A ( 8 ) B = ； I j (5.30) 

. • • • • • « 

A[m, 1]B . A[m, 2]B . . . n]B 
^ 編 

where A (g) B is an mp x nq matrix [50, p. 422 . 

The matrix equation X = H G can be converted into a vector equation by 

the vec operator and the Kronecker product. We rewrite X = H G into 

X = HGI / (5.31) 

where 1/ is an / x / identity matrix. Vectoring both sides of (5.31) gives 

基 * 

父 vec = vec(HGIj). (5.32) , 
« 

Using the identity in [50，p. 429], (5.32) can be written as a vector equation 

父vec = ( 1 / H ) G v e c ( 5 . 3 3 ) 

* 
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which is equivalent to 

• r —« p* — p. _ 
St\ H 0 … 0 . . . 0 0 g} Hg； • 

玛 0 H 岁 0 Hgi 
• • , • • • > 
• • • • • • • • • • • • 

= 0 H 0 g^ = Hgt 
• • a • • • 
• • • • • _ 

© • • * • • • 

廷 M 0 H O H g i ^ L i 

交‘州 J 卜 0 … 0 … 0 H J g ; , J [ Hg^,； 
^ ‘ V V ‘ 

Xvoc ( I / ® H ) Gvec 
( 5 . 3 4 ) 

Note that each subvector in Xvec is in the form 

= H g ； ( 5 . 3 5 ) 

so (5.33) gives the correct result. -

In the next step of the derivation, Xvec is linearized by using Taylor's 

expansion so that 

. Xvec(f) « 戈vec(fcur) + (f — f ' " ' ) (5.36) 

where is the current estimate of the frequencies, f is the vector of new 

frequencies to be estimated, and Z(fcur) is Jacobian matrix evaluated at P"*" 

and Z is in the form 

一 谷 Xvec 
= -

= Z ； . . . z y ^ (5:37) 
• . 

‘ " r 

* 



» . -

Chapter 5. Training: parameter estimation 76 ‘ 

where we let ZJ. = dS^/di and Z；. is the L x M Jacobian matrix at the rth 

frame of the ith instance. An element Zj[Z,m] in Z^ is 

1 dX%r] 
幻 。 叫 = 

O M 

= Y ^ { < , r COs{2'kUi) + 0L’r f u U ) ) 

= 2 T T t i w l l ] ( - o i ^ , sm{27rfmtL) + Pl^r cos{27rfmU)) • (5.38) 
< 

Then Z can be computed from (5.38). 

Using the results in [40’ pp. 226，260), the update equation of f is 

f — f + (ZTSi;iZ)-iZT5:[i(Xvec - Xvcc) (5.39) 

in which Qauss-Newton method is used. 

5.3.4 Summary of the partial extraction 

Here is the summary of all update equations. The update starts with the input 

frequencies f 监 defined in (5.10). 

1. Given f, update G. Calculate H from f. Then 

G — (HTH)HTX. (5.40) 

2. Given f and G, update X and a-y 

‘ X — H G (5.41) 

— X ^ - X ^ ‘ . (5.42) 
LB} F 

、 
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3. Given G and o-y, update f 

f — f + — X v e c ) (5.43) 

where Z is the Jacobian matrix and Ey is the covariance matrix defined 

in (6.25). 

4. Repeats steps 1 to 3 for 100 iterations. The outputs of the extraction of 

partials are the frequencies fcM，the amplitude matrix G and the noise 

variances cry. 

5.4 Finding the initial guess for the Piano Model 

The extraction of partials with GM in the previous section gives an estimate of 

the frequency fm,gm and the amplitude vector ^ = [a^ ,. of a partial 

for each frame. These estimates will be used to find the initial guess of each 

partial for PM. The initial guess for frequency JS�is fm,gm while the initial 

guess for the envelope parameters if 爪 in (3.31)，the phase 小饥 and the noise 

variance will be discussed below. Before showing how the initial guess can 

be found, we first convert the estimated GM parameters into the values for 

PM. A partial can be expressed in the following forms 

COs(27r/^,GMii) + /^m.r sin(27r/^,GM^z) = KI,T,GM COS(27r fm^GuU + C.r.GM) 

(5.44) 

where is the amplitude in the form 

‘ . = yji^kr)' + ^kr)' (5-45) 

« 

、 
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and (pIn.r.GM is the phase in the form 

石in,r,GM = tan-i ( 善 ) . （5.46) 
\ 〜、T ) 

5.4.1 Finding the initial guess 

The initial guess of the envelope parameters in PM is found by fitting the 

envelope function to the amplitudes of each frame from GM. Let i'̂  be the 

time at the center of the rth frame so that 

‘ K = {{t - I) D + 0.5L) / / , (5.47) 
’ 

where D is the hop size in samples, L is the window length and fs is the 

一 sampling frequency in Hz. Define the envelope function at the center of the 

rth frame as 

a U A ^ J = a { t U c \ ^ J (5.48) 

where a(.) is the envelope function defined in (3.31), and the intensity d, 

which is the peak amplitude of observed tone x* in the time domain, is already 

known. Fitting 心 , w i t h SĴ ĝm using weighted least-squares, we have 
I ‘ 

the objective function 

1 1 

= (元,r,GM - (5.49) 

1=1 r = l 

« 

where the weights are the inverse of the variances The objective func-

tion Etp can be minimized by using the trust-region-reflective algorithm imple- ^ 

mented in Matlab. Ten starting points are randomly generated to minimise 

Etp. The best solution which gives the smallest Ê p will be chosen as the initial 

guess if^ for estimating the PM parameters discussed in Section 5.5. 



V 
• 

Chapter 5 Training: parameter estimation 79 

5.4.2 Finding the initial guess � 

The phase (t>)n,r,GU given in (5.46) is the initial phase at the beginning of a 

frame. In order to perform fitting as finding the initial guess (^S)’ the phase 

办In r GM ^̂  shifted to the center of a frame. The centered phase GM is in 

the form 

= 2 7 r / m ( L / ( 2 / � + l , ’ G M (5.50) 

=^fmL/fs + (5-51) 

The objective function for finding the initial guess (̂ S) is also in the form 

of weighted least-squares which gives 

I W ^ 2 

聯 m) = - 元 C O S + ^m)) 
i=l r = l 

(5.52) 

where 此 r,GM cos((^二"gm) is the partial generated by the GM estimate, and 

此, r , G M COS ( 2 n U t ' , 

+ (pm) is the partial generated with BM. The weights are 

also the inverse of the variances dyi. The objective function E中 is again min-

imized by using the trust-region-reflective algorithm implemented in Matlab. 

There are 30 starting points randomly generated as E巾 is more sensitive to the 

starting points than Ê p. The best solution will be chosen as the initial guess 
(Pm . 

5.5 Parameter estimation of the Piano Model 

As mentioned in Section 5.1, the maximuiii likelihood solution of t/jj is approx-

imated by the weighted least-squares solution for efficient computation. To 

work towards the weighted least-squares solution, the likelihood a^) 
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in (5.9) is expressed in the form of the negative log-likelihood 

J / 1 2 \ MI J 
x^-x^ ln(2^). (5.53) 

Assuming that the noise variance in PM is directly proportional to that in 

GM for the extraction of pairtials, this means that 

(jli oc (j^i (5.54) 

so the noise variance cr̂ ^ in PM can be replaced by the noise variance dyi in ‘ 

GM outputted from the final iteration in (5.42). Note that the value of dyi 

is fixed for finding ip .̂ Replacing c r � b y dyi and omitting the constant terms, 

we can rewrite the negative log-likelihood in (5.53) into the following objective 

function , 

E t r M ) = ^ ( y ^ I P " - x ' l f ) . (5.55) 

Given the initial guess = {</?S)’ fin\ } for all m in PM, parameter 

estimation of PM can be done by minimizing the objective function 五train in 

(5.55) by using the trust-region-reflective algorithm implemented in Mat lab. 

The outputs axe the estimated invariant PM parameters 如.Hence, all of the 

PM parameters, including the invariant PM parameters, can be estimated. 
"“ V' • 

Thesft parameters will be used in the source separation process explained in 

the next chapter. 



Chapter 6 

Source separation: parameter 
estimation 

In the previous chapter, we explain how to estimate the invariant PM param-

eters from the 

training data X. The invariant PM parameters 中n include 

the estimate of the envelope parameters gj^’ the frequencies ik and the phases 
A A 

(t>k for each A;th tone in the mixture y. Given 屯d and y, we perform the source 

separation in two stages as shown in Figure 6.1: 

Stage 1: source separation with the Piano Model (PM). Given the invariant 

PM parameters 屯！ in PM, the goal is to estimate the varying PM parameters 

屯y,v for the'mixture y. The varying PM parameters 少 i n c l u d e the intensity 

Ck and the time shift r^ for each A:th tone in the mixture. The output of 

this stage is the estimated varying PM parameters 少y,v which maximize the 
‘ 八 八 

likelihood function of 屯y,v. With 屯n and <Sfyy in PM, the signals of each 

individual tone in the mixture can be reconstructed by using PM. 

Stage 2: source separation with the General Model (GM). After separating 

the sources with PM, we use GM to further improve the separation quality. 

Given 屯h and 少y，v，the goal of Stage 2 is to estimate the GM parameters 

The GM parameters ©^ consist of the amplitude matrix G and the frequencies 

f. The prior distribution of the GM parameters ©y is learned from 屯u and 中y,v 

to facilitate the process of source separation even for the case of overlapping 
‘ 81 
參 
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[ Source separation j 

！ i f Outputs:、 

/ ~ ^ ― X 丨 _ 1 _ 丨 GM 
Invariant j Stage 1: Stage 2: parameters � 

PM Piano Var̂ ng 一 General j 
parameters Mode 丨 . Model ~T^ and 

i j j (PM) parameters (qM) | estimated 
^ 乂 \ f Ŵ.v ？ 1 tones i « » 八 

: - - L _ A _ J 
‘ fInput: 

�mixture y J 

^ Figure 6.1: The two stages in source separation. 

partials. The output of Stage 2 is the estimated GM parameters Qy which 

maximize the posterior distribution of ©y. The signals of each individual tone 

in the mixture can be reconstructed by using the overlap-and-add method [77 

based on Qy . 

The following section will present Stage 1. Stage 2 will be explained in 

Section 6.2. 

6.1 Stage 1: source separation with the Piano 

Model 

‘ In Chapter 5，it states that given the mixture y and the estimated invariant 

PM parameters 屯i, the goal of source separation with PM is to find the most 

probable varying PM parameters 屯y,v that maximize the posterior of the vary-

ing PM parameters p(^y,v|y,屯i). By Bayes' theorem, the posterior can be 

rewritten as 

P(^y.v|y,$i) oc p(y丨屯仏v，$ii)P(中y,v|$ii) (6.1)' 

‘ = ( 6 . 2 ) 
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where 屯y’v are the. varying PM parameters including the intensity Cfc and the 

time shift 丁k for all tones k in the mixture y. The prior of the invariant PM 

一 parameters reflects our prior knowledge of 屯y,v. TJoe- values of ^ y y 

carf greatly vary from different playings. If we have little idea on suitable val-

ues for a parameter, we choose a very insensitive prior for 屯y’v as explained in 

Section 5.1. Then maximizing the posterior p(^i/,v|y,屯n) is effectively equiva-

lent to maximize the likelihood p(y|中y,v，屯n) so the most probable parameters 

少y,v are equivalent to the maximum likelihood solution. Hence, the goal of 

the source separation with PM becomes finding 中y,v which maximize the like-

lihood 中n) so that 

= argmaxp(y|^y,v, $丨). （6.3) 
中 y.v • 

* 

. Recalling (3.35), the estimated mixture y is related to the observed mixture 

y as below 

y ( u 二 + (6.4) 

where e(tn) is the zero-mean Gaussian noise with the variance a � . Given a 

single noise variance (j^, the maximization of the likelihood is equivalent to 

the minimization of the least-squares errors [11]. Then the objective function 

for source separation with PM is 

£^sep.PM(^y.v) = ||y-y (^y .v ) tr (6.5) 

The goal of source. separation with PM is to find the varying PM parameters 
c 

中y’v which minimize 五sep,PM in (6.5). The objective function •Ê p.pM can be 

minimized by using the trust-region-reflective algorithm implemented in Mat-

lab. There are 100 starting points randomly generated to minimize jE"sep，PM. 

The best solution which gives the smallest E^^^yu will be chosen as the esti-

mated varying PM parameters 屯y,v. 
* k ' • 

» _ » 
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6.2 Stage 2: source separation with the General 

Model 

As presented in Section 4.4, the goal of source separation with "the General 

Model (GM) is to find the MAP solution of the GM parameters &y which 

maximizes the posterior distribution p(©y|y, 
given the mixture y. 

The GM parameters Sy include the amplitude matrix G and the frequencies f. 

Finding the varying PM parameters 屯y,v and the invariant PM parameters 屯n 

have been discussed in Section 6.1 and Chapter 5 respectively. The estimation 

of the noise variances will be covered in Section 6.2.2.1. 

The process of source separation with GM is divided into the following two 

steps: 

1. Estimate the hyperparameters, i.e. the noise variance a l and the pa-

rameters in the prior distribution of ©y. (Section 6.2.2) 

2. Given thq hyperparameters, find the MAP solution ©y and reconstruct 

the signals of each individual tone by using the overlap-and-add method 

77]. (Section 6.2.1) � , 

Finding the MAP solution &y (Step 2) will be explained in the next section. 
w » 

6.2.1 Bayesian analysis for the General Model 

In GM, the time-domain signal y is segmented into frames via the operation in 

(3.2). This gives the matrix Y defined in (3.22). The posterior distribution of 

� &y can be rewritten as p(©y|Y,屯y,v，屯i, ^l)- The GM parameters Sy include 

the amplitude matrix G and the frequencies f so the posterior distribution 

can also be expressed in the form of p(f, G|Y,屯y’v，屯i’ 左„). In Section 5.5, 

an iterative update scheme is designed to find the least-squares solution of the 

- GM parameters. A similar iterative update scheme is also applied to find the 

MAP solution of the GM parameters: 

* - . • 
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1. Given f, update G. 

J 2. Given G, update f. 

3. Repeats steps 1 to 2 until convergence. 

The iterative update starts with the input frequencies from the estimated 

frequencies of PM in (5.55). The frequencies of PM are close to those of GM. 

We find that 10 iterations are enough for convergence. Note that unlike the 

scheme for the least-squares solution, the noise variance is not updated in the 

scheme for the MAP solution because the noise variance can be estiirf.Lted from 

the training data in advance. Estimation of the hyperparameters, including 

the noise variance, will be explained in Section 6.2.2. In the followings, the 

iterative update scheme will be discussed in details. , 

6.2.1.1 Step 1: update the amplitude matrix G 
t 
The amplitude matrix G is a concatenation of the amplitude vector g^ of 

each frame defined in (3.25). We will show that each g^ can be estimated 

independently. Given the estimated frequencies f, now we rewrite the posterior 

distribution into p(gr|yr，f,中y,v，中h，苟J where yv and â ^ axe the mixture 

and the noise variance at the rth frame respectively. The goal of this step 

is to find the MAP solution g^ which maximizes the posterior distribution 

p(gr|yr,f, ®y,v’ $h,苟J for each frame r. 

By Bayes' theorem, the posterior distribution p(gr|yr，f，中y，v，屯i, of 

gr can be expressed in the form of 

P(gr|yr’？’$i/’V，$iI， r̂) X P(yr|gr，？’$y,V，$!，^>(gr|?’$y,V，$!’^J 

P(yr|gr，？,苟>(gr|$y,V, ^ l ) (6.6) 

where p(yr|gr，f，苟J ^̂  the likelihood function and p(gr|^y,v,屯n) is the prior 
* 

‘distribution of gr. � 

% ‘ i 

( 
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As stated in (3.21), the estimated mixture f r is related to the observed 

mixture y^ as below: 

yr = Yr + V, (6.7) 

= H g , + V,. (6.8) 

where v^ is the zero-mean Gaussian noise with the variance crj. Following the 

result in (4.12), the likelihood function is 

Myrlg”？’苟J = ” y” — Hgr 11̂ } (6.9) 

where H is the frequency matrix generated from f in (3.18). 

The prior p(gr| 屯y,v，中n) represents the prior distribution of gr conditioned , 

on the PM parameters 中y,v and 屯n. It is modeled as a Gaussian so that 

s 

P(gr|$y.v, = K ) (6.10) 

where Ji如 is the mean and E^̂  is the covariance matrix. Both and Eg^ 

depend on 中y,v and ^ j . Finding Jiĝ  and will be discussed in Section 

, 6.2.2.2. In this section, it is assumed that Jig, and Eg^ have been esti-

mated and their values are known. The parameters d̂ ^，Jiĝ  and are called 

hyperparameters in Bayesian analysis [10] because they themselves control the 

distribution of other parameters (i.e. gr). Note that each gr has its own set of 
‘ 八 

and Epr so the MAP solution of each gr can be found independently. 

As Yr = Hgr is a linear model for given H, and both the noise and the 
\ 

prior axe Gaussian, the resulting posterior p(g|y) is also Gaussian as shown in 

11，p. 1531. Following (4.28), the posterior is in the form ‘ 

, P(gr|yrHA/"(gr|m,r，S办） (6.11) 

V 
% * • 
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where 
» 

n v = S “ £ ; X r + @ T y r ) (6.12) 

S p . = ( £ : + 莎 二 2 H T H ) - i . ( 6 . 1 3 ) 

The mode of a Gaussian distribution coincides with its mean. Therefore, 

the MAP solution gr is equal to the posterior mean mg" Substituting (6.13) 

into (6.12) gives 

� gr = (£；； + V ^ H ^ H ) + a-^H^y. ) . (6.14) 

Note that as analyzed in Chapter 4, finding a unique g^ does not require that 

H is full column rank. The frequency matrix H is rank deficient if there are 

overlapping partials. 
1 

6.2.1.2 Step 2: update the frequencies f 

Given the estimated amplitude matrix G concatenated from g” in Step 1，the 

goal of Step 2 is to find the MAP solution f which maximizes the posterior 

distribution p(f |Y, G，中y,v，中i, The model Y = H G is nonlinear with f 
rj* 

where f = [fi … f ^ ] defined in (3.28). Following Section 5.3.3, we vectorize 

the matrix Y into Yvec and linearize the vectorized Yvec as in (5.36) by using 

Taylor's expansion so 

Y v c c ( f ) « •？vec(fcur) + Z(fcur) (f — f -^) (6.15) 

‘ where Yvec(f) is the estimate of the vectorized Y depending on f and f is 

the vector of new frequencies to be estimated, is the estimate of 

the vectorized Y depending on 严 and fcut is the current estimate of the 

frequencies, and Z(fcur) is the Jacobian matrix evaluated at and Z is an 



： . • • - -. • • •. .. . . . . . '• • • • . , • • • ‘ . . 
• • • . - - ‘ • 

• . • . . ： •… ： , - .. 
. . . • 

Chapter 6 . Source separation: parameter estimation 88 
• • • • , . ‘ 

‘ . . ，’’ ‘ .. . • 

. . . . . -. . • • 
. • . . . ‘ 

- • . • • • 

LR X M matrix in the form 
• , .. • . ： 

� • ‘ , • 
Z = % . • ‘ （6.16) 

二-想麵. ^ ^Yr-I d y n 

- _ ~ d f … w … " w ~dr\ ( 叫 

= [ Z j Z2 . . . Tir … . T i j i 一 I Till] (6.18) 

K * ‘ 

where Zr is the L x M Jacobian matrix at rth frame for all tones and it is 

defined by ‘ 
Zr = …Z/c，r] ‘ （6.19) 

and Zk,r is the L x M^ Jacobian matrix at rth frame for fcth tone in the form 

Z k A l M = ^ (6,20) 
OJk,m 

Q K Mu 

= ^ ^ ^ {c^u,v,r cos(27r/u’„t Pu,v,r sin(27r/u,„^)21) 

=27rti'w\l] (-Qffc.m.r Sm{27r fk^mU) + Pk、m、T COS(27Tfk,mtl)) . (6.22) 

Then Z can be computed from (6.22). 

， Following the prior distribution of g” in (6.23)，the prior distribution of f 

is also modeled as a Gaussian 

� p(f|$3^,v，$i) 二 AA(f|p,，£》 (6.23) 

where fif is the mean and Sy is the covariance matrix. Using the result of the 

Gauss-Newton method in (6.14)，the MAP solution f is ^ 

• � � f = + ZTs;;iZ)一 1 ( e j V / + (Yvec - Yvec + Z f ) ) (6.24) 
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‘where St； is the covariance matrix for all frames in the form 
； . ‘ 

' ‘ • -

：： , E., = d i a g « l L , a ^ l L . . . . , (6.25) 

* “ . and 1l denotes the //-dimensional column vector filled with I's. > 
In "the next section, we will show how to find S g ” p / and S / 

which are crucial for resolving overlapping partials. 

6.2.2 Estimation of the hyperparameters 
I , 

In the evidence approximation introduced in. [47，48], the noise is modeled 

as a zero-mean Gaussian and the prior is a zero-mean univariate Gaussian. 

The noise variance and the prior variance are estimated by maximizing the 

evidence function. In our context, the evidence function is Sg, Sy). 

However, the mean of the priors in our case is not zero which will be shown 

shortly. This means the optimization technique for maximizing the evidence 

function in [47, 48] cannot be directly applied. In our case, we have the training 

data which are isolated tones. Instead of using the approach of maximizing the 

evidence, we will make use of the training data to estimate the hyperparameters 

苟r，Ĵ gr, flf and £ / . • 

6.2.2.1 Estimation of the noise variance al̂  

The noise variance â ^ is the variance of the zero-mean Gaussian noise v” so 

that 

y , = + ， (6.26) 

where y^ is the observed mixture and % is the estimated mixture. To estimate 

al^ from yv with the use of the training data AT, we model the noise variance � 

of an isolated tone of a frame is directly proportional to the signal power. 
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This gives ‘ 

心 = 茂 U x � 2 (6.27) 

where x^r is the isolated tone at rth frame with pitch p^, the parameter crj 

is the noise variance of x^,”，and â ^ is the proportionality constant for pitch 

Pk and it can be determined by the training data X . Let be an isolated 

tone in the training data X. The subscript X in x^ ,. ；̂, denotes that is 

obtained from the training data. Then 约& can be estimated by 

1 “ L-l / i rn _ m \ 2 
〜 一 T M m — ^ — (6.28) 

^^^^ 1=1 r = l Z=0 \ / 
t 

where xj.̂ ^ ；̂. is the estimate of xj. ,.；̂. and it can be found by using the iterative 

reweighted least-squares explained in Section 5.3. 

For the mixture yv, the noise variance is 
� 

< = . (6.29) 
fc=i 
K 

= Z X 丨丨XA:,r,yl|2 
k=l ‘ 

where Xkw is the kth individual tone in the mixture at rth frame, and is 

its noise variance. The subscript y in Xfĉ .̂y denotes that Xfc,r,y is the individual 

tone in the mixture y ” However, Xk’r’y is not known. In order to estimate cr^, 

we approximate into 

. ' f Cu \ 
‘ lly.ll' (6.30) 

where Ck is the estimated intensity in PM described in Section 6.1. The in-

tensity Ck determines the proportion of ||xfc,r,y||̂  in ||yr||2. Substituting (6.30) 

into (6.29), we obtain the estimate â ^ of the noise variance in the mixture yv 

- k 
• • i 

• • 
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in the form 
i< ( \ 

(6.31) -

fc=l \ ^k / 

6.2.2.2 Estimation of the prior 

Prior distribution of the amplitude vector gr The prior distribution 

P(gr|Pgr’ of gr is the Gaussian with the mean ^g^ and the covariance 

Both flg^ and depend on y and 屯i. The dependence can be defined 

by converting the PM parameters 屯y’v and 中u into the GM parameters. The 

aim of the conversion is to find the GM parameters at the center of a frame by 

finding those values from the PM parameters. Let ij. be the time at the center 

of the rth frame as in (5.47) so that 

t'T = ( ( r - 1 )D + 0.5L) / / , (6.32) 

where D is the hop size in samples, L is the window length and fg is the 

sampling frequency in Hz. Evaluating the envelope function of PM in (3.30) 

at the center of the rth frame, the estimated amplitude of the mth partial of 

the kih tone in the mixture y is 

ak,m,r,y,PM = 4， f > m ) (6.33) 

where Ck and tp^ are included in 屯y,v and 屯n respectively. 

The phase at the center of rth frame can be calculated from 中仏v and 少 b 

by � 

(t>k,m,r,y,PM = 27r/fc,饥,pM {t'^. - Tk) + (/>k,m,PM (6.34) 

where the frequency fk,m,y,PM and the phase (pk̂ m,y,PM are included in 屯h，and 

the time shift Tk is included in 屯i. Then ak,m,r,y,PM and (t>k,m,r,y,PM can be 

广-‘ 

i -

> 
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transformed into the amplitudes of sine and cosine: 

»A:,Tn,r,y,PM = flJt.m.r.T/.PM COS </>A:,m,r,2/,PM (6.35) ^ 

Pk,Tn,r,rj,PM = —^k,Tn,r,y,PM Sin 4>k,Tn,r,y,PM- (6.36) 

* 

The mean Jiĝ  in the prior is assigned be the estimate from PM so that 

？afc.m.r = Sfc .m.r.i / .PM (6.37) 

M^fc.m.r = 0k,m,r,y,PM (6.38) 

where 爪,̂  and ppk.m.r 虹e the elements in fig^ which follow the definition of 

gr in (3.19). 

The covariance Eg^ measures the deviation between the values of gr es-

timated by PM and those estimated by GM'. It is assumed to be a diagonal 

matrix of which the diagonal is filled with the variances and 药 

The ordering of a^^ ^ ^ and â ^ ^^ in the diagonal also follows the definition of 

gr in (3.19). We model that the variances and are identical and 

they are directly proportional to the power of the partial amplitude at the rth 

frame. This gives 

= ^kr.,. (6.39) 

= i ^ k , m , r , y , P u f ‘ (6 .40) , , 

where is the proportionality constant and it can be determined by the 

training data AT. ^ 

Let 肌d the amplitudes in GM for the training 

data AT and they have been estimated by using GM from Section 5.3. The sub-

script X in Ŝ ,Tn,r’;t,GM L̂nd denotes that their values axe obtained 

froD^^e training data. Let m.r,AT,PM 迎d be the amplitudes in 

w t 
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GM for X but they are converted from the PM estimate. The conversion from 

the PM estimate to the GM estimate for X follows that for the mixture y in 

(6.35) and (6.36). Let ^kmrxpu be the partial amplitude in PM then 
、 

= ^ (^,m,r,;t,GM) + (̂ fc.m.r.Af.GM) • (6.41) 

Following (6.39) and (6.40)，we can estimate a^^ from X by 

^k,m,r,X,GM — .̂m.r.A'.PM ^ + ( ^fc,m.r,AT,GM — 、 、 (6 42) 
、 ^ k , m , r , X , P M / \ m.r ,A",PM / 、 

i 

m 

Note that the prior reflects the difference between the indi-

vidual tones estimated by GM and PM. As PM gives satisfactory quality o t � 

estimation, the difference should be small enough to make the prior distribu-

tion ^gr) has a high density around the correct value of gr as shown 

in the schematic diagram in Figure 4.5. Hence, overlapping partials can be 
« 

resolved and higher quality of source separation can be obtained. It will be 
^ » 

verified and explained in the experiments. • ’ . 

. . � f 
Prior distribution of frequencies f The prior distribution of � 

f is the Gaussian with the mean Jxj and the covariance S / . The mean Jij 二 ‘ 
A ’ . 

set to the estimate of the frequencies in PM from 屯j so that ‘ , 
• » 

* 

- A � ― 

. Pfk�m = fk,m,PM , . • . . ； . 
‘ -t • 
.‘等、- “ 

where pf^m 扯e the elements in p,j which follows the definition of f in (3.28). • � 
八 A * . 

‘ Following the derivation of we also assume that S / is a diagonal matrix 
- * - ,,‘.， . • 

of which the diagonal is filled with each variance The variance is ^ � . � 

• , • -
‘ - . • 

* - ... . - _ . - • • 

. - ‘ . ‘ 
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modeled to be directly proportional to the square of the frequency in PM. This 

gives 

where aj^ is the proportionality constant which can be also determined by the 

training data A'. The estimate of a'ĵ  is 

1 Mk /•? ？ \ 2 
-2 一 _J_ • Jk,Tn,X,GM — /fc.rn.PM 

m=l \ /fc.m.PM / « 

where fk,Tn,x,GM has been estimated by using GM from Section 5.3. Note 

that there is no subscript X in fk,m,PM because /jb',Tn,PM are the invariant PM 

parameters so the training data and the mbrtiire share the same set of fk,m,PM-

In summary, after estimating the hyperparameters 3^ ’̂ Jig ,̂ f i j and 

E / , we can find the MAP solution Qy of GM discussed in Section 6.2.1. In the 

next chapter, experimental results will be presented to show the performance 

of the whole source separation process. 

， • 

. ‘ - . -

f 

• 、 ’ . 

^ I 

« ‘ 

i • . 
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Chapter 7 � 

Experiments 

Experiments were performed to test the separation quality of our proposed 

Piano Model (PM) and the traditional General Model (GM). All data used 

in the experiments are real signals of piano tones and they are not synthetic. 

The databases of piano tones will be described in Section 7.1. The piano tones . . 

were used to generate mixtures from musical chords which include octaves. The 

generation of mixtures will be discussed in Section 7.2. In 7.3，the experimental 

results will be presented. 

The input mixtures of our experiments were generated by mixing isolated 
M 

tones from the recorded piano databases. So the ground truth of these testing ， 

mixtures is known. Then our separation method was applied to these mixtures 

to separate them into the individual tones. The estimated tones were compared 

with the input isolated tones for evaluation. 

\t > 
, 7.1 Databases of piano tones r 

• 

Piano tones from four different pianos were used in our experiments. Three of ‘ 

the pianos are from the RWC musical instrument sound database [34] including 

the grand pianos of Steinway & Sons, Bosendorfer and Yamaha. The remaining , 

• piano is a Yamaha Disklavier DUIA upright piano, Mark III series of which 

we created a piano tone database. The reason for creating our own database 

. * 95 
« 

^ « 
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« 

‘ is that each pitch in the RWC database was only played at three different 

levels of loudness (soft, medium and loud). In order to design our proposed 

Piano Model (PM) presented in Section 3.3, we created the database with the 

Yamaha upright piano which is a computer-controlled piano. Each pitch was 

played at 12 different levels of loudness to enable a detailed study of timbre 

change with different hitting strengths. The details of the recording setup will 

be described as follows. 

During the recording session, both the top lid and the front face of the 

Yamaha upright piano were open as shown in Figure 7.1. The sound was 
i 

recorded with four R0DE NTIOOO condenser microphones placed approxi-

mately 20 cm above the keyboard and 18 cm in front of the piano strings. 

This close-miking setup reduced the effect of room acoustics. The microphones 

were connected to an RME Fireface 800 Audio Interface, which acted as a mi-

crophone preamp and an A / D converter, and transferred the signals to a PC 

digitally through a firewire cable. The signals were stored in WAV format. The 
/ 

sampling frequency was 44.1 kHz and the number of bits per sample was 24. 

‘All 88 keys in the piano were played and recorded. Each tone was played at 

12 levels of loudness ranging from very soft to very loud and lasted for around 

1 second. After listening, we chose the signals recorded by the microphone in 

front of the C3 piano strings for our monaural source separation experiments 

because of their balanced sound quality for a wide range of pitches. All tones, 

including our database and the RWC database, were downsampled to 11.025 

kHz for faster processing. 

Before performing our experiments, we aligned the instances of a pitch from 

the same piano in phase by using the cross-correlation method in the following 

steps: , 
•“ « 

1. The instance with the medium loudness was selected to be a reference. w 
f , i 

The onset of the instance was detected by the onset algorithm in [75] and 

‘ ‘was fine-tuned in our user interface developed in Matlab'. This made the 
' - . • ‘ 

• • . 

” - , ； ‘’、 ‘ 
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Figure 7.1: Recording set.up of our recorded piano ciatahasc. , 
Xi-

instance to start at time zero. 

« 

2. Other instances of the pitch were aligned in phase by time shifting the . 
% • 

instances to maximize the cross-corrolation between the instances and 
t • 

the leforoncc instance. This alignment also made all instances to start 

» at. time zero. ‘ 
1 

1 

« • 

7.2 Generation of mixtures 
, > 

V 

111 the experiments, there are 25 mixtures raridoriily selected froiri 11 piano 

pieces in the RWC music database including the databases of cliussical inusic, , 
s 

, j a z z irmsic aiid music genre |34]. The lists of all the piano pieces and mixtures 

- are.rihovvii in Appendix C. The RWC database provides the MIDI files of the� ‘ 

transcribed performance of .these pieces. We extracted all chords from' the 
• 、 . • 



一 Chapter 7 Experiments 98 

MIDI files. A chord is a set of simultaneous pitches. These chords provide 
r . 

the pitch information for the mixtures. In order to measure the performance 

. of our proposed in real music, we randomly selected the 25 mixtures from 

the extracted chords according to the distribution of the number of pitches 
in these chords. The number of tones K in our selected mixtures are ranging • ^ 
from 1 to 6 with the counts 8, 6, 5, 4, 1 and 1 as shown in Figure 7.2. The 

25 mixtures consist of 62 tones. There are 9 mixtures containing at least one 

pair of octaves. Two of them contain 2 pairs of octaves. 

The procedures of generating a mixture is shown in Figure 7.3. Each mix-

ture was generated by mixing its individual tones. The pitches of the tones in 

a mixture correspond to the pitches of a selected chord. All tones in a mbc-

ture were randomly selected from the isolated tones in one of the four pianos 

described in Section 7.1 and the individual tones in a mixture come from the 

. same piano. The choices of loudness of a tone in a mixture are soft, medium 

and loud. The loudness of each tone was assigned according to i he MIDI ve-

locity in the MIDI files. When a particular loudness of the tone was selected, 
*» 

the remaining two instances were put in the training data. Hence, the number 

of instances Ik is equal to 2. Random time shifts were added tq the isolated � 

tones in the range of —10 < r < 10 ms before mixing to test whether the time. 

shift can be estimated in PM. A mixture was formed by a summation of the 

selected time-shifted isolated tones. The first 0.5 second of the mixtures and 

the training data were used in the experiments. ^ 

•r 
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Figure 7.2: The counts of the mixtures with number of tones K for the exper-
. f iments. The total number of mixtures is 25. 
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. Figure 7.3: Generation of mixtures. 
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7.3 Results 

7.3.1 Evaluation criteria 

The performance of our source separation system is evaluated by the signal-

to-noise ratio (SNR) which is defined by 

S N R = U H � g i � E “ x � e ) x $ n ) ) 2 (7.1) 

where x(i„) is the time-shifted isolated tone in the time domain before mixing 

and x{tn) is the estimated tone in the time domain. The estimated tone is 

reconstructed from either PM or GM. Higher SNR means higher quality of 

estimated signals. 

The musical nuajice is related to the estimated intensity and the esti-

mated time shift These two parameters will also be examined. As intensity 

is at a relative scale, the accuracy of the estimated intensity is evaluated by 

the absolute error ratio 

. E R , = ^ ^ (7.2) 
Ck 

where Ck is intensity of the input isolated tone, and Ck is the estimated intensity 

of the tone. Lower absolute error ratio means higher accuracy of the estimated 

intensity. 

The accuracy of the estimated time shift % is evaluated by the absolute 

error 

� Err, = |Tfc - ffcl (7.3) 
» 

where Tk is the time shift of the input isolated tone in seconds, and Tk is the 

� estimated time shift of the tone. The input time shift rjt has been added to 

the isolated tones from the piano databases as described in Section 7.2. 

争 

N * ‘• 
» • 
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SNR (DST" ‘ 
I PM I GM 

All estimated individual tones 11.15 17.38 

Table 7.1: The average SNR of all estimated individual tones of the 25 mixtures 
before mixing. 

7.3.2 Evaluation on modeling quality 

Before evaluating the separation quality, we first evaluate the modeling quality, 

i.e. the quality of PM and GM to represent an isolated tone before mixing. 

Both PM and GM were used to find the estimated signals of the time-shifted 

isolated tones before the tones were mixed into mbctures. The modeling quality 

provides a benchmark for the source separation experiments. We will compare 

the performance difference of PM and GM before and after mixing. 

The procedures of evaluation on the modeling quality is shown in Figure 

7.4. For each mbcture in the 25 mixtures described in Section 7.2, the individual 

tone of the mixture was selected from the isolated tone in the piano databases. 

Then a random time shift was added to each isolated tone, and the shifted tones 

were inputted into our proposed source separation system including both PM 

and GM. The parameter setting for GM is that the window length is 11.61 

ms (L = 128) with 50% overlapping window. The effect of window length will 

be discussed in Section 7.3.3.2. The outputs of our system were the estimated 

tones reconstructed from PM and GM. The estimated tones were compared to 

the shifted tones to evaluate the modeling quality. If the parameters obtained 

in PM and GM are accurate, they can regenerate the original shifted tones 

in high quality. Table 7.1 shows the average SNR (SNR) which reflects the 

modeling quality. The average SNR of GM is higher than that of PM. This is 

because GM is a more flexible model to represent piano tones. 
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Figure 7.4: The procedures of evaluation on modeling quality. 

7.3.3 Evaluation on separation quality 

After evaluating the modeling quality, we evaluate the separation quality, i.e. 

the quality of PM and GM to separate a mixture into its individual tones. » 
Both PM and GM were used to construct the estimated signals of the individ-

ual tones in the mixtures. Figure 7.5 illustrates the procedures of evaluation 

on the separation quality for one mixture. The quality is evaluated with one 

mixture at a time. The steps are similar to those in evaluation on the mod-

eling quality. The difference starts from the shifted tones. In evaluating the 

‘ separation quality, the shifted tones were mixed into a mixture by summing 

these tones. Then the mixture signal was inputted into our proposed source 

separation system. The parameter setting of GM was that the window length 

was set to 11.61 ms (L = 128) -with 50% overlapping window. The number 

of instances Ik in the training data was two: This means that there were two 

isolated tones used in training for each individual tone in a mixture. The out-

puts of our system were the estimated tones reconstructed from PM and GM. 

t 
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Figure 7.5: The procedures of evaluation on separation quality for a mixture. 

The estimated tones were compared to the input shifted tones to evaluate the 

separation quality. 

7.3.3.1 Overall analysis 

For the 25 mixtures, the average SNRs of GM and PM are 13.51 dB and 10.88 

dB respectively. The results are shown in Table 7.2. Both PM and GM are able 

to reconstruct the upper tone in an octave. The partials of the upper tone in an 

octave are completely overlapping with the lower tone. Hence, the overlapping 

partials were successfully resolWd. The average SNR against the number of 

tones K is plotted in Figure 7.6. The average SNR of PM decreases slowly 

when the number of tones K increases. The average SNR of GM decreases � 

more rapidly but it rises significant for the case K = 6. The average SNR 

cannot completely illustrate the separation quality because high average SNR 
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~SNR (dB) ASNR (dB) 
一 丨 PM I GM 丨 PM I GM 
- AU mixtures 10.88 13.51 I - I -
— 2<K <6 1097" 13.15 -0.31 -4.4T 

Upper tones in octaves" 10.95 —12.77 -0.37" -3.34 

Table 7.2: The average SNR of the 25 mixtures. The number of tones in a 
mixture is denoted by K. The column of SNR is the average SNR in dB. The 
column of ASNR is the average SNR difference between modeling and source 
separation. 

等 

may be due to high quality of the modeling. To evaluate the separation quality 

effectively, the average SNR difference is used. The SNR difference between 

the modeling benchmark in Section 7.3.2 and the separation is defined by 

ASNR=(SNR from modeling) - (SNR from separation) (7.4) 

which measures the drop of SNR from the modeling benchmark to the sep-

aration result. The average SNR difference, which is the average of ASNR 

of different cases, is shown in Table 7.2. The average SNR diffeTence has a 

greater drop for GM than PM because PM is less sensitive to overlapping 

partials. When the number of tones K increases, the number of overlapping 

partials generally increases. 

The average SNR difference against the number of tones K is plotted in 

Figure 7.6. The average SNR difference of PM decreases slowly when the 

number of tones K increases. The average SNR difference of GM decreases 

more rapidly but it rises significantly when K = 6. This may be because the 

PM parameters are more accurately estimated for the mixture of = 6. 

In addition to SNR, we also evaluate the separation result by the average 

absolute error ratio of intensity and the average absolute error of the estimated 

time shift ioi 2 < K < 6. The average absolute error ratio of intensity E R � 

is shown in Table 7.3. The error ratio is 0.074 for estimating the intensity. 

As the intensity Ck is used to estimate the peak amplitude of the individual 
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Average absolute error ratio of intensity E R � 

Intensity Ck Peak from PM Peak from GM ， 

" 2 < K <6\ 0.074 I 0.222 | 0.130 

Table 7.3: The average absolute error ratio of intensity ERc 

Absolute error of the estimated 
time-shift Env in PM (ms) • 

2<K <61 3.16 

Table 7.4: The absolute error of the estimated time shift Env in PM. 

tone in a mixture, the accuracy of ĉ  is compared to the peak amplitude of 

the estimated tones from PM and GM. The average absolute error ratio of ĉ  

is lower than that of PM and GM. This is because the peak amplitude of the 

estimated tones from PM and GM depend on all estimated parameters. In the 

other hand, the estimation of 5fc is only based on the envelope function defined 

in (3.31) so the它stimation of 5k is less sensitive to the estimation error arisen 

from phases. As a result, Qt is more robust to estimate the peak amplitude of 

an individual tone in a mixture. 

The average absolute error of the estimated time shift Env in PM is shown 

in Table 7.4. The error is only 3.16 ms so the estimated time shift can give an 

accurate fine-tuned onset. 

7.3.3.2 Effect of window length 

The effect of window length in GM was studied by changing the window length 

in the source separation stage with GM. Four window lengths were tested 

including 5.80, 11.61, 23.22 and 46.44 ms which corresponding to L equal to 

64, 128, 256 and 512 samples. The 50% overlapping window were applied in 

these 4 window lengths. The source separation stage with GM was inputted ‘ 

with the same PM parameters for the tests. The results are shown in Figure 

7.8. The best window length from the results is 11.61 ms (L = 128). 
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Figure 7.8: Average SNR against the window length. 

7.3.3.3 Comparison with other method 

In a loc.cnt system of monaural sourcc separation in |4fi|, Li, WoodnilT and 

Wang coinparc their system (Li's system) to the systems in |7] | and |56| for 

the mixtures with the number of tones K equal to 2. They show thai Li's 

system significantly outperforms those two systems. Li's system is based on 

the principle of common amplitude modulation reviewed in C'hapter 2. Wc 

coTiipaied Li's system to our proposed source system including PM and GM 

for all mixtures. The implementation of Li's system is provided by the authors. 

The true fundamental fiequency of each tone wa.s supplied to Li's system. The 

result is shown iri:Tablc 7.5. Oiu, system including both PM and GM perform 

‘ better than Li's systeir) for llie average SNR. of rill iiiixr.ures. A siĵ jiiificaiit 

improvement is in the octave cases as shown in the table. 7.9. Li's sysiein is 

unable lo resolve the overlapping partials of the upper tones in octaves. Our 

systom can resolve those overlapping partials. The average SNR against the 

number of tones K is plotted in Figure 7.9. Tlie average SNR of Li's system 

decreases more rapidly than our system. Our system can make iise of the 

training data to give higher separation quality. � 
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- V 

Average computation time 
for one mixture (min) 

Total (training and source separation) 11.61 (100%) 
‘ " Training - 4.43 (38.15%) — ‘ ‘ 

Source separation: PM 7.00 (60.24%) , 
Source separation: GM 0.19 (1.61%) 

Table 7.6: Average computation for one mixture. 

7.3.4 Computation time 

The experiment in Section 7.3.3.1 was run in a Window Vista PC with'an 

Intel Core2 Quad Q6600 2.4 GHz CPU and 2GB memory. All program codes 

were written in Matlab.,The average computation time for one mixture is 

shown in Table 7.6. Source separation with PM is much slower than that 

with GM because the optimization in the source separation with PM is highly 

nonlinear. For Li's system, the average computation time for one mixture is 

only 1.38 second which is much lower than that in our system. However, the 

separation quality of our system is higher than that of Li's system. 
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Conclusion and discussion 

In this dissertation, we propose a Bayesian monaural source separation system 

to extract each individual tone from mixture signals of piano music perfor-

mance. The system incorporates the following in its formulation: (1) the 

timing and pitch of music notes played in the piece from the target recording 

are provided, and (2) the isolated tones from the target recording are available. 

Based on this formulation, we have developed a model-based source separation 

- system. In this�research, two signal models based on sum-of-sinusoidal mod-

eling are employed to represent piano tones: (1) We use a traditional General 

Model (GM), which is a variant of sinusoidal modeling, to represent a tone for 

high modeling, quality but the model often fail for mixtures of tones because 

- of overlapping partials. (2) We propose an instrument-specific model for the-
‘ \ 

piano. Although the modeling quality is not as high as GM, it can resolve 

the overlapping partials and help to solve the source separation problem. (3) 

To benefit from the merits of both'GM and our proposed Piano Model (PM), 
¥ 

‘ * ^ 令 

we use the hierarchical Bayesian framework to combine both models in the • 
source separation process. Experiments show that our proposed system gives • * , 
robust and accurate separations of mixtures and improves the separation qual-

‘ ^ • ‘ . 

. i t y significantly comparing to the previous work. The extension of our current， ， 
• • ’ '丨 ‘ 

system 红e discussed below. - ， 

If an isolated" tone of a particular pitch is not available for training,- the , 
• • 、 . 
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‘training may be done by pitch-shifting neighboring isolated tones. The mix-

tures can also be separated by other source separation methods such as [46 

which does not require isolated tones. However, this may give poor separation 
/ 

quality if there are a great number of overlapping partials. Hence, our future 

work is to extend our current system which is able to train PM with mix-

tures. Possible ways to achieve this goal are to find the MAP solution of GM 

by using other inference techniques. The techniques include the deterministic 

methods (e.g. variational approximation [67]) and the probabilistic methods 

(e.g. Markov chain Monte Carlo [62] and particle filtering [26]). 

Another extension is to perform the task of source separation with the 

piano music signals played with pedaling. GM is able to resynthesize the 

isolated piano tones with pedaling. However, PM may not be able to give a 

very accurate estimate of the PM parameters because pedaling affects the time 

evolution of partials. A possible way to solve this problem is to use the full 

evidence approximation which' learns the variance between GM and PM frum 

the mixtures. ’ 

In our research, we only test our model on piano music signals. We may 

extend the model for other musical instruments, such as the Chinese musical in-

struments - the Chinese lute Pipa or the Chinese hammered dulcinjer Yangqin. 

We can use the same approach to analyze these Chinese string-striking musi-
( . 

cal instruments. These two instruments are usually played without using any 
) 

dampisr mechanism so it is expected that there is more than one tone sound- , 

ing simultaneously. So the problem is very similar to that of a piano. This 

extension enhances the study, development and preservation of Chinese music 

tradition. 

# 
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Notation 

Symbol Meaning 

a partial amplitude . 

B inhaxmonicity factor 

b relative amplitude of a partial in the Piano Model (PM) 

c intensity of a tone in PM , 

D hop size 

d control of the intensity significance in PM 

E cost function 

f frequency 

G amplitude matrix in the General Model (GM) 

g amplitude vector in GM 

H frequency matrix in GM 

I number of instances 

i index for ith instance 

K number of tones in a mixture 

k index for kth. tone 

L window length in samples 

I discrete time index in a windowed signal 

M number of partials 

m index for mth partial 

112 
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N time length of a signal in samples 

n discrete time index in a signal 

p pitch 

R number of frames 

r index for rth frame 

T transpose of a matrix 

t continuous time value 

w window function 

X matrix of frames of a tone 

X isolated tones in the training data 

X signal vector of a single frame of a tone 

X signal vector of a tone in the time domain 

Y matrix of frames of a mixture 

y signal vector of a single frame of a mixture 

y signal vector of a mixture in the time domain 

Z Jacobiaji matrix 

a amplitude of cosine term 

” P amplitude of sine term 

7 rising rate of a partial in PM 

e noise in PM � 

^ normalization coefficient in PM 

© parameter set of a mixture in GM 

6 parameter set of a tone in GM 

A decay rate of a partial in PM 

fjL mean of a Gaussian distribution 

S covaxiance matrix of a Gaussian distribution 

a standard deviation of a Gaussian distribution 

T continuous time shift 
V 

(j) phase t 



^ -參 

Appendix A Notation 114 

cp envelope parameters in PM 
% 

屯 parameter set of a mixture in PM 
, I 

屯 I invariant PM parameters 

中 v a r y i n g PM parameters of the mixture y 

ip parameter set of a tone in PM 

、 
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Appendix B 

Derivation 

B.l Derivation of the normalization coefficient 

in the Piano Model ‘ 

The peak of the bi-exponential mixture {exp {-\k,mtn} — {-lk,mtn}) is 

normalized to by the normalization coefficient Cfc.m-

Cfc.m (exp {-Xk,mtn} 一 GXp {-'yk,mtn}) • (B.l) 

In this appendix, our goal is to find (k,m- Let 

Zk,m = exp {-Afc,rnin} 一 GXp {-Jk,mtn} . (B .2) 

Differentiate both sides and give 

= e x p {-Ak,mtn} + 7k',m GXp {-Jk.mtn} ‘ ( B . 3 ) 
dtn 

Set into zero, then 
dtn 

-\k,m exp {-Xk,mtn} + 7it’m exp {-Jk.mtn} = 0 (B.4) 

Xk,Tn GXp{-Xk,mtn} = 7fc,m exp {—7*:，77̂ } .(B.5) 

115 
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. » 

Taking natural logarithms of both sides and rearranging the terms, 

M 、 人 ( B . 6 ) 

Substitute tn into ẑ .m in (B.2), 
入 fc m m 

(>^k,m \ % m � � m / Afc’爪 \ ̂ fc.m-H.m 
Zk,m = — . lo./j 

\ lk,m J \ Ikjn / 

Then 

^k.m "ykjvn 1 

The second derivative of jẑ .m is 

^ =吃爪 exp {-X,^mtn} — l l m exp {-lk,mtn} (B.9) 

which implies that the condition for the maximum y^iue also requires 7a：,m > 

« 
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List of piano pieces and mixtures 
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No. Title Composer Style 
I Piano Sonata in A major, Mozart, Wolfgang Classical 

K.331/300i,nst mvt. Amadeus 
‘ 2 Variations on Ah Vous Dirai-je Mozart, Wolfgang Classical 

Maman, K.265/300e Amadeus 
• 3 Piano Sonata no. 23 in F Beethoven, Ludwig Classical 

minor, op.57 Appassionata, van 
1st mvt. 

4 Traumerei from Suite Schumann, Robert Classical 
Kinderszenen, op. 15 

5 Nocturne no:2 in Eb major, Chopin, Frederic Classical 
op.9 no.2 

6 Etude in E major, op. 10 no.3 Chopin, Frederic Classical 
7 La Campanella from Grandes • Liszt, Pranz Classical 

Etudes de Paganini 
8 Three Gymnopedies mo.l Satie, Erik Classical 
9 Clair de Lune from Suite Debussy, Claude Classical 

Bergamasque 
10 Jive (Piano Solo) Nakamura, Makoto Jazz 
II -For Two (Piano Solo) Nakamura, Makoto Jazz 
12 Lounge Away (Piano Solo) Nagai, Takao Jazz 

Table C.l: Piano pieces from RWC database [34] for generation of mixtures. 

I 
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No. K Pitches Octave Loudness 
_ 1 I 1 I G2 - L 
~ 2 r Dl|3 - S 
~~3 i " 一 D5 - M 

4 1 一 D3 - S — 
5 1 D|16 - — M 

~ 6 i E4 — - L 
~ 7 1 F4 - M 
~ 8 r C5 = ~ L 

9 2 — D|14，B4 — 0 M，M ~ 
~ 1 0 2 G p , C5 ~ 0 M，M -
" I i ~ ~ C 4 ’ C5 i ~ M’ M 
~12~~2 A3, C||5 0 S，L — 
1 3 2 ~ ~ E 4 , F|15 0 S, L 
~ 1 4 " " T C4’ F4 0 ~ MTL 

" " ~ T 5 " " “ 3 A|14, A||5, cue 1 M, M，M “ 
16 3 一 G4，E5，F5 0 M, L, L 

1 7 V B2’ A|13, D|14 0 ~ ~ M, L, M 
~ I 8 V Bl，D||4, G|14 0 S, M, M 
" 1 9 E 3 , C4, C6 1 M, M, L 

" " “ T " 一 D 4，F 4 ’ A 4，D 5 1 L，L，L，L 
“ 2 1 4 一 C3，G3, E4, G4 1 S’ M, M，M 

4 D3, G3, D4，A|14 ~ ~ 1 ~ S，M, M，L 
4 A3, Cl|4，F||4，FH5 1 S , M，M, L 

~ W ~ 5 C3，G3, C4，E4, G4 2 M, M，M, M, M 
25 I 6 I Fp，C4, F4, C5’ D5’ F5 2 | M’ M’ L, L，M, M • 

Table C.2: List of the 25 mixtures. Loudness: "S" is soft; "M" is medium; and 
"L" is loud. 



、 

Bibliography 

1] S. A. Abdallah. Towards Music Perception by Redundancy Reduction and 

Unsupervised Learning In Probabilistic Models. PhD thesis, Department 

of Electronic Engineering, King's College London, London, U.K., 2002. 

2] A. Askenfelt, editor. Five Lectures on the Accoutics of the Pi-

ano. RoyaJ Swedish Academy of Music, 1990. Available online at 

http://www.speech.kth.se/music/5_lectures/. 

3] B. Bank. Physics-based Sound Synthesis of String Instruments Including 

Geometric Nonlinearities. PhD thesis, Budapest Univeristy of Technology 

and Economics, Hungary, February 2006. 

4] D. Barry and B. Lawlor. Sound source separation: Azimuth discrimina-

tion and resynthesis. In Proc. Int. Conf. on Digital Audio Effects (DAFX)^ 

Naples, Italy, 2004. 

5] M. Bay and J. W. Beauchamp. Harmonic source separation using pre-

stored spectra. In ICA 2006, LNCS 3889�pages 561-568, 2006. 

6] J. W. Beauchamp, editor. Analysis, Synthesis, and Perception of Musical 

Sounds. Springer, New York, 2007. 

7] A. J. Bell and T. J. Sejnowski. An information-maximization approach to 

blind separation and blind deconvolution. Neural Computation, 7:1129-

1159, 1995. 

120 
‘ 3 

http://www.speech.kth.se/music/5_lectures/


Appendix C List of piano -pieces and mixtures 121 

8] J. O. Berger. Statistical decision theory and Bayesian analysis. Springer, 

New York, 2nd edition, 1985. 

9] N. Bertin, R. Badeau, and E. Vincent. Enforcing haxmonicity an'd smooth-

ness in bayesian non-negative matrix factorization applied to polyphonic 

music transcription. Audio, Speech, and Language Processing, IEEE 

Transactions on, 18(3):538 —549, march 2010. 

10] C. M. Bishop. Neural Network for Pattern Recognition. Oxford University 

Press, New York, 1995. � 

11] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New 

York, 2006. 

12] T. Blumensath. Bayesian Modelling of Music: Algorithmic Advances and 

Experimental Studies of Shift-Invariant Sparse Coding. PhD thesis, Uni-

versity of London, 2006. 

13] A. S. Bregman. Auditory Scene Analysis: the Perceptual Organization of 

Sound. MIT Press, 1990. 

14] J. J. Burred. Prom Sparse Models to Timbre Learning: New Methods for 

Musical Source Separation. PhD thesis, Technical University of Berlin, 

Berlin, Germany, September 2008. 

15] C. CarLnam, C. Landone, M. Sandler, and J. P. Bello. The sonic visualiser: 

A visualisation platform for semantic descriptors from musical signals. In 

Proceedings of 7th International Conference on Music Information Re-

trieval (ISMIR 2006), pages 324-327, Victoria, Canada, October 2006. 

16] B. P. Carlin and T. A. Louis. Bayes and Empirical Bayes Methods for 

Data Analysis. Chapman & Hall/CRC, Boca Raton, 2000. 



Appendix C List of piano -pieces and mixtures 122 

17] R. J. Carroll and D. Ruppert. -Transformation and Weighting in Regres-

sion. Chapman and Hall, New York; London, 1988. 

18] M. A. Casey and A. Westner. Separation of mixed audio sources by inde-
f 

pendent subspace analysis. In Proceedings of the International Computer 

• Music Conference (ICMC), Berlin, Germany, August 2000. 

19] A. T. Cemgil. Bayesian inference for nonnegative matrix factorisation 

models. Technical report, Deparment of Engineering, Universityh of 

Camibridge, 2008. 
i 

20] A. T. Cemgil, C. Fevotte, and S. J, Godsill. Variational and stochas-

tic inference for bayesian source separation. Digital Signal Processing, 

�17(5):891-913, 2007. Special Issue on Bayesian Source Separation. ， 

21] J. M. Chowning and D. Bristow. FM Theory and. Applications. Yamaha . 

Corporation, Tokyo, 1986. 

22] E. Clarke. Empirical Musicology: Aims, Methods, Prospects, chapter Em-

pirical methods in the study of performance, pages 77-102. Oxford Uni-
i 
t 

versity Press, Oxford, 2004. 
、t 

23] M. Davy and S. Godsill. Bayesian harmonic models for musical signal 

t f analysis. In Bayesian Statistics VIL Oxford University Press, 2003. 

24] M. Davy, S. Godsill, and J. Idier. Bayesian analysis of polyphonic western 

tonal music. Journal of the Acoustical Society of America�119(4):2498-

2517, April 2006. 
I 

* [25] Ph. Depalle and L. Tromp. An improved additive analysis method using 

parametric modelling of the short-time Fourier transform. In Proceedings • 

of International Computer Music Conference^ pages 297-300, Hong Kong, 

1996. 

、 



Appendix C List of piano -pieces and mixtures 123 
t k 

• . s 
26] A. Doucet, N. de Preitas, and N. Gordon, editors. Sequential Monte Carlo 

methods in practice. Springer, New York, 2001. 

27] C. Dubois and M. Davy. Joint detection and tracking of time-varying • 

harmonic components: A flexible bayesian approach. IEEE Transactions 

on Audio, Speech, and Language Processing�15(4):1283-1295, May 2007. 

[28] M. R. Every and J. E. Szymanski. Separation of synchronous pitched 

, notes by spectral filtering of harmonics. IEEE Transactions on Audio, 

Speech & Language Processing, 14(5):1845—1856, 2006. 

‘ [29] N. H. Fletcher and T. D. Rossing. The Physics of Musical Instruments. 

Springer Verlag，2nd edition, 1998. 

. 30] A. Gabrielsson. Music performance research at the millennium. Psychol-

ogy of Music, 31(3):221-272, 2003. 

[31] J. Gat. The Technique of Piano Playing. Collet's (Publishers) Limited, 

5th edition, 1980. 
‘ .I 

s 

32) S. Godsill and M. Davy. Bayesian harmonic models for musical pitch 

estimation and analysis. In IEEE ICASSP, volume 2, pages 1769-1772, 

‘ . Orlando, USA, May 2002. 

33] W. Gpebl. The-Role of Timing and Intensity in the Production and Per-

ception of Melody in Expressive Piano Performance. PhD thesis, Karl-

‘ Pranzens-Universitat Graz, Graz, Austria, 2003. * 

[34] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka. Rwc music database: 

• Music genre database and musical instrument sound database. In Proceed-

ings of the 4th International Conference on Music Information Retrieval 

(ISMIR 2003)�pages 229-230, October 2003. 

, » ‘ 

、 ^ 
• • 

I 



‘ , 
.、 、 ‘ » 

' • - . . • 

V • • ^ 4 

r . 

Appendix C List of piano pieces and mixtures 124、 . 
t • 

• . 
», * ‘ . -

• -

,35] M. Hamer. Ivory encore for dead - piano greats. 
- . 

In New Scientist, number 2496, April 22 2005. , 

‘ http://www.iiewscientist.eom/ai:ticle/mgl8624966.700. � . 
.. * 

36] A. Hyvaxinen and E. Oja. Neural networks. Independent component anal-
V 

ysis: algorithms and applications. 13(4-5):411-430/2000. 

, 37] J. O. Smith III and S. A. Van Duyne. Commuted piano synthesis. In ‘ 

Proceedings of the 1995 International Computer Music Conference^ pages 

319-326, Banff, 1995. 

38] J. O. Smith III and X. Serra. Parshi: An analysis/synthesis program 

‘ for non-harmonic sounds based on a sinusoidal representation. Technical 

report, Center for Computer Research in Music and Acoustics (CCRMA)， 

Department of Music, Stanford University, 1987. 
< ‘ ‘ 

39] Post Musical Instruments. Piano magic: The'PMI piano sample collec-

tion, 2005. 
• . » 

40] S. M. Kay. Fwadamentals of Statistical Signal Processing: Estimation 

Theory. Prentice-Hall, Englewood Cliffs, N.J., 1993. 

41] A. Klapuri and M. Davy, editors. Signal Processing Methods for Music 

Transcription. Springer, 2006. 

42] A. P. Klapuri. Multiple fundamental frequency estimation based on hax-

monicity and spectral smoothness. IEEE Transactions on Speech and 

Audio Processing, 11(6):804—815, 2003. 

43]^D. D. Lee and H. S. Seung. Learning the parts of objects by. non-negative 

matrix factorization. Nature�401:788-791, 1999. . 

[44] K. Lee and A. Horner. Modeling piano tones with group synthesis. Journal � 

of the Audio Engineering Society^ 47(3): 101-111, 1999. 



• 

Appendix C List of piano -pieces and mixtures 125 

[45] A. C. Lehmann, J. A. Sloboda, and R. H. Woody. Psychology for Mu身 

sicians: Understanding and Acquiring the Skills, chapter Expression and 

interpretation, pages 85-106. Oxford University Press, 2007. 

、 
46] Y. Li, J. Woodruff, and D. Wang. Monaural musical sound separation 

’ based on pitch and common amplitude modulation. IEEE Transactions 

on Audio, Speech, and Language Processing�17(7):1361-1371, 2009. 
47] D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4:415-447, 

» 

1992. • • 
« 

48] D. J. C. MacKay. A practical bayesian framework for backpropagation 

‘ networks. J^eural Computation, 4:448-472, 1992. 
* 

49] R. J. McCaulay and T. F. Quatieri. Speech analysis/synthesis based on a 
,. 、 ‘ ， 

sinusoidal representation. IEEE Transactions on Acoustics, Speech, and 

. Signal Processing, 34(4):744-754, August 1986. 

[50] T. K. Moon and W � C . Stirling. Mathematical methods and algorithms 

for signal processing. Prentice Hall, Upper Saddle River, N.J., 2000. _ 
• < •• . 

51] D. Leech-Wilkinson N. Cook, E. Clarke and J. Rink, editors. The Cam-

bridge Companionio Recorded Music. Cambridge University Press, Cam-

bridge, 2009. -

52] P. D. 0'Grady, B. A. Peralmutter, and S. T. Rickard. Survey, of sparse 

and non-sparse methods in source separation. International Journal of 

Imaging Systems and Technology, 2005. to appear. 
•< ： \ 

I ‘ 

53] C. Palmer and J. C. Brown. Ijavestigations in tke amplitude of sounded 

, . piano tonee. Journal of the Acoustical Society of America, 90(l):60-66, 
‘ J u l y 1991. � . 泊、 ‘ 

\ 

9 f 

f 
‘ . * ; • ‘ ^ ‘ - 、、 -

• ‘ 

- ^ . * 
* 



Appendix C List of piano -pieces and mixtures 126 

54] R. Palmieri, editor. Piano: an encyclopedia. Routledge, London, 2nd 

edition, 2003. f 

[55] R. Paxncutt and G. E. McPherson, editors. The Science and Psychology 

of Music Performance: Creative Strategies for Teaching and Learning. . 

Oxford University Press, Oxford, 2002. 

56] T. W. Parsons. Separation of speech from interfering speech by means of 

harmonic selection. Journal of Acoustical Society of America, 60(4):911-

918, 1976. 
J 、 

57] P.H. Peeling, A.T. Cemgil, and S.J. Godsill. Generative spectrogram 

factorization models for polyphonic piano transcription. Audio, Speech, 

and Language Processing, IEEE Transactions on, 18(3):519 -527, march^ 

K . 2010. 

58] B. H. Repp. A microcosm of musical expression: I. quantitative analysis 

of pianists' timing in the initial measures of chopin's etude in e major.. 

Journal of the Acoustical Society of America, 104:1085-1100, 1998. 

59] B. Hermann Repp. A Saicrocosm of musical expression: Ii. quantitative 

analysis of pianists' dynamics in the initial measures of chopin's etude in 

, e major. Journal of the Acoustical Society of America, 105:1972-1988, 

1999. ‘ 

60] C. Roads, editor. The Computer Music Tatorial MIT Press, 1996. 

61] A. Robel. Adaptive additive synthesis of sound. In Proc. of the Inter-

national Computer Music Conference (ICMC), pages 256-259, Bejing, 

China, 1999. 
8 

62] C. P. Robert and G. Casella. Monte Carlo statistical methods. Springer, 

New York, 2nd edition, 2004. 
« 

• . « 



Appendix C List of piano pieces and mixtures 127 , 

63] E. D. Scheirer. Structured audio and effects processing in the mpeg-4 ‘ 

multimedia standard. Multimedia Systems, 7(1): 11—22，January 1999. 

64] X. Serra. Musical sound modeling with sixiusoids plus noise. In C. Roads, 

S. Pope, A. Picialli, and G. Poli, editors, Musical Signal Processing. Swets 

& Zeitlinger, Lisse, the Netherlands, 1997. 

65] P. Smaxagdis and J. C. Brown. Non-negative, matrix factorization for 

polyphonic music transcription. In IEEE Workshop on Application of 

‘ Signal Processing to Audio and Acoustics, pages 177-180, New Paltz, NY, 

October 2003. 

66] J. V. Stone. Independent Component Analysis: A Tutorial Introduction. 

The MIT Press, Cambridge, Massachusetts; London, England, 2004. 

67] D. G. T^ikas, A. C. Likas, and N. P. Galatsanos. The variational ap-

proximation for bayesian inference. IEEE Signal Processing Magazine, 

25(6):131-146, November 2008. 

68] E.^Vincent. Musical source separation using time-frequency source pri-

ors. IEEE Transactions on Audio, Speech and Language Processing, 

14(1):91098, 2006. 

69] E. Vincent and M. D. Plumbley. Single-channel mixture decomposition 
、 

using bayesian tarmonic models. In Proceedings of the 6th International 
" -

. Conference on Independent Component Analysis and Blind Source Sepa-

ration (ICA 2006), pages 722了730; Charleston, SC, USA, March 2006. 
f 

70] T. Virtanen. Separation of sound sources by convolutive sparse coding. In 

Workshop on Statistical and Perceptual Audio Processing (SAPAj, Jeju, 

Korea, October 2004. ‘ 

. [ 7 1 ] T. Virtanen. Sound Source Separation in Monaural Music Signals. PhD 

thesis, Tampere University of Technology, Finland, November 2006. 

、* . 
I , � 



Appendix C List of piano -pieces and mixtures 128 

72] T. Virtanen. Monaural sound source separation by nonnegative matrix 

factorization with temporal continuity and sparseness criteria. IEEE 

Transactions of Audio, Speech and Language Processing, 15(3):1066-1074, 

2007. 

73] T. Virtanen, A. T. Cemgil, and S. Godsill. Bayesian extensions to non-

negative matrix factorisation for audio signal modelling. In IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing, pages 

1825-1828, 2008. 

74] B. Wang and M. D. Pliimbley. Investigating single-channel audio source 

separation methods based on non-negative matrix factorization 18-19 sep 

2006, pp 17-20, 2006. In Proceedings of the ICA Research Network Inter-

national Workshop, pages 17-20. September 2006. 

75] C. H. Wong, W. M. Szeto, and K. H. Wong. Automatic lyrics alignment . 
I 

for Cantonese popular music. Multimedia Systems, 12 (4-5): 307-323, March 

2007. 

[76] C. Yeh. The expected amplitude of overlapping partials of harmonic 

sounds. In ICASSP�2009. 

77] Udo Zoler, editor. DAFX - Digital Audio Effects. Wiley, 2002. 

y 


