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Abstract

Although significant progress has been made in imaging devices during the past few
decades, the photographs acquired by digital cameras are still far from perfection due
to the physical limitations of hardware such as aperture, lens and sensor. This fact
brings out the demand for study on imapge enhancement: a computational technique
that aims to improve the interpretability or perception of information in photographs
for human viewers. The work in this thesis mainly focuses on three tasks in image
enhancement.

Firstly, since the camera sensor has limited resolution, the acquired images cannot
capture the scene very detailedly. Hence, people often resort to a postprocessing tech-
nique called super-resolution (SR) to enhance the resolution of the captured images.
In the first part of this thesis, two approaches are presented to address the challenging
single image SR problem, which is to recover a high-resolution (HR) image from one
low-resolution (LR) input. Specifically, a novel learning-based framework is designed
specifically for face image SR task from the perspective of DCT domain. In addition,
an efficient two-step scheme is developed to super-resolve generic image by exploiting
the salient edges of the input LR image.

Secondly, due to the limitation of lens and aperture, some cameras cannot pro-
duce pleasant photographs with desired focus setting. For example, portrait photog-
raphy that requires shallow depth of field (DOF) is not allowed when using the com-
pact point-and-shoot cameras. In the second part of this thesis, a new and complete
postprocessing-based focus editing system that is able to handle the tasks of focus map
estimation, image refocusing and defocusing, is developed to overcome the optical lim-
itations and create different kinds of novel photos with desired focus setiing from an
imperfect photo.

Finally, since the radiance of the real world spans several orders of magnitude and

its dynamic range dramatically exceeds the capability of the current digital cameras,



vi ABSTRACT

there often exist some undesirable over- or under-exposed regions in a photograph. The
third part of this thesis aims at producing one great looking well-exposed image that is
virtually impossible with a single exposure by compositing & stack of photos at different
exposures taken with a conventional camera. Particularly, a simple but effective method
is presented to describe how to take advantage of the gradient information to accomplish
exposure composifion in both static and dynamic scenes. Compared to conventional
high dynamic range (HDR) imaging work, the proposed approach is quite appealing in
practice since it is computationally efficient and easy to use, and frees users from the
tedious radiometric calibration and tone mapping steps.

Throughout this work, extensive experiments on various real and synthetic image

data are conducted to evaluate the performance of the proposed algorithms.
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SR
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Notations
A A matrix
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t; First order derivative filter: t) = (1 — 1] and t; =[1 —1)¥
zq Edge location

x A vector

¢ A small value such as 10~2% to avoid singularity
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Chapter 1

Introduction

1.1 Motivation & Objectives

From ancient rock art to children’s sidewalk drawings, we live in a visual world. Ac-
cording to a conception of visual experience that has been widely held by perceptual
theorists, we open your eyes, and we enjoy a richly detailed picture-like experience of
the world, one that represents the world in sharp focus, uniform detail and high reso-
lution from the center out to the periphery, It can be called: snapshot conception of
experience. Over the ages, human beings are trying to record the visual world con-
stantly with different forms to keep this fascinating experience for ever. Among them,
painting is the most long-history one, and it is still popular even today. The oldest
painting can date back to 32,000 years ago. From then on, people begin to depict the
creatures, domestic scenes, labor scenes, or nature by applying paint, pigment, color
or other medium to a surface as walls, paper, canvas, wood, glass, lacquer, clay or
concrete. However, painting is more like an artistic creation. It is inaccurate and time
consuming. Amateur can hardly master it. Only the person with assiduous training
can become a skilled painter and produce excellent works.

The advent of camera break the ice, and offers a quick and faithful depiction of
things in life. By definition & camera is a object, with a lens, that captures incoming
light and directs the light and results image towards film {optical camera)} or the imaging
device (digital camera). The first camera that is small and portable enough to be
practical for photography was built by John Strognofe in 1685. Over the last hundreds
of years, camera has come a long way (see Figure 1.1}, from hulking fo handheld, from
monochrome to color, from optical to digital, from still image to video. Today, camera
has become a necessity of our life. Especially, the development of computer, Internet

and wireless communication greatly promoted the popularity of camera. Camera. even
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results in a new language that everyone can understand. The language is photography,

through which we could recall & moment frozen in time and could share it with others.

Although nowaday camera is quite powerful, it is not a patch on our eyes and cannot
capture what we see exactly. In most cases, the acquired photographs are still far from
perfection due to the physical limitations of hardware such as aperture, lens and sensor.
In this thesis, three aspects of the hardware limitations are addressed as follows:

First, camera sensor like CCD (Charge-Coupled Device) and CMOS (Complemen-
tary Metal-Oxide-Semiconductor) can only allow a limited number of spatial pixels,
which results in a limited image resolution [C'li of al, 2004], Although these sensors
are suitable for most imaging applications, the current resclution level and consurmer
price will not satisfy the future demand. In most cases, images with high resolution are
desired and often required. Especially, the recent popularity of HDTV (High Definition
Television) brings out the need for resolution enhancement of NTSC and PAL formats.
High resolution means that pixel density within an image is high, and therefore as
shown in Figure | 2, a high-resolution (HR)} image can offer more scene details that
may be critical in various applications.

Second, due to the limitation of lens and aperture, some cameras cannot produce

pleasant photographs with desired depth of field (DOF). As illustrated in Figure 1.3,
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Figure 1.5 Dynamic range comparison of the scene of real world and camera
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Figure 1.6 Image capture with different exposure times Left' long exposure; Middle: medium
exposure; Right short exposure

dealing with high dynamic range (HDR) content, either.

The objective of this thesis is to propose a series of image enhancement methods to
remedy the aforementioned issues and make photography beyond the physical limita-
tions possible. Firstly, two kinds of approaches are presented to address the resolution
enhancement. One aimed at face images, the other is for generic images. Secondly, a fo-
cus editing system is presented which can yield images with different focus effects from
an imperfect image. Finally, a simple but effective approach is presented to generate
a tonemapped-like HDR image where all parts appear well-exposed by multi-exposure

composition.

1.2 Previous Work

In this section, we give a brief overview of the existing work relevant to the three topics
of this thesis- resolution enhancement, focus editing and HDR.. More overviews of the
related work will be presented in the Introduction section of each chapter.

Generally speaking, there are two ways to relieve the three camera limitations men-
tioned above. One is hardware solution which relies on the improvement of device
physics and circuit technology. The other is through image enhancement which is the
process of improving the quality of a digital image by manipulating the image with

software. Therefore, in the next sections, the existing techniques of each fopic are
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Figure 1.8 IHustration of multi-image SR

In addition, Ben-Ezra et al. [Ben-Exa ol al, 2004; Ben-Ezia el al., 2005 devel-
oped a novel camera called the ”jitter camera” shown in Figure |.7. The jitter camera
produces shifts between consecutive video frames by shifting the video detector instan-
taneously and timing the shifts to occur between pixel integration periods, Then, the
captured videos are further processed by an adaptive resolution enhancement algorithm

to achieve resolution enhancement.

Software Solution

Image processing hased software seolution is a promising alternative to achieving res-
olution enhancement, since it costs less and the current imaging systems can be still
utilized. This kind of solution is normally referred as super-resolution (SR) [Pwk et al ,
200.3] whose goal is to produce a HR image or a sequence of HR images from a low-
resolution (LR} image or a sequence of LR images. It can be widely applied in various
fields, including image compression, medicel imaging, satellite imaging, and video ap-
plications. According to the number of input images, SR can he further categorized

into two groups.

Multi-Image SR Most existing work was presented based on the premise of the
availability of multiple IR images that capture different looks of the same scene. As
shown in Figure | 8, the LR images have different subpixel shifts from each other and
each provides some new information that cannot be captured from the other [Park
of al . 2003; Potter and Blad, 2009; Takeda e ol |, 2009] Hence, after registering these
images, a HR image car be obtained by combining all the new information together

[ and Peleg. 1997, ham and Peleg, 1993]
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Based on the generative model of a camera which describes how a latent scene is
transformed, filtered and sampled to form an observed image, a mazimum likelihood
(ML} estimator provides a simple way to reverse these degradations in order to estimate
a HR representation of the scene [Capel, 2004], However, SR is a well recognized ill-
posed problem and a multiplicity of possible solutions exists given a set of observation
images. Therefore, the ML estimator is extremely sensitive to noise in the observed
images and to errors in registration. To solve this problem, it is necessary to intro-
duce & prior model that imposes constraints on the form of the SR image, such as
local smoothness, edge preservation, positivity and energy boundedness [Borman and
Stevenson, 1898]. Thus, a mazimum a posterior (MAP) estimator can be obtained and
the solution is accepted only when it is both a good fit to the observations, and also
has & high likelihood with respect to the prior model [Cheeseman el al., 1994; Schuliz
and Stevenson, 1996; TTardie of al., 1897; Capel, 2004; Protier ot al., 2009). Besides,
projection onto convex sets {(POCS) provides a convenient way for the inclusion of prior
constraints and seek fo solve the SR inverse problem iteratively using a full generative
image model and arbitrary motion model [Fren ol al., 1997; Patti 1 al.. 1997; Elad and
Fener, 1999; Patti and Altunbasak, 2001]. All above methods can also be regarded as
the reconstruction-based approach whose performance deteriorates as the magnification

factor becomes a bit large [Lin and Shum. 2004].

Single-I'mage SR Recently, some efforts were made on inferring a HR, image from
a single IR input. Compared te the multi-image methods, single-image SR is more
challenging and inherently limited by the amount of data available in an image.

The most popular way of enhancing image resolution in the graphics software is
through interpolation-based methods such as Bilinear and Cubic B-Spline, but they
suffer from severe blurring problem. There also existed some reconstruction-based
single-image methods proposed with the aid of advanced prior models, where besides
the global sparse priors [Rudin ¢ al.. 1092; Black and Sapire, 1998; Tappn ot al., 2003,
Levin and Weiss, 2007; Robh and Black, 2009], local edge-based priors were developed
to further preserve edge sharpness such as [Fatlal, 2007; Sun ct al.. 2008; Dai et al,,
2009].

Learning-based methods attract a lot of attention in the recent years. Usually,
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the unknown HR image is inferred by making use of a training set directly or indi-
rectly. In comparison with the interpolaiion-based methods and the reconstruction-
based methods, learning-based methods can achieve higher magnification factor and
better visual quality especially for single-image SR problem [Lin ef al., 2008]. Baker
and Kanade [Baker and Kanade, 2000; Baker and Kanade, 2002) presented a pioneering
work on super-resolving face images based on a Bayesian formulation. Capel and Zis-
serman [Capel and Zisserman, 2001] extracted eigenfaces from a collection of training
face images as a prior model to constrain and super-resolve LR face images. Freeman
et al. [Frecman ot al.. 2000] proposed a well-known parametric MRF (Markov Random
Field) based inference model to learn the statistics between the underlying scene and
the observed image data. This framework was applied to the SR problem as well as
other low-level vision problems. Such framework was extended and adopted by Sun
et al. [Sun ot al.. 2003}, Bishop et al. [Bishop ot al.. 2003], Wang et al. {Wang ot al.,
2005], Liu et al. [lin ¢t al., 2007], Ma et al. {Ma ¢t al., 2008] and Xiong et al. [Xiong
ot al., 2009]. For instance, Liu et al. [Liu cl al.. 2007] developed a two-step statistical
modeling approach for face hallucination which integrates a global parametric model
and a local nonparametric model. Wang et al. [Wang ot al., 200%] proposed a combina-
tion model that integrates the SR constraint and the patch based image co-occurrence
constraint for the SR problem. But as analyzed in Lin et al. [Lin ot al., 2008], the
disadvantage of learning-based method is that the performance often replies on how
well the input LR image matches the training samples. Therefore sufficient number of
appropriate training samples should be provided to ensure the SR performance.

In addition, without using external data, Glasner et al. [Glasner et al., 2009] pre-
sented promising single-image SR resuits by integrating the reconstruction-based model

and the learning-based model into an unified SR framework.

1.2.2 Focus Editing

Image focus editing is an interesting research topic and has received a lot of attention
in recent years. Two tasks are mainly involved in this {opic. One is image refocusing
which is to recover the sharpness of the blurry defocused objects in an input image and
generate a virtual all-focused image. The other is defocusing which is to blur an image

and create defocus effects,
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Figure 1.9 A flexible DOF camera prototype which is composed of a lens and a detector
mounted on a translation stage that is controlled by a mucro-actuator [Nagaliia ot ol | 2008]

Hardware Solution

To tackle the image refocusing and defocusing problem, a large number of algorithms
were presented with the aid of additional optical elements or devices that are used to
capture more information about the target scene. For instance, Ng et al. [Ng cf al,
2005) created a plenoptic camera by placing a microlens array between the sensor and
the main lens. Thus synthetic images focused at different depths can be computed
with the extra information captured by the microlens. Alternatively, one can place a
positive lens array in front of the camera [Gemgiev of al . 2007). Veeraraghavan et
al. [Veeiasagliavan ef al , 2007] used a cosine mask rather than lens array for computa-
tional improvement. A coded aperture is designed in [L.evin ¢t o} . 2007] by inserting a
patterned occluder within the aperture of the camera lens. Depth and the all-focused
image can be recovered from a photograph taken by this modified camera. In [Moieno-
Noguer ol al., 2007), the depth map and the refocused image are produced with the aid
of a grid of dots projected on the scene. Liang et al. [laang ¢t al , 2008] presented a new
imaging system which can produce different focusing images by including a novel com-
ponent called programmable aperture and two associated post-processing algorithms.
Nagahara et al. [Nagahaia ¢l al , 2008] addressed the flexible DOF photography with a
prototype camera (see Figure 1 9) that uses a micro-actuator to translate the detector

along the optical axis during image integration
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Software Solution

As an alternative, the other methods achieve focus editing by using only image process-
ing. A natural way is to capture multiple images of the scene with different focus setting
and then combine them to create synthesized images with new focus effects [Knbuta
et al.. 2004 Kubota e Alzawa, 2005; Hasinoff and Kutnlakos, 2007]. An early
method was presented by Subbarao et al. [Subbaran et al,, 1995} which showed that
2 focused image can be obtained from only two blurred images taken with different
camera parameter settings. More recently, Yang et al. [Yang ot al., 2008b; Yang and
Schonleld, 2010) presented a method that is able to produce in-focus image sequences
by processing blurred videos captured with out-of-focus cameras. Hasinoff and Ku-
tulakos [[Hasinoff and Kutnlakos, 2008; Hashioff, 2008; Kutnlakos and Hasinofl, 2009]
proved that capturing a focal stack at the press of a button, instead of a single photo
can boost significantly the optical performance of a conventional camera. Generally
speaking, the focal stack photography has two performance advantages: first, it allows
us to capture a given DOF much faster than one-shot photography, and second, it leads
to higher signal-to-noise ratios when capturing wide DOF with a restricted exposure
time,

Recently, the more challenging single-image-based work has attracted much atten-
tion. For example, the single image defocusing problem was addressed in [Yan ci al.,
2000] and [Bac and Durand, 2007). Yan et al. [Yan o al., 2009] developed an interactive
system for defocusing by constructing the depth information of an input image with
user interaction. Bae and Durand [Bac and Durand, 2007] contributed at proposing
an automatic focus map estimation method by estimating the edge blhurriness with a
brute-force fitting strategy. The defocusing there is handled with the aid of the lens blur
tool in Photoshop. The method proposed by Bando and Nishita [Bando and Nishita,
2007] can tackle the single image refocusing task but it requires logs of user intervention

to determine the biur kernel from a number of predefined candidates.
1.2.3 High Dynamic Range Imaging
Hardware Solution

To extend the dynamic range of conventional camera, some new HDR. camera proto-

types have been developed during the past years, Normally, this kind of methods require
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Figure 1.10: A HDR camera prototype which is composed of a color video camera, an imaging
lens, an LCD spatial attenuator and electronics to control the attenuator [Nayar and Branzoi.
2005].

additional optical elements or devices to help the camera sensor record more dynamic
range of the target scene. For example, some HDR camera prototypes such as [Saito,
1996; Kinmra, 1998; Tkeda, 1098; Aggarwal and Ahuja, 2004] can split the incoming
light to several detectors which have different exposures. Some methods like [Wen,
1989; Muorakoshi, 1994; Street, 1908] were presented to achieve HDR imaging with a
different CCD design where each detector cell includes two sensing elements of different
sizes. When the detector is exposed to the scene, two measurements are made within
each cell and they are combined cn-chip before the image is read out. With only one
image detector, some researchers attempted to give the pixels different exposures adap-
tively to the scene by using additional hardware such as a computational element that
can measure the time each pixel takes to attain full potential well capacity [Brajovic
and iKanade, 1990], an optical mask with a pattern of cells with different transparen-
cies [Nayar and Mitsunaga, 2000] or a controliable liquid crystal light modulator whose
transmittance can be varied [Nayar and Branzoi, 2003] (see Figure 1,10). Instead of
direct pixel intensity measurements as output, Tumblin et al. [Tumblin ei al., 2005]
presented a rather new camera design that first measures the differences between ad-
jacent pixel pairs and then quantize the obtained differences appropriately to capture
the HDR scene.

However, compared to conventional camera, HDR camera is still unavailable to
consumers and has three main limitations. First, it is expensive as some additional

hardware is required. Second, it normally takes longer time to finish a shot. Third, it
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has limited resolution and faces the challenge of scaling to high resolution while keeping

fabrication costs under control.

Software Solution

The software solutions seek to produce a HDR image from a stack of images taken
by a conventional camera with different exposure times. This kind of techniques can
be referred as multi-exposure HDR, and can be furthered classified into two types

according to whether the scene contains moving objects or not.

Static HDR The standard HDR. technology prevalent in the current graphics soft-
ware belongs to static HDR and require all objects stay stationary while capturing.
It normally consists of two steps. First, recover the camera response function (CRF)
and estimate the radiance maps from the multiple exposed images and their exposure
settings [Debevee and Malik, 1997; Grogsherg and Nayar, 2003). Combine all radiance
maps will result in & HDR image encoded specially to store the pixel values that span
the whole tonal range of the real world scene. Second, since the commonly used dis-
play devices can only allow a low dynamic range {LDR), tone mapping is necessary to
remap the HDR image to a LDR image [Durand and Dorsey, 2002; Faltal et al., 2002;
Reinhard ol al,, 2002; Drage ¢t al., 2003; Li ot al., 200%; Shan et al., 2010]. As an alter-
native, the other kind of work attempted to produce the desired tonemapped-like HDR
image directly by compositing the multiple exposures in the image domain [(Goslibashy,
2005; Mertens et al, 2009; Shanmuganathan and Chaudhuri, 2009]. These methods
skip the typical HDR process, and no intermediate HDR image needs to be generated.
Therefore, they are more efficient and do not require tone mapping.

However, the major problem of above static methods is that the target scene is
required to be completely still throughout the image capture. Any object movement
in the exposure sequence can cause ghosting artifacts in the resulting image. This
drawback severely affected the application of HDR in practice, since for most scenarios,
it is hard to guarantee all objects involved stay stationary from one capiure to the next.
For instance, there often exist crowds of people moving around in tourist resorts. There

are windblown trees in nature scenes.
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Dynamic HDR Recently, lots of efforts have been made to address how to achieve
ghost-free HDR imaging in dynamic scenes. In brief, they first detect motion regions
explicitly or implicitly, and then combine all calibrated radiance maps without the pix-
els corrupted by moving objects to create an artifact-free HDR image. For instance,
Kang et al. [Kang of, al., 2003] proposed to compute the optical flow between successive
frames and then warp pixels to create ghost-free HDR results. To find the pixels cor-
rupted by moving objects, Reinhard et al. [Reinlard ot al., 2005} proposed to threshold
the variance map computed based on the irradiance variation of pixels over different
exposures. Similarly, Jacobs et al. [Jacobs et al., 2008] applied a threshold on the en-
tropy map, while Grosch [(irosch. 20006] applied a threshold on the error map estimated
from the input exposures. Besides, some researchers [Khan el al., 2006; Pedone and
Ieikkild, 2008) proposed to use the kernel density estimator to iteratively determine a
probability that a pixel belongs to a moving object. Gallo et al. [Gallo el al., 2009} and
Eden et al. [Eden et al., 2006] proposed to composite the desirable radiance with the
guidance of a reference view preselected automatically or manually.

In summary, all above work was presented in the radiance domain fully or partially.
Hence, there are two common limitations. First, the performance highly relies on the
success of radiometric calibration of CRF which is sensitive to image noise, illumination
change and misalignment error. Second, they normally have complex working pipelines
and require tone mapping for HDR reproduction. The above problems make these
kinds of methods tend to be computationally expensive and restrict their applications

in practice.

1.3 Thesis Outline

This thesis focuses on enhancing the visual quality of an image captured with a con-
ventional camera on three aspects: spatial resolution, focus setting and dynamic range.
This thesis is divided into six chapters.

Chapter 1 gives an introduction about the thesis, including the motivation, objec-
tives, related work and thesis organization.

Chapter 2 and Chapter 3 address the chalienging single image SR problem, which
is to recover a HR image from a single LR input. Chapter 2 presents a learning-based

framework which aims at face image SR task from the perspective of DCT dormain.
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Chapter 3 describes an efficient two-step scheme which aims at super-resolving generic
imape by exploiting the salient edges in the LR input.

Chapter 4 describes a new and complete focus editing system that is able to handle
the tasks of focus map estimation, image refocusing and defocusing. Given an image
with a mixture of focused and defocused objects, we first detect the edges and then
estimate the focus map based on the edge blurriness which is depicted explicitly by a
parametric model, Then, by means of refocusing and defocusing, we seek to overcome
the optical limitations and create novel images with different styles of focus effects.

Chapter 5 describes a simple but effective approach that is able to bypass the typical
HDR, process and direcily yield a well-exposed image in both static and dynamic scenes
by compositing multi-exposure images with the guidance of image quality assessment.
A novel quality assessment system is developed by faking advantage of the gradient
change information in differently exposed images. Compared to conventional HDR
work, the proposed approach is quite appealing in practice since it is computationally
efficient, easy to use and frees users from the tedious radiometric calibration and tone
mapping steps.

Chapter 6 closes the thesis with a summary of the main contributions and several

directions for further work.



Chapter 2

Super-Resolution for Face Image —
Face Hallucination

2.1 Introduction

As an active research field in image processing and computer vision, super-resolution
{SR) is to produce a high-resolution image (HRI} or a sequence of HRIs from a low-
resolution image (LRI} or a sequence of LRIs. Recently, face hallucination, an interest-
ing topic within SR, has aroused much attention. This term, firstly introduced by Baker
and Kanade [Baker and Kanude, 2000], is about the generation of a high-resolution
(HR) face image from low-resolution (LR) input. Face hallucination can be applied
in many fields ranging from image compression to face identification. For example, in
video surveillance, the ability to generate a higher resolution face image with detailed
facial features from low resolution face images can raise the system performance.

In this chapter, we propose a novel learning-based face hallucination framework
built in the Discrete Cosine Transform (DCT) domain as shown in Figure 2.1. Instead
of estimating pixel intensities directly as the traditionsl learning-based algorithms, we
concern ourselves with inferring the DCT coefficients, which contains two parts: DC
coeflicient estimation and AC coefficient inference. DC coefficients, which represent
the average pixel intensity of the target blocks, can be estimated fairly accurately by
interpolation methods such as Bilinear and Cubic B-Spline. AC coefficients, which
contain the information of local features such as edges and corners around eyes, mouth
of face image, cannot be estimated well by interpolation. Therefore, a simple but
effective learning-based inference model is proposed to tackle this challenging problem
in this work. The basic idea of the proposed method is that we are interested in learning
the local facial features embodied in AC coefficients only, so that a more specific and

efficient training set for AC coeflicients can be buiit and used. Without considering

15
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Figure 2.1: The proposed face hallucination framework,

DC coefficients, the proposed learning process will be more robust since it is much less
influenced by image illumination. Moreover, in order to reduce the redundancy of the
training set, a compact block dictionary is built by a clustering-based training scheme
as stated in Section 2.0.

Furthermore, the intermediate hallucinated result ff} in Figure 2.1 is an image
preprocessed by a prefiltering scheme [Tian ot al . 2003; Ty and Tran. 2002} which pro-
cesses the block boundaries to remove the correlation of neighboring blocks. Therefore
we can assume that each HRI block in the proposed AC coefficient inference model
is independent of its adjacent HRI blocks. This significantly simplifies the inference
model. The final output Iy can be obtained from In by postfiltering. Anocther impor-
tant benefit of combining the filtering scheme into the face hallucination process is that
the blocking artifacts which often occur in black or patch based algorithms are greatly
reduced. Besides, unlike conventional SR work such as [Freeman ¢l al. 2002], a more
general way of utilizing training priors - k-pass criterion, is adopted in the proposed
learning process. In detail, each target HRI block in the proposed inference model is
derived from multiple training samples instead of only one.

The rest of this chapter is organized as follows. In Section 2 2, we briefly review

existing relevant work. Section 2 3 formulates the problem and gives an overview of
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the proposed method. The simplified AC coefficient inference model is introduced in
Section 2.41. The reconstruction of the target HRI is given in Section 2.5. Section 2.6
introduces the clustering-based training scheme and shows some experimental results.

Section 2.7 draws some concluding remarks.

2.2 Related Work

Face hallucination from a single LR, face image which is also referred ag single-image SR
problem has received a lot of attention in recent years. A number of related SR and face
hallucination algorithms have been proposed, which can be grouped into three types.
Interpolation-based algorithms (e.g., Bilinear, Cubic B-Spline) suffer from severe blur-
ring problem especially when the resolution of the input is very low. Reconstruction-
based methods {Morse and Schwartzwald, 20015 Lin and Shum, 2004], which try to
model the process of image formation to build the relationship between LRI and HRI
based on reconstruction consiraints and smoothness constraints, are quite limited by
the number of input LRIs and usually cannot work well in single-image SR problem.
Recently, learning-based methods become very popular. Usually, the unknown HRI
is inferred by making use of some training set directly or indirectly. In comparison with
other methods, learning-hased method can achieve higher magnification factor and bet-
ter visual quality especially for single-image SR problem [l.in ol al., 2008). Baker and
Kanade [Baker and Kanare, 2000; Baker and Kanade, 2002] presented & pioneering
work on hallucinating face image based on a Bayesian formulation. The target HRI
is inferred by resorting to a training set. Capel and Zisserman [Capel and Zisserman,
2001] extracted eigenfaces from a collection of training face images as a prior model
to constrain and super-resolve LR face images. Freeman et al. [Froenan et al., 2000]
proposed a well-known parametric MRF (markov random field) based inference model
to learn the statistics between the underlying scene and the observed image data. This
framework was applied to the SR problem as well as other typical low-level vision
problems. Based on such framework, Liu et al. [Lin ot al., 2007] developed a two-step
statistical modeling approach for face hallucination which integrates a global paramet-
ric model and a local nonparametric model. Besides, Muresan and Parks [Auresan and
Parks, 2002 presented a learning-based face hallucination method from an adaptive op-

timal recovery point of view. Liu et al. [Lin ot al., 2005] proposed a TensorPatch model
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face hallucination and devised a residue compensation step to enhance the hallucina-
tion result. All above mentioned learning-based methods are built in spatial domain
for the inference of pixel intensities of the target HRI, and differ with each other on
the learning manner from the training set. A major problem of these methods is the
high computation requirement due to the complex learning process. Especially when
the MRF based inference model is used and the training set is very large, rather taxing
computation and heavy memory load are required.

Some SR algorithms have been proposed to tackle the problem in transform domain
which is normally the DCT domain. It is because the DCT has high energy packing
ability and is adopted in most image and video coding standards. Ni and Nguyen
NI unel Nguven, 2007] used SVR (Support Vector Regression) and utilized the DCT
structural properties to solve their proposed regression structure. Patii and Altunbasak
[Patii aud Allunbasak, 1999] proposed a POCS solution that directly incorporates the
transform domain quantization information by working with the compressed bit stream.
Park et al. [Park ¢l al., 2004] presented = HR reconstruction method for DCT-based
compressed images that simultaneously estimates the quantization noise modeled as
a correlated Gaussian process in spatial domain. Pham et al. [Phaw ot al, 2006}
implemented the prevalent learning-based method [Freowan ot al., 2002] in the DCT
domain for fast super-resolving the compressed video. However their results suffer from
severe blocking artifacts, even with a strict constraint that the HR priors are limited
to use the same scene as that of the LR video.

Recently, some work was proposed to allow face hallucination technology to handle
faces with different poses or expressions. For example, Li and Lin [Li and Lin, 200-]
proposed to tackle the pose variation problem by estimating the pose of the profile
input face image based on SVM (support vector machine) classifier. The corresponding
frontal face image is synthesized and then super-resolved into a HR frontal one. A
more generalized approach was proposed by Jia and Gong [Jin and Gong. 2008] to
super-resolve LR face images with variations in faclal expression and pose based on a
hierarchical tensor space representation.

HRIs inferred using interpolation-based methods suffer from blurring problem which
is especially severe in high activity regions containing edges and corners. For example

in Figure 2.2, Cubic B-Spline interpolation is used to enlarge a 24 x 32 LR face image to
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Figure 2.2: Face hallucination using Cubic B-Spline interpolation. (a) the original HRT (96 x
128); (b} the synthesized LRI (24 x 32); (c) the interpolated HRI using Cubic B-Spline; (d) the
difference image

a 96 x 128 HRI. The difference image shown in Figure 2 2(d) shows that Cubic B-Spline
works well in the smooth parts of face, but infroduces large distortion in high activity
regions such as eyes, mouth and nese. This is because the higher frequency components
which contain the information of local details are missing. Interpolation-based methods
do not introduce new high frequency components required by the inferred HRI at high
activity regions. Learning-based methods solve the above problems by creating the
required high frequency components from a training set. However, the training set
for faces with a particular pose and expression is only applicable to the hallucination
of faces under similar conditions. Qur experimental results show that visual quality
deteriorates quickly when difference in pose is larger than 10 degrees. This problem
can be tackled by methods like [Li and Lin. 20041; Jia and Gong. 2008]. Alternatively,
one may first detect the pose of a face and then perform face hallucination using
the corresponding training set. This method can produce better results but requires
many training set and so heavier memory load and more computation. Therefore, it is

important to develop a simple algorithm that can perform face hallucination effectively.
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2.3 Problem Formulation and Overview of the Proposed Framework
2.3.1 Problem Formulation after Transform Face Image by the DCT

As a popular transform in image processing, the DCT [Wang ¢t al., 2002a] refers to a
separable orthogonal linear mapping of blocks of image pixels into blocks of transform
coefficients. Similar to Discrete Fourier Transform (DFT), it transforms a signal or an
image from spatial domain to frequency domain.

The my, element of the uy, basis vector of the 1-D N-point DCT is defined as:

1/N ,u=00<m<N-1

V(u,m) =
V2/Neos™ @2 1<y < N-1,0<m< N -1,

Also VT = V! since the DCT is a real and orthogonal transform. To obtain the
2.D DCT of an N x N image block, cone can first apply the 1-D DCOT to each row
of the block and then to each column of the row transformed block, ie., C = VTV
and T = VTCV where T denotes an image block, C denotes the block of the DCT
coefficients. Also, the image block can be regarded as the sum of N? basis images

B{u,v) weighted by C(u,v) as follows.

T=Y" Y Cluv)Bu,v). (2.1)

Z

[
=
i
=]

Note that B(u,v) is constructed by the outer product of the wu;, and vy, basis
vectors. The DCT coefficient C(u,v) specifies the contribution of the basis image
B(u,v) to T. For example, the DC coefficient, C(0,0), denotes DC level and the average
pixel intensity of the target block. The other coefficients, known as AC coefficients, are
associated with higher frequencies.

In this work, an image is divided into 8 x 8 non-overlapped blocks and the hal-
lucination is performed block by block. The block size is chosen to be 8 x 8 which
is informative enough to represent the target scene. Another reason is that the 2-D
8-point DCT is widely adopted in image and video coding. Figure 2.3 shows the basis
images B(u,v) of the 8 x 8 DCT. The frequency of the basis image increases from left
to right and top to bottom. In the proposed method, the DCT coefficients are divided
intc three groups based on the zig-zag scanning order, which are DC coefficients, low

frequency and high frequency coefficients as shown in Figure 2.4,
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Figure 2.5: Face image coded by the 8 x 8 DCT. {a) the original image reconstructed with all
64 DCT coefficients (zero+low+high frequencies) per block, (b) the reconstructed image with
the first 16 coefficients (zero+low frequencies). (c) the energy distribution of the 8 x 8 DCT
coefficients of the face image.

coefficients per block, the target image is already well represented.

This implies that it is not necessary to infer all coefficients. Instead, we only need to
focus on inferring the coefficients that are vital to the visual quality. Hence, the intent
of this work is to infer the DC and the low frequency coeflicients in each 8 x 8 block
of the target HRI. High frequency coefficients are excluded due to their weak energy in
the face image.

2.3.2 Advantages of Face Hallucination in the DCT Domain

In the proposed method, face hallucination is tackled by inferring the DC and the 15
low frequency AC coefficients for each block of the target image in the DCT domain.

Such formulation will benefit us in several aspects:

1. As shown in Figure 2.0, the DC coefficient which represents the average pixel in-
tensity of a target block, can be estimated fairly accurately by a simple interpolation-

based method such as Cubic B-Spline.

2. We only need to focus on building a specific learning-based inference model for
these low frequency AC coefficients which correspond to the local details of face

image such as the edges, corners around eyes.

3. A simplified learning-based inference model can be developed to infer the AC coef-

ficients efficiently based on a reasonable assumption that blocks of the prefiltered
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Figure 2.6: DC coefficient estimation by Cubic B-Spline interpolation. (a} the reconstructed
image only wilh the original DC coefficients (refer to Figure 2.2(z)); (b) the reconstructed
image only with the DC coefficients which are estimated by Cubic B-Spline interpolation (refer
to Figure ¥ 2(c})). There is litter noticeable difference between (a) and (b). (c¢) shows each
block’s relative estimation error of the estimated DC coefficient (D(Chy,) to the original DC
coefficient (DO, ). It is evident that the errors are all very small.

HRI built in the DCT domain are independent with each other.

4. The data dimension of training and testing set can be reduced significantly. As
15 AQC coefficients in an 8 x 8 block are enough to produce a satisfying result with
detailed local features as shown in Figure 2 5, the dimension of HRI block can be

reduced from 64 in spatial domain to 15 in the DCT domain in this case '

In summary, as shown in Figure 2.1, the proposed framework can be divided into two
steps. Firstly, the prefiltered HRI Iy is inferred in the DCT domain, which includes
AC coefficient inference by learning and DC coeflicient estimation by interpolation.
Secondly, the final hallucinated result 7y is reconstructed from the prefiliered result

f;; by postiiltering.

'Note that this conclusion is made based on the fact that the texture (skin) of face image is generally
smooth. Hence, high frequency DCT coeffictents of face images have very small magnitude and a small
number of low frequency coefficients only are good encugh to produce satisfying result with enough
details. For those general images which contain large high frequency components, more AC coefficients
need to be used to preserve the finest details of the output image.
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Figure 2.7: Graphical models for AC coefficient inference. (a) the prevalent MRE based
inference model [ireoman of al.. 2000; (b} the propesed simplified inference model.

2.4 learning-based AC Coefficient Inference Model

The inference of the AC coefficients I for the target HRI can be formulated as a
mazimum a posteriori (MAP) problem:
o = arg mex p(IE°|1£9). (2.2)
H

As shown in Figure 2.7(a), a typical MRF inference model [Freeman et al., 2000] used
in the low-level vision tasks can be employed to address this problem. Node [ j}c () and
node T fc(i} are used to represent unknown 4z, HR block of HRI and the observed 4,
LR block of LRI respectively. The links between nodes indicate statistical dependencies
which as given by the MRF model in Figure 2.7(a) have two implications: 1) HRI block
I#€(4) provides all the information about the observed LRI block I£C(i) as the only
link to J£€(4) is from IAC(5); 2) HRI block I4€(4) gives information about the adjacent
HRI blocks by the links from 74 (i) to its adjacent HRI blocks.

Since p(I;‘}CIIﬁC) = % and p(I£€) is constant over J4€, (2.2) can be rewrit-
ten as

If° * = argmax p(I£°, I£), (2.3)
e

According to the MRF model in Figure 2.7(), the joint probability of I£C and I gc
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can be written as:

pIE%,1EC) = pUFC (1), 1% (m), 1£C (1), .., 1EC ()
1 , . , .
=3 T wirde @), oo [ (4° ), 1£°6)) (2.4)
(i.5) i

where Z is a normalization factor, » denotes the number of block pairs, (i, ) indicates
neighboring blocks. Both 4 and ¢ are pairwise compatibility functions which can be
learned from the training set. ¥ is used to model the spatial smoothness between the
neighboring HRI blocks. ¢ is used to model the dependency between the corresponding
LRI and HRI blocks.

Now the problem in (2.2) becomes:

I§° " =argmax [ ] $(I5° (@), 15°() [ [ 6(H° (1), 1£° 1)), (2.5)
e ) i

Hence, the target T ;é}c' can be inferred from a training set with the loopy Belief Prop-

agation (BP) algorithm [Freeman ot al., 2000]. However, finding a global optimum for

(2.5) is difficult and certainly time consuming, Fortunately, the inference model as

well as the optimization can be made more tractable. Next, we shall first analyze the

correlation among AC coefficients and then derive a simplified AC coeflicient inference

model.

2.4.1 Analysis of the AC Coefficient Correlation

Given a LN x MN image, the N x N DCT will map it into a L x M grid of N x N
coefficient blocks and C{u,v;l,m) can be introduced to index the DCT coefficients,
where (u,v) (0 < u,v < ) denotes the frequency index. ({,m) (0 << L,0<m < M)
is the block index. Figure 2.8 shows an example when N =4, L = M = 2. In Figure
2.8(a), block (I,m) contains coefficients computed using pixels in block ({,m). The
coefficients such as {u,v) represent different frequency components of a local spatial
region. In Figure 2.8(b), subband (u, %) contains coeficients (u,v) collected from each
block. Hence, the DCT coefficient C(u, v;l, m) in each block has two kinds of neighbors:
spatial neighbors and subband neighbors.

Accordingly, there are also two kinds of correlation for each AC coefficient. The

correlation between AC coefficient C(u, v;{,m) and its spatial neighbors such as Clu-+
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Figure 2.8: Block representation (a) and subband represeniation (b} for the 4 x 4 DCT
coefficients.
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Figure 2.9: Prefilter P {a) and postfilter P~! (b} for 8 x 8 block processing [Iran ¢i al., 2003;
T and Tran, 2002).

1,v;1,m) and C{u, v+1;{,m) is very weak and can be ignored due to the excellent decor-
relation capability of the DCT. The correlation between AC coefficient C'(u,v; 1, m) and
its subband neighbors such as C{u,v;l + 1,m) and Clu,v;l,m + 1) is stronger than
that between the spatial neighbors, This correlation referred as interblock correlation,
is exhibited by the smoothness of neighboring blocks in spatial domain. Inspired by
the recent work in image compression and coeding [Tran cb al., 2003; Tu and Tran,
2002), we adopted a filtering method to process the boundaries of neighboring blocks
for exploiting their interblock correlation. A pair of filters, prefilter P and postfilter
P~1 shown in Figure 2.9 are used in the proposed method. The prefilter P, depicted
in Figure 2.9(a}, is performed in a separable fashion to remove the 8 x 8 interblock

correlation of the image. Postfilter P~ depicted in Figure 2.%(b), is to reconstruct
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Pigure 2.10: Prefiltering and postfiltering on a face image. (a) the working mode of the
prefilter and postfilter shown in Figure 2.9, Block 1 and Block 2 are two 8 x § adjacent blocks
in horizontal direction, the prefilter and postfilier will work on their neighboring boundaries.
(b) left is the original image, right is the prefiltered image.

the original smooth image from the prefiltered image by recovering the interblock cor-
relation. The effects of prefiltering and postfiltering are illustrated in Figure 2.10. It
is found that the prefiltered image becomes blocky and obvious discontinuity exists in
both horizontal and vertical block boundaries since the prefilter has taken away their
interblock correlation. Postfilter is able to recover the original smooth image.

In the proposed framework, the filtering scheme will work together with the DCT
as shown in Figure 2.11. The prefiltering scheme is used to remove the interblock
correlation of the training HRI samples. The intermediate HRI result Iy as shown
in Figure 2.1 is a prefiltered image and the final HRI result Iy can be obtained by
postfiltering. In summary, we can assume that each AC coefficient of the prefiltered
image is neither correlated with its spatial neighbors nor correlated with its subband
neighbors. As a result, a reasonable assumpiion can be made that each block I f,c(i)

in the target prefiltered HRI is independent with its adjacent HRI blocks.

2.4.2 A Simplified AC Coefficient Inference Model

Now the MRF model can be simplified & lot by eliminating all links among HRI blocks

as shown in Figure 2 7. Hence, (2.5) becomes:
14 * = argmax [ [ 6(18°(), 12°)). (2.6)
oo

The next problem is to build a reasonable compatibility function ¢(If¢(5), I£€ (1)) for

the proposed inference model.
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Figure 2.11: Prefiltering (a) and postfiltering (b} are performed along the block boundaries
b]ock-wisi locally similar to the DCT. (a) prefilter P is adopted to preprocess the training HRI

samples Iy as prefiltered HRI samples Tgr. (b) postfilter P~! is adopted to reconstruct the
final haliucinated resuit Iy from the intermediate result Iy which is a prefiltered HRIL

K-pass Algorithm

In previous SR work (e.g., [Trecman of al., 2002; Sun el al., 2003; Bishop et al., 2003]),
single-pass criterion is often used to select the best fitting sample from the training set.
While in this chapter, a more general k-pass criterion is adopted as that & candidate
blocks are selected to construct the target HRI block only based on the compatibility
function ¢. Intuitively k-pass is more effective than single-pass in producing a target
block with high fidelity because the linear combination of % blocks is more informative
than a single one. Recently, locally linear embedding (LLE) [Renveis and Saul, 2000
was presented to map high-dimensional data, into low-dimensional space by preserving
the neighborhood relationship. Inspired by this idea, we make an assumption similar
to those of [Chang ot al.. 2004] and [Chang el al., 2006] as follows. For each pair of
corresponding LRI and HRI blocks, their local neighborhoods on some proper manifolds
are assumed similar, In detail, it is assumed that each LRI block I{€(¢) and its nearest
neighbors in low dimension lie on or close to a locally-linear structure. Hence, I fc(i)
can be linearly approximated by its k nearest neighbors }-f_c(j) selected from the LR
training samples with the weighting coefficients W;(4). On the other hand, when {1 (z)
and its neighbors I_f_é(j) are fixed, W;(j) can be obtained easily by minimizing the

reconstruction error in (2.7} subjest to Z?:l Wi(#3 = 1. Besides, since the LR and
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HR blocks are assumed have similar linear structure, the weights W; minimizing the
reconstruction error on the LRI blocks should also yield a small value when the data
is replaced with the HRI blocks. In this work, the reconstruction errors on LRI blocks
and on HRI blocks are modeled with zero mean Gaussian distributions of variance o2
and o% respectively.

Now we can describe the two local structures by:

Z Wi()FC () + N(0,0%) (2.7)
J_
Z Wi()IAC () + N (0, 0%) (2.8)
i=1

where }F( 4) and Tj}_c( 7) are the training samples selected from the training set & =
{Iij IJ‘:‘TO} Hence, each HRI block is generated using several candidates instead of
one. The compatibility function ¢(Z4° (i), I#C (1)) in (2.6) is defined as:

GUAC (4), I£9(5), Wi) =
k

ewP{—(ch(ﬁ)—ZW (TAC(5))* 202} % exp{~(IFC () — D Wili)IAC (1)) 20}

=1
(2.9)

whose value is between [0 1]. After introducing A = o% /0%, we can define an error

function by applying the negative logarithms to (2.9):

B(I (), IE9G), Wa) = Ba(TEC (1), Wa) + AB2(I5C (i), W3) (2.10)
where
Ey(I£C (1), W) = (1£°(3) — Z Wi(§)IC(5))? (2.11)
=
Bo(T4° 6), W) = (IA°(3) - Z] Wi()IEC (5))*. (2.12)
j

Thus, the optimization of (2.6} can be solved by minimizing E(If,c, IfC W) over W
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Minimization of the Error Function

Given the training set, the minimization of (2.10) can be solved easily because the error
function E(IfC (2), I (i), W,) is quadratic to I4C(4) and W, respectively. For the iy,
block, the optimal I£1C(5) can be obtained as TAC(5) = Y-, Wi(j)TAC(5) by setting
the derivative of E(Iﬁc(z'), I E"C('i), W) wat I f,‘rc(z') to zero. Substituting the optimal
TA (%) into {2.10), we can obtain the optimal W, by simply minimizing £1{I{¢ (1), W,)
in (2.1%) with Z_f:lW;(j) =1 as a constrained least squares problem [Roweis und
Sanl. 2000]. Therefore the whole optimization can be done efficiently without iteration.

Details of the AC coefficient inference algorithm are summarized in Algorithm 1 .

2.5 HRI Reconstruction by the Inverse DCT and Postfiltering

As shown in Figure 2.1, the DCT coefficients of each block in the prefiltered HRI Iy
can be recovered in two steps: 1) the low frequency AC coeflicienis which constitute
I (i) are estimated by the aforementioned AC coefficient inference model and other
high frequency AC coefficients are set to zero; 2) interpolate the HRI 7, from the input
LRI by the Cubic B-Spline method and then apply prefiltering on it. The target DC
coeflicients are estimated from the corresponding blocks of the prefiltered HRI. From all
these estimated DC and AC coefficients, the target prefiltered HRI Iy is reconstructed
by the inverse DCT. Then the final HRI result 7y is derived from f; by the postfiltering

scheme as shown in Figure 2 1 [(b).
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2.6 Experimental Results
2.6.1 Learning Block Dictionary ¢ by Clustering

As discussed in [Lin et al., 2008], the performance of learning-based method often de-
pends on how well the input LRI matches the samples in the training set. Obviously,
the more training samples are collected, the more robust the learning-based algorithm
is. However, a huge training set requires taxing computation and heavy memory load.
Fortunately, the blocks cropped from the face images do not have much variation since
human facial features are similar. This is also true in our case because our irain-
ing set contains only local facial features represented by AC coefficients. Hence, the
raw training set should have much redundancy and it is possible to learn those most
representative blocks and build a compact block dictionary by clustering.

In our method, all collected training images are firstly aligned by affine transform
based on three marked points: the centers of the two eyes and the center of the mouth.
Then each image is cropped to & canonical 96 x 128 image as the HRI. Its corresponding
24 % 32 LRI can be obtained by smoothing and downsampling. After being preprocessed
by the above prefiliering scheme, all HRIs are transformed from spatial domain to
frequency domain by the 8 x 8 DCT. The HRI blocks I_;Tc of the training data are
these non-overlapped 8 x 8 blocks and represented by only using the low frequency AC
coefficients. Since the LRIs will be initially enlarged via Cubic B-Spline interpolation,
AC coefficients of the corresponding LRI blocks Iffc are also obtained by performing
the 8 x 8 DOT. Finally, the redundancy of the raw training samples will be reduced
through affinity propagation clustering [Frey and Ducck, 2007).

2.6.2 Comparison

This experiment was conducted with a large number of frontal face images from the
Facial Recognition Technology (FERET) database [Phillips e al., 1998; Phillips et al,,
2000] and other collections, which consist of many different races, illuminations and
types of face images. Among these samples, about 1600 images were selected as training
data and the remaining images were for testing, In our experiments, the number of
nearest neighbors k was set to 7. Please also visit http://www. ee. cuhk.edu . hk/

~zhangwel/HalluciFace.html to see the results.
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Figure 2.13: Quantitative evaluation of the hallucinated results in Figure ?.12. The testing
images from top to bottom in Figure 2.12 are indexed from number 1 to number 5.

complicated alignment i3 time consuming. While in this work, the algorithms were
tested in a more general scenario similar to previous work [Bakor and Kuanade, 2000;
Buker and Wanade, 2002; Lin ot al.. 2005]. Specifically, the training samples used here
were generated roughly as described in the last section, Only three points were used
for the face alignment. If more rigid technique is implemented to regularize the face
images, the performance of the learning-based method should be better.

We also compared the methods quantitatively as shown in Figure 2.13, where a
recently developed measure called SSIM (structural similarity) [Wang of al., 2004] is
used to assess the similarity of a reconstructed face image and the original HRI. The
results show that faces hallucinated by the proposed method have high SSIM. The mean
square error (MSE) is not adopted here due to its bad matching with the perceived
visual guality [Girwd, 1993; Wang ot al., 2002b]. However, it is found that SSIM also
has limitation. The Cubic B-Spline interpolated results mostly have the highest SSIM
(except number 3 result) in the above comparisons, which is apparently not consistent
with the perceptual quality. For face hallucination, the task is recovering the lost
frequencies and enhancing the visual quality of the LR input to make people see or
recognize the target face clearly. Therefore, so far the most effective way of measuring
image quality is through subjective evaluation. More results can be found in Figure

2.14.
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2.6.3 Robustness to Image lllumination

As aforementioned, we only concern ourselves with learning local features embedded
in AC coefficients from the training prior. It is found that without considering DC
coefficients will make the learning process more robust since the matching from input to
training samples is much less influenced by image illumination. An experiment as shown
in Figure 2.15 is conducted to test the learning robustness of the proposed method. The
five 96 x 128 images of the same person as shown in Figure 2.15(a) and (f) were taken
at different time with different expressions and illumination conditions. Four images as
shown in Figure 2.15(a) with high illumination are selected for training, Figure 2.15(f)
captured under low illumination is used for testing. Given the LRI input Figure 2.15(b)
derived from Figure 2.15(f) by smoothing and downsampling, Figure 2.15{c) is super-
resolved by the proposed method. It is obvious that the proposed algorithm is nearly
exempted from the illumination influence and capable of learning high quality local
features from such a small training set. In contrast, Figure 2.15(d) which is inferred by
learning the pixel intensities directly in spatial domain (i.e., considering both DC and
AC coefficients) with an example-based manner, is very bad because the input LRI can
not match well with the training samples due to the influence of image illumination.
Although Baker et al.’s method produces a better result as shown in Figure 2.15(e), i}

still fails in digging out some subtle features from the training samples.

2.6.4 Test on Hallucinating Profile Face lmage

The aforementioned experiments were conducted on frontal face images. In corder to
test the robustness of the proposed method on LR profile face images, an experiment
was conducted on about 400 profile face images with similar pose as the training prior.
The experimental results are shown in Figure 2.14. Apparently, the proposed method

also performs well on hallucinating non-frontal face images.

2.6.5 Limitation

Besides, we would like to point out that as a typical learning-based method, our algo-
rithm is also limited by the training set and the performance relies on the matching
of the input LRI with the training samples. Therefore, the proposed method does not

work well for every single face. For example, if the input is a person wearing glasses or
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Figure 2,15 Face hallucination with a small trainmg set (a) the training prior HRIs (96x128);

(b} the mput LRI (24 % 32}, (¢} the proposed method, (d) learming in spatial domain; (e) Baker
et al [Boker and Kanade 2002, (F) the original HRI (96 x 128)

with closing eyes, then probably the algorithm cannot super-resolve the face accurately.
This is because the training set we used does not contain sufficient samples which wear
glasses or with closing eyes. We have shown some poor results in Figure 2.17. However,
if more training samples are collected in the training set, the algorithm should be able

to super-resolve more faces better.

2.7 Summary

In this chapter, we have presented an effective learning-based framework for face hallu-
cination from a single LRI The problem is formulated as the DCT coefficient estimation
in frequency domain, which benefits us in several aspects Firstly, it reduces the data
dimension in both training set and testing set. Secondly, it reduces the complexity
of the learning-based AC coefficient inference model because of the weak correlation
among AC coefficients. Also, the inference model can be free of influence from the
image illumination by only focusing on learming the local features embodied in AC
coefficients from a collection of training samples Each block of the target HRI is gen-
erated by a linear combination of several candidate blocks selected from the training set
whose redundancy has been reduced by clustering The effectiveness and robustness
of the proposed approach have been demonstrated by a set of experimental results

Besides, the basic 1dea of this work can be further extended to handle more general
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samples.



Chapter 3

Super-Resolution for Generic Image

3.1 Introduction

Unlike the last chapter which concenirates on super-resolving face images, this chapter
investigates the problem of generic image super-resolution {8R}, which is more demand-
ing nowadays due to the increasing popularity of High Definition Television (HDTV),
webcam, camera phones and low-bandwidth video streaming.

It is acknowledged that edges are presumably the most important features in natural
images. Therefore, for a super-resolved image, sharpness and freedom from artifacts on
edges are the two critical factors for its perceptual quality. However, conventional SR
techniques are usually susceptible to artifacts such as jaggies and blurring as shown in
Figure 3.1. The perceived quality of the super-resolved image is unsatisfactory due to
the presence of jagged, twisted or blurred contours.

The objective of this chapter is to seek an efficient but effective method that is ca-
pable of producing 2 high quality artifact-free high-resolution (HR) image from a single
low-resolution (LR) input. Specifically, the single image SR is divided straightforwardly
into two consecutive steps: magnification and deblurring, which is the inverse of the im-
age acquisition pipeline. Magnification is to interpolate the image to the desired spatial
resolution. Apart from blurring problem, the current prevalent scene-independent in-
terpolators like pixel replication or bicubic interpolation fail to preserve the edge struc-
tures and thus suffer from severe jaggy artifacts (see Figure 3.2). Hence, we propose
to accomplish the magnification in & structure adaptive manner, A recently developed
adaptive interpolator called soft-decision adaptive interpolation (SAI) [Zhang auc W,
2008] is adopted in the chapter due to its good performance on suppressing jaggy ar-
tifacts. However, as shown in Figure 3.1(b), the interpolated image is still far from

satisfactory due to the blurring problem. Consequently, a deblurring step is introduced

39
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to seek an appropriate blurring kernel to recover the sharpness of the interpolated re-
sult. Apparently, the latter step is a challenging blind deconvolution process which
aims at inferring the sharp image as well as the blurring kernel simultaneously from a
degraded blurry input.

Fortunately, edges can reveal the blurring information of the interpolated image. In
particular, we advocate using a parametric edge model to extract the blurring kernel
from the salient edges which refers to the pixels appear at the boundary area containing
two adjacent parts with distinct colors. The salient edges are used because they are
predictable and expected to be sharp in the output HR image, and we prefer the users
to select them manually through the manner of user-drawn stroke. As illustrated in
Figure 3 1(b), a single stoke is normally good enough to produce a desirable result.
It is unnecessary to pick all salient edges and so the user intervention required in this
work is little.

It is worth noting that the deblurring algorithms in [Joshi et al.. 2008] and [Jin, 2007)
share similar spirit with ours in blur kernel estimation. However, their performance
relies on the success of some in-between results which is instable in tough conditions.
For example, Joshi et al. [Joshi ¢l al.. 2008] needs to create a sharp edge by roughly
changing the edge profile, while transparency estimation is required in Jia [fia. 2007).
The blurring kernel is estimated from these intermediate results with a maximum a
posteriori (MAP) estimator. In contrast, our method is quite computationally efficient
and the blurring kernel is calculated directly from the stable edges (salient) and in closed
form. When the blurring kernel is fixed, the sharp HR image is recoverad efficiently
with a MAP framework.

The rest of this chapter is organized as follows. Section 3.2 gives a brief review of the
related work. The proposed SR framework is described in Section 3.3, Experimental

results are presented in Section 3..1. Section 3.5 draws some concluding remarks.

3.2 Related Work

There are a large number of algorithms to address the single-image SR problem in the
past vears. Conventional interpolation methods like Bilinear or Bicubic yield jaggied
and blurred edges, degrading image details. The structure adaptive methods such as [Li

and Ovchard. 2001] and [Zhang aodd Wi, 2008] work better on eliminating jaggies but
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still suffer from blurring problem.

Learning-based methods such as [['veeman et al., 20005 Suw el al.. 2003; Wang ol ol ,
200%; Ma el al | 200¥] can output sharp HR image even with high magnification factor
by making use of additional training HR and LR image pairs directly or indirectly.
However, as mentioned in Chapter 1.2.3, their performance replies on how well the inpui
LR image matches the training samples. Therefore sufficient number of appropriate
training samples are required to guarantee the SR performance. Reconstruction-based
methods like [Zomet ot al, 2001; Shan et al.. 2008b] are built based on a generative
imaging model which simulates how the HR scene is transformed, filtered and sampled
to give rise to LR, images. However, the reconstruction of HR image from LR input is a
typical ill-posed inverse problem, Therefore, to regularize the ill-posedness, image priors
are introduced to impose additional constraints in the SR process. Studies on image
statistics [Roth and Black, 2000] show that sparse prior is a sound choice due to the
heavy tailed property of image response to a collection of convolution filters. Recently,
edge-based priors [Faital, 2007; Sun ot al.. 2008; Dai el al., 2009] are developed to
further preserve the edge sharpness. More recently, Glasner et al. [Glasner el al., 2009]
combined the reconstruction-based method and learning-based method and presented
a unified framework that can be applied to single image SR without any additional
external data.

Nevertheless, the above methods have the following problems that limits their ap-
plicability in practice. One problem is that these methods often have complex working
pipeline where the performance replies on a number of factors such as parameter tweak-
ing, iteration number or training set quality. In addition, the blurring process of the
optic is assumed to be known as a priori in these metheds. That is, the camera’s point
spread function (PSF) kernel can be fixed in advance. Even the learning-based methods
also require the knowledge of PSF to make sure that the training and testing date are
degraded in the same way. However, this assumption does not hold in real scenarios
because of the unpredictable behavior of PSF. Different images may be formed with
different PSFs due to the influence of camera lens, focusing condition and so on. Al-
though some methods like [ITe and IKouei. 2005; Yang ¢t al., 2008q] were presented to
iteratively estimate the PSF and the latent HR image, their applicability is limited due

the high computational complexity and multiple LR input requirement. Finally, most
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like pixel replication or bicubic interpolation fail to preserve the edge structures and
thus suffer from severe jaggy artifacts (see Figure 3.2). To overcome this problem
and achieve structure adaptive interpolation, some algorithms such as [Li and Orcliaoel,
2001; Zhisng and Wu. 2008] were presented by utilizing a piecewise autoregressive (PAR)
progress to model a natural image. That is, each pixel I,,(z,y) can be approximated

by the linear combination of its neighboring pixels I,(z + ¢, v + 7).

In(z,y) = Zﬂ(i,j)fm(:c+z',y+j), (3.1)
(2.7}

where (i, 7) defines the spatial neighborhood. The weights (4,7} imply the the lo-
cal structure around the current pixel and can be assumed to be locally stationary.
Especially, Zhang and Wu [Zhang and Wu, 2008] proposed a soft-decision estimation
interpolation framework based on the PAR model that achieves superior performance
than the other work. To better preserve the local structure, the missing pixels are
jointly estimated in SAI by enforcing the local relation not only between known pixels
and missing pixels but also between missing pixels themselves. Besides, SAI operates on
blocks of pixels and thus runs efficiently. In this work, we adopt the SAI to accomplish

the image magnification.
As shown in Figure 3.4, although SAI has impressive performance on eliminating
jaggy artifacts, the magnified image is still undesirable due to the severe blurring prob-
lem. As depicted in (3.2), the blurry magnified image I, is regarded as the convolution

result of a sharp image Iy with a blurring kernel f.
Im = flof) ® In + n, (3.2)

where f(o;) is a smoothing function and depends on some kind of smoothing param-
eter oy > 0. n is an additive noise and normally assumed to be Gaussian. Similar
to the camera’s PSF, the blurring kernel f can be reasonably assumed to be a 2-D
Gaussian filter g with standard deviation ¢. Hence, f(of) = g{o) with oy = 0. Note
that the blurring kernel f normally has larger scale than the latent camera’s PSF, as

interpolation incurs additional blurriness.
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Figure 3.5: (a) I-D parametric edge model, (b) Response of convolving an edge with the
derivative of a Gaussian filter.

3.3.2 Deblurring from Salient Edge

The goal of this section is to seek a suitable deblurring scheme which can recover the
sharpness of the magnified image result with appropriate blurring kernel. As shown in
Figure 3.4, the deblurring process has two tasks: blurring kernel estimation and sharp

image recovery. They will be addressed one by one in the following sections.

Blurring Kernel Estimation

As shown in (3.2), edges in I, can be obtained by Gaussian blurring the corresponding
edges in Iy with f{os). Next, we adopted a parametric edge model to depict edges
motivated by [van Beck, 1095; Fan and G‘ham, 2000]. Without Ioss of generality, we take
the 1-D form to explain the edge model, since edges in & 2-D image can be characterized
by sharp intensity changes in one direction. Mathematically, a step edge at zp can be
depicted as e(x; b, ¢, z9) = ¢l (x —xzp) +b where U(-) is the unit step function, b denotes
the edge basis and ¢ represents the edge contrast. A typical edge s(z; b, c,w, zg) can be
regarded as a smoothed step edge which is obtained by convolving e(x; b, ¢, zg) with a

1-D Gaussian filter g{o) = -\/ﬁ exp(;—:;) and so

s{z;b,c,w,T0) = b+ g (1 + er‘f(mw_\/?)) , (3.3)

where erf(-) is the error function. As shown in Figure 3.5{(a}, w is equal to o and
determines edge blurriness and can also be referred as edge width. The larger w is,

the blurrier the edge is. Roughly speaking, all edges can be depicted parametrically
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by fitting (3.3) on them. Such fitting process includes two steps: edge detection and
parameter estimation.

Similar to that of Canny detection [(‘anny. 1936], edge is detected by convolving
s(z; b, ¢, w, wg) with the derivative of a predefined Gaussian ftlter ¢/;(c¢). The response

is:

d(z;c,w, 04,29} = (3.4)

—(z — 20)?
2m(w? + o3) w (2(“"2 + ‘73)) '

The peak of the response can be used to locate the edge as illustrated in Figure 3.5(b}.
Also, the standard deviation w of the blurring filter g as well as the other parameters of
(4 3) can be estimated as (3.5)-(3.8) based on three measurements which are selected by
sampling the response d(z; ¢, w, 04, o) at ¢ = 0,0, —a. They are: d; = d{0; ¢, w, 04, 7o),

do = d{a;c,w,04,2o) and dy = d{—a; ¢, w, 64, %0). o is normally set to 1.

w = \/a?/In{l) - 0%, (3.5)

o= 0.5-a-In({ls)/In(l), (3.8)
¢=dy - /2na2 il - 3%, (3.7)
b= s(zo) —¢/2 (3.8}

where {; = é;; and lp = da/d3. The above analysis can be extended to the 2-D case
directly except that an extra parameter # is required to represent the edge direction.
Please refer to [van Beck, 1995] for more details. Therefore, we can similarly recover
the 2-D Gaussian blurring filker f(oy) of (3.2) by measuring the edge blurriness in I,
based on (3.5).

However, it is noted that only the salient edges of I, can be used in the blurring
kernel estimation due to the following reasons: First and most importantly, their corre-
sponding edges in latent HR image Iy are very sharp and have rapid transition similar
to step edges. Thus the estimated blurriness (i.e. w) can fully reflect the true blurring
difference between Iy and I,. Secondly, the salient edges are stable indicators of the
blurring kernel and quite detectable even if the feature strength of the interpclated

image I, is weakened considerable. As exemplified in Figure 3 6, to avoid the influence
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Figure 3.6: Testing on kernel estimation. The selected distinct edges are cuthned with red
Red squares in the right figures show the estimated w of all the points in the selected edges and
Wayer denotes the average estimation. Blue lines show the ground truth standard devialion or

of neighboring edges and make blurring kernel estimation more stable, the salient edge
locating at boundary of two adjacent regions with distinct colors is favored for blurring
kernel estimation.

Two simulated examples are given in Figure 3 6 to test the proposed kernel estima-
tion scheme. We first blur the original image by Gaussian filter with ¢ and then try
to recover this ground truth filter by measuring the blurriness of the selected distinct
edges in the degraded image. The results show that all of the estimated standard de-
viations are close to the ground fruth op. To make the estimation more robust, we use

their average wyyer for deblurring in the following experiments.

Sharp Image Recovery

Once f(oy) is fixed (0 = Wayer), recovering the target sharp image Iy from the blurred
Im becomes a typical non-blind deconvolution task. This problem is still challenging
and effective image prior is required to regularize its ill-posedness. As shown in (3 9},

the task is tackled with a MAP estimator.

Ity = argmax p{Im|in, flog))p(ln)- (3.9)

Te
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p{Iy) can be defined with a sparse derivative prior to favor sharp image result. Hence,

(3.9) is rewritten as:

2
Iy = argmin o (o) ® e = Imlls + D It @ Ie)ll5, (3.10)

i=1
where « is a weighting factor. t; is simply defined with the first order derivative filter
as: t1=[1 —1]and tz = 1 —1]7.

Apparently, directly optimizing (3.10) is difficult and computationally demanding.
Inspired by [Waug ot al., 2007], a variable-splitting and penalty technique is employed
to render the optimization more tractable. In brief, an auxiliary variable &; is introduced
to transfer ¢, ® Iy out of the non-differentiable term |||, and the difference between

them is penalized with a quadratic term. Thus, (i3.10) turns to be:

2
Ty =argmin o |lf(or) ® It = Iml3 + 3_ il (3.11)
H

i=1

2
+B8Y & —ti @ In)ll3.
i=1

The penalty factor [ increases by 2 times after each iteration and the iteration will be
stopped once the stopping criterion is satisfied. The solution of {3.11) converges to that
of (3.10) as § becomes very large. Please refer to [Wang ot al., 2007] for more details.
¢ depends on the noise level and normally ranges from 500 to 1000. It is worth noting
that the optimization of {3.11) can be solved efficiently, since when one of the two
variables Iy and o is fixed, minimizing the function w.r.t the other has a closed-form
solution. Moreover, the solver can be accelerated greatly by performing Fast Fourier

Transform {(FFT) to avoid the computational complexity caused by convolution.

3.4 Experimental Results

In this section, we first generated some synthesized examples to test the effectiveness
of the proposed algorithm and evaluated its performance quantitatively. As shown in
Figure 3.7, the original HR images in {d) are firstly blurred and then downsampled
by a factor of 3 to yield the LR images shown (a). Subjectively, our results {c) are
more visually pleasant than (b} generated by SAI [Zhang aud Wu, 2008] due to the

significant improvement on sharpness. We further assessed the sharpness improvement
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MSE 74 7 JNBM Ratio 074

Figure 3.7 Testing on synthesized examples In each row, umages from left to right are
the mput LR image, the intermediate result wmterpolated using SAI, our final SR result and
the origimal HR mmage The selected distinct edges are outhned with red m the intermediate
magnified image using SAI

Figure 3.8 SR on Fire with a magnification factor of 3 (a) LR image (b) Intermediate result
obtamed by SAT [Zhang and W, 2008], where the red stroke outlines the salient edge used in
the deblurring process (¢} Our final result (d) Brcubic mterpolation result (e} Ma et al ’s
result (Mo of of 2008 (f} Dai et al ’s result [{Da) et al | 2000]

quantitatively with Just Noticeable Blur Metric (JNBM) [Fei/li and Naram 2009],

which 1s a perceptual-based no-reference sharpness metric and can predict the relative
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Figure 3.11: Quantitative evaluation on sharpness with JNBM. High JNBM value represents
the image has good sharpness.

amount of blurriness in images with high accuracy. Since the original image is known,
we use the ratio (i.e., JNBM (I )/JNBM (I,,)) between the INBM value of the super-
resolved image and that of the original image to show the sharpness performance.
Thus, the larger the ratio is, the sharper the super-resolved image is and when the
ratic equals to 1, the super-resolved image has the same sharpness as that of the
original image. Besides, we also assessed the improvement in terms of the mean square
error {MSE). The above two quantitative measures both prove that proper deblurring
improves interpolation performance and gives more fajthful SR results to the original
images. As shown in Figure 3.1 and Figure 3.10), we reproduced some results published
before and made comparisons with the existing work. In summary, the results obtained
by Ma et al. [Ma ¢t al . 2008} suffer from blurring and jaggy artifacts. The overall visual
quality of Dai et al.’s results [t ot al ., 2009} and ours are comparable, However, as
illustrated in the close-up comparison, Dai et al.’s results are less detailed and prone
to jaggy artifacts especially around the long edge area which substantially degrade the
perceptual quality. While, our results are not only free of artifacts but also exhibit
the best sharpness as shown in Figure 3.11. Note that the above results of [Ma ¢l al.,
2008] and [IDai ¢t al. 2009} are produced by the authors. Please also visit http:
/ /v, oe . cuhk,. edu.hk/~zhangwei/HighQualitySR. html to see the results.

It is worth noting that the choice of salient edge may not be unique in practice. For

most images, there are several edges that can serve in the blurring kernel estimationas.
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A

Figure 3.12 SR with different salient edges Top LR image Middle and bottom show
the 3 times HR results super-resolved with the sahent edges outlined by blue and red strokes,
respectively

As illustrated m Figure 3 12, two salient edges (drawn by blue and red stokes) can both
be used 1n the deblurring process and result 1n quite similar standard derivations 135
(blue) and 1 32 {red) Hence, the deblurred HR mmages are similar as well

Apart from the good performance, our methed 15 appealing due to 1ts low com-
putational complexity To super-resolve a 352 x 288 1mage, the current non-optimized
Matlab implementation takes less than 20 seconds There 1s still much room to improve
its efficiency by optimized C++ or GPU implementation If 1s interesting to note that
most of the computation cost comes from the sharp 1mage reconvery (non-blind decon-
volution) The blurring kernel estimation can be fimished very rapidly (normally less
than 2 second), since only the pixels of the sahent edge (instead of the entne 1mage)
are needed to be taken into computation In sumimary, the key 1dea we advocate here

15 that 1t may not be necessary to make the SR that complex Alternatively, a sunple
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framework plus little user assistance can also achieve impressive S8R performance.

3.5 Summary

In this chapter, & simple but effective algorithm is presented to address the challenging
single image SR problem. To create a pleasant artifact-free HR result, we first mag-
nified the LR image to the desired resolution through structure adaptive interpolation
and then introduce a salient edge directed deblurring scheme for sharpness recovery.
Unlike most existing work, the camera’s PSF is not assumed to be known in this work.
Experiments demonstrate that the proposed approach produced high quality results
both perceptually and quantitatively. Nevertheless, since the underlying principle is to
take advantage of the salient edge to seek suitable deblurring, the standard derivation
¢ of the blurring kernel cannot be estimated accurately if no salient edges can be found
in the magnified image. In this case, we have to resort to parameter tweaking to find

the optimal 0.



Chapter 4

Single Image Focus Editing

4,1 Introduction

Single image refocusing and defocusing is an interesting research topic and has received
a lot of attention recently, T'wo tasks are mainly involved in this topic. One is image
refocusing which is to recover the sharpness of the blurry defocused objects in an
input image and generate a virtual all-focused image. The other is defocusing which
is to blur an image and create defocus effects. In some photography such as portrait,
shallow depth of field {DOF) is preferred so as to highlight the foreground subject with
a defocused blurry background. But due to the limitations of the lens and sensors,
some cameras such as point-and-shoot cameras cannot produce enough defocus effects,

In this chapter, we present a novel method which is able to handle the tasks of focus
map estimation, image refocusing and defocusing. One example is shown in Figure 4.1,
where an input image (a) contains focused foreground object and defocnsed background
which includes the girl. Firstly, if we find the defocus effect on the background is not
adequate, then the proposed method can be used to increase the defocus effect of the
background while keep the foreground unchanged. Hence, a portrait-like image similar
to that formed by using a shallower DOF is produced as shown in (b). Secondhy,
the proposed method can be used to refocus the defocused background to generate a
plausible all-focused image as shown in (c). Besides, as shown in (d), the highlight of
the input image can also be changed after defocusing the original focused foreground on
the synthesized all-focused result. The comparison in (f) indicates that the proposed
refocusing method outperforms the lens deblurring of Photoshop significantly.

The proposed method first estimates a focus map and then use it to separate the
focused and defocused objects as shown in Figure 1.1(e). The focus map estimation is

based on the assumption that blurring of edges is only due to the defocus effect and so

55
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Pigure 4.1: (2) Input narrow aperture image focusing on the foreground object. (b) Syn-
thesized image with shallower DOF. (¢) Synthesized all-focused image (d} Synthesized image
focusing on the background. (e} The detected focus mask (white: defocused regions, black:
focused regions, gray: focus boundaries). (f} Close-up comparison. Left: removing the lens
blur using the lens delurring in smart sharpen of Photoshop. Right: our refocused result.

the focus information can be indicated by edge blurriness. A parametric edge model
based scheme is presented to generate the focus map automatically. More specifically,
we will first measure the blurriness for edge pixels and then propagate it from the edge
pixels to their neighboring non-edge pixels based on the similarities of intensity and
position.

In this work, refocusing is formulated as a single-image blind deconvolution (SBD)
problem based on the fact that the defocused image can be regarded as a result of
convolving the focused image with a point spread function {PSF). Therefore, the chal-
lenge is to infer the sharp focused image as well as the PSF simultaneously from a
degraded blurry image. To regulerize this unconstrained problem effectively, two ad-
ditional local prior models are introduced in the proposed SBD framework besides a
global image prior. One novel sharp prior is adopted to ensure the sharpness of the
refocused image. Another local smooth prior is to constrain the low-contrast regions
unchanged for suppressing the ring artifacts. Our study shows that their combination,
named as Sharp-and-Smooth prior, provides an effective regularization for ensuring
image sharpness and suppressing ring artifacts. Extensive experiments on synthesized

and real images were performed to test the proposed SBD method. Defocusing in this
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work is handled by Gaussian blurring as stated in Sec 1.3.1,

The rest of this chapter is organized as follows. Section 4.2 gives a brief review of the
related work. Some foundational knowledge about image formation and edge model is
introduced in Section 1.3. Section 4.4 introduces the edge model based method for focus
map generation. A new SBD approach is proposed in Section 4.5 for image refocusing.
Experimental results on refocusing and defocusing are shown in Section 1.6, Section

4.7 draws some concluding remarks.

4.2 Related Work

Focus and defocus cues are popular for the recovery of depth map in the study of depth
from focus and defocus [Schechiner and Kivyati, 2000; Rajagopalan ¢l al., 2004], where
multiple images with different focus settings are required to estimate a depth map for
the latent scene. For example, Rajagopalan et al. [Rajagopalan et al., 2004] proposed
a depth estimation method by combining the defocus and stereo cues. While in this
work, we are concerned with extracting the focus information instead of accurate depth
from a single image.

As mentioned in Section {.2.2, lots of efforts have been made to address image
refocusing and defocusing. The hardware solutions {e.g. [Ng ol al., 200%; Levin of al..
2007; Moreno-Noguer of al., 2007}) requires additional optical elements or devices to
help the camera capture more information about the target scene. Some postprocessing-
based methods {Ixithota ol al., 200 4; Kuboia and Aizawa, 2005; Hasinofl and Kntulakos,
2007; Yaug awl Schonteld. 2010] were presented based on multiple images of the same
scene. This chapter concentrates on achieving image refocusing and defocusing from a
single input without changing the camera, but with only image processing, Here, we
just refer some methods which are the most similar to ours. Bae and Durand [Bac and
Purand, 2007] contributed at proposing an automatic focus map estimation method
by estimating the edge blurriness with a brute-force fitting strategy. The defocusing
there is handled with the aid of the lens blur tool in Photeshop. In this chapter,
a simple and well-parameterized multi-point scheme is adopted to measure the edge
blurriness. Besides defocusing, we also address the more challenging refocusing problem
with a blind deconvolution framework. The edge information is exploited not only in

focus detection but also in image refocusing in this chapter. Yan et al. [Yan el ak.
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Figure 4.2- Geometry of the imaging model Py, P; and P; represent the scene pomnts at
different depth

2009] developed an interactive defocusing system, where user intervention is required
to obtain the depth information of an input image. Similarly, Bando and Nishita [I3anudo
anel Nishita. 2007) presented an interactive method to address single image refocusing,
where lots of user intervention is needed to determine the blur kernel from a number of
predefined candidates. While in this work, focus map, blur kernel and refocused image

are all obtained automatically,

4.3 Background and Problem Formulation
4.3.1 Imaging Model

As shown in Figure 4 2, the rays originating from a scene point P; on the focal plane
can converge to a point on the image plane, However, when the scene point moves away
from the focal plane, the rays will give rise to a blur circle on the image plane and the
image is regarded as defocused. When the point moves farther, a blurrier defocused
image is produced. Such blurring process is often modeled as the convolution of a

focused image I'r with a PSF A, i.e
Ip=hQIr+n, (4.1)

where I'p denotes the defocused image and n is the noise term. Due to the diffrac-
tion and aberration of the camera lens, the PSF is normally approximated by a 2-D
Gaussian filter [Lin and Chang. 2006; Tavaro and Soalto, 2008) given by g{z,y;0) =

L exp(=E"3")) The spread parameter o which is related to the distance of the ob-
V2ra? 2o

ject to the focal plane determines the blurriness of the captured image. In this chapter,

{1 1) and Gaussian PSF are used to model the defocusing process.
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Figure 4.3: (a) 1-D parametric edge model. (b} Response of convolving an edge with the
derivative of 2 Gaussian filter. (c) Effect of decreasing w. (d} Edge detection in an image,
where the gray line outlines the contour of an edge, the solid dots are the detected peak
positions located at the grid points, the circle is one of the true edge positions.

It is worth noting that unlike the multi-image based approach [[{usinofl and Nulu-
lakos, 2007], the occlusion problem is not formulated directly into the imaging model in
this chapter, because the single-image based work itself is already highly unconstrained
and adding more unknowns will make the whole framework intractable, However, ow-
ing to the estimated focus map, we can locate the possible occlusion regions such as the
gray regions in Figure 1.1(e} along the layer boundaries and then use alpha blending
to synthesize these regions to avoid artifacts. The results show that this is a visually

realistic way to handle the occlusion problem.

4.3.2 Edge Modeling

Focus map estimation on a single input is challenging. Fortunately, edges in an image
carry important information which may hint how the image is formed. Similar to
Section 3.3.2, a parametric edge model [van Beek, 1995; Fan and Cham, 2000] is adopted
for edge description. As shown in Figure [ 3(a), a typical edge s{z;b, ¢, w,z0) can be

represenied mathematically as:

(21,0, 0,30) = b+ (1 + erf(xw_ j%” )) , (4.2)

where erf(-) is the error function. & denoctes the edge basis. ¢ represenis the edge
contrast. w is referred as the edge width parameter. As shown in Figure 4.3{c), the
edge is sharper when w becomes smaller. xp is a real number which can represent the
edge location continuously. In practice, the position of the detected peak in a 2-D image

is constrained to a grid point location which is represented by an integer and thus may
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not coincide with the truth. As the example shown in Pigure 4.3(d), the detected peak
locates at ¥ = 0 instead of the true edge position zg. As stated in Seciion 3.3.2, all

parameters of (1.2) can be estimated as follows:

zg = 0.5 a- In{l)/in(h), (4.3}

w=y/a?/In(l) - o3, (4.4)
c=dj -/ 2ma?/In{ly) - lé‘L“, {4.5)

b= s{zo) —c/2 {4.6)

where 1] = %‘% and lp = dg/ds, and dy, dp and dg are three sample measurements at
z = 0,a,—a of d{z;c,w,o4), which is the response of convolving s(x;b, ¢, o, zg) with
the derivative of a predefined Gaussian filter g;(z; o4). Value of a can be chosen freely
and normally o = 1. Please see Section 3.3.2 for more details.

The above derivation can be referred as a multi-point estimation method. With
this parametric model, the edge can be changed easily by controlling these parameters.
For example in Figure 4.3(c}, decreasing w will result in a sharper edge. Hence, edge in
an image can be sharpened by first detecting the edges and estimating the parameters.
Then the edge is reconstructed by substituting the new %' to (:.2) and keeping the

other parameters unchanged.

4.4 Edge based Focus Map Estimation

Based on the above edge model, a method is proposed in this section to estimate the
focus map automatically for an image containing a mixture of focused and defocused
objects. This can be done automatically because the edge blurriness carries important
cue about the focus setting. Different degrees of blurriness imply different defocus
scales. Hence, focus map herein also corresponds to blurriness map. It is worth noting
that this conclusion is under the assumption that the occurrence of edge blurriness is
only due to defocusing effect, which is prevalent in previous focus map estimation worlk
such as [Bac and Durand. 2007). Our proposed method is also based on this assumption
and thus shares the commeon limitation that it cannot estimate an accurate focus map
for natural blurry objects like clouds and shadows,

The proposed scheme proceeds as follows. Firstly, as stated in Sec 4.3.2, a single
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neighboring pixels with similar colors can be reasonably assumed having similar blur-
riness, we employ an additional blurriness propagation step for the non-edge pixels
whose blurriness cannot be estimated by the first step. More specifically, the blurriness
information at edge pixels is propagated to their neighboring non-edge pixels based on
the similarities of intensity and position. According to the work on image coloriza-
tion [Levin o al., 2004], such propagation can be formulated as the minimization of
a quadratic cost function whose optimization can be solved efficiently within a linear
system.

A similar method to ours is {Bac and Durand, 2007) which adopts a multi-scale
edge detector and estimates the blurriness using a brute-force strategy. In detail, the
degree of blurriness there was determined by approximately fitting the second derivative
Gaussian filter response with a number of predefined candidates to a window around
the edge pixel and along the gradient direction. By contrast, our proposed methed is
simpler and has lower computational complexity since all edge parameters are derived in
closed form. Besides, a parameter o is used to represent the edge position accurately in
sub-pixel level. As stated in Sec 4,3.2, this representation is particularly advantageous
when the actual edge center lies somewhere between two grid points.

Experiments were conducted to test the proposed method. The resulis in Figure
1.4(b) prove that the edge blurriness can be measured with good accuracy using our
method. Compared to Bae et al.’s result in (d), our focus map result in (c) has less
outliers and is more faithful to the perceived truth. Moreover, the proposed method
is more efficient and only took about 31 seconds while Bae et al. [Bac and Durund.
2007 needs about one minute. Next, similar to [[Jue and Dwanel. 2007], in order to
further evaluate the accuracy of the focus map, we employed the lens blur of Photoshop
to increase the defocus effect of {a) by inputing {(c¢) and {d) as the alpha channels
respectively. As expected, due to the influence of the outliers in (d), Bae et al.’s result
in {f) is not satisfactory, where some focused regions are destroyed and some defocus
regions are not blurred adequately. In contrast, our result in {e) is more visually
realistic. This can also be concluded from the comparisons in Figure 1.6 and Figure
.G, where the two input images are adopted in {Bac aud Durand. 2007). Noted that
Figure 1.0 is a testing on a narrow aperture (f/8) image (a}. Apparently, our defocusing

result in (&) is better and visually closer to the ground truth wide aperture (i/4) image
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Figure 4.6 Comparison on defocus megnificatron (a) Input narrow aperture ({/8) image (b)
Ground truth image taken with wide aperture (f/4) (c) Bae et al ’s presented result {d) Our
result The dashed ellipses outhine the obvious errors oceurred 1n (c)

image. In the past years, a variety of methods [Chan and Wong, 19958, Joslhi ot o

2008; Pergis ot al - 2006; Joslin of al, 2009, Shan et al, 2006a, Jia 2007] have been
presented to tackle this challenging problem Most methods employ a simultaneous
mazzmum a postersors (MAP) estimator to infer the latent sharp image and PSF in
an iterative manner As analysed in [Levin ef al, 2009], such MAP estimator may
not approach the desired global optimum since it favors the no-blur explanation That
is, the PSF s delta kernel and the latent image is the same with observed blurry
one. Besides, proper user intervention is often required at the initialization stage and
poor nitialization may result in undesived local convergence Although some efforts
such as [Joslt ef al 2008, Jia, 2007] were made to seek PSF from edges, the edge
sharpness cue is not utilized adequately. In this chapter, we present a novel refocusing
method that takes full advantage of the edge sharpness cue First, 1t 18 utilized for PSF
estimation Then, an edge sharpness prior 15 developed to constrain the PSF not to blur

the edges and enforce the refocusing ymage to agree with the precalculated sharpened
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image in the vicinity of edges. Next, the proposed SBI) method will be presented by
assuming the PSF is spatially invariant for the sake of simplicity. Figure 4.7 shows an

illustrative example to explain the proposed SBD process.

4.5.1 Expectations for the Refocused Image

Let I'r be the refocused image of a blurry image Ip. I is expected to satisfy two
conditions. First, the edges should become sharpened in Ip. Second, the locally smocth
regions in Ip should remain almost unchanged in Ir. By means of the parametric edge
mode] introduced in Sec 1.3.2, we can formulate the first condition explicitly by ensuring
a small width parameter w in (1.2) for each refocused edge. In detail, for a blurry input,
we first reconstruct its predicted image I, with sharp edges by decreasing the width
parameter w like setting v’ = w/10 as exemplified in Figure 1.3(c). Meanwhile, a
binary edge mask M, can also be determined, where white denotes the edge regions
which comprise all edge pixels and their adjacent neighboring pixels and black denotes
the non-edge regions. As the example shown in Figure 4.7, (¢) and (d) show the
corresponding edge mask and predicted image of (a) respectively. Apparently, the
detected edges in {(d) have been sharpened significantly compared to (a).

Second, locally smooth regions in Ip and Ir should be similar. Similar to [Shan
el al.. 2008a], the locally smooth region can be determined as follow. For each pixel
in Ip, a window centering at it with size similar to that of the PSF is defined. If
the standard deviation of pixels in this window is smaller than a threshold, this pixel
will be regarded as locally smooth. As shown in Figure 4.7(b}, & smooth mask M,
is obtained, where white denotes the locally smooth regions and black denotes the

non-smooth regions.

4.5.2 Estimation of PSF

Asshown in (4.7), the PSF A can be estimated in a MAP framework by taking advantage
of the predicted sharp image I, like Figure 1.7{(d}.

h* = arg max p(hlIp, Ip, Me) = arg max p(Iplh, Ip, Me)p(h). (4.7)
1}
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The likelihood term p(Ip|h, I, M,.) can be defined based on the image formation model
stated in (L.1).

PUplhy Iy, M) o exp (~anM, o [h® I, - Ip|l2) (4.8)

where e denotes element-wise multiplication operation. oy, acts as a weighting factor
which is dependent on the noise level of the likelihood. Based on (-1.7), an energy term
can be defined as:

En(h) = anM, o |A® I, — In|s + [iAl, - (4.9)

The PSF prior p{h) is defined using a general ! norm sparse prior with non-negativity
constraint. To obtain the solution efficiently, the minimization of (4.0) is recasted as

an equivalent basis pursuit denoising (BPDN) problem:
minimize lxfl, subject to [Ax~— bl <7, (4.10)

where convolution is replaced with matrix multiplication. x is the vector form of h, the
matrix A and vector b are derived from I, and Ip with the guidance of M,. Benefiting
from {van den Berg aned [ricdlander, 2008] where a fast root-finding solver [van den
Berg and Friedlander. 2007} for BPDN is presented, the latent PSF can be estimated
efficiently from (4.10). Note that the resulting PSF will be rectified to ensure all
elements are non-negative and the sum is cne. The threshold value n should be chosen
relative to the noise level and we have found empirically that [1, 15} is a practical range

to produce good resuits.

4.5.3 Recovery of Focused Sharp lmage

After k is determined, the recovery of Ir becomes a non-blind deconvolution problem
as:

Ip = arg max p{rllp,h) = arg max p{IplIr,R)p(IF). (4.11)
F ol

Similar to (1.8), the likelihood term p(Ip|is, k) is defined based on the image formation
model stated in (4.1) by assuming that Ip differs from the convolution of [» with the

PSF h by a zero mean Gaussian noise of variance ﬁ Hence,

p(IplIr, h) oc exp (—an |h®Ir—1Ip ]|§) . {4.12)
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Figure 4.7: Hlustration of the proposed SBD (a) Defocus image cropped from Figure I I-(a).
(b) Smogth mask M (setting the threshold to G). (¢} Edge region mask M,. (d} Predicted
image I, obtained by sharpening the edges (decreasing w) in M. (e) Our results: refocused
image and PSF (f) Fergus et al.’s resulis. (g) Shan et al.’s results.

To impose an effective regularization, p(Ip) is defined by combining three different
priors as:

p(Ir} = po{Ip)pe(Ir)ps(Ir), (4.13)

where pg(Ir} is a global prior, and pe(Ir) and ps(IF) are local priors introduced based
on the aforementioned expectations described in Section 1 5.1. The global prior pg(Ir)

is defined by using the total variation regularizer as shown in (4 14).

pg(lF) o exp (—ozg St e IF)”Q) , (4.14)

where £, can be simply defined by the horizontal and vertical first order derivative
filters: t1 = [1 ~ 1] and to =]1 — 1}7.

The sharp prior p,(I#) is introduced based on the fact that the edge regions of the
latent focused image I is expected to have similar sharpness with that of the predicted

I,. Asshown in (1 15), the first order derivatives are utilized to measure the difference.

pe(Ir) o exp (—a,3 Z Mo |[(t,®Ip—1,® l};)”%) . (4.15)

The smooth prier p;(I) is introduced for suppressing the ring artifacts as in [Shan
ot al,, 20088, As shown in (1.18), ps(Ir) is defined based on the expectation that the
smooth regions of the defocused image /p and the latent focused image Jp share similar

first order derivatives,

ps{IF) ox exp (—as ZMS o |6, ®IF—t, ®ID) ||§) . {4.16)
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The maximization problem in (1.11} can be recasted as the minimization of an

energy term defined based on (4.11)-(1.16).
Ep(Ir)=anlh®@Ip — Iply+ 5 ) (5 @ IF)lly +as ) My o ||(t:® Ir — t: ® Ip)li3
i i

toey Meo|l(t:®Ir—ti® L), (4.17)
i

where the term 3 and term 4 on the right-hand side are for suppressing ringing artifacts
and ensuring image sharpness respectively. Similar to the problem in Section 3.3.2, di-
rect minimization of Eg is intractable since Fr is non-quadratic to the unknown Ig.
Similarly, the variable-splitting and penalty scheme is adopted to tackle this optimiza-
tion problem. As shown in (4.18), two variables £; and & are introduced to replace
t1 ® Ir and ty ® Ip respectively. The discrepancy between &; and #; ® Ir is penalized

in a quadratic manner.
EF(IF) = Cn ”h‘ @I - IDH% + o Z Mse H(gt - @ ID)"% + e Z Mg "(5& — 6 ® Ip)”%
i i

tagy Nedl, +83 liE -t In)E. (4.18)

Iterative scheme is empioved to update the unknown Ir and §; alternatively with an
increasing penalty parameter 8. The solution of minimizing (4.18) will converge to
that of minimizing {1.17) when 3 becomes large enough. At each iteration, when /r is

fixed, & (¢ = 1,2) is updated by minimizing Er¢(&;) separated from Ep(IF).
EBrg(€) =05 ) Mo |6 -t ® ID)I3+ 8 & — 1 ® IF)l3 + oy Z ll€: i,
tae Yy Meol|l(&—t® L), (4.19)

Since Er¢(£;) is differential to &;, a closed-form solution can be obtained. It is worth
noting that & is updated in a pixel by pixel manner due to the influence of M, and

M. Similarly, when &; is fixed, Ir is updated by minimizing Err{IF).
Epp(lp) = on|h®Ir — Ipl3+ B (& - t: ® Ir)3, (4.20)
i

where Erp(Ir) is quadratic to Ir and its minimization is a typical least square problem
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which also has a closed-form solution. To avoid the computational complexity caused by
conveolution, it would be better to tackle the above least square problem in the Fourier
transform domain. All parameters involved in (J.18) act as weighting factors and thus
are used to balance the contributions of the corresponding terms. For example, the
larger is a, the closer is the output image to the predicted sharp image I,. For real
images, we have empirically found that o, varies from 1 to 5. ay is tuned between 500
and 2000, 8 is set equal to 1 at the beginning and then increased by 2 times after each

iteration. o, and o are normally fixed at 1 and 40 respectively.

4.5.4 Discussion on the SBD Results

Figure 1 7 shows a close-up of the refocused result in Figure 1.1d. Our estimated sharp
image I'y and PSF h are shown in Figure 1.7(e). Note that the errors that occur at
the sharpened edges in the predicted image (d} are due to the influence of noise and
nearby edges. The proposed method is robust to such outliers since the estimations of
h and Ir are handled in two separated MAP frameworks where the predicted sharp
edges are only one constraint for ensuring sharpness. The influence of these outliers can
be eliminated by the other constraints such as the smoothness term. Results in Figure
17 show that the proposed method yields the finest details and the least artifacts in
comparison to the other two algorithms. Also, the resulting PSF is closer to a typical
out-of-focus blur kernel. Note that all SBD methods were tested on the same defocus
layer of an image for comparison as shown in Figure 4.7 and Figure ‘1.11(d)-(g).
Experiments using synthesized images were alse conducted to evaluate the proposed
SBD method. As shown in Figure 4.5, the synthesized blurry image (b} was obtained
by adding Gaussian noise to the convolution result of the original sharp image (a)
and Gaussian PSF (¢ = 1.5). The SBD results obtained using different methods are
shown in {(c), (d) and (). Apparently, the PSF and recovered image obtained by the
proposed method are closer to the ground truth compared to the results obtained by
the other algorithms. To make a quantitative comparison, we use the SSD (sum of
squared differences) criterion to measure the accuracy of the recovered sharp image
and the estimated PSF. The comparison results on 35D are shown in Figure 19 for &
equal te 0.8, 1.5 and 2.5. Results obtained by the proposed methoed have the smallest
SSD. Besides, we also adopted a recently developed measure called SSIM {structural
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Figure 4.8: Testing on synthesized image. {a) Original image. (b) Synthesized image blurred
with Gaussian PSF (o = 1.5) shown in the top right. {¢) Fergus et al.’s results. (d} Shan et
al.’s results. {e) Our results. (f) Close-up visual comparison. (The differences are better seen
by zooming on a computer screen.)
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Figure 4,9: Quantitaiive comparisons with S5D en the recovered images and estimated PSFs
obtained with different 8BD methods. Note that the small shifts of PSF center and refocused
image occurred in [Frrgus ol al, 2006G] and [Shan eof al. 2008a] have been corrected for fair
quantitative comparison.

similarity) [Wang et al.. 2004] to assess the similarity of the recovered sharp image and
the original one. As shown in Figure -1 1), our deblurred images have the largest SS5IM
values. The above comparisons show that the proposed SBD method works better than
the other two state-of-the-art SBD algorithms both perceptually and quantitatively. In

the above experiments, the results of the methods of Fergus et al. [Feigus et al.. 2000]
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Figure 4.10: Quantitative comparisons with SSIM on the recovered images obtained with
different SBD methods.

and Shan et al. [Shan ot al . 2008a] were produced by using the original implementations
with parameters adjusted based on the authors’ instructions,

Moreover, since it is unnecessary to update the PSF and the latent sharp image
iteratively, the proposed method has lower computational complexity. For example, to
deblur a 480 x 320 image, the Matlab implementation of Fergus et al. [Fergus ol al..
2000] normally runs more than 20 minutes on a PC with an Intel Core2Duo 3.0GHz
CPU. The executable code from Shan et al. [Shan et al.. 20084] implemented using C
runs about 2.5 minutes. The proposed algorithm which was implemented using Matlab
requires comparable time as Shan et al.’s method, there is still much room to improve

its efficiency by optimized C++ or GPU implementation.

4.6 Experiments and Discussions

In this section, more experiments were carried out to show that the proposed system
can generate different styles of images by refocusing and defocusing. One experiment
was conducted to produce results as shown in Figure .11, The input image (a) focused
on the center of the two bottom numbers (I and 0} was taken by using typical macro
photography with shallow DOF. First, its focus map is produced as shown in Figure
1 12(a}, Note that the pixels which are in the same grid affect each other significantly
because of their similar colors. Since the black regions between the grids do not have
much texture, their blurriness relies on that of the neighboring grid boundaries. As
shown in Figure 1.12(b), the blurriness of the pixels at the dashed line drawn in (a)

decreases gradually from the top to the bottom, which coincides with the focus setting
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Figure 4.13: {a) Input image. (b) Synthesized image with shallower DOF (c) Synthesized
all-focused image. (d} Synthesized image focusing on the background.

scale than that of the middle layer. To simulate the real lens defocusing effects, Figure
1 11(b) is produced by applying different Gaussian blurring on the upper and middle
layers, where the ratio of the two blur scale is proportional to that of their detected
blurriness.

Another example is shown in Figure .1, where the girl and the other background
in the input image (a) can be reasonably assumed on the same defocus layer because of
their similar depth. The binary mask (e) is generated with focus threshold wy, = 1.1
and divides the input image into two focus layers. Two additional examples are shown
in Figure | 13 and Figure | | §. It is noted that the synthesis of layer boundaries such
as the gray regions in Figure |.1(e) is conducted smocthly by alpha blending to avoid
generating seam artifacts. Please also visit http://www. ee. cuhk.edu.hk/~zhangwei/
FocuskEditing.html to see a demonstration video, including all above results.

The proposed method has some limitations. First of all, as aforementioned, the
proposed methed cannot generate desirable focus map for image that contains objects
naturally blurry. Besides, since the occlusion problem is not addressed in this work, the

proposed method can hardly handle the image that is composed of many focus layers
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Figure 4.14' (a} Input image. (b) Synthesized image with shallower DOF (c) Synthesized
all-focused image. (d) Synthesized image focusing on the building

with large discontinuities. Normally, we prefer segmenting the image into two or three
layers. The unfocused objects similar in depth can be reasonably assumed at the same
layer. This is because: first, the quality of refocused images may degrade especially
when the image is segmented toc much and the layer boundaries frequently appear
Second, for one image, the more layers it is divided into, the less information is left at
each layer and thus refocusing will become harder due to the limited amount of data
available. However, one possible solution is to put in human intervention as [Yan ot al ,
200%; Baudo ane Nishita. 2007) to provide some guidance to the method especially in

the aforementioned tough cases.

4.7 Summary

In this chapter, we have presented a system to handle the tasks of focus map estimation,
image refocusing and defocusing. First, by means of a parametric edge model, we
propose an efficient and effective focus map estimation method. Second, the challenging
refocusing problem is tackled in a SBD framework which yielded visually pleasant
results with the aid of the novel image sharp prior. Besides, the proposed SBD is free
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of user initialization and has low computational complexity. A wide variety of images

have been tested to validate the proposed algorithm.



Chapter 5

Gradient-Directed Composition of Multi-Exposure
Images

5.1 Introduction

Radiance of the real world spans several orders of magnitude and its dynamic range
dramatically exceeds the capability of the current electronic imaging devices. As a
result, there often exist some undesirable over- or under-exposed regions in a photo
when the dynamic range of the latent scene is too vast to be reproduced with a con~
ventional camersa at a single aperture and shutter speed. There exist some hardware
solutions such as [BBrajovic aud Kanarle, 19968; Navar aned Branzol, 2008; Agparwal ane
Alwjn, 2000; Twmblin e al., 2005] which aimed at extending the dynamic range of
conventional cameras by including additional optical elements or devices. However, in
contrast to conventional camera, high dynamic range (HDR) camera is still unavailable
to consumer users due to its slow exposure speed, expensive price and high require-
ments on hardware. Since each exposure can be designed to capture a certain dynamic
range, it is possible to capture the full dynamic range of the latent scene and create a
HDR image with a conventional camera by combining a stack of images with different
exposure times. Because of the popularity of consumer cameras such as single-lens
reflex (SLR) cameras and point-and-shoot cameras, this kind of approach called multi-

exposure technique has a greater potential to impact everyday photography.

5.1.1 Related Work

The multi-exposure technique should be discussed in two cases. First, if the stacl is
captured in a static scene, it is a static HDR problem whose goal is to recover the full
dynamic range and make all present details visible in one image. Second, if there is

any cbject movement in the latent scene while the exposures are being captured, the

76
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moving objects will appear in different locations in the captured image. HDR, imaging
in this case is more challenging because direct combining all exposures suffering from
such inconsistencies will surely cause ghosting artifacts to be visible in the resulting
HDR image.

The most popular HDR tools in the current graphics software belong to this static
HDR category and normally consist of two steps: (i) calibrate the camera response
function {CRF) [Debevee and Malik, 1997; Grossberg and Nayar, 2003] and recover the
latent radiance map (HDR image); (ii) apply tone mapping to make the HDR. image
displayable on the commonly used low dynamic range (LDR) monitors [Durand aur
Dorsey. 2002; Reinhard ol al.. 2002; Faltal ot al., 2002; Li ci al.. 2005]. These tools did
not consider the object movement and thus share a serious limitation that the target
scene is required to be completely still throughout the image capture. As shown in
Figure § 5, any object movement in the exposure sequence can cause ghosting artifacts
in the resulting image. This drawback severely aflected their application in practice,
since for most scenarios, it is hard to guarantee all objects involved stay stationary
from one capture to the next, For instance, there often exist crowds of people moving
around in tourist resorts. There are windblown trees in nature scenes.

Lots of efforts have been made to solve the ghosting problem in dynamic scene
recently. The existing methods were proposed in & similar manner. They first detect the
motion regions, and then produce a ghost-free HDR result by remove the contributions
of these regions in the composite radiance map. For example, many different kinds of
techniques such as optical flow [Kang el al. 2004], variance measurement [Reinhaid
ot al.. 2005), error map detection [Crosch, 2000], entropy calculation [Jaculs of al.,
2008] and pixel’s order relation detection {Sidibe ¢l al., 2000], have been adopted to
find regions where ghosting artifacts may occur due to object motion. Besides, Gallo
et al. [Gallo et al., 2009] and Eden et al. [Bden et wl. 2000} proposed to composite
the desirable radiance with the guidance of a reference image preselected automatically
or manually. Some statistical tools such as kernel density estimator were employed
in [Khan et al., 2006; Pedone and Heikkild, 2008] to iteratively determine the probability
that a pixel belongs to the background.

However, all above methods were presented in the radiance domain fully or partially.

Hence, they share two limitations at least. First, the performance highly relies on
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the success of the radiometric calibration of camera which is sensitive to image noise,
lighting change and misalignment error. Second, they normally have complex working
pipelines and require tone mapping for HDR, reproduction. The above problems make
these kinds of methods computationally expensive and restrict their applications in

practice.

5.1.2 This Work

In this chapter, we present a novel exposure composition approach that is able to bypass
the typical HDR process and directly yield a tonemapped-like HDR image where all
parts appear well-exposed by compositing multi-exposure images with the guidance
of image quality assessment. Our algorithm shares the same spirit with the recent
work [Goshiashy. 2005; Merfens ¢t al.. 2009; Shanmuganathan and Chaudhuri, 2009]
for using image fusion to obtain better exposed image. But since all of them belong to
the static catergory as the convention HDR work and assume no object movement in the
scene, they can only deal with the images captured in static scenes and suffer from severe
ghosting artifacts in dynamic scenes. Moreover, we address the multi-exposure image
composition from the perspective of gradient, and develop a new quality assessment
system to handle the composition in both static and dynamic scenes.

In addition, image gradient has been manipulated in several tasks such as tone map-
ping [Fattal ¢t al., 2002], image editing [’6rez of al., 2003] and enhancement [Agrawal
cl al., 2005]. It is worth pointing out that [Fatinl ¢t «l.. 2002] and [Agrawal ¢t al., 2005
differ from ours essentially. [Falial ¢l al.. 2002] is & tone mapping method that seeks
to compress the radiance map to a displayable range with a spatially varying gradient
attenuation function. [Aqrawal ci al.. 2005] aims at removing the artifacts existing in
flash photography with a gradient projection scheme. Moreover, it was proposed for
static scenes and thus cannot handle the dynamic scenes.

Specifically, the underlying idea of this work comes from the observations of gradi-
ent changes among differently exposed images. Firstly, gradient magnitude can imply
pixel’s exposure quality and will decrease gradually as the image is approaching over-
or under-exposure. Consequently, it can be utilized as a measure on visibility to help
preserve the details present in the exposure sequence. Secondly, it is also found that

the gradient direction changes reveal object movement and thus can help account for



§ 5.2. Algorithm 79

the ghosting problem in dynamic scenes. More detailed, if the content in some srea
changes among different exposures due to object movement, the gradient direction in:
that area will probably have significant changes as well. Consequently, exploiting the
gradient direction changes leads to a consistency measure which can get rid of the in-
fluence of moving objects and preserve the desired consistent pixels in the composite
image. By combining the consistency measure and visibility measure, the proposed
method is still capable of compositing all exposures gracefully in dynamic scenes and
producing a pleasant well-exposed image free of ghosting artifacts.

Generally speaking, there are two types of motion in a dynamic scene: (i) a moving
object on a static background, e.g. moving people or cars; (ii) & moving background
with dynamic objects, e.g. windblown trees or waves. Accordingly, we propose two
gradient-based consistency measures to tackle the above two types of motion. One
is named as accumulated consistency assessment (ACA)}, which which is particularly
effective for removing all unwanted moving objects and producing a clean composite
image. The other is named as reference view guided consistency assessment (RCA),
which is particularly effective for dealing with background motion. The underlying idea
of RCA is to composite all available dynamic range by taking one preselected image
as a substrate, Hence, the proposed method is also able to produce a composite image
with some moving object the user desired.

In summary, the proposed algorithm is designed to have the following properties:
first, it is easy to vuse and has lower computational complexity since neither radiometric
camera calibration nor tone mapping is required. Second, for dynamic scenes, the
proposed approaech can eliminate the ghosting artifacts avtomatically and efficiently
without resorting to any explicit complex motion detection techniques like optical flow.
Third, it allows for lighting changes and can be extended naturally to other tasks such

as flash and no-flash photography.

5.2 Algorithm
5.2.1 Motivation and Overview

Since different exposures capture different dynamic range characieristics of the latent

scene, taking multiple exposures and combining them together as (%.1) may create a
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Figure 5.1: The proposed framework. Please note that consistency assessment is unnecessary
for static scenes.

more informative image that captures all details of the scene.

K
Io(z,y) =Y Wie,y)I'(=,y), (6.1)

i=1

where K represents the number of the input exposures. I*{z,y) and Wi(z,y) denote
the intensity and weight of the pixel located at {(z,y) in the iz, exposure respectively. Io
denotes the composite image to be generated. Compared to the typical HDR. process,
exposure composition is easier and much more efficient since neither radiometric camera
calibration nor tone mapping is necessary. However, the composition performance relies
on the weight term W and so it is crucial to develop an effective quality assessment
system that can ocutput the desired weights. In this chapter, we will show that the
gradient information plays well in the quality assessment and makes it possible to
handle the exposure composition in both static and dynamic scenes.

As illustrated in Figure 5.1, the proposed HDR process is quite simple and begins
with a stack of differently exposed images. In this work, we assume all exposures are
captured with the aid of a tripod or have been aligned by some registration technigues
like [Ward, 2003; Brows aned Lowe, 2(103]. Then, the weighting map of each exposure
is estimated by a gradient-based quality assessment system. For dynamic scenes, as-
sessments on visibility and consistency are both required, while for static scenes only
the former one is necessary. Besides, since every pixel is assessed independently with-
out considering the spatial consistency within one image, some pixels may get outlier
weight estimates due to the influence of image neise, inaccurate gradient detection and

so on. Hence, a cross-bilateral filtering [I<isemam and Durand, 2004; Petscimigg et »l.,
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2004; Paris and Darand, 2006 based refinement is introduced to eliminate the out-
lier weights and ensure that adjacent pixels have similar weights if they share similar
intensities. The standard deviations of the space and range Gaussians are normally
set to 5 in the experiments. Given weighting maps, a tonemapped-like HDR image
is produced eventually by compositing all exposures seamlessly with a multiresolution

spline scheme [Burt and Adelson, 1983].

5.2.2 Gradient-based Image Quality Assessment

In this section, we will describe how to take advantage of the gradient information to
generate weighting maps for static and dynamic scenes. Similar to Canny detection,
we adopt the first derivatives of 2-D Gaussian filter g(z,y;cy) in z direction and y

direction to extract the gradient information in this work as follows.

, : 8
Liz,y)=I'z,¥)® a—g(m,y; Cd), (5.2)

, ; b
L(z,y)=I{z,y) ® 8—9(93,1;;@), (5.3)
¥

where I% and I;, are the partial derivatives of image I' along z direction and y direction
respectively. The standard deviation oy is set to 2 in the experiments. The gradient
magnitude reflects the maximum change in pixel values while the angle points cut
the the direction corresponding to the maximum change. These two components are

calculated in (5.1) and (5.5), respectively.

vi(e,y) = e,y 2+ i )P, (5.4)
I(z,y)

LGy (5:5)

g%(z,y) = arctan

Visibility Assessment

As shown in Figure 5.2(a), some features that are visible in one exposure disappear in
the others due to over- or under-exposure. Therefore, the basic goal of composition is
to preserve all features present in the exposure sequence and make them visible in one
image. Gradient is associated with image features and its magnitude is an indicator of
pixel's exposure quality. As illustrated in Figure 5.2(b), gradient magnitude becomes

larger when a pixel gets better exposed. It will decrease gradually as the pixel is
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to object movement, the gradient direction will vary accordingly (e.g. lgn| > 0 in
Figure 5.3(b)). Therefore, we believe that the gradient direction information would be
particularly effective to detect the inconsistency caused by motion. In this work, the
measurement of gradient direction changes is accomplished in a window-based manner
to make it more resistant to noise. Specifically, for each pixel located at (z,y) of the i
image, its gradient direction change w.r.t that of the j;; image is calculated as follows.

|6 (z + m,y+m) — 0 (z+m,y+m)|

dij (m,y) = m——r (2,," + 1)

(5.7)

where the size of window is (2r + 1) x (2r + 1) and r is normally set to 9. It is noted

that di;(z,y) = dj(z,y) and di;(z,y) = 0, when ¢ and j are equal.

Accumulated Consistency Assessment (ACA) The first kind of consistency is
developed based on the observation that many exposure sequences such as Figure 5..3(a)
normally have one thing in common: the moving object is only a shot for one position
and appears in a relative smaller number of images. This is because in most cases,
the stationary parts of the scene that predominantly exist in the sequence are what
the photographer is interested in. Consequently, a score % can be defined as (5.8) by
accumulating the pradient direction changes of each exposure to reflect its consistency

in the whole sequence.

Shlw,y) = Zewp( e (58)

where o, is the standard deviation and fixed at 0.2 in the experiments. Apparently, a
large score implies small gradient direction change and thus the content is more fre-
quently captured in the sequence. (5.8} can favor the stationary parts of the scene
under the assumption that the exposure sequence predominantly captures the station-
ary parts of the latent scene, which is prevalent in the previous work [Kbaus ot al.. 200¢;
Sidibe ol al.. 2009]). However, the direction changes of gradient may also be caused by
over- or under-exposure {e.g. lwz| > 0 in Figure 5.3(b)). In this case, the score calcu-
lated based on d,;(z,y) is no longer desirable, since it may make the algorithm mistake
the stationary visible objects for unwanted moving ones. Therefore, an additional term

E* which indicates the exposure quality of I*, is introduced to jointly define the final
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(b) ' (c)

Figure 5.4 FEffect of exposure correction on weighting map estimation The left is the fifth
input image of the sequence in Figure 5 3(a} The middle and right show its weighting maps
before and after exposure correction respectively

consistency measure C% with 5% as follows.

Sy(z,y) x B*z,y)
K Su(z,y) x Bz, y) + €

Calz,y) =
where

B(r.y) = 1 l—r<Mz,y) < (5.10)
0 otherwise.
Note that E* is used to remove the invalid scores estimated in the over- or under-
exposed regions. 7 defines the well-exposed range and is normally fixed at 0.9 in the
experiments. The final weights in dynamic scenes are calculated by combining the
visibility and consistency measures as:

Viey) x Cilay)
K Viz,y) x Cy(z,y) +e

Wiz,y) = (5.1

As shown in Figure 5 3(e), they give rise to a pleasant result where all visible details
are preserved and no ghosting artifact is present.

Figure 5 | illustrates the effect of exposure correction in the example of Figure
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{e)

Figure 5.5: Deghosting using ACA and RCA. Top rew Input images with variable exposures,
where the regions outlined by dashed rectangle are different with each other due to object
movement. Bottom row: (d)} shows the deghosting result using ACA. (e) and (f) are deghosting
results obtained by taking image (b) and (c} as the reference view in RCA, respectively. Data
courtesy of Mateusz Markowsli.

H.4. Taking the sky region for example, since pixels in this region are over-exposed
in most exposures, the weights obtained without exposure correction (i.e. remove the
term E*{z,y) in (5.9)) are high as shown in Figure 5 I(b). The high weights favor
over-exposure and suppress the occurrence of clouds in the composite result shown in
Figure 5.3(d). After exposure correction, these weights become much lower as shown

in Figure 5.4(c) and thus a desirable result with clouds is obtained in Figure 5 3(e).

Reference View Guided Consistency Assessment (RCA) As aforementioned,
ACA assumes that for regions corrupted by movement, the the moving object is only
a shot and another cbject mostly on the background predeminantly exists. ACA can
select the predominant object for the composition image. However, if some region
changes frequently, e.g. the floors of the three exposures in Figure 5% are different
with each other due to object movement, ACA cannot work well since no object is
predominant in that region. Likewise, ACA cannot remove the ghosting artifacts caused
by the meving background with dynamic objects such as windblown trees and waves.
To remedy this issue, we seek to develop another consistency measure by taking one

image as the reference view, which is thus named as RCA. To avoid ghosting artifacts,
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Figure 5.6: Schematic overview of the proposed algorithm. {a), (b) and (c) are the same as
those in Figure 5.5. Image (b) serves as the reference image. Note that the weighting maps
shown in the right are normalized.

additional visible details extracted from the other images will be accepted only if they
are consistent with the scene defined by the reference view. Similar to [Galln el al.,
2009; Fden et al., 20006), we prefer the user to select reference image, since it will help
remove the undesired moving objects and determine what the final, consistent HDR
result will look like. Normally, the image whose motion area is well exposed is favored
as the reference view. However, if all exposures are semantically equivalent to the
users, the reference view can also be selected automaticaily based on which image has
the least amount of saturated pixels similar to [Crallo ot al, 2009].

Figure h.6 illustrates how the proposed algorithm work with the reference view
guided consistency assessment. In specific, the proposed HDR. process begins with a
set of differently exposed images. One image will be picked out from the stack as the
reference view beforehand. Next, all images will undergo a comprehensive assessment
on visibility and temporal consistency. The results are consolidated to weighting maps
which will be further refined using crossbilateral filtering. Finally, the HDR result can
be produced by compositing the exposures with the guidance of the weighting maps.

For each pixel of the i;, image, its direction change w.r.t the preselected reference
image can be obtained as follows (similar to (5.7) with the jy image as the reference

view).

Tm=_r]9‘(.r+m,y+m) —9’”(m+m,y+m)|
(2r +1)? '

dz--ref(zm y) - (512)
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Figure 5.9 Dynamic example with ACA The top row shows the mput five exposures ({a)
Mertens et al ’s result [Mettens of ol 2009 (b) Result obtained using standard HDR (radio-
metric calibration and tone mapping} (c) Result presented m Gallo et al [Gallo ot 2] 2000
{d) Our result Data courtesy of Orazio Gallo

Figure 5.10 Close-up companson of (left) Gallo et al 's result 1n Figure 7 %{c} and (night)
ours n Figure 5 {(d)

does not require much parameter tweaking All experimental results were produced
with the same parameters mentioned 1n the above sections For color images, gradient
extraction and cross-ilateral filtering are conducted only mn the lummance channel
Please also visit http //www ee cuhk edu hk/-zhangwel/GradComp html to see the

results
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Figure 5.13 Dynamic sample with RCA Left mput sequence Right the result of Mertens
et al [Mertens ¢t 0l 2000, the result of Khan et al [Khan ot «f  2000], the result presented
m Pedone et al [I’rdonc anud Halkalo 2005] and ours (the forth image serves as the reference)
Data courtesy of Matteo Pedone

Gallo et al [Gallo of al 2009] m terms of ghost removal However, as shown 1n Figure
5 10, our result 15 less noisy and extubits more details than Gallo et al’s It 1s worth
noting that the performance of Gallo et al 's method rehes on the quality of the selected
reference image It cannot be used to remove the unwanted moving objects if they are
present 1n all exposures as those 1n Figure b 4, since no image 15 swtable for reference
Sometimes, human intervention 15 required to help select a image as the reference view
for deghosting For example, the fifth exposure 1s selected as reference manually n
Figure 3 ¢ In contrast, our approach 1s fully automatic As shown i Figure 9 {1 and
Figure 5 12, we also compare our methed to [Kewshard et ol 2007] which achieves

deghosting based on variance measurement

5.3.2 Dynamic Scene with RCA

In this part, the weightsin (7 1) 1sset as W = Wy Some of the following examples wail
prove that the proposed method 1s also able to produce a HDR image with some moving
objects that the user deswed Particular, one interesting example has been shown 1n

Figure 15 In addition to the desirable performance on ghosting removal, our method
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Figure 5.18 Flash hot spot removal using visibility assessment Top BRash and no-flash
images Bottom our composite result Data courtesy of Amit Agrawal

5.3.4 Computational Efficiency

As aforementioned, conventional deghosting methods such as Khan et al [Riian et al

2000), Gallo et al [Gallo ¢t al  2009]) and Remmhaid et al [Runhaid ot of 2005
are computationally expensive, since camera calibration and tone mappmg axe both
requned Moreover, Khan et al s method [Khan <t ol 2000] works i an iterative
manner In contrast, our method 1s quite simple and non-iterative For deghosting
(ACA and RCA) n a dynamic case, the cirrent non-optimized Matlab implementation
takes about 25 — 35 seconds to process four 1 megapixel mmages on a PC with an
Intel Core2Duo 3 DGHz CPU Note that 1t 15 hard to give the exact runming time of
the work [Iihan ¢t al 2000, Gallo ¢l ol 2009, Remhaud of ol 200%] due to then

complex pipelines, and that user intervention 1s usually tequired in the tone mapping
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Figure 5.21: A failure case in the example of Figure 5.5, Left: the reference image (image (a)
of Figure 3 3). Middle: our composite result Right- close-up view of the risky regions where
ghosting artifacts occurs

The no-flash image is faithful to the ambient lighting, while the flash image reveals
more details but suffers from hot spot artifacts. QOur method with visibility assessment
(W = Wy) can combine the advantages of them and generate a desirable image free of
hot spot.

(Reflection removal) If there is transparent layer such as glass, flash also incurs
reflection artifacts. As shown in Figure 5.20, & person is photographed from inside
a glass enclosed room at night. Flash photo {(a) can capture the person but exhibit
reflection artifacts, while no-flash phote (b) can only take the distant building behind
the glass. In this case, direct fusion [Alertens ¢t al, 2009 incurs reflection artifacts
as shown in Figure 5 20(c¢). Our proposed epproach with RCA (W = W) seems to
produce the best images with correctly removed reflection artifacts. Also, compared
to Agrawal et al. [Agrawal of al | 200%], our method also corrected the overexposure of

the flash image especially on the girl’s face.

5.3.6 Limitations

The method we proposed also shares the common limitations in HDR technology. For
example, it may not work well when the input exposures contain severe sensor noise
or blurring artifacts caused by camera shake, since the gradient estimation might be
inaccurate in these cases. One possible solution is to denoise or deblur the input images
first and then proceed our HDR scheme. Besides, since ACA is developed based on
the assumption that the stationary parts of the scene are predominant in the sequence,
at least three exposures are required when perform deghosting with ACA in dynamic

scenes, However, there is no such limitation for RCA. In most cases, two photographs
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are good enough to get a pleasing result such as Figure 5.15. But RCA may fail to
deghost if an unsuitable exposed image is selected as the reference view. For example in
Figure 5.21, since the object in the risky region where motion occurred is underexposed
in the reference image, it cannot provide effect gradient guidance for ghosting removal.
However, this kind of failure is avoidable to some extent by taking the other exposures
as the reference view as shown in Figure 7.5, As aforementioned, the principle is to take
the image which is well exposed in the risky region as the reference view. Otherwise,
the proposed method may not work well. In the future, we would like to introduce a
more advanced model for ghosting removal to improve the current one-image-dependent

reference view strategy.

5.4 Summary

Iimage gradients convey important information about the latent scene. In this chap-
ter, we have shown that well utilization of image gradient makes it possible to handle
the static and dynamic exposure composition in a simple but effective way. We have
designed two kinds of consistency measures to deal with the two types of movement:
foreground object movement and background object movement. Similar to [(iosh
tasby, 2006; Metiens e al., 2009; Shavuupanathan and Chandbi, 2000), the proposed
method can free users from the tedious radiometric calibration and tone mapping steps.
The effectiveness and efficiency of the proposed approach have been validated with var-

ious exposure sequences captured in different dynamic scenes.
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Figure 5.26 Comparison of the example in Figure 5 25 (a) standard HDR (no deghosting),
(b} Khan et al {iChan of ol 20006], (¢} Pedone et al [Prdoue aud Nekhila 2008, (d) ours
Please notice the regions outlined by the dashed rectangles Result (a) suffers severe ghosting
artifacts caused by the moving car {see the blue dashed rectangle) and windblown leaves (see
the red dashed rectangle) [Khan «t i 2000{ and [P’odonc .nd Haklale 2005] can reheve
the ghost problem incurred by the moving car, but cannot remove the others caused by the
windblown trees, because as mentioned m the chapter, both of them cannot handle the frequent
movement Qur method yielded the best result where all ghosts have been removed completely
Please enlarge to sec more details Data and resulés (a),(b),{c) courtesy of Matteo Pedone












Chapter 6

Conclusions and Future Work

This chapter closes the thesis with a summary of the main contributions and several

directions for further work,

6.1 Contributions of the Thesis

To break the physical limits of cameras and turn the captured image to be what people
are looking for, this thesis has presented a series of image enhancement algorithms which
can improve the perceptual quality of the captured images in three aspects: resolution,

focus effect and dynamic range. The main contributions can be summarized as follows:

6.1.1 Super-resolution

To enhance the resolution of a captured image, two kinds of super-resolution (SR)
approaches are presented in Chapter 2 and Chapter 3. Chapter 2 aimed at super-
resolving face images (i.e. face hallucination) with a learning-based framework [Zhang
ane Cliamy, 2008; Zhang and Clian. b, Unlike previous learning-based work, face hal-
lucination problem is addressed from a different perspective. In details, the problem is
formulated as inferring the DCT coefficients in frequency domain instead of estimat-
ing pixel intensities in spatial domain. As shown in Section 2.3, DC coefficients can
be estimated fairly accurately by simple interpeclation-based methods. AC coefficients,
which contain the information of local features of face image, cannot be eslimated well
using interpolation. An efficient learning-based inference mode! is proposed to infer
the AC coefficients in Section 2.4, The proposed approach requires less memory and
lower computbation cost than conventional methods because firstly the data dimension
is significantly reduced in the DCT domain. Secondly, clustering is implemented to re-

move the redundancy of the training set. Experiments were conducted to demonstrate

111
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the effectiveness of the proposed method in producing high quality hallucinated face
images.

Chapter 3 aimed at super-resolving generic images (i.e. face hallucination) with a
reconstruction-based framework [Zhang and Cham. 2010h]. In detail, the SR process is
straightforwardly divided into two steps: magnification and deblurring. Magnification
is achieved using structure adaptive interpolation to avoid jaggy artifacts. Deblurring
is a highly ill-posed blind deconvolution problem. Unlike previous work, we advocate
solving it in an efficient and non-iterative way with the aid of little user intervention
as stated in Section :3.}.2. Specifically, after introducing a parametric edge model, we
show that the blurring kernel can be estimated accurately and quickly from the salient
edges selected by user-drawn stroke. When the blurring kernel is fixed, the sharp image
is recovered effectively with a maximum a posteriori (MAP) framework. Experiments
on a variety of images demonstrate that the proposed algorithm is able to generate

visually appealing super-resolved results with few artifacts.

6.1.2 Focus Editing

To change the focus of a image, a focus editing system [Zhaug and Chans, 2000; Zhang
sk Clwun. ¢ is presented in Chapter 4. In detail, the proposed system can accomplish
the tasks of focus map estimation, image refocusing and defocusing. Given an image
with a mixture of focused and defocused objects, we first detect the edges and then
estimate the focus map based on the edge blurriness which is depicted explicitly with a
well-parameterized model as stated in Section 4.1. In Section 1.5, the image refocusing
problem is addressed in an elaborate blind deconvolution framework, where the image
prior is modeled well by using both global and local constraints. HEspecially, we correct
the defocused blurry edges to sharp ones with the aid of the parametric edge model
and then render this cue as a novel local prior to ensure the sharpness of the refocused
image. Experimental results demonstrate that the proposed system performs well in

producing different styles of realistic images from a single input by focus editing.

6.1.3 Exposure Composition

To break the dynamic range limits of conventional cameras and simulate high dynamic

range (HDR) photography, Chapter & presents a simple but effective method [Zhang
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and Cham, 2010a; Zhang and Chamn, a] that can accomplish the multi-exposure image
composition in both static and dynamic scenes. Given multiple images with different
exposures, the proposed approach is capable of producing a pleasant tonemapped-
like HDR image by compositing them seamlessly with the guidance of gradient-based
quality assessment. Especially, novel quality measures on visibility and consistency are
developed in Section $.2.2 based on the observation of gradient change among different
exposures. Compared to previous work, our method is quite appealing in practice since
it is computationally efficient and frees users from the tedious radiometric calibration
and tone mapping process. More importantly, two kinds of consistency measures are
designed by take advantaging of the gradient direction change in Section 5.2.2. One
is named as accumulated consistency assessment (ACAY), which can be used to remove
all unwanted moving objects and produce a clean HDR image. The other is named as
reference view guided consistency assessment, (RCA), which is intended for compositing
all exposures by taking one preselected image as a substrate. Hence, the proposed
method is also able to produce a HDR. image with some moving objects that the user
desired. Various experimental results in static and dynamic scenes demonstrate the

effectiveness of the proposed method.

6.2 Future Research Directions

From the current work, there are several interesting avenues for future research.

e The proposed learning-based method in Chapter 2 attempts to generate a plau-
sible high-resolution (HR) face image by creating the required high frequency
components from a face training set. Hence, the performance limited by the
training set and depends on how well the low-resolution (LR) input matches the
training samples. Currently, the training set for faces with a particular pose and
expression is only applicable for the hallucination of faces under similar condi-
tions. It would nice to allow the algorithm to handle faces with different poses
or expressions as [Li and Lin. 2004] and [Jin and Gong. 2008]. A possible so-
lution is to first detect the pose or expression of a face and then perform face
hallucination using the corresponding training samples. But this requires a more
comprehensive training set which collects face images with diverse poses and ex-

pressions. Besides, this algorithm is applicable to general SR problem and can be
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generalized to tackle other types of images. Likewise, to super-resolve a certain
type of images well, an appropriate training set which includes sufficient similar
type of images needs to be prepared. For example, to super-resolve an image with

flowers, it is important that the training set contains many flower images.

The SR process in Chapter . is divided into two steps: magnification and deblur-
ring. The challenging deblurring problem is addressed in an interactive way. User
intervention is required to select a salient edge from the target image for suitable
deblurring. Hence, it would be necessary to develop a system with friendly inter-
face that can make the users manipulate the process easily. Also, we would like to
avoid the user intervention and propose an antomatic method to find the optimal
blurring kernel. Besides, it is worthy to investigate how to estimate the blurring

kerne! accurately if no salient edges can be found in the target LR image.

The image SR algorithms presented in Chapter 2 and Chapter 3 both have po-
tential for tackling the video SR problem. But the following aspects need to be
investigated. First, for the learning-based framework presented in Chapter 2, the
key problem is to construct a good training set for video SR. The training sam-
ples can be obtained by exploiting the external information (¢.g. HR images of
the target scene as in {IXong ¢t al., 2000]) beyond the video or the internal infor-
mation inside the video (e.g. patch redundancy as in [Jostn et ol 20010 Protier
of b, 2009; Glasner ot al., 2009]). Second, for reconstruction-based framework
presented in Chapter 3, a flexible way to find the optimal blurring kernel is de-
sired. Third, an implicit or explicit temporal coherence constraint is needed to

avoid observable flickering artifacts.

As mentioned in Chapter I, the proposed focus editing method cannot generate
a desirable focus map in cases where the input image contains objects naturally
blurry or many focus layers with large discontinuities. To relieve this issue, we
hope to introduce user intervention as in [Yau ¢f al . 2009; Banelo and Nishita,
2007] to help the method handle the aforementioned tough cases. Besides, it is
worthy to investigale the modeling of ccclusion problems in the single image focus
editing work. We would also like to extend the basic idea of this work to solve

other low level vision problems such as space-variant deblurring.
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s As meuntioned in Chapter 5, the proposed exposure method may not work well
when the input exposures contain severe sensor noise or blurring artifacts caused
by camera shake. Therefore, we hope to investigate how to integrate the denoising
or deblurring steps into the current scheme well, and extend the proposed method
to more scenarios (e.g. camera shaking, high-ISO noise). As stated in Section
5.3.%, the RCA would fail to deghost if an unsuitable exposure is selected as
the reference image. Therefore, it is desirable to have a more advanced model
for ghost removal to improve the current one-image-dependent reference view
strategy. We also found that proper retouching such as color correction and
sharpness adjustment can make the result more impressive, so it would be nice to
add some retouching techniques to the current framework. Also, it is worthy to
further investigate the potential of this work in other related tasks such as flash

photography, relighting and color transfer.

o The efficiency of all algerithms could be improved by optimized GPU implemen-

tation such as [[{ow o al., 2008],
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