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Abstract 

Although significant progress has been made in imaging devices during the past few 

decades, the photographs acquired by digital cameras are still far from perfection due 

to the physical limitations of hardware such as aperture, lens and sensor. This fact 

brings out the demand for study on image enhancement: a computational technique 

that aims to improve the interpretability or perception of information in photographs 

for human viewers. The work in this thesis mainly focuses on three tasks in image 

enhancement. 

Firstly, since the camera sensor has limited resolution, the acquired images cannot 

capture the scene very detailedly. Hence, people often resort to a postprocessing tech-

nique called super-resolution (SR) to enhance the resolution of the captured images. 

In the first part of this thesis, two approaches are presented to address the challenging 

single image SR problem, which is to recover a high-resolution (HR) image from one 

low-resolution (LR) input. Specifically, a novel learning-based framework is designed 

specifically for face image SR task from the perspective of DOT domain. In addition, 

an efficient two-step scheme is developed to super-resolve generic image by exploiting 

the salient edges of the input LR image. 

Secondly, due to the limitation of lens and aperture, some cameras cannot pro-

duce pleasant photographs with desired focus setting. For example, portrait photog-

raphy that requires shallow depth of field (DOF) is not allowed when using the com-

pact point-and-shoot cameras. In the second part of this thesis, a new and complete 

postprocessing-based focus editing system that is able to handle the tasks of focus map 

estimation, image refocusing and defocusing, is developed to overcome the optical lim-

itations and create different kinds of novel photos with desired focus setting from an 

imperfect photo. 

Finally, since the radiance of the real world spans several orders of magnitude and 

its dynamic range dramatically exceeds the capability of the current digital cameras, 
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there often exist some undesirable over- or under-exposed regions in a photograph. The 

third part of this thesis aims at producing one great looking well-exposed image that is 

virtually impossible with a single exposure by compositing a stack of photos at different 

exposures taken with a conventional camera. Particularly, a simple but effective method 

is presented to describe how to take advantage of the gradient information to accomplish 

exposure composition in both static and dynamic scenes. Compared to conventional 

high dynamic range (HDR) imaging work, the proposed approach is quite appealing in 

practice since it is computationally efficient and easy to use, and frees users from the 

tedious radiometric calibration and tone mapping steps. 

Throughout this work, extensive experiments on various real and synthetic image 

data are conducted to evaluate the performance of the proposed algorithms. 



摘要 

成像技術在過去的幾十年裏得到瞭很大的發展。但是由于受到照相機硬件包括光 

圈，鏡頭和傳感器的限制，所拍攝的照片還有很多不盡人意的地方。這種現象促進瞭 

圖像增強（Image Enhancement)技術的研究，其目的是通過計算的手段來提高圖 

像承载信息的能力，增強觀者的視覺感受。本論文的目標正在于此，主要在以下三 

個方面上進行圖像的增強D 

首先，由于照相機的傳感器分辨率有限，所以圖像往往不能很詳細的記錄場景信 

息。這様，人們往往訴諸于一種稱爲超分辨率(Super-resolution)的後處理技術來提 

高所拍攝圔像的分辨率。本論文的第一個部分探討的正是這種技術，並提出暸兩種 

不同的方法用于單幅圖像的超分辨問題，即從一幅低分別率的圖像上來恢複其對應 

的高分辨率圖像。其中，一個從離散余弦變換(DOT)域角度上的提出的基于學習的 

框架主要用來針對人臉圖像的超分辨率問題。而另一個框架是通過挖掘低分變率圖 

像中的強邊緣信息來解決一般圔像的超分辨率問題。 

其次，由于受鏡頭和光圈的影響，一些照相機不能拍出令人滿意定焦效果的 

圖片D比如，肖像照片通常需要是窄景深(DOF)的，而常用的傻瓜相機(Point-and-

shoot camera)卻很難滿足這個要求。因此，本論文的第二個部分提出暸一個整套的 

基于後處理的圖像定焦編輯(Focus editing)系統，它可以完成定焦圖的計算，圖像重 

聚焦以及散焦等任務。這個系統可以幫助我們克服照相機硬件限制，把一幅定焦有 

瑕疵的圔像變成具有不同定焦效果的多個新圖像。 

最後，由于真實世界中的光線跨度非常大，其動態範圍已經遠遠超出瞭照相機的 

亮度表示能力。所以，拍攝的照片經常會出現過曝光和欠曝光的問題。本論文的第 

三個部分研究的是用于解決此問題的曝光融合(Exposure composition)技術，即通過 

融合多副由常用照相機拍攝的不同曝光的照片來生成一副單次拍攝不可能得到的良 

好曝光圖像。尤其是，本論文描述瞭怎樣利用圖像的梯度信息來實現在靜態和動態 

場景中的曝光融合問題，所提方法簡單而有效。與傳統的高動態範圍(HDR)技術相 

比，此方法效率高，易于使用並且可以把用戶從繁瑣的相機映射標定和色調映射等 

步驟中解放出來D因此在實際應用中更加有吸引力。 

VII 
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爲暸驗證所提算法的性能，本論文在大量真實和合成數據的基礎上進行暸廣泛的 

實驗。 
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Chapter 1 

署 ntroduction 

1.1 Motivation 8l Objectives 

From ancient rock art to children's sidewalk drawings, we live in a visual world. Ac-

cording to a conception of visual experience that has been widely held by perceptual 

theorists, we open your eyes, and we enjoy a richly detailed picture-like experience of 

the world, one that represents the world in sharp focus, uniform detail and high reso-

lution from the center out to the periphery. It can be called: snapshot conception of 

experience. Over the ages, human beings are trying to record the visual world con-

stantly with different forms to keep this fascinating experience for ever. Among them, 

painting is the most long-history one, and it is still popular even today. The oldest 

painting can date back to 32,000 years ago. Prom then on, people begin to depict the 

creatures, domestic scenes, labor scenes, or nature by applying paint, pigment, color 

or other medium to a surface as walls, paper, canvas, wood, glass, lacquer, clay or 

concrete. However, painting is more like an artistic creation. It is inaccurate and time 

consuming. Amateur can hardly master it. Only the person with assiduous training 

can become a skilled painter and produce excellent works. 

The advent of camera break the ice, and offers a quick and faithful depiction of 

things in life. By definition a camera is a object, with a lens, that captures incoming 

light and directs the light and results image towards film (optical camera) or the imaging 

device (digital camera). The first camera that is small and portable enough to be 

practical for photography was built by John Strognofe in 1685. Over the last hundreds 

of years, camera has come a long way (see Figure 1.1), from hulking to handheld, from 

monochrome to color, from optical to digital, from still image to video. Today, camera 

has become a necessity of our life. Especially, the development of computer, Internet 

and wireless communication greatly promoted the popularity of camera. Camera even 



Figure 1.2 • Resolution illustration 

results in a new language that everyone can understand. The language is photography, 

through which we could recall a moment frozen in time and could share it with others. 

Although nowaday camera is quite powerful, it is not a patch on our eyes and cannot 

capture what we see exactly. In most cases, the acquired photographs are still far from 

perfection due to the physical limitations of hardware such as aperture, lens and sensor. 

In this thesis, three aspects of the hardware limitations are addressed as follows: 

First, camera sensor like CCD (Charge-Coupled Device) and CMOS (Complemen-

tary Metal-Oxide-Semiconductor) can only allow a limited number of spatial pixels, 

which results in a limited image resolution [Choi ot al , 200-1]. Although these sensors 

are suitable for most imaging applications, the current resolution level and consumer 

price will not satisfy the future demand. In most cases, images with high resolution are 

desired and often required. Especially, the recent popularity of HDTV (High Definition 

Television) brings out the need for resolution enhancement of NTSC and PAL formats. 

High resolution means that pixel density within an image is high, and therefore as 

shown in Figure L 2, a high-resolution (HR) image can offer more scene details that 

may be critical in various applications. 

Second, due to the limitation of lens and aperture, some cameras cannot produce 

pleasant photographs with desired depth of field (DOF). As illustrated in Figure 1.3, 

CHAP 1 IIMTRODUCTIOM 

Figure 1.1 • Cameras from hulking to handheld, from optical to digital 
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Figure 1.4• The flowers captured with different apertures Left f/32; Right- f/5 6 

DOF is the range of distance within the subject that is acceptably sharp. It is controlled 

by the lens aperture diameter specified as camera's f-number - the ratio of lens focal 

length to aperture diameter. As shown in Figure 1.1, reducing the aperture diameter 

(increasing the f-number) increases the DOF, while a larger aperture (smaller f-number) 

produces a shallower DOF In some cases, such as landscapes, it may be desirable to 

have the entire image sharp, and thus a large DOF is appropriate. In other cases, such 

as portrait, a small DOF is preferred for highlighting a subject while de-highlighting 

the foreground or background. However, a normal lens can only offer a limited DOF. 

As a result, one common complaint about cameras is that when using one sometimes 

it is hard to get nice out-of-focus background or all-focused objects. 

Third, the light of real world spans several orders of magnitude and thus its dynamic 

range - the ratio between the brightest and darkest parts of the scene, dramatically 

exceeds the capability of camera sensor as shown in Figure 1 5, As a result, there often 

exist some undesirable over- or under-exposed regions in an image when the dynamic 

range of the latent scene is too high to be reproduced with a consumer camera at a 

single aperture and shutter speed as illustrated in Figure 1 6. In fact, not only cameras, 

but also display devices like most monitors and printers, do not have the capability of 
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Scene 
Camera 

Figure 1.5 Dynamic r, 

Dynamic Range 

comparison of the scene of real world and camera. 

Figure 1.6 Image capture with different exposure times Left- long exposure; MiddJe- medium 
exposure; Right short exposure 

dealing with high dynamic range (HDR) content, either. 

The objective of this thesis is to propose a series of image enhancement methods to 

remedy the aforementioned issues and make photography beyond the physical limita-

tions possible. Firstly, two kinds of approaches are presented to address the resolution 

enhancement. One aimed at face images, the other is for generic images. Secondly, a fo-

cus editing system is presented which can yield images with different focus effects from 

an imperfect image. Finally, a simple but effective approach is presented to generate 

a tonemapped-like HDR image where all parts appear well-exposed by multi-exposure 

composition. 

1.2 Previous Work 

In this section, we give a brief overview of the existing work relevant to the three topics 

of this thesis- resolution enhancement, focus editing and HDR, More overviews of the 

related work will be presented in the Introduction section of each chapter. 

Generally speaking, there are two ways to relieve the three camera limitations men-

tioned above. One is hardware solution which relies on the improvement of device 

physics and circuit technology. The other is through image enhancement which is the 

process of improving the quality of a digital image by manipulating the image with 

software. Therefore, in the next sections, the existing techniques of each topic are 



Figure 1.7 The jitter camera prototype which is composed of a lens, a board camera and 
computer-con trolled micro-actuators [Bnn-Ezi a ci dl 200!, Ben-E/A r) ct <il, 200厂)] 

divided into two classes: hardware solution and software solution. 

1.2.1 Resolution Enhancement 

Hardware Solution 

As the pixel size of an image sensor ultimately determines the resolution of the captured 

image, the most direct solution to increase spatial resolution is to reduce the pixel size 

(i.e., increase the number of pixels per unit area) by sensor manufacturing techniques 

[Agjanov c( al , 2D07; File cl al., 2007]. The recent development of CCD and CMOS 

sensors has made HDTV production possible. However, the miniaturizing the pixel also 

reduces its light sensitivity and thus makes the sensor much, more prone to shot noise 

that severely degrades the image quality. Therefore, there needs to be a limitation in 

the pixel size reduction, and the current image sensor technology has almost reached 

this level [Pmk (�t al , 2003; Choi ot al�2001]. 

Another approach for enhancing image resolution is to increase the chip size, which 

leads to an increase in capacitance [Komatsii ct a] . 109；̂]. Since large capacitance 

makes it difficult to speed up a charge transfer rate [C'lif)i (�l a I , 2004], this approach is 

considered ineffective The high cost for high precision optics and image sensors is also 

an important concern in many commercial applications regarding HR imaging. Apart 

from the above two ways, Elkhatib and Salama [ElkJidtib and SdLinid, 2()08a; Blkhatlb 

and SdlaiJid. 20081)] recently presented a new system that can achieve a high resolution 

digital imaging independent of the pixel size by integrating a nanohole in each pixel of 

the image sensor. 

2 1 Resolution Enhancement 
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Figure 1.8 Illustration of multi-image SR 

In addition, Ben-Ezra et al. [Bcii-Ezia ct. a l , 2004; Bcji-Ezia el nJ,, 2005] devel-

oped a novel camera called the "jitter camera" shown in Figure 1.7. The jitter camera 

produces shifts between consecutive video frames by shifting the video detector instan-

taneously and timing the shifts to occur between pixel integration periods. Then, the 

captured videos are further processed by an adaptive resolution enhancement algorithm 

to achieve resolution enhancement. 

Software Solution 

Image processing based software solution is a promising alternative to achieving res-

olution enhancement, since it costs less and the current imaging systems can be still 

utilized. This kind of solution is normally referred as super-resolution (SR) [Ĵ yi k ct a�， 

200.5] whose goal is to produce a HR image or a sequence of HR images from a low-

resolution (LR) image or a sequence of LR images. It can be widely applied in various 

fields, including image compression, medical imaging, satellite imaging, and video ap-

plications. According to the number of input images, SR can be further categorized 

into two groups. 

Multi-Image SR Most existing work was presented based on the premise of the 

availability of multiple LR images that capture different looks of the same scene. As 

shown in Figure i 8, the LR images have different subpbcel shifts from each other and 

each provides some new information that cannot be captured from the other [PrirJc 

el dl . 2003; Pjottci and ELuJ, 2000; Tak(>(l;�c1 al , 2009] Hence, after registering these 

images, a HR image can be obtained by combining all the new information together 

[liaiii and Pchg. 1991, IJam and Pclc", 1993] 
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Based on the generative model of a camera which describes how a latent scene is 

transformed, filtered and sampled to form an observed image, a maximum likelihood 

(ML) estimator provides a simple way to reverse these degradations in order to estimate 

a HR representation of the scene [Capo], 2004], However, SR is a well recognized ill-

posed problem and a multiplicity of possible solutions exists given a set of observation 

images. Therefore, the ML estimator is extremely sensitive to noise in the observed 

images and to errors in registration. To solve this problem, it is necessary to intro-

duce a prior model that imposes constraints on the form of the SR image, such as 

local smoothness, edge preservation, positivity and energy boundedness [Bornirtr) and 

Stovonson, ] 9f)8]. Thus, a maximum a posterior (MAP) estimator can be obtained and 

the solution is accepted only when it is both a good fit to the observations, and also 

has a high likelihood with respect to the prior model [Cheescrnaii oi a l ,丄S c l n i l 1 , z 

a]id Slcvonson, ] 990; TTardic3 oi al., ] 007; Capel, 2004; Proticr ot a l , 2009]. Besides, 

projection onto convex sets (POCS) provides a convenient way for the inclusion of prior 

constraints and seek to solve the SR inverse problem iteratively using a full generative 

image model and arbitrary motion model [Erf^jj oL al,, J 997; Patti ct a I.. 1997; Kim� and 

Poller, 1990; l-'aiti and Alliirjbasak, 2001]. All above methods can also be regarded as 

the reconstruction-based approach whose performance deteriorates as the magnification 

factor becomes a bit large [Lin and Shum, 2004]. 

Single-Image SR Recently, some efforts were made on inferring a HR image from 

a single LR input. Compared to the multi-image methods, single-image SR is more 

challenging and inherently limited by the amount of data available in an image. 

The most popular way of enhancing image resolution in the graphics software is 

through interpolation-based methods such as Bilinear and Cubic B-Spline, but they 

suffer from severe blurring problem. There also existed some reconstruction-based 

single-image methods proposed with the aid of advanced prior models, where besides 

the global sparse priors [Rudiii oi a),, 1992; Black and Sapiro, ] 998; Tappon pt a l , 2003; 

Loviii aiid Weiss, 2007; ROUJ HJKI Jilnrk, 2009], local edge-based priors were developed 

to further preserve edge sharpness such as [Fallal, 2007; Sun cL ul,. 2008; Dai ot a]., 

2 ( J 0 9 ] . 

Learning-based methods attract a lot of attention in the recent years. Usually, 
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the unknown HR image is inferred by making use of a training set directly or indi-

rectly. In comparison with the interpolation-based methods and the reconstruction-

based methods, learning-based methods can achieve higher magnification factor and 

better visual quality especially for single-image SR problem [Liu ot a l , 2008]. Baker 

and Kanade [Bnkor njid Kaiiyflo. 2000; Beker Hiid Kaiuwlo, 2002] presented a pioneering 

work on super-resolving face images based on a Bayesian formulation. Capel and Zis-

serman [Capoj and Zlswriiuin, 2001] extracted eigenfaces from a collection of training 

face images as a prior model to constrain and super-resolve LR face images. Freeman 

et al. [In-eeniari ct al.. 2000] proposed a well-known parametric MRF (Markov Random 

Field) based inference model to learn the statistics between the underlying scene and 

the observed image data. This framework was applied to the SR problem as well as 

other low-level vision problems. Such framework was extended and adopted by Sun 

et al, [Sun ot a].. 200；]], Bishop et al. [Bisljop ct dL. 2003], Wang et al. [Wang ot al., 

2005], Liu et al. ([.in d al., 2007], Ma et al. [j\Ia ol a]‘，2008] and Xiong et al. [Xioiig 

ol a]., 2009]. For instance, Liu et al. [Liu ol. a I,. 2007] developed a two-step statistical 

modeling approach for face hallucination which integrates a global parametric model 

and a local nonparametric model Wang et al. [Wang ct a]., 2005] proposed a combina-

tion model that integrates the SR constraint and the patch based image co-occurrence 

constraint for the SR problem. But as analyzed in Lin et al, [Lin ct, al., 2008], the 

disadvantage of learning-based method is that the performance often replies on how 

well the input LR image matches the training samples. Therefore sufficient number of 

appropriate training samples should be provided to ensure the SR performance. 

In addition, without using external data, Glasner et al. [GUusjier d, a l , 2009] pre-

sented promising single-image SR results by integrating the reconstruction-based model 

and the learning-based model into an unified SR framework. 

1.2.2 Focus Editing 

Image focus editing is an interesting research topic and has received a lot of attention 

in recent years. Two tasks are mainly involved in this topic. One is image refocusing 

which is to recover the sharpness of the blurry defocused objects in an input image and 

generate a virtual all-focused image. The other is defocusing which is to blur an image 

and create defociis effects. 
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Figure 1.9 A flexible DOF camera prototype which is composed of a lens and a detector 
mounted on a translation stage that is controlled by a micro-actuator [Nsgahdi a. ei a 1, 2008] 

Hardware Solution 

To tackle the image refociising and defocusing problem, a large number of algorithms 

were presented with the aid of additional optical elements or devices that are used to 

capture more information about the target scene. For instance, Ng et al. [Ng ct <il , 

2005] created a plenoptic camera by placing a microlens array between the sensor and 

the main lens. Thus synthetic images focused at different depths can be computed 

with the extra information captured by the microlens. Alternatively, one can place a 

positive lens array in front of the camera [Geojgicv o1 h\ , 2007]. Veeraraghavan et 

al. [Voo] aragljAvaii a] , 2007] used a cosine mask rather than lens array for computa-

tional improvement. A coded aperture is designed in [jU�vm c( dl . 2007] by inserting a 

patterned occluder within the aperture of the camera lens. Depth and the all-focused 

image can be recovered from a photograph taken by this modified camera. In [AIoj end-

Noguoj el nl, 2007], the depth map and the refocused image are produced with the aid 

of a grid of dots projected on the scene. Liang et al. [Luujg oL al , 2008] presented a new 

imaging system which can produce different focusing images by including a novel com-

ponent called programmable aperture and two associated post-processing algorithms. 

Nagahara et al. [Ndgahaj a el dl，2008] addressed the flexible DOF photography with a 

prototype camera (see Figure 丄 9) that uses a micro-actuator to translate the detector 

along the optical axis during image integration 
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Software Solution 

As an alternative, the other methods achieve focus editing by using only image process-

ing. A natural way is to capture multiple images of the scene with different focus setting 

and then combine them to create synthesized images with new focus effects [Knbuta 

ot aL 2004; K!i])ola MIKI yViznwn, 2005; JiaKhjoff ami Kiilnlako.s, 2007]. An early 

method was presented by Subbarao et al. [Siibhartio (M. a]., 1995] which showed that 

a focused image can be obtained from only two blurred images taken with different 

camera parameter settings. More recently, Yang et al. [Yang ci al., 2008b; Yang find 

Scljoiifckl, 2010] presented a method that is able to produce in-focus image sequences 

by processing blurred videos captured with out-of-focus cameras. Hasinoff and Ku-

tulalcos [[fasiiiofr and I\iiinla.kos, 2008; HaKiiioff, 2008; KiitiilaJvos and [fashiofl、，2009] 

proved that capturing a focal stack at the press of a button, instead of a single photo 

can boost significantly the optical performance of a conventional camera. Generally 

speaking, the focal stack photography has two performance advantages: first, it allows 

us to capture a given DOF much faster than one-shot photography, and second, it leads 

to higher signal-to-noise ratios when capturing wide DOF with a restricted exposure 

time. 

Recently, the more challenging single-image-based work has attracted much atten-

tion. For example, the single image defocusing problem was addressed in [Yaii d, tjL, 

2000] and [Bac and Dnrand, 2007]. Yan et al. [Yan ot al., 2009] developed an interactive 

system for defocusing by constructing the depth information of an input image with 

user interaction. Bae and Durand [Bae and Diirarul, 2007] contributed at proposing 

an automatic focus map estimation method by estimating the edge blurriness with a 

brute-force fitting strategy. The defocusing there is handled with the aid of the lens blur 

tool in Photoshop. The method proposed by Bando and Nishita [Bwndo and Nlsljita, 

2007] can tackle the single image refocusing task but it requires lots of user intervention 

to determine the blur kernel from a number of predefined candidates. 

1.2.3 High Dynamic Range Imaging 

Hardware Solution 

To extend the dynamic range of conventional camera, some new HDR camera proto-

types have been developed during the past years. Normally, this kind of methods require 
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Figure 1.10: A HDR camera prototype which is composed of a color video camera, an imaging 
lens, an LCD spatial attenuator and electronics to control the attenuator [Nnyar fuid Bv/uizoi. 
2003]. ‘ 

additional optical elements or devices to help the camera sensor record more dynamic 

range of the target scene. For example, some HDR camera prototypes such as [Saito, 

1996; Kiirmra，1.99S; Ikoda, 1998; Aggarwal and Alnija. 2004] can split the incoming 

light to several detectors which have different exposures. Some methods like [Wen, 

1,989; Mi-U.'akoslii, 1994; Street. 1.998] were presented to achieve HDR imaging with a 

different CCD design where each, detector cell includes two sensing elements of different 

sizes. When the detector is exposed to the scene, two measurements are made within 

each cell and they are combined on-chip before the image is read out. With only one 

image detector, some researchers attempted to give the pixels different exposures adap-

tively to the scene by using additional hardware such as a computational element that 

can measure the time each pixel takes to attain full potential well capacity [Bi.ajovic 

and Kaii.acle, 199G], an optical mask with a pattern of cells with different transparen-

cies [Nayar and Mit.sunaga, 2000] or a controllable liquid crystal light modulator whose 

transmittance can be varied [Na.yaj' and Brajjzoi. 2003] (see Figure 1.10). Instead of 

direct pixel intensity measurements as output, Tumblin et al. [Tiimblin ei; nl., 2005] 

presented a rather new camera design that first measures the differences between ad-

jacent pixel pairs and then quantize the obtained differences appropriately to capture 

the HDR scene. 

However, compared to conventional camera, HDR camera is still unavailable to 

consumers and has three main limitations. First, it is expensive as some additional 

hardware is required. Second, it normally takes longer time to finish a shot. Third, it 
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has limited resolution and faces the challenge of scaling to high resolution while keeping 

fabrication costs under control. 

Software Solution 

The software solutions seek to produce a HDR image from a stack of images taken 

by a conventional camera with different exposure times. This kind of techniques can 

be referred as multi-exposure HDR, and can be furthered classified into two types 

according to whether the scene contains moving objects or not. 

Static HDR The standard HDR technology prevalent in the current graphics soft-

ware belongs to static HDR and require all objects stay stationary while capturing. 

It normally consists of two steps. First, recover the camera response function (CRF) 

and estimate the radiance maps from the multiple exposed images and their exposure 

settings [Dchcvnc and Malik, 1097; Gj'osHbcrg and Naytir, 2003]. Combine all radiance 

maps will result in a HDR image encoded specially to store the pixel values that span 

the whole tonal range of the real world scene. Second, since the commonly used dis-

play devices can only allow a low dynamic range (LDR), tone mapping is necessary to 

remap the HDR image to a LDR image [Dura]id and ])orsoy, 2002; Fat tal ĉ t nl., 2002; 

Rpiuhard ot a l , 2002; Drago et ciL, 2003; Li ct al., 2005； Shan rt al., 2f)J0]. As an alter-

native, the other kind of work attempted to produce the desired tonemapped-like HDR 

image directly by compositing the multiple exposures in the image domain [Cro,sliLasby, 

2005; McrtoiJK ci a l , 2000; Sluinmugaiiathan and Clhauclhuri, 2000]. These methods 

skip the typical HDR process, and no intermediate HDR image needs to be generated. 

Therefore, they are more efficient and do not require tone mapping. 

However, the major problem of above static methods is that the target scene is 

required to be completely still throughout the image capture. Any object movement 

in the exposure sequence can cause ghosting artifacts in the resulting image. This 

drawback severely affected the application of HDR in practice, since for most scenarios, 

it is hard to guarantee all objects involved stay stationary from one capture to the next. 

For instance, there often exist crowds of people moving around in tourist resorts. There 

are windblown trees in nature scenes. 
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Dynamic HDR Recently, lots of efforts have been made to address how to achieve 

ghost-free HDR imaging in dynamic scenes. In brief, they first detect motion regions 

explicitly or implicitly, and then combine all calibrated radiance maps without the pix-

els corrupted by moving objects to create an artifact-free HDR image. For instance, 

Kang et al. [Kaiig cl al., 2003] proposed to compute the optical flow between successive 

frames and then warp pixels to create ghost-free HDR results. To find the pixels cor-

rupted by moving objects, Reinhard et al. [Unhiiiard c»t al，2005] proposed to threshold 

the variance map computed based on the irradiance variation of pixels over different 

exposures. Similarly, Jacobs et al, [Jacolw ot al., 2008] applied a threshold on the en-

tropy map, while Grosch [(ifoscli. 2000] applied a threshold on the error map estimated 

from the input exposures. Besides, some researchers [Klmii ol； al,, 200G; [)cdonc and 

IJ(Mkkila, 2008] proposed to use the kernel density estimator to iteratively determine a 

probability that a pixel belongs to a moving object. Gallo et al. [Gallo ci. a l , 2009] and 

Eden et al. [Kdcii d n]., 2006] proposed to composite the desirable radiance with the 

guidance of a reference view preselected automatically or manually. 

In summary, all above work was presented in the radiance domain fully or partially. 

Hence, there are two common limitations. First, the performance highly relies on the 

success of radiometric calibration of。！IF which is sensitive to image noise, illumination 

change and misalignment error. Second, they normally have complex working pipelines 

and require tone mapping for HDR reproduction. The above problems make these 

kinds of methods tend to be computationally expensive and restrict their applications 

in practice. 

1.3 Thesis Outline 

This thesis focuses on enhancing the visual quality of an image captured with a con-

ventional camera on three aspects: spatial resolution, focus setting and dynamic range. 

This thesis is divided into six chapters. 

Chapter ] gives an introduction about the thesis, including the motivation, objec-

tives, related work and thesis organization. 

Chapter 2 and Chapter 3 address the challenging single image SR problem, which 

is to recover a HR image from a single LR input. Chapter 2 presents a learning-based 

framework which aims at face image SR task from the perspective of DCT domain, 
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Chapter 3 describes an efficient two-step scheme which aims at super-resolving generic 

image by exploiting the salient edges in the LR input. 

Chapter 4 describes a new and complete focus editing system that is able to handle 

the tasks of focus map estimation, image refocusing and defocusing. Given an image 

with a mixture of focused and defocused objects, we first detect the edges and then 

estimate the focus map based on the edge bliirriness which is depicted explicitly by a 

parametric model. Then, by means of refocusing and defocusing, we seek to overcome 

the optical limitations and create novel images with different styles of focus effects. 

Chapter 5 describes a simple but effective approach that is able to bypass the typical 

HDR process and directly yield a well-exposed image in both static and dynamic scenes 

by compositing multi-exposure images with the guidance of image quality assessment. 

A novel quality assessment system is developed by taking advantage of the gradient 

change information in differently exposed images. Compared to conventional HDR 

work, the proposed approach is quite appealing in practice since it is computationally 

efficient, easy to use and frees users from the tedious radiometric calibration and tone 

mapping steps. 

Chapter 6 closes the thesis with a summary of the main contributions and several 

directions for further work. 



Chapter 2 

Super-Resolution for Face Image 一 

Face Hallucination 

2.1 Introduction 

As an active research field in image processing and computer vision, super-resolution 

(SR) is to produce a high-resolution image (HRI) or a sequence of HRIs from a low-

resolution image (LRI) or a sequence of LRIs. Recently, face hallucination^ an interest-

ing topic within SR, has aroused much attention. This term, firstly introduced by Baker 

and Kanade [I3akcT and Kanadc, 2000], is about the generation of a high-resolution 

(HR) face image from low-resolution (LR) input. Face hallucination can be applied 

in many fields ranging from image compression to face identification. For example, in 

video surveillance, the ability to generate a higher resolution face image with detailed 

facial features from low resolution face images can raise the system performance. 

In this chapter, we propose a novel learning-based face hallucination framework 

built in the Discrete Cosine Transform (DOT) domain as shown in Figure 2.1. Instead 

of estimating pixel intensities directly as the traditional learning-based algorithms, we 

concern ourselves with inferring the DOT coefficients, which contains two parts: DC 

coefficient estimation and AC coefficient inference. DC coefficients, which represent 

the average pixel intensity of the target blocks, can be estimated fairly accurately by 

interpolation methods such as Bilinear and Cubic B-Spline. AC coefficients, which 

contain the information of local features such as edges and corners around eyes, mouth 

of face image, cannot be estimated well by interpolation. Therefore, a simple but 

effective learning-based inference model is proposed to tackle this challenging problem 

in this work. The basic idea of the proposed method is that we are interested in learning 

the local facial features embodied in AC coefficients only, so that a more specific and 

efficient training set for AC coefficients can be built and used. Without considering 

15 
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Figure 2.1; The proposed face hallucination framework. 

DC coefficients, the proposed learning process will be more robust since it is much less 

influenced by image illumination. Moreover, in order to reduce the redundancy of the 

training set, a compact block dictionary is built by a clustering-based training scheme 

as stated in Section 2,0. 

Furthermore, the intermediate hallucinated result I f j in Figure 2.1 is an image 

preprocessed by a prefiltering scheme [Timj oL a J . 200.5; 1\\ a]](i lYrin. 2002] which, pro-

cesses the block boundaries to remove the correlation of neighboring blocks. Therefore 

we can assume that each HRI block in the proposed AC coefficient inference model 

is independent of its adjacent HRI blocks. This significantly simplifies the inference 

model. The final output Ih can be obtained from Ih by postfiltering. Another impor-

tant benefit of combining the filtering scheme into the face hallucination process is that 

the blocking artifacts which often occur in block or patch based algorithms are greatly 

reduced. Besides, unlike conventional SR work such as [Rcornaii ci a � ” 2002], a more 

general way of utilizing training priors - k-pass criterion, is adopted in the proposed 

learning process. In detail, each target HRI block in the proposed inference model is 

derived from multiple training samples instead of only one. 

The rest of this chapter is organized as follows. In Section 2 2, we briefly review 

existing relevant work. Section '2 3 formulates the problem and gives an overview of 
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the proposed method. The simplified AC coefficient inference model is introduced in 

Section 2/4. The reconstruction of the target HRI is given in Section 2.5. Section 2,6 

introduces the clustering-based training scheme and shows some experimental results. 

Section 2.7 draws some concluding remarks. 

2.2 Related Work 

Face hallucination from a single LR face image which is also referred as single-image SR 

problem has received a lot of attention in recent years. A number of related SR and face 

hallucination algorithms have been proposed, which can be grouped into three types. 

Interpolation-based algorithms (e.g., Bilinear, Cubic B-Spline) suffer from severe blur-

ring problem especially when the resolution of the input is very low. Reconstruction-

based methods [Morse and Schwaxtzwalcl, 200] ； Lin and Shiim, 200'1j, which try to 

model the process of image formation to build the relationship between LRI and HRI 

based on reconstruction constraints and smoothness constraints, are quite limited by 

the number of input LRIs and usually cannot work well in single-image SR problem. 

Recently, learning-based methods become very popular. Usually, the unknown HRI 

is inferred by making use of some training set directly or indirectly. In comparison with 

other methods, learning-based method can achieve higher magnification factor and bet-

ter visual quality especially for single-image SR problem [Un OT CJL. 2008]. Baker and 

Kanade [Baker aiicl Karsafic, 2(K)(); Bakor nnd KaiinrLp, 2002] presented a pioneering 

work on hallucinating face image based on a Bayesian formulation. The target HRI 

is inferred by resorting to a training set. Capel and Zisserman [Capcl aud Zisspj'uidii. 

200]] extracted eigenfaces from a collection of training face images as a prior model 

to constrain and super-resolve LR face images. Preeman et al. [Fj'oojuaii c( RL, 2000] 

proposed a well-known parametric MRF (markov random field) based inference model 

to learn the statistics between the underlying scene and the observed image data. This 

framework was applied to the SR problem as well as other typical low-level vision 

problems. Based on such framework, Liu et al. [Uu ei al., 2007] developed a two-step 

statistical modeling approach for face hallucination which integrates a global paramet-

ric model and a local nonparametric model. Besides, Muresan and Parks [ivr川、cwiij and 

Parks, 2002] presented a learning-based face hallucination method from an adaptive op-

timal recovery point of view. Liu et al. [Liij ot a l , 2005] proposed a TensorPatch model 
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face hallucination and devised a residue compensation step to enhance the hallucinar 

tion result. All above mentioned learning-based methods are built in spatial domain 

for the inference of pixel intensities of the target HRI, and differ with each other on 

the learning manner from the training set. A major problem of these methods is the 

high computation requirement due to the complex learning process. Especially when 

the MRF based inference model is used and the training set is very large, rather taxing 

computation and heavy memory load are required. 

Some SR algorithms have been proposed to tackle the problem in transform domain 

which is normally the DOT domain. It is because the DOT has high energy packing 

ability and is adopted in most image and video coding standards. Ni and Nguyen 

[Ni uud Nî uyciii, 2007] used SVR (Support Vector Regression) and utilized the DOT 

structural properties to solve their proposed regression structure. Patti and Altunbasak 

[Patii and AliiujbMaak, U399] proposed a POCS solution that directly incorporates the 

transform domain quantization information by working with the compressed bit stream. 

Park et al. [Park el, al.. 2004] presented a HR reconstruction method for DCT-based 

compressed images that simultaneously estimates the quantization noise modeled as 

a correlated Gaussian process in spatial domain. Pham et a l [Pliaiu ol ciL, 2006] 

implemented the prevalent learning-based method [Freeman d, a l , 2002] in the DOT 

domain for fast super-resolving the compressed video. However their results suffer from 

severe blocking artifacts, even with a strict constraint that the HR priors are limited 

to use the same scene as that of the LR video. 

Recently, some work was proposed to allow face hallucination technology to handle 

faces with different poses or expressions. For example, Li and Lin [Li and Lin, 2004] 

proposed to tackle the pose variation problem by estimating the pose of the profile 

input face image based on SVM (support vector machine) classifier. The corresponding 

frontal face image is synthesized and then super-resolved into a HR frontal one. A 

more generalized approach was proposed by Jia and Gong [Jia and Ooijt^. 2008] to 

super-resolve LR face images with variations in facial expression and pose based on a 

hierarchical tensor space representation. 

HRIs inferred using interpolation-based methods suffer from blurring problem which 

is especially severe in high activity regions containing edges and corners. For example 

in Figure 2.2, Cubic B-Spline interpolation is used to enlarge a 24 x 32 LR face image to 
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r ^ Cubic B-Spline 
Smootbing & Downsampnng ^ Interpolation 

(b) 

Figure 2.2; Face hallucination using Cubic B-Spline interpolation, (a) the original HRI (96 x 
128); (b) the synthesized LRI (24 x 32); (c) the interpolated HRI using Cubic B-SpHne; (d) the 
difference image 

a 96 X128 HRI. The difference image shown in Figure 2 2(d) shows that Cubic B-Spline 

works well in the smooth parts of face, but introduces large distortion in high activity-

regions such as eyes, mouth and nose. This is because the higher frequency components 

which contain the information of local details are missing. Interpolation-based methods 

do not introduce new high frequency components required by the inferred HRI at high 

activity regions. Learning-based methods solve the above problems by creating the 

required high frequency components from a training set. However, the training set 

for faces with a particular pose and expression is only applicable to the hallucination 

of faces under similar conditions. Our experimental results show that visual quality 

deteriorates quickly when difference in pose is larger than 10 degrees. This problem 

can be tackled by methods like [Li and Liri. 2004; Jia and Goug. 2008], Alternatively, 

one may first detect the pose of a face and then perform face hallucination using 

the corresponding training set. This method can produce better results but requires 

many training set and so heavier memory load and more computation. Therefore, it is 

important to develop a simple algorithm that can perform face hallucination effectively. 
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2.3 Problem Formulation and Overview of the Proposed Framework 

2.3.1 Problem Formulation after Transform Face Image by the D C T 

As a popular transform in image processing, the DCT [Wang ei a],, 2002a] refers to a 

separable orthogonal linear mapping of blocks of image pixels into blocks of transform 

coefficients. Similar to Discrete Fourier Transform (DFT), it transforms a signal or an 

image from spatial domain to frequency domain. 

The mth element of the uth basis vector of the 1-D N-po'mt DCT is defined as: 

T" � ； VW , u = 0, 0<m<N-l 
V{u,m) = < 

• v / ^ c o s 冲 , l<u<N-l, 0<m<N-l. 

Also V"T = since the DCT is a real and orthogonal transform. To obtain the 

2-D DCT of an N X N image block, one can first apply the 1-D DCT to each row 

of the block and then to each column of the row transformed block, i.e., C = VTV'^ 

and T = V^CV where T denotes an image block, C denotes the block of the DCT 

coefficients. Also, the image block can be regarded as the sum of N"̂  basis images 

B{u^v) weighted by C{u^v) as follows. 

N-lN~l 

T = E E C ( " "，侧—. (2.1) 
u=Q u = 0 

Note that B{u^v) is constructed by the outer product of the Uth and vth basis 

vectors. The DCT coefficient C{u^v) specifies the contribution of the basis image 

B{u,v) to T. For example, the DC coefficient, C(0,0), denotes DC level and the average 

pixel intensity of the target block. The other coefficients, known as AC coefficients, are 

associated with higher frequencies. 

In this work, an image is divided into 8 x 8 non-overlapped blocks and the hal-

lucination is performed block by block. The block size is chosen to be 8 x 8 which 

is informative enough to represent the target scene. Another reason is that the 2-D 

8-point DCT is widely adopted in image and video coding. Figure 2.3 shows the basis 

images B{u,v) of the 8 x 8 DCT. The frequency of the basis image increases from left 

to right and top to bottom. In the proposed method, the DCT coefficients are divided 

into three groups based on the zig-zag scanning order, which are DC coefficients, low 

frequency and high frequency coefficients as shown in Figure 2.4. 



Figure 2.3' Graphical illustration of the 8 x 8 DCT basis images The frequencies u 
the basis image increase from left to right and top to bottom 

V of 

Frequency 
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DC 

'AC 

Figure 2.4' The 8 x 8 DCT coefficients are categorized as 
coefficients based on the zig-zag scanning order 

(DC), low and high frequency 

The reason that the DCT is well suited for image compression is that an image 

block can often be represented by a few low frequency DCT coefficients [Wang (Jt al.’ 

2002a]. This is because natural images are often smooth and significant high frequency 

components exist only occasionally around edges. Hence, much of the energy l]es at low 

frequency coefficients. High frequency coefRcients are often small and can be discarded 

with little visible distortion. 

This is also true for face images which are smooth and contain few high frequency 

components. Figure 2 f")(c) shows the energy distribution (i e. the variance) of the 8 x 8 

DCT coefficients of a face image. The energy of the DCT coefficients drops quickly as 

frequency index increases Figure 2 5 (a) and (b) show the images reconstructed with 

different numbers of the DCT coefficients We can see that with only 16 out of 64 
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Co em dent Index In zig zag order 

(c) 

Figure 2.5: Face image coded by the 8 x 8 DCT. (a) the original image reconstructed with all 
64 DCT coefficients (zero-f-low+high frequencies) per block, (b) the reconstructed image with 
the first 16 coefficients (zero+low frequencies), (c) the energy distribution of the 8 x 8 DCT 
coefficients of the face image. 

coefficients per block, the target image is already well represented. 

This implies that it is not necessary to infer all coefficients. Instead, we only need to 

focus on inferring the coefficients that are vital to the visual quality. Hence, the intent 

of this work is to infer the DC and the low frequency coefficients in each 8 x 8 block 

of the target HRI. High frequency coefficients are excluded due to their weak energy in 

the face image. 

2.3.2 Advantages of Face Hallucination in the D C T Domain 

In the proposed method, face hallucination is tackled by inferring the DC and the 15 

low frequency AC coefficients for each block of the target image in the DCT domain. 

Such formulation will benefit us in several aspects: 

1. As shown in Figure 2,0, the DC coefficient which represents the average pixel in-

tensity of a target block, can be estimated fairly accurately by a simple interpolation-

based method such as Cubic B-Spline. 

2. We only need to focus on building a specific learning-based inference model for 

these low frequency AC coefficients which correspond to the local details of face 

image such as the edges, corners around eyes. 

3. A simplified learning-based inference model can be developed to infer the AC coef-

ficients efficiently based on a reasonable assumption that blocks of the prefiltered 
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Figure 2.6; DC coefficient estimation by Cubic B-Spline interpolation, (a) the reconstructed 
image only with the original DC coefficients (refer to Figure 2.2(a)); (b) the reconstructed 
image only with the DC coefficients which are estimated by Cubic B-Spline interpolation (refer 
to Figure 'J 2(c)). There is Utter noticeable difference between (a) and (h). (c) shows each 
block's relative estimation error of the estimated DC coefficient (DCmt) to the original DC 
coefficient (DCon)- It is evident that the errors are all very small. 

HRI built in the DOT domain are independent with each other. 

4. The data dimension of training and testing set can be reduced significantly. As 

15 AC coefficients in an 8 x 8 block are enough to produce a satisfying result with 

detailed local features as shown in Figure 2 5, the dimension of HRI block can be 

reduced from 64 in spatial domain to 15 in the DCT domain in this case .̂ 

In summary, as shown in Figure 2 J , the proposed framework can be divided into two 

steps. Firstly, the prefiltered HRI Ih is inferred in the DCT domain, which includes 

AC coefficient inference by learning and DC coefficient estimation by interpolation. 

Secondly, the final hallucinated result Ih is reconstructed from the prefiltered result 

Iff by postfiltering. 

^Note that this conclusion is made based on the fact that the texture (skin) of face image is generally 
smooth. Hence, high frequency DCT coefficients of face images have very small magnitude and a small 
number of low frequency coefficients only are good enough to produce satisfying result with enough 
details. For those general images which contain large high frequency components, more AC coefficients 
need to be used to preserve the finest details of the output image. 
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Figure 2.7; Graphical models for AC coefficient inference, (a) the prevalent MRF based 
inference mode] [Fivrrrwn at al.. 2000]; (b) the proposed simplified inference model. 

2.4 Learning-based AC Coefficient Inference Model 

The inference of the AC coefficients for the target HRI can be formulated as a 

maximum a posteriori (MAP) problem: 

I f * == argma^ 严) 
/总c 

(2.2) 

As shown in Figure 2,7(a)，a typical MRF inference model [Freenian d a]., 2000] used 

in the low-level vision tasks can be employed to address this problem. Node I^^i i ) and 

node I严(i) are used to represent unknown ith HR block of HRI and the observed ith 

LR block of LRI respectively. The links between nodes indicate statistical dependencies 

which as given by the MRF model in Figure 2,7(a) have two implications: 1) HRI block 

I^^(i) provides all the information about the observed LRI block /严⑷ as the only 

link to is from 2) HRI block gives information about the adjacent 

HRI blocks by the links from to its adjacent HRI blocks. 

Since = ^^f^jA^P and is constant over (2,2) can be rewrit-

ten as 

(2.3) 

According to the MRF model in Figure 2.7(a), the joint probability of / 严 and J合� 



§ 2.4.1. Analysis of the AC Coefficient Correlation 25 

can be written as: 

= I n 讽 I f ⑴ ， 增 " " ⑴ ⑷ ， 严 ⑷ ） （2.4) 
(ij) i 

where is a normalization factor, n denotes the number of block pairs, {i,j) indicates 

neighboring blocks. Both, ijj and <p are pairwise compatibility functions which can be 

learned from the training set. ij) is used to model the spatial smoothness between the 

neighboring HRI blocks, cf) is used to model the dependency between the corresponding 

LRI and HRI blocks. 

Now the problem in (2.2) becomes: 

I I 树 i f ⑴ ) ⑷ ， 1 严 ⑷ ) . 
f a,3) i 

Hence, the target can be inferred from a training set with the loopy Belief Prop-

agation (BP) algorithm [Frcramj.u ot al,, 2000]. However, finding a global optimum for 

(2.5) is difficult and certainly time consuming. Fortunately, the inference model as 

well as the optimization can be made more tractable. Next, we shall first analyze the 

correlation among AC coefficients and then derive a simplified AC coefficient inference 

model. 

2.4.1 Analysis of the AC Coefficient Correlation 

Given a LN x MN image, the N x N DCT will map it into a Lx M grid oi N x N 

coefficient blocks and C{u^v\l^m) can be introduced to index the DCT coefficients, 

where {u^v) < u^v < N) denotes the frequency index. (Z, m) (0 < ^ < L, 0 < m < M) 

is the block index. Figure 2.8 shows an example when AT = 4, L = M = 2. In Figure 

2.8(a), block {Urn) contains coefficients computed using pixels in block {l,m). The 

coefficients such as (u, v) represent different frequency components of a local spatial 

region. In Figure 2.8(b), subband contains coefficients {u,v) collected from each 

block. Hence, the DCT coefficient C{u, v\l,m) in each block has two kinds of neighbors: 

spatial neighbors and subband neighbors. 

Accordingly, there are also two kinds of correlation for each AC coefficient. The 

correlation between AC coefficient C{u,v] l,m) and its spatial neighbors such as C(u-\-



(a) (b) 

Figure 2.9: Prefilter P (a) and postBlter F"^ (b) for 8 x 8 block processing [Trnii el, nJ., 2003; 
'1)1 fvid Tnm, 2002]. 

1, v\ I, m) and C{u, v+l'’l,m) is very weak and can be ignored due to the excellent decor-

relation capability of the DOT. The correlation between AC coefficient C(u,v; I, m) and 

its subband neighbors such as C(u,v]l + l , m ) and C{u,v\l,m + 1) is stronger than 

that between the spatial neighbors. This correlation referred as interblock correlation, 

is exhibited by the smoothness of neighboring blocks in spatial domain. Inspired by 

the recent work in image compression and coding ['IVari oA, al.. 2003; Tu arul 'lYau, 

2002], we adopted a filtering method to process the boundaries of neighboring blocks 

for exploiting their interblock correlation. A pair of filters, prefilter P and postfilter 

P—i shown in Figure 2,9 are used in the proposed method. The prefilter P, depicted 

in Figure '2,D(a), is performed in a separable fashion to remove the 8 x 8 interblock 

correlation of the image. Postfilter depicted in Figure 2.9(b), is to reconstruct 
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Figure 2.8; Block representation (a) and subband representation (b) for the 4 x 4 DCT 
coefficients. 
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Preflltering or PostTiIlerlng 
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(a) (b) 

Figure 2.10; Preflltering and postfjltering on a face image, (a) the working mode of the 
preBlter and postBlter shown in Figure 2.9. Block 1 and Block 2 are two 8 x 8 adjacent blocks 
in horizontal direction, the preHlter and postfUter will work on their neighboring boundaries, 
(b) left is the original image, right is the prefiltered image. 

the original smooth image from the prefiltered image by recovering the interblock cor-

relation. The effects of preflltering and postfiltering are illustrated in Figure 2.10. It 

is found that the prefiltered image becomes blocky and obvious discontinuity exists in 

both horizontal and vertical block boundaries since the prefilter has taken away their 

interblock correlation. Postfilter is able to recover the original smooth image. 

In the proposed framework, the filtering scheme will work together with the DOT 

as shown in Figure 2.丄丄.The preflltering scheme is used to remove the interblock 

correlation of the training HRI samples. The intermediate HRI result Iff as shown 

in Figure 2.1 is a prefiltered image and the final HRI result I n can be obtained by 

postfiltering. In summary, we can assume that each AC coefficient of the prefiltered 

image is neither correlated with its spatial neighbors nor correlated with its subband 

neighbors. As a result, a reasonable assumption can be made that each block I合�(i) 

in the target prefiltered HRI is independent with its adjacent HRI blocks. 

2.4.2 A Simplified AC Coefficient Inference Model 

Now the MRF model can be simplified a lot by eliminating all links among HRI blocks 

as shown in Figure 2 7. Hence, (2.5) becomes: 

* = argmax J]树了^⑷，^严⑷)• 
/总c 

(2.6) 

The next problem is to build a reasonable compatibility function [i) ̂  I^^{i)) for 

the proposed inference model. 
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Figure 2.11; Prefiltering (a) and postHltering (b) are performed along the block boundaries 
block-wise locally similar to the DCT. (a) prefilter P is adopted to preprocess the training HRI 
samples Ih as pre filtered HRI samples In- (b) postBlter is adopted to reconstruct the 
Hnal hallucinated result Ih from the intermediate result Ih which is a prefUtered HRI. 

K-pass Algorithm 

In previous SR work (e.g., [Freeman ot a]., 2002; Sun d, al., 20(K3; Bishop (̂ t 2003]), 

single-pass criterion is often used to select the best fitting sample from the training set. 

While in this chapter, a more general k-pass criterion is adopted as that k candidate 

blocks are selected to construct the target HRJ block only based on the compatibility 

function Intuitively k-pass is more effective than single-pass in producing a target 

block with high, fidelity because the linear combination of k blocks is more informative 

than a single one. Recently, locally linear embedding (LLE) [Iloweis aad Saul, 2000] 

was presented to map high-dimensional data into low-dimensional space by preserving 

the neighborhood relationship. Inspired by this idea, we make an assumption similar 

to those of [Chang et aJ,, 2004] and [Chajig ci al., 2006] as follows. For each pair of 

corresponding LRI and HRI blocks, their local neighborhoods on some proper manifolds 

are assumed similar. In detail, it is assumed that each LRI block and its nearest 

neighbors in low dimension lie on or close to a locally-linear structure. Hence, 

can be linearly approximated by its k nearest neighbors I^^U) selected from the LR 

training samples with the weighting coefficients Wi(j). On the other hand, when I会。(i) 

and its neighbors I产(J) are fixed, Wi(j) can be obtained easily by minimizing the 

reconstruction error in (2,7) subject to E L I Wi(j) = 1. Besides, since the LR and 
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HR blocks are assumed have similar linear structure, the weights Wi minimizing the 

reconstruction error on the LRI blocks should also yield a small value when the data 

is replaced with the HRI blocks. In this work, the reconstruction errors on LRI blocks 

and on HRI blocks are modeled with zero mean Gaussian distributions of variance 

and ajf respectively. 

Now we can describe the two local structures by: 

/ 严 ⑷ = (2.7) 

= E 恥 ⑴ 谬 ⑴ + (2-8) 

where I ^ ^ i j ) and I ^^ ( j ) are the training samples selected from the training set $ = 

Hence, each HRI block is generated using several candidates instead of 

one. The compatibility function [ i ) , I { i ) ) in (2.6) is defined as: 

3=1 i= i 
(2.9) 

whose value is between [0 1]. After introducing A = we can define an error 

function by applying the negative logarithms to (2.9): 

Wi) = El (J严⑷’ + Wi) (2.10) 

where 

= ( / f ^ ⑴ - ⑴ ( 2 . 1 1 ) 

mf^(仏 m) 二 ⑷ - E 心 ( 2 . 1 2 ) 
i= i 

Thus, the optimization of (2.6) can be solved by minimizing W) over W 
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五 ( I 合 二 ⑷，J严⑷，巩） (2.13) 

I 

Minimization of the Error Function 

Given the training set, the minimization of (2.10) can be solved easily because the error 

function J ^ ^ ( i ) , / f ^ ( i ) , W z ) is quadratic to I会�ij) and respectively. For the i认 

block, the optimal can be obtained as = W " � j ) 7 ^ ( j ) by setting 

the derivative of i f ^(i), Wx) w.r.t to zero. Substituting the optimal 

into (2.10), we can obtain the optimal Wi by simply minimizing Ei{I{；^{i)^ W^) 

in with Ylj=i ^ l U ) = 1 as a constrained least squares problem [HowoLs antl 

Saul. 2000]. Therefore the whole optimization can be done efficiently without iteration. 

Details of the AC coefficient inference algorithm are summarized in Algorithm 1 . 

2.5 HR省 Reconstruction by the Inverse D C T and Postfilten'ng 

As shown in Figure 2.1, the DCT coefficients of each block in the prefiltered HRI In 

can be recovered in two steps: 1) the low frequency AC coefficients which constitute 

I合C (i) are estimated by the aforementioned AC coefficient inference model and other 

high frequency AC coefficients are set to zero; 2) interpolate the HRI from the input 

LRI by the Cubic B-Spline method and then apply prefiltering on it. The target DC 

coefficients are estimated from the corresponding blocks of the prefiltered HRI. From all 

these estimated DC and AC coefficients, the target prefiltered HRI Iff is reconstructed 

by the inverse DCT. Then the final HRI result I n is derived from Ih by the postfiltering 

scheme as shown in Figure 2 J 1(b). 
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2.6 Experimental Results 

2.6.1 Learning Block Dictionary # by Clustering 

As discussed in [i,in ci a.l,, 2008], the performance of learning-based method often de-

pends on how well the input LRI matches the samples in the training set. Obviously, 

the more training samples are collected, the more robust the learning-based algorithm 

is. However, a huge training set requires taxing computation and heavy memory load. 

Fortunately, the blocks cropped from the face images do not have much variation since 

human facial features are similar. This is also true in our case because our train-

ing set contains only local facial features represented by AC coefficients. Hence, the 

raw training set should have much redundancy and it is possible to learn those most 

representative blocks and build a compact block dictionary by clustering. 

In our method, all collected training images are firstly aligned by affine transform 

based on three marked points: the centers of the two eyes and the center of the mouth. 

Then each image is cropped to a canonical 96 x 128 image as the HRI. Its corresponding 

24 X 32 LRI can be obtained by smoothing and downsampling. After being preprocessed 

by the above prefiltering scheme, all HRIs are transformed from spatial domain to 

frequency domain by the 8 x 8 DCT. The HRI blocks of the training data are 

these non-overlapped 8 x 8 blocks and represented by only using the low frequency AG 

coefficients. Since the LRIs will be initially enlarged via Cubic B-Spline interpolation, 

AC coefficients of the corresponding LRI blocks i f ^ are also obtained by performing 

the 8 x 8 DCT. Finally, the redundancy of the raw training samples will be reduced 

through affinity propagation clustering [Froy and Dncidc. 2007]. 

2.6.2 Comparison 

This experiment was conducted with a large number of frontal face images from the 

Facial Recognition Technology (FERET) database [} ]̂jj]Jlpy d, a]., 199S; l)]jj�]jps ei al., 

2000] and other collections, which consist of many different races, illuminations and 

types of face images. Among these samples, about 1600 images were selected as training 

data and the remaining images were for testing. In our experiments, the number of 

nearest neighbors k was set to 7. Please also visit h t t p : //www. ee. cuhk. edu.hk/ 

-zhangwei/IIalluciFacG.html to see the results. 



Figure 2.12: Face hallucination results of fronta,l face images, (a) the input LRIs (24 x 32); (b) 
our intermediate preRltered results In； (c) our final results In； (d) Cubic B-Spline Interpolation; 
(e) Freeman et al. [Freemmi ei: al., 2000]; ( f ) Baker et al [Buker and Kaiiade, 2002]; (g) Liu et 
al. [Liu et ill, 2007]; (h) the original HRIs (96 x 128；. 

To make a fair evaluation, the proposed approach is compared to some of the 

existing learning-based methods using the same training samples. The experimental 

results are shown in Figure 2,12. We can observe that Cubic B-Spline interpolation 

suffers from severe blurring problem. Freeman et al.'s results are much better but still 

have outliers. Baker et al.'s method produces noisy results in facial features, Liu et 

al.'s results have satisfactory visual quality but some subtle characteristics cannot be 

generated well, especially the details around eyes. While, the HRIs reconstructed by 

the proposed method have the finest facial details. It is noted that a rigid 87 feature 

point system [Chen et al., 2001] is adopted in Liu et al.'s method to regularize the 

face shape in order to improve the performance of face hallucination. Obviously such 
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Quanlitallvo Evaluation by SSIM 

Tesllna Imaga 

Figure 2.13; Quantitative evaluation of the hallucinated results in Figure 2.12. The testing 
images from top to bottom in Figure 2. J2 are indexed from number 1 to number 5. 

complicated alignment is time consuming. While in this work, the algorithms were 

tested in a more general scenario similar to previous work [Bnkor aud Kariade, 2000; 

Bakor and K any He, 2002; Liu ot al , 2005]. Specifically, the training samples used here 

were generated roughly as described in the last section. Only three points were used 

for the face alignment. If more rigid technique is implemented to regularize the face 

images, the performance of the learning-based method should be better. 

We also compared the methods quantitatively as shown in Figure 2.1.3’ where a 

recently developed measure called SSIM (structural similarity) [Wang c1 a!,, 20(M] is 

used to assess the similarity of a reconstructed face image and the original HRL The 

results show that faces hallucinated by the proposed method have high SSIM. The mean 

square error (MSE) is not adopted here due to its bad matching with the perceived 

visual quality [(xij'od, 1991)； Wang f�t, a!., 2002b], However, it is found that SSIM also 

has limitation. The Cubic B-Spline interpolated results mostly have the highest SSIM 

(except number 3 result) in the above comparisons, which is apparently not consistent 

with the perceptual quality. For face hallucination, the task is recovering the lost 

frequencies and enhancing the visual quality of the LR input to make people see or 

recognize the target face clearly. Therefore, so far the most effective way of measuring 

image quality is through subjective evaluation. More results can be found in Figure 

2.'14. 

1 
I 
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Figure 2.14; M o r e face hallucination results. In each triple, from left to right are the input 
LRI (24 X 32), the hallucinated result by the proposed method and the original HRI (96 x 128). 
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2.6.3 Robustness to Image Illumination 

As aforementioned, we only concern ourselves with learning local features embedded 

in AC coefficients from the training prior. It is found that without considering DC 

coefficients will make the learning process more robust since the matching from input to 

training samples is much less influenced by image illumination. An experiment as shown 

in Figure 2.15 is conducted to test the learning robustness of the proposed method. The 

five 96 X 128 images of the same person as shown in Figure 2,15(a) and (f) were taken 

at different time with different expressions and illumination conditions. Four images as 

shown in Figure 2. ir>(a) with high illumination are selected for training, Figure 

captured under low illumination is used for testing. Given the LRI input Figure 2. J 5(b) 

derived from Figure 2. J 5(f) by smoothing and downsampling, Figure 2.15(c) is super-

resolved by the proposed method. It is obvious that the proposed algorithm is nearly 

exempted from the illumination influence and capable of learning high quality local 

features from such a small training set. In contrast, Figure 2.] 5(d) which is inferred by 

learning the pixel intensities directly in spatial domain (i.e., considering both DC and 

AC coefficients) with an example-based manner, is very bad because the input LRI can 

not match well with the training samples due to the influence of image illumination. 

Although Baker et al.'s method produces a better result as shown in Figure 2,15(e), it 

still fails in digging out some subtle features from the training samples. 

2.6.4 Test on Hallucinating Profile Face Image 

The aforementioned experiments were conducted on frontal face images. In order to 

test the robustness of the proposed method on LR profile face images, an experiment 

was conducted on about 400 profile face images with similar pose as the training prior. 

The experimental results are shown in Figure 2,16. Apparently, the proposed method 

also performs well on hallucinating non-frontal face images. 

2.6.5 Limitation 

Besides, we would like to point out that as a typical learning-based method, our algo-

rithm is also limited by the training set and the performance relies on the matching 

of the input LRI with the training samples. Therefore, the proposed method does not 

work well for every single face. For example, if the input is a person wearing glasses or 
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(C) (e) (f) 

Figure 2.15 Face hallucination with a small training set (a) the training prior HRIs ("96 x 128); 
(b) the input LRI (24 x 32j, (c) the proposed method, (d) learning in spatial domain; (e) Baker 
et al [Bdkoi find K.,n,ulv 2002], ( f ) the original HRI (96 x 128； 

with closing eyes, then probably the algorithm cannot super-resolve the face accurately. 

This is because the training set we used does not contain sufficient samples which wear 

glasses or with closing eyes. We have shown some poor results in Figure 2.17. However, 

if more training samples are collected in the training set, the algorithm should be able 

to super-resolve more faces better. 

2.7 Summary 

In this chapter, we have presented an effective learning-based framework for face hallu-

cination from a single LRI The problem is formulated as the DCT coefficient estimation 

in frequency domain, which benefits us in several aspects Firstly, it reduces the data 

dimension in both training set and testing set. Secondly, it reduces the complexity 

of the learning-based AC coefficient inference model because of the weak correlation 

among AC coefficients. Also, the inference model can be free of influence from the 

image illumination by only focusing on learning the local features embodied in AC 

coefficients from a collection of training samples Each block of the target HRI is gen-

erated by a linear combination of several candidate blocks selected from the training set 

whose redundancy has been reduced by clustering The effectiveness and robustness 

of the proposed approach have been demonstrated by a set of experimental results 

Besides, the basic idea of this work can be further extended to handle more general 
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Figure 2.16; Face hallucination results of profile face images. First row: the input LRIs 
(24 X 32); Second row: Cubic B-Spline Interpolation; Third row: hallucinated results by the 
proposed method; Forth row: the original HRIs (96 x 128). 

Figure 2.17: Some examples which are not super-resolved well. In each triple, from left to 
right are the input LRI (24 x 32), the hallucinated result by the proposed method and the 
original HRI (96 x 128). 

tasks such as the resolution enhancement of general image and video. However, like 

other learning-based methods, the proposed algorithm is also limited by the training 

set and thus the performance depends on how well the LR input matches the training 
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Chapter 3 

Super-Resolution for Generic Image 

3.1 Introduction 

Unlike the last chapter which concentrates on super-resolving face images, this chapter 

investigates the problem of generic image super-resolution (SR), which is more demand-

ing nowadays due to the increasing popularity of High Definition Television (HDTV), 

webcam, camera phones and low-bandwidth video streaming. 

It is acknowledged that edges are presumably the most important features in natural 

images. Therefore, for a super-resolved image, sharpness and freedom from artifacts on 

edges are the two critical factors for its perceptual quality. However, conventional SR 

techniques are usually susceptible to artifacts such as j aggies and blurring as shown in 

Figure 3.1. The perceived quality of the super-resolved image is unsatisfactory due to 

the presence of jagged, twisted or blurred contours. 

The objective of this chapter is to seek an efficient but effective method that is ca-

pable of producing a high quality artifact-free high-resolution (HR) image from a single 

low-resolution (LR) input. Specifically, the single image SR is divided straightforwardly 

into two consecutive steps: magnification and deblurring, which is the inverse of the im-

age acquisition pipeline. Magnification is to interpolate the image to the desired spatial 

resolution. Apart from blurring problem, the current prevalent scene-independent in-

terpolators like pixel replication or bicubic interpolation fail to preserve the edge struc-

tures and thus suffer from severe jaggy artifacts (see Figure 3.2). Hence, we propose 

to accomplish the magnification in a structure adaptive manner. A recently developed 

adaptive interpolator called soft-decision adaptive interpolation (SAI) [Zhang and Wu� 

2008] is adopted in the chapter due to its good performance on suppressing jaggy ar-

tifacts. However, as shown in Figure 3.1 (b), the interpolated image is still far from 

satisfactory due to the blurring problem. Consequently, a deblurring step is introduced 

39 
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(d) Bicubic (e) Ma et al (f) Dai et al 

Figure 3.1; 3X SR on Mickey, (a.) LR image, (b) Intermediate result obtained by SAI [Zhang 
and Wu, 2008], where the blue stroke outlines the salient edge used in the deblurring process, 
(c) Our final result, (d) Bicubic interpolation result, (e) Ma et al's result [Ma el： al, 2008]. ( f ) 
Dai et al 's result [DaJ el; al, 3009]. 

(d) Bicubic (e) M a et al. (f) Dai et al. 

Figure 3.2: Close-up comparison of results in Figure 3.1. Apparently, our result is free of 
the annoying visual defects such as jaggies and blurring associated with those of the other 
algorithms. 
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to seek an appropriate blurring kernel to recover the sharpness of the interpolated re-

sult. Apparently, the latter step is a challenging blind deconvolution process which 

aims at inferring the sharp image as well as the blurring kernel simultaneously from a 

degraded blurry input. 

Fortunately, edges can reveal the blurring information of the interpolated image. In 

particular, we advocate using a parametric edge model to extract the blurring kernel 

from the salient edges which refers to the pixels appear at the boundary area containing 

two adjacent parts with distinct colors. The salient edges are used because they are 

predictable and expected to be sharp in the output HR image, and we prefer the users 

to select them manually through the manner of user-drawn stroke. As illustrated in 

Figure 3 J (b), a single stoke is normally good enough to produce a desirable result. 

It is unnecessary to pick all salient edges and so the user intervention required in this 

work is little. 

It is worth noting that the deblurring algorithms in [Joblii (�t fiJ.. 2008] and [Jia, 2007] 

share similar spirit with ours in blur kernel estimation. However, their performance 

relies on the success of some in-between results which is instable in tough conditions. 

For example, Joshi et al. [Juhhi H a I.. 2008] needs to create a sharp edge by roughly 

changing the edge profile, while transparency estimation is required in Jia [Jin, 2007], 

The blurring kernel is estimated from these intermediate results with a maximum a 

posteriori (MAP) estimator. In contrast, our method is quite computationally efficient 

and the blurring kernel is calculated directly from the stable edges (salient) and in closed 

form. When the blurring kernel is fixed, the sharp HR image is recovered efficiently 

with a MAP framework. 

The rest of this chapter is organized as follows. Section 3.2 gives a brief review of the 

related work. The proposed SR framework is described in Section '•].?>. Experimental 

results are presented in Section 3.4. Section 3.5 draws some concluding remarks. 

3.2 Related Work 

There are a large number of algorithms to address the single-image SR problem in the 

past years. Conventional interpolation methods like Bilinear or Bicubic yield jaggied 

and blurred edges, degrading image details. The structure adaptive methods such as [Li 

and Ordinnl. 2001] and [Z lid rig and Wu. 2008] work better on eliminating j aggies but 
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Still suffer from blurring problem. 

Learning-based methods such as [I'Vcoiuaji d nl.. 2000; Smi PI, a l . 2003; Wajig ct al , 

2005； Ma v\ a!�2(J0<S] can output sharp HR image even with high magnification factor 

by making use of additional training HR and LR image pairs directly or indirectly. 

However, as mentioned in Chapter 1.2.3, their performance replies on how well the input 

LR image matches the training samples. Therefore sufficient number of appropriate 

training samples are required to guarantee the SR performance. Reconstruction-based 

methods like [Zoinet (�1, al , 200 J; Shan ct a I . 2008b] are built based on a generative 

imaging model which simulates how the HR scene is transformed, filtered and sampled 

to give rise to LR images. However, the reconstruction of HR image from LR input is a 

typical ill-posed inverse problem. Therefore, to regularize the ill-posedness, image priors 

are introduced to impose additional constraints in the SR process. Studies on image 

statistics [Koih and BUcJv, 2009] show that sparse prior is a sound choice due to the 

heavy tailed property of image response to a collection of convolution filters. Recently, 

edge-based priors [Faltal, 2007; Sini ct al.. 2008; Dai et nl., 2009] are developed to 

further preserve the edge sharpness. More recently, Glasner et al. [Glasnci ol a l , 2000] 

combined the reconstruction-based method and learning-based method and presented 

a unified framework that can be applied to single image SR without any additional 

external data. 

Nevertheless, the above methods have the following problems that limits their ap-

plicability in practice. One problem is that these methods often have complex working 

pipeline where the performance replies on a number of factors such as parameter tweak-

ing, iteration number or training set quality. In addition, the blurring process of the 

optic is assumed to be known as a priori in these methods. That is, the camera's point 

spread function (PSF) kernel can be jfixed in advance. Even the learning-based methods 

also require the knowledge of PSF to make sure that the training and testing data are 

degraded in the same way. However, this assumption does not hold in real scenarios 

because of the unpredictable behavior of PSF. Different images may be formed with 

different PSFs due to the influence of camera lens, focusing condition and so on. Al-

though some methods like [lie and Kourii. 2005; Vdiig et a l�2008a] were presented to 

iteratively estimate the PSF and the latent HR image, their applicability is limited due 

the high computational complexity and multiple LR input requirement. Finally, most 
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Figure 3.3; The Imaging model in single image SR. 
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Figure 3.4: The proposed SR scheme. 

existing methods ignored the structure coherence of HR image and LR image, and thus 

are susceptible to artifacts like jaggies. 

3.3 Problem Formulation and The Proposed Algorithm 

The generative imaging model in single image SR is shown in Figure 3.3. The observed 

LR image can be produced by blurring and downsampling a HR image. Namely, I I = 

D 丄 iJPSF (g) iH) + noise, where ® denotes the convolution operation. PSF is the 

camera's PSF which is normally assumed to be a Gaussian filter. The validity of 

Gaussian PSF assumption has been proved in [Capel. 2004]. SR is an inverse process 

which is to recover the HR image from a LR input. 

3.3.1 Structure Adaptive Interpolation 

In this work, we propose to divide the SR straightforwardly into two consecutive steps 

as illustrated in Figure 3.4. A LR image I i is first magnified to the desired resolution 

using interpolation. As aforementioned, conventional scene-independent interpolators 
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like pixel replication or bicubic interpolation fail to preserve the edge structures and 

thus suffer from severe jaggy artifacts (see Figure 3.2). To overcome this problem 

and achieve structure adaptive interpolation, some algorithms such as [Li and ()r( liajd, 

2001 ； Zli;mg and Wii. 2008] were presented by utilizing a piecewise autoregressive (PAR) 

progress to model a natural image. That is, each pixel Im{^,y) can be approximated 

by the linear combination of its neighboring pixels /爪(re + i，̂/ + j). 

Imi工,y) + + j), (3.1) 

where {i,j) defines the spatial neighborhood. The weights imply the the lo-

cal structure around the current pixel and can be assumed to be locally stationary. 

Especially, Zhang and Wu [Zhang a]j(l Wn, 2008] proposed a soft-decision estimation 

interpolation framework based on the PAR model that achieves superior performance 

than the other work. To better preserve the local structure, the missing pixels are 

jointly estimated in SAI by enforcing the local relation not only between known pixels 

and missing pixels but also between missing pixels themselves. Besides, SAI operates on 

blocks of pixels and thus rims efficiently. In this work, we adopt the SAI to accomplish 

the image magnification. 

As shown in Figure ；}.4, although SAI has impressive performance on eliminating 

jaggy artifacts, the magnified image is still undesirable due to the severe blurring prob-

lem. As depicted in (3.2), the blurry magnified image Im is regarded as the convolution 

result of a sharp image I n with a blurring kernel / . 

Im = f{(Tf)0lH + n, (3,2) 

where f{(Jf) is a smoothing function and depends on some kind of smoothing param-

eter (7/ > 0. n is an additive noise and normally assumed to be Gaussian. Similar 

to the camera's PSF, the blurring kernel f can be reasonably assumed to be a 2-D 

Gaussian filter g with standard deviation a. Hence, /(07) = g(a) with d/ = a. Note 

that the blurring kernel f normally has larger scale than the latent camera's PSF, as 

interpolation incurs additional blurriness. 
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w w 

(a) 

Figure 3.5; (a) 1-D parametric edge model (b) Response of convolving 
derivative of a Gaussian HJier. 

edge with the 

3.3.2 Debiurring from Salient Edge 

The goal of this section is to seek a suitable debiurring scheme which can recover the 

sharpness of the magnified image result with appropriate blurring kernel. As shown in 

Figure 3.4, the debiurring process has two tasks: blurring kernel estimation and sharp 

image recovery. They will be addressed one by one in the following sections. 

Blurring Kernel Estimation 

As shown in (3.2), edges in /饥 can be obtained by Gaussian blurring the corresponding 

edges in I f f with f (af). Next, we adopted a parametric edge model to depict edges 

motivated by [van Bcek, 1095； Fan and Chain, 2000]. Without loss of generality, we take 

the 1-D form to explain the edge model, since edges in a 2-D image can be characterized 

by sharp intensity changes in one direction. Mathematically, a step edge at CCQ can be 

depicted as e{x; b, c, xo) ~ cU{x — a;。）+ 6 where U{-) is the unit step function, b denotes 

the edge basis and c represents the edge contrast. A typical edge b, c, w, â o) can be 

regarded as a smoothed step edge which is obtained by convolving e{x\ b, c,xo) with a 

1-D Gaussian filter g{cT) — and so 

5(12；; b,c,w,XQ) = & + - 1 + e r / ( 
丄\ 

,X — Xq. 
wy/2 . 

(3,3) 

where er/( . ) is the error function. As shown in Figure :i.r)(a)，w is equal to a and 

determines edge bliirriness and can also be referred as edge width. The larger w is, 

the blurrier the edge is. Roughly speaking, all edges can be depicted parametrically 
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by fitting (3.3) on them. Such fitting process includes two steps: edge detection and 

parameter estimation. 

Similar to that of Canny detection [Canny. JfWG], edge is detected by convolving 

s{x\ b, c, w, xq) with the derivative of a predefined Gaussian filter The response 

is: 

C ( — {x — 2̂ 1-)) \ 
d{x\ c, w, (Td, Xq) = . = exp 7—5 ^ . (3.4) 

The peak of the response can be used to locate the edge as illustrated in Figure 3.5(b). 

Also, the standard deviation w of the blurring filter g as well as the other parameters of 

(3 can be estimated as (3.5)-(3,8) based on three measurements which are selected by 

sampling the response d{x\c, w, ad, xq) at a; = 0, a, —a. They are: di = d(0;c，ui，(Jd,a:o)’ 

d2 = d{a\ and dz = (i(—a;c,tu,(Jd,xo). a is normally set to 1, 

w = ^J0?/ln{li) - al, 

xo ~ 0.5 • a • ln{l2)/ln{li). 

c = di- ^J^TTO?/Inih). I f , 

b = s{xq) — c/2 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

where h = and I2 = d^jd^. The above analysis can be extended to the 2-D case 

directly except that an extra parameter Q is required to represent the edge direction. 

Please refer to [van Beclv, 1095] for more details. Therefore, we can similarly recover 

the 2-D Gaussian blurring filter /(07) of (3.2) by measuring the edge blurriness in Im 

based on (3.5). 

However, it is noted that only the salient edges of Im can be used in the blurring 

kernel estimation due to the following reasons: First and most importantly, their corre-

sponding edges in latent HR image ih are very sharp and have rapid transition similar 

to step edges. Thus the estimated blurriness (i.e. w) can fully reflect the true blurring 

difference between Ih and Im- Secondly, the salient edges are stable indicators of the 

blurring kernel and quite detectable even if the feature strength of the interpolated 

image Im is weakened considerable. As exemplified in Figure 3 6, to avoid the influence 
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Figure 3.6; Testing on kernel estimation. The selected distinct edges are outlined with red 
Red squares in the right figures show the estimated w of all the points in the selected edges and 
Waver denotes the average estimation. Blue lines show the ground truth standard deviation ar 

of neighboring edges and make blurring kernel estimation more stable, the salient edge 

locating at boundary of two adjacent regions with distinct colors is favored for blurring 

kernel estimation. 

Two simulated examples are given in Figure ；] G to test the proposed kernel estima-

tion scheme. We first blur the original image by Gaussian filter with ctt and then try 

to recover this ground truth filter by measuring the blurriness of the selected distinct 

edges in the degraded image. The results show that all of the estimated standard de-

viations are close to the ground truth gt- TO make the estimation more robust, we use 

their average Waver for deblurring in the following experiments. 

Sharp Image Recovery 

Once /(cTj) is fixed {a/ = 騰r)，recovering the target sharp image ih from the blurred 

I讯 becomes a typical non-blind deconvolution task. This problem is still challenging 

and effective image prior is required to regularize its ill-posedness. As shown in (3 9), 

the task is tackled with a MAP estimator. 

= argmax /((T/))p(///). 
ih 

(3.9) 
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p{Ih) can be defined with a sparse derivative prior to favor sharp image result. Hence, 

(3.9) is rewritten as: 

2 

Ih = a rgmina ||/(cr 力 — Im\\l + ^ IK̂ ^ ® ， (3.10) 
Ih i=i 

where a is a weighting factor, ti is simply defined with, the first order derivative filter 

as: == [1 — 1] and £2 = [1 — 1 ] � 

Apparently, directly optimizing (3,10) is difficult and computationally demanding. 

Inspired by [Wn iig ot, a l , 2007], a variable-splitting and penalty technique is employed 

to render the optimization more tractable. In brief, an auxiliary var iable� i is introduced 

to transfer U (g) ih out of the non-differentiable term ||-||2 and the difference between 

them is penalized with a quadratic term. Thus, (;i.l()) turns to be: 

2 

= a r g m m a 11/(0"/) / / / - i j g + J]丨丨⑶2 (3.11) 
ih i=l 

2 

i=l 

The penalty factor /3 increases by 2 times after each iteration and the iteration will be 

stopped once the stopping criterion is satisfied. The solution of (3.1J) converges to that 

of (3.10) as (5 becomes very large. Please refer to [Wang ot al.； 2007] for more details. 

a depends on the noise level and normally ranges from 500 to 1000, It is worth noting 

that the optimization of (3,11) can be solved efficiently, since when one of the two 

variables ih and <7/ is fixed, minimizing the function w.r.t the other has a closed-form 

solution. Moreover, the solver can be accelerated greatly by performing Fast Fourier 

Transform (FFT) to avoid the computational complexity caused by convolution. 

3.4 Experimental Results 

In this section, we first generated some synthesized examples to test the effectiveness 

of the proposed algorithm and evaluated its performance quantitatively. As shown in 

Figure 3.7，the original HR images in (d) are firstly blurred and then downsampled 

by a factor of 3 to yield the LR images shown (a). Subjectively, our results (c) are 

more visually pleasant than (b) generated by SAI [Zliaug and VVn, 2008] due to the 

significant improvement on sharpness. We further assessed the sharpness improvement 
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Figure 3.7 Testing on synthesized examples In each row, images from left to right are 
the input LR image, the intermediate result interpolated using SAI, our final SR result and 
the original HR image The selected distinct edges are outlined with red in the intermediate 
magnified image using SAI 

Figure 3.8 SR on Fire with a magnification factor of 3 (a) LR image (h) Intermediate result 
obtained by SAI [Zluing <nu} Ul;, 2008], where the red stroke outlines the salient edge used m 
the deblurring process (c) Our final result (d) Bicubic interpolation result (e) Ma et al 's 
result [M,} (f ,ii 200叫(f) Dai et al 's result [IXn (H "！，W()()] 

quantitatively with Just Noticeable Blur Metric (JNBM) [Foi/]j and K<n,\m 2000], 

which IS a perceptual-based no-reference sharpness metric and can predict the relative 
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Figure 3.9 SR on Zebra and Man with a magniGcation factor of 3 (a) LR image (b) 
Intermediate result obtained by SAI (//"mg rind ]Vii 200H], where the red strokes outline the 
salient edge used in the deblurring process (c) Our final result (d) Bicubic interpolation result 
(e) Ma et al 's result [A/a N d JOOSJ ( f ) Dai et al 's result [Ddi (I al M)0J 
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Figure 3.10: Close-up comparison. The patches (a)(b)(c)(d)(e)(f) are cropped from LR image, 
interpolation result using SAI, our result, Bicubic interpolation result, Ma et al. 's result, Dai 
et al. 's result. 
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Figure 3.11: Quantitative evaluation 
the image has good sharpness. 

sharpness with JNBM. High JNBM value represents 

amount of blurriness in images with high accuracy. Since the original image is known, 

we use the ratio (i.e., JNBM {1ST) / JNBM (/on)) between the JNBM value of the super-

resolved image and that of the original image to show the sharpness performance. 

Thus, the larger the ratio is, the sharper the super-resolved image is and when the 

ratio equals to 1，the super-resolved image has the same sharpness as that of the 

original image. Besides, we also assessed the improvement in terms of the mean square 

error (MSE). The above two quantitative measures both prove that proper deblurring 

improves interpolation performance and gives more faithful SR results to the original 

images. As shown in Figure II1 and Figure 3.JO, we reproduced some results published 

before and made comparisons with the existing work. In summary, the results obtained 

by Ma et al. [Ma (�t al , 2008] suffer from blurring and jaggy artifacts. The overall visual 

quality of Dai et al.'s results [Dai <�t al , 2009] and ours are comparable. However, as 

illustrated in the close-up comparison, Dai et al.'s results are less detailed and prone 

to jaggy artifacts especially around the long edge area which substantially degrade the 

perceptual quality. While, our results are not only free of artifacts but also exhibit 

the best sharpness as shown in Figure .3.1 ！. Note that the above results of [Ma c( al., 

2008] and [] )ai d <x\ . 2000] are produced by the authors. Please also visit h t t p : 

//www. oe. cuhk. edu.hlfZ-zhangwel/Hj ghQualitySR, html to see the results. 

It is worth noting that the choice of salient edge may not be unique in practice. For 

most images, there are several edges that can serve in the blurring kernel estimationas. 

• Bicubic 

eSA I 

• Ma etal. 

• Dai etal. 
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Figure 3.12 SR with difFerent salient edges Top LR image Middle and bottom show 
the 3 times HR results super-resolved with the salient edges outlined by blue and red strokes, 
respectively 

As illustrated in Figure d J 2, two salient edges (drawn by blue and red stokes) can both 

be used m the deblurrmg process and result in quite similar standard derivations 1 35 

(blue) and 1 32 (red) Hence, the deblurred HR images are similar as well 

Apart from the good performance, our method is appealing due to its low com-

putational complexity To super-resolve a 352 x 288 image, the current non-optimized 

Matlab implementation takes less than 20 seconds There is still much room to improve 

its efficiency by optimized C + + or GPU implementation It is interesting to note that 

most of the computation cost comes from the sharp image reconvery (non-blind decon-

volution) The blurring kernel estimation can be finished very rapidly (normally less 

than 2 second), since only the pixels of the salient edge (instead of the entiie image) 

are needed to be taken into computation In summary, the key idea we advocate here 

IS that it may not be necessary to make the SR that complex Alternatively, a simple 

i r a r 聊 • 

iĵ xf/ ‘ � i l : 二) 

§ 3 4 Experimental Results 5 3 
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framework plus little user assistance can also achieve impressive SR performance. 

3.5 Summary 

In this chapter, a simple but effective algorithm is presented to address the challenging 

single image SR problem. To create a pleasant artifact-free HR result, we first mag-

nified the LR image to the desired resolution through structure adaptive interpolation 

and then introduce a salient edge directed deblurring scheme for sharpness recovery. 

Unlike most existing work, the camera's PSF is not assumed to be known in this work. 

Experiments demonstrate that the proposed approach produced high quality results 

both perceptually and quantitatively. Nevertheless, since the underlying principle is to 

take advantage of the salient edge to seek suitable deblurring, the standard derivation 

cTf of the blurring kernel cannot be estimated accurately if no salient edges can be found 

in the magnified image. In this case, we have to resort to parameter tweaking to find 

the optimal df. 



Chapter 4 

Single Image Focus Editing 

4.1 Introduction 

Single image refocusing and defocusing is an interesting research topic and has received 

a lot of attention recently. Two tasks are mainly involved in this topic. One is image 

refocusing which is to recover the sharpness of the blurry defocused objects in an 

input image and generate a virtual all-focused image. The other is defocusing which 

is to blur an image and create defocus effects. In some photography such as portrait, 

shallow depth of field (DOF) is preferred so as to highlight the foreground subject with 

a defocused blurry background. But due to the limitations of the lens and sensors, 

some cameras such as point-and-shoot cameras cannot produce enough defocus effects. 

In this chapter, we present a novel method which is able to handle the tasks of focus 

map estimation, image refocusing and defocusing. One example is shown in Figure 4.1， 

where an input image (a) contains focused foreground object and defocused background 

which includes the girl. Firstly, if we find the defocus effect on the background is not 

adequate, then the proposed method can be used to increase the defocus effect of the 

background while keep the foreground unchanged, Hence, a portrait-like image similar 

to that formed by using a shallower DOF is produced as shown in (b). Secondly, 

the proposed method can be used to refocus the defocused background to generate a 

plausible all-focused image as shown in (c). Besides, as shown in (d), the highlight of 

the input image can also be changed after defocusing the original focused foreground on 

the synthesized all-focused result. The comparison in (f) indicates that the proposed 

refocusing method outperforms the lens deblurring of Photoshop significantly. 

The proposed method first estimates a focus map and then use it to separate the 

focused and defocused objects as shown in Figure 'i.l(e). The focus map estimation is 

based on the assumption that blurring of edges is only due to the defocus effect and so 

55 
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(d) 

Figure 4.1: (a) Input narrow aperture image focusing on the foreground object, (b) Syn-
thesized image with shallower DOF. (c) Synthesized all-focused image (d) Synthesized image 
focusing on the background, (e) The detected focus mask (white: defocused regions, black: 
focused regions, gray: focus boundaries), ( f ) Close-up comparison. Left: removing the lens 
blur using the lens delurring in swart sharpen of Photoshop. Right: our refocused result. 

the focus information can be indicated by edge blurriness. A parametric edge model 

based scheme is presented to generate the focus map automatically. More specifically, 

we will first measure the blurriness for edge pixels and then propagate it from the edge 

pixels to their neighboring non-edge pixels based on the similarities of intensity and 

position. 

In this work, refocusing is formulated as a single-image blind deconvolution (SBD) 

problem based on the fact that the defocused image can be regarded as a result of 

convolving the focused image with a point spread function (PSF). Therefore, the chal-

lenge is to infer the sharp focused image as well as the PSF simultaneously from a 

degraded blurry image. To regularize this unconstrained problem effectively, two ad-

ditional local prior models are introduced in the proposed SBD framework besides a 

global image prior. One novel sharp prior is adopted to ensure the sharpness of the 

refocused image. Another local smooth prior is to constrain the low-contrast regions 

unchanged for suppressing the ring artifacts. Our study shows that their combination, 

named as Sharp-and-Smooth prior, provides an effective regularization for ensuring 

image sharpness and suppressing ring artifacts. Extensive experiments on synthesized 

and real images were performed to test the proposed SBD method. Defocusing in this 
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work is handled by Gaussian blurring as stated in Sec -1.3.]. 

The rest of this chapter is organized as follows. Section 4.2 gives a brief review of the 

related work. Some foundational knowledge about image formation and edge model is 

introduced in Section -J .3. Section 4.i introduces the edge model based method for focus 

map generation. A new SBD approach is proposed in Section 15 for image refocusing. 

Experimental results on refocusing and defocusing are shown in Section 16. Section 

4.7 draws some concluding remarks. 

4.2 Related Work 

Focus and defocus cues are popular for the recovery of depth map in the study of depth 

from focus and defocus [Srhw]川(�r find Kiivati, 2000; HajagopalHU cl, a l , 2004], where 

multiple images with different focus settings are required to estimate a depth map for 

the latent scene. For example, Rajagopalan et al. [Rajagopalaii ct nJ., 2004] proposed 

a depth estimation method by combining the defocus and stereo cues. While in this 

work, we are concerned with extracting the focus information instead of accurate depth 

from a single image. 

As mentioned in Section 1.2,2, lots of efforts have been made to address image 

refocusing and defocusing. The hardware solutions (e.g. [Nft (M, al., 2005； ot, a],. 

2007; Morono-Nognor ot nl.. 2007]) requires additional optical elements or devices to 

help the camera capture more information about the target scene. Some postprocessing-

based methods [Jviibotn o( al., 2001； Knlx)!a and Aizawa, 2005; ilaKinoff njjci Kufiilakos, 

2007; Yajj^, aiui Schojilbld. 20 i 0] were presented based on multiple images of the same 

scene. This chapter concentrates on achieving image refocusing and defocusing from a 

single input without changing the camera, but with only image processing. Here, we 

just refer some methods which are the most similar to ours. Bae and Durand [Bm�and 

J)iij'ajid, 2(JG7] contributed at proposing an automatic focus map estimation method 

by estimating the edge blurriness with a brute-force fitting strategy. The defocusing 

there is handled with the aid of the lens blur tool in Photoshop. In this chapter, 

a simple and well-parameterized multi-point scheme is adopted to measure the edge 

blurriness. Besides defocusing, we also address the more challenging refocusing problem 

with a blind deconvolution framework. The edge information is exploited not only in 

focus detection but also in image refocusing in this chapter. Yan et al. [Ynn H a I.. 
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Focal Plane 

P's pp^h^'. 

i ^ a i i i o i a L . C 1 i o Image Plane 

Figure 4.2* Geometry of the imaging model F\’ P2 and P3 represent the scene points at 
different depth 

2009] developed an interactive defocusing system, where user intervention is required 

to obtain the depth information of an input image. Similarly, Bando and Nishita [J^ajjcio 

and NishiUi. 2007] presented an interactive method to address single image refocusing, 

where lots of user intervention is needed to determine the blur kernel from a number of 

predefined candidates. While in this work, focus map, blur kernel and refocused image 

are all obtained automatically. 

4.3 Background and Problem Formulation 

4.3.1 Imaging Model 

As shown in Figure 4 2，the rays originating from a scene point Pi on the focal plane 

can converge to a point on the image plane. However, when the scene point moves away 

from the focal plane, the rays will give rise to a blur circle on the image plane and the 

image is regarded as defocused. When the point moves farther, a blurrier defocused 

image is produced. Such blurring process is often modeled as the convolution of a 

focused image I f with a PSF h, i.e 

Id = Ijp + n, (4.1) 

where Id denotes the defocused image and n is the noise term. Due to the diffrac-

tion and aberration of the camera lens, the PSF is normally approximated by a 2-D 

Gaussian filter [Lin and Chang. 200(5; Rnaro ancJ Soy< to, 2005] given by g(x,y;a)= 

exp( - ) The spread parameter cr which is related to the distance of the ob-

ject to the focal plane determines the blurriness of the captured image. In this chapter, 

(J i) and Gaussian PSF are used to model the defocusing process. 
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(a) 
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(d) 

Figure 4.3; (a) 1-D parametric edge model (h) Response of convolving an edge with the 
derivative of a Gaussian filter, (c) Effect of decreasing w. (d) Edge detection in an image, 
where the gray line outlines the contour of an edge, the solid dots are the detected peak 
positions located at the grid points, the circle is one of the true edge positions. 

It is worth, noting that unlike the multi-image based approach [[{asinoff and Knt u-

lakos, 2007], the occlusion problem is not formulated directly into the imaging model in 

this chapter, because the single-image based work itself is already highly unconstrained 

and adding more unknowns will make the whole framework intractable. However, ow-

ing to the estimated focus map, we can locate the possible occlusion regions such as the 

gray regions in Figure 4 J (e) along the layer boundaries and then use alpha blending 

to synthesize these regions to avoid artifacts. The results show that this is a visually 

realistic way to handle the occlusion problem. 

4.3.2 Edge Modeling 

Focus map estimation on a single input is challenging. Fortunately, edges in an image 

carry important information which may hint how the image is formed. Similar to 

Section 3.3.2, a parametric edge model [van I^cok, 1995; I-'am and Cham, 2000] is adopted 

for edge description. As shown in Figure '1 3(a), a typical edge s(x; b, c,w, xq) can be 

represented mathematically as: 

s(x; b,c,w,xo) = b+ ~ 11 + erf( 
I \ 

— X Q . 

wV2 . 
(4.2) 

where er/(-) is the error function, b denotes the edge basis, c represents the edge 

contrast, w is referred as the edge width parameter. As shown in Figure the 

edge is sharper when w becomes smaller, xq is a real number which can represent the 

edge location continuously. In practice, the position of the detected peak in a 2-D image 

is constrained to a grid point location which is represented by an integer and thus may 
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not coincide with the truth. As the example shown in Figure 4.3(d), the detected peak 

locates at a; = 0 instead of the true edge position xq. AS stated in Section 3.3.2, all 

parameters of ('i.2) can be estimated as follows; 

0；0 = 0.5 • a • ln{l2)/ln{li), (4.3) 

w = ^ J a y i n { h ) - a l (4.4) 

(4.5) 

(4.6) 

c — di •�1X0?/ln{l{) 

b = s(a;o) — c/2 

where h = ^ ^ and I2 =而/(^3, and di, d) and ds are three sample measurements at 

x = 0, a, —a of d{x\ c,w, cr^), which is the response of convolving c, a, xq) with 

the derivative of a predefined Gaussian filter a^). Value of a can be chosen freely 

and normally a = 1. Please see Section ；i.3.2 for more details. 

The above derivation can be referred as a multi-point estimation method. With 

this parametric model, the edge can be changed easily by controlling these parameters. 

For example in Figure 4.3(c), decreasing w will result in a sharper edge. Hence, edge in 

an image can be sharpened by first detecting the edges and estimating the parameters. 

Then the edge is reconstructed by substituting the new w' to (4.2) and keeping the 

other parameters unchanged. 

4.4 Edge based Focus Map Estimation 

Based on the above edge model, a method is proposed in this section to estimate the 

focus map automatically for an image containing a mixture of focused and defocused 

objects. This can be done automatically because the edge blurriness carries important 

cue about the focus setting. Different degrees of blurriness imply different defociis 

scales, Hence, focus map herein also corresponds to blurriness map. It is worth noting 

that this conclusion is under the assumption that the occurrence of edge blurriness is 

only due to defocusing effect, which is prevalent in previous focus map estimation work 

such as [I^ac niid DiiruruJ. 2007]. Our proposed method is also based on this assumption 

and thus shares the common limitation that it cannot estimate an accurate focus map 

for natural blurry objects like clouds and shadows. 

The proposed scheme proceeds as follows. Firstly, as stated in Sec a single 



Sharp 

Figure 4.4: Focus map estimation, (a) Input image, (b) Results of blurriness measurement 
(w) on edges. Blurriness increases gradually from blue to red. No edge is detected in the 
crimson regions, (c) and (d) show the focus map results of ours and Bae et al.'s respectively. 
Defocus increases gradually from black to white. Note that focus map here has been normalized 
for display purpose, (e) and ( f ) show the de focus magnification results of ours and Bae et al.'s 
respectively. The dashed ellipses outline the obvious errors occurred in Bae et al.'s result. 

scale Gaussian filter is employed to detect the edges in the image. Our study shows 

that [1，3] is a reasonable range for setting ad. Then the edge blurriness w as well as 

the other parameters can be calculated directly based on (4.3)-(4.6). Next, to remove 

the outliers that occur in edge detection and parameter estimation, cross-bilateral fil-

tering [Ei«.;.maim and Diirfimi，2004; Petsclinigg et a.l��2004; Paris and Diiraiul, 2006] 

is conducted to refine the obtained edge blurriness results. Secondly, considering that 
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neighboring pixels with similar colors can be reasonably assumed having similar blur-

riness，we employ an additional blurriness propagation step for the non-edge pixels 

whose blurriness cannot be estimated by the first step. More specifically, the blurriness 

information at edge pixels is propagated to their neighboring non-edge pixels based on 

the similarities of intensity and position. According to the work on image coloriza-

tion [Loviu ot al., 2004], such propagation can be formulated as the minimization of 

a quadratic cost function whose optimization can be solved efficiently within a linear 

system, 

A similar method to ours is {]3a(‘ and Diimm】，2007] which adopts a multi-scale 

edge detector and estimates the blurriness using a brute-force strategy. In detail, the 

degree of blurriness there was determined by approximately fitting the second derivative 

Gaussian filter response with a number of predefined candidates to a window around 

the edge pixel and along the gradient direction. By contrast, our proposed method is 

simpler and has lower computational complexity since all edge parameters are derived in 

closed form. Besides, a parameter a;o is used to represent the edge position accurately in 

sub-pixel level. As stated in Sec 4,3.2, this representation is particularly advantageous 

when the actual edge center lies somewhere between two grid points. 

Experiments were conducted to test the proposed method. The results in Figure 

•'1.4(b) prove that the edge blurriness can be measured with good accuracy using our 

method. Compared to Bae et al.'s result in (d), our focus map result in (c) has less 

outliers and is more faithful to the perceived truth. Moreover, the proposed method 

is more efficient and only took about 31 seconds while Bae et al. [Bac3 and Diinmd, 

2007] needs about one minute. Next, similar to [Bm�and Duraufl. 2007], in order to 

further evaluate the accuracy of the focus map, we employed the lens blur of Photoshop 

to increase the defocus effect of (a) by inputing (c) and (d) as the alpha channels 

respectively. As expected, due to the influence of the outliers in (d), Bae et al.'s result 

in (f) is not satisfactory, where some focused regions are destroyed and some defocus 

regions are not blurred adequately. In contrast, our result in (e) is more visually 

realistic. This can also be concluded from the comparisons in Figure 4.5 and Figure 

'J.G, where the two input images are adopted in [Ba(�AUD DUFRTICJ, 2007]. Noted that 

Figure 1.G is a testing on a narrow aperture (f/8) image (a). Apparently, our defocusing 

result in (d) is better and visually closer to the ground truth wide aperture (f/4) image 



Figure 4.5: Comparison on focus map estimation and defocus magnification, (a) Input narrow 
aperture image, (b) and (d) are Bae et al.'s presented results, (c) and (e) are our results. The 
dashed ellipses outline the obvious errors occurred in (d). 

(b) than Bae et al.'s result in (c). 

4.5 Image Refocusing by Blind Deconvolution 

Compared to defocusing, refocusing is more challenging. As aforementioned, image 

refocusing can be regarded a SBD problem whose goal is to recover the sharp image 

If as well as the PSF simultaneously from a blurry input Id, However, the SBD is ill-

posed since there are different pairs of images and PSFs that can output the same blurry 

4.5. Image Refocusing by Blind Deconvolution 6 3 
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(d) 

Figure 4.6' Comparison on defocus magnification (a) Input narrow aperture (f/8) image (b) 
Ground truth image taken with wide aperture (f/4) (c) Bae et al 's presented result (d) Our 
result The dashed ellipses outline the obvious errors occurred in (c) 

image. In the past years, a variety of methods [Chan hrid Wong, i99b, Joshi (�l ,il 

2008; Pogiis et a I 2006; Jot.hi d ai，2009, S h a j j � t fil. 2()0hn, Jia 2007] have been 

presented to tackle this challenging problem Most methods employ a simultaneous 

maximum a posteriori (MAP) estimator to infer the latent sharp image and PSF in 

an iterative manner As analysed in [Levin (寸 ul , 2009], such MAP estimator may 

not approach the desired global optimum since it favors the no-blur explanation That 

is, the PSF is delta kernel and the latent image is the same with observed blurry 

one. Besides, proper user intervention is often required at the initialization stage and 

poor initialization may result m undesired local convergence Although some efforts 

such as [Josh) of <il 200«, Jia, 2007] were made to seek PSF from edges, the edge 

sharpness cue is not utilized adequately. In this chapter, we present a novel refocusing 

method that takes full advantage of the edge sharpness cue First, it is utilized for PSF 

estimation Then, an edge sharpness prior is developed to consti am the PSF not to blur 

the edges and enforce the refocusing image to agree with the precalciilated sharpened 

64 CHAP. 4. SINGLE IMAGE FOCUS EDITING 



§ 4.5.1. Expectations for the Refocused Image 65 

image in the vicinity of edges. Next, the proposed SBD method will be presented by 

assuming the PSF is spatially invariant for the sake of simplicity. Figure 4.7 shows an 

illustrative example to explain the proposed SBD process. 

4.5.1 Expectations for the Refocused Image 

Let I f be the refocused image of a blurry image Ijj. Ip is expected to satisfy two 

conditions. First, the edges should become sharpened in i>. Second, the locally smooth 

regions in Id should remain almost unchanged in If. By means of the parametric edge 

model introduced in Sec 13.2, we can formulate the first condition explicitly by ensuring 

a small width parameter w in (-1.2) for each refocused edge. In detail, for a blurry input, 

we first reconstruct its predicted image Ip with sharp edges by decreasing the width 

parameter w like setting w' = w/10 as exemplified in Figure 'J.3(c). Meanwhile, a 

binary edge mask Me can also be determined, where white denotes the edge regions 

which comprise all edge pixels and their adjacent neighboring pixels and black denotes 

the non-edge regions. As the example shown in Figure 4.7, (c) and (d) show the 

corresponding edge mask and predicted image of (a) respectively. Apparently, the 

detected edges in (d) have been sharpened significantly compared to (a). 

Second, locally smooth regions in Ijj and Ip should be similar. Similar to [SliMii 

d, al.�2008a], the locally smooth region can be determined as follow. For each pixel 

in Id, a window centering at it with size similar to that of the PSF is defined. If 

the standard deviation of pixels in this window is smaller than a tliresliold, this pixel 

will be regarded as locally smooth. As shown in Figure 4.7(b), a smooth mask Ms 

is obtained, where white denotes the locally smooth regions and black denotes the 

non-smooth regions. 

4.5.2 Estimation of PSF 

As shown in (4.7), the PSF h can be estimated in a MAP framework by taking advantage 

of the predicted sharp image Ip like Figure '1.7(d). 

h* = arg ma^ p{h\lD,Ip,Me) “ arg max p{lD\h, Ip, Me)p{h). (4.7) 
h h 
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The likelihood term ip, Me) can be defined based on the image formation model 

stated in ( l . l ) . 

p(Inlh,Ip,Me) oc exp (-a/^Me ® ||/i ® /p - ( 4 . 8 ) 

where ® denotes element-wise multiplication operation, a^ acts as a weighting factor 

which is dependent on the noise level of the likelihood. Based on ('1.7), an energy term 

can be defined as: 

m h ) = a 具 ® II" ® Jp — /dIIs + \\h\\i. (4.9) 

The PSF prior p{h) is defined using a general h norm sparse prior with non-negativity 

constraint. To obtain the solution efficiently, the minimization of ('�.0) is recasted as 

an equivalent basis pursuit denoising (BPDN) problem: 

minimize ||x111 subject to | |Ax — b||含 < 77， (4,10) 

where convolution is replaced with matrix multiplication, x is the vector form of h, the 

matrix A and vector b are derived from Ip and Id with the guidance of Me. Benefiting 

from [va]j clcii liorg and I'Viwllaiidor, 2008] where a fast root-finding solver [van den 

13<�]�g mui Prkxllaii(l(�r. 2007] for BPDN is presented, the latent PSF can be estimated 

efficiently from (4.10), Note that the resulting PSF will be rectified to ensure all 

elements are non-negative and the sum is one. The threshold value rj should be chosen 

relative to the noise level and we have found empirically that [1，15] is a practical range 

to produce good results. 

4.5.3 Recovery of Focused Sharp Image 

After h is determined, the recovery of Ip becomes a non-blind deconvolution problem 

as: 

Ip = argmax = argmax P ( / _ D | / F ， ( 4 . 1 1 ) 
if if 

Similar to (-1.8), the likelihood term p{Id\Ifi h) is defined based on the image formation 

model stated in ('J. 1) by assuming that Id differs from the convolution of Ip with the 

PSF hhy & zero mean Gaussian noise of variance Hence, 

p{Id\If. h) oc exp {-an ® I f ~ InWt) • (4.12) 
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Figure 4.7: Illustration of the proposed SBD (a) Defocus image cropped from Figure / l'l(a). 
(b) Smooth mask Ms (setting the threshold to 6). (c) Edge region mask Mg. (d) Predicted 
image Ip obtained by sharpening the edges (decreasing w) in Me. (e) Our results: refocused 
image and PSF ( f ) Fergus et al. 's results, (g) Shan et al. 's results. 

To impose an effective regularization, p{If) is defined by combining three different 

priors as: 

Pi lp) = Pg(lF)Pe(lF}PsilF), (4.13) 

where pgilp) is a global prior, and Peilp) and PS(/F) are local priors introduced based 

on the aforementioned expectations described in Section '1 厂j.l. The global prior Pgilp) 

is defined by using the total variation regularize! as shown in ('1 H). 

Pgi^F) oc exp —Dig II(t̂  O IF) II： (4.14) 

where U can be simply defined by the horizontal and vertical first order derivative 

filters: ti = [1 — 1] and t2 = [1 — i f . 

The sharp prior Peilr) is introduced based on the fact that the edge regions of the 

latent focused image If is expected to have similar sharpness with that of the predicted 

Ip. As shown in (I 15), the first order derivatives are utilized to measure the difference. 

Peilp) OC exp ( - a e Me • II {U ® I f - t z ^ Ip) Hi (4.15) 

The smooth prior Ps{If) is introduced for suppressing the ring artifacts as in [Shaii 

d a�,�2008a] . As shown in (J.H)), Ps{If) is defined based on the expectation that the 

smooth, regions of the defocused image I j j and the latent focused image Ip share similar 

first order derivatives. 

VS[If) OC e x p —A^ ^ M , ® || ( t , ® I f I d ) \ \ l (4.16) 
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The maximization problem in (1,11) can be recasted as the minimization of an 

energy term defined based on (d.l l)-(i.l6). 

Ef{If) = cin \\h � If - Id\\1 + 艺《® + ；̂沒 X ^ M ^ • UU ^ I P - u ® Id)\\1 
i i 

+ Me • II iu 崎 - t i 公 Ip) 11̂， (4.17) 
i 

where the term 3 and term 4 on the right-hand side are for suppressing ringing artifacts 

and ensuring image sharpness respectively. Similar to the problem in Section 3.3.2, di-

rect minimization of Ep is intractable since Ep is non-quadratic to the unknown //?. 

Similarly, the variable-splitting and penalty scheme is adopted to tackle this optimiza-

tion problem. As shown in (4,18), two variables and are introduced to replace 

ti (g) If and t) <8) If respectively. The discrepancy between & and ti fg) Ip is penalized 

in a quadratic manner. 

EF{IF) = OIN \\H®LF-IDWI + AS E M, ® | 临 — K ® ID)\\1 4-AE^ME® I 防 — TI® IP)|| 
i i 

+ " 劍 2 + i] —亡⑷if)\\1 • (4.18) 

i i 

Iterative scheme is employed to update the unknown Ip and & alternatively with an 

increasing penalty parameter jS. The solution of minimizing (4 J 8) will converge to 

that of minimizing (4.J 7) when (3 becomes large enough. At each iteration, when If is 

fixed, {i 二 1,2) is updated by minimizing separated from Ef{If)-

Epd^i) = I 临 — k ® ID)\\1 + � 5 ^ I防一ti (2) /f)|12 H-^^E 临 II‘2 
i i i 

+ (4.19) 
i 

Since is differential to (̂ “ a closed-form solution can be obtained. It is worth 

noting that 专i is updated in a pixel by pixel manner due to the influence of Ms and 

Me. Similarly, when is fixed, IP is updated by minimizing Eff{^f)-

EFF{IF) = + II ( C i - T I ® IF)\\1， （4.20) 
i 

where is quadratic to If and its minimization is a typical least square problem 
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which also has a closed-form solution. To avoid the computational complexity caused by 

convolution, it would be better to tackle the above least square problem in tlie Fourier 

transform domain. All parameters involved in (‘J. 18) act as weighting factors and thus 

are used to balance the contributions of the corresponding terms. For example, the 

larger is cte, the closer is the output image to the predicted sharp image Ip. For real 

images, we have empirically found that a .̂ varies from 1 to 5. is tuned between 500 

and 2000. (3 is set equal to 1 at the beginning and then increased by 2 times after each 

iteration, ag and as are normally fixed at 1 and 40 respectively. 

4.5.4 Discussion on the SBD Results 

Figure i 7 shows a close-up of the refocused result in Figure '1,14. Our estimated sharp 

image Ip and PSF h are shown in Figure '1.7(e). Note that the errors that occur at 

the sharpened edges in the predicted image (d) are due to the influence of noise and 

nearby edges. The proposed method is robust to such outliers since the estimations of 

h and If are handled in two separated MAP frameworks where the predicted sharp 

edges are only one constraint for ensuring sharpness. The influence of these outliers can 

be eliminated by the other constraints such as the smoothness term. Results in Figure 

1 7 show that the proposed method yields the finest details and the least artifacts in 

comparison to the other two algorithms. Also, the resulting PSF is closer to a typical 

out-of-focus blur kernel. Note that all SBD methods were tested on the same defocus 

layer of an image for comparison as shown in Figure 4.7 and Figure '1�] ！ (d)-(g). 

Experiments using synthesized images were also conducted to evaluate the proposed 

SBD method. As shown in Figure '1 .H, the synthesized blurry image (b) was obtained 

by adding Gaussian noise to the convolution result of the original sharp image (a) 

and Gaussian PSF (cr = 1.5). The SBD results obtained using different methods are 

shown in (c), (d) and (e). Apparently, the PSF and recovered image obtained by the 

proposed method are closer to the ground truth compared to the results obtained by 

the other algorithms. To make a quantitative comparison, we use the SSD (sum of 

squared differences) criterion to measure the accuracy of the recovered sharp image 

and the estimated PSF. The comparison results on SSD are shown in Figure J.!) for a 

equal to 0.8, 1.6 and 2.5. Results obtained by the proposed method have the smallest 

SSD. Besides, we also adopted a recently developed measure called SSIM (structural 



Figure 4.8: Testing on synthesized image, (a,) OriginaJ image, (b) Synthesized image blurred 
with Gaussian PSF (a == shown in the top right (c) Fergus et aVs results, (d) Shan et 
aL's results, (e) Our results, ( f ) Close-up visual comparison. (The differences are better seen 
by zoornwg on a computer screen.) 
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Figure 4.9: Quantitative comparisons with SSD on the recovered images and estimated PSFs 
obtained with different SBD methods. Note that the small shifts of PSF center and refocused 
image occurred in [Frrguh ol ul, 2000] and [Slain (�( 2008<)J have been corrected for fair 
quantitative comparison. 

similarity) [VVajig d al., 2004] to assess the similarity of the recovered sharp image and 

the original one. As shown in Figure 4 丄 0 ， o u r deblurred images have the largest SSIM 

values. The above comparisons show that the proposed SBD method works better than 

the other two state-of-the-art SBD algorithms both perceptually and quantitatively. In 

the above experiments, the results of the methods of Fergus et al. [Feigns f�L al., 2000] 
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Gaussian PSF 

Figure 4.10: Quantitative comparisons with SSIM on the recovered images obtained with 
different SBD methods. 

and Shan et al. [.SJiau (�f al , 2(1()<Sh] were produced by using the original implementations 

with parameters adjusted based on the authors' instructions. 

Moreover, since it is unnecessary to update the PSF and the latent sharp image 

iteratively, the proposed method has lower computational complexity. For example, to 

deblur a 480 x 320 image, the Matlab implementation of Fergus et al. pATgus o(, al.. 

20{)()) normally runs more than 20 minutes on a PC with an Intel Core2Duo 3.0GHz 

CPU. The executable code from Shan et al. [Shnjj el cil,, 20()8a] implemented using C 

runs about 2.5 minutes. The proposed algorithm which was implemented using Matlab 

requires comparable time as Shan et al.'s method, there is still much room to improve 

its efficiency by optimized C + + or GPU implementation. 

4.6 Experiments and Discussions 

In this section, more experiments were carried out to show that the proposed system 

can generate different styles of images by refocusing and defocusing. One experiment 

was conducted to produce results as shown in Figure 'I.J 1. The input image (a) focused 

on the center of the two bottom numbers (1 and 0) was taken by using typical macro 

photography with shallow DOF. First, its focus map is produced as shown in Figure 

4 12(a). Note that the pixels which are in the same grid affect each other significantly 

because of their similar colors. Since the black regions between the grids do not have 

much texture, their blurriness relies on that of the neighboring grid boundaries. As 

shown in Figure 1 i2(b), the blurriness of the pixels at the dashed line drawn in (a) 

decreases gradually from the top to the bottom, which coincides with the focus setting 
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(b) 

(d) (e) (f) (g) 

Figure 4.11; (&) Input image, (b) Synthesized image with shallower DOF. (c) Synthesized 
all-focused image, (d) The defocus part cropped from (a); (e) Fergus et al.'s result, ( f ) Shan 
et ah 's result, (g) Our re focused result. 

• • 

、 • 

\ 
\ ‘ 

\ 

\ • 

、 
. \ . 

..、、-... , 

.... 

i l i禱鄉 ilpl潑舞iitiipilispil 

• . n • • 

、 • 

\ 
\ ‘ 

\ 

\ • 

、 
. \ . 

..、、-... , 

.... 

B 

• • 

、 • 

\ 
\ ‘ 

\ 

\ • 

、 
. \ . 

..、、-... , 

.... 

0 50 too 150 200 2S0 300 350 40 

V e r t i c a l c o o r d i n a t e s { t o p l o b o l J o m ) 

(C) 

Figure 4.12; (a) Estimated focus map. (b) Blurriness of the pixels at the dashed line of (a), 
(c) Segmentation result based on (a). 

of the captured image. In this example, we segmented the focus map into three layers as 

shown in Figure 4.12(c) by setting two thresholds as Wth = 0.6 and w'仇=2*wth- Note 

that the focus threshold Wth is related to the image texture and can be set empirically 

from 0.4 to 1.2. More layers can be obtained with more thresholds. Pixels on the 

same segment can be reasonably assumed sharing the same blurring PSF. The bottom 

layer which has the smallest blurriness is regarded as focused. The proposed SBD will 

be implemented individually on each defociis layer for refocusing and the synthesized 

all-focused result is shown in Figure 4.ri(c). The recovered PSFs are shown in Figure 

4.12(c). Apparently the PSF of the upper layer which is more defociised has larger 



(d) 

Figure 4.13; (a) Input image, (b) Synthesized image with shallower DOF (c) Synthesized 
a,lMocused image, (d) Synthesized image focusing on the background. 

scale than that of the middle layer. To simulate the real lens defocusing effects, Figure 

4 11(b) is produced by applying different Gaussian blurring on the upper and middle 

layers, where the ratio of the two blur scale is proportional to that of their detected 

blurriness. 

Another example is shown in Figure 4.1, where the girl and the other background 

in the input image (a) can be reasonably assumed on the same defocus layer because of 

their similar depth. The binary mask (e) is generated with focus threshold Wth = 1.1 

and divides the input image into two focus layers. Two additional examples are shown 

in Figure 1 13 and Figure J 1 J. It is noted that the synthesis of layer boundaries such 

as the gray regions in Figure 1.1 (e) is conducted smoothly by alpha blending to avoid 

generating seam artifacts. Please also visit h t t p : //www. ee, cuhk. edu. hk/-zhaiigvjei/ 

FocusEdj 11 ng. h tml to see a demonstration video, including all above results. 

The proposed method has some limitations. First of all, as aforementioned, the 

proposed method cannot generate desirable focus map for image that contains objects 

naturally blurry. Besides, since the occlusion problem is not addressed in this work, the 

proposed method can hardly handle the image that is composed of many focus layers 
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Figure 4.14' (a) Input image, (b) Synthesized image with shallower DOF (c) Synthesized 
all-focused image, (d) Synthesized image focusing on the building 

with large discontinuities. Normally, we prefer segmenting the image into two or three 

layers. The unfocused objects similar in depth can be reasonably assumed at the same 

layer. This is because: first, the quality of refocused images may degrade especially 

when the image is segmented too much and the layer boundaries frequently appear 

Second, for one image, the more layers it is divided into, the less information is left at 

each layer and thus refocusing will become harder due to the limited amount of data 

available. However, one possible solution is to put in human intervention as [Yajj f�t al , 

2000; JJaiido ciT]fl Nishilci. 2007] to provide some guidance to the method especially in 

the aforementioned tough cases. 

4.7 Summary 

In this chapter, we have presented a system to handle the tasks of focus map estimation, 

image refocusing and defocusing. First, by means of a parametric edge model, we 

propose an efficient and effective focus map estimation method. Second, the challenging 

refocusing problem is tackled in a SBD framework which yielded visually pleasant 

results with the aid of the novel image sharp prior. Besides, the proposed SBD is free 
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of user initialization and has low computational complexity. A wide variety of images 

have been tested to validate the proposed algorithm. 



Chapter 5 

Gradient-Directed Composition of Multi-Exposure 
Images 

5.1 Introduction 

Radiance of the real world spans several orders of magnitude and its dynamic range 

dramatically exceeds the capability of the current electronic imaging devices. As a 

result, there often exist some undesirable over- or under-exposed regions in a photo 

when the dynamic range of the latent scene is too vast to be reproduced with a con-

ventional camera at a single aperture and shutter speed. There exist some hardware 

solutions such as [lirnjovir and IsHiiadc. 190(v, Navar riufl Branzoi, 2003; A哪uwil mid 

Ahuja, 2004; TumbJiii ol a I., 2005] which aimed at extending the dynamic range of 

conventional cameras by including additional optical elements or devices. However, in 

contrast to conventional camera, high dynamic range (HDR) camera is still unavailable 

to consumer users due to its slow exposure speed, expensive price and high require-

ments on hardware. Since each exposure can be designed to capture a certain dynamic 

range, it is possible to capture the full dynamic range of the latent scene and create a 

HDR image with a conventional camera by combining a stack of images with different 

exposure times. Because of the popularity of consumer cameras such as single-lens 

reflex (SLR) cameras and point-and-shoot cameras, this kind of approach called multi-

exposure technique has a greater potential to impact everyday photography. 

5.1.1 Related Work 

The multi-exposure technique should be discussed in two cases. First, if the stack is 

captured in a static scene, it is a static HDR problem whose goal is to recover the full 

dynamic range and make all present details visible in one image. Second, if there is 

any object movement in the latent scene while the exposures are being captured, the 
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moving objects will appear in different locations in the captured image. HDR imaging 

in this case is more challenging because direct combining all exposures suffering from 

such inconsistencies will surely cause ghosting artifacts to be visible in the resulting 

HDR image. 

The most popular HDR tools in the current graphics software belong to this static 

HDR category and normally consist of two steps: (i) calibrate the camera response 

function (CRF) [De!)(�v(�r mid Malik, J 907; (kosbhprg aijd Naviir. 2i)(Ki] and recover the 

latent radiance map (HDR image); (ii) apply tone mapping to make the HDR image 

displayable on the commonly used low dynamic range (LDR) monitors [Durciiirl niid 

Dorsey. 2002; Rcinhard ci (iL 2002; ['attal (�t, a l , 2002; Li ot a],�2005]. These tools did 

not consider the object movement and thus share a serious limitation that the target 

scene is required to be completely still throughout the image capture. As shown in 

Figure 5 厂)，any object movement in the exposure sequence can cause ghosting artifacts 

in the resulting image. This drawback severely affected their application in practice, 

since for most scenarios, it is hard to guarantee all objects involved stay stationary 

from one capture to the next. For instance, there often exist crowds of people moving 

around in tourist resorts. There are windblown trees in nature scenes. 

Lots of efforts have been made to solve the ghosting problem in dynamic scene 

recently. The existing methods were proposed in a similar manner. They first detect the 

motion regions, and then produce a ghost-free HDR result by remove the contributions 

of these regions in the composite radiance map. For example, many different kinds of 

techniques such as optical flow [Kaug vi n] . 2003], variance measurement [R(MJiJiaid 

ct a l . 2005], error map detection [Gmsrh, 2f)0{3], entropy calculation [Jacobh al.’ 

2008] and pixel's order relation detection [Sjdibf ol al., 200D], have been adopted to 

find regions where ghosting artifacts may occur due to object motion. Besides, Gailo 

et al. [GaUo d al,, 2009] and Eden et al. [Kdcn of ul, 20()()] proposed to composite 

the desirable radiance with the guidance of a reference image preselected automatically 

or manually. Some statistical tools such as kernel density estimator were employed 

in [Kintii el al., 'iOOfi; Pre I one and Moikkibi, 2008] to iteratively determine the probability 

that a pixel belongs to the background. 

However, all above methods were presented in the radiance domain fully or partially. 

Hence, they share two limitations at least. First, the performance highly relies on 
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the success of the radiometric calibration of camera which is sensitive to image noise, 

lighting change and misalignment error. Second, they normally have complex working 

pipelines and require tone mapping for HDR reproduction. The above problems make 

these kinds of methods computationally expensive and restrict their applications in 

practice. 

5.1.2 This Work 

In this chapter, we present a novel exposure composition approach that is able to bypass 

the typical HDR process and directly yield a tonemapped-like HDR image where all 

parts appear well-exposed by compositing multi-exposure images with the guidance 

of image quality assessment. Our algorithm shares the same spirit with the recent 

work [Goshlasl)y. 2005； Klciicrjs c.t al,, 2009; Shanmiigauulhari and PhaiKlhiiri’ 2009] 

for using image fusion to obtain better exposed image. But since all of them belong to 

the static cater gory as the convention HDR work and assume no object movement in the 

scene, they can only deal with the images captured in static scenes and suffer from severe 

ghosting artifacts in dynamic scenes. Moreover, we address the multi-exposure image 

composition from the perspective of gradient, and develop a new quality assessment 

system to handle the composition in both static and dynamic scenes. 

In addition, image gradient has been manipulated in several tasks such, as tone map-

ping [KatUiJ ct ai., 2002], image editing [I)(V(�z ot ul.. 2003] and enhancement [Agjvuval 

O! al., 2005]. It is worth pointing out that [Fattal <'T HI.. 2002] and [Agrawal ot ftJ.. 2005] 

differ from ours essentially. [Fatinl el ai,, 2002] is a tone mapping method that seeks 

to compress the radiance map to a displayable range with a spatially varying gradient 

attenuation function. [A<-',rfiwf�l ol 20nr)] aims at removing the artifacts existing in 

flash photography with a gradient projection scheme. Moreover, it was proposed for 

static scenes and thus cannot handle the dynamic scenes. 

Specifically, the underlying idea of this work comes from the observations of gradi-

ent changes among differently exposed images. Firstly, gradient magnitude can imply 

pixel's exposure quality and will decrease gradually as the image is approaching over-

or under-exposure. Consequently, it can be utilized as a measure on visibility to help 

preserve the details present in the exposure sequence. Secondly, it is also found that 

the gradient direction changes reveal object movement and thus can help account for 
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the ghosting problem in dynamic scenes. More detailed, if the content in some area 

changes among different exposures due to object movement, the gradient direction in 

that area will probably have significant changes as well. Consequently, exploiting the 

gradient direction changes leads to a consistency measure which can get rid of the in-

fluence of moving objects and preserve the desired consistent pixels in the composite 

image. By combining the consistency measure and visibility measure, the proposed 

method is still capable of compositing all exposures gracefully in dynamic scenes and 

producing a pleasant well-exposed image free of ghosting artifacts. 

Generally speaking, there are two types of motion in a dynamic scene: (i) a moving 

object on a static background, e.g. moving people or cars; (ii) a moving background 

with dynamic objects, e.g. windblown trees or waves. Accordingly, we propose two 

gradient-based consistency measures to tackle the above two types of motion. One 

is named as accumulated consistency assessment (ACA), which which is particularly 

effective for removing all unwanted moving objects and producing a clean composite 

image. The other is named as reference view guided consistency assessment (RCA), 

which is particularly effective for dealing with background motion. The underlying idea 

of RCA is to composite all available dynamic range by taking one preselected image 

as a substrate. Hence, the proposed method is also able to produce a composite image 

with some moving object the user desired. 

In summary, the proposed algorithm is designed to have the following properties; 

first, it is easy to use and has lower computational complexity since neither radiometric 

camera calibration nor tone mapping is required. Second, for dynamic scenes, the 

proposed approach can eliminate the ghosting artifacts automatically and efficiently 

without resorting to any explicit complex motion detection techniques like optical flow. 

Third, it allows for lighting changes and can be extended naturally to other tasks such 

as flash and no-flash photography. 

5.2 Algorithm 

5.2.1 Motivation and Overview 

Since different exposures capture different dynamic range characteristics of the latent 

scene, taking multiple exposures and combining them together as (5,1) may create a 
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Figure 5. 
for static i 

The proposed framework. Please note that consistency assessment is unnecessary 

more informative image that captures all details of the scene. 

K 

(5.1) 

where K represents the number of the input exposures. P{x,y) and W^ix^y) denote 

the intensity and weight of the pixel located at {x, y) in the ith exposure respectively. Ic 

denotes the composite image to be generated. Compared to the typical HDR process, 

exposure composition is easier and much more efficient since neither radiometric camera 

calibration nor tone mapping is necessary. However, the composition performance relies 

on the weight term W and so it is crucial to develop an effective quality assessment 

system that can output the desired weights. In this chapter, we will show that the 

gradient information plays well in the quality assessment and makes it possible to 

handle the exposure composition in both static and dynamic scenes. 

As illustrated in Figure 5.1, the proposed HDR process is quite simple and begins 

with a stack of differently exposed images. In this work, we assume all exposures are 

captured with the aid of a tripod or have been aligned by some registration techniques 

like [Wnj'd, 200；); Brovvjj and 2(103]. Then, the weighting map of each exposure 

is estimated by a gradient-based quality assessment system. For dynamic scenes, as-

sessments on visibility and consistency are both required, while for static scenes only 

the former one is necessary. Besides, since every pixel is assessed independently with-

out considering the spatial consistency within one image, some pixels may get outlier 

weight estimates due to the influence of image noise, inaccurate gradient detection and 

so on. Hence, a cross-bilateral filtering [J^ îsofuami aiul Duj'aiid, 2004; Potsclini"" ct wi.. 
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2004; Paris and Diiraiid, 200(3] based refinement is introduced to eliminate the out-

lier weights and ensure that adjacent pixels have similar weights if they share similar 

intensities. The standard deviations of the space and range Gaussians are normally 

set to 5 in the experiments. Given weighting maps, a tonemapped-like HDR image 

is produced eventually by compositing all exposures seamlessly with a multiresolution 

spline scheme [PMIJ1 and AFLELHON. J 983]. 

5.2.2 Gradient-based Image Quality Assessment 

In this section, we will describe how to take advantage of the gradient information to 

generate weighting maps for static and dynamic scenes. Similar to Canny detection, 

we adopt the first derivatives of 2-D Gaussian filter g{x,y\aa) in x direction and y 

direction to extract the gradient information in this work as follows. 

. d 
Il{x,y) - Pix,y) ® ^g{x,y',crd), (5.2) 

Ox 
. . d 

= (8> 瓦g{pc,y,�ord\ (5.3) 

where and ly are the partial derivatives of image P along x direction and y direction 

respectively. The standard deviation ad is set to 2 in the experiments. The gradient 

magnitude reflects the maximum change in pixel values while the angle points out 

the the direction corresponding to the maximum change. These two components are 

calculated in (5.1) and (5.5), respectively. 

A工,y) = y/\li{x,y)\^ + \Ii{x,y)\\ (5.4) 

= (5.5) 
I认工、y) 

Visibility Assessment 

As shown in Figure 5.2(a), some features that are visible in one exposure disappear in 

the others due to over- or under-exposure. Therefore, the basic goal of composition is 

to preserve all features present in the exposure sequence and make them visible in one 

image. Gradient is associated with image features and its magnitude is an indicator of 

pixel's exposure quality. As illustrated in Figure 5.2(b), gradient magnitude becomes 

larger when a pixel gets better exposed. It will decrease gradually as the pixel is 



(d) 

Figure 5.2; Static example with visibility assessment, (a) Input three exposures, (b) Gradient 
magnitude maps. Note that each has been normalized to [0, 1] for display, (c) Weighting maps 
after refinement, (d) Composite image. Data courtesy of Shree K iVayar. 

approaching over- or under-exposure. Therefore, a visibility measure is developed as 

(5.6) by exploiting the gradient magnitude information. 

i/(:r，y) 
(5.6) 

where e is a small value such as 10—25 to avoid singularity. In static scenes, the weights 

of (5.1) can be obtained by setting Wy = V'\ As shown in Figure 5.2, exposure 

composition guided by gradient magnitude in a static scene can produce a plausible 

result in which all visible details are preserved. 
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(a) Input exposure sequencs (b) GradienI direclion analysis 

卿 " ^ 職 ⑶ 

(B> 

Figure 5.3: Dynamic example, (a) Input six exposures, (b) Analysis of the gradient direc-
tion changes among differently exposed images. Please note that the arrow here is only used 
to indicate the gradient direction illustratively and its length is unrelated to the magnitude, 
(c) Composite result with only visibility assessment, (d) Composite result without exposure 
correction, (e) Our Unal composite result. 

Consistency Assessment 

However, most scenes encountered in practice are non-static. It is hard to make all 

involved objects stay stationary while taking the exposure sequence. As shown in Figure 

5.3(a), when we photography a public place, there often exist unwanted moving objects 

such as walking people. In this case, visibility assessment only cannot avoid compositing 

the inconsistent content appeared in the motion area and yields an unpleasant result 

ruined by ghosting artifacts as shown in Figure 5.3(c). Hence, it is necessary to seek an 

additional measure on consistency that can help remove the undesired moving objects 

and generate a ghost-free composite image. 

Fortunately, we found gradient direction can serve in the consistency measure owing 

to its invariant property in different exposures as explained in Figure 5,3(b). In specific, 

it is observed that the gradient direction in the stationary region remains stable in 

different exposures, provided that these regions are neither under-exposed nor over-

exposed. The inherent reason of this fact is that image gradients are mainly due to 

the local changes in 3-D geometric shape and reflectance. If the content changes due 
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to object movement, the gradient direction will vary accordingly (e.g. |(/?i| > 0 in 

Figure 5.3(b)). Therefore, we believe that the gradient direction information would be 

particularly effective to detect the inconsistency caused by motion. In this work, the 

measurement of gradient direction changes is accomplished in a window-based manner 

to make it more resistant to noise. Specifically, for each pixel located at {x,y) of the ith 

image, its gradient direction change w.r.t that of the jth image is calculated as follows. 

, , � E m = - r + + {x + m,y + m)\ 
dij[x,y) = , 1、？ , (5.7) (2r + 1)2 

where the size of window is (2r + 1) x (2r + 1) and r is normally set to 9. It is noted 

that dij{x^y) = dji(x,y) and dij{x, y) = 0’ when i and j are equal. 

Accumulated Consistency Assessment (ACA) The first kind of consistency is 

developed based on the observation that many exposure sequences such as Figure 5,;'>(a) 

normally have one thing in common: the moving object is only a shot for one position 

and appears in a relative smaller number of images, This is because in most cases, 

the stationary parts of the scene that predominantly exist in the sequence are what 

the photographer is interested in. Consequently, a score S \ can be defined as (5.8) by 

accumulating the gradient direction changes of each exposure to reflect its consistency 

in the whole sequence. 

灿 ， … = " f : , ) 2 )， (5.8) 

where is the standard deviation and fixed at 0.2 in the experiments. Apparently, a 

large score implies small gradient direction change and thus the content is more fre-

quently captured in the sequence. (5.8) can favor the stationary parts of the scene 

under the assumption that the exposure sequence predominantly captures the station-

ary parts of the latent scene, which is prevalent in the previous work [Kliaji ct al.. 2()0ti; 

Sic I i 1)0 va <il., 2009]. However, the direction changes of gradient may also be caused by 

over- or under-exposure (e.g. \ip2\ > 0 in Figure 5.3(b)). In this case, the score calcu-

lated based on d^j{x,y) is no longer desirable, since it may make the algorithm mistake 

the stationary visible objects for unwanted moving ones. Therefore, an additional term 

E^ which indicates the exposure quality of P , is introduced to jointly define the final 
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(C) 

Figure 5.4' Effect of exposure correction on weighting map estimation The left is the fifth 
input image of the sequence in Figure 5 3(a) The middle and right show its weighting maps 
before and after exposure correction respectively 

consistency measure C\ with S\ as follows. 

S\{x,y) X E'{x,y) 
(5.9) 

where 

1 < P(工,y) < 

0 otherwise. 

Note that E � i s used to remove the invalid scores estimated in the over-

exposed regions, r defines the well-exposed range and is normally fixed at 

(5.10) 

or under-

0.9 in the 

experiments. The final weights in dynamic scenes 

visibility and consistency measures as: 

calculated by combining the 

WX{x,y) = (5.11) 

As shown in Figure 5 3(e), they give rise to a pleasant result where all visible details 

are preserved and no ghosting artifact is present. 

Figure 5 1 illustrates the effect of exposure correction in the example of Figure 
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(f) 

Figure 5.5; Deghosting using AC A and RCA. Top row input images with variable exposures, 
where the regions outlined by dashed rectangle are different with each other due to object 
movement. Bottom row: (d) shows the deghosting result using ACA. (e) and ( f ) are deghosting 
results obtained by taking image (b) and (c) as the reference view in RCA, respectively. Data 
courtesy of Mateusz Markowski. 

5.3. Taking the sky region for example, since pixels in this region are over-exposed 

in most exposures, the weights obtained without exposure correction (i.e. remove the 

term in (5.!))) are high as shown in Figure 5 1(b). The high weights favor 

over-exposure and suppress the occurrence of clouds in the composite result shown in 

Figure r>.3(d). After exposure correction, these weights become much lower as shown 

in Figure 5.-J (c) and thus a desirable result with clouds is obtained in Figure 5 3(e). 

Reference View Guided Consistency Assessment (RCA) As aforementioned, 

ACA assumes that for regions corrupted by movement, the the moving object is only 

a shot and another object mostly on the background predominantly exists. ACA can 

select the predominant object for the composition image. However, if some region 

changes frequently, e.g. the floors of the three exposures in Figure 5 fj are different 

with each other due to object movement, ACA cannot work well since no object is 

predominant in that region. Likewise, ACA cannot remove the ghosting artifacts caused 

by the moving background with dynamic objects such as windblown trees and waves. 

To remedy this issue, we seek to develop another consistency measure by taking one 

image as the reference view, which is thus named as RCA. To avoid ghosting artifacts, 
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Welflî ûslon ̂  ^^^ 

Figure 5.6; Schematic overview of the proposed algorithm, (a), (b) and (c) are the same as 
those in Figure 5.5. Image (b) serves as the reference image. Note that the weighting maps 
shown in the right are normalized. 

additional visible details extracted from the other images will be accepted only if they 

are consistent with the scene defined by the reference view. Similar to [OriNo ol a]., 

2009; Kdcu of al.. 200b], we prefer the user to select reference image, since it will help 

remove the undesired moving objects and determine what the final, consistent HDR 

result will look like. Normally, the image whose motion area is well exposed is favored 

as the reference view. However, if all exposures are semantically equivalent to the 

users, the reference view can also be selected automatically based on which image has 

the least amount of saturated pixels similar to [CJallo d al , 2000]. 

Figure 5,(3 illustrates how the proposed algorithm work with the reference view 

guided consistency assessment. In specific, the proposed HDR process begins with a 

set of differently exposed images. One image will be picked out from the stack as the 

reference view beforehand. Next, all images will undergo a comprehensive assessment 

on visibility and temporal consistency. The results are consolidated to weighting maps 

which will be further refined using crossbilateral filtering. Finally, the HDR result can 

be produced by compositing the exposures with the guidance of the weighting maps. 

For each pixel of the ith image, its direction change w.r.t the preselected reference 

image can be obtained as follows (similar to (5.7) with the jth image as the reference 

view). 

+ 1)2 
(5,12) 



9ba 0 %c %a >0 %c >0 (Pba 0 %c >0 
(e) (f) 

Figure 5.7; Direction changes of image gradients in the example of Figure o 0. Three patches 
(a), (b) and (c) are cropped from the corresponding input images. For illustration, we select 
three representative groups of gradients to explain the direction changes. Image (b) serves as 
the reference image, 0ba and Bbc are introduced to indicate the direction changes of gradients 
in (a) and (c). Note that the arrow is only used to indicate the gradient direction illustratively 
and its length does not represent the magnitude. Please enlarge to see more details. 

For the sake of simplicity, we just denote y) with dr{x, y) in the rest of this 

chapter. Similar to (5 rS), a gradient direction change based score can be defined to 

reflect the consistency of each exposure w.r.t the reference image. 

SR{x,y) = exp{ _ - (5,13) 

It is noted that Sj^ix^y) always equals to 1 if i is equivalent to ref. 

Likewise, the influence of over- and under-exposure to gradient direction should 

be considered as well. Similar to Figure 5 3(b), a brief analysis about the gradient 

direction change is given in Figure 5 7. Apparently, the influence of over- and under-

exposure should be discussed in two cases. Case I: the pixels of the reference image are 

well-exposed as the example in Figure 厂)7(f) where image (b) serves as the reference 

view. This case is quite tractable since the overexposed pixels in (c) can be suppressed 

by both visibility and consistency assessment. However, in case II where the pixel of the 

reference image is overexposed or underexposed (e.g. take image (c) as the reference 

view), the temporal consistency measured on this pixel may no longer be desirable, since 
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(a ) M e r l e n s ct tit 

广：[？V’-J"'么每 

Figure 5.8; Dynamic example with ACA. The top row shows four of the nine exposures. The 
second row shows their weighting maps estimated by our method. The bottom patches are 
cropped from (a), (b) and (c) for close-up comparison. Data courtesy of Erum Arif Khan. 

it will exclude the visible details presented in the other well-exposed images. Therefore, 

the final consistency y) is calculated with exposure compensation as (5.9), 

CM 工,y)== (5.14) 

where E^ef which indicates the exposure quality of the reference image 严/，can remove 

the undesired gradient direction change caused by the over- or under-exposure of the 

reference image. 

Similar to (5.11), the final weight Wji{x,y) in this case can be obtained as: 

V\x,y) X CUx^y) 
WUx,y} = 

E h V^{x,y)xC},{x,y) + e 
(5.15) 

5.3 Experiments and Discussions 

In this section, the proposed algorithm is tested in various static and dynamic scenes 

with different types of exposure sequences. Besides, we also show its potential in flash 

and no-flash photography. The amazing thing about the proposed method is that it 



(a) Mertens et al (b) Standard static HDR (c) Gallo et al (d) Ours 

Figure 5.9 Dynamic example with AC A The top row shows the input five exposures (a) 
Mertens et al 's result [M< rtciih ol nl JOOOj (b) Result obtained using standard HDR (radio-
metric calibration and tone mapping) (c) Result presented in Gallo et al [(taJIo ri .1/ 2000] 
(d) Our result Data courtesy of Orazio Gallo 

Figure 5.10 Close-up comparison 0/ (left) Gallo et a! ’s result in Figure "> ')(c) and (right) 
ours m Figure o 'i(d) 

does not require much parameter tweaking All experimental results weie pioduced 

with the same parameters mentioned in the above sections Foi color images, gradient 

extraction and cross-bilateial filteimg are conducted only in the luminance channel 

Please also visit h t t p //www ee cuhk edu hk/~zhangwea /GradCorap html to see the 

results 
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Figure 5.11: Dynamic example with ACA. The left row shows the input three exposures. 
The right results are obtained by Mertens et al.'s result [Mertens et, »}., 2009], Reinhard et 
al. [Reinhard et ;:•“., 2005], Khan et ah [KJm.n et nl, 2006] and ours, respectively. Apparently, 
our method gives the best result. Please enlarge to see more details. 

5.3.1 Dynamic Scene with ACA 

In this part, the weights in (5.1) is set as: = Wa- The following examples will prove 

that the proposed method not only can produce an image with extended dynamic 

range but also remove all unwanted moving objects. To validate the effectiveness of the 

proposed method in dynamic scenes, we reproduce some results published before and 

make comparisons with the existing work. Figure 5.8 shows a scene with people moving 

5.3.1. Dynamic Scene with ACA 9 1 



Figure 5.12; Dynamic example with AC A. The top row shows the input three exposures. 
The bottom results are obtained by Mertens et ai.'s result [hiertms et a/., 200D], Reinhard et 
ah [lieinhard at aL. 2005], Khan et al. [Khan el: a J.. 2000] and ours, respectively. Apparently, 
our method gives the best result. Please enlarge to see more details. 

from left to right. Apparently, the result (a) generated by Mertens et al. [Mertfios 

et al., 2009] suffers from severe ghosting artifacts. Although the deghosting result (b) 

presented by Khan et al. [Khan et a l , 2006] is much better, some faint ghosting artifacts 

are still visible. Besides, the entire image (b) looks under-exposed especially around the 

trees and walls of the background. In contrast, our method generated a pleasant result 

(c) that is more informative and completely ghost-free. Figure 5.9 shows five differently 

exposed images with variable walking people. Similarly, the static methods like Mertens 

et al. [Mertens et a l , 2009] and standard HDR produced noticeable ghosting artifacts 

as shown in (a) and (b). Our result (d) is comparable to the result (c) presented in 
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Figure 5.13 Dynamic sample with RCA Left input sequence Right the result of Mertens 
et al [Mriims (i \I '>()()<)], the result of Khan et al [Kluni oL <iJ 200(>], the result presented 
in Pedone et al [�(（hm duel Ik ！l�l�’l i 200s] and ours (the forth image serves as the reference) 
Data courtesy of Matteo Pedone 

Gallo et al [Gallo of a J 2000] in terms of ghost removal However, as shown in Figure 

5 10, our result is less noisy and exhibits more details than Gallo et al ’s It is worth 

noting that the performance of Gallo et al ’s method relies on the quality of the selected 

reference image It cannot be used to remove the unwanted moving objects if they are 

present m all exposures as those m Figure 5 3’ since no image is suitable for reference 

Sometimes, human intervention is required to help select a image as the reference view 

for deghostmg Foi example, the fifth exposure is selected as reference manually in 

Figure r> 9 In contrast, our approach is fully automatic As shown in Figure ""i 1 ] and 

Figure 5 l i , we also compare our method to [I(<、川fhiid d rii 2()iri] which achieves 

deghostmg based on variance measurement 

5.3.2 Dynamic Scene with RCA 

In this part, the weights in ("J 1) is set as W = Wr Some of the following examples will 

prove that the pioposed method is also able to produce a HDR image with some moving 

objects that the user desired Particular, one interesting example has been shown in 

Figure「）5 In addition to the desirable perfoimance on ghosting removal, our method 
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, Mertensetal 

Ours 

Gailo et al Ours 

Figure 5.14 Dynamic sample with RCA Top row input sequence Bottom two rows the 
results obtained by Mertens et al 's exposure fusion (hkitaih ol a/ 21)09], Khan et a,} [Klhin 
c ( <il 2000], Gallo et al [(jdlh) (t a/ j 2000] and our method Data courtesy of Orazio Gallo 

IS also promising in that it can produce different types of HDR photos by changing 

the reference view The example in Figuie 5 1 ^ gives five differently exposed images 

which capture an indoor scene with moving objects (e g hand, chair) Not surprisingly, 

due to the lack of ghost removal, conventional exposure fusion method foil ens ct (il 

2009] produced an unpleasant result with severe ghosting artifacts Our method yielded 

a plausible ghost-free result, and outperformed the other deghostmg methods [Khau 

cl a I , 200G, Pod OIK AJid IfcMkkila 2008] significantly Figure 5 1 1 shows another type of 

scene with chaotic motions In addition to the moving people, the branches and leaves 

also tremble in the wind Likewise, the result produced by conventional exposiiie 

fusion method [Mul<�ns (t al 2(!!)0] suffeis fiom seveie ghosting artifacts caused by 

the moving people and windblown trees The deghostmg result produced by Khan 

et al [ K J i c j n (t (�l iODfi] is still unsatisfying, and some ghosts survive Especially, it 
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Figure 5.15: Dual~photography with RCA. Input 1 and input 2 are manipulated to capture the 
man and the sunset respectively. The bottom two rows show the results obtained by Photoshop 
(no deghosting), Khan et aJ. [Khnn et al, 2006], Reinhard et a]. [Ucinhard et a/.. 2005j and our 
method (input 1 serves as the reference). 

cannot remove the ghosts caused by the background blowing trees. By contrast, our 

method produced a pleasant result completely free of ghosts, and the performance is 



Figure 5.16; Comparison with tone mapping operators, (a) Input six exposures, (b) Our 
composite result (c) Durand et al [Dumnd and Dorsey, 2002]. (d) Reinhard et al [Eeinbnrd 
H nl, 2002]. (e) Fattal et ai. [FutUd et ‘•�/., 2002]. Data courtesy of Paul Debevec. 

comparable to that of Gallo et al.'s method [Gnllu et: a],. 2009], Note that in order to 

make a fair comparison, we use the same image as that in Gallo et al.'s work as the 

reference view. 

Next, we employ the proposed algorithm to deal with a trouble problem people 

often meet when traveling. It is acknowledged that taking a good stack in a busy 

tourist resort is not easy because of the moving objects (e.g. people, cars and boats). 

As shown in Figure 5.15, our method can ease this trouble situation. In most cases, 

people only need to take two photographs which capture the subject and the ambient 

scene respectively with appropriate exposure times. In fact, this kind of exposure 

stack can even be obtained without helpers if using self-timer shooting and tripod. 

Apparently, our method yielded a desirable result where the man and sunset are both 

captured, whereas the results obtained by standard HDR of Photoshop and deghosting 

methods [Klian et; al.. 2006; Reinhmxl. et, al.. 2005] are disappointing. 

1
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(c) Our resull after rslouchlng 

Figure 5.17 Static example, (a) shows the input exposure sequence, (b) is our origin a] result 
(c) is the enhanced version of (b) generated using some retouching techniques of Photoshop (e g 
contrast enhancement, saturation adjustment) 

5.3.3 Static Scene 

In this part, the weights in (5 1) is set as: W = Wy. Figure 5 i(j shows the comparison 

between our method and some prevalent tone mapping operators in a static scene. Note 

that our result is visually pleasing although it is generated with only six exposures of the 

original sequence. The overall quality is comparable to that of the tone mapping results 

produced from the whole radiance map. More static results are given in Figure f). 17 

and Figure 5 J 8. Similarly, our method produced promising result where the details 

in both bright and dark regions are preserved. Besides, it is observed that letouching 

make the results more impressive Therefore, exposure composition + retouching is a 

promising alternative to conventional HDR technique (radiometric calibration + tone 

mapping) 



Figure 5.18; Static example, (a) show the input exposure sequence, (b) is our original result, 
(c) is the enhanced version of (b) generated using some retouching techniques of Photoshop 
(e.g. contrast enhancement, saturation adjustment). 
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Figure 5.19 Flash hot spot removal using visibility assessment Top Rash and no-Hash 
images Bottom our composite result Data courtesy of Amit Agrawal 

5.3.4 Computational Efficiency 

As aforementioned, conventional deghostmg methods such as Khan et al [Kli<ni ol a! 

2()0()]，Gallo et al [(5allo ct a1 2000] and Remhaid et al [R( jjiijdul of riJ 2005] 

are computationally expensive, since camera calibration and tone mapping aie both 

reqmied Moreover, Khan et al ’s method [Khajj (t rii 20OG] woiks m an iterative 

manner In contrast, our method is quite simple and non-iterative For deghostmg 

(AC A and RCA) in a dynamic case, the cm rent non-optimized Matlab implementation 

takes about 25 — 35 seconds to piocess four 1 megapixel images on a PC with an 

Intel Core2Duo 3 OGHz CPU Note that it is hard to give the exact running time of 

the work [Kliaii (t a I 2000, G d U o (I aj JOOO, R<nihai(l rl al _>()(广)]due to then 

complex pipelines, and that user intervention is usually leqmred in the tone mapping 
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Figure 5.20: ReRection removal (a) Flash photo, (b) No-flash photo, (c) Mertens et al. 
[Marteus <H ah, 2009]. (d) Agrawal et al [Aju^nnKd ot 2005]. (e) Our result (select the 
no-Hash photo as the reference J wage). It is observed that our result fe) is slightly better than 
Agrawal et al.'s result (d) in the regions outlined by dashed rectangle. Note that [Mortevs 
oi al.. 2009] and our method also corrected the over-exposedness of the flash image especially 
on the girb /ace. Data courtesy of Ainit Agrawal. 

step to achieve acceptable results. Normally, they are running at minute level. Since 

consistency assessment is unnecessary, our algorithm works much faster in static scenes 

and takes less than 15 seconds to tackle the same amount of images. 

5.3.5 Application in Flash and No-flash Photography 

Photography in dark environment can be improved by combining flash photos with 

no-flash photos. Next, we will show how to use the proposed method to solve some 

annoying artifact problems we often encounter in flash and no-flash photography. 

(Spot removal) Figure 5.19 shows two indoor images taken with flash and no-flash. 
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Figure 5.21; A failure case in the example of Figure ^.B. Left: the reference image (image (a) 
of Figure 1 o). Middle: our composite result Right- close-up view of the risky regions where 
ghosting artifacts occurs 

The no-flash image is faithful to the ambient lighting, while the flash image reveals 

more details but suffers from hot spot artifacts. Our method with visibility assessment 

{W = Wy) can combine the advantages of them and generate a desirable image free of 

hot spot. 

{Reflection removal) If there is transparent layer such as glass, flash also incurs 

reflection artifacts. As shown in Figure 厂).20，a person is photographed from inside 

a glass enclosed room at night. Flash photo (a) can capture the person but exhibit 

reflection artifacts, while no-flash photo (b) can only take the distant building behind 

the glass. In this case, direct fusion [M^jrtcjis ct al , 2009] incurs reflection artifacts 

as shown in Figure 5 20(c). Our proposed approach with RCA (W = Wr) seems to 

produce the best images with correctly removed reflection artifacts. Also, compared 

to Agrawal et al. [Ajji awal d a] . 'idOl], our method also corrected the overexposure of 

the flash image especially on the girl's face. 

5.3.6 Limitations 

The method we proposed also shares the common limitations in HDR technology. For 

example, it may not work well when the input exposures contain severe sensor noise 

or blurring artifacts caused by camera shake, since the gradient estimation might be 

inaccurate in these cases. One possible solution is to denoise or deblur the input images 

first and then proceed our HDR scheme. Besides, since ACA is developed based on 

the assumption that the stationary parts of the scene are predominant in the sequence, 

at least three exposures are required when perform deghosting with ACA in dynamic 

scenes. However, there is no such limitation for RCA. In most cases, two photographs 
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are good enough to get a pleasing result such as Figure 5,15. But RCA may fail to 

deghost if an unsuitable exposed image is selected as the reference view. For example in 

Figure 5,21, since the object in the risky region where motion occurred is underexposed 

in the reference image, it cannot provide effect gradient guidance for ghosting removal. 

However, this kind of failure is avoidable to some extent by taking the other exposures 

as the reference view as shown in Figure .0,5. As aforementioned, the principle is to take 

the image which is well exposed in the risky region as the reference view. Otherwise, 

the proposed method may not work well. In the future, we would like to introduce a 

more advanced model for ghosting removal to improve the current one-image-dependent 

reference view strategy. 

5.4 Summary 

Image gradients convey important information about the latent scene. In this chap-

ter, we have shown that well utilization of image gradient makes it possible to handle 

the static and dynamic exposure composition in a simple but effective way. We have 

designed two kinds of consistency measures to deal with the two types of movement: 

foreground object movement and background object movement. Similar to [GOHII 

(Msby. 2005; iU(nl(�us{�l uL, 2000; Sliaii]iiu|V'iui( IJHH and ChniHibiii I. 2000], the proposed 

method can free users from the tedious radiometric calibration and tone mapping steps. 

The effectiveness and efficiency of the proposed approach have been validated with var-

ious exposure sequences captured in different dynamic scenes. 
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5.5 Supplementary Results 

Mertens et al Reinhard et al 

Ours 

Figure 5.22 Dynamic example with AC A The top two rows show the input exposure se-
quence The bottom results are obtained by Mertens et al 's result [!\f(�i ((ii�d i/ 2009], 
Remhard et al [R( iniirtul n <il 200!j], Khan et al [Rhnn ci .il 2000] and ours, respectively 
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Input exposure sequenc曰 

Our composite result 

Figure 5.23 Dynamic example with AC A The top three rows show the input exposuie 
sequence The bottom row shows our artifact-free composite result 



Our composite result 

Figure 5.24; Dynamic example with ACA. The top three rows show the input exposure 
sequence. The bottom row shows our artifact-free composite result. 

5.5. Supplementary Results 1 05 
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Ours 

Figure 5.25 Dynamic example with RCA Top two rows wput sequence Third row our 
result (the third exposure serves as the reference) 
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(c) Redone et al (d) Ours 

Figure 5.26 Comparison of the example m Figure 5 'Jo (a) standard HDR (no deghostmg), 
(b) Khan et al [Khau ot <" 2000], (c) Pedone et al [IWhm‘ niid Ik'ikkild 200.s], (d) ours 
Please notice the regions outlined by the dashed rectangles Result (a) suffers severe ghosting 
artifacts caused by the moving car (see the blue dashed rectangle) and windblown leaves (see 
the red dashed rectangle) [Kltrin (t .tl JUUOj and [I Yd one ,iud lloikkiLi 20US] can relieve 
the ghost problem incurred by the moving car, but cannot remove the others caused by the 
windblown trees, because as mentioned in the chapter, both of them cannot handle the frequent 
movement Our method yielded the best result where all ghosts have been removed completely 
Please enlarge to see more details Data and results (a),(b),(c) courtesy of Matteo Pedone 
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Figure 5.27; Static example, (a) Input exposure sequence, (b) Tone mapping result published 
in the project web page of Fattal et al [PaUal et al. 2002]. (c) Our result. 
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(b) Mertens et al. (c) Ours 

Figure 5.28: Static example, (a) Input exposure sequence, (h) Result generated with the 
original codes of Mertens et al. [MerUms e/ oJ., 2000]. (c) Our result. 
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Figure 5.29; Static example. Left: input exposure sequence. Right: composite image. 



Chapter 6 

Conclusions and Future Work 

This chapter closes the thesis with a summary of the main contributions and several 

directions for further work. 

6.1 Contributions of the Thesis 

To break the physical limits of cameras and turn the captured image to be what people 

are looking for, this thesis has presented a series of image enhancement algorithms which 

can improve the perceptual quality of the captured images in three aspects: resolution, 

focus effect and dynamic range. The main contributions can be summarized as follows: 

6.1.1 Super-resolution 

To enhance the resolution of a captured image, two kinds of super-resolution (SR) 

approaches are presented in Chapter 2 and Chapter Chapter 2 aimed at super-

resolving face images (i.e. face hallucination) with, a learning-based framework [Zhaiij：;, 

iiiul rhiiiu. 21)08; Zhaiift rtud (Mia川.1)]. Unlike previous learning-based work, face hal-

lucination problem is addressed from a different perspective. In details, the problem is 

formulated as inferring the DCT coefficients in frequency domain instead of estimat-

ing pixel intensities in spatial domain. As shown in Section 2,3, DC coefficients can 

be estimated fairly accurately by simple interpolation-based methods. AC coefficients, 

which contain the information of local features of face image, cannot be estimated well 

using interpolation. An efficient learning-based inference model is proposed to infer 

the AC coefficients in Section 2A. The proposed approach requires less memory and 

lower computation cost than conventional methods because firstly the data dimension 

is significantly reduced in the DCT domain. Secondly, clustering is implemented to re-

move the redundancy of the training set. Experiments were conducted to demonstrate 

111 
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the effectiveness of the proposed method in producing high quality hallucinated face 

images. 

Chapter ；i aimed at super-resolving generic images (i.e. face hallucination) with a 

reconstruction-based framework [ZlinuiL̂ , and Cluuu. 2010b]. In detail, the SR process is 

straightforwardly divided into two steps: magnification and deblurring. Magnification 

is achieved using structure adaptive interpolation to avoid jaggy artifacts. Deblurring 

is a highly ili-posed blind deconvoliition problem. Unlike previous work, we advocate 

solving it in an efficient and non-iterative way with the aid of little user intervention 

as stated in Section 3.；>.2. Specifically, after introducing a parametric edge model, we 

show that the blurring kernel can be estimated accurately and quickly from the salient 

edges selected by user-drawn stroke. When the blurring kernel is fixed, the sharp image 

is recovered effectively with a maximum a posteriori (MAP) framework. Experiments 

on a variety of images demonstrate that the proposed algorithm is able to generate 

visually appealing super-resolved results with few artifacts, 

6.1.2 Focus Editing 

To change the focus of a image, a focus editing system [Zhaiia, and ChnitJ, 2000; Zliniif； 

；iiui C'haiJi. c] is presented in Chapter 4. In detail, the proposed system can accomplish 

the tasks of focus map estimation, image refocusing and defocusing. Given an image 

with a mixture of focused and defocused objects, we first detect the edges and then 

estimate the focus map based on the edge blurriness which is depicted explicitly with a 

well-parameterized model as stated in Section 4 .1 In Section J . t h e image refocusing 

problem is addressed in an elaborate blind deconvoliition framework, where the image 

prior is modeled well by using both global and local constraints. Especially, we correct 

the defocused blurry edges to sharp ones with the aid of the parametric edge model 

and then render this cue as a novel local prior to ensure the sharpness of the refocused 

image. Experimental results demonstrate that the proposed system performs well in 

producing different styles of realistic images from a single input by focus editing. 

6.1.3 Exposure Composition 

To break the dynamic range limits of conventional cameras and simulate high dynamic 

range (HDR) photography, Chapter 5 presents a simple but effective method [ZhnriH 
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and Cham, 2010a; Zlinng and ('liain. a] that can accomplish the multi-exposure image 

composition in both static and dynamic scenes. Given multiple images with different 

exposures, the proposed approach is capable of producing a pleasant tonemapped-

like HDR image by compositing them seamlessly with the guidance of gradient-based 

quality assessment. Especially, novel quality measures on visibility and consistency are 

developed in Section 5.2.2 based on the observation of gradient change among different 

exposures. Compared to previous work, our method is quite appealing in practice since 

it is computationally efficient and frees users from the tedious radiometric calibration 

and tone mapping process. More importantly, two kinds of consistency measures are 

designed by take advantaging of the gradient direction change in Section 5.2,2. One 

is named as accumulated consistency assessment (ACA), which can be used to remove 

all unwanted moving objects and produce a clean HDR image. The other is named as 

reference view guided consistency assessment (RCA), which is intended for compositing 

all exposures by taking one preselected image as a substrate. Hence, the proposed 

method is also able to produce a HDR image with some moving objects that the user 

desired. Various experimental results in static and dynamic scenes demonstrate the 

effectiveness of the proposed method. 

6.2 Future Research Directions 

Prom the current work, there are several interesting avenues for future research. 

® The proposed learning-based method in Chapter 2 attempts to generate a plau-

sible high-resolution (HR) face image by creating the required high frequency 

components from a face training set. Hence, the performance limited by the 

training set and depends on how well the low-resolution (LR) input matches the 

training samples. Currently, the training set for faces with a particular pose and 

expression is only applicable for the hallucination of faces under similar condi-

tions, It would nice to allow the algorithm to handle faces with different poses 

or expressions as [I.i ajjd Liu. 200'1] and [Jin aiu! Oojjg. 2()0.s]. A possible so-

lution is to first detect the pose or expression of a face and then perform face 

hallucination using the corresponding training samples. But this requires a more 

comprehensive training set which collects face images with diverse poses and ex-

pressions, Besides, this algorithm is applicable to general SR problem and can be 
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generalized to tackle other types of images. Likewise, to super-resolve a certain 

type of images well, an appropriate training set which includes sufficient similar 

type of images needs to be prepared. For example, to super-resolve an image with 

flowers, it is important that the training set contains many flower images. 

® The SR process in Chapter .J is divided into two steps: magnification and deblur-

ring. The challenging deblurring problem is addressed in an interactive way. User 

intervention is required to select a salient edge from the target image for suitable 

deblurring. Hence, it would be necessary to develop a system with friendly inter-

face that can make the users manipulate the process easily. Also, we would like to 

avoid the user intervention and propose an automatic method to find the optimal 

blurring kernel. Besides, it is worthy to investigate how to estimate the blurring 

kernel accurately if no salient edges can be found in the target LR image. 

® The image SR algorithms presented in Chapter 2 and Chapter 3 both have po-

tential for tackling the video SR problem. But the following aspects need to be 

investigated. First, for the learning-based framework presented in Chapter 2, the 

key problem is to construct a good training set for video SR. The training sam-

ples can be obtained by exploiting the external information (e.g. HR images of 

the target scene as in [Koiij? ct al,�2000]) beyond the video or the internal infor-

mation inside the video (e.g. patch redundancy as in [.losiii (>t ul.. 200J; ”i�(jlh�r 

(M fil.. 2000; (JIasjKM ot ai., 2009]). Second, for reconstruction-based framework 

presented in Chapter 3, a flexible way to find the optimal blurring kernel is de-

sired. Third, an implicit or explicit temporal coherence constraint is needed to 

avoid observable flickering artifacts. 

© As mentioned in Chapter 'f, the proposed focus editing method cannot generate 

a desirable focus map in cases where the input image contains objects naturally 

blurry or many focus layers with large discontinuities. To relieve this issue, we 

hope to introduce user intervention as in [Yau o1 n i�2009; B(mflo and MshiUi. 

2007] to help the method handle the aforementioned tough cases. Besides, it is 

worthy to investigate the modeling of occlusion problems in the single image focus 

editing work. We would also like to extend the basic idea of this work to solve 

other low level vision problems such as space-variant deblurring. 
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© As mentioned in Chapter 5, the proposed exposure method may not work well 

when the input exposures contain severe sensor noise or blurring artifacts caused 

by camera shake. Therefore, we hope to investigate how to integrate the denoising 

or debliirring steps into the current scheme well, and extend the proposed method 

to more scenarios (e.g. camera shaking, high-ISO noise). As stated in Section 

5.3,6, the RCA would fail to deghost if an unsuitable exposure is selected as 

the reference image. Therefore, it is desirable to have a more advanced model 

for ghost removal to improve the current one-image-dependent reference view 

strategy. We also found that proper retouching such as color correction and 

sharpness adjustment can make the result more impressive, so it would be nice to 

add some retouching techniques to the current framework. Also, it is worthy to 

further investigate the potential of this work in other related tasks such as flash 

photography, relighting and color transfer. 

® The efficiency of all algorithms could be improved by optimized GPU implemen-

tation such as [[{fill ol h1.. 2008], 
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