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Abstract of thesis entitled: 
Protocol Sequences for the Collision Channel without Feedback 

Submitted by ZHANG, Yijin 
for the degree of Doctor of Philosophy 
at The Chinese University of Hong Kong in September 2010 

This thesis is based on Massey's model on collision channels without 
feedback, in which collided packets are considered unrecoverable. 
A collision occurs if two or more packets are partially or totally 
overlapped. Each potential user is assigned a deterministic zero-
one pattern, called the protocol sequence, and sends a packet if and 
only if it is active and the value of the sequence is equal to one. Due 
to lack of feedback, the beginning of the protocol sequences cannot 
be synchronized and variation in relative offsets is inevitable. It 
further yields variation in throughput. 

We study the design of protocol sequences from three different 
perspectives. 

First of all, in order to minimize variation of throughput due to 
delay offsets, we investigate protocol sequences whose pairwise Ham-
ming cross-correlation is a constant for all possible relative offsets. 
It can be viewed as a generalization of completely shift-invariant 
sequences, which can achieve the zero-variation in throughput over 
a slot-synchronized channel. 

The second one is a non-blocking property which ensures that 
each active user can successfully transmit information at least once 



in its each active period. With the assumption that all potential 
users may be active simultaneously, user-irrepressible sequences and 
completely irrepressible sequences are studied respectively for differ-
ent level of synchronization, to support the non-blocking property. 

Provided that the number of active users is smaller than the 
number of potential users, strongly conflict-avoiding codes are in-
troduced with the non-blocking property in the asynchronous chan-
nel It can be viewed as an extension of completely irrepressible 
sequences. 

At last, we focus on the detection problem in the protocol se-
quence design. The objective is to construct user-detect able se-
quences that allow any active user be detected by the receiver via 
some algorithm within some bounded delay if and only if it has 
become active. 



摘要 

本論文主要基於Massey創立的無反饋衝突信道模型。在此模 

型中如果多餘一個的數據包部份或全部地在信道上重合，我們視 

之為衝突產生并無法恢復。每一個潛在用戶被分配一個被稱之為 

協議序列的確定性二進制數列，當且僅當自身處於激活狀態并且 

序列值為一時進行數據包的發送。由於缺少信道信息的反饋，每 

個用戶的協議序列不能同步而且用戶之間相對延遲的變化也無法 

避免，並且進一步造成吞吐率的變化。 

本論文將從以下三個方面對協議序列的設計進行研究。 

首先，以最小化吞吐率的變化為目標，我們對具有成對漢 

明跨相關函數為常數特性的協議序列進行了探討。它可被視之 

為completely shift-invariant協議序列的擴展。 
其次我們著眼于協議序列的非阻塞性質，它確保了每個 

激活用戶可以在其每一激活週期内成功發送數據包一次。以 

非阻塞性為前提，我們基於不同的信道同步層次，分別對user-
irrepressible 序 列，completely irrepressible序列，禾口 strongly conflict-
avoiding codes 進 t亍 了 iff 究。 

最後我們構造了 user-detectable序列以確保用戶在一定的延遲 
内被檢測到當且僅當它處於激活狀態。 
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Chapter 

Introduction 

1.1 The Collision Channel wi thout Feedback 
Massey and Mathys [20,21] introduced the model of the colli-

sion channel without feedback for multiple access communication. 
Consider a time-slotted system, consisting of M potential users and 
one sink, but at most K users are active at the same time. The 
channel is divided into time slots of equal duration. Since there 
is no central coordination and no feedback from the data sink, we 
cannot do packet scheduling for media access control An alterna-
tive is to use a random transmission scheme such as ALOHA [2,3], 
where each user sends a packet in a time slot with a defined prob-
ability, independent of what it has done in previous time slots and 
other users. However, implementing a random number generator 
is sometimes too costly for users, which are both power and com-
putational complexity limited. As we do not assume the users are 
equipped with any receiver, contention based protocols, which re-
quire listening to the channel, is not feasible. We also note that for 
both random transmission and contention based protocol, there is 
no guarantee on transmission delay in the worst case. 

In this thesis, we will follow the approach in [21], and specify the 



transmission pattern by a deterministic sequence, called a protocol 
sequence. The components of a protocol sequence are either zero or 
one. Each potential user is assigned a protocol sequence with the 
same length, and reads off the protocol sequence periodically if it 
is active. It transmits a packet within one time slot duration if the 
sequence value is one, and keeps silent for one time slot if it is zero. 
Suppose the sequence length is L time slots. For i = 1 , 2 , . . . , M, 
the protocol sequence associated with user i is specified by a L-
dimensional row vector Si := [5^(0) 5^(1) . . . Si{L — 1)]. Without 
loss of generality, s办）here is assumed to be 1 for all i. When a 
user changes from active to inactive, it is assumed that after the end 
of the sequence, the user must keep silent for at least L time slots 
before becoming active again. We use the word sequence "period" 
and sequence "length" interchangeably in this thesis. 

As there is no feedback from the receiver and no cooperation 
among the users, the channel is not synchronized, i.e., there is no 
guarantee that the protocol sequence will start at the same time. 
Each user has a delay offset, which is random but remains fixed 
throughout the communication session. Let 氏 be the time offset of 
user i ioi i = 1 , 2 , . . . , M, measured in time slot duration units. It 
is a real-valued number which can be interpreted as the difference 
between the time shown on the receiver's clock and the time shown 
on user i,s clock. In this thesis, all time indices and time intervals 
referred are understood to be at the receiver's clock and in the 
units of time slot duration. Furthermore, we distinguish between 
two different levels of synchronization: 
1) The channel is slot-synchronized if all users know the slot bound-

aries of the channel, i.e., the time offsets 知，(̂2，...，m̂ are arbi-
trary integers. . 



2) The channel is asynchronous if it is not slot-synchronized. In 
this model, all users do not know the slot boundaries of the 
channel It implies the time offsets ^i, • • •, ^m are arbitrary 
real numbers. 

Thus, if all users start their packet transmissions at an integral 
time epoch, collisions will result only when received packets com-
pletely overlap. In the asynchronous case, however, collisions can 
occur due to partial overlapping of packets. We further assume a 
packet in the asynchronous channel is received correctly if it is not 
subject to any collision and is unrecoverable otherwise. In other 
words, a packet is assumed to be successful if and only if it is not 
completely or partially overlapped by any other packet. In [12,38], 
some studies were carried out for the asynchronous channel by using 
error correction techniques for recovery from some partially over-
lapped collisions. However, this scenario is not considered in this 
thesis. 

In multiple access transmission without packet header, one nec-
essary task [1,10,21] of the receiver is addressing the decoding prob-
lem which deals with the issue of determining the sender of each, suc-
cessfully received packet by merely observing the channel activity. 
In other words, the protocol sequences may have some structures 
that allow the receiver to determine from whom a packet is sent, 
even without header information. Discussions on sender and packet 
decoding issues can be found in [41] for practical considerations. 
One can consider the simple approach of requiring each packet to 
include a header, which contains the user identity and data index. 
If the pay load of a packet is large enough, the cost of this overhead 
could be quite small. 

Evaluating the performance of protocol sequences is a compli-



cated issue. Nevertheless, the following criteria [41] is commonly 
considered. 
1) The number of active users that can be supported simultaneously. 
2) Throughput performance, measured for example by the amount 

of successful transmissions that can be guaranteed in a sequence 
period. 

3) The length of the sequence period for all active users with some 
guaranteed throughput in each active period. A shorter length 
tends to ensure less variability in performance. 

Protocol sequences proposed in the literature provide different per-
formance guarantees with regard to these criteria. We will make a 
survey of them in the next section. 

1.2 Exist ing Results on Protocol Sequences 
1.2.1 The Slot-Synchronized Case 

All protocol sequences mentioned in this subsection are de-
signed for the slot-synchronized collision channel. The throughput 
of a user is defined as the fraction of slots it can send a packet with-
out suffering any collision. The sum or system throughput can be 
found as the throughput of all active users. 

The capacity of the collision channel without feedback is ex-
plored by Massey and Mathys in [21]. It is shown that the theoreti-
cal zero-error sum-capacity is 1/e for the slot-synchronized clianneL 
In order to achieve the theoretical capacity of the slot-synchronized 
channel, protocol sequences with the special property that the vari-
ation of throughput due to integer-delay offsets is zero, are proposed 



in [21]. Protocol sequences with this property are called completely 
shift-invariant or shift-invariant sequences [31]. Such protocol se-
quences have the advantage that there is no fluctuation in through-
put no matter what the integer-delay offsets are, and hence can 
guarantee the largest sum throughput in the worst case. Construc-
tions of complectly shift-invariant protocol sequences are reported 
in [6,21,31]. Nevertheless, such sequences have a drawback that the 
period grows exponentially in M, for M = K. In fact, it will be 
further proved in this thesis that the period grows exponentially in 
M for all K < M. 

After the seminar work of [20], more general constructions un-
der the name of const ant-weight cyclically permutahle codes are re-
ported in [1,4,10,25]. In the context of optical communications, 
these protocol sequences can also be viewed as optical orthogonal 
codes (OOC) [8], which have quite different design criteria compared 
with protocol sequences. The main difference is that the Hamming 
auto-correlation is inessential in the design of protocol sequences for 
a system with packet header, but important for optical orthogonal 
codes. For a system without packet header, the Hamming auto-
correlation is considered in protocol sequences [1,10] to address the 
decoding problem. 

Another class of protocol sequences, called linear congruence 
sequences [39], is originally designed for frequency-hopping signals. 
Furthermore, prime sequences, a subset of linear congruence se-
quences, were proposed by Shaar and Davies [30] and independently 
by Prucnal and his coworkers [27], around the same time when [20 
was published. It also finds applications in optical spread spectrum 
systems. In [42,43], the concept of an extended prime sequence was 
introduced by padding extra zeroes in the prime sequences, with a 



particular view towards optical CDMA applications. 
Built on the concept of linear congruence sequences, a family 

of protocol sequences, called wobbling sequences [41]，was designed 
to support multi-rate service and a large number of active users. It 
has a common period which is equal to M^ for the case K = M 
and worst-case system throughput provably larger than a positive 
constant that is approximately equal to 0.25 when M is large. One 
can check the asymptotic throughput performance of wobbling se-
quences is close to that of completely shift-invariant sequences, say 
1/e, but the period is much smaller. Recently, [32] improved upon 
the wobbling sequences by constructing protocol sequences with pe-
riod of order 0{M^) for M = K and 0{M^) for M > 2K, while 
the guarantee of the worst-case sum throughput remains the same. 
The Chinese remainder theorem (CRT) [9] is employed in [32]. Ap-
plications of CRT can also be found in [1,10,25,35 . 

Considering the case K = M, the concept of user-irrepressible 
(UI) sequences is proposed in [5, 35,41]. It ensures that each ac-
tive user can successfully transmit information at least once in a 
sequence period over the slot-synchronized cliannel. All protocol 
sequences reported in [1,4,10,21,25,32,35,41-43] can be viewed as 
UI sequences. The shortest UI sequences called CRT sequences can 
be found in [35]. Its period is equal to Pm{'^M — 1) with pm is the 
smallest prime not less than M. 

For the case that K < M, a set of M binary sequences is called 
(M, K)-conflict-avoiding [40] if every subset of K sequences out of 
these M sequences is UI. Given the code length L, the objective in 
the construction of conflict-avoiding sequence set (see e.g [14,24] and 
the references therein) is to maximize the number of potential users 
M, with the guarantee of at least one packet received successfully 



from each active user in L time slots, provided that the number of 
active users is no more than K. 

1.2.2 The Asynchronous Case 
It is shown in [21] that the zero-error sum-capacity is 1/e for 

the asynchronous channel. The capacity is achieved by applying 
coding and interleaving on the completely shift-invariant sequences, 
but with an infinite period. More general, the following was proved 
in 21 
Lemma 1.1 ( [21] Lemma 5). Let m be any integer larger than 
1. Given a protocol sequence set of period L with worst-case system 
throughput larger than T in the slot-synchronized channel, then there 
exists a protocol sequence set of period mL with worst-case system 
throughput larger than (m — l )T /m in the asynchronous channel. 

1.3 Nota t ions and Definitions 
For the clarity of our presentation and convenience of the read-

ers, some basic notations and definitions used in protocol sequences 
are defined in this section. 
Definition 1.1. Given a binary sequence of length L, 

s := [5(0) s ( l ) … — 1): 
we define its Hamming weight as 

L-L 
WE(S) ： = } s(t). (1.1) 

For example, the Hamming weight of [11001100] is 4 



Definition 1.2. The cyclic shift of s with length L by an integer r 
is denoted by 

5(T) := [5(0 — T) s(l — T ) … s � L — 1 一 T). 

The subtraction t — r is performed modulo L for t = 0 , 1 , . . . , L — 1. 
For example, given 5 = [11001100], we have s � = [ 0 0 1 1 0 0 1 1 . 
Definition 1.3. Given two sequences Si(t) and S 2 � both of length 
L, we define the pairwise Hamming cross-correlation function of 
Si{t) and 52(t) by 

t=0 

The Hamming auto-correlation of si is defined by 
L-L 

(1.2) 

(r) -y]si(t)si(t-T] T
—
l
 

/
—

、
 t=0 

For example, given si = [11001100] and 52 = [10101010], we have 
丑_(2 ) = 2 and = 0. 
Definition 1.4. For two binary sequences si{t) and <S2⑷，their 
logical OR is defined as 

F 
1 if si(t) = 1 or Soit) — 1, (5lV52)(t) ：= U (1.4) 0 otherwise. 

Definition 1.5. For each t, we say that the t-tli component of 
sequence si is covered by sequence S2 if s^ii) — 1. Sequence si is 
covered by S2 if each “1” in si is covered by 52, i.e., si{t) = 1 
implies S2(t) = 1 for all t. We write si ：< S2 if Si is covered by S2. 



Consider u sequences s“t) , for 'i = 1,2,…，u. Sequence Si{t) is 
blocked by other u — 1 sequences if we can find delay offsets t” for 
j G {1, 2 , . . . , 1/-} \ {?:}, such that 

� V … V V 4二 1) V … V 例 . 

Otherwise, it is not blocked by other u — 1 sequences. 
As an example, in the following three sequences: 

5 1 = [ 1 1 0 0 1 1 0 0； 

52 = [10101010: 
53 二 [ 0 0 0 1 1 1 0 0； 

we have S3 is blocked by Si and 52 as 
53 ：̂  {sf^ V = [11011101；. 

When the Hamming weight of a sequence is small in comparison 
with the length L, the sequence can be compactly represented by-
specifying the locations of ones. Let Z^ be the additive group of 
residues modulo L. We use | • | to denote the cardinality of a set. 
Definition 1.6. Given a sequence s{t) of length L, let the char-
acteristic set of s{t), denoted by Xg, be the subset of I^l such that 
t eZs if and only if s{t) = 1. 

Shifting a sequence cyclically by r is equivalent to translating 
its characteristic set by r , with addition performed modulo L. Given 
a subset X in Zj,, and r G Zi, we denote the translation of X by r 
as 

1 ^ r := X r e ZL : X e X. (1.5) 
Expressed in terms of the characteristic set, the pairwise Hamming 
cross-correlation of sequences Si{t) and S2{t) equals 

= + (1.6) 



L,4,5}n({0,2,4,6} + 2)| = 2 

and call it the set of differences in X. Since zero is always in d{Z) 
for any subset X, we also define 

:= d{X) \ {0}, (1.8) 
the differences between pairs of distinct elements in X. 
As an example, for s = [100100100], we have d(工g) = {0,3,6} and 
叩 J = {3,6}. 
Definition 1.8. A sequence s is called equi-difference if the ele-
ments in Xs form an arithmetic progression in i.e., 

工s = {0，仏2仏，..,{wH[s) — 1 ) " } 

for some g G Zi,. In the above equation, the product jg is reduced 
mod L, for j = 1, 2 , . . . , wjj(s) — 1. The element g oi L~ g is called 
the generator or common difference of this sequence. 

For an equi-difference sequence generated by g or L g, the 
set of differences is equal to 

d { I s ) = { 0 , ± "’ 士 2 仏 … ， 士 — 1)双}. 

If each sequence in a sequence set is equi-difference, this sequence 
set is said to be equi-difference. 

for a l l 7" = 0,1,...，L. 
As an example, given 5i 二 [11001100] and 52 = [10101010], we have 
Xs = {0,1,4,5} and Xĝ  = {0,2,4,6}. Furthermore, we find 

which equals the value of 丑响� . 
Definition 1.7. For a subset X of Z^, we let 

] o
 

r
i
 

1.7) G
 

•
J
 

a
 

a
 

d[X) •= {tti — a‘ 



Given two equi-difference sequences si and S2 with ' � + 
0 mod L and wh(^82)92 / 0 mod L, we say they are distinct if we 
have 

gi • g2 on L — 仍. 

For example, si = [10101000] and s<i = [10010010] are both equi-
difference with the generator 2 and 3 respectively. They are also 
distinct. 

1.4 Thesis Outl ine 
In the remainder of this thesis, we discuss existence problems 

and constructions of several kinds of protocol sequences in the fol-
lowing five chapters. In particular, the slot-synchronized collision 
channel is assumed in Chapter 2, 3, 6 and the asynchronous colli-
sion channel is studied in Chapter 4,5, Also we assume all potential 
users may be active at the same time, i.e., M = K in Chapter 2, 
3 ,4 and 6. In Chapter 5, a more general scenario with M > K is 
considered. 

In Chapter 2，we introduce pairwise shift-invariant protocol 
sequences which is a generalization of completely shift-invariant se-
quences. Basic properties are investigated including minimum pe-
riod and bit structures. Furthermore, the sequence set is shown to 
be completely shift-invariant, if the sequences satisfy some technical 
conditions. The results presented in this chapter supplement well 
the existing results in the literature [6,31 . 

In Chapter 3，4 and 5, we consider the non-blocking property 
which ensures that each active user can successfully transmit infor-
mation at least once in its each active period. 



In Chapter 3, with the assumption M = K, we focus on user-
irrepressible protocol sequences with the non-blocking property in 
the slot-synchronized channel. A blocking algorithm is introduced 
to provide a necessary condition of such sequences. We further 
show that some user-irrepressible sequence sets must be pairwise 
shift-invariant with some special period and number of users. The 
work of this chapter is a continuation of results presented in [5 . 

The non-blocking property in the asynchronous channel is stud-
ied in Chapter 4. For M = K, sequence sets with this property are 
said to be completely irrepressible. We analyze the class of com-
pletely irrepressible sequences with the minimum number of ones 
in each period, and derive a lower bound on the minimum period. 
Moreover, for equi-difference sequence sets, we improve the lower 
bound and present a construction method that meets this lower 
bound asymptotically. 

A generalization of Chapter 4 is carried out in Chapter 5 for 
the case M > K. We investigate strongly conflict-avoiding codes 
(SCAC) which is a set of M binary sequences in which every subset 
of K sequences out of these M sequences is completely irrepress-
ible. It guarantees the non-blocking property in the asynchronous 
channel for M > K. Under a different objective compared with 
Chapter 4, given code length L, we present upper bounds on the 
size of SCAC and equi-difference SCAC, which hold for all K in 
general. The code size is the number of potential users that can be 
supported. 

Chapter 6 is dedicated to user-detectable sequences with the 
property that each active user can be detected by looking at the 
channel activity only for the system without packet header, within 
some bounded delay. Some lower and upper bounds of its mini-



mum period are presented. We further display some interconnec-
tions between user-detectable sequences and other research areas in 
sequence design. 

In Chapter 7, we provide concluding remarks and open prob-
lems in this thesis. 

Various parts of this thesis have appeared in [36,44-47 

• End of chapter. 



Pairwise Shift-
Sequences 

Summary 

For protocol sequences in the slot-synchronized chan-
nel, it is desirable that their Hamming cross-correlation 
should be as low as possible and that the length of their 
period should not be long. Completely shift-invariant 
sequences form an important class of protocol sequences 
which have perfect cross-correlation property but expo-
nential growth period as a function of the number of 
users. We investigate in this chapter a broader class 
of protocol sequences which are only pairwise shift-
invariant. Results on minimum period and bit-pattern 
structure are presented. 



2.1 System Model 
In this chapter, we focus on the collision channel without feed-

back described in Section 1.1, and consider a time-slotted system, 
consisting of M potential users and one sink, with all users may be 
active at the same time. It is assumed that the collision channel is 
slot-synchronized, i.e., the users know and align to the slot bound-
aries. However, they are not required to synchronize to each other 
and have different start time. 

Guaranteed throughput and least common period are two com-
mon performance measures for protocol sequences. As users may 
join and depart at different times, sequences with long period are 
undesirable even if they can ensure high throughput. Since these 
performance measures are closely tied to the periodic Hamming 
cross-correlation function, the latter is the main object of study 
in this chapter. Ideally, the cross-correlation function should be 
invariant to relative shift delays among the sequences, as they can-
not be assumed to be synchronized due to lack of feedback. More 
specifically, pair wise shift-invariant sequences are considered here. 

2.2 Hamming Cross-Correlat ion 
Definition 2.1. Let . . . , be A; periodic binary sequences with 
a common period L. Define the k-wise Hamming cross-correlation 
function among these k sequences for relative shifts r i , . . . , 丁k—i by 

L-l 
• • . , N-l) : = S认T�S2�T — T i ) . . . S认T 一 TK—1). ( 2 . 1 ) 

£=0 
The subtraction t 一 Ti is performed modulo L for all i. 



The normalized version is defined to be 

… . . • , n-l) • • = 丑 . . . ,TK-L)lL. 

The pairwise case Hŝ s2 defined in (1.2) is simply the Hamming 
cross-correlation function for a pair of sequences, i.e., k = 2. 

Definition 2.2. The A;-wise Hamming cross-correlation is said to 
be shift-invariant (SI) if Bsi...sk is identically equal to a constant. A 
set of protocol sequences is called completely SI if the A;-wise Ham-
ming cross-correlation is SI for all choices of k distinct sequences 
and for all k. A set of protocol sequences is called pairwise SI if 
the pairwise Hamming cross-correlation is SI for all pairs of distinct 
protocol sequences. 

For a periodic binary sequence s with a period L, following [21 
we define its duty factor by 

The following is a basic result on Hamming cross-correlation [29 
L-L L-L 

1
 

1 
— 

J 丑si.‘.sfc(n, • • •, n-1) = RI'" Rk, (2.2) 
T l = 0 Tk — 1 = Q 

where Ri denotes the duty factor of Si, hi i = 1 , . . . , A;. If the 
/c-wise Hamming cross-correlation is SI, then it follows from (2.2) 
that 氣 i s identically equal to R1R2 ‘ • • Rk- In particular, Ss例 
is identically equal to R1R2 if it is SI. 

Completely SI sequences enjoy a constant individual through-
put property that is independent of any relative shift delays, and 
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are used as a building block in achieving the capacity of the colli-
sion channel without feedback [21]. Unfortunately, it is proved that 
completely SI sequences have long common periods [31]. This mo-
tivates the relaxation of the completely SI assumption to pair wise 
SI. Obviously, the collection of all completely SI sequence sets is a 
subset of the collection of pairwise SI sequences. However, pairwise 
SI sequences in general are not completely SI, which can be seen 
from the following example. 

Example 2.1: Consider a set of 3 protocol sequences with 
duty factors 1/2, 1/3, and 1/5. One can check that the following 
sequence set is pairwise SI, but not completely SI: 

5i == [111000111000111000111000111000 

52 111110000000000111110000000000 
53 = [ 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

For zero shift-delay, the 3-wise cross-correlation value is 2. However, 
the 3-wise cross-correlation value cannot be 2 for all shift-delays as 
the averaged 3-wise cross-correlation value should be 1 by (2.2). 

From simulation studies, one can show that some pairwise SI 
sequences enjoy throughput performance close to SI sequences. It 
is of interest to understand whether short pairwise SI sequences 
can be constructed. A surprising result proven in this chapter is 
that for some combinations of duty factors, pairwise SI sequences 
are indeed completely SI. Moreover, we will show that for pairwise 
SI sequences the minimum period is exponential in the number of 
distinct sequences. 



2.3 Discrete Fourier Analysis 
Definition 2.3. A periodic sequence s can be represented by a 
polynomial with binary coefficients, denoted by s(x)， 

L-l 
s(x) : : (2.3) 

£=0 
A complex number cu is called a primitive L-th root of unity i f t j^ = 1 
but oj^ ^ 1 for all 1 < n < L. In this chapter, we will choose and 
fix a complex primitive L-th root of unity and denote it by u. The 
discrete Fourier transform of sequence s is defined as 5(0;"') with n 
varying from 0 to L — 1. A complex L-th root of unity 'ip is called 
a spectral null of the sequence s if s{'i/j) — 0. 
A cyclic shift of a sequence s by t corresponds to multiplying <s(.t) 
by ccT modulo — 1. Therefore cyclically shifting a sequence does 
not alter the spectral nulls. 

The next lemma is the discrete analog of Plancherel's identity 
37；. 

Lemma 2.1. Two sequences a and b with period L is pairwise SI if 
and only if a{x)b{x) is divisible by {x^ — l)/{x — 1). 
Proof. Let Habir) be the pairwise Hamming cross-correlation func-
tion corresponding to a and b. We have 

L-l L-l L-l 
r = 0 T=0 t=0 

三 力 ) 工 力 一 力 工 

t=0 T=0 

=a{x-'^)b{x) (mod (2.4) 



Hence Hati j) is SI if and only if 
L—l 

)&三 / ^ o ( m o d x — 1), 
T=0 

where HQ denotes the common pairwise Hamming cross-correlation 
value. As the coefficients of a{x) are real numbers, the spectral nulls 
of a(:r—1) are closed under taking reciprocal. Thus, spectral nulls of 
a{x) and b{x) contains all spectral nulls of Y^^Zq 工丁 = — l)/(x — 
1). It follows that sequences a and b is pairwise SI if and only if 
a{x)b{x) is divisible by {x^ — l)/{x — 1). • 

In Example 2.1, the three polynomials S2{x) and 53(x') 
are respectively 

x^ — 1 X — 1 x^^ — 1 x^^ — 1 
It can be verified that si{x)s2{x), s2{x)s^{x) and s3(x)si(x) are all 
divisible by — 1)/(.t — 1). Hence {^i, 52, S3} is a pairwise SI 
protocol set by Lemma 2.1. 

2.4 Min imum Period 
In subsequent discussions, we consider a set of M pairwise SI 

sequences, <si,..., sjv/, with associated polynomial si ⑷，...，SM{X). 
Let the duty factors be n^/dj, for i = 1 , 2 , . . . , M, with n^ and di be-
ing relatively prime. Denote the common period of this sequence set 
by L. Let P i , . . . be the prime factors of L, and L == • • • Pni • 
Since L must be a multiple of the denominator di of each duty fac-
tor, the prime factorization of di can be written as pî p '̂"̂  … p 
with en < ri, < r2 , . . . , e^^ < r饥. 

m 



Definition 2.4. For n > 1, the n-th cydotomic polynomial, /n(工)， 

is the monic polynomial whose zeros are precisely the complex prim-
itive n-th roots of unity, each with multiplicity 1 [13, p.194 . 
For example, the 6th cydotomic polynomial is 

We summarize below some results about cydotomic polynomi-
als that we will need in this chapter. 
Lemma 2.2 ( [13] Chapter 13). 

(i) Cydotomic polynomials are monic polynomials with integral 
coefficients. 

(a) fn{^) is a factor of x^ — 1 if and only if n divides L‘ 
(in) For all n, fn{x) is irreducible in the ring of polynomials 

with integral coefficients, i.e., if fn{x) divides a{x)b{x), where a{x) 
and b{x) are polynomials with integral coefficients, then /n(工•) di-
vides a{x) or b{x), or both. 

(iv) For a prime number p and positive integer m, the cy-
dotomic polynomial fpm(x) equals 广一1)/(：£；广 1). Hence 
/ 广 ⑴ = P . 

Definition 2.5. For j = 1，2,...，m, let 
Mj := {/pfc(x') ： A: = l ,2 , . . . , ' ry}, (2.5) 

where r) is the exponent of pj in the factorization of L. 

By part (ii) in Lemma 2.2, every cydotomic polynomial f{x) 
in Afj divides {x^ — l ) / (x — 1), and by part (iv) in Lemma 2.2, we 
have / ( I ) = pj for all f{x) G Afj. It is noted that elements in N] do 
not have common factors. 



Lemma 2.3. 
(i) For i = 1 , . . . , M and j = 1 , . . . , m, at least Cij cyclotomic 

polynomials in J\fj does not divide Si{x). 
(a) If and €>2(3̂ ) 汗 polynomials in Afj such that 

does not divide Sj(x) and $2(冗)does not divide Sk{x), for i + k, 
then and must be distinct. 
Proof, (i) Suppose there are Cij polynomials in Afj that divides Si(x), 
say . . . , gc.j(x). As they are monic polynomials with integral 
coefficents, we can write s^(x) = gk{x)hk{x) for each. A; = 1, 2 , . . . , Cij) 
where hk{x) is a polynomial with integral coefficients. Let ^(.t) be 
the product gi{x) •.. QC..(a;). Because each factor gk{x) is irreducible, 
Si{x) is divisible by g{x)^ i.e., Si{x) = g{x)h{x), for some polynomial 
h{x) with integral coefficients. Then, by putting x = 1, and using 
the property that g{l) = p � " b y part (iv) of Lemma 2.2, we see that 
pj^ divides On the other hand, 5^(1) = UiL/di by (2.3) and 
the definition of duty factor. Since Ui is relatively prime to di, 5i(l) 
contains exactly Vj — ê ^ factors of pj. Thus, Qj < Vj — Cij. It follows 
that Cij is less than or equal to r j — Cij) which is exactly the number 
of polynomials in Mj that does not divide Si{x). 

(ii) Suppose on the contrary that we can find ^(X) E A/} such 
that does not divide 5 (̂0:) and Sk(x), for i 一 k. Then by part 
(iii) of Lemma 2.2, does not divide si{x)sk{x). As ^{x) is a 
factor of {xL — l ) / (x — 1) by part (ii) of Lemma 2.2, this contradicts 
the fact that si{x)sk{x) is divisible by {x^ — l)/(cc — 1). • 
Theorem 2.4. The common period of any set of M pairwise SI 
sequences with duty factors Ui/di, for ？: = 1,2,...，M, (with Ui and 
di relatively prime) is divisible by d\d2 …du• In particular, the 
minimum common period is at least d成…dM • 



Proof. From Lemma 2.3, we conclude that Afj must contain at least 
bj := eij + e2j + . . . + eMj cyclotomic polynomials. Hence, rj > bj. 
Since the above inequality holds for all j , it follows that J l ^ i P /̂ 
divides L. But didq …cIm : YYjLi Pj by the definition of bj. There-
fore did2 ‘ • ‘ dM divides L, • 

It is shown in [31] that the minimum common period of a set 
of M completely SI sequences, with duty factors as in Theorem 2.4, 
is at least didq …dM• We conclude from Theorem 2.4 that relaxing 
the completely SI requirement to pairwise SI cannot shorten the 
common period. 

2.5 S t ruc tu ra l Theorem 
Theorem 11 in [31], although stated for completely SI sequences, 

depends only on the pairwise SI property. These results imply in-
teresting structures for pairwise SI sequences. 
Theorem 2.5 ( [31]). Suppose that the duty factors of a set of M 
pairwise SI sequences are njjj), for i = 1 , . . . , M, and p is a prime 
number. If the common period meets the lower hound in Theorem 
2.4, i.e., the common period is 'pM，then the least periods of the 
sequences are p, …�pM, Moreover, suppose that the sequence 
with least period has duty factor Ui/p. For each r with 0 < r < 
p h i — 1，there are exactly ly ones located among positions 

r, r + pP i , r + ….，r + (p — ！^"^ . (2.6) 

Theorem 2.6. Let p he a prime. If M pairwise SI protocol se-
quences with duty factors nij-p, for i = 1 , 2 , . . . , M, have a common 
minimum period pM, then they are completely SI. 



Proof. Theorem 2.5 implies that such pairwise SI sequences possess 
the structure described by (2.6). Theorem 8 in [31] established that 
such sequences are completely SI. • 

Example 2.2: Consider the case that M = 3, L = 27 and the 
duty factors are all 2/3. We can verify that the following sequence 
set is pairwise SI by Lemma 2.1. It follows from Theorem 2.6 that 
it must be also completely SI. 

51 = p i o i i o i i o i i o i i o i i o i i o i i o i i o 
5 2 = [ 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 

5 3 二 [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

Remark: Theorem 2.6 explains why the construction in [6 
which is targeted for pairwise SI sequences actually leads completely 
SI sequences. 

2.6 Numerical Studies 
Consider p pairwise SI sequences, each with duty factor R and 

period L. The sum throughput has a lower bound: 

2=1 
R Ss,sM =p[R-R\p-l) (2.7) 

For prime 'p, we can take = (p + l)/(2p^) in the construction of 
wobbling sequences to obtain a lower bound on the sum through-
put that approaches 1/4 as p approaches infinity [41]. Under the 
same condition, the sum throughput of pairwise SI sequences also 
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approaches 1/4 from (2.7). 
Protocol 

sequences 
Max. pairwise 

cross-correlation 
L Asymp. throughput 

lower bound 
Pairwise SI pP 1/4 
Wobbling 

P+1 
1/4 

If the pairwise cross-correlation function can vary slightly, as in 
wobbling sequences, the minimum period can be reduced. The two 
families of sequence sets achieve roughly the same throughput per-
formance when p is large. 

2.7 A Resul t on Completely Shift-Invariant Se-
quences 

In this section, we consider a more general case of M potential 
users but at most K users are active at the same time. K can be any 
integer such that 2 < K < M. We are interested in the sequence 
set of M sequences with any subset of K sequences is completely 
SI. The minimum common period of such sequence set is presented 
in 31] for M — K, which is a special case of the following result. 
Theorem 2.7. The minimum common period of any set of M se-
quences with duty factors rii/di, for i = 1 ,2 , . . . , M, (with rii and di 
relatively prime), in which any K sequences with 2 < K < M are 
completely SI, is at least did]…dM-
Proof. It is easy to see the sequence set described in the condition 
of Theorem 2.7 must be pairwise SI for any K > 2. Thus from 
Theorem 2.4, we know the minimum common period is at least 
did2 ‘ • • dM- • 



2.8 Conclusion 
In this chapter, pairwise SI protocol sequences are introduced. 

We have explored basic properties of its minimum period. Fur-
thermore, if duty factors of the sequences satisfy some technical 
conditions, the sequence set is completely SI. 

• End of chapter. 



C h a p t e r 3 
User-Irrepressible Sequences 

Summary 

In this chapter, we assume all potential users may be ac-
tive simultaneously and consider user-irrepressible pro-
tocol sequences with the property that each active user 
is able to send at least one packet successfully in each se-
quence period in the slot-synchronized channel without 
feedback. A blocking algorithm is introduced to provide 
a necessary condition of user-irrepressible sequences. We 
further show that some user-irrepressible sequence sets 
must be pairwise shift-invariant with some special pe-
riod and number of users. 



3.1 In t roduct ion 
In this chapter, we continue to focus on the slot-synchronized 

collision channel without feedback described in Section 1.1, and con-
sider a time-slotted system, consisting of M potential users and one 
sink, with all users may be active at the same time. 

The protocol sequence set with the non-blocking property in 
the slot-synchronized channel is investigated in this chapter. We say 
that a protocol sequence set with M elements is user-irrepressible 
(UI) [35,41] if M users (each of them assigned a unique protocol 
sequence from the set and transmit packets according to the pro-
tocol sequence when active) can all send out at least one packet 
successfully in each active period, no matter what the integer-delay 
offsets are. 

We can make the following formal definition of UI sequence set. 
Definition 3.1. Consider a protocol sequence set S of period L, 
consisting of M sequences s烛,for i = 1 ,2 , . . . ,M. If there is a 
sequence in S that is blocked by the other sequences in cS, we say 
that S is user-repressible. Otherwise, S is said to be UL 

As an example, one can check the following four sequences are 
UL It can also be viewed as a completely or pair wise shift-invariant 
sequence set introduced in Chapter 2. 

51 二 [ 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

52 = [ 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

5 3 二 [ 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

54 = [ 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

We note that this is a guarantee with probability one that each 



user has at least one successfully sent packet in a fixed time length, 
in contrast to random access scheme, like slotted ALOHA [2，3], 
where it is only guaranteed that with some probability strictly less 
than one. Application of the strict guarantee can be found in [28 
for medical systems. 

This chapter is organized as follows. We present some prelim-
inary results in Section 3.2. A blocking algorithm and a necessary 
condition for the existence of UI sequences are given in Section 3.3. 
In Section 3.4, we show that in some special cases where the lower 
bound on period is met with equality, UI sequences possess some 
special structures. Finally, we close this chapter with some conclud-
ing remarks in Section 3.5. 

3.2 Prel iminaries 
We state two simple propositions which will be useful in this 

chapter. 
Proposition 3.1. Suppose sequence si 
and s[ ：< s^ for i = 2,3，，，.，M. Then Si 

Proof. It follows immediately from 

is blocked hy s'2, 53,... s �, 
is blocked by S2, S3,..., sm-

The following elementary property for pairwise Hamming cross-
correlation is a special case of (2.2) due to [29]. We include the short 
proof here for the sake of completeness. 
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Proposition 3.2 ( [29]). Given two binary sequences si{t) and 
S2{t), we have 

L-
_ ^ 丑 力 二 ⑶if Oi)秘 i f (>2) 

Proof. 
L-

H S1S2 
L— 

T ) = 

L-

L-

L-] 

t=0 

r = 0 
L-1 

i = 0 

• 

3.3 Blocking Algori thm 
Let S = {si, 52, . . . , sm} be a set of M protocol sequences of 

period L. We describe below a generic blocking algorithm whose 
objective is to cyclically shift 52, 53, . . . , Sjv/, so that the first sequence 
51 is blocked by 

1. Fix the delay offset of 5i to zero. 
2. Cyclically shift 52 so that maximal number of “l，'s in si is 

overlapped by s产‘ 

3. Cyclically shift 53 in such a way that most of the remaining 
"l"s in Si are overlapped by “丁日). 

4. Cyclically shift S4 in order to cover most of the remaining “l”s 
in Si that are not overlapped by and s，. 



5. Continue for S5, 55, . . . , sm-
In Theorem 3.3, we will specify how to choose the delay offsets 

T2 and Ta etc., and give a condition under which si is guaranteed to 
be blocked by the above procedure. 
Theorem 3.3 ( [36]). Let S = {si, S2, . . . , sm} be a set of M proto-
col sequences of period L. Suppose that si has the smallest Hamming 
weight, i.e., wh{si) = w and WH{si) > w for v； = 2 , . . . , M. Define 
an integer sequence L))二。recursively by 

rQ(w, L) \= w (3.1) 
� ' � 1 

rk(w,L) :=rk—i(w,L) — , for k>l. (3.2) 
//r>/-i(ii；, L) = 0, then si is blocked by 52 , . . . , spj. 
Proof. Let Xi{t) be the sequence Si{t). In this proof, we will re-
cursively define _M — 1 sequences X2 (t), 2:3 (it), . . . , xm (t), with the 
property that Wh[工k) 二 L), for k = 2 , 3 , . . . , M. We first 
note that the Hamming weight of Xi{t) is equal to ro(w, L) = w. 

Because wh{xi) = w and wh{s2) > w, from Proposition 3.2, 
we obtain L-l 

� 丑的 ⑴ = > 5 2 ) > w . (3.3) 
T=0 

We can interpret the above inequality as: the mean pair wise Ham-
ming cross-correlation, averaged over all delay offsets, is at least 

IL‘ Hence, we can find some delay offset r such that ^ 
uP'/L. If on the contrary we have H^ ŝz < 肌NL for all r — 
0,1,…，L — 1, then 

L-l 

Y^H^�r)<Uw"lL)=w\ 
r=0 



contradicting (3.3). We pick a delay offset, say T2, SO that 

By removing some "l"s in s<i if necessary, we define another binary 
sequence s^ S2 such that 

Let the sequence obtained from Xi by removing the "l"s that are 
overlapped by s '!f^�be x"2. We note that X2 d 工i, and 

wh{X2) = W — I'ur'/L] = ri{w^ L). 
Given we recursively define Xk{t) in a similar fashion. 

In the kth step, by Prop. 3.2，we have 
L~1 

H x k S k + J j ) = ' � � > ' �l O , L). 
T=0 

We can find a delay offset r^+i for Sk+i such that 
H. â fcSfc+i 

•W {n+i) > j-rk-i{w,L) 
Let <s'左+1 Sk+i be obtained by removing some "l"s from <Sjt+i so 
that w 

L 
Let the sequence obtained from x^ by removing the "l"s that are 
overlapped by be x^+i. 

Since by construction, the Hamming cross-correlation between 
Xk and s ^ i is exactly fr^—iXw, L) , the Hamming weight of x^- î 
IS 

⑴ (工 fc+l) = — 

二 rvi—，！/) 

n-如工、 



We repeat the above process until we get x>/. By induction, 
the Hamming weight of xm is equal to 

wh{XM) = rM-i{M, L). 
If rj\//-i(Af’ L) — 0 holds, then the Hamming weight of xm is zero. In 
other words, si is blocked by ..Vs'j^M�• By Proposition 
3.1, we conclude that Si is also blocked by 52, S3, . . . , sm- • 

3.4 Special S t ruc tures 
In [36]，a more detailed analysis of the integer sequence rkiyu, L), 

shows that Theorem 3.3 gives a lower bound of (8/9)M2 on the pe-
riod of UI sequence set of M sequences for all M. It improves upon 
the previous lower bound 1 + M[M — l ) /2 from [5]. As a special 
case, we have the lower bound for the case M = 3k. 

We use UIS(I/, M) to denote a set of M UI sequences with 
period L. 
Theorem 3.4. If there exists a UIS{8k'^, 3k) for k > then the 
smallest Hamming weight of the sequences is w = 4:k. 
Proof, It is shown in [36] that M < VL{3/VS) and the equality 
holds only if w = Then for the case L = we know 
M = 3k and w = 4k. This completes the proof. • 

We next show that UIS(L, 3k) must be pairwise shift-invariant 
(SI) if the period meets the lower bound 
Theorem 3.5. For k > 1, any 3k) is pairwise SL 
Proof. Suppose that tS is a set of M = 3k UI protocol sequences 
with period L = From Theorem 3.4，we can support M = 3k 



users with period L 二 only if the smallest Hamming weight of 
the sequences is w = 4k. We want to show that (a) the Hamming 
weight of each sequence is equal to 4k and (b) the Hamming cross-
correlation between every pair of distinct sequences equals 2. 

Suppose that Si{t) is a sequence with Hamming weight 4A;, 
and suppose that there is another sequence in S, say 52 (t), whose 
Hamming weight is strictly larger than 4k. From Proposition 3.2, 
the average pairwise Hamming cross-correlation over all delay offsets 
is equal to 

_ (4k)(4k)— 
L � 舶 一 丄 

We can hence find a delay offsets T2 such that î siS2('̂ 2) > 3. By 
removing some " r " s in S2, we replace 52 by a new sequence s'̂  with 
the property that 

= 3. 
We now continue the blocking algorithm described in Section 3.3, 
and compute the sequence of integers rk{w, L) for k 二 2 , 3 , . . w h i c h 
equal 

4/C-3, 4A;-5, + 2k —1, 2k —2) . . . , 1 , 0 , . . . . 
� "丨丨丨 z �"丨丨丨丨I ‘―-v z 

k-l 2k-l 

There are 3k — 2 integers in the above integer sequence. The al-

gori thm stops after we introduce 3k ~ 2 more protocol sequences 

after 4，and hence Si is blocked by Sg, S3, S4, . . . , sgf̂ . Therefore, 
by Proposition 3.1, si can be blocked by s�，S3,..., s * This con-
tradicts Definition 3.1, and proves that every sequence in S has 
Hamming weight 4k. This proves (a). 

Having proved that the Hamming weight of each sequence in S 
is equal to 4k, we calculate the average Hamming cross-correlation 
between two distinct sequences, say si and S2. By Proposition 3.2 



again, 
wh{si)wh{s2) (4k) (4k) 2 

L 8A:2 
If the Hamming cross-correlation between si and S2 is equal to 3 or 
larger for some delay offset r , then the same procedure described 
in the previous paragraph applies verbatim, and leads to a contra-
diction with user-irrepressibility. So, the pairwise Hamming cross-
correlation is less than or equal to 2 for all delay offsets. However, 
the average value is also equal to 2. This implies that it must be 
identically equal to 2 for all delay offsets. Thus S is pairwise SI. • 

Example 3.1: The following three sequences form a UIS(8,3) 
which is pairwise SI. This verifies Theorem 3.5 for k = 1. However, 
this is the only example possible. 

Si = [10101010 
52 11001100 
S3 = [11110000； 

Corollary 3.6. For k>2, there is no UIS{8k'^,3k). 
Proof. In Theorem 2.4 of previous chapter, it is shown that the 
period of pairwise SI sequences grows exponentially as a function of 
the number of users; the period of pairwise SI sequences for M users 
is at least 2气 Any UIS(8P, 3k) must be pairwise SI by Theorem 
3.5. If a UIS(8A:2, 3/；；) exists, the period 8人—must be larger than 
which cannot hold for k >2. • 

An implication of Corollary 3.6 is that for k > 2, the lower 
bound 8/̂ 2 on minimal period cannot be attained. So, for A; > 2, 
the minimum period of UI sequences for 3k users is at least Sh? +1 . 



3.5 Conclusion 
A blocking algorithm is introduced in this chapter to provide a 

necessary condition of non-blocking property in the slot-synchronized 
channel. We further present some special properties in UI sequence 
set with some special period and number of users. 

• End of chapter. 



Comple te ly Irrepressible 
Sequences 

Summary 

In this chapter we assume all potential users are active 
all the time and consider protocol sequence sets with the 
property that each active user is able to send at least 
one packet successfully in its each active period for the 
asynchronous channel without feedback. Such sequence 
sets are said to be completely irrepressible. We analyze 
the class of completely irrepressible sequence set with 
the minimum number of ones in each period, and derive 
the lower bound on its minimum period. Moreover, for 
equi-difference sets, we improve the lower bound and 
present a construction method that meets this lower 
bound asymptotically. 



4.1 In t roduct ion 
4.1.1 Background and Motivation 

In this chapter, we follow the asynchronous model described in 
Section 1.1 to define a time-slotted system, consisting of M potential 
users and one sink, with all users are active all the time. Let 5i be 
the time offset of user i for ?； = 1 ,2 , . . . , M. All 6i are arbitrary real 
numbers. Thus user i would start its transmission scheme at the 
time index 5i. If for some non-negative integer no, user i is active 
in its ng-th slot and the sequence value is equal to one, then user i 
will transmit its packet at time interval [no + n �+ 头 + 1). This 
packet is assumed to be successful if and only if it is not completely 
or partially overlapped by any other packet. 

UI [5,35,41] sequence sets provide the non-blocking property in 
the slot-synchronized channel. However, all UI sequence sets known 
so far cannot guarantee the non-blocking property if the channel is 
asynchronous. An example is the following. 

Example 4.1: 52 and 53 form a UI sequence set: 
5i = [1 1 1 0 0 0 0 0 0 0 0 0 
52 1 0 0 1 0 0 1 0 0 0 0 0 

53 = [1 0 0 0 1 0 0 0 1 0 0 0 

In the asynchronous channel, for 5i = 0, J2 = 0.5 and = 2, 
all packets from user 1 are lost due to two partially overlapping 
collisions and one completely overlapping collision, as illustrated in 
Fig. 4.1. 

In this chapter, we consider the non-blocking property in the 
asynchronous channel. More strictly speaking, a protocol sequence 
set of M elements is said to be completely irrepressible (CI) if each 
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of M users can send out at least one packet successfully in its each 
active period, for any real numbers 61^62,..., Sm- Obviously, a CI 
sequence set must be UI since the collection of all possible time 
offsets in the slot-synchronized channel is just a subset of that in 
the asynchronous channel. 

4.1.2 Notations and Preliminaries 
If a; is a real number, the notation [x\ represents the largest 

integer less than or equal to x. The smallest integer larger than or 
equal to x is denoted b y � a ;. 
Definition 4.1. For all t e [0, L), define fs{t) as the protocol signal 
generated by s at [t\. That is, 

f s { t ) 刚 ) . 

Given two sequences 5i and 52, define the asynchronous pair-
wise Hamming cross-correlation of fs^ and fs^ by 

Jo 
The subtraction t — 6 is performed modulo L. When S is an inte-
gral number T, it reduces to the usual notion of pairwise Hamming 



cross-correlation. 

For all 5 G [0, L), the following property holds for the asyn-
chronous pairwise Hamming cross-correlation function. 
Proposition 4.1. Given two binary sequences si and S2； both with 
period L, we have 

[ = wh{SI)WH{S2). 

Proof. 

〔 、 JO 
f j s ) d 5 = 广 �f s M U t - 5 � JQ Jo 

、L rL 

dtd5 \ / \ J '0 
[ f s j f ) [ fs,{t-S) dtd5 Jo 
广 謂 / f s M dtds 
'0 JQ 

/ fsM'^H{s2) dt = WH{SI)WH{S2)^ 'o 
• 

When restricted to an integer <5, the result in Proposition 4.1 re-
duces to the well-known elementary property of pairwise Hamming 
cross-correlation presented in Proposition 3.2 due to [29 • 

The following proposition provides a lower bound on the Ham-
ming weight of any sequence in a CI sequence set. 
Proposition 4.2. If a sequence set {si, S2,..., sm} is CI, then we 
have WH{si) > M for z = 1 ,2 , . . . , M. 



Proof. We will prove the claim by contradiction. Suppose WH[Si) < 
M for some i. Then we can arrange the delay offsets of other M — 1 
sequences, so that the i-th one of user i in a period is covered by a 
one from Sj, for j = 1，...，j + i , . . . , M. Then the sequence Si is 
blocked and the number of successful packets from Si will drop to 
zero, which contradicts the definition of CI sequence set. Thus, we 
obtain wnisi) > M for i = 1 ,2 , . . . , M. • 

From the construction presented in Section 4.4, for any M, we 
can see there exists a CI sequence set of M sequences, each with 
Hamming weight M. Thus we find the lower bound in Proposition 
4.2 can be achieved for any M, In order to enhance battery life of a 
sensor network, we want to design CI protocol sequence set with the 
number of packets sent in each period as small as possible. Thus we 
say a CI sequence set of M sequences is minimal energy CI (MCI) if 
the Hamming weight of each sequence is M. We use MCIS(L, M) to 
denote a MCI sequence set of M sequences with period L. Specially 
we denote an equi-difference MCIS(L,M) by MCIS'(L, M). 

4.1.3 Main Results 
The objective in this chapter is to construct MCI protocol se-

quence sets with period as small as possible in order to minimize 
the transmission delay in the worst case scenario. Furthermore, to 
investigate the shortest latency that can be achieved, we want to 
determine Lmin(M), the smallest period L such that a MCIS(I/, M) 
exists. 

Equi-difference sequence set is an important class of protocol 
sequence sets with non-blocking property. Some bounds and con-
structions of equi-difference UI sequence set have been investigated 



in [23] and [34]. Moreover, it was shown that almost all known 
shortest UI sequence sets with least ones in a period enjoy the equi-
difference structure. Thus we also focus on the smallest 
period L such that a i\/ICIS®(L, M) exists. 

This chapter is organized as follows. After proving several 
important properties of CI sequence set in Section 4.2, we estab-
lish a lower bound on Lmin(M) and an asymptotic lower bound on 
Z4iin(M) in Section 4.3. Then a construction that meets the asymp-
totic bound on L^^J^M) is presented in Section 4.4. Section 4.5 gives 
a comparison with random access scheme in terms of blocking prob-
ability and time length. Finally, we make a conclusion in Section 
4.6. 

4.2 Proper t i es of Completely Irrepressible Se-
quence Set 

In our channel model, if user i starts its packet transmission at 
time index /CQ + Si for some non-negative integer ko, this packet is 
successfully received if and only if no any other user would start or 
end its transmission at interval [A:�+ A:�+ 氏 + 1). For studying 
the individual successful transmission amount in the asynchronous 
channel to see whether a protocol sequence set is CI or not, we 
present the following result by generalizing the observation in [21 . 
Smax is used to denote the maximum value of 5i for z = 1, 2 , . . . , M. 
Given a sequence s, we construct s' as: 

1 if s{n — 1) 二 1 and n > 1; 

s(n) otherwise. 
Given Si,S2, • . . , sm and • • • > the sequence set T] 



Si_M} for i = 1 ,2 , . . . , M, is constructed as the follow-

1. For any j G {1,2，…，M} such that [5j — + 5j — we set 
s. . — 仙. 

2. Otherwise, we set Si_j 二 ŝ .L") 
Proposition 4.3. For z = 1 ,2 , . . . , M, we have 

(i) In each interval + /c, + /c + L) for any non-negative 
integer k such that 5i-{- k > 5max> the resulting number of successful 
packets from user i is exactly equal to the number of uncovered ones 
of Si J in Ti. 

(a) In each interval [6{ + k + L) for any non-negative 
integer k such that 6i + k < 6max, the resulting number of successful 
packets from user i is larger than or equal to the number of uncovered 
ones of Sij in Ti. 
Proof. Let ko be any non-negative integral number such that kg + 
Si > 6max- We know all users started their transmission schemes at 
the time index k �+ 5 �o r earlier. Suppose /^.(it —氏）=1 for any 
t G [kQ + ko-{-6i-\-1). Then we know there is a packet from user i 
located in [ko + Si, fco + + 1). Furthermore we know this packet is 
successful iff no other users start or end their packet transmission 
in /cq + /cq + 1 + 6i) or equivalently we have 

M 
V fs,{t-Sj) = 0 (4.1) 

for any t G [A;o + /CQ + + 1). Let 6 be the collection of all 
j e {1,2,...，M} \ {?；} such that [Sj — ^̂ J • 5j —而.Let & be 
，2,…，M}\{i, (^i}. Then from (4.1) we have the following formula 
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to find this packet is not successful if it is equal to one. 
n{kQ+i+6,r M 
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= V 人 ko). 
The last two equalities follow respectively from the constructions of 
s'3 and Si_j. Furthermore, the total number of unsuccessful packets 
from user i at time interval [Jj + A;, ^̂  + A: + L) for any non-negative 



integral number k such that k + Si > d^ax can be found as: 
了 - riko+l+SiY M 

fsAt — 5i) V fs人t - dt 
K+L-1 M 

= S i i k o ) V Si_j{ko) 
kQ=k 

L—1 M 

which implies the number of covered ones of s “ in T .̂ Thus the 
claim (i) of Proposition 4.3 is proved. 

For any non-negative integer k such that k + 6i < 5飄工,we 

know there exists at least one user with its time offset smaller than 
k Si so that it would start their transmission schemes later than 
the time index k + S^. Thus, the number of successful packets from 
user i in time interval [ < 5 ^ + L) would be equal to or larger 
than the number in claim (i). It proves the result of (ii). • 

The following equivalent condition for the non-blocking prop-
erty in the asynchronous channel directly follows Proposition 4.3. 
Theorem 4.4. A sequence set {^i, 52, . . . , Sjv/} is CI i f f Su is un-
blocked in Ti for any 61^62^. •., 6m and any i G { 1 , 2 , . . . , M}. 

As an example, consider the protocol sequence set in Example 
4.1 with the time offset 二 0.5, S2 = = 2.5) in the asyn-
chronous channel. To obtain the number of successful slots from 
user 1, we find T! as 

5i_i = [1 1 1 0 0 0 0 0 0 0 0 0 
5I_2 = [1 1 0 1 1 0 1 1 0 0 0 0 
5I_3 = [0 0 1 0 0 0 1 0 0 0 1 0 



Obviously, we can check all ones of si_i are covered in Ti. Thus we 
know this sequence set is not CI. 

Following Proposition 4.3, we know that Ti is determined by i 
and 5j for j = 1 , 2 , . . . , M. Thus for every distinct user, we have 
may be different from T] if i ^ j. For example, T3 can be found as 

S3_i = [1 0 0 0 0 0 0 0 0 0 1 1 
53_2 = [0 1 1 0 1 1 0 0 0 0 1 1 
53.3 = [1 0 0 0 1 0 0 0 1 0 0 0 

Then we have the following equivalent condition for minimal 
energy non-blocking property in the asynchronous channel. 
Theorem 4.5. A sequence set {^i, 52 , . . . , 5^} with Wff{si) = M 
for i = 1 , 2 , . . . , M is MCI i f f we have Hg^s'^ (r) < 1 for any integer 
T and any pair of distinct i and j. 
Proof. We first prove the "only if" part by contradiction. Suppose 
Hs^s'^(tq) > 1 for some integer tq and some j with j / i. Then by 
letting Tq < Sj — Si < Tq + 1, we have s u = Si and Si_j = <5》丁。）in 

Thus we have at least two ones of s u are covered by Si_j. Then 
from WH(Sij) = = M, we know there are at most M ~ 2 
remaining ones in su . We can choose some delay offsets of other 
M — 2 sequences such that the remaining M — 2 ones are totally 
covered in Ti. Thus we find Su is covered in TJ. Following Theorem 
4.4, we further have {^i, «S2，...，sm} is not CI, which contradicts the 
condition. 

For the "if" part, we first have the following simple fact from 
the construction of s � : 



Then with the condition we find the number of uncovered ones of 
Si_i in Ti for any i and any {〜，如，...，Jiv/} is lower bounded by one 
due to 

M M 
E E Hs事广 S,, 

<M-1. 

Thus we can conclude sa is unblocked in for any i and any 
{(̂1,如，..，，Jjv/}. It implies {si, 52, . . . , sm} is thus CI following The-
orem 4.4. It is also MCI as each sequence has Hamming weight 
M. • 

In the view of the difference sets, we have the following version 
of Theorem 4.5. 
Theorem 4.6. LetTg., j = 1 ,2 , . . . , M, he the characteristic sets of 
M sequences of period L, such that Xg^ contains exactly M elements 
in for all j. Let aj be any element in d*{Xg.) for j = 1 ,2 , . . . , M. 
The corresponding s&q'iLcncc set is MCI i f f 

(i)l,L —1 贫 cTilsj) for j = 1,2,…，M; 
(ii) cq — aj + 0 i.e., d*{Is-) and d*{Xs.) are disjoint for all pairs 

of distinct i and j; 
(Hi) ai — aj ^ ± 1 for all pairs of distinct i and j. 

Proof. Let us prove the "only if" part first. 
(i) Suppose 1, L - 1 G We also have 1 G d*{Ts'.) follow-

ing the construction of s'j. Then we can find some integer tq such 
that Hs為(jq) = 2 as there is a common element 1 between d*{lsi) 
and From Theorem 4.5, we know the sequence set is not 
CI contradicting the condition. We thus have 1, L — 1 0 d*{Xg.) for 
j 二 1 , 2 , …， M " . 



(ii) Suppose a^ = a] for some distinct i and j. Then we have 
Hs,8j ('̂ O) = 2 for some integer TQ. It implies Hs^tq) > 2 which con-
tradicts Theorem 4.5. Thus we have <î (XsJ and d^i^sj) are disjoint 
for all pairs of distinct i and j. 

(iii) If aj E d* (Xs^), we can find =b 1 G cT (X /̂) from the 
construction of s'y Suppose a^ — a^ ~ 1. Then we can find some 
integer-delay tq such that HSis'人丁o) = 2 as there is a common element 
{aj + 1) between d' '{lsj and Thus from Theorem 4.5 we 
know the sequence set is not CI contradicting the condition. By the 
same argument, a^ — aj = 一 1 would also make the contradiction. 
Therefore, a^ — a j ± 1 is a necessary condition here. 

Next we will prove the "if" part. 
With the conditions and the construction of s'” we must have 

Hg^s'^(r) < 1 for any integer r and any pair of distinct i and j. 
Following Theorem 4.5, it suffices to show that the entire sequence 
set is MCI. • 

Remark: For the slot-synchronous channel, i.e.,么 is an integer 
for all ？we have s'^ = s^ for j = 1 , 2 , . . . , M. Thus the equivalent 
condition in Theorem 4.5 is reduced to 丑占而(T) < 1 for any integer 
r and any pair of distinct i and j. Furthermore, we have (ii) of 
Theorem 4.6 is an equivalent condition here. 

4.3 Lower Bounds on Z/min(M) and L^jj^(M) 
4.3.1 A Lower Bound on 

The following lower bound on L幽(M) hinges on elementary 
property of pairwise Hamming cross-correlation in Proposition 3.2. 



Theorem 4.7. For M > 2, we have 
— 7 W M ) > 2 M \ (4.2) 

Proof. For distinct i and j, the Hamming weight of Si and Sj are 
both known as M. With (i) of Theorem 4.6 we know there is no 
adjacent ones in Sj. Then by the construction of s^ we find the 
Hamming weight of Sj is equal to 2M, Thus from Proposition 3.2, 
we know H^.s'.(T) averaged over all integer r , is equal to 2M^/L. 
Then if 2M^/L > 1, we can find some TQ such that 人V)) > 2, 
which contradicts Theorem 4.5. Therefore, we can conclude that 
2M'^/L < 1 or equivalents L > 2JVP. 口 

Example 4.2: si and S2 form a MCIS(8,2): 
5 1 - [1 0 0 0 1 0 0 0； 

5 2 = [1 0 1 0 0 0 0 0；. 

It is easy to see that the bit structure is in accordance with Theorem 
4.6 from the following: 

二 {4}, d*(2"J = {2，6}. 
From Theorem 4.7, we know the above is the shortest MCI sequence 
set for M = 2. 

Remark: To compare different models of synchronization , the 
shortest UI sequence set for M = 2 is given below. 

5 1 = [1 0 1 0； 

5 2 = [ 1 1 0 0；. 

For the slot-synchronized channel, one can check the difference sets 
below are just in accordance with (ii) of Theorem 4.6. 

= 二 {1,3}. 



(M — l)gj, - ( M — mod L, 

( M - mod L. 

Suppose Si ^ Tm- Let rui be some integral number ranged from 
0 to M — 1 for i = 1 ,2 , . . . , 6. From the definition of Fm, we have 
the following three possible cases: 
case 1: migi — (—m2Pi) = 1 mod L; 

4.3.2 An Asymptot ic Lower Bound on L^^^(M) 
The following result is essential in this subsection to derive an 

asymptotic lower bound on L “ ( M ) . 
Given a positive integer a; > 2, let 7r(x) denote the number of 

distinct prime numbers between 2 and x, 
7r(x) : = |{'i : 2 < < X", i is p r i m e } . 

Note that 7r(x) also counts the maximum number of relatively prime 
integers between 2 and x. 

Given a MCIS®(L, M), let Tm be the collection of sequences in 
the MCIS®(L, M) such that if s G FM, then the difference of any 
pair distinct elements in d*{Xs) is at least two. 
Theorem 4.8. For any MCIS^{L,M), we have 

FmI > M-7r(2M-"2). (4.3) 

Proof. Let gj be the common difference of equi-difference Sj for j = 
1 , 2 , . . . , M. The characteristic set Xg. can be written as 

Then for j = 1，2,..., M, we have 
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case 2: (—m他)—m^gi 二 1 mod L; 
case 3: m^gi — m^gi 二 1 mod L. 

It is easy to see that case 3 implies there exists two consecutive 
ones in Si. It contradicts (i) of Theorem 4.6. Thus we can rule out 
the case 3 and just need to consider the first two cases. The case 
that mi + 7712 < M or ms + 7714 < M can also be ruled out due to 
it also implies that there exists a consecutive two ones' rim in Si 
contradicting (i) of Theorem 4.6. By letting ui = [mi + m � ) a n d 
712 =(肌3 + 爪4), both ranged from M to 2M — 2, we can further 
simplify the two cases into 

TiiQi = 1 mod L] (4.4) 
77-2̂ 1 = —1 mod L. (4.5) 

Also, we can find ni is relatively prime to L. Otherwise over Z^, 
the result of riigi should be located in [2, L — 2], which contradicts 
(4.4). The same result can also be found for n�and L. 

Now we consider another sequence, S2 朱 Tm- Let ri and T2 be 
some integer ranged from M to 2M — 2 respectively. For the same 
reason, there are following two possible cases: 

n没2 = 1 mod L\ (4.6) 
r 2釣= - 1 mod L, (4.7) 

By the same argument, we find that ri , t�are relatively prime to L 
respectively. 

Consider (4.4) and (4.6) first. Combining them we have 
nigi — rig2 = 0 mod L. 



Let vi be the largest common factor of ni and ri . Now we will prove 
y^ = I hy contradiction. vi is relatively prime to L from the fact 
that ni and ri are relatively prime to L respectively. Given we 
thus have 

{nilvi)gi = {rilvi)g2 mod L 
If vi > 1, we can find (n i / f i ) and (ri/t?i) are both smaller than M 
from n i , r i < 2M — 2. It further implies that there is a common 
element between df'iXsi) and which contradicts (ii) of Theo-
rem 4.6. Therefore we find that Vi = 1，i.e., ni and t i are relatively 
prime. 

Then consider (4.4) and (4.7). Combining them we have 
riiQi + r2^2 = 0 mod L. 

We also can find rii and r � a r e relatively prime. Let V2 be the largest 
common factor of ni and '厂2. Given V2 which is relatively prime to 
L, we thus have 

{nilv2)gi = L — � r +彻 2 mod L 
By the similar argument, we find that V2 = 1. 

For (4.5) and (4.6), similarly we also can get that n^ and ri are 
relatively prime. The result is also true for n? and r�considering 
(4.5) and (4.7). Therefore, by the above argument we can conclude 
that the four pairs (ni, ri), (ni’?-2), (712,̂ 1), (712, r^) are all relatively 
prime respectively. In other words, if there are two sequences not 
in r V , at least one case of the above would occur, then there are at 
least two proper integral numbers, ranged from M to 2M — 2, such 
that they are relatively prime. 

The above claim can be easily generalized to that there are M — 
Fjv/ sequences not in Tm- Then there are M — \Tm\ proper integral 



(f-{l) D {ka : k = 1,2， 

i.e., contains all multiples of a. 
Furthermore, in view of Kneser's theorem, we classify M se-

quences in a given MCIS^(L, M) into two types. We say that a 
sequence is in class 1 if the associated set of differences contains the 
multiples of a proper divisor of L, otherwise, we say that it is in 
class 2. Denote the set of sequences in class 2 as Tm- AS proved 
in 35], we have the following asymptotic result: 

l i m i n f % ^ = 1. (4.8) 
Theorem 4.10. 

M - ^ o o M 

L". (M) liminf :二9” > 1. (4.9) M^oo 4M2 — K � 

numbers, ranged from M to 2M — 2, namely •..，/^M-�MI， 
such that they are mutually relatively prime. The number of these 
integers is less than or equal to the maximal number of relatively 
prime integers'between 2 and 2M — 2. We thus have M — less 
than or equal to 7r(2M — 2). • 

We state a version of Kneser's theorem, which is tailored to 
what we need here. It will be useful to derive the asymptotic lower 
bound on A proof of Kneser's theorem can be found 
in [19；. 

Theorem 4.9 (Kneser [16]). If a subset X in Zl satisfies 
d'{I)\ < 2|X| - 2 , 

then there exists a proper divisor a of L such that 
T
f
 

1
 (L/a) 



Proof. By the prime number theorem, we know tt{x) is close to 
x/lnx for large M. Thus following (4.3) we have 

l i m i n f ¥ �M — — - 2) 
M->oo M — M 

which implies 
l i m i n f - % - = 1, (4.10) 
M->oo M • \ ) 

by the condition |rV/| ^ M. 
Given a MCIS'(L,M), let Om be Vm^'^m- With Theorem4.9 

and QM Q TM, we see the total number of distinct elements in all 
d*(Is.) for Sj 6 ^Im is at least 

| n M | ( 2 M - 2 ) . 
Following Theorem 4.6，the definition of Tm and CIm [ Fjv/, we 
know the difference of any pair elements in all d*(Tg.), Sj G Qm, 
is at least two. Thus, the nonzeros in Z i should contain at least 
HmKSM — 2) distinct elements whose mutual difference is at least 

two. Also we have 1 and L — 1 are not contained in these elements 
from (i) of Theorem 4.6. Then we have 

L - 1 > 1 + 2inM|(2M — 2). (4.11) 
We define Si and £2 as the following respectively: 

£1 :={i，2, . . ‘ ,M}\rM; 

Combining them, we have 
{ 1 , 2 , . . . , M} = {Tm U £1) n ( T M U 62) 

c ( F m U £ 1 U £ 2 ) n { T m U e s U £ 1 ) 

= ( F m n T m ) U (£2 U £1) 

= QmU(s2U£I) 



which implies 
M = |{1,2, ...,M}| < |n7V/U(£2U£i) 

< + |幻| + kl 
Then following (4.8), (4.10) and the above, we have 

lim inf > l im inf 1 M-^oo M M-^oo M M 
= 1 

By the condition that OM < M, we further obtain —— f 

lim inf M~>oo M 1 , (4.12) 
Hence the following result can be found from (4.11) and (4.12): 

lim inf M-^oo 4M2 > lim inf  
一 M^oo 4M2 

M-ioo 4M2 
In other words, Z/“(Af) is lower bounded by approximately 
when M is large. 

• 

4.4 An Asymptot ical ly Opt imal Const ruct ion 
First, we present the following general construction of CI se-

quence set based on UI sequence set. We use MUIS(L, M) to denote 
a UI sequence set of M sequences with period L and Hamming 
weight M, Specially we denote an equi-difference MUIS(L, M) by 
MUIS"(L,M). 

Theorem 4.11. Given a MU15{L,M), then a MCIS{2L, M) can be 
constructed by doubling all elements in the characteristic set of each 
sequence. 



1' ••= {(jy, uy) G Z ^ e ZsM-i : 二 0’ 1： 
and obtain the characteristic sets of the sequences, Tsp by taking 
the inverse image / - i ( 2 y for j = 0 , . . . , M — 1. 

Remark: The construction above is similar to [32] which also 
employs Chinese remainder theorem. When u = 1, it is the same 

Proof. In the slot-synchronized channel, following the construction 
of s'j, Theorem 4.5 can be found reduced to 丑明[T] < 1 for any 
integer r and any pair of distinct i and j, for any MUIS(L, M). 
Thus we find (ii) of Theorem 4.6 holds. By doubling all elements 
in the characteristic set of each sequence and period, we further 
find (i) and (iii) of Theorem 4.6 hold since the difference of any two 
distinct even numbers is even. Therefore, from Theorem 4.6 we can 
conclude this new sequence set is a MCIS(2L,M). • 

Remark: The variation is found as a special case of Lemma 
1.1 due to [21] which is targeted for achieving the capacity of the 
asynchronous collision channel without feedback. 

Theorem 4.10 asserts that is lower bounded by 4M2 
approximately when M is large. In order to design a MCIS®(L, M) 
with period achieving asymptotically, the following construc-
tion for UI sequence set is introduced. 

C R T Construction: The construction is based on Chinese 
remainder theorem (CRT). The mapping f : Zpq Z^ ® Zg defined 
by / (a ) := (a mod p, a mod q) is a bijection from Zpq to Zp 0 Zg 
when p and q are relatively prime [13], and preserves addition and 
multiplication by integers. Given M, we set q to be 2M — 1, and p 
any prime larger than or equal to M and relatively prime to 2M — 1. 
Let u be any integer ranged from 1 to M — 1，relatively prime to 
2M — 1. For 7 = 0 , 1 , . . . , M - 1, we let 

n
l
j
 

M 



as the original construction in [35 , 
Let h be the number of integers ranged from 1 to M — 1 and 

relatively prime to 2M — 1. The following is a generalization of that 
in 35 
Theorem 4,12. For all M； the sequences by CRT construction 
form h distinct MUIS^{p{2M — 1), M)s consisting of hM distinct 
sequences. 
Proof. First we know that ail sequences formed by CRT construction 
are eqiii-difference. For s加 its common difference can be found 
as (j, u) or (p 一 j , 2M — 1 — u). Then we will show Sj�u for j = 
0 , 1 , . . . , M - 1 form a MUIS'(p(2M-l) , M). Suppose for the sake of 
contradiction that, we can find two distinct i and j in {0 ,1 , . . . , M — 
1} such that cf (2"二 J and share a common element. Then 

(MivW) — [iyuviu) 二�jy'2,y'2u) — y2u) 
for some + yi and 1/2 ^ By equating the second components 
on both sides, we see that u(;y[ — yi) = u{y'2 — ^2) mod 2M — 1. 
Since the range of yi, y � , y2 and y'2 is between 0 and M — 1, we 
must have y'l — yi = y'2 — 112 due to u is prime to 2M — 1. From 
the first component, we obtain {i — j){y[ — yi) = 0 mod p, which 
implies that y'l = yi. This contradicts the assumption that y[ / yi. 
It implies the condition in (ii) of Theorem 4.6 holds for Zs^^ here for 
j = 0 , . . . , M —1. Therefore, following Theorem 4.6 we can conclude 
that the sequences formed by the CRT construction with the same 
value of u form a MUIS'(p(2M - 1),M). 

Now we know there are total h sequence set formed by CRT 
construction with different value of u. Then we will show that all 
hM sequences here are distinct. For sequences constructed by the 



same value of u) we can easily find that these M sequences are 
distinct, otherwise any two non-distinct sequences would be totally 
blocked each other for some relative integer-shift which contradicts 
the definition of UI sequence set. 

Since u is relative prime to 2M — 1，we have 
g^Q mod 2M 一 1 

with g = u). Thus we find Mp ^ 0 mod L with L = p{2M-
1). Let ui and U2 be two distinct integers ranged from 1 to M — 1 
and relatively prime to 2M — 1 respectively. Consider two sequence 
formed by CRT construction letting u = ui and u = u^ respectively. 
Suppose for the sake of contradiction that, for some j and j' we can 
find that 

U,'叫）二（/，'� o r {p 一 /，2M — 1 — U 2 ) ‘ 

By equating the second components on both sides, we see that 
ui 二 or 2M — 1 — U2 mod 2M — 1. 

Since that the range of ui and U2 is between 1 and M — 1, we must 
have ui 二 This contradicts the assumption that ui + u^. Thus 
any two sequences constructed by different value of u can be found 
distinct. 

Finally, we can conclude the CRT construction form h distinct 
MUIS^(p(2M — l ) ,M)s including hM distinct sequences. • 

We modify the CRT construction via the method stated in 
Theorem 4.11. We call it mCRT construction. 
Theorem 4.13. For all M, the sequences by mCRT construction 
form h distinct MCIS^{2p{2M — l),M)s consisting of hM distinct 
sequences. 



Proof. It directly follows Theorem 4.11 and 4.12. • 
Example 4.3 : By mCRT construction for p — M = 3, we can 

design the following two distinct MCIS®(30,3)s including six distinct 
sequences. 

The first MCIS®(30,3) with = 6,5̂ 2 二 4 and gg = 14: 
51 二 [100000100000100000000000000000； 

52 = [100010001000000000000000000000] 

53 = [100000000000001000000000000010；. 

The second MCIS®(30, 3) with gi = 12, 二 2 and 仍 二 8: 
51 = [100000000000100000000000100000； 

52 二 [ 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 : 

53 二 [ 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 : . 

By mCRT construction, we will show the asymptotic lower 
bound in Theorem 4.10 can be achieved. 
Theorem 4.14. 

= (4.13) M^oo 4M2 � � 

Proof. Let Pm be the smallest prime larger than or equal to M. By 
Bertrand's postulate, we know if M > 2, then there always exists 
at least one prime number not smaller than M and smaller than 
2M — 1. It implies pu < 2M — 1 for M > 2. Then as pu is a 
prime, we find the smallest two integers not relatively prime to pM^ 
are pM and 2pM- Because pM < 2M — 1 < 2M < 2pM, we further 
find Pm and 2M — 1 are always relatively prime for M >2. Thus 
we can obtain a MCIS'^(2pii//(2M — 1), M) from mCRT construction 
with Pm for M >2. 



M L subsets in 
2 8 {0,2},{0,4} 
3 24 {0,2,4},{0,6,12},{0,8,16} 
4 52 {0,2,4,6},{0,8,16,24},{0,10,20,30},{0,12,26,38} 
5 84 {0,2,4,6,8},{0,10,20,30,40},{0,12,24,36,48}, 

{0,14,28,42,56}, {0,16,32,50,66} 

Table 4.1: The shortest known periods of MCI sequence set with M sequences 
for M = 2,3,4,5. 

Also we have the following fact: 
lim inf Pm/M = 1. 
M->oo 

since there are infinitely many primes and pm = M if M is a prime. 
Therefore we have 

2pm{2M — 1) lim inf M^qq 4M2 1, 

This shows that the asymptotic lower bound in Theorem 4.10 is 
tight and proves Theorem 4.14. • 

Remark: For M = 2,3,4,5, the shortest known period of MCI 
sequence set with M sequences is listed in Table 4.1. We note the 
sequence set for M = 2,3 is equi-difference, but not for M = 4,5. 
However, these sequence sets are all constructed from UI sequence 
set following Theorem 4.11. For example, when M = 4, it is con-
structed from 

{0,1，2,3}, {0，4，8,12}, {0,5,10,15}, {0,6,13,19} 

in Z26. 
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Figure 4.2: The blocking probability for 5 users in a random access sclicmc with 
Ps = 1/18 and 1/10. 

4.5 Discussion on Blocking Probabi l i ty 
In multiple access scheme for the asynchronous collision chan-

nel without feedback, we can compute the probability of at least 
one of the users cannot send any packet successfully in a given time 
length of N slots. We call this the blocking probability. The block-
ing probability is zero for MCI sequences if N is not less than the 
sequence period. 

Consider a random access scheme in which each user sends a 
packet in each slot with a fixed probability Ps. Its blocking proba-
bility of M users in N time slots can be found by 

—(1 — ( 1 1 ( 1 — M-1、N、M (4.14) 
It is obvious the blocking probability of the random scheme is al-
ways nonzero. In other words, non-blocking property for the asyn-
chronous channel does not hold here. 



The fraction of ones of the MCI sequences formed by mCRT 
construction for 5 users is 1/18; and the sequence period is 90 time 
slots. The blocking probability is zero for the MCI sequence set if 
N > 90. In order to make a fair comparison with MCI sequence 
set considering power consumption, we set Ps == 1/18 to generate 
the same expected fraction of ones in the random access scheme. 
We plot its blocking probability for 5 users in Fig. 4.2. We see that 
when N = 90, the blocking probability of random access is about 
0.2; and if we want it less than, say 10—4, in a time length of N time 
slots, we must have N > 306 for random scheme. 

In fact, the random scheme would enjoy better blocking proba-
bility if we relax the requirement of expected fraction of ones. Given 
M, we find the minimal value of (4.14) is achieved by Ps = 1/(2M). 
Then tlie blocking probability of the random scheme for 5 users 
with Ps = 1/10 is also plotted in Fig. 4.2. For N = 90, the blocking 
probability is about 0.11. The expected power consumption is ap-
proximately double of that in the MCI sequences formed by mCRT 
construction. 

In addition, we plot in Fig. 4.3 the blocking probability for 
different number of users, with the condition that the time length 
and Ps are equal to the period and duty factor of mCRT sequences 
respectively. The blocking probability reduces rapidly when the user 
number grows. It is caused by the period of mCRT sequences is of 
order 0{M^). 

4.6 Conclusion 
MCI sequence sets are minimal energy sequence sets which pro-

vide the non-blocking property for the asynchronous collision chan-
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Figure 4,3: The blocking probability for different user numbers in a random access 
scheme under the condition Ps — M/2pm{2M — 1) and N = 2p财(2M — 1). 

nel without feedback. The lower bound on the minimum period of 
such sequence set is shown as 2JVP for M users in this chapter. Fur-
thermore, for equi-difference set, we improve the asymptotic lower 
bound to 4M2, A construction that meets this bound asymptoti-
cally is also given. 

In addition, we have the following: 
Conjecture 4.15. Given M, then we have 

. , 4 n i n ( M ) lim m i ~~777；；= 1, M^oo 4iVf2 

Furthermore, for all M > 2, we have the following improve-
ments upon the asymptotic bounds in Conjecture 4.15. 
Conjecture 4.16. Let ^m be the shortest period among all sets of 
M UI sequences, each with Hamming weight M • Then for M >2 
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we have 
^mm(M) = 2CI>M. 

The result has been verified by computer on the range of 2 < 
M < 5. The proof of the above two conjectures is an interesting 
and challenging direction for further studies. 

• End of chapter. 



Chapter 5 

Strongly Conflict-Avoiding Codes 

Summary 

Strongly conflict-avoiding codes are used in the asyn-
chronous collision channel without feedback to guaran-
tee each active user can send at least one packet suc-
cessfully in its active period. The number of codewords 
in a strongly conflict-avoiding code is the number of po-
tential users that can be supported. In this chapter, 
an upper bound on the size of strongly conflict-avoiding 
codes is derived for all Hamming weights. In addition, 
we provide an improved upper bound for equi-difference 
codes. This bound is further shown to be tight asymp-
totically. 



5.1 In t roduct ion 
A set of M binary sequences is called (M, K)-conflict-avoiding 

40] if every subset of K sequences out of these M sequences is 
user-irrepressible. Conflict-avoiding sequences find applications in 
the collision channel without feedback in which there are M po-
tential users, but at most K of them are active at the same time. 
It guarantees the non-blocking property in the slot-synchronized 
case. In particular, considering the case where Hamming weight of 
each sequence equals K, an (M, K)-conflict-avoiding sequence set 
is called a conflict-avoiding code (CAC) [14,17,18,22-24,33,34；. 

In this chapter, we consider a more general scenario in which 
the collision channel is asynchronous, as described in Section 1.1. A 
set of M binary sequences is called (M, K)_strongly conflict-avoiding 
if every subset of K sequences out of these M sequences is com-
pletely irrepressible (see Chapter 4). It guarantees the non-blocking 
property in the asynchronous channel with M potential users and 
at most K active users. Let the Hamming weight of each strongly 
conflict-avoiding sequence be w. Under the assumption of w = K, 
an (M, ir)-strongly conflict-avoiding sequence set is called a strongly 
conflict-avoiding code (SCAC). Obviously, given M and K, the col-
lection of all SCACs is a subset of the collection of all CACs，since 
the slot-synchronized channel is a special case of the asynchronous 
channel. 

In this chapter, we are interested in SCAC and equi-difference 
SCAC with fixed codeword length and a given value of K. The aim 
of the study is to maximize the total number of potential users that 
can be supported. This viewpoint is also adopted for studying CAC 
and equi-difference CAC in [14,17,18,22-24,33,341. We remark that 



:= {a-i-b 

respectively. The negative of A is defined as 
—A := {—a : a G A}. 

some results in this chapter are motivated by [34] which provides a 
general upper bound for the size of CAC. 

This chapter is organized as follows. We define SCAC and eqiii-
difference SCAC by setting up some notations in Section 5.2. The 
first main result in this chapter is contained in Section 5.3, which 
provides an upper bound on the number of potential users that can 
be supported in an SCAC, given the length L and Hamming weight 
w. Furthermore, in Section 5.4 we present the second main result: 
an upper bound on the size of equi-difference SCAC. The asymptotic 
version of the upper bounds derived in previous sections is given 
respectively in Section 5.5. In Section 5.6, we show the upper bound 
in section 5.4 is asymptotically tight. Finally, we close in Section 
5.7 with some concluding remarks. 

5.2 Definitions and Nota t ions 
As defined in Section 1.3, we can represent a binary sequence by 

the characteristic set specifying the time indices where the sequence 
value is equal to one. In this chapter, subsets of with cardinality 
w are also called codewords. We sometime say that X is a codeword 
or sequence of weight w. 

Given two non-empty subsets A and B of the sum set and 
difference set of A and B, are defined as 
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1} n d \Z j ) = 0 

is called a CAC of length L and weight w if for all j + k, 
^ F ( : Z : � . ) N C R ( 2 F C H , ( 5 . 1 ) 

or equivalently, if 
Hs,S,{t) < 1 

for all j • k and r . 
( 5 . 2 ) 

Definition 5.2. Furthermore it is called an SCAC of length L and 
weight w if for all j ^ /c, 

= ( 5 . 3 ) 

or equivalently, if 
丑参 I D ) � < 1 (5.4) 

for all j ^ k and 丁. We use the notation SCAC(L, w) for an SCAC 
of length L and weight w. The symbol SCAC®(L, w) is used for an 
equi-difference SCAC of length L and weight w. 
Remark: Prom the property in (5.3), we know 

Given a codeword Z, we make the following definition, which 
is based on d*{X) defined in Section 1.3, 

d\X)' '= d*(I) U {d*{X) + 1) U {d'{X) — 1). 
Obviously, we have d*{iy D d*{X). 
Definition 5.1. A collection of M codewords 

L 1
 

r
l
 

M
 



= { 0 , 1 0 , 2 0 } 

={0,2 ,4 ,26 ,28} 
^^({0,10,20}) 

尋,2,4}) 

14,22 
4{0,12 ,24 

and 
cf ({0,10, 20})' = {9,10,11,19,20,21 

2,4})' = {1,2,3,4,5,25,26,27,28,29} 
cf ({0,14，22}y = {7,8,9,13,14,15,16,17,21，22,23} 
tf ({0,12, 24})' = {5,6’ 7,11，12,13,17,18,19,23,24,25} 

satisfy the condition in (5.3). The SCAC is equi-difference, with 
generators 10, 2, 22 and 12. 

Given positive integers L and w, consider respectively the class 
of all SCAC(L, w)s and SCAC®(L, w)s. The maximal number of 
codewords in an SCAC(L, w) is denoted by M(L, w). We also use 

w) for the maximal number of codewords in an SCAC^{L, w). 
The objective of this chapter is to derive upper bounds on M(L, iv) 
and M®(L, w) for all L and w. 

as 0 is always included in d{Zk). One can check (5.3) also implies 
for all j • k, 

{d\Xj) + {0,1}) n + {0,1}) = 0. (5.5) 
Example 5 .1 : L 二 30, w = 3. The four codewords {0,10,20}, 

{0,2,4}, {0,14,22} and {0,12,24} constitute an SCAe(30,3). We 
can verify that the following 
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5.3 Upper Bound on M(L, w) 
5.3.1 The case of L < 

The result that M(L, w) = 0 ioi L < w is obvious from the 
definition of Hamming weight. Now we will study the case for w < 
L < 2vJ\ 
Theorem 5.1. For w < L < 2Vi?, 

M{L,w) = 1. (5.6) 

Proof. Let Xj and X^ be two distinct codewords in an SCAC(L, w). 
We can find 1 • diX]̂ ) otherwise the condition in (5.3) would be 
violated since 0 and 1 are always included in cf 广 Thus we 
conclude the Hamming weight of [Sk \ / s f� ) is 2w. From Proposition 
3.2, we know 

E 丑 + 增 ⑷ = 2 切 2 . 

T=0 

Then with the condition w < L < we can find some TQ such 
that 

丑參41))(丁0)〉1， 

which, contradicts (5.4). Therefore, we can conclude that M(L, w) < 
2 for L < 2vJ\ Since (5.3) always hold for an SCAC(L, w) with one 
codeword, we further have M�L, w) = 1 foi w < L < 2'uP'. • 

5.3.2 The case of L > 

In this subsection we derive an upper bound on the size of 
SCAC for L > 2u? by applying Kneser's theorem [16], which is a 



result about the sum of subsets in an abelian group G. As we only 
work with Zj,, Kneser's theorem will be considered for G = Zi. 
First we introduce some more notations. 

Given a non-empty subset S C an element h G Zi is called 
a period of S if h-i-S = S. The stabilizer of S, denoted by H(<S), is 
the set of all periods of S, 

H{S) •.二 {hel^ir. h + S = S}. 
It is obvious that 0 G H{S) for every non-empty subset S of Zx,, 
and H{S) is a subgroup of Xi. 

We use (a) to denote the subgroup of Iai generated by a, i.e., 
〈a〉：= { j a G Z l ： j = 0 , l ， 2 ’ . . . } . 

When a divides L, we have {a) consists of L / a elements. 
Note that an subset S of Zx, with > 1 can be written as 

the union of cosets of H, 
S=[j{H+a). 

aes 
As an example, consider the subset S = {0,1,4,5} C Zg. The 

stabilizer of S is H = {0,4} 二�4�and <5 is a union of H and the 
coset {1, 5}. 

First we have the following simple result: 
Lemma 5.2. For any subset 工 E Zl with 0 gX, we have H{X) C X. 

Proof. Let h be an element in H{1). Because 0 E X and h + X CX^ 
we have h = h + 0 E X. This proves that the stabilizer of X is a 
subset of X if 0 e X. • 
Theorem 5.3 (Kneser). Let A and B be non-empty subsets ofZi, 
and let H 二 H{A + B) be the stabilizer of A + B. If \A + B < 



A -{- B , then 
A^B = A-\-H + I3 + H 一 H (5.7) 

Proof of Theorem 5.3 can be found in [19] or [26]. We will apply 
Kneser's theorem through the following Corollary. 
Corollary 5.4. Let X he a codeword in an SCAC{L, w) such that 
d{X) + {0,1}| < 3w -2 and H be the stabilizer of d{X) + {0,1}, 

then we have \H\ > 1 and 
d{X) + {0,1}| = \X+ {0,1} + H\ + \X+H\ - \H\. (5.8) 

Proof. Suppose that X is a codeword in an SCAC(L, w) such that 
d{X) + {0,1}| <3w-2 and let H be the stabilizer of d{X) + {0,1}. 
—X\ can be easily found as w. By the definition in (5.3), we know 

1 • Thus we have {0,1}| = 2w. The condition in 
Kneser's theorem is satisfied with A = Z + {0,1} and B = —X, 
because 

X + { 0 , l } + (-X) | = |̂ i(X) + {0,l}| < S w - 2 
< Z + {0,1}| + I — :Z:| 3w. 

From (5.7), we obtain 
d(x) + {o,i}| 二 |:r + {o, i} + F | + | — 2"+ 丑 H 

H 
In the last equality above, we have used the fact —H = H since 
H is d. subgroup of ZL- This proves (5.8). Since \T + H\ > w and 
X + {0,1} + H\ > 2w, we obtain the following from (5.8). 



Thus we have 
3w — < \d{X) + {0,1}| < 3 i y - 2 

We conclude that H > 2 • 

Definition 5.3. A codeword X of weight w is said to be peculiar if 
(5.9) 

One can check in Example 5,1 only the first codeword is peculiar. 
In the next theorem we give a method for upper bounding the 

size of an SCAC. 
Theorem 5.5. Let 赏 be an SCAC{L^ w) in which P codewords are 
peculiar. For j = 1 , 2 , . . . , P； denote the j-th peculiar codeword by 
Xj, and let the stabilizer of d(Xj) + {0,1} be Hj. Define 

A j := \Xj + {0,1} + Hj\ + \Xj + — 3 ' � . 
Then for L > 

—2 + 岡 — A 厂 1) 
赏 < 3w ~~ 3 

(5.10) 

(5.11) 

Proof. By the definition in (5.3), we have the following 

幽)+ {0,1}) n (cf (Zfc) + {0,1}) = 0 
for all distinct j and k. It implies (d*{Xj) + {0,1}) and {d*{Xk) + 
{0,1}) are disjoint for any pair of distinct codewords Xj and Xk in 



By the definition in (5.3), we have {0,1,L - 1} n d%Xj) = 0 
Furthermore, we have 

for all j . We thus have the following basic inequality, 
(5.12) 

1钱 

We also know {0,1} U + {0,1}) = d(Xj) + {0,1} for all j, 
which implies 

\d*{Tj) + {0,1}| = \d{Xj) + {0,1}| - 2. 
Thus the inequality in (5.12) becomes 

L ^ 2 > > (M(X) + { 0 , l } | - 2 ) 

From Corollary 5.4 we get 
p 

> + {0，1} + Hj\ + \lj + 一 \Hj\ — 2) 

j=i 
p 

二 — + — 2) + (1̂ 1 — P){？>w — 3) 
j=i 

After some rearrangement of terms, we get 

省< 
This finishes the proof of the theorem. • 

We introduce a few more definitions which will be useful in 
Theorem 5.6. 



w) := {<S C S{L, w) : gcd(i, j) = 1, •？:，j, G cS, 7 
Given an integer 1/ > ic > 2, if ^ ( L , w) is non-empty, define 

F(L, w) := max 
xes 

X ~ l — x\ + � w / : c l ) + 3ty) (5.15) 

with the maximum taken over all subsets S in ^ ( L , w). We note 
that F[L, w) is non-negative by the condition in (5.14). If ^{L, w) 
is empty, we define F(L, w) as zero. 

Theorem 5.6. For L > 2'uP' and w > 2, 

M{L,w) < 3w~3 (5.16) 

Proof. In an SCAC(L, w), suppose that there are P peculiar code-
words, denoted by Xi, Z2,. . . ,2p. For j = 1 ,2 , . . . , P , let Hj be the 
stabilizer of d{Xj) + {0,1}. Consider two distinct codewords and 
Zj in these P codewords, we have \Hi\ and \Hj\ are both strictly 
larger than one by Corollary 5.4. As subgroups of Hi and Hj 
can be written as (a^) and {aj) respectively, for some proper divisors 
cq and aj of L, so that \Hi\ = Ljcxi and \Hj\ = Ljay 

Definition 5.4. L e t 

S{L, w) := G {2,3, -2}:工 divides L, (5.13) 
and ^(fu'/x] +�2w;/V | ) — x < 3w — 2J. (5.14) 

S(L, w) may be empty, for example when L is prime. Let ^ ( L , w) 
be the collection of subsets of S�L, w), such that each pair of distinct 
elements in <S E w) are relatively prime, i.e.. 

+ 



Suppose that \Hi\ and \Hj\ are not relatively prime, say, if 6 > 1 
and Hj ， then 

L 
一 • 

， L L 
一 • 

Oti‘ 
and we get 

haiXi = L = hajXj. 
After dividing the above equation by b, we see that Ljb is an integral 
multiple of both oq and a j , and hence is a common element in Hi 
and Hj. Moreover, Ljh is non-zero mod L, because 6 > 1. The two 
stabilizers Hi and Hj thus contain a common non-zero element. By 
Lemma 5.2, we have d(Xi) + {0,1} 3 Hi and d{Xj) + {0,1} 3 Hj, 
and so L/b is also a common non-zero element of d(li) + {0,1} and 
d{Xj) + {0,1}. If Ljh = 1, we have cq = aj = 1 and \Hi 
It implies Hi = Hj = { 0 , 1 , L — 1} and 

d{Xi) + {0,1} - d{lj) + {0,1} 二 {0 ,1 , . . . , L — 1} 
which contradicts the defining property of (5.3), Hence non-zero 
Ljh is not equal to one. We thus find Ljh is also a common element 
of (f{Xi) + {0,1} and (f{Xj) + {0,1}‘ This contradicts (5.5) which 
is necessary for (5.3). Thus we find that \Hi\ and \Hj\ are relatively 
prime. 

For each j, \Xj + {0,1} + Hj\ is an integral multiple of \Hj 
because Xj + {0 ,1}+Hj is a union of Hj and its cosets. Furthermore, 
we have \Xj + {0,1} + Hj\ is larger than or equal to 2w because 
Xj + {0,1} + Hj\ contains |2j + {0,1}| and \Xj + {0,1}| = 2w which 
has already been noted in the proof of Corollary 5.4. Similarly, we 
also have \Xj-i-Hj\ is an integral multiple of \Hj\ and is not less than 



w. We thus have the following inequality, 
\Xj + {0,1} + 丑j‘| + \Xj + 丑 2 ( 

2w + w 
Hj 

The two parts of right hand side in the above inequality are the 
smallest integral multiples of \Hj\ which is not less than 2w and w 
respectively. 

We next show that \Hj\ e S{L, w), for j = 1 , 2 , . . . , P. For 
each j, the subgroup Hj cannot have size strictly larger than 3w — 2, 
otherwise by Corollary 5.4，we have 

d(Ij) + {0,1}| = \Xj + {0,1} + iĴ .I + + Hj\ — 
> 2阅I — 
= i T j l > — 2, 

which is a contradiction to the definition of peculiar codeword in 
(5.9). In addition, we must have \Hj\ > 2 by Corollary 5.4. This 
shows that 2 < �3 w — 2. 

As a subgroup of Z^, we see that jUjl is a divisor of L. More-
over, for j = 1，2,...，jP，\Hj\ satisfies 

Hj 
>m{ 

2w 
Hj + w 

Hj )一 Wj 
Consequently, \Hj\ satisfies the conditions in (5.13) and (5.14), 
hence belong to the set S{L, w). We have already shown that 
and \Hj\ are relatively prime for i + j . Therefore 

and 
Hi 

{| 场 1,1 丑2I,…，1 丑 切 ) ， 

For j = 1 , 2 , . . . , F, let A j be defined as in Theorem 5.5. We 
can upper bound \Hj\ — 1 — Aj, which appears in the summation in 



p q r s F 
0 0 0 0 0 
1 0 0 {2} 1 

> 2 0 0 {2,4} 3 
0 > 1 0 {9} 2 
1 > 1 0 {2,9} 3 

> 2 > 1 0 {2,4,9} 5 
0 0 > 1 {5} 1 
1 0 > 1 {2,5} 2 

> 2 0 > 1 {2,4,5} 4 
0 > 1 > 1 {5,9} 3 
1 > 1 > 1 {2,5,9} 4 

> 2 > 1 > 1 {2,4,5,9} 6 

Table 5.1: Values of S{L,4) and F(L,4) 

(5.11)，by 

Hj - 1 - A , < Hj w 
Hj Hj 2w 

Hj + 
which equals the summand in (5.15) with x substituted by \Hj 
By exhausting all possible choices of S in w), we have the 
following upper bound 

p 

Substituting it back to (5.11), we have 
L-2 + F{L,w) 

赏 < - 3 
This completes the proof of Theorem 5.6. 

We illustrate Theorem 5.6 with w — A. 
• 



Corollary 5.7. Let L be an integer factorized as where £ 

M ( L , 4 ) < 

9 or 5. Then for L > 32 we have 

liL - 2)/9. if p = q = r = 0 , 
[{L - l ) /9 . i f p =l,q = r 二 0, or 

p = 0, g = 0 ) 

剛 i f p 二 '厂= 0 , q>h or 
p = l^q = 0 > 1 ) 

L(么 + 
ifp>2,q = r = 0, or 
P=l,q>l = 0 ,or 
P = 0 , g > 1 , r > 1 

？ 

L(L + 2)/9j i f p > 2,g 二 
0,r > 1, or 

P=l,q>l , r > 1 J 
L(I + 3) /9� ifp>2,q> l,r == 0 
(L + 4)/9j ij^p>2,g>l,r>l. 

Proof. The value of x — 1 — :2;(�2t(;/a:~| + + Sw for x e 
{2 ,3 , . . . , 10} \ {3,6,7} is shown in the following table: 

X 2 4 5 8 9 10 
X — 1 — x{f2w/x] +�^^V^l) + 3w 1 3 1 3 2 1 

We note that 3, 6 and 7 are not shown in the above table, because 
they do not satisfy the condition in (5.14). 

Since the value of a: — 1 —工(�216>/；2；"| + Iw/x]) for a; = 2 
and a: = 10 are the same, we can disregard the case x = 10 in the 
computation of F[L,w) without impacting the result. By the same 
reason, we can ignore the case a; = 8. We tabulate S'(I/,4) and 



4) in Table 5.1. By Theorem 5.6，we get 
L - 2 + F(L,4) M ( L , 4 ) < 9 

The upper bound in Corollary 5.7 is obtained after gathering up the 
data in Table 5.1. • 

5.4 Uppe r Bound on w) 
The result in Theorem 5.1 also holds for the upper bound on 

w) if L < This section will be devoted to establishing 
an upper bound on M已[L, w) for L > 2w\ 
Definition 5.5. We adopt the terminology in [24] and say that a 
codeword X of weight w is exceptional if 

\(r{T)\ <2w — 2, (5.17) 
or equivalently, if 

d{X)\ <2w-~-2. (5.18) 

From the discussion above, we see that if a codeword X is equi-
difference with generator g, then it is exceptional if and only if 士仏 
±25", . . . , ±(u) — l)g are not distinct mod L. 
Lemma 5.8. Let X he an exceptional codeword in an SCAO{L, w) 
and its generator be g, then we have 

(i) g is not relatively prime to L; 
(ii) d{X) is a subgroup ofZi. 

Proof. If an equi-difference X is exceptional, i.e., \d{X)\ < 2w — 2, 
then there exists two distinct integers m! and m2 ranged in [— (w — 



from which we find d{X) is a subgroup of • 
We illustrate Lemma 5.8 using Example 5.1. 
Example 5.1 continued: The eqiii-difference codeword gen-

erated by 10 is exceptional, because 
|ar({0,10,20})I - |{10,20}| = 2 < 2 . 3 — 2, 

We can verify that d{{0,10,20}) = {0,10,20} is a subgroup of Z30. 
Lemma 5.9. Let Xi and 工2 be two distinct exceptional codewords in 
an SCAO{L^ w). Then \d[Xi)\ and \d{X2)\ are two relatively prime 
divisors of L between w and 2w — 2. 
Proof. First by Lemma 5.8 we know \d{Xi)\ and \d{l2)\ are both 
subgroups of Zi and thus both divide L. If \d{Xi)\ and |(̂ (工2)| are 
not relatively prime, as proved in Theorem 5.6, we find d{Zi) and 
工2) contain a common non-zero element. This contradicts the 

defining property in (5.3). Here, they can also be found in the 
range [w, 2w — 2] from the definition of exceptional codewords. This 
completes the proof of Lemma 5.9. • 

1), w — 1] satisfying 
rriig = mag mod L 

which implies g is not relatively prime to L. 
By the above equation, we further have 

tg = 0 mod L 
1712 and 

c
S
 

r
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Definition 5.6. A codeword Z is said to be dispersive if any two 
distinct elements in d{X) are not consecutive. Otherwise, it is non-
dispersive. 

Lemma 5.10. Let工 he a non-dispersive codeword in an SCAC{L, w) 
and its generator be g. If there are k (k > 0) pairs of consecutive 
elements in d{X), then we have 

{2w ^ k - l)g = 1 or - 1 mod L (5.19) 
with k < w — 1; 

(a) g and 2w — k — 1 are both relatively prime to L; 
(in) Z is non-exceptional 

Proof. If there are k [k�Q) pairs of consecutive elements in <i(X), 
then there exists at least one solution of m in [—2w + 2,2ui — 2] for 
the following: 

mg = 1 mod L. (5.20) 
We first have g and m are both relatively prime to L, otherwise 
(5.20) does not hold. Then by the condition g is relatively prime to 
L, we find there exists at most one solution of m in [—2IL! + 2, 2w — 2 
for (5.20). 

Furthermore, the solution range of [—'� +1,’⑴一 1] can be ruled 
out here, otherwise we can find 1 G d{X) which violates the condition 
in (5.3). Hence we must have one unique solution of m in [w^ 2w — 
2]U[—2w-\-2, —w]. The value of m can be easily found as — A;-1 
or -{2w - k - 1) from d{X) = {0, p,…，（it; 一 l)g} with 1 • d{X). 
Then — /c — 1 is also relatively prime to L. From the range of m, 
we prove k < w — 1. 



In addition, we obtain X must be non-exceptional, otherwise g 
is not relative prime to L following (i) of Lemma 5.8, which con-
tradicts the condition g is relatively prime to L for non-dispersive 
2. • 

We illustrate Lemma 5.10 by the following example. 
Example 5.2: == 28, li； = 3. The three codewords {0,2,4}, 

{0, 7,14} and {0, 9,18} constitute an SCAC'(28,3). We can verify 
that the following holds for (5.3). 

4{0,2,4}) = {0,2,4,24,26} 
d({0，7,14}) 二 {0 ,7 ,14,21} 
ci({0，9,18}) = {0,9,10,18’ 19}. 

The SCAC is equi-difference, with generators 2, 7 and 9. The code-
word generated by 9 is non-dispersive, because (9,10) and (18,19) 
are two pairs of consecutive elements in < (̂{0, 9,18}). Furthermore, 
one can check 

(2 . 3 — 2 - 1) . 9 = —1 mod 28 
with = 2 < 3 — 1, also 9 and 2 . 3 — 2 — 1 二 3 are both relatively 
prime to 28. 
Lemma 5.11. Let 工i and X2 be two distinct non-dispersive code-
words in an 5CAC{L^ w). If there are ki and k2 pairs of consecu-
tive elements respectively in d{Xi) and d{X2), then 2w — ki — 1 and 
2w ~ k2 — 1 are two relatively prime integers between w and 2w — 2 
such they are both relatively prime to L. 
Proof. Let gi and 扔 be the generator of Xi and X2 respectively. By 
Lemma 5.10, if there are ki and k? pairs of consecutive elements 



respectively in d{Zi) and d{^2�, then we have the following result 
for Xi and 工2 respectively. 

First, we know — A;! — 1 and 2w — k2 — l are both relatively 
prime to L. By letting ri = 2w — ki — 1, we have the following two 
possible cases for Zi. 

rigi = 1 mod L; 

By le t t ing�2 
cases for X2. 

TiQi 二 —1 mod L. 
2w — A;2 — 1, we also have the following two possible 

7'292 二 1 mod L\ 
� 2仍= — 1 mod L. 

By the proof in Theorem 4.8, we can conclude that r j and 
� 2 must be relatively prime. We further obtain — /c! 一 1 and 
2w — k^ — l are two relatively prime integers between w and 2w — 2 
such they are both relatively prime to L. 

• 
The next theorem establishes an upper bound on the size of an 

equi-difference SCAC. 
Theorem 5.12. Let ^ be an SCAC'i^L^ w) in which Ei codewords 
are exceptional and E2 codewords are non-dispersive. For j = 
1 , 2 , . . . , El, denote the j~th exceptional codeword by 工j. For j = 
1 , 2 , . . . , E2, denote the j-th non-dispersive codeword by J j , and let 
the number of pairs of consecutive elements in d[Jj) he kj. Then 
for L > 2w\ 

省< 
L — 2 + — \d{X )̂\ — 1) + E f t i k 

iw - A (5.21) 



Proof. From (iii) of Lemma 5.10, we know in an SCAC®(L, w), the set 
of exceptional codewords and the set of non-dispersive codewords 
are mutually exclusive. 

Let the number of non~exceptional and dispersive codewords be 
N • Since any two elements in d{X) are not consecutive and (T (X)= 
2w~~2 for each non-exceptional and dispersive eqiii-difference code-
word X, by definition we have the following inequality: 

El E2 
L - 2 > 2N{2w - 2 ) + ^2|cf(2"力I + — 4 — kj). 

j=i i=i 
By the fact that \(f{Xj)\ = \d{Xj)\ — l^ the above inequality becomes: 

El E2 
L - 2 > 2N{2w - 2) + ^2{\d{lj)\ — 1) + — 4 — kj) 

j=i j=i 

= 2{N-^Ei + E2){2W-2) 
El E2 

j=i j=i 

After some rearrangement of terms, we get 

L — 2 + 2 — \ d m — 1) + E ^ i kj < 2{2w ~ 2) 
This finishes the proof of the theorem. • 

We make a few more definitions which will be useful in Theorem 
5.13. 
Definition 5.7. L e t 

Si{L, id) < X E {lo, li； + 1, . . •, - 2} : X divides L (5.22) 



Si(L, w) may be empty, for example when L is prime. 
Let 

Si^L.w) := ^^x e {w,w + ... ,2w - 2} : gcd{x, L) = (5.23) 
Let w) be tke collection of subsets of 6'i(L, w), such that each 
pair of distinct elements in Si G w) are relatively prime, i.e., 

只 ( A 切）：={cSi C Si{L,w) : gcd(i,j) = 1, 
Vz,j,E / j} . 

Let be the collection of subsets of 52(1/, w), such that each 
pair of distinct elements in S<i G ^l iL^ w) are relatively prime, i.e., 

夕2(Aw) ：二 {<52 c S认L,w) : gcd(z,i) = 1， 

j}. 
Given an integer L > w > 2, if is non-empty, define 

F认L, w) •= max > {2w - x - 1) (5.24) 

with the maximum taken over all subsets Si in If w) 
is empty, we define Fi(L, w) as zero. We note that the summand 
in (5.24) is positive by the condition in (5.22). Hence, F认L,w) is 
non-negative. 

Similarly, we also define the following if 5̂̂2(1，切）is non-empty 
for a given integer L > w > 2, 

F2{L,w) :=： max 1). (5.25) S2€y2iL,w) xeS2 
If 夕 i s empty, we define F2{L,uu) as zero. 



Theorem 5.13. For L > and w > 2, 
— „ — ) 

L - 2 + 2Fl(L,̂ (；) + F2(L,̂ (；； 

— 4 (5.26) 

Proof. Following Lemma 5.9, we have 
El 

{2w~\d{Xj)\-l)<Fi{L,w). 

Following Lemma 5.11, we have 
E2 

� k j < F2{L,w] 
Substituting them back to (5.21), we have 

、 ， 厂 L 4 ' � - 4 
This completes the proof of Theorem 5.13. 

We illustrate Theorem 5.13 with w = 4. 
• 

Corollary 5.14. Let L he an integer factorized as where i 
is not divisible by 2, 3 or 5. Then for L >32 we have 

" 1 2 
(L + 2)/12 

{L + 3)/12. 
(L + 4)/12. 

(L + 6)/12. 
(L + 8)/12. 

i/j? 二 l，g 二 r 二 0， 

z/p = 1, g > 1, r = 0, or 

if p = r =： 0, g > 0 
i f p = > > 1, 
i f p = Q,q>0,r>l 
ifp>2,q>0,r = 0 
ifp>2,q>0,r>l. 



p Q r S2 FI,F2 2Fi + F2 
0 0 0 0 {4.5,6} 0,5 5 
1 0 0 0 {5} 0,2 2 

> 2 0 0 {4} {5} 3,2 8 
0 > 1 0 0 {4,5} 0,5 5 
1 > 1 0 {6} {5} 1,2 4 

> 2 > 1 0 {4,6} {5} 3,2 8 
0 0 > 1 {5} {4,6} 2,3 7 
1 0 > 1 {5} 0 2,0 4 

> 2 0 > 1 {4,5} 0 5,0 10 
0 > 1 > 1 {5} {4} 2,3 7 
1 > 1 > 1 {5,6} 0 3,0 6 

> 2 > 1 > 1 {4,5,6} 0 5,0 10 

Table 5.2: Values of 5i(L, 4), 82(1,4), Fi(L, 4) and F2(L’ 4) 

Proof. We tabulate Si{L, 4), ( � 4 ) , F认L, 4) and F2(L, 4) in Table 
5.2. By Theorem 5.13, we get 

L ~ 2 - f 2FI(L,4) + F2(L,4) M'{LA)< 12 
The upper bound in Corollary 5.14 is obtained after applying the 
data in Table 5.2 to the above inequality case by case. • 

Example 5.3: 1/ 二 74, lu = 4. The following six codewords 
constitute an SCAC(74,4): 

{0,2,4,6}, {0,16,32,48}, 
{0,20,40,60}, {0,12,24,36}, 
{0,22,44,66}, {0,28,56,10}. 

We find this SCAC enjoys maximum size of SCAC(74,4), since 
M^(74,4) < [74/12J 二 6 following Corollary 5.14. 



5,5 Asympto t ic Uppe r Bounds 
The value of F(L, w) in Theorem 5.6 can be computed by linear 

programming as follows. For each element i in w)^ define a 
variable Zi. Let the objective function be YliES�L w)。̂么“ with Cj 
defined by 

Ci := ?: — 1 — ？:(�1(；/?;"| +�2u*/?:"|) + ？iW. 
For each prime number p between 2 and 3w — 2, impose a constraint 

（5.27) 

P\i 

where the summation is taken over all i that is divisible by p. Then 
w) is the optimal value by maximizing Ci^i subject 

to the constraint in (5.27) for p ranging over all prime numbers 
between 2 and Sw — 2，and 0 < 2；̂  < 1 for all i 6 S{L, w). Using 
the linear programming, the upper bounds on M{L^w) given by 
Theorem 5.6 for weight 4 and length between 32 and 400 are plotted 
in Fig. 5.1. The value for length smaller than 32 is found directly by-
Theorem 5.1. By similar linear programming, the value of F i � L , w ) 
and F2{L, w) in Theorem 5.13 can both be obtained. For weight 4 
and length between 32 and 400，the upper bound on M®(L, w) given 
by Theorem 5.13 is also contained in Fig. 5.1. 

The upper bounds on size of CAC are due to [34]. We plot the 
value for weight 4 in Fig. 5.1 for the convenience of the readers to 
compare SCAC and equi-difference SCAC with CAC. 

Furthermore, the next theorem gives upper bounds on the value 
of F(L)w), Fi{L^w) and F2{L, w) in closed-form expression, from 
which we can obtain the asymptotic growth rate of upper bounds 
on M(L, w) and w) respectively. 



Figure 5.1: Upper bounds on size of CAC, SCAC and eqiii-difference SCAC for 
weight 4. 

Given a positive integer x >2^ let t{{x) denote the number of 
distinct prime numbers between 2 and x̂  

TT[X {i : 2 <i < i is prime} 
Note that ti{x) also counts the maximum number of relatively prime 
integers between 2 and x. 
Theorem 5.15. For L > and w > 2, we have 

M[Ww) < L-2 — 2 ) 
3 

L-2 3n{2w - 2) 
4ii； - 4 4 

(5.28) 

(5.29) 

Proof. Recall that F�L,w) is the maximum of 
— 1 — w X + \2w/x]) + 

x€S 

(5.30) 
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taken over all subsets cS in For x j^ < w < x, we observe 
that 

X — \ — x[�lij/a:;"! +�2u)/a;]) = x — 1 — Zw 
= ?>w~-2x'-~l 

and for w > x, we have 
.T — 1 — ,7：(「?/;/：2̂| +�2uf/ ; i r | ) + 3w < X — 1 — x(3w/x) + 3w 

=X — 1 < w ~ 
and for w < x/2, we have 

X — 1 — :r;(�u?/rc] + \2w/x]) + 3w < x — 1 — 2x 3w 
=3w — X — 1 < w — 1. 

In summary, we obtain 
X — 1 — :z;(�iy/:r"| +�2i(;/a:"l) -j-^w < w — 1 

for all X e 6'(L, w). 
The number of summands in (5.30) is less than or equal to 

the maximum number of relatively prime integers in 5(L, w). Since 
5'(L, w) C {2 ,3 , . . . , SiLJ — 2}, the number of summands in (5.30) 
is less than or equal to the maximal number of relatively prime 
integers between 2 and Sw — 2, namely 7r{3w — 2). The summation 
in (5.30) is thus less than or equal to [w — l)7r(3i/; — 2), and hence 

The result of (5.28) in Theorem 5.15 follows by replacing F{L,w) 
by {w — l)7r(3'U； — 2) in Theorem 5.6. 



Now we will prove (5.29) in Theorem 5.15. From the definition 
of 5'I(L,IL?), we obtain 

2w — X — I < w — 1 
for all X e Si{L, w). 

The number of summands in (5,24) is less than or equal to the 
maximum number of relatively prime integers in Si{L, w). Since 
Si{L, w) C {w, uu+l,..., the number of summands in (5.24) 
is less than or equal to the maximal number of relatively prime 
integers between 2 and 2w — 2, namely 7r{2w — 2). The summation 
in (5.24) is thus less than or equal to (w — l)7r(2w — 2)，and hence 

F i { L , w) < (w- 1)7T(2W — 2 ) . 

By the same argument, we also can find 
F2(L, W) < ( W - l)7r(2iy — 2). 

Inequity (5.29) follows by replacing Fi(L,w) and F2[L,w) by (w — 
l)7r(2if； — 2) in Theorem 5.13. • 

The following is an asymptotical version of Theorem 5.15 which 
implies for each w, the growth of upper bounds on M(L, w) and 
M^{L/iv) are roughly linear in L, with slope (3iy — and (4'a;— 
4)—1 respectively. 
Theorem 5.16. For w >2, we have 

(5.31) 
L^oo L 3w -3 

hmsup ~ ~ V — ^ < 7. (5.32 

Proof. The result in (5.31) follows from taking lim sup after dividing 
L on both sides in (5.28). We also can find (5.32) from (5.29). • 



5.6 Tightness of Asymptot ic Upper Bound on 

In this section, we will show that there exists SCAC®(L, w)s, 
asymptotically achieving the upper bound in (5.32) of Theorem 5.16 
for each w. First we introduce the following approach to construct 
SCAC(L, w) from existing CAC. It can be view as an application of 
Lemma 1.1 due to [21 . 
Theorem 5.17. If there exists a CAC of M codewords, each with 
Hamming weight w and period I, then there exists an SCAC{21^ w) 
with M codewords. 
Proof. By doubling all elements in each Xof a given CAC and period 
I, we can construct a new CAC with period 21. All elements in the 
set of differences of each codeword in this new CAC can be found 
as even. We thus have 

d'iijy n d{Ik) - 0 
for all j + k. It implies the new CAC is an SCAC{2l,w) with M 
codewords. • 

The following asymptotic result of CAC is due to [33]. It can 
be used to directly construct asymptotically optimal SCAC'^(L, w). 
Denote the maximal number of codewords in the class of all CACs 
with length L and weight w by 从色从(L, w) • 
Theorem 5.18 ( [33，Prop. 3]). For all w > 2 we have 

limsup c �� > -——-. 
L->oo L 2w - 2 



For general w, we have the following 
Theorem 5.19. For all w >2 we have 

1. 1 limsup = T. L^oo L Aw - 4 

Proof. Following Theorem 5.17 and Theorem 5.18, we have 

l i _ p ^ ^ � A . 
L^oo L ~ iw-4 

This shows that the asymptotic lower bound in (5.32) is tight and 
proves Theorem 5.19. • 

5.7 Conclusion 
In this chapter, we introduce SCAC used in multiple access for 

the asynchronous collision channel without feedback. It is a special 
class of CAC, which is for the slot-synchronous channel. We present 
upper bounds on the size of SCAC and equi-difierence SCAC, which, 
hold for all weights in general. 

For each w, we show the asymptotic upper bounds on M(Z/, w) 
and w) are linear in L, with slope {3w — 3)—i and {4w — 4) 一i 
respectively. By constructing asymptotically optimal equi-difference 
SCAC with existing CAC, we prove that the asymptotic upper 
bound on M乂L, w) is tight. However, the tightness of upper bound 
on M{L^w) is still unknown and would be a challenging direction 
for further studies. 

• End of chapter. 



User-Detectable Sequences 

Summary 

In this chapter we consider user-detectable sequences 
with the property that each active user can be detected 
by looking at the channel activity only, within some 
bounded delay. It is important in some applications such 
as ad hoc networks. Some lower and upper bounds of 
its minimum period are investigated in this chapter. In 
addition, we display some interconnections with some 
other sequence designs. 



6.1 In t roduct ion 
In this chapter, we focus on the collision channel without feed-

back described in Section 1.1. Consider a time-slotted system with 
slot synchronization, consisting of M potential users and one sink. 
All users may be active at the same time. For practical consid-
erations, one would like to remove the assumption that the slot 
boundaries are synchronized. It is, in fact, possible to do so and to 
allow the users to be totally asynchronous. Our result can also be 
extended to this more general scenario. 

In multiple access transmission without packet header, three 
tasks [1,10] should be solved by the receiver through observing the 
channel activity (whether a time slot is idle, containing a collision 
or a successful packet), viz.: 
1) to detect each active user (detection), 
2) to determine the sender of each successful received packet (de-

coding) , and 
3) to find their delay offsets (synchronization). 

In this chapter we investigate only the detection problem, as 
task 2) and 3) may be not necessary for some applications. We want 
to find protocol sequences that allow my active user be detected by 
the receiver via some algorithm within some bounded delay if and 
only if it has become active. Such protocol sequence set is said to 
be user-detectable (UD). 

The notion of user-detectability is also addressed in another 
context for the OR channel, under the name uniquely decipherable 
code [11,15] with the assumption all active users start its codeword 



at the same time, which is applicable in signature codes, group test-
ing, etc. It can be viewed as a special case of the concept discussed 
here (each active user can send its sequence at any time slot). 

In this chapter, in order to explore the minimal delay in the 
worst case, we are interested in the smallest length L such 
that a UD sequence set exists for M users. The chapter is organized 
as follows. After setting up some notations and definitions in Section 
6.2, we establish a lower bound on in Section 6.3. Then 
an upper bound and related constructions are presented in Section 
6.4. Section 6.5 gives a proof to show the existence of UD sequence 
set different from that in Section 6.4. Finally, we close in Section 
6-6 with some concluding remarks. 

6.2 Channel Model 
In our channel model, detection of 

merely observing the channel activity, 
following: 
Definition 6.1. For each time index t, 

user activity is achieved by 
To this end, we make the 
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We call c(t) the 
Ci(t) be 1 if user 
signal of user i. 

, let 
if no user transmits at slot t, 

if exactly one user transmits at slot t, 
if more than one users transmit at slot t. 

channel-activity signal For each time index t, let 
i transmits at t or zero otherwise. We call Ci{t) the 

We also make the following formal definition of UD sequence 
set. 



Definition 6.2. Let D{t) be the detection result of active users 
at the time index t by observing c{t) in [0, t]. The value of D{t) 
may be an empty set or a subset of {1 ,2 , . . . , M} . A sequence set 
of period L is said to be UD if the following conditions: 

1. If user i becomes active or starts a new sequence at t, then 
i e D(t + L — 1); 

2. If i 6 D(t)^ then user i actually becomes active or starts a new 
sequence in the time interval [t — 2L + 2,力]; 

are both satisfied for any non-negative t and any i G {1 ,2 , . . . , M 

6.3 A Lower Bound on Min imum Per iod 
In order to explore the minimal delay we can achieve, a lower 

bound on L^^^(M) will be presented in this section. 
We first give an example of a protocol sequence set which is not 

UD. Given that user i becomes active or starts a new sequence at 
to, let C^(to) be the channel activity vector of c{t) in [力to + L — 1 
. L e t C}(to) be the channel activity vector of c{t) in [to, to + L — 1 
provided that user i is inactive in [力o,力�+ L — 1. 

Example 6.1: Sequence periods are indicated by under brace. 
For some time offsets and starting time of each user, we have the 



following: 
ci 
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000100100100000000000000000000 

JOOOIOOOIOQOOOQIOOOIOOOIQOOQOQ 
**1110*0110100010010101000000 One can check C^(0) = (7|(0) for this case. Then we cannot be sure 

user 1 is active or not in [0,14] from the channel-activity signal 
Thus the sequence set is not UD. 

Inspired by the above example, we present one necessary con-
dition for user-detectability. 
Proposition 6.1. If a sequence set is UD, then each sequence in 
this sequence set cannot he blocked by two disjoint subsets of other 
sequences respectively. 
Proof. Consider Sg such that it can be blocked by two disjoint sub-
sets of other sequences respectively. Suppose user g becomes active 
at tQ. Then we know for every time index in [力力。+ L — 1] such that 
user g has 1, at least other two users can also have one for some 
time offsets. Thus, even if user g is not active in 亡0 + L — 1], 
we also can find c{t) equals * at these time indexes. On the other 
hand, for each time index in [to, to + ^ — 1] such that user g has 0, 
it would not cause the change in c{t). For this special case, we find 
C^(to) = C|(to) which implies the sequence set is not UD. Thus we 
can conclude that each sequence in a UD sequence set cannot be 
blocked by two disjoint subsets of other sequences respectively. • 



From Proposition 6.1, we have the following: 
Proposition 6.2. If a sequence set of M sequences is UD, then 
each sequence cannot be blocked by any other�M/2"| — 1 sequences. 

Proof. We prove this claim by contradiction. Consider user ^ in a 
given sequence set such that it can be blocked by any o t h e r � M / 2 — 
1 sequences. Then we can partition the other M — 1 sequences into 
two disjoint subsets such that each subset contains at l e a s t � M / 2 ] — 1 
sequences as 2 ( � M / 2 l — 1) < M— 1. By the hypothesis, each subset 
can block user g respectively. Therefore, following Proposition 6.1 
we know this sequence set is not UD. • 

Then from the necessary condition in Proposition 6.2, we have 
the following lower bound on 
Theorem 6.3. For any positive integer M, 

9 

Proof. Following Proposition 6.2, we can pick some�iWy2"| sequences 
in a UD sequence set and relabel them so that the Hamming weight 
of Si is smallest and si cannot be blocked by {52,53,..., 5[M/2I}' 
We use blocking algorithm described in Section 3.3 to block si by 
cyclically shifting 52,53,... , S[m/2']-

1. Fix the delay offset of Si to zero. 
2. Cyclically shift 52 so that maximal “l”s in 5i is overlapped by 

和) 
On • 



3. Cyclically shift 53 in such a way that most of the remaining 
“l，，s in Si are overlapped by 4丁3). 

4. Cyclically shift 54 in order to overlap most of the remaining 
"l"s in Si that are not overlapped by ŝ p^ and \ 

5. Continue for 55, SQ, • • •, "SITI//""!. 
A more detailed analysis presented in [36] shows that we can always 
block Si by o t h e r � M / 2 ] —1 sequences if L < (8/9)�M/2]2. Thus the 
above algorithm gives a lower bound of (8/9)�My2l2 on the period 
of {51, 52, . . . , s^pf/2]} with the condition there must exist some ones 
remain in si after the blocking algorithm. 

Furthermore, the period of a UD sequence set of M sequences 
can also be obtained at least (8/9)�M/2"] 2. • 

6.4 An Uppe r Bound on Min imum Per iod 
In this section, we will show some special classes of protocol 

sequence sets must be UD by the following detection method. 
Definition 6.3. We say that c{t) is matched to Si at time 力0 if 
V力=0，1,…，— 1，Si{t) = 1 c{to + = 1 or 

If c{t) is matched to Si at to, let Qo be the collection of to -h t 
such that Si(t) = 1. is used to denote the collection of tg + t such 
that Si(t) = c(t 4- to) = 1. Obviously, we h a v e � � �C Q^. If user i 
actually does not transmit at any time index included in Q� , this 
matching is said to be a false matching. 
Remark: To know whether the channel activity signal c{t) is matched 
to a sequence at Iq or not, it is necessary for the receiver to know 
the all values of c{t) in [to, to L — 1], In other words, the receiver 
would make the decision at to + ^ ~ 1-



We now introduce the detecting algorithm used in this section. 
The channel activity signal is observed all the time. The receiver 
keeps track with the set of active users by maintaining M Boolean 
variables active{i) for i = 1 ,2 , . . . , M, with the values set to FALSE 
initially. The receiver is required to check whether c{t) is matched 
to Si or not for each time index. If there is a matching at to, then 
active(i) is set to TRUE and we have i E D(tQ + L — 1). Otherwise, 
we would set active(i) as FALSE which implies i • D(tQ + L — 1). 
We summarize the procedure in Algorithm 6.1 below. 
Algor i thm 6.1 Detecting algorithm for UI sequence sets. 

f o r i = 1,2，...，M d o 
for io = 0 ,1 ,2 , . . . do 

if c � is matched to s办）at to t h en 
active{i)卜 TRUE 

else 
acLwe{i) I FALSE 

end if 
end for 

end for 

The following shows that the above algorithm can indeed make 
the user-detection under some conditions. The definition of UI se-
quence set can be found in Definition 3.1 of Section 3.3. 
Theorem 6.4. A sequence set is UD by Algorithm 6.1 if it is UI. 
Proof. Consider user g and its assigned sequence Sg here. By Algo-
rithm 6.1, we know the receiver can always find c{t) is matched to 
Sg{t) at ti if user g becomes active at ti. Then the receiver would be 
aware of this fact at ti + L ~ 1. Thus, the event that user g becomes 
active from inactive can be known by the receiver with L — 1 slots 
delay in the worst case. 



The only source of error is there exists a false matching of Sg at 
to. If this error occurs, then we can find Sg can be blocked by other 
actually active M—1 users for some time shifts. This contradicts the 
definition of UI sequence set. Thus the error cannot occur. Indeed 
we can show user g must become active from inactive or start a new 
sequence period at ig + ~ 1 or at most 2L — 2 slots earlier. To make 
c{t) is matched to Sg{t) at to, we must have user g starts its sequence 
period at the time index which is located in [Iq — L + 1 ̂ Iq L --
otherwise there is no intersection slots between c[t) in [力力o + L — 1 
and user g's actual transmissions. 

Finally we can conclude that any UI sequence set is UD by 
Algorithm 6.1. • 

Furthermore, the following upper bound just directly follows 
Theorem 6.4. 
Theorem 6.5. Let 屯(M) be the smallest period such that there 
exists a UI sequence set of M sequences. Then we have 

The following upper bound is guaranteed by CRT construction 
35] and some improved results provided in Section 4.4, Chapter 4. 

Theorem 6.6. Let pu be the smallest prime larger than or equal to 
M. Then we have 

D 



Example 6.2: By the CRT construction, for M = 3 we can 
design the following UD sequence set with L = 15: 
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Then one can check c{t) is matched to 52 (t) at the time indexes 
which are indicated by underline. Thus the receiver would set 
active� as TRUE at the time indexes which are indicated by over-
line. The result of D{t) including 2 here can be found as D(19), 
D(20) and D(21), while user 2 actually becomes active at t = 6. 
However, we cannot know the exact starting time of user 2. 

We have proved in this section that any UI sequence set is UD. 
However, it has been proved in [36] that the period of UI sequence 
set with M sequences is at least 8M^/9. In the next section we will 
investigate the existence of UD sequence set which is not UI, with 
the period between (8/9) [M/2]^ and 8M'^/9. 



6.5 Existence of UD Sequence Set which is not 
UI 

An optical orthogonal code{OOC){L, w,入a, Ac) [8] is a family of 
binary sequences of length L and weight w that satisfy the following 
two properties: 

1. the Hamming auto-correlation of any sequence is not bigger 
than 入a for any non-zero r performed modulo L\ 

2. the pairwise Hamming cross-correlation of any pair sequences 
is not bigger than Ac for any r . 

The OOC{L, w^ 1,1) has been extensively studied. Here, we show 
one example to construct a UD sequence set which is not UI. 
Theorem 6.7 ( [7]). Let q he a prime power and p he a prime not 
less than g + 1. Then there exists an OOC{L, q + 1,1,1) with p 
codewords. 

Then the following construction can be easily found by Theo-
rem 6.7. 

OOC Construction: Let q be the smallest prime power not 
less than M, and p the smallest prime not less than q ^ 1. Then 
following Theorem 6.7, we can construct an OOCiJj, M + 1,1,1) 
with M sequences. We further replace two of ones in the M-th 
sequence by two zeros to make its weight as M — 1. 

The sequence set formed by OOC construction is not UI due 
to the fact that all M — 1 ones of sm can be totally covered by other 
M — 1 sequences for some time offsets. It's easy to see the pairwise 
cross-correlation property between sm and any other sequence is 
still unchanged. The autocorrelation property of sm is also the 
same. 



We first introduce another detection method which is differ-
ent from Algorithm 6.1. The receiver keeps track with the set 
of active users by maintaining M Boolean variables actAve{i) for 
i = 1 , 2 , . . . , M, with the values set to FALSE initially. We summa-
rize the procedure in Algorithm 6.2. 
Algor i thm 6.2 Detecting algorithm for sequence sets formed by OOC construc-
tion^    for 2 = i ,2 , . . . ,Mdo ^ 

for = 0 ,1 ,2 , . . . do 
if c(t) is matched to Si{t) at to t h e n 

if i = M t h e n 
if C = C and I C n I = 1 for any j € {1 ,2 , . . . , M - 1} and 
some tj t h e n 

active(i) ^ FALSE 
else 

8： active{i) ^ TRUE 
9： end if 

else 
o.c(/ive{i) I TRUE 

2： end if 
3： else 
4： active{i) ^ FALSE 
5： end if 

end for 
end for 

By Algorithm 6.2, we can show the above sequence set is indeed 
UD. 
Theorem 6.8. The sequence set formed by OOC construction is 
UD by Algorithm 6.2. 
Proof. Consider user g, but g ^ M first. The error source is that 
there exists a false matching for Sg. If this error does occur, we can 



find Sg can be blocked by other M — 1 actually active users. It con-
tradicts the condition ofw = M + 1 > (M- l )Ac = (M —l). l . Thus 
this error cannot occur. Then we want to show if c{t) is matched to 
Sg at tQ, then user g actually becomes active or start a new sequence 
at to. Otherwise, we have Sg can be blocked by other M — 1 active 
sequences and a shift-version of itself for some time offsets. It con-
tradicts the condition w = M + 1 > (M —l)Ac + Aa = ( M - l ) - l + l. 
Thus by Algorithm 6.2, we can find the exact starting time of user 
g. The result can be easily generalized to 52, . . . , 5m-i. It further 
implies that user j actually does transmission at t if t G for any 
jf飞{1,2，…，ikf — 1 } . 

Now we will prove user M can also be detected. Our task 
now is to show Algorithm 6.2 can prevent any false matching of sm-
Suppose c{t) is found matched to sm at to. Consider M — 1 nonzeros 
positioned in . First if we have 巧 + Q工 then we can find this 
matching is not false. It is due to the property that each other user 
can contribute at most a one for these M — 1 nonzeros from the 
condition A�二 1. Then if ( 巧 = t h e equivalent condition of the 
false matching is each other user contributes exactly a one in these 
M — 1 ones. It implies | C t f �0 = 1 for any j G {1, 2 , . . . , M - 1} 
and some tj such that c(t/) is matched to Sj. Then this matching can 
be checked false or not by seeing whether the above two conditions 
are satisfied. 

Therefore, user M can also be detected by ruling out the false 
matching with Algorithm 6.2, even if it would be blocked by other 
users sometimes. 

• 
Remark: (i) By Algorithm 6.1 and CRT construction, we can-

not determine the exact starting time of any active user. However, 



each active user can be detected within some bounded delay, from 
the UI property of the entire sequence set, as presented in Theorem 
6.4. 

(ii) By Algorithm 6.2 and OOC construction, we can find the 
exact starting time of all active users except user M. Then with the 
exact starting time of other users, user M can be detected if and 
only if it has been active, even though it may be totally blocked by 
other users. 

(iii) Theorem 6.8 asserts the existence of UD sequence set which 
is not UI for any M. The period is larger than the upper bound 
presented in Theorem 6.6. However, UD sequence sets which are not 
UI may be also a potential direction to make the period shorter. The 
general construction is still unknown, but some special examples can 
be found. 

Example 6,3: A sequence set which is not UI is given below: 
Si = 1 1 0 0 : 

S2 = 1 0 1 0； 

S3 = 1 1 1 0 ' 

One can check this sequence set is UD. The period is smaller com-
pared with Example 6.2. However, we can find it is in accordance 
with Proposition 6.2. 

6.6 Conclusion 
In this chapter, we introduce the user-detectability in the de-

sign of protocol sequences. Some lower and upper bounds of its 
minimum period are presented. We also summarize them for large 



Jcquencc sets in accordance wirt 
Proposition 6.2 

formed by 
OOC 

UD sequence sets 

Figure 6.1: Relationships between UD sequences and other sequence designs. 

M as the following: 
2MV9 < L^^iM) < 

so there is a gap between the upper and lower bounds. However, 
they are both of order O(M^). 

Moreover, as illustrated in Fig. 6.1, we displayed some inter-
connections between UD sequence set and other research areas in 
sequence design. This open up many interesting directions for fur-
ther research. 

• End of chapter. 



Chapter 7 

Further Work and Open 
Problems 

In Chapter 3, we have discussed bounds and special structures 
of UI sequence sets. It is further reported in [36] that the lower and 
upper bound on the minimum period are respectively SM^/9 and 
2JVP asymptotically. Thus we have the following open problem. 
Problem 1. Close the gap asymptotically between the upper bound 
and lower bound on the minimum period of a UI sequence set of M 
sequences. 

We are also interested in the case that in the slot-synchronized 
channel we can find at least one packet received successfully from 
each active user in L time slots, provided that the number of po-
tential users is M and the number of active users is no more than 
K. The following is a question extending the results investigated in 
Chapter 3. 
Problem 2. Establish the lower bound on minimum period of a 
sequence set of M sequences with the property that any sequence 
is not blocked by any other K ~ 1 sequences. 



For the asynchronous channel, CI sequence sets and SCAC are 
investigated in Chapter 4 and 5 respectively. The following are some 
interesting directions for further study. 
Problem 3. Find the proof of Conjecture 4.15 and 4.16. 

Problem 4. Provide the construction that asymptotically meets 
the upper bound in Theorem 5.6 or improve this upper bound. 

In Chapter 6, we introduced UD sequence sets and presented 
lower and upper bounds on the minimum period. However, the 
following is still unsolved. 
Problem 5. Improve the upper bound and lower bound on the 
minimum period of a UD sequence set of M sequences. 

• End of chapter. 
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