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ABSTRACT 

Abstract of thesis entitled: 

The Application of Remote Sensed Inner-core Rainfall and Surface Latent  

Heat Flux in Typhoon Intensity Forecast  

Submitted by GAP, Si  

for the degree of Doctor of Philosophy  

at The Chinese University of Hong Kong in July 2010 

Despite improvements in statistical and dynamic models in recent years, the 

prediction of tropical cyclone (TC) intensity still lags that of track forecasting. 

Recent advances in satellite remote sensing coupled with artificial intelligence 

techniques offer us an opportunity to improve the forecasting skill of typhoon 

intensity. 

In this study rapid intensification (RI) of TCs is defined as over-water minimum 

central pressure fall in excess of 20 hPa over a 24-h period. Composite analysis 

shows satellite-based surface latent heat flux (SLHF) and inner-core rain rate (IRR) 

are related to rapid intensifying TCs over the western North Pacific, suggesting 

SLHF and IRR have the potential to add value to TC intensity forecasting. 

Several linear regression models and neural network models are developed for the 

intensity prediction of western North Pacific TC at 24-h, 48-h，and 72-h intervals. 

The datasets include Japan Meteorological Agency (JMA) Regional Specialized 

Meteorological Center Tokyo (RSMC Tokyo) best track data, the National Centers 

for Environmental Prediction (NCEP) Global Forecasting System Final analysis, the 

Tropical Rainfall Measuring Mission (TRMM) Microwave Imager sea surface 

temperature (SST), the Objectively Analyzed Air-sea Fluxes (OAflux) SLHF and 

TRMM Multisatellite Precipitation Analysis (TMPA) rain rate data. The models 



include climatology and persistence (CLIPER), a model based on Statistical Typhoon 

Intensity Prediction System (STIPS), which serves as the BASE model, and a model 

of STIPS with additional satellite estimates of IRR and SLHF (STIPER). A revised 

equation of TC maximum potential intensity (MPI) is derived using TMI Optimally 

Interpolated Sea Surface Temperature data (OISST) with higher temporal and spatial 

resolutions. Analysis of the resulting models indicates that the STIPER model 

reduces the mean absolute intensity forecast error by 6% for TC intensity forecasts 

out to 72 h compared to the CLIPER and BASE. Neural network models with the 

same predictors as STIPER can provide up to 28% error reduction compared to 

STIPER. The largest improvement is the intensity forecasts of the rapidly 

intensifying and rapidly decaying TCs. 

A logistic regression model (LRRI) and a neural network model (NNRI) for RI 

forecasting of TCs are developed for the period 2000-2007. The five significant 

predictors are intensity change in the previous 12 h，intensification potential, 

lower-level relative humidity, eddy flux convergence at 200 hPa, and vertical wind 

shear. The verification of forecasts in 2008 typhoon season shows that NNRI 

outperforms LRRI for RI detection. 



摘 要 

盡管用于熱帶氣旋強度預報的統計和動力模式在近年來有一定改進，然而 

熱帶氣旋強度預報仍落后于路徑預報。近來衛星遙感和人工智能技術方面的進 

展，為提高臺風強度預報水平提供了契機。 

本文定義熱帶氣旋的迅速增強為海面上熱帶氣旋24小時中心最低氣壓下降 

^20hPao合成分析結果顯示，基于衛星的海氣潛熱通量和内核區降水率與西太 

平洋熱帶氣旋迅速增強有關。因此，有可能利用海表潛熱通量和内核區降水率 

改進熱帶氣旋強度預報。 

本文建立了一系列線性回歸模型和神經網絡模型用于24小時、48小時和 

72小時西太平洋熱帶氣旋強度預報。計算預報因子所使用的數據包括日本氣象 

廳（JMA)東京區域專責气象中心（RMSC Tokyo)的最佳路徑數據、美國國家 

環境預報中心（NCEP)全球預報系統的最終分析資料、熱帶降雨觀測計劃 

(TRMM)衛星微波成像儀（TMI)的海表溫度數據、美國Woods Hole海洋研 

究所客觀分析海氣通量（OAFlux)項目提供的海氣潛熱通量數據和TRMM多 

衛星降雨分析（TMPA)數據。建立的線性回歸模型包括氣候持續性模型 

(CLIPER)�基于統計臺風強度預報方案（STIPS)的模型（該模型作為基本模 

型（BASE))及添加了衛星觀測的海氣潛熱通量和内核區降水率為預報因子的 

STIPS模型（STIPER)�利用更髙時空分辨率的TMI最優插值的海表溫度修訂 

了熱帶氣旋最大潛在強度（MPI)方程。模型分析結果表明，相對于BASE模 

型，STIPER模型的24至72小時強度預報平均絕對誤差下降最高達到6%�與 

STIPER模型比较使用同樣預報因子的神經網絡模型的平均絕對預報誤差下降 

高達28%。對迅速增強和迅速減弱熱帶氣旋的強度預報改進最大。 

為預報熱帶氣旋是否迅速增強，利用2000-2007年的數據建立了邏輯回歸 

模型（LRRI)和神經網絡模型（NNRI)�五個顯著預報因子包括過去12小時的 

強度變化、增強潛勢、低層相對濕度、200 hPa潤流通量輻合和垂直風切變。對 

2008臺風季節的模型預報驗證表明NNRI模型優于LRRI模型。 

111 
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CHAPTER 1 Introduction 

A tropical cyclone (TC) is a warm-core, non-frontal, synoptic-scale cyclone that 

originates over tropical or subtropical oceans and is driven principally by heat 

transfer from the ocean. Usually for the purpose of issuing useful warnings, TCs are 

categorized according to their maximum wind speed, defined as the maximum speed 

of the wind at an altitude of 10 m, averaged over 10 min except in the United States 

where a 1 min average is conventional. TCs in their formative stage, with maximum 

winds of 17 m s—�(33 knots) or less, are known as tropical depressions; when their 

maximum wind speeds are in the range of 18 to 32 m s—i (34 to 63 knots), they are 

called tropical storms, whereas TCs with maximum winds of 33 m (64 knots) or 

greater are called hurricanes in the western North Atlantic and eastern North Pacific, 

typhoons in the western North Pacific, and severe TCs elsewhere such as in the 

Indian Ocean and South Pacific (Emanuel 2003). 

TCs have some major benefits. These storms play a very important role in 

balancing the earth's heat by transporting great amounts of heat from tropical oceans 

to the polar regions of the globe. They also provide beneficial rains to many areas 

that would otherwise be affected by drought so as to save fanners and water supplies 

in many communities. 

However, the devastating TC seasons of recent years have highlighted the 

importance of TC forecasting. The extensive damage and loss of life caused by TCs 

result from a lot of natural hazards, such as storm surge (a rapid, local rise in sea 



level associated with storm landfall), strong winds, heavy rains and their associated 

flash flood, landslides, mudflows and so on. For example, Hurricane Katrina and the 

accompanying flood due to the collapse of the levees in Louisiana of the 2005 

Atlantic hurricane season was the largest natural disaster in the history of the United 

States. Estimated total damage was $81 billion (2005 USD, Knabb et al. 2005)， 

making it the most costly storm in United States since the 1926 Great Miami 

Hurricane (Pielke et al. 2008). Over 1,800 people died in the actual hurricane and in 

the subsequent floods, making it the deadliest U.S. hurricane since the 1928 

Okeechobee Hurricane. The Galveston storm of 1900 was ranked the deadliest in US, 

the storm resulted in 8000-12000 death. And Super Typhoon Nina was a short-lived 

but intense 1975 super typhoon that caused major damage and deaths in China, 

mainly due to the collapse of the Banqiao Dam. Over 100,000 people lost their lives 

because of the resulting floods, making it one of the deadliest TCs recorded in 

history. Recently Cyclone Nargis in 2008 was a strong TC that caused the worst 

natural disaster in the recorded history of Myanmar. Official death toll estimates 

exceed 138,000 fatalities. Damage estimates at over $10 billion made it the most 

damaging cyclone ever recorded in the Indian Ocean Basin (Fritz et al. 2009). 

Zhang et al. (2009) examined the direct economic losses and human casualties 

caused by TCs that made landfall in China during 1983-2006 using the dataset 

released by the Department of Civil Affairs of China. On average, seven TCs made 

landfall over mainland China and Hainan Island, leading to 472 deaths and direct 

economic losses of 28.7 billion yuan (2006 RMB) per year. 



Accurate forecasting of TC track and intensity is therefore essential to minimize 

economic losses and human casualties caused by the disasters associated with TCs. 

While track forecasting skill has made relatively steady improvement over the years 

with improved numerical models (Kurihara et al , 1998), satellite (Soden et al. 2001; 

Goerss 2009) and dropsonde (Burpee et al. 1996; Tuleya and Lord, 1997; Aberson 

and Franklin, 1999; Wu et al. 2005; Weissmann 2010) observation, the prediction of 

TC intensity or maximum sustained surface winds still lags far behind that of track 

forecasts and remains a big challenge in all TC basins (Knaff et al. 2005). 

At present there are three primary kinds of TC intensity guidance techniques: 1) 

the simple Statistical Hurricane Intensity Forecast (SHIFOR) or Statistical Typhoon 

Intensity Forecast (STIFOR) model (Jarvinen and Neumann 1979; Chu 1994; 

Knaff et al. 2003), which makes a prediction based on climatology and persistence 

(CLIPER). [See Panofsky and Brier (1968) for a basic discussion about 

meteorological forecast verification.] Climatology refers to climatological averages, 

and persistence is a forecast that the current conditions will continue.], the predictors 

contain Julian date information, latitude, longitude, translational speed current 

intensity and 12-h intensity change in the previous 12 h of the storm,; 2) the 

dynamical models such as the Geophysical Fluid Dynamics Laboratory (GFDL) 

hurricane model (Kurihara et al. 1998; Bender et al. 2007)，Japanese Meteorological 

Agency limited area typhoon model (JTYM) (Tatsumi 1986) and Hurricane Weather 

Research and Forecasting (HWRF) model (Davis et a l 2008; Surgi et al. 2008; Xiao 

et al. 2009); 3) statistical-dynamic models such as the Statistical Hurricane 



Intensity Prediction Scheme (SHIPS) (DeMaria and Kaplan 1994a; DeMaria and 

Kaplan 1999; DeMaria et al. 2005) and the Statistical Typhoon Intensity Prediction 

Scheme (STIPS) (Knaff et al. 2005), which usually produce the best forecasts among 

the three kinds of techniques because they employ the strengths of both statistical 

models and dynamical models, and combine parameters related to CLIPER and 

synoptic-environmental parameters derived from numerical weather forecasts. The 

synoptic-environmental parameters are mainly composed of 200-hPa eddy 

momentum flux convergence, maximum potential intensity that depends on sea 

surface temperature (SST), 850-200-hPa vertical wind shear, 200-hPa temperature, 

higher and lower level relative humidity and 850-hPa relative vorticity. The SHIFOR 

(or STIFOR) model is primarily used as a baseline for evaluating the skill of the 

official intensity forecasts and those from the objective models. 

DeMaria et al. (2007) evaluated the National Hurricane Center and Joint Typhoon 

Warning Center operational TC intensity forecasts for the three major northern 

hemisphere TC basins (Atlantic, eastern North Pacific, and western North Pacific) 

for the past two decades, and found that there had been some marginal improvement 

at 24 and 48 h for the Atlantic and at 72 h for the eastern and western Pacific. The 

intensity forecasts had significant skill out to 96 h in the Atlantic and out to 72 h in 

the eastern and western Pacific. The skill of the intensity forecasts was comparable at 

12 h with that of the track forecast, but the track forecasts were 2 to 5 times more 

skillful by 72 h. The comparison results of track and intensity forecast error trends 

for the two-decade period showed that the percentage track forecast improvement 



was almost an order of magnitude larger than that for intensity, indicating that 

intensity forecasting still has a long way to go. Especially, the rapid intensity changes 

associated with TCs are nearly impossible to predict in current forecast models 

(Elsbeiry et al. 2007; Blackerby 2005). 

In general, the relatively low skill of intensity forecasts and the inability to 

forecast RI are primarily due to the complexity of the TC intensity change processes 

and our limited understanding of these processes. In the past, the impact of the ocean 

(e.g. SST, ocean heat content), inner-core processes (e.g. eyewall replacement, 

inner-core asymmetry, sea spray)，and environmental interactions (e.g. vertical wind 

shear, flow pattern, upper tropospheric trough) on TC intensity change have been 

examined (Willoughby et al. 1982; Shay et al. 2000; Wang 2002; Kaplan and 

DeMaria 2003; Yu and Kwon 2005; Ventham and Wang 2007; Yang et al. 2007; 

Mainelli et al. 2008). Some of those have been considered as potential predictors in 

current operational TC intensity forecasting models. 

The SHIPS has been refined by including some satellite-based predictors. 

Fitzpatrick (1997) was the first to attempt to add infrared satellite observations of 

western North Pacific TCs into a linear regression scheme similar to that used by 

DeMaria and Kaplan (1994a). The resulting model showed competitive skill with the 

operational intensity forecasts issued in 1983 by the Joint Typhoon Warning Center. 

DeMaria et al. (2005) tried to include brightness temperature from Geostationary 

Operational Environmental Satellite (GOES) infrared (10.7 jam) imagery and ocean 

heat content (OHC, which were only available in Atlantic) from satellite-based 



altimetry into SHIPS during 2003 and 2004 Atlantic and eastern Pacific TC seasons. 

At 12-72 h, the Atlantic forecasts were improved by up to 3.5% due to the inclusion 

of OHC and GOES brightness temperature, and the eastern North Pacific forecasts 

were improved by up to 7% because of the addition of GOES data. 

One major limitation of infrared images is that low-level TC characteristics are 

often obscured by cirrus shields (Lee et al. 2002). Therefore Jones et al. (2006) 

further enhanced SHIPS by adding some new predictors derived from passive 

microwave imagery (SHIPS-MI). These new predictors were calculated within a 

radius of 100 km centered at the best-track defined TC position using brightness 

temperature converted from passive microwave imagery, which were collected from 

the Defense Meteorological Satellite Program (DMSP) and Tropical Rainfall 

Measuring Mission (TRMM) satellites. The relevant sensors include the Special 

Sensor Microwave Imager (SSM/I; Hollinger et a l 1987) aboard the DMSP satellites 

and the TRMM Microwave Imager (TMI; Kummerow et al. 1998). A 2%-8% 

improvement was produced for the Atlantic and eastern North Pacific TC intensity 

forecasts out to 72 h. The improvement in both basins was largest for rapidly 

intensifying or weakening TCs. That is to say, SHIPS-MI does partially solve the 

problem of inability to predict rapid intensification (RI) of TCs. 

More recently, the OHC estimation was applied to operational forecast of the 

intensity of category 5 hurricanes during 2003-2005 hurricane seasons (Mainelli et al. 

2008). The OHC input can reduce the average intensity errors of the SHIPS forecasts 

by up to 5% for all cases of these intense storms, and up to 20% for individual 



hurricanes，although the addition of OHC only produced up to 1% improvement on 

the intensity forecast for all the dependent TC samples during about 10 years. 

However, the TC intensity forecasting still has much room to improve. 

Wind-induced surface heat exchange (WISHE; Emanuel 1986) has been considered 

as one of the major mechanisms for cyclone intensification. Surface latent heat flux 

(SLHF), which is the amount of energy exchange between the surface and the air due 

to evaporation or condensation, is one of the major energy sources for TC 

development; however few studies examined its role in TC RI using analyzed or 

observational data quantitatively. Only two case studies can be found. Gautam et al. 

(2005) used National Centers for Environmental Prediction (NCEP) reanalysis data 

and found that SLHF was strongly coupled and was associated with the intensity 

variations of hurricane Isabel (2003). And most recently Lin et al. (2009) employed 

satellite-derived data and showed that SLHF was the primary contributor to the total 

enthalpy during the RI period of Cyclone Nargis (2008). Although SST has been 

utilized to estimate the maximum potential intensity (MPI, e.g.’ DeMaria and Kaplan 

1994; Whitney and Hobgood 1997) which is already a predictor in statistical typhoon 

intensity prediction schemes (e.g., Knaff et al., 2005), SLHF is a nonlinear 

combination of near-surface wind speed and the difference of surface humidity (Qs) 

and near-surface humidity, where Qs depends on SST. 

The latent heat release (LHR) through condensation and precipitation processes, 

especially in the inner core (radius of 110 km from storm center), is vital to the 

development and maintenance of TCs (Chamey and Eliassen 1964; Kuo 1965). The 



rainfall as a proxy of condensational heating is a good indicator of typhoon strength. 

Many case studies (e.g., Riehl and Malkus 1961; Rao and Macarthur 1994; Rodgers 

et al. 1994; Chang et al. 1995; Rodgers and Pierce 1995; Rodgers et al. 1998; 

Simpson et al. 1998; Rodgers et al. 2000; Heymsfield et al. 2001; Jiang et al. 2008) 

have showed examples that the strength of TC intensity is significantly correlated 

with rainfall intensity within the inner cores of TCs using satellite or aircraft 

observation data. 

The operational satellite-enhanced TC intensity prediction schemes are only 

available in Atlantic and eastern North Pacific at present. To further improve TC 

intensity prediction, especially RI prediction in western North Pacific, we will add 

two new satellite-based predictors (SLHF and inner-core rain rate) and employ more 

sophisticated statistical techniques such as neural networks and logistic regression. 

Neural network model has shown better performance than linear regression model in 

TC intensity prediction (Baik and Hwang 2000; Jin et al. 2008), Logistic regression 

model has been applied to predict TC formation (Mundhenk 2009; Fu et al. 2010) 

and can also be used in TC RI forecasting. 

Data and methodology is described in chapter 2. Chapter 3 provides SLHF and 

rainfall associated with rapidly intensifying TCs over western North Pacific and 

demonstrates that SLHF and inner-core rain rate have the potential to be new 

predictors. Development of statistical typhoon intensity prediction schemes using 

multiple linear regression and neural networks by adding SLHF and inner-core rain 

rate is presented in chapter 4. In chapter 5, neural network model and logistic 



regression model for typhoon RJ prediction are developed. Finally, conclusion and 

discussion are given in chapter 6. 



CHAPTER 2 Data and Methodology 

2.1 Data 

2.1.1 Tropical cyclone best track 

The TC best track data containing position and intensity information used in this 

study is collected from Japan Meteorological Agency (JMA) Regional Specialized 

Meteorological Center Tokyo (RSMC Tokyo). This post analysis best track data 

consist of 6-h estimates of position (latitude and longitude), minimum central 

pressure (MCP), and 10-min maximum sustained wind speed (MWS) for all named 

TCs in western North Pacific (WNP) basin including the South China Sea (SCS) 

from 1951 to the present. 

RSMC Tokyo employed the original Dvorak (1982, 1984) technique to estimate 

TC position and intensity till 1990 and a modified version of Dvorak technique by 

Koba et al. (1990) has been utilized since 1990. The MWS is rounded to the nearest 

5 kt (1 kt = 0.5144 m s—i)，the MCP is rounded to the nearest millibar, and latitude 

and longitude of the position are rounded to the nearest tenth. 

Those non-developing tropical depressions which did not reach the strength of 

tropical storm were not recorded in the dataset. 

Joint Typhoon Warning Center (JTWC) of U.S. Naval Pacific Meteorology 

Oceanography Center in Hawaii (in Guam before 1999) also provides TC best track 

data over the WNP; the difference is that at JTWC 1-min MWS is determined using 

original Dvorak technique as well as improved techniques such as the objective 
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Dvorak technique (Velden et al. 1998) and advanced objective Dvorak technique 

(Olander and Velden 2007). A comparison study by Song et al. (2010) showed that 

JTWC data have higher intensity estimates for typhoons, but lower intensity 

estimates for tropical depressions than RSMC Tokyo data. Yu et al. (2007) 

developed simple linear regression models based on CLIPER and found that the 

model using RSMC Tokyo MWS estimates produced smaller error than the model 

using JTWC MWS estimates. Therefore RSMC Tokyo dataset is used in this study. 

2.1.2 Rain rate 

The rainfall dataset used in this study is the Tropical Rainfall Measuring Mission 

(TRMM) Multisatellite Precipitation Analysis (TMPA) (Huffman et al , 2007). 

TMPA at fine resolutions (0.25° x 0.25° and 3 hourly) combines precipitation 

estimates from multiple satellites, as well as land surface rainfall gauge analyses 

when possible. The precipitation data sources from satellites include TMI and 

Precipitation Radar (PR) on TRMM (Kummerow et al. 1998; Haddad et al. 1997), 

SSM/I (Wentz and Spencer 1998) on DMSP satellites, Advanced Microwave 

Scanning Radiometer Earth Observing System (AMSR-E; Wilheit et al. 2003) on the 

AQUA satellite, Advanced Microwave Sounding Unit-B (AMSU-B; Weng et al. 

2003) on the National Oceanic and Atmospheric Administration (NOAA) satellites, 

and infrared data of geosynchronous earth orbit satellites (Janowiak et al. 2001) and 

Geostationary Operational Environmental Satellite (GOES) Precipitation Index (GPI; 

Arkin and Meisner 1987) estimates. Both research-quality and real-time TMPA 
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products are available. At present the gauge analyses are merged into the 

research-quality product only. The dataset covers the area between 50�N and 50°S 

for the period from 1998 to the present. The latency in the real-time product is on the 

order of 2-3 h. 

2.1.3 Surface latent heat flux 

A number of semi-operational SLHF products are examined for this study. For 

satellite-based products, such as the National Aeronautics and Space Administration 

(NASA)/Goddard Space Flight Center Satellite-based Surface Turbulent Flux 

(GSSTF) dataset (Chou et al. 1997, 2003; Shie et al. 2009), the Japanese Ocean Flux 

utilizing Remote Sensing Observations (J-OFURO) (Kubota et al,, 2002) and the 

Hamburg Ocean-Atmospheric Parameter Set (HOAPS) (Grassl et al , 2000). They 

are deemed inadequate due to either coarse resolution, missing data around the TC 

center or insufficient temporal coverage. The third release of the Objectively 

Analyzed Air-sea Fluxes (OAflux) (Yu et al. 2008) daily SLHF product is utilized 

due to its global ocean coverage and availability for the relatively long period from 

1985 to 2008. OAFlux dataset is gridded on a 1.0° latitude-longitude resolution for 

the global ocean basins that are free from ice. The SLHF, Qlh, is based on the 

state-of-the-art Coupled Ocean-Atmosphere Response Experiment (COARE) bulk 

flux algorithm 3.0 (COARE 3.0; Fairall et al. 2003), viz 

Qlh = pLeC^Uiq,-qj = pL.c^UAq (2.1) 

where p is the density of air, Le is the latent heat of evaporation, Ce is the turbulent 
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exchange coefficients for latent heat flux, U is the wind speed relative to the sea 

surface at the height of 10 m, A^ = qs — Qa where qs and qa denote the surface and 

near-surface (i.e. 2 m) atmospheric specific humidity, respectively.仏 is computed 

from the saturation humidity, qsau for pure water at SST Ts, 

l = 0 . 9 8 � , , ( 7；) (2.2) 

where a multiplier factor of 0.98 is used to take into account the reduction in vapor 

pressure caused by a typical salinity of 34 psu. It is worth pointing out that the 

extrapolated values of Cg in CO ARE 3.0 from 19 m s—i through 36 m s"̂  are in good 

agreement with the results from Coupled Boundary Layer Air-Sea Transfer 

Experiment (CBLAST; Black et al. 2007) and the Humidity Exchange Over the Sea 

(HEXOS; DeCosmo et al. 1996; modified as per Fairall et al. 2003). This suggests 

that Ce is constant with wind speed up to hurricane-force winds of 33 m s—� 

The difference of OAFlux SLHF product from other flux products is that it is not 

derived from one single data source, but determined by objectively blending the 

multiple data sources from satellite and numerical weather prediction (NWP) model 

outputs while using in situ observations to assign the weights. Three variables (JJ, Ts, 

qa) are needed for OAFlux synthesis of SLHF. Input data sources of satellite wind 

speed are from SSM/I (Wentz 1997)，the Quick Scatterometer (QuikSCAT; Lungu 

2001) and AMSR-E (Wentz and Meissner 2000) available from the Remote Sensing 

System (RSS) website at http://www.ssmi.com. These wind data at twice daily and 

quarter-degree resolution are averaged to daily and 1-degree resolution of OAFlux. 

Satellite near surface humidity fields at 10 m above sea level from 1988 to 2000 
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obtained from version 2 of GSSTF (GSSTF2; Chou et al. 2003) was employed to 

estimate daily near surface humidity at 1-degree resolution from SSM/I data (Chou et 

al. 1995，1997). SST input dataset is NOAA Optimally Interpolated (01) daily SST 

analysis at quarter-degree resolution produced by Reynolds et al. (2007). There are 

two products for this SST analysis, one is Advanced Very High Resolution 

Radiometer (AVHRR) infrared SST available from January 1985 to present and the 

other is the combination of AVHRR infrared SST and AMSR-E microwave SST 

available from June 2002 to present. Both products use in situ observations from 

buoys and ships to adjust satellite bias. The AVHRR only SST product was averaged 

onto 1-degree grid to develop OAFlux dataset for the consistency of the time series. 

However, satellite observations do not cover 100% global ocean on daily basis, so 

daily-averaged and linearly interpolated surface meteorological data at 1-degree 

resolution from the 40-yr European Centre for Medium-Range Weather Forecasts 

(ECMWF) Re-Analysis (ERA-40; Uppala et al. 2005), and the National Centers for 

Environmental Prediction (NCEP) reanalysis (Kalnay et al. 1996; Kanamitsu et a l 

2002) were used to fill in the information that satellites cannot provide and to fill in 

the missing gaps between swaths. Consistent with the NWP model outputs, the 

synthesis produced U at 10 m, qa at 2 m, and Ts at the sea surface. A height 

adjustment was applied to those input datasets that do not have the specified 

reference heights. 

OAFlux also provides daily U, qs, and qa data that are used to calculate SLHF. 
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2.1.4 NCEP analysis 

NCEP Global Forecasting System (GFS) Final (FNL) analysis (Yang et al. 2006) 

at 1-degree and 6-hourly resolution is used to derive environmental predictors in 

STIPS (Knaff et al. 2005) for the development of typhoon intensity prediction 

models. Specifically, the environmental data include air temperature, wind, relative 

humidity data at 200，250, 300, 350, 400, 450, 500, 550, 600, 650, 700，750，800 and 

850 hPa. Divergence, relative eddy flux convergence and relative vorticity at each 

grid are calculated using wind field information and central difference method. All 

the environmental predictors are computed by averaging corresponding data within 

some specific radius; the details will be introduced in chapter 4. 

NCEP reanalysis is not used because of the relatively course 2.5° x 2.5° 

resolution. 

2.1.5 Sea surface temperature 

TMI Optimum Interpolation (01) daily SST (Gentemann et al. 2004) at 0.25° x 

0.25° resolution together with RSMC Tokyo best track data are used to estimate MPI, 

which is one of important predictors in TC intensity prediction models such as 

SHIPS and STIPS, whereas only weekly SST (Reynolds et al. 2002) or 

climatological SST analysis (Levitus 1982) data were used in SHIPS or STIPS. 

High-resolution daily SST could represent important temporal and spatial variability 

such as cold wake which is not resolved by low-resolution SST analysis, and hence 

shows potential to improve the SHIPS forecasts in Atlantic and eastern North Pacific 
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(Berg et al. 2004; Gentemann et al. 2007). 

TMI OI SST analysis is available from the RSS website at http://www.ssmi.coin 

and covers the latitude band 40°S-40°N from January 1998 to present. AMSE-R 01 

SST analysis and combined TMI+AMSR-E 01 SST analysis are also available 

globally from June 2002 to present. These SST data sets are not used due to their 

short duration, but can be incorporated rather easily in future developments. 

Table 2.1 summarizes the availability of aforementioned datasets, including 

temporal and spatial coverage and resolution. 

Table 2,1 Datasets used in this study and the temporal and spatial coverage and resolution. 

Dataset 
Spatial Temporal Spatial Temporal 

Dataset 
resolution resolution coverage coverage 

RSMC Tokyo best 
track 

0.1° 6 hourly 
Northwest Pacific and the 

South China Sea 
1951—2009 

NCEP analysis 1.0° 6 hourly global 2000-present 

TMPA rain rate 0.25° 3 hourly 40°Nto 40°S 1998—present 

OAFlux SLHF 1.0° daily global ocean 1985-2008 

TMI 01 SST 0.25� daily 40� N to 40�S 1998-present 

2.2 Methodology 

2.2.1 Multiple linear regression 

Multiple linear regression (Wilks 2006) is used to model the relationships between 

TC intensity changes at six forecast ranges, namely 12, 24, 36, 48, 60 and 72 hours 
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(hr), with various meteorological parameters. The multiple linear regression equation 

is given below, 

二 办 0 + 6 3 X 2 + 6众:sc众 （2.4) 

where the dependent variable y is the intensity change (predictand) from initial time 

(t = 0) to forecast times (t = 12, 24, 36, 48, 60 or 72 hr). The independent variables xi, 

X2, Xk are predictors such as meteorological parameters, bj,…，bk are the 

regression coefficients for corresponding predictors related to TC intensity change, 

and bo is the regression constant. 

Eq. (2.4) is solved by least squares, which yields regression constant and 

coefficients estimates that minimize the sum squares of errors |s | (differences 

between observed and predicted intensity change), where £i = yi - y, . The resulting 

forecasting equation is 

A A A A 

j) = + b̂ x̂  + + • • • + f̂ê fc (2.5) 

where the variables are the same as those in (2.4) except that “八，，represents 

estimated values. 

Two measures, mean absolute error (MAE) and adjusted R ,̂ are used to evaluate 

the regression models. They are given by (2.6) and (2.7), respectively. 

(2.6) 
1=1 

1 兄-免 
二 1 _ ~ ( 2 . 7 ) 

where n is the number of observations, K is the number of predictors, y, and y^ 
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are observed and predicted values of predictand, respectively, and y is the mean 

value of y,. 

The conventional measure for the proportion of variance explained by regression, 

r2, is not used since the linear regression models with different number of predictors 

are compared in this study and the R^ value will increase although the regression 

may not improve if the number of predictors is increased. 

When developing a multiple linear regression model, one commonly uses a 

method to select a good set of predictors based upon their combined ability to predict 

the dependent variable or predictand. For our models a stepwise procedure is used to 

select variables from the potential predictor pool at each forecast time (see Wilks 

2006). The significance of individual predictors is based on F test (Buhner 1979). A 

99% statistical significance level is required for an individual predictor to be 

included initially in the model. Once in the model, a predictor can only be removed 

if its significance level becomes less than 98% after the addition/removal of another 

predictor. The stepwise procedure identifies important predictors at each forecast 

time, which sometimes results in erratic forecasts. To avoid this problem, all of the 

predictors chosen for any forecast period through the stepwise selection procedure 

are included in the final group of predictors. Using the predictors in this final group, 

a single multiple regression model is created for each forecast time‘ 

2.2.2 Neural networks 

With the development of the artificial intelligence technique, neural network, or 
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more precisely artificial neural network, which has excellent performance in 

self-adaptive learning and nonlinear mapping, have been applied successfully in 

many disciplines. In the atmospheric sciences, many applications have been found in 

research areas such as short-range climate prediction, interpretation and application 

of numerical prediction products, air pollution prediction, rainfall estimation from 

satellite imagery, and pattern examination of long-term climate data (Grimes et al. 

2003; Jin 2004; Ali 2004). Moreover, NN has been started to apply in typhoon 

intensity prediction (Baik and Hwang 2000; Jin et al. 2008). 

The back-propagation (BP) algorithm (Rumelhart et al. 1986) is known to be most 

useful when one tries to solve a problem in which the relationship between input and 

output is nonlinear and training data are abundant (Hinton 1992). A BP neural 

network with one hidden layer is constructed in this study. That is, the neural 

network has three layers: one input layer, one hidden layer and one output layer. 

Figure 2.1 indicates the neural network architecture. There are M nodes in the input 

layer, K nodes in the hidden layer, and one node in the output layer. The nodes in 

input and output layer represent the predictors and predictand，respectively. 

Determination of the number of hidden nodes is usually determined empirically to 

optimize performance for the particular situation. The network is fiilly connected. 

This means that a node in any layer of the network is connected to all of the nodes in 

the previous layer. 
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Input layer 
X , 

Hidden layer Output layer 

Uj y 

Figure 2.1 Architectural graph of a neural network with one hidden layer. 

The connection between node i in input layer and node j in hidden layer can be 

represented by a weight, . The connection between node j in hidden layer and the 

one node in output layer can be represented by a weight, Wj . and Wj 

indicates the importance of that connection between the two nodes. Node j in hidden 

layer and the one node in output layer are associated with bias parameters, i.e. b� 

and b, respectively. The transfer functions f\ and fi are used from input layer to 

hidden layer and from hidden layer to output layer, respectively. Therefore, the value 

u for node j in hidden layer is given in terms of the input variables x! by 

The output node y is calculated by 

M 
(2.9) 
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办 （2.10) 
V y 

Generally, there are three transfer functions: log-sigmoid transfer function, 

tan-sigmoid transfer function and linear transfer function. The three functions can 

generate output between 0 and 1，between - 1 and 1, and within the range 士oo， 

respectively, as the input varies from negative to positive infinity. The choice of the 

transfer function depends on particular application. 

The training phase of the neural network, called neuro-leaming, is an iterative 

process for optimizing appropriate weights and biases which are generated randomly 

at first. Learning of the network with training matrix samples by tuning weight and 

bias parameters using the learning algorithm continues until mean-squared error 

(MSE) is converged to an acceptably small value，8. MSE is obtained from 

= (2.11) 

where n is the number of training samples, y^ is the target output, and y^ is the 

actual output. BP learning is from output layer toward input layer. 

Neural network training has an overfitting problem. The problem occurs when the 

actual outputs after training match the target outputs from the noisy training samples 

well, but when new independent data is added to the network the error becomes large. 

"Early stopping" is used to deal with this problem. This technique is provided in 

Matlab Neural Network Toolbox (Demuth et al. 2009). In this technique the input 

data are randomly divided into three subsets: 60% of the samples are the training set, 

20% the validation set, and 20% the test set. The MSE on the validation set is 
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checked during the training process. The validation MSE normally reduces during 

the initial training phase, as does the MSE on the training set. But the validation 

MSE begins to increase when the network starts to overfit the training samples. 

When the validation MSE increases for a specified number of iterations, the training 

is stopped, and the weights and biases at the minimum of the validation MSE are 

returned. The resulting network can be used to make predictions by feeding new 

independent data. 

2.2.3 Logistic regression 

Logistic regression (Wilks 2006) is useful to describe the relationship between 

some independent variables (predictors) and a binary dependent variable (predictand). 

It has been widely used in the atmospheric sciences to predict precipitation, lightning, 

TC formation (Chiu and Kadem 1990; Applequist et al. 2002; Mazany et a l 2002; 

Ramirez-Beltran et al. 2007; Mundhenk 2009; Fu et al. 2010). 

In this study, a binary logistic regression model is developed to identify whether a 

TC sample intensifies rapidly or not，since rapid intensification of TCs is most 

interesting and is also a big challenge. The predictand y is set to one if the TC sample 

undergoes rapid intensification (RI), and y is set to zero if not. y is expressed in terms 

of the predictors xi, X2, :Ck according to the nonlinear equation 

少 = ( 2 . 1 2 ) 

1 + exp[-(ao + fliJCj + + . . . + 〜 • ^ 众 ) ] 

where ao is the intercept and au ai, . . . ， a r e the regression coefficients associated 

with the predictors. The intercept and regression coefficients are to be estimated from 
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the training samples by maximum likelihood method. The resulting forecasting 

equation is 

K = ； ；—— (2.13) 
1 + exphOo + + 太 2 + …+ (hXk)] 

where n is the probability of forecast undergoes RI，and the parameters with “八，， 

above represents optimal estimates. The exponential function limits the outcome n 

to lie between zero and one. The forecasts base on new inputs of predictors are then 

categorized into 0 or 1 by comparing the probability to a probability threshold, x 

0, ifn<T 
1, ifn>T 

(2.14) 

where y is the final forecasts, y = 1 denotes a predicted RI event, while y = 0 

means a predicted non-RI event. 

Table 2.2 shows a 2 x 2 contingency table for categorical forecast verification. 

These a forecast-observation pairs are called hits, represent the events are forecast to 

occur and did occur, b instances are called false alarms, the events were forecast to 

occur but did not occur, c instances of the events occurred despite not being forecast, 

called misses. There are also d instances of the events did not occur and not being 

forecast, called correct negatives. 

Table 2.2 A 2 x 2 contingency table for categorical forecast verification 

Rapid intensification or not 
Observed 

Total Rapid intensification or not 
Yes No 

Total 

Forecast 
Yes a b a + b 

Forecast 
No c d c + d 

Total a + c b + d a + b + c + d 
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Four scores are used to measure the performance of the binary logistic regression 

model (Wilks 2006). Probability of detection (POD) is the fraction of the observed 

RI events that were correctly forecast. False alarm ratio (FAR) is the proportion of 

forecast RI events actually did not occur. Critical success index (CSI) is the number 

of correct RI forecasts divided by the total number of occasions when RI event was 

forecast and/or observed. CSI is particularly useful when the RI event to be forecast 

occurs substantially less frequently than the non-RI event. The three scores (POD， 

FAR, and CSI) are expressed as the following equations 

P O D : ~ ^ (2.15) 
a + c 

= (2.16) 
a + b 

CSI = ~ - ~ (2.17) 
a + b + c 

The CSI is somewhat sensitive to the climatology of the event, tending to give 

poorer scores for rare events. A related score, the equitable threat score (ETS) is 

designed to help offset this tendency. The ETS is given by 

ETS = ^ ^ ^ ( 2 . 1 8 ) 
a+b+c-a广 

, O + b)(a + c) 
where = ^ — . 

a+b+c+d 
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CHAPTER 3 Surface Latent Heat Flux and Rainfall 

Associated with Rapidly Intensifying Tropical Cyclones over 

the Western North Pacific 

Current operational guidance techniques tend to under-forecast TC intensification 

(Elsberry et al. 2007; Blackerby 2005), hence forecasting of TC rapid intensification 

(RI) is a great challenge. As mentioned in chapter 1, several factors related to ocean 

characteristics, inner-core processes, and environmental interactions are found to be 

favorable for TC intensification. 

A few studies focused directly on TC RI. Holliday and Thompson (1979) revealed 

that underlying warm waters were necessary conditions for typhoon RI and RI was 

usually associated with eye contraction. Bosart et al. (2000) demonstrated that RI of 

Hurricane Opal (1985) resulted from high upper-level divergence, low vertical wind 

shear and the enhanced moisture and heat due to a warm ocean eddy. Kaplan and 

DeMaria (2003) employed composite analysis to examine a number of 

environmental conditions favorable for rapid intensifying Atlantic TCs. Among these 

conditions, Yang et al. (2008) utilized data mining techniques and identified that the 

combination (high latitude, low longitude, the TC being in an intensification phase, 

an initial intensity far away from the maximum potential intensity, high steering layer 

value, and low relative eddy flux convergence) can be considered as a sufficient 

condition for RI of Atlantic TCs. 

Although some case studies (e.g., Rodgers et al. 1994; Chang et al. 1995; Gautam 
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et al. 2005; Lin et al. 2009) have emphasized the importance of SLHF and inner-core 

rainfall on TC RI, it has not been confirmed for a large dataset. The goal of the study 

in this chapter is to quantify the role of SLHF and rainfall in TC intensification using 

RSMC Tokyo best track, OAFlux SLHF and TMPA rain rate data during the period 

1998-2006. We will concentrate on samples when cyclones underwent RI. A 

composite analysis will be performed for the RI and non-RI samples and the 

significance of the difference tested using a Student t test. 

Variables (SLHF and rain rate) were evaluated at the beginning (r = 0 h) of each 

24-h period provided that the system remained both over water and tropical (e.g., 

extra-tropical samples were excluded and landfall effect was left out of account) 

during 24-h period. The 24-h intensity change in MCP (AjP24) were determined for 

each 24-h time period by subtracting MCP at t + 24 h from MCP at the initial = 0 h) 

time. 

There were 209 named TCs [91 tropical storms (18 m s"' < MWS < 33 m and 

118 typhoons (MWS > 34 m/s)]. It should be noted that the TCs are defined based on 

the maximum intensity during the life of the TCs, hence no tropical depression 

(MWS < 17 m s"^) are recorded in the dataset. These TCs contributed a total of 5077 

samples (e.g., 24-h period differences) that were subsequently employed in the 

statistical analysis discussed in section 3.1. 

To determine if SLHF conditions associated with the RI samples were 

significantly different from those non-RI samples, a composite analysis on initial {t = 

0 h) rainfall and SLHF characteristics in a 20°x20° square region centered at TC 
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position for RI samples and non-RI samples was utilized. Student t tests (Buhner 

1979) was used to perform significance tests for the difference between RI and 

non-RI samples. 

Section 3.1 provides the climatology of western North Pacific TC 24-h intensity 

changes. Composites of the rainfall and SLHF are presented in section 3.2 and 

section 3.3, respectively. Finally, conclusions and discussions are offered in section 

3.4. 

3.1 Intensity change distribution 

Figure 3.1 shows the frequency distribution of AP24 as a function of the initial (/ = 

0 h) intensity of all 5077 samples. Slow intensification (-9 hPa < AP24 < 0) was the 

most frequently observed 24-h intensity change for tropical depressions. The figure 

indicates that a higher fraction of the tropical storm sample than of the typhoon or 

tropical depression sample exhibited fall exceeding 10 hPa. This finding may 

be attributed to a few factors, as Kaplan and DeMaria (2003) proposed. First, tropical 

storms are further from their maximum potential intensity than typhoons and, 

consequently, have the potential to intensify faster. Second, tropical storms may 

intensify more rapidly than tropical depressions because they are better organized. 

Conversely, figure 3.1 indicates that typhoons are likely to decay at a faster rate than 

either tropical storms or tropical depressions, because of their high intensities. 

The cumulative frequency distribution of AP24 for each intensity category (figure 

3.2) indicates that TC decay (AP24 > 0) occurs for -70% of all typhoon samples, 
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S Tropical Depression 
• Tropical Storm 
Q Typhoon 
• All tropical cyclones 

AP24 (hPa) 

Figure 3.1 The frequency distributions of 24-h intensity change (AP24) stratified by tropical 

cyclone intensity at time 广=0 h. The distributions are provided for tropical depressions, tropical 

storms, typhoons, and all tropical cyclones. 

To separate RI and non-RI samples, RI is defined as the 90th percentile of AP24 for 

all of the TC samples used in this study. Correspondingly, samples with AP24 fall > 

20 hPa are RI samples and the others are non-RI samples. It is interesting to note that 

the Holliday and Thompson's (1979) definition for RI of a 24-h pressure fall of > 42 

hPa is equivalent to the 98.8th percentile of all of the 24-h pressure changes of the 

TCs in the current study sample. 
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however, it only occurs in 17% of the tropical depression samples, 43% of the 

tropical storm samples, and 44% of all TC samples. 
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Figure 3.2 Same as figure 3.1 except for cumulative frequency distribution. 

The percentage of systems that underwent RI at least once during their lifetime is 

also analyzed. Our result shows that 86% of all typhoons, 95% of all super-typhoons 

(MWS > 51 m s—i) underwent RI at least once during their lifetime. Overall, 51% of 

all named WNP TCs underwent RI during their life time. 
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Figure 3.3 The 24-h tracks of the 1998-2006 rapid intensification samples. 

Figure 3.3 shows the 24-h tracks of the 533 RI samples. Because RI may occur 

continuously over a 24-h time periods, some of the tracks overlap. The figure shows 

that RI generally occurred in regions between 10�N and 25�N. There was no RI case 

occurring in coastal ocean area with exceptions for those in the vicinity of Taiwan 

and the Philippines. The lowest latitude for RI is 7�N. Both Taiwan and the 

Philippines are located at the lower latitudes surrounded by open sea which is 

favorable for RI. At latitudes too close to the equator (5°N to 5°S), the small Coriolis 

force does not provide a favorable condition for RI. 

Figure 3.4 shows the seasonal distribution of the RI samples. The vast majority 

(73%) of the RI samples occurred from July to October, and RI occurred most 

frequently in September. This is a slight delay for the RI compared to that in the 

Atlantic (Kaplan and DeMaria, 2003), which shows the vast majority of the RI 
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Figure 3.4 The seasonal distribution of RI samples (1998-2006) 

3.2 Rainfall pattern 

In this section, the rainfall distributions at the start of each of the RI samples are 

compared to the non-RI samples. Each sample corresponds to a 24-hour 

displacement. Figure 3.5 shows the composite of rainfall for RI samples, non-RI 

samples, and their difference. The areas with statistically significant difference at 

95% confidence level determined by a 广-test are shaded. 
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Figure 3.5 The composite initial rainfall distribution of: (a) RI samples; (b) non-RI samples; (c) 

difference between RI and non-RI samples (RI samples - non-RI samples) for all the samples. 

Areas with statistically significant difference at the 95% confidence level are shaded. The origin 

denotes the tropical cyclone center at t=Oh. The x and y ordinates represent east and north, 

respectively. (Unit: mm hour"^) 
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It is seen clearly from Figure 3.5 that composite rainfall of RI samples is higher 

than that of non-RI samples in the areas near TC center, with a maximum of � 6 . 5 

mm hour—i within inner-core regions compared to �4 . 0 mm hour"^ for non-RI 

samples. 

3.3 SLHF pattern 

In this section, the SLHF conditions present at the start of each of the RI samples 

are compared to the non-RI samples. Figure 3.6 shows the composite of SLHF for RI 

samples, non-RI samples, and their difference between RI and non-RI the samples. 

The areas with statistically significant difference at 95% confidence level determined 

by a t-tQst are shaded. The SLHF associated with RI samples tend to be higher than 

the non-RI samples, with a maximum of �1 9 0 W m~^to the north of the TC center 

compared to -150 W m" to the north of the TC center for the non-RI samples. There 

is significant difference between RI and non-RI samples to the north of TC center. 

Near-surface wind speed (U) and air-sea humidity difference (A^) are two major 

components to compute SLHF, to compare their effects of on the SLHF pattern, 

composite analysis are performed on U and Aq separately. Figure 3.7 show the 

composite of U. The patterns for RI samples (Figure 3.7a) and non-RI samples 

(Figure 3.7b) are nearly the same，with the maxima to the northeast of the storm 

center and the decreasing wind speed around the maxima. The maximum wind speed 

for RI samples is �10 .5 m while it is � 1 0 m s"̂  for non-RI samples. Figure 3.7c 

shows that the higher wind speed difference between RI and non-RI samples is 
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Figure 3.6 Same as Figure 3.5 except for SLHF. (Unit: W m - 2 � 
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located to the north of the center with a maximum difference of 0.6 m s— , however, 

the difference is insignificant. 
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Figure 3.8 Same as Figure 3.6 except for air-sea humidity difference. (Unit: g kg" 

Figure 3,8 shows the composite of Aq, Both of the composite for RI samples and 

non-RI samples have the similar pattern, with a minimum to the northeast of the 
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storm center. The minimum A^ for RI samples is -4.0 g kg"，while it is � 3 . 6 g kg" 

for non-RI samples. The A^ associated with RI samples is higher than that associated 

with non-RI samples, and the maximum difference occurs to the northeast of the 

cyclone center. More importantly, the maximum difference is significant, suggesting 

that air-sea humidity difference dominates the significantly higher SLHF to the 

northeast of the storm center. 

Table 3.1 The sample sizes of four categories stratified by moving direction. The number of RI 

and non-RI samples and the percentage of RI samples for each category are also presented. 

Total sample number (%) RI Non-RI Percent RI 

Westward moving 1263 (26.9) 154 1109 12.2 

Northwestward moving 1706 (36.3) 227 1479 13.3 

Northward moving 786 (16.7) 72 714 9.1 

Northeastward moving 945 (20.1) 58 887 6.1 

All 4700 (100.0) 511 4189 10.9 

The pattern of high SLHF to the north of the TC center for RI samples suggests 

there is directionality of SLHF for RI. Hence all samples are divided into four 

categories according to the TC moving direction over each 24-h time period (see 

Figure 3.9). Table 3.1 summarizes the number of RI and non-RI 24-h displacement 

samples for each direction. Overall there is roughly 1 in 9 (10.9%) chance for RI. 

The chance for RI is the highest for northwestward moving samples (13.3%) and the 

least for northeastward moving samples (6.1%), with comparable chance for 

westward and northward moving samples (12.2% and 9.1%, respectively). 
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North 

East 

Figure 3.9 Four categories based on moving direction: westward moving category (WM), 

northwestward moving category (NWM), northward moving category (NM), northeastward 

moving category (NEM). The filled circle and the unfilled circle denote tropical cyclone 

positions at t = to and at t = to+24h, respectively. Each of four angles is 45°. 

Composite analyses on SLHF were performed for the overall samples first and 

then for each moving directions separately. Figure 3.10 shows the composite of 

SLHF for RI samples, non-RI samples, and their difference for westward moving 

category. The areas with statistically significant difference at 95% confidence level 

determined by a /-test are shaded. The SLHF associated with RI samples tend to be 

higher than the non-RI samples, with a maximum to the north-northwest of the TC 

center of � 1 9 0 W nT compared to � 1 6 0 W m— for the non-RI samples. The 

maximum SLHF is roughly located to the right of the moving direction for both RI 
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Figure 3.10 Same as Figure 3.6 except for westward moving category. 
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and non-RI samples. Significant difference between RI and non-RI samples exists for 

an area around the TC centers (Figure 3.10(c)). 
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For northwestward moving category the maximum of -180 W m—2 for RI samples 

(Figure 3.11(a)) and -170 W m"^ for non-RI samples (Figure 3.n(b)) shift to the 

north of the TC center, and the maximum also locate roughly on the right-hand side 

of moving direction. The significant difference between RI and non-RI samples 

exists over an area to the northwest of the TC centers (Figure 3.11 (c)). 

Figure 3.12 is similar to Figure 3.8, except it is for northward moving category. 

The maximum of -180 W m"^ for RI samples (Figure 3.12⑷）and �1 7 0 W m ^ for 

non-RI samples (Figure 3.12(6)) shift to the east of the TC center, and the maximum 

also locate roughly on the right-hand side of moving direction. The significant 

difference between RI and non-RI samples exists over an area to the north of the TC 

centers (Figure 3.12(c)). 

For northeastward moving category there exist the maximum of -170 W for 

RI samples (Figure 3.13(a)) and -150 W m-^ for non-RI samples (Figure 3.13(幼 

both on the right-hand side of moving direction; And there are maximum to the 

northwest of the TC centers for both RI and non-RI samples, where the difference of 

SLHF between RI and non-RI samples is not significant. The significant difference 

does exist over an area to the northeast of the TC centers (Figure 3.13(c)). 
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Figure 3 12 Same as Figure 3.6 except for northward moving category 
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Figure 3.13 Same as Figure 3.6 except for northeastward moving category. 

The maxima of SLHF locate on the right-hand side of TC track for all the four 

categories are mainly due to the cyclonic circulation of TC that results in the largest 
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resultant wind speed on the right-hand side, because they move in the same direction 

on the right-hand side of TC. These results demonstrate that TCs move to higher 

SLHF areas tend to intensify rapidly, suggesting that SLHF provides the energy and 

moisture for TC rapid intensification. 

3.4 Summary and discussion 

The primary findings of this chapter are as follows. 

(a) In this study, RI was defined as approximately the 90th percentile of all 24-h 

over-water intensity changes of western North Pacific and South China Sea TCs 

from 1998 to 2006. This is equal to a minimum central pressure falls of 20 hPa 

over a 24-h period. 

(b) Of the 209 named TCs that comprise the 1998-2006 samples, 51% of all named 

TCs，86% of all typhoons, and 95% of super typhoons undergo RI at least once 

during their lifetime. 

(c) The rainfall within inner-core regions of RI samples is higher than that of non-RI 

samples. 

(d) The SLHF associated with RI and non-RI samples show general similar patterns 

for all four categories. There are maxima of SLHF to the right of TC track. The 

significant difference of SLHF for RI and non-RI samples occurs on TCs' pathway, 

suggesting that SLHF, which provide moisture and energy from ocean surface for 

TC development, is an important factor in TC rapid intensification. 

SLHF is a nonlinear combination of U and the difference of Qs and Qa, where Qs 
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depends on SST. Correlation analysis shows that TC intensity is more significantly 

correlated with IRR than outer-core (radius of 110 km from storm center) rain rate, 

thus average rain rate within inner-core region is adapted in this study. Although SST 

has been utilized to estimate the maximum potential intensity (MPI) which is already 

a predictor in statistical typhoon intensity prediction scheme (e.g., Knaff et al., 2005)， 

our result shows that SLHF and inner-core rainfall have the potential to be new 

predictors for TC intensity forecasting. The work in the following chapters will focus 

on investigating whether SLHF and inner-core rainfall (IRR) can be employed to 

improve the intensity forecast, especially for RI estimates. Besides multiple linear 

regression and logistic regression methods, more sophisticated statistical techniques, 

such as neural networks, will also be employed. 
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CHAPTER 4 Development of Statistical Typhoon Intensity 

Prediction: Application to Satellite Observed Rain Rate and 

Surface Evaporation 

Based on the traditional predictors (independent variables) in STIPS (Knaff et al. 

2005) and two new satellite-based potential predictors (SLHF and IRR) proposed in 

the last chapter, statistical typhoon intensity prediction models using linear 

regression and neural network are developed in this chapter. The dependent variables 

(predictands) are over-water intensity (i.e. MWS) change from the initial forecast 

time (DELV) at 24-h interval. 

DELV = AMWS = MWS(t^ + T)-MWS{t,) (4.1) 

where T are 24, 48，and 72 h. Models beyond 72 h are not created, since a snapshot 

of satellite observation (i.e.，SLHF and IRR) is unlikely to influence intensity change 

significantly beyond 3 days (Fitzpatrick 1997). 

All the datasets are collected over the period from 2000 to 2008 for model 

development. This period represents an intersection of all available data used in this 

study. RSMC Tokyo best track data，NCEP GFS FNL environmental data and TMPA 

rain rate data are collected twice daily at 0000 and 1200 UTC. Only over-water TC 

samples are considered since land effects on TC intensity change are not taken into 

account in this work and OAFlux SLHF and TMI SST data are available over the 

ocean only. 

Section 4.1 describes the computation of the potential predictors. The predictor 
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selection procedure and development and evaluation of linear regression models are 

presented in section 4.2. Neural network models are assessed in section 4.3. The 

summary of this chapter is given in section 4.4. 

4.1 Potential predictors 

Table 4.1 summarizes the predictors (including 16 original and two new 

satellite-based predictors, SLHF and IRR) used in this study. The computation of the 

traditional climatological and environmental predictors follows the approach in 

Knaff et al. (2005). All of the environmental predictors are obtained using a "perfect 

prog" approach (Kalnay 2003). Both the NCEP GFS FNL analysis and the actual TC 

best track (by the RSMC Tokyo) are used to develop the models. The predictors that 

are evaluated at the beginning of the forecast period are static, such as those 

predictors related to climatology and persistence; and predictors that are averaged 

along the track of the storm from the initial observation to the forecast time are time 

dependent, providing the mean conditions for the storm, such as those predictors 

related to SST, moisture and wind fields. 
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Table 4.1 Potential climatological, environmental, and satellite-based predictors. The predictors 

that are evaluated at the beginning of the forecast period are static (S), and the predictors that are 

averaged along storm track from the initial time to the forecast time are time dependent (T). 

Predictor Description 
Static (S) or time 

dependent (T) 

Climatology and persistence 

MWSO 

DMWS 

JDAY 

SPD 

LAT 

LON 

Environmental 

POT 

RHLO 

RHHI 

U200 

T200 

8200 

REFC 

USHR 

^850 

Satellite-based 

SLHF 

IRR 

Initial maximum wind speed 

Maximum wind speed during the past 12 h 

Absolute value of (Julian day - 248) 

Strom translational speed 

Latitude of storm center 

Longitude of storm center 

Maximum potential intensity based on Eq. (1) 

minus initial maximum wind speed 

Area-averaged (200-800 km) relative humidity at 

850-700 hPa 

Area-averaged (200-800 km) relative humidity at 

500-300 hPa 

Area-averaged (200-800 km) zonal wind at 200 

hPa 

Area-averaged (200-800 km) temperature at 200 

hPa 

Area-averaged (0-1000 km) divergence at 200 

hPa 

Relative eddy flux convergence within 600 km at 

200 hPa 

Area-averaged (200-800 km) 200-850-hPa wind 

shear 

Area-averaged (200-800 km) 200-850-hPa zonal 

wind shear 

Area-averaged (0-1000 km) 850-hPa relative 

vorticity 

Area-averaged (5° x 5® box) surface latent heat 

flux 

Area-averaged (0-110 km) inner-core rain rate 

S 

S 

s 
s 
s 
s 

T 

T 

T 

T 

T 

T 

T 

T 

T 

T 

S 

S 
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4.1.1 MPI estimation 

The MPI is defined as the upper bound of TC intensity for given atmospheric and 

oceanic thermal conditions (Camp and Montgomery 2001). It can be estimated 

theoretically (e.g., Miller 1958; Emanuel 1988; Holland 1997) or empirically (e.g.， 

Merrill 1987; DeMaria and Kaplan 1994b; Whitney and Hobgood 1997; Knafifet al. 

2005; Zeng et al. 2007) over Atlantic, eastern North Pacific and western North 

Pacific. Only MPI in eastern North Pacific shows linear relationship with SST. The 

nonlinear relationship over Atlantic and western North Pacific is partly due to rapid 

recurvature of some TCs over colder SSTs and a lag before the circulation spins 

down as suggested by Whitney and Hobgood (1997). However, over the eastern 

North Pacific the TCs generally move more slowly and the storm strength has more 

direct correlation with the SST. Lack of aircraft observations of extremely high wind 

speeds may also contribute to the linear relationship between maximum intensity and 

SST over eastern North Pacific. 

Following the empirical approach, the MPI is determined as an exponential 

function of SST, the interpolated 1° x 1�monthly SST climatology (Levitus 1982) or 

1° X weekly SST analysis (Reynolds et al. 2002) used in previous studies is 

replaced as the high-resolution daily SST data retrieved from TMI in this study. 

Daily SSTs are expected to provide more precise thermal information of the ocean. 

SST were stratified into SST bins with mid-points from 16.5X to 32.5°C at 0.5°C 

interval, and each observation is assigned to the nearest SST midpoint. Table 4.2 

shows maximum intensity and numbers of observation for each SST group. 91% of 
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the observations are assigned to wanner SST groups (>26.0°C). This is only slightly 

lower than the 92% found by Zeng et al. (2007) for the western North Pacific storms, 

and higher than the 76% found by Whitney and Hobgood (1997) and the 82% found 

by DeMaria and Kaplan (1994b) for the Atlantic systems. The strongest typhoon in 

the record is Typhoon Jangmi that occurred in 2008 and the peak intensity 115 kt is 

assigned to 28.0°C category. The SST categories from 28.5°C to 3L0°C have the 

same maximum intensity 110 kt. For the categories higher than 31.0°C, it shows a 

decline of maximum intensity. 

The empirical exponential MPI function described by Eq. (4.2) is derived with a 

SST cutoff of 28.5°C since the flattening or decrease of maximum wind over the 

wannest waters at this SST. The Curve Fitting Toolbox of Matlab (Demuth et al. 

2009) is used to fit the MPI equation. This parametric equation is not contained in 

the toolbox library hence a custom MPI equation is created. The Non-linear Least 

Squares method and Trust-Region algorithm in the toolbox are employed. The 

resulting coefficients are given byA = 29.59 kt, 5 = 108.1 kt, C = 0.1292 and To 

二 30.0 

MPI = A + BeC�T-To� (4 2) 

Figure 4.1 shows this MPI function as well as the data used for its development. 

The highest MPI is given as 140 kt. The intense TCs are located only over high SST 

regions. A lot of weak storms over high SSTs are those observations in the early 

development stages of TCs, and a small number of weak storms occurred over SSTs 

below 26.0°C shows that they can survive over colder waters, as suggested by Zeng 
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et al. (2007). 

120 

Best Track 
•MPI 

16 22 24 26 
Sea Surlace Temperalue (C) 

28 32 

Figure 4.1 The empirical relationship between maximum potential intensity (MPI, kt) and sea 

surface temperature (°C). The relationship is derived from data of 9 yr (2000-2008) and the 

individual data points used for its development are also shown. 

4.1.2 Other potential predictors 

Those potential static predictors in relation to climatology and persistence contain 

initial intensity (MWSO), intensity change in the previous 12 h (DMWS), absolute 

value of Julian date anomaly from 248 [JDAY; 248 is the peak of seasonal TC 

activity over western North Pacific (Neumann 1993)], average storm translational 

speed in the previous 12 h (SPD), latitude (LAT) and longitude (LON) of current 

storm location. 
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Table 4.2 SST group properties. 

SST midpoint Number of Maximum intensity 

(。c) Observations (kt) 
16.5 1 50 

18.0 2 45 

18.5 1 65 

19.5 1 65 

20.0 1 50 

20.5 8 55 

21.0 3 65 

21.5 7 65 

22.0 11 75 

22.5 10 60 

23.0 17 75 

23.5 15 75 

24.0 11 75 

24.5 28 85 

25.0 31 95 

25.5 37 85 

26.0 72 100 

26.5 93 105 

27.0 100 100 

27.5 188 100 

28.0 186 115 

28.5 226 110 

29.0 424 110 

29.5 244 110 

30.0 150 110 

30.5 78 110 

31.0 15 110 

31.5 3 75 

32.0 1 70 
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The potential predictors related to moisture are mean upper-level relative humidity 

(RHHI) at 850-700 hPa layer and mean mid-level relative humidity (RHLO) at 

500-300 hPa layer, in an annulus of 200-800 km from storm center. The inner 

regions within 200-km radius of the TC are removed from the analysis since 

synthetic observations are often assimilated to the global dynamic models to 

initialize the TC (e.g., Goerss and Jefferies 1994). 

The area-averaged zonal wind at 200 hPa (U200), air temperature at 200 hPa 

(T200), 200 - 850 hPa wind shear (SHR), and zonal component of the shear (USHR) 

within the same 200-800 km annulus are examined as potential predictors. SHR and 

USHR are calculated using Eq. (4.3) and (4.4), respectively. 

SHR = 7(^200 +(̂ 200 -^850^ (4.3) 

u s m = t i ^ - u 舰 (4.4) 

where u and v are zonal and meridional wind components of wind velocity, the 

subscripts denote the atmospheric layers in hPa. 

The divergence at 200 hPa (5200) and the relative vorticity at 850 hPa (�850) are 

calculated based on central difference method for grids center around the TC center, 

using Eq. (4.5) and (4.6), respectively. The divergence and vorticity are then 

averaged within 1000 km radius. 

5200,, = + + t i l ^ i L Z ^ + ZzilZZzzL (4.5) 
’ d x dy Dx D^ 

' ' ' d x dy D^ Dy �乂 

where u and v are the same as those in Eq. (4.3), the subscripts i and j represent zonal 
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and meridional grid numbers, Dx is the distance between grid 0+1，j) and grid (/-I, j), 

and Dy is the distance between grid {i,j+l) and grid (i,j-\). 

The relative eddy flux convergence (REFC) at 200 hPa is calculated at 100-km 

radical intervals from 100 to 600 km using Eq. (4.7): 

REFC =-r-'^{r'uy,) (4.7) 

where U is the radial wind, V is the tangential wind, r is radius. The overbar 

denotes an azimuthal average; the primes represent a departure from the azimuthal 

average, and the subscript L indicates that the calculation is done along the storm 

track. The storm translational speed is removed from the horizontal wind 

components to determine U and V. REFC is a measure of the momentum flux and 

accounts for positive interactions between the storm and synoptic-scale systems, it is 

only evaluated at 200 hPa since the interactions is more likely to present in the upper 

levels as suggested by Holland and Merrill (1984) in a theoretical study. At lower 

atmosphere, the large inertial stability of the rapidly rotating storm circulation limits 

the interactions with the environment. 

Table 4.3 Correlation coefficients between 24-h minimum central pressure (AP24) change and 

area-averaged SLHF within different size of boxes. The number of samples during the period 

2000-2008 is 1728. 

Size of box Correlation coefficients between AP24 and area-averaged SLHF 

3°X3° -0.128 

5 �X 5。 -0 .132 

7 � X 7 � -0.122 

9° X 9° -0 .100 
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SLHF and IRR predictors are computed as the average within a box of 5° x 5° and 

within a radius of 100 km centered at TC position, respectively. SLHF parameter is 

also calculated from larger or smaller boxes. The correlation coefficients between 

area-averaged SLHF within different size of boxes and 24-h minimum central 

pressure change (AP24) using samples during the period 2000-2008 are shown in 

Table 4.3, the other size of boxes are disregarded since they have lower correlations 

with AP24 than does the 5° x 5° averaged SLHF. For the operational purpose, SLHF 

and IRR are deemed to be static predictors, since it is impossible to acquire satellite 

remote sensed information in "future". 

A stepwise regression procedure is used to select parameters from the potential 

predictor pool. A 99% statistical significance level based on an F test (e.g.，Wilks 

2006) is the threshold for an individual predictor to be added initially in the model. 

Once selected, a predictor can only be removed if its significance level becomes less 

than 98% after the addition/removal of another predictor. The stepwise procedure 

continues until none of the selected predictors can be removed and none of the 

remaining potential predictors can be added. 

4,2 Linear regression models 

To assess the contribution of SLHF and IRR on the intensity change prediction, 

three kinds of regression models are developed. The first serves as a control. The 

stepwise procedure is applied on the 16 STIPS original predictors to select 

significant predictors and create a base regression model (hereafter referred to as 

55 



BASE). The second kind of model is developed by adding the two new 

satellite-based predictors SLHF and IRR into the base regression model (hereafter 

referred to as STIPER). The stepwise procedure is also employed on the 6 predictors 

related to climatology and persistence to create another kind of regression model 

called CLIPER, which is generally a baseline to evaluate the skill of operational 

models. A model can be considered to produce skillful intensity forecast if it has 

smaller error than CLIPER. 

Assuming the independence of annual statistics, the samples in one year are used 

for verification and the samples in the other years are used for model development. 

For example, to predict 2003 TC intensity over western North Pacific, the samples of 

2000-2002 and 2004-2008 are used to construct the models. As a result, for each 

CLIPER, BASE and STIPER model there are totally nine regression equations, 

which may contain different sets of significant predictors due to different training 

samples. All of the predictors identified for any regression equation are included in 

the final group of predictors. The final CLIPER, BASE and STIPER models are 

created using the final group of predictors. The predictand as well as the predictors 

are normalized by subtracting their means and dividing by their standard deviations 

before regression, the resulting coefficients can be used to compare the relative 

contribution of each predictor directly. 

4.2.1 24-h intensity prediction 

a. Model interpretation 

Table 4.4 lists the normalized coefficients associated with each predictor for each 



STIPER 24-h forecast equation. The number of samples used to develop the 

regression equations are shown in parentheses at the top of the table. There are 

around 1100 samples for training every single model. The STIPER models for 24-h 

intensity forecast contain 10 important predictors: MWSO, DMWS, JDAY, LAT，POT， 

RHLO, RHHI, SHR, SLHF and IRR. Among these predictors, MWSO, DMWS, 

JDAY, and LAT are used to create the CLIPER models; MWSO, DMWS, JDAY, LAT, 

POT, RHLO, RHHI, and SHR are included in the BASE models. 

In all these models, the four most important predictors are POT, DMWS, SHR and 

MWSO. As expected, the persistence term DMWS is associated with a positive 

regression coefficient, since storms that have intensified in the previous 12 h tend to 

intensify in the next 24 h (Knaff et al. 2005). Intensity change is negatively 

correlated with the MWSO because weak storms are further from their MPI and 

hence have more potential to intensify. Vertical wind shear has a negative impact on 

the intensification of TCs. One explanation for this is that the heat and moisture at 

upper levels are advected in a different direction relative to the low-level cyclonic 

circulation and therefore the "ventilation" of heat away from the circulation inhibits 

the development of the storm (Gray 1968). DeMaria (1996) proposed an alternate 

explanation, the tilt of the upper and lower level potential vorticity due to vertical 

wind shear produces a mid-level temperature increase near the vortex center, and this 

mid-level warming is hypothesized to reduce the convective activity and thus inhibit 

storm development. 

The coefficient of JDAY is negative since this variable indicates the number of 
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days from the peak of the typhoon season. LAT is negatively correlated with 

intensity change since the SST generally decreases toward the north in the western 

North Pacific basin. RHLO and RHHI can affect TC intensification rates because 

high relative humidity in the middle atmosphere reduces the entrainment of dry air 

into cumulus convection which is direct source of TC，s energy. Nearly the same 

positive coefficients associated with the two new satellite-based predictors suggest 

that latent heat release in the atmosphere and latent heat transfer at the 

ocean-atmosphere interface have comparable effects on TC development in 24 hrs. 

Table 4.4 STIPER predictor normalized regression coefficients in different verification years for 

24-h forecasts. The predictors are listed on the left side of the table and the verification years are 

listed at the top with the number of dependent samples (N) used to develop the equation shown in 

parentheses. 

Year (N) 
2000 2001 2002 2003 2004 2005 2006 2007 2008 

Predictor 
(1126) (1102) (1065) (1097) (1039) (1108) (1111) (1144) (1176) 

1) MWSO -0,15 -0.17 -0.17 -0.14 -0.15 -0.15 -0.13 -0.16 -0.14 

2) DMWS 0.29 0.31 0.30 0.30 0.30 0.30 0.30 0.28 0.28 

3) JDAY -0.12 -0.10 -0.12 -0.11 -0.12 -0.10 -0.10 -0.12 -0.11 

4) LAT 4 1 1 -0.09 -0.10 -0.10 -0.13 -0.10 -0.09 -0.13 -0.12 

5) POT 0.31 0.29 0,29 0.31 0.30 0.30 0.33 0.29 0.32 

6) RHLO 0.07 0.04 0.05 0.04 0.05 0.04 0.05 0.06 0.06 

7) RHHI -0.01 0.02 0.03 0.04 0.01 0.04 0.01 0.00 -0.01 

8) SHR -0.17 -0.18 -0.17 -0.18 -0.18 -0.16 -0.17 -0.18 -0.18 

9) SLHF 0.05 0.06 0.05 0.03 0.04 0.04 0.05 0.05 0.05 

10)IRR 0.04 0,07 0,04 0.07 0.03 0.06 0.05 0.05 0.04 
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b. Dependent model statistics 

Table 4.5 shows mean absolute error (MAE) and percent variance explained (R^) 

of CLIPER, BASE, and STIPER estimated from dependent data for 24-h model 

training. MAE and R^ represent the potential forecast capability of the models. The 

CLIPER models have the largest MAE of about 7.6 kt and smallest R^ of about 0.47, 

the STIPER models have the smallest MAE of about 7.0 kt and the largest R^ of 

about 54%, and the BASE models have MAE and R^ between the other two kinds of 

models. The results indicate that the addition of synoptic predictors can enhance the 

model capability of intensity prediction and the inclusion of two satellite-based 

predictors on heat source can improve the capability further. 

Table 4.5 Developmental statistics of CLIPER, BASE and STIPER models for 24-h forecast. 

Mean absolute error (MAE, kt) of the model estimate and percent variance explained (R^) are 

shown. 

Year CLIPER BASE STIPER 

MAE R2 MAE R2 MAE R2 

2000 7.60 47.4 7.14 53.8 7.11 54.1 

2001 7.66 46.7 7.17 53.0 7.13 53.5 

2002 7.59 47.1 7.15 53.5 7.11 53.8 

2003 7.61 46.3 7.13 53.0 7.11 53.5 

2004 7.47 48.0 7.00 54.4 6.99 54.5 

2005 7.51 46.4 7.02 52.8 6.98 53.3 

2006 7.54 46.3 7.04 52.9 7.01 53.3 

2007 7.32 47.0 6.91 52.8 6.89 53.1 

2008 7.46 46.0 6.99 52.4 6.97 52.7 
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c. Model evaluation 

The models developed above are evaluated in this section. Table 4.6 shows MAE 

and r2 of CLIPER, BASE and SUPER 24-h forecasts for different verification years. 

The best model for every verification year is indicated in bold italics. The numbers of 

samples used to verify are also shown. There are 70 samples for verification year 

2008 and up to 207 samples for verification year 2004. Both of the BASE and 

STIPER models can produce better forecasts than CLIPER. Among 9 verification 

cases, STIPER has the lowest MAE and the highest R^ for 6 cases. The MAEs of the 

STIPER models are l%-3% smaller than those of the corresponding BASE models 

for the 6 cases. As a result, STIPER is skillful for 24-h intensity forecast and the 

inclusion of satellite-based predictors SLHF and IRR provides l%-3% improvement 

compared with the model without satellite information. 

Table 4.6 also shows that the MAE in 2005，2007 and 2008 verification years are 

larger than the other verification years. Some statistics of 24-h observations and 

forecasts from STIPER are shown in Table 4.7. On average 23 TCs contribute to 138 

observations of 24-h intensity change per year during period 2000-2008. The 

maximum and the minimum 24-h intensity change during the period 2000-2008 are 

50 kt per day and -45 kt per day. The high variances of intensity change observations 

in year 2005, 2007, and 2008 result in the bad model performance in these years. 
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Figure 4.2 Scatter plots of STIPER predicted intensity change and observed intensity change for 

(a) dependent training samples during 2000-2007, (b) independent verification samples in 2008. 
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Table 4.6 Mean absolute errors (MAE, kt) and percent variances explained (R^) for CLIPER, 

BASE, and STIPER 24-h forecasts in different verification years with number of samples (N). 

The best model for each verification year is indicated in bold italics. 

Year N CLIPER BASE STIPER 

MAE R2 MAE R2 MAE R2 

2000 120 7.01 37.5 6.54 43.8 6.49 44,0 

2001 144 6.51 47.5 6.33 54.0 6.46 52.4 

2002 181 7.30 42.6 6.77 48.7 6.76 49.5 

2003 149 6.94 50.5 6.73 53.4 6.73 52.6 

2004 207 7.94 39.5 7.58 45.5 7.37 46.7 

2005 138 7.60 49.3 7.47 54,6 7.60 54.3 

2006 135 7.43 50.5 7.18 54.6 7.18 54.7 

2007 102 9.87 44.3 8.67 54.6 8.59 55.1 

2008 70 8.67 55.5 8.09 60.8 8.05 61.7 

Figure 4.2 indicates the scatter plots of STIPER predicted 24-h intensity change 

and observed 24-h intensity change for dependent training samples during period 

2000-2007 and independent verification samples in 2008. The STIPER model is 

shown to under-estimate the rapid intensification rates and over-estimate the intensity 

in rapidly decaying events. This is consistent with the evaluation study by Elsberry et 

al. (2007) and confirms the conclusion of Knaff et al. (2005) that linear regression 

model can not predict extremes. 

To examine and compare the performance in specific stage of TCs of the BASE 

and STIPER models, mean absolute error is stratified by initial TC intensity and 24-h 

intensity change for the 2008 verification case as an example. Figure 4.3a shows 

mean absolute error as a function of initial intensity classified in 5-kt bins. The 
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STIPER model outperforms the BASE model for typhoons with intensity between 45 

kt and 85 kt. The BASE model produces better forecasts (lower MAE) for 35-40 kt 

bin and 85-90 kt bin, however, the sample size for the two bins are very small. 

Figure 4.3b indicates mean absolute error binned as a function of 24-h intensity 

change. Most of the samples are located within the intensity range of 士20 kt. Mean 

absolute error for the STIPER model is not larger than that for the BASE model for 

all intensity change bins except between 5-10 kt. The MAE becomes higher with 

increasing magnitude of intensity change. It is worthy to point out that STIPER 

performs much better for substantially intensifying samples (with 24-h intensity 

change larger than 20 kt) than the BASE model, suggesting that the addition of 

satellite information could reasonably improve the forecasts of rapidly intensifying 

samples. 

Table 4.7 Statistics of 24-h observations and forecasts from the STIPER model. The unit of 

intensity change is kt day~\ the unit of intensity is kt, and the unit of variance is kt̂  day - 2 

2000 2001 2002 2003 2004 2005 2006 2007 2008 

Min intensity change - 2 0 —35 - 3 0 -25 
一 5 

-40 - 3 0 4 0 -25 

Max intensity change 40 35 30 30 40 45 45 50 40 

Max intensity 100 105 100 105 110 105 105 110 105 

Number of storms 23 24 25 20 28 22 23 24 22 

Variance of observations 133 162 146 172 162 208 201 270 262 

Variance of forecasts 86 105 96 128 96 101 79 85 119 

Variance of forecast error 32 35 30 34 33 36 38 46 35 
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Figure 4.3 BASE model and STIPER model mean absolute error (MAE) (a) stratified by 

best-track initial intensity (MWSO) in 5-kt bins for 24-h forecasts and (b) stratified by 24-h 

intensity change (DELV) in 5-kt bins. Lower values of mean absolute error represent better 

forecasts. Dotted lines represent the number of valid observations within a particular bin. 
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4.2.2 48-h intensity prediction 

a. Model interpretation 

The important predictors in STIPER selected from the potential predictor pool for 

48-h intensity forecast contain MWSO, DMWS, JDAY，LAT, POT, RHLO，RHHI, 

REFC, SHR, USHR，SLHF and IRR (Table 4.8). There are around 700 samples for 

48-h model training. The CLIPER models for 48-h intensity prediction have the same 

predictors as the one of 24-h version, and the BASE models and the STIPER models 

for 48-h intensity forecast have two more predictors (REFC and USHR) than those 

for 24-h version of STIPER. 

The predictors related to SST and vertical wind shear (POT and SHR) are most 

important. The contribution of the persistence term DMWS is weaker than 24-h 

version of STIPER since the persistence variable is more important for shorter-term 

forecasts. Relative to 24-h intensity change, initial SLHF has lower impact on 48-h 

intensity change, however, the other satellite-based predictor IRR has larger 

normalized regression coefficient, suggesting that inner-core latent heating plays a 

more important role in 48-h intensification process. 

The positive regression coefficients associated with USHR indicate that westerly 

shear (and westerly 200-hPa winds) is favorable for TC intensification. This positive 

relationship is consistent with the finding in STIPS, but different from the negative 

relationships found in the east Pacific Basin and the Atlantic Basin (DeMaria and 

Kaplan 1994a; DeMaria and Kaplan 1999). There are two possible explanations for 

this: 1) The accompanying westerly winds of tropical upper tropospheric troughs 
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(TUTTs; Sadler 1976, 1978) or mid-latitude troughs on the north side of TCs weaken 

the easterly shear normally observed over the storm center and result in weak 

westerlies within the 200—800-km annulus where the vertical wind shear is computed. 

This mechanism is likely more effective in the western North Pacific Basin where 

most of the tropical cyclogenesis are associated with monsoon troughs (Zehr 1992; 

Briegel and Frank 1997; Ritchie and Holland 1999), which often has intense 

upper-level easterlies (Wang and Xu 1997) that inhibit storm intensification. 2) An 

empirical observation that typhoon peak intensity is often at or near recurvature 

(Riehl 1972; Evans and McKinley 1998; Knaff 2009). 

The positive relationships between the momentum flux predictor REFC and 48-h 

intensity change is expected, since REFC tends to be large when a TC is moving 

towards an upper-level trough in the midlatitude westerlies or interacting with a 

upper-level cold lows in low latitudes, and the large REFC that makes the 

upper-level circulation more cyclonic could result in the increase of the storm 

intensification rate (Holland and Merrill 1984; Molinari and Vollaro 1989; DeMaria 

etal. 1993). 

b. Dependent model statistics 

Table 4.9 shows mean absolute error (MAE) and percent variance explained (R^) 

of CLIPER, BASE, and SUPER estimated from dependent data for 48-h model 

training. The CLIPER models have the largest MAE of about 10.7 kt and smallest R^ 

of about 54%, the SUPER models have the smallest MAE of about 9.3 kt and the 

66 



largest R^ of about 64%, and the BASE models have MAE and R^ between the other 

two kinds of models. The results indicate that the addition of synoptic predictors can 

enhance the model capability of intensity prediction and the inclusion of two 

satellite-based predictors on heat source can improve the capability further. 

Table 4.8 STIPER predictor normalized regression coefficients with explained variances (R ,̂ %) 

statistic at the bottom in different verification years for 48-h forecasts. The predictors are listed 

on the left side of the table and the verification years are listed at the top with the number of 

dependent samples (N) used to develop the equation shown in parentheses. 

\ ^ Y e a r ( N ) 
2000 2001 2002 2003 2004 2005 2006 2007 2008 

Predictor 
(759) (736) (702) (726) (684) (738) (744) (770) (837) 

1)MWS0 -0.11 -0.16 -0.11 -0.09 -0.16 —0.13 -0.12 -0.16 -0.13 

2) DMWS 0.14 0.16 0.15 0.15 0.15 0.15 0.16 0.15 0.15 

3) JDAY -0.15 -0.13 -0.17 -0.13 -0.16 -0.13 -0.13 -0.15 -0.14 

4) LAT -0.13 -0.07 -0.12 —0.11 -0.16 一 0.11 —0.09 -0.13 -0.11 

5) POT 0.56 0.50 0.55 0.57 0.51 0.53 0.53 0.51 0.53 

6) RHLO 0.05 0.01 -0.00 0.02 0.02 0.01 0.02 0.04 0.02 

7) RHHI -0.05 -0.02 0.03 0.01 —0.04 0.02 -0.01 -0.05 -0.01 

8)REFC 0.09 0.12 0.11 0.06 0.11 0.08 0.10 0.10 0.10 

9) SHR -0.16 -0.21 -0.19 -0.20 -0.22 -0.18 -0.18 -0.20 -0.19 

10) USHR 0.08 0.09 0.13 0.09 0.12 0.11 0,08 0.10 0.10 

11)SLHF 0.02 0.03 -0.01 -0.00 -0.01 -0.00 0.02 0,02 0.01 

12)IRR 0.09 0.13 0.11 0.12 0.09 0.13 0.10 0.10 0.10 
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Table 4.9 Developmental statistics of CLIPER, BASE and STIPER models for 48-h forecast. 

Mean absolute error of the model estimate and percent variance explained (R^) are shown. 

Year CLIPER BASE STIPER 

MAE R2 MAE R2 MAE R2 

2000 10.61 54.8 9.37 64.4 9.28 65.1 

2001 10.86 52.3 9.56 62.4 9.40 63.8 

2002 10.73 53.6 9.46 63.8 9.32 64.6 

2003 10.78 51.5 9.55 61.4 9.46 62.4 

2004 10.49 54.8 9.19 65.3 9.12 65.8 

2005 10.78 52.4 9.56 61.7 9.41 62.9 

2006 10.75 52.1 9.53 61.8 9.44 62.6 

2007 10.28 55.7 9.21 63.6 9.14 64.4 

2008 10.67 53.3 9.45 62.9 9.35 63.8 

c. Model evaluation 

The 48-h models are evaluated in this section. Table 4.10 shows MAE and R^ of 

CLIPER, BASE and STIPER 48-h forecasts for different verification years. The best 

model for every verification year is indicated by bold italics. The numbers of samples 

used to verify are also shown. There are 40 samples for verification year 2008 and up 

to 153 samples for verification year 2004. Both of the BASE and STIPER models 

can provide better forecasts than CLIPER. Among 9 verification cases, STIPER has 

the lowest MAE and the highest R^ except for 2001 and 2005. The MAEs of the 

STIPER models are l%-3% smaller than those of the corresponding BASE models 

for the 7 cases. As a result, STIPER is skillful for 48-h intensity forecast and the 

inclusion of satellite-based predictors SLHF and IRR provides l%-3% improvement 
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compared with the model without satellite information. 

Table 4.10 Mean absolute errors (MAE, kt) and percent variances explained (R^) for CLIPER, 

BASE，and STIPER 48-h forecasts in different verification years with number of samples (N). 

The best model for each verification year is indicated in bold italics. 

Year N CLIPER BASE STIPER 

MAE R2 MAE R2 MAE R2 

2000 78 10.92 33.3 10.21 40.9 9.89 43,9 

2001 101 9.37 60.9 8.93 66.7 9.42 62.1 

2002 135 10.42 50.9 9.73 55.6 9.68 56.8 

2003 111 10.03 64.2 8.86 70.9 8.62 71.0 

2004 153 11.62 45.8 10.92 50,1 10.55 52,2 

2005 99 10.00 60.5 8,87 70,9 9.20 69.0 

2006 93 10.35 61.4 9.09 70.1 8.92 71.3 

2007 67 14.78 31.0 11.97 55.0 11.56 56.9 

2008 40 12.57 59.3 12.24 62.1 11.85 63.9 

4.2.3 72-h intensity prediction 

a. Model interpretation 

MWSO, DMWS, JDAY, LAT, LON, POT, RHHI, REFC, SHR, USHR, SLHF and 

IRR are selected as the important predictors in STIPER from the potential predictor 

pool for 72-h intensity forecast contain (Table 4.11). Around 500 samples are utilized 

for 72-h model training. The CLIPER models for 72-h intensity prediction have one 

more predictor (LON) than the 24-h and 48-h versions. In addition to LON, the 

BASE models and the STIPER models for 72-h intensity forecast also have two more 

predictors (REFC and USHR) than those for 24-h version of STIPER, while RHLO 
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is eliminated in 72-h models. 

Table 4.11 STIPER predictor normalized regression coefficients with explained variances (R ,̂ %) 

statistic at the bottom in different verification years for 72-h forecasts. The predictors are listed 

on the left side of the table and the verification years are listed at the top with the number of 

dependent samples (N) used to develop the equation shown in parentheses. 

Year (N) 
2000 2001 2002 2003 2004 2005 2006 2007 2008 

Predictor \ 
(522) (505) (470) (489) (464) (509) (509) (536) (572) 

1)MWS0 ^ . 1 3 -0.19 -0.21 -0.24 -0.24 -0.22 -0.20 -0.26 -0.21 

2) DMWS 0.10 0.12 0.09 0.09 0.09 0.09 0.11 0.09 0.10 

3) JDAY -0.15 -0.13 —0.16 -0.16 -0.16 -0.11 —0.13 -0.14 -0.14 

4) LAT -0.11 -0.02 -0.09 —0.14 —0.14 -0.08 -0.08 —0.11 -0.09 

5) LON 0.05 0.01 0.07 0.06 0.06 0.07 0.03 0.04 0.05 

6) POT 0.64 0.57 0.53 0.52 0.52 0.53 0.54 0.49 0.55 

7) RHHI -0.04 -0.01 0.02 -0.06 -0.06 0.02 -0.01 -0.02 —0.01 

8) REFC 0.08 0.14 0.12 0.13 0.13 0.08 0.11 0.10 0.11 

9) SHR -0.12 -0.19 -0.16 -0.21 -0.21 —0.15 -0.16 -0.17 -0.17 

10) USHR 0.06 0.09 0.08 0.11 0.11 0.07 0.06 0.06 0.07 

11) SLHF 0.01 0.02 0.01 —0.03 -0.03 0.01 0.02 0.01 0.01 

12) IRR 0.12 0.13 0.12 0.11 0.11 0.15 0.12 0.12 0.13 

The predictors related to SST and vertical wind shear (POT and SHR) and the 

initial intensity (MWSO) are the most important, while the persistence term DMWS 

is less important than 24-h version and 48-h version of STIPER. Just as 48-h 

intensity change, initial SLHF also has lower impact on 72-h intensity change than 

the 24-h case. The other satellite-based predictor IRR has comparable normalized 
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regression coefficient as 48-h models, suggesting that inner-core latent heating plays 

almost the same role for 48-h and 72-h intensification process. 

The positive regression coefficients associated with USHR and REFC indicate that 

westerly shear (and westerly 200-hPa winds) and large upper-level momentum flux 

is also favorable for TC intensification in 72 h. The positive regression coefficient of 

LON indicates that the intensification rate would be higher if the storms are at higher 

longitude. This may be because those storms travel longer over the ocean and could 

obtain more heat from the underlying warm water. 

Table 4.12 Developmental statistics of CLIPER, BASE and SUPER models for 72-h forecast. 

Mean absolute error of the model estimate and percent variance explained (R^) are shown. 

Year CLIPER 

MAE 

BASE 

MAE R2 

SUPER 

MAE 

2000 11.15 63.6 9.64 72.9 9.52 73.9 

2001 11.33 60.5 9.83 70.4 9.65 71.8 

2002 11.56 62.2 10.07 71.3 9.86 72.4 

2003 11.22 59.6 10.05 68.2 9.91 69.5 

2004 11.03 63.7 9.45 73.8 9.27 74.8 

2005 11.42 60.7 10.13 69.1 9.91 70.8 

2006 11.36 60.4 9.99 69.1 9.89 70.3 

2007 10.85 63.9 9.75 70.8 9.61 71.8 

2008 11.26 61.7 9.92 70.5 9.76 71.7 

b. Dependent model statistics 

Table 4.12 shows mean absolute error (MAE) and percent variance explained (R^) 
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of CLIPER, BASE, and SUPER estimated from dependent data for 72-h model 

training. The CLIPER models have the largest MAE of about 11.3 kt and smallest R^ 

of about 62%, the SUPER models have the smallest MAE of about 9.8 kt and the 

largest R^ of about 72%, and the BASE models have MAE and R^ between the other 

two kinds of models. The results indicate that the addition of synoptic predictors can 

enhance the model capability of intensity prediction and the inclusion of two 

satellite-based predictors on heat source can improve the capability further. 

Table 4.13 Mean absolute errors (MAE, kt) and percent variances explained (R^) for CLIPER, 

BASE, and STIPER 72-h forecasts in different verification years with number of samples (N). 

The best model for each verification year is indicated in bold italics. 

Year N CLIPER BASE STIPER 

MAE R2 MAE R2 MAE R2 

2000 50 11.99 22.4 12.43 17.8 12.16 21.1 

2001 67 10.76 69.2 11.34 68.7 11.50 68.3 

2002 102 10.48 55.9 9.61 62.8 9.56 65,2 

2003 83 11.82 70.4 9.62 80.3 9.45 80.6 

2004 108 13.00 51.0 12.45 51.4 12.17 53.1 

2005 63 10.62 68.7 8.79 79.8 9.51 76.9 

2006 63 10.82 70.2 9.57 79.3 8,95 80.8 

2007 36 16.11 26.0 12.08 63.9 11.44 67.8 

2008 26 9.60 67,5 9.64 67.1 11.58 54.5 

There is an increase of variances explained as a function of time from 24 h to 72 h. 

This increase does not represent an enhancement in model skill at longer forecast 

times. Instead, it simply reflects that the variability of intensity change increases as a 
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function of time. 

c. Model evaluation 

The evaluation results of 72-h CLIPER, BASE and SUPER models are shown in 

Table 4.13. The best model for every verification year is indicated by bold italics. 

The numbers of samples used to verify are also shown. There are 26 samples for 

verification year 2008 and up to 108 samples for verification year 2004. Among the 9 

verification cases, 5 STIPER models, 3 CLIPER models and 1 BASE model provide 

the best forecasts. The MAEs of the STIPER models are l%-6% smaller than those 

of the corresponding BASE models for 5 cases. As a result, STIPER is skillful for 

72-h intensity forecast and the inclusion of satellite-based predictors SLHF and IRR 

provides l%-6% improvement compared with the model without satellite 

information. However，the 72-h models are less stable than shorter-term forecast 

models for 24-h and 48-h intensity prediction. 

The increasing MAEs with the longer forecast time intervals (as shown in Table 

4.6, Table 4.10 and Table 4.13) is primarily due to the inclusion of some predictors 

related to CLIPER, which have more impact on intensity change in shorter time 

periods. 

4.3 Neural network models 

The nonlinear response of the linear regression models suggests the use of 

non-linear models can be beneficial. The back-propagation neural network (NN) 
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models for 24-h, 48-h and 72-h intensity prediction (NN24, NN48, and NN72) are 

developed using the same predictors from the linear regression model STIPER. The 

input layers of NN24, NN48, and NN72 models contain ten neurons, twelve neurons, 

and twelve neurons, respectively，which correspond to those predictors used in the 

linear regression forecasting models for the same time period. All of the NN models 

have seven neurons in the hidden layers and one neuron in the output layers. The 

only neuron in the output layers corresponds to the predictand (24-h, 48-h or 72-h 

intensity change). The log-sigmoid transfer function is selected from the input layer 

to the hidden layer and the linear transfer function is used from the hidden layer to 

the output layer in all of above NN models. Same as linear regression models, the 

NN models are developed by using 8-year data samples for training and 1-year data 

samples for verification. 

Table 4.14 indicates the verification statistics of NN24, NN48, and NN72 models. 

The mean absolute errors of NN24 model range from 5.97 kt in 2001 to 8.04 kt in 

2007. The mean absolute errors of NN48 model are larger than those of NN24 model; 

they range from 7.81 kt in 2003 to 10.45 kt in 2007. Surprisingly, NN72 model has 

smaller mean absolute error than NN48 model except for 2000, 2001 and 2004. 

Figure 4.4, Figure 4.5 and Figure 4.6 offer us the direct comparison of the three 

linear regression models (CLIPER, BASE, and STIPER) and the NN models at three 

forecasting intervals (24 h，48 h, and 72 h) in the nine verification years from 2000 to 

2008. 
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Figure 4.4 The mean absolute errors (MAE, kt) of four regression models (CLIPER, BASE, 

STIPER, and NN24) in different verification years at 24-h forecast time. 
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Table 4.14 Mean absolute errors (MAE, kt) and percent variances explained (R^) of neural 

network modes (NN24, NN48, and NN72) for 24-h, 48-h, and 72-h intensity forecasts in different 

verification years. 

Year NN24 NN48 NN72 

MAE R2 MAE R2 MAE R2 

2000 6.02 47.2 8.29 53.6 10.03 52.6 

2001 5.97 62.7 8.10 70.8 9.61 74.0 

2002 6.27 55.9 8.43 62.9 8.23 72.8 

2003 6.21 58.8 7.81 74.4 7.79 83.0 

2004 6.95 51.1 9.13 61.9 10.26 62.5 

2005 6.91 57.2 8.71 69.3 8.26 81.3 

2006 6.72 59.0 8.52 73.3 8.51 80.0 

2007 8.04 59.1 10.45 63.6 8.72 74.4 

2008 7.21 67.2 9.78 72.7 8.70 75.5 
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Year 
Figure 4.5 The mean absolute errors (MAE, kt) of four regression models (CLIPER, BASE, 

STIPER, and NN48) in different verification years at 48-h forecast time. 

At 72-h forecast time (Figure 4.6)，the NN72 model 6-28% improvement 

compared to the STIPER model and 9-46% improvement compared to the CLIPER 

model 

Figure 4.7 indicates the scatter plots of NN24 predicted 24-h intensity change as 

well as observed 24-h intensity change for dependent training samples during period 

2000-2007 and independent verification samples in 2008, STIPER results are also 
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For the 48-h forecasts (Figure 4.5), the NN48 model has 4-17% improvement 

compared to the STIPER model and 14-29% improvement compared to the CLIPER 

model. 
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Figure 4.6 The mean absolute errors (MAE, kt) of four regression models (CLIPER, BASE, 

STIPER, and NN72) in different verification years at 72-h forecast time. 
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shown for comparison. Generally, NN24 has lower absolute errors both for the 

developmental samples and the verification samples than STIPER. The mean 

absolute errors are then stratified by initial TC intensity and 24-h intensity change of 

NN24 model and the 24-h STIPER model in the verification year 2008 (Figure 4.8). 

It is indicated that the NN24 model outperforms the 24-h STIPER model almost in 

all the TC stages and intensity change bins. The largest error reduction of NN24 

model occurs for the rapidly intensifying or rapidly decaying storms, especially for 

the sample intensifying by 40 kt, the forecast error decreases by 7 kt. 
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Figure 4.7 Scatter plots of STIPER and NN24 predicted 24-h intensity change versus observed 

24-h intensity change for (a) dependent training samples during 2000-2007, (b) independent 

verification samples in 2008. 
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Figure 4.8 NN24 model and STIPER model mean absolute error (MAE) (a) stratified by 

best-track initial intensity (MWSO) in 5-kt bins for 24-h forecasts and (b) stratified by 24-h 

intensity change (DELV) in 5-kt bins. Lower values of mean absolute error represent better 

forecasts. Dotted lines represent the number of valid observations within a particular bin. 
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The NN models are clearly superior to the corresponding linear regression models. 

This is probably because the NN models are constructed using artificial intelligence 

nonlinear fitting, which has capabilities of strong nonlinear mapping and 

self-adaptation learning by including nonlinear transfer function and therefore better 

captures the nonlinear evolutionary characteristics of TC intensity. 

4.4 Summary 

A new maximum potential intensity equation is derived using TMI OI sea surface 

temperature data with high temporal and spatial resolution (daily and a quarter 

degree). This equation together with environmental information obtained from NCEP 

GFS FNL analysis, best track taken from RSMC Tokyo and SLHF and IRR derived 

from satellite data are then utilized to develop multiple linear regression models and 

neural network models for western North Pacific TC intensity forecasting at 24-h, 

48-h, and 72-h intervals. 

Compared to the multiple linear regression models (BASE) with climatology, 

persistence and environmental predictors only, the linear regression models that 

include additional satellite-based SLHF and IRR (STIPER) provides 1-3% 

improvement in 24-h and 48-h forecasting and 1-6% improvement in 72-h 

forecasting. The largest improvement of the satellite-enhanced STIPER model occurs 

for those rapidly intensifying storms. 

The neural network (NN) models developed using the same predictors as those 

used in the STIPER models outperform the STIPER models. The improvement is up 

80 



to 10%’ 17%, and 28% at 24-h, 48-h, and 72-h forecast time, respectively. The error 

reduction exists for all the TC stages and intensity change magnitudes, and forecasts 

of the rapidly intensifying and rapidly decaying storms have the largest improvement. 

If compared to the control model CLIPER, the neural network models can provide up 

to 19%, 29%, and 46% reduction in MAE at 24-h, 48-h，and 72-h forecast time, 

respectively. 
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CHAPTER 5 Typhoon Rapid Intensification Forecasting 

Using Logistic Regression and Neural Networks 

Rapid intensification (RI) of TCs is the most interesting and the most important 

part. Predicting TC rapid intensification is a challenge, since rapidly intensifying 

storms contribute the major error source in the intensity forecasting models as 

mentioned in chapter 4 as well as in the previous studies (Blackerby 2005; Elsberry 

et al. 2007). 

Some attempts to forecast RI of the Atlantic and Eastern Pacific TCs have been 

made. Kaplan and DeMaria (2003) developed a simple RI index to estimate RI 

probability over the succeeding 24 h for Atlantic hurricanes by comparing the 

parameters with the corresponding threshold values. This index with 5 predictors 

provided up to 41% accuracy of RI detection, i.e., 41 RI events took place among 

100 events which satisfied the corresponding threshold values of the 5 predictors. 

Yang et al. (2007, 2008) applied the association rule in data mining techniques 

(Agrawal et al. 1993) to the same dataset used in Kaplan and DeMaria's (2003) 

analysis. They found that a combination of the following attributes, such as the 

position of the TC being at a high latitude and low longitude, the TC being in an 

intensification phase, with an initial intensity far away from the maximum potential 

intensity, high steering layer value, and low relative eddy flux convergence offers a 

high RI probability of detection of 86%. While the combination of these attributes is 

a sufficient but not necessary condition for the occurrence of RI, and only a small 
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proportion of all the RI events take place under these conditions, hence a large 

number of RI events would be missed. 

As a follow-up study, Kaplan et al. (2010) used more a sophisticated linear 

discriminant analysis method (Wilks 2006) to develop a revised RI index and 

extended the study area to include the eastern North Pacific. Their verification results 

showed a probability of detection (POD) of up to 59% and 73%, however, a large 

false alarm ratio (FAR) as high as 85% and 79% for the 2006 and 2007 hurricane 

seasons was also noted. 

Logistic regression is widely used for categorical prediction, whose outcome is the 

probability of occurrence of an event. The difference between linear discriminant 

analysis and logistic regression is that in linear discriminant analysis, the predictors 

are assumed to be normally distributed, whereas in logistic regression，no assumption 

about the distribution is made. Thus, logistic regression seems to be more robust. A 

comparison study of several methodologies for probabilistic quantitative 

precipitation forecasts (Applequist et al. 2002) showed logistic regression performed 

better than other models such as linear regression，linear discriminant analysis, neural 

networks, and a classifier system. 

In this chapter, we will focus on the prediction of rapid intensification of TCs. As 

such, a binary logistic regression model (LRRI) and a neural network model (NNRI) 

to forecast RI of TCs over the western North Pacific will be developed and the 

results will be compared to models developed for the Atlantic and eastern Pacific 

ocean. 
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5.1 Model development 

RI of TCs, as defined in chapter 3’ refers to over-water samples with minimum 

central pressure fall in excess of 20 hPa over a 24-h period. The rest of the 

over-water samples are non-RI samples. The value of the dependent variable (Y, 

predictand) is 0 or 1, where the dependent variables of RI samples are given as 1 and 

the dependent variables of non-RI samples are given as 0 (see equation 2.4). 

To solve the multicollinearity problem, a forward logistic stepwise method is 

utilized to select significant predictors from the same potential predictor pool (see 

Table 4.1). The significance level for a predictor to enter into the model is 0.01 and 

the significance level for a predictor to remove from the model is 0.05. The 

procedure results in five significant predictors (DMWS, POT, RHLO, REFC, and 

SHR) in the final LRRI model. 

The data over the period 2000-2008 are divided into two parts: data from 2000 to 

2007 that contains 1176 samples are used as training set and data in 2008 with 64 

samples are used as the verification set. The regression coefficients and t-statistics of 

the LRRI model are shown in Table 5.1. The regression coefficients associated with 

the predictors are consistent with their physical reasoning. The TC with higher 

intensification rate in the previous 12 h and initial intensity further from maximum 

potential intensity, which is under the environment of higher lower-level relative 

humidity, larger upper-level momentum flux, and less vertical wind shear, is more 

likely to intensify rapidly, t-statistics indicate that the persistence term (DMWS), 

intensification potential (POT), and vertical wind shear (SHR) are the most important 
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predictors. 

Table 5.1 LRRI predictor regression coefficients. The predictors are listed on the left side of the 

table. 1176 dependent samples are used to develop the model. 

Predictor Regression coefficient t-statistics 

Intercept -A.51 -2.45 

1)DMWS 0.13 9.05 

2) POT 0.03 6.47 

3) RHLO 0.05 1.96 

4)REFC -0.04 -2.90 

5) SHR -0.19 -4.81 

The five predictors aforementioned are also used to develop the NNRI model, 

which has five neurons in input layer, five neurons in hidden layer and one neuron in 

output layer. The log-sigmoid transfer function is used from the input layer to the 

hidden layer and the tan-sigmoid transfer function is used from the hidden layer to 

the output layer. This combination of transfer functions allows the NNRI model 

output between 0 and 1 as the LRRI model, the output of the NNRI and LRRI 

models represent the probability of RI. 

5.2 Model verification in 2008 typhoon season 

In line with the earlier works using logistic regression, a threshold probability 0.5 

is used for both of the LRRI and NNRI models. That is to say, a RI event is predicted 

if the probability of an event output by the model exceeds 0.5，the said probability 
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that is smaller than 0.5 indicates a non-RI event. The 2 x 2 contingency tables are 

employed to assess the performance of the LRRI and NNRI models in 2008. 

Table 5.2 A 2 x 2 contingency table of the LRRI model forecasts in 2008. Threshold probability 

is set at 0.5. 

Observed 
Rapid intensification or not  

Yes No 

Yes 7 1 
Forecast 

No 9 53 

Table 5.3 A 2 x 2 contingency table of the NNRI model forecasts in 2008. Threshold probability 

is set at 0.5. 

Observed 
Rapid intensification or not 

Yes No 

Yes 
Forecast 

No 

8 1 

8 53 

Table 5.2 and Table 5.3 show the 2 x 2 contingency tables of the LRRI and NNRI 

models, respectively. The resulting skill scores of the LRRI and NNRI model 

performance in 2008 are indicated in Table 5.4. There are a total of 16 RI events and 

54 non-RI events in 2008. The LRRI (NNRI) model makes 7 (8) forecasts of RI 

events and 9 (8) RI events are missed. The forecasts of non-RI events are quite good, 

53 non-RI events are predicted in the both models. The number of false alarms from 

the both models is only 1. Consequently, the NNRI model is more skillful than the 

LRRI model. It is worthy to note that FAR of our models is much lower than that of 

the model developed by Kaplan et al. (2010). 
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Table 5.4 Skill scores of the LRRI and NNRI model. Probability of detection (POD), false alarm 

ratio (FAR), critical success index (CSI), and equitable threat score (ETS) are used to evaluate 

the model performance in 2008. Threshold probability is set at 0.5. 

LRRI NNRI 

POD 0.44 0.50 

FAR 0.13 0.11 

CSI 0.41 0.47 

ETS 0.34 0.40 

Table 5.5 Impact of varying threshold probability oi n the LRRI model. 

Skill score 

Threshold 
POD FAR CSI ETS 

0.45 0.50 0.11 0.47 0.40 

0.4 0.69 0.08 0.64 0.58 

0.35 0.69 0.21 0.58 0.49 

0.3 0.69 0.31 0.52 0.42 

The cases are examined further. It is found that the LRRI and NNRI models issue 

false alarms for the same event, and there are 6 cases of detection of RI events by 

both the LRRI and NNRI model. If we combine both models, i.e., once a forecast of 

an event is a RI event in any of the both models, this forecast is RI. By this manner 9 

out of 16 RI events are forecasted. 
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Figure 5.1 Equitable threat scores as a function of threshold probability for both LRRI and NNRI 

models. 

The sensitivity of the prediction to varying threshold probability is examined. The 

resulting skill scores are shown in Table 5.5 for the LRRI model and Table 5.6 for the 

NNRI model. The NNRI model outperforms the LRRI model for all three values of 

threshold probability. As the threshold probability decreases from 0.5 to 0.4，POD, 
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Table 5.6 Impact of varying threshold probability on the NNRI model. 

Skill score 

Threshold probabifi^^--------^^^ 
POD FAR CSI ETS 

0.45 0.56 0.10 0.53 0.46 

0.4 0.75 0.14 0.67 0.59 

0.35 0.81 0.13 0.72 0.66 

0.3 0.94 0.29 0.68 0.59 
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CSI and ETS of the both models increase and FAR of the both models are nearly the 

same, indicating that the use of lower threshold probability can enhance the skill of 

RI detection. While the threshold probability decreases from 0.4 to 0.3，for the LRRI 

model POD remains the same and FAR becomes much larger, for the NNRI model 

both of POD and FAR increase. 

The ETS is the more appropriate statistics to use since the proportion of RI is 

much less than 0.5. Figure 5.1 shows the ETS as a flmction of threshold probability 

for both LRRI and NNRI models. ETS is the highest when the threshold probability 

is set at 0.4 (0.35) for the LRRI (NNRI) model, thus 0.4 (0.35) is the optimal 

threshold probability for RI prediction using logistic regression (neural networks). 

5.3 Summary 

An attempt is made to predict RI of TCs using logistic regression and neural 

networks. Five variables (intensity change in the previous 12 h, intensification 

potential，lower-level relative humidity, eddy flux convergence at 200 hPa, and 

vertical wind shear) are included in the final set of predictors. 

A verification result from 2008 typhoon season shows that the neural network 

model is superior to the logistic regression model for RI detection. A more 

satisfactory performance of the LRRI (NNRI) model is observed when the threshold 

probability is reduced to 0.4 (0.35) instead of the conventional 0.5. 
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CHAPTER 6 Conclusion and Discussion 

6.1 Conclusion 

First, OAFlux surface latent heat flux (SLHF) and TMPA rain rate data as well as 

JMA RSMC Tokyo best track data are used to examine SLHF and rainfall associated 

with rapidly intensifying western North Pacific tropical cyclones. In this study rapid 

intensification (RI) of tropical cyclones (TCs) is defined as over-water minimum 

central pressure fall in excess of 20 hPa over a 24-h period. Composite analysis on 

the initial (t = 0 h) SLHF and rainfall for four categories classified by moving 

direction over a 24-h period shows that RI samples are usually associated with an 

area of relatively high SLHF on the right-hand of TC track and with relatively high 

rainfall within inner-core regions. The significant difference between initial SLHF of 

RI and non-RI samples occurs on TCs，pathway, and this significant difference in 

SLHF is dominated by the air-sea humidity difference. The results suggest the 

potential usefulness of SLHF and inner-core rain rate (IRR) in the prediction of TC 

intensity over the western North Pacific. 

Second, several linear regression models and neural network models are developed 

for the western North Pacific TC intensity prediction at 24-h, 48-h, and 72-h intervals 

using JMA RSMC Tokyo best track, NCEP GFS FNL analysis, TMI 01 sea surface 

temperature (SST), OAFlux SLHF and TMPA rain rate data. A pool of 18 potential 

predictors contains 6 variables related to climatology and persistence, 10 variables 

related to atmospheric and oceanic environment, and 2 new satellite-based variables 
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(SLHF and IRR). The estimation of TC maximum potential intensity (MPI), which is 

a very important predictor, is improved by using TMI OI SST with higher temporal 

and spatial resolution. Four types of models are developed, linear regression models 

with climatology and persistence predictors (CLIPER) as a benchmark, linear 

regression models with climatology, persistence and environmental predictors 

(BASE), linear regression models with SLHF and IRR (STIPER) in addition to 

BASE predictors, and neural network (NN) models with the same predictors as 

STIPER. Analysis of the resulting models indicates that STIPER produces up to 6% 

improvement in performance for TC intensity forecasts out to 72 h compared to 

BASE. Further improvement of NN models over STIPER is up to 28%, and error 

reduction are found at all the TC stages and intensity changes. The most significant 

improvement is in forecasts of the rapidly intensifying and rapidly decaying storms. 

Finally，for TC RI forecasting, a logistic regression model (LRRI) and a neural 

network model (NNRI) are developed using the same pool of potential predictors 

over the period 2000-2007. Five significant predictors include intensity change in 

the previous 12 h, intensification potential, lower-level relative humidity, eddy flux 

convergence at 200 hPa, and vertical wind shear. The verification of forecasts in 

2008 typhoon season shows that NNRI outperforms LRRI for RI detection. The 

optimal threshold probabilities for NNRI and LRRI are 0.35 and 0.4, respectively. 

6.2 Discussion 

6.2.1 Potential for operational use 
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The ultimate goal of this study is to employ these models for operational forecast. 

The climatology, persistence and environmental predictors can be derived timely 

from numerical weather prediction (NWP) model forecast fields and TC track 

forecast, whereas timely satellite microwave observations of a TC for SLHF, IRR 

and SST retrieval may not be available. The availability of remote sensing products 

of IRR and SLHF are needed in real-time or near-real-time applications of these 

products in the SUPER and NN models. 

6.2.2 Additional error source for operational use 

All the potential predictors are derived along the TC track using a “perfect prog” 

approach, where the NCEP analysis and JMA RSMC Tokyo TC best track data are 

used to develop the statistical models. However, when the models are in operational 

use, NCEP NWP model forecast are used to compute the predictors along the TC 

track forecast by JMA RSMC Tokyo. As a result, errors in both the NCEP NWP 

forecast fields and the JMA RSMC Tokyo track forecast would produce additional 

intensity forecast errors. 

6.2.3 Future work 

Further improvement in intensity forecast may come from the use of consensus 

intensity forecasts (forecasts created by combining output from individual forecasts), 

as shown by Sampson et al. (2008). Consensus of both track forecasts and NWP 

forecasts could be tested. 

OAFlux SLHF has relatively coarse temporal and spatial resolution (daily and 1 
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degree). Higher temporal and spatial resolution SLHF may provide a better 

understanding of TC-ocean interaction. The production in progress of the third 

version of the NASA/Goddard Space Flight Center Satellite based Surface Fluxes 

GSSTF3 (Shie et al. 2009) SLHF data with the resolution of 12 hourly and a quarter 

degree, which is retrieved from a number of satellite datasets，may be potentially 

used for typhoon forecast. 

In the RI forecast, the variables selected are all prognostic variables, i.e. they 

depend on the prognostic models to provide good estimates of the atmospheric state 

variables. It might be advantageous to include SLHF since the SLHF is produced as a 

diagnostic variable in model analyses. 

Another way to improve the resolution of SLHF is to retrieve it directly using 

brightness temperature measurements from TRMM Microwave Imager, as proposed 

by Lin and Tang (2000) as well as Lin and Fan (2005). These microwave satellite 

estimates can provide SLHF estimates with spatial and temporal resolutions 

compatible with the TMPA rainfall estimates and may provide a better estimate of the 

static predictors in the STIPER and NN models. 

93 



BIBLIOGRAPHY 

Aberson, S. D., and J. L. Franklin, 1999: Impact on hurricane track and intensity 
forecasts of GPS dropwindsonde observations from the first-season flights of the 
NOAA gulfstream-IV Jet Aircraft. Bull. Amer. Meteor. Soc.，80，421427. 

Agrawal，R‘，T. Imielinski, and A. Swami，1993: Mining association rules between 
sets of items in large databases，paper presented at 1993 International Conference 
on Management of Data, Spec. Interest Group on Manage, of Data, Assoc. for 
Comput, Mach., Washington, D.C. May. 

Ali, A. H., 2004: Application of neural network principal components to climate data. 
J. Atmos. Oceanic Technol., 21, 149-158. 

Applequist, S‘，G. E. Gahrs, R. L. Pfeffer, and X.-F. Niu, 2002: Comparison of 
methodologies for probabilistic quantitative precipitation forecasting. Wea. 
Forecasting, 17, 783-799. 

Arkin, P. A., and B. N. Meisner, 1987: The relationship between large-scale 
convective rainfall and cold cloud over the Western Hemisphere during 1982—84. 
Mon. Wea. Rev., 115, 51-74. 

Baik, J.-J., and J.-S. Pack, 2000: A neural network model for predicting typhoon 
intensity. J. Meteor. Soc. Japan, 78, 857-869. 

Bender, M., L Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational 
GFDL coupled hurricane-ocean prediction system and a summary of its 
performance. Mon Wea. Rev,, 135，3965-3989. 

Bentamy, A., K. B. Katsaros, A. M. Mestas-Nunez, W. M. Drennan, E. B. Forde, and 
H. Roquet, 2003: Satellite estimates of wind seed and latent heat flux over the 
global oceans. J. Climate, 16, 637-656. 

Berg, R., C. Sisko, and M. DeMaria, 2004: High resolution SST in the SHIPS model: 
Improving operational guidance of tropical cyclone intensity forecasts. Preprints, 
26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. 
Soc., 536-537. 

Black, P. G, E. A. D'asaro, W. M. Drennan, J. R. French, R R Niiler，T. B. Sanford, E. 
J. Terrill, and J. A. Zhang, 2007: Air-sea exchange in hurricanes: Synthesis of 
observations from the Coupled Boundary Layer Air-Sea Transfer Experiment. 
Bull, Amer. Meteor. Soc” 88，357-374. 

94 



Blackerby, J. S., 2005: Accuracy of western North Pacific tropical cyclone intensity 
guidance. M.S. thesis. Naval Postgraduate School, USA, 107pp. 

Bosart, L. R, C. S. Velden, W. E. Bracken, J. Molinari, and P. G. Black, 2000: 
Environmental influences on the rapid intensification of Hurricane Opal (1995) 
over the Gulf of Mexico, Mon. Wea. Rev., 128, 322-352. 

Briegel, L. M., and W. M. Frank, 1997: Large-scale influences on tropical 
cyclogenesis in the western North Pacific. Mon. Wea. Rev., 125, 1397-1413. 

Bulmer, M. G, 1979: Principles of Statistics. New York: Dover Publications, 252 pp. 
Burpee R, W., J. L. Franklin, S. J. Lord, R. E. Tuleya，and S‘ D. Aberson, 1996: The 

impact of Omega dropwindsondes on operational hurricane track forecast models. 
Bull Amer. Meteor. Soc., 77, 925-933. 

Chang, A. T. C., L. S. Chiu, G R. Liu, and K. H. Wang, 1995: Analysis of 1994 
typhoons in the Taiwan region using satellite data. CO SPAR Colloquia Series 
Volume 8, Space Remote Sensing of Subtropical Oceans, 89—96，SRSSO, Taipei, 
Taiwan, Elsevier Science, 1995. 

Chamey, J. G., and A. Eliassen，1964: On the growth of the hurricane depression. J. 
Atmos. Sci., 21, 68-75. 

Chiu L. S., and Kadem B., 1990: Estimating the exceedance probability of rain rate 
by logistic regression. J. Geophys. Res., 95, 2217-2227. 

Chou, S.-H., R. Atlas, C.-L. Shie, and J. Ardizzone, 1995: Estimates of surface 
humidity and latent heat fluxes over oceans from SSM/I data. Mon. Wea. Rev.，123, 
2405-2425. 

Chou, S.-H.，C.-L. Shie, R. M. Atlas, and J. Ardizzone, 1997, Air-sea fluxes retrieved 
from special sensor microwave imager data. J. Geophys. Res., 102, 12706-12726. 

Chou, S.-H., E. Nelkin, J. Ardizzone, R. M. Atlas, and C.-L. Shie, 2003: Surface 
turbulent heat and momentum fluxes over global oceans based on the Goddard 
satellite retrieval, version 2 (GSSTF2). J. Climate, 16, 3256-3273. 

Chu, J.-H., 1994: A regression model for the western North Pacific tropical cyclone 
intensity forecasts. NRL Memo. Rep. 7541-94-7215, Naval Research Laboratory, 
33 pp. 

Dasgupta, S., and U. K. De, 2007: Binary logistic regression models for short term 
prediction of premonsoon convective developments over Kolkata (India), Int. J. 
ClimatoL, 27, 831-836. 

95 



Davis, C.，W. Wang, S. S. Chen, Y. Chen, K. Corbosiero, M. DeMaria, J. Dudhia, G. 
Holland, J. Klemp, J. Michalakes, H. Reeves, R. Rotunno, C. Snyder, and Q. Xiao, 
2008: Prediction of landfalling hurricanes with the advanced hurricane WRF 
model. Mon. Wea. Rev., 136, 1990-2005. 

DeCosmo, J., K. B. Katsaros, S, D. Smith, R. J. Anderson, W. A. Oost, K. Bumke, 
and H. Chadwick, 1996: Air-sea exchange of water vapor and sensible heat: The 
Humidity Exchange Over the Sea (HEXOS) results. J. Geophys. Res., 101, 

12001-12016. 

DeMaria, M., J.-J. Baik，and J. Kaplan, 1993: Upper-level eddy angular momentum 
fluxes and tropical cyclone intensity change. J. Atmos. Sci, 50, 1133-1147. 

DeMaria, M., and J. Kaplan, 1994a: A statistical hurricane intensity prediction 
scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9，209-220. 

DeMaria, M.，and J. Kaplan, 1994b: Sea surface temperature and the maximum 
intensity of Atlantic tropical cyclones. J. Climate, 7, 1324-1334. 

DeMaria, M.，and J. Kaplan, 1999: An updated statistical hurricane intensity 
prediction scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. 
Forecasting, 14，326-337. 

DeMaria, M.，J, A. Knaff, and C. R. Sampson, 2007: Evaluation of long-term trend in 
tropical cyclone intensity forecasts. Meteor. Atmos. Phys., 97, 19-28. 

DeMaria, M.，M. Mainelli, L. K. Shay, J. Knaff, and J. Kaplan, 2005: Further 
improvements to the updated Statistical Hurricane Intensity Prediction Scheme 
(SHIPS). Wea. Forecasting, 20, 531-543. 

Demuth, H., M. Beale, and M. Hagan, 2009: Neural Network Toolbox User's Guide. 
The MathWorks, Inc，901 pp. 

Dvorak, V. F., 1982: Tropical cyclone intensity analysis and forecasting from 
satellite visible or enhanced infrared imagery. NOAA National Environmental 
Satellite Service, Applications Laboratory Training Notes, 42 pp. 

Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA 
Tech. Memo. NESDIS 11,47 pp. 

Elsberry, R. L” T. D. B. Lambert, and M. A. Boothe, 2007: Accuracy of Atlantic and 
Eastern North Pacific Tropical Cyclone Intensity Forecast Guidance. Wea. 
Forecasting, 22，747-762. 

96 



Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: 
Steady-state maintenance. J, Atmos. Set, 43，585-605. 

Emanuel, K. A., 2003, Tropical cyclones. Annu. Rev. Earth Sci., 31, 75—104. 

Evans, J. L., K. McKinley, 1998: Relative timing of tropical storm lifetime maximum 
intensity and track recurvature. Meteor. Atmos. Phys., 65, 241-245. 

Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk 
parameterization on air-sea fluxes: Updates and verification for the CO ARE 
algorithm. J. Climate, 16，571-591. 

Fitzpatrick, P. J., 1997: Understanding and forecasting tropical cyclone intensity 
change with the Typhoon Intensity Prediction Scheme (TIPS). Wea. Forecasting’ 
12,826-846. 

Fritz H. M., C. D. Blount, S. Thwin, M. K. Thu, and N. Chan, 2009: Cyclone Nargis 
storm surge in Myanmar. Nat. Geosci., 2, 448-449. 

Fu, B., M. S. Peng, T. Li, and J. Hansen, 2010: A logistic regression model for WNP 
tropical cyclone formation forecast. 29th Conference on Hurricanes and Tropical 
Meteorology, 10-14 May 2010, Tucson, USA. 

Gautam, R., G. Cervone, R. P. Singh, and M. Kafatos, 2005: Characteristics of 
meteorological parameters associated with Hurricane Isabel, Geophys. Res. Lett., 
32, L04801，doi: 10.1029/2004GL021559. 

Gentemann, C. L‘，F. J. Wentz, C. A. Mears, and D. K. Smith, 2004: In situ validation 
of Tropical Rainfall Measuring Mission microwave sea surface temperatures, J. 
Geophys. Res., 109, C04021. 

Gentemann, C. L., M. DeMaria, and F. J. Wentz, 2007: Improving predictions of 
hurricane intensity: new high-resolution sea surface temperatures from NASA's 
Aqua satellite. Remote Sensing Systems. Santa Rosa，USA, 14 pp. [Available 
online at http://www.remss.com/papers/gentemann/gentemann etal 2QQ7.pdf.] 

Goerss, J. S., 2008: Impact of satellite observations on the tropical cyclone track 
forecasts of the Navy Operational Global Atmospheric Prediction System. Mon. 
Wea. Rev.，137，41-50. 

Grassl, H.，V. Jost, R. Kumar, J. Schulz, P. Bauer, and R Schlussel, 2000: The 
Hamburg Ocean-Atmosphere Parameters and Fluxes from Satellite Data (HOAPS): 
A Climatological Atlas of Satellite-Derived Air-Sea-Interaction Parameters over 
the Oceans. Rep. 312, ISSN 0937-1060, Max Planck Institute for Meteorology, 

97 

http://www.remss.com/papers/gentemann/gentemann


Hamburg, Germany, 130 pp. 

Grimes, D. I. F., E. Coppola, M. Verdecchia, and G Visconti, 2003: A neural 
network approach to real-time rainfall estimation for Africa using satellite Data. J. 
HydrometeoK, 4, 1119-1133. 

Haddad, Z. S.，E. A. Smith, C. D. Kummerow, T. Iguchi, M. R. Farrar, S. L. Durden, 
M. Alves, and W. S. Olson, 1997: The TRMM "day-1" radar/radiometer combined 
rain-profiling algorithm. J. Meteor. Soc. Japan, 75’ 799-809. 

Heymsfield, G. M , J. B. Halverson, J. Simpson, L. Tian, and T. P. Bui, 2001: ER-2 
Doppler radar investigations of the eyewall of Hurricane Bonnie during the 
Convection and Moisture Experimeiit-3. J. Appl. Meteor., 40, 1310—1330. 

Hinton, G. E., 1992: How neural networks leam from experience. Scient. Amer., 267, 
145-151. 

Holland, G J.，and R. T. Merill，1984: On the dynamics of tropical cyclone structure 
changes. Quart. J. Roy. Meteor. Soc., 110, 723-745. 

Holliday, C. R., and A. H. Thompson, 1979: Climatological characteristics of rapidly 
intensifying typhoons, Mon. Wea. Rev., 107, 1022-1034. 

Hollinger, J., R. Lo, G. Poe, R. Savage, and J. Peirce, 1987: Special Sensor 
Microwave/Imager user's guide. Naval Research Laboratory, Washington, DC, 
USA, 177 pp. 

Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, Y. Hong, 
E. F. Stocker, and D. B. Wolff, 2007: The TRMM Multisatellite Precipitation 
Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation 
estimates at fine scales. J. Hydrometeon, 8, 38-55. 

Janowiak, J. E., R. J. Joyce, and Y. Yarosh, 2001: A real-time global half-hourly 
pixel-resolution infrared dataset and its applications. Bull Amer. Meteor. Soc., 82, 
205-217. 

Jarvinen, B. R., and C. J. Neumann, 1979: Statistical forecasts of tropical cyclone 
intensity change. NOAA Tech. Memo. NWS NHC-10, 22 pp. 

Jiang, H., J. B. Halverson, and J. Simpson, 2008: On the differences in storm rainfall 
from hurricanes Isidore and lili. part i: satellite observations and rain potential. 
Wea. Forecasting, 23, 29^3 . 

Jin, L., 2004: Modeling Theory Method and Application for Weather Forecast Based 

98 



on Neural Network (in Chinese). China Meteorological Press, 218 pp. 

Jin, L., C. Yao, and X. Y. Huang, 2008: A Nonlinear Artificial Intelligence Ensemble 
Prediction Model for Typhoon Intensity. Mon. Wea. Rev., 136, 45414554. 

Joint Typhoon Warning Center, 1988: Annual Tropical Cyclone Report, U. S. Naval 
Oceanography Command Center, Guam, Mariana Islands. 216 pp. 

Jones, T. A., D. Cecil, and M. DeMaria, 2006: Passive-microwave enhanced 
Statistical Hurricane Intensity Prediction Scheme. Wea. Forecasting，21，613-635. 

Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, 
S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, B. Reynolds, M. Chelliah, W. 
Ebisuzaki, W. Higgins, J. Janowiak, K. Mo, C, Ropelewski, J. Wang, R. Jenne, and 
D. Joseph, 1996: The NCEP/NCAR 40-Year Reanalysis Project. BuU‘ Amer. 
Meteor. Soc., 77, 437-471. 

Kanamitsu, M.，W. Ebisuzaki, J. Woolen, J. Potter and M. Fiorino，2002: NCEP/DOE 
AMIP-II Reanalysis (R-2). Bull Amer. Met. Soc., 83, 1631-1643. 

Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying 
tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 1093-1108. 

Kaplan, J.，M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid 
intensification index for the Atlantic and eastern North Pacific basins. Wea. 
Forecasting, 25, 220-241. 

Knabb, R. D.，J. R. Rhome, and D. P. Brown, 2005: Tropical cyclone report, 
Hurricane Katrina, 23-30 August 2005. National Hurricane Center, 43 pp. 
[Available online at http://www.nhc.noaa.gov/pdf/TCR-AL122005 Katrina.pdf.] 

Knaff, J. A., 2009: Revisiting the maximum intensity of recurving tropical cyclones. 
Int. J. Climatol, 29: 827-837. 

Knaff, J. A•，M. DeMaria, C. R. Sampson, and J. M. Gross, 2003: Statistical 5-day 
tropical cyclone intensity forecasts derived from climatology and persistence. Wea. 
Forecasting, 18, 80-92. 

Knaff, J. A‘，C. R. Sampson, and M. DeMaria, 2005: An operational statistical 
typhoon intensity prediction scheme for the western North Pacific. Wea. 
Forecasting, 20, 688-699. 

Koba, H.，T. Hagiwara, S. Osano, and S. Akashi, 1990: Relationships between CI 
Number from Dvorak's technique and minimum sea level pressure or maximum 
speed of tropical cyclone (in Japanese). J, Meteor. Res., 42，59-67. 

99 

http://www.nhc.noaa.gov/pdf/TCR-AL122005


Kubota, M., N. Iwasaka, S. Kizu, and M. Knoda, 2002: Japanese Ocean Flux Data 
Sets with Use of Remote Sensing Observations (J-OFURO). J. Oceanogr., 58, 
213-225. 

Kummerow, C.，W. Barnes, T. Kozu, J. Shiue, and J, Simpson, 1998: The Tropical 
Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 
15，809—817. 

Kuo, H,, 1965: On formation and intensification of tropical cyclones through latent 
heat release by cumulus convection. J. Atmos. Sci., 22，40-63. 

Kurihara Y., Bender M. A., Tuleya R. E., and Ross R. J., 1998: The GFDL hurricane 
prediction system and its performance in the 1995 hurricane season. Mon. Wea. 
Rev., 126, 1306-1322. 

Lee, T. F.，F. J. Turk, J. Hawkins, and K. Richardson, 2002: Interpretation of TRMM 
TMI images of tropical cyclones. Earth Interactions, 6, 1-17. 

Levitus, S., 1982: Climatological Atlas of the World Oceans. NOAA Prof. Paper 13, 
U.S. Government Printing Office，173pp. 

Lin B., and A. Fan, 2005: Validating of satellite retrieved latent heat fluxes over 
tropical oceans. Ninth Symposium on Integrated Observing and Assimilation 
Systems for the Atmosphere, Oceans, and Land Surface, The 85th AMS Annual 
Meeting, 8—14 January 2005，San Diego, USA. 

Lin, L-L, C ,H . Chen, I.-F. Pun, W. T. Liu, and C.-C. Wu, 2009: Warm ocean 
anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis 
(2008)，Geophys. Res. Lett” 36, L03817, doi:10.1029/2008GL035815. 

Liu, W. T., and W. Tang, 2000: Direct retrieval of ocean surface evaporation and 
latent heat flux from the spacebased observations. PORSEC 2000, 5—8 December 
2000, Goa, India. 

Lungu, T., 2001: QuikSCAT science data product user's manual: Overview and 
geophysical data products. JPL D-18053，Version 2.2, Jet Propulsion Laboratory, 
Pasadena, USA, 95 pp. 

Mainelli, M., M. DeMaria, L. K. Shay, and G. Goni, 2008: Application of oceanic 
heat content estimation to operational forecasting of recent Atlantic category 5 
hurricanes, Wea. Forecasting, 23, 3-16. 

Mazany R. A., Businger S., Gutman S. L, and Roeder W., 2002: A lightning index 
that utilizes GPS integrated precipitable water vapor. Wea. Forecasting, 17, 

100 



1034-1048. 

Molinari，J., and D. Vollaro, 1989: External influences on hurricane intensity. Part I: 
Outflow layer angular momentum fluxes. J. Atmos, Scl, 46, 1093-1105. 

Mundhenk B, D., 2009: A statistical-dynamical approach to intraseasonal prediction 
of tropical cyclogenesis in the western North Pacific. M.S. thesis. Naval 
Postgraduate School, Monterey, USA, 107pp. 

Neumann, C. J.， 1993: Global overview. Global Guide to Tropical Cyclone 
Forecasting. G. J. Holland, Ed., WMO Tech. Doc. 560, Rep. TCP-31, 1.1-1.43. 

Olander, T, L., and C. S. Velden, 2007: The advanced Dvorak technique: Continued 
development of an objective scheme to estimate tropical cyclone intensity using 
geostationary infrared satellite imagery, Wea. Forecasting, 22, 287—298. 

Panofsky, H. A., and G. W. Brier, 1968: Some Applications of Statistics to 
Meteorology. The Pennsylvania State University Press, 224 pp. 

Pielke R. A. Jr., J. Gratz, C. W. Landsea,D. Collins, M. A. Saunders, and R. Musulin, 
2008: Normalized Hurricane Damage in the United States: 1900-2005. Nat. 
Hazards Rev., % 29-A2. 

Ramirez-Beltran, N. D.，W. K. M. Lau, A. Winter, J. M. Castro, and N. R. Escalante, 
2007: Empirical Probability Models to Predict Precipitation Levels over Puerto 
Rico Stations, Mon. Wea. Rev., 135，877—890. 

Rao, G. v., and P. D. Macarthur, 1994: The SSM/I Estimated Rainfall Amounts of 
Tropical Cyclones and Their Potential in Predicting the Cyclone Intensity Changes. 
Mon. Wea. Rev, 122, 1568-1574. 

Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An 
improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609-1625. 

Reynolds, R. W., T. M. Smith, C. Liu, D. B. Cheiton, K. S. Casey, and M. G. Schlax, 
2007: Daily high-resolution-blended analyses for sea surface temperature. J. 
Climate, 20, 5473-5496. 

Riehl, H.，1972: Intensity of recurved typhoons. J. Appl Meteor., 11，613-615. 

Riehl, H., and J. Malkus, 1961: Some aspects of Hurricane Daisy, 1958. Tellus, 13， 

181-213. 

Ritchie, E. A., and G J. Holland, 1999: Large-scale patterns associated with tropical 
cyclogenesis in the western Pacific. Mon. Wea. Rev.，127, 2027-2043. 

101 



Rodgers, E. B.，S. W. Chang, and H. F. Pierce, 1994: A satellite observational and 
numerical study of the precipitation characteristics in western north Atlantic 
tropical cyclones. J. Appl Meteor., 33, 573-593. 

Rodgers, E. B., and H. F. Pierce, 1995: Environmental influence on Typhoon 
Bobbie's precipitation distribution. J. Appl Meteor., 34, 2515-2532. 

Rodgers, E. B., W. S. Olson, V. M. Karyampudi, and H. F, Pierce, 1998: 
Satellite-derived latent heating distribution and environmental influences in 
Hurricane Opal (1995). Mon. Wea. Rev., 126, 1229-1247. 

Rodgers, E. B.，W. S. Olson, J. Halverson, J. Simpson, and H.F. Pierce, 2000: 
Environmental forcing of Supertyphoon Paka's (1997) latent heat structure. J, 
Appl. Meteor., 39, 1983-2006. 

Rumelhart, D. E.，G. E, Hinton, and R. J. Williams, 1986: Learning internal 
representations by error propagation. Parallel Distributed Processing, D. E. 
Rumelhart, J. L. McClelland, and P. R. Group, Eds., Vol. 1, MIT Press, 318-362. 

Sadler, J. C., 1976: A role of the tropical upper tropospheric trough in early season 
typhoon development. Mon. Wea. Rev” 104, 1266-1278. 

Sadler, J. C‘，1978: Mid-season typhoon development and intensity changes and the 
tropical upper tropospheric trough. Mon. Wea. Rev., 106，1137-1152. 

Sampson C. R., J. L. Franklin, J. A. Knaff, and M. DeMaria, 2008: Experiments with 
a simple tropical cyclone intensity consensus. Wea. Forecasting, 23, 304-312. 

Shay, L. K., G. J. Goni，and P. G. Black, 2000: Effects of a warm oceanic feature on 
Hurricane Opal. Mon. Wea. Rev., 128, 1366-1383. 

Shie, C,L.，L. S. Chiu, R. Adler, E. Nelkin, 1,1. Lin, P. Xie, R-C. Wang, R. 
Chokngamwong, W. Olson, and D. A. Chu, 2009: A note on reviving the Goddard 
Satellite-based Surface Turbulent Fluxes (GSSTF) dataset. Adv. Atmos. Sci., 26, 
1071-1080. 

Simpson, J.，J. B. Halverson, B. S. Ferrier, W. A. Petersen, R. H. Simpson, R. 
Blakeslee, and S. L. Durden, 1998: On the role of ‘hot towers in tropical cyclone 
formation. Meteorol Atmos. Phys” 67, 15-35. 

Soden B. J.，C. S. Velden，and R. E. Tuleya, 2001: The impact of satellite winds on 
experimental GFDL hurricane model forecasts. Mon. Wea. Rev.’ 129, 835-852. 

102 



Song, J.-J., Y. Wang, and L. Wu, 2010: Trend discrepancies among three best track 
data sets of western North Pacific tropical cyclones, J. Geophys. Res” 115, D12128， 

doi:10.1029/2009JD013058. 

Surgi, N.，R. Tuleya, Q. Lui, V. Tallapragada, and Y. Kwon, 2008: Advancement of 
the HWRF for the Next Generation Prediction at NCEP's Environmental 
Modeling Center. Proc. 62nd Interdepartmental Hurricane Conf., Charleston, SC, 
Office of the Federal Coordinator for Meteorology, 32pp. [Available online at 
http://www.ofcm.gov/ihcQ8/linking file ihc08.htm.] 

Takemura, Y., and S. Osano, 1989: Estimation of typhoon intensity from 
meteorological satellite data, WMO Typhoon Committee, 22nd Session, 30 Oct-6 
Nov 1989，Tokyo, Japan. 

Tatsumi, Y., 1986: A spectral limited area model with time dependent lateral 
boundary condition and its application to a multi-level primitive equation model. J. 
Meteor. Soc. Japan, 64, 637-664. 

Tuleya R. E., and Lord S. J., 1996: The impact of dropwindsonde data on GFDL 
hurricane model forecasts using global analyses. Wea. Forecasting, 12, 307-323. 

Uppala, S. M.，P. W. KAllberg, A. J. Simmons, U. Andrae, V. Da Costa Bechtold，M. 

Fiorino, J. K. Gibson, J. Haseler, A. Hernandez, G. A. Kelly, X. Li, K. Onogi, S 
Saarinen, N. Sokka, R. P. Allan, E. Andersson, K. Arpe，M. A. Balmaseda, A. C 
M. Beljaars, L. Van De Berg, J. Bidlot, N. Bonnann, S. Caires, F. Chevallier, A 
Dethof, M. Dragosavac, M. Fisher, M. Fuentes，S. Hagemann, E. Holm, B. J 
Hoskins, L. Isaksen, P. A. E. M. Janssen, R. Jenne, A. P. Mcnally, J.-F. Mahfouf 
J.-J. Morcrette, N. A. Rayner, R. W. Saunders, P. Simon, A. Sterl, K. E. Trenberth 
A. Untch, D. Vasiljevic, P. Viterbo, and J. Woollen, 2005: The ERA-40 
re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961-3012. 

Velden, C. S., T. L. Olander, and R. M. Zehr, 1998: Development of an objective 
scheme to estimate tropical cyclone intensity from digital geostationary satellite 
infrared imagery, Wea. Forecasting, 13, 172-186. 

Ventham, J. D.，and B. Wang, 2007: Large scale flow patterns and their influence on 
the intensification rates of western North Pacific tropical storms. Mon. Wea. Rev., 
135, 1110-1127. 

Wang B., and X. Xu, 1997: Northern Hemispheric summer monsoon singularities 
and climatological intraseasonal oscillation. J. Climate，10，1071-1085. 

Wang, Y.，2002: Vortex Rossby waves in a numerically simulated tropical cyclone. 
Part II: The role in tropical cyclone structure and intensity change. J. Atmos. Set, 

103 

http://www.ofcm.gov/ihcQ8/linking


59, 1239-1262. 

Weissmann M., F. Hamisch, C.-C. Wu, R-H. Lin, Y. Ohta, K. Yamashita, Y.-K. Kim, 
E.-H. Jeon, T. Nakazawa, and S. Aberson, 2010: The influence of dropsondes on 
typhoon track and mid-latitude forecasts. Mon. Wea. Rev., in press. 

Weng, F. W.，L. Zhao, R. Ferraro, G Pre, X. Li, and N. C. Grody. 2003. Advanced 
Microwave Sounding Unit (AMSU) cloud and precipitation algorithms. Radio Set, 
38, 8068-8079. 

Wentz, F. J., 1997: A well-calibrated ocean algorithm for SSM/I. J. Geophys. Res., 
102, 8703-8718. 

Wentz, F. J., and R. W. Spencer, 1998: SSM/I rain retrievals within a unified 
all-weather ocean algorithm. J. Atmos. Sci.’ 55，1613-1627. 

Wentz, F. J., and T. Meissner, 2000: AMSR Ocean Algorithm Theoretical Basis 
Document，Version 2. Remote Sensing Systems, Santa Rosa, USA. 

Wilheit, T.，C. Kummerow, and R. Ferraro, 2003: Rainfall algorithms for AMSR-E. 
IEEE Trans. Geosci. Remote Sens., 41, 204-214. 

Wilks, D. S.，2006: Statistical Methods in the Atmospheric Sciences, 2nd edition. 
Academic Press, 627 pp. 

Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eyewalls, 
secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 
39, 395411. 

Wu, C.-C., R-H. Lin, S. Aberson, T.-C. Yeh, W.-R Huang, K.-H. Chou, J.-S. Hong, 
G-C. Lu, C.-T. Fong, K.-C. Hsu, I.-I. Lin, P.-L. Lin, and C.-H. Liu, 2005: 
Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region 
(DOTSTAR): An overview. Bull Amer. Meteor. Soc” 86, 787-790. 

Xiao Q., X. Zhang, C. Davis, J. Tuttle, G Holland, and P. J. Fitzpatrick, 2009; 
Experiments of Hurricane Initialization with Airborne Doppler Radar Data for the 
Advanced Research Hurricane WRF (AHW) Model. Mon. Wea. Rev., 137, 
2758-2777. 

Xie X., W. T. Liu, and B. Tang, 2008: Spacebased estimation of moisture transport in 
marine atmosphere using support vector regression. Remote Sens. Environ., 112， 

1846-1855. 

Yang, B., Y. Wang, and B. Wang, 2007: The Effect of internally generated inner-core 



asymmetries on tropical cyclone potential intensity. J. Atmos. Set., 64，1165-1188. 

Yang, F.，H.-L. Pan, S. K. Krueger, S. Moorthi, and S. J. Lord, 2006: Evaluation of 
the NCEP Global Forecast System at the ARM SGP site. Mon. Wea. Rev, 134’ 
3668-3690. 

Yang, R.，J. Tang, and M. Kafatos, 2007: Improved associated conditions in rapid 
intensifications of tropical cyclones. Geophys. Res. Lett., 34, L20807, 
doi: 10.1029/2007GL031241. 

Yang, R., D. Sun, and J. Tang, 2008: A "sufficient" condition combination for rapid 
intensifications of tropical cyclones. Geophys. Res. Lett., 35, L20802, 
doi: 10.1029/2008GL035222. 

Yu, H., C. Hu, and L. Jiang, 2007: Comparison of three tropical cyclone intensity 
datasets. Acta Meteorol Sin., 21, 121-128. 

Yu, H. and H. J. Kwon, 2005: Effect of TC-Trough interaction on the intensity 
change of two typhoons. Wea. Forecasting, 20, 199-211. 

Yu, L.，X. Jin, and R. A. Weller, 2008: Multidecade Global Flux Datasets from the 
Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and sensible heat 
fluxes, ocean evaporation, and related surface meteorological variables. Woods 
Hole Oceanographic Institution, OAFlux Project Tech. Rep. OA-2008-01, 64 pp. 

Zehr, R. M., 1992: Tropical cyclogenesis in the western North Pacific. NOAA Tech, 
Rep. NESDIS61,181pp. 

Zhang, Q., L. Wu，and Q. Liu, 2009: Tropical cyclone damages in China 1983-2006. 
Bull Amer. Meteor. Soc‘, 90, 489495. 

105 



Appendix A suite of sample codes 

To extract parameters from NCEP GFS FNL 12-hourly analysis data (in GRIBl 
format) and convert them to BINARY format: 
For example, the following codes are used to extract 400-hPa relative humidity in 
2008，which is the 88^ record in the GRIBl data with filename such as 
‘fnl—200801_01_00’，‘fnl_200801_01—12，，and so on. The output data file is named 
as 'RH400_08.dat'. To run this code in WINDOWS operating system, save the codes 
in a BAT file and open the BAT file directly. 

• e c h o off 
for %%i in (01_00 01_12 02_00 02_12 03_00 03_12 04_00 04_12 05_00 05—12 06_00 
06一12 07-00 07-12 08一00 08_12 09一00 09_12 10_00 10一 12 11 一 0 0 11 一 12 12一00 12_12 

13-00 13 一 12 14-00 14-12 15_00 15_12 16_00 16—12 17_00 17_12 18 一 00 18_12 19-00 

19-12 20—00 20-12 21_00 21_12 22_00 22一 12 23_00 23_12 24_00 24_12 25_00 25_12 

26-00 26-12 27一00 27_12 28—00 28_12 29—00 29_12 30_00 30_12 31_00 31_12) do 
wgrib -bin -nh F:\ds083.2\200801\fnL200801%%i_00 -d 88 -append -o 
F:\stips\RH400_08.dat 

for %%i in (01_00 01一12 02_00 02_12 03_00 03_12 04_00 04—12 05一00 05一12 06_00 

06-12 07-00 07-12 08_00 08_12 09_00 09_12 10_00 10_12 11—00 11—12 12_00 12一 12 

13—00 13-12 14-00 14-12 15_00 15_12 16_00 16_12 17_00 17_12 18J)0 1SJ.2 19_00 
19一12 20-00 20-12 21一00 21_12 22一00 22_12 23一00 23_12 24一00 24一12 25_00 25一 12 

26—00 26-12 27-00 27一12 28_00 28_12 29_00 29_12) do wgrib -bin -nh 
F:\ds083.2\200802\fnl—200802%%L00 -d 88 -append -o F:\stips\RH400_08.dat 

for %%i in (01_00 01—12 02_00 02—12 03_00 03—12 04_00 04—12 05—00 05_12 06-00 
06_12 07-00 07-12 08_00 08_12 09_00 09_12 10_00 10_12 11_00 11__12 12_00 12_12 
13 一 00 13-12 14_00 14-12 15_00 15_12 16_00 16_12 17_00 17_12 18 一 00 18_12 19-00 

19-12 20-00 20一 12 21_00 21_12 22_00 22—12 23_00 23_12 24_00 24一12 25_00 25_12 

26-00 26-12 27-00 27_12 28一00 28_12 29—00 29_12 30一00 30_12 31_00 31—12) do 
wgrib -bin -nh F:\ds083.2\200803\fnL200803%%i_00 -d 88 -append -o 
F:\stips\RH400_08.dat 

for %%i in (01_00 01—12 02_00 02_12 03_00 03_12 04_00 04_12 05_00 05_12 06_00 
06-12 07-00 07-12 08_00 08_12 09_00 09_12 10_00 10_12 11_00 11__12 12—00 12_12 
13-00 13-12 14 一 00 14-12 15 一 00 15—12 16 一 00 16_12 17一00 17_12 18_00 18_12 19—00 
19-12 20-00 20—12 21_00 21—12 22_00 22_12 23_00 23_12 24_00 24—12 25_00 25一 12 

26-00 26-12 27—00 27_12 28_00 28_12 29_00 29_12 30_00 30一 12) do wgrib -bin -nh 
F:\ds083.2\200804\fnL200804%%i_00 -d 88 -append -o F:\stips\RH400_08.dat 

for %%i in (01_00 01_12 02_00 02_12 03—00 03_12 04_00 04_12 05J)0 05_12 06_00 
06 12 07 00 07 12 08 00 08 12 09 00 09 12 10 00 10 12 11 00 11 12 12 00 12 12 
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13-00 13-12 14-00 14-12 15_00 15_12 16—00 16_12 17_00 17_12 18_00 18_12 19一00 

19-12 20-00 20-12 21-00 21—12 22—00 22_12 23—00 23_12 24_00 24一12 25_00 25_12 

26-00 26-12 27-00 27_12 28_00 28_12 29_00 29_12 30_00 30_12 31_00 31_12) do 
wgrib -bin -nh F:\ds083.2\200805\fnl_200805%%i_00 -d 88 -append -o 
F:\stips\RH400_08.dat 

for % % i in (01_00 01_12 02一00 02_12 03—00 03_12 04_00 04_12 05_00 05_12 06_00 

06一12 07一00 07-12 08_00 08_12 09_00 09_12 10_00 10_12 11_00 11_12 12_00 12_12 

13-00 13_12 14-00 14-12 15_00 15 一 12 16_00 16_12 17_00 17_12 18 一 00 18 一 12 19_00 

19一12 20-00 20_12 21_00 21_12 22_00 22JL2 23_00 23_12 24—00 24_12 25—00 25_12 

26_00 26-12 27-00 27一12 28一00 28—12 29—00 29—12 30_00 30_12) do wgrib -bin -nh 
F:\ds083.2\200806\fnL200806%%i_00 -d 88 -append -o F:\stips\RH400_08.dat 

for % % i in (01_00 01—12 02—00 02_12 03_00 03_12 04_00 04_12 05—00 05_12 06_00 

06-12 07—00 07-12 08_00 08_12 09_00 09一 12 10_00 10_12 11_00 11_12 12_00 12_12 

13-00 13_12 14-00 14-12 15_00 15 一 12 16_00 16_12 17_00 17_12 18_00 18 一 12 19_00 

19—12 20-00 20一 12 21 一00 21_12 22一00 22_12 23_00 23—12 24_00 24_12 25_00 25_12 

26-00 26-12 27-00 27_12 28_00 28-12 29_00 29_12 30_00 30_12 31-00 31_12) do 
wgrib -bin -nh F:\ds083.2\200807\fnL200807%%i_00 -d 88 -append -o 
F:\stips\RH400_08.dat 

for % % i in (01—00 01_12 02_00 02_12 03_00 03_12 04_00 04_12 05_00 05_12 06_00 

06-12 07一00 07一12 08_00 08_12 09_00 09一 12 10_00 10_12 11_00 11_12 12_00 12_12 

13-00 13-12 14_00 14-12 15—00 15—12 16—00 16—12 17—00 17—12 18—00 18_12 19J)0 
19-12 20-00 20-12 21_00 21_12 22_00 22_12 23_00 23_12 24_00 24_12 25_00 25_12 
26-00 26-12 27-00 27—12 28_00 28_12 29一00 29一 12 30_00 30_12 31_00 31 一 12) do 
wgrib -bin -nh F:\ds083.2\200808\fnl_200808%%i_00 -d 88 -append -o 
F:\stips\RH400_08.dat 

for % % i in (01—00 01_12 02_00 02_12 03_00 03_12 04—00 04_12 05_00 05_12 06—00 

06-12 07-00 07-12 08—00 08一12 09_00 09_12 10一00 10一 12 11 一00 11_12 12_00 12_12 

13—00 13-12 14-00 14-12 15_00 15_12 16_00 16_12 17 一 00 17—12 18_00 18_12 19-00 

19一12 20一00 20-12 21_00 21_12 22一00 22_12 23_00 23_12 24_00 24_12 25_00 25一 12 

26-00 26_12 27-00 27_12 28_00 28—12 29_00 29_12 30_00 30_12) do wgrib -bin -nh 
F:\ds083.2\200809\fnl_200809%%i_00 -d 88 -append -o F:\stips\RH400_08.dat 

for % % i in (01_00 01一12 02_00 02_12 03_00 03_12 04-00 04—12 05_00 05_12 06_00 

06-12 07-00 07-12 08—00 08_12 09_00 09_12 10_00 10—12 11_00 11—12 12一00 12_12 

13-00 13-12 14-00 14-12 15_00 15 一 12 16_00 16_12 17_00 17_12 18_00 18_12 19 一 00 

19-12 20-00 20-12 21一00 21_12 22_00 22_12 23_00 23_12 24_00 24_12 25-00 25-12 

26—00 26-12 27_00 27—12 28—00 28_12 29_00 29_12 30_00 30_12 31_00 31一12) do 
wgrib -bin -nh F:\ds083.2\200810\fnL200810%%i_00 -d 88 -append -o 
F:\stips\RH400_08.dat 
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for o/oo/oi in (01_00 01_12 02_00 02_12 03_00 03_12 04_00 04_12 05_00 05_12 06_00 

06-12 07-00 07_12 08_00 08一12 09_00 09_12 10_00 10—12 11—00 11_12 12_00 12_12 
13_00 13_12 14_00 14_12 15_00 15_12 16_00 16_12 17_00 17_12 18_00 18_12 19_00 
19_12 20-00 20-12 21一00 21 一 1 2 22一00 22 12 23_00 23_12 24_00 24_12 25_00 25_12 

26-00 26-12 27-00 27—12 28_00 28_12 29—00 29—12 30-00 30_12) do wgrib -bin -nh 
F:\ds083.2\200811\fnl_200811%%i_00 -d 88 -append -o F:\stips\RH400_08.dat 

for %%i in (01—00 01_12 02_00 02_12 03_00 03—12 04_00 04_12 05_00 05_12 06_00 
06-12 07-00 07_12 08-00 08_12 09_00 09—12 10_00 10-12 11_00 11_12 12_00 12_12 
13—00 13-12 14_00 14-12 15—00 15—12 16_00 16_12 17_00 17_12 18_00 18_12 19_00 
19_12 20一00 20-12 21_00 21_12 22_00 22_12 23_00 23_12 24_00 24_12 25_00 25—12 
26-00 26-12 27-00 27—12 28_00 28_12 29_00 29_12 30_00 30—12 31_00 31_12) do 
wgrib -bin -nh F:\ds083.2\200812\fnl_200812%%i_00 -d 88 -append -o 
F:\stips\RH400_08.dat 

108 



To read OAFlux data (in NetCDF format) and convert them to BINARY 
format: 
The following FORTRAN codes are used to convert OAFlux daily SLHF data in 
NetCDF format to BINARY format. The codes are generated by using free software 
named 'nc2f90.exe' obtained online from 
http://www.whigg.ac.cn/yanhm/fortran.htm. 
The NetCDF library is needed to run this FORTRAN program. 

include ‘ netcdf. inc’ 

Define Variables. 

Variable ids run sequentially from 1 to nvars=5 ！ number of variables 

integer, parameter :; ix=360，jy=180, nrec=365 ！ change this to generalize 

integer*4 ncid, status ！ file control 

integer*4 recdim ！ record dimension 

Below 5 variables is the data in netCDF file 

real*4 

real*4 

integer氺4 

integer*2 

integer*2 

Ion ( ix ) 

lat( jy ) 

time(nrec) 

tmpsf ( ix, jy, nrec 

err( ix, jy, nrec ) 

above 5 variables is the data in netCDF file 

integer*4 

integer*4 

integer*4 

integer*4 

start(10) 

count(10) 

diraids(10)！ allow up to 10 dimensions 

dimid, xtype 

character(len=31) :: dummy 

Define "scale—factor" and 〃add_offset〃 variables 

real*8 ••: scale4(l), add4(l) 

real*8 :: scale5(l), add5(l) 

real :: Ta, q, qs ( ix, jy, nrec ) 

Open netCDF file. 

status二nf_open(’ f:\oaflux\lh_oaflux_2008. nc'，nf_nowrite, ncid) 

if ( status/=nf_noerr ) write (氺，氺)nf_strerror(status) 

Retrieve data for Variable ， Ion， 

Long_name of ‘ Ion' is ’longitude' 

Units of ’ Ion' is ‘ degrees' 

status=nf_inq_var (ncid, 1，dummy, xtype, ndim, diraids, natts) 

if ( status/=nf_noerr ) write (氺，氺)nf_strerror(status) 

do j=l, ndim 
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status=nf_inq_dim (ncid, dimids (j)，dummy, len) 

if ( status/=nf_noerr ) write (*, *) nf__strerror (status) 

start (j)=l ； count (j)=len 

end do 

status=nf_get_vara_real(ncid, 1，start, count, Ion) 

Retrieve data for Variable ‘ lat' 

Long—name of ’lat’ is ’latitude' 

Units of ’lat’ is ’ degrees' 

status=nf_inq_var (ncid, 2，dummy, xtype, ndim, dimids, natts) 

if ( status/=nf_noerr ) write (氺，*) nf_strerror(status) 

do j=l, ndim 

status=nf_inq_dira(ncid, dimids(j), dummy, len) 

if ( status/=nf_noerr ) write (氺，氺)nf„strerror(status) 

start (j)=l ； count (j)=len 

end do 

status=nf_get_vara_real(ncid, 2, start, count, lat) 

Retrieve data for Variable ’ time' 

Units of ’time’ is ‘day' 

status=nf—inq_var (ncid, 3，dummy, xtype, ndim, dimids, natts) 

if ( status/=nf_noerr ) write (氺，氺)nf_strerror(status) 

do j=l, ndim 

status=nf_inqLdim(ncid, dimids (j), dummy, len) 

if ( status/=nf_noerr ) write (*，nf_strerror(status) 

start (j)=l ； count (j) 二len 

end do 

status=nf_get_vara_int(ncid, 3，start, count, time) 

Retrieve data for Variable ‘ tmpsf' 

Units of ‘ tmpsf' is ‘ W/m"2' 

status=nf_inq_var (ncid, 4，dummy, xtype, ndim, dimids, natts) 

if ( status/=nf_noerr ) write (*, *) nf_strerror(status) 

do j=l，ndim 

status=nf_inq_dim (ncid, dimids (j), dummy, len) 

if ( status/=nf_noerr ) write (氺，氺)nf_strerror(status) 

start (j)=l ； count (j) =len 

end do 

status=nf_get_vara_int2 (ncid, 4, start, count, tmpsf) 

scale4(l) =0.0 ； add4(l) =0.0 

Scale—factor and add—offset for variable ’ tmpsf' 

status-nf_get_att_double(ncid, 4,，scale—factor’，scale4(l)) 

add scale—factor and add—offset to get true value 

Caution: variable type of ‘ tmpsf' may not as the same as the type of 

‘scale4(l)‘ and，add4(l)，，you must change it youself! 
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trapsf=trapsf*scale4 (1) +add4 (1) 

Retrieve data for Variable ’ err’ 

Units of ’err， is ’W/m'2’ 

status=nf_inq_var (ncid, 5，dummy, xtype, ndim, dimids, natts) 

if ( status/=nf_noerr ) write (*, *) nf—strerror(status) 

do j-1, ndim 

status=nf_inq_dini (ncid, dimids (j)，dummy, len) 

if ( status/=nf_noerr ) write (氺，氺)nf_strerror(status) 

start (j)=l ； count (j)=l en 

end do 

status=nf_get_vara_int2 (ncid, 5，start, count, err) 

scales (1) =0.0 ； add5(l) =0.0 

Scale—factor and add—offset for variable ’ err' 

status=nf—get—att—double(ncid, 5，‘ scale—factor’，scaleS(1)) 

add scale—factor and add_offset to get true value 

Caution: variable type of ’err’ may not as the same as the type of 

‘scales(1) ‘ and ’add5(l)，，you must change it youself! 

err=err氺scale5(1)+add5(1) 

Some useful advices  

If dimensions of a variable exceed 3, there can be an error (or warning) 

"warning LNK4084: total image size 382214144 exceeds max (268435456)； image may not 

run" 

when link this program. The best way to resolve it: decrease dimensions 

of the variable, use 〃do .. . end do〃 cycle to get little data at one time. 

See NetCDF mannual to look for how to control the dimensions.  

End suggestions  

Begin writing statements to use the data. 

Here write your own code please! 

open(11, file- f:\oaflux\lh_2008. dat，，access=' direct' 

do k=l, nrec 

write (11, rec=k) ((real (tmpsf (i, j, k))，i=l，ix) 

enddo 

close(ll) 

form=’ binary'，recl=4*ix*jy 

jy) 

End Program 

End 
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To calculate area-averaged SLHF within 
during 2000-2008. 

5° X 5° box for each TC sample 

integer, parameter :: ix=360,jy=180, nt二366, tyno二211，max~200 

integer id(tyno)，line (tyno)，seri (tyno)，grade (tyno，max)，ilat (tyno, max) 

integer i Ion (tyno, max)，dradSO (tyno, max)，r501 (tyno, max)，r50s (tyno, max) 

integer dradSO(tyno, max), r301(tyno, max)，r30s(tyno, max) 

integer vraax (tyno, max)，mslp (tyno, max)，yr, mon, dy, hr 

real lat (tyno, max)，Ion (tyno, max)，Ih (ix, jy, nt)，Ihf (tyno, max) 

character*20 tcname(tyno) 

character*2 year (tyno, max), month (tyno, max)，day (tyno, max)，hour (tyno, max) 

！ Read RMSC Tokyo best track 

open(3，file=，f:\stips\bst00-08_12h. txt，，status^' old，) 

do n=l,tyno 

read (3，11) indl, id(n), line (n), seri (n), tcname (n) 
11 format (i5, Ix, i4, 2x, i3, Ix, i4, lOx, a20, 22x) 

if (indl==66666) then 

do i = 1，line (n) 

read (3，101) year (n, i)，month (n, i)，day (n, i)，hour (n, i)，ind2, grade (n, i)，& 

i la t (n, i)，ilon (n, i), raslp(n, i), vmax(n, i)，dradSO(n, i)，rSOl (n, i)，rSOs (n, i), & 
drad30 (n, i), r301 (n, i)，r30s (n, i) 

101 format (4a2, Ix, i3, Ix, il, Ix, i3, Ix, i4, Ix, i4, 5x, i3, 5x，il, i4, Ix, i4, Ix, il, i4, Ix, i4) 

lat (n，i)=ilat(n，i)/float (10) 

Ion (n, i)=ilon(n, i)/float (10) 

enddo 

endif 

enddo 

c l o s e (3) 

do n=l, tyno 

do m二 1, line (n) 

read( year (n, m), ‘ (i2)' ) yr 

read( month (n, m),，(i2) ‘ ) mon 

read( day (n, m), ‘ (i2)' ) dy 

read( hour (n, m), ，(i2)' ) hr 

c a l l leap_year(yr, log) 

i f (log二=1) then 

nn=nt-1 

e l s e 

nn=nt 

endif 
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open(11，file=' f:\oaflux\lh_20' //year (n, m) //’. dat’，access=' direct’，& 

form=' binary'，recl=4*ix*jy) 

do k=l，nn 

read(11, rec=k) ((lh(i, j, k), i=l, ix), j=l，jy) 

enddo 

close(ll) 

call datetojday (yr, raon, dy, jday) 

Ihf (n, m) =0. 

jl^nintdat (n, m))+91 ； il=nint (lon(n，m))+l 

dd=0. ; 11=0 

do j=-2, 2 

do k=-2, 2 

i2=il+j;j2=jl+k;k2=jday 

if (lh(i2, j2, k2) 7-32766.) then 

11=11+1 

dd=dd+lh(i2，j2，k2) 

endif 

enddo 

enddo 

if (11>0) then 

lhf(n, m)=dd/float(ll) 

else 

lhf(n, ra) =32766. 

endif 

enddo 

enddo 

open(31, file=' f:\stips\LHF_00-08. txt') 

do n=l，tyno 

write (31,11) indl, id(n), line (n), seri (n), tcname (n) 

if (indl-二66666) then 

do i = 1，line (n) 

write (31’ 103) year (n, i), month(n, i), day(n, i), hour (n, i), ind2, grade(n, i) 

lat (n, i)，Ion (n，i)，mslp (n, i), vraax (n, i)，Ihf (n, i) 

enddo 

format (4a2, Ix, i3, Ix, il, Ix, f4. 1, Ix, f5. 1, Ix, i4, 5x, i3，5x, f5. 1) 

endif 

enddo 

close(31) 

end 
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To calculate area-averaged TMPA rain rate within a 110km circle for each TC 
sample during 2000-2008: 

integer, parameter :: ix=1440, jy=400, tyno=211, niax=200 

integer id(tyno)，line(tyno)，seri(tyno)，grade (tyno, max)，ilat(tyno, max) 

integer ilon (tyno, max)，dradSO (tyno, max)，r501 (tyno, max), r50s (tyno, max) 

integer dradSO (tyno, max)，r301 (tyno, max)，r30s (tyno, max) 

integer vmax (tyno, max), mslp (tyno, max) 

real*8 lat (tyno, max)，Ion (tyno, max)，out2, angle2, lat2 (ix, jy), lon2 (ix, jy) 

character*20 tcname(tyno) 

character*! cvarin(4)，cvar(4) 

character*2 year (tyno, max)，month (tyno, max)，day (tyno, max)，hour (tyno, max) 

real rr (ix, jy), irr(tyno, max), varin, var, ill, idd 

equivalence (cvarin, varin) 

equivalence (cvar, var) 

！ Read RMSC Tokyo best track 

open(3’ file。，f:\stips\bst00-08_12h. txt'，status:，old') 

do n = 1，tyno 

read (3, 11) indl，id(n)，line(n), seri (n), tcname(n) 

11 format (i5, Ix, i4, 2x, i3, Ix, i4, lOx’ a20, 22x) 

if (indl==66666) then 

do k = 1，line(n) 

read (3, 101) year (n, k), month (n, k), day (n, k)，hour (n, k)，ind2, grade (n, k)，& 

ilat (n, k), ilon(n, k)，mslp(n, k)，vmax (n, k), dradSO (n, k)，r501 (n, k)，r50s (n, k)，& 

dradSO (n’ k) ’ r301 (n，k)，r30s (n, k) 

101 format (4a2, Ix, i3, Ix, il, Ix, i3, Ix, i4, Ix, i4, 5x, i3, 5x, il, i4, Ix, i4, Ix, il，i4, Ix, i4) 

lat (n, k) =ilat (n, k)/float (10) 

Ion(n, k) =ilon(n, k)/float (10) 

enddo 

end if 

enddo 

close (3) 

do n=l, tyno 

do k=l, line(n) 

open(11, file- f:\trmra\20' //year (n, k)//，，//month(n，k) //’ \3b42. ’ //year (n, k)& 

//，，//month (n, k) //，，//day (n, k) //，. 7/hour (n, k) //，z. 6. precipitation, bin，，& 

access^' direct' , form=’ binary'，recl=4氺ix氺jy) 

readdl, rec=l) ((rr(i, j), i=l, ix), j二 1’ jy) 

close (11) 

！ The data has been read into the array, swap the byte order to get the rain rate, 

do i = 1, ix 
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do j = 1, 

varin 二 

cvar (1) 

cvar (2) 

cvar (3) 

cvar (4) 

rr (i, j) 

enddo 

enddo 

jy 
rr (i, j) 

=cvarin 

=cvarin 

=cvarin 

=cvarin 

= v a r 

⑷ 
⑶ 
⑵ 
⑴ 

idd=0. ； ill=0. 

do i=l，ix 

do j=l，jy 

if (i<-720) then 

lon2(i, j)=-179. 875+(i-l)*0. 25+360 

else 

lon2 (i, j) —179. 875+ (i—l) *0. 25 

endif 

lat2 (i, j) =—47. 875+ (j—1) *0. 25 

call distance (Ion (n, k)，lat (n, k)，lon2 (i，j), lat2 (i, j)，out2, angle2) 

if (out2<=110d0 . and. rr(i, j)/—9999.) then 

idd=idd+rr(i，j) 

m=il l+ l 
endif 

enddo 

enddo 

irr (n, k)=idd/ill 

enddo 

enddo 

open(31’ file=' f:\stips\IRR_00-08.txt，) 

do n=l, tyno 

write (31，11) indl, id(n), line (n), seri (n), tcnarae (n) 

if (indl==66666) then 

do k 二 1，line(n) 

write (31，103) year (n, k)，month (n, k), day (n, k), hour (n, k), ind2，grade (n, k): 

lat (n, k), Ion (n, k)，mslp (n, k), vmax (n, k)，irr (n, k) 

enddo 

103 format (4a2, Ix, i3, Ix，il, Ix, f4. 

endif 

enddo 

close(31) 

end 

Ix, f5. 1，Ix, i4, 5x, i3, 5x, f5. 1) 
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To get the SST at the center of each TC sample during 2000-2008; 

integer, parameter :: ix=1440, jy=720, tyno=211, max=200 

integer id (tyno), 1 ine (tyno)，seri (tyno)，grade (tyno, max), ilat (tyno, max) 

integer ilon(tyno, max)，drad50(tyno, max)，rSOl(tyno, max)，r50s(tyno, max) 

integer dradSO(tyno, max)，r301(tyno, max)，rSOs(tyno, max) 

integer vmax (tyno, max)，mslp (tyno, max)，yr, mon, dy, hr，jday 

real*8 lat (tyno, max)，Ion (tyno, max)，out, angle 

real*8 out2, angle2, lat2 (ix, jy)，lon2 (ix, jy) 

character氺20 tcnarae(tyno) 

character*! cvarin(4)，cvar(4) 

character氺2 year (tyno, max)，month (tyno, max)，day (tyno, max), hour (tyno, max) 

character氺3 jdy 

real varin，var, ill, idd, sst (tyno, max) 

character(len=l50) :: file—name 

real*4, dimension(ix, jy) :: sst—data 

integer*4 :: iexist 

！ Read RSMC best track 

open(3，file=，f:\stips\bst00-08_12h. txt，，status=' old') 

do n=l，tyno 

read (3, 11) indl, id(n), line(n), seri(n), tcname(n) 

11 format (i5, Ix, i4, 2x’ i3> Ix, i4, lOx, a20’ 22x) 

if (indl==66666) then 

do k = 1，line(n) 

read (3, 101) year (n, k)，month (n, k)，day (n，k)，hour (n, k), ind2, grade (n，k)，& 

ilat(n, k), ilon(n, k)，mslp(n, k), vmax(n, k), dradSO(n, k)，r501 (n, k), rSOs (n, k), & 

drad30 (n, k), r301 (n, k)，rSOs (n, k) 

101 format (4a2, Ix, i3, Ix, il, Ix, i3，Ix, i4, Ix, i4, 5x, i3, 5x, il, i4，Ix, i4, Ix, il, i4，Ix, i4) 

lat (n, k) =ilat (n, k) /float (10) 

Ion (n, k) =ilon(n, k)/float (10) 

enddo 

endif 

enddo 

close (3) 

do n=l，tyno 

do k-1, line (n) 

read( year (n, k), 

read ( month (n, k)， 

read ( day (n，k)， 

call datetojday(yi 

write ( jdy,，（i3)， 

(i2), 

(i2)， 

(i2)’ 

yr 

mon 

dy 

1，dy, jday) 

jday 
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if (jday<=9) then 

file_name-' f:\SST\tini. fusion. 20' //year(n, k)//’. 00' //trim(adjust 1 (jdy))//，. vOl' 

elseif (jday>9 .and. jday<100) then 

file_narae=' f:\SST\tmi. fusion. 20’ //year(n, k)//'. 0' //trim(adjustl (jdy))//', vOl' 

else 

file—name=，f:\SST\trai. fusion. 20，//year (n，k)//，. ’ //jdy//'. vOl， 

endif 

CALL READ_RSS_0ISST_V2(file—name, sst—data, iexist) 

if(iexist. ne. 0) stop 

i - nint ( ( lon(n, k) +0. 125 ) / 0. 25 ) 

j = nint ( ( lat(n, k)+90. 125 ) / 0. 25 ) 

sst (n, k) = sst_data(i，j) 

write (*, *) sst (n, k) 

enddo 

enddo 

open(10, file:，f:\stips\SST_00-08.txt') 

do n=l，tyno 

write (10,11) indl, id(n), line(n), seri (n), tcname(n) 

if (indl==66666) then 

do i = 1, line(n) 

write (10, 103) year (n, i)，month (n, i), day (n, i)，hour (n, i)，ind2, grade (n, i)，& 

lat (n, i), Ion (n, i)，mslp(n, i), vmax (n, i)，sst (n, i) 

enddo 

103 format(4a2, 

endif 

enddo 

end 

Ix, i3, Ix’ il, Ix, f4.1，Ix，f5. 1，Ix, i4, 5x, i3, Ix, f7. 2) 
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To obtain the parameters from 12-hourly NCEP BINARY data (taking 
area-averaged (200-800 km) temperature at 200 hPa as an example) for each 
TC sample during 2000-2008: 

integer, parameter :: ix=360,jy=181,nt=732,tyno=211, max=200 

integer id(tyno)，line (tyno), seri (tyno)，grade (tyno, max)，ilat (tyno, max) 

integer i Ion (tyno, max)，dradSO (tyno, max), r501 (tyno, max)，r50s (tyno, max) 

integer dradSO(tyno,max)，r301 (tyno, max)，r30s(tyno, max) 

integer vraax (tyno, max) ’ mslp (tyno, 200) ’ yr, mon, dy, hr, log 

real Ih (ix, jy, nt)，t200 (tyno, max) 

real*8 lat (tyno, max)，Ion (tyno, max)，out2, angle2, lat2 (ix, jy)，lon2 (ix, jy) 

character*20 tcnaine (tyno) 

character*2 year (tyno, max)，month (tyno, max), day (tyno, max)，hour (tyno, max) 

！ Read RMSC Tokyo best track 

open (3, file=' f:\stips\bst00-08_12h. txt’, status:，old，) 

do tyno 

read (3，11) indl, id(n), line (n), seri (n), tcname(n) 

11 format (i5, Ix, i4, 2x, i3, Ix, i4, lOx, a20, 22x) 

if (indl==66666) then 

do i = 1，line(n) 

read (3，101) year (n, i) ’ month (n, i)，day (n, i)，hour (n, i)，ind2, grade (n, i)，& 

ilat (n, i), iIon (n，i)，mslp (n，i)，vmax(n, i)，dradSO(n, i)，rSOl (n, i)，r50s (n, i)，& 

drad30 (n, i)，rSOl (n, i)，r30s (n, i) 

101 format (4a2, Ix, i3，Ix, il, Ix, i3, Ix, i4, Ix, i4, 5x, 13, 5x, il, i4, Ix, i4, Ix, il, i4, Ix, i4) 

lat(n, i)=ilat(n, i)/float(10) 

lon(n, i) 二ilon(n，i)/float (10) 

enddo 

endif 

enddo 

c lose (3) 

do n二 1，tyno 

do m=l, line(n) 

read( year (n, m), ’ (i2) ‘ ) yr 

read( month (n, m), ’ (i2) ‘ ) mon 

read( day (n, m), ，(i2)' ) dy 

read( hour (n, in), ，（i2)，) hr 

c a l l leap_year(yi 

if (log==l) then 

nn=nt-2 

e l s e 

nn-nt 

log) 
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endif 

open (11, file=，f:\stips\T200_' //year (n，m) //'. dat', access:，direct'，& 

form=' binary'，recl=4*ix*jy) 

do k=l, nn 

read(11, rec二k) ((lh(i, j, k), i=l，ix), j=l’ jy) 

enddo 

close (11) 

call datetono (yr，mon, dy, hr，no) 

dd=0. ；11=0 

do i=l，ix 

do j=l, jy 

lon2(i, j)=i-l; lat2(i, j)=91-j 

call distance (Ion (n, m)，lat (n, m)，lon2 (i, j)，lat2 (i, j), out2, angle2) 

if (out2<=800D0 .and. out2>=200D0) then 

dd=dd+lh(i, j,no) 

11=11+1 

endif 

enddo 

enddo 

T200(n, m)=dd/float(ll) 

enddo 

enddo 

open(31，file:’ f:\stips\T200_00-08.txt') 

do n=l, tyno 

write (31，11) indl，id(n)，line (n)，seri (n)，tcname (n) 

if (indl==66666) then 

do i = 1, line(n) 

write (31, 103) year (n, i)，month (n, i)，day (n, i)，hour (n, i)，ind2, grade (n, i), & 

lat (n, i), Ion (n, i)，mslp (n, i)，vraax (n, i) ’ T200 (n, i) 

enddo 

103 format (4a2, Ix, i3, Ix，il, Ix, f4. 1, Ix, f5. 1，Ix, i4, 5x, i3, 5x, f5. 1) 

endif 

enddo 

close (31) 

end 
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Some subtoutines used in the above FORTRAN codes. 

subroutine read—rss—oisst_v2(file—name，sst_data, file—exists) 

This routine reads version-2 RSS 01 SST daily files made from tmi and/or amsre data 

You must UNZIP FILES before reading them 

INPUT 

file_name with path in form satnames. yyyy. doy. v02 

where satname = name of satellite (tmi_amsre, amsre, 

yyyy = year 

doy = day of year(Julian day) 

OUTPUT 

sst_data (a 1440x720 array of data) 

file—exits =0 if file read and data returned, 

tmi) 

-1 if no file 

xdim=1440, ydim=720 

Longitude is 0.25*xdim-0. 125 

Latitude is 0. 25*ydim—90. 125 

Values (251 - 255) have special 

251 = missing data 

252 = sea ice 

253 

254 

255 

degrees east 

meanings: 

missing data 

missing data 

land mass 

Please read the data description 

To contact RSS support: 

http://ww. remss. com/support 

on remss.com 

character(len=150) 

real (4)，dimension (1440, 720) 

integer(4) 

character(len=l)，dimension(1440, 720) 

logical lexist 

real (4), parameter :: scale 

real (4), parameter :: offset 

file—name 

sst_data 

file—exists 

::buffer 

15 

0 

check to see if file exists — if not return 

file—exists二0 

inquire(fi 1 e=fi 1 e_nanie, exist二lexist) 

if (. not. lexist) then 

file_exists = -1 

return 

in file exists 
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endif 

open the file and read in character data 

write(氺，氺)，]reading sst file: ，, file—name 

open(3, file=file_name, status:’ OLD'，RECL二1036800’ access:’ DIRECT'，& 

form=' UNFORMATTED') 

read(3, rec=l) buffer 

convert character data to real SSTs using byte scaling and offset parameters 

sst_data = real(ichar(buffer)) 

where(sst_data<=250) 

sst_data = (sst_data * scale) + offset 

endwhere 

close the file and return 

close(3) 

return 

end 

subroutine datetono(year, mon, day, hour, no) 

！to convert date to sequence number 

integer year, yr, mon, day, hour, jday 

call dateto jday (year, mon, day, jday) 

if (hour=-0) then 

no=(jday-1)*2+1 

else if (hour==12) then 

no=(jday-l)*2+2 

endif 

return 

end 

of record for 12 hourly data 

subroutine datetojday(year, mon, 

！To convert a date to Julian day, 

integer year, mon, day, jday, log 

if (year>=50) then 

year=year+1900 

elseif (year<=10) then 

year=year+2000 

endif 

call leap—year (year, log) 

if (log==l) then 

select case (mon) 

day, jday) 

2-digit years will be transformed to 4-digit years. 
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case (1) 

jday=day 

case (2) 

jday=31+day 

case (3) 

jday=60+day 

case (4) 

jday=91+day 

case (5) 

jday=121+day 

case (6) 

jday=152+day 

case (7) 

jday=182+day 

case (8) 

jday-213+day 

case (9) 

jday=244+day 

case (10) 

jday=274+day 

case (11) 

jday=305+day 

case (12) 

jday=335+day 

end select 

else 

select case (mon) 

case (1) 

jday=day 

case (2) 

jda产31+day 

case (3) 

jday=59+day 

case (4) 

jday二90+day 

case (5) 

jday=120+day 

case (6) 

jday=151+day 

case (7) 

jday=181+day 

case (8) 

jda尸212+day 

case (9) 

jday=243+day 
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case (10) 

jda尸273+day 

case (11) 

jday=304+day 

case (12) 

jday=334+day 

end select 

endif 

return 

end 

subroutine leap—year(yr，log) 

！ To determine if a year is a leap year or not, 1 for leap year, 3 for not 

integer yr, log 

if(mod(yr, 4) /=0) then 

log 二 3 

else if (mod(yr, 100)/=0) then 

log 二 1 

else if(raod(yr, 400) /=0) then 

log=3 

else 

endif 

return 

end 

subroutine distance (lonA, latA, lonB, latB, out, angle) 

Input: lonA, latA, lonB, latB (longitude and latitude of point A and point B on the Earth) 

Output: out(distance between point A and point B) 

Output: angle (azimuth angle of point B relative to point A) 

If point B is to the east of point A, then the azimuth angle is 90 degree； 

If point B is to the south of point A., then the azimuth angle is 180 degree; 

If point B is to the west of point A， then the azimuth angle is 270 degree; 

If point B is to the north of point A, then the azimuth angle is 0 degree； 

real*8 :: lonA, latA, lonB, latB, out, angle 

real*8 :: RadLoA, RadLaA, RadLoB, RadLaB 

real*8 :: Ec, Ed, dx, dy, dLo, dLa, pi 

real*8, parameter :: Rc-6378.137D0, Rj=6356. 752D0 

PI = 4. DO*atan(l.) 

RadLoA = lonA 氺 PI / 180. DO 
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RadLaA 

RadLoB 

RadLaB 

Ec = Rj 

latA * PI 

lonB * PI 

latB * PI 

180. DO 

180. DO 

180. DO 

(Rc - Rj) * (90. DO - latA) / 90. DO 

Ed = Ec * cos(RadLaA) 

dy = (RadLaB - RadLaA)氺 Ec 

dx = (RadLoB - RadloA) * Ed 

out = sqrt (dx * dx + dy * dy) 

angle = atan(abs(dx/dy)) * 180. DO / PI 

To determine the quadrant 

dLo = lonB - lonA 

dLa = latB - latA 

if (dLo > 0 .and. dLa < 

angle = 360.DO - angle 

else if (dLo <= 0 . and 

angle = angle + 180. DO 

else if (dLo < 0 . and. dLa > 0) then 

angle = 180.DO - angle 

endif 

0) then 

dLa <= 0) then 

return 

end 
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To develop three linear regression models (CLIPER, BASE, and STIPER): 
The following MATLAB codes show an example of developing the 24-hr models 
using data from 2000 to 2007 and verifying the models using data in 2008. Each of 
'all_08p_24.txt' and 'all_08_24.txt' data file contains an n-by-19 matrix of 1 
predictand (the column) and 18 predictors (the to the 19* column) at each of n 
observations. 

c lear , 
c l c ; 

A = load( ‘a l l_08p_24 . tx t 
B = l o a d ( ' a l l 08 24.txt，： 

%standardization ( th i s pa r t 
regress ion c o e f f i c i e n t s ) 
% for i = 1:19 
% r e s u l t = ( A ( : , i ) 
% A ( : , i ) = r e s u l t ; 
% r e s u l t 2 = ( B ( : , j 
% B ( : , i ) = r e su l t2 ; 
% end 

of codes are only used to get normalized 

mean( A{ 

mean( B 

std(A(: 

‘ s td (B{ 

1 ) ; 

, 1 ) 

B(:,l) 

% Select s i g n i f i c a n t 
X=[ones(size(A,1),1) 

p r ed i c to r s suing stepwise regress ion 
A ( : , 2 : 1 7 ) ] ; 

s tepwisef i t (X,Y, 'penter ’，0.01 , ' p remove ' ,0 .02) 

% BASE model formulat ion and v e r i f i c a t i o n 
XI = [ones(s ize(A,1) ,1) A( : ,2 :4) A(: ,6) A(: ,8:10) A( 
[ b , b i n t , r , r i n t , s t a t s ] = regress(Y,XI) ; 
Y1 = XI*b; 
MAE = mean(abs(Yl-Y)); 
RS = 1 - (Yl-Y)‘*(Yl-Y) / ( v a r ( Y ) * s i z e ( A , 1 ) ) ; 

15) 

X2 = [ones(s ize(B,1) ,1) B 
Y2 = X2*b; 
MAEt = mean(abs(Y2-y)); 
RSt = 1 - ( Y 2 - y ) ( Y 2 - y ) , 

2:4) B(:,6} B(:,8:10) B 

var(y)*size(B,1) 

15) 

% STIPER model formulat ion 
X3 = [ones(s ize(A,1) ,1) A{: 
[ b 2 , b i n t 2 , r 2 , r i n t 2 , s t a t s 2 ] 

and v e r i f i c a t i o n 
,2:4) A(: ,6) A(: ,8:10) A(:,15) A(: ,18:19)] 
= regress (Y,X3) ; 
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Y3 = X3*b2; 
MAE2 = mean(abs(Y3-Y)); 
RS2 = 1 一 （ Y 3 - Y ) • * ( Y 3 - Y ) var(Y)*size(A,1) 

X4 = [ones(s ize(B,1) ,1 ) B( 
Y4 二 X4*b2; 
MAEt2 = mean(abs(Y4-y)); 
RSt2 = 1 - (Y4-y)‘*(Y4-y) 

2:4) B(: ,6) B(: ,8:10) B(:,15) B(: ,18:19) 

var (y)*s ize(B,1) 

%CLIPER model formulat ion and v e r i f i c a t i o n 
X5 = [ones(s ize(A,1) ,1) A{:,2:4) A ( : , 6 ) ] ; 
[ b 3 , b i n t 3 , r 3 , r i n t 3 , s t a t s 3 ] = regress(Y,X5); 
Y5 = X5*b3; 
MAE3 = mean(abs(Y5-Y)); 
RS3 = 1 - {Y5-Y) (Y5-Y) / ( var(Y)*size(A, 1) 

X6 = [ o n e s ( s i z e ( B , 1 ) , 1 � B 

Y6 = X6*b3; 
MAEt3 = mean(abs(Y6-y)); 
RSt3 = 1 一 (Y6-y)‘*{Y6-y) 

2:4) B( : , 6 ) ] 

var (y)*s ize(B,1) 
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To train a neural network (NN) model using the same predictors as STIPER: 
The following MATLAB codes show an example of developing the 24-hr NN model 
using data from 2000 to 2007 and verifying the models using data in 2008. Each of 
'all_08p_24.txt' and 'ali_08_24.txt' data file contains an n-by-19 matrix of 1 
predictand (the column) and 18 predictors (the to the 19^ column) at each of n 
observations. 

c l ea r ; 
c lc ; 

A = load( ' a l l_08p_24. tx t 
B = load( ' a l l 08 2 4 . t x t ' 

[A(:,2 A(:,6) A(: ,8:10) A(:,15) A(:,18:19)] 
1) 

% t r a i n the neural network 
net = n e w f f ( P , T , 7 , { ' t a n s i g ' , ' p u r e l i n 
net . t rainParam.epochs = 3000; 
net . t ra inParam.goal = 0.1; 
ne t . t r a inParam. l r=0 .5 ; 
net = i n i t ( n e t ) ; 
[ n e t , t r ] = t r a in{ne t ,P ,T ) ; 
Y = s im(net ,P) ; 

t r a incg f ' 

MAE = mean(abs(T-Y)) 
R2 = 1 — (Y-T)* (Y-T) var(T)*size(A,1) 

% v e r i f i c a t i o n 
P2 = [B ( : ,2 :4) B(:,6) B(: 
T2 = B ( : , l ) 
Y2 = siin(net, P2 ); 
MAE = mean(abs(T2-Y2)); 
R2t = 1 - (Y2-T2)*(Y2-T2) 

10) 15) B(：,18:19) 

var (T2)*size(B,1) 
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A MATLAB function for multinomial logistic regression: 

function result = logit(y,x,maxit,tol) 

% PURPOSE: computes Logit Regression 
% 

% USAGE: results = logit(y,x,maxit,tol) 

% where: y = dependent variable vector (nobs x 1) 

% X = independent variables matrix {nobs x nvar: 

% maxit = optional (default=100) 

% tol = optional convergence (default=le-6) 

RETURNS: a structure 

result.meth = 

result.beta = 

result.tstat = 

result.yhat = 

result.resid = 

result.sige = 

result.r2mf = 

result.rsqr = 

result•Iratio = 

result.lik = 

result•cnvg = 

result.iter = 

result.nobs = 

result•nvar = 

result.zip = 

result.one = 

result.y = 

'logit' 

bhat 

t-stats 

yhat 

residuals 

e‘*e/n 

McFadden pseudo-R'^2 

Estrella 

LR-ratio test against intercept model 

unrestricted Likelihood 

convergence criterion, max(max(-inv(H)*g)) 

# of iterations 

nobs 

nvars 

# 〇f O's 

# of I's 

y data vector 

SEE ALSO: prt(results), probit(), tobit{) 

References: Arturo Estrella (1998) 'A new measure of fit 

for equations with dichotmous dependent variable‘, JBES, 

V o l . 16, #2, April, 1998. 

% written by: 

% James P. LeSage, Dept of Economics 

% Texas State University-San Marcos 

% 601 University Drive 

% San Marcos, TX 78666 

% jlesage@spatial-econoinetrics • com 

if (nargin < 2); error('Wrong # of arguments to logit 

if (nargin > 4); error('Wrong # of arguments to logit 

end; 

end; 
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% check for ail I's or all 0‘s 

tmp - find(y ==1)/ 

chk = length(tmp); 

[nobs junk] = size(y); 

if chk == nobs 

error(‘logit: y-vector contains all ones 

elseif chk == 0 

error(‘logit: y-vector contains no ones‘‘ 

end; 

% maximum likelihood logit estimation 

result.meth = 'logit'; 

res = ols(y,x)； % use ols values as start 

[t k] = size(x); 

b = res.beta; 

if nargin == 2 

tol = 0.000001; 

maxit = 100; 

elseif nargin ==3 

tol = 0.000001; 

end; 

crit = 1.0; 

i = ones(t,1); 

tmpl = zeros(t,k)； 

tmp2 = zeros(t,k); 

iter = 1; 

while (iter < maxit) & (crit > tol) 

tmp = (i+exp(-x*b)); 

pdf = exp (-x*b) . / (tmp. *tinp); 

cdf = i./(i+exp(-x*b)); 

tmp = find(cdf <=0); 

[nl n2] = size(tmp); 

if nl 0; cdf(tmp) 

tmp = find(cdf >= 1) 

[nl n2] = size(tmp); 

if nl ~= 0； cdf(tmp) 

0.00001; end; 

0.99999; end; 
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% gradient vector for logit 

terml = y.*(pdf./cdf)； term2 = 

for kk=l:k; 

tmpl{:,kk) = t e r m l . ( : , k k ) ; 

tirip2 (: , kk) = term2 • *x (: , kk); 

end; 

g = tmpl-tmp2; gs = (sum(g))‘; 

delta = exp(x*b)./(i+exp(x*b)) 

- y ) ( p d f . / ( i - c d f ) 

see page 883 Green, 1997 

H = zeros(k,k); 

for ii=l:t; 

xp = X(ii,:)'; 

H = H - delta(ii,1)*(1-delta(ii,1)”（xp*x(ii,:)); 

end; 

db = -inv(H)*gs; 

% stepsize determination 

s = 2; 

terml = 0; teriti2 = 1; 

while term2 > terml 

s = s/2; 

terml = lo—like(b+s*db,y,x); 

term2 = lo—like(b+s*db/2, y, x); 

end; 

bn = b + s*db; 

crit = abs(max(max(db))); 

b = bn; 

iter = iter + 1； 

end; % end of while 

% compute Hessian for inferences 

delta = exp(x*b)./(i+exp(x*b))； % see page 883 Green, 1997 

H = zeros(k,k); 

for i=l:t; 

xp = X(i,:)'; 

H = H - delta(i,1)*(1-delta(i,1))*(xp*x(i,:)); 

end; 

% now compute regression results 

covb = -inv(H); 

stdb = sqrt(diag(covb)); 

result.tstat = b./stdb; 
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% fitted p r o b a b i l i t i e s 

prfit = ones(t,1)./( o n e s ( t , 1 ) + e x p ( - x * b ) ) ; 

r e s u l t . r e s i d = y - p r f i t ; 

r e s u l t . s i g e = (result.resid**result•resid)/t」 

% find ones 

tmp = find(y 二=1); 

P = l e n g t h ( t m p ) ; 

c n t 〇 = t - P ; 

cntl = P; 

P = P/t; % p r o p o r t i o n 

likeO = t*(P*log (P) + 

likel = lo like(b,y,x: 

of I's 

(1-P)*log(l-P}); 

； % u n r e s t r i c t e d 

% restricted likelihood 

Likelihood 

result.r2mf = 1 - ( a b s ( l i k e l ) / a b s ( l i k e O ) ) , 

termO = (2/t)*likeO; 

terml = 1 / ( a b s ( l i k e l ) / a b s ( l i k e O ) ) ^ t e r m O , 

r e s u l t . r s q r = 1 - t e r m l ; % Estrella R2 

McFadden pseudo-R2 

result.beta = b; 

r e s u l t . y h a t = p r f i t ; 

r e s u l t . Iratio = 2* (likel — likeO) ； % LR-ratio test against intercept m o d e l 

r e s u l t . l i k = likel;% u n r e s t r i c t e d Likelihood 

r e s u l t . n o b s = t ； % nobs 

r e s u l t . n v a r = k; % nvars 

r e s u l t . z i p = cntO； % number of 0‘s 

res u l t . o n e = cntl; % number of I's 

r e s u l t . i t e r = iter; % number of iterations 

r e s u l t . c o n v g = crit； % c o n v e r g e n c e criterion max(max(-inv(H)*g)) 

r e s u l t . y = y; % y data v e c t o r 
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