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I Abstract

Wood 1s a complex and heterogeneous mixture, and dust produced in wood
processing includes wood solids and residual particulate. The standard for wood dust
analysis has been to determine total particulates gravimetrically not including any
specific analysis of wood content in the dust. Wood dust is an occupational
carcinogen and the American Conference of Governmental Industrial Hygienists
(ACGIH) has classified oak and beech dusts as Al (confirmed human) carcinogens.

Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) was used
to determine wood solids in 521 size-fractionated dust samples collected from 10
wood processing plants. After removal of outliers, the mean respirable, thoracic, and
inhalable wood solid percentage (WS%) were 30.5 %, 86.0 % and 63.5 % in the
cabinet plant (highest) and 2.2 %, 6.1 % and 5.9% in the sawmitll-planing-plywood
plants (lowest).

Kruskal-Wallis one way ANOVA on ranks was applied to this size-fractionated
WS % by determinants of plant type, job activity, and wood type and there were
statistically significant differences within each determinant. Cabinet plants showed
the highest content of wood solid in all three size fraction and the differences were
statistically significant in comparison to all other plant types. Otherwise, sawmill-
planing-plywood plant showed the lowest content of wood solid presumably because
of the emission of the resin binders when the making of plywood and processing of

primarily green wood. Likewise, working with plywood resulted in statistically



lower WS% than all other wood types. By job activity, sanding showed statistically
higher WS% than all other activities except for blow down/compressed air.

A prediction model for inhalable WS% was constructed from the data using
determinants of plant type, green and dry wood, hard and soft wood, formaldehyde,
PSV (painting, staining, and varnishing) and the reciprocal of inhalable dust weight.
The coefficients for the determinants of green wood, green/dry wood, and
formaldehyde, were not statistically significant. The predicted value of each
inhalable wood solid % is 44.2 % in furniture plants, 63.5 % in cabinet plants, 46.8 %
in secondary millworks plant, and 5.93 % in sawmill-planing-plywood plant and
there were no significant difference evaluated by Pearson correlation coefficient and
Spearman’s rho. Two plants (furniture C and sawmill-planing-plywood A) were
randomly selected for validation by constructing the same prediction model obtained
from the data of the remaining 8 plants. The predicted values of inhalable wood solid
percentage are 43.1 % in furniture C, 5.87 % in sawmill-planing-plywood, and there
is no significant difference between observed and predicted data.

Finally, the DRIFTS technique was adapted to the specific determination of oak and
pine in mixed dust samples by applying the simultaneous equation method to multiple
selected wavelength pairs. The four wave number pairs showing the lowest total
percentage difference between actual and measured values for 1500 and 2500 ug of
oak and pine mixed wood are 21.1% (1250.7, 1265.1 cm™), 18.9 % (1250.7, 1282.5
cm™), 21.9 % ( 1250.7, 1289.2 ecm™), and 23.5 % (1250.7, 1296.0 cm™"). For further

evaluation, fifteen archived samples were analyzed for oak and pine content. The



mean %difference + standard deviation (range) between actual and measured values
are 33.6 + 17.7 % (7.50, 55.0 %) in only-oak samples, 23.3 £ 13.1 % (4.55, 38.2 %)
in only-pine samples, and 26.5 £ 17.9 % (3.45, 47.7 %) in oak and pine mixed
samples. Most actual amount is larger than estimate value because the actual amount
is total dust weight at ambient humidity and the estimate value represents only dry
wood solids.

This study of wood solid analysis by DRIFTS shows important differences in
sources of size-fractionated dust in wood processing industry based on wood solid
content, and provides a new analytical standard method for determining the amounts

of specific woods in a binary dust mixture in the industrial setting.



II Background and Significance

Wood dust has been classified as a human carcinogen by the International Agency
for Research on Cancer (IARC); therefore, its health effects have been variously
evaluated.! Adverse health effects associated with wood dust exposures include
mainly dermatitis, allergic respiratory effects, mucosal and non-allergic respiratory
effects, and cancer. Wood is a complex and heterogeneous mixture composed of
cellulose, polyoses (hemicelluloses), lignin, and other various extractives. However,
current standard analysis of wood dust is to determine ‘total airborne particulates’ by
gravimetric method without including the characteristic of wood dust.?

Our research group developed a new analytical diffuse reflectance Fourier-
transform infrared spectroscopy (DRIFTS) technique for determining size-
fractionated wood dust in 37-mm glass fiber filter samples collected with the
Respicon™ sampler by using two absorbance maxima at 1251 cm™ (softwood) and
1291 cm™! (hardwood or both).?> Therefore, it is important to apply wood solid
analysis based on this new analytical technique to the size-fractionated personal dust
samples collected from the wood processing industry.

Since oak dusts are classified as one of the Al carcinogens by the American
Conference of Governmental Industrial Hygienists (ACGIH), it is important to
determine the specific amounts of oak dusts among mixture of carcinogenic

hardwoods and non-carcinogenic softwoods. Therefore, the DRIFTS technique was



applied to particular determination of oak dusts in mixed extra-thoracic wood dust

samples collected by Respicon™ sampler.



III Literature Review

3.1 Composition of Wood Dust

The Food and Agriculture Organization (FAO) of the United Nations estimated that
forests cover about 37.7 million km?, 30 percent of the global land area. Each
American uses, on average, the amount of a 100 foot, 18 inch tree each year in wood
and wood products, and therefore, wood is one of indispensable sources with our
living life.

Wood dust is created when timber is worked in chipping, sawing, turning, drilling,
sanding and so on. For industrial purposes, wood is classified into two types;
hardwoods (derived from deciduous trees) and softwoods (derived from coniferous
trees). Hardwoods are mostly more dense than softwoods, and the density and
hardness of the two groups, however, vary substantially within each family. Wood
can also be divided by dry wood (<15~20 % moisture content) and moist (green)
wood by the moisture contents.

Cellulose, polyoses (hemicelluloses) and lignin are the fundamental chemical
constituents of wood to have a macromolecular structure. Cellulose is the uniform
structural element of all woods and nevertheless, the chemical composition of lignin
and polyoses is different in softwood and hardwood. Cellulose is the major
component (40~50 %) in both softwood and hardwood. Polyoses differ in their sugar

composition and the polyoses content of hardwood is higher than that of softwood.



Lignin is in larger amount in softwood than in hardwood and the monomers of lignin
are phenylpopane units.

Otherwise, non-polar extractives in wood consist of mainly terpenes, fatty acids,
resin acids, waxes, alcohols, sterols, steryl esters and glycerides, and polar extractives

!' Resin acids,

of wood comprise mostly tannins, flavonoids, quinones, and lignans.
terpenes and aldehydes have been studied in conjunction with wood dust exposure in
many softwood processing facilities such as softwood lumber mills, finish sawmills,
industrial production of wood pellets and briquettes, and particleboard and medium-
density fiberboard products.”'® Gallic acid in oak wood dust was adapted as an
indicator and a linear correlation with oak dust and gallic acid concentration was
shown (r = 0.95)."" Studies to investigate formaldehyde have also been done in
facilities manufacturing particle boards, plywood, and MDF made with

formaldehyde—based resins. 12-14

3.2 Wood Processing and Occupational Exposure

Debarking, sawing, sanding, milling, lathing, drilling, veneer cutting, chipping and
mechanical defibrating are the essential woodworking processes.'” The high-risk
exposure of wood dust occurs often in sawmills, dimension mills, furniture industries,

6

cabinet makers, and carpenters.'® Woodworking operations shatter lignified wood

cells and break out whole cells and chips. As the wood increases in hardness, so the



cells are tightly bound. Consequently, hardwoods can produce more shattering and
dust. Likewise, the cells in dry wood are less malleable and easier to be shattered.
More likely to shatter cells are woodworking operations performed perpendicular to
the natural grain of the wood than those performed parallel to the grain. Also, the
level of wood dust can be affected by the various characteristics of the workplace
such as age, density, and types of woodworking machinery and the regulatory

environment. '

3.3 Particle Size Distribution of Wood Dust

The particles of wood dust have irregular shapes and rough surfaces and therefore,
the morphological patterns are difficult to be distinguished from each different
process. The major part of the wood dust mass was reported as the particles over 10
um in aerodynamic diameter. Inspirable Particulate Mass (IPM) method was
recommended by Hinds et al.(1988) for wood dust sampling because the majority of

'7" An optical microscopy

wood dust was contributed by particles larger than 10 pm.
was used for counting particles of wood dust and 61~65 % of the particles measured
1~5 um from this study. Darcy reported the distribution of particle sizes from
sanding pine and oak was very similar.! Otherwise, from another study, the average

mass median aerodynamic diameter of dust showed a little difference between

hardwood (18.7 um; GSD 2.0) and softwood/reconstituted (19.6 um; GSD 2.1)."*



3.4 Health Effects

3.4.1 Allergic and Non-Allergic Respiratory Effects

The chemicals related to allergic reactions are mostly found in the inner parts of the
tree. Asthma is the most commonly reported allergic respiratory effect due to wood
dust.

The exposure to woods such as Western Red Cedar, Cedar of Lebanon, Oak,
Mahogany, and Redwood was often reported to cause hypersensitivity and to lead
15, 16

asthma. Exposure to wood dust can cause even chronic obstructive lung disease.

From a cross-sectional study of 54 furniture factories (equivalent inhalable dust, 1.19
+ 0.86 mg/m) a dose-response relationship was seen between dust exposure and

asthma symptoms, and woodworkers had increased frequency of coughing as well as
a negative interaction between dust exposure and smoking."” Douwes et al.(2001)
studied exposure of pine sawmilling workers was associated with an increased
prevalence of asthma, cough, eye and nose irritations.”® An increased risk of
developing work-related respiratory symptoms from plywood mill workers in New
Zealand appeared because of formaldehyde exposure.”!

From the respiratory health study of the wood processing industry in our research
group, there were no statistically significant adverse effects to any wood solids
exposure fraction or any exposures to extrathoracic or tracheobronchial residual

particulate in any wood processing facilities, only except to the respirable residual



particulate fractions in the milling facility and in the sawmill-planing-plywood

facility.??

3.4.2 Dermal Irritation and Sensitization

Dermal irritation can be resulted from exposure to the wood itself, dust, bark, sap or
lichens growing on the bark. Sensitization dermatitis is commonly caused by fine
dust from certain wood species. Once sensitized body sets up an allergic reaction, it
reacts seriously when exposed even to a small amount of wood dust. The nickel
found in tools, hydroxyquinone and potassium dichromate in wood preservatives,
rosin, adhesives, solvents, wet cement, oils, finishes, detergents, mercapto
compounds in rubber gloves, and rock wool may cause dermal irritation to wood

4,15
workers, t00.™

3.4.3 Biohazards

Exposure to microorganism growing on wood can cause potential health effects as
well. Endotoxins and allergenic fungi are the important biohazards observed in wood
processing. Exposure to these biohazards can cause adverse effects such as organic
dust toxic syndrome (ODTS), bronchitis, asthma, extrinsic allergic alveolitis (EAA),
and mucous membrane irritation. Chest tightness, cough, shortness of breath, fever,

and wheezing have been found in workers due to airborne endotoxins. Sawmill and

10



chip mill workers, especially, showed high prevalence of regular cough, phlegm, and
chronic bronchitis by the lung function test. (1-3)--D-glucan, a wall component of
a fungal cell is a potential biological agent detected in organic dust, an inflammatory
agent, and an agent for the development of allergic alveolitis.'> > **

Oppliger et al.(2004) investigated exposure of wood workers to airborne bacteria,
fungi, endotoxins and organic dusts at 12 sawmills at debarking, sawing, sorting,
planing, and sawing cockpit sites. There were fungi in high concentrations (up to
35,000 CFU/m’ ) in all sawmills, and there were more total bacteria, Gram-negative,
fungi, endotoxin, and dust at the sorting work sites than at the sawing station.”

Alwis et al.(1999) studied personal exposure to fungi, bacteria, endotoxin, and
(1—3)-B-D-glucan at different woodwork sites at logging, sawmills, wood chipping
and joineries. Some of inhalable personal exposures at sawmills and a joinery
showed the threshold limit value (TLV) for endotoxin (20 ng,/m3 for an 8 hr shift)
exceeded. Significantly positive correlations were between mean personal inhalable
endotoxin with Gram-negative bacteria (p < 0.0001), and mean inhalable (1—3)-3-D-
glucan with total fungi (p = 0.0003).%® In a New Zealand sawmill study, endotoxin
exposures in sawmill workers were sufficient to the development of respiratory

symptoms, and however, dust measurements were inadequately surrogate for

endotoxin and B(1—3)-glucan exposure in sawmill workers.?’

11



3.4.4 Carcinogenicity

Wood dust is a human carcinogen founded on sufficient evidence of carcinogenicity
from human studies by IARC." The National Institute for Occupational Safety and
Health (NIOSH) also regards both hardwood and softwood dust to be potentially
carcinogenic to humans. Strong associations with cancer of the nasal cavities and
paranasal sinuses were shown in studies of people who had occupations related to
wood dust. From nasal cancer study in Sweden, standardized incidence ratios (SIRs)
for nasal adenocarcinoma were significantly increased in woodworkers and the SIRs
were elevated significantly in the woodworkers exposure to softwood combined with
hardwood with a longer occupational history.'® 28,2931

A significant dose-related increase in the incidence of skin tumors and mammary
tumors in NMRI mice resulted from dermal exposure to a methanol extract of beech
wood dust.?® The use of polar organic solvent extracts of some hardwood dusts has
brought about weak positive results for reverse mutations in Salmonella typhimurium,
and A’-carene and quercetin from wood were found to be mutagenic in Salmonella.
Milham and Hesser reported 1,549 white males showed an association between

Hodgkin’s disease and wood dust exposure.'® 2

12



3.5 Regulations and Guidelines

The American Conference of Government Industrial Hygienists (ACGIH) TLV as
time-weighted average (TWA) is 1 mg/m’ (inhalable fraction) for all wood species
except western red cedar and 0.5 mg/m’ (inhalable fraction) for western red cedar.
Occupational Safety and Health Administration (OSHA) permissible exposure limit
(PEL) as TWAs is 15 mg/m’ for total dust and 5 mg/m® for respirable wood dust
fraction. Specially, oak and beech are classified as Al (confirmed human
carcinogen), and birch, mahogany, teak, and walnut are classified as A2 (suspected

human carcinogen) by ACGIH .28 3031

3.6 Wood Dust Sample Collection and Measurement

Wood dust has been traditionally sampled by the total dust sampling method using
a 37 mm diameter PVC filter and it has also been analyzed using gravimetric
technique with concentration reported, in mass per unit volume. The dust
concentration is calculated from the change in weight of the filter divided by the
volume of air sampled, with a detection limit for personal sampling of wood dust of
about 0.1 mg/m>. It is, however, difficult to interpret the biological consequences of

such sampled wood dust because there is no information of the particle size

13



distribution. Therefore, health-based particle sampling was required for how particles
penetrate and deposit in the human respiratory system.? *>

Health-related sampling is composed of one or more of three progressively-finer
size fractions which are shown in Figure 1: inhalable(inspirable), thoracic, and
respirable accepted by the International Organization for Standardization (ISO), the

American Conference of Governmental Industrial Hygienist (ACGIH), and the

European Committee of Standardization (CEN).

Ihoracac Inhalable

Fraction

=
Setr!
ey
=
2
b
= 50
L
=2
=
=
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e
Q

Aerodynamic Diameter (pm)

Figure 1 Health-Based Particle-Size-Selective Curves

The inhalable fraction curve shows for particles to enter the respiratory system by
way of the nose or mouth. Ds, particle diameter equivalent to 50 % sampling
efficiency is 100 um. The inhalable fraction especially includes large particulates to

deposit and cause adverse effects on the upper airways. The inhaled fraction of total

14



suspended particles means the total area below the curve. The following equation (1)

represents a convention of the inhalability of aerosols.
(1) Itd) = 0.5 (1 + e for 0<d+100um

I(d) is sampling efficiency of inhaled particles as a function of acrodynamic particle

diameter (d) in micrometers.

The thoracic fraction is the part of the inhalable particles to pass the larynx and
penetrate into the conducting airways of trachea and bifurcations, and the bronchial
region of the lung (Dso = 10 pm). The respirable fraction is the portion of inhalable
particles to enter the non-ciliated alveoli (Dsp =4 um). The extrathoracic fraction of
inhaled particles is gained by subtraction the thoracic fraction from the inhalable.
The tracheobronchial fraction of inhaled particles is calculated by subtracting the

respirable fraction from the thoracic.*
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3.7 Aerosol Samplers

inlet

Separation
Stage 1
-Qg=2.66 Ipm

Separation
Stage 2

~Q02=0.32 Ipm

Stage 3
~U3=0.11 Ipm

Figure 2 Respicon'™ Sampler

3.7.1 Common Aerosol Sampler

Respicon™ sampler (Model 8522, TSI Inc., St. Paul, MN.), shown in Figure 2, is a
size-selective gravimetric sampler. It has a circular inlet around the inlet-head
perimeter and therefore aerosol can be aspirated into the inlet from all wind direction.
The Respicon™ is the only sampler to separate aerosol into the three defined

fractions. Aerodynamic particle cut size 50% diameter of collected particles is 4 um

at stage 1, 10 um at stage 2, and 100 um at stage 3. Particles are aspirated into the
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inlet of the Respicon"™ sampler at a flow rate of 3.11 L/min and collected on 37-mm
diameter filters.

The Institute of Occupational Medicine (IOM) sampler (Cat. No. 225-70, SKC Inc.,
Eighty Four, PA.) is a conductive plastic sampling head that houses a reusable 25 mm
filter cassette with specified filter for the collection of inhalable airborne particles.
The particles are collected at the flow rate of 2.0 L/min. Both the cassette and the
filter are analyzed gravimetrically as a single unit and therefore, there are no losses of
all particles.?* 3% 3¢

Closed-face 37 mm polystyrene/acrylonitrile cassette (CFC) sampler (Millipore
Inc., Bedford, MA.) is used for collecting total dust. CFC sampler has an inlet orifice
of 4 mm diameter. Aerosol is aspirated into this cassette at a flow rate of 2.0 L/min.
The particles collected on a 37 mm diameter filter are analyzed but those to deposit
on the inner surfaces are lost.

Prototype Button Sampler (SKC Inc., Eighty Four, PA.) has a hemispherical metal
screen inlet. The screen has 381 um diameter openings and prevents large non
inhalable particles (>100 pum aerodynamic equivalent diameter (AED)) from entering
the inlet. This curved multi-orifice reduces electrostatic effects and sensitivity to
wind direction and velocity. The flow rate is 4.0 L/min and the particles are collected

on a 25 mm diameter filter.>*?’

17



3.7.2 Aerosol Sampler Performance

Koch et al.(2002) studied the comparison of the RespiCon™ with IOM inhalable
sampler, considered as a reference instrument for the inhalable fraction, at six
different workplaces in a nickel refinery. In this study, the tendency of the
RespiCon™ to undersample the inhalable dust was corrected by overall empirical
correction factor of 1.8 to the concentration value of the extrathoracic fraction as
measured by the RespiCon'™. Therefore, the concentration data from statistical
analysis reveals systematically lower aerosol exposure values for the RespiCon™ to
the IOM sample:r.3 8

Li et al.(2000) evaluated using monodisperse solid particles with aerodynamic
diameters between 5 and 68 um, as area samplers, six inhalable aerosol samplers: a
Respicon, an IOM, a seven-hole, a conical inhalable sampler (CIS), a prototype
button sampler and closed-face 37 mm cassette. The Respicon sampler provided a
reasonable match of the inhalable convention. The other five area samplers were
highly dependent on wind direction, wind speed, and particle size. Especially, if
wind speed is over 0.5 m/sec, those samplers are not suitable for area samplers.**

The tare-weight of the IOM plastic filter cassette and the CIS plastic filter holder
were not stable because of hygroscopic problems and on the other hand the tare-
weight of the IOM stainless steel filter cassette was stable. Therefore, these plastic
inhalable aerosol sampler cassettes should be used with field blanks for gravimetric

e 35,39
determination of workplace aerosol exposure.
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Harper et al.(2002) evaluated the inhalable samplers of the Button, IOM, and 37
mm closed-face cassette (CFC) from 51 good sample pairs in the manufacturing of
cabinets, furniture, and shutters. Sampler ratios ranged from 1.19~19 (median 3.35)
for IOM/CFC pairs, from 0.49~163 (median 3.15) for IOM/Button pairs, and from
0.36~27 (median 1.2) for CFC/Button pairs.** Harper et al.(2004) compared wood
dust aerosol size distributions collected by the same three samplers as the previous
study. The airborne ultra-large particles (> 100 um AED) were found in 65 % of the
IOM samples, 42 % of the CFC samples and 32 % of the Button samples. After
removing the ultra-large particles, the [OM and CFC samplers collected similar
quantities of particles up to 30~40 pm AED, and, however, after 40 um AED the
CFC collection efficiency was reduced impressively compared to the IOM. The
Button sampler collected significantly less than the IOM between 10.1 and 50 um
AED, and besides less than the CFC between 10.1 and 40 pm AED particle sizes.*’

Two cascade impactors were evaluated to determine the difference of their particle
sampling by Li et al (2001). Marple Personal Cascade Impactor (Marple) has the
standard shrouded inlet with the low flow rate (2 L/min) and some area samplers have
a simple vertical tube with the flow rate of 15~30 L/min. The sample for D, greater
than 10 um using a simple vertical inlet was more representative than using the
shielded inlet. Tests using the Marple impactor inlet without a visor showed
aspiration efficiencies depending on inlet orientation and wind speed.!

Rando et al.(2005) evaluated the Respicon™ sampler for size-selective sampling

against SKC aluminum cyclone (repirable dust), GK 2.69 cyclone (thoracic dust), and
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IOM sampler (inhalable dust) from ten wood processing plants. The result of this
study indicated the Respicon'™ sampler is an appropriate size-selective sampler for
industrial wood processing dust after suitable adjustments to the inhalable and

thoracic dust fractions.*?

3.8 Chemical Analysis of Wood Constituents

Organic matter (extractives), inorganic matter (ash) and the main cell wall
components, polysaccharide, and lignin are commonly classified in chemical analysis
of wood dust. There is no modern standard method for the extraction of wood.
Traditional methods for examining compounds in wood are either steam distillation
or extraction with organic solvents in a soxhlet extractor. Isolating and determining
polysaccharides are such as hydrolysis with concentrated acids and subsequent
dilution steps to achieve secondary hydrolysis.'

A high-performance liquid chromatography (HPLC) method was used for the
detection of gallic acid (a polyphenol) extracted from oak dust. The linear correlation
coefficient between total oak dust and gallic acid concentrations was 0.95.!' Phenol-
formaldehyde resin glue components used in plywood manufacturing were evaluated
for respiratory and dermal exposure. Preliminary estimation and allocations of
formaldehyde were monitored by detector tube measurements, and all air samples of

formaldehyde were analyzed by HPLC."? Teschke et al quantified resin acids, abietic
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and pimaric acids sampled and extracted in a lumber mill, using GC/Mass
spectrometry (MS).’

A gas chromatograph (GC) and a mass selective detector (MSD) identified and
quantified volatile organic compounds (VOCs) emissions from particleboard and
medium density fiberboard (MDF). In this study, identified terpenes from
particleboard and MDF were a- and B-pinene, camphene, 3-carene, p-cymene,
limonene, and borneol. Another predominant compound of more than 50 % of the
VOC emissions from particleboard and MDF was aldehydes such as hexanal,
pentanal, heptanal, octanal, and nonanal. Other investigators have used GC with
flame ionization detection (FID) or GC with MSD for measuring the exposure to
monoterpenes collected from diffusion samplers.> &7 14

Chung et al. studied the quantity, particle size distribution and morphology of dust
created during the machining of MDF. Dust collected on Nuclepore filters and on
selected stages of the MOUDI, 10-stage impactor with rotating stages to minimize the
effect of overloading were examined under the Scanning electron microscope (SEM)
for particle morphology. The API (Amherst Process Instrument) Aerosizer measured

the particle size distributions of the samples, and formaldehyde in the air and in the

dust was analyzed by HPLC.*
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3.9 Spectroscopic Analysis for Wood Assessment

Ultra Violet resonance Raman (UVRR) spectroscopy was used for defining
compounds of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures at three
exciting wavelengths of 229, 244 and 257 nm. These three structures were also
detected from the wood samples of pine, birch, and compression wood from pine at
the characteristic bands.**

The potential for near infrared (NIR) spectroscopy was introduced for the rapid
assessment of solid wood properties as well as for examining potential applications
for wood composites such as fibers, strands, or particles by online monitoring during
the wood manufacturing process. The NIR regions are from 780 to 2500 nm in
spectra which are characterized by the assignment of the absorption bands to
overtones and combinations of fundamental vibrations associated with C-H, O-H, and
N-H bonds. Yeh et al. used transmittance NIR spectroscopy for rapid prediction of
solid wood lignin contents. This NIR transmittance technique required very little
sampler preparation without grinding, and screening.*> ¢

Fourier Transform Infrared (FTIR) spectrometer can identify unknown as well as
known contaminants and can quantify chemicals in mixtures. FTIR spectroscopy can
be used to have an insight into the molecular structure and composition of wood from
the characteristic molecular vibrations. NIOSH 3800 and EPA method 320 described

measurement of organic and inorganic gases by extractive FTIR spectroscopy.

Appropriate multivariable least squares analysis can be used for more accurate
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compound concentrations for overlapping compounds with the FTIR
spectroscopy.*’*849

Welling et al. reported an experimental study of terpene emission rates during fresh
pine and spruce sawing and processing, and fluctuations in terpene concentrations
were measured in one of sawmills by using FTIR spectrometer equipped with mid-
band mercury -cadmium-telluride (MCT) detector in this study. From Kazayawoko
et al study, the infrared absorption band near 1730 cm™ showed that maleated
polypropylene chemically reacted with bleached Kraft cellulose by esterification, and
this study indicated both bleached Kraft cellulose and thermomechanical pulps
reacted with maleic anhydride.® *°

Also, FTIR spectroscopy was available to explain the effect of ethyl acetoacetate on
the pine wood, the structure of the cured resin, and the character of interactions
between the wood and resin. Attenuated Total Reflectance (ATR)-FTIR
spectroscopy could be used for monitoring the penetration of resins into wood by
showing the differences in the chemical composition at different depths from the
surface.'” !

Rando et al.(2005) developed a new technique of on-filter determination of size-
fractionated wood dust collected from the wood processing industry by diffuse
reflectance Fourier-transform infrared (DRIFT) spectroscopy. Two maximum
absorbances at 1251 and 1291 cm™' related to the cellulose content of the wood, were

proper to quantification of wood dust. An equivalent response of six species except

maple at 1291 cm™ was shown and the response at 1251 cm”' was more sensitive for
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the softwoods. No interference with this analysis appeared from potential particulate
contaminants in the industrial wood processing industry such as environmental

tobacco smoke, rubber particulate, and acrylic spray finishes.
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IV Research Hypothesis

Wood solid analysis by DRIFTS can be a substitute method for a traditional
gravimetric analysis of wood dust specifically from wood processing industry, and be

adapted to determine carcinogenic woods in wood mixtures.

Research Aims

1. Determine wood solid by DRIFTS technique in 521 size-fractionated personal dust
sample sets collected from the wood processing industry during a six-year

longitudinal epidemiologic study.

2. Analyze by relevant statistical methods that the wood solid percentage of the size-

fractionated personal dust sample sets is correlated with potential determinants such

as plant type, wood type, and job activity.

3. Develop, evaluate and validate prediction models for inhalable wood solid
percentage by the regression analysis with potential determinants using (1) the entire

dataset and (2) a randomly selected subset.
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4. Determine the amounts of pine and oak, the latter a confirmed human carcinogenic
wood by ACGIH, in mixed wood dust samples using the simultaneous equation

method applied to multiple wavelengths in the collected IR spectra.
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V Methods and Materials

5.1 Wood Solid Analysis by DRIFTS in Personal Dust Samples Collected from

the Wood Processing Industry

5.1.1 Sample Selection and Preparation

521 size-fractionated personal dust sample sets on 37mm glass fiber filters (Omega
Specialty, Chelmsford, MA) were selected among 3,488 sets of Respicon samples
and archived after collection in the wood processing facility during a six-year
longitudinal epidemiologic study about respiratory health of wood workers.??

All Respicon samples were analyzed by gravimetric analysis. All of the filters were
weighted pre and post 2-3 times on a Satorius microbalance and the average weight
calculated in micrograms. Prior to weighting, filters were conditioned in a humidity
chamber (55% Relative humidity via a saturated sodium dichromate solution) for at
24 hours. In addition, filters were electrostatically discharged for at least 20 seconds
with a Static master (NRD) prior to weighing. After final weight had been analyzed,
each filter was stored in polystyrene Petri slides (Millipore). All field sample
information was archived by format in Appendix A.

Collected samples on 37mm glass fiber filters (Omega Specialty, Chelmsford, MA)
by Respicon'™ sampler had apparently heterogeneous surface distribution and high
concentrations of dust localized around the filter’s center. Therefore, the Respicon

sample filter was placed over each back-up glass fiber filter and put in the solvent-
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resistant filtration apparatus, and 30ml ethyl acetate was poured onto the filter. The
dust cakes were distributed into ethyl acetate by gentle stirring and uniformly
redeposited on the top filter. “Holed” filters collected at Respicon™™ stage 1 and
stage 2 were plugged with glass fiber disc placed on the back-up filter, and the filter
sets kept tightly compressed by a piston of 7.5 mm diameter to prevent loss of
particles through the hole during re-filtration.

All of these chosen and prepared samples were analyzed via DRIFTS and used for
developing and evaluating prediction model about inhalable dust wood solid

percentage.

5.1.2 Sample and Reference Analysis by DRIFTS

Galaxy 5000 series (Mattson Instruments Inc., Madison, WI) FTIR spectrometer
was provided with an external sampling compartment and a liquid nitrogen-cooled
MCT detector (Figure 3). Mattson’s WinFIRST™ software was used for the
instrument control. Sampling apparatus was a Minidiff diffuse reflectance unit
equipped with Selector x-y translational stage with manual vernier controls (Specac
Ltd., Kent, UK) The following was the instrumental conditions: Happ-Genzel
apodization, 2x zero fill, 20 kHz forward and backward scanning velocity, 256 co-
added scans, 8 cm’! resolution, 400-4000 cm™ scanning range, and 20 signal gain.

The diffuse reflectance stage was modified so that the filter samples may be placed
in position reproducibly and scanned using pre-set marks on the stage verniers. The

stage was also modified to fit a standard 37mm polystyrene filter cassette bottom as
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the actual filter sample holder. A mounting tube was attached to the stage via
dovetailing with the bottom filter cassette inlet and the other end of the mounting tube
was connected via latex tubing to a diaphragm vacuum pump for continuously

holding the sample flat during infrared scanning.

Figure 3 Mattson Galaxy 5000 FTIR Spectrometer

The IR beam scanned across the filter face with x-y translation of a motor
(Synchron 600, Hansen Motor Co., Princeton, IN) at the speed of 4 rev/min. The
filter was scanned simultaneously while the stage was horizontally moved by the

motor, resulting in an average analysis. The first scan finished and the filter was
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rotated 90°, and then the next FTIR scan of the filter was collected in the same way.
Energy throughput from diffuse reflectance of the samples was measured in the
beginning and the end of scanning, and net absorbance of the samples was
normalized by dividing by the average of energy throughput. The net absorbance was
measured at both 1251cm™ and 1291c¢m™,

Radiata pine dust was used for the reference standards. Size-fractionated radiata
pine dusts were collected by Respicon™ sampler from a disc/belt sander (Delta
Machine Co., Jackson, TN) in the benchtop polyethylene laboratory hood (Lab Safety
Supply Co., Janesville, WI) (Figure 4 &5). After collecting, dust standards were
dried in vacuum dessicator. Using the same procedure as for sample preparation,
0.25 mg pine standards of S replicate for stage 1 and 1mg pine standards of 5
replicates for each of stage 2 and stage 3 were prepared. Standard stock solution was
prepared by suspending in ethyl acetate. Softwood and hardwood samples were
compared to these standards and converted to amounts of wood solid by normalized

net absorbance at 1251c¢m™! and 1291cm’™, respectively.
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Figure 4 Collecting Wood Dust ithe Bench Top Poyehyln Laboratory Hood

i1 . 2

Figure 5 A Disc/Belt Sander and Saplng Pump
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5.1.3 Wood Solid Calculation
From the following formulas, the mass of respirable, thoracic, and inhalable dust
collected by Respicon™ sampler could be calculated. Inhalable corrected fraction

M manual: the

used the following equations recommended from the Respicon’
concentration of the extra-thoracic fraction was multiplied by 1.5 for correcting losses

of very coarse particles.”> The amount of wood solid was calculated as a percentage

of total dust gravimetrically determined for each size-fraction.

m; % 1000
(2) Cresp =
Ql X 1
(m; + mpy) % 1000
(3) Cihor

Q1+ Qs x4

(m; + m> + m3) x 1000

Q1+ 02+ Q3) >

(4) Cinh(uc) =

(5) Cexlh = (Cinh(uc)_‘ CIhOI‘) X ]5

(6) Cinh(c) = Chor+ Coxth = Cinh(uc) X 1.5 — Cupor> 0.5

(m; +m2+m3)><1000><1.5 (m; + my) x1000x0.5

(Q;+ 02+ 03)x 1 (Qr + Q2) % 1,
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Cresp  : Respirable fraction (mg/m?)

Cihor : Thoracic fraction (mg/m3 )

Cexth : Extra-thoracic fraction (mg/m3)

Cimney  : Inhalable fraction (corrected) (mg/m?)

Cinnue) : Inhalable fraction (uncorrected) (mg/m3)

Q : Flow rate through filter #1 (Stage 1) (2.66 Lpm)
Q; : Flow rate through filter #2 (Stage 2) (0.33 Lpm)
Qs : Flow rate through filter #3 (Stage 3) (0.11 Lpm)
m, : Mass deposited on filter #1 (Stage 1) (mg)

m; : Mass deposited on filter #2 (Stage 2) (mg)

ms : Mass deposited on filter #3 (Stage 3) (mg)

te : Sample duration (min)

5.1.4 Statistical Data Analysis of Size-Fractionated Wood Solid Percentage

‘Boxplot’ by ‘Minitab 16.1.0" was applied to removing the outliers of each size-
fractionated wood solid percentage data by each facility. First, the outliers of
respirable WS% were removed by box plot. As Equation (2) showed, thoracic wood
includes respirable wood and therefore the thoracic data of the set of the outliers of
respirable WS% were removed and then box plot was applied to thoracic WS%. In
the same way, inhalable wood includes respirable and thoracic wood and the
inhalable data of the set of the outliers of each respirable and thoracic WS% were
removed and then the removal of outliers of inhalable WS% itself was applied by box
plot. And then Kolmogorov-Smirnov test was used to access each size-fractionated

WS%’s normality.
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Kruskal-Wallis One way ANOVA (analysis of variance) on ranks, nonparametric
alternative to the one-way ANOVA, determined statistical differences of size-
fractionated WS%. And then Mann Whitney tests were applied to determine the
significance of differences between pairings within each group such as plant type, job
activity and wood type. Plant type was grouped by furniture, cabinet, secondary
millworks, and sawmill-planing-plywood; Job activity by sawing, sanding, milling,
PSV (painting, staining, and varnishing), debarking/log yard, blow down/compressed
air, and others; and wood type by hardwood, softwood, engineered wood, plywood,

and mixed wood.
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5.2 Developing and Evaluating Prediction Model of the Content of Wood Solid

in Inhalable Dust

A prediction model was developed using the data of wood solid percentage of
inhalable size obtained from wood solid analysis by DRIFTS in personal dust
samples collected from 10 wood processing plants. Linear regression analysis was
used to determine prediction model with obtaining coefficients. The determinants of
this prediction model are plant type (furniture, cabinet, secondary millwork and
sawmill-planing-plywood), wood type (green wood, dry wood, and green/dry wood),
hardwood and softwood (hardwood, softwood, and both), formaldehyde, and PSV
(painting, staining and varnishing). Correlation for evaluating predicted data vs
observed data of inhalable wood solid percentage was performed with by Pearson
correlation and Spearman’s rho (nonparametric correlation test)

Next, for evaluation and validation of the prediction model approach, another
prediction model was generated from 8 of the 10 plants by linear regression model
and then the data from remaining two plants (furniture C and sawmill-planing-
plywood A) were input into the prediction model from 8 plants and then observed and

predicted values were compared by using Pearson correlation and Spearman’s rho.
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5.3 Multicomponent or Mixed Woods Analysis by DRIFTS

5.3.1 Sample and Standard Preparation

Kiln-dried, dimensional boards of Radiata pine and red oak obtained from local
retail lumber store were used for standards and mixed samples. A disc/belt sander
with a 5 inch diameter medium grit sanding paper (Norton Abrasives, Niagara Falls,
NY) was placed inside a small benchtop fume hood. Wood dust generated from the
sander inside the benchtop laboratory hood were collected by Respicon™ samplers
on 37 mm diameter, 2 pm pore size teflon filters at the flow rate of 3.1 L/min. After
sampling, the collected dust cakes on the stage 3 (extra-thoracic) were carefully
scraped from the filter surface, transferred to sample vials, and dried in vacuum
dessicator.

Each stock solutions of Radiata pine and oak stock solution were prepared by
suspending in ethyl acetate for making standards and mixed samples. Standards of
250, 500, 1000, 1500, 2000, 2500 and 3000 pg from each red oak and Radiata pine
were prepared on glass fiber filters. Mixed samples of red oak and Radiata pine were
prepared in the following combinations: 500 and 1000 pg, 750 and 750 pg, 1000 and
500 pg, 1000 and 1500 pg, 1250 and 1250 pg, 1500 and 1000 pg, 1000 and 3000 ng,
2000 and 2000 pg, 3000 and 1000 pg. Three replicates were prepared for each
combination for DRIFTS analysis. Figure 6 shows from left to right the oak standard
of 2000 ug, Radiata pine standard of 2000 ug, and mixture of oak 2000 ug and

Radiata 2000ug on Glass fiber filters in polystyrene Petri slides.

36



Figure 6 Oak 2000ug, Pine 2000ug, and Mixture of Pine 2000ug & Oak 2000ug

5.3.2 Sample and Standard Analysis by DRIFTS

Nicolet 380 FTIR spectrometer (Thermo Electron Corporation, Waltham, MA) was
adapted with a liquid nitrogen-cooled MCT detector (Figure 7). The Nicolet FTIR
spectrometer is performed with the OMNIC software version 7.3. The instrumental
conditions were 256 number of scans, 8 cm™ resolution, 400-4000 cm™ scanning
range, Happ-Genzel apodization, 2 levels zero filling, Mertz phase correction, and
signal gain 2.0. The base plate on the in-house modified diffuse reflectance apparatus
was replaced with the unit to mate with the sample compartment of the Nicolet
instrument. Sample or standard filter and a back-up filter in a 37mm polystyrene

filter cassette (SKC Inc., Eighty Four, Pennsylvania) were put on a Specac diffuse
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reflectance stage and a diaphragm vacuum pump was lined into the filter cassette
bottom for completely flat condition of each filter as described previously in 5.1.2

(Figure 8).

Figure 7 Nicolet 380 FTIR Spectrometer
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Figure 8 Modified Stage and Filter Holder for DRIFTS Analysis

The required time for collection of the infrared spectra was approximately 3min
15sec and the reversible motor at the speed of 4 rev/min was moved forward and then
backward for 3min 22sec. The first scan was finished and the filter holder was
rotated to 90°, and then next FTIR scan of the filter was collected in the same way.
This scanning procedure was repeated three times for each filter.

Energy throughput from diffuse reflectance of each sample or standard was
measured in every scanning at the location of each 3 mm in the 26 mm scanned
diameter of each filter. Each average energy throughput was used for normalizing the
net absorbance (Kubelka—Munk unit) from the spectrum of each scan. The range of

energy throughput in the background was 4.5~5.0V and 3~4.5V (Peak to peak) in the

most standards and samples.
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After scanning each oak or pine standard of 250, 500, 1000, 1500, 2000, 2500, and

3000 pg, all observable peaks were found and then each oak and pine standard

calibration curves were set at each wave number of the chosen peaks. From the oak

and pine calibration curves, slopes and R? were organized for selecting optimal wave

numbers.

5.3.3 Multicomponent DRIFTS Analysis of Mixed Samples via Beer’s Law and

Simultaneous Equation Method to Multiple Wave Numbers

Multicomponent analysis based on Beer’s law was used under the assumption that

the absorbance at a specific wave number equals the sum of the absorbances of all

chemical species at that wave number. For a two-component mixture:

(7) A, = A+ Ay = eglcg t eplcy

A,
Aq
Ay

Eaorb

/

Caorb

o Total absorbance at a given wave number
. Absorbance of component a

. Absorbance of component b

. Absorptivity of component a or b

. Pathlength

: Concentration of component a or b

The product of the absorptivity and the pathlength ( ¢'/) was equal to the slope of

the calibration line from each standard (red oak or Radiata pine) curve at a given
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wave number. This study was adapted to two components (oak and Radiata pine) and
at least two equations were needed for solving two unknown concentrations.”> The
wave numbers were determined at which each standard curves of two analyzed

components in red oak or Radiata pine showed a good linear regression line.

(8) Ar, a = &pine a 'l'cpme + Eoak, a'l'coak = Qpine, a" Cpine + Qoak, a’Coak
(9) A, B = Epine p 'l'cpine + €oak, p I Coak = Qpine, p “Cpine + Qoak, p"Coak
AL aorp : Total absorbance at a wave number o or 8 cem’!
Epine, a or B : Absorptivity of pine at o or B cm’’
Eoak, a or B . Absorptivity of oak a or B cem’!
Cpine ;. Amount of pine
Coak . Amount of oak
Qpine, a or B . Slope of Pine Standard Curve at a or 8 e
Qoak, a or B : Slope of Pine Standard Curve at a or 8 em’!

Various combinations of two wave numbers were used and then six wave numbers
(1250.7, 1257.4, 1265.1, 1282.5, 1289.2, and 1296.0 cm™") were selected via R? and
slopes. The percents of difference between the actual amount and approximate values
were used for evaluating and deciding the optimal multiple wave numbers. Expected
value was calculated by the multi-component equations of Beer’s law. For example,
“apine’ 1S the slope of pine standard curve and ‘ao.x’ is the slope of oak standard curve
at each wave number. ‘Cpine’ is the real amount of pine included in each mixed
sample and ‘Coak’ is the real amount of oak included in each mixed sample. ‘Expected

value’ was calculated by the multi-component equations of Beer’s law. For example,
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expected value, 0.244461(=a;x;+ax,) at 1250.7cm™ of Pine5000ak 1000 was
calculated by 0.206832 x 0.49984 + 0.141004 x 1.00056. Most expected values were

approximately similar to observed values of each mixed samples at each of the six

selected wave numbers.

5.3.4 Application of Multicomponent DRIFTS Analysis to Archived Wood

Processing Samples

Based on the results of this carcinogenic wood study, three types of samples (only
oak, only pine, and a mixture of oak and pine) were evaluated from archived samples
from a six-year longitudinal epidemiologic study. The archives contained the
gravimetric information of wood dust, wood types, and confounding factors.

Fifteen samples (5 oak, 5 pine, 5 oak and pine) collected on 37 mm glass fiber filter
at stage 3 (extra-thoracic fraction) of Respicon™ sampler were selected from the
archived samples in the furniture plant. Preparing and analyzing sample and standard
followed the same procedure described in 5.1. DRIFTS analysis by Nicolet 380
FTIR spectrometer was the same as that of described in 5.3.2. The selected wave
numbers from the previous results of the standards and samples described in 5.3.3
were adapted to the archived furniture samples. Using the multicomponent DRIFT
analysis procedure with simultaneous equations, the amounts of pine and oak in the

selected archived samples were determined.
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VI Wood Solid Analysis by DRIFTS in Personal Dust
Sample Collected from the Wood Processing Industry

6.1 Descriptive Statistics

From the six-year longitudinal epidemiologic study, 3,488 sets of Respicon samples
were collected over the course of the study. 521 sets of samples were selected and
analyzed by DRIFTS from valid sets of Respicon samples which didn’t include MCE
and Teflon filters, blanks and area samples from ten wood processing facilities (Table
1). There are four furniture manufacturing, two cabinets, two secondary millworks,

and two sawmill-planing-plywood facilities organized by plant type.

43



Table 1 Wood Processing Facilities under Study

Number of
State Plant Type Sample Set
VA Furniture Manufacturing (Furniture A) 49
NC Furniture Manufacturing (Furniture B) 48
VA Furniture Manufacturing (Furniture C) 45
NC Furniture Manufacturing (Furniture D) 86
MN Cabinet Manufacturing (Cabinet A) 47
IN Cabinet Manufacturing (Cabinet B) 39
OR Wood Mill - Molding, Door, Window Frames, 64
etc) (Secondary Millworks A)
Wood Mill - Cabinet Parts
PA . 56
(Secondary Millworks B)
OK Sawmill/ Plane mill/ Plywood 44
(Sawmill-Planing-Plywood A)
FL Plywood Assembly 43
(Sawmill-Planing-Plywood B)
Total 521
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Table 2 Wood Solid Percentage in Size-Fractionated Dust by Plant

Wood Solid % of Dust
Plant Type Respirable Thoracic Inhalable
Furniture A Average 11.8 77.1 49.8
S.D. 13.6 37.1 222
Number 49 48 46
Median 5.5 68.8 45.6
Furniture B Avg. 11.7 58.2 34.4
S.D. 17.6 36.2 21.3
Number 48 47 46
Median 4.7 514 292
Furniture C Avg. 19.5 71.5 53.2
S.D. 17.1 354 23.5
Number 45 44 44
Median 18.5 78.7 55.1
Fumiture D Avg. 16.2 70.1 45.0
S.D. 12.5 37.7 26.2
Number 86 82 82
Median 13.9 68.6 39.6
Cabinet A Avg. 352 95.3 72.5
S.D. 219 33.7 20.0
Number 47 47 46
Median 29.8 89.9 75.3
Cabinet B Avg. 29.3 81.2 57.1
S.D. 28.4 43.2 33.9
Number 39 39 38
Median 22.6 86.3 49.7
Secondary Avg. 27.5 50.8 38.7
Millworks A S.D. 106.1 334 22.6
Number 64 63 55
Median 5.6 46.1 35.7
Secondary Avg. 16.8 80.0 58.9
Millworks B S.D. 15.8 35.5 24.1
Number 56 56 56
Median 12.3 73.8 59.6
Sawmill- Avg. 23 7.6 8.2
Planing- S.D. 2.4 8.8 4.7
Plywood A Number 44 41 41
Median 1.3 3.9 7.6
Sawmill- Avg. 5.5 13.2 7.7
Planing- S.D. 8.8 19.1 7.5
Plywood B Number 43 43 43
Median 2.3 6.2 5.0
Total Avg. 17.7 61.8 43.3
S.D. 41.0 423 29.1
Number 521 510 497
Median 8.5 58.3 40.1
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The Table 2 shows WS% (wood solid percentage) in collected dust by each facility
analyzed. However, some huge or outlying wood solids data were included in this
table with some samples showing several hundred percent wood solids. Most
outlying techniques are based on normal distribution data and they are also applied
differently from the range of each sample number. All of the data of each size
fractionated wood solid percentage collected from wood processing facility didn’t
show normal distribution by any facility and plant type.

Figure 9 to Figure 18 shows box plot graphs for treating outliers from wood solid
percentage data. Each box plot test was only once applied to each size fractionated
WS% by each facility. ‘*’ symbol means the outlier of each size fractionated WS%
and ‘upper and lower whisker’ shows the maximum and the minimum data point
within 1.5 box heights from each of the top and the bottom of the box. In
‘interquartile range box’, top line is 75%, middle line is 50%, and bottom line 1s 25%

of the data.
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Figure 9 Boxplot of Size-Fractionated WS % for Furniture A
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Figure 10 Boxplot of Size-Fractionated WS % for Furniture B
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Figure 11 Boxplot of Size-Fractionated WS % for Furniture C
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Figure 12 Boxplot of Size-Fractionated WS % for Furniture D
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Figure 13 Boxplot of Size-Fractionated WS % for Cabinet A
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Figure 14 Boxplot of Size-Fractionated WS % for Cabinet B
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Figure 15 Boxplot of Size-Fractionated WS % for Secondary Millworks A
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Figure 16 Boxplot of Size-Fractionated WS % for Secondary Millworks B
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Figure 17 Boxplot of Size-Fractionated WS % for Sawmill-Planing-Plywood A
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Figure 18 Boxplot of Size-Fractionated WS % for Sawmill-Planing-Plywood B
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6.2 Determinants/Correlates of Wood Solid Percentage

Table 3 shows size fractionated WS % by each plant after removal outliers. There
are the numbers of outliers removed shown in parentheses as well as each size
fractionated WS% by each facility.

Size fractionated wood solid percentage data after box plot outlying are shown for
each plant facility in Table 4 and Figure 19 by each plant type. Averages of each
respirable, thoracic, and inhalable WS % in collected dust in the furniture plants were
13.4 %, 67.4 % and 44.2 %. Likewise, each average of size fractionated wood solid
percentages were 30.5 %, 86.0 % and 63.5 % in the cabinet plant, 10.3 %, 61.7 % and
46.8 % in the secondary millworks plants, and 2.2 %, 6.1 % and 5.9 % in the
sawmill-planing-plywood plants. Cabinet plants showed the highest content of wood
solid in all three size fraction. Otherwise, sawmill-planing-plywood plant appeared
to show the lowest content of wood solid presumably because of the emissions of the
resin binders when the making of plywood and processing of primarily green wood.

Figure 20 shows average size-fractionated WS% by wood type. Among wood
types, 26.5 %, 89.5 % and 63.6 % in mixed wood were the highest content of WS %,
and 2.2 %, 6.4 % and 5.2 % in plywood were the lowest content of WS %. Figure 21
shows average size-fractionated WS % by job activity. Among job activities, 21.5 %,
83.3 % and 59.0 % in sanding were the highest content of WS %, and 1.5 %, 2.1 %

and 6.0 % in debarking/log yard were the lowest content of WS %.
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Table 3 WS % in Size-Fractionated Dust by Plant After Removal of Outliers

Fa;:ility Plant Type . Wood Solid %'of Dust
D Respirable = Thoracic Inhalable

9001 Furniture A Average 9.9 77.2 50.0
S.D. 10.4 37.4 224
Number (# of Outliers) 47(2) 47(1) 45(1)

Median 5.3 68.5 46.5

9004 Furniture B Average 5.9 53.7 31.1
S.D. 6.4 334 18.9
Number (# of Outliers) 42(6) 40(7) 38(8)

Median 34 48.4 28.3

9009 Furniture C Average 19.5 71.5 53.2
S.D. 17.1 35.4 23.5
Number (# of Outliers) 45(0) 44(0) 44(0)

Median 18.5 78.7 55.1

9011 Furniture D Average 15.8 66.3 42.3
S.D. 11.8 26.7 17.6
Number (# of QOutliers) 85(1) 79(3) 79(3)

Median 133 67.8 39.1

9006 Cabinet A Average 35.2 92.9 72.3
S.D. 21.9 29.7 202
Number (# of Qutliers) 47(0) 46(1) 45(1)

Median 29.8 89.9 74.3

9007 Cabinet B Average 24.6 77.3 52.6
S.D. 20.2 40.6 26.3
Number (# of Outliers) 37(2) 37(2) 36(2)

Median 21.2 85.9 49.1

9002 Secondary Average 6.5 46.2 34.0
Millworks A S.D. 6.2 27.5 16.1
Number (# of Outliers) ST 55(8) 47(8)

Median 49 44.7 34.6

9005 Secondary Average 143 77.8 58.1
Millworks B S.D. 12.2 35.0 2472
Number (# of Outliers) 53(3) 53(3) 53(3)

Median 11.9 73.5 58.6

9000 Sawmill- Average 1.7 6.2 7.2
Planing- S.D. 1.6 5.3 31
Plywood A | Number (# of Outliers) 40(4) 37(4) 36(5)

Median 1.0 3.7 7.4
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Table 3 (cont.) WS % in Size-Fractionated Dust by Plant
After Removal of Qutliers

Fa«I:Ii)lity Plant Type Wood Solid % of Dust
Respirable = Thoracic Inhalable
9010 Sawmill- Average 2.7 5.9 4.4
Planing- S.D. 2.3 5.3 2.5
Plywood B | Number (# of Outliers) 38(5) 34(9) 31(12)
Median 2.1 4.9 4.6
Total Average 13.8 60.2 42.6
15.8 39.7 27.0
Number (# of Outliers) | 491(30) 472(38)  454(43)
Median 7.6 58.1 40.7
Table 4 WS % by Plant Type After Removal of Outliers
Plant Type Wood Solid % of Dust
Respirable Thoracic Inhalable
Furniture Average 13.4 67.4 44.2
SD 12.9 33.2 21.5
Numbers 219 210 206
Median 9.1 67.9 42.9
Cabinet Average 30.5 86.0 63.5
SD 21.7 35.6 25.0
Numbers 84 83 81
Median 26.8 86.3 66.4
Secondary Average 10.3 61.7 46.8
Millworks SD 10.3 35.1 24.0
Numbers 110 108 100
Median 6.9 56.5 41.9
Sawmill- Average 2.2 6.1 5.9
Planing- SD 2.0 53 3.1
Plywood Numbers 78 71 67
Median 1.5 3.9 5.2
Total Average 13.8 60.2 42.6
Sb 15.8 39.7 27.0
Numbers 491 472 454
Median 7.6 58.1 40.7
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Figure 19 Average of Size-Fractionated WS % by Plant Type
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Figure 20 Average of Size-Fractionated WS % by Wood Type
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Figure 21 Average of Size-Fractionated WS % by Job Activity
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Table 5 One Sample Kolmogorov-Smirnov Test for Normality about Size-

Fractionated WS %

Respirable Thoracic Inhalable
wood solid% wood solid% wood solid%
N 491 472 454
Kolmogorov-Smirnov Dist. 0.191 0.065 0.061
p <0.001

Normality of size-fractioned wood solid percentage was checked by Kolmogorov-

Smirnov test in Table 5. In all size-fractionated WS %, this test was failed (p<0.001)

and it means the data shows non-normal distribution.

Kruskal-Wallis one way ANOVA on ranks was applied to these size fractionated

WS % by determinants of plant type, job activity, and wood type. In Table 6, there is

a statistically significant difference (p<0.001) between plant types for all size-

fractionated WS %. Table 7 through Table 9 show multiple comparison analysis by

Mann-Whitney test about plant types of size fractionated WS %. All of each

respirable, thoracic, and inhalable WS % in the furniture vs secondary millwork were

not significantly different (p>0.05). All other pairwise comparisons for plant type

and WS % were statistically different.
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Table 6 Kruskal-Wallis ANOVA on Size-Fractionated WS % by Plant Type

Plant Type N Mean Mean Chi- df | Asymp.
Rank Square Sig.
Furniture 219 13.4 257.07 | 143.380 | 3 | .000

Sawmill-Planing-Plywood | 78 2.2 104.31
Respirable WS% Secondary Millworks 110 10.3 230.62

Cabinet 84 30.5 368.85
Total 491 13.8
Furniture 210 67.4 264.15 185.491 | 3 .000

Sawmill-Planing-Plywood | 71 6.1 43.54
Thoracic WS% Secondary Millworks 108 61.7 241.92

Cabinet 83 86.0 324.55
Total 472 60.2
Furniture 206 442 23977 | 185.690 | 3 [ .000

Sawmill-Planing-Plywood | 67 59 40.37
Inhalable WS% Secondary Millworks 100 | 46.8 248.31
Cabinet 81 63.5 325.38

Total 454 | 42.6

Table 7 Multiple Comparison by Mann-Whitney Test about Plant Type of Respirable
WS %

Plant Type N Mean | Sumof | Mann- Z |Asymp.Sig.
Rank Ranks | Whitney U (2-tailed)
Furniture vs Fumiture 219 | 174.25 |38161.00] 3011.000 |-8.491 .000
Sawmill-Planing- |Sawmill-Planing-Plywood| 78 78.10 |6092.00
Plywood Total 297
Furniture vs Furniturc 219 | 171.76 |37616.50| 10563.500 |-1.820 069
Secondary Millworks Secondary Millworks 110 | 151.53 |16668.50
Total 329
. Furniture 219 | 131.05 [28701.00| 4611.000 |-6.719 .000
Furniture vs Cabinet 84 | 206.61 |17355.00
Cabinet Total 303
Sawmill-Planing-  [Sawmill-Planing-Plywood| 78 61.26 [4778.50] 1697.500 (-7.053 .000
Plywood vs Secondary Millworks 110 | 118.07 [12987.50
Secondary Millworks Total 188
Sawmill-Planing- |Sawmill-Planing-Plywood| 78 43.95 |3428.00| 347.000 |-9.818 .000
Plywood vs Cabinet 84 116.37 | 9775.00
Cabinet Total 162
- Secondary Millworks 110 | 72.02 |7922.00| 1817.000 |-7.234 .000
Secondary Mlllworks Cabinet 84 130.87 [10993.00
vs Cabinet Total 194
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Table 8 Multiple Comparison by Mann-Whitney Test about Plant Type of Thoracic

WS %
Plant Type N | Mean | Sumof| Mann- V4 Asymp. Sig.
Rank Ranks | Whitney U (2-tailed)
Furniture vs Furniture 210 175.13 (36778.00| 287.000 |-12.109 .000
Sawmill-Planing-  |Sawmill-Planing-Plywood| 71 | 40.04 |2843.00
Plywood Total 281
. Furniture 210| 165.83 |34824.00{ 10011.000 | -1.712 .087
Furniture vs
. ] Secondary Millworks |108| 147.19 [15897.00
Secondary Millworks Total 318
. Furniture 210] 134.19 |28180.00| 6025.000 | -4.116 .000
F“g;g‘iﬁ:t"s Cabinet 83 | 179.41 |14891.00
Total 293
Sawmill-Planing- | Sawmill-Planing-Plywood| 71 | 38.89 |2761.00| 205.000 |-10.700 .000
Plywood vs Secondary Millworks [108] 123.60 [13349.00
Secondary Millworks Total 179
Sawmill-Planing-  |Sawmill-Planing-Plywood| 71 | 36.61 [2599.00| 43.000 [-10.524 .000
Plywood vs Cabinet 83 | 112.48 | 9336.00
Cabinet Total 154
Secondary Millworks Secondary Millworks [108| 80.12 | 8653.00 | 2767.000 | -4.528 .000
. Cabinet 83 | 116.66 | 9683.00
vs Cabinet
Total 191

Table 9 Multiple Comparison by Mann-Whitney Test about Plant Type of Inhalable

WS %
Plant Type N { Mean | Sumof| Mann- Z Asymp. Sig.
Rank Ranks | Whitney U (2-tailed)
Furniture vs Furniture 206| 168.76 {34765.00| 358.000 (-11.655 .000
Sawmill-Planing- [Sawmill-Planing-Plywood| 67 | 39.34 |2636.00
Plywood Total 273
. Furniture 206| 151.93 |312%8.00) 9977.000 -.445 656
Furniture vs Secondary Millworks | 100| 156.73 |15673.00
Secondary Millworks Total 306
. Furniture 206| 126.08 |25972.00| 4651.000 | -5.834 .000
Furniture vs Cabinet 81 | 189.58 |15356.00
Cabinet Total 287
Sawmill-Planing- |Sawmill-Planing-Plywood| 67 { 3499 |2344.00t 66.000 |-10.723 .000
Plywood vs Secondary Millworks [100| 116.84 (11684.00
Secondary Millworks Total 167
Sawmill-Planing-  |Sawmill-Planing-Plywood| 67 | 34.04 |2281.00| 3.000 -10.442 .000
Plywood vs Cabinet 81 | 107.96 |8745.00
Cabinet Total 148
. Secondary Millworks |100| 75.74 |7574.00| 2524.000 | -4.354 .000
Secondary Millworks Cabinet 81 | 109.84 |8897.00
vs Cabinet Total 181
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Table 10 Kruskal-Wallis ANOVA on Size-Fractionated WS % by Wood Type

Wood Type N Mean | Mean Rank | Chi-Square | df | Asymp.
Sig.
Hardwood 282 15.6 273.51
Softwood 126 53 157.13
. Engineered Wood 6 8.0 225.17
R 9 .
espirable WS% Mixed Wood 62 26.5 338 44 102.021 4 .000
Plywood 15 2.2 101.60
Total 491
Hardwood 273 69.5 270.62
Softwood 118 29.6 129.69
. Engineered Wood 6 60.0 237.17
[v)
Thoracic WS% Mixed Wood 61 89 5 334 84 149.408 4 .000
Plywood 14 6.4 42.71
Total 472
Hardwood 266 48.3 257.43
Softwood 108 21.2 121.06
Engineered Wood 6 43.4 237.67
0,
Inhalable WS% Mixed Wood 61 63.6 32534 146.694 4 .000
Plywood 13 5.2 35.62
Total 454

Kruskal-Wallis one way analysis of variance on ranks was applied to these size

fractionated WS% by wood type in Table 10 and there is a statistically significant

difference (p=<0.001) between wood types from all of each size fractionated WS %.

Table 11 through Table 13 show multiple comparison analysis by Mann-Whitney

Test about wood types of size fractionated WS%. All of each respirable, thoracic,and

inhalable wood solids % in the hardwood vs. engineered wood is not significantly

different (p<0.05). However, the very small sample number (6) of engineered wood

should be considered.
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Table 11 Multiple Comparison by Mann-Whitney Test about Wood Type of
Respirable WS %

Wood Type N [Mean| Sum of Mann- z Asymp.Sig(2-tailed)/
Rank Ranks | Whitney U Exact Sig.[2*(]-tailed Sig.)]
Hardwood 282(235.09| 66294.00 | 9141.000 |-7.838 .000
Hg‘ff‘t’ifggdvs Softwood  |126136.05 17142.00
Total 408
Hardwood 282(145.23] 40956.00 | 639.000 [-1.025 305
Hardwood vs .
- Engineered Wood | 6 [110.00} 660.00
[Engineered Wood Total >88
Hardwood 282(163.48| 46102.00 199. -3, .000
Harduood Vs | Mixed Wood | 62 [213.52] 13238.00 01720001 |5:387
ixed Wood
Total 344
Hardwood 282|154.21} 43487.00 | 646.000 |-4.533 .000
Ha;g‘:v‘fodd"s Plywood 15 [51.07] 766.00
Total 297
Softwood vs _Softwood 126/ 65.31 | 8229.00 228.000 (-1.639 101
Engincered Wood Engineered Wood [ 6 |91.50| 549.00
Total 132
Softwood vs Softwood 1261 73.16 | 9218.00 | 1217.000 (-7.666 .000
. Mixed Wood 62 |137.87| 8548.00
Mixed Wood
Total 188
Softwood vs Softwood 126]73.11 | 9212.00 679.000 (-1.779 075
Plywood Plywood 15153.27| 799.00
Total 141
Enei d Wood Engineered Wood | 6 | 17.50 105.00 84.000 [-2.205 0.027
ngineeree Woodl - Mixed Wood | 62 [36.15 | 2241.00 0.025
vs Mixed Wood
Total 68
Engineered Wood Engineered Wood| 6 [16.67| 100.00 11.000 |-2.650 .008
g Plywood 15| 873 | 131.00 006
vs Plywood Total o1
. Mixed Wood 62 |45.40| 2815.00 68.000 |-5.106 .000
Mixed Wood vs Plywood 15 12,53 | 188.00
Plywoo Total 77
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Table 12 Multiple Comparison by Mann-Whitney Test about Wood Type of

Thoracic WS %

Wood Type N | Mean | Sumof | Mann- Z Asymp.Sig(2-tailed)/
Rank [ Ranks | Whitney U Exact Sig.[2*(1-tailed Sig.)]
Hardwood 2731232.40(63444.00| 6171.000 [-9.686 .000
H;ff‘t"‘:/’gg dVS Softwood 118]111.80(13192.00
Total 391
Hardwood 2731140.52|138361.00| 678.000 | -.721 471
Hardwood vs .
. Engineered Wood | 6 [116.50| 699.00
Engineered Wood Total 279
Hardwood 273(158.05(43147.00| 5746.000 [-3.785 .000
‘%;‘i‘c‘l";;‘igg Mixed Wood | 61 |209.80(12798.00
Total 334
Hardwood vs Hardwood 2731150.66(41130.00| 93.000 |[-6.003 .000
Plywood Plywood 14 | 14.14 | 198.00
Total 287
Softwood vs Softwood 118(60.81|7176.00 | 155.000 |-2.317 .020
Engincered Wood Engineered Wood | 6 |95.67| 574.00
Total 124
Softwood vs Softwood 118(65.46|7724.00 | 703.000 |-8.813 .000
Mixed Wood Mixed Wood 61 |137.48| 8386.00
Total 179
Softwood vs Softwood 1181 70.12 | 8274.00 | 399.000 |-3.156 002
Plywood Plywood 14 [36.00 | 504.00
Total 132
Enei 4 Wood Engineered Wood | 6 |18.00| 108.00 87.000 (-2.108 0.035
ngmeerec Woodl  pNixed Wood | 61 |35.57|2170.00 0.034
vs Mixed Wood T
otal 67
. Engineered Wood | 6 (17.50| 105.00 .000 -3.464 .001
Engineered Wood) ™% by /604 14 | 7.50 | 105.00 000
vs Plywood Total 20
. Mixed Wood 61 | 44.98 | 2744.00 1.000 |-5.792 .000
Mixed Wood vs Plywood 14 | 7.57 | 106.00
Plywood Total 75
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Table 13 Multiple Comparison by Mann-Whitney Test about Wood Type of
Inhalable WS %

Wood Type N | Mean | Sum of Mann- Z Asymp.Sig(2-tailed)
Rank | Ranks | Whitney U Exact Sig.[2*(1-tailed Sig.}]
Hardwood  [266[221.38[58886.00] 5353.000 |-9.510 .000
H;‘:fﬁfgg 4 Softwood  [108|104.06|11239.00
Total 374
Hardwood  |266[136.85[36401.00] 706.000 | -.483 629
En;‘f;g;’gg‘i\}’;o 4| Engineered Wood | 6 [121.17| 727.00
Total 272
Hardwood 266(153.44(40815.00! 5304.000 |-4.218 .000
ﬁﬁ;‘;".’\;ﬁ:j Mixed Wood | 61 [210.05]12813.00
Total 327
Hardwood vs Hardwood  [266(146.27{38907.00] 62.000 |[-5.869 .000
Plywood Plywood 13 11177 153.00
Total 279
Sofwood vs Softwood 108]55.63[6008.00| 122.000 [-2.563 010
Engineered Wood Engineered Wood | 6 (91.17 | 547.00
Total 114
Softwood vs Softwood 108]60.22[6504.00| 618.000 |-8.759 .000
Mixed Wood Mixed Wood | 61 [128.87| 7861.00
Total 169
Softwood vs Softwood 108 64.64 | 6981.00| 309.000 [-3.289 001
Plywood Plywood 13 [30.77 | 400.00
Total 121
Engincered Wood Engineered Wood [ 6 1933 | 116.00 95.000 -1.932 0.053
gine Mixed Wood | 61 |35.44|2162.00 0.053
vs Mixed Wood
Total 67
Eneineered Wood Engineered Wood | 6 [16.50| 99.00 .000 -3.421 .001
g Plaong Plywood 13 | 7.00 | 91.00 .000
vs Flywoo Total 19
Mixed Wood Mixed Wood | 61 |43.98 [ 2683.00 1.006 [-5.618 .000
1xed Wood vs Plywood 13| 7.08 | 92.00
Plywood Total 74
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Table 14 Kruskal-Wallis ANOVA on Size-Fractionated WS % by Job Activity

Job Activity N | Mean|Mean | Chi-Square | df | Asymp.
Rank Sig.
Sawing 93 11.3 |226.32
Sanding 135 | 21.5 [313.57
Milling 84 10.5 |224.44
. o PSV 13 7.6 1198.85
Respirable WS% Others 149 | 108 [212.97 50.674 6 .000
Debarking/Log Yard 4 1.5 |87.38
Blow Down/Compressed Air 13 18.1 {299.00
Total 491
Sawing 89 52.4 |211.08
Sanding 133 | 83.3 |316.96
Milling 81 57.0 |226.37
. o PSV 12 55.0 |221.08
Thoracic WS% Others 140 | 453 |184.14 83.095 6 .000
Debarking/l.og Yard 4 2.1 [20.00
Blow Down/Compressed Air 13 78.6 |295.23
Total 472
Sawing 86 34.8 [191.41
Sanding 132 59.0 (306.17
Milling 79 38.6 |211.20
Inhalable WS% o Lo 13 el 19803 | 6| 000
Debarking/L.og Yard 4 6.0 140.75
Blow Down/Compressed Air 11 54.4 |286.82
Total 454

Kruskal-Wallis one way analysis of variance on ranks was applied to the size
fractionated WS % by job activity in Table 14 and there is a statistically significant
difference (p<0.001) between job activities from all of each size fractionated WS %.
Table 15 through Table 17 show multiple comparison analysis by Mann-Whitney
Test about job activity of size fractionated WS %. There are no significant
differences in many pairings of job activity: sawing vs. milling, sawing vs. PSV,
sawing vs. others, sanding vs. blow down/compressed air, milling vs. PSV, PSV vs.

others in all of size fractionated wood solid. Most of sanding is statistically
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significant with all other job activities except with blow down/compressed air. Based

on the result, PSV vs. furniture and PSV vs. cabinet are confounded.

From the results of these analyses, wood solid contents were different from sources

of size-fractionated dust in wood processing industry by plant type, wood type, and

job activity.

Table 15 Multiple Comparison by Mann-Whitney Test about Job Activity of
Repirable WS %

Job Activity N | Mean | Sumof | Mann- Z Asymp.Sig(2-tailedy
Rank | Ranks | WhitneyU ExactSig [2*(1-tailedSig.}]
] Sawing 93 | 90.22 | 8390.00 | 4019.000 | -4.614 .000
Ssa:;';‘igngs Sanding 135 [ 131.23[17716.00
Total 228
4 Sawing 93 | 89.18 | 8294.00 | 3889.000 | -.050 960
Sm:;‘iﬁg“ Milling 84 | 88.80 | 7459.00
Total 177
. Sawing 93 [ 5427 [5047.00 | 533.000 | -.689 491
Sa”;‘s"\g;vs PSV 13 | 48.00 | 624.00
Total 106
. Sawing 93 [125.98({11716.50| 6511.500 | -.787 431
S‘:)Wt;l“egrs"s Others 149 | 118.70 | 17686.50
Total 242
Sawing vs Debarking/Log Yard | 4 | 3050 | 8260 | o |20 036
Debarking/Log Yard Total 97
Sawing vs Sawing 93 | 51.44 [ 4784.00 | 413.000 |-1.844 .065
BlowDown/Compressed | BlowDown/CompressedAir| 13 | 68.23 | 887.00
Air Total 106
Sandi Sanding 135 [125.61 |16957.00| 3563.000 | -4.621 .000
?\’“{ngs Milling 84 | 84.92 | 7133.00
tiling Total 219
Sandi Sanding 135 77.75 |10496.00| 439.000 |-2.970 .003
anpé';/g"s PSV 13 | 40.77 | 530.00
Total 148
Sandi Sanding 135 [ 172.26 [23255.00| 6040.000 | -5.813 .000
ag l:"g vs Others 1491 115.54 [17215.00
thers Total 284
Sanding vs Sanding 135| 71.64 | 9672.00 | 48.000 |-2.797 .005
. Debarking/Log Yard 4 | 1450 58.00
Debarking/Log Yard Total 139
. Bl Sanding 135 | 75.08 [10136.00] 799.000 | -.532 595
5 S“:]r/'dc'"g Vs Blo . [BlowDown/CompressedAir| 13 | 68.46 | 890.00
OW| omprcssc 1r Total 148
” Milling 84 | 49.68 | 4173.00 | 489.000 | -.604 546
M'Pg‘\f"s PSV 13 | 44.62 | 580.00
Total 97
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Milling vs Milling 84 1120.96]10161.00( 5925.000 | -.674 .500
Others Others 149 1114.7717100.00
Total 233
Milling vs Milling 84 | 45.75 | 3843.00 | 63.000 [-2.103 .035
» Debarking/Log Yard 4 11825 73.00 .033
Debarking/Log Yard Total 38
s Milling 84 | 46.83 | 3934.00 | 364.000 |-1.927 054
Milling vsBlow ;
Down/Compressed Air BlowDown/CompressedAir| 13 | 63.00 | 819.00
Total 97
PSV vs PSV 13 | 79.38 | 1032.00 | 941.000 | -.170 865
Others Others 149 ( 81.68 |12171.00
Total 162
PSV vs PSV 13 | 10.38 | 135.00 8.000 -2.038 042
- Debarking/Log Yard 4 4.50 18.00 045
Debarking/Log Yard Total 17
PSVY 13 | 10.69 | 139.00 48.000 |[-1.872 061
PSV vs Blow .
Down/Compressed Air BlowDown/CompressedAir| 13 | 16.31 [ 212.00 064
Total 26
Others vs Others 149 | 78.02 [11625.50| 145500 |-1.744 .081
" Debarking/Log Yard 4 | 3888 | 15550
Debarking/Log Yard Total 153
Others vs Others 149| 79.26 |11809.00( 634.000 |-2.062 .039
BlowDown/Compressed | BlowDown/CompressedAir| 13 |107.23 | 1394.00
Airl Total 162
Debarking/Log Yard vs Debarking/Log Yard 4 | 325 13.00 3.000 -2.604 .009
Blow Down/Compressed| BlowDown/CompressedAir| 13 | 10.77 | 140.00 .006
Air Total 17

Table 16 Multiple Comparison by Mann-Whitney Test about Job Activity of

Thoracic WS %

Job Activity N | Mean | Sumof | Mann- z Asymp.Sig(2-tailed)/
Rank | Ranks | WhitneyU ExactSig.[2*(1-tailedSig.)]
. Sawing 89 | 79.96 | 7116.00 | 3111.000 |-5.986 1000
Sawing vs Sanding 133 [ 132.6117637.00
Sanding Total 222
. Sawing 89 [ 82.28 [ 7323.00 [ 3318.000 | - 894 371
Sawing vs Milling 81 | 89.04 | 7212.00
Milling Total 170
. Sawing 89 | 50.54 | 4498.00 | 493.000 | -.430 667
Sawing vs PSV 12 | 54.42 | 653.00
PV Total 101
. Sawing 89 [125.16]11139.00| 5326.000 | -1.850 064
Sawing vs Others 140 | 108.54 |15196.00
Others Total 229
Sawing vs Sawing 89 | 4801 [4353.00| 8000 |-3.219 001
Debarking/Log Yard Debarktlr}glglog Yard ;3 4.50 18.00 000
Sawing vs Sawing 89 | 49.24 [ 4382.00 [ 377.000 |-2.022 043
BlowDown/Compressed | BlowDown/CompressedAir| 13 | 67.00 | 871.00
Air Total 102
. Sanding 133 | 125.89|16743.00| 2941.000 | -5.566 .000
Sanding vs Milling 81 | 77.31 | 6262.00
Milling Total 214
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Sanding vs Sanding 1331 76.02 [10111.00| 396.000 |-2.885 .004
PSV PSV [2 | 39.50 | 474.00
Total 145
Sanding vs Sanding 133 | 172.87(22992.00| 4539.000 | -7.317 .000
Others Others 140 102.92114409.00
Total 273
. Sanding 133 | 70.96 | 9438.00 5.000 |-3.337 .001
Sanding vs ;
. Debarking/Log Yard 4 | 3.75 15.00
Debarking/Log Yard Total 137
. Sanding 133 | 73.61 [ 9790.00 | 850.000 | -.100 921
Sanding vs Blow .
Down/Compressed Air BlowDown/CompressedAir| 13 | 72.38 | 941.00
Total 146
- Milling 81 | 46.98 | 3805.00 | 484.000 | -.023 982
Mg vs PSV 12 | 47.17 | 566.00
Total 93
P Milling 81 [127.46(10324.00} 4337.000 | -2.910 .004
Mgl;’;grsvs Others 140 | 101.48 {14207.00
Total 221
Milling vs Debarli\ilzllg/ll?c%g Yard 84l 424.7959 3?‘:4680 1000 334 88(1)
Debarking/Log Yard Total 85 ‘
. Milling 81 | 45.60 [ 3694.00 | 373.000 |-1.681 093
Milling vsBlow 5 hown/Compressedair| 13 | 5931 | 771.00
Down/Compressed Air
Total 94
PSV vs PSV 12 | 91.08 | 1093.00 [ 665.000 |-1.196 232
Others Others 140 | 75.25 |10535.00
Total 152
PSV vs PSV 12 1 10.50 | 126.00 .000 -2.910 004
Debarking/Log Yard Debarking/Log Yard 4 2.50 10.00 001
Total 16
PSV vs Bl PSV 12 | 1092 | 131.00 53.000 |-1.360 174
vs plow = BlowDown/CompressedAir| 13 | 14.92 | 194.00 186
Down/Compressed Air
Total 25
Others vs Others 140 | 74.10 |10374.00| 56.000 [-2.723 .006
. Debarking/Log Yard 4 11650 | 66.00
Debarking/Log Yard Total 144
Others vs Others 140 | 74.34 |10408.00| 538.000 |-2.434 015
BlowDown/Compressed | BlowDown/CompressedAir| 13 | 105.62| 1373.00
Airl Total 153
Debarking/Log Yard vs Debarking/L.og Yard 4 | 250 10.00 .000 -2.944 003
Blow Down/Compressed| BlowDown/CompressedAir| 13 | 11.00 [ 143.00 .001
Air Total 17

Table 17 Multiple Comparison by Mann-Whitney Test about Job Activity of

Inhalable WS %

Job Activity N | Mean | Sumof | Mann- Z Asymp.Sig(2-tailedy
Rank | Ranks | WhitneyU ExactSig.[2*(]-tailedSig.))
. Sawing 86 | 74.56 | 6412.00 | 2671.000 | -6.602 1000
Sawing vs Sanding 132 | 132.27(17459.00
Sanding Total 218
. Sawing 86 | 78.66 | 6765.00 | 3024.000 | -1.217 224
Sawing vs Milling 79 | 87.72 | 6930.00
Milling Total 165
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Sawing vs Sawing 86 | 48.56 [ 4176.00 [ 425.000 [ -.060 952
PSV PSV 10 | 48.00 | 480.00
Total 96
Sawing vs Sawing 86 | 113.31{ 9745.00 | 5348.000 | -.721 471
Others Others 1321107.02]14126.00
Total 218
Sawing vs Sawing 86 | 47.15 [ 4055.00 | 30.000 |-2.780 .005
Debarking/Log Yard Debarking/Log Yard 4 |1 10.00 | 40.00 .002
: Total 90
Sawing vs Sawing 86 | 46.66 | 4013.00 | 272.000 |-2.287 .022
BlowDown/Compressed BlowDown/CompressedAir| 11 | 67.27 [ 740.00
Air Total 97
Sanding vs Sax'ld.ing 132 1125.01|16501.00| 2705.000 | -5.846 .000
Milling Milling 79 | 74.24 | 5865.00
Total 211
Sanding vs Sanding 132} 7490 [ 9887.00 [ 211.000 |-3.580 .000
PSV PSV 10 } 26.60 | 266.00
Total 142
Sanding vs Sanding 132 163.71(21610.00| 4592.000 | -6.642 .000
Others Others 1321101.29|13370.00
Total 264
. Sanding 132 70.44 | 9298.00 8.000 -3.297 001
Sanding vs )
. Debarking/Log Yard 4 | 450 18.00
Debarking/Log Yard Total 136
. Sanding 132] 72.34 | 9549.00 | 681.000 | -.341 733
Doii'}dc’gi;fei':‘;"mr BlowDown/CompressedAir| 11 | 67.91 | 747.00
Total 143
- Milling 79 | 45.73 | 3613.00 | 337.000 | -.754 451
M'g‘sn\% vs PSV 10 | 39.20 | 392.00
Total 89
- Milling 79 [116.22| 9181.00 { 4407.000 [ -1.880 .060
Mg:;]ﬁs"s Others 132| 99.89 [13185.00
Total 211
Milling vs Milling 79 | 43.91 | 3469.00 7.000 -3.211 .001
. Debarking/l.og Yard 4 | 425 17.00 .000
Debarking/Log Yard Total 83
s Milling 79 | 43.38 | 3427.00 | 267.000 |-2.063 .039
Dox'/'(':‘:i":‘il‘;: Air |BlowDown/CompressedAir| 11 | 60.73 | 668.00
P Total 90
PSV vs PSV 10 | 74.80 | 748.00 | 627.000 ([ -.263 792
Other. Others 132 | 71.25 | 9405.00
ers Total 142
PSV vs PSV 10 | 9.40 94.00 1.000 -2.687 .007
. Debarking/Log Yard 4 | 275 11.00 .004
Debarking/Log Yard Total 14
PSV vs B PSV 10 { 7.60 76.00 21.000 |-2.394 .017
vs Blow = | glowDown/CompressedAir| 11 | 14.09 | 155.00 016
Down/Compressed Air
P Total 21
Others vs Others 132 69.71 | 9202.00 | 104.000 |-2.061 .039
. Debarking/Log Yard 4 | 2850 | 114.00
Debarking/Log Yard Total 136
Others vs Others 132 69.91 | 9228.00 | 450.000 |-2.091 037
BlowDown/Compressed | BlowDown/CompressedAir | 11 | 97.09 | 1068.00
Airl Total 143
Debarking/Log Yard vs Debarking/Log Yard 4 | 3.25 13.00 3.000 -2.481 .013
Blow Down/Compressed| BlowDown/CompressedAir| 11 { 9.73 | 107.00 010
Air Total 15
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6.3 Prediction Model for Inhalable Wood Solid Percentage

6.3.1 Prediction Modeling of 454 Samples of Inhalable Wood Solid Percentage from

10 Plants

Dependent variable was inhalable wood solid percentage and determinants of
prediction model A from all of the 10 plants were plant type (furniture, cabinet,
secondary millworks, and sawmill-planing-plywood), green vs. dry wood (green
wood, dry wood, and green/dry wood), hard vs. soft wood (hardwood, softwood, and
hard/softwood), formaldehyde (formaldehyde and no formaldehyde) and PSV (PSV
and no PSV). For this prediction regression model A, the reference values were:
‘furniture’ (plant type), ‘dry wood’ (green vs. dry wood), ‘mixed wood’ (hard vs. soft
wood), ‘no formaldehyde’ and ‘no PSV’.

All coefficients of the determinants are in Table 18. Coefficient of cabinet was
19.8 % higher, secondary millworks 12.3 % higher, sawmill-planing-plywood 17.2 %
lower, hardwood 14.2 % lower, softwood 22.3 % lower, and PSV 12.6 % lower than
those of the references. The coefficients of the determinants of green wood,
green/dry wood, and formaldehyde were not statistically significant. There is
confounding between sawmill-planing-plywood vs green, green/dry wood, and
formaldehyde because these materials were only present in the sawmill-planing-

plywood factories.
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Table 18 Coefficients of Determinants of Prediction Model A for Inhalable
WS % from 10 Plants (n=454, R=.669 and R*=.447)

Model Unstandardized |Std. Error Sig.
Coefficients(B)
(Constant) 45.6 1.47 .000
Plant Type
Cabinet 19.8 2.80 .000
Secondary millworks 12.3 3.03 .000
Sawmill-planing-plywood -17.2 6.38 .007
Green vs. Dry wood
Green wood -1.89 5.60 736
Green/Dry wood mixed -.848 11.3 940
Hard vs. Softwood
Hardwood -14.2 4.39 001
Softwood -22.3 3.79 .000
Formaldehyde
Yes Formaldehyde 1.09 5.83 .852
PSV
Yes PSV -12.6 5.10 014

Figure 22 shows the scatter graph about observed vs predicted inhalable wood solid
percentage obtained from 10 plant prediction model A.

Table 19 shows the mean and standard deviation of observed and predicted
inhalable wood solid percentage, and both Pearson and Spearman’s correlation
coefficients from prediction model A. The results were presented for the total

number 454 and within the following groups: furniture, cabinet, secondary millworks,
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and sawmill-planing-plywood. The predicted value of each inhalable wood solid %
is 44.2 % in furniture plants, 63.5 % in cabinet plants, 46.8 % in secondary millworks

plant, and 5.93 % in sawmill-planing-plywood plant.
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Figure 22 Observed vs Predicted Inhalable WS % on 10 Plants from Prediction
Model A
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Table 19 Correlation of Predicted and Observed Inhalable WS % from Prediction

Model A
Observed Predicted Pearson Spea;lman’s
Inhalable WS% | Inhalable WS% | Correlation mo
Mean+SD Mean+SD Coefficient Correlat_lon
Coefficient
Furniture (N=206) 442 +21.5 442 + 4.39 .196 171
FurnitureA (N=45) 50.0x22.4 45.6 + 0.00 * *
FurnitureB (N=38) 31.1 £ 18.9 382+7.78 017 -.074
FurnitureC (N=44) 532+235 45.6 £ 0.00 * *
FurnitureD (N=79) 423+176 45.6 + 0.00 * *
Cabinet (N=81) 63.5+25.0 63.5+4.51 277 .260
CabinetA (N=45) 72.3+20.2 65.4 £ 0.00 * *
CabinetB (N=36) 52.6+263 61.2+6.03 152 176
Secondary millworks (N=100) 46.8+24.0 46.8+11.9 478 455
Secondary millworksA (N=47) 34.0x 16.1 34.5+3.56 -.128 =202
Secondary millworksB (N=53) 58.1 +£24.2 57.6+1.73 -.014 -.009
Sawmill-Planing-Plywood (N=67) 593+3.13 5.93+228 .294 .260
Sawmill-Planing-Plywood A(N=36) 7.22+3.10 6.35+297 240 .288
Sawmill-Planing-Plywood B(N=31) 4,44 +2 .47 5.45+0.83 323 337
Total (N=454) 426270 42.6 + 18.1 669 637

* Cannot be computed because one of the variables is constant
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A second predictive model (prediction model B) was constructed in which the
reciprocal of inhalable dust weight (mg™') was added as an additional determinant.
Because denominator of wood solid percentage is inhalable dust weight and therefore,
this was considered as a determinant.

All coefficients of the determinants of prediction model B are in Table 20.
Coefficient of cabinet was 19.1 % higher, secondary millworks 13.5 % higher,
sawmill-planing-plywood 9.47 % lower, hardwood 13.6 % lower, softwood 21.1 %
lower, PSV 12.7 % lower , and the reciprocal of inhalable dust 6.16 % lower than
those of the references. The coefficients of the determinants of sawmill-planing-
plywood, green wood, green/dry wood, and formaldehyde were not statistically
significant.

Figure 23 are the scatter graph about observed vs predicted inhalable wood solid
percentage obtained from 10 plant prediction model B.

Table 21 shows the mean and standard deviation of observed and predicted
inhalable wood solid percentage, and both Pearson and Spearman’s correlation
coefficients from prediction model B. The results were presented for the total

number 454 and within the following groups: furniture, cabinet, secondary millworks,

and sawmill-planing-plywood.

73



Table 20 Coefficients of the Determinants of Prediction Model B for Inhalable WS %
from 10 Plants (n=454, R=.692 and R>=.479)

Model Unstandardized |Std. Error Sig.
Coefficients(B)
(Constant) 49.8 1.64 .000
Plant Type
Cabinet 19.1 2.72 .000
Secondary millworks 13.5 2.95 .000
Sawmill-planing-plywood -9.47 6.37 138
Green vs. Dry wood
Green wood -.274 5.45 960
Green/Dry wood mixed -7.04 11.1 526
Hard vs. Softwood
Hardwood -13.6 4.27 .002
Softwood -21.1 3.69 .000
Formaldehyde
Yes Formaldehyde -6.01 5.83 303
PSV
Yes PSV -12.7 4.96 011

Reciprocal Inhalalble

-6. 1.18 .00
Dust wt (mg'l) 6.16 0
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Figure 23 Observed vs Predicted Inhalable WS % on 10 Plants
from Prediction Model B
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Table 21 Correlation of Predicted and Observed Inhalable WS % from Prediction

Model B
Observed Predicted Pearson Sp eall:]man’s
Inhalable WS% | Inhalable WS% | Correlation o
. Correlation
Mean+SD Mean+SD Coefficient .
Coefficient
Furniture (N=206) 442 £ 21.5 442 £ 5.87 361 337
FurnitureA (N=45) 50.0+22.4 45.6 + 3.86 .082 101
Fum@tureB (N=38) 31.1+18.9 38.7+8.29 .147 -.027
FurnitureC (N=44) 53.2+235 45.5+£4.75 527 307
FurnitureD (N=79) 423+17.6 454+ 436 374 351
Cabinet (N=81) 63.5+25.0 63.5+ 5.80 .462 385
CabinetA (N=45) 72.3+£20.2 66.4 +1.53 .107 .061
CabinetB (N=36) 52.6+263 57.0+7.11 412 461
Secondary millworks (N=100) 46.8+24.0 46.8 +12.8 533 492
Secondary millworksA (N=47) 340+ 16.1 34.2 +£4.97 -.012 -.041
Secondary millworksB (N=33) 58.1+242 57.9+4.42 .349 275
Sawmill-Planing-Plywood(N=67) 5.93+£3.13 5.93 + 8.27 -.227 -.193
Sawmill-Planing-Plywood A(N=36) 7.22+3.10 336+9.53 .051 085
Sawmill-Planing-Plywood B(N=31) 4.44 +£2.47 8.92 + 525 -.474 -.403
Total (N=454) 426270 426+ 18.7 0.692 0.676
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6.3.2 Evaluation and Validation of Prediction Modeling of Inhalable Wood Solid

Percentage from 8 Plants

Two plants (furniture C and sawmill-planing-plywood A) were randomly selected
for validating the prediction model C and D obtained from the remaining 8 plants.
Dependent variable was inhalable wood solid percentage and determinants of
prediction model C from 8 plants were plant type (furniture, cabinet, secondary
millworks, and sawmill-planing-plywood), green vs. dry wood (green wood, dry
wood, and green/dry wood), hard vs. soft wood (hardwood, softwood, and
hard/softwood), formaldehyde (formaldehyde and no formaldehyde) and PSV (PSV
and no PSV) as shown in Table 22. With this prediction regression model C, the
reference values were: ‘furniture’ (plant type), ‘dry wood’ (green vs. dry wood),
‘mixed wood’ (hard vs. soft wood), ‘no formaldehyde’ and ‘no PSV’.

Coefficient of cabinet was 22.3 % higher, secondary millworks 15.2 % higher,
hardwood 10.3 % lower, softwood 23.3 % lower, and PSV 12.6 % lower than those
of the references from Table 22. The coefficients of the determinants of green wood,

green/dry wood, and formaldehyde were not statistically significant.
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Table 22 Coefficients of the Determinants of Prediction Model C for Inhalable WS %
from 8 Plants (n=374, R=.626 and R*=.392)

Model Unstandardized |Std. Error Sig.
Coefficients(B)
(Constant) 43.1 1.73 .000
Plant Type
Cabinet 223 2.97 .000
Secondary millworks 15.2 3.32 .000
Sawmill-planing-plywood -15.3 7.83 052
Green vs. Dry wood
Green wood -1.69 8.74 .847
Green/Dry wood mixed -.723 12.1 953
Hard vs. Softwood
Hardwood -10.3 5.04 .041
Softwood -233 4.15 .000
Formaldehyde
Yes_Formaldehyde 1.81 8.74 836
PSV
Yes PSV -12.6 5.19 016
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The scatter graphs in Figure 24 and Figure 25 were about observed vs predicted
inhalable wood solid percentage of 2 plants applied from the coefficients obtained
prediction models C and D. The prediction models C and D were underestimated for
the high values of WS % (above 35 %) and overestimated for low values of WS %
(below 20 %)

In Table 24 the reciprocal of inhalable dust weight (mg™') was added to other
determinants to create prediction model D. Coefficient of cabinet was 21.2 % higher,
secondary millworks 16.4 % higher, hardwood 10.9 % lower, softwood 20.6 % lower,
PSV 12.7 % lower, and the reciprocal of inhalable dust 8.79 % lower than those of
the references. The coefficients of the determinants of green wood, green/dry wood,
and formaldehyde were not statistically significant.

Correlations of predicted and observed inhalable wood solid percentage by
prediction models C and D are shown in Table 23 and in Table 25. The predicted
values of inhalable wood solid percentage are 43.1 % in furniture C, 5.87 % in
sawmill-planing-plywood and 26.3 % in total of these two plants by prediction model
C, and 43.1 % in furniture C, -6.63 % in sawmill-planing-plywood and 20.7 % in
total of these two plants by prediction model D.

As the results of the predicted values including negative predictive values for
sawmill-planing-plywood, this prediction model D was not good fit for evaluating
this inhalable WS%. Therefore, from the evaluating and validating prediction model

of inhalable wood solid percentage from 8 wood processing plants, model C is

recommended.
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Figure 24 Observed vs Predicted Inhalable WS% on 2Plants from Prediction Model C

Table 23 Correlation of Observed and Predicted Inhalable WS %
from Prediction Model C

Observed

Predicted

Spearman’s

Inhalable Inhalable Ccl::rtrlzct’inon rho
WS% WS% Cocfficient Correlation
Mean+SD Mean+SD n Coefficient
Furniture C (n = 44) 53.2+23.5 43.1 +£.00 * *
Sawmill-Planing- 477
Plywood A (n = 36) 7.22+3.10 5.87 i .209 .288
Total (n = 80) 32.5+289 263+ 189 .788 .823

* Cannot be computed because one of the variables is constant




Table 24 Coefficients of Determinants of Prediction Model D for Inhalable WS %
from 8 Plants (n= 374, R=.662 and R® =.438)

Model Unstandardized Std. Sig.
Coefficients(B) Error
(Constant) 493 2.01 .000
Plant Type
Cabinet 21.2 2.87 .000
Secondary millworks 16.4 3.20 .000
Sawmill-planing-plywood -11.9 7.57 115
Green vs. Dry wood
Green wood -3.16 8.41 707
Green/Dry wood mixed -1.47 11.7 .900
Hard vs. Softwood
Hardwood -10.9 4.86 025
Softwood -20.6 4.02 .000
Formaldehyde
Yes_Formaldehyde -476 8.42 955
PSV
Yes PSV -12.7 4.99 .012
Reciprocal Inhalable Dust wt (mg™) -8.79 1.61 .000
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Figure 25 Observed vs Predicted Inhalable WS % on 2 Plants
from Prediction Model D

Table 25 Correlation of Observed and Predicted Inhalable WS %
from Prediction Model D

Observed Predicted p Spearman’s
Inhalable Inhalable C earlsct)p rho
WS% WS% Conffioiant | Correlation
Mean+SD Mean+SD Coefficient
Furniture C (N=44) 53.2+23.5 43.1+6.78 527 307
Sawmill-Planing-
22+ 3. -6.63 + 14, : .
Plywood A(N=36) 7.22+£3.10 6.63 5 108 145
Total (N=80) 32.5+28.9 20.7+£27.2 792 .795
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VI Multicomponent or Mixed Wood Analysis by DRIFTS

7.1 Oak and Pine Standard DRIFTS Analysis

Each 250, 500, 1000, 1500, 2000, 2500, and 3000 pg standard of oak and of pine
was analyzed three times by DRIFT spectrometry to include one set of scanning at 0°
and one at 90°. Therefore, six spectra of each amount standard were obtained.
Energy throughput (Peak to peak) at every 3mm scanned location about each
scanning was measured, as well.

Table 26 shows the average of the ten energy throughputs of oak standards and
Table 27 shows the results for the pine standards. The energy throughput is severely
compromised when the infrared beam was scanned directly on top of localized areas
of thick dust cake on the filter surfaces as shown in Tables 26 and 27. So these

energy throughputs were used for obtaining normal net absorbances.
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Table 26 Average Energy Throughput of Each Oak Standard per Scanning

Standard | 1_0° | 1.90° | 2.0° | 2.90° | 3.0° | 3 90°

*

Oak250 | 4.143 4.086 | 4.037 | 4.013 4.342 | 4.402

0ak500 | 4.166 | 4.299 | 4.305 | 4.085 4213 4.122

0ak1000 | 3.971 3.824 | 3.855 4.039 | 3.730 3.601

Oak1500 | 3.774 3.727 3.816 3.809 3.732 3.762

0ak2000 | 3.377 3.400 | 3.498 3.552 | 3.333 3.355

0ak2500 | 3.261 3.275 3.345 3.278 3.287 | 3.304

0ak3000 | 3.247 3.243 3.111 3.193 3.056 3.012
* Unit : Volt

Table 27 Average Energy Throughput of Each Pine Standards per Scanning

Standard | 1 0° 1.90° | 20° | 290° | 3.0° | 3.90°

*

Pine250 | 4.353 4.160 | 4.186 | 4.097 | 4.294 | 4.420

Pine500 4.122 | 3.996 | 4.195 | 4.186 3.953 4.262

Pinel1000 | 3.913 3.872 | 4.032 3.943 3.852 3.856

Pinel500 | 3.790 | 3.595 3.667 3.754 | 3.831 3.759

Pine2000 | 3.547 | 3.497 | 3.567 3.402 | 3.562 | 3.624

Pine2500 | 3.456 | 3.354 | 3.407 | 3.432 | 3.265 3.329

Pine3000 | 3.116 3.153 3.314 3.262 3.272 3.310
* Unit : Volt
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Figure 26 is one set of red oak standard DRIFTS spectra from 250 to 3000 pg
(second column of Table 26) and Figure 27 is one set of Radiata pine standard
DRIFTS spectra from 250 to 3000 pg (second column of Table 27). Maximum peak
of oak standards in Figure 26 was 1.357 K-M (Kubelka-Munk) at around 1289 cm’

and one of pine standards in Figure 27 was 1.626 K-M at 1251 cm™.
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Table 28 Selected Wave Numbers from Oak and Pine Standards

Wave Number (cm™)
664.4 934.4 1282.5 1475.3
671.1 943.1 1289.2 1482.1
695.2 9479 1291.2 1513.0
703.0 971.0 1296.0 1521.6
710.7 1042.4 1326.9 1527.4
718.4 1070.4 1335.5 1594.9
726.1 1078.1 1343.2 1607.5
734.8 1108.0 1350.0 1650.8
741.5 1115.7 1374.1 1656.6
749.2 1124.4 1398.2 1731.8
789.7 1197.6 1405.0 1734.7
794.6 1205.4 1410.7 2140.7
802.3 1212.1 1429.1 2146.5
840.9 1250.7 1443.5 2900.6
849.5 1257.4 1450.3 2904.4
865.9 1265.1 1459.0 2936.2
881.4 1273.8 1466.7

Table 28 shows the selected wave numbers at which there are peaks from oak and
pine standards such as Figure 26 & 27 except 1291 2cm”. Exactly huge peaks were
at around 1289cm™' and however, 1291 2cm’! was added as one of selected wave
numbers based on the previous result from our group work.> Most peaks from either
oak or pine standard spectra were selected over 650 cm’' (recommended limit) except

the region of 2345 cm’' (atmospheric carbon dioxide) and 3330~3450 cm’' (entrained

water region in samples).
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All wave number position of each peak was not always located at the same in the
same oak or pine standards; however, the differences were no more than tenths of
each wave numbers. Nonetheless, for analysis, the positions of each wave number
were fixed as shown in Table 28. For applying the method of simultaneous equations
for multi-component analysis, it is important to use the intensity of absorbance at the

exact same wave number position in all samples and standards.

89



7.2 Oak and Pine Standard Calibration Curve

Signal saturation was observed at 3000ug of each oak standard and pine standard
from DRIFTS spectra. Therefore, the working range of all standard calibration
graphs was set between 250 to 2500 pg of oak or pine.

Figure 28 shows one of oak standard calibration curves and Figure 29 shows one of
pine standard calibration curves. The other graphs about oak or pine standard
calibration curves are in Appendix B. Y-axis means normal net absorbance which is
net absorbance divided by average energy throughput. Both linear regression and

forced zero-intercept linear regression lines are shown.
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91



695.2 cm™"

oo T

oo y = 0.00753 x 7_

| R? = 0.91453 "

| 0.015 -

Normal Net Abs.

0.005

& v =0.00803 x - 0.00089

0 L—e . R® = 0.91948 ;
0 1 Pine(mg) 2 3
703.0 cm™’
0.025 r
y = 0.00808 x
8 0.02 R? = 0.91068 o
- <C
g 0.015 e
: =
ottt
2 0.005 y = 0.00869 x - 0.00108 |
: . - 2 _ ’ :
/ R? = 0.91682 i
0 * ; % !
] 1 Pine(mg) 2 3
710.7 em™’
0.025
O 02 A— ,,iy, =,O'Q%3_9_ x _____ * . 7z
g = R? = 0.90679 .
< |
< 0015 t— o —
| £ 0.01 — '
e
= — —
‘ 0.005 i ——— Y. = 0.09_8_89_)( - 0.00089 _
| R? = 0.91076
i o . ‘ 1[
|
: 0 ! Pine(mg) 2 3

Figure 29 Pine Standard Calibration Curves at 695.2, 703.0 & 710.7 cm™

92



Table 29 Slopes and R? from Forced Zero-Intercept Linear Regression of Oak and
Pine Standards Curves

Wave Number Oak Pine

(cm™) Slope R* Slope R’

664.4 0.00384 0.81029 0.00388 0.84874
671.1 0.00382 0.84336 0.00354 0.86174
695.2 0.00892 0.91961 0.00753 0.91453
703.0 0.00927 0.92803 0.00808 0.91068
710.7 0.00963 0.92541 0.00839 0.90679
718.4 0.01014 0.93460 0.00847 0.90033
726.1 0.01084 0.92915 0.00891 0.90518
734.8 0.01191 0.93742 0.00950 0.90598
741.5 0.01301 0.93806 0.00968 0.92586
749.2 0.01400 0.93740 0.01033 0.92243
789.7 0.02584 0.95940 0.01607 0.95636
794.6 0.02658 0.95974 0.01634 0.95608
802.3 0.02581 0.95728 0.01468 0.94807
8409 0.01012 0.91755 0.00897 0.93491
849.5 0.01065 0.92006 0.00856 0.94173
865.9 0.01317 0.92972 0.00810 0.94198
881.4 0.01377 0.93333 0.00904 0.94993
934 .4 0.02460 0.95512 0.01945 0.95909
9431 0.02723 0.95971 0.01942 0.95974
947.9 0.02709 0.96043 0.01915 0.95879
971.0 0.01422 0.96310 0.01521 0.94518
1042.4 0.00330 0.95608 0.00233 0.77976
1070.4 0.00735 0.96945 0.00473 0.85127
1078.1 0.00691 0.96567 0.00510 0.84554
1108.0 0.00321 0.96092 0.00297 0.79757
1115.7 0.00334 0.96227 0.00249 0.76332
11244 0.00332 0.96413 0.00124 0.57640
1197.6 0.05576 0.98326 0.04754 0.96424
1205.4 0.05771 0.98325 0.04946 0.96837
1212.1 0.05784 0.98374 0.05663 0.96812
1250.7 0.14100 0.98918 0.20682 0.98506
1257.4 0.14371 0.98559 0.18638 0.98537
1265.1 0.13814 0.98575 0.14568 0.98315
1273.8 0.14085 0.98942 0.11949 0.98199
1282.5 0.14909 0.98878 0.11897 0.97979
1289.2 0.16019 0.98816 0.12722 0.98249
1291.2 0.15879 0.98786 0.12618 0.98200
1296.0 0.15902 0.98827 0.12675 0.98147
1326.9 0.06528 0.97911 0.07512 0.97378
13355 0.05782 0.97879 0.06713 0.97446
1343.2 0.06109 0.97641 0.06557 0.97204
1350.0 0.05995 0.97602 0.06167 0.97239
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Table 29 (cont.) Slopes and R? from Forced Zero-Intercept Linear Regression of Oak
and Pine Standards Curves

Wave Number Qak Pine

(cm'l) Slope R’ Slope R’

1374.1 0.03350 0.96821 0.03611 0.96504
1398.2 0.08614 0.97855 0.07915 0.97238
1405.0 0.09408 0.98061 0.08317 0.97227
1410.7 0.08934 097914 0.07800 0.97426
14291 0.06672 0.98179 0.06363 0.97131
1443.5 0.09553 0.98323 0.08569 0.97345
1450.3 0.08225 0.98160 0.07704 0.97229
1459.0 0.06183 0.97976 0.07240 0.97637
1466.7 0.05877 097711 0.07080 0.97370
14753 0.09394 0.97735 0.08631 0.97516
1482.1 0.10664 0.97548 0.08889 0.97405
1513.0 0.00892 0.90415 0.00171 0.78024
1521.6 0.01014 0.89433 0.00460 0.87869
15274 0.01008 0.88847 0.00662 0.88777
1594.9 0.01374 0.92802 0.00617 0.80101
1607.5 0.00945 0.92335 0.00713 0.80916
1650.8 0.01046 0.90475 0.01153 0.82314
1656.6 0.00999 0.89850 0.01179 0.81816
1731.8 0.02964 091034 0.00805 0.82993
1734.7 0.03030 0.91259 0.00793 0.83370
2140.7 0.00155 0.87213 0.00172 0.67156
2146.5 0.00155 0.87221 0.00172 0.67019
2900.6 0.03582 0.88163 0.03302 0.83486
2904 .4 0.03597 0.88141 0.03293 0.83453
2936.2 0.03342 0.88347 0.03034 0.83366

All of the slopes and R? from oak and pine standard curves were organized in Table
29 as taken from Figure 26, Figure 27 and Figures in Appendix B. Forced zero-
intercept regressions of each oak and pine standard curve were performed because
applying multicomponent analysis based on Beer’s law by simultaneous equations

method requires that the intercept be equal to zero. The three largest slopes of oak
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standard calibration curve were 0.16019 at 1289.2cm™', 0.15902 at 1296.0cm’’, and
0.15879 at 1291.2cm™, and for pine standards, 0.20682 at 1250.7cm™’, 0.18638 at

1257.4cm™', and 0.14568 at 1265.1cm™. For R?, the three best slopes for oak standard
calibration curve are 0.98942 at 1273.8 cm™}, 0.98918 at 1250.7 cm™', 0.98878 at

1282.5 cm™ and for pine standards, 0.98537 at 1257.4 cm™, 0.98506 at 1250.7 em™,
and 0.98315 at 1265.1 cm™.
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7.3 Oak and Pine Mixed Sample Analysis

Mixed samples of red oak and Radiata pine were prepared with 3 replicates each of
500 and 1000 pg, 750 and 750 pg, 1000 and 500 pg, 1000 and 1500 ug, 1250 and

1250 ug, 1500 and 1000 pg, 1000 and 3000 pg, 2000 and 2000 ug, 3000 and 1000 pg.

Table 30 Average Energy Throughput of Oak and Pine Mixed Samples

Mixed Sample 1 0° 1.90° } 20° 2 90° 3.0° 3 90°

1_Pine5000ak1000 3.734 | 3.786 | 3.861 3.785 3.841 3.729
2 Pine5000ak1000 3.878 3.729 3.676 3.729 3.736 3.762
3_Pine5000ak1000 3.868 3.782 | 3.873 3.807 | 3.743 3.739
1_Pine7500ak750 3.782 3.648 | 3.814 3.766 | 3.743 3.691
2_Pine7500ak750 3.703 3.534 | 3.821 3.606 3.803 3.733
3_Pine7500ak750 3.822 3.764 | 3.542 3.585 3.723 3.801
1 _Pinel10000ak500 3.665 3.680 | 3.689 | 3.600 3.775 3.621
2_Pine10000ak500 3.675 3.691 3.674 3.747 3.737 3.700
3_Pine10000ak500 3.632 3.592 3.716 3.701 3.625 3.672

1 _Pinel0000ak1500 | 3.331 3.381 3.357 3.258 3.409 | 3.365
2 Pine10000ak1500 | 3.228 3.173 3.294 3206 | 3356 | 3.414
3 Pinel0000ak1500 | 3.350 | 3.308 3.336 3.391 3.468 3.394
1_Pinel12500ak1250 | 3.413 3.488 3.332 3.340 | 3379 | 3.214
2 Pinel12500ak1250 | 3.133 3.214 | 3.305 3.348 3.256 | 3.176
3 _Pinel2500ak1250 | 3.368 3.235 3.398 3.155 3.394 3.282
1_Pinel5000ak1000 | 3.387 3.397 | 3.354 | 3.378 3.326 3.418
2 Pinel15000ak1000 | 3.310 | 3.311 3.414 | 3.401 3.176 | 3.127
3 Pinel15000ak1000 | 3.370 | 3.341 3.321 3.171 3.270 | 3.123
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Table 30 (cont.) Average Energy Throughput of Oak and Pine Mixed Samples

Mixed Sample 1 0° 1.90° | 20° | 290° 30° | 390°

1_Pinel10000ak3000 | 3.030 | 3.088 3.112 | 3.141 3.142 3.115
2_Pinel0000ak3000 | 3.015 2.964 | 3.063 3.053 3.032 | 3.097
3_Pine10000ak3000 | 2.939 | 2913 3.113 3.003 2959 | 2.968
1_Pine20000ak2000 | 3.015 2.991 3.069 3.030 3.099 | 3.101
2_Pine20000ak2000 | 3.004 | 3.017 | 2.919 | 2.941] 3.065 | 2.936
3_Pine20000ak2000 | 3.092 | 3.035 3.020 | 3.103 2.935 2.945
1 _Pine30000ak1000 | 3.040 | 3.056 | 3.061 3.017 | 3.053 3.083
2_Pine30000ak1000 | 3.147 3.147 | 3.140 | 3.169 | 3.084 | 3.046
3 Pine30000ak1000 | 3.082 3.031 2982 | 2.986 3.060 | 3.041

Table 30 shows the average of energy throughput of each mixed sample of oak and
pine. Procedures for sample preparation and measurement were the same as those of
oak or pine standard analysis. DRIFTS spectra of mixed samples of oak and pine are
shown in Figures 30 and 31. Figure 30 is the part of the spectra of total amount of
1500 pg : Pine 500 pg + Oak 1000 pg, Pine 750 pg + Oak 750 pg, and Pine 1000ug +
Oak 500 pg. Figure 31 is the part of the spectra of total amount of 2500 g : Pine
1000 pg + Oak 1500 pg, Pine 1250 pg + Oak 1250 pg, and Pine 1500 pg + Oak 1000
HE.

As mentioned, saturation was observed from each oak and pine standard of the
amount of 3000 pg and therefore, mixed samples of total amount of 4000 ug such as

pine 1000 + oak 3000 pg, pine 2000 + oak 2000 pg, and pine 3000 + oak 1000 pg

were not analyzed further.
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Table 31 is the average of normal net absorbance of mixed samples of pine and oak.
All net absorbance (K-M) at each wave number in Table 28 was read from six spectra
such as shown in Figure 28. Each net absorbance (K-M) was divided by each energy
throughput (Table 30) and the six normalized net absorbances were averaged. And
then the average of normal net absorbances from three replicate samples which
contained the same amount of oak and pine were averaged. Therefore, for example,
0.008056 marked at 664.4 cm™ of pine5000ak1000 was obtained by the average of

normal net absorbances divided by each energy throughput at Table 30.
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7.4 Selecting Wave Numbers for Applying to Simultaneous Equation Method

Six wave numbers (1250.7, 1257.4, 1265.1, 1282.5, 1289.2, and 1296.0 cm'l) were
selected in the middle of wave numbers based on higher R? and slopes in Table 29.

For applying to multi-component analysis by simultaneous equations method, those
wave numbers were evaluated by the expected value normalized net absorbance
(Table 32 & 33). These expected values were compared to observed values from
Table 31. “a;’ is the slope of pine standard curve and ‘a,’ is the slope of oak standard
curve at each wave number. ‘x;’ is the real amount of pine included in each mixed
sample and °x;’ is the real amount of oak included in each mixed sample. ‘Expected
value’ was calculated by the multi-component equations of Beer’s law. For example,
expected value, 0.244461(=a;x;+azx;) at 1250.7cm™! of Pine5000ak1000 was

calculated by 0.206832 x 0.49984 + 0.141004 x 1.00056. Most expected values were

approximately similar to observed values of each mixed samples at each of the six
selected wave numbers.

Also, there are summed up three percentages of absolute values of difference
between expected and observed values for each wave number and each total amount
of 1.5mg and 2.5mg of mixed pine and oak at Table 32 and Table 33. In total amount
1.5mg of pine and oak, the expected value is close to the observed at 1296.0cm™. In

total amount 2.5mg, there is a range of 8~10 % of sum of differences between the

expected and the observed across the six wave numbers.
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7.5 Multicomponent Analysis by Simultaneous Equations

For solving multi-component analysis, ‘Solver’ in ‘Microsoft Excel 2002’ was used
and multicomponent analysis of fifteen combinations from six selected wave numbers

was performed.

(10) A, = APine + AOak = dpine 'X”ine + Aoak 'XOak

A, : Measured Total Absorbance at a given Wave Number
Abpine : Absorbance of Pine

Aoak : Absorbance of Qak

Apine : Slope of Pine Standard Curve

A0ak : Slope of Oak Standard Curve

XPine : Amount of Pine

Xoak : Amount of Oak

The coefficients and constants used for multicomponent analysis by simultaneous
equations are shown in Table 34, where ‘i’ is a given wave number. From these,
estimated amounts of pine and oak in mixed samples were calculated. For example,

one combination of ‘1pine5000ak1000’is solved by simultaneous equation method of
two equations 0.206822-Xpipe + 0.141004-Xoa = 0.243454 at 1250.7cm™ and
0.186375-Xpine + 0.143713-Xoax = 0.241077 at 1257.4 cm’, resulting in estimates of
0.2889mg pine (actual 0.49984mg) and 1.3028mg oak (actual 1.00056mg) as shown

in Table 35.
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Tables 35 through 37 are estimated pine and oak amounts in mixed samples by
multicomponent analysis of simultaneous equations. The values of either pine or oak
were negative in the combinations of wave numbers at (1282.50m'1, 1289.2cm'1)
(1282.5cm™, 1296.0cm™) and (1289.2cm™, 1296.0cm™) and therefore those
combinations are excluded after this for applying multicomponent analysis.

For selecting the optimal wave number pairings for multi-component analysis, the
percent differences between the actual and estimated values were calculated and are
shown from Table 38 to Table 41. For example, 9.1% at 1250.7 and at 1265.1 cm™ in

mixed sample of 1pine5000ak1000 in Table 34 was equal to | 0.49984(actual pine

amount) — 0.4544 (estimated value)| divided by 0.49984 and then 100(%) was
multiplied. Total (%) is equal to pine (%) plus oak (%).

Table 41 shows 1500 ug means sum of total amount of pine and oak: 500 and 1000
ug , 750 and 750 ug, or 1000 and 500 ug, respectively. 2500 ug is the sum of total
amount of pine and oak: 1000 and 1500 ug , 1250 and 1250 ug , or 1500 and 1000 ug,
respectively. The four lowest averages of total (%) difference of all of 1500 ug and
2500 ug samples were 21.1% at 1250.7 and 1265.1 cm’™', 18.9% at 1250.7 and 1282.5
cm, 21.9% at 1250.7 and 1289.2 cm™, 23.5% at 1250.7 and 1296.0 cm™".

Therefore, these four sets of wave number pairings were selected for use in further

analyses.
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Table 41 Evaluating the Difference Between Actual and Estimated Pine or Oak

Amounts in Mixed Sample: Final Choice of Wave Number Pairings

WN WN 1500 ug 2500 ug 1500&2500ug
(cm™) (cm™) Avg of Total(%) Avgof Total(%) Avg of Total(%)
1250.7 1257.4 48.6 39.7 44.1
1250.7 1265.1 19.1 23.1 21.1
1250.7 1282.5 24.2 13.6 18.9
1250.7 1289.2 26.3 17.4 21.9
1250.7 1296.0 32.5 14.5 23.5
1257.4 1265.1 27.9 28.4 28.2
1257.4 1282.5 39.3 13.1 26.2
1257.4 1289.2 41.6 15.8 28.7
1257.4 1296.0 49.7 14.1 31.9
1265.1 1282.5 60.0 13.1 36.5
1265.1 1289.2 63.1 229 43.0
1265.1 1296.0 77.3 17.2 47.3
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7.6 Multicomponent Analysis of Archived Samples by Simultaneous Equations

For further evaluation, fifteen archived samples were analyzed for oak and pine
content. These samples were collected from the previous epidemiological study for
the wood processing worker health; 5 of the samples contained only oak, 5 contained
only pine, and 5 contained oak and pine. All of the samples were collected in the
same furniture plant and dust weight (Table 42). The procedure for preparing and

analyzing is the same as previously described.

Table 42 Archived Sample Information

Sample ID Wei];]:ts(tmg) Wood Type Plant
15036 0.751 Oak Furniture D
15033 0.929 Oak Furniture D
15123 1.04 Oak Furniture D
15120 1.342 Oak Fumiture D
15243 1.737 Oak Furniture D
15027 0.581 Pine Furniture D
9048 0.846 Pine Furniture D
9165 0.923 Pine Furniture D
9093 0.992 Pine Furniture D
9162 1.621 Pine Furniture D
15255 0.476 Pine & Oak Furniture D
15267 0.459 Pine & Oak Furniture D
9123 2.567 Pine & Oak Furniture D
9156 4.051 Pine & Oak Furniture D
9153 4212 Pine & Oak Furniture D
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The coefficients and constants used for multicomponent analysis by simultaneous
equations of archived samples are shown in Table 43. From these coefficients and
constants, the estimates of pine and oak in archived samples were obtained by
multicomponent analysis and are shown in Table 44.

For example in the Table 43, one combination of sample ‘15036’ is solved by

simultaneous equation method of two equations 0.206822-Xpjne + 0.141004 Xpax =
0.099194 at 1250.7cm™’ and 0.145683 Xpine + 0.138139 X = 0.090235 at 1265.1cm”

I The slopes of each wave number are the same as in Table 34. This results in
estimates of 0.525mg oak, 0.122mg pine and 0.647mg total (0.751mg dust weight) as
shown in Table 44. The dust weight shown in Table 44 represents total dust at
ambient humidity, whereas the estimates from the multicomponent analysis by

simultaneous equations are for dry wood solids alone.
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Table 43 Coefficients and Constants Used for Multicomponent Analysis by

Simultaneous Equations about Archived Samples

(cm™)

15036
A

15033
A

15123
Agi

15120
Ay,

15243
Ay

1250.7
1265.1
1282.5
1289.2
1296.0

0.099194
0.090235
0.069617
0.066648
0.062888

0.107676
0.094747
0.078381
0.076488
0.072038

0.081555
0.074948
0.061047
0.061355
0.058018

0.203822
0.193667
0.171192
0.170377
0.162639

0.168820
0.153516
0.135369
0.138326
0.135139

15027
Ami

9048
ALi

9165
Ani

9093
Ay

9162
Agi

0.068195
0.059482
0.044668
0.043408
0.040597

0.153907
0.121833
0.083702
0.082493
0.078021

0.226319
0.192266
0.151663
0.151634
0.147358

0.156887
0.121507
0.089514
0.088316
0.080926

0.334411
0.267037
0.207351
0.207580
0.201790

15255
A

15267
Ay

9123
Ani

9156
Ay

9153
Ay

1250.7
1265.1
1282.5
1289.2
1296.0

0.046217
0.041293
0.030999
0.030417
0.028717

0.049763
0.044688
0.034238
0.033503
0.031842

0.425510
0.383932
0.330783
0.333551
0.324690

0.547208
0.459591
0.412632
0.433615
0.414962

0.611896
0.518888
0.463348
0.485944
0.470277
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Prepared samples containing only oak or only pine were also evaluated. Each
sample of 250, 500, 1000, 1500, 2000, and 2500 pg of oak or pine was prepared and
analyzed as the same described previously.

The coefficients and constants used for multicomponent analysis by simultaneous
equations of only oak or only pine samples are shown in Table 45. From these
coefficients and constants, the estimates of oak and pine in samples obtained by
multicomponent analysis are shown in Table 46.

For example in the Table 45, one combination of sample ‘pine2000° is solved by

simultaneous equation method of two equations 0.206822-Xpine + 0.141004- Xoa =

0.429103 at 1250.7cm™ and 0.145683Xpine + 0.138139-Xpak = 0.309904 at 1265.1cm”

!. The slopes of each wave number are the same as in Table 33. This results in
estimates of 1.940mg pine (1.999mg actual pine), and 0.197mg oak (Omg actual oak)
as shown in Table 46.

From this dry wood estimates analysis, unknown mixture of carcinogenic and non-
carcinogenic (oak and pine) wood could be apportioned quantitatively. Therefore,
dry wood analysis by DRIFTS with simultaneous equations at multiple wave number
pairings is better than quantitative determination of total dust weight in the

carcinogenic wood mixture.
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Table 45 Coefficients and Constants Used for Multicomponent Analysis by
Simultaneous Equations for Oak or Pine Standards

WN pine250 pine500 pinel000  pinel500  pine2000  pine2500
(cm-1) Ap&o,i Ap&o,i Ap&o.i Ap&o.i Ap&o,i Ap&o.i
1250.7 0.024213 0.085398 0.229989 0.323686 0.429103 0.493337
1265.1 0.014502 0.055745 0.156970 0.222163 0.309904 0.348035
1282.5 0.009387 0.040372 0.122023 0.178406 0.257260 0.286422
1289.2 0.009717 0.043358 0.130073 0.190339 0.271628 0.309496
1296.0 0.009692 0.042860 0.130038 0.187675 0.272135 0.308226
Actual 0.250 0.500 1.000 1.500 1.999 2.499

Amount(mg)

WN oak250 0ak500 0ak1000 oak1500 0ak2000 0ak2500
(cm-1) Apgo.i Apgoi Apgoi Apgos Apgoi Apgoi
1250.7 0.018133 0.064916 0.142851 0.223547 0.295083 0.337350
1265.1 0.018114 0.064825 0.137869 0.224995 0.289217 0.327351
1282.5 0.017555 0.063438 0.137660 0.231063 0.315465 0.363686
1289.2 0.017453 0.066638 0.146741 0.246529 0.339266 0.392442
1296.0 0.017960 0.066134 0.144686 0.244538 0.336727 0.390067
Actual 0.250 0.500 1.001 1.501 2.001 2.501

Amount(mg)
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VIII Discussion

Wood Solid Analysis by DRIFTS in Personal Dust Sample Collected from

the Wood Processing Industry Study

Wood solid analysis by DRIFTS technique was applied to 521 size-fractionated
Respicon sample sets collected from wood processing industry during a six year
epidemiologic study. The results were analyzed by Kruskal-Wallis one way ANOVA
on ranks with plant type, job activity, and wood type as treatment variables and by

Mann-Whitney test for multiple comparisons within treatment.

Currently wood dust analysis is conducted by traditional gravimetric method.
However, wood dust in samples collected from wood processing industry includes
wood solids and residual particulate matter: some materials from wood, contaminants
from its storage and processing, and background particulate contaminants in
industrial facilities including engine exhaust, soil and road dust, oil mist, and etc.
Therefore, it is important to specifically determine wood solid by DRIFTS technique

in size-fractionated airborne particulate samples from wood processing industry.
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Removal of Outliers/ Descriptive Statistics

From the Figure 9 through Figure 18, box plot of ‘Minitab 16.1.0° was applied to
removing the outliers from size-fractionated wood solid percentage (WS %). Several
huge WS % data were included in each plant after DRIFT technique. Box plot was

selected because of data size and non-normal data distribution of WS %.

For the ten plants, the average of respirable WS % was 13.8 %, thoracic WS %
60.2 %, and inhalable WS % 42.6 % after removing outliers. The lower content of
wood solids in respirable dust was shown comparing to thoracic and inhalable dust
because of fine particles from non-wood sources such as engine exhaust and
environmental tobacco smoke. Also, most of cases WS % of thoracic was larger than

WS % of respirable and inhalable by plant or plant type except sawmill-planing-

plywood.

Each average of respirable, thoracic, and inhalable WS % in the furniture plant was
13.4 %, 67.4 %, and 44.2 %, in the cabinet plant 30.5 %, 86.0 %, and 63.5 %, and in
the secondary millworks plant 10.3 %, 61.7 %, and 46.8 %, and in the sawmill-
planing-plywood 2.2 %, 6.1 %, and 5.9 %. Cabinet plants showed the highest content
of wood solid in all three size fraction. In sawmill-planing-plywood plant type,

WS % was clearly less in the dust than for the other plant types because of the

emission of resin binders and exterior dust contamination in the making of plywood

while also processing of primarily green wood.
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Each average of respirable, thoracic, and inhalable WS % by wood type was 26.5 %,
89.5 % and 63.6 % (highest WS %) in mixed wood, and 2.2 %, 6.4 % and 5.2 %
(lowest WS %) in plywood. Each average of size-fractionated WS % by job activity
was 21.5 %, 83.3 % and 59.0 % (highest WS %) in sanding, and 1.5 %, 2.1 % and

6.0 % (lowest WS %) in debarking/log yard.

Kruskal-Wallis ANOVA (on Ranks) Size-Fractionated WS % and Multiple

Comparison by Plant Type, Wood Type, and Job Activity

Kruskal-Wallis (K-W) one way ANOVA on ranks (nonparametric ANOVA) was
used for ANOVA and for multiple comparisons within groups, Mann-Whitney test

(nonparametric two independent sample test) was performed.

Plant Type

There is a statistically significant difference (p<0.001) between plant types by K-W
one way ANOVA on ranks. However, all of size fractionated WS% in the furniture vs
secondary millwork were not significantly different (p>0.05) whereas all other

pairwise WS % comparisons for plant type were statistically different.

Wood Type

There is a statistically significant difference (p<0.001) between wood types from all
of size fractionated WS %. All of size fractionated WS % in the hardwood vs

engineered wood is not significantly different (p>0.05). However, this engineered

wood has very small sample number (6).
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Job Activity

There is a statistically significant difference (p<0.001) between job activity from all
of size fractionated WS %. There are no significant differences in many pairings of
job activity: sawing vs milling, sawing vs PSV, sawing vs others, sanding vs blow
down/compressed air, milling vs PSV, and PSV vs others in all of size fractionated
WS %. Most of sanding is significantly different with other job activities except with
blow down/compressed air.

From the results of these analyses, wood solid contents were different from sources
of size-fractionated dust in wood processing industry by plant type, wood type, and

job activity.

Prediction Modeling of Inhalable Wood Solid Percentage

The objective is to develop a model for prediction of inhalable WS % from various
easily measured determinants. Linear regression analysis was used to determine
prediction model by obtaining coefficients for various determinants. Correlation for
evaluating predicted data vs observed data of inhalable WS % was performed with

Pearson correlation and Spearman’s rho (nonparametric correlation test)

1. Prediction Model A of Inhalable WS % from 10 Plants

The equation of coefficients of model A is as follows:
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(11) Inhalable WS % = 45.6 + 19.8 * Cabinet + 12.3 * Secondary millwork - 17.2 *
Sawmill-planing-plywood - 1.89 * Green wood - 0.848 * Green/dry wood mixed -
14.2 * Hardwood - 22.3 * Softwood + 1.09 * Formaldehyde - 12.6 * PSV

The coefficients for determinants of green wood, green/dry wood, and
formaldehyde, were not statistically significant. There is confounding between
sawmill-planing-plywood vs green wood, green/dry wood, and formaldehyde because
these materials are only present in the sawmill-planing-plywood factories. The
observed and predicted value of each inhalable wood solid % are followed: 50.0 %
and 45.6 % in furniture A, 31.1 % and 38.2 % in furniture B, 53.2 % and 45.6 % in
furniture C, and 42.3 % and 45.6% in furniture D; 72.3 % and 65.4 % in cabinet A,
and 52.6 % and 61.2 % in cabinet B; 34.0 % and 34.5 % in secondary millwork A,
and 58.1 % and 57.6 % in secondary millwork B; 7.22 % and 6.35 % sawmill-
planing-plywood A, and 4.44 % and 5.45 % sawmill-planing-plywood B. Most
correlations between observed and predicted inhalable WS% are statistically

significant (p<0.01).

2. Prediction Model B of Inhalable WS % from 10 Plants

From the prediction model A, the reciprocal of inhalable dust weight was added as
an additional determinant. Because denominator of wood solid percentage is
inhalable dust weight and therefore, this was considered as a determinant.

The equation of coefficients of model B is as follows:
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(12) Inhalable WS % = 49.8 + 19.1 * Cabinet + 13.5 * Secondary millwork - 9.47 *
Sawmill-planing-plywood - 0.274 * Green wood - 7.04 * Green/dry wood mixed -
13.6 * Hardwood - 21.1 * Softwood - 6.01 * Formaldehyde - 12.7 * PSV - 6.16 *
Reciprocal inhalable dust weight

Coefficients of determinants of green wood, green/dry wood, formaldehyde, and
sawmill-planing-plywood there were not statistically significant.

The observed and predicted value of each inhalable WS% are followed: 50.0 % and
45.6 % in furniture A, 31.1 % and 38.7 % in furniture B, 53.2 % and 45.5 % in
furniture C, and 42.3 % and 45.4 % in furniture D; 72.3 % and 66.4 % in cabinet A,
and 52.6 % and 57.0 % in cabinet B; 34.0 % and 34.2 % in secondary millwork A,
and 58.1 % and 57.9 % in secondary millwork B; 7.22 % and 3.36 % sawmill-
planing-plywood A, and 4.44 % and 8.92 % sawmill-planing-plywood B. All

correlation between observed and predicted inhalable WS% are significant (p<0.01).

3. Evaluation and Validation of Prediction Model C of Inhalable WS % from 8 Plants
Two plants (furniture C and sawmill-planing-plywood A) were randomly selected
for validating the prediction modeling obtained from the remaining 8 plants (Model
C).
The equation of coefficients of model C is as follows:

(13) Inhalable WS % = 43.1 + 22.3 * Cabinet + 15.2 * Secondary millwork - 15.3 *
Sawmill-planing-plywood - 1.69 * Green wood - 0.723 * Green/dry wood mixed -

10.3 * Hardwood - 23.3 * Softwood + 1.81 * Formaldehyde - 12.6 * PSV
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The coefficients of the determinants of green wood, green/dry wood, and
formaldehyde were not statistically significant. The observed and the predicted
inhalable WS% in furniture are 53.1 % and 43.1 %, in sawmill-planing-plywood
7.22 % and 5.87 %, and in overall 32.5 % and 26.3 %. The predicted values are all

within 20 % of the observed which supports the validity of the modeling approach.

4. Evaluation and Validation of Prediction Model D of Inhalable WS % from 8 Plants

From the prediction model C, the reciprocal of inhalable dust weight was again
added as one of determinants.

The equation of coefficients of model D is as follows:
(14) Inhalable WS % = 49.3 + 21.2 * Cabinet + 16.4 * Secondary millwork - 11.9 *
Sawmill-planing-plywood - 3.16 * Green wood - 1.47 * Green/dry wood mixed - 10.9
* Hardwood - 20.6 * Softwood - 0.476 * Formaldehyde - 12.7 * PSV - 8.79 *
Reciprocal inhalable dust weight

The coefficients for determinants of green wood, green/dry wood, and
formaldehyde were not statistically significant. The observed and the predicted
inhalable WS % in furniture are 53.1 % and 43.1 %, in sawmill-planing-plywood
7.22 % and -6.63 %, and in overall 32.5 % and 20.7 %. As the results of the
predicted values including negative predictive values for sawmill-planing-plywood,
this prediction model D is not good fit for evaluating this inhalable WS %. Therefore,
from the evaluating and validating prediction model of inhalable wood solid

percentage from 8 wood processing plants, model C is recommended.
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Multicomponent or Mixed Wood Analysis by DRIFTS

This study is a mixed wood (oak and pine) analysis by using basically DRIFTS
technique for (1) selecting optimal multiple wave numbers based on the lowest
differences between actual and estimated values of wood solids, and then (2)
determining the amounts of oak and pine in mixed samples using the multicomponent

simultaneous equation technique.

Exposure assessment to wood dust is difficult because the etiologic agents of
disease are not identified well and the chemical composition is complex. Wood dust
was classified as a carcinogen by the International Agency for Research on Cancer
(IARC) and American Conference of Governmental Industrial Hygienist (ACGIH)
has classified oak and beech dusts as Al (confirmed human) carcinogens and
recommended a threshold limit value of lmg,/m3 (inhalable fraction) for all other
species dusts. Also, the exposure to wood dust has been linked to various respiratory
health effects such as hypersensitivity and asthma. Therefore it is important to know

each specific amount of the mixed woods: oak, carcinogenic wood and pine, non

carcinogenic wood.
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Decision of Pairings of Wave Numbers

From the study of the mixture of oak and pine, the optimum combinations of wave
numbers were selected: (1250.7 cm™, 1265.1 em™), (1250.7 cm’™’, 1282.5 cm™),
(1250.7 cm™, 1289.2 cm™), and (1250.7 cm™, 1296.0 cm™). The optimal selection of
wave number pairings was evaluated by average of total (%) differences between
known and estimated amounts of pine and oak in mixed standards: 21.1 % at (1250.7
cm’', 1265.1 cm™), 18.9 % at (1250.7 cm’', 1282.5 cm™), 21.9 % at (1250.7 cm™,
1289.2 cm™), and 23.5 % at (1250.7 cm™", 1296.0 cm™).

This work utilized only two total amounts of wood solids, 1500 pg and 2500 ug,

with varying composition of oak and pine.

Multicomponent Analysis of Archived Samples by Simultaneous Equations

Multicomponent analysis was performed on fifteen samples: five only oak, five
only pine, and five oak and pine from furniture D plant from a six-year longitudinal
epidemiologic study. As a result of analyzing, the mean %difference + standard
deviation (range) between actual and estimate values, are 33.6 + 17.7 % (7.50,

55.0 %) in only-oak samples, 23.3 + 13.1 % (4.55, 38.2 %) in only-pine samples, and
26.5+ 17.9 % (3.45, 47.7 %) in mixed oak and pine samples. Most of cases, actual
amount is larger than estimate value because actual amount is the total dust weight at

ambient humidity and the estimate value represents only dry wood solids obtained

from multicomponent analysis by simultaneous equations.
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In all of only oak archive samples, small amounts of pine were estimated in Table
44. There are a few possibilities; these samples might be contaminated or mixed due
to mishandling, the information in the archives concerning wood types is wrong or
missing, or Radiata pine standards prepared in the lab are not representative of pine
archive samples of furniture D.

In only oak or only pine standards in Table 46 or only pine archive samples in
Table 44, the amount of the alternate component (pine or oak) was estimated as a
small negative number by the simultaneous equation method. These numbers were
calculated from solver function in Microsoft Excel; if the option to disallow negative
values were used in Solver, the result of estimated original data of oak or pine would
be changed.

The significant bias observed in samples that contain only one component remains
a problem with this method of multicomponent analysis. A contributing factor may
be the non-zero intercepts that are observed in some of the wave number standard
curves. The method of simultaneous equations requires that there be no constants in
the equations so that forced-zero intercept regression analyses had to be done to
develop the standard curves. The source of these non-zero intercepts should be
investigated further with aim of eliminating them or developing an alternative

simultaneous equation algorithm that would allow the input of constants into the

component equations.

132



Further Study

In this work, the mulicomponent simultaneous equation technique was applied to
dust samples containing a mixture of the carcinogenic wood, oak and the non-
carcinogenic pine. In a similar fashion, the technique could be applied to the analysis
of mixtures of pine and other carcinogenic woods, especially beech.

Data obtained in the six-year epidemiologic study of the wood industry showed that
in some plants in the furniture and cabinet making segments, more than two species
of wood were being used at various plants including maple and birch in addition to
oak and pine. The multicomponent simultaneous equation technique is applicable to
mixtures containing more than two components.

For example, for three species wood dust, this technique can be applied:

(15) A, = A+ Ap + A, = eglcg+ eplcyteslc,

A, : Total absorbance at a given wave number
A, .. : Absorbance of each componenta, b, or ¢
€abc . Absorptivity of component a, b, orc

/ : Pathlength

Cap.c - Concentration of component a, b, or ¢

This method needs at least three equations to solve for three unknowns along with

measuring the absorbance of the sample at three different wave numbers.
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IX Conclusions and Recommendations

This wood solid analysis by DRIFTS was applied to size-fractionated samples
collected from wood processing industry and the result of analysis showed the
different characteristic of wood dust analysis by plant type, job activity, wood type,
and so on comparing with the traditional gravimetric method. Gravimetric analysis is
a non-specific technique and integrates all particle mass including the non-wood
derived particles of the dust.

A mixture of carcinogenic and non-carcinogenic woods (oak and pine) was
quantitatively analyzed after finding the optimal pairings of wave numbers for use in
multicomponent analysis. This method is helpful for unknown information for wood
samples and most importantly, the information of carcinogenic wood can be obtained
by this analysis. Further application of this technique to the carcinogenic woods
(beech, birch, mahogany, teak, and walnut) is recommended.

This study of wood solid analysis by DRIFTS shows important differences in
sources of size-fractionated dust in wood processing industry based on wood solid
content, and provides a new analytical standard method for determining the amounts

of specific woods in a binary wood dust mixture in the industrial setting.
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Appendix A

Field Sample Format
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Plant # Area Date
Name Job Title
Activity
Respeon® [J Assembly  Time Pont
Stage 1# [ Biowdown Relative Humidity
Sage 2t ] Cleanup Temperature
Stage 34 D Maintenance Pressure
Pump#__ [ Mmilling
Stat Time______ D Mouiding Confounders
Stop Time____ D Planing D Engine Exhaust
Initial Flow (J sanding UFinishes
Final Flow [ sawing [oiue
Wood Type [ shaping [ITobacco Smoke
D Hard D Sorting D Other
[Ison [ supervisar L] None
D Particie Board l___] other Engineering Controls
D Other Task D Enciosed Machine
Work Rate D Manuai D Enciosed Operator
O High [] Automatic [JLocal Exhaust
[ Normal Machine Type [ other
D Low Machine # D None
Comments:
Completed By: Data sheet#__
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Appendix B

Oak or Pine Standard Calibration Curves
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Figure B.1 Oak Standard Calibration Curves at 718.4, 726.1 & 734.8 cm”

145



| 741.5 cm™’
. 0_040 —_ .
0035 T T "70*0737“7” T T
. y = 0. 01 x P

(2] —

g 0.030 R? = 0.93806 . w

~ 0025 +— — : <

[} L J

=< 0.020 ,

]

- EoO005 +—
: o
. 2 0010 1 - .
oo u/ ¢  y=0.01441 x - 0.00249
| 005 - R? =0.95040
0.000 : ; ‘, i
0 0.5 1 1.5 2 2.5 3
Oak(mg)
749.2 cm’!
0.040 T :
0.035 : %
% o0 L y = 0.01400 x o .
L R =0.93740 ~
. g 0.025 y
- Z 0020
. E 0.015 TR

(e _ -

2 0010 - y = 0.03564 x = 0.00292
0.005 R? = 0.95183
0.000 ; } t + + {

0 0.5 1 1.5 2 2.5 3
Oak(mg)
| 789.7 cm”'
0.060 | ,,,,,y%Q,O&% b S A
y R? = 0.95940
I _‘g 0050 +—--—— —— - —— e
<
3 0040 e
=z
= -
g 0.030
20020  — S e
| o010 — ¥ = 0.02892 x. = 0.00549
| - R? =0.97461 |
I 0.000 : % = = = !
T 0 0.5 1 1.5 2 2.5 3

‘ Qak({mg)

Figure B.2 Oak Standard Calibration Curves at 741.5, 749.2 & 789.7 cm’!

146



fﬁmfﬁ L o
, 794.6 cm
i 0.070 T
‘ 0.060 + -—— ,yj,o,_OLG,Sﬁ,)L e o ‘
5 R? = 0.95974 ‘
§ 0050 { — - —r=*r z |
| 30040 - — !
g 0.030 - — o 5
S 0.020 _7/ . ——
0.010 — y = 0.02990 x = Q00592
0,000 / \ _ _R?’=0.97634 |
0 0.5 1 1.5 2 25 <
Qak(mg) !
: 802.3 cm™"
0.070 T -
0.060 |  y=10.02581 x__ adil
| @ R? = 0.95728 *
£ 0050 | o mT ,
© 30040 T -
= | L
z 0.030
S 0.020 —
0.010 __y.=0.02903 x ~ 0.00575
0.000 . R?=0.97388
' 0 05 1 15 2 25 3
i Oak(mg)
840.9 cm '
y = 0.01012 x ,¢
0.025 1 "TR2 Z70.91755
8 0020 | - o — -
| <C
| @ 0.015 —
| =
| & o010 ¢ - S
| & y = 0.01196 x — 0.00328
: 0.005 .
= R? = 0.94844
0.000 T e S|
0.005 ) 05 1 1.5 2 25 3
l Qak(mg)

Figure B.3 Oak Standard Calibration Curves at 794.6, 802.3 & 840.9 cm’’
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Figure B.4 Oak Standard Calibration Curves at 849.5, 865.9 & 881.4 cm’!
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Figure B.5 Oak Standard Calibration Curves at 934.4, 943.1 & 947.9 cm’
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Figure B.6 Oak Standard Calibration Curves at 971.0, 1042.4 & 1070.4 cm’!
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Figure B.7 Oak Standard Calibration Curves at 1078.1, 1108.0 & 1115.7 cm’”
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Figure B.8 Oak Standard Calibration Curves at 1124.4,1197.6 & 1205.4 cm’!
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Figure B.9 Oak Standard Calibration Curves at 1212.1, 1250.7 & 1257.4 cm’™
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Figure B.10 Oak Standard Calibration Curves at 1265.1, 1273.8 & 1282.5 cm”'
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Figure B.11 Oak Standard Calibration Curves at 1289.2, 1291.2 & 1296.0 cm™
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Figure B.12 Oak Standard Calibration Curves at 1326.9, 1335.5 & 1343.2 cm’!
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Figure B.13 Oak Standard Calibration Curves at 1350.0, 1374.1 & 1398.2 cm’!
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Figure B.14 Oak Standard Calibration Curves at 1405.0, 1410.7 & 1429.1 cm’!
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Figure B.15 Oak Standard Calibration Curves at 1443.5, 1450.3 & 1459.0 cm’!
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Figure B.16 Oak Standard Calibration Curves at 1466.7, 1475.3 & 1482.1 cm’!
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Figure B.17 Oak Standard Calibration Curves at 1513.0, 1594.9 & 1607.5 cm’!
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Figure B.18 Oak Standard Calibration Curves at 1650.8, 1731.8 & 1734.7 cm™
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Figure B.19 Pine Standard Calibration Curves at 718.4, 726.1 & 734.8 cm’!
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Figure B.20 Pine Standard Calibration Curves at 741.5, 749.2 & 789.7 cm’!
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Figure B.21 Pine Standard Calibration Curves at 794.6, 802.3 & 840.9 cm”
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Figure B.22 Pine Standard Calibration Curves at 849.5, 865.9 & 881.4 em’!
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Figure B.23 Pine Standard Calibration Curves at 934.4, 943.1 & 947.9 cm’’
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Figure B.24 Pine Standard Calibration Curves at 971.0, 1197.6 & 1205.4 cm™
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Figure B.25 Pine Standard Calibration Curves at 1212.1, 1250.7 & 1257.4 cm’™

169



o . 1265.1 ¢cm”" , \

0.35  y =0.14568 x_ . ‘
. 2 _ v
R?=0.98315 , ~ |

o
~

4 03— . |
To025 +— v—\7/_ L J
[«8)

< 02 - g . - :

| ®

! g 0.15 /’ ) | | ‘

2 04 .y =0.15294 x - 0.01294 i

. - .
0.05 7//_ R? = 0.98622
. L ] |

0 . T
|
o o5 1 _1 .
| Pinetmg) ° 2.5 8 r
o3t - 12788em '
o3 L y = 0,11949 x

R? = 0.98199

Normal Net Abs
(@]
N

»

0.15 : / E .

0.1

005 ___/_,_____»___ _M___? 0122767 X — 001458 ;
R® = 0.98758

} O T { ‘ : T ;
‘ 0 0.5 1 pindiBa) 2 25 3
- T -~
035 r 1282.5 cm
. y=0.11897x )
- 03 R? = 0.97979 .
‘40025 +— —

Norrhgél Net A
(@]
o
|
|

y =0.12843 x — 0.01686
~ R?”=0.98718
1’ 0 , : e } —

¢] 0.5 1 1.5 2 2.5 3
Pine(mg)

Figure B.26 Pine Standard Calibration Curves at 1265.1, 1273.8 & 1282.5 cm’!
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Figure B.27 Pine Standard Calibration Curves at 1289.2, 1291.2 & 1296.0 cm”!
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Figure B.28 Pine Standard Calibration Curves at 1326.9, 1335.5 & 1343.2 cm’!
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Figure B.29 Pine Standard Calibration Curves at 1350.0, 1374.1 & 1398.2 cm’!
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Figure B.30 Pine Standard Calibration Curves at 1405.0, 1410.7 & 1429.1 cm’
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Figure B.31 Pine Standard Calibration Curves at 1443.5, 1450.3 & 1459.0 cm’
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Figure B.32 Pine Standard Calibration Curves at 1466.7, 1475.3 & 1482.1 cm’!
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