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Abstract of thesis entitled: 

Generalization of Nonlinear Integrals and Its Applications 

Submitted by WANG, Jinfpng 

tor the degree of Doctor of Philosophy 

at The Chinese University of Hong Kong in December 2009 

Nonlinear Integral (NI) is a useful integration tool. It has been applied to 

mail)' areas including classification and regression. The classical method re-

lies on a large nuniber of training data, which lead to large time and space 

complexity. Moreover, the classical Nonlinear Integral has many limitations. 

For dealing with different situation, we propose Double Nonlinear Integrals 

and Nonlinear Integrals with Polynomial Kernel to deal with the problems 

transversely and longitudinally. 

When the data to be classified have special distribution in the data space, 

the projection may overlap and the classification accuracy will be lowered. 

For example, when one group of the data is surrounded by the data of an-

other group, or the number of classes for the data is large. To handle this 

、 

kind of problems, we propose a new classification model based on the Dou-

ble Nonlinear Integrals. Double Nonlinear Integral means projecting to a 

2-Diinensioiial space by using the Nonlinear Integral twice in succession and 

cla^ssifyiiig the virtual values in the 2-D space corresponding to the original 

data. Double Nonlinear Integrals can lessen loss of information due to the 

intersection of different classes on real axis. Accuracy will also be increased 
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accordingly. 

The classical Nonlinear Integrals implement projection along a line with 

respect to the features. But in many cases the linear projection cannot achieve 

good performance for classification or rfigrn.ssjon due to rlu^ liniit.rU ion of tl". 

integrand. The linear function used for the integrand is just a special type 

of polynomial functions with respect to the features. We propose Nonlinear 
J 

Integral with Polynomial Kernel (NIPK) in which a polynomial function is 

used as the integrand of Nonlinear Integral. It enables the projection to 

be along different types of curves on the virtual space, so that the virtual 

values gotten by the Nonlinear Integrals with Polynomial Kernel can be beiif i 

regularized and easier to deal with. Experiments show that there is evident 

improvement of performance for NIPK compared to classical NI. 

Another extension of Nonlinear Integral, Upper and Lower Nonlinear In-

tegrals, which is a pair of extreme nonlinear integrals to contain all types ot 

Nonlinear Integrals in the same scheme, is also proposed. It can give a s(、t 

of upper and lower bounds which include all types of Nonlinear Integrals 

We tried to find a solution with the smallest distance between the upper and 

lower bounds and the smallest error which is a NP hard problem. So we 

use the multi-objective optimization method to find a set of results for the 

regression model based on the Upper and Lower Nonlinear Integrals. We can 

just select one or more optimal solution(s) for a specific problem from the set 

of results. A weather predictor based on this model has been constructed to 

predict the next days temperature changing trend and range. 

Finally, a NI based data mining framework has been established for iden-

tifying the chance of developing liver cancer based on the Hepatitis B Virus 

DNA sequence data. We have shown that the framework obtains the best 

diagnosing performance amongst many existing classifiers. 
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摘要 

非線性積分是一種很有用的求和工具》目前已經被應用到了分類和回歸等很多領域•它 

可以將原始數據投影到一個虛擬空間I然後用簡單的線性分類器來分類處擬値•所對應的原 

始數據也隨之分類•本文中•我們在傳統非線性積分的算法》»上分別從横向和縱向上提出 

了兩種擴展方法…雙重非線性積分（DNI)和多項式非線性稹分（NIPK) • 

現貪敗據中存在投影重疊的情況，例如一類敗據被另一類敗據包圍，用傳統的非錢性幾 

分進行投影會影響分類準確度.因此.我們創建一種基於雙重非雄性積分的分類器.雙重非 

線性横分即是用傳統非線性楨分速績投影兩次映射到二維空間，然後再將二位空間的數»^1 

行分類•雙重非錢性積分能釣滅少由於類間交«所引起的信息丟失，從而提高準確率• 

經典的非錢性橫分是沿直錢進行投影.但在一些寊睡情況中，数據分佈是較爲複雜的， 

單一的直錢很難覆蓋同一類卻不在同一直錢上的數據，逭樣就會影響分類或者回録的性能. 

本文我們提出了指数非线性積分，就是用一個指数函数来代替傳統的一次錢性函敗作爲非錢 

性《分的積分函敗，即非錢性積分的核.指敗非錢性積分可以將原始数據沿著不同的曲线投 

影到映射空間.使得所得到的投影值能均更好的描述原始数據. 

111 



我們還提出了另一種非線性積分的擴展形式，即上下限非線性積分•這是一對能夠包含 

各種非線性積分的極限非線性積分•它能夠給出一對非線性積分値的上下界•我們試圓找到 

--個較好的解使得上下界的距11和界外點距離 近邊界的距離達到ft小’這是一個NP-hard 

問題，因此我們使用多目檷優化方法爲基于上下限積分的回歸模型找到一組優化解。基於此 

模型•我們建立了一個天氣預測器，它能夠$1«給我們第二天氣溢的變化趨勢和範圍• 

後•我們建立一個基於非钱性積分的數據控掘框架用來進行肝癌患病率的預測.通過 

和傅統算法比較•證IT我們的数據挖&框架具有 好的診斲性能• 

IV 
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Chapter 

Introduction 

Knowledge integration and decision making by humans are often done in 

environments where information are interdependent or interactive. Artifi-

cial intelligence researchers have been attempting to emulate this capability 

in computer systems to handle information fusion which assumes the input 

variables are inclepedent. Nevertheless, the interaction among the informa-

tion is ubiquitous in practical databases. This thesis is mainly devoted to 

a comprehensive investigation on the innovative data mining methodologies 

which merge the advantages of the Fuzzy Measure and Nonlinear Integral in 

representation of nonlinear relationship to deal with the interaction among 

features with respective to contribution. 

This chapter gives a brief research background and introduction of this 

thesis. The model building, linearity, and nonlinearity in data mining are first 

introduced in Sections 1.1 and 1.2, respectively. The state-of-the-ajt of data 

mining models are reviewed and compared in Section 1.3. In Sections 1.4 and 

1.5 the motivation and the problem definition respectively. The contribution 

of this thesis is presented in Section 1.6. Finally, the organization of this 

thesis is given in the last section. 
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1.1 Model Building in Data Mining 

Data mining is an interdisciplinary field with a general goal oi predi(J,ing 

outcomes and eliciting relationships in data. The main goal ol datn iiiiiimi^ 

is to extract knowledge from data. This knowledge is usually represented by 

means of a particular data model that is extracted from the database. There 

are diverse tools employing sophisticated algorithms to discover hidden pat-

terns, associations and structures from large amount of data stored in data 

bases or other information sources. Huge amount of data have been collected 

and stored in databases of financial invfistmont, nip.diraJ rarr，inrliisr.ry man-

ufacturing, telecommunication, scientific research, and last but not least, the 

World Wide Web. Explosive growths and diverse forms of stored data would 

be useless until we have new techniques and tools that can intelligently ami 

automatically assist us in eliciting valuable knowledge from raw data. Re-

gression Analysis, Rule based Classifiers, and Neural Networks are some ot 

the well known models. Information fusion is useful in the process ot model 

building. 

Data mining uses information fusion techniques for improving the quality 

of the extracted knowledge. The three distinct uses of information fusion 

are(l): 

I n f o rma t i on fusion in preprocessing: Fusion is used to increase tlie 

quality of raw data prior to the application of data mining methods. 

I n f o rma t i on fusion for bu i ld ing models: The model built from data 

uses some kind of information fusion technique (e.g. a particular aggregation 

operator to fuse partial results). 

Informat ion fusion is used to extract information: The knowledge 

extracted from data is the result of a particular information fusion technique. 
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E .g., ail aggregated value computed from the data. 

Information fusion techniques can be used in two modes [1]. One way is to 

define the model using fusion techniques. A particular aggregation operator 

combines a set of inputs to obtain an output. An aggregation operator takes 

data trorii inforriiation sources and computes an aggregated value. If we de-

note the data by the information source Xi in â  = f (x i ) , then the aggregated 

value can be represented by /“⑷，a。，•"，ci„)，where T expresses the integra-

tion operator. Given a set of I examples, each example for i € {1,2,. . . ,/} con-

sists on the values for variables (a\, a j , a j , ) and the outcome A model 

of this data is build using an aggregation operator F . Building a model need 

finding the operator T and the parameters so that a j , ^n) is more 

similar to for all the examples. The other way using fusion techniques is 

i-o fombiiie several data models. This is described in [2，4, 6]. The operators 

considered in combination modules include voting [5, 6) and the weighted 

mean 6). Bagging [7] and Boosting [8] are well-known examples of machine 

learning algorithms for learning such complex data models. 

1.2 Linearity and Nonlinearity 

Most data mining problems are based on aggregation models to describe how 

determinant features influence determination. The traditional aggregation 

tool is lineal as y = uiXi + a2工2 + ... + where y is the aggregation value 

tor deterniiiiatioii, x, is the value of predictive feature, a, is the unknown coef-

ficients for i = 1，2，."，n, and n is the number of predictive features. The basic 

assumption iu such a linear model is that there exists no interaction among 

predictive features to determination. This means that influence to decision 

from predictive features are independent such that the global contribution 
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of the set of all predictive features to decision is just a simple sum of their 

respective contributions. However, a question is how to get the aggregation 

when predictive features are dependent. 

Actually in many real-world problems, the iiileiaclioii aiiioiig pit-'dicuvi' 

features to decision cannot be ignored. For example, coiisidei two woikcis. 

A and D. A can produce 20 products per day individually; while Z?'s daily 

yield is 30. If they work independently, the total product will be 20 + 30 二 5() 

products. When they work cooperately, we need to consider the relationship 

between A and B. There may be two possibilities. One is that they yield more 

than 50 products because they can cooperate harmoniously so that their joint, 

working efficiency is increased; the other is the contrasting situation \vhi(h 

produces less than 50 products because their discordant relationship reduces 

their cooperative efficiency. 

The ubiquitous nonlinearities in databases have been investigated explic-

itly or implicitly by many existing data mining approaches. They have been 

represented as the productive rules in rule-based systems, the activation I unc-

tions and the weights in Neural Networks, the causality in Bayesian ner,works, 

the transitions firing in Petri nets, otc. 

1.3 State-of-the-Art Methods 

The requirements on fuzzy information description and nonlinear relaiioiisliip 

representation have stimulated researchers to work on the representation and 

manipulation of fuzzy knowledge. Their efforts have been incorporated hy 

many existing models. In this section, we will have a brief review ou some 

representatives with greater interests. They are Decision Tree, Neural Net-

work, Support Vector Machine and Naive Bayes. The following paragraphs 
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are the brief descriptions of the tour classical methods which have been used 

to compare with our new methods. 

I 

1.3.1 Decision Tree [9 

A decision tree is a tree-structured classifier. Decision Tree method learns a 

decision tree using a recursive tree growing process. Each test corresponding 

to an feature is evaluated on the training data using a test criteria function. 

The test criteria furiction assigns each test a score based on how well it par-

ti t. ions the (M'aset The test with the highest score is selected and placed at 

the root of the tree. The subtrees of each node are then grown recursively 

by applying the same algorithm to the examples in each leaf. The algorithm 

terminates when the current node contains either all positive or all negative 

examples. For our experiments, we use the widely available package-SeeS.O, 
< 

which is the staLe-of-tiie-art of the Decision Tree classifier. 

1.3.2 Neural Network [10 

All Artificial Neural Network (ANN), or commonly just called Neural Network 

(NN) is an interconnected group of artificial neurons that uses a mathematical 

or computational model for information processing based on a connectionistic 

approach to computation. In most cases an NN is an adaptive system that 

clicuiges its structure or weights of the interconnections based on external 

and internal information that flows through the network. In more practical 

terms, NNs are nonlinear statistical data modeling for decision making and 
I 

classification tools. They can be used to model complex relationships between 

inputs and outputs or to find patterns in data. However, it is essentially a 

black box approach and it is not easy to interpret how NNs function. . 
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1.3.3 Support Vector Machinef l l 

Support Vector Machines (SVMs) are a set of related supervised learning 

methpds used for classification and regression. Viewing input data as two 

sets of vectors in an n-dimensional space, an SVM will construct a separating 

hyperplane in that space, one which maximizes the margin between tlie two 

data sets. To calculate the margin, two parallel hyper planes are coiist.rurted. 

one on each side of the separating hyperplane, which are "pushed up against" 

the two data sets. Intuitively, a good separation is achieved by the iiypoi plane 

that has the largest distance to the neighboring data points of both cla^ises. 

since in general the larger the margin the smaller the generalization error of 

the classifier. ^ 

The original optimal hyperplane algorithm proposed by Vladitnii Va-

NIPKk in 1963 was a linear classifier. The classification model produced 

by SVM {as described above) only depends on a subset of the training data, 

because the cost function for building the model does not care about training 

points that lie beyond the margin. In our thesis, the software used is obtained 

from[ll 

1.3.4 Naive Bayes[12] ‘ 

A Naive Bayes classifier is a simple probabilistic classifier based on applying 

Bayes' theorem with strong (naive) independence assumptions. A more de-

scriptive term for the underlying probability model would be "indepeiKient 

feature model". 

Depending on the precise nature of the probability model. Naive Bayes 

classifiers can be trained very efficiently in a supervised learning spUing. In 

many practical applications, parameter estimation for naive Bayes models 
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uses the method of maximum likelihood; in other words, one can work with 

f.lifi Naive Bayes model without believing in Bayesian probability or using any 

Bayetiiaii methods. 

In spite of their ovcr-simplifind assumptions, Naive Bayes classifiers often 

work much better in many complex real-world situations than one might 

oxpor t, Rornnt.ly, careful analysis of the Bayesian classification problem has 

shown that there are some theoretical reasons for the apparently unreasonable 

efficiency of Naive Bayes clfU5sifiers[13]. An advantage of the Naive Bayes 

classifier is that it requires a small amount of training data to estimate the 

paraniot.ors (moans and variances of the variables) necessary for classification. 

Because independent variables are assumed, only the variances of the variables 

ior eacli class need to be determined arid not the entire covariance matrix. 

1.3.5 Comparisons and Discussions 

In above subsections, we have reviewed four connectionist model-based method-

olo^es which are able to deal with uncertain knowledge in different degrees. 

All of thern have their respective advantages as well as drawbacks. For han-

dling data mining problems, they may handle certain issues will but fail in 

other ones. 

Decision Tree is one commonly used nonparametric tool for pattern clas-

sification. It is readily interpretable and easily understandable. All these 

features have been passed to the fuzzy decision tree, which can process fuzzy 

knowledge, such as linguistic terms. It is well suited to solve classification 

problems where fuzzy data are involved. However, it cannot provide any 

inform^Ltion about the intersection regions where the pattern classes are over-
ft 

lapped、Furthermore, it is very sensitive to training data and not efficient to 

deal with non symbolic data. 
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Neural Network seenjs to be the most popular methodology in data mming 

domain. They have been broadly applied to many data milling problems, such 

as classification, regression, clustering, and so on. Many advantages of Neural 

Network have been extended to fuzzy neural approaches so that they possess 

powerful learning ability and high flexibility to deal with different degrees of 

uncertainty. These uncertainties, represented as certainty degree values or 

linguistic variables, may appear at input nodes, weights, or output nodoh. 
% 

The main weakness of NNs is lack of abilities of knowledge interpretation due 

to their black-box nature. 

The naive Bayes classifier is an efficient classification model that is oasy 

to learn and has a high accuracy in many domains. However, it has two 

main drawbacks: (i) its classification accuracy dccrcasos when thr fcaturos 

are not independent, and (ii) it can not deal with nonpararnetric continuous 

features. A optimal naive Bayes classifier |14| was proposoH. This mot hod 

includes two phases, discretization and structural iinprovernent. which are 

repeated alternately until the classification accuracy can not be improved. 

Discretization is based on the minimum description length principle. 

Potential drawback of the SVM is that it is only directly applicable for two 

class tasks. Therefore, algorithms that reduce the niulti-cla.sR task to spv^mrI 

binary problems have to be applied. So multi-class SVM was proposed to 

assign labels to instances by using support vector machines, where the labels 

are drawn from a finite set of several elements. The dominating approach 

for doing so is to reduce the single multiclass problem into multiple binary 

problems. Each of the problems yields a binary clastiiher, whidi is assumed 

to produce an output function that gives relatively large values for examples 

from the positive class and relatively small values for examples belonging to 

the negative class. 
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1.4 Motivation 

From the discussion, we see that although various methodologies which can 

manage different situations, all currently existing models are not able to repre-

seni. the interaction and relationship among features explicitly and efficiently. 

Ideally, a comprehensive method should be able to: 

• sufficiently represent and directly handle interactive information better; 

• have more powerful self-learning ability; and 

• describe the internal nonlinear relationship of knowledge. 

These are also the motivations of this thesis. We have developed new 

filgoritluub based on tlie Nonlinear Integral with respect to a Fuzzy Measure 

to achieve these goals. Nonlinear Integral has been proved to be a powerful 

IV" 

aggregation tool to handle data with interactive information in classification, 

regression, and decision making problems. In these applications, the Nonlin-

ear Integral reveals a combination of many advantages which cannot be all 

possessed by any one of the existing methodologies. These advantages are 

robust self-learning ability, powerful nonlinear representation, and explicit 

description of interaction among features. 

However, the classical Nonlinear Integrals only support linear integrands 

to be appropriate tor the linear distributed data, and are helpless when facing 

the overlapping situation after projection. To extend the advantages of the 

Nonlinear Integral to deal with more complicated. distributed data, we have 

extended the classical Nonlinear Integrals in different way in order to solve 

specific problems. These extended models are generalizations of the classical 

Nonlinear Integrals. The detailed descriptions will be given in the following 

chapters respectively. . 



CHAPTER 1. INTRODUCTION . 10 

In short, the generalizations of the Nonlinear Integral presented in this 

thesis are promising tools for data fusing problems where complex data are 

involved. 

1.5 Problem Definition 

Generalizations of the Nonlinear Integral in this thesis include three scopes, 

the longitudinal extension—Double Nonlinear Integrals (DNI) , the transveise 

extension—Nonlinear Integrals with Polynomial Kernel (NIPK) and the over-

all extension一Upper and Lower Nonlinear Integrals (ULNI). All of them are 

able to deal with complex data better than the original one. Briefly, the DNI, 

the NIPK and the ULNI are generalizations of the original Nonlinear Integral. 

This statement has been proved by the theoretic derivations of them in this 

thesis. Relationship among the Classical Nonlinear Integral (CNI), tlie DNI, 

the NIPK and the ULNI is demonstrated in Figure 1.1. 

Figure 1,1: The relationship of the Generalized Nonlinear Integral and Classical 

Nonlinear Integral 

Facing with the same data fusing problem, performances of the Classical 

Nonlinear Integral, the DNI , the NIPK and the ULNI, are different. Due 

to the different forms of integration results, the DNI, the NIPK and the 

ULNI have their distinct theoretic analyses, implementation algorithms, and 



CHAPTER 1. INTRODUCTION . 11 

application scopes, which have been investigated in this thesis respectively. 

General conditions under which the DNI, the N IPK , the ULNI and the 

Classical Nonlinear Integral are employed are stated as follows: For a data 

(using problem where a set of n predictive features (denoted by Xi,X2,... , x„) 

are used to determine a set of rn targets (denoted by 2/1,2/2，..，2/m) the value 

of Xt is denoted by / (x , ) , z = 1 , 2 , n , and the value of y] is denoted by 

(j(yj)'j - 1,2,..., m. 

1.6 Contributions of this thesis 

Three generalizations of Nonlinear Integral have been comprehensively in-

vestigated in this thesis. These generalizations are the Doubled Nonlinear 

Integral (DNI) , the Nonlinear Integral with Polynomial Kernel(NIPK) and 

the Upper and Lower Nonlinear Integral (ULNI). All of them have some ex-

tensions, but the first one gives a double process of the classical Nonlinear 

Integral; the second one uses a polynomial integrand; and the last one gives 

out an interval value of integral. They are respectively designed to be ap-

plicable to different requirements of mining on heterogeneous data. Keeping 

the nonadditivity property of the Signed Fuzzy Measure in their definitions, 

the DNI, the N IPK and ULNI are able to elicit the interactive relationship 

aiiioiig features. Due to tliese reasons, compared with other existing ap-

proaches, they possess more powerful ability on knowledge interpretation and 

flexibility when applied to different data mining applications or to show the 

characteristic. The main contributions of this thesis are listed as follows: 

1. Tho classical methods transform the original classification problem from 

n-dimensional space to a one-dimensional space problem through the op-

timal projection based on Nonlinear Integrals. But plenty of information 
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may be missed in the projecting process. In some special cases., there 

exist projection overlapping when the data to he cla-ssifiecl have special 

distributions in the data space, for example one group of tlie data is sur-

rounded by the data of another group, or the number of classes for tlie 

data is large. This will lead to lower classification accuracy. So we pro-

pose a new classification model based on the Doublr Nnnlinoar Int.ppjals 

to solve this problem. The Double Nonlinear Integrals can lessen loss 

of information coming from the intersection of rlifforcnt rla.ssr.s nn real 

axis in classical one. Classification accuracy has been shown to intrpase 

accordingly. 

2. We introduce the polynomial function as nonlinear intoprfind to fix the 

limitation of the classical Nonlinear Integrals. The Nonlinear Integrals 

with Polynomial Kernel with respect to polynomial integrand was pro-

posed. This revolution can extend the projection from linear line to more 

shapes of curves which can cover more complicated data. The accuracy 

of classification model is not neccessarily increased with the degree of 

the polynomial. So we need to learn the optimal polynomial index for 

the Nonlinear Integrals with Polynomial Kernel. Nevertheless, we have 

shown the complexity of the Nonlinear Integrals with Polynomial Kernel 

is not greater than the classical Nonlinear Integrals. 

3. A new nonlinear multi-regression model based on a pair of extreme 

Nonlinear Integrals, Upper and Lower Nonlinear Integrals, is established 

- in this thesis. A data set of predictive features and r,he relevant, ol>jf、(.tive 

feature is required for estimating the regression coefticicnts. Due to the 

nonadditivity of the model, a Genetic Algorithm or other soft computing 

technique should be adopted to search the optimized solution In the 
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regression problem. Applying such a nonlinear multi-regression model, 

an interval prediction for the value of the objective feature can be made 

once a new observation of predictive features is available. 

4. A NI based data mining framework which includes molecular evolution 

analysis, clustering, feature selection, classifier learning and classifica-

tion is introduced. This framework has been applied successfully to a 

Hepatitis B Virus(HBV) study. Our research group has collected HBV 

DNA sequences, either genotype B or C, from over 200 patients specif-

ically for this project. In the molecular evolution analysis and cluster-

ing, three subgroups have been identified in genotype C and a clustering 

method has been developed to separate the subgroups. In the feature 

selection process, potential markers are selected based on Information 

Gains for further classifier learning. Initially meaningful rules are learnt 

by our algorithm called the Rule Learning which is based on Evolu-

tionary Algorithm. Lat.or, two new classification methods based on the 

Nonlinear Integrals and the Nonlinear Integral with Polynomial Kernel 

have been developed. Good performance of the new methods come from 

the use of the Fuzzy Measure and the relevant Nonlinear Integrals. The 

iioiicidditivity of the Fuzzy Measure reflects the importance of the pre-

dictive features as well as their interactions. Both classifiers give explicit 

information on the importance of the individual mutated sites and their 

interactions towards the classification (potential causes to liver cancer 

in our case). A thorough comparison study of these new methods with 

existing methods is also detailed. 
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1.7 Thesis Navigation 

There are totally seven chapters in this thesis. In this chapter, we have given 

the research background of this thesis. We have listed the main challenges 

and the major research approaches in data mining problems. Tlie reniairider 

of this thesis concentrates on the generalizations of the Nonlinear Integral 

and their abilities in data mining. 

Chapter 2 gives the background knowledge about several concepts and 

methodologies which pave the way for us to develop the generalizations of 

the Nonlinear Integral. 

Chapter 3 concentrates on the investigation of the Double Nonlinear Int.e-

gral(DNI). The formal definition of the DNI with the Signed Fuzzy Mcrusmr 

will be introduced. We develop a numerical calculation algoritiiin to derive 

the integration result of the DNI efficiently. Then the rlassifiration model 

based on DNI is discussed. We propose a GA-based double optimization 

algorithm to optimize the related parameters, including the elerneiit values 

of the Signed Fuzzy Measure. Its performance on synthetic data sets and 

real-life data from UCI database is presented at the end of the chapter. 

In Chapter 4，a Nonlinear Integrals with Polynomial Kernel (NIPK) ba-secl 

classifier which is able to classify thê  complicated distributed data rffirirnt.lv 

and effectively, is presented. Mechanism of the NIPK projection is illus-

trated first. After that., a GA-ba.sed adaptive classificr-loarning algorithm 

is described. Performance of the NIPK based classifier is then verified by 

both synthetic and realistic datasets and compared with several traditional 

approaches. 

Chapter 5 focuses on the Upper and Lower Nonlinear Integral based niiilti-

regression model. We give the formal definition of the ULNI based on the 
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extension principle. We illustrate how to calculate the ULNI and what is 

the meaning of ULNI. Then, we present a new multi-regression model based 

oil the ULNI. It is implemented by a multiobjective optimization algorithm 

based on Genetic Algorithm. Performance of the ULNI based multi-regression 

model is then evaluated by applying to synthetic datasets and a weather 

problem. 

Chapter 6 presents a framework which includes Nonlinear Integrals arid 

Rule Learning for a bioinformatics problem, data mining on the HBV DNA 

sequences. Our new methods can obtain better sensitivity which is cared 

most by Doctor. We discover some important sites in the sequences for the 

disease diagnosis by using Ll-norm regularization. 

Filially, in Chapter 7，we conclude this thesis with its contributions and 

liuiit,at,ions. We also point out some research directions and feasibilities for 

future work. 



Chapter 2 

Background Knowledge 

Generalization of the Nonlinear Integral is a multidisciplinary study which 

combines different elements in Nonlinear Integral, data mining, and evo-

lutionary computation. In this chapter, selective background knowledge is 

provided to help readers to understand the contents in the subsequent, chap-

ters. The earliest challenge to classical measure theory came froni a Freiicli 

rnathematician-G. Choquet[15], for which he coined the name theory ot ca-

pacities. A Choquet capacity is a set function that associates a real num-

ber with each subset of the universal set employed and is continuous aiul 
I 

monotonic with respect to set inclusion[16]. The two main concepts of this 
I 

chapter are Fuzzy Measures and Nonlinear Integrals which were eiivisioiiccl 
1 . 

by Sugeno[17, 18] in his efforts to compare incnibersliip grade tuiictions ol 

fuzzy sets with probability. Similar to Choquet's capacities, Fuzzy Measures 

are too loose to allow us to develop a theory that would capture tlieir full 

generality and yet, are of pragmatic utility. Moreover, it is too restrictivp foi 

several special types of Fuzzy Measures in some application contexts. More 

generalization was proposed by Wang[19, 20 . 

Required background in Set Theory will be introduced in section 2.1. 

16 
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ill Section 2.2, some elementary concepts on the Fuzzy Measure are given. 

The classical Nonlinear Integral is introduced in Section 2.3. As a basic 

optimization tool used in the thesis, Genetic Algorithms and some relevant 

improvement operators are demonstrated in Section 2.4. 

2.1 Set Function 

We denote the set, of real numbers by TZ and the set of non-negative real 

numbers by TZ+. All functions we deal with are real-valued. In our thesis, 

X is assumed to be a finite set. X is called the universe of discourse. The 

elements of X are called points denoted by Xi,X2, ...,x„. A set containing no 

point is called the empty set, and is denoted by 0. 

Def i n i t i on 2.1 The class of all subsets of X is called the power set of X and 

IS dtiLoltd by V{X). 

Def i n i t i on 2.2 A function ( defined on a family 'of sets is called as a set 

function. 

Let ^ be a set function defined on V(X). 

(i) The set function ^ is said to be additive if for every pair of disjoint 

subsets .4 and D of X 

… u B H ⑷ + 制 

(ii) The set function《 is said to be monotone if for every pair of subsets 

A and D of X such that Ac B 

制 < m 

(iii) The set function《rs said to be normalized if 

iiiin{《(/l)|4 C X} =0 and max{^(/l)|>l C X} =1 
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I f《 is additive, then《(0) =0 since《(0)=《+ (0) + ^"(0) . A non-negative 

additive set function is monotone; if ^ is rion-iiegative and additive, and if 

A C B C X, then ^{B) = ^{A U (例>4)) = ^{A) + > where 

B\A = {x\x e D,x i A], since ^(B\A) > 0. Since X is a finitr srt an 

additive set function《defined on V{X) can be represented as 

《 ⑷ = E tor A 

De f i n i t i o n 2.3 For a set function ^ defined on V(X) such that ^(0) =0, its 

conjugate set function ^ is defined as 

aA) = aX) - a^nior all A 

where A^ is the complement of A. 

Based on these set theories, the Fuzzy Measure will be induced. 

2.2 Fuzzy Measure and Signed Fuzzy Measure 

The traditional aggregation tool for information fusion is the weighted aver-

age method, which is a linear integral (i.e., the Lebesgue integral) essentially. 

It is based on the assumption that the involved information sources are not 

interactive, and hence, their weighted effects are viewed as additive Obvi-

ously, this assumption is not realistic in many applications. To (iesrrihr the 

interaction among information sources, a new mathematical tool - the Fuzzy 

Measure and its generalization - the Signed Fuzzy Measure(16, 64] have been 

developed. 

Fuzzy Measure is a generalization of classical measure theory. Let X be 

a universal set and T be (5-algebra of X. Here, (5-algebra JF is a iioneiiipty 

collection of subsets of X such that the following hold: 

1) The empty set is in T\ 
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2) II A is ill then so yl" is the complement of A\ 

3) It An is a sequence of elements of F , then the union of the is in T . 

(X, T) is called a measurable space[16, 64). The universal set X is not 

np{ pssarily finit.o Hownvor, in most, real problems, when a set of features is 

considered as the universal set, of course, X is finite. In this case, V(X), the 

power set of X、is usually taken as T . In the thesis, the set functions will be 

always defined on a given (5-algebra, T. When X is finite, T will always be 

nx). 

De f i n i t i o n 2.4 A measure on X is a non-negative additive set function de-

fined on V(X). A nojinalized measure is called a probability measure. A 

siyntd TueasuTt on X is an additive set function defined on V[X). 

A measure measures the size of sets. The number of elements in a set is 

a kind of measure of the size of sets. 

De f i n i t i o n 2.5 A set function ji : ViX) — [0, oo] is called a Fuzzy Measure 

tj it IS mouotomc as ii{A) < fi{B) V7l C B on V{X), and vanishes at empty 

net, that IS, /i(0) = 0. 

A classical illustration on Fuzzy Measure is an example about workers. 

For convenience, we recite it[22] as follows: 

E x a m p l e 2.1 Let X bt the set of all workers in a workshop, and suppose they 

pruduce the same products. For each A C V{X), we consider the situation 

that the raembeTS of group A work in the workshop. Each group may have 

various ways to work: various combinations of joint work and individual work. 

Let i.l(A) be the number of the products made by group A in one hour. Then 

thfi stt function /i : V[X) —+ [0, cx)) is monotone and /x(0) = 0, and therefore 

it m a Fuzzy Measure. The Fuzzy Measure is not additive necessarily. Let A 
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Table 2.1: An example of Fuzzy Measure defined on X = {X\,T2. .r3} 

Sets Value of Sets Value of /i 

0 0 ⑷ 0.2 

0.2 0.5 

0.4 {2:2,3:3} ‘ 0 . 9 

{xi’a;2} 0.5 l.U 

and B be disjoint subsets of X, and consider the pioductivity of the. coupltd 

group /i(A U B). If A and B work separately, then ^(A \J D) = i.l(A) -f //(Z?). 

But, since they generally interact on each other, the equality may not always 

hold. The effective cooperation of members of i.i{A U D) yitlds the vntqudhty 

^[A U D) > + }i(B). On the. other hand, the ntcoinpatilnlity httwtfv. .4'.s 

operation and D's yitlds the opposite inequality U B) < f.i{A) (.i{B). 

To further understand the practical meaning of the Fuzzy Measure we 

consider the elements in a universal set X as a set of predictive features to 

predict a certain objective. Then, for each individual predictive feature as well 

as each possible combination of the predictive features, a distinct value of a 

Fuzzy Measure is assigned to describe its influence to the objective Due to the 

nonadditivity of the Fuzzy Measure, the influences of the pi edictive features 

to the objective are dependent such that the global contribution of theni to 

the objective is not just the simple sum of their individual contributions. 

Here is an example. Assume that we have observed three symptoms of 

a patient and want to determine which disease tie or slie is suflcriug. Tlic 

symptoms are regarded as the information sources, whirh form tlip nnivpr^nl 

set denoted by X = {工1,工2’ 工3}. Their individuals aa well a-s joint infiuciucs 

on the prediction of disease are specified by a Fuzzy Measure “ defined in 

Table 2.1. 

Here, 4({工2,工3}) > "({工2})+"({工3}) indicates that the joint contribution 
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of X2 and X3 to the diagnosis is greater than the sum of their individual 

l oiitributions. This shows that the interaction between X2 and X3 is enhancing 

the influences of each other. On the other hand, /i({xi,X2}) < / i({xi}) + 

^.({x2}) shows that xi and x】are restraining each other. Note that, the 

essential properties of Fuzzy Measure are monotonicity and vanishing at the 

ftiipty set This implies that Fuzzy Measure only allows its value to be 

noimegative. 

De f i n i t i on 2.6 A Signed Fuzzy Measure is called a generalized Fuzzy Mea-

sure if it IS nonntgativt, that is 

AX⑷ > 0, Vv4 € V{X) 

Note that, the essential properties of Fuzzy Measure are monotonicity and 

vanisiiiiig at the empty set. This implies that Fuzzy Measure only allows its 

value to be noimegative. However, the monotonicity and non-negativity of 

Fuzzy Measure are too restrictive for real applications. Thus, Signed Fuzzy 

Measure, which is a generalization of Fuzzy Measure, has been defined[22 

and applied. 

De f i n i t i on 2.7 A set function /.i : V{X) —+ [-00,00] is called a Signed Fuzzy 

Mtasurt provided that /i(0) == 0. 

A Signed Fuzzy Measure allows its value to be negative and frees mono-

tonicity constraint. Thus, it is more flexible to describe the individual and 

joint contribution rates from the predictive features in a universal set toward 

some target. 

E x a m p l e 2.2 The noTinal time of stomach empty of human is about 267 土 

174 minutes per dining. In medicinal research, one or a set of drugs are 

adopted to adjust the time of patients stomach empty. When patient takes 
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more than one drug, interaction among drugs make joint efficiencies tovard 

the stomach empty time. The 'joint efficiency iLSually is not. simply ejinni to the 

sum of efficiencies of each individual drug to the stomach, empty tunt Con-

sidering three drugs A, B, and C, a piece of research shows that mdimdurdly 

taking drug A or O may decrease the stomach empty tirnt while. tah.nq dniq 

B may increase it. Jointly taking drugs A and B may increase the stomach 

empty time while taking A and C, or taking B and C, may decrease it. Tak -

ing drugs A, D, and C simultaneously may decrease the sioinach empty Vnnt 

as well. The research also finds that within a proper range the efficiencies are 

constants approximately, that is, the effects are proportional to t.h.p amount 

of drug(s). Quantifying these observations, if is used to denote the effi-

ciencies (number of minutes Teduced by per unit of drug) of drays toward the 

stomach empty time, we have fi{A) = 5.0, ^(Z?) = -4.0, " ({ / I , B}) - -1.0. 

fiiC) = 7.0, fi{{A,C}) = 25.0, / i ( {B ,C} ) = 2.0, and f,.{{A,D,C}) = 15.0. 

Here, ^ is a Signed Fuzzy Measure defined on the power set of X = {.1, D, C} 

A Signed Fuzzy Measure can bo decomposed as difference of two 奶 i ( t-

alized Fuzzy Measures. Since we need not consider additivity now. sucli de-

cornposil#Oii is much simpler than the Jordan decomposition where a signed 

measure is decomposed to be the difference of two measures|64 . 

De f i n i t i o n 2.8 Let be a Signed Fuzzy Measure. A pair of two yttnarnhzf^d 

Fuzzy Measures,"十 antf "一, satisfying 

‘ = V^ 6 V(X) 

(simply, we write ^― — is called a nonneyatwe decomposition of 

/i. 

We may omit word nonnegative in the above definition if there is no confu-

sion, and simply call it a decomposition. For a given Signed Fuzzy Measure, 
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.there are infinite decompositions. Among them, there is one which is the 

smallest decomposition. 

De f i n i t i o n 2.9 The smallest decomposition of a Signed Fuzzy Measure is the 
« 

composition,^ and , such that < "十 and fi~ < for any decompo-

sition, i/十 and , of fj.. • 
* 

The smallest decomposition ol is unique. It can be expressed as 

" ⑷ if " ⑷ > 0 

0 otherwise 

M十⑷二 

and 

⑷ \f " ⑷ < 0 

\ ‘ 0 otherwise 

tor any A G V{X).,‘十 and /i~ are called the positive part and the negative 

part of fi respectively. 

« 
• * 

E x a m p l e 2.3 The smallest decoTnposttion of the Signed Fuzzy Measure in 

Example 2.2 is the- composition of /i+ and . Here, we have 十(^4) = 5.0, 

= 0, "+M，i?) = 0.0, /V (C ) 二 +.0, = 25.0, "+ (5 ’CO = 2.0, 

//-(.•I. B.C) 二 15.U, and fr{A) = 0, / i-(B) = 4.0, = 1 . 0 , 「 ( C ) = 

0, /r(A,C} = 0, /r(B^C) = 0, “ A ^ Q = 0. 

In this thesis, we assume /i is a Signed Fuzzy Measure on V(X), i.e. ^ : 

V{X) —» (-CXD, oo| and /i((l)) = 0. For convenience, / i({xi}),/ i({x2}), 

/./({xi, .f2}), - • /i({xi,:C2, ^n}) are sometimes abbreviated by /i!’/i2’ …，/̂ n’ 

"12. -••,/ti2 n, respectively. 
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2.3 Nonlinear Integral 

Nonlinear Integrals, such as the Choquct Integials[22, 23] with lefspix t to 

Fuzzy Measure or Signed Fuzzy Measure, are recently becoming popular ab 

powerful aggregation tools in the data mining study. This section is devoted 

to introducing some basic concepts on the Fuzzy Measure theory ami tlic 

Nonlinear Integral with their applications in the data iniuing {lumaiii 

/ 

Figure 2.1: The a cut of a real-valued function. 

2.3.1 N o n l i n e a r I n tegra l w i t h Rea l-va lued I n t eg r and 

De f i n i t i o n 2.10 Let {X, V) be a measurable space and be a Siyntd Fuzzy 

Measure defined on {X, V). The Noniineai hittyial oj a rtal-valutd 

—oo, oo IS defined as 

J f(h'. = / 二 1"(厂o) - “ ( ^ ) l + JfT /,(厂o)山、 

where F^ = {工|/ (x) > a} , for any a € { —oo, oo). is called the- rv — cut oj 

The Q- — cat of f can be represented as a crisp set of X. For example, let. 

X — {工1，工2，工3}’ and a real-valued function / is defined on X by / ( x i ) 二 2.0, 

f(x2) = 1.0, and /(X3) = 3.0, then the fy 一 cut of / at, = 0 5. 1 5 aii(] 2 5 

are crisp sets of X , described by 厂0.5 = {xi ,X2,xj} , /-'i s = {:ti’丄3} and 
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厂2 5 = {丄3}, respectively, as shown in Figure 2.1. -

When X = {:ci，工2’ …，工n} for any function f : X —+ (-oo, oo], both 

* 

"(厂"）-fi(X)] and are functions of with bounded variance, and there-

tore, tlieii Rieiiianri integrals with respect a to exist, and are finite. So, the 

Nonlinear Integral f Jdfi is well defined. 

To calculate the value of the Nonlinear Integral of a given real-valued func-

tion /，usually the values of f、 i .e.,/(xi), /(X2),…，/(:c„) should be sorted in a 

uoiidecreasing order so that f(x\) < /(xj,) < ... < / (x^ ) , where (x'^j;^, ---.x'^) 

is a certain permutation of (rt、，工2,…’工n) • So the value of Nonlinear Integral 

can be obtained by 

>1 
J J d ^ = 一 where f i x ' ^ f ^ 0 

k=\ ‘ 
For convenience, Waiig(24) proposed a new scheme to calculate the value of 

a Nonlinear Integral with real-valued integrand by the inner product of two 

(2" - l)-(liinension vectors as 
<• 2" -1 

f 协 = E ^jMj 
户1 

where. 

之J = 

mill / (x , ) — max / (x , ) , i / 2 0 or j = 2" _ 1: 

l| « /rc(X)G|0 i) 

0 otherwise 

lor J = 1,2,..., 2" - 1 with a convention that the maximum on the empty set 

J j 
is zero. Here, f rc{ —) denotes the fractional part of —. In the above formula, 

J \ 
if we express j in the binary form jnjn-i-- j i , then {i|/rc( —) € 1 ] } = 

{z|j, = 1} and {i\frci^) € [0，^]} = m = 0}. 

A significant advantage of this new calculation scheme is that it can eas-

ily discover the coefficients matrix of a system of linear equations with the 

unknown variables when the Nonlinear Integral is applied in further appli-
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cations, such as regression and classification[24. 25，26). In those practical 

applications, values of the Signed Fuzzy Measure are usually considered as 

unknown parameters which are to be estimated using, the training data sets. 

The adoption of this new scheme makes it convenient for using an algebraic 

method, such as the least square method, to estimate tlie value of /i, and 

furthermore, to reduce the complexity of computation. 

E x a m p l e 2.4 Assumed that 60 products, 40 products and 10 pToducts ara 

produced respectively by worker A, worker D and worker C. Led x, denotes 

A, X2 denotes B, and xj denotes C, a real-valued junctton f can hr de.finnd 

as f(xi) = 60, f{xi) = 40 and / f e ) = 60. Then the syntkehc efferf. of 

workers is just the Nonlinear Integral of f untfi respect in // Noirnq "mi. 

Ml = /x({xi}) = 5.0, = = 4.0, = "({工1，工2}) = 10, /J.4 = 

"({工3}) = 7.0, /i5 = // ({x^xa}) = 25.0, "e = "({:^2，工3}) = 2.0 and "7 = 

/i({a;i,X2,X3}) = 15.0. Using the above equation, we have 

m m ( / ( x i ) ) - max ( f (x2 ) J {x3 ) ) = 60 - 40 = 20 2, = 2 0 

min(f(x2)) 一 max{f{xi)J(x3)) = 40 - 60 = -20 22 = 0 

mm( / ( x i ) , / ( x 2 ) ) - max i f i x ^ ) ) = 40 - 10 = 30 23 = 30 

mm( / (x3 ) ) 一 max(f{xi),f{x2)) = 10 - 60 = -50 => = 0 

min(fixi)J{x3)) 一 max{f{x2)) = 10 - 40 = -30 => 25 = 0 

minif(x2)J(x3)) 一 max ( / ( x , ) ) = 10 - 60 = -50 => 25 = 0 

mm( / ( x i ) , / ( x2 ) , / ( x3 ) ) = 10 => = 10 

Then, the total number of products produced by workers can he computed that 

is. 
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i fd^i = E h^h 
7 = 1 
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Generally, the Nonlinear Integral is not linear due to the nonadditivity of 

the Signed Fuzzy Measure "(16，23, 27]. However, as a special case, when a 

Signed Fuzzy Measure /i is an additive measure, i.e., when /i is additive, the 

Nonlinear Integral coincides with the Lebesgue-like integral[64] and is linear. 

So, r , l i e Nonlinear Integral is a generalization of the Lebesgue-like integral. 

The following theorems give some properties of the Nonlinear Integral, in-

cluding the decomposability, the continuity, and the monotonicity. They are 

useful for the discussions on the Generalization of the Nonlinear Integral in 

tlie subsequent chapters. 

T h e o r e m 2.1 (Decomposability) For any given measurable function f : X 

•oo, oo and the Signed Fuzzy Measure ( 

ffd/2 = Jfdfi+-Jfd『 

wkare //+ and //•一 ait decompositions of /丄，if both integrals in the right side 

are well defined and' "{oo) — (oo) •oo) — {—oo)" does not occur. 

T h e o r e m 2.2 (Continuity) The Nonlinear Integral f fdjj, is continuous with 

rtsptci to the mtayrand f , that la , for any given e > 0, there exists > 0, 

auch thai 
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IJfid^ - I .hM < f 

whenever /i — /2 < S. 

T h e o r e m 2.3 (Monotonicity) If fi is a Fuzzy Measure, then the Nonimear 

Integral f fdfj. is monotonic with respect to the initgrand f , that is, 

J IldfJL < / Ac/" if /】< f'2. 

Note that, the monotonicity property does not hold for the Nonliripai 

Integral with respect to a Signed Fuzzy Measure. 

2.3.2 Applications of the Nonlinear Integral on Data Mining 

As an aggregation tool, the Nonlinear Integral has become a powerful method-

ology to solve many data mining problems. In general, its applications can 

be categorized into the following groups: 

Regression(28, 29, 30]: In statistics, regression analysis refers to tech-

niques for modeling and analyzing several variables, when the focus is on 

the relationship between a dependent variable and one or more independent 

variables. More specifically, regression analysis helps us understand how thr 

typical value of the dependent variable changes when any one of the indepen-

dent variables is varied, while the other independent, variables air h(、ld fixcri 

Most commonly, regression analysis estimates the conditional expectation of 

the dependent variable given the independent variables-that is, the average 

value of the dependent variable when the independent variables are held fixed. 

Less commonly, the focus is on the location parameter of the conditional dis-

tribution of the dependent variable given the independent variables. In all 

cases, the estimation target is a function of the independent variables called 

the regression function. In regression analysis, it is also of interest to charac-

terize the variation of the dependent variable around the regression function, 
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which can be described by a probability distribution. 

Regression analysis is widely used for prediction (including forecasting of 

time-series data). Use of regression analysis for prediction has substantial 

overlap with the field of machine learning. Regression analysis is also used to 

understand which among the independent variables are related to the depen-

dent variable, and to explore the forms of these relationships. In restricted 

circumstances, regression analysis can be used to infer causal relationships 

between the independent and dependent variables. 

A large body of techniques for carrying out regression analysis has been 

developed. Familiar methods such as linear regression and ordinary least 

squaros regression are parametric, in that the regression function is defined 

in terms of a finite number of unknown parameters that, are estimated from 

the data. Nonparametric regression refers to techniques that allow the re-

gression function to lie in a specified set of functions, which may be infinite-

dimensional. 

The performance of regression analysis methods in practice depends on 

the form of the data-generating process, and how it relates to the regression 

approach being used. Since the true form of the data-generating process is 

not known, regression analysis depends to some extent on making assump-

tions about this process. These assumptions are sometimes (but not always) 

testable if a large amount of data is available. Regression models for pre-

diction are often useful even when the assumptions are moderately violated, 

although they may not perform optimally. However when carrying out infer-

oiicc using regression models, especially involving small effects or questions 

of causality based on observational data, regression methods must be used 

cautiously as they can easily give misleading results. Since Fuzzy Measure 

can describe the interaction among dependent variables, Nonlinear Integral 
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has been popularly applied to the regression problems(31). The most, typical 

regression model based on the Nonlinear Integral built a nonlinear muki-

regression network which was proposed in[25, 32|. A Signed Fuzzy Measure 

has been considered to improve the regression model of the Nonlinear Integral 

in[24, 33 . 

Classif ication|34|: An important task in Marhim、Lf、armn.£^ \s (.lassih-

cation, also referred to as pattern recognition, where one alteinpr.s to l”jil(l 

algorithms capable of automatically constructing methods for distinguishing 

between different exemplars, based on their differentiating patterns. Pat tor ri 

classification tasks are often divided into several sub-ta.sks： 

1). Data collection and representation: 

2). Feature selection and/or feature reduction; 

3). Classification. 

Data collection and representation are mostly problem-sporific. Thorcforr 

it is difficult to give general statements about this step of the process. In 

broad terms, one should try to find invariant features, which df^scribo thr dif-

ferences in classes as best as possible. Feature selection and feature reduction 

attempt to reduce the dimensionality (i.e. the iiuinbei of leaiuieb) loi l1 it-

remaining steps of the task. Finally, the classification phase of tlir prtx »\s.s 

finds the actual mapping between patterns and labels (oi targets). In 丨utuiy 

applications the second step is not essential or is implicitly perfonned in the 

third step. 
> 

Many classification methods have been proposed based on various ap-

proaches (35). Due to nonlinearity existing in the real world, some linear 

methods can not have high classification accuracy and satisfy the requirement . 

However, the contribution rate of each combination of predictive features in-

cluding each singleton towards the decisive feature can be represented by a 
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Fuzzy Measure. The nonadditivity of the Fuzzy Measure reflects the interac-

tions among the predictive features. Recently, many methods which attempt 

to use Nonlinear Integrals as aggregation tools[36, 37，38, 39] has obtained 

encouraging results. In these existing methods, if there are m classes and n 

predictive features, then m sets of Fuzzy Measures are used and m(2" — 2) 

values of Fuzzy Measures are needed to be determined. 

Unlike the methods above, another method called WCIPP (Weighted-

Choquet-Integral based Projection Pursuit) uses a weighted Choquet Integral 

as a projection tool[26]. In WCIPP, only one Fuzzy Measure defined on the 

power set of the set of all predictive features is used to describe the importance 

ot each predictive feature as well as their interactions(16, 40，41] towards the 

classification of the rocords. 

2.4 Genetic Algorithm 

Gener.ir Algorithms (GAs) are general purpose search algorithms which use 

principles inspired by natural evaluation to evolve solutions to problems[42, 

43). This section aims to give a brief introduction on Genetic Algorithms 

whicli are used as a primary optimization method in the thesis. 

2.4.1 Wha t is a Genetic Algorithm 

The Genetic Algorithm is a method for solving both constrained and uncon-

strained optimization problems that is based on natural selection, the process 

tliat drives biological evolution. A Genetic Algorithm starts off with a popula-

tion of randomly generated individuals and repeatedly modifies a population 

of individual solutions. At each step, the genetic algorithm selects individuals 

of chromosome which represent candidate solutions to a problem at random 
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from the current population to be parents and uses them to produce the chil-

dren for the next generation. Over successive generations, the population 

"evolves" toward an optimal solution. We can apply the genetic algorithm to 

solve a variety of optimization problems that are not well suited for standard 

optimization algorithms, including problems in which the objective turictioii 

is discontinuous, nondifferentiable, stochastic, or highly nonlinear 

The GA differs from a classical, derivative-based, optimization algorithm 

in two main ways, as summarized in Table 2.2. 

The algorithm advances toward better individuals by applying genetic op-

erators modeled on the genetic processes occurring in nature. The popularion 

undergoes evolution in a form of natural selection. During successive itera-

tions, called generations, individuals in the population are rated for their 

adaptations as solutions, and on the basis of these evaluations, a new popula-

tion of individuals is formed using a selection mechanism and spcrifir gorirt.ir 

operators such as crossover and mutation. A fitness function must, be derived 

for each problem to be solved. Given a particular individual of chromosome, 

the fitness function returns a single numerical fitness, which is supposed to 

be proportional to the utility or the adaptation of the solution which the in-

dividual represents. The canonical Genetic algorithm is formulated in Table 

2.3 as pseudo code. 

2.4.2 Coding representation 

Coding representation is a key issue in GA approaches because GAs directly 

manipulates a coded representation of the problem and because the represen-

tation schema can severely limit the window through which a system observes 

its world [44]. 
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Table 2.2: Comparison between Genetic Algorithm and Classical Algorithm 

Classical Algorithm Genetic Algorithm 

Generates a single point at each 

iteration. The sequence of points 

approaches an optimal solution. 

Generates a population of points 

at each iteration. The best point 

in the population approaches an 

optimal solution. 

Selects the next point in the 

sequence by a deterministic 

computation. 

Generates the next population 

by genetic operator(e.g. crossover, 

mutation) which uses random 

number generators. 

Table 2.3: Pseudo Code of A Canonical GA 

The Canonical GA (pseudo code): 

Choose initial population 

Ernlunt.n mcfi tndwidiial 's fitnesfi 

Determine population's average fitness 

^'Repeat 

Select best-ranking individuals to reproduce 

Mate pairs at random 

Apply mutation operator 

Evaluate each, individual'^ fitness 

Determine population's average fitness 

Until terminating condition(e.g. until at least one individual has 

the dc.sirr.d fitness or enough generations have passed) 

Fixed-length and binary coded strings for the representation solution have 

dominated GA research due to the theoretical results which show them to be 

the most effective ones[45] and they are convenient and simple to implement. 

The bit strings of parameters are concatenated together to give a single bit 

string (or “chromosome”）which represents the entire vector of parameters. 

Ill biological terminology, each bit position corresponds to a gene of the chro-

mosome, and each bit value corresponds to an allele. By binary coding, the 

problem being considered is translated into a combinatorial one where points 

ul the seanjli space aie comers of a liigh-dimensional cube. 
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However, the GA's good properties do not stern from the use of bit. strings 

It would seem particularly natural to represent the genes directly as real 

numbers for optimization problems of parameters with variables in continuous 

domain[46]. Then an individual of chromosome is a voct.or of Hoat.inp, point 

numbers, the precisions of which will determine the corresponding precisions 

of solutions. The size of the chromosome is kept to be the same as the length of 

the vector. This is called the real coding method where each gene represents 

a variable of the problem. Values of the genes in a string of chromosome 

are forced to remain in the interval established by the variables which they 

represent, so the related genetic operators must observe this requirernenr,. 

2.4.3 Genetic Operators 

Good performance of GA is achieved through diverse genetic operators. Typ-

ically, the genetic algorithm uses three main types of rules at, each step to 

create the next generation from the current population: 

* Selection rules select the individuals, called parents, which roiit.i ihut.r to 

the population at the next generation. 

* Crossover rules combine two parents to form children for the next, gen-

eration. 

* Mutation rules apply random changes to individual parents to torin 

children. 

This subsection describes some typical and specifically designed uperrUors 

which are used in the thesis. 

Selection Operators 

The selection function chooses parents for the next, generation based on their 

scaled values from the fitness scaling function. An individual can be selected 
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41 lore than once as a parent, in which case it contributes its genes to more than 

•one child. The default selection option, stochastic uniform, lays out a line in 

which each parent corresponds to a section of the line of length proportional 

lo its scaled value. The algorithm moves along the line in steps of equal size. 

At each step, the algorithm allocates a parent from the section it lands on. 

A more deterministic selection option is Remainder, which performs two 

steps: 

111 the first, stop, t.he function selects parents deterministically according 

to the integer part of the scaled value for each individual. For example, if an 

iiuJividiiars scaled value is 2.3, the function selects that individual twice as a 

parent. 

In the second step, the selection function selects additional parents using 

the fractional parts of the scaled values, as in stochastic uniform selection. 

The function lays out a line in sections, whose lengths are proportional to 

the fractional part of the scaled value of the individuals, and moves along the 

line ill equal steps to select the parents. 

Note that if the fractional parts of the scaled values all equal zero, as 

can occur using top scaling, the selection is entirely deterministic. A selec-

tion scheme determines the probability of an individual being selected for 

u.'piuductiou and producing offspring by the crossover and/or mutation oper-

ators. Three typical selection schemes which includes Fitness proportionate 

selectic rank-based, and tournament selections will be introduced. 

Fit、、； p ropor t iona te selection, also known as roulette-wheel se-

lection, is the simplest selection scheme in • “ :netic Algorithms, also called 

the fitness proportionate selection. 

It is a stochastic algorithm in which individuals are mapped to contiguous 

segments of a line, such that each individual's segment is equal in size to its 
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Figure 2.2: An Example of Roulette Wheel Selection 

fitness. A random number is generated and the individual whose segment 

spans the random number is selected. If / , is the fitness of individual i in the 

population, its probability of being selected is 

Pi — 人 

where n is the number of individuals in the population. 

This technique is analogous to a roulette wheel with each slice proportional 

in size to the fitness, as depicted in Figure 2.2. 

Rank-based select ion: Individuals in population are sorted by objective 

values in rank-based fitness assignment. The fitness of each individiirtl was 

not assigned according to its actual objective value but the position m rjic 

individuals rank. Hence the rank-based selection can maintain a constant 

selection pressure in the evolutionary search and avoid some of the problems 

encountered by roulette wheel selection. 

There are many different rank-based selection schemos. Wo introduce two 

of them here. Assume the best individual in a population is ranked first. The 

probability of selecting individual can be calculated linearly as follows： 

• 1, ‘ 、卜 1、 
VX - -JYLMAX 一 YNMAX 一 " m m ) , " _ " 

where n is the population size, r/^ai and rimtn are two parameters satisfying 
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conditions rĵ ĵ nx > Imtu > 0 and r]max + "mm = 0. Another rank-based 

selection scheme with a stronger selection pressure can be implemented by 

r.lio iioiiliiiear【•ankiiig scheme as[47] 

一 I 
Pt — ： 

Tournamen t selection: Tournament selection involves running several 

•'tournaments" among a tew individuals chosen at random from the popu-

lation The winner of each tournament (the one with the best fitness) is 

.selected tor ciosbovei. Selection pressure is easily adjusted by changing the 

tOLiniainent size. If the tournament size is larger, weak individuals have a 

smaller chance to be selected. Deterministic tournament selection selects 

the best individual (when p = 1) in any tournament. A 1-way tournament 

{k = 1) selection is equivalent to random selection. The chosen individual can 

be removed t'roiu the population that the selection is made from if desired; 

oiliei wise individuals can be selected more than once for the next generation. 

Tournament selection provides selection pressure by holding a tournament 
% 

among s competitors, s is the tournament size. The winner of the tournament 

is the individual with the highest fitness of the s tournament competitors, and 

the winner is then inserted into the mating pool. The mating pool which is 

comprised of tournament winners has a higher average fitness than the average 

pupL i l c i t i u i i htiicss. This htiicss dittcieiice provides the selection pressure, 

which drives the GA to improve the fitness of each succeeding generation. 

Simply increasing the tournament size can increase selection pressure, as the 

winner from a larger tournament will, on average, have a higher fitness than 

the winner of a smaller tournament(48 . 

Tournament selection has several benefits: it is efficient to code, works on 

parallel architectures and allows the selection pressure to be easily adjusted. 
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Crossover Operators 

Essence of a crossover operator is the inheritance of informat ion (genes) from 

two or more parents to offspring. Crossover is a genetic operator used to varv 

the programming of a chromosome or chromosomes from one generation to 

the next. It is analogous to reproduction and biological crossover, upon which 

genetic algorithms are based. There are several kinds of crossover operators 

for different coding schemes introduced as follows. 

Crossover for binary coding 

Common recombination operators for binary strings i i k lude A；-point ( i d s s o v c 

{k > 1) and uniform crossover, although there are many other variants. 

One-point crossover: A single crossover point on both parents' organ-

ism strings is selected. All data beyond that point in either oiganisiii string 

is swapped between the two parent organisms. The resulting orgaiiisnis aic 

the children as Figure 2.3. 

Parents 

ChUdren 

1 

Crossover point 

\ 

Figure 2.3: One-point Crossover 

fc-point crossover: Choose two individuals from current population a.s 

parents, cut both of them into A: + 1 segments at k randoinly chosen points, 

respectively. Then switch their segments to form two new strings of chromo-

some as offspring. Figure 2.4 shows a A;-point crossover when k = 2. in wliicli 

everything between the two points is swapped between the parent organisms, 

rendering two child organisms. 



CHAPTER 2. BACKGROUND K N O W L E D G E - 39 

- t -
n 

Crossover point 

Children 

Figure 2.4: One-point Crossover 

U n i f o r m crossover: An offspring is generated by taking its each bit or 

character from the corresponding bit or character in one of the two parents. 

The parent from which the bit or the character is to be taken is uniformly 

randomly chosen. ‘ 

Crossover for real coding 

Assuming that Ci = (rj. Cj, c j j and C) = (cj, c^, are two chro-
DP 

mosoines that have been selected for applying the crossover operator. 

We should point out that since each crossover operator generates a dif-

ferent offspring number; a selection mechanism for deciding the ones that 

shall he iiu ludod in.fho population is sometimes needed. An offspring can be 

generated by landoinly choosing from (cj, c]] [49]. If a position is randomly 

chosen, t[ien two new individual will be produced by exchanging the value 

oil this position in parents(50, 51]. More complicated methods exist in many 

situation, such as Arithmetical recombination[50], in which two offspring, 

Hk ~ (/ijf’ ,4，‘..’ /iJi)，k = 1,2, are generated, where h] = Ac] -f (1 - A)cJ and 

h】=A<、2 十（1 - and is a constant (uniform arithmetical recombination) 

or varies with regard to the number of generations carried out (non-uniforrn 

arithniotiral roronibination). Linear rocombination(51] generates three off-

spring. Hf,. = {h'l / i f , / i j；), k — 1,2,3, where /if is a linear combination 

of cj and cf. Wi th this type of rocombination. an offspring selection mecha-

nism is applied, which chooses the two most promising offspring of the three 
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to replace their parents in the population. 

Mutat ion Operators 

In Genetic Algorithms, mutation is a genetic operator used to iiiaintaiii ge-

netic diversity from one generation of a population of chromosomes to the 

next. It is analogous to biological mutation. This diversity allows the explo-

ration of larger regions of the search space. The classic example of a mutatioji 

operator involves a probability that an arbitrary bit in a genetic sequence will 

be changed from its original state. A common method of iinplerripiitirig rlip 

mutation operator involves generating a random variable lor each bit. iii a 

sequence. This random variable tells whether or not a particular bit will 

be modified. The purpose of mutation in GAs is to allow the algorithm to 

avoid local minima by preventing the population of chromosomes from be-

coming too similar to each other, thus slowing or even stopping evolution. 

This reasoning also explains the fact that most GA systems avoid onlv takiii^^ 

the fittest of the population in generating the next but rather a rarKJorn (or 

semi-random) selection with a weighting toward those that arc fitter. 

The mutation operator for binary strings is simple. An individual of chro-

mosome is selected from current population as parent. The offspring will he 

formed by changing or replacing several bits from 0 to 1 or from 1 to 0. The 

mutation operators used for vectors of real values usually change values on 

some positions based on certain probability distributions, such as uiiitonn. 

lognormal, Gauss (normal) and. Cauchy distributions[50]. A random walk 

method is used to replacing the selected gene ^ by (!、which is defined by 

Ci = Cj 士 A. A is a small real value determined by users with its drfaiilt ？us 

0.005. 
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2.5 Chapter Summary 

In this chapter, we have outlined some basic concepts and properties of the 

Nonlinear Integrals and the Genetic Algorithms. Some specifically designed 

genetic operators have also been demonstrated. This chapter paves the way 

for our investigation on the Generalization of the Nonlinear Integral in the 

subsequent chapters. 



Chapter 3 

Double Nonlinear Integrals 

III this Chapter, a new classification model babied on piojcctioii with Double 

Nonlinear Integrals(DNI) is proposed. Many classification methods have been 

proposed based on various approaches [35]. Due to nonlinearity existing in 

the real world, some linear methods can not satisfy the requirement with higli 

d助sification accuracy. However, the contribution rate ol cacli cunibinatioii ul 

predictive features including each singleton towards the decisive feature oaii be 

represented by a Fuzzy Measure. The nonadditivity of the Fuzzy Measure re-

flects the interactions among the predictive features. Recently, many methods 

which attempt to use Nonlinear Integrals as aggregation tools(36, 37. 39. 38) 

has obtained quite encouraging results. In these existing methods, if there 

are m classes and n predictive features, then rn sets of Fuzzy Measures are 

used and m(2" — 1) values of Fuzzy Measures are needed to be determined. 

Unlike the methods above, another method called W C I P P (Weiglited-

Choquet-1ntegral based Projection Pursuit) use a weighted Choquet Integral 

as a projection tool[26]. In WCIPP , only one Fuzzy Meaijure defined on t,ht' 

power set of the set of all predictive features is used to describe the im-

portance of each predictive feature as well as their interactions! 13. 16. 40 

42 
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towards the classification of the records. The original classification problem 

in n-dimerisioiml space is transformed to a one-dimensional space problem 

through the optimal projection based on Nonlinear Integrals. But plenty of 

iiilommtioii may be missed in the projecting process. In some special cases 

which will be described in the following sections, there exists projection over-

lapping when the data to be classified have special distribution in the data 

space. For example, one group of the data is surrounded by the data of an-

other group, or the number of classes for the data is large. This will lead to 

lower classification accuracy. To solve this problem, we propose a new classi-

fication modol based on Double Nonlinear Integrals in this chapter. Double 

Nonlinear Integrals can lessen loss of information due to the intersection of 

different classes on real axis in WICPP. Accuracy will be increased accord-

ingly. Although computation complexity will be linearly increased, it is still 

acceptable. 

This chapter is organized as follows. Section 3.1 gives out the theoriti-

cal knowledge of Double Nonlinear Integral. Construction of the classifica-

tion model based on projection with Double Nonlinear Integrals is described 

in details in section 3.2. The experimental results of the new classification 

model for each dataset are presented in Section 3.3. Section 3.4 presents the 

conclusions and some directions for future work. 

3.1 Double Nonlinear Integrals 

In classification, we are given a data set consisting of I example records, called 

training set, where each record contains the value of a decisive feature, Y , 

and the value of predictive features xi,x2, ...,x„. Positive integer I is the data 

size. The decisive feature indicates the class to which each example belongs, 
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and it is a categorical feature with values coming from an unordered finite 

domain. The set of all possible values of the decisive feature is denoted by 

C = ci,C2, where each c/t, k = 1,2, ...m, refers to a specified class. 

The predictive features are numerical, and their values are described by an 

n-dimensional vector, ( J (Xi ) , f ( X 2 ) , … , / ( x „ ) ) . The range of the vector, a 

subset of 7i-dimensional Euclidean space, is called the feature space. The :!"、 

observation consists of n predictive features and the decisive features can be 

denoted by (Jj ⑷、以工2、广.,/i(xn), i^j), j = 1,2，...，Z. 

The following are the details of these basic concepts and the mathematical 

model for the classification problem. 

3.1.1 De f i n i t i on o f D o u b l e Non l i nea r In tegra l 

Let X = Xi,X2, • • • jXn be a nonempty finite set of predictive features and 

V{X) be the power set of X. 

A signed Fuzzy Measure defined in chapter 2 allows its value to be negativp 

and frees of the monotonicity constraint. Thus, it is more flexible to describe 

the individual and joint contribution rates from the predictive features in a 

universal set towards some target. The classical Nonlinear Integral has been 

defined in the last chapter. Based on the basic concept, we proposed a new 

extension version as follows. 

De f i n i t i on 3.1 Let /i, i/ be two Fuzzy Measures on 'P(X). The doubtc Nun-

linear Integral of a function f : X —• |—oo, oo] with respect to and i/ la 

defined by ， 

Jfdi^=< J fdfi, J fdv > 

where u is determined after the values of fi. 

The value of Double Nonlinear Integral is the coordinates of the virtual 
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data in the 2-D space projected by’ the Nonlinear Integrals. In fact, the 

Double Nonlinear Integrals is the superposed version of the classical Nonlinear 

Integrals. 

3.1.2 Projection based on Double Nonlinear Integrals 

Based on the Nonlinear Integrals, we can build an aggregation tool that 

projects the feature space onto a virtual space which maybe 1-dimenstional, 

2-Dimensional or more dimensional. Under the projection, each point in the 

feature space corresponds a value of the virtual space. 

A point (/(工 1)’/(工2)，...，/(工 n)) is projected to be V, the value of the 

virtual variable, on a real axis through a Nonlinear Integral defined by Y = 

f fdi.L. Once the values of the Fuzzy Measures are determined, we can calcu-

late virtual value Y from f. Figure 3.1 illustrates the projection from a 2-D 

feature space onto a real axis, L, by the Nonlinear Integral. The contours 

being broken are due to the nonaditivity of the Fuzzy Measure. The points 

on the same projection line have the same set of Fuzzy Measure values, so 

they can be projected onto the same location. In our model, we used the 

signed Fuzzy Measure in Nonlinear Integrals, so the direction of projection 

can be shown differently due to different signs of Fuzzy Measures. 

Projection to 1-D makes the original information simple. But some useful 

information for classification may be left out, which leads to overlapping 

situation like those shown in Figure 3.2. That star in the right position 

represents a point misclassified by projection to 1-D. We can not classify it 

with the other points around it very well. % 

As described above, overlapping of classification on 1-D space exists in real 

world problems indeed. When this situation comes up, we need additional 
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Figure 3.1: Projection onto Axis by Nonlinear Integrals 

information to classify. So the 1-D space is extended to 2-D space. Similar to 

1-D case that the first Fuzzy Measure is learned, another Fuzzy Measure u 

must be introduced into the classification model. The Itai iiing piuit^v^ ul tin 

second Fuzzy Measure is similar to the previous one. The real axis on the 1-

Dimension space is used as one axis of the 2-Dimension space. Then we learu 

the second Fuzzy Measure v using GA and the value of the Nonlinear Integral 

respect to v is distributed on the other dimension in 2-Dimension space. The 

linear classifier is used as fitness function on to classify the points projected 

to 2-Dimension space with the Double Nonlinear Integrals. The graphical 

representation of projection with the Double Nonlinear Integrals to 2-D is 

shown to Figure 3.3. The example case in Figure 3.2 can be projected again 

onto the 2-Demension space in Figure 3.3 and separated into two classes. 

\ 

3.2 Classification Model by DNI 

In this section, a new classification model based on Double Nonlinear Integrals 

will be presented. It can be viewed as a general methodology of projecting 

the points in the feature space onto a virtual space by Double Nonlinear 
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Figure 3.2: Overlapping in Projection to Real Axis 

Integral, and then using a linear classifier to classify these points according 

to a certain criterion optimally.、The parameters are obtained by using an 

adaptive Genetic Algorithm. Good performance of this method comes from 

the use of the Fuzzy Measure and the relevant Nonlinear Integral, since the 
I 

nbnadditivity of the Fuzzy Measure reflects the inherent interactions of the 

predictive features towards the discrimination of the points. In fact, each 

predictive feature has respective important index reflecting their amounts of 

contributions towards the decision. Furthermore, the global contribution of 

several predictive features to the feature of classification is not just the simple 

sum of the contribution of each feature to the decision, but may contribute 

cooperatively nonlinearly. A combination of the predictive features may have 

iiiiitually restiainiiig or a coinplernentary synergy effect on their contributions 

towards the classification. So the Fuzzy Measure defined on the power set of 

all predictive features is a proper representation of the respective importance 

of the predictive features and the interactions among them, and a relevant 

Nonlinear Integral is a good fusion tool to aggregate the information coming 
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Figure 3.3: Projection to 2-D space Due to Overlapping in Projection in 1-D space 

from the prcdictivc features for the claiisiHcatioii. Tlic pio<jc.ss ot the new 

classification model is summerized in Figure 3.4. The detailed description of 

each part will be introduced in the subsections. 

First level: Learning the first fiizzy measure “ using GA 

Getting the first viztual vahie Yi using F1 

Projection to 1-D 

Second level: Learning the second ftizz}' measure v using GA 

Getting the s^ond dimensional value Y] 

Projecting to 2-D, all cases reprKoited by (Yi, Y:) 

Figure 3.4: The Process of Classification Model based on Double Xonlineai 

Integrals 

3.2.1 GA-based Adap t i ve Classifier 

Based on the Nonlinear Integral, we want to find an appropriate formula 

that projects the n-dimensional feature space onto a real axis. L. such iliar. 

each point / = ( / ( i i ) , / (X2) , . . . ’ /(x„)) which can be written in brief foriiiat 

、 
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J — (/ i , /2, • • •，/„) becomes a value of the virtual variable that is optimal 

with respect, to the classification. In such a way, each classification boundary 

is just a point on real axis L. 

The classification process can be divided into two parts to implement. 

1) The Double Nonlinear Integral based classifier depends on the Fuzzy 

Measures " and i/, so determining the optimal values of ̂  and i/ is in the first 

place of our work; 

2) When the Fuzzy Measures /i and u are determined, the virtual points 

(V î, Y2) can be obtained by using Nonlinear Integral. So, we must decide how 
i 

to classify these virtual points on 2-Dimension space. 

The following will focus on the above problems respectively. 

Here we discuss the optimization of the Fuzzy Measure ” under the cri-

terion of minimizing the corresponding global misdassification rate which is 

obtained in the second part above. 

Ill our GA model, we use a variant of original integrand / , / ' = a / + 6, 

to substitute /，where a is a vector to shift the coordinates of data and b is 

a vector to scale the values of predictive features. Here, a and b attempt to 
» 

balance the scales ot tlie predictive features in case that they have different 

iiieasuremeiit units. Each chromosome represents Fuzzy Measure /i , shifting 

vector a and scaling vector b. A signed Fuzzy Measure equals 0 at empty 

set. If there is n features in training data, a chromosome has 2" — 1 + 2n 

genes. Traditional genetic operations(e.g. crossover, mutation) are used. At 

each generation, for each chromosome, all variables are fixed and the virtual 

values of all training data are calculated using the Nonlinear Integral with 

respect to the signed Fuzzy Measure, so the classification function used in 

the second part is used as the fitness function and the misdassification rate 

is used as the fitness value. 
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In our model, projection to 2-Dimension based on Double Nonlinear In-

tegrals is adopted for higher accuracy. So we must repeat above described 

optimization process. In the first step, we get the optimal value of the first 

Fuzzy Measure and the feature space is projected to 1-Dimension space. The 
\ 

real axis on the 1-Dimension space is used as one axis of the 2-Dimeiisioii 

space in the step 2. Then we learn the second Fuzzy Measure v using GA 

and the value of the Nonlinear Integral respect to v is distributed on the 

other dimention in 2-Dimension space. The linear classifior is \isod as fitness 

function on 2-Dimension space. 

3.2.2 Linear Classifier for the Virtual Values 

After determining the Fuzzy Measure /i and u , shifting vector a, scaling 

vector b and the respective classification function from the training data in 

GA, original data in the n-dimensional feature space are projected onto 2-

Dimension space using the Double Nonlinear Integrals. One linear daiitiifiei 

is needed to classify the virtual points Y = ((2/ii’y'i2)’（"“’ '"“)”•.’（?//'p y;2). 

Discriminant analysis is introduced iitdetails[53 . 

We use Fishers linear dtscriminant[54] function to perform classification 

in projected space. Positive and negative ceritroids for projected data are 

determined by the following formulas. 

m+ = m_ = “ 

• 1， • 1 

Ronald Fisher defined Scatter Matrices as 

•S土 三 fx, - 774士) - '//i土) 

Sw = 5+-l-5_is caller' > Class Scatter Matrix. Similarly, the Be-
f 

tween Class Scatter Ma as Sb =(爪+ - m _ ) (m+ — m _ ) . 

So this result in an equivaleii "ession for Fishers discriminant criterion 
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lable 3.1: The Example tor Double Nonlinear Integral 

工1 工2 Class 

1 2 1 

3 1 2 

2 4 2 

4 3 1 

Table 3.2: The Preset Fuzzy Measure 

Subsets Value of ji Value of u 

0 0 0 

3 3 

2 4 

2 1 

is a ratio between two quadratic forms as J {uj) 
u Sbi^ 

， in which u rep-
Lj' Swf^ 

resents the direction of the projection space, i.e. the one-dimensional space. 

We caii^tsofve the prograiiiniing problem by maximizing J (u). The optimal 

uj can be represented as u = S&i * (m+ — m _ ) . So the Fishers discriminant 

function is formulated as: 

••V y — u> * {x — n+ • 771+ - n_ * m_) 

ill wliich n± is the sum of observations in each class respectively. Finally, a 

threshold needs to ho fixod in order to define a complete classifier. 

3.2.3 Example for classification based on the Double Nonlinear 

Integrals 

t 

In this section, we walk through a simple example to explain the work prin-

ciple of the classification model based on the Double Nonlinear Integrals. 

Given a data set with two features and two classes as shown in Table 3.1， 

there exists the Fuzzy Measure as Table 3.2. 

The value of the classical Nonlinear Integral can be computed as : 
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2/1 = / (Xi ) *//(Xi,X2) + (/(工2) - /(:ci)) •/i(X2) = 1 * 2 + 1 * 2 = 4 

2/2 = /(X2) */x(x,,X2) + (/ (x i ) — /(X2)) • /i(a:,) = 1 *2 + 2 * 3 = 8 

2/3 = /(工 1)-* "(工1，工2) + (/(工 2) - / ( x i ) ) •m(x-2) = 2 * 2 + 2 * 

2/4 = / f e ) • M(工 1’ 工2) + ( / ( ^ l ) - /(X2)) • /i(x-,) = 3 * 2 + 1 * 

Then the visual value by projecting is drawn in Figure 

the data can not be classified by one point, into two rlassos 

一-

introduce the sencond set of the Fuzzy Measures u shown 

perform the second projection. The second set of values by 

be computed in the same method. 

yi = fi^l) * ".(2：1’丄.2) + (/(工2) - /(工 1)) • "(x.2) = 1 * 1 + 1 * 

y 2 = / ( X 2 ) * f J - { x u X 2 ) + ( / ( a ; , ) - f ( x 2 ) ) * / i ( x - , ) = 1 * 1 + 2 * 

2/3 = /(工 1 ) * "(工1’2：2) + if{X2) — / ( x i ) ) • //.(工2) = 2 * 1 + 2 * 

2/4 = / ( 工 2 ) * / i ( X i , X 2 ) + ( / ( x i ) - f(x2)) • ^{xi) = 3 * 1 + 1 * 

The projection to 1-D space by the classical Nonlinear Integral is trans-

ferred into 2-D space by the Double Nonlinear Integral. The traiisteniiatioii 

process is shown in Figure 3.5. The star points stand for class 1 ami the dot 

points stand for class 2. We can not classify the tour points into two cla.s.se.s 

by one point in 1-D space shown in top part of Figure 3.5. After using Double 

Nonlinear Integral the points in the 1-D space are streched and scattered in 

2-D space so that tlio data can be classified conectly by a straight line. For 

real life problems, the two sets of Fuzzy Measure will be learned using GA 

algorithm introduced in the above section. 

3.3 Experiments 

In this s ^ ^on , we present the results of classification model "basfiri on pro jor-

tion with the Double Nonlinear Integral to classify two kinds of (lat,n.set.s. Oii<、 

2 = 8 

3 = 9 

3.5. Obviously, 

So wr norrl to 

ill Table 3.2 to 

projectiong can 

4 = 5 

3 = 7 

4 = 10 

3 = 6 
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0 
8 9 V 

Figure 3.5: Transfermation from 1-D Space to 2-D 

kind is synthetic datasets which contain 100 cases and 200 cases respectively 

with two classes and show ying-yaiig distribution as Figure 3.6. We apply 

new algritliom to the synthetic data to evaluate the improved performance of 

Donblp Nonlinear Integral. The other kind of datasets are benchmark prob-

lem selected from UCI[55]. The information about data are listed in Table 3.3 

which is used for comparing the Double Nonlinear Integral with the classical 

methods. The brief description of benchmark datasets are given as follows. 

Heart Disease (Heart) : This dataset has 76 raw features, only 14 of 

tluMii arc actually usod. The "goal" field refers to the presence of heart 

(lis(»aso in the patioiit. The names and social security numbers of the patients 

wore recently removed from the database, replaced with dummy values. The 

actual data used in our experiments has been processed which contain 270 
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Table 3.3: Description of Datasets 

Datasets Examples features Classes 

Syn_Datal 100 2 2 

Syn_Data2 200 2 2 

Heart ‘ 2 7 0 13 2 

Pima 768 7 2 

Wdbc 569 3U 2 

Breast-cancer-winson 699 9 2 

Echocardiogram 132 13 2 

examples. 

P ima- ind i ans-d iabe tes ( P i m a ) : This dataset contains 768 examples. 

Each sample represents a patient who may show symptoms of diabetes is 

described by 8 features, which are: 1) number ot times pregnant, 2) plasma 

glucose concentration, 3) diastolic blood pressure, 4) triceps skin fold thick-

ness, 5) two-hour serum insulin, 6) body mass index, 7) diabetes pedigree 

function, and 8) age. There are 500 samples from patients who do not have 

diabetes and 268 samples from patients who are known to have diabetes. 

W i s c o n s i n D i agnos t i c beast cancer ( W d b c ) : This dataset contains 

569 samples with 32 features which has ID, diagnosis and 30 real-valued input, 

features. The ID feature is removed and diagnosis is used as class. Class 

distribution is 357 samples for benign and 212 samples tor malignant. 

Breas t Cancer : This breast cancer databases was obtained from the 

University of Wisconsin Hospitals, Madison from Dr. Will iam H. Wolberg. 

It contains 669 samples which are partitioned into two classes, 458 benign 

samples and 241 malignant samples. Each sample is described by 9 features: 

a) clump thickness, b) uniformity of cell size, c) uniforniity of cell shape, 

d) marginal adhesion, e) single epithelial cell size, f) bare nuclei, g) bland 

chromatin, h) normal nucleoli, and i) mitoses. In this database, the values of 
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tlie sixth feature in 16 samples are missing. We have ignored these 16 samples 

when conducting experiments. . 

Echocard iogram Data : The problem addressed by past researchers was 

to predict from the other variables whether or not the patient will survive 

at least, one year. It contains 132 instances with 13 features which are ail 

numeric-valued. They are 1) survival, 2) still-alive, 3) age-at-heart-attack, 4) 

pericardial-effusion, 5) fractional-shortening, 6) epss, 7) Ivdd, 8) wall-motion-

score, 9) wall-motion-index, 10) mult, 11) name, 12) group and 13) alive-at-1. 

Fur implementing our new classifier based on the Double Nonlinear Inte-

grals, GA tool in Matlab v7.2 Programming is called combining with Fishers 

flisrriiiiinant function. In our experiments, all parameters in GA are set with 

the default values. We design the generation limit which is 100 as the stopping 

criteria. 

We adopt 10-fold cross validation method to make sure that the testing 
1 

data can cover the whole dataset. That means that we randomly break the 

data into 10 sets of size of A^/10, train on 9 sets and test on 1，and each 10-

fokl expeiinieiit is repeated 10 times and the mean result is recorded. After 

ten iterations, all data are used for testing and the average can be computed 

to evaluate the performance of the classifier based on the Double Nonlinear 

Integrals. 

Table 3.4 shows that the result of the classical Nonlinear Integral and 

the Double Nonlinear Integral for synthetic data. We can see that the Dou-

ble Noiilieiieai Integral has improved the accuracy compared to the classical 

Nonlinear Integral, especially for dataset 2 which has more cases. Figure 3.7 

illustrates the classification situation for the dataset with 200 cases. The left 

one is the first projection to 1-D space by the classical Nonlinear Integral. 

Apparently, many star points scatter into the dot ones. After projectiag onto 
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Figure 3.6: The Synthetic Data Distribution 

2-D space by the Double Nonlinear Integral, all data in the two classes are 

strcdicd and classified efficiently by a straight Hue. The error is dccrcascd 

greatly. 

• /..、-•、： 

1><!卜 

Figure 3.7: The Graphical RcprcscntHtioii of Classifi( ntidii loi l In* S、.iit i(. 

‘ Dataset with 200 Cases 

Table 3.5 show the results of Projection with the Double Nonlinear In-

tegrals to 2-D compared with the classical methods which include Deci-

sion TYee(DT)[9j, Support Vector Machine(SVM)[lll, Naive Bayes(NB)[12l， 

Nueral Network(NN) [10]. The best results are highlighted in bold. We can 

see that our new algorithm has higher accuracy than t.lio classical iiirtliods 

for most cases and comparable in other cases. 
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able 3.4: Comparison Results between 2-D Projection and 1-D Projection 

~ ~ ~ ~ ~ — D a t a i > e t s 

Algorit.h ms 、、、、� 

Dataset 1(100 cases) Dataset2(200 cases) 
~ ~ ~ ~ ~ — D a t a i > e t s 

Algorit.h ms 、、、、� 
Training 

accuracy 
Testing 

accuracy 

Training 

accuracy 

Testing 

accuracy 
Projection to 1-D 0.987 0.987 0.964 0.965 
Projection to 2-D 0.987 0.987 0.994 0.990 

Table 3.5: Comparison Results between 2-D Projection and Classical Methods 

Datasets Algorithms DT SVM NB NN DNIC 

Heart 
Train accuracy 0.857 0.801 0.850 0.850 0.867 

Heart 
Test accuracy 0.847 0.790 0.837 0.843 0.844 

Pima 
Train accuracy 0.783 0.770 0.776 0.782 0.782 

Pima 
Test accuracy 0.747 0.762 0.770 0.765 0.752 

Wdbc 
Train accuracy 0.922 0.925 0.918 0.922 0.930 

Wdbc 
Test accuracy 0.896 0.922 0.916 0.915 0.958 

Breast-Cancer-winson 
Train accuracy 0.962 0.958 0.968 0.959 0.964 

Breast-Cancer-winson 
Test accuracy 0.941 0.954 0.957 0.956 0.956 

Echocardiogram R 
Train accuracy 0.941 0.908 0.938 0.946 0.907 

Echocardiogram R 
Test accuracy 0.881 0.888 0.925 0.928 0.886 

Note: NIC stands for Classical Nonlinear Integrals; DNIC stands for Double 

Nonlinear Integrals; and NB stands for Naive Bayes. 

3.4 Chapter Summary 

In this chapter, a new classification model based on projection with the Dou-

ble Nonlinear Integrals has been proposed. This method has good perfor-

mance based on the Double Nonlinear Integral with the signed Fuzzy Mea-

sure, because the nonadditivity of the Fuzzy Measure reflects the importance 

of the predictive features, as well as their inherent interactions. Projection 

to 2-Dimension based on the Double Nonlinear Integrals enhances the perfor-

mance on classification due to solving the intersection situations in projection 

onto l-Dirnension space. However, the computation complexity has also in-

creased linearly, which is acceptable. 

ill tuLuie work, we may compare our new model with more classical meth-
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ods to evaluate its performance and extend projection to 2-D based on the 

Nonlinear Integrals to more dimensional space if necessary so that better 

performance can be obtained. 



Chapter 4 

Nonlinear Integrals with 

Polynomial Kernel 

Nonlinear liitegrals(NIs) are useful integration tools. It can get a set of virtual 

values by projecting original data to a virtual space for classification purpose 

using Nonlinear Integrals. The classical Nonlinear Integrals implement pro-

jection along a line with respect to the features. But in many cases the linear 

projection cannot, achieve good performance for classification or regression 

due to the limitation of the integrand. The linear function used for the inte-

grand is just a special type of functions with respect to the features. In this 

chapter, we propose a Nonlinear Integrals with Polynomial Kernel(NIPK). 

A polynomial function with respect to the features is used as the integrand 

of Nonlinear Integrals. It. enables the projection to be along different types 

of curves to the virtual space, so that the virtual values gotten by Nonlin-

ear Integrals can be better regularized and have higher separation power for 

classification. 

We use Genetic Algorithms (GAs) in Matlab to learn the Fuzzy Measures 

so that a larger solution space can be searched. 

59 
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To test the capability of the NIPK, we apply it to classification on several 

benchmark datasets and a Bioinformatics project, described in Chapu” G 

Experiments show that there is evident improvement on performance tor the 

NIPK compared to the classical NIs. 

This chapter is organized as follows: 

Section 4.1 gives a brief introduction about this chapter, in .section -4.2, 

the basic concepts related to Fuzzy Measures and Nonlinear Integrals are 

introduced. We extend the integrand from classical functions to polynomial 

kernels and establish the corresponding Nonlinear Integrals with Polynomial 

Kernel based model. Then the main algorithm of the Nonlinear Integral 

with Polynomial Kernel for classification is presented in section 4.3. The 

experimental background and results are shown in section 4.4 with detailed 

analyses. Finally, some conclusions are given. 

4.1 Introduction 

Nonlinear Integrals are known to have good results on classifu aliDii and le-

gression despite of the large computational complexity. Since Fuzzy Measure 

was first introduced by Sugeno[17], many versions of Nonlinear Integrals with 

respect to Fuzzy Measures were proposed by researchers and applied to clas-

sification and regression on real world data, e.g. Choquet, Sugerio, Twofold, 

f-conorm integral [36’ 37’ 38, 39]. In these methods, the Nonlinear Integrals 

are used as confidence fusion tools. Given an object A = {丄 |’ 丄2’ • ’丄n}，loi 

each class c^, /c = 1,2, ...rn, a Fuzzy Measure is needed to fuse the n degreeb of 

confidence for statement : X belongs to class C based on the value of each 丄” 

i = 1,2, ...n. So m Fuzzy Measures are used and the values of Fuzzy Measures 

are needed to be determined. Moreover, these methods need a large number 



CHAPTER 4. NONLINEAR INTEGRALS WITH POLYNOMIAL KERNEL 6-1 

of UfcUiiiiig data with multiple classes. It has high time arid space complexity. 

Unlike the methods above, another method called WCIPP (Weighted-

Choquet-Integral based Projection Pursuit) use a weighted Choquet Integral 

as a projfirtion tool [26|. In WCIPP, only one Fuzzy Measure defined on the 

power set of the set of all features is used to describe the importance of each 

f<、at‘m-(、as well as t.iunr int.orartions[13, 16, 40) towards the classification of the 

lec.uids. The classical classification problem in /i-diniensioiial space is trans-

A 

torn led to a orie-dirnensional space problem through the optimal projection 

based on Nonlinear Integrals. We used a generalized WCIPP with respect to 

the Signed Fuzzy Measure in previous research. The Signed Fuzzy Measure 

can describe the interaction and contribution of features for better decision. 

J represents the value of each feature which will be used as component in 

integrand. The integrand is represented by f' = aj + b which is a transfer-

in at ion of / and the Fuzzy Measure is extended to the Signed Fuzzy Measure. 

This part will be described in detail in the following sections. But there is 

a limitation for the generalized WCIPP. Integrand is jusE-^pne special linear 
為噢 

type of integiand with respect to predictive features. So we propose a formal 

generalization of the classical integrand, / ' = a / + 6，which is linear. A brief 

description is given below. ^ 

III this chapter, we use the polynomial kernel instead of the linear func-

tion in the above Nonlinear Integral with Polynomial Kernel as a nonlinear 

integrand to describe the projection path. This can project the original data 

in d high dimensional space onto a linear virtual space along different curves 

according to the degree of the polynomial integrand. As a result, the virtual 

data may be separated more easily and accurately due to the polynomial 

effects which liave equivalent power of creating flexibly curve boundary sur-

faces. Additionally, when the feature number is very large, the computation 
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complexity of Nonlinear Integrals will be unacceptable. So we use feature 

selection as preprocessing to reduce the number of features and lower the 

complexity, which enables the application of Nonlinear Integrals to be ex-

tended to more realistic problems. 

4.2 Basic concepts 

111 classification, we are given a data set coiisisling ot L example ie(oids. 

called training set, where each record contains the value of a decisive feature, 

Y , and the value of predictive features X = {工！，:/；2,…’丄’i}. The positive 

integer L is the data size. The decisive feature indicates the class to which 

each example belongs, and it has categorical values coming from an unordered 

finite domain. The set of all possible values of the decisive feature is donoterl 

by C = C] ,C2 ,Cm, where each c*：, k — 1,2,..., m, refers to a. specified class 

The predictive features are numerical, and their values are described by an 

n-dimeiisiorial vector, (/(xi) , /(x^), • • • , /(x„)). The range of the vector, a 

subset of n-dimensional Euclidean space, is called the feature space. The 

observation consists of n predictive features and one decisive feature, which 

can be denoted by (/^(x,),/,(:r2), • • • , K , ) . j ~ 1 . 2 . … . / Boforp 

introducing the model, we give out the fundamental concepts a.s follows 

4.2.1 Fuzzy Measure and Nonlinear Integral • 

Let X = Xi, X2, • • • ,Xn, be a nonempty finite set of features and V{X) be the 

power set of X . The Signed Fuzzy Measure and Nonlinear Integral with the 

Signed Fuzzy Measure have been defined in Chapter 2 We would not reppat 

them. Here we just give out simple example to explain these (Icfiiiitions 

Example 4.1 Let X = {工！’工�，工3} . Set function fi ： V(X) —» ( - 0 0 , oc| w 
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given as 

0 if E 二 边 

2 {x-,} 

—3 if E = {X2} 

-1 ij E = {Xi,X2} 

5 if E = {X3} 

4 if E = {xi,x3} 

- 2 if E = {x2,a:3} 

3 if E = X 

Then ta a myiicd efficiency mcaaure on V(X). 

A Signed Fuzzy Measure allows its value to be negative and free from the 

inonotonicity constraint. Thus, it. is more flexible to describe the individual 

and joint contribution rates from the predictive features in a universal set 

towaids some targets. 

4.2.2 Non l i n e a r In tegra ls w i t h P o l y n o m i a l Ke r ne l 

De f i n i t i o n 4.1 Let j^i be a non-monotonic Fuzzy Measure on X and f be a 

nonneyative function. The Polynomial Nonlinear Integral with respect to fi is 

qiven by 

ipc) J jdfL 二 t i r M -广 (工卜 1))1"({工"工…，…’工”}) 
j=i 

where /i({x-,, X j + j , x „ } ) is the same as the definition of Nonlinear Inte-

yjul lu Qiapitr 2, is ike polynomial integrand to rtplace the classical linear 

one and p is an integer to represent the exponent for all features. 

From Figure 4.1，we can see the simple graphical representation of the 

piujectioii by the classical Nonlinear Integrals. In this section, we discuss the 
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detailed situation of the projection by Nonlinear Integrals with Polynomial 

Kernel with different degrees of polynomial integrands. We design the poly-

nomial integrands as ( a / + b)^. When p = 1, Uie Nonlinear Integrals wit.li 

Polynomial Kernel is consistent with the classical Nonlinear Integrals So ir 

can be viewed as a generalized form. For simplicity, we limit our discussions 

in two dimensional spaces in this section. The discussions would apply to 

higher dimensional feature spaces. 

A. p=l 

When p = 1, the projection axis is linear and projection contours arc 
> 

piccewise linear. In 2-dimensional spare, rho projort.ion axis smisfirs the 

equation . The slope of the projection axis can be positive or negative. Lei 

us see an example for illustrating the situation with respect to the classical 

Fuzzy Measure. 

E x a m p l e 4.2 Let //.i = 0.2’ "2 — 0.6，"12 = 10. The other parmncteTs arr. 

ai — 1, fei = 4;a2 = 2,62 = 6 So the real axis L can be computed by solving 

equation aif -f b\ = 02/ + 62，a — 0’ 6 0. 

a2 . a2 • 

The contours can be computed using the Nonlinear Integral with Polyno-

mial Kernel defined above. When aif-\-bi < aaf+b】’ the contours Ttyrestnied 

by y = 0.4/1 + 1.2/2 + 5.2 are above L. For example f\ = 0’ /2 = 6 then iht 

projection value y = 0.4 • 0 + 1.2 • 6 + 5.2 = 12.4. When a^f + h、> a?/ + 62-

ihe contours represented by y = 0.2/i + 1.6/2 + 5.2 art btlow L. Fat txampUt 

fi = 5，/2 = 0，then the projection value y — 0.2*5 + 1.6• 0 + 5.2 = 6.2. This 
\ 

projection is shown in Figure 41. 
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« 46 ao 

Figure 4.1: p = 1 with the classical Fuzzy Measure 

In an extended model, we extend the Fuzzy Measure to a generalized 
4 

Fuzzy Measure-the Signed Fuzzy Measure. It means the joint contribution 

of multiple features may not necessarily be larger than the individual's. The 

diie( lions of projections can be changed according to the signs of the Signed 

Fuzzy Measures in the graph. When /i is nonnegative and regular, the slopes 

of the tuiitours must be less tlian or equal to 0. The extension relaxed this 

restrict ion so that the slopes of projections can be flexibly varied from positive 

to negative and vice versa. This situation is explained by Example 4.3 and 

graphically described in Figure 4.2. 

E x a m p l e 4.3 LfU = -1,/i2 = —2，/ii,2 = 3.0 and a\ = l,b\ = 4;a2 = 

2,62 = 6. Then the projection axis is the same as that in Example J^.2, 

f f ( … - h ) 1 " I r 
I.e. L: J2 — 1 J\ = 

a2 a2 

0.5/, 

Because the Fuzzy Measure is the Signed Fuzzy Measure which is different 

Jroin previous example, the confoin lines are different from those in Figure 

4.1. The cojiespondnig graph on projections by Nonlinear Integrals with re-
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sped to the Signed Fuzzy Measure is shown in Figure 4-2. 

For contours, above L, y = /ii2 * {a\f\ -f 6]) 4- 1x2 ("2/2 + ^2) = 3/i - 4/2 

For contours, below L, y — fiy2 • (“2/2 + b-z) + "1 (“1/1 + bi) = 6/1 - \ f2 + 14 

Figure 4.2: p = 1 with the Signed Fuzzy Measure 

B. p二2 

When p = 2，the polynomial integrand is represented as (a j + b)-. Tlie pi J 

jection axis can be computed similarly with p = 1 whi( h satisfios {(i [f\ +/, 

((12/2 + a 0, 6 0. So there are two projection axes by solving above 

equation, i.e. L : / � = = 士 f ̂̂̂———+ — / i V Projection contoui rnav l)(、 
\ "2 "2 / 

parabola, hyperbola or ellipse depending on the sign of parameters. Let us see 

2 2 
the example in Figure 4.3. The data which have (u i f i + b^) < (“2/2 + ^2) 

^ > 

are in the areas I and III and those which have {a\Ji -f- biY > (“2/2 十〜）•⑴ 

* 

in the areas II and IV. The blue projection curves in a^e<l̂  I and i l l lulhm 

the function 

y = /X12 * {aji + � ) 2 + "2* ( ( "2 /2 + 62)2- (a i / i +61)2) 

= ( " 1 2 - /i2) * (aJi + 61)2 + /丄2 • (02/2 + 〜） 

The red projection curves in areas II and IV follow the function 
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y - f'V2 水{(l-dh • "1 * ( (" l / l + i^y (^2/2 ； b-y^) 

=("12 — * ("2/2 + + /il * (…/l + bi) 

Figure 4.3: p = 2 

C. />=3 

When p = 3, the polynomial integrand can be represented as (a/ 十 6)3. 

The projection axis needs to satisfy (cii/i + 61)̂  二 ⑷ / ? + ci # 0’ b ^ 0. 

Due to the odd exponent, there is only one line as in the situation of p = 1. 

The difference between p = 1 and p = 3 is in just the projection paths. The 

former ones are simple straight lines, but the latter ones are along the curves 

of tlie polynomial functions of degree 3. Figure 4.4 shows the representative 

curves. 

When p = 4, the situation is similar to that of p = 2; when p = 5, the 

situation is similar to that of p = 3. So the detailed descriptions and figures 

will be skipped. 

a 
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Figure 4.4: p = 3 

.3 Projection based on Nonlinear Integral with Poly-

nomial Kernel for classification 

Based on the Nonlinear Integral, we can build an aggregation tool tliat, 

projects the feature space onto a virtual l-dimenstiQiial space. Under the 

projection, each point in the feature space becomes a value of the virtual 

variable. 

A point (/(工 1)，/》) ’ . . • , /(x„)) is projected to be V , the value oi the 

virtual variable, on a real axis through a Nonlinear Integral defined Ijy ) ‘ 二 

f fdfi. Once the values of are determined, we can calculat.r thr virt.iml 

values Y from / . 

Figures 4.1 and 4.2 illustrate the projection from a 2-D feature space onto 

a real axis, L，by the classical Nonlinear Integral. The contours being broken 

are due to the nonaditivity of the Fuzzy Measure. Although there are other 

kinds of projection axes using Nonlinear Integral with Polynomial Kernel as 

in Figures 4.3 and 4.4. Given the training examples, our algorithm will leani 

the optimal coefficients of the polynomial function by GA. We (an (1 丄ssify 

the cases according to the virtual values on the axis projected by Nonlinear 
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IiiLegrals. 

Our approach" can be divided into three steps. 

S tep 1. Learn the Fuzzy Measures and polynomial index using the training 

dataset; 

S tep 2. Construct a linear classifier based on the virtual data which obtained 

by Nonlinear Integrals with polynomial Kernel; 

S tep 3. Evaluate the learrii model using the testing examples. 

Im our G A model, a Signed Fuzzy Measure is 0 at empty set. The fitness 

function can be defined as: 

Fitness Fun = Error 

where Error is the misclassification rate for each dataset. 

The pseudo code for the whole algorithm of the Nonlinear Integral with 

Polynomial Kernel baaed classifier is listed as follows: 

71： features number; 

L: dataset sj^e; 

I n p u t : training data / ” and y]、i = 1 ’ 2 , … — 1,2，... , L 

O u t p u t : error final.e 

Begin: -、、 

W h i l e j'muLe > threshold 

Learning Fuzzy Measure /i, parameters a and 6，and degree p in 

GA; 

For each data j 

Compute NIPK; 

Classify data j 

End 

/ma/_e=fitness; 
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End 

Output /i, a, b and p\ 
、 

For a new observation 

Compute NIPK; 

Classify; 

End 

Output the finaLe; 

End 

4.4 Experiments and analysis 

We have performed two parts of experiments. The first part is testing our 

algorithm on the synthetic Datasets and 3 Monkey problems; the second parr 

is to apply Nonlinear Integral with Polynomial Keriiel(NIPK) to seven real-

life problems selected from UCI (55). We compare the performance of NIPK 

with the classical Nonlinear Integral classifier 

4.4.1 Model Building 

To implement the learning algorithm of our new dassifici btuscd uii N IPK, we 

use the GA tool in Mat lab v7.2 Programming. All the parameters used in 

our G A for our experiments are default values. We set tlie generation limit 

to be 100 as the stopping criteria. 

We adopt 10-fold cross validation method to make sure that the whole 

dataset can be used as testing data in turn and over-training (over-fitting) 

can be avoided. It means that we randomly partition the N data into 10 sei.s 

of size of N/IO, train the model on 9 sets and test on the remaining set,. We 
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Table 4.1: Description of Synthetic Datasets arid Monk Series Dataaets in Part 1 

Datasets Examples Features Classes 

SYNl 200 2 2 

SYN2 500 3 2 

MONKl 、556 6 2 

M0NK2 601 6 2 

MONK3 554 6 2 

tiieri fepeat the training and testing 9 times in turn and take the mean result. 
A * 

4.4.2 Results-and Analysis 

In this part, there are two synthetic datasets, three Monk series datasets 

and seven datasets selected from the UCI repository [55]. The synthetic 

datasets have the same distribution on both sides of the ying-yang shape m 

2-Dimensional and 3-Dimensional spaces and different dataset sizes of 200 (as 

shown ill Figure 4,5) and 500 respectively. The detailed information is shown 

ill Tables 4.1 and 4.2 respectively. Two of these datasets, breast-cancer-

vviiison a!id echocardiogram, have the noisy data processed by substituting 

them by the most common value or mean value. 

We can see that the number of features of each dataset is rather large for { 

Nonlinear Integrals to deal with. It will take very long time to learn the Fuzzy 

Measures. So feature selection is a necessary step. We adopt Information 

Gains based ranking method to select the features for classification. We 

just select the top features as the subset to be used in the model, which 

can greatly improve the efficiency of Nonlinear Integrals because the time 

of learning the Signed Fuzzy Measure is reduced greatly. Actually for these 

datasets, we have experimented with 3, 4 and 5 features. The results show 

no significant difteience in perfonnancc. Based on the Occam razor principle, 
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Table 4.2: Description of : Datasets in UCI Repository 

Datasets Abbr. Examples Features Classes 

Heart Heart 270 13 2 

Pima Pima 768 7 2 

Wisconsin Diagnostic Breast Cancer Wdbc 569 30 2 

Wisconsin Prognostic Breast Cancer Wpbc 699 9 2 

Echocardiogram Echo. 132 13 2 

Tae Tae 151 5 2 

Sonar Sonar 208 60 2 

3 is the optimized choice for the number of features for these dat.aset.s For 

consistency, the same dataset is used in other methods. The main algoiitlmi 

of classification model is implemented using Matlab v7.2 [57]. 

0 

Figure 4.5: The Synthetic Data Distribution 

Firstly, we test the performance of this model respectively when p equals 

1 to 5. The results in each situation are shown in Tables 4.3 and 4.4. WV 
« 

can see the performance of the Classifier based on Nonlinear Integrals with 

Polynomial Kernel (NIPKC) is not necessarily the best when the index is the 

largest. So the accuracy is not augmented linearly as the index p is increased. 

It also shows that the index is not fixed for the optimal situation. It depends 

on the irregularity of the boundary required to separate the clusters of (lata 

A 

々 ？ : V 

巧： 
\ •-: 
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Tab e 4.3: The Results of XIPKC with Different Degrees : :oi. Datasets in Pj 
Datasets performance p= l p=2 p=3 p=4 p二5 

Syn-Datal 
train accuracy 0 . 9 6 4 0.959 0.954 0.952 0.947 

Syn-Datal 
test accuracy 0.912 0 . 9 3 5 0.925 0.905 0.929 

Syn-Data2 
train accuracy 0.953 0 . 9 5 8 0.947 0.950 0.946 

Syn-Data2 
test accuracy 0.932 0 . 9 5 4 0.926 0.944 0.932 

Monkl 
train accuracy 0.867 0 . 8 9 0 0.880 0.883 0.827 

Monkl 
test accuracy 0.789 0.793 0.744 0 . 8 8 6 0.797 

Monk2 
train accuracy 0 . 7 2 0 0.703 0.680 0.670 0.660 

Monk2 
test accuracy 0 . 6 7 7 0.646 0.611 0.644 0.646 

Monk3 
train accuracy 0.954 0.967 0.972 0.971 0 . 9 7 8 

Monk3 
test accuracy 0.950 0.964 0.975 0.975 0 . 9 8 6 

for classifications. 

Since there is no one fixed value for p, we propose to learn p together 

with the Fuzzy Measures. The results in each situation are shown in Tables 

4.5 and 4.6 as follows. Table 4.5 gives the comparison results of NIPKC and 

tho Classical NIC. Table 4.6 shows the performance of NIPKC compared with 

several classical methods, namely, Neural Network (NN), Decision Tree (DT), 

Naive Bayes (NB), and Support Vector Machine (SVM). 

From Table 4.5, we can see the NIPKC has better the performance than 

NIC in most cases, especially for complex datasets. According to the coin-
% 

parisoii of the results with the traditional methods in Table 4.6，the NIPKC 

haii the highest accuracy for some datasets and is comparable in the others. 

For complex data, NIC cannot get better results than those traditional algo-

rithms and need to be extended to NIPKC. Although maybe there is some 
« 

over training for some datasets, NIPKC contains not only the characteristic 

of NIC which call describe the interaction of features in the contribution to-

wards classification but has competitive classification power provided by the 

polynomial projection. 
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Datasets performance p= l p=2 p=3 p—4 p=5 

Heart 
train accuracy 0.859 0.860 0.854 0.844 0.844 

Heart 
test accuracy 0.856 0.856 0.844 0.830 0.826 

Pima 
train accuracy 0.780 0.781 0.780 0.772 0.771 

Pima 
test accuracy 0.766 0.768 0.753 0.751 0.733 

Wdbc 
train accuracy 0.926 0.925 0.925 0.923 U.923 

Wdbc 
test accuracy 0.905 0.919 0.910 0.919 0.914 

Wpbc 
train accuracy 0.953 0.958 0.947 0.950 0.946 

Wpbc 
test accuracy 0.932 0.954 0.926 0.944 0.932 

Echo. 
train accuracy 0.948 0.943 0.932 0.919 0.918 

Echo. 
test accuracy 0.895 0.917 0.932 0.894 0.894 

Tae 
train accuracy 0.769 0.762 0.765 0.771 0.758 

Tae 
test accuracy 0.674 , 0 : 7 0 9 0,666 0.658 0.628 

Sonar 
train accuracy 0.801 0.802 0.807 0.798 0.796 

Sonar 
test accuracy 0.739 0.727 0.750 0.751 0.765 

.5 Chapter Summary and Future Work 

In this chapter, we have alleviated the limitation of the classical Nonlinear 

Integrals on integrand and introduce the polynomial function as the nonlinear 

integrand. This generalization has extended the projection from linear lines 

to various shapes of curves which can handle more complicated data classih-

cation. We can see the accuracy of claiisihcation model does not iieccs.sai ily 

increase with the degree of the polynomial. So we also need to learn the opti-

mal degree of the Nonlinear Integrals with Polynomial Kernel in the training 

process. By extending the Nonlinear Integral to higher degrees, we call the 

new model: the Nonlinear Integral with Polynomial Kernel. Moreover, tlie 

complexity of the Nonlinear Integral with Polynomial Kernel Classifier is not 

greater than that of the classical Classifier. 

We have applied Nonlinear Integral with Polynomial Kernel to Benchniark 
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Data All results showed that Nonlinear Integral with Polynomial Kernel 

ran get better or comparable classification performance than the classical 

Nonlinear Integral and the other traditional classifiers. 
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Table 4.5: The Comparison Results between NIC and NIPKC 

Datasets performance NIC NIPKC 

Synl 
train accuracy 0.964 0.963 

Synl 
test accuracy 0.912 0.929 

Syn2 
train accuracy 0.953 0.958 

Syn2 
test accuracy： 0.932 0.942 

Monkl 
train accuracy 0.867 0.871 

Monkl 
test accuracy 0.789 0.873 

Monk2 
train accuracy 0.720 0.722 

Monk2 
test accuracy 0.677 0.711 

Monk3 
train accuracy 0.954 0.977 

Monk3 
test accuracy 0.950 0.969 

Heart 
train accuracy 0.859 0.860 

Heart 
test accuracy 0.856 0.851 

Pima 
% 

train accuracy 0.780 0.781 
Pima 

% te^t accuracy 0.766 0.768 

Wdbc 
train accuracy 0.926 0.929 

Wdbc 
test accuracy 0.905 0.912 

Wpbc 
train accuracy n.953 0.969 

Wpbc 
test accuracy 0.932 0.957 

Echo 
train accuracy 0.948 0.951 

Echo 
test accuracy 0.895 0.911 

Tae 
train accuracy 0.769 0.768 

Tae 
test accuracy 0.674 0.693 

Sonar 
train accuracy 0.801 0.783 

Sonar 
test accuracy 0.739 0.768 
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Table 4.6: The Comparison Resu 

Datasets performance NIPKC NIC DT NB NN SVM 

Heart 
train accuracy 0 . 8 6 0 0.859 0.857 0.801 0.850 0.850 

Heart 
test accuracy 0.851 0 . 8 5 6 0.847 0,790 0.837 0.843 

Pirna 
train accuracy '0.781 0.780 0 . 7 8 3 0.770 0.776 0.782 

Pirna 
test accuracy 0.768 0.766 0.747 0.762 0 . 7 7 0 0.765 

Wdbc 
train accuracy 0 . 9 2 9 0.926 0.922 0.925 0.918 0.922 

Wdbc 
test accuracy 0.912 0.905 0.896 0 . 9 2 2 0.916 0.915 

Wpbc 
train accuracy 0 . 9 6 9 0.953 0.962 0.958 0.968 0,959 

Wpbc 
test accuracy 0.957 0.932 0.941 0.954 0 . 9 5 7 0.956 

Echo. 
train accuracy 0 . 9 5 1 0.948 0.941 0.908 0.938 0.946 

Echo. 
test accuracy 0.911 0.895 0.881 0.888 0.925 0 . 9 2 8 

Tae 
train accuracy 0.768 0.769 0.737 0.705 0.729 0 . 8 2 4 

Tae 
test accuracy 0 . 6 9 3 0.674 0.594 0.671 0.685 0.653 

Sonar 
train accuracy 0.783 0.801 0.774 0.747 0.793 0 . 8 1 9 

Sonar 
test accuracy 0.768 0.739 0.716 0.695 0.759 0.743 

ts of Several Methods 



Chapter 5 

• 

Upper and Lower Nonlinear 

Integrals 

A new nonlinear multi-regression model based on a pan of extreme Noiilineai 

Integrals, the Upper and Lower Noiilineai Integrals, is ebiabliblied iii Lliib 

/s^chapter. A data set of predictive features and the relevant objective feature 

is required for estimating the regression coefficients. Duo to the nonadrlit.ivit.y 

of the model, a Genetic Algorithm or other soft computing technique should 

be adopted to search for the optimized solution in the regression problem. 

Applying such a nonlinear multi-regression model, an interval prediction tor 

the value of the objective feature can be made once a new obsei vatioii ol 

predictive features is available. We apply our model on synthetic data, aiitl 

weather problem. The results testify the performance of the multi-regression 

based on the Upper and Lower Nonlinear Integrals. 、 
» * 

To show such a new multi-regression model, this chapter is arranged as 

follows. Section 5.1 gives an introduction. In Section 5.2, the concept of 
% 

the Signed Fuzzy Measure is recalled and an overview of Nonlinear integrals 

defined on finite sets are given. The new nonlinear rnulti-regressioii niodt-l 

78 
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based on the Upper and Lower Nonlinear Integrals is described in Section 

5.3. This section also shows the multi-objective optimization method for the 

regression model to make an interval prediction. In Section 5.4，simulation 

on synthetic data and application on weather data are presented. Finally, 

some conclusions are given in Section 5.5. 

5.1 Introduction 

The classical aggregation tool in information fusion is the weighted sum. It 

ib a lineal model. Using this linear model needs a basic assumption: there 

is no interaction among the contributions from predictive features towards 

the objective feature such that the joint contribution from a group of pre-

dictive features is just the simple sum of contributions from each individual 

feature in the group. However, in many real problems, such an interaction 

cannot be ignored. Fortunately, a non-classical mathematical tool, nonaddi-

i.ive set tuiiction, has been successfully used to describe the above-mentioned 

interaction in information fusion and data mining [16，17，37, 63, 65，68，70 . 

Replacing the classical weighted sum which is the classical Lebesque integral 

defined on a certain finite set, the aggregation tool should be a certain type 

of abstract integrals, which is generally nonlinear due to the noiiadditivity 
» 

of the involved set function. In this case, as one of the inverse problems of 

the information fusion, the multi-regression should be established in terms of 

Nonlinear Integrals. Such an idea has been recently realized in some works 
4 

where the Choquet integral is adopted [24，68’ 69, 71 . 

The different type of Nonlinear Integrals corresponds to the different par-

tition rules that describe the different coordination scheme. Generally, when 

a data set is available, people do not know the concrete coordination. Thus, 
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a new question appears: why should we choose the Choquet integral in the 

nonlinear multi-regression model, since there are various types of Nonlinear 

Integrals, such as the upper integral and the lower integral |67, 70]. The 

upper arid the lower integrals form an extreme pair, the iiiaxiiiiuiii c i i k I tlie 

minimum, among all Nonlinear Integrals [67]. That, is to say. am r\ pp ol 

Nonlinear Integrals is between the upper integral and the lower integral, in 

terms of their values. Hence, a natural idea is to use the upper integral and 

the lower integral to "control" the observed values of the objective feature 

and, then, establish a new type of nonlinear multi-regression. 

5.2 Upper and Lower Nonlinear Integrals 
» 

In section 5.2.1, we review some related concepts described in previous chap-

% 

ters. We introduce the Upper and Lower Nonlinear Integrals in section 5.2.2. 

In the following sections, we will use some examples to help uiideistaiidiiig 

the theory. 

5.2.1 Signed Fuzzy Measures 

Denote the set of all information sources by X and call it the universal set. 

Then {X,V{X)) is a measurable space, where V{X) is the power set of X. 

In almost all real problems, the universal set is finite. For example, in any 

database, the number of features is always finite. Tliub, thiou^liuui Lliib 

chapter we assume that X = {xi,X2, , where each c,’ i = 1 , 2 , -m , is 

an feature. In a multi-regression problem, x i , x 2 , a r e called predictive 

features. They are usually numerical. There is another numerical feature Y 

called the objective feature in the database as a fusion target. The observa-

tion value of Y is denoted by y generally. While in classification problems, 
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7；1. To 'i'v are>\;alled predictive features and Y is the objective feature that 

is categorical. 

De f i n i t i on 5.1 Any set function, fi : V{X) — (—oo, oo], is called a signed 

efficient measure if ^(0) = 0, where 0 is the empty set. Any nonnegative 

signed efficient measure is called efficient measure. Any monotone efficient 

measme is called monotone measure. 

The Signed Fuzzy Mriasure, efficiency measure, and monotone measure 

are also called the Si如fed:Fuzzy Measure, generalized Fuzzy Measure, and 

Fuzzy Measure respectively (16, 17，23, 63，65, 70]. 

E x a m p l e 5.1 Ltt X 二 {工！’ 2；2，：̂已} . Set function “ ： P(X) — (-oo , oo] is 

given as 
* r 

0 i / E = 0 
% 

2 tfE={x,} 

- 3 if {X2} 

- 1 if E = {xi,a:2} 

5 if E = {xa} 

4 i /丑 = { x i ’ : c 3 } 

if E^ {X2,X3} 

3 .if E = X 

Then is a Signed Fuzzy Measure on V(X). 

Any Signed Fuzzy Measure /a can be decomposed as the difference of two 

efficiency measures, — — . 

De f i n i t i on 5.2 Let /z : V{X) — (—oo, oo] be a Signed Fuzzy Measure. 

fi = (！‘^ + is called the reduced decomposition of fi if both and /i~ 

" ⑷ = 
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are efficiency measures on V(X) and ^i^(E) • = 0 for every E C X. 

The pair of /i+ and /x一 is also simply called the reduced decomposition of 

/i, where is called the positive part of while "一 is called the negative 

part of fjL. For any given Signed Fuzzy Measure, the reduced decomposition 

is unique. Equality f i+(E). = 0 means that at least one of "十（E) and 

fj~(E) = 0 must be zero. In fact, 

If fi(E) > 0 

0 otherwise 

and 

" " ⑷ < 0 

0 otherwise 

The reduced decomposition, and fi~, of a Signed Fuzzy Measure “ is 

its minimal decomposition in the following sense: 

(1) and fi一 is a decomposition of /i； 

(2) if and iT is a decomposition of /i, then < "十 arid < i厂. 

E x a m p l e 5.2 Consider a Signed Fuzzy Measmr. shoum m Examjfk 1, thf 

reduced decomposition of fi is 
£ 

0 if E 二 id 

2 ifE = {x,} 

0 if {x2} 

0 if E = {x,,x2} 

5 if E - {xa} 

4 if E = {xi,x3} 

0 if E - {X2,X3} 

3 if E^X 

⑷ 二 
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and 

83 

" 一 ⑷ 

if E = 0 

ifE = ：如1 } 

if E 二 {工2} 

if E 

if E = {工 3 } 

if E = x a } 

if E ={工2，工3} 

if E =X 

The tollowing example explains that a Signed Fuzzy Measure can be used 

tor describing the interaction among the contributions from the information 

sources towards a certain target. A similar example of workers appeared in 

[23| first. • 

E x a m p l e 5.3 Let X = { i i ’ 工2，工3} be the set of three workers. They are 

hn td for manufactur-my a certain type of toys. Their individual and joint 

efficiency ft : V{X) —• [0,00) is given as follows: 
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0 if E = % 

5 if E - {xi} 

3 i / E 二 {工2} 

/ x ( E ) = . 
10 if E^ {xi,X2} 

4 if E = {X3} 

4 if E - {xj. Tj} 

6 if E - {.T2,^3} 

9 if E = X 

Set function /i is an efficiency measure that describes the interaction 

among the contributions from individual workers towards the target, the total 

number of toys manufactured by these workers. In this example, /^.({xi, X2}) > 

"({工1})+"({工2}) shows that workers X\ arid X2 cooperate well and, tlierefoie, 

the interaction between their contributions is mutually promoting. While 

M{� i ,工 3 } ) < / i({xi}) +//({13})’ even /i({xi,x3}) < / i({xi}) , shows that 

workers X\ and 工3 cooperate very bad and the interaction between their con-

tributions is mutually inhibitive. This set function is not monotonic. 

5.2.2 N o n l i n e a r I n tegra l s on f in i te sets 

Let X = {xi,x2, , /i ： V{X) —» (一00，00] and 1/ : P(X) •00,00 

be Signed Fuzzy Measures, and f : X (-00,00 

nonnegative functions. 

and / : X —• (-00,cx)] be 

De f i n i t i o n 5.3 [67! A set function tt : V{X) 一 {0} — (-oo, 

partition of f if 

lb allied a 
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/(工)二 I； V x G X . 
A\xeACX 

De f i n i t i o n 5.4 [67] Each type of integrals with respect to ^ is characterized. « • 
» 

by a Tule r , by which, for any given / . , a partition n of f can be obtained. 

Regarding both tt and ^ as (2" — I)-dimensional vectors, the value of the 

integral of f under rule r, denoted by (r) J fdfi and is called the r-integral of 

f with respect to /i, is the inner product of it and /x, that is, (r) J fdii = n - /x, 

where (r) indicates the type of integral 

The / -integrals have the following properties that the classical Lebesgue 

integral has: 

(R l ) ( r ) / cfdfi. = c{r) f Jd,L Vc € [0，oo); 

(R2)(r) f fd^ < (r) f gdji i / / i > 0 and J < g-

(R3)(r) f < (r) f Jdu if 0<fL<u. 

Properties (R2) and (R3) are called the rnonotonicity of the r-integral. 

However, tlie / - integrals given in Definition 5.4 are usually nonlinear with 

respect to the integrand, that is, equality 
* 

(r)JV + g)df�‘ = ( r ) f f d f i + [r)Jgdfi 

may not hold. A counterexample can be found in [67]. ‘ 

There are infinitely many types of r-integrals, among them, the Lebesgue-

like integral (simply called the Lebesgue integral [64], if there is no confusion) 

and the Choquet integral [15, 16，23，24，63, 70) is a pair of extreme Non-

linear Integrals in terms of the manner of coordinatiw?‘ among features [67 . 

Another pair of extreme Nonlinear Integrals, which is in terms of the amount 

of integration value, is the upper and the lower integrals. They are given in 

Dehiiitioii 5.5. 

De f i n i t i o n 5.5 70j The upper integral of f with respect to fi, denoted by 

I 
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(U) f fdfi, is defined by . .’ 

2*-! 

(t/) / fdfi = sup( E (ij • ̂ i{Aj)\ (1) 

while the lower integral of f with respect to /x, denoted by (L) f fd^, is defined 

by 
⑷ 茫 、 ( 2 ) 

j=i j-i 
wheTe > 0 and Aj = (J {x,} if j is expressed in binary digits as jnjn-i - ji 

t:ji=i 
for every j — I , 2,…，2" — 1. 

The calculation of the upper and the lower integrals is just the procedure of 
« » 

solving the following linear programming problems respectively： 

Maximize (or Minimize) 2 = • /丄， 
户1 . 

subject to o.jXAj(Xi) = / f c ) , i = l ' ,2, . . . ,n (3) 

‘ a ^ > 0 , j = 1, 

where jij — for j — 1 , 2 , 2 " - 1, and ci!，(I2,...;(丄2"-1 are unkiiowii 

parameters. The above n constraints can also be rewritten as 

E a. = f M V:r € X . -
y.xeAjCX 

Defining set function N : V(X) 一 ( —oo, 00] by tt{Aj) — n(j) = a，for 

j — 1，2，...，2" — 1，we may see that tt is a partition of f . So, tlie upper and 
/ 

the lower integrals are just two special types of r-integral. Its corresponding 

partitioning rules are "divide the integrand in such a way that the integra-

tion value is maximized" and "divide the integrand in such a way that the 

integration value is minimized" respectively. ‘ 

From the definition directly, we may have a property of the upper and the 

lower integrals. 

P r o p e r t y ( U L l ) For any r-integrai, (L) J fd^i < (r) f fd^i < (U) f fdn 



CHAPTER 5. UPPER AND LOWER NONLINEAR INTECriALS 1(H) 

E x a m p l e 5.4 Wa use the data given in Example 5.3. Assume that these 

worktis are hired for 3, 8, and 5 hours respectively, that is, 

‘ 3 if X = xi 

/ ( 工 ) = 8 i f x = x2 

5 . if X = X2 
< 

m a cert am day. If there is an excellent manger who can well arrange their 

work, then the number of manufactured toys in this day may be, from formula 

( I ) , as many as 

(U) J M i = 3 X ^({xuXi}) + 5 X /i({x2}) + 5 X ^({xa}) 65 

Arty way, these three workers can manufacture at least 

{L) / jTd/i = 3 X + 2 X AX ( {X2 ,X3} ) + 6 X / I ( { X 2 } ) = 42 

toys. As for the other two types of Nonlinear Integrals, the Lebesgue inte-

yml and the Choquti integral, of function f , we have 

j J d n = 3 X /i({xi}) + 8 X i.i{{x2}) + 5 X /i({x3}) = 65 

anrf • 

(C) f fdî L = 3 x /X({XI,X2,X3}) + 2 X ti({x2,x3}) + 3 X /i({x3}) = 48. 

These results also confirm Property (ULl). 

Ill general, we can use the difference between the upper and the lower in-

tegrals, (P ) f Id/L - (L) f If/", to indicate the uncertainty associated with 

Signed Fuzzy Measure (JL. AS a special case, when N is additive, then any 

r-integral, including the upper integral, the lower integral, and the Choquet 

integral, coincides with the Lebesgue integral, and is linear with respect to 

the integrand. Hence, the uncertgdnty associated with any additive measure 

is 0. 
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5.3 Multi-regression based on the Upper and Lower 

Nonlinear Integrals 

One of the Nonlinear Integrals, the Choquet integral, has been applied a.s the 

aggregation tool in multi-regressions [24, 68, 69, 71). From Chapter 2, we 

know that the Choquet integral is just one of the Nonlinear Integrals. It, has 

a very special cooperation manner, maximal cooperation, among predictive 

features. Hence, a new question appears： for a given data set, why such a 

cooperation manner is suitable? That is, why should we adopt the Choquet 

integral but not some other types of the Nonlinear Integrals'^ Indeeci wr 

have no sufficient reason to defend the ciioice of the Clioquct iiitcg,ral, wliicli 

exists in our previous works. If there is no additional information focused 

on the cooperation manner of the predictive features, we are really unable 

to say what the most suitable one is among all of r-integrals. Fortunately, 

any r-integrals are dominated by the upper integral and the lower integral. 

Hence, we may use them to roughly represent any actual r-integral and to 

describe the possible error. 

5.3.1 Mode丨 Bui lding 

Before establishing a model of rnulti-regression based on the Upper and Lower 

Nonlinear Integrals, we need to recall the concept of interval number. 

De f i n i t i o n 5.6 Any closed interval (a, b] is called an interual number’ wktrt 

a and b are real numbers satisfying a. 

Any real number a is a special case of interval numbers. It can be rewritten 

as [a, a]. 
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Tu Luiibidci t lio icgieshioii problein, assume that a complete data set has 

the form 

工2 > •••» ^n y 

I I I fl2 ， … ’ / i n y\ 

/2I /22 , •••,/2n 2/2 ⑷ 

fn jl2 �…1 fin Vl 

lb available, wlieie Y is the target teature, the 产 row 

fji f}2 ，••.，/jn y] 

is the 产 observation of features Xi, X 2 , x „ and Y, j = 1, 2,... ,/. Positive 

integer I represents the size of the data, and should be much larger than n. 

Each observation of 工、’幻，…’工n can be regarded as a function f : X 

(-00,oo|. Tims, the f ^ observation of Xi,X2, -M^n is denoted by f ” and we 

wiite fjt ~ yj(Xt), I = 1,2,..., n tor j = 1 , 2 , / . 

Now we assume f] > 0 Vi -— 1,2,..., n first. To describe how objective fea-

ture Y depends on predictive features Xi,X2, ，a new multi-regression 

model can be expressed as follows: 

y^ = c + 1(L) f(a + bfW、(U) /(a + bf)dfi] + N(Q、a'), 一 

where c is a constant, rr^) is a normally distributed random perturba-

Lioii with mean 0 and variance <7̂ , and [ (L ) / ( a + (U) f(a-h bf)dfi] 

is an interval number, in which functions a : X 一 (-oo ,00] and b : X 

(—00, oo) can be expressed as n-dimensional vectors, i.e., a = (ai，a2, . . . ， a „ ) 

and 6 = (^i,62, •..’&„)，and are used to balance the various phases and scales 

of predictive features, while /i is a Signed Fuzzy Measure. Functions a and b 

should satisfy the following constraints: 

a, > 0 for i — 1 , 2 , n , with min a, = 0 
l<»<n 

0 < 6, < 1 for i = l，2’...，n’ max b、= 1. 
l< i<n 
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In this regression model, constant r, vectors a and b. and Signofl Fu7/\ 

Measure /i are unknown parameters and are railed regression coeftic ients Thr 
I 

model is nonlinear generally. Once the data set shown in (4) with sufficient 

large size is available, these parameters can be optimally determined by min-

imizing a vector of objectives including the squared errors expressed as 

Mm E, E = |ei,e2 
I 

where e, = E 吃， 

0 if Vj-ce ((L) f(a + bJ)d^L. (U) j(a + hj)d,i 

rmn{\yj - c - (L) f (a + \yj - c - {(J) f (a + Of)d/il ofherunsf 

、 / . 
that describes the random error, and 62 = XI 2̂3 

62, = ( " ) / ( a + - (L) / ( a + b J ] W 

that describes the uncertainty carried by the Signed Fuzzy MeasviK' " A ft CM 

determining all regression coeffirients. onre a new observation / is nvailablf 

the prediction for the target Y is an interval number 

r = [c-f ( L ) / ( a4- 6 / )如’ c + {U) f(a + 6/)d/i ‘ 

The percentage of wrongly predicting can be estimated by 
I 

… 丁 ’ 

where 
/ 

1 if y, 一 C e [(L) f(a-h bmi, (U) / ( a + 协 j 

0 otherwise 
< 

In case the assumption / j > 0 Vi = 1,2,..., n is not true, denoting m ( / ) = 

mill fji、we may replace f” by / ” - m{f) for each j = 1,2,..., I and 
j * 1 j2|> • • jt— 1121* • • |Ti 

1 — 1,2, "•, Hf. 
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5.3.2 Multiobjective Optimization using Genetic Algorithm for 

the multi-regression model 

The problem presented in Section 5.3.1 is a nonlinear multiobjective opti-

mization problem with respect t.o unknown regression coefficients which is 

NP hard. Using an analytical and/or algebraic method to solve such a multi-

ol)iort.ive optimization problem is difficult. We have to use a soft computing 

^ technique to search for a vector of objectives which must be trade off in some 

way. The Genetic Algorithm is one of the feasible methods. Genetic Algo-

Miliiiis are well suited to multiobjective optimization problems as they are 

fund amen tally based on biological processes which are inherently suitable for 

multiobjective problem since it provides multi-model optimal and suboptirnal 

solutions (72). This method based on Genetic Algorithm can search for a set 

of Pareto optima for multiobjective minimization. 

Ill the genetic algorithm, each parameter is presented by a gene denoted by 

y wilh a subscript. Let genes yi, 9n present /ij, /i2> •••> respectively, 

where /t/t denotes /t(/t), in which A — (J x,, A: = 1 , 2 , 2 " — 1. Genes 
、 it.=i 

仍’.92, ..’"2"-i form a chromosome. 

In this chapter, we used the GA with constraints function in Matlab. In 

our GA model, a Signed Fuzzy Measure is 0 at empty set. If there are n 

features in training data, a chromosome has 2" — 1 genes which are set to 

random real values randomly at initialization. Genetic operations used are 

lUHciult oucb. At. cdeh gciiciation, for cach chioiiioiioiue, all variables are fixed 

and the objective values of all training data are calculated using Nonlinear 

Integral. 

The pseudo code for the whole algorithm of the multi-regression bf^ed on 

the Upper and Lower Nonlinear Integrals is as follows: 
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• 

n: features number;. 

I: dataset size; 

I npu t : trailing data / ” and z 二 1, 2，…’ "，j 二 1，2,..., / 

O u t p u t : error e -. 

Begin: 

W h i l e final.e > threshold 

Learning Fuzzy Measures fi in GA; 

For each data j 

Compute Upper Integral, 

Compute Lower Integral;, 

Compute error e\j and e2j ‘ 

End 

/ina/_e=fitness; 

E n d 

Output the Fuzzy Measures 

For a new observation 

Compute the Upper Integral; • 

Compute the Lower Integral; -

Compute the error e\ and 62 

End 

E n d 
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5.4 Simulations and Applications 

In this section, we describe the implementation of simulations and applica-

tions respectively. The simulations are operated on four synthetic datasets. 

The applications are implemented on the weather problems. All experiments 

are coded in Matlab. For each dataset’ we adopt 10-fold cross validation 
« 

method to make sure that the whole dataset can be used as testing data in 

t.wru and over-training (over-fitting) can be avoided. 

5.4.1 Simulation for synthetic datasets 

In the explanatory experiments, we use synthetic datasets to evaluate the per-

formance of the proposed Upper and Lower Nonlinear Integrals as a regression 

tool. We generated synthetic datasets by Choquet Integral and random dis-

tribution respectively which include 200 individuals with 2 predictive features 
% 

and 5(JO individuals with 3 predictive features. For keeping the uniqueness, we 

preset the constant c = 0, all shifting parameters a as 0 and all scaling parame-

ters 6 as 1. The parameters are preset as /x = {1.000,5.000,3.000} for datasets 

with 2 features and /i = {1.000，5.000,3.000，2.000,4.000,3.000,6.000} for 

datasets with 3 features. We search for the optimal solutions of Fuzzy Mea-
f 

sures with the Upper and Lower Nonlinear Integrals based Regression Model. 

The results are listed in Tables 5.1-5.4 which are sets of Pareto optima. ei 

is the distance between the points to the nearest bound, upper or lower one; 

62 is the range of the Upper and Lower Nonlinear Integrals; and 63 is the 

percentage of points being outside the upper and lower bounds. We set the 

parameter controlling the size of optimal solutions as 10. 

All solutions are sorted by ei in the training results. The top one so-

lution tor each dataset marked in bold is closest to the preset values. The 
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Table 5.1: The Results for Random Data with 2 Features Random Data(Original 

Values for /ii, /i2 and /X3 are 1.0, 5.0，3.0 respectively) 

Ml M2 "3 
Training Testing 

Ml M2 "3 
ei 62 63 ei e? ej 

0.998 5.015 2.816 0.000 1.058 0.000 0.000 0.980 0.000 

1.121 4.864 3.132 0.000 0.944 0.117 0.000 0.875 0.050 

0.973 4.890 3.628 0.003 0.740 0.272 0.001 0.685 O.IjO 

1.139 4.377 "4.163 0.033 0.468 0.578 0.034 0.433 O.KM) 
1 

1.072 4.1G2 "4 .2H 0"065 "0.338 0.728 ^ 0.07C 0.313 O.ooO 

1.197 4.318 5.023 0.132 0.163 0.833 0.075 0.151 0.900 

0.877 4.462 5.163 0.146 0.058 0.950 0.073 0.054 0.900 

0.846 4.462 5.288 0.172 0.006 0.983 0.089 0.006 1.000 

1.300 4.046 5.347 0.227 0.000 1.000 0.153 ().()()() I.(KM) 

1.300 4.046 5.347 0.227 0.000 1.000 0.153 0.000 1.000 

I 000 
i 

fi AAA 

Kkti6om D亀 t 亀 

U. 7UU 

A OA A 
U. OUU 

•2 
n 7 A A 

_> ‘ ’ . . . : _ 资 ， . ‘* • 

t̂ Tv'̂  ：.. ‘心 ̂  ‘ 'i'n ： ' \ '飞-J V 
U. 1 uu {•»... • . - , - • ：1 

0 0 0 0 0 0 0 2 0 0 0 4 0 00€ 

«1 

Figure 5.1: The Set of Noninferior Solutions for Datasets with 2 Features 

corresponding ei in training and testing are zero, which means all data are 

included in the range of the Upper and Lower Nonlinear Integrals. So the 

percentage of points being outside the upper and lower bounds is zero too. 

Each 62 is close to the true distance between the Upper and Lower Nonlinear 

Integrals. If recovering the original model is needed, the top ones are accept-

able. On the other hand, the bottom solution has the smallest 62 in training 

and testing. If we ignore cj and 63, the upper and lower bounds nearly co-

incide with each other to form a point which can fit the original data well. 
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Table 5.2: The Results tor C ho quel Data with 2 Feat ures( Original Values for /zi 

H2 and are 1.0, 5.0, 3.0 respectively) 

Ml M2 M3 
Training Testing 

Ml M2 M3 
ei 62 63 62 ea 

0.996 4.968 2.989 0.000 0.961 0.000 0.000 1.125 0.000 

0.996 4.968 2.989 0.000 0.961 0.000 0.000 1.125 0.000 

0.931 4.911 2.997 0.000 0.919 0.011 0.000 1.076 0.000 

0.746 4.968 2.989 0.000 0.880 0.022 0.000 1.031 0.000 

0.726 4.812 3.020 0.001 0.813 0.150 0.000 0.952 0.050 

0.735 4.790 3.125 ,0.002 0.775 0.367 0.001 0.908 0.550 

0.746 4.718 3.176 0.003 0.739 0.406 0.002 0.865 0.600 

0.647 4.520 3.020 0.004 0.693 0.194 0.002 0.812 0.200 

0.580 4.577 3.112 0.004 0.660 0.311 0.002 0.774- 0.400 

0.474 4.613 3.117 0.005 0.636 0.322 0.002 0.745 0.450 

畔 " n r 暴 幽 “ ” 

Figure 5.2: The Set ot Noninferior Solutions^or Datasets with 3 Features 

The corresponding Fuzzy Measure is far away from the initial set value. This 
• > 

situation is different from the true model. In this case, the regression model 

based on the Upper and Lower Nonlinear Integrals is just performing like the 

classical iegression model. ‘ • 

Prom the tables, we can see that the values of Fuzzy Measures for data 

with 2 features are closer to the real ones than those for datasets with 3 

features. It means that the complexity increases as the number of features 

ascends so that it is difficult to find the real model with a large feature size. 

I 

_ . . 觀 • 魅 
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Table 5.3: The Results for Random Data with 3 Features(Original Values foi 

/XI 一 /X7 are 1.000,5.000,3.000,2.000,4.000,3.000,6.000 respectively) 

/i3 tu Ate MT 
Training Testing 

/i3 tu Ate MT 
ei ej 63 ei e2 a 

0.873 4.980 3.191 2.025 5.354 2.091 6.129 0.000 2.901 0.000 0.000 2.452 0.000 

1.018 4.586 3.744 1.908 5.615 3.318 6.096 0.003 2.276 0.104 0.002 1.984 0.120 

1.934 3.465 5.513 1.767 5.221 4.523 6.778 0.327 0.794 0.707 0.285 0.741 0.740 

2.064 3.431 5.376 2.085 4.872 4.347 7.636 0.353 0.678 0.764 0.353 0.585 0.780 

2.375 3.567 5.561 2.055 5.141 4.603 7.330 0.565 0.652 0.793' 0 504 0 740 

2.625 3.304 6.011 1.796 5.236 4.703 7.347 0.790 0.435 0.884 0.702 0.405 0.840 

2.812 3.216 6.315 1.930 5.054 4.680 7.484 0.954 0.310 0.904 0.882 0.273 f)8(if) 

2.869 3.150 5.874 1.769 5.072 4.677 7.844 0.954 0.254 0,922 0.868 0.232 0.940 

3.209 3.197 6.364 1.824 4.972 4.635 8.098 1.296 0.149 0.949 1.179 0.121 0.900 

3.266 2.925 6.197 1.726 4.993 4.646 7.912 1.357 0.004 1.000 1.239 0.003 1.000 

The Pareto frontier plot gathers all optima for two kinds of datasets as 

shown in Figures 5.1 and 5.2. The horizontal axis represents e! arid vertical 

axis represents According to the requirements, the appropriate solutions 

can be selected from the set of points on the charts. 

5.4.2 Application on weather data 

Weather prediction has been one of the most challenging problems around 

the world for more than half a century. Besides its practical value in mete-

orology, the weather prediction is also a typical "unbiased" problem of time 

series forecasting in scientific research. The weather records include temper-

ature ranges, humidity, cloud density or rainfall of the days before the day 

being considered. The weather prediction has been traditionally based on the 

numerical models[106l. Such a simulation often requires intensive computa-

tions involving complex differential equations and computational algorithms. 

Besides that, the accuracy of the prediction is bounded by the adoption of 
» 

incomplete boundary conditions, model assumptions, and numerical instabil-

ities. Those difficulties in the weather prediction bring r.hallongos not only to 
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Table 5.4: The Results for Choquet Data with 3 Features(Original Values for 

fxi - /X7 are 1.000,5.000,3.000,2.0 I00,4.0C )0,3.000,6.000 respectively) 

M3 Mi Ms M6 
TVaining Testing 

M3 Mi Ms M6 
ex 62 63 ei 62 63 

1 . 0 2 8 4.678 2.941 1 . 8 0 6 5.686 3.015 5.810 0 . 0 0 0 2.502 0 . 0 0 0 0 . 0 0 0 2.568 0 . 0 0 0 

1.005 4.635 2.976 1.820 5.596 3.077 5.806 0.000 2.430 0.004 0.000 2.495 0.000 

1.015 4.623 2.945 1.806 4.716 3.326 5.974 0.001 2.037 0.040 0.000 2.062 0.020 

0.756 3.611 3.432 2.514 5.006 4.193 7.638 0.044 1.374 0.262 0.016 1.430 0.180 

0.819 3.874 4.657 2.158 3.351 5.515 6.911 0.345 0.311 0.804 0.253 0.327 0.760 

0.919 3.883 4.601 2.133 2.903 5.946 6.752 0.520 0.097 0.947 0.400 0.102 0.960 

0.758 3.859 4.640 2.136 2.882 5.978 6.760 0.544 0.015 0.996 0.423 0.016 1.000 

0.419 2.53f» 2.955 3.985 4.400 6.530 6.962 1.022 0.008 0.998 0.715 0.009 0.980 

0.415 2.580 2.987 4.139 4.553 6.716 7.125 1.200 0.003 0.996 0.881 0.003 1.000 

0.512 2.959 3.469 4.568 5.082 7.526 8.042 2.196 0.002 1.000 1.859 0.002 1.000 

Note: ei-the distance of the points to the nearest bound, upper or lower 

ej -the range of the Upper and Lower Nonlinear Integral 

ej -the percentage of points being outside the upper and lower bounds 

meteorologists but also to researchers in data mining. Diverse methods and 

r 

models[107, 108, 109] have been proposed to solve the weather prediction 

problem. 

We have collected the weather data of Tokyo in the period from January to 

December, 2007. We take the highest and the lowest temperature of each day 

as the predictive features to predict the mean temperature of the following 

day. 

We use a non-overlapping window method to evaluate our model. This 

method divides all data into many folds with size k. k - I observations are 

used as training set and the last one is the testing datum. We have tried many 

values from 5 to 15 for k and select A: = 10 to get an optimal result. We select 

the best result of each fold according to the fitness value. The averages of the 

best evaluation values for all folds are listed in the Tables. We use the mean 

of the Upper and Lower bounds predicted to compare with the mean tem-

perature of the next day. Three evaluation criteria for evaluating the fitting 
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Table 5.5: The Result on Weather Problem with 2 Predictive Features 

Traixung T«tinz 

Cj 

o.ooo 5.804 0.00 0.557 5.761 0.25S 

1IA£ 1-4S7 C.112 :\2l :.026 

Tabic 5.6: The Result on Weather Problem with 3 Proclictivc Fcfitiirr 

T”fntn， 

e. c, 

0.000 4.963 0.000 0.248 4.916 0.156 

MAE 1.432 MAPE MSE 1.815 

performance are computed which are the Mean Absolute Error(MAE), the 

Mean Absolute Percentage Error (MAPE) and the Mean Square Error(MSE) 

respectively. In statistics, the Mean Absolute Error(MAE) is a quantity used 

to measure how close forecasts or predictions are to the eventual oiitoonies 

1 “ 

The M A E is given by MAE = - |ei|. The Mean Absolute Percentage Er-
^ 1=1 

ror(MAPE) is measure of accuracy in a fitted time series value in statistics, 

specifically trending. It usually cxprcssns accnrary a.s a porrontago. It ran bo 

1 “ . 

denoted by MAPE = — XI Mt — where At is tlie actual mean Uniipci-

ature and Ft is the mean value of the Upper and Lower Nonlinear Integrals. 

The mean square error(MSE) of an estimator is one of many ways to quantify 

the difference between an estimator and the true value of the. (niantitv boinji, 
1 “ 

estimated, which is denoted by MSE = ^{-^t - f'tY-
n + 1 

The results are acceptable as shown in Tables 5.5 and 5.6. 

Figures 5.3 and 5.4 show the trends of predicting with the Upper and 

Lower Nonlinear Integrals using 2 predictive features and 3 predirtivr f(、at】u(、s 

respectively. We can、see the most original points are covered within the 
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Figure 5.3: The Trend of Predicting on the Testing Data with 2 Predictive 

Features 

predicted range. The fitting figures for mean values are drawn in Figures 5.5 

and 5.6 for different predictive features' number respectively. The regression 

using the mean values of the Upper and Lower Nonlinear Integrals to fit 

the iiicaii temperatures is satisfactory. The Mean Absolute Error(MAE) is 

1.433 and the Mean Absolute Percentage Error(MAPE) is 0.109 in the best 

situation. This performance is good enough for a byproduct of the Upper 

and Lower Nonlinear Integral based multi-regression model. 

5.5 Chapter Summary 

The Upper and Lower Nonlinear Integrals(ULNI) form an extreme pair, the 

maximum and the minimum, among all Nonlinear Integrals. That is to say, 

any type of Nonlinear Integrals is between the Upper Integral and the Lower 

Integral, in terms of their values. Hence, a new type of nonlinear multi-

regression is established to use the upper integral and the lower integral to 

''control" the observed values of the objective feature. Due to the nonaddi-

tivity of the Signed Fuzzy Measures, a Genetic Algorithm has been adopted 
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Figure 5.4: The Trend of Predicting on the Testing Data with 3 Predictive 

Features 
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Figure 5.5: The Fitting Curve for the Mean Values with 2 Predictive Features 

to learn the optimized parameters in the regression problem. Applying such 

a nonlinear multi-regression model, an interval prediction for the value of the 

objective feature can be made once a new observation of predictive features 

is available. 

In this model, the total .error consists of two types of errors. One is 

the squared error which represents the distance of the ol)ject.ivr value from 

the nearest bound of the Upper and Lower Nonlinear Integrals to describe 

the random error. The other is the distance between the Upper and Lower 
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Figure 5.6: The Fitting Curve for the Mean Values with 3 Predictive Features 

Nonlinear Integrals to describe the uncertainty carried by the Signed Fuzzy 

Mi'cusuit;. 

We have created a set of synthetic datasets for evaluating the performance 

of the Multi-regression based on the Upper and Lower Nonlinear Integrals. In 

the experiments, we have used the multiobjective optimization method using 

GA to implement the Upper and Lower Nonlinear Integrals based regression 

model. The results have shown a set of optima for the model with the Upper 

and Lower Nonliiicai Iiitcgialis. Wc caii select different solutions from the 

pareto frontier obtained by the multi-criteria optimization for different criteria 

to satisfy different situations. The model is applied to a weather problem. 

The change trend of mean temperature of next day is predicted satisfactorily. 

The poi torniaiicc of our now inodcl is testified by simulations and applications. 



Chapter 6 

Applications on Bioinformatics 

Extraction of meaningful information from large experimental datasets is a 

key element in bioinformatics research. One of the challenges is to identify 

genomic markers in Hepatitis B Virus (HBV) that are associated with HCC 

(liver cancer) development by comparing the complete genomic sequences of 

HBV among patients with HCC and those without. 

In this study, a data mining framework which includes molecular evolution 

analysis, clustering, feature selection, clajssifier learning and classification, is 

introduced. Our research group has collected HBV DNA sequences, either 

genotype B or C，from •ver 200 patients specifically for this piojcct. In the-

molecular evolution analysis and clustering, three subgroups have been iden-

tified in genotype C and a clustering method lias been developed to separate 

the subgroups. In the feature selection process, potential markers are selected 

based on Information Gains for further clajssifier learning. Then rneaniiigiul 

rules are learnt by our algorithm called the Rule Learning which is based on 

Evolutionary Algorithm. Also, two new classification methods based on the 

Nonlinear Integral and the Generalized Nonlinear Integrals have been devel-

oped. Good performance of these methods come from the use of the Fuzzy 
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Measure and the relevant Nonlinear Integral. The nonadditivity of the Fuzzy 

Measure reflects the importance of the、predictive features as well as their 

interactions. These classifiers give explicit information on the importance of 

the individual mutated sites and their interactions towards the classification 

(potential causes to liver cancer in our case). A thorough comparison study 

of these three methods with existing methods is detailed. 

For genotype B, genotype C subgroups C l , C2 arid C3，important mu-

tation markers (sites) have been found respectively. These two classification 

methods have been applied to classify never-seen-before examples for valida-

tion. The results show that the classification methods have more than 70% 

accuracy and 80% sensitivity for most datasets, which are considered high as 

an initial scanning method for liver cancer diagnosis. 

This chapter is organized as follows. Section 6.1 gives out the problem 

statement. Section 6.2 describes the data mining framework which includes 

the new rule learning, the Nonlinear Integral classification model and the 

Nonlinear Integrals based classification model in detail. All the methods and 

datasets used in this project are detailed in Section 6.3. The experimental 

results and the comparative studies are presented in Section 6.4. Section 6.5 

concludes with the summary and the discussion of some directions for future 

work. 

6.1 Problem Statement 

In Asia, infection of Hepatitis B virus (HBV) is a major health problem. At 

least 10% of the Chinese population (120 million people) are HBV carriers, 
• 

and up to 25% of HBV carriers will die as a result of HBV-related complica-

tions including liver cirrhosis and hepatocellular carcinoma (HCC), i.e., liver 
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cancer. Chronic infection by the hepatitis B virus (HBV) causes an increased 

risk of hepatocellular carcinoma (HCC) by more than 100 foldflOl]. The 

relationship between HBV genotype and viral niutation with [lepatocaiciiio-

genesis is controversial. A case control study from Taiwan suggested that, 
» 

genotype C HBV is more closely associated with cirrhosis and HCC in those 

who are older than 50 years; whereas genotype B more common in patients 

with HCC aged less than 50 years [102]. Our previous cohort study of 426 

cases of chronic hepatitis B patients also reviewed a higher risk of HCC and 

liver cirrhosis in genotype C infection [73]. On the other hand, reports hoiii 

Japan and China did not confirm the higher malignant, potent ial of ĵ cnotx pc 

C HBV (103, 104]. The aim of this study is to find the genomic markers of 

the HBV and clinical information which are useful to, predict occurrence of 

liver cancer and response to therapy. 

In this chapter, we look into the clinical data prepared by the clinicians, 

and the HBV DNA genomes prepared by the biochemists of our research 

group [74, 78]. Patients taken part in this study are selected by the clinicians 

carefully, according to their age, sex, and past clinical status. Chronic hep-

atitis B patients recruited since 1997 were prospectively followed up for the 

development of HCC for avoiding selection bias. HCC was diagnosed by a 

combination of alpha fetoprotein, imaging, and histology. Liver cirrhosis was 

defined as ultrasonic features of cirrhosis together with Hypersplenism, as-

cites, varices, and/or encephalopathy [73]. Clinical features for analysis were 

chosen by clinicians based on their expert knowledge. Primer Express soft-

ware version 2.0 (PE applied Biosysteins, Foster City, CA) WAH used to find 

suitable primers and probes. TaqMan real-time PGR technology was used to 

differentiate the imdeotide variant [74). Because the focus of this cliaptei is 

on the study of data mining techniques, the selection process and criteria of 
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patients and the research experiments run by our Biochemistry Department 

will not be discussed in detail. 

Ill [93), HBV DNA sequences were taken from 13 patients. Authors of (94 

amplified a ronsnrvod core region and a surface antigen region of HBV DNA 

by PGR from sera of 27 Korean chronic hepatitis B patients for detecting 

hepatitis B virus mutants. Our project is one of the biggest HBV DNA 

full sequence collection and analysis studies of its kind. We have collected 

DNA sequences from 98 Control (normal) and 100 HCC (cancer) patients 

bpecificdlly for this project. The DNA sequences of HBV are not exactly the 
i 

same for each group, and they possess some individual nucleotide mutations 

that may or may not be related to HCC. FYom previous studies, HBV can be 

divided into seven genotypes where each of them has more than 8% difference 

of nucleotides to the others. In Hong Kong, genotypes B and C are the 

piedoiniiiaiit types, and all the examples we have are of these two genotypes. 

To reduce the noise of genotypic difference amongst the sequences collected, 

we propose to analyze these DNA examples in each genotype separately. 

Classification is one of the most studied data mining tasks. The objective 

is to predict the value (the class) of a user-specified goal feature based on the 

values of other features, called the predictive features. The goal feature might 

be the prediction of whether or not a patient has cancer, while the predictive 

predictive features might be the mutation sites of the patient's virus DNA, 

The focus of this chapter is to identify genetic marker(s) for liver cancer 
« 

(HCC) from Hepatitis B Virus (HBV) DNA sequences. There are similar 

medical lebearches reports, but all of thcin are focused on the specific gene 

positions, proteins or part of a virus genome. However, our project is the 
« 

tirst study on tlie complete viral genome. One of the past researches is a 

HIV genomic study (751. The researchers align e8u:h DNA sequence with a 
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reference sequence, and then select the genes using their expert knowledge, 

and use Decision Tree and Support Vector Machine for analysis. In |76), the 
t. 

researchers focused on the identification of HBV DNA sequences that are 

predictive of response to one therapy. Some sites in sequences were observed 

to have caused the effect. Chan and others studied the risk lactoib iii HBV 

sequences in respect of medicine [73, 74]. Here, we apply soft computing 

tools to predict positive patients and analyze the effective mutation sites in 

the HBV DNA sequences. 

The aim of this chapter is to develop a data mining framework which con-

tains an appropriate classifier for liver cancer based on HBV DNA and clinical 

data. We develop two new algorithms based on rule leanimg and Noiiliiiecu 

Integrals. We then carry out a thorough comparative study on these two 

new models, with existing classifiers. The classification model should have 

high sensitivity and acceptable accuracy and specificity for HCC diagnosis 

and prediction. The model learnt should also give clear indication of the de-

grees of influence of the features towards the classification goal and whether 

there are any interactions among the predictive features. In this chapter, we 

identified the important mutation sites (markers) in the HBV soqurnros that, 

could have caused or related to liver cancer. We use information entropy for 

finding genetic maxkers of HCC in the HBV genome data and propo«c a new 

classification model based on the Nonlinear Integrals. 

« 

6.2 Data Mining Framework 

The data mining framework developed is shown in Figure 6.1. There are nine 

modules. After the molecular evolutionary analysis, the data are passed to the 

Clustering Module to check whether clusters exist based on the phylogenetic 
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tree analysis. If clusters are found, each cluster will be analyzed separately 

tor potential genetic marker sites because it will minimize the noise produced 

by the genotype differences and give much better classification accuracy. For 

each cluster (or genotype), the data are divided into training and test sets. 

The training examples are then passed to the Feature Selection Module to find 

the useful features (gcnetic marker sites) for classification. The potentially 

useful features are extracted and passed to the Classifier Learning Module 

whoToin a classifier is learnt. The features selected are also sent to the pre-

prbcessing module to extract the values of these features in the testing dataset » 

for testing in the Classification module. Finally, the prediction results of the 

classifier are verified and evaluated based on the testing examples. If the 

evaluation results are unsatisfactory, i.e. stopping criteria are not satisfied, 

the ieaniiiig process is repeated starting from the feature selection; otherwise, 

r.ho classifior will bo validated by never-seen-before examples. The following 

subsections will explain how the features are selected and the basic principles 

of the classifier. 

6.2.1 Molecular evolutionary analysis 

Serum examples from 49 patients infected with HBV genotype C, as de-

termined by previous genotype-specific restriction fragment length polymor-

phism analysis, were studied [73]. All serum examples were kept in a —80°C 

freezer for storage. All patients were ethnic Chinese and were followed up in 

the Hepatitis Clinic of the Prince of Wales Hospital (Hong Kong). All patients 

were positive for hepatitis B surface antigen for at least 6 months and had 

no evidence of hepatocellular carcinoma. Sixty-nine full-genome nucleotide 

sequences of HBV genotype C and 12 full-genome nucleotide sequences of 

iiongenotype C HBV were also retrieved from the GenBank database for 
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Figure 6.1: Data Mining Framework 

comparison. All reference sequences from GeriBank were derived from pa-

tients with chronic hepatitis B; HBV nucleotide sequences from parionts witli 

acute hepatitis B hepatocellular carcinoma or patients treated with antivirfil 

agents were excluded. The geographical origins of patients haiboiing differ-

ent HBV genotype C genomes in GenBank were retrieved from the respective 

original publications and the descriptions in the GenBank database. 

The full-genome nucleotide sequences of the isolates of HBV genotype C 

from our center were compared with those of the isolates of HBV gonntvpr C 

and nongenotype C HBV retrieved from the GenBank database. Nncleotido 

sequences are multiple-aligned using ClustalW version 1.83 [95] and corrected 

manually by visual inspection. Genetic distances are estimated by Kimura's 
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two-parameter method and the phylogenetic trees are constructed by the 

neighbor-joining method [96, 97]. The reliability of the pairwise comparison 

and phylogenetic tree analysis is assessed and assured by bootstrap resam-

pling with 1000 replicates. Phylogenetic and molecular evolutionary analyses 

are done using MEGA version 3.0 [98]. 

6.2.2 Clustering 

Since different HBV subgroups are likely to be the results of divergence from 

genomic mutations over time, knowledge of the geographical distribution and 

genomic relatedness of the HBV genotype C subgroups will be useful in gain-

ing an understanding of the spread of HBV in Asia. Hepatitis B virus geno-

type B (HBV/B) has been classified into 5 subgenotypes. In (77), a phyloge-

netic analysis of the complete genome sequences from the examples obtained 

from the Arctic and of those from Japan and Asia revealed 6 distinct clusters 

within HBV/B. Within each HBV genotype C subgroup, several clusters with 

genomic resemblance to one another can be identified. The most well-defined 

example is the cluster in Okinawa, where the prevalence of HBV genotype C: 

is iiiucli lower than that in the rest of Japan [99 . 

There are two genotypes, B and C, in the two hundred plus HBV DNA 

sequences we coUected specifically for this project. While genotype B HBV 

appears to be a homogenous group [105], the phylogenetic tree results show 

that there exist 3 main clusters in the genotype C among the HBV strains 

collected (Figure 6.2) [78]. We label them as C l , C2 and C3 respectively. 

Subgiouping of HBV genotype C was based on an intersubgroup difference of 

nucleotide sequence of >4% [100]. This is in concordance with our previous 

phylogenetic analyses with published full-length sequence in the GenBank. 

The main reason for us to find markers separately from within the clusters 
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(subgenotypes) obtained from clustering analysis is that these subgenotypes 

exhibit mutations (nucleotide site differences) causerl by gmj^raplm al (Im”-

sity which are not markers for carcinogenic diagnosis. If we were to analyze 

all these subgcnotype data as one genotype group, their intorgonotypir differ-

ences would become distracting noises in the data mining process for markers. 

These three chistors can bo identified by the combinations of 4 imrlootidos. 

These three dusters will be analyzed separately in the classificr Icaniiii^ pciii. 

nKmi 

Figure 6.2: Phylogenetic Tree of Genotype C 



y CHAPTER 6. APPLICATIONS ON BIOINFORMAriCS 111 

6.2.3 Feature selection algorithm 

The main purpose of feature selection [79, 80, 81，82] is to reduce the number 

of features used in classification while maintaining acceptable classification 

accuracy. For example, the Sequential Forward Floating Selection (SFFS) 

algorithm proposed by Pudil et al. [83] was one of the commonly used al-

gorithms [84). The main advantage of this method is that it produces a 

hierarchy of feature subsets with the best selection for each dimension. How-

ever we aim at global performance of the whole framework, so we adopt a 

simpler algorithm based on information gain to select initial features. 

In our approach, information gain criterion [9] is used to find the useful 

features to distinguish between the Control (normal) and the HCC (cancer) 

groups of HBV carriers. 

Information gain is a common criterion for feature selection. The infor-

mation gain of a feature is the uncertainty (entropy) that can be reduced if 

the feature is used for classification. Hence, the information gain should be 

the higher the better. Equation 1 is the entropy ^ of a feature X with n 

values x i , x 2 , a n d P(xi) is the probability of the value Xi. 

r E(X) = ± -P(x,)log.,P[x,) ( 1 ) 
、 ) i=l 

Specific to a typical DNA classification problem, we assume the data have 

m classes C — ci,c2,…，c^. For each aligned site position, it has K possible 

nucleotides V̂i，V̂2，••.，V/c. We define |cjfc|, k = 1,2, ...，m as the number of 

sequences in class Ck- jc^il is the number of sequences in Class cjt whose 

character at .the aligned site is K , which can be A, T, G, or C in our case. 

The Remainder of X , R{X) is defined as follows: 
m -

R{X) = E P ( c 2 i ) , … ， ( 2 ) 

,=0 E 
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Information Gain IGj of the aligned site j is the difference between the 

original information content E{C) of the data set and the amount of infor-

mation needed to classify all the unclassified data left in the data set after 

applying site j for classification: 

IG^ = E{C) - R{j) (3) 

The features are ranked by the information gains, and then the top ranked 

features are chosen as the potential features used in the classifier. A site with 

higher information gain will contribute more in the classification and be al)lr 

to distinguish more examples (cases). 

6.2.4 Popular classification algorithms 

There are several common classification models such as Naive Bayesian Net-

work [10，11, 12), Decision Tree, Neural Networks and Rule Learning using 

Evolutionary Algorithm [85]. The learning processes of Naive Bayesian Net-

works and Decision Tree are faster. However, they cannot cope well with 

feature interactions. Neural Networks are treated as black box learning and 

it is difficult for human to understand or interpret the classification explicitly. 

However, Rule Learning using Evolutionary Algorithm performs a global 
V 

search and can cope with feature interactions better than the previous clas-

sification models [86, 87]. Also, the classification rules generated are simple 

and easily interpretable by human experts who frequently use the smwc rprn-

soning app roach^ i y ^uch similar to the rules. Therefore, the Rule Learning 

Using Evolutionary Algorithm approach is clearly a better choice in terms of 

interpretability of the knowledge acquired through the classifier learnt. 

Rule learning tries to learn rules from a set of training data (examples). 

It can be modeled as a search problem of finding the best rules that classify 

the training examples with minimum error. However, the search sp-Mv “川 
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be very large; a robust search algorithm is required. Here Generic Genetic 

Programming (GGP) [88, 91), which is a type of the Evolutionary Algorithms 

(EA), is adopted as our search and optimization algorithm. Firstly, a pop-

ulation is initialized by generating individuals (a set of rules) randomly. A 

fitness function is used to evaluate how good an individual is, that is, how 

many cases it can classify correctly. Then some individuals are selected to 

evolve (generate) new individuals with the genetic operators. Individuals be-

come better and better through the evolution process until the termination 

criterion is met. 

The input is the training dataset, and the output is a rule set, which 

can classify the training data with higher accuracy. We assume there are 

N features X = XI,X2, Xn and m classes C — {CK\K — 1 , 2 , M ) . For 

each feature 工、，one of its K j values can be taken. Each rule includes two 

components, the antecedent (IF part) and the consequence (THEN part), as 

follows: 

IF (xi = 八(：£：2 = 1；2)八…八(rcz = vi) THEN Class is c = c^. 

where the antecedent includes l{l = [l,n]) unique feature Xi,X2, € 

{xi, 2；2, ...’ € {A, C, G, T} and c^, K 6 1,2, ...，m，is a certain 

class to which the object is to be classified. In our c^e , we have only two 

classes, namely HCC and. CONTROL. There are I unique features present 

in and n — I features absent from each rule. Each feature present in the 

antecedent can only take one of its possible values, {y4, C, G,T}. All the 

rules in the output rule set are connected by ELSE IF, meaning the order of 

application of the rules must be followed. 

We use a simple example to illustrate the rules deduced by the Rule Learn-

ing. For HBV dataset B which will be introduced in the following section, we 

have learnt the rules for diagnosing lever cancer (HCC) and non-lever cancer 
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(CONTROL) cases. The rules are given as follows: 

IF A1762 and G1764 and C53, then HCC 

ELSE IF T1762 and A1764 and CG2712, then HCC 

ELSE IF T1762 and A1764 and T2712 and C2525, then HCC 

ELSE CONTROL 

Although Rule learning based on EA can interpret the interaction ot tea-

tures, the degree of the interaction cannot be analyzed exactly by a measure. 

So we introduce the Fuzzy Measure to describe the interaction with respect 

to the classification. A new classification model is proposed based on the 

Nonlinear Integrals with respect to signed Fuzzy Measure in the following 

section. 

6.2.5 Classification based on the Nonlinear Integrals and the Gen-

eralized Nonlinear Integral 

In classification, we are given a data set consisting of N example records, 

called the training set, where each record contains the value of a classifying 

feature, Y , and the value of predictive features 工1，工2’ …，工…Positive integer 

N is the data size. The classifying feature indicates the class to which each 

example belongs, and it is a categorical feature with values coming from an 

unordered finite domain. The set of all possible values of the decisive feature 

is denoted by Ci，C2，."，Cr„, where each Cjt, k 6 1 , 2 , m , refers to a specified 

class. The predictive features are numerical, and their values are described by 

an n-dimensional vector, (/(工 i),/(工2)，/(工n)). The range of the vector, a 

subset of n-dimensional Euclidean space, is called the feature space. Thus, the 

j example record consists of the 产 observation for all predictive features and 

the classifying feature, and is denoted by ( / , ( x i ) , / j f e ) , ( x „ ) , 二 

2，***) yV*• 
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In this section, one method of classification based on the Nonlinear Inte-

grals will be presented. It can be viewed as an idea of projecting the points in 

the feature space onto a real axis through a Nonlinear Integral, and then us-

ing a one-dimensional classifier to classify these points according to a certain 

criterion optimally. Andthoer method based on the Generalized Nonlinear 

Integral is a polynomial transformation of the classical Nonlinear Integral 

classifier. It implement projecting through not straight line but curve ac-

cording to the polynomial integrand. The polynomial index will be learned 

with the signed Fuzzy Measure together. Our classifying features holding the 

discrete value of A, C,G oiT is riurnericalized to be a virtual variable. All of 

these are realized under the guide of an adaptive genetic algorithm [13]. Good 

performance of this method conies from the use of the Fuzzy Measure and 

the relevant Nonlinear Integral, since the nonadditivity of the Fuzzy Measure 

roflects the importance of the predictive features, as well as their inherent in-

teractions, towards the discrimination of the points. In fact, each predictive 

feature has respective important index reflecting their amounts of contTibu-

tioris towards the decision. Furthermore, the global contribution of several 

predictive features to classification is not just the simple sum of the contribu-

tion of each feature to the decision, but may vary nonlinearly. A combination 

of the predictive features may have mutually restraining or a complementary 

synergy effect on their contributions towards the classification decision. So 

the Fuzzy Measure defined on the power set of all predictive features is a 

proper representation of the respective importance of the predictive features 

and the interactions among them, and a relevant Nonlinear Integral is a good 

fusion tool to aggregate the information coming from the individual and the 

coinbinatioiis of the predictive features for the classification. The details of 

these basic concepts about the Nonliear Integrals and the Generalized Non-
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linear Integral and the mathematical models for the classification problem 

have been introduced in Chapter 2 and Chapter 4. Here we just give a brief 

review about classification model and corresponding revision acorrding to the 

realistic problem. 

The classification process can be divided into two parts for implementa-

tion: 

The Nonlinear Integral classifier depends on the Fuzzy Measure /.t, so the 

first step is to determine the optimal values of /i by using GA tool. In fact, the 

fitness function comes from the linear classifier used in the second procedure. 

It is an iterative process. The optimal Fuzzy Measure will be output to the 

next step. 

When the Fuzzy Measure ” is determined, the virtual value can be ob~ 

tained using the Nq^nlinear Integral. Then we can classify these virtual values 

on real axis using a linear classifier. 

The following paragraphs focus on the above problems respectively. 

Here we discuss the optimization of the Fuzzy Measure //. under the crite-

rion of minimizing the corresponding global misclassification rate. 

In our GA model, we use a variant of the original function / , f = a f + h. 

where a is a vector to shift the coordinates of the data and。is a vector to scale 

the values of predictive features. Each chromosome represents Fuzzy Measure 

vector /i, shifting vector a and scaling vector b. A signed Fuzzy Measure is 

0 at empty set. If there are n features in training data, a chromosome has 

2"-|-2TI—1 genes which are set to random real values randomly at initialization. 

Genetic operations used are traditional ones. At each generation, for each 

chromosome, all variables are fixed and the virtual values of all training data 

are calculated using Nonlinear Integral. The titiicss iuiiction can \)v dchiicd 

as follows. 
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fitness = cjiaccixraq/ + uj2sensitivity 

LJi and LJ2 are the adjustment parameters given by users. Accuracy and 

sensitivity are determined in the second part of model. 

6.3 Methods 

We applied EA based Rule Learning [89], Nonlinear Integral classifiers and 

the Generalized Nonliner Integral-Nonlinear Integral with Polynomial Kernel 

to classify the HBV DNA data into liver cancer (HCC) and normal (CON, 

control) classes and then compare them with several classical classification 

methods which include See5.0 (Decision Tree), Neural Network, Support Vec-

tor Marhinp(SVM) and Naive Bayes. As mentioned before, we do a detailed 

study on the Rule Learning and Nonlinear Integral classifier separately. These 

classical classification methods and the data sets used have been introduced 

in Chapter 2. Then the implementation details of the Nonlinear Integral (NI) 

classifier and the evaluation methodology will be introduced. 

6.3.1 Implementation Details of Nonlinear Integral 

To implement the learning algorithm of our new classifiers based on the clas-

sical Nonlinear Integrals and Nonlinear Integrals with Polynomial Kernel, we 

use the G A tool in Matlab v7.2 Programming combined with Fisher's dis-

criminant function programming [90]. All the parameters of our G A in our 

experiments are shown in Table 6.1. We set the generation limit to be 100 as 

the stopping criteria. ‘ 
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Ta Lhle 6.1: GATOOL Parameters in MATLA B 

Parameter Set value Parameter Set value 

PopulationType doubleVector Stall generations Inf 

PopulationSize 20 Stall time limit Int 

EliteCount 2 Tolerance l.OOOOe-006 

CrossoverFr action 0.8000 Constraint tolerance l.OOOOe-006 

CrossoverPunction crossoverscat tered InitialPenalty 10 

MigrationDirection forward Penalty Factor 100 

Migrationlnterval 20 Plotlnterval 1 

MigrationFVaction 0.2000 CreationFunction gacreationuniform 

Generations 100 FitnessScalingFunction fitscalingrank 

Table 6.2 :The Det ails of K [BV Data Sets 

Datasets Control HCC Total % 
B 51 37 88 43.878 

Cl 10 16 26' 13.265 

C2 18 22 40 20.408 

C3 19 25 44 22.449 

Total 98 100 198 

6.3.2 Data description 

The dataset contain 98 control patients and 100 HCC patients. The HBV 

DNA sequences are obtained specifically for this study from these patients 

carefully selected by our medical experts to minimize the demographic bias. 

There are four datasets corresponding to the different clusters, namely B 

C l , C2 and C3. The numbers of patients for each dataset are shown in 

Table 6.2 in which the last column represents the proportion of each dataset. 

For each dataset, an independent validation set is prepared to evaluate the 

performance of the classifiers. Table 6.3 shows the number of patients of the 

validation datasets. 
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r 

Table 6.3: Summary o 

Datasets "Control HCC Total 

B 8 7 15 

CI 7 5 12 

C2 9 6 15 

C3 ‘ 5 5 10 

Total. 29 23 52 

Validation Sets 

6.3.3 Evaluation Methodology 

In classifying an unknown case, depending on the class predicted by the clas-

sihei and the true class of the patient (Control or HCC) , four possible types 

ot results can be observed for the prediction as follows: 

i) True positive - The result of the patient has been predicted as positive 

(Cancer) and the patient has canner. 

ii) False positive - the result of the patient has been predicted as positive 

(Cancer) but the patient does not have cancer. 

iii) True negative - the result of the patient has been predicted as negative 

(Control), and indeed the patient" does not have cancer. 

iv) False negative - the result' of the patient has been predicted as negative 

(Control) but the patient has cancer. 

Let TP, FP、TN and FN denote respectively the number of true positive, 

false positives, true negatives and false negatives. For each learning and 

evaluation experiment, Accuracy, Sensitivity and Spedficity defined below 

are used as the fitness or performance indicators of the classification. 

Accuracy = {TP + TN)/{TP + T N + F P + FN) 

Sensitivity = TPI、TP + FN) 

Specificity = TN/(TN + FP) „ 

For screening tests, medical professional usually will prefer to have higher 
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sensitivity, i.e., lower accuracy and specificity is an acceptable trade-off for 

high sensitivity as long as the accuracy and specificity are*reasonable. It 

means that we rather send more people for confirmation tests than miss anv 

true cancer patients. In the data sets, all features are categorical features. 

There are four symbolic values /I, C、G and T for each feature. In order to 

use the nonlinear model, we use simple integer values, 0，1，2 and 3，as the 

nurnericalised initial values to represent the discrete values of the features 

respectively. 

We adopt /C-fold cross validation method to make sure that the whole 

dataset can be used as testing data in turn and over-training (ovrr-fitting) 

can be avoided. It means that we randomly partition the N data into K sets 

of size of N / K、train on (K - I ) sets and test on the remaining set, and repeat 

K times in turn and take the mean result. After K runs, all data are used for 

testing and the average can be computed to evaluate the performance. The 

A'-fold .method is repeated 10 times for each experiment (10 runs in r.ot.al) t,o 

obtain an overall average performance. 

Our datasets are very small despite they are one of the biggest single 

studies. For example, C l contains sequences from 26 individuals. We 
* I. 

must ensure that there is at least one positive case for each class in the testing 

dataset. If the number {K) of splits is too large, the size of the testing set will 
•t 

be too small and it may not even have a positive case. On the otJier hand, if 

the numbers of splits are too small, it will result in small training sets which 

may not contain sufficient information for training. So we need to find a 
* 

balance between the sizes of training and testing sets in order to reduce the 
* 

^probability of over-training (over-fitting) and under-testing (i.e. not enough 

positive and negative examples for testing). We have tried several feasible 

K values for Nonlinear Integrals. The results are shown in Tablo G 4 WV 
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can see that the testing accuracy and sensitivity are best by taking 10-fold. 

Consequently, we have chosen 10-fold method for our experiments. This 10-

I 

fold methodology is applied to all experiments including the classical classifier 

used in our compaHson. 

6.4 Experimental and Analysis 

III this section, we first present the results of EA based Rule Learning [89 

and Noiilineai Integral classifiers to classify the HBV DNA data into liver 

cancer (HCC) and normal (CON, control) Classes and then compare them 

with several traditional classification methods which include SeeS.O (Decision 

Tree) [9), Neural Network [10], Support Vector Machine(SVM) [11] and Naive 

Bayes [12]. As mentioned before, we do a detailed study on the Rule Learning 

and the Nonlinear Integral based classifier separately because of the impor-

tance of their high interpretability^of the models representing the knowledge 

acquired through the learning processes. The biochemists and doctors can 

see explicitly and clearly the influences of the mutated sites or markers and 

their potential interactions towards the formation^of lever cancer. 
# 

For each dataset, we will use the 5 features which include those selected 
‘ ‘ C3» 

by ilie Rule Leai uiiig'iuethDd and in.sortie cases supplemented by those with 

die liigliest iiifonnation gain obtained by Viewer [52] partially shown in Fig-
• * * 

lire 6.9.、For reducing computational complexity, we reduce the number of 

features by iricludlng feature selection method. We cpmpareci the results of 
. t r 

the Nonlinear Integral -based classifier with and without feature selection in 
, ， ’ . ’ 

Table 6.5、It shows that the feature selection is very useful. 

V 
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6.4.1 Comparison between N I C and RL 

Table 6.6 shows the comparison results of Rule Learning and the Nonlinear 

Integrals Classifier (NIC) and Table 6.7 shows the comparison results of our 

methods with several classic methods on datasets B, CI , C2 and C3. The 

results of Rule Learning (RL) and the classical Nonlinear Integral Classifier 

(NIC) for each dataset and a validation set, which contains the never-seen-

before cases, are shown in Table 6.6. 

In Table 6.6，sensitivity results of NIC are higher than those of RL in most 

cases and other values are comparable. Since sensitivity is more important, 

for doctors to diagnose, the performance of NIC is considered to be better 

than that of RL. Furthermore, NIC not only can determine the important 

sites (markers) with regard to the diagnosis but also give their degrees of 

contribution in real values, which are relatively meaningful in biomedical 

research. This will be described in following section. 

6.4.2 Results of Classifier based on Nonlinear Integrals and Gen-

eralized Nonlinear Integrals compared with other methods 

Table 6.7 shows the comparison results of the Nonlinear Integrals Classifier 

and the Nonlinear Integrals with Polynomial Kernel based Classifier(NIPKC) 

with five classical algorithms which include Neural Network (NN), Decision 

Tree (DT), Naive Network (NB), SVM and Rule Learning (RL). 

We run six sets of experiment for each classifier. The first set. of exper-

iments uses the top 1 site (feature with the highest information gain), the 

second set the top 2 sites, the third one uses top 3 sites and so on. The 

results are evaluated mainly according to the test accuracy and sensitivity 

for HBV data. Finally, the best result out of the 6 sets of experiments for 
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NIC and the NIPKC based on GA compared against other methods in Table 

6.7. 

For weighted average results in Table 6.7，the best ones are bolded. The 

weighted average is computed according to the number of cases in each 

clatciiiet. The sensitivity and accuracy of our NIC and NIPKC are better than 

most algorithms or at least comparable. For comparing the performance of all 

algoritliiiis graphically, we plot all the result in Figures 6.3 to 6.7. Meanwhile, 

we place all methods on a ROC space as Figure 6.9 for helping interpreting 

the results in Table 6.7. 

QGNIC 

Figure 6.3： The Comparison of All Methods for Dataset B 

6. Commen t s on results 

Our framework includes Rule Learning (RL), Nonlinear Integral Classifier(NIC) 

and the generalized Nonlinear Integral Classifier-Nonlinear Integrals with 
» 、 

Polynomial Kernel based Classifier(NIPKC). From Table 6.6 RL has slightly 

lii^lici ciic uracy than NIC and NIPKC. It means that this method can have 

liigiier prediction power. But for doctors and clinicians, the sensitivity is 

more important than the accuracy, and NIC is better than RL on sensitivity. 
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Figure 6.4: The Comparison of All Methods for Dataset Ci 

Figure 6.5: The Comparison of All Methods for Dataijet C2 

Compared with the four traditional methods namely Neural Network(NN). 

Decision Trcc(DT), Naive Baycs(NB) and Support Vcctoi Macliiii(j(S\'M). 

NIPKC shows the best diagnostic performance on the average evaluations. 

SVM shows better accuracy but inferior sensitivity for the test data. However, 

for screening tests, medical professional usually will prefer to have higher 

sensitivity, i.e., lower accuracy and specificity is an acccptablc tiado-ofl loi 

high sensitivity as long as the accuracy and specificity are refusonablo. It 

means that wc rather send more people foi cuiihniiatioii tcblb than iiiiss aii\ 

true cancer patients. NIPKC and NIC not only have comparable accuracv. 

they can also show the interaction of features. How to identify the importance 
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Figure 6.6: The Comparison of All Methods for Dataset C3 

Figure 6.7: The Comparison of All Methods as Weighted Average 

of features and their combinations will be introduced in the next section. 

6.4.4 To identify impor t an t sites and interact ions a m o n g t h em 

Another important contribution of Nonlinear Integral classifier is that we 

can find some significant sites (markers) and interactions among them in the 

sequences for further wet laboratory analyses. According to the definition 

of Nonlinear Integrals, for each dataset we can get a set of linear equations 

about the signed Fuzzy Measures as variables. A solution with the fewest 

nonzero values can be obtain by solving linear equations based on Ll-Norm 

regularization [92 . 

m 
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FPRale 

Figure 6.8: Classifiers in ROC space 

.The respective potential sites according to information gain in t,lie se-

quences for Xi computed by Viewer[52] are listed in Table 6.8. Figure 6.9 is 

the screenshot from the Viewer for Dataset C l . The left column is the site 

numbers and the right column is the corresponding information gain values 

ranked in decreasing order. 

For the B, C l , C2 and C3 datasets, the top 5 sites are used to formulate 

the set of linear equations. So we obtained the solutions which have the fewest, 

nonzeros and filtered those positions with zero. In Table 6.9，we show the 

importance and relevance of the individual sites and their interactions. 

Prom Table 6.9 we can see that many sites of sequence do not take effect 

individually or combined with others. The non-zero sites are important for 

diagnosing disease. This may be helpful for the bioiriforniatics and medical 

research. The Ll-norm method is faster than using GA. But the results are 

not optimal. We use GA to search for the optimal results for Fuzzy Measure 

3
1
2
 
<
I
L
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Figure 6.9: The Screenshot of Viewer in Information Gain Order 

ill most cases. 

6.5 Chapter Summary 

111 this chapter, a data mining framework for DNA sequence biological datasets 

has been presented. It has been applied to the Hepatitis B Virus DNA 

datasets which are among the largest in the world and have been collected 

by oui medical bchool specifically for this project. We have developed a 

framework for markers discovery. This framework has incorporated three al-

goiitliiiis. NIC, GNIC and RL. These classifiers can explicitly give the iiiipor-

taiice of the markers and their interactions and have shown good performance 

ill cancer prediction. 

Moreover, the details of the new classification methods based on the clas-

sical Nonlinear Integral and the Nonlinear Integral with Polynomial Kernel 

have been presented. These methods have good performance using the Fuzzy 

Measure, due to the iioriadditivity of the Fuzzy Measure reflecting the irn-

puiuiiice of the individual predictive features as well as their inherent inter-

cicLioiib. Bebidtjs the liigli iiiteipretability the Nonlinear Integrals Classifier, 
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the experimental results have shown that it is one of the best classifiers es-

pecially in- terms of the sensitivity. It is very useful for preliminary diagnosis 

and screening test of liver cancer caused by HBV. In our model, we use GA 

for optimization which provides multi-modal solutions containing .sets 1k.m 

solutions. The final confirmation experiments, like many other bioinfonnat-

ics problems, need to be carried out by biochemists to identify and study the 

true markers. Finally, we have used a LI-norm regularization method to get a 

solution with the fewest non-zero Fuzzy Measure values. It can provide some 

important individuals and combinations of key markers of the HBV DNA 

sequences. We believe that this information can be helpful to do turthei 

research for biochemists. 

We hypothesize that the genomic makeup of HBV affects the carcinogenic 

potential of the virus. In this case-control study, we have demonstrated that 

some genotype-spedfic mutations are more commonly found among HCC 

patients than their age and gender matched controls. These markers can 

therefore be used as biornarkers to stratify the cancer risk of cliiumc liepciLiiib 

B patients. Our findings have been validated by independent datasets in t,hp 

validation process. To confirm the biological role of these mutations, further 

experimental work using in situ mutagenesis of replicative HBV clones on 

their carcinogenicity in animal and cell line models will be required. 

However, even though we have generated one of the largest datasets, ilic 

example sizes of the datasets are still small (less than 100) tor each case. 

It is a challenge for the classifiers based on the Nonlinear Integral and the 

Generalized Nonlinear Integral to avoid overtraining. 
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Table 6 4- All Splits for Training and Testing on Nonlinear Integral Classifier 

Data Per 2fold 3fold 4fold 5fold efoid 7fold 8fold 9fold lOfold 

B 

training 

Acc 0.747 0.731 0.728 0.728 0.730 0.722 0.723 0.725 0.682 B 

training Sen 0.808 0.829 0.805 0.803 0.804 0.814 0.802 0.802 0.811 

B 

training 

Spe 0.702 0.660 0.672 0.672 0.677 0.656 0.665 0.669 0.588 

B 

testing 

Acc 0.649 0.646 0.647 0.643 0.621 0.637 0.634 0.625 0.674 B 

testing Sen 0.687 0.700 0.687 0.678 0.651 0.698 0.696 0.678 0.813 

B 

testing 

Spe 0.621 0.606 0.617 0.615 0.600 0.593 0.588 0.587 0.574 

CI 

training 

Acc 0.962 0.961 0.962 0.961 0.960 0.962 0.962 0.962 0.961 CI 

training Sen 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

CI 

training 

Spe 0.900 0.899 0.900 0.900 0.896 0.900 0.900 0.900 0.899 

CI 

testing 

Acc 0.785 0.815 0.840 0.843 0.848 0.845 0.856 0.849 0.847 CI 

testing Sen 0.963 0,952 0.944 0.963 0.964 0.957 0.975 0.972 0.980 

CI 

testing 

Spe 0.500 0.594 0.683 0.660 0.650 0.650 0.656 0.661 0.640 

C2 

training 

Acc 0.905 0.893 0.883 0.876 0.877 0.875 0.876 0.870 0.918 C2 

training Sen 0.895 0.883 0.882 0.873 0.878 0.884 0.873 0.872 0.903 

C2 

training 

Spe 0.915 0.903 0.883 0.879 0.876 0.866 0.878 0.869 0.937 

C2 

testing 

Acc 0.725 0.721 0.730 0.723 0.723 0.715 0.730 0.728 0.817 C2 

testing Sen 0.645 0.624 0.655 0.650 0.660 0.669 0.648 0.657 0.788 

C2 

testing 

Spe 0.805 0.818 0.805 0.795 0.786 0.762 0.813 0.798 0.860 

C3 

training 

Acc 0.780 0.774 0.772 0.767 0.765 0.761 0.765 0.761 0.731 C3 

training Sen 0.724 0.753 0.738 0.715 0.743 0.739 0.717 0.738 0.913 

C3 

training 

Spe 0.853 0.803 0.816 0.835 0.795 0.792 0.828 0.794 0.491 

C3 

testing 

Acc 0.651 0.609 0.606 0.624 0.604 0.627 0.624 0.606 0.600 C3 

testing Sen 0.565 0.529 0.560 0.564 0.552 0.575 0.570 0.546 0.738 

C3 

testing 

Spe 0.763 0.712 0.670 0.698 0.674 0.695 0.698 0.670 0.410 

Weighted 

training 

AVE. 

Acc 0.814 0.803 0.799 0.797 0.798 0.793 0.794 0.793 0.777 Weighted 

training 

AVE. 

Sen 0.832 0.845 0.831 0.824 0.831 0.836 0.824 0.828 0.877 

Weighted 

training 

AVE. Spe 0.805 0.772 0.777 0.780 0.772 0.761 0.775 0.767 0.678 

Weighted 

testing 

AVE. 

Acc 0.683 0.675 0.680 0.681 0.668 0.678 0.681 0.671 0.709 Weighted 

testing 

AVE. 

Sen 0.688 0.680 0.686 0.685 0.672 0.699 0.695 0.683 0.813 

Weighted 

testing 

AVE. Spe 0.674 0.671 0.676 0.676 0.660 0.657 0.667 0.658 0.604 

Note: Per二jjerformance; Acc=Accuracy; Sen=Sensitivity; Spe=Specificity 
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Table 6.5: Comparison Results of Nonlinear Integral with and without Feature 

Datasets Performance 
with FS without FS 

Datasets Performance 
Training Testing Training Testing 

B 

Accuracy 0 . 7 7 1 0 . 6 8 3 0.687 0.617 

B Sensitivity 0 . 8 5 8 0 . 7 3 8 0.337 0.233 B 

Specificity 0.708 0.646 0 . 9 4 2 0 . 8 9 3 

CI 

Accuracy 0 . 9 2 2 0 . 7 9 0 0.826 0.515 

CI Sensitivity 1 . 0 0 0 0 . 9 2 0 0.937 0.715 CI 

Specificity 0 . 7 9 8 0 . 6 0 0 0.650 0.190 

C2 

Accuracy 0 . 8 7 1 0 . 7 5 0 0.793 0.626 

C2 Sensitivity 0 . 8 8 8 0 . 7 0 0 0.813 0.698 C2 

Specificity 0 . 8 5 4 0 . 8 0 0 0.769 0.530 

C3 

Accuracy 0 . 8 2 8 0.732 0.813 0 . 7 5 0 

C3 Sensitivity 0 . 8 4 3 0 . 7 0 5 0.718 0.643 C3 

Specificity 0.808 0.765 0 . 9 3 7 0 . 9 0 0 

Datasets Performance 
RL NIC 

Datasets Performance 
Training Testing Validation Training Testing Validation 

B 

Accuracy 0.716 0 . 7 1 6 0 . 7 6 9 0 . 7 7 1 0.683 0.721 

B Sensitivity 0.730 0.731 0 . 8 0 0 0 . 8 5 8 0.738 0.7^2 B 

Specificity 0.706 0 . 7 0 7 0 . 7 5 0 0 . 7 0 8 0.646 0.697 

CI 

Accuracy 0.808 0 . 8 0 0 0 . 9 1 7 0 . 9 2 2 0.790 0.712 

CI Sensitivity 0.812 0.790 1 . 0 0 0 1 . 0 0 0 « 0 . 9 2 0 0.854 CI 

Specificity 0 . 8 0 0 0 . 8 0 0 0 . 8 5 7 0.798 0.600 0.570 

C2 

Accuracy 0 . 7 7 5 0 . 7 7 5 0 . 9 1 7 0 . 8 7 1 0.750 0.712 

C2 Sensitivity 0 . 7 0 0 0 . 7 0 0 1 . 0 0 0 0 . 8 8 8 0 . 7 0 0 0.854 C2 

Specificity 0.850 0 . 8 5 0 0 . 8 5 7 0 . 8 5 4 0.800 0.570 

C3 

* Accuracy 0 . 7 7 3 0 . 7 7 0 0 . 6 4 7 0 . 8 2 8 0.732 . 0 639 

C3 Sensitivity 0 . 7 2 0 0 . 7 1 7 0 . 7 0 0 0 . 8 4 3 0.705 0 . 7 2 1 C3 

Specificity 0 . 8 4 2 0 . 8 3 5 0 . 5 7 1 0.808 0.765 0.523 

Note: RL=Rule Learning; NIC=Nonlinear Integral Classifier 
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Table 6.7: Comparison Results with Classical Methods for All Datasets 

Datasets Performance NN DT NB SVM NIC NIPKC RL 

B 

training 

Accuracy 0.681 0.682 0.689 0.674 0.682 0.731 0.716 B 

training Sensitivity 0.805 0.811 0.790 0.794 0.811 0.812 0.730 

B 

training 

Specificity 0.591 0.588 0.617 0.589 0.588 0.618 0.706 

B 

testing 

Accuracy 0.680 0.681 0.650 0.680 0.674 0.714 0.716 B 

testing Sensitivity 0.806 0.812 0.758 0.795 0.813 0.804 0.731 

B 

testing 

Specificity 0.589 0.571 0.573 0.597 0.574 0.591 0.707 

CI 

training 

Accuracy 0.889 0.937 0.894 0.897 0.961 0.961 0.808 CI 

training Sensitivity 1.000 1.000 0.722 0.965 1.000 1.000 0.812 

CI 

training 

Specificity 0.711 0.836 1.000 0.810 0.899 0.899 0.800 

CI 

testing 

Accuracy 0.869 0.717 0.650 0.961 0.847 0.833 0.800 CI 

testing Sensitivity 0.999 1.000 0.300 1.000 0.980 0.990 0.790 

CI 

testing 

Specificity 0.677 0.280 0.850 0.899 0.640 0.610 0.800 

C2 

training 

Accuracy 0.805 0.839 0.773 0.725 0.918 0.870 0.775 C2 

training Sensitivity 0.799 0.749 0.993 0.665 0.903 0.971 0.700 

C2 

training 

Specificity 0.813 0.953 0.589 0.785 0.937 0.769 0.850 

C2 

testing 

Accuracy 0.746 0.728 0.727 0.548 0.817 0.748 0.775 C2 

testing Sensitivity 0.715 0.615 0.897 0.789 0.788 0.835 0.700 

C2 

testing 

Specificity 0.783 0.880 0.592 0.907 0.860 0.660 0.850 

C3 

training 

Accuracy 0.628 0.684 0.697 0.604 0.731 0.763 0.773 C3 

training Sensitivity 0.707 0.504 0.688 0.475 0.913 1.000 0.720 

C3 

training 

Specificity 0.524 0.905 0.702 0.780 0.491 0.582 0,842 

C3 

testing 

Accuracy 0.573 0.645 0.587 0.753 0.600 0.694 0.770 C3 

testing Sensitivity 0.619 0.442 0.600 0.663 0.738 0.708 0.717 

C3 

testing 

Specificity 0.524 0.920 0.567 0.871 0.410 0.672 0.835 

Weight 

Average 

training 

Accuracy 0.722 0.748 0.735 0.698 0.777 0.787 0.753 Weight 

Average 

training 

Sensitivity 0.808 0.755 0.799 0.720 0.877 0 . 9 0 0 0.732 

Weight 

Average 

training Specificity 0.637 0.765 0.680 0.700 0.678 0.641 0.778 

Weight 

Average 

testing 

Accuracy 0.695 0.687 0.652 0 . 7 6 7 0.709 0.721 0.751 Weight 

Average 

testing 

Sensitivity 0.772 0.715 0.691 0.791 0.813 0.847 0.729 

Weight 

Average 

testing Specificity 0.625 0.673 0.612 0.760 0.604 0.556 0.777 

Note: NN=Neural Network; DT= Decision Dree; NB=Naive Network; 

S VM=Support Vector Machine; RL=Rule Learning; 

NIC=Nonlinear Integral Classifier. 

NIPKC=Nonlinear Integral with Polynomial Kernel based Classifier. 



y CHAPTER 6. APPLICATIONS ON BIOINFORMAriCS 132 

/ 
:The Top 5 Sites No. of Sequences "or Eac 

Data sitel site2 site3 site4 •site5 

B 1762 1764 2712 1505 1627 

CI 1915 1764 0928 1479 1461 

C2 2170 2441 0799 2189 0814 

C3 1768 1497 3098 1234 2768 

Dataset 
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le Signed Fuzz: y Measure of Each Site L Fsed in 

Sets of sites B CI C2 C3 

X I 0.495 0.040 0.450 0.260 

12 0.232、 0.000 0.000 0.000 

工1，？2 0.000 0.000 0.007 0.000 

工3 0.094 0.253 -0.183 0.000 

0：1，3：3 0.175 0.000 0.860 0.000 

-0.035 0.331 0.000 0.000 

工1，3：2’ 工3 0.000 0.000 0.000 0.445 

X4 0.333 0.000 0.196 0.000 

2 ^ ’ 工 4 0.738 0 . 0 0 0 -0,604 0 . 0 0 0 

0 . 1 0 2 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 

0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 

0.252 0 . 0 0 0 0 . 0 0 0 ' 0 . 0 0 0 

工1 >工31工4 0.566 0 . 0 0 0 0 . 0 0 0 • 0 . 0 0 0 

X 2 , X 3 , X 4 -0.035 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 

工1，2：2，2：3’0；4 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 

0.457 0.542 1.374 0 . 0 0 0 

0 . 0 0 0 0.917 0.757 0.840 

0 . 0 0 0 0.385 0 . 8 2 9 0.500 

0 . 0 0 0 0.633 0 . 3 9 5 0 . 6 8 7 

0 . 0 0 0 0 . 3 8 9 0 . 0 0 0 0 . 0 0 0 

1.488 0.940 0.500 0 . 7 6 5 

0 . 0 0 0 0 . 1 6 3 0.107 0.900 

0 . 0 0 0 0 . 3 1 7 0.565 0 . 4 7 2 

X^yXft 0 . 0 0 0 0.817 0.631 0 . 0 0 0 

0.472 0.917 0 . 0 0 0 0 . 0 0 0 

12，2 :4,15 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 

Il,X2,X4,X5 0.450 0 . 0 0 0 0.558 0 . 0 0 0 

3:4,15 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 

工1，3：3’工4，工5 0 . 2 6 0 1.083 0 . 0 0 0 0 . 0 0 0 

0.941 0.548 0 . 0 0 0 0.600 

X 0 . 0 0 0 0.317 0.687 0.443 

5ach Dataset 



Chapter 7 

Conclusion and Future Work 

Knowledge integration and decision making often happen in environments 

where information concerned is interdependent or interactive. Artificial intel-

ligence researchers have been attempting to emulate this capability in com-

puter systems to handle information fusion assuming the input variables ar^ 

independent. Nevertheless, the interaction among the information is ubiq-

V 

uitous in practical databases. Most existing approaches have limitations on 

dealing with the interaction among predictive features. The assuiiiption about 

the independent features is not realistic for real-life problems. Nonlinear In-

tegrals，such as Choquet Integral and Sugeno Integral, were proposed to solve 

the abovementioned limitations. 

In this thesis, we have proposed various forms of generalization from the 

classical Nonlinear Integrals. The Generalized Nonlinear Integrals contain 

the Double Nonlinear Integral, the Nonlinear Integral with Polynomial Ker-

nel and the Upper and Lower Nonlinear Integral which have been defined, 

implemented and applied to different benchmark datasetb and some current 

projects. In all the models, we have adopted the Signed Fuzzy Measure with 

nonadditivity property to describe the contribution for decision of earli pmiic-

134 
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live feature and the interaction among them. Compared to some traditional 

methods, the Generalized Nonlinear Integrals have promising performance for 

« 

most problems and the best diagnostic performance for bioinformatics data, 
* » , 

especially,,tor diagnosing cancers caused by Hepatitis B Virus(HBV), 
‘ J 

• . ‘ ‘ 

7.1 Thesis contributions 
、 

• . 

" X 

The main contributions of this thesis have been described in chapter 1. We 

have proposed three •kinds of extended versions of classical Nonlinear Integral 

for applications. They eneompass the advantages of the classical Nonlinear 

Integrals and solve many limitations of the classical ones. We will give a * * 

detailed conclusion in the following parts. 

• We have established a Double Nonlinear Integral model for classification. 

It implements the second projection by Nonlinear Integral to improve 

the inadequate performance coming from the first projection. This ex-
, * 

tension at Nonlinear Integral is based on the Signed Fuzzy Measure 

and GA learning parameters. Our model can choose automatically be-

tweeii the classical Nonlinear Integral and the Double Nonlinear Integral. 

When applying classical Nonlinear Integral to classification, there may 

be .sumo important iiifoniiatiun iriissed which leads to the low classifica-
s • 

tioii accuracy. The Double Nonlinear Integral can solve this problem by 

projecting the virtual values again to get the second sets of virtual val-
1 » * 

ues. Each pair of the first and second values constructs the coordinates 

tor each original datum. We can efficiently classify the data by making 

a linear classification on these virtual points in the 2-dimensional space. 

4 

• From another view, we have proposed an extension to the Nonlinear In-

tegral with linear integrand-Nonlinear Integral with Polynomial Kernel. 
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. r ' X . 
It can project thef original data along different types of curves instead 

straight lines in classical Nonlinear Integrals. It can deal with those data 

with more complicated distribution so that the better classification ac-

curacy can be obtained. The shape of projection curves depends on r,he 

specific data, which means the polynomial index has to be Icainrd Ijy 

GA.together with the Fuzzy Measures. The complexity would iiol be 

increased significantly just adding one parameter, but the performance 

would be improved. It is testified nbt only on bcnch mark datascts but 

also on a real problem on bioinforrnatics. 

• We have developed another formal extension of Nonlinear Integral called 

Upper and Lower Nonlinear Integrals. It can give a set of upper and 

lower bounds which subsume all kinds of Nonlinear Integrals. We use the 

multi-objective optimization method to find a set of optimal results for 

the regression model based on the Upper and Lower Nonlinear Integrals. 
« 

We have tried to find a solution with the smallest distance between uppor 

and lower bounds, and the smallest error from either of tlie bounds. 

This forms a NP hard problem. We can select one optimal solution 

for a specific problem from the set of results on the Pareto frontier. A 

weather predictor based on this model has been constructed. It can 

predict the following days' temperatures and ranges. 

• A data mining framework has been established for the Hepatitis B Vims 

DNA sequence data. The framework includes iiioleculai evoluliuii anal-

ysis, clustering, feature selection, and classifier learning. In the feature 

selection process, potential markers are selected based on Information 

Gains for further classifier learning. Then meaningful rules are learnt by 

our algorithm called Rule Learning which is based on an Evolutionary 
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Algorithm. Two new classifiers based on classical Nonlinear Integrals 

and Nonlinear Integrals with Polynomial Kernels respectively have been 

introduced into the framework and obtained the best diagnosis perfor-

•. rnarice. 

7.2 Future work 

Some improved and extended work concerning the current models and algo-

rithn^s have been discussed in the previous chapters. In the following contents, 

suggestions for improvement are given. 

i 

• Accelerating: The current optimization algorithms of our models are 

rather tiiiie-corisuming due to learning parameters which depends on the 

data. This problem is especially serious when the number of features 

is very large since the size of Fuzzy Measures is equivalent to the size 

of the power set of the features. We have to find a better accelerated 

strategies to improve the efficiency of learning the parameters technically 

and theoretically. ‘ 
« 

• Fuzzifying: Our algorithms deal with uncertain interaction of feature 

in the datasets with certain values. For some situations with uncer-

tainty feature values, we need to introduce the fuzzifying scheme to the 

integrand.and integral in the extensions of the Nonlinear Integrals. 

• More appl ications: An important goal in designing the new regression 

and classification models is to solve real world problems. We plan to 

discover the potential power of our innovative models by finding more 

，real applications. For example, we may use the multi-regression model 

to predict the stock market trends or forecast the trend of a certain 
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financial index; we may use the projection classifier to determine the 

most important markers in the DNA sequences of more diseases such tus 

diabetes. 
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