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Abstract of thesis entitled 

Fast and Efficient Algorithms for TV Image Restoration 

In this thesis, we study two aspects in image processing. Part I is on the fast and 

efficient algorithms for the TV-Ll image restoration. Part II is on the fast and 

efficient algorithms for the positively constraint maximum penalized TV image 

restoration. 

In Part I of the thesis, we focus on the fast and efficient algorithms for the TV-

Ll minimization problem which can be applied to recover the blurred images 

corrupted by impulse noise. We construct the half-quadratic algorithm (HQA) 

for TV-Ll image restoration based on the half-quadratic technique. By intro-

ducing the proximal point algorithm into the HQ A, we then obtain a modified 

HQA. We call it the proximal point half-quadraticc algorithm (PHA). We intro-

duce the PHA aiming to decrease the condition number of the coefficient matrix 

as updating the iterator in HQA. Until recently, there have been many efficient 

methods to solve the TV-Ll minimization problem. Examples are the primal-

dual method, the fast total variational deconvolution method (FTVDM), and the 

augmented Lagrangian method (ALM). By numerical results of the FTVDM and 

ALM, we see that the images restored by these methods may sometimes appear to 

be blocky. Come back to our methods. The HQA and the PHA are both fast and 

efficient algorithms to solve the TV-Ll minimization problem. We prove that our 

algorithms are both majorize-minimize algorithms for solving a regularized TV-

Ll problem. Given the assumption ker(V)nker(_ST_0) = {0} , the convergence 

and linear convergence of the HQA is then easily obtained. Without such an as-

sumption, a convergence result of PHA is also obtained. We apply our algorithms 

to deblur images corrupted with impulse noise. The results show that the HQA 

is faster and more accurate than the ALM and FTVDM for salt-and-pepper noise 



and comparable to the two methods for random-valued impulse noise. The PHA 

is comparable to the HQA in both recovered effect and computing consuming. 

Comparing with ALM and FTVDM, the PHA is faster and more accurate than 

ALM and FTVDM for salt-and-pepper noise and comparable to the two methods 

for random-valued impulse noise. Furthermore, the recovered images by the HQA 

and the PHA are less blocky. 

Part II of the thesis focuses on the positively constraint maximum penalized total 

variation image restoration. We develop and implement a multiplicative iteration 

approach for the positively constrained total variation image restoration. We call 

our algorithm MITV. The MITV algorithm is based on the multiplicative iter-

ative algorithm originally developed for tomographic image reconstruction. The 

advantages of the MITV are that it is very easy to derive and implement under 

different image noise models and it respects the positivity constraint. Our method 

can be applied to kinds of noise models, the Gaussian noise model, Poisson noise 

model and the impulse noise model. In numerical test, we apply our algorithm to 

deblur images corrupted with Gaussian noise. The results show that our method 

give better restored images than the forward-backward splitting algorithm. 
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摘要 

在這篇論文中，我們研究圖像處理中的兩大類問題。第一部分是關於TV-
L1圖像重構模型的快速有效方法。第二部分是基於變分原理圔像處理的正約束 

問題的方法研究。 

在第一部分中，我們研究TV-L1最優化模型的快速求解方法，這一模型成 

功地應用於脈沖噪音下的圖像去噪和去模糊。我們考慮半二次方法快速有效地 

求解基於TV-U模型的圖像重構問題。進而通過近點算法改進半二次方法。我 

們稱這類改進的方法為近點半二次法。引入近點算法的目的是在於盡可能減小 

半二次方法迭代過程中線性方程組係數矩陣的條件數，從而使得此係數矩陣盡 

可能良態，從而改進算法。到目前為止，已存在很多有效求解TV-L1極小化問 

題的算法，例如原始對偶法，重疊合法，增廣拉格朗日法。此外，我們討論半 

二次法和進點半二次法收激性和線性收激性質。在數值試驗中，我們給出半二 

次法，近點半二次法同重疊合法，增廣拉格朗日法的比較結果。基於此，我們 

會在一個章節中首先簡要介紹重备合法和增廣拉格朗日法。在數值試驗中，我 

們應用我們的算法和重曼合法，以及增廣拉格朗日法處理脈沖噪音下去噪和去 

模糊問題，結果顯示，對椒蜜噪音，半二次法和進點半二次法比重叠合法和進 

點半二次法更快速更精確。對隨機值噪音，他們結果類似。此外，由重疊合法 

和近點半二次法恢復的圖像較為分片常數的。由半二次法和進點半二次法恢復 

的圖像更加自然。 

在第二部分中，我們研究基於變分原理的圃像處理的正約束問題的快速方 

法。我們構造增殖迭代法求解基於變分原理的圖像重構問題。這一方法是在用 

於解決體層影像重構問題的堪殖迭代法基礎上提出的。增殖方法的一個很大倕 

點在於，即便是對於不同的模型，推導和寅現都非常容易，並且迭代過程滿足 



正約束條件。這一方法可以廣泛地應用於高斯噪音模型，泊松噪音模型和脈沖 

噪音模型。數值試驗中，我們應用我們的方法來處理高斯噪音下的去噪和去模 

糊問題，結果顯示，我們的方法比向前向後交替迭代法能得到更好的重構結 
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Chapter 

Introduction 

"No time in human history has ever witnessed such explosive influence and impact 

of image processing on modern society, science, and technologies. From nanotech-

nologies, astronomy, medicine, vision psychology, remote security screening, and 

the entertainment industry to digital communication technologies, image have 

helped mankind to see objects in various environments and scales, to sense and 

communicate distinct spatial or temporal patterns of the physical world, as well 

as to make optimal decisions and take right actions. Image processing and un-

derstanding are therefore turning into a critical component in processing and 

understanding are therefore turning into a critical component in contemporary 

sciences and technologies with many important applications." 

- T o n y F. Chan and Jianhong (Jackie) Shen in [13] 

In this thesis, we study two aspects in image processing. Part I is on the fast and 

efficient algorithms for the TV-Ll minimization problem that has been success-

fully applied in deblurring images corrupted by impulsive noise. Part II is on the 

multiplicative iterative algorithm for positively constraint maximum penalized 

total variation image restoration. 

12 
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1.1 Introduction to Part I 

1.1.1 Introduction to Chapter 2 on the Fast Total Varia-

tion Method and the Augmented Lagrangian Method 

for TV-Ll Image Restoration 

Total variation (TV) regularization was first introduced in [45]. It has been 

demonstrated successfully in image restoration because of its good property in 

preserving edges. Usually, the TV minimization is considered with an L2 data 

fitting term, which is particularly suitable for recovering images corrupted by 

Gaussian noise. Replacing the L2 data fidelity term with an LI data fidelity term 

offers us the TV-Ll minimization model. In many important data, the noise may 

not obey Gaussian distribution. The impulse noise is one of the examples. Im-

pulse noise is usually generated by malfunctioning pixels in camera sensors, faulty 

memory locations in hardware, or erroneous transmission [3]. It has two common 

types, salt-and-papper noise and random-valued noise. The salt-an-pepper (or 

random-valued) noise corrupts the a portion of the image pixels with minimal or 

maximal (or random-valued) intensities while keeping the other pixels unaffected. 

It is difficult to remove such kind of noise, since the corrupted pixels are randomly 

distributed in the image and the intensities at the corrupted pixels are usually 

distinguishable from those of their neighbors. The TV-L2 minimization model is 

not suitable to recover the images corrupted by impulse noise. Compared with 

the TV-L2 model, the TV-Ll model uses a non-smooth fidelity which has great 

advantage in impulse noise removal [39, 40]. It is shown that the LI fidelity can 

fit uncorrupted pixels exactly and regularize the corrupted pixels perfectly. Until 

recently, there have been many efficient methods to solve the TV-Ll minimization 

problems. Examples are the primal-dual method, the fast total variational de-

convolution method (FTVDM), and the augmented Lagrangian method (ALM). 

In Chapter 2, we introduce the FTVDM and ALM briefly, since the numerical 
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comparison with the FTVDM and the ALM will be given in Chapter 3 and 4. 

The FTVDM can either derived from the classical quadratic penalty function 

technique in optimization [17], or from the half-quadratic technique initially pro-

posed in [22]. The FTVDM is indeed an alternating minimization algorithm with 

attractive convergence properties, which include the global convergence with a 

strong g-linear rate and convergence for some auxiliary variables. Under peri-

odic boundary conditions, its computation can take advantages of simple high-

dimentional shrinkage and fast Fourier transform (FFT). 

The ALM is a fast and efficient algorithm for TV regularization with non-

quadratic data fidelity function. It is based on the augmented Lagrangian method. 

The ALM can not only be applied to solve the TV-Ll minimization problem, but 

also be applied to deblur images corrupted by Poisson noise. Under periodic 

boundary conditions, its computation can also take advantage of simple high-

dimentional shrinkage and FFT. It has been the fastest and the most efficient 

method until recently. 

However, the images restored by the FTVDM and the ALM may sometimes 

appear to be blocky. 

Chapter 2 is based on [52, 51] 

1.1.2 Introduce to Chapter 3 on the Half-Quadratic Al-

gorithm for TV-Ll Image Restoration 

In Chapter 3, we propose a fast and efficient algorithm for TV-Ll minimization 

problem based on the half-quadratic (HQ) technique [22]. Considering that the 

TV-Ll functional is non-smooth functional, we begin our algorithm by smoothing 

the objective functional. Then the half-quadratic technique [22] is applied to the 

smooth functional to construct our HQA. We prove that the HQA is indeed 

a maj orize-minimize algorithm for a regularized TV-Ll problem and hence the 

convergence and linear convergence of the HQA is easily obtained. We apply our 



15 

algorithm to deblur images that are corrupted with impulse noise The results 

show that our method is faster and more accurate than ALM and FTVDM for 

salt-and-pepper noise and comparable to the two methods for random-valued 

impulse noise Furthermore, the recovered images by the HQA are less blocky 

Chapter 3 is based on the paper 

R Chan and H Liang, A fast and efficient half-quadratic algorithm for TV-LI 

image restoration, submitted, 2010 

1.1.3 Introduction to Chapter 4 on the Proximal Point 

Algorithm for TV-Ll Image Restoration 

In Chapter 3, we design a fast and efficient half-quadratic algoiithm to solve the 

TV-Ll minimization problem The convergence and linear convergence of HQA 

are discussed under the assumption that ker(A)nker(B^J5) — {0} , where A is 

the Laplacian operator and B is the blurring operator Considering that the 

condition number of the coefficient matrix as updating the iteration in HQA may 

be very large in the absencc of ker(A)nker(BTB) = {0 } In Chapter 4，we modify 

the HQA with the proximal-pomt algorithm (PPA) [43] such that the condition 

number of the coefficient matrix m HQA is small We call the modified HQA the 

proximal point half-quadratic algorithm (PHA) We prove that the PHA is also 

a majorize-minimize algorithm (MMA) as the HQA The convergence of PHA is 

obtained m the absence of the above assumption We apply the PHA to deblur 

images corrupted by impulse noise The numerical results show that the PHA is 

comparable to the HQA in both recovered effect and computing time consuming 

Comparing with the ALM and the FTVDM, the PHA is faster and more accurate 

than the ALM and FTVDM for salt-and-pepper noise and comparable to the two 

methods for random-valued impulse noise Furthermore, the recovered images by 

the PHA are less blocky as the HQA, while the recovered images by the ALM 

and FTVDM are blocky Chapter 3 is based on the paper 
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R. Chan and H. Liang, A proximal point halj-quadtahc algorithm for TV-LI 

image restoration. Preprint. 

1.2 Introduction to Part II 

1.2.1 Introduction to Chapter 5 on the Positive Constrained 

Penalized Total Variation Image Restoration 

In Chapter 5, we also discuss the total variation model widely used in image 

processing. Notice that the 8-bit gray-scale images are usually constrained into 

[0,255] at every pixel. However, the most existing approaches for total variation 

image restoration lack of considering the positivity constraint. To obtain the 

recovered image in [0，255], in practice, one may solve the unconstrained problem 

first and then project or scale the solution into the dynamic range . However, for 

images with large zero backgrounds, such kind of projection methods may not be 

efficient enough. 

In Chapter 5, we develop and implement a new approach for total variation 

image restoration. Our method is based on the multiplicative iterative algorithm 

originally developed for tomographic image reconstruction. The advantages of 

our algorithm are that it is very easy to derive and implement under different 

image noise models and it respects the positivity constraint. Our method can be 

applied to kinds of noise models, the Gaussian noise model, Poisson noise model 

and the impulse noise model. In numerical test, we apply our algorithm to deblur 

images corrupted with Gaussian noise. The results show that our method give 

better restored images than the forward-backward splitting algorithm. Chapter 

4 is based on the paper 

R. Chan, H. Liang, and J. Ma, Positively constraint minimum penalized total 

variation image restoration, submitted, 2010. 



Chapter 2 

The FTVDM and the ALM for 

TV-Ll Minimization Problems 

In this chapter, we introduce the FTVDM and the ALM briefly. The FTVDM 

can either be derived from the classical quadratic penalty function technique in 

optimization [17]，or from the half-quadratic technique initially proposed in [22]. 

The FTVDM is indeed an alternating minimization algorithm with attractive 

convergence properties, which include the global convergence with a strong q-

linear rate and convergence for some auxiliary variables. Its computation can 

take advantages of simple high-dimentional shrinkage and take advantage of FFT 

under periodic boundary conditions. 

The ALM is a fast and efficient algorithm for TV regularization with non-

quadratic data fidelity function. It is based on the augmented Lagrangian method. 

The ALM can not only be applied to solve the TV-Ll minimization problem, but 

also be applied to Poisson noise model. The same to the FTVDM, its computa-

tion can also take advantages of the simple high-dimentional shrinkage and take 

advantage of the FFT under the periodic boundary conditions. It has been the 

fastest and the most efficient method until recently. 

17 
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2.1 The FTVDM for the TV-Ll Minimization 

Problem 

In this section, we introduce the FTVDM for the TV-Ll minimization problem. 

The TV-Ll minimization problem is the problem of finding u from f in 

mm{A||u||Ty + ||Su-f||i}, (2.1) 

where u, f 6 K." are column vectors concatenated from the original image and 

the observed image respectively, B E ]R"x"，and n is the number of pixels in 

the images, and |(u||tv = |||Vu|||i = y^xU^j + is the isotropic total 

variation. 

The FTVDM is to introduce two auxiliary variables to approximate Bu — f 

and Vu in the nondifferentiable norms in (2.1), respectively. By adding the 

quadratic terms to penalize the difference between every pair of the original and 

auxiliary, the following approximate problem to (2.1) is obtained: 

min{A(|||w|||i + — V u © + f|z||i + |||z - {Bu - f ) ^ } (2.2) 
w，z，u z I 

where 没w，<5*z�0 are penalty parameters. The approximate problem (2.2) turns 

to (2.1) as 沒 w ，氏 — o o . (2.2) is then solved by an iterative and alternating 

approach due to the fact that with any two of the three variables w, z, and u 

fixed, the minimizer of (2.2) with respect to the third one. It has closed-form 

formulas based on the 1-dimensional shrinkage for z, 2-dimensional shrinkage for 

w and FFT for u under the periodic boundary condition. Here, 1-dimensional 

shrinkage is defined by 

= argmin{|y| + 
y 27 

二 signOr) max(|x| — 7，0)， for x G M, 7 > 0 (2.3) 
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and 2-dimensional shrinkage is defined by 

爛=argmm{||y|U + i | l y - x O , 

f o r : r e R 2 ’ 7 > o . (2.4) 
臓 ( W b - 7 ’ 0 ) 餘 

In addition, the algorithm is analyzed and shown to have attractive conver-

gence properties, which include global convergence with strong ^-linear rate and 

finite convergence for auxiliary variables. The interested readers can consult [52] 

for more details on the algorithm and convergence proof. 

2.2 The ALM for the TV-Ll Minimization Prob-

lem 

In this section, we introduce the ALM for the TV-Ll Minimization problem. It is 

using the augmented Lagrangian method to solve the TV regularization problem 

with the LI fidelity term. 

First, two new variables w and z are introduced and the problem (2.1) is then 

reformulated to the following constrained optimization problem 

min{A|||w||K + ||z-f||i} 
u’w，z (2.5) 
s.t.w = Vu, z = Bu 

To solve (2.5)，the following augmented Lagrangian functional 

£ (u ,w,z ; Aw, Az) 

二 A(|||w|||i + � A w , w - Vu) + 字||w - Vu|| )̂ 

+ ||z — fill + (A,, z - 5 u > + |||z - Bn\\l (2.6) 

with Lagrangian multipliers Aw and and positive constants 7w and is de-

veloped. Then the alternating minimization algorithm is used to solve 

( u � z ^ ) a arg min £(u, w, z;入t, K ) , (2.7) 
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with updating 

= A二+ 7 “ z " - B U ” . 

In solving (2.7), the 1-dimensional shrinkage (2.3) is applied for updating z and 

2-dimensional shrinkage (2.4) is used for updating w. The same to the FTVDM, 

under periodic boundary conditions, the updating for u can also take advantages 

of the FFT. The introduction in detail to the ALM, its application to the Poisson 

noise removal and the convergence analysis can be found in [51]. The interested 

readers can consult [51] for more information. 

With the high-dimension shrinkage, the fundamental ideas of the FTVDM and 

the ALM are both to solve the nondifferentiable minimization problem (2.1) by 

solving the approximated differentiable ones at each iteration. The difFerentiable 

functions are actually the Huber function corresponding to the nondifferentiable 

ones at each step. The Huber function defined in one dimension is of the following 

form: 

ut) 二 

if |t| < 
(2.8) 

\t\ — otherwise 

which is usually used to approximate ^(t) = \t\,t G K with small e . It has been 

used to approximate the anisotropic TV function. For isotropic TV function, the 

Huber function 诊e(l|t||2) with respect to |t| is used to approximate ||t||2, where 

(/)(•) is as defined in (2.8), t =(力1,玄2)�6 R^ and ||t||2 = + 

2.3 Relationship Between the Shrinkage and the 

Huber Function 

In this section, we discuss the relationship between shrinkage and Huber function. 

With simple derivation, we show that the 1-dimensional (2-dimensional) shrinkage 
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is indeed the minimizer of the 1-dimensional (2-dimensional) Huber function. 

We first consider the 1-dimensional case. In (2.3), denote 

fix) = min{|7/| + —\y - xf}. y 27 
(2.9) 

We rewrite the 1-dimensional shrinkage Ty{x) as 

Ux)= 
0， |:r| < 7 

sign(a7)(|a:j — 7 ) . otherwise 

Substituting into (2.9), we have f(x) = -^x^ as \x\ < 7 ; and f{x) = -

as |ar| > 7 , which is just the Huber function 4>^{x). 

We rewrite the 2-dimensional shrinkage into the following form: 

{ 0 , N b < 7 

‘ 1 罾 ( T l，灼 )T . ||X||2�7 

We substitute 7^(x) into 

then we have 

As ||x||2 > 7, we have 

as ||x|h < 7 

It is the 2-dimensional Huber function (̂ y(||x||2). 

With such a relationship between the shrinkage and the Huber function, we 

will discuss the applications of the shrinkage and the Huber function in the 

FTVDM and the ALM in next section. 
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2.4 The application of the Shrinkage and the 

Huber Function in the FTVDM and the ALM 

In this section, we analyze the applications of the shrinkage and the Huber func-

tion in the FTVDM and ALM. By discussion on the Huber function and the 

high-dimensional shrinkage in §2.1 and §2.3, (2.2) can be rewritten to be the 

following form with the Huber function: 
n 

n i m { ^ A(/v0�|Vu,|h) + <h/0 讽 u — /,)}， 

if TV is isotropic. If TV is taken to be anisotropic, then (2.2) can be rewritten 

as 
n 

X((l)i/0^(Va:U,) + ^i/e^C^yU,)) + ch/eJ^VL - / , ) } , 

It is to use the Huber function to approximate non-difFerentiable TV and LI 

norms. 

For the ALM, introducing the Huber function into (2,7), we then have 

min £(u, w, z; A^, Az) 
u,w,z 

" 1 1 
^ (AwKlh) + hh丄Bm — fi (AzW + C"(7w,7z)’ 

u t=l 

if TV is isotropic, where C(7w,7z) is a constant with respect to u. If TV is 

anisotropic, then 

min £(u , w, z; Aw, A )̂ 
U,w,z 

n 1 1 
= m i n f (01/7W (•；c 以 I (Ai’wW + 叫 (A2，wW 

“ t t 

- 丄 ( A z W + C (̂7w，7z), 

7 z 

where Aw = [Ai’w,A2,w]. The same to the FTVDM, it is also to use the Huber 

function to approximate TV and LI data fitting. 
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According to the above discussions, the FTVDM and the ALM are both to use 

the Hiiber functions to approximate the nondifferentible TV regularization func-

tion and the LI data fitting function. In the FTVDM and the ALM respectively 

a sequence is generated by solving an approximate differentiable minimization 

problem which converges to the solution of the nondifferentiable problem (2.1). 



Chapter 3 

A Fast and Efficient 

Half-Quadratic Algorithm for 

TV-Ll Image Restoration 

3.1 Introduction 

For the convenience of reading, we repeat the TV-Ll minimization problem here: 

min{A||u||ry + P u - f | | i } . (3.1) 
U 

In (3.1), we rewrite the regularization term 

IIuIItK ：= E 鲁 [ � , U ] 2 ， 

口 1 

where Ai and A2 represent the finite difference operator in the x and y-direction 

respectively, and (為X is the zth row of Aj, Note that (^i)^u and (•̂ 2X11 are 

the X and ^/-directional finite difference at the i-th component Ui of u. In the 

following, we denote A := (Af, A^)^ e ^nd Vu^ ( 似 

Many image processing problems, such as deblurring under impulse noise 

[51], image cartoon-texture decomposition [54], feature selection [54), multiscale 

24 
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decomposition [55]，and computer version [9], can be formulated as (3.1). Since 

||u||ry can be regarded as the Ll-norm of the gradient of u, (3.1) can be regarded 

as a Ll-regularized problem with a LI fidelity term. 

The TV regularization was first introduced in [45], and has been successfully 

applied to image restoration [6, 11, 5, 32, 2, 7, 33，8，56, 57] because of its 

good property in preserving edges. Traditionally, the squared L2 data fidelity 

|||5u — f||2 is commonly used in conjunction with the TV regularization, see 

[47, 45, 49, 23]. Recently, however, there are many applications of TV-Ll model 

using the LI data fidelity \\Bu — f||i term, see [9’ 54, 14, 53, 55, 15, 51, 52]. The 

interested readers can consult [52] for more background information. Several fast 

methods for solving TV-Ll problems have been proposed recently. Examples are 

the primal-dual method [18], fast alternating minimization approach [24, 38] the 

fast total variational deconvolution method (FTVDM) [52], and the augmented 

Lagrangian method (ALM) [51]. The FTVDM and the ALM can be understood 

as methods for solving a smooth functional approximation of (3.1). Among these 

methods, the FTVDM and the ALM are the most efficient and the ALM is the 

fastest one, see numerical results in [51]. However, the images recovered by the 

ALM and the FTVDM can sometimes be blocky, see Figure 3.13 (left and middle). 

In this chapter, we propose a fast and efficient method for solving (3.1) that is 

based on the half-quadratic technique [22]. Our method also begins by smoothing 

the energy functional in (3.1) as in the FTVDM and ALM. More precisely, since 

TV and LI functionals are not differentiable, we replace (3.1) by 

mm X V U i U ] ^ + + / ? + - /J^ + 7 } , (3.2) 

where Bi is the ith row of B, and j3, 7 are both small regularization parameters. 

The approximate problem (3.2) turns to (2.1) as 7 —> 0. This smoothing idea 

has been used in [9] for TV-Ll denoising problem (i.e. when B is the identity 

matrix), where the smoothed functional is minimized by an explicit gradient 
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descent scheme. 

Here we solve (3.2) by applying the half-quadratic regularization approach 

[22]. We call the algorithm HQA. We will prove that HQA is indeed a majorize-

minimize algorithm [12, 30, 29] for solving (3.2). Hence the global convergence 

and the convergence rate of HQA can easily be established based on the con-

vergence analysis in [12]. To test our algorithm, we apply it to deblur images 

that are corrupted by impulse noise [51]. The results show that our method is 

faster and more accurate than ALM and FTVDM for salt-and-pepper noise and 

comparable to the two methods for random-valued impulse noise. Furthermore, 

the recovered images by our method are less blocky. 

The outline of the chapter is as follows: In §3.3, we review the half-quadratic 

approach, and then apply it to (3.2) to derive HQA. In §3.4，we prove that the 

HQA is indeed a majorize-minimize algorithm. Hence based on the convergence 

analysis in [12], the global convergence and the linear convergence rate of HQA 

are proven. Comparison with the ALM and the FTVDM on image deblurring 

under impulse noise is given in §3.5. 

3.2 The Derivation of the HQA 

The half-quadratic regularization approach [22] is equivalent to the gradient lin-

earized iteration in [41]. It begins with the fact that, if 0 t G M, then 

\t\ = mm{vt^ (3.3) 

and the minimum value is at v =南.Note that the function vt^ + l/(4i») is 

quadratic in t but not in v and hence the name half-quadratic. Denote := 

y/x"^ + + P and := y/x^ -i-j for any x,y eR. Problem (3.2) can be written 

as 

mm I 亡 X\Vu,\0 + - J := inm{cE>(u)}, (3.4) 
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where 二 + [(y^zUp + j3. Using (3.3), equation (3.4) becomes 

mjn { g A 想 • 叫 I ， + 去 ) + mrnKlB.u - / 《 + 去 ) } 

二 U , v 5 e > � { 卜 ⑷ + i ) + 扮“双u - + J ^ ] } (3.5) 

u , v > 0 , w > 0 

where v, w > 0 means that all components of v, w are greater than 0. 

We apply the alternate minimization procedure to solve (3.6), namely 

V朴1 == arg min/:(u^, V 
v > 0 

w “ i = argminjC(u 知,V糾，w 
w > 0 

u奸 1 = argmin£(u,v^+Sw^+i； 

(3-6) 

(3.7) 

(3.8) 

Applying (3.3) in (3.6), wc see that (3.6) and (3.7) have explicit component 

minimizers 

= 一 1 and = I , , • (3.9) 

Note that >C(u，v糾,w叫）is continuous differentiable in u. Hence u 糾 in (3.8) 

is the solution of 

0 = Vû CCu，V 糾 ， w … ） = + B^Dj(u'')(Bu — f ) . (3.10) 

Here = diag(DAu”,D"(u。)； and D^in^) and D^(u^) € IR似"are the 

diagonal matrices with their z-th diagonal entries being = l/|Vwf|/j and 

严— l / l B ^ n ^ — respectively. From (3.10) we obtain the linear system. 

A / F 力 " ( u 勺 + B T D ’ ( u ” B U - B T R ^ (却 (3.11) 

for updating u叫 . T h u s the algorithm of HQA is as follows: 

(i) Initialize u。； 

(ii) For fc — 1,2, • • • until convergence, update by solving (3.11). 
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In Lemma 3.3.3 below, we show that if …nker(BTB) = {0} , then the 

coefficient matrix in the left hand side of (3.11) is indeed invertible and hence 

U&+1 is computable. We remark that this assumption is very general and usually 

satisfied. In fact, 

(i) The matrix A^A is the discrete Laplacian operator. Thus if the bound-

ary condition for the finite difference is either periodic or reflective, then 

ker(74了⑷ is spanned by 1, the vector of all ones. 

(ii) If the matrix J5 is a blurring matrix, then it is a low pass filter, and hence 

B^Bl + 0. 

Hence, in these cases, ker(^^A)门 ker(S^B) = {0} holds. 

3.3 Convergence of HQA 

In this section, we analyze the convergence of HQA based on the convergence 

analysis of the majorize-minimize algorithm (MMA) in [12]. Let us review the 

general idea of the MMA first. 

The MMA optimization technique is to solve a minimization problem min \E'(u) 
u 

by 

- argmin{c?(u, u^)}, (3.12) 
u 

where ^(u, u^), called a tangent majorant function of 屯(u) at u^, must satisfy 

G(u，u巧 > 少(u), V u e M", (3.13) 

g{u, u^) - ^^(u”’ a t u = u \ (3.14) 

•I^? (u ,u” - V^'(u), at u = u^ (3.15) 

Here, Vi^(u , u'') denotes the partial derivative with respect to the first compo-

nent. Convergence analysis of MMAs can be found in [12, 30, 29]. For minimiza-

tion problem (3.4), we define 

G(u,u') = £(u,v 於+i，wMi). (3.16) 
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Substituting (3.9) into (3.16), we obtain the explicit form of 口(u, u”： 

和 ” 織 + 学 ) + 錢 + 

We now show that HQA is the MMA for solving (3.4) with ：= 

Lemma 3.3.1 HQA is the MMA for solving (3.4) with the tangent majorant 

function Q{u, u^) defined in (3.17). 

Proof: We need to verify that defined in (3.17) satisfies (3.13)—(3.15). 

Taking u = u^, we obtain f ( u � u ” = which is (3.14). The inequality 

a^ + > 2ab for all a, 6 e K yields 
n 

Q{u, > + \B^n - AW = 到 11)， Vu G IT. 

Hence (3.13) holds. By taking the derivatives of ^>(u) and ^(u, u^) with respect 

to u, we have 

•$(u) - XA'^D0{n)Au + B^D^{u){Bu - f) , (3.18) 

•1 咖 u ” = XA'̂ Df3{u^)Au + - f). (3.19) 

Substituting u = into (3.18) and (3.19), we immediately have = 

• i g ( u � ” . • 

In [12], the authors discuss the global convergence and linear convergence of 

MMAs when the energy function $ and the majorant function Q satisfy Hypothe-

ses 4.1 and 4.2 there. We state them here as Hypotheses 1 and 2 respectively. 

Hypothesis 1 

(a) $ is twice continuously differentiable and strictly convex. 

(b) $ IS coercive, i.e., lim||u|t2_>oo 企(u) 二 oo. 

(c) $ is bounded from below. 



30 

Hypothesis 2 

(a) There exists a function C(v) such that the followings hold: 

(i) 6?(u,v) - $(v) + (u - v f V$(v) + | ( u - v f C ( v ) ( u ~ v ) for all 

u,v € w . 

(ii) C is continuous. 

(iii) > 7 / > 0 , for all v e R^-

(b) $(u) < g{u, v) for all u,v € M .̂ 

Thus in order to establish the linear convergence of HQ A, we only have to 

show that Hypotheses 1 and 2 are satisfied. We start with Hypothesis 1. We 

will use the notation U > (respectively >-)V to mean that U — V is & positive 

semi-definite (respectively definite) matrix. 

Lemma 3.3.2 Let D ker(B^B) 二 {0}. Then defined m (3.4) 

satisfies Hypothesis 1. In particular, has a unique mimmizer. 

Proof: By the definition of $ in (3.4), $ is obviously twice continuously differ-

ent! able and bounded from below by 0. We thus only need to prove the strict 

convexity and coercivity. 

We start with the strict convexity. Taking derivatives on both sides of (3.18), 

we have 

= \{pA^Pf3{n)A + T(u)TpMu)r (u) ) + (3.20) 

where Pp(u) = diag(P"(u)，P卢(u)); and P^(u) G R"^" are the diagonal 

matrices with their 2-th diagonal entries being l /|VwJ�and respec-

tively; and T(u) e R打xn ^ith = ( 成 ) ( 成 - ( 成 ) ” ( v 4 2 ) 从 Notice 

that 

•2 少(u) h \f3A^P0{u)A + 

. 邓 aT A. I 1 o T ^ 
—|(2||u|U,2||u|U)|3 十丨丨问UMoo + l l f l U ? ‘ 
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By the assumption ker(A^A) fl kei(B'^B) = {0}, we have 卜 0，and the 

strict convexity of is proven. 

Next we prove the coercivity. We apply the inequality Ylt t̂ ^ V Y h t̂ for 

any € 1R+ to $(u) in (3.4). After simple derivations, we obtain 

r 11/2 

= ^ u ^ i X ' A ^ A + BTB)ii - 2{TBu + ||f||i + + i)n . 

Since X^A^A + B^B >- 0，o飞：二 + B^B) > 0. Thus if ||u||2 — oo, 

we see that $ (u) ？fT||u||2 一 oo. 

By [19, Proposition 1.2]，the strict convexity and coercivity imply the existence 

and the uniqueness of the ramimizer of ^•(u). • 

Regarding Hypothesis 2，in fact, we cannot show that Hypothesis 2(a)(iii) 

holds for arbitrary vectors v. We can only show that it holds for v = u左，the 

sequence generated by HQA. However, as we wili see later in Theorem 3.3.4, it 

is enough to prove the convergence of HQA by showing that Hypothesis 2 holds 

only for v = u知，and this is what we are going to prove in the next Lemma. 

Lemma 3.3.3 Let = {0}. Then $(u) defined in (3 4) and 

Q(u, u^) defined in (3 17) satisfy Hypothesis 2 with v = u^ there. In particular, 

the coefficient matrix of the linear system in (3.11) is mverhble. 

Proof: From (3.19)，the Hessian of 列u，u” is given by 

VlGiu, u ” - + (3.21) 

which is independent of u. Hence u知）is quadratic in u. Taking its Taylor 

expansion at u矢，we have 

一 u 知 ) ( u - u知). （ 3 . 2 2 ) 
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Since we have proven that the HQ A is indeed the MM A in Lemma 3.3.1，we 

can replace u ” and u^) by 知)and respectively in the 

equality above and then we obtain 

Giu, u^) - + 

— u”T•沒(ufc, ufc)(u - u ’ (3.23) 
A 

This is precisely Hypothesis 2(a)(i) with C{n^) :— •fG(u&，u知）which is given 

by (3.21). Recalling the definitions of Dp(-) and in (3.10), we see that 

Hypothesis 2(a)(ii) is satisfied. 

By Lemma 3.3.1 and the definition of the major ant function, see (3.12)-(3.14), 

we immediately have 

< 奸 1，u” < u ” - $ (u” . (3.24) 

Hence { $ ( u ” } is monotonic decreasing and bounded from above by $ ( u � ) . 

Therefore, by coercivity, see Hypothesis 1(b), {||û ||2} must be bounded from 

above. Denote the bound by M. Recalling the definition of D " ( u ” , D-y(u” in 

(3.10), we have 

W C V ) ) = A m i n ( •【她 U”） 

- 入 匪 ( | ( 2 M , 2 M ) | / " ^ + |M||B||m + | | f | u / � ) ： 二 “ （ 3 測 

Since kei(A^A) n ker(召了丑)=={0}, we see that r /> 0. Thus Hypothesis 2(a)(iii) 

holds. 

Hypothesis 2(b) is just (3.13), and hence is true. Finally notice that the 

coefficient matrix of the linear system in (3.11) is precisely •沒(u众，u知）in (3.21) 

and hence by (3.25), it is invertible. • 

Since Hypothesis 2 is only valid for and not for arbitrary vectors v, we 

cannot directly apply the convergence theorems in [12]. However, the proof in 

[12] can easily be adapted to prove the following two convergence theorems for 
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HQ A. For the convenience of the readers to understand the following theorems, 

we give the proof after the two theorems as the illustrations. 

Theorem 3.3.4 For the sequence {u''} generated by HQ A, 二 

{0}，we have 

(a) IS monotomc decreasing and convergent; 

(b) lim I丨u L u糾 j|2 = 0/ 
fc—>oo 

(c) {u^} converges to the unique minimizer u* of $(u) from any initial guess 

Proof: 

(a) By Hypothesis 1(c), the sequence is bounded from below. By 

(3.24), it is also monotonically decreasing. Hence it converges and 

lim 
k—>oo 

- 例 u 好 1) = 0. (3.26) 

(b) Recall that by establishing (3.21), we see that ^(u, u^) is quadratic in u. 

Taking the Taylor expansion of ^(u, at we have 

^?(u’u” = 6Ku"+i,u” + � V i W u “ i , u ” ’ u - u 糾 〉 

+ - u好 • 沒 u ” ( u - u好 1). (3.27) 
Zi 

By (3.12), we have ViRu知+i，u” - 0. By taking u - uMn (3.27) and 

using (3.25), we thus have 

^KIA U ” > u ” + - 11糾||•， 

where 77 > 0 by Hypothesis 2(a)(iii). From (3.24), we obtain that 

- > (77/2)||U^ — u奸 

Together with (3.26), we have lim — u'̂ +Mh 二 0. 
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(c) In the proof of Lemma 3.3.3, we have shown that the sequence {||û ||2} 

is bounded by M. Hence it converges to the unique minimizer u* if and 

only if all convergent subsequence of { u ” converges to u*. Let {u^^} be an 

arbitrary convergence subsequence of { u ” that converges to u. We have 

to prove that u = u*. Since ^(u, u^j) is quadratic in u, we have 

+ i ( u - U ” T • 狱 l l ” ( U — U ” . 

Substituting (3.15) here and taking partial derivative with respect to u, we 

then have 

• iC? (u ,u ” - W ( u左” + • 【 孙 \ u ” ( u - u ” . 

It is continuous since $ is twice continuously differentiable by Hypothesis 

1(a), and C(u'^j) = V f巩u \ u知” is continuous by Hypothesis 2(a)(ii). 

Letting u = u � + i and using (3.12), we then have 

0 = V i 妳 ⑷ V O = • 恤 ” + •【孙\ i i ” ( u知斤 1 - u ” . 

Taking limits, we obtain 

0 = lim u^O = lim lim u〜） 

j—OO J — OO J—OO 

= V i ^ ( u , u ) - V$(u) + u)(u - a) 

= V $ ( u ) . 

By the uniqueness of the minimizer, see Lemma 3.3.2’ we can conclude that 

u — u*. • 

We recall that the existence and uniqueness of the minimizer of is proven in 

Lemma 3.3.2. In the following theorem, we derive the linear convergence of the 

HQA and give a bound of its convergence rate. 
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Theorem 3.3.5 Suppose n ker(STB) = {0}. Let u* be the unique 

mimmizer o/$(u) and 

A 1 — A 皿n (•？ Wu*，U*) — 

Then A < 1 and the sequence has a linear convergence rate of at most 

A while the sequence {u*} is r-linearly convergent with a convergence rate of at 

most VA. 

Proof : Define 

Xh — 
u* - u � V f 孙 〜 — u^). 

We know that Afc > 0 since $(u*) < G(u*，u” by (3 13) and Lemma 3.3.1 To 

finish the proof of the theorem, let us begin with proving the following claim: 

Claim: - $(u*) < Afc($(u” -

Proof. Recall that and u'') are the Hessian of $(u) and ^(u, u^) 

respectively. By (3.22), definition of the tangent major ant function (3.13)-(3.15) 

and Lemma 3.3.1, we take the Taylor expansions of ^(u*, u^) and at u � 

^(u*, u ” = ^>(11” + {V^(u^), u* — i / � + hu* - u” (u* - u”， 
A 

(3.28) 

$(u*) = $ ( u ” + - u ” + - - u ” 

(3.29) 

We substract (3.29) from (3.28) and divide by - u” (u* - u ” , 

then we get 

孙*，u於）—$(u*) 
Ai 

— u 〒鄉 (u&，u”(u* — u ” 

— u”T(•沒(uA：，u” — - u^) + C>(||u* — Û IP 

— ufc 严 V f R u � i i ” ( u * — 11” 

+ —u 知11) (3.30) 
Uu* - - u* 
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Notice that and u'̂ ) are continuous and symmetric positive 

definite by (3.20) and (3.21). Hence, as k is large enough, we have 0 < Aĵ  < 1. 

By (3.13)，（3.12), Lemma 3.3.1 and the convexity of G(u，u”，we have 

知+1) < u知)< ^(A.u'^ + (1 — Afc)u*’ u知)， (3.31) 

By (3.23)，we rewrite 

肌 u左+ ( l - A f c K， u ” 

= $ ( u ” + (l-Afc)<V$(u”，u* — u ” 

+ - U ” 〜？孙 \ u”(u* - u ” 
Zi 

= A f c $ ( u ” + (1 - — ^ ( u * - u ” W ( i A u ” ( u * — u”） 

= + (1 - (3.32) 

Substituting (3.32) into (3.31)，we have 

Subtracting $(u*) on the both side of the above inequality, we then have 

- $(u*) < 勺 一 

Recalling that and •沒 ( u & , u ” are both symmetric and positive defi-

nite, (3.30) immediately implies that 

A f c < l - u � - i v 2 $ ( u”） + (9(||u* — u � i ) . (3.33) 

Since VfQ and are both continuous, hence 

1 - • ？ � u ” ) - i V 2 $ ( u � — 1 — U*))-^V2$(U*).(3.34) 

By (3.20) and (3.21), and are both symmetric, positive definite at u*, 

therefore, 
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Hence u*))一�2<|»(11*) is the similar to u*) ) - i u*))" 

which is positive definite, thus 

二 Amm((•？孙*,U”)-*V2$(U*)(•？g(U�U”)-*) > 0 . (3.35) 

By (3.34) and (3.35)，we have 

A = 1 _ A 讓 < 1 (3.36) 

Together with (3.33), we have Â  < A < 1 for fc sufficiently large. Since u* is the 

minimizer of $(u), hence V$(u*) = 0. Taking the Taylor expansion of $(u) at 

u*, we get 

$ ( u ” - $ ( u * ) = - - u )̂ + 0{\\u^ -
Zi 

> 全 Am,„(V2$(U*))||l/ — U*f + C^dlu^ — U”|3). 

Thus, there exists K > 2 such that 

丨丨— 丨丨̂  V L ( V ; U * ) ) 剛 - “ = 放 ， （3別 

for k sufficiently large. By the Claim, 

‘1 = -啊 ) ^ - . K ) ) 二 A‘ 

i.e. yk+i < yfR-Vk, hence is r-linearly convergent with at most yfh. as the 

r-convergence rate. 

• 

3.4 Numerical Examples 

In this section, we apply our algorithm to deblur images that are also corrupted 

by impulse noise‘ The deblurring problem has been discussed recently in many 
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papers, see for examples [18, 52, 51]. Among all these methods, the FTVDM and 

the ALM are the most efficient; and according to the numerical results in [51], 

ALM is the fastest one. Hence in this paper, we compare our HQA with FTVDM 

and ALM only. The FTVDM and ALM codes we used here are provided by the 

authors in [51]. For ALM, in (2.6), parameters and are fixed to be = 10 

and 7z = 100 in all the experiments. For FTVDM, the parameters and are 

upper limited to be Q 双 = — in the approximate problem (2.2). Using 

> 2 1 0 , > would only increase the computational cost but not solution 

quality. To speed up the convergence, ^w and 9z are both implemented in a 

continuous scheme; that is, let ŵ and take small values at the beginning and 

gradually increase their values to 2io and respectively. Specially, a ^w-sequence 

20，22/3,24/3,... ’ 210 is tested. Accordingly, is set to be 2。，2?’.••，2i5. 

We test three 256-by-256 images: Barbara, Bridge and Goldhill. The matrix 

B is the blurring matrix corresponds to the Gaussian blur generated by the 

MATLAB command 

f s p e c i a l C G a u s s i a n ' , [7 , 7 ] , 5). 

Then impulse noise is added to the blurred image to obtain the observed image f. 

The noise levels are 30%, 40%, 50%, 60% for sait-and-pcppcr noise and 20%, 30%, 

40%, 50% for random-valued noise. We use the same regularization parameter 

A for all algorithms at the same noise level. For salt-and-pepper noise, A 二 

1/13,1/10,1/8，1/4 for noise level 30%, 40%, 50%, 60% respectively. For random-

valued noise, A = 1/25,1/10,1/8,1/4 for noise level 20%, 30%, 40%, 50%. In 

HQA, we initialize uq — rand(size(f)). As in the FTVDM, similar settings to 

(3 and 7 are used in HQA. We set /^-sequence 10—3，丄。-‘，...， Q̂-ie ^�(3.2). 

Corresponding, we set 7 = To speed up the convergence and improve the 

resolution quality, we let /?, 7 take large values at the beginning and decrease their 

values to 10—and respectively. Equation (3.11) is solved by the conjugate 

gradient method where we fix the maximum number of iterations to 10. In all 
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tests, we consider periodic boundary condition for the difference matrix A, as it 

is the boundary condition used in the tests in [51]. We compare the accuracy of 

the methods by the signal-tonoise ratio (SNR) used in [51]. It is defined by 

Here u and u denote the original image and the restored image respectively, and 

B(u) is the mean gray-level value of the original image. 

Image Method 
Salt-and-pepper noise Random-valued noise 

Image Method 
30% 40% 50% 60% 20% 30% 40% 50% 

Barbara 
ALM 

HQA 

13.93 13.35 12.45 11.37 

14.24 13.59 12.83 11.72 

14.63 13.61 12.91 11.24 

15.17 13.81 12.86 11.06 

Bridge 
ALM 

HQA 

11.85 10.95 10.13 8.52 

12.03 11.12 10.27 9.00 

13.05 11.31 10.35 8.53 

13.46 11.37 10.13 8.72 

Goldhill 
ALM 

HQA 

16.08 15.03 13.78 12.05 

16.50 15.32 14.10 12.72 

17.29 15.53 14.41 12.14 

18.02 15.68 13.98 11.98 

Table 3.1: SNR of the restored images. 

First we compare the speed of the three methods. Figures 3.7-3.12 show the 

timing comparison of the three algorithms. Each point in the figures show the 

accumulated CPU time until that iteration and the corresponding SNR. For the 

deblurring problem with salt-and-pepper noise, see Figures 3.7-3.9, our method 

is the fastest amongst the three methods. It is also the most accurate one. For 

random-vaiued noise, when the noise level is low, HQA is comparable to the 

fastest method ALM. But when the noise level is higher, say 50%, HQA becomes 

the fastest. In Figure 3.13, we zoom into part of the restored Barbara image by 

the three methods. We see that the images by the ALM and the FTVDM are 

both blocky whereas that by our algorithm is less blocky. 

From Figures 3.7-3.12, it is clear that FTVDM is the slowest amongst the 

three. In order to compare the accuracy of the two faster methods ALM and 
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HQ A more precisely, we list in Table 3.1 the average SNR of the recovered images 

in five trials by the two methods. To compare the timing fairly, we first run ALM 

until it converges, say with to CPU seconds. Then we let HQA run until the CPU 

time of the kth iteration is just greater than to- Then we record the SNR of the 

{k — l)th iteration as our result for HQA. We see from Table 3.1 that HQA is 

more accurate than ALM for the deblurring problem with the salt-and-pepper 

noise; and it is comparable to ALM for random-valued noise, especially when the 

noise level is low. See also Figures 3.1—3.6. 

We illustrate the convergence rate of { $ ( u ” } and {u^} in our HQA as men-

tioned in Theorem 3.3.5. We use the Barbara image as example. Since we do 

not have the true minimizer, we set u* = In Figure 3.14，we plot the ratio 

i?| := [$(u好 1) — — $(u30)j against the iteration number. We see 

that the ratios are all less than 1, indicating that { $ ( u ” } is converging linearly as 

stated in Theorem 3.3.5. In Figure 3.15, we plot 

against the iteration number. We see that < 1 , indicating that { u ” indeed 

is linearly convergent. 

As ŵ and Ô  are both small, the FTVDM converges fast, while the solution 

is far away from the true solution of (2.1). Hence, first problem (2.2) is solved at 

small and whose solution is taken to be the initial guess of the FTVDM for 

solving (2.2) at big 没 ̂+丄 and 的 f r o m k = 0. We take p - 10—丄，10—2,... , lO—i?， 

correspondingly, ^ = and compare the FTVDM and the HQA. Figure 3.16 

shows their comparison results on the SNR versus CPU time and SNR versus 

iteration No.. The jump shows the improvements in SNR as � change 

As 从 7 decrease to in HQA, from Figure 3.17，we see that the 

solution of the HQA tends to be blocky, which is close to the solution of (2.1). 
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3.5 Conclusions 

In this chapter, we apply the half-quadratic technique to construct a method 

for solving TV-Ll minimization problems. We analyze its convergence using 

results of the majorize-minimize technique. Our algorithm is proven to be ex-

tremely efficient in terms of accuracy, computational time and the visual quality 

as demonstrated by the numerical experiments. In [42], the authors discuss the 

multiplicative and additive half-quadratic technique. Our future work is to ap-

ply the additive half-quadratic technique to TV-Ll minimization problem and 

extend our algorithm to color image restoration via TV and LI data fitting and 

to general Lp regularized problems. 
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Blurry & Noisy: 30%Blurry & Noisy: 40%Blurry & Noisy: 50%Blurry & Noisy: 60% 
salt & pepper salt & pepper salt & pepper salt & pepper 

By FTVDM. 
^1:0.077, t:16.74s, 

SNR: 14.13dB. 

By FTVDM. 
^1:0.100, t:18.71s, 

SNR: 13.52dB. 

纖 y i 
By FTVDM. 

)i:0.125, t:24.64s, 
SNR: 12.76dB. 

By FTVDM. 
H:0.250, t:23.25s, 

SNR: 11.52dB. 

By ALM. 
^1:0.077，t:9.62s, 

SNR: 13.93dB. 

By ALM. 
^1:0.100, t:8.92s, 

SNR: 13.39dB. 

By ALM. 
^1:0.125, t:9.09s, 

SNR: 12.62dB. 

By ALM. 
11:0.250, t:14.01s, 

SNR: 11.29dB. 

By HQA, 
^i:0.077,t:9.58s, 

SNR: 14.23dB. 

By HQA, 
H:0.100,t:8.37s, 

SNR: 13.61dB. 

By HQA, 
^i:0.125,t:9.03s, 

SNR: 12.89(16. 

By HQA, 
H:0.250,t:13.85s, 

SNR: 11.71CIB. 

Figure 3.3: TV-LI restoration for Goldhill image from 7 x 7 sized Gaussian blur 

with salt & pepper noise from 30% tO 60%. 
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Blurry & Noisy: 30%Blurry & Noisy: 40%Blurry & Noisy: 50%Blurry & Noisy: 60% 
salt & pepper salt & pepper salt & pepper salt & pepper 

By FTVDM. 
|LI:0.077, t:1 5.28S, 

SNR: 11.96dB. 

By FTVDM. 
11:0.100’ t:16.55s, 

SNR: 10.97CIB. 

By FTVDM. 
^1:0.125, t: 18.36s, 

SNR: 10.15dB. 

ByFTVDM. 
…0.250’ t:22.35s, 

SNR: 

By ALM. 
|x:0.077, t:7.68s, 

SNR: 11.87dB 

By ALM. 
!i:0.100, t;6.80s, 

SNR: 10.95dB. 

By ALM. 
[1:0.125, t:7.29s’ 

SNR: 10.15dB. 

By ALM. 
|a:0.250, t:12.68s, 

SNR: S.eOdB. 

By HQA, 
^i:0.077,t:7.47s, 

SNR: 12.06dB. 

By HQA, 
^:0.100,t:6.33s, 

SNR: 11.07dB. 

By HQA, 
H:0.125,t:6.89s, 

SNR: 10.27dB. 

By HQA, 
H:0.250.t:12.66s, 

SNR: 9.03dB. 

Figure 3.3: TV-LI restoration for Goldhill image from 7 x 7 sized Gaussian blur 

with salt & pepper noise from 30% tO 60%. 
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Blurry & Noisy: 30%Blurry & Noisy: 40%Blurry & Noisy: 50%Blurry & Noisy: 60% 
salt & pepper salt & pepper salt & pepper salt & pepper 

By FTVDM. 
…0.077, t:15.28s, 

SNR: 16.50dB. 

By FTVDM. 
^1:0.100, t:16.49s, 

SNR: 15.20dB. 

By FTVDM. 
^i:0.125,t:15.35s. 

SNR: 14.06dB. 

By FTVDM. 
啡2 5 0 , t:22.40s, 

SNR: 12.41dB. 

By ALM. 
…0.077，t:8.14s, 

SNR: 16.14dB. 

By ALM. 
0:0.100, t:7.44s, 

SNR: 15.03dB. 

By ALM. 
^1:0.125’ t:7.75s, 

SNR: 14.03dB. 

By ALM. 
^1:0.250, t:12.06s, 

SNR: 12.13dB. 

By HQA, 
1^:0.077,t:8.05s, 

SNR: 16.55dB. 

By HQA, 
(i:0.100,t:6.9s, 
SNR: 15.31dB. 

By HQA, 
^:0.125,t:7.46s, 

SNR: 14.20dB. 

By HQA, 
H:0.250,t:12.06s, 

SNR; 12.63dB. 

Figure 3.3: T V - L I restoration for Goldhill image from 7 x 7 sized Gaussian blur 

with salt & pepper noise from 30% tO 60%. 
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Blurry & Noisy: 20%Blurry & Noisy: 30%Blurry & Noisy: 40% Blurry & Noisy: 50% 
random valued random valued random valued random valued 

By FTVDM. 
H:0.040, t: 15.40s, 

SNR: 15.26dB. 

By FTVDM. 
H:0.100,t:16.22s, 

SNR: 13.74dB. 

By FTVDM. 
H:0.125, t:18.90s, 

SNR: 12.99dB. 

By FTVDM. 
^1:0.250’ t: 19.67s, 

SNR: 11.21dB. 

By ALM. 
H:0.040.t:11.26s, 

SNR: 14.65dB. 

By ALM. 
叫 100’ t:8.11s, 

SNR: 13.60dB. 

By ALM. 
^:0.125,t:7.81s. 

SNR: 12.92dB. 

By ALM. 
…0.250, t:9.72s, 

SNR: 11.33dB. 

By HQA, 
H:0.040，t:10.71s, 

SNR: 15.20dB. 

By HQA, 
H:0.100,t:7.92s, 

SNR: 13.84dB. 

By HQA, 
^:0.125,t:7.32s, 

SNR: 12.94CIB. 

By HQA, 
^i:0.250,t:9.58s, 

SNR: 11.14CIB. 

Figure 3.3: TV-LI restoration for Goldhill image from 7 x 7 sized Gaussian blur 

with salt & pepper noise from 30% tO 60%. 
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Blurry & Noisy: 20%Blurry & Noisy: 30%Blurry & Noisy: 40%Blurry & Noisy: 50% 
random valued random valued random valued random valued 

By FTVDM. 
^1:0.040, t:13.00s, 

SNR: 13.49dB. 

By FTVDM. 
^1:0.100, t:14.93s, 

SNR: 11.31dB. 

By FTVDM. 
^:0.125, t: 19.28s, 

SNR: 10.32dB. 

By FTVDM. 
灿.250, t:20.82s, 

SNR: 8.74dB. 

By ALM. 
H:0.040,t:10.91s, 

SNR: 13.05dB. 

By ALM. 
^1:0.100, t:6.74s, 

SNR: 11.28dB. 

By ALM. 
H:0.125, t:6.24s, 

SNR: 10.30dB. 

By ALM. 
^1:0.250, t:8.76s, 

SNR: 8.72CIB. 

By HQA, 
^:0.040,t:10.56s, 

SNR: 13.45dB. 

By HQA, 
|i:0.100,t:6.44s, 

SNR: 11.34dB. 

By HQA, 
^:0.125,t:5.86s, 

SNR: 10.09dB. 

By HQA, 
^:0.250,t:8.75s, 

SNR: 8.72dB. 

Figure 3.3: TV-LI restoration for Goldhill image from 7 x 7 sized Gaussian blur 

with salt & pepper noise from 30% tO 60%. 
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Blurry & Noisy: 20%Blurry & Noisy: 30%Blurry & Noisy: 40%Blurry & Noisy: 50% 
random valued random valued random valued random valued 

By FTVDM. 
|LI:0.040, t: 13.65S, 

SNR: 18.47dB. 

By FTVDM. 
)x:0.100, t: 16.56s, 

SNR; 15.75dB. 

By FTVDM. 
|li:0.125, t:17.19s, 

SNR: 14.48dB. 

By FTVDM. 
H:0.250, t:20.33s, 

SNR: 12.22dB. 

By ALM. 
^1:0.040, t: 11.28s, 

SNR: 17.29dB. 

By ALM. 
|x:0.100, t:7.19s, 

SNR: 15.53dB. 

By ALM. 
…0.125, t:6.87s. 

SNR: 14.43dB. 

By ALM. 
…0.250，t:9.59s, 

SNR: 12.15dB. 

By HQA, 
JA:0.040,t: 10.83s, 

SNR: 18.03dB. 

By HQA, 
…0.100,t:6.61s, 

SNR: 15.70dB. 

By HQA, 
^i:0.125,t:6.63s, 

SNR: 14.02dB. 

By HQA, 
fi:0.250,t:9.04s, 

SNR: 11.96dB. 

Figure 3.3: T V - L I restoration for Goldhill image from 7 x 7 sized Gaussian blur 

with salt & pepper noise from 30% tO 60%. 
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irry & fv urry & Noisy 丨 
saK&pepc 

/ 

ALM 
FTVDM 

ALM 
FTVDM 

ALM 
FTVDM 

Figure 3.7: SNR versus CPU time in seconds for “Barbara” with salt-and-pepper 

noise. 

ALM 
FTVDM 

Figure 3.8: SNR versus CPU time in seconds for "Bridge" with salt-and-pepper 

noise. 
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Figure 3.9： SNR versus CPU time in seconds for “Goldhill” with salt-and-pepper 

noise. 

ALM 
FTVDM 

ALM 
FTVDM 

Blurry & Nosy 

ALM 
FTVDM 

ALM 
FTVDM 

Figure 3.10: SNR versus CPU time in seconds for “Barbara” with random-valued 

noise. 
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Blurry & Noisy 2C 
random valued 

Blurry & Noisy 
random value< 

Figure 3.11: SNR versus CPU time in seconds for "Bridge" with random-valued 

noise. 

1。oL 

urry N. 
random V 

ALM 
FTVDM 

ALM 
FTVDM 

Figure 3.12: SNR versus CPU time in seconds for "Goldhill" with random-valued 

noise. 
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Recovered by ALM from 
50% salt & pepper 

Recovered by FTVDM from 
50% salt & pepper 

Recovered by HQA from 
50% salt & pepper 

Zoom-in image of the above in image of the above Zoom-in image of the above 

Figure 3.13: Zoom-in images of the recovered Barbara images. 

y- vciouo luciaiiuii A丄uiiiuc;i 丄u上 丄 

less than 1，illustrating the linear convergence of { $ ( u ” } . 

Figure 3.14: The ratio R% :=少 ‘;t)丄;丄工),versus iteration number for “Bar 

bara”. The ratios 
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urry & Noisy 
salt & pepp 

Blurry & Noisy‘ Blurry & Noisy. 

i 1. 
； 
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0.5 
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！ 1 
•f i 
i 

0.5 

n A 

1 

1 * 0.5 

rt A 

lterat_on Number Iteration Number 

Figure 3.15: The ratio == ̂  

The ratios 

versus iteration number for "Barbara' 

less than 1，illustrating the linear convergence of { u卞 

SNR versus Iteration No. 

Figure 3.16: The figure shows the comparison results of the FTVDM and the 

HQ A for Barbara image with salt-and-pepper noise removal at noise level 40%. 

For HQA, in (3.2)，/? = lO—i, 10—2，...，10—17，^nd correspondingly 7 = [P. For 

FTVDM, in (2.2), = l，�?"，…,corresponding ly , 二 1 ,2 ’ . . . , At 

each jump, At, 7,,巧，^ jump to A t + i ， 吧 的 i n HQA and FTVDM. 
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Recovered by ALM from 
50% salt & pepper 

Recovered by FTVDM from 
50% salt & pepper 

Recovered by HQA from 
50% salt & pepper 

Zoom-in image of the above Zoom-in image of the above Zoom-in image of the above 

Figure 3.17: Zoom in images of the recovered Barbara image. The recovered 

image by the HQA is the final recovered at /? = 7 = 



Chapter 4 

A Proximal Point Half-Quadratic 

Algorithm for TV-LI Image 

Restoration 

4.1 Introduction 

We follow the notations in Chapter 3 in this chapter and repeat the TV-Ll 

minimization problem again here: 

min{A||u||Tv + ||Bu-f||i}. (4.1) 
u 

In Chapter 3, we proposed a fast and efficient algorithm HQ A based on the half-

quadratic technique to solve (4.1). There, the convergence analysis of the HQA is 

given under the assumption ker(A)门kei•(沪5) = {0}, where A is the Laplacian 

operator. In addition, without such an assumption, the condition number of the 

coefficient matrix in (3.11) is possible to be very large. To decrease its condition 

number, in this chapter, we modify the HQA with the PPA [43] and obtain the 

PHA. As what has been done for constructing HQA, we replace the TV and the 

54 
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LI functionals by differentiable functionals and then (4.1) turns to 
n 

n i m { ^ + + + - + 7}, (4.2) 

where B^ is the i-th row of B, and /?, 7 are both small regularization parame-

ters. The half-quadratic technique is applied to solve (4.2) and the HQA is then 

constructed by updating 

=argniiii{$HQ(u,u^)}, (4.3) 

where ^>/fQ(u，u” := £(u’ —+1, w於+1) (see (3.8)). We then apply the PPA to 

(4.3) and obtain the PHA: 

u � 二 argmin{$^g(u,u^) + 去||u — u ’ ® } . 

We prove that the PHA is indeed an MMA [29, 30，12] for solving (4.2) and hence 

some convergence result of PHA is easily obtained. The proof is similar to the con-

vergence proof of the lagged diffusivity fixed point iteration in [12]. The conver-

gence of the PHA is obtained without the assumption ker(A)nker(BT召）={0} 

under which the HQA is convergent and linear convergent. To test our algorithm, 

we apply it to deblur images that are corrupted by impulse noise [51]. The results 

show that PHA is comparable to the HQA in both recovered effect and computing 

consuming. Comparing with augmented Lagrangian method (ALM) and the fast 

total variational decomposition method (FTVDM), the PHA is faster and more 

accurate than ALM and FTVDM for salt-and-pepper noise and comparable to 

the two methods for random-valued impulse noise. Furthermore, the recovered 

images by our method are less blocky as HQA, while the recovered images by 

ALM and FTVDM are blocky. 

The outline of the chapter is as follows: In §3.3, we review the HQA [？] and 

the PPA [43], then we apply them to (4.2) to derive PHA. In §3.4，we prove the 

convergence of PHA based on the convergence theory of the MMA. Comparison 

with FTVDM, ALM and HQA on image deblurring is given in §3.5. 
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4.2 The Derivation of the PHA 

In this section, We review the HQ A and the PPA [43] first. Then we modify the 

HQA by PPA to construct our PHA. 

Recalling that the algorithm of HQA in Chapter 3 is as follows: 

(i) Initialize u。； 

(ii) For k = 1,2,, •. until convergence, update by solving (3.11). 

Notice that the coefficient matrix XA'^Dp{u^)Au + on the left hand 

side of (3.11) may be ill-conditioned. In order to decrease its condition number, 

we introduce the PPA [43] into the HQA. The PPA is to solve a minimization 

problem min屯(u) by = argmm{^'(u) + — u^H^}. We combine PPA 

and (3.8) to obtain our PHA, i.e. we update u 知 b y 

u � + i - argmin{/:(u，V好 1, w抖 1) + -^llu - 訂 (4.4) 
u 2 o 

instead of by (3.8) in HQA. Here u 糾 is then the solution of 

0 

Substituting Vu>C(u, v ^ + i ， i n (3.10) into the above equation, we obtain the 

following linear system for updating u糾： 

XA^D3(u'')AU + B^DJn'')Bu = + ^u^ (4.5) 
0 0 

Thus the coefficient matrix in (4.5) is then well-conditioned with suitable 5. The 

algorithm of PHA is given as follows: 

1. Initialize 

2. For k — 1，2,. •. until convergence, update u知+i by solving (4.5). 
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4.3 Convergence of PHA 

In this section, we give the convergence proof of PHA based on the convergence 

analysis of the MM A. 

Recall that the MM optimization technique is to solve a minimization problem 

min 少(u) by 
u 

- a rgmin {g (u ,u^ ) } , (4.6) 
u 

where G(u，u&), called a tangent majorant function of ^'(u) at must satisfy 

(3.13), (3.14) and (3.15). For minimization problem (3.4), here we define 

g(u，i/) 二 r ( u , v 糾，w糾 )+ — ( 4 . 7 ) 

Substituting (3.9) into (4.7), we obtain the explicit form of ^(u, u”： 

彻，u ) = ^ + + - /.I, + ——1~J 

(4.8) 

We now show that the PHA is the MM A for solving (3.4) with ^ := 

Lemma 4.3.1 The PHA is the MMA for solving the TV-Ll regularized problem 

(3.4) with tangent majorant function u知)defined in (4.8). 

Proof: We need to verify that 列u, u ” defined in (4.8) satisfies (3.13)—(3.15). 

Taking u = u � w e obtain 口(u知，u” = $(u”，which is (3.14). The inequality 

a^ + > 2ab for V a, 6 e R yields 

R u , II” > + \B n̂ - m + u 知 > 封u), Vu. 

Hence (3.13) holds. By taking the derivatives of $ (u) and ^(u, u^) with respect 

to u, we have 

VcE>(u) = XV^D0{u)Vu + B^Dyiu){Bu - f), (4.9) 

• i g ( u , u ” = + - f ) + i ( u - u'^). (4.10) 
0 
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Substituting u = into (4.9) and (4.10)，we immediately have = 

From (4.10), the Hessian matrix of f (u，u” is given by 

V?g(u, u ” = + + ^I. (4.11) 

Obviously, u ” is symmetric positive definite with its smallest eigenvalue 

Amm > 1/(5. It implies the strict convexity of ^(u, u^) with respect to u. 

Lemma 4.3.2 $(u) in (3.4) is convex in u. 

Proof: By the definition of 少 in (3.4), $ is obviously twice continuously differ-

entiable and bounded from below by 0. 

Taking derivatives on both sides of (4.9), we have 

•2$(u) = \{(3A'Pf3{n)A + + ( 4 . 1 2 ) 

where P^(u) = diag(P^(u), P^(u)); and G are the diagonal 

matrices with their z-th diagonal entries being and l/l^^u — respec-

tively; and T(u) € with [T(u)]y = (乂成 )…—(头 ) ” ( 4 2 ) t U . Obviously, 

the Hessian matrix in (4.12) is symmetric, positive, and semi-definite, 

hence the convexity of is obtained. • 

Similar to Theorem 3.3 in Chapter 3，we give the following convergence the-

orem for the PHA. 

Theorem 4.3.3 For the sequence {u^} generated by PHA, we have 

1. monotomc decreasing convergence o/{$(u”} i.e. <l>(ii於十丄)< and 

converges; 

2. Suppose that the problem (4.2) has solutions, then strictly mono-

tomcly decreasing (i.e. < unless 知)=min{$(u)} ) and 

thus lim = min{$(u)} ：二 
fc—t-oo u 
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Proof: 

1. By Lemma 4.3.1 and the definition of the major ant function, we immedi-

ately have 

< < = $ ( u ” . (4.13) 

Since is bounded from below by 0 and is monotonically decreasing, 

the sequence { $ ( u ” } converges and 

lim 
fc-^oo 

一 $ ( u � + i ) = 0. (4.14) 

2. Notice that min{$(u)} > 0 and $(u) is differentiable. Suppose $ (u” + 
u 

min{$(u)}, then + 0 and thus + 0 from (4.9) 
u 

and (4.10). It implies that at u^, the major ant function 口 (u, u ” can not 

reach the minimum. Recall that 

.fc+i 

we then have ^(u, 二u知+i = 0 and 左 u ” < ^(u^, u ” since ^(u, u ” 

is a strictly convex and continuous function with respect to u. From the 

definition of the major ant function, we obtain an inequality 

知+1) < 奸 1 ’ U ” < W u � U ” -

It is said that sequence { $ ( u ” } is strictly monotonically decreasing and 

stop until 少 (u” reaches the minimum value or { $ ( u ” } is strictly mono-

tonically decreasing and converges to 

4.4 Numerical Examples 

In this section, we apply our algorithm to deblur images that are all corrupted 

by impulse noise. The deblurring problem has been discussed recently in many 
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papers, see for examples [18，52, 51] and Chapter 3. Among all these methods, 

the FTVDM, the ALM and the HQ A are the most efficient; and according to 

the numerical results in [51] and Chapter 3, ALM and HQA are the fastest ones. 

Hence in this chapter, we compare our PHA with the FTVDM, ALM and HQA. 

The FTVDM and ALM codes we used here are provided by the authors in [51]. 

For ALM, in (2.6)，parameters and 7z are fixed to be 7w = 10 and % = 100 in 

all the experiments. For FTVDM, the parameters Q爛 and are upper limited to 

be e^ - 2⑴，ê  = 215 in the approximate problem (2.2). Using > > 

would only increase the computational cost but not solution quality. To speed up 

the convergence, and are both implemented in a continuous scheme; that 

is, let and take small values at the beginning and gradually increase their 

values to and respectively. Specially, a 没^-sequence 2°, ...，2io 

is tested. Accordingly, is set to be 2°, • • -

We test three 256-by-256 images: Barbara, Bridge and Goldhill. The matrix 

B is the blurring matrix corresponds to the Gaussian blur generated by the 

MATLAB command 

fspecial(，Gaussian，， [7 , 7 ] , 5) . 

Then impulse noise is added to the blurred image to obtain the observed image f. 

The noise levels are 30%, 40%, 50%, 60% for salt-and-pepper noise and 20%，30%, 

40%, 50% for random-valued noise. We use the same regularization parameter 

A for all algorithms at the same noise level. For salt-and-pepper noise, A = 

1/13，1/10，1/8，1/4 for noise level 30%, 40%, 50%, 60% respectively. For random-

valued noise, A = 1/25,1/10,1/8,1/4 for noise level 20%, 30%, 40%, 50%. In 

HQA and PHA, we take uo = rand (size (f)) . As in the FTVDM, similar settings 

to (3 and 7 are used in HQA. We set �-sequence 10-3，10—4，...，lO—i® in (3.2). 
Corresponding, we set 7 = To speed up the convergence and improve the 

resolution quality, we let /?, 7 take large values at the beginning and decrease their 

values to and 10—20 respectively. Equation (3.11) and (4.5) are solved by 
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the conjugate gradient method where we fix the maximum number of iterations 

to 10. In all tests, we also consider periodic boundary condition for the difference 

matrix A as in Chapter 3 in order to compare the PHA with the ALM [51] and 

FTVDM [52], as it is the boundary condition used in the tests in [52，51] and 

Chapter 3. We compare the accuracy of the methods by the signal-to-noise ratio 

(SNR) used in [51]. It is defined by 

Here u and u denote the original image and the restored image respectively, and 

B(u) is the mean gray-level value of the original image. 

First we compare the speed of the four methods. Figures 4.2-4.7 show the 

timing comparison of the four algorithms. Each point in the figures show the 

accumulated CPU time until that iteration and the corresponding SNR. For the 

dcblurring problem with salt-and-pepper noise, see Figures 4.2-4.4, our method 

is comparable with the HQA in speed and is faster than the FTVDM and the 

ALM. It is also more accurate than the FTVDM and the ALM. For random-

valued noise, when the noise level is low, PHA is comparable to the ALM. But 

when the noise level is higher, say 50%, PHA becomes faster than the ALM. 

In Figure 4.1, we zoom into part of the restored Barbara image by the three 

methods. We see that the images by the ALM and the FTVDM are both blocky 

whereas that by the PHA is less blocky. 

From Figures 4.2-4.7, it is clear that FTVDM is the slowest amongst the 

three. In order to compare the accuracy of the three faster methods ALM, HQA 

and PHAmore precisely, we list in Table 4.1 the average SNR of the recovered 

images in five trials by the three methods. To compare the timing fairly, we first 

run ALM until it converges, say with to CPU seconds. Then we let HQA (PHA) 

run until the CPU time of the kth iteration is just greater than to- Then we 

record the SNR of the {k — l)th iteration as our result for HQA (PHA). We see 

from Table 4.1 that HQA and the PHA are more accurate than ALM for the 



62 

deblurring problem with the salt-and-pepper noise; and it is comparable to ALM 

for random-valued noise, especially when the noise level is low. 

Figure 4.8 shows us the difference between the recovered images by HQ A and 

PHA as 7 decrease to 10一i7, lO—̂ ^ for Barbara image with salt and pepper noise 

removal. The Frobenius norm of the difference images are 0.0393, 0.0292, 0.0133, 

0.0458 respectively from noise level 30% to 60%. Figure 4.8 shows the numerical 

illustration that the HQA and the PHA converges to the same solution. 

Image Method 
Salt-and-pepper noise Random-valued noise 

Image Method 
30% 40% 50% 60% 20% 30% 40% 50% 

Barbara 

ALM 

HQA 

PHA 

13.93 13.35 12.45 11.37 

14.24 13.59 12.83 11.72 

14.21 13.55 12.73 11.69 

14.63 13.61 12.91 11.24 

15.17 13.81 12.86 11.06 

15.16 13.77 12.7 10.95 

Bridge 

ALM 

HQA 

PHA 

11.85 10.95 10.13 8.52 

12.03 11.12 10.27 9.00 

11.97 11.01 10.14 8.98 

13.05 11.31 10.35 8.53 

13.46 11.37 10.13 8.72 

13.43 11.25 9.97 8.64 

Goldhill 

ALM 

HQA 

PHA 

16.08 15.03 13.78 12.05 

16.50 15.32 14.10 12.72 

16.44 15.19 13.90 12.66 

17.29 15.53 14.41 12.14 

18.02 15.68 13.98 11.98 

18.00 15.54 13.71 11.85 

Table 4.1: SNR of the restored images. 

4.5 Conclusions 

In this chapter, we apply the proximal point algorithm to modify the HQA 

for solving the TV-LI minimization problem. We analyze its convergence us-

ing knowledge of the majorize-rainimize technique without the assumption that 

ker(A)nker(B^5) — {0}. Our algorithm is proven to be extremely efficient in 

terms of accuracy, computational time and the visual quality as demonstrated by 

the numerical experiments. Our future work is to extend our algorithm to color 
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Recovered by ALM from Recovered by FTVD from Recovered by PHA from 
50% salt & pepper 50% salt & pepper 50% salt & pepper 

Zoom-in image of the above Zoom-in image of the above Zoom-in image of the above 

Figure 4.1: Zoom-in images of the recovered Barbara images by ALM and PHA. 
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Figure 4.2: SNR versus CPU time in seconds for "Barbara" with salt-and-pepper 

noise. 

Figure 4.3: SNR versus CPU time in seconds for "Bridge" with salt-and-pepper 

noise. 

image restoration via TV and LI data fittings and to general Lp-regularized 

problems. 
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Figure 4.4: SNR versus CPU time in seconds for "Goldhill" with salt-and-pepper 

noise. 

Blurry & Noisy ‘ 
random valuec 

i Noisy 50 
m valued 

Figure 4.5: SNR versus CPU time in seconds for "Barbara" with random-valued 

noise. 

Bturry & Noisy ； 
random valuec 

31 sy 40 
aluad 

Figure 4.6: SNR versus CPU time in seconds for "Bridge” with random-valued 

noise. 
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Figure 4.7: SNR versus CPU time in seconds for "Goldhili" with random-valued 

noise. 
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Blurry & Noisy: 30% 
salt & pepper 

By HQA 

Blurry & Nojsy. 40 
salt & pepper 

By HQA 

Blurry & Noisy: 50% 
salt & pepper 

By HQA 

Blurry & Noisy: 60 
salt & pepper 

By HQA 

By PHA By PHA By PHA By PHA 

Difference Difference Difference Difference 

Figure 4.8: The figure shows the recovered images by HQA and the PHA and their 

difference as 7 decrease to 1 0 — 1 7 ， i n (3.2) for Barbara image. The first 

row shows the recovered images by the HQA for salt-and-pepper noise removal 

at noise level 30% to 60%. The second row shows the recovered images by the 

PHA. The third row shows the absolute value image of the difference between 

the first row and the second row. Form left to right, the Frobenius norm of the 

third row is 0.0393, 0.0292, 0.0133, 0.0458 respectively. 



Chapter 5 

Positively Constrained Minimum 

Penalized Total Variation Image 

Restoration 

5.1 Introduction 

The total variation (TV) image restoration is an important image processing 

method due to its ability in preserving sharp edges in the restored image [6, 49, 

46]. The method is usually formulated as a penalized least squares with the TV 

penalty function [50, 49]. The existing numerical methods for solving this TV op-

timization problem include: partial differential equation (PDE) [45], primal-dual 

method using either Newton [10] or conjugate gradient [49] optimizations, etc. 

However, these methods do not consider the positivity constraint imposed on the 

restored image, and usually the pixel values are guaranteed to be nonnegative 

only in the last iteration by a simple projection or a scaling. In this chapter, we 

propose a new algorithm for solving TV penalized, and positively constrained, 

image restoration problems. Our approach uses the multiplicative iterative (MI) 

algorithm originally developed for tomographic image reconstruction [34] under 

68 
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quadratic penalty terms. Here we modify it to solve the TV penalized image 

restoration problem. Moreover, we extend the error probability model from the 

traditional Gaussian distribution to other probability distributions, such as Pois-

son and Laplace (equivalent to Li norm) distributions. 

The following notations are used throughout this chapter. Let U € be 

the unknown image which requires to be estimated and T € be the observed 

blurry image, where R+ denotes the positive orthant of R. To simplify, images 

U and T are lexicographically ordered into vectors, and we let u = , . . . 

denote the vectorized U and f = ( / i ,…， fnY denote the vectorized T, where 

superscript T represents matrix transpose and n ~ p • q. We will use these two 

notations of an image (i.e. 2D U and its vectorized u) interchangeably when 

there is no confusion; an operation on u can be defined using U, and vice versa. 

For a function p(u) we use \/g{u) to denote derivative of ^ with respect to u and 

Vj5'(u) the derivative of g with respect to Uj. 

In this chapter, we consider the statistical image restoration. Suppose the 

true (unobserved) image u is distorted by a blurring mechanism (such as a point 

spread function) which is denoted by an n x n matrix B. The expected observed 

image, denoted by an n-vector fj,, is given by 

= Bn. 

However, due to noise contamination, we cannot observe /i. directly; instead, we 

observe the blurred noisy image f. Our aim is to restore u from f. 

Statistical image restoration depends on the assumed probability model for 

the observed image and the penalty function (also known as the log prior density 

function). The penalty is used to restrict the restored image so that it follows 

certain local smoothness patterns. Assume that are independent (given u) and 

each follows a probability model, i.e. 

•A � 
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where p (̂•) represents the probability density function (pdf) of and — B^u 

with B^ being the ith row of B. The penalized negative log-likelihood objective 

function 屯(u) for recovering u is given by 
n 

= + (5.1) 
z二 1 

where I人fi^) — logp乂| 仏)，A > 0 is the smoothing parameter and J(u) is the 

penalty function. The restored image u is given as the minimizer of 少(u) subject 

to u > 0, namely 

u = argmin ^'(u). (5.2) 
u > 0 

The first term of (5.1) represents the negative log-likelihood and it measures 

fidelity of the restored blurry image p, = Bu to the observed image f . Its second 

term, on the other hand, measures smoothness of the restored image u. The 

smoothing parameter A is included for the purpose of controlling the amount of 

smoothness of the restored image. A good smoothing parameter should balance 

well these two conflicting targets, namely data fidelity and smoothness. This 

chapter will not discuss how to select an optimal smoothing value for A. Our 

focus is on how to compute efficiently the solution to problem (5.2) and how to 

obtain a good approximation to the target image. 

The form of data fitting term in (5.1) depends on the statistical noise model. 

Three kinds of common noise models are as follows: 

1. Gaussian noise model: Observed image intensities �iV(/i，cr2). In this 

model, after combining variance with A to form a new smoothing pa-

rameter, we have 

h � = - \ U � f h f . (5.3) 

2. Poisson noise model: Observed image intensities �Poisson( / i i ) . This 

noise model gives 

= -^t + ft l og /v (5.4) 
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3. Impulsive noise model: Observed image intensities ~ Laplace(/i^, a^). 

Similar to the Gaussian noise model example, after combining a^ with A we 

can write 

kif^i) = (5.5) 

In this chapter, we consider the regularization function J{-) being the TV 

penalty function. Let || • II2 be the Euclidean norm of the relevant space and H be 

the domain of image U. According to [49], the TV penalty J(u) can be written 

as 

J(u) = / \\VU\\2d̂ id̂ 2 ^ T + + (5.6) 
A�i，《2)ef̂ 户 1 V 

where Rj and Cj are respectively the jth row of the n x n matrices R and C. 

The entries of Ru and Cu represent the first-order differences of U along the row 

and column directions respectively. If u, in u corresponds to Us t in U, then 

for 1 . < s < m — 

for s ： = m 

for : [<t<m-

仏，1- ‘ fori ；—m 

In (5.6), parameter ^ > 0 is included to avoid degenerate derivative of J(u). 

We will introduce a multiplicative iterative (MI) algorithm to solve the con-

strained optimization problem (5.2) where the penalty function J(u) is TV. We 

call this new method the MITV algorithm. The advantages of MITV are that it 

is very easy to derive and implement under different image noise models, such as 

Gaussian, Poisson and impulsive, and it respects the positivity constraint. In the 

numerical tests, we apply our algorithm to deblur images corrupted with Gaus-

sian noise. The results show that our method gives better restored images than 

the forward-backward splitting algorithm. 

The rest of this chapter is arranged as follows. §5.2 reviews the forward-

backward splitting algorithm for TV image restoration. It is the algorithm that 
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we will use to compare with MITV. §5.3 develops our new MITV image restoration 

algorithm. Two test images with Gaussian noises are used to compare MITV with 

forward-backward splitting, and the results are given in §5.4. Finally, concluding 

remarks are provided in §5.5. 

5.2 The Forward-Backward Splitting Algorithm 

In this section, we explain the forward-backward splitting (FBS) algorithm (e.g. 

[16, 4]) for solving problem (5.2) for the Gaussian noise model. This algorithm 

was designed without considering the positivity constraint. To obtain a positive 

solution, however, one usually project the iteration results into the nonnegative 

half space at every iteration or at the last iteration. 

Let H{u) = — - — f\\l We begin with the definition of the 

proximity operator. For any proper, convex and semi-continuous function (f)(-) 

with range (—CXD, +OO|, its proximity operator is defined by 

p r o x种 : u ^ argmm{^||u - + 0(v)} . (5.7) 

The FBS algorithm can be used to solve the minimization problem of the following 

form: 

nnn{Fi(u) + F2(u)}, (5.8) 

where F\ is a proper, convex, lower semi-continuous function and F2 is a convex, 

1 /7-Lipschitz continuous ciifTerentiable function. The FBS iteration formula for 

solving (5.8) is given as follows: 

u � = p r o x 奶 (u* — (5Vi^2(u”). （5.9) 

In [16], the authors show that this FBS algorithm converges to the solution of 

(5.8) when 0 < ^ < 27. 
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We can apply the FBS algorithm to solve problem (5.2) with the Gaussian 

noise model, where the penalty term Fi(u) = AJ(u) and the data fidelity term 

F2(u) = H(u) respectively. In this case，the Lipschitz constant 7 — l/\\B'^B\\2. 

The gradient of the data fidelity term is： •丑(u) - B'^(Bu - f). The FBS 

iteration formula (5.9) is then given by 

u好 1 = - SVI/(u')) (5.10) 

from any initial By definition of the proximity operator (5.7), the iteration 

formula (5.10) is equivalent to 

1/+1 = argmin{AJ(u) + i||u 一 (u^ — (5.11) 
u 2o 

The FBS algorithm (5.11) converges to the solution of (5.2) for Gaussian noise 

removal if <5 G ( 0 ， R e c a l l that J(u) is the TV penalty function, so we 

can apply the Chambolle's denoising algorithm [7] to obtain the minimizer of 

(5.11) at each step. Interested readers can consult [16] for more details of the 

FBS algorithm, [7] for general idea of the Chambolle's denoising algorithm, and 

[27, 35，36] for more background knowledge of convex analysis. 

5.3 Multiplicative Iterative TV Penalized Im-

age Restoration 

5.3.1 Derivation of the Algorithm 

In image processing，pixel values should be nonnegative numbers. In [25, 37], 

the authors discussed the box-constrained minimization problem based on the 

Karush-Kuhn-Tucker (KKT) condition. The interested readers can consult [25] 

for the afRne-scalling interior-point cyclic Barzilai-Borwein [1] method for box-

constrained minimization problem and [37] for an a reduced Newton method for 

box-constrained linear least-squares problems. In [34], the author proposed a 
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multiplicative iterative algorithm (MI) for problems in tomographic reconstruc-

tions. There the penalty function is taken to be a quadratic one. In this section, 

we develop the MI algorithm for TV penalized and positively constrained image 

restoration. The algorithm is flexible and can be applied to different image noise 

models. It also begins with the Karush-Kuhn-Tucker (KKT) necessary condi-

tions. 

We first introduce some notations needed for the derivation of the MITV 

algorithm below. For any vector function ^(u), it can be separated into positive 

part vector [g(u)]+ and negative part vector with their jth entry defined 

by 

b(u)i； = ma:K{[^(u)]„0}, b(u)]； = max{ —b(u)j” 0}, (5.12) 

where is the jth component of ^(u). By (5.12), 

Wu) = [ • ) ] + —[没(u)l-. (5.13) 

Obviously ["(u)]+ > 0 and b(u) ] - > 0. We call this separation Type 1 separa-

tion that we use in the following part. If ^(u) has an explicit separation form, i.e. 

p(u) = a — b with a > 0 and b > 0, we just take [p(u)]+ = a and = b. 

We call this separation Type 2 separation in the following part. 

If u solves optimization problem (5.2), then u satisfies the KKT conditions: 

V j^ (u ) 二 0, if Uj > 0 

> 0, if iij - 0 

for J 二 1 , . . . , n. Equivalently u solves the following linear system 

- 0， (5.14) 

where D{u.) 二 d iag ( f i i (u ) ,…乂 (u ) ) with 

/ Uj, = 0 
0. V j^ (u ) > 0 
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Using expression (5.1), equation (5.14) is a linear system of 

Uj 亡 6”VZ“AO + AVjJ(U)) = 0 , J = … n (5.15) 

where b” > 0 represents the (z, j )th element of matrix B. First we apply the 

separation (5.13) to VlJjx^) and to get VlJjj^) = [•Z“/_0]+ - [Vl̂ {|Î )]~ 

and V j J(u) = J(u)]+ — [V^ J(u)]~. Then we rewrite equation (5.15) as 

/ 
Uj [•/“",)]— + M • 力 u)]- =Uj 

(5.16) 

where both sides of this equation are now nonnegative. 

Equation (5.16) naturally suggests an iterative scheme for solving (5 15)，and 

that is; 

where 

？严/2 — .Jjl 
— Xk J 二 n 

对J t M ^ ) ] + + A [ v � ” ] -

(5.17) 

and 

(5.18) 

Here j i � = B p " and V j denotes V^ J(u) evaluated at In (5.17) the 

iteration index k + 1/2 explains that this is merely a temporary updating, and 

further improvements are necessary to give u � by the following rule: 

u 左+1 = + a^dK 

Here a^ € (0,1] is a positive step size and the direction vector d^ is given com-

ponentwise by 
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Substituting (5.17) and (5.18) into above equality, we have 

= (5.19) 

Hence d^ is a down-hill direction for 屯(u) when the denominator Ŝ j is nonzero 

for all J. 

In order to facilitate (5.17) we must provide V^ J(u) for the TV penalty func-

tion J(u) given in (5.6). It is not difficult to derive that 

To ensure that the iteration scheme (5.17) is well defined, we have to explain 

how to handle the possibility of S^j 二 0. This problem can be rectified simply by 

replacing any zero 5专]with a constant e (such as £ = 10"^). In this case, however, 

the corresponding numerator of (5.17) must also be altered by Ŝ ^ 4-e so that the 

estimating equation (5.15) is still maintained. 

It is possible that u^+y^ by (5.17) does not decrease 少(u), i.e. > 

屯 (u” . In this case we need a line search step to improve u知+1/2 such that the 

final update decreases the objective function ^(u). In this line search, we must 

find an 0 < Q；'' < 1 such that 

u左+1 二 + 好 1/2 - u^， (5.21) 

and U&+1 satisfies 屯(u^+i) < Here a^ can be obtained efficiently by 

approaches such as step half or Armijo ruie [31]. By (5.17) and (5.19)，we know 

that (5.21) maintain all the zero components of in u知 

We call the iterative scheme defined by equations (5.21) and (5.17), where the 

penalty function J(u) and its derivative VJ(u) are given by, respectively, (5.6) 

and (5.20), the MITV algorithm. This algorithm is very easy to be implemented 

in TV image restoration tasks, and it can handle any image noise model. A very 

attractive feature is that this algorithm respects the positivity constraint usually 
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imposed on image restoration problems. In fact, from any initial guess u � > 0， 

we have u i " > 0 by (5.17). We then immediately obtain that u^ > 0 since 

ui = (1 — + a^u^ and 0 < < 1. By induction, we know that u" is 

always non-negative if initial guess u® > 0. From the study reported in Section 

5.4, the MITV algorithm is very competitive with the existing forward-backward 

splitting TV denoising algorithm. 

Under certain regularity conditions, the MITV algorithm is convergent, and 

moreover, it converges to the solution satisfying the KKT necessary conditions. 

The proof of the general convergence result is available in [34]. 

5.3.2 MITV Under Different Image Noise Models 

In this section, we provide the details of the MITV algorithms when the observed 

image contains Gaussian, Poisson or Impulse noises. From (5.17), these MITV 

algorithms differ only due to the fact that the derivatives of the log density 

functions, i.e. VZiCaO, are different for different noise models. 

Gaussian Noise Model 

For the Gaussian noise model, according to the data fitting term (5.3), then the 

gradient VlJjii) = A — Ih, where /兄 2 0 and 叫 > 0. Use Type 2 separation to 

•z(aO，we have [•“(/ij]+ = and = I n addition, we use Type 1 

separation to VJ(u). Then iteration (5.17) becomes 

3 — ] 5 : : U M J A [ v � w ) ] + ’ 网 

for j = 1, •.. ,u. If the denominator of (5.22) is zero for a pixel j, then we 

add a threshold e to both numerator and denominator of (5.22). Once u “ i / 2 jg 

obtained, we move to u 知 a s follows. If ^^(u^+i/2) < 屯 (u” then u好i = u括 

otherwise, using a line search to find an 0 < < 1 such that 

少(1/ + — ufc)) < 对u”， 
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and then set : u知 + a 左 — u ” . 

Poisson Noise Model 

For the Poisson noise model, from (5.4)，the gradient = —1 + Any 

zero will make both Iĵ fî ) and not well defined. If = 0 happens in 

iterations we will replace jj,̂  in denominator by a small constant 没〉0. Hence 

we can assume all fii ^ 0 without loss of generality. Using Type 2 separation to 

we have [ • / # � + = and [•“(/^t)]— = 1. In addition, we use Type 

1 separation to VJ(u). Then iteration formula (5.17) now becomes, 

3 E : U � + A[VjJ(uW)l+ ‘ (5.23) 

for J = 1 , . . . ,n. As in the Gaussian noise above, if the denominator of (5.23) is 

zero for a pixel j, then we add a threshold e to both numerator and denominator 

of (5.23). Then calculate u 糾 from u 糾 b y line search. 

Impulsive Noise Model 

Wc use the Laplace distribution to model impulsive noises so that “ ( 仏 ） = -

according to (5.5). A problem with this model is that liip^) is not differentiable 

at "J = fi. However, adopting the idea of Huber function [28], we may define the 

derivative of to be 

1 if /i, < - 7 

•“M 二 一1 if/I^>f^ +7 

、 ， i f A + 7 

一 r i ft — T T _L — T 
7 7 — 7 — 7 -y — T 

We apply Type 1 separation to ““丄 then we have [ • / “ / / � + = /八 - " ,” + 

and [Vkiii,)]" - + where Ia is an in-
— 7 — -y ‘ — 7 

dicator function for event A\ = 1 if ^ is true, and — 0 otherwise. The 
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Onginai image joke 

Figure 5.1: Original test images. 

separation for VJ(u) is still the Type 1 separation. The updating formula (5.17) 

now becomes 

= ^ ^ ^ , (5.24) 
E i i � + 毕 < 。 ) + 聊乂 ( u ” l + 

for j = 1, n. It is possible that at an iteration, the denominator of (5.24) is 

zero. In this case, we add a quantity e > 0 to both numerator and denominator of 

(5.24). The update u 糾 is obtained from u 糾 " b y line search; see the Gaussian 

noise model example above. 

5.4 Numerical Examples 

In this section, we apply our MITV algorithm and the FBS algorithm to deblur 

images which are corrupted by Gaussian noises. For the Poisson and impul-

sive noise models, the augmented Lagrangian method (ALM) in [51] is a fast 

and efficient method. The interested readers can consult [51] for more details. 

Comparison of MITV with ALM on non-Gaussian noise models will be reported 

elsewhere. 

In our tests, we use two images shown in Figure 5.1. The satellite image has 

size of 176 x 176, and the joke image has size of 284 x 378. We choose these 
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images because they both contain large zero backgrounds, so we expect that the 

positivity constraint is strongly informative in both examples. In the satellite 

image, there are 76.72% pixels equal to 0. In the joke image, this percentage is 

86.50%. Due to such features, it is easier to test the effect of our algorithm in 

ensuring the positivity constraint. 

In all the tests, matrix A is the blurring matrix corresponding to motion blur 

and is generated by the MATLAB command 

f s p e c i a l ( ' m o t i o n ' , 15, 30) . 

Gaussian noise is added to the blurry image to obtain the observed one. Denote 

the noise level by a which represents the standard deviation of the Gaussian noise. 

We test two cases: one has noise level a — and the other one has noise level 

(J = 10. 
Considering the good property of MITV in preserving positivity and the fea-

ture of our test images that most of the pixels equal to zero, we propose a pro-

jection in each MITV iteration: 

0, < 7) 
' , ] (5.25) 

u^^ , otherwise 

for j = 1,…，n. We call this projection the lower projection, where 77 is called 

the lower projection parameter. This projection will help to further improve 

the restoration from our MITV algorithm. We call MITV with lower projection 

the PMITV algorithm. The optimal choice for rj in all the tests is obtained 

experimentally. By trial and error, we find that the value of rj almost increases 

in direct proportion to G. In [37], Morini et al also discuss the box-constrained 

image restoration problems with projections. The interested readers can. consult 

[37] for more details. 

By trial and error, we find that for the satellite image the best smoothing 

parameter 入 二 0.4 at noise level a = 5, and the best smoothing parameter A = 1 
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at noise level a 二 10. For the joke image, the best smoothing parameter A 二 0.2 

at noise level cr 二 5, and the best smoothing parameter A = 0.4 at noise level 

= 10. 

We use the peak signal-tonoise ratio (PSNR) to measure the quality of the 

restored images which is defined by 

9552 
PSNR lOlogio t i f n ^ ( d B ) . 

Here u and u denote the original and restored images respectively, and n is the 

total pixel number of the image. 

We show the comparison results of the PMITV algorithm and the FBS al-

gorithm in Figures 5.2 - 5.5. Figures 5.2 and 5.3 show the observed and the 

recovered images by the PMITV and FBS algorithms. In PMITV, at noise level 

CT = 5，we choose 77 = 4; at noise level a — 10, we choose 77 = 9. At each of these 

77's, the corresponding PMITV algorithm reaches the highest PSNR value among 

all the trials that we conducted. The PFBS algorithm is the FBS algorithm with 

a lower projection (5.25) at every iteration. Also from the trials, we find that 0 

is the best choice for ij in PFBS. 

In the subfigures for the FBS algorithm in Figures 5.2 and 5.3, the PSNR 

records the PSNR value of the final iteration of the FBS algorithm without any 

projection, while the PPSNR records the PSNR value of FBS algorithm with 

a lower projection (5.25) only at the end of all the iterations, where the lower 

projection parameter is 0. At the final step in all the test algorithms, we take an 

upper projection 
f 255, li广 > 255 

u”广=J ‘ (5.26) 
I u广,otherwise 

such that the recovered image is in [0，255]. Prom Figures 5.2 and 5.3, we see that 

the PMITV always reach a higher PSNR value than PFBS (i.e. with projection) 

and FBS (without projection). 
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Figures 5.4 and 5.5 give computational time comparisons of the MITV algo-

rithm and the FBS algorithm. From left to right, the first columns of these figures 

describe the time comparison of the energy value sequence { ^ ( u ” } . The second 

columns give the number of the pixels that are projected to 0 at each iteration in 

the PMITV algorithm. We observe that the number of pixels that are projected 

tends to stabilize as the iteration number increases. The third columns show the 

time comparison in relation to the PSNR value. We find that the PMITV always 

reaches higher PSNR value faster than the PFBS and FBS algorithms. 

5.5 Conclusions 

In this chapter, we develop and implement a new approach for total variation 

image restoration. Our method is based on the multiplicative iterative algorithm 

originally developed for tomographic image reconstruction. The advantages of our 

algorithm are that it is very easy to derive and implement under different noise 

models and it respects the positivity constraint. We discuss in the chapter how 

to apply this method to Gaussian, Poisson and impulsive noise models. In the 

numerical test, we apply our algorithm to deblur images corrupted with Gaussian 

noise. The results show that our method gives better restored images than the 

FBS algorithms. 
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Figure 5.2： The figure shows the results of MITV algorithm and FBS algorithm 

when restoring blurred noisy image "satellite". From left to right, the first column 

shows the blurred noisy images (row 1; noise level cr = 5, PSNR = 13.2871; row 

2: noise level a = 10，PSNR = 13.2872). The right three columns show the 

restored results by the MITV algorithm and the FBS algorithm for restoring the 

corresponding degraded image in the first column on the same row. PMITV is 

the MITV (row 1: A — 0.4; row 2: A = 1) algorithm with a lower projection (5.25) 

(row 1: 77 = 4; row 2: 77 — 9) at every iteration; PFBS is the FBS algorithm with 

a lower projection (5.25) (row 1 and row 2: = 0) at every iteration. In the 

last column, PPSNR denotes the PSNR value of the recovered image by the FBS 

algorithm only with a lower projection (5.25) (jj = 0) at the final step; PSNR 

denotes the PSNR value without any projection. All the results shown in the 

figure are obtained with an additional upper projection (5.26) at the final step. 
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Figure 5.3: The figure shows the results of MITV algorithm and FBS algorithm 

when restoring blurred noisy image "joke". From left to right, the first column 

shows the blurred noisy images (row 1: noise level a = 5，PSNR = 10.462; row 

2: noise level a = 10, PSNR = 10.462). The right three columns show the 

restored results by the MITV algorithm and the FBS algorithm for restoring the 

corresponding degraded image in the first column on the same row. PMITV is 

the MITV (row 1: A = 0.2; row 2: A = 0.4) algorithm with a lower projection 

(5.25) (row 1 : 77 = 4; row 2: 77 = 9) at every iteration; PFBS is the FBS algorithm 

with a lower projection (5.25) (row 1 and row 2: 77 — 0) at every iteration. In the 

last column, PPSNR denotes the PSNR value of the recovered image by the FBS 

algorithm only with a lower projection (5.25) (77 — 0) at the final step; PSNR 

denotes the PSNR value without any projection. All the results shown in the 

figure are obtained with an additional upper projection (5.26) at the final step. 
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PSNR versus cputime 

PMITV! 

PSNR versus cputime 

Figure 5.4: The figure shows the accuracy and the time comparison of the MITV 

algorithm and FBS algorithm for satellite image. PMITV algorithm is the MITV 

algorithm with a lower projection The first row is for noise level (j = 5, in 

PMITV, we take A = 0.4,77 = 4; the second row is for noise level a — 10, in 

PMITV, we take A = I.77 = 9. From left to right, the first column describes the 

decreasing of the energy value in time; the second column describes the number 

of projections at each iteration in PMITV; the third column shows the timing 

comparison of the PSNR values. From the second column, we see that the number 

of projections tends to a constant as time increasing. The third column shows 

us clearly that the MITV algorithm can reach a higher PSNR value faster than 

PFBS with projection, and FBS without projection. 
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Figure 5.5: The figure shows the accuracy and the time comparison of the MITV 

algorithm and FBS algorithm for joke image. PMITV algorithm is the MITV 

algorithm with a lower projection. The first row is for noise level cr = 5, in 

PMITV, we take A 二 0.2，ry = 4; the second row is for noise level a — 10, in 

PMITV, we take A = 0.4, r; = 9. From left to right, the first column describes the 

decreasing of the energy value in time; the second column describes the number 

of projections at each iteration in PMITV; the third column shows the timing 

comparison of the PSNR values. From the second column, we see that the number 

of projections tends to a constant as time increasing. The third column shows 

us clearly that the MITV algorithm can reach a higher PSNR value faster than 

PFBS with projection and FBS without projection. 
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