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Abstract of thesis entitled: 

Quantum Monte Carlo Study of Frustrated Systems 

Submitted by HU, Feiming 

for the degree of PhD of Philosophy 參 

at The Chinese University of Hong Kong in July 2010 

In this research thesis, we mainly study three strongly corre-

lated systems: Hubbard model in bilayer triangular lattice which 

corresponds to the real material of Naa;Co02 • yHsO, strong-

interaction electrons in graphene system and Anderson impurity 

in graphene. Our numerical method is determinant quantum 

Monte Carlo method which will be introduced in the chapter 2. 

• In the chapter 3，we study ferromagnetic fluctuations on two 

types of bilayer triangular lattices by the single-band Hubbard 



model. We start from the tight-binding model to obtain en-

ergy spectrum, the density of sates, and the spin susceptibility. 

With finite Coulomb interaction turned on, we apply the ran-

dom phase approximation and use the determinant quantum 

Monte Carlo method to study spin susceptibility for the two 

bilayer triangular lattices and make comparisons of their mag-

netic properties. The effects of the interlayer coupling is also 

examined in detail. 

In the chapter 4, we addresses the issue of the ferromagnetism 
* 

in graphene-based samples. To study magnetic correlations in 

graphene, we systematically carry out quantum Monte Carlo 

/ 

simulations of the Hubbard model on a honeycor^ .lattice. In 
‘ V 

一 K 

the filling region below the Van Hove singularity, the^system 

shows a short-range ferromagnetic correlation, which is slightly 

strengthened by the on-site Coulomb interaction and markedly 

by the next-nearest-neighbor hopping integral. The ferromag-
I 

netic properties depend on the electron filling strongly, which 

ii 



may be manipulated by the electric gate. Due to its resultant 
I t 

high controllability of ferromagnetism, graphene-based samples 

may facilitate the new development of many applications. 

In the chapter 5, we examined theoretically the magnetism 

of impurity adatoms in graphene by quantum Monte Carlo sim-
V 

Illation technique based on Hirsch-Fye algorithm. When tuning 

the Fermi energy of graphene by gate voltage with available 

experiments, the values of occupancy and local moment for im-

purity can be changed. Furthermore, with medium and large 

hybridizations between impurity and graphene atoms, the lo-

cal moment can be switched on and off by Kondo effects. We 

also use maximum entropy method to study the spectral density 

from Green's function for impurity, and we find very unconven-

tional behaviors which are absolutely different from the cases in 

the normal metal. These signatures of spectral density enlarge 

the possibility for controlling the impurity magnetism by gate 

voltage. 
Ill 



摘要 

本諭文主耍研究了三個強關聯阻錯體系：雙層三角晶格中的赫伯德(Hubbard)模型，這 

個系統對應Na.CoO^ • yHzO材料：二維石墨屑（graphene)中電子的行爲；二維石墨屑中的安 

德森(Anderson)雜質。本文主要的败值方法是行列式fl子門特卡洛方法(determinant 

quantum Monte Carlo method).論文的第二章將詳細介紹此方法。 

第三章.我們研究了赫伯德模型在兩類雙層三角晶格中的鉄磁漲落。我們首先從緊朿縛 

(tight-binding)校型出發，研究了兩類三角晶格的能譜，態密度，自旋磁化率。然後考磁 

了庵倫相互作用的效應，分別逝用了無規相近似(random phase approximation)方法和行 

列式俄子門特卡洛方法計算了兩類三角晶格系統的自旋磁化率，並且進行比較了，重點考察 

卞層問锅合係败的效應。 

第四章，我們主要討論了二維石墨層中的鉄磁性質。爲了具船研究這一性質，我們在六 
% • 

角晶格上對取帶赫伯德模型進行了量子門特卡洛败值模擬。檔電子的佔據败處於範霍伕奇點 

(Van Hove singularity)附近時，系統有短程的鉄磁關聯，並且這種關聯隨著電子問的相互 

作用和晶格的次近鄰躍逛矩陣元的增加而顯著加強。由於二維石墨屑中的鉄磁性贸和TE子的 

佔據数有這種比較強的依賴關係，並且電子的佔據数可以通過外電場門電娘來調節，所以在 

二維石墨層中可以獲得可調節的鉄磁關聯，由此可以發展這種材料技術上的寅際應用。 

第五章，在二維石墨層表面，我們運用贵子門特卡洛方法具體研究了安德森雜質問题。 

愤依靠外電場調節體系的費米能級的時候，雜贸原子的遏子佔摅败和磁矩可以得到控制，進 

一步通過對於近藤效應(Kondo effect)的研究，我們發現原子的磁矩可以通過外電場來打 

開或者關閉。我們退運用了最大炳(maxinmra entropy)方法從雜質原子的格林函败得到了譜 

密度，並且發現了一些非常有別于雜質在正常金崩中的一些性質。'這些性質有利於我們利用 

寊 驗 手 段 來 控 制 雜 贸 原 子 的 磁 性 。 ^ • . 、 

iv 
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Chapter 

Introduction 

In this research thesis we mainly examine magnetic states of 
» f 

three strongly correlated systems by quantum Monte Carlo (QMC) 

simulation. The following issues will be addressed in this thesis: 

magnetic properties of bilayer triangular lattice, ferromagnetism 
z . 

f 

in graphene and magnetic impurity in graphene. In the first 

two projects, we focus on the effects of geometrical frustrations 

on magnetic correlations in the bilayer triangular lattice and 

graphene system (honeycomb lattice). The two systems have 

similar lattice structures: the interlayer and intralayer bonds 
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r， 

of bilayer triangular lattice correspond to nearest-neighbor and 

next-nearest-neighbor bonds of graphene, respectively. We find 

that their underlying physics are the same: the large density 

of states of electrons on the Fermi surface reduced by the ge-

ometrical frustration drives the magnetic correlations in these 

systems. In the last project, we transfer our attention from the 

magnetic state of graphene itself to that of an impurity atom in 

graphene system, and due to its unusual electronic excitations 

described in terms of massless fermions, the Kondo effect of im-
4 

purity becomes tunable through changing Fermi energy by an 

electric field, which is significant for graphene as a candidate of 
I 

spintronics device. 

In the chapter 3，we begin to study the magnetic proper-
* 

ties of bilayer triangular lattice within llubbard model, which 

is a highly frustrated system'.. Because of recent discovery of 

superconductivity in NaxCo02 • yHzO [1], and related fasci-

nating normal state properties [2，3, 4] have revived people's 
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interests in geometrically frustrated systems, such as triangu-

lar layers. Although the single-band Hubbard model has been 

widely studied and understood, it can still be used as the min-

imum theoretical model when we investigate electron correla-

tions on the two-dimensional triangular lattice. As a starting 

point, the single-band Hubbard model also helps us study the 

mechanisms of magnetic fluctuations and superconductivity in-

duced by electron-electron interactions. Previously, the Hub-

bard model on the single-layer triangular lattice has been studied 

^Tth'various techniques: such as the one-loop renormalization-

group [5] and the fluctuation exchange approaches. [6] .Aiitifer-

romagnetic correlations near the half filling and ferromagnetic 

fluctuations near the Van Hove singularity (VHS) were studied 

by the determinant quantum Monte Carlo (DQMC) and con-

strain path Monte Carlo (CPMC) methods, respectively [7，8 . 

Na a;Co02 • yHzO has a multilayer structure, and in this sys-

tem, the distance and couplings between the two C0O2 layers de-



X 
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pend on the inserted H2O molecules, which are of great interest 

from both a chemical and physical point of view [9，10，11, 12 . 

They are also key to understand the pairing mechanism. To 

address the influences of H2O molecules between the two C0O2 

layers, it is worth the effort to study the single-band Hubbard 

model on the bilayer triangular lattices. Previously, electronic 

structures of cobalt oxide bilayer-hydrate were studied by the 

first-principles calculations [13]. Quantum phase transition was 

also discussed in the content of the Heisenberg model on the 
\ 

bilayer triangular lattices [14]. For related researches, there are 

studies of the single-band Hubbard model on bilayer square lat-

tices [15，16 

In reality, many materials discuss the structures of bilayer 
I \ -

triangular lattice. For example, spin-dimer materials BasMnsOs 

17, 18, 19] and Mne molecules [20], where Mn ions form the bi-

layer triangular lattice. Another interesting material is graphene, 

which has at tracted great attention recently due to its Dirac 



Chapter 1. Introduction 5 
z ‘ 

fermionic behavior at low energy [21]. Graphene has honeycomb 
/ > 

lattice, which can be regarded as two interpenetrating triangular 

sublattices, and.it is similar to the bilayer triangular lattices we 

are interested in. Here, interlayer coupling plays an important 
、,• 

role in these systems. • 

Metallic ferromagnetism (FM) in correlated systems is a long-

standing issue which has been actively studied both numeri-

cally and analytically [22, 23, 24, 25]. It has been quite well 

known that the geometry of the system, the shape of the den-

sity of states(DOS), and the large degeneracy of single-particle 
" * 

J 

energy level are crucial to the stability of the ferromagnetic state 

26, 27, 28]. The triangular lattice, compared to square lattice, 

has a higher degeneracy on the energy level and asymmetric dis-
‘ ‘ ^ 

tribution of the DOS, so it favors stronger ferromagnetic fluctu-

ation in some parameter regions. For the single-layer triangular 
% 

* 

lattice, its DOS has one VHS at baiid filling (n) = 1.5. When the 

interlayer hopping t' is introduced, two VHS appear with DOS 
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decreasing (see below),. According to the itinerant electron FM 
、-〜 ' 

theory, the ferromagnetic fluctuations tend to the higher DOS 

on the Fermi surface. So the inter layer hopping t' will influence 

the ferromagnetic fluctuations, which motivates us to compare 

the spin susceptibilities of single-layer with bilayer triangular 

lattices. 

The search for high temperature ferromagnetic semiconduc-

tors, which combine the properties of FM and semiconductors 

and allow for practical applications of spintronics, has evolved 

into a broad field of materials science[29, 30]. Scientists require 

a material in which the generation, injection, and detection of 

spin-polarized electrons is accomplished without strong mag-

netic fields, with processes effective at or above room temperature[31 

Although some of these requirements have been successfully 

demonstrated, most semiconductor-based spintronics devices are 

still at the proposal stage since useful ferromagnetic semiconduc-

tors have yet to be developed[32]. Recently, scientists anticipate 

y 
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te * 

% 

that graphene-based electronics may supplement silicon-based 
> . • 、 

technology, which is nearing its limits[21, 33，34]. Unlike sil-

icon, the single layer graphene is a zero-gap two-dimensional 

(2D) semiconductor, and the bilayer graphene provides the first 
• » 

semiconductor with a gap that can be tuned externally[35 

Graphene exhibits gate-voltage controlled carrier conduction, 
T 

high field-effect mobility, and a small spin-orbit coupling, mak-

ing it a very promising candidate for spintronics application 
t • 

36，37]. In view of these characteristics, the study of the high 

controllability, of ,FM in graphene-based samples is of funda-

mental and technological importance, since it increases the pos-
• - , * 

參 

sibility of using graphene in spintronics and other applications, 

which motivates us to research FM in graphene system in the 

chapter 4. 

On the other hand, the existence of FM in graphene is an 
I 

unresolved issue. Many believe that both the electron-electron 

correlations and DOS at the Fermi surface in splids play es-

。 
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sential roles in determining FM behaviors. This conclusion also 

applies to graphene. Recent experimental and theoretical results 

in graphene[38, 39, 40，41, 42, 43，44] show that the electron-

electron interactions must be taken into account in order to 

obtain a fully consistent picture of graphene. The honeycomb 

structure of graphene exhibits VHS in the DOS, which may re-

sult iri strong ferromagnetic fluctuations, as demonstrated by re-

f 

cent QMC simulations of the Hubbard, model on the square and 

triangular lattices [45，8，46]. After taking both electron-electron 
皤 

interaction and lattice structure into consideration, the bidimen-
* 

sional Hubbard model on the honeycomb lattice[47, 48，49, 50， * • 

51] is a good candidate to study FM behaviors in graphene. 
‘ ‘ . > . “ 

> , • 

Early studies of the bidimensional Hubbard model on the hon-
• 

r -i 

eycomb lattice were based on mean field approximations and 

the perturbation theory[51]. However，the results obtained are 
z FF� � ― -

still actively debated because they are very sensitive to the ap-
« 4 

proximation used. As such, exact numerical results are highly 
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desirable for they provide unbias information and would serve as 

useful bench marks for analytical approach. Therefore, we use 

the DQMC simulation technique[52] to investigate the nature 

of magnetic correlation in the presence of moderate Coulomb 

interactions on the honeycomb lattice： We are particularly in-

terested in the low filling case where strong ferromagnetic fluc-

tuation exists according to our data. We also study ferromag-

netic fluctuations as functions of the electron filling, because the 

application of local gate techniques enables us to modulate elec-

tron filling[21, 33], which is the first step on the road towards 

graphene-based electronics. 

In the chapter 5, we address the problem of graphene cou-

pling with magnetic impurity atom and show that the peculiar 

electronic properties of graphene system lead to some interest-

ing new effects. Firstly, due to a massless Dirac-likc spectrum 

for conduction electrons in graphene, the system can exhibit 

unconventional Kondo behaviors and the Kondo temperature 
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becomes very low near Dirac point. Secondly, through using a 

electric field, the screening of impurity local moment from con-

duction electrons can be controlled by changing Fermi energy, 

and furthermore, under some conditions, the local moment can 

be switched on and off. Thirdly, we calculate the spectral den-

sity of impurity using maximum entropy method, the behaviors 

of spectral density are absolutely different from that in normal 

metal. 

The impurity problem in graphene has been studied by per-

turbation theory, mean-field method, and numerical renormal-

ization group [53，54, 55]. In our research work, we use DQMC 

method based on HF algorithm which is powerful tool with-

out sign problem at low temperature. And when studying the 

Kondo effect, we pay more attention on the chemical potential 

of graphene, which is more interesting experimentally. 

• End of chapter. 



Chapter 2 

Numerical Method 

2.1 Determinant Quantum Monte Carlo Method 

Based on BSS Algorithm 

In this section, we introduce the determinant quantum’Monte 

Carlo method (QMC) based on Blankenbecler-ScalapinoSugar 

(BSS) algorithm [52]. We mainly present the scheme of this * 

numerical method following the paper of reference[56]. To deal 

with systems of many interacting fermions, one is generally in-

terested in their collective properties, which are well described 

within the theory of Statistical Mechanics. Typical questions 

.11 
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about a system are related to its magnetic property, to its charge 

distribution, and to whether it is insulating, metallic, or super-

conductor. The simplest theoretical model describing interact-

ing fermions on a lattice is the single-band Hubbard model [57 

which is defined by the Hamiltonian as 

+ H.c.j + X — 
<iJ>,o- i 

( 、 + 〜 ) ， （2.1) 
‘ >. I 

where t is the hopping integral, U is the on-site Coulomb in-

teraction, fi is the chemical potential controlling the fermion 

filling, and i denotes site for a d-dimensional lattice; we con-

sider nearest-neighbor hopping only, as denoted b y � . . . � • The 

operators and c.^ respectively create and annihilate a fermion 

with spin a on the (single) orbital centred at i’ while n\a 三 

The Hubbard model describes the competition between oppos-

ing tendencies of itinerancy (driven by the hopping term), and 

localization (driven by the on-site repulsion). 
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The Hubbard model only can be exactly solved in the case 

of one-dimension sytem, through the Bethe ansatz; while corre-

lation functions are not directly available. In higher dimensions 

approximation schemes have to be used, and numerical tech-

niques such as QMC simulations have proven to be crucial in 

obtaining information about strongly correlated fermions. Here 

we focus on the actual details of the grand-canonical formulation 

with auxiliary fields leading to fermionic determinants. 

For the Hubbard model, the Coulomb interaction and hop-

ping terms do not commute with each other, and, in addition, 

hopping terms involving the same site also do not commute with 

each other. Therefore, when calculating the grand partition 

function, 

Z==Tr e-叩、 (2.2) 

where Tr stands for a sum over all numbers of particles and 

over all site occupations, one must cast the quartic term into a 
• 

bilinear form. We separate the exponentials with the Suzuki-
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Trotter decomposition scheme [58], which is based on the fact 

that 

gAr(//o+//,) = ^ A T H O ^ A T H , + • [ (么了尸 [丑 H j ] ] ’ (2 .3 ) 

for HQ and HJ generic non-commuting operators. Calling HQ and 

HI, respectively the bilinear and quartic terms in the Hubbard 

Hamiltonian, we introduce a small parameter A t through (3 = 

M A t , and apply the Suzuki-Trotter formula as 

^-p(Ho-hHf) = (eAr//o+Ar///)M 二 

二 (eAT"�eAT"'广 + O [(At)2[/] . (2.4) 

The analogy with the path integral formulation of Quantum 

Mechanics suggests that the above procedure amounts to the 

imaginary-time interval (0, /?) being discretized into M slices 

separated by the interval A r . It is clear that from Eq. (2.4), 

the finiteness of A r is also a source of systematic errors; these 

errors can be downsized by obtaining estimates for successively 

smaller values of A r . 



^ ^ ^ n „-SXM ^-UATTI-TNI 
士 1 e ^ 

-UAT cosh(A) 

e - 仏 c o s h � 

g-t/Ax g-t/Ar 

Having separated the exponentials, we can now decouple the 

quartic terms in HJ by the Hubbard-Stratonovich (HS) trans-

formation, 

^-(/Arntnj. = I g - ^ n ^-SXM = 
2 乙 

s=土 1 

S=土 1 <T=t’4 (2.5) 

where n = n^rii^ m = n^ — ni and we can use the Table (2.1) 

to determine the parameter A. 

cosh(A) = . (2.6) 
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Table 2.1: Determining parameter A in HS transformation 

e
 

1
-
2
 

n^ n^ m n 

0 

0 

0 2 

0 0 0 
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Here, we see that , by HS transformation, we decouple quartic 

terms but at the cost of introducing a auxiliary field s at every 

site and time slice. 

We now replace the on-site interaction on every site of the 

space-time lattice by Eqs. (2.5), leading to the sought form in 

which only bilinear terms appear in the exponential. We get 

Z = 
V2/ 

TrTr [ "J Yl 仏 ) c L ( / / � k | C j a e -( 他 、 

(2.7) 

where the traces are over auxiliary fields and over fermion occu-

pancies on every site, and the product from M to 1 simply 

reflects the fact that earlier 'times' appear to the right. The 

time-slice index £ appears through the HS field Si(f) in 

1 / [ / \ / 
VrW = + — i ) , (2.8) 

which are the elements of the Ns x Ns diagonal matrix V"⑷； 

here, Ns is the number of the lattice site. One also needs the 
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Ns X Ns hopping matrix HQ, with elements 

一t if i and j are nearest neighbors, 
{Hoh = (2.9) 

0 otherwise 

With bilinear forms in the exponential, the fermions can be 

traced out of Eq. (2.7), we have [56 

L'^M /I \ ^ 

(2.10) 

where we have defined 

B f 三 e - A T / /。 e - A T V , ， ( 2 . 1 1 ) 

in which the dependence with the auxiliary field has not been 

explicitly written, but should be understood, since they come in 

through the matrix V卞 ) . In t roduc ing ‘ 

C r ( { s } ) E l + B tB t—i . . .B?， （2.12) 

we arrive at . 

L'^M 
u
 5

 

r
i
 

-

\
 

i
 o

 

d
 

\
—
/
 

}
 s

 

r
t
 

/

 
、
 

t
 6

 
d
 

§
 

I
 

、
 

1
 1
2
 

/
 
\
 I

I
 

二 7 ^ p ( M)， (2.13) {s} 
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where the last equality defines an effective 'density matrix', 

And, finally, we must discuss the calculation of average val-

ues. For two operators and cj。，the equal-'time' Green's 

function is defined as 

n I I e 八 〜 - A r ” ) (2.14) 
ta 

If we now define the fermion average - or Green's function - for 

a given configuration of the HS fields as 

〈Ch7c|a〉{s}三 ^ ^ T r 
to 

the Green's function becomes 

(2.15) 

�Ci4^> = l 7 \ � C i 4 ^ � { s } P ( M ) . (2.16) 
力 {s} 

At this point it should be stressed the important role played by 

the Green's functions in the simulations. Firstly, according to 

Eq. (2.16), the average value of an operator.is straighforwardly 

obtained by sampling the corresponding Green's function over 
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the HS configurations weighted by p({s}). Secondly, as it will 

become apparent in process of simulation, the single particle 

Green's function, plays a central role in the updating 

process itself. Through applying linear transformation we obtain 

this quantity as the element ij of an Ns x Ns matrix [59，60 

+ 一 I..’ (2.17) 
L J IJ 

which is a suitable form for numerical calculations. And，thirdly, 
麵 

within the present approach the fermions only interact with the 

auxiliary fields, so tha t Wick's theorem[61] holds for a fixed HS 

configuration[59, 60, 62]; the two-particle Green's functions are 

then readily given in terms of the single-particle ones as 

+ (2.18) 

where the indices include spin, but since the 个 and I spin chan-

nels are factorized [c.f. Eq. (2.15)], these fermion averages are 

zero if the spins are different. All average values of interest are 
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therefore calculated in terms of single-particle Green's functions. 

As will be seen, unequal-time correlation functions are also 

important. We define the operator in the 'Heisenberg picture' 

as 

C'Ui) = Ci^(r) = e丁从 Ci, r 三 (2.19) 

so that the initial time is set to r = A t with this discretization, 

and Cj^(^) + [Cicr�]t . We show that the unequal-time Green's 

function, for �<2， i s given by [59 

G T j ( 仏 ） 三 { c M c l M i s } = 、 

+ (2.20) 

in which the Green's function matrix at the ^-th time slice is 

.defined as 

= + (2.21) 

with 

、 ‘ ， A - ⑷ = B U B U . . • ̂ i ^ M : . . (2.22) 

We notice the order in which the products of B，s are taken 
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in Eqs. (2.17), (2.20)； and (2.22); in Eq. (2.20), in particular, 

the product runs from €2 + 1 to £1, and not cyclically as in Eq. 
• ‘ • f • 

( 2 . 2 2 ) . Also, for a given configuration { 5 } of the HS spins, the 

equal-time Green's functions do display a time-slice dependence, 

as expressed by Eq. (2.21); they only become (approximately) 

equal after averaging over a large number of configurations. 
• • ‘ t 

The QMC simulations is in the process of sweeping through 

a space-time lattice. With the parameters of the Hamiltonian, 

U and /i, as well as the temperature, fixed from the outset, we 

begin by generating, say a random configuration, {s}，for the 
. ' • V -

* 、、 • 

HS fields. Since the walker starts oh the' first time-slice, we use 
V .丨 • . k 

the definition, Eq. ' (2.17), to calculate the Green's function at 
争 • ‘ ’ • - » 

£ = 1. As the walker sweeps the spatial lattice, it a t tempts to 
flip the HS spin at every one of the W5 points. 

/ • - • 

At this point, it is convenient to picture the walker at tempt-
» 

» 

ing to flip the HS (Ising) spin on a generic site, i of'a generic time 
f 

, I、 个 、 L 
slice, L If the spirt is flipped, the m够rices B^ and BJ change due 

\ 
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to the element ii of the matrices V^(^) and V-^(^), respectively, 

being affected; see Eqs. (2.8) and (2.11). The expression for the 

change in the matrix element, as s\{£) —> — i s . 

= -s) - s) = -2Xas,{£) S,^, (2.23) 

which allows us to write the change in B^ as a matrix product. 

B? — 二 B?八卯)， (2.24) 

where the elements of the matrix are 

0 

jk 

i f j T ^ k , 

⑷ i f j 二 k = i. 

(2.25) 

Let us now call {5}' and {5}, the HS configurations in which 

all Ising spins are the same, except for those on site (i, which 

are opposite. We can then write the ratio of 'Boltzmann weights' 

as 

一 P ( M ' ) 二 d e t O t ( { s } ' ) . d e t O ‘ ( M ' )  
一 TCMT “ detOms})'detO^\{s})—卞 

(2.26) 
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where we have defined the ratio of fcrmion determinants as 

Ra三 
_detO。（{s}') 

det 
(2.27) 

It is important to notice that one actually does not need to 

calculate determinants, since Ra is given in terms of the Green's 

function; 

RN 二 
det [1 + A ’ ) A 洲 

det [1 + A卞) 

二 det [1 + (1 - g 賴 A 彻- 1 ) 

. - 二 1 + (1 一 g 『 i ⑷ ） — 1 
I ‘ . .. 

» • 

‘‘ . • 
The last equality follows from the fact that 

(2.28) 

•a ( i )三 一 1 (2.29) 

is a matrix such that all elements are zero, except for the i-th « 

position in the diagonal, which is 7f(i) = e一 2入卯《� —l . With 

this simple form for r' = R^Ri, we can adopt the heat-bath 

algorithmldS] is then easily implemented, with the probability 
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* , 

of acceptance of the new configuration r being given by 

� =r ^ (2.30) 

Eq. (2.30)，with Eqs. (2.-26) and (2.28). We compare the proba-

bility r with a random number, and if r is larger than the ran-

dom number the flip is accepted. Alternatively[64], we can use 

Metropolis algorUkm, in the meantime the probability is r 二 

If > 1, the flip is accepted; while r ' < 1 we continue to com-

pare r' with a random number if it is larger than this number 

f 

the flip is still accepted. 

If the flip is accepted, the whole Green's function for the 

current time slice must be updated; this is the non-local aspect of 
• 一 _ 

QMC simulations we referred to earlier. There are two method 

for updating the Green's function. One can either compute the 
， 

‘new，one from scratch, through Eq. (2.21), or iterate the 'old' 

Green's function, by following along the lines that led to Eq. 
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(2.28)，which yields 

g " � =[ 1 + ( 1 — g 尊 彻 ] — Y � (2.31) 

An explicit form for g " � is obtained, and we see that the sparse 

matrix of " " 三 1 + (1 — has the formula as 

W = 

1 0 0 

0 1 0 

0 0 

0 0 

0 0 0 

0 0 0 0 

(2.32) 

It is easy to calculate the inverse of this sparse matrix 

l + ( l - g 尊 彻 
一 1 

R 
( l - g T ) ) l 7 ( i ) (2.33) 

a 

with Ra being given by Eq. (2.28). The element j k of the Green's 

function is then updated according to 

9!M = gJM — 
+ [ i— 侧 77(i) 

(2.34) 
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Alternatively, one could arrive at the same result by solving a 

Dyson's equation for 歹 � [ 6 0 . 

After the walker tries to flip the spin on the last site of the ^-th 

time slice, it moves on to the first site of the (€+ l)- th time slice. 

We therefore need the Green's function for the (£ + l)-th time 

slice, which, as before, can be calculated either from scratch, 

or iteratively from the Green's function for the ^-th time slice. 

Indeed, by comparing + 1)]"^ with as given by 

Eq. (2.21)，it is easy to see that 

= (2.35) 

which can be used to compute the Green's function in the sub-

sequent time slice. 
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\ 章 

2.2 Determinant Quantum Monte Carlo Method 

Based on HF Algorithm 

In this section, we discuss the DQMC based on Hirsch-Fye (HF) 

algorithm which is a powerful method to deal with Anderson 

impurity model [65]. At low temperature it avoids negative-sign 

problem and numerical instabilities. The Anderson impurity 

model has the formula as 

H = Y ^ CKCL^CKA + / .(^FCCFCG^O- + H.C.) + > ^ UDA + UNDFTLDL 

k,cT k,a o 

= / / o - f / / / (2:36) 

here, Cka and are operators of conduction electrons in host 

metal, and, S^ and d � a r e the operators of impurity. We also 

divide the total Hamiltonian into two parts: Hq is the part of 

bilinear terms and HJ is the part of Coulomb interaction for 

impurity orbital. So the partition function has the formula as 

1 1 
Z = =TRY[ E七只 ^TT\[ E 七 〜 七 ( 2 . 3 7 ) 
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here, P = MAT，and as Eq. (2.5) 

e-C/ArnTm = i E J ] r 一 ( 2 . 3 8 ) 
S=土 1 cr=卞，4 

and cosh (A) = gATL//2 Taking the trace over fermion degrees of 

freedom, the partition function can be written as 

^ = n det (2.39) 

where is an NsM x NsM matrix, with Ns the number of 

spatial sites (or k vectors) for the conduction electrons plus 1 

(the impurity orbital). Here we use block matrix to represent 

the spatial-time matrix 0" , we can see that 

(CTkf = 1 

= (2.40) 

and (0")£’m = 0 otherwise. In Eq. (2.40), Hq is Ns x Ns hopping 

matrix and 

V 卞）=ATRS(躺⑷ （2.41) 
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is a potential acting only at the impurity site. Using B^ defined 

in Eq. (2.11), we see that 0 " has the formula as 

0 0 b
M
 

B
 

o
 

- B ? 1 0 

0 b
2
 

B
 

I
 

0 

0 

0 

0 

0 0 1
 1

 
I
 

B
 

I
 o

 

(2.42) 

The Green's function has the similar formula as Eq. (2.17) and 

Eq. (2.20) 

Ga = ( c r ) - 1 (2.43) 

which obey the Dyson's equation as Eq. (2.31) 

(5 = G + ( G — l)(eV�v — i ) 5 (2.44) 

relating any two spin configurations. And the potential matrix 

V is a is a diagonal matrix in space and time. Since V in Eq. 

(2.41) only acts on the d site, Eq. (2.44) provides directly an 
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M X M matrix equation for the d Green's equation 

£') = 0 + [ G d d ( € ’ n-Ser] -^e")-1]Gdd, 0 

, (2.45) 

When we do the QMC simulation in the space-time lattice, the 
9 

\ 

ratio of Boltzmann weight for two different configurations deter-

mine whether the flip is accepted or not. In the H-F algorithm, 

for flipping at i time slice, the ratio has the similar formula to 

that of the BSS algorithm Eq. (2.28) 

R=l-\-[l- ^)][exp(V' — V) — 1]. (2.46) 
I 

When a flip at £ time slice is accepted, all components of the d 
* 

Green's function are updated through the relation 

G 二[1 - (G - l)(ev'-v — l)]- iG’ (2.47) 

and the inverse of the matrix in Eq. (2.47) has the same formula 

as Eq. (2.33), so the suitable form for numerical calculation is 

X [exp(VJ - V �一 l]Gdd{e. £2). (2.48) 
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Initially, Eq. (2.47) is used to obtain Gdd from the Green's 

function for the fields a set equal to zero, 

Gdd = [1 - (G - l)(eV - l)]-iGO胁 （2.49) 

here, G^d is non-interacting Green's function. To study the spin b 

and charge correlation functions between impurity and conduc-

tion electron, we also need to calculate the Green's functions 

between impurity and conduction electron- G^i and Gdi, and, 

Green's function of conduction electrons Gij. Firstly, we write 

the transpose of Eq. (2.44) 

(5 二 G + ( 5 - 1)(1 - e-v'+v)G. (2.50) 

Secondly, we reduce the Eq. (2.44) and Eq. (2.50) to M x M 

submatrix given tha t V only acts on d orbital so the Green's 

functions have the formulas as 

Gid = + 一 \)Gdd 

Gdi = + 

� Gij = G®- + - (2.51) 
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When sweeping the auxiliary field, we only needs to calculate the 

equal-time Green's function of impurity. After finishing walking 

through the whole imaginary-time lattice, we firstly calculate 

the impurity Green's functions(equal-time and unequal-time) 

with a fixed Ising field in terms of Dyson' equation (2.48), and 

secondly use Eq. (2.51) to calculate the Green's functions re-

lated to the conduction electrons. 

• End of chapter. 



Chapter 3 

Magnetic Properties of Bilayer 

Triangular Lattice 

3.1 Introduction 

In this work, we study two types of bilayer triangular lattices as 
> 

shown in Fig. 3.1. In Fig. 3.1(a), for every atom, there are six 

nearest neighbors in one layer and three next-nearest neighbors 
I • . 

» ‘亀 i 

in the other layer. This structure is similar t<vthe honeycomb 
F 

lattice. For the structure shown in Fig. 3.1(b), every atom 

has only one next-nearest neighbor in the other layer. We call 

.33 
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Figure 3.1: (Color online). Two types of bilayer triangular lattices studied 

in this work-are shown as structure A in (a) and structure B in (b). / 

the lattice shown in Fig. 3.1(a) structure A and in Fig. 3.1(b) 

structure B in all the followings. These two structures can be 
M 

regarded as two-dimensional triangular lattices with every unit 
- 、 

cell consisting of two atoms. The model Hamiltonian of the 

system is 

H 二 

<ij》d<T 

(iJ> 
+ t / 

{clda îda + H.C.) 

+ H .C.) 

id 
nid^riidi - / i 7 ^ riida 

ida 

(3.1) 

where C{DA (c?^) annihilates (creates) electrons at the site R\ 

in the d-th layer {d = 1,2) with spin a {a = t , 4-) and nida = 
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A • 

clifjCifia- This system has intralayer nearest-neighbor hopping 

t and interlayer next-nearest-neighbor hopping t!. These two 

layers have the same chemical potential (i. We also consider the 

electron-electron Coulomb interaction U. ‘ 

This chapter is organized-as follows. In section 3.2 we calcu-

late the dispersion relations and the DOS for the two types of 

bilayer triangular lattices at non-interacting limit {U = 0, refers 

to as the tight-binding model). The purpose is to study the spe-

cial feature introduced by. the two different structures: one with 

a finite gap, while the other is gapless, but both of them liave 

two VHS, which affect their magnetic properties. In section 3.3， 

the spin susceptibility is studied by applying the random phase 
I 

approximation(RPA) to estimate the critical value of Coulomb 

interaction Uc at which the magnetic instability occurs. Then 

we obtain a rough estimation before non-perturbative apprpach 
F is used to deal with electron-electron correlations. In section 3.4 • 

* 

we present numerical results obtained by the DQMC method. 



Chapter 3. Magnetic Properties of Bilayer Triangular Lattice 36 

For example, wc study the ferromagnetic fluctuation of the sys-

tem near one of the VHS in band filling region 1.6 < (n) < 1.85. 
« 

3.2 Tight-Binding Model on the Bilayer tri-
* 

angular Lattice 

To gain some primary insights of the two structures, we be-

gin with investigating their dispersions and DOS, then compare 

4hem with the single-layer case. At 二 0 the tight-binding 

4 

model Hamiltonian can be diagonalized by using the Fourier 

transformation � ‘ 

、 ^ ^ k 

ct - 丄 W 丄 V 
Cider — 仍 兄 ^kda 

Then the Hamiltonian has a simple form of sum of 2 x 2 matrices 

ak Pk ‘ Ckla 
. c L ) ( )( ) (3.2) 

ka p* ak Ck2a 
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The elements of the 2 x 2 matrix are 

ak = — [ c o s k • -h cos k • a t + cos k • ( a | — 

. = — 力 ' [ 1 + e 丄.(对—苟）+ e — i 药 

The 2 x 2 matrix can be diagonalized by the following linear 

transformation "" 

• Ckla = ^ - ^ ( ^ k l a + d[̂ 2a) (3.3a) 
2 Pi- . 

- Ck2cT = - dk2c7)’ （3.3b) 

where we introduced another set of operators dkia and 
» 參 

__ i 

Then the Hamiltonian has the diagonalized form as 

H 二 ； + E - d l a M . (3.4) 
ka 

Because of double layers, the energy spectrum has two bands. 
^ * 

For structure A, -

‘ E ^ = -tG{k) — 土 广 a / 3 + G ( k ) , (3 .5 ) 

while for structure B,- • 

/
 J

t
 

土
 

I
 似

 

I

I
 

f
 k
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Here, 

G'(k) = 2[cosk •对 + cos k .苗 + cos k • {al — o^)]. (3.7) 

Fig. 3.2 represents the dispersion relations for the two struc-

tures along the symmetry path in the first Brillouin zone (BZ). 

Following the convention, F point is (0，0)，M point is (0，tt) and 

K point is (—警，警).We calculate the dispersion relations for 

t' = 0 (the case of single layer), t' 二 0.4i and t' — O.St. The 

effects of t' are evident: (1) for structure A, there is no gap be-

tween the two bands, while for structure B, there is an energy 

•« -

gap equal to 2t! at K point. 

At finite temperatures, the electrons will occupy not only 

lower band but also upper band, so this energy gap will affect 

correlations between the two bands; (2) the bandwidth of spec-

trum becomes lager when t' increases, so we expect that the 

Coulomb interaction will have smaller influences on the mag-

netic fluctuations. Wc also note" that , as shown in Fig. 3.2, 
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7 
1 ‘ 

\ / r 

Figure 3.2: (Color online). Dispersion relations for structure A are rep-

resented in (a) and (b), while (c) and (d) represent structure B. The black 

curves represent single-layer triangular lattice t' = 0，the red curves represent 

the upper band E+ and the blue curves represent the lower band E一. 
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Figure 3.3: (Color online). DOS and band fillings of structure A are functions 

of energy: the red curves represent fillings (n) and the black lines represent 

the DOS computed from Eq. (3.5). The marked (n) are the filling values at 

one of the VHS. 

there exist saddle points near K point, where the DOS has a 

large value. 

In Fig. 3.3 and Fig. 3.4，in the single-layer triangular lattice 

case, t' = 0，there is only one VHS at filling (n) = 1.5. When t' 

is introduced the VHS becomes two separated peaks,-and with 

t' increasing, one peak moves toward the half filling while the 

other one toward the full filling. We will study the magnetic 

properties in the high band filling region. In particular, ferro-
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Figure 3.4: (Color online). DOS and band fillings of structure B are functions 

of energy: the red curves represent fillings {n) and the black lines represent 

the DOS computed from Eq. (3.6). The marked (n) are the filling values at 

one of the VHS. 

magnetic fluctuations may arise due to this higher DOS near the 

Fermi level. 

Comparing DOS of the two bilayer structures as shown in Fig. 

3.3 and Fig. 3.4，in the high filling region, it is clear that DOS of 

structure A is larger than that of structure B, in particular their 

DOS at the VHS near the band top. In terms of Stoner's FM 
\ 

theory for itinerant electrons, ferromagnetic fluctuations tend 

to high DOS on the Fermi surface. So if we locate the Fermi 
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surface near VHS by adjusting chemical potential, we expect 

that the magnetic fluctuations are stronger in structure A than 

that in structure B. These expectations will be tested by the 

RPA calculations and QMC simulations which will be discussed 

in the following sections. 

3.3 Spin Susceptibility for Tight-Binding Model 

In this section, we calculate the spin susceptibility for the tight-

binding model and then apply RPA to estimate critical values 

of Coulomb interaction when magnetic instabilities occur. The 

spin susceptibility in the z direction at frequency cj = 0 is given 

by 

x M = f d r Y , -均)(m 狐 T)m 淋j，0))，(3.8) 
•/o ij 

where m 狄 ” 0) = ĉ个Qi个 一 c^^cdi； and m 狄 ” r ) 二 

e"T77ij(/Ji，0)6""，and N is the number of sites in one layer. 

The susceptibility has four components, xii，Xi2，X21 and X22. 
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Figure 3.5: (Color online), (a) and (c) represent the results of structure A, 

and (b) and (d) represent the results of structure B. The momentum q is 

along r M K T in the first BZ. 

Obviously, there exist the relations XN = X22 and Xi2 二 

Because the Hamiltonian is solvable the spin susceptibility 

can be calculated analytically. After performing Fourier trans-

formation, there are four terms in the spin susceptibility as the 
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followings: 

JR / �T ^ e 圳丑丨 -丑 j ) 
Q : • 

44 

(T' 

ij {k} 
JO 

(3.9) 

where Cia{r) = e^^Ci^e"^^. By the linear transformation of 

Eqs. (3.3a) and (3.3b), we calculate these correlation functions 

by applying Wick's theorem, and the details are presented in » 

Appendix A. The intralayer spin susceptibility has the form as 

Xll(q) = + 召2 + 53 + 召4’ 

and the four correlation functions are 

�nk+qla�— (RIKLA) 

(3.10) 

= 

B2 = 

B -q 二 

BA = 

AN 

1 

4N 

1 

4/V 

1 

•a 

,cr 

,<T 

^ k + q 
-五 k + ‘ 

- ( n i c l t r ) 

^ k + q - K ’ 

( ^ k + q l a ) —〈几 k2£7〉 

^ k + q 
- 五 k - ， 

- ( N K 2 A } 

^ k + q 一 五 k - . 

(3.11a) 

(3.11b) 

(3.11c) 

(S.l ld) 
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The interlayer susceptibility also can be written as 

Xi2(q) = C ' i+C2 + C3 + C4, 

there are also four terms as 

二 

45 

(3.12) 

AN 

1 
C2 = 

,cr 

C3 = 

AN 

1 

,cr 

AN ^ 
k,<T 

C4 = 

^k+q - K 

�nk+q2cT> -{RIKLA) 

^k-fq - K 

(^k+qla) -

^k+q -丑k-

一 (nk2a> 

E 

e 

AN f ^ E- 一 E. 
k.£T k+q I 

(3.13a) 

(3.13b) 

(3.13c) 

(3.13d) 

here (riki(2)) is the occupation number of electrons in band E十(-、 

with momentum k, and the phase factor e 吻 = F o r param-

agnetic correlations, the mean value of occupation number obeys 

Fermi's distribution. Firstly, when t[ = 0 the two bands are the 

same 五+(k) = £'~(k), and the Eq. (3.10) becomes 

1 V^〈？^k+qcT�—〈几ka� x i i ( q ) = -
N f - EK+q — EK ‘ 

which is well known as the spin susceptibility in the single-band 

case while Xi2(q) becomes zero. Secondly, we compare these 
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Table 3.1: The critical value Uc (unit of t) for structure A 

Uc T = 0.167 0.25 0.5 1.0 

1.63 1.82 2.41 3.65 

t' = 0.4 1.90 2.07 2.76 4.38 

t' = 0.6 2.05 2.26 3.08 4.90 

t' = 0.8 2.13 2.39 3.26 5.13 

two correlation functions and observe that Xi2 has an added 

phase factor and its four terms have different signs, which result 

in Xi2(q) being much smaller than Xii(q). We expect that if 

the energy gap is larger, the correlation functions decrease and 

the spin susceptibilities become smaller accordingly. In view 

of the DOS, when the differences of energy AE = E'̂ +q —五k 

with given momentum q (either within one band or between 

two bands) varies more rapidly, correspondingly, the DOS will 

be smaller, as well as spin susceptibility. 

Fig. 3.5 shows the total spin susceptibilities Xo(q) = ^ J2dd' Xdd'(q) 

of the tight-binding model at zero frequency for different t'. Cor-
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Table 3.2: The critical value Uc for structure B 

Uc T = 0.167 0.25 0.5 1.0 

= 0 1.63 1.82 2.41 3.65 

t' = 0.4 2.13 2.36 3.16 5.07 

t' = 0.6 2.71 2.89 3.74 5.63 

t' 二 0.8 3.29 3.45 4.12 6.00 

responding band fillings are marked in Fig. 3.3 and Fig. 3.4. In 

Fig. 3.5(a) and Fig. 3.5(b) the spin susceptibility will increase 

rapidly when the temperature is lowered, but at T 二 l.Oi, the 

curves of susceptibilities are very smooth. It is shown in Fig.‘ 

3.5(c) and Fig. 3.5(d) that spin susceptibilities become smaller 

as t' increases. We compare the results of the two types of bi-

layer triangular lattices and find that the spin susceptibility of 

structure B is lower than that of structure A. It is because that 

when t' increases, near the VHS the energy gap of structure B 

is magnified and the DOS decreases. In structure A the value of 

Xo(K) is not sensitive to the change of t' because the two energy 
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bands are degenerate at K point. 

When interaction U is turned on, the magnetic susceptibility 

within RPA is given by [66 

( 3 . 1 4 ) 

Because we are interested in the region far away from the half 

filling, RPA predicts a transition between paramagnetic phase 

and FM phase with the high DOS when the critical condition is 

satisfied 

1 - Uxoici) = 0. (3.15) 

At zero temperature, Eq. (3.15) becomes the Stoner criterion 

Up{Ef) = 1, where p{Ef) is the DOS on the Fermi surface. On 

one hand when we tune band filling to localize the Fermi energy 
亀 

at the V'HS, the system is unstable against ferromagnetic fluc-

tuation. On the other hand Eq. (3.15) can be used to determine 

the critical strength Uc as the transition appears. 

In Tables 3.1 and 3.2, we present the results of Uc with given 
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t' and temperatures. Firstly, for the two structures with fixed 

value of t\ Uc decreases as temperature is lowered. Secondly, 

when t, is increasing, a larger Uc is needed for the transition 

between paramagnetic and FM phases. Thirdly, with the same t' 

and tenjperature, Uc of structure A is a bit smaller than that of 

structure B. Moreover we expect that when parameters arc the 

same for the two different systems, the ferromagnetic fluctuation 

is stronger in structure A than that in structure B. The results 

of RPA are reasonable because in Fig. 3.3 and Fig. 3.4，it is 

shown that for structure B the region between two singularities 

is wider and the DOS is lower than those for structure A. 

Although the validity of RPA is limited, da ta presented in 

Table I and II are helpful to choosing appropriate parameters 

for QMC simulations. In the following section, we will observe 

that fcrromagnctic fluctuations arc noticcablc both in structures 

A and B for certain parameters, but for some parameters the 

fluctuation in structure B is suppressed. 



Figure 3.6: (Color online). The spin susceptibilities x(q) in (a) and (b) are 

for the 36 X 2 lattice，in (c) and (d) are for the 48 x 2 lattice, in (e) and (f) 

are for the 64 x 2 lattice, with parameters U = 8|亡|’ T = 0.33|i| and filling 

� 7 1 � = 1.7. (a), (c) and (c) arc for structure A and (b), (d) and (f) arc for 
$ 

structure B. The momentum q is along F > M ~>• K ~~> F in Uio lirst 

BZ. 

To deal with electron-electron interaction non-perturbatively, 

we use the DQMC method[52] to simulate the single-band liub-

bard model on the bilayer triangular lattices and ‘ treat this 
« 

< 

Z<. . ‘ 
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3.4 Spin Susceptibility for Hubbard Model 
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Figure 3.7: (Color online). The spin susceptibility x(q) is represented versus 

temperature on the 48 x 2 latticc with U = S\t\ and filling (n) = 1.7. (a) is 

for structure A and (b) is for structure B. 
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Figure 3.8: (Color online). The spin susceptibility xCq) is represented versus 

temperature on the 64 x 2 lattice with U = S\t\ and filling (n) 二 1. 

for structure A and (b) is for structure B. 
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Figure 3.10: (Color online). The spin susceptibility x(q) is represented versus 

filling on the 4 8 x 2 lattice for U = 4⑷，T = 0.167|t| and t' = 0.4(. The black 

curves are for structure A and the red curves are for structure B. 
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Figure 3.9： (Color online). The spin susceptibility x(q) is represented versus 

t' on the 48 X 2 lattice with filling (n) = 1.7’ U = 4\i\ and T = 0.25|(|. (a) is 

for structure A and (b) is for structure B. 
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Figure 3.11: (Color online). The spin susceptibility x(q) is represented versus 

filling on the 4 8 x 2 lattice for U = 4|i|, T = 0.167|i| and t' = O.St. The black 

curves are for structure A and the red curves are for structure B. 

system as a grand canonical ensemble at finite temperatures. 

We mainly calculate the spin susceptibility by the unequal-time 

Green's function in the imaginary-time direction. We perform 

DQMC simulation on this model for three sizes of lattice, 36 x 2, 

48 X 2，and 64x2 sites. Simulations were done for both two struc-

tures as shown in Fig. 3.1. In the filling regions under investiga-

tion, the behaviors of the spin susceptibilities are qualitatively 

similar. We present here the results at band filling (n) = 1.7. 
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Figure 3.12: (Color online). The spin susceptibility x(q) is represented versus 

filling on the 6 4 x 2 lattice for U = 4|化 T = 0.167|i| and t' = OAt. The black 

curves are for structure A and the red curves are for structure B. 

Fig. 3.6 shows x(q) versus momentum q along the symmetry 

path in the first BZ for U = 8|, | and T = 0.33|,|. The critical 

values of Coulomb interaction, Uc, based on RPA results(with 

the same parameters t' and T) in Sec. 3.3，are much smaller than 

the value we adopt here [U = So magnetic fluctuations in 
t 

the three structures, the single-layer triangular lattices(" 二 0) 
s. 

and the two types of bilayer lattices with — 0.6《)，are evident, 

and in the six sub-pictures we compare their spin susceptibili-
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Figure 3.13: (Color online). The spin susceptibility x ( q ) is represented versus 

filling on the 6 4 x 2 lattice for U = 4\t\, T = 0.167|i| and t' = 0.8^ The black 

curves are for structure A and the red curves are for structure B. 

ties. In both 亡 '=0 and t' — 0.6亡 cases, x(q) have broad peaks 

around the T points, indicating obvious ferromagnetic fluctua-

tions in these systems. Compared to the spin susceptibilities in 

Fig. 3.5 it is seen that considerable Coulomb interaction greatly 

intensifies magnetic fluctuations. Moreover when t' increases, 

x(0) ( r point) decreases and the ferromagnetic fluctuations are 

suppressed. On the coupled bilayer square lattices, the simi-

lar results for the anti-ferromagnetic fluctuations were reported 
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16]. We may at tr ibute this phenomenon to the Stoner's theory 

that the ferromagnetic fluctuations tend to the high DOS on 

the Fermi surface. When t' is introduced the original singularity 

is divided into two peaks, as a result, the DOS near these two 

peaks is lowered. 

In Fig. 3.7 and Fig. 3.8，we present the spin susceptibili-

ties on the 48 X 2 and 64 x 2 lattice, respectively. We fix band 

filling (n) = 1.7 and U = which is about the bandwidth. 

At temperature T = 0.33|亡|, it is clear that there are ferromag-

netic fluctuations, but at higher temperature T = 1.0|i|，the 

curves of x(q) become much smooth, namely, the ferromagnetic 

fluctuations are not noticeable. 

In Fig. 3.9，we study the spin susceptibilities x(q) versus t丨 

with U = 4\t\ and temperature T — 0.251亡|. The band filling 

(n) is fixed at 1.7 with high DOS, as is shown in Fig. 3.3 and 

* 

Fig. 3.4. We do the calculations on the 48 x 2 lattice. To 

emphasize the effects of i\ we also show the results of the single-
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layer triangular lattices in every sub-figure. Fig. 3.9(a) shows 

the results of structure A and Fig. 3.9(b) shows the results of 

structure B. The rise in x(q) with t' decreasing can be seen to 

occur in both two types of bilayer structures. It is interesting 

that the values of x(0) in structure B decrease more rapidly than 

that in structure A with i! increasing. Between M and K points 

in the first BZ of structure A, the spin susceptibility curves with 

different t' are close to each other. It is because that the two 

energy bands are degenerate at the K point. On the contrary, 

the structure B with energy gap at this point does not have the 

same behavior. 

With extensive DQMC simulation data, let us compare mag-

netic properties of the two types of bilayer triangular lattices in 

detail with Figs. 3.10-3.13. We observe that the VHS for two 

structures with t' — OAt are localized in the filling regions be-

tween 1.6 and 1.75. With t' = 0.8艺 the VHS are in the zones from 

1.7 to 1.85. When t' = 0.4亡 the spin susceptibility of structure 
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B is little lower than that of structure A on the 48 x 2 lattice, 

but this difference is not evident on the 64 x 2 lattice. When 

i! increases to 0.8t, the ferromagnetic fluctuations in structure 

B decay monotonically but in structure A ferromagnetic fluc-

tuations are still obvious. We take U = 4|亡|，T 二 0.167|,| and 

t' = 0.4亡，O.St. Given the results of RPA in Tables 3.1 and 3.2， 

when t' = OAt the critical values Uc of the two structures are 

about 2—t—，one half of the value [U 二 4|亡|) we used in simula-

tions. However when t' = the critical value Uc of structure 

A is still about 2|亡| but for structure B, Uc approaches to In 

this case, the strength of electron-electron interaction is enough 

to induce ferromagnetic fluctuations in structure A but not in 

structure B. 

Figs. 3.10-3.13 show band filling dependence of x(q). For 

t' = and (n) = 1.6 the peak of x(q) near the F point is 

broadened, and when the band filling varies from 1.65 to 1.7 the 

peak of x(q) at T point is strengthened, as band filling reaches 
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1.75 the value of x(0) begins to decrease. These phenomena ex-

ist in both structures A and B. When t' = Q.8t and band filling 

varies from 1.75 to 1.85 there are very weak ferromagnetic fluc-
t-

tuations in structure B. In contrast, there are distinct ferromag-

netic fluctuations in structure A, which become the strongest 

when filling reaches 1.75. 

We have studied the magnetic properties of two types of bi-

layer triangular lattices. We calculated the energy spectrum and 

the DOS based on the tight-binding model. When the interlayer 

hopping t' is introduced, the spectrum has two bands. The en-

ergy bands of structure A are degenerate at K point. On the 

contrary, for structure B, there is a considerable gap between 

the two bands. Compared to the case of single layer, the DOS 

of bilayer structure is lower in the filling region (n) 二 1.5 — 1.9. 

Moreover, there are two singularities in the DOS for the bilayer 
* 

triangular lattices. By performing the RPA calculations, we ob-

tained the critical values of the Coulomb interaction Uc of the 
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magnetic instability. The results showed that with increasing 

t'�larger Uc is needed. For the same structure B requires a 

larger Uc than that of structure A. 

We have carried out a DQMC simulation for the single-band 

Hubbard model on the bilayer triangular lattices. By calculat-

ing the spin susceptibility, we studied the magnetic properties of 

the bilayer systems near the VHS. By the itinerant electron mag-

netism theory, the ferromagnetic fluctuations tend to the high 

DOS on the Fermi surface. Compared to the single-layer trian-

gular lattice case, when t' is gradually increasing, ferromagnetic 

fluctuations are suppressed in both structures A and B. 

We have explained the effects of t' on the FM fluctuations 

in terms of the DOS. After analyzing the spin susceptibilities 

with the same t'�the conclusion is that the FM fluctuations 

are weaker in structure B than those in structure A. This helps 

us ill understanding the effects of frustration on the magnetic 
» 

properties of various structures. 
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• End of chapter. 



Chapter 4 

Ferromagnetism in Graphene 

4.1 Introduction 

This chapter addresses the issue of FM in graphene-based sam-

ples. To study this kind of magnetic correlations in graphene, 
" 、 

we systematically carry out QMC simulations of the Hubbard 

model on a honeycomb lattice. In the filling region below the 

VHS, the system shows a short-range ferromagnetic correlation, 

which is slightly strengthened by the on-site Coulomb interac-

tion and markedly by the next-nearest-neighbor hopping inte-

gral, with an estimated Weiss temperature about 580K. The 

62 
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ferromagnetic properties depend on the clcctron filling strongly, 

which may be manipulated by the clectric gate. Due to its re-

sultant high controllability of FM, grapheme-based samples iiuiy 

facilitate the new development of many applications. In section 

4.2，wc present a brief introduction of latticc structure and elec-

tronic properties of graphcne in the framework of tight-bincling 

� 

model. Wc mainly focus on the DOS of graplienc when intro-

ducing the next-nearest-iioighbor hopping. In section 4.3, wc 

do the DQMC simulation to calculate the spin siisccptibility of 

graphoiK^ and wo find the rooiTi-teinporature FM in this system. 

In scction 4.3, we propose a scheme of controllability of Ferro-

inagnctisin in graphciic through two physical quantities, one is 

electron filling, the other one is next-iiearest-iicighbor hopping 

integrals. 
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� • 
» 

4.2 Electronic Properties of Grap^ene in Tight 

Binding Model 
汝 -

The structure of graphciie can be described in terms of two 

interpenetrating triangular siiblatticcs, A and 13，and its low 

energy electric and magnetle propertk^s can be well described by 
ft. 

the Hubbard model on a honeycomb lattice[47, 48, 49, 50, 51 

/-/ = - t Y^ a!J)…丨n 十 t' + 作 ) + h i � -

ir/<7 iycT 
U } ^nm^iigii + ni,ifni,ii) + “ } ^ ( / w + m ^ ) (4.1) 

la 

where t and t, are the nearest and next-nearest-neighbor hop-

ping integrals respectively, “ is the chciiiical potential, and U 
F� 

is the Hubbard iuleractiori. Merc, aia aiuiihilatcs (croalcs) 

electrons at site R, with spin a (cr==卞，40 on sublattice A, 6 ,� 

annihilates (crcatcs) electrons at the site R , with s j m i i a 

I ) on sublatticc 13，。…。二仅！口仅,̂ ^ and 

Our main numerical calculations were performed on a doiible-

48 sites latticc, as sketched in Fig. 1, where blue circlcs and 
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Figure 4.1: (Color onliiio) (a) Sketch of graphone wit h (k)i山lc-48 si^cs; (h) 

First BZ and Uio high syniinclry direction {red lino); ((') DOS (dark li'hcs 

)ami fillings (n) (red linos ) as functions of (Micrgy wit li /'=(). lOt; and (d) 

/'=0.20t. 

yellow circles indicates A and B sublattices, rcsprctivoly. The 

energy bands of model t ight-biiuling model of Eq. (4.1) arc 

= 土/,v/3 + /k +厂 / k , . 

3 
/k 二 2 cos(\/3A:j/i) + 4 c o s ( - — c o s ( ; - A : j . a ^ 

^ 

(4.2) 

where the plus sign applies to the upper (tt) and tlie niiiuis sign 

to the lower (tt” band, and the bandwidth is W—6\t\. It is clear 

from Eq. (4/2) that the spectniiii is syiiinietric around zero if 

'=0. For finite values of t' the clcctron-liole symmetry is broken 
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and both tt and n* bands become asyiiimetric. The structure of 

the honeycomb lattice leads to the well known mtxssless-Dirac-

fermion-like low energy excitations and the two VHS in the DOS 

(marked in Fig. 1) at <n>=0 .75 and 1.25 corresponding to 

E=-2t' 士 t, respectively as t' < t/6. While when t, > t/6, a 

third VIIS appears at the lower band edge, which is a square 

root singularity marking the flattening of the energy band near 

r point. They determine much of system's properties. 

In graphene, the value of t reported in the litcrature[5 

ranges from 2.5 to 2.8 eV, while the value of U can be taken 

from the estimation in polyacetylene[51, 67, 68, 69, 70], (U ~ 

6 .0 -16 .93 cV). Thus, we expect the ratio U/\t\ to be 2.2 � 6 . 0， 

which is around the range of half-baiidwidth to bandwidth, 

where the mean filed theory does not work well while the DQMC 

simulation is a useful tool [59]. Moreover, we notice that earlier 

studies on graphene assumed that t'=0. This assumption, how-

ever, is not warranted since there is overlap between carbon tt 
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orbits in the same sublattice. The exact value of t' is not known 

but an ah initio calculation [71] found that t'/t ranges from 

0.02 to 0.2 depending on the tight-binding parameterizations. 

Therefore, it is necessary to study the ferromagnetic fluctua-

tions within the Hubbard model on the horicycornb lattice by 

including t'• 

4.3 Ferromagnetic Correlation in Graphene 

In the followings, we show that the behaviors of magnetic corrc-

lation arc qualitatively different in two filling regions separated 

by the VHS at <n>=0.75. In the filling region below the VHS 

point, the system shows a short-ranged ferromagnetic correla-

tion and the on-site Coulomb interaction tends to strengthen 

ferromagnetic fluctuation. The ferromagnetic properties depend 

on the electron filling, which may be manipulated by the electric 

gate. Furthermore, the ferromagnetic fluctuation is strength-

ened markedly as t/ increases. Our results highlight the cru-
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cial importance of electron filling and the ncxt-nearcst-neighbor 

hopping in graphene. The resultant high controllability of FM 

may facilitate the new development of spiritronics and quantum 

modulation. 

To study ferromagnetic fluctuations，we define the spin sus-

ceptibility in the 2 direction at zero frequency, 

X { q ) = �d T ^ 叫 . � -" ) � m & ) , U O ) � （4.3) 

where 爪 i “ T ) 丁 m i 乂 Q ) e -只丁 with r r i i ^ — c i \ ^ c i i i and — 

bl^bii. We measure x in unit of Here, x ( r ) measures fer-

romagnetic correlation while measures anti-ferromagnetic 

correlation. In the DQMC method, a breakup of the discretized 

imaginary-time evolution operator introduces a systematic error 

proportional to (Ar)^f / (with AT describes the imaginary time). 

We have used AT =0.125, which guarantees (Ar)^[/ < 0.125 for 

U <8 | t | , leading to negligible systematic error (within a few per-

cent). In our simulations, 8000 sweeps were used to equilibrate 
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: t ' = t / 1 0 U=3|t| 
o r=t/6 U=3|l| 

t/5 U=3|t| 
A t'=t/5 U=5|t| 

Figure 4.2: (Color online) At <n>=0.25, inverse of magnetic susceptibility, 
睿 

l/x(<7=r) versus temperature with [/=3|t|, i/6, and i/5. Fitted line 

l /x (r )=a( !r — 0 ) arc also shown. Inset: Magnetic susceptibility x{q) versus 

q at difftaent temperatures with i'=0.10i and U=3\t\. 

the system. An additional 30000 sweeps were then made, each 

of which generated a measurement. These measurements were 

split into ten bins which provide the basis of coarse-grain aver-

ages and errors estimates based on standard deviations from the 

* 

average. 

We first present temperature dependence of the magnetic cor-

relations at < n � = 0 . 2 5 with different t' and U. Fig. 4.2 shows 
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1/x(q—^) versus t e m p e r a t u r e a t U=3\t\ a n d for t'=t/lO, t/6, 

% 

and t/b. Data for U=5\t\ as t'=t/5 are also shown. The reason 

for choosing < n > = 0 . 2 5 will be clear when we discuss filling de-
•i 

pendance later (e.g., Fig. 5). In the inset, we present x{q) versus 

momentum q at different temperatures with t'=t/lQ for U—3|t . 

It is obvious that x{q) has strong temperature dependence and 

one observes that and grow much slower than x(厂) 

with decreasing temperatures. Moreover, l / x ( r ) exhibits Curie-

like behavior as temperature decreases from |亡| to about 0.1 丨艺. 

Fitting the data as l /x(r)=a(T — 9 ) (solid^liries in Fig.4.2) 

shows that Weiss temperature, 0 is about 0.02|t|c：：：: 580K" at 

t ' = t /5 j and we also note that both 0 and x ( r ) is enhanced 

slightly as the on-site Coulomb interaction is increased. Pos-
F 

itive values of © indicate that the curves of l/x(r) start to 

bend at some low temperatures and probably, converge to zero 

as T —> 0, i.e., x ( r ) diverges. This derrioristratfts the existence 

of ferromagnetic state in graphene. 
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Figure 4.3: (Color online) Magnetic susceptibility x(q) versus momentum q 

at different [/二3 |t|, <n>=0.25 and T=0.10 

^^^ rom Fig. 4.2, we may also notice that i! plays a remarkable 

effect on the behavior of x � ’ and results for x{q) dependent 

on q with different i/ at U=3 t , T=0.10 t and < n �二0 . 2 5 have 

been shown in Fig. 4.3. Clearly, x ( r ) gets enhanced greatly as 

t' increases, while x ( ^ ) and increase only slightly. Thus, 

again it is significant to demonstrate that ferromagnetic fluctu-

ation gets enhanced markedly as t' itrcrcases. Furthermore, the 

strong dependance of FM on t' suggests high controllability of 

FM in graphene by tuning "[72, 73，74 



Chapter 4- Ferromagnetism in Graphene 72 

t'=o.o r=t/ io ‘ f=t/6 1 1 
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4U ri^ d 

Figure 4.4: (Color online) Band structure of graphene in terms of Eq. 4.2. 

The curves, in the first BZ and along the symmetry palh F ——> M ——> 

K )• r ~~> M is for " = 0 " ' 二 "10，i' = i/6, and t' = t/5. 

Here we focus on possible ferromagnetic solutions in our sys-

tem. Remembering the singularity in the DOS shown in Fig. 

t 

4.1，one obtains a strongly asymmetric DOS showing a square-

root singularity at the lower band edge as t' > t/6, which marks 

the flattening of the energy band near 厂 point. In. Fig. 4.4, we 

present the band structure of graphene in terms of Eq. 4.2 arid 

we can see the lower band near F point becomes flatter t' 

increasing. The situation present in our system is very similar 

to the 'flat band' scenario. The flat band FM was introduced 
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Figure 4.5: (Color online) Magnetic susceptibility x{q) versus momentum 

q oil different lattices with (/=3|t|, T=0.167|t| and Data at 

<n>=0.50 and 0.25 are plotted. 

by Mielke and Tasaki[75, 76], and they proved the existence of 

FM under conditions where the ferromagnetic ground state ap-

pears due to a dispersionless (flat) lowest lying band. This flat 

band introduces a huge degeneracy of the ground state at U=0, 

which is lifted by the Coulomb interaction. Former studies for 

an asymmetric DOS already showed the existence of FM in such 

a situation[77, 781. Consequently, we have to expect FM in our 

system, too. 
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We next present X{Q) versus momentum q in Fig. 4.5 for 

t'=0.1t, T=0.1G7|i|, and t/=3|力| on three set of lattices, double-

48，double-75 and double-108 sites at electron filling < n �二0 . 5 0 

and 0.25, respectively. A broad peak around F point in the 

first BZ once again indicates the existence of ferromagnetic; fluc-

tuation. We also note that data from different lattices agree 

with each other within statistical error. Since X{Q) obtained by 

summing up all lattice sites does not increase with lattice size, 

we conclude that ferromagnetic correlations are short ranged 

at t'=0.lt. Furthermore, Fig. 4.5 shows that X{Q) is sensi-

tive to electron filling, and it is strengthened when electron fill-

ings moves to the region where the VHS locates, namely, from 

<n>=0.25 to <n>=0 .50 . ‘ 
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Figure 4.6: (Color online) Magnetic susceptibility x(<7二厂）(red) and 

(dark) versus electron filling at /7=3|t| and T=0.167|t| with (a) t'=0.\t and 

(b) t'=0.2t. 
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4.4 Controllability of Ferromagnetic Correla-

tion in Graphene 

A great deal of current activity in graphene arises from its tech-
I 

nological significance as a novel semiconductor material where 

carrier density can be controlled by an external gate voltage[21, 

33]. To understand filling dependence of magnetic correlations 

intuitively, we present x ( r ) (red), x i ^ ) (dark), and their ratio 

x{T) lx[K) (blue) versus filling for (a) t'={)At and (b) t,=Q.2t 

in Fig. 4.6, with U=3\t\ and T二0.167|亡丨.There is a crossover 

between x(「）and which indicates that the behaviors of 

x{q) are qualitatively different in two filling regions separated by 

the VHS at < n � = 0 . 7 5 , where the ratio is 1. This is due to the 

competition between ferromagnetic and aiitiferroinagiietic fluc-

tuations. The antiferromagnetic correlations are strong around 

the hall-filing case, and they may dominate the shape of X{Q) in 

a wide filling range up to the VHS. The effect of t' in enhanc-
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ing ferromagnetic fluctuation also can be seen by comparing 

Figs. 4.6(a) with (b). At electron filling < n � = 0 . 2 5， t h e ratio of 

X ( r ) / x ( / 0 is about maximum for ' '=0.2t and is substantial for 
、 

which is the reason why did we choose electron filling 

0.25 in Figs. 4.2-4.5. 

Finally, we discuss the possible practical setup for high con-

trollability of FM in graphene-bcLsed samples on the basis of our 

analysis. From Fig. 4.5, especially the global picture shown 

in Fig. 4.6, it is clear that the strength of ferromagnetic cor-

relation strongly depends on the electron filling, which may 

be manipulated by the electric gates in graphene, since n oc 

Vg[2l, 33，34]. The filling region for inducing FM required here 

likely exceeds the current experimental ability. In fact, the chal-

lenge of increasing the carrier concentration in graphene is i n � 

deed very important and it is a topic now in progress. The 

second gate (from the top) and/or chemical doping methods 

are devoted to achieving higher carrier density[79, 80, 81], and 
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recently, G. Li, et. al have induced VHS within the range of 

Fermi energy achievable by gate tuning, which opens intriguing 

prospects for VHS engineering of electronic phases in graphene-

bascd materials[82]. Moreover, the hydrogenated nanographite 

is predicated to show spontaneous magnetism[83], ferromagnetic 

insulators deposited on graphene can induce ferromagnetic cor-

relation in graphene[84] and the room-temperature FM coming 

from the defects on graphene has been observed[85]. Hence, our 

results present here indicate the electron filling markedly affects 

the magnetic properties of graphene, and the high controlla-

bility of FM may be realized in ferromagnetic graphene-based 

samples. Furthermore, the change of ferromagnetic correlation 

with t' may also lead to high controllability of FM in graphene. 

I 

For example, one can tune i! by varying the spacing between lat-

tice sites. Tuning t_ can also be realized in a triangular optical 

bilayer lattice of dipolar atoms[72’ 73，74 

In summary, we have presented exact numerical results on 
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the magnetic correlation in the Hubbard model on a honeycomb 

lattice. At temperatures where the DQMC were performed, we 

found ferromagnetic fluctuation dominates in the low electron 

filling region, and it is slightly strengthened as interaction U 

increases. The ferromagnetic correlation showed strong depcn-
i 

dancc on the clcctron filling and the ncxt-ncarest-neighbor hop-

ing integral. This provides a route to manipulate FM in ferro-

magnetic graphene-based samples by the electric gate or varying 

lattice parameters. The resultant high controllability of FM in 

ferromagnetic graphene-based samples may facilitate the new 

development of many applications. 

\ 

• End of chapter. 



Chapter 5 

Magnetic Impurity in Graphene 

5.1 Introduction 

In this chapter, we theoretically examine a localized impurity 

atom on the graphene sheet. We use non-perturbative numer-

ical method, DQMC based on HF algorithm [65], to study the 

local moments on impurity hybridizing with inner shell electrons 

in graphene. In section 5.2，we present the Anderson Hamilto-

nian in graphene describing an adatom, with Coulomb interac-

tions between unaligned spins, hybridizing with carbon atoms 

in graphene. And then we give a brief introduction of Kondo 

80 
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problem in this system which is very sensitive to the DOS on 

the Fermi surface. In section 5.3, we focus on the chemical po-

tential of graphene which can be used to tune the Fermi energy 

experimentally. Through calculating the local moments and spin 

susceptibility of impurity we find that it is possible to switch on 

and off the local moments of impurity with medium or large hy-

bridizations by tuning chemical potential of graphene. In section 

5.4, we use maximum entropy method to study the spectral den-

sity of impurity which can be measured by the experiments of 

scanning tunneling microscope. We mainly find two unconven-
•J. 

tional behaviors distinguishing from those of impurity in normal 

metal. 
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5.2 Anderson Impurity Model in Graphene 
( • 

• , 

and Kondo Problem 

Our starting point is Anderson impurity model describing an 

impurity with a single orbital of energy Sd and Coulomb repul-

sion U• In graphene,the impurity couples with the conduction 

electron states of carbon atom with hybridization V. The to-
、 

tal Hamiltonian is H — Ho + Hi + and the first term is 

tight-binding Hamiltonian of graphene 

Ho = -t [dla^ja + H.C.] — + bl^bia], (5.1) 
< i j>，a ia 

where a j and b] create electrons with spin a at sites Rja and 

HIB on sublattices A and B, respectively. The hopping energy 

t is about 2.8 eV [51] and (JL is chemical potential which can 

be tuned by gate voltage. There are two bands, the tt and tt" 

bands, with width of 3t touch each other at six Dirac points in 
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V • • / . . • 
the first Brillouin zone'. The second term is impurity part as . -

• • • . • . . 

-hl /dld^dldi： . (5.2) 
�CT. 

Here d^ creates an.electron with spin a at impurity orbital. 
. * 

• 

The last term of Hamiltonian H2 is the hybridization between 

impurity and graphene atom as 

> f a J X + H.C.], (5.3) 
a 

here we consider the impurity is located on the top of the site 

Roa of sublattice A seen in Fig. 5.1, however if we apply Fourier 

transformation to H2 it is clear that impurity is hybridized with 

all conduction electron states in momentum space. 
» 

The Fermi energy is one of the most interesting physical quan-

tity experimentally which can be tuned by gate voltage [38. 

On one hand, in the terms of Anderson's discussion[86] when 

Cd < Ep < £d + U the impurity site is singly occupied and 

has a local moment. So through changing the Fermi energy, we 

can control the local moment of impurity itself. On the other 

J - • 
-V 
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Figure 5.1: (Color online).The impurity atom represented by the red circle 

is on the open surface of graphene sheet and hybridizes with carbon atom at 

ao site. 
• • 

hand, the Kondo effect is an important mechanism for control-

ling the impurity local moment. It is widely known that under 
• « 書 

Kondo temperature TK the impurity and conduction electrons 

form spin-singlet state, and in the meantime the local moment 

is totally screened. And the Kondo temperature is determined 

by the DOS on the Fermi surface, so with vanishing DOS on 

the Fermi surface near Dirac point the impurity behaves as free 

spin until temperature goes to zero. While in the case of Fermi 

surface far away from Dirac point the impurity local moment 

i 
would be totally screened at finite temperature. However, the 
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• . . . • 

一 • . 

recent experiment process does not allow us to change the Fermi 

energy of grapheme arbitrarily and the tunable region is about 

- leV, leV], so we limit all of the calculation in this region. 

5.3 Controlling the Impurity Moments by Tun-

ing Fermi Energy of Graphene 

We solve the problem using DQMC base on HF algorithm that 

allows us to deal with a nonconstant density of states for the host 

material and to avoid sign problem at low temperature [65]. To 

get primary insight, we examine the occupancy number rid 二 

+ and impurity local moment m^ 三�(tfj^c^f — 丄)2� 

as we tune the chemical potential /i. In Fig. 5.2(a) and (b) we 

present the results of rid and m^ versus [i, respectively. They are 

obtained at low.temperature 1 /T = 12S\t\~^. We apply the hole-

particle symmetry £d 二 — f / / 2 and different values of hybridiza-

tion. For small hybridization V = 0.5|t| the occupancy and 
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- - • - . • 

local moment are almost independent of suggesting that the 
• . 

r ‘ 

impurity decouples with graphene in the region — 3|亡| < /j, < 0. 
• s 

r • 
• » 

While for medium and large hybridization, we can tune occu-

pancy and local moment through changing chemical potential 

in the region [ — 0 ] . It is interesting that for different val-

ues of hybridization the tunable regions for rid and rri^ are not 

fixed, which means that the renormalized energy id would shift 

as V changes. Later we will see this point from spectral density 

of impurity. It is clear that when —3\t\ < fi < 0, the change 

of impurity local moment is very limited. So we examine the 

screening of conduction electrons for the local moment. 

We calculate the spin susceptibility of impurity x(了）= dr < 

MD{R)MD{0)�’ where P = L/T and MD{R)=。幵丁爪^⑶已-“丁• 

In Fig. 5.3(a) we show temperature timing spin, susceptibility 

Tx{T) versus logT with hole-particle symmetry £d = —U/2. 

And in term of Clogston-Anderson compensation theorem [87 

Tx{T) is screened moment which includes impurity local mo-
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Figure 5.2: (Color online), (a) Occupancy n^ versus chemical potential of 

graphene /i, and (b) Local moment m^ versus chemical potential of graphene 

/i. In two figures, U — 0.8丨,|，£d = —U12 and the hybridizations are the 

same. 

ment and spin correlation function between impurity and con-
* 

duction electrons. In Fig. 5.3(a) at high temperature the Tx{T) 

approaches to a constant 0.5. As the temperature is lowered to 

1 /T = 64\t\-\ when chemical potential = 0’—0.1 ⑷，Tx{T) 

does not seem to vanish and in the meantime the local moment 

of impurity is conserved well. While in the case of /i is far away 

from Dirac point Tx{T) decays rapidly as lowering the temper-

！ t 

atqre suggesting that impurity goes to Kondo region and local 

moment become screened. In Fig. 5.3(b) we present the results 
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screened moment Tx{T) versus fi with hole-particle symmetry 

and at lower temperature l/T = 1 2 8 �― �H e r e , we still limit 

the calculations in the region for chemical potential [ — 0 . 

For hybridization V = 0.5|^|, 0.6|i|, Tx{T) is independent of // 

while hybridization V 二 0.75|化0.9|亡|’ |̂丨’ Tx{T) becomes tun-

able. Furthermore the screened moment Tx{T) changes form a 

finite value to zero which means that we can switch on and off 

the impurity local moment though tuning the chemical potential 

ji by gate voltage applied to graphene. 

In normal metal with constant density of states with hole-

particle symmetry, the Kondo temperature can be calculated 

as TK OC RV^exp(—7r^u/8), here u = U/nT and F = 7rV^p(e) 

88]. When spin susceptibility Tx{T) shows universal behavior 

at low temperatures, we can extract Kondo temperature 7 ) � 

using Wilson's criterion 

TKXiTK) = 0.025. (5.4) 
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Figure 5.3: (Color online), (a) Temperature timing impurity spin susceptibil-

ity (screened moment) Tx versus logT for ” = 0, —0.1 丨化—0.15|i|, —0.2|i|, 

— 0 . 3 � and hybridization V = l.O\t\. (b) Tx versus " and the hybridizations 

for curves from top to bottom are V = 0.5|i|, 0.6⑷，0.75�’ 0.9|^| and 1.0|( 

U = 0.8丨之I and Ed = -U12. 
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-0.24 -0.22 
»«/tt| 

•Figure 5.4: (Color online). In (a) Kondo temperature T^ versus fi the 

hybridizations for curves from top to bottom are V = 0.9|i|, 0.85|,| and 

O.S\t\. (b) The spin correlation Si versus site i for // = 0, —0.2\t\ and — 

and hybridization V = 0.75⑷，and temperature l/T = 6 4 �一 � .I n (a)-(b), 

U = 0 . 8 � and £d = -U/2. 

The results are shown in Fig. 5.4(a) where TK is a function of 

chemical potential /i. When chemical potential is far away from 

Dirac point, Kondo temperatures become saturated and TK is 

higher as hybridization increases. We see that as // shifts towards 

Dirac point the Kondo temperature decays rapidly. Kondo tem-

peratures can be tuned in different regions of chemical potential 
« 

ji with distinct values of hybridizations. To study the screen-

ing of impurity local moment, we calculate the spin correlation-



Chapter 5. Magnetic Impurity in Graphehe •‘ 91 

function Si between impurity and electrons on the graphene lat-

tices. Here, the correlation function is defined as Si = (m^mi), 

where rrii is the, magnetic moment of the grapjjene atom. In Fig. 

5.4(b), the first atom is the site which the impurity is located 

at. There is anti-ferromagnetic correlation between impurity 

and the on-site graphene atom, and as /i is farther from Dirac 

point the correlation increases. While when /i is near Dirac 

point the correlations of the nearest or next-nearest neighbors 

become larger, because in this case the graphene has strong anti-

ferromagnetic correlation reduced by impurity. From the results 

of n山 m^, Tx{T) and 7)〈、we see that although the original pa-
. * 

• 、 

rameters £d and U are the same, we can change these physical 

quantities in distinct regions of /i with different hybridizations. 

一 》 

The possibility for us to control impurity is determined by the 

positions where renormalized energy levels of impurity are lo-
» 

cated, so it is necessary to study the spectral density of impu-

rity. 
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5.4 Spectral Density of Impurity 

Prom QMC based on HF algorithm, A{UJ) is obtained by a 

maximum entropy analytic continuation of the imaginary-time 

Green's function[89, 90]. In Fig. 5.5，the temperature 1 /T = 

12丨亡I一1, for Trotter approximation A r = 0.25, and for every 

subfigure SD = —(7/2. In Fig. 5.5(a), we present results of A{UJ) 

with different values of Coulomb interaction U. For transition 

metals in a metallic matrix, the Coulomb interaction is of the 

order of � 5 — 10 eV, here we do the calculations by � 3 — 
« 

5.5 eV. Firstly, there is no Kondo peak at Fermi surface cj = 0 

because of vanishing DOS at Dirac point in graphene. And when 

Coulomb interaction U increases the two peaks of A{UJ) are sep-

arated further and broadened in the meantime the self-energy 

of impurity is enhanced due to the increase of DOS in graphene. 

Secondly, the maximums of A{OJ), corresponding to levels for 

spin-up and spin-down electrons, are shifted from Ed and €d-^U 
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and the energy difference D between two peaks is much smaller 

than U, and the similar results have been obtained by numerical 

renormalization group method [55 . 

In Fig. 5.5(b), we present the results of A{UJ) with different 

hybridizations V and /i is located at the Dirac point. We see that 

when the hybridization increases, the two peaks of A{UJ) shift to-

wards the Dirac point and in the meantime the peaks become 

sharper suggesting the self-energy of impurity decreases. These 

behaviors are absolutely different from the case of impurity in 

normal metal. In normal metal, and above the Kondo tempera-
乂 ‘ 

ture, the spectral density of impurity has two Lorentzian peaks 

centered at cj 二 士f//2 with width F == And when hy-

bridization increases the centers of two peaks can not shift, at 

the same the peaks will collapse. In Fig. 5.5(c) we examine the 

case of impurity in doped graphene (ji 二.—0.15|i|) the spectral 

density A{UJ) is enhanced in the negative-cj zone and has the 

similar properties to those shown in Fig. 5.5(b). We propose 
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Figure 5.5: (Color online), (a) The spectral density of impurity A{u) for 

V = 0.96|^|, /i = 0 and from top to bottom, U = |化 l.2\t\, 1.4|i|, 1.6|(| and 

1 . 8 � .( b ) T h e spectral density of impurity A{uj) for U = 1 . 2 � ’ fi = 0 and 

the hybridizations, from top to bottom, are V/U = 1，0.9, 0.8，0.7, 0.6 and 

0.5. (c) The spectral density of impurity A{u) in the case of /x = —0.15|i 

and U = O.S\t\. (d) The energy difference between two peaks D versus 

hybridization V and here D�V are unit of U. In (a)-(d) the orbital energy 

of impurity Ed = —V12. 
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a qualitative explanation of these unconventional behaviors of 

A{UJ) as following. By Hartree-Fock theory spectral density bf 

impurity with spin a is ^ . 

A ^ M 二 丄 — — (5.5) 

here E^ = £d ^ < 几d，歹�,r(a;) 二 and the total 

density of states A{U}) = ^ ^CRI^)- Firstly, we consider the 

parameters and £d + U are in the linear-DOS region, and then 

p{(jj) 二 o^M, and r(a;) = here a = AC is 
t 

the unit cell area and v r̂ is Fermi velocity. It is easy to obtain 

\ that there are also two peaks for A{(JJ) at 
\ 

CJ] = ~ . , 

(5.6) 
Sd + U 

here S = ANV'^^ and at the same time the values of the max-

imums for A{UJ) are l/7rr(cJi) and l/7rr(a;2)，so the two peaks 

of A{UJ) have shifted from the bare parameters SD and SD U 

and the distance between them is smaller than U. In graphene, 
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Ac �10一20m2, VF �1 0 6 m s - i， a n d with V �l e V , we can es-

timate 沪 � 1 0一 4 � 1 . So in linear-DOS region, when the 

hybridization V changes the shift of two peaks is not obvious. 

Secondly, beyond linear-DOS region and with medium or strong 

Coulomb interaction, we expand p{u) around Ed to the first or-

der P{LJ) 二 f)�ED) + p'{ED){J^ — £d), then it is easy to extend the 

calculation through replacing a by Using the analyze for-

mula of p(cu) [51], in the region of |a;| from 0.b\t\ to 0.8⑷，p\uj) 

has the order of 0.1 — 1 eV一2 so the term S'̂  in Eq. (5.6) has 

the order of 1，and the shift of two peaks from Sd and £d + U will 

become clear. So as hybridization increasing the renormalized 

energy level of impurity moves towards the Dirac point, and the 

self-energy of impurity decreases. In Fig. 5.5(d)，we examine 

the energy difference D in details. To compare with the case of 

impurity in normal metal 二 £/’ we show the results of ratio 

D/U. We see that when the coulomb interaction U is larger 

this kind of shift is more obvious: when U = 0.8 i，V" == 0.4[/ 
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Tiinable 
Region 

U 
Figure 5.6: (Color online).(a) The schematic of STM tip is shown, and when a 

voltage is applied there is a current flowing from tip to impurity and graphene 

surface. In case of weak coupling for tip, the differential conductance is pro-

portional to A{ijj). (b) The recent experimentally tunable region of chemical 

potential /i is about [-leV,leV]. The possibility of controllability for impurity 

local moment is determined by the overlap between impurity levels and this 

tunable region. Large hybridization can push impurity levels into this region. 

the difference D is bout 7Q%U, while U approaches to 1.6\t\ the 
r 

difference D is only about 28%U. 

The unconventional behaviors of spectral density are due to 

strong Coulomb interaction and large hybridization of impurity. 

These resonant levels can be directly measure by STM experi-
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merits. In Fig. 5.6(a) it is shown the schematic of using STM tip 

to measure the spectral density of impurity and when a electric 

voltage is applied, there is a current flowing from the tip to the 

impurity and graphene. Considering the weak coupling between 

STM tip and graphene, the STM differential conductance at low 

temperature is given by [91，92 

drre 
0{Vg) 二 - ^ P t A i f i + e l / , ) ( 5 . 7 ) 

where eVg is the gate voltage drop from the tip to the ^sample, 

pt is the tip DOS at the Fermi energy which can be regarded as 

a constant and + eVg) is the spectral density of impurity. 

So if the Fermi surface lying at the Dirac point the differentia；! 

conductance is proportional to A{eVg). Prom the results of 

in Fig. 5.5, we see that the Coulomb interaction is in the region 

3 � 5 . 5 eV and hybridization 1.1 � 5 . 5 eV, and all the resonant 

levels are in the region < 1 eV , which implies that the STM 

can measure these resonances. So firstly, the unconventional be-
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haviors of spectral density let it easier to detect resonant levels 

of STM and it is not required that the bare parameters of im-

purity £d and £d + U are in the region |a;| < 1 eV. Secondly, 

from the results of occupancy , local moment, screened moment 

and Kondo temperature versus chemical potential of graphene, 

we see that in the recent experimental process, and with small 

hybridization the physical properties of impurity are almost in-

dependent with /i, while with medium and large hybridizations 

these physical quantities become tunable in different regions of 

FJI. The unconventional behaviors of A{UJ) are good for us to 

control impurity local moment, especially, when the bare pa-

rameters of £d and Sd U are out of the tunable region which 

can be achieved by the recent experimental process. 

• End of chapter. 



Appendix A 

Tight-binding Spin 

Susceptibility 

In this appendix, we provide detail derivation of the spin suscep-

tibility of tight-binding model on the bilayer triangular lattice 

= j 7 { k } (乂1 + 力2 + 乂3 + + 乂5 + Aq) (A.l) 
I 

where � 

- P 武 P � / 3“ . 

In the following we will calculate the six no-zero terms in 
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Eq.(A.l) . V 

They are 

= 

= e (丑 [〈几 k i i a � � n k 3 i a ' �知 i , k A 3 ’ 

(A.2a) 

= 

=(^k i l ^ r ) (^k32a') 4i,k2 43,k4) 

二 e (々五 k )〈几 k i h r � � l -叫 2 2 � � 

A-

(A.2b) 

a,a' (A.2c) 

二 e(五k?五k-2)T[�nki2,��nk32�,�^^k.^a.k, 

+ � n k i 2 a �( 1 — ？^k22tr'�Jki,k/k2’k3<5a’a'], (A.2d) 

X 

= 

二 �nki2cT�(NKALCT'} (A.2e) 
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= � < 2 “ T ) c 4 2 l c r ( T ) 4 3 l a '成 42a'� 

e(五k—1-碌)T (1 -

102 

(A.2f) 

Because of 6 function the factor ？⑷ equals to one. 
I 

After performing the integration over /3 and sum over R\ and 

Rj the six terms become 

1 f 办 X ^ X ^ h w 成 

S e 解 kV 吃 + q ) _ i 

= 蒜 知 五 k + 「 丑 l U 〈 〜 卵 - � �� � 

+ 禁 E �a � � n k 3 i丄 (A.3a) 
•ki，k3 

we see that Eq. (A.3a) has two parts, the first part represents 

the correlation in band E \ while the second part is only the 
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contribution of the point F in band E+ ‘ 

1 �P 

� ij {k} 
giq(Hi-fij)+i(ki-k2)/?i+t(k3-k4)-/?j 

ki，k3 
(A.3b) 

Eq. (A.3b), is*only the correlation at point P and describes the 

_ 
correlation between two bands. This term has no contributions 

to spin susceptibility. 

1 � 1 

yV3 
ij W 

e 

S^y ^ e 解 「 丑 “ ) - 1 

4N fit - E ki+q 

�TT^kiia�(1 - (nki+q2a))， (A.3c) 

Eq. (A.3c) is the correlation of E+ and E一: the electrons not 

only occupy the lower hand but also have possibility to occupy 

the upper band. The following three terms have the similar 
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forms: 

1 rft 1 

ij {k}-

——(1 一�nki+q2rT〉） 
4YV ^ ER - E7 ‘N 

k, ki ki+q 
q’0 

P ^〈几k i 2 a � 
AN 

ki.ka 

ij {k} 

知，0 

AN 
:i’k3 

1 f ^ . n p l 
7V3 J 

JO . ij {k} 

‘ ' • e ^ k - i - ^ k W — i  

五k?五k+i+q 

• (^ki2a) (1 — (^ki+qla)). 

(A.3d) 

(A.3e) 

(A.3f) 
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We sum four terms of X i i ( q ) : 

� n i t (丑i，T) n i t 一 ( ^ i t (丑i, T) nil (丑 j ) � 

- { n i l {Ru r ) nit (^j))' + …U (风,丁) ^U (^j))‘ 

and obtain Eq.(3.10). 
• • 

For xn (q), the definition is similar to xii (q) 

X i 2 ( q ) 二 去 广 彻 ) � m眺 i ， T ) m - ( i ? j i ) 〉 ， （ A . 4 ) 
ij . 

where Rn denotes the position of the atoms in the first layer and 

Rj2 the second layer. We also note that xn (q) is independent 

of the related position of the two atoms in one unite cell. After 

derivations similar to xii (q), we obtain 

Xi2 (q) 二 Ci + C2 + C3 十 C4, (A.5) 

which also has four terms, two came from intraband electrons • « . 

and the other two came from interband electrons. 
I 

Ci 二 K + q l a �一 〈 ， 。 外 ) (A.6a) 
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C2 = 
4N ka 

� n k + q l a�- (nk2a) 

K+q - K 

(A.6b) 

C3 = 
4N 

K(T ^k+q — E�+ 
(A.6c) 

C4 ^ Y^�y^k+q2j -�nk2a�ci(«pk_4_ •fk) 
AN k(T ^k+q — E; 

(A.6d) 

The phase factor came from the linear transformation of Eqs. 

* ^ 

(3.3a) and (3.3b), which was defined as . 

e 鄉 二 
Pk 

Ac 
(A.7) 

We have 

giCV̂ k+q-V'k) 二 
1 + + g-i(k+q)-53 
1 + gi(k+q).(at-a|) + g-i(k+q)-a^ 
I g-ik-(ai-a2) + gikoj 

+ gzk-(at-a2) Q-IK AI 

• End of chapter. 
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