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Abstract 

Two important focuses in neuroscience are to study how animals process sensory 

stimuli, and how such stimuli get associated with other sensory modalities through 

experience. Often, sensory stimuli elicit the oscillatory synchronization of neurons 

in different parts of the brain, and thus may constitute an important stage in sensory 

processing. Odor-evoked oscillatory synchronization has been observed in a wide 

variety of animals, including mammals and insects. Despite differences in details of 

anatomical structure, animals from widely different phyla appear to use similar 

strategies to encode odors. Here, using the moth Manduca sexta, I examined the 

factors that cause odor-evoked oscillatory synchronization of olfactory neurons and 

that determine the frequency of these oscillations. I found that frequency of 

i 

oscillations decreased from � ,40 Hz to � 2 0 Hz during the course of a lengthy odor 

pulse. This decrease in oscillatory frequency appeared in parallel with a decrease in 

net olfactory receptor output, suggesting that the intensity of olfactory receptor 

neuron input to the antennal lobe，the first olfactory relay center, may determine 

oscillatory frequency. However, I found that changing odor concentration had little 

effect on oscillatory frequency. Combining the results of recordings made in vivo 

and computational models, I found that increasing odor concentration recruited 

additional, but less well-tuned olfactory receptor neurons to respond to the odor. 

Firing rates of these neurons were tightly constrained by adaptation and saturation. 

My work established that, in the periphery, odor concentration is mainly encoded by 

the size of the olfactory receptor neuron population that responded to the odor, 

whereas oscillatory frequency is determined by the adaptation and saturation of this 



response. 

Neural representations of odors get associated with other stimuli through experience. 

Are action potentials the neural representation that directly gets associated with 

reinforcement during conditioning? In Manduca, I found that odor presentations 

V 

elicited only one or two spikes at odor onset (and sometimes offset) in each^of a 

small portion of Kenyon cells, a population of neurons known t o c r u c i a l for 

olfactory associative learning. By using a series of odor-taste associative 

conditioning paradigms with various sucrose presentation timings, I carefully 

controlled the temporal overlap between Kenyon cell spiking and sucrose 

reinforcement timing. I found that in paradigms that led to learning, spiking in 

Kenyon cells ended well before the reinforcement was given. Further, increasing 

the temporal overlap between Kenyon cell spiking and sucrose reinforcement 

actually reduced learning efficacy. Therefore, spikes in Kenyon cells are not the 

neural representation that gets directly reinforced, and Hebbian spike 

timing-dependent plasticity in Kenyon cells alone cannot underlie this learning. 
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摘要 

祌經科學研究的其中兩項重要項目’是研究動物如何處理感官剌激，與該 

刺激如何與其他刺激透過經驗聯繁起來。通常，感官刺激會令位於大腦不同部 

位的神經細胞產生同步式的振動。因此，這同步式的祌經細胞振動可能是大腦 

處理感官刺激的一個重要階段。由氣咮激起的祌經細胞的同步式振動已在多種 

動物中發現，其中包括喷乳類動物和昆蟲。雖然各種動物的喚覺系統在細節上 

有解剖結搆的差異，但是不同動物門的動物似乎是用大致一樣的策略來作氣咮 

編碼。在此工作中，我用烟草天域研究了產生喚覺系統祌經細胞同步式振動的 

的因素，及影举此振動頻率的要素》我發現神經細胞的振動頻率在一個較長的 

氣味剌激中從~"40赫兹下降至-20赫兹。這振動頻率的下降與喚覺受體神經元的 

淨輪'出同時下降’因此’振動頻率可能取決於喚覺受想神經元的反應烈度。然 

而’我發現，氣味滚度的變化對振動頻率的影準不大。結合在活體內記錄的細 

胞活動和電腦棋型的結果，我發現加強氣味漢度增加了對該氣味有反應的嘆覺 

受體神經元數目。這些嘆覺受艘神經元的反應拔格地受制於適應作用和飽和。 

我的研究確定了在周邊神經系統，氣味漢度主要是以有反應的。臭覺受體神經元 

的多少來編瑪’而振動頻率則取決於適應作用和飽和。 

氣味的神經代表透過經驗與其他感官刺激產生聯繁。動作電位是在訓練過 

程中直接得到加強的神經代表嗎？在煙草天喊中我們發現，氣味只在一小部分的 

飢兄恩細胞（已知是聯想學習中至關重要的細胞）中激起了一個或二個動作電 

位。這些動作電位通常發生在氣味剛開始的時候，但有時也會發生在氣味剛結 

束的時候。通過使用一系列的氣咮與味覺聯想訓練程序，我仔細地控制了凯尾 

恩細胞動作電位，簾糖獎赏在時間上的重4。我發現在那些可導致學習的訓練 

程序 t ’飢足恩：細胞的動作電位早在給予漁糖獎赏之前結束。此外’增加飢尾 

恩細胞動作電位與掩糖獎赏的時間重4滅少了聯想學習的效果。因此’飢尼恩 

vn 



細胞的動作電位不是直接獲得蔬糖獎赏所強化的神經代表’而且’這種學習不 

能單靠在飢足恩細胞中海扁式動作電位時間依相可塑性作為基礎。 
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1 Introduction 

My thesis addresses two important questions in olfaction. Olfactory stimuli elicit 

oscillatory synchronization in groups of neurons in many species. However, what 

determines the properties of these oscillations is poorly understood. 1 found that, in 

the moth Manduca sexta, odor stimuli evoke oscillatory synchronization in the 

antenna) lobe (AL) and mushroom body (Mb), much like that found in locusts and 

Dmsophila. Combining results from in vivo electrophysiological recording and 

computational models, 1 found that the frequency of this oscillatory activity is 

determined by the adaptation and saturation of olfactory receptor neurons (ORNs). 

The MBs of insects receive neural input about both odors and food; thus, these 

structures have long been proposed to be the site where odor-food associative 

memory forms. Here, 1 investigated odor-activated spiking in MB intrinsic neurons, 

the Kenyon cells (KCs). By providing food at different specific times during such 

spiking,里 examined the mechanism that can link odor with food information in the 

MB. This dissertation begins with an overview of olfaction. 



1.1 Overview 

1.1.1 The nature of olfaction 

Animals perceive the chemical world around them through the chemical senses -

olfaction and gustation. Chemosensory neurons react with volatile molecules in the 

environment without necessarily metabolizing them. This allows for the fast 

detection and recognition of chemicals that are present, or any changes in 

concentration of chemicals, allowing prompt behavioral responses. Gustation 

requires the animal to make direct contact with the source of chemicals, but olfaction 

detects the sources from a distance. This makes olfaction an excellent modality for 

animals to navigate, explore, orient, and detect changes in air- or water-borne 

chemical components in the environment. In fact，olfaction plays crucial roles in 

almost all animals for survival and reproductive success. Animals use olfaction to 

locate food sources, find mates and offspring, recognize territories, induce 

oviposition, and to avoid danger. In humans, interestingly, olfaction is also 

extremely evocative. Many report it evokes emotions and stimulates the 

imagination most deeply among all the senses (Dethier, 1994). 

Whereas the visual or auditory systems detect stimuli that fall along a single, 

continuous function of wavelength or frequency, the olfactory system has to 

recognize discrete molecular structures of odorants. Unlike vision or audition, it's 

not easy to provide a compact description of the odor world. Odorants vary in 

molecular size, functional groups, branching patterns，three-dimensional structures, 

and numerous other physio-chemical features. Thus, olfaction requires an 

enormous capacity for detection, description，and recognition. This fundamental 



difference among the different senses is reflected in the number of receptor genes in 

the system - in humans, there are only three classes of photoreceptors to absorb light 

from the whole visual spectrum (Nathans et a I., 1986), but there are about 400 

olfactory receptor (OR) genes expressed in ORNs. In rodents whose primary sense 

is olfaction, as many as 1,200 functional OR genes are expressed (for review, see Nei 

et al.，2008). 

For terrestrial animals, odorants are carried by air to reach the olfactory organ. 

Odorants are typically hydrophobic molecules that weigh between 26 and 300 

daltons (Mori and Yoshihara, 1995). One obvious reason for the upper size limit of 

odorants is that volatility falls rapidly with molecular size, so that heavier molecules 

are less able to remain in the air and reach the olfactory organs. Another reason 

may be that the ORs cannot accommodate molecules larger than certain sizes (Turin 

and Yoshii, 2003). 

The dispersion of odorant molecules after being released from the source depends on 

two simultaneous processes: (1) molecular diffusion — the random, heat-related 

Brownian motion of molecules, and (2) turbulent diffusion - the transport and 

scattering of odor molecules caused by uneven movements in the medium carrying 

the molecules (Murlis et al., 1992). While molecular diffusion is a slow and 

small-scale phenomenon, turbulent diffusion is vigorous and displays a wide range of 

spatial and temporal scales depending on the ambient environment. Therefore, 

turbulent diffusion generally dominates odor plume development in nature (Murlis et 

a/., 1992). With the use of an ionized air tracer, Murlis and Jones (1981) showed 

that odor molecules released from a point source become organized into a series of 

discrete packets separated by clean air. As they encounter olfactory organs， 



typically, odor packets are 100 ms long and 500 ms apart, but are widely variable in 

concentrations and durations depending upon environmental factors (Murlis and 

Jones, 1981). Thus, as animals encounter them, odor traces in the natural 

environment are usually not continuous but are rather highly intermittent. 

1.1.2 The pheromone system 

In most animals, the olfactory system really consists of two subsystems that are 

generally both anatomical and functionally distinct: the pheromone system and the 

general olfactory system. The pheromone system detects and processes highly 

species-specific molecules. To describe these molecules, Karlson and Luscher 

(1959) coined the term 'pheromone' (derived from the Greek pherein, which means 

to transfer; and hormon, which means to excite) to define substances which are 

secreted to the outside by an individual and received by a second member of the 

same species, in which they release a specific reaction (Karlson and Luscher, 1959). 

Responses to pheromones are instinctual - no learning is required after birth (Hudson, 

1985; Moncho-Bogani et a!.，2002). Most pheromones cause an immediate 

behavioral response upon reception, like aggregation, aggression, or courtship 

behaviors. ‘ These pheromones are referred to as releaser pheromones. Another 

type of pheromone has a physiological effect on the recipient, such as changes in 

hormone levels, and the effect is often delayed. Exposure to the odor of an 

unfamiliar male mouse within the first few days after coitus, for example，causes the 

blockage of ovoimplantation in female mice by inhibiting release of prolactin (Bruce, 

1970; Parkes and Bruce, 1962). This type of pheromone is referred to as primer 

pheromone. Some pheromones, on the other hand, can cause both behavioral and 

endocrine changes in the recipient (Johnston，2003). 



Reactions to pheromones can be mediated by single pheromone compounds or 

blends of pheromone compounds. In the case of pheromone blends, a mixture of 

several chemicals in precise proportions is released. Responses to the blend strictly 

depend on the proper proportions of the components - if the proportion of the same 
> 

component chemicals is altered, no response, or much reduced effects can be 

observed (Linn et al., 1987). Most insect sex pheromones are blends rather than 

single chemical compounds (Linn and Roelofs, 1989); often, different insect species 

use the same chemicals in different proportions (Sorensen, 1996). For odors used 

for individual (Gorman, 1976; Smith et al., 2001) or kin recognition (Gamboa et al., 

1996), a ‘mosaic signal' containing a large number of compounds is commonly used. 

In this case, the proportions might vary considerably across individuals (Johnston, 

2005). 

Extensive studies in mammals and insects have established the importance of 

pheromones. Pheromones are well-known to influence sexual activities in rodents. 

Five compounds found in adult male urine are shown to accelerate female puberty 

(Jemiolo et al., 1989; Novotny et «/•，1999). Male urinary proteins are also found to 

influence estrous cycles in females (Marchlewska-Koj et a!., 2000; More, 2006). 

Pheromones in urine from female rodents, on the other hand, signal its ovulation 

stage and can serve as attractants to males and inducers of sexual activity (Rekwot et 

a/” 2001). 

Pheromones also guide innate feeding behavior in mammals. Pheromones from the 

maternal breast, for example, guide pups searching for nipples for feeding. The 

nipple-search pheromone plays an especially crucial role in rabbit pup survival, 

because female rabbits leave their young immediately after giving birth, and only 



return to nurse their pups for a few minutes a day (Hudson, 1985). Similar roles of 

pheromones appear to present in humans also - maternal breast odors are found to 

elicit preferential head orientation by infants and help guide them to the nipples 

(Porter and Winberg, 1999). But the possible effects of pheromones on adult 

humans, who rely relatively little on olfactory cues, are poorly understood and 

probably minimal (Tirindelli et al., 2009). 

Although pheromones are found throughout the animal kingdom, our current 

knowledge about these chemicals mostly came from research in insects. Honeybees 

are known to use a wide variety of pheromones to establish efficient communications 

within the colony. The order of the hive in a colony is strongly determined by 

pheromones produced by the queen, worker bees, brood and possibly drones. The 

queen mandibular pheromone secreted by queen honeybee, for example, stimulates 

the colony to forage, build comb, and to rear larvae (Wright, 2009b). Worker bees 

responsible for guarding and defense, on the other hand, can present several alarm 

pheromones that attract other worker and guard bees and make them more aggressive 

when confronting noxious stimuli or enemies (Breed et al., 2004). 

Sex pheromones emitted by female moths can attract males from several kilometers 

away. Upon detecting a sex pheromone plume, male moths approach the source not 

directly, but through countertuming: a zigzagging track with successive alternate 

turns, crossing back and forth through the plume's boundaries (Kanzaki et al., 1992; 

Willis and Arbas, 1991). Counterturning appears to be a result of a self-generated 

behavioral program triggered by pheromones. In male moth Bom byx mori, a single 

pulse of pheromone elicits a series of countertums (Kanzaki et al., 1992). A group 

of interneurons with descending axons to the thoracic ganglia appears to play 



important roles in counterturning by switching their firing rates between high and 

low firing frequencies. Spiking in these interneurons is correlated with the activity 

of motor neurons that contribute to the zigzag turning behavior (Kanzaki and 

Mishima, 1996; Olberg, 1983). 

Studies have indicated that the temporal profile of a pheromone plume affects the 

way moths orient toward the plume source. Male moths do not fly upwind in an 

airstream uniformly permeated with pheromone, but will fly towards the source of 

pulses of pheromone (Baker et cil” 1985; Kennedy el a I., 1980; Kennedy et ai, 1981). 

This behavior is not due to adaptation in pheromone receptor neurons because moths 

readily responded to a pheromone plume added on top of a background of continuous 

pheromone stream (Baker et al., 1985; Kennedy el al., 1981). Studies in various 

species of moths showed that males flew or walked straighter upwind to fast-pulsed 

plumes than to slow-pulsed plumes (Kanzaki et al., 1992; Mafraneto and Carde, 

1994; Vickers and Baker, 1994). Therefore, fluctuations in pheromone 

concentration in air strongly influence pheromone tracking in male moths. 

The pheromone system is generally considered to operate like a labeled-line system, 

one in which separate, non-interacting pathways connect specific sensory structures 

with the appropriate response structures. In both insects and mammals, pheromones 

are detected by highly specific receptors located in the periphery - in the mammalian 

vomeronasal organ and in the insect antenna. The detected pheromone information 

is then sent to specialized clusters of neurons in the first olfactory relay where it is 

processed separately from general odors (Christensen et ai, 1995; Sorensen，1996; 

for review, see Bigiani et al., 2005; Hildebrand, 1995; Vosshall, 2008). This 

processing scheme provides fast and precise knowledge about the odor. However, 



since a dedicated channel is required for each compound, this system can only serve 

to detect a few odorants that are crucial for the animal. 

My study focuses on the insect general olfactory system. In contrast to the 

pheromone system, the general olfactory system employs ORs that probe different 

molecular features of odorants. Thus, each receptor neuron can be activated by a 

variety of odorants, and each odorant can activate a number of different ORN types. 

In contrast to the labeled-line system for pheromones, it is the combined activity of 

all activated ORNs that forms the neural representation of the non-pheromonal 

odorant. A description of the processing and coding of general, non-pheromonal 

odors appears later in this chapter. 

1.1.3 The general olfactory system 

Unlike the highly specific pheromone system, the general olfactory system (referred 

to as the olfactory system hereafter) detects and processes almost any volatile 

chemical in the environment. This generality is important to ensure that animals 

can collect as much information as possible from the surroundings because such 

information could determine the life or death of the animal. The general nature of 

this task makes the non-pheromonal olfactory system a good model for exploring 

how the brain processes information. 

The olfactory system is remarkable in that it can detect, recognize, analyze, 

distinguish, and memorize an enormous number of different odor molecules. It has 

been estimated that more than 400,000 compounds are odorous to the human 

olfactory system (Mori and Yoshihara, 1995). Even subtle differences in molecular 

structure can result in profound changes in the perceived odor. Further’ odors in 



nature are generally blends of odorants. Most floral scents, for example, consist of 

tens of chemical compounds released at particular proportions, it is the combined 

effects of these chemicals that give rise to the unique scent of the flower (Dudareva 

and Pichersky, 2000). Given the huge number of chemicals that can activate the 

olfactory system, and the astronomical number of possible combinations of these 

chemicals, the number of smells we can perceive is almost without limit. 

Olfactory neuropils of animals in different phyla have surprisingly similar 

neuroanatomical structures and physiological responses to odors (Ache and Young, 

2005; Benton, 2006; Hildebrand, 1995; Kay and Stopfer, 2006). The olfactory 

glomeruli, spherical clusters of complex synapses clearly distinguishable from 

surrounding tissues, are found in animals from invertebrates like insects and 

crustaceans to vertebrates like fish and mammals (Hildebrand and Shepherd,丨997). 

In both mammals and insects, there is a tremendous convergence of ORNs onto the 

glomeruli, and then modest output divergence from the glomeruli to higher brain 

areas (Hildebrand and Shepherd, 1997). Within the glomeruli, excitatory projection 

neurons (PNs) and inhibitory local intemeurons (LNs) interact with each other and 

with ORNs. The outcome of these interactions is to create temporally dynamic 

patterns of activity in the output neurons that consist of bursts of spikes and periods 

of inhibitions (fish: Friedrich and Laurent, 2001; insects: I to et al.�2008 - this work, 

see Chapter 3; Laurent et al., 1996; Stopfer et al., 1997; mammals: Bathellier et al., 

2008; Fuentes et al.’ 2008). Because of the reciprocal interactions with local 

inhibitory neurons, the spikes of these excitatory output neurons are highly 

synchronous - these activities can be observed as odor-evoked neural oscillations in 

a variety of animals (fish: Friedrich and Laurent, 2001; mammals: Eeckman and 

Freeman, 1990; Kashiwadani et al” 1999; insects: I to et al., 2009 - this work, see 



Chapter 2; Laurent and Davidowitz, 1994; Stopfer et a/.，1997). 

However, despite these striking similarities, phylogenetic analyses show that these 

common features are not homologous across phyla (Eisthen2002). it is therefore 

often proposed that evolution of the olfactory system is. convergent, that animals 
% 

having distinct origins evolved to acquire the same features because there is a unique 

efficient way to process odors, given common selective pressures such as 

physiological and chemical constraints (Ache and Young, 2005; Eisthen2002; 

Strausfeld and Hi丨debrand, 1999; Vosshall et ai, 2000). 

1.1.4 Advantages of insects as animal models for the study of 

olfactory processing 

The insect olfactory systems are similar to, but contain fewer total numbers and types 

of neurons than the vertebrate olfactory system (Benton, 2006; Hildebrand and 

Shepherd, 1997; Strausfeld and Hildebrand, 1999). Yet, like mammals, insects can 

perform well in odor-guided and learning behavioral tasks. Thus, the insect 

olfactory systems present a good model for the study of fundamental principles of 

olfactory processing and odor-guided behaviors that are common among animals in 

different phyla. Also, findings in the insect olfactory systems can provide 

important insights for research on other olfactory systems, and for understanding 

more general principles of information processing by neurons, 

t 

Besides, insect olfactory systems are easily accessible to electrophysiology. Insect 

ORNs on the antennae are remote from the brain, and external to the animal. 

"Therefore, extracellular recordings from receptor neurons can be done without 

dissection. The early olfactory processing centers, the ALs and MBs, are on the 
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dorsal surface of the brain - only minimal surgical exposure of these areas is required 

to make recordings in vivo. These advantages allow the study of olfactory 
4. 

processing in a multi-layer system in almost-intact animals. Anatomical details of 

the insect olfactory system appear in the next section. 

Further, insects are capable of a variety of odor-driven behaviors. Attraction to 

food odors is common among insects. Without learning, naive moths Manduca 

sexta approach paper flowers with floral odors added (Raguso, 2002). Odors from 

bananas and mangos are consistently attractive to different wild-type strains of 

Drosophila malenogaster (Ruebenbauer el al., 2008). Interestingly, whereas carbon 

dioxide is an attractant to mosquitoes, it is a potent stress odor that evokes robust 

avoidance behavior in Drosophila (Gillies, 1980; Suh et cil., 2004). Higher-level 

behaviors like odor discrimination, and olfactory learning and memory behaviors 

have also been observed in many insect species (Daly el al., 2001; Davis, 2005; 

Heisenberg, 2003; Skiri et a!., 2005; Stopfer et al.’ 1997; Wright et ai, 2009). 

Among all insects, honeybees display perhaps the most impressive learning ability. 

Honeybees can learn to associate an odor with food in just one pairing trial 

(Bitterman et al., 1983)，and can differentiate odors differing in length by a single 

carbon (Stopfer et al., 1997). These capabilities allow the study of neural basis of 

complex behaviors in insects. 

Finally, genetic tools are now available in some insect species. The whole genome 

sequences of several insects are now available (e.g. the fruit fly Drosophila 

melanogaster (Adams et al., 2000)，the silkmoth Bombyx mori (Xia et a!.’ 2008) and 

the honeybee Apis mellifera (Weinstock et al.’ 2006). Among these, a variety of 

tools has been developed for measuring and manipulating neural activity in 
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Dmsophila (for review, see Luo et al., 2008; Olsen and Wilson, 2008). Expression 

of GFP, a fluorescent protein, in a known, genetically tagged population of neurons 

guides experimenters to the desired cell type for intracellular recordings. Neural 

activity can be monitored in neurons expressing a genetically-encoded fluorescent 

activity reporter in restricted population of neurons (Jayaraman and Laurent, 2007). 

Further, expression of channelrhodopsin in neurons allows temporally 

well-controlled activation of selected neurons by light (Zhang et al., 2007a). By 

raising the ambient temperature by a few degrees, neurons can be reversibly silenced 

by blocking neurotransmitter release (Kitamoto e( al., 2002). With the use of these 

tools and others, there have been tremendous advances in understanding insect 

learning and memory mechanisms in recent years (for review, see Davis, 2005; 

Heisenberg, 2003). Taken together, such fundamental information necessary for 

genetic manipulations allows sophisticated functional studies in insects. 
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1.2 Anatomy and physiological responses of 

the insect olfactory system 

In insects, processing of odorants begins mainly in the antenna, a structure composed 

of three parts 一 the basal scapus, the pedicellus, and the flagellum. The basal 

scapus and the pedicellus are the first two segments from the proximal(end, and 

contain surface mechanoreceptors that project to dorsal neuropils of the 

deutocerebrum (Lee and Strausfeld, 1990). The flagellum, on the other hand, carries 

mostly chemoreceptors, although receptors sensing other modalities like humidity 

and temperature are also found there (Altner ei al” 1981; Lee and Strausfeld, 1990; 

Nishikawa et a!” 1995; Tichy and Loftus, 1990; Zimmermann, 1991). Receptor 

neurons are housed in spine-like structures called sensilla. Sensilla are small, 

porous, cuticular encasements that typically contain a few ORNs and accessory cells 

that are bathed in sensillum lymph (Lee and Strausfeld, 1990; Shields and 

Hildebrand, 200丨；Steinbrecht，1998). 

In moths and many other insects, the flagellum is sexually dimorphic. In the moth 

Manduca setxa, for example, the male flagellar segments are keyhole-shaped in 

cross-section, whereas female flagellar segments are oval or circular. The 

additional surface area in the male antennae is occupied by sensilla containing 

pheromone receptor neurons (Vosshall, 2008). In insects, ORNs can also be found 

in the mouth part, the maxillary pulp, as Tvell. 

1.2.1 Odorant-binding proteins 

Most of the protein components of nasal mucus in mammals and the sensillum lymph 
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in insects are odorant-binding proteins (OBPs) (Pelosi, 1994; Vogt and Riddiford, 

1981). OBPs were first discovered in the moth (Vogt and Riddiford, 1981) and then 

in the cow (Pelosi et a/•， 1982) with the use of ligand-binding assays. Insect OBPs 

are small globular proteins of about 135 to 220 amino acids, and are characterized by 

a specific domain made of six a-helices linked by three disulphide bonds (Leal et aL, 

1999; Scaloni et a/.，1999). OBPs are synthesized by accessory cells in the sensilla 

and are then secreted to the sensilla lymph. 

The existence of OBPs in both vertebrates and invertebrates suggests an evolutionary 

convergent adaptation. In both, OBPs appear to play crucial roles in olfactory 

processing. However, despite more than two decades of research, the precise 

functions of OBPs remain poorly understood. By far, most of our understanding of 

insect OBPs came from studies of pheromone-binding proteins (PBPs). Odorant 

molecules need to dissolve in and move through the aqueous sensilla lymph in order 

to reach the receptor dendrites. For large and highly hydrophobic molecules like 

pheromones, this process would be very inefficient. It has therefore been proposed 
< 

that OBPs bind to and transport these hydrophobic molecules to the receptor neurons 

(Sanchez-Gracia et al., 2009; Steinbrecht, 1998). In support of this，Van den Berg 

and Ziegeiberger (1991) showed，with electrophysiological recordings from the 

perfused sensilla of a moth, that PBPs can solubilize pheromones, reduce the 

concentration threshold required to activate receptor neurons, and that the 

PBP-pheromone complex is capable of activating receptor neurons (Berg and 

Ziegeiberger, 1991). 

Another potential function of OBPs is to perform an initial screening for molecules， 

1 

regulating those that can activate ORNs located in the same sensillum. Multiple 
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OBPs have been found in a single species (in insect: Maida et a!., 1997; Maida et a!.� 

2005; McKenna et aL, 1994; Pikielny et al., 1994; in mammals: Felicioli ei al., 1993; 

Garibotti el al., 1997; Pes and Pelosi, 1995), and the expression of OBPs appears to 

correlate with different types of sensilla (Shanbhag el al.’ 2001; Vogt et al” 1991). 

Binding assays showed that different OBPs bind selectively to different odorants 

(Prestwich et al., 1995). Two PBPs from the same species of moth, for example, 

showed opposite preferences to two pheromone blend constituents (Du and 

Prestwich, 1995). Moreover, anti-sera against the PBPs of one moth species 

showed cross-reactivity towards the lymph from sensilla that are tuned to the same 

pheromone in other moth species (Steinbrecht, 1996). These results are consistent 

with a role for OBPs as initial filters that influence the types of odorants that can 

reach ORs. 

OBPs may also act as deactivators of odorants. These two possible roles of OBPs -

as transporters and deactivators of stimulant molecules - may at first seem to be in 

conflict. However, Ziegelberger observed that PBPs in a moth can exist in two 

forms, one reduced and one oxidized, differing only in the number of disulphide 

bridges (Ziegelberger, 1995). Kinetic experiments showed that pheromone 

molecules first bind to the reduced form of PBP. After activating the receptor, the 

receptor catalyzes the redox shift in PBPs and the resulting oxidized PBP-odorant 

complex is no longer able to activate the receptor (Kaissling, 1998; Ziegelberger, 

1995). This limits the duration of activation of receptor neurons and contributes to 

sensory adaptation. 

Other proteins, including the odorant degrading enzyme，esterases, and the 

transmembrane protein SNMP, are also found in the peri-receptor space. The 
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functional roles of these proteins, however, remain unclear. 

1.2.2 Olfactory receptors 

The very first step of the olfactory system toward odor recognition is to detect and 

discriminate the tens of thousands of odorants in the environment. The OR 

repertoire of an animal determines the range of odorants it can process. However, 
r 

the molecular basis of odorant recognition remained speculative until Buck and Axel 

cloned the OR multigene family in mouse in 1991 (Buck and Axel, 1991). 

Buck and Axel screened the RNAs expressed in the mouse olfactory epithelium 

based on the assumptions that ORs are likely to belong to the seven-transmembrane 

domain superfamily characteristic of many types of biological receptors, and that, 

from the large variety of odorants that ORs can recognize, ORs themselves should 

exhibit significant diversity and thus be encoded by a large multigene family (Buck 

and Axel, 1991). This work opened new avenues of research for understanding the 

molecular recognition of odorants. Because of this ground-breaking work. Buck 

.and Axel were awarded the Nobel Prize in Physiology or Medicine in 2004. 

The OR multigene family constitutes the largest gene family in the genome. In 

human, it comprises about three percent of the genome. The number of functional 

OR genes varies extensively among vertebrate and insect species. To date, 1391 

OR genes have been discovered in mouse, among which 328 are pseudogenes. In 

human, about 800 OR genes have been found, but more than half are pseudogenes 

(Nei et a!” 2008). Among mammals, the gene-to-pseudogene ratio is lowest in 

human，higher in other primates, and highest in mouse and rat. This may reflect 

that olfaction plays a more crucial role for survival in rodents than in human 
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(Olender et al” 2008), and the relatively lesser requirement for olfaction in primates 

(Gilad et al., 2004). The number of OR genes is much smaller in insects. By far, 

the largest number OR genes was found in the red flour beetle Triholium castaneum 

(Abdel-Latief, 2007; Engsontia et al., 2008), which expresses as many as 163 OR 

genes (Robertson and Wanner, 2006). The variation in OR gene number among 

species appears to reflect evolutionary specialization for different environmental 

habitats (for review, see Nei et al., 2008). 

The first insect OR gene superfamily was discovered in Dmsophila by two separate 

groups of American scientists (Gao and Chess, 1999; Vosshall et al” 1999). 

Because of the availability of powerful genetic manipulations in Dmsophila, by far, 

the most comprehensive information about insect ORs came from studies in this 

species. In Drosophila’ there are 60 functional OR genes. Two of these genes 

undergo alternative splicing, thus there are 62 OR types in total (Robertson et al” 

2003). On the antenna, different OR genes are expressed in different regions along 

the proximal-distal and dorsal-ventral axes (Vosshall et al., 1999). 

While each mammalian ORN expresses a single OR, each Dmsophila ORN 

expresses two ORs: a divergent, conventional OR, and a highly conserved OR 

encoded by the gene Or83b (Jones et al., 2005; Krieger et al., 2003; Larsson et al., 

2004). The co-expression of a highly conserved receptor subunit appears to be 

ubiquitous in insects 一 Or83b orthologs have been found in other insects like other 

flies, mosquitoes, moths, honeybees and beetles (Krieger et al., 2003; Melo et al., 

2004; Pitts et al., 2004). 

Although neurons expressing OR83b alone do not respond to any of a large panel of 

odors (Elmore et al” 2003), genetically deleting Or83b disrupted 
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electrophysiological and behavioral responses to odors (Larsson et al” 2004). In 

the absence of odor stimuli，ORNs in mutant flies lacking OR83b showed very little 

spontaneous activity. OrSSb mutants produced no odor-evoked responses to stimuli 

with general odors in electroantennogram recordings (a recording technique that 

measures summed ORN activities), or in recordings from an indentified sensillum 

known to be responsive to these odorants. Further, OrHSh mutation also caused 

severe impairments in odor-mediated behaviors in larval and adult flies (Larsson et 

al., 2004). 

In the same study, Larsson and colleagues (2004) also found that OR83b helps 

localize conventional ORs to the dendritic end of receptor neurons. With 

biochemical assays, OR83b was found to dimerize with conventional ORs (Neuhaus 

et al” 2005). Heterologous expression of the conventional OR, OR43a, showed a 

thousand-fold increase in ligand sensitivity when it was co-expressed with OR83b 

(Neuhaus et al., 2005). Later, Benton and colleagues (2006) showed that OR83b 

heterodimerizes with conventional ORs early in the endomembrane system in ORNs. 

This complex then couples to the conserved ciliary tracfficking pathway, and is 

transported to the dendritic ends of ORNs. The same study also showed that 

genetically turning off OR83b expression after flies reached adulthood caused a 

progressive decline in the amount of conventional OR in the cilia. Therefore, the 

OR-OR83b heterodimer is critical for both localization and maintenance of ORs in 

the sensory cilia (Benton et al., 2006). 

Proteins in the insect OR superfamily have seven-transmembrane domains and 

consist of about four hundred amino acids (Abdel-Latief, 2007; Hill et al” 2002; 

Krieger et al., 2002; Vosshall et a/.， 1999). Although it has been widely assumed 
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that insect ORs, like vertebrate ORs, belong to the G-protein coupled receptor 

(GPCR) superfamily (Clyne et ai, 1999; Gao and Chess, 1999; Vosshall et a!., 1999), 

、 
insect ORs are actually evolutionarily unrelated to either mammalian ORs or any 

other known GPCRs (Benton, 2006). In fact, experimental investigations revealed 

that Drosophila ORs adopt a membrane topology quite different from GPCRs - the 

N-terminus of the Drosophila OR is located in the cytoplasmic side of the plasma 

membrane, and OR83b associates with conventional ORs through conserved loops 

on the cytoplasmic side (Benton et al., 2006; Lundin et al., 2007). Thus, relative to 

the vertebrate version, they are partly inside-out. 

The signal transduction mechanism in insect ORs has been controversial for years. 

Various second messengers like inositol triphosphate, diacylglycerol, cGMP, and 

calcium have been found to participate in OR signal transduction (Kaissling, 1996; 

Martin et ai, 2001; Zufall et ai, 1991; Zufall and Hatt, 1991). However, there has 

been no strong evidence to show that any of the tested second messengers are 

necessary for OR signal transduction (for review, see Touhara and Vosshall, 2009). 

Several recent studies showed that, unlike the classic vertebrate classic GPCRs, the 

heterodimeric insect ORs, in fact, comprise a new class of ligand-activated 

non-selective cation channels (Nakagawa et al” 2005; Sato et ai, 2008; Wicher et ai, 

2008). When expressed in heterologous systems, binding of odorant ligand to 

insect OR complexes induced non-selective cation currents that lead to increase in 

intracellular calcium (Nakagawa et ai, 2005; Sato et al., 2008; Wicher et ai, 2008). 

Further，outside-out patch-ciamp recordings showed direct evidence that the OR 

heterodimer forms odorant-gated ion channels (Sato et a!,, 2008). 

On the other hand, Wicher and colleagues (2008) also observed that, besides a fast 
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transient current, odor application also leads to a slowly activating and slowly 

decaying current that is ATP- and GTP-dependent. Expression of OR83b alone 

results in functional ion channels that are not only directly responsive to odorants, 

but can also be activated by intracellular cAMP or cGMP. Thus, these authors 

concluded that insect odorant receptors form both ligand-gated ion channels and 

cyclic-nucleotide-activated non-selective cation channels (Wicher et al” 2008). 

However, Sato and colleagues did not detect increases in intracellular cAMP upon 

ligand stimulation (Sato et cil., 2008). Therefore, there is still controversy regarding 

the role of cyclic nucleotide cascades in OR signal transduction. In spite of this, the 

consensus appears to be that insect ORs represent a distinct type of ligand-gated ion 

channel among proteins in the seven-transmembrane domain superfamily. This 

distinct type of signaling mechanism in insects may have evolved because of the 

need for fast olfactory responses in flying insects, because insect ORs consistently 

respond faster (within 18-28 ms) then vertebrate ORs (50-200 ms) to olfactory 

stimuli (Sato et al” 2008). 

The molecular features of odorants that ORs recognize remained elusive. Araneda 

and colleagues conducted a rigorous investigation of the tuning profile of the rat 17 

odor receptor (Araneda et al., 2000). By presenting octyl aldehyde, a potent ligand 

of the 17 receptor, and many other chemically related ligands to animals 

overexpressing this receptor in the olfactory epithelium, the authors found that the 17 

odor receptor was highly specific for an aldehyde group, and has strict steric 

requirements around the carbonyl group. The 17 receptor, however, was rather 

tolerant to the aliphatic tail of the odor molecule (Araneda et al., 2000). This work 

suggested ORNs respond best when activated by odorant molecules that physically 

fit well within their binding pockets. In Drosophila, using a mutant antennal 
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neuron that lacks endogeneous ORs (Dobritsa et 口/•， 2003), Hallem and Carlson 

conducted a comprehensive study of the molecular tuning of all OR types expressed 

in the antennae (Hallem and Carlson, 2006). In separate experiments, the 

researchers expressed each one of the different OR types in that "empty neuron," and 

recorded the responses of these neurons to over a hundred odors. They found that 

the firing rate of the ORN depends on the chemical class of the odor, and that the 

receptive range of the ORN population forms a continuum from narrowly tuned to 

broadly tuned. The experimenters projected the receptors' responses into 

multidimensional analysis space for visualization. They showed that odors of 

particular chemical classes often cluster together. However, a cluster never 

included all odorants of the same chemical class. Therefore, the chemical class is 

one feature, but not the only feature that determines an ORN's responses (Hallem 

and Carlson, 2006). 

Recent computational studies that use numerous molecular descriptors to quantify 

physiochemical features of odorants showed some degree of success in predicting 

neural responses to odors in vivo. However, the predictive power of an individual 

set of molecular descriptors varies among OR types and across studies (Haddad et ai, 

2008; Schmuker et a/.，2007). Taken together, ORs do not appear to rely on one or 

a few simple chemical features to recognize odorants. Considering the large variety 

of odorants present, each OR type likely detects a different aspect of the odorant 

chemical space. 

Electrophysiological studies of responses of ORNs to odorants revealed several 

features of olfactory coding in ORNs. Spiking responses of ORNs showed dynamic 

changes in firing rates over the course of a stimulus. Also, an individual ORN 
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could respond in an excitatory or inhibitory fashion, depending on the stimulus 

odorant (de Bruyne et al., 1999; de Bruyne et al.’ 2001; Duchamp-Viret et uL, 2000; 

Hallem et al.’ 2004; Shields and Hildebrand, 2000). Such patterning of action 

potential timing depended both on the chemical identity of the stimulus odorant, and 

on the odorant's concentration (de Bruyne et al, 1999; Duchamp-Viret et al., 2000; 

Heinbockel and Kaissling, 1996; I to et a!” 2009 - this work, see Chapter 2). Further, 

ORNs showed a wide range of tuning breadth and spectra, and odorants varied 

widely in the number of receptors they could activate (de Bruyne et a/.，2001; 

Hallem ef al., 2004; Hallen2006; Ito et al.’ 2009 - this work, see Chapter 2; Malnic et 

a/.，1999; Shields and Hildebrand, 2000). Therefore, each odorant activates many 

different types of ORNs, and different odorants activate overlapping sets of ORNs. 

So, odors appear to be encoded by the combination of ORNs that they activate, and 

the firing patterns that they elicit in these ORNs. 

1.2.3 Antennal lobe 

When presented with odorants, ORNs that detect those molecules send patterns of 

action potentials along their axons to the AL, the first olfactory relay center in insects, 

or the olfactory bulb (OB)，the mammalian structural and functional analogue of the 

AL. In most insects，ORN axons terminate in glomeruli in the ipsilateral AL 

(Tolbert and Hildebrand，1981; Figure 1.1). A well-known exception to this 

organization feature is that some fly ORNs send their axons bilaterally to glomeruli 

in both ALs (Stocker, 1994). 

» ) 

Glomeruli are distinct synapse-dense structures in the AL and OB in which multiple 

types of neurons interact with each other, in both excitatory and inhibitory fashions. 

In insects, glomeruli are formed by ORN axons, neurites of PNs, LNs, and some 
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Figure 1.1. Schematic diagram of the insect olfactory system. 

centrifugal neurons, together with the synapses among these neurons (Boeckh et a!., 

1987; Boeckh and Tolvert, 1993; Homberg et a/.，1988; Homberg et al.’ 1989; 

Tolbert and Hildebrand, 1981). In the moth Manduca sexta, the AL houses about 

820 PNs and 360 LNs (Homberg et a!.’ 1988). The AL of the honeybee Apis 

mellifera contains 1000 PNs and 750 LNs. Centrifugal neurons that send axons to 

the AL are not well characterized in any insect species. In Manduca, many of these 
、-

centrifugal neurons have dendritic arbori严tions in higher olfactory processing 
4 • 

centers; therefore, these neurons may send feedback signals to influence olfactory # 

processing in the AL. 

Axons of ORNs expressing the same OR converge onto the same glomeruli in the AL 
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(Bhalerao et a/., 2003; Couto et al., 2005; Fishilevich and Vosshall, 2005; Gao et al” 

2000; Vosshall et al.’ 2000), or the OB (Ressler et al., 1994; Vassar et ul., 1994). 

Thus, odor information in each ORN type is channeled to individual glomeruli, 

generating a spatial representation of ORN activity in the AL and OB. 

Odor-evoked patterns of glomerular activation have been observed in diverse animals. 

With the use of the 2-deoxyglucose uptake method, Gordon Shepherd's group first 

demonstrated, in rats, that stimulation with different odorants caused activation of 

different，but overlapping subsets of glomeruli (Sharp et al., 1975; Stewart et al., 

1979)，and that the extent and density of glomerular activation was greatest with the 

highest odor concentrations (Stewart et al., 1979). Later, intrinsic signal optical 

imaging in rats (Rubin and Katz, 1999) and in mice (Belluscio and Katz, 2001) 

confirmed these findings, and further showed that the odor-evoked activation 

patterns are bilaterally symmetrical, and are similar across individuals in the same 

species. In fact, Soucy and colleagues showed, in both rats and mice, that glomeruli 

having the same odor response profile to hundreds of odors (and thus likely be 

innervated by the same OR types) are precisely positioned in each OB of a given 

animal, and across individual animals in the same species (Soucy et al., 2009). 

Similar results have been obtained from insects. Calcium imaging in honeybees 
、 

showed that odors evoked specific, spatio-temporal excitation patterns in the AL 

(Joerges el al., 1997). Patterns of glomerular activation were similar over repeated 

presentations of the same odor, but were distinct when stimulated with different 
、 

odors (Joerges et al., 1997). These activity patterns were bilaterally symmetrical 

(Galizia et al.’ 1998), and were highly conserved across individuals (Galizia et al” 

1999). Further, in honeybees (Sachse and Galizia, 2003), moths (Skiri et a/.，2004) 
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and flies (Wang et al.，2003)，increases-in odor concentration resulted in stronger 
» 

•‘ / 
activation of individual glomeruli, and recruited more glomeruli to respond. 

Patterns of glomerular activation appear to change over the course of a stimulus. 

With the use of a calcium-sensitive dye, Spors and colleagues revealed that responses 

in individual glomeruli in the mouse OB vary over time, with different response 

latencies and rise times (Spors et al., 2006). However, imaging techniques using 

intrinsic signals or activity reporter dyes typically have low temporal resolutions 

(tens of milliseconds or longer) compared to electrophysiological recording 

techniques (Reiff et al., 2005; Shariff et al., 2006). Therefore, the fine temporal 

profile of odor-evoked glomerular activation remained unclear. 

The subsets of glomeruli that were activated appeared to correlate with chemical 
• .St 

features of odorants that were delivered. Two separate studies in flies and moths 

revealed that compounds in the same chemical class typically activated the same 

clusters of glomeruli. The glomerular maps activated by odors from one chemical 

class were different, but partly overlapped with those activated by odorants 

belonging to other chemical classes (Hansson et al., 2003; Rodrigues, 1988). 

However, interestingly, Sachse and colleagues reported that, in honeybees, 

glomerular receptive field mainly depended on carbon chain lengths rather than 

functional groups (Sachse et al” 1999). 

Uchida and colleagues tested the relationship between structural features of odorants 

and spatial distribution of the activated glomeruli in rats. They found that the dorsal 

OB responds preferentially to fatty acids and aliphatic aldehydes, and that variations 

within each group of chemicals, such as differences in carbon chain length or 
« 

branching pattern, are represented by local differences in activation patterns (Uchida 

、25 



et a/.，2000). They concluded that odorant representation depends on two aspects of 

molecular features of the odorant - primary features like functional groups 

characterize each domain, and secondary features like carbon chain lengths and 

branching are represented by local positions in each domain (Uchida et aL, 2000). 

Consistent with this finding，Belluscio and colleagues showed that, in mice, 

representations of aliphatic aldehydes with different carbon chain lengths vary 

systematically along a rostral-caudal axis of the dorsal OB, supporting the presence 

of a rough chemotopic map primarily based on the functional groups of chemicals 

(Belluscio and Katz, 2001). However, the specific locations of domains activated 

by an odorant are likely to be unique to the species (Johnson, e/ al., 2009). it is 

important to note，though, that a method has never been shown to predict the 

locations of activated glomeruli when given the chemical structure of an odorant. 

The relationship between an odorant's structure and the location of glomeruli that 

respond to it is incompletely understood and may not be simple. 

Within the OB or AL, the ORN-specific channels interact extensively. In the insect, 

ORNs terminating in glomeruli of the AL form excitatory, cholinergic synapses onto 

PNs and LNs (Distler and Boeckh, 1997; Distler and Boeckh, 1997a; Homberg et al., 

1995; Yasuyama et al” 2003). Upon activation by ORNs, cholinergic PNs further 

excite LNs within the same glomeruli; in turn, inhibitory, GABAergic LNs form 

reciprocal synapses onto PNs, as well as other LNs (Distler and Boeckh, 1997; 

Distler and Boeckh, 1997a; Leitch and Laurent, 1996; Olsen and Wilson, 2008a). 

The multiglomerular LN-LN interactions create a channel of crosstalk among 

glomeruli which shape the odor responses of PNs (Olsen and Wilson, 2008a). 

Although the LN population has long been regarded as purely inhibitory, a 

population of excitatory LN was discovered recently in flies (Shang et al., 2007); 
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excitatory LNs may exist in other insect species, too. 

In the AL, PNs are the only known output neurons, carrying odor information to 

downstream processing centers. Morphologies of PNs in the AL vary among insect 

species. Whereas PNs in fruit flies are mostly uniglomerular, innervating a single 

glomerulus (Stocker et al., 1990), PNs in locusts are all multiglomerular, innervating 

10-20 glomeruli each (Ernst et al” 1977; Farivar, 2005; Ignell et al., 2001). In bees 

(Fonta et al., 1993), moths (Homberg el ai., 1988; I to et a/.，2008 - this work, see 

Chapter 3; Kanzaki et al., 1989) and cockroaches (Strausfeld and Li, 1999), both 

uniglomerular and multiglomerular PNs are found. 

Electrophysiological recordings of PNs allow examination of their responses to odors 

with a fine temporal resolution and provide clues about how PNs convey information 

about odorants. PN odor responses display temporal structures at two timescales -

a slower, temporally varying pattern of PN spiking activity, and a faster, periodic 

synchronization of PN spikes, causing local field potential (LFP) oscillations in the 

AL and MB (Figure 1.1). When stimulated with odor, PNs typically show 

temporally complex activities that contain both excitatory and inhibitory components, 

together with periods of quiescence (Figure \.2A and B). Durations of excitations 

and inhibitions in PNs are highly variable - odors can elicit bursts of spikes or 

periods of inhibitions in PNs that last from tens of milliseconds to seconds. Such 

slow temporal patternings of the odor response 6f PNs are consistent over repeated 

exposures to the same odor, different when exposed to another odor or different 

concentrations of the same odor，and different among individual PNs (Ito et al., 2008 
e 

. • •• 
- th i s work, see Chapter 3; Laurent et al., 1996; Stopfer et al.’ 2003). Thus, these 

firing patterns contain information about the odor. Similar temporal dynamics have 

、27 



also been observed in mitral cells in the OB (Bathellier et al., 2008; Fuentes et al., 

2008)，although the responses of mitral cells, constrained by the respiratory cycle of 

vertebrates, are typically less elaborate than those of insect PNs. 

The slow temporal patterning in PNs appears to arise mainly from two sources - the 

activation of slow, GABAs-like receptors on PNs by LNs (Bazhenov, et al.’ 2001; 

Macleod and Laurent’ 1996; Wilson and Laurent, 2005), and the temporally 

structured odor response in ORNs (de Bruyne et al.’ 2001; Hallem and Carlson，2006; 

Raman et al., submitted). The population of responsive PNs thus forms a series of 

spatial activity maps that temporally evolves over the course of the stimulus, 

producing a spatiotemporal neural representation that is conveyed to higher order 

olfactory centers. 

To analyze odor representations in the PN population, their responses can be 

projected as trajectories in high dimensional analysis space (Stopfer et al., 2003; 

Figure 1.2C). These trajectories reveal PN population dynamics that typically 

consists of three phases - a dynamic transient at the odor pulse's onset, a relatively 

static fixed point, and a dynamic offset transient at the odor pulse's offset (Mazor and 

Laurent’ 2005). This indicates that individual PNs typically respond to odor with 

dynamic changes in firing rates at odor onset, settle in a relatively static phase after a 
、 

few hundreds of milliseconds, and then go through another period of rapid increase 

or decrease in firing rates after odor is removed. Analysis with simple classification 

algorithms confirmed that spatiotemporal patterns of PN activity can be used to 

successfully identify different odors, odor concentrations, and odor timings with 
9 

optimal stimulus separation during the onset and offset transients (Brown et al., 2005; 

Ito et a!.’ 2008 - this work, see Chapter 3; Mazor and Laurent, 2005; Stopfer et al.. 
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Figure 1.2. Evolution of odor-evoked PN activities. 
(A) Odor presentation evokes complex spatial-temporal patterns in PNs, containing 
excitatory and inhibitory components. Different PNs responded differently to the 
same odor. Odor presentation timing is indicated by the green bar. (B) The same 
PNs in (A) responded differently to another odor (blue bar). (C) PN activities can 
be visualized by dividing the activity of a PN ensemble into a series of points, each 
point representing PN ensemble firing within a time bin. A trajectory can be 
formed for each odor-PN ensemble combination by joining each these points (green 
trace). Over time, the trajectory moves away from the start position (position 1 )， 
reaches to a point that is clearly distinguishable from the start position (position 2), 
and then back to the start position, along a different route, when odor is removed 
(position 3). For the same PN ensemble, a different trajectory is formed when 
stimulated with a different odor (blue trace). (D) The difference between the PN 
ensemble firing patterns can be used to classify odors. Classification is most 
successful immediately after odor onset and offset，when the PN ensemble responses 
evoked by different odors are most different Modified from Kay and Stopfer, 
2006. 
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2003; Figure 1.2D). 

On a faster time scale, the reciprocal, excitatory-inhibitory interactions between PNs 

and LNs cause PNs to fire synchronously. Such synchronous activity can be 

detected in the AL and MB as 15-20 Hz LFP oscillations in locusts (Laurent and 

Davidowitz, 1994), and as 20-40 Hz LFP oscillations in moths (Ito et al., 2008 - this 

work, see Chapter 3). These LFP oscillations are thought to be generated by 

excitatory and inhibitory pre-synaptic potentials. 

In any given oscillation cycle, only a portion of the responding PNs are active. 

Among the spikes of these active PNs, only a portion fire synchronously at a 

particular phase relative to the LFP oscillations (Laurent and Davidowitz, 1994). 

Thus, synchrony between any two PNs is transient, and odor-specific (Wehr and 

Laurent, 1996). The ensemble of active, synchronous PNs is updated in each 

oscillatory cycle, and evolves throughout the course of odor stimulation (Laurent et 

al., 1996). Thus, the evolving maps of PN activity evolve at the rate of the 

oscillatory cycle. In locusts and moths a new map appears about every 50 ms. 

Application of picrotoxin, a specific G A B A A receptor antagonist, within the AL, has 

been shown to selectively block fast inhibition between LNs and PNs. Picrotoxin 

injected into the AL abolished synchronization among PNs, and eliminated LFP 

oscillations in the AL and MB, confirming that oscillatory activities recorded in the 

MB calyx are primarily caused by synchronized PN activities that arise in the AL (Ito 

et al., 2009 - this work, see Chapter 2; Macleod and Laurent, 1996). Picrotoxin, 

however, did not affect the slow temporal patterning of PN odor responses (Macleod 

and Laurent, 1996; Stopfer et al” 1997)，which are mediated in part by GABAs-type 

receptors. 
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Oscillatory synchronization in the olfactory network was first observed in the 

hedgehog by Adrian (1942), and has since been found in mollusks (Gelperin and 

Tank, 1990)，insects (Ito et al” 2009 - this work, see Chapter 2; Laurent and 

Davidowitz, 1994; Stopfer et a!.’ 1997), fish (Friedrich and Laurent, 2001; Satou, 

1990)，crustaceans (Sandeman and Sandeman, 1998), rodents (Neville and Haberly, 

2003)，and primates (Hughes and Mazurowski, 1962), providing further evidence for 

the use of a similar strategy across species to process odor information. The 

functional significance of oscillations was tested in honeybees, using an odor 

discrimination task. Picrotoxin injected, desynchronized honeybees can readily 

distinguish odorants with very different odorant structures. However, these treated 

honeybees could not distinguish structurally similar odorants, a task that is 

well-performed in the control group of bees injected with saline (Stopfer et al., 1997). 

In locusts, desynchronization of PNs by picrotoxin injection caused degradation of 

odor specificity in p-Iobe neurons, a type of MB extrinsic neurons that read KC 

outputs (MacLeod et al., 1998). Thus, oscillatory synchronization of olfactory 

neurons is functionally relevant, and essential for fine odor discrimination. 

1.2.4 Mushroom body 

The MB receives direct olfactory inputs from PNs. KCs, the intrinsic neurons of 

the MB, extend dendritic arbors into the MB calyx, the input region of the MB, 

where they receive synaptic inputs from PN axon terminals. The number of KCs can 

range from thousands to hundreds of thousands, depending on the insect species 

(Farris and Sinakevitch，2003). in locusts, for example, there are about 50,000 KCs 

in each of the bilateral MBs. In locusts, surprisingly, although KCs greatly 

outnumber PNs, each KC is connected to about half of the PNs, so each KC receives 
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inputs from about 400 PNs (Jortner et al., 2007). In addition to olfactory inputs, the 

calyx appears to receive inputs from visual, auditory, and mechanosensory systems 

as well (Groneberg, 2001; Strausfeld and Li, 1999). Consistent with receiving such 

diverse input, the MB has long been found to participate in olfactory learning and 

memory (Erber, 1980; Heisenberg et al., 1985), and in other higher brain functions 

like sensory integration (Li 1997; Li and Strausfeld, 1999; Mizunami et al., 1998), 

place memory (Mizunami et al., 1998) and decision making (Zhang et al.’ 2007). 

Axons of KCs run along the pedunculus and terminate in the lobes of the MB, where 

they synapse onto the MB's extrinsic neurons. Although KC neurites in the 

pedunculus and lobes are generally referred to as axons, evidence exists that they 

actually receive inputs from other protocerebral neurons, MB extrinsic neurons, and 

other KCs (Li and Strausfeld, 1997; Strausfeld, 2002; Farris, 2005). There are two 

main classes of KCs, classified according to their branching patterns in the lobes. 

Class I KCs comprise the largest population of KCs. Class I KCs form dendritic 

trees in small regions in the calyx, and bifurcate to supply the ventral (or "a") and 

medial (or “P”）lobes of the MB. Class II KCs are also called the “clawed” or ‘Y， 

KCs, as they form distinct claw-shaped dendritic terminals that sample all regions of 

the calyx, and their axons form the “丫” lobe of the MB (Farris, 2005). Each KC 

receives input from various combinations of PNs that represent different glomeruli 

(Tanaka et al., 2004). 

In the lobes of the MB, KCs synapse onto MB extrinsic neurons. Various types of 

MB extrinsic neurons showing distinct patterns of branching and physiological 

responses have been found. Many of these neurons respond to stimuli of more than 

one sensory modality, and therefore likely integrate multi-modal inputs (Li and 
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Strausfeld, 1997). A distinct class of MB extrinsic neuron with innervations in the 

MB calyx and the pedunculus has been found. Some of these neurons are 

GABAergic and thus may mediate feedback to the calyx (Li and Strausfeld, 1999). 

Besides receiving excitatory inputs from PNs, KC dendrites in the MB calyx also 

receive dense GABAergic innervations from other protocerebral neurons. One 

main source of these inhibitory inputs to KCs is the lateral horn intemeurons (LHls). 

Several lines of evidence suggest that the lateral horn (LH) is involved in innate 

olfactory behaviors (Datta et al.’ 2008; Heimbeck et a/., 2001; Jefferis et al., 2007). 

Jefferis and colleagues conducted a detailed anatomical study of the projection 

patterns of PNs into the LH in Dmsophila. These authors found that the 

posterior-dorsal LH receives inputs from PNs associated with glomeruli responsive 

to fruit odors，whereas the anterior-ventral LH receives inputs from PNs associated 

with glomeruli responsive to pheromones (Jefferis et al., 2007). 

After receiving the output $1^Ms，some inhibitory LHIs send axons to the MB calyx 

where they impose feed-forward inhibition on KCs. This periodic inhibition 

reduces the amount of spiking in the odor responses of KCs (Perez-Orive et al” 

2002). In the MB, KCs transform the highly active, spike-filled spatiotemporally 

dynamic odor code in PNs into a much sparser representation. Sparse sensory 

representation is widely observed in other sensory systems (for review, see Barlow, 

1972; visual: Vinje and Gallant, 2000; Weliky et al” 2003; Young and Yamane, 1992; 

auditory: DeWeese et al., 2003), and in the MB of many insects (locusts: Perez-Orive 

et <3/., 2002; moths: Ito et al., 2008 - this work, see Chapter 3; fruit flies: Turner el al., 

2008; Wang et al., 2004; honeybees: Szyszka et a!.’ 2005). Sparseness can be 

measured in two forms'- the lifetime sparseness, a measure of the amount of action 
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potentials in a single neuron over time, and the population sparseness, a measure of 

the probability that any given member in a neural population will spike in a certain 

period of time. Lifetime sparseness and population sparseness are not necessarily 

correlated (Willmore and Tolhurst 2001), and various degrees of sparseness are 

possible. In the MB, typically, very few KCs in the population will respond to any 

given odor stimulus, and each responding KC typically fires only one or two spikes 

at the odor onset, and sometimes at the offset (Ito et a!.，2008 - this work, see 

Chapter 3; Perez-Orive ei al., 2002; Stopfer et a!., 2003; Figure 1.1). Therefore, 

KCs show a high degree of both population and lifetime sparseness when activated 

by odors (Ito et al., 2008 - this work, see Chapter 3; Perez-Orive et aL, 2002). 

Sparse coding appears to offer some advantages to the processing of sensory 

information (for review, see Olshausen and Field 2004; Ong and Stopfer, 2009). 

Since sparse codes use fewer spikes for signaling, neurons require less metabolic 

energy to restore resting membrane potentials and to recycle neurotransmitters. 

Also, less coding space is required for stimulus representations and for memory 

formation. Furthermore, fewer synapses have to be modified to stabilize the 

learned associations between sparsely encoded stimuli (Laurent, 2002). 

Sparse odor representation in KCs is caused by both intrinsic and circuit properties. 

Intrinsically, active conductances in KCs with strong spike frequency adaptation 

make these neurons especially sensitive to coincident inputs provided by 
I 

synchronized PN spikes (Demmer and Kloppenburg, 2009; Perez-Orive et al., 2002; 

Perez-Orive et al., 2004). From the network point of view, in each oscillatory cycle, 

synaptic input from PNs to the calyx causes some KCs to fire. LHIs, like the KCs, 

receive direct olfactory inputs from PNs. Some LHIs then project axons to the 

、34 



calyx, where they can inhibit KCs with a slight time delay. Thus, each oscillatory 

cycle originating in the AL reaches the KCs as a wave of excitation followed by a 

wave of inhibition, with inhibition closing off the cycle. The net effect of this 

circuitry is that L H I s reduce the time window during which KCs can integrate 

synaptic inputs from PNs (Perez-Orive et a/.，2002). A computational study 

revealed that changes in odor concentrations modulate the response latency of LHIs, 

and thus adjust the temporal window over which KCs can integrate PN synaptic 

input with odor concentration (Assisi et al., 2007). This adaptive mechanism helps 
V 

maintaining sparse KC responses over a wide range of odor concentrations. 

Consistent with this, blocking inhibitory inputs from LHIs by injecting picrotoxin to 

the calyx broadened KC EPSPs, and reduced the odor selectivity and sparseness of 

KC odor responses (Perez-Orive et al., 2002; Perez-Orive et ai, 2004). Thus, 

this circuit function (likely with help from other inhibitory neurons that are mostly 

unknown) effectively sparsens the odor responses of KCs. 

1.2.5 Overview of olfactory coding in insects 

Odorants in the air are detected by ORNs on the antenna. Each ORN type 

recognizes a different set of physiochemical features of odorants; therefore, some 

ORNs are more broadly tuned than others, and a given odorant activates multiple 

types of ORNs (de Bruyne et aL, 2001; Haddad et a!.’ 2008; Hallem et al., 2004; 

Hallem and Carlson, 2006; Malnic et al.’ 1999; Schmuker et al.�2007; Shields and 

Hildebrand, 2000). ORNs expressing the same OR type converge onto the same 

glomeruli in the AL, channeling odor information to PNs and LNs innervating those 

glomeruli (Bhalerao et aL, 2003; Couto et al., 2005; Fishilevich and Vosshall, 2005; 

Gao et al” 2000; Vosshall et al” 2000). In addition, the multiglomerular LNs 
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provide channels of crosstalk among glomeruli (Olsen and Wilson，2008a). 

In the AL, each PN responding to the odor develops slow, temporally evolving 

patterns of spikes that last from tens of milliseconds to seconds. These firing 

patterns in PNs are odor- and concentration-specific (Ito et ul.，2008 - this work, see 

Chapter 3; Laurent et al., 1996; Stopfer et a/., 2003). These patterns are jointly 

caused by the temporally varying ORN activities (de Bruyne et al.’ 2001; Hallem and 

Carlson, 2006; Raman et al., submitted)，and the slow, GABAu-like inhibition by 

LNs (Bazhenov, et a/.，2001; Macleod and Laurent, 1996; Wilson and Laurent, 2005). 

On top of this, the fast excitatory-inhibitory interactions between PNs and LNs 

transiently synchronize individual PNs with each other, generating LFP oscillations 

that can be observed in the AL and MB. In each oscillation cycle, a small portion of 

the responsive PNs will fire reliably at a particular phase relative to the LFP 

oscillations (Laurent and Davidowitz, 1994; Laurent et al., 1996; Wehr and Laurent, 

1996; Figure 1.3). Thus, an odor-specific fraction of the PN population will fire 

synchronously during each oscillatory cycle. The synchronous firing of PNs 

appears to be important to activate KCs in the MB - intrinsic properties of KCs allow 

KCs to summate simultaneous synaptic inputs supralinearly, and therefore KCs may 

serve as coincidence detectors of PN activities (Perez-Orive el ai, 2004). Further, 

besides synapsing on KCs, PNs also innervate the LH and activate LHIs. Having 

received PN inputs, LHIs send waves of inhibitions to KCs with a brief delay. 

Therefore, in each oscillation cycle，KCs receive a wave of odor-specific excitatory 

inputs from PNs, followed by a wave of inhibitions from LHIs, with LHI inhibitions 

closing off the cycle (Perez-Orive et al., 2002). These intrinsic and circuitry 

properties together, and possibly with help from other inhibitory neurons, make KCs 

almost silent at rest, and fire very few spikes in a small subset of KCs when 
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Figure 1.3. PN spiking in each oscillation cycle. 
The excitatory-inhibitory interactions between PNs and LNs causes PNs tend to 
firing synchronously with each other. Nevertheless, not all PN spikes are 
synchronized. In each oscillation cycle, only a small subset of the responsive PNs 
fire synchronously with each other, producing the LFP oscillations. A large portion 
of the PN spikes are not phase-locked to the LFP oscillation cycles. Modified from 
Kay and Stopfer, 2006. 

stimulated with odor. 

Information about odor identity appears to be present in the firing patterns of the PN 

population. Analyses with simple classification algorithms showed that population 

PN activities can be used to identify odors, odor concentrations, and odor timings, 

with highest accuracy immediately after odor onset and offset (Brown et al., 2005; 

I to el ai., 2008 - this wor‘k, see Chapter 3; Mazor and Laurent, 2005; Stopfer et ai, 

2003). 

Increasing odor concentration activates more ORNs in the antenna. At low odor 

concentrations, only ORNs that are specifically tuned to the odor are activated. As 

odor concentration increases, additional, less specifically tuned ORNs are also 

activated (Hallem and Carlson, 2006; I to et ai, 2009 - this work, see Chapter 2). 
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This leads to changes in firing patterns in PNs in a similar way as those caused by 

changes in odor identity (Stopfer et a/.，2003). However, when the responses of 

many PNs are analyzed together in a high dimensional analysis space, responses 

elicited by different concentrations of the same odor clustered together. PN 

responses to different odorants，on the other hand, formed distinct clusters in the 

analysis space (Stopfer et aL, 2003). KC odor responses remained sparse despite 

increase in odor concentration (Stopfer et al., 2003). This is possibly caused by an 

adaptive circuitry mechanism that LHIs tend to fire at earlier phases relative to the 

oscilljation cycle when odor concentration increases, therefore limiting the time 

window over which KCs can integrate PN inputs (Assisi et a!” 2007). The result of 

this circuilry is to transform the responses of broadly-tuned, very sensitive peripheral 

receptor neurons into extremely sparse and specific responses in the KCs. 

Over the course of a lengthy odor stimulus, LFP oscillations frequency suddenly 

slowed as total ORN output decreased because of sensory adaptation in ORNs. 

However, LFP oscillation frequency in the MB remained invariant over a wide range 

of odor concentrations, an apparent contradiction. In this work, I examined the 

relationship between stimulus intensity and oscillation frequency by using 

experimental and computational approaches. The results of this study are presented 

in the next chapter. 
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2 Frequency transitions in 

odor-evoked neural oscillations 

In many species sensory stimuli elicit the oscillatory synchronization of groups of 

neurons. What determines the properties of these oscillations? In the olfactory 

system of the moth we found that odors elicited oscillatory synchronization through a 

neural mechanism like that described in locust and Drosophila. During responses 

to long odor pulses, oscillations suddenly slowed as net ORN output decreased; thus, 

stimulus intensity appeared to determine oscillation frequency. However, changing 
- • < 

the concentration of the odor had little effect upon oscillatory frequency. Our 

recordings in vivo and computational models based on these results suggested the 

main effect of increasing odor concentration was to recruit additional, less well-tuned 

ORNs whose firing rates were tightly constrained by adaptation and saturation. 

Thus，in the periphery, concentration is encoded mainly by the size of the responsive 

ORN population, and oscillation frequency is set by the adaptation and saturation of 

this response. 
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2.1 Introduction 

Sensory stimulus-evoked neural oscillations have been described in mai>y animals 

(Adrian, 1942; Bresseler and Freeman, 1980; Galambos et al., 1981; Gray et a/., 

1989; Laurent and Naraghi, 1994; Schadow et aL, 2007; Stopfer et al,, 1997; Tanaka 

et al.; 2009). For a particular modality in a given species, oscillation frequency 

often seems unrelated to stimulus intensity. In the locust olfactory system, for 

example, odors elicit � 2 0 Hz oscillations that vary little in frequency even when odpr 

concentration varies over 5 orders of magnitude (Assisi et al., 2007; Stopfer et al., 

2003). In some cases, though, stimulus intensity does appear to modulate 

oscillation frequency; the changing velocity of a visual stimulus, for example, can 

systematically change the frequency of gamma oscillations in the cat visual cortex 

(Gray and Prisco, 1997). What determines the frequencies of these oscillations? 

Here, we used the insect olfactory system to clarify the encoding of odor intensity, 

and the relationship between stimulus intensity and oscillation frequency. In insects, 

odor molecules are first detected by ORNs. Axons from ORNs converge upon 

glomeruli in the AL, where excitatory PNs and LNs interact. PNs send excitatory 

inputs to LNs, and LNs send rapid inhibitory feedback to PNs via GABAA-like 

receptors. In locusts, honeybees and Drosophila, this feedback circuit has been 

shown to synchronize groups of PNs, resulting in regular oscillating waves of output 

that depolarize KCs, the intrinsic neurons of the MB. These waves can be detected 

as a LFP (Laurent and Naraghi, 1994; Stopfer et al., 1997; Tanaka et al” 2009). 

We found that odors evoked oscillatory responses in the moth Manduca sexta much 

like those described in the locust, hon^bee and fly. Further, in the moth, we found 
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that lengthy odor pulses evoked oscillations that began at � 4 0 Hz but then suddenly 

decreased to � 1 5 - 2 0 Hz. Simultaneous LFPs and recordings from the moth's 

antenna (electroantehnogram, EAG) showqd the net response intensity of ORNs 
I 

decreased in parallel to the shift in oscillation frequency. This suggested oscillation 

frequency might be determined by the intensity of the response of the ORN 

population. In apparent contradiction, though, we also found that odor-evoked‘ 

oscillation frequency remained remarkably coi>stant across a broad range of odor 

concentrations. What then is the relationship between stimulus intensity and 

oscillation frequency? 

Our approach, combining experimental and computational methods, led to several 

conclusions. First, we found the frequency of odcfr-evoked oscillations ki the moth 

olfactory system is determined by the intensity of input to the oscillatory AL network广 

« ‘ . 
but this intensity is determined by sensory adaptation and saturation of ORNs rather 

than by the intensity of olfactory stimuli. Second, extending prior work, we 

demonstrated that the vast majority of, olfactory dynamic range is encoded in the 

periphery by the number of responsive ORNs rather than by the firing rates of those 
• • 

ORNs. And third, we characterized a new stable oscillatory regime in which 

principle neurons participating in an oscillatory network, can fire much faster than the 

oscillation frequency. 
/ 
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2.2 Results 

2.2.1 Odors evoke fast and then slow LFP oscillations in the 

MB 

To characterize the moth olfactory system's neural responses, we delivered a variety 

of odors (non-pheromones, see Methods) over a wide range of concentrations, and a 

range of durations from 100 ms (as moths might experience while flying in an odor 

plume), to 4 s (as moths might experience when sampling food from flowers). 

All odor stimuli in our panel induced robust oscillations in the LFP recorded in the 

MB calyx (a target of PNs, Figure 2.1 A). Figure 2.1 B shows an example of 

oscillations elicited by a presentation of dilute benzyl alcohol vapor to the ipsilateral 

antenna of a moth that was mostly intact but with its brain exposed for 

electrophysiological recording (see Methods). The first of a series of odor 

presentations typically elicited only weak oscillations in the LFP; however, 

oscillatory power increased rapidly over the first 4 or 5 presentations (Figure 2.2). 

Odor pulses briefer than � 1 s elicited fast，30-40 Hz oscillations in the moth MB; 

notably, odor pulses longer than ~1 s produced oscillations that were initially fast but 

then dramatically slowed to .10-20 Hz (Figure 2.1C-E). Othps (Laurent and 
、 • 

Davidowitz, 1994; Perez-Orive et a!., 2002; Perez-Orive�2004) and we (Figure 2.3) 

had previously observed similar but less pronounced decreases in LFP oscillation 

frequency in the locust. 
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Figure 2.1. Odors evoked LFP oscillations in the moth MB and AL. 
(A) Recording site for LFP: center of the calyx in the MB. MB, mushroom body; 
mnsc, medial neurosecretory cells; OL, optic lobe; AL, antennal lobe. (B) LFP 
oscillations (black traces) with simultaneously-recorded electroantennogram (EAG, 
green traces) evoked by different pulse durations of 1% benzyl alcohol, a plant 
volatile. Black horizontal bars: pdor pulses. Color bars: time windows (500 ms) 
used to calculate the power spectra in [D]. (C) Brief odor pulses evoked fast 
oscillations; lengthy pulses evoked first fast, then slow oscillations. Normalized, 
average spectrograms from 18 trials obtained from 6 animals with 3 trials each (see 
Methods). Black horizontal bars above each spectrogram: odor pulses. (D) Power 
spectra of oscillatory LFP responses averaged from 22 moths and 8 odors, total of 
820 trials. - Color brackets: 14 Hz-wide bands used to calculate the total oscillatory 
powers of fast (red, 30-44 Hz) and slow (blue, 10-24 Hz) oscillations in [E]. (E) 
Total oscillatory power of fast and slow LFP shifted significantly over lengthy odor 
pulses. Twenty trials tested for each odor were averaged before pooling, mean±SE. 
n=41; 2-way ANOVA: / w i n d o w ( 2 ) = 2 6 . 6 2 , P<0.0001 (fast oscillations);/w,ndow(2)=9.09, 
P<0.0003 (slow oscillations). Asterisks: significant differences (Tukey-Kramer 
multiple comparisons). (F) LFP oscillations in the AL and MB were highly 
coherent. Left: Example of odor-evoked LFP oscillations recorded simultaneously 
in the AL and MB; odorant: 1% cyclohexanone (4 s). Areas a and b are expanded 
in insets. Horizontal red (0.25-1 s> and blue (1-4 s) bars: times used for coherence 
analysis at right. Right: Magnitude squared coherence between the AL and MB. 
Thin black line: coherence of the response shown. Thick black and dotted lines: 
average coherence and its one standard deviation range (5 AL-MB combinations in 4 
preparations, 20 trials each of 2 odorants), respectively. 
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Figure 2.2. LFP oscillatory power increased over repeated stimulus 
presentations. 
(A) LFP recorded in the MB when elicited by repeated brief odor pulses (1 s, 0.05 Hz, 
100% Hexanol) increased in oscillatory power. The first (top), 3rd (middle), and 
10th trials (bottom) are shown. Black horizontal bar: odor stimulation period; red 
(0.3-0.8 s) and blue (0.8-1.8 s) horizontal bars: time windows for total power plotted 
in [C]. (B) Averaged spectrograms (23 MBs from 20 moths included; 1 or 2 odors 
for each, resulting in 27 experiments) for the first, 3rd, and 10th trials. Odors used 
include 100% hexanol, 1% and 100% trans-2-Hexen-l-ol, 1% benzyl alcohol, 1% 
linalool, 1% benzaldehyde. (C) Repeated trials elicited an increase in spectral 
power of fast (30-44 Hz) and slow (10-24 Hz) oscillations. LFP power (5-55 Hz) 
was standardized by the average of the last 3 trials of each experiment. Values are 
expressed as mean士SE. n=27; 2-way ANOVA: /nai(9)=2.78, p<0.005 (Fast); 
/riai(9)=4.14，p<0.0001 (Slow). (D) MB-LFP elicited by repeated deliveries of long 
odor pulses (4 s，0.05 Hz, 1 % benzaldehyde). The first (top), 3rd (middle), and 20th 
trials (bottom) are shown. Black horizontal bar: odor stimulation. Red (0.3-0.8 s), 
light blue (1-3 s), blue (1-2 s), green (2-3 s), and magenta (3-4 s) horizontal bars: 
time windows for total power shown in [F]. (E) Average spectrograms for the first, 
3rd，and 20th trials, replotting same data shown in Figure 2.IE (n=41). The peak of 
slow oscillation power shifted to earlier in the response gradually over trials. (F) 
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Figure 2.3. Oscillation frequency in locusts also decreases during a response. 
Representative example odor-elicited LFP oscillations (low-pass filtered below 55 
Hz) recorded from the mushroom bodies of the locust (A) and the moth (B). 
Spectrograms of MB-LFP oscillations in the locust (C) and the moth (D). The 
frequency shift is less pronounced in the locust than in the moth. However, the 
deflection amplitude is greater in the locust. 
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Standardized total power (5-55 Hz) of fast ^30-44 Hz) and slow (10-24 Hz) 
oscillations elicited by lengthy odor pulses (4s). Even the first odor presentation 
elicited strong slow oscillations in the latter part of the response. 
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2.2.2 LFP oscillations are generated in the AL 

Where，and by what mechanism are the oscillations generated? In the moth, we 

made simultaneous recordings of LFPs from the AL and the MB. All odors we 

tested induced both fast and slow oscillations in both the AL and the MB; further, the 

AL-LFP and MB-LFP signals were highly coherent (n=10. Figure 2.1 F). 

We next made simultaneous intracellular recordings from pairs of AL neurons 

together with LFP recordings from the MB (Figure 2.4; all neurons morphologically 

identified by dye injection and subsequent confocal imaging). Figure 2.4A shows 

an example of a simultaneous recording of the MB-LFP, a PN, and an LN. For 

most oscillation cycles, a spike in the PN was closely followed (within � 2 ms) in the 

LN by either a single spike or an EPSP, suggesting LNs received odor-driven 

periodic input from PNs. And, reciprocally, the membrane potential of this PN 

revealed a periodic hyperpolarization and depolarization after each spike, suggesting 

IPSPs from the inhibitory LNs regulated the timing of spikes in the PN. 

Sliding-window cross-correlations showed that the membrane potential fluctuations 

in this LN and PN were tightly coupled to LFP oscillations recorded in the MB 

(spikes clipped; Figure 2.4B). The oscillations slowed during each trial. 

Are the fast and slow oscillations generated in the AL? We made intracellular 

recordings from 14 PNs and 30 LNs, each simultaneously with LFPs recorded in the 

MB; Figure 2.4C displays the spike-LFP phase relationships for spikes pooled from 

all recorded cells. Spikes in PNs reliably phase-locked to the LFP at a point just 

past the peak of each cycle during fast (mean direction and 95% confidence interval 

2 . 7 9 �士 9.1。； 1,950 spikes) and slow (23.4' 士 3.3。； 7,005 spikes) oscillations. 

Spikes in LNs phase-locked to the LFP just after the PNs during fast (71.4° 士 3.0。； 
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Figure 2.4. PN and LN responses were strongly phase-locked to the LFP. 
(A) Example simultaneous intracellular recordings from PN and LN, with LFP 
recorded in the MB. First 2 s after the odor onset shown; brackets: portions 
expanded beneath. Odorant: 1% benzyl alcohol. (B) Subthreshold oscillations: 
5-trial average sliding-window cross-correlograms show reliable LFP and 
subthreshold membrane potential oscillations for the PN (top) and LN (bottom) in 
[A]. Spikes were clipped. Vertical bars: odor pulses. (C) Spike-LFP phase 
relationships: Polar histograms show phase position, relative to LFP, of spikes 
recorded in PNs (n=14) and LNs (n=30) for fast and slow oscillations. Concentric 
circles: firing probability. Black arrows: mean direction. (D) All recorded 
neurons were filled with dye and later morphologically identified. Example of PN 
and LN morphology. An Alexa-fluor-633 (red) filled PN and an Alexa-fluor-568 
(yellow) filled LN are shown. Scale bar: 50 |im. AN: antennal nerve. 
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2,623 spikes) and slow (72.6° 士 1.1。； 12,723 spikes) oscillations. The spike phase 

distributions of PNs and LNs were each significantly different from uniform 

distributions (Rayleigh test, p<0.05) indicating strong phase-locking. The temporal 

relationships of these populations match those shown in the simultaneously-recorded 

example (Figure 2.4A). 

Together, the reliable, periodic relationships among AL neurons suggested that the 

timed inhibition of PNs by LNs was important for producing synchronous 

oscillations. To test this, we selectively abolished fast inhibition from LNs to PNs 

by locally injecting picrotoxin (PCT, a blocker of the GABA八-like inhibition in 

Manduca, Waldrop et a!., 1987) into the AL while recording LFPs from the MB. 

Injection of PCT (n=6) reversibly and significantly reduced odor-evoked fast and 

slow oscillations; control injections of saline (n=5) had no effect (Figure 2.5). Thus, 

inhibition from LNs within the AL is required for the generation of odor-elicited 

oscillations. Both fast and slow oscillations are generated within the AL and are 

transmitted to the MB by PNs. 

2.2.3 Responses in KCs are shaped by oscillatory input from 

PNs 

To test whether followers of PNs in the MB are sensitive to the oscillatory synchrony 

of ttieir input, we made intracellular recordings from a set of KCs (n=20, all 

morphologically identified by dye injection and subsequent confocal imaging). 

During odor presentations, the membrane potentials of KCs revealed pronounced 

subrthreshold fluctuations that were tightly coupled to simultaneously-recorded LFP 

oscillations. In our four recordings from KCs that revealed sub-threshold activity, 
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Figure 2.5. Local injections of G A B A A receptor blocker picrotoxin into the 
moth AL reversibly abolished odor-evoked oscillations. 

(A) Example: odor-evoked LFP oscillations recorded in the MB before (top) and 
after injection (middle), and after washout (bottom). Black horizontal bar: odor 
presentation, 4s. Odor: 1% trans-2- hexen-l-ol. Short (0.3-0.8 s) and longer 
(1-4 s) gray horizontal bars: time windows for spectral power (5-55 Hz) shown in [B]. 
(B) Summary shows PCT significantly reduced the strength of odor-evoked LFP 
oscillations. Total power calculated as in Figure 2.1 E, mean士SE. Saline injection: 
n=5; 2-way ANOVA: NS (not significant). PCT (picrotoxin) injection: n= 6; 2-way 
ANOVA： A e a t m e n l ( 3 ) = 17.09,尸<0.0006 (fast 0.3-0.8 s)； A e a i m e n t ( 3 ) = 5 . 1 8,尸<0.0285 
(slow 1-4 s). Asterisks: significant differences (尸<0.05, Tukey-Kramer multiple 
comparisons test). 
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peaks of the membrane potential oscillations reliably occurred during falling phases 

of the LFP oscillation (Figure 2.6A,B； see Methods). Further, odor-evoked spikes 

in KCs were phase-locked to the falling phases of LFP oscillations during fast 

(117.1。土 12.2。； 329 spikes) and slow (125.7�士 5.8°; 706 spikes) oscillations (Figure 

2.6C). The spike phase distributions for KCs, like those of PNs and LNs, were 

significantly different from uniform distributions (Rayleigh test, p<0.05). 

We found that the timing of spikes in PNs, LNs and KCs became more precise (less 

jitter around the preferred phase) as the oscillation frequency decreased (Figure 2.7). 

Together, these results indicated that oscillations strongly influence the timing of 

spikes in the KCs. 

2.2.4 Oscillation frequency remains constant over a wide 

range of odor concentrations 

We had observed that long odor pulses elicited oscillations that shifted dramatically 

in frequency. What causes this shift? We found that, during long odor pulses, 

EAGs decreased in amplitude with timing roughly matching that of the frequency 

shift in the LFP (Figure 2.1 B). The decrease in EAG amplitude was probably 

caused by sensory adaptation within the ORNs (Kaissling el ul.’ 1987)，a mechanism 

that reduces the intensity of response to an ongoing stimulus. The nearly parallel 

changes in ORN output intensity and oscillation frequency suggested to us that the 

intensity of the stimulus may determine oscillation frequency. 

To test this, we delivered a wide range of concentrations of three odors (hexanol, 

octanol and geraniol), expecting to find that higher concentrations elicited more 
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Figure 2.6. Spiking in KCs is sparse，odor specific, and tightly phase-locked to 
the LFP. 
(A) KCs showed odor-elicited subthreshold membrane potential fluctuations that 
were tightly correlated with LFP oscillations. Example: top, gray: LFP; bottom, 
black: simultaneous intracellular record of a KC. Bottom: details of fast and slow 
periods during oscillatory response. Odor: 4 s, 1% benzyl alcohol. Gray broken 
line: resting potential. (B) Cross-correlations between LFP oscillations and KC 
subthreshold activity. Cross-correlation was calculated for times bracketed in [A], 
Black lines: correlation for the trial shown in [A]; gray lines: 21 other trials from this 
cell. All 8 KCs showing subthreshold oscillations revealed similarly-shaped 
correlation functions, 3 with coefficients >0.3. (C) Polar histograms show strong 
phase-locking between spikes in KCs,and the LFP oscillations. Histograms show 
spikes recorded from 20 KCs during fast and slow oscillations. Arrows: mean 
phase position. (D) Example of KC morphology; posterior view of MB; KC filled 
with Alexa Fluor 633. Scale bar: 50 fim. Arrow: soma; CaM: medial calyx; CaL: 
lateral calyx. 
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Figure 2.7. Spike timing became more precise within PNs，LNs and KCs as the 
oscillation frequency decreased. 
(A) ' Distributions of spike timings (relative to LFP peak or trough) in neurons 
recorded intracellularly. Timing was defined as shown in [B and D]. Note that the 
distributions of spike timings in PNs revealed two peaks, consistent with our 
observation that moth PNs tended to fire twice per one cycle (Figure 2.13). (B) 
Definition of spike timing. To determine spike timing more accurately, we 
considered our observations that PNs and LNs fired near the peaks of 
LFP-oscillations and KCs fired near the troughs. (C) Synchrony increased after 
the frequency transition. Synchrony (%) defined as in [D] was calculated for a 
range of accuracy (from 1 ms to 50 ms). The increase in synchrony (ASynchrony) 
was obtained by subtracting the synchrony measured during fast oscillations from 
that measured during slow oscillations. (D) Definition of synchrony. For 1 ms 
precision, the maximum bin (1 ms) in each histogram was defined as synchronous 
(the proportion of synchronous spikes divided by the total number of spikes). For 
broader precision (>1 ms), the spikes in the bins centered at the maximum bin were 
included as synchronous spikes. 
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intense responses from ORNs and perhaps faster oscillations in the LFR Indeed, 

the range of odor concentrations we used eMcited a wide range of responses in the 

EAG (Figure 2.8A,B) and in the LFP (Figure 2.9) from small, near-basal fluctuations 

to deep, saturating deflections; thus, the range of odor concentrations we used 

effectively elicited a wide range of response intensities from the population of ORNs. 

Lower odor concentrations evoked weaker LFP oscillations; higher concentrations 

evoked stronger oscillations (Figure 2.8C). However, we found that the initial LFP 

oscillation frequency remained almost constant across five or more orders of 

magnitude of odor concentration (Figure 2.8D). Together, these results appeared 

contradictory: decreasing drive from ORNs appeared to result in dramatically 

reduced oscillation frequency, yet experimentally changing the intensity of the input 

to ORNs had little or no such effect. 

2.2.5 The ORN population encodes odor concentration 

spatially and temporally 

The EAG aggregates the responses of many ORNs in the antenna. Thus, we next 

characterized the responses of individual ORNs on the moth antenna while delivering 

odor pulses of different concentrations (Figure 2.10; n=37 ORNs from 9 preparations; 

see Methods). We found that individual responsive ORNs revealed a small 

dynamic range, firing at rates that varied only within narrow spans of concentration. 

ORNs responding to moderate odor concentrations (e.g. 0.01 %-1 % of hexanol; see 

Methods) showed firing rates that quickly saturated (Figure 2.1 OF green lines) or 

even decreased (Figure 2.1 OF red lines) as odor concentration increased. And, 
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Figure 2.8. Odor concentration determines oscillation coherence, not 
frequency. 
(A) EAG traces revealed total ORN output increased with odor concentration. 
Example from one antenna; horizontal bar: 4 s. (B) Summary. EAG amplitude 
(first 1 s, see bracket in [A]) evoked by a range of odor concentrations. Mean土SE; 

n=8; 2-way ANOVA: yi)dor_ioncemration= 16.84, p<0.0001. (C) Higher concentrations 
of odor evoked stronger LFP oscillations. Initial portions of the odor response are 
shown. Scale bar: 50 ms. (D) The frequency of fast oscillation changed not at 
all or only slightly across a broad range of odor concentrations. All results are 
shown (dots); bar graph shows means, n=9. Leftmost bars: basal oscillatory power 
in absence of odorant. Hexanol: 2-way ANOVA: fhexanoi concentrat ion=6 .16 , p<0.001; 
post hoc Tukey-Kramer tests found small but significant differences between three 
highest and two lowest concentrations (p<0.05), Octanol: foctanoi_conccmration=4.98’ 

p<0.001; post hoc tests: significant differences between highest two and lowest two 
concentrations of octanol (p<0.05); Geraniol: 2-way ANOVA: fgeranioi_concentration= 1 -4, 
p>0.25, ns. 
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Figure 2.9. LFP deflection amplitude increases with odor concentration. 
(A) LFP deflection (low-pass filtered at 55 Hz) evoked by a range of 
concentrations of hexanol. (B) Summary, LFP deflection amplitude increased 
with odor concentrations. 2-way AN OVA: /hexanoi concentration:�13.32 , p<0.0001. 
^cianoi concentration: 183.57，p<0.0001. ĝeranioi concentration-102.27，p<0.0001. 
For all three odors，、responses to the three highest concentrations showed saturation 

<(Tukey-Kramer multiple comparisons). 
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Figure 2.10. Saturation and a d a p t a ^ n constrained the ORN firing rates. 
(A) Example extracellular recordings^from a sensillum on the antenna show 
responses to odor pulses (4 s) of 10% hexanol (top) and jasmine oil extract (bottom). 
Two ORNs were recorded in this sensillum，one with short spikes and sustained 
firing, and one with large^ transiently firing spikes (marked by *). Tan bars: odor 

pulses. (B) Spike rasters of three ORNs tested with a wide range of concentrations » 
of hexanol. Blocks of 10 trials for each concentration were tested in random order. 
Tan bars: odor pulses (4 s). (C) Instantaneous firing rates of a representative ORN. 
Spikes were binned (100 ms); spike count in each bin averaged over 10 trials. (D) 
The most active ORNs quickly adapted. Instantaneous population firing rate; firing 
rate averaged over 10 trials for each odor-sensillum combination; 1,011 
odor-sensillum combinations (32 sensilla tested with up to 20 odors each). 
Responses to odor-sensillum combinations were divided into 2 groups based on 
initial peak firing frequency (>40 Hz: light gray; <40Hz: dark gray). Brackets: 1 s 
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analysis bins used to calculate initial (F1) and late peak (F2) frequencies. For this 
analysis multiunit activity was included. (E) Relationship between peak 
frequencies F1 and F2. Dots under the diagonal line indicate adaptation. Almost 
all odor-sensillum combinations showing initial spike frequency >40 Hz (Fl) 
underwent adaptation during the stimulus. (F) Concentration tuning curves for 22 
ORNs. Mean firing rates of most ORNs saturated after the odor onset. Red traces: 
ORNs with firing rates that decreased after the peak concentration; Green traces: 
ORNs with firing rates that saturated after the peak concentration. (G) ORN 
concentration response curves were fit with the Hill equation. Example: ORN22, 
tested with different concentrations of hexanol. Parameters (Cio, C90, Hill 
coefficient, Fmax) in panels H-J were obtained from this fitting. (H) Lack of 
correlation between maximum firing rates (Fmax) and the thresholds (C|o) of 
individual ORNs. Response thresholds (Cio) spanned about 6 orders of magnitude, 
indicating our sample of ORNs, as a population, offered a wide dynamic range. 
Only responsive odor-ORN combinations (n=25, >5 Hz change in mean firing rate 
during odors) were included in this analysis. (I) Hill coefficient (red) and 
dynamic range (blue) as function of threshold. ORNs responding to low 
concentrations typically showed low Hill coefficients and relatively wide dynamic 
ranges. (J) Histogram of Hill coefficients. Most ORN-odor combinations showed 
Hill coefficients >1, indicating a dynamic range <2 orders of magnitude. 
(K) Firing rates in the ORN population followed Gaussian distributions. The 
numbers of spikes in the first 1 s of odor responses (indicated by colored dots) were 

if 
counted in 37 ORNs tested wrth hexanol. The ORN firing rates were fit with 
Gaussian distributions (colored lines). As the odor concentration increased, the 
width of the distribution (sigma) broadened but the height of the distribution 
remained about the same. All odor concentrations evoked responses with Gaussian 
distributions. (L) Frequency of MB-LFP oscillations changed in parallel to the odor 
input (1% hexanol) to the AL network. Odor input: firing rate of the most active 
ORN (at each 50 ms time slice across 22 ORNs). Power spectrogram: average of 9 
preparations. 
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ORNs that initially responded vigorously to an odor presentation (e.g. with firing 

rates >40 Hz) quickly slowed their firing (Figure 2.1 OB，C). This sensory adaptation 

was evoked by all odors tested and all concentrations whenever the initial firing rate 

exceeded - 4 0 Hz (Figure 2.10D,E). Faster-firing ORNs underwent greater 

adaptation (Figure 2.10E), suggesting ORNs better-tuned for a given odor would 

adapt more. Thus, we found that each ORN fired at a rate tightly constrained by 

adaptation and saturation. 

To quantify the dynamic range of individual ORNs relative to that of the population, 

we fit concentration response curves with the Hill equation (Figure 2.10F,G; 

Firestein et al.’ 1993; Wachowiak and Cohen, 2001; Koulakov et al., 2007). In our 

sample of ORNs and odors we found response thresholds were widely distributed 

across concentrations spanning about 6 orders of magnitude (Cio, Figure 2.10H). 

Consistent with this, increasing numbers of ORNs participated in the response as 

odor concentrations increased (Figure 2.10F,H). And, most ORNs had Hill 

coefficients greater than 1 (mean = 1.1269; median = 0.802), corresponding to a 

dynamic range spanning less than 2 orders of magnitude (Figure 2.10I,J; Koulakov et 

al., 2007). The 2 orders of magnitude encoded by individual ORNs corresponded 

to only about 2/6, or 33% of the dynamic range provided by the whole ORN 

population. Further, we found that the firing rates in the ORN population fit 

Gaussian distributions (Figure 2.1 OK). As odor concentration^increased, the width 

of the distribution (number of responsive ORNs) broadened but the height of the 

distribution (firing rate) remained about the same (Figure 2.I0K). These results 

indicate that, in the moth, the great majority of olfactory dynamic range is encoded 

as changes in the size of the population of responsive ORNs. 
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2.2.6 Firing rate adaptation in ORNs determines oscillation 

frequency 

Our analysis of individual ORNs revealed that the frequency transition in LFP 

oscillations followed a temporal profile closely matching that of the adaptation, rate 

of the most active ORNs (Figure 2.1OL; Figure 2.11). Yet, experimentally changing 

the intensity of input to the ORNs (odor concentration) had little if any such effect. 

To explain these apparently contradictory findings and to understand how oscillation 

frequency is determined, we incorporated our physiological measurements into a 

full-scale, map-based model (reduced type, Rulkov et al” 2002; Rulkov et ai, 2004; 

Rulkov and Bazhenov, 2008) of the moth AL (Figure 2.12A), We simulated input 

to the AL network as synaptic currents applied to odor- and concentration-speciJie 

populations of PNs and LNs (Assisi et aL, 2007; see Methods). In our model, as in 

vivo, this input caused the population of PNs to spike and to synchronize through 

feedback inhibition mediated by LNs (Figure 2.12B). Synchronized spiking in the 

model AL was manifest as periodic oscillations of the LFP (Figure 2.12B, top; 

calculated as the average activity of all PNs). 

We had found that the adaptation of ORN firing rates followed a temporal profile 

matching that of the frequency transition in LFP oscillations (Figure 2.1 OL; Figure 

2.11). How does adaptation influence the dynamical properties of the AL network? 

To simulate activation and adaptation of the odor responses of ORNs, we drove our 

network model with a rapidly rising and then slowly decaying input (Figure 2.12B, 

bottom) with the size of the AL population receiving external stimulation (input 

"width") held constant. During the simulated odor's onset, the rapid increase in 

input intensity quickly entrained the network to generate � 4 0 Hz oscillations (Figures 
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Time (s) 

Hexanol 1% 
Hexanol 100% 

the frequency of 

the population 

Figure 2.11. Saturation of firing rates in ORNs and in 
MB-LFP oscillations 
(A) The instantaneous maximum firing rates of most active ORN in 
(calculated every 50 ms) adapted in a nearly identical manner for two different 
concentrations (1% and 100%) of hexanol. (B) The oscillation frequency followed 
the strength of odor inputs very closely at both concentrations. 
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Figure 2.12. Odor evoked oscillations in model of moth AL. 
(A) Full-scale, map-based model included randomly connected populations of 820 
PNs and 360 LNs. Odor pulse input was simulated by external currents delivered to 
a subset of neurons. (B) Amplitude of the input was set to resemble the EAG 
(bottom). LFP (top) and neuronal (middle) responses resembled those recorded in 
vivo. The input to the model was tuned to match results of our physiological 
recordings and corresponded to points * 1 ‘ and '2 ' in the parameter space shown in 
[E]. (C) Raster plots show spikes in all PNs (top) and all LNs (bottom) evoked by 
one odor pulse (applied from 500-2500 ms). (D) Interspike interval (ISI) 
distributions during fast and slow phases of LFP oscillations. Many PNs fired two 
spikes in a single oscillatory cycle (ISI < 25 ms during fast and ISI < 50 ms during 
slow phase); LN frequency was typically limited to the LFP frequency. (E) 
Frequency of LFP, PN and LN oscillations as a function of input from ORNs to PNs 
and LNs. Sweeping the points between ‘ 1 ’ and ‘2’ in parameter space mimicked the 
ISI distribution (compare [D] and Figure 2.13) and the abrupt change in oscillatory 
frequency (compare [B] and the Figure 2.1C) we observed in vivo. 
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2.12B,C). The subsequent decrease in stimulus amplitude initially led to a 

reduction in the LFP amplitude, signaling a decrease in the synchrony of spiking 

across the population of responsive PNs. But as the input intensity continued to 

decrease, synchrony suddenly resumed, although now at � 2 0 Hz. During this 

transition the inter-spike interval (ISl) distributions of both PNs and LNs (Figure 

2.12C,D) lengthened. Our intracellular recordings from PNs and LNs had revealed 

qualitatively similar changes in ISI distribution (Figure 2.13). In our model, a 

40-50% decrease in stimulus intensity caused a frequency shift (Figure 2.12B) 

matching what we had observed in vivo (Figure 2.1 D,F). This result suggested that 

a change in stimulus intensity similar to what occurs in vivo, and not the size of the 

responsive ORN population, could explain much of the change in oscillation 

frequency. Other factors such as the strengths and the time constants of synaptic 

currents could influence oscillation frequency as well (Figure 2.14). 

We next analyzed the steady-state network dynamics of our model as a function of 

input intensity. Throughout these stimulations we held constant both the size of the 

AL population receiving external input and the amplitude of the input; in separate 

experiments we systematically changed the input amplitude to explore a broad space 

of parameters. Our model showed that the AL network could generate oscillations 

with a wide range of frequencies, including 20-40 Hz, depending on the net intensity 

of its input (Figure 2.12E, left panel). Further, individual PNs and LNs could 

change average firing rate as a function of excitatory and inhibitory input intensity 

(Figure 2.12E middle and right panels). In our model, inhibitory LNs almost 

always spiked at the frequency of the LFP oscillations; notably, excitatory PNs could 

fire faster with either one or two spikes during each oscillatory cycle (Figure 

2.12C,D). These results match those of our intracellular recordings (Figure 2.13). 
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Figure 2.13. Inter-spike interval (ISI) distributions in vivo match results from 
the model. 
ISI was computed from spikes occurring during fast (0.5 s analysis bin starting from 
0.3 s after the odor onset) and slow (3 s analysis bin starting from 1 s after the odor 
onset) oscillations in each trial. The same dataset used in Figure 2.4C (spikes 
pooled from all trials in all animals) was analyzed. 
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Figure 2.14. Effect of synaptic potential strength and synaptic time constant 
on oscillation frequency. 
(A) Changing the maximal conductances of excitatory (PN-LN) and inhibitory 
(LN-PN) synapses profoundly affected the frequency of oscillations. Color: 
frequency; white dots: parameters used for the following simulations. The same 
frequency of LFP oscillations could be attained in two different network states: (1) 
PNs fire faster than LFP or LNs (top/left area of the plot) or (2) PNs fire at about the 
same frequency as LFP or LNs (top/right area of the plot). Increasing the strength 
of excitatory input from PNs to LNs generally increased the frequency of 
odor-triggered oscillations (Figure 2.14A，LFP), and the firing rates of LNs usually 
increased to match the LFP oscillation frequency. However, increasing the strength 
of PN-LN coupling actually reduced the firing rates of PNs during the initial fast 
phase of oscillation but increased the firing rates of PNs during the slow phase. In 
contrast, increasing inhibition from LNs to PNs (beyond the minimal level required 
to maintain oscillations) had little impact on the frequency of LFP or LN oscillations. 
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It did, however, decrease the firing rates of PNs, al least, for the lower range of 
PN-LN conductances (Figure 2.14A, middle column). This fact may explain the 
difference between the dynamical responses of the moth AL where excitatory PNs 
fire typically faster than LFP, and in other systems (e.g., cortical gamma oscillations) 
where spikes in excitatory cells typically skip cycles of LFP oscillations (see 
Discussion). Notably, the time constants of synaptic input had relatively little 
influence upon LFP frequency as long as synaptic weights were scaled to keep the 
integral of postsynaptic current stable over time. (B) Changing the decay time 
constants of excitatory and inhibitory synapses had less dramatic effects on 
oscillation frequency. Increasing the time constant of excitation slightly reduced 
the frequency of oscillations, probably because smaller and longer-lasting EPSPs less 
efficiently drove spiking in LNs. Varying the time constant of inhibition had 
minimal impact upon the frequency of oscillations (see Discussion). Oscillations 
failed when decay time constant of inhibition exceeded � 1 2 msec. Time constant 

modifications were accompanied by conductance changes to keep the area under PSP 
profile constant. (C) Examples of LFP oscillations elicited with different 
combinations of synaptic time constants shown in [B] (circles). Increasing the 
decay time constant reduced the amplitude of LFP oscillations, indicating a decrease 
in synchrony. 
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How do changes in odor concentration influence the dynamical properties of the AL 

network? Our model had shown that, for a network with a fixed number of 

responsive neurons, increasing the amplitude of external stimuli led to a progressive 

increase in oscillation frequency (Figure 2.12E). But, our recordings from ORNs 

had shown that，as the concentration of an odorant increased, more types of receptors 

began to respond (Figure 2.1 OK; see also Duchamp-Viret et al., 2000; Hallem and 

Carlson, 2006; Stewart et al., 1979; Wachowiak and Cohen，2001 )• To simulate this 

effect of changing odor concentration we varied the proportion of the PN and LN 

populations (parameter a , width of the curve in Figure 2.ISA; compare to Figure 

2.1 OK) driven by external excitatory input. We found that varying the size of the 

stimulated neuronal population only slightly varied the frequency of oscillations 

(Figure 2.15B-D). When driven by very low odor concentrations ("narrow" input, 

i.e. CT=0.2), the frequency of LFP oscillations increased slowly upon odor onset 

(Figure 2.15C left); several oscillatory cycles were required to engage all the neurons 

in oscillatory dynamics. Our model suggested that the main effect of varying the 

size of the responsive neuronal population was to vary the coherence of the moth AL 

network，but not its frequency. 

Our results showed that when sensory input underwent adaptation, two factors 

changed: 1) active PNs decreased their firing rates; and 2) the size of the active PN 

population decreased (Figure 2.12B,C). To test which factor most directly underlies 

the oscillator's frequency shift, we provided our model a simplified square input 

profile rather than a realistic Gaussian input profile; the simplified input drove all 

stimulated PNs and LNs identically and gave zero input to all non-stimulated PNs 

and LNs, thus holding the size of the active PN population constant over time even 
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Figure 2.15. Effect of odor concentration upon LFP frequency in moth AL 
model. 
(A) Odor input to the network was simulated by synaptic currents applied to an 
odor-specific population of PNs and LNs. The size of stimulated population 
(defined by a Gaussian distribution with width a; see Figure 2.1 OK) was varied to 
simulate different odor concentrations. (B) Examples of LFP oscillations elicited 
by three odor concentrations. As in vivo, during lengthy odor stimuli the network 
shifted from fast to slow oscillatory states. LFP was band-pass filtered (5-50 Hz). 
(C) Spectrograms of LFP oscillations (those shown in B) for three odor 
concentrations. (D) Minimal network consisting of a single PN and LN. (E) 
Frequency of oscillations in the minimal network increased sub-linearly as a function 
of input amplitude. 
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as the input adapted. With this constrained input, adaptation still caused the 

oscillatory frequency to decrease (Figure 2.16A). In contrast, decreasing the size of 

the stimulated AL population (to model a decrease in odor concentration) did not 

affect oscillation frequency (Figure 2.16B). Consistent with this result, an even 

simpler model consisting of only a single PN and a single LN, reciprocally-coupled 

(Figure 2.15D), showed that changing the intensity of the input caused a shift in 

oscillation frequency (Figure 2.15E). Taken together, these models suggest that 

input intensity regulates the firing frequency of active PNs, which directly 

determines the network oscillatory frequency. 
« 

2.2.7 A subset of strongly activated PNs regulates oscillatory 

frequency 

To test the robustness of our results and to gain a more intuitive understanding of the 

mechanism that underlies the oscillatory response transition in the AL, we designed 

an additional, simplified “firing rate” version of our more realistic map-based model 

of the AL network (see Methods). 

To test whether the oscillatory frequency of the AL network is determined by the 

firing rates of activated PNs, we systerr^tically varied the threshold required to 

activate PNs, effectively removing weakly-activated ORNs from the network (Figure 

2.17A). Even though this manipulation (like decreasing odor concentration) greatly 

decreased the size of the active population of neurons and caused the overall input to 

the network to change dramatically (Figure 2.17B), the oscillatory frequency 

remained constant (Figure 2.17C). Next, we simulated the effect of sensory 

adaptation by altering the response intensity of the most strongly activated PNs 
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Figure 2.16. Changes in the size of the PN population do not determine 
oscillation frequency. 
(A) The size of the active PN population remained constant over time even when the 
input underwent adaptation，leading to a frequency shift. (B) To model changes in 
odor concentration, we reduced the width of the input profile; however, the 
frequency remained identical to that for wider stimulus. 
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Figure 2.17. Simplified firing-rate model of the moth AL 

(A-C) Varying the width of the distribution of responsive PNs (simulating changes in 
odor concentration, see Figures 2.1 OK and 2.15A) had no effect on oscillation 
frequency. (A) Width was varied by adjusting the threshold level for activating PNs. 
(B) Adjusting the threshold greatly altered overall input to the modeled AL network. 
(C) The oscillation frequency remained constant despite simulated changes in odor 
concentration. (D-F) Varying the height of the distribution of responsive PNs 
(simulating adaptation in ORNs) caused changes in oscillation frequency. (D) 
Height was altered by scaling the response intensity of activated PNs. (E) Adjusting 
the intensity greatly altered overall input to the modeled AL network, as in [B]. (F) 
The frequency of LFP oscillations decreased when adaptation of ORNs was 
simulated. (G-H) Model EAG (green) and LFP response (black) when ORNs are 
permitted to adapt. Adaptation alone is sufficient to shift the oscillatory frequency 
(powerjpectra for early and late oscillations shown in H). (I-J) Model EAG (green) 
and LFP response (black) when ORNs are not permitted to adapt. Without 
adaptation oscillation frequency remains constant (power spectra in J): 
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(Figure 2.17D). This manipulation, which kept the number of active neurons 

constant but reduced overall input to the network (compare Figure 2.1 7B and E), 

greatly altered oscillatory frequency (Figure 2.17F), consistent with results we 

obtained with our map-based model and with our physiology experiments. 

Further, our simplified rate model showed that adaptation of the ORNs was sufficient 

to shift the oscillatory frequency of the AL network (Figure 2.17G-H); a version of 

the model lacking adaptation showed no shift in frequency (Figure 2.171-J). These 

results, combined with those of our physiological recordings and map-based model 

show that, for any given odor or concentration, oscillation frequency is controlled by 

a small subset of ORNs and PNs, those that are most highly responsive. 

In summary, our computational models (Figures 2.12, 2.1 5, and 2.17) demonstrated 

that the shifts in LFP frequency we observed in vivo during lengthy odor stimulations 

can be explained by gradual changes in the intensity of output from a stable group of 

ORNs to the AL. This intensity level is determined mainly by the adaptation and 

saturation of the ORNs rather than by the intensity of the environmental stimulus 

(odor concentration). Our results show thgft, in the periphery, the great majority of 

the olfactory system's dynamic range is encoded by the size of the responsive 

receptor population rather than by its firing rate. Our results also resolve an 

apparent contradiction, that oscillation frequency follows the intensity of the net 

receptor output (amplitude of the EAG) but not the concentration of the odor. 

These findings are summarized in Figure 2.18. 
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Figure 2.18. SumAiary of the mechanism to determine oscillation frequency. 
(A1) Long odor pulses cause ORNs to undergo sensory adaptation. (A2) When 
odor exposure is lengthy, active ORNs adapt, decreasing their firing rates. (A3) The 
lower ORN firing rates reduce excitatory drive to PNs. (A4) As each PN receives 
less intense input, its firing rate decreases and oscillations slow. (Bl) When odor 
concentration is reduced, smaller populations of ORNs respond. (B2) However, the 
responsive ORNs continue to fire at high rates. (B3) Thus, the most active PNs 
continue to receive strong input from responsive ORNs. (B4) and oscillation 
frequency remains stable across broad ranges of odor concentration. 
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2.3 Discussion 

2.3.1 Odor elicited oscillations in the moth 

In the moth Maminca sexta. our intracellular recordings from PNs, l.Ns and KCs 

together with recordings of the LFP from the MB and AL (Figures 2.1, 2.4, and 2.6) 

revealed that moths employ essentially the same neural mechanism as that 

characterized in the locust and Dmsophila: oscillations are generated in the AL via 

GABAA-type inhibition (Figure 2.5), build up gradually over repeated odor 
I 

presentations (Figure 2.2; Stopfer and Laurent, 1999) and influence the fine spike 

timing of downstream KCs (Assisi et a i , 2007; Laurent, 2002; Perez-Orive el al., 

2002; Tanaka et ul., 2009). 

This result contradicts several earlier reports. Previously, in the moth, pulses of 

pheromone were found to induce highly localized LFP oscillations only within the 

AL, with spikes in pheromone-sensitive PNs ‘ phase-locked to the AL-LFP 

oscillations (Heinbockel et al., 1998). However, such stimuli were described as 

never producing coherent LFP oscillations between the MiB and the AL (Christensen 

et ai, 2003). Further, in a multi-unit recording experiment (Christensen et al., 2000) 

and a double intracellular recording experiment (Lei et ul” 2002), cross-correlation 

analyses detected no sustained oscillatory synchrony between pairs of PNs but rather 

only brief, stimulus-locked, non-oscillatory synchrony. These observations led to 

the proposal that, in Manduca, only transient, non-oscillatory synchronous activity 

among PNs supports odor coding, likely by promoting coincidence detection by 

downstream elements (Lei et uL, 2002). Our experiments employed general, 

non-pheromonal odors, such as host plant volatiles and common food blends at a 
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wide range of concentrations. The differences in our results from those reported 

earlier probably arise both from our focus on the general olfactory system rather than 

the pheromone system, and from differences in recording techniques (likely the 

electrode's shape and internal solution; see Methods). The moth pheromone system, 

which, within the AL, consists of three specialized glomeruli anatomically separate 

from the � 6 0 glomeruli of the general odor system (Rospars and Hildebrand, 1992), 

may not provide an ideal model for all aspects of general olfaction. 

Indeed, our results show that, to a remarkable extent, odor coding mechanisms in 

Manduca are similar to those of other species, including Dmsophila (Tanaka et ai, 

2009), honeybee (Stopfer ei uL, 1997), and locust (Laurent and Naraghi, 1994; 

MacLeod and Laurent, 1996; Perez-Orive et a!., 2002). This was perhaps 

unexpected because these species differ in details of olfactory anatomy and 

physiology. The � 6 0 ordinary glomeruli in the AL of Manduca compare roughly in 

number to many other insects (Anton and Homberg, 1999), and the great majority of 

ts PNs are uniglomerular (Homberg et al.’ 1989). By contrast, in the locust, the AL 

s organized into � 1 0 0 0 microglomeruli (Ernst et al., 1977) which are heavily 

nterconnected through multiglomerular PNs (each visiting 12-24 glomeruli), and 

extensively arborized LNs (MacLeod and Laurent, 1996). In Manduca LNs 

generate full-size sodium spikes. But in the locust, LNs produce graded calcium 

potentials rather than all-or-none spikes. Because of its microglomerular structure 

and extensive multiglomerular connectivity, the locust olfactory system has 

sometimes been described as atypical (Hansson and Anton, 2000). Nevertheless, 

our results strongly suggest that, despite substantial differences in anatomical detail, 

the olfactory systems of these species function in a remarkably similar fashion. 
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Despite the striking similarities in odor coding mechanisms in locust and moth, we 

found small differences. The oscillatory phase relationship between spikes in PNs 

and LNs is slightly different in the two animals, possibly because of differences in 

the timing of spikes in LNs. In the locust the population of PNs spikes with the 

greatest synchrony upon odor onset (Mazor and Laurent, 2005) probably because the 

strong, non-adapted input can activate many LNs which coordinate the spike timings 

of PNs (Assisi et a I., 2007). In the moth, we found that odor inputs were strongest 

at the odor onset as well (Figure 2.10C,D). However，both across LNs and PNs, 

synchrony increased gradually over the course of a response (Figure 2.7). This is 

probably because, in the moth, oscillation frequency at the odor's onset shifted too 

quickly to permit full entrainment of the oscillatory network. Indeed, frequency 

shifts we observed in the moth over the course of a stimulus were typically greater 

than those in the locust (Figure 2.3; see also Perez-Orive, 2004). Our simplified 

rate model suggests this difference could be explained by greater net inhibition in the 

locust: we found that if we slightly increased the strength of inhibition in our 

simplified model of the moth AL, the model then produced frequency shifts similar 

to those observed in the locust (Figure 2.19). We speculate that, compared to the 

moth, the balance of net excitation and inhibition is slightly shifted toward stronger 

inhibition in locust. 

2.3.2 Adaptation and saturation of ORN firing rate determine 

the oscillation frequency 

Our recordings revealed that additional ORNs were recruited into the responsive 

population as odor concentration increased (Figure 2.10), a result consistent with a 

fundamental property of receptors: they become less selective as the concentrations 

75 



A 

AL network with 
weak inhibition 
L N — P N = 0.20 

B 

J t i l L ^ I M I U U i L 

AL network with 
strong inhibition 
LN-+PN = 025 

LN -* PN connection strength 

Figure 2.19. Overall strength of inhibition within the AL helps determine its 
response to adapting input. 
(A) LFP oscillations driven by the same adapting odor input in models with 
relatively weak or strong overall inhibition. The network with weak inhibition 
resembles results obtained from the moth; the network with stronger inhibition 
resembles results obtained from the locust. (B) Relationship between the strength 
of inhibition and the shift in oscillatory frequency over the course of a response to a 
simulated odor pulse: When the strength of inhibition from LNs to PNs was set to be 
high, initially fast oscillations slowed down and then stabilized at a lower frequency. 

of ligands increase. Yet, we found the range of response intensity of these ORNs 

was sharply constrained. Long odor pulses caused the most highly responsive 
i 

ORNs to rapidly adapt their firing rates, with a time course similar to that of the shift 

in oscillation frequency (Figure 2.10L). Further, the firing rates of the most 

precisely tuned ORNs saturated when stimulated by low to moderate odor 
* 

concentrations (Figure 2.1OC-F). 

Our electrophysiological and computational approaches allowed us to compare the 

relative contributions of the size of the responsive population and its response 

intensity. We found that in the periphery, coding of odor concentration was heavily 

dominated by the size of the set of responsive ORNs rather than by the intensity of 
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the response of the ORNs. At low odor concentrations, only those receptors most 

precisely tuned to the odor responded; as the concentration increased, the 

precisely-tuned ORNs continued to fire, but quickly adapted and saturated, and thus 

displayed strictly constrained increases in response intensity. However, additional, 

less well tuned ORNs began to participate in the response, thus encoding the 

concentration of the odor. 

Several lines of evidence indicate that information about odors is encoded by a 

population of ORNs in a combinatorial fashion (Buck, 1996). A recent 

comprehensive study of all the receptor types on the Dmsophila antenna (Hallem and 

Carlson, 2006) showed that the firing rates of ORNs often saturated at moderate 

concentration, that some ORNs decreased their firing rates at extremely high 

concentrations, and that, at high concentrations, individual ORNs tended to respond 

broadly to many odors. Studies using 2-deoxyglucose labeling, c-fos and calcium 

images have shown that the spatial pattern of glomerular activation can expand as 

odor concentration increases (for review, see Buck, 1996). Further, several studies 

suggest that ORNs can respond within a narrow dynamic range (Firestein el til., 1993; 

Koulakov et ai, 2007; Stewart et ul” 1979). Indeed, a theoretical study of the 

locust olfactory system predicted that an intensity coding scheme like that shown 

here could explain the invariant frequency of odor-evoked oscillations over a wide 

range of stimulus intensity (Asissi et a!., 2007). These results are consistent with 

our quantitative finding that odor intensity is encoded mainly by the size of active 

ORN population rather than by firing rates. 

We incorporated our findings in the moth into two types of computational models to 

determine how sensory input to an oscillatory circuit influences its frequency. Our 
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models robustly mimicked the frequency transition we observed between fast and 

slow oscillatory states as input intensity gradually decreased (Figures 2.12, 2.15, 2.17, 

and 2.19). Further, our models demonstrated ihat recruiting additional, but less 
< 

well-tuned, ORNs could simulate responses to higher odor concentrations while 

causing only minimal changes in oscillation frequency (Figures 2.15，2.17), similar 

to what we observed in vivo (Figures 2.8, 2.10). Our models also demonstrated 

how oscillation frequency can shift between fast and slow states (Figures 2.12，2.17), 

depending' mainly upon the varying output intensity of rapidly saturating and 

adapting receptors, rather than upon odor concentration. 

、 
In agreement with earlier work, in locust (Stopfer el til.’ 2003) our results show that 

increases in odor concentration led to large increases in the coherence of the 

odor-triggered oscillatory synchrony of PNs (Figure 2.8C). This large increase in 

coherence was accompanied by only small changes in the frequency of oscillation 

(Figure 2.8D), and was caused mainly by increasing the size of the activated ORN 

population. Our results show that, in the moth AL, the coherence and the firing rate 

of the PN ensemble are determined independently (for a discussion of theory see 

Salinas and Sejnowski, 2001). This independence enables an efficient strategy for 

dynamically matching the firing properties of PNs to the coincidence detection-based 

decoding properties of KCs (Perez-Orive et 2002; Perez-Orive et al., 2004). 

What are the implications of this transition during an odor response? A comparison 

of the jitter in spike timing relative to the LFP before and after the frequency 

transition revealed an increase in spike time precision in LNs, PNs and KCs (Figure 

2.7). Because little is known about how the output of KCs is decoded by cells that 

follow them, potential benefits of this increase in spike precision are not immediately 
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apparent. One possibility is that the increase in the synchrony of input to the KCs 

might help sustain highly specific firing in these cells even though the output of PNs 

decreases when ORNs adapt. 

A similar frequency transition from gamma to beta oscillations has been noted in the 

rat olfactory bulb (Neville and Haberly, 2003), but the mechanism underlying the 

transition is quite different from that shown here. In the rat, oscillations of different 

frequency are generated by different neural circuits: odor-evoked gamma oscillations 

in the olfactory bulb arise locally, but beta oscillations require the participation of the 

olfactory cortex (Neville and Haberly, 2003). 

It is well established that shifts in the balance of excitation and inhibition (Brunei 

and Wang, 2003) or changes in excitatory drive (Traub e( al., 1996; Whittington el “/., 

1995) can influence the oscillation frequency of a neural network. However, 

sensory systems characterized in vivo often generate oscillations of invariant 
4 A 

frequency when driven by a wide range of stimulus intensities (Bringuier et ai, 1997; 

Schadovv et cil.’ 2007; Stopfer el ai, 2003). Our results suggest the extent to which 

oscillation frequency is sensitive to stimulus intensity depends at least in part on the 

properties .(such as adaptation and saturation) of the neurons that provide inputs to 

the oscillatory network. In the retina, for example, some classes of ganglion cells 

have been shown to increase their firing rates as the velocity of a moving visual 

stimulus increases (Cleland and Harding, 1983); concomitantly, the frequency of 

gamma oscillations in the visual cortCK monotonicaily increases (Gray and Prisco, 

1997). On the other hand, in cortical areas responsive to the orientation or direction 
e 

of a visual stimulus’ oscillation frequency remains constant (Gray and Singer, 1989), 

likely because changing these stimuli only changes the population of active cells. 
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That many primary sensory neurons display tuning, saturation and adaptation 

characteristics may help explain why invariant oscillation frequency is often 

observed in sensory systems (Bringuier et uL, 1997; Schadow el uL, 2007; Stopfer el 

ul.’ 2003). 

2.3.3 Oscillatory dynamics and fast-firing principal neurons 

Fast 20-60 Hz synchronized oscillations are common in neuronal circuits. In one ‘ 

form of gamma oscillations (Interneuron Network Gamma, ING) a network of 

mutually inhibiting interneurons exclusively establishes the rhythm; pyramidal cells 

are simply entrained to it, and their low firing rates have little or no effect on network 

oscillations (Wang and Buzsaki 1996; Whittington et al, 2000). But in our models 

oscillations failed when synaptic input from PNs to LNs was blocked (data not 

shown). This suggests odor triggered oscillations in the moth AL are not entirely 

mediated by an ING-type inhibitory network but rather require the active 

�participation of excitatory PNs to drive LNs (indeed, we observed that moth PNs 
» I 

fired slightly before LNs; Figure 2.4C) which in turn synchronized PNs through 
to . 

feedback inhibition. In this respect, odor triggered oscillations in the moth AL are 

similar to the persistent/transient forms of gamma oscillations 

(Pyramidal-Interneuron Network Gamma,�PING) in the vertebrate cortex and 

hippocampus. 

Our intracellular recordings from the AL network revealed, however, an unusual 

situatfoii: most active PNs fired faster than the oscillation frequency (Figure 2.13). 

More typically, as in the case of transient gamma oscillations induced by tetanic 
1 

stimulation of the hippocampus (Traub et ul.，1996; Whittington et al., 1997), fast 
Of � 

spiking interneurons and pyramidal cells both fire at the oscillation frequency. Also, 
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during persistent gamma activity in CA3 (Fisahn el al” 1998) and neocortex (Buhl el 
9 

ul., 1998), intemeurons fire on every cycle or every other cycle; pyramidal cells fire at 

much lower rates. Notably, our model demonstrated that stable oscillations can 

nevertheless emerge from a network with fast-firing PNs (Figures 2.12B-D), a 

condition thought to be unstable since excessive excitatory feedback from PNs to LNs 

could potentially disrupt the rhythmic LN network. 

The stability of the regime we observed in the moth could be explained by the 

combination of high-rate excitation and relatively low-efficiency GABAA-mediated 

inhibition revealed by our recordings and our models. The overall weak inhibition we 

found in the moth Al^Figure 2.19) could also explain the relatively weak dependency 

of the network oscil lat i^ frequency upon the decay time constant of inhibition. 

Indeed, if fast, GABAergic inhibition were strong enough to prevent excitatory cells 

from firing, oscillatory frequency would depend strongly on the time constant of 

inhibition (Bazhenov et al., 2008; Brunei and Wang, 2003; Buzsaki and Chrobak, 

1995; Whittington ct a l .�1995), something we did not observe here (Figure 2.14B,C). 

In moth, the net impact of inhibition seems restricted to influencing the timing of 

spikes in excitatory neurons, thus enabling periodic network rhythms. However, this 

inhibition appears too weak to prevent excitatory cells from firing, enabling them to 

maintain ^firing frequencies that exceed the network oscillation frequency. The 

oscillatory regime revealed here may be common, particularly in insects; unlike 

pyramidal cells, PNs in the AL of honeybee (Stopfer et al.’ 1997), locust (Stopfer et al., 

2003)，and Drosophila (Olsen et al., 2007) can respond to stimuli with high firing 

rates. 
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2.4 Methods 

Olfactory stimulation 

Odor stimulation was modified from Brown et al (2005). Briefly, the odorized 

headspace in 60-ml glass bottles above mineral oil-diluted odorant solution (10 mL) 

was pushed by a^controlled volume of humidified air (0.1 L/min) into an activated 

carbon-filtered, humidified air stream (0.75 L/min) flowing continuously across the 

antenna. The longest stimulus we used (4-s) would deplete only about 13% of the 

vapor in the headspace, making it likely that each odor pulse varied little in 

concentration throughout each stimulus. All chemicals were purchased from 

Sigma-Aldrich (St. Louis, MO) unless otherwise noted. Odorants were 

benzylalcohol, benzaldehyde, (+)-P-citronellene (Fluka Chemika, Buchs, 

Switzerland), cyclohexanone, geraniol, hexanol, cis-3-hexenyl acetate, (士)linalool 

(Aldrich Chemical Company Inc, Milwaukee, WI), methyl salicylate, methyl 

jasmonale, 1-octanol (Fluka Chemika, Buchs, Switzerland), trans-2-hexenal, * • 

trans-2-hexen-l-ol, oil extracts (strawberry, cinnamon, peach, lime, jasmine 

(Balducci's, Bethesda, MD), thyme (Thyme Red, Saidel Inc., Renton, WA), and 

wintergreen (Wagner's). Odorant solutions were diluted (vol/vol) to 1% in mineral 

oil (J.T. Baker, Phillipsburg, NJ) unless otherwise noted. 

Electrophysiology 

Physiological data were obtained from 145 adult moths {MancJuca sexto) of both 

sexes reared from eggs (purchased from the NCSU Insectary, Raleigh, NC) in our 

laboratory on an artificial diet (Bell and Joachim, 1976)，under a long-day 

photoperiod at 26 "C, and at more than 70% relative humidity. Adults 1 d 
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post-eclosion or older were dissected as described previously (Ito et al., 2008 - this 
« 

work, see Chapter 3). The head capsule was superfused with moth physiological 
/ 

saline (Christensen and Hildebrand, 1987) at room temperature. 

EAGs were recorded using Ag/AgCI wire (127 )j.m o.d.) inserted into the distal tip of 

the antenna; the reference wire was inserted into the contralateral compound eye. 

Signals were amplified with a DC amplifier (Model 440; Brown Lee Precision, San 

Jose, CA). 

LFPs were recorded using saline-filled glass micropipettes with a long shank ( o . d . � 3 

fim, 4-10 M^i), amplified and low-pass filtered (>100 Hz) by a DC amplifier 

(Brown-Lee Model 440). The long shank could be inserted deep into the calyx of 
/ 

the MB where axons of PNs and the dendrites df followers Kenyon cells make 

synaptic contacts. This technique allowed us to record LFP oscillations more robust 

than those we could detect by the method we use in locust (a blunt ended glass 

electrode with a short shank placed on the cell body layer of the MB; see Brown el 

u!” 2005). 

Extracellular recordings of ORNs from were made from sensilla in either isolated 

antennae cut at their bases or intact antennae of restrained animals (both methods 

yielded identical results). The antenna was stabilized with epoxy carefully applied 

to leave the leading surface (where sensilla are located) accessible. An 

electrochemically-sharpened tungsten wire was inserted into the sensillar base under 

a stereomicroscope (Leica MZ7.5). For isolated antenna preparations, Ag/AgCl 

wires were placed in the cut ends. The proximal cut end was immersed in a drop of 

saline or sensillum lymph (Kaissling, 1995) which was covered with wax to prevent 

evaporation. For intact antenna preparations, Ag/AgCI wires were placed in the 
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distal end of the antenna and the contralateral compound eye. Signals were 

amplified by a differential amplifier (P55, GRASS Instruments; Telefactor, W. 

Warwick，RI) and sampled at 15 kHz (LabView software, PCI-MIO-16E-4 DAQ 

cards, National Instruments). � 

Intracellular recordings，subsequent fluorescent dye injection, histological steps and 
. -

con focal imaging were made using sharp glass micropipettes as described previously 
% 

(Ito et a/., 2008 - this work, see Chapter 3). 
> 

Full scale AL network model 

The AL model included 820 PNs and 360 LNs (Homberg et a/.，1989) simulated 

using a reduced neuron model written in the form of difference equations (map; 

Rulkov 2002; Rulkov et al. 2004; Bazhenov et al. 2005; Rulkov and Bazhenov, 

2008). The time evolution of membrane voltage V" was described as nonlinear map 

厂 = 入 + 广 w h e r e / , , is a slow dynamical variable describing the 

effects of slow conductances ,人 is nonlinear function and n is a discrete time step 

(~0.5 ms). The model's properties and parameters are shown in Figure 2.20. This 
r 

model, despite its low intrinsic dimensionality, produces a rich repertoire of 

dynamics and is able to mimic the dynamics of Hodgkin-Huxley type neurons both at 

the single cell level and in the context of network dynamics (Bazhenov et al, 2005; 

Rulkov et al, 2004; Rulkov and Bazhenov，2008). 

For synaptic connections，we used conventional first order kinetic models of fast 

synaptic conductances (Bazhenov et al. 2005; Rulkov et al. 2004) (see Figure 2.20). 

All intrinsic connections (LN-LN, LN->PN, PN->LN) were random with 0.5 

probabilities. Maximal conductances (in dimensionless units; see ,Rulkov et al.’ 
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A 

.50 mV 

C 

Vn+1 

25 msec 

B 

LN 

-65 mV 

-62 mV 

PN 

20 mV 

50 msec 

1 mV 

Figure 2.20. Reduced spiking models of the AL neurons. 
Spiking neurons are described by the following reduced equations: 

fa(K « + ， + and <0 
一 1 ， a + I<Vor K . >0 

wliere V„ is the membrane voltage, /„ is a slow dynamical variable describing the 

effects of slow conductances, and « is a discrete time step (=0.5 ms). Slow time 

evolution of /,, is achieved by using small values of the parameter ^ « \ . To 

convert the dimensionless "membrane potential" V to the physiological membrane 

potential Vph’ the following equation is applied: Vph=V*50-15 [mV]. The PN model 

parameters were set at or = 3.65, a = 0.06, / i = 0.0005, = 0 . 1 3 3，a ' For 

LN model only first equation describing fast dynamics was used and parameters were 

set at or = 3.8 , / = 一 2 . 9 ， f i ' : 0.05 . The model parameter cr sets the resting 
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potential of PN neuron and’ therefore, its state with respect to spiking threshold. To 
ensure variability of the resting potentials across population of neurons, this parameter 
was picked randomly from a uniform distribution with 2% variability. 
To model synaptic interconnections, we used conventional first order kinetic models 
of synaptic conductances rewritten in the form of difference equations: 

…，sp ike� 
/ r = - g r ( K r - 、 ） ’ g二 " g r - > nn ‘ r “ pm ‘ 

0, otherwise. 

where gxy„ is the strength of synaptic coupling, and indices pre and post stand for the 
presynaptic and postsynaptic variables, respectively. The first condition, ‘‘spikeyw，，’ 

is satisfied when presynaptic spikes are generated. Parameter y determines 
synaptic time constant r = -\l\ny{y = 0.85 for excitatory synapses and / = 0.8 for 

inhibitory synapses); V^ defines the reversal potential and, therefore, the type of 

synapse: excitatory or inhibitory ( = 0 for excitatory synapses and V”’ = - 1 . 1 for 

inhibitory synapses). 

(A) Steady-state response pattern of an isolated PN neuron for 3 different levels of 
the resting potential. Black - a = 0 . 0 6 , green - a =0.09，blue - a =0.17. (B) IPSP in 
the postsynaptic PN neuron (bottom trace) triggered by a spike in presynaptic LN 

neurons (top trace). (C) Function f j y „ � I „ ) (red line) and the dynamics of the V" 

(green line) computed with a = 5.6and fixed value of /,, = - 3 . 7 5 . The open circle 

at the function curve emphasizes that this point does not belong to the diagonal. 
Green and blue circles indicate equilibrium points of the voltage equation (Rulkov 
and Bazhenov, 2008). 
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2004) denoting the total excitation and inhibition received by a given cell were set in 
.•、：: 

most of the simulations to GACH(PN-LN) = 0.00015, GGABA(LN-PN) = 0.00035， 
r 

GGABA(LN-LN) = 0.00015. 

The intensity (amplitude) of external (to mimic odor) stimuli to PNs and LNs 

followed a Gaussian distribution truncated at 0.1 to avoid stimulating all PNs (see 

Figure 2.15A). Which PNs and LNs received input with a particular intensity was 

determined randomly. The proportion of LNs receiving non-zero input was 

approximately one third that of PNs receiving non-zero input. For simplicity, we 

assumed that all ORNs (not only the best tuned ones) undergo sensory adaptation. 

To mimic data obtained in vivo, the temporal variation of the stimulus was 

approximated by the experimentally-measured function shown in Figure 2 . 1 0 L . ‘ 

Simplified firing rate model 

This simplified model contained 80 PNs and 30 LNs; qualitatively similar results 

were obtained with a version of the model containing 800 PNs and 300 LNs. The 

dynamics of each neuron in the network was modeled as a difference equation: 

令 = - 仏 0 ) 
at T “I 

where V̂  is the firing rate of neuron k, T is the membrane time constant of neuron (x = 

10 ms) and ^ is a non-linear logistic function (q){x) = [1 + exp(- a^ -{x-a^))] ' ； ai = 

10, 32 = 0.6). /, is the input from ORN type j to PN,. LNs did not receive direct 

input from ORNs. The connectivity matrix W included 50% connection probability: 

PN->LN (WPN_LN = 0.125) and L N - > P N (WLN_PN = -0.2). No PN->PN or LN->LN 

connections were included. The integration step size (dt) was set to 1 ms. The 
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model LFP was computed by filtering summed PN activity (V). Since the number 

of PNs was reduced in this model, LFP traces shown appear noisy. 

Each ORN response was modeled after our physiological recordings. The initial 

response from baseline to peak amplitude followed t • exp(-/ / r„“,). Subsequently, 

ORN responses were reduced to reach an adapted state set at 60% of the peak 

amplitude following exp(- / / r�山,,,）• Finally, after the odorant was removed, ORN 

responses returned back to baseline following exp(-"r,』）. w . r—,, r/“" for all 

80 ORNs were set to 100 ms, 200 ms and 250 ms, respectively. For any odor 40% 

of PNs received non-zero ORN input. Peak ORN response amplitude was 

uniformly, randomly distributed between [0,1]. Model EAG responses (Figure 

2.17G,I) were computed by summing individual ORN firing-rate responses. 

I 

Data analysis 

All analyses except for spike sorting were performed using custom programs in 

MATLAB (MathWorks Inc., Natick, MA). For experiments examining the effect of 

odor pulse duration on oscillation frequency, 10 pre-trials (4 s) were first delivered to 

elicit short-term "fast learning" response plasticity (Stopfer and Laurent, 1999), and 

then 100，250, 500, 750, 1000，1500 ms duration pulses were examined in a 

pseudorandom sequence; this set was repeated 3 times in each animal. 

Spectrograms (500 ms sliding Hamming window with 90% overlap) were 

normalized by the maximum value in the last pre-trial. Results from 18 trials each 

from 3 animals of either sex (each animal tested with 2 odors) were averaged. 

We used a magnitude squared coherence measure in Figure 2.IF to compare LFPs 

recorded in the AL and the MB; this approach allowed us to minimize the effect of » 
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small variations in phase we found in AL recordings caused by differences in 

electrode placement. We calculated the magnitude squared coherence using an 

overlapping sliding Hamming window (0.25 s with 80% overlap) for fast (0.25-1 s) 

and slow (1-4 s) oscillations. For Figure 2.6B，which did not require phase 

comparisons across brain structures, we used the more standard cross-correlation 

measure. 

We computed the phase of each spike relative to MB oscillations for fast (0.3-0,8 s) 

and slow (0.8-4 s) oscillations as described elsewhere (Mazor and Laurent, 2005) but 

modified as follows. LFP signals were acquired through an analog low-pass filter 

(>100 Hz) of a DC amplifier (BrownLee Model 440), which imposed a 7 ms delay, 

which we compensated for in MATLAB. For the phase analysis, LFP signals were 

then digitally filtered (5-55 Hz, Butterworth; zero phase distortion by filtfilt 

command in MATLAB). « 

We measured the frequencies of LFP oscillations evoked by different concentrations 

of three odors, each tested in blocks of 10 trials that were given in a randomized 

order. Power spectra were computed using the time series in the first 0.5 s of odor 

responses as well as in the 1 s before the odor responses (basal activity) and then 

averaged across 10 trials. The oscillation frequency was determined as the 

frequency with the maximum power in 14-54 Hz band in the average power 

spectrum. 

Spike sorting of sensillum recordings was performed offline using Spike-o-Matic 

software (Pouzat et al., 2002) implejnented in Igor Pro (Wavemetrics, Lake Oswego, 

OR). In ORNs, spike amplitude can change somewhat as ORNs adapt to odors; to 

accommodate small changes in spike amplitude we allowed each cell cluster to 
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include events with varying amplitudes as long as different sorted clusters remained 
t 

well-separated (by at least 5 times noise standard deviation), and, within a cluster, an 

appropriate inter-spike interval distribution was maintained throughout an 

experiment. For the population firing rate analysis shown in Figure 2.10D,E, in 

addition to well-sorted units, we included unsorted data as multiunit activity from a 

single sensillum. All other pane}s in Figure 2.10 include only well-sorted ORNs. 

To fit the concentration responses of ORNs, we first counted the number of spikes in 
jf 

the first 1 s of odor response (same analysis bin as F1 in Figure 2.10D) and averaged 

over 10 trials for each concentration. Similarly, the baseline activity was measured 

from the 2 s just before the odor onset. ORN-odor combinations not showing 

odor-elicited changes in spiking (<5 spikes/response) were not included in this 

analysis. 
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3 Sparse odor representation and 

olfactory learning 
旛 

Sensory systems create neural representations of environmental stimuli and these 

representations can be associated with other stimuli through learning. Are spike 
i 

patterns the neural representations that get directly associated with reinforcement 

during conditioning? In the moth ManJuca sexta, we found that odor presentations 

that support associative conditioning elicited only one or two spikes on the odor's 

onset (and sometimes offset) in each of a small fraction of Kenyon cells. Using 

associative conditioning procedures that effectively induced learning and varying the 

timing of reinforcement relative to spiking in Kenyon cells, we found that 

odor-elicited spiking in these cells ended well before the reinforcement was delivered. 

Furthermore, increasing the temporal overlap between spiking in Kenyon cells and 

reinforcement presentation actually reduced the efficacy of learning. Thus, spikes in 

Kenyon cells do not constitute the odor representation that coincides with 

reinforcement, and Hebbian spike timing-dependent plasticity in Kenyon cells alone 

cannot underlie this learning. 
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3.1 Introduction 

The sense of smell is very flexible. For animals, odors can take on arbitrary 

meanings as warranted by the changing environment. Understanding how olfactory 

stimuli are represented in the brain is a prerequisite for studying how such 

representations become associated with other modalities. 

The relatively simple structure of the insect brain makes it useful for studying the 

neural bases of sensory coding and associative learning. In insects, neural 

representations of odors begin in the antenna, where volatile molecules bind to 

olfactory receptor neurons, which respond with trains of action potentials and periods 

of inhibition (Hallem and Carlson, 2006). These receptor neurons send processes to 

the antennal lobe, where new odor representations arise from the circuit interactions 

of the receptor neurons, local interneiirons and projection neurons, in the antennal 

lobe, representations of any given odor are transformed into elaborate and enduring 

spiking patterns that are distributed across a large fraction of the projection neuron 
i 

population (Brown et al., 2005; Daly et a!.，2004; Mazor and Laurent, 2005; Stopfer 

et al, 2003). The projection neurons, which provide the only output from the 

antenna丨 lobe, send processes to the mushroom body, where another set of odor 

representations arise. Here，the output of hundreds of projection neurons, each 

t 

contributing dense bursts of spontaneous and odor-elicited spikes, is transformed into 

something markedly sparse: rare single spikes on a nearly silent background in a tiny 

fraction of the tens of thousands of Kenyon cells (Perez-Orive et al., 2002). The 

Kenyon cells then send processes to the lobes of the mushroom body. 

The mushroom bodies have long been linked to associative learning and memory. In 

93 



many insects, they are sites of multimodal convergence that include olfactory and 

gustatory inputs (Dacks et al., 2005; Hammer, 1993; Schroter and Menzel, 2003). 

Furthermore, many types of studies indicate the mushroom bodies are important in 

olfactory learning. Insects that lack normally developed mushroom bodies suffer 

from learning and memory deficits (de Belle and Heisenberg, 1994; Heisenberg et ai, 

1985). Experimentally inactivating the mushroom bodies by cooling them (Erber, 

1976) or by conditionally blocking synaptic transmission from Kenyon cells (Davis, 

2005; Heisenberg, 2003; Krashes et al., 2007) prevents insects from forming or 

retaining associative memories. In Drosophila, work with mutants suflering from 

memory deficits found that proteins critical for memory are concentrated in the 

mushroom bodies (Keene and Waddell, 2007). 

To understand how neural representations of odors become associated with 

reinforcement stimuli, we first sought to characterize the physiological responses of 

neurons along the olfactory pathway to odor pulses in the context of an associative 

learning procedure. The moth Manduca sexta ha^ proved to be accessible for 

intracellular recording (Christensen and Hildebrand, 1987) and is also capable of 

performing an appetitive olfactory learning task, proboscis extension reflex (PER) 

conditioning (Daly and Smith, 2000). Thus, we examined neural representations of 

odor in the moth and performed PER training under identical conditions. 

We used lengthy odor pulses (typically 4 s), as they correspond to odor exposures 

that moths encounter while feeding on flowers and because such pulses have often 
I 

been used for studies of olfactory conditioning (Bitterman et ai, 1983; Daly.and 

Smith, 2000; Fan et al., 1997; Muller, 2000; Skiri et al., 2005). With intracellular 

recordings, we found that projection neurons in the moth's antennal lobe responded 
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to long odor pulses with extended and complex firing patterns that varied with the 

odor. We found, with intracellular and multiunit recordings, that Kenyon cells were 

almost silent at rest; odor responses typically consisted of single spikes in a small 

population of Kenyon cells. Notably，spiking in Kenyon cells occurred almost 

entirely on an odor pulse's onset and sometimes offset, with few spikes occurring in 

between. For any given odor, the population of Kenyon cells responding to the 

stimulus onset was usually different from the population responding to the offset. 

This response feature allowed us to examine the ability of onset and offset spiking in 

Kenyon ceils to support associative conditioning. 

Having characterized the responses of Kenyon cells to these odor stimuli, we then 

used a set of behavioral studies to test whether pre- and postsynaptic neurons must 

both fire spikes nearly simultaneously, which is a key requirement of spike 

timing-dependent plasticity (STDP), a form of Hebbian learning. In the locust, STOP 

has been shown to occur between Kenyon cells and followers (Cassenaer and 
V 

Laurent, 2007). To test the relationship between odor-evoked spikes in Kenyon cells 

and olfactory learning in the Kenyon cells, we used several behavioral procedures 

with different intervals between odor and reward. Our results indicate that 

reinforcement that was delivered seconds after the conclusion of spiking responses in 

Kenyon cells was able to support the formation and recall of associative memory. 

Thus, the acquisition of short-term memory does not require the concurrence of 

spikes in Kenyon cells with activation of a reward pathway in the moth. Furthermore, 
‘ i 

we found that reinforcement provided specifically following the off response 

(spiking occurring in 1.5 s of odor offset) could not support associative learning. 

These results indicate that appetitive associative conditioning cannot occur by a 

Hebbian STDP mechanism alone in the Kenyon cells. 
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3.2 Results 

3.2.1 Odor representation in the antennal lobe and mushroom 

body 

To characterize odor representations in the antennal lobe,' we made intracellular 
% 

recordings from projection neurons and analyzed their responses to odor pulses 

presented to the antenna. In all cases, we confirmed the cell type by dye injection and 

subsequent histological analysis (Figure 3.1). Consistent with earlier studies in 

locusts (Brown et al., 2005; Mazor and Laurent, 2005; Stopfer el ai, 2003), moths 

(Carlsson et al., 2005; Daly et ai, 2004) and Drosophila (Wilson et a/.，2004; Wilson 

and Laurent, 2005), we found that, over the course of an odor pulse, different 

projection neurons responded with slowly changing temporal patterns of spikes and 

periods of inhibition (Figure 3.2). These distributed, time-varying firing patterns 
書 

were reliable over repeated trials and varied greatly with the odor. A standard test for 

information content (Brown et al., 2005) showed that these odor-elicited patterns 

were sufficiently reliable and distinctive to allow for classification far exceeding 

chance (Figure 3.3); thus, these firing patterns could carry information about the 

odors. We were particularly interested in characterizing responses to relatively 

lengthy pulses of odor, which match* the conditions in which moths naturally learn 

about food sources and which have often been used to test perception, learning and 

memory in insects, including moths (Daly and Smith，2000; Fan et al., 1997) and 

honeybees (Bitterman et al” 1983; Muller, 2000). in projection neurons, responses to 

4-s odor pulses generally consisted of lengthy trains of spikes, with 51% of 

odor-evoked spikes occurring in the first 0.6 s after odor arrived at the antenna 
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Figure 3.1. Morphological identification of cell type. 
After physiological characterization, we injected fluorescent dye for morphological 
analysis of the recorded cell. Projection images of confocal stacks are shown, (a) 
Example of projection neuron morphology; anterior view of antennal lobe; projectron 
neuron filled with Lucifer-yellow. The neuron's shape and the process exiting the 

.antennal lobe (arrowhead) are characteristics of projection neurons. AL: antennal 
lobe. Scale bar: 20 pm. (b) Example of Kenyon cell morphology, posterior view 
of mushroom body; Kenyon cell filled with Lucifer-yellow. Scale bar: 50 nm. 
CaM: medial calyx; CaL: lateral calyx. , 
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Figure 3.2. Projection neurons respond reliably to odors, and different odors 
evoke different temporally structured patterns of activity. 
(a) Examples of intracellular recordings of projection neurons (PN) responding to 4-s 
odor pulses (stimulus duration indicated by horizontal bars). Top, intracellular record 
of 1 trial. Bottom, rasters showing spikes from multiple trials. In PNl，1% linalool 

induced brief inhibition followed by sustained spiking that outlasted the stimulus and 
a prolonged period of inhibition at the offset. In PN2，1% cyclohexanone evoked 
only brief excitation. PN3, PNIO and PNl 2 showed distinct patterns to the same odor 
(100% hexanol). PN3 and PNIO showed excitatory off responses as well. Vertical 
scale bars represent 40 mV. (b) Peri-stimulus time histograms (PSTHs) showed 
reliable odor responses in projection neurons to 4-s odor pulses. These firing patterns 
contained information about odors (see Figure 3.3). Spikes were binned (10 ms) and 
bins with at least one spike are indicated by a black dot. One row represents one trial, 
and 62 projection neuron-odor combinations, each separated by a horizontal black 
bar, are shown. All projection neurons (except PNl4) were tested with more than one 
odor. 
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Time (s) 

Figure 3.3. Projection neuron firing patterns reliably contain information 
about odors. 
Classification success rates averaged over projection neuron-odor combinations (see 
Methods) plotted over time. Classification success was greatest at odor onset and 
offset. Classification success based upon the activity of a single projection neuron 
greatly exceeded chance level (25%), indicating that odors induced reliable and 
odor-specific firing activity. The classification success rate increased with the 
number of projection neurons, indicating that ensembles of projection neurons can 
encode the stimulus more reliably. Black horizontal bar: odor presentation. 

(Figure 3.2; timing determined by reference to an electroantennogram, data not 

shown). We also found that odors evoked the oscillatory synchronization of 

projection neurons, which, in turn, regulated the fine timing of spiking in the Kenyon 

cells (I. I to et al.’ Soc. Neurosci. Abstr. 541.8, 2006). 

To systematically examine the neural representation of odors by populations of 
« 

Kenyon cells in the moth, we made intracellular recordings from Kenyon cells and 

extracellular recordings from the mushroom body with tetrodes (see Methods). Using 

4-s pulses of each of a panel of 21 odors, we tested a set of 117 Kenyon cells 

(recorded extracellularly, 2,457 Kenyon cell-odor combinations, 10 trials per odor, 

each trial was 12 s long with an intertrial interval of 20 s, Figure 3.4a; a smaller set 
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of intracellular recordings from Kenyon cells revealed the same response properties. 

Figure 3.4b). We detected extremely little spontaneous activity in Kenyon cells in the 

pre-stimulation period (2 s) of each trial; in 24,570 trials (49,140 s), we observed 

only 203 spikes. This spontaneous firing rate (mean plusminus s.d.，0.0041 

plusminus 0.0122 Hz; range, 0-0.1696 Hz; n = 117) was approx2,000-fold lower 

than the spontaneous firing rate that we observed in the projection neuron population 

(measured from intracellular recordings; mean plusminus s.d., 8.046 plusminus 5.899 

Hz; range, 0-26 Hz; n = 15). Despite the strong and constant convergent and 

excitatory drive from spontaneously active projection neurons, Kenyon cells 

remained inactive. 

We found that Kenyon cells responded mainly to the onset of a lengthy odor pulse: 

72% of spikes evoked by an odor occurred in the first 0.6 s of a 4-s odor presentation 

(we refer to these early spikes as the 'on response') (Figure 3.4c). Additional spikes 

�somet imes occurred just after an odor's offset (21 % of spikes were off responses) and 

very few spikes occurred between these on and off responses (7% in the 3.4-s 'middle 

response' period). During the on responses, the mean firing rate, averaged over odors 

and trials, significantly increased (P < 0.0001，Wilcoxon signed rank test, n = 117 

Kenyon cells, 0.6-s response bracket) about 21.5-fold from the basal firing level 

(activity during 2 s before odor stimulation). The mean firing rate during the off 
* 

responses increased 3.5-fold (P < 0.0001，3.4-s bracket) and increased by 1.3-fold 

during the middle responses (P < 0.005, 1.5-s bracket). 

Most Kenyon cells responded to only a few of the 21 odors that we tested, although a 

subset of Kenyon cells responded to a broader range (Figure 3.4a). In some 
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Figure 3.4. Odor-elicited spiking in Kenyon cells is brief and sparse. 
(a) Examples of Kenyon cells (KC) responding to a panel of 21 odors. KCSOa, 
KC41a and KC21a responded very sparsely, with either spikes at odor onset or offset. 
KC3a responded to a broader set of odors. KCla was the most responsive cell in our 
set and fired reliably at different points in time for different odors. Ten trials were 
carried out for each odor. Rasters indicate spike times and the gray blocks indicate 
odor stimulation (4 s). See Methods for odors, (b) Spiking and subthreshold 
depolarization in Kenyon cells occurred mainly on odor onset and offset. The top 
trace indicates the intracellular voltage record and the dark horizontal line indicates 
odor delivery (4 s). The subsequent lines indicate the number of trials (one line per 
trial), and the rasters indicate spikes. Insets, enlarged membrane potential, averaged 
over first five trials，for on and off responses (times indicated as horizontal lines 

below rasters), (c) Histogram of Kenyon-cell firing probability (117 Kenyon cells, 10 
trials each of 21 odors). The top brackets indicate the percentage of spikes during 
onset," middle and offset periods. The bottom brackets indicate the analysis bins used 
in subsequent panels. (d，e) Responses of Kenyon cells to odors were sparse, (e) Odor 
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responses usually consisted of a single spike. Frequency distributions of odor-evoked 
spikes per trial measured over the full analysis bin are shown, (f) Different Kenyon 
cell ensembles were usually active during on, middle and off responses (ON, MD 
and OFF, respectively). MD&ON, overlap in spiking between middle and on 
responses; OFF&ON, overlap between off and on responses; OFF&MD, overlap 
with off and middle responses. 

experiments, we presented pulses of clean air as control stimuli. These presentations 

evoked no reliable responses (see Methods) in any of the 42 Kenyon cells that we 

tested this way. To characterize odor responses across the Kenyon cell population, we 

computed population sparseness (SP) and lifetime sparseness (SL) (Perez-Orive et ai, 

2002, Vinje and Gallant2000) (see Methods). These measures, which take into 

account ail of the odor-evoked spikes in all of the tested Kenyon cells, range from 0 

to 1, where 1 is sparsest. Mean population sparseness SP (full) was 0.79 (Figure 

3.4d)，indicating that a given odor elicited responses in very few cells. Similarly, 

mean lifetime sparseness was 0.72 (Figure 3.4cl), indicating that a given cell 

responded to a narrow range of odors, although a subset of Kenyon cells was more 

broadly tuned, as in the locust (Perez-Orive et a!., 2002). Most odor responses 

consisted of a single spike per trial and the maximum number of spikes in one 

responsive trial was 5 (Figure 3.4e). These results indicate that odor representations 

in the moth mushroom body are extremely sparse: they consist of very few spikes in 

very few neurons. 

3.2.2 Spatiotemporal odor representations in Kenyon cells 

When driven by a lengthy odor stimulus, the great majority of spikes that form the 

odor representation in the mushroom body occur at the onset and to a lesser extent 

the offset of an odor pulse (Figure 3.4c). Are the Kenyon cells that fire at the odor 
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onset the same ones that fire at odor offset? To analyze how spiking patterns in the 

mushroom body change over time, we divided the odor response time into three 1.5-s 

periods that together captured about 95% of all spikes (Figure 3.4c,f). We chose to 

focus on responses of Kenyon cell-odor combinations that were relatively strong and 

reliable, which consisted of at least three responsive trials out of ten (see Methods for 

rate and reliability criteria). Our set of Kenyon cell-odor combinations elicited 145 

reliable on and 39 reliable off responses; of these, an odor elicited reliable spiking in 

the same Kenyon cell both during onset and offset in only six cases. We observed 

only 13 reliable Kenyon cell-odor combirrations during the middle time period, with 

rwo overlaps with the on response and two overlaps with the off response (Figure 

3.4f). Together, these findings indicate that odor responses in the mushroom body are 

spatially distributed and vary over the course of the stimulus. Thus, the moth 

olfactory system appears to use a time-varying, distributed spatiotemporal code to 

represent odors both in the antennal lobe and in the mushroom body. 

To examine the effect of odor-pulse duration on Kenyon cells, we analyzed ail of the 

spikes that we observed in another set of experiments (Figure 3.5) and found that the 

probability of off response spiking increased with the length of the odor pulse. We 

almost never observed off responses following odor pulses of less than 750 ms 

(examples of Kenyon cells selected for their prominent off responses are shown in 

Figure 3.5a). Odor pulses of at least 4 s produced the most off responses (Figure 

3.5b-d). On and off responses elicited in Kenyon cells by long odor pulses (4 and 18 

s) were distributed 'almost exclusively around two narrow time ranges, 0-600 ms 

after the odor arrived at the antenna (determined by reference to electroantennogram 

recordings, data not shown) and 0-800 ms after the odor was removed by vacuum 

(Figure 3.5c,d). On response spiking was maximal at around 65 ms after odor arrival. 
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Figure 3.5. Kenyon cells responded only to the onset of brief odor pulses and 
to the onset and ofTset of long pulses. 
(a) Kenyon cell responses varied with odor pulse duration. Pulses at least 4 s long 
were most likely to induce odor-specific off responses. Briefer odor pulses generally 
elicited weaker or no off responses (see also b). Examples shown were selected for 
prominent off responses. Trials are shown from top to bottom (20 trials of 4-s odor 
pulses, then 6 shorter pulses, 3 trials each), (b) Off response probability increased 
with stimulus duration. Multiunit recordings of Kenyon cells (including 117 sorted 
cells from 16 animals, see Methods) responding to odor pulses of different durations 
(gray bars, tested in a randomized order, ten trials each). The histogram (bin size, 1 
ms) combines the responses to five odors, (c) Long 4-s (black) and 18-s (gray) odor 
pulses evoked comparable onset and offset responses (arrows indicate the 
corresponding off responses). Multiunit recordings of Kenyon cells averaged across 
the four odors shown in d and across multiple trials are shown, (d) Examples of 
Kenyon cells responding to the offset of 18-s odor pulses. See Methods for the odor 
labels in a and d. 
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3.2.3 STDP alone cannot mediate odor learning in Kenyon 

cells 

Hebbian STDP mechanisms require the temporal convergence of activated neural 

pathways. Do the spikes that we observed in Kenyon cells constitute the odor 

representation that coincides with reinforcement that supports learning? To test this, 

we examined the relative timing of odor-elicited spiking in Kenyon cells and sucrose 

reinforcement in the context of a learning procedure. We trained several groups of 

moths and compared the amount of learning elicited by procedures in which we 

varied the temporal intervals between the odor and the reward (Figure 3.6). 

Effective appetitive conditioning in honeybees (Bitterman et al„ 1983; Hammer and 

Menzel, 1998; MUller, 2000) and moths (Daly and Smith, 2000; Fan et a!.�1997; 

Skiri el al., 2005) generally occurs when the unconditioned stimulus, a sucrose 

reward, is presented a few seconds after the onset of a lengthy conditioned stimulus, 

an odor pulse. Using a computer-controlled delivery system identical to (and 

frequently calibrated with) the olfactometer used for our electrophysiology 

experiments (see Methods), we precisely regulated the timing of both the conditioned 

and unconditioned stimuli in all procedures (Figure 3.6a). 

The control 'unconditioned stimulus alone' procedure group received five trials of 3-s 

unconditioned stimulus presentations alone (n = 33; Figure 3.6a). This repeated 

delivery of sucrose alone may have caused some sensitization, as the spontaneous 

PER probability slightly increased from the baseline of 0 to 6.1 % (not significant, P 

=0.5, McNemar's exact test; Figure 3.6b). 

For all associative conditioning procedures, the unconditioned stimulus duration was 
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Figure 3.6. Greater temporal overlap between odor-eiicited spiking in Kenyon 
cells and reinforcement delivery did not lead to more learning. 
(a) Diagrams illustrate PER conditioning procedures used to vary temporal overlap 
between spiking in Kenyon cells and sucrose delivery. Black traces represent time 
course of Kenyon cell spike response probability and gray boxes indicate analysis 
time windows used to compute conditioned stimulus (CS, odor)-elicited Kenyon cell 
spike probability concurrent with the unconditioned stimulus (US, sucrose) 
presentation shown in b (right ordinate). Conditioned stimulus was always paired 
with the unconditioned stimulus five times with 5 min between trials. The 
unconditioned stimulus duration was always 3 s. Short-term memory was tested 5 
min after training by presenting the conditioned stimulus without the unconditioned 
stimulus. (b,c) Bar graphs in b and c show the PER probability for short-term 
memory tests. Asterisks indicate significant difference (P < 0.05，Fisher's exact test 
with Bonferroni correction). More Kenyon cell spikes in the unconditioned stimulus 
period did not result in better learning. Open circles indicate normalized numbers of 
Kenyon cell spikes during the unconditioned stimulus presentation period (see Figure 
3.5b); spike counts were normalized with respect to the maximum elicited during the 
on response procedure (0.25-s ISI). (c) Reinforcement provided following off 
response spiking in Kenyon cells does not support learning, (d) The most effective 
conditioning occurred when the unconditioned stimulus followed the burst of onset 
spiking in Kenyon cells by a delay of several seconds. A delay of 20 s elicited no 
learning. The graph shows PER probability during the short-term memory test for 
different on response procedure groups. 
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3 s and the conditioned stimulus was paired with the unconditioned stimulus five 

times with 5-min intertrial intervals. Short-term memory was assessed 5 min after 

training by delivering only the conditioned stimulus. Our 'on/off response' procedure 

(Figure 3.6a), one that is commonly used for training honeybees and moths, 

consisted of a 4-s conditioned stimulus (Daly and Smith, 2000; Miiller, 2000) and a 

2-5 ISI from the onset of conditioned stimulus to the onset of unconditioned stimulus 

(Daly and Smith, 2000; Hammer and Menzel, 1998; Muller, 2000). Moths in the 

on/off response group (2-s ISI, n = 64) attained a 34.4% PER probability (Figure 

3.6b). This amount of appetitive learning is typical for moths (Daly and Smith, 2000; 

Fan et d., 1997; Skiri et al., 2005), which, having fattened as caterpillars, do not 

need to eat as much as adults. Another group of moths trained with the on/off 

response procedure (2-s ISI, n = 23) and then tested with a different, non-trained 

odor did not respond to the different odor (Figure 3.7). This result indicates that 

learning was specific; moths learned to associate the odor, rather than unintended 

cues, with the reward. The amount of learning elicited by the on/off response 

procedure (2-s ISI) was significantly greater than that of the control, unconditioned 

stimulus alone procedure group (Fisher's exact test, P = 0.0024). 

Notably, in this effective and commonly used learning procedure, sucrose 

reinforcement was delivered approxl.2 s after the end of the on response in the 

Kenyon cells, as we knew from our physiology experiments. Thus, successful 

conditioning occurred in the absence of any overlap between odor-elicited on 

response spikes in Kenyon cells and the sucrose reward. 

To further explore the timing relationship of on-response spikes in Kenyon cells and 

sucrose reinforcement, we then used an on/off response procedure (3.75 s ISI) in 
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US alone (N = 33) 
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Figure 3.7. Trained moths learned about odors, not other non-specific cues. 
We trained two groups of moths with benzylaldehyde or cyclohexanone in the 
On/Off response procedure with 2 s ISl. In each group, half the animals were 
trained with each odor. After the training, we tested one group with the trained odor 
and the other group with the untrained odor. Moths responded only to the trained 
odor, not to the untrained odor. We determined statistical significance by Fisher's 
exact test with Bonferroni-corrected P values. 

which conditioned stimulus and unconditioned stimulus were spaced further apart in 

time (4 s conditioned stimulus duration, 3.75 s ISI). We found that this group (n = 58) 

learned as well as that receiving the on/off response procedure with 2 s ISI (34.5%, 

Figure 3.6b), a level of learning significantly greater than that shown by the control, 

"unconditioned stimulus alone" procedure group (Fisher's exact test, P = 0.0021). 

Our matching electrophysiology experiments found that brief odor pulses elicited 

only on response spikes in Kenyon cells (Figure 3.5b). To test the importance of 
» 

overlapping on response spikes in Kenyon cells with sucrose reward, we conditioned 

a group of moths with brief (0.5 s) odor pulses, which were followed 0.25 s later by 

reinforcement (on response procedure, 0.25-s ISI, n = 61). Shifting the timing of the 

reward presentation closer to the on response spikes in Kenyon cells actually resulted 
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in decreased learning (18.0% PER probability，which was not significantly different 

from that elicited by the unconditioned stimulus alone procedure, P = 0.1299; Figure 

3.6b). 

Among these three groups, only the on response procedure (0.25-s ISI) elicited 

exclusively on response spikes in Kenyon cells，and was ineffective for learning. 

This raised the possibility that off response spiking in Kenyon cells (and possibly 

some middle response spiking) in the other two groups (on/off response procedures 

with 2-s and 3.75-s ISIs) may have contributed substantially to successful 

conditioning. To test this, we trained moths with a brief odor pulse in a trace 

procedure (on response procedure with 3.75-s ISI, 0.5-s conditioned stimulus 

duration, n = 23). Notably, conditioning with this procedure yielded learning (43.5%, 

significantly different from unconditioned stimulus alone procedure, Fisher's exact 

test, P = 0.0018) that was similar to that elicited by other conditioning procedures 

including off response spikes in Kenyon cells (on/off response procedures with 2-s 

and 3.75-s ISIs; Figure 3.6b). This suggests that the off response spikes contributed 

little or nothing to conditioning efficacy. We counted the number of spikes evoked in 

Kenyon cells during the time of unconditioned stimulus presentation in these 

procedures f i g u r e 3.5b). The on response procedure (3.75-s ISI) group, which 

elicited the highest learning rate, corresponded to the fewest spikes in Kenyon cells 

during the time of reinforcement (Figure 3.6b). To examine the limits of the interval 

between on response spikes in Kenyon ceils and reinforcement to effectively support 

conditioning, we tried spacing the conditioned and unconditioned stimuli further and 

further apart. When we set the conditioned stimulus duration to 0.5 s to induce 

almost exclusively on response spikes (Figure 3.5) and gradually increased the 

interval between the conditioned and unconditioned stimuli，we found that the PER 
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probability peaked at the 3.75-s ISl <43.5%) and gradually decreased (at the 9.75-s 

ISI, 31.8%, n = 22, not significantly different from the unconditioned stimulus alone 

procedure, Fisher's exact test, P = 0.022，not significant after Bonferroni correction) 

and reached the control level at around the 20-s ISl (9.1。/。，n = 22, not significantly 

different from the unconditioned stimulus alone procedure. Fisher's exact test, P = 1; 

Figure 3.6d). 

Notably, effective conditioning was possible even when sucrose reinforcement was ‘ 

delivered many seconds after the spiking responses in Kenyon cells had returned to 

baseline levels. These results indicate that appetitive olfactory conditioning in the 

moth Kenyon cells cannot be mediated by a Hebbian STDP process that requires the 

near-overlap of spikes elicited by the odor stimulus and spikes elicited by the 

reinforcement; spiking in Kenyon cells cannot be the representation that coincides 

with appetitive reinforcement during associative conditioning. 

Finally, we asked whether off response spikes alone in Kenyon cells could support 

associative learning. Drawing on the results of our on response procedures, we used 

an ISI that was long enough to separate the onset and offset spiking in Kenyon cells 

by an interval that exceeded that which can support trace conditioning (Figure 

3.6c,d); we used an extra-long conditioned stimulus (18 s, which induced small off 

responses similar to those elicited by 4-s odor pulses; Figure 3.5c，d) and delivered 

the unconditioned stimulus at a 20-s ISI (2 s after the beginning of the off response). 

This allowed us to selectively reinforce the off response spikes, but not the on 

response spikes (off response procedure group, 6.7%, n = 30; Figure 3.6c). This 

procedure did not lead to PER conditioning that was significantly different from the 

control level (Fisher's exact test, P = 1). Therefore, we concluded that off response 



spiking alone cannot support learning. This absence of learning may result because 

off responses were generally�small , consisting of far fewer spikes than the on 

responses (Figure 3.6b，c). As middle response spikes were much less frequent than 

off response spikes, we conclude that only the on response spikes contributed 

substantially to learning. Responses occurring after the on response could be 

important for other tasks that require temporal integration. The apparent importani^e 

of odor onset for associative conditioning suggests that, at least for our simipli 

learning task, moths were prepared to make rapid behavioral choices. Consistent with 

this analysis, we found that moths tended to respond rapidly with proboscis extension 

on the onset of an odor pulse regardless of its duration or time of reinforcement 

during training (Figure 3.8). 
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Figure 3.8. Moths responded to odor onset regardless of reward timing. 
In these experiments，we measured the latencies of all PER responses during training 

and testing from Video recordings. We trained different groups of moths with 
different CS-US intervals. Most moths quickly responded to the odor pulse (the CS) 

.within 1 s regardless of the training interval. 'Frequency histograms show time after 
odor onset when the start of proboscis extension was noted. The bins labeled > 25 s 
include responses occurring between 25 s and 60 s after CS onset. N: number of 
moths in the group. Yellow boxes: the CS presentation time. Black horizontal 
bars under histograms: the US (sucrose) presentation time. 
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3.3 Discussion 

3.3.1 Odor representations in the moth olfactory system 

Olfaction, with only a few layers of neurons separating input from output, provides a 

useful model for understanding a succession of neural representations of sensory 

events. Consistent with earlier findings in moths (Daly et al., 2004) and locusts 

(Mazor and Laurent, 2005), our intracellular recordings from projection neurons 

revealed high spontaneous firing rates and odor-specific, temporally complex 

patterns of robust spiking and inhibition (Figure 3.2). We provide, to the best of our 

knowledge, the first characterization of odor responses in the Kenyon cells of moths; 

they showed markedly low background firing rates and typically responded to odors 

with one spike at the odor onset or, less often, at the offset (Figure 3.4). Thus, in the 

moth, as has been observed in locusts (Perez-Orive et al., 2002)，honeybees (Szyszka 

et al., 2005) and Drosophila (Turner et ai, 2007; Wang et al., 2004)， dense 

spatiotemporal patterns in the projection neurons were transformed into sparse 

representations in the Kenyon cells. We found that largely distinct ensembles of 

Kenyon cells spiked at the onset and offset of odor pulses in the moth, with a very 

low level of spiking in between onset and offset (Figures 3.2 and 3.5). 

In moths, as in other animals, the meanings of odors are readily adjusted by learning 

experiences. Needless to say, the odorants themselves are not matched with 

conditioning reinforcements in the brain, but rather neural representations of odors, 

presumably spiking activity in olfactory neurons, must undergo this matching 

process. Having characterized the responses of olfactory neurons to odor stimuli such 

as those used in conditioning procedures, we asked what was the neural 
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representation of the odor that coincides with the reward. Memory traces are, in 

general, distributed across multiple neural populations. Specifically, short-term 

memory induced by appetitive olfactory conditioning, such as the PER procedures 

that we used here, appears to involve both the antennal lobe and the mushroom body 

(Hammer and Menzel, 1998; Thum et al., 2007) and possibly other areas. We 

focused on the timing of odor-elicited firing patterns of the intrinsic neurons of the 

mushroom bodies, the Kenyon cells, and the timing of reinforcement stimuli that 

leads to effective associative conditioning. In a number of conditioning procedures, 

we found that reinforcement stimuli that were delivered at times that did not coincide 

with odor-elicited spiking in Kenyon cells could still effectively support associative 

conditioning (Figure 3.6). 

Recent work in vertebrates and insects has focused on the role of STDP, a form of 

Hebbian learning, which requires precise, millisecond-scale correlation between 

spiking in pre- and postsynaptic neurons that undergo plasticity. Notably, we found 

that the most behaviorally effective reinforcement occurred long after, sometimes 

seconds past, the cessation of all odor-eliciicd spiking in the Kenyon cells. Thus, it is 
t 

not possible for spikes in Kenyon cells to interact, in a STDP temporal window, with 

spikes arriving via any pathway bearing the reinforcement. Plasticity cannot occur in 

these cells through any type of Hebbian mechanism that requires spiking in both pre-

and postsynaptic neurons to occur in a temporal window of less than several hundred 

miiliseconds. Plasticity here must occur through a different mechanism. 

Neurotransmission from Kenyon cells is required for memory retrieval, as shown by 

behavioral studies in transgenic flies in which neurotransmission from a subset of 

* Kenyon cells ( a p neurons) was conditionally regulated by temperature shifts (Davis, 
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2005; Heisenberg, 2003). A recent study investigating the role of another subset of 

Kenyon cells, the a'p' neurons (Keene and Waddell, 2007; Krashes et a!., 2007)， 

indicated that neurotransmission from a'P' neurons is required during the acquisition 

of memory and contributes to stabilizing the memory. These results are consistent 

with an earlier finding in honeybees, where the neuromodulator octopamine, injected 

specifically into the mushroom body, can induce olfactory learning by substituting 

for the sucrose reward (Hammer and Menzel, 1998). Studies such as these show that 

Kenyon cells are involved in memory acquisition (plasticity in the antennal lobe may 

be involved as well) (Hammer and Menzel, 1998; Thum, 2007). However, the 

precise mechanism by which Kenyon cell activity contributes to the acquisition of 

associative memory remains unknown. Any such mechanism would require the 

temporal convergence of the neural representations of the odorant and sucrose. 

3.3.2 Sparse coding and associative learning 

Accumulating evidence shows that organisms spanning locusts (Perez-Orive et al., 

2002) to humans (Quiroga et ai, 2005) make use of sparse neural coding strategies 

to represent stimuli. Sparse codes, in which stimuli elicit very low spike rates in a 

small fraction of a large population of mostly silent neurons, maximize coding space 

between representations of different sensory stimuli (Olshausen and Field, 2004). 

This increases associative memory capacity and also readily allows for efficient 

formation of learned associations via a local rule. Hebbian mechanisms, through 

which synapses are strengthened if spikes in the presynaptic neurons contribute to 

produce an action potential in the postsynaptic neurons, seem ideally suited for 

efficiently modifying sparsely coded neural representations of stimuli (Marr, 1971; 

Willshaw et al., 1969). Thus, Hebbian plasticity has become a common component 
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of associative neural network models, particularly in the context of sparse codes 

(Olshausen and Field, 2004). 

Indeed, a recent study found millisecond-scale STDP in the olfactory pathway of the 

locust, demonstrating that insects have synapses that exemplify Hebb's rule 

(Cassenaer and Laurent, 2007). Behavioral studies in Drosophila have revealed the 

sort of bidirectional plasticity that is typical of STDP, but with conditioned 

stimulus-unconditioned stimulus pairing time scales on the order of seconds rather 

than milliseconds (Tanimoto et al., 2004). Computational studies suggest that the 

time scale mismatch between behavioral and physiological STDP characteristics can 

be resolved if the pre- and postsynaptic neurons responding to conditioned and 

unconditioned stimuli show sustained firing that slowly decays (Drew and Abbott, 

2006). However, our finding that Kenyon cells respond only sparsely and very 

briefly to odor pulses that support conditioning is not consistent with this model. It is 

possible that STDP mechanisms may contribute to olfactory conditioning when 

combined with slower biochemical processes (Izhikevich, 2007). Might the 

responses of Kenyon cells to odor become altered by conditioning such that spikes 

then temporally overlap with the reward? This seems to be an unlikely explanation 

for our results. First, we found that the most learning occurred during the first 

training trial; that is, before any potential learning-induced changes could have 

occurred (on/off response procedure with 2-s ISI; Figure 3.7). Second, odor 

responses of Kenyon cells in moths that had been successfully trained to associate 

that odor with reward were no less sparse than responses from Kenyon cells in 

untrained moths (data not shown). Therefore, we conclude that STDP mechanisms 

alone cannot account for the learning in Kenyon cells that we observed in moths. 
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Our physiological and behavioral studies indicate that spikes in Kenyon cells cannot, 

in and of themselves, constitute the odor representation that coincides with appetitive 

reinforcement. We suggest instead that the odor representation in Kenyon cells that is 

paired with reward may be a sustained biochemical process, perhaps second 

messenger responses (Davis, 2005; Heisenberg, 2003; Schwaerzel et ai, 2003) that 

are triggered by very transient spiking. The situation may be different in other 

neurons or species. Recent recordings from Drosophila Kenyon cells found that 

odor-elicited somatic subthreshold excitatory postsynaptic potentials are close in 

amplitude to those attained by spikes (Turner et ai, 2007). If excitatory postsynaptic 

potentials alone suffice to activate voltage-dependent calcium channels, for example, 

reinforceable odor representations might include neurons that are not firing spikes. 
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3.4 Methods 

Experimental animals 

Moths {Manduca sexta) were reared from eggs (purchased from the NCSU Insectary) 

in our laboratory on an artificial diet (Bell and Joachim, 1976) under a long-day 

photoperiod at 26 °C, and at more than 70% relative humidity. 

Olfactory stimulation 

The odor-stimulation method that we used was modified from our previous study 

(Brown et al” 2005). Briefly, the odorized headspace in 60-ml glass bottles above 

mineral oil-diluted odorant solution was pushed by a controlled volume of 

humidified air (0.1 I min-1) into an activated carbon-filtered, humidified air stream 

(0.75 I min-1) that flowed continuously across the antenna. The inner diameter of the 

odor delivery tube was 6.5 mm and the air speed at the end of tube was about 9.4 cm 

s-1. Excess odorants were continuously drawn by vacuum from the back of the 

preparation. All chemicals were purchased from Sigma-Aldrich unless otherwise 

noted. The odorants that we used were benzylalcohol (Bzalc), benzaldehyde (Bzald), 

(+)-P-citronellene (Pcit，Fluka Chemika), cyclohexanone (Cychex), geraniol (Ger), 

hexanol (Ihex, lOhex and 1 OOhex), cis-3-hexenyl acetate (Cis3ha), 

(plusminus)linalool (Lin, Aldrich), methyl salicylate (Mes), methyl jasmonate (Mej), 

1 -octanol (Oct, Fluka Chemika), trans-2-hexenal (T2hal), trans-2-hexen-l-ol 

(T2h-l-ol), oil extracts，strawberry (Strwb), cinnamon (Cinn), peach, lime, jasmine 

(Jasm, Balducci's), thyme (Thyme Red, Saidel) and wintergreen (Wntgr, Wagner's). 

Monomolecular odorant solutions were diluted to 1% (vol/vol) in mineral oil unless 

otherwise noted. Oil extracts were used undiluted. The odor vapor drawn from the 
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headspace was further diluted when mixed into the constant air stream. 

Electrophysiology 

Physiological data were obtained from 38 adult moths of both sexes. Adults that were 

1 d post-eclosion or older were dissected following a procedure described for locusts 

(Laurent and Naraghi, 1994). The brain was treated for 1-3 min with 3% 

collagenase-dispase (Roche Diagnostics) that had been dissolved in saline. The 

antennal lobe and mushroom body were then carefully desheathed with fine forceps. 

The head capsule was superfused with moth physiological saline (Christensen and 

Hildebrand, 1987) at room temperature (about 25 °C). 

Intracellular recordings were made using sharp glass micropipettes pulled 

horizontally (P87, Sutter Instrument Company) to yield 50-150 MOmega electrodes 

for antennal lobe neurons and 50-200 MOmega electrodes for Kenyon cells when 

filled with one of the internal solutions (details are given in Figure 3.1). Multiunit 

recordings from Kenyon cells were made using 8-channel, custom-made, twisted 

wire tetrodes (Perez-Orive el al, 2002)，amplified with a custom 16-channel 

amplifier (Biology Electronics Shop, Caltech) and digitized at 15 kHz (details on 

spike sorting43 are given in Figure 3.9). 

Behavioral experiments 

A total of 336 moths were used for behavioral experiments. Moths that were 1-4 d 

post eclosion were restrained in plastic tubes (inner diameter, 1.5 cm.) with the head 

protruding. The proboscis was made to extend partially by threading it through 

flexible polyethylene tubing (inner diameter, 0.86 mm.) with the proboscis tip 

exposed to allow sucrose application. To eliminate visual cues during training and 
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Figure 3.9. Examples�of spike sorting. 

We performed spike sorting conservatively, taking into account the full waveform of 
each spike event from four channels43. We made extracellular recordings of 
Kenyon cell activity using custom-made twisted wire tetrodes. To collect a 
representative sample of Kenyon cells, electrodes were placed at random locations 
within the mushroom body. Spike sorting was achieved offline, using the best 4 of 
the 8 channels recorded, and consistent with conservative statistical principles43 
(Spike-o-Matic) implemented in IGOR Pro (Wavemetrics, Lake Oswego, OR). A 
total of 266 Kenyon cells (117 for Figure 3.4f’ another 117 for Figure 3.5a,b and 32 
more for Figure 3.5c，d) were recorded from 36 moths of either sex. In most cases, 

both right and left sides of the mushroom bodies were tested in each animal, (a) 

Example of individual events (black), their mean (red), and the SD (gray) in each of 
the four channels for all events classified as KCla (al) and KC11 a (a2), respectively, 
(b) Histogram obtained by projecting KCla and KCl la events onto the line 
connecting their means. We considered only well separated clusters, with centers 
separated by at least five times the noise SD. 
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testing, the compound eyes were covered with black ink at least 15 min before 

training began. 

Moths were classically conditioned during the dark photoperiod with the four types 

of training procedures described above (shown in Figure 3.6a). Time- and 

pressure-regulated odor stimuli (1% cyclohexanone or 1% benzaldehyde) were 

pulsed onto one antenna as described above. These two odors, as with the others in 

our set, evoked mainly on response spiking and weaker off response spiking in 

Kenyon cells (Figure 3.10). The equipment that we used for odor presentation in 

these behavioral experiments was identical to, and with settings daily 

cross-calibrated with, the equipment that we used for the physiology experiments. 

For taste reward presentation, air driven by a picopump pushed approxlO mul of 

sucrose solution (40% wt/vol in water) from a glass capillary (inner diameter: 0.058 

mm) to the tip region of the proboscis. The two pneumatic picopumps used for odor 

and sucrose stimuli were controlled by a programmable pulse generator (Master-8, 

A.M.P. Instruments). Proboscis extension was monitored visually by an investigator. 

Responses were recorded if PER occurred within 1 min of the odor onset. For some 

experiments, response latency was measured from video images (see Methods). 

Data analysis 

All analyses, except for spike sorting, were carried out using custom programs in 

MATLAB (MathWorks). Given the sparseness of Kenyon cell spiking, it was not 

always clear when a Kenyon cell was responding to an odor. Therefore, for some 

analyses of pur extracellular Kenyon cell records (Figure 3.4e’f) we used rate and 

reliability criteria modified from an earlier study (Perez-Orive et al., 2002). To meet 

our rate criterion，Kenyon ceil firing was averaged over all ten trials in each Kenyon 
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Figure 3.10. All odors, mcludmg those used to test behavior, evoked similar 

temporal spiking characteristics in Kenyon cells. 
Each line represents a histogram (bin size: 1 ms) that combines 1,170 trials from 117 
ceils. Odors used for behavioral training (benzaldehyde and cyclohexanone) 
evoked overall temporal activity patterns in Kenyon cells (strong on-responses and 
much weaker off-responses) similar to those of all other odors tested. Yellow bar: 
odor presentation. 

cell-odor combination set and segmented into successive, nonoverlapping 250-ms 

bins that spanned the 5.5-s full analysis window. Firing had to exceed 3.5 s.d. of the 

mean baseline rate (2 s before stimulation) in at least one of the bins; background 

activity was so low that in almost all cases a single spike in any bin in any trial 

sufficed. Therefore, we defined a responsive trial as one with at least one spike. To 

meet the reliability criterion, the response probability (number of trials showing at 

least one spike divided by the number of trials tested) had to exceed 30%. We 

evaluated the usefulness of this threshold by estimating the probability that at least 

one spike in our dataset would occur during the pre-stimulus period (in the absence 

of odorant, 2 s). We made this estimate for each Kenyon cell (normalizing for test 

windows of different duration) using all 210 trials. These probabilities for individual 

Kenyon cells had a median of 0 and a mean of 0.0058. Except for two extremes 

(0.125 and 0.0929) all Kenyon cells showed a probability lower than 0.0607. At P = 
» 

0.0607, the binomial probability theorem shows that the probability that at least one 
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spike would occiir in the absence of. odorant' in more than three trials in 10 (30% 

reliability) was less than 0.02. For the two extreme cases, the probabilities estimated 

in the same way were just above the 0.05 level of significance (P < 0.12 or 0.06). 

Thus, we judged our 30% threshold to be appropriate for detecting odor responses in 

Kenyon cells. We also provide results using a 50% criterion to allow for comparison 

with results obtained in locusts (Perez-Orive et “/.，2002). 

The distribution of spike number per trial was analyzed by counting the number of 

spikes occurring within 5.5 s of odor onset using only the cell-odor pairs that 

included odor responses (that is，met the response reliability criteria given above). To 

compute the sparseness of Kenyon cell responses, we used measures of population 

(SP) and lifetime (SL) sparseness (Perez-Orive et a!.’ 2002; Vinje and Gallant, 2000). 

SP estimates the proportion of cells not responding to each stimulus： 

C - i ) 
1 -

A. 

'Hrf/N 

where N is the total number of Kenyon cells and rj is the number of spikes detected 

in ceil j over ten trials. SP takes values from 0 to 1，with SP = 1 being sparsest. To 

estimate the response intensity (rj), we segmented the 5.5-s full response window 

into 250-ms bins and calculated the mean spike count in each bin averaged over ten 

trials for each cell-odor pair. The mean baseline activity in the 2-s pre-stimulus 

period was then subtracted from all of the bins. Finally, only the bins showing more 

than the mean basal activity (values greater than 0) were added to obtain rj. SL 

estimates the range of responses of each cell and was calculated in the same way as 

SP, except that index j corresponds to each odor and N to the total number of odors 
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tested with each cell. 

Statistical tests were made using SAS version 9.0 (SAS Institute) and R version 2.4.1 

(http://www.r-project.org/) for behavioral data and using Statistical toolbox version 

5.2 for MATLAB for physiological data. All of the statistical tests for physiology 

were two-tailed and significance was judged at P = 0.05. To make conservative 

multiple comparisons of results from behavioral experiments, we judged significance 

by more stringent, Bonferroni-corrected P values. For evaluation of sensitization， 

spontaneous PER probability was estimated using the 1-min window before the 

f 

beginning of the unconditioned stimulus alone procedure and compared with the 

、 

PER probability of th« test period with McNamar's exact test. PER probabilities 

between different procedures were compared with Fisher's exact test. 

Histology 

After electrophysiological characterization, we stained cells by passing current 

pulses (for fluorescent dyes - 1 to - 10 nA, 0.5 s duration, 1 Hz; for neurobiotin + 3 

iiA, 0.5 s duration，1 Hz) fbr 5-40 min. We then fixed brains with 4% 

paraformaldehyde in phosphate buffer (pH 7.4) overnight. We visualized 

neurobiotin by incubating brains overnight in a 0.1 % solution of streptavidin-AIexa 

conjugate in phosphate buffer containing 1% Triton (Alexa-Fluor-568 or 633 

conjugated streptavidin, Invitrogen). We dehydrated fixed brains through a graded 

ethanol series ana cleared with methyl salicylate. We imaged the brains with a 

laser-scanning confocal microscope (LSM 510 Upright 2-Photon Meta, Carl Zeiss 

Inc., Thomwood, NY) equipped with a 458 Argon ion laser, a 543 nm Helium-Neon 

laser, and a 633 nm Helium-Neon laser. We obtained projection images of confocal 

stacks using the projection function of Zeiss LSM Image Browser version 4.2.0.121 
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(Carl Zeiss Inc) in transparent mode. 

Classification analysis 

To test the reliability and information content of projection neuron firing patterns, we 

performed a standard classification analysis (Brown et al., 2005) using single and 

multiple projection neuron ensemble responses (up to 3 projection neurons) based 

upon dataset shown in Figure 3.2. Among the 62 projection neuron-odor 

combinations, we included only those projection neuron singlets, pairs, and triplets 

that were tested for the same three odors at least three trials for each odor for this 

analysis. This resulted in a total of 227 combinations for classification based on 

single projection neuron activity, 88 and 19 combinations for projection neuron pair 

and triplet cases, respectively (each combination represents a separate classification 

problem). 

We constructed a response vector by concatenating projection neuron firing rates in 
* 

five consecutive 50 ms bins (250 ms activity) from single or multiple projection 

neurons. To predict the odor label of a response vector in the test trial, we 

computed the Euclidean distance between the test trial response vectors with each of 

the remaining trials (corresponding response, vectors); we then assigned the test 

vector the odor label of the closest trial (smallest Euclidean distance). We used the 

first three trials for each of the three odors (a total of 9 trials), thus each classification 

task had one test trial and 8 remaining trials. Therefore, the classification success 

by chance was 25% (2 out of 8). We used a standard leave-one out validation 

method to ensure every trial served as a test trial in the classification analysis. We 

averaged the classification rates across different combinations. We repeatecfUhis « 
、 、 

analysis for 50 ms step sliding windows over the course of each trial. We obtained 
/ 

* 、 
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similar results with a range of bin sizes. 

Projection neuron activities at odor onset and offset supported successful odor 

classification that significantly exceeded chance level (25%). We judged statistical 

significance (P < 0.05) by estimating the probability of getting the observed 

classification success probability or higher, assuming a random binomial process. 

We performed the analysis separately for singlet, pair and triplet projection neuron 

ensembles. 

Video analysis 

In some experiments, we recorded training and testing with a digital video camcorder 

(PV-GS400, Panasonic, Japan) at 29 frames/s. Odor onset was indicated by a 

flashing LED controlled by the odor pulse generator; we defined PER latency as the 

time difference from the first frame showing the LED illuminated to the first frame 

showing the beginning of a proboscis extension response. We measured timing 

with video processing software (VirtualDub 1.6.17，http://www.virtualdub.org). We 

measured the latencies of all PER responses during training and test phases except 

for the first training trials to exclude spontaneous PERs. 
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Concluding remarks 

In the previous two chapters I presented two projects about olfactory coding. Here, 

I will summarize the major findings, and the significance of these findings. 

4.1 Frequency transitions in odor-evoke neural 

oscillations 

The work presented in Chapter 2 clarified several concepts in olfactory coding. We 

demonstrated that, in moths, oscillations can be triggered by a wide range of general, 

non-pheromonal odors including host-plant volatiles and common food blends at a 

wide range of concentrations. The mechanism through which oscillations generated 

in moths appears to be similar to that found in other insects (locusts: Laurent and 

Davidowitz, 1994; bees: Stopfer et a!.’ 1997; flies: Tanaka et aL, 2009). Spikes 

generated by olfactory neurons (PNs, LNs, and KCs) are phase-locked to the LFP 

oscillations (Figures 2.4 and 2.6). LFP oscillations detected in the AL and MB are 

coherent (Figure 2.1). Injection of picrotoxin into the AL abolishes odor-evoked 

oscillations. Together, all these results confirm that oscillations arise within the AL 

circuitry. 

Our results contradict several earlier reports. Previously, odors (pheromones) were 

found to induce highly localized LFP oscillations only within the AL (Heinbockel et 

aL, 1998). Coherent LFP oscillations between the MB and AL have never been 

observed {Christensen et aL, 2003). Further, intra- and extracellular recordings in 

PNs showed no consistent synchrony; only brief, non-oscillatory synchrony is 
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observed (Christensen el al., 2003; Lei et a/., 2002). These observations led to the 

proposal that Manduca uses a non-oscillatory mechanism to encode odor (Lei et al., 

2002). 

The differences between our results and those reported earlier probably arise from 

both our focus on the general olfactory system and differences in recording 

techniques. Thus, our results provide an important new perspective by 

demonstrating that the moth's pheromone system may not present a good model for 

the study of olfactory coding of general odors. And, we confirmed that odor is 

encoded through a mechanism common to several diverse insect species. 

Further, we found that the frequency of odor-evoked oscillations changed over the 

course of a lengthy odor presentation. Odor-evoked oscillation frequency was 

initially � 4 0 Hz after odor onset, then suddenly decreased to 5-20 Hz after � 1 s. 

Our investigation of this phenomenon led to an analysis of how odor concentration is 

encoded in the periphery. With electrophysiological recordings, we found that 

longer odor pulses caused the most active ORNs to adapt their firing rates, with a 

time course similar to that of the oscillation frequency transition (Figure 2.10L, 2.11). 

On the other hand, firing rates of the most precisely tuned ORNs saturated when 

stimulated by low to moderate odor concentrations (Figure 2.1 OF). Thus, ORN 

activities are tightly constrained by adaptation and saturation. 

Combining these results with computational models, we showed that oscillation 

frequency in moth is determined by the input intensities of ORNs to the AL, set by 

the adaptation and saturation of ORN responses. Changing stimuli intensity by 

increasing odor concentration，on the other hand, recruits additional, but less 

well-tuned ORNs to respond. Thus, we revealed an important principle: to a very 
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large extent, odor concentration is encoded by the number of responsive ORNs rather 

than by the firing rates of these ORNs. 

4.2 Sparse odor representation and olfactory 

learning 

The work presented in Chapter 3 produced several novel findings about olfactory 

coding and associative learning mechanisms. Our work provided the first 

characterization of odor responses in the KCs of moths (Figures 3.4, 3.5). Similar 

to the KCs in locusts, moth KCs showed extremely low spontaneous firing rates, 

with extremely high population and lifetime sparseness. Moth KCs typically 

responded to odors with one spike at odor onset and sometimes at odor offset. Thus, 

despite differences in anatomical detail in the AL, KCs in locusts and moths appear 

to respond to odors in similar way. 

Hebbian STDP is widely observed in a wide range of species from insects to humans 

(Cassenaer and Laurent, 2007; for review, see Dan and Poo, 2004). This 

physiological phenomenon is believed to be the cellular mechanism for associative 

learning. However, STDP requires a millisecond-scale temporal correlation of 

spiking activity between the pre- and postsynaptic neurons, but animals can learn to 

associate a sensory cue and a reward presented seconds later. Thus, for STDP to 

mediate associative learning, neurons must retain information about the sensory cue 

as spiking activity until reinforcement arrives. 

We tested this requirement in Manduca. We conditioned moths to associate an odor 

with a sucrose water reward. By varying the amount of temporal overlap between 
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KC spikes and the sucrose reward, we showed that the most learning happened when 

KC spiking activity had no overlap with the reward presentation. Increasing this 

temporal overlap actually reduced the learning efficacy (Figure 3.6). Taken 

together, our physiological and behavioral results indicate that spikes in KCs alone 

cannot constitute the odor representation that coincides with sucrose reward. 

Instead, our findings lead to an alternative hypothesis that sustained biochemical 

processes triggered by the transient KC spikes may be paired with the sucrose reward. 

This pairing can bring about changes in presynaptic terminals in KCs as a form to 

store the learned associations in the neural network. 

、131 



References 

Abdel-Latief M. A family of chemoreceptors in Tribolium castaneum 
(Tenebrionidae: Coleoptera)., PLoS One 2: e 1319，2007. 

Ache BW, Young JM. Olfaction: diverse species, conserved principles.. Neuron 48: 
417-430, 2005. 
Adams et al. The genome sequence of Drosophila melanogaster.. Science 287: 
2185-2195, 2000. 
Adrian ED. Olfactory reactions in the brain of the hedgehog., J. Physiol. 100: 
459-473, 1942. 
Altner H, Routil C，Loftus R. The structure of bimodal chemo-, thermo-, and 

hygroreceptive sensilla on the antenna of Locusta migratoria.’ Cell Tissue Res 215: 
289-308, 1981. 
Anton S, Homberg U. Antenna! lobe structure. In: Insect Olfaction. Hansson BS 
(Ed.), Springer-Verlag, Berlin, 1999. 
Araneda RC, Kini AD, Firestein S. The molecular receptive range of an odorant 
receptor., Nat Neurosci 3: 1248-1255, 2000. 
Assisi C，Stopfer M, Laurent G，Bazhenov M. Adaptive regulation of sparseness 

by feedforward inhibition., Nat Neurosci 10: 1176-1184，2007. 

Baker TC, Willis MA, Haynes KF, Phelan PL. A Pulsed Cloud Of Sex-Pheromone 
Elicits Upwind flight In Male Moths, Physiological Entomology 10: 257-265, 1985. 
Barlow HB. Single units and sensation: a neuron doctrine for perceptual 
psychology?. Perception 1: 371-394, 1972. 
Bathellier B, Buhl DL，Accolla R，Carleton A.. Dynamic Ensemble Odor Coding in 
the Mammalian Olfactory Bulb: Sensory Information at Different Timescales., 
Neuron 57: 586-598, 2008. 
Bazhenov M, Rulkov NF, Fellous J.-M, Timofeev 1. Role of network dynamics in 
shaping spike timing reliability., Phys Rev E Stat Nonlin Soft Matter Phys 72: 
041903, 2005. 
Bazhenov M，Rulkov NF, Timofeev I. Effect of synaptic connectivity on 

long-range synchronization of fast cortical oscillations., J Neurophysiol 100: 
1562-1575, 2008. 
Bazhenov M，Stopfer M, Rabinovich M，Abarbanel HD，Sejnowski TJ，Laurent 

G. Model of cellular and network mechanisms for odor-evoked temporal patterning 
in the 丨pcust antennal lobe.. Neuron 30: 569-581, 2001. 
Bell RA, Joachim FA. Techniques for rearing laboratory colonies of tobacco 
homworms and pink bollworms 丨epidoptera-sphingidae-gelechiidae.，Ann. Entomol. 

Soc^Am. 69: 365-373, 1976. 
Belle JS, Heisenberg M. Associative odor learning in Drosophila abolished by 
chemical ablation of mushroom bodies.. Science 263: 692-695, 1994. 
Belluscio L, Katz LC. Symmetry, stereotypy, and topography of odorant 
representations in mouse olfactory bulbs., J Neurosci 21: 2113-2122, 2001. 
Benton R. On the ORigin of smell: odorant receptors in insects.. Cell Mol Life Sci 63: 
1579-1585, 2006. 
Benton R，Sachse S，Michnick SW, Vosshall LB. Atypical membrane topology and 
heteromeric function of Drosophila odorant receptors in vivo., PLoS Biol 4: e20, 
2006. 
Berg MVD，Ziegelberger G. On the function of the pheromone binding protein in 

、132 



the olfactory hairs of Antheraea polyphemus^ Journal of Insect Physiology 37: 79-85, 
1991. 
Bhalerao S, Sen A，Stocker R, Rodrigues V. Olfactory neurons expressing 

identified receptor genes project to subsets of glomeruli within the antenna! lobe of 

Drosophila melanogaster.^ JNeurobiol 54: 577-592, 2003. 
Bigiani A, Mucignat-Caretta C, Montani G, Tirindelli R. Pheromone reception in 
mammals.. Rev Physiol Biochem Pharmacol 154: 1-35，2005. 

Bitterman ME, Menzel R，Fietz A, SchSfer S. Classical conditioning of proboscis 

extension in honeybees {Apis mellifera)., J Comp Psychol 97: 107-119, 1983. 
Boeckh J，Ernst KD, Selsam P. Neurophysiology and neuroanatomy of the 
olfactory pathway in the cockroach., Ann N YAcadSci 5\0\ 39-43，1987. 

Boeckh J , Tolbert LP. Synaptic organization and development of the antennal lobe 

in insects., Microsc Res Tech 24: 260-280, 1993. 
Breed MD，Guzm^n-Novoa E, Hunt GJ . Defensive behavior of honey bees: 
organization，genetics, and comparisons with other bees., Annu Rev Enlomol 49: 
271-298,2004. �‘ 
Bressler SL, Freeman WJ. Frequency analysis of olfactory system EEG in cat, 
rabbit, and rat., Electroencephalogr Clin Neurophysiol 50: 19-24，1980. 

Bringuier V，Fr^gnac Y, Baranyi A, Debanne D, Shulz DE. Synaptic origin and 
stimulus dependency of neuronal oscillatory activity in the primary visual cortex of 
the cat.，J Physiol 500 (Pt 3): 751 -774’ 1997. 
Brown SL, Joseph J , Stopfer M. Encoding a temporally structured stimulus with a 
temporally structured neural representation., Nat. Neurosci. 8: 1568-1576, 2005a. 
Bruce HM. Pheromones.，Br Med Bull 26:丨 0-13，1970. 

Brunei N，Wang XJ. What determines the frequency of fast network oscillations 
with irregular neural discharges? 1. Synaptic dynamics and excitation-inhibition 
balance., J. Neurophysiol. 90: 415-430, 2003. 
de Bruyne M, Clyne PJ, Carlson JR. Odor coding in a model olfactory organ: the 
Drosophila maxillary palp., J Neurosci 19: 4520-4532, 1999. 
de Bruyne M，Foster K，Carlson JR. Odor coding in the Drosophila antenna.. 
Neuron 30: 537-552, 2001. 
Buck L，Axel R. A novel multigene family may encode odorant receptors: a 
molecular basis for odor recognition.，Cell 65: 175-187, 1991. 
Buck LB. Information coding in the vertebrate olfactory system., Annu. Rev. 
Neurosci 19: 517-544，1996. 

Buhl EH, Tam^s G，Fisahn A. Cholinergic activation and tonic excitation induce 

persistent gamma oscillations in mouse somatosensory cortex in vitro., J. Physiol. 

513: 117-126，1998. 
Buzs^ki G, Chrobak J J . Temporal structure in spatially organized neuronal 
ensembles: a role for intemeuronal networks., Curr Opin Neurobiol 5: 504-510, 
1995. 
Carlsson MA, Kniisel P，Verschure PF. MJ，Hansson BS. Spatio-temporal Ca2+ 
dynamics of moth olfactory projection neurones., Eur J Neurosci 22: 647-657，2005. 

Cassenaer S，Laurent G. Hebbian STDP in mushroom bodies facilitates the 
synchronous flow of olfactory information in locusts.，Nature 448: 709-713，2007. 

Christensen TA, Harrow ID, Cuzzocrea C，Randolph PW, Hildebrand JG. 
Distinct projections of two populations of olfactory receptor axons in the antennal 
lobe of the sphinx moth Manduca sexta., Chem Senses 20: 313-323, 1995. 
Christensen TA, Hildebrand JG. Male-specific, sex pheromone-selective 
projection neurons in the antennal lobes of the moth Manduca sexta., J Comp Physiol 

、133 



A 160:553-569, 1987. 
Christensen TA, Lei H，Hildebrand JG. Coordination of central odor 
representations through transient，non-oscillatory synchronization of glomerular 

output neurons., Proc Natl Acad Sci USA 100: 11076-11081, 2003. 
Christensen TA, Pawlowski VM，Lei H，Hildebrand JG. Multi-unit recordings 
reveal context-dependent modulation of synchrony in odor-specific neural 
ensembles., Nat. Neurosci. 3: 927-931, 2000. 
Cleland BG，Harding TH. Response to the velocity of moving visual stimuli of the 

brisk classes of ganglion cells in the cat retina., J Physiol 345: 47-63，1983. 

Clyne PJ, Warr CG，Freeman MR, Lessing D，Kim J，Carlson JR. A novel 

family of divergent seven-transmembrane proteins: candidate odorant receptors in 
Drosophila., Neuron 22: 327-338, 1999. 
Couto A，Alenius M, Dickson BJ. Molecular, anatomical, and functional 
organization of the Drosophila olfactory system., Curr Biol 15: 1535-1547, 2005. 
Dacks AM, Christensen TA，Agricola HJ，Woilweber L，Hildebrand JG. 
Octopamine-immunoreactive neurons in the brain and subesophageal ganglion of the 
hawkmoth Manduca sexta.’JComp Neurol 488: 255-268, 2005. 
Daly KC，Durtschi ML, Smith BH. Olfactory-based discrimination learning in the 
moth, Manduca sexta., J Insect Physiol 47: 375-384，2001. 

Daly KC, Smith BH. Associative olfactory learning in the moth Manduca sexta., J 
Exp Biol 203: 2025-2038, 2000. 
Daly KC, Wright GA，Smith BH. Molecular features of odorants systematically 

influence slow temporal responses across clusters of coordinated antennal lobe units 

in the moth Manduca sexta., J Neurophysiol 92: 236-254，2004. 

Dan Y, Poo MM. Spike timing-dependent plasticity of neural circuits.. Neuron 44: 
23-30，2004. 

Datta SR, Vasconcelos ML, Ruta V，Luo S, Wong A，Demir E，Flores J，Balonze 

K，Dickson BJ, Axel R. The Drosophila pheromone cVA activates a sexually 
dimorphic neural circuit.. Nature 452: 473-477，2008. 

Davis RL. Olfactory memory formation in Drosophila: from molecular to systems 
neuroscience., Annu Rev Neurosci 28: 275-302, 2005. 
Demmer H，Kloppenburg P. Intrinsic membrane properties and inhibitory synaptic 
input of kenyon cells as mechanisms for sparse coding?, J Neurophysiol 102: 
1538-1550, 2009. 

Dethier VG. Five hundred million years of olfaction.. In: Keywords in Evolutionary 
Biology.^ Keller EF, Lloyd EA (Eds.)，Harvard University Press, Cambridge, 

Massachusetts, 170-179，1994. 

DeWeese MR, Wehr M，Zador AM. Binary spiking in auditory cortex., J Neurosci 

23: 7940-7949，2003. 

Distler PG, Boeckh J . Synaptic connections between identified neuron types in the 
antennal lobe glomeruli of the cockroach, Periplaneta americana: I. Uniglomerular 
projection neurons., J Comp Neurol 378: 307-319, 1997. 
Distler PG, Boeckh J . Synaptic connections between identified neuron types in the 
antennal lobe glomeruli of the cockroach, Periplaneta americana: II. Local 
muitiglomeruiar interneurons., J Comp Neurol 383: 529-540, 1997a. 
Dobritsa AA，van der Goes van Naters W, Warr CG, Steinbrecht RA» Carlson 
JR. Integrating the molecular and cellular basis of odor coding in the Drosophila 
antenna.. Neuron 37: 827-841, 2003. 
Drew PJ, Abbott LF. Extending the effects of spike-timing-dependent plasticity to 
behavioral timescales., Proc Natl Acad Sci USA 103: 8876-8881，2006. 

、134 



Du G, Prestwich GD. Protein structure encodes the ligand binding specificity in 
pheromone binding proteins.. Biochemistry 34: 8726-8732, 1995. 
Duchamp-Viret P, Duchamp A, Chaput MA. Peripheral odor coding in the rat and 
frog: quality and intensity specification., J Neurosci 20: 2383-2390, 2000. 
Dudareva N，Pichersky E. Biochemical and molecular genetic aspects of- floral 

scents.. Plant Physiol 122: 627-633, 2000. 
Eeckman FH, Freeman WJ . Correlations between unit firing and EEG in the rat 
olfactory system.. Brain Res 528: 238-244, 1990. 
Eisthen HL. Why are olfactory systems of different animals so similar?, Brain 
Behav Evol 59: 273-293, 2002. . 
Elmore T，Ignell R，Carlson JR，Smith DP. Targeted mutation of a Drosophila 
odor receptor defines receptor requirement in a novel class of sensillum., J Neurosci 
23: 9906-9912, 2003. 
Engsontia P，Sanderson AP，Cobb M，Walden KKO, Robertson HM, Brown S. 
The red flour beetle's large nose: an expanded odorant receptor gene family in 
Tribolium castaneum., Insect Biochem Mol Biol 38: 387-397, 2008. 
E rbe r J . Retrograde amnesia in honeybees {Apis mellifera carnica)., J Comp Physiol 
Psychol 90:41-46, 1976. 
E rbe r J . Localization of short-term-memory in the bran of the bee. Apis mellifera.. 
Physiological entomology 5 : 343-358, 1980. 
Ernst KD, Boeckh J，Boeckh V. A neuroanatomical study on the organization of 

the central antennal pathways in insects.. Cell Tissue Res. 176: 285-306, 1977. 
Fan RJ , Anderson P, Hansson BS. Behavioural analysis of olfactory conditioning 
in the moth Spodoptera littoral is (Boisd.) (Lepidoptera: noctuidae)., J Exp Biol 200 
(Pt 23): 2969-2976, 1997. 
Far ivar SS. Cytoarchitecture of the locust olfactory system., Ph.D. thesis, California 
Institute of Technology, Pasadena, 2005. 
Farr is SM. Evolution of insect mushroom bodies: old clues, new insights.， 
Arthropod Structure <& Development 34: 211-234, 2005. 
Farr is SM, Sinakevitch I. Development and evolution of the insect mushroom 
bodies: towards the understanding of conserved developmental mechanisms in a 
higher brain center., Arthropod Struct Dev 32: 79-101, 2003. 
Felicioli A，Ganni M，Garibotti M，Pelosi P. Multiple types and forms of 

odorant-binding proteins in the Old-World porcupine Hystrix cristata., Comp 
Biochem Physiol B 105: 775-784, 1993. 
Firestein S, Picco C，Menini A. The relation between stimulus and response in 

olfactory receptor cells of the tiger salamander., J Physiol 468: 1-10，1993. 

Fisahn A, Pike FG, Buhl EH, Paulsen O. Cholinergic induction of network 
oscillations at 40 Hz in the hippocampus in vitro.. Nature 394: 186-189，1998. 

Fishilevich E, Vosshall LB. Genetic and functional subdivision of the Drosophila 
antennal lobe., Curr Biol 15: 1548-1553, 2005. 
Fonta C, Sun XJ，Masson C. Morphology and spatial-distribution of bee antennal 

lobe intemeurons responsive to odors.. Chemical Senses 18: 101-119, 1993. 
Fried rich RW, Laurent G. Dynamic optimization of odor representations by slow 
temporal patterning of mitral cell activity.. Science 291: 889-894，2001. 

Fuentes RA, Aguilar MI, Aylwin ML, Maldonado PE. Neuronal activity of 

mitral-tufted cells in awake rats during passive and active odorant stimulation., J 

Neurophysiol 100: 422-430, 2008. 
Galambos R，Makeig S，TalmachofT PJ. A 40-Hz auditory potential recorded from 

the human scalp., Proc Natl Acad Sci USA 78: 2643-2647, 1981. 

、135 



Galizia CG, Nagler K，Holldobler B，Menzel R. Odour coding is bilaterally 

symmetrical in the ^ntennal lobes of honeybees {Apis mellifera)., Eur J Neurosci 10: 
2964-2974, 1998. 
Galizia CG, Sachse S, Rappert A，Menzel R. The glomerular code for odor 

representation is species specific in the honeybee Apis mellifera” Nat Neurosci 2: 
473-478，1999. 
Gamboa GJ, Grudzien TA，Espelie KE, Bura EA. Kin recognition pheromones in 
social wasps: combining chemical and behavioural evidence.. Animal Behaviour 51: 
625-629, 1996. 
Gao Q, Chess A. Identification of candidate Drosophila olfactory receptors from 
genomic DNA sequence.. Genomics 60: 31-39, 1999. 
Gao Q, Yuan B，Chess A. Convergent projections of Drosophila olfactory neurons 
to specific glomeruli in the antennal lobe., Nat Neurosci 3: 780-785，2000. 

Garibotti M, Navarrini A, Pisanelli AM, Pelosi P. Three odorant-binding proteins 
from rabbit nasal mucosa., Chem Senses 22: 383-390, 1997. 
Gelperin A, Tank DW. Odour-modulated collective network oscillations of 
olfactop' intemeurons in a terrestrial mollusc.. Nature 345: 437-440，1990. 

Gilad Y, Wiebe V，Przeworski M, Lancet D, PSdbo S. Loss of olfactory receptor 
genes coincides with the acquisition of full trichromatic vision in primates., PLoS 
Biol 2: E5, 2004. ‘ 
Gillies MT. The role of carbon dioxide in host-finding by mosquitoes (Diptera: 
Culicidae): a review.. Bulletin of Entomological Research 70: 525-532, 1980. 
Gorman ML. A mechanism for individual recognition by odour in Herpestes 
auropunctatus (Carnivora: Viverridae), Animal Behaviour 24: 141-145, 1976. 
Gray CM，Konig P，Engel AK，Singer W. Oscillatory responses in cat visual cortex 
exhibit inter-columnar synchronization which reflects global stimulus properties.. 
Nature 33S: 334-337, 1989. 
Gray CM, Prisco GVD. Stimulus-dependent neuronal oscillations and local 
synchronization in striate cortex of the alert cat., J Neurosci 17: 3239-3253，1997. 

Gray CM, Singer W. Stimulus-specific neuronal oscillations in orientation columns 
of cat visual cortex., Proc Natl Acad Sci USA 86: 1698-1702, 1989. 
Gronenberg W. Subdivisions of hymenopteran mushroom body calyces by their 
afferent supply., J Comp Neurol 435: 474-489，2001. 

Haddad R，Khan R，Takahashi YK, Mori K, Harel D，Sobel N. A metric for 

odorant comparison., Nat Methods 5: 425-429, 2008. 
Hallem EA, Carlson JR. Coding of odors by a receptor repertoire.. Cell 125: 
143-160, 2006. 

Hallem EA, Ho MG，Carlson JR. The molecular basis of odor coding in the 

Drosophila antenna.，Cell 117: 965-979，2004. 

Hammer M. An identified neuron • mediates the unconditioned stimulus in 

associative olfactory learning in honeybees，Nature 366: 59-63，1993. 

Hammer M, Menzel R. Multiple sites of associative odor learning as revealed by 

local brain microinjections of octopaipine in honeybees., Learn Mem 5: 146-156, 
1998. 
Hansson BS，Anton S. Function and morphology of the antennal lobe: new 
developments., Annu. Rev. Entomoi 45: 203-231, 2000. 
Hansson BS, Carlsson MA, Kalinova B. Olfactory activation patterns in the 
antennal lobe of the sphinx moth，Manduca sexta” J Comp Physiol A Neuroethol 
Sens Neural Behav Physiol 189: 301 -308，2003. 

Heimbeck G，Bugnon V，Gendre N，Keller A, Stockcr RF. A central neural circuit 

、136 



for experience-independent olfactory and courtship behavior in Drosophila 
melanogaster., Proc Natl Acad Sci USA9S: 15336-15341,2001. 
Heinbockel T, Kaissling KE. Variability of olfactory receptor neuron responses of 
female silkmoths (Bombyx mori L) to benzoic acid and (+/-)-linalooi, Journal Of 
Insect Physiology 42: 565-578, 1996. , 
Heinbockel T，Kloppenburg P, Hildebrand JG. Pheromone-evoked potentials and 
oscillations in the antennal lobes of the sphinx moth Manduca sexta” J. Comp. 
Physiol. [A] 182: 703-714, 1998. 
Heisenberg M. Mushroom body memoir: from maps to models, Nat Rev Neurosci 4: 
266-275, 2003. 
Heisenberg M, Borst A, Wagner S, Byers D. Drosophila mushroom body mutants 
are deficient in olfactory learning., JNeurogenet 2: 1-30, 1985. 
Hildebrand J G . Analysis of chemical signals by nervous systems., Proc Natl Acad 
Sci USA 92: 67-74, 1995. 
Hildebrand JG , Shepherd GM. Mechanisms of olfactory discrimination: 
converging evidence for common principles across phyla., Annu Rev Neurosci 20: 
595-631, 1997. 
Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Chrystal MA, Cravchik A, Collins 
FH, Robertson HM, Zwiebel LJ. G protein-coupled receptors in Anopheles 
gambiae.，Science 298: 176-178，2002. 

Homberg U, Christensen TA, Hildebrand JG. Structure and function of the 
deutocerebrum in insects., Annu Rev Entomol 34: 477-501, 1989. -， 

Homberg U, Hoskins SG, Hildebrand JG. Distribution of acetylcholinesterase 
activity in the deutocerebrum of the sphinx moth Manduca sexta.. Cell Tissue Res 
279: 249-259, 1995. 
Homberg U, Montague RA, Hildebrand JG. Anatomy of antenno-cerebral 
pathways in the brain of the' sphinx moth Manduca sexta” Cell Tissue Res 254: 
255-281, 1988. 
Hudson R. Do newborn rabbits leam the odor stimuli releasing nipple-search 
behavior?, Dev Psychobiol 丨 8: 575-585, 1985. 
Hughes JR, Mazurowski J A. Studies on the supracallosal mesial cortex of 
unanesthetized, conscious mammals. II. Monkey. B. Responses from the olfactory 
bulb., Electroencephalogr Clin Neurophysiol 14: 635-645, 1962. 
Ignell R，Anton S, Hansson BS. The antennal lobe of orthoptera - anatomy and 

evolution.. Brain Behav Evol 57: 1-17, 2001. 
Ito I，Bazhenov M, Ong RC, Raman B，Stopfer M. Frequency Transitions in 

Odor-Evoked Neural Oscillations.，Neuron 64: 692-706, 2009. 
Ito I, Ong RC, Raman B，Stopfer M. Sparse odor representation and olfactory 

learning., Nat Neurosci 11: 1177-1184, 2008. 
Izhikevich EM. Solving the distal reward problem through linkage of STDP and 
dopamine signaling., Cereb Cortex 17: 2443-2452, 2007. 
J a y a r a m a n V，Laurent G. Evaluating a genetically encoded optical sensor of neural 
activity using electrophysiology in intact adult fruit flies.. Front Neural Circuits 1: 3, 
2007. 
Jefferis GS. XE, Potter CJ, Chan AM，Marin EC, Rohlfing T, Maurer CR, Luo 

L. Comprehensive maps of Drosophila higher olfactory centers: spatially segregated 
fruit and pheromone representation.. Cell 128: 1187-1203, 2007. 
Jemiolo B, Andreolini F, Xie TM, Wiesler D，Novotny M. Puberty-affecting 

synthetic analogs of urinary chemosignals in the house mouse, Mus domesticus., 

Physiol Behav 46: 293-298, 1989. 

、137 



Joerges J , Kuttner A, Galizia CG, IMenzel R. Representations of odours and odour 
mixtures visualized in the honeybee brain, Nature 387: 285-288, 1997. 
Johnson BA, Xu Z, All SS, Leon M. Spatial representations of odorants in olfactory 
bulbs of rats and mice: similarities and differences in chemotopic organization,, J 
Comp Neurol 5.14: 658-673，2009. 
Johnston RE. Communication by mosaic signals: Individual recognition and 
underlying neural mechanisms.,. In: Chemical Signals in Vertebrates.^ Robert T, 
Mason MPL, MOller-Schwarze D (Eds.)，Springer US, 269-282, 2005. 

Johnston RE. Chemical communication in rodents: From pheromones to individual 
recognition. Journal Of Mammalogy 84: 1141 -1162, 2003. 
Jones WD, Nguyen TAT, Kloss B，Lee KJ, Vosshall LB. Functional conservation 
of an insect odorant receptor gene across 250 million years of evolution., Curr Biol 
15: R119-R121,2005. 
Jortner RA，Farivar SS，Laurent G. A simple connectivity scheme for sparse 
coding in an olfactory sysXtm.^ JNeurosci 27: 1659-1669, 2007. , 
Kaissling K. Single unit and electroantennogram recordings in insect olfactory, 
organs.. In: Experimental cell biology of taste and olfaction: current techniques and 
protocols., Spielman A, Brand J. (Eds.)，CRC press, Boca Raton, FL., 367-377, 

1995. 

Kaissling KE. Peripheral mechanisms of pheromone reception in moths., Chem 
Senses 2\: 251-26^, 1996. 
Kaissling KE. A quantitative model of odor deactivation based on the redox shift of 
the pheromone-binding protein im moth antennae., Ann N Y Acad Sci 855: 320-322, 
1998. 
Kaissling KE, Strausfeld CZ, Rum bo ER. Adaptation processes in insect olfactory 
receptors. Mechanisms and behavioral significance., Ann N Y Acad Sci 510: 104-112， 
‘1987.、-
Kanzaki R, Arba终 EA, Strausfeld NJ, Hildebrand JG. Physiology and 
morphology of projection neurons in the antennal lobe of the male moth Manduca 
sexta., J Comp Physiol A 165:427-453, 1989. 
Kanzaki R，Mishima T. Pheromone-triggered 'flipflopping' neural signals correlate 
with activities of neck motor neurons of a male moth, Bombyx mori. Zoological 
Science 13: 79-87，1996. 
Kanzaki R，Sugi N, Shibuya T. Self-Generated Zigzag Turning Of Bombyx mori 
Males During Pheromone-Mediated Upwind Walking, Zoological Science 9: 
515-527，1992. 

Karlson P, Luscher M. ‘Pheromones，： a new term for a class of biologically active 

substances.. Nature 183: 55-56, 1959. 
Kashiwadani H, Sasaki YF, Uchida N，Mori K. Synchronized oscillatory 
discharges of mitral/tufted cells with different molecular receptive ranges in the 
rabbit olfactory bu\b., J Neurophysiol 82: 1786-1792, 1999. 
Kay LM, Stopfer M. Information processing in the olfactory systems of insects and 
vertebrates., Semin Cell Dev Biol 17: 433-442, 2006. 
Keene AC, Waddell S. Drosophila olfactory memory: single genes to complex 
neural circuits., Nat Rev Neurosci 8: 341-354, 2007. 
Kennedy JS，Ludlow AR，Sanders CJ. Guidance-system used in moth sex 
attraction. Nature 288: 475-477, 1980. 
Kennedy JS, Ludlow AR, Sanders CJ. Guidance of flying male moths by 
wind-borne sex-pheromone. Physiological Entomology 6: 395-412, 1981. 
Kitamoto T. Targeted expression of temperature-sensitive dynamin to study neural 

、138 



mechanisms of complex behavior in Drpsophila., J Neurogenet 16: 205-228, 2002. 
Koulakov A,' Gelperin A, Rinberg D. Olfactory coding with all-or-nothing 
g\omQru\\., J Neurophysiol 98: 3134-3142，2007. 

^Krashes MJ, Keene AC, Leung B, Armstrong JD, Waddell S. Sequential use of 
mushroom body neuron subsets during Drosophila odor memory processing., 
iV^Mrow 53: 103-115, 2 0 0 7 . -
Krieger J , Klink O, Mohl C , Ranting K，Breer H. A candidate olfactory receptor 

subtype highly conserved across different insect orders., J Comp Physiol A 

Neuroethol Sens Neural Behav Physiol 189: 519-526, 2003. 
Krieger J, Raming K, Dewer YME, Bette S，Conzelmann S, Breer H. A 

divergent gene family encoding candidate olfactory receptors of the moth Heliothis 

virescens., Eur J Neurosci 16: 619-628, 2002. 
Larsson MC，Domingos AI，Jones WD, Chiappe ME，Amrein H，Vosshall LB. 

Or83b encodes a broadly, expressed odorant receptor essential for Drosophila 
olfaction., Neuron 43: 703-714, 2004. 
Lauren t G. Olfactory network dynamics and the coding of multidimensional signals., 
Nat. Rev..Neurosci. 3: 884-895, 2002. , 
Lauren t G, Davidowitz H. Encoding of Olfactory Information with Oscillating 
Neural Assemblies., Science 265: 1872-1875, 1994. 
Lauren t "G, W e h r M，Davidowitz H. Temporal representations of odors in an 
olfactory V{Q\^NOxVi., J Neurosci 16: 3837-3847, 1996. 
Leal \VS， Nikonova L, Peng G. Disulfide structure of the pheromone binding 
protein from the silkworm moth, Bombyx mori., FEBS Lett 464: 85-90, 1999. . 
Lee JK，Strausfeld ' NJ. Structure, distribution and number of surface sensilla and 
their receptor cells on the olfactory appendage of the male moth Maruiuca sexta., J 
Neurocytof 19:.519-538, 1 9 9 0 . ‘ ‘ 

— Lei H，Christensen TA，Hildebrand JG. Local inhibition modulates odor-evoked 
synchronization of glomerulus-specific output neurons., Nat. Neurosci. 5: 557-565， 
2 0 0 2 . . 

Leitch B, Lau ren t G. GABAergic synapses in the antennal lobe and mushroom 
body of the locust olfactory system., J Comp Neurol 372: 487-514，1996. 

Li Y, Strausfeld NJ. Morphology, and sensory modality of mushroom body extrinsic 
neurons in the brain of the cockroach, Periplaneta americana., J Comp Neurol 387: 
6S1-650, 1997. K 
Li Y，Strausfeld NJ . Multimodal efferent and recurrent neurons in the medial lobes 

of cockroach mushroom bodies., J Comp Neurol 409: 647-663, 1999. 
Linn CE, Campbell MG, Roelofs WL. Pheromone Components and Active Spaces: 
What Do Moths Smell and Where Do They Smell It?, Science 237: 650-652, 1987. 
Linn CE, Roelofs W L . Response specificity of male moths to multicomponent 
pheromones. Chemical Senses 14: 421 -437, 1989. 
Lundin C, KMII L，Kreher SA, Kapp K，Sonnhammer EL，Carlson JR，Heijne G， 
Nilsson i. Membrane topology of the Drosophila OR83b odorant receptor., FEBS 
Le//581: 5601-5604, 2007 . ‘ � 

Luo L； Callaway'EMi Svoboda K. Genetic Dissection of Neural Circuits，Neuron 

57: 634-660', 2008； • 

MacLeod K, Backer A, Lauren t G. Who reads temporal information contained 
across synchronized and oscillatory spike trains?. Nature 395: 693-698, 1998. 
MacLeo<| K，Laurent G. Distinct mechanisms for synchronization and temporal 
patterning of odor-encoding neural assemblies.. Science 274: 976-979； 1996. 

Mafraneto A, Carde RT. Fine-scale structure of pheromone plumes modulates 

、139 



J 
upwind orientation of flying moths. Nature 369: 142-144, 1994. 
IMaida R, Mameli M, Muller B，Krieger J, Steinbrecht RA. The expression 
pattern of four odorant-binding proteins in male and female silk moths, Bombyx 
mori., JNeurocytol 34: 149-163, 2005. 
Maida R，ProebstI T , Laue M. Heterogeneity of odorant-binding proteins in the 

antennae of Bombyx wo/7..，Chem Senses 22: 503-515, 1997. 
Malnic B，Hirono J，Sato T，Buck LB. Combinatorial receptor codes for odors.， 

Cell 96: 713-723, 1999. 
March lews ka-Koj A， Cavaggioni A, Mucignat-Caretta C， Olejniczak P. 

Stimulation of estrus in female mice by male urinary proteins. Journal Of Chemical 

Ecology 26: 2355-2366, 2000. 
M a r r D. Simple memory: a theory for archicortex., Philos Trans R Soc Land B Biol 
Sci 262:23-81, 1971. 
Mar t in F, C h a r r o MJ , Alcorta E. Mutations affecting the cAMP transduction 
pathway modify olfaction in Drosophila., J Camp Physiol A 187: 359-370, 2001. 
Mazor O，L a u r e n t G. Transient dynamics versus fixed points in odor 
representations by locust antennal lobe projection neurons.. Neuron. 48: 661-73, 
2005. 
McKenna MP, Hekmat-Scafe DS，Gaines P, Carlson JR . Putative Drosophila 
pheromone-binding proteins expressed in a subregion of the olfactory system.,./ Biol 
Chem 269: 16340-16347, 1994. 
Melo ACA，Rutzler M, Pitts RJ , Zwiebei LJ. Identification of a chemosensory 

receptor from the yellow fever mosquito，Aedes aegypti, that is highly conserved and 

expressed in olfactory and gustatory organs., Chem Senses 29: 403-410, 2004. 
Mizunami M, Okada R, Li Y, Strausfeld NJ. Mushfoom bodies of the cockroach: 
activity and identities of neurons recorded in freely moving animals., J Comp Neurol 
402: 501-519, 1998.' 
Mizunami M, Weibrech't JM, Strausfeld NJ. Mushroom bodies of the cockroach: 
their participation in place memory., J Cowp Neurol 402: 520-537, 1998a. 
Moncho-Bogani J, Lanuza E, Hernandez A, Novejarque A, Martinez-Garcia F. 
Attractive properties of sexual pheromones in mice: innate or learned?, Physiol 
Behavll: 167-176, 2002. ‘ 
Mori K，Ypshihara Y. Molecular recognition and olfactory processing in the 
mammalian olfactory system., Prog Neurobiol 45: 585-619, 1995. 
M o r t L. Mouse major urinary proteins trigger ovulation via the vomeronasal organ., 
Chem Senses 31: 393-401, 2006. 
Murl is J , Elkinton J S , Ca rde RT. Odor plumes and how insects use them, Annual 
Review Of Entomology 37: 505-532, 1992. 
Murl is J , Jones CD. Fine-scale structure of odor plumes in reflation to insect 
orientation to distant pheromone and other attractant sources, Physiological 
Entomology 6: 71-86, 1981. . 
Mtiller U. Prolonged activation of cAMP-dependent protein kinase during 
conditioning induces long-term memory in honeybees.. Neuron 27: 159-168, 2000< * 
Nakagawa T, Sakura i T，Nishioka T，Touhara K. Insect sex-pheromone signals 
mediated by specific combinations of olfactory receptors., Science 307: 1638-1642, 
2005. 
Nathans J , Thomas D，Hogness OS. Molecular genetics of human color vision: the 
genes encoding blue, green, and red pigments.，Science 232: 193-202, 1986. 
Nei M，Niimura Y, Nozawa M. The evolution of animal chemosensory receptor 
gene repertoires: roles of chance and necessity., Nat Rev Genet 9: 951-963, 2008. 

、140 



Neuhaus EM, Gisselmann G, Zhang W, Dooley R，Stdrtkuhl K, Hatt H. Odorant 
receptor heterodimerization in the olfactory system of Drosophila melcmogcister” Nat 
Neurosci 8: 15-17, 2005. 
Neville KR, Haberly LB. Beta and gamma oscillations in the olfactory system of the 
urethane-anesthetized rat., J Neurophysiol 90: 3921-3930, 2003. 
Nishikawa M，Yokohari F, Ishibashi T. Central projections of the antennal cold 
receptor neurons and hygroreceptor neurons of the cockroach Periplaneta 

.americana.y J Comp Neurol 361: 165-176, 1995. 
Novotny MV, Jemiolo B，Wiesler D，Ma W, Harvey S, Xu F，Xie TM, Carmack 

M. A unique urinary constituent，6-hydroxy-6-methyl-3-heptanone, is a pheromone 

that accelerates puberty in female mice., Chem Biol 6: 377-383，1999. 

Olberg RM. Pheromone-triggered flip-flopping intemeurons in the ventral nerve 

cord of the silkworm moth, Bom byx moH, Journal of Comparative Physiology A: 
Neuroethology, Sensory, Neural, and Behavioral Physiology 152: 297-307, 1983. 

.Olender T, Lancet D, Nebert DW. Update on the olfactory receptor (OR) gene 
superfamily.. Hum Genomics 3: 87-97, 2008. 
Olsen SR, Bhandawat V, Wilson RI. Excitatory Interactions between Olfactory 
Processing Channels in the Drosophila Antennal Lobe., Neuron 54: 89-103, 2007. 
Olsen SR, Wilson RI. Cracking neural circuits in a tiny brain: new approaches for 
understanding the neural circuitry of Drosophila., Trends Neurosci 31: 512-520, 
2008. 
Olsen SR, Wilson RI. Lateral presynaptic inhibition mediates gain control in an 
olfactory circuit.，Nature 452: 956-960, 2008a. 
Olshausen BA，Field DJ. Sparse coding of sensory inputs., Curr Opin Neurohiol 14: 
481-487, 2004. 
Ong RC, Stopfer M. Olfactory coding: Unusual conductances contribute to sparse 
neural representations., J Neurophysiol，2009. In press. 

Parkes AS, Bruce HM. Pregnancy-Block In Female Mice Placed In Boxes Soiled 

By Males, Journal Of Reproduction And Fertility 4: 303-308, 1962. 
Pelosi P. Odorant-Binding Proteins,.Cr/Z/ci?/ Reviews in Biochemistry and Molecular 
Biology 29: 199-228, 1994. 
Pelosi P, Baldaccini NE, Pisanelli AM. Identification of a specific olfactory 
receptor for 2-isobutyl-3-methoxypyrazine., Biochem J201 : 245-248, 1982. 
Perez-Orive J . Neural oscillations and the decoding of sensory information., Ph.D. 
thesis, California Institute of Technology, Pasadena, 2004. 
Perez-Orive J , Bazhenov M, Laurent G. Intrinsic and circuit properties favor 
coincidence detection for decoding oscillatory input., J. Neurosci. 24: 6037-6047, 
2004. 
Perez-Orive J, Mazor O, Turner GC，Cassenaer S，Wilson RI, Laurent G. 
Oscillations and sparsening of odor representations in the mushroom body.. Science 
297:359-365, 2002. 
Pes D, Pelosi P： OjJorant-binding proteins of the mouse., Comp Biochem Physiol B 

Biochem Mol Biol 112:471 -479，1995. 

Pikielny CW, Hasan G, Rouyer F, Rosbash M. Members of a family of 
Drosophila putative odorant-binding'proteins are expressed in different Subsets of 
olfactory hairs.. Neuron 12: 35-49, 1994. 
Pitts RJ，Fox AN, Zwiebel LJ. A highly conserved candidate chemoreceptor 

expressed in both olfactory and gustatory tissues in the malaria vector Anopheles 

gambiae.’ Proc Natl Acad Sci.U S A 101: 5058-5063，2004. 

Porter RH, Winberg J . Unique salience of maternal breast odors for newborn 

、141 



infants., Neurosci Biobehav Rev 23: 439-449, 1999. 
Pouzat C, Mazor O，Laurent G. Using noise signature to optimize spike-sorting 
and to assess neuronal classification quality., J Neurosci Methods 122: 43-57，2002. 

Prestwich GD，Du G，La Forest S. How is pheromone specificity encoded in 

proteins?, Chem Senses 20: 461-469, 1995. 
Quiroga RQ，Reddy L, Kreiman G, Koch C, Fried I. Invariant visual 
representation by single neurons in the human brain.. Nature 435: 1102-1107, 2005. 
Reiff DF, Ihring A, Guerrero G, IsacofT EY, Joesch M, Nakai J，Borst A. In vivo 

performance of genetically encoded indicators of neural activity in flies., J Neurosci 

25: 4766-4778, 2005. 
Rekwot PI, Ogwu D，Oyedipe EO，Sekoni VO. The role of pheromones and 

biostimulation in animal reproduction., Anim Reprod Sci 65: 157-170, 2001. 
Ressler KJ, Sullivan SL，Buck LB. Information coding in the olfactory system: 
evidence for a stereotyped and highly organized epitope map in the olfactory bulb., 
Cell 79: 1245-1255, 1994. , 

•Raguso RA, Willis MA. Synergy between visual and olfactory cues in nectar 
feeding by naive hawkmoths, Manduca sexta. Animal Behaviour 64: 685, 2002. 
Robertson HM, Wanne r KW. The chemoreceptor superfamily in the honey bee’ 
Apis me 11 if era: expansion of the odorant, but not gustatory, receptor family., Genome 
Res 16: 1395-1403, 2006. 
Robertson H^^，Warr CG，Carlson JR. Molecular evolution of the insect 

chemoreceptor gene superfamily in Drosophila melanogaster., Proc Natl Acad Sci U 
SA 100 Suppl2: 14537-14542, 2003. 
Rodrigues V. Spatial coding of olfactory information in the antenna! lobe of 
Drosophila melanogaster.. Brain Res 453: 299-307，1988. 

Rospars J P , Hildebrand J G . Anatomical identification of glomeruli in the antennal 
lobes of the male sphinx moth Manduca sexta.. Cell Tissue Res. 270: 205-227, 1992. 
Rubin BD, Katz LC. Optical imaging of odorant representations in the mammalian 
olfactory bulb.. Neuron 23: 499-511, 1999. 
Ruebenbauer A，Schlyter F，Hansson BS，Lofstedt C, Larsson MC. Genetic 
variability and robustness of host odor preference in Drosophila melanogaster., Curr 
Biol 18: 1438-1443, 2008. 
Rulkov N, Bazhenov M. Oscillations and Synchrony in Large-scale Cortical 
Network Models, J. Biol. Phys. 34: 279-299, 2008. 
Rulkov NF. Modeling of spiking-bursting neural behavior using two-dimensional 
map., Phys Rev E Stat Nonlin Soft Matter Phys 65: 041922, 2002. 
Rulkov NF, Timofeev I，Bazhenov M. Oscillations in large-scale cortical networks: 
map-based model., J Comput Neurosci 17: 203-223, 2004. 
Sachse S, Galizia CG. The coding of odour-intensity in the honeybee antennal lobe: 
local computation optimizes odour representation., Eur J Neurosci 18: 2119-2132, 
2003. 
Sachse S，Rappert A，Galizia CG. The spatial representation of chemical structures 
in the antennal lobe of honeybees: steps towards the olfactory code., Eur J Neurosci 
11: 3970-3982, 1999. 
Salinas E, Sejnowski TJ . Correlated neuronal activity and the flow of neural 
information., Nat Rev Neurosci 2: 539-550, 2001. 
Sandeman DC, Sandeman RE. Orthodromically and antidromically evoked local 
field potentials in the crayfish olfactory lobe., J Exp Biol 201 (Pt 9): 1331-1344, 
1998. 

Sato K, Pellegrino M, Nakagawa T，Nakagawa T, Vosshall LB, Touhara K. 

、142 



Insect olfactory receptors are heteromeric ligand-gated ion channels., Nature 452: 
1002-1006,2008. ^ 
Satou M. Synaptic organization, local neuronal circuitry, and functional segregation 
of the teleost olfactory bulb.，Prog Neurobiol 34: 115-142, 1990. 
Scaloni A, Monti M, Angeli S，Pelosi P. Structural analysis and disulflde-bridge 

pairing of two odorant-binding proteins from Bom byx mori.�Biochem Biophys Res 

Commun 266: 386-391, 1999. 
Schadow J , Lenz D，Thaerig S，Busch NA，Frund 1，Herrmann CS. Stimulus 

intensity affects early sensory processing: sound intensity modulates auditory evoked 
gamma-band activity in human EEG.，Int J Psychophy^iol 65: 152-161, 2007. 
Schmuker M，Bruyne M, HShnel M, Schneider G. Predicting olfactory receptor 
neuron responses from odorant structure.，Chem Cent J \: 11, 2007. 
SchrSter U, Menzel R. A new ascending sensory tract to the calyces of the 
honeybee mushroom body, the subesophageal-calycal tract., J Camp Neurol 465: 
168-178, 2003. 
Schwaerzel M, Monastirioti M，Scholz H，Friggi-Grelin F，Birman S, 

Heisenberg M. Dopamine and octopamine differentiate between aversive and 
appetitive olfactory memories in Drosophila., J Neurosci 23: 10495-10502, 2003. 
Shanbhag SR，Hekmat-Scafe D，Kim MS, Park SK, Carlson JR, Pikielny C, 
Smith DP, Steinbrecht RA. Expression mosaic of odorant-binding proteins in 
Drosophila olfactory organs.，Microsc Res Tech 55: 297-306, 2001. 
Shang Y, Claridge-Chang A，Sjulson L，Pypaert M，Miesenbock G. Excitatory 
local circuits and their implications for olfactory processing in the fly antennal lobe., 
Cell 128: 601-612, 2007. 
Shariff S, Suh M，Zhao M，Ma H，Schwartz TH. Recent developments in oximetry 

and perfusion-based mapping techniques and their role in the surgical treatment of 

neocortical epilepsy.. Epilepsy Behav 8: 363-375, 2006. 
Sharp FR，Kauer JS, Shepherd GM. Local sites of activity-related glucose 
metabolism in rat olfactory bulb during olfactory stimulation.. Brain Res 98: 596-600, 
1975. 
Shields VD，Hildebrand JG. Recent advances in insect olfaction, specifically 
regarding the morphology and sensory physiology of antennal sensilla of the female 
sphinx moth Manduca sexta., Microsc Res Tech 55: 307-329, 2001. 
Shields VDC，Hildebrand J G . Responses of a population of antennal olfactory 
receptor cells in the female moth Manduca sexta to plant-associated volatile organic 
compounds, J Comp Physiol A 186: 1135-1151, 2000. 
Skiri HT, Galizia CG, Mustaparta H. Representation of primary plant odorants in 
the antennal lobe of the moth Heliothis virescens using calcium imaging., Chem 
Senses 29: 253-267, 2004. . 
Skiri HT, Stranden M，Sandoz JC，Menzel R，Mustaparta H. Associative 

learning of plant odorants activating the same or different receptor neurones in the 

moth Heliothis virescens., J £x/7 Biol 208: 787-796，2005. 

Smith TE，Tomlinson AJ, MIotkiewicz J A, Abbott DH. Female marmoset 
monkeys {Callithrix jacchus) can be identified from the chemical composition of 
their scent marks., Chem Senses 26: 449-458, 2001. 
Sorensen PW. Biological responsiveness to pheromones provides fundamental and 
unique insight into olfactory function., Chem Senses 21: 245-256, 1996. 
Soucy ER, Albeanu DF, Fantana AL, Murthy VN，Meister M. Precision and 

diversity in an odor map on the olfactory bulb., Nat Neurosci 12: 210-220, 2009. 
Spors H，Wachowiak M, Cohen LB, Friedrich RW. Temporal dynamics and 

、143 



latency patterns of receptor neuron input to the olfactory bulb., J Neumsci 26: 
1247-1259, 2006. 
Ste inb rech t RA. Are odorant-binding proteins involved in odorant discrimination?, 
Chem Senses 21: 719-727，1996. 
Steinbrecht RA. Odorant-binding proteins: expression and function., Ann N Y Acad 
Sci 855: 323-332, 1998. 
Stewart WB, Kauer JS, Shepherd GM. Functional organization of rat olfactory 
bulb analysed by the 2-deoxyglucose method., J Comp Neurol 185: 715-734, 1979. 
Stocker RF. The organization of the chemosensory system in Drosophila 
melanogaster: a review., Cell Tissue Res 275: 3-26, 1994. 
Stocker RF, Lienhard MC, Borst A, Fischbach KF. Neuronal architecture of the 
antennal lobe in Drosophila melanogaster.. Cell Tissue Res 262: 9-34, 1990. 
Stopfer M, Bhagavan S, Smith BH, Laurent G. Impaired odour discrimination on 
desynchronization of odour-encoding neural assemblies., Nature 390: 70-74, 1997. 
Stopfer M, J aya raman V，Laurent G. Intensity versus identity coding in an 
olfactory system.. Neuron 39: 991-1004, 2003. 
Stopfer M，Laurent G. Short-term memory in olfactory network dynamics.. Nature 
402: 664-668, 1999. 
Strausfeld NJ. Organization of the honey bee mushroom body : representation of the 
calyx within the vertical and gamma lobes., J Comp Neurol 450: 4-33，2002. 

Strausfeld NJ, Hildebrand JG . Olfactory systems: common design, uncommon 
origins?, Curr Opin Neurobiol 9: 634-639, 1999. 
Strausfeld NJ, Li Y. Organization of olfactory and multimodal afferent neurons 
supplying the calyx and pedunculus of the cockroach mushroom bodies., J Comp 
Neurol 409: 603-625, 1999. 
Suh GSB, Wong AM, Hergarden AC, Wang JW, Simon AF, Benzer S，Axel R， 
Anderson DJ. A single population of olfactory sensory neurons mediates an innate 
avoidance behaviour in Drosophila., Nature 431: 854-859, 2004. 
Szyszka P, Ditzen M，Galkin A, Galizia CG, Menzel R. Sparsening and temporal 
sharpening of olfactory representations in the honeybee mushroom bodies,, J 
Neurophysiol 94: 3303-3313, 2005. 
S^nchez-Gracia A, Vieira FG, Rozas J . Molecular evolution of the major 
chemosensory gene families in insects.. Heredity 103: 208-216, 2009. 
Tanaka NK, Awasaki T，Shimada T,直to K. Integration of chemosensory pathways 
in the Drosophila second-order olfactory centers., Curr Biol 14: 449-457, 2004. 
Tanaka NK，Ito K, Stopfer M. Odor-evoked neural oscillations in Drosophila are 
mediated by widely branching intemeurons., J Neurosci 29: 8595-8603, 2009. 
Tanimoto H, Heisenberg M, Gerber B. Experimental psychology: event timing 
turns punishment to reward., Nature 430: 983, 2004. 
Thum AS，Jenett A，Ito K，Heisenberg M, Tanimoto H. Multiple memory traces 

for olfactory reward learning in Drosophila.^ J Neurosci 27: 11132-11138, 2007. 
Tichy H，Loftus R. Response of moist-air receptor on antenna of the stick insect, 

Carausius morosus, to step changes in temperature, J Comp Physiol A 166: 507-516， 
1990. 

Tirindelli R，Dibattista M，PifTeri S，Menini A. From pheromones to behavior., 

Physiol Rev 89: 921-956, 2009. 

Tolhert LP, Hildebrand J G . Organization and synaptic ultrastructure of glomeruli 
in the antennal lobes of the moth Manduca sexta: a study us^ îg thin sections and 
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