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Abstract of thesis entitled: 
Resource Allocation for Cooperative Transmission in Wireless Network 

Submitted by NG, Cho Yin 
for the degree of Doctor of Philosophy 
at The Chinese University of Hong Kong in Aug 2010 

In this thesis, different codes and resource allocation algorithms for cooperative transmissions 
are proposed. Briefly speaking, in cooperative transmission, a number of wireless nodes form 
a coalition in which they exchange and cooperatively transmit messages. As a result, the 
order of diversity can be increased without installing additional antennas. 

Firstly, cooperative orthogonal-division channel is defined and two cooperative transmis-
sion schemes based on dirty-paper coding and superposition code are proposed and com-
pared through simulations. Simulation Results show the significant improvement over the 
pure direct transmission schemes. Although one cooperative transmission scheme achieves 
a slightly larger rate region, the other scheme has a much simpler implementation so the 
remaining parts of the thesis focus on this scheme. The outage performance of this scheme 
is also compared with a simplified Han-Kobayashi scheme through simulations. Simulation 
results illustrate the significant improvement in the diversity gain of this scheme over the 
Han-Kobayashi scheme. 

Next, a weighted sum rate maximization algorithm is proposed. There are two purposes 
of this algorithm. Firstly, this algorithm is adopted to find the Pareto-optimal points of the 
boundary of the achievable rate region through simulations. Secondly, this algorithm can be 
extended to solve the max-min fairness problem and the joint utility maximization algorithm 
by the proposed framework. 

After that, the cooperative transmission scheme is extended for the scenario of more than 



two source-destination pairs. One objective is to investigate the relationship between the 
diversity order and the number of source-destination pairs. This is done by considering 
the sum power minimization problem. A pricing game is derived to provide a distributed 
implementation. At Nash Equilibrium of the game, the total transmission power is minimized. 
Simulation results show the rapid convergence of the game and its adaptation to channel 
fluctuations. It also shows that the cooperative transmission scheme achieves full diversity 
order. 

However, it is noted that the complexity of implementing superposition code, which is 
a building block of the cooperative transmission code, is very high when there are many 
users in the network. Hence, another time-division multiplex (TDM) based cooperative 
transmission scheme is proposed. Similar to the superposition code based scheme, there is a 
pricing game which can provide a distributed sum power minimization. Simulation results 
also show that the game has high convergence rate and it can adapt to changes of channel 
conditions efficiently. In addition, this cooperative transmission scheme also achieves full 
diversity order. 

Apart from replacing a superposition code based cooperative transmission scheme by a 
TDM based scheme, the implementation can be simplified by introducing a partner selection 
scheme to the nodes. In that network, the cooperative transmission code still uses super-
position code as the building block. Instead of relaying the messages from all other nodes, 
in this new scheme, the source nodes only relay the messages for their assigned partners. A 
natural question is: How can we assign the partners to the source nodes such that the total 
transmission power is minimized. The problem is solved in two phases. Firstly, we solve the 
sura power minimization problem for each pair of nodes. In some cases, this problem has 
closed-form solutions while for the other cases, a simple iterative algorithm can solve this 
problem. 

With this information, we can assign the partners by Gabow's algorithm, which solves 
the maximum weighted matching problem that is mapped from the original partner selection 
problem. Nonetheless, it is noted that when the number of users is very large, it involves 



a large amount of the communication and computational cost to solve the sum power inini-
mization problem for each pair of nodes as well as the partner selection problem. Therefore, 
the Grouping Algorithm is proposed to reduce the aforementioned implementation cost. Sim-
ulation results show that the optimal algorithm and the Grouping Algorithm can achieve full 
diversity order. Moreover, although the Grouping Algorithm is sub-optimal in general, it 
costs only IdB of the sum power more than the optimal algorithm. 

This thesis is ended with some future research directions. 

Ill 



博士論文題目為《在無線網絡中協作式傳送的資源分配》的摘要： 

作者：吳袓堯 

所屬院校：香港中文大學 

本論文將探討不同的協作式傳送碼和資源分配算法。簡言之，在協作式傳送中，不同的 

無線節點組成一個群組，並彼此交換與協調地傳送訊息。結果，我們無須安裝額外的天線 

也能提髙多樣階數。 

首先，「協作式正交分段頻道J會被定義。在這個頻道中，兩個分別基於髒紙編碼和 

疊複碼的協作式傳送方法會被討論和用電腦模擬比較。電腦模擬結果顯示這兩個方法比純 

直接傳送有顯著的改善。雖然其中一個方法可以得到稍為大的傳輸率區域，但是另一個方 

法比較容易實踐，所以本論文會集中討論後者。電腦模擬亦比較這個方法和一個被簡法的 

Han-Kobayashi方法的中斷率。結果是本論文建議的方法能達到更顯著的多樣階數。 

然後，一個加權總傳輸率算法被建議。這個算法有兩個目的。第一，電腦模擬可以採用 

這個算法來找出在傳輸率區域邊緣的帕累托最優點。第二，它也可以被本論提及的架構擴 

展來解決最大最小公平性問題和聯合效用最大化問題。 

跟著，這個協作式傳送方法被擴展成更多的傳送源和目的地D這個擴展的其中一個目的 

是探討多樣階數和傳送源數目的關係。本論文以總功率最小化問題來採討這個關係。一個 

價格博奔和分散式實踐法被推論來解決這個問題。在這個價格博弈的納什均衡中，總能量 

會被最小化。電腦模擬結果顯示這個方法有高的聚合率和能夠適應頻度上的變化。此外， 

這個傳送方法能達到最大的多階數。 

不過，當網路中有很多用戶，疊複碼的複雜性便會很髙。所以，本論文也提出另一個 

基於時分覆用的協作式傳送方法。這個方法也有一個價格博弃把總功率最小化。電腦模擬 

結果也顯示這個博莽有很高的聚合率和對頻道的適應性。此外，它也能達到最大的多樣階 

數。 



另一個減低複雜性的方法就是採用夥伴選擇法。我們依舊使用疊複碼作為協作式傳送碼 

的構成要素，但是每一個傳送節點只會它的夥伴節點轉達它的訊息。我們很自然地會有的 

問題是：「如何為這些節點分配夥伴以最小化這個網路的總功率？」這個問題可分成兩部 

份來解決。首先，我們要計算如果每一對節點夥伴起來，它們的最小總功率是多少。在某 

些情況下，可以用一個封閉解來計算出來。其他的情況下，可以用一個簡單的迭代算法來 

計算出來。 

接著，我們可以用Gabow算法來分配夥伴。不過，當用戶的數目很大時，這會涉及很 

多的通訊和運算成本來解決這個總功率最小化問題。所以，本論文也提出「分組算法」來 

減少上述的成本。電腦模擬顯示最優化算法和分組算法皆能達到最大多樣階數。雖然分組 

算法不保證有最優化解，但是它的總功率只是多了 I d B � 

本論文的結尾是未來的研究方向。 
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Chapter 

Introduction 

1.1 Motivation 

In wireless communications, fading is an important factor which limits the capacity of a 
point-to-point link. One of the well-known solutions is to introduce spatial diversity by-
installing multiple transmit or receive antennas. As a result, there are a higher number of 
transmit-receive pairs of antennas with independent fading so that the outage probability 
is significant reduced. This is the rationale behind multiple-input multiple-output (MIMO) 
systems [29]. 

In order to have statistically independent fading for the transmit-receive pairs, there is a 
minimum spacing requirement between the antennas. However, in many practical scenarios, 
we can only have a limited number of antennas installed in each terminal. For example, 
firefighters and soldiers require their mobile devices to be portable. Therefore, mobile devices 
cannot be too large so we can only have a limited number of antennas. This limits the 
achievable order of spatial diversity. This motivates us to design new techniques to increase 
the spatial diversity order without installing extra antennas. Cooperative transmission is one 
example. 

Due to the broadcast nature of the wireless transmission medium, the transmitting nodes 
can listen and help forwarding the messages to the intended destination nodes. As a result, a 
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set of additional paths are generated for each source-destination pair. These paths experience 
independent fading. This explains how cooperative transmission can further increase the 
order of spatial diversity. 

Coding schemes and the protocols between the transmitting nodes are necessary and 
important components for practical cooperative transmission systems. This is the motivation 
behind the works in this thesis. 

1.2 Overview of Contributions 

To begin with, I consider cooperative transmission between two source and destination so that 
the achievable rate region is easier to be visualized. Two cooperative transmission schemes 
are proposed and compared through simulations. Although one scheme achieves a slightly 
larger rate region, the coding and resource allocation schemes for the other cooperative 
transmission scheme are much simpler. Therefore, only the latter cooperative transmission 
scheme is considered in the remaining parts of the thesis. 

The weighted sum rate maximization algorithm for this cooperative transmission scheme is 
proposed. Apart from utilizing it to visualize the achievable rate region through simulations, 
we can apply it to solve the max-min fairness problem. I also show how the weighted sum 
rate maximization algorithm can be extended to solve the joint utility maximization problem, 
which is a more general class of problems. 

After that, I extend the coding scheme for the case of two source-destination pairs to more 
source-destination pairs. A pricing game is proposed to have a distributed implementation for 
sum power minimization. Simulation results show that the proposed cooperative transmission 
code can achieve full diversity order. Also, the convergence rate to the Nash Equilibrium is 
shown to be high. 

The building blocks of the cooperative transmission code is superposition code. The 
encoding and decoding process become too complex for practical implementations when 
there are a large number of source-destination pairs. This motivates me to propose a time-
division multiplex (TDM) based cooperative transmission scheme. Another pricing game is 
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proposed for a distributed sum power minimization for this scheme. Although the TDM based 

cooperative transmission scheme consumes more transmission power than the superposition 

code based scheme, simulation results show that it still achieves full diversity order. Also, 

the convergence rate to the Nash Equilibrium is fast enough for practical use. 

Apart from using a TDM based cooperative transmission scheme, I propose a partner 

selection scheme to alleviate the complex coding issues in superposition code based scheme. 

Instead of relaying the messages for all other source nodes, each source node is assigned to 

at most one partner source node. The partnered nodes use the superposition code based 

cooperative transmission scheme. The objective is also sum power minimization. 

The problem is solved in two steps. Firstly, for each pair of source nodes, we compute 

their minimum total transmission power if they cooperate. In some cases, the closed-form 

solutions of rate allocation of a given pair of partnered nodes are provided. For the remaining 

cases, a simple but efficient iterative algorithm is proposed to optimize the rate allocation. 

Then, the partner selection problem is mapped to the maximum weighted matching prob-

lem in graph theory, which can be solved with polynomial time complexity. For large number 

of node pairs, I propose the grouping algorithm to reduce the computational and communica-

tion overhead of the partner selection algorithm. Simulation results show that the reduction 

of the overhead only costs at most IdB of the total transmission power. 

1.3 Outline of Thesis 

Some preliminary knowledge of this thesis is discussed in Chapter 2. In Chapter 3, some 

literature about relay channel, cooperative transmission and game theoretical research in 

wireless networks is surveyed. In Chapter 4, two cooperative transmission schemes for two 

source-destination pairs are proposed. The resource allocation algorithms of one cooperative 

transmission scheme are also investigated in this chapter. In Chapter 5，superposition coding 

based and TDM based cooperative transmission schemes for more than two source-destination 

pairs are considered. The pricing games of the two cooperative transmission schemes proposed 

in that chapter are also provided. In Chapter 6，the partner selection problem is studied. The 



CHAPTER 1. INTRODUCTION 4 

thesis is ended by a summary of contributions and some proposed future research directions 

in Chapter 7. 



Chapter 2 

Preliminaries 

In this chapter, there is a brief overview of some preliminary concepts which are applied in 
this thesis. It begins with an introduction of Gaussian broadcast channels, which are the 
building blocks of the cooperative transmission schemes proposed in this thesis, and some 
important properties we use in the succeeding chapters. Then, the concept of best-reply 

potential game and its convergence to pure strategy Nash Equilibrium are introduced. This 
chapter is ended with some useful optimization theorems. 

2.1 Gaussian Broadcast Channel 

2.1.1 Single Channel Case 

A Gaussian broadcast channel is an information-theoretic generalization of a single-cell 
downlink channel. To illustrate the main idea, we firstly consider a time invariant chan-
nel with no inter-symbol interference (ISI). The transmitter would like to send a distinct 
message to each of the K users. Let Mi G {1’ 2，. ••’ 2丑‘} be the message for user i. 

The transmitter encodes the messages M = (Mi, M2,... , Mk) to a complex codeword 
{a:(M)[l],a;(M)[2],..., a;(M)[n]}. Let yi[j] be the received symbols of user i. The received 
symbols are given by 

VilJ] = hix[j] + Wi[jl 2 = 1,2, = 1,2, . . . , n (2.1) 
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Rate of user 2 Rate of user 1 

Figure 2 1 Capacity Region of a 3-user Broadcast Channel. 

where ĥ  is the channel gain from the transmitter to user i and is the Gaussian white 

noise process at user i with zero mean and variance of. The codewords have to satisfy the 

following power constraint. 

n 
< P, VM. (2.2) 

User / decodes the received codeword to a message M .̂ Decoding error is defined to 

be the event that there exists an i such that 1 < i < K and 敌 + M^. The rate vector 

(Ri, R2,...，RK) is achievable if for any e > 0，there exists a sufficiently large n such that 

the decoding error probability is upper bounded by e The capacity region of this degraded 

Gaussian broadcast channel is the closure of the set achievable rate vectors. 

Without loss of generality, suppose < 

shown that the capacity region is given by 

‘ I/1.1V 

< < In [18, Section 14.6], it is 

0 < i?̂  < log 1 + 2 ’ K. 

As an illustration, the capacity region of a 3-user broadcast channel is depicted in Fig. 2 

(2.3) 
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In [9], it is shown that the achievable rate region by time-division multiple access (TDMA) 
and frequency division multiple access (FDMA) is a proper subset of the capacity region of 
the degraded Gaussian broadcast channel. It shows that the time sharing of any two rate 
vectors of the capacity region must result a rate vector within the interior of the capacity 
region. This implies that the capacity region is strictly convex. The strict convexity is crucial 
for the convergence of the proposed algorithms in this thesis. 

2.1.2 Coding Schemes 

There are several different encoding schemes which can achieve the above capacity region. 
In this chapter, I will briefly introduce two codes, namely, superposition coding and dirty 

paper coding, which will be applied in the cooperative transmission schemes outlined in the 
succeeding chapters. Detailed descriptions and discussions can be found in [8] and [111]. 

Firstly, the rate vectors on the boundary can be achieved by superposition code at the 
transmitter and successive interference cancelation at each receiver. We firstly encode each 
user' s message separately and then superpose the codewords together. In (2.3), the rate of 
user i suffers from the interference from the users with higher power gain and the background 
noise. We encode the message of that user at the same rate as in a single-user Gaussian 
channel with the noise power equal to the interference-and-noise power in this case. This is 
called superposition coding. 

To decode its message, user i decodes the messages of the users with smaller power gain 
first. This is possible because user i has better signal-to-noise ratio (SNR) for that message 
than the user with smaller power gain. Therefore, user i can decode the message successfully. 
After decoding all these messages, it cancels the interference in the received signal and decodes 
its own message. This is called successive interference cancelation. 

Alternatively, we can encode the messages by dirty paper coding which does not require 
the receivers to know the message from the "weaker" users before decoding his/her own 
message bits. The decoders do not even need to know the codebooks of other users. The 
advantage is to provide greater flexibility in the design of the decoding method. 
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Table 2.1: Steps for nested lattice coding 

1： Map Ms to a codeword x^iMs, ？Ts)[?•]’ using the dither U3 as one of the inputs. 

2： Interpret 2:3(^3, &3)[i] as interference known non-causally, M2 is dirty-paper coded on top of 

2:3(^3, U3)[j], and we obtain X2(M2,M3, U2, 

3： By treating X2(M2, M3, Ih, C/3)[力 and xz(M3, U3){j] as non-causally known interference, we apply 

dirty-paper coding to Mi and obtain the codeword Xi {Mi,M2, M3, Ui, U2, U3)[j]' 

An efficient implementation of dirty paper coding, called nested lattice coding [112] is 

discussed in this chapter. I illustrate the idea by the following three-user example. Suppose 

I/lip > I "212 > so that user 1 has the best channel condition and user 3 is the worst 

user. The transmitter signal of length n is the sum of three signals 

= + + (2.4) 

with the power of xi equal to equal to OtP, for S 二 1,2，3 and non-negative real numbers oji， 

and as which sum to one. The encoding requires three pseudo-random "dithers", denoted 

by Ui, U2 and U3, as inputs. For i = 1,2,3，the dither Ui is a shared randomness between 

the transmitter and user i, and is obtained by a pseudo-random generator. To encode the 

three independent messages, which are Mi, M) and M3, we follow the three steps in Table 

2.1. 

As noted in [112, Section VI], although 0:2[j] is functionally dependent on x^lj], X2[j] is 

statistically independent of 273[j], due to the presence of the dither. Also, xi[j] is statistically 

independent of X2[j] and 0:3[j]. 

2,1.3 Parallel Channel Case 

In the previous sub-section, all the messages are transmitted over a single channel. The 

results for the parallel channel case is provided in this sub-section. Also, the maximum 

weighted sum rate algorithm over parallel Gaussian broadcast channel is briefly introduced 

here. This algorithm is one of the component in the algorithms in Chapter 4. For further 
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details, please refer to [44, 101]. 

Consider a parallel broadcast channel with N parallel channels. One typical example is 
an orthogonal frequency-division multiple access (OFDMA) system with N subcarriers. Let 
np) and be the noise power and the link gain from the transmitter to user i in channel 
j respectively. We denote the vectors n泛）and ( j / i f 丨 2 ,丨 /！约�’釣 ” by 

n � and g � respectively. Let (7b(n, g, P) be the capacity region of a degraded Gaussian 
broadcast channel with noise power vector n, power gain vector g and transmission power 
P. If the total transmission power is P, the capacity region is given by [101] 

N 

C[P)= U (2.5) 

where for two sets A and B, + 三 {U + V:UEYL，VG B}. That means, to achieve any 
Pareto-optimal rate vector of the capacity region, we only need to allocate the total power to 
each channel and perform the superposition coding and successive interference cancelation 
described in the previous subsection separately for each channel. Notice that the capacity 
region of a parallel broadcast channel is also strictly convex. 

In Chapter 4, we need an algorithm for the following weighted sum rate maximization 
problem in parallel Gaussian broadcast channel. 

K 
max y^ fiiRi (2.6) 

subject to 

(2.7) 

where p?) is the power allocated to user i in channel j and jiiS are given positive weights. 
According to [101，Theorem 3.2], the algorithm is outlined as follows. Let 

v^\z) = ^ ― A， 1 < 7 : < / ^ , 1 < J <iV (2.8) 

+ 
, L < J < N (2.9) u�*(z�= max û -̂ (̂z) 

l<i<K 
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where [a;]+ = maxlx, 0} and A is the solution of the following equation 
N 

E max 
l<i<K 

n U) 

A I 种 乂 

which can be easily solved by bisection method. 

Also, let 

The optimal rate and power allocated to user i at channel j 

=P 

<j<N. 

‘e given by 

R. {j> 1 

U. (i) 2 
•dz 

A U) 

(2.10) 

(2.11) 

(2.12) 

(213) 

The set aI^^ can be conveniently computed by the fact (see the proof of [101, Theorem 3.2]) 

that for i • k, and only intersect at one point and are monotonically 

decreasing functions of z. That is, lif ̂  [z) > u^^^ (z) on one side of the intersection point while 

•up') (2) < u^p {z) on the other side of the intersection point. Therefore, after computing all 

the intersection points, we can obtain the intervals of which vjj)(z) > Uk(j){z) for all k 一 i. 

This is exactly the set 

2.2 Best-Reply Potential Games 

Best-reply potential game is firstly introduced in [103]. In this chapter, we focus on the 

convergence of best-reply potential game to pure strategy Nash Equilibria. The detailed 

proof can be found in [47]. A brief summary is provided in this section. 

Consider a game G = fP, {T^i}, {u^}] of M players. V is the player set and the players are 

indexed by the integers 1 ,2 , . . . , M. Each player i has its strategy set IZi and a utility function 

Ui{RIJ R_j), where RI is the strategy of player i and R - , = {Ri, R2,...，RI-i, RI+i,…，Rm) is 

the vector of strategies of other players. This utility function denotes the degree of satisfaction 

of a particular player so player i aims to maximize Ui. Then, we have the following definition 

of pure strategy Nash Equilibrium. 
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Definition 2.1. A strategy (Rl, E^,..., R]^) is a pure strategy Nash Equilibrium if 

Ui(Ri, RU) < Ui(Rl RIJ , i = … , ( 2 . 1 4 ) 

Let Bi(R—i) be the best response update by player i, which is defined as 

Bi(R-i) = arg max Ui{Ri, R-i ) . (2.15) 
Ri€7i-i 

Here, we assume that Bi is a well-defined function of R- i . That is, for all R_i, there is a 

unique Ri which maximizes Ui. In addition, a pure strategy Nash Equilibrium is a fixed point 

of the best response updates. 

Below are the definitions of potential game and best-reply potential game. 

Definition 2.2. Let R = (Ri, • • •, RM). A game G = [P, {T^J, {ui}] is a potential game 

if there exists a potential function (I>(R) such that 

— ,R_i) = UiiRf\R-.i) — ，R—i), ) e 尺“ 1 S i S 就 

(2.16) 

Definition 2.3. A potential game G = [P, {72.̂ }, {ui}] with potential function ^ is a best-

reply potential game if 

Bi{R-i) = arg max R—J’ l < i < M . (2.17) 
Ri&Zi 

In this chapter, we focus on the convergence to pure strategy Nash Equilibria of a best-

reply potential game. To begin with, we have the definition of a sequential best-reply path as 

follows. 

Definition 2.4. A sequence of strategies (Rl, R ^ , . . i s a sequential best-reply path 

if for all t, there exists a set P^ QV such that 

(2.18) 

otherwise. 

Notice that it is possible to have R\ = Rl"^ for some z € PMn a sequential best-reply path. 

That is, after the best response update, the strategy of player i does not change. Among all 
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sequential best-reply paths, in most practical situations, we are only interested in admissible 

sequential best-reply paths which are defined as follows. 

Definition 2.5. A sequential best-reply path is admissible if for all M successive -periods, 

all players have performed their best response updates (even if the best response update is an 

identity function) at least once. 

In Chapter 5, we need the following theorem which is proved in [47, Theorem 2:. 

Theorem 2.1. Suppose in a best-reply potential game G = fP, {T^J, {ui}], TZi ,s are all com-

pact， the best response updates Bi(R_i)，s are all continuous functions and there is a unique 

pure strategy Nash Equilibrium. Then, any admissible sequential best-reply path converges to 

the unique pure strategy Nash Equilibrium. 

2.3 Theorems about Optimization Problems 

In this section, some frequently used theorems related to optimization in this thesis are 

provided. Due to the page limitation, I skip the proofs of these theorems. 

I begin with the Envelope 's Theorem. It is useful to compute the first derivative of a 

function which is expressed as a parameterized optimization problem. One example of such 

kind of functions is the dual function of an optimization problem. 

Theorem 2.2 (Envelope's Theorem [28]). Let 

广(r) =max/(x,r). 

Assume the above optimization problem has unique optimal solution. Also, let 

x*(r) = arg max /(x, r). 
X 

Then, we have 

drjr) : : a/(x，r) 
如i 一 加i X=x-(r)‘ 

(2.19) 

(2.20) 

(2.21) 
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Envelope's Theorem can be generalized to the Danskin's Theorem. More specifically, 

Dansldn's Theorem allows the cases that the parameterized optimization problems have more 

than one optimal solutions. 

Theorem 2.3 (Danskin's Theorem [21]). Let Z be a compact subset of and let •: 

E" X Z E 6e continuous and such that 執z) is convex for each z e Z. 

1. The function / : E" E given by 

f{x) = max (f){x,z) (2.22) 
zEZ 

is convex and has directional derivative given by 

f{x-,y) = m^^^'ix, z;y), (2.23) 

where (f)'{x, z\y) is the directional derivative of the function (j){-, z) at x in the direction 

y, and Z[x) is the set of maximizing points in (2,22) 

Zix) (̂ (37，z) = max (j)[x, z) > . (2.24) 
z^Z J 

In particular, if Z(x) consists of a unique point z and 树.’ z) is dijjerentiable at x, then 

f is dijjerentiable at x, and Vf(x) = z), where z) is the vector with 

components 

i = l ’ 2 , . . . , n . (2.25) 
OXi 

2, If (/>{•, z) is differentiable for all z E Z and •) is continuous on Z for each x, then 

df{x) = conv{V:,^{x,z) \z e Z(x)} , \/x € W. (2.26) 

Next, we have the following simplified version of Berge's Maximum Theorem in [7, p. 116]. 

It is used to determine whether a function, which can again be expressed as an optimization 

problem, is continuous. 

Theorem 2.4 (Special Case of Berge's Maximum Theorem). Using the notation as in Dan-

skin's theorem, if y C R ^ is a compact set, then both ^(x, z(x)) and z(x) are continuous 

functions o/x. 



(2.28) 
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Finally, we have the convergence results of blocked Gauss-Seidel algorithm [33]. In Gauss-

Seidel algorithm [10], we optimize each decision variable by fixing the values of other variables 

in a round robin manner. In blocked Gauss-Seidel algorithm, we optimize each disjoint subset 

of decision variables in a round robin manner. Although both methods provide a convenient 

means to derive distributed algorithms, they may not converge to the optimal solution in 

general even when the optimization problem is convex (see [79，p.53-54] for the explanations). 

Consider the following optimization problem: 

min/(x) (2.27) 

subject to 

X 6 = A'l X ;f2 X . . . X AT̂  C R" 

where 

1. / : R " — R is a continuously differentiable function, 

2. every C R"^ is closed, nonempty and convex, 

3. X X i 仏二 n and 

4. X = (xi,X2,. . . , Xm) E R"̂  with Xi G 不 for all i. 

In each block Gauss-Seidel iteration, we perform the following updates: 

冗 g+i _ arg min / s^+i,.. • ， , j/i, 工 ̂ 2，...，^m) 

where t � is the value of .Tj in the /c-th iteration. 

We need the following definitions before stating the convergence result. 

Definition 2.6. A differentiable function f is pseudoconvex if it satisfies the property: 

• / ⑷ ( 2 / > 0 implies f{y) > f{x). 

Note that a differentiable and convex function is a pseudoconvex function. 

Definition 2.7. The r-level set of a function f relative to X is the set {x e ^ : f{x) < r}. 

(2.29) 



CHAPTER 2. PRELIMINARIES 15 

The sufficient conditions for convergence and the optimality of block Gauss-Seidel algo-
rithm are stated in [33, Proposition 6] which is quoted below. 

Proposition 2.5. Suppose that f is pseudoconvex on X and all level sets are compact. Then, 

the sequence {x^} generated by the block Gauss-Seidel algorithm has limit points and every 

limit point x of {.t^} is a global minimizer of f. 



Chapter 3 

Literature 

In this chapter, we will review some previous works about relay channel and cooperative 
transmission. In this thesis,'we classify relay channel and cooperative transmission as follows. 
In relay channel, the relaying nodes do not have their own messages to be transmitted. In 
cooperative transmission, the relaying nodes are also source nodes in general. 

3.1 Relay Channel 

The relay channel is typically defined as a channel in which there is one source node, one 
destination node and a number of relay nodes. The relay nodes can overhear the signals from 
the source node and help forwarding the messages. The most primitive form, which comprises 
of only one relay node, is depicted in Figure 3.1 and is thoroughly studied in [17, 24]. The 
authors in [17] provide the capacity bounds for the general relay channel and compute the 
capacity for degraded relay channels. Bounds for the capacity of a general relay channel can 
also be found in [24]. The author also provides a necessary and sufficient condition for a 
positive capacity. 

In the models of the aforementioned manuscripts, the relay node is assumed to operate in 
full-duplex mode, i.e. it can transmit and receive at the same time and frequency. However, 
the transmit signal is typically lOOdB higher than the received signal. This requires very-
precise and expensive circuitry to realize a full-duplex relay node. It motivates the studies of 

16 
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Figure 3.1: System model of relay channel with one destination node. 

half-duplex relay nodes [42, 53，66]. In these works, the relay nodes operates in time-division 

manner. For a given time period, the relay node is in the receive mode for a fraction of time 

and in the transmit mode for the remaining time. Similarly, the relay node may operate in 

frequency-division manner in the sense that different portion of the frequency spectrum is 

used for transmit and receive modes [32, 40, 55 . 

Amplify-and-forward (AF) and decode-and-forward (DF) are the two major types of re-

laying techniques [57]. In AF, the relay multiplies the received signal from the source by a 

complex factor and forwards it to the destination. In DF, the relay first buffers and decodes 

the message. Then, it re-encodes the the message and sends it to the destination node. 

While AF has the advantage of simple implementation and preservation of soft information, 

DF has the advantage of error correction at the relay nodes. The comparisons of these two 

approaches in practical systems are provided in [70, 110]. The authors in [70] point out that 

AF and DF can outperform the other depending on the underlying channel condition. If the 

link between the source and relay is worse than the other links, AF offers higher capacity. 

Otherwise, DF outperforms AF. In [110], the authors compare AF and DF with turbo codes 

and they discover that AF and DF are practically on par with one another. 

In low SNR regime, the capacity of DF approaches is limited by the high bit error rate at 

the relay nodes. In AF approaches, the amplified noise becomes the major component in the 

relay node's transmitted signal. Scaling laws of capacity for AF approaches in low SNR and 

wideband regimes are studied in [104]. In [57], incremental AF approach is developed. In that 

approach, the destination node has feedback to the source node. In [5], bursty AF scheme is 

proposed and it is shown to achieve the optimal outage performance at asymptotically low 
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SNR regime. 

All these schemes consider the cases that channel state information is not available at 
the nodes. Nevertheless, when the links suffer from slow fading, it is possible to estimate 
the link gains. In [42, 107], the authors consider cooperative protocols which make use of 
the channel quality information to further increase the achievable rate. Bounds of ergodic 
capacity are obtained in [42]. In [107], the authors propose a DF approach which can achieve 
the maximum diversity-multiplexing tradeoff. 

3.2 Cooperative Transmission 

In this thesis, I consider cooperative transmission schemes. The major difference from the 
above relay channel schemes is that in cooperative transmission, there are no pure relay 
nodes. Each source node overhears one another's message and forward the message to the 
intended destination. 

The earliest model is the one introduced in [106]. A two-user multiple access (MAC) 
channel is considered. The two encoders are connected by commuiiicatioii links with finite 
capacities so that they can cooperatively encode and transmit their messages. In [6, 51, 60], 
the authors also consider the case that all the messages are transmitted from cooperating 
sources to the same destination nodes. This type of cooperative transmission schemes are 
also known as cooperative MAC (e.g. [6, 13, 35, 49, 51, 60, 99] and the references therein). In 
[99], a distributed CMAC scheme based on superposition coding and the corresponding sum 
power minimization algorithm are proposed. In the CMAC scheme considered in [99], a source 
node relays messages from other nodes to the (single) destination by time-sharing its link 
to the destination among the messages. In the network with distributed source-destination 
pairs considered in Chapter 5, a source node needs to relay messages from other nodes over 
distinct links to different destinations. This complication renders the solution approach and 
the distributed resource allocation algorithm in [99] inapplicable to the network of interest in 
that chapter. CMAC in [35] and [49] require centralized implementation. However, it is not 
practical to extend their approaches to our scenario when the number of source-destination 
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pairs is large. Thus, in Chapter 5, we propose a pricing game for distributed implementation. 

Weighted sum rate maximization for two-user scenario is studied in [51]. In [6，13], frame 

error rate minimization for two users are investigated. Fading cooperative MAG is considered 

in [89] where channel state information is unknown at the transmitters. In this thesis, I 

consider the scenario that such information is available to the transmitters. As argued in 

the previous section, the assumption of available channel state information is valid in some 

practical scenarios such as slow fading channel. 

Inner and outer bounds for cooperative transmission for two source-destination pairs is 

studied in [41], Based on these bounds, the author characterizes the capacity gains for 

transmitter cooperations and receiver cooperations at high SNR regime. In [45], the outage 

performance of cooperative transmission with collocated destination is investigated. The 

authors consider a type of cooperative transmission called coded cooperation. The basic idea 

is that each user, instead of repeating the received bits (either via amplification or decoding) 

tries to transmit incremental redundancy for its partner. 

However, the works mentioned in the above paragraphs assume full-duplex relaying by 

the source nodes which is not practical. Half-duplex cooperative transmission are motivated. 

In [48], DF transmitter cooperations and receiver cooperations for two source nodes and two 

destination nodes are compared. The authors conclude that the improvement of capacity 

by transmitter cooperations is much more significant than receiver cooperations. Hence, 

in this thesis, I concentrate on transmitter cooperation schemes. In [71], two half-duplex 

schemes with two source nodes and two destinations are proposed and their sum capacities 

are studied. Each source node can transmit only for a fraction of time and listen for the 

remaining portion of time. In Chapter 4, each source node is allocated a disjoint set of 

parallel channels instead of time-sharing the same frequency band. This setting provides a 

more convenient node cooperations in some wireless networks like the OFDMA networks, 

in which each node is allocated a disjoint subset of subcarriers. Also, I study the whole 

achievable rate region of my cooperative transmission scheme. Furthermore, in my model in 

Chapter 5, there are more source and destination nodes. Sum power minimization problem 
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in that setting is considered. 
Another half-duplex cooperative transmission scheme for two source-destination pairs is 

considered in [93]. The authors make use of fact that a source node 5*1 has the full knowledge 
of the message Mi, , which is relayed by another source node S2. Then, S2 chooses a codebook 
for its message M2,, which will be relayed by according to Mi’r. As a result, the effect 
of the interfering signal of Mi , to M2，r is eliminated. However, it requires a much larger 
codebook for the transmitting and receiving nodes. This problem is more serious in the 
scenario considered in Chapter 5, which consists of more source-destination pairs. In one of 
the proposed scheme described in Chapter 4, it requires a relatively smaller codebook and it 
is more practical to be extended for larger number of source-destination pairs. 

In [96], the authors perform an asymptotic analysis of the achieved diversity order of 
cooperative space-time coding. However, they heavily-rely on the assumption that the inter-
user channel has high power gains. In the cooperative transmission schemes proposed in this 
thesis, I do not make this assumption and the overall achievable diversity order is the full 
diversity order. 

Half duplex cooperative transmission schemes for more than two source-destination pairs 
are considered in [23, 45, 61, 64, 83]. In [23, 45, 64], the authors focus on the frame error rate 
of the users under individual power constraints. In [45], the authors assume that channel 
state information is unavailable at the transmitters and in one of their protocols, the receivers 
only have the rough channel state information of the incoming links. In this thesis, I consider 
the case that the transmitters have the knowledge of the channel state information of their 
outgoing links. In the pricing game of Chapter 5, by exchanging pricing information, the 
transmitters can optimize the rates of their outgoing links without knowing the channel state 
information of other links. In [61], cooperative transmission for ad-hoc networks with hybrid 
ARQ is considered to maximize the total throughput. The authors in [83] aim to maximize 
the total throughput by cooperative transmission in random access networks. In Chapters 5 
and 6, sum power minimization problem is considered. 

In [57], both AF and DF half-duplex cooperative transmission schemes are proposed for 
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the case that channel state information is unavailable. Since in [56], it is shown that the sum 
capacity cannot be improved in full-duplex cooperations when transmitters have no channel 
state information and the fading is ergodic, the authors in [57] focus on the delay-limited case 
and nonergodic case. Similarly, in [58], cooperative transmission protocol where channel state 
information is only available at the receiver nodes is considered. In the following chapters, I 
consider the case that the channel condition can be estimated. 

In [27, 50], half-duplex cooperative transmission scheme with analog network coding is 
considered. However, as shown by the authors in [25], the limitations of precisions of real 
(or complex) number processing can increase the condition number of the network transform 
matrix and potentially reduce the achievable rates substantially. 

Some cooperative transmission coding schemes become too complicated to be implemented 
when a large number of source nodes involve. This is the motivation behind some partner 

selection schemes. Briefly speaking, the source nodes choose their partners and perform the 
two-user cooperative transmission. In [80], the authors consider partner selection schemes 
to reduce the bit error performance. However, the bit error performance of the underlying 
cooperative transmission scheme heavily depend on the reception quality of the relay node 
because of the absence of the direct path transmission. The partner selection scheme pro-
posed in Chapter 6 uses the cooperative transmission scheme in Chapter 4, which in general 
comprises of the direct path transmission as well as the relay path transmission. 

Besides [80], partner selection problem is studied in [36, 49, 65]. In these works, the relay 
nodes are pure relay nodes which do not have their own messages to transmit. But I consider 
a more general case that no nodes are pure relay nodes in this chapter. In [35, 95], partner 
selection schemes for uplink cooperations are proposed but in the system model in Chapter 
6, the destination nodes are not co-located. 

3.3 Game Theory in Wireless Networks 

Pricing games for interfering links are proposed in [15’ 43’ 85, 98]. Their objectives are max-
imizing certain utility functions of the received signal to interference plus noise ratio (SINR) 
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subject to maximum transmission power constraints. This is in some sense "dual" to the 

problem in Chapter 5 that minimizes the total transmission power under the minimum rate 

(which is a utility function of the received SINR) constraint. Other power control games for 

interfering links are investigated in [3’ 39, 63]. In these models, the transmitters do not relay 

others' messages and the receivers simply treat the interference as noise. However, when a 

transmit-receiver pair suffers from deep fading, the source node has to increase the trans-

mission power significantly to compensate for the fading loss and the interference from other 

nodes so that the rate requirements can be met. As a result, other nodes experience greater 

interference and they may need to raise their transmission powers as well. In cooperative 

transmissions, messages are more likely to be forwarded over the paths with higher power 

gains so that smaller transmission power is needed. 

Various games [36, 46，67，92] have been proposed for cooperative transmissions. However, 

the algorithms are designed for different objectives. In [92]，the authors propose a pricing 

game for AF user cooperations to improve individual frame success rate per unit energy. 

However, the protocol cannot be applied to our case that aims to minimize the total trans-

mission power under individual rate requirements in a network with DF user cooperations. 

As mentioned in previous sections, one advantage of DF user cooperations is the opportu-

nity of error correction and signal regeneration by the relaying nodes. The protocol in [46' 

requires an additional Stackelberg leader node for price computation which is not needed in 

the protocol proposed in this thesis. In [36], the objective, which is different from ours, is 

to minimize the maximum transmission power under received SNR requirements. In [67], a 

coalition game is proposed to maximize the sum rates of a wireless cluster. 



Chapter 4 

Achievable Rates in 

In this chapter, I consider cooperative transmission between two source-destination pairs. 
Exchange of data is allowed between the two source nodes. In addition to the direct trans-
mission link from the source to the intended destination, there is a two-hop relay path that 
sends the data via the neighboring source node. The bandwidth is partitioned into two parts, 
and each part is solely utilized by one source node, such that the transmissions from the two 
sources are orthogonal to each other. In this way, the interference channel is reduced to two 
independent broadcast channels. The bandwidth of each source node is divided into orthog-
onal sub-channels, and results from parallel broadcast channel is used to find the optimal 
allocation of power and rate to each links. I propose an iterative algorithm that maximizes 
the weighted sum rate. It can also be applied to obtain the boundary of the achievable rate 
region. The achievable rate region in low signal-to-noise ratio regime is also characterized and 
the rate allocation problem becomes much simpler. Finally, I extend the proposed weighted 
sum rate maximization algorithm to solve a more general joint utility maximization problem. 

The chapter is organized as follows. In Section 4.1,1 describe the system model. The two 
proposed transmission protocols are discussed in Section 4.2. Some mathematical properties 
of these two protocols are provided in the same section as well. Numerical examples are pre-

23 
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sented in Section 4.3. An algorithm that maximizes the weighted sum rate of one proposed 

cooperative transmission scheme is proposed in Section 4.4. An extension of this algorithm 

for the parallel channel case is also provided in this section. In Section 4.5,1 show that when 

the signal-to noise ratio (SNR) is low, for instance, in wide-band systems, some simplifica-

tions are possible. One application of the weighted sum rate maximization algorithm is to 

achieve the max-min fairness, which is detailed in Section 4.6. In Section 4.7, I show how 

to extend the proposed weighted sum rate maximization algorithm to a more general joint 

utility maximization algorithm. 

Part of the contents in this chapter can also be found in [76，77]. 

4.1 System Model and Notations 

Consider a wireless network with two transmitter-receiver pairs, denoted by {Si^ Di) and 

{S2, D2). Node Si wants to transmit data to Di and node S2 to D2, Assume that the 

transmissions of Si and S2 are on two orthogonal channels, each of bandwidth Bw/‘^ Hz ,̂ so 

that the total bandwidth is Bw Hz. Such orthogonality allows the source nodes to transmit 

their signals and overhear each other's signals simultaneously. 

For i = 1,2, consider the transmission of Si. In the following, let j = 3 — so that 

{i, j } = {1,2}. For example, if i = 2, then j = 1. The power gain of the link from Si 

to Sj, Di, and Dj by â , bi, and q, respectively. I will call ai, hi and q the cooperative, 

direct and cross link gains, respectively. Let the two-sided power spectral density of white 

noise experienced at each receiver be No/2 W/Hz. In a period of T seconds, each orthogonal 

channel has BwT real degrees of freedom [31，p. 177), when BwT is large. In the channel 

where Si is transmitting, the received channel symbols at Sj, Di and Dj at time t, for 
1 For the convenience of presentation, I consider the equal bandwidth case. The results in this chapter can be easily extended 

to the unequal bandwidth case. 
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Figure 4.1: System Model. The dashed lines correspond to the channel with as the sender, and the solid 

lines correspond to the channel with S2 as the sender. The labels of the arrows are the associated link gains. 

= 1 , 2 , BwT, respectively 

Ys,sM = ^MXsAt] + Zs,sAi] (4.1) 

(4.2) 

(4.3) 

where Xs.[i] is the transmitted symbol, and ^SiDi[i] and ZsiDj[^] are additive white 

Gaussian noise (AWGN) with mean zero and variance No/2 (Fig. 4.1). Let Pi be the maxi-
mum transmission power of Si, for i = 1,2, i.e., the transmitted signal satisfies 

BwT 

BwT 

j2iXsAt]?< Pi- rn 

This model is called the cooperative orthogonal-division channel. The transmission rate from. 
Si to Di is denoted by Ri, where i = 1,2. In order to simplify notations, I normalize the 
power such that No/2 = 1, and assume that all noise powers are equal to 1. 

I will use R" to stand for the first orthant in the n-dimensional Euclidean space, i.e., it 
consists of the vectors with non-negative components. Let C{x) = 0.51og2(l + x) denote the 
Shannon capacity formula. Vectors are typeset in boldface. 
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4.2 Transmission Schemes 

I propose two cooperative transmission schemes in this section. The two schemes have the 

same encoding function, and differ in the the decoding processing. The encoding at the 

two source nodes are the same in both schemes. For the encoding, note that the channel 

described by (4.1), (4.2) and (4.3) is a broadcast channel [18]. Nested lattice code or super-

position code, which are described in Section 2.1, are adopted in these Gaussian broadcast 

channels, which are the building blocks of the proposed cooperative transmission schemes. 

After describing the common encoding process, I characterize the achievable rates by the two 

decoding methods. 

4.2.1 Encoding at the Two Source Nodes 

In the proposed transmission protocol for the cooperative orthogonal-division channel For 

i = 1,2, source node i splits its own data stream into two streams. The first stream is 

sent directly through the direct link between Si and Di. The second one is sent through a 

two-hop path, from Si to the opposite source node Sj, and then from Sj to the intended 

destination Di. Node Sj acts as a relay node, and re-encode the message to be forwarded. In 

other words, the proposed schemes can be classified as partial decoding-and-forward schemes; 

the relay node decodes and forwards only part of the message from the source node. For 

i = 1,2, let Vid denote the rate of data through the direct path, and r^ the rate of data 

through the two-hop path. Here, the subscripts and “/，signify "direct path" and "relay-

path" respectively. 

Time is divided into 5 + 1 time slots, and each slot contains a codeword of length L. For 

i = 1,2, the data from Si is divided into 2B parts: hid{n) and bir{n) for n = 1,2 , . . . , S. For 

each n, bid{n) consists of Lrid bits, and is transmitted through the direct path from Si to Di； 

bir(n) consists of Lrir bits, and is decoded and re-encoded by the opposite source node Sj. 

Prom the viewpoint of <Si, for example, it has to transmit three data streams: the first 

one is direct transmission to its intended receiver Di, the second one is transmission to its 

relay node, 5̂ 2; the third one is forwarding the data from S2 to Di- In time slot n, source Si 
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Slot 1 Slot 2 Slot 3 Slot 4 

hr{l) 

bid{l) 

blr(2) 

bid{2) 

M l ) 

6lr(3) 

&id(3) 

&2r(2) b2r(S) 

Slot 1 Slot 2 Slot 3 Slot 4 

&2r(l) 

b2d(l) 

b2r{2) 

b2d{2) 

blr(l) 

hd� 

blr(2) &lr(3) 

Figure 4.2: Illustration of the encoding process {B = 3). The first row indicates the messages encoded by 

Si, and the second row the messages by 

transmits the codeword 

®Si(&ir(n),6id(n),62r(n-1)), (4.5) 

where 627.(n — 1) denotes the decoded message &2r(几—1) from the previous time slot. Here, 
xsi is a codeword as in (2.4) from nested lattice coding, with three messages as inputs (the 
dithers are not shown for notational simplicity). Similarly, in time slot n, source S2 transmits 

Xs2{hrin),b2d{n),bir(n-1)). (4.6) 

We initialize the encoding process by setting 6i^(0) and 61 (̂0) to some known and constant 
bit strings, the all-zero bit strings for instance, of length Lrir and Lr2r respectively. Likewise, 
the encoding process terminates in time slot 5 + 1, by setting bir{B + 1) and bid(B + 1) to 
some pre-defined bit strings, for i = 1,2. An illustration of the encoding for i? = 3 is shown 
in Fig. 4.2. 

Note that there is a loss of data rate by a factor of B/{B + 1)，which tends to 1 as B 
tends to infinity. Hence, this loss of data rate is negligible when B is large. 
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4.2.2 Achievable Rates 

Scheme 1 

In the first proposed scheme, the received signals from the two orthogonal channels are 
decoded separately, using the broadcast channel decoding algorithm. The decoded data are 
put together to form the original message. In the sub-channel with Si as the source node, the 
rate triple (rir,rid, rsr) is constrained by the capacity region of the corresponding Gaussian 
BC with link gains <2i, bi and ci. Similarly, in the second sub-channel with S2 as source node, 
the rate triple (广2厂，r2d, ^ir) is limited by the Gaussian BC with link gains a2, &2 and C2. I call 
this Scheme 1 and characterize the achievable rates as follows. 

Theorem 4.1 (Scheme 1). The rate pair {Ri, R2) G is achievable by separately processing 

the received signals from the two orthogonal channels, if 

Ri = rid + nr (4.7) 

R2 = r2d + r2r (4.8) 

(rir, rid, r2r) ^ 0.5 • Csciai, 61, Ci, P i ) (4.9) 

{r2r, r2d, Tir) € 0.5 • CBc(a2, &2, C2, (4.10) 

(the product of a real number x and a set S is defined as {xy : y £ S}.) 

Proof. Equations (4.7) and (4.8) say that the total data rate is the sum of rates of the 
direct path and the relay path. The condition (4.9) and (4.10) mean that the rate vectors 
("^ir, ' /"Id,and (r2r,r2d, Rir) are both feasible. The decoding and re-encoding at the two 
sources node is thus performed with arbitrarily small probability of error. Note that there 
is a factor of 0.5 in (4.9) and (4.10), because the total bandwidth is divided into two equal 
halves, one for each broadcast channel. • 

I call that (Rj, R!^) Pareto dominates R2) if R[ > Ri and R!) > R2. A rate pair 
R2) is said to be Pareto optimal if it is not Pareto dominated by other achievable 

rate pairs, i.e., if R^) is an achievable rate pair that Pareto dominates {Ri, R2), then 
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{Ri, R2) = {R'l̂  In the remaining of this sub-section, I will aim at characterizing the 

Pareto optimal rate pairs (Theorem 4.4). 

Let the maximum data rate between Si and Di be denoted by R f ^ . Formally, R f ^ 

is defined as the maximum Ri such that (jRi, R2) is achievable for some R2. When Ri is 

maximized, will not forward data from S2, It is because, if on the contrary Si allocates 

some power for the relay link between S\ and D2, Si can move some power to the direct link 

between Si and Di and thus increase the data rate Ri, Let the maximum value of ri2 + Rn 

subject to (ri2, Rn, 0) € Ci(Pi) be achieved by (户 12，ĵ ii, 0). I first consider the case that 

(0,0, f 12) € 亡2(户2)- Then S2 can help Si by forwarding at a rate of fi2- In the mean time, 

S2 can transmit data to D2 at a rate of /?22> which is the maximum value of R22 such that 

(0，i?22’尸 12) e C2(_P2)- In this case, the maximum Ri equals f u + An, and the vertical line 

segment between {fu + J^n, 0) and {fu + Ru, R22) belongs to the achievable rate region. 

Now consider the second case that the data rate fi2 between S2 and Di is not supported 

by S2�i.e., if (0,0,ri2) i ^2(^2)- In this case, I let Rix be the maximal data rate such that 

(0,0, i?2i) G 戶2). Then R f ^ can be obtained by maximizing ru + Ru subject to the 

constraints (ri2, Rn, 0) G Ci(Pi) and ru < R2i-

In a similar fashion, I can obtain the maximal value of R2, which will be denoted by R f^ . 

Before I proceed to characterize some properties of the achievable rate region, I have the 

following definitions. 

Definition 4.1. For a subset S C MJ； a point x £ S is in the relative interior； or an interior 

point, of S if there is an open ball B in E" centered at x, such that BoWl� S, 

As an example, consider the region in defined by .t + ^ < 2. The points (0,0) and 

(0’ 1) are within the relative interior, but (0，2) and (1’ 1) are not. 

Definition 4.2. In a rate region, a point is a boundary point, or lies on the boundary； if it 

is not inside the relative interior. A subset S in 肢!}_ is said to be strictly convex, if for any 

two distinct points Xi and X2 in S, then the linear combination axi + (1 — a)x2 lies within 

the relative interior of S for all 0 < a < 1. 



CHAPTER 4. ACHIEVABLE RATES IN COOPERATIVE ORTHOGONAL-DIVISION CHANNEL 30 

Given two non-negative weights wi and W2, not both equal to zero, the problem of max-

imizing the weighted sum WiRi + W2R2 over the achievable rate region will be considered 

in Section 4.4. Since the achievable rate region is a closed and bounded set, the maximum 

weighted sum by a rate pair R2) in the rate region exists. 

The relation between Pareto optimal point, boundary point and weighted sum rate is 

summarized in the next proposition. 

Proposition 4.2. For a rate pair R2) in the achievable rate region satisfying Ri < Rf^ 

and i?2 < Rf^, the followings are equivalent: (i) there exists two positive weights Wi and W2 

such that the corresponding weighted sum is attained by (/2i, R2), (ii) (i?i, R2) is a boundary 

point and (Hi) R2) is Pareto optimal 

The proof is relegated to the Appendix A.l. 

Proposition 4.3. Assume all the normalized noise variances are distinct Let {Ri, R2) and 

(i?'i，R2) be two distinct Pareto optimal rate pairs in the achievable rate region. Then, for 

0 < A < 1，t/ie linear combination A(i?i, R2) + (1 — R'2) U � within the relative interior 

of the achievable rate region. 

Proof. I denote the achievable rate region by X. Let (712，i?ii, R12) E Ci(Pi) and (�21, R22, -R21) € 

C2(尸2) be the rate allocation associated with (jRi, R2) and iet (ri2, R'N, R'YI) € Ci(Pi) and 

(r“ , R'22, i?2i) € 02(^2) be the rate allocation associated with 

I claim that either ru • rj_2 or�21 — r^i, or both. Suppose on the contrary that r^ = rjg 

and r2i = r^. For fixed r^ and�21，let be the maximal Rn such that (ri2,丑 11,̂ 21) G 

Ci(尸 1)，and let i?岛狀 be the maximal R22 such that (r2i, -^22,^2) € 02(尸2). Since both 

rate pairs (Ri, R2) and i?^) are Pareto optimal, we must have Rn = R'n = Rff^ and 

R22 = i?22 = This contradicts that the two rate pairs are distinct, and proves the 

claim. 

In the rest of the proof, I will assume without loss of generality that ri2 + r[2-

Let (rj_'2，R'li, R'(2} be the convex combination 

A(ri2, Riu R12) + (1 - A)(r'i2, ̂ 4 ’ 丑'12) (4.11) 
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and R'î , R'̂ ,) be 

入(厂21，i?22, R21) + (1 - i 4 ) . (4.12) 

By definition of Pareto optimality, we cannot have R2 = R2 = R f ^ , otherwise one of 

(i?i, R2) and i?^) will Pareto dominates the other. Prom our earlier discussion about the 

calculation of R^^, at least one o f�21 and r^ is positive. This implies that r'̂ i > 0 . Since 

ri2 + r'i2i we also have r'{_2 > 0. 

By our assumption that ri2 + '厂'12, and thus JR21 + 丑'21，the two rate triples (ri2, R i i^Ru) 

and (r^g, R'n, R^) are distinct in Ci(Pi), and the two rate triples (r2i, R22, R21) and (r^j, R21] 

are distinct in ^2(^2)- Because the normalized noise variances are distinct, both Ci(Fi) and 

�2(户2) are strictly convex [100]. As a result, I conclude that the rate triple (r'/g, R'h, R12) is an 

interior point of Ci(Pi), and (r'么,B!‘ i® an interior point of C2(尸2). Because r'l) > 0 and 

rJi > 0, we can find a 2-dimensional open disc D^ — {(x,y) : + j/̂  < e^} with sufficiently 

small radius e such that 

(r'l2 + A R'L Ri2 + (4.13) 

and 

+ + (4.14) 

for all {x, y) G D,. Note that {/{^ + 丑i'l， 1̂2 + v) and (r^ + y�R'i^, R21 + satisfy the 

conditions in Theorem 4.1. Consequently, {H!{i + R'ii + x, R22 + R21 + y) = {R'l + x, B!^ + y) is 

achievable for all (cc, y) G A - This shows that (i?'/, i?《）is an interior point of the achievable 

rate region. • 

We are now in a position to characterize the Pareto optimal rate allocations. 

Theorem 4.4. Assume all the normalized noise variances are distinct. Let (^1, R2) be a 

Pareto optimal rate pair. Then one of the followings holds: 

(i) Ri = 

(ii) R2 = Rf^. 

(Hi) There are two positive weights Wi and W2 such that R2) is the unique rate pair 

that maximizes the weighted sum rate wiRi + waFt). 



CHAPTER 4. ACHIEVABLE RATES IN COOPERATIVE ORTHOGONAL-DIVISION CHANNEL 32 

Proof. I will show that if < Rf"^ and R2 < Rf"^, then (iii) holds. The existence of 

weights Wi and W2 such that WiRi + 'W2R2 is maximized at (i?i, R2) == R2) follows from 

Prop. 4.2. I only need to prove that {Ri, R2) is the unique solution to the weighted sum 

maximization. 

Suppose that two distinct rate pairs {Ri, R2) and (i?^, BĤ ) attain the maximum weighted 

sum rate associated with weight Wi and w). By Proposition 4.2, both R2) and (i?^, FĈ ) 

are Pareto optimal. Then by Proposition 4.2, each convex combination R!̂ ) = A(/2i, i?2)+ 

{1 — X)(R[, i?2) with 0 < A < 1 is a relative interior point of the achievable rate region. Hence, 

there is a sufficiently small e > 0 such that (i?'/ + e，R2 + e) is also achievable. This contradicts 

that the value of the weighted sum rate is wiRi + W2R2 — wiR[ + 口 

In view of Theorem 4.4, the following definition is well-defined. For non-negative weights 

Wi and W2, not both zero, let 11；2)，应2—1，be the Pareto optimal rate pair that 

maximizes wiRi + W2R2 over the achievable rate region. When wi = 0 and W2 > 0, 

•62(0, W2) = 『狀 and Ri{0,W2) is the largest Ri such that {Ri, R f ^ ) is achievable. When 

W2 = 0 and Wi > 0,及lOi，0) = i?f狀 and ^2(11)2,0) is the largest R2 such that R2) is 

achievable. If iwi > 0 and W2 > 0, then {Ri{wi, W2), R2(wi, W2)) is the unique rate pair that 

maximizes the corresponding weighted sum rate. 

By varying the weights Wi and 1̂ 2, we can trace out the boundary of the achievable 

rate region. An efficient iterative algorithm for computing the optimal weighted sum rate is 

devised in Section 4.4. 

Scheme 2 

In the second transmission scheme, the received signals from the two orthogonal channels are 

jointly processed in the decoding of the relayed message. For n = 1,2,... ,B, the message 

bir(n) is encoded by xs^ (6ir(n), &id(n)’ b2r{n~l)) in the n-th time slot of the first channel, and 

1), b2d(n+l), bir(n)) in the (n + l)-st time slot of the second channel. The major 

difference from Scheme 1 is on the decoding function. The decoding function takes these 

two received signals as inputs and estimates hir{n). Likewise, the decoding of b2r{n) is based 
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on the received signals iĉ sĈ sr W , bir(n — 1)) and X3^(bir(n + 1), + l)，S:2r(n)). 
This transmission scheme with joint processing of the signals from the two channels is called 
Scheme 2. 

Since this cooperative transmission scheme is primarily effective when the link between 

the two source nodes are good, I will only state the rate region by Scheme 2 for the case 

where â - > bi and â  > q , for i = 1,2. Let I be the indicator function defined by 
f 
1 if js is true 

1(2) = (4.15) 
0 otherwise. 

\ 

Theorem 4.5 (Scheme 2). Suppose a^ > bi and ai > q, for i = 1,2’ and assume without loss 

of generality that bi + ci, for z = 1,2. The rate pair {Ri, i?2) € M^ is achievable by Scheme 2 

and the following conditions if it satisfies (4.7), (4.8) 

riT 

T2t 

rid 

T2d 

厂Ir 

Tlr 

l ^ f \ 
2 \l + biPi{ai + l{ci>h)a3)) 

-C ( ¥ 2 尸2 \ 

ciasPi 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 
2 驰 侧 + 5 叱 + ( 二 ( “ c O c J 

for some non-negative real numbers ai, «2； <̂ 3，Pi) P2, and /?3 such that ai + 以之 + 0:3 = 

Proof. The first two conditions in (4.16) and (4.17) ensure that the source nodes are able to 

decode the relay message from the opposite source node, so that the re-encoding is error-free. 

The conditions in (4.18) and (4.19) guarantee that the direct part of the data, for 

7: = 1,2 and n = 1,2 , . . . , B, can be sent reliably to the destination through the direct link. 

The last two conditions are the rate constraints for the decoding of the relay part of the data, 

bir{n). 
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The first terms in (4.20) is the signal-to-noise ratio (SNR) of the signal 

h • xs^ihrin), hd(n),f)2r(ji — 1) + zsiD" (4.22) 

received by Di in the first channel, where ẑ /̂ŷ  denotes the noise vector with each component 
independently distributed according to the standard normal distribution. In the second term 
in (4.20), the fraction represents the SNR of 

C2 • + 1),i?2d(n + 1),bir(n) + zŝ D -̂ (4.23) 

By standard argument from information theory, we see that the data rate on the right hand 
side of (4.20) is achievable after maximizing the mutual information between input and 
output. Similar comment goes with. (4.21). • 

Note that if Rid and Rid are restricted to zero, then Scheme 2 is the same as the trans-
mission scheme in [27]. 

In the first proposed scheme, the decoding algorithm for the Gaussian BC is employed, and 
the capacity region Cbc appears in the statement of Theorem 4.1. In the second proposed 
scheme, in which the signals from the two orthogonal channels are jointly processed, the 
resulting rate region is strictly better than the one in the first scheme. However, the decoding 
complexity also increases accordingly. 

4.3 Performance Comparison 

4.3.1 Achievable Rate Region 

I compare the rate region achieved by Schemes 1 and 2 with a cut-set outer bound and the 
capacity region of the strong interference channel. 

Prom [54], I have the following cut-set outer bound for the achievable rates. The derivation 
is straightforward and omitted. I refer the readers to [54] for more details. 

Proposition 4.6 (Outer Bound). A rate pair (i?i, R2) is achievable in the cooperative 
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orthogonal-division channel only if it satisfies 

RI < 0.5 . C{{AL + CL)PI) 

Ri < 0.5 . C{blPi) + 0.5啦尸2) 

R2 < 0.5 • C{{al + cl}P2) 

i?2 < 0.5 ’ C{clPi) + 0.5C(6^P2) 

Ri+R2< 0.5 . [Ciibl + cl)P,) + Ciibl + cl)P2)]. 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

In non-cooperative transmission scheme, the link between source nodes Si and S2 is ig-
nored, and the channel reduces to the Gaussian interference channel (GIC). The two source 
nodes can transmit simultaneously, and the received symbols at the two destination nodes 
are 

Yih [i] = Vh^s, [t] + V^Xs, [t] + Zn, W (4.29) 

Vd, [t] = VhXs, [t] + [t] + [t]. (4.30) 

For fair comparison, I consider interference channel with the same bandwidth as in Scheme 1 
and Scheme 2, i.e., the total bandwidth is Bw, and the same total power constraint. In a 
period of T seconds, the number of real degrees of freedom is 2BWT. To make the total power 
constraint the same as Scheme 1 and 2, the average power of Si in each channel symbol is 
Fi/2, fori = 1,2. 

The problem of finding the capacity region for the GIC in general is currently open. 
However, the answer is known in some special cases, for instance, the capacity region under 
strong interference [86]，and the optimal sum rate in the low-interference regime [4, 69, 90]. 
I will compare with the capacity region of the GIC in the strong interference case. Suppose 
that Pi = F2, and q > hi for i ~ 1,2. A rate pair R2) is achievable in the Gaussian 
interference channel given in (4.29) and (4.30) if and only if 

0 < i ? i < C(6iPi/2) (4.31) 

0 < i ? 2 < 0(62^2/2) (4.32) 

+ m i n { C ( ^ + + 宇 ) } . (4.33) 



CHAPTER 4. ACHIEVABLE RATES IN COOPERATIVE ORTHOGONAL-DIVISION CHANNEL 36 

Outer Bound 
Scheme 2 

- 0 ~ Scheme 
- - In ter ference Channel 

0.2 0.4 0.6 0.8 1 1.2 
R, (bits/s/Hz) 

Figure 4.3: Comparison of rate regions when the cooperative link is not very strong. 

It is remarked that there the Shannon formulae in (4.31) to (4.33) are not multiplied by 0.5, 

because the the system occupies the whole bandwidth of Bw Hz. 

In Pig. 4.3, I plot the cut-set outer bound, the rate regions of the two proposed schemes, 

and the capacity region of the GIC, for the case with parameters Pi = P2 = 10，and â  = 3， 

bi = 1 and q = 2 for z = 1,2. The points for Scheme 1 are obtained by maximizing the 

weighted sum WiRi + W2R2 over the feasible rate region, for different choices of weights Wi 

and W2. 

For scheme 2, an efficient algorithm which maximizes weighted sum rate is difficult to be 

obtained because in general, its achievable rate region is not convex. A general maximization 

algorithm, called the branch-and-bound method, is applied instead. 

It can be seen from Fig. 4.3 that the capacity region of the non-cooperative GIC and the 

rate regions of Schemes 1 and 2 do not dominate each other; the GIC have larger sum rate, 

whereas two cooperative schemes can achieve better rate pairs which are more asymmetric. 



R, (bits/s/Hz) 

Figure 4.4: Comparison of rate regions when the cooperative link is strong. 

It can also be observed that the region of Scheme 2 defined as in Theorem 4.5 is not convex 
in this setting. The corner points (0.4912,1.6269) and (1.6269,0.4912) in Scheme 2 are of 
special interest. The rate pair (0.4912,1.6269) is achieved by setting the power allocation 
vector («!, 0；2, cks) to (0,9/11,2/11) and to (1,0,0). In the first subchannel, Si 

uses 9/11 of the total power for its own message to be sent through the direct link, and 
2/11 of the total power for forwarding SVs through the link from Si to D2. In the second 
subchannel, S2 uses all of its power for the message to be relayed. There is no direct message 
from 82- Time-sharing can be applied if we want to operate on a point which lies on the line 
segment between (0.4912,1.6269) and (1.6269,0.4912). However, this may require carrier-
level synchronization among the nodes which would increase the implementation cost. 

In Fig. 4.4, the cooperative link gain â  is increased from 3 to 10, and plot the corresponding 
rate region. It is noted that the capacity region for the GIC remains unchanged, because 
it does not depend on the link gains ai and a2. However, the rate regions for Scheme 1 
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and Scheme 2 become larger, and include the capacity region of the GIC as a subset. It 

is in accordance with the heuristics that transmitter-cooperation is effective when the link 

between the two source nodes is good. It can also be observed that the gap between Scheme 1 

and Scheme 2 is small. 

4.3.2 Outage Performance 

Now, I consider the outage performance. Due to the expensive computational cost for 

Scheme 2, I only compare Scheme 1 and a simplified Han-Kobayashi scheme proposed in 

26] for interference channel through simulations. According to [26，Corollary 1], the achiev-

able rate region contains all rate pairs (Ri, R2) satisfying 

Hi <2C{1-^ ¥
 

= 1 , 2 

Ri+R2< log2 

Ri+R2< l0g2 

+ < 2C ( 

2Ri + i?2 < 2C ( 

Ri + 2R2 < 2(7 ( 

、 / 
力C2P2 +知尸2、 
V 2 

C2P2 b 
‘ 丁 

'biPi+C2P2\ 

+ 2C 

+ 2C 

ciPi , 
, 2 + 61/V 

C2P2 

2 
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+ 2C ( 宰 A 
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^
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 + 2C ( 1 + ^ 3 

b2P2 + CiPi\ (C2P2 丄 b 
2 + ^ + 2 C 

ClJ 
+
 

1
 - 3 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

The purpose is to compare the achievable order of diversity of these two schemes. Outage is 

defined as the event that the sum rate Ri + R2 is less than a given required sum rate Rt- In 

our simulations, Rt is chosen to be 1 and 2. 

The power gains of all the links are independently and exponentially distributed with 

mean 1, which corresponds to the Rayleigh fading case. For simplicity, the transmission 

power of both source nodes are the same. I plot the outage probabilities of Scheme 1 and 

the simplified Han-Kobayashi scheme against the normalized SNR of each source node. If F 
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is the common transmit SNR of the source nodes, the normalized SNR r is given by 

r = - - ^ ― . (4.40) 
2~f - I 

The denominator is the minimum required SNR of a source node at rate 警 in the no fading 

case (i.e. an AWGN channel with power gain 1). The normalized SNR can be regarded as 

the additional amount of power (in dB) of each source node to combat against fading. 

Lei; be the outage probability of Scheme 1 when the normalized transmit SNR is 

r respectively. I define the sum rate diversity order of Scheme 1 as follows. If there exists a 

real number r such that 

lim = r, (4.41) 
f->oo 

the sum rate diversity order of Scheme 1 is said to be k. If the sum rate diversity order of 

Scheme 1 is /c, in the log-log plot of the outage probability against the normalized SNR, the 

slope of the curve of Scheme 1 is —k for sufficiently large normalized SNR. The sum rate 

diversity order of the simplified Han-Kobayashi scheme is defined in a similar manner. 

The results are plotted in Fig. 4.5 and 4.6. Both figures are obtained from 1,000,000 trials 

of Monte Carlo simulations. In both cases, the outage probability of Scheme 1 is strictly 

smaller than the simplified Han-Kobayashi scheme. Besides that, when the normalized SNR 

is greater than 15dB, the slope of the curves for Scheme 1 is roughly -4 while the slope of 

the curves for the simplified Han-Kobayashi scheme is -2. The sum rate diversity order of 

the simplified Han-Kobayashi scheme is 2 because there is a multi-user diversity among the 

two source-destination pairs. One reason why the sum rate diversity order of Scheme 1 is 

twice of the one of the simplified Han-Kobayashi scheme is that in an interference channel, 

the achievable rate of a source-destination pair is limited by the power gain of their direct 

link. If the direct link is in deep fading, there is no alternative path for the message to 

be transmitted. On the contrary, in Scheme 1, if the direct link is in deep fading, part of 

the messages can be relayed by another source node, which is a new path with independent 

fading. Therefore； the sum rate diversity order of Scheme 1 is twice of the one of the simplified 

Han-Kobayashi scheme. 
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Figure 4.5: Outage probability of Scheme 1 and the simplified Han-Kobayashi scheme {RT = 1). 
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Figure 4.6: Outage probability of Scheme 1 and the simplified Han-Kobayashi scheme { R t ~ 2). 
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Figure 4.7: Data rates in the System Model 

4.4 Iterative Algorithm for Maximizing Weighted Sum Rate 

In the last section, it is shown via numerical examples that the difference between Scheme 1 
and Scheme 2 is small. Since Scheme 1 has much smaller decoder complexity, for the remain-
ing parts of the thesis, Scheme 1 and its extensions are considered. In this section, a fast 
weighted sum rate maximization algorithm is derived. 

4.4.1 An Iterative Algorithm Based on Lagrangian 

To determine the optimal weighted sum rate for given weights wi and an iterative al-
gorithm based on Lagrangian duality is proposed. The rate constraints in Theorem 4.1 are 
slightly modified and the weighted sum maximization is formulated as follows: 

subject to 

ma:jdmize WiEi -f W2R2 

Ri = Rii + R21 

R2 = R22 + Ri2 

(ri2’ Ru) e 0.5 • CBcia-i, h, ci, Fi) 

(”21’ i?22, R21) e 0.5 • CBc{a'2, h, C2, P2) 

广 12 = ^21 

^21 = ^12-

(4.42) 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

(4.48) 
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The notations are illustrated in Fig. 4.7. 

It is readily checked that the constraints (4.43) to (4.48) are equivalent to those in Theo-

rem 4.1. 

Let r = (ri2, Rn, Ru, 2̂1, R22, R21) be a rate vector and ^ 三 b e a vector of 

Lagrange multipliers. After relaxing constraints (4.47) and (4.48), the following partial La-

grangian is formed: 

L{r, fi) = i£;i(i?ii + R21) + W2(R22 + R12} + — R21) + ^2(̂ 21 - Ru) (4.49) 

for r e 尺三 Cbc{o-i, &i,ci, Pi) x Cbc{0'2, C2, P2) and /u. € M .̂ We have the following weak 

duality property, 

m說 mm L{r, /i) < mm m證 L(r’ (4.50) 

which holds in general for any function of two sets of variables [84, p.379]. The max-min 

value on the left hand side of (4.50) is precisely equal to the optimal weighted sum in (4.42). 

It is because min̂ g肢2 L{r, fi) is equal to wi{Rii + JR21) + (-̂ 22 + R12) if the constraints 

ri2 = R21 and r2i 二 Ru are satisfied, and —00 otherwise. 

Consider the right hand side of (4.50). Let 

g(/x) = m ^ L ( r , fji), (4.51) 

which is called the dual function. For each /i, the value of g(/Li) is an upper bound of the 

maximum weighted sum rate. 

By rearranging the terms, the dual function q{jj) can be decomposed into q{fjL) — gi(/Lt) + 

q2{fJ-) where 

qiifJ') = max {fiir^ + wiRn + {w2 - fJ.2)Ri2} (4.52) 
J 丑11 A2 

？2(M)三 + W2R22 + (wi - "i)i?2i} (4.53) 
rai,丑22,彻 1 

with the maxima taken over all {ru, Rn, Ru) € ^^bcW, h^ ci, Pi) and (r2i, R22, R21) € 

&2j C2, P2) respectively. The computation of gi(/x) and amounts to the power 

allocation problems for maximizing the weighted sum rate in the broadcast channels with 

iSi and S2 as the sources respectively. Each of them can be solved by the greedy algorithm 
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in [101], which is briefly described in Section 2.1.3. Let r議fi) and 丑 J • � be the resultant 

solution. Hence, given any /x, g(/Lt) can be solved readily. 

I will use the foliowing fundamental theorem from the theory of Lagrangian multipliers [84, 

Theorem 28.3]. A short proof is included here for the sake of completeness. 

Theorem 4.7 ([84]). If jl is a Lagrange multiplier vector such that 

rhif^) = m P ) (4.54) 

r i m = 风 2(A), (4.55) 

then the corresponding rate vector 

r = {fl2,Rll,Rl2,f21,R22,R2l) (4.56) 

= { r U f i \ H 丨 R i 她 埃 1(A)) (4.57) 

which maximizes L{r, JX), is an optimal solution to the weighted sum rate maximization prob-

lem in (4.42) to (4.48). 

Proof. Prom the weak duality property (4.50), it suffices to prove that 

qifi) = L(f，fi) < max min L(r, fi). 
r&l fieSP' 

Putting (4.54) and (4.55) into the partial Lagrangian, we see that the equality 

L{r, fi) = wi(Rn + R21) + '^2(^22 + 及 12) = L(r, ft) 

holds for all /x G R .̂ In particular, we get 

which implies 

L(f,fx) = minL{f,tJb), 

Lif, a) < max min L{r, u). 

Thus, we have the following saddle-point property, 

max min L{r, u) = Lif, p.) = min maxl/(r, u). 

(4.58) 

(4.59) 

(4.60) 

(4.61) 

(4.62) 

This proves that the optimal weighted sum rate is achieved when r = f, with maximal value 
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In view of Theorem 4.7，a vector of Lagrangian multipliers, fi, that satisfies the conditions 

in (4.54) and (4.55) is said to be optimal Theorem 4.7 says that if p, is optimal, then the 

maximum weighted sum rate can be obtained from (4.59), and the associated optimal rate 

allocation is given by (4.57). In order to develop an iterative algorithm that computes the 

optimal fi, the following iemma, which is about some continuous and monotonic properties 

of and Rijil-i), is needed. 

Lemma 4.8. Assume the noise power at the receivers of Si�5*2，D! and D2 are distinct, r^g, 

r2i, RI2 肌d i?2i are all continuous functions of fjb. For jii > 0, r̂ - is an increasing function 

of jjLi and Rlj is a decreasing function of im. For jii < Wi, is an increasing function of im 

and Rji is a decreasing function of fii. 

Proof. See Appendix A.2. • 

The heuristic behind Lemma 4.8 is as follows. In the maximization of weighted sum rate 

in (4.52), the weighting of ri2 is /ii. If we increase fii, r � w i l l increase and R12 will decrease. 

The coefficient of R12 in (4,52) is W2 —1̂ 2- K we increase /i2, the weighting of R12 is decreased. 

As a consequence, RI2 will decrease but r̂ g will increase. Similar heuristic applies to (4.53). 

Based on the above results, the optimal weighted sum is computed using an alternating 

optimization. Firstly, H2 is fixed in the vector (jl and search for {ii such that (4.54) holds. 

Using the continuous and monotonic property in Lemma 4.8, this can be done by a simple 

binary search. Then, the first component fii is fixed in fi and find 112 such that (4.55) holds. 

Again, by Lemma 4.8, a binary search suffices. The algorithm is stated formally in Table 4.1. 

The value of e in the algorithm of Table 4.1 is the error tolerance, and is set to a very small 

positive real number. 

Lemma 4.9. In each iteration t of the algorithm in Table 4.1， 

ri*2(M⑴）> J^iMt) ) (4.63) 

r ; 洲 ） 化 测 ) • (4.64) 

In addition, jj.i{t) is decreasing with i while /i2(亡)w increasing with t. 
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Table 4.1: Search for Optimal /i. 

1: i = 0 

2: "1(0) — wu "2(0) 

3: while \rUtx{t))-•R\^{ii{t)\> tot [r^ ,{(i{t)) - RUKt)\ > e do 

4: search for ui so that fi2{t))= 丑 3l("l，/i2 ⑴） 

5： t<r-t+l 

6: pLiit) — Vi 

7： search for so that r^ii(J.i{t),V2)= 丑3：2("1 ⑴ ’ 

8: /i2 ⑷ 卜 " 2 

9： end while 

Proof. See Appendix A.3. • 

Using the above lemmas, the convergence of the algorithm can then be proved. 

Theorem 4.10. In the algorithm in Table fJa(f)肌d converge to the optimal 

solution. 

Proof. I first show that jJ^iit) and /XgW converges. For the convergence of jiii(t), I consider 

two cases. In the first case, suppose that /•ii(t) < 0 for some t, say at t = t'. We then have 

= 0. By (4.63) in Lemma 4.9’ 

0 = rUfi{t ')) > R l M t ' ) ) > 0 (4,65) 

which means ( 亡 ' ) ) = 二 This implies that fii{t) = /ii(t') for all t > t'. 

Hence iJ,i{t) converges in this case. In the second case, suppose that (ii(t) > 0 for all t, 

i.e., f2i{i) is lower bounded by 0. It has been shown in Lemma 4.9 that is a decreasing 

function oft. Hence, if /ii(i) is lower bounded by 0, it converges. Similarly, by considering the 

cases of / i 2 � being or not being upper bounded by W2, I can show that 鄉⑷ is convergent. 

After establishing the convergence of fii(t) and /̂ 2(亡)，let the limit of /Lii(t) and //已� 

be /2i and JI2 respectively. Because rl2{^i{t + 1),^2(0) = ^21 + 1)，/^2(力)）for all t > 

0 by construction, and r̂ g and are continuous by Lemma 4.8, I obtain = 
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i?2i(Mi? Mz)- Therefore (4.54) holds with /x。= (/ii,/i2)- By the same argument and the fact 

that = Ri2(Mi(i), M2(i)) for all t > 1, I can establish the equality in (4.55). 

The optimality of the solution then follows immediately from Theorem 4.7. • 

For positive wi and W2, after running the algorithm in Table 4.1, the limit of f i i( t) and 

112(f) is obtained. Let p, be the limit of ( / i i ( £ ) , T h e optimal rate allocation which 

maximize WiRi + W2R2 is denoted as 

Ri {wi, W2)三 R*n (A) + -̂ 2*1 ifi) (4.66) 

片2(斯,购）三 + n^uifi). (4.67) 

4.4.2 Extension to Parallel Channel Case 

Scheme 1 is then generalized to frequency selective channel, represented by a bank of parallel 

Gaussian channels. To be more specific, consider the case that the source nodes employ 

multi"channel transmissions over disjoint and orthogonal frequency bands. Node Si has 

N i parallel sub-channels, whereas S2 has N2. If each parallel sub-channel represents one 

frequency carrier, then the model can be used to represent orthogonal frequency division 

multiplex (OFDM) transceivers. Let the bandwidth of each subchannel by B, so that the 

total bandwidth is equal to Bw = B [ N i + N2). 

Consider the transmission of Si. Denote the power gain of subchannel k from Si to S” 

D ” and Dj by and respectively. Let P̂^ be the maximal transmission power 

of S” i = 1,2. The total power P, is split into N, parts, P,⑷，k = l,2”.‘，N” such that p f ) 

is the power associated with the k-ih sub-channel of S” and 

i f ) + P f ) + . . . + P f ' ^ = P.- (4.68) 

Each source node is associated with a parallel BC channel. The capacity region of the parallel 

BC channel for Ŝ  is 

cKP^)三 U {"Ui + … + 況I : ẑ fc e i f ) ) } ’ (4.69) 

with the union taken over all power allocations satisfying (4.68). 
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Similar to the single channel case, each source node Si splits its own data stream into two 

streams: one direct to its intended receiver Di and the other through a two-hop path with the 

other source node as relay. Each stream is divided into many blocks, each of which contains 

a codeword. The relay node decodes the received block from Si, and then re-encodes and 

forwards a new block to Di. 

By a similar argument in Theorem 4.1, a rate pair 

i?2) = (rir + rid, r2r + r2d) 

(with unit bits/s/Hz) is achievable if i t satisfies 

(4.70) 

(4.71) 

(4.72) 

As in the single-channel case, the weighted sum rate maximization problem of this scheme 

can be solved by decomposing i t into two weighted sum rate maximization problems for the 

two parallel Gaussian BGs. We can use the greedy algorithm in [101], which is applicable to 

the parallel Gaussian BCs. 

4.5 Rate Allocation in Low SNR Regime 

The system is in the low SNR regime when bandwidth is large. When noise levels are 

very high, time-sharing is asymptotically optimal in the broadcast channel [59]. In fact, by 

applying the Taylor series expansion 

l n ( l •i-x) = x - x'^/2 + 作 + … (4.73) 
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The capacity region of the k-th sub-channel of Si can be approximated as 

⑴ Q ； ⑻ 尸 ⑻ 

i f ) ? 
尸.(fc) 

< < a (fc) p(fc) 
iZ 

(4.74) 

(4.75) 

(4.76) 

where aff) + a法)+ a j f = SI 
the plane 

In 2 僻 ） 

The boundary of the capacity region can be approximated by 
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+ 几i3 (k) 
In 2 

(4.77) 

Note that the fraction nj》) is interpreted as the spectral density of white noise. Prom (4.77), 

the achievable rate vectors on the boundary can be obtained as linear combinations of the 

three vertices of the capacity region. This amounts to time-sharing of the sub-channel among 

the three streams of data, thus no complicated coding and interference cancelation is required 

at low SNR. 

Putting all Ni sub-channels together, the capacity region of the parallel broadcast channel 

Ci{Pi) is also well approximated by a polyhedron. 

Theorem 4.11. In the low SNR regime, the capacity region of the parallel broadcast channel 

Ci{Pi), i = 1,2，can he approximated by 

Pi ̂  
"ij, Rii, Rij) € M+ ： XiXij + ijjiRii + ^iRij < ln2 

(4.78) 

where 

• r (k) (fc)\ :/c = 1,2 ，•…，^i} (4,79) 

如=min{niJ)6广)）: fc = l，2 
，…•， 

(4.80) 
.f (k) (fc)� k = l,2 

，•…， 
(4.81) 

Proof. The statement amounts to the following claim: For k — 1,2， 

polyhedron 

{(a;, y, 2：) G E^ : pfcX + q^y + rkZ < s^}, 

K, let Xk{sk) be the 

(4.82) 
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where pk, Qk, '「k and Sk are positive constants for A: = 1 , . . . , /C. The set 

U + + ： i;fc GXfc(sfc)} (4.83) 

is equal to 

B 三{(a;’ y, z)eMl： px + qy + rzK s}, (4.84) 

where p 三 niinisfcsj(pfc’ q 三 mmi<k<K Qk, r 三 minisfc^ir rj^ and s = Si + ... + sk-

I t is clear that any point in A is also in B, i.e., Ac B. Conversely, suppose that p == pk” 

q = qk2 and r = rk^, and (rr, y, z) be a point in B. I wil l complete the proof by considering 

several cases. 

First, suppose that ki, and k^ are distinct. I write (re, y, z) as the sum of (re, 0,0)， 

(0, y, 0) and (0,0’ z). We have 

{ xAO)eX f ,AP^ ) (4.85) 

(4.86) 

{0,0,z)eXk,(rz). (4.87) 

Since px + yz qz < s^ 1 can conclude that {x, y, z) G A. 

Second, consider the case ki = h- We write {x,y, z) as {x, y, 0) + (0，0, z), and note 

that 

{x,y,0)eXk,{px-{-qy) (4.88) 

(0,0,z) (4.89) 

Again, I can conclude that {x, y, z) G A. 

The remaining cases can be treated similarly and are omitted. • 

The implication of the above theorem is that for any transmission node, though having 

a group of sub-channels, only uses the best sub-channel, in the sense that its effective noise 

power is smallest. For example, Si sends to S2 only via the sub-channel that minimizes 
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Hence, the achievable rate region for the cooperative orthogonal-division channel at low 

SNR can be approximated by (4.7) (4.8) (4.47) (4.48) and 

Xin2 + i h R i i + i f i R u < (4.9，） 

X2r21 + 恤2 + 啊R21 < (4.10') 

Its boundary is piece-wise linear. Consider the weighted sum rate maximization problem 

again. The objective function is wiRi-i-'W2R2- This problem reduces to a linear programming 

problem, and can be solved by standard techniques. On the other hand, a closer observation 

can further simplify the problem. 

Given any weights uui and W2, let rj^-, rI - and be the corresponding optimal solutions 

of Tij, Rii and Rij respectively. Since the objective function increases with R\ i and i^�， 

equalities must hold in (4.9') and (4.10’），and we have 

丑 l 4 ) ’ （4.90) 

for i = 1,2. Then, substitute and i?22 by (4.90) in the objective function. Removing 

the constant terms, the weighted sum rate maximization problem is transformed into the 

following linear programming problem: 

subject to 

max air i2 + 0:27̂ 21 ri2,r2i>0 

XI ^ . Pi 
-ri2 + 厂21 < 

ri2 + —r21 < TT-TTs"""" </?2 (In 2) (̂ 2 

where for i = 1,2， 

-W i ( l —罕) 

(4.91) 

(4.92) 

(4.93) 

(4.94) 
in % 

Note that there are only two variables in this linear programming problem. Recall that r^ 

is the information rate from Si to Sj. The objective function is a weighted sum between ri2 

and 7-21，where the weight, cq depends on the normalized effective noise powers in the relay 
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paths. For example, consider a j . The effective noise in the link from Si to S2 is x i and the 

effective noise in the link from S2 to D i is (/?2- The value of a i depends on these two terms. 

From the problem formulation, it is straightforward to see that: 

1. If a i , 0L2 < 0, rjg = T^i = 0. 

2. If a^ > 0, ttj < 0, r j j = 7\職 and r j , = 0 where 

1 (P^ P } 
= — min< > . (4.95) 

In 2 [xz <Pjj 

Intuitively, a^ measures how good the relay path for Si is. The above results say that 

when tti is too small, or more precisely, less than zero, the relay path should not be used. 

For Q；!, > 0, the optimal solution is given by the following theorem: 

Theorem 4.12. Let 

. J Xl 1 m = mm <——’—— 
— X2j 
— fxi 仍, m — max < ——,—— 

X1X2 — 穩 2 、 

1 X2P1 -

1 X1P2 - y>2-pL 
i r ^ J 

(4.96) 

(4.97) 

(4.98) 

(4.99) 

(4.100) 

A = 

尸12 = 

hi = 

In the low SNR regime> if ai, a2 > 

1- If ^ <rn, rl2 = 0 and = rg.max-

2. / / g > m, r!2 = ri^max and r j^ = 0. 

3. If m < — < fn and X1X2 • (̂ z.e. m < m), there is at most one of fi2 and 尸21 
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being negative and 

12 

4 

0, 

尸21, 

0, 

iff 21 < 0 

otherwise 

if f 12, hi > 

i f h 2 < 0 

otherwise. 

0 

(4.101) 

0 

Proof. See Appendix A.4. 

(4.102) 

• 
Although the expression for the optimal solution looks complicated, the idea is simple. 

First of all, note that at the point (尸 12，尸21)，equalities hold in both (4.92) and (4.93). Ac-

cording to Theorem 4.12, if both components are positive, then it is the optimal solution. In 

that case, both R\i and i?22 are equal to zero, meaning that there is no traffic through the 

direct path. If any of the components is non-positive, then the optimal solution is located at 

the boundary. 

4.6 Max-min Fairness 

Apart from maximizing the weighted sum rate, one application of that algorithm is to achieve 

max-min fairness. We say that the rate pair {R^, R^) is max-min fair if it satisfies the 

following two properties: (a) the minimum of Rf^ and R ^ is maximized, (b) If R ^ > R ^ , 

then R ^ is the maximum rate of user 1 given R2 = if R ^ > Rf^, then R f is the 

maximum rate of user 2 given Ri 二 I t follows from the definition that max-min fair 

rate pair is Pareto optimal. As I have already devised an algorithm for the computation of 

Pareto optimal rate allocation, I will leverage it and compute max-min fair rate allocation. 

Noted that in general, max-min fairness may not be the same as symmetric fairness. A 

rate pair is symmetric fair if it is in the form (i?, R) with R chosen as large as possible such 

that R) remains achievable. For example, consider the set in M^ consisting of points (x^ y) 
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such that y <1 and x-\-y < 3. Then the point (1,1) is symmetric fair but not max-min fair. 

The max-min fair point in this region is (2,1). 

The computation of the max-min fair rate pair is based on the following observation. 

Proposition 4.13. For fixed W2, Ri{wi,w2) is a non-decreasing function of Wi but it is 

a non-increasing function of W2, meanwhile, for fixed Wi, 1^2) is a non-increasing 

function of wi but it is a non-decreasing function of W2. In particular, the function 

AR{w) = Ri{w, l-w)~~ R2(w, l-w) (4.103) 

defined for 0 < w < 1, is non-decreasing. 

Proof. To show that Ri{wi, W2) is non-decreasing in Wi for fixed W2,1 suppose on the contrary 

that there exists WI, W2 and 6 such that ^ > 0 and RI{WI + S, W2) < RIIWI, W2). Then, 

{wi + S)Ri{wi + 6, W2) + W2R2(m + 1̂ 2) (4.104) 

< wiRi( iu i , W2) + W2似Wi) W2) + 5Ri{wi + S, W2) (4.105) 

< wiRi{wi, W2) + W2R2(wi, W2) + SRi{wi, W2) (4.106) 

=(li^i + 5i)Ri{'Wi, W2) + W2R2{wi, W2). (4.107) 

The first inequality follows from the defining property that the weighted sum 'W1R1 + W2R2 is 

maximized at (fiiXwi, W2、, R i i ^ u '"^2))- The second inequality follows from the assumptions 

^ > 0 and W2) < Ri{wi , W2). This contradicts the fact that w。),片 1(1̂ 1 + 

6, W2)) maximizes the weighted sum rate {wi + 6)Ri + W2R2. Hence, Ri{wi + 6,W2) > 

Ri{wi,W2). 

The remaining statement can be proved similarly. • 

Using the property that 1 - w), R2(w, 1 - w)) spans through all Pareto optimal 

rate pairs when w varies from 0 to 1，we have the following 

Theorem 4.14. When | is minimized over 0 < < 1, say atw = wq，then the rate 

pair {Ri(wo, 1 — WQ), •62(^0,1 ~ WQ)) is max-min fair. 
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Proof. I consider three cases: 

(i) Minimum of equals 0. In this case, AR{wo) = 0. The rate pair {Ri{wo, 1 — 

wo)^R2{wq, 1 — Wo)) is a Pareto optimal symmetric rate pair. Hence it is max-min fair. 

(ii) AR(w) > 0 for all 0 < ly < 1，i.e., Ri(wo, 1 — wq) > R2{wo, 1 — t^o) for all w. Since 

AR(w) is non-decreasing, AR(w) is minimized &t w — 0. I have shown in Prop. 4.13 that 

R2(w^ 1~w) is non-increasing as a function of w. Therefore ^2(0,1) is the maximal value of 

R2 in the rate region. Since 1), ̂ 2(0,1)) is Pareto optimal, we cannot further increase 

•61(0,1) given R2 = ^2(0,1). This verifies conditions (a) and (b) in. the first paragraph of 

this section. 

(iii) AR(w) < 0 for all 0 < w < 1. The proof is similar to part (ii) and is omitted. • 

This leads to the following algorithm for computing (Rf^, R^)- If Ai?(0) > 0，then 

(^1(0,1), ^2(0,1)) is the max-min fair rate pair. If AH(0) < 0，then 0)，鳥(1,0)) 

is the max-min fair rate pair. Otherwise, we search for the w between 0 and 1 such that 

AR{w) = 0. The search is one-dimensional, and can be done by bisection search for instance. 

For low SNR regime, we have the following closed form solution. 

Theorem 4.15. For i •=/=• j, let 
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where 闽+ = max{;z;, 0}. The max-min fair rate is given hy 

I , (4.108) 

R=~ m i n { l i , l 2 } . (4.109) In 2 
In addition, let Rff and r^ be the values of Ra and rij, which achieve the max-min fairness, 

respectively. Then, 

魄 = 縣 力 _。) 
and 

if Ri > Rj and > Xi 
(4.111) 

otherwise. 

where Vi^max is defined in (4.95). 
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Proof. By Theorem 4.11, the max-min fairness can be obtained by solving the following 

optimization problem. 

maxi? 

subject to 

Rii + ri2 

R22 + 7-21 

XlT-U + ihRll + 糊 21 

X2r21 + '02-̂ 22 + <P2ri2 

Rll,丑22，ri2,r2l 

Hence, if r j ^ and r f f are given, 

3 ipi \ l n 2 

which implies (4.110). I t also implies that 
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Hence, 

R < -—mm{RuR2} 
In 2 

+ 

(4.112) 

(4.113) 

(4.114) 

(4.115) 

(4.116) 

(4.117) 

(4.118) 

(4.119) 
(4.120) 

1 Xi 
卜 石 

(4.121) 

(4.122) 
• 

where equality holds if Rff and rff satisfy (4.110) and (4.111). 

Prom (4.111), it can be inferred that at most one of r ^ and r组 is non-zero. That means, 

in order to achieve max-min fairness in low SNR regime, there is at most one data stream 

which requires relaying. 
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In the proof, it can be concluded that in low SNR regime, max-min fairness is equivalent to 

symmetric fairness. For i = 1,2 in (4.120), R is equal to the rightmost side of the inequality. 

Therefore, when max-min fairness is achieved, Ri and i?2 are equal 

4.7 Joint Utility Maximization 

In this section, I propose an algorithm to extend the weighted sum rate maximization al-

gorithm in Section 4.4 to solve a more general joint util ity maximization problem. It turns 

out that this algorithm can be extended to a framework which can extend a certain class of 

weighted sum rate maximization algorithm into a joint util ity maximization algorithm of the 

same rate region. A brief description of this framework can be found in Appendix B and a 

detailed description can be found in [75]. 

Let R = (i?i, R2) and C be the achievable rate region of Scheme 1. The objective is 

to maximize a joint uti l i ty function [ / (R) subject to R € C. [ / (R) is assumed to satisfy 

the following properties: (i) strictly concave, (ii) twice continuously diiferentiable, and (iii) 

increasing with any component of R with the other components fixed. Since the feasible 

region C is compact and convex, and U is strictly concave, there exists a unique solution. 

One example of this problem is the following Harmonic Mean Fairness Problem. 

Example 4.1. (Harmonic-Mean Fairness in Cooperative Transmission) In this example, the 

objective is to achieve harmonic-mean fairness [68]. Let Ri be the end-to-end rate from Si to 

Di, for i = 1,2. The joint utility function is given by 

4 —去 -去， （4.123) 
n.1 1%2 

which is a strictly concave function of R. 

For two vectors x and y, I will write x ^ y if each component of x is larger than or equal 

to the corresponding component in y. With this notation, the third assumption of the utility 

function means that if R ! h then [ / (R i ) > I7(R2). 



where ；B is a closed rectangular box in of the form 

B 全 { R : ^ 6 [ 0 , 6 J , n 

that contains C. Such a bounding box B exists because the achievable rate region is bounded. 

Using the property that U(R) is monotonically increasing for every component of R, we can 

see that the reformulated version is in fact equivalent to the original version. 

Then, (B.6) is relaxed to form the partial Lagrangian: 

2 

L ( R , R ,M) = U{R) + (4.128) 
n = l 

where finS are non-negative Lagrange multipliers. Denote the vector (/i i, 112) by fi. The 

partial Lagrangian can be rearranged as 

L(R, R, fj,) = [ f / (R) - At • R ] + /X • R. (4.129) 

Define the partial dual function g(/x) by 

The dual problem is 

q{(j,) = max L(R, R, fj,). (4.130) 
Rec.ReB 

ming(^) (4.131) 
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4.7,1 Dual Decomposition 

The dual problem is decomposed into two subproblems. The key of this decomposition is the 

introduction of an auxiliary rate vector R = (Ri, R2) and reformulate the problem into: 

max/7(R) (4.124) 
R€B 

subject to 

R h R (4.125) 

R g C (4.126) 

(4.127) \
J
 

2
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with the minimum taken over all nonnegative Computation of the partial dual function 

amounts to solving two independent optimization subproblems, 

qifi) = max ( U{R) - / i • r ) + max fjt. R. (4.132) 
Res J Rec 

The first subproblem is the maximization of 

[/(R) - /X • R (4.133) 

over all R € Since U is strictly concave, a unique maximum exists. The optimal solution 

for a given /x is denoted by R*(/ i ) = ^^(m))- The variables 艮，s are optimized in a 

round robin manner by fixing other variables. Let ^ ( / x , t) be the value of Rn at iteration t. 

RnifJ'i i) is obtained by the following equation: 

Ri{fJ,,t) = arg max [/(兔,及2(Ai,切—A^i兔 (4.134) 
o<Ri<h 

M/J-^t) = arg max [/(及i(/x，力)，及2) — 及2 (4.135) 

The convergence of the above algorithm is shown below. 

Proposition 4.16. The Gauss-Seidel-type algorithm in (4-134)-(4-^35) converges to the op-

timal R. 

Proof. I apply the results in [33, Proposition 6], The objective function of the first subprob-

lem is differentiable and strictly convex. Hence, it is pseudoconvex.^ In addition, within the 

feasible set of R, the level sets of the objective function are compact. Thus, the objective 

function satisfies the assumption in [33, Proposition 6]‘ Finally, the feasible set is the Carte-

sian product of the compact sets [0,6J. Therefore, by [33, Proposition 6], the algorithm 

converges to the optimal solution. • 

By taking the partial derivative of (4.133), the Gauss-Seidel update of Rn is done by-

solving the following equation: 

dRn 
fĵ n. (4.136) 

^A differentiable function / is pseudoconvex if it satisfies the property V / (x ) (7 / — x) > 0 implies f { y ) > f { x ) . Note that if i 

function g is differentiable and convex, it is pseudoconvex. 
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Since U is twice continuously differentiable and strictly concave, the left hand side of (4.136) 

is a non-increasing and continuous function of Rn- Hence, it can be efficiently solved by 

bisection method. However, the solution of (4.136) may not be within the interval [0, bn] and 

we need to project the solution to this interval If the left hand side of (4.136) is negative 

for both ^ = 0 and Rn = bn, the solution of (4.136) is negative and the optimal Rn is 0. 

Similarly, if the left hand side of (4.136) is positive for both ^ = 0 and Rn = bn, the optimal 

良 is bn. 

If the joint uti l i ty function can be expressed as 

2 

响 = (4.137) 

n=l 

this subproblem can be solved in a simpler way. By taking the gradient of the objective func-

tion of this subproblem, R*( / i ) can be obtained by solving the following system of equations: 

U n W = fĵ n. n = l , 2 . (4.138) 

Hence, we can solve for each Rn separately without the need of Gauss-Seidel iterations. In 

addition, Un is concave and continuously differentiable for all n, then U'̂  is a monotonic 

decreasing and continuous function and thus each Rn can be solved by much faster numerical 

techniques such as the bisection method. 

The second subproblem is the maximization of /x • R over R G C. This is the weighted 

sum rate maximization problem. Let R*(/Lt) = ( i ? 冗 / u ) ， b e the optimal solution for a 

given fjL. It is well defined for all fx y 0. I t is because the weighted sum rate maximization 

problem has unique optimal solution. 

4.7.2 The Iterative Numerical Algorithm 

The proposed algorithm is a nonlinear Gauss-Seidel algorithm that maximizes the joint utility 

function by adjusting the dual variable /Lt in a round-robin fashion. The algorithm computes 



CHAPTER 4. ACHIEVABLE RATES IN COOPERATIVE ORTHOGONAL-DIVISION CHANNEL 61 

recursively a sequence of dual variables fjJ^t), ^ > 1, by 

Ail (力+ 1) = arg〒>ip(6Ai2 ⑴） （4.139) 

+ 1) = argming(/i i(t + 1 ) ,0 (4.140) 

In each iteration, one dual variable is optimized, say /i„，of /x，while the other one is held 

fixed. Then, fin is replaced by the new value and continue with the other dual variable aas—n. 

By construction, the value of the partial dual function g(/i) decreases as we run the 

algorithm. However, it does not imply that the value of the sum of util ity functions is 

increasing. Now, define a new sequence of rate vector {RtomW} recursively by Umax⑴= 

R*( / / ( l ) ) , and for t > 1, let Rmax(i) be 

if > U { R 狐 [ t — 1)) 
(4.141) 

I W 力 - 1) if 寧 ( 幽 ) ） < [/(Rmax(t - 1)). 

In words, /7"(Rmax(亡))records the largest util ity value up to iteration 1 

The main result in this section is 

Theorem 4.17. The argmin in (4.139)-(4.140) exists and is finite. The sequence of rate 

vectors, {FLmax(i)}j converges, and the sequence of utility values, {C/(Rmax(i))}； converges to 

the optimal value that maximizes [ / (R) over all R G C. 

In order to prove Theorem 4.17, the following properties about the partial dual function 

are needed. 

Proposition 4.18. g(/x) is convex, continuously differentiable and 

dqifJ') 
djJLn 

= - K W + K W - (4.142) 

Proof. The fact that g(^) is convex follows from a basic result in convex function theory that 

the point-wise maximum of affine functions is convex [11，Section 3.2.3]. The property that 

g()Li) is differentiable and that the partial derivative is given as in (4.142) are consequences of 
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Danskin's theorem. By appealing to Berge's maximal theorem, I can show that both 

and Rnifji) are continuous. Hence — + is continuous, implying that g(/i) is 

continuously differentiable. • 

In the following proposition, and R*(/x) are investigated as functions of a sin-

gle component, keeping the other components fixed, /tx—„ represents the vector ju without 

the component fin, and write = R*(/Li„, and R*(/x) = R*(/jrn’/tx—„) in order to 

emphasize that fin is the variable, while fx一几 is fixed-

Proposition 4.19. For any n = 1,2； given any fixed i?* (/x ,̂ is an increasing 

function of fi^, and Rnil^n-, M-n) ^^ ^ decreasing function of fin-

Proof. Suppose to the contrary that is not increasing. I can then find a J > 0 

such that R*Jjin + < for some value of Define the vector 

+ (4.143) 

We have 

/X' • R*(/x') = (Mn + + X ] (4-144) 

+紐：⑷‘ (4.145) 

By definition of R*(/i.), the first term above is less than or equal to jjl • The second 

term is strictly less than 5R^{/jl) by our hypothesis. Hence, 

• < M • ⑷ + S i r j j j ) (4.146) 

= ' R * { f j , ) . (4.147) 

This contradicts that • R is maximized at R = Ft* (/!'). This proves the first part of the 

proposition. 

For the second part, suppose to the contrary that is not a decreasing function 

of fin- We can then find a 5 > 0 such that R^il^n + t^-n) > R^ipn, fĴ —n) for some value 

of /in. 
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Similar to the first part of the proposition, we have 

U{R*{fj,')) — ijl' . (4.148) 

= — M _ — SKOjZ). (4.149) 

By definition of R*(jLt), 

U(R*(/i')) - fi • R*(/j,') < l/(R*(pt)) - fjL • IC(fi). (4.150) 

Combining with our hypothesis that 龟(At') > we obtain 

(4.151) 

< C/(R*(/t/)) — / i • - (4.152) 

= - • R*(/ix). (4.153) 

This contradicts that U (R* (//')) — / i ' • II* (fjb') is the maximal value of [ / (R) — fj,' K over all 

ReC. • 

By the last two propositions, the partial derivative of q((JLn, f^-n) with respective to Hn is 

an increasing function. The search for the arg min in (4.139)-(4.140) can be done by bisection 

search for instance. 

Proposition 4.20. Suppose that {/x(i)} is a sequence of dual variables generated by the 

proposed algorithm in (4.139)-(4.140). Then {//(^)} is contained in a hounded set. 

Proof. By construction, the values of the partial dual function {q{fJ'(t))} is a decreasing 

sequence. It suffices to show that there is a bounded set A € E ^ so that A implies that 

？W > g(M(i)). 

Let 1 be the iV-dimensional all-one vector, and e be a positive real number, so that el E C. 

For any p 匕 0, the optimal value of the first subproblem is the maximum of U(R) — /x • R 

taken over R 6 In particular, it is bounded from below by [ / (el) — /x ‘ (el), i.e., 

max([/(R) - /X . R) > U{el) - e/x • 1. (4.154) 
rgs 
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For the second subproblem, I use the property that the optimal value is a homogeneous 

function of f i of degree 1，i.e., for any A > 0, we have 

max(A/Li) • R = A max /x • R. (4.155) 
R-GC R-SC 

Let Hi be the simplex 
N 

H i ^ ^ f i h O : = (4.156) 
n = l 

Consider maxR^c / i • R as a function of f i with / i restricted to Hi . Since H i is a compact 

set and the optimal value maxR.gc jti • R is a continuous function of /x (by Berge's maximum 

theorem), we can find a point in H i such that the minimum is attained. Let the minimum 

value be denoted by m, 

m = min maxu ‘ R. (4.157) 
MGiJi RGC \ ‘ 

For each /x ^ 0, /x ^ 0, by the property that maxR, /x • R is homogeneous, we obtain 

mag fjL H > ( y ] (4.158) 

I t follows that 

q{fi) > [ [ /(el) - ejU • 1] + (m • l ) m (4.159) 

=U{el) + (/X . 1) [ — e + m]. (4.160) 

Note that m is a positive constant. (It is zero only if all points in C have some component 

identically zero. This degenerate case is not of practical interest.) By further decreasing e, 

we can pick a sufficiently small e such that 0 < —e 4- m. Then, the value within the square 

bracket in (4.160) is positive. When • 1 is sufficiently large, q(/Li) is strictly larger than 

g(fi(l)). Therefore, by picking a sufficiently large constant A, we have q{p) > g(/x(l)) for all 

{JB'L> X, Now, I consider 
N 

A= : < A}. (4.161) 
n = l 

Then A has the desired property that g(x) > q{fx{l)) for all x g 儿 • 

Now, the main theorem can be proved. 
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Proof of Theorem 4-17. By Prop. 4.20, the minimum value in each iteration of the Gauss-

Seidel algorithm is taken in a compact set. Since the minimum value of a continuous function 

in a compact domain is indeed attained by a point in the domain, the arg min in (4.139)-

(4.140) exists. By Prop. 4.20 again, it is finite. 

For the convergence, I apply the following result from [33]: 

(Convergence of Gauss-Seidel Algorithm) Suppose that A" G is a non-empty closed and 

convex set, which is a Cartesian product YlZ^i 不 with Xi € E. Suppose that / ( rc i , . . . 

is a real-valued function such that (a) it is continuously differentiable and convex on X and 

(b) the set { x G A" : / ( x ) < / (xq) } is compact for any xq G then the sequence generated 

by the Gauss-Seidel algorithm 

Xn(t + 1) = arg min f { x i { t + 1) , . . . , Xn-i{t + 1), 

“+1(力),...”7；4力)） （4.162) 

has limit points and each limit point minimizes f . 

We can check that the conditions (a) and (b) are satisfied using Prop. 4.18 and 4.20. By 

the above convergence result, I conclude that limf_>oo is the minimum value, say v* of 

the dual problem. By the standard duality theory in convex analysis, [/(R*(/i(£))) 

is the maximum value, which equals v*, of the primal problem. The sequence f/(Rmax⑴）is 

monotonically increasing, approaching the maximum value v*, 

l im q{fjL{t)) =v*= lim l7(Rmax⑷). (4.163) 
t-4-oo f—>oo 

Since U is strictly concave, v* is achieved by a unique point in C. Let this maximizer be 

denoted by R*, i.e., U{IC) = v*. I will show that the sequence {Umax(力)} converges to R* 

by contradiction. 

Let 5e(R*) be the sphere with center R* and radius e. If {RmaxW} does not converge 

to R*, then there exists an e > 0 such that ||Rmax(^) — R*||2 > e for infinitely many t. Let 

< < < • • • be an increasing sequence of integers such that ||Rmax(亡 fc) ~R*||2 > e, for all 

k. Since the sequence {Rmax(亡a；)} is contained in a compact set (J, it contains a subsequence 

converging to a limit, say Rq. As (/(Umax(亡fc)) f * as A; oo, by the continuity of U, we 
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have U(Rq) = v*. Since the maximum is achieved by a unique point, i t follows that Rq = R*. 

However, the metric d(x, R*) defined as ||x — R*||2 is a continuous function of x. I t follows 

that IIRq — R*||2 > €. This is a contradiction and completes the proof of the convergence of 

{Rmax(i)}. • 

4.7.3 Numerical Example 

In this section, the harmonic mean fairness problem is used to illustrate the idea of the joint 

ut i l i ty maximization algorithm. 
1 1 〜 ~ 

By equating the derivative of — 素 一 吉 一 / ^ i / ^ i — "'2丑2 to zero and then projecting the 

solution to the closed interval [0,5^1, we have the following optimal choice function R*, 

J = min . (4.164) 

Here, 61 and 62 are chosen to be i?!(l，0) and i?g(0，l) respectively. By Proposition 4.3, 

Rni/J-n^ A^-n) well-defined and can be computed by algorithm in Table 4.1. Hence, in each 

iteration of the Gauss-Seidel algorithm, we solve for fin in the following equation. 

K ( " n， "— J = < ( " n , A ^ — J . (4.165) 

The power gain of each link is exponentially and independently distributed wi th mean 

1. The transmission power of each source node is 10 and the noise power at the receiving 

nodes is assumed to be 1. The results for a sample run are il lustrated in Figure 4.8 and 4.9. 

The sum of ut i l i ty functions at each iteration is plotted in Figure 4.8. Unlike the previous 

example, U(Il*{t)) is monotonically increasing. Prom Figure 4.9，we observe that the rates 

of the node pairs converge wi th in 5 iterations. 

4.8 Conclusion 

Cooperation between source nodes are exploited for interference Gaussian channel in this 

chapter. I study two cooperative transmission schemes where the source nodes occupy dis-

joint bandwidth, and thus removing all interference. Simulation results show that in some 
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Figure 4.8: f/(R*(t)), sum of utility functions as a function of iteration in cooperative transmission 
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3.8 

3.6 
userl 
user2 

5 10 15 20 25 30 35 40 
Iteration 

Figure 4.9: The rate of each user, R*(/it⑴）in cooperative transmission case 
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channel realizations, the interference channel capacity region is a subset of the achievable 

rate regions of the two proposed schemes. Furthermore, one of the cooperative transmission 

schemes can achieve twice the order of diversity than a simplified Han-Koybayashi scheme. 

I devise an efficient iterative algorithm that computes the maximum weighted sum rate. 

Furthermore, the achievable rate region in the low SNR regime is characterized and the 

aforementioned weighted sum rate maximization problem becomes much simpler. The pro-

posed algorithm can be applied to achieve max-min fairness. Finally, I demonstrate how to 

extend the proposed algorithm to solve a more general joint uti l i ty maximization problem. 



Chapter 5 

for 

In this chapter, two pricing games for two cooperative transmission schemes are devised. The 

objective is to minimize the total transmission power. Based on the game formulations, the 

adaptive and distributed implementations for the two cooperative transmission schemes are 

derived. 

In the first game, the outgoing links of a node are considered to be a degraded Gaussian 

broadcast channel, where all Pareto-optimal rates can be achieved by superposition coding, 

which is the extension of Scheme 1 described in Chapter 4. In [9], i t is shown that the 

achievable rate region by allocating orthogonal sub-channels to the outgoing links is enclosed 

by the capacity region of a broadcast channel. However, implementing superposition codes 

is more complex. A natural question is: if the source nodes divide their own channels into 

orthogonal sub-channels for their outgoing links instead of multiplexing the data streams 

by superposition codes, how much extra power do we need to trade for the reduction of 

complexity? This is the motivation of the second game where the nodes perform time division 

multiplex (TDM) over their outgoing links. 

Wi th the best response update algorithms for the two proposed games, we are able to 

compare the performance of the two corresponding cooperative transmission schemes through 

70 
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simulations. Both cooperative transmission schemes are able to achieve full order of spatial 

diversity. Also, we observe the rapid convergence of both games. 

This chapter is organized as follows. The system model is provided in Section 6.1. In 

Section 5.2, we describe the cooperative transmission scheme based on superposition codes. 

The TDM-based cooperative transmission scheme is detailed in Section 5.3. In Section 5.4, 

we compare the performance of our proposed algorithms via simulations. 

Part of the contents in this chapter can also be found in [73, 74' 

5.1 System Model 

Consider a wireless network with M distinct node pairs. The source and the destination 

nodes of the 2-th node pair are denoted by Si and A respectively. The link from Ŝ^ to Sj 

and the link from S�to Dj are denoted by Sj) and {i, Dj) respectively. 

Let Z^^Sj and ZI^DJ be the power gains of (i, Sj) and (i, Dj) respectively. Notice that since 

the power gains are real numbers, the probability that two links have equal power gains 

is zero. The nodes know the power gains of their incoming and outgoing links only. The 

noise of the links is assumed to be independent additive white Gaussian noise (AWGN) with 

one-sided power spectral density NQ. 

Every source node transmits over its assigned channel which is orthogonal to other chan-

nels. For simplicity, each channel is assumed to have an equal bandwidth W } Without loss 

of generality, i t is assumed that channel i is assigned to 

Apart from their own messages, the source nodes can overhear and relay others' messages 

from other channels. Each source node SI divides its own data stream into M sub-streams. 

The first one is transmitted directly to A - The remaining M — 1 sub-streams are forwarded 

by other source nodes. These M — 1 sub-streams are decoded, buffered, re-encoded and 

then transmitted by the relaying source nodes. Hence, besides its own M sub-streams of 

data, each source node, in general, forwards M — 1 data sub-streams originated from other 

nodes. In this case, each channel is regarded as a degraded Gaussian broadcast channel with 
� T h e results m this chapter can be easily generalized to the uneven bandwidth case 
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2M — 1 receivers. As mentioned in Section 2.1, all Pareto optimal rates can be achieved 

by superposition codes on the sender side and successive interference cancelation on the 

receiver side. Alternatively, we may trade the throughput for simplicity in implementation 

by multiplexing the outgoing links with TDM. Details and comparisons of these two methods 

are provided in succeeding sections. In both cases, the destination nodes must listen to all 

channels to recover their messages. 

Let Fj be the transmission power of Ŝ .̂ Our objective is to minimize the total transmission 

power, which is the sum of i ^ s of both cooperative transmission schemes. 

5.2 Superposition Code Based Scheme 

The first scheme is the superposition code based scheme which is a natural extension of the 

two-user scheme described in Chapter 4. 

5.2.1 Minimum Sum Transmit Power Problem 

Let Rî Sj and be the rates? of (i, Sj) and (z, D j ) respectively. The rate vector in channel 

z is denoted as ( I l f ^ R f ^ ) ) where R , ⑶ = ( i ^ ^ . s ” î ,̂<S2’ " . ’ ̂ A - ” ^ A + i , . . . ’ 双,《?对）and 

R: ) =• (JII’DI, ^,£>2! . . . ， ) • 

Let Ci(Pj) be the capacity region of channel i, which means ( R产)，R产)）G Let 

= be the transmit signal-to-noise ratio (SNR) of S .̂ The minimum required is 

given by this lemma, which is derived by induction from the degraded Gaussian broadcast 

channel capacity region. 

Lemma 5.1. Let V = {Si^ S2,…�5Vfi，. •., SMI Di, D2, , . , , DM}- For each source node 

S” we define a function tt! : {1,2, . . . , 2M — 1} -4 V such that 在’7r“i) < 在’7̂ (2) < < 

Given the minimum required is 

2M-1 1 /2M-1 \ 
Y ^ y exp 2 〕 风 , 冗 [ e x p i ^ i M j ) ) — 1] (5-1) 

\k=j+l / 

^In fact, the word "rates" means "spectral efficiency", which has the unit nats /s /Hz This terminology is used for convenience 

of presentation in this chapter 
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Let Ri be the minimum required rate for the node pair Si and Di. The rate constraint is 

M 

YL > Ri- (5.2) 
j=l’J•卢 

The minimum sum power problem, which is equivalent to the minimum sum transmit 

SNR problem below, is considered. 

Problem 5. 
M 

m i n V r i (5.3) 

subject to 

M 

Y . 茂 而 2 攻 ， i = (5.4) 
j= i ’ j卢 

jR4,Dj = i i ^ j (5.5) 

The final constraint is the flow conservation constraint at the relaying source node Si. 

By Lemma 5.1, Ti is strictly convex and continuous. Also, the constraint set is convex and 

compact. Thus, Problem 5.1 is a convex optimization problem [11] and the optimal solution 

exists. 

5.2.2 Pricing Game Formulation 

Let R i be (Ri,Di, R-P^) and R_ i = (Ri , R2, . . , ’ Ri—1, R j + i , . . . , Rm). Problem 5.1 can be 

solved by playing a best-reply potential game (see Chapter 2) with the potential function 

M 
$(R4,R2，’..，:RM) = —X^rV (5.6) 

i=l 

The main idea of solving Problem 5.1 as a best-reply potential game is that R^'s are optimized 

in a round robin manner. By removing the terms in (5.6) which are independent of R^ and 

substituting Rk,Di = Ri、Sk in F̂ t for k ^ i, we can optimize R j for fixed from the following 

problem. 
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Problem 5.2. 

M M ^ 

Y ^ exp + ^ ~ " " exp 
2M-1 

XI丑J而(fc) 
fc=7r广(£>0+1 

subject to 
M 

风 , A + > 

(5.7) 

(5.8) 

(5.9) 

where for j 

对广(A)-

E Z3,调 
exp 

2 M -

exp 而⑷）—1 

+ 
Dt 

exp 
2 M -

丑wfc) (5.10) 

In (5.7), the j - t h term of the second summation can be interpreted as the price Si needs 

to 'pay' to Sj for a relay rate R^、s, That is, Ŝ  'pays' an amount of K、] = K^^j exp {Ri^Sj) 

"virtual money" to Sj of relaying the message at the rate Rî Sj = In to A . I t is 

called virtual money because this pricing interpretation is only used to derive the distributed 

implementation. In the actual implementation described later, no forms of payments wil l 

be made. The last summation in (5.7) is independent of R^ and i t is introduced for the 

convenience of setting up the best-reply potential game. 

More specifically, consider the following game G = [P, {wJJ. The player set V is 

the set of source nodes, {6^1，…，SM)- The strategy set of S” which is denoted by TZ” is 

the feasible set of Rt given by (5.8) and (5.9) for i = 1 ,2 , . . . , M and the rate vector R^ is 

adjusted by S .̂ The uti l i ty function of the player Ŝ  is R_ j ) . The solution of Problem 

5.2, which maximizes the uti l i ty function u!，is the best response update of the player S .̂ I t 

is denoted by Since u^ is a strictly concave function of R^, the best response update 
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is unique. Thus, 

Bi(R—i) = arg max Ui(Ri, R_i) (5,11) 
RiGTZi 

is a well-defined function of R_i. Furtliermore, as tt̂  is a continuous function of R j and R „ i 

and the best response update is unique, by Maximum Theorem (see Section 2.3), Bi is a 

continuous function of 

Notice that for fixed R_j , R_i) is formed by deleting some of the terms in (5.3) 

which are independent of R^. Hence, a best response update by Si is a minimization of total 

transmit SNR by choosing R^ for fixed R_i. Thus, the optimal solution of Problem 5.1 is a 

pure strategy Nash Equilibrium. 

The following proposition shows how Problem 5.1 can be solved by playing the best-reply 

potential game. 

Proposition 5.2. Any admissible sequential best-reply path of the pricing game G converges 

to the unique pure strategy Nash Equilibrium. 

Proof. By Theorem 2.1 and [47, Theorem 2], this proposition is true if the strategy sets are 

compact, B i {K^ i ) is continuous and there is a unique pure strategy Nash Equilibrium. The 

strategy sets are obviously compact and as mentioned above, BiCR-i) is continuous. Thus, 

we only need to prove the existence and uniqueness of the pure strategy Nash Equilibrium. 

As mentioned above, the optimal solution of Problem 5.1 is a pure strategy Nash Equi-

librium of the game G. Now, we prove the uniqueness part. I t is stated in [88, Theorem 3) 

that in a potential game, if the strategy sets are compact and $ is continuously differentiable 

function in the interior of the strategy set and strictly concave in the strategy set, the Nash 

Equilibrium is unique.歪 satisfies all these conditions and hence the Nash Equilibrium, which 

is a pure strategy Nash Equilibrium and is the optimal solution of Problem 5.1, is unique. • 

By playing the game G, we can reach the optimal solution of Problem 5.1 at Nash Equilib-

rium. One way to play this game is outlined in Table 5.1. Proposition 5.2, in fact, guarantees 

that a large number of ways of playing the game G can converge to optimal solution of Prob-

lem 5.1. The only requirement is that the sequential best-reply update path is admissible. 
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Table 5.1： Pricing Game for Power Minimization in Superposition Code Based Scheme 

11 

I — 1 
while Nash Equilibrium has not been reached do 

for all J — I do 

if K^̂ j IS changed then 

Di notifies S^ the new value of IC二. 

end if 

end for 

Si maximizes by optimizing Rj with algorithm m Table 5 2 

1 f - « 4-1 

2 ^ 1 if « = M + 1 

end while 

Therefore, i t is very flexible to choose the way how the game is played. For example, if 

after the best response update of a player S” transmission power increases drastically, 

Sj does not need to wait for its iteration to perform the best response update to reduce its 

transmission power. The best choice of the flow of the game is beyond the scope of the thesis. 

In this chapter, only the flow specified in Table 5.1 is considered. 

5.2.3 Distributed Implementation 

Now, I describe how the source nodes play the game in a distributed manner. In this game, 

the source node Ŝ^ is responsible to allocate the rates of direct and relay paths and the 

corresponding destination node D^ is responsible to inform Si any changes of the pricing 

information K^^j's which cannot be detected by Si. 
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Firstly, we observe that the pricing information K ” can be expressed as follows. 

K.J = exp 
2 M -

丑Wfc) 
fc=7r7^(A)+l 

E 
fc=i 

/ ^ H A ) -

Z j 而(fc) 
exp 

k'=k+l 
•？’冗“的[exp i^jMk)) + 

(5.12) 

In superposition code, each frame header consists of the rate of each receiver so that the 

receivers know which codebook is adopted. Therefore, K^); can be computed by the rates of 

the corresponding links specified in the frame header. Therefore, D^ only needs to notify Ŝ  

the changes of K、:) and ZJ^B ,̂ 

The destination node D^ measures the received power of the preamble of the frames from 

Sj and then infers the power gain of the link ( j ’ A ) ’ which is Z讽.N e x t , by proving in a 

similar way as Lemma 5.1, i t can be showed that / c f f is the total transmitted SNR of the 

messages over the links ( j , where t t广 ( A ) + 1 < fc < 2 M — 1. Z^^DJ^恐 is in fact the 

received interference-to-noise ratio at D i after its successive interference cancelation. That 

is, after canceling the signals for the nodes 'irj{k), < k < 2M — 1，from the received 

signals from S” the total power of the remaining interference to DI is ZJ^D^KI'^J NQW. 

After the successive interference cancelation described above, D^ measures the power of 

the remaining signal and we let this signal power be A j . Di can compute K f ) by 

K?}= K. 1
 

I
 (5.13) 

By the above observations, the source nodes can allocate the rates adaptively when the 

power gains of some links or some of the rate requirements, R /s , change. As mentioned 

above, Ŝ^ only needs to concern about whether K f j = K^^ + or the power gains of 

its outgoing links have changed. When changes, D^ sends a control message about the 

new value of K g to Ŝ  before the best response update. I f the power gain of a link changes, 

the corresponding receiving node notifies the sending node about the new value by a control 

channel message. When the power gains or the rate requirements change, the nodes perform 
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their best response update based on the new pricing and channel state information. In this 

case, we have a new admissible best-reply path and by Proposition 5.2, we can reach the new 

Nash Equilibrium. In Section 5.4, it will be shown that the convergence rate to the Nash 

Equilibrium is high enough so that the nodes can adapt to the changes of the power gains 

and rate requirements in a distributive manner. 

On the other hand, in a centralized implementation, a centralized node has to be in-

formed when the power gains or rate requirements change. Then, it performs a centralized 

optimization for Problem 5.1 and notifies every source node the optimal R^. If the channel 

conditions fluctuate frequently, the communication overhead will be much higher. 

5.2.4 Best Response Update 

Problem 5,2 is solved by considering its dual and solve it with the algorithm in Table 5.2. 

Relax (5.8) to form the following partial Lagrangian. 

/ M \ 
A) = R_0 - A + J ] - (5.14) 

7=1, 

where A > 0. The corresponding partial dual function is 

g , ( 入 m m R f )，A) 

and the dual problem is 

Problem 5.3. maxA>o QiW-

gi(X) is computed by optimizing JR ĵ)、and R i ^ S j i n a round-robin way. 

is optimized by equating the partial derivative of Li with respect to it to 

projecting it to the interval [0, Ri]. Thus, the optimal RI、D：̂  and R^̂ Sj are 

(5.15) 

⑶ i ? ^ ’ 认 , R : 二》乂 

Each variable 

zero and then 

(5.16) 

(5.17) 
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where 问，=min{max{.T, 0}, and 

T l f ( R f ) = [ 
1 

Z., 

+ 
及 ’ A 

exp 

hMj) 

2M-

exp 
2 M -

Y1 ^Mk) 
\fc=j+l , fc 办 � 1 ( A ) ‘ 

exp ( i?^ ’ ” l⑴)-1 

YJ 队 Mk) 

/ 2M 
exp I 

(5.18) 

\ 

fe= ^iMk) 
Ri,Tr{k') 

+ exp 
2 M -

调 

\fc=7r「i(Sj)+l 

exp (RzMk)) — 1 

(5.19) 

The following proposition shows that the inner while-loop of the algorithm in Table 5.2 

indeed computes g“A) for a given A. 

Proposition 5.3. Given the value of A. The inner while-loop of the algorithm in Table 5.2 

converges to qi{X). 

Proof. This algorithm is a Gauss-Seidel algorithm. By p3，Proposition 6], i t minimizes the 

partial Lagrangian ！/乂/?^’^^, r P ) ’ A) for a fixed A if L^ is pseudoconvex^ on the feasible set 

of and the corresponding level sets are compact. 

By Lemma 5.1, T^ is a differentiable and strictly convex function of (i?^’25“RP)). There-

fore, A) is a pseudoconvex function of (i?i,_D。R^)). Also, since A) 

is differentiable, it is lower semicontinuous. By [84, Theorem 7.1], the level sets of 入） 

are closed. Since we have a bounded feasible set, the level sets are bounded. Therefore, the 

level sets are compact and result follows. • 

We move on to solve Problem 5.3. Since the partial Lagrangian A) is a 

strictly convex function of R^, the optimal R^jj。denoted by and the optimal 

denoted by are unique for any fixed A. By the Envelope Theorem [28], g“A) is 

^A differentiable function f if it satisfies the property V/(a;)(y — x) > 0 implies f(y) > f(x) Note that if a function g js 

differentiable and convex, 2t is pseudoconvex 
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Table 5.2: Best Response Update of Si 

while A has not converged do 

入 (入msn + A n i a x ) / 2 

Initialize RI,D-, and rJ'^^ with feasible values 

while RI�D�or R p ) has not converged do 

In 

for all J I and 1 < J < M do 

end for 

end while 

if 

-̂max 卜 X 
else 

Amin 入 

end if 
end while 

In 

Ks, > Rt then 

differentiable and 

Ix 

M 
(5.20) 

Due to the concavity of i t can be maximized by solving 蟹=0. Let A* be the optimal 

A. The following proposition implies that A* can be obtained by bisection method, which is 

the outer loop of the algorithm in Table 5.2. 

Proposition 5.4. ^ is a decreasing function of X and Amm < A* < Amax, where 

Xrmn = mil l | ^ ^ + i (5.21) 

A 丽 = m a x )) exp(i?,), X j f (i?,, R^^}^) exp ( i y } ’ (5.22) 

and 良P) and are nP) and with all the components equal to R^ respectively. 
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Proof. The first part of the proposition is the direct consequence of the concavity of ^^(A). 

Now, we prove the second part. I t can be verified that if A = Amm> ̂ ：̂，认 and all i?:而 are 

equal to zero. If A = Amax, Fllj：)̂  and all R:而 are equal to Fti, Hence, Amin < A* < 入max. • 

5.2.5 Algorithm for Low Rate Regime 

At the low rate regime, i.e. all iVs are sufficiently small, we can minimize the total trans-

mission power by the following algorithm. To begin with, the total transmission power can 

be approximated as below in this regime. 

Proposition 5.5. If all Ri，s are sufficiently small, can be approximated as 

^ ^ ^ / 1 1 1 、 D ^ 1 o 

Proof. See Appendix C.3. 

In this case, the sum power minimization problem becomes 

H] 
Af M 1 MM J 

7 = 1 . 7 ^ 1=1 .7=1 

(5.23) 

• 

(5.24) 

subject to 
M 

(5.25) 

(5.26) 

Firstly, it is noted that at the optimal point, equality holds for (5.25). Therefore, we can 

replace R^̂ d, by i?, - Z)二i，)卢 Rz�s] and replace (5.25) by 

M 

仗而 S 私. (5.27) 

In addition, the objective function becomes 
M M 

mm E E + (5.28) 
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Now, the optimization problem can be divided into M independent subproblems. Each 

subproblem corresponds to the rate allocation of a transmitting node. The subproblem for 

5； is 

Problem 5.4. 
M 

min 7 ^ ^ , ^ + 
及 , X)x 

subject to 
M 

队、S] < Rz-

If 

1 
< + 7 � 7 . 7 ， j 二 1，2’…，M’ 计 i� 

= 0 for a l l 、 . i which means RI�D�= R. Otherwise, î ，^?】=R if 

1 
J = arg mm 

•？ A 
+ 

(5,29) 

(5.30) 

(5.31) 

(5.32) 

Hence, at low rate regime, each transmitting node can independently perform the above rate 

allocation. 

5.3 TDM-Based Scheme 

Although the transmitting nodes can have a larger capacity region by using superposition 

codes over the outgoing links, i t requires more complicated coding and modulation techniques 

[100, Discussion 6.1]. In the cooperative transmission scheme in this section, the nodes time-

share their outgoing links. Apart from the rates of the outgoing links, we need to optimize 

the time allocated to each link. 

5.3.1 Minimum Sum Transmit Power Problem 

Consider the transmission of the outgoing links of Si which time-share the same channel. The 

whole transmission time of Ŝ  is divided into time frames of fixed durations. The duration 
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of each time frame is normalized to be one unit which comprises of 2M - 1 time slots with 

variable durations. Each time slot corresponds to the transmission of one outgoing link. Let 

力 b e the duration for the time slot for transmission from to Sj and iii，jp_̂  be the duration 

for the time slot for transmission from Si to Dj . Therefore, t城 and ÛDJ satisfy the following 

constraints. 
M M 

= 1 , 2 , M. (5.33) 

In each time frame, let x̂ ŝ̂  be the amount of data (in nats/Hz) transmitted from Ŝ  to 

Sj and let X^^D^ be the amount of data transmitted from Si to D ” The rate requirement 

becomes 
M 

(5.34) X. 

The transmitted SNR from Si to Sj and the one from St 

'^hS, r, 

r 讽 = 

exp 

exp {工…J 

, . . , M . 

to D j are 

and 

respectively. Thus, the transmitted SNR of Si is given by 

M k 
I f ) = E ^ exp 

kSj J 
1 p

.
内
 

k
 i
n
T
 

+
 

exp 丨D:> 
U 

(5.35) 

(5.36) 

(5.37) 

The minimum sum power problem is equivalent to the following optimization problem. 

Problem 5.5. 
M 

min y r f ) (5.38) 



CHAPTER 5. PRICING GAME FOR DISTRIBUTED COOPERATIVE TRANSMISSION 84 

subject to 

M M 

M 

= 1 , 2 , . . . , M (5.39) 

i = l,2,...,M (5.40) 

(5.41) 

to A through Sj. 

convex. Therefore, 

= ^j.A) J. 

(5.41) is the flow conservation constraint for relaying messages from Si 

The objective function is a strictly convex function and the feasible set is 

it is also a convex optimization problem. 

5.3.2 Pricing Interpretation for Distributed Implementation 

Let X^ = (a^ i ’A ’A ’ "? i ’A ’S2，..-，A ’ sw)，=’亡 ，it’S2，，. •，亡vSm ) and Y^ = 

Also, we let = (Y i , Y2 , . . . , Y ^ ^ - i , . . . , Ym)- Similar to the superposition code 

based scheme, Problem 5.5 can be solved by playing a best-reply potential game with the 

potential function 
M 

(r) (5.42) 

In this case, Problem 5.5 can be solved by considering a best-reply potential game, in which 

Y?s are optimized in a round-robin manner. By removing the terms independent of Y玄 in 

(5.37) and substituting x^^d^ =工 1而 in (5.37), for fixed Y_。Y^ can be optimized by solving 

the following problem. 

Problem 5.6. 

t A 
么，Dt 

M 

exp 
t. 

- exp 
/ 

a；,. 

么 A 

exp (5.43) 
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subject to 
M M 

85 

卢 j=l 
M 

0 < e < t 碼 入 D] < 1’ 

0 < 冗 I 而 ， 讽 < Rz, 

J = h 

3 = • 

M 

,，M 

(5.44) 

(5.45) 

(5.46) 

(5.47) 

where e in (5.46) is a sufficiently small positive constant. 

Section 5.2.2. That is, the sum of Problem 5.6 can be interpreted in a similar way as in 

the first two terms is the total transmitted SNR of and the last term can be regarded 

as the total amount of virtual money for relaying the message. This is the motivation to 

formulate a similar game as in Section 5.2.2. 

Consider the game Gt = [Pti {兄？ " " ) }， T h e player set Vt is the set of source nodes 

{SI, 5'2,..., SM}- The strategy set of S” which is denoted by T f̂")，is the feasible set of Y i , 

which is given by (5.44)-(5.47). The uti l i ty function of Sz is The best response 

update of Si is 

召 0 = m狀 (5.48) 
Y 础 厂 ） 

By following the derivations in Proposition 5.2, it can be shown that if a sequential best-

reply path is admissible, the game converges to the Nash Equilibrium, which is exactly the 

optimal solution of Problem 5.5. But in this thesis, I only focus on the case that the game is 

played as outlined in Table 5.3. 

Instead of estimating and computing the values of lU、” in this game, Si only needs to 

know the values of t讽 and The values of ZĴ D̂  can be informed by D^ whenever the 

value of Zĵ Dr changes. Si can know the values of t沾^ from the headers of the MAC layer 

frames from Sj. In many network standards, the header of a MAC layer frame contains the 

identifier of the intended receiver, such as the MAC address of the network interface card. 

Therefore, Si can measure t讽 by counting the number of MAC layer frames from Sj to D^ 
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Table 5 3 Pricing Game for Power Minimization in TDM-Based Scheme 

1 I f - 1 
2 while Nash Equilibrium has not been reached do 

3 Si maximizes wf^)(Yi，Y_i) by optimizing Yi 

4 2 <-z + l 

5 I <-1 if t = M + l 

6 end while 

in one T D M time frame W i t h this information, the source nodes can play the game with 

the flow specified in Table 5 3 

Notice that (5 46) and (5 47) are not optional constraints They ensure the compactness of 

the strategy set ，which is one of the sufficient conditions for the convergence of the best 

response updates in Proposition 5 2 I t is noted that the introduction of e slightly reduces 

the feasible set Suppose e is replaced by 0 The objective function is no longer continuous 

at the point t̂ Ŝj = 工 = 0 for some j The best response update ⑴ i s not a 

continuous function so i t is invalid to imply that the best response update is a continuous 

function, which is one of the sufficient conditions in Proposition 5 2 But in practice, i t is 

difficult to make a time slot arbitrari ly small Even if i t is possible to have such a small time 

slot, when 工！’左】is positive, the transmission power is very high ；̂怎’̂̂) must be reduced to 0 

Thus, if t成 ( r e s p ÛDJ ) is equal to e, there wi l l be no transmission over the l ink (z, Sj) (resp 

(z, D j ) ) After introducing e, the problem of the discontinuity of the best response update is 

alleviated and a similar result as m Proposition 5 2 can be proved 

5.3.3 Best Response Update 

Problem 5 6 is solved by optimizing X^ and in round robin manner I t can be proved in a 

similar way as Proposition 5 3 that this round robin optimization indeed solves Problem 5 6 
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Rate Allocation 

For fixed T^, the rate allocation problem is 

Problem 5.7. 

max 

subject to 

exp 而,A 
M t / 3k 

exp 丨 

V Ksj 

M 
A

 y
 

>
 I

 

:1’J卢 乙 3�IK 
A 

M 

The following partial Lagrangian is formed by relaxing (5.50). 

人 A / 

(5.49) 

(5.50) 

L f ) ( X “ ） = 
t 

A
 w
r

〕
 

M
X
 +

 

exp 

exp 

- 1 
M 

+ E A 
^hS, 

—A 

exp 

M 

�ks, 

工…I + 工威—队 

The corresponding partial dual function is 

g f ) ( A J = min z f ) ( X ” \ ) 

(5.51) 

(5.52) 

and the dual problem is 

Problem 5.8. maxA,>o ？l̂ (̂Ai). 

To compute the partial dual function, the partial derivatives of L^^^ with respect to each 

component of X^ are set to zero as follows. 

diJf� 1 f X^n 
Zi，LU 

exp ’ 
\ KDi 

dL?) 1 。 ( 工 城 exp 
V Ks,. 

A, = 0 

+ 
Dt 

exp 
U 

\ = 0 
JX 

(5.53) 

(5.54) 

QliX) 
Clearly, the optimal :jc讽 is [力!，认 In (A iZ j ’£ j ] : . q^^ is an increasing and continuous 

function of Xî Sj so we can solve (5.54) by bisection method over the interval [0, f^]. The 
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Table 5.4: Rate Allocation Algorithm of Si 

while At has not converged do 

A无 f - + 
while Xi has not converged do 

for all j ^ i and 1 < j < M do 
Solve for Xi’s] in (5.54) by bisection search 

end for 

end while 

if > R then 

else 
A 严 — A ^ 

end if 

end while 

solution of (5.54) can be outside this interval. Thus, before the bisection search, Xî Sj ~ 0 
⑷ ‘ 

should be substituted in (5.54) to check if 如、 i s non-negative. I f it is non-negative, the 

optimal Xî Sj must be 0. Similarly, i t can be determined if the optimal Xi，Sj is equal to Hi. 

The next question is how to solve the dual problem. Let i^ i ) and ⑷ be the 

optimal Xî D̂  and Xî Sj for a given 入 respectively. Since 1/严）is a strictly convex function 

of X ” and x*^^ are well-defined functions of By the Envelope Theorem, q^^ is 

differentiable and 

t = / ? ^ - < ， 认 （ 入 ） — Y ^ (5.55) 

By the concavity of i t can be maximized by solving = 0 and the solution is 
. ( X ) ' 

denoted by A*. Prom (5.53) and (5.54), is a decreasing and continuous function of A .̂ 
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If 

A,=入产爪）=min 
Z, 
两 e x p exp + 
，A 

V Mt 讽 y ‘ z吨 \ ̂ Ks, J 
exp R. 

Mt 

(5.56) 

from (5.53) and ( 5 . 5 4 ) ,工入 0 and (Aj) 

and A* > ；yj隱)• On the other hand, if 

upper bounded by 告 so is non-negative 

.(ma.) . / 1 f 1 f ^ \ , 1 , 仗 、 A; ' = mm < - " " exp - ， - e x p - + - ~ exp -
LA, A WD�J A�s] \\sj 4?’ A \KDJ 

_ .1 . _ . _ — — iPO 

(5.57) 

at least one of and (A!) is equal to R^. Thus, ^ ^ ^ is non-positive and A* < 狀) 

A (mm) A (max) The Also, it implies that we can perform bisection search over the interval 

rate allocation algorithm is summarized in Table 5.4. The outer loop is the bisection search 

for the optimal Â  and the inner loop is the Gauss-Seidel update of X j . 

Scheduling 

For fixed X^, the scheduling problem is 

Problem 5.9. 

-E u. A 
0〈芒仰 1 fb f Z,�d3 

exp 
U 

M 

exp 
、KSj 

subject to 

M M 

3=1 

(5.58) 

(5.59) 

To find the optimal schedule, the following partial Lagrangian is formed by relaxing (5.44). 

M 
k D, exp 

t 

M 

+ 石 A 及 ’ 

exp 

M M 

而 + E kn, 
V7=l’j#i 3=1 

(5.60) 
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mm 

The corresponding partial dual function is 

and the corresponding dual problem is 

Problem 5.10. max抖^g厂)(叫). 

For a given f i ” is computed by solving the following equations. 

(5.61) 

Both dL 

< = 丄 

and ‘ — 

exp 

exp 

\ ksj , 

Kd, 

A 

Hp, 

exp 

exp 

、巧 ] 
V ksj J 

t 

(5.62) 

(5.63) 

g. …increasing and continuous functions of t̂ ^s, and t^n respectively. 

Thus, the optimal 力z，s"/s and t̂ D̂̂  's can be obtained by performing bisection search for the 

corresponding equations in the dosed interval of [e, 1]. 

For a given /x” let t * ^ ( f t j and 入l^i) be the optimal t̂ ŝ̂  and 亡！’/?】respectively. Since 

Li(乃 is a strictly convex function of t涵 and t̂ D̂̂  •> and are well-defined 

functions of /i^. By Envelope Theorem, 

dlJn 
1
 

\

/
 

s
/
^
 I
I
 

J
 

I
 

1
 

I

I
 

{CT) 

jjLi is optimized by solving ^ ^ = 0. In (5.62) and (5.63), and t* 

continuous functions of ji^. I f 

exp — 

(5.64) 

increasing and 

Hi = max f 、 1 
exp — (5.65) 

(T*) 
at least one of t;而 and t;’。〕is equal to 1 so is negative. On the other hand, if 

. r 1 - 2Mx,,s, 、 1 1 — 2胞讽 , 
lA = mm I z s ) 一 - exp { 2 M 

Zi�D, } 

(5.66) 

all and all 
,(T) 

I not greater than 击 so is positive. Thus, there exists a fi* such 

that — 0 and i t can be found by bisection method. The algorithm in Table 5.5 is 



CHAPTER 5. PRICING GAME FOR DISTRIBUTED COOPERATIVE TRANSMISSION 91 

Table 5.5: Scheduling Algorithm of Si 

while III has not converged do 

while Ti has not converged do 

for j = 1 to M do 

if i ^ j then 

Solve for tt̂ Sj in (5.62) by bisection search 

end if 

Solve for t̂ D̂j in (5.63) by bisection search 

end for 

end while 

> l t h e n 

else 

end if 

end while 

the scheduling algorithm. The outer loop is the bisection search of /i^ and the inner loop is 

the optimization of for a fixed ^^ 

5.4 Performance Evaluation 

The performance of our cooperative transmission schemes is evaluated through simulations. 

Their abilities to combat against fading, their implementation costs and their ability to adapt 

to power gain changes are compared in these simulations. 

In these simulations, i t is assumed that the distances between the nodes are one unit. 

The power gains of the links are exponentially distributed with mean 1 which is the Rayleigh 

fading case. The channel is assumed to change slowly that throughout the games, the power 

gains remain unchanged. This is not an overly stringent assumption because both games will 
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be shown to have high enough convergence rate in Section 5.4.2. For simplicity, Ri's are set 

to be the same. The algorithms for both cooperative transmission schemes are terminated 

when the total transmission power is improved by less than 10—4 units. In the TDM-based 

scheme, e is chosen to be 10"®. 

5.4.1 Outage Performance 

Outage probability is defined as the probability that for a given set of Ri,s, the minimum 

required normalized SNR is greater than a given normalized SNR. The outage probability of 

direct transmission is plotted so that we can investigate the order of diversity, which will be 

detailed below, of our schemes. The common required rates are chosen to be 1, 2 and 4. 

To compare the outage performance of the two cooperative transmission schemes with 

different number of nodes and different common rate requirements, the total transmitted 

SNR is normalized. Let R be the common required rate, i.e. Ri — R2 = . . . = Rm = FL The 

normalized total SNR IV is given by 
— spM p 

The denominator is the total transmitted SNR for no fading (i.e. a pure AWGN channel with 

power gain 1). Hence, F r can be regarded as the additional total SNR, in dB, to support 

the same rate requirement R in the presence of fading. 

Wi th this normalized SNR, the diversity order is defined as follows. Let 

and be the outage probability of direct transmission, superposition code based 

scheme and T D M based scheme when the normalized total transmitted SNR is Fj-. If there 

exists a real number r such that 

l im = r, (5.68) 
FT—DO 

the diversity order of superposition code based scheme is said to be k. The diversity order 

of TDM-based scheme can be defined similarly. If the diversity order of a particular scheme 

is k, in the log-log plot of the outage probability, the slope of the curve of that scheme is k 
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Figure 5.1: Comparison between direct transmission and the 4-user cooperative transmission schemes 

times of the slope of the curve of direct transmission scheme for sufficiently high normalized 

total SNR. 

The simulation results for M = 4 are shown in Figure 5.1. The slope of the curves for both 

cooperative transmission schemes is 4 times of the one for direct transmission asymptotically. 

That is, the diversity order of both schemes is 4. When R increases, the required normalized 

total SNR of the TDM-based scheme increases more rapidly than the one for the superposition 

code based scheme. I t is because when the total transmission power of a node is increased, the 

difference between the broadcast channel capacity region and the T D M rate region increases. 

At high rate regime, the advantage of superposition coding is more apparent. 

Figure 5.2 illustrates the simulation results for M = 6. The diversity order for both 

cooperative transmission schemes is about 6, Similar to the 4-user case, when the required 

rate increases, the difference of outage probabilities between the two cooperative transmission 

schemes increases. 
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Figure 5.2: Comparison between direct transmission and the 6-user cooperative transmission schemes 
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5.4.2 Implementation Cost 

In this part, the implementation costs of these two algorithms are compared. Here, im-

plementation cost means the overhead communication cost of the algorithms which is the 

amount of information needed to be exchanged before reaching the Nash Equilibrium point. 

The communication cost can be inferred from the number of rounds in both games. In each 

round of both games, each node needs to send two real numbers to each other node. In each 

round of the superposition code based scheme, needs to send the value of K^^, which is the 

amount of virtual payment to Sj, and the value of Ki，” which is the pricing information that 

Sj needs for its rate allocation, to Sj. Similarly, in each round of the TDM-based scheme, Si 

needs to send the amount of payment and pricing information to Sj, Hence, the communi-

cation cost for both schemes are proportional to the number of rounds in both games by the 

same factor. 

Two ways of initializing the algorithms are considered. In the first way, all nodes perform 

direct transmissions only. In the second way, the nodes allocate equal amount of rate and 

time to the outgoing links. Due to the page limitations, only the results of M = 4 are 

provided. Similar results can be obtained for other values of M. 

The distributions of the number of best response updates required by each node, which 

can infer the communication costs of both schemes, are obtained. The cases that R is 2 and 

4 are considered. The results are shown in Figures 5.3 to 5.6. If initially, the nodes perform 

direct transmissions only, the number of best response updates is less than 10, But with 

equal rate and time allocation initially, the TDM-based scheme requires much more best 

response updates. Such difference is more apparent for higher R. I t is because when we use 

a relay path in the TDM-based scheme, the relay node has smaller portion of time for its 

own message. It has to increase the transmission power for its own message exponentially. If 

i t has to relay the messages from more nodes, on average, each link has even smaller portion 

of time and the transmission power grows with the rate more rapidly. Hence, in the TDM-

based scheme, typically, the nodes transmit their messages over the direct path together with 

a small number of relay paths. I f initially, we allocate equal amount of rate and time to every 
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20 

Figure 5.3: Distribution of number of best response updates of the 4-user cooperative transmission schemes 

(Rate = 2). The initial point for both schemes is direct transmission. 

link, the nodes need more best response updates. 

5.4.3 Adaptation to Power Gain Variations 

Finally, the adaptability of our algorithms to the variations of power gains is investigated. 

The case with four transmit-receive pairs is considered. The common rate R is chosen to 

be 2, Similar results can be obtained when there are different number of users and common 

rate. The source nodes initially allocate equal amount of rates for all outgoing paths. After 

every 5 iterations of the algorithms, a new independent set of power gains are generated even 

if the Nash Equilibrium of the games have not been reached. Here, in one iteration of an 

algorithm, every source node has performed the best response update once. 

The total transmission SNR is plotted in Figure 5.7. The horizontal dotted lines denote 

the optimal total transmission SNR of the corresponding cooperative transmission scheme 
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Figure 5.4: Distribution of number of best response updates of the 4-

(Rate = 4). The initial point for both schemes is direct transmission. 

cooperative transmission schemes 
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Figure 5.5: Distribution of number of best response updates of the 4-user cooperative transmission schemes 

(Rate = 2). Initially, all links are allocated equal amount of rate and time. 
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Figure 5.6: Distribution of number of best response updates of the 4-user cooperative transmission schemes 

(Rate = 4). Initially, all links are allocated equal amount of rate and time. 
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Figure 5.7： Total transmission SNR of the two 4-user cooperative transmission schemes with respect to the 

power gain changes. 

under the corresponding set of power gains. In this figure, the total transmission SNR of 

both cooperative transmission schemes have been improved significantly after the first few 

iterations of their algorithms. The difference between the total transmission SNR and the 

optimal point has been reduced by more than half. This is very crucial in the adaptation to 

channel variations. Even if the Nash Equilibrium has not been reached before some instances 

of power gain changes, the source nodes can reduce the total transmission power significantly 

within a short time period. 

5.5 Conclusion 

In this chapter, I propose two pricing games for two cooperative transmission schemes. In 

the first game, the nodes multiplex the messages of their outgoing links by superposition 
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codes while in the second game, they time-share their outgoing links. At Nash Equilibria 

of both games, the total transmission power is minimized. Based on both games, I propose 

the adaptive and distributed implementations. Simulation results show the significant im-

provement in power consumption by our schemes and their high convergence rates. When 

the demanded rate is increased, the advantage of the superposition code based scheme over 

the TDM-based scheme in terms of outage performance becomes more apparent. 



Chapter 6 

Partner Selection in 

In Chapter 5, the TDM-based cooperative transmission scheme is proposed to alleviate the 

coding complexity in the superposition code based scheme. In a broadcast channel, if the 

number of users is small (for example, fewer than 4 users), the coding complexity of the 

superposition code is still acceptable in practical systems. Therefore, an alternative method 

to alleviate the coding complexity in the superposition code based scheme is to perform 

partner selection among a set of point-to-point links. 

The main difference from the previous two schemes is that the source node only relays the 

message for its assigned partnered source node. Hence, one advantage of partner selection 

scheme over the previous two schemes is that instead of listening to all the spectrum consumed 

by the source nodes, each source node only needs to listen to the channel of the partnered 

source node. Each source node multiplexes the messages of its three outgoing links, namely, 

the links to its destination node, the partnered source node and the partnered destination 

node, through broadcast channel coding. The partnered node decodes the incoming message, 

re-encodes and forwards i t to the destination node. 

In this chapter, I consider the partner selection problem for cooperative transmission 

among a set of point-to-point links. The objective is to minimize the sum power. By obtaining 

102 
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the minimum sum power, we can compare the outage performance of the partner selection 

scheme with the previous two cooperative transmission scheme. 

The partner selection problem is solved in two steps. Firstly, the minimum sura power for 

each pair of nodes if they cooperate is computed. In some cases, it has closed-form optimal 

solutions. For other cases, we propose a simple iterative algorithm which converges rapidly. 

Wi th these results, we can perform the partner selection. For a large number of nodes, 

in order to reduce the overhead of obtaining the first step results, I propose the grouping 

algorithm which is shown to be near-optimal and has fast convergence by simulations. 

This chapter is organized as follows. The system model is provided in Section 6.1. Based 

on this model, we propose our partner selection algorithm in Section 6.2. Then, we evaluate 

the performance of the algorithm in Section 6.3. 

Part of the contents can be found in [72]. 

6.1 System Model and Problem Formulation 

Consider a wireless network with N distinct source-destination pairs. The source and desti-

nation node of the i - th node pair are denoted by Si and Di respectively. This node pair has 

a minimum required rate of Ri, 

Each source node is assigned an orthogonal channel. For notational simplicity, it is as-

sumed that each channel has an equal bandwidth of W. The results can be easily generalized 

to the unequal bandwidth case. The noise of each channel is independent and Gaussian 

distributed with NQW as the variance. The power gains of the links from SI to SJ and DJ 

are denoted by Z ^ f and Z ^ f respectively. The slow fading case is considered so the power 

gains are assumed to have negligible changes throughout the whole transmission. 

Each node pair can be partnered with another one so that these two source nodes can 

overhear and relay the message for one other. The two partnered source nodes adopt the two-

user cooperative transmission scheme described in Chapter 4. Each source node divides its 

data stream into two sub-streams. One sub-stream is directly transmitted to its destination 

node. Another one is relayed by the partnered source node. Thus, in its allocated channel, 
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each source node has three outgoing sub-streams, namely, its two sub-streams and the one 

originated from the partnered source node. Hence, it is a three-user Gaussian broadcast 

channel which has the coding and decoding schemes described in Section 2.1.2. 

The objective is to minimize the total transmission power. Let P…z ^ j , be the minimum 

sum power of Si and Sj if they cooperate and be the power for direct transmission from 

Si to A - The sum power of Ŝ  and Sj is minimized by a rate allocation of their sub-streams. 

It will be detailed in Section 6.2.1. The partner selection problem is formulated below. 

Problem 6.1. 
N N 

min y ^ y ^ (6.1) 

subject to 
N 

= = 1,2, (6.2) 
3=1 

J =工3,” i < 3- (6.3) 

is the decision variable of partnering Ŝ  and Sj. If Si partners with S” x^ ĵ — 1. 

Otherwise, cc、] = 0. a:” = 1 means has no partners. 

6.2 Proposed Solution 

Problem 6.1 is solved with two steps. Firstly, the values of 只’/s are computed. With these 

values, the partner selection can be performed. 

6.2.1 Computation of Pij 

For the convenience in presentation, the computation of Pi 2 is 
considered. Let R?、and Hp ) 

be the rates of the sub-streams on the relay and direct path from Ŝ  respectively. The rates 

of all outgoing links from Ŝ  are represented compactly as ,凡⑵ ) . T h e capacity 

region of these links is denoted by C“只）where P̂  is the transmission power of S” Pi,2 is 

computed by solving the following optimization problem. 
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Problem 6.2. 

subject to 

min Fi + Fa 

R?�+ i T , > i?. (i?) 
= 1 , 2 , 

where is the transmit signal-to-noise ratio (SNR) which is given by 

NQW' 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

Pi,2 is equal to the minimum iVoW(ri + ]?2). 

Constraint (6.5), which is a set statement, can be replaced by the following close-form 

expression which is a direct consequence of Lemma 5.1. Let 

^J = 
1 , if Z g l . > 

0 , otherwise. 

1 ， i f 《 ) > 鄉 I 

0 , otherwise. 

(6.8) 

(6.9) 

Given i?;丑）and the minimum required is 

+ 去 exp (《？ iT+e 乂 K ^ - i ) 

—1) (6.10) 

Let (丑 b e the optimal R(广. I t is noted that at the optimal point, equality holds 

for (6.6). Hence, we only need the characterization of the optimal rate allocation in terms 

of . Firstly, the close-form solutions for the following five cases, which are proved in 

Appendix D, are provided. 
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Case I : > (么 Z巧)> Z. 

= ) * = 0. 

(S) 

Case I I : > > < f L ， < 4 (S) 

R ( 严 = 0 . 

R {Rh — P3-
R, 

7(D) MS) 
1

 -
 2
 

I
 

1 

u {D) 

and P i [.t] is the project ion of x into the interval [0, R^]. 

Case I I I : > m a x Z 仏 < z f i . 

R： 

T + 豆 In 7P) y{S) In + 

Case IV : Z g > > z{；?)，Z控 > z g ) > z g ) 

Let 

双 丄 l i 

7 例 
In 

:>丑3,1 — 

Z. (D) + 
z. (D) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

O t h e r w i s e , 对聊 = 0 and 4 用 * = 4丑 

Ri — R3-- _ _ + 互 I n 
Z, {D) z. {S) — ^ In 

2 

1 

Z‘ P ) (6.16) 
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Figure 6.1: Distribution for number of iterations required for the round robin optimization = i22 = 2). 
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The remaining cases can be solved by a round robin optimization of i?严 and i ?⑵.The 

following proposition justifies that this approach converges to the optimal solution. 

Proposition 6.1. The optimal and R^^^ can be obtained by the above algorithm. 

Proof. This round robin algorithm is a Gauss-Seidel type algorithm [10]. To ensure the 

convergence to the optimal solution, it is required that [10, p. 219] the objective function is 

convex and differentiable and the feasible set is compact. By (6.10), the objective function 

is strictly convex and differentiable. The feasible set is [0’ Ri] x [0, R2] which is obviously 

compact. Therefore, for any feasible initial point, the algorithm converges to the optimal 

solution. • 

Since IVs are convex functions of i?严，the optimal jR^丑）(for fixed R^^^) is obtained by 

solving — ^ ^ = 0 and then projecting the solution to the interval [0’ / y . Due to the strict 

convexity of IVs, ^ ^ ^ is an increasing function of i?，，the solution can be efficiently 

solved by bisection method. 

For R i = R2 = 2, the distribution of the required number of iterations of this approach, 

which is obtained by 100000 simulation trials, is plotted in Fig. 6.1. Al l power gains are 

independent exponential random variables with mean 1. and are 0 initially. In 

most cases, we need at most 6 iterations to converge. For other values of Ri, i?2j similar 

distributions can be observed. Thus, P、] can be efficiently computed. 

For sufficiently small iVs, the optimal rate allocation is as below. 

Proposition 6.2. For sufficiently small Ri and R2 

i?(均* = 
0’ i f < - z i r + , 、 

〜 〜3-t (6.17) 

Ri, otherwise. 

Proof. Please refer to the derivations in Section 5.2.5. • 

Here, the messages are transmitted either through the direct or relay path. 
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Table 6.1： Grouping Algorithm 

1 All nodes partner with themselves and form groups of M < N nodes randomly. 

2 while total transmission power has not converged do 

3 Apply Gabow's algorithm in each group independently. 

4 Select two nodes in each group which either are partnered or both have no partners Choose 

those which have the maximum sum power 

5 The nodes selected in group i are moved to group i + Imod [； 

6 end while 

6.2.2 Partner Selection 

After computing the 尸j,/s，Problem 6.1 is solved by considering the following weighted undi-

rected graph, G = (V, E). A vertex v e V = {1 ,2 , . . . , iV} corresponds to node pair v. The 

weight of an edge (i, j ) , t ^ j, is {2P — Pi�j) and the weight of (i, i) is {P — where P is 

chosen so that the edge weights are positive. 

A subset of edges are selected such that the sum of their weights is maximized and no two 

selected edges share a common vertex. Hence, for every vertex in V, exactly one incoming 

edge is selected. Thus, the total weight of the selected edges is (NP — -^hj) where S 

is the set of selected edges. Maximizing this quantity is equivalent to minimizing the sum of 

P^̂ j 's, which is exactly Problem 6.1, 

This graph problem is known as the maximum weighted matching problem and can be 

solved by Gabow's algorithm (Due to the page limit, please refer to [30] for details.) with 

time complexity 0{N^). However, it is still impractical for networks with large N due to 

the communication overhead of exchanging the channel state information (CSI) of {2N — 1) 

links and the computational overhead of the 风二+工)values of Pi^s. To solve this problem, I 

propose an iterative algorithm called grouping algorithm in Table 6.1 

Now, the nodes exchange the CSI only when they join a new group or new members join 

their group. Therefore, the total amount of CSI exchange is reduced. In each iteration, the 

sum power of each group is solved independently so the solution remains feasible but the sum 
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power is non-increasing. Since i t is lower bounded by the optimal solution, the algorithm 

converges. 

6.3 Performance Evaluation 

The performance of the grouping algorithm is evaluated through simulations. More precisely, 

its outage performance, which infers the probability distribution of the required sum power, 

and its convergence speed are investigated. 

The distance between every pair of nodes is assumed to be equal. The power gains of 

the links are independent exponential random variables with mean 1, which is the Rayleigh 

fading case. For simplicity, all Ri's are equal to a common required rate R. The outage 

probability is defined in the same way as in Chapter 5. Firstly, the normalized total SNR is 

defined as below. 

Definition 6.1. If Vt is the total SNR of a particular implementation, the corresponding 

normalized total SNR, f r , is 

The denominator in (6.18) is the required SNR in the absence of fading (i.e. the required 

SNR in a Gaussian channel for the common required rate R). (6.18) can be interpreted as 

the additional amount of dB of SNR to combat against fading. 

Definition 6.2. Let Fy be the minimum required normalized total SNR for an implementa-

tion. Given a normalized total SNR of a network Ft, the outage probability is defined as 

Pr{n > f V } . 

The outage performance between the grouping algorithm, the direct transmission scheme 

and the optimal partner selection are compared. The cases that R is equal to 2 and 4, N 

is equal to 12 and 18 and M is equal to 2 and 3 are considered. The results are plotted 

in Fig. 6.2-6.5. In these figures, the grouping algorithm and the optimal partner selection 

outperforms the direct transmission scheme. The curves for the grouping algorithm deviate 
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Figure 6,2: Outage performance for N = 12 and M = 2. 

by at most 1 dB from the optimal partner selection. Hence, the reduction of communication 

overhead by grouping algorithm does not cost too much transmission power. 

The diversity order, which is another commonly considered performance measure for co-

operative transmission, is considered. Let Pci ' j ) and be the slopes of the curves of 

our cooperative transmission scheme and direct transmission scheme at the normalized SNR 

7 respectively. The diversity order A is defined as 

A = l im 弊、. (6.19) 

In all cases, the figures show that both the diversity order achieved by the optimal partner 

selection scheme and the grouping algorithm are approximately equal to the number of nodes. 

Therefore, both schemes achieve full order of diversity. 

Finally, the convergence rate of the grouping algorithm is investigated through 100000 

Monte Carlo simulation trials. The case of •/V = 18, M is equal to 2 and i? = 2 is considered. 

The distributions of the number of iterations of the grouping algorithm is plotted in Fig. 6.6. 
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Figure 6.6: Distribution of number of iterations for N = 18 and M = 2. 

In most cases, i t requires fewer than 7 iterations. Similar observations can be found for other 

values of M , N and R. Thus, the grouping algorithm converges rapidly. 

6.4 Conclusion 

The partner selection problem for cooperative transmission is considered in this chapter. I t 

provides an alternative way to alleviate the broadcast channel coding complexity for large 

number of users. One advantage of this approach over the schemes proposed in the previous 

chapters is that the source nodes only need to listen to the channel assigned to its partnered 

source node instead of all the channels of other nodes. 

The sum power minimization problem is studied in this chapter. Firstly, a simple optimal 

rate allocation scheme for two cooperating node pairs is proposed. Closed-form results are 

obtained for some cases. For the remaining cases, a simple iterative algorithm, which has high 
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convergence rate, is proposed. Wi th the optimal rate allocation between each pair of nodes, 

we can select the partners for each node pair. Although Gabow's algorithm can provide 

the optimal partner selection, the communication overhead among the nodes is high for large 

number of nodes. Therefore, the grouping algorithm is proposed to reduce the communication 

overhead. Simulation results show that the grouping algorithm is near-optimal and has high 

convergence rate. Also, both the optimal partner selection scheme and the grouping algorithm 

can achieve full order of diversity. 



Chapter 7 

Conclusion and Future Works 

In this chapter, I summarize the contributions of this thesis in Section 7.1. Then, I propose 

some future research topics. Motivations and comparisons with previous research works are 

discussed in those sections. 

7.1 Summary of Contributions 

In this thesis, I propose some cooperative transmission codes and protocols for distributed 

resource allocation. In Chapter 4,1 propose two cooperative transmission schemes for the case 

of two source-destination pairs. Both schemes have larger achievable rate regions than direct 

transmission schemes. Although one of these two schemes has a slightly larger achievable 

rate region, the other one is considered in the remaining parts of the thesis because i t allows 

simpler code implementation and resource allocations. Simulation results show that the latter 

code can achieve twice the diversity order of the interference channel code proposed by [26 . 

The achievable rate region is simulated by the proposed weighted sum rate maximization 

algorithm. Simplified implementations at low SNR regime are proposed as well. I also 

illustrate how this algorithm can be extended to solve the max-min fairness problem and the 

joint uti l i ty maximization problem. 

In Chapter 5, this cooperative transmission code is extended for more than two source-

destination pairs. A pricing game is proposed to have a distributed implementation for 

117 
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sura power minimization. Simulation results show that this cooperative transmission scheme 

can achieve ful l diversity order. I t is noted that the building blocks of this cooperative 

transmission code are superposition codes which are too complex to implement for larger 

number of source nodes. Therefore, I propose another TDM-based cooperative transmission 

scheme to alleviate this complexity. Another pricing game is proposed for distributed sum 

power minimization. Simulation results show that this scheme also achieves ful l diversity 

order. In addition, simulation results also show that the sum power minimization protocols 

for the two cooperative transmission schemes can adapt to channel fluctuations. 

Another way to alleviate the coding complexities of cooperative transmission code is to 

perform partner selection, which is discussed in Chapter 6. One advantage of this approach 

over the other two schemes is that the source nodes only need to listen to the channel 

assigned to their partnered nodes instead of all the channels in the network. For each pair 

of partnered source node, I propose a simple rate allocation algorithm. In some cases, there 

are closed-form solutions for the optimal rate allocation. For the remaining cases, a simple 

iterative algorithm, which has high convergence rate, is proposed to provide the optimal rate 

allocation. Then, I map the partner selection problem to the maximum weighted matching 

problem in graph theory which can be solved wi th polynomial-time algorithms. For large 

number of source nodes, I propose the grouping algorithm to reduce the computational and 

communication overhead. Simulation results show that the grouping algorithm deviates from 

the optimal solution by at most 1 dB. Both partner selection schemes can also achieve the 

M l diversity order. 

7.2 Cooperative Transmission for MIMO Systems 

As mentioned in Chapter 1，one application of cooperative transmission is to further increase 

the diversity order of M I M O systems. Here are some questions to be answered: 

1. How should the nodes, which are equipped wi th multiple antennas, cooperate with one 

another? 



CHAPTER 7. CONCLUSION AND FUTURE WORKS 119 

2. How does the diversity order scale with the number of relay paths and the number of 

antennas on each node? 

One straightforward scheme is to extend the proposed schemes in this thesis is by replacing 

the scalar broadcast channel codes by the MIMO broadcast channel codes. The capacity 

region of MIMO broadcast channel is studied in [105]. However, the authors have shown 

by an example that in general, in order to achieve a Pareto-optimal rate vector in a MIMO 

broadcast channel, we need to perform time-sharing among a set of dirty-paper codes. This 

has two implications to the implementation. 

The most obvious implication is the complexity of the implementation of the cooperative 

transmission code. Due to the time-sharing of dirty-paper codes, the transmitting node and 

the receiving nodes have to synchronize at the carrier level so that the receiver can switch and 

decode with the correct codebook. However, this is difficult to be implemented in practice. 

One possible way is to adopt sub-optimal but practical MIMO broadcast channel encoder and 

decoder designs such as zero-forcing beamforming and minimum mean square error (MMSE) 

decoder. 

Even if we can implement the MIMO broadcast channel code, another problem is related to 

resource allocation. Now, the weighted sum rate maximization problem is no longer guaran-

teed to have unique optimal solution. The derivation of the weighted sum rate maximization 

algorithm in Section 4.4 heavily relies on the factor that the weighted sum rate maximization 

problem for scalar Gaussian broadcast channel has unique optimal solution. This affects the 

convergence of the algorithm. Therefore, new resource allocation algorithms are needed for 

this cooperative transmission scheme. One way to solve the problem of the lack of strict 

convexity is the proximal optimization technique [10，p.233]. Briefly speaking, we introduce 

a strictly convex penalty function to the objective function. The new optimization problem 

has the same optimal solution but we can have better convergence results. This technique 

has been widely used in some resource allocation problems in wireless multi-hop networks 

such as [62, 109]. 
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Besides the problems due to the need of time-sharing of dirty-paper codes, another problem 

related to resource allocation is that the amount of channel state information in MIMO is 

much more than the single antenna case. I t is no longer practical to assume perfect knowledge 

of the channel condition when there are a large number of antennas and users. One way to 

solve the resource allocation problems is to use stochastic optimization formulations [102] 

and solve the corresponding stochastic optimization problems. For example, we can consider 

problems such as maximization of weighted sum of ergodic rates or we can have constraints 

of outage probabilities in the optimization model. 

7.3 Presence of Selfish and Malicious Users 

7.3.1 Selfish Behaviors 

One of the assumptions of the works in this thesis is that the source nodes are willing to 

forward information for other source nodes. This may be true in some applications. However, 

in general, the users of a wireless network are selfish in nature. They are unwilling to use extra 

amount of power to forward other users' messages unless they can receive some incentives 

for that. 

The pricing game in Chapter 5 may help solving this problem if the users are not malicious. 

That is, if a user helps forwarding the message for another user, he or she can receive the 

corresponding amount of payment as an incentive. The whole pricing mechanism can be 

hardwired in the mobile terminals as mentioned in [43]. 

Nevertheless, in general, i t is not possible to guarantee that all mobile terminals are 

hardwired with the whole pricing mechanism. Malicious users can use other types of mobile 

terminals which provide fake pricing information to other users. Consider the example in 

Fig. 7.1. Suppose Sn+i is a malicious and selfish user. On one hand, since it is very close to 

its intended destination node D^v+i, i t is optional for Sn+i to have messages relayed by other 

source nodes. But on the other hand, other source nodes wil l be benefited if Sn+i relays the 

messages originated from them. However, if Sn+i announces an unreasonably high price to 
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Figure 7.1: An example network for illustrating effects of malicious users. 

Another possibility 

lower rate than the 

other source nodes, none of them will request i t to relay their messages, 

is that after Spj+i receives the payment, it relays the message at a much 

optimal rate. Therefore, we need to modify the protocols proposed in Chapter 5 so that the 

nodes announce the correct prices and relay the messages at the optimal rate. 

In some network protocols, such as BitTorrent [16], ' t i t for tat ' strategy is used to punish 

the malicious and selfish behaviors. In the previous example, if the nodes are fast moving 

nodes, i t will be probable that for certain portion of time, 5jv+i needs some other nodes to 

forward the information. Then, it will be suffered from the retaliation of other nodes. 

Alternatively, better pricing can help solving the problem. If Sn+i announces an unrea-

sonably high price, although none of the other nodes will request it to relay the information, 

it earns nothing from other nodes either. This is a loss-loss situation. Therefore, a natural 

question is how we can efficiently estimate the reasonable price so that Sn+i is willing to 

forward the information at a correct rate and other nodes are willing to pay for it. Some 

game-theoretic mechanism design techniques, such as Vickrey-Clarke-Groves (VGG) auction 

[78], may be helpful to answer this question. 

7.3.2 Attacks from Malicious Users 

Besides the problem of willingness of relaying information, malicious users can introduce 

different types of attacks to the cooperative communication system. For example, instead of 
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relaying the original message, the malicious nodes can replace i t with some other information 

so that the destination node receives the wrong message. 

Here is a rough outline of the solution. Firstly, before we transmit the message through the 

cooperative transmission scheme, we encode it with another error-correction code. Although 

ordinary error-correction code can help correcting or detecting the incorrect message portion, 

it is possible that too many redundant bits are introduced. A malicious relay node can only-

change the information that it is asked to forward. Therefore, the error is localized to this 

portion of message. I t is possible to design a code with higher coding rate by using this 

property. This is one of the possible research direction. 

Besides error-correction code, on the system level, trust-based management systems [97] 

can also be introduced to avoid certain malicious relay nodes. The aforementioned error-

correction does not only correct the wrong message portions, i t also helps identifying some 

malicious nodes. After identifying a malicious node, we can report it to the trust-based 

management system, which is a mechanism to inform other nodes so that they can avoid the 

attacks from the malicious node. There are several issues to be addressed in the design of this 

mechanism. Firstly, the mechanism has to be robust against any malicious attacks. That is, 

malicious nodes cannot jeopardize the system by reporting fake information. Moreover, the 

mechanism has to be efficient so that the source nodes can be notified with the minimum 

latency. 

7.4 Transmitter Co-opetition 

Co-opetition [12] is a business neologism to describe the cooperations between the competing 

parties. That is, the competing parties work together for parts of their business where they 

do not believe they have competitive advantage, and where they believe they can share com-

mon costs. In transmitter co-opetition, part of the messages are transmitted by cooperative 

transmission but we allow the transmissions of the remaining part of the messages interfere 

with one another. 

The motivation of combining these two different types of transmissions, instead of pure co-
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operative transmission, is the following. Similar to the case of multiple-input multiple-output 

(MIMO) systems, one cost of diversity gain by cooperative transmission is the reduction in 

degree of freedom [114]. Firstly, a relay node has to sacrifice part of its transmission time or 

bandwidth to overhear the messages of other nodes. As mentioned in Section 3.1，in practical 

systems, we can only implement half-duplex wireless nodes. Hence, in order to forward a 

message, we have to reduce the degree of freedom of the relay nodes. 

Moreover, after being decoded by the relay node, the message has to be re-encoded and 

retransmitted at another set of time slots or frequency bands. Thus, compared with direct 

transmission, this relayed message has lower spectral efficiency. If the power gain of the 

direct link is high, the benefit from the spatial diversity may not compensate the loss from 

the reduction of degree of freedom. If the direct links become much higher power gains than 

the relay paths, instead of having any cooperations, it may be wiser to allow the sources to 

transmit in a non-cooperative manner. 

Transmitter co~opetition schemes in multiple access (MAC) channel and interference chan-

nel are briefly introduced in the following parts of this section. 

7.4.1 Multiple Access Channel 

A MAC channel is a information-theoretic generalization of uplink transmission systems. Its 

channel capacity is derived in [1]. The Pareto-optimal set of rate vectors can be achieved 

by successive interference cancelation. The problem of this non-cooperative approach is that 

when a user suffers from deep fading, it does not only reduce the received power at the base 

station, but also affects the decoding order of this user. That is, his/her message is decoded 

under the interference of greater number of users. As a result, a direct uplink can convey a 

very small amount of information for this user. Relaying from other users is needed. 

On the other hand, if the users have high power gain for their direct links to the base 

station but thy are separated from one another with large distance, the users, who relay the 

messages for the others, sacrifice their transmission time/bandwidth to overhear and forward 

a very small amount of information. In this situation, non-cooperative approach is preferable. 
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This is the motivation to derive transmission schemes which performs well in a more 

general channel conditions. One possible transmission scheme is as follows. Suppose there 

are N users in the system. The whole transmission time is divided into time frames of equal 

durations. Each time frame is divided into iV + 1 time slots of variable lengths. Each user 

divides his/her message into /V 4- 1 partitions. In the z-th time slot, \ < i < N^ user i 

transmits his/her first N parts of the messages to the base station and other users by using 

superposition coding. Also, he or she forwards part of the buffered messages from other 

users to the base station. In the [N + l)~th time slot, all the users transmit the remaining 

partition of their own message and the remaining buffered messages from other users to the 

base station. The encoding and decoding are done in the same way as in MAC channels. 

In this scheme, if the duration of the last time slot tends to zero, i t approximates the 

special case in Chapter 5 where the receivers are collocated. On the other hand, if the 

durations of the first N time slots, it becomes closer and closer to a non-cooperative MAC 

channel. By optimizing the durations of all the time slots, a good balance of diversity and 

degree of freedom can probably be achieved in a practical fashion. 

7.4.2 Interference Channel 

Similar to the MAC channel case, we also have the question on how to strike the balance 

between diversity gain and multiplexing gain in interference channels by transmitter co-

opetition. One of the motivation behind this question is as follows. Consider the case of two 

source-destination pairs. The two source nodes are assumed to be close to one another so 

that the power gains of the links between these two nodes are very high. Firstly, consider 

the strong interference channel case [34], where the interfering links have higher power gains 

than the direct links. The rates achieved by interference channel coding are limited by the 

direct link capacities. However, in cooperative transmission, the messages can be forwarded 

through the interfering links. Therefore, cooperative transmission may be more preferable. 

However, if the direct links have much higher power gains than the interfering links, the 

rates of the relay paths are limited by the weak interfering link capacities. Furthermore, the 
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relaying node needs to sacrifice their transmission time to listen to another source node before 

forwarding this marginal amount of information. On the other hand, since the interfering 

links have much smaller power gains, if the source nodes use interference channel coding, 

they do not interfere one another so much. They can make full use of their transmission 

time to transmit over their direct links which have high power gains. Therefore, in this case, 

interference channel coding may be more preferable. Hence, a natural question is: for a 

general wireless network, how should we transmit the messages? 

The cooperative transmission scheme proposed in Chapter 4 can be extended and i t can be 

compared wi th existing interference channel transmission schemes and some outer bounds. 

Unfortunately, the capacity region of a general Gaussian interference channel remains an 

open problem even for the case with two sources and two destinations. The capacity region 

is known only for the very strong interference channel case [14] and the strong interference 

channel case. The largest achievable rate region is the one proposed in [34]. A simpler 

achievable rate region is the one studied in [26]. The authors proved that if the rate vector 

(Ri, R2) is in the capacity region of an interference channel, their scheme can achieve the 

rates {Ri — 1, — 1). The later wil l be adopted as a simple approximation of the capacity 

region of an interference channel. 

Networks wi th two sources and two destinations can be the starting point of the whole 

studies. One possible approach is as follows. The whole transmission time is divided into 

time windows of equal duration. Each time window comprises of three time slots which have 

variable lengths. Each source node divides its message into 4 parts which wi l l be explained 

shortly. In time slot 1 < < 2, only Si transmits 3 of the 4 parts of its message. The 

first part, denoted by Mi，i, is transmitted directly to its destination node. The second part, 

denoted by Mi’2，is relayed by another source node in time slot 3 —i. The th i rd part, denoted 

by Mi,3，is relayed by another source node in the third time slot. At the same time, i t forwards 

the second part of another source node's message to the destination node. The source node 

multiplexes the messages over the three outgoing links by superposition coding. 

In the th i rd time slot, both source nodes transmit and they do not listen to each other. 
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The messages Mi_3 and M2,3 are forwarded to the destination node. The remaining part of the 

messages are transmitted directly to the destination node. These messages are multiplexed 

in the following way. The fourth part of the messages is divided into two messages which 

are called public messages and private messages. The signals of these three messages are 

superimposed and transmitted simultaneously. Firstly, the public messages are decoded by 

treating all the interferences as noise. The public messages are encoded to the rate that both 

destination nodes can decode the two public messages. 

After decoding the public messages, Di can cancel the corresponding signals and move 

on to decode M^̂ s. Since both source nodes have the knowledge of the messages Mi’3 and 

M2丨3, they can jointly encode the messages and this reduces to a MISO broadcast channel 

[105]. Although each source node has its own power constraint instead of the total power 

constraints of the antennas in usual MISO broadcast channels, the authors in [105] mention 

that the same coding technique can be applied and the capacity region can be characterized 

in a similar manner. 

Since both source nodes jointly encode M i a n d M2,3, they have the knowledge of the 

received signal of these messages at their destination nodes. Therefore, they can encode their 

public messages by dirty paper coding to remove the interference from the signals of M i 

and M2’3. The destination nodes decode the public messages by treating the interference of 

the signal for another node's public message as noise. 

The cooperative transmission scheme in Chapter 4 and the coding scheme for the inter-

ference channel in [26] become special cases of the above transmitter co-opetition scheme. 

Therefore, we can achieve a full order of diversity by this scheme. However, the tradeoff be-

tween the diversity order and the multiplexing gain is unknown. This is one research question 

to be answered. 

After that, we can consider the partial cooperations among more interfering links. One 

practical approach is to consider partner selection protocols based on the above partial coop-

erative transmission scheme. Besides the aforementioned DF-based approach, other relaying 

approach or interference channel coding strategies can be considered and compared. 
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7.5 Multi-way Communication 

In the works previously discussed in this thesis, the source nodes and the destination nodes are 

considered to be two disjoint sets of nodes. One research direction is to consider the case that 

these two sets coincide. That is, a coalition of nodes would like to exchange the independent 

messages with one another. This can also be viewed as a generalization of a two-way channel 

[91] with more than two terminals. Applications include the exchanging control messages 

in ad hoc networks and mesh networks, portable game consoles with multiple players and 

video conferencing. This explains why i t has drawn a lot of attention in both industry and 

academic communities [19, 37, 81, 82, 113]. 

Information exchange via pure relay nodes has been widely studied [20, 37, 81, 82, 94, 108, 

113]. Typically, there are two source nodes which would like exchange their messages through 

a number of pure relay nodes. The relay nodes have their messages to be exchanged with 

other nodes. Apart from broadcasting their own messages to others, the nodes help relaying 

the messages as well. In the research works referenced at the beginning of this paragraph, 

network coding [2] is applied and the authors have shown the improvements of achievable 

rates. Hence, instead of pure DF approach, the nodes encode and forward their received 

messages and their own messages. 

The aim for this new research direction is to derive resource allocation algorithms for 

cooperative information exchanges among a set of nodes. This can be done by translating 

the problem to a multi-source multicast problem. Suppose there are N nodes. We can apply 

the directed acyclic graph (DAG) shown in Figure 7.2. Each node i in the original network 

is represented by three nodes Si, Ri and Di in the DAG, which represent the source state, 

relay state and destination state of node i respectively. The edges from Si to Ri and the ones 

from Ri to Di have infinite capacities. The edges from Si to Rj and the ones from Ri to Dj , 

i • j, is equal to the capacity of the link from node i to node j in the original network. 

In the network layer, the nodes can perform randomized linear network coding [38] for 

their received coded messages and their own messages. In the physical layer, the nodes can 

multiplex the outgoing links by superposition coding or other types of multiplexing. Due to 
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Figure 7.2: A single-source multicast model for information exchange problem among N nodes. 

the half-duplex nature of the nodes, the portion of transmission time for each source node 

has to be scheduled. Wi th the resource allocation algorithms designed based on the above 

model, we can have more ideas of the potential benefit of node cooperations in both physical 

layer and network layer over non-cooperative approaches. 



Appendix A 

Proofs of Theorems 

A.l Proof of Proposition 4.2 

Proof, (i) (ii): Immediate. 

(ii) (iii): Assume that (i?i, R2) is not Pareto optimal. There is an achievable rate 

pair (R'I,R2) such that R[ > Ri and R'^ > R2 and R2) + (i?i，i?'2). K 兄 1 > Ri and 

> R2, then {Ri, R2) cannot be a boundary point since the rate region is comprehensive. 

Now consider the case R[ > Ri but R2 二 Suppose that Rf^ is achieved by {Ri, R^^). 

I f R i > R i j then {i?i, R2) cannot be a boundary point by comprehensiveness, I f R i < Ri, 

we can find a convex combination 

( K , 14) = a{R^, i ?? - ) + (1 — FQ (A. l ) 

with R!{ > R i and R2 > R2. Since R2) lies within the rate region by convexity, {R^ R2) 

cannot be boundary point by comprehensiveness again. The case that R'2 > R2 but R i = R[ 

can be treated in the same way. 

(iii) (i): Consider the set S in consisting of the rate pair that Pareto dominates 

R2). is a closed and convex cone. Since the interior of the rate region and the interior 

of S are disjoint, i t follows from basic separation theorem in convex analysis [11, Sec. 2.5.1] 

that there is a hyperplane in M^ that separates them. The normal vector of the hyper plane 

is the required Wi and w〗. • 
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A.2 Proof of Lemma 4.8 

Let Xi be the set of channels of user i. For i = 1,2 and the k G let 
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(A.6) 

(A.7) 

(A.8) 

(A.9) 

As shown in [101], the set 乂!，）is an interval for all k. The continuity of r*^ and 

follows from (A.2)-(A.4), (A.6) and (A.7) together wi th the fact that an integral over an 

interval [a;, y] is a continuous function of x and y. This proves the first part of Lemma 4.8. 

Let /X⑴=(/4”， i4i)) and ^ ^ ⑶ = = s u c h that / x f = a > 1, / z f = mP-

Firstly, we would like to show that ⑶）< aAi(/x(i)). To begin with, we observe that for 
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Since the left hand side of the (A.5) is a monotonic decreasing function of Ai and must 

satisfy (A.5), Ai(/x(2)) < Similarly, we can also prove that Ai(/Li(2)) > Ai(/i«(i)). 

Thus, for all k G 工1 and z, 

几11 + 么 

B 洲 af/f 

ni'i) + z 

-

⑴ ） 

which implies that for all fc G Z i and 2;, 

⑶ ， 4 ( " ⑴ 

As Ai(/x(2)) > Ai(jLt(i))，it is t r iv ia l to see that for all A; € Xi and 2;, 

Hence, for all k G Xi, 

秦 ⑴ ) C ⑶). 

Since the right hand side of (A.8) is the sum of integrals of non-negative function, 

(A.14) 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 
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Suppose Z' e 0̂ (2))，fc e h. 

132 

> (k) , / — (fc),, ny + z' n\2 + z' 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

- 恤 ⑴ ) ― ― - M , ) ) . ^ - A 肩 
r^s + z' ny + z' n\2 + z' 

Also, ⑴’么'）> 必)("⑵，之'）> ⑵’之‘）> 4 ' i V ⑴ ’ 4 Therefore, z' € 

This implies that 

y l fsV⑶）g 乂 ( A . 2 4 ) 

By the same argument as above, 

< i?〖2(/^(i)). (A.25) 

The relationship of rfg, Ru and 购 can be proved in the same manner as above. 

A.3 Proof of Lemma 4.9 

This can be proved by mathematical induction on t. Initially, f i i = Wi and /i2 = 0. This 

implies that R^i(fJ'(0)) = 0 as — f^i = 0 and 厂^(//(0)) = 0. Hence, 

r*uM0))>0 = R;M0)) 

which means it is true for t = 0. 

Suppose it is true for t >f for some t' > 0，i.e. 

rUKt)) > RiMt)), 

rMt)) < RUKt)l 

fii{t) is decreasing and 112(f) is increasing for t > t'. 

(A.26) 

(A.27) 

(A.28) 

(A.29) 
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Consider the iteration t'+l. Firstly, we update ni. According to the induction hypothesis, 

r*2{lJ'{t')) > Therefore, we have to decrease so that 亡 二 尺 ; + 

1)) according to Lemma 4.8. 

According to Lemma 4.8 and the induction hypothesis, as j i i decreases, 

r l M t ' 4-1)) < < R U K t ' ) ) < R ^ M t ' + 1)). 

Therefore, after updating /^i, 

糧 力 ' + 1 ) ) 化 2 ( " ( " + 1 ) ) 

Similarly, we can also prove that after updating /i2, 

• 網 ) 冗 ( " “ ' + 1 ) ) 

(A.30) 

(A.31) 

(A.32) 

(A.33) 

(A.34) 

(A.35) 

(A.36) 

Hence, the proposition is also true for t = t' + 1. By mathematical induction, the propo-

sition is true for all t. 

A.4 Proof of Theorem 4.12 

Firstly, optimal solution of a linear programming problem is a corner point of the feasible 

region [22]. Also, the origin is not possible to be the optimal solution because both a i and 

0；2 are positive. Hence, there are at most 3 candidate solutions. 

Since the objective function is equivalent to maximize +『21 subject to the same set 

of constraints, if g < m, from (4.92) and (4.93), 

—ri2 + r2i < min = max, Vri2,�21. (A.37) 
0:2 l(ln2)(/?i (In2)x2 J 



which means 

By (A.38)， 

^X2{PlX2 — P2<Pl) > ~X2(PlX2 — P2<Pl 
Oi2 X2 

BP2 
(A.41) 

(A.42) 

^{PlXD — ~{P2X2^l) — Pl^2X2 + ?2請2 > —X2{PlX2 —尸2釣）—?1佩2 + 雷2 = 0 
Oi2 0>2 X2 

(A.43) 

Qfj^ Q̂ l P2 
—{P1X2)—(尸2仍）—Pm + 一中评2 + P2X1 — P2X1 > 0 Oi2 Oi2 X2 

X2 
- Pi — 

\xix2-<pm/ 0；2 

—ri2 +『21 — r2,max > 0 

+ 0^2^21 > Oi2r2,max 

\X1X2~~ <pmj 
P2 + Xi P2 

92 

(A.44) 

X2 

(A.45) 

(A.46) 

(A.47) 

Similarly, we can also prove that a i f i2 + 0:2̂ 21 ^ ctiT'i.max- Furthermore, it can be easily 

shown that equality holds for (4.92) and (4.93) if Tyi ~ fii and r^i —尸21. Hence, if fyi and 

f2i are non-negative, it is one of the corner point of the feasible region. Therefore, if f u and 

f2i are non-negative and X1X2 — > 0 ， 二 于i2 and ==尸21. 
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Equality holds if 712 = 0 and 7*21 = r2,max- By similar argument, we can infer that if > m, 

1̂2 “ and = 0. 

Now, consider r r i < ^ < m and assume that X1X2 — > 0. This implies that 

迅 丛 = j n . (A.38) 

Suppose both r ^ and f2i are nonnegative. By (4.99), 

(A.39； 

(A.40； 

> 0 

P2 ^ Pl ^ 
X2 —平 1 

PlX2 
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Suppose X1X2 — > 0 and f i2 < 0. By (4.99)， 

P1X2 — < 0 

H>\ X2 

Together w i th (A.38), we have 

<P2 ri2 + 厂21 < —r i2 + ^21 < - r : : < 
X2 — (In2)x2 

I t means that (4.93) is redundant. Also, by (A.38), 

ai ^ xi 乂 BPi 
—「12 + r2i < —ri2 + r2i < ~ 
0:2 (ln2)(/?i 

I f ri2 = 0 and 7-21 =厂2, 

ai 
—ri2 + rzi 
0^2 

BPi 

(A.48) 

(A.49) 

(A.50) 

(A.51) 

(A.52) 
(ln2)<^r 

This proves for the result for X1X2 ~~ > 0 and r u < 0. Similar approach can prove for 

the result for X1X2 — 中2 > 0 and f u < 0. Since if 7*12 = f i2 and 7̂21 =尸21，equality holds 

for (4.92) and (4.93), i t is impossible to have f i2 , f2 i < 0. Hence, we have finished the proof 

for m < ^ < m and X1X2 — > 0. W i th similar approach, we can prove the result for 

m < ^ and X1X2 —中评2 < 0 . 



Appendix B 

Maximization Framework 

Consider a generic communication network consisting of N source-destination pairs. Let Rn 

be the rate of the n-th source-destination pair, n — 1，2,..., iV, and R be the iV-dimensional 

vector, i?2，...，jRjv)- The set of all feasible rate vector in this network is denoted by 

C C E^ . We assume that C satisfies the following properties: (i) compact^ and convex, and 

(ii) every Pareto-optimal rate vector is an extreme point. 

The definitions of Pareto-optimal rate vectors and extreme points are provided below. 

Definition B.l . A point r is called Pareto-optimal if no component ofr can be increased 

with the other components remaining fixed while remaining in C. 

Definition B.2. A point x e C is an extreme point of a convex set C if there is no way to 

express k as ay + (1 — a)z such that y，z G C, y # x — z，and 0 < a < 1. 

The objective is to maximize a joint util ity function (7(11) subject to R e C. We assume 

that [/(R) satisfies the following properties: (i) strictly concave, (ii) twice continuously 

differentiable, and (iii) increasing with any component of R with the other components 

fixed. Since the feasible region C is assumed to be compact and convex, and U is strictly 

concave, there exists a unique solution. 

For two vectors x and y, we wil l write x h y if each component of x is larger than or 

equal to the corresponding component in y. With this notation, the third assumption of the 
l A set in an Euclidean space is compact if and only if it is bounded and closed. 
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where 

/ ( R ) •
1
 p
 l < n < 

ax 
I<N 

e丑"-l)Jn(p) 
(B.3) 
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util ity function means that if R i ^ R2, then C/(Ri) > [/(R2). 

We also assume that an algorithm which maximizes the weighted sum rate J^Z^i 叫& 

is available. The contribution of this paper is to use this weighted sum rate maximization 

algorithm as a building block and devise another algorithm that maximize any uti l i ty function 

that satisfies the three properties above. 

The following examples that are special cases in our formulation. 

Example B.l . (Proportional Fairness in Parallel Gaussian Broadcast Channel) Consider 

an N-user Gaussian broadcast channel (BC) described in Section 2.1. For proportional fair 

rate allocation [52], the joint utility function is 

N 

(B.l) 
n=l 

Our objective is to maximize i7(R) over the capacity region. The capacity region, by definition 

is closed. It is clearly bounded, and hence compact. It is convex, since a convex combination 

of any two achievable points can he achieved by time sharing between the two original points. 

Also, as mentioned in Section 2.1, it is shown that every Pareto-optimal rate vectors in the 

capacity region is also an extreme point Using the algorithm for maximizing the weighted 

sum rate presented in [101], we will apply the method proposed in this paper and extend the 

weighted sum rate maximization algorithm to compute the proportional fair rate allocation. 

Example B.2. (QoS Feasible Region for Multiuser System) The last example is the class of 

power control problems studied in [87]. There are N users sharing a single channel Let be 

the transmission power of user n and p = (Pi,P2，... ,PN). Also, let Xn{p) be the interference 

experienced by user i for a given transmission power vector p. In [87], the QoS feasible 

region is defined as 

(B.2： C = {R: / R < 



APPENDIX B. JOINT UTILITY MAXIMIZATION FRAMEWORK 138 

It can be regarded as the rate region in our system model. Furthermore, in [87], the interfer-

ence function is assumed to satisfy the following axioms. 

A 1 Zn(p) > 0 

A2 J , (ap) = aXniv) 

A 3 : Z : “ P ⑴ ） … p ⑵ ） i / p ⑴ 一 

A 4 is log-convex on where e® = p. 

The rate region is a compact set. Theorem 2 in [87] shows that with the above axioms, C is 

a strictly convex set. Hence, the Pareto-optimal rate vectors are extreme points. Therefore, 

it satisfies the assumption of the rate region in our system model. 

We again decompose the dual problem into two subproblems by introducing of an auxiliary 

rate vector 

R ^ { R I , R 2 , . . . , R N ) , (B.4) 

and reformulate the problem into: 

max U (R) 
ReB 

(B.5) 

subject to 

R h R (B.6) 

R e c (B.7) 

where ；B is a closed rectangular box in M^ of the form 

l e [ 0 , & „ ] ’ n = l,2，...’ iV} (B.8) 

that contains C. Such a bounding box B exists because C is assumed to be compact, and hence 

bounded. Using the property that [ / (R) is monotonically increasing for every component of 

R, we can see that the reformulated version is in fact equivalent to the original version. 

We relax (B.6) to form the partial Lagrangian: 
N 

= U(R) - 艮 ) ， (B.9) 
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where 〜’s are non-negative Lagrange multipliers. Denote the vector (fi i, /i2, 

The partial Lagrangian can be rearranged as 

L(R,R,//) = U{R) - f i ' R 

Define the partial dual function q(fjb) by 

The dual problem is 

= max L(R, R, /x). 

niing(Ai) 

/MO by ft-

(B.IO) 

(B . l l ) 

(B.12) 

with the minimum taken over all nonnegative /z^'s. Computation of the partial dual function 

amounts to solving two independent optimization subproblems, 

qifj,) = m a x ( [ / ( R ) - • R 1 + maxfj.- R. (B.13) 
Res J Rec 

Again, we decompose the problem into the following two subproblems. 

Problem B.l . 

m a x | [ / ( R ) ~ /x R } 

Problem B.2. 

max fjL ‘ R. rgc 

(B.14) 

(B.15) 

Let R*(/Lt) and R*(/x) be the optimal R and R for a fixed fx respectively. Following a 

similar proof in Section 4.7.2, we have the algorithmic framework to solve the joint utility 

maximization problem in Algorithm 1. 

In Step 6 of Algorithm 1, is increased if > Otherwise, is decreased. 
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Algorithm 1 Framework for Joint Utility Maximization 
Initialize fj, 

n<r-l 
while /i has not converged do 

Initialization for bisection search of mur 
while < e do 

Bisection update of fin and its upper and lower bounds 

Jrt {fx) — argmax^gg 
R*(") f - argmaxRec fJ' • R 

end while 

n 4 - n + 1 

if n> N then 

n f - 1 
end if 

end while 



Appendix C 

Proofs of Theorems in 5 

c. Proof of Lemma 5. 

I t can be directly implied by the results below. Consider a degraded Gaussian broadcast 

channel with N users. Let ĝ , be the power gain of user i and we assume that gi > g2 > … 〉 

gpf. Let T\ and Pi be the rate and transmission power to user i respectively. The one-sided 

power spectral density is assumed to be NQ and the bandwidth is assumed to be W. The 

rates 7\ should satisfy the following constraints [18] 

< log 1 + 9zPi 

Since 

we have 

r i < log 1 + 9iPi 

= 1 , 2 N. (c.i) 

(C.2) 

Pi 
NoW - 9i 2 丄 ( e ” — 1 ) (C.3) 

141 
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Then, consider i = 2. 

r2 < log 1 + 92P2 
giPi + NqWJ 

92P2 
=loR 1 4 - 擎 

\ 卞 NqW / 

1 + Pi 

92 — 1) + NoW 

6『2 „ 1 \ < 
U2 . NOWJ \ ) - NOW 

1 ' � - � Pi ^r, < PI+P2 

P2 

NoW 
Pi +P2 

— — 1 ) + — r i — i ) < 
92� ^ 91 ^ ) — N^W 

By repeating this computation for i = 3 ,4 , . . . , A/‘, we can deduce that 

1 N iv 1 / N 

NoW ffz 
)
y
 

1
 

j
 e

 

/
f
\
 

/
 

1
 

r
 j

 +
 

>

 f
f
 

(C.4) 

(C.5) 

(C.6) 

(C.7) 

(C.8) 

(C.9) 

The lower bound can be achieved by superposition coding because equality holds for the 

above inequalities if superposition coding is used. Therefore, the lower bound is achieved. 

C.2 Proof of Proposition 5.4 

Since g^(A) is a concave function, ^ is a monotonically decreasing function. 

Now, we prove the second part of the proposition. If A = Amm, 

A < (0) 

Hence, 

In 
A 

in 

T l f ( O ) ； 

A 
0, 

(C.IO) 

(C. l l ) 

(C.12) 

(0.13) 
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That means, = R l s . W = 0 and 

dX 
凡〉0. 

I f 入 = A r 

A > T j f (：^丨⑦)exp(iy 

(C.14) 

(C.15) 

C.3 Proof of Proposition 5.5 

By Lemma 5.1, we have 
2M- /2M-

exp 
\ 

Y,民’调[exp — 
\k=3+l J 

(G.16) 

For sufficiently small x, according to the Taylor's expansion, e® 1 + a;. Hence, for 

sufficiently small Arc and x, - e® fti x. Therefore, 
M - M jvj 1 jyj. 1 

M l M ^ 1 

M ^ M J 1 M ^ 

二 H • + H + ^ ^ - • ， 

M 

E 
1 1 \ , A 1 ^ 

This implies that for sufficiently small jR '̂s, 
M M M y ^ M M 

1 
及,A 

Rz. 

M M M / ^ 1 \ J 以 JW -i JW -

M M 

1=1 \ 名’Oj / 1=1 尸 i ’ j卢 

M 

1 

口 1 

M M 

M M 
I
 

w
 

1 1 

M M 1 M 1 

口 1 力J,A 口 1 〜 

+ 
而 及,A A ) 

(C.17) 

(C.18) 

(C.19) 

(C.20) 

(C.21) 

(C.22) 

(C.23) 



Appendix D 

Proofs of Close Form Solutions in 
0 e 2 e 1 

Firstly, we prove the following results. 

Lemma D.l . If 次 f > Z, {S) R. 

Proof. If > Zfl)—” = 0. Then 

ar,. 
dR. ( R ) 

+ 
z. 

_ J _ pxn ( ( 丑 ) + ⑶ R⑶]4- 1 pxn f � + #力 R � ) 
„ ( £ > ) exp 十〜3—z九3—2)十 ^ ^ exp ( ît̂  十 。 玄 ’ 呂 一 ？ ^ ! � — ！ j 

exp 

(D.l) 

For the 徑 1 〉 纪 ) > 敬 ” 《 ) > 〉 a n d 纪 ) > ZgL, > Z恐” by 
substituting the corresponding values of <5茂二 and we can easily show that -^k) > 0 

for all 0 < < R. 

144 
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Moreover, 

r a - . = ^ exp [ ( l - C l s - . ) + [exp ( H - - 1 

+ 

+ 

• ^ e x p : € l ’ 3 — , ( i ^ - 4 旬 + ⑶ ] ( e 妃 1 ) 

(1 — 5fX) R + ( 4 Z - €1) i ^ f - l ] ( e 域 " - l ) (D.2) 

which is clearly a strictly increasing and convex function of . Hence, must be 0. • 

Case I: Z l f > Zg) and Z 没 > Z；̂ ) 

Direct consequence of Lemma D. l . 

Case II: Z (么 > > 绍 L and < ^ f - l 

I fZ^a ! , > = 0. Also, by Lemma D. l , as > Zll)—” 严 = 0 . The optimization 

problem can thus be reduced to 

mm 
丄上丄丄丄上 ,n、 

4 用 4 仍 

—1) + 

+ 
z ‘ 

exp 

7 P ) “ 

K!) 
exp 

+ 
K2)-

subject to 

丑 恐 . + = R-

By eliminating the constant terms, (D.3) can be further simplified to 

mm 

(D.3) 

(D.4) 

(D.5) 
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Since the optimization problem is convex, the optimal solution, i?^^* and R^^^*, satisfies the 

following Karush-Kuhn-Tiicker (KKT) conditions: 

exp ( i? + R 均 +11-A(丑）=0 

\ 么,3-1 

乙 _ z‘ 

(D.6) 

(D.7) 【 广 A ⑶ = 0 

+ 4 - 1 = R (D.8) 

A ⑶ 丨 = 0 (D.9) 

A ⑴ ) ( D . I O ) 

i ? S ， 4 3 , A ( ” ⑵ 2 0 ( D . l l ) 

where / i is the Lagrange multiplier for (D.4), A(只）and are the Lagrange multipliers for 

R^^l and R^^l respectively. 

I t is obvious that R^'^l E [0, i?]. We consider three possible cases of namely, = •， 

0 < < R and = R. 

If 4 - i = 0, = R and thus A ⑶ = 0 . Hence, 

M二 — 7(5) r^{D) 
�R 

which implies that 

yiD) yiS) y{D) 

z‘ (D) z. iS) 

Similarly, we can prove that if 0 < R^^^ < R 

0 〈 丑 烈 善 ( “ 

log 

e 丑 二 久 ( 用 > 0 

f \ 

U P) < 0. 

(D.12) 

(D.13) 

(D.14) 

心 3—i, 

( 1 M 
—log 

卜 \ A. / j 
(D.15) 

and if Ri^l = R, 

log 
7 例 Z. iS) log 

1
 

(D) 
,3— 

> R. (D.16) 
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This proves (6.12). 

(S) Case III: Z!’?) > and < Z^ 

I t can be proved in the same way as in the last case. 

Case IV: Z j j > > Z^f and Ẑ ^̂  > z g � > z g ) 

By substituting — — 1 for all i, j and some simplifications, the optimization problem 

becomes 

min y ^ 

subject to 

1
 

1
 

2 , e丑 

+ 7 ⑶ 7(D) I 7(1?) 
1=1 � 1 ^1,3-

+ i ? , � ) = i ?， i = l , 2 

exp ( 4 - 1 ) 

(D.17) 

(D.18) 

(D.19) 

Since the optimization problem is convex, the optimal solution must satisfy the following 
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K K T conditions 

/ 1 1 
yiD) 7 � 

.^2,2 乙 2,1 

1 

exp ( H f ) + M l + ( 泰 - 泰 + 由 ) K ) ) + - - 。 

(D.20) 

/ „ \ 

'1,2 
exp (丑r + 4 用 ) 

ryiD) ^(S) Z/1 1 Z/1 <> 

. ^2 ,2 心 2,1 

两 - 两 + ⑩ ,^1,2 ^1,1 ^1,2 , 
(D.21) 

^ \ e x p ( M 切 + M 均 ) + / i i — A i 仍 = 。 

(D.22) 

(D.23) 

4 丑 ) + 坊 = R 

(DM) 

(D.25) 

- 0 

(D.26) 

入 W ) = 0 
(D.27) 

4 坊 仍 = 0 

(D.28) 

� P ) = 0 

(D.29) 

> 0 . 

(D.30) 
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where m is the Lagrange multiplier for the constraint R\R、+ = R and Ap) and ；vf) are 

Lagrange multipliers for the nonnegative constraints of Hp ) and respectively. 

Firstly, we show that at least one of and i?严 is 0. Suppose R(产 E (0，R], A f ) = 0. 

The first four K K T conditions become 

.^2,2 心 2,1 

exp ( 丑 + + 
(e丑 

Z、 
(5) + yiD) ‘ 7(D) 

心 2,2 -^2,1 

exp 均 ） + Ail = 0 

(D.31) 

7 � 

M 

+ 7(S) 7(D) , 
Z/I <5 ZJ-, 1 ZJ 

(D.32) 

P) Z (5) 

7 例 7 (5) 

exp + = 0 

(D.33) 

(D.34) 

Prom (D.31) and (D.34), we obtain 

A f ) - M 2 + 
1 

RJ{D) ‘ 7(D) 
.力 2,1 心 2,2 心 2,1 

Then, we combine i t w i th (D.32) to eliminate \xi and obtain 

‘ 、 ’ 3丑 1 1 \ 

+ j exp (丑P)) 4- Ml = 0. (D.35) 

- ] _ 

— 
exp + 4丑)）+ 

7 � yiD) + 
Z/1 O 力1 1 n 

exp 

+ 1 + e x p ( / ？ 严 ) + / i i = 0 . 
7(50 I y{D) 

.^2,1 乙 2,2 力 2,1 . 

Finally, we combine i t w i th (D.33) to eliminate f i i and obtain 

(4用）-Ar) + Ar) 

(DM) 

，R 
+ 'y{S) M) I ^{D) 

，R 
+ 

1
 

+
 

1
 

,心2，1 心 2,2 心 2,1 

(D.37) 
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which implies that 

xiR) xiD) /\2 — /\2 

(D.38) 

That means, > A 『 > 0. This implies that 丑 )=0 . Similarly, we can also prove that 

if > 0, ) 二 0. This implies that at least one of the Hp)’s is 0. If Ri^^* = 0, 

r v = 
e丑一 

Z. (D) + 
Z. P) exp + 

7 ( 巧 7 ( 5 ) 
exp ( i C ! ) 4-

Z. (s) 

> 0. 

奶
f
 

丨
T

则
 

Q
』
 

<
 a
 Now, I V is a strictly convex function of and R^^l so the optimal R ^ ^ and i ^ f ! can be 

determined as follows. We substitute R^^l = R — R^^^ into the above equation. Then, we 

derive Fj- wi th respect to i ?⑵ and set the derivative to 0. Finally, we project the obtained 

R�么 into the interval [0, R]. Then, we can immediately draw the same conclusion as in (6.15). 

Case V : 辦 � ) > 均？ > and ^^^ > Z^ l̂ > 

By substituting 把 ) = 一 simplifications, the optimization problem 

becomes 

mm 
1
 

Z P) z (5) + 7P) 
.R 

7I 

(D.40) 

exp exp ( i ? ^ ) ) 

subject to 

R[印 + R�广=R, =1 ,2 (D.41) 

> 0, 2 = 1 , 2 . (D.42) 

I t is easy to see that and are independent to 用 and Hence, we can 

independently optimize these two sets of variables. 

To optimize R[R、and we solve the following optimization subproblem, 

mm 
4 印 巧 N 

由 — i j f ) - P + 泰 exp (D.43) 
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subject to 

� + == R, 

which is a convex optimization problem. The K K T conditions 
�R 
e丄 

7 ⑶ 力2,1 

Z. {D) z (s) 

exp ( 丑 严 — A ⑷ = 0 

exp 切 — A ( 功 = 0 

i i f ) + M 仍=0 

A ⑶ 用 = 0 

入⑷严丨=0 

M用，丑P), A ⑶ ’ A ⑶ 2 0. 

I f R[均 二 0, = R. Hence, A ( 仍 = 0 and 

Z. (D) z. (S) 

Then, 

which implies that 

e丄 
[D) 7 例 7(50 

e^ = A ⑶ > 0 

7 ⑴） y{S) 

Similarly, we can show that if 0 < < R, 

log 
Z. P) 

0 < = - l o g 
7 ⑷） 7 ( 5 ) Z/1 1 Z/i o 

log 

< 0. 

1 
(D) < K 

We can also show in the similar way that if = R, 

Z‘ (D) > R 

(D.44) 

(D.45) 

(D.46) 

(D.47) 

(D.48) 

(D.49) 

(D.50) 

(D.51) 

(D.52) 

(D.53) 

(D.54) 

(D.55) 

Hence, the optimal i?^用 satisfies (6.16). By considering another optimization subproblem, 

we can also prove that the optimal 用 satisfies (6.16). 
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