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Prologue

Many of the greatest, of the most important, aspects in science and mathematics were
developed within the framework of physical science. These advances have been based on
formulating the underlying mathematical equations for the process in question. Almost all
physical, chemical and biological systems or processes obey mathematical laws that can be
formulated by differential equations. This striking fact was first discovered by Isaac Newton
(1642-1727) when he formulated the laws of mechanics and applied them to describe the
motion of the planets.

Scientist, have extended over the centuries these type of connections to include a broad
diversity of areas of science and technology, from which a field has emerged called math-
ematical modeling. A mathematical model, consisting of physical "reality" expressed in
mathematical terms, is a partial differential equation, or more likely, a system of partial
differential equations, whose solution describes the behavior of the physical system in view.

Partial differential equations were not consciously created as a subject, but emerged ap-
proximately in the beginning of the 18th century as ordinary differential equations "failed"
to describe the physical principles studied. Partial differential equations are categorized
into linear and nonlinear and the significance of the partition cannot be overstated. Linear
equations enjoy an algebraic structure to their solution sets, i.e. their solutions super-
impose. Nonlinear equations do not share this property. Nonlinear equations are harder
to solve and their solutions are more difficult to analyze. There are in fact only a lim-
ited number of methods available to solve partial differential equations analytically without
introducing approximate or numerical techniques.

Perhaps one of the oldest and most widely used technique for the solution of the partial
differential equations of mathematical physics is the method of spectral decomposition,
namely separation of variables. Introduced by d’ Alembert, Daniel Bernoulli and Euler in
the middle of the eighteenth century (for an exciting historical walkthrough see [Kli90]) it
remains a method of great value today. Here, the unknown function is separated into a
product of functions (multiplicatively separable) which depend solely on one of the variables.
A set of such solutions is obtained which, due to the superposition principle, can be
summed up to give a "general solution". The boundary conditions are applied to this
solution and these restrict the summed functions to a subset, yielding the coefficients of
the series. This method, in the form of additive separable solutions can also be applied to
some nonlinear first-order equations. Moreover, a generalization of separation of variables
exist [PZ03], i.e. obtain a solution in the general form

u(x1, x2) =
n∑

i=1

φi(x1)ψi(x2) ,

vii



viii PROLOGUE

in order to solve PDE’s with quadratic or power nonlinearities, viz

m∑

j=1

fj(x1) gj(x2)
∏

j

[u(x1, x2)] = 0

where
∏

j [u] are differential forms of the products of nonnegative integer powers of the
function u and its partial derivatives. It should be noted that often exact generalized
separable solutions cannot be obtained by other well-known methods.

Another powerful methodology for solving PDE’s are integral transforms. Integral trans-
forms, in which the partial derivative are reduced to algebraic terms and ordinary deriva-
tives, can be traced back to the pioneering work of Pierre Simon Laplace [Lap20] on prob-
ability theory in the late eighteenth century and of Jean Baptiste Joseph Fourier [Fou22]
in his groundbreaking study La Théorie analytique de la Chaleur, published in 1822. The
fundamental idea is to represent a function f (x) in terms of a transform F (k), using an
integral transform pair

F (k) =

∫
K(k; x) f (x) dx (1)

f (x) =

∫
K ′(x; k) F (k) dk . (2)

A function f (x) defined in terms of a function F (k) by means of an integral relation (1),
is said to be the integral transform of the function F (k) by the kernel K(k; x). The ap-
plication of the transform constitutes the transformed problem solvable and the original
function space can be recovered by applying the inverse transform (2). Although Fourier
is celebrated for his work on the conduction of heat, the mathematical methods involved,
particularly trigonometric series, are very important and useful. He created a coherent
mathematical method by which the different components of an equation and its solution
in series were identified with the different aspects of the physical solution being analyzed.
It is no exaggeration to say that the scientific achievements of Joseph Fourier provided
the fundamental basis for modern developments of the theory and applications of partial
differential equations.

Perhaps, the most important of partial differential equations in applied mathematics
and mathematical physics is the one associated with the name of Pierre-Simon Laplace
(1749-1827)(see the classic resource on the history of Mathematics [Bal60]). This equation
was first discovered by Laplace while he threw himself into extensive research for seventeen
years (1771-1787). Laplace developed the idea of the potential -a name first given by
Green in 1828, appropriated from Lagrange who had used it in his memoirs of 1773,
1777 and 1780, a concept which is invaluable in a wide range, such as electromagnetism,
hydrodynamics, etc.

Laplace’s equation, which is time independent, arises in the study of a plethora of
physical phenomena, including electrostatic or gravitational potential, the velocity potential
of an incompressible fluid flow and the displacement field of a two- or three- dimensional
elastic membrane. The relation with the physical world, however, dictates that certain
conditions on the boundary of the region in which Laplace equation is to be solved, must
be satisfied. The problem of finding solutions that takes on the given boundary values
is known as the Dirichlet boundary-value problem, after Peter Gustav Lejeune Dirichlet



ix

(1805-1859). If values of the normal derivative are prescribed on the boundary, the problem
is known as Neumann boundary-value problem, in honor of Karl Gottfried Neumann (1832-
1925).

Despite the efforts by many, great mathematicians including Adrien-Marie Legendre
(1752-1833), Carl Friedrich Gauss (1777-1855), Simeon-Denis Poison (1781-1840), very
little was known about the general properties of the solutions of Laplace’s equation until
1828, when George Green (1793-1841) and Mikhail Ostrogradsky (1801-1861) indepen-
dently investigated properties of a class of solutions know as harmonic functions.

In 1836-1837, Jasques Charles François Sturm (1803-1855) and Joseph Liouville
(1809-1882) published a series of papers on second-order linear differential equations,
originated from the study of a class of boundary-value problems. The influence of their
work was such that this subject became known as Sturm-Liouville theory. This theory is
a natural generalization of the theory of Fourier and extends the scope of the method of
separation of variables.

Through the years, tremendous progress has been made on the general theory of ordi-
nary and partial differential equations (for an excellent review see [BB98]). With the advent
of new ideas and methods, new results and applications, both analytical and numerical
studies are continually being added to this subject. Partial differential equations have been
the subject of mathematical research for over three centuries and, owing to the increasing
need in mathematics, science and engineering to solve more and more complicated real
world problems, it seems quite likely that partial differential equations will remain a major
area for many years to come.

The main concern of this dissertation is focused on the derivation of novel integral
formulation for simple problems. These alternative integral representations display a rapid
decay as the complex parameter involved tends to infinity and are therefore suitable for
numerical computations and for the study of the asymptotic properties of those solutions.
There is also another important advantage attached to the novel formulae presented. These
integral representations are useful for solving changing-type boundary value problems
(such as Dirichlet data on part of the boundary and Neumann data on the complementary
of the boundary).

The dissertation is divided into a number of chapters as follows. The introductory chap-
ter consist as the initiation of the reader to the generalized transform method, introduced
by Prof. Fokas, which will then applied to a particular example, namely the Square, in
Chapter 2.

Chapter 3 is devoted to the theory of Gegenbauer functions. The behavior of the Gegen-
bauer functions of the first and second kind of general complex degree ν and order λ on the
cut (−1,+1) are examined. Moreover, series representations together with asymptotic ex-
pansions, which to the authors knowledge are new, are presented. The Gegenbauer Integral

Operator Gλ
ν , which plays a crucial role in the derivation of novel integral representations

associated with the new method, is here for the first time introduced. Last but not least, an
alternative approach arriving at the Wronskian of an independent pair of solutions using
recurrence relations is presented.

In Chapters 4 and 5 the Laplacian operator in the interior and exterior of a Sphere and
the Stokes’ operator concerning the irrotational flow of an incompressible, viscous fluid are
analyzed. Technical calculations are left to the Appendices.



CHAPTER 1
The Generalized Transform

Method

Mathematicians did not consciously created the subject of partial differential equations
(PDE’s). Their continuously exploration of physical problems† secured a better grasp of the
physical principles underlying the phenomena and mathematical statements were formu-
lated which are now comprised in partial differential equations.

A general approach for constructing a large class of solutions was invented almost
with the advent of partial differential equations. This approach, based on the efforts of
d’ Alembert, Euler, D. Bernoulli and others, involved separating variables, an ingenious
method that decomposes a partial differential equation into a set of ordinary differential
equations (ODE’s), and superimposing, namely building up complicated solutions from
simple ones, the solutions of the resulting ordinary differential equations.

Separation of variables lies at the heart of the use of integral transform, and therefore
led to solutions of PDE’s by a transform pair. A great variety of integral transforms exist
in the literature, such as the Fourier, Laplace, Mellin, Kontorovich-Lebedev, Mehler-Fock,
naming only a few of them, as well as the finite analogs for certain of them. For a given
boundary-value problem the appropriate transform is dictated by the differential operator,
the fundamental domain and the boundary conditions prescribed. For simple boundary-
value problems there exists an algorithmic procedure deriving associated transform pair
[DB06, Sta97]. This procedure, based on the spectral decomposition of a single eigenvalue
equation, has been remarkably successful for solving a variety of initial and boundary-value
problems. However, for complicated problems the classical transform fails.

Within the last decade, a new approach for solving boundary value problems (BVP) has
been developed by Fokas and it is presented in [Fok08]. The novelty of the Fokas method
is based on the construction of a tailor-made transform, for each BVP, assimilating the
geometrical and spectral characteristics of the problem. The key feature of this methodology

†One of the major problems of the eighteenth century consisted of the determination of the amount of gravi-
tational attraction one mass exerts on another, which ultimately led to the theory of potential.

1



2 CHAPTER 1. THE GENERALIZED TRANSFORM METHOD

lies in the successful manipulation of the so-called global relation, a formula connecting the
solution of the BVP with its derivatives on the boundary. Furthermore, one must underline
two important notions in the new method presented. One is the concept of integrable
nonlinear equations which is closely followed by Lax pairs. We will see these two concepts
later one.

For linear PDE’s with constant coefficients‡ this new approach for solving boundary
value problems involves the following steps.

1. Given a PDE, formulate the PDE as the compatibility condition of two linear equations,
viz find a Lax pair for the given PDE.

2. Perform a simultaneous spectral analysis of both equations which yields a Riemann-
Hilbert problem.

3. Given appropriate boundary conditions, analyze the global relation, satisfied by the
boundary values of the solution and its derivatives.

Let us now proceed in more detail.

Elements of the geometry of the polygon. Consider a convex and bounded polygon
Ω ⊂ C in the complex C-plane with vertices z1, . . . , zn, zn+1 = z1 as shown in Fig. 1.1.

Figure 1.1: Part of the convex and

bounded polygon Ω with vertices zj .

Furthermore, since the vertices zj are finite in num-
ber, the sum of their angles equals

n∑

j=1

θj = (n− 2)π .

The convexity of Ω implies θj ∈ (0, π) and thus from
Fig. 1.2 it is easily deduced that θj = ϕ − φ. Since
φ = arg(zj−1 − zj) and ϕ = arg(zj+1 − zj) we find

θj = arg(zj−1 − zj) − arg(zj+1 − zj) .

Figure 1.2: The angles θj , φ and ϕ.

Let q(x, y) satisfy the Laplace equation in the in-
terior Ω ⊂ C of a convex and bounded polygon with
vertices z1, . . . , zn, zn+1 = z1, z = x + ı̇ y as shown
in Fig. 1.1. In complex coordinates, using

∂

∂z
=

1

2

(
∂

∂x
− ı̇

∂

∂y

)
,

∂

∂z̄
=

1

2

(
∂

∂x
+ ı̇

∂

∂y

)
,

the Laplace equation is written as

∂2

∂z ∂z̄
q(z) = 0 ,

which can be reformulated in the form

∂

∂z̄

(
∂q

∂z

)
= 0 , (1.1)

where an overbar denotes complex conjugation.
From (1.1) it is obvious that q(z) is harmonic if ∂zq(z) is an analytic function. From

‡In the case where the coefficients are functions of the variables, see [Fok04, TF07]
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this observation we conclude that it is simpler to obtain an integral representation for an
analytic function, namely for ∂zq(z), instead of q(z).
Since q(z) is a solution of the Laplace equation, the following differential form is closed

W (z, k) = e−ı̇kz ∂q

∂z
dz, k ∈ C, z ∈ Ω ⊂ C ,

i.e.

dW (z, k) = e−ı̇kz ∂2q

∂z ∂z̄
dz ∧ dz̄ = 0, k ∈ C, z ∈ Ω ⊂ C . (1.2)

Then, Stoke’s theorem ∮

∂Ω

W =

∫∫

Ω

dW ,

implies that ∫

∂Ω

e−ı̇kz ∂q

∂z
dz = 0, k ∈ C, z ∈ Ω ⊂ C . (1.3)

We will refer to this equation as the global relation. Rewrite the foregoing expression as

n∑

j=1

ρj(k) = 0, k ∈ C, (1.4)

where (j) corresponds to the side (zj+1, zj) of the polygon and the spectral functions ρj(k)
are defined as

ρj(k) =

∫ zj

zj+1

e−ı̇kz ∂q
(j)

∂z
dz, k ∈ C, j = 1, 2, . . . , n, zn+1 = z1 . (1.5)

Proposition 1.0.1 ([FK03, FFX04]) Let Ω be a bounded convex polygon in the complex C-

plane with vertices z1, . . . , zn. Let f be a smooth complex-valued function defined on the

boundary ∂Ω of the polygon Ω and consider fj the restriction of f on the side (zj+1, zj).
Assume that there exist a function f such that the spectral functions (1.5) with ∂z q

(j) = fj
satisfy (1.4). If, the analytic function ∂z q is defined as the representation

∂q

∂z
=

1

2π

n∑

j=1

∫

ℓj

eı̇kzρj(k) dk , (1.6)

where the rays ℓj in the complex k-plane are defined as

ℓj =
{
k ∈ C

∣∣∣ arg k = − arg(zj − zj+1)
}
, (1.7)

then q(z) satisfies the Laplace equation in Ω and on the jth side, ∂z q
(j) = fj .

Indeed, consider an auxiliary function µ(z, k), k ∈ C, z ∈ Ω ⊂ C which satisfies the system

(∂z − ı̇ k)µ(z, k) = ∂z q(z), (1.8)

∂zz̄ µ(z, k) = 0 . (1.9)
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Introducing an exponential Euler factor, equation (1.8) becomes

d
(
e−ı̇ k z µ(z, k)

)
= e−ı̇kz ∂q

∂z
dz .

Integrating the above equation along any curve Γ(zj , z) connecting the vertice zj with any
point z inside Ω, we find

µj(z, k) =

∫

Γ(zj ,z)

eı̇k(z−ζ) ∂q

∂ζ
dζ .

Moreover, since ∂z q is analytic, the contour Γ(zj , z) ⊂ Ω can be deformed in any convenient
way. Given the convexity of the polygon Ω let us consider the line segment which connect
the vertice zj with any point z inside the given domain. Then the latter equation reads

µj(z, k) =

∫ z

zj

eı̇k(z−ζ) ∂q

∂ζ
dζ . (1.10)

From the above relation it is obvious that µj(z, k) is an entire function with respect to k ∈ C,

with k = ∞ as the only possible singularity. Therefore, in order for µj to be bounded as k
tends to ∞, the following inequality must hold

Re
(
ı̇k(z − ζ)

)
≤ 0, z ∈ Ω ⊂ C, ζ ∈ Γ(zj , z), k ∈ C . (1.11)

The above inequality implies the restriction of the complex variable k to the sector Sj

associated with the vertice zj

Sj =
{
k ∈ C : arg k ∈

[
− arg(zj−1 − zj), π − arg(zj+1 − zj)

]}
. (1.12)

Indeed, for the straight line (zj , z) we have

arg(z − ζ) ∈
[

arg(zj−1 − zj), arg(zj+1 − zj)
]

which together with (1.12) implies

arg k + arg(z − ζ) ∈ [0, π] ,

namely, inequality (1.11). The angle of the sector Sj , denoted by ψj , depicted in Fig. 1.3,
equals

ψj = π − arg(zj+1 − zj) + arg(zj−1 − zj) = π − θj ,

from which
n∑

j=1

ψj =
n∑

j=1

(π − θj) = nπ − (n− 2)π = 2π .

The sectors Sj and Sj+1 share the ray ℓj as common boundary and therefore

ℓj = Sj ∩ Sj+1 =
{
k ∈ C

∣∣∣ arg k = − arg(zj − zj+1)
}
.
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Figure 1.3: The rays ℓj in the k-plane associated with the polygon Ω in the z-plane.

Subtracting (1.10) with the equation resulting from (1.10) with j replaced by j+1, we derive
the so-called jump condition

µj+1(z, k) − µj(z, k) = eı̇ kz ρj(k), k ∈ C . (1.13)

Moreover, integrating (1.10) by-parts the asymptotic behavior for the auxiliary function
µj(z, k) is obtained

µj(z, k) = O
(1

k

)
, k → ∞, z ∈ Ω ⊂ C . (1.14)

Equations (1.13) and (1.14) refer to a so-called Riemann-Hilbert problem∗ the solution to
which is [AF03]

µ(z, k) =
1

2ı̇π

n∑

j=1

∫

ℓj

eı̇κz ρj(κ)

κ− k
dκ, (1.15)

where the rays {ℓj}n
j=1 are defined by (1.7). Substituting (1.15) into the first equation (1.8)

of the Lax pair we immediately obtain ∂z q(z). Note that the operator (∂z − ı̇ k) is such that
it annihilates the k-dependency.

Remark 1.0.1 Equation

ρj(k) =

∫ zj

zj+1

e−ı̇kz ∂q
(j)

∂z
dz ,

can be seen as the (finite) Fourier transform along the straight line segment (zj+1, zj). Then,

the inversion formula implies

∂q

∂z
=

1

2π

n∑

j=1

∫

ℓj

eı̇kzρj(k) dk .

∗The notion of a Riemann-Hilbert problem will be explained in more depth in section 1.2
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The solution is then obtained by integrating the expression for ∂z q(z) and by the use of
the reality condition

q(x, y) = 2Re

∫ z

z0

∂q

∂z
dz + const. (1.16)

The main differences between the two methods solving PDE’s i.e. the classical transform
(separation of variables) and the new (generalized transform) method, can be described
briefly as: (1) Applying the classical transform, we assume that the solution to a given
boundary-value problem can be expanded in a series of eigenfunctions. The generalized
transform method on the other hand, constructs the solutions without the need of using
eigenfunction expansions, arriving at separable solutions without actually assuming sepa-
ration [DF05]. (2) In contrast with the method of separation of variables, which is strongly
based on the geometry of the fundamental domain, the new method does not depend on the
geometry of the domain at hand, but on the linearity of the PDE. An overview is provided
in [Das03].

1.1 Integrability and Lax pairs

Since their exist different definitions of integrability, the question ”What is Integrability?”
results in a synthesis of many answers usually depending on how one chooses to attack
the problem. For example, one type of attack involves perturbative or asymptotic methods.
A second approach is algebraic, involving the classification of symmetries. Yet another
method is based on the analytic behavior of solutions in the complex domain, the technique
of Painlevé analysis where one examines if a given nonlinear PDE has Painlevé property,
i.e. the only movable singularities are poles (see [Mus99] and the references given there).
Another form of tackling involves the Lax pair formulation. Given a nonlinear PDE it is very
difficult to find a Lax pair associated with the PDE, so it is actually simpler to postulate a
Lax pair and determine to which PDE the pair correspond [IR00].

In what follows, we will call an equation integrable if it admits a Lax pair formulation,
i.e. it can be written as the compatibility condition of two linear eigenvalue equations. The
importances that the Lax pair consist of two eigenvalue equations must be emphasized,
since if the pair does not contain a spectral parameter, then it cannot be used to solve the
associated PDE. Moreover, for linear PDE’s, the existence of a Lax pair is usually related to
a closed 1-form [Ash08, FZ02].

Peter D. Lax, in his fundamental mathematical paper [Lax68], showed that it is possible
to solve nonlinear equations introducing linear techniques. Lax proved that if it possible
to find two linear PDE’s (the so-called Lax pair), such that the compatibility of these two
equations is equivalent to the initial PDE, then the equation accepts an analytic solution.
As mentioned, not every nonlinear PDE possess a Lax pair, but those that do are identified
as integrable. His approach in brief.

Consider the PDE
∂t u(x, t) = L(x, t)u(x, t) , (1.17)

where L(x, t) a nonlinear operator. Lax separated the nonlinear operator L(x, t) into two
linear A(x, t) and B(x, t) who actually ”absorve” the nonlinearity of L(x, t) through the
coefficients of A and B which are polynomials of u,∇u, etc. Thus, given an auxiliary
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function µ(x, t) and assuming that

A(x, t)µ(x, t) = λµ(x, t) (1.18)

∂t µ(x, t) = B(x, t)µ(x, t) , (1.19)

where λ is a time-independent parameter, one can easily show, by cross-differentiation,
that

∂t A(x, t) +
[
A(x, t), B(x, t)

]
= 0 , (1.20)

where [
A(x, t), B(x, t)

]
= A(x, t)B(x, t) −B(x, t)A(x, t)

is the commutator.
Equation (1.20) is called the Lax representation, where else equations (1.18),(1.19) con-
stitute the Lax pair. The difficulty with this method, as Lax points out, is that one must
”guess” a suitable A and then find an B in order to satisfy equations (1.18),(1.19). As an
alternative, Ablowitz, Kaup, Newell and Segur [AKNS74] proposed a technique which, very
generally, can be formulated as follows.

Consider two linear equations

∂x1
µ(x1, x2) = X1 µ(x1, x2) (1.21)

∂x2
µ(x1, x2) = X2 µ(x1, x2) . (1.22)

Cross differentiation yields

∂x2
X1 − ∂x1

X2 +
[
X1, X2

]
= 0 . (1.23)

This is, in essence, the equivalent of (1.20). Given X1, it turns out there is a simple
procedure to find X2 such that (1.23) contains a nonlinear equation. However, in order
for (1.23) to be effective, the operator X1 should include a (time-independent) parameter
which plays the role of an eigenvalue.

Remark 1.1.1 In the case where the vector field X = (X1,X2) is irrotational, i.e. ∇×X = 0,
equation (1.23) simplifies as [

X1, X2

]
= 0 ,

viz. the operators X1 and X2 commute.

However, the ingenious method introduced by Lax was adopted a few decades later by
Fokas and Gelfand [FG94] who proved that every linear equation has at least one Lax pair.
The importance is that the Lax pair technique in contradiction for nonlinear equations can
always be applied to linear PDE’s and provides a new point of view in dealing with linearity
and separability [Fok09].

1.2 The Riemann-Hilbert formulation

In what follows, a short survey on the Riemann-Hilbert problems is presented. Missing
details are found in the standard references of F.D. Gakhov [Gak90], N.I. Muskhelishvili
[Mus53] and N.P. Vekua [Vek67].
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1.2.1 Historical notes

In his 1857 paper “Theorie der Abel’schen Functionen” Bernhard Riemann [Rie57] first
posed the problem of finding an analytic function, given a relation of the boundary values,
in a certain domain. This problem became known as the Riemann problem (sometimes
also referred as the linear conjugation problem). A few years later, David Hilbert studied
the problem in more details, which in modern days is known as the Riemann-Hilbert
problem. A particular aspect of the Riemann-Hilbert problem, namely the existence of a
Fuchsian system with given singularities and a given monodromy group, was addressed
by Hilbert, among other problems, as the twenty-first problem at the Paris conference of
the International Congress for Mathematicians in 1900 [Hil02]∗ (see also [Gak90, p.137]).
Riemann-Hilbert problems are, moreover, associated with the notion of integrability of a
system [Its03].

1.2.2 The Riemann-Hilbert problem

The Riemann-Hilbert problem can be stated, in a simplified form, in the following way:
Find a sectionally analytic function Φ(z), which takes the values Φ±(z) for z ∈ Ω±,

Figure 1.4: The regions Ω+

and Ω− on either side of

the contour C

vanishes at infinity and undergoes a jump ϕ(t), viz satisfies
the condition

Φ+(τ) − Φ−(τ) = ϕ(τ) ,

passing through an oriented simple contour C in the complex
plane. The solution to this problem is closely related to the
Cauchy type integral

Φ(z) =
1

2πı̇

∫

C

ϕ(τ)

τ − z
dτ . (1.24)

Dropping the additional condition Φ(z) → 0 as z tends to ∞,

the solution of the problem is given by the formula

Φ(z) =
1

2πı̇

∫

C

ϕ(τ)

τ − z
dτ + const.

The above formula indicates that an appropriate limit (e.g. at infinity) reduces the number
of solutions.

When z approaches C along a path entirely in Ω+, Φ(z) has a limit Φ+(τ). Similarly,
Φ(z) has a limit Φ−(τ) in the case where z approaches C along a path entirely in Ω−. These
limits are given by the Sokhotski formulae†

Φ±(τ) = ±1

2
ϕ(τ) +

1

2πı̇

∫

C

ϕ(t)

t− τ
dt . (1.25)

If the contour C displays a corner point, depicted in Figure 1.5, the above Sokhotski

∗The original speech in German, “Mathematische Probleme”, can be found at
http://www.mathematik.uni-bielefeld.de/~kersten/hilbert/rede.html.
There also exist a radio speech of Hilbert recorded in Königsberg in 1930.

†also known as the Sokhotski-Plemelj formulae.

http://www.mathematik.uni-bielefeld.de/~kersten/hilbert/rede.html
http://math.sfsu.edu/smith/Documents/HilbertRadio/HilbertRadio.mp3
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Figure 1.5: Contour with corner point

formulae are reformulated as follows

Φ+(τ) =

(
1 − θ

2π

)
ϕ(τ) +

1

2πı̇

∫

C

ϕ(t)

t− τ
dt, (1.26)

Φ−(τ) = − θ

2π
ϕ(τ) +

1

2πı̇

∫

C

ϕ(t)

t− τ
dt . (1.27)





CHAPTER 2
Harmonic functions in

rectangular domains∗

2.1 Introduction

In most cases, a given, well-posed, boundary-value problem can be solved by means of
separation of variables, if there exist a coordinate system that fits the boundary of the
fundamental domain and at the same time it separates the partial differential equation
(PDE). Furthermore, separation of variables leads to the solution of PDE’s by a transform
pair. The "prototype" of such a pair is the Fourier transform. However, for complicated
problems the classical transform method fails. For example, there do not exist proper
transforms for solving many boundary-value problems for elliptic equations of second order
and in simple domains.

In 1997, A.S. Fokas [Fok97, Fok01, FK03] proposed a general method for solving
boundary-value problems for two-dimensional linear and integrable nonlinear PDE’s. An
equation in two dimensions (x1, x2) is called integrable if it can be expressed as the condi-
tion that a certain differential 1-form W (x1, x2; k), k ∈ C, is closed, e.g. linear PDE’s with
constant coefficients. This novel approach can be seen as a generalization of the separa-
tion of variables method, but more effectively (for a review see [Das07b]). It is based on the
simultaneous spectral analysis of the two compatible equations of the Lax pair associated
with the PDE, i.e. construct two scalar linear equations whose compatibility condition is
the given PDE. In general, one of this equations defines an eigenvalue problem and the
other is an evolution equation. The method expresses the solution in terms of the solution
of a matrix Riemann-Hilbert problem in the complex plane of the spectral parameter k.
The spectral functions ρ(k) determining the Riemann-Hilbert problem are given in terms of
the boundary values of the solution. Since for a well posed boundary-value problem only
one boundary condition is prescribed, some of the boundary values appearing in ρ(k) are
unknown. The fact that these boundary values are in general related can be expressed

∗This work has been published as [Dosa]

11
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in a simple way in terms of a global relation, which plays a crucial role in the analysis of
boundary-value problems, satisfied by the corresponding spectral functions.

More recently, Fokas and Novokshenov [FN] have shown that by algebraic manipula-
tion of the so-called global relation in specific subdomains it is possible to rederive the
classical transform for certain elliptic PDE’s. Moreover, the new method provides an alter-
native approach deriving this transform and also yields integral representations useful for
solving changing-type BVP’s and, since this integral representations involve a strong decay
as k tends to ∞, they are suitable for numerical computations and for the study of the
asymptotic properties of the solutions.

A question at hand concerns the kind of domain one should choose for this comparison.
Obviously, it depends on the coordinate system one is interested in. Let us focus on
the Cartesian coordinate system. Bearing this in mind, the domains in which one can
implement both techniques, are the rectangles. The simplest rectangle is the Square.

The present chapter is organized as follows. In section 2.2, a brief introduction of the
Fokas method applied to the case of a Square is given. In the sequence, in order to fix
notation and terminology, the classical transform is presented, which is then rederived in
section 2.6, by means of the analysis of the global relation. In the second part, consisting
of sections 2.7 and 2.8, the new method is implemented to derive alternative formulae
for the solution in terms of an integral instead of a series. This is realized by algebraic
manipulation of the global relation in appropriate subdomains of the Square. Moreover,
the machinery introduced is utilized in section 2.9 to solve a changing-type boundary value
problem. In the latter case, one must combine the new method with the Riemann-Hilbert
formulation.

2.1.1 Formulation of the Problem

The two dimensional Laplace equation in Cartesian coordinates, namely

(
∂2

∂x2
+

∂2

∂y2

)
q(x, y) = 0, (x, y) ∈ Ω , (2.1)

in the interior Ω of a Square defined by

Ω =
{

− L ≤ x ≤ L, −L ≤ y ≤ L
}

(2.2)

and depicted in Figure 2.1, where q(x, y) is a real valued function, is investigated.

We analyze the general Dirichlet problem

q(L, y) = f
(1)
D (y), q(x,−L) = f

(2)
D (x), q(−L, y) = f

(3)
D (y), q(x,L) = f

(4)
D (x) (2.3)

which, after a suitable parametrization, becomes

q(j)(s) = f
(j)
D (s) s ∈ [−L,L], j = 1, 2, 3, 4 , (2.4)

where (j) corresponds to the jth side of the Square.

We assume that the functions f (j)
D are smooth and compatible at the corners of the Square.
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Figure 2.1: The domain Ω =
{

− L ≤ x ≤ L, −L ≤ y ≤ L
}

The general Neumann problem can be treated in the same manner, where, furthermore,
the Neumann data have to satisfy the compatibility condition

∮

∂Ω

(
−∂q

∂y
dx+

∂q

∂x
dy

)
= 0 ,

and ∂Ω is the boundary of the domain.
Throughout the analysis presented, emanating from the linearity of the Laplacian operator,
the fact that the solution q(x, y) can be written as a linear combination of "partial solutions"
qj(x, y), corresponding to specific subproblems, namely particular boundary conditions, is
applied.

2.2 The Generalized Transform Method. A Brief Introduction

For the Square, equation (1.3) deduces to
∫ z1

z2

e−ı̇kz ∂z q
(1)(z) dz +

∫ z2

z3

e−ı̇kz ∂z q
(2)(z) dz +

∫ z3

z4

e−ı̇kz ∂z q
(3)(z) dz

+

∫ z4

z1

e−ı̇kz ∂z q
(4)(z) dz = 0, k ∈ C, z ∈ Ω ⊂ C ,

where the complex numbers z1 = L+ ı̇L, z2 = L− ı̇L, z3 = −L− ı̇L, z4 = −L+ ı̇L denote
the vertices of the Square and (j) corresponds to the side (zj+1, zj), j = 1, 2, 3, 4, z5 = z1.

Rewrite the foregoing expression as

4∑

j=1

ρj(k) = 0, k ∈ C (2.5)
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Figure 2.2: The rays ℓj associated with the Square

where

ρj(k) =

∫ zj

zj+1

e−ı̇kz ∂q
(j)

∂z
dz, z5 = z1, j = 1, 2, 3, 4 . (2.6)

Equation (2.5) is the so-called global relation for the particular case and the functions
{ρj(k)}4

j=1 are called the spectral functions.

Introducing the local coordinate system (T̂, N̂) on each side of the Square, as shown in
Figure 2.1, we obtain

∂q(j)

∂z
dz =

1

2

(
∂T q

(j)(s) + ı̇ ∂N q
(j)(s)

)
ds, s ∈ [−L,L], j = 1, 2, 3, 4

where ∂T q
(j)(s) is the derivative of the solution along the boundary and ∂Nq

(j)(s) is the
derivative of the solution normal to the boundary of the jth side of the Square.
Substituting the latter into (2.6) yields

ρj(k) =
1

2

(
G(j)(−ı̇k) + ı̇Ψ(j)(−ı̇k)

)
,

where

G(j)(−ı̇k) =

∫ L

−L

e−ı̇kz(j)(s) ∂T q
(j)(s) ds, Ψ(j)(−ı̇k) =

∫ L

−L

e−ı̇kz(j)(s) ∂N q
(j)(s) ds

and z(j)(s) a suitable parametrization for each side (j) of the Square.
Following the analysis, the solution is obtained from the reality condition

q(x, y) = 2Re

∫ z

z0

∂q

∂z
dz + const. (2.7)
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where
∂q

∂z
=

1

2π

4∑

j=1

∫

ℓj

eı̇kzρj(k) dk (2.8)

and the rays ℓj are defined by (1.7) and depicted in Figure 2.2.

2.2.1 The Global Relation

The so-called global relation, i.e. an integral relation connecting the boundary values of
the solution (Dirichlet data) with the normal derivative of the solution on the boundary
(Neumann data), for the particular case of the Square becomes,

e−ı̇kL Ψ(1)(k) + e−kL Ψ(2)(−ı̇k) + eı̇kL Ψ(3)(−k) + ekL Ψ(4)(ı̇k) = ı̇G(k) , (2.9)

where
G(k) = e−ı̇kL G(1)(k) + e−kL G(2)(−ı̇k) + eı̇kL G(3)(−k) + ekL G(4)(ı̇k)

and Ψ(j)(k), G(j)(k) are the following transforms of the Neumann and Dirichlet boundary
data

Ψ(j)(k) =

∫ L

−L

eks ∂N q
(j)(s) ds, G(j)(k) =

∫ L

−L

eks ∂T q
(j)(s) ds, j = 1, 2, 3, 4, k ∈ C

respectively.

2.3 The Classical Transform

When we apply the classical transform we assume the solution expanded in a series of
eigenfunctions of one of the variables, with the coefficient depending upon the other vari-
able. Separation of variables relies upon the completeness of the eigenfunctions corre-
sponding to one of the variables. The solution will depend on functions which enter into
the boundary conditions, and since the spatial domain Ω is rectangular, the relative eigen-
functions are trigonometric.
Furthermore, every function can be written uniquely as the sum of an even and an odd
function, or in terms of a Fourier expansion, every function, satisfying Dirichlet’s condi-
tions, which enters into the boundary conditions can be written as

f(s) ∼
∑

n

[
αn sin

(
nπ
L
s
)

+ βn cos
( (
n+ 1

2

)
π
L
s
)]
, s ∈ [−L,L] (2.10)

where the set S = {1} ∪ {sin nπ
L
s, n ∈ N − {0}} ∪ {cos (n+ 1

2 ) π
L
s, n ∈ Z} form a complete

orthogonal basis of L2[−L,L].

Proposition 2.3.1 Let the real valued function q(x, y) satisfy the Laplace equation (2.1) in

the domain Ω defined in (2.2), with boundary conditions (2.4), where the given functions

f
(j)
D (s), j = 1, 2, 3, 4 have sufficient smoothness and are continuous at the vertices. Then the
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classical representation for the solution is given by

q(x, y) =
∞∑

n=1

[
an sinh

(
nπ
L

(x+ L)
)

+ cn sinh
(

nπ
L

(x− L)
)]

sin
(

nπ
L
y
)

+

∞∑

n=0

[
bn sinh

( (
n+ 1

2

)
π
L

(x+ L)
)

+ dn sinh
( (
n+ 1

2

)
π
L

(x− L)
)]

cos
( (
n+ 1

2

)
π
L
y
)

+

∞∑

n=1

[
en sinh

(
nπ
L

(y − L)
)

+ gn sinh
(

nπ
L

(y + L)
)]

sin
(

nπ
L
x
)

+
∞∑

n=0

[
fn sinh

( (
n+ 1

2

)
π
L

(y − L)
)

+ hn sinh
( (
n+ 1

2

)
π
L

(y + L)
)]

cos
( (
n+ 1

2

)
π
L
x
)
,

(2.11)

where, by introducing a intrinsic coordinate system (T̂, N̂) on each side of the Square, the

Fourier coefficients an, bn, cn, dn, en, fn, gn and hn can be expressed as follows

an =
1

L sinh(2nπ)

∫ L

−L

f
(1)
D (s) sin

(
nπ
L
s
)

ds (2.12)

bn =
1

L sinh(2n+ 1)π

∫ L

−L

f
(1)
D (s) cos

( (
n+ 1

2

)
π
L
s
)

ds (2.13)

cn =
1

L sinh(2nπ)

∫ L

−L

f
(3)
D (−s) sin

(
nπ
L
s
)

ds (2.14)

dn = − 1

L sinh(2n+ 1)π

∫ L

−L

f
(3)
D (−s) cos

( (
n+ 1

2

)
π
L
s
)

ds (2.15)

en = − 1

L sinh(2nπ)

∫ L

−L

f
(2)
D (s) sin

(
nπ
L
s
)

ds (2.16)

fn = − 1

L sinh(2n+ 1)π

∫ L

−L

f
(2)
D (s) cos

( (
n+ 1

2

)
π
L
s
)

ds (2.17)

gn = − 1

L sinh(2nπ)

∫ L

−L

f
(4)
D (−s) sin

(
nπ
L
s
)

ds (2.18)

hn =
1

L sinh(2n+ 1)π

∫ L

−L

f
(4)
D (−s) cos

( (
n+ 1

2

)
π
L
s
)

ds . (2.19)

2.4 Analysis of the Global Relation

Replacing k with −k, the global relation (2.9)

4∑

j=1

e(−ı̇)j kL Ψ(j)
(

(−ı̇)j−1 k
)

= ı̇G(k), k ∈ C (2.20)

together with its Schwarz conjugate

4∑

j=1

eı̇j kL Ψ(j)
(
ı̇j−1 k

)
= −ı̇G(k), k ∈ C (2.21)
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and

G(k) =
4∑

j=1

e(−ı̇)j kL G(j)
(

(−ı̇)j−1 k
)
, k ∈ C ,

become

4∑

j=1

e−(−ı̇)j kL Ψ(j)
(

− (−ı̇)j−1 k
)

= ı̇G(−k), k ∈ C , (2.22)

4∑

j=1

e−ı̇j kL Ψ(j)
(

− ı̇j−1 k
)

= −ı̇G(−k), k ∈ C , (2.23)

where G(k) denotes the Schwarz conjugate of the function G(k).
By simple algebraic manipulations the above expressions can be combined to give,

− ı̇ sin kL
[(

Ψ(1)(k) + Ψ(1)(−k)
)

−
(

Ψ(3)(k) + Ψ(3)(−k)
)]

− cosh kL
[(

Ψ(2)(ı̇k) − Ψ(2)(−ı̇k)
)

−
(

Ψ(4)(ı̇k) − Ψ(4)(−ı̇k)
)]

=
ı̇

2
Γ1(k) ,

(2.24)

− ı̇ sin kL
[(

Ψ(1)(k) − Ψ(1)(−k)
)

+
(

Ψ(3)(k) − Ψ(3)(−k)
)]

+ sinh kL
[(

Ψ(2)(ı̇k) − Ψ(2)(−ı̇k)
)

+
(

Ψ(4)(ı̇k) − Ψ(4)(−ı̇k)
)]

=
ı̇

2
Γ2(k) ,

(2.25)

cos kL
[(

Ψ(1)(k) − Ψ(1)(−k)
)

−
(

Ψ(3)(k) − Ψ(3)(−k)
)]

− sinh kL
[(

Ψ(2)(ı̇k) + Ψ(2)(−ı̇k)
)

−
(

Ψ(4)(ı̇k) + Ψ(4)(−ı̇k)
)]

=
ı̇

2
Γ3(k) ,

(2.26)

cos kL
[(

Ψ(1)(k) + Ψ(1)(−k)
)

+
(

Ψ(3)(k) + Ψ(3)(−k)
)]

+ cosh kL
[(

Ψ(2)(ı̇k) + Ψ(2)(−ı̇k)
)

+
(

Ψ(4)(ı̇k) + Ψ(4)(−ı̇k)
)]

=
ı̇

2
Γ4(k) ,

(2.27)

where

Γ1(k) =
(

G(k) + G(k)
)

−
(

G(−k) + G(−k)
)
,

Γ2(k) =
(

G(k) + G(k)
)

+
(

G(−k) + G(−k)
)
,

Γ3(k) =
(

G(k) − G(k)
)

−
(

G(−k) − G(−k)
)
,

Γ4(k) =
(

G(k) − G(k)
)

+
(

G(−k) − G(−k)
)
.

The Dirichlet and Neumann problems can be solved by evaluating expressions (2.24)-(2.27)
at discrete values of k. This yields the unknown boundary values in terms of infinite
series. In particular, evaluating equations (2.24)-(2.27) at those values of k for which the
coefficients of Ψ(j)(k) ± Ψ(j)(−k) j = 1, 3 and Ψ(j)(ı̇k) ± Ψ(j)(−ı̇k), j = 2, 4 vanishes, we
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find
∫ L

−L

sin
(

nπ
L
s
)
∂N q

(1)(s) ds =
Γ2(ı̇nπ

L
)

8 sinhnπ
+

Γ3(ı̇nπ
L

)

8 coshnπ
, (2.28)

∫ L

−L

cos
( (
n+ 1

2

)
π
L
s
)
∂N q

(1)(s) ds = ı̇
Γ1(ı̇(n+ 1

2 ) π
L

)

8 sinh(n+ 1
2 )π

+ ı̇
Γ4(ı̇(n+ 1

2 ) π
L

)

8 cosh(n+ 1
2 )π

, (2.29)

∫ L

−L

sin
(

nπ
L
s
)
∂N q

(2)(s) ds = − Γ1( nπ
L

)

8 coshnπ
+

Γ2( nπ
L

)

8 sinhnπ
, (2.30)

∫ L

−L

cos
( (
n+ 1

2

)
π
L
s
)
∂N q

(2)(s) ds = ı̇
Γ4((n+ 1

2 ) π
L

)

8 cosh(n+ 1
2 )π

− ı̇
Γ3((n+ 1

2 ) π
L

)

8 sinh(n+ 1
2 )π

, (2.31)

∫ L

−L

sin
(

nπ
L
s
)
∂N q

(3)(s) ds =
Γ2(ı̇nπ

L
)

8 sinhnπ
− Γ3(ı̇nπ

L
)

8 coshnπ
, (2.32)

∫ L

−L

cos
( (
n+ 1

2

)
π
L
s
)
∂N q

(3)(s) ds = −ı̇Γ1(ı̇(n+ 1
2 ) π

L
)

8 sinh(n+ 1
2 )π

+ ı̇
Γ4(ı̇(n+ 1

2 ) π
L

)

8 cosh(n+ 1
2 )π

, (2.33)

∫ L

−L

sin
(

nπ
L
s
)
∂N q

(4)(s) ds =
Γ1( nπ

L
)

8 coshnπ
+

Γ2( nπ
L

)

8 sinhnπ
, (2.34)

∫ L

−L

cos
( (
n+ 1

2

)
π
L
s
)
∂N q

(4)(s) ds = ı̇
Γ4((n+ 1

2 ) π
L

)

8 cosh(n+ 1
2 )π

+ ı̇
Γ3((n+ 1

2 ) π
L

)

8 sinh(n+ 1
2π)

. (2.35)

Proposition 2.4.1 Let the real valued function q(x, y) satisfy the Laplace equation (2.1)

in the domain (2.2), with boundary conditions (2.4), where the given functions f
(j)
D (s)

have sufficient smoothness and are continuous at the vertices. Then the Neumann data

∂Nq
(j)(s), j = 1, 2, 3, 4 can be expressed in terms of the given Dirichlet data by the Fourier

series

∂N q
(j)(s) =

∞∑

n=1

[
A(j)

n sin
(

nπ
L
s
)

+ B(j)
n cos

( (
n+ 1

2

)
π
L
s
)]
, j = 1, 2, 3, 4 (2.36)

where the coefficients A
(j)
n and B

(j)
n are given by equations (2.28)-(2.35).

The coefficients A
(j)
n and B

(j)
n can be correlated with the Fourier coefficients (2.12)-(2.19)

through the known functions Γj(k), e.g. for j = 1 and kn = ı̇(n+ 1
2 ) π

L
we obtain

Γ1

(
ı̇(n+ 1

2 ) π
L

)
= −4ı̇π(n+ 1

2 ) cosh
[
(n+ 1

2 )π
]

sinh
[
(2n+ 1)π

]
(bn + dn)

+ 8ı̇(n+ 1
2 )(−1)n sinh

[
(n+ 1

2 )π
] ∞∑

m=1

(−1)m m

m2 + (n+ 1
2 )2

sinh(2mπ) (em − gm) .

Finally, the solution is then given by the expression

q(x, y) = Re





1

2ı̇π

4∑

j=1

∫ ∞

0

exp
[ (

−ı̇j+1 z − L
)
k
]

k

[
G(j) (−ı̇k) + ı̇Ψ(j) (−ı̇k)

]
dk + const.



 .

(2.37)
After long and tedious calculations (see for details Appendix A), (2.37) yields (2.11).
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2.5 The Global Relation Revisited

Let q(x, y) and q(x, y) satisfy the Laplace equation
(
∂2

∂x2
+

∂2

∂y2

)
q(x, y) = 0 , (2.38)

and the formal adjoint of the Laplace equation
(
∂2

∂x2
+

∂2

∂y2

)
q(x, y) = 0 . (2.39)

Multiplying (2.38) by q(x, y) and (2.39) by q(x, y) and subtracting them, we obtain the
divergence form

∂

∂x

(
q
∂q

∂x
− q

∂q

∂x

)
+

∂

∂y

(
q
∂q

∂y
− q

∂q

∂y

)
= 0 . (2.40)

Equation (2.40) holds true everywhere in R
2 and applying Green’s theorem to a closed

subdomain of R2, yields
∫

C

[(
q
∂q

∂x
− q

∂q

∂x

)
dy +

(
q
∂q

∂y
− q

∂q

∂y

)
dx

]
= 0 , (2.41)

where C is the boundary of the subdomain.
Equation (2.41) provides the global relation, since it relates the boundary values of the
solution with the values of the normal derivatives of the solution on the boundary.
Letting q(x, y; k) = X(x; k)Y (y; k) where k is the complex separation constant, it follows
that X(x; k) and Y (y; k) satisfy the ODE’s

X
′′

+ k2 X = 0

Y
′′ − k2 Y = 0

}
, k ∈ C ,

where the prime denotes differentiation with respect to the argument.
Solving the above ODE’s yields q(x, y) = e±ı̇kx eσky, where σ = ±1. Then, equations (2.40)
and (2.41) become

∂

∂x

[
e±ı̇kx eσky

(
±ı̇kq − ∂q

∂x

)]
+

∂

∂y

[
e±ı̇kx eσky

(
σkq − ∂q

∂y

)]
= 0 (2.42)

and ∫

C

e±ı̇kx eσky

[(
±ı̇kq − ∂q

∂x

)
dy −

(
σkq − ∂q

∂y

)
dx

]
= 0, k ∈ C , (2.43)

respectively. Equations (2.42) imply two items. First, applying Green’s theorem we obtain
immediately the global relation, and second it yields a Lax pair formulation.
Indeed, if q(x,y) is the solution of the Laplace equation in a closed subdomain Ω ⊂ R

2, then
(2.42) implies the existences of a function Ξ(x, y; k), such that

∂
∂y

Ξ = e±ı̇kx eσky
(

± ı̇kq − ∂q
∂x

)
∂

∂x
Ξ = −e±ı̇kx eσky

(
σkq − ∂q

∂y

)
}
, k ∈ C .



20 CHAPTER 2. HARMONIC FUNCTIONS IN RECTANGULAR DOMAINS

Figure 2.3: The subdomains Ω1 ⊂ Ω and Ω2 ⊂ Ω defined as Ω1 = {−L ≤ η ≤ x, |y| ≤ L},
Ω2 = {x ≤ η ≤ L, |y| ≤ L}, respectively.

The assumption Ξ(x, y; k) = e±ı̇kx eσky µ(x, y; k) where µ(x, y; k) an auxiliary function,
leads right away to the Lax pairs

(
∂

∂y
+ σk

)
µ = ±ı̇kq − ∂q

∂x
,

(
∂

∂x
± ı̇k

)
µ =

∂q

∂y
− σkq .

Furthermore, (2.42) implies that if the differential form

W (x, y; k) = e±ı̇kx eσky

{(
±ı̇kq − ∂q

∂x

)
dy −

(
σkq − ∂q

∂y

)
dx

}

is closed, viz

dW (x, y; k) = e±ı̇kx eσky

(
∂2q

∂x2
+
∂2q

∂y2

)
dx ∧ dy = 0 ,

then Stoke’s theorem (1.2) provides (2.43).

2.6 The Classical Representation

To rederive the classical transform (2.11), apply the global relation (2.43) in the subdomains
Ω1 and Ω2 defined by

Ω1 =
{

− L ≤ η ≤ x, |y| ≤ L
}
, Ω2 =

{
x ≤ η ≤ L, |y| ≤ L

}

and depicted in Figure 2.3, with the following boundary conditions

q(L, y) = f
(1)
D (y), q(−L, y) = f

(3)
D (y)

q(η, L) = q(η,−L) = 0, ∂y q(η, L) = ∂y q(η,−L) = 0

}
, (2.44)
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where the functions f (1)
D (y) and f

(3)
D (y) have sufficient smoothness and the sum of the

integrals of f (1)
N (y) and f (3)

N (y) vanishes.
Thus we derive the following equations

∫ L

−L

eσky
(

± ı̇k q1(x, y) − ∂x q1(x, y)
)

dy

= e∓ı̇k(x+L)

∫ L

−L

eσky
(

± ı̇k q(−L, y) − ∂x q(−L, y)
)

dy, k ∈ C, (x, y) ∈ Ω1 , (2.45)

∫ L

−L

eσky
(

± ı̇kq1(x, y) − ∂x q1(x, y)
)

dy

= e∓ı̇k(x−L)

∫ L

−L

eσky
(

± ı̇k q(L, y) − ∂x q(L, y)
)

dy, k ∈ C, (x, y) ∈ Ω2 , (2.46)

where q1(x, y) the solution corresponding to the specific boundary conditions (2.44). To
eliminate the unknown function ∂xq1(x, y), subtract equations (2.45)+ and (2.46)−

∫ L

−L

eσkyq1(x, y) dy =
1

2ı̇k

[
eı̇k(x−L)

∫ L

−L

eσky
(
ı̇k q(L, y) + ∂x q(L, y)

)
dy

+ e−ı̇k(x+L)

∫ L

−L

eσky
(
ı̇kq(−L, y) − ∂x q(−L, y)

)
dy

]
, k ∈ C − {0} . (2.47)

Using boundary conditions (2.44) and denoting

D(j)(σk) =

∫ L

−L

eσkyf
(j)
D (y)dy, N(j)(σk) =

∫ L

−L

eσkyf
(j)
N (y)dy, j = 1, 3 , (2.48)

where the unknown Neumann boundary values are defined as

∂q

∂n

∣∣∣
x=xmax, xmin

= f
(j)
N (y), j = 1, 3

and n̂ is the outgoing normal to the boundary, equation (2.47) rewrites

∫ L

−L

eσkyq1(x, y) dy =
1

2ı̇k

[
eı̇k(x−L)

(
ı̇kD(1)(σk) + N(1)(σk)

)

+ e−ı̇k(x+L)
(
ı̇kD(3)(σk) + N(3)(σk)

)]
, k ∈ C − {0} . (2.49)

In order to compute the two unknowns N(1)(σk) and N(3)(σk), apply the global relation
(2.43) in the domain Ω depicted in Figure 2.1, with boundary conditions (2.44) to derive
the Dirichlet-to-Neumann correspondence,

e±ı̇kL
(

± ı̇kD(1)(σk) − N(1)(σk)
)

− e∓ı̇kL
(

± ı̇kD(3)(σk) + N(3)(σk)
)

= 0, k ∈ C .
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Figure 2.4: The subdomains Ω3 and Ω4 defined as Ω3 = {|x| ≤ L − L ≤ τ ≤ y} and

Ω4 = {|x| ≤ L, y ≤ τ ≤ L}, respectively.

Solving the above system with respect to the unknown Neumann data and substituting the
resulting expressions into (2.49) we obtain

∫ L

−L

eσkyq1(x, y) dy =
1

eı̇2kL − e−ı̇2kL

[(
eı̇k(x+L) − e−ı̇k(x+L)

)
D(1)(σk)

−
(
eı̇k(x−L) − e−ı̇k(x−L)

)
D(3)(σk)

]
, k ∈ C −

{nπ
2L

}
, n ∈ Z . (2.50)

Replacing σ = 1 and σ = −1 in the above equation respectively, and performing simple
algebraic manipulations of the resulting two equations, we derive the relations

∫ L

−L

cosh
sinh

(ky) q1(x, y) dy =
1

sin(2kL)

[
sin
(
k(x+ L)

)∫ L

−L

cosh
sinh

(ky) f
(1)
D (y) dy

− sin
(
k(x− L)

)∫ L

−L

cosh
sinh

(ky) f
(3)
D (y) dy

]
, k ∈ C −

{nπ
2L

}
, n ∈ Z .

(2.51)

Evaluating equations (2.51) at k = ı̇(n + 1
2 ) π

L
and at k = ı̇nπ

L
, yields the cosine and sine

Fourier transform of q1(x, y), respectively. The inversion formulae then gives

qc
1(x, y) =

∞∑

n=0

[
bn sinh

( (
n+ 1

2

)
π
L

(x+L)
)

+dn sinh
( (
n+ 1

2

)
π
L

(x−L)
)]

cos
( (
n+ 1

2

)
π
L
y
)

(2.52)
and

qs
1(x, y) =

∞∑

n=1

[
an sinh

(
nπ
L

(x+ L)
)

+ cn sinh
(

nπ
L

(x− L)
)]

sin
(

nπ
L
y
)
, (2.53)
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where the Fourier constants an, bn, cn, dn are given by equations (2.12)-(2.15).
Analogous, applying the global relation (2.43)− in the subdomains

Ω3 =
{

|x| ≤ L, −L ≤ τ ≤ y
}

and
Ω4 =

{
|x| ≤ L, y ≤ τ ≤ L

}
,

depicted in Figure 2.4, with the following boundary conditions

q(x,−L) = f
(2)
D (x), q(x,L) = f

(4)
D (x)

q(L, τ) = q(−L, τ) = 0, ∂x q(L, τ) = ∂x q(−L, τ) = 0

}
, (2.54)

we find the following equations
∫ L

−L

e−ı̇kx
(
σk q2(x, y) − ∂y q2(x, y)

)
dx

= e−σk(y+L)

∫ L

−L

e−ı̇kx
(
σk q(x,−L) − ∂y q(x,−L)

)
dx , k ∈ C, (x, y) ∈ Ω3 , (2.55)

∫ L

−L

e−ı̇kx
(
σk q2(x, y) − ∂y q2(x, y)

)
dx

= e−σk(y−L)

∫ L

−L

e−ı̇kx
(
σk q(x,L) − ∂y q(x,L)

)
dx , k ∈ C, (x, y) ∈ Ω4 , (2.56)

where q2(x, y) is the solution corresponding to the boundary conditions (2.54). In order to
eliminate the unknown function ∂yq2(x, y), subtract (2.55) evaluated for σ = 1 and (2.56)
evaluated for σ = −1

∫ L

−L

e−ı̇kx q2(x, y) dx =
1

2k

[
e−k(y+L)

∫ L

−L

e−ı̇kx
(
σk q(x,−L) − ∂y q(x,−L)

)
dx

+ ek(y−L)

∫ L

−L

e−ı̇kx
(
σk q(x,L) − ∂y q(x,L)

)
dx

]
, k ∈ C − {0} . (2.57)

Using boundary conditions (2.54) and denoting

D(j)(−ı̇k) =

∫ L

−L

e−ı̇kxf
(j)
D (x)dx, N(j)(−ı̇k) =

∫ L

−L

e−ı̇kxf
(j)
N (x)dx, j = 2, 4 , (2.58)

where the unknown Neumann boundary values are defined as

∂q

∂n

∣∣∣
y=ymin, ymax

= f
(j)
N (x), j = 2, 4

and n̂ is the outgoing normal to the boundary, equation (2.57) rewrites
∫ L

−L

e−ı̇kxq2(x, y)dx =
1

2k

[
e−k(y+L)

(
kD(2)(−ı̇k) + N(2)(−ı̇k)

)

+ ek(y−L)
(
kD(4)(−ı̇k) + N(4)(−ı̇k)

)]
, k ∈ C − {0} . (2.59)
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To compute the unknowns N(2)(−ı̇k) and N(4)(−ı̇k), apply (2.43)− in Ω with boundary
conditions (2.54) to obtain

e−σkL
(
σkD(2)(−ı̇k) +N(2)(−ı̇k)

)
− eσkL

(
σkD(4)(−ı̇k) −N(4)(−ı̇k)

)
= 0, k ∈ C . (2.60)

Replacing σ = 1 and σ = −1 in (2.60) respectively, we obtain two equations with unknowns
the Fourier transforms of the Neumann data N(j)(−ı̇k), j = 2, 4. Solving this system and
substituting into (2.59) yields

∫ L

−L

e−ı̇kxq2(x, y)dx =
1

e2kL − e−2kL

[
−
(
ek(y−L) − e−k(y−L)

)
D(2)(−ı̇k)

+
(
ek(y+L) − e−k(y+L)

)
D(4)(−ı̇k)

]
, k ∈ C −

{
ı̇
nπ

2L

}
, n ∈ Z .

(2.61)

Simple algebraic manipulations of the latter equation together with (2.61) with k replaced
by −k, leads to

∫ L

−L

cos
sin

(kx) q2(x, y) dx =
1

sinh(2kL)

[
− sinh

(
k(y − L)

)∫ L

−L

cos
sin

(kx) f
(2)
D (x) dx

+ sinh
(
k(y + L)

)∫ L

−L

cos
sin

(kx) f
(4)
D (x) dx

]
, k ∈ C −

{
ı̇
nπ

2L

}
, n ∈ Z . (2.62)

Evaluating equations (2.62) at k = (n + 1
2 ) π

L
and at k = nπ

L
yields the cosine and sine

Fourier transform of q2(x, y) respectively. The inversion formulae then implies

qc
2(x, y) =

∞∑

n=0

[
fn sinh

( (
n+ 1

2

)
π
L

(y−L)
)

+hn sinh
( (
n+ 1

2

)
π
L

(y+L)
)]

cos
( (
n+ 1

2

)
π
L
x
)

(2.63)
and

qs
2(x, y) =

∞∑

n=1

[
en sinh

(
nπ
L

(y − L)
)

+ gn sinh
(

nπ
L

(y + L)
)]

sin
(

nπ
L
x
)
, (2.64)

where the Fourier constants en, fn, gn, hn are given by equations (2.16)-(2.19).
Adding equations (2.52),(2.53),(2.63) and (2.64) yields the classical transform (2.11).

2.7 Novel Integral Formulae

Proposition 2.7.1 Let q(x, y) satisfy the Laplace equation (2.1) in the interior Ω of the Square

defined by

Ω =
{

|x| ≤ L, |y| ≤ L
}
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and with boundary conditions specified in (2.3). Then q(x, y) admits the following integral

representation

q(x, y) = − 1

2ı̇π

∫

L
e(y+L)k sin k(x− L) N (3)(k) − sin k(x+ L) N (1)(k)

sin 2kL
dk

+
1

2ı̇π

∫

R
e(y−L)k sin k(x+ L) M(1)(k) − sin k(x− L) M(3)(k)

sin 2kL
dk

− 1

2π

∫

U
eı̇(x+L)k sinh k(y + L) N (4)(k) − sinh k(y − L) N (2)(k)

sinh 2kL
dk

+
1

2π

∫

D
eı̇(x−L)k sinh k(y + L) M(4)(k) − sinh k(y − L) M(2)(k)

sinh 2kL
dk , (2.65)

where the functions N (j)(k),M(j)(k), j = 1, 2, 3, 4 are defined as

N (j)(k) =
∑

n

(−1)n

(
α(j)

n

nπ
L

k2 + n2π2

L2

+ β(j)
n

(n+ 1
2 ) π

L

k2 + (n+ 1
2 )2 π2

L2

)
(2.66)

M(j)(k) =
∑

n

(−1)n

(
β(j)

n

(n+ 1
2 ) π

L

k2 + (n+ 1
2 )2 π2

L2

− α(j)
n

nπ
L

k2 + n2π2

L2

)
, (2.67)

for every k ∈ C −
{

±ı̇nπ
L
,±ı̇(n+ 1

2 ) π
L

}
, if j = 1, 3 , and

N (j)(k) =
∑

n

(−1)n

(
α(j)

n

nπ
L

k2 − n2π2

L2

+ β(j)
n

(n+ 1
2 ) π

L

k2 − (n+ 1
2 )2 π2

L2

)
(2.68)

M(j)(k) =
∑

n

(−1)n

(
α(j)

n

nπ
L

k2 − n2π2

L2

− β(j)
n

(n+ 1
2 ) π

L

k2 − (n+ 1
2 )2 π2

L2

)
, (2.69)

for every k ∈ C −
{

± nπ
L
,±(n+ 1

2 ) π
L

}
, if j = 2, 4 . The Fourier coefficients α

(j)
n and β

(j)
n cor-

relate with the coefficients (2.12)-(2.19) as α
(1)
n = sinh 2nπ an, α

(2)
n = − sinh 2nπ en, α

(3)
n =

− sinh 2nπ cn, α
(4)
n = sinh 2nπ gn and β

(1)
n = sinh(2n + 1)π bn, β

(2)
n = − sinh(2n +

1)π fn, β
(3)
n = − sinh(2n+ 1)π dn, β

(4)
n = sinh(2n+ 1)π hn.

The contours L, R, U and D are obtained by deformation processes described in the se-

quence and depicted in Figure 2.5.

Equation (2.47), with σ replaced by −1, can be thought as the bilateral Laplace trans-
form of q1(x, y), provided that the function q1(x, y) is such that the integral is convergent
for some values of k. The inversion formula then implies

q1(x, y) =
1

2ı̇π

∫ c+ı̇∞

c−ı̇∞

eky

2ı̇k

[
eı̇k(x−L)

∫ L

−L

eσky
(
ı̇k q(L, y) + ∂x q(L, y)

)
dy

+ e−ı̇k(x+L)

∫ L

−L

eσky
(
ı̇kq(−L, y) − ∂x q(−L, y)

)
dy

]
dk ,

(2.70)
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Figure 2.5: The contours L, R, U , D.

a formula useful for changing-type boundary value problems, as we will see in section 9.
But since we are primarily concerned with Dirichlet data prescribed on the boundary, the
inversion of (2.50) implies

q1(x, y) =
1

2ı̇π

∫ c+ı̇∞

c−ı̇∞

eky

eı̇2kL − e−ı̇2kL

[(
eı̇k(x+L) − e−ı̇k(x+L)

)
D(1)(−k)

−
(
eı̇k(x−L) − e−ı̇k(x−L)

)
D(3)(−k)

]
dk , (2.71)

where the Dirichlet transforms D(j) are given by equations (2.48).
Expanding the Dirichlet data f j

D
in a series of the form (2.10) yields D(j)(−k) =

ekL N (j)(k) + e−kL M(j)(−k), where we note that

N (j)(k), M(j)(k) = O
(

1

k2

)
.

Plugging the latter expression into eq. (2.71) we find

q1(x, y) =
1

2ı̇π

∫ c+ı̇∞

c−ı̇∞
e(y+L)k sin k(x+ L) N (1)(k) − sin k(x− L) N (3)(k)

sin 2kL
dk

+
1

2ı̇π

∫ c+ı̇∞

c−ı̇∞
e(y−L)k sin k(x+ L) M(1)(k) − sin k(x− L) M(3)(k)

sin 2kL
dk . (2.72)
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The Laplace transform of the function q1(x, y) displays a rapid decay as k approaches large
values. Indeed, as k → ∞ the denominator eı̇ 2kL − e−ı̇ 2kL is dominated by e−ı̇ 2kL for
Im k < 0 and by −eı̇ 2kL for Im k > 0. On the other hand, the nominator eky is bounded in
the left (Re k ≤ 0) complex k-plane if y ∈ [0, L] and in the right (Re k > 0) complex k-plane
if y ∈ [−L, 0]. Hence as k → ∞,

eı̇ k(x+L) − e−ı̇ k(x+L)

eı̇ 2kL − e−ı̇ 2kL
∼
{
eı̇ k(x−L) − e−ı̇ k(x+3L) , Im k < 0

−eı̇ k(x+3L) + e−ı̇ k(x−L) , Im k > 0
, k → ∞ ,

eı̇ k(x−L) − e−ı̇ k(x−L)

eı̇ 2kL − e−ı̇ 2kL
∼
{
eı̇ k(x−3L) − e−ı̇ k(x+L) , Im k < 0

−eı̇ k(x+L) + e−ı̇ k(x−3L) , Im k > 0
, k → ∞ .

Furthermore, the exponentials e(y+L)k and e(y−L)k are bounded in the left (Re < 0) or the
right (Re > 0) complex k-plane, respectively.
The aforementioned analysis implies that the Bromwich contour in (2.72) can be replaced
either by the contour L or by the contour R, depicted in Figure 2.6. Equation (2.72) then
becomes

q1(x, y) = − 1

2ı̇π

∫

L
e(y+L)k sin k(x− L) N (3)(k) − sin k(x+ L) N (1)(k)

sin 2kL
dk

+
1

2ı̇π

∫

R
e(y−L)k sin k(x+ L) M(1)(k) − sin k(x− L) M(3)(k)

sin 2kL
dk . (2.73)

Figure 2.6: The contours L and R.

The contour L begins and ends in the left (Re k < 0) complex k−plane, such that Re k tends
to −∞ at each end, a technique known as Talbot’s method [Tal79]. In Talbot’s method the
initial contour is deformed to the region of the complex k−plane in which the factor ef(k)

reduces in magnitude as much as possible. Analogous, the contour R begins and ends in
the right (Re k > 0) complex k−plane, such that Re k → ∞ at each end.
Similarly, equation (2.57) can be seen as the Fourier transform of q2(x, y). Thus, the inver-
sion formula implies

q2(x, y) =
1

2π

∫ +∞

−∞

eı̇kx

2k

[
e−k(y+L)

∫ L

−L

e−ı̇kx
(
σk q(x,−L) − ∂y q(x,−L)

)
dx

+ ek(y−L)

∫ L

−L

e−ı̇ kx
(
σk q(x,L) − ∂y q(x,L)

)
dx

]
dk , (2.74)

is a relation which will prove valuable for changing-type boundary value problems. For
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Figure 2.7: The contours U and D.

Dirichlet data the inversion of (2.61) yields

q2(x, y) =
1

2π

∫ +∞

−∞

eı̇kx

e2kL − e−2kL

[
−
(
ek(y−L) − e−k(y−L)

)
D(2)(−ı̇k)

+
(
ek(y+L) − e−k(y+L)

)
D(4)(−ı̇k)

]
dk .

Applying the previous analysis, the above equations yields

q2(x, y) =
1

2π

∫ +∞

−∞
eı̇(x+L)k sinh k(y − L) N (2)(k) − sinh k(y + L) N (4)(k)

sinh 2kL
dk

+
1

2π

∫ +∞

−∞
eı̇(x−L)k sinh k(y + L) M(4)(k) − sinh k(y − L) M(2)(k)

sinh 2kL
dk . (2.75)

From (2.75) it is evident that the Fourier transform of the function q2(x, y) displays a rapid
decay as k approaches large values. Indeed, as k → ∞ the denominator e2kL − e−2kL is
dominated by e−2kl for Re k > 0 and by −e2kl for Re k < 0. The nominator eı̇ kx on the
other hand is bounded in the lower (Im k < 0) complex k-plane for every x ∈ [−L, 0] and
in the upper (Im k > 0) complex k-plane for every x ∈ [0, L]. Hence as k → ∞,

ek(y−L) − e−k(y−L)

e2kL − e−2kL
∼
{

−ek(y+L) + e−k(y−3L) ,Re k < 0

ek(y−3L) − e−k(y+L) ,Re k > 0
, k → ∞ ,

ek(y+L) − e−k(y+L)

e2kL − e−2kL
∼
{

−ek(y+3L) + e−k(y−L) ,Re k < 0

ek(y−L) − e−k(y+3L) ,Re k > 0
, k → ∞ .

Moreover, the exponentials eı̇(x+L)k and eı̇(x−L)k are bounded in the upper (Im > 0) or the
lower (Im < 0) complex k-plane, respectively.
Thus, the line with endpoints −∞ and +∞ present in (2.75), can be replaced by either the
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contour U or by the contour D depicted in Figure 2.7. Hence (2.75) can be rewritten as

q2(x, y) = − 1

2π

∫

U
eı̇ (x+L)k sinh k(y + L) N (4)(k) − sinh k(y − L) N (2)(k)

sinh 2kL
dk

+
1

2π

∫

D
eı̇ (x−L)k sinh k(y + L) M(4)(k) − sinh k(y − L) M(2)(k)

sinh 2kL
dk . (2.76)

Adding equations (2.73) and (2.76) yields (2.65).

2.7.1 Existence of the Integral transforms and the Inversion formulae

The aforementioned operations are justified introducing the functional space L1(R) for
every function q : R → C exhibiting exponential growth, i.e. equipped with the property

|q(x)| ≤ C eσ x.

Then [Sne72, GPS06],

Theorem 2.7.2 (Existence of the Bilateral Laplace Transform) Let q ∈ L1(ǫ, E), −∞ <

ǫ < E < +∞, belonging to both L1(R; e−σ1 xi) and L1(R; e−σ2 xi). Then the bilateral Laplace

transform Q(x2; k) = BL{q(x1, x2); k} exist and the integral

Q(x2; k) =

∫ ∞

−∞
e−k x1 q(x1, x2) dx1

is absolutely and uniformly convergent in the strip σ1 < c < σ2

Theorem 2.7.3 (Inversion formula) Let q(x1, x2), e−k xi q(x1, x2) ∈ C[ǫ, E] ∩ L1(R), σ1 <

c = Re k < σ2. Then the following inversion formula for the bilateral Laplace transformation

q(x1, x2) =
1

2πı̇
lim

R→∞

∫ c+ı̇R

c−ı̇R

ek x1 Q(x2; k) dk ,

is valid for every interval [ǫ, E] ⊂ R.

Similar conclusions, due do the connection with the (bilateral) Laplace transform, are valid
for the Fourier transform.

2.8 A Novel Integral Representation

Proposition 2.8.1 Suppose that there exist a function q(x, y) with sufficient smoothness all

the way to the boundary, satisfying the Laplace equation (2.1) in the interior of the Square Ω
defined by

Ω =
{

|x| ≤ L, |y| ≤ L
}
,
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with Dirichlet boundary conditions prescribed by equations (2.3). Then the solution q(x, y)
admits the following integral representation

q(x, y) =
ı̇

2π

∫ +∞

−∞
eı̇k(x−L)

(
J (y; k) f

(1)
D (τ)

)
dk

+
1

2π

∫ c+ı̇∞

c−ı̇∞
ek(y+L)

(
I(x; k) f

(2)
D (η)

)
dk

− ı̇

2π

∫ +∞

−∞
eı̇k(x+L)

(
J (y; k) f

(3)
D (τ)

)
dk

− 1

2π

∫ c+ı̇∞

c−ı̇∞
ek(y−L)

(
I(x; k) f

(4)
D (η)

)
dk, k ∈ C , (2.77)

where the integral operators I(x; k) and J (y; k) are defined as

I(x; k) =

∫ x

−L

dη eı̇k(η−x) +

∫ L

x

dη e−ı̇k(η−x), k ∈ C , (2.78)

and

J (y; k) =

∫ y

−L

dτ ek(τ−y) +

∫ L

y

dτ e−k(τ−y), k ∈ C , (2.79)

respectively.

Employing the global relation (2.43) in the subdomains Ω3 and Ω4 depicted in Figure
2.4, with boundary conditions

q(L, τ) = f
(1)
D (τ), q(x,−L) = q(−L, τ) = q(x,L) = 0

∂y q(x,−L) = ∂x q(−L, τ) = ∂y q(x,L) = 0

}
, (2.80)

we derive the following equations

∫ L

−L

e±ı̇ kx
(
σk q1(x, y) − ∂y q1(x, y)

)
dx

= −e±ı̇ kL

∫ y

−L

eσk(τ−y)
(

± ı̇ kf
(1)
D (τ) − f

(1)
N (τ)

)
dτ, k ∈ C, (x, y) ∈ Ω3 , (2.81)

∫ L

−L

e±ı̇ kx
(
σk q1(x, y) − ∂y q1(x, y)

)
dx

= e±ı̇ kL

∫ L

y

eσk(τ−y)
(

± ı̇ kf
(1)
D (τ) − f

(1)
N (τ)

)
dτ, k ∈ C, (x, y) ∈ Ω4 , (2.82)

where the solution q1(x, y) corresponds to the boundary conditions (2.80). Replace in the
former σ = 1 and in the latter σ = −1. Subtracting the resulting equations, not only
eliminates the unknown function ∂y q1(x, y), but also provides the Fourier transform for
the solution q1(x, y),

∫ L

−L

e±ı̇kx q1(x, y) dx = −e±ı̇kL

2k
J (y; k)

(
± ı̇kf

(1)
D (τ) − f

(1)
N (τ)

)
, k ∈ C − {0}, (2.83)
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where the integral operator J (y; k) is defined by eq. (2.79).
The inverse of (2.83)− gives

q1(x, y) =
1

2π

∫ +∞

−∞
eı̇k(x−L) 1

2k
J (y; k)

(
ı̇kf

(1)
D (τ) + f

(1)
N (τ)

)
dk . (2.84)

Eliminating the unknown Neumann boundary data f (1)
N (τ) in (2.84), with the aid of (2.83)+,

we find

q1(x, y) =
ı̇

2π

∫ +∞

−∞
eı̇k(x−L)

(
J (y; k)f

(1)
D (τ)

)
dk

+
1

2π

∫ +∞

−∞
eı̇k(x−L)

{∫ L

−L

eı̇k(x−L)q1(x, y)dx

}
dk . (2.85)

As k tends to infinity, both ek(τ−y) and e−k(τ−y) tend to zero since τ − y ≤ 0 for τ ∈ [−L, y]
and τ − y ≥ 0 for τ ∈ [y, L], respectively. Thus, the integral operator J (y; k) is bounded as
a function of k in the right (Re k ≥ 0) complex k-plane. Furthermore, since x− L ≤ 0, the
exponential eı̇ k(x−L) is bounded in the lower (Im k ≤ 0) complex k-plane.
Assuming the change of the order of integration being permitted, the second integral ap-
pearing on the right-hand side of eq. (2.85) takes the form

∫ +∞

−∞
eı̇k2(x−L) dk . (2.86)

By deforming the line with endpoints −∞ and +∞ into a contour that begins and ends
in the lower (Im k ≤ 0) complex k-plane, such that Im k → −∞ at each end, the integral
(2.86) yields a zero contribution since eı̇ k(x−L) is analytic and bounded in Im k ≤ 0.
Hence, (2.85) becomes

q1(x, y) =
ı̇

2π

∫ +∞

−∞
eı̇k(x−L)

(
J (y; k)f

(1)
D (τ)

)
dk . (2.87)

Repeating the above procedure in the subdomains Ω3 and Ω4 with boundary conditions

q(−L, τ) = f
(3)
D (τ), q(L, τ) = q(x,−L) = q(x,L) = 0

∂x q(L, τ) = ∂y q(x,−L) = ∂y q(x,L) = 0 ,

we derive the relation

q3(x, y) = − ı̇

2π

∫ +∞

−∞
eı̇k(x+L)

(
J (y; k)f

(3)
D (τ)

)
dk , (2.88)

where the solution q3(x, y) corresponds to the specific boundary conditions described
above.
Similar, by applying the global relation (2.43) in the subdomains Ω1 and Ω2, depicted in
Figure 2.3, with boundary conditions

q(η,−L) = f
(2)
D (η), q(L, y) = q(−L, y) = q(η, L) = 0

∂x q(L, y) = ∂x q(−L, y) = ∂y q(η, L) = 0

}
, (2.89)
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we derive the following equations

∫ L

−L

eσky
(

± ı̇ k q2(x, y) − ∂x q2(x, y)
)

dy

= e−σkL

∫ x

−L

e±ı̇ k(η−x)
(
σkf

(2)
D (η) + f

(2)
N (η)

)
dη, k ∈ C, (x, y) ∈ Ω1 , (2.90)

∫ L

−L

eσky
(

± ı̇ k q2(x, y) − ∂x q2(x, y)
)

dy

= −e−σkL

∫ L

x

e±ı̇ k(η−x)
(
σkf

(2)
D (η) + f

(2)
N (η)

)
dη, k ∈ C, (x, y) ∈ Ω2 , (2.91)

where the solution q2(x, y) corresponds to the boundary conditions (2.89). The unknown
function ∂x q2(x, y), is eliminated by adding equations (2.90)+ and (2.91)−

∫ L

−L

eσky q2(x, y) dy =
e−σkL

2ı̇ k
I(x; k)

(
σ k f

(2)
D (η) + f

(2)
N (η)

)
, k ∈ C − {0} , (2.92)

where the integral operator I(x; k) is defined by eq. (2.78).
Evaluate equation (2.92) for σ = −1 to retrieve the bilateral Laplace transform for the
solution q2(x, y), provided that q2(x, y) is such that the integral is convergent for some
values of k. Then inversion implies the representation

q2(x, y) = − 1

2ı̇ π

∫ c+ı̇ ∞

c−ı̇ ∞
ek(y+L) 1

2ı̇ k
I(x; k)

(
kf

(2)
D (η) − f

(2)
N (η)

)
dk . (2.93)

The unknown Neumann boundary values f
(2)
N (η) are eliminated with the aid of (2.92)

evaluated at σ = 1.
Eq. (2.93) then becomes

q2(x, y) =
1

2π

∫ c+ı̇ ∞

c−ı̇ ∞
ek(y+L)

(
I(x; k)f

(2)
D (η)

)
dk

+
1

2ı̇ π

∫ c+ı̇ ∞

c−ı̇ ∞
ek(y+L)

{∫ L

−L

ek(y+L)q2(x, y)dy

}
dk . (2.94)

The exponentials appearing in equation (2.78) are bounded in the lower (Im k ≤ 0) complex
k-plane. Hence, as k → ∞, the integral operator I(x; k) is bounded as a function of k in
the lower (Im k ≤ 0) complex k-plane. Moreover, as k → ∞ the exponential ek(y+L) tends
to zero in the left (Re k ≤ 0) complex k-plane.
Interchanging the order of integration in the second integral appearing on the right-hand
side of eq. (2.94) we find ∫ c+ı̇ ∞

c−ı̇ ∞
e2k(y+L) dk . (2.95)

By deforming the Bromwich line into a contour that begins and ends in the left (Re k ≤ 0)
complex k-plane, such that Re k → −∞ at both ends, the integral (2.95) yields a zero
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contribution.
Hence, (2.94) yields

q2(x, y) =
1

2π

∫ c+ı̇ ∞

c−ı̇ ∞
ek(y+L)

(
I(x; k)f

(2)
D (τ)

)
dk , (2.96)

An analysis similar to the one described previously, applied in the subdomains Ω1 and Ω2,

with boundary conditions

q(η, L) = f
(4)
D (η), q(L, y) = q(−L, y) = q(η,−L) = 0

∂x q(L, y) = ∂x q(−L, y) = ∂y q(η,−L) = 0

}
, (2.97)

reveals that

q4(x, y) = − 1

2π

∫ c+ı̇ ∞

c−ı̇ ∞
ek(y−L)

(
I(x; k)f

(4)
D (η)

)
dk , (2.98)

where q4(x, y) is the solution corresponding to the boundary conditions (2.97).
Finally, adding equations (2.87), (2.88), (2.96) and (2.98) we obtain (2.77).

2.9 Changing-type Boundary Value Problems

The Dirichlet-to-Neumann correspondence, i.e. the global relation implemented at the
boundary of the fundamental domain, can be used for the analysis of problems with
changing-type boundary conditions. For example, consider the following problem

q(L, y) = f
(1)
D (y), y ∈ [−L, 0] ; ∂x q(L, y) = f

(1)
N (y), y ∈ [0, L] , (2.99)

q(x,−L) = f
(2)
D (x), x ∈ [−L, 0] ; − ∂y q(x,−L) = f

(2)
N (x), x ∈ [0, L] , (2.100)

q(−L, y) = f
(3)
D (y), y ∈ [−L, 0] ; − ∂x q(−L, y) = f

(3)
N (y), y ∈ [0, L] , (2.101)

q(x,L) = f
(4)
D (x), x ∈ [−L, 0] ; ∂y q(x,L) = f

(4)
N (x), x ∈ [0, L] , (2.102)

where we assume that the functions f (j)
D and f (j)

N are smooth and continuous at the corners
of the Square and also at the points (0, L), (0,−L), (L, 0) and (−L, 0).
It is a well known fact that, due to the linearity of the Laplacian operator, the solution
q(x, y) can be written as a linear combination of ”partial solutions” which correspond to
specific boundary conditions. Therefore, implementing the global relation (2.43)+, with σ

replaced by −1, in the domain Ω depicted in Figure 2.1, we obtain the following relation
∫ L

−L

e−ky

(
ı̇ k q1(L, y) − ∂x q1(L, y)

)
dy = 0 , (2.103)

where q1(x, y) is a ”partial solution” corresponding to given boundary conditions prescribed
on side 1 of the Square and zero boundary conditions on the remaining sides.
Splitting the above integral into one part valid in the interval −L ≤ y ≤ 0 and a second
part valid in the remaining interval and using boundary conditions (2.99) we find

ı̇k

∫ L

0

e−ky q1(L, y) dy −
∫ 0

−L

e−ky ∂x q1(L, y) dy

=

∫ L

0

e−ky f
(1)
N (y) dy − ı̇k

∫ 0

−L

e−ky f
(1)
D (y) dy . (2.104)
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Introducing the variable z = e−kL, eq. (2.104) becomes the Riemann-Hilbert problem

Φ+
1 (z) − Φ−

1 (z) = ϕ1(z), z ∈ C , (2.105)

where

Φ+
1 (z) = ı̇ k

∫ L

0

e−ky q1(L, y) dy, Φ−
1 (z) =

∫ 0

−L

e−ky ∂x q1(L, y) dy , (2.106)

and ϕ1(z) is the known function

ϕ1(z) =

∫ L

0

e−ky f
(1)
N (y) dy − ı̇k

∫ 0

−L

e−ky f
(1)
D (y) dy . (2.107)

Note that Φ+
1 (z) is analytic as z tends to zero, where else Φ−

1 (z) is analytic as z → ∞.

Moreover, Φ−
1 (z) → 0 as z → ∞.

Employing the global relation (2.43)−, with σ replaced by 1, in the domain Ω depicted in
Figure 2.1, for the ”partial solution” q2(x, y) corresponding to given boundary conditions
prescribed on side 2 of the Square and zero boundary conditions on the remaining sides,
we obtain ∫ L

−L

e−ı̇ kx

(
k q2(x,−L) − ∂y q2(x,−L)

)
dx = 0 . (2.108)

Splitting the above integral into two parts and using boundary conditions (2.100) we find

k

∫ L

0

e−ı̇kx q2(x,−L) dx−
∫ 0

−L

e−ı̇kx ∂y q2(x,−L) dx =

−
∫ L

0

e−ı̇kx f
(2)
N (x) dx− k

∫ 0

−L

e−ı̇kx f
(2)
D (x) dx . (2.109)

Introducing the variable z′ = e−ı̇kL, eq. (2.109) becomes the Riemann-Hilbert problem

Φ+
2 (z′) − Φ−

2 (z′) = ϕ2(z′), z′ ∈ C , (2.110)

where

Φ+
2 (z′) = k

∫ L

0

e−ı̇kx q2(x,−L) dx Φ−
2 (z′) =

∫ 0

−L

e−ı̇kx ∂y q2(x,−L) dx , (2.111)

and ϕ2(z′) is the known function

ϕ2(z′) = −
∫ L

0

e−ı̇kx f
(2)
N (x) dx− k

∫ 0

−L

e−ı̇kx f
(2)
D (x) dx . (2.112)

Note that Φ+
2 (z′) is analytic as z′ tends to zero, where else Φ−

2 (z′) is analytic as z′ → ∞.

Moreover, Φ−
2 (z′) → 0 as z′ → ∞.

Repeating the above procedures for the sides 3 and 4, one is led to the Riemann-Hilbert
problems

Φ+
3 (z) − Φ−

3 (z) = ϕ3(z), z = e−kL (2.113)
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and
Φ+

4 (z′) − Φ−
4 (z′) = ϕ4(z′), z′ = e−ı̇ kL , (2.114)

where

Φ+
3 (z) = ı̇ k

∫ L

0

e−ky q3(L, y) dy, Φ−
3 (z) =

∫ 0

−L

e−ky ∂x q3(L, y) dy , (2.115)

Φ+
4 (z′) = k

∫ L

0

e−ı̇kx q4(x,−L) dx, Φ−
4 (z′) =

∫ 0

−L

e−ı̇kx ∂y q4(x,−L) dx , (2.116)

and ϕ3(z), ϕ4(z′) are the known functions

ϕ3(z) = −
∫ L

0

e−ky f
(3)
N (y) dy − ı̇ k

∫ 0

−L

e−ky f
(3)
D (y) dy , (2.117)

ϕ4(z′) =

∫ L

0

e−ı̇kx f
(4)
N (x) dx− k

∫ 0

−L

e−ı̇kx f
(4)
D (x) dx . (2.118)

The scalar Riemann-Hilbert problems (2.105), (2.110), (2.113) and (2.114) can be solved in
closed form (see [Mus53] and specially Appendix 2 of the reference given, since the bound-
ary of the fundamental domain Ω is a piecewise smooth contour).
The solution q(x, y) is given by adding equations (2.70) and (2.74). Splitting the inte-
grals on the right-hand side of the resulting equation into two parts and given boundary
conditions (2.99)-(2.102), the unknown boundary conditions are obtained by solving the
Riemann-Hilbert problems derived in this section, and hence the solution q(x, y) is com-
pletely determined.

Remark 2.9.1 It is possible to obtain the solution q(x, y) in terms of a series instead of an

integral by using equation (2.11) together with the Fourier coefficients (2.12)-(2.19).





CHAPTER 3
Gegenbauer functions∗

3.1 Some identities satisfied by the Gamma functions

In this section, the main properties of the Γ−functions are introduced, which will be fre-
quently used in the sequence, without proof. Guided by the duplication formula

22z−1 Γ (z) Γ
(
z + 1

2

)
=

√
π Γ (2z) , (3.1)

it is straightforward to show, by replacing z with −z, that

Γ
(
z + 1

2

)
Γ
(

1
2 − z

)
= 4π

Γ (2z) Γ (−2z)

Γ (z) Γ (−z) . (3.2)

Furthermore, utilizing the well known properties

Γ (z) Γ (1 − z) =
π

sin zπ
, (3.3)

or, replacing z with −z,

Γ (−z) Γ (1 + z) = − π

sin zπ
, (3.4)

and

Γ (1 + z) = z Γ (z) , (3.5)

it is easily shown that

Γ (z) Γ (−z) = − π

z sin zπ
, (3.6)

from which, replacing z with 2z

Γ (2z) Γ (−2z) = − π

2z sin 2zπ
. (3.7)

Replacing everything into (3.2) we find

Γ
(
z + 1

2

)
Γ
(

1
2 − z

)
=

π

cos zπ
. (3.8)

∗This work has been published as [Dosb]
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3.2 The Gegenbauer Differential Equation

The second-order ordinary differential equation

(
1 − z2

) d2w(z)

dz2
− (2λ+ 1) z

dw(z)

dz
+ ν (ν + 2λ)w(z) = 0 , (3.9)

where ν, λ and z may be any complex numbers, introduced by Leopold Gegenbauer in
1875 [Geg75], is known as the Gegenbauer or ultraspherical differential equation and can
be seen as a particular case (µ = ν) of the generalized Gegenbauer differential equation

(
1 − z2

) d2w(z)

dz2
+ (ν − 2λ− µ− 1) z

dw(z)

dz
+

[
µ (2ν − µ) + 2λ

µ− (2ν − µ)z2

1 − z2

]
w(z) = 0 .

(3.10)
The solutions of (3.9) are

w(z) = c1 C
λ
ν (z) + c2 D

λ
ν (z) (3.11)

where Cλ
ν (z) and Dλ

ν (z) are known as the Gegenbauer or Ultraspherical functions of the
first and second kind of degree ν and order λ, respectively. They are defined as [Erd53, p.
175,179, plus errata]

Cλ
ν (z) =

Γ (ν + 2λ)

Γ (ν + 1) Γ (2λ)
F

(
−ν, ν + 2λ, λ+

1

2
;

1 − z

2

)
, |1 − z| < 2 , (3.12)

and

Dλ
ν (z) = 22λ−1 Γ (ν + 2λ) Γ (λ)

Γ (ν + λ+ 1)
(2z)−ν−2λ F

(
ν + 2λ+ 1

2
,
ν + 2λ

2
, ν + λ+ 1;

1

z2

)
, |z| > 1 ,

(3.13)
applicable if ν + 2λ 6= 0,−1,−2, . . . , and λ is not zero or a negative integer. Slightly mod-
ified definitions as well as expansion formulas and addition theorems for the Gegenbauer
functions can be found in [DFS76]. If ν is replaced by a positive integer n, the Gegenbauer
functions of the first kind (3.12) degenerate to the well known Gegenbauer polynomials
Cλ

n(z).

3.3 Asymptotic Expressions for the Gegenbauer functions

Kummer’s formula

F (α, β, γ; z) = (1 − z)−α F

(
α, γ − β, γ;

z

z − 1

)
, | arg(−z)| < π , (3.14)

together with the duplication theorem

F

(
2α, 2β, α+ β +

1

2
; z

)
= F

(
α, β, α+ β +

1

2
; 4z − 4z2

)
, (3.15)

lead to the useful relation

F

(
α, β,

α+ β + 1

2
;

1 − z

2

)
= z−α F

(
α

2
,
α+ 1

2
,
α+ β + 1

2
; 1 − 1

z2

)
. (3.16)
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Indeed, applying (3.14) to the right-hand side of (3.15) we find

F

(
2α, 2β, α+ β +

1

2
; z

)
= F

(
α, β, α+ β +

1

2
; 4z − 4z2

)

= (2z − 1)−2α F

(
α, α+

1

2
, α+ β +

1

2
;

4z2 − 4z

(2z − 1)2

)
.

Put 2z − 1 = −u to find

F

(
2α, 2β, α+ β +

1

2
;

1 − u

2

)
= u−2α F

(
2α

2
,

2α+ 1

2
,

2α+ 2β + 1

2
; 1 − 1

u2

)
,

which, by replacing 2α, 2β and u with α, β and z respectively, becomes (3.16).
Kummer’s solutions of the hypergeometric equation together with the fact that any three
of them can be connected by a linear relation with constant coefficients produces [Erd53,
WG89]

F (α, β, γ; z) =
Γ(γ) Γ(γ − α− β)

Γ(γ − α) Γ(γ − β)
F (α, β, α+ β − γ + 1; 1 − z)

+
Γ(γ) Γ(α+ β − γ)

Γ(α) Γ(β)
(1 − z)γ−α−β F (γ − α, γ − β, γ − α− β + 1; 1 − z) .

Employing the above formula to the right-hand side of (3.16), we find

F

(
α, β,

α+ β + 1

2
;

1 − z

2

)
= z−α F

(
α

2
,
α+ 1

2
,
α+ β + 1

2
; 1 − 1

z2

)

=
Γ( α+β+1

2 ) Γ( β−α
2 )

Γ( β+1
2 ) Γ( β

2 )

1

zα
F

(
α

2
,
α+ 1

2
,
α− β

2
+ 1;

1

z2

)
+

Γ( α+β+1
2 ) Γ( α−β

2 )

Γ( α+1
2 ) Γ( α

2 )

1

zβ

× F

(
β + 1

2
,
β

2
,
β − α

2
+ 1;

1

z2

)
. (3.17)

Applying (3.17) to the definition of the Gegenbauer functions of the first kind (3.12), we
obtain

Cλ
ν (z) =

Γ(ν + λ)

Γ(ν + 1) Γ(λ)
(2z)ν F

(
−ν

2
,

1 − ν

2
,−ν − λ+ 1;

1

z2

)

+
Γ(ν + 2λ)

Γ(ν + λ+ 1) Γ(λ)

sin νπ

sin(ν + λ)π

1

(2z)ν+2λ
F

(
ν + 2λ+ 1

2
,
ν + 2λ

2
, ν + λ+ 1;

1

z2

)
,

(3.18)

where equations (3.1), (3.3) and (3.5) are used. For very large values of z, equations (3.18)
and (3.13) read as

Cλ
ν (z) ∼ Γ(ν + λ)

Γ(ν + 1) Γ(λ)
(2z)ν , z → ∞ (3.19)

Dλ
ν (z) ∼ 22λ−1 Γ(ν + 2λ) Γ(λ)

Γ(ν + λ+ 1)

1

(2z)ν+2λ
, z → ∞ , (3.20)

as long as Re ν is positive.
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3.4 The Wronskian for the Gegenbauer functions

In order to evaluate the Wronskian of the independent pair Cλ
ν (z), Dλ

ν (z), write the Gegen-
bauer differential equation (3.9) for both the first and second kind Gegenbauer functions,
namely

(z2 − 1)
d2Cλ

ν (z)

dz2
+ (2λ+ 1) z

dCλ
ν (z)

dz
− ν (ν + 2λ)Cλ

ν (z) = 0 ,

(z2 − 1)
d2Dλ

ν (z)

dz2
+ (2λ+ 1) z

dDλ
ν (z)

dz
− ν (ν + 2λ)Dλ

ν (z) = 0 .

Multiplying the former by (z2 − 1)λ− 1
2 Dλ

ν (z) and the latter by (z2 − 1)λ− 1
2 Cλ

ν (z) and sub-
tracting the resulting equations side-by-side, we arrive at

d

dz

[
(z2 − 1)λ+ 1

2

(
Cλ

ν (z)
dDλ

ν (z)

dz
−Dλ

ν (z)
dCλ

ν (z)

dz

)]
= 0 ,

which integrated once becomes

Cλ
ν (z)

dDλ
ν (z)

dz
−Dλ

ν (z)
dCλ

ν (z)

dz
=

c(ν;λ)

(z2 − 1)λ+ 1
2

(3.21)

where the function c(ν;λ) can be obtained by calculating the above expression for some
specific value of z.
Choosing the point at infinity where we can use equations (3.19) and (3.20), it is straight-
forward to show that

c(ν;λ) = −Γ(ν + 2λ)

Γ(ν + 1)

which replaced in (3.21) provides the final result,

Cλ
ν (z)

dDλ
ν (z)

dz
−Dλ

ν (z)
dCλ

ν (z)

dz
= e∓ı̇(λ− 1

2 )π Γ(ν + 2λ)

Γ(ν + 1)

1

(1 − z2)λ+ 1
2

(3.22)

where the upper sign corresponds to Im z > 0 and the lower sign to Im z < 0.

A different approach to evaluate the Wronskian of the independent pair
(
Cλ

n(z), Dλ
n(z)

)
,

where now Cλ
n(z) the Gegenbauer polynomial of the first kind of degree n and order λ and

Dλ
n(z) the Gegenbauer function of the second kind of degree n and order λ, is described as

follows.
Changing n into n− 1 in the recurrence relation [WG89, p. 274]

(n+ 1)Cλ
n+1(z) − 2(λ+ n) z Cλ

n(z) + (2λ+ n− 1)Cλ
n−1(z) = 0,

we obtain
nCλ

n(z) + (2λ+ n− 2)Cλ
n−2(z) = 2(λ+ n− 1) z Cλ

n−1(z) . (3.23)

The Gegenbauer functions of the second kind Dλ
n(z) satisfy the same recurrence relations

as the Gegenbauer polynomials Cλ
n(z) [Erd53, p. 179].

Thus
nDλ

n(z) + (2λ+ n− 2)Dλ
n−2(z) = 2(λ+ n− 1) z Dλ

n−1(z) . (3.24)
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Multiplying (3.23) by Dλ
n−1(z) and (3.24) by Cλ

n−1(z) and subtracting the resulting equa-
tions, we obtain

n
(
Dλ

n(z) Cλ
n−1(z)−Dλ

n−1(z) Cλ
n(z)

)
= (2λ+n−2)

(
Dλ

n−1(z) Cλ
n−2(z)−Dλ

n−2(z) Cλ
n−1(z)

)
.

(3.25)
Evaluating the above equation for increasing n∗

n = 2 2
(
Dλ

2 (z) Cλ
1 (z) −Dλ

1 (z) Cλ
2 (z)

)
= 2λ

(
Dλ

1 (z) Cλ
0 (z) −Dλ

0 (z) Cλ
1 (z)

)

n = 3 3
(
Dλ

3 (z) Cλ
2 (z) −Dλ

2 (z) Cλ
3 (z)

)
= (2λ+ 1)

(
Dλ

2 (z) Cλ
1 (z) −Dλ

1 (z) Cλ
2 (z)

)

= 2λ+1
2 2λ

(
Dλ

1 (z) Cλ
0 (z) −Dλ

0 (z) Cλ
1 (z)

)

n = 4 4
(
Dλ

4 (z) Cλ
3 (z) −Dλ

3 (z) Cλ
4 (z)

)
= (2λ+ 2)

(
Dλ

3 (z) Cλ
2 (z) −Dλ

2 (z) Cλ
3 (z)

)

= 2λ+2
3

2λ+1
2 2λ

(
Dλ

1 (z) Cλ
0 (z) −Dλ

0 (z)Cλ
1 (z)

)

...
...

n
(
Dλ

n(z)Cλ
n−1(z) −Dλ

n−1(z)Cλ
n(z)

)
= (2λ)n−1

(2)n−2

(
Dλ

1 (z)Cλ
0 (z) −Dλ

0 (z)Cλ
1 (z)

)
,

where (a)n the Pochhammer symbol defined as (a)n = Γ(a+n)
Γ(a) and

(2λ)n−1

(2)n−2
=

Γ(2λ+ n− 1)

Γ(n)Γ(2λ)
,

so that (3.26) rewrites

n
(
Dλ

n(z)Cλ
n−1(z) −Dλ

n−1(z)Cλ
n(z)

)
=

Γ(2λ+ n− 1)

Γ(n)Γ(2λ)

(
Dλ

1 (z)Cλ
0 (z) −Dλ

0 (z)Cλ
1 (z)

)
.

(3.26)

The Wronskian of the independent pair
(
Cλ

n(z), Dλ
n(z)

)
is

Wn

(
Cλ

n(z), Dλ
n(z)

)
= Cλ

n(z)
dDλ

n(z)

dz
−Dλ

n(z)
dCλ

n(z)

dz
,

which multiplied by (1 − z2) and using the recurrence relation (3.170)

(1 − z2)
d

dz
Gλ

n(z) = (n+ 2λ− 1) Gλ
n−1(z) − nz Gλ

n(z),

where Gλ
n(z) any solution of the Gegenbauer equation, becomes

(1 − z2)Wn = −(n+ 2λ− 1)
(
Dλ

n(z)Cλ
n−1(z) −Dλ

n−1(z)Cλ
n(z)

)
.

Substituting (3.26) into the above equation we finally obtain

(1−z2)
(
Cλ

n(z)
dDλ

n(z)

dz
−Dλ

n(z)
dCλ

n(z)

dz

)
= − Γ(n+ 2λ)

Γ(n+ 1)Γ(2λ)

(
Dλ

1 (z)Cλ
0 (z)−Dλ

0 (z)Cλ
1 (z)

)

(3.27)

∗For n = 0 and n = 1 we obtain 0 = 0 and Cλ

1
(z) = 2λ z respectively.
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where we used (3.5).
A formula connecting Dλ

n(z) and Cλ
n(z) similar to Christoffel’s relation between Qn(z) and

Pn(z) has been given by Watson [Wat38]

Dλ
n(z) =Cλ

n(z)Dλ
0 (z)

− Γ(2λ)

(z2 − 1)λ− 1
2

⌊ n−1
2 ⌋∑

m=0

(λ+ n− 2m− 1)
(1 − λ)m (2λ+ n−m)m

(n−m)m+1 (λ)m+1
Cλ

n−2m−1(z) ,

(3.28)

provided that 2λ−1 is not a negative integer and ⌊ n−1
2 ⌋ is the greatest integer which is less

then or equals to n−1
2 .

For n = 1 equation (3.28) becomes

Dλ
1 (z) = Cλ

1 (z)Dλ
0 (z) − Γ(2λ)

(z2 − 1)λ− 1
2

.

Substituting the above expression into (3.27) we finally find

Cλ
n(z)

dDλ
n(z)

dz
−Dλ

n(z)
dCλ

n(z)

dz
= −Γ(n+ 2λ)

Γ(n+ 1)

1

(z2 − 1)λ+ 1
2

. (3.29)

Replacing in (3.29) specific values of λ, namely λ = 0, 1
2 ,

3
2 we obtain the Chebyshev,

Legendre or Gegenbauer functions of order 3
2 respectively.

Hence for,

λ = 0 : C0
n(z) ≡ Tn(z), D0

n(z) ≡ Un(z) , Tn(z) U̇n(z) − Un(z) Ṫn(z) = − 1
n

1√
z2−1

λ = 1
2 : C

1
2
n (z) ≡ Pn(z), D

1
2
n (z) ≡ Qn(z) , Pn(z) Q̇n(z) −Qn(z) Ṗn(z) = − 1

z2−1

λ = 3
2 : , C

3
2
n (z) Ḋ

3
2
n (z) −D

3
2
n (z) Ċ

3
2
n (z) = − (n+1)(n+2)

(z2−1)2 .

3.5 The Gegenbauer functions of the first kind Cλ
ν (x) on the cut −1 < x < +1

Consider equation (3.12) which is the fundamental representation of Cλ
ν (z)

Cλ
ν (z) =

Γ (ν + 2λ)

Γ (ν + 1) Γ (2λ)
F

(
−ν, ν + 2λ, λ+

1

2
;

1 − z

2

)
, |1 − z| < 2 , (3.30)

Figure 3.1: The complex z−plane

applicable for general degree ν and or-
der λ. Following [Hob31], denote z − 1 =
ρ eı̇φ, |z| < 1, so that 1 − z = −ρ eı̇φ. In
the complex z−plane, as depicted in Fig-
ure 3.1, if z lies just above the real axis,
namely z = x + ı̇ε, ε > 0, |ε| << 1, then
φ ≃ π. On the other hand, if z lies just be-
low the real axis, namely z = x+ ı̇ε, ε < 0,
|ε| << 1, then φ ≃ −π. Hence

1 − z = −ρ eı̇φ ≃ −
√

(1 − x)2 + ε2 e±ı̇π

=
√

(1 − x)2 + ε2 =
√

(1 − x)2 + ε2
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As ε tends to zero, (3.12) becomes

Cλ
ν (x) =

Γ (ν + 2λ)

Γ (ν + 1) Γ (2λ)
F

(
−ν, ν + 2λ, λ+

1

2
;

1 − x

2

)
, −1 < x < +1 . (3.31)

The above expression is suitable to examine the behavior of Cλ
ν (x) as x → 1−. Indeed, in

the limit x → 1− (3.31) reduces to

Cλ
ν (1) =

Γ (ν + 2λ)

Γ (ν + 1) Γ (2λ)
. (3.32)

Equation (3.31) becomes cumbersome to work with as x → −1+. Therefore we rewrite the
hypergeometric function on the right-hand side of (3.32) so that the argument becomes
1+x

2 . This is achieved using the transformation [WG89, p. 160, eq. (4)]

F (α, β, γ; z) =
Γ (γ) Γ (γ − α− β)

Γ (γ − α) Γ (γ − β)
F (α, β, α+ β − γ + 1; 1 − z)

+
Γ (γ) Γ (α+ β − γ)

Γ (α) Γ (β)
(1 − z)γ−α−β F (γ − α, γ − β, γ − α− β + 1; 1 − z) ,

(3.33)

applicable if | arg(1 − z)| < π, γ is not zero or a negative integer and also γ − α − β must
also not be an integer. Thus, (3.31) with the aid of (3.8), becomes

Cλ
ν (x) =

Γ (ν + 2λ)

Γ (ν + 1) Γ (2λ)

[
cos(ν + λ)π

cosλπ
F

(
−ν, ν + 2λ, λ+

1

2
;

1 + x

2

)

+
Γ
(
λ+ 1

2

)
Γ
(
λ− 1

2

)

Γ (−ν) Γ (ν + 2λ)

(
1 + x

2

)−λ+ 1
2

F

(
ν + λ+

1

2
,−ν − λ+

1

2
,−λ+

3

2
;

1 + x

2

)]
.

(3.34)

As x tends to −1+ (3.34) reads

lim
x→−1+

Cλ
ν (x) =

Γ (ν + 2λ)

Γ (ν + 1) Γ (2λ)

[
cos(ν + λ)π

cosλπ
+

Γ
(
λ+ 1

2

)
Γ
(
λ− 1

2

)

Γ (−ν) Γ (ν + 2λ)
lim

x→−1+

(
1 + x

2

)−λ+ 1
2
]

(3.35)

or, more conclusive

lim
x→−1+

Cλ
ν (x) =





Γ(ν+2λ)
Γ(ν+1) Γ(2λ)

cos(ν+λ)π

cos λπ
,− 1

2 < λ < 1
2

∞ , λ > 1
2

, λ 6= n+
1

2
, n = 0, 1, 2, . . . .

(3.36)
From (3.35) it is seen that as x tends to −1+, Cλ

ν (x) ∼ (1 + x)−λ+ 1
2 , λ 6= n + 1

2 , n =
0, 1, 2, . . . .
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As mentioned, when λ 6= n + 1
2 , n = 0, 1, 2, . . . (3.33) is not applicable and (3.35) also

does not hold. However, implementing [WG89, p. 167, eq. (8)]

F (α, β, γ; z) =
Γ (n) Γ (γ)

Γ (α) Γ (β)
(1 − z)−n

n−1∑

k=0

(α− n)k (β − n)k

k! (1 − n)k

(1 − z)k

+ (−1)n+1 Γ (γ)

Γ (α− n) Γ (β − n)

∞∑

k=0

(α)k (β)k

k! (n+ k)!
(1 − z)k

×
(
ψ(α+ k) + ψ(β + k) − ψ(1 + n+ k) − ψ(1 + k) + ln(1 − z)

)
, (3.37)

for every γ − α − β = −n, n = 0, 1, 2, . . . (in the case where n = 0 the finite sum is to be
neglected) and α, β 6= 0,−1,−2 . . . , we obtain from (3.31)

C
n+ 1

2
ν (x) = − sin νπ

π

Γ (n) Γ (n+ 1)

Γ (2n+ 1)

(
1 + x

2

)−n n−1∑

k=0

(−ν − n)k (ν + n+ 1)k

k! (1 − n)k

(
1 + x

2

)k

+ (−1)n Γ (ν + 2n+ 1) Γ (n+ 1)

Γ (ν + 1) Γ (2n+ 1) Γ (−ν − n) Γ (ν + n+ 1)

∞∑

k=0

(−ν)k (ν + 2n+ 1)k

k! (n+ k)!

(
1 + x

2

)k

×
(
ψ(−ν + k) + ψ(ν + 2n+ 1 + k) − ψ(1 + n+ k) − ψ(1 + k) + ln

1 + x

2

)
. (3.38)

From formula (3.38) we see that, as x tends to −1+ and ν is not an integer, then, if n = 0,

C
1
2
ν (x) ≡ Pν(x) ∼ ln(1 +x), where else C

n+ 1
2

ν (x) ∼ (1 +x)−n if n > 0, all becoming infinite.

3.6 The Gegenbauer functions of the second kind Dλ
ν (x) on the cut −1 < x < +1

Consider (3.13) which is the fundamental expression of Dλ
ν (x)

Dλ
ν (z) = 22λ−1 Γ (ν + 2λ) Γ (λ)

Γ (ν + λ+ 1)

(
1

2z

)ν+2λ

F

(
ν + 2λ

2
,
ν + 2λ+ 1

2
, ν + λ+ 1;

1

z2

)
, |z| > 1 .

(3.39)

Expression (3.39) may be used to deal with the segments z ∈ (−∞,−1] ∪ [+1,+∞), but
is not suitable for the segment −1 < z < +1. This is true, since in the open interval
z ∈ (−1,+1) it is not possible to pin down a value for the argument arg z independent of z,
i.e. if z ∈ (−1, 0), then if z lies just the above the real axis (see Figure 3.1), z = x+ ı̇ε, ε > 0
and |ε| << 1, the argument of z is arg z ≃ π. On the other hand, if z lies just below the real
axis, namely z = x+ ı̇ε, ε < 0 and |ε| << 1, then arg z ≃ −π. Therefore, as ε tends to 0±,
we find

z = x+ ı̇ε =
√
x2 + ε2 e±ı̇π ⇒ z = x e±ı̇π

and
z−ν−2λ = x−ν−2λ e∓ı̇π(ν+2λ) .

If z ∈ (0,+1), then, as ε → 0±

z−ν−2λ = x−ν−2λ e0 .
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This is why (3.13) is unsuitable for the segment −1 < x < +1 and some transformations
are needed. Using the transformation

F (α, β, γ; z) = (1 − z)−α F

(
α, γ − β, γ;

z

z − 1

)
, | arg(1 − z)| < π , (3.40)

on (3.13) we obtain

Dλ
ν (z) = 2−ν−1 Γ (ν + 2λ) Γ (λ)

Γ (ν + λ+ 1)

(
z2 − 1

)− ν+2λ
2 F

(
ν + 2λ

2
,
ν + 1

2
, ν + λ+ 1;

1

1 − z2

)
,

(3.41)

for every Re z > 0.

The restriction Re z > 0 is needed because of the part of the branch cut of
(
z2 − 1

)− ν+2λ
2

associated with z2 ≤ 0. However, the restriction can be dropped adopting the convention

that
(
z2 − 1

)− ν+2λ
2 is defined as (z − 1)

− ν+2λ
2 (z + 1)

− ν+2λ
2 , so that the only branch cut is

(−∞, 1].
Applying then consecutively the transformations [WG89, p. 161, eq.(8)]

F (α, β, γ; z) =
Γ (γ) Γ (β − α)

Γ (γ − α) Γ (β)
(−z)−α F

(
α, α− γ + 1, α− β + 1; z−1

)

+
Γ (γ) Γ (α− β)

Γ (γ − β) Γ (α)
(−z)−β F

(
β, β − γ + 1, β − α+ 1; z−1

)
, | arg(−z)| < π ,

(3.42)

which holds only if α−β is not an integer, and [WG89, p. 179, eq.(9) substituting t = 1−z
2 ]

F

(
α, β, α+ β +

1

2
; 1 − z2

)
= F

(
2α, 2β, α+ β +

1

2
;

1 − z

2

)
, (3.43)

to (3.41), gives

Dλ
ν (z) =

Γ (ν + 2λ) Γ (λ) Γ
(

1
2 − λ

)

2
√
π Γ (ν + 1)

F

(
−ν, ν + 2λ, λ+

1

2
;

1 − z

2

)

+ 22λ−2 Γ (λ) Γ
(
λ− 1

2

)
√
π

(
z2 − 1

) 1
2 −λ

F

(
ν + 1,−ν − 2λ+ 1,

3

2
− λ;

1 − z

2

)
,

(3.44)

valid only if λ− 1
2 is not an integer, i.e. λ 6= n+ 1

2 , n = 0, 1, 2, . . . .
In view of the definition for the Gegenbauer functions of the first kind (3.12), equation
(3.44) rewrites

Dλ
ν (z) =

1

sin 2λπ

{
22λ−1 sinλπ (Γ (λ))

2
Cλ

ν (z) − π
Γ (ν + 2λ)

Γ (ν + 1)
(z2 − 1)

1
2 −λ C1−λ

ν+2λ−1(z)

}
.

(3.45)

The latter holds for every λ 6= n
2 . Solving (3.45) with respect to Cλ

ν (z) we obtain

Cλ
ν (z) =

21−2λ

sinλπ (Γ (λ))
2

{
sin 2λπDλ

ν (z) + π
Γ (ν + 2λ)

Γ (ν + 1)
(z2 − 1)

1
2 −λ C1−λ

ν+2λ−1(z)

}
, (3.46)
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which shows clearly that Cλ
ν (z) and C1−λ

ν+2λ−1(z) are linearly independent, except if λ is a
half odd integer. Furthermore, replacing in (3.13) λ with 1 − λ and ν with ν + 2λ − 1 and
applying the transformation formula

F (α, β, γ; z) = (1 − z)γ−α−βF (γ − α, γ − β, γ; z) , (3.47)

it is straightforward to show that

D1−λ
ν+2λ−1(z) = 21−2λ π

sinλπ

Γ (ν + 1)

Γ (ν + 2λ) (Γ (λ))
2 (z2 − 1)λ− 1

2Dλ
ν (z) . (3.48)

Consider z ± 1 = ρ± eı̇φ± so that

z2 − 1 = (z + 1)(z − 1) = ρ+ ρ− e
ı̇(φ++φ−) ,

where ρ± =
√

(x± 1)2 + y2 and φ± = arg(z ± 1). If z lies just above the real axis, then
φ− ≃ π and φ+ ≃ 0. Thus z2 − 1 = (x2 − 1) eı̇π. On the other hand, if z lies just below the
real axis, then φ− ≃ −π, φ+ ≃ 0 and z2 − 1 = (x2 − 1) e−ı̇π. Hence the values of Dλ

ν (z) on
the cut from -1 to +1, are

eı̇λπ Dλ
ν (x+ ı̇0) =

1

sin 2λπ

{
22λ−1 sinλπ (Γ (λ))

2
eı̇λπ Cλ

ν (x)

+ π
Γ (ν + 2λ)

Γ (ν + 1)
(1 − x2)

1
2 −λ e−ı̇λπ C1−λ

ν+2λ−1(x)

}
, (3.49)

and

e−ı̇λπ Dλ
ν (x− ı̇0) =

1

sin 2λπ

{
22λ−1 sinλπ (Γ (λ))

2
e−ı̇λπ Cλ

ν (x)

− π
Γ (ν + 2λ)

Γ (ν + 1)
(1 − x2)

1
2 −λ e−ı̇λπ C1−λ

ν+2λ−1(x)

}
. (3.50)

Eliminating C1−λ
ν+2λ−1(x) from (3.49) and (3.50) implies

eı̇λπ Dλ
ν (x+ ı̇0) + e−ı̇λπ Dλ

ν (x− ı̇0) = 22λ−1 (Γ (λ))
2
Cλ

ν (x) , (3.51)

if −1 < x < +1, and shows why the cut must be extended to the point z = 1 in the case of
the Gegenbauer function of the second kind. Equation (3.51) can be rewritten as

eı̇λπ Dλ
ν (x+ ı̇0) − e±ı̇π e−ı̇λπ Dλ

ν (x− ı̇0) = 22λ−1 (Γ (λ))
2
Cλ

ν (x) . (3.52)

Note that for λ = 1
2 , eq. (3.51) reduces to the well known relation

Qν(x+ ı̇0) −Qν(x− ı̇0) = −ı̇π Pν(x) .

Furthermore, if we stipulate that in −1 < x < +1∗

Dλ
ν (x) = − ı̇

2

(
eı̇λπ Dλ

ν (x+ ı̇0) − e−ı̇λπ Dλ
ν (x− ı̇0)

)
, (3.53)

∗An alternative definition can be given as

Dλ

ν (x) =
ı̇

2

(
e−ı̇λπ Dλ

ν (x + ı̇0) + eı̇λπ Dλ

ν (x − ı̇0)

)
.
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then Dλ
ν (x) clearly satisfies the Gegenbauer differential equation (3.9). Moreover, Dλ

ν (x)
and Cλ

ν (x) are linearly independent of each other. The values of the Gegenbauer functions
of the second kind on the cut −1 < x < +1, are obtained by substituting (3.49) and (3.50)
into (3.53)

Dλ
ν (x) =

1

sin 2λπ

{
22λ−1

(
sinλπ Γ (λ)

)2
Cλ

ν (x)

− ı̇π
Γ (ν + 2λ)

Γ (ν + 1)
(1 − x2)

1
2 −λ e−ı̇λπ C1−λ

ν+2λ−1(x)

}
. (3.54)

To obtain the value of Dλ
ν (x) as x tends to 1− we may use (3.31) of the preceding section

together with the transformation (3.47) applied to the second hypergeometric function on
the right-hand side of (3.54) and thus the foregoing expression for Dλ

ν (x) rewrites

Dλ
ν (x) = 22λ−2 sinλπ

cosλπ

Γ (ν + 2λ) (Γ (λ))
2

Γ (ν + 1) Γ (2λ)
F

(
−ν, ν + 2λ, λ+

1

2
;

1 − x

2

)

+ ı̇
e−ı̇λπ

√
π

2λ− 3
2 Γ (λ) Γ

(
λ− 1

2

) ( 1

1 − x

)λ− 1
2

F

(
ν + λ+

1

2
,−ν − λ+

1

2
,

3

2
− λ;

1 − x

2

)
.

(3.55)

From (3.55) we see that as x → 1−

lim
x→1−

Dλ
ν (x) =22λ−2 sinλπ

cosλπ

Γ (ν + 2λ) (Γ (λ))
2

Γ (ν + 1) Γ (2λ)

+ ı̇
e−ı̇λπ

√
π

2λ− 3
2 Γ (λ) Γ

(
λ− 1

2

)
lim

x→1−

(
1

1 − x

)λ− 1
2
, (3.56)

which tends in general to infinity if λ is an (half odd or not) integer greater than 1
2 . In

particular, if λ is a positive integer and ν + 2λ is not a negative integer then the first term
vanishes and Dn

ν (x) ∼ (1 − x)
1
2 −n. If λ = 0, (3.55) becomes an indeterminate form which

can be evaluated with the aid of Weierstrass’ infinite product for the Γ−functions. For
values of λ in the open interval from − 1

2 to 1
2 , excluding zero,

lim
x→1−

Dλ
ν (x) =

√
π

2

sinλπ

cosλπ

Γ (ν + 2λ) Γ (λ)

Γ (ν + 1) Γ
(
λ+ 1

2

) .

In order to study the value of Dλ
ν (x) as x tends to −1+, we apply (3.33) to (3.55) to find

Dλ
ν (x) =

√
π

2

Γ (ν + 2λ) Γ (λ)

Γ (ν + 1) Γ
(
λ+ 1

2

) 1

cos2 λπ

(
sinλπ cos(ν + λ)π − ı̇ e−ı̇λπ sin(ν + 2λ)π

)

× F

(
−ν, ν + 2λ, λ+

1

2
;

1 + x

2

)
− 22λ−2

√
π

Γ (λ) Γ
(
λ− 1

2

) 1

cosλπ

(
sinλπ sin νπ

+ ı̇ e−ı̇λπ cos(ν + λ)π

)
(1 − x2)

1
2 −λ F

(
ν + 1,−ν − 2λ+ 1,

3

2
− λ;

1 + x

2

)
, (3.57)
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where (3.47) is also used. As x tends to −1+ the above equation becomes

lim
x→−1+

Dλ
ν (x) =

√
π

2

Γ (ν + 2λ) Γ (λ)

Γ (ν + 1) Γ
(
λ+ 1

2

) 1

cos2 λπ

(
sinλπ cos(ν + λ)π − ı̇ e−ı̇λπ sin(ν + 2λ)π

)

− 2λ− 3
2√
π

Γ (λ) Γ
(
λ− 1

2

) 1

cosλπ

(
sinλπ sin νπ + ı̇ e−ı̇λπ cos(ν + λ)π

)
lim

x→−1+
(1 + x)

1
2 −λ ,

(3.58)

which tends in general to infinity if λ is an (half odd or not) integer greater than 1
2 . In

particular, if λ is a positive integer and ν + 2n is not a negative integer then the first term
equals

−ı̇(−1)n

√
π

2

Γ (ν + 2n)

nΓ
(
n+ 1

2

) sin νπ,

where else the second term tends to infinity and therefore Dn
ν (x) ∼ (1 + x)

1
2 −n. If λ = 0,

(3.57) becomes an indeterminate form. For values of λ in the open interval from − 1
2 to 1

2 ,

excluding zero,

lim
x→−1+

Dλ
ν (x) =

√
π

2

Γ (ν + 2λ) Γ (λ)

Γ (ν + 1) Γ
(
λ+ 1

2

) 1

cos2 λπ

(
sinλπ cos(ν+λ)π−ı̇ e−ı̇λπ sin(ν+2λ)π

)
.

Solving (3.54) with respect to the Gegenbauer functions of the first kind Cλ
ν (x), we obtain

Cλ
ν (x) =22−2λ cosλπ

sinλπ

1

(Γ (λ))
2 D

λ
ν (x)

+ ı̇π 21−2λe−ı̇λπ Γ (ν + 2λ)

Γ (ν + 1) (Γ (λ))
2

1

sin2 λπ
(1 − x2)

1
2 −λ C1−λ

ν+2λ−1(x) (3.59)

from which it can be seen that Cλ
ν (x) and C1−λ

ν+2λ−1(x) are linearly independent on the cut.

For positive half integer values of λ, namely λ = n+ 1
2 , formula (3.59) reduces to

C
n+ 1

2
ν (x) = (−1)n π

22n

Γ (ν + 2n+ 1)

Γ (ν + 1)
(
Γ
(
n+ 1

2

) )2 (1 − x2)−n C
−n+ 1

2
ν+2n (x) (3.60)

and for this values of λ, C
n+ 1

2
ν (x) and C

−n+ 1
2

ν+2n (x) become linearly dependent.
In order to study the behavior of Dλ

ν (x) for λ = n + 1
2 as x tends to ±1∓, we first observe

that (3.54), in view of (3.60), becomes an indeterminate form 0
0 .

Hence, (3.54) for λ = n+ 1
2 reads

D
n+ 1

2
ν (x) = lim

λ→n+ 1
2

1

sin 2λπ

{
22λ−1

(
sinλπ Γ (λ)

)2
Cλ

ν (x)

− ı̇π
Γ (ν + 2λ)

Γ (ν + 1)
(1 − x2)

1
2 −λ e−ı̇λπ C1−λ

ν+2λ−1(x)

}
. (3.61)

Applying L’ Hospital’s rule and utilizing the property

d

dz
Γ (z) = Γ (z) ψ(z) ,
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where ψ(z) is the logarithmic derivative of the Gamma function, we find

d

dλ

(
22λ−1

(
sinλπ Γ (λ)

)2
Cλ

ν (x)

)∣∣∣∣∣
λ=n+ 1

2

= 22n
(
Γ
(
n+ 1

2

))2
(

2 ln 2 + 2ψ(n+ 1
2 )

+ ψ(n+ 1) − 2ψ(2n+ 1)

)
C

n+ 1
2

ν (x) + 22n
Γ (ν + 2n+ 1)

(
Γ
(
n+ 1

2

))2

Γ (ν + 1) Γ (2n+ 1)

×
∞∑

k=0

(
2ψ(ν + 2n+ 1 + k) − ψ(n+ 1 + k)

)
(−ν)k (ν + 2n+ 1)k

k! (n+ 1)k

(
1 − x

2

)k

(3.62)

and

d

dλ

(
ı̇π

Γ (ν + 2λ)

Γ (ν + 1)
(1 − x2)

1
2 −λ e−ı̇λπ C1−λ

ν+2λ−1(x)

)
= ı̇π e−ı̇λπ Γ (ν + 2λ)

Γ (ν + 1)

(
− ln(1 − x2)

− ı̇π + 2 ln 2 + ψ(λ) + ψ(λ− 1
2 ) + 2ψ(−ν − 2λ+ 1) − ψ( 3

2 − λ) + 2π
cos 2λπ

sin 2λπ

)
(1 − x2)

1
2 −λ

× C1−λ
ν+2λ−1(x) − ı̇ e−ı̇λπ 22λ−2 sin 2λπ√

π
Γ (λ) Γ

(
λ− 1

2

)
(1 − x2)

1
2 −λ

×
∞∑

k=0

(
ψ( 3

2 − λ+ k) − 2ψ(−ν − 2λ+ 1 + k)

)
(ν + 1)k (−ν − 2λ+ 1)k

k! ( 3
2 − λ)k

(
1 − x

2

)k

.

(3.63)

From the theory of the Γ−functions (and therefore also for the ψ−functions) it is known
that ψ(−n) → ∞ for n = 0, 1, 2, . . . . Hence, utilizing the property

ψ(1 − z) = ψ(z) + π cot zπ , (3.64)

the term 2ψ(−ν−2λ+1)−ψ( 3
2 −λ) becomes 2ψ(ν+2λ)−ψ(λ− 1

2 )+2π cot(ν+2λ)π+π sin λπ
cos λπ

and

d

dλ

(
ı̇π

Γ (ν + 2λ)

Γ (ν + 1)
(1 − x2)

1
2 −λ e−ı̇λπ C1−λ

ν+2λ−1(x)

)
= ı̇π e−ı̇λπ Γ (ν + 2λ)

Γ (ν + 1)

(
− ln(1 − x2)

− ı̇π + 2 ln 2 + ψ(λ) + 2ψ(ν + 2λ) + 2π cot(ν + 2λ)π + π cotλπ

)
(1 − x2)

1
2 −λ C1−λ

ν+2λ−1(x)

+ ı̇ e−ı̇λπ 22λ−1

√
π

sinλπ sin(ν + 2λ)π Γ (λ) Γ (ν + 2λ) (1 − x2)
1
2 −λ

×
∞∑

k=0

(
ψ( 3

2 − λ+ k) − 2ψ(−ν − 2λ+ 1 + k)

)
(ν + 1)k Γ (−ν − 2λ+ 1 + k)

k! Γ
(

3
2 − λ+ k

)
(

1 − x

2

)k

.

(3.65)
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Putting everything together we find

D
n+ 1

2
ν (x) =

22n−1

π

(
Γ
(
n+ 1

2

))2
(

− ln(1 − x2) − ı̇π + 2ψ(2n+ 1) − ψ(n+ 1
2 ) − ψ(n+ 1)

+ 2ψ(ν + 2n+ 1) + 2π cot νπ

)
C

n+ 1
2

ν (x) − 22n−1

π

Γ (ν + 2n+ 1)
(
Γ
(
n+ 1

2

))2

Γ (ν + 1) Γ (2n+ 1)

×
∞∑

k=0

(
2ψ(ν + 2n+ 1 + k) − ψ(n+ 1 + k)

)
(−ν)k (ν + 2n+ 1)k

k! (n+ 1)k

(
1 − x

2

)k

− 22n−1

π
√
π

sin νπ Γ (ν + 2n+ 1) Γ
(
n+ 1

2

)
(1 − x2)−n lim

λ→n+ 1
2

∞∑

k=0

(
ψ( 3

2 − λ+ k)

− 2ψ(−ν − 2λ+ 1 + k)

)
(ν + 1)k Γ (−ν − 2λ+ 1 + k)

k! Γ
(

3
2 − λ+ k

)
(

1 − x

2

)k

. (3.66)

As mentioned, ψ(−n) → ∞ for n = 0, 1, 2, . . . , and lim
λ→n+ 1

2

ψ( 3
2 − λ + k) makes sense only

if k > n − 1. Thus, splitting the last of the series into two parts, one with index counting
from zero to n− 1 and the other from n to infinity, i.e.

∞∑

k=0

=
n−1∑

k=0

+
∞∑

k=n

,

we merely notice that the second series behaves properly, where else the first one needs
further manipulation. Employing (3.64) we find

ψ( 3
2 − λ+ k) − 2ψ(−ν − 2λ+ 1 + k)

= ψ(λ− 1
2 − k) − 2ψ(ν + 2λ− k) + π cot(λ− 1

2 − k)π − 2π cot(ν + 2λ− k)π

and as λ tends to n+ 1
2

lim
λ→n+ 1

2

ψ( 3
2 − λ+ k) − 2ψ(−ν − 2λ+ 1 + k)

= ψ(n− k) − 2ψ(ν + 2n+ 1 − k) + π cot(n− k)π − 2π cot(ν + 2n+ 1 − k)π ,

valid if k < n. Furthermore, making use of (3.3) it can be shown that

lim
λ→n+ 1

2

1

Γ
(

3
2 − λ+ k

) =
sin(n− k)π

π
Γ (n− k) .
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Finally

D
n+ 1

2
ν (x) =

22n−1

π

(
Γ
(
n+ 1

2

))2
(

− ln(1 − x2) − ı̇π + 2ψ(2n+ 1) − ψ(n+ 1
2 ) − ψ(n+ 1)

+ 2ψ(ν + 2n+ 1) + 2π cot νπ

)
C

n+ 1
2

ν (x) − 22n−1

π

Γ (ν + 2n+ 1)
(
Γ
(
n+ 1

2

))2

Γ (ν + 1) Γ (2n+ 1)

×
∞∑

k=0

(
2ψ(ν + 2n+ 1 + k) − ψ(n+ 1 + k)

)
(−ν)k (ν + 2n+ 1)k

k! (n+ 1)k

(
1 − x

2

)k

− (−1)n 22n−1

π
√
π

sin νπ Γ (ν + 2n+ 1) Γ
(
n+ 1

2

)
(1 − x2)−n

n−1∑

k=0

(−1)k (ν + 1)k

k! Γ (n− k)

× Γ (−ν − 2n+ k)

(
1 − x

2

)k

− 2n−1

π
√
π

sin νπ Γ (ν + 2n+ 1) Γ
(
n+ 1

2

)
(1 + x)−n

×
∞∑

k=0

(
ψ(k + 1) − 2ψ(−ν − n+ k)

)
(ν + 1 + n)k (ν + 1)n Γ (−ν − n+ k)

k! (n+ k)!

(
1 − x

2

)k

(3.67)

or, applying the relations in section 3.1 the latter can be simplified as

D
n+ 1

2
ν (x) =

22n−1

π

(
Γ
(
n+ 1

2

))2
(

− ln(1 − x2) − ı̇π + 2ψ(2n+ 1) − ψ(n+ 1
2 ) − ψ(n+ 1)

+ 2ψ(ν + 2n+ 1) + 2π cot νπ

)
C

n+ 1
2

ν (x) − 22n−1

π

n!

(2n)!

(
Γ
(
n+ 1

2

))2

×
∞∑

k=0

(−1)k

(
2ψ(ν + 2n+ 1 + k) − ψ(n+ 1 + k)

)
Γ (ν + 2n+ 1 + k)

k! Γ (ν + 1 − k)

(
1 − x

2

)k

+ (−1)n 22n−1

√
π

Γ (ν + 2n+ 1) Γ
(
n+ 1

2

)
(1 − x2)−n

n−1∑

k=0

(ν + 1)k (n− k − 1)!

k! Γ (ν + 2n+ 1 − k)

(
1 − x

2

)k

+
2n−1

√
π

Γ (ν + 2n+ 1) Γ
(
n+ 1

2

)
(1 + x)−n

∞∑

k=0

(
ψ(k + 1) − 2ψ(−ν − n+ k)

)

× (ν + 1 + n)k (ν + 1)n

k! (n+ k)! Γ (ν + 1 + n− k)

(
1 − x

2

)k

, (3.68)

where the finite series is to be neglected if n = 0.

From (3.67) we see that if x → 1−, D
n+ 1

2
ν (x) tends to infinity in general. In particular, if

n = 0 and by the fact that C
1
2
ν (1) ≡ Pν(1) = 1, D

1
2
ν (x) ≡ Qν(x) ∼ ln(1 − x) and for n > 0,

D
n+ 1

2
ν (x) ∼ (1 − x)−n. Repeating the aforementioned procedure in the case where x tends

to −1+, one obtains D
1
2
ν (x) ≡ Qν(x) ∼ ln(1+x) if n = 0 and D

n+ 1
2

ν (x) ∼ (1+x)−n if n > 0.
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3.7 Some Relations satisfied by the Gegenbauer functions †

The Gegenbauer differential equation (3.9) does not change if we replace ν by −ν−2λ or z by
−z, and therefore it has solutions Cλ

−ν−2λ(z), Dλ
−ν−2λ(z), Cλ

ν (−z) and Dλ
ν (−z), as well as

Cλ
ν (z) and Dλ

ν (z). Since every three solutions of a second-order linear differential equation
are linearly dependent, there exist certain functional relations between the solutions just
enumerated. The simplest such relation is the formula

Cλ
−ν−2λ(z) = − sin(ν + 2λ)π

sin νπ
Cλ

ν (z) , (3.69)

which is easily proven by the definition of the Gegenbauer function of the first kind (3.12)
and the symmetry property of the hypergeometric function

F (α, β, γ; z) = F (β, α, γ; z) .

To obtain a relation connecting Cλ
ν (z), Dλ

ν (z) and Dλ
−ν−2λ(z) we assume temporarily that

z > 1. It follows then that

Cλ
ν (z) = 21−2λ sin νπ

(Γ (λ))
2

sin(ν + λ)π

(
Dλ

ν (z) −Dλ
−ν−2λ(z)

)
. (3.70)

Indeed, utilizing formula (3.18)

Cλ
ν (z) =

Γ (ν + λ)

Γ (ν + 1) Γ (λ)
(2z)ν F

(
−ν

2
,

1 − ν

2
,−ν − λ+ 1;

1

z2

)

+
Γ (ν + 2λ)

Γ (ν + λ+ 1) Γ (λ)

sin νπ

sin(ν + λ)π
(2z)−ν−2λ F

(
ν + 2λ+ 1

2
,
ν + 2λ

2
, ν + λ+ 1;

1

z2

)

we notice that the second term on the right-hand side of the above equation can be rewritten
as

Γ (ν + 2λ)

Γ (ν + λ+ 1) Γ (λ)

sin νπ

sin(ν + λ)π
(2z)−ν−2λ F

(
ν + 2λ+ 1

2
,
ν + 2λ

2
, ν + λ+ 1;

1

z2

)

=
1

22λ−1

1
(

Γ (λ)
)2

sin νπ

sin(ν + λ)π
Dλ

ν (z) , (3.71)

where we used relation (3.13)

Dλ
ν (z) = 22λ−1 Γ (ν + 2λ) Γ (λ)

Γ (ν + λ+ 1)
(2z)−ν−2λ F

(
ν + 2λ+ 1

2
,
ν + 2λ

2
, ν + λ+ 1;

1

z2

)
. (3.72)

Replace in the latter expression ν with −ν − 2λ to obtain

Dλ
−ν−2λ(z) = 22λ−1 Γ (−ν) Γ (λ)

Γ (−ν − λ+ 1)
(2z)ν F

(
−ν

2
,

1 − ν

2
,−ν − λ+ 1;

1

z2

)
. (3.73)

Employing the very useful relation (3.4) satisfied by the Γ−function we obtain at once

Γ (−ν) Γ (λ)

Γ (−ν − λ+ 1)
= −Γ (λ) Γ (ν + λ) sin(ν + λ)π

Γ (ν + 1) sin νπ
,

†Based on section 7.5 of [Leb72]



3.7. SOME RELATIONS SATISFIED BY THE GEGENBAUER FUNCTIONS 53

and the foregoing expression for Dλ
−ν−2λ(z) reads

Dλ
−ν−2λ(z) = −22λ−1 Γ (ν + λ) Γ (λ)

Γ (ν + 1)

sin(ν + λ)π

sin νπ
(2z)ν F

(
−ν

2
,

1 − ν

2
,−ν − λ+ 1;

1

z2

)
.

(3.74)
The first term on the right-hand side of (3.18) becomes now

Γ (ν + λ)

Γ (ν + 1) Γ (λ)
(2z)ν F

(
−ν

2
,

1 − ν

2
,−ν − λ+ 1;

1

z2

)

= − 1

22λ−1

1

(Γ (λ))
2

sin νπ

sin(ν + λ)π
Dλ

−ν−2λ(z) ,

and (3.18) becomes (3.70).
Note that for λ = 1

2 we obtain the known expression

Pν(z) =
1

π
tan νπ

(
Qν(z) −Q−ν−1(z)

)
.

Formula (3.70) remains valid for all z cut along (−∞,+1], since in this region both sides
are analytic functions of z.
Another relation between the solutions of (3.9) enumerated above, can be derived assuming
temporarily that |z| > 1 and | arg z| < π. Then formula (3.13) gives

Dλ
ν (−z) = e±ı̇2λπ e±ı̇νπ Dλ

ν (z), ν + 2λ 6= 0,−1,−2, . . . , (3.75)

where the upper sign corresponds to Im z > 0 and the lower sign to Im z < 0.
Using the principle of analytic continuation, we can drop the condition |z| > 1, thereby
establishing the validity of (3.75) for arbitrary z in the plane cut along (−∞,+1] and
arbitrary ν + 2λ 6= 0,−1,−2, . . . .
Replacing z by −z in (3.70) which combined with (3.75) yields

Cλ
ν (−z) = 21−2λ 1

(Γ (λ))
2

sin νπ

sin(ν + λ)π

(
e±ı̇2λπ e±ı̇νπ Dλ

ν (z) − e∓ı̇νπ Dλ
−ν−2λ(z)

)
. (3.76)

Eliminating Dλ
−ν−2λ(z) using (3.70) gives

Cλ
ν (−z) = ±ı̇22−2λ sin νπ

(Γ (λ))
2 e

±ı̇λπ Dλ
ν (z) + e∓ı̇νπ Cλ

ν (z) . (3.77)

The upper sign is chosen if Im z > 0 and the lower sign if Im z < 0. Equation (3.77) shows
the nature of the singularity ofCλ

ν (z). Unless ν is an integer or zero, Cλ
ν (z) has a logarithmic

singularity at z = −1. In the case where ν is an integer n, then (3.77) becomes

Cλ
n(−z) = (−1)n Cλ

n(z) . (3.78)

As z approaches the real line it follows from (3.77) that

ı̇22−2λ sin νπ

(Γ (λ))
2 e

ı̇λπ Dλ
ν (x+ ı̇0) = Cλ

ν (−x) − e−ı̇νπ Cλ
ν (x) , (3.79)
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−ı̇22−2λ sin νπ

(Γ (λ))
2 e

−ı̇λπ Dλ
ν (x− ı̇0) = Cλ

ν (−x) − eı̇νπ Cλ
ν (x) . (3.80)

Eliminating Cλ
ν (−x) from (3.79) and (3.80) recovers (3.51).

In order to obtain a relation which connects the Gegenbauer functions Cλ
ν , D

λ
ν and Dλ

−ν−2λ

on the real line, similar to (3.70), we work as follows.
As seen, (3.70) is valid in the whole complex z−plane. Assume that z approaches the real
axis from the upper bank. Then (3.70) becomes

Cλ
ν (x+ ı̇ ε) = 21−2λ sin νπ

(Γ (λ))
2

sin(ν + λ)π

(
Dλ

ν (x+ ı̇ ε) −Dλ
−ν−2λ(x+ ı̇ ε)

)
. (3.81)

As ε tends to zero and since Cλ
ν (x+ ı̇0) = Cλ

ν (x), the above relation rewrites

Cλ
ν (x) = 21−2λ sin νπ

(Γ (λ))
2

sin(ν + λ)π

(
Dλ

ν (x+ ı̇0) −Dλ
−ν−2λ(x+ ı̇0)

)
. (3.82)

Similarly, let z approach the real axis from the lower bank. Then as ε → 0, (3.70) becomes

Cλ
ν (x) = 21−2λ sin νπ

(Γ (λ))
2

sin(ν + λ)π

(
Dλ

ν (x− ı̇0) −Dλ
−ν−2λ(x− ı̇0)

)
. (3.83)

Multiply equation (3.82) throughout − ı̇
2 e

ı̇λπ and (3.83) by ı̇
2 e

−ı̇λπ. Adding the resulting
equations and taking into account (3.53) yields

sinλπ Cλ
ν (x) = 21−2λ sin νπ

(Γ (λ))
2

sin(ν + λ)π

(
Dλ

ν (x) −Dλ
−ν−2λ(x)

)
. (3.84)

3.8 Series representation of the Gegenbauer functions‡

To derive expansions of the Gegenbauer functions which hold in the part of the cut plane
where |z| < 1, we first note that the substitution t = z2 transforms the Gegenbauer
differential equation (3.9) into

t (1 − t)
d2w(t)

dt2
+

(
1

2
− (λ+ 1) t

)
dw(t)

dt
−
(

−ν

2

)(ν
2

+ λ
)
w(t) = 0 , (3.85)

which is a special case of the hypergeometric equation

t (1 − t)
d2u

dt2
+
(
γ − (α+ β + 1) t

) du
dt

− αβ u = 0 , (3.86)

corresponding to the values

α = −ν

2
, β =

ν

2
+ λ, γ =

1

2
.

The general solution of (3.85) for |z| < 1 can be written in the form [Leb72, p.163, eq.(7.2.6)]

w(z) = A(ν;λ)F

(
−ν

2
,
ν + 2λ

2
,

1

2
; z2

)
+B(ν;λ) z F

(
1 − ν

2
,
ν + 2λ+ 1

2
,

3

2
; z2

)
, (3.87)

‡Based on section 7.6 of [Leb72]
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where A and B are arbitrary functions of the variables ν and λ. In particular, if the

values of these functions are chosen to be A = Cλ
ν (0), B = d

dz
Cλ

ν (z)
∣∣∣
z=0

, then w ≡ Cλ
ν (z),

and to obtain the desired expansion, we need only calculate the values of the Gegenbauer
functions Cλ

ν (z) and its derivative at the point z = 0.
With this aim, we set z = 0 in the series (3.12), obtaining

Cλ
ν (0) =

Γ (ν + 2λ)

Γ (ν + 1) Γ (2λ)
F

(
−ν, ν + 2λ, λ+

1

2
;

1

2

)

=
Γ (ν + 2λ)

Γ (ν + 1) Γ (2λ)

+∞∑

n=0

(−ν)n (ν + 2λ)n

n!
(
λ+ 1

2

)
n

1

2n
, (3.88)

where (α)n is the Pochhammer symbol defined as (α)n = Γ(α+n)
Γ(n) .

Thus,

Cλ
ν (0) = − sin νπ

π

√
π

22λ−1 Γ (λ)

+∞∑

n=0

Γ (n− ν) Γ (n+ ν + 2λ)

n! Γ
(
n+ λ+ 1

2

) 1

2n
, (3.89)

where we employed formula (3.3) together with the duplication theorem (3.1) from the
theory of the Γ−functions.
In the sequence, consider the Beta function B(x, y) defined as

B(x, y) =

∫ 1

0

tx−1 (1 − t)y−1 dt, Rex > 0, Re y > 0 (3.90)

which can be, more conveniently, expressed as the ratio of Γ−functions

B(x, y) =
Γ (x) Γ (y)

Γ (x+ y)
. (3.91)

Let x+ y equal to n+ λ+ 1
2 , so that (3.91) becomes

B
(
n− ν, ν + λ+ 1

2

)
=

Γ (n− ν) Γ
(
ν + λ+ 1

2

)

Γ
(
n+ λ+ 1

2

) , n = 0, 1, 2, . . . . (3.92)

In view of equations (3.90) and (3.92), (3.89) yields

Cλ
ν (0) = − sin νπ

π

√
π

22λ−1 Γ (λ)

+∞∑

n=0

Γ (n+ ν + 2λ)

2n n! Γ
(
ν + λ+ 1

2

)
∫ 1

0

tn−ν−1 (1 − t)ν+λ− 1
2 dt

= − sin νπ

π

Γ (ν + 2λ)

Γ
(
ν + λ+ 1

2

)
√
π

22λ−1 Γ (λ)

∫ 1

0

t−ν−1 (1 − t)ν+λ− 1
2

(
1 − t

2

)−ν−2λ

dt ,

(3.93)

where the reversal of the order of summation and integration is justified by an absolute
convergence argument.
The last line of the above expression is obtained employing the binomial series

(1 − z)−r =

+∞∑

n=0

(r)n

n!
zn = F (r, 1, 1; z) , |z| < 1 ,
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where r is an arbitrary variable (complex or real) and
(
r

n

)
=

(r)n

n!
,

are the binomial coefficients.
With this in mind, equation (3.93) becomes

Cλ
ν (0) = − sin νπ

π

Γ (ν + 2λ)

Γ
(
ν + λ+ 1

2

)
√
π

22λ−1 Γ (λ)

∫ 1

0

t−ν−1 (1 − t)ν+λ− 1
2 F

(
ν + 2λ, 1, 1;

t

2

)
dt ,

which is handled by means of the Beta function (see, e.g. [GR00, pp 806-807]).
A more convenient way is to employ the following summation formula ([WG89, eq.(3),

p. 185]) based on Kummer’s formula

F

(
α, β,

1 + α+ β

2
;

1

2

)
=

Γ
(

1
2

)
Γ
(

1+α+β
2

)

Γ
(

1+α
2

)
Γ
(

1+β
2

) .

Hence, (3.88) rewrites

Cλ
ν (0) =

Γ (ν + 2λ)

Γ (ν + 1) Γ (2λ)

√
π Γ
(
λ+ 1

2

)

Γ
(

1−ν
2

)
Γ
(

1+ν+2λ
2

) . (3.94)

Since both sides of (3.94) are entire functions of ν, our result holds for arbitrary values of
ν. Using (3.3) we can write (3.94) also in the form

Cλ
ν (0) =

Γ (ν + 2λ) Γ
(

1+ν
2

)
Γ
(
λ+ 1

2

)
√
π Γ (ν + 1) Γ (2λ) Γ

(
1+ν+2λ

2

) cos
νπ

2
. (3.95)

Once we have found Cλ
ν (0), we can easily deduce d

dz
Cλ

ν (0) by using the recurrence formula

(1 − z2)
d

dz
Cλ

ν (z) + ν z Cλ
ν (z) − (ν + 2λ− 1)Cλ

ν−1(z) = 0 ,

obtained, relating the Gegenbauer functions of the first kind Cλ
ν (z) with the associated

Legendre functions of the first kind Pµ
ν (z) via

Pµ
ν (z) = 2µ Γ (ν + µ+ 1) Γ (1 − 2µ)

Γ (ν − µ+ 1) Γ (1 − µ)
(z2 − 1)− µ

2 C
−µ+ 1

2
ν+µ (z) ,

and employing the recurrence relation

(z2 − 1)
d

dz
Pµ

ν (z) = ν z Pµ
ν (z) − (ν + µ)Pµ

ν−1(z) .

This gives

d

dz
Cλ

ν (0) = (ν + 2λ− 1)Cλ
ν−1(0)

=
Γ (ν + 2λ) Γ

(
ν
2

)
Γ
(
λ+ 1

2

)
√
π Γ (ν) Γ (2λ) Γ

(
ν+2λ

2

) sin
νπ

2
, (3.96)
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where we take account of formula (3.5).
Combining (3.87), (3.95) and (3.96), we obtain the following series expansion of the Gegen-
bauer function of the first kind, valid for |z| < 1 and arbitrary ν

Cλ
ν (z) =

Γ (ν + 2λ) Γ
(

1+ν
2

)
Γ
(
λ+ 1

2

)
√
π Γ (ν + 1) Γ (2λ) Γ

(
1+ν+2λ

2

) cos
νπ

2
F

(
−ν

2
,
ν + 2λ

2
,

1

2
; z2

)

+
Γ (ν + 2λ) Γ

(
ν
2

)
Γ
(
λ+ 1

2

)
√
π Γ (ν) Γ (2λ) Γ

(
ν+2λ

2

) sin
νπ

2
z F

(
1 − ν

2
,
ν + 2λ+ 1

2
,

3

2
; z2

)
, (3.97)

which, making use of the duplication formula (3.1) reads

Cλ
ν (z) =21−2λ

Γ (ν + 2λ) Γ
(

ν+1
2

)

Γ (λ) Γ (ν + 1) Γ
(

ν+2λ+1
2

) cos
νπ

2
F

(
−ν

2
,
ν + 2λ

2
,

1

2
; z2

)

+ 21−2λ
Γ (ν + 2λ) Γ

(
ν
2

)

Γ (λ) Γ (ν) Γ
(

ν+2λ
2

) sin
νπ

2
z F

(
1 − ν

2
,
ν + 2λ+ 1

2
,

3

2
; z2

)
. (3.98)

The corresponding expansion for the Gegenbauer function of the second kind is obtained
from (3.77) with the aid of (3.98). After simple manipulations we arrive at

e±ı̇λπ Dλ
ν (z) =e∓ı̇ νπ

2
Γ (λ)

2

[
Γ (ν + 2λ) Γ

(
ν+1

2

)

Γ (ν + 1) Γ
(

ν+2λ+1
2

) F
(

−ν

2
,
ν + 2λ

2
,

1

2
; z2

)

± ı̇
Γ (ν + 2λ) Γ

(
ν
2

)

Γ (ν) Γ
(

ν+2λ
2

) z F

(
1 − ν

2
,
ν + 2λ+ 1

2
,

3

2
; z2

)]
, (3.99)

where |z| < 1, and the upper sign is chosen if Im z > 0, and the lower sign if Im z < 0.
A formula of practical interest is the series expansion of Dλ

ν (x), obtained from (3.53) and
(3.99)

Dλ
ν (x) =

Γ (ν + 2λ) Γ (λ) Γ
(

ν
2

)

2 Γ (ν) Γ
(

ν+2λ
2

) cos
νπ

2
xF

(
1 − ν

2
,
ν + 2λ+ 1

2
,

3

2
;x2

)

− Γ (ν + 2λ) Γ (λ) Γ
(

ν+1
2

)

2 Γ (ν + 1) Γ
(

ν+2λ+1
2

) sin
νπ

2
F

(
−ν

2
,
ν + 2λ

2
,

1

2
;x2

)
, (3.100)

for every −1 < x < +1 .∗ From equations (3.98) and (3.100) it is straightforward to show

∗Utilizing the alternative definition for the Gegenbauer functions of the second kind

Dλ

ν (x) =
ı̇

2

(
e−ı̇λπ Dλ

ν (x + ı̇0) + eı̇λπ Dλ

ν (x − ı̇0)

)
,

introduced in section 3.6, the series expansion of Dλ
ν (x) yields

Dλ

ν (x) =ı̇
Γ (ν + 2λ) Γ (λ) Γ

(
ν+1

2

)

2 Γ (ν + 1) Γ
(

ν+2λ+1

2

) cos

(
ν

2
+ 2λ

)
π F

(
−

ν

2
,

ν + 2λ

2
,

1

2
; x2

)

+ ı̇
Γ (ν + 2λ) Γ (λ) Γ

(
ν

2

)

2 Γ (ν) Γ
(

ν+2λ

2

) sin

(
ν

2
+ 2λ

)
π x F

(
1 − ν

2
,

ν + 2λ + 1

2
,

3

2
; x2

)
.
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that
[
Cλ

ν (x)
dDλ

ν (x)

dx
−Dλ

ν (x)
dCλ

ν (x)

dx

]

x=0

=
Γ (ν + 2λ)

Γ (ν + 1)
. (3.101)

Furthermore, we have from section 3.4 that the Wronskian of the independent pair(
Cλ

ν (x),Dλ
ν (x)

)
is

W
(
Cλ

ν (x),Dλ
ν (x)

)
=

C(ν;λ)

(1 − x2)λ+ 1
2

,

where the unknown function C(ν;λ) may be determined putting x = 0 and using (3.101).
Thus, we obtain

Cλ
ν (x)

dDλ
ν (x)

dx
−Dλ

ν (x)
dCλ

ν (x)

dx
=

Γ (ν + 2λ)

Γ (ν + 1)

1

(1 − x2)λ+ 1
2

. (3.102)

3.9 Asymptotic expansions for the Gegenbauer functions

To obtain the asymptotic expansion of the Gegenbauer functions, the clue lies in rewriting
the hypergeometric function in such a way, so that ν occurs only in the third parameter γ.
Starting from the Gegenbauer function of the second kind

Dλ
ν (z) = 22λ−1 Γ (ν + 2λ) Γ (λ)

Γ (ν + λ+ 1)
(2z)−ν−2λ F

(
ν + 2λ+ 1

2
,
ν + 2λ

2
, ν + λ+ 1;

1

z2

)
,

and applying successively the transformations (3.47) and [WG89, p. 183, eq.(15)]

F

(
α, α+

1

2
, γ; z

)
= (1 − z)−α F

(
2α, 2γ − 2α− 1, γ;

√
1 − z − 1

2
√

1 − z

)
,

we arrive at

Dλ
ν (z) =2λ−1 Γ (ν + 2λ) Γ (λ)

Γ (ν + λ+ 1)

(
z2 − 1

)− λ
2

(√
z2 − 1 + z

)−ν−λ

× F

(
1 − λ, λ, ν + λ+ 1;

√
z2 − 1 − z

2
√
z2 − 1

)
. (3.103)

Let z = cos θ ± ı̇ 0 to find

Dλ
ν (cos θ±ı̇ 0) = 2λ−1 Γ (λ)

(sin θ)λ

Γ (ν + 2λ)

Γ (ν + λ+ 1)
e∓ı̇
[

(ν+λ)θ+ πλ
2

]
F

(
1 − λ, λ, ν + λ+ 1;

±ı̇ e∓ı̇θ

2 sin θ

)

(3.104)
where the upper sign corresponds to Im z > 0 and the lower sign to Im z < 0.
Substituting (3.104) into (3.51) we immediately obtain the asymptotic expansion for the
Gegenbauer function of the first kind Cλ

ν (cos θ)

Cλ
ν (cos θ) =

1

2λ Γ (λ) (sin θ)
λ

Γ (ν + 2λ)

Γ (ν + λ+ 1)

[
e−ı̇
[

(ν+λ)θ− πλ
2

]
F

(
1 − λ, λ, ν + λ+ 1;

ı̇ e−ı̇θ

2 sin θ

)

+ eı̇
[

(ν+λ)θ− πλ
2

]
F

(
1 − λ, λ, ν + λ+ 1;

−ı̇ eı̇θ

2 sin θ

)]
.
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Expressing the above result in terms of the hypergeometric series, we find

Cλ
ν (cos θ) =

21−λ

Γ (λ) (sin θ)
λ

Γ (ν + 2λ)

Γ (ν + λ+ 1)

+∞∑

n=0

(1 − λ)n (λ)n

n! (ν + λ+ 1)n (2 sin θ)n

× cos

[
(ν + λ+ n)θ − λ+ n

2
π

]
, ε < θ < π − ε, (ε > 0) . (3.105)

When Re ν → ∞, the series on the right-hand side of (3.105) is the asymptotic expansion
of Cλ

ν (cos θ) for fixed λ.
Rewrite (3.105) as

Cλ
ν (cos θ) = 21−λ Γ (ν + 2λ)

Γ (ν + λ+ 1)

1

Γ (λ) (sin θ)
λ

[
cos

[
(ν + λ)θ − πλ

2

]
+ O

(
1

ν

)]
,

ε < θ < π − ε, (ε > 0) . (3.106)

Furthermore, from the asymptotic expansion of the Γ−function

Γ (ν + α)

Γ (ν + β)
= να−β

[
1 + O

(
1

ν

)]
, | arg ν| < π ,

we have
Γ (ν + 2λ)

Γ (ν + λ+ 1)
= νλ−1

[
1 + O

(
1

ν

)]
, | arg ν| < π , (3.107)

and therefore

Cλ
ν (cos θ) =

1

Γ (λ) (sin θ)
λ

(ν
2

)λ−1

cos

[
(ν + λ)θ − πλ

2

]
+ O

(
1

ν

)
,

ε < θ < π − ε, (ε > 0), | arg ν| < π . (3.108)

Also, substituting (3.104) into (3.53) we find the corresponding asymptotic expansion for
the Gegenbauer function of the second kind.

Dλ
ν (cos θ) = − 2λ−1 Γ (λ)

(sin θ)λ

Γ (ν + 2λ)

Γ (ν + λ+ 1)

+∞∑

n=0

(1 − λ)n (λ)n

n! (ν + λ+ 1)n (2 sin θ)n

sin

[
(ν + λ+ n)θ − n+ λ

2
π

]
, ε < θ < π − ε, (ε > 0) . (3.109)

Employing (3.107) the above equation reduces to

Dλ
ν (cos θ) = − Γ (λ)

(sin θ)λ
(2ν)λ−1 sin

[
(ν + λ)θ − πλ

2

]
+ O

(
1

ν

)
,

ε < θ < π − ε, (ε > 0), | arg ν| < π . (3.110)

The corresponding expressions for Re ν → −∞ can be determined with the aid of the
symmetry relations (3.69) and (3.70).
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More specific, substituting (3.105) into (3.69) we easily obtain

Cλ
−ν−2λ(cos θ) = −21−λ sin(ν + 2λ)π

sin νπ

Γ (ν + 2λ)

Γ (ν + λ+ 1)

1

Γ (λ) (sin θ)
λ

×
+∞∑

n=0

(1 − λ)n (λ)n

n! (ν + λ+ 1)n (2 sin θ)n
cos

[
(ν + λ+ n)θ − λ+ n

2
π

]
, ε < θ < π − ε, (ε > 0) .

(3.111)

or, in a more compact form

Cλ
−ν−2λ(cos θ) = − 1

Γ (λ) (sin θ)
λ

(ν
2

)λ−1 sin(ν + 2λ)π

sin νπ
cos

[
(ν + λ)θ − πλ

2

]
+ O

(
1

ν

)
,

ε < θ < π − ε, (ε > 0), | arg ν| < π . (3.112)

In order to obtain a expression for the Gegenbauer function of the second kind, replace ν
by −ν − 2λ in (3.103)

Dλ
−ν−2λ(z) = − 2λ−1 sin(ν + λ)π

sin νπ

Γ (ν + λ) Γ (λ)

Γ (ν + 1)

(
z2 − 1

)− λ
2

(√
z2 − 1 + z

)ν+λ

× F

(
−λ+ 1, λ,−ν − λ+ 1;

√
z2 − 1 − z

2
√
z2 − 1

)
. (3.113)

Let z = cos θ ± ı̇0 in the foregoing equation to find

Dλ
−ν−2λ(cos θ ± ı̇0) = − 2λ−1 sin(ν + λ)π

sin νπ

Γ (ν + λ) Γ (λ)

Γ (ν + 1) (sin θ)λ
e±ı̇[(ν+λ)θ+ πλ

2 ]

× F

(
−λ+ 1, λ,−ν − λ+ 1;

±ı̇ e∓ı̇θ

2 sin θ

)
. (3.114)

Substituting (3.114) into (3.53) with ν replaced by −ν − 2λ

Dλ
−ν−2λ(cos θ) = − ı̇

2

(
eı̇λπ Dλ

−ν−2λ(cos θ + ı̇0) − e−ı̇λπ Dλ
−ν−2λ(cos θ − ı̇0)

)

= −2λ−1 sin(ν + λ)π

sin νπ

Γ (ν + λ) Γ (λ)

Γ (ν + 1) (sin θ)λ

+∞∑

n=0

(1 − λ)n (λ)n

n! (−ν − λ+ 1)n (2 sin θ)n

× sin

[
(ν + λ− n)θ +

n+ 3λ

2
π

]
, ε < θ < π − ε, (ε > 0) , (3.115)

or

Dλ
−ν−2λ(cos θ) = − sin(ν + λ)π

sin νπ

Γ (λ)

(sin θ)λ
(2ν)λ−1 sin

[
(ν + λ)θ +

3πλ

2

]
+ O

(
1

ν

)
,

ε < θ < π − ε, (ε > 0), | arg ν| < π . (3.116)

Note that, due do the factor 1
sinλ θ

, equations (3.105), (3.109), (3.111) and (3.115) are
unsuitable in the vicinity of θ ∼ 0, π for every Reλ > 0. To overcome this obstacle, an
analysis seen, for example in [Mac99, Mac14], is in order.
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3.10 Evaluation of the limit (1 − x2)m d
d x

Cλ
ν (x), m ∈ R as x tends to ±1∓

From the definition of the Gegenbauer functions of the first kind (3.12) on the cut, we
obtain, by differentiation with respect to the argument

d

dx
Cλ

ν (x) =
1

2λ+ 1

Γ(ν + 2λ+ 1)

Γ(ν) Γ(2λ)
F

(
−ν + 1, ν + 2λ+ 1, λ+

3

2
;

1 − x

2

)
, (3.117)

= 2λCλ+1
ν−1 (x)

where we used the property

d

dx
F (α, β, γ;x) =

αβ

γ
F (α+ 1, β + 1, γ + 1;x) ,

together with formula (3.6).
As x tends to 1−, the latter expression, multiplied by a factor (1 − x2)m, m ∈ R, becomes

lim
x→1−

(1 − x2)m d

dx
Cλ

ν (x) =
1

2λ+ 1

Γ(ν + 2λ+ 1)

Γ(ν) Γ(2λ)
lim

x→1−
(1 − x2)m , (3.118)

from which, if ν + 2λ is not a negative integer

lim
x→1−

(1 − x2)m d

dx
Cλ

ν (x) =





0 , if m > 0
1

2λ+1
Γ(ν+2λ+1)
Γ(ν) Γ(2λ) , if m = 0

∞ , if m < 0

. (3.119)

Employing the transformation formula (3.47), equation (3.117) yields

d

dx
Cλ

ν (x) =
2λ+ 1

2

2λ+ 1

Γ(ν + 2λ+ 1)

Γ(ν) Γ(2λ)
(1 + x)−λ− 1

2 F

(
ν + λ+

1

2
,−ν − λ+

1

2
, λ+

3

2
;

1 − x

2

)
.

As x tends to −1+ and bearing in mind that

F (α, β, γ; 1) =
Γ (γ) Γ (γ − α− β)

Γ (γ − α) Γ (γ − β)
, Re(γ − α− β) > 0 ,

the above equation, multiplied by (1 − x2)m, becomes

lim
x→−1+

(1 − x2)m d

dx
Cλ

ν (x) = 2m+λ− 1
2

sin νπ

π

(
Γ(λ+ 1

2 )
)2

Γ(2λ)
lim

x→−1+
(1 + x)m−λ− 1

2 . (3.120)

For fixed, real values of λ greater then − 1
2 it is straightforward to show that

lim
x→−1+

(1 − x2)m d

dx
Cλ

ν (x) =





0 , if m− λ− 1
2 > 0

22m−1 sin νπ
π

(Γ(m))2

Γ(2m−1) , if m− λ− 1
2 = 0

∞ , if m− λ− 1
2 < 0

. (3.121)

As an example, consider λ = 1
2 . For this particular choice C

1
2
ν (x) ≡ Pν(x) and (3.121) gives

lim
x→−1+

(1 − x2)m d

dx
Pν(x) =





0 , if m > 1
2
π

sin νπ , if m = 1

∞ , if m < 1

. (3.122)
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The machinery introduced can be generalized bearing in mind that

dk

dxk
F (α, β, γ;x) =

(α)k (β)k

(γ)k

F (α+ k, β + k, γ + k;x) .

3.11 Evaluation of the limit (1 − x2)m d
dx
Dλ

ν (x), m ∈ R as x tends to ±1∓

The Gegenbauer functions of the second kind admits the series expansion (3.100), which
differentiated with respect to the argument and bearing in mind the chain rule

d

dx
= 2x

d

dx2
,

gives

d

dx
Dλ

ν (x) =22λ
Γ (ν − 1) Γ (λ) Γ

(
ν+2λ+1

2

)

Γ
(

ν−1
2

)
Γ (ν)

cos
νπ

2
F

(
1 − ν

2
,
ν + 2λ+ 1

2
,

3

2
;x2

)

− 22λ+1

3

Γ (λ) Γ
(

ν+2λ+3
2

)

Γ
(

ν−1
2

) cos
νπ

2
x2 F

(
3 − ν

2
,
ν + 2λ+ 3

2
,

5

2
;x2

)

+ 22λ
Γ (λ) Γ

(
ν+2λ+2

2

)

Γ
(

ν
2

) sin
νπ

2
xF

(
2 − ν

2
,
ν + 2λ+ 2

2
,

3

2
;x2

)
. (3.123)

Moreover, utilizing formula (3.47) on the last two hypergeometric functions of the right-
hand side of (3.123), we obtain, multiplying by a factor (1 − x2)m

(1 − x2)m d

dx
Dλ

ν (x) = 22λ
Γ (ν − 1) Γ (λ) Γ

(
ν+2λ+1

2

)

Γ
(

ν−1
2

)
Γ (ν)

cos
νπ

2
(1 − x2)m

× F

(
1 − ν

2
,
ν + 2λ+ 1

2
,

3

2
;x2

)
− 22λ+1

3

Γ (λ) Γ
(

ν+2λ+3
2

)

Γ
(

ν−1
2

) cos
νπ

2
x2 (1 − x2)m−λ− 1

2

× F

(
ν + 2

2
,

−ν − 2λ+ 2

2
,

5

2
;x2

)
+ 22λ

Γ (λ) Γ
(

ν+2λ+2
2

)

Γ
(

ν
2

) x (1 − x2)m−λ− 1
2

× F

(
ν + 1

2
,

−ν − 2λ+ 1

2
,

3

2
;x2

)
, (3.124)

where we notice that for both resulting expressions Re(γ − α− β) > 0, if Reλ > − 1
2 .

As x tends to ±1∓, and bearing in mind that

lim
x→±1∓

F
(
α, β, γ;x2

)
=

Γ(γ) Γ(γ − α− β)

Γ(γ − α) Γ(γ − β)
, Re(γ − α− β) > 0 , (3.125)

we find

lim
x→±1∓

(1 − x2)m d

dx
Dλ

ν (x) = 22λ
Γ (ν − 1) Γ (λ) Γ

(
ν+2λ+1

2

)

Γ
(

ν−1
2

)
Γ (ν)

cos
νπ

2
lim

x→±1∓
(1 − x2)m

× F

(
1 − ν

2
,
ν + 2λ+ 1

2
,

3

2
;x2

)
+ Γ (2λ)

(
cos2 νπ

2
± sin2 νπ

2

)
lim

x→±1∓
(1 − x2)m−λ− 1

2 .

(3.126)
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In the sequence, consider the hypergeometric function

F

(
1 − ν

2
− 1,

ν + 2λ+ 1

2
− 1,

3

2
− 1;x2

)
= F

(−ν − 1

2
,
ν + 2λ− 1

2
,

1

2
;x2

)
.

Differentiating the latter with respect to the argument

d

d(x2)
F

(−ν − 1

2
,
ν + 2λ− 1

2
,

1

2
;x2

)
= − (ν + 1)(ν + 2λ− 1)

2
F

(
1 − ν

2
,
ν + 2λ+ 1

2
,

3

2
;x2

)

and integrating the resulting expression over the interval [0, x2] with respect to the argu-
ment, we find

F

(−ν − 1

2
,
ν + 2λ− 1

2
,

1

2
;x2

)
=1 − (ν + 1)(ν + 2λ− 1)

2

×
∫ x2

0

F

(
1 − ν

2
,
ν + 2λ+ 1

2
,

3

2
;x2

)
d(x2) . (3.127)

As x tends to ±1∓, the left-hand side of the above formula remains bounded if Reλ < 3
2 ,

and so must the right-hand side. This implies that as x → ±1∓, F
(

1−ν
2 , ν+2λ+1

2 , 3
2 ;x2

)

enjoys the asymptotic behavior

F

(
1 − ν

2
,
ν + 2λ+ 1

2
,

3

2
;x2

)
∼ 1

(1 − x2)p
, 0 < p < 1 , (3.128)

and thus (3.126) rewrites

lim
x→±1∓

(1 − x2)m d

dx
Dλ

ν (x) ∼22λ
Γ (ν − 1) Γ (λ) Γ

(
ν+2λ+1

2

)

Γ
(

ν−1
2

)
Γ (ν)

cos
νπ

2
lim

x→±1∓
(1 − x2)m−p

+ Γ (2λ)
(

cos2 νπ

2
± sin2 νπ

2

)
lim

x→±1∓
(1 − x2)m−λ− 1

2 ,

(3.129)

which holds for fixed, real values of λ in the open interval from − 1
2 to 3

2 . If m < p or λ = 0,
the above expression becomes infinite. For values of m equal or greater then unity, we
obtain

lim
x→±1∓

(1 − x2)m d

dx
Dλ

ν (x) =





0 , if m− λ− 1
2 > 0

Γ (2λ)
(

cos2 νπ
2 ± sin2 νπ

2

)
, if m− λ− 1

2 = 0

∞ , if m− λ− 1
2 < 0

. (3.130)

As an example, consider λ = 1
2 and therefore D

1
2
ν (x) ≡ Qν(x). Hence, from (3.130) one can

deduce that

lim
x→±1∓

(1 − x2)m d

dx
Qν(x) =





0 , if m > 1

cos2 νπ
2 ± sin2 νπ

2 , if m = 1

∞ , if m < 1

. (3.131)
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A formula valid for the evaluation of the limit in consideration for values of λ greater then
1
2 , is obtained transforming the first of the hypergeometric functions on the right-hand side
of (3.126) via (3.47)

lim
x→±1∓

(1 − x2)m d

dx
Dλ

ν (x) =
22λ−2

√
π

Γ (λ) Γ
(
λ− 1

2

)
cos2 νπ

2
lim

x→±1∓
(1 − x2)m−λ+ 1

2

+ Γ (2λ)
(

cos2 νπ

2
± sin2 νπ

2

)
lim

x→±1∓
(1 − x2)m−λ− 1

2 ,

(3.132)

from which we see that as x tends to ±1∓, (1 − x2)m d
dx
Dλ

ν (x) ∼ (1 ∓ x)m−λ− 1
2 . As an

example, consider λ = 3
2 and the above formula implies

lim
x→±1∓

(1 − x2)m d

dx
D

3
2
ν (x) =





∞ , if m < 2

2
(

cos2 νπ
2 ± sin2 νπ

2

)
, if m = 2

0 , if m > 2

. (3.133)

3.12 Connecting formulae

In this section the formulae relating the Gegenbauer functions with the associated Legendre
functions and the Legendre functions are formulated. The associated Legendre functions
of the first and second kind are defined as follows [Erd53, p.122, equations (7) and (8)]

Pµ
ν (z) =

2µ

Γ (1 − µ)
(z2 − 1)− µ

2 F

(
1 + ν − µ,−ν − µ, 1 − µ;

1 − z

2

)
, |1 − z| < 2 ,

(3.134)

Qµ
ν (z) =

√
π eı̇µπ

2ν+1 Γ
(
ν + 3

2

) Γ (ν + µ+ 1) zµ−ν−1 (z2 − 1)− µ

2

× F

(
1 + ν − µ

2
, 1 +

ν − µ

2
, ν +

3

2
;

1

z2

)
, |z| > 1, ν + µ+ 1 6= 0,−1,−2, . . . .

(3.135)

On the other hand, the Gegenbauer functions of the first and second kind are defined as
follows [Erd53, p.175, equation (3) and p.179, equation (32) plus errata]

Cλ
ν′(z) =

Γ (ν′ + 2λ)

Γ (ν′ + 1) Γ (2λ)
F

(
−ν′, ν′ + 2λ, λ+

1

2
;

1 − z

2

)
, |1 − z| < 2, λ > −1

2
(3.136)

and

Dλ
ν′(z) = 22λ−1 Γ (ν′ + 2λ) Γ (λ)

Γ (ν′ + λ+ 1)
(2z)−ν′−2λ F

(
ν′ + 2λ

2
,
ν′ + 2λ+ 1

2
, ν′ + λ+ 1;

1

z2

)
,

|z| > 1, ν′ + 2λ 6= 0,−1,−2, . . . , λ 6= 0,−1,−2, . . . ,
(3.137)
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where ν, µ, ν′, λ arbitrary complex numbers.
Replacing in equations (3.136) and (3.137) ν′ with ν+µ and λ by −µ+ 1

2 it is easy to show
that

C
−µ+ 1

2
ν+µ (z) = 2−µ Γ (ν − µ+ 1)

Γ (ν + µ+ 1)

Γ (1 − µ)

Γ (1 − 2µ)
(z2 − 1)

µ

2 Pµ
ν (z), |z| < 1 , (3.138)

and

D
−µ+ 1

2
ν+µ (z) =

e−ı̇µπ

2µ
√
π

Γ (ν − µ+ 1)

Γ (ν + µ+ 1)
Γ
(
−µ+ 1

2

)
(z2 − 1)

µ

2 Qµ
ν (z), |z| > 1 , (3.139)

or

Cλ
ν (z) = 2λ− 1

2
Γ (ν + 2λ) Γ

(
λ+ 1

2

)

Γ (ν + 1) Γ (2λ)
(z2 − 1)

1
4 − λ

2 P
−λ+ 1

2

ν+λ− 1
2

(z), |z| < 1 , (3.140)

Dλ
ν (z) = 2λ− 1

2
e−ı̇λπ

√
π

Γ (ν + 2λ) Γ (λ)

Γ (ν + 1)
(z2 − 1)

1
4 − λ

2 Q
−λ+ 1

2

ν+λ− 1
2

(z), |z| > 1 . (3.141)

Replacing µ by −µ, equations (3.138) and (3.139) yield

C
µ+ 1

2
ν−µ (z) = 2µ Γ (µ+ 1)

Γ (2µ+ 1)
(z2 − 1)− µ

2

(
Pµ

ν (z) − 2

π
e−ı̇µπ sinµπQµ

ν (z)

)
, (3.142)

D
µ+ 1

2
ν−µ (z) = 2µ e

−ı̇µπ

√
π

Γ
(
µ+ 1

2

)
(z2 − 1)− µ

2 Qµ
ν (z) , (3.143)

where we used the relations [Erd53, p. 140, equations (2) and (5)]

Q−µ
ν (z) = e−ı̇2µπ Γ (ν − µ+ 1)

Γ (ν + µ+ 1)
Qµ

ν (z) ,

P−µ
ν (z) =

Γ (ν − µ+ 1)

Γ (ν + µ+ 1)

(
Pµ

ν (z) − 2

π
e−ı̇µπ sinµπQµ

ν (z)

)
.

When µ = m, m = 0, 1, 2, . . . equations (3.142) and (3.143) rewrite at once as

C
m+ 1

2
ν−m (z) = 2m m!

(2m)!

dm

dzm
Pν(z) , (3.144)

D
m+ 1

2
ν−m (z) = (−1)m 2m

√
π

Γ
(
m+ 1

2

) dm

dzm
Qν(z) , (3.145)

since [Erd53, p. 148, equations (4) and (5)]

Pm
ν (z) = (z2 − 1)

m
2
dm

dzm
Pν(z) ,

Qm
ν (z) = (z2 − 1)

m
2
dm

dzm
Qν(z) .

In particular, for m = 1 we find C
3
2
ν−1(z) = d

dz
Pn(z). Replacing ν with ν + 1 we obtain the

more convenient form

C
3
2
ν (z) =

d

dz
Pν+1(z) . (3.146)
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The latter follows also up by differentiating the expression
∫
Cλ

ν (z)dz =
1

2(λ− 1)
Cλ−1

ν+1 (z)

for λ = 3
2 .

Letting ν = n, n = 0, 1, 2, . . . and z = x the latter becomes

C
3
2
n (x) =

d

dx
Pn+1(x) . (3.147)

The derivative of a Legendre polynomial is given by Christoffel’s formula [Chr58] as

d

dx
Pn+1(x) =

⌊ n
2 , n−1

2 ⌋∑

m=0

(2n− 4m+ 1)Pn−2m(x) .

Substituting the above equation into (3.147) we obtain

C
3
2
n (x) =

⌊ n
2 , n−1

2 ⌋∑

m=0

(2n− 4m+ 1)Pn−2m(x) . (3.148)

Based on (3.148), consider a second solution of the form

D
3
2
n (x) =

⌊ n
2 , n−1

2 ⌋∑

m=0

(2n− 4m+ 1)Qn−2m(x) . (3.149)

Also, based on (3.146) we write

D
3
2
n (x) =

d

dx
Qn+1(x) . (3.150)

where we omitted a constant multiplier.

3.13 The Gegenbauer Integral Operator

Define the Gegenbauer Integral Operator of degree ν and order λ as

Gλ
ν (z) = Cλ

ν (z)

∫ z

−1

dτ Dλ
ν (τ) +Dλ

ν (z)

∫ +1

z

dτ Cλ
ν (τ) . (3.151)

Replacing in the latter ν with −ν − 2λ and employing the symmetry relations (3.69)

Cλ
−ν−2λ(z) = − sin(ν + 2λ)π

sin νπ
Cλ

ν (z)

and (3.70)

Dλ
−ν−2λ(z) = Dλ

ν (z) − 22λ−1

(
Γ(λ)

)2
sin(ν + λ)π

sin νπ
Cλ

ν (z),

equation (3.151) rewrites

Gλ
ν (z) +

sin νπ

sin(ν + 2λ)π
Gλ

−ν−2λ(z) = 22λ−1 (Γ(λ))2 sin(ν + λ)π

sin νπ
Cλ

ν (z)

∫ +1

−1

dz Cλ
ν (z) .

(3.152)



3.14. RECURRENCE RELATIONS FOR THE GEGENBAUER POLYNOMIALS 67

3.13.1 Specific Examples

For λ = 0 the Gegenbauer functions Cλ
ν (z) and Dλ

ν (z) become the Chebyshev functions of
the first Tν(z) and second kind Uν(z) respectively.
Thus, (3.151) becomes the Gegenbauer Integral Operator of order λ = 0 or the Chebyshev

Integral Operator

Tν(z) = Tν(z)

∫ z

−1

dτ Uν(τ) + Uν(z)

∫ +1

z

dτ Tν(τ) , (3.153)

and (3.152) reads

Tν(z) + T−ν(z) =
1

2
Tν(z)

∫ +1

−1

dz Tν(z) . (3.154)

For λ = 1
2 the Gegenbauer functions Cλ

ν (z) and Dλ
ν (z) become the Legendre functions of

the first Pν(z) and second kind Qν(z) respectively.
Thus, (3.151) becomes the Gegenbauer Integral Operator of order λ = 1

2 or the Legendre

Integral Operator

Pν(z) = Pν(z)

∫ z

−1

dτ Qν(τ) +Qν(z)

∫ +1

z

dτ Pν(τ), (3.155)

which appears solving the Laplace equation in a spherical domain. Also (3.152) becomes

Pν(z) − P−ν−1(z) = π cot νπ Pν(z)

∫ +1

−1

dz Pν(z) . (3.156)

For λ = 3
2 (3.151) becomes the Gegenbauer Integral Operator of order λ = 3

2

G
3
2
ν (z) = C

3
2
ν (z)

∫ z

−1

dτ D
3
2
ν (τ) +D

3
2
ν (z)

∫ +1

z

dτ C
3
2
ν (τ) , (3.157)

which appears solving the irrotational Stoke’s flow in a spherical domain.
Also (3.152) becomes

G
3
2
ν (z) − G

3
2
−ν−3(z) = −π cot νπ C

3
2
ν (z)

∫ +1

−1

dz C
3
2
ν (z) . (3.158)

3.14 Recurrence relations for the Gegenbauer polynomials

Gegenbauer’s polynomial Cλ
n(x) for positive integral values of n is defined to be the coeffi-

cient of t in the expansion of (1 − 2xt+ t2)−λ in powers of t

(1 − 2xt+ t2)−λ =

∞∑

n=0

Cλ
n(x) tn, λ > −1

2
. (3.159)

In the case where n is a negative integer, we define Cλ
n(x) = 0.

Differentiating the generating function (3.159) with respect to t,

− 2λ (t− x) (1 − 2xt+ t2)−λ−1 =

∞∑

n=0

nCλ
n(x) tn−1 , (3.160)
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which with the aid of (3.159) yields

(n+ 1)Cλ
n+1(x) − 2(n+ λ)xCλ

n(x) + (n+ 2λ− 1)Cλ
n−1(x) = 0 . (3.161)

Repeating the above procedure, namely differentiating the generating function (3.159) but
this time with respect to x, it is straightforward to show that

2λ t (1 − 2xt+ t2)−λ−1 =

∞∑

n=0

d

dx
Cλ

n(x) tn . (3.162)

Multiplying the latter throughout t− x and using (3.160), we find

x
d

dx
Cλ

n(x) − d

dx
Cλ

n−1(x) = nCλ
n(x) . (3.163)

Continuing from (3.162) and in view of (3.159) we obtain

2λCλ
n−1(x) =

d

dx
Cλ

n(x) − 2x
d

dx
Cλ

n−1(x) +
d

dx
Cλ

n−2(x) , (3.164)

which, replacing n with n+ 1, reads

2λCλ
n(x) =

d

dx
Cλ

n+1(x) − 2x
d

dx
Cλ

n(x) +
d

dx
Cλ

n−1(x) . (3.165)

Differentiating (3.161) with respect to x and using (3.165) implies

(1 − λ)
d

dx
Cλ

n+1(x) + (n+ 2λ− 1)
d

dx
Cλ

n−1(x) = 2(n+ λ)(1 − λ)Cλ
n(x) , (3.166)

which then, with the help of (3.163), rewrites

(1 − λ)
d

dx
Cλ

n+1(x) + (n+ 2λ− 1)x
d

dx
Cλ

n(x) = (n(n+ 1) − 2λ(λ− 1)) Cλ
n(x) . (3.167)

Differentiate (3.161) with respect to x to find

d

dx
Cλ

n+1(x) − d

dx
Cλ

n−1(x) = 2(n+ λ)Cλ
n(x) . (3.168)

Eliminating from equations (3.163) and (3.168) Cλ
n−1(x) yields

d

dx
Cλ

n+1(x) − x
d

dx
Cλ

n(x) = (n+ 2λ)Cλ
n(x) . (3.169)

Multiplying (3.163) by x, replacing in (3.169) n with n − 1 and subtracting the resulting
expressions, yields

(1 − x2)
d

dx
Cλ

n(x) = (n+ 2λ− 1)Cλ
n−1(x) − nxCλ

n(x) . (3.170)
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3.15 Recurrence relations for the Gegenbauer polynomials of order − 1
2

The generating function for the Gegenbauer polynomials of integral degree n and order − 1
2

is given by Sampson [Sam91] as follows

√
1 − 2x t+ t2 = −

∞∑

n=0

C
− 1

2
n (x) tn . (3.171)

Following a similar analysis as seen in the previous section, it is easy to show that the
following recurrence relations are valid

(2n− 1)xC
− 1

2
n (x) = (n+ 1)C

− 1
2

n+1(x) + (n− 2)C
− 1

2
n−1(x) , (3.172)

d

dx
C

− 1
2

n (x) − 2x
d

dx
C

− 1
2

n−1(x) +
d

dx
C

− 1
2

n−2(x) = −C− 1
2

n−1(x) , (3.173)

d

dx
C

− 1
2

n−1(x) − x
d

dx
C

− 1
2

n (x) = −nC− 1
2

n (x) . (3.174)

A generating function for the Gegenbauer polynomials if the order is in general a negative
integer, is given by De Duffahel [Duf35] as

(1 − 2x t+ t2)λ−1 ln(1 − 2x t+ t2) =

∞∑

n=0

C1−λ
n (x) tn . (3.175)





CHAPTER 4
On the Global Relation and the

Dirichlet-to-Neumann

Correspondence for harmonic

functions ∗

4.1 Introduction

Within the last decade a generalized transform has been developed by Fokas and his col-
laborators [Fok08]. The novelty of this transformation is focused on the fact that it is
a transform that meets the particular analytical and geometrical characteristics of the
problem at hand. In fact, the integral kernel of the transformation carries the analytical
properties of the partial differential operator and the geometry of the fundamental domain
specifies the appropriate contour of integration [Das07b]. A crucial part of the theory
concerns the manipulation of the so-called global relation, which is an integral relation
connecting the boundary values of the solution (Dirichlet data) with the normal derivative
of the solution on the boundary (Neumann data). In many cases, it is possible to obtain the
missing boundary data directly from the given ones exactly in the form that they appear
in the integral representation of the solution. As far as elliptic boundary value problems
in two dimensions are concerned, an important contribution of this theory is the integral
representation of the solutions in the interior of a convex polygon [Fok01, FK03, DF05].
To the authors knowledge no successful extension of the method of generalized trans-
form to three dimensions has been achieved yet. The present work aims in this direction.
We actually use the method of Fokas to solve the Laplace equation inside and outside a
sphere, under the assumption that the boundary data, and therefore the solution as well,
is independent of the azimuthal angle. As we demonstrate, this problem, although two-

∗This work has been published as [DDa]
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dimensional in its basic nature, exhibits fundamental differences from the corresponding
problem for the Laplace equation inside a disc [FN]. The solution obtained by the Fokas
method, has the advantage of being uniformly convergent on the boundary. Furthermore,
it is useful in numerical applications and also for studying asymptotic properties of the so-
lutions, since the integral representations converge much faster than the series. Moreover,
with the novel integral representations introduced in section 6 it is possible to solve prob-
lems with mixed boundary conditions, such as, Dirichlet data on a part of the boundary
and Neumann data on the complementary part. This kind of problems involve the solution
of a Riemann-Hilbert problem.
The analysis of the global relation has the following advantages: (i) It provides the most
effective approach for constructing the Dirichlet-to-Neumann correspondence. (ii) Formu-
lating the global relation in specific subdomains of Ω, it is possible to re-derive the classical
representations or, depending on the operator, to yield alternative series representations.
This approach will be presented in a forthcoming paper.
The chapter is organized as follows.

A brief review of the classical solutions for the interior and exterior Dirichlet and Neu-
mann problems is given in section 4.2 in order to fix notation and terminology. In section
4.3 the general Global Relation is derived, which is further used in section 4.4 to establish
the Dirichlet-to-Neumann correspondence. Section 4.5 is devoted to the steps that one
has to follow in order to recover the classical solutions from the Global Relation. The novel
integral representations on which the present work is focused is developed in section 4.6.

4.2 The Classical Representation

Let S be a sphere with center at the origin and radius a. We denote by Ωi the interior and
by Ωe the exterior of S. Our goal is to find harmonic functions qi

D
, qe

D
, qi

N
, qe

N
that solve the

interior Dirichlet, the exterior Dirichlet, the interior Neumann and the exterior Neumann
problems, respectively. We denote the Dirichlet data on the boundary by gD, the Neumann
data on the boundary by gN and we assume azimuthal independence, that is

∂

∂φ
gD(r) =

∂

∂φ
gN(r) = 0, r = a, (4.1)

where r denotes the radial spherical coordinate. Furthermore for the well-posedness of the
exterior problems we demand that the solution of the Laplace equation should satisfy the
asymptotic condition

qe(r) = O
(1

r

)
, r → ∞, (4.2)

where qe stands for both qe
D

and qe
N
.

The asymptotic condition (4.2) secures the uniqueness of the exterior problem, correspond-
ing to the normalization

lim
r→∞

qe(r) = 0 , (4.3)

which also eliminates the arbitrary additive constant that the solutions of Neumann prob-
lem involve. Similarly, for the interior Neumann problem we can preassign a value to the
solution at the origin. In addition, the Neumann data have to satisfies the compatibility
relation ∮

S

gN(r) ds(r) = 0. (4.4)



4.2. THE CLASSICAL REPRESENTATION 73

Using the spherical coordinates (r, θ, φ), utilizing the fact that gD and gN are
φ−independent, and introducing the variable

ζ = cos θ, θ ∈ (0, π)

we write Laplace’s equation in the form

(
∂2

∂r2
+

2

r

∂

∂r
+

1 − ζ2

r2

∂2

∂ζ2
− 2ζ

r2

∂

∂ζ

)
q(r, ζ) = 0 . (4.5)

Separating variables in the above equation we obtain the following two ordinary differential
equations connected by the complex separation constant κ

(1 − ζ2)Z ′′(ζ) − 2ζZ ′(ζ) + κZ(ζ) = 0, κ ∈ C , (4.6)

r2R′′(r) + 2rR′(r) − κR(r) = 0, κ ∈ C , (4.7)

where the prime denotes differentiation with respect to the argument. The solution of
(4.6), after a suitable transformation, is expressed in terms of the hypergeometric function
[Hil97]. On the other hand, the solution of (4.7) takes one of the following forms

R1(r;κ) = r
−1+

√
1+4κ

2 , R2(r;κ) = r
−1−√

1+4κ

2 , κ ∈ C. (4.8)

Replacing the separation constant κ by ν(ν + 1), ν ∈ C, we identify equation (4.6) with the
Legendre equation while the solutions (4.8) simplify to

R1(r; ν) = rν , R2(r; ν) = r−ν−1, ν ∈ C . (4.9)

Therefore, the general solution of equation (4.5) is represented as a linear combination of
functions of the form

Θ(1)(r, ζ; ν) = rν Pν(ζ)
Θ(2)(r, ζ; ν) = rν Qν(ζ)
Θ(3)(r, ζ; ν) = r−ν−1 Pν(ζ)
Θ(4)(r, ζ; ν) = r−ν−1 Qν(ζ)




, ν ∈ C , (4.10)

where Pν and Qν are the Legendre functions of the first and the second kind respectively.
For ν = n = 0, 1, 2, . . . the eigensolutions (4.10) recover the well known zonal harmonics

Θ
(1)
n = rn Pn(ζ)

Θ
(2)
n = rn Qn(ζ)

Θ
(3)
n = r−(n+1) Pn(ζ)

Θ
(4)
n = r−(n+1) Qn(ζ)




, (4.11)

and a complete representation of a harmonic function is written as

q(r, ζ) =

+∞∑

n=0

4∑

j=1

A(j)
n Θ(j)

n . (4.12)
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Furthermore, since in most applications of interest no singularities are present along the
polar axis, we disregard the Legendre functions of the second kind Qn, which are singular
for ζ = ±1.

For interior problems, the coefficients A(j)
n , j = 3, 4 have to vanish and (4.12) is written as

qi(r, ζ) =
+∞∑

n=0

A(1)
n rnPn(ζ). (4.13)

In particular, for the Dirichlet problem with data gD we find

qi
D

(r, ζ) =
1

2

+∞∑

n=0

(2n+ 1)
( r
a

)n

Dn Pn(ζ) , (4.14)

where

Dn =

∫ +1

−1

gD(ζ)Pn(ζ)dζ, n = 0, 1, 2, . . . (4.15)

Similarly, for the Neumann problem with data gN prescribed on the boundary, the solution
assumes the form

qi
N

(r, ζ) =
a

2

+∞∑

n=1

2n+ 1

n

( r
a

)n

Nn Pn(ζ) , (4.16)

where

Nn =

∫ +1

−1

gN(ζ)Pn(ζ)dζ, n = 1, 2, 3, . . . . (4.17)

The corresponding solutions for the exterior problems are

qe
D

(r, ζ) =
1

2

+∞∑

n=0

(2n+ 1)
(a
r

)n+1

Dn Pn(ζ) , (4.18)

for the Dirichlet, and

qe
N

(r, ζ) = −a

2

+∞∑

n=1

2n+ 1

n+ 1

(a
r

)n+1

Nn Pn(ζ) , (4.19)

for the Neumann problem, where the coefficients Dn and Nn are given by equations (4.15)
and (4.17), respectively and N0 = 0.

4.3 The Global Relation

Let q(r, ζ) satisfy the Laplace equation (4.5) and q(r, ζ) satisfies the formal adjoint of equa-
tion (4.5) which reads as

(
∂2

∂r2
− 2

r

∂

∂r
+

2

r2
+

1 − ζ2

r2

∂2

∂ζ2
− 2ζ

r2

∂

∂ζ

)
q(r, ζ) = 0. (4.20)
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Multiply (4.5) by q(r, ζ), (4.20) by q(r, ζ) and subtracting the resulting equations we obtain,
after some algebraic manipulations, the divergence form

∂

∂r

(
q
∂q

∂r
+
(2

r
q − ∂q

∂r

)
q

)
+

∂

∂ζ

(
1 − ζ2

r2

(
q
∂q

∂ζ
− q

∂q

∂ζ

))
= 0 . (4.21)

Consider an arbitrary function Ξ(r, ζ; ν), such that

∂

∂ζ
Ξ = q

∂q

∂r
+
(2

r
q − ∂q

∂r

)
q, (4.22)

∂

∂r
Ξ = −1 − ζ2

r2

(
q
∂q

∂ζ
− q

∂q

∂ζ

)
, (4.23)

then (4.21) implies [
∂

∂r
,
∂

∂ζ

]
Ξ(r, ζ; ν) = 0, ν ∈ C ,

and therefore equations (4.22) and (4.23) constitute a Lax Pair for the Laplace equation
(4.5).
Equation (4.21) holds true everywhere in any meridian disc of radius a and applying Green’s
theorem to a closed subdomain of the meridian disc, we obtain the global relation

∮

C

[(
q
∂q

∂r
+
( 2

r
q − ∂q

∂r

)
q

)
dζ − 1 − ζ2

r2

(
q
∂q

∂ζ
− q

∂q

∂ζ

)
dr

]
= 0 , (4.24)

where C is the boundary of the subdomain.

4.4 The Dirichlet-To-Neumann Correspondence

In this section we are going to utilize the global relation to construct the Dirichlet-to-
Neumann correspondence. Taking advantage of the separability, we can replace in (4.20)
q(r, ζ) by R(r)Z(ζ), and obtain the equation

r2 d
2R

dr2
− 2r

dR

dr
− (ν − 1)(ν + 2)R = 0, ν ∈ C , (4.25)

for the R(r; ν) function, and the equation

(1 − ζ2)
d2Z

dζ2
− 2ζ

dZ

dζ
+ ν(ν + 1)Z = 0, ν ∈ C , (4.26)

for the Z(ζ; ν) function. Hence, the ζ−dependence remain the same, as in the Laplace’s
equation, while the r−dependence is replaced by

R1(r; ν) = rν+2, R2(r; ν) = r−ν+1, ν ∈ C . (4.27)

Equation (4.20) accepts solutions of the form

q(r, ζ; ν) = R(r; ν)Xν(ζ) , (4.28)
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Figure 4.1: The interior subdomain Ω̃i = {0 ≤ r ≤ a, ζ− < ζ < ζ+} which tend to the

interior domain Ωi = {0 ≤ r ≤ a, −1 < ζ < +1} as ζ± → ±1, and the exterior shell

subdomain Ω̃e(b) = {a ≤ r < b, ζ− < ζ < ζ+} which tend to the exterior domain

Ωe = {a ≤ r < +∞, −1 < ζ < +1} as ζ± → ±1 and b → ∞.

where R(r; ν) are given by (4.27) and Xν(ζ) stands for any Legendre function.
Let

Ξ(r, ζ; ν) = q(r, ζ; ν)µ(r, ζ; ν), ν ∈ C , (4.29)

where µ(r, ζ; ν) an auxiliary function. Replacing (4.29) into equations (4.22) and (4.23) it
is straightforward to show that the Lax pair (4.22), (4.23) assumes the form

(
∂

∂ζ
+
d lnXν(ζ)

dζ

)
µ(r, ζ; ν) =

[
∂

∂r
+

(
2

r
− d lnR(r)

d r

)]
q(r, ζ), ν ∈ C , (4.30)

r2

(
∂

∂r
+
d lnR(r)

d r

)
µ(r, ζ; ν) = −(1 − ζ2)

(
∂

∂ζ
− d lnXν(ζ)

dζ

)
q(r, ζ), ν ∈ C . (4.31)

The solution q(r, ζ; ν) remains bounded in the neighborhood of r = 0 for Re ν ∈ [−2,+∞)
when the functions R1(r; ν) are chosen and for Re ν ∈ (−∞,+1] when the functions
R2(r; ν) are chosen. This regions characterize the interior solutions of (4.20). Thus,
applying (4.24) in the domain Ω̃i, as shown in Figure 4.1 it is straightforward to show
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that

−
∫ a

0

(1 − ζ2
−)

(
Xν(ζ−)

∂q(r, ζ−)

∂ζ
− dXν(ζ−)

dζ
q(r, ζ−)

)
R(r; ν)

d r

r2

+

∫ ζ+

ζ−

[
R(a; ν)

∂q(a, ζ)

∂r
+

(
2

a
R(a; ν) − dR(a; ν)

d r

)
q(a, ζ)

]
Xν(ζ) dζ

+

∫ a

0

(1 − ζ2
+)

(
Xν(ζ+)

∂q(r, ζ+)

∂ζ
− dXν(ζ+)

dζ
q(r, ζ+)

)
R(r; ν)

d r

r2
= 0 (4.32)

The Legendre functions of the first kind are regular at ζ = +1 with value Pν(+1) = 1, and
exhibit the singular behavior Pν(ζ) ∼ ln 1+ζ

2 as ζ → −1+. On the other hand, the Legendre
functions of the second kind are irregular along the ζ-axis. In particular, they exhibit the
singular behavior Qν(ζ) ∼ ln(1 ∓ ζ) as ζ tends to ±1∓ [WG89, pp. 255-261]. From this
observation it follows that (1 − ζ2)Xν(ζ) tends to zero as ζ tends to ±1∓, where else the
following limits hold (see Appendix)

lim
ζ→±1∓

(1 − ζ2)
d

dζ
Qν(ζ) =

{
1

cos νπ
, ν ∈ C, ν 6= −1,−2, . . . , (4.33)

lim
ζ→±1∓

(1 − ζ2)
d

dζ
Pν(ζ) =

{
0
2
π

sin πν
, ν ∈ C , (4.34)

where for the penultimate expression we used the recurrence relation

(1 − ζ2)
d

dζ
Pν(ζ) = ν

(
Pν−1(ζ) − ζ Pν(ζ)

)
.

Thus, (4.32) is evaluated as

R(a; ν)N(ν|Xν) +

(
2

a
R(a; ν) − dR(a; ν)

d r

)
D(ν|Xν)

=





− 2
π

sin πν
∫ a

0
q(r,−1)R(r; ν) d r

r2 , if Xν(ζ) = Pν(ζ)

∫ a

0
(q(r,+1) − cos νπ q(r,−1)) R(r; ν) d r

r2 , if Xν(ζ) = Qν(ζ)

, ν 6= −1,−2, . . . ,

(4.35)

where the Legendre transforms of the boundary data D(ν|Xν) and N(ν|Xν) are given by

D(ν|Xν) =

∫ +1

−1

gD(ζ)Xν(ζ)dζ , (4.36)

N(ν|Xν) =

∫ +1

−1

gN(ζ)Xν(ζ)dζ . (4.37)

Both integrals in (4.36) and (4.37) exist due do the logarithmic singularities of the Legendre
functions.
The parameter ν lives in appropriate subdomains of C, specified by the regularity of the
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radial factors of the solution of the formal adjoint (4.27) at the origin, and therefore (4.35)
rewrites as

aN(ν|Xν) − νD(ν|Xν)

=





− 2
π

sin πν
∫ a

0
q(r,−1)

(
r
a

)ν+1 d r
r
, if Xν(ζ) = Pν(ζ)

∫ a

0

[
q(r,+1) − cos νπ q(r,−1)

] (
r
a

)ν+1 d r
r
, if Xν(ζ) = Qν(ζ)

, Re ν ≥ 0 , (4.38)

aN(ν|Xν) + (ν + 1)D(ν|Xν)

=





− 2
π

sin πν
∫ a

0
q(r,−1)

(
a
r

)ν d r
r
, if Xν(ζ) = Pν(ζ)

∫ a

0

[
q(r,+1) − cos νπ q(r,−1)

] (
a
r

)ν d r
r
, if Xν(ζ) = Qν(ζ)

,Re ν < −1, ν 6= −2, . . .

(4.39)

where (4.38) is derived with the use of R1 and (4.39) with the use of R2. Evaluating (4.38a)
for ν = 0, one obtains the compatibility condition (4.4).
Similarly, q(r, ζ; ν) stays bounded as r tends to infinity for every ν in the half plane Re ν ∈
(−∞,−2] for the solutions rν+2, and for Re ν ∈ [1,+∞) for the solutions r−ν+1. Hence, the
global relation (4.24) in the domain Ω̃e(b), depicted in Figure 4.1 takes the form

−
∫ b

a

(1 − ζ2
−)

(
Xν(ζ−)

∂q(r, ζ−)

∂ζ
− dXν(ζ−)

dζ
q(r, ζ−)

)
R(r; ν)

d r

r2

+

∫ ζ+

ζ−

[
R(b; ν)

∂q(b, ζ)

∂r
+

(
2

b
R(b; ν) − dR(b; ν)

d r

)
q(b, ζ)

]
Xν(ζ) dζ

+

∫ b

a

(1 − ζ2
+)

(
Xν(ζ+)

∂q(r, ζ+)

∂ζ
− dXν(ζ+)

dζ
q(r, ζ+)

)
R(r; ν)

d r

r2

−
∫ ζ+

ζ−

[
R(a; ν)

∂q(a, ζ)

∂r
+

(
2

a
R(a; ν) − dR(a; ν)

d r

)
q(a, ζ)

]
Xν(ζ) dζ = 0 . (4.40)

As b → ∞ the second integral vanishes for bothR1 andR2. Then, in analogy to the relations
(4.38), (4.39) we obtain

aN(ν|Xν) − νD(ν|Xν)

=





2
π

sin πν
∫ +∞

a
q(r,−1)

(
r
a

)ν+1 d r
r
, if Xν(ζ) = Pν(ζ)

−
∫ +∞

a

[
q(r,+1) − cos νπ q(r,−1)

] (
r
a

)ν+1 d r
r
, if Xν(ζ) = Qν(ζ)

, (4.41)

for every Re ν ≤ 0, ν 6= −1,−2, . . . , and

aN(ν|Xν) + (ν + 1)D(ν|Xν)

=





2
π

sin πν
∫ +∞

a
q(r,−1)

(
a
r

)ν d r
r
, if Xν(ζ) = Pν(ζ)

−
∫ +∞

a

[
q(r,+1) − cos νπ q(r,−1)

] (
a
r

)ν d r
r
, if Xν(ζ) = Qν(ζ)

, Re ν > −1 ,

(4.42)
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which are the appropriate relations for the exterior solutions.
The connection formulae (4.38), (4.39) and (4.41), (4.42) provide in a global form the coef-
ficients of the Legendre expansion of the Dirichlet data in terms of the Neumann data and
vice versa.

Remark 4.4.1 We note here that in spherical coordinates with axial symmetry, the

ζ−dependence of the Laplace equation, of the formal adjoint of the Laplace equation and of

the biharmonic equation comes via the Legendre functions. The corresponding r−dependence

for the Laplace equation is given by rν and r−ν−1, for the formal adjoint Laplace is given

by rν+2 and r−ν+1, and for the biharmonic as rν , rν+2, r−ν−1, and r−ν+1. Hence, the so-

lutions of the formal adjoint Laplace equation are the additional two independent solutions

introduced by the second application of the Laplace operator on itself.

4.5 From Complex to Real: Recovering Classical Solutions

In certain cases, depending on the form of the operator acting on q(ξ1, ξ2), it is possible
to re-derive the classical representations via the global relation. This procedure will be
analytically described in the sequence.

4.5.1 Part 1: The Interior Problem

Figure 4.2: The interior subdomains Ωi
1(r) = {0 ≤ ρ ≤ r, −1 < ζ < +1} and

Ωi
2(r) = {r ≤ ρ ≤ a, −1 < ζ < +1}.

Applying the global relation (4.24) to the domain

Ωi
1(r) =

{
0 ≤ ρ ≤ r, −1 < ζ < +1

}
(4.43)
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depicted in Figure 4.2, we obtain

∫ +1

−1

[
R(r; ν)

∂q(r, ζ)

∂r
+

(
2

r
R(r; ν) − dR(r; ν)

d r

)
q(r, ζ)

]
Xν(ζ)dζ

=





− 2
π

sin πν
∫ r

0
q(ρ,−1)R(ρ; ν) dρ

ρ2 , if Xν(ζ) = Pν(ζ)

∫ r

0

[
q(ρ,+1) − cos νπ q(ρ,−1)

]
R(ρ; ν) dρ

ρ2 , if Xν(ζ) = Qν(ζ)

, ν 6= −1,−2, . . . ,

(4.44)

where R(r; ν) and dR(r;ν)
dr

have to be bounded as r tends to zero, that is Re ν ≥ −2 if

R(r; ν) = rν+2 and Re ν ≤ 1 if R(r; ν) = r−ν+1. Similarly, for the domain

Ωi
2(r) =

{
r ≤ ρ ≤ a, −1 < ζ < +1

}
(4.45)

depicted in Figure 4.2, we find

∫ +1

−1

[
R(r; ν)

∂q(r, ζ)

∂r
+

(
2

r
R(r; ν) − dR(r; ν)

d r

)
q(r, ζ)

]
Xν(ζ)dζ

=

[
R(a; ν)N(ν|Xν) +

(
2

a
R(a; ν) − dR(a; ν)

d r

)
D(ν|Xν)

]

+





2
π

sin πν
∫ a

r
q(ρ,−1)R(ρ; ν) dρ

ρ2 , if Xν(ζ) = Pν(ζ)

−
∫ a

r

[
q(ρ,+1) − cos νπ q(ρ,−1)

]
R(ρ; ν) dρ

ρ2 , if Xν(ζ) = Qν(ζ)

, ν 6= −1,−2, . . . .

(4.46)

Note that the domain Ωi
2(r) does not include either the singularity at zero or the singularity

at infinity, thus there are no restrictions on ν in (4.46). However, in order to eliminate the

unknown function ∂q(r,ζ)
∂r

one has to combine equations (4.44) and (4.46) in either one of
the domains Re ν ∈ [−2,+∞) or Re ν ∈ (−∞, 1].

The half plane Re ν ∈ [−2,+∞)

Introducing in eq. (4.44) R(r; ν) = rν+2 we obtain

∫ +1

−1

(
r
∂q(r, ζ)

∂r
− ν q(r, ζ)

)
Xν(ζ)dζ

=





− 2
π

sin πν
∫ r

0
q(ρ,−1)

(
ρ
r

)ν+1 dρ
ρ

, if Xν(ζ) = Pν(ζ)

∫ r

0

[
q(ρ,+1) − cos νπ q(ρ,−1)

] (
ρ
r

)ν+1 dρ
ρ

, if Xν(ζ) = Qν(ζ)

, Re ν > −1 (4.47)
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where the restriction on ν is due to the fact that the ratios
(

r
a

)ν
,
(

r
ρ

)ν
must remain bounded

as r tends to zero. Also, introducing R(r; ν) = r−ν+1 in (4.46) we obtain

∫ +1

−1

(
r
∂q(r, ζ)

∂r
+ (ν + 1) q(r, ζ)

)
Xν(ζ) dζ =

( r
a

)ν (
aN(ν|Xν) + (ν + 1)D(ν|Xν)

)

+





2
π

sin πν
∫ a

r
q(ρ,−1)

(
r
ρ

)ν
dρ
ρ
, if Xν(ζ) = Pν(ζ)

−
∫ a

r

[
q(ρ,+1) − cos νπ q(ρ,−1)

] (
r
ρ

)ν
dρ
ρ
, if Xν(ζ) = Qν(ζ)

, ν 6= −1,−2, . . .

(4.48)

Subtracting the above two equations eliminates the function ∂q(r,ζ)
∂r

∫ +1

−1

q(r, ζ)Xν(ζ)dζ =
1

2k + 1

( r
a

)ν (
aN(ν|Xν) + (ν + 1)D(ν|Xν)

)

+
1

2k + 1
×





2
π

sin πν

(
P

a
0(r; ν)q(ρ,−1)

)
, if Xν(ζ) = Pν(ζ)

−P
a
0(r; ν)

[
q(ρ,+1) − cos νπ q(ρ,−1)

]
, if Xν(ζ) = Qν(ζ)

, Re ν ≥ 0, (4.49)

which is the ν−Legendre coefficient of the solution q(r, ζ) valid in the domain r ∈ [0, a].
The integral operator Pa

0(r; ν) is defined as

P
a
0(r; ν) :=

∫ r

0

dρ

ρ

(ρ
r

)ν+1

+

∫ a

r

dρ

ρ

(
r

ρ

)ν

. (4.50)

The inversion of (4.49) leads to an integral representation for q(r, ζ). However, in order
to recover the classical representations (4.14) and (4.16) we have to use the orthogonality
relation of the Legendre polynomials. Thus, letting ν = n = 0, 1, 2, . . . in (4.49a) we obtain

∫ +1

−1

q(r, ζ)Pn(ζ)dζ =
1

2n+ 1

( r
a

)n (
aNn + (n+ 1)Dn

)
, n = 0, 1, 2, . . . , (4.51)

where Dn and Nn are given by (4.15) and (4.17) respectively.
Using the Dirichlet-to-Neumann correspondence given by (4.38a) with ν replaced by n as
well as the expansion of q as Legendre polynomials, we recover trivially the expansions
(4.14) or (4.16), respectively.

The half plane Re ν ∈ (−∞,+1]

Replacing, in (4.44) and (4.46), R(r; ν) by r−ν+1 and rν+2 respectively, we find

∫ +1

−1

(
r
∂q(r, ζ)

∂r
+ (ν + 1) q(r, ζ)

)
Xν(ζ)dζ

=





− 2
π

sin πν
∫ r

0
q(ρ,−1)

(
r
ρ

)ν
dρ
ρ
, if Xν(ζ) = Pν(ζ)

∫ r

0

[
q(ρ,+1) − cos νπ q(ρ,−1)

] (
r
ρ

)ν
dρ
ρ
, if Xν(ζ) = Qν(ζ)

,

Re ν ≤ 0, ν 6= −1,−2, . . .
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∫ +1

−1

(
r
∂q(r, ζ)

∂r
− ν q(r, ζ)

)
Xν(ζ)dζ =

(a
r

)ν+1 (
aN(ν|Xν) − νD(ν|Xν)

)

+





2
π

sin πν
∫ a

r
q(ρ,−1)

(
ρ
r

)ν+1 dρ
ρ
, if Xν(ζ) = Pν(ζ)

−
∫ a

r

[
q(ρ,+1) − cos νπ q(ρ,−1)

] (
ρ
r

)ν+1 dρ
ρ
, if Xν(ζ) = Qν(ζ)

,

ν ∈ C, ν 6= −1,−2, . . . .

Subtracting the above equations to eliminate the function ∂q(r,ζ)
∂r

, we obtain

∫ +1

−1

q(r, ζ)Xν(ζ)dζ = − 1

2k + 1

(a
r

)ν+1 (
aN(ν|Xν) − νD(ν|Xν)

)

− 1

2k + 1
×





2
π

sin πν

(
P

†a

0(r; ν) q(ρ,−1)

)
, if Xν(ζ) = Pν(ζ)

−P
†a

0(r; ν)
[
q(ρ,+1) − cos νπ q(ρ,−1)

]
, if Xν(ζ) = Qν(ζ)

, (4.52)

Re ν < −1, ν 6= −2,−3, . . . (4.53)

which is the ν-Legendre coefficient of the function q(r, ζ) valid in the domain r ∈ [0, a]. The
integral operator P†a

0(r; ν) is defined as

P
†a

0(r; ν) :=

∫ r

0

dρ

ρ

(
r

ρ

)ν

+

∫ a

r

dρ

ρ

(ρ
r

)ν+1

, P
a
0(r; −ν − 1) = P

†a

0(r; ν) (4.54)

4.5.2 Part 2: The Exterior Problem

Following the same procedure as in the previous section, namely applying (4.24) in the
domains Ωe

1(r) and Ωe
2(r, b) defined by

Ωe
1(r) =

{
a ≤ ρ ≤ r, −1 < ζ < +1

}
(4.55)

Ωe
2(r, b) =

{
r ≤ ρ ≤ b, −1 < ζ < +1

}
(4.56)

and depicted in Figure 4.3, we arrive at the following equations

∫ +1

−1

[
R(r; ν)

∂q(r, ζ)

∂r
+

(
2

r
R(r; ν) − dR(r; ν)

dr

)
q(r, ζ)

]
Xν(ζ)dζ

=

[
R(a; ν)N(ν|Xν) +

(
2

a
R(a; ν) − dR(a; ν)

dr

)
D(ν|Xν)

]

+





− 2
π

sin πν
∫ r

a
q(ρ,−1)R(ρ; ν) dρ

ρ2 , if Xν(ζ) = Pν(ζ)

∫ r

a

[
q(ρ,+1) − cos νπ q(ρ,−1)

]
R(ρ; ν) dρ

ρ2 , if Xν(ζ) = Qν(ζ)

, ν 6= −1,−2, . . .

(4.57)
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Figure 4.3: The exterior subdomains Ωe
1(r) = {a ≤ ρ ≤ r, −1 < ζ < +1} and

Ωe
2(r, b) = {r ≤ ρ ≤ b, −1 < ζ < +1}.

which holds for every ν ∈ C since Ωe
1(r) is isolated both from the origin and from infinity,

and

∫ +1

−1

[
R(r; ν)

∂q(r, ζ)

∂r
+

(
2

r
R(r; ν) − dR(r; ν)

dr

)
q(r, ζ)

]
Xν(ζ)dζ

=





2
π

sin πν
∫∞

r
q(ρ,−1)R(ρ; ν) dρ

ρ2 , if Xν(ζ) = Pν(ζ)

−
∫∞

r

[
q(ρ,+1) − cos νπ q(ρ,−1)

]
R(ρ; ν) dρ

ρ2 , if Xν(ζ) = Qν(ζ)

, ν 6= −1,−2, . . .

(4.58)

which holds for those complex values of ν for which the limit of the corresponding integral
as b → ∞ vanishes, i.e. for Re ν ≤ −2, when we pick R1 = rν+2, and for Re ν ≥ 1, when
the solutions R2 = r−ν+1 are chosen.

The Half plane Re ν ∈ [+1,+∞)

Setting R1(r; ν) = rν+2 in (4.57), and R2(r; ν) = r−ν+1 in (4.58), we obtain

∫ +1

−1

(
r
∂q(r, ζ)

∂r
− ν q(r, ζ)

)
Xν(ζ)dζ =

(a
r

)ν+1 (
aN(ν|Xν) − νD(ν|Xν)

)

+





− 2
π

sin πν
∫ r

a
q(ρ,−1)

(
ρ
r

)ν+1 dρ
ρ
, if Xν(ζ) = Pν(ζ)

∫ r

a

[
q(ρ,+1) − cos νπ q(ρ,−1)

] (
ρ
r

)ν+1 dρ
ρ
, if Xν(ζ) = Qν(ζ)

, ν ∈ C, ν 6= −1,−2, . . .
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∫ +1

−1

(
r
∂q(r, ζ)

∂r
+ (ν + 1) q(r, ζ)

)
Xν(ζ)dζ

=





2
π

sin πν
∫∞

r
q(ρ,−1)

(
r
ρ

)ν
dρ
ρ
, if Xν(ζ) = Pν(ζ)

−
∫∞

r

[
q(ρ,+1) − cos νπ q(ρ,−1)

] (
r
ρ

)ν
dρ
ρ
, if Xν(ζ) = Qν(ζ)

, Re ν ≥ 1 .

Subtracting the above equations eliminates the function ∂q(r,ζ)
∂r

∫ +1

−1

q(r, ζ)Xν(ζ)dζ = − 1

2k + 1

(a
r

)ν+1 (
aN(ν|Xν) − νD(ν|Xν)

)

− 1

2k + 1
×





− 2
π

sin πν

(
P

∞
a (r; ν)q(ρ,−1)

)
, if Xν(ζ) = Pν(ζ)

P
∞
a (r; ν)

[
q(ρ,+1) − cos νπ q(ρ,−1)

]
, if Xν(ζ) = Qν(ζ)

, Re ν ≥ 1 ,

(4.59)

which is the ν−Legendre coefficient of the solution q(r, ζ), for r ≥ a, and the integral
operator P∞

a (r; ν) is defined as

P
∞
a (r; ν) :=

∫ r

a

dρ

ρ

(ρ
r

)ν+1

+

∫ ∞

r

dρ

ρ

(
r

ρ

)ν

. (4.60)

Inverting the latter relation we obtain an integral representation for q(r, ζ) valid in the
domain r ∈ [a,+∞). However, the classical representations (4.18) and (4.19) are recovered
utilizing the orthogonality relation of the Legendre polynomials.
Thus, letting ν = n = 1, 2, . . . (4.59a) reads

∫ +1

−1

q(r, ζ)Pn(ζ) dζ = − 1

2n+ 1

(a
r

)n+1 (
aNn − nDn

)
, (4.61)

and using the Dirichlet-to-Neumann correspondence (4.42a) with ν replaced by n, we re-
cover equations (4.18) and (4.19) respectively.

The half plane Re ν ∈ (−∞,−2]

Replacing R(r; ν) with r−ν+1 and rν+2 in (4.57) and (4.58), respectively, we find

∫ +1

−1

(
r
∂q(r, ζ)

∂r
+ (ν + 1) q(r, ζ)

)
Xν(ζ)dζ =

( r
a

)ν (
aN(ν|Xν) + (ν + 1)D(ν|Xν)

)

+





− 2
π

sin πν
∫ r

a
q(ρ,−1)

(
r
ρ

)ν
dρ
ρ
, if Xν(ζ) = Pν(ζ)

∫ r

a

[
q(ρ,+1) − cos νπ q(ρ,−1)

] (
r
ρ

)ν
dρ
ρ
, if Xν(ζ) = Qν(ζ)

, ν ∈ C, ν 6= −1,−2, . . . ,

(4.62)
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∫ +1

−1

(
r
∂q(r, ζ)

∂r
− ν q(r, ζ)

)
Xν(ζ)dζ

=





2
π

sin πν
∫∞

r
q(ρ,−1)

(
ρ
r

)ν+1 dρ
ρ
, if Xν(ζ) = Pν(ζ)

−
∫∞

r

[
q(ρ,+1) − cos νπ q(ρ,−1)

] (
ρ
r

)ν+1 dρ
ρ
, if Xν(ζ) = Qν(ζ)

,

Re ν < −2, ν 6= −3,−4, . . . . (4.63)

Eliminating the function ∂q(r,ζ)
∂r

by subtracting the above equations, leads to the expression

∫ +1

−1

q(r, ζ)Xν(ζ) dζ =
1

2k + 1

( r
a

)ν (
aN(ν|Xν) + (ν + 1)D(ν|Xν)

)

+
1

2k + 1
×





− 2
π

sin πν

(
P

†∞
a (r; ν) q(ρ,−1)

)
, if Xν(ζ) = Pν(ζ)

P
†∞

a (r; ν)
[
q(ρ,+1) − cos νπ q(ρ,−1)

]
, if Xν(ζ) = Qν(ζ)

,

Re ν < −2, ν 6= −3,−4, . . . (4.64)

where the integral operator P†∞
a (r; ν) is defined as

P
†∞

a (r; ν) :=

∫ r

a

dρ

ρ

(
r

ρ

)ν

+

∫ ∞

r

dρ

ρ

(ρ
r

)ν+1

. (4.65)

Remark 4.5.1 Relation (4.52a) is obtained from (4.49a) if we replace ν by −(ν + 1) and

observe that Legendre’s equation (4.6) remains invariant under this transformation. That

is P−(ν+1) = Pk and the half-plane Re ν ≥ 0 is mapped to Re ν ≤ −1. Similarly, this

transformation maps (4.64a) to (4.59a) and the half plane Re ν ≤ −2 to the half plane

Re ν ≥ 1.

4.6 A Novel Integral Representation

Novel integral representations are obtained by applying the global relation to particular
subdomains. This is realized in the sequel.

4.6.1 Part 1: Solutions valid in the interior

Applying the global relation (4.24) in the subdomain

Ωi
3(ζ) =

{
0 ≤ r ≤ a, ζ ≤ t < +1

}
(4.66)

depicted in Figure 4.4, with q(r, ζ; ν) replaced by R(r; ν)Pν(ζ), we obtain

∫ a

0

(1 − ζ2)

(
Pν(ζ)

∂q(r, ζ)

∂ζ
− dPν(ζ)

dζ
q(r, ζ)

)
R(r; ν)

dr

r2

=

∫ +1

ζ

[
R(a; ν) gN (t) +

(
2

a
R(a; ν) − dR(a; ν)

dr

)
gD(t)

]
Pν(t)d t, (r, ζ) ∈ ∂Ωi

3(ζ) , (4.67)
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Figure 4.4: The interior subdomains Ωi
3(ζ) = {0 ≤ r ≤ a, ζ ≤ t < +1} and

Ωi
4(ζ) = {0 ≤ r ≤ a, −1 < t ≤ ζ}.

where the regularity of the Legendre functions at ζ = +1 has been used. Similarly, applying
the global relation (4.24) in the subdomain

Ωi
4(ζ) =

{
0 ≤ r ≤ a, −1 < t ≤ ζ

}
(4.68)

depicted in Figure 4.4, with q(r, ζ; ν) replaced by R(r; ν)Qν(ζ) we obtain

∫ a

0

(1 − ζ2)

(
Qν(ζ)

∂q(r, ζ)

∂ζ
− dQν(ζ)

dζ
q(r, ζ)

)
R(r; ν)

dr

r2

= −
∫ ζ

−1

[
R(a; ν) gN (t) +

(
2

a
R(a; ν) − dR(a; ν)

dr

)
gD(t)

]
Qν(t)d t

− cos νπ

∫ a

0

q(τ,−1)R(τ ; ν)
dτ

τ2
, ν 6= −1,−2, . . . , (r, ζ) ∈ ∂Ωi

4(ζ) . (4.69)

Multiply (4.67) by Qν(ζ) and (4.69) by Pν(ζ) and subtracting them side by side in order to

eliminate the unknown function ∂q(r,ζ)
∂ζ

we obtain

(1 − ζ2)
(
Pν(ζ)

dQν(ζ)

dζ
−Qν(ζ)

dPν(ζ)

dζ

)∫ a

0

q(r, ζ)R(r; ν)
dr

r2

=Pν(ζ)

[
R(a; ν) gN (t) +

(
2

a
R(a; ν) − dR(a; ν)

dr

)
gD(t)

]

+ cos νπ Pν(ζ)

∫ a

0

q(τ,−1)R(τ ; ν)
dτ

τ2
, ν 6= −1,−2, . . . , (4.70)
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where

G
1
2
ν (ζ) f ≡ Pν(ζ) f = Pν(ζ)

∫ ζ

−1

Qν(t) f(t) d t+Qν(ζ)

∫ 1

ζ

Pν(t) f(t) d t, ν 6= −1,−2, . . . ,

(4.71)
is an integral operator, which we will refer to as the Gegenbauer Integral Operator of order
1
2 or simple Legendre Integral Operator Pν(ζ) acting on the function

f : [−1,+1] → C .

The first integral in (4.71) exist since Qν(ζ) exhibits a logarithmic singularity at ζ = −1.
Utilizing the Wronskian relation

Pν(ζ)
dQν(ζ)

dζ
−Qν(ζ)

dPν(ζ)

dζ
=

1

1 − ζ2
,

we finally write equation (4.70) as follows

∫ a

0

q(r, ζ)R(r; ν)
dr

r2
=Pν(ζ)

[
R(a; ν) gN (t) +

(
2

a
R(a; ν) − dR(a; ν)

dr

)
gD(t)

]

+ cos νπ Pν(ζ)

∫ a

0

q(τ,−1)R(τ ; ν)
d τ

τ2
, ν 6= −1,−2, . . . . (4.72)

Relation (4.72) provides a global connection between the values of the interior solution along
the radii ζ =constant and ζ = −1, with its Dirichlet and Neumann values on the boundary.
The parameter ν lives in appropriate subdomains of C, specified by the regularity of the
radial factors of the solution of the formal adjoint at the origin.

The Half-plane Re ν ∈ [−2,+∞)

In the half-plane Re ν ∈ [−2,+∞), q(r, ζ; ν) remains bounded in the vicinity of r = 0
whenever R(r; ν) is replaced by rν+2. Thus, introducing R(r; ν) = rν+2 in (4.72) we obtain

∫ a

0

( r
a
q(r, ζ)

) ( r
a

)ν−1

d
( r
a

)
=Pν(ζ)

(
a gN (t) − ν gD(t)

)

+
1

a
cos νπ Pν(ζ)

∫ a

0

q(τ,−1)
(τ
a

)ν

d τ . (4.73)

The inverse Mellin transform then implies

q(r, ζ) =
1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(a
r

)ν+1

Pν(ζ)
(
a gN (t) − ν gD(t)

)
dν

+
1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞
r−ν−1 cosπν Pν(ζ)

[∫ a

0

q(τ,−1) τν d τ

]
dν, ν 6= −1,−2, . . . ,

(4.74)

where the integral is taken over any open contour Γ , connecting the points Re ν − ı̇R and
Re ν + ı̇R in the complex ν−plane as R → ∞.

The Legendre functions of the first kind are in general defined as

Pν(ζ) = F

(
−ν, ν + 1, 1;

1 − ζ

2

)
,
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thus, because of the symmetry of F, we obtain

Pν(ζ) = P−ν−1(ζ) (4.75)

for all values of ν and
Q−ν−1(ζ) = Qν(ζ) − π cotπν Pν(ζ) (4.76)

for every ν ∈ C except for integral values [MF53, p.599].
Hence, replacing ν with −ν − 1 in (4.73), we obtain the formula

∫ a

0

q(r, ζ) r−ν−1 dr = a−ν P−ν−1(ζ)
(
a gN(t) + (ν + 1) gD(t)

)

− cos νπ P−ν−1(ζ)

∫ a

0

q(τ,−1) τ−ν−1 d τ, Re ν < −1 , ν 6= −2,−3, . . . . (4.77)

Combining (4.71) together with (4.75) and (4.76) it can be easily shown that

P−ν−1(ζ) = Pν(ζ) − π cotπν Pν(ζ)

∫ +1

−1

d t Pν(t), ν ∈ C, ν 6= n ∈ Z , (4.78)

and (4.77), with the aid of (4.39), rewrites

aν

∫ a

0

q(r, ζ) r−ν−1 dr = Pν(ζ)
(
a gN(t) + (ν + 1) gD(t)

)

+ aν cos νπ Pν(ζ)

∫ a

0

q(τ,−1) τ−ν−1 d τ, Re ν < −1 , ν 6= −2,−3, . . . . (4.79)

Remark 4.6.1 Equations (4.73)

a

(
Pν(ζ) gN (t)

)
− ν

(
Pν(ζ) gD(t)

)

=

∫ a

0

[
q(r, ζ) − cos νπ Pν(ζ) q(r,−1)

] ( r
a

)ν+1 d r

r
, Re ν ≥ 0 ,

and (4.79)

a

(
Pν(ζ) gN (t)

)
+ (ν + 1)

(
Pν(ζ) gD(t)

)

=

∫ a

0

[
q(r, ζ) − cos νπ Pν(ζ) q(r,−1)

] (a
r

)ν d r

r
, Re ν < −1, ν 6= −2,−3, . . . ,

constitute the generalized Dirichlet-to-Neumann correspondence for the interior of the sphere.

Evaluating the above relations at ζ = +1, equations (4.38b) and (4.39b) are retrieved. In order

to obtain the correspondences (4.38a) and (4.39a) one must replace q(r, ζ; ν) byR(r; ν)Qν(ζ)
in the subdomain Ωi

3(ζ) and by R(r; ν)Pν(ζ) in Ωi
4(ζ).
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Utilizing (4.79) to eliminate the unknown boundary data from (4.74), we obtain the
following equations

q(r, ζ) = − 1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(a
r

)ν+1

(2ν + 1)
(
Pν(ζ) gD(t)

)
dν

+
1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(a
r

)ν+1
[∫ a

0

q(τ, ζ)
(a
τ

)ν d τ

τ

]
dν

− 1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(a
r

)ν+1

cosπν Pν(ζ)

[∫ a

0

q(τ,−1)
(a
τ

)ν d τ

τ

]
dν

+
1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞
r−ν−1 cosπν Pν(ζ)

[∫ a

0

q(τ,−1) τν d τ

]
dν, ν 6= −1,−2, . . . ,

(4.80)

if Dirichlet boundary values are described, or

q(r, ζ) =
a

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(a
r

)ν+1 2ν + 1

ν + 1

(
Pν(ζ) gN (t)

)
dν

− 1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(a
r

)ν+1 ν

ν + 1

[∫ a

0

q(τ, ζ)
(a
τ

)ν d τ

τ

]
dν

+
1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(a
r

)ν+1 ν

ν + 1
cosπν Pν(ζ)

[∫ a

0

q(τ,−1)
(a
τ

)ν d τ

τ

]
dν

+
1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞
r−ν−1 cosπν Pν(ζ)

[∫ a

0

q(τ,−1) τν d τ

]
dν, ν 6= −1,−2, . . . ,

(4.81)

for Neumann data.
As ν → ∞ the Legendre functions of the first and second kind assume the asymptotic
forms [Erd53, p. 162]

Pν(cos θ) =

√
2

νπ sin θ

(
α(θ) cos(νθ) + β(θ) sin(νθ)

)
+ O

(1

ν

)
, | arg ν| < π , (4.82)

and

Qν(cos θ) =

√
π

2ν sin θ

(
β(θ) cos(νθ) − α(θ) sin(νθ)

)
+ O

(1

ν

)
, | arg ν| < π , (4.83)

for every 0 < θ < π, where we used the asymptotic behavior of the ratio of Gamma functions
[Mar83, p. 49]

Γ(ν + c)

Γ(ν + d)
= νc−d

[
1 + O

(
1

ν

)]
, | arg ν| < π .

The corresponding expressions for Re ν → −∞ can be determined by employing the sym-
metry relations (4.75) and (4.76) respectively. More specific, as Re ν → −∞, (4.82) holds,
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where else (4.83) must be replaced by the expression

Q−ν−1(cos θ) = −
√

π

2ν sin θ
cotπν

(
β(θ) cos νθ − α(θ) sin νθ

)
+ O

(
1

ν

)
, | arg ν| < π ,

(4.84)

for every 0 < θ < π, where α(θ) =
√

2
2

(
cos θ

2 + sin θ
2

)
, β(θ) =

√
2

2

(
cos θ

2 − sin θ
2

)
and cot νπ

remains bounded as ν → ∞. Note that for θ sufficiently close to 0 or π the asymptotic
formulas (4.82), (4.83) and (4.84) become unsuitable [MO48].
Moreover, the fact that the trigonometric functions cos ν and sin ν are unbounded as ν ap-
proaches large values in C, implies that the Legendre integral operator Pν(ζ) is unbounded
as a function of ν.
Nevertheless, the functions

(a
r

)ν+1

(2ν + 1)
(
Pν(ζ)gD(t)

)
,

(a
r

)ν+1 (a
τ

)ν+1

(a
r

)ν+1 (a
τ

)ν+1

cos νπ Pν(ζ),
1

r

(τ
r

)ν

cosπν Pν(ζ) , (4.85)

for Dirichlet problems, and

(a
r

)ν+1 2ν + 1

ν + 1

(
Pν(ζ)gN (t)

)
,

(a
r

)ν+1 (a
τ

)ν+1 ν

ν + 1
,

(a
r

)ν+1 (a
τ

)ν+1 ν

ν + 1
cos νπ Pν(ζ),

1

r

(τ
r

)ν

cos νπ Pν(ζ), (4.86)

for Neumann problems, must remain bounded in order for the improper integrals on the
right-hand side of (4.80) and (4.81) to make sense.
More specific, the function aν+b

ν+1 , a, b ∈ R is bounded in the whole complex ν−plane, as

the ratio of equal degree polynomials, while the exponentials
(

a
χ

)ν+1
, where χ stands for r

or τ respectively, and
(

τ
r

)ν+1
, r ≤ τ are bounded for every ν in the half-plane Re ν < −1.

Furthermore, it can be shown that
∣∣∣∣∣
(a
r

)ν+1 (a
τ

)ν+1 ν

ν + 1
cos νπ Pν(ζ)

∣∣∣∣∣ ≤ A(θ)
Re ν√

Re ν (Re ν + 1)

× exp

[(
ln
(a
r

)
+ ln

(a
τ

))
(Re ν + 1)

]
exp [B±(θ) Im ν] , (4.87)

and
∣∣∣∣∣
1

r

(τ
r

)ν

cos νπ Pν(ζ)

∣∣∣∣∣ ≤ A(θ)
Re ν√

Re ν (Re ν + 1)

× exp
[
ln
(τ
r

)
Re ν

]
exp [B±(θ) Im ν] , (4.88)

where A(θ) =
√

1
2 sin θ

(
α2(θ) + β2(θ)

)
, B±(θ) = π ± θ.

Deforming the contour Γ in the left (Re ν < −1) complex ν−plane in such a way so that
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Figure 4.5: The contour L. The point γ− can be chosen such that γ− < Re ν. Note that the

imaginary part of ν is held finite along the path.

the imaginary part of ν is held finite, the expressions (4.85) and (4.86) remain absolutely
convergent, and the interchange of the order of integration in (4.80) and (4.81) is permitted.
Thus, we rewrite the second, third and fourth integral of the right-hand side of (4.80) and
(4.81) as

1

a

∫ a

0

q(τ, ζ)

[∫

L

(a
r

)ν+1 (a
τ

)ν+1 ν

ν + 1
dν

]
d τ , (4.89)

1

a

∫ a

0

q(τ,−1)

[∫

L

(a
r

)ν+1 (a
τ

)ν+1 ν

ν + 1
cos νπ Pν(ζ) dν

]
dτ , (4.90)

∫ a

0

q(τ,−1)

[∫

L

(τ
r

)ν

cosπν Pν(ζ) dν

]
dτ , (4.91)

where for the Dirichlet data the term ν
ν+1 in the first two expressions must be omitted.

The deformed contour L, depicted in Figure 4.5, begins and ends in the left complex
ν−plane, such that Re ν → −∞ at each end (a technique known as Talbot’s method
[Tal79]).
Thus, the integrals (4.89), (4.90) and (4.91) yield a zero contribution and equations (4.80),
(4.81) take their final form

qi
D

(r, ζ) =
1

2πı̇

∫

L

(a
r

)ν+1

(2ν + 1)
(
Pν(ζ) gD(t)

)
dν, ν 6= −1,−2, . . . , (4.92)

if Dirichlet boundary values are described, or

qi
N

(r, ζ) = − a

2πı̇

∫

L

(a
r

)ν+1 2ν + 1

ν + 1

(
Pν(ζ) gN (t)

)
dν, ν 6= −1,−2, . . . , (4.93)

if Neumann data are given.

The half-plane Re ν ∈ (−∞,+1]

Replace R(r; ν) with r−ν+1 in order that the solution remains bounded in the neighborhood
of r = 0. Equation (4.72) then reads

∫ a

0

q(r, ζ)
( r
a

)−ν−1

d
( r
a

)
= Pν(ζ)

(
a gN (t) + (ν + 1) gD(t)

)

+
1

a
cos νπ Pν(ζ)

∫ a

0

q(τ,−1)
(τ
a

)−ν−1

dτ, Re ν < −1, ν 6= −2,−3, . . . (4.94)
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Replacing in the above equation −ν − 1 with ν and bearing in mind equations (4.78) and
(4.38), we obtain the Mellin transform for the function r

a
q(r, ζ)

∫ a

0

( r
a
q(r, ζ)

) ( r
a

)ν−1

d
( r
a

)
= Pν(ζ)

(
a gN (t) − ν gD(t)

)

+
1

a
cos νπ Pν(ζ)

∫ a

0

q(τ,−1)
(τ
a

)ν

d τ, Re ν ≥ 0 . (4.95)

Inverting (4.95) we find

q(r, ζ) =
1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(a
r

)ν+1

Pν(ζ)
(
a gN (t) − ν gD(t)

)
dν

+
1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞
r−ν−1 cos νπ Pν(ζ)

[∫ a

0

q(τ,−1) τν dτ

]
dν, ν 6= −1,−2, . . . ,

(4.96)

which coincides with equation (4.74).

Remark 4.6.2 In order to obtain solutions valid in the right complex ν-plane, consider (4.94)
as the Mellin transform of the solution q(r, ζ). The inverse formula then implies

q(r, ζ) =
1

2πı̇

∫ −Re ν+ı̇∞

−Re ν−ı̇∞

( r
a

)ν

Pν(ζ)
(
a gN (t) + (ν + 1) gD(t)

)
dν

+
1

2πı̇

∫ −Re ν+ı̇∞

−Re ν−ı̇∞
rν cos νπ Pν(ζ)

[∫ a

0

q(τ,−1) τ−ν−1 dτ

]
dν, ν 6= −1,−2 . . . ,

(4.97)

where the integral is to be taken over any contour Γ ′ which joins two points −Re ν − ı̇R and

−Re ν + ı̇R in the complex ν−plane as R → ∞.

Eliminating the unknown boundary data in (4.97), with the aid of (4.95), we derive the

following equations

q(r, ζ) =
1

2πı̇

∫ −Re ν+ı̇∞

−Re ν−ı̇∞

( r
a

)ν

(2ν + 1)
(
Pν(ζ) gD(t)

)
dν

+
1

2πı̇

∫ −Re ν+ı̇∞

−Re ν−ı̇∞

( r
a

)ν

a−ν−1

[∫ a

0

q(τ, ζ) τν dτ

]
dν

+
1

2πı̇

∫ −Re ν+ı̇∞

−Re ν−ı̇∞

( r
a

)ν

a−ν−1 cos νπ Pν(ζ)

[∫ a

0

q(τ,−1) τν dτ

]
dν

+
1

2πı̇

∫ −Re ν+ı̇∞

−Re ν−ı̇∞
rν cos νπ Pν(ζ)

[∫ a

0

q(τ,−1) τ−ν−1 dτ

]
dν, ν 6= −1,−2 . . . ,

(4.98)
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in the case where Dirichlet boundary values are prescribed, or

q(r, ζ) =
a

2πı̇

∫ −Re ν+ı̇∞

−Re ν−ı̇∞

( r
a

)ν 2ν + 1

ν

(
Pν(ζ) gN (t)

)
dν

− 1

2πı̇

∫ −Re ν+ı̇∞

−Re ν−ı̇∞

( r
a

)ν ν + 1

ν
a−ν−1

[∫ a

0

q(τ, ζ) τν dτ

]
dν

− 1

2πı̇

∫ −Re ν+ı̇∞

−Re ν−ı̇∞

( r
a

)ν ν + 1

ν
a−ν−1 cos νπ Pν(ζ)

[∫ a

0

q(τ,−1) τν dτ

]
dν

+
1

2πı̇

∫ −Re ν+ı̇∞

−Re ν−ı̇∞
rν cos νπ Pν(ζ)

[∫ a

0

q(τ,−1) τ−ν−1 dτ

]
dν, ν 6= −1,−2 . . . ,

(4.99)

if Neumann data are prescribed.

Figure 4.6: The contour R. The point γ+ can be chosen such that γ+ > Re ν.

The analysis as seen in section 4.6.1 implies that the contour Γ ′ can be replaced with

the contour R depicted in Figure 4.6, and thus, the interchange of the order of integration is

applied to rewrite the second, third and fourth integral of the right-hand side of the foregoing

equations as

1

a

∫ a

0

q(τ, ζ)

[∫

R

( r
a

)ν (τ
a

)ν ν + 1

ν
dν

]
dτ (4.100)

1

a

∫ a

0

q(τ,−1)

[∫

R

( r
a

)ν (τ
a

)ν ν + 1

ν
cos νπ Pν(ζ) dν

]
dτ (4.101)

∫ a

0

q(τ,−1)

[∫

R

( r
τ

)ν

cos νπ Pν(ζ) dν

]
dτ

τ
, (4.102)

respectively, where for the Dirichlet boundary values the term ν+1
ν

in the first two expressions

has to be omitted.

The deformed contour R begins and ends in the right complex ν−plane, such that Re ν → +∞
at each end. Thus, the integrals (4.100),(4.101) and (4.102) yield a zero contribution and

equations (4.98), (4.99) become

qi
D

(r, ζ) =
1

2πı̇

∫

R

( r
a

)ν

(2ν + 1)
(
Pν(ζ) gD(t)

)
dν, ν 6= −1,−2 . . . , (4.103)
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if Dirichlet boundary values are described, or

qi
N

(r, ζ) =
a

2πı̇

∫

R

( r
a

)ν 2ν + 1

ν

(
Pν(ζ) gN (t)

)
dν, ν 6= −1,−2 . . . , (4.104)

if Neumann data are given.

4.6.2 Part 2: Solutions valid in the exterior

Utilizing the global relation (4.24) in the subdomain

Ωe
3(b, ζ) =

{
a ≤ r ≤ b , ζ ≤ t < +1

}
, (4.105)

depicted in Figure 4.7, with q(r, ζ; ν) replaced by R(r; ν)Pν(ζ) we obtain

Figure 4.7: The exterior subdomains Ωe
3(b, ζ) = {a ≤ r ≤ b , ζ ≤ t < +1} and

Ωe
4(b, ζ) = {a ≤ r ≤ b ,−1 < t ≤ ζ}.

∫ +∞

a

(1 − ζ2)

(
Pν(ζ)

∂q(r, ζ)

∂ζ
− dPν(ζ)

d ζ
q(r, ζ)

)
R(r; ν)

dr

r2

= −
∫ +1

ζ

[
R(a; ν) gN (ζ) +

(
2

a
R(a; ν) − dR(a; ν)

dr

)
gD(ζ)

]
Pν(t) d t, (r, ζ) ∈ ∂Ωe

3(b, ζ) ,

(4.106)

where we used the regularity of the Legendre functions at ζ = +1. Employing the global
relation (4.24) in the subdomain

Ωe
4(b, ζ) =

{
a ≤ r ≤ b ,−1 < t ≤ ζ

}
, (4.107)
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depicted in Figure 4.7, with q(r, ζ; ν) replaced by R(r; ν)Qν(ζ) we obtain

∫ +∞

a

(1 − ζ2)

(
Qν(ζ)

∂q(r, ζ)

∂ζ
− dQν(ζ)

d ζ
q(r, ζ)

)
R(r; ν)

dr

r2

=

∫ ζ

−1

[
R(a; ν) gN (t) +

(
2

a
R(a; ν) − dR(a; ν)

dr

)
gD(t)

]
Qν(t) d t

− cos νπ

∫ +∞

a

q(r,−1)R(r; ν)
dr

r2
, ν 6= −1,−2, . . . , (r, ζ) ∈ ∂Ωe

4(b, ζ) . (4.108)

In order to eliminate the unknown function ∂q(r,ζ)
∂ζ

we subtract (4.106) multiplied by Qν(ζ)

and (4.108) multiplied by Pν(ζ). Then

∫ +∞

a

q(r, ζ)R(r; ν)
dr

r2
= − Pν(ζ)

[
R(a; ν) gN (t) +

(
2

a
R(a; ν) − dR(a; ν)

dr

)
gD(t)

]

+ cos νπ Pν(ζ)

∫ +∞

a

q(r,−1)R(r; ν)
dr

r2
, ν 6= −1,−2, . . . ,

(4.109)

where Pν(ζ) is the Legendre integral operator defined in (4.71) and the parameter ν lives in
appropriate subdomains of C, specified by the regularity of the radial factors of the solution
of the formal adjoint at infinity.

The half-plane Re ν ∈ (−∞,−2]

In the half-plane Re ν ∈ (−∞,−2], q(r, ζ; ν) remains bounded as r tends to infinity, when-
ever R(r; ν) is replaced by rν+2. Thus, introducing R(r; ν) = rν+2 in (4.109) we find

∫ +∞

a

( r
a
q(r, ζ)

) ( r
a

)ν−1

d
( r
a

)
= −Pν(ζ)

(
a gN(t) − ν gD(t)

)

+
1

a
cos νπ Pν(ζ)

∫ +∞

a

q(τ,−1)
(τ
a

)ν

dτ, Re ν ≤ 0, ν 6= −1,−2, . . . , (4.110)

which is recognized as the Mellin transform for the function r
a
q(r, ζ). The restriction on ν

is due the fact that rν must remain bounded as r tends to infinity. The Mellin inversion
then implies

q(r, ζ) = − 1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(a
r

)ν+1

Pν(ζ)
(
a gN (t) − ν gD(t)

)
dν

+
1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞
r−ν−1 cos νπ Pν(ζ)

[∫ +∞

a

q(τ,−1) τν dτ

]
dν, ν 6= −1,−2 . . . .

(4.111)

Setting ν with −ν − 1 in (4.110) one finds, with the aid of (4.78) and (4.42)

−
∫ +∞

a

q(r, ζ)
(a
r

)ν dr

r
=Pν(ζ)

(
a gN (t) + (ν + 1) gD(t)

)

− cos νπ Pν(ζ)

∫ +∞

a

q(τ,−1)
(a
τ

)ν dτ

τ
, Re ν > 1 . (4.112)
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Remark 4.6.3 Equations (4.111)

a

(
Pν(ζ) gN (t)

)
− ν

(
Pν(ζ) gD(t)

)

= −
∫ ∞

a

[
q(r, ζ) − cos νπ Pν(ζ) q(r,−1)

] ( r
a

)ν+1 d r

r
, Re ν ≤ 0, ν 6= −1,−2, . . . ,

and (4.112)

a

(
Pν(ζ) gN (t)

)
+ (ν + 1)

(
Pν(ζ) gD(t)

)

= −
∫ ∞

a

[
q(r, ζ) − cos νπ Pν(ζ) q(r,−1)

] (a
r

)ν d r

r
, Re ν > −1 ,

constitute the generalized Dirichlet-to-Neumann correspondence for the exterior of the sphere.

Evaluating the above relations at ζ = +1, we derive equations (4.41b) and (4.42b). On the

other hand, in order to obtain the correspondences (4.41a) and (4.42a), one must replace

q(r, ζ; ν) by R(r; ν)Qν(ζ) in the subdomain Ωi
3(ζ) and by R(r; ν)Pν(ζ) in Ωi

4(ζ).

Eliminating the unknown boundary values with the help of (4.112) and substituting
into (4.111) we derive the following equations,

q(r, ζ) =
1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(a
r

)ν+1

(2ν + 1)
(
Pν(ζ) gD(t)

)
dν

+
1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(a
r

)ν+1

aν

[∫ +∞

a

q(τ, ζ) τ−ν−1 dτ

]
dν

− 1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(a
r

)ν+1

aν cosπν Pν(ζ)

[∫ +∞

a

q(τ,−1) τ−ν−1 dτ

]
dν

+
1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞
r−ν−1 cosπν Pν(ζ)

[∫ +∞

a

q(τ,−1) τν dτ

]
dν, ν 6= −1,−2 . . . .

(4.113)

if Dirichlet data are given, or

q(r, ζ) = − a

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(a
r

)ν+1 2ν + 1

ν + 1

(
Pν(ζ) gN (t)

)
dν

− 1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(a
r

)ν+1 ν

ν + 1
aν

[∫ +∞

a

q(τ, ζ) τ−ν−1 dτ

]
dν

+
1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(a
r

)ν+1 ν

ν + 1
aν cosπν Pν(ζ)

[∫ +∞

a

q(τ,−1) τ−ν−1 dτ

]
dν

+
1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞
r−ν−1 cosπν Pν(ζ)

[∫ +∞

a

q(τ,−1) τν dτ

]
dν, ν 6= −1,−2 . . . .

(4.114)
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for Neumann boundary values.
Following the analysis presented in section 4.6.1, in order that the three last integrals on
the right-hand side vanish, the contour Γ ′ must be replaced by the contour R, depicted in
Figure 4.6. Hence equations (4.113) and (4.114) rewrite

qe
D

(r, ζ) = − 1

2πı̇

∫

R

(a
r

)ν+1

(2ν + 1)
(
Pν(ζ) gD(t)

)
dν, ν 6= −1,−2 . . . , (4.115)

for the Dirichlet, or

qe
N

(r, ζ) =
a

2πı̇

∫

R

(a
r

)ν+1 2ν + 1

ν + 1

(
Pν(ζ) gN (t)

)
dν, ν 6= −1,−2 . . . , (4.116)

for the Neumann case.

The half-plane Re ν ∈ [1,+∞)

In the half-plane Re ν ∈ [1,+∞), q(r, ζ; ν) remains bounded as r tends to infinity, for every
R(r; ν) replaced by r−ν+1. Eq. (4.109) then becomes the Mellin transform of the solution
q(r, ζ)

∫ +∞

a

q(r, ζ)
( r
a

)−ν−1

d
( r
a

)
= − Pν(ζ)

(
a gN (t) + (ν + 1) gD(t)

)

+
1

a
cos νπ Pν(ζ)

∫ +∞

a

q(τ,−1)
(τ
a

)−ν−1

dτ, Re ν > −1 .

(4.117)

The inversion formula then gives the representation

q(r, ζ) = − 1

2πı̇

∫ −Re ν+ı̇∞

−Re ν−ı̇∞

( r
a

)ν

Pν(ζ)
(
a gN (t) + (ν + 1) gD(t)

)
dν

+
1

2πı̇

∫ −Re ν+ı̇∞

−Re ν−ı̇∞
rν cos νπ Pν(ζ)

[∫ +∞

a

q(τ,−1) τ−ν−1 dτ

]
dν, ν 6= −1,−2 . . . .

(4.118)

Replacing in (4.117) ν with −ν − 1, and using (4.78) and (4.41) we arrive at

−
∫ +∞

a

q(r, ζ)
( r
a

)ν+1 dr

r
= Pν(ζ)

(
a gN (t) − ν gD(t)

)

− cos νπ Pν(ζ)

∫ +∞

a

q(τ,−1)
(τ
a

)ν+1 dτ

τ
, Re ν < −2, ν 6= −3,−4, . . . , (4.119)
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Equation (4.119) must be used in order to eliminate the unknown boundary values in
(4.118), which then reads as

q(r, ζ) = − 1

2πı̇

∫ −Re ν+ı̇∞

−Re ν−ı̇∞

( r
a

)ν

(2ν + 1)
(
Pν(ζ) gD(t)

)
dν

+
1

2πı̇

∫ −Re ν+ı̇∞

−Re ν−ı̇∞

( r
a

)ν

a−ν−1

[∫ +∞

a

q(τ, ζ) τν dτ

]
dν

− 1

2πı̇

∫ −Re ν+ı̇∞

−Re ν−ı̇∞

( r
a

)ν

a−ν−1 cos νπ Pν(ζ)

[∫ +∞

a

q(τ,−1) τν dτ

]
dν

+
1

2πı̇

∫ −Re ν+ı̇∞

−Re ν−ı̇∞
rν cosπν Pν(ζ)

[∫ +∞

a

q(τ,−1) τ−ν−1 dτ

]
dν, ν 6= −1,−2 . . . ,

(4.120)

if Dirichlet data are prescribed, or

q(r, ζ) = − a

2πı̇

∫ −Re ν+ı̇∞

−Re ν−ı̇∞

( r
a

)ν 2ν + 1

ν

(
Pν(ζ) gN (t)

)
dν

− 1

2πı̇

∫ −Re ν+ı̇∞

−Re ν−ı̇∞

( r
a

)ν ν + 1

ν
a−ν−1

[∫ +∞

a

q(τ, ζ) τν dτ

]
dν

+
1

2πı̇

∫ −Re ν+ı̇∞

−Re ν−ı̇∞

( r
a

)ν ν + 1

ν
a−ν−1 cos νπ Pν(ζ)

[∫ +∞

a

q(τ,−1) τν dτ

]
dν

+
1

2πı̇

∫ −Re ν+ı̇∞

−Re ν−ı̇∞
rν cos νπ Pν(ζ)

[∫ +∞

a

q(τ,−1) τ−ν−1 dτ

]
dν, ν 6= −1,−2 . . . ,

(4.121)

if Neumann data are prescribed.
Replacing the contour Γ with the contour R depicted in Figure 4.5, the aforementioned
equations reduce to

qe
D

(r, ζ) = − 1

2πı̇

∫

L

( r
a

)ν

(2ν + 1)
(
Pν(ζ) gD(t)

)
dν, ν 6= −1,−2 . . . , (4.122)

for the Dirichlet and

qe
N

(r, ζ) = − a

2πı̇

∫

L

( r
a

)ν 2ν + 1

ν

(
Pν(ζ) gN (t)

)
dν, ν 6= −1,−2 . . . , (4.123)

for the Neumann problem.

4.7 Existence of the Integral transforms and the Inversion formulae

The aforementioned operations in chapters are justified introducing the set L1(0,∞) for
every real or complex-valued function F (r) of the real variable r. Then [Mar83, GPS06],
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Theorem 4.7.1 (Existence of the Mellin transform) Consider F (r) ∈ L1(ǫ, E), 0 < ǫ <

E < ∞ with the estimate

|F (r)| ≤ C

{
r−a r ∈ (0, ǫ)

r−b r > E
, (4.124)

where C is a constant. If a < b, then the Mellin transform F ∗(r; ν) = M{F (r); ν} exist and

the integral ∫ ∞

0

F (r) rν−1 d r ,

converges uniformly.

Theorem 4.7.2 (Inversion of the Mellin transform) Let F (r), rRe ν−1 F (r) ∈ C(0,∞) ∩
L1(0,∞), a < Re ν < b. Then the following inversion formula for the Mellin transformation

F (r) =
1

2πı̇
lim

Im Γ →∞

∫

Γ

r−ν F ∗(r; ν) d ν ,

is valid for every r ∈ (0,∞).

Similar conclusions hold replacing the Mellin kernel rν−1 with r−ν−1.

4.8 The “mirrored” Mellin transform

In what follows, a brief sketch of the proof based on [Sne72] is given.
In the definition of the Fourier transform and the the inversion formula

G(ξ) =
1√
2π

∫ +∞

−∞
g(t) eı̇ξt dt (4.125)

g(t) =
1√
2π

∫ +∞

−∞
G(ξ) e−ı̇ξt dξ . (4.126)

Replacing in the above relations x with et and s with −c− ı̇ξ, it is straightforward to show
that the following formulas hold

F (s) =

∫ +∞

0

f(x)x−s−1 dx (4.127)

f(x) =
1

2ı̇π

∫ −c+ı̇∞

−c−ı̇∞
F (s)xs ds , (4.128)

where F (s) = G(ı̇s+ ı̇c) and f(x) = 1√
2π
xc g(ln x).





CHAPTER 5
Irrotational Stokes’ Flow in a

Spherical Shell ∗

5.1 Stokes’ Flow. A brief Introduction†

For a Newtonian viscous fluid in the absence of body forces, characterized by constant
density ρ and viscosity µ, the Navier-Stokes equations, valid for incompressible flow, are
given as

ρ

(
∂u

∂t
+ u · ∇u

)
+ ∇p− µ∆u = 0, ∇ · u = 0 , (5.1)

which can be re-formulated in dimensionless form as

Re

(
∂u

∂t
+ u · ∇u

)
+ ∇p−∆u = 0, ∇ · u = 0 , (5.2)

where Re is a dimensionless number introduced, in concept, by Sir G. G. Stokes in 1851
but named after Osborne Reynolds (1842-1912) [Rey83, Rot90].

A very interesting and important flow regime results from the assumption that the
Reynolds number is very small compared to unity, Re << 1, but nonzero. SinceRe = ρ u L

µ
,

the low Reynolds number limit can be achieved by dealing with very large viscosities µ, or
considering very small length-scales L of the flow, or by treating flows where the fluid
velocities u are very slow, so-called creeping flow or Stokes’ flow.

Following this scenario‡, the system (5.1) reduces to the linear system

∇p− µ∆u = 0, ∇ · u = 0 . (5.3)

∗This work has been published as [DDb]
†Based on section 4-7 of [HB86]
‡Details can be found in essentially any book dealing with fluid mechanics.

101



102 CHAPTER 5. IRROTATIONAL STOKES’ FLOW IN A SPHERICAL SHELL

Stokes equations represent a considerable simplification of the Navier-Stokes equations,
especially in the incompressible Newtonian case and carry some important properties such
as

• Instantaneity. The only dependency on time is through time-dependent boundary
conditions.

• Reversibility. If u and p satisfy (5.3) then −u and −p also satisfy the same equation.
• Time reversibility. In the sense that a time-reversed Stokes flow solves the same

equations as the original Stokes flow and comes as an immediate consequence of
instantaneity.

In most applications, the motion of a fluid represented by a streaming flow past a body
of revolution, parallel to its symmetry axis, are very important. Such motions are called
axisymmetric. Denoting with φ the azimuthal angle, the axisymmetrical flow is then one
for which

I. The velocity u is independent of φ, viz

∂u

∂φ
= 0 . (5.4)

II. The azimuthal component of u is anywhere zero, i.e.

φ̂ · u = 0 . (5.5)

If one is interested in the case where the fluid is considered incompressible, i.e. ρ =const.
(see for details section 5.8 of [Tri88]), the continuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0 ,

yields
∇ · u = 0 ,

which in orthogonal curvilinear coordinates (ξ1, ξ2, ξ3) expands as

1

h1h2h3

[
∂

∂ξ1
(h2h3u1) +

∂

∂ξ2
(h1h3u2) +

∂

∂ξ3
(h1h2u3)

]
= 0 (5.6)

Let ξ3 = φ and stipulate that the scale factors hi, i = 1, 2, 3 are independent of the azimuthal
angle φ. Then, bearing in mind (5.5), relation (5.6) simplifies as

∂

∂ξ1
(h2hφu1) +

∂

∂ξ2
(h1hφu2) = 0 (5.7)

and this can always be satisfied by introducing a scalar function Ψ(ξ1, ξ2) such that

u1 = − 1

h2hφ

∂Ψ

∂ξ2
, u2 =

1

h1hφ

∂Ψ

∂ξ1
. (5.8)

The function Ψ(ξ1, ξ2) is known as the stream function, relating to the fact that it remains
constant along the streamlines. The stream function has been defined in such a way as
to vanish everywhere on the axis of revolution. A stream function exists in all cases of
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incompressible fluid motion in two dimensions and also in the three-dimensional case only
when the latter are axisymmetric (for more details see [HB86, pp.102-103]).

The Navier-Stokes equations (5.1) for the case of an incompressible fluid, encountered
at the beginning of this section, rewrite, introducing the vector identities

u · ∇u =
1

2
∇u2 − u × (∇ × u)

∆u = ∇ (∇ · u) − ∇ × (∇ × u) ,

as

∂u

∂t
+

1

2
∇u2 − u × (∇ × u) +

1

ρ
∇p+ η∇ × (∇ × u) = 0 , (5.9)

where η = µ
ρ

is the kinematic viscosity. The term ∇ · u vanishes on account of the as-
sumption of incompressibility. Eliminating the pressure by taking the curl on both sides
yields

∂ω

∂t
− ∇ × (u × ω) + η∇ × (∇ × ω) = 0 , (5.10)

where the vorticity ω is defined as follows

ω = ∇ × u .

Employing the relation

∇ × u =
1

2

ξ̂i × ξ̂j

hi hj

(
∂

∂ξi

(hj uj) − ∂

∂ξj

(hi ui)

)
, (Einstein summation assumed)

and with the aid of (5.4), (5.5) and (5.8), we find

ω =
φ̂

hφ

E2 Ψ (5.11)

where the differential operator E2 is defined as

E2 ≡ hφ

h1h2

{
∂

∂ξ1

(
h2

h1hφ

∂

∂ξ1

)
+

∂

∂ξ2

(
h1

h2hφ

∂

∂ξ2

)}
. (5.12)

Moreover, repeated application of the operator ∇× to (5.11) reveals that

∇ × ω =

(
ξ̂1

h2hφ

∂

∂ξ2
− ξ̂2

h1hφ

∂

∂ξ1

)
E2 Ψ , (5.13)

and

∇ × (∇ × ω) = − φ̂

hφ

E4 Ψ , (5.14)
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where the operator E4 comes from a successive application of E2 on itself. Furthermore,
it is possible to express the velocity u in terms of the stream function as [HB86, p.99]

u =
φ̂

hφ

× ∇Ψ ,

and therefore, using the vector identity

(A × B) × C = B (C · A) − A (C · B) ,

it can be shown that

u × ω =
E2 Ψ

h2
φ

∇Ψ . (5.15)

Replacing equations (5.11), (5.14) and (5.15) into (5.10), we obtain the nonlinear differential
equation satisfied by the stream function Ψ

E4 Ψ + φ̂ · hφ

η
∇
(
E2 Ψ

h2
φ

)
× ∇Ψ − 1

η

∂

∂t
(E2 Ψ) = 0 , (5.16)

or

E4 Ψ +
1

η

1

h1 h2 hφ

(
∂Ψ

∂ξ2

∂

∂ξ1
− ∂Ψ

∂ξ1

∂

∂ξ2

)
(E2 Ψ) − 1

η

∂

∂t
(E2 Ψ) = 0 . (5.17)

where the middle term

∇ ×
(
E2 Ψ

h2
φ

∇Ψ

)

has been altered using the vector identity

∇ × (f F) = ∇f × F + f ∇ × F

for (5.16), or through the equality

∇ × F =
1

h1 h2 hφ

∣∣∣∣∣∣

h1 ξ̂1 h2 ξ̂3 hφ φ̂
∂

∂ξ1

∂
∂ξ2

∂
∂φ

h1 F1 h2 F2 h3 F3

∣∣∣∣∣∣

for (5.17).
In the low-Reynolds number limit, equation (5.16) (or (5.17)) simplify as

E4 Ψ − 1

η

∂

∂t
(E2 Ψ) = 0 , (5.18)

that is, the nonlinear central term is omitted and hence, (5.18) constitutes the equation of
motion for creeping flows. If, furthermore, the motion of the fluid is assumed to be steady,
equation (5.18) becomes

E4 Ψ = 0
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as the equation of motion.
Of particular interest is the case of irrotational motion of the fluid, namely the case where
ω = 0, then, the equation of motion derived from (5.11) is

E2 Ψ = 0 .

The present chapter is organized as follows. In section 5.2 a brief review of classical
representations, namely solutions in form of series expansions are given, followed by the
formulation of the problem in section 5.3. In section 5.4 the general global relation is
derived, on which section 5.5 is based, in order to establish the Dirichlet-to-Neumann
correspondence together with a Lax pair formulation. Section 5.6 is devoted to the steps
that one has to follow in order to recover the classical solutions from the global relation.
Moreover, alternative formulae for the solutions in terms of integrals instead of a series can
be derived. The novel integral representations on which the present work is focused on, is
developed in section 5.7.

5.2 The Classical Representation

The stream function Ψ for irrotational axisymmetric Stokes’ flow in spherical coordinates
satisfies the equation

(
∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

))
Ψ(r, θ) = 0 .

Introducing the variable
ζ = cos θ, θ ∈ (0, π) ,

the latter equation takes the form

(
∂2

∂r2
+

1 − ζ2

r2

∂2

∂ζ2

)
Ψ(r, ζ) = 0 . (5.19)

Since the separability of the irrotational Stokes’ operator E2 is closely related to the sepa-
rability of the Laplacian operator, putting Ψ(r, ζ) = R(r)Z(ζ) we obtain the two ordinary
differential equations

r2 d
2R(r)

dr2
− αR(r) = 0 , (5.20)

(1 − ζ2)
d2Z(ζ)

d ζ2
+ αZ(ζ) = 0 , (5.21)

where α a complex parameter introduced during the process of separation of variables. The
latter of the ODEs has three regular singular points at ζ = ±1 and ∞. Thus by replacing ζ
with 1 − 2t, eq. (5.21) reduces to hypergeometric form

t(1 − t)
d2Z(t)

dt2
+ αZ(t) = 0 ,
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with parameters

a = b = −1

2
± 1

2

√
1 + 4α

c = 0

Choose b to be the larger of the two and hence the first solution is [WG89, p. 149],

Z1(t) = t F
(

1
2 − 1

2

√
1 + 4α, 1

2 + 1
2

√
1 + 4α, 2; t

)
,

or, for the original equation,

Z1(ζ) =
1 − ζ

2
F

(
1
2 − 1

2

√
1 + 4α, 1

2 + 1
2

√
1 + 4α, 2;

1 − ζ

2

)
.

Following [WG89, p.149], the second solution is given by the expression

Z2(z) =z ln z F
(

1
2 − 1

2

√
1 + 4α, 1

2 + 1
2

√
1 + 4α, 2; z

)

+

∞∑

n=0

( 1
2 − 1

2

√
1 + 4α)n ( 1

2 + 1
2

√
1 + 4α)n

n! (2)n

zn+1

[
ψ
(

1
2 − 1

2

√
1 + 4α+ n

)

+ ψ
(

1
2 + 1

2

√
1 + 4α+ n

)
− ψ(n+ 2) − ψ(n+ 1) − ψ

(
− 1

2 − 1
2

√
1 + 4α

)

− ψ
(
− 1

2 + 1
2

√
1 + 4α

)
− 2γ

]
,

where z = ζ± ı̇0, is to be interpreted as the limiting value of the complex value z approach-
ing the real axis from above (+) or from below (−), respectively, ψ(z) is the logarithmic
derivative of the Γ−function (or digamma function)

ψ(z) =
d

dz
ln Γ(z) ,

and γ = −ψ(1) = 0.57721566 is Euler’s constant.
Since above relation is cumbersome to work with, we note that since 1 + a + b − c =
0,−1,−2, . . . a second solution is [Erd53, p. 75, eq.(8)]

Z(z) = (1 − z)F
(

1
2 + 1

2

√
1 + 4α, 1

2 − 1
2

√
1 + 4α, 2; 1 − z

)
.

In order to simplify calculations, note that (5.21) is a particular case of the Gegenbauer
differential equation

(1 − z2)
d2w(z)

dz2
− (2λ+ 1)z

dw(z)

dz
+ ν(ν + 2λ)w(z) = 0 , (5.22)

if λ = − 1
2 and α = ν(ν − 1), so that two independent solutions are,

Z1(ζ) =
1 − ζ

2
F

(
−ν + 1, ν, 2;

1 − ζ

2

)
,

∣∣∣∣
1 − ζ

2

∣∣∣∣ < 1 ,

Z2(z) = (1 − z)F (−ν + 1, ν, 2; 1 − z) , |1 − z| < 1 .
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Following current literature [HB86, KK91] we adopt the definition for the Gegenbauer func-
tions of order λ = − 1

2 from [Sam91]. There are obtained by putting Z(ζ) = ζν u(ζ), where
ν is a complex parameter, and ζ2 = 1

t
into (5.21), which then rewrites

t(1 − t)
d2u(t)

d t2
+
[(

3
2 − ν

)
−
(

3
2 − ν

)
t
] du(t)

dt
−
[
α− ν(ν − 1)

4t
+
ν(ν − 1)

4

]
u(t) = 0 ,

and is of hypergeometric form only if

α = ν(ν − 1) .

After some manipulations we obtain

Z(ζ) = ζν F

(
−ν

2
,−ν − 1

2
,−ν +

3

2
; ζ−2

)
, |ζ2| > 1 .

Denote with C
− 1

2
ν (ζ) the Gegenbauer functions of the first kind and order λ = − 1

2

C
− 1

2
ν (ζ) = A(ν) ζν F

(
−ν

2
,−ν − 1

2
,−ν +

3

2
; ζ−2

)
, |ζ2| > 1 ,

where A(ν) is an arbitrary function of the complex parameter ν.
Sampson [Sam91] showed that a second solution of (5.21) can be derived by simple chang-

ing ν into −ν + 1 and multiplying by a constant factor. Thus, denoting D
− 1

2
ν (ζ) as the

Gegenbauer functions of the second kind and order − 1
2 , we find

D
− 1

2
ν (ζ) = B(ν) ζ−ν+1 F

(
ν − 1

2
,
ν

2
, ν +

1

2
; ζ−2

)
,

where again, B(ν) is an arbitrary function of ν.
In order to be compatible with [Hei78, Hei81, Sam91] set the functions A(ν) and B(ν)
equal to

A(ν) = 2ν−1 Γ(ν − 1
2 )√

π Γ(ν + 1)
,

and

B(ν) = −
√
π Γ(ν − 1)

2ν Γ(ν + 1
2 )

.

The corresponding expressions for the Gegenbauer functions of the first and second kind
of order λ = − 1

2 , valid in the interval |ζ| < 1, are given by [Sam91, pp. 455-456 and p.
473] in the case where ν is an positive integer, including zero, as follows.

C
− 1

2
n (ζ) = (−1)

n
2

Γ(
n−1

2 )

2
√

π Γ(
n+2

2 )
F
(
− n

2 ,
n
2 − 1

2 ,
1
2 ; ζ2

)

= (−1)
n
2

Γ(
n−1

2 )

2
√

π Γ(
n+2

2 )
(1 − ζ2)F

(
n
2 + 1

2 ,− n
2 + 1, 1

2 ; ζ2
)




, n is even ,

= (−1)
n−1

2
Γ(

n
2 )

√
π Γ(

n+1
2 )

ζ F
(
− n

2 + 1
2 ,

n
2 ,

3
2 ; ζ2

)

= (−1)
n−1

2
Γ(

n
2 )

√
π Γ(

n+1
2 )

ζ (1 − ζ2)F
(

n
2 + 1,− n

2 + 3
2 ,

3
2 ; ζ2

)




, n is odd ,
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D
− 1

2
n (ζ) = (−1)

n
2

√
π Γ(

n
2 )

2Γ(
n+1

2 )
ζ F

(
− n

2 + 1
2 ,

n
2 ,

3
2 ; ζ2

)
, n is even

= (−1)
n+1

2

√
π Γ(

n
2 )

2Γ(
n+1

2 )
F
(
− n

2 ,
n
2 − 1

2 ,
1
2 ; ζ2

)
, n is odd .

Equation (5.20) with α = ν(ν − 1), ν ∈ C accepts functions of the form

R1(r; ν) = rν , R2(r; ν) = r−ν+1

as solutions. The general solution for the stream function is given by the real part of
Ψ(r, ζ; ν), i.e.

Ψ(r, ζ) = Re Ψ(r, ζ; ν) ,

where

Ψ(r, ζ; ν) =

4∑

i=1

A(i)(ν) Θ(i)(r, ζ; ν) ,

and
Θ(1)(r, ζ; ν) = rν C

− 1
2

ν (ζ)

Θ(2)(r, ζ; ν) = rν D
− 1

2
ν (ζ)

Θ(3)(r, ζ; ν) = r−ν+1 C
− 1

2
ν (ζ)

Θ(4)(r, ζ; ν) = r−ν+1 D
− 1

2
ν (ζ)




, ν ∈ C , (5.23)

and A(i)(ν) arbitrary functions.
However, the procedure can be significant simplified by letting ν = n ∈ Z

+. The general
solution is then given as

Ψ(r, ζ) =
∑

n∈Z+

4∑

i=1

A(i)
n Θ(i)

n , (5.24)

where now the irrotational eigensolutions (5.23) are

Θ
(1)
n = rn C

− 1
2

n (ζ)

Θ
(2)
n = rn D

− 1
2

n (ζ)

Θ
(3)
n = r−n+1 C

− 1
2

n (ζ)

Θ
(4)
n = r−n+1 D

− 1
2

n (ζ)




, ν ∈ C . (5.25)

The eigenfunctions of the second kind with respect to the variable ζ are defined as [Sam91,
p. 470]

D
− 1

2
n (ζ) = C

− 1
2

n (ζ)Q0(ζ) −Kn−1(ζ) (5.26)

where

Q0(ζ) =





1
2 ln 1+ζ

1−ζ
, |ζ| < 1 ,

1
2 ln ζ+1

ζ−1 , |ζ| > 1 ,
(5.27)

is the Legendre function of the second kind and Kn−1(ζ) a polynomial of degree n − 1
defined as

Kn−1(ζ) =

⌊ n−1
2 ⌋∑

m=0

2(2n− 4m+ 1)

(2m− 1)(n−m)

[
1 − (2m− 1)(n−m)

n(n− 1)

]
C

− 1
2

n−2m+1(ζ) , (5.28)
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where ⌊ n−1
2 ⌋ is the greatest integer which is less then or equals to n−1

2 .

The Gegenbauer functions of order − 1
2 are in general related with the Legendre functions

of the first and second kind, viz

dC
− 1

2
n (ζ)
d ζ

= Pn−1(ζ) dD
− 1

2
n (ζ)
d ζ

= Qn−1(ζ)

C
− 1

2
n (ζ) = Pn(ζ)−Pn−2(ζ)

2n−1 D
− 1

2
n (ζ) = Qn(ζ)−Qn−2(ζ)

2n−1

C
− 1

2
n (ζ) = −Pn(ζ) + 2ζ Pn−1(ζ) − Pn−2(ζ) D

− 1
2

n (ζ) = −Qn(ζ) + 2ζ Qn−1(ζ) −Qn−2(ζ)

For n = 0, 1 the Gegenbauer functions C
− 1

2
n (ζ) and D

− 1
2

n (ζ) are defined as

C
− 1

2
0 (ζ) = −D− 1

2
1 (ζ) = −1

C
− 1

2
1 (ζ) = D

− 1
2

0 (ζ) = ζ ,

where else the first few Gegenbauer polynomials C
− 1

2
n (ζ) for n ≥ 2 are given below

C
− 1

2
2 (ζ) = 1

2 (ζ2 − 1)

C
− 1

2
3 (ζ) = 1

2ζ (ζ2 − 1)

C
− 1

2
4 (ζ) = 1

8 (ζ2 − 1)(5ζ2 − 1)

C
− 1

2
5 (ζ) = 1

8ζ (ζ2 − 1)(7ζ2 − 3)

C
− 1

2
6 (ζ) = 1

16 (ζ2 − 1)(21ζ4 − 14ζ2 + 1)

C
− 1

2
7 (ζ) = 1

16ζ (ζ2 − 1)(33ζ4 − 30ζ2 + 5)

C
− 1

2
8 (ζ) = 1

128 (ζ2 − 1)(429ζ6 − 495ζ4 + 135ζ2 − 5)





. (5.29)

Note, that since in most applications the variable ζ lives on the interval (−1,+1), standard

references [HB86, KK91] define the Gegenbauer functions C
− 1

2
n (ζ) and D

− 1
2

n (ζ) as

C
− 1

2
n (ζ) =

Pn−2(ζ) − Pn(ζ)

2n− 1
(5.30)

D
− 1

2
n (ζ) =

Qn−2(ζ) −Qn(ζ)

2n− 1
, (5.31)

and the factors ζ2 − 1 in equations (5.29) must be replaced with 1 − ζ2.

Employing the theory of hypergeometric functions, it can be shown that D
− 1

2
ν (ζ), and

subsequently D
− 1

2
n (ζ), is unbounded at both poles ζ = ±1, and therefore the second

solution is for the time being, disregarded. Hence, the irrotational eigensolutions (5.24)
simplify as

Ψ(r, ζ) =
∑

n∈Z+

(
an r

n + bn r
−n+1

)
C

− 1
2

n (ζ) . (5.32)

It can be shown [Das07a] that every Gegenbauer polynomial of the first kind and order
λ = − 1

2 enjoys the structure

C
− 1

2
n (ζ) = (1 − ζ2)Mn−2(ζ), n ≥ 2 , (5.33)
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where Mn−2(ζ) is a polynomial of degree (n− 2). This implies that

C
− 1

2
n (±1) = 0, n ≥ 2

and secures that the stream function vanishes along the axis of revolution.
Therefore, (5.32) reads

Ψ(r, ζ) =

+∞∑

n=2

(
an r

n + bn r
−n+1

)
C

− 1
2

n (ζ) . (5.34)

Once the stream function Ψ(r, ζ) is obtained the axisymmetric velocity field

u(r, ζ) = ur(r, ζ)r̂ + uζ(r, ζ)ζ̂

is given by

ur(r, ζ) = − 1

r2

∂Ψ(r, ζ)

∂ζ
,

uζ(r, ζ) =
1

r
√

1 − ζ2

∂Ψ(r, ζ)

∂r
.

5.2.1 Alternative Solutions

The expressions of the solutions as far as it concerns the ζ−direction, motivates to consider
expressions for the stream function of the form

Ψ(r, ζ) =
∑

n,m

(
an,m rn + bn,m r−n+1

)
(1 − ζ2)m Z(ζ) , (5.35)

where an,m and bn,m are arbitrary constants.
Replacing (5.35) into (5.19) it is straightforward to shown that Ψ(r, ζ) satisfies (5.19) only
if Z(ζ) satisfies the differential equation

(1 − ζ2)Z ′′(ζ) − 4mζ Z ′(ζ) +

[(
n(n− 1) − 2m

)
+ 4m(m− 1)

ζ2

1 − ζ2

]
Z(ζ) = 0 , (5.36)

where the prime denotes differentiation with respect to the argument.
Putting Z(ζ) = (1 − ζ2)µ u(ζ), then u(ζ) satisfies the equation∗

(1 − ζ2)u′′ − 4(µ+m) ζ u′ +
[
n(n− 1) − 2(µ+m)

]
u = 0 , (5.37)

where µ assumes the values 1 −m or −m.
If µ = −m, equation (5.37) is recognized as the Gegenbauer equation of order λ = − 1

2 and

∗Letting m = k

2
(k + 1) equation (5.36) becomes

(1 − ζ2) Z′′(ζ) − 2k(k + 1) ζ Z′(ζ) +

[
(n + k)(n − k − 1) + (k − 1)k(k + 1)(k + 2)

ζ2

1 − ζ2

]
Z(ζ) = 0 ,

which remains invariant under the transformations k → −k − 1 and n → −n + k + 1.
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degree n. On the other hand, replacing µ by 1 − m, equation (5.37) is recognized as the
Gegenbauer equation of order λ = 3

2 and degree n− 2. Hence the solutions to (5.36) are

Zn(ζ) = (1 − ζ2)−m
(
an C

− 1
2

n (ζ) + bn D
− 1

2
n (ζ)

)
,

and
Zn(ζ) = (1 − ζ2)−m

(
cn (1 − ζ2)C

3
2
n−2(ζ) + dn (1 − ζ2)D

3
2
n−2(ζ)

)
,

where an, bn, cn and dn are arbitrary constants.
From the above relations it is easily deduced that

C
− 1

2
n (ζ) = αn (1 − ζ2)C

3
2
n−2(ζ)

D
− 1

2
n (ζ) = βn (1 − ζ2)D

3
2
n−2(ζ)



 , n ≥ 2 . (5.38)

Taking a step ahead, the constants αn are easily evaluated with the aid of the orthogonality
relations (5.44) and (5.86) and equals αn = 1

n (n−1) . Hence

C
− 1

2
n (ζ) =

1

n (n− 1)
(1 − ζ2)C

3
2
n−2(ζ), n ≥ 2 . (5.39)

The constant βn on the other hand, can be evaluated employing equations (5.26)-(5.28)
and a formula connecting Dλ

n(z) and Cλ
n(z) similar to Christoffel’s relation [Chr58] between

Qn(z) and Pn(z) given by Watson [Wat38].

Remark 5.2.1 Observe that at the axis of revolution (ζ = ±1) in the case where C
− 1

2
n (ζ) is

replaced by (5.39), the stream function vanishes due do the term (1 − ζ2) without imposing

any restrictions on the Gegenbauer polynomials of order 3
2 . Moreover, since the properties of

the Gegenbauer polynomials of order greater then − 1
2 , are well known [Erd53, Hei78, Hei81,

GR00, AS65], the use of (5.39) is suggested.

5.3 Formulation of the problem

Consider a spherical shell S centered at the origin with inner radius r1 and outer radius
r2 as depicted in Figure 5.1. The motion of the fluid is restraint in the interior domain Ωi

defined as

Ωi =

{
(r, ζ)

∣∣∣∣r1 ≤ r ≤ r2, −1 < ζ < +1

}
.

Scope of the article is to obtain expressions for the stream function ΨD(r, ζ) and
ΨN(r, ζ) valid for Dirichlet and Neumann problem, respectively, in the interior of the
spherical shell S. Moreover, by a limiting procedure, the corresponding streamfunctions
Ψi

D
(r, ζ), Ψe

D
(r, ζ), Ψi

N
(r, ζ), and Ψe

N
(r, ζ), which solve the interior Dirichlet, exterior Dirich-

let, the interior Neumann and the exterior Neumann problems, respectively, are found. The

Dirichlet boundary values are denoted by g(j)
D , j = 1, 2 where else we denote the Neumann

data on the boundaries by g(j)
N , j = 1, 2. In order to secure the uniqueness of the exterior

problem a asymptotic condition must be applied, e.g. if the fluid is at rest at infinity, we
demand that the solution of (5.19) should satisfy the asymptotic condition

Ψe

r2
→ 0, as r → ∞ , (5.40)
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Figure 5.1: The interior domain Ωi defined as Ωi =
{

(r, ζ)
∣∣r1 ≤ r ≤ r2, −1 < ζ < +1

}
.

in order that the velocity vanishes. On the other hand, if the body is considered at rest
with the fluid streaming past it, the appropriate asymptotic condition is

Ψe → f (r, ζ;U), as r → ∞ , (5.41)

where U is the uniform velocity of the fluid and Ψe stands for both Ψe
D

and Ψe
N

. In addition,
the Neumann boundary values have to satisfy the compatibility condition (see Appendix D
for details)

∫

∂Ω(r1)∪∂Ω(r2)

2∑

j=1

g
(j)
N (r) dS(r) =

{
8
3π
(
r3

2 − r3
1

)
, n = 2

0, n > 2
. (5.42)

In the case where Dirichlet boundary values g(j)
D , j = 1, 2 are prescribed, equation (5.34)

implies

ΨD(r, ζ) =
1

2

+∞∑

n=2

n(n− 1)(2n− 1)

[
r2

(
r1

r2

)n

− r1

(
r2

r1

)n]−1

×
[(

r−n+1
2 D̃(1)

n − r−n+1
1 D̃(2)

n

)
rn +

(
rn

1 D̃(2)
n − rn

2 D̃(1)
n

)
r−n+1

]
C

− 1
2

n (ζ) , (5.43)

where we used the fact that the Gegenbauer polynomials of the first kind and order − 1
2

satisfy the orthogonality relations

∫ +1

−1

C
− 1

2
n (ζ)C

− 1
2

m (ζ)

1 − ζ2
d ζ =

2

n(n− 1)(2n− 1)
δnm, n ≥ 2, m ≥ 2 , (5.44)
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and the Gegenbauer transforms of order − 1
2 of the Dirichlet data are given as

D̃(j)
n =

∫ +1

−1

g
(j)
D C

− 1
2

n (ζ)

1 − ζ2
d ζ, n ≥ 2, j = 1, 2 . (5.45)

Similarly, for the Neumann problem with data g(j)
N , j = 1, 2 the solution assumes the form

ΨN(r, ζ) =
1

2

+∞∑

n=2

(2n− 1)

[
1

r2

(
r2

r1

)n

− 1

r1

(
r1

r2

)n]−1

×
[

(n− 1)
(
r−n

1 Ñ(2)
n − r−n

2 Ñ(1)
n

)
rn + n

(
rn−1

1 Ñ(2)
n − rn−1

2 Ñ(1)
n

)
r−n+1

]
C

− 1
2

n (ζ) ,

(5.46)

where

Ñ(j)
n =

∫ +1

−1

g
(j)
N C

− 1
2

n (ζ)

1 − ζ2
d ζ, n ≥ 2, j = 1, 2 . (5.47)

As r1 tends to zero, equation (5.34) implies

lim
r1→0

ΨX(r, ζ) = Ψi
X

(r, ζ) , X = D orN ,

where

Ψi
D

(r, ζ) =
1

2

+∞∑

n=2

n(n− 1)(2n− 1) D̃(2)
n

(
r

r2

)n

C
− 1

2
n (ζ) , (5.48)

and

Ψi
N

(r, ζ) =
r2

2

+∞∑

n=2

(n− 1)(2n− 1) Ñ(2)
n

(
r

r2

)n

C
− 1

2
n (ζ) , (5.49)

corresponding to the irrotational flow of a viscous fluid in the interior of a sphere of radius
r2.

In a similar manner, as r2 → ∞, we have lim
r2→∞

ΨX(r, ζ) = Ψe
X

(r, ζ), X = D or N, where

Ψe
D

(r, ζ) =
1

2

+∞∑

n=2

n(n− 1)(2n− 1) D̃(1)
n

(
r1

r

)n−1

C
− 1

2
n (ζ) , (5.50)

and

Ψe
N

(r, ζ) = −r1

2

+∞∑

n=2

n(2n− 1) Ñ(1)
n

(
r1

r

)n−1

C
− 1

2
n (ζ) , (5.51)

describing the irrotational flow of a viscous fluid in the exterior of a sphere of radius r1.

The coefficients D̃
(j)
n and Ñ

(j)
n are given by equations (5.45) and (5.47) respectively.
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5.4 The Global Relation

The global relation, namely a expression explicitly connecting the Dirichlet with the Neu-
mann boundary values (and vice versa) can be derived by the algorithmic steps analytically
described bellow.
Let Ψ(r, ζ) satisfy the differential equation

(
∂2

∂r2
+

1 − ζ2

r2

∂2

∂ζ2

)
Ψ(r, ζ) = 0 (5.52)

and suppose q(r, ζ) any solution of the formal adjoint†
(
E2
)∗
,

(
∂2

∂r2
+

∂2

∂ζ2

(
1 − ζ2

r2

))
q(r, ζ) = 0 . (5.53)

Multiply (5.52) by q(r, ζ) and (5.53) by Ψ(r, ζ) and subtracting them yields, after some
algebraic manipulations, the divergence form

∂

∂r

(
q
∂Ψ

∂r
− ∂q

∂r
Ψ

)
+

∂

∂ζ

[
1 − ζ2

r2

(
q
∂Ψ

∂ζ
− ∂q

∂ζ
Ψ

)
+

2ζ

r2
qΨ

]
= 0 . (5.54)

In the sequence, consider an arbitrary function Ξ(r, ζ; ν), such that

∂Ξ

∂ζ
= q

∂Ψ

∂r
− ∂q

∂r
Ψ , (5.55)

∂Ξ

∂r
= −

[
1 − ζ2

r2

(
q
∂Ψ

∂ζ
− ∂q

∂ζ
Ψ

)
+

2ζ

r2
qΨ

]
, (5.56)

then the above relations imply
[
∂

∂r
,
∂

∂ζ

]
Ξ(r, ζ; ν) = 0, ν ∈ C ,

where [·, ·] denotes the commutator, i.e.
[
∂

∂r
,
∂

∂ζ

]
=

∂

∂r

∂

∂ζ
− ∂

∂ζ

∂

∂r

and therefore equations (5.55) and (5.56) constitute a Lax Pair for (5.19).
Equation (5.54) holds true in any meridian plane of R3. Applying Green’s second identity
to a closed subdomain of the meridian plane, one obtains immediately the global relation

∫

∂Ω

{(
q
∂Ψ

∂r
− ∂q

∂r
Ψ

)
d ζ −

[
(1 − ζ2)

(
q
∂Ψ

∂ζ
− ∂q

∂ζ
Ψ

)
+ 2ζ qΨ

]
d r

r2

}
= 0 , (5.57)

where ∂Ω is the boundary of the subdomain.

†Note that the self-adjoint assumes the form
(

1

1 − ζ2
E2

)
=

(
1

1 − ζ2
E2

)
∗
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5.5 The Dirichlet-To-Neumann Correspondence and a Lax pair formulation

Utilizing the global relation for constructing the Dirichlet-to-Neumann correspondence is
the most effective approach. Observing (5.57) we notice that the algorithmic part starts
as soon as a solution to (5.53) is found. Taking advantage of the fact that the domain in
question is separable, i.e. we can replace q(r, ζ) with R(r)Z(ζ), it follows that R(r) satisfies
the ODE

r2 d
2R(r)

d r2
− β R(r) = 0, β ∈ C

whereas Z(ζ) is a solution to the equation

d2

d ζ2

(
(1 − ζ2)Z(ζ)

)
+ (β − 2)Z(ζ) = 0, β ∈ C ,

where β is the separation constant. The latter is a particular case of the Gegenbauer
differential equation (5.22) with λ = 3

2 and β = ν(ν + 3) + 2.
Hence

q(r, ζ; ν) = R(r; ν) G
3
2
ν (ζ) , (5.58)

where
R1(r; ν) = rν+2, R2(r; ν) = r−ν−1 , (5.59)

and G
3
2
ν (ζ) any solution of the Gegenbauer equation of order λ = 3

2 .

Concluding, for the Lax pair introduced in the previous section, consider

Ξ(r, ζ; ν) = q(r, ζ; ν)µ(r, ζ; ν), ν ∈ C , (5.60)

where µ(r, ζ; ν) an auxiliary function. Replacing (5.60) into equations (5.55) and (5.56) it
is straightforward to show that the Lax pair assumes the form

(
∂

∂ζ
+
d ln G

3
2
ν

d ζ

)
µ(r, ζ; ν) =

(
∂

∂r
− d lnR

d r

)
Ψ(r, ζ), ν ∈ C ,

(
r2 ∂

∂r
+ r2 d lnR

d r

)
µ(r, ζ; ν) = −

[
(1 − ζ2)

(
∂

∂ζ
− d ln G

3
2
ν

d ζ

)
+ 2ζ

]
Ψ, ν ∈ C .

In the sequence, apply the global relation (5.57) in the domain Ω̃ defined as

Ω̃ = {r1 ≤ r ≤ r2, ζ− ≤ ζ ≤ ζ+}
and depicted in Figure 5.2, to find

−
∫ r2

r1

[
(1 − ζ2

−)

(
G

3
2
ν (ζ−)

∂Ψ(r, ζ−)

∂ζ
− dG

3
2
ν (ζ−)

d ζ
Ψ(r, ζ−)

)
+ 2ζ− G

3
2
ν (ζ−) Ψ(r, ζ−)

]
R(r; ν)

d r

r2

+

∫ ζ+

ζ−

(
R(r2; ν)

∂Ψ(r2, ζ)

∂r
− dR(r2; ν)

d r
Ψ(r2, ζ)

)
G

3
2
ν (ζ) d ζ

+

∫ r2

r1

[
(1 − ζ2

+)

(
G

3
2
ν (ζ+)

∂Ψ(r, ζ+)

∂ζ
− dG

3
2
ν (ζ+)

d ζ
Ψ(r, ζ+)

)
+ 2ζ+ G

3
2
ν (ζ+) Ψ(r, ζ+)

]
R(r; ν)

d r

r2

−
∫ ζ+

ζ−

(
R(r1; ν)

∂Ψ(r1, ζ)

∂r
− dR(r1; ν)

d r
Ψ(r1, ζ)

)
G

3
2
ν (ζ) d ζ = 0 , (5.61)
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Figure 5.2: The interior subdomain Ω̃.

where q(r, ζ; ν) is replaced by (5.58).
Stipulate that

Ψ(r, ζ) = (1 − ζ2) Ψ̃(r, ζ) , (5.62)

then the term

(1 − ζ2)G
3
2
ν (ζ)

∂Ψ(r, ζ)

∂ζ
+ 2ζ G

3
2
ν (ζ) Ψ(r, ζ)

equals

(1 − ζ2)2 G
3
2
ν (ζ)

∂Ψ̃(r, ζ)

∂ζ
,

and (5.61) rewrites

−
∫ r2

r1

[
(1 − ζ2

−)2 G
3
2
ν (ζ−)

∂Ψ̃(r, ζ−)

∂ζ
− (1 − ζ2

−)2 dG
3
2
ν (ζ−)

d ζ
Ψ̃(r, ζ−)

]
R(r; ν)

d r

r2

+

∫ ζ+

ζ−

(
R(r2; ν)

∂Ψ(r2, ζ)

∂r
− dR(r2; ν)

d r
Ψ(r2, ζ)

)
G

3
2
ν (ζ) d ζ

+

∫ r2

r1

[
(1 − ζ2

+)2 G
3
2
ν (ζ+)

∂Ψ̃(r, ζ+)

∂ζ
− (1 − ζ2

+)2 dG
3
2
ν (ζ+)

d ζ
Ψ̃(r, ζ+)

]
R(r; ν)

d r

r2

−
∫ ζ+

ζ−

(
R(r1; ν)

∂Ψ(r1, ζ)

∂r
− dR(r1; ν)

d r
Ψ(r1, ζ)

)
G

3
2
ν (ζ) d ζ = 0 . (5.63)
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The Gegenbauer functions of the first kind of general degree ν and order 3
2 are regular at

ζ = 1, where else the behave as (1 + ζ)−1 near the singular point ζ = −1. On the other
hand, the Gegenbauer functions of the second kind behave as (1 ∓ ζ)−1 as ζ tends to ±1∓.

This implies that the factors (1 − ζ2
±)2 G

3
2
ν (ζ±) vanish as ζ± → ±1∓. Moreover, it can be

shown that (see chapter 3, sections 3.10 and 3.11)

lim
ζ→1−

(1 − ζ2)2 dC
3
2
ν (ζ)

d ζ
= 0 , (5.64)

lim
ζ→−1+

(1 − ζ2)2 dC
3
2
ν (ζ)

d ζ
=

4

π
sin νπ , (5.65)

and

lim
ζ→±1∓

(1 − ζ2)2 dD
3
2
ν (ζ)

d ζ
= 2

(
cos2 νπ

2
± sin2 νπ

2

)
. (5.66)

Thus, as ζ± tends to ±1∓ respectively, (5.63) becomes

(
R(r2; ν)N(2)(ν|G

3
2
ν ) − dR(r2; ν)

d r
D(2)(ν|G

3
2
ν )

)

−
(
R(r1; ν)N(1)(ν|G

3
2
ν ) − dR(r1; ν)

d r
D(1)(ν|G

3
2
ν )

)

=





− 4
π

sin νπ
∫ r2

r1
Ψ̃(r,−1)R(r; ν) d r

r2 , if G
3
2
ν (ζ) = C

3
2
ν (ζ)

2
∫ r2

r1

(
Ψ̃(r, 1) − cos νπ Ψ̃(r,−1)

)
R(r; ν) d r

r2 , if G
3
2
ν (ζ) = D

3
2
ν (ζ)

,

ν ∈ C, ν 6= −3,−4, . . . (5.67)

where D(j)(ν|G
3
2
ν ) and N(j)(ν|G

3
2
ν ), j = 1, 2 denote the weightless Gegenbauer transforms

of the first and second kind of order 3
2 for the functions Ψ(rj , ζ) and ∂Ψ(rj ,ζ)

∂r
respectively,

i.e.

D(j)(ν|G
3
2
ν ) =

∫ +1

−1

Ψ(rj , ζ) G
3
2
ν (ζ) d ζ, j = 1, 2 , (5.68)

N(j)(ν|G
3
2
ν ) =

∫ +1

−1

∂Ψ(rj , ζ)

∂r
G

3
2
ν (ζ) d ζ, j = 1, 2 . (5.69)

Replacing R(r; ν) in (5.67) with a linear combination of rν+2 and r−ν−1 leads to a relation
valid in the interior Ωi of the spherical shell S which is valid in the entire complex ν−plane,
except for the points ν 6= −3,−4, . . . As r1 → 0, the resulting expression is valid only in
interval Re ν ∈ (−2,−1). On the contrary, none expression can be derived in the case where
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r2 tends to infinity. Therefore, in order to keep things simple, rewrite (5.67) as

rν+1
2

(
r2 N

(2)(ν|G
3
2
ν ) − (ν + 2)D(2)(ν|G

3
2
ν )

)
− rν+1

1

(
r1N

(1)(ν|G
3
2
ν ) − (ν + 2)D(1)(ν|G

3
2
ν )

)

=





− 4
π

sin νπ
∫ r2

r1
Ψ̃(r,−1) rν d r , if G

3
2
ν (ζ) = C

3
2
ν (ζ)

2
∫ r2

r1

(
Ψ̃(r, 1) − cos νπ Ψ̃(r,−1)

)
rν d r , if G

3
2
ν (ζ) = D

3
2
ν (ζ)

, (5.70)

r−ν−2
2

(
r2 N

(2)(ν|G
3
2
ν ) + (ν + 1)D(2)(ν|G

3
2
ν )

)
− r−ν−2

1

(
r1N

(1)(ν|G
3
2
ν ) + (ν + 1)D(1)(ν|G

3
2
ν )

)

=





− 4
π

sin νπ
∫ r2

r1
Ψ̃(r,−1) r−ν−3 d r , if G

3
2
ν (ζ) = C

3
2
ν (ζ)

2
∫ r2

r1

(
Ψ̃(r, 1) − cos νπ Ψ̃(r,−1)

)
r−ν−3 d r , if G

3
2
ν (ζ) = D

3
2
ν (ζ)

, (5.71)

for every ν ∈ C, ν 6= −3,−4, . . . , where (5.70) is derived with the use of R1 and (5.71) is
derived with the use of R2. As r1 tends to zero, a singularity at r = 0 is introduced and
thus the function R(r; ν) needs to be bounded and equations (5.70) and (5.71) rewrite

r2 N
(2)(ν|G

3
2
ν ) − (ν + 2)D(2)(ν|G

3
2
ν )

=





− 4
π

sin νπ
∫ r2

0
Ψ̃(r,−1)

(
r
r2

)ν+1 d r
r

, if G
3
2
ν (ζ) = C

3
2
ν (ζ)

2
∫ r2

0

(
Ψ̃(r, 1) − cos νπ Ψ̃(r,−1)

)(
r
r2

)ν+1 d r
r

, if G
3
2
ν (ζ) = D

3
2
ν (ζ)

, (5.72)

valid for every Re ν > −1, and

r2 N
(2)(ν|G

3
2
ν ) + (ν + 1)D(2)(ν|G

3
2
ν )

=





− 4
π

sin νπ
∫ r2

0
Ψ̃(r,−1)

(
r2

r

)ν+2 d r
r

, if G
3
2
ν (ζ) = C

3
2
ν (ζ)

2
∫ r2

0

(
Ψ̃(r, 1) − cos νπ Ψ̃(r,−1)

) (
r2

r

)ν+2 d r
r

, if G
3
2
ν (ζ) = D

3
2
ν (ζ)

, ν 6= −3,−4, . . .

(5.73)

valid for every Re ν ≤ −2.
On the other hand, sending r2 to infinity, the exterior problem for a sphere of radius r1

is recovered. The singularity at infinity is handled introducing R1(r; ν) = rν+2 for every
ν ∈ C less then −1 or introducing R2(r; ν) = r−ν−1 for every ν ∈ C greater then −2.
Hence, equations (5.70) and (5.71) rewrite as

r1 N
(1)(ν|G

3
2
ν ) − (ν + 2)D(1)(ν|G

3
2
ν )

=





4
π

sin νπ
∫∞

r1
Ψ̃(r,−1)

(
r
r1

)ν+1 d r
r

, if G
3
2
ν (ζ) = C

3
2
ν (ζ)

−2
∫∞

r1

(
Ψ̃(r, 1) − cos νπ Ψ̃(r,−1)

)(
r
r1

)ν+1 d r
r

, if G
3
2
ν (ζ) = D

3
2
ν (ζ)

,

Re ν ≤ −1, ν 6= −3,−4, . . . , (5.74)
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Figure 5.3: The shell subdomains Ω̃1(r, ζ) =
{
r1 ≤ ρ ≤ r, ζ− ≤ ζ ≤ ζ+

}
and

Ω̃2(r, ζ) =
{
r ≤ ρ ≤ r2, ζ− ≤ ζ ≤ ζ+

}
which tend to the shell subdomains

Ω1(r) =
{
r1 ≤ ρ ≤ r, −1 < ζ < +1

}
and Ω2(r) =

{
r ≤ ρ ≤ r2, −1 < ζ < +1

}
as

ζ± → ±1∓.

and

r1N
(1)(ν|G

3
2
ν ) + (ν + 1)D(1)(ν|G

3
2
ν )

=





4
π

sin νπ
∫∞

r1
Ψ̃(r,−1)

(
r1

r

)ν+2 d r
r

, if G
3
2
ν (ζ) = C

3
2
ν (ζ)

−2
∫∞

r1

(
Ψ̃(r, 1) − cos νπ Ψ̃(r,−1)

) (
r1

r

)ν+2 d r
r

, if G
3
2
ν (ζ) = D

3
2
ν (ζ)

, Re ν ≥ −2 .

(5.75)

5.6 From Complex to Real: Classical Solutions Recovered

Applying the global relation (5.57) in the shell subdomains Ω1(r, ζ) defined as

Ω1(r, ζ) =
{

(r, ζ)
∣∣r1 ≤ ρ ≤ r, −1 < ζ < +1

}
,

and Ω2(r, ζ) defined as

Ω2(r, ζ) =
{

(r, ζ)
∣∣r ≤ ρ ≤ r2, −1 < ζ < +1

}
,
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depicted in Figure 5.3, with q(r, ζ; ν) replaced by R(r; ν)G
3
2
ν (ζ) yields,

∫ +1

−1

(
R(r; ν)

∂Ψ(r, ζ)

∂r
− dR(r; ν)

d r
Ψ(r, ζ)

)
G

3
2
ν (ζ) d ζ

=

(
R(r1; ν)N(1)(ν|G

3
2
ν ) − dR(r1; ν)

d r
D(1)(ν|G

3
2
ν )

)

+





− 4
π

sin νπ
∫ r

r1
Ψ̃(ρ,−1)R(ρ; ν) dρ

ρ2 , if G
3
2
ν (ζ) = C

3
2
ν (ζ)

−2
∫ r

r1

(
cos νπ Ψ̃(ρ,−1) − Ψ̃(ρ, 1)

)
R(ρ; ν) dρ

ρ2 , if G
3
2
ν (ζ) = D

3
2
ν (ζ)

,

, ν ∈ C, ν 6= −3,−4, . . . , (5.76)

and

∫ +1

−1

(
R(r; ν)

∂Ψ(r, ζ)

∂r
− dR(r; ν)

d r
Ψ(r, ζ)

)
G

3
2
ν (ζ) d ζ

=

(
R(r2; ν)N(2)(ν|G

3
2
ν ) − dR(r2; ν)

d r
D(2)(ν|G

3
2
ν )

)

+





4
π

sin νπ
∫ r2

r
Ψ̃(ρ,−1)R(ρ; ν) dρ

ρ2 , if G
3
2
ν (ζ) = C

3
2
ν (ζ)

2
∫ r2

r

(
cos νπ Ψ̃(ρ,−1) − Ψ̃(ρ, 1)

)
R(ρ; ν) dρ

ρ2 , if G
3
2
ν (ζ) = D

3
2
ν (ζ)

,

, ν ∈ C, ν 6= −3,−4, . . . , (5.77)

where D(j)(ν|G
3
2
ν ) and N(j)(ν|G

3
2
ν ), j = 1, 2 are given by equations (5.68). Note that the

subdomains Ω1 and Ω2 do not include the singularities at r = 0 or r = ∞, and therefore
no restrictions on R(r; ν) in (5.76) or (5.77) have to imposed.
Replacing in equations (5.76) and (5.77) R with (5.59), the following 4 equations valid for
every ν ∈ C, ν 6= −3,−4, . . . , are the result

∫ +1

−1

(
r
∂Ψ(r, ζ)

∂r
− (ν + 2) Ψ(r, ζ)

)
G

3
2
ν (ζ) d ζ

=
(r1

r

)ν+1
(
r1 N

(1)(ν|G
3
2
ν ) − (ν + 2)D(1)(ν|G

3
2
ν )

)

+





− 4
π

sin νπ
∫ r

r1
Ψ̃(ρ,−1)

(
ρ
r

)ν+1 dρ
ρ

, if G
3
2
ν (ζ) = C

3
2
ν (ζ)

−2
∫ r

r1

(
cos νπ Ψ̃(ρ,−1) − Ψ̃(ρ, 1)

)(
ρ
r

)ν+1 dρ
ρ

, if G
3
2
ν (ζ) = D

3
2
ν (ζ)

, (5.78)
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∫ +1

−1

(
r
∂Ψ(r, ζ)

∂r
+ (ν + 1) Ψ(r, ζ)

)
G

3
2
ν (ζ) d ζ

=

(
r

r1

)ν+2 (
r1 N

(1)(ν|G
3
2
ν ) + (ν + 1)D(1)(ν|G

3
2
ν )

)

+





− 4
π

sin νπ
∫ r

r1
Ψ̃(ρ,−1)

(
r
ρ

)ν+2 dρ
ρ
, , if G

3
2
ν (ζ) = C

3
2
ν (ζ)

−2
∫ r

r1

(
cos νπ Ψ̃(ρ,−1) − Ψ̃(ρ, 1)

)(
r
ρ

)ν+2 dρ
ρ

, if G
3
2
ν (ζ) = D

3
2
ν (ζ)

, (5.79)

∫ +1

−1

(
r
∂Ψ(r, ζ)

∂r
− (ν + 2) Ψ(r, ζ)

)
G

3
2
ν (ζ) d ζ

=
(r2

r

)ν+1
(
r2 N

(2)(ν|G
3
2
ν ) − (ν + 2)D(2)(ν|G

3
2
ν )

)

+





4
π

sin νπ
∫ r2

r
Ψ̃(ρ,−1)

(
ρ
r

)ν+1 dρ
ρ

, if G
3
2
ν (ζ) = C

3
2
ν (ζ)

2
∫ r2

r

(
cos νπ Ψ̃(ρ,−1) − Ψ̃(ρ, 1)

)(
ρ
r

)ν+1 dρ
ρ

, if G
3
2
ν (ζ) = D

3
2
ν (ζ)

, (5.80)

and
∫ +1

−1

(
r
∂Ψ(r, ζ)

∂r
+ (ν + 1) Ψ(r, ζ)

)
G

3
2
ν (ζ) d ζ

=

(
r

r2

)ν+2 (
r2 N

(2)(ν|G
3
2
ν ) + (ν + 1)D(2)(ν|G

3
2
ν )

)

+





4
π

sin νπ
∫ r2

r
Ψ̃(ρ,−1)

(
r
ρ

)ν+2 dρ
ρ

, if G
3
2
ν (ζ) = C

3
2
ν (ζ)

2
∫ r2

r

(
cos νπ Ψ̃(ρ,−1) − Ψ̃(ρ, 1)

)(
r
ρ

)ν+2 dρ
ρ

, if G
3
2
ν (ζ) = D

3
2
ν (ζ)

, (5.81)

Subtracting equation (5.78) from (5.79) and (5.80) from (5.81), equations (5.70) and (5.71)
are recovered.
In order to eliminate the unknown function ∂Ψ(r,ζ)

∂r
, subtract equations (5.78) and (5.81)

side-by-side, to find

∫ +1

−1

Ψ(r, ζ) G
3
2
ν (ζ) d ζ =

1

2ν + 3

[(
r

r2

)ν+2 (
r2 N

(2)(ν|G
3
2
ν ) + (ν + 1)D(2)(ν|G

3
2
ν )

)

−
(r1

r

)ν+1
(
r1 N

(1)(ν|G
3
2
ν ) − (ν + 2)D(1)(ν|G

3
2
ν )

)]
+

1

2ν + 3

×





4
π

sin νπRr2
r1

(r; ν)Ψ̃(ρ,−1) , if G
3
2
ν (ζ) = C

3
2
ν (ζ)

2Rr2
r1

(r; ν)

(
cos νπ Ψ̃(ρ,−1) − Ψ̃(ρ, 1)

)
, if G

3
2
ν (ζ) = D

3
2
ν (ζ)

,

, ν ∈ C, ν 6= −3,−4, . . . , (5.82)
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where

R
r2
r1

(r; ν) :=

∫ r

r1

dρ

ρ

(ρ
r

)ν+1

+

∫ r2

r

dρ

ρ

(
r

ρ

)ν+2

,

is an integral operator, which we will refer to as the Radial Integral Operator.
Similarly, subtracting equations (5.79) and (5.80) side-by-side, yields

∫ +1

−1

Ψ(r, ζ) G
3
2
ν (ζ) d ζ =

1

2ν + 3

[(
r

r1

)ν+2 (
r1 N

(1)(ν|G
3
2
ν ) + (ν + 1)D(1)(ν|G

3
2
ν )

)

−
(r2

r

)ν+1
(
r2 N

(2)(ν|G
3
2
ν ) − (ν + 2)D(2)(ν|G

3
2
ν )

)]
− 1

2ν + 3

×





4
π

sin νπR†r2

r1
(r; ν)Ψ̃(ρ,−1) , if G

3
2
ν (ζ) = C

3
2
ν (ζ)

2R†r2

r1
(r; ν)

(
cos νπ Ψ̃(ρ,−1) − Ψ̃(ρ, 1)

)
, , if G

3
2
ν (ζ) = D

3
2
ν (ζ)

,

, ν ∈ C, ν 6= −3,−4, . . . , (5.83)

where

R
†r2

r1
(r; ν) :=

∫ r

r1

dρ

ρ

(
r

ρ

)ν+2

+

∫ r2

r

dρ

ρ

(ρ
r

)ν+1

.

Note that
R

†r2

r1
(r; −ν − 3) = R

r2
r1

(r; ν), ν ∈ C ,

which implies that (5.82a) and (5.83a) differ only by a transformation based on the sym-
metry of the Gegenbauer functions of the first kind and order 3

2 . A similar conclusion does
not hold for the Gegenbauer functions of the second kind and order 3

2 , since there doesn’t
exist a linear relation connecting them 3.
The inversion of (5.82), or (5.83), leads to an integral representation for the stream function
Ψ(r, ζ) in the case of the irrotational Stokes’ flow valid in a spherical shell with inner radius
r1 and outer radius r2. However, in order to arrive at classical representations, i.e. solu-
tions in form of a series expansion, we must take advantage of the orthogonality relation
for the Gegenbauer polynomials. Thus, letting ν = n = 0, 1, 2, . . . in (5.82) yields

∫ +1

−1

Ψ(r, ζ)C
3
2
n (ζ) d ζ =

1

2n+ 3

[(
r

r2

)n+2(
r2 N

(2)
n + (n+ 1)D(2)

n

)

−
(
r1

r

)n+1(
r1 N

(1)
n − (n+ 2)D(1)

n

)]
, (5.84)

where now

D(j)
n =

∫ +1

−1

g
(j)
D (ζ)C

3
2
n (ζ), N(j)

n =

∫ +1

−1

g
(j)
N (ζ)C

3
2
n (ζ) . (5.85)

Proposition 5.6.1 The set of functions Cλ
n(x) form a complete, orthogonal system with

weight

Γ(n+ 1)Γ2(λ) (n+ λ)

21−2λπΓ(n+ 2λ)
(1 − x2)λ− 1

2 , λ > −1

2
(5.86)
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on the interval (−1,+1).
Consider a class of functions of the form

f(x) =
g(x)

(1 − x2)λ− 1
2

(5.87)

expanded in a series of Gegenbauer polynomials, namely

f(x) =

+∞∑

n=0

αnC
λ
n(x) , (5.88)

then in view of (5.87)

g(x) = (1 − x2)λ− 1
2

+∞∑

n=0

αn C
λ
n(x) , (5.89)

where the coefficients αn are evaluated as follows

αn = 22λ−1 Γ(n+ 1)
(
Γ(λ)

)2
(n+ λ)

πΓ(n+ 2λ)

∫ +1

−1

g(x)Cλ
n(x) dx . (5.90)

Thus, the inversion formula for (5.84) implies

Ψ(r, ζ) =
1 − ζ2

2

+∞∑

n=0

1

(n+ 1)(n+ 2)

{(
r

r2

)n+2(
r2 N

(2)
n + (n+ 1)D(2)

n

)

−
(
r1

r

)n+1(
r1 N

(1)
n − (n+ 2)D(1)

n

)}
C

3
2
n (ζ) . (5.91)

The unknown boundary values D
(j)
n or N

(j)
n , j = 1, 2 depending on the given boundary

value problem, are eliminated by the use of equations (5.70) and (5.71) with ν replaced by
n ∈ N. Substituting the resulting formulae into (5.91) the solutions ΨD(r, ζ), and ΨN (r, ζ)
respectively, are obtained as follows

ΨD(r, ζ) =
1 − ζ2

2

+∞∑

n=0

2n+ 3

(n+ 1)(n+ 2)

[
r2

(
r1

r2

)n+2

− r1

(
r2

r1

)n+2 ]−1

×
{(

r−n−1
2 D(1)

n − r−n−1
1 D(2)

n

)
rn+2 −

(
rn+2

2 D(1)
n − rn+2

1 D(2)
n

)
r−n−1

}
C

3
2
n (ζ) (5.92)

ΨN(r, ζ) =
1 − ζ2

2

+∞∑

n=0

2n+ 3

(n+ 1)(n+ 2)

[
1

r2

(
r2

r1

)n+2

− 1

r1

(
r1

r2

)n+2 ]−1

×
{
rn+2

n+ 2

(
r−n−2

1 N(2)
n − r−n−2

2 N(1)
n

)
− r−n−1

n+ 1

(
rn+1

2 N(1)
n − rn+1

1 N(2)
n

)}
C

3
2
n (ζ) (5.93)

As r1 tends to zero, the above relations simplify as

Ψi
D

(r, ζ) =
1 − ζ2

2

+∞∑

n=0

2n+ 3

(n+ 1)(n+ 2)

(
r

r2

)n+2

D(2)
n C

3
2
n (ζ) , (5.94)
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and

Ψi
N

(r, ζ) =
1 − ζ2

2
r2

+∞∑

n=0

2n+ 3

(n+ 1)(n+ 2)2

(
r

r2

)n+2

N(2)
n C

3
2
n (ζ) , (5.95)

describing the irrotational Stokes’ flow of a fluid in the interior of a sphere of radius r2.

Similarly, as r2 → ∞, equations (5.92) and (5.93) yield

Ψe
D

(r, ζ) =
1 − ζ2

2

+∞∑

n=0

2n+ 3

(n+ 1)(n+ 2)

(
r1

r

)n+1

D(1)
n C

3
2
n (ζ) , (5.96)

and

Ψe
N

(r, ζ) = −1 − ζ2

2
r1

+∞∑

n=0

2n+ 3

(n+ 1)2(n+ 2)

(
r1

r

)n+1

N(1)
n C

3
2
n (ζ) , (5.97)

which describe the irrotational flow of a viscous flow in the exterior of a sphere of radius
r1.

After simple manipulations utilizing (5.39) and therefore X̃
(j)
n = 1

n (n−1) X
(j)
n−2, where X

stands for D or N respectively, equations (5.92) - (5.97) recover equations (5.43), (5.46)
and (5.48) - (5.51).

5.7 A Novel Integral Representation

Utilizing the global relation (5.57) in the subdomains Ω̃3 and Ω̃4 defined as

Ω̃3(ζ; ζ+) =
{

(r, ζ)
∣∣∣ r1 ≤ r ≤ r2, ζ ≤ t ≤ ζ+

}
,

Ω̃4(ζ; ζ−) =
{

(r, ζ)
∣∣∣ r1 ≤ r ≤ r2, ζ− ≤ t ≤ ζ

}
,

depicted in Figure 5.4, with q(r, ζ; ν) replaced by R(r; ν) G
3
2
ν (ζ), where G

3
2
ν (ζ) is any solution

of the Gegenbauer equation (5.22) of order λ = 3
2 , we obtain

∫ r2

r1

[
(1 − ζ2)

(
G

3
2
ν (ζ)

∂Ψ(r, ζ)

∂ζ
− dG

3
2
ν (ζ)

dζ
Ψ(r, ζ)

)
+ 2 ζ G

3
2
ν (ζ) Ψ(r, ζ)

]
R(r; ν)

d r

r2

=

∫ +1

ζ

{(
R(r2; ν)

∂Ψ(r2, t)

∂r
− dR(r2; ν)

d r
Ψ(r2, t)

)

−
(
R(r1; ν)

∂Ψ(r1, t)

∂r
− dR(r1; ν)

d r
Ψ(r1, t)

)}
G

3
2
ν (t) dt

+





0 , if G
3
2
ν (ζ) = C

3
2
ν (ζ)

−2
∫ r2

r1
Ψ̃(r,+1)R(r; ν) d r

r2 , if G
3
2
ν (ζ) = D

3
2
ν (ζ),

, ν ∈ C, ν 6= −3,−4, . . . , (5.98)
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Figure 5.4: The subdomains Ω̃3(ζ; ζ+) and Ω̃4(ζ; ζ−) defined as

Ω̃3(ζ; ζ+) =
{

(r, ζ)
∣∣ r1 ≤ r ≤ r2, ζ ≤ t ≤ ζ+

}
and

Ω̃4(ζ; ζ−) =
{

(r, ζ)
∣∣ r1 ≤ r ≤ r2, ζ− ≤ t ≤ ζ

}
. The whole meridian plane is recovered as

lim
ζ+→+1

Ω̃3 = Ω3 and lim
ζ−→−1

Ω̃4 = Ω4.

∫ r2

r1

[
(1 − ζ2)

(
G

3
2
ν (ζ)

∂Ψ(r, ζ)

∂ζ
− dG

3
2
ν (ζ)

dζ
Ψ(r, ζ)

)
+ 2 ζ G

3
2
ν (ζ) Ψ(r, ζ)

]
R(r; ν)

d r

r2

= −
∫ ζ

−1

{(
R(r2; ν)

∂Ψ(r2, t)

∂r
− dR(r2; ν)

d r
Ψ(r2, t)

)

−
(
R(r1; ν)

∂Ψ(r1, t)

∂r
− dR(r1; ν)

d r
Ψ(r1, t)

)}
G

3
2
ν (t) dt

+





− 4
π

sin νπ
∫ r2

r1
Ψ̃(r,−1)R(r; ν) d r

r2 , if G
3
2
ν (ζ) = C

3
2
ν (ζ)

−2 cos νπ
∫ r2

r1
Ψ̃(r,−1)R(r; ν) d r

r2 , if G
3
2
ν (ζ) = D

3
2
ν (ζ),

, ν ∈ C, ν 6= −3,−4, . . . .

(5.99)
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Subtracting equations (5.98a) multiplied by D
3
2
ν (ζ) and (5.99b) multiplied by C

3
2
ν (ζ) yields

(1 − ζ2)

(
C

3
2
ν (ζ)

dD
3
2
ν (ζ)

dζ
−D

3
2
ν (ζ)

dC
3
2
ν (ζ)

dζ

)∫ r2

r1

Ψ(r, ζ)R(r; ν)
d r

r2

=G
3
2
ν (ζ)

{(
R(r2; ν)

∂Ψ(r2, t)

∂r
− dR(r2; ν)

d r
Ψ(r2, t)

)

−
(
R(r1; ν)

∂Ψ(r1, t)

∂r
− dR(r1; ν)

d r
Ψ(r1, t)

)}

+ 2 cos νπ C
3
2
ν (ζ)

∫ r2

r1

Ψ̃(r,−1)R(r; ν)
d r

r2
, ν 6= −3,−4, . . . , (5.100)

where

G
3
2
ν (ζ) := C

3
2
ν (ζ)

∫ ζ

−1

dtD
3
2
ν (t) +D

3
2
ν (ζ)

∫ +1

ζ

dt C
3
2
ν (t), ν 6= −3,−4, . . . , (5.101)

is an integral operator, which we will refer to as the Gegenbauer Integral Operator of order 3
2 .

Note that the integral
∫ ζ

−1
dtD

3
2
ν (t) doesn’t exist. However, the integral

∫ ζ

−1
dt (1−ζ2)D

3
2
ν (t)

converges.
Utilizing the Wronskian relation (3.102)

C
3
2
ν (ζ)

dD
3
2
ν (ζ)

dζ
−D

3
2
ν (ζ)

dC
3
2
ν (ζ)

dζ
=

Γ(ν + 3)

Γ(ν + 1)

1

(1 − ζ2)2
, ν 6= −3,−4, . . . ,

we write equation (5.100) as follows

∫ r2

r1

Ψ(r, ζ)R(r; ν)
d r

r2
= (1 − ζ2)

Γ(ν + 1)

Γ(ν + 3)
G

3
2
ν (ζ)

{(
R(r2; ν)

∂Ψ(r2, t)

∂r
− dR(r2; ν)

d r
Ψ(r2, t)

)

−
(
R(r1; ν)

∂Ψ(r1, t)

∂r
− dR(r1; ν)

d r
Ψ(r1, t)

)}
+ 2(1 − ζ2) cos νπ

Γ(ν + 1)

Γ(ν + 3)
C

3
2
ν (ζ)

×
∫ r2

r1

Ψ̃(r,−1)R(r; ν)
d r

r2
, ν 6= −3,−4, . . . . (5.102)

Remark 5.7.1 Equation (5.102)
[
R(r2; ν)

(
G

3
2
ν (ζ)

∂Ψ(r2, t)

∂r

)
− dR(r2; ν)

d r

(
G

3
2
ν (ζ)Ψ(r2, t)

)]
−
[
R(r1; ν)

(
G

3
2
ν (ζ)

∂Ψ(r1, t)

∂r

)

− dR(r1; ν)

d r

(
G

3
2
ν (ζ)Ψ(r1, t)

)]
=

Γ(ν + 3)

Γ(ν + 1)

1

1 − ζ2

∫ r2

r1

Ψ(r, ζ)R(r; ν)
d r

r2

− 2 cos νπ C
3
2
ν (ζ)

∫ r2

r1

Ψ̃(r,−1)R(r; ν)
d r

r2
, ν 6= −3,−4, . . . , (5.103)
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constitutes the generalized Dirichlet-to-Neumann correspondence for the interior of a spherical

shell with inner radius r1 and outer radius r2. Indeed, evaluating the above relation at ζ = 1
we find

C
3
2
ν (1)

[
R(r2; ν)N(2)(ν|D

3
2
ν ) − dR(r2; ν)

d r
D(2)(ν|D

3
2
ν )

]

− C
3
2
ν (1)

[
R(r1; ν)N(1)(ν|D

3
2
ν ) − dR(r1; ν)

d r
D(1)(ν|D

3
2
ν )

]

=
Γ(ν + 3)

Γ(ν + 1)

∫ r2

r1

(
lim
ζ→1

Ψ(r, ζ)

1 − ζ2

)
R(r; ν)

d r

r2
− 2 cos νπ C

3
2
ν (1)

∫ r2

r1

Ψ̃(r,−1)R(r; ν)
d r

r2
,

(5.104)

where D(j)(ν|D
3
2
ν ),N(j)(ν|D

3
2
ν ), j = 1, 2 are given by (5.68).

Since Ψ(r,±1) = 0, the first term of the right-hand side of (5.104) yields an indetermined

form. To overcome this obstacle, set Ψ(r, ζ) = (1 − ζ2) Ψ̃(r, ζ) and the above relation reads

[
R(r2; ν)N(2)(ν|D

3
2
ν ) − dR(r2; ν)

d r
D(2)(ν|D

3
2
ν )

]

−
[
R(r1; ν)N(1)(ν|D

3
2
ν ) − dR(r1; ν)

d r
D(1)(ν|D

3
2
ν )

]

= 2

∫ r2

r1

(
Ψ̃(r, 1) − cos νπ Ψ̃(r,−1)

)
R(r; ν)

d r

r2
, ν 6= −3,−4, . . . , (5.105)

where the fact that
Γ(ν+3)
Γ(ν+1) = 2C

3
2
ν (1) is used, and (5.67b) is recovered. In order to obtain

the correspondence (5.67a), one must replace q(r, ζ; ν) by R(r; ν)D
3
2
ν (ζ) in the subdomain

Ω̃3 and by R(r; ν)C
3
2
ν (ζ) in the subdomain Ω̃4 .

Introducing R(r; ν) = rν+2 in (5.102) we obtain

∫ r2

r1

Ψ(r, ζ) rν d r = (1 − ζ2)
Γ(ν + 1)

Γ(ν + 3)
G

3
2
ν (ζ)

{
rν+1

2

(
r2 g

(2)
N (t) − (ν + 2) g

(2)
D (t)

)

− rν+1
1

(
r1 g

(1)
N (t) − (ν + 2) g

(1)
D (t)

)}
+ 2(1 − ζ2) cos νπ

Γ(ν + 1)

Γ(ν + 3)
C

3
2
ν (ζ)

×
∫ r2

r1

Ψ̃(r,−1) rν d r, ν 6= −3,−4, . . . , (5.106)
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where else, replacing R(r; ν) in (5.102) by r−ν−1 yields

∫ r2

r1

Ψ(r, ζ) r−ν−3 d r = (1 − ζ2)
Γ(ν + 1)

Γ(ν + 3)
G

3
2
ν (ζ)

{
r−ν−2

2

(
r2 g

(2)
N (t) + (ν + 1) g

(2)
D (t)

)

− r−ν−2
1

(
r1 g

(1)
N (t) + (ν + 1) g

(1)
D (t)

)}
+ 2(1 − ζ2) cos νπ

Γ(ν + 1)

Γ(ν + 3)
C

3
2
ν (ζ)

×
∫ r2

r1

Ψ̃(r,−1) r−ν−3 d r, ν 6= −3,−4, . . . . (5.107)

Equation (5.106) is recognized as the Mellin transform for the function rΨ(r, ζ). The inver-
sion formula then implies

Ψ(r, ζ) =
1 − ζ2

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(r2

r

)ν+1 Γ(ν + 1)

Γ(ν + 3)
G

3
2
ν (ζ)

(
r2 g

(2)
N (t) − (ν + 2) g

(2)
D (t)

)
dν

− 1 − ζ2

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(r1

r

)ν+1 Γ(ν + 1)

Γ(ν + 3)
G

3
2
ν (ζ)

(
r1 g

(1)
N (t) − (ν + 2) g

(1)
D (t)

)
dν

+
1 − ζ2

πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞
r−ν−1 Γ(ν + 1)

Γ(ν + 3)
cos νπ C

3
2
ν (ζ)

[ ∫ r2

r1

Ψ̃(τ,−1) τν dτ
]
dν , (5.108)

where the integral is taken over any open contour Γ , connecting the points Re ν − ı̇R and
Re ν + ı̇R in the complex ν−plane as R tends to infinity. The unknow boundary values,
depending on the problem at hand, are evaluated with the aid of equations (5.106) and
(5.107). Substituting the resulting relations into (5.108) we find

ΨD(r, ζ) =
1 − ζ2

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(r2

r

)ν+1
[

1 −
(
r2

r1

)2ν+3
]−1

2ν + 3

(ν + 1)(ν + 2)

× G
3
2
ν (ζ)

[(
r2

r1

)ν+2

g
(1)
D (t) − g

(2)
D (t)

]
dν

− 1 − ζ2

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(r1

r

)ν+1
[(

r1

r2

)2ν+3

− 1

]−1
2ν + 3

(ν + 1)(ν + 2)

× G
3
2
ν (ζ)

[
g

(1)
D (t) −

(
r1

r2

)ν+2

g
(2)
D (t)

]
dν

+
1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

∫ r2

r1

r−ν−1 Ψ(τ, ζ)τνdτ dν , (5.109)
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if Dirichlet boundary values are prescribed, or

ΨN(r, ζ) = − r2
1 − ζ2

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(r2

r

)ν+1
[

1 −
(
r2

r1

)2ν+3
]−1

2ν + 3

(ν + 1)2(ν + 2)

× G
3
2
ν (ζ)

[(
r2

r1

)ν+1

g
(1)
N (t) − g

(2)
N (t)

]
dν

+ r1
1 − ζ2

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

(r1

r

)ν+1
[(

r1

r2

)2ν+3

− 1

]−1
2ν + 3

(ν + 1)2(ν + 2)

× G
3
2
ν (ζ)

[
g

(1)
N (t) −

(
r1

r2

)ν+1

g
(2)
N (t)

]
dν

+
1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

∫ r2

r1

r−ν−1 Ψ(τ, ζ)τνdτ dν , (5.110)

if Neumann data are available.

Remark 5.7.2 It is straightforward to show that the following equalities hold

∫ Re ν+ı̇∞

Re ν−ı̇∞

(r2

r

)ν+1
[

1 −
(
r2

r1

)2ν+3
]−1

2ν + 3

(ν + 1)(ν + 2)
G

3
2
ν (ζ)

[(
r2

r1

)ν+2

g
(1)
D (t)

− g
(2)
D (t)

]
dν =

∫ Re ν+ı̇∞

Re ν−ı̇∞

(r1

r

)ν+1
[(

r1

r2

)2ν+3

− 1

]−1
2ν + 3

(ν + 1)(ν + 2)
G

3
2
ν (ζ)

[
g

(1)
D (t)

−
(
r1

r2

)ν+2

g
(2)
D (t)

]
dν ,

and

r2

∫ Re ν+ı̇∞

Re ν−ı̇∞

(r2

r

)ν+1
[

1 −
(
r2

r1

)2ν+3
]−1

2ν + 3

(ν + 1)2(ν + 2)
G

3
2
ν (ζ)

[(
r2

r1

)ν+1

g
(1)
N (t)

− g
(2)
N (t)

]
dν = r1

∫ Re ν+ı̇∞

Re ν−ı̇∞

(r1

r

)ν+1
[(

r1

r2

)2ν+3

− 1

]−1
2ν + 3

(ν + 1)2(ν + 2)
G

3
2
ν (ζ)

[
g

(1)
N (t)

−
(
r1

r2

)ν+1

g
(2)
N (t)

]
dν ,

which imply that

Ψ(r, ζ) =
1

2πı̇

∫ Re ν+ı̇∞

Re ν−ı̇∞

∫ r2

r1

r−ν−1 Ψ(τ, ζ)τνdτ dν

and follows from the definition of the Mellin transform.
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Remark 5.7.3 Since
(

τ
r

)ν
is an entire function, the line integral

∫ Re ν+ı̇∞

Re ν−ı̇∞

(τ
r

)ν

dν ,

is independent of the path. Hence, the following equality is valid

∫ Re ν+ı̇∞

Re ν−ı̇∞

(τ
r

)ν

dν =
2ı̇ eRe ν ln τ

r

ln τ − ln r
lim

R→∞
sin
(

ln
τ

r
R
)
, τ 6= r .

If τ > r, then
(

τ
r

)ν
tends to zero as Re ν → −∞. On the other hand, if τ < r, then

(
τ
r

)ν

vanishes as Re ν → +∞. Therefore, depending on if Re ν tends to ±∞, the proper choice of

the contour γ, obtained by a deformation of contour process, secures that

∫

γ

(τ
r

)ν

dν = 0 ,

where the interchange of order of integration is justified by properly choosing Re ν.

The Gegenbauer functions, as ν tends to infinity, behave as (see section 3.9)

C
3
2
ν (cos θ) =

√
ν
(
Θ1(θ) eı̇νθ + Θ1(θ) e−ı̇νθ

)
+ O

(
1
ν

)

D
3
2
ν (cos θ) =

√
ν
(
Θ2(θ) eı̇νθ + Θ2(θ) e−ı̇νθ

)
+ O

(
1
ν

)
}
, Re ν > 0 , (5.111)

C
3
2
−ν−3(cos θ) =

√
ν
(
Θ1(θ) eı̇νθ + Θ1(θ) e−ı̇νθ

)
+ O

(
1
ν

)

D
3
2
−ν−3(cos θ) =

√
ν cot νπ

(
Θ3(θ) eı̇νθ + Θ3(θ) e−ı̇νθ

)
}
, Re ν < 0 , (5.112)

where Θj are complex functions of the variable θ alone, and Θj denotes complex con-
jugation. The fact that cot νπ is bounded enables us to simplify the above asymptotic
expressions as follows

C
3
2
ν (θ) ∼ eı̇νθ + e−ı̇νθ

D
3
2
ν (θ) ∼ eı̇νθ + e−ı̇νθ

}
, ν → ∞ .

This implies, that the Gegenbauer integral operator (5.101) behaves as

G
3
2
ν (ζ) ∼

∫ π

0

dφ
(
eı̇(θ+φ)ν + eı̇(θ−φ)ν + e−ı̇(θ+φ)ν + e−ı̇(θ−φ)ν

)
, φ = arccos t ,

for large values of ν.
Furthermore, the denominators present in (5.109) and (5.110) behave as

[
1 −

(
r2

r1

)2ν+3
]−1

∼





1 ,Re ν < 0

−
(

r1

r2

)2ν+3

,Re ν > 0
, ν → ∞ ,

[(
r1

r2

)2ν+3

− 1

]−1

∼





(
r2

r1

)2ν+3

,Re ν < 0

−1 ,Re ν > 0
, ν → ∞ .
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Figure 5.5: The contours L and R respectively. The deformed contour L begins and ends in

the left complex ν−plane, such that Re ν → −∞ at each end. Similar conclusions are valid

for the contour R. The constants c and d are arbitrarily chosen such that c, d > −1. The

singularities at ν 6= −1,−2, . . . are introduced via the Gegenbauer functions and the

denominators present. Therefore, the initial contours Γ and Γ ′ are taken such that

Re ν > −1, which ensures that all singularities are to the left of the line Re ν = −1.

Analytic investigations of the inversion integral frequently depend on deforming the inver-
sion contour to a more convenient one, therefore, replacing the contour Γ by either the
contour R or L shown in Figure 5.5, depending on the boundness of the kernels, equations
(5.109) and (5.110) read

ΨD(r, ζ)

= −1 − ζ2

2πı̇

∫

L

(r2

r

)ν+1
[

1 −
(
r2

r1

)2ν+3
]−1

2ν + 3

(ν + 1)(ν + 2)
G

3
2
ν (ζ)

[(
r2

r1

)ν+2

g
(1)
D (t) − g

(2)
D (t)

]
dν

− 1 − ζ2

2πı̇

∫

R

(r1

r

)ν+1
[(

r1

r2

)2ν+3

− 1

]−1
2ν + 3

(ν + 1)(ν + 2)
G

3
2
ν (ζ)

[
g

(1)
D (t) −

(
r1

r2

)ν+2

g
(2)
D (t)

]
dν ,

(5.113)

ΨN(r, ζ)

= r2
1 − ζ2

2πı̇

∫

L

(r2

r

)ν+1
[

1 −
(
r2

r1

)2ν+3
]−1

2ν + 3

(ν + 1)2(ν + 2)
G

3
2
ν (ζ)

[(
r2

r1

)ν+1

g
(1)
N (t) − g

(2)
N (t)

]
dν

+ r1
1 − ζ2

2πı̇

∫

R

(r1

r

)ν+1
[(

r1

r2

)2ν+3

− 1

]−1
2ν + 3

(ν + 1)2(ν + 2)
G

3
2
ν (ζ)

[
g

(1)
N (t) −

(
r1

r2

)ν+1

g
(2)
N (t)

]
dν .

(5.114)

The deformed contours begin and end in the corresponding complex ν−plane, such that
Re ν tends to ±∞ at each end (a technique suggested by Talbot [Tal79] as part of a numer-
ical scheme). A comprehensive list of methods of attack regarding techniques producing
numerical answers, can be found in [Coh07].

Integral representations concerning the exterior domain Ωe of the spherical shell S,
defined as

Ωe =

{
(r, ζ)

∣∣∣∣ r ∈ (0, r1] ∪ [r2,∞) ; −1 < ζ < +1

}

are obtained in a similar fashion.
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As r1 tends to zero, the problem degenerates to the simplified case obtaining the stream
function in the interior of a sphere of radius r2. Thus, equations (5.109) and (5.110) rewrite
as

Ψi
D

(r, ζ) =
1 − ζ2

2πı̇

∫

L

(r2

r

)ν+1 2ν + 3

(ν + 1)(ν + 2)

(
G

3
2
ν (ζ) gD(t)

)
dν , (5.115)

for Dirichlet problems, or

Ψi
N

(r, ζ) = −r2
1 − ζ2

2πı̇

∫

L

(r2

r

)ν+1 2ν + 3

(ν + 1)2(ν + 2)

(
G

3
2
ν (ζ) gN (t)

)
dν , (5.116)

for Neumann data.
On the other hand, as r2 tends to infinity, the exterior of a sphere with radius r1 is

obtained and thus, equations (5.109) and (5.110) yield

Ψe
D

(r, ζ) =
1 − ζ2

2πı̇

∫

R

(r1

r

)ν+1 2ν + 3

(ν + 1)(ν + 2)

(
G

3
2
ν (ζ) gD(t)

)
dν , (5.117)

Ψe
N

(r, ζ) = −r1
1 − ζ2

2πı̇

∫

R

(r1

r

)ν+1 2ν + 3

(ν + 1)2(ν + 2)

(
G

3
2
ν (ζ) gN (t)

)
dν . (5.118)

Inverting (5.107), solutions valid in the counter part of the complex ν−plane regarding
(5.108) are obtained, viz

ΨD(r, ζ)

=
1 − ζ2

2πı̇

∫

Γ ′

(
r

r2

)ν+2
[(

r1

r2

)2ν+3

− 1

]−1
2ν + 3

(ν + 1)(ν + 2)
G

3
2
ν (ζ)

[(
r1

r2

)ν+1

g
(1)
D (t) − g

(2)
D (t)

]
dν

− 1 − ζ2

2πı̇

∫

Γ ′

(
r

r1

)ν+2
[

1 −
(
r2

r1

)2ν+3
]−1

2ν + 3

(ν + 1)(ν + 2)
G

3
2
ν (ζ)

[
g

(1)
D (t) −

(
r2

r1

)ν+1

g
(2)
D (t)

]
dν

+
1

2πı̇

∫

Γ ′

∫ r2

r1

rν+2 Ψ(τ, ζ)τ−ν−3dτ dν , (5.119)

if Dirichlet boundary values are prescribed, or

ΨN(r, ζ)

= r2
1 − ζ2

2πı̇

∫

Γ ′

(
r

r2

)ν+2
[(

r1

r2

)2ν+3

− 1

]−1
2ν + 3

(ν + 1)(ν + 2)2
G

3
2
ν (ζ)

[(
r1

r2

)ν+2

g
(1)
N (t)−, g(2)

N (t)

]
dν

− r1
1 − ζ2

2πı̇

∫

Γ ′

(
r

r1

)ν+2
[

1 −
(
r2

r1

)2ν+3
]−1

2ν + 3

(ν + 1)(ν + 2)2
G

3
2
ν (ζ)

[
g

(1)
N (t) −

(
r2

r1

)ν+2

g
(2)
N (t)

]
dν

+
1

2πı̇

∫

Γ ′

∫ r2

r1

rν+2 Ψ(τ, ζ)τ−ν−3dτ dν , (5.120)
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if Neumann data are available, where Γ ′ is any open contour, connecting the points −Re ν−
ı̇R and −Re ν + ı̇R in the complex ν−plane as R tends to infinity.
Following the procedure introduced in this section, relation (5.119) becomes

ΨD(r, ζ)

=
1 − ζ2

2πı̇

∫

R

(
r

r2

)ν+2
[(

r1

r2

)2ν+3

− 1

]−1
2ν + 3

(ν + 1)(ν + 2)
G

3
2
ν (ζ)

[(
r1

r2

)ν+1

g
(1)
D (t) − g

(2)
D (t)

]
dν

+
1 − ζ2

2πı̇

∫

L

(
r

r1

)ν+2
[

1 −
(
r2

r1

)2ν+3
]−1

2ν + 3

(ν + 1)(ν + 2)
G

3
2
ν (ζ)

[
g

(1)
D (t) −

(
r2

r1

)ν+1

g
(2)
D (t)

]
dν

(5.121)

if Dirichlet data are given.
In a similar fashion for Neumann data, (5.120) reads

ΨN(r, ζ)

= r2
1 − ζ2

2πı̇

∫

R

(
r

r2

)ν+2
[(

r1

r2

)2ν+3

− 1

]−1
2ν + 3

(ν + 1)(ν + 2)2
G

3
2
ν (ζ)

[(
r1

r2

)ν+2

g
(1)
N (t) − g

(2)
N (t)

]
dν

+ r1
1 − ζ2

2πı̇

∫

L

(
r

r1

)ν+2
[

1 −
(
r2

r1

)2ν+3
]−1

2ν + 3

(ν + 1)(ν + 2)2
G

3
2
ν (ζ)

[
g

(1)
N (t) −

(
r2

r1

)ν+2

g
(2)
N (t)

]
dν .

(5.122)

Moreover, by a limiting procedure, solutions valid for interior or exterior problems are
retrieved, i.e.

Ψi
D

(r, ζ) =
1 − ζ2

2πı̇

∫

R

(
r

r2

)ν+2
2ν + 3

(ν + 1)(ν + 2)

(
G

3
2
ν (ζ) gD(t)

)
dν , (5.123)

Ψe
D

(r, ζ) =
1 − ζ2

2πı̇

∫

L

(
r

r1

)ν+2
2ν + 3

(ν + 1)(ν + 2)

(
G

3
2
ν (ζ) gD(t)

)
dν , (5.124)

in the case where Dirichlet data are given, or

Ψi
N

(r, ζ) = r2
1 − ζ2

2πı̇

∫

R

(
r

r2

)ν+2
2ν + 3

(ν + 1)(ν + 2)2

(
G

3
2
ν (ζ) gN (t)

)
dν , (5.125)

Ψe
N

(r, ζ) = r1
1 − ζ2

2πı̇

∫

L

(
r

r1

)ν+2
2ν + 3

(ν + 1)(ν + 2)2

(
G

3
2
ν (ζ) gN (t)

)
dν , (5.126)

if Neumann boundary values are available.
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APPENDIX A
How to obtain the solution q(x, y)

A step-by-step guide

Utilizing the definition of the spectral functions ρj(k), equation (2.8) is rewritten as

∂q

∂z
=

1

4π

4∑

j=1

∫

ℓj

eı̇kz
(
G(j)(−ı̇k) + ı̇Ψ(j)(−ı̇k)

)
dk , (A.1)

where the Dirichlet G(j)(−ı̇k) and Neumann Ψ(j)(−ı̇k) transforms are given as

G(j)(−ı̇k) =

∫ L

−L

e−ı̇kz(j)(s) ∂T q
(j)(s) ds, Ψ(j)(−ı̇k) =

∫ L

−L

e−ı̇kz(j)(s) ∂N q
(j)(s) ds . (A.2)

A suitable parametrization for the complex variable z on each side (j) of the square is

z(j)(s) = (−ı̇)j−1 L− (−ı̇)j s , s ∈ [−L,L] .

Replacing the given parametrization into equations (A.2) and bearing in mind that (see
sections 2.3 and 2.4)

∂T q
(j)(s) =

d

ds
f

(j)
D (s) =

d

ds

∑

n

[
A(j)

n sin
(

nπ
L
s
)

+B(j)
n cos

( (
n+ 1

2

)
π
L
s
)]

∂N q
(j)(s) =

∑

n

[
A(j)

n sin
(

nπ
L
s
)

+ B(j)
n cos

( (
n+ 1

2

)
π
L
s
)]

,
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we find

G(j)(−ı̇k) =
k

2
(−ı̇)j+1

(
e(1−ı̇)(−ı̇)jkL − e(1+ı̇)(−ı̇)jkL

)∑

n

(−1)n A(j)
n

(
1

(−ı̇)jk + nπ
L

− 1

(−ı̇)jk − nπ
L

)
− k

2
(−ı̇)j+1

(
e(1−ı̇)(−ı̇)jkL + e(1+ı̇)(−ı̇)jkL

)∑

n

(−1)n B(j)
n

×
(

1

(−ı̇)jk +
(n+ 1

2 )π

L

− 1

(−ı̇)jk − (n+ 1
2 )π

L

)
, (A.3)

where the Fourier coefficients A(j)
n and B(j)

n are given by equations (2.12)-(2.19), as

A
(1)
n = an, A

(2)
n = en, A

(3)
n = cn, A

(4)
n = gn

B
(1)
n = bn, B

(2)
n = fn, B

(3)
n = dn, B

(4)
n = hn

, (A.4)

and

Ψ(j)(−ı̇k) =
1

2

(
e(1−ı̇)(−ı̇)jkL − e(1+ı̇)(−ı̇)jkL

)∑

n

(−1)n A(j)
n

(
1

(−ı̇)jk + nπ
L

− 1

(−ı̇)jk − nπ
L

)

+
1

2

(
e(1−ı̇)(−ı̇)jkL + e(1+ı̇)(−ı̇)jkL

)∑

n

(−1)n B(j)
n

(
1

(−ı̇)jk +
(n+ 1

2 )π

L

− 1

(−ı̇)jk − (n+ 1
2 )π

L

)

(A.5)

where the Fourier coefficients A
(j)
n and B

(j)
n are given by equations (2.28)-(2.35), as

A
(1)
n → (2.28), A

(2)
n → (2.30), A

(3)
n → (2.32), A

(4)
n → (2.34),

B
(1)
n → (2.29), B

(2)
n → (2.31), B

(3)
n → (2.33), B

(4)
n → (2.35)

. (A.6)

Putting everything into (A.1) we obtain

∂q

∂z
=

1

8π

∑

n

(−1)n

4∑

j=1

∫

ℓj

{(
k (−ı̇)j+1 A(j)

n + ı̇A(j)
n

)(
e

(
ı̇z+(1−ı̇)(−ı̇)jL

)
k

− e

(
ı̇z+(1+ı̇)(−ı̇)jL

)
k

)(
1

(−ı̇)jk + nπ
L

− 1

(−ı̇)jk − nπ
L

)
+
(
ı̇B(j)

n − k (−ı̇)j+1 B(j)
n

)

×
(
e

(
ı̇z+(1−ı̇)(−ı̇)jL

)
k + e

(
ı̇z+(1+ı̇)(−ı̇)jL

)
k

)(
1

(−ı̇)jk +
(n+ 1

2 )π

L

− 1

(−ı̇)jk − (n+ 1
2 )π

L

)}
dk .

(A.7)

From this point on, due to the extensiveness of the calculations and the length of the
resulting formulas, the sequence will be presented as an example.

Proposition A.0.1 Let q(x, y) satisfy the Laplace equation in the interior Ω of a square

defined by

Ω =
{

− L ≤ x ≤ L, −L ≤ y ≤ L
}
,
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with Dirichlet boundary values f
(1)
D = sin π

L
s on side 1 and zero on the remaining sides. The

solution by means of separation of variables is then given as

q(x, y) =
1

sinh 2π
sinh

(
π
L

(x+ L)
)

sin π
L
y . (A.8)

Employing eq. (2.36) one finds

∂N q
(1)(s) =

π

L

cosh 2π

sinh 2π
sin π

L
s

∂N q
(2)(s) = − 1

L

∞∑

n=0

(−1)n n

1 + n2
sin
(

nπ
L
s
)

+
1

L

∞∑

n=0

(−1)n

(
n+ 1

2

)

1 +
(
n+ 1

2

)2 cos
( (
n+ 1

2

)
π
L
s
)

∂N q
(3)(s) =

π

L

1

sinh 2π
sin π

L
s

∂N q
(4)(s) = −∂N q

(2)(−s) .
From the definitions of the Dirichlet and Neumann transforms of the boundary data, we
obtain

G(1)(k) =

∫ L

−L

eks ∂T q
(1)(s)d s =

∫ L

−L

eks d
(
sin π

L
s
)

= − π

2L

(
ekL − e−kL

) ( 1

k + ı̇ π
L

+
1

k − ı̇ π
L

)

Ψ(1)(k) = − π

2ı̇L

cosh 2π

sinh 2π

(
ekL − e−kL

) ( 1

k + ı̇ π
L

− 1

k − ı̇ π
L

)
,

Ψ(2)(−ı̇ k) = − π

2ı̇L

1

k − ı̇ π
L

[
e−ı̇kL

(
1 − cosh 2π

sinh 2π

)
+

eı̇kL

sinh 2π

]

+
π

2ı̇L

1

k + ı̇ π
L

[
eı̇kL

sinh 2π
− e−ı̇kL

(
cosh 2π

sinh 2π
+ 1

)]
,

Ψ(3)(−k) =
π

2ı̇L

ekL − e−kL

sinh 2π

(
1

k + ı̇ π
L

− 1

k − ı̇ π
L

)
,

Ψ(4)(ı̇ k) = − π

2ı̇ L

1

k + ı̇ π
L

[
eı̇kL

sinh 2π
− e−ı̇kL

(
cosh 2π

sinh 2π
+ 1

)]

+
π

2ı̇ L

1

k − ı̇ π
L

[
eı̇kL

sinh 2π
+ e−ı̇kL

(
1 − cosh 2π

sinh 2π

)]
,

which substituted into eq. (A.1) yields

4π
∂q

∂z
=

∫ −ı̇∞

0

e(ı̇ z−ı̇ L)k
(
G(1)(k) + ı̇Ψ(1)(k)

)
dk + ı̇

∫ ∞

0

e(ı̇ z−L)k Ψ(2)(k)dk

+ ı̇

∫ ı̇∞

0

e(ı̇ z+ı̇ L)k Ψ(3)(k)dk + ı̇

∫ −∞

0

e(ı̇ z+L)k Ψ(4)(k)dk ⇔
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8L
∂q

∂z
= −

(
cosh 2π

sinh 2π
+ 1

)
I1 −

(
1 − cosh 2π

sinh 2π

)
I2 − 1

sinh 2π
I3

and Ik, k = 1, 2, 3 the following integrals to be evaluated

I1 =

∫ −ı̇∞

0

e(ı̇z+L−ı̇L)k

k + ı̇ π
L

dk −
∫ −∞

0

e(ı̇z+L−ı̇L)k

k + ı̇ π
L

dk

−
∫ −ı̇∞

0

e(ı̇z−L−ı̇L)k

k + ı̇ π
L

dk +

∫ ∞

0

e(ı̇z−L−ı̇L)k

k + ı̇ π
L

dk ,

I2 =

∫ −ı̇∞

0

e(ı̇z−ı̇L+L)k

k − ı̇ π
L

dk −
∫ −∞

0

e(ı̇z−ı̇L+L)k

k − ı̇ π
L

dk

−
∫ −ı̇∞

0

e(ı̇z−ı̇L−L)k

k − ı̇ π
L

dk +

∫ ∞

0

e(ı̇z−ı̇L−L)k

k − ı̇ π
L

dk ,

I3 =

∫ ∞

0

e(ı̇z−L+ı̇L)k

k − ı̇ π
L

dk −
∫ ı̇∞

0

e(ı̇z−L+ı̇L)k

k − ı̇ π
L

dk

−
∫ ∞

0

e(ı̇z−L+ı̇L)k

k + ı̇ π
L

dk +

∫ ı̇∞

0

e(ı̇z+ı̇L−L)k

k + ı̇ π
L

dk

+

∫ ı̇∞

0

e(ı̇z+ı̇L+L)k

k − ı̇ π
L

dk −
∫ −∞

0

e(ı̇z+ı̇L+L)k

k − ı̇ π
L

dk

−
∫ ı̇∞

0

e(ı̇z+ı̇L+L)k

k + ı̇ π
L

dk +

∫ −∞

0

e(ı̇z+ı̇L+L)k

k + ı̇ π
L

dk .

Grouping the above integrals and applying Cauchy’s theorem combined with the calculus
of residues, it is straightforward to show that

I1 = 2ı̇π e−π e
π
L

z

I2 = 0

I3 = −2ı̇π e−π e− π
L

z ,

and therefore

∂z q(z) = ı̇
π

4L

e−π

sinh 2π

(
e− π

L
z − e2π e

π
L

z
)
. (A.9)

Integrating the above expression yields

q(z) =
1

2 sinh 2π
sinh

(
π
L

(x+ L)
)

sin π
L
y − ı̇

1

2 sinh 2π
cosh

(
π
L

(x+ L)
)

cos π
L
y (A.10)

Applying, at last, the reality condition q(x, y) = 2Re q(z), equation (A.8) is recovered.

Remark A.0.4 Note, that the imaginary part of (A.10) is also a eigenfunction of the Laplacian

operator.



APPENDIX B
Evaluation of the limit

(1 − x2) d
dx Qν(x)

as x tends to −1+

The Legendre functions of the second kind admit the series expansion [Leb72, p.179]

Qν(x) =
Γ( ν

2 + 1)
√
π cos πν

2

Γ( ν+1
2 )

xF

(
1 − ν

2
,
ν + 2

2
,

3

2
;x2

)

− Γ( ν+1
2 )

√
π sin πν

2

2Γ( ν+2
2 )

F

(
ν + 1

2
,−ν

2
,

1

2
;x2

)
, (B.1)

valid in the interval −1 < x < +1, for every complex ν 6= −1,−2, . . . .
Differentiating the above expression with respect to the argument and using the chain rule

d

dx
= 2x

d

dx2
,

we arrive at

d

dx
Qν(x) =

Γ( ν
2 + 1)

√
π cos πν

2

Γ( ν+1
2 )

F

(
1 − ν

2
,
ν + 2

2
,

3

2
;x2

)

+
Γ( ν

2 + 1)
√
π cos πν

2

Γ( ν+1
2 )

(1 − ν)(ν + 2)

3
x2 F

(
3 − ν

2
,
ν + 4

2
,

5

2
;x2

)

+
Γ( ν+1

2 )
√
π sin πν

2

Γ( ν+2
2 )

ν(ν + 1)

2
xF

(
ν + 3

2
,

2 − ν

2
,

3

2
;x2

)
, ν 6= −1,−2, . . . ,

(B.2)

where the property

d

dx
F (α, β, γ;x) =

αβ

γ
F (α+ 1, β + 1, γ + 1;x) (B.3)
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has been used. Employing the formula

F (α, β, γ; z) = (1 − z)γ−α−β F (γ − α, γ − β, γ; z) , (B.4)

valid in the domain
| arg (1 − z) |< π , (B.5)

on the last two terms of the right-hand side of (B.2), we obtain

F

(
3 − ν

2
,
ν + 4

2
,

5

2
;x2

)
=

1

1 − x2
F

(
2 + ν

2
,

1 − ν

2
,

5

2
;x2

)
(B.6)

F

(
ν + 3

2
,

2 − ν

2
,

3

2
;x2

)
=

1

1 − x2
F

(
−ν

2
,

1 + ν

2
,

3

2
;x2

)
. (B.7)

In both cases (B.6) and (B.7) we notice that

Re(γ − α− β) > 0.

Furthermore, note that condition (B.5) excludes the ray [1,+∞) from the complex ν−plane.
Eq. (B.2), multiplied by 1 − x2, then rewrites

(1 − x2)
d

dx
Qν(x) =

Γ( ν
2 + 1)

√
π cos πν

2

Γ( ν+1
2 )

(1 − x2)F

(
1 − ν

2
,
ν + 2

2
,

3

2
;x2

)

+
Γ( ν

2 + 1)
√
π cos πν

2

Γ( ν+1
2 )

(1 − ν)(ν + 2)

3
x2 F

(
2 + ν

2
,

1 − ν

2
,

5

2
;x2

)

+
Γ( ν+1

2 )
√
π sin πν

2

Γ( ν+2
2 )

ν(ν + 1)

2
xF

(
−ν

2
,

1 + ν

2
,

3

2
;x2

)
,

− 1 < x < +1 , ν 6= −1,−2, . . . .
(B.8)

As x tends to −1+, and bearing in mind that

lim
x→−1+

F
(
α, β, γ;x2

)
=

Γ(γ) Γ(γ − α− β)

Γ(γ − α) Γ(γ − β)
, Re(γ − α− β) > 0, (B.9)

equation (B.8) deduces to

lim
x→−1+

(1 − x2)
d

dx
Qν(x) =

Γ( ν
2 + 1)

√
π cos πν

2

Γ( ν+1
2 )

lim
x→−1+

(1 − x2)F

(
1 − ν

2
,
ν + 2

2
,

3

2
;x2

)

+
Γ( ν

2 + 1)
√
π cos πν

2

Γ( ν+1
2 )

(1 − ν)(ν + 2)

3

Γ( 5
2 ) Γ(1)

Γ( 3−ν
2 ) Γ( ν+4

2 )

− Γ( ν+1
2 )

√
π sin πν

2

Γ( ν+2
2 )

ν(ν + 1)

2

Γ( 3
2 ) Γ(1)

Γ( 3+ν
2 ) Γ( 2−ν

2 )
,

− 1 < x < +1 , ν 6= −1,−2, . . . .
(B.10)
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The above relation simplifies further, using the identities

Γ(1 + ν) = ν Γ(ν),

Γ(1 + ν) Γ(1 − ν) =
πν

sin πν
,

as well as the well known values

Γ(1) = 1,

Γ

(
1

2

)
=

√
π .

Thus, we find that

lim
x→−1+

(1 − x2)
d

dx
Qν(x) =

Γ( ν
2 + 1)

√
π cos νπ

2

Γ( ν+1
2 )

lim
x→−1+

(1 − x2)

× F

(
1 − ν

2
,
ν + 2

2
,

3

2
;x2

)
+ cosπν, −1 < x < +1 , ν 6= −1,−2, . . . . (B.11)

Next we evaluate the limit

lim
x→−1+

(1 − x2)F

(
1 − ν

2
,
ν + 2

2
,

3

2
;x2

)
,

considering first the hypergeometric function F
(
− ν+1

2 , ν
2 ,

1
2 ;x2

)
.

Differentiating the hypergeometric function with respect to the argument, we immediately
obtain the relation

d

d(x2)
F

(
−ν + 1

2
,
ν

2
,

1

2
;x2

)
= −ν (ν + 1)

2
F

(
1 − ν

2
,
ν + 2

2
,

3

2
;x2

)
. (B.12)

Integrating over the interval [0, x2] the above expression we obtain

F

(
−ν + 1

2
,
ν

2
,

1

2
;x2

)
= 1 − ν (ν + 1)

2

∫ x2

0

F

(
1 − ν

2
,
ν + 2

2
,

3

2
;x2

)
d(x2) . (B.13)

As x tends to −1+ the left-hand side of (B.13) remains bounded and so must the right-
hand side. This implies that F

(
1−ν

2 , ν+2
2 , 3

2 ;x2
)

as x tends to −1+, enjoys the asymptotic
behavior

F

(
1 − ν

2
,
ν + 2

2
,

3

2
;x2

)
∼ 1

(1 − x2)p
, 0 < p < 1 , (B.14)

and

lim
x→−1+

(1 − x2)F

(
1 − ν

2
,
ν + 2

2
,

3

2
;x2

)
= 0.

Putting everything together we obtain

lim
x→−1+

(1 − x2)
d

dx
Qν(x) = cosπν, ν 6= −1,−2, . . . .
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Remark B.0.5 Following a similar procedure, it can be shown that

lim
x→+1−

(1 − x2)
d

dx
Qν(x) = 1, ν 6= −1,−2, . . . ,

and

lim
x→−1+

(1 − x2)
d

dx
Pν(x) =

2

π
sin πν .



APPENDIX C
Evaluation of certain Integrals

C.1 The integral
∫ νR+ı̇∞

νR−ı̇∞ eαν F (ν) dν

Consider the integral ∮

C
eα ν F (ν) dν, α ∈ R ,

where F (ν) is a rational function with only poles located on the negative real axis and α is
a real parameter.
Since F (ν) is a rational function, we have

F (ν) =
an ν

n + . . .+ a1 ν + a0

bm νm + . . .+ b1 ν + b0
=
an

bm

1

νm−n

1 + . . .+ a0

an νn

1 + . . .+ b0

bm νm

, (C.1)

and therefore

|F (ν)| =

∣∣∣∣
an

bm

∣∣∣∣
1

|ν|m−n

∣∣∣∣∣
1 + . . .+ a0

an νn

1 + . . .+ b0

bm νm

∣∣∣∣∣ ,

from which

|F (ν)| ≤ M

|ν|m−n
, (C.2)

for all sufficiently large |ν|, where M is a positive constant. If a0 = 0 or b0 = 0 (or both),
(C.1) has to be modified.
In the sequence, the case where m = n is examined (for m− n ≥ 2 see [Mar85]). If m = n,

then from (C.2) obviously
|F (ν)| ≤ M .

Integrating over a rectangle as shown on Fig. C.1, taking ǫ and c sufficiently large, the
integral rewrites

∮

C
eα ν F (ν) dν =

(∫ νR+ı̇c

νR−ı̇c

+

∫

P1∪P2

+

∫

ℓ

+

∫

P3∪P4

)
eα ν F (ν) dν , (C.3)
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where ℓ is a contour in the left complex ν−plane avoiding all singularities. If ℓ is chosen
in such a way, the integral (C.3) equals zero, since no singularities are encircled by the
contour C.

Figure C.1: The closed contour C appropriate in the case where α > 0.

Thus,

I(c) =

∣∣∣∣∣

(∫

P1

+

∫

P2

+

∫

P3

+

∫

P4

)
eα ν F (ν) dν

∣∣∣∣∣

≤
∫

P1

eα x |F (ν)| dx+

∫

P2

e−α c |F (ν)| dy +

∫

P3

e−α c |F (ν)| dy +

∫

P4

eα x |F (ν)| dx

≤ M 2e−α c (ǫ− c) .

Letting c → ∞, implies I → 0 if α > 0, and, furthermore, ℓ → L.
From (C.3) it follows then, that (schematically)

∫ νR+ı̇∞

νR−ı̇∞
= −

∫

L
→ 0 ,

which comes from the fact that the integrand is analytic and bounded, due to the presence
of the exponential eα ν , α > 0, in the left complex ν−plane.

C.2 The integral
∫ νR+ı̇∞

νR−ı̇∞ eα ν cos νπ Pν(x) dν

Consider next the integral
∮

C
eα ν cos νπ Pν(x) dν, α ∈ R .
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Remark C.2.1 The Legendre functions of the first kind are defined as

Pν(x) = F
(
−ν, ν + 1, 1; 1−x

2

)

=

∞∑

n=0

(−ν)n (ν + 1)n

(1)n

(
1 − x

2

)n

=

∞∑

n=0

(−1)n Γ (ν + n+ 1)

n! Γ (ν − n+ 1)

(
1 − x

2

)n

,

from which it is obvious that Pν(x) has poles at ν + n = −1,−2 . . . .

Remark C.2.2 The Legendre functions of the first kind for large values of ν behave as

Pν(x) ∼ 1√
ν

(
A(θ) eı̇θν +B(θ) e−ı̇θν

)
, x = cos θ ,

where A(θ) and B(θ) the complex functions of the variable θ alone.

From the above asymptotic expansion it can be seen that the dominant factors are the
exponentials, i.e.

1√
ν

(
A(θ) eı̇θν +B(θ) e−ı̇θν

)
∼
{
eı̇θν , Im ν → −∞
e−ı̇θν , Im ν → +∞ . (C.4)

Integrating over a rectangle as shown on Fig. C.1, taking ǫ and c sufficiently large, the
integral rewrites

∮

C
eα ν cos νπ Pν(x) dν =

(∫ νR+ı̇c

νR−ı̇c

+

∫

P1∪P2

+

∫

ℓ

+

∫

P3∪P4

)
eα ν cos νπ Pν(x) dν , (C.5)

which equals zero since no singularities are encircled by the contour C.
Evaluating the above integrals one finds

I =

∣∣∣∣∣

(∫

P1

+

∫

P2

+

∫

P3

+

∫

P4

)
eα ν cos νπ Pν(x) dν

∣∣∣∣∣

≤ 2e−α c

[
− 1

π + θ
e−(π+θ)ǫ − 1

π − θ
e−(π+θ)ǫ +

1

π − θ
e(π−θ)ǫ +

1

π + θ
e(π+θ)ǫ

]

+ 2e−α c

[
1

π + θ
e−(π+θ) c +

1

π − θ
e−(π+θ) c − 1

π − θ
e(π−θ) c − 1

π + θ
e(π+θ) c

]
.

As c tends to infinity, we see that I → 0, if α ≥ 2π, emanating from the fact that, since
0 < θ < π, 0 < π − θ < π and π < π + θ < 2π. Therefore, we obtain (schematically)

∫ νR+ı̇∞

νR−ı̇∞
= −

∫

L
→ 0 .

Similar conclusions hold for a contour C closed in the right complex ν−plane, if α ≤ −2π.
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C.3 The integral
∫ νR+ı̇∞

νR−ı̇∞ eα ν F (ν)Pν(ζ) gX(t) dν

Consider the integral ∮

C
eα ν F (ν)Pν(ζ) gX(t) dν ,

where we defined the Legendre integral operator Pν(ζ) (section 4.6) as

Pν(ζ) ≡ Pν(ζ)

∫ ζ

−1

dtQν(t) +Qν(ζ)

∫ 1

ζ

dt Pν(t) .

and F (ν) is replaced with 2ν + 1 if X = D or with 2ν+1
ν+1 in the case where X = N.

By properly choosing νR, the interchange of the integrals is justified, and therefore

∫ νR+ı̇∞

νR−ı̇∞
eα ν F (ν)Pν(ζ) gX(t) dν =

∫ ζ

−1

[∫ νR+ı̇∞

νR−ı̇∞
eα ν F (ν)Pν(ζ)Qν(t)

]
gX(t) dt

+

∫ 1

ζ

[∫ νR+ı̇∞

νR−ı̇∞
eα ν F (ν)Qν(ζ)Pν(t)

]
gX(t) dt

Remark C.3.1 The Legendre functions of the second kind for large values of ν behave as

Qν(x) ∼ 1√
ν

(
C(θ) eı̇θν +D(θ) e−ı̇θν

)
, x = cos θ ,

for every Reν > 0, and

Qν(x) ∼ cot νπ√
ν

(
C(θ) eı̇θν +D(θ) e−ı̇θν

)
, x = cos θ ,

for every Reν < 0, where C(θ) and D(θ) complex functions of the variable θ alone.

Utilizing eq. (C.4) together with the fact that cot νπ remains bounded as ν tends to infinity,
gives

Pν(cos θ) ∼ Pν(θ) ∼
∫ π

0

dφ
(
eı̇(θ+φ)ν + eı̇(θ−φ)ν + e−ı̇(θ+φ)ν + e−ı̇(θ−φ)ν

)
,

and the following bounds are valid (see Fig. C.2)

0 < θ + φ < 2π, −π < θ − φ < π . (C.6)

Letting ν = x+ ı̇ y it is easy shown that

∣∣∣∣∣e
α ν
(
eı̇(θ+φ)ν + eı̇(θ−φ)ν + e−ı̇(θ+φ)ν + e−ı̇(θ−φ)ν

) ∣∣∣∣∣

≤ eα x−(θ+φ)y + eα x−(θ−φ)y + eα x+(θ−φ)y + eα x+(θ+φ)y
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Figure C.2: (a) t−plane and (b) φ−plane

and therefore, following the procedure introduced earlier, viz. integrating over a rectangle
as shown on Fig. C.1, we obtain

I =

∣∣∣∣∣

(∫

P1

+

∫

P2

+

∫

P3

+

∫

P4

)
eα ν F (ν)Pν(ζ) gX(t) dν

∣∣∣∣∣

≤ 2e−α c

[
− 1

θ + φ
e−(θ+φ)ǫ − 1

θ − φ
e−(θ−φ)ǫ +

1

θ − φ
e(θ−φ)ǫ +

1

θ + φ
e(θ+φ)ǫ

]

+ 2e−α c

[
1

θ + φ
e−(θ+φ)c +

1

θ − φ
e−(θ−φ)c − 1

θ − φ
e(θ−φ)c − 1

θ + φ
e(θ+φ)c

]
.

As c tends to infinity, I → 0, if α ≥ 2π, due to (C.6).
Hence, ∫ νR+ı̇∞

νR−ı̇∞
eα ν F (ν)Pν(ζ) gX(t) dν = −

∫

L
eα ν F (ν)Pν(ζ) gX(t) dν .

Since the Gegenbauer functions of order 3
2 exhibit similar behavior as the Legendre func-

tions, the same conclusions hold.





APPENDIX D
Compatibility Condition

Let Ψ(r, ζ) satisfy the Stokes operator for irrotanional flow, namely E2 Ψ(r, ζ) = 0. Inte-
grating over a volume V, we find

∫

V

E2 Ψ(r) du(r) = 0 . (D.1)

The operator E2 is closely related to the Laplacian operator ∆, i.e.

E2 = ∆− 2

r

(
∂

∂r
− ζ

r

∂

∂ζ

)
. (D.2)

Combining (D.1) with (D.2) one obtains

∫

V

∆Ψ(r) du(r) = 2

∫

V

(
1

r

∂Ψ(r)

∂r
− ζ

r2

∂Ψ(r)

∂ζ

)
du(r) .

Applying the divergence theorem, the latter relation simplifies as

∫

∂V

∂Ψ(r)

∂r
ds(r) = 2

∫

V

r
∂Ψ(r)

∂r
dr dζ dφ− 2

∫

V

ζ
∂Ψ(r)

∂ζ
dr dζ dφ . (D.3)

The domain in question is a spherical shell, hence separable, and thus the above equation
yields, after integrating by parts once and bearing in mind that the stream function has to
vanish along the axis of revolution, i.e. Z(±1) = 0

∫

∂V

∂Ψ(r)

∂r
dS(r) = 4π

(
r R(r)

)∣∣∣
r

∫ +1

−1

Z(ζ) dζ . (D.4)
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Distinguish three cases, namely (i) r ≤ r1, (ii) r1 ≤ r ≤ r2 and (iii) r ≥ r2.

(i) In the first case where r ≤ r1 (D.4) becomes

∫

∂V(r1)

gN(r) ds(r) = 4π r1 R(r1)

∫ +1

−1

Z(ζ)dζ . (D.5)

The only constraints on Z(ζ) are that it has to vanish as ζ → ±1∓ and to satisfy the ODE

(1 − ζ2)Z ′′(ζ) + αZ(ζ) = 0, α ∈ C.

Choosing Z(ζ) = C
− 1

2
n (ζ), the constraints are satisfied if n ≥ 2 and α = n(n− 1). Further-

more, the following result is valid [HB86]

∫ +1

−1

C
− 1

2
n (ζ)dζ =





2, n = 0

0, n = 1
2
3 , n = 2

0, n > 2

.

Finally

∫

∂V(r1)

gN(r) ds(r) =

{
8
3π r

3
1, n = 2

0, n > 2
(D.6)

where we used the fact that in the interval r ∈ (0, r1] a solution in the r−direction bounded
at r = 0 is R(r) = rn.

(ii) When r1 ≤ r ≤ r2, we find

∫

∂V(r1)∪∂V(r2)

2∑

j=1

g
(j)
N (r) ds(r) =

{
8
3π
(
r3

2 − r3
1

)
, n = 2

0, n > 2
, (D.7)

wherelse, if (iii) r ≥ r2, (D.4) becomes

∫

∂V(r2)

gN(r) dS(r) =

{
− 8

3π, n = 2

0, n > 2
(D.8)

where we used the fact that R(r) must remain finite as r tends to infinity.



APPENDIX E
Spherical Coordinates (r, ζ, φ).

Unit vectors and derivatives

The Cartesian coordinates (x, y, z) are related to the spherical coordinates (r, ζ, φ) by

x = r
√

1 − ζ2 cosφ

y = r
√

1 − ζ2 sinφ

z = r ζ ,

and thus, the scale factors are

hr = 1

hζ =
r√

1 − ζ2

hφ = r
√

1 − ζ2 .

The area and the volume element are then given as

dA = r2 dζ dφ

dV = r2 dr dζ dφ ,

respectively.
The unit vectors in spherical coordinates (r, ζ, φ) are related to the Cartesian basis (̂i, ĵ, k̂)
by

r̂ =
√

1 − ζ2 cosφ î +
√

1 − ζ2 sinφ ĵ + ζ k̂

ζ̂ = −ζ cosφ î − ζ sinφ ĵ +
√

1 − ζ2 k̂

φ̂ = − sinφ î + cosφ ĵ .
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On the other hand, the Cartesian unit vectors (̂i, ĵ, k̂) in terms of (r̂, ζ̂, φ̂) are given below

î =
√

1 − ζ2 cosφ r̂ − ζ cosφ ζ̂ − sinφ φ̂

ĵ =
√

1 − ζ2 sinφ r̂ − ζ sinφ ζ̂ + cosφ φ̂

k̂ = ζ r̂ +
√

1 − ζ2 ζ̂ .

The derivatives of the unit vectors are

∂r̂

∂r
= 0

∂r̂

∂ζ
=

1√
1 − ζ2

ζ̂

∂r̂

∂φ
=
√

1 − ζ2 φ̂

∂ζ̂

∂r
= 0

∂ζ̂

∂ζ
= − 1√

1 − ζ2
r̂

∂ζ̂

∂φ
= − ζ2

√
1 − ζ2

r̂ − ζ ζ̂ − ζ φ̂

∂φ̂

∂r
= 0

∂φ̂

∂ζ
= 0

∂φ̂

∂φ
= −

√
1 − ζ2 r̂ + ζ ζ̂ .
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