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Prologue

Many of the greatest, of the most important, aspects in science and mathematics were
developed within the framework of physical science. These advances have been based on
formulating the underlying mathematical equations for the process in question. Almost all
physical, chemical and biological systems or processes obey mathematical laws that can be
formulated by differential equations. This striking fact was first discovered by Isaac Newton
(1642-1727) when he formulated the laws of mechanics and applied them to describe the
motion of the planets.

Scientist, have extended over the centuries these type of connections to include a broad
diversity of areas of science and technology, from which a field has emerged called math-
ematical modeling. A mathematical model, consisting of physical "reality” expressed in
mathematical terms, is a partial differential equation, or more likely, a system of partial
differential equations, whose solution describes the behavior of the physical system in view.

Partial differential equations were not consciously created as a subject, but emerged ap-
proximately in the beginning of the 18th century as ordinary differential equations "failed"
to describe the physical principles studied. Partial differential equations are categorized
into linear and nonlinear and the significance of the partition cannot be overstated. Linear
equations enjoy an algebraic structure to their solution sets, i.e. their solutions super-
impose. Nonlinear equations do not share this property. Nonlinear equations are harder
to solve and their solutions are more difficult to analyze. There are in fact only a lim-
ited number of methods available to solve partial differential equations analytically without
introducing approximate or numerical techniques.

Perhaps one of the oldest and most widely used technique for the solution of the partial
differential equations of mathematical physics is the method of spectral decomposition,
namely separation of variables. Introduced by d’ Alembert, Daniel Bernoulli and Euler in
the middle of the eighteenth century (for an exciting historical walkthrough see [KIi90]) it
remains a method of great value today. Here, the unknown function is separated into a
product of functions (multiplicatively separable) which depend solely on one of the variables.
A set of such solutions is obtained which, due to the superposition principle, can be
summed up to give a "general solution". The boundary conditions are applied to this
solution and these restrict the summed functions to a subset, yielding the coefficients of
the series. This method, in the form of additive separable solutions can also be applied to
some nonlinear first-order equations. Moreover, a generalization of separation of variables
exist [PZ03J], i.e. obtain a solution in the general form

u(wy, x2) = Zdﬁz‘(ﬂh) Vi(z2) ,
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in order to solve PDE’s with quadratic or power nonlinearities, viz

m

ij(l"l)gj(@) H[u(xl,@)] =0

Jj=1 J

where [] j [u] are differential forms of the products of nonnegative integer powers of the
function v and its partial derivatives. It should be noted that often exact generalized
separable solutions cannot be obtained by other well-known methods.

Another powerful methodology for solving PDE’s are integral transforms. Integral trans-
forms, in which the partial derivative are reduced to algebraic terms and ordinary deriva-
tives, can be traced back to the pioneering work of Pierre Simon Laplace [Lap20] on prob-
ability theory in the late eighteenth century and of Jean Baptiste Joseph Fourier [Fou22|
in his groundbreaking study La Théorie analytique de la Chaleur, published in 1822. The
fundamental idea is to represent a function f(x) in terms of a transform 7 (k), using an
integral transform pair

5 (k) = / K (k%) £ (x) dx M
fx) = / K'(x;K) 7 (k) dk. @

A function 7 (x) defined in terms of a function 7 (k) by means of an integral relation (1),
is said to be the integral transform of the function 7 (k) by the kernel K (k;x). The ap-
plication of the transform constitutes the transformed problem solvable and the original
function space can be recovered by applying the inverse transform (2). Although Fourier
is celebrated for his work on the conduction of heat, the mathematical methods involved,
particularly trigonometric series, are very important and useful. He created a coherent
mathematical method by which the different components of an equation and its solution
in series were identified with the different aspects of the physical solution being analyzed.
It is no exaggeration to say that the scientific achievements of Joseph Fourier provided
the fundamental basis for modern developments of the theory and applications of partial
differential equations.

Perhaps, the most important of partial differential equations in applied mathematics
and mathematical physics is the one associated with the name of Pierre-Simon Laplace
(1749-1827)(see the classic resource on the history of Mathematics [Bal60]). This equation
was first discovered by Laplace while he threw himself into extensive research for seventeen
years (1771-1787). Laplace developed the idea of the potential -a name first given by
Green in 1828, appropriated from Lagrange who had used it in his memoirs of 1773,
1777 and 1780, a concept which is invaluable in a wide range, such as electromagnetism,
hydrodynamics, etc.

Laplace’s equation, which is time independent, arises in the study of a plethora of
physical phenomena, including electrostatic or gravitational potential, the velocity potential
of an incompressible fluid flow and the displacement field of a two- or three- dimensional
elastic membrane. The relation with the physical world, however, dictates that certain
conditions on the boundary of the region in which Laplace equation is to be solved, must
be satisfied. The problem of finding solutions that takes on the given boundary values
is known as the Dirichlet boundary-value problem, after Peter Gustav Lejeune Dirichlet



(1805-1859). If values of the normal derivative are prescribed on the boundary, the problem
is known as Neumann boundary-value problem, in honor of Karl Gottfried Neumann (1832-
1925).

Despite the efforts by many, great mathematicians including Adrien-Marie Legendre
(1752-1833), Carl Friedrich Gauss (1777-1855), Simeon-Denis Poison (1781-1840), very
little was known about the general properties of the solutions of Laplace’s equation until
1828, when George Green (1793-1841) and Mikhail Ostrogradsky (1801-1861) indepen-
dently investigated properties of a class of solutions know as harmonic functions.

In 1836-1837, Jasques Charles Francois Sturm (1803-1855) and Joseph Liouville
(1809-1882) published a series of papers on second-order linear differential equations,
originated from the study of a class of boundary-value problems. The influence of their
work was such that this subject became known as Sturm-Liouville theory. This theory is
a natural generalization of the theory of Fourier and extends the scope of the method of
separation of variables.

Through the years, tremendous progress has been made on the general theory of ordi-
nary and partial differential equations (for an excellent review see [BB98]). With the advent
of new ideas and methods, new results and applications, both analytical and numerical
studies are continually being added to this subject. Partial differential equations have been
the subject of mathematical research for over three centuries and, owing to the increasing
need in mathematics, science and engineering to solve more and more complicated real
world problems, it seems quite likely that partial differential equations will remain a major
area for many years to come.

The main concern of this dissertation is focused on the derivation of novel integral
formulation for simple problems. These alternative integral representations display a rapid
decay as the complex parameter involved tends to infinity and are therefore suitable for
numerical computations and for the study of the asymptotic properties of those solutions.
There is also another important advantage attached to the novel formulae presented. These
integral representations are useful for solving changing-type boundary value problems
(such as Dirichlet data on part of the boundary and Neumann data on the complementary
of the boundary).

The dissertation is divided into a number of chapters as follows. The introductory chap-
ter consist as the initiation of the reader to the generalized transform method, introduced
by Prof. Fokas, which will then applied to a particular example, namely the Square, in
Chapter 2.

Chapter 3 is devoted to the theory of Gegenbauer functions. The behavior of the Gegen-
bauer functions of the first and second kind of general complex degree v and order A on the
cut (—1,+1) are examined. Moreover, series representations together with asymptotic ex-
pansions, which to the authors knowledge are new, are presented. The Gegenbauer Integral
Operator &, which plays a crucial role in the derivation of novel integral representations
associated with the new method, is here for the first time introduced. Last but not least, an
alternative approach arriving at the Wronskian of an independent pair of solutions using
recurrence relations is presented.

In Chapters 4 and 5 the Laplacian operator in the interior and exterior of a Sphere and
the Stokes’ operator concerning the irrotational flow of an incompressible, viscous fluid are
analyzed. Technical calculations are left to the Appendices.



CHAPTER

The Generalized Transform
Method

Mathematicians did not consciously created the subject of partial differential equations
(PDE’s). Their continuously exploration of physical problems* secured a better grasp of the
physical principles underlying the phenomena and mathematical statements were formu-
lated which are now comprised in partial differential equations.

A general approach for constructing a large class of solutions was invented almost
with the advent of partial differential equations. This approach, based on the efforts of
d’ Alembert, Euler, D. Bernoulli and others, involved separating variables, an ingenious
method that decomposes a partial differential equation into a set of ordinary differential
equations (ODE’s), and superimposing, namely building up complicated solutions from
simple ones, the solutions of the resulting ordinary differential equations.

Separation of variables lies at the heart of the use of integral transform, and therefore
led to solutions of PDE’s by a transform pair. A great variety of integral transforms exist
in the literature, such as the Fourier, Laplace, Mellin, Kontorovich-Lebedev, Mehler-Fock,
naming only a few of them, as well as the finite analogs for certain of them. For a given
boundary-value problem the appropriate transform is dictated by the differential operator,
the fundamental domain and the boundary conditions prescribed. For simple boundary-
value problems there exists an algorithmic procedure deriving associated transform pair
[DBO6, [Sta97]. This procedure, based on the spectral decomposition of a single eigenvalue
equation, has been remarkably successful for solving a variety of initial and boundary-value
problems. However, for complicated problems the classical transform fails.

Within the last decade, a new approach for solving boundary value problems (BVP) has
been developed by Fokas and it is presented in [FokO8]. The novelty of the Fokas method
is based on the construction of a tailor-made transform, for each BVP, assimilating the
geometrical and spectral characteristics of the problem. The key feature of this methodology

TOne of the major problems of the eighteenth century consisted of the determination of the amount of gravi-
tational attraction one mass exerts on another, which ultimately led to the theory of potential.
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lies in the successful manipulation of the so-called global relation, a formula connecting the
solution of the BVP with its derivatives on the boundary. Furthermore, one must underline
two important notions in the new method presented. One is the concept of integrable
nonlinear equations which is closely followed by Lax pairs. We will see these two concepts

later one.

For linear PDE’s with constant coefficients’ this new approach for solving boundary

value problems involves the following steps.

1. Given a PDE, formulate the PDE as the compatibility condition of two linear equations,

viz find a Lax pair for the given PDE.

2. Perform a simultaneous spectral analysis of both equations which yields a Riemann-

Hilbert problem.

3. Given appropriate boundary conditions, analyze the global relation, satisfied by the

boundary values of the solution and its derivatives.
Let us now proceed in more detail.

ELEMENTS OF THE GEOMETRY OF THE POLYGON. Consider a convex and bounded polygon
Q C C in the complex C-plane with vertices z1,..., 2, 2,+1 = 21 as shown in Fig. [l

Furthermore, since the vertices z; are finite in num-
ber, the sum of their angles equals

> 0= (n-2)r.
j=1

The convexity of €2 implies §; € (0, ) and thus from
Fig. it is easily deduced that §; = ¢ — ¢. Since %
¢ = arg(zj_1 — z;) and ¢ = arg(z;41 — 2;) we find

0; = arg(zj—1 — z;) —arg(zj41 — 2;) -

Let ¢(z,y) satisfy the Laplace equation in the in-

FIGURE 1.1: Part of the convex and
bounded polygon ) with vertices z;.

terior {2 C C of a convex and bounded polygon with “i Zin1
vertices 21,...,%n,2n+1 = 21, 2 = & + iy as shown 0;
in Fig. [Tl In complex coordinates, using o
o 1(0 .0 0 _1(9 .0 0 TN
=5 la>—"t5 ) e N [~ I
0z 2\ 0x dy 0z 2\ 0x y

FIGURE 1.2: The angles §;, ¢ and .

the Laplace equation is written as
82
9207 1)

which can be reformulated in the form

0 (0q\

where an overbar denotes complex conjugation.

:0’

From (IJ) it is obvious that ¢(z) is harmonic if d,¢(z) is an analytic function.

In the case where the coefficients are functions of the variables, see |[Fok04} [TFO7]

(1.1)

From



this observation we conclude that it is simpler to obtain an integral representation for an
analytic function, namely for 9,¢(z), instead of ¢(z).
Since ¢(z) is a solution of the Laplace equation, the following differential form is closed

W(z,k):e*ikzizdz, keC, zeQcC,

15)
ie.
. 82q
dW(z,k) =e ** —__dzAdz=0, keC, zcQcCC. (1.2)
02 0%
Then, Stoke’s theorem
foo- ffar
9 Q
implies that
o O
/e"kza—qdz:o, keC, zeQcC. (1.3)
z

o0
We will refer to this equation as the global relation. Rewrite the foregoing expression as

> pilk)=0, keC, (1.4)
j=1

where (j) corresponds to the side (2,41, 2;) of the polygon and the spectral functions p; (k)
are defined as

Zj ik aq(J)
pj(k):/ e’ dez, keC, j=1,2,....n, zpy1=21. (1.5)
Zj+1

Proposition 1.0.1 ([FK03, [FFX04]) Let ) be a bounded convex polygon in the complex C-
plane with vertices z1,...,z,. Let f be a smooth complex-valued function defined on the
boundary 0N of the polygon Q and consider f; the restriction of f on the side (zj41, 2j)-
Assume that there exist a function f such that the spectral functions with 0, q(j ) = £
satisfy (L4). If, the analytic function 9, q is defined as the representation

aq 1 - ikz
§:%Z/ekpj(k‘)dk‘, (1.6)
j=1£j

where the rays {; in the complex k-plane are defined as
l; = {kEC}argk:—arg(zj _Zj+1)}, (1.7)
then q(z) satisfies the Laplace equation in ) and on the jth side, 0, q(j ) = £

Indeed, consider an auxiliary function u(z, k), k € C, z € Q C C which satisfies the system

(0, —ik)u(z, k) = 0, q(2), (1.8)
0,z pu(z,k) =0. (1.9)
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Introducing an exponential Euler factor, equation (I.8) becomes

d(e*“” w(z, k)) = ¢ ikz % dz.

Integrating the above equation along any curve I'(z;, z) connecting the vertice z; with any
point z inside €2, we find

(z—c) O
pi(z, k) = / ekl C)a—gdc.
F(Zj?Z)

Moreover, since 0, ¢ is analytic, the contour I'(2;, z) C £ can be deformed in any convenient
way. Given the convexity of the polygon {2 let us consider the line segment which connect
the vertice z; with any point z inside the given domain. Then the latter equation reads

pi(z, k) = / etk(z=0) g—z dc¢. (1.10)

J

From the above relation it is obvious that 1, (z, k) is an entire function with respect to k € C,
with k = oo as the only possible singularity. Therefore, in order for y; to be bounded as k£
tends to oo, the following inequality must hold

Re(ik(z—C)>§O, zeQCC, (el(z,2), keC. (1.11)

The above inequality implies the restriction of the complex variable k to the sector S,
associated with the vertice z;

S; = {k e C:argk € [f arg(zj—1 — zj), ™ — arg(zj4+1 — z])} } . (1.12)
Indeed, for the straight line (z;, z) we have
arg(z — () € [arg(zj—1 — z;), arg(zj+1 — 2;)]
which together with implies
argk +arg(z — ¢) € [0, 7],

namely, inequality (ILTI). The angle of the sector S}, denoted by 7);, depicted in Fig.
equals
Vi = —arg(z41 — 2) +arg(zj—1 — zj) =7 —0;,

from which
n

Zwi:Z(ﬂ'_ej):nﬂ—(TL—Q)ﬂ':%r.

j=1

The sectors S; and S, share the ray /; as common boundary and therefore

57:57'“51“:{1‘?6@

argk = —arg(z; — zj+1)} .



i

z-plane k-plane

FIGURE 1.3: The rays {; in the k-plane associated with the polygon € in the z-plane.

Subtracting with the equation resulting from with j replaced by j+1, we derive
the so-called jump condition

Uj-i-l(zvk)_ﬂ'j(zak) =k Pj(k), keC. (1.13)

Moreover, integrating by-parts the asymptotic behavior for the auxiliary function
w;(z, k) is obtained

1
uj(z,k):o(%), koo, 2€QcCC. (1.14)

Equations (I.13) and (I.14) refer to a so-called Riemann-Hilbert problem* the solution to
which is [AFO3]
1 e pi(k)
z, k)= — — 2 dk, 1.15
p(z,k) = = ]Z / p— (1.15)

where the rays {/; };”:1 are defined by (I.7). Substituting into the first equation (I.8)
of the Lax pair we immediately obtain 0, ¢(z). Note that the operator (9, — i k) is such that
it annihilates the k-dependency.

Zj iks aq(J)
Pj(k):/z e Wdza

G+1

Remark 1.0.1 Equation

can be seen as the (finite) Fourier transform along the straight line segment (z;41, ;). Then,
the inversion formula implies

aq 1 = ikz
$:%Z/ek p;(k)dk .

jzlgj

*The notion of a Riemann-Hilbert problem will be explained in more depth in section [T.2]
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The solution is then obtained by integrating the expression for 9, ¢(z) and by the use of
the reality condition

q(z,y) = 2Re/ @dz—l—const. (1.16)
20 07

The main differences between the two methods solving PDE’s i.e. the classical transform
(separation of variables) and the new (generalized transform) method, can be described
briefly as: (1) Applying the classical transform, we assume that the solution to a given
boundary-value problem can be expanded in a series of eigenfunctions. The generalized
transform method on the other hand, constructs the solutions without the need of using
eigenfunction expansions, arriving at separable solutions without actually assuming sepa-
ration [DFO5]. (2) In contrast with the method of separation of variables, which is strongly
based on the geometry of the fundamental domain, the new method does not depend on the
geometry of the domain at hand, but on the linearity of the PDE. An overview is provided
in [DasO3].

1.1 INTEGRABILITY AND LAX PAIRS

Since their exist different definitions of integrability, the question "What is Integrability?”
results in a synthesis of many answers usually depending on how one chooses to attack
the problem. For example, one type of attack involves perturbative or asymptotic methods.
A second approach is algebraic, involving the classification of symmetries. Yet another
method is based on the analytic behavior of solutions in the complex domain, the technique
of Painlevé analysis where one examines if a given nonlinear PDE has Painlevé property,
i.e. the only movable singularities are poles (see [Mus99] and the references given there).
Another form of tackling involves the Lax pair formulation. Given a nonlinear PDE it is very
difficult to find a Lax pair associated with the PDE, so it is actually simpler to postulate a
Lax pair and determine to which PDE the pair correspond [IROO].

In what follows, we will call an equation integrable if it admits a Lax pair formulation,
i.e. it can be written as the compatibility condition of two linear eigenvalue equations. The
importances that the Lax pair consist of two eigenvalue equations must be emphasized,
since if the pair does not contain a spectral parameter, then it cannot be used to solve the
associated PDE. Moreover, for linear PDE’s, the existence of a Lax pair is usually related to
a closed 1-form [Ash08| [FZ02].

Peter D. Lax, in his fundamental mathematical paper [Lax68], showed that it is possible
to solve nonlinear equations introducing linear techniques. Lax proved that if it possible
to find two linear PDE’s (the so-called Lax pair), such that the compatibility of these two
equations is equivalent to the initial PDE, then the equation accepts an analytic solution.
As mentioned, not every nonlinear PDE possess a Lax pair, but those that do are identified
as integrable. His approach in brief.

Consider the PDE

Oru(x,t) = L(x,t) u(x,t), (1.17)

where L£(x,t) a nonlinear operator. Lax separated the nonlinear operator £(x,t) into two
linear A(x,t) and B(x,t) who actually "absorve” the nonlinearity of £(x,t) through the
coefficients of A and B which are polynomials of u, Vu, etc. Thus, given an auxiliary
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function pu(x,t) and assuming that

A(x, ) p(x,t) = A p(x,t) (1.18)
O u(x,t) = B(x,t) p(x,t), (1.19)

where ) is a time-independent parameter, one can easily show, by cross-differentiation,
that
O A(x,t) + [A(x,t), B(x,t)] =0, (1.20)

where
[A(x,t), B(xnﬁ)] = A(x,t) B(x,t) — B(x,t) A(x,t)

is the commutator.
Equation is called the Lax representation, where else equations (I.18),(I.19) con-
stitute the Lax pair. The difficulty with this method, as Lax points out, is that one must
”guess” a suitable A and then find an B in order to satisfy equations (LI8),(L19). As an
alternative, Ablowitz, Kaup, Newell and Segur [AKNS74] proposed a technique which, very
generally, can be formulated as follows.

Consider two linear equations

Opy (@1, 2) = X1 pu(21, 22) (1.21)
Oy p(x1, 22) = Xo p(x1, 29) . (1.22)

Cross differentiation yields
Opy X1 — gy Xo + [ X1, Xo] = 0. (1.23)

This is, in essence, the equivalent of (I.20). Given X, it turns out there is a simple
procedure to find X5 such that (I.23) contains a nonlinear equation. However, in order
for (.23) to be effective, the operator X; should include a (time-independent) parameter
which plays the role of an eigenvalue.

Remark 1.1.1 Inthe case where the vector field X = (X1, X5) is irrotational, i.e. VxX = 0,
equation simplifies as
[le XQ] = 07

viz. the operators X1 and X, commute.

However, the ingenious method introduced by Lax was adopted a few decades later by
Fokas and Gelfand [FG94] who proved that every linear equation has at least one Lax pair.
The importance is that the Lax pair technique in contradiction for nonlinear equations can
always be applied to linear PDE’s and provides a new point of view in dealing with linearity
and separability [Fok09].

1.2 THE RIEMANN-HILBERT FORMULATION

In what follows, a short survey on the Riemann-Hilbert problems is presented. Missing
details are found in the standard references of F.D. Gakhov [Gak90], N.I. Muskhelishvili
[IMusb3|] and N.P. Vekua [Vek67].
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1.2.1 Historical notes

In his 1857 paper “Theorie der Abel’schen Functionen” Bernhard Riemann [Rie57] first
posed the problem of finding an analytic function, given a relation of the boundary values,
in a certain domain. This problem became known as the Riemann problem (sometimes
also referred as the linear conjugation problem). A few years later, David Hilbert studied
the problem in more details, which in modern days is known as the Riemann-Hilbert
problem. A particular aspect of the Riemann-Hilbert problem, namely the existence of a
Fuchsian system with given singularities and a given monodromy group, was addressed
by Hilbert, among other problems, as the twenty-first problem at the Paris conference of
the International Congress for Mathematicians in 1900 [HilO2]* (see also [Gak90, p.137]).
Riemann-Hilbert problems are, moreover, associated with the notion of integrability of a
system [Its03].

1.2.2 The Riemann-Hilbert problem

The Riemann-Hilbert problem can be stated, in a simplified form, in the following way:
Find a sectionally analytic function ®(z), which takes the values ®*(z) for z € QF,
vanishes at infinity and undergoes a jump ¢(t), viz satisfies

the condition

(1) = @7 (1) = (1), O+
passing through an oriented simple contour C in the complex
plane. The solution to this problem is closely related to the C
Cauchy type integral

1 _
B(z) = — / 27 g4 (1.24) Q
2mi ) T—2
c

FIGURE 1.4: The regions QT
Dropping the additional condition ®(z) — 0 as z tends to co, and ()™ on either side of

the solution of the problem is given by the formula the contour C
1
D(z) = — / mdT + const.
2t ) T —2
c

The above formula indicates that an appropriate limit (e.g. at infinity) reduces the number
of solutions.

When z approaches C along a path entirely in QF, ®(z) has a limit ®* (7). Similarly,
®(z) has a limit @~ (7) in the case where z approaches C along a path entirely in {2~ . These
limits are given by the Sokhotski formulae'

4oy 1 i/ o(1)
O (1) = :|:2<p(T)—|— 5 t_Tdt. (1.25)
C

If the contour C displays a corner point, depicted in Figure the above Sokhotski

*The  original speech in  German, “Mathematische = Probleme”, can be found at
http://www.mathematik.uni-bielefeld.de/~kersten/hilbert/rede.html.
There also exist a radio speech of Hilbert recorded in Kénigsberg in 1930.

talso known as the Sokhotski-Plemelj formulae.


http://www.mathematik.uni-bielefeld.de/~kersten/hilbert/rede.html
http://math.sfsu.edu/smith/Documents/HilbertRadio/HilbertRadio.mp3
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iy

FIGURE 1.5: Contour with corner point

formulae are reformulated as follows

(1= oy L [0 |
o (1) (1 )(p()+ C/ dt (1.26)

O (r) = —igo(T)—l—%/ o) gy (1.27)
C







CHAPTER 2 .

Harmonic functions in
rectangular domains”

2.1 INTRODUCTION

In most cases, a given, well-posed, boundary-value problem can be solved by means of
separation of variables, if there exist a coordinate system that fits the boundary of the
fundamental domain and at the same time it separates the partial differential equation
(PDE). Furthermore, separation of variables leads to the solution of PDE’s by a transform
pair. The "prototype" of such a pair is the Fourier transform. However, for complicated
problems the classical transform method fails. For example, there do not exist proper
transforms for solving many boundary-value problems for elliptic equations of second order
and in simple domains.

In 1997, A.S. Fokas [Fok97, FokO1, [FKO3] proposed a general method for solving
boundary-value problems for two-dimensional linear and integrable nonlinear PDE’s. An
equation in two dimensions (x1,z2) is called integrable if it can be expressed as the condi-
tion that a certain differential 1-form W (z1, z2;k), k € C, is closed, e.g. linear PDE’s with
constant coefficients. This novel approach can be seen as a generalization of the separa-
tion of variables method, but more effectively (for a review see [Das07b]). It is based on the
simultaneous spectral analysis of the two compatible equations of the Lax pair associated
with the PDE, i.e. construct two scalar linear equations whose compatibility condition is
the given PDE. In general, one of this equations defines an eigenvalue problem and the
other is an evolution equation. The method expresses the solution in terms of the solution
of a matrix Riemann-Hilbert problem in the complex plane of the spectral parameter k.
The spectral functions p(k) determining the Riemann-Hilbert problem are given in terms of
the boundary values of the solution. Since for a well posed boundary-value problem only
one boundary condition is prescribed, some of the boundary values appearing in p(k) are
unknown. The fact that these boundary values are in general related can be expressed

*This work has been published as [Dosal

11
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in a simple way in terms of a global relation, which plays a crucial role in the analysis of
boundary-value problems, satisfied by the corresponding spectral functions.

More recently, Fokas and Novokshenov [FN] have shown that by algebraic manipula-
tion of the so-called global relation in specific subdomains it is possible to rederive the
classical transform for certain elliptic PDE’s. Moreover, the new method provides an alter-
native approach deriving this transform and also yields integral representations useful for
solving changing-type BVP’s and, since this integral representations involve a strong decay
as k tends to oo, they are suitable for numerical computations and for the study of the
asymptotic properties of the solutions.

A question at hand concerns the kind of domain one should choose for this comparison.
Obviously, it depends on the coordinate system one is interested in. Let us focus on
the Cartesian coordinate system. Bearing this in mind, the domains in which one can
implement both techniques, are the rectangles. The simplest rectangle is the Square.

The present chapter is organized as follows. In section 2.2, a brief introduction of the
Fokas method applied to the case of a Square is given. In the sequence, in order to fix
notation and terminology, the classical transform is presented, which is then rederived in
section 2.6, by means of the analysis of the global relation. In the second part, consisting
of sections 2.7 and 2.8, the new method is implemented to derive alternative formulae
for the solution in terms of an integral instead of a series. This is realized by algebraic
manipulation of the global relation in appropriate subdomains of the Square. Moreover,
the machinery introduced is utilized in section 2.9 to solve a changing-type boundary value
problem. In the latter case, one must combine the new method with the Riemann-Hilbert
formulation.

2.1.1 Formulation of the Problem

The two dimensional Laplace equation in Cartesian coordinates, namely

0? 0?

in the interior 2 of a Square defined by
Q:{—nggL—LgygL} 2.2)
and depicted in Figure 21l where ¢(z,y) is a real valued function, is investigated.
We analyze the general Dirichlet problem
a(Ly) = f5W), al@~L)= 1@, a-Ly) =@, a@)=1"@) @3
which, after a suitable parametrization, becomes
gD (s) = fP(s) se[-L,L], j=1,234, 2.4)

where (j) corresponds to the jth side of the Square.
We assume that the functions f ,(j ) are smooth and compatible at the corners of the Square.
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~ N
(L.L) 3_T (L,L)

Q(_Lv y)
@)
q(L,y)
r’a

Z)

Nj
T

)
(_Lv 'L) ’i‘ (La 'L)
N

FIGURE 2.1: The domainQ ={ - L<z<L,-L<y<L}

The general Neumann problem can be treated in the same manner, where, furthermore,
the Neumann data have to satisfy the compatibility condition

Oq 0q >
g+ gy =0,
jém( dy Ox Y

and 02 is the boundary of the domain.

Throughout the analysis presented, emanating from the linearity of the Laplacian operator,
the fact that the solution ¢(z, y) can be written as a linear combination of "partial solutions"
g;j(x,y), corresponding to specific subproblems, namely particular boundary conditions, is
applied.

2.2 THE GENERALIZED TRANSFORM METHOD. A BRIEF INTRODUCTION

For the Square, equation (I.3) deduces to

Z3

z1 #2
/ e~ikz g, q(1)(z) dz +/ e~z g, q(2)(z) dz +/ e~z g, q(3)(z) dz

z2 23 .
z4 )
+/ e—zkzazq(4)(z>dz:()’ keC, zeQcC,

where the complex numbers z; = L +ilL, 2o = L —ilL, 23 = —L —iL, 24 = —L + iL denote
the vertices of the Square and (j) corresponds to the side (z;+1, 2;), 7 = 1,2,3,4, 25 = 21.
Rewrite the foregoing expression as

4
> pik)=0, keC (2.5)
j=1
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FIGURE 2.2: The rays {; associated with the Square

where

zj L 0ad)
p; (k) :/ e~k X dz, z5=12,7=1,2,3,4. (2.6)
2 0z

Equation is the so-called global relation for the particular case and the functions
{p; (k)}?:l are called the spectral functions.
Introducing the local coordinate system (’i‘, N) on each side of the Square, as shown in
Figure 2.1 we obtain

aq(j) 1 . .

5 dz = 5(8T gD (s) + iy q(”(s))ds7 se[-L,L], j=1,2,34
z

where 0,q")(s) is the derivative of the solution along the boundary and dyq/)(s) is the
derivative of the solution normal to the boundary of the jth side of the Square.
Substituting the latter into yields

1 . ,
pi(k) = 5 (GO (—ik) + i W) (=ik) )
where
; L e ; ; L e ;
G(J)(_ik):/ o ikz (S)OTq(J)(s)ds, \I/(])(_ik):/ o ikz (‘g)aNq(])(s)ds
—L

—L

and z(7) (s) a suitable parametrization for each side (j) of the Square.
Following the analysis, the solution is obtained from the reality condition

=0
q(z,y) = 2Re / 2 4z + const. 2.7
2 0%
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where

(9(] 1 : ikz
3, = %Z/e p; (k) dk (2.8)

Jj=1 Zj
and the rays ¢; are defined by and depicted in Figure [2.2]

2.2.1 The Global Relation

The so-called global relation, i.e. an integral relation connecting the boundary values of
the solution (Dirichlet data) with the normal derivative of the solution on the boundary
(Neumann data), for the particular case of the Square becomes,

e LG (k) 4 e RO (—ik) + P OO (—k) + L OB (k) =iG(k), (2.9

where

G(k) = e L @MW (k) + e F GO (—ik) + 1 GO (—k) 4 e GW (ik)

and ¥ (k), GU) (k) are the following transforms of the Neumann and Dirichlet boundary
data

L L
\I/(j)(k):/ e** 0y ¢ (s) ds, G(j)(k):/ e 0. qW(s)ds, j=1,2,3,4, keC
—L —L

respectively.

2.3 THE CLASSICAL TRANSFORM

When we apply the classical transform we assume the solution expanded in a series of
eigenfunctions of one of the variables, with the coefficient depending upon the other vari-
able. Separation of variables relies upon the completeness of the eigenfunctions corre-
sponding to one of the variables. The solution will depend on functions which enter into
the boundary conditions, and since the spatial domain 2 is rectangular, the relative eigen-
functions are trigonometric.

Furthermore, every function can be written uniquely as the sum of an even and an odd
function, or in terms of a Fourier expansion, every function, satisfying Dirichlet’s condi-
tions, which enters into the boundary conditions can be written as

f(s) ~ Z [an sin (2Zs) + f3,, cos ( (n+1) %s)], se[-L,L] (2.10)

n

where the set S = {1} U {sin “Ts, n € N — {0}} U {cos (n +1) s, n € Z} form a complete
orthogonal basis of Ly[—L, L].

Proposition 2.3.1 Let the real valued function q(x,y) satisfy the Laplace equation 1) in
the domain 2 defined in (2.2), with boundary conditions (2.4), where the given functions
g ) (s), 7 = 1,2,3,4 have sufficient smoothness and are continuous at the vertices. Then the
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classical representation for the solution is given by

o =3 [ sinh (% + 1)) + e sinh (27 - LD] sn (1)

+Z bnsinh((n+ ) %(w—l—L)) +dnsinh((n—|— ) %(m—L))

+ Z ey, sinh (”—L"(y — L)) + gp sinh (”—L“(y + L))

cos ( (n + %) %y)

sin ("—Lﬂx)

—|—Z fnsinh((n 3) Fly— L))—i—hnsinh((n—ké)%(y—i—[/)) cos((n—k%)%x),

(2.11)

where, by introducing a intrinsic coordinate system (’i‘, N) on each side of the Square, the
Fourier coefficients ay,, by, ¢n, dn, €n, fn, gn and h, can be expressed as follows

= m/ 157 (s)sin (5) ds (2.12)
b = m / I (s)cos ((n+13) Fs) ds 2.19
- = m/ 15" (=s)sin (% s) ds (2.14)
3 us
= m/ I8 (=sycos (((n+3) £s) ds (2.15)
S @) .
= Lsmh 2n) / fo(s)sin (*f's) ds (2.16)
Jo = m/ £ (s)cos ( (n+3) 7s) ds 2.17)
I = m/ f57(=s)sin (%F's) ds (2.18)
hn = m/ f(4) s) cos ( (n + %) %5) ds. (2.19)

2.4 ANALYSIS OF THE GLOBAL RELATION

Replacing k with —k, the global relation
4
3 e KL g ) ((—i)j_l k) —ig(k), keC 2.20)
j=1
together with its Schwarz conjugate

4
S e K g) (ij—l k) = —ig(k), keC (2.21)
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and 4
G(k) = 3 GO (—ip k). kec,
j=1
become
4 n
3 e (R g ) ( (i)t k) = iG(—k), keC, (2.22)
j=1
4 .
S e R gl) ( _ 1 k) = —iG(-k), keC, (2.23)

Jj=1

where G(k) denotes the Schwarz conjugate of the function G (k).
By simple algebraic manipulations the above expressions can be combined to give,

_isinkL [(\If(l)(k) + \1/<1>(—k)) - (xp<3>(k) + \11(3)(—k))]

R (2.24)
— cosh kLKW) (ik) — w)(—ik)) - (\IJ(4> (ik) — \11(4)(—ik))} - %Fl(k) :
~isin kL[(\p“)(k) - \If(l)(—k:)) + (\I'(3)(k) - \I/“”(—k))} - -
+sinh kL _(\p@) (ik) — W(Q)(—ik)) + (qf<4> (ik) — \11(4)(—z'k))_ - %rg(k) ,
cos kLK\I/-(U(k:) - \I/(l)(—k)) - (\11(3)(k) - \11(3)(—19))} | 26
_sinh kL _(\p@) (ik) + xp<2>(—ik)) - (qf<4> (ik) + \11(4)(—zk)) - %Fg(k),
coskL[(qJ(l)(k) +\1/<1>(—k)) + (0O (k) + 03 (—k) }
_ (2.27)
+ coshkL _(w (ik) + \P(Q)(_Z-k:)) + (\1/<4> (ik) + \11<4>(—u€)) - %m(k) :
where
Dik) = (9 +G(R)) — (G(—k) +G(-h)) .
Do(k) = (9(0)+G(R)) + (9(-k)+G(=F)) ,
Lo(k) = (9(k) = GR)) = (9(—k) = G(=h)) .
ra(k) = (G0)=G®) + (9(-k) — G(=F)) -

The Dirichlet and Neumann problems can be solved by evaluating expressions (2.24)-(2.27)
at discrete values of k. This yields the unknown boundary values in terms of infinite
series. In particular, evaluating equations (2:24)-(2.27) at those values of k for which the
coefficients of W) (k) + ¥ (—k)j = 1,3 and ¥V (ik) + ¥U)(—ik), j = 2,4 vanishes, we
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find

To(i%)  Ta(ir)
nm ds = L L 2.28
sin (7"s) Ox a(s) 8sinhn7r+Eécoshmr7 ( :

—
=~ ™~

r Li(i(n+3)7) ;Lalin + +3)%)
1\ w (1) _ .1 2/)L 4 2/)L
/_L o8 ( (n+3) LS) Ona(s)ds Z8sinh(n + ) SCosh( + )’ (2.29)
L T, (Ro T, (2o
sin (22s) Oy ¢P(s)ds = — 1(F) 2(F) (2.30)

8coshnm = 8sinhnr’

r 1ym T R
cos (((n+5) £5) ™ (s) ds = 804o(s(h(n +)L)) N 8531£1(h(n +)§L)3r ’ 231

- Da(ifE)  Ta(i)
sin (1 ) On g (s) ds = 8sinhnm  8coshnr’ (2.32)

~

\‘h\

hé

/.,
L Li(i(n+3)F) | Tali(n+3)T)
1\« (3) ds — 1 L L4 27 L 2.33
/_LCOS<(”+ 3) LS) On g7 (s)ds = 851nh(n+%)7r+28cosh(n+%)ﬂ7 239
L Iy (25) Ly (2F)
s (nm (4) = 1L 2L
[L s ( L S) On g™ (s)ds 8coshnm  8sinhnn’ (234
5 1\ m I\w
Dul(n+ DI Tyltn+ E)
\ 1) 75) 0y g (s)ds = Ciny @35
[Lcos<(n+2) LS) ¢ (s)ds Z8cosh(n+%) +ZSsinh(n+%7T) (239

Proposition 2.4.1 Let the real valued function q(x,y) satisfy the Laplace equation (2.1)

in the domain with boundary conditions (2.4), where the given functions [ Y )( )
have sufficient smoothness and are continuous at the vertices. Then the Neumann data
8Nq(3 ) (s), 7 = 1,2,3,4 can be expressed in terms of the given Dirichlet data by the Fourier
series

i (2 sin (575) + B cos ((n+3) F5)] 7 =1,2,3,4 (2.36)

where the coefficients lef ) and %53' ) are given by equations (2.28)-(2.35).

The coefficients lef ) and %1(3 ) can be correlated with the Fourier coefficients @12)-2.19)
through the known functions I';(k), e.g. for j = 1 and k,, = i(n + )T we obtain

Iy (i(n+ $)%) = —dir(n+ 3) cosh [(n+ $)x] sinh [(2n + 1)7] (b, + dy)

+8i(n+ 3)(=1)" sinh [(n+ $)x] > (—1)mﬁ sinh(2mm) (em — gm) -

Finally, the solution is then given by the expression

exp
a(z,9) 2 Z/
(2.37)

After long and tedious calculations (see for details Appendix [B), (2.37) yields (2.11).

it ) k ] )
1) ][G(” (—z'k)+i\1/<ﬂ)(—z'k)}dk+const.
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2.5 THE GLOBAL RELATION REVISITED

Let ¢(x,y) and g(z, y) satisfy the Laplace equation

and the formal adjoint of the Laplace equation

(aa; + ;;) G(z,y) =0. (2.39)
Multiplying by g(z,y) and by ¢(z,y) and subtracting them, we obtain the
divergence form 3 3

Equation holds true everywhere in R? and applying Green’s theorem to a closed
subdomain of R?, yields

_0q 0q 99 _0q _
/[(qax_q6x>d‘y+(qﬁy_qﬁy)dx] =0, (2.41)
c

where C' is the boundary of the subdomain.

Equation (2.41) provides the global relation, since it relates the boundary values of the
solution with the values of the normal derivatives of the solution on the boundary.

Letting q(x,y; k) = X(x;k)Y (y; k) where k is the complex separation constant, it follows
that X (x;k) and Y (y; k) satisfy the ODE’s

—n —
X KX =
— * 2 , keC,
Y kY = 0

where the prime denotes differentiation with respect to the argument.

Solving the above ODE’s yields G(x,y) = e*** ¢?%¥ where 0 = +1. Then, equations
and (2.41) become

0 |:eiikw eoky (:l:ikq _ aq):| + 2 [eiikx kY (qu _ 8(])] =0 (2.42)

oz ox oy oy
/ ezl:ilm: eaky
C

|
o

and

=0, keC, (2.43)

. 9q 9q
(:tqu — 890) dy — (okq - 8y) dzx

respectively. Equations imply two items. First, applying Green’s theorem we obtain
immediately the global relation, and second it yields a Lax pair formulation.

Indeed, if q(x,y) is the solution of the Laplace equation in a closed subdomain 2 C R2, then
(2-42) implies the existences of a function Z(z, y; k), such that

= eﬂ’“”e""’y(iikq—gi)} keC

Flofle

[11 [1]

76:|:ikx eaky (qu _ %)
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(=L, L) (2, L) (L, L)
q(n, L)1

= =1 =

0 RV N I

\&/ @: S
q(n,—L)

(—L,—1) (@, —L) (L, —L)

FIGURE 2.3: The subdomains 1 C Q and Qs C Q definedas QU = {—-L <n <z, |y| <L},
Qo ={z <n <L, |yl <L}, respectively.

The assumption Z(x,y; k) = e e y(z, y; k) where u(x,y;k) an auxiliary function,
leads right away to the Lax pairs

<6 +ak> no= iikq—a—g,

dy 0
0 . dq
— + = 2 _kg.
< % zk‘) I 3y okq

Furthermore, (2.42) implies that if the differential form

Wz, y; k) = eFike oy { (:tikq - ((?)q) dy — (okq — gq> dx}
w Y

is closed, viz ) )
; . [ 0°q 0°%q
W LN dikx ok .
d (-'L'7y7k3)—€ RT o y(am2+ay2)d$/\dy—07

then Stoke’s theorem (I.2) provides (2.43).

2.6 THE CLASSICAL REPRESENTATION

To rederive the classical transform (2.11), apply the global relation (2.43) in the subdomains
), and (), defined by

q={-L<n<a <L} Q={e<n<L ly<L}
and depicted in Figure [2.3] with the following boundary conditions

a(L.y) = 1 (v). WLy = 19w
q(n, L) = q(n,—L) =0, 8,q(n, L) =0, q(n,—L)=0 } : (2.44)
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where the functions fg)(y) and f,(g?’)(y) have sufficient smoothness and the sum of the

integrals of f,(vl)(y) and f,£,3)(y) vanishes.
Thus we derive the following equations

L
/ e”’”’(i ikqi(z,y) — 0y ql(w,y)> dy
L

L
= eTheth) / e (Likg(~Loy) = 0. q(-Ly))dy, k€T, (ry) €, (249
—L

L
| et (simateg - o aww) dy
L
) L
— (Fikla=D) / e (Fikg(Ly) - dea(Ly))dy, KEC, (2,y)€Q, (246
—L

where ¢ (x,y) the solution corresponding to the specific boundary conditions 2.44). To
eliminate the unknown function 9,.q1(z, %), subtract equations 2.45)* and Z.46)~

L 1 . L
/ My (z,y)dy = 5T eike=L) / ek (Zk a(L,y) + 0y q(L,y)) dy
—L 1 L

L
+ ¢~ ik(z+L) / ety (ikq(—L, y) — 0 q(—L, y)) dy] , ke C—-{0}. (2.47)
L
Using boundary conditions (2.44) and denoting
00k = [ Py, 0ok = [Py j=13, 2ag
L —L
where the unknown Neumann boundary values are defined as

%

- =YW, j=13

L=Tmax, Tmin

and 1 is the outgoing normal to the boundary, equation (2.47) rewrites

L
1 .
oky dy = ik(z—L) ik (1) k m(l) k
[Le Q1(I7y) Yy 2%k [6 (Z D (J ) (U ))

| e—ik(a+L) (ik: G (ok) + m® (ak))] , ke C—-{0}. (2.49)

In order to compute the two unknowns 0" (k) and M) (ck), apply the global relation
in the domain ) depicted in Figure 2.1l with boundary conditions (2.44) to derive
the Dirichlet-to-Neumann correspondence,

S (£ ik DD (k) — N (o)) — (£ kDD (ok) + NP (ok)) =0, ke C.
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(~L.L) o(z, L) (L.1)
7
(=L,y) p========mmmmmmeam—aa- (L,y)
q(z,y)
© -
S .
0 {23 5
= =
(=L, ~L) q(z,—L) (L,—L)

FIGURE 2.4: The subdomains 3 and 4 defined as Q3 = {|z| <L — L <7<y} and
Q= {|z| < L, y <71 < L}, respectively.

Solving the above system with respect to the unknown Neumann data and substituting the
resulting expressions into we obtain

L
o 1 ik(x —ik(x
/ Mg, (z,y) dy =T [(e k(e+L) _ ,—ik( +L)>g(1)(0k)

L
ik(z—L) —ik(z—L) \(3) nw

— (e —e DY) (ok)|, ke C— 5T ,ne€Z. (2.50)

Replacing 0 = 1 and ¢ = —1 in the above equation respectively, and performing simple

algebraic manipulations of the resulting two equations, we derive the relations

sin (k(a:+L)) /LL cosh (ky) £ (y) dy

sinh

L cosh 1
[L sinh (ky) a1 (@, y) dy = sin(2kL)

L cosh 3 nmw 250
—sin(k(x—L))/_ (ky)fé)(y)dy],keC—{%},neZ.

; sinh

Evaluating equations at k =i(n+ %)% and at k = i"", yields the cosine and sine

Fourier transform of ¢; (x, y), respectively. The inversion formulae then gives

cos ( (n + %) %y)

(2.52)

o0

¢i(z,y) = Z [bn sinh ( (n+ %) %(x—i—L)) +d,, sinh ( (n+3) %(m—L))

n=0

and

sin (“Zy) , (2.53)

qi(z,y) = i [an sinh (%(z + L)) + ¢, sinh (%(:p — L))

n=1
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where the Fourier constants a,, b,, ¢,, d, are given by equations (Z.12)-2.15).
Analogous, applying the global relation (2.43)~ in the subdomains

Qg ={ls| <L, -L <7 <y}

and
Q={sl<Ly<r<t},

depicted in Figure [2.4] with the following boundary conditions
g(a,~L) = (), q(z, L) = £ (x) (2.54)
q(L,7)=q(—L,7) =0, 0,q(L,7)=0,q(—L,7)=0 |~
we find the following equations

L .
| e (okanlen) - 0,0l )z

—L

L
= ¢~ ok(y+L) / etk (ork q(z,—L) — 0y q(z, —L))dx, keC, (z,y)e€s;, (2.55)
-L

L .
/ e ke (ok q2(2,y) — 0y q2(x, y))dx
L

L
= e kL) / ik (ok q(xz,L) — 0y q(z, L))dx, keC, (z,y)€ U, (2.56)
-L

where ¢»(z, ) is the solution corresponding to the boundary conditions (2.54). In order to
eliminate the unknown function 9,¢2(z,y), subtract (2.55) evaluated for ¢ = 1 and (2.56)
evaluated for o = —1

L 1 Lo
/ e go (@, y) do = — | e FWHD) / e e (Uk q(x,—L) — 9y q(, —L))dx
—L 2k —L

L
+ kD) / e~ ik (Uk; q(z, L) — 0y q(z, L))dx] , keC-{0}. (2.57)
L
Using boundary conditions (2.54) and denoting
L ) . L )
DU (—ik) = / e~ 19 () dw, NG (—ik) = / e~ D (2)de, j=2,4, (2.58)
-L -L
where the unknown Neumann boundary values are defined as
%
on

and 1 is the outgoing normal to the boundary, equation (2.57) rewrites

— P @), j=24

Y=Ymin, Ymax

L
/ =K g (2, ) d = % [e—k(y+L) (kCD(?)(—ik) 4 m(Q)(_ik))
—L

+ ekly=L) (k©(4)(—ik) + m(4)(ik))‘| ,keC—-{0}. (2.59
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To compute the unknowns N (—ik) and N (—ik), apply @43)~ in Q with boundary
conditions (2.54) to obtain

e~ kL (am(?)(—z‘k) + m<2>(—z‘k)) oL (ok©(4)(—ik:) - ‘.Yt(4)(—z'k)) -0, keC. (2.60)

Replacing ¢ = 1 and ¢ = —1 in (2.60) respectively, we obtain two equations with unknowns
the Fourier transforms of the Neumann data 90 (—ik), j = 2,4. Solving this system and
substituting into yields

L
—ikx 1 _ _ - .
/ e k q2(z,y)d$ :m l (Bk(y L) e k(y L)) @(2)(7”{:)

-L
Ky+L) _ o—k(y+L)) @) (_; _ LT
+(e e )’D (zk)], keC {Z2L}, nez.
(2.61)

Simple algebraic manipulations of the latter equation together with (2.61) with k replaced
by —k, leads to

— sinh (k(y—L)) / " cos (kz) f2 (z) dz

_; sin

coS 1
/L sin (kz) g2(@, ) do = sinh(2kL)

nm

L
+ sinh (k(y+L))/L 5 (k) ,g4>(x)dx], keC— { 2L} ne. (2.62)

S

Evaluating equations 2.62) at k = (n + %)% and at k = “F yields the cosine and sine

Fourier transform of g2 (x, y) respectively. The inversion formulae then implies

cos ( (n + %) %x)

(2.63)

Z [fn sinh ( (n+ 3) F(y=L) ) +hnsinh ( (n+ ) Fu+1))

and

sin (%X x) | (2.64)

- i [en sinh (%2(y — L)) + go sinh (%2 (y + L))

where the Fourier constants e, f,, gn, hn, are given by equations 2.16)-@2.19).
Adding equations (2.52),(2.53),([2.63) and (2.64) yields the classical transform (2.11).

2.7 NOVEL INTEGRAL FORMULAE

Proposition 2.7.1 Letq(z,y) satisfy the Laplace equation [2.1) in the interior () of the Square
defined by

Q={l2l <L, Iyl <L}
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and with boundary conditions specified in 2.3). Then q(x,y) admits the following integral
representation

1 oLk sink(z — L)N®) (k) — sin k(z + L) NV (k)

a(z.y) = - 2w c sin 2k L dk
! Si-Dk sink(z + L) M(l)(lc.) —sink(z — L) M©®) (k) Ak
2im I sin 2k L
1 / Jite+nyn S E(y + LYN® (k) —sinh k(y — L) N®) (k) "
2r Jy sinh 2k L
. i @ (k) — si _ ©)
N 1 Gile-Dk sinh k(y + L) M (k) sinh k(y — L) M%) (k) dk. (2.65)
2r Jp sinh 2k L

where the functions NU) (k), MU (k), j = 1,2, 3,4 are defined as

NOH) =3 (—1)" <a55'> S AT (- A
n

e e (2.66)

n

MO (k) =3" (-1 (ﬁﬁlj) G AN ”ET“> ) (2.67)

) . ) nm ] (n + l)l

N (k) = Z (1" | o ﬁ + 8% 5 . 1L2 — (2.68)

- k? — 255 k2 —(n+35)* T
MD (k) =" (-1)" [ o) A BY) _ 4 f (2.69)

- n 2 2 n 2 ’ .

~ k2 — nz k2 — (n+1)2%;
foreveryk € C — {:t%, +(n+ %)%} , if 7 = 2,4 . The Fourier coefficients aslj) and ﬁ,&j) cor-
relate with the coefficients @2.12)-(2.19) as a&” = sinh 2n7 a,, ag) = —sinh 2nmwe,, agf) =
— sinh 2n7 ¢, agfl) = sinh2nmg, and /8,(11) = sinh(2n + 1)7 by, SLQ) = —sinh(2n +

D7 fo, B = — sinh(2n + 1)7 d,,, B = sinh(2n + 1)7 hy,.
The contours L, R, U and D are obtained by deformation processes described in the se-
quence and depicted in Figure[Z.5]

Equation (2.47), with o replaced by —1, can be thought as the bilateral Laplace trans-

form of ¢1(z,y), provided that the function ¢;(z,y) is such that the integral is convergent
for some values of k. The inversion formula then implies

) =g [ G e [ et (ikg(r ) + 0 gt dy
e 2ir J, o 2ik I ’ R

L
4 e ik@+L) / eky (ikq(fL, y) — 0z q(—L, y)) dy] d,
—L

(2.70)
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FIGURE 2.5: The contours L, R, U, D.

a formula useful for changing-type boundary value problems, as we will see in section 9.
But since we are primarily concerned with Dirichlet data prescribed on the boundary, the
inversion of (2.50) implies

(y) = 1/c+zoo L l(eik(m+L) _ efik(a:+L))@(1)(,k)
A 2im ). ;o €KL — g—i2kL

_ (eik(me) _ eik(xL))©(3)(_k)] dk, (2.71)

where the Dirichlet transforms D) are given by equations (2.48).
Expanding the Dirichlet data f,jj in a series of the form (ZI0) yields DU)(—k) =

e NU) (k) + e # M) (—k), where we note that

NO(R), MD () = 0 (;) .

Plugging the latter expression into eq. (Z.71) we find

1 [etiee sink(z + L) N® (k) —sink(z — L) N®) (k)
_ = (y+L)k
aley) =50 /H.OO ¢ sin 2kL dk
etico . (1) _ o _ (3)
1 o(y—D)k S k(x + L) MW (k) —sink(z — L) M) (k) d&. (@72

2in sin 2k L

c—ioc0
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The Laplace transform of the function ¢; (z, y) displays a rapid decay as k approaches large
values. Indeed, as k — oo the denominator e??*% — ¢~2kL js dominated by e~%2*" for
Imk < 0 and by —e??*L for Imk > 0. On the other hand, the nominator ¢*¥ is bounded in
the left (Re k < 0) complex k-plane if y € [0, L] and in the right (Re £ > 0) complex k-plane

ify € [-L,0]. Hence as k — oo,

eik(@+L) _ o—ik(z+L) eik(z—L) _ ,—ik(z+3L) Imk <0
ei2kL _ o—i2kL _ez‘ k(z+3L) + e—ik(m—L) ,Imk: >0 ) oo,

gika—L) _ ,~ik(z—L) eik(@=3L) _ o=ik@+L)  [mk <0
i2kL _ o—i2kL i k(a+L —ik(z—3L) , k—o0.

S —etkletl) | gmik(= JImk >0

Furthermore, the exponentials eWTLE and eW=1)* are bounded in the left (Re < 0) or the
right (Re > 0) complex k-plane, respectively.

The aforementioned analysis implies that the Bromwich contour in can be replaced
either by the contour £ or by the contour R, depicted in Figure Equation then
becomes

1 sink(z — LYN® (k) —sink(z + L) NV (k)
- (y+L)k
@ (z,y) 5in /€ T dk
1 [ sink(z + L) MW (k) — sink(z — L) M®) (k
+ o [ ek sin k(z + L) MU ) sin k(@ J M) dk . (2.73)
2im Jr sin 2k L
—00 ] D C% ® 400

L R

FIGURE 2.6: The contours £ and R.

The contour £ begins and ends in the left (Re £ < 0) complex k—plane, such that Re k tends
to —oo at each end, a technique known as Talbot’s method [Tal79]. In Talbot’s method the
initial contour is deformed to the region of the complex k—plane in which the factor ef (k)
reduces in magnitude as much as possible. Analogous, the contour R begins and ends in
the right (Re k > 0) complex k—plane, such that Re k — oo at each end.

Similarly, equation can be seen as the Fourier transform of ¢2(x, y). Thus, the inver-
sion formula implies

1 400 eikz _ L ik
q@(r,y) = %/ 2/{[8 k(y+L)/Le k (qu(x, —L)—0, Q($7—L))dm

L
+ kD) / etk (Uk: q(z, L) — 0y q(x, L))dw dk, (2.74)
-L

is a relation which will prove valuable for changing-type boundary value problems. For



28

CHAPTER 2. HARMONIC FUNCTIONS IN RECTANGULAR DOMAINS
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FIGURE 2.7: The contours U and D.

Dirichlet data the inversion of (2.61) yields

L Ry-L) _ o—k-L)) p@)(_
Q2(~T7y)=§ . 2kL _ o—2kL —<€ —€ )9 (—ik)

n (ek(ym _ e—k<y+L)) @<4><_ik)] dk .

Applying the previous analysis, the above equations yields

1o sinh k(y — L) N®) (k) — sinh k(y + L) N (k)
_ = i(z+L)k
@(,y) = o /_ € sinh 2k o
oo ; (4) — i — @)
n i / ez(w—L)k sinh k(y + L) M (k) Slnhk(y L) M (k) dk . (275)
2r J_ o sinh 2kL

From (2.75) it is evident that the Fourier transform of the function ¢»(z, y) displays a rapid

decay as k approaches large values. Indeed, as kK — oo the denominator e

2L _ p—2kL jg

dominated by e~2* for Rek > 0 and by —e?*! for Rek < 0. The nominator €¢'** on the
other hand is bounded in the lower (Imk < 0) complex k-plane for every z € [—L,0] and
in the upper (Im k > 0) complex k-plane for every z € [0, L]. Hence as k — oo,

eFy=L) _ g=k(y—-L) _eFy+L) L e=k(y=3L) Rek <0
’ k — oo,

e2kL _ o—2kL eF=3L) _ e=k(y+l)  Rek >0

eky+L) _ o—k(y+L) _ekH3L) 4 o=k(y=L) Rek <0
’ k— oo.

e2kL _ c—2kL eb—L) _ e=k(y+3L)  Rek >0’

Moreover, the exponentials el +L)k and e!(*~L)¥ are bounded in the upper (Im > 0) or the
lower (Im < 0) complex k-plane, respectively.
Thus, the line with endpoints —oco and +oco present in (2.75), can be replaced by either the
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contour U or by the contour D depicted in Figure 2.7l Hence can be rewritten as

L[ sinh k(y + L) N@ (k) — sinh k(y — L) N® (k)
- i(z+L)k
o) == o ), sinh 2k L dk
; 51 (k) — si _ (2)
i 1 g (z-L)k sinh k(y + L) M (k) sinh k(y — L) M®) (k) d. @78
2 Jp sinh 2k L

Adding equations and yields (2.65).

2.7.1 Existence of the Integral transforms and the Inversion formulae

The aforementioned operations are justified introducing the functional space L;(R) for

every function ¢ : R — C exhibiting exponential growth, i.e. equipped with the property
lg(x)| < Ce””.

Then [Sne72, (GPS06],

Theorem 2.7.2 (Existence of the Bilateral Laplace Transform) Let g € Lq(¢, FE), —o0 <
€ < E < 400, belonging to both L1 (R; e~ %) and L1 (R; e~ ?2%+). Then the bilateral Laplace
transform Q(x2; k) = BL{q(x1,22); k} exist and the integral

Qu%mz/’e*mwmwaml

is absolutely and uniformly convergent in the strip 01 < ¢ < 09

Theorem 2.7.3 (Inversion formula) Let q(71,22),e ¥ q(z1,72) € Cle, E] N Li(R), 0y <
¢ = Rek < 03. Then the following inversion formula for the bilateral Laplace transformation
1 c+iR
=_— 1 ko k) dk
q(z1,22) = 5— lim. L Q(x2: k) dk,

is valid for every interval [¢, E| C R.

Similar conclusions, due do the connection with the (bilateral) Laplace transform, are valid
for the Fourier transform.

2.8 A NOVEL INTEGRAL REPRESENTATION

Proposition 2.8.1 Suppose that there exist a_function q(x,y) with sufficient smoothness all
the way to the boundary, satisfying the Laplace equation (2.1) in the interior of the Square 2
defined by

Q= {|al < L, Iyl < L},
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with Dirichlet boundary conditions prescribed by equations (2.3). Then the solution q(z,y)
admits the following integral representation

o) =g [ (g0 180 ok

2w
1 ct+ioco (2)
tom [ O (T(ask) £ ()
T Je—ioco
. +o00
- 21/ M) (T (yik) £ (7)) e
T J -0
1 ct+ioo (4)
- Fu=D) (I(a:; k) 1S (n)) dk, kecC, 2.77)
T Je—ioco

where the integral operators Z(x; k) and J (y; k) are defined as

T L
I(x; k) = / dn k(=) —|—/ dne k=) e C, (2.78)
—L T
and
Y L
J(y; k) = / dr eF7=v) —|—/ dre *=v) kecC, (2.79)
- L y
respectively.

Employing the global relation (2.43) in the subdomains 23 and 24 depicted in Figure
2.4l with boundary conditions

o(L,7) = (), qle,~L)=q(~L,7) = q(z,L) =0 } , (2.80)
Oyq(x,—L) =0, q(—L,7) =0y q(x,L) =0
we derive the following equations
L .
/ e (Uk @1 (z,y) — 9y q(x, y))dfﬂ
-L
. Yy
_ ik / e7h(r=v) ( +ikf(r) - f}v”(T))dﬂ keC, (z,y) €Qs, (2.81)
-L
L .
/ eFihe (ak ai(z,y) — 9y q(z, y))dx
—L
L
— eFikL / k(=) ( ikt (r) — fjs,l)(T))dT, keC, (z,y) €y, (2.82)
)

where the solution ¢;(z,y) corresponds to the boundary conditions (2.80). Replace in the
former ¢ = 1 and in the latter 0 = —1. Subtracting the resulting equations, not only
eliminates the unknown function 9, ¢1(z,y), but also provides the Fourier transform for
the solution ¢ (z,y),

L oFikL ) )
/ 4 gy (w,y) do = = — Ty k) (£ ik () - 1O(), keC—{0}, @83)
—L



2.8. ANOVEL INTEGRAL REPRESENTATION 31

where the integral operator J (y; k) is defined by eq. 2.79).
The inverse of (2.83) gives

1 [t 1
a(ry) =5 / M0 g (i k) (ik f5) (7) + £ () ) k. (2.84)

Eliminating the unknown Neumann boundary data f IE,I) (7) in @84), with the aid of @Z83)*,
we find

n) = [ D (s @) ak

2 J_ o

+7/ eik(@=L) / elk(x_L)ql(gc,y)dm dk . (2.85)
T J -0 —L

As k tends to infinity, both eF(7=%) and e ~*(7—¥) tend to zero since 7 —y < 0 for 7 € [—L,y]
and 7 —y > 0 for 7 € [y, L], respectively. Thus, the integral operator 7 (y; k) is bounded as
a function of k in the right (Re k > 0) complex k-plane. Furthermore, since x — L < 0, the
exponential ¢'*(*~1) is bounded in the lower (Imk < 0) complex k-plane.

Assuming the change of the order of integration being permitted, the second integral ap-
pearing on the right-hand side of eq. takes the form

+o0o .
/ e*2@=L) g . (2.86)

o0

By deforming the line with endpoints —oo and 400 into a contour that begins and ends
in the lower (Imk < 0) complex k-plane, such that Imk — —oo at each end, the integral
yields a zero contribution since e k(z=L) jg analytic and bounded in Im k < 0.
Hence, becomes

. +oo
woy) = [ D (I0r0m) dk. 2.87)

21 J_ o
Repeating the above procedure in the subdomains {23 and {24 with boundary conditions
3
a(~L,7) = f5)(r), a(L,7) =q(e,~L) = q(z,L) =0
a;c q(LaT) = ay (1’, _L) = 82/ Q(:Ca L) = 07

we derive the relation

) +DO 5
gs(z,y) = — = / e“““*“(ﬂy;k) f;“)(r)) dk, 2.88)

—5 N

where the solution ¢s(z,y) corresponds to the specific boundary conditions described
above.

Similar, by applying the global relation in the subdomains {2; and (), depicted in
Figure with boundary conditions

g, —-0) = fPm),  a(Ly) =a(~L,y) = qn, L) = 0
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we derive the following equations

L
| et (£ikanty - 0wl
L

= / ) (k10 () + £ () )dn, k € C, (w,y) € (2.90)
"y

L
/ e"’“y(iiqu(%y) — Oy qz(%y))dy
L

L
= —e 7 / S0 (1D ) + 1P ) )dn, k€ C, (w,y) € 0, (2.91)
xT

where the solution ¢»(z,y) corresponds to the boundary conditions (2:89). The unknown
function 9, ¢2(x, y), is eliminated by adding equations 2.90)" and (2.91)~

L —okL
e
/ M gy (w,y) dy = S T(aik) (o k £ () + 7)), keC—{0},  @92)
-L

where the integral operator Z(x; k) is defined by eq. 2.78).

Evaluate equation for 0 = —1 to retrieve the bilateral Laplace transform for the
solution ¢o(z,y), provided that g2(x,y) is such that the integral is convergent for some
values of k. Then inversion implies the representation

ct+ioo
) =g [ ED T (0 - (P ) ak. @99

2im c—io00

The unknown Neumann boundary values fJE,Z) (n) are eliminated with the aid of (2.92)
evaluated at o = 1.
Eq. 2.93) then becomes

we) = [ (T ) ak

27 —14 00

1 c+ioo L
4+ ek(y+L){ / ek(y+L)q2(x,y)dy} dk . (2.94)
-L

2w c—i00

The exponentials appearing in equation are bounded in the lower (Im k& < 0) complex
k-plane. Hence, as k — 0o, the integral operator Z(z; k) is bounded as a function of k in
the lower (Imk < 0) complex k-plane. Moreover, as k — oo the exponential eF+L) tends
to zero in the left (Re k < 0) complex k-plane.

Interchanging the order of integration in the second integral appearing on the right-hand
side of eq. (2.94) we find

c+ioo

/ e2PWHD) g . (2.95)
c—100

By deforming the Bromwich line into a contour that begins and ends in the left (Re k < 0)

complex k-plane, such that Rek — —oo at both ends, the integral yields a zero
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contribution.
Hence, (2.94) yields

1 c+1 0o
q@(r,y) = 5/ ' eFw+L) (I(;L’; k)fg) (T)) dk, (2.96)

An analysis similar to the one described previously, applied in the subdomains {2; and 25,
with boundary conditions

Q(na L) - [()4)(77)7 q(L,y) = q(*Lay) - 4(77, 7L) =0
0. q(L,y) = 0, q(—L,y) = 9, q(n,—L) =0 } : (2.97)

reveals that )
1 c+1i oo

prs
where g4(x,y) is the solution corresponding to the boundary conditions (2.97).
Finally, adding equations (2.87), (2.88), (2.96) and (2.98) we obtain 2.77).

qa(x,y) = — eFu=L) (Z(a:; k) 1 (77)) dk, (2.98)

c—1i 00

2.9 CHANGING-TYPE BOUNDARY VALUE PROBLEMS

The Dirichlet-to-Neumann correspondence, i.e. the global relation implemented at the
boundary of the fundamental domain, can be used for the analysis of problems with
changing-type boundary conditions. For example, consider the following problem

oLy) =W, vel-L0 5 ALy =), yelo,1], (.99
q(z, —L):f,(f)(x), ze[-L,0 ; —0yqlz,—L)= ](VZ)(;U)7 z€10,L], (2.100)
o(~Ly) =), yel-L,0 5 —dwa(-Ly)=fPW). yelo,L], @101
q(z,L) = ,(34)(37), ze[-L0 ; Oyq(z,L)= 1(v4)(:13), z€0,L], (2.102)

where we assume that the functions f ,(Dj ) and f ](Vj ) are smooth and continuous at the corners
of the Square and also at the points (0, L), (0, —L), (L,0) and (—L,0).

It is a well known fact that, due to the linearity of the Laplacian operator, the solution
q(x,y) can be written as a linear combination of ”partial solutions” which correspond to
specific boundary conditions. Therefore, implementing the global relation @.43)*", with o

replaced by —1, in the domain ) depicted in Figure we obtain the following relation

L
/ ety <ikq1 (L,y) — 0x q1(L, y)) dy =0, (2.103)
-L

where ¢ (z, y) is a "partial solution” corresponding to given boundary conditions prescribed
on side 1 of the Square and zero boundary conditions on the remaining sides.

Splitting the above integral into one part valid in the interval —L < y < 0 and a second
part valid in the remaining interval and using boundary conditions (2.99) we find

L 0
Zk/ e ™ q(L,y)dy — / . e 9, qi(L,y) dy
o _

L 0
:/ ek fl(vl)(y) dy — ikz/Le_k'y f,gl)(y) dy. (2.104)
0 —_
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Introducing the variable z = e *L_ eq. (2.104) becomes the Riemann-Hilbert problem
01 (2) = P71 (2) = p1(2), 2€C, (2.105)

where

0

L
@f(z) = zk/ e g (L,y) dy, O (2) = /L e "o, ¢y (L,y)dy, (2.106)
0 —

and ¢4 (z) is the known function

L 0
p1(2) = / e £ (y) dy — ik / e £ (y) dy. (2.107)
0 —L

Note that ®] (z) is analytic as z tends to zero, where else ®] (z) is analytic as z — oo.
Moreover, &7 (z) — 0 as z — o0.

Employing the global relation (2.43) ", with o replaced by 1, in the domain (2 depicted in
Figure 211 for the ”partial solution” ¢»(z,y) corresponding to given boundary conditions
prescribed on side 2 of the Square and zero boundary conditions on the remaining sides,
we obtain

L
/ e ike (k g2(x, —L) — 0y ga2(z, _L)> dr =0. (2.108)

—L

Splitting the above integral into two parts and using boundary conditions we find
k:/ —ike 0o (z, —L) dz — / e %9, qo(x, —L) dx =

_/ ek 1) () k/ e~k 1@ () 4 (2.109)
0

Introducing the variable 2’ = e~ **L  eq. becomes the Riemann-Hilbert problem
O (2) — 5 (2) = pa(2)), 2 €C, (2.110)

where

0

L
T () = k/o e R go(x, —L)dz D5 (2) = / 3 e "% 9, qo(x, —L)dz, (2.111)

and (') is the known function

L
@z(z/)Z—/ e ke (g k/ ik ¢ () da . 2.112)
0

Note that @ (z') is analytic as 2’ tends to zero, where else ®, (') is analytic as 2’ — oo.
Moreover, ®, (2') — 0 as 2z’ — oc.
Repeating the above procedures for the sides 3 and 4, one is led to the Riemann-Hilbert
problems

DT (2) — B3 (2) = w3(2), z=e " (2.113)
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and .
OF(2) — 5 () = pa(2), 2 =eMFE, (2.114)
where
L 0
=ik / e Mas(Ly)dy,  P5(z) = / e ™9, q3(L,y) dy, (2.115)
0 —L
L 0 )
k/ gy (2, — L) da, <I>Z(Z’):/ e, qu(z, —L)dz,  (2.116)
0 —L

and ¢3(z), p4(2’) are the known functions

L 0
p3(z) = — / e 1P (y) dy — ik / ek £ (y) dy 2.117)

0
L
wa(2') = / etk 1 4) k/ —ikz (z)dz. (2.118)
0

The scalar Riemann-Hilbert problems (2.105), (2.110), 2.113) and (2.114) can be solved in
closed form (see [Musb3| and specially Appendix 2 of the reference given, since the bound-
ary of the fundamental domain (2 is a piecewise smooth contour).

The solution ¢(z,y) is given by adding equations and (274). Splitting the inte-
grals on the right-hand side of the resulting equation into two parts and given boundary
conditions (2.99)-(2.102), the unknown boundary conditions are obtained by solving the
Riemann-Hilbert problems derived in this section, and hence the solution ¢(z,y) is com-
pletely determined.

Remark 2.9.1 It is possible to obtain the solution q(z,y) in terms of a series instead of an
integral by using equation @2.11) together with the Fourier coefficients (2.12)-2.19).






CHAPTER

Gegenbauer functions”

3.1 SOME IDENTITIES SATISFIED BY THE GAMMA FUNCTIONS

In this section, the main properties of the I'—functions are introduced, which will be fre-
quently used in the sequence, without proof. Guided by the duplication formula

2270 (2) T (2 + 3) = V7l (22) (3.1)
it is straightforward to show, by replacing z with —z, that

I'(22) T'(—22)

r DTr(i-2)=4 3.2
(Z+2) (2 Z) T F(Z)F(—z) ( )
Furthermore, utilizing the well known properties
s
r 'l—=z)= , 3.3
(2) T( ?) sin zm 53
or, replacing z with —z,
T
'i—z) I'(1 =— 3.4
(=) T(1+32) sinzm’ (3-4)
and
F'(l4+2) =z (z2), (3.5)
it is easily shown that
s
r '—z2)=— 3.6
()T (-2)=———, 5.6)
from which, replacing z with 2z
s
'2z) '(-2z)= ———5—. 3.7
(22) I'(=22) 2z sin 2zm (3.7)
Replacing everything into (3.2) we find
T(z+4)Tr(t-2)=—"—! 3.8
(z+3) T (z-2) o (3.8)

*This work has been published as [Dosb|

37
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3.2 THE GEGENBAUER DIFFERENTIAL EQUATION
The second-order ordinary differential equation

d?w(z)

(1-2%) _(@a+1). G

dz

+rw+2N)w(z) =0, (3.9)

where v, A and z may be any complex numbers, introduced by Leopold Gegenbauer in
1875 [Geg75], is known as the Gegenbauer or ultraspherical differential equation and can
be seen as a particular case (1 = v) of the generalized Gegenbauer differential equation

2 2
(1-22) d;‘;gz) F (-2 —p— 1)zdfliz) + u(n-@mx% w(z) = 0.
(3.10)

The solutions of are
w(z) = ¢1 C(2) + ca D)(2) (3.11)

where C)(z) and D;(z) are known as the Gegenbauer or Ultraspherical functions of the
first and second kind of degree v and order )\, respectively. They are defined as [Erd53| p.
175,179, plus errata]

T'(v+2X) 1—2
A = _F| - 2 —: 1-— 2 .12
C(z) T+ TN ( v,V -+ )\,/\+2, 5 s z| <2, (3.12)
and
LT (w+20)T (N o v+22+1 v+2X 1
D)‘ :22>\ 1—2 V2)\F 1: — 1
v(2) T(v+A+1) (22) s g VTATLE )R>

(3.13)
applicable if v + 2\ # 0, —1,—2,..., and A is not zero or a negative integer. Slightly mod-
ified definitions as well as expansion formulas and addition theorems for the Gegenbauer
functions can be found in [DFS76]. If v is replaced by a positive integer n, the Gegenbauer
functions of the first kind degenerate to the well known Gegenbauer polynomials

3.3 AsSYMPTOTIC EXPRESSIONS FOR THE GEGENBAUER FUNCTIONS

Kummer’s formula

F(aaﬂa’y;z) = (1_z)aF(aﬂ’y_ﬂ7’Y;2i1>v |arg(—z)\ <m, (3.14)

together with the duplication theorem

1 1
F(?a,?ﬂ,aJrﬁJrQ;z) F(a,ﬁ,a+ﬁ+2;4z422> , (3.15)

lead to the useful relation

a+pB+1 1—=2 _ a a+l a+p8+1 1
F —_— =zF| = 1l——= . 3.16
<a7ﬁ’ 2 b 2 ) z (27 2 ) 2 ) 22) ( )
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Indeed, applying (3.14) to the right-hand side of we find
1 1 ,
F 2a,25,a+6+§;z =F a,ﬂ,a+ﬂ+§;4zf4z

1 1 422 — 4z

=(2z—-1)2F = S

Put 2z — 1 = —u to find

T 1—-u) ., 20 2a+1 2a+28+1 1
F<2a7257a+5+2a 9 >—U F(zv 9 ’ 2 7]- u2>7

which, by replacing 2«, 25 and u with «, § and z respectively, becomes (3.16).

Kummer’s solutions of the hypergeometric equation together with the fact that any three
of them can be connected by a linear relation with constant coefficients produces |[Erd53|
WG89]|

() T(y—a—p)
Ly —a)T(y = 5)
F(y)T(a+B—-1)
[(a) (B)
Employing the above formula to the right-hand side of 3.16), we find

F(aaﬂa’y;z): F(aﬂﬁaa+ﬁ_’y+1,1—z)

1=z PF(y—ay-By—a-B+11-2).

I a757a+5+1;1fz _ap g7a+17a+ﬂ+1;17i
2 2 2" 2 2 22
LTI 1 <a a+1 a—ﬁ+1.1)+1ﬂ(a+§+l)r(a;ﬁ)1
Ty = \27 2 7 2 ' 22 r(efhr(g) 2°
B+1 B B—« 1
Fl——,= 1,— . 17
X ( 5y g Tl (3.17)

Applying (317) to the definition of the Gegenbauer functions of the first kind (3.12), we
obtain

T'(v+A) v 1—-v 1
A= TN g wp (Y VA4 L=
Oy(z) F(V+1) F(/\) ( Z) ( 23 9 y TV A+ ’212)
T'(v+2X) sin v 1 v+22+1 v+42A
F(v+ A+ 1)T(A) sin(v + A\)m (2z)v+2* 2 T2

1
,V—|—)\—|—172> )
z
(3.18)

where equations (3.1), (3.3) and are used. For very large values of z, equations (3.18)
and (3.13) read as

T(v+A)
T+ )TN
I'(v+2X\)T(N) 1

T(v+A+1) (22)v+2N

CN(z) ~ (22)", z— 0 (8.19)

D) (z) ~ 2221 z — 00, (3.20)

as long as Re v is positive.
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3.4 THE WRONSKIAN FOR THE GEGENBAUER FUNCTIONS

In order to evaluate the Wronskian of the independent pair C2(z), D))(z), write the Gegen-
bauer differential equation for both the first and second kind Gegenbauer functions,
namely

(22 — 1)7‘12352(2) +(2A+1)z LC{?;Z) v (420 CNz) =0,
(2% — 1)d2§32(z) + (A1) 2 %:(Z) — v (v +2)) DMz) = 0.

Multiplying the former by (22 — 1)*~2 D}(z) and the latter by (22 — 1)*~2 C}}(z) and sub-
tracting the resulting equations side-by-side, we arrive at

i 2 ML dD;i\(Z) A dC’i‘(z) o
dz [( (O = - DI =) | =0,
which integrated once becomes
dD)(z) dC) () c(v; N)
Mz) —2L D) v = ’ 3.21
Cu (Z) dz V(Z) dZ (22 - 1)/\4_% ( )

where the function ¢(v; \) can be obtained by calculating the above expression for some
specific value of z.

Choosing the point at infinity where we can use equations and (3.20), it is straight-
forward to show that

I(v+2X)
) = 2
N =~
which replaced in (3.2]) provides the final result,
dD)(z) dC)(2) i1y D(v +2X) 1
cr v 5% v — pFi(A—3)7 3.22
v(2) dz v(2) dz ¢ ’ Lv+1) (1—22) 2 (3-22)

where the upper sign corresponds to Im z > 0 and the lower sign to Im z < 0.
A different approach to evaluate the Wronskian of the independent pair (C;} (2), D) (z)) )

where now C)(z) the Gegenbauer polynomial of the first kind of degree n and order A and
D)\(z) the Gegenbauer function of the second kind of degree n and order ), is described as
follows.
Changing n into n — 1 in the recurrence relation [WG89| p. 274]
(n+1)Cp 1 (2) —2(A+n)2Cp(2) + (2A+n — 1)Cp_(2) =0,

n

we obtain
nCN2)+ (2A+n—2)C) ,(2) =2A+n—1)2C)_,(2) . (3.23)

The Gegenbauer functions of the second kind D)) (z) satisfy the same recurrence relations
as the Gegenbauer polynomials C;(z) [Erd53, p. 179].
Thus

nDMz)+ 2 \+n—2)D) ,(2) =2A+n—1)2D) ,(2). (3.24)
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Multiplying (3:23) by D, ;(z) and by C}_,(z) and subtracting the resulting equa-
tions, we obtain

n(D)(2) CY_1(2)=Di1(2) CA(2)) = (2A+n=2) (DA, (2) Ch_y(2) = D)y (2) Choi(2)

(3.25)
Evaluating the above equation for increasing n*
n=2 2(D}z) C}z) - DA:) C(2))  =2A(DA(:) Co(2) - DA(z) (=)
n=3  3(D)(:) C3(2) - D3(:) C3(2)) = A+ 1)(D3(=) CR(2) - DY) C3(2))
— 24195 (D}(2) G (=) — Di(2) C(2))
n=4  4(D}(z) C3(:) = DA(:) €)= (2A+2)(DA(:) CA(:) — D3(=) CA(2))
= 22 251 93 (D} (=) G} (=) — DY) CR(=))

n(DA(=) A1 (2) = DAy (:) C(2)) = B2 (DME) Coe) - DY) CR(2) )

where (a),, the Pochhammer symbol defined as (a),, = F(Fa(t)” ) and

2\)n1 DA +n—1)

@ns | TN

so that (3.26) rewrites

n(DMA CLA() - DL CAE) = s (DY) G ~ D) CE))

(3.26)
The Wronskian of the independent pair (C;}(z)7 Dﬁ(z)) is

A > A 5
W,(Che). D) = ) S - e SR

which multiplied by (1 — 22) and using the recurrence relation
(1-2) £62:) = (n+ 22— DG, () — n2GA(2),
where G\ (z) any solution of the Gegenbauer equation, becomes
(1= 22)Wa = —(n+ 27 = ) (D)(2) Ch_y () = D)y (2) CA(2) ) -

Substituting (3.26) into the above equation we finally obtain

A z A z n
(1-22)(€2:) 2 - Do) ") - - S (2 ) - D) )
(3.27)

*For n = 0 and n = 1 we obtain 0 = 0 and C}*(2) = 2 z respectively.
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where we used (3.5).
A formula connecting D} (z) and C.)(z) similar to Christoffel’s relation between Q,,(z) and
P, (z) has been given by Watson [Wat38]
Dp(2) =C;(2) Dg (2)
n=1 ]
2

> (A+n—2m-—1)

m=0

R ACN
(22— 1)

(1= Nm 2\ +n —m)

(n - m)erl (/\)m+1

= C'V>L\—2m—1 (Z) )
(3.28)

provided that 2\ — 1 is not a negative integer and L”T’lj is the greatest integer which is less
n—1

then or equals to “5—.

For n = 1 equation (3.28) becomes

r'(2))
DM2) = CM2)DM2) — — 27
1(2) 1(2) Dy(2) (2 1) 3
Substituting the above expression into we finally find
dD)(2) dC)\(2) T'(n+ 2X) 1
CHMz) —2Z2 — DA nt = . 3.29
n(?) dz n(2) dz L(n+1) (2213 (3-29)

Replacing in (3.29) specific values of A, namely A = 0, %, % we obtain the Chebyshev,
Legendre or Gegenbauer functions of order % respectively.

Hence for,
A=0: CY() =Tule), DY(=) =Un(s)  \T() Un(2) = Un(2) Tul2) = — % =
A=1: CE(2) = Pu(2), DE(2) = Qu(z) Pal2) Qu(2) = Qu(2) Pal2) =~z
A=3 ,C2(2) D3 (2) — D} (2) Ci (2) = - 52042

3.5 THE GEGENBAUER FUNCTIONS OF THE FIRST KIND C,ﬁ‘(x) ON THE CUT —1 < = < +1

Consider equation (3.12) which is the fundamental representation of C)(z)

I'(v+2X) 1
_ VT EY e - ) z.
T(v+1)T (2N (”W+ AAT S

1—=2

CMe) = 5

),|1—d<2, (3.30)

applicable for general degree v and or- Im 2
der \. Following [Hob31]|, denote z — 1 =

pei® 2| < 1,s0othat 1 — 2 = —pe'?. In

the complex z—plane, as depicted in Fig- ™

ure [3] if z lies just above the real axis,
namely z = x +ig, ¢ > 0, |¢] << 1, then -1
¢ ~ 7. On the other hand, if z lies just be-
low the real axis, namely z = = + ig, ¢ < 0,
le] << 1, then ¢ ~ —7. Hence

l—z=—pe? ~—\/(1-x)2 42
=1 -2)2+2=/(1-2z)2+¢2

t Rez
‘ +1

FIGURE 3.1: The complex z—plane
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As ¢ tends to zero, (3.12) becomes

1—=x

) = .

r 2\
(v +2)) >F(1/,1/+2)\,/\+2;

T(v+1)T(2\) ) —l<z<+I1. (3.31)

The above expression is suitable to examine the behavior of C})(z) as z — 1~. Indeed, in
the limit z — 1~ (3.37) reduces to

(v +2))

Cl/’\(l):F(V—&—l)F(Q/\)'

(3.32)

Equation (3.3T) becomes cumbersome to work with as r — —17. Therefore we rewrite the
hypergeometric function on the right-hand side of (3.32) so that the argument becomes
%. This is achieved using the transformation [WG89, p. 160, eq. (4)]

T(Y)T(y—a-p)

F'(y—a)'(y—5)

F(y) T(ae+B8-7)
(o) T'(B)

F(a,B,7v;2) = F(a,B,a+B—7v+1;1—-2)

1=z PF(y—ay=By—a-B+1;1-2),
(3.33)

+

applicable if |arg(1 — z)| < , ~ is not zero or a negative integer and also v — a — 3 must
also not be an integer. Thus, (3.31) with the aid of (3.8), becomes

I'(v+2X) cos(v + \)m 1 14
Ao — _ Z.
@) = 5 o T Ny [ cosar L \THYTRAAT 5

—At+1
FrA+3)r(A=1%) (1+z ’ 1 1 314z

Flv+At =, —v—At=,-A+o—17
T T oy \ 2 (”+ toTvT Aty AT )

As z tends to —11 (3:34) reads

C(r+2\)  |cos(w+Nm T(A+3)T(A—3) 1+ T
lim C)(z) = + . 2/ lim
-1+ IF'(v+1)T(2)) COS AT F(—v)T(v+2)) zs-1+\ 2
(3.35)
or, more conclusive
T'(v+2X)  cos(v+A)7 1 1
-5 <A< 3
C(+1)T(2X) ~ cosAw ) 1
limHC,j\(m): (EDTED e ? 2, )\#n+§,n:0,1,2,....
T——
0 JA > %
(3.36)

From (3.35) it is seen that as # tends to —1F, CMx) ~ (1 +2) 2, X\ # n + in=
0,1,2,....
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As mentioned, when A # n + %, n =0,1,2,... 333) is not applicable and (3.35) also
does not hold. However, implementing [WG89, p. 167, eq. (8)]

I'(n)T Y
F(a,B,7;2) :m(l—@ ;

i T S (@n®
O e T e

X (1/J(a+k)+w(ﬁ+k) — Yl +n+k)—yv(1+k)+In(1 —z)) , (8.37)

forevery y —a— = —n,n =20,1,2,... (in the case where n = 0 the finite sum is to be
neglected) and o, 8 # 0, —1,—2..., we obtain from (3.37)

it (z) sinwr D (n) I (n+1) <1+x>””zl (—v—n)p (v +n+ 1) <1+x>k

T F'2n+1) 2 — EN (1 —n)g 2
n Fv+2n+1)T(n+1) (v +2n+1), (142 k
+(=1 F(V—Fl)F(2n+1)F(—V—n)F(V—|—n+1)kZ:0 K (n 1 k)l ( 2 )
><(1/}(—u+k)+w(u+2n+1—l—k)—w(l—i—n—&-k)—w(l—&-k)—i-lnl—;x). (3.38)

From formula (3.38) we see that, as x tends to —17 and v is not an integer, then, if n = 0,

1 il
C2(z) = P,(x) ~In(1+x), where else e () ~ (14+z)~™if n > 0, all becoming infinite.

3.6 THE GEGENBAUER FUNCTIONS OF THE SECOND KIND D () ON THE cUT —1 < < +1

Consider (3.I3) which is the fundamental expression of D;(x)

L Tw+20T0) 1\ /v42x v422+1 1

A _ o2X-1 L —

Dy(z) =2 Cv+A+1) \22 F\—— y VAL )R>
(3.39)

Expression may be used to deal with the segments z € (—oo, —1] U [+1, 4+00), but
is not suitable for the segment —1 < z < +1. This is true, since in the open interval
z € (—1,41) it is not possible to pin down a value for the argument arg z independent of z,
i.e. if z € (—1,0), then if z lies just the above the real axis (see Figure[31), z = x 4+ ig,e > 0
and |¢| << 1, the argument of z is arg z ~ 7. On the other hand, if z lies just below the real
axis, namely z = x + ic,e < 0 and |¢| << 1, then arg z ~ —7. Therefore, as ¢ tends to 0%,

we find
r=gx+tic=\V12 42T = 2 = gt
and
Z*U*Q)\ — x7u72)\ e$7,7r(u+2/\) )

If z € (0,+1), then, as £ — 0%F

Z—V—2/\ — $—V—2/\ 60 )



3.6. THE GEGENBAUER FUNCTIONS OF THE SECOND KIND ON THE CUT 45

This is why (3.13) is unsuitable for the segment —1 < x < +1 and some transformations
are needed. Using the transformation

F(avﬁv’y;z):(1_2)_(1F(a77_6a7;221)7 |arg(1—z)\<7r, (340)
on (3.13) we obtain
L, D(w+20) T (N _ 22 v+2X v+1 1
D)(z)=2"""1— 2 (2*—1) * F A1
v(2) T(v+Ar+1) (" -1) 5 g VTATET T E )
(3.41)

for every Re z > 0.

v42X

The restriction Re z > 0 is needed because of the part of the branch cut of (22 — 1) o2
associated with 22 < 0. However, the restriction can be dropped adopting the convention

_v42X _vt2X _v42)
that (22 —1)  ? isdefinedas (2 —1)" 2 (z+1)" 2 |, so that the only branch cut is
(=00, 1].
Applying then consecutively the transformations [WG89, p. 161, eq.(8)]
FrHIrB-—a), - 1
F(a,B,v2) =—"——S(—2)"*F(a,a—vy+1L,a— [+ 1;z
F'yYI@=p), 5 1
+ 5 (=2)PF(B,8—7+L,—a+1z7"), |arg(—2)| < T,
T ) ). larg(—2)

(3.42)

which holds only if & — 3 is not an integer, and [WG89, p. 179, eq.(9) substituting ¢ = IEZ]

F(a,ﬁ,a—kﬁ—ké;l—zz):F<2a,2ﬁ,a+ﬂ+;;lgz), (3.43)
to (3.41), gives
L(v+2\)T(A\) T (5-X) 11—z
D)(z) = 2 F- 2 b
v (2) SNGNOES v+ 20 A+ 5
royr(a—3 1 —
+22A—2M(22_1>2 ’\F<y+1,—v—2)\+173—>\§122) )

T 2

(3.44)

valid only if A — % is not an integer, i.e. A #n + %, n=0,1,2,....
In view of the definition for the Gegenbauer functions of the first kind (3.12), equation
(3.49) rewrites

A ].

D)(z) =——— {22/\1 sin A (T'(V)? CX(z) — 7TF v+ 2}

sin 27 'v+1)

(z*—1)7 Ci;g_l(z)} :
(3.45)

The latter holds for every A # 7. Solving with respect to C;(z) we obtain

91-2)

sin A\t (I'(A))?

T (v +2))

C;\(Z) = m

{ sin 2\ D) (z) 4+ 7 (22 -1z C;;gx_l(z)} , (3.46)
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which shows clearly that C)(z) and Cijrg\xq(z) are linearly independent, except if A is a
half odd integer. Furthermore, replacing in (3.I3) A with 1 — A and v with v + 2\ — 1 and

applying the transformation formula
Flo,B,752) = (1= 2) " PF (v —a,y = B,72) (3.47)
it is straightforward to show that
T T(v+1)

1-X _ ol—2X 2 _1\A—3 DX
D, o 1(2) =2 ST (v 1 20) (T ()\))2 (z2 = 1)""2D;(2). (3.48)

Consider z + 1 = p. €'?+ so that
P —l=(241)(z—1) =py p_e®to),

where py = \/(z +£1)2+y? and ¢+ = arg(z £+ 1). If z lies just above the real axis, then
¢_ ~mand ¢, ~ 0. Thus 22 — 1 = (22 — 1) €!". On the other hand, if z lies just below the
real axis, then ¢_ ~ —7, ¢, ~ 0 and 22 — 1 = (22 — 1) ™. Hence the values of D) (z) on
the cut from -1 to +1, are

AT A . _ 22—1 - 2 AT AN
" Dy (x +1i0) =i {2 sin Am (I'(X))” " C)(x)
['(v+2)) 211X —idr ~1-A
T v+ (1 -2z e C’V+2)\_1(z) , (3.49)

and

e~ DX (2 —i0) =

oy {22“ sin A (T'(A)? e O\ ()
11 m

T (v+2))
""Twry

1

(1 —a?)2 e AT C;+§A_1(x)} . (3.50)

Eliminating C;I;Afl(x) from (3.49) and implies
e DN +i0) + e DX & — i0) = 2271 (T (V)? CM (), (3.51)

if -1 < z < 41, and shows why the cut must be extended to the point z = 1 in the case of
the Gegenbauer function of the second kind. Equation (3.51) can be rewritten as

e DA (x4 i0) — e e DMz — i0) = 221 (D (V)? C)M(x) . (3.52)
Note that for A\ = %, eq. (3.51) reduces to the well known relation
Q. (z +i0) — Q,(x — i0) = —imw P, (x).

Furthermore, if we stipulate that in —1 < x < 41*

D)Nz) = —% <ei*” D) x +i0) — e ™ DMx — i0)> : (3.53)

*An alternative definition can be given as

i

D) (z) = 3 (e_i’\" D) (x4 i0) + ™™ D) (z — z'O)) .
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then D)(x) clearly satisfies the Gegenbauer differential equation (3.9). Moreover, D) (z)
and C)(z) are linearly independent of each other. The values of the Gegenbauer functions
of the second kind on the cut —1 < z < 41, are obtained by substituting and (3.50)
into (3.53)

1 L )
Dl))(x)zsin”\ﬂ{?}‘ Y(sinAr'(N)) C) (x)
(v 42X Loy i ol
‘”M“‘“Z)Q e Ciﬁxm}. (3.54)

To obtain the value of D{,\ () as x tends to 1~ we may use (3.31) of the preceding section
together with the transformation (3.47) applied to the second hypergeometric function on
the right-hand side of and thus the foregoing expression for D) (z) rewrites

_ysin A T (v 4 2)) (T'(V)? 1 1-=z
D ) — 923 —2 511 Fl— 2\ -
v(7) cosAr T'(v+1) T (2)) nivt ’)\+2’ 2

A3 1 13 1—x
F - 2\ .
) <u+/\+2, v )\+2,2 A; 5 )

(3.55)

—iAT

VT

1

T 1—2x

2 ST (T (A1) (

From we see thatas z — 1~

oo 2sinAm T (v 4 2)) (I (A)?

lim D}
o 1- v (@) cosAt I'(v+1) T (2))
e—'i)ﬂ'r 5 1 A_ﬁ
i—— 222 (AT (A= 23) i 3.56
T 2T I zh;f?_(”) . 359

which tends in general to infinity if A\ is an (half odd or not) integer greater than % In

particular, if A is a positive integer and v + 2] is not a negative integer then the first term
vanishes and D" (z) ~ (1 — 2)2 " If A = 0, becomes an indeterminate form which
can be evaluated with the aid of Weierstrass’ infinite product for the I'—functions. For
values of A in the open interval from —% to %, excluding zero,

lim D () = VrsinAr T (v +2)) I‘()\)l .
z—1- 2 cosAtT(v+1)T(A+ 1)

In order to study the value of D} (z) as z tends to —17, we apply (3:33) to (3.55) to find

DAy YE D42 Ty 1
v\ )=y I‘(u—i—l)I‘()\—i—%) cosZ A\

(sin A cos(v 4+ A)m — i e ™ sin(v + 2)\)7r>

1 14+a2) 2222 1
F(- 2 = - rANT(A—1
X < v, v+ A,A+2, 5 NG CYR NP 2)cos)\7r

, 3 1
+ie 7 cos(v + )\)7‘(‘) (1-— mQ)%_)‘ F (V +1,—v—2X+1, 5 A; —|2—a:> , (8.57)

< sin A7 sinvw
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where (3.47) is also used. As z tends to —1T the above equation becomes
_ﬁ Tw+2))T (N 1
) F(y—|—1)F()\+%) cos? \

2 ryr(- L

(sin M cos(v 4+ A\)m — ie” T sin(v + 2)\)7r>

COS AT z——1+

(sin AT sinym +ie M cos(v + )\)7r> lim (1+ x)%—* ,
(3.58)

which tends in general to infinity if A\ is an (half odd or not) integer greater than % In

particular, if \ is a positive integer and v 4 2n is not a negative integer then the first term
equals

—i(—l)”ﬁ I'v+2n) .

where else the second term tends to infinity and therefore D" (z) ~ (1 4+ )2 ™. If A = 0,
(3-57) becomes an indeterminate form. For values of ) in the open interval from —% to %,
excluding zero,
ﬁ L(v+2)\) T\ 1

2 T(wv+1) F()\+%) cos2 \w

lim D) (z) =

z——1+ 7

(sin A cos(v+N)m—ie AT sin(v+2/\)7r> .

Solving (3.54) with respect to the Gegenbauer functions of the first kind C))(z), we obtain

CMa) =222 2T Ly
sin A\ (T'(\)
I'(v+2X) 1

+ i 21T (11— rCl) (z) (359

L (v+1) (I'(N)*sin® Ar

from which it can be seen that C;)(z) and Ci;;‘)\fl(x) are linearly independent on the cut.

For positive half integer values of A, namely A\ = n + %7 formula reduces to

n+i F'v+2n+1) o aal
Opt2(z) = (—1)" = 1-22) "2 (@ (3.60)
(x) =(-1) QQnF(VJrl)(F(nJF%))g( ) +on (@)

and for this values of \, C;/ +2 (x) and C;f;;% () become linearly dependent.

In order to study the behavior of D;)(z) for A = n+ % as z tends to +17, we first observe
that (3.54), in view of (3.60), becomes an indeterminate form %.

Hence, (3.54) for A = n + % reads

1 1 )
DLH-Q — 1 22)\—1 AT (O C’)‘
(@) Aiﬂ;simm{ (sinAmI'(A))" Cp(x)

) M _ 2VE =X —idw 1=
Z7TF(y+1) (1 =) € Coiona(@) o (3.61)

Applying L’ Hospital’s rule and utilizing the property
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where (z) is the logarithmic derivative of the Gamma function, we find

% <22“ (sinArT ()’ 03(x>>

— 92n (F (n+ %))2 (21n2 +2¢(n + %)

A=n+1

(v +2n+1) (T (n+ 1))
T(v+1)T(2n+1)

(—v)k (v + 20+ 1)y, <1 - g;)k 5.62)

+(n+1) — 20(2n + 1)) Ol E () 4 220

xi<2¢(V+2n+1+k)—w(n+1+k)>

= El(n+ 1) 2
and
d /. Tv+2)) 2\1-A —idm 41— e D(v+2)) 2
_ I 1_ 3 VAT — AT N T _1 1_
N <z7r O (1—2%) e C,ion1() iTe RS n(l—z%)

—im 224 () + (A — L)+ 20(—r — 20+ 1) — (3 = \) + 2770082/\7T> (1— 22)32

iAm g2A—2 sin 2\

\/E
xz(¢(§—A+k)—2¢(—y—2A+1+k)>
k=0

TAT(A-1) (1-a?)3:

1-A -
x O, oy 4 (z) —ie 2

v+ 1Dp (v =22+ 1) (1—35)’“.

LG = Ak 2
(3.63)
From the theory of the I'—functions (and therefore also for the 1)—functions) it is known
that ¢(—n) — oo for n =0, 1,2,... . Hence, utilizing the property
(1 —2)=¢(z) + meot zm, (3.64)
the term 2¢)(—v—2A+1)—1(2 —\) becomes 2¢)(v+2X) —h(A— 1) +27 cot (v+2\)r+ 7 E24T
and
d (. I'(r+2)) 21X _—idr 1A i L 423 2
dA('Lﬂ'IW (1—x )2 (& C”+2>\_1(x) = me m _ln(l—x )

—im 4+ 2In2 + () + 2¢(v + 2X) + 27 cot(v + 2A)7 + 7 cot /\7r) (1- xQ)%*)‘ Ci;;‘)\_l(:r)

. 22)\—1 N
+ie T 7 sin Ar sin(v + 207 T (A) T (v 4 2)) (1 —2%)2=*
™

> W+ 1D)RT (—v—2X+1+k) (1—z\"
xkz_o(z/z(g—)\+k)—2z/;(—u—2)\+1+k)> HT(E A+ h) ( 5 ) .

(3.65)
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Putting everything together we find

227171

D) = = (C (n+3)’ ( In(1 = a?) —im +20(2n +1) = (n+ 3) = p(n+1)

22n—1]_"(1/+2n+1) (F (n+%))2
i T(v+1)T(2n+1)

1
+2¢(v+2n+ 1) + 27 cot 1/7r> e (x)

Xi(2w(V+2n+1+k)—¢(n+1+k)> (=)k (v+2n+ 1)y (1—:1:)’“

P El(n+ 1)y 2
2n—1 L ) 0 5
—ﬁsmva‘(Vﬁ—Qnﬁ—l) U(n+1)(1-a?) ”Agﬂ;kz_()(w(g—wrk)
v+ 1T (= — 22+ 1+k) (1—x>k
—2Y(—v—2\+1+k 3.66
vy 0 HT (G AT k) 2 (5.66)
As mentioned, (—n) — oo forn = 0,1,2,...,and lim w(% — A + k) makes sense only

A—n+3
if K > n — 1. Thus, splitting the last of the series into two parts, one with index counting
from zero to n — 1 and the other from n to infinity, i.e.

we merely notice that the second series behaves properly, where else the first one needs
further manipulation. Employing (3.64) we find

V(E - AN+k)—2p(—v—2A+1+k)
=YX — 1 —k)—2(v+2X— k) + mcot(A — & — k)m — 2 cot(v + 2X — k)7
and as A tends ton—i—%

lim (2 —A+k)—2¢(—v —2X+1+k)

/\~>n+%

=¢Yn—k)—2Y(v+2n+1—k)+mcot(n —k)mr —2rcot(v +2n+1— k)7,
valid if k£ < n. Furthermore, making use of (3.3) it can be shown that

1 in(n — k
[ g— _ S =BTy
Aont i (2= N+ k) m
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Finally

22n71

D,T/H_%(.T) — (T (n+ %))2 <ln(1 —2%) —im+2(2n + 1) — h(n + 3) —¥(n+1)

™

92011 (v +2n+1) (T (n+ 1))

+2¢(v + 2n + 1) + 27 cot mr) cnts (7) —

T Fv+1)T'(2n+1)
> (e (v+2n+1), (1—2\"
><;<2w(u+2n+1+k)—¢(n+l+k)> ISR ( 5 )
22n 1 7n”_1 (V+]-)k
— (=" T sinval (v+2n+1) T (n+3) (1-27) ;(fl)km
k n—
XI‘(—V—Qn—i—k)(l;x) - 721_\/; sinvrT(v+2n+1) T (n+3) 1+z)™"
> v+1+n)(v+1),I'(—v—n+k 1—z\"
xz<¢ (k+1) — 20(— yn+k)>( )’“(k!(nlk)!( )( . )

(3.67)

or, applying the relations in section [3.1] the latter can be simplified as

2277,—1

™

(T (n+§))2 (—1n(1—x2)—@7r+2¢(2n+1)—¢(n+;)—zp(nﬂ)

+2¢(u+2n+1)+2motm>C"+2(3;)_22:1(”') (T (n+ 1))

S (2 - w<n+1+k>) s ()
+(1)"2%ﬁlr(u+2n+1)r(n+ (1—a?) > kl'/F+1+;n:rk1__1,3; (1;x>k
+2;E1F(”+2"+1)F( (1+2) n§< 1) - 29(~ V—n+k)>

v+1+4n)@+1), (1—m>k,

En+k)!T(wv+1+n—k) 2 (3.68)

where the finite series is to be neglected if n = 0.

From ( we see that if © —> 1, Dn—s_2 (z) tends to infinity in general. In particular, if
n = 0 and by the fact that Cl, (1)=P,(1) =1, Dé(x) =Q,(z) ~In(l — z) and for n > 0,
Dyte (z) ~ (1 — )~ ™. Repeating the aforementioned procedure in the case where z tends
to —17, one obtains D2 (z) = Q,(z) ~ In(1+=z) if n = 0 and D:,H%(:z:) ~(1+z)"™ifn > 0.
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3.7 SOME RELATIONS SATISFIED BY THE GEGENBAUER FUNCTIONS f

The Gegenbauer differential equation does not change if we replace v by —v—2\ or z by
—z, and therefore it has solutions C*_,,(z), D ,,(2), C)(—2) and D) (—z), as well as
C)(z) and D)(z). Since every three solutions of a second-order linear differential equation
are linearly dependent, there exist certain functional relations between the solutions just
enumerated. The simplest such relation is the formula

sin(v +2\)7

C, on(2) = — C)(z), (3.69)

which is easily proven by the definition of the Gegenbauer function of the first kind (3.12)
and the symmetry property of the hypergeometric function

F(a,B,7v;2) = F(B,a,7;2)

To obtain a relation connecting C)(z), Dj(z) and D*  ,,(z) we assume temporarily that
z > 1. It follows then that

sin vm

sin vm

(T'(A)? sin(v 4 A)

CHMz) =272 - (D{,\(z) — Di,,_g,\(z)) . (3.70)

Indeed, utilizing formula (3.18)
L'(v+A) v 1-—v 1
O i S AV ) YA 2 N (e S P 1
() 1“(1/+1)1“(/\)(Z) 3 g VAT

T(v+2)) sin v
Tw+A+1)T(N\) sin(v+ A

F2A 1 v+ 2) 1
22) 2 F (X 1 —
)ﬂ_(Z) ( 2 ) 9 7V+)‘+ 7Z2>

we notice that the second term on the right-hand side of the above equation can be rewritten
as

T(v+2)) sinvr o v+22+1 v4+2X 1
22) VR A+l =
T EAT D) TO) s+ r 2 2 g VTATLS
1 1 i
SIMPT DAz, (3.71)

T 22l (1" ()\))2 sin(v +\)m "

where we used relation (3.13)

_o 1 DOV T o ypoon o (VH2AH1 v 422
F(v+A+1) 2 72

Replace in the latter expression v with —v — 2 to obtain

Dy(2)

1
,V—l—)\+1;2) . (8.72)
z

4 ()TN v 1—-v 1
DA =0t o T () F (-, ——, v —A+1= ). 3.73
71/72)\(2) F(—V— A+ 1) ( Z) 27 2 y TV + 7Z2 ( )
Employing the very useful relation (3.4) satisfied by the I'—function we obtain at once
L(-v)T'(\) T AN T(v+ ) sin(v+ N)rm
L(-v—A+1) I'v+1)sinvr

TBased on section 7.5 of |Leb72]
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and the foregoing expression for D* _,, () reads

4T+ AT () sin(v+ N)r v 1—v 1
D? = 2V F(—=, —,—v—A+1= ).
71/72)\(2) F(V+1) sin v ( Z) 27 2 , TV + 7Z2
(3.74)
The first term on the right-hand side of (3.18) becomes now
T'(v+ ) v i1—v 1
A () F (-2 A+ 1
Tt 2 ( 3 o VAT ’22)
1 1 sin v N (2)
22l sin(w+ N)r TN
and (3.18) becomes (3.70).

Note that for A\ = % we obtain the known expression

Pu(2) = = tanvr (Qu(z) = Quv ().

Formula remains valid for all z cut along (—oo, +1], since in this region both sides
are analytic functions of z.

Another relation between the solutions of enumerated above, can be derived assuming
temporarily that |z| > 1 and | arg z| < 7. Then formula gives

D)M—z) = eF2TFWT DAY w4 2X£0,-1,-2,..., (3.75)

where the upper sign corresponds to Im z > 0 and the lower sign to Im z < 0.

Using the principle of analytic continuation, we can drop the condition |z| > 1, thereby
establishing the validity of for arbitrary z in the plane cut along (—oo,+1] and
arbitrary v + 2\ #0,—-1,-2,... .

Replacing z by —z in which combined with yields

1 sin vw

(T'(A)? sin(v + \)w

C{,\(—z) =21=2A (eﬂ”‘” etivT D,j\(z) — T D)‘VQ)\(Z)> . (3.76)

Eliminating D* Loy (2) using gives

922X sinvm

v 2
(I'(N\)

The upper sign is chosen if Im z > 0 and the lower sign if Im z < 0. Equation (3.77) shows
the nature of the singularity of C)}(z). Unless v is an integer or zero, C;)(z) has a logarithmic
singularity at z = —1. In the case where v is an integer n, then (3.77) becomes

CHM—2) ==+ e DA (2) + T N (2). (3.77)

Co(=2) = (=1)" Cp(2). (3.78)
As z approaches the real line it follows from (3.77) that

o992y Sinvw

) e DX (x4 i0) = C) (—x) — e ™ C) (), (3.79)
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o222 sin v
(' (A)*

Eliminating le‘(—x) from and recovers (3.51).

In order to obtain a relation which connects the Gegenbauer functions C’i‘, Dﬁ and D* U9\
on the real line, similar to (3.70), we work as follows.

As seen, is valid in the whole complex z—plane. Assume that z approaches the real
axis from the upper bank. Then becomes

e DY@ — i0) = O (=) — €7 C)(x). (3.80

sinvm

(T'(A\)? sin(v + )

CMx +ie) =22 <D§(x +ie)— DY, o\ (z+ ie)) : (3.81)
™

As ¢ tends to zero and since C) (z + i0) = C)(x), the above relation rewrites

(T'(A)? sin(v + A)

Similarly, let z approach the real axis from the lower bank. Then as € — 0, becomes

Cw) =212

(Dﬁ(x +i0) = D, o\ (z + iO)) . (3.82)
e

sinvw

(T'(A)? sin(v + A)

CXNz) = 21— - (D;\(x —i0) = D, oy (z — iO)) . (3.83)

Multiply equation (3.82) throughout —i "*™ and (3:83) by £ ¢~**". Adding the resulting

equations and taking into account (3.53) yields

sinvm

(T (M) sin(v + A)

sin A\ C) () = 21722 (D{}(:c) - D’\UQ,\(:K)) . (3.84)
™

3.8 SERIES REPRESENTATION OF THE GEGENBAUER FUNCTIONSj;

To derive expansions of the Gegenbauer functions which hold in the part of the cut plane
where |2| < 1, we first note that the substitution ¢ = 22 transforms the Gegenbauer
differential equation into

t(1— 1) dz;(t) + (; ~(+ l)t) dlé’t(t) - (—%) (g + A) w(t) =0, (3.85)

which is a special case of the hypergeometric equation

d? d
t(lft)—g+('yf(a+ﬂ+1)t)—ufaﬂu:0, (3.86)
dt dt
corresponding to the values

v v 1
a X B 5 tA =35

The general solution of for |z| < 1 can be written in the form [Leb72] p.163, eq.(7.2.6)]

B ' v v+22 1 4 . l-v v+2X+1 3 ,
w(z)-A(u,A)F( 5’5 ,2,z>—|—B(1/7/\)zF< 5 5 ,2,2), (3.87)

¥Based on section 7.6 of |Leb72]
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where A and B are arbitrary functions of the variables v and A. In particular, if the
values of these functions are chosen to be A = C}(0), B = %Cﬁ(z)’ , then w = C2(2),

and to obtain the desired expansion, we need only calculate the values of the Gegenbauer
functions C)(z) and its derivative at the point z = 0.
With this aim, we set z = 0 in the series (3.12), obtaining

I'(v+2X)) 11
B N i AV 1 (O NN+ =
T(v+1)T (2N ( vt 2, +2’2>

[(v+2)) *i(_y)n (v+2X\), 1

C(0) =

= — 3.88
T+ & a(Ar 1), 20 (3.88)
where (), is the Pochhammer symbol defined as (a),, = F(FOE:)" )
Thus,
C}\(O)__sinmr NZS ff(n—u)F(n—Fu—l—Q)\)i (3.89)
v o T 2227110 (N) — n!F(n—&—)\—F%) on’ ’

where we employed formula (3.3) together with the duplication theorem (3.I) from the
theory of the I'—functions.
In the sequence, consider the Beta function B(xz,y) defined as

1
B(z,y) = / t* 1 (1—t)»"tdt, Rex >0, Rey>0 (3.90)
0
which can be, more conveniently, expressed as the ratio of I'—functions
I'(z) T'(y)
B(z,y) = ="~ 3.91
(@,9) = ¢ @ty (3.91)
Let x +y equal to n + A\ + %, so that (3.91) becomes
I'n—v)T(v4+A+2
B(n—u,l/—f—)\—i—%): ( ) ( 2), n=0,1,2,.... (3.92)

L(n+A+3)
In view of equations (3.90) and (3.92), yields

. +00 1
\ sin v N3 F'(n+v+2)) / 1 paA_l
= — 1— 2
¢ (0) m o 222717 () Z 20pIT (v+ A+ 1) Jo ! (-1 de

n=0

. 1 —v—2\
__sinvw F(u—|—2)\)1 e / vl (1 — gyrac 1_£ at.
T T(v+A+3) 22710 (N) Jo 2

(3.93)

where the reversal of the order of summation and integration is justified by an absolute
convergence argument.
The last line of the above expression is obtained employing the binomial series

+oo

-7 (T)ﬂ n

1=2)7"=>" LA =F(n1L2), |2 <1,
n=0
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where 7 is an arbitrary variable (complex or real) and

LA (T)n
n n! ’
are the binomial coefficients.
With this in mind, equation (3.93) becomes

Csinvr T'(v+2)) NS

1
t
cMN0) = /t—”—l 1—t)yA-2 2\ 1,1 = ) dt,
V() T F(V—F/\—F%) 22>‘71F()\) 0 ( ) v+ 9

which is handled by means of the Beta function (see, e.g. [GROO, pp 806-807]).
A more convenient way is to employ the following summation formula ([WG89, eq.(3),
p- 185]) based on Kummer’s formula

1 14+a+p
l+a+p 1y TGS )
F a’ﬁ’T;i = 1 .

Hence, (3.88) rewrites

T (v +2)\) VAT (A + 1)
T(v+1) T2\ I (15%) r(%)

C(0) = (3.94)

Since both sides of (3.94) are entire functions of v, our result holds for arbitrary values of
v. Using (3.3) we can write (3.94) also in the form
T(v+20) T (H) T (A+3) v

CH0) = - 3.95
v (0 VAl (v+1) T (20 T (By) “° 7 (3.95)

Once we have found C;(0), we can easily deduce <= C;'(0) by using the recurrence formula
d
(1—2%) e CX2)+vzCp(2) — (v +2X—1)C)_1(2) =0,
z

obtained, relating the Gegenbauer functions of the first kind C}(z) with the associated
Legendre functions of the first kind P#(z) via

pLw+p+1) T(1—2p)
F'v—p+1)T(1—p)

and employing the recurrence relation

(2175l (),

P#(Z):2 v+p

(2 1) S PL() = vz PE() — (v + ) PU ()

This gives

d

5 000 = +22-1)C)4(0)
T IETasD v
_ ST ) F(;\) I‘(”J“22>‘2) 51117, (3.96)
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where we take account of formula (3.5).
Combining (3:87), and (3.96), we obtain the following series expansion of the Gegen-
bauer function of the first kind, valid for |z| < 1 and arbitrary v

C)(2) =

Tw+20) D () T (A +1) mF( v v42X 1 Z2>
VAl (v+1)T (2)\)1“(””;”) 27 2 2
PTv+20)T(5)T(A+31)  wr (1—u v+20+1 3 2)
” sin — z F , , =z, (38.97)
VAl (v) T'(2)) I (£522) 2 2 2

which, making use of the duplication formula (3.I) reads
I'(v+42)) T (&2 22X 1
C)(z) =2'2 ( ) I 221 - sF< vy ,22)
)T (v +1) D (22 © 272 72

r 20 I' (3 -
421722 v +2%) (22))\ s'anF<1 V,V+2)\+1,3;22> .
L\ T (v) T (&) 2 2 2

(3.98)

The corresponding expansion for the Gegenbauer function of the second kind is obtained
from (3.77) with the aid of (3.98). After simple manipulations we arrive at

, e TV | T(v+2)) I (2 v v+2) 1
+idT A _,Fis _ Z.52
e D;(z) =e 2 |TwrT (u+2A+1)F 5 5 197
2)\) T (% -
v+ = A2)) F<1 v u+22/\+172722)]7 (3.99)

where |z| < 1, and the upper sign is chosen if Im z > 0, and the lower sign if Im z < 0.
A formula of practical interest is the series expansion of D) (z), obtained from (3.53) and
(3.99)

L(v+2X\) T\ (%) vr l—v v+2\+1 3
D) (x) = ” 22 cos —ax F ) R
2T (v) T (42) 2 2 2 2
T(v+2\) T (\) (&2 2\ 1
_TE+2) TR 2£21) i F( vy A7 ,x2>, (3.100)
20 (v +1) T (F2RH) 272 72

for every —1 < & < +1.* From equations (3.98) and (3.100) it is straightforward to show

*Utilizing the alternative definition for the Gegenbauer functions of the second kind
D) (x) = 3 (e—m D) (x +i0) + ™ D} (z — iO)) )
introduced in section [3:6] the series expansion of D;}(z) yields

N _,F(V+2)‘)F()\)F(LJQF1) v v vr+2X 1 4
D;(z) =i 0s + 2\ |7 F s , =T
QF(V+1)F(%)‘+1) 2 2 2’

Tw+22) T (NI (% 1— 2 1
+i ( )T (2) sin(z+2)\)7er( V77V+ At 7§;x2> .
2T (v) T (“22) 2 2 2
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that

\, .\ dD)(x) S dC) () _T(v+2))
C)(x) dr D (z) de |~ Teo+1) (3.101)

Furthermore, we have from section [3.4] that the Wronskian of the independent pair
(C) (), D) (w)) is

C(v; )
(1 —a2) 3’
where the unknown function €(v; \) may be determined putting 2 = 0 and using (3101).
Thus, we obtain

W(C(x), Dy(x)) =

\, .\ dD)(x) S dC)(z) T (v+2) 1
R p e e v N O (1— 225 (3.102)

3.9 ASYMPTOTIC EXPANSIONS FOR THE GEGENBAUER FUNCTIONS

To obtain the asymptotic expansion of the Gegenbauer functions, the clue lies in rewriting
the hypergeometric function in such a way, so that v occurs only in the third parameter .
Starting from the Gegenbauer function of the second kind

LT w+2))T (V) e v+204+1 v+42X 1
D}\ :22)\ 1 2) v 2)\F by 1: —
v(2) Fv+Ax+1) (22) 2 T2 vEAt "22) 7
and applying successively the transformations (3.47) and [WG89| p. 183, eq.(15)]
1 Vvi—-z-1
Fla, = =1-2)7F 20,2y —-2a—1,y; ——— | ,
<aa+272> (1-2) (a'y @ ~ 2m>
we arrive at
ST @w+2X) T Y —v=2A
DM () —or 1 2 _q)2 ( 24 )
y(z) F(V+A+1> ('Z ) < +z
V22 —1—
X F(1-MAv+a+1 o =2, (3.103)
2vz22 -1
Let z = cosf £i0 to find
_ a2 T TE+2y) o 6+] +ieT¥
D (cos i 0) = 2271 FILEANTS P (1 A\ v+ A+ 1
v (cos0£i0) (sin@))‘f‘(y—l—)\—l—l)e AV AY " 2sin6
(3.104)

where the upper sign corresponds to Im z > 0 and the lower sign to Im z < 0.
Substituting (3.104) into (3.5I) we immediately obtain the asymptotic expansion for the
Gegenbauer function of the first kind C)(cos )

-
emilve-2] gy MAVEAFT E
2sinf

1 T (v +2))

A _
Cy(cosﬂ)—yr(/\) (sin0) T+ A+1)

R
welome-2 ] p (1 a1 L
2sin 6
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Expressing the above result in terms of the hypergeometric series, we find

21-X T(v+2)) <X (1= N)n(N)
v (cos6) r'(\) (sin9)>‘ Fv+A+1) ;n!(u—l—)\—f—ln@sin&)"
X COS (1/+/\+n)97>\+n7r , e<l<m—eg, (>0). (3.105)

When Rev — o0, the series on the right-hand side of is the asymptotic expansion
of C))(cos #) for fixed .
Rewrite as

Mooy _ o1—x L +2)) 1 cos | (v A 1
C(cos ) = 2 r(u+A+1)r(A)(Sma)Al {( + )0 2}“’)(”)],

e<f<m—e, (€>0). (3.106)

Furthermore, from the asymptotic expansion of the I'—function

M:Vafﬁ |:1+O(1):|’ |arg1/\<7r,
14

I'(v+8)
we have r( 22) '
WA 1
Tw+r+rl) {“O(V)]» largy| <, (3.107)
and therefore
1 vyl A 1
Ch(cosf) = ———— (3 COS[V+)\0—]+O(),
(c056) T'()\) (sinf)* (2> ( ) 2 v

e<f<m—eg, (e>0), |agy|<m. (3.108)

Also, substituting (3.104) into (3.53) we find the corresponding asymptotic expansion for
the Gegenbauer function of the second kind.

D)} (cosf) = — 271 LY Tr+2y) io ' (L =X)n (Mn

(sin)* T (v +A+1) v+ A+1),(2sind)”

n=0

n—+ A

sin{(u—l—x\—i—n)&— w],e<9<7r—s, (e>0). (3.109)

Employing (3.107) the above equation reduces to

D) (cosf) = — (:;rfg/\ (2v) L sin [(u + )6 — W;} +0 (i) ,

e<f<m—e, (6>0), |argy|<m. (3.110)

The corresponding expressions for Rer — —oo can be determined with the aid of the
symmetry relations (3.69) and (3.70).
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More specific, substituting (3.1035) into (3.69) we easily obtain

ysin(v + 2071 T (v + 2)) 1

c? ) = —2'~
2, —2x(cos0) syt (v +A+1) T()) (sinf)

A+n

cos |(v+A+n)f —

|, e<f<m—g, (¢>0).

“+o0
(1 — /\)n (/\)n
<D W+ A+ 1), (2sing)"

n=0

(3.111)

or, in a more compact form
1 v\ 1 sin(v + 20w A 1
A ) — z . _ A =
C2,_5x(cosb) Ty (ein 9)/\ (2> - cos |:(V + )6 5 } +0 <1/> ,
e<f<m—eg, (6>0), |argy|<m. (3.112)

In order to obtain a expression for the Gegenbauer function of the second kind, replace v
by —v — 2 in (3.103)

psin(v+ )7 I'(v+ A A) o, Y 5 RSN
P BN TGN UN (o_y (/5

/72— 1 —
xFlAr1 N v_a+1, Y22 (3.113)
2vz22 —1
Let z = cosf =+ i0 in the foregoing equation to find
. sin(v+XN)m T(v+A) T'(N) ; EPY
DA 04i0) = — A1 sin(v i () 0+ 52
—u—2x(c0s9 £ i0) sinvr T'(v+1) (sinf)* ¢
s Fif
><F<—A+1,A,—V—A+1;i“?) . (3.114)
2sind
Substituting (3.114) into (3.53) with v replaced by —v — 2\
D, 5\ (cosh) = —% (€™ D2, _5\(cosf +i0) — e ™ D, (cosf — i0))
_ s T TN T = (1= Nn(Mn
B sinvr T'(v+1) (sinfh)> nl(—v—=A+1), (2sind)"
3A
X sin (V+)\—n)t9+n+ w], e<f<m—e, (€>0), (3.115)

or

D,y (cost) =

—Sin;”nt;)” (SFIH(;;A (2v)* L sin {(1/ + )0+ 3?} +0 (i) :

e<f<m—e, (>0), |argy|<m. (3.116)
Note that, due do the factor ﬁ, equations (3.105), (3.109), (3I111) and are

unsuitable in the vicinity of § ~ 0,7 for every Re A > 0. To overcome this obstacle, an
analysis seen, for example in [Mac99| Mac14], is in order.
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3.10 EVALUATION OF THE LmIT (1 — 22)™ % C}(z), m € R as x TENDS TO £17F

From the definition of the Gegenbauer functions of the first kind (3.12) on the cut, we
obtain, by differentiation with respect to the argument

d 1 Tw+2x+1) 31—z
— C)(x) = Fl-—v+lLv+2 X+, A+ —— 3.117
1z @ =5 Ty <”+ AT LA ) (3.117)
= 2\CM 1 (2)
where we used the property
d
dzx ¥

together with formula (3.6).
As 7 tends to 17, the latter expression, multiplied by a factor (1 — 22)™, m € R, becomes
1 Tw+2x+1)

d
: _2ym A _ . _o2\m
zlg?f(l ) dx ¢ (@) 22+1 T(v)T(2N) xhj?f(l z)", (3.118)

from which, if v 4+ 2 is not a negative integer

d 0 Jif m >0
: 2\m A _ 1 T'(v+2X+1) . o
%) ,if m <0

Employing the transformation formula (3.47), equation (3.117) yields
223 D(v 421 +1)

d o — Y 1 1., 31—z
@C"(m)_2>\+1 T T2V (1+4+2x) F<V+)\+2, v )\+2,)\+2, 5 )

As 7 tends to —17 and bearing in mind that

P(y)T(y—a—p)
T(y—a)T(y=8)

the above equation, multiplied by (1 — 2?)™, becomes

F(a,B,v;1) =

Re(fy—og—/b’)>0,

: 1y)2
%Sln v (]-—‘(A + 5)) lim (1 + x)T)’L—A—% . (3120)

d
: _2ym S A — 9m+A—
lim (1 =27 dz Cylz) =2 v L(2\)  z—-1t

r——1*

For fixed, real values of A greater then —% it is straightforward to show that

1 0 Jdf m—A—4>0
Li{rlﬁ(l—a?Q)mEC;\(x): 22“1*15'“1%5321)12) Af m—A-1=0 . (3121
%) ,if m—)\—%<0

1
As an example, consider A = 1. For this particular choice C? (z) = P, (z) and @.12]) gives

d 0 Jf m>1
li 1—2)™—P,(z) =< Zsi i =1 . 122
$_>1r_nl+( x) e (x) Zsinvr Lif m=1 (3.122)
00 Jif m<1
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The machinery introduced can be generalized bearing in mind that

d* (@)k (B)x

—F 1x) = F k k k;x) .
d.Z‘k (04757%58) (’Yk (a+ aﬂ+ 37+ 793)

3.11 EvaLuation oF THE LiMiT (1 — 22)™ L DX (), m € R as z TENDS TO £1F

The Gegenbauer functions of the second kind admits the series expansion (3.100), which
differentiated with respect to the argument and bearing in mind the chain rule

4d_, 9
dez 77 dx2’
gives
d F 71 )\ F v+22+1 1_ 2)\ ]_
4 pray zgn L DTG  vm p (1w v 2413
d P TW) 2oz
2241 T(NT v+22+3 _
2 (M) I ( 2 )cosy—ﬂsz 3 I/,V+2)\+3’§;x2
F A F V42242 —
Jr22,\ ( ) ( 2 ) si VixF 2 V,V+2)\+2’§;x2 . (3.123)
L) 2 2

Moreover, utilizing formula (3.47) on the last two hypergeometric functions of the right-
hand side of (3.123), we obtain, multiplying by a factor (1 — z2?)™

['(v—1) () I (&2

(1— 22 LD () = 222 VT (1

— cos
& T z
1— I\ 4+ 1 92A+1 T () vt
x F V,V+ At ,é;xQ — I( ) cosﬂa:Q(l—a:Q)m_’\_i
2 2 2 3 F(”2 ) 2
u+2)\+2
< F V+2’—V_2)\+2’5 2 +22A RN ) 2(1—a2)m >3
2 2 2’ T (%)
v+1 —v—2\+13 ,
F - 124
X ( 2 ) 2 ’27'1: ) ) [3 )

where we notice that for both resulting expressions Re(y — a — ) > 0, if Re\ > f%.
As x tends to +1F, and bearing in mind that

2y _ PP =a=8) ey —a—p) >0, (3.125)

lim F (a,ﬁ,’y;x

esE Ty —a)T(y=p)’
we find
T'(v—1 A) T (vE2A+L
lim (1—x2)miDi‘(x):2Q>‘ (=1 71) (=5 )cos— lim (1 —2?)™
ct1F dz I(%3) T (v) 2 oot1F
1—v v+2X+1 3 4 R . o UT . ovm—A—1
><F< 5 5 5 )—I—F(Q)\)( 7ism ?)l_l)uinl;(l—x) 2.

(3.126)
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In the sequence, consider the hypergeometric function

1— 2\ +1 —v-1 MA—1 1
F vyl g3 g e\ _p(zv=l vt a2 .
2 2 2 2 2 D

Differentiating the latter with respect to the argument

d —v—1v+2X-11 , v+1D(v+22-1) l—v v+2X+1 3 ,
F Sia?) = F 2,
d(z?) ( 2 T 2 ’2’95) 2 2 7 2 "

and integrating the resulting expression over the interval [0, z?] with respect to the argu-
ment, we find

7 fufl,u+2)\fl’l;x2 1 v+1)w+2x1-1)
2 2 2 2

$2
x/ F(1 v v420+1 3.Iz>d(gjz)_ (3.127)
0

2 7 2 X

As x tends to £17F, the left-hand side of the above formula remains bounded if Re A\ < %,
and so must the right-hand side. This implies that as + — +1F, F (1’7”, %)‘*1, %; xz)
enjoys the asymptotic behavior

1—-v v+2X+1 3 1
F , it~ ———— 0<p<l, 3.128
( 2 2 2x) (1— a2y P (3.128)

and thus (3.126) rewrites

Pv—1) TN T ()

d
1' 1— 2m7D)\ N22/\ v 1 1 2\m—p
A" G D) TE) ) o Lame )
2V QE) : o 2ym—A—1
+T(2)) (cos 5 + sin 5 xilglﬁ(l x%) 7,
(3.129)

which holds for fixed, real values of A in the open interval from —% to % Ifm<porA=0,
the above expression becomes infinite. For values of m equal or greater then unity, we
obtain

q ,if m—)\—%>0
lim(1-2)" =D} (@) = {T(2) (COSQ%isinQ g) f m—A—1=0. (3.130
00 ,if m—)\—%<0

1
As an example, consider A = % and therefore D; (z) = Q. (z). Hence, from (3.130) one can
deduce that

0 ,Jf m>1

: _ 2ym — 2 vw 02 v : —
xl:ﬂ;(l x?) de,,(x) cos” B £sin® B if m=1. (8.131)
00 Jif m<1
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A formula valid for the evaluation of the limit in consideration for values of A greater then
%, is obtained transforming the first of the hypergeometric functions on the right-hand side

of (3.126) via (.47

lim (1 —a%)" iD/\(x) 222/\_2 I'(A) T (A—3) cos® T lim (1—a?)m s
17T dz " N 2 2 zo+17
2 VT | o2 Vi) ~ _2ym-A—3
+I(2X) (COS 5 + sin 5 Iilglﬁ (1—2%) ,

(3.132)

from which we see that as x tends to +1F, (1 — 2?)™ LD} z) ~ (1 F 2)™A"2. As an

example, consider \ = % and the above formula implies

00 A m <2
d _s
lim (1-2)" =D} (2) = z(agwgismﬂg) G m=2 . (3.133)
0 i o m > 2

3.12 CONNECTING FORMULAE

In this section the formulae relating the Gegenbauer functions with the associated Legendre
functions and the Legendre functions are formulated. The associated Legendre functions
of the first and second kind are defined as follows [Erd53, p.122, equations (7) and (8)]

Pz = — 2 2oy sF (14 — 22} 1=z <2
zZ) = A : vV — -V — — M3 -z
1% F(lf//l,) /'1/7 u? u? 2 ) b)
(3.134)
ﬁei“” %

(2) D4 p+1) 41 (22— 1)

ToutiT (v+3)

14— - 31

WP (T Y 2 ) s, v p1£0,—1,-2,
2 2 2’ 22

(3.135)

On the other hand, the Gegenbauer functions of the first and second kind are defined as
follows [Erd53, p.175, equation (3) and p.179, equation (32) plus errata]

L +2)) 1 1—=2 1
ch =—— "7 __F|-V V2N + = 1-— 2, A> ——
26) = rer e F (v 4o i 153), sz as o
(3.136)
and
LT +20) TN o V2N V42041 1
D)\/ :22)\ 1 2 v 2)\F / )\ 17
v (2) v +x+1) (22) 2 2 VAt 122 )7
|z > 1, 1/’—1—2/\7&(),—1,—2,..., A£0,—-1,-2,...,

(3.137)
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where v, u, V', A arbitrary complex numbers.
Replacing in equations (3.136) and (3.I37) v’ with v+ and A by —u + % it is easy to show
that

F'v—p+1) T(1—p)
F(v+p+1) T'(1-2u)

N

(22 —=1)2 P*(2), |2| <1, (3.138)

Ol (z) =2

and
D) = ;;7? ?EZ ;ZI 3 [(-nt3) P=DFQUGR), |[>1,  (3.139)
or
My =i L (F” (J;Ti)rr(?;f) (2P PN (), Jel <1, (3.140)
DMz) =223 e\/i;: a (”thi) 1r) W) 2 _q)i-3 Q;jj_%% (2), |z|>1.  (3.141
Replacing p by —pu, equations (3.138) and yield
Cffjé(z) =2¢ FI‘((Q/L—:‘ll)) (22 — 1)*% <P#(z) — %e*i‘” sin pm Q’,j(z)) , (8.142)
Dﬁff (z) =2~ :/i;: T(p+d) (2-1)7%Q ), (3.143)

where we used the relations [Erd53l p. 140, equations (2) and (5)]

—i2um F(V7M+ 1)

Q) = e L QUGe),
g Fv—p+1) " 2 iur u
P, (Z)—m (Pu(z)_ﬂe Sln/WQV(Z)> :

When p=m, m =0,1,2,... equations (3.142) and (3.143) rewrite at once as

m!  d™

m+1
2 —gm
¢ (2) (2m)! dzm

v—m

P,(z), (3.144)

dm

m+3 m2m
D2 (2) = ()" =T (m+3) =

NG Q. (2), (3.145)

3
In particular, for m = 1 we find C2_,(z) = %Pn(z). Replacing v with v + 1 we obtain the

more convenient form
3
Ci(z) = —P,11(2). (3.146)
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The latter follows also up by differentiating the expression

1
A A—1
/Cu (Z)dZ = 2()\ o 1)Cl/+1 (Z)
for A = %
Letting v =n, n =0,1,2,... and z = z the latter becomes
C% d P, 3.147
7 () = d nt1(2) - (3.147)

The derivative of a Legendre polynomial is given by Christoffel’s formula [Chr58] as

d L%, 2]

P = D @n—dm+ 1)Pyan().

3

m=0

Substituting the above equation into (3.147) we obtain

3

1%, 5]
(@)= > (2n—4m+1)Py gm(z). (3.148)

m=0

(S

8

Based on (3.148), consider a second solution of the form
L%, 25
(@)= > (2n—4m+1)Qu 2m(2). (3.149)
m=0

[NE
3

Swlw

D

Also, based on (3.146) we write

d
Di(2) = T-Quri(a). (3.150)

where we omitted a constant multiplier.

3.13 THE GEGENBAUER INTEGRAL OPERATOR

Define the Gegenbauer Integral Operator of degree v and order \ as

z +1
B (2) = A (2) / arDm+ D)) [ arCle). (3.151)

z

Replacing in the latter v with —v — 2\ and employing the symmetry relations (3.69)

OF) o (2) = W2V oy

sinvm
and
2 .
T (F(/\)) sin(v + A\

sin vm

DY, 5\(2) = D}(2)
equation (3.151) rewrites

G (2),

_ 22)\—1 (F(/\))z Sin(l/ + >‘)7T C)\(Z) + dz C)\(Z) )

sin v 1

Bl() + — T Y,y (2)

sin(v + 2\)
(3.152)
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3.13.1 Specific Examples

For )\ = ( the Gegenbauer functions C)(z) and D;)(z) become the Chebyshev functions of
the first T, (z) and second kind U, (z) respectively.

Thus, (3.151) becomes the Gegenbauer Integral Operator of order A = 0 or the Chebyshev
Integral Operator

z 1
To(z) =T,(2) /ldTUy(T)-l-Ul,(Z) /+ drT,(T), (3.153)

and (3.152) reads

1 +
() +T_L(2) = 3 T,(2) / dzT,(2). (3.154)
~1
For A = 1 the Gegenbauer functions C)(z) and D;(z) become the Legendre functions of
the first P,(z) and second kind Q,(z) respectively.
Thus, (3.I51I) becomes the Gegenbauer Integral Operator of order A\ = % or the Legendre
Integral Operator

z +1
B (z) = P,(2) / dr Q. (1) + Qu(2) / dr P,(T), (8.155)
—1 z
which appears solving the Laplace equation in a spherical domain. Also (3.152) becomes
+1
B (2) = P_,—1(2) = 7 cotvm P,(z) / dz P,(z). (3.156)
~1
For A =% (3.151) becomes the Gegenbauer Integral Operator of order A\ = %
3 3 z 3 3 +1 3
65 (2) = Ci(2) / drDE(r)+Di() [ darci(r), (3.157)
-1 z

which appears solving the irrotational Stoke’s flow in a spherical domain.

Also becomes

3 3 3 +1 3
G2 (z) =62, 4(z) = —7 cotvm C (2) / dzCZ (2). (3.158)
-1

3.14 RECURRENCE RELATIONS FOR THE GEGENBAUER POLYNOMIALS

Gegenbauer’s polynomial C)\(z) for positive integral values of n is defined to be the coeffi-
cient of ¢ in the expansion of (1 — 2zt + )~ in powers of ¢

1
o 2\ _ A n -
(1 =2zt +1¢°) E Cr(z)t, A> 5" (3.159)

n=0

In the case where n is a negative integer, we define C))(z) = 0.
Differentiating the generating function with respect to t,

2\ (t—2)(1—22t+ ) =D nCy() ", (3.160)
n=0
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which with the aid of yields
(n+1)Ch 1 (x) =2+ Nz Cph(z) + (n+2X—1)Cp_1(z) =0. (3.161)

Repeating the above procedure, namely differentiating the generating function but
this time with respect to z, it is straightforward to show that

= d
oAt (1— 2zt +¢7) A=) d—cg(x) . (3.162)
i
n=0

Multiplying the latter throughout ¢ — z and using (3.160), we find

d d
x@cn(x) T

Continuing from (3.162) and in view of we obtain

C> (z) =nCNx). (3.163)

d d d
2AC) | (z) = @C’;}(m) -2z T CX 1 (x) + @czﬂ(x) ) (3.164)
which, replacing n with n + 1, reads
A d d d
2)\ On (93) = &Cn—kl(z) — 21’ a CTL(I‘) + &Cn—l(x) . (3165)

Differentiating (3.161) with respect to x and using implies
d d .\ A
(1-X) e Cpii(z)+(n+2X— 1)@071,1(%) =2(n+MN)(1—-XNC;(z), (3.166)
which then, with the help of (3.163), rewrites
(1-X\) % Cpii(z) + (n+2\ — 1)z %cg(@ = (n(n+1) =22\ —1)) C)(z). (3.167)

Differentiate (3.161) with respect to « to find

d d
aogﬂ(x) - aCfL‘_l(:c) =2(n+X\)C)Nx). (3.168)

Eliminating from equations (3.163) and (3.168) C;_, () yields

d o4y A
@Cnﬂ(‘”) xacn(x)—(n—i—W\)Cn(x). (3.169)

Multiplying (3.163) by x, replacing in (3.169) n with n — 1 and subtracting the resulting
expressions, yields

(1- zz)dixcri‘(x) =m+22-1)C)_,(2) —nzC)(x). (3.170)



3.15. RECURRENCE RELATIONS FOR THE GEGENBAUER POLYNOMIALS OF ORDER
-3 69
1

3.15 RECURRENCE RELATIONS FOR THE GEGENBAUER POLYNOMIALS OF ORDER -3

The generating function for the Gegenbauer polynomials of integral degree n and order —%

is given by Sampson [Sam91] as follows

\/1—2xt+t2:—ZC;%(x)t". (3.171)

n=0

Following a similar analysis as seen in the previous section, it is easy to show that the
following recurrence relations are valid

2n—1)2Cp ? (z) = (n+1) O, 2 (2) + (n— 2) O % (), (3.172)
d L SR D SRS

£C’n (x) — 2z e C,2(x)+ aC’n_Q(a:) =-C, 2 (), (3.173)
d -3 d b oot

acn,l(x) —Ta Cp?(x)=—-nC,%(x). (8.174)

A generating function for the Gegenbauer polynomials if the order is in general a negative
integer, is given by De Duffahel [Duf35] as

(1 =2zt + ) In(l =2zt +1%) =D Cy  Ma)t", (3.175)

n=0






CHAPTER

On the Global Relation and the
Dirichlet-to-Neumann
Correspondence for harmonic
functions *

4.1 INTRODUCTION

Within the last decade a generalized transform has been developed by Fokas and his col-
laborators [Fok08]. The novelty of this transformation is focused on the fact that it is
a transform that meets the particular analytical and geometrical characteristics of the
problem at hand. In fact, the integral kernel of the transformation carries the analytical
properties of the partial differential operator and the geometry of the fundamental domain
specifies the appropriate contour of integration [DasO7b]. A crucial part of the theory
concerns the manipulation of the so-called global relation, which is an integral relation
connecting the boundary values of the solution (Dirichlet data) with the normal derivative
of the solution on the boundary (Neumann data). In many cases, it is possible to obtain the
missing boundary data directly from the given ones exactly in the form that they appear
in the integral representation of the solution. As far as elliptic boundary value problems
in two dimensions are concerned, an important contribution of this theory is the integral
representation of the solutions in the interior of a convex polygon [FokO1l [FKO3| [IDF05].

To the authors knowledge no successful extension of the method of generalized trans-
form to three dimensions has been achieved yet. The present work aims in this direction.
We actually use the method of Fokas to solve the Laplace equation inside and outside a
sphere, under the assumption that the boundary data, and therefore the solution as well,
is independent of the azimuthal angle. As we demonstrate, this problem, although two-

*This work has been published as [DDal
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dimensional in its basic nature, exhibits fundamental differences from the corresponding
problem for the Laplace equation inside a disc [FN]. The solution obtained by the Fokas
method, has the advantage of being uniformly convergent on the boundary. Furthermore,
it is useful in numerical applications and also for studying asymptotic properties of the so-
lutions, since the integral representations converge much faster than the series. Moreover,
with the novel integral representations introduced in section 6 it is possible to solve prob-
lems with mixed boundary conditions, such as, Dirichlet data on a part of the boundary
and Neumann data on the complementary part. This kind of problems involve the solution
of a Riemann-Hilbert problem.

The analysis of the global relation has the following advantages: (i) It provides the most
effective approach for constructing the Dirichlet-to-Neumann correspondence. (ii) Formu-
lating the global relation in specific subdomains of {2, it is possible to re-derive the classical
representations or, depending on the operator, to yield alternative series representations.
This approach will be presented in a forthcoming paper.

The chapter is organized as follows.

A brief review of the classical solutions for the interior and exterior Dirichlet and Neu-
mann problems is given in section 4.2 in order to fix notation and terminology. In section
4.3 the general Global Relation is derived, which is further used in section 4.4 to establish
the Dirichlet-to-Neumann correspondence. Section 4.5 is devoted to the steps that one
has to follow in order to recover the classical solutions from the Global Relation. The novel
integral representations on which the present work is focused is developed in section 4.6.

4.2 THE CLASSICAL REPRESENTATION

Let S be a sphere with center at the origin and radius a. We denote by €’ the interior and
by €2° the exterior of S. Our goal is to find harmonic functions ¢}, ¢¢, g%, g% that solve the
interior Dirichlet, the exterior Dirichlet, the interior Neumann and the exterior Neumann
problems, respectively. We denote the Dirichlet data on the boundary by g,, the Neumann
data on the boundary by gy and we assume azimuthal independence, that is
0 0
— r)=— r)=0, r=a, 4.1
96 gn(r) 96 gn(r) (4.1)
where r denotes the radial spherical coordinate. Furthermore for the well-posedness of the
exterior problems we demand that the solution of the Laplace equation should satisfy the
asymptotic condition
1
q“(r) = 0(*>, T — 00, 4.2)
r
where ¢°¢ stands for both ¢¢, and ¢%,.
The asymptotic condition secures the uniqueness of the exterior problem, correspond-
ing to the normalization
lim ¢°(r) =0, (4.3)

T—>00
which also eliminates the arbitrary additive constant that the solutions of Neumann prob-
lem involve. Similarly, for the interior Neumann problem we can preassign a value to the
solution at the origin. In addition, the Neumann data have to satisfies the compatibility
relation

][gN(r) ds(r) = 0. 4.4)

S
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Using the spherical coordinates (r,0,¢), utilizing the fact that ¢, and gy are
¢—independent, and introducing the variable

¢ =cosf, 6e€(0,m)

we write Laplace’s equation in the form

P20 1-¢ 0 %0
or2  ror r2 9% r20¢

— - >q(r, ()=0. (4.5)

Separating variables in the above equation we obtain the following two ordinary differential
equations connected by the complex separation constant x
(1-¢2"(Q) = 262" () +xZ(() =0, KeC, (4.6)
r?R"(r)+2rR'(r) — kR(r) =0, reC, (4.7)
where the prime denotes differentiation with respect to the argument. The solution of

(4.6), after a suitable transformation, is expressed in terms of the hypergeometric function
[HiI97]. On the other hand, the solution of takes one of the following forms

—14/TTdr —1-VIfdr
Ry(rim) =r =575 Ry(rim)=r" %, heC. @.8)

Replacing the separation constant « by v(v + 1), v € C, we identify equation with the
Legendre equation while the solutions (.8) simplify to

Ri(riv) =r",  Rg(r;v)=r"""', veC. (4.9)

Therefore, the general solution of equation is represented as a linear combination of
functions of the form

oW(r,¢v) = 1P
O (r,¢iv) = QL)
0 (rév) = rrip) [ VEC (.10
OW(r,Grv) = 1)
where P, and @, are the Legendre functions of the first and the second kind respectively.
Forv =n=0,1,2,... the eigensolutions recover the well known zonal harmonics
o) = P
(2 _ n
@n3 - T QTL(C) , (411)
@%) — 7“_("+1) Pn(C)
@%4) — (ot Qn(Q)

and a complete representation of a harmonic function is written as

+oco 4

g(r,Q) =Y > AP ey . (4.12)

n=0j=1
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Furthermore, since in most applications of interest no singularities are present along the
polar axis, we disregard the Legendre functions of the second kind @,,, which are singular
for ( = +1.

For interior problems, the coefficients Asf ), j = 3,4 have to vanish and is written as

+oo
¢'(r,¢) = > AP, (Q). (4.13)
n=0

In particular, for the Dirichlet problem with data g, we find

+o00 n
0,0 =35> 1) (5) 2. P, @14
n=0
where T
o, :/ 9o (OPA(O)dC, n=0.1,2,... (4.15)
-1

Similarly, for the Neumann problem with data g, prescribed on the boundary, the solution

assumes the form
—+00

i _a 2n+1 /r\™
(€)= 5 2 == (5) WP @.16)
where
+1
‘ﬁn:/ gn (O P (Q)d¢, n=1,2,3,.... (4.17)
-1

The corresponding solutions for the exterior problems are

+oo

. 1 a\ntl
qD(T7<) - 5;(2,”—’_1) (;) gn Pn(() ) (4-18)
for the Dirichlet, and
. a X 2m+1 sa\nt!
QN(TaC):fgn; n+1 <;) mnpn(C) ) (4~19)

for the Neumann problem, where the coefficients ®,, and 1,, are given by equations
and (4.17), respectively and 91y = 0.

4.3 THE GLOBAL RELATION

Let ¢(r, ¢) satisfy the Laplace equation and q(r, ¢) satisfies the formal adjoint of equa-
tion which reads as

F 20 2 1o %o
or?2 ror r2 r2 92 r2o¢

) q(r,¢) = 0. (4.20)
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Multiply by g(r, ), E20) by ¢(r, () and subtracting the resulting equations we obtain,
after some algebraic manipulations, the divergence form

o (_0q (2_ &g 0 (1-¢*/ g d7\)\ _
m(%*(rq‘m)q)%c(rz(qac‘qac))‘o‘ -

Consider an arbitrary function Z(r, (; v), such that

9. (2o
&H_qar_k(rq 6r)q’ (4.22)
0 _ 1-¢%2 /_0q aq
—E=—— (674_ 874‘)’ (4.23)
then (£.21) implies
9 9l gty =0, veC
a/r.?agk '_‘7/‘77 - ) )

and therefore equations (£.22) and constitute a Lax Pair for the Laplace equation
(4.5).

Equation (£.27) holds true everywhere in any meridian disc of radius a and applying Green’s
theorem to a closed subdomain of the meridian disc, we obtain the global relation

_9q¢ (2_ 0q 1-¢2(_9¢ 0q _
68+t e ]

c

where C is the boundary of the subdomain.

4.4 THE DIRICHLET-TO-NEUMANN CORRESPONDENCE

In this section we are going to utilize the global relation to construct the Dirichlet-to-
Neumann correspondence. Taking advantage of the separability, we can replace in
q(r,C) by R(r)Z(¢), and obtain the equation

d*R dR —

2

J— _ —_ 1 = .
gz 2r T v—-1)w+2)R=0, veC, (4.25)

for the R(r;v) function, and the equation

a-yTZ _y 42

ic d—c +rvivr+1)Z=0, veC, (4.26)

for the 7(( ;v) function. Hence, the (—dependence remain the same, as in the Laplace’s
equation, while the r—dependence is replaced by

Ry(ryv) =r"2 Ro(rv)=r""T1 vecC. (4.27)
Equation accepts solutions of the form

q(r,¢;v) = R(r;v) X, (C) , (4.28)
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afr, +1) =

.

(=-1 ¢
FIGURE 4.1: The interior subdomain Q' = {0 < r < a, (_ < ¢ < {; } which tend to the
interior domain Q' ={0<r<a, —1<(<+1}as (s — *1, and the exterior shell
subdomain Q°(b) = {a < r < b, (_ < { < (4} which tend to the exterior domain
Q={a<r<+4oo, -1<(<+1}asls — 1l and b — co.

where R(r;v) are given by and X, (¢) stands for any Legendre function.
Let

E(r, G v) =q(r, Gv)p(r,Gv), veC, (4.29)

where pu(r, (;v) an auxiliary function. Replacing (@29) into equations @22) and @.23) it
is straightforward to show that the Lax pair (£.22), (£.23) assumes the form

0 dln X, 0 dln R(r
(3 + ) wrcin = [ 2+ (2~ 22D ), vee,  wso

0 dlnR 0 dln X,
(5 + P e == (5 - P a0, vee as

The solution g(r, (;v) remains bounded in the neighborhood of r = 0 for Rev € [~2, +00)
when the functions R;(r;v) are chosen and for Rev € (—o0,+1]| when the functions
Rso(r;v) are chosen. This regions characterize the interior solutions of @20). Thus,

applying (4.24) in the domain Q. as shown in Figure [4.1] it is straightforward to show
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that
- /Oa(l -¢?) (X,,(C) aq%’f) - dX;éC) q(r, C)) R(r; l/)%
+/“[m@w3ﬁ;0+<23mw>‘MSVvquﬂxxoa

a o (¢, o
+/0 (1-¢2) (XV(@) Q(g’f*) = dXdég ) y(r, <+)> R(r;v)% =0 (4.32)

The Legendre functions of the first kind are regular at ( = +1 with value P,(+1) = 1, and
exhibit the singular behavior P, (¢) ~ In 1% as ( — —1%. On the other hand, the Legendre
functions of the second kind are irregular along the (-axis. In particular, they exhibit the
singular behavior @, (¢) ~ In(1 F ) as ¢ tends to £1T [WG89, pp. 255-261]. From this
observation it follows that (1 — ¢?) X, (¢) tends to zero as ( tends to =1F, where else the
following limits hold (see Appendix)

d 1
lim (1-¢*)—Q.(¢) = -1,-2,... 4.33
Jim (1= )5 @) {COSW , velC v#E-1,-2,..., (4.33)
lim (I—CQ)EP )= 0 veC (4.34)
(17 ac ">’ ZsinTy ’ '
where for the penultimate expression we used the recurrence relation
oy d
(1-¢ )CTC P(Q) =v|Po1(Q) = CRQ) ) -
Thus, ([A32) is evaluated as
— 2 — dR(a;
R 01%,) + (2 Ran) - ) 2001x,)
a dr
—Zsin7v [ q(r,—1) R(r;v) 4F, if X,(¢) = P,(C)

— yvFE =1, =2
Jo (a(r,+1) = cosvmq(r,—1)) R(riv) 55, if X,(¢) = Qu(<)
(4.35)

where the Legendre transforms of the boundary data ©(v|X,) and 9M(v|X,) are given by

+1
QWWJ=/‘9AQ&KMQ (4.36)

-1
+1
R = [ oK (4.37)
-1
Both integrals in and [@.37) exist due do the logarithmic singularities of the Legendre
functions.
The parameter v lives in appropriate subdomains of C, specified by the regularity of the



CHAPTER 4. ON THE GLOBAL RELATION AND THE D-N CORRESPONDENCE FOR
78 HARMONIC FUNCTIONS

radial factors of the solution of the formal adjoint (4.27) at the origin, and therefore
rewrites as

aNv|X,) —vdDv|X,)

—2sinmw [ q(r,—1) (£)7F 4z, if X, (¢) = P,(¢)
_ Rev >0 , (4.38)

- )

Jo Tatr,+1) = cosvrg(r,—1)] ()" 45,4 X, (Q) = Qu(Q)

aNv|X,)+ v +1)DvX,)
—%Sinm/foa q(r,—1) (%)V %, if X,,(¢) =P, (¢)
= JRev < =1, v# —-2,...
Jo la(r,+1) — cosvmq(r, —1)] (%)y 4 i X, () = Qu(Q)
(4.39)

where is derived with the use of Ry and with the use of R,. Evaluating (#.38h)
for v = 0, one obtains the compatibility condition (£.4).

Similarly, g(r, (; v) stays bounded as r tends to infinity for every v in the half plane Rev €
(—00, —2] for the solutions r**2, and for Rev € [1, +00) for the solutions r~“*!. Hence, the
global relation in the domain Qe(b)7 depicted in Figure A1 takes the form

b
- [a-e) (xe) M5 - B ) R G5

+ /< - [R(b; v) % + (ZR(b; v) — diﬁ”)) a(b, O} Xy (¢)dc

b
# =) (xute) ) - S o6 0 R

_ /<+ [R(a;u) %‘:C) + (iR(a;u) - W) q(a, c)} X,(¢)d¢=0. (4.40)

As b — oo the second integral vanishes for both R; and R,. Then, in analogy to the relations

@.33), we obtain
aNv|X,) —vdD(v|X,)

Zsinm [, q(r,—1) (5) 42, if X, (¢) = P(C)
— , (4.41)
- fa+00 [Q(rv +1) — COos V’/TQ(r, 71)] (%)V+1 %a if XV(C) = QU(C)
forevery Rev <0, v # —1,—2,..., and
aNW|X,)+ v+ 1D X,)
2singw [ q(r,—1) ()" 4z, if X,(¢) = P,(¢)
_ , Rev> -1,

= [ lar 1) = cosvma(r.~D)] (2)” 42, 1 X000 = Qul)
(4.42)
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which are the appropriate relations for the exterior solutions.

The connection formulae (4.38), and (£.41), provide in a global form the coef-
ficients of the Legendre expansion of the Dirichlet data in terms of the Neumann data and
vice versa.

Remark 4.4.1 We note here that in spherical coordinates with axial symmetry, the
(—dependence of the Laplace equation, of the formal adjoint of the Laplace equation and of
the biharmonic equation comes via the Legendre functions. The corresponding r—dependence
for the Laplace equation is given by r* and r—*~1, for the formal adjoint Laplace is given
by 2 and r~*!, and for the biharmonic as r”, r**t2 r=*~1 and r~%*1. Hence, the so-
lutions of the formal adjoint Laplace equation are the additional two independent solutions
introduced by the second application of the Laplace operator on itself.

4.5 FroM CoMPLEX TO REAL: RECOVERING CLASSICAL SOLUTIONS

In certain cases, depending on the form of the operator acting on ¢(&1,&5), it is possible
to re-derive the classical representations via the global relation. This procedure will be
analytically described in the sequence.

4.5.1 Part 1: The Interior Problem

C=+1 ¢+

|
[
|
|

|
|
| \
|

C=-1¢

FIGURE 4.2: The interior subdomains Q¢ (r) ={0<p<r, -1 < (< +1} and
Q(r)={r<p<a, -1 <{<+1}

Applying the global relation (£.24) to the domain

Qi(r):{ogpgr, —1<<<+1} (4.43)
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depicted in Figure we obtain

+1
L

Rir:v) 5qg“ 9, (ffz(r; V) — W)g(r, o] X,(¢)d¢

r dr

2

—Zsinmv [ q(p, 1) R(p; )—é’ JAf X, (¢) = Po(C)

’ V7é_1a_27
Iy lalp,+1) = cosvmq(p, —1)] R(p;v) % if X,,(¢) = Qu(¢)
(4.44)

where R(r;v) and % have to be bounded as 7 tends to zero, that is Rev > —2 if
R(r;v) =r"T2 and Rev < 1if R(r;v) = r~¥*!. Similarly, for the domain

Qi (r) = {Tgpga, —1<§<+1} (4.45)

depicted in Figure we find

+1 T — R ryv
[ R 25 (2 R(riv) - dR(g;))qm <>] X,(0)dC

R(a;v)N(v|X,) + ((21 R(a;v) — CW) Q(VIXV)]

dr

Zsinmv [ q(p,—1) R(p;v) —5 JAf X, (¢) = P,(¢)
+ v 1, -2,
— J alp, +1) = cosvmq(p, —1)] R(psv) % ,if X,(¢) = Qu(C)

(4.46)

Note that the domain 2% () does not include either the singularity at zero or the singularity
at infinity, thus there are no restrictions on v in (4.46). However, in order to eliminate the
unknown function % one has to combine equations (£.44) and (£.46) in either one of
the domains Rev € [—2,+00) or Rev € (—o0, 1].

The half plane Rev € [—2,4+00)

Introducing in eq. &44) R(r;v) = r**? we obtain

[ (r UL <>>Xy<<)d<

_% sinﬁyfor q(p, -1) (f)w_l ae , if X,,((:) = PV(C)

, Rev>—-1 (4.47)
fo [ (p,+1) — cosvm q(p, 1)] (%)V-H de Af X0 (Q) = Qu(Q)
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where the restriction on v is due to the fact that the ratios (2) v , (%) " must remain bounded

as 7 tends to zero. Also, introducing R(r;v) = r~*! in we obtain

“+1 r r\V
/ ( ULy 1)61(?:4)))@(() ac= (D) (amelx) + (v + ) DIX))
2 gin 7w [ g(p, —1) (;) do, it X, (¢) = P, (¢)
+ , v E=1, =2 ...
= I [alp,+1) = cosvmalp, ~1)] () %, i X,(Q) = Qu(Q)
(4.48)

Subtracting the above two equations eliminates the function %

[ a0 0x0uc = 5t (5 (amlx) + 0+ 1 Dx,))
s (a0 ) X,(0) = PAO)

T o1

,Rev >0, (4.49)

—P§(r;v)[q(p, +1) — cosvmq(p, —1)] ,if X, (¢) = Qu(C)

which is the v—Legendre coefficient of the solution ¢(r, () valid in the domain r € [0, a.
The integral operator Pg(r; v) is defined as

Tdp o\t [0d v
/ dp (B) +/ ap <r> , (4.50)
o P r r P P

The inversion of leads to an integral representation for ¢(r, (). However, in order
to recover the classical representations (£.14) and we have to use the orthogonality
relation of the Legendre polynomials. Thus, letting v =n =0,1,2,... in (£.49h) we obtain

P3(r;v) :

/jq(r,c)Pn(g)dg: inﬂ (g)" (amn+(n+1)®n), n=012,..., (451

where ©,, and ,, are given by and (£.17) respectively.

Using the Dirichlet-to-Neumann correspondence given by (4.38h) with v replaced by n as
well as the expansion of ¢ as Legendre polynomials, we recover trivially the expansions
(4.14) or (@.16), respectively.

The half plane Rev € (—oo, +1]
Replacing, in (#44) and (@.46), R(r;v) by r—**1 and "2 respectively, we find

-1

~Zsinm [ qlp,—1) (£) 2, if X, (¢) = P, (C)

Jy Tato,+1) = cosvma(p,—1)] ()" 22, 1 X,(¢) = Qu(Q)
Rerv <0, v#-1,-2,...
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+1 0 v+1
| ( o) uq(r,o))@(odc = ()" (anix,) —v0WIX))
Zsinav [*q(p,—1) (2)" 22, if X,,(¢) = P,(¢)
+ )

— [ [a(p. +1) = cosvmq(p, ~1)] (2)""" 22 if X,(¢) = Qu(C)
veC, v#-1,-2,....

Subtracting the above equations to eliminate the function %, we obtain

[t 0x@ac = 5 (4) (@meix) - vowix,)

1 2k +1 \r
(e -). if X,(0) = PAO)
Tl ) X ) , (4.52)
_]P)TO(T; V) [q(pa +1) — cosvm q(p7 _1)]7 if XV(C) = QV(C)
Rev < -1, v#-2,-3,... (4.53)

which is the v-Legendre coefficient of the function ¢(r, ¢) valid in the domain r € [0, a]. The
integral operator P! (r; v) is defined as

a "dp (r\" Cdp sp\vt! a
Pt (r; v ::/ — () —|—/ e . Piri—v—1) =P (r;v (4.54)
sryi= [ (D) [P ()T B 1) = Pii)

4.5.2 Part 2: The Exterior Problem

Following the same procedure as in the previous section, namely applying (£.24) in the
domains Q$(r) and Q§(r, b) defined by

QS (r) = {agpgr, —1<§<+1} (4.55)
5(r,b) = {r<p<b 1< <+1} (4.56)
and depicted in Figure we arrive at the following equations
+1
L.

()X, + (2 (i) - ‘“‘f{“’”)@@x»]

R 208) (fmr;u) - W)q( o] X,(0)d¢

r

r

—Zsinmv [ q(p,—1) R(p;v) %, if X,,(¢) = P,(C)
+ S vE =1, =2 ...
Ja lalp,+1) = cosvma(p, —1)] Rlp;v) 5, if X,(Q) = Qu(()
4.57)
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FIGURE 4.3: The exterior subdomains Q$(r) ={a < p<r, -1 < (< +1} and
Q5(r,b) ={r <p<b, -1 << +1}

which holds for every v € C since §§(r) is isolated both from the origin and from infinity,

and
P sin Ty f:o Q(p7 _1) E(ﬁ? V) dp if XV(C) = PV(C)

Rirs) 209 | (2 R(r;v) - dRQ>>q< cﬂ X,(0)d¢

r

2

+1
/,
p27

= ,vFE=1,=2,...
— 77 [alp, +1) = cosvmq(p, =1)] R(p;v) %, if X,(¢) = Qu(C)

(4.58)

which holds for those complex values of v for which the limit of the corresponding integral

as b — oo vanishes, i.e. for Rev < —2, when we pick R, = r”+27 and for Rev > 1, when
the solutions Ry = r~*T1! are chosen.

The Half plane Rev € [+1,+00)
Setting R (r;v) = r**2 in @57, and Ry(r;v) = r~"*! in {@58), we obtain

+1 r a\V 1

/_1 <r % _ yq(n()) X, (C)d¢ = (;) i (a N(V|X,) — I/D(V\X,,))
~2sinmw [T q(p, 1) (£)" 2, if X,(¢) = P(C) .

+ ,wvelCv#-1,-2 ...
J7 Talp, +1) = cosvma(p, —1)] (2)" 22, i X, (Q) = Qu(¢)
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+1
/ (r %)\, 1), <)>Xy(c>d<
—1 87’
2 . o) r v dp : —
Zsinmw [Falp,-1) (5) 2, if X, (¢) = P,(¢)
, Rev>1

= I [alp,+1) = cosvmalp, 1] (5) %, i X,(O) = Qu(¢)

Subtracting the above equations eliminates the function %

[t 0x@ac =5 (4) (@me1x) - vowix,)

1 2%k +1 \r
[z (rrenen). Hx© =R
- Rev > 1
2%k + 1
P2 (r;v) [q(p, +1) — cosvmq(p, —1)], if X, (¢) = Qu(¢)
(4.59)

which is the v—Legendre coeflicient of the solution ¢(r,(), for » > a, and the integral
operator P°(r; v) is defined as

T v+1 o0 v
P (r;v) :z/ d?p (g) +/ %J (;) : (4.60)

Inverting the latter relation we obtain an integral representation for ¢(r, () valid in the
domain r € [a, +00). However, the classical representations (£.18) and are recovered
utilizing the orthogonality relation of the Legendre polynomials.

Thus, letting v = n = 1,2, ... (£.59) reads

+1 1 a\ ntl
L) Pa(C) dC = — (7) (m-@), 4.61
| 0P ©dc=—52 (2) (=0, @61
and using the Dirichlet-to-Neumann correspondence (£.42h) with v replaced by n, we re-
cover equations (£.18) and respectively.

The half plane Rev € (—oco, —2]
Replacing R(r;v) with 7~**! and **2 in @.57) and {&.58), respectively, we find

1 a

[ ( WO | 1) gt o)xxodc = (%) (amix) + v+ ) 2WIX,))

~Zsinm [ qlp,-1) (2) 2, if X, (¢) = P (C)
+ 3} wvelCuv#—-1,-2...,
J7 lalp.+1) = cosvmalp,~1)] (2) %, if X,(¢) = Qu(Q)
(4.62)



4.6. A NOVEL INTEGRAL REPRESENTATION 85

[ (r WO g <)> Xu(0)i¢

-1
Zsinav [Fq(p, 1) (2)""" 2, if X,(C) = P(C)
— [ [ap, +1) = cosvma(p, ~1)] (2)" %2, if X,(¢) = Qu(C)
Rev < —2,v# —3,—4,.... (4.63)

Eliminating the function % by subtracting the above equations, leads to the expression

[ 0.0 %0 = 5 () (@015 + 04 D01

1 —isinﬂ'l/(]P"LZo(r; v) q(p,—l)), if X,,(¢) = P,(¢)

k1) :
Pt (r;v) [q(p, +1) — cosvm q(p, —1)], if X, (¢) = Qu(¢)
Rev < —2, v # —3,—4,... (4.64)

+

where the integral operator ]P’TZO(T; v) is defined as
S "d v “d v+l
Pt (r;v) ::/ = (T> +/ =2 (8) - (4.65)
a P \P r PAT

Remark 4.5.1 Relation @.52a) is obtained from [E49a) if we replace v by —(v + 1) and
observe that Legendre’s equation remains invariant under this transformation. That
is P_(,11) = P, and the halfplane Rev > 0 is mapped to Rev < —1. Similarly, this
transformation maps [4.64a) to [4.59a) and the half plane Rev < —2 to the half plane
Rev > 1.

4.6 A NOVEL INTEGRAL REPRESENTATION

Novel integral representations are obtained by applying the global relation to particular
subdomains. This is realized in the sequel.

4.6.1 Part 1: Solutions valid in the interior

Applying the global relation (4.24) in the subdomain
Qé(é)z{OSrSa, <§t<+1} (4.66)

depicted in Figure with g(r, ; v) replaced by R(r;v) P,({), we obtain

Ja-¢ <Py<<> 20 2 o, o) Ririv) %

41 Rla: v
= /4 R(a;v) gn(t) + <2R(a; v) — dRﬁ,)) gn(t)

r

P,(t)dt, (r,¢) € 9%(C), 4.67)




CHAPTER 4. ON THE GLOBAL RELATION AND THE D-N CORRESPONDENCE FOR
86 HARMONIC FUNCTIONS

¢=+1 ¢4+

|
|
| \
|
|
¢=-1 ¢

FIGURE 4.4: The interior subdomains Q) ={0<r<a, (<t<+1}and
Q) ={0<r<a, -1<t<¢}

where the regularity of the Legendre functions at ( = +1 has been used. Similarly, applying
the global relation (4.24) in the subdomain
QZ(C)={0§r§a, —1<t§C} (4.68)

depicted in Figure 4] with g(r, (;v) replaced by R(r;v) Q,(¢) we obtain

/Oa<1—<2><@y<<>aq“’<) 92 C) v c)) R(ri) %

o¢ d¢
S - 2
=— / R(a;v) gn(t) + . = R(a;v) go(t dt
-1
“ — dr
— cosvT / qo(r,-1) R(t5v)—, v#-1,— (r,¢) € 094(C) . (4.69)
0 T
Multiply by @, (¢) and by P,({) and subtracting them side by side in order to
eliminate the unknown function %2’0 we obtain
dQ,(¢) dP,(¢) /“ ST
1- Pl/ v ) ; )
(1= (PO =5 -0 =) | an QR

=P.,(¢)

Rlas) gu(t) + (2 Rla;v) - ng)> 901

+cosz/7rPu(C)/ q(T,fl)E(T;I/)%, v#E-—-1,-2,..., (4.70)
0
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where

¢ 1
(C)fE%(C)f=PV(C)/_1Qu(t)f(t)dt+é2u(<)/< Bt) f(t)dt, v£ 1,2,

4.71)
is an integral operator, which we will refer to as the Gegenbauer Integral Operator of order

Lor simple Legendre Integral Operator B3, ({) acting on the function

2
f:l-1,+1]=C.

Rol=

&

The first integral in ([@71) exist since @, (¢) exhibits a logarithmic singularity at { = —1.
Utilizing the Wronskian relation
dQy(¢) dp, (<) 1

PO S -0 S5 =

we finally write equation as follows

R ) g (1) + (2 R(a:v) - ‘“’fi)> gD<t>]

r

/0 4 O R Y =,(0)

r2

—l—cosmrPl,(C)/ q(T,—l)E(T;V)%, v#£-1,-2,.... (4.72)
0

Relation provides a global connection between the values of the interior solution along
the radii ( =constant and ( = —1, with its Dirichlet and Neumann values on the boundary.
The parameter v lives in appropriate subdomains of C, specified by the regularity of the
radial factors of the solution of the formal adjoint at the origin.

The Half-plane Rev € [—2,+00)

In the half-plane Rev € [-2,+00), q(r,(;v) remains bounded in the vicinity of r = 0
whenever R(r;v) is replaced by 7/*2. Thus, introducing R(r;v) = r**2 in we obtain

[} o) () a(5) 90 (a0 - vaot)

+ écosuﬂ'P,,(C) /0 q(t,-1) (7>V dr. (4.73)

a

The inverse Mellin transform then implies

0.0 =g [ () R (a0 0) v o))

218 JRey—ico \T

1 Re v+ioco
+%/ T7V71 COST('Z/PV(C)
R«

/ (](7’,—1)7-1’d7"|dy7 v#E-—1,-2...,
0

(4.74)

e v —io00o

where the integral is taken over any open contour I, connecting the points Re v — iR and
Rev + iR in the complex v—plane as R — oo.
The Legendre functions of the first kind are in general defined as

PI/(C)_F<_V7V+171;12C)7
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thus, because of the symmetry of F, we obtain

PV(C) = P—u—l(C)

for all values of v and

qufl(g) = QD(C) — mcot Ty PI/(C)

for every v € C except for integral values [ME53, p.599].
Hence, replacing v with —v — 1 in (£.73), we obtain the formula

[ a0 ar = g€ (a0n0)+ 0+ 1) 00(0)
0

fcosmrP_V_l(C)/ qir,~1)77"7tdr,Rev < -1, v#-2,-3,....
0

Combining (A7) together with and it can be easily shown that
+1
PB_,_1(¢) =B, (¢) — meot v P, ({) dtP,(t), veC, v#nelZ,

-1

and (£.77), with the aid of (£.39), rewrites

o /“ a(r, O)r~" "L dr = ,(0) (agN(t) +(v+1) gD(t))
0

a
+a” coswrP,,(C)/ q(t,—~1)77"7tdr, Rev<—1, v#-2,-3,....
0

Remark 4.6.1 Equations (£.73)

o (P00 0)) = (1O 2000

)

= [ a0 = cosvr R 0ratr 1] ()7 Rew 20

’
a T

and (4.79)

(B0 00 0] + 0+ 1) (Bl 00(0))
dr

a

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

- /0“ [q(T, ¢) — cosuwPV(C)(J(r,—l)} (7)” — Rev<—1, v £-2,-3,...,

r

constitute the generalized Dirichlet-to-Neumann correspondence for the interior of the sphere.
Evaluating the above relations at ¢ = +1, equations [£.38p) and [£.39b) are retrieved. Inorder
to obtain the correspondences [@.38a) and [Z.39a) one must replace q(r, (;v) by R(r;v) Q. (()

in the subdomain Q4(¢) and by R(r;v) P,(¢) in Q4(¢).



4.6. A NOVEL INTEGRAL REPRESENTATION 89

Utilizing (£.79) to eliminate the unknown boundary data from (£.74), we obtain the
following equations

1 Re v+ioco a\ v+l
a(r.Q) = - 5~ (2) " v+ 1) (P 90)) av
Re v—ioco
1 Re v+ioco a\ v+l a anv dT
— 2 2) =4
LT [ @
1 Re v+ioco vl a v d
- (ﬂ) cosmv P,(¢) / q(r,—1) (E) T] dv
2mi Re v—ioco r 0 T T
1 Re v+ioco a
+ — =1 cos v P,(¢) / q(’T,—].)’TUdT‘| dv, v#-1,-2,...,
2mi Re v—ioo 0

(4.80)

if Dirichlet boundary values are described, or

0.0 = [ () 2L (0 00t0)

2T JRrev—ioo \T v+1

1 Revtioo g\v+l e a\v dr
o (*) / (I(T» O (7) ‘| dv
T JRev—ico T v+1 0 T T
1 [Revtico g v+l @ a\v drt
L a P, 1 (4) 4]
+ 27 Jre v—ioco (r) v+1 cosmy (O /0 q(T ) T T ] v
1 Re v+ioo

r~"" cosmv P,(¢)

/ q(T,l)T”dT] dv, v#-1,-2,...,
0

(4.81)

2mi Re v—ioo

for Neumann data.
As v — oo the Legendre functions of the first and second kind assume the asymptotic
forms [Erd53| p. 162]

Py(cost) = \/ — :in ; (a(o) cos(v) + B(0) sm(yo)) + o(%) larg v| <7, (4.82)
and
Qulcost) = /- :in ; (ﬂ(@) cos(v0) — a(6) sin(V9)> + o(%) larg v| <7,  (4.83)

for every 0 < f < 7, where we used the asymptotic behavior of the ratio of Gamma functions

[Mar83, p. 49]
1
1+(9<V)], larg v| <.

The corresponding expressions for Rev — —oo can be determined by employing the sym-
metry relations (4.75) and (4.76) respectively. More specific, as Rev — —o0, holds,

F(v+c¢)
I'(v+4d)

_ chd
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where else (£.83) must be replaced by the expression

™ . 1
Q-,—1(cosh) = — 5 s cot mv (5(9) cos vl — a(h) sin u9) +0 (1/) , |argy| <,
(4.84)
for every 0 < 6 < 7, where () = g(cos ¢ +sin g>7 B(0) = g(cosg —sin %) and cot v

remains bounded as v — oo. Note that for 6 sufficiently close to 0 or 7 the asymptotic
formulas (£.82), (£.83) and (4.84) become unsuitable [MO48].

Moreover, the fact that the trigonometric functions cos v and sin v are unbounded as v ap-
proaches large values in C, implies that the Legendre integral operator 93, (¢) is unbounded
as a function of v.

Nevertheless, the functions

O e mome). (@)
(g)z/+1 (g)z/+1 cos v Po(0). %

r T

(;)V cosmv P, (C) , (4.85)

for Dirichlet problems, and

(g)u+1 2v+1 (‘/BV(C)QN(t)), (g>u+1 (ﬁ)”“ v |

r v+1 T T v+1

a\vtl ra\v+l v 1 /rm\v

oy 2 PO M) w0 @
(r) (T) 1 cosvm 0) ~ ) cosvm ©) (4.86)

for Neumann problems, must remain bounded in order for the improper integrals on the
right-hand side of (£.80) and (4.81) to make sense.

More specific, the function ay”_:rlb, a,b € R is bounded in the whole complex v—plane, as
v+

the ratio of equal degree polynomials, while the exponentials (%)
or T respectively, and (%) VH, r < 7 are bounded for every v in the half-plane Rerv < —1.
Furthermore, it can be shown that

(g)uﬂ (g)uﬂ il cos v P(0)

r T v

1
, where x stands for r

Rev

VvRev (Rev +1)

< A(6)

X exp Kln (%) +1n (Z)) (Rev+1)| exp[By(6)Imy] (4.87)
and
F () eonvmRO] < A0) s
X exp [m (;) Re u} exp [BL(0)Imy] | (4.88)

where A(0) = /5=t (a2(0) + B2(0)) , B+(0) = 7 + 0.

Deforming the contour I" in the left (Rev < —1) complex v—plane in such a way so that
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>
- D
<

L

FIGURE 4.5: The contour L. The point «y_ can be chosen such that y_ < Rev. Note that the
imaginary part of v is held finite along the path.

the imaginary part of v is held finite, the expressions and remain absolutely
convergent, and the interchange of the order of integration in (£.80) and (£.8]) is permitted.
Thus, we rewrite the second, third and fourth integral of the right-hand side of (4.80) and

@381) as
2 /0 q(7,¢) [/ﬁ (%)UH G)UH vi1 dv
2 /Oa q(T,—l)[L <g>u+1 (§>u+1 V_T_l cosvrm P,(¢) dV‘| dr, (4.90)

/an(7,1)[/ﬁ (;) cos v P, (¢) dv

where for the Dirichlet data the term #_1 in the first two expressions must be omitted.
The deformed contour £, depicted in Figure begins and ends in the left complex

v—plane, such that Rer — —oo at each end (a technique known as Talbot’s method

[Tal79]).

Thus, the integrals (£.89), and (.9]) yield a zero contribution and equations (4.80),

(A.87) take their final form

dr, (4.89)

dr , (4.91)

¢ (r,C) = i/ﬁ (9)”1 (v +1) (my(g)gD(t)) dv, v#-1,-2,..., (4.92)

2mi r

if Dirichlet boundary values are described, or

qi,(r, C) = -

a (a)u+1 vl (%(C)gzv(t)) dv, v#-1,-2,..., (4.93)

271@ £ \T V+1

if Neumann data are given.

The half-plane Rev € (—oo, +1]

Replace R(r;v) with 7~ in order that the solution remains bounded in the neighborhood
of r = 0. Equation (4.72) then reads

[aa (2)7 (%) = 90 (e 0+ 04 1 9000)

T

1 a —v—1
+ —cosvm P,(() / q(r,-1) (f) dr,Rev < —1, v# —2,-3,... (4.94)
a 0 a
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Replacing in the above equation —v — 1 with v and bearing in mind equations (£.78) and
(#.38), we obtain the Mellin transform for the function ~ ¢(r, {)

[ G0 (2)" () =300 a0 - vmto)

1 @ T\¥
st — - >0. .
+ , ©08 vr P,(C) /o q(t,-1) (a) dr, Rerv >0 (4.95)

Inverting we find

0.0=55 [T () R (00n0) - vulo))

27” e V—1i00 r

1 Re v+ioco

— "1 cosvm P,(C)
2mi Re v—ioo

/q(T,l)T”dT]dz/, v#£E-1,-2...,
0
(4.96)

which coincides with equation (4.74).

Remark 4.6.2 In order to obtain solutions valid in the right complex v-plane, consider (£.94)
as the Mellin transform of the solution ¢(r, (). The inverse formula then implies

0.0 = [T () RO (a0 )+ 0+ 1 g0

27 —Rev—ioco a

1 —Rev+ioco

— r¥ cosvm P,(()
2mi —Rev—ioco

a
/ q(r,—1) 77771 d’T‘| dv, v#-1,-2...,
0
(4.97)
where the integral is to be taken over any contour I’ which joins two points —Rev — iR and
—Rev + iR in the complex v—plane as R — oc.

Eliminating the unknown boundary data in (£97), with the aid of (4.95), we derive the
Jollowing equations

0.0 =g [T (D) @) (Rl 9010)

2mi —Rev—ioco

a
1 —Rev-+ioco rA\V L a
+ o (*) a”v” / q(r, )V dr| dv
Tl J _Rev—ioco a 0
1 —Rev+ioco

7> "1 cosur P,(¢)

2mi —Rev—ioco a

/ q(r,—1) 7" dT‘| dv
0

a
/ q(T,—l)T_V_ldT‘| dv, v#-1,-2...,
0

(4.98)

1 —Rev—+ioco

—i—% r¥ cosvm P,(C)

—Rev—ioco
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in the case where Dirichlet boundary values are prescribed, or

—Rev—+ioco

a0 =5m [ (5) (Bl () v
[T e [ [anor

a7t cosvm P,(C)

2mi

1 —Rev+ico (T)”V—’-l

a v

—Rev—ioco

/ q(r,-1) 1" dT‘| dv
0

/ q(t,-1) T”ldT] dv, v#-1,-2...,
0

(4.99)

1 —Rev+ioco

+— r¥ cosvm P,(C)

27 —Rev—ioco

if Neumann data are prescribed.

>
(7+ . +00
<

R

FIGURE 4.6: The contour R. The point 4 can be chosen such that v; > Rev.

The analysis as seen in section [4.6.1] implies that the contour I’ can be replaced with
the contour R depicted in Figure[4.6, and thus, the interchange of the order of integration is
applied to rewrite the second, third and fourth integral of the right-hand side of the foregoing

equations as
/an(r,C)[A(Z)V(;)U”jldu
- /OGQ(T,—l)[A ) (&)= cosmTPl,(Q)dz/] d&r @101

/Oa q(T,l)[/72 (;)” cosvm P, (C) du} dT—T, (4.102)

respectively, where for the Dirichlet boundary values the term v+l in the  first two expressions

has to be omitted. Y

The deformed contour R begins and ends in the right complex v—plane, such that Rev — 400
at each end. Thus, the integrals (£.100),@.101) and @.102) yield a zero contribution and
equations (4.98), become

—_

dr (4.100)

S|

—_

S

¢ (r,C) = L/R (2)"(2% 1) (ap,,(g) gD(t)) dv, v#-1,-2..., (4.103)

2mi
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if Dirichlet boundary values are described, or

¢i(r,¢) = — A(f)y2y+1(‘$u(é)gfv(t))dy, v£—1,-2..., (4.104)

27 a v
if Neumann data are given.

4.6.2 Part 2: Solutions valid in the exterior
Utilizing the global relation (£.24) in the subdomain

0.0 =fa<r<b.<t<41}, (4.105)

depicted in Figure @7, with g(r, (;v) replaced by R(r;v) P,(¢) we obtain

FIGURE 4.7: The exterior subdomains Q5(b,() ={a <r <b,( <t < +1} and
Q50,0)={a<r<b,-1<t<(}

Foo r —= r
[ a-e (P,,@ ol RO, o)R(r; )G

Pl/(t> dt7 (7"7 C) € agg(b7 C) )

(4.106)

(o) 90(C) + (2 R(ai) - ‘“’fﬂ) 00(0)

r

where we used the regularity of the Legendre functions at ( = +1. Employing the global
relation (4.24) in the subdomain

Qi(b,():{agrgb,—1<t§g“}, 4.107)



4.6. A NOVEL INTEGRAL REPRESENTATION 95

depicted in Figure @7 with g(r, (;v) replaced by R(r;v) Q,({) we obtain

Hoeo r — r
[ a-e (QV@) ol d) _dQuS) ;. <)>R<r; )%

¢ d¢
¢
-/,

+o0
—cosmr/ q(r,—l)ﬁ(r;u)%, v#-1,-2,..., (r,{) €005, . (4.108)

r

R(a;v) gy (t) + <2R(a; v) — W) gD(t)] Q,(t)dt

In order to eliminate the unknown function %’EO we subtract (£.106) multiplied by Q,(()
and multiplied by P, (¢). Then

oo r — — R(a; v
[ a0 R 5 == 90| Riaiv) gu(0) + (2 R(a:v) - C”’fﬂ) gD(w]

Hoo — dr
+COSI/7TP,,(C)/ q(r,=1) R(r;v) —, v#-1,-2,...,
“ r
(4.109)

where 3, ({) is the Legendre integral operator defined in (.71) and the parameter v lives in
appropriate subdomains of C, specified by the regularity of the radial factors of the solution
of the formal adjoint at infinity.

The half-plane Rev € (—oo, —2]

In the half-plane Re v € (—o0, —2], 4(r, (; v) remains bounded as r tends to infinity, when-
ever R(r;v) is replaced by r**2. Thus, introducing R(r;v) = r**2 in ZI09) we find

[ G0 () 0 () = a0 a0 vt

1 Hoo v
+ fcosmrPl,(C)/ q(t,-1) (I) dr, Rev<0,v#-1,-2,..., (4.110)
a u a

which is recognized as the Mellin transform for the function Z ¢(r, ). The restriction on v
is due the fact that v must remain bounded as r tends to infinity. The Mellin inversion
then implies

1 Re v+ioco ay v+l
arn Q=5 (7)) PO eant) ~van(t))av

1 Re v+ioco “+o00

+— ="t cosvm P,(() / g(r, =) dr|dv, v # —-1,-2....
2mi Re v—ioco a
4.111)
Setting v with —v — 1 in one finds, with the aid of (£.78) and
o0 a\v dr

[ a0 (2) S =0 (a0 0 + 0+ D 00 (0)

+oo v
—cosmrPl,(C)/ q(r,—1) (E) d%, Rev >1. (4.112)

a T
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Remark 4.6.3 Equations (£.111)

o (P00 0)) = v (3O 2000

:_/0" {Q(T,C)—COSZ/WP,,(()q(r’_l)] (f)wrl ﬂ7 Rev <0, v#-1,-2,...

a r

and
o (B00:0) + 04 1) (B0 900

a

—— [ |t eosva P a0 1] (4) " Rev s -1,

r

constitute the generalized Dirichlet-to-Neumann correspondence for the exterior of the sphere.
Evaluating the above relations at ( = +1, we derive equations 4. 41b) and [4.42b). On the
other hand, in order to obtain the correspondences [€.41la) and [€.42a), one must replace
q(r,¢;v) by R(r;v) Q,(€) in the subdomain Q4 (¢) and by R(r;v) P,(¢) in Q5(¢).

Eliminating the unknown boundary values with the help of (4.112) and substituting
into (AIT1) we derive the following equations,

0.0 = [0 v ) (B g0 av

2mi Re v—ioco r

1 Re v+ioco v+l 400
+ — (9) a” [/ q(T,C)TVIdT] dv

27 Re v—ioo r

1 RevHioo /g vi v P, o Drr1arld

~ 5 o (;) a” cosmv P,({) /a q(r,-1) 7 7| dv
1 Re v+ioco +00

+ 2 r~"! cosmrv P,(¢) / g(r,—)rvdr|dv, v #-1,-2....
Tl JRe v—ico a

(4.113)

if Dirichlet data are given, or

a Re"“w( vl 9y + 1

arQ)=-5/ = (B0 9x(1)) v

2mi )
1 Re v-+ico (%)V-H v l/-s-ooq(T,C)T_y_ldT] W
)

270 JRe v—ico v+1
1 Re v+ioco v+l +oo
" Tm Re v—ioco (% l/—l‘v/- 1 I PV(C) /a q(T7 _1) 77V71 dr | dv
1 Re v+ioco +00
+ — pv—1 COSﬂ'l/Py(C) / Q(T,*l)TVd’r dv, v #—1,-2. ...
2mi Re v—ioco a

(4.114)
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for Neumann boundary values.

Following the analysis presented in section [L.6.1] in order that the three last integrals on
the right-hand side vanish, the contour I must be replaced by the contour R, depicted in
Figure Hence equations @ 113) and (£.114) rewrite

. B 1 a\ v+l
O =—5 | (5) @D (RQa) vy E L2 @1
for the Dirichlet, or
. _a a\vt12v+1
¢ (r.¢) = TM/R (2) " =5 (B an®) dvv# —1,-2... (4.116)

for the Neumann case.

The half-plane Rev € [1, +0)

In the half-plane Re v € [1,+00), §(r, (;¥) remains bounded as 7 tends to infinity, for every
R(r;v) replaced by r~**1. Eq. then becomes the Mellin transform of the solution

q(r, ¢)

[ a0 (5)7 T a(E) == 000+ 0+ D 00(0)

a

1 +oo 7\ —v—1
+ EcosmrPl,(C)/a q(r,—1) (g) dr, Rev > —1.
4.117)

The inversion formula then gives the representation

1 —Re v+ico

q(r,¢) =— 5= (

2mi —Rev—ioco

r

E)V‘Bu(C) (agN(t) +((v+1) gD(t))d,/
1 —Rev+ioco
r¥ cosvm P,(C)

2mi —Rev—ioco

“+o0
/ q(T,—l)T_V_ldT]dV, v#-1,-2....
(4.118)

Replacing in (. 117) v with —v — 1, and using (£.78) and (@.41) we arrive at

- /:OO 4(r,¢) (g)”l (3 (a5 () = v 95 (1))

r

oo v+ dr
—cosvm P,(C) q(r,—1) (a) —, Rev< —2,v#-3,—4,..., (4.119)

T
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Equation (4.119) must be used in order to eliminate the unknown boundary values in
(4. 118), which then reads as

1 —Rev+ico

a0 Q) = 5 (5)" v+ 1) (P gn(0)) v

2mi —Rev—ioco

1 —Re v—+ioco rAV “+o0
JrTm (5) a"vt / q(r, ) dr | dv

—Rev—ioco

1 —Re v+ioco rAV “+o00
~ 3 (7> a’" cosvm P,(C) / q(r,—1) 7 dr| dv
Tt J _Rev—ioco a a
1 —Re v+ioco “+oo
3 r¥ cosmv P,(C) / i, =) 7V rdr|dv, v # —-1,-2...,
Tt J _Rev—ioco a

(4.120)

if Dirichlet data are prescribed, or

a [TRevFIO p\v oy 41
q(r,¢) = ( )

a

—Rev—ico (mv (€) gn (t)) dv

1 —Re v+ioco v 1 —+00
- (C> v a vt [/ q(r,¢) v dT‘| dv

2mi —Rev—ioco a v
+oo
/ q(r,=1) 77 dr| dv

+oo
/ q(T,l)TVldT] dv, v#-1,-2...,

(4.121)

2mi v

1 —Re v+ioco NV U+ 1 .
e P,
3 ( ) a cosvr P,(¢)

a 14

—Rev—ioco

1 —Rev—+ioco

— r” cosvm P,(()
2mi —Rev—ioco

if Neumann data are prescribed.
Replacing the contour I with the contour R depicted in Figure the aforementioned
equations reduce to

qp(r,¢) = ! <£)V (2v+1) (‘BV(C) gD(t)) dv, v#-1,-2..., 4.122)

21 L

for the Dirichlet and

. a r\" 2v+1
qx(r,¢) = “omi ), (g)

(my(g) gN(t)) dv, v#-1,-2..., 4.123)

v

for the Neumann problem.

4.7 EXISTENCE OF THE INTEGRAL TRANSFORMS AND THE INVERSION FORMULAE

The aforementioned operations in chapters are justified introducing the set L;(0, c0) for
every real or complex-valued function F' (r) of the real variable r. Then [Mar83|, [GPS06],
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Theorem 4.7.1 (Existence of the Mellin transform) Consider F(r) € Li(¢,E), 0 < € <
E < oo with the estimate
r~® re(0,¢)

) (4.124)
rb r>F

[F(r)] SC{

where C is a constant. If a < b, then the Mellin transform F*(r;v) = M{F(r);v} exist and
the integral

/ F(r) r~tdr,
0

converges uniformly.

Theorem 4.7.2 (Inversion of the Mellin transform) Let F(r), 7"~ F(r) € C(0,00) N
L1(0,00), a < Rev < b. Then the following inversion formula for the Mellin transformation

F(r):L lim /r_”F*(r;V)dl/,
r

27 Im I —o00
is valid for every r € (0, 00).

Similar conclusions hold replacing the Mellin kernel r~! with r ==L,

4.8 THE “mirrored” MELLIN TRANSFORM

In what follows, a brief sketch of the proof based on [Sne72] is given.
In the definition of the Fourier transform and the the inversion formula

B 1 +oo et
- 1 +o0o et

Replacing in the above relations x with e and s with —c — i¢, it is straightforward to show
that the following formulas hold

+oo
F(s) = / flx)z=*"tdx (4.127)
0
1 —c+ioco
flz) = ﬂ/ F(s)z®ds, (4.128)

where F(s) = G(is +ic) and f(z) = \/% z¢g(Inz).






CHAPTER

Irrotational Stokes’ Flow in a
Spherical Shell *

5.1 STOKES’ FLOW. A BRIEF INTRODUCTION'

For a Newtonian viscous fluid in the absence of body forces, characterized by constant
density p and viscosity p, the Navier-Stokes equations, valid for incompressible flow, are
given as

0
p(al:+u~Vu>+VpuAuO, V-u=0, (5.1)
which can be re-formulated in dimensionless form as
ou
Re E—l—u-Vu +Vp—Au=0, V-u=0, (5.2)

where Re is a dimensionless number introduced, in concept, by Sir G. G. Stokes in 1851
but named after Osborne Reynolds (1842-1912) [Rey83| [Rot90].

A very interesting and important flow regime results from the assumption that the
Reynolds number is very small compared to unity, Re << 1, but nonzero. Since Re = £ ZL ,
the low Reynolds number limit can be achieved by dealing with very large viscosities u, or
considering very small length-scales L of the flow, or by treating flows where the fluid
velocities u are very slow, so-called creeping flow or Stokes’ flow.

Following this scenario?, the system (5.1) reduces to the linear system

Vp—pAu=0, V-u=0. (5.3)

*This work has been published as [DDDb]
TBased on section 4-7 of |HBS86|
Details can be found in essentially any book dealing with fluid mechanics.
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Stokes equations represent a considerable simplification of the Navier-Stokes equations,
especially in the incompressible Newtonian case and carry some important properties such
as

e INsTANTANEITY. The only dependency on time is through time-dependent boundary

conditions.

e REeVERSIBILITY. If u and p satisfy (5.3) then —u and —p also satisfy the same equation.

e TIME REVERSIBILITY. In the sense that a time-reversed Stokes flow solves the same

equations as the original Stokes flow and comes as an immediate consequence of
instantaneity.

In most applications, the motion of a fluid represented by a streaming flow past a body
of revolution, parallel to its symmetry axis, are very important. Such motions are called
axisymmetric. Denoting with ¢ the azimuthal angle, the axisymmetrical flow is then one
for which

I. The velocity u is independent of ¢, viz

ou
% =0. (5.4)

II. The azimuthal component of u is anywhere zero, i.e.
¢-u=0. (5.5)

If one is interested in the case where the fluid is considered incompressible, i.e. p =const.
(see for details section 5.8 of [Tri88]), the continuity equation

Jdp B
anLV-(pu)fO,

yields
V-u=0,

which in orthogonal curvilinear coordinates ({1, &2, £3) expands as

1 o b 9
hlhghg aié-l(thS’Uzl) + @(hlh?)UZ) + 8753<h1h2U3> =0 (56)

Let {3 = ¢ and stipulate that the scale factors h;,7 = 1, 2, 3 are independent of the azimuthal
angle ¢. Then, bearing in mind (5.5), relation (5.6) simplifies as

0 0

and this can always be satisfied by introducing a scalar function ¥ (&, &2) such that

1 oV 1 oV

=— — ., up = —. (5.8)
h2h¢ 862 2 h1h¢ 851

The function ¥(&;, &) is known as the stream function, relating to the fact that it remains
constant along the streamlines. The stream function has been defined in such a way as
to vanish everywhere on the axis of revolution. A stream function exists in all cases of
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incompressible fluid motion in two dimensions and also in the three-dimensional case only
when the latter are axisymmetric (for more details see [HB86, pp.102-103]).

The Navier-Stokes equations for the case of an incompressible fluid, encountered
at the beginning of this section, rewrite, introducing the vector identities

u~Vu:%Vu2—u><(V><u)

Au=V (V-u) -V x(Vxu),
as

1 1
C(;—ltlnLiVuz—ux(qu)Jr;Veran(qu):O, (5.9

where 1 = % is the kinematic viscosity. The term V - u vanishes on account of the as-
sumption of incompressibility. Eliminating the pressure by taking the curl on both sides
yields

%—L:—Vx(uxw)—&-nvx(vxw):m (5.10)

where the vorticity w is defined as follows

w=Vxu.

Employing the relation

Vxu= % 5;':;;‘ (6851 (hju;) — 3853 (hiu;) >, (Einstein summation assumed)

and with the aid of (5.4), and (5.8), we find

w=2 (5.11)
he
where the differential operator E? is defined as
h h h
E? = ¢ 3( 2 3>+5< 1 5) . (5.12)
hihg | 961 \ hihg 061 08 \ hahg 06
Moreover, repeated application of the operator V X to reveals that
& 0 & 0 9
Vxw=|————F——-—""—| E°7, (5.13)
<h2h¢ 06 hihg 0&
and
Vx(wa):ng‘*\Il, (5.14)
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where the operator E* comes from a successive application of E? on itself. Furthermore,
it is possible to express the velocity u in terms of the stream function as [HB86| p.99]

~

u:nglll,
hg

and therefore, using the vector identity
(AxB)xC=B(C-A)—A(C:-B),

it can be shown that

F
uxw=—VV. (5.15)

Replacing equations (5.11), and into (5.10), we obtain the nonlinear differential
equation satisfied by the stream function ¥

~ h E?U 10
4 e _ 1Y 2y
E'U 4 ¢ nv<hi>xv\p L5 B0 =0, (5.16)
or
1 1 ovr o ov 9 10
E4\I/+() E20) - == (E20)=0. (5.17)
n hihahg \ 0% 081 0§ 0& ) 77375( )

where the middle term

E?v
V x ( 5 V\IJ)
h
®
has been altered using the vector identity
VX (fF)=VfxF+fVxF
for (5.16), or through the equality

1 hi&1 hobs hyd
P P

= B3y B3y B
Pihaho | 1R by By by Fy

V xF

for (5.17).
In the low-Reynolds number limit, equation (or (5.17) simplify as
10
E*0 — -~ (E?¥) =0, (5.18)
n ot

that is, the nonlinear central term is omitted and hence, constitutes the equation of
motion for creeping flows. If, furthermore, the motion of the fluid is assumed to be steady,
equation becomes

E'U =0



5.2. THE CLASSICAL REPRESENTATION 105

as the equation of motion.
Of particular interest is the case of irrotational motion of the fluid, namely the case where
w = 0, then, the equation of motion derived from (5.11) is

E20U=0.

The present chapter is organized as follows. In section 5.2 a brief review of classical
representations, namely solutions in form of series expansions are given, followed by the
formulation of the problem in section 5.3. In section 5.4 the general global relation is
derived, on which section 5.5 is based, in order to establish the Dirichlet-to-Neumann
correspondence together with a Lax pair formulation. Section 5.6 is devoted to the steps
that one has to follow in order to recover the classical solutions from the global relation.
Moreover, alternative formulae for the solutions in terms of integrals instead of a series can
be derived. The novel integral representations on which the present work is focused on, is
developed in section 5.7.

5.2 THE CLASSICAL REPRESENTATION

The stream function W for irrotational axisymmetric Stokes’ flow in spherical coordinates

satisfies the equation
9%  sinf 0 1 9
<6r2+ 2 89(sin9 %))W(T’G)O'

Introducing the variable

¢ =cosf, 6e(0,n),

the latter equation takes the form

32 1— §2 82 _
(67"2 + r2 6C2> \IJ(’I" C) =0. (519)

Since the separability of the irrotational Stokes’ operator E? is closely related to the sepa-
rability of the Laplacian operator, putting ¥(r,{) = R(r) Z({) we obtain the two ordinary
differential equations

rQ% —aR(r)=0, (5.20)
2
(1-— <2)ddZC(20 +aZ() =0, (5.21)

where o a complex parameter introduced during the process of separation of variables. The
latter of the ODEs has three regular singular points at ( = +1 and co. Thus by replacing ¢
with 1 — 2t, eq. reduces to hypergeometric form

d*Z(t)

- )=

+aZ(t)=0,
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with parameters
1 1
a:b:_gia\/1+404
c=0
Choose b to be the larger of the two and hence the first solution is [WG89, p. 149],
Zi(t)=tF (3 — 3V/1+4a, 5 + 3V1+4a,2;t)

or, for the original equation,

1— 1—
Z1(Q) = 2<F<§ —é\/1+4a7§+§\/1+4a,2;2c) .

Following [WG89), p.149], the second solution is given by the expression
Zs(z)=z1lnzF (% - %\/1 + 4o, % + %\/1 —|—4a,2;z)
= (- IVT+4a), (E+iVvi+ida),
oy e VA (g a0 |1 T )

nt(2)n

+p A+ IVI+4a+n) - +2) —Ppn+1) -9 (-1 - IVIi+4da)
¢(§+é\/m)2fy],

n=0

where z = ( +i0, is to be interpreted as the limiting value of the complex value z approach-
ing the real axis from above (+) or from below (—), respectively, 1(z) is the logarithmic
derivative of the I'—function (or digamma function)

d

$(z) = o IT(2),

and v = —¢(1) = 0.57721566 is Euler’s constant.
Since above relation is cumbersome to work with, we note that since 1 +a +b — ¢ =
0,—1,—-2,... a second solution is [Erd53, p. 75, eq.(8)]

Z(z)=(1-2)F (3 +3Vi+da, 3 - 3VIi+da,2;1-2) .

In order to simplify calculations, note that is a particular case of the Gegenbauer
differential equation

d?w(z)

(1= — (A +1)2 dw(z)

dz

+v(v+2X\)w(z) =0, (5.22)

if A= —% and a = v(v — 1), so that two independent solutions are,

Zl(C):1;CF<—1/+1,1/,2;1;<>, ‘1;<’<1,

Zy(z)=(1—-2)F(—v+1,v,2;1—2), |1—z|<1.
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Following current literature [HB86, [KK91] we adopt the definition for the Gegenbauer func-
tions of order A = —1 from [Sam9]1]. There are obtained by putting Z({) = ¢* u(¢), where
v is a complex parameter, and ¢? = % into (5.21), which then rewrites

d*u 3 3 du a—v(v— v(v —
=0 (3 =) - (3= S0 - [ )

and is of hypergeometric form only if

u(t) =0,

a=v(v-1).
After some manipulations we obtain

20 = ¢ F (-5 =I5 5i62) K> L

_1
Denote with C, 2 (¢) the Gegenbauer functions of the first kind and order A = —%

v v-—1
2’ 2

Cy

[N

3
© =) F ( ST N e
where A(v) is an arbitrary function of the complex parameter v.
Sampson [Sam91] showed that a second solution of can be derived by simple chang-
_1
ing v into —v 4+ 1 and multiplying by a constant factor. Thus, denoting D, 2({) as the
Gegenbauer functions of the second kind and order —%, we find
v—1 v 1
9 ) 57 v+ 57 C 2> ’

.m%@—waV“F(

where again, B(v) is an arbitrary function of v.
In order to be compatible with [Hei78l [Hei81l [Sam91] set the functions A(v) and B(v)
equal to

I'v—1
Alv) =2v1 ( 3) ,
V(v +1)
and
I'v—-1
B(v) _M
2T (v + 3)
The corresponding expressions for the Gegenbauer functions of the first and second kind
of order A = —%, valid in the interval || < 1, are given by [Sam91l pp. 455-456 and p.
473] in the case where v is an positive integer, including zero, as follows.
1 2 0(%h
GO = (D Ee F (35 1 50)
Qﬁf(?) .
resl) ) ) o ,n is even,

_ n T n .

= (-1)2 ﬁfv%rg)(l—C VF (5 +35,-5+1,5:¢%)

_ n—1 F(%) n 1 n 3.2

= (U7 A (P (-5 45,5507

n 2 ,n is odd,
n—1 F(i)

n n 3 3.
@<(1,C2)F(§+1775+5’57<2)



108 CHAPTER 5. IRROTATIONAL STOKES’ FLOW IN A SPHERICAL SHELL

-1 n VTD(G) n " )
Dp?(¢) = (~1)= 2F(n+1)< ( §+%,§,%;C2), n is even
n+1 \FF( ) n n .
= (_1) n+1 F(_f?f_%7%;<2)a n is odd.
2r("5-)

Equation (5.20) with a = v(v — 1), v € C accepts functions of the form
Ri(rv) =71", Ro(rv) = rovtL

as solutions. The general solution for the stream function is given by the real part of
U(r,¢;v), ie

where
ZA() YO (r, ¢ v,
and 1
OVGy) = Q)
OF(r,¢v) = 1 D(0) v eC (5.23)
O (r,¢;v) = r e ) | 7
OW(r (v) = Dy ()

and A" (v) arbitrary functions.
However, the procedure can be significant simplified by letting v = n € Z*. The general

solution is then given as
4
Y S Avey, 5.24)
neZt i=1
where now the irrotational eigensolutions (5.23) are

oL = n’ (<)
o = Dn (©)
@513) = pontloy %( ¢)
ol = r DA

l\)\»—- M\»—l

, veCc. (5.25)

The eigenfunctions of the second kind with respect to the variable ( are defined as [Sam91]
p- 470]

D2 (¢) = Ca 2 () Qo) = Kn1(C) (5.26)
where
st <1,
Qo(¢) = L en (5.27)
2 In =1 ([ >1,

is the Legendre function of the second kind and K, _1({) a polynomial of degree n — 1
defined as

2(2n —4m +1) (2m —1)(n — m) o
(2m —1)(n —m) L= n(n—1) Cr Zom41(€) (5.28)
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where L%J is the greatest integer which is less then or equals to an
The Gegenbauer functions of order —% are in general related with the Legendre functions
of the first and second kind, viz
Cié 7%
d dD
v =P (Q) e = Qi (Q)
_1 Pn _Pn_ -1 n T n—
cn j(g) — (C)Qn,1 2(¢) D, ? ) = Q (O2n?1 2()
Cn 2 (€) = —Pu(C) + 20 Pa-1(¢) = Pa—2(¢)  Dn?(¢) = =Qu(¢) +2¢ Qn-1(¢) — Qn-2(¢)

1
where else the first few Gegenbauer polynomials C,, 2 ({) for n > 2 are given below

c Q) = Y-

C32(¢) = 3¢ -1

G20 = H-1)(5¢% - 1)

Cs2(¢) = 1C(¢2 - 1)(7¢2 - 3) . (5.29)
C&%(C) = (2= 1)(21¢* — 14¢2 + 1)

Cr2(¢) = ¢ (62 = 1)(33¢* = 30¢2 + 5)

Cg2(¢) = g3g(C® —1)(429¢° — 495¢* + 135¢% — 5)

Note, that since in most applications the variable ( lives on the interval (—1, +1), standard
1 _1
references [HB86, [KK91] define the Gegenbauer functions C,, 2({) and D, 2 (¢) as

_ Paa(Q) = Pu(¢)

o) = - (5.30)
DE%(C) _ Qn—Qéi):f)n(C) 7 (5.31)

and the factors ¢ — 1 in equations (5.29) must be replaced with 1 — (2.
1
Employing the theory of hypergeometric functions, it can be shown that D, 2(({), and
1

subsequently D, 2({), is unbounded at both poles ( = +1, and therefore the second
solution is for the time being, disregarded. Hence, the irrotational eigensolutions (5.24)
simplify as
V) =y (an ™+ by r*”“) 2 (C). (5.32)
nezZ+t

It can be shown [Das07a] that every Gegenbauer polynomial of the first kind and order
A= —% enjoys the structure

CrZ(¢) = (1 =) My_s(C), n>2, (5.33)
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where M,,_5(¢) is a polynomial of degree (n — 2). This implies that

1
2

Cn?(£1)=0, n>2
and secures that the stream function vanishes along the axis of revolution.
Therefore, reads

—+oo

U(rQ) = (an "+ by r’"“) Cr2(C). (5.34)

n=2

Once the stream function ¥(r, ) is obtained the axisymmetric velocity field

o~

u(r, C) = UT(T’ C)? + ug (Tv C)C

is given by

5.2.1 Alternative Solutions

The expressions of the solutions as far as it concerns the ( —direction, motivates to consider
expressions for the stream function of the form

Y(r, () = Z (an,m "+ bym r*"“) 1= 2Z(), (5.35)

n,m

where a,, ., and b,, ,, are arbitrary constants.
Replacing into (5.19) it is straightforward to shown that ¥(r, ) satisfies (5.19) only
if Z(() satisfies the differential equation

(1=¢*2"() —4m¢ Z'(Q) + Z(¢) =0, (5.36)

(n(n -1)- 2m> +4m(m — 1)

where the prime denotes differentiation with respect to the argument.
Putting Z(¢) = (1 — ¢?)* u(¢), then u(() satisfies the equation*

(1= )" —4(p+m)Cu + [n(n —1)—2(u+ m)}u =0, (5.37)

where ;1 assumes the values 1 — m or —m.

If 4 = —m, equation is recognized as the Gegenbauer equation of order A = —3 and

*Letting m = g (k + 1) equation {5.36) becomes

(n+k)(n—k—-1)+(k—1k(k+1)(k+2) <2:| Z() =0,

(1= %) 2"(¢) = 2k(k + 1) ¢ Z'(O) + s

which remains invariant under the transformations k - —k — land n - —n + k + 1.
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degree n. On the other hand, replacing i by 1 — m, equation (5.37) is recognized as the

Gegenbauer equation of order A = 2 and degree n — 2. Hence the solutions to (5.36) are

Za(€) = (1= ¢ (a0 G (Q) + ba D * ()
and 5 5
Zn(C) = (1= )7 (en (1= €A CF_5(0) +dn (1 = ) D ,(Q))

where a,, b,, ¢, and d,, are arbitrary constants.
From the above relations it is easily deduced that

Cr? () = an (1= (2 C2_,(C)
DR () = Bn (1= C?) D2 _,(Q)

Taking a step ahead, the constants «,, are easily evaluated with the aid of the orthogonality

. n>2. (5.38)

relations (5.44) and and equals «, = ﬁ Hence
CiQ) = ———— (1= CE ), n=2 (5.39)
" n(n—1) n=2450 = '

The constant (3, on the other hand, can be evaluated employing equations (5.26)-(5.28)
and a formula connecting D;\(z) and C)(z) similar to Christoffel’s relation [Chr58] between
Q. (z) and P, (z) given by Watson [Wat38].

Remark 5.2.1 Observe that at the axis of revolution (( = £1) in the case where Cy, 2 Q) is
replaced by (5.39), the stream function vanishes due do the term (1 — (?) without imposing
any restrictions on the Gegenbauer polynomials of order % Moreover, since the properties of
the Gegenbauer polynomials of order greater then — %, are well known [Erd53, |[Hei78, |Hei81,
GRO0O0, [AS635], the use of (5.39) is suggested.

5.3 FORMULATION OF THE PROBLEM

Consider a spherical shell S centered at the origin with inner radius r; and outer radius
r9 as depicted in Figure The motion of the fluid is restraint in the interior domain €2°
defined as

o ={n0

Scope of the article is to obtain expressions for the stream function ¥,(r,{) and
¥, (r,¢) valid for Dirichlet and Neumann problem, respectively, in the interior of the
spherical shell S. Moreover, by a limiting procedure, the corresponding streamfunctions
Ve (r,¢), ¢ (r,¢), Wi (r,(¢),and ¥ (r, ¢), which solve the interior Dirichlet, exterior Dirich-
let, the interior Neumann and the exterior Neumann problems, respectively, are found. The
Dirichlet boundary values are denoted by gg), 7 = 1,2 where else we denote the Neumann
data on the boundaries by gl(vj)7 7 = 1,2. In order to secure the uniqueness of the exterior
problem a asymptotic condition must be applied, e.g. if the fluid is at rest at infinity, we
demand that the solution of should satisfy the asymptotic condition

\Pe

T—2%O, as 1 — 00, (5.40)

T1§r§r2,—1<c<+1}.
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Y (rs, ()

FIGURE 5.1: The interior domain ) defined as Q' = {(7", ) |7"1 <r<ry, —-1<(< +1}.

in order that the velocity vanishes. On the other hand, if the body is considered at rest
with the fluid streaming past it, the appropriate asymptotic condition is

U — £(r,;U), as r— o0, (5.41)

where U is the uniform velocity of the fluid and ¥* stands for both ¥¢, and ¥¢,. In addition,
the Neumann boundary values have to satisfy the compatibility condition (see Appendix [D]
for details)

2 8 (37 3) —9

S g @)asey =3\ T (5.42)
. . =1 07 n > 2

0Q(r1)Ud(rs) 7

In the case where Dirichlet boundary values gg), j = 1,2 are prescribed, equation (5.34)
implies

W, (r, ) = ;:i n(n—1)(2n — 1) {rz (Z)n - (:i)n} :

x [ (r;"“ DY — it 3553)) 4+ (r{’ D@ —rp 55;”) P CRE),  (5.49)

where we used the fact that the Gegenbauer polynomials of the first kind and order —%
satisfy the orthogonality relations

e O ) 2
L e YT am o nEn_ptm MM (5.44)
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and the Gegenbauer transforms of order —% of the Dirichlet data are given as

o 1 G 3
) / 95 Cn Qge s j=1.2. (5.45)

() —
O o 1=

Similarly, for the Neumann problem with data ggf), j = 1,2 the solution assumes the form
1

Do () = ;:2;(2" o[ (2) -5 (H

X [(n —1) (rf” NG — 91(11)) " +n (r?ﬂ NG —rpt ‘Yt?(zl)> 7’”“] Cn 2 (€),

(5.46)
where .
- +1 (j)C_E
m;ﬂz/ Mdg, n>2 j=12. (5.47)
o 1=¢
As 71 tends to zero, equation implies
lim Uy (r,¢) = ¥i(r,{), X =DorN,
r1—>0
where .
i 1 & - r\" %
W00 = 3 D ntn =03 (1) 0o, (.48
and
. T2 = (2 r " _1
w0 = 23 0= e - RS (L) 6o, (5.49

n=2
corresponding to the irrotational flow of a viscous fluid in the interior of a sphere of radius
r9.
In a similar manner, as 7, — 0o, we have lim ¥ (r,{) = ¥%(r,(), X = D or N, where

ra—00
oo - LN s (1" oo
wD(r,g)_ign(n—l)(Qn—l)Q; <T> Cn2(C), (5.50)
and oo o
w0 = =5 S nen 05 (7)eto. (5.51

describing the irrotational flow of a viscous fluid in the exterior of a sphere of radius r;.
The coefficients @55 ) and mﬁf ) are given by equations and (5.47) respectively.
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5.4 THE GLOBAL RELATION

The global relation, namely a expression explicitly connecting the Dirichlet with the Neu-
mann boundary values (and vice versa) can be derived by the algorithmic steps analytically
described bellow.

Let U(r, () satisfy the differential equation

0?2 1-¢% o2

*
9

and suppose G(r, () any solution of the formal adjoint’ (E 2)

2 2 _ 2
(aarz + 5% (174;)) q(r,¢) =0. (5.53)

Multiply &52) by g(r,¢) and (BE53) by ¥(r,() and subtracting them yields, after some
algebraic manipulations, the divergence form

o (_ov g al1-¢2/ ov og 2]
In the sequence, consider an arbitrary function Z(r, (; v), such that
0= _0v 0q
8—< =05 "3, v, (5.55)
0= |1-¢*[/_0¥ g 2¢ _
&_—[ﬂ(qac—%ﬁ!)—%ﬂq\ﬂ , (5.56)

then the above relations imply

a a = . —
|:8Taa<-:| ._.(’I”,CJ/)—O, VE(C»
where [, -] denotes the commutator, i.e.
0 0]_009 09
or’aC|  or ¢ 9¢ or

and therefore equations (5.55) and constitute a Lax Pair for (5.19).
Equation (5.54) holds true in any meridian plane of R3. Applying Green’s second identity
to a closed subdomain of the meridian plane, one obtains immediately the global relation

_ov  0q _o0v  0Jq _|d
/{ (15 - 5rv) ac- [(1—@) (1% ~ 5ev) +2qw
oN

T;} —0, (5.57)

where 0f) is the boundary of the subdomain.

TNote that the self-adjoint assumes the form

(")

(=)
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5.5 THE DIRICHLET-TO-NEUMANN CORRESPONDENCE AND A LAX PAIR FORMULATION

Utilizing the global relation for constructing the Dirichlet-to-Neumann correspondence is
the most effective approach. Observing (5.57) we notice that the algorithmic part starts
as soon as a solution to (5.53) is found. Taking advantage of the fact that the domain in
question is separable, i.e. we can replace g(r, () with R(r)Z(), it follows that R(r) satisfies
the ODE

s
Tz%r(;)*ﬂﬁﬁ)zo, pgecC
whereas Z(() is a solution to the equation
d? - —
1 (1-70) + 3-2Z(Q =0, pec,

where [ is the separation constant. The latter is a particular case of the Gegenbauer
differential equation with A = % and S =v(v+3)+2.
Hence

q(r,¢;v) = R(r;v) G <), (5.58)

where
Ri(r;v) =", Ra(rsv)=r"""1, (5.59)

3
and G2 (¢) any solution of the Gegenbauer equation of order A = %
Concluding, for the Lax pair introduced in the previous section, consider

E(r,Gv) =q(r, Gv) u(r,Gv), veC, (5.60)

where p(r, (;v) an auxiliary function. Replacing into equations (5.55) and it
is straightforward to show that the Lax pair assumes the form

(a +dlngﬁ>u(r,<;y): (3_dlnR) ¥ro) veC,

aC d¢ or dr
,0  ,dnER [ a0 dmgl
<7" E‘i’r dr >,LL(T7<7V) [(1 <)<8C dC >+2C \Ila veC.

In the sequence, apply the global relation in the domain (2 defined as
Q={r <r<m, (<<}

and depicted in Figure[5.2] to find

- [(1 —<E><g§(<) T Bl g, <>> $20 63 W )| Rirn)
“ (o, 0U(r2,()  dR(ry;v) 3

o [ (R G2 T wir, )62 (0

+ [ [(1— i)(gém Rt e ls) w,g)) 26,63 Wi ¢ | ) Sy

C+ R U 3
_/C_ (Rm;y) 'y SV )‘I/(H,C)>93(C)d§=0, 561
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C=+1 G+

W)

\II(T27 C)

(=-1 ¢

FIGURE 5.2: The interior subdomain Q.

where q(r, (;v) is replaced by (5.58).
Stipulate that _
\IJ(’I’, C) = (1 - <2) \Il(r’ <) ) (5.62)

then the term .
(1- 630 25 2060 w0

equals

and (5.61) rewrites

- [18 _)Ngf L= ep S b6 )| Rown S
+ a\If 7“2, dﬁ(?"g; ) 3
+ [ (R - (1,0 )63 ()¢
) g3 (C4) ~ _
o [1—@4 Wgﬁ—u—w ) G| Rrsn) S
C+ R ‘U 3
/ ( ris) 2 ”’ —ngl’ )\I/(m,C))Gﬁ(C)dcz : (5.63)
¢ T
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The Gegenbauer functions of the first kind of general degree v and order % are regular at
= 1, where else the behave as (1 + ¢)~! near the singular point ( = —1. On the other
hand, the Gegenbauer functions of the second kind behave as (1 F¢)~! as ( tends to +1F.

3
This implies that the factors (1 — ¢3)? G2 ((+) vanish as (x+ — +1F. Moreover, it can be
shown that (see chapter[3] sections and B.11)

L LLdCEQ)
Jim (1-¢%) T (5.64)
o adCEO) 4
glnfnﬁ(l ) i 7Tsmwr, (5.65)
and .
- . zdeE(Oi VL o VT
Jim (1= )2 = (cos = sin ) (5.66)

Thus, as (+ tends to £17F respectively, (5.63) becomes

(R 20162 - 0 50,5
- (R g - P 50006 )
~Lsinr [ G(r,—1)R(r;v) 4 i GE(Q) = CE(Q)

)

Zf:f (ﬁv/(r, 1) — cosvm \ff(r, —1)>R(r; 1/)% if g§ ©) = Dl% ©

velC, v#-3—4,... (5.67)

, 3 . 3
where D) (v|G2) and MU (v|G.2),j = 1,2 denote the weightless Gegenbauer transforms

of the first and second kind of order % for the functions ¥(r;, () and % respectively,
ie.
. 3 +1 3
20lgh = [ W3,005 @) e, =12, (5.69
-1
i : L ow(r, 3
n(wigh) = [ L0 g;’ Dgiac, j=1.2. (5.69)
-1

Replacing F(r; v) in (5.67) with a linear combination of T2 and r—¥~! leads to a relation
valid in the interior )’ of the spherical shell S which is valid in the entire complex v—plane,
except for the points v # —3,—4,... As r; — 0, the resulting expression is valid only in
interval Rev € (—2, —1). On the contrary, none expression can be derived in the case where
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r9 tends to infinity. Therefore, in order to keep things simple, rewrite (5.67) as
3 3 3 3
571 (e 0168) - v+ 22D 06 ) ot (ﬁ‘ﬁ(”(VIQﬁ) -+ 22006

—%sinwrf:f U(r,—1)r’dr , if Ql, ) = ,,%(C)
, (5.70)
©)

Rl

2 (B0 - om0 ) e 60 = b

(e + v+ )0 igh) ) -2 (e g + w1 9 i)
—% sin v f:lz \Tl(r, —1)r—v=3dr , if 91% €)= Ou% ©)

- ~ ~ s . (5.71)
2f:12 (\Il(r7 1) — cosvm ¥(r, —1)) rv=3dr L if G2 (¢) = Dz (Q)

for every v € C, v # —3,—4,... , where (5.70) is derived with the use of R; and E.71) is

derived with the use of Ry. As 7 tends to zero, a singularity at = 0 is introduced and
thus the function R(r;v) needs to be bounded and equations and (B.71) rewrite

R MAWIG)) - (v +2) DD (v|gh)

~gsinvm [( 001 ()7 GO =GO
= _ 3 3 , (5.72)
2 i (901 - cosvm i, -0)) (2) 8 636 = D0
valid for every Rev > —1, and
NP (v(G)) + (v + 1) D (v]G)
—Aginpr [ U, —1) ()" dr Jif G2 (O) = C2(¢)
= _ _ 9 5 5 7V#_37_4,...
2for2 <\If(7“, 1) — cosvm U(r, —1)) (7'72)”+ % ,if G2(¢) = D2(Q)
(5.73)

valid for every Rev < —2.

On the other hand, sending 75 to infinity, the exterior problem for a sphere of radius r;
is recovered. The singularity at infinity is handled introducing R;(r;v) = r**2 for every
v € C less then —1 or introducing Ry(r;v) = r~V~! for every v € C greater then —2.
Hence, equations (5.70) and (5.71) rewrite as

MO vIGH) - (v +2) DV (|G
Fsinm [T -1) ()7 4 G5O =CO)

T

- —2 [ ({17(73 1) — cosvm {Ivl(n_l)) (%)u-‘rl g G ) = D} ©

Rev < -1, v+#-3,—4,..., (5.74)
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¢=+1 ¢4

lIl(T27 C)

:; NG C:tA).-'A“

e Oy

¢=-1 ¢

FIGURE 5.3: The shell subdomains ﬁl(r, () = {r1 <p<r ( << Q_} and
Qa(r,¢) = {r < p <1y, (- < < (4} which tend to the shell subdomains

Qr)={rn<p<r -1<{(<+1}andQ(r)={r<p<ry, -1<{<+1}as
Ci—>:|:1:F.

and
O (WG + (v + 1) DD (1[GF)
Fsinvm [T, -1) (3)7 4 GO =CH Q)

) v 0 3 , Rev > —2.
2 (1) - cosrm (-1 (2)77 4 i 630 = DO

5.6 From CoMPLEX TO REAL: CLASSICAL SOLUTIONS RECOVERED

Applying the global relation (5.57) in the shell subdomains Q;(r, ) defined as
Qi(r, Q) = {(r,C)’rl <p<r, -1<(< +1} ,

and Q3(r, () defined as

Qo(r, ) ={(r,Q)[r <p<ry, -1 << +1},
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— 3
depicted in Figure with g(r, ¢; v) replaced by R(r;v)G2 (¢) yields,

/+1 (R(r; v) 8\115()T7 2 e C)) gu%(()dC

-1 T dr
(i) 29 0l - T2 i )
—sinvm [ Wp, 1) Rlpv) GO =CHQ)

+

2 <C°s”‘f’(p’ 1) = ¥(p, 1>) Ripiv)% it G3(¢)=DE(Q)
7V€(C71/7é_3’_47.“7 (576)
and

/+1 (R(T;V) aq/é: ) ) e C)) gé(()dé

-1 dr
Lsinvm [ W(p, 1) Ripiv) % GO =GO

+

Rleo
—~
)
N

02

2/ (cosvwif(p,—l)—%n) Rlpiv)% . if G2(C)=Di
veC, v#-3-4,..., (5.77)

where :D(j)(u|g§) and ‘ﬁ(j)(l/|gy%),j = 1,2 are given by equations (5.68). Note that the
subdomains 27 and 25 do not include the singularities at » = 0 or r = oo, and therefore
no restrictions on R(r;v) in (5.76) or (5.77) have to imposed.

Replacing in equations (5.76) and (5.77) R with (5.59), the following 4 equations valid for
every v € C, v # —3,—4,... , are the result

+1 o 3

/ (rw_(y+2>w<r,g))g3<c>dc

—1

= (%)M ( NO WG — (v +2) DV (]G >)
s 7 U 1) (2)"7 630 =)

+

S|

2" (COSW‘W—U —%1)) (2" e i gi(o) = DE(C)
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[ (P2 s s nwing)adoac

-1

_ ( r )”” (H NOWIGH) + (v + 1) DV (]G] >)

—Zsinvr [T W )(ﬁ)wr2 dT)p, , if QE(C):CVQ(O

+ , ., . (679
Y (cosmr\If( 0 \p<p,1)) ()28 i GE(Q) = DE(C)

[ (-2 puino)adoac

_ (:3)”“ (r2m<2>(y|g§)—(y+ ) <y|gy)>
Lsinvr [° U(p,—1) (B)VH d—pp if G2 (¢)=C2(C)

n ~ . (5.80)
2 (cosmr\lf( 1) \I/(p,l)) (&)"™de i G2 () =Di(C)

and
ov(r()
/_1 (r r + v+ (r, C) %
v+2

- () (r2m<2>< G3) + (v + 1) 9P (1G] ))
%smwrf \I/ )( )V+27p ) if gz/%(():Cu%(C)

n : (5.81)

o

2f:2(cosm%,—l)—@(p,l)) (5)*2 % i gio) = DE()

Subtracting equation from and (5.80) from (5.81), equations and G.71)
are recovered.

In order to eliminate the unknown function %, subtract equations (5.78) and (5.81)
side-by-side, to find

+1 3 1
/ B(r,¢) G () d¢ =

v+2 5 3
() (n920i6h) + 0+ 9@ 0ia)))
2

1 2v+3
v+1 3 3 1
-(7) (“‘ﬁ“)(vg&)—<u+2>®<1><u|93>) 2w+3
& sinvm Ry (r;0) ¥ (p, —1) A GE(Q) = CE(Q)

2R3 (r;v) (cos T \T/(p, -1) - \Il(p7 1)) if g,, €)= é(o

wveC, v#-3,—4,..., (5.82)
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where

. "d vkl (T2 g vz
mpn = [ L (9 T2 (2)
m PONT v PO\p

is an integral operator, which we will refer to as the Radial Integral Operator.
Similarly, subtracting equations and (5.80) side-by-side, yields

(T)V+2 (rl ‘ﬁ(l)(u|g§) ++1) 33(1)(1/|g§)>

1

+1 3 1
/_1 W06l ac= 51

v+1 3 3 1
() (rowieh - e - 5l
%sinerT:f(r;u)@(p,—l) , if QE(C) = CV%(C)
X 3 3 ?
207 i) (cosva bl 1) = F1) ). it 630 = DO
welC, v#-3-4,..., (5.83)
where - rdp (v v+2 "2 dp /py\vtl
= [ G) O
Note that

) r .
RV (r;—v —3) =R(r;v), veC,

which implies that (5.82h) and (65.83h) differ only by a transformation based on the sym-
metry of the Gegenbauer functions of the first kind and order % A similar conclusion does
not hold for the Gegenbauer functions of the second kind and order %, since there doesn’t
exist a linear relation connecting them

The inversion of (5.82), or (5.83), leads to an integral representation for the stream function
U(r,() in the case of the irrotational Stokes’ flow valid in a spherical shell with inner radius
r1 and outer radius 7. However, in order to arrive at classical representations, i.e. solu-
tions in form of a series expansion, we must take advantage of the orthogonality relation
for the Gegenbauer polynomials. Thus, letting v =n =0, 1,2,... in (5.82) yields

i 3 ! r\" @) @)
\ 2 = — 1
[ wrockoac=ggl(£) (e s o)
r n+1
- (Tl) (m Ny — (n+2) @ﬁl”) : (5.84)
where now
(T e o N A PR
of = [ ocko. w0 = [ i, 5.85)
1 -1
Proposition 5.6.1 The set of functions C’;} (z) form a complete, orthogonal system with
weight
T+ DA (X s 1
1-— A>—— 5.86
21—2)\7rr(n + 2/\) ( €z ) 2, > 2 ( )
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on the interval (—1,+1).
Consider a class of functions of the form

9(x)
= — 5.87
f(@) 1= 223 (5.87)
expanded in a series of Gegenbauer polynomials, namely
+oo
fl@) = anCp(x), (5.88)
n=0
then in view of (5.87)
+oo
g(z) = (1 -2 2 a, C)(x) (5.89)
n=0
where the coefficients a,, are evaluated as follows
2
L(n+1) (T(A\)" (n+A) [
o =221 / C)(x)da . 5.90
a =Ny @) Oy de (5.90
Thus, the inversion formula for implies
1- 23 1 r\"t?
v = _ m2) 1D
(r,¢) 5 7;)(”+1)(n+2){<r2> (7“2 n) +(n+1) n)
r n+1 5
- (;) (7“1 N — (n+2) @59) } C2(0). (5.91)

The unknown boundary values @SZ ) or me ), j = 1,2 depending on the given boundary
value problem, are eliminated by the use of equations (5.70) and (5.71) with v replaced by
n € N. Substituting the resulting formulae into (5.91) the solutions ¥ (7, (), and ¥y (r, ()
respectively, are obtained as follows

_1—(2+OO 2n+3 1 nt2 ) nt2y-l
Vo) = L DD { () e () }

0

« { (T2—n—1 @511) _ T,l—n—l @%2)) pt2 (T5L+2 @511) _ r'11+2 @%2)) T.nl} O’I’% (C) (5.92)

- E 2m+3 1 (" 1 i\
W)= L G DD { () ‘<> ]

n=0

M (2@ 20} LT () et ) 3
X{n+2 (Tl MmNy )_ nt 1 (r2 Wyl =Ny )}Cn(é) (5.93)

As 71 tends to zero, the above relations simplify as

) 1— 9 +o00 2 3 n+2 s
W (r, Q) = 2C > (n+7f)?n+2) (:2) D2 2 (0), (5.94)

n=0
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and
OO

i — (2 2n—|—3 r nt2 3

describing the irrotational Stokes’ flow of a fluid in the interior of a sphere of radius 7.
Similarly, as r2 — 00, equations (5.92) and (5.93) yield

. _ 1— C2 +oo o+ 3 - n+1 o 5
Wi (r,¢) = 5 nz:% CECES) <r> oM C2(C), (5.96)
and »
1-¢ = 2n + 3 " 3
= DI T () YOI, 697

which describe the irrotational flow of a viscous flow in the exterior of a sphere of radius
r1. . .

After simple manipulations utilizing (5.39) and therefore %gf ) = n(n171) %5322, where X
stands for © or N respectively, equations (5.92) - (5.97) recover equations (5.43), (5.46)

and (5.48) - 5.51).

5.7 A NOVEL INTEGRAL REPRESENTATION

Utilizing the global relation (5.57) in the subdomains S~23 and §~24 defined as

S 2,

DG ¢ = {rn Q) |m <
Qu(Ge) = {Q)ri < <,

— 3 3
depicted in Figure[5.4] with g(r, (; v) replaced by R(r;v) G2 ({), where G ({) is any solution

of the Gegenbauer equation (5.22) of order A = %, we obtain

A [(1 - <2>( fio Pt - e g, o) +2¢63 QW )| Brsw) O
+1 Rro: v
-/ {(Rm;u) i ULy 2 wz,t))
- (R(h;v) 8\11(;:7t) - dﬁg: ) ‘1’(7”17?5)) } g2 (t)dt
0 i GO =GO
+ N B R ,veC, v#-3—-4,..., (598
=2 [+ 0RO 4 GO = DE(Q),
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¢=+1 ¢+

U(r,+1)

Qs(¢5¢4)

¢ =const.

\I/(TQ, t)

FIGURE 5.4: The subdomains Q3(C; ¢4) and Q4(¢; ¢ ) defined as
Q3(3¢4) = {(73 C) |7“1 <r<r, (<t< C+} and

125

S~)4(C;< ) = { | r <r<ry,(_ <t< (} The whole meridian plane is recovered as

lim Q3 Q3 and lim Q4—Q4

Cy—+1 (_——1

¢ ac

¢ o T2, R T2V
[ { (e - i)
- (R(Tl;’/) 8\11((9:41,t) a dR(Th W(ry,t )}Q§

g _ dr = %
{ sin v f \I/ (r,=1)R(r;v) S5, if gu Ccy
_|_

/ N [(1 - <2)<g§<<> OU(r.0)  dGr () . 4)) +2¢GHQ) ()| Bl

—2cosu7rf \IJ (r, —1)R(r; )c}% ,if gu%(C):Dx%(C)y
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3 3
Subtracting equations (5.98k) multiplied by D; (¢) and (5.99b) multiplied by C;? () yields

s dD} s dCi () [ . d

a —c?)(cu © 22— p o 2 )> w0

ZQSI%(C) { <R(’I"2;l/) 8\I/g":7t) . dﬁgiyy) W(Tg,t))
— (R(rl;u) (’ng;l,t) - dﬁgi; V) ‘I’(Tl,t)>}
3 T2 — dr
+ 2 cosvm O (C)/ U(r,—1)R(r;v) PRl # =3,—4,..., (5.100)
where
3 3 ¢ 3 3 +1 3
&2(¢) = CE(g)/ dt D (t) +D3(§)/ dtC2(t), v#-3,—4,..., (5.101)

1 ¢

is an integral operator, which we will refer to as the Gegenbauer Integral Operator of order %

3 3
Note that the integral | 51 dt D¢ (t) doesn't exist. However, the integral | E1 dt (1-¢%) D2 (t)
converges.
Utilizing the Wronskian relation (3.102)

5 dCi(O) T(w+3) 1 L
i 9T Treena-ep VT

we write equation as follows

b 20

[ OB G =0 - ®§<c>{ (Rm; ) Prel)  dBlaiy) wz,t))
- <R(T1; ) a\yg;l, 0 _ deL{; Y) \I/(rl,t)> } +2(1—¢?) cosvm ?EZ i :{,; CE(¢)
X /TZ U(r,—1)R(r;v) %, v#£E =3, —4,.... (5.102)

Remark 5.7.1 Equation (5.102)

R(rQ;w(@E’(oa‘ng’”) _ drzi) (@E’(c)wm,t)) ~ | Reus) (@mwg;h”)
dR(rv;v) [ .38 _T(w+3) 1 2 =, ydr
- dRY) (@V (g)wm,t)ﬂ - fe e / W(r, ) Rirs) <7

— 2 cosvm Cl;% (C)/ U(r,—1)R(r;v) %, v#-3,-4,..., (5.103)



5.7. A NOVEL INTEGRAL REPRESENTATION 127

constitutes the generalized Dirichlet-to-Neumann correspondence for the interior of a spherical
shell with inner radius r; and outer radius 5. Indeed, evaluating the above relation at { = 1

we find

C# (1) | R(ra;v) M (v|DF) - % ©<2>(V|D§)]

— G5 ()| R(ri;v) W @[ D) ng;’ 2 zv“)(uDE)]

D) [ QN 5 dr o) [

=T 1) /T1 (%EI—CQ R(r;v) 2 2 cosvm CZ (1) . U(r,—1)R(r;v) 7
(5.104)

where Q(j)(V|D§), ‘)’t(j)(z/|D§), j = 1,2 are given by (5.68).
Since ¥(r,+1) = 0, the first term of the right-hand side of (6.104) yields an indetermined
form. To overcome this obstacle, set ¥(r,() = (1 — (%) ¥(r, () and the above relation reads

dR(TQ; V)

@) 2
> D9 (v|D2)

R(ra;v) NP (w|DF) —

R(rsso) n0 w03 - L0

©<1><v|D§>]

= / ({Iv/(r,l) —cosvw@(r,—l))R(r;y)%, v#£E-3—-4,..., (5.105)

3
where the fact that ggzﬁ’g = 2C2(1) is used, and [B67p) is recovered. In order to obtain

_ 3

the correspondence [5.67a), one must replace G(r,(;v) by R(r;v) DZ () in the subdomain
3
5

Qs and by R(r;v) CZ (¢) in the subdomain € .

Introducing R(r;v) = r**? in (5.102) we obtain

[ uerar—a-¢) ey @E(O{rs“ (reg® ) - w4252 0)

7 (r g0 - v+ 208 (0) } 201 - ¢ cosvm g € )

ra
x / \P(Tv 71) Tud’l’, v 7é 737 745 ey (5106)
r1
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where else, replacing R(r;v) in (5.102) by r—“~! yields

/Tz T(r,¢)r 3 dr = (1—¢?) m

T1

®; <<>{r;”-2 (2090 + v+ 1) 6P )

w2 (1) 1) oy o Tw+1) s
R CY IO R <t>)} +2(1- ¢ cosvr LD G )
X / | \i(r,—l)r_”_3dr, v#£E-3—4,.... (5.107)

Equation (5.106) is recognized as the Mellin transform for the function r ¥(r, {). The inver-
sion formula then implies

v = 1 [ ()T T 60 (g0 042670

2777'/ Re v—ioo T P 14 + 3
1= RVt i\ v T(r 4 1) 8 (1) (1)
- — = O/ t) — 2 t))d
2mi, /Rel,ﬂ-oo ( r ) T'(v+3) 5 (<) (Tl g (8) = (v +2) gn ' )) v
1— <-2 Re v+ioco o F(V + 1) % Ty ,
+ — /Reuﬂ'oo r m cosvm C2 (C)[/T1 U(r,—1)7 dT} dv, (5.108)

where the integral is taken over any open contour I', connecting the points Rev — iR and
Rev + iR in the complex v—plane as R tends to infinity. The unknow boundary values,
depending on the problem at hand, are evaluated with the aid of equations and
(5107). Substituting the resulting relations into we find

717<2 Re v+i00 ro\ v+l 79 2037 2v+43
Eon0 = [ (2) [1—<ﬁ> PRI

V—100

v+2
3 r
<ol (2) 0 - 0w
) -1
B 1_<2 /Rel/+zoo (7;1)”4_1 ﬁ 21/+3_1 ﬁ
270 JRey—ioco N\ T ro v+1)v+2)
3 (1) " o
x 62 () |9 (t) — E gp ()| dv
1 Re v+ioco

/ rvl U(r,Q)rvdrdv, (5.109)

2mi Rev—ioco
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if Dirichlet boundary values are prescribed, or
2v+37 1

2) 2v + 3
(

1742 /Requioo (T’Q)V+1 ) r
R r 1 v+ 1)2(v+2)

leN(T7 C) =T 271

v+1
3 T
< 63 (0 () 95&><t>—g§3><t>]du
2 Re v+ioco V1 2v+3
RS / (7;1) 21 1 2V2—+3
27t Jrey—ico N\ T T (v+1)2(v+2)

5 - v+1 )
« 81(0) [gm) - () gf\ﬂ(t)] v

1 Re v+ioo )
/ pvL U(r,()rvdrdv, (5.110)

2mi Re v—ioco
if Neumann data are available.
Remark 5.7.2 It is straightforward to show that the following equalities hold
Rev+ioco v+2
T2 T2 1
/ (* () g9 (#)
R r

eV —1i00 (&1

bl g\ 2043 -1 y 5
) ' 1= () ] (v +21)4(_1/3+ 2) ®s (<)

2v+3 3 1)
mﬁu (€) |f7D (t)

Re v—+ioco v+1 2v+3

(2) 1 1

— P (t)|dv = (%) n —1
gv ()] Y /Reufioo r l<r2>

- (Tl)uw g% (t)] dv,

T2
and
. v -1 v

) /Reu+zoo (E)WH L E 2v+3 & %(C) E +1 (1)(t)

? Rev—ioco r 71 (V+ 1)2(V+2) Y 1 o
Rev+ico v+1 2v+3 2 3 3
ECT P [\ s e
aN (t)] dv 1 Aeu_iw (’I") [<T2> 1 (V+1)2(V+2) 62 (C) an (t)

- <Tl> " gff)(t)] dv,

T2

which imply that
1 Rev+ioco To
U(r,¢) = Tm/R /T1 PV (r, Q)T dr dy

eV —i00

and follows from the definition of the Mellin transform.
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Remark 5.7.3 Since (%) " is an entire Junction, the line integral
Rev+ioco v
/ (Z) dv,
Rev—ioco r
is independent of the path. Hence, the following equality is valid

Rev+ioco s ,Rev In T
v 2 pe
/ <I> dv="""_"" lim sin(lan), TET.
R T

ev—ico \T InT —Inr R—oo

If 7 > r, then (%)V tends to zero as Rev — —o0. On the other hand, if T < r, then (%)V
vanishes as Rev — +00. Therefore, depending on if Rev tends to 00, the proper choice of
the contour vy, obtained by a deformation of contour process, secures that

[G) o

~

where the interchange of order of integration is justified by properly choosing Rev.

The Gegenbauer functions, as v tends to infinity, behave as (see section

C(cost) = Vv (Bu(@)e™ +010)e™™)+0 () | pouso 511
D2 (COS 9) = ﬁ (@2(9> et + @2(0) e_iya) +0 (%) ’ )
C2, 4(cos0) = Vo (B1(0) ™ +O1(0) e ™) +0(3) Rev <0, (5.112)
D2, ,(cosf) = /v cotvm (O3(0)e™? + O3(0) e ?) ’ )

where O; are complex functions of the variable § alone, and @j denotes complex con-
jugation. The fact that cot vm is bounded enables us to simplify the above asymptotic
expressions as follows

3 . .
Cz(0) ~ eVl e w0 5
3 . . 0.
Dlg (9) ~ ew@ + e—w@

This implies, that the Gegenbauer integral operator (5.101) behaves as
T
65 (C) ~ / d(b (ei(9+¢)V + ei(9—¢>)l/ + e—i(9+¢)’/ + e_i(@_‘lb)”)7 ¢ = arccost,
0

for large values of v.
Furthermore, the denominators present in and behave as

N I ,Rev < 0
1_<) ~ 2043 , V—o00,
1 —(T—l) ,Rev >0

T2

-1 2043
[<ﬁ>2y+3—1] (%) yRev <0 vV — 00

T2 -1 ,Rev >0
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Y

— 00 g \ / +o00o
- T TR

L R

A

FIGURE 5.5: The contours L and R respectively. The deformed contour L begins and ends in
the left complex v—plane, such that Rev — —oo at each end. Similar conclusions are valid
Jfor the contour R. The constants c and d are arbitrarily chosen such that ¢,d > —1. The
singularities atv # —1, —2, ... are introduced via the Gegenbauer functions and the
denominators present. Therefore, the initial contours I" and I’ are taken such that

Rev > —1, which ensures that all singularities are to the left of the line Rev = —1.

Analytic investigations of the inversion integral frequently depend on deforming the inver-
sion contour to a more convenient one, therefore, replacing the contour I" by either the
contour R or £ shown in Figure[5.5, depending on the boundness of the kernels, equations

(5.109) and (5.110) read
Uy (r,¢)

- LT [1 - ()T ) Ty 0 [ ()" ot - g%)] W

RGN [(2)+ - 1] h el [gg%) () gg>(t>l .

(5.113)

B 1_42 o v+1 ro 2v43 -1 20U +3 % T v+1 ) @)
=rato [ (7) [“(n) g e (2) a0 - a0 v

1-—¢2 e [ e\ ) -1 2U+3 o ), r\ U o]
MR /R(r> <7~2> - it gN()(Tz) gx'(t) | dv.

(5.114)

The deformed contours begin and end in the corresponding complex v—plane, such that
Re v tends to +00 at each end (a technique suggested by Talbot [Tal79] as part of a numer-
ical scheme). A comprehensive list of methods of attack regarding techniques producing
numerical answers, can be found in [CohQ07].

Integral representations concerning the exterior domain {2¢ of the spherical shell S,
defined as

o = {0

are obtained in a similar fashion.

r € (0,r]U[re,00); —1< (< +1}
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As 7 tends to zero, the problem degenerates to the simplified case obtaining the stream
function in the interior of a sphere of radius r5. Thus, equations (5.109) and (5.110) rewrite

as
i 1= ¢? ro\v+1 2v+3 K
Vi, (r,¢) = o /L (7) m (61/ (€) gD(t)) dv, (5.115)

for Dirichlet problems, or

i _ 1—¢? ro\ VTl 2v+3 2
\IIN(T7 C) = T2 omi /L (7) m (@y (C) gN(t)) dv, (5.116)

for Neumann data.
On the other hand, as ry tends to infinity, the exterior of a sphere with radius r; is

obtained and thus, equations and yield

Ul (r,¢) = 12_75 /R (%)VH % (®§(C)gD(t)) dv, (5.117)
Ve (r,¢) = —nr 12_75 /R (%)V+1 % (6§(C) gN(t)) dv. (5.118)

Inverting (5.107), solutions valid in the counter part of the complex v—plane regarding
are obtained, viz

\I/D(n C)

2mi

eer ()+ l()+ - 1] B ot elo) [ ()+ ) gé”(w] v

-1
1-¢ r)" ra ) v+3 3 (1) 2\ @
 2mi /F/ <7“1> 1= (7’1) mﬁy Q) |gn"(t) (7”1) b ()] dv
+ i / / ,],.u+2 \I/(T, C)T_”_?’dT dV, (5119)
21 S Joy

if Dirichlet boundary values are prescribed, or

W (r,C)

I e 2 A aad N A SN R R e
-t () l() ! wrnweep Y

2 T1

" v 1 2
(2) a0

(t)} dv

1 "2
4+ / / P2 (r, Or Y Bdr dv (5.120)

27
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if Neumann data are available, where I is any open contour, connecting the points —Re v —

iR and —Rev + iR in the complex v—plane as R tends to infinity.
Following the procedure introduced in this section, relation becomes

U, (r, )

S () [() - 1]_1 Tre g %O

()T ll _ (Tz)””] B el lgé”(t) -(2)” ggznt)} v

27 1
(5.121)

if Dirichlet data are given.
In a similar fashion for Neumann data, reads

\I’N(ﬁC)
B 1— CQ r v+2 - 2v+43 -1 2 +3 %
=g [ () K) IR EREr

e (r)”” ll - (W)MT R et el [g&”(t) - (Zj)w gS?(t)} .

2mi 1 T1
(5.122)

(”) 0 - o (t)] dv

Moreover, by a limiting procedure, solutions valid for interior or exterior problems are

retrieved, i.e.

i B 1— 42 r v+2 2 +3 %
\PD(T7 O = om /R (m) m (@y (O gD(t)) dv, (5.123)
e 1= r\" 2v+3 ]
Vo(r o) =—_ /ﬁ<ﬁ> CERES)] (GSV (C)go(t)) dv, (5.124)

in the case where Dirichlet data are given, or

; o1-¢ r\""? w43 3
W(r,¢) =ra 7 /R <TQ> EDOEDE (Q5u (©) gw(t)) dv, (5.125)
e 1= ¢? r\" T2 2v+3 3
w0 =n - [ () iy (GHO0n@)d, G129

if Neumann boundary values are available.
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APPENDIX

How to obtain the solution ¢(z, y)
A step-by-step guide

Utilizing the definition of the spectral functions p; (k), equation is rewritten as

z

4
? _ 4i 3 / e (GO (—ik) + i) (~ik)) db A1)
m
jzng

where the Dirichlet G()(—ik) and Neumann ¥()(—ik) transforms are given as

G (—ik) = / e~ k= () dr qY9) (s)ds, WU (—ik) = / e~ k= () Ox gV (s)ds. (A.2)
-L

—L
A suitable parametrization for the complex variable z on each side (j) of the square is
20(s) = (=i 'L —(—=i))s, se|-L,L].

Replacing the given parametrization into equations and bearing in mind that (see
sections and [2.4)

. d d
Do) = & £y — 72 :
Orq (g) ds ' P (S) ds -

Oy gV (s) = Z

n

AW sin (%5s) + BY) cos ( (n+3) zs)]

A sin (2=s) + BY) cos ( (n+3) zsﬂ ,

137
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we find

G (—ik) =

|

_ g+ ([ (A=i)(—i) kL _ _(14i)(—) kL BRG]
(=) (e e >§x1)A”<PWk+T

n

1 N IKL | (144)(—i) kL G)
SR S (_Z)J"rl( (1=i) (=) KL | (1+i )Z n BU
(—i)ik — ”L”> —

1 1
x - i ; (A.3)
(( i)k + (2 <iwk“ﬁﬁ”>

where the Fourier coefficients Ag,j ) and BSLj ) are given by equations (2.12)-(2.19), as

N |

A(l) = Qn, A(2 = €n, A%B) = Cnp, Agl) =dgn

BY =by, BY =fu, BY =dn, BY=h, .
and
WO (—ik) = 1 (6(1%)(4)1‘1@ _ e(1+i)(fi)-7kL) S (-1l ( 1 1 >
2 — (=i)ik+ 2% (=i)Tk — 5
i 1 (e(lfi)(fi)jkL i 6(1+i)(—i)jkL) Z(*l)n B) 1 _ 1 1
2 : (i) o+ T (k- T
(A.D)
where the Fourier coefficients lef ) and %53 ) are given by equations 2.28)-2.35), as
Y - @ze, oY - es30, AP - ez oY - @3, A6

B - @23, B > e3D, B - a3, B -
Putting everything into (A1) we obtain

9q i 1 AG) 1) (iz+—i) (=) L)k
0z 87T Z/{ o’ j +ZQ["]) ¢

Jlg

(iz+(1+i) (=) L) k 1 _ 1 iB) _ 1 (—;)it BU)
e )(Pwk+T ) (0 -k e)

y (e(iz+(1—i)(—i)jL)k +e(iz+(1+i)(—i)jL)k> 1 _ 1 : ak
(ipk+ T ik - (R

(A.7)

From this point on, due to the extensiveness of the calculations and the length of the
resulting formulas, the sequence will be presented as an example.

Proposition A.0.1 Let q(z,y) satisfy the Laplace equation in the interior ) of a square
defined by

Q:{—Lgxga—LgygL}
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with Dirichlet boundary values f l(jl) = sin T s on side 1 and zero on the remaining sides. The
solution by means of separation of variables is then given as

1
sinh 27

q(z,y) = sinh (%(a: + L)) sin Ty (A.8)

Employing eq. one finds

Wy - T cosh 27 =
Ond(5) = T Gohom SME®
1 & n 1 & (n+3)
0 (s) =~ (1" s (5 5) + 7 0 2 o ((n+ ) )
Ln:O 1+n2 Ln:0 1+(n+%)
@l L =
Ina™(s) = T opan M E S

On gV (s) = =0y ¢P(—s).

From the definitions of the Dirichlet and Neumann transforms of the boundary data, we
obtain

L L
G(l)(k):/ eksaTq(l)(s)ds:/ " d (sin T s)

—L —L
_ T (kL __ _—kL 1 1
= op (e )(k+ig+kig>
sh 27 1 1
O (k) = T cos kL _ _—kL .
(K) = =57 Gnh2r ¢ ) kit k—iz )’
1 ; cosh 27 ekl
T (k) = —ikL (1 _
S A sinhon ) | sinh2r
LT 1' .e”“L kL C?Sh2ﬂ )]
2iL k +i7 [sinh2m sinh 27

\Ij(d)(ik) _ l ek:Lieka 1 B 1
2iL  sinh2r  \k+if k—if )’

1 etk ) cosh 27
\11(4) ik :7L7 _—ikL [ YR Al 1
(ik) 2L k+ 2% sinh 27 ¢ sinh 27 +
L 1 ekl Lk cosh 2w
AT I _
20 L k—iT |sinh27 sinh 27 ’

which substituted into eq. (AJ) yields

8q —100 ) . oo
1 0 [T i (G0 ) ki [ 6P
0z 0 0

+z'/ e<iz+“>w<3>(k)dk+i/ = DE g™ (k. o
0 0
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dq cosh 27 cosh 27 1
L—==- 1) —(1- Iy — T
8 0z < sinh 27 + > ! < sinh 27 > > sinh2r ?

and 7y, k = 1,2, 3 the following integrals to be evaluated

—i00 ,(iz+L—iL)k —00 o (iz+L—iLl)k
7, = / ————dk— / ———dk
0 0

k + ’LZ k + Zf
—ioco (iz—L—iL)k oo (iz—L—iL)k
f/ ei,wdk +/ ei,ﬂdk,
0 k + 'Lz 0 k + Zf
—ioco (iz—iL+L)k —oo (iz—iL+L)k
T, = / ¢ k- / ;>
0 k — ZL 0 k — 'Lz

—i00 e(zz iL—L)k 00 o (iz—iL—L)k
_/ %wdkjt/ dk,
0 k— T 0 k— T

e(zz L+iL)k ico e(vz L+iL)k
Iy = / ———dk — / ¢ 4k
0 —i% —i%

e(zz L+iL)k 100 (zz—i—zL L)k
—/ 7dk +/ 7dk
0 k +1 Z 0 k' + ZZ

100 (zz+1L+L)k —o0 6(iz+iL+L)k
+ / 7dk / ——dk
0 0

k—if k—i%
100 e(iz+7,L+L)k' —00 e(iz-‘riL-l—L)k
- / dk+ / & ik
0 ]’C + 'Lf 0 k + ZZ

Grouping the above integrals and applying Cauchy’s theorem combined with the calculus
of residues, it is straightforward to show that

. — pusy
T, =2imre TeL?

I, =0
Ty =—2ire Te L7,
and therefore
T e " P p
9. =i— TLE_e?MeL?) . A.9
4(2) Z4L sinh 27 (6 e ) (A.9)
Integrating the above expression yields
1 s
q(z) = Jsmhon sinh ( (x + L)) sin Ty — m cosh ( (x + L)) cos Ty (A.10)

Applying, at last, the reality condition ¢(x,y) = 2Re ¢(z), equation is recovered.

Remark A.0.4 Note, that the imaginary part of is also a eigenfunction of the Laplacian
operator.
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Evaluation of the limit

(1 — 2°) (flx Qu(z)

as r tends to —1"

The Legendre functions of the second kind admit the series expansion [Leb72, p.179]

(5 4+ 1) /7 cos & 1—v v+2 3
v = F ) T o o)
R 1= R U I
v+1 i TV
I T (v v L) (B.1)
or (452) 2 22

valid in the interval —1 < x < +1, for every complex v # —1,—2,... .
Differentiating the above expression with respect to the argument and using the chain rule

A _5 4
de =~ TTda?’
we arrive at
d I'(¥+1)y/m cosZX l-v v+2 3
din/('r): 2 V41 2 F ) af;'r2
x F(T) 2 2 2
JTEHD VRS (1-n)v+2) 5 (3-v vid 5,
INEESY) 2 7 2 Y
(4 r sin 22 (v + 1) v+3 2-v 3 ,
F —1,-2
+ 1—\(%2) 2 x 2 I 2 ,2,1' bl V# ) I bl
(B.2)
where the property
d apf
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has been used. Employing the formula
Flo,B,752) = (1=2) " P F(y—a,y = B,72), (B.4)

valid in the domain
|arg (1 —z) |< 7, (B.5)

on the last two terms of the right-hand side of (B.2), we obtain

3—v v+4 5 , 1 24v 1—-v 5

F _— = = F =3 B.6
( 2 ) 2 72"/1") 17352 ( 2 9 2 727aj ( ]
v+3 2—-v 3 , 1 v 1+v 3 ,

F —_— = =——F|(—,—,; . B.7
< 2 ) 2 727x) 1_1:2 ( 27 2 727x) ( )

In both cases and (B.7) we notice that
Re(y —a—f) > 0.

Furthermore, note that condition excludes the ray [1, +00) from the complex v—plane.
Eq. (B:2), multiplied by 1 — 2, then rewrites

d I'(%¥ 4+ 1) /7 cos & l—-v v+2 3
1— a2 Q(z) =—2 2 (1 2\ g 2.2
L(5+1)ymeosy (1-v)(v+2) , 24v 1-v 5
=+ v+l F 'y T o
(=) 3 2 2 72
+F(“Tl)ﬁsm% v(v+1) v 1l4v 3
I(42) 2 27 2 2 ’
—l<z<+1l, v#-1,-2,....
(B.8)
As 7 tends to —17, and bearing in mind that
. NIy —a—p)
lim F(a,B,v;2?) = , Re(y—a—0)>0, (B.9)
i P ) =to-are-p " :

equation (B.8) deduces to

Jim (=) 0ufe) ~HE ST i (1) p (1 2 D)
+I‘(%+1)\/7?0087" (1-v)(r+2) T(E)ra)
r(50) 3 T(EHT(E
B N yrsinZ vy +1)  T(2)T()
r(42) 2 T(EH)Ir(EY)’
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The above relation simplifies further, using the identities

Nl+4+v)=vI(v),

nz

rl+v)r1—-v) = g

as well as the well known values

Thus, we find that

lim (1— gﬂ)% Qu(z) = (5 +1) /7 cos 5

lim (1-a?
lim im (1—2%)

F(VTH) z——1t

1-— 23
xF( 2V,V;—,2;$2>+cosm/, “l<zx<+l, v#-1,-2,.... (B.11)

Next we evaluate the limit

lim (1-2%)F (

rz——1t

l-v v+2 3 ,
'y T ol )

2 2 72

considering first the hypergeometric function F’ (— ”7“, 5 %; xz)

Differentiating the hypergeometric function with respect to the argument, we immediately

obtain the relation

d 1 1 1 1-— 2
F vt ,K,f;mQ :7V<V+ )F V,VJF ,é;xQ . (B.12)
d(x?) 2 '2°2 2 2 2 72

Integrating over the interval [0, 2%] the above expression we obtain

F(_M,;’;;mQ) zl_M/ F(I_V L_FQ 3.332) d(a:Q). (B.13)
0

2 2 2 7 2 2

As z tends to —17 the left-hand side of remains bounded and so must the right-
hand side. This implies that F’ (1_—” v+2 3. xz) as x tends to —1T, enjoys the asymptotic

2 v 92 1
behavior
l-v v+2 3 , 1
F ,—, = ~———— 0<p<1, B.14
(2 2 2“:) (1 — 22y P (B.14)
and ) 5 3
-V v+
li 1-22)F — 2 .22 ) =0
i (=27 ( 2 2 ’2’”)

Putting everything together we obtain

lim (l—xQ)diQ,,(x) =cosTy, v#—1,-2,...
x

r——11
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Remark B.0.5 Following a similar procedure, it can be shown that

lim (1—x2)%Qu(x):1, v#E-1,-2,... |

r—+1—

and d
. 2 el _ “ o
I_l:r_rll+(1 -z )dx P,(x) = — sinw.
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Evaluation of certain Integrals

i
C.1 THE INTEGRAL [ 7" eV ¢ (1) dv
VR—100

Consider the integral
%e‘”ﬂf(u)du, a€eR,
c

where 7 (v) is a rational function with only poles located on the negative real axis and « is
a real parameter.
Since 7 (v) is a rational function, we have

a,LVn+...+a1V+CL0 CL” 1 1+"'+a:?/”

Flv)= = B C.l
() mem+...+b1V+b0 bml/minl-i-"‘% ( )
and therefore
a 1 1++a70n
|7 (V)] = |~ - |
I L B S T
from which
M
|?(V)‘ < W’ (C.2)

for all sufficiently large |v|, where M is a positive constant. If ag = 0 or by = 0 (or both),
has to be modified.
In the sequence, the case where m = n is examined (for m — n > 2 see [Mar85]). If m = n,
then from obviously

lF (W) < M.

Integrating over a rectangle as shown on Fig. taking € and c sufficiently large, the
integral rewrites

vR+ic
j{ewf(y)dyz (/ +/ +/+/ >eaV}'(V)dI/, €3
C vR—ic PLUP2 V4 P3UPy
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where £ is a contour in the left complex v—plane avoiding all singularities. If ¢ is chosen
in such a way, the integral equals zero, since no singularities are encircled by the
contour C.

Imv
- ic
P1
Y P
’ A
~ i€
. \ Rev
—c - Vg
o~ —i€
14
Y Ps A
Py
- —ic

Ficure C.1: The closed contour C appropriate in the case where o > 0.
Thus,

I@_|</Fl+/%+/m+/m)ewy>dy

< [emrwiaes [ el [ e lrwldys [ el lds
P1 P2 Ps3 Pa

<M2e ““(e—c).

Letting ¢ — oo, implies I — 0 if & > 0, and, furthermore, ¢/ — L.
From it follows then, that (schematically)

vr+ioco
/ - / - O ’
VR —100 L

which comes from the fact that the integrand is analytic and bounded, due to the presence
of the exponential e®”, o > 0, in the left complex v—plane.

VR+i00 oy

C.2 THE INTEGRAL e*? cosvm P,(x)dv

VR—100

Consider next the integral

%em’ cosvm P,(z)dv, a€eR.
c
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Remark C.2.1 The Legendre functions of the first kind are defined as

P,(x)=F (—V,l/ +1,1; 1779”)

B i (=)n v+ 1), (1 - x)n
n=0 O 2
=§§FU"]XV+H+D (l—x)"
o n!T(v—n+1) 2 ’
Jfrom which it is obvious that P, (x) has poles atv +n = —1,—-2...

Remark C.2.2 The Legendre functions of the first kind for large values of v behave as

P,(x) ~ % (A(G) e + B(0) e_w”) , x=cosb,

where A(#) and B(0) the complex functions of the variable 6 alone.

From the above asymptotic expansion it can be seen that the dominant factors are the
exponentials, i.e.

1
NG,
Integrating over a rectangle as shown on Fig. taking € and c sufficiently large, the
integral rewrites

vRr+ic
j{ea” cosvm P, (z)dv = / +/ +/+/ e*” cosvm P,(x)dv, (C.5)
C vR—ic P1UP2 14 P3UPy

which equals zero since no singularities are encircled by the contour C.
Evaluating the above integrals one finds

I = </ _|_/ -|-/ —|—/ >e(’”’coswrPl,(x)dV
P1 P2 Ps3 Pa
1

X . 10y ,I - —
(A(G) 62(7‘1/ + B(@) 67101/) -~ {e_wy mvuv o0 . C.4)

e ,(Jmy — 400

1 1 1
< 9e—ac | —(m+0)e _ —(m+0)e (r—0)e (m+0)e
= [ 7T+06 T +7r796 +7r+96
1 1 1 1
2¢~¢ —(746) c —(n4+0)c _ (m=0)c _ (m+0) c )
e [w+9e M —h T10°

As c tends to infinity, we see that I — 0, if & > 27, emanating from the fact that, since
0<f<m0<m—0<mand 7 < 7+ 0 < 27. Therefore, we obtain (schematically)

vR+i00
/ = 7/ —0.
VR —i00 L

Similar conclusions hold for a contour C closed in the right complex v—plane, if o < —2.
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C.3 THE INTEGRAL [“7'%° ¥ 5 (1), (¢) gx (t) dv

VR— 100
Consider the integral

iwvw%@kww,

where we defined the Legendre integral operator B3, (¢) (section as

¢ 1
%@a@/ﬂ@w+@@lﬁam

and 7 (v) is replaced with 2v + 1 if X = D or with Qy”jll in the case where X = N.

By properly choosing v, the interchange of the integrals is justified, and therefore

/VVRH'OO e 7 (V) PBu(C) gx (t) dv /C {/VVRMOO ¥ 7 (1) P, (C) Qu(t):| o (t)dt

Rr—100 —1 R—100

! /cl U:RHOO e 7 (1) Qu(() Py(t)] gx(t)dt

R—100

Remark C.3.1 The Legendre functions of the second kind for large values of v behave
1 ) .
Qule) ~ —= (0(9) % + D(6) e*w") . z=cosd,
for every Rev > 0, and
cotvm

Q. (x) ~ (0(9) e’ + D(6) e_w”) , x=-cosb,

N
Jor every Rev < 0, where C'() and D(0) complex functions of the variable 6 alone.

Utilizing eq. together with the fact that cot v7 remains bounded as v tends to infi
gives

P, (cos ) ~ P, (0) ~ / do (e““”“’)” + 0=OW 4 omil0F+e e*“"*@V) ,
0

and the following bounds are valid (see Fig.
0<0+ ¢ <2m, —T<f—¢p<m.

Letting v = = + i y it is easy shown that

eV (ei(9+¢)y +ei(9—¢)y+e—i(9+¢)u+e—i(9—¢)y)

< ear=(0+d)y | paz—(0-9)y | jaz+(0-9)y 4 ,azt+(6+d)y

as

nity,

(C.6)
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+1 ™

() (b)

FiGURE C.2: (a) t—plane and (b) ¢—plane

and therefore, following the procedure introduced earlier, viz. integrating over a rectangle
as shown on Fig. we obtain

Iz‘(/Pl+/P2+/Pa+/m)e“”f(V)%(C)gx(t)dV

1 1 1 1
< QeT@c| _ e~ (0+d)e _ e~ (0—0)e + e(0—d)e + o(0+)e
= 0+ ¢ 0— ¢ - 0+ ¢
1 1 1 1
4 Qe ¢ e—(0+d)e 4 e—(0—d)c _ e0—d)c _ e0+d)e|
0+ ¢ 0— ¢ 09— ¢ 0+ ¢

As c tends to infinity, I — 0, if o > 27, due to (C6).
Hence,

vRr+ioco
/ ea”ﬂum(ogx(t)dv——/ﬁea”mm(c)gx(t)du.

R—100

Since the Gegenbauer functions of order % exhibit similar behavior as the Legendre func-
tions, the same conclusions hold.






APPENDIX
Compatibility Condition

Let ¥(r, () satisfy the Stokes operator for irrotanional flow, namely E? ¥(r,() = 0. Inte-
grating over a volume V), we find

/E2 U(r)du(r) =0. (D.1)
v
The operator E? is closely related to the Laplacian operator A, i.e.

2_A_2( 2 _ 5%
E<=A 7’(87‘ 7'3(>' (D.2)

Combining (D.J) with one obtains

V/A\I/(r) du(r) = zv/ C aq(;iir) - 7% 6\;21')) du(r).

Applying the divergence theorem, the latter relation simplifies as

ov

0¥ (r) B 0¥ (r) (r)
ds(r)72/r7drd(d¢—2/g‘ ac drdlde. (D.3)
% %

or
v

The domain in question is a spherical shell, hence separable, and thus the above equation
yields, after integrating by parts once and bearing in mind that the stream function has to
vanish along the axis of revolution, i.e. Z(£1) =0

P00 45(x) = am (r ()| / :1 7(Q)dc. 0.4

oV
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Distinguish three cases, namely (i) » < rq, (ii) 1 < r < ry and (iii) r > rs.
(i) In the first case where r < r; (D.4) becomes

+1

g (x) ds(x) = dm 1y R(ry) / 2(Q)dc . ©.5)

—1
oV(r1)

The only constraints on Z(() are that it has to vanish as ( — £17F and to satisfy the ODE

(1-¢)Z"(0) +aZ(()=0, acC.

_1
Choosing Z(¢) = Cy, 2 (), the constraints are satisfied if n > 2 and « = n(n — 1). Further-
more, the following result is valid [HBS86]

2, n=0

+1
_1 0, n=1
Crn2(Q)d¢ =< .
[, etomr=13 "7,
0, n>2

Finally

83 . _
/gN(r)ds(r)={3M1’ =2 (D.6)

0, n>2
aV(r1)

where we used the fact that in the interval r € (0, 7] a solution in the r—direction bounded
atr =0is R(r) =r".
(ii) When r < r < 7o, we find

2 ) 8 3.3 _
g (r) ds(r) = n(r-rt) m=2 ©.7)
1 07 TL>2

AV(r1)UdV(ra) 1=

wherelse, if (iii) » > ro, (D.4) becomes

/ gn(r)dS(r) = {_gﬂ’ =2 (D.8)

0, n>2
aV(rs)

where we used the fact that R(r) must remain finite as r tends to infinity.
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Spherical Coordinates (,(, ¢).
Unit vectors and derivatives

The Cartesian coordinates (z,y, z) are related to the spherical coordinates (r, (, ¢) by

z=71+1-C(2cos¢
y=r+/1—_%sin¢
z=7r(,

and thus, the scale factors are

-
hy =r/1-C2.

The area and the volume element are then given as

dA =7r2d¢de
dV =r?drd¢de,

respectively.

The unit vectors in spherical coordinates (r, {, ¢) are related to the Cartesian basis (i,j, R)
by
V1= cospi+/1—C2singj+Ck

T =
C=—Ccospi—Csindj++/1-Ck
(;AS: —singbi—}-cosgi)j.
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~

On the other hand, the Cartesian unit vectors (i, j, k) in terms of (¢, ¢, ¢) are given below

i=+v1-C2cos¢pi—Ccospl —singe

j=vV1-Csingt—Csinodl +cosdp

k=Ci++1-¢¢.

The derivatives of the unit vectors are

@
or
or L ¢
¢ 1=
%
¢

%’:_mﬂgc.
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