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ABSTRACT OF THE DISSERTATION

Optimization Algorithms for Biological Data

by

Banu Dost
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Professor Vineet Bafna, Chair

High-throughput techniques in biology have enabled the generation of enormous

amount of data allowing researchers to reveal systems level information deciphering the

underlying dynamics and mechanisms of the cell. In the last few decades, the immense

databases containing DNA, RNA and protein sequences, structures and abundance es-

timates have been available to researchers. Research in bioinformatics necessitates the

use of advanced efficient algorithms to analyze and interpret those biological data. A

common characteristic of high-throughput biological data is that it is often incomplete,

noisy and inconsistent due to the biases and inefficiencies induced by the laboratory

methods. That is why several of the problems defined on biological data can be viewed

as constrained optimization problems.

In this dissertation, I address different optimization problems that arise in the

analysis of biological data: RNA structural alignment, protein interaction network query-

ing, micro-array expression data clustering, protein quantification and protein modifica-

tion site assignment. The dissertation begins with an overview of the basic concepts

of molecular biology and an introduction to the optimization problems to be addressed.

Then, each problem is discussed in detail in a separate chapter along with our contribu-

tion in the solution of the problem and our results on biological data opening a way for

biological discoveries.
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Chapter 1

Introduction

Following the discovery of the DNA structure by Watson and Crick, many inter-

esting advances have been made in the area of biology and biotechnology. In particular,

high-throughput techniques in biology have enabled the generation of vast amount of

data allowing researchers to reveal systems level information deciphering the underly-

ing dynamics and mechanisms of the cell. The immense databases containing DNA,

RNA and protein sequences and structures have been available to researchers. Bioinfor-

matics has risen from the need of analyzing and interpreting those biological data which

would be impossible with the traditional biological experiments and it has become an

essential counterpart to modern biology by enabling important biological discoveries.

The main goal of bioinformatics is to develop methods using algorithms, statis-

tics and many more mathematical techniques to utilize and interpret biological data. A

common characteristic of high-throughput biological data is that it is often incomplete,

noisy and inconsistent due to the biases and inefficiencies induced by the laboratory

methods. That is why several of the problems defined on biological data are constrained

optimization problems. Sequence alignment of bio-polymers such as DNA, RNA and

protein, determining RNA/protein structure, biological network comparisons, protein

identification and quantification can all be viewed as optimization problems. The so-

lutions to those problems usually need to be computationally efficient and smart in the

way they reason with the incompleteness and noise in the data.

In this dissertation, I address five different optimization problems that arise in

the analysis of biological data (See Figure 1.1). It should be remarked that this number

1



2

of problems is minuscule considering all of the possible optimization problems of bioin-

formatics. However, the approaches used to address optimization problems in bioinfor-

matics are quite similar in nature. This allows researchers to adopt developed efficient

algorithms to solve many different problems.

ribosome protein

DNA

transcription

RNA

translation

non-coding 
RNA

Chapter 2:
RNA Structure

post-translational 
modifications

Chapter 5:
Protein Quantification

Chapter 6:
Protein Modification 
Variants

mRNA

Chapter 4:
RNA Abundance

Chapter 3:
Protein Interactions

Chapter 1:
Introduction

Figure 1.1: Overview of the dissertation. Five different optimization problems that arise
from different facets of bioinformatics are discussed in this dissertation: RNA structural
alignment, protein interaction network querying, clustering genome-scale expression
data, protein identification and quantification and protein modification site assignment.

In the subsequent sections, I first provide a very high level biological background

necessary to understand the optimization problems addressed in this dissertation. Then,

for each problem, I explain the basic biological concepts specific to the problem, de-

scribe the nature of the existing biological data and underline the computational chal-

lenges and our contribution in the area that would be discussed in detail in the following

chapters.
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1.1 Brief Description of A Cell

In this section, I give a minimal set of biological facts needed to understand the

material in the subsequent sections. This section is necessarily coarse. I refer the reader

to the book ”Cell Biology” [115] for a detailed explanation of the fundamentals of cell

and molecular biology.

All living organisms are composed of one or more cells. Cells in different or-

ganisms or within the same organism vary significantly in structure, reproduction, and

metabolism. However, they all share a few common characteristics. The cell is made

up of molecular components, which can be viewed as 3D-structures of various shapes.

There are three types of molecules that are essential for life: DNA, RNA and proteins.

DNA stores the genetic code describing how the cell works. DNA is packaged

as long molecules consisting of four types of nitrogenous bases called adenosine (A),

thymine (T), guanine (G), and cytosine (C). It can be thought as a pair of complementary

strings that are written in a four-letter alphabet A, T, G, C and twisted together such that

each letter on one string pairs up with a letter on the other string in a certain way.

The base A always pairs with the T, and the C always pairs with the G. The order and

composition of these bases is what makes the DNA and therefore the organism ‘unique’.

During cell division, DNA replicates itself by using each strand as a template to build its

complementary strand. This way, an exact copy of DNA is passed on to new cells. DNA

strings are extraordinarily long strings consisting of thousands of genes. Each gene is a

short region of DNA storing the code necessary to determine the protein composition.

RNA is central in the flow of information from genes to the place where proteins

are synthesized. When proteins are needed in the cell, the corresponding genes are tran-

scribed into RNA (transcription). RNA molecule is a single strand consisting of A,T,G,

C. A copying enzyme, RNA polymerase, copies the letters on a DNA strand to build the

RNA molecule. After the completed messenger RNA (mRNA) is pre-processed so that

its non-coding regions are removed, it is transferred to a cellular compartment called ri-

bosome. The ribosome synthesizes a protein by using the messenger RNA as a template

(translation). (See Figure 1.1.)

Proteins perform important tasks for the cell functioning such as performing

biochemical reactions, signalling to other cells and serving as building blocks. A protein
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is also a long molecule like DNA and RNA, however it is built from a twenty-letter

alphabet. These letters are called amino-acids. Each of the many different kinds of

protein has its own unique order of amino-acids. There are always plenty of these amino

acids floating around in the cytoplasm. The transfer RNAs bring amino-acids to the

ribosome where they are attached to each other in the right order determined by the

letters making up the messenger RNA.

1.2 RNA Structural Alignment

Not all RNA molecules are translated into a protein as described above. The

DNA sequence from which a non-coding RNA is transcribed as the end product is often

called an RNA gene or non-coding RNA gene (ncRNA). Non-coding RNA molecules

include highly abundant RNAs such as transfer RNA (tRNA), ribosomal RNA (rRNA),

and siRNAs performing essential functions in the cell. Discoveries of novel ncRNA

families [3, 19, 23, 25, 28] points to the possibility that RNA molecules are as abundant,

and diverse as protein molecules [10].

RNA molecules fold back onto themselves forming three dimensional complex

shapes called secondary structure. Secondary structure is formally defined by the hy-

drogen bonding between the nitrogenous bases. The remarkable functional properties

of ncRNAs lie in their capacity to fold into many shapes. For many RNA molecules, the

secondary structure is highly important for the correct function of the RNA often more

than its actual sequence.

High-throughput techniques in biology have generated vast amount of not only

sequence information of thousands of biological molecules but also structural informa-

tion. For instance, RFam, a ncRNA database, includes sequence and secondary struc-

tures of 379 ncRNA families. Due to the availability of sequence and structural infor-

mation, biological sequence and structural comparison has been at the heart of research

for a few decades. Many efficient tools such as BLAST , CLUSTAL , MFOLD, and

RNAfold, have been developed to compare sequences [101, 102] and structures [122,

124]. These tools are used to identify conserved subsequences, substructures and mo-

tifs, which convey functional, structural, and evolutionary information. Pairwise and
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multiple sequence and structural alignment tools are very useful in designing experi-

ments to test and modify the function of specific RNAs, in predicting the function and

structure, and in identifying new members of RNA families. For detailed discussion of

structural alignment of RNA sequences, previous work and challenges, see Chapter 2.

In Dost et al. [121], we provide an efficient algorithm for computing an opti-

mum structural alignment of an RNA sequence with complex structures - which have

not been handled before - against a genome. We also use our implemented tool PAL to

search entire viral genome and mouse genome for novel homologs of some viral, and

eukaryotic pseudoknotted RNAs respectively. In each case, we demonstrate strong sup-

port for novel homologs. In Chapter 2, the problem of discovering novel ncRNAs using

sequence and secondary structure conservation is revisited and the details of our work

on this problem are given.

1.3 Querying Protein-Protein Interaction Networks

In a cell, the molecules interact with each other. The functioning of the majority

of molecules within cellular structures depends on their highly specific interactions with

other molecules. By interaction it is meant that two or more molecules are combined to

form one or more new molecules, that is, new 3D-structures with new shapes. An inter-

action may also reflect mutual influence among molecules. These interactions are due

to attractions and repulsions that take place at the atomic level. For instance, if two or

more proteins have surface regions that are complementary, they may stick to each other

forming a protein complex. Proteins may also interact by chemically modifying each

other by attaching (phosphorylation) or removing (dephosphorylation) small phosphate

groups at specific sites. Many processes in the cell occur as a series of such protein

protein interactions. Proteins are known to work in slightly overlapping, co-regulated

functional modules such as pathways and complexes.

By the recent developments in molecular biology, a new kind of experimental

data, relationships and interactions between molecules, has been generated. Biologi-

cal networks that abstract those data convey information to understand several mecha-

nisms in the cell, such as signaling pathways, transcriptional regulation mechanisms and
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metabolic processes. High-throughput methods such as two-hybrid analysis [103, 104]

and genome-wide chromatin-immunoprecipitation [105, 108] provide large amounts of

data on the protein protein interactions (interactome) of an increasing number of species.

It has been revealed that protein protein interaction networks evolve at a modu-

lar level [109] as biological sequences, motivating the study of conserved sub-network

modules through comparative analysis. Consequently, the study of biological networks

shows a significant parallelism with biological sequence comparison. Biological net-

work comparison is the process of contrasting and comparing two or more interaction

networks, representing different species, conditions, or time points. This process aims

to detect conserved sub-network modules that are likely to reflect functional or compu-

tational units which combine to regulate the cellular behavior as a whole. The computa-

tional problem of biological network comparison in the form of alignment and querying

that captures the underlying biological phenomena has been an interest to researchers.

Querying biological subnetworks in a large protein interaction network is a chal-

lenging computational problem, and recent efforts have been limited to simple queries.

In Dost et al. [119], we extend the class of subnetworks that can be efficiently queried to

the case of trees, and graphs of bounded tree-width. We also use our implemented tool

QNet to perform the first large scale cross-species comparison of protein complexes,

by querying known yeast complexes against a fly protein interaction network. This

comparison points to strong conservation between the two species, and underscores the

importance of our tool in mining protein interaction networks. This study is presented in

Chapter 3 with a detailed discussion of network querying problem and previous efforts.

1.4 Clustering Expression Data

The different cell types of a multicellular organism contain the same DNA, how-

ever they differ dramatically in both structure and function. That cell differentiation

generally depends on changes in gene expression, production of mRNA by a given gene,

rather than the changes in the sequence of the genome. The cell types in a multicellular

organism become different from one another because they synthesize different sets of

proteins at different abundance levels. It has been reported that a typical human cell,
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at any one time, expresses approximately 10K-20K of its approximately 30K genes.

When the patterns of mRNAs in a series of different human cell lines are compared, it

is found that the level of expression of almost every active gene varies. Moreover, cells

can change pattern of mRNA expression in response to environmental changes. The pat-

terns of mRNA abundance are characteristic of cell type and/or condition that they can

be used to type diseased cells (e.g. cancer) and determine the genes that are involved

in certain functions. Thus, comparing mRNA expression levels across cell types and

conditions has been a great interest to researchers.

Developed in 1990s, DNA microarrays has allowed researchers to study mRNA

levels in large scale. Using microarrays, mRNA levels of tens of thousands of genes

across hundreds of conditions can be measured simultaneously. As we previously men-

tioned, this amount corresponds to gene expression and presumably the amount of

mRNA generated by the various genes establishes an estimate for the corresponding

protein levels. Genes with a common function are often hypothesized to have corre-

lated expression levels across different conditions. Thus, clustering algorithms have

been intensively studied for analyzing gene expression data in order to detect the groups

of genes with correlated expression patterns under different conditions or at different

time points. Among the most popular algorithms for clustering gene expression data are

K-means, SOM, hierarchical clustering, and CAST [54, 62, 69].

In clustering of genome-scale microarray expression data, it is important that the

method is able to deal with its noisy nature of the data and that it is scalable to large data-

sets. In Chapter 4, the limitations of the current approaches are explained in detail and a

novel clustering method TCLUST we have developed in Dost et al. [120] to efficiently

cluster genome-scale expression data is presented along with the results on simulated

data and genome-scale mouse gene expression data set.

1.5 Protein Identification and Quantification

Even though the differences in mRNA expression patterns among the different

cell types are dramatic, they nonetheless underestimate abundance differences in the

whole range of proteins in the cell. There are many steps after transcription of mRNA
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at which gene expression can be regulated. For instance, alternative splicing of mRNA

can produce a whole family of proteins from a single gene by reorganizing the primary

transcript to produce a different sequence. Alternative splicing can be thought as a

mechanism that increases the possible proteins that are produced from a single gene.

Especially in complex organisms like human, mRNA expression level might be very

different from corresponding protein abundances. It has been estimated that at least 40-

60% of all genes in the human genome are alternatively spliced and there are more than

120,000 protein slice variants from about 30,000 genes [123]. Therefore, a better way

of detecting the differences in gene expression between cell types is through the use of

proteomics technologies that directly measure protein levels.

In the last two decades, mass spectrometry (MS) has been the major technology

used to identify and quantify proteins from a biological sample. Mass spectrometry

allows one to determine the precise mass of each molecule in the sample along with

their intensities which is a measurement for the abundance. The mass information can

then be used to search databases, in which the masses of all possible molecules have

been listed to identify the present molecules. Similarly, peak intensities can be used

to estimate the relative abundances of different molecules within the sample. Mass

spectrometric techniques are critically important for the large scale studies to identify

and quantify all of the proteins present in biological samples.

It is often peptides derived from proteins by enzymatic or chemical cleavage

rather than intact proteins that is being analyzed by mass spectrometers. MS analysis

of peptides has several advantages over the analysis of proteins. First, MS analysis of

peptides are, in general, more sensitive than analysis of proteins. Second, before the

MS analysis contaminants (salts and detergents) need to be removed and the removal is

easier for peptides than proteins [116].

In MS analysis, the identification and quantification of a peptide is used as a

proxy for the parent protein. However, this holds only when the peptide sequence is

unique to the protein. When a peptide is shared across proteins (Ex: proteins that share

domains), its abundance depends upon contributions from multiple proteins. For this

reason, shared peptides have been traditionally disregarded in protein-level identification

and quantification analysis. However, in most of the mass spectrometric data sets, about
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half of the identified peptides are shared and thus discarded. This significantly decreases

the number of proteins for which abundance estimates can be obtained.

In Dost et al. [118], we propose a novel optimization problem that uses shared

peptides in protein identification and quantification. This study is the first attempt to

use the ubiquitous shared peptides increasing the sensitivity in protein identification

and accuracy in protein quantification. We validate our approach on simulated data

and apply to a model of Arabidopsis nematode infection elucidating the differential

role of many protein family members in mediating host response to the pathogen. In

Chapter 5, more detailed information about the challenges and current approaches and

their limitations on protein identification and quantification along with the details of our

work in [118] are presented.

1.6 Protein Modification Site Assignment

As we have mentioned previously, mRNAs are subject to post-transcriptional

events enabling the production of multiple protein sequences from a single single. Within

the cell, the variety of protein sequences are further increased by post-translational mod-

ifications (PTMs) that change the properties of a protein by addition or removal of a

modifying group to one or more amino-acid residues [93]. The structural diversification

enabled by post-translational modification increases the molecular variants of proteins

in cells by a few orders of magnitude over the number encoded in the genome [99]. If

there are some 30,000 genes transcribed into RNAs and translated into proteins, there

may be 300,000 to millions of protein variants at any one time in cells. These protein

modification variants may differ in modification content and location at one or more

amino acid residues within any given protein.

PTMs greatly impact the function of proteins by changing their activity state,

localization, turnover, and interactions with other proteins. Identification of proteins

with all their post-translational variants is crucial to biologists for understanding the

mechanisms of cell regulation. Biological effects are often due to changes on the level

of modification, therefore quantitative study of modifications is also of great interest [92,

93].
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Mass spectrometry is also used to sequence of individual peptides obtained after

digestion of the protein of interest. This method is particularly useful when proteins

contain modifications through attached biochemical functional groups such as acetate,

phosphate, various lipids and carbohydrates. The exact residue/amino-acid site where

the modification occurs can be determined from sequence information obtained by tan-

dem mass spectrometry (MS/MS). In tandem mass spectrometry, two mass spectrome-

ters are required to run in tandem. The first one separates peptides by mass and outputs

a spectrum of peak masses and intensities where each peak corresponds to a peptide.

Then, one peptide at a time is picked for further analysis. This peptide is fragmented by

collision with high energy gas atoms. This method of fragmentation beraks the peptide

bonds and generates a ladder of fragments, each differing by a single amino-acid. The

second mass spectrometer then separates the fragments and displays their masses and

intensities as ’tandem mass spectrum’. The amino-acid sequence can be deduced from

the differences in mass between peaks. Post-translational modifications are identified

when the amino-acid to which they are attached show a diagnostic mass shift.

Accurate identification of large numbers of PTM sites by tandem mass spec-

trometry (MS/MS) remains a major challenge in proteomics. The simple approach

described above to identify modification site works only when the tandem mass spec-

trum is obtained from a single peptide as intended. However, mass spectrometer sep-

arates molecules only by mass. When there are multiple modification variants of a

protein/peptide with the same mass value in the sample, ’a mixture tandem spectrum’

that is the overlay of tandem mass spectrum of multiple peptide sequences is acquired.

In Dost et al. [117], we propose a novel computational framework to accurately

identify and quantify peptide modification variants from a mixture tandem mass spec-

trum and demonstrate our approach on both simulated and mass spectrometric data. The

challenges and the limitations of current approaches for modification site assignment

and details of this work are discussed in Chapter 6.



Chapter 2

Structural Alignment of Pseudoknotted

RNA

Abstract

In this chapter, we address the problem of discovering novel non-coding RNA

(ncRNA) using primary sequence, and secondary structure conservation, focusing on

ncRNA families with pseudo-knotted structures. Our main technical result is an effi-

cient algorithm for computing an optimum structural alignment of an RNA sequence

against a genomic substring. This algorithm finds two applications. First, by scanning

a genome, we can identify novel (homologous) pseudoknotted ncRNA, and second, we

can infer the secondary structure of the target aligned sequence. We test an implemen-

tation of our algorithm (PAL), and show that it has near-perfect behavior for predicting

the structure of many known pseudoknots. Additionally, it can detect the true homologs

with high sensitivity and specificity in controlled tests. We also use PAL to search en-

tire viral genome and mouse genome for novel homologs of some viral, and eukaryotic

pseudoknots respectively. In each case, we have found strong support for novel ho-

mologs.

11
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2.1 Introduction

Ribonucleic acid (RNA) is the third, and (until recently) most underrated of the

trio of molecules that govern most cellular processes: the other two being proteins and

DNA. While much of cellular RNA carries a message encoding an amino-acid sequence,

other, ‘non-coding’ RNA participate directly in performing essential functions. Recent

and unanticipated discoveries of novel ncRNA families [3, 19, 23, 25, 28] point to the

possibility of a ‘Modern RNA world’ in which RNA molecules are as abundant, and

diverse as protein molecules [10]. The analog of the computational gene-finding prob-

lem: “given genomic DNA, identify all substrings that encode ncRNA” is increasingly

relevant, and relatively unexplored.

While potentially abundant, RNA signals are weaker than proteins making them

harder to identify computationally. Possibly, the strongest clue is from secondary struc-

ture. Being single-stranded, the base-pairs stabilize by forming hydrogen bonds, leading

to a characteristic secondary and tertiary structure. With a few exceptions, the base-pairs

are non-crossing, and form a tree-like structure. This recursive structure is the basis for

efficient algorithms to predict RNA structure [14,31]. With this extensive work in struc-

ture prediction, it is natural to expect that novel non-coding RNA could be discovered

simply by looking for genomic sub-strings that fold into low-energy structures. Un-

fortunately, that idea doesn’t work. Rivas and Eddy (2000) showed that random DNA

(usually with high GC-content) can also ’fold’ into low-energy configurations, making

it unlikely for a purely de novo approach to be successful. Therefore, a comparative

approach is employed, often typified by the question: ”Given a query RNA with known

structure, and a genome, identify all genomic sub-strings that match the query sequence

and structure”. The query itself can be either a single molecule or a model (covariance

model/stochastic context free grammar) of an RNA structure. This approach has been

quite successful and single queries as well as covariance based models are routinely

used to annotate genomes with ncRNA [13, 16]. Central to these approaches is an algo-

rithm for computing a local alignment between a query structure and a DNA string. The

search itself is simply a scan of the genome to obtain all high scoring local alignments.

Here we pose a related question: Given a query RNA with known structure, al-

lowing for pseudoknots, and a genome, identify all genomic sub-strings that match the
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query sequence and structure. Without being precise, pseudoknots are base-pairs that

violate the non-crossing rule (See Figure 2.1). While not as common as other sub-

structures (bulges,loops), they are often critically important to function. Pseudoknotted

RNAs are known to be active as ribozymes [21], self-splicing introns [1], and partici-

pate in telomerase activity [24]. They have also been shown to alter gene expression by

inducing ribosomal frame-shifting in many viruses [18]. However, understanding the

extent and importance of these molecules is partially handicapped by the difficulty of

identifying them (computationally). The algorithm presented here will facilitate identi-

fication.

In order to compute a local structural alignment, we must start with a formal

definition of a pseudoknot in Section 3.2. Many definitions of pseudoknots have been

postulated [2,8,11,15,22], and recent research investigates the power of these definitions

in describing real pseudoknots [7]. We start here with Akutsu’s formalism (simple pseu-

doknots) [2], which has a clean recursive structure and encompasses a majority of the

known cases [7, 20]. We also present algorithms that extend this class of allowed pseu-

doknots (standard pseudoknots). Section 2.3 describes the chaining procedure which is

key to the alignment algorithm that follows (Section 2.4). However, the simple pseudo-

knots usually do not occur independently, but are embedded in regular RNA structures.

In Section 2.5, we extend the algorithm to handle these cases. Other extensions are con-

sidered in Section 2.7. It has been brought to our attention that a recent publication [17]

considers the identical problem using the formation of tree adjoining grammars to model

pseudoknots. The pseudoknots considered by them are a restricted version of our simple

pseudoknots. Furthermore, our alignment combines sequence and structural similarity.

The local alignments can be used in two ways. First, they can be used to in-

fer the structure of the aligned substring that is conserved with the query. We show in

Section 2.8.1 that in a majority of the cases, this leads to a perfect prediction of sec-

ondary (pseudoknotted) structure. Next, they can be used to predict novel ncRNA in

genomic sequences. While our algorithms are computationally intensive, they can be

used in combination with database filtering approaches to search large genomic regions.

In Section 2.8.2, we validate our approach on real sequences embedded in random se-

quence. Finally, in Section 2.9, we identify (putative) novel pseudoknotted ncRNA in a
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search of viral and eukaryotic genomes.

2.2 Definitions and Preliminary Information
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Figure 2.1: (a) Simple pseudoknot. (b) Standard pseudoknot of degree d. (c) Recursive
simple pseudoknot. (d) Recursive standard pseudoknot of degree d.

Let A = a1...an be an RNA sequence. The secondary structure is represented

simply as the set of base-pairs

M = {(i, j)|1 ≤ i < j ≤ n, (ai, aj) is a base pair}

Also, let Mi0,k0 ⊆ M be defined by Mi0,k0 = {(i, j) ∈ M |i0 ≤ i < j ≤ k0}. The sec-

ondary structure, in the absence of crossing or interweaving base-pairs is called regular,

and has the following recursive definition.
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Definition 1: An RNA secondary structure Mi0,k0 is regular if and only if Mi0,k0 = φ

or ∃(i, j) ∈Mi0,k0 such that

• Mi0,k0 = Mi0,i−1 ∪Mi+1,j−1 ∪Mj+1,k0 ∪ {(i, j)} (No base-pairs cross the parti-

tions).

• Each of Mi0,i−1,Mi+1,j−1,Mj+1,k0 is regular.

Next, we can define the class of allowed pseudoknots ( [2]).

Definition 2: Mi0,k0 is a simple-pseudoknot (see Figure 2.1a) if and only if Mi0,k0 is

regular or ∃j1, j2 ∈ N (i0 ≤ j1 < j2 ≤ k0) such that the resulting partition, D1 =

[i0, j1 − 1], D2 = [j1, j2 − 1], D3 = [j2, k0], satisfies the following:

• Mi0,k0 = (SL ∪ SR), where SL = {(i, j) ∈ Mi0,k0|i ∈ D1, j ∈ D2} and SR =

{(i, j) ∈Mi0,k0|i ∈ D2, j ∈ D3, }.

• SL and SR are regular.

Definition 3: Mi0,k0 is a standard-pseudoknot with degree d (d ≥ 3, see Figure 2.1b)

if and only if Mi0,k0 is regular or ∃j1, ..., jd−1 ∈ N (i0 ≤ j1 < ... < jd−1 ≤ k0) which

divide [i0, k0] into d parts, D1 = [i0, j1 − 1], D2 = [j1, j2 − 1], ..., Dd = [jd−1, k0], and

satisfy the following:

• Mi0,k0 =
⋃d−1
l=1 Sl, where Sl = {(i, j) ∈Mi0,k0 |i ∈ Dl, j ∈ Dl+1} for all 1 ≤ l < d.

• Sl is regular for all 1 ≤ l < d,

Note that a simple-pseudoknot is a standard-pseudoknot of degree 3.

Definition 4: Mi0,k0 is recursive-standard-pseudoknot with degree d (d ≥ 3, see Fig-

ure 2.1d) if and only if Mi0,k0 is a standard pseudoknot of degree d or ∃i1, k1, ..., it, kt ∈
N (i0 ≤ i1 < k1 < i2 < k2 < ... < it < kt ≤ k0, t ≥ 1), which satisfy the following:

• (Mi0,k0 −
⋃t
l=1Mil,kl) is a standard pseudoknot of degree ≤ d.

• Mil,kl(1 ≤ l ≤ t) is a recursive standard pseudoknot of degree ≤ d.
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A recursive-simple-pseudoknot is a recursive-standard-pseudoknot of degree 3 (Fig-

ure 2.1c). While we can devise algorithms to align recursive-standard-pseudoknots,

they are computationally expensive, and most known families have a simpler structure.

Therefore, we will limit our description and tests to a simpler structure (with a single

level of recursion), defined as follows:

Definition 5: Mi0,k0 is embedded-simple-pseudoknot if and only if ∃i1, k1, ..., it, kt ∈
N (i0 ≤ i1 < k1 < i2 < k2 < ... < it < kt ≤ k0, t ≥ 1), which satisfy the following:

• (Mi0,k0 −
⋃t
l=1Mil,kl) is regular.

• Mil,kl(1 ≤ l ≤ t) is a simple-pseudoknot.

2.2.1 Structural Alignment Preliminaries

For alignment purposes, we do not distinguish between RNA and DNA, as every

substring in the genome might encode an RNA string. Let q[1 · · ·m] and t[1 · · ·n] be two

RNA strings over the alphabet
∑

= {A,C,G, U} where q has a known structure M .

An alignment of q and t is defined by a 2-rowd matrixA, in which row 1 (respectively, 2)

contains q (respectively, t) interspersed with spaces, and for all columns j, A[1, j] 6=′ −′

or A[2, j] 6=′ −′. For r ∈ {1, 2}, define ιr[i] = i − |{l < i s.t. A[r, l] =′ −′}|. In other

words, if A[1, i] 6=′ −′, it contains the symbol q[ι1[i]]. The score of alignment A is given

by ∑
j

γ(A[1, j], A[2, j]) +
∑

i,js.t.(ι1[i],ι1[j])∈M

δ(ι1[i], ι1[j], ι2[i], ι2[j])

The function γ scores for sequence similarity, while δ scores for conservation of struc-

ture. While this formulation encodes a linear gap penalty, we note here that alignments

of RNA molecules may contain large gaps, particularly in the loop regions, and we

implement affine penalties for gaps (details omitted). Naturally, we wish to compute

alignments with the maximum score.

The key ideas are as follows: First, note that regular and pseudoknotted struc-

tures have a recursive formulation. Therefore, the problem of structurally aligning an

RNA structure against a subsequence, can be decomposed into the problems of (recur-

sively) aligning its sub-structures against the appropriate sub-sequences, and combining
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the results. For regular-structures, the structure is tree-like, and the recursion follows

the nodes of the tree. For simple-pseudoknots, the structure is more complex, and will

be described in Section 2.4. The structure for embedded-simple-pseudoknots is simply

a combination of the two (See Section 2.7).

However, it is not sufficient to consider structural elements alone, as we wish to

score for sequence conservation as well. The recursive structure described only contains

a subset of the nucleotides that participate in structure. Therefore, we employ a second

trick of introducing spurious structural elements (base-pairs) to M . The augmented

structure M ′ must have the following properties:

• Each nucleotide i appears in M ′.

• |M ′| = O(m), so that the size of the structure does not increase too much.

• The recursive structure of M is maintained.

Pseudoknots and regular structures have very different recursive structure, and require

different augmentation procedures. In Section 2.3, we present chaining, a novel aug-

mentation procedure for simple pseudoknots. An augmentation for regular structures,

binarization was presented in [4], and is implicit in the covariance models used to align

regular RNA [9]. Here, we extend binarization to include chaining for embedded-

simple-pseudoknots (Figure 2.6). These augmentations are used in the alignment al-

gorithms for simple-pseudoknots (Section 2.4), embedded-simple-pseudoknots (Sec-

tion 2.5), and standard-pseudoknots (Section 2.7).

2.3 Chaining

Before describing the chaining procedure, we revisit the problem of aligning

a simple pseudoknot to a genomic sub-string. Unlike regular structures, we cannot

partition the genome into contiguous substrings, because of interweaving base pairs.

Thus, we need a new substructure for simple pseudoknot structures. We start by defining

a total ordering among the base pairs of a simple pseudoknot. Recall (Definition 3) that

a simple-pseudoknot structureMi0,k0 can be divided into 3 parts: D1 = [i0, j0−1], D2 =
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Figure 2.2: (a) Base pairs in a simple pseudoknot are ordered according to the index
of the endpoint along [j0, j

′
0]. Therefore, (i1, j1) > (i2, j2) > (j3, k3) > (i4, j4) >

(j5, k5) > (j6, k6) > (i7, j7). (b) Subpseudoknot structure.

[j0, j
′
0 − 1], D3 = [j′0, k0]. (See Figure 2.2a) For each base pair (i, j) ∈ M , exactly one

of i and j is in D2 part. We define an ordering of the base pairs in M by sorting the

coordinate in D2. Formally, define D2(i, j) for all (i, j) ∈M as follows: D2(i, j) = i if

(i, j) ∈ SR, and D2(i, j) = j otherwise. For each (i, j), (i′, j′) ∈M ,

(i, j) ≥p (i′, j′) iff D2(i, j) ≥ D2(i′, j′)

. As distinct base-pairs do not share any coordinates, ≥p defines a total ordering on

the actual base-pairs, and can be used to define a partial order on substructures that

we can recurse on. Define a subpseudoknot P(i, j, k) as the union of two subintervals

P(i, j, k) = [i0, i] ∪ [j, k] (Figure 2.2b). Denote the triple (i, j, k) as the frontier for

P(i, j, k). Note that i0 is implicit from the context. Suppose that we are aligning frontier

(i′, j′, k′) of the query against frontier (i, j, k) of the target, with the score represented by

B[i, j, k, i′, j′, k′]. A naive algorithm would need to considerO(m3n3) pairs of frontiers.

We improve this as follows: consider the special case of (i′, j′) ∈M where (i′, j′) ∈ SL.

The following recursion gives the score for B (proof omitted):

Theorem 1

B[i, j, k, i′, j′, k′] = max{MATCH,INSERT,DELETE}
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MATCH = B[i− 1, j + 1, k, i′ − 1, j′ + 1, k′] + δ(q[i′], q[j′], t[i], t[j])

+γ(q[i′], t[i]) + γ(q[j′], t[j]),

DELETE = max


B[i− 1, j, k, i′ − 1, j′ + 1, k′] + γ(q[i′], t[i]) + γ(q[j′],′−′),
B[i, j + 1, k, i′ − 1, j′ + 1, k′] + γ(q[i′],′−′) + γ(q[j′], t[j]),

B[i, j, k, i′ − 1, j′ + 1, k′] + γ(q[i′],′−′) + γ(q[j′],′−′)

INSERT = max


B[i− 1, j, k, i′, j′, k′] + γ(′−′, t[i]),
B[i, j + 1, k, i′, j′, k′] + γ(′−′, t[j]),
B[i, j, k − 1, i′, j′, k′] + γ(′−′, t[k])

Note that in every sub-case of MATCH and DELETE, we move from the query

frontier (i′, j′, k′) to the frontier (i′−1, j′+1, k), because if either i′ or j′ is not used, we

cannot score for the pair (i′, j′). In the INSERT case, we stay at the frontier (i′, j′, k′).

The situation is symmetric when (j′, k′) ∈ SR ⊆ M , but is not defined when (i′, j′) 6∈
M ∧ (j′, k′) 6∈ M . The key idea for the chaining procedure is that we can define a

unique frontier to move to in all cases, and still ensure that each nucleotide is touched

by at least one frontier. By starting with a fixed frontier, and always moving to a fixed

child, we only have O(m) frontiers to consider.

From Definition 2, there exist indices j1, j2 which divide the simple pseudoknot

structure into D1, D2 and D3. We choose (j1 − 1, j1, k0) as the root frontier. Note that

P(j1−1, j1, k0) represents the entire simple-pseudoknot (See Figure 2.3a). We maintain

the invariant that if (i, j, k) is a frontier and j participates in a base-pair, then the base-

pair must be ’below’ or within the frontier. In other words, if (i′, j) ∈ SL, then i′ ≤ i.

Likewise, if (j, k′) ∈ SR, then k′ ≤ k. For a frontier (i, j, k), we have different cases:

for example, if (i′, j) ∈ SL, we add spurious base pairs (i, j), (i−1, j), . . . (i′, j). These

base pairs define an ordered set of frontiers (i, j, k) ≥ (i − 1, j, k) ≥ . . . , (i′, j, k) ≥
(i′ − 1, j + 1, k). Likewise, if (j, k′) ∈ SR, we add spurious base-pairs (j, k), (j, k −
1), . . . , (j, k′), which define the frontiers (i, j, k) ≥ . . . ≥ (i, j+1, k′−1). The chaining

algorithm, with a complete listing of cases is described in Figure 2.3. The output of

chaining is a directed path of ’frontiers’. The number of nucleotides in a frontier (i, j, k)

is given by the expression ((i−i0+1)+(k−j+1)) ≤ m. Further, this number decreases

by at least 1 for each adjacent frontier. Thus the number of nodes in the chain is O(m).
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We still need to considerO(n3) target frontiers in aligning, for a complexity ofO(mn3).

2.4 Alignment Algorithm for Simple Pseudoknots

Figure 2.4 describes the algorithm ALIGN-SP for aligning a simple-pseudoknot

to a DNA substring. Its input is a chain of query sub-pseudoknots, which is aligned

to all sub-pseudoknots P(i, j, k) of the target sequence t[1 . . . n]. Let ML (respectively

MR) be the set of solid nodes representing subpseudoknots P(i, j, k) where (i, j) ∈ SL
(respectively, (j, k) ∈ SR). Let MS be set of the nodes representing subpseudoknots

P(i, j, k) where neither (i, j) 6∈ SL, and (j, k) 6∈ SR.

As an example, suppose we are aligning sub-pseudoknot P(i, j, k) in t to the

subchain rooted at v. Let B[i, j, k, v] be the score of the optimal alignment. First, we

have cases involving insertion of target nucleotides: t[i], t[j], and t[k], as described by

the recurrence in Figure 2.4 (Line 15). Next, we have the cases corresponding to match

or deletion of v. We consider the case v ∈ ML corresponding to the subpseudoknot

P(lv,mv, rv) in q. The following cases can occur

1. (t[i], t[j]) is a pair in t corresponding to the pair (q[lv], q[mv]) in q.

2. q[lv] is substituted with t[i] and q[mv] is deleted.

3. q[mv] is substituted with t[j] and q[lv] is deleted.

4. q[lv] and q[mv] are both deleted.

The corresponding recurrences are shown on Line 6 of the procedure in Fig-

ure 2.4. The other cases are handled in an analogous fashion and are described in Fig-

ure 2.4.
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CHAINING(i, j, k)

1 if i = i0 − 1 and j > k

2 then return NIL

3 if (i, j) ∈ S
4 then v = CHAINING(i− 1, j + 1, k);

5 return CREATENODE(i, j, solid,move(1, 1, 0), v)

6 if (j, k) ∈ S
7 then v = CHAINING(i, j + 1, k − 1);

8 return CREATENODE(j, k, solid,move(0, 1, 1), v)

9 if j ∈ VL
10 then v = CHAINING(i− 1, j, k);

11 return CREATENODE(i, j, empty,move(1, 0, 0), v)

12 if j ∈ VR
13 then v = CHAINING(i, j, k − 1);

14 return CREATENODE(j, k, empty,move(0, 0, 1), v)

15 if i ∈ VL
16 then v = CHAINING(i, j + 1, k);

17 return CREATENODE(i, j, empty,move(0, 1, 0), v)

18 if k ∈ VR
19 then v = CHAINING(i, j + 1, k);

20 return CREATENODE(j, k, empty,move(0, 1, 0), v)

21 if i > i0

22 then v = CHAINING(i− 1, j, k);

23 return CREATENODE(i, j, empty,move(1, 0, 0), v)

24 if i = i0

25 then v = CHAINING(i− 1, j + 1, k);

26 return CREATENODE(i, j, empty,move(1, 1, 0), v)

27 if i = i0 − 1

28 then v = CHAINING(i, j + 1, k);

29 return CREATENODE(j, k, empty,move(0, 1, 0), v)

j1j1-1

i 0

k0

j2

P(j1-1,j1, k0)
P(j1-1,j1, k0-1 )
P ( j1-1,j1, k0-2 )
P(j1-1,j1, k0-3 )
P(j1-1,j1, k0-4 )
P(j1-1,j1+1, k0-5 )
P(j1-2,j1+1, k0-5 )
P(j1-3,j1+2, k0-5 )

(a)

(b)

Figure 2.3: The chaining procedure on a simple pseudoknot structure Mi0,k0 . (a) Solid
base pairs are the actual base pairs, dotted ones are the spurious base pairs. (b) Chain
structure representing the simple pseudoknot structure Mi0,k0 . Solid nodes represents a
sub-pseudoknot with frontier (i, j, k) where (i, j) or (j, k) is an actual base pair. Empty
nodes represents a sub-pseudoknot with frontier (i, j, k) where neither (i, j) nor (j, k)
is an actual base pair.
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ALIGN-SP(M ′, t[1...n])

1 // M ′ is the chain representing the simple pseudoknot region to be aligned in query q

2 for all intervals (i0, k0) in t[1...n]

3 do for all (i, j, k), i0 ≤ i < j ≤ k ≤ k0
4 do for all nodes v ∈M ′

5 do if v ∈ML

6 then B[i, j, k, v] = max



B[i− 1, j + 1, k, child(v)] + δ(q[lv], q[mv], t[i], t[j])

+γ(q[lv], t[i]) + γ(q[mv], t[j]),

B[i− 1, j, k, child(v)] + γ(q[lv], t[i]) + γ(q[mv],
′−′),

B[i, j + 1, k, child(v)] + γ(q[lv],
′−′) + γ(q[mv], t[j]),

B[i, j, k, child(v)] + γ(q[lv],
′−′) + γ(q[mv],

′−′)
7 if v ∈MR

8 then B[i, j, k, v] = max



B[i, j + 1, k − 1, child(v)] + δ(q[mv], q[rv], t[j], t[k])

+γ(q[mv], t[j]) + γ(q[rv], t[k]),

B[i, j, k − 1, child(v)] + γ(q[mv],
′−′) + γ(q[rv], t[k]),

B[i, j + 1, k, child(v)] + γ(q[mv], t[j]) + γ(q[rv],
′−′),

B[i, j, k, child(v)] + γ(q[mv],
′−′) + γ(q[rv],

′−′)
9 if v ∈MS and move(v) = (1, 0, 0)

10 then B[i, j, k, v] = max

{
B[i− 1, j, k, child(v)] + γ(q[lv], t[i]),

B[i, j, k, child(v)] + γ(q[lv],
′−′)

11 if v ∈MS and move(v) = (0, 0, 1)

12 then B[i, j, k, v] = max

{
B[i, j, k − 1, child(v)] + γ(q[rv], t[k]),

B[i, j, k, child(v)] + γ(q[rv],
′−′)

13 if v ∈MS and move(v) = (0, 1, 0)

14 then B[i, j, k, v] = max

{
B[i, j + 1, k, child(v)] + γ(q[mv], t[k]),

B[i, j, k, child(v)] + γ(q[mv],
′−′)

15 B[i, j, k, v] = max


B[i, j, k, v]

B[i− 1, j, k, v] + γ(′−′, t[i]),
B[i, j + 1, k, v] + γ(′−′, t[j]),
B[i, j, k − 1, v] + γ(′−′, t[k])

16

17 BSP [i0, k0, iSP , kSP ] = maxj=i+1,k=k0{B(i, j, k,ROOT(M ′))}

Figure 2.4: Align-SP procedure for alignment of a simple pseudoknot structure to a
target sequence t[1...n].
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IMPROVED ALIGN-SP()

1 for all v ∈M ′

2 do for i0 = 1 to n− 1

3 do for i = i0 − 1 to n− 1

4 do for j = n+ 1 downto i+ 1

5 do for k = j − 1 to n

6 do Compute B[i, j, k, v]

Figure 2.5: Improved Align-SP procedure.
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2.5 Alignment Algorithm for Embedded Simple Pseu-

doknots

We consider now the special case of aligning recursive-simple-pseudoknots in

which simple-pseudoknots are embedded in a regular structure. This is by far the most

common occurrence of pseudoknots. While it is relatively easy to extend our algorithms

to handle the full generality of recursive-pseudoknots, the complexity increase makes

the algorithms untractable for real problems. Thus, this special case offers a compromise

between generality and practicality.

The first step in the procedure is to binarize the query RNA, so that every nu-

cleotide is in a base-pair, and can be represented by a binary tree of size O(m) [4]. The

main difference is that we invoke the chaining procedure whenever a simple-pseudoknot

is encountered. Thus, in the binary tree, the simple pseudoknot substructure appears as

a chain rooted at a pseudo-node (See Figure 2.6).

After the binary tree structureM ′ of query sequence q is created, target sequence

t is aligned to this tree. The following procedure ALIGN aligns a given subsequence

(t[i . . . j]) in target sequence to a subtree of M ′. The scores of optimal alignments are

stored in matrix A. The entry A[i, j, v] keeps the optimal alignment of the subproblem

of aligning a subsequence (t[i], t[j]) to the subtree rooted at the node v, in other words

to the subinterval (q[lv], q[rv]) of the query sequence.
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BINARIZE-SP(i, j)

1 if (i, j) is a simple pseudoknot structure

2 then return CHAINING(i, j, pseudo− node,Nil);
3 if i = j

4 then return CREATENODE(i, j, empty,Nil);

5 if (i, j) ∈M
6 then v = BINARIZE-SP(i+ 1, j − 1);

7 return CREATENODE(i, j, solid, v);

8 if (k, j) ∈M for some i < k < j

9 then

10 vl = BINARIZE-SP(i, k − 1);

11 vr = BINARIZE-SP(k, j);

12 (A empty node with 2 children, vl and vr.)

13 return CREATENODE(i, j, empty, vl, vr);

14 if i < j

15 then v = BINARIZE-SP(i, j − 1);

16 return CREATENODE(i, j, empty, v);

a

b
c

p
d

i j k

a
b
c

p
e

d

e

(a)

(b)

Figure 2.6: Binarization procedure revised for embedded-simple-pseudoknots and an
illustration. (a) An embedded-simple-pseudoknot with spurious base pairs added. (b)
Resulting binary tree. Solid nodes correspond to actual base pairs while empty (circular)
nodes correspond to spurious base pairs. A ’2’ represents a pseudonode and subtree
rooted at a pseudonode is formed by Chaining procedure.
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2.6 Complexity

In Align-SP, lines 3−15 runs inO(n3) time to align all subpseudoknots in target

to a node. Those lines are executed for each subinterval (i0, k0) in target and for each

node in the query tree. Then, time complexity of procedure Align-SP becomesO(mn5).

However, we do not need to computeO(n3) scores for each subinterval (i0, k0). Since k0

does not appear in the recurrences of Align-SP procedure and B[i, j, k] does not depend

on B[i′, j′, k′] such that k′ > k, B[i, j, k] does not depend on k0. Thus, it is enough to

compute O(n3) scores for each i0 as shown in Figure 2.5. Then, total running time of

Align-SP is O(mn4).

In Align procedure in Figure 2.7, we first call Binarization-SP procedure which

runs in O(m) time. We also call Align-SP procedure whenever we encounter with a

pseudo-node in the binary tree formed. Let mp be the length of the pseudoknot regions

in q[1 · · ·m], m1 and m2 be the number of the nodes with one child and two children

in the binary tree of q representing the regions with regular structure. Then, the total

running time of Align procedure will be O(mpn
4 + m1n

2 + m2n
3). It is useful to note

that very often, mp,m2 ∈ o(m), and so the true complexity is better than the worst case

complexity. Also, in computing good alignments, we can often bound the gap-lengths.

To take advantage of this, we employ a banding procedure (details not shown).
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ALIGN(q[1...m], t[1...n])

1 M ′ = BINARIZE-SP(Q)

2 for all intervals (i, j) in t and all nodes v in M

3 do if v is NIL

4 then A[i, j,NIL] =
∑j

l=i γ(t[l],
′−′)

5 if v is a pseudo node

6 then A[i, j, v] = return ALIGN-SP(i, j, v)

7 if v ∈M

8 then A[i, j, v] = max



A[i+ 1, j − 1, child(v)] + δ(t[i], t[j], q[lv], q[rv])

A[i, j − 1, v] + γ(′−′, t[j])
A[i+ 1, j, v] + γ(′−′, t[i])
A[i+ 1, j, child(v) + γ(q[lv], t[i]) + γ(q[rv],′−′)
A[i, j − 1, child(v)] + γ(q[lv],′−′) + γ(q[rv], t[j])

A[i, j, v] + γ(q[lv],′−′) + γ(q[rv],′−′)
9 if v ∈M ′ −M and v has one child

10 then A[i, j, v] = max



A[i, j − 1, child(v)] + γ(q[rv], t[j])

A[i, j, child(v)] + γ(q[rv],′−′)
A[i, j − 1, v] + γ(′−′, t[j])
A[i+ 1, j, v] + γ(′−′, t[i])

11 if v ∈M ′ −M and v has two children

12 then A[i, j, v] = max
i≤k≤j

{A[i, k − 1, left child(v)] +A[k, j, right child(v)]}

Figure 2.7: Alignment Algorithm for aligning an embedded-simple-pseudoknot q[1...m]
to a target sequence t[1...n].
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2.7 Alignment Algorithm for Standard Pseudoknots

It is possible to extend the algorithm for aligning a simple pseudoknot to an

alignment algorithm for a standard pseudoknot with degree d > 3. In this section, we

present an extension of our algorithm for standard pseudoknot structures with degree 4,

and achieve the following result:

Theorem 2 The optimal alignment for a standard pseudoknot with degree 4 can be

computed in O(mn4) time which is identical to the degree 3 case (simple pseudoknots).

In general, standard pseudoknots of degree 2k − 1 and 2k can be aligned in O(mn2k)

time.

To handle this kind of the pseudoknots, we firstly have to modify our substruc-

ture and chaining procedure accordingly. In a standard pseudoknot structure, the sub-

structure will be union of three subintervals as shown in Figure 2.8 and each will be iden-

tified by a quadruple (iv, jv, kv, lv). We denote the substructure identified with quadruple

(iv, jv, kv, lv) with P(iv, jv, kv, lv).

iv jv k v lv

i0 k 0

Figure 2.8: Substructure in a standard pseudoknot structure.

Chaining procedure again creates a chain of nodes where each corresponds to

a substructure. There will be 3 different solid nodes corresponding to a quadruple

(iv, jv, kv, lv). Let ML,MM and MR be the sets of nodes in which (q[iv], q[jv]), (q[jv],

q[kv]) and (q[kv], q[lv]) is a pair, respectively and let MS be the set of empty nodes.
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Align-SPd4 procedure, as shown in Figure 2.9, is very similar to the one for sim-

ple pseudoknot structure which is also a standard pseudoknot but with degree 3. Now,

we need to keep 4 indices i, j, k, and l along the target sequence. In the recursion, we

slide the indices i, j, k and l down along the regions D1, D2,D3, and D4 respectively.

To align a node v ∈ ML representing substructure P(iv, jv, kv, lv) in query to substruc-

ture P ′(i, j, k, l) in target, it is enough to consider the same 7 cases we did for simple

pseudoknot structure. However, we have to extend the algorithm to also account for the

solid nodes in MM and MR. Cases for the empty nodes are also handled in the same as

in alignment procedure for simple pseudoknot structures.

Similar to what we did for simple pseudoknots, we can control the indices i,j,k

and l as shown in Figure 2.10 to improve running time. It turns out that aligning a

standard pseudoknot with degree 4 has the same complexity with degree 3, i.e. O(mn4)

where m is the length of the standard pseudoknot structure. Because, we limit the

subinterval by only i0 and the complexity of the for loop for a fixed i0 is O(n3). Since

the order of nodes for the tree of a standard pseudoknot of length m is O(m), total

complexity is O(mn4).
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ALIGN-SPD4(M ′ in M of q[1...m], t[1...n])

1 // M ′ is the chain representing the standard pseudoknot region to be aligned in query q

2 for all intervals (i0, k0) in t[1...n]

3 do for all (i, j, k, l), i0 ≤ i ≤ j < k ≤ l ≤ k0, all nodes v ∈M ′

4 do

5 if v ∈ML

6 then B[i, j, k, l, v] = max



B[i+ 1, j − 1, k, l, child(v)] + δ(q[iv], q[jv], t[i], t[j])

+γ(q[iv], t[i]) + γ(q[jv], t[j]),

B[i+ 1, j, k, l, child(v)] + γ(q[iv], t[i]) + γ(q[jv],
′−′),

B[i, j − 1, k, l, child(v)] + γ(q[iv],
′−′) + γ(q[jv], t[j]),

B[i, j, k, l, child(v)] + γ(q[iv],
′−′) + γ(q[jv],

′−′)
7 if v ∈MM

8 then B[i, j, k, l, v] = max



B[i, j − 1, k + 1, l, child(v)] + δ(q[jv], q[kv], t[j], t[k])

+γ(q[jv], t[j]) + γ(q[kv], t[k]),

B[i, j, k + 1, l, child(v)] + γ(q[jv],
′−′) + γ(q[kv], t[k]),

B[i, j − 1, k, l, child(v)] + γ(q[jv], t[j]) + γ(q[kv],
′−′),

B[i, j, k, l, child(v)] + γ(q[jv],
′−′) + γ(q[kv],

′−′)
9 if v ∈MR

10 then B[i, j, k, l, v] = max



B[i, j, k + 1, l − 1, child(v)] + δ(q[kv], q[lv], t[k], t[l])

+γ(q[kv], t[k]) + γ(q[lv], t[l]),

B[i, j, k, l − 1, child(v)] + γ(q[kv],
′−′) + γ(q[lv], t[l]),

B[i, j, k + 1, l, child(v)] + γ(q[kv], t[k]) + γ(q[lv],
′−′),

B[i, j, k, l, child(v)] + γ(q[kv],
′−′) + γ(q[lv],

′−′)
11 if v ∈MS and move(v) = (1, 0, 0, 0)

12 then B[i, j, k, l, v] = max

{
B[i+ 1, j, k, l, child(v)] + γ(q[iv], t[i]),

B[i, j, k, l, child(v)] + γ(q[iv],
′−′)

13 if v ∈MS and move(v) = (0, 1, 0, 0)

14 then B[i, j, k, l, v] = max

{
B[i, j − 1, k, l, child(v)] + γ(q[jv], t[j]),

B[i, j, k, l, child(v)] + γ(q[jv],
′−′)

15 if v ∈MS and move(v) = (0, 0, 1, 0)

16 then B[i, j, k, l, v] = max

{
B[i, j, k + 1, l, child(v)] + γ(q[kv], t[k]),

B[i, j, k, l, child(v)] + γ(q[kv],
′−′)

17 if v ∈MS and move(v) = (0, 0, 0, 1)

18 then B[i, j, k, l, v] = max

{
B[i, j, k, l − 1, child(v)] + γ(q[lv], t[l]),

B[i, j, k, l, child(v)] + γ(q[lv],
′−′)

19 B[i, j, k, l, v] = max {B[i+ 1, j, k, l, v] + γ(′−′, t[i]), B[i, j − 1, k, l, v] + γ(′−′, t[j]),
20 B[i, j, k + 1, l, v] + γ(′−′, t[k]), B[i, j, k + 1, l − 1, v] + γ(′−′, t[l], B[i, j, k, l, v])}
21 BSP [i0, k0, iSP , kSP ] = maxi=i0,k=j+1,l=k0

{B(i, j, k, l,ROOT(M ′))}

Figure 2.9: Alignment procedure (Align-SPd4) for a standard pseudoknot with degree
d = 4.
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IMPROVED ALIGN-SPD4()

1 for all v ∈ S′

2 do for i0 = 1 to n− 1

3 do for j = i0 to n− 2

4 do for i = j downto 1

5 do for k = n downto j + 1

6 do for l = k to n

7 do Compute B[i, j, k, v]

Figure 2.10: Improved Align-SPd4 procedure.
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2.8 Results

A C++ implementation of the algorithm given for simple pseudoknots (PAL)

is done. PAL takes an RNA query and target sequence, and returns all high scoring

structural local alignments in the target sequence. All tests were performed on a PC (3.4

Ghz, 1 GB RAM) unless otherwise stated. The structure of the target sub-sequence is

inferred from the alignment (Ex: Figure 2.12). In order to assess the performance of

PAL, we tested 6 RNA families from Rfam database: UPSK, Antizyme, Parecho CRE,

Corona-FSE, Corona-pk3 and IFN-gamma. Each of these families has an embedded-

simple-pseudoknot structure. General information about these families are shown in

Table 2.1.

Table 2.1: Six simple Pseudoknotted RNA families. Avg Id stands for the average
sequence identity between two members, ns for the number of seed members, nf for the
number of whole known family members, nu for the number of non-redundant (unique)
family members that conserve pseudoknot, L for the length, LP for the length of the
pseudoknot region and t for the average time PAL takes for the alignment of a pair.

RNA Family Rfam Id Avg Id ns nf nu L LP t(sec)

UPSK RF00390 92.75% 4 25 4 23− 23 ∼ 22 0.1
Antizyme RF00381 81.74% 13 41 18 57− 59 ∼ 54 5.9
Parecho CRE RF00499 80.32% 5 5 5 102− 115 ∼ 33 2.4
Corona-FSE RF00507 64.91% 18 143 18 79− 85 ∼ 76 31.5
Corona-pk3 RF00165 68.37% 14 76 17 62− 64 ∼ 56 9.9
IFN-gamma RF00259 78.47% 5 11 7 166− 169 ∼ 113 124.0

2.8.1 Predicting Structure with PAL

To test structural inference, we select a pair of members from a family as the

query and target. PAL is used to align the query to the target. The inferred structure

of the target is compared against the annotated structure in the Rfam database. We

evaluate the predicted structure by computing TP (true positives), FP (false positives)

and FN (false negatives), defined as follows: TP is the number of base pairs in inferred

target structure that are correct: FP is the number of base pairs in the inferred structure
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that are not in the true structure, and FN is number of base pairs in the true structure that

are not inferred. We define Specificity = TP / (TP + FP) and Sensitivity = TP / (TP +

FN). Good performance is indicated by both being close to 1. Table 2.2 summarizes the

result of testing each pair in the 6 families. As the results show, PAL is a strong predictor

of structure, with mean sensitivity and specificity of 0.95. We also investigated the few

cases in which the prediction was away from the mean. In most of those cases, the target

had stem loops that were longer than the query. As they were not aligned to the query

structure, they were not inferred. In practice, we would augment the inferred structure

by a local extension of stem loops in both directions. A second source of errors was

incorrect annotation in Rfam. Other than these two scenarios, the structure inference

was essentially correct.

There is a second caveat in these results which is not apparent. Many (but not all)

of the sequences have high sequence similarity, which might be making the alignment

task easier. We believe this is because a sequence search tool like Blast is used to fish

out candidates, which are then manually aligned, and experimentally validated. We will

show in the following sections that our tool can pick out candidates that BLAST cannot

find, and also align them structurally. Also, in the cases where there isn’t high sequence

similarity, the structure inference was just as good.
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2.8.2 Searching for Structural Homologs

In this test, we use one of the members of an RNA family as a query, and look for

its homolog in a large random sequence, with the other members inserted. Figure 2.11

shows the results for the Corona-FSE family, in which 17 members were embedded in

a 19kb random sequence. The windowed scores are shown by solid lines. The actual

positions of the remaining 17 members are denoted by ’+’. We note that the true hits are

easily the highest scoring regions along the sequence, and that all true positives score

higher than all the false hits. The lowest scoring TP has a score of 769 and the highest

scoring FP has a score of 557.

We performed a random test to assess significance of these result. We generated

a bulk (106) of random sequences of equal size with the query member of the RNA

family, and determined the p-value of a score as the proportion of the sequences which

exceeds the score. However, since we performed many (965) tests shifting windows in

the previous test on 19kb sequence, there is high chance that we assessed the score by

chance; we should correct multiple hypothesis. We use Bonferroni correction method

to adjust p-value to a correct value. Note that Bonferroni correction is conservative

here because windowed tests on near-by regions are correlated and the score we assess

p-value is not always the best score chosen among all tests. (Bonferroni correction

assumes that we select the best score among independent result.) We performed three

experiments assuming different GC contents containment (25%, 50%, 75%) in random

sequences (Table 2.3), and in all cases, the lowest TP shows significant p-value even

after adjusted by conservative Bonferroni correction.
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In contrast, Blastn (E-value 10, Word-size 7) is able to locate only 4 of the mem-

bers. These results also show the significance of the secondary structure for searching

homologue in addition to the primary structure. We repeat the same experiment for RNA

families, UPSK, Antizyme, Parecho, Corona-FSE, Corona-pk3 and IFN-gamma. In all

cases, PAL locates all members as the topmost hits (See Table 2.4). We agree that Blast

is not the most appropriate tool for comparison as other tools such as RSEARCH, and

our own tool FastR can search for structural homologs of RNA [16,30]. However, these

other tools cannot align psuedoknotted RNA and the search must be followed up with a

correct alignment to determine homologs. Also, the complexity of these methods often

force a use of Blast to determine initial candidates. In the next section, we show that our

tool used in conjunction with RNA filters can efficiently search large genomes.

-500

 0

 500
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 1500

 0  5000  10000  15000  20000

S
co

re

Position

Corona FSE Family Member Search

PAL Search Scores
Blast Search Results

Actual Positions

Figure 2.11: The Score plot for Corona-FSE homologue search using PAL as a pseudo-
knot RNA search tool. ’*’ denotes actual positions of the members and ’+’ denotes the
members located by Blastn.
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Table 2.4: Comparison PAL against BLAST on pseudoknotted RNA families.
# Found

RNA Family BLAST PAL

UPSK 3 3
Antizyme 12 12
Parecho CRE 4 4
Corona-FSE 4 17
Corona-pk3 5 13
IFN-gamma 4 4

Query:    Human chromosome 12, minus, 66839786 – 66839618    
Subject:  Mouse chromosome 10, plus, 118018890-118019061 
  
                .......AAAAAAA<<<<<<<<         ..<<<<<.  .  <<<<<....<<<<<<<<.. 
Query:          CAUUGUUCUGAUCAUCUGAAGA---------UCAGCUAU--U--AGAAGAGAAAGAUCAGUUA  
                ||      +**++ +*+*+++*         ||+***+   |  ** **  | *  **** |  
Sbjct:          CA-----GAGAGGUGCAGGCUAUAGCUGCCAUCGGCUGACCUAGAGAAG--ACACAUCAGCU- 
                .......AAAAAAA<<<<<<<<...........<<<<<......<<<<<....<<<<<<<<.. 
  
 
                <<<..<<<<....aaaaaaa .......>>>>.>>>>>>>>>>>...>>>>>.>>>>>....> 
Query:          AGUCCUUUGGACCUGAUCAG-CUUGAUACAAGAACUACUGAUUUCAACUUCUUUGGCUUAAUU  
                ++*||****||   ++**+  ||||| |**++|++* ++*+  *|  ** ** +***+    * 
Sbjct:          GAUCCUUUGGA--CCCUCUGACUUGAGACAGAAGUUCUGGGCUUCUCCUCCUGCGGCC----U  
                <<<..<<<<....aaaaaaa........>>>>.>>>>>>>>>>>...>>>>>.>>>>>....> 
  
 
                >>.>>>>><<<<<<<..  <<<<<.....>>>>>...<<<<....>>>>...   >>>>>>> 
Query:          CUCUCGGAAACGAUGAA--AUAUACAAGUUAUAUCUUGGCUUUUCAGCUCUG---CAUCGUU  
                ++|**+**+ *+***||   * +*||   *+ * |||****|| |****||    ***+* * 
Sbjct:          AGCUCUGAGACAAUGAACGCUACACA--CUGCAUCUUGGCUUUGCAGCUCUUCCUCAUGGCU 
                >>.>>>>><<<<<<<....<<<<<.....>>>>>...<<<<....>>>>......>>>>>>> 
                            Start codon   

Figure 2.12: Structural alignment of the Human Interferon-γ pseudoknot against mouse
upstream genomic DNA. The structure of the query is denoted by parenthesis <,>” ,
and ”A,a” for the pseudoknot. The symbols describe the conservation: (*) sequence
and structure is conserved. (+) structure is conserved but not sequence. (|) sequence is
conserved, but not structure.
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2.9 Discussion

While PAL is accurate in fishing for structural homologs, it is computationally

intensive, making genome scale searches intractable. However, there has been much re-

cent research (including our own work) on computational filters for RNA, which quickly

eliminate much of the database, while retaining the true homologs [26, 30]. We used

PAL in conjunction with sequence based filters [29] to search genomes, for the 3 most

interesting families.

The Corona-FSE family (RF00507) is a conserved pseudoknot in Coronaviruses

which can promote ribosomal frameshifting [5]. We searched the entire Viral genome

(79 Mb) for homologs of this family in 33.8 CPU hours on 1.6GHz AMD Opteron Grid,

and identified 11 novel members of the sub-family. Like other known members, these

are found in coronaviruses, murine hepatitis virus, and Avian flu viruses. Only 2 of the

11 were similar enough in sequence to be identified by BLAST. The alignments can be

retrieved from (http://www.cse.ucsd.edu/∼bdost/RF00507.htm). A similar result was

obtained for Corona-pk3. This family has a conserved ∼ 55nt pseudoknot structure

which has been shown to be necessary for viral genome replication [27]. We identified

20 novel members of this family with significant scores (See http://www.cse.ucsd.edu/

∼bdost/RF00165.htm). Only 1 of the 20 was similar enough in sequence to be identified

by BLAST.

The Interferon-gamma family is an interesting example of a pseudoknot that is

found in the 5’UTR of the Interferon-gamma gene. It regulates translation of the down-

stream gene by binding to the kinase PKR, a known regulator of IFN-gamma transla-

tion [6]. After its discovery in 2002, the pseudoknot was found to be conserved in many

mammals. Its presence in rodents was speculated, but the homolog was not located. We

searched in mouse and rat genomic DNA, and in the complete gene of gerbil. In all 3

species, we clearly identified the homologs as the top-scoring alignment. The alignment

of human and mouse pseudoknots are shown in Figure 2.12. The conserved location

in the two species, just upstream of the start codon, and conservation of key elements

validates the hit. We are working with collaborators on experimental validation, and to

locate more members of this family.

In conclusion, we demonstrate that the algorithm for aligning pseudoknots, im-
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plemented as PAL represents a viable tool for searching for novel homologs, and for

structural inference. We hope that our tool will help increase the impact and influence

of pseudoknotted RNA in cellular function. PAL and supplemental data are available

upon request.

Chapter 2 is, in full, a reprint of the paper “Structural alignment of pseudoknot-

ted RNA. B. Han, B. Dost, S. Zhang and V. Bafna (2008). Journal of Computational

Biology. 15(5): 489-504”. The dissertation author was the primary investigator and

first author of this paper jointly with Buhm Han. This research was, in part, previously

published in the conference proceedings of Recomb 2006.



Chapter 3

Querying Protein Interaction Networks

Abstract

Molecular interaction databases can be used to study the evolution of molecu-

lar pathways across species. Querying such pathways is a challenging computational

problem, and recent efforts have been limited to simple queries (paths), or simple net-

works (forests). In this chapter, we significantly extend the class of pathways that can

be efficiently queried to the case of trees, and graphs of bounded treewidth. Our al-

gorithm allows the identification of non-exact (homeomorphic) matches, exploiting the

color coding technique of Alon et al. We implement a tool for tree queries, called QNet,

and test its retrieval properties in simulations and on real network data. We show that

QNet searches queries with up to 9 proteins in seconds on current networks, and out-

performs sequence-based searches. We also use QNet to perform the first large scale

cross-species comparison of protein complexes, by querying known yeast complexes

against a fly protein interaction network. This comparison points to strong conservation

between the two species, and underscores the importance of our tool in mining protein

interaction networks.

41
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3.1 Introduction

The study of biological networks has gained substantial interest in recent years.

In particular, technological advances, such as the yeast two-hybrid [42] and co-immuno

precipitation assays [46], have enabled the large-scale mapping of protein-protein inter-

actions (PPIs) across many model species. The newly available PPI networks present

a host of new challenges in studying protein function and evolution. Key to address-

ing these challenges is the development of efficient tools for network database searches,

much the same as sequence searches have been instrumental in addressing similar prob-

lems at the genome level.

Network queries call for searching a “template” subnetwork within a network

of interest. Commonly, the query is a known pathway, and the network is searched

for subnetworks that are similar to the query. Similarity is measured both in terms of

protein sequence similarity and in terms of topological similarity. The hardness of the

problem stems from the non-linearity of a network, making it difficult to apply sequence

alignment techniques for its solution.

Several authors have studied the network querying problem, mostly focusing on

queries with restricted topology. Kelley et al. [44] devised an algorithm for querying

linear pathways in PPI networks. While the problem remains NP-hard in this case as

well (as, e.g., finding the longest path in a graph is NP-complete [38]), an efficient

algorithm that is polynomial in the size of the network and exponential in the length

of the query was devised for it. Pinter et al. [48] enable fast queries of more general

pathways that take the form of a tree. However, their algorithm is limited to searching

within a collection of trees rather than within a general network. Sohler and Zimmer [37]

developed a general framework for subnetwork querying, which is based on translating

the problem to that of finding a clique in an appropriately defined graph. Due to its

complexity, their method is applicable only to very small queries. Recently, some of us

have provided a comprehensive framework, called QPath, for linear pathway querying.

QPath is based on an efficient graph theoretic technique, called color coding [32], for

identifying subnetworks of “simple” topology in a network. It improves upon [44] both

in speed and in higher flexibility in non-exact matches.

In this chapter, we greatly extend the QPath algorithm to allow queries with more
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general structure than simple paths. We provide an algorithmic framework for handling

tree queries under non-exact (homeomorphic) matches (Section 3.3.1). In this regard,

our work extends [48] to querying within general networks, and the results in [32] to

searching for homeomorphic rather than isomorphic matches. More generally, we pro-

vide an algorithm for querying subnetworks of bounded treewidth (Section 3.3.2). We

implemented a tool for tree queries which we call QNet. We demonstrate that QNet

performs well both in simulation of synthetic pathway queries, and when applied to

mining real biological pathways (Section 6.3). In simulations, we show that QNet can

handle queries of up to 9 proteins in seconds in a network with about 5,000 vertices

and 15,000 interactions, and that it outperforms sequence-based searches. More impor-

tantly, we use QNet to perform the first large scale cross-species comparison of protein

complexes, by querying known yeast complexes in the fly protein interaction network.

This comparison points to strong conservation of protein complexes structures between

the two species. For lack of space some algorithmic details are omitted in the sequel.

3.2 The Graph Query Problem

LetG = (V,E,w) be an undirected weighted graph, representing a PPI network,

with a vertex set V of size n, representing proteins, an edge setE of sizem, representing

interactions, and a weight function w : E → R, representing interaction reliabilities.

Let GQ = (VQ, EQ) denote a query graph with k vertices. We reserve the term

node for vertices of GQ and use the term vertex for vertices of G.

Let h(q, v) denote a similarity score between query node q ∈ VQ and vertex

v ∈ V . In our context, vertices correspond to proteins, and their similarity score is

a function of their sequence similarity. A query node q is referred to as homologous

to a graph vertex v, if the corresponding similarity score h(q, v) exceeds a predefined

threshold.

A subdivision of an edge (u, v) in a graph H = (U, F ) replaces it with two

edges (u,w) and (w, v), where w 6∈ U , i.e., creating a new graph H ′ = (U ∪ {w}, F ∪
{(u,w), (w, v)}\{u, v}). H is considered extendable to a graphG, ifG can be obtained

from H by a series of subdivisions. In particular, H is then homeomorphic to G.
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An alignment of the query graph GQ to G is defined as a pair of: (i) a subgraph

GA = (VA, EA) of G, referred to as the alignment subgraph; and (ii) a bijection, σ :

V S
Q → V S

A , between a subset of query nodes, V S
Q ⊆ VQ, and homologous vertices in the

alignment subgraph, V S
A ⊆ VA. The vertices in V S

Q ∪ V S
A are called skeleton vertices.

Pairs of associated vertices (q, σ(q)) ∈ V S
Q × V S

A are called aligned.

An alignment is proper if there exists a pair of skeleton graphs SQ = (V S
Q , E

S
Q)

and SA = (V S
A , E

S
A) that satisfy the following conditions: (i) there is an isomorphism

between SQ and SA which respects the alignment (i.e., there is an edge (u, v) ∈ ES
Q iff

there is an edge (σ(u), σ(v)) ∈ ES
A); and (ii) SQ is extendable to GQ and SA is extend-

able to GA. In particular, this means that GQ and GA are required to be homeomorphic.

In the rest of the chapter we discuss proper alignments only. An example of such an

alignment is given in Figure 3.1a.

Query nodes that are not aligned with vertices in the alignment subgraph are

considered to be deleted. Conversely, vertices in the alignment subgraph that are not

aligned with query nodes are considered to be inserted. Insertions and deletions are also

referred to as indels. From the above definitions, inserted and deleted vertices must be

of degree 2 in their respective graphs. An alignment which involves no insertions or

deletions is considered simple. The weight of an alignment is the sum of: (i) similarity

scores of aligned vertices, (ii) weights of edges in the aligned subgraph, (iii) a penalty

score, δd, for each node deletion, and (iv) a penalty score, δi, for each vertex insertion.

The graph query problem is formally defined as follows: Given a query graph

GQ, a graph G, a similarity score h, and penalty scores for insertions and deletions,

find a proper alignment of GQ in G with maximal weight. In practice, we would also

like to limit the number of insertions and deletions in the alignment, to control the

evolutionary distance between the two subnetworks. To this end, we also consider a

variant of the problem in which the number of insertions is limited by Nins, and the

number of deletions is limited by Ndel.
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3.3 Graph Query Algorithms

The complexity of the graph query problem depends on the topology of the query

graphGQ, the topology of the graphG, and the similarity function h. In the general case,

the problem of finding simple alignments is in general equivalent to subgraph isomor-

phism [59], which is computationally hard. In this chapter, we focus on efficient query

algorithms by exploiting the underlying biological constraints. Specifically, motivated

by known pathways in KEGG [43], we consider restricted query topologies, i.e., the

query graph being a tree, and a graph of bounded treewidth (see also [48]). For these

special structures, we adapt the color coding method of Alon et al. [32] to make the

problem tractable.

Color coding is a randomized technique for finding simple paths and simple

cycles of a specified length k within a given graph of size n. The basic idea is to

randomly assign k colors to the vertices of the graph and then search for colorful paths

in which each color is used exactly once. Thus, rather than having to maintain a list of

vertices visited so far (of size O(nk)), one can maintain a list of colors at considerably

lower complexity (O(2k)).

The use of the color coding technique within a query algorithm is intuitively

similar. We construct an optimal alignment by extending optimal sub-alignments using

dynamic programming. Adding a network vertex to the optimal alignment can be done

only if this vertex is not already contained in the sub-optimal alignment. Thus, naively,

each potential sub-optimal alignment should maintain the list of at most k vertices al-

ready matched. This yields O(nk) potential alignments. In color coding, we apriori

color each network vertex randomly with one of k colors, looking for a colorful align-

ment. Consequently, we only need to maintain a list of used colors (of size O(2k)),

which significantly reduces the computation time. However, the computation returns a

correct answer only if the optimum alignment is colorful, which happens with probabil-

ity k!
kk
' e−k. Therefore, if we repeat the experiment ln(1

ε
)ek times, we get the optimum

alignment with probability at least 1− ε for any desired value of ε.
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3.3.1 Tree Query

We describe an algorithm for solving the graph query problem assuming that

the query graph is a tree. For ease of presentation, we start by presenting a simplified

version of the algorithm that limits the number of insertions only. The proper treatment

of limiting both the number of insertions and deletions is deferred to the end of the

section.

First, we root GQ arbitrarily at a node r with degree 1. For each query node

q, denote its children by q1, . . . , qnq , where nq denotes their number. Let Tq,j denote

the tree that includes q and the subtrees rooted at each of its first j children, for 1 ≤
j ≤ nq. The algorithm proceeds in a series of trials in which every vertex v ∈ V

is independently assigned a color c(v) drawn uniformly at random from the set C =

{1, 2, . . . , k+Nins}. Given the random vertex colors, we employ dynamic programming

to identify an optimal colorful alignment. Let WM(q, v, S, j) denote the maximal score

of an alignment of Tq,j in G, such that query node q is aligned with graph vertex v, with

the aligned subgraph receiving distinct colors from S ⊆ C. The recursion is initialized

by setting WM(q, v, S, 0) = h(q, v) for leaf nodes q, and is formulated as follows:

WM (q, v, S, j) = max

(u, v) ∈ E
S′ ⊂ S



(* Match, child j *)

WM (q, v, S′, j − 1) +WM (qj , u, S − S′, nqj ) + w(u, v),

(* Insertion, vertex u *)

WM (q, v, S′, j − 1) +W I(qj , u, S − S′) + w(u, v),

(* Deletion, child j *)

WM (q, v, S′, j − 1) +WD(qj , v, S − S′)

Here W I(q, v, S) denotes the optimal score of an alignment of Tq,nq in G, such that

q is aligned with some vertex u that is a descendant of v in the aligned subgraph.

WD(q, v, S) denotes the optimal score of the alignment of Tq,1 in G, such that q is

deleted and v is aligned with an ancestor of q. The recursions for the insertion and

deletions cases are given below. For query nodes q of degree other than 2, we set
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WD(q, v, S) = −∞.

W I(q, v, S) = max

u : (u, v) ∈ E

 WM (q, u, S − {c(v)}, nq) + w(u, v) + δi,

W I(q, u, S − {c(v)}) + w(u, v) + δi

WD(q, v, S) = max

u : (u, v) ∈ E


WM (q1, u, S, nq1) + w(u, v) + δd,

W I(q1, u, S) + w(u, v) + δd,

WD(q1, v, S) + δd

The maximal score of the alignment is maxv,SW
M(r, v, S, 1). The optimal

alignment is obtained through standard dynamic programming backtracking. An ap-

plication of the dynamic programming recursions to a sample query is demonstrated in

Figure 3.1.

VQ (1 )

(a) Query Graph (b) Alignment subgraph

VQ (2 )

VQ (3 )

VQ (4 )

VQ (5 )

VQ (6 )

V(1)

V(2)

V(3)

V(4)

V(6)

V(5)

VQ (7 ) V(7)

h(1,1)

h(2,2)

h(3,3)

h(4,4)

h(6,6)

h(7,7)

1

1

1

1

2 3

(c ) Dynamic Programming steps

Step 1 W M(2,2{},0)=5
Step 2 W M(6,6,{},0)=5
Step 3 W M(7,7,{},0)=5
Step 4 W D(5,3,{})=5+1-3=3
Step 5 W M(3,3,{},0)=5
Step 6 W M(3,3,{},1)=5+3=8
Step 7 W I(7,5,{})=5+1-3=3
Step 8 W M(4,4{},0)=5
Step 9 W M(4,4,{},1)=5+3+1=9
Step 10 W M(1,1,{},0)=5
Step 11 W M(1,1,{},1)=5+5+1=11
Step 12 W M(1,1,{},2)=11+8+2=21
Step 13 WM(1,1,{},3)=21+9+3=33

Figure 3.1: (a) An example of a tree query graph and the corresponding alignment sub-
graph. Numbers on the query graph’s edges represent an arbitrary ordering of children
nodes. Aligned query nodes and graph vertices are connected with dashed lines. Nodes
in the skeleton graphs appear in gray. (b) A simulation of the dynamic programming
recursions. For simplicity, we denote color sets as {}. Matched vertices are awarded by
+5, insertions and deletions are penalized by −3 and edge weights are as shown.

The running time of each trial is 2O(k+Nins)m. The probability of receiving dis-

tinct colors for the vertices of the optimal matching tree is at least e−k−Nins . Thus, the

running time of the algorithm is 2O(k+Nins)m ln(1
ε
) for any desired success probability
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1 − ε (where ε > 0). We note that it is straightforward to limit the number of deletions

to Ndel by incorporating an additional variable in the recursions to count the number of

deletion in the optimal sub-alignment. The cost in terms of running time is multiplica-

tive in Ndel. When incorporating such a variable, it is also easy to limit the number of

insertions to Nins by choosing the optimum solution based on its number of deletions

and the cardinality of its color set.

3.3.2 Bounded Treewidth Graph Query

The algorithm for matching trees can be extended to subgraphs that have tree-

like properties. We present an algorithm for the simpler case where no indels are allowed

and defer the description of an algorithm for the general case to the appendix. Intuitively,

the treewidth of a graph indicates how close the graph is to being a tree, where a tree

has treewidth 1. The maximal treewidth value for a graph with n vertices is n − 1 and

this value is attained by an n-vertex clique. A formal definition of a treewidth and the

associated tree-like structure follows.

A tree decomposition (X,T ) of the query graph GQ = (VQ, EQ) is defined as

follows (see, e.g., [45]): T = (I, F ) is a rooted binary tree, andX = {Xi ⊆ VQ : i ∈ I}
is a collection of subsets of VQ, such that

⋃
i∈I Xi = VQ and the following conditions

are satisfied:

1. For each edge (u, v) ∈ EQ there exists i ∈ I such that u, v ∈ Xi.

2. If i, j, k ∈ I and j is on the path from i to k in T , then Xi

⋂
Xk ⊆ Xj .

The treewidth of the tree decomposition is maxi∈I |Xi| − 1. An example of a graph and

its tree decomposition is given in Figure 3.2a,b.

Let t denote a bound on the treewidth ofGQ. We add a dummy node d as a parent

of the root of T , with Xd = ∅. To avoid confusion, we call the nodes of T , super-nodes.

For a non-leaf tree super-node Xi ∈ X , denote its two children by Xi1 and Xi2 . Let Ti
denote the subtree of T that is rooted at Xi. The algorithm proceeds in a series of trials

in which every vertex v ∈ V is independently assigned a color c(v) drawn uniformly at

random from the set {1, 2, . . . , k}. Given the random vertex colors, we employ dynamic

programming to identify an optimal colorful alignment.
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The properties of the tree decomposition enable us to identify the optimal align-

ment by recursing on T and maintaining sub-optimal alignments of query nodes spanned

by subtrees of T , similar to the tree query algorithm described above. However, there are

two main difficulties to tackle: (i) A set of query nodes, Xi, may have an arbitrary topol-

ogy (e.g., forming a clique), potentially requiring an exhaustive O(nt+1)-time search of

an alignment subgraph for it. (ii) A query node v may appear in more than a single

super-node.

For the first issue, we exploit the fact that the treewidth is bounded by t. Large

values of t would make the algorithm impractical. To cope with the second difficulty,

we note that by definition, if v ∈ Xij and v 6∈ Xi, then v 6∈ Xl for all super-nodes

Xl that are not descendants of Xi in the tree. Thus, when visiting a certain super-node

Xij , it contains active query nodes XA
ij

= Xi ∩Xij that are yet to be handled, and non-

active nodes XN
ij

that can be removed from consideration when traversing up the tree

(Figure 3.2b). We define a non-active edge at a super-node Xi, as a query edge touching

a non-active node in Xi. We let EN
i denote the set of non-active edges in super-node Xi.

We need some more notation before giving the main recurrence of the algorithm.

For each Xi ∈ X , let Σi denote the O(nt+1)-size set of all mappings σ : Xi → V such

that: (i) for all distinct q1, q2 ∈ Xi, c (σ(q1)) 6= c (σ(q2)); and (ii) if (q1, q2) ∈ EQ then

(σ(q1), σ(q2)) ∈ E. Figure 3.2b,c shows an example of mappings between query nodes

and graph vertices.

For computing the weight of an alignment, it is convenient to credit each super-

node i (when traversing up the tree) with the similarity scores associated with its non-

active nodes and the edge weights corresponding to its non-active edges. The node

term is W S(i, σ) =
∑

u∈XN
i
h(u, σ(u)). The edge term is WE(i, σ)=

∑
(u1,u2)∈ENi

w(σ(u1), σ(u2)).

LetW (i, σ, S) be the maximum weight of an alignment of a subgraph ofGQ that

includes all super-nodes in Ti −Xi, identifies on the active query nodes in super-node i

with the assignment σ ∈ Σi, and uses the colors in S ⊆ C. W (i, σ, S) can be recursively
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VQ(4)

VQ(6)VQ(5)

VQ(7)

VQ(8)
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VQ(4)

VQ(3)

VQ(7)

(a) Query graph (b) Tree decomposition

V(1)

V(2) V(3)

V(4)

V(6)V(5)

V(7)

V(8)

sigma(X 3)

sigma(X 5)

(c ) Alignment subgraph

X 1

X 2 X 3

X 4 X 5

Figure 3.2: (a) An example of a query graph with a treewidth of 2. (b) A tree decom-
position of the query graph such that each super-node has no more than 3 query nodes
associated with it. Non-active query nodes are grayed. (c) An alignment subgraph.
σ(X3) and σ(X5) are mappings of the query nodes in X3 and X5 to graph vertices,
respectively, that identify on the active query node VQ(6) in X5.

computed as follows. For a leaf i, W (i, σ, S) = 0. For all other super-nodes:

W (i, σ, S) = max

S1 ] S2 = S

σ1, σ2

2∑
j=1

[
W (ij , σj , Sj) +WS(ij , σj) +WE(ij , σj)

]

where σ is consistent with σ1 ∈ Σi1 and σ2 ∈ Σi2 .

The score of an optimal alignment of GQ is thus maxSW (d, ∅, S). The total

running time is 2O(k)nt+1.

3.4 Implementation Notes

We implemented a tool, QNet, for querying a given network with a tree subnet-

work, following the algorithm given in Section 3.3.1. Bounded treewidth queries will be

supported in future versions. To allow higher flexibility in matching a query, we slightly

generalized the tree query algorithm to enable also deletions of query nodes of degree 1

(leaves of the tree). We also included in QNet a heuristic that exploits the structure of

the homology function to reduce the number of color coding iterations needed. In the

following we describe this heuristic and the parameter setting employed in QNet.
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Restricted Color Coding. We present a heuristic approach to color coding that tries

to take advantage of queries whose protein members tend to have non-overlapping sets

of homologs. First, we assign each query node a distinct match color, and choose Nins

additional insertion colors. Now, we color the network vertices using the following rule:

For each network vertex v, if v is not homologous to any query protein, then assign it

with a random insertion colors. Otherwise, toss a coin with probability pt = Nins
k+Nins

. If

HEADS, choose a random insertion color for it, else if TAILS, assign it with a random

color from the set of query nodes it is homologous to.

The probability Ps to obtain a colorful alignment subgraph is at least the prob-

ability that: (i) each aligned vertex is given a match color, and each inserted vertex is

given an insertion color; and (ii) all colors are distinct. Let pm be the probability that

aligned vertices are colorful, and pi be the probability that insertion vertices are colorful.

Then

Ps = (1− pt)kpnit pipm =

(
k

Nins + k

)k (
Nins

k +Nins

)Nins
pipm

where pi ≥ Nins!
Nins

Nins
. It remains for us to compute a lower bound for pm. To this end,

we form a graph on the set of query nodes, in which for every pair q, q′ of query nodes,

we add the edge (q, q′) if there exists a network vertex v that is homologous to both. We

then partition the query vertices into connected components Q1, Q2, . . . , Qk′ , and use

the following bound: pm ≥
∏k′

u=1
|Qu|!
|Qu||Qu|

. We expect pm to be high since often query

nodes are homologous to a single vertex. When the probability of success with restricted

coloring is greater than the probability of success with the standard color coding (i.e.,
(k+Nins)!

(k+Nins)k+Nins
), we use this procedure, and otherwise we use the standard color coding.

Parameter Setting. QNet involves several parameters controlling sequence similar-

ity, insertion/deletion penalties, and the relative weights of edge- and node-terms. The

current settings are as follows: we used blastp with an E-value threshold of 10−7 to

compute sequence similarity, and set h(q, v) = −log(E-value). Interaction reliabil-

ities p(u, v) are assigned using a logistic regression scheme based on the experimental

evidences for the interactions, as described in [49]. We use w(u, v) = c · r(u, v), where

c is chosen to ensure the same scale for the reliability and homology values. We allow at

most two insertions and two deletions per query, i.e., Nins = Ndel = 2. Indel penalties
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are set to δd = δi = −100. We empirically tested a range of penalties by querying

perturbations of subtrees in the yeast network (see Section 3.5.1). A small set of queries

were examined and the results did not change over the range as long as the net influence

of a deletion or insertion were kept negative. In all runs reported below, the number of

color coding iterations was set to ensure success probability ≥ 0.99.

3.5 Experimental Results

To evaluate the performance of QNet we measure its running time and accuracy

under various configurations. We start by applying QNet to query a set of synthetic trees

in the PPI network of yeast, measuring its running time and accuracy. Next, we show

examples of querying known yeast and human signal transduction pathways in the PPI

network of fly. Finally, we apply QNet to query known yeast complexes in fly.

Protein-protein interaction data for yeast S. cerevisiae and fly D. melanogaster

were obtained from the Database of Interacting Proteins (DIP) [51] (April 2005 down-

load). The fly data was complemented by PPI interactions from [50] and by genetic

interactions from FlyGRID (see also [49]). Altogether, the yeast network consists of

4,738 proteins and 15,147 interactions, and the fly network consists of 7,481 proteins

and 26,201 interactions.

3.5.1 Synthetic Query Trees

To measure the running time and estimate the accuracy of QNet, we applied it

to query the PPI network of yeast with a set of synthetic query trees. This set consists

of 20 randomly chosen subtrees of sizes ranging from k = 5 to k = 9 from the yeast

PPI network. Each query tree was perturbed with up to 2 node insertions and deletions,

and by a pre-specified amount of point mutations in its proteins’ sequences of average

length ∼ 500. QNet was applied to identify a match for each query tree.

The running time measurements were performed on a standard PC (2GHz, 1Gb).

We find that the running time of QNet is a few seconds in all cases, reaching an aver-

age of 11 seconds for the largest tree queries with 9 nodes (Table 3.1). To measure the
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Table 3.1: Number of color coding iterations and timing statistics for QNet. The last
two columns show the average time per query. The algorithm’s parameters are set as
follows: Nins = 2, Ndel = 2, and the probability of success is set to 0.99.

#Iterations Avg. time (sec.)
Query Standard Restricted Standard Restricted
size (k) color coding color coding color coding color coding
5 752 603 1.71 1.58
6 1916 917 6.36 4.73
7 4916 1282 20.46 6.24
8 12690 1669 61.17 9.08
9 32916 2061 173.88 11.03
10 85720 2509 1463 21.74
11 223990 2987 5501 41.39
12 1891868 4623 50455 97.93

improvement in running time introduced by the restricted color coding heuristic, we ap-

plied QNet also without this heuristic. We find that restricted color coding significantly

reduces the number of iterations required to identify the optimal match, while the run-

ning time of each iteration remains similar. Overall, restricted color coding reduces the

running time by an order of magnitude on average (Table 3.1). The running time of the

algorithm is significantly affected by the number of insertions allowed. If no insertions

are allowed, the average number of iterations required for queries of size 9 is less than

100. When increasing the number of allowed insertions to above 2, the restricted color

coding heuristic becomes less effective (data not shown).

To evaluate the accuracy of the matched trees, we computed the symmetric dif-

ference between the protein set of a query and its match, termed their distance herein.

The results show that when perturbing protein sequences in up to 60% of the residues,

the average distance between the matched tree and the original tree is lower than 1

(Figure 3.3b). Moreover, we compared the accuracy of matches obtained by QNet to

matches that are based only on best BLAST hits. We found that matches obtained by

QNet are markedly more accurate than purely sequence-based matches, showing that

the topology of the query tree carries important signal (Figure 3.3a). Evidently, the ad-

vantage of QNet over a sequence-based approach becomes more pronounced when the

mutation rate increases.
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Figure 3.3: The average distance of the matched tree from the original tree is plotted
against the total number of insertions and deletions introduced to the query for 4 differ-
ent mutation levels. (a) Performance of a sequence-based approach. (b) Performance of
QNet.

3.5.2 Cross-Species Comparison of MAPK Pathways

The mitogen-activated protein kinase (MAPK) pathways are a collection of re-

lated signal transduction pathways, which play a critical role in mediating the cellular

response to various toxic stresses [36]. The pathways are known to be conserved across

species and, hence, serve as controlled tests to QNet.

We queried MAPK pathways from the KEGG database [43] in the PPI network

of fly. The first pathway is a classical human MAPK pathway involved in cell prolif-

eration and differentiation. Querying this pathway in fly resulted in detecting a known

MAPK pathway involved in dorsal pattern formation (Figure 3.4a). Specifically, 6 out

of the 8 matched proteins in the target are members of the known MAPK pathway in

fly. Similar results were obtained by querying the yeast MAPK pathways from KEGG

against the fly network. As an example, the top output for the starvation response

pathway query (Figure 3.4b) is a fly MAPK pathway with a putative MAPK cascade

(fray,Dsor1,rl), which includes the GTPases Cdc42, Ras64b that are homologous to the

two GTPases in the query. These results support the fidelity of QNet.
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Figure 3.4: [

Querying the fly network using (a) a human MAPK pathway, and (b) a yeast MAPK

pathway induced by starvation]Querying the fly network using (a) a human MAPK

pathway, and (b) a yeast MAPK pathway induced by starvation, taken from the KEGG

database [43]. Matched nodes appear on the same horizontal line. A dotted edge repre-

sents inserted proteins (not shown).

3.5.3 Cross-Species Comparison of Protein Complexes

As a large-scale validation of QNet we systematically queried known yeast pro-

tein complexes, obtained from the MIPS database [40, 47], in the fly network, and

tested the biological plausibility of the identified matches. We included all hand curated

complexes in MIPS, which are considered a reliable data source, excluding complexes

that were identified via high throughput measurements (category 550 in MIPS). Over-

all, we considered 94 complexes consisting of at least 4 proteins each. As MIPS does

not contain information on the topology of the complexes, we mapped each complex to

the yeast network and used the induced subnetworks as queries. More accurately, for

each complex, we extracted an average of 40 random query trees of size in the range

3 − 8 from its induced subnetwork. We applied QNet to systematically query all of

the induced query trees in fly. The resulting query matches were used to construct a

consensus match, consisting of all proteins that appeared in at least half of the matches.

The biological plausibility of an obtained consensus matches was tested based on

functional enrichment of their member proteins w.r.t. the fly gene ontology (GO) process
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Figure 3.5: (a) The MIPS Cdc28p complex. (b) The consensus match in fly. Matched
nodes appear on the same horizontal line. Inserted proteins appear in white.

annotation [33]. Specifically, let n(t) denote the number of genes in the consensus

match that are annotated with term t. We compute the probability p(t) of obtaining a

random set of genes, of the same size as the original pathway, with at least n(t) genes

annotated with term t, assuming a hypergeometric distribution. Having found a term t0

with minimal probability p(t0), we compute a p-value for the enrichment under term t0

by comparing p(t0) with similar values computed for 10, 000 random sets of genes. The

latter p-values are further corrected for multiple match testing via the false discovery

rate procedure [34].

36 of the yeast complexes resulted in a consensus match with more than one

protein in fly. We find that 72% of these consensus matches are significantly function-

ally enriched (p < 0.05). For comparison, we computed the functional enrichment of

randomly chosen trees from the fly PPI network that have the same distribution of sizes

and interactions scores as the consensus matches. We find that only 17% of the random

trees are functionally enriched, and that the mean enrichment p-values is significantly

lower for the true consensus matches (Wilcoxon rank test p-value< 6.5e− 9).

Figure 3.5 illustrates the result of querying the Cdc28p complex. This com-

plex is composed of cyclin-dependent kinases involved in regulating the cell cycle in

yeast. The consensus match obtained in fly consists solely of cyclin-dependent kinases

and significantly overlaps the cyclin-dependent protein kinase holoenzyme complex

(GO:0000307).
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3.6 Discussion

Data sets of protein-protein interactions are increasingly common, and will con-

tinue to increase in number and complexity. In this chapter, we address the problem of

searching such data for specific pathways of interest. We provide efficient algorithms

for querying trees and graphs of bounded treewidth within PPI networks. We implement

the tree query algorithm, QNet, and demonstrate its efficiency and accuracy. QNet can

handle queries of up to 9 proteins in seconds on current networks, and is shown to out-

perform sequence-based homology searches. More importantly, we use QNet to perform

a large scale cross-species comparison of protein complexes, by querying known yeast

complexes in the fly network. This comparison points to strong conservation between

the two species.

While our work has helped in clarifying some algorithmic questions regarding

efficient querying of biological networks, and has shown promising results in practice,

it leaves many aspects open for future research. One important direction is the devel-

opment of appropriate score functions to better identify conserved pathways. Research

in this direction could gain from probabilistic models of network evolution [35, 41]. A

second important direction is the application of the methods developed here to queries

of more general structure. This entails both the implementation and testing of a tool for

querying bounded treewidth graphs, and the use of such a tool for querying arbitrary

structures, perhaps in a way similar to that presented in Section 3.5.2.

Chapter 3 is, in full, a reprint of the paper “QNet: a tool for querying protein

interaction networks. B. Dost, T. Shlomi, N. Gupta, E. Ruppin, V. Bafna, and R. Sharan

(2008). Journal of Computational Biology. 15(7):913-25”. The dissertation author

was the primary investigator and author of this paper jointly with Tomer Shlomi. This

research was, in part, previously published in the conference proceedings of Recomb

2007.
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Appendix: A General Alignment Algorithm for Bounded

Treewidth Queries

In Section 3.3.2 we described an algorithm for identifying optimal simple align-

ments of a bounded treewidth query graph. To generalize the algorithm to support dele-

tions, we modify the mapping σ to allow mapping to ’0’. To support insertions, we

allow σ to map connected query nodes to non-connected graph vertices, and use addi-

tional Nins color (as in Section 3.3.1).

Given the new definition of σ, the node term is modified as follows:

W S(i, σ) = δd|{u ∈ XN
i : σ(u) = 0}|+

∑
u∈XN

i ,σ(u)6=0

h(u, σ(u))

The edge term is more problematic as it depends on the subset of colors used

for insertions, and requires some preprocessing. For a pair of vertices u, v ∈ V and a

set of colors S ⊆ C − {c(u), c(v)}, we denote by WP (u, v, S) the maximum weight

of a path between u and v that visits the colors in S. Given a set of vertex pairs R =

R(l) = {(r1
1, r

2
2), . . . , (r1

l , r
2
l )}, we define WP (R, S) as the maximum weight of |R|

simple paths between all vertex pairs that visit distinct colors from S:

WP (R, S) = max

S1, S2, . . . Sq⊎
Sl = S

q∑
l=1

WP (r1
l , r

2
l , S

l)

In order to compute WP (R, S) efficiently, we use the following recurrence:

WP (R(l), S) = max
S′⊂S

[
WP ((r

1
i , r

2
i ), S

′) +WP (R(l − 1), S − S′)
]

Define Ei(σ) as the set of graph vertex pairs that are mapped from non-active

edges in super-node i:

Ei(σ) = {(u, v) ∈ E : (u′, v′) ∈ EN
i , σ(u′) = u, σ(v′) = v}

The edge term for super-node i under the mapping σ and colors S, is:

WE(i, σ, S) = WP (Ei(σ), S)
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Finally, we modify the main recursion as follows:

W (i, σ, S) = max

S1 ] S2 = S,

S′1 ⊂ S1,

S′2 ⊂ S2,

σ1, σ2

2∑
j=1

[
W (ij , σj , Sj − S′j) +WS(ij , σj) +WE(ij , σj , S

′
j)

]

To compute the running time of the preprocessing stage, note thatWP ((u, v), S))

can be pre-computed for all S in O(n22k) time. Therefore, WP (Ei(σ), S) can be pre-

computed in 2O(k)nt+1 time, and hence the total running time is 2O(k)nt+1.



Chapter 4

Clustering Genome-Scale Expression

Data

Abstract

Genes with a common function are often hypothesized to have correlated ex-

pression levels in mRNA expression data, motivating the development of clustering al-

gorithms for gene expression data-sets. We observe that existing approaches do not

scale well for large data-sets, and indeed did not converge for the data-set considered

here. We present a novel clustering method TCLUST, that exploits co-connectedness to

efficiently cluster large, sparse expression data.

We compare our approach with two existing clustering methods CAST and K-

means which have been previously applied to clustering of gene expression data with

good performance results. Using a number of metrics, TCLUST is shown to be superior

or at least competitive with the other methods, while being much faster. We have applied

this clustering algorithm to a genome-scale gene expression data set and used gene set

enrichment analysis to discover highly significant biological clusters.

60
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4.1 Introduction

With the current mRNA expression profiling technology, expression levels of

tens of thousands of genes across hundreds of conditions are measured simultaneously.

Genes with a common function are often hypothesized to have correlated expression

levels across different conditions. It is not surprising that clustering algorithms have

been intensively studied for analyzing gene expression data in order to detect the groups

of genes with correlated expression patterns. However, current clustering algorithms

commonly used in the domain of gene expression, do not scale well for genome-scale

expression data.

In the context of gene expression data, it is convenient to think of clustering on a

graph in which the vertices correspond to genes (or, probe sets), and edge weights reflect

the similarity/correlation between the expression profiles of the probe sets. Generally,

the correlation graph is a complete graph with n ∼ 105 nodes, and m ∼ 109 edges. It

is a common strategy to sparsify the graph by discarding the edges with edge weights

smaller than a chosen threshold. In our experiments, we observe that even after filtering

with a reasonable threshold, the number of edges remain m ∼ 107, resulting in a graph

of complexity mn ∼ 1011. Therefore, it is critical to devise a clustering algorithm that

will scale well with very large graphs.

In this paper, we propose a fast method to identify the dense subgraphs in cor-

relation graph defined on genes (or, probe sets). If a cluster of functionally related

genes were all co-expressed, and those were the only co-expressed genes, the correla-

tion graph should look like a collection of disjoint cliques. Errors and other biological

variation will add additional edges and remove some true edges. To simplify exposition,

we will consider these extra and missing edges as erroneous data (False positives (FP),

and negatives (FN), respectively), even though they might be encoding a true biological

phenomenon. The resulting graph is therefore a sparse graph with ‘dense subgraphs’

embodying functionally related clusters.

Assuming the graph has an underlying clique structure, identification of such

dense-subgraphs is known as ’cluster editing problem’ in literature. The problem has

been proven to be NP-hard for arbitrary FP rates [58, 72], even when FN=0 (The clique

problem; [59]). In practice it is hard for even moderate error rates. Fortunately, in
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the specific domain of gene-expression, the error rates appear to be low enough for the

approach to be viable.

Among the more popular algorithms for clustering gene expression data are K-

means, SOM, hierarchical clustering, and CAST [54, 62, 69]. Previous studies com-

paring traditional clustering methods in microarray data have shown that K-means and

SOM have superior performance to hierarchical clustering [63]. CAST has also been

applied on expression data with good results [54]. However, in our experiments, they

do not appear to scale well for large expression data-sets, as discussed later in the text.

Both K-means and CAST are similar in one sense as they both dynamically update

clusters by assigning and removing vertices iteratively, according to a stated objective.

In K-means, the objective is to reduce the intra-cluster variation, while increasing the

inter-cluster variation. However, the number of clusters (K) is an important parameter,

and must be specified in advance.

CAST updates clusters with no prior knowledge of the number and size of the

clusters. It constructs one cluster at a time by iteratively examining each vertexs rela-

tionship to an open, nonstabilized, cluster. CAST then uses affinity of a vertex to the

cluster to determine whether the vertex belongs or not. Affinity of a vertex v to an open

cluster C is measured by the sum of the edge weights going from v to the current mem-

bers of C. CAST alternates between adding and removing vertices until all members but

not non-members of C have high affinity to C. The key parameter here is affinity which

determines the number and sizes of the clusters. For very large data-sets, it takes a lot

of time as it will take many iterations for the vertex↔cluster relationship to stabilize.

The weighted cluster editing problem (defined below) has also been directly

studied by Rahmann et al. [70]. The authors define a cost function, and describe a

fixed-parameter algorithm which reaches its limit above 50 vertices. They also suggest

an alternative fast, O(n2), layout-based heuristic for large graphs. While faster, it is still

computationally intensive. In self reported results, the time increased exponentially, re-

quiring ∼ 105 s on graphs of complexity of 108. Additionally, it requires setting of upto

5 input parameters.

We observe that existing approaches do not scale well for large data-sets, and

indeed did not converge for the data-set considered here. In our experiments, we use mi-
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croarray data acquired from 11 tissues in each of 29 inbred strains of mice Affymetrix

MOE430v2 GeneChips (45101 probe sets). This data set represents a ‘genetical ge-

nomics’ or ‘eQTL’ microarray experiment [71]. While the vertex-set is large, it is sparse

in the edges. Of the ∼ 109 possible edges, 4.2× 107 exceed a correlation coefficient of

0.3, resulting in graphs of complexity 1011.

4.2 Weighted Cluster Editing Problem

Unweighted cluster editing problem is to make the fewest number of changes

to the edge set of an input graph such that the resulting graph is a disjoint union of

cliques. In this paper, we address ‘weighted cluster editing problem‘ in the context of

gene expression data which also takes the edge weights into account.

4.2.1 Definitions and Notation

Following Rahmann et al. [70], we consider a set of genes V and a symmetric

function s : V 2 → R+ that reflects the similarity between the expression profiles of

the genes in V . Given a weighted undirected correlation graph G = (V,E) where

E = {(u, v)|s(u, v) > 0}, our goal is to edit G by removing and adding edges in such a

way that it becomes a union of disjoint cliques where each clique corresponds to subsets

of genes with highly correlated expression profiles.

Each operation incurs a nonnegative cost: If (u, v) ∈ E, the edge removal cost

of (u,v) is c− = s(u, v). If (u, v) 6∈ E, the edge addition cost of (u,v) is c+ = −s(u, v).

Note that for similar vertex pairs u and v, removal of (u, v) will incur a non-negative

cost. Likewise, for distant u and v pairs, addition of (u, v) will incur a non-negative

cost.

Consequently, the cost to transform the initial graph G = (V,E) into a graph

G′ = (V,E ′) is defined as

cost(G→ G′) =
∑

(u,v)∈E\E′

c−(u, v) +
∑

(u,v)∈E′\E

c+(u, v).
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4.2.2 Problem Statement

Given a similarity function s : V 2 → R+ and a weighted undirected graph G =

(V,E, s), find a union of cliques graph G∗ such that cost(G → G∗) = min{cost(G →
G′|G′is a union of disjoint cliques).

In our method to tackle this problem, we do not explicitly use the cost func-

tion, but use it as an evaluation criteria for our simulation results. We show that the

output of our algorithm minimizes the cost function when the error rate is low, and

its corresponding cost is close to the optimal when the error rate is high. (See Sec-

tion 4.5.3, Figure 4.5). As noted earlier, algorithms with explicit theoretical guarantee

on performance are intractable for the large data-sets. Further, assuming an underlying

‘corrupted-clique’ model to explain real data, the method is guaranteed (Section 4.3) to

improve in each iteration. This provides a theoretical foundation for its performance on

real data.

4.3 Co-connectedness Based Heuristic

In this section, we propose a heuristic algorithm based co-connectedness to

tackle weighted cluster editing problem. Co-connectedness is described as the fraction

of neighbors shared by the pair and has been used in many different graph-theoretical

problems [65, 73]. To illustrate using an example, consider Figure 4.1. The underlying

clique structure of the input graph has two independent cliques formed by the vertices

1, 2, 3, 4, 5, 6 and 7, 8, 9, 10, 11. The observed graph has some noise as some of the edges

within the cliques are missing and there are some edges between the cliques.

For any vertex u, define the neighborhood vector ~u as the bit-vector describing

the set of neighbors. For example, ~1 = [1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0]. We use the Tanimoto

coefficient (TC) to describe co-connectedness of two vertices u and v as

TC(u, v) =
~u · ~v

~u · ~u+ ~v · ~v − ~u · ~v
(4.1)

Note that the TC here is identical to the Jaccard Coefficient (JC(u, v) = |Nu∩Nv |
|Nu∪Nv | ), but

also works for weighted graphs (Section 4.4.2). It measures not only if two vertices are



65

1
2

3
4

6

5

7

8

9

1011

2nd−order TCG
(threshold applied)

2 4 6 8 10

2

4

6

8

10

2nd−order TCG

2 4 6 8 10

2

4

6

8

10

1st−order TCG
(threshold applied)

2 4 6 8 10

2

4

6

8

10

1st−order TCG

2 4 6 8 10

2

4

6

8

10

Input Graph

2 4 6 8 10

2

4

6

8

10

Figure 4.1: Illustration of co-connectedness based heuristic for an unweighted graph.
Graph and its adjacency matrix as an image are shown in the top panel. Color scale
is from 0 (black) to 1 (white). In the second and third panel, TCG1 and TCG2 are
shown, respectively. The threshold-applied and binarized version of each is also shown
to indicate that TCG get closer to the underlying clique structure in each iteration.
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connected to the similar set of vertices but also if they are connected with similar edge

weights.

In Figure 4.1, for visualization purposes, we display the adjacency matrices of

the graphs as images. Observe that for a spurious edge (2, 9), TC(2, 9) is low, while

for the missing edge (2, 4), TC(2, 4) is high. Therefore, computing TC, and applying a

threshold, we get a new sparse graph, TC graph, with fewer errors. Within two iterations,

the graph reverts to a collection of two cliques. Note that TC of two vertices does not

have direct interpretation of their original edge weight. It is possible for two vertices

with high edge weight to have low TC and for two vertices with low edge weight to

have high TC. We treat a high edge weight as FP if measured TC is low. Similarly, if

the measured TC is high, we treat a low edge weight as FN.

We can generalize this idea and show calculations that help to show convergence.

Following Ben-Dor et al. [54], define a (d, α)-corrupted clique graph as a collection of

disjoint cliques, each of size d, in which intra-clique edges are removed independently

with probability α′, and inter-clique edges are independently added with probability α′

for an arbitrary α′ ∈ [0, α].

Let G be a (d, α)-corrupted-clique graph. If

α < min

{
ln d

3d
,
d

n

}
,

we can show that there exists a tcg-threshold such that the TC graph (TCG) is a (d, α′)-

corrupted-clique graph with α′ < α. Note that if this is true then in each iteration, we

will converge towards the underlying clique structure. In practice, we only need to do

this for a few iterations and then output the connected components.

Consider two vertices u, v from the same clique. Then, assuming that edges in

the clique are missing with probability α

E(~u · ~v) ≥ (1− α)2d

The inequality is because some spurious edges may add to the dot-product. Note that

the dot-product can be computed as the sum of d independent binary variables, each

of which is 1 with probability (1 − α)2. Consequently, we can use Chernoff’s bound

(e.g. [67]) to compute deviations from the mean as

Pr[~u · ~v < (1− δ)(1− α)2d] ≤ e−δ
2(1−α)2d/2 (4.2)
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for any δ > 0. Correspondingly, for vertices u, v from different cliques

E(~u · ~v) = 2α(1− α)d+ α2(n− 2d) ≤ 3αd

and, an equality similar to Equation 4.2 holds

Pr[~u · ~v > (1 + δ)3αd] ≤ e−δ
23αd/4 (4.3)

Finally, we have

E(~u · ~u) = (1− α)d+ α(n− d)

The condition α ≤ d/n implies that

(1− α)d ≤ E(~u · ~u) ≤ (2− α)d

and, with high probability

(1− δ)(1− α)d ≤ ~u · ~u ≤ (1 + δ)(2− α)d

Finally, consider the expression ~u · ~u+ ~v · ~v− ~u · ~v. Using Cauchy-Schwartz inequality

~u · ~v ≤ max {~u · ~u,~v · ~v} . Therefore, with high probability

(1− δ)(1− α)d ≤ ~u · ~u+ ~v · ~v − ~u · ~v ≤ 2(1 + δ)(2− α)d

Thus, if u, v are in the same clique, with high probability

TC(u, v) ≥ ~u · ~v
~u · ~u+ ~v · ~v

≥ (1− δ)(1− α)2

2(1 + δ)(2− α)

If u, v are in different cliques, then with high probability

TC(u, v) ≤ (1 + δ)3α

(1− δ)(1− α)

If we can choose a threshold in between these two numbers, then with high probability,

we will get rid of the spurious edges, and add missing edges. This imposes the following

condition on δ
(1 + δ)3α

(1− δ)(1− α)
≤ (1− δ)(1− α)2

2(1 + δ)(2− α)
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implying
(1 + δ)2

(1− δ)2
≤ (1− α)3

6α(2− α)

or

δ ≥ (1− α)3/2 − (6α(2− α))1/2

(1− α)3/2(6α(2− α))1/2
(4.4)

Finally, we require that the probability that a spurious edge remains in the TCG, or a

true edge is missing is lower than α. This is bounded using Equations 4.2,4.3, to be

4e−δ
23αd/4 < α

implying

δ2 <
4 ln(4/α)

3dα
(4.5)

Equations 4.4 and 4.5 are satisfied when α < ln d
3d

, implying that error is reduced in

a single iteration of TCG generation. In practice, our approach works well for much

higher error rates (α < 0.5), with results comparable to CAST, but extending to larger

data-sets.

4.3.1 Running Time Analysis

If the average degree of vertex is d, computation of TC for a pair of vertices costs

O(d). In each iteration of TCG generation, we compute TC for only pairs with distance

at most 2, since otherwise TC will be zero. Thus, the running time complexity of the

algorithm is O(|V |d3) per iteration and scales linearly with the number of iterations.

The number of iterations, k, depends on the size of the underlying cliques and

the error rate. At a fixed error rate the neighborhood similarity for a pair of vertices in

a small clique is more influenced than a pair of vertices in a large clique. Thus, it takes

more iterations for smaller cliques to edit all FP and FN edges. In our experiments, at

error rate ε = 0.2, in a corrupted graph of 640 vertices, we recover the cliques of size

128 in TCG1, while we recover the cliques of size 16 in TCG3. (See Figure 4.4).

4.4 TCLUST

Clustering of large gene expression data-sets is challenging. Our clustering

method TCLUST is based on two ideas. The first is an assumption that the expression



69

clusters resemble corrupted cliques, and co-connectedness can be used for clustering.

This of-course cannot be proved. However, we evaluate our clustering results using in-

dependent biologically meaningful metrics, and show that whether the underlying model

is true or not, we can use co-connectedness.

The second idea, motivated in part by Gibson et al. [64], is based on fingerprint-

ing which suggests that co-connectedness can be exploited looking only at a subset of

genes to which a particular gene is highly correlated. As this subset is small, our algo-

rithm can comfortably handle large input sizes. Any loss of performance is handled by

repeated iterations of the co-connectedness heuristic from Section 4.3.

Figure 6.2 provides an overview of TCLUST. A fingerprinting strategy is used

to generate a correlation coefficient graph(CCG) from gene expression data. This is

followed by iterative computation of TC graphs (TCG) until connected components of

the TCG are clique-like. Note that once a connected component is dense enough, it will

only get denser in subsequent iterations and no two disjoint connected components will

be merged. Thus, it is possible to output a connected component as a cluster at any

iteration as its edge density, number of edges/number of pairs exceeds a threshold.

While CAST and TCLUST both have similar goal of identifying underlying

cliques, TCLUST should converge faster as vertex pairs with strong (respectively, weak)

co-connectedness are quickly identified as such, and remain as edges (respectively, non-

edges) for the remainder of the iterations. Specifically, if the two vertices end up in

different connected components, their TC will always be 0, and they will never con-

verge into one component. This implies that we only need to compute TC for vertex

pairs in the same connected component, and a few iterations should suffice to establish

the clusters.

We apply our method on a mouse gene expression dataset with 45101 probesets

and 295 samples. (See Appendix for details.) In our experiments we show that TCLUST

is very efficient while it is still able detect biologically meaningful gene groups.

In the following subsections, we discuss the different steps spelled out in the

flowchart in detail. In Section 4.5, we demonstrate the performance of our algorithm

on simulated data. In Section 4.6, we compare performance of TCLUST, CAST and

K-means on filtered expression data. Finally, in Section 4.6.3, we apply TCLUST to our
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Figure 4.2: Flow chart for TCLUST algorithm.

large gene expression data set for gene set enrichment analysis.

4.4.1 Generating Correlation Coefficient Graph (CCG)

We use the Pearson’s correlation coefficient as a measure of co-expression of

genes/probesets. Let xik denote the expression level of pi in the kth sample. For a pair

of probes pi, pj

s(pi, pj) =

∑n
k=1(xik − x̄i)(xjk − x̄j)√∑n

k=1(xik − x̄i)2
∑n

k=1(xjk − x̄j)2

Clearly s(pi, pj) = s(pj, pi). Define CCG as a complete undirected, weighted graph

(V,E, s), with s defining edge weights. We use a threshold on the weights, only in-

cluding edges that exceed the threshold. Other results have suggested that rank based

correlations are more robust to noise. However, in our own experiments, the data-set

was of sufficiently high quality that we continued with Pearson’s correlation, which was
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required by our collaborators on the project.

It is a common strategy to reduce the complexity of CCG by discarding the edges

with edge weights smaller than a chosen threshold. In our experiments, we observe that

correlation coefficients of a probe-set with the rest of the probe-sets follow a unimodal

distribution with a small tail. (See Figure 4.3 for the distribution for 4 randomly chosen

probe-sets.) However, the shape of the distribution differ from probe-set to probe-set.

This makes it difficult to set a fixed threshold that would not be biased for any probe-sets.

−1 −0.5 0 0.5 1
0

1000

2000

3000

4000

correlation coefficient

fr
eq

ue
nc

y

probe id: 1186

−1 −0.5 0 0.5 1
0

1000

2000

3000

4000

correlation coefficient

fr
eq

ue
nc

y

probe id: 25156

−1 −0.5 0 0.5 1
0

1000

2000

3000

4000

correlation coefficient

fr
eq

ue
nc

y

probe id: 4363

−1 −0.5 0 0.5 1
0

1000

2000

3000

4000

correlation coefficient

fr
eq

ue
nc

y

probe id: 36900

Figure 4.3: Distribution of correlation coefficients with the rest of 45K probe-sets for 4
randomly chosen probe-sets.

We use a novel per-vertex-threshold scheme to determine edges. First, define

the top-neighbors of vertex pi, N(pi) as follows: let µi and σi be the mean and standard

deviation of the correlation coefficients between vertex pi and all other vertices in V ,

respectively. Denote pj ∈ Nθ(pi) if and only if

s(pi, pj) ≥ µi + θσi

Define CCGθ = (V,Eθ, s), where V is the set of probe-sets, and

Eθ = {(pi, pj)|pi ∈ Nθ(pj), pj ∈ Nθ(pi)}
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Per-vertex thresholding can be thought as a fingerprinting scheme where each

vertex/probe set is fingerprinted with the set of its top neighbors. It keeps the graph

sparse, and also controls for certain vertices (genes) having higher overall expression

values compared to other genes. We use CCG3 (determined empirically) as the input to

TCLUST. However, note that no assumption is made w.r.t the distribution of scores of

correlated genes.

We reiterate that the sparsification by edge and node thresholding is provided as

an option which allows us to handle large graphs. It is neither required, nor assumed

that the input is sparse. Indeed while evaluating cluster quality, we compare against

the original (complete) graph. It is possible that the sparsification could reduce the

quality of our clusters. However, the co-connectedness property is mostly preserved by

sparsification, and our results show that there is no loss of quality by introducing this.

4.4.2 Generating Tanimoto Coefficient Graph (TCG)

The Tanimoto coefficient (TC) is a measure of similarity between two real-

valued vectors, defined by Equation 4.1. For a weighted graph, G = (V,E,w), denote

~Wi = [w(pi, pj) : pj ∈ V ]

as the vector of edge weights incident on vertex pi. We define the TC between a pair of

vertices (pi, pj) as

TC(pi, pj) = TC( ~Wi, ~Wj)

This reweighing of edges allows us to define a family of Tanimoto Coefficient

Graphs TCGk
t for arbitrary k ∈ Z+, and a real valued tcg-threshold t. Specifically,

TCG0
t = (V,E,w) and ~W 0

i = ~Wi.

For k > 0, TCGk
t = (V,Ek, wk), where

Ek =
{

(pi, pj)|TC( ~W k−1
i , ~W k−1

j ) ≥ t,∀pi, pj ∈ V
}

wk(pi, pj) =

{
TC( ~W k−1

i , ~W k−1
j ), (pi, pj) ∈ Ek,

0, otherwise

As we iterate over TCGk for k = 0, 1, . . ., the connected components should re-

semble the underlying clique structure. Therefore, we output the connected components
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as the final clusters.

4.4.3 Implementation of TCLUST

We implemented the core algorithm in C++. The input to the program is the CC

graph, a tcg-threshold t ∈ R, and k ∈ Z+, the number of iterations (See Figure 6.2).

We use R [68] statistics package to generate the CCG for input to TCLUST.

We compute the correlation matrix and filter the matrix using per-vertex thresholding

technique.

4.5 Results on Simulated Data

4.5.1 Corrupted Random Weighted Graph Model (CRWG)

Ben-Dor et al. [54] proposed a natural corrupted random graph model to test

the performance of CAST in retrieving the underlying clique structure from ‘corrupted’

graphs.

We extend their model to include weighted graphs. The Corrupted Random

Weighted Graph (CRWG) model has 3 input parameters (S, T, ε) defined as follows: S

is the underlying clique structure denoted by the size of the underlying cliques. As an

example S = [2 × 8, 2 × 16, 1 × 32] denotes a structure consisting of 2 cliques of size

8, 2 cliques of size of 16 and one clique of size 32. T is the intra-clique threshold, i.e.

any edge weight within a clique is larger than T and any edge weight between cliques is

less than or equal to T . Finally, ε is the error range of the observed edge weights.

In the ideal case, we assume a weighted complete graph with an underlying

clique structure where ε = 0. Therefore, when a threshold T is applied, we can retrieve

the cliques. In CRWG model, this ideal case is corrupted. Each edge weight w is

replaced by a random weight uniformly distributed in the range [w − ε, w + ε]. Thus,

when the threshold T is applied on the observed graph, an inter-clique edge may appear

since (w + ε) may exceed t, and an intra-clique edge may not appear since (w − ε)

may be smaller than T . The effect of changing weight is the weighted analog of adding

spurious edges, or deleting true edges in the corrupted-clique model. An edge with
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actual weight T < w ≤ T+ε is not in the thresholded observed graphGwith probability
T−w+ε

2ε
∈ [0, 0.5). Similarly, an edge with actual weight T − ε < w < T is in G with

probability w+ε−T
2ε
∈ (0, 0.5).

The output of TCLUST is a set of clusters. In a corrupted graph model, it is

reasonable to think of each cluster as a complete subgraph. However, data sets may

only have an underlying dense subgraphs which are not complete. Therefore, we can

use either the TCGk itself as the output or we can use the collection of cliques induced

by the vertices of each connected component of TCGk as the output. We test both of

these outputs in the following sections. In the second case, we also compare against a

version of CAST, reimplemented for the weighted case.

4.5.2 Recovering Underlying Structure by TCG

To test performance of iterative computation of TCG in recovering the underly-

ing cliques, we generate 20 random graphs using CWRG model with S = [16× 8, 8×
16, 4 × 32, 2 × 64, 1 × 128], T = 0.6 and 0.1 ≤ ε ≤ 0.5. Note that each graph has

31 underlying cliques of sizes 8, 16, 32, 64, 128 and the number of vertices participating

in different size cliques are the same. The input graph G to our clustering algorithm

is the threshold graph that is obtained by filtering the edges with weights smaller than

T = 0.6. Thus, G has a number of extra and missing edges depending on the error rate

ε.

If an edge in TCG is indeed between two clique members, it is considered as

a TP , otherwise a FP . TN and FN are defined accordingly. We use two similarity

measures: sensitivity and specificity. We define sensitivity as TP/(FN + TP ) and

specificity as TN/(FP + TN).

Figure 4.4 shows our simulation results for the comparison of underlying clique

structure S with filtered TCG1, TCG2 and TCG3 by applying tcg-threshold. The tcg-

threshold is varied between 0.1 and 0.9 to select the setting with better sensitivity and

specificity results. In Figure 4.4, the results with only the best settings are shown.

The results show us that iteratively generating TCG allows us to get closer to

the underlying clique structure S. For example, in the case where ε = 0.2, sensitivity

and specificity values for G are improved from (87%, 92%) to (99%, 99%) by TCG1 and
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Figure 4.4: Comparison of underlying clique structure and filtered TCG1, TCG2 and
TCG3. Average cost, sensitivity and specificity are plotted with error bars. Random
graphs are generated by CRWG model with parameters S=[16×8, 8×16, 4×32, 2×64,
1× 128], T = 0.6 and ε ranging from 0.1 to 0.5. TCGk is the kth order TCG computed
from S’ iteratively. Sensitivity = TP/(FN+TP ) and specificity = TN/(FP+TN) are
computed according to S where TP, FP, TN and FN are defined based on the existence
of edges after applying the tcg-threshold on the generated TCG. Tcg-threshold is set to
its optimal values among [0.1, 0.2, · · · , 0.9].

to (100%, 100%) by TCG2 revealing S exactly. In each case, we improve significantly

upon the corrupted graph.

4.5.3 CAST versus TCLUST

In this section, we compare the performance of TCLUST with CAST [54]. As

the code of CAST was not available, and we need a version that works for weighted

graphs, we implemented TCLUST and CAST algorithms in C++ using the same frame-

work. While there is the real caveat of comparing our own implementation of CAST,

we took care to maintain the fidelity of the approach. Indeed, the project started out by

attempting to use CAST to cluster the data-sets. However, in the interest of fairness, the

results below are best interpreted by considering the CAST running times generically.

Both return a collection of cliques. We evaluate the quality of the output clique graphs
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by comparing their associated cost from the input graph with the cost of obtaining the

underlying clique structure S.

We compare the results for CAST and TCLUST of degree k = 2, 3. Both CAST

and TCLUST take a parameter as input: affinity-threshold and tcg-threshold, respec-

tively. We vary both parameters from 0.1 to 0.9. In Figure 4.5, we show the simulation

results of CAST and TCLUST with only the setting which is optimal in terms of cost.

This simulation show us that both CAST and TCLUST closely approximates the

cost of the underlying clique structure even with high error rate. However, TCLUST has

better sensitivity and specificity results with a much lower standard deviation at each

error rate. Note that each connected component is treated as a complete graph in this

test. This changes the FP, and FN rate, and so the results in Figure 4.4 and Figure 4.5

are not directly comparable.

4.6 Comparison of Different Clustering Methods on Mi-

croarray Expression Data

We compare TCLUST with two existing methods: K-means and CAST on mi-

croarray data. We explore the performance of these methods over a wide range of their

parameters (K, affinity-threshold, tcg-threshold). We limit the data set to 5000 probe

sets with the highest variation across samples, as K-means and CAST did not converge

for larger sizes. In the next section, we will present results of TCLUST on the complete

dataset (45K probes).

We use a weighted version of CAST for comparison [54]. We applied a pre-filter

to the pairwise similarity matrix, discarding all edges less than 0.3. In the absence of

pre-filter, CAST did not converge and output only five clusters of almost equal sizes,

none of which were functionally enriched.

4.6.1 Functional Enrichment

In clustering genes according to the expression data, a common goal is to cluster

functionally related genes, and we use this as a test for the three methods. We extracted
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Figure 4.5: Comparison of CAST and TCLUST with k = 2, 3. Random graphs are
generated by CRWG model with parameters S=[16× 8,8× 16, 4× 32, 2× 64, 1× 128],
T = 0.6 and ε ranging from 0.1 to 0.5. Sensitivity = TN/(FP + TN) and specificity
= TP/(FN + TP ) are computed according to S. While computing sensitivity and
specificity, clusters obtained by the method are treated as a clique. Affinity-threshold
and tcg-threshold are set to 0.5 and 0.2 respectively, which are their best setting among
the values [0.1, 0.2, · · · , 0.9].
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all Functional Gene Sets (FGS) of size ≤ 500 from 6 different databases: KEGG path-

ways database (KEGG) [66], Ingenuity pathways database (ING) [74], Gene Ontology

(GO) database [53] in categories cellular component (CC), molecular function (MF),

and biological process (BP) and mouse phenome database (MPD) [55]. The chosen

5000 probe sets map to 3776 genes, of which 23.36% are annotated in KEGG, 21.21%

in ING, 31.89% in CC, 64.27% in MF and 58.16% in BP and 30.27% in MPD.

The first step is to decide if a predicted cluster C is functionally enriched in

an FGS F . We compute a p-value for enrichment of F in C, using a hypergeometric

test [75]. For details, see Supplemental Data Section 4.8.3. We set the significance

threshold to p ≤ 0.001. Also, we say that a cluster is functionally enriched if it is

significant for at least one FGS.

As the parameters for clustering are changed, we get differing number/sizes of

clusters. Larger cluster sizes include more genes, but are less likely to be enriched

in a single FGS. Therefore, we use gene-coverage–defined as the fraction of genes in

functionally enriched clusters–to compare the different methods. However, some of the

functional databases may not include all genes. Therefore, a related measure is db-

coverage, defined as the fraction of genes annotated in the specific database that end up

in a functionally enriched cluster.

In Figure 4.6, we compare TCLUST, CAST and K-means in terms of gene-

coverage and db-coverage. For each clustering method, we show 7 different parameter

settings exploring a wide range. The tcg-threshold for TCLUST varies from 0.2 to

0.8, affinity threshold for CAST varies from 0.3 to 0.9, and the number of clusters

for K-means varies from 200 to 3000 so that all three methods give similar ranges for

the number of clusters. Each choice of a method, and a parameter setting is plotted

according to its gene, and db-coverage. The best parameter settings for all three methods

are highlighted by larger data points and labels in the plots.

The results show that TCLUST does generally better than CAST and K-means.

The best setting for TCLUST has better gene, and db-coverage compared to best setting

of CAST and K-means, and also many other settings show high coverage. Note that

the gene coverage in the functionally enriched clusters is limited to 30% for all methods

because of incomplete gene annotation.
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Figure 4.6: Comparison of TCLUST, CAST andK-means in terms of gene and database
coverage in the functionally enriched clusters. For each clustering method, 7 different
parameter settings are shown. The number of clusters for K-means varies from 200 to
3000, affinity-threshold for CAST varies from 0.3 to 0.9 and tcg-threshold for TCLUST
varies from 0.2 to 0.8. The best settings for TCLUST, CAST and K-means (tcg-
threshold=0.3, aff-threshold=0.5 and K = 200) are highlighted by larger data points
in the plots.
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We use a False Discovery Rate (FDR) approach to evaluate the significance of

the number of functionally enriched clusters obtained by the clustering methods. We

picked the best parameter setting that achieves the highest database coverage for each

method. We computed many random permutations of gene annotation labels. Each

method/parameter setting pair is applied to the randomized data in which the number and

the size distribution of the clusters remain the same. Any enriched cluster discovered in

a randomized data is a false positive. The ratio of the average number of false positives

to the actual number of functionally enriched clusters describe the FDR.

In Table 4.1, we give thw db-coverage, number of functionally enriched clusters

and the associated FDR results for the clusterings obtained by TCLUST, CAST and K-

means with their best parameter settings. As we see, FDR for TCLUST is substantially

lower than the FDR for CAST and K-means while it achieves better db-coverage and

higher number of functionally enriched clusters. This observation suggests that larger

database coverage of TCLUST is not due to the size distribution or number of the clus-

ters.
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4.6.2 Timing

In this section, we compare K-means, CAST and TCLUST with k = 0, 1, 2

in terms of timing for different number of probe sets to cluster. (See Table 4.2.) K-

means takes the whole similarity matrix as input while TCLUST and CAST take an

input graph using similarities. The timing for generation of the similarity matrix and the

input graphs are excluded and only the time required for the algorithm itself are given.

For TCLUST, we give three timing results varying the degree k of the algorithm from

0 to 2. We give three timing results for also CAST, running on the complete, filtered at

a cut-off and per-node thresholded similarity graphs. Originally CAST takes the whole

similarity matrix as input. However, as the graph gets larger, CAST becomes intractable.

Thus, we assess also the timing for CAST after applying a cut-off=0.3 on the similarity

matrix. In order to clarify gain in running time by per-node thresholding, we also report

running time of CAST on the per-node thresholded similarity graph.

The number of probe sets is varied from 100 to 10K by selecting the probe

sets with the highest variation across the samples. The timing table was extended until

N = 45K for TCLUST only as it is not feasible to run K-means and CAST on large

data sets. The parameters for the methods are chosen as the setting that performed

best on the 5000 probe sets in terms of gene and database coverage in section 4.6.1(aff.

threshold=0.5, tcg-threshold=0.3, K = N/25). The programs were run on machine with

32GB memory and a single 2.2GHz AMD Opteron Processor.

Results clearly indicate the speed advantage of TCLUST.
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4.6.3 Results on complete dataset

We ran TCLUST on the entire corpus of expression data with the goal of iden-

tifying functionally related gene sets using tcg-threshold=0.3. This threshold was opti-

mized (as described earlier) by using a reduced data-set of randomly chosen 5000 probes

(out of the 45000) probes. As different data-sets vary in quality, such an optimization

is desirable. It is also worth noting that (a) other tools, like CAST do not provide any

guidance on how to set parameters; and, (b) our tool, when run with default parameters

does not do much worse on the data-sets we have tried (data not shown).

All 45101 probe sets mapping onto 21452 genes were clustered. Of the 25172

resulting clusters, majority were singletons, 550 had size in range [3, 500] covering 5994

probe sets. The clusters in size [3, 500] were mapped to Entrez gene IDs and then ana-

lyzed in terms of functional enrichment in each of the gene annotation databases. There

were 32 out of the 550 clusters found to be functionally enriched at p ≤ 0.001.

A cluster can be seen as a collection of two types of members: annotated and

unannotated. The annotated genes are used to detect the FGSs in which the cluster is

enriched in. This information can be used as a quality measure for the cluster and also a

basis for function prediction of the unannotated members.

Among the clusters with the most significant functional enrichments was one

set of 231 genes dominated with genes of muscle related functions. It was functionally

enriched in at least one FGS in each database: muscle contraction (BP, p < 10−37), con-

tractile fiber (CC, p < 10−39), structural constituent of cytoskeleton (MF, p < 10−14),

and calcium signaling pathway (KEGG, p < 10−25). There were 181 genes in this clus-

ter which were annotated in at least one of the enriched categories. The enrichment

in muscle contraction is defined by 28 genes which are primarily in the actin, actinin,

myosin, tropomyosin, and troponin protein families, genes which are well known to play

important roles in muscle tissue [52]. This enrichment is also supported by 32 members

of the actin, actinin, myosin, troponin protein families which had no previously anno-

tated role in muscle function. In addition, there are also some members of this cluster

which also had no annotated role in muscle function but have been previously discussed

in literature. For example, the expression of leiomodin 3 (Lmod3) shows high correla-

tion with the other members of the muscle contraction cluster, suggesting that it might
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have a related function. This hypothesis is further supported by known roles for the

other leiomodin family members, Lmod1 and Lmod2, in smooth muscle and cardiac

muscle function, respectively [57].

Another cluster we detected has 36 genes and it is enriched in genes involved

in hormone activity (MF, p < 10−13), and cysteine type endopeptidase activity (MF,

p < 10−3). Nine of the genes are annotated in hormone activity, and three genes are an-

notated in cysteine type endopeptidase activity. Among the other unannotated genes in

this cluster are cathepsin 3 (Cts3). A putative role for Cts3 in hormone activity and pep-

tidase function is supported by evidence for extracellularly acting cathepsins mediating

thyroid hormone liberation in thyroid epithelial cells [56].

Although the examples highlighted here represent only two of the many func-

tionally enriched clusters discovered, they illustrate the tremendous potential of func-

tional inference based on genome-wide clustering.

4.7 Discussion

We introduce here a new method, TCLUST, for clustering large, genome-scale

data sets. The algorithm is based on measures of co-connectedness to identify dense

subgraphs present in the data. We have applied this method to a large reference gene

expression data set, and showed that the resulting clusters show strong enrichment in

known biological pathways.

Although TCLUST has been shown to perform as good as or better than existing

methodologies, as with any methodology, certain caveats must be noted. A possible

shortcoming might be that once two vertices end up in different clusters, they are never

reconnected. On the one hand, this makes the algorithm converge faster, on the other

hand, it might lead to some loss of sensitivity for higher error-rates. In principle, this

could be adjusted, by applying the tcg thresholds more judiciously, gaining some FN

edges at the cost of some FP edges, and increasing the number of iterations. We will

explore this, and similar directions in future research. Also, the theoretical justification

will be clarified and extended to more general settings. Specifically, while we present

sufficient conditions on error rate α, we do not report any necessary conditions. These
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will be the subject of future investigation.

While the development of TCLUST was motivated by the lack of a suitable clus-

tering tool for large gene-expression data-sets, its performance on smaller data-sets is

superior or at least, competitive with established methods. Moreover, the method is

based on the relatively broad assumptions that the clusters behave like dense-subgraphs

of an appropriate sparse sub-graph. Therefore, TCLUST should be applicable in a vari-

ety of biological settings, and offers a new approach, complementing existing methods.

As biological data-sets continue to grow in scale, the importance of efficient algorithms

for clustering genome-scale will become paramount, requiring continued development

of efficient algorithms.

Chapter 4 is, in full, a reprint of the paper “A fast algorithm for clustering

genome-scale expression data. B. Dost, A. Su, C. Wu, and V.Bafna (2008). EEE/ACM

Transactions on Computational Biology and Bioinformatics. In press”. The dissertation

author was the primary investigator and author of this paper.

4.8 Supplemental Data

4.8.1 Expression Profiling and Preprocessing

Eleven tissues (adipose, amygdala, dorsal root ganglia, frontal cortex, hippocam-

pus, hypothalamus, liver, nucleus accumbens, pituitary, skeletal muscle, and spleen)

were dissected from a panel of 29 diverse inbred strains. Gene expression analysis was

performed using Affymetrix MOE430v2 GeneChips. After samples which did not pass

quality control were removed, data for 295 samples remained. (See Table 1 in Sup-

plemental Data.) Each microarray measured expression for 45101 probe sets targeting

21452 unique mouse genes. Each expression measurement was summarized by gcRMA

(bioconductor package; [60, 61]) from the quantile-normalized probe intensities of a

probe set.

We treat each set of the same tissue samples from up to 29 diverse inbred mouse

strains as a separate tissue specific data set. We preprocess each of these 11 data sets

separately by centering the log-transformed intensity values at zero, to highlight the

variation in expression across strains and emphasize genetic background. We then merge



87

the data sets so that we have a single dataset with 45101 probe sets and 295 samples.

4.8.2 Biological knowledge represented in gene sets

The Gene Ontology (GO) database [53] was downloaded from http://www.gene

ontology.org/ontology/geneontology.obo. The snap-shot of April 03, 2006 was used

in this analysis, which contains 21,316 GO terms in three categories for biological

process (BP), molecular function (MF) and cellular component (CC). Three unknown

categories, ”GO: 0000004”, ”GO: 0005554” and ”GO: 0008372”, were removed for

the analysis. The mapping from Entrez Gene IDs to GO terms was obtained from

NCBI’s gene2go table (April 03, 2006 snapshot from ftp://ftp.ncbi.nih.gov/gene/DATA/

gene2go.gz). In addition, we utilized two databases of manually-annotated metabolic

and signaling pathways. The KEGG pathway database [66] was downloaded from

ftp://ftp.genome.jp/pub/kegg/pathways/mmu/. The snapshot of April 26, 2006 was used,

which contains 174 pathways for mouse. Ingenuity pathways database (ING) [74]

was obtained from Ingenuity Systems, which contains 137 pathways for mouse. Fi-

nally, Mouse phenome database (MPD) [55] which is a repository of phenotypic and

genotypic data on diverse inbred strains was downloaded on May 17, 2007 from http:

//phenome.jax.org/phenome. All flat-file formatted databases were parsed by individual

python scripts for the use in the functional analysis.

4.8.3 Functional analysis of clusters

For each cluster and functional gene set (FGS) pair, the enrichment p-value p is

calculated as:

p =

(
NF
k

)(
N−NF
n−k

)(
N
n

)
where NF is defined as the number of genes assigned to the FGS, n is the number of

genes in the cluster, k is the number of genes in the cluster that are annotated in the FGS,

and N is the total number of genes [75].

http://www.gene
ontology.org/ontology/geneontology.obo
ftp://ftp.ncbi.nih.gov/gene/DATA/gene2go.gz)
ftp://ftp.ncbi.nih.gov/gene/DATA/gene2go.gz)
ftp://ftp.genome.jp/pub/kegg/pathways/mmu/
http://phenome.jax.org/phenome
http://phenome.jax.org/phenome
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Table 4.3: Eleven tissues dissected from 29 strains: adipose (AD), amygdala (AM),
dorsal root ganglia (DR), frontal cortex (FC), hippocampus (HC), hypothalamus (HT),
liver (LV), nucleus (NC), pituitary (PT), skeletal muscle (SM), spleen (SP). The samples
for which gene expression data is available are indicated by ”*”.

strains
tissues

AD AM DR FC HC HT LV NC PT SM SP
129S1/SvImJ * * * * * * * * * *
A/J * * * * * * * * * * *
AKR/J * * * * * * * * * * *
BALB/cByJ * * * * * * * * * * *
BTBR T+ tf/J * * * * * * * * * * *
BUB/BnJ * * * * * * * * * * *
C3H/HeJ * * * * * * * * * * *
C57BL/6J * * * * * * * * * * *
C57BR/cdJ * * * * * * * * * *
C58/J * * * * * * * * * * *
CBA/J * * * * * * * * * *
CE/J * * * * * * * * *
DBA/2J * * * * * * * * * * *
FVB/NJ * * * * * * * * * * *
I/LnJ * * * * * * * * * *
KK/HlJ * * * * * * * * * * *
MA/MyJ * * * * * * * * * *
MRL/MpJ * * * * * *
NOD/LtJ * * * * * * * * * * *
NON/LtJ * * * * * * * * * * *
NZO/HlLtJ * * * * * *
NZW/LacJ * * * * * * * * * * *
P/J * * * * * * * *
PL/J * * * * * * * * * * *
RIIIS/J * * * * * * * * * * *
SJL/J * * * * * * * * *
SM/J * * * * * * * * * *
SWR/J * * * * * * * * * * *
WSB/EiJ * * * * * * * * *
#strains 25 26 23 29 28 26 29 27 26 28 28
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4.8.4 Randomization procedure for FDR calculation

We compute the FDR associated with the number of functionally enriched clus-

ters obtained by a clustering as follows. We generate 100 random clusterings with the

same number of clusters and cluster size. This is achieved by simply permuting the

probe set or gene labels. For each random clustering, the number of functionally en-

riched clusters was recorded so that we obtain a null distribution for the number of func-

tionally enriched clusters. We compute the FDR for the actual number of functionally

enriched clusters by:

FDR(n) =
nR
n

where n is the actual number of functionally enriched clusters and nR is the mean num-

ber of functionally enriched clusters in the null distribution.



Chapter 5

Mass Spectrometry Based Protein

Quantification

Abstract

In analyzing the proteome using mass spectrometry, the mass values help iden-

tify the molecules, and the intensities help quantify them, relative to their abundance in

other samples. Peptides that are shared across different protein sequences are typically

discarded as being uninformative w.r.t each of the parent proteins.

In this chapter, we investigate the use of shared peptides which are ubiquitous

(∼ 50% of peptides) in mass spectrometric data-sets. In many cases, shared peptides

can help compute the relative amounts of different proteins that share the same peptide.

Also, proteins with no unique peptide in the sample can still be analyzed for relative

abundance. Our work is the first attempt to use shared peptides in protein quantification,

and makes use of combinatorial optimization to reduce the error in relative abundance

measurements. We describe the topological and numerical properties required for robust

estimates, and use them to improve our estimates for ill-conditioned systems. Extensive

simulations validate our approach even in the presence of experimental error. We ap-

ply our method to a model of Arabidopsis root knot nematode infection, and elucidate

the differential role of many protein family members in mediating host response to the

pathogen.

90
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5.1 Introduction

The analysis of the proteome using mass spectrometry involves the separation

of molecules (often, enzymatically digested peptides from expressed proteins) followed

by accurate measurement of mass of each molecule, termed as the mass-spectrum. To-

gether with mass, the spectrum also measures peak-intensity for each molecule. For any

constituent peptide from a protein sequence, its spectral intensity is a measurement of

abundance, the amount of the expressed protein. However, the actual value is hard to in-

terpret, as it depends upon a number of poorly understood factors, including instrument

types, energetics of the process, and physico-chemical properties of the peptide itself.

Consequently, it is often the relative-abundance of a peptide, measured as the ratio of

intensities of a peptide across samples, that is investigated [79, 83]. By the same token,

intensity values of different peptides are usually not comparable.

The relative abundance of a peptide is a proxy for the relative abundance of

the parent protein. This is acceptable only when the peptide sequence is unique to the

protein. By contrast, when a peptide is shared across proteins (Ex: proteins that share

domains), its abundance (and relative abundance) depends upon contributions from mul-

tiple proteins. For this reason, shared peptides have been traditionally disregarded in

protein-level quantification analysis. However, this may significantly decrease the num-

ber of proteins for which abundance estimates can be obtained. While often unreported,

a significant portion of the data (as much as 50%) is ignored. In our own experiment with

Arabidopsis proteins, 4, 145(48%) of the 8, 584 expressed proteins were not represented

by a unique peptide and would normally be discarded.

The goal of this work is to demonstrate that shared peptides are a resource that

adds value, and we make the point with two simple examples. Consider a case with

two proteins p1, p2, and 3 constituent peptides s1, s2, s3, where s1, s2 are unique, and s3

is shared. See Figure 5.1a, where a peptide is connected to a protein by an edge only

if it is contained in it. Consider an experiment that revealed the relative abundances

(r1, r2, r3) of the 3 peptides over two samples B and A as 16, 1, 4 respectively. The
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typical approach is to discard the shared peptide s3, and to assert that p1 is 16× over-

expressed, while p2 is unchanged. Formally, if QA
j , Q

B
j represent the actual abundance

of protein j in samples A,B respectively, then

QA
1

QB
1

= r1 = 16 and
QA

2

QB
2

= r2 = 1.

Our point is that the ignored peptide s3 also provides information because

r3 = 4 ' QA
2 +QA

1

QB
2 +QB

1

=
QB

2 + 16QB
1

QB
2 +QB

1

=
16 +

QB2
QB1
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QB2
QB1
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a) Example 1:

b) Example 2:

Q2 B /Q1 B = 4
Q2 A/Q1 A = 0.25

R 2 = Q2 A/Q2 B is solved
even though p2  does
not have a unique
peptide.
.

c)

Figure 5.1: (a, b) Two examples illustrating our approach for protein quantification via
shared peptides. (c) Protein-peptide bi-partite graph G = (P ∪ S,E) representing the
mapping between m proteins and n peptides.

Solving, we learn that QB2
QB1

= 4, indicating that p2 is 4× more abundant that

p1 in sample B. Here, we have 4 unknowns from the 2 proteins, and 3 constraints,

one from each of the peptide. By using ratios, (Ex: Rj = QA
j /Q

B
j ), we reduce the

number of unknowns, and can solve to get the extra information. Note that the unit of

measurement for QA
j , Q

B
j is immaterial. For this reason, we always reduce one degree
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of freedom, typically by adding the constraint
∑

j Q
B
j = 100, or solving for ratios, as

we do here. As long as the number of constraints matches the number of unknowns, we

can solve to get the relative abundances of different proteins, possible only with shared

peptides.

Consider a second example, a more complex one this time, with 3 proteins p1-p3

and 5 peptides s1-s5, as shown in Figure 5.1b. Here, protein p2 does not have any unique

peptide, and would normally be discarded. However, the system has 5 + 1 constraints,

and 6 unknowns. Therefore, solving the system gives us QA
2 , Q

B
2 , and therefore, the

relative abundance QA2
QB2

of p2.

To summarize, shared peptides provide extra information in protein quantifica-

tion. Under certain conditions, they allow us to a) compute relative abundance of a

protein even when it does not contain a unique peptide, and b) compute relative abun-

dance values of two different proteins in a sample. To our knowledge, this is the first

work to exploit shared peptides in this manner. However, the simple idea is confounded

by the realities of missing data, and error in experiments. Here, we lay out the theo-

retical foundations and practical considerations in determining when the shared peptide

abundances can be used reliably. We show that the solvability must depend upon the

topological properties of the peptide-protein relationships as well as numerical proper-

ties of the experimentally determined intensity values. It is often the case that interesting

cases cannot be resolved because of missing data, or numerical instability.

As an extension to our approach, we also consider some intrinsic properties of

peptides. Informally, define the detectability of a peptide as the probability that it will

be detected via MS, when the parent protein is expressed. We propose an alternative

formulation that estimates the peptide detectabilities in addition to absolute and relative

abundances of proteins when appropriate data is available.

Furthermore, we suggest two improvements to increase the number of cases that

can be solved. First, we describe a algebraic technique based on singular value de-

composition to make robust inferences for numerically ill-conditioned systems. Recent

results have shown that detectability is indeed an intrinsic characteristic of peptides that

can be computed in independent experiments, and maintained for future use [76]. We

also point out that incorporating detectabilities as known variables in our formulation, it
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is possible to solve a much larger number of cases.

In Section 5.2, we describe the theoretical and empirical considerations for shared

peptide analysis. In Section 5.3.1, we validate our approach with extensive simulations.

We apply our methods to data from ITRAQ experiments comparing an Arabidopsis

model of root-knot infection versus wild-type in Section 5.3.2. Our results elucidate the

relative abundance among different members of a family in over 55 Arabidopsis protein

families.

5.2 Protein quantification via shared peptides

We represent the protein quantification data using a bipartite graph G = (P ∪
S,E) where P is the set of proteins and S is the set of peptides. For all p ∈ P, s ∈ S,

(p, s) ∈ E if and only if peptide s is a substring of the protein sequence p. Note that

different connected components of G do not influence each other, and we treat each

component independently. W.l.o.g, assume that G is connected, and let |P | = m and

|S| = n. See Figure 5.1c. Consider the case where only two samples are involved.

In many experiments, the abundances are measured before and after a treatment, so we

denote the samples as B, and A. We associate two variables (QB
j , Q

A
j ) corresponding

to the ‘before’ and ‘after’ abundance for each protein pj ∈ P . As mentioned earlier, we

also add the constraint
∑

j Q
B
j = 100.

Analogous to proteins, we associate values qBi , q
A
i , ri with each peptide si ∈

S, i = 1 : n where ri = qAi /q
B
i denotes the ratio of the peptide si abundance between

samples. It is possible to generalize the representation for the data with more than two

samples. While this abstraction hides many of the complexities of protein quantification

via mass spectrometry, it is useful to present our approach which can be applied to many

different quantification protocols, including labeled and label-free approaches.

Key to our computation are equations that connect all proteins pj which contain

a single peptide si. In the absence of experimental error, the abundance values must
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satisfy the following n+ 1 constraints over 2m variables.∑
(pj ,si)∈E Q

A
j − ri ×

∑
(pj ,si)∈E Q

B
j = 0 for all si ∈ S∑

j Q
B
j = 100

With no errors, we can solve this equation uniquely as long as n + 1 ≥ 2m. To incor-

porate errors, we consider a linear-programming formulation that minimizes the total

error. (See Figure 5.2, F1 formulation.)
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a)

Input Output F1Formulation

ri,∀si ∈ S
QB

j , Q
A
j ,

∀pj ∈ P

min
n∑

i=1

|εi|

s.t.
∑

pj∈P Q
B
j = 100

εi =
∑

(pj ,si)∈E

QA
j − ri ×

∑
(pj ,si)∈E

QB
j ∀si ∈ S, ri ≥ 1

εi = ri ×
∑

(pj ,si)∈E

QA
j −

∑
(pj ,si)∈E

QB
j ∀si ∈ S, ri ≤ 0

QB
j ≥ 0, QA

j ≥ 0 ∀pj ∈ P.
b)

Input Output F2Formulation

qBi , q
A
i , ri,

∀si ∈ S

QB
j , Q

A
j ,

∀pj ∈ P

di,∀si ∈ S

min

n∑
i=1

|εBi |+ |εAi |

s.t.
∑

pj∈P Q
B
j = 100

εBi =
∑

(pj ,si)∈E

QB
j − qBi fi, ∀si ∈ S

εAi =
∑

(pj ,si)∈E

QA
j − qAi fi, ∀si ∈ S

QB
j ≥ 0, QA

j ≥ 0, ∀pj ∈ P.

Figure 5.2: Input, output, and computation summary of two LP formulations for protein
quantification via shared peptides. a) F1: A formulation that does not include peptide
detectability, and; b) F2: using peptide detectabilities. We use fi = 1/di as the recipro-
cal of detectability to maintain linear constraints.
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Note that the ratios are not symmetric about 1, so we always choose a constraint

where the ratio contribution is greater than 1. To simplify notation, we will also repre-

sent the LP formulation in a matrix form as

min
∑
i

|εi| where ε = Ax− b, x ≥ 0 (5.1)

where x is vector of dimension 2m, given by x = [QB
1 , . . . , Q

B
m, Q

A
1 , . . . , Q

A
m]T , b is a

(n+ 1)-dimensional vector described by b = [100, 0, . . . , 0]T , and A is a (n+ 1)× 2m

matrix. While this LP is not in standard form, it can easily be transformed into one.

The formulation of the linear program is natural in that the LP seeks for pro-

tein abundances that optimally fit the observed peptide ratios. Nevertheless, it raises

questions about our confidence in the estimates of Qj . Note first that a low value for

the objective does not necessarily result in robust estimates of Qj . Consider an under-

determined system, where n+ 1 < 2m. By setting an arbitrary subset of 2m− (n+ 1)

variables to 0, and solving for the remaining, we obtain multiple solutions, each with 0

error. A simple illustration of this is found in the notion of symmetric proteins. Define

proteins p1 ∈ P and p2 ∈ P as symmetric if and only if the set of incident peptides

S1 = {s|(p1, s) ∈ E} and S2 = {s|(p2, s) ∈ E} are identical. Two symmetric proteins

imply two identical columns in A, which means that any linear combination of abun-

dances for these 2 proteins will lead to an identical solution. Certainly, we can solve

this problem as a special case: simply merge the two identical columns (proteins) into

one, effectively reducing m. However, more complex dependencies might arise which

are harder to detect.

Generalizing, when rank(A) < 2m, we get multiple solutions with zero-error. If

however,A has full column rank, then by parsimony arguments, the LP solution is likely

to provide accurate estimates of protein abundance values. Even if the system is full-

rank, it might be ill-conditioned, resulting in poor estimates. We define a rank-threshold

function to characterize the solvability, a quantity that is closely related to the condition

number of the matrix. Start with the singular-value decomposition ofA. Using standard

approaches, compute matrices U, V,Σ such that

A = V ΣUT

Σ is a (n + 1) × 2m diagonal matrix with nonnegative real numbers σ1, . . . , σp on
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the diagonal. These p diagonal entries describe the singular values of A in decreasing

order of magnitude, where p ≤ min{n+ 1, 2m}. U is orthonormal with dimensionality

2m×2m, and V is orthonormal with dimensionality n+1×n+1, respectively. The rank

of A is given by the number of non-zero singular values. We define a related concept,

rank-threshold of A as

R(A) = min{t|σj > 10−t∀j}

R(A) = t being low implies that all its singular values are large (≥ 10−t), implying

that estimates of protein abundance values should be robust. In our experiments, we

will show that the rank-threshold is a good way to characterize the reliability of the final

solution.

Robust estimates for ill-conditioned systems: This formalism allows us to distin-

guish high rank systems A for which we can estimate protein abundance reliably, but it

also provides a handle into under-determined systems. Using our notation, we can de-

scribe an under-determined system as one in whichR(A) is high. Specifically,R(A) =

∞ implies the case when some of the singular values are 0. For a rank threshold t, define

the rankt of A as

rankt(A) = max{j|σj > 10−t}

This ‘thresholded’ rank allows us to get the true dimensionality of a system for which

we could get robust results. For all j, let Uj denote the 2m× j matrix formed by taking

the first j columns of U (corresponding to the dominant singular values). Likewise, let

Vj denote the matrix formed by the first j columns of V , and Σj = diag[σ, . . . , σj]. This

implies that if rankt(A) = k, then

R(AUk) = R(VkΣk) = t

We choose B = AUk, and solve the linear program for the k dimensional vector y

min
∑
i

|εi| where ε = By − b, Uky ≥ 0 (5.2)

Note that R(B) = t implying that the estimates of y are robust. The reason to keep y

unconstrained, but impose Uky ≥ 0 is the following: The values y cannot be interpreted
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directly, but can be used to retrieve protein abundance values x by solving

x = Uky

Our constraints ensure that the protein abundance values are non-negative.

5.2.1 Incorporating peptide detectability:

Here we consider an alternative formulation that builds on different assump-

tions to improve robustness to measurement errors and potentially greatly increase the

numbers of components that can be solved. Assuming one is able to estimate the ab-

solute peptide abundances qBi and qAi (as previously described [77]), this formulation

allows one to relate the absolute peptide abundance with the total abundance of its par-

ent proteins and thus make inferences about peptide detectabilities in addition to relative

protein abundances.

We define the detectability of a peptide si as a quantity di ∈ [0, 1] that relates

peptide abundance to the abundances of its parent proteins. In the absence of experi-

mental error, for each peptide si ∈ S,

qBi = di ×
∑

(pj ,si)∈E Q
B
j

qAi = di ×
∑

(pj ,si)∈E Q
A
j

.

In dealing with errors, we use a linear programming formulation that is similar to F1,

but with 2n + 1 constraints and 2m + n variables. (See Figure 5.2, F2 formulation.)

We use fi = 1
di

as the reciprocal of detectability to maintain linearity of equations. The

previous discussion regarding reliable estimates of abundance values is unchanged from

the previous section.

The ITRAQ data does not provide peptide abundance values that can be used

directly for F2. However, recent developments indicate that the absolute peptide abun-

dances can be experimentally estimated [77]. Also, recent results have shown that pep-

tide detectabilities can be reliably estimated with very little variability across mass spec-

trometry runs [76, 83]. This observation is especially important in F2. The knowledge

of peptide detectabilities implies 2m variables instead of 2m + n and greatly increases

the number of cases that can be solved.
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5.3 Results

Data-set: We choose an Arabidopsis model of root-knot nematode infection. The

root-knot nematodes are worm-like, microscopic plant-parasites that infect a multitude

of plants, including all major crops, turf, and many ornamental plants. The diversity and

extent of infection makes it economically significant to explore. The typical mode of

infection is via the root. The female nematode lays its eggs at the root tip. The juve-

niles infect via the root tip, and move up. Inside, they manipulate the cellular machinery

to create specialized feeding cells, which grow and multi-nucleate, but do not divide,

eventually forming giant cells that provide nutrients to the parasite [78, 85]. As the ne-

matodes exploit the Arabidopsis cellular machinery to create the giant cell phenotype, an

analysis of proteins that are differentially expressed in infected versus non-infected host

cells can help elucidate the underlying mechanism [79]. As the Arabidopsis genome is

sequenced, with extensive annotation on the known genes and pathways, it is an appro-

priate model for the host.

An ITRAQ method was used to collect protein abundance information. A brief

overview of the method is given here (See [86] for details). The samples are enzymat-

ically digested into short peptides. Peptides from different samples are N -terminally

covalently labeled with tags of different mass, but then pooled and analyzed together

using tandem mass spectrometry. Each spectrum contains both the fragment masses

used to identify the peptide, and the intensities of the differential tags for abundance

computation. In our terminology, for every peptide si, we read the intensities of the two

tags as qAi q
B
i , and compute the ratio ri = qAi /q

B
i , which approximates the ratio of the

peptide abundance values in the two samples.

Our data-set is a collection of 118, 426 spectra, encoding 27, 728 peptides map-

ping onto 8, 584 protein sequences. Each protein is mapped to at least one peptide and

vice versa. The number of peptides mapping to a protein sequence varies considerably,

ranging from from 1 to 59. The distribution of the number of peptides per protein, is

shown in Figure 5.3. Close to half of the proteins (4, 145 out of 8, 584) do not have a

unique peptide. The number of unique peptides per protein range from 0 to 51. The dis-

tribution of the number of unique peptides per protein is shown in Figure 5.3. Likewise,
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Figure 5.3: Mapping of peptides to proteins in Arabidopsis root-knot nematode infection
ITRAQ data. (a) Distribution of the number of peptides and unique peptides per protein.
(b)Distribution of the number of proteins per peptide.

there is tremendous spectral redundancy among peptides, with the number of spectra en-

coding a peptide ranging from 1 to 975. Close to half of the peptides (10, 166) are shared

by multiple protein sequences. We reduce the data by merging symmetric peptides, or

peptides that belonged to an identical subset of proteins. The redundancy helps under-

stand the measurement error, and the merging removes artificial dimensionality, giving

a better measure of rank, and rank-threshold. Likewise, we also merge the symmetric

proteins for reasons mentioned earlier.

After merging, we obtain a protein-peptide bi-partite graph G = (P ∪ S,E),

where |P | = 6, 998, |S| = 8, 069, |E| = 13, 055. G has 4119 connected components

projecting onto 257 non-isomorphic topologies with size ranging from 2 to 127. In this

study, we consider only the 1190 non-trivial components, with at least 2 proteins.

In addition to testing on this data, we also perform a series of controlled experi-

ments by simulating data-sets based on the topologies of the Arabidopsis data-set.

Generation of simulation data: We start with 257 topologically distinct components

of the Arabidopsis data, and generated 100 data-sets from each topology with different

values. For each component, we do the following:

1. Sample protein amounts ~QB = [QB
1 , . . . , Q

B
m] at random from the collection of
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ITRAQ tag intensities.

2. Generate ratio Rj by sampling from a log-normal N(0, σR) distribution. σR is set

to 0.7 which is the estimated standard deviation of the log peptide ratios in the

Arabidopsis data. Compute QA
j = RjQ

B
j .

3. For each peptide si, generate di uniformly from (0, 1], and compute qAi and qBi as

di
∑

(pj ,si)∈E Q
A
j and qBi = di

∑
(pj ,si)∈E Q

B
j , respectively. When detectabilities

are not incorporated, choose di = 1.

4. Compute peptide ratios ri, and perturb according to a log-normal N(0, σ), over a

range of values σ. Denote σ as perturbation level.

We consider the system of constraints for each data-set.

Once the data is generated, only the peptide ratios ri are used as inputs. The

linear programs are solved for ~QB′ = [QB′
1 , . . . , Q

B′
m ], and ~QA′ = [QA′

1 , . . . , Q
A′
m ] using

ILOG OPL Development Studio 6.1. The reliability of the estimates is tested using three

measures.

Validation statistics: Recall that the value of the optimized objective is a weak indi-

cator of the quality of results. For the simulations, as the protein abundances are known,

we can compute the error in the estimate as the protein-abundance-distance, PAD:

PAD( ~QB′, ~QB) =
‖ ~RB ‖1

m
(5.3)

where ~RB =
[
ln

QB′
i

QBi

]
. While any norm can be used as a valid measure of distance,

the choice of the 1-norm, averaged over the dimensions can be loosely interpreted as

average fold difference between actual and estimated protein abundances. The true pro-

tein abundances are not available for the Arabidopsis ITRAQ data, so we compute an

indirect measure LRD, defined as

LRD(~r, ~r′) =
||~r − ~r′||1

n
(5.4)

where ~r = [ln(r1), . . . , ln(rn)] is the vector of experimental peptide log-ratios for the n

peptides, and ~r′ describe the peptide log ratios computed by using the estimated protein



103

abundances. Intuitively, if the protein abundance estimates are accurate, the computed

peptide log-ratios should match the experimental log-ratios. In a similar way, we com-

pute the peptide log detectability distance LDD as the average 1-norm of the logs of

detectabilities. We use PAD, LRD, and LDD to test performance on simulations.

5.3.1 Results of Simulation

As the reliability of the estimates depend upon rank ofA, we loosely group each

of 100 × 257 simulated systems into three categories according to rank(A) for a fixed

rank-threshold t, as follows:

Category I : rankt(A) = 2m ≤ n+ 1 (Over-determined, full-rank systems).

Category II: rankt(A) < 2m ≤ n+ 1 (Ill-conditioned systems).

Category III : rankt(A) ≤ n+ 1 < 2m (Under-determined systems).

At rank-threshold 1, we obtain 1074, 3926, and 20700 systems in Categories I, II, and

III for the F1 simulation, and similar distributions for F2. As the rank-threshold is

increased, some of the Category II systems move into Category I (Table 5.1). Addition-

ally, the performance of under-determined systems is uniformly worse than the other

two (data not shown). Therefore, we will focus on Category I evaluation using dif-

ferent rank-thresholds. For each category, and each validation statistic, we compute

cumulative-probability as the fraction of systems in that category that achieve a certain

distance or lower. The ideal case is when the cumulative probability is 1 at distance 0.
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In the absence of noise, we achieve the ideal case, zero PAD and LRD, for all

Category I systems at rank-threshold 4. As noise is introduced to data and less stringent

rank-thresholds is used, we deviate from the ideal case. Figure 5.4a shows the cumu-

lative probability distribution against PAD, and LRD at perturbation level 0.01. Out of

1074 Category I systems at rank-threshold 1, 75% have PAD error of less than 0.16, and

an LRD error of less than 0.01. The performance degrades for higher rank-thresholds.

Note that in all cases, the optimized objective is very close to 0 (∼ 10−4). However,

in the ill-conditioned and under-determined systems, multiple solutions will lead to a

low-error solution, and an arbitrarily picked solution will have high PAD and LRD error.

The performance also degrades with an increase in perturbation error. Figure 5.4b plots

the cumulative ratio for Category I systems at rank-threshold 1 under increasing pertur-

bation levels. Thus while 93% of systems show LRD of at most 0.1 at perturbation 0.01,

the number falls to 55% at perturbation 0.15.
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Figure 5.4: Simulation results using F1 formulation. Cumulative probability of PAD and
LRD for Category I systems (a) perturbation level 0.01, but different rank-thresholds
(b) at rank-threshold 1, but different perturbation levels. In all cases, we measure the
fraction of systems that were estimated within a certain distance.
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Ill-conditioned systems We identified a number of Category II systems where the

rank-threshold was poor, but only because a small number of singular values were close

to 0. For example, in a simulation with perturbation level 0.05, we observed 339 systems

for which fewer than 3 singular values were at most 10−16, and rank1(A) ≥ 2m− 3 (re-

maining s.v. ≥ 10−1). Our results show that the revised LP, suggested for ill-conditioned

systems in Section 5.2, indeed provides better estimates of protein abundance values of

these systems. (See Figure 5.5.) For example, over 88% of the systems from the revised

LP achieve an LRD of 0.25 or better, compared to 65% from the original formulation.
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Figure 5.5: Improved estimates of protein abundance values using SVD based projec-
tion on Category II (over-determined but ill-conditioned systems).

Peptide detectabilities A similar behavior is observed during estimation of peptide

detectabilities (Figure 5.6a,b). The performance of PAD, and LRD surprisingly does not

change with the addition of an extra n unknowns (also, n new constraints get added).

We also plot the performance of detectability estimates. As expected, the performance

is acceptable for low rank-threshold systems and low perturbations, but degrades for

higher rank-thresholds, and higher perturbation levels. The detectability estimates are

robust as well, and degrade in a similar manner.

5.3.2 Arabidopsis ITRAQ data

We focus on the 1190 non-trivial systems from the ITRAQ data comparing in-

fected samples to non-infected ones. ITRAQ data is not appropriate to get peptide

abundance values reliably, so we only use the F1 formulation on this data-set. The
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Figure 5.6: Simulation results using F2 formulation. Cumulative probability of PAD,
LRD and LDD for Category I systems (a) at different rank-thresholds (b) at rank-
threshold 1, but different perturbation levels. In all cases, we measure the fraction of
systems that were estimated within a certain distance.

distribution of systems in different rank categories is described in Figure 5.7a. A total

of 99 systems fall into Category I with the most stringent rank-threshold 1, covering

219 proteins and 357 peptides. In addition to relative protein abundances, we estimate

abundance ratios across samples for 4 proteins which do not have a unique peptide.

As actual protein abundances are not known, we use LRD to evaluate the esti-

mates. The LRD statistic of different categories is as expected with this group performing

better than the other groups. Within the 99 systems, 79 have LRD smaller than 10−1, and

55 have LRD smaller than 10−4. The list of systems, constituent peptides, and protein

abundance values are shown in online supplemental data. Here, we cherry-pick a few

representative examples that point to the differential expression of individual sequences

in response to the infection.

Ca2+ ATPases: One of the systems is encoded by 3 proteins from the P-type Ca2+

ATPase super-family involved in Ca2+ transport. The three members are the plasma-

membrane bound AT5G57110 (ATPase 8), AT4G2990 (ATPase 10), and AT3G21189
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(a)

R(A) Cat. I Cat. II
1 99 (8.3%) 191 (16%)
2 249 (20.9%) 41 (3.4%)
4 276 (23.2%) 14 (1.2%)
8 277 (23.3%) 13 (1.1%)

16 282 (23.7%) 8 (0.7%)
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Figure 5.7: Arabidopsis root-knot nematode infection ITRAQ data. (a) Number of sys-
tems in Category I and II at different rank-thresholds. (b) Empirical cumulative proba-
bility distribution of LRD for Category I systems at different rank-thresholds.
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Figure 5.8: PhosphoGlycerate kinase family members sharing peptides.

(ATPase 9). Earlier reports have suggested that ATPase8,10 are co-expressed evenly

over all vegetative tissues, while ATPase 9 is expressed almost exclusively in pollen [84].

In our data, the 3 form a confected component with 6 peptides, and our analysis showed

the relative wild-type expression of the 3 to be 34.3%, 57.5%, 8.22% respectively, con-

firming this observation. Further, we find that ATPase 8 is 3× over-expressed in the

infected state.

Profilins: The Profilin family encodes proteins that regulate actin cytoskeleton forma-

tion. Five profilins are known. The two that are identified in our data (PRF-1,2) are

constitutively expressed in all vegetative organs, and a regulatory element in their first

intron is suspected to mediate this expression, differentiating them from the other Pro-

filins [80]. In our data-set, the two are in a component with 3 peptides, one shared.

Our analysis shows that Profilin-2 has only (13%) of the total abundance, and is further

reduced two-fold upon infection.
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Cinnamyl-alcohol dehydrogeneases: A number of genes in Arabidopsis have been

annotated as part of the CAD family, an assertion which has subsequently been chal-

lenged, pointing instead to the central role of two members (AtCAD4, and AtCAD5) in

the CAD metabolic network. These two molecules have expression patterns consistent

with lignification at stem tissues. Interestingly, expression was also observed in various

non-lignifying zones (e.g. root caps) indicative of a possible role in plant defense [82].

Our results have a single connected component with AtCAD4,5 and 3 peptides. The

analysis shows that both proteins are equally abundant, with AtCAD5 (AT4G34230) at

56% in non-infected cells. However, AtCAD5 is significantly (1.5×) over-expressed,

while AtCAD4 (AT3G19450) is 2× under-expressed.

Phosphoglycerate kinases: Phosphoglycerate kinases have been previously shown to

be differentially expressed during defense response of Arabidopsis [81]. In our data,

four proteins from this family are in a component with nine peptides as shown in Fig-

ure 5.8. In this example, along with the relative protein abundances, we also compute the

abundance ratio across-sample for IPI00530695 even though it does not have a unique

peptide. Our analysis suggests that both IPI00538665 and IPI00535490 are 1.5× over-

expressed, but IPI00535490 is much more abundant in both samples. IPI00530695 is

3× under-expressed while the abundance of IPI00534991 does not change.

5.4 Discussion

The extent of peptide sharing in proteomics is under-estimated; consequently,

shared peptides, and proteins with non-unique peptides are typically discarded, corre-

sponding to as much as 50% of the data in our experience. As mass spectrometry based

protein quantification becomes routine, shared peptide analysis will be increasingly im-

portant. Our results are the first to show that a careful analysis not only helps in recov-

ering abundance values of some of these proteins, but also helps quantify the relative

levels of different proteins. These across-protein relative abundance computations can

help elucidate these differential regulation of the proteins from a family. We investigate

topological and numerical considerations in estimating reliability of our computations.

Nevertheless, the final quality of the results does depend upon the accuracy of the ex-



110

perimental abundance computations [77, 83]. As the mass spectrometers become more

accurate, experimental variation in relative abundance computations will decrease, in-

creasing the power of our methods. In a similar fashion, the estimation of peptide de-

tectabilities is in an early stage of development. Our results attest to the viability of

using shared peptides for detectability computation, but also point to the importance

of detectability values in extending the scope of shared peptide analysis. The model’s

ability to automatically estimate peptide detectabilities may result in an ongoing cycle

of self-refinement where different systems resulting from different experimental con-

ditions may allow one to continuously expand the set of known detectabilities, which

in turn would allow for the resolution of more complicated systems. In fact, we note

that this progressive convergence towards an extensive database of peptide detectabili-

ties may even allow one to learn more about systems that were previously not solvable

in a given experiment by adding information from different or even additional targeted

experiments aimed at estimating the necessary detectabilities.

A final contribution of this study is the use of novel evaluation methods for

shared peptide computations. Clearly, different algorithms can be used to optimize the

error in estimation, including non-linear optimization and other machine learning ap-

proaches. We have experimented using simulated annealing approach with a non-linear

cost function that minimizes the absolute sum of differences between observed and ex-

pected peptide ratios. While such approach is more time consuming, it provides better

estimates for systems with unbalanced protein abundances as linear programming for-

mulation is biased towards the error terms associated with the more abundant proteins.

Details of that study will be discussed somewhere else. This chapter describes a system-

atic simulation based framework to compare, and develop improved methods for shared

peptide analysis.

Chapter 5 is, in full, a reprint of the submitted paper “Accurate Mass Spectrom-

etry Based Protein Quantification via Shared Peptides. B. Dost, N. Bandeira, X. Li, Z.

Shen, S. Briggs and V. Bafna”. The dissertation author was the primary investigator

and author of this paper. This research was also previously published in the conference

proceedings of Recomb 2009.



Chapter 6

Relative Quantification of Peptide

Modification Variants

Abstract

Accurate identification of large numbers of post translational modification (PTM)

sites by nanoscale reverse-phase liquid chromatography/tandem mass spectrometry (LC-

MS/MS) remains a major challenge in proteomics. One of the common limitations of

mass spectromety-based techniques in PTM identification is co-elution of different po-

sitional PTM variants with similar mass and retention times resulting in mixture tandem

mass spectrum. In this study, we propose a novel computational framework to accurately

identify and quantify co-eluting peptide modification variants. Our approach utilizes the

presence and absence of fragment ions in MS/MS data as well as some intrinsic prop-

erties of fragment ions, detectabilities, that cause the variability in the observed peak

intensities. We either report a precise site for modification or a mixture of modifica-

tion variants with accurate relative abundances along with the ambiguities in the site

assignment if there is no/little evidence in the tandem mass spectrum.

For evaluation of our quantification results on a MS/MS dataset, we propose a

novel target-decoy FDR strategy to measure error rate in PTM site assignment. This

strategy allows us to control the FP rate in PTM identifications. We have demonstrated

the robustness of our framework on a human lens dataset with a number of different

111
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PTMs. At an estimated < 2% FDR, we confirm InsPecTs PTM site assignment for

82.1% of cases. In 13.4% of the cases, InsPecT had the right region but the site assign-

ment is actually ambiguous. In the remaining 4.5% of cases, we report a mixture of

variants or a site different than Inspect’s assignment. In those cases, manual inspection

also mostly reveals multiple sites or that InsPecT did not consider the correct site. We

validate our framework also on simulated mixtures of up to 3 variants and report high

performance of identification and quantification of variants at 1% FDR.

Key words: identification, quantification, post-translational modifications, vari-

ants, mass spectrometry, false discovery rate.

6.1 Introduction

Many proteins undergo post-translational modifications (PTMs) that change the

properties of a protein by addition or removal of a modifying group to one or more

amino-acid residues [93]. The structural diversification enabled by post-translational

modification increases the molecular variants of proteins in cells by a few orders of

magnitude over the number encoded in the genome [99]. If there are some 30,000 genes

transcribed into RNAs and translated into proteins, there may be 300,000 to millions

of protein variants at any one time in cells. These protein modification variants may

differ in modification content and location at one or more amino acid residues within

any given protein.

PTMs greatly impact the function of proteins by changing their activity state,

localization, turnover, and interactions with other proteins. Identification of proteins

with all their post-translational variants is crucial to biologists for understanding the

mechanisms of cell regulation. Biological effects are often due to changes on the level

of modification, therefore quantitative study of modifications is also of great interest [92,

93].

Mass spectrometry and tandem mass spectrometry (MS/MS) experiments are

major tools used in protein identification. It is also suited for detecting post-translational

modifications, because modifications produce a diagnostic mass shift on some of the

fragment ions in the mass spectrum [94]. However, accurate identification of large num-
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bers of post translational modification (PTM) sites by nanoscale reverse-phase liquid

chromatography/tandem mass spectrometry (LC-MS/MS) still remains a major chal-

lenge in proteomics.

For instance, precise site localization can be difficult when there are multiple

valid residues, on which modification can occur, within a single peptide. To resolve

the ambiguity between potential sites, fragment ions exclusive to a specific site location

must be identified to uniquely assign the modification to a specific site. We refer to

these specific fragment ions as distinguishing ions. Beausoleil et al. [88] presented a

probability-based ambiguity score, the Ascore, that measures the probability of correct

modification site localization based on the presence of distinguishing ions in MS/MS

spectra. The authors score and rank the modification sites by the likelihood of identify-

ing distinguishing ions compared to random chance. Ascore is in essence the delta score

of the top two candidates revealing the certainty/ambiguity in assignment of modifica-

tion to the top candidate. The authors reported better accuracy and sensitivity in PTM

site assignment than Sequest and Mascot at various thresholds chosen for Ascore.

A more complicated challenge in mass spectromety-based PTM identification is

co-elution of different positional PTM variants with similar mass and retention times

resulting in mixture tandem mass spectrum. It is crucial to develop a computational

approach to confidently identify all present variants in a mixture tandem mass spectrum

with precise site localizations to the extent that MS/MS data allows.

In previous approaches, the presence of the distinguishing ions/peaks has also

been used as a proxy for identification of a modification variant present in a mixture

tandem spectrum of multiple co-eluting variants. This assumption holds when there

are peaks that are uniquely associated with a single ion fragment from a single peptide

variant. However, for highly modified peptides, the present modification variants might

not have a distinguishing peak, and their abundances might only contribute to shared

peaks. Consider a mixture tandem mass spectrum of 3 isobaric peptide modification

variants EHSSP, EHSSP, EHSSP with the same modification but on residues H2, S3

and S4, respectively. For representation purposes, MS/MS spectrum data is shown in

a bipartite graph where each modification form is a vertex on the left, each peak is a

vertex on the right as in Figure 6.1. For simplicity, only the peaks due to b- and y-ions
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are considered. In each modification variant, the modified residue is highlighted in red

and the peaks corresponding to a modified fragment ion is marked with ’*’. There is

an edge/link between a modification variant and a peak if and only if the variant has a

fragment ion with mass corresponding to that peak. Note that one peak may correspond

to multiple modified fragment ions as modification at different residues induce the same

mass shift in the fragment ions.

EHSSP v1

v2

v3

EHSSP

EHSSP

(E)

(P)

(HSSP, HSSP, HSSP)
(EHSS, EHSS, EHSS)

 (EH)
 (SSP)

(EHS, EHS)
(SP)

   (SSP, SSP)
 (EH)

(EHS)
(SP)

y3

b1

b2

b2*

b3*
y2

y4*
b4*
y1

y3*

b3
y2*

Figure 6.1: A simple example with three isobaric peptide modification variants EHSSP,
EHSSP, EHSSP. In each modification variant one of H2, S3 or S4 is modified with the
same modification group (e.g. +28). The modified residue is highlighted in red. There
are 12 potential peaks induced by b/y ions of the variants. There is an edge between a
modification variant and a peak if and only if the variant has a fragment ion with the mass
corresponding to that peak. Note that one peak may correspond to multiple fragment
ions as the modification can occur at multiple sites. b2* and y3 are the distinguishing
peaks of variant EHSSP since no other variant have a fragment ion that can lead to that
peak. Similarly, b3 and y2* distinguish variant EHSSP from the others. However, there
are no peaks that would distinguish variant EHSSP. All of the peaks induced by EHSSP
are shared with other variants. Thus, from the mixture tandem mass spectrum of these
3 variants, presence of EHSSP would be inconclusive by just looking at the mapping
between the peaks and the modification variants.

In this example, b2* and y3 are the distinguishing peaks of variant EHSSP since

no other variant have a fragment ion that can lead to that peak. Thus, if we see a peak

at b2* and/or y3 in the mass spectrum, these peaks can be used as a proxy for the
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presence of variant EHSSP. Similarly, b3 and y2* distinguish variant EHSSP from the

others. However, there are no peaks that would distinguish variant EHSSP. All of the

peaks induced by EHSSP are shared with other variants. In this simple example, the

identification of present modification variants are inconclusive by just looking at the

mapping between the peaks and the modification variants.

In this chapter, we address the problem of identification and relative quantifica-

tion of peptide modification variants given a tandem mass spectrum. Recently, DiMag-

gio et al. [89] proposed a mixed integer linear optimization (MILP) framework to ad-

dress the same problem. The authors first solve an NP-hard MILP problem iteratively

until they enumerate all of the modification variants and then score each modification

variant according to the presence of distinguishing peaks of the variant. In their ap-

proach, the highest scoring variant is treated as the dominant present variant. To identify

and quantify other present variants, the authors formulate another NP-hard MILP model

that superposes multiple spectra with unknown weights to get the mixture tandem mass

spectrum. This model is also solved in an iterative fashion until no more variants are

identified. However, as we mentioned in the example above, the present variant(s) do not

have to induce the distinguishing peaks in the mixture spectrum. Thus, building super-

position problem based on the assumption that the modification variant that explains the

most of the observed peaks might lead to the incorrect identifications and quantification.

We propose a novel computational framework to address this problem. Given an

MS/MS spectrum, peptide sequence and mass of the precursor ion mass, we propose an

efficient pseudo-polynomial DP algorithm to enumerate all of the modification variants

that satisfy the precursor mass. We then formulate a linear programming (LP) problem

to solve for the relative abundances of modification variants. Note that LP problem can

be solved efficiently in polynomial time. In our LP formulation, we utilize the presence

and absence of fragment ions in MS/MS data as well as some intrinsic properties of

fragment ions that cause the variability in the observed peak intensities. We informally

define the detectability of a fragment ion as the probability that it will be detected via

MS, when its parent peptide ion is present in the mixture. We estimate ion detectabili-

ties as an intermediate step to our approach and incorporate them in our LP formulation.

Another novel aspect of our approach is that we report ambiguities in the assignment
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of modification when there is no/little evidence in the MS/MS data for particular vari-

ant(s). In other words, we group the variants based on presence or absence of peaks

distinguishing between the variants. If two or more variants are indistinguishable with

the given data, we report a quantification value for the group instead of the individual

variants.

We further extend our approach to address another important proteomics prob-

lem: Estimation of False Discovery Rates (FDRs) for PTM site localizations. Note that

existing approaches [88,89,95] score each PTM site or modification variant but provide

little to no guidance on how to set the threshold and how to estimate the FP rates. We

propose a new way to define decoy databases specifically for this purpose, allowing one

to assign FDRs to site-localization score thresholds. In brief, our approach first ignores

the knowledge of which residues are valid modification sites (i.e., decoy = invalid PTM

sites), assigns a score to every residue as a putative modification site and then estimates

how often each score threshold results in invalid site assignments. Use of target-decoy

based FDR strategy not only helps to control the FP rate in the site assignments, but also

allows us to identify putative novel modification sites.

6.2 Method

In our recent publication in [90], we have proposed a computational framework

for relative quantification of distinct proteins via their shared peptides. Here, we ex-

tend this framework to identify and quantify isobaric peptide modification variants with

stable modifications in MS/MS data.

Figure 6.2 provides an overview of our approach. The input to our approach is a

mixture MS/MS spectrum Smix, an unmodified MS/MS spectrum S, unmodified peptide

p, precursor mass M and a set of modifications Mods where

1. p is the dominant unmodified peptide identification of Smix

2. M is the precursor mass of Smix from MS1

3. Mods is the set of modifications that might occur on the residues of p

4. S is an unmodified MS/MS spectrum identified as p.
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Given the precursor ion mass M and the set of modifications Mods, we first

enumerate all of the modification variants of p that satisfy the precursor mass M within

some tolerance. As a second step, we infer the detectabilities of fragment ions of mod-

ification variants using the unmodified spectrum S. Given the mixture spectrum Smix,

modification variants and the inferred ion detectabilities, we estimate the relative abun-

dances of variants in the third step using a linear programming formulation. Finally,

we group the indistinguishable modification variants based on the mixture spectrum S.

When there is no or very little detected peaks distinguishing two modification variants

in the mixture spectrum, it is impossible for LP to differentiate between the two variants

as well. In such case, the individual variant abundances are not accurate but the total

abundance for the group. We output the relative abundances of variant groups instead of

individual variant groups.

In the following subsections, we discuss the different steps spelled out in the

flowchart in detail.

6.2.1 Enumeration of Modification Variants

As a first step to our method, given the dominant peptide identification p from

MS2, the precursor mass M from MS1, and the set of modifications Mods, we enu-

merate all modification variants of p that satisfy the precursor ion mass M . This can

be done for each MS/MS spectrum by simple combinatorial enumeration of variants in

exponential running time in the number of modifications. We propose a novel efficient

algorithm to solve this problem.

We consider a peptide p = a1a2 . . . aL of length L, and a set of modifications

Mods = {xj = (aij ,mj)}, each defined by its amino acid specificity a, and induced

non-zero mass offset m ∈ R. Let mass(p) = mass(a1, a2, . . . , aL) be the total mass of

peptide p, defined as
∑

i=1..Lmass(ai) for unmodified peptides. Using amii to indicate

a modification of mass mi on the i-th amino acid, the mass of a modified peptide p is

defined as
∑

i=1..nmass(ai) +mi where mi = 0 for unmodified amino acids.

Given a peptide p, set of modifications Mods, and precursor mass M ∈ R, the

problem of modification variant enumeration is to list all modified peptide sequences
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Figure 6.2: Flowchart of our approach.
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Π(p,Mods,M) = {π1, π2, . . . , πnπ} such that

• πi can be derived from p by modifying amino acids with modifications in Mods,

• mass(πi) is ∈ [M − t,M + t] for a mass tolerance t ∈ R, and

• the number of modifications per amino-acid ai is at most 1.

Each of these modified peptide sequences is referred to as a modification variant of p.

This problem is a more generalized version of Subset-Sum Problem which is

known as an NP-Complete Problem. In this problem, the items are the possible modifi-

cations in Mods with values mj that correspond to modification masses and the target

sum to be achieved is the difference between the precursor mass M and the mass of

the unmodified peptide p. However, the modification masses are not limited to positive

integers, they can be non-integers and negative as well. Also, we need to consider the

error in the estimation of the precursor mass M by allowing the target sum to be within

range [∆M − t,∆M + t] where ∆M = M −mass(p).

In the worst case, |Π(p,Mods,M)| = 2|Mods| and a naive exponential-time re-

cursive solution that goes through all subsets of Mods will enumerate all the variants

that satisfy the given precursor mass in O(2|Mods|) time. However, in practice the num-

ber of variants that satisfy the precursor mass M is much less than 2|Mods|. We propose

the pseudo-polynomial time DP algorithm, shown in Figure 6.2.1, where the subprob-

lems are defined on the subsets of Mods and target values smaller than ∆M . In the

algorithm, before starting to solve subproblems, we first scale up the problem with a

factor f so that the modification masses mj , mass difference M and tolerance t are all

integers. The running time of this algorithm is O((M + t) · f · |Mods| · nπ) where

nπ = |Π(p,Mods,M)| is the size of the solution.

Note that the algorithm given in Figure 6.2.1 works for positive modification

masses. It can be easily generalized for also negative values by solving the subproblems

for the target values from T− to T+ where T− is the sum of negative modification

masses and T+ is the sum of positive modification masses. Then, the running time

becomes O((T+ − T−) · f · |Mods| · nπ) which is still polynomial in the number of

modifications and the size of the solution.
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ENUMERATE-MODIFICATION-VARIANTS()

1 Input : peptide p, Mods = {x1, · · · , xn}, precursor mass M,

2 mass tolerance t, scaling factor f

3 Output: all S ⊂Mods s.t. mass(p) +
∑

xk∈Smk ∈ [M − t,M + t]

4 ∆M ←M −mass(p)
5 ∆M ← b∆M · fc
6 t← bt · fc
7 for j = 1 to n

8 do mj ← bmj · fc
9 Let A be an array of size ∆M + t+ 1

10 A[m1]← {{x1}}, A[i]← ∅ for all i 6= m1

11 for j = 2 to n

12 do for i = ∆M + t down to mj

13 do for S ∈ A[i−mj]

14 do A[i]← A[i] ∪ {S ∪ {xj}}
15 return

⋃
i=(∆M−t):(∆M+t)Ai

Figure 6.3: Pseudo-polynomial dynamic programming algorithm to enumerate all mod-
ification variants.

6.2.2 Inference of Fragment Ion Detectabilities

The point of our approach is that the observed intensity of a peak is directly

related to the total abundance of the theoretical fragment ions that have the same corre-

sponding m/z value, thus to the total abundance of the modification variants that contain

those isobaric ions. Simply, if there is a peak in the spectrum which is associated with a

single modification variant through a single ion, the peak intensity is a direct measure-

ment for the abundance of the modification variant. However, the fragment ions have

different detectabilities in the mass spectrometry depending on the physico-chemical

properties of the fragment ions. For our purposes, only the relative contributions of

the fragment ions to the peak intensities per unit abundance of its parent peptide are

important. So, we define detectability of a fragment ion as its expected intensity as a
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percentage of most intense/detectable ion of the peptide.

For inference of fragment ion detectabilies, we are motivated by conservation of

spectral shapes of a peptide sequence across different unmodified and modified tandem

mass spectra. Previously, Sniatynski et al. [96] showed that delay-series correlation be-

tween the mass spectra of modified and unmodified peptides revealed significant spectral

overlap at an offset indicative of the modification. This observation has been confirmed

in many other publications including one of ours [87]. We observe similar behavior in

also our test MS/MS dataset from human lens proteins here. We measure the similarity

between two spectra using cosine score which is a widely accepted measure for spectral

similarity. Given two unmodified spectra S1, S2 and an unmodified peptide sequence

p, we compute the cosine score of S1 and S2 with respect to p as follows. We first list

all of the theoretically possible ions from the unmodified peptide p and therefore the

theoretical m/z values. We then form two vectors v1 and v2 from S1 and S2 respectively

where each vector denotes the peak intensities observed at the theoretical m/z values in

the corresponding spectrum. The cosine score is computed as

cosp(S1, S2) =
v1 · v2

‖v1‖ · ‖v2‖
.

In Figure 6.4a, we show the distribution of the cosine score similarities of unmodified

spectra pairs that are identified as the same peptide using Inspect. 93.6% of the pairs

have more than 0.5 cosine similarity confirming that the fragment ion detectabilities are

conserved across unmodified spectra. In a similar way, we compute the cosine similarity

of an unmodified spectrum of a peptide with a modified spectrum of the same peptide

after shifting the modified fragment ions back to their m/z values without the modifi-

cations. The distribution of spectral similarities of modified-unmodified spectra pairs is

shown in Figure 6.4b. We see that even after modification, there is a significant spectral

overlap between the spectra pairs of the same peptides. 83.3% of the pairs shows more

than 0.5 cosine similarity.

The second step of our method is to list all (modified/unmodified) theoretical

fragment ions and to estimate their detectabilities. Let I(Π) = {ιi : (fi,mi)} be the set

of theoretical fragment ions expected from the modification variants in Π. Each frag-

ment is defined by its sequence(with modifications if any) fi and theoretical mass mi.
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Figure 6.4: Distribution of cosine score (a) two unmodified spectra of the same peptide
(b) an unmodified spectrum and a modified spectrum with of the same peptide with
a single modifications from the set (+16 on M or W; -17 on N-terminal Q;+43 on N-
terminal *, R and K)
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The sequence and mass information can be easily obtained from modification variants

by enumerating all subsequences of the variants in O(kL) time where k is the number

of variants and L is the length of the peptide.

To infer the fragment ion detectabilities, we recruit an unmodifed MS/MS spec-

trum Sunmod of the peptide p which is the dominant peptide identification of Smix from

MS2. Since there is only one possible parent peptide for the ions detected in an unmod-

ified MS/MS spectrum, we know that the direct ratio of the annotated peak intensities

denotes the relative detectabilities of their corresponding unmodified fragments. We

first annotate Sunmod with peptide p. If a peak is annotated with a single fragment ion,

we assign the peak intensity to the detectability of the fragment ion. If a peak is anno-

tated by multiple fragment ions, it is possible to choose from several strategies such as

splitting the peak intensity among the ions according to their estimated ion probabilities

or PRM scores, etc. Our results did not differ much with different strategies, so we

adopted a simpler strategy. If a peak is annotated by multiple fragment ions, we assign

the whole intensity to the ion with largest ion probability. For every other fragment ion

not detected in the unmodified spectrum, we assign a detectability of ε > 0. In our tests

we used ε = 1.

High spectral overlap indicates that the relative detectability of the modified and

unmodified versions of fragments are conserved with respect to the other fragments.

We thus assume that the detectability of different modified forms of a fragment ion are

roughly the same. Therefore, for every theoretical modified fragment ion, we assign the

same detectability value that we computed for its unmodified form.

6.2.3 Quantification of Modification Variants via Linear Program-

ming

The mixture spectrum of isobaric modification variants is the superposition of

individual modified spectra from all of the modification variants. Thus, a peak intensity

does not necessarily correspond to fragment ion(s) from a single parent peptide. Often,

multiple fragment ions from one or more variants have the same m/z value and they

contribute to the same peak. For instance, in the simple example shown in Figure 6.1,

in the presence of all variants, 3 different b4 ions from 3 variants are contributing to
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the same peak. The overlap gets even more when other types of ions and the ions

with neutral losses get into the picture. It is crucial to see the mapping between the

peaks and the theoretical fragment ions as well as the mapping between variants and the

fragment ions. Each observed intensity value in the mixture spectrum at a theoretical

m/z value gives information about the total abundance of the fragment ions from variants

contributing to that peak.

We first compile a set of observed peaks where each peak corresponds to a pair

of m/z and intensity value. Let S = (zi, Xi) be a spectrum defined as a set of peaks

with mass and observed intensity values. Given the set of theoretical ions I, the mixture

tandem mass spectrum Smix, we form the consensus set of observed peaks as follows.

Let P(I, Smod) = {(zi, Xi)} be the set of peaks, each defined by the mass value zi and

observed intensity value Xi. For each ion ιi = (fi,mi) in I where fi is the sequence of

the ion and mi is the theoretical mass,

• if there is a peak (z,X) in Smod such that |z −mi| ≤ t, add (z,X) to P

• otherwise, add (mi, 0) to P .

Note that we add an m/z value with intensity zero to the set of observed peaks for each

peaks that we would expect to see if the associated fragment ion(s) were present in the

sample.

In order to visualize the one-to-many mapping from variants to fragment ions

and many-to-one mapping from ions to peaks, we represent the tandem spectrum data

using a variant-ion-peak graph G = (Π ∪ I ∪ P , E) where Π is the set of modification

variants and I is the set of theoretical ion fragments and P is the set of peaks observed

in MS2.

We associate a variable Qi corresponding to the abundance of πi ∈ Π in the

mixture. For all πi ∈ Π and ιj : (fj,mj) ∈ I, (πi, ιj) ∈ E if and only if fragment ion fj
is contained as a substring of modification variant vi. For all ιj ∈ I, ρk : (zk, Xk) ∈ P ,

(ιk, ρk) ∈ E if and only if the mass zk of peak ρk is within mass tolerance t of the

theoretical mass mj of ion fragment ιj , i.e. |zk −mi| ≤ t.

For each peak ρk, we would expect

Xk ≈
∑

(ιj ,ρk)∈E

∑
(πi,ιj)∈E

dj ×Qi
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where dj is the estimated detectability of ion ιj . To account for noise in mass spectro-

metric data, we associate each peak with an error term εj as

εk = Xk −
∑

(ιj ,ρk)∈E

∑
(πi,ιj)∈E

dj ×Qi

and we consider a linear-programming formulation that minimizes the total error. Given

detectabilities dj and abundance measurements Xk, for all peaks, we solve for optimal

abundance variables Qi for all modification variants that minimizes the sum of the error

terms εj . The complete formulation is shown in Figure 6.5.
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6.2.4 Evaluation of an Individual Result

In case of incorrect peptide identifications, the unmodified and the modified

spectrum are substantially different. In such a case, LP is not able to find a solution

that fits the observed mixture spectrum and the inferred detectabilities well. We apply a

quality filter on the LP solution to eliminate such cases.

If the variant abundance estimates fit the observed mixture spectrum well, we

expect a high spectral similarity between the observed mixture and the theoretical mix-

ture spectrum induced by the estimated variant abundances. Thus, once we solve for the

relative abundances of the modification variants, we compute the cosine score between

the observed mixture and the theoretical mixture. If the score is low, we reject the solu-

tion. In our tests, we use a threshold of 0.4, since more than 90% of the cases, as seen

in Figure 6.4, the cosine score between two spectrum of the same peptide is above 0.4.

6.2.5 Grouping Modification Variants

LP outputs an estimated abundance per modification variant. However, depend-

ing on the completeness of the fragmentation pattern, there might be no or very little

distinguishing peaks between two modification variants. In that case, it is impossible

for LP to distinguish between the variants in its abundance assignment. In absence of

distinguishing ions, some of the estimates for individual variant(s) will not be accurate,

but for the groups of variants. Therefore, we group the indistinguishable variants, the

variants that do not have enough/any distinguishing peaks in between, and report total

estimated abundance per variant group instead of individual variants.

Given a spectrum S, modification variants π1, · · · , πn and a threshold t, we out-

put the groups of variants as follows. For every pair of variants (πi, πj), we compute

distance dij as the sum of the intensities of the peaks that are annotated with only one

of the variants πi and πj divided by the total intensity of all peaks in the spectrum S.

Based on the computed variant distances, we do single-linkage hierarchical clustering

of the variants and output the clusters at threshold t as the groups of indistinguishable

variants. In our experiments, we used a variant distance threshold of 5%.

Grouping variants allows us to report ambiguous site identification of modifica-
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tions when it is impossible to distinguish between the sites by the detected peaks in the

spectrum.

6.3 Results

6.3.1 Evaluation of Dataset Results

In peptide identification, to evaluate the performance of search algorithms on a

dataset, use of target and decoy databases is widely practiced. The target-decoy search

strategy permits an impartial assessment of search results and by applying a score cut-

off, FPs and false discovery rate (FDR) can be controlled at a desired level. We adopt

a similar target-decoy strategy to determine the global false-discovery rate (FDR) for

modification variant identifications.

Ideally, we would run LP formulation on only modification variants that are

valid, i.e. variants that assign the modification(s) to valid residues/sites. In order to

assess FDR, we create a set of variants comprising of both valid and invariant variants,

and run LP on this composite set of variants and output the quantification results for

groups of those variants. These variant groups construct our target and decoy database

as we quantify variant groups instead of individual variants. If a group has at least one

valid variant, it is called valid group and it is added to the target. If a group does not

have any valid variant, it is an invalid group and added to the decoy. Thus, if an invalid

group is assigned abundance by LP, it is considered a FP identification while an valid

group identified is considered a TP.

FDR estimation by target-decoy strategy is coupled with a scoring scheme. Each

instance in target and decoy is assigned a score. For a chosen score cutoff, FDR mea-

sures the percentage of incorrectly identified instances (FPs) in the final set accepted

at that cutoff. In our target-decoy approach for FDR, we use the estimated abundances

assigned by LP to score each variant group. This is a reasonable choice since we would

have more confidence in the presence of a group if its estimated abundance is high. If

the estimated abundance is low, it is more likely that the abundance is assigned due to

contaminant peaks or noise. Note that it is possible to devise different scoring schemes

but it is not the focus of this chapter.
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FDR estimation is based on the assumption that the probability that a random

instance is identified incorrectly from the decoy database is expected to be the same as

the probability that it is identified incorrectly from the target database when the sizes of

the decoy database and the target database are the same. Thus, FDR at a score/estimated

abundance cutoff is calculated as the number (Nd) of variant group identifications from

decoy divided by the number (Nt) of group identifications from target , i.e., FDR =

Nd/Nt. Nd is an estimate of the number of FPs resulting from random identifications in

target database.

Use of target-decoy strategy not only helps to control the FP rate in the variant

group identifications, but also allows us to identify putative novel modification sites.

Decoy hits might give information about novel modification sites.

6.3.2 Application on Lens Dataset

In this section, we validate our approach on MS/MS dataset of peptides with

known modification sites. We blind ourselves to the knowledge of the modification

site and evaluate how well our approach assigns all the abundance to the only correct

modification site.

The dataset consists of human lens proteins from a 93 year old human male with

nuclear cataract. A major component of the lens proteome comprises of crystallins,

which have very little turnover, and acquire modifications with age. When a person

ages, the crystallins become insoluble, and the tissue increasingly opaque often lead-

ing to cataract. Post-translational modifications are known to play a major role in the

process [98]. Mass spectrometry data (160, 940 spectra) from human lens proteins were

acquired on a ESI ion trap mass spectrometer. This dataset was also a subset of that used

by Wilmart et al. [100] and will be referred as ’lens dataset’. The

The spectra were searched for peptide identifications by running Inspect [97],

against human lens protein database with parent mass tolerance 2 Da and fragment mass

tolerance 0.5; 1% false discovery rate was enforced using a standard target/decoy strat-

egy [91]. We allowed at most one modification from the set of modifications previously

identified in the dataset by Wilmart et al [100] and commonly occurring modifications.

In total, 22, 011 spectra were annotated. For the reported results, we used only the
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15, 487 spectra that were identified as tryptic charge +2 peptides. 13, 094 of them were

identified as unmodified peptides and 2, 393 of them as modified peptides. The unmodi-

fied peptide identifications mapped onto 898 unique peptides and the modified ones onto

297 unique peptides. For 217 of these unique modified peptides, unmodified version of

the peptide was also identified by at least one spectrum. In our analysis, we focused on

those 217 modified spectra. The breakdown of these spectra by the identified modifica-

tion is shown in Table 6.1.

Table 6.1: Dataset by modifications
Modification Number of Cases Valid Sites
+16 68 M or W
-17 20 N-terminal *
+43 129 N-terminal *, R or K
Total 217

We apply our method on each identified modified peptide p′ of which unmodified

version is also identified. Let p be the unmodified version of p′, m be the mass of

the modification. We choose the highest-scoring (MQScore) unmodified and modified

spectra pair (S, S ′) that were identified as p and p′ by Inspect, respectively. We blind

ourselves to p′. Given (S, S ′), p and m, we would like to identify p′ as the only present

modification variant.

In order to estimate FDR as described in Section 6.3.1, we also blind ourselves

to the site specificity of the modification m. We enumerate all possible modification

variants of p with a single modification m allowing it to occur on any residue. Thus, we

obtain L modification variants p′1, · · · , p′L where L is the length of the peptide p. Then,

we enumerate all theoretical ion fragments, infer fragment ion detectabilities and then

generate the LP system based on the observed peak intensities and detectabilities as de-

scribed in Section 6.2.3. We solve each LP system estimating the relative abundance of

modification variants. Finally, we group the modification variants using variant distance

threshold of 5% and output the estimated abundances per variant group.

The variants and variant groups are marked as valid or invalid according to their

validity in the assignment of modification. The number of cases and valid sites con-



131

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

Number of Groups

F
re

qu
en

cy
(o

ut
 o

f 2
17

 c
as

es
)

1 2 3 4 5 6 7 8 9 10111213 16
0

100

200

300

400

500

600

Number of Variants per Group

F
re

qu
en

cy
(o

ut
 o

f 1
08

9 
gr

ou
ps

)

1 2 3
0

100

200

300

400

Number of Valid Variants
per Valid Group

F
re

qu
en

cy
(o

ut
 o

f 3
87

 v
al

id
 g

ro
up

s)

Figure 6.6: Distribution of (a) number of variant groups (b) size of variant groups (c)
number of valid variants per valid group.

sidered per modification are shown in Table 6.1. The distribution of number of variant

groups per LP system, number of variants per group and number of valid variants per

valid group are shown in Figure 6.6. Average number of valid variants per valid group

is 1.11. Out of 387 valid variant groups, 344 of them had only 1 valid variant, 42 had

2 valid variants and 1 had 3. In majority (88.9%) of the cases, when we locate the true

valid group we also locate the true valid variant.

Based on the valid and invalid groups, which form the target and the decoy, we

estimate FDRs for a range of score/estimated abundance cutoffs. In Table 6.2, FDRs by

score cutoffs and the percentage of the cases with 1− 4 identified groups are listed. As

seen, FDR goes up only up to 4% while the threshold for the estimated abundance can

go as low as 20%. Also, even at a very low FDR rate, 1.1%, we are able to identify at

least one valid variant group for more than 96.5% of the cases.

For further investigation, we choose the abundance cutoff of 32% at which we

achieve less than 2% FDR. In Table 6.3, we present the detailed results of modification

variant identification at < 2% FDR. In 95.5% of the cases (192/201), we successfully

identify the modification variant group identified by Inspect as the only abundant group.

In 51/192 cases, there is only one valid site for the modification. In all of those cases,

we identify the valid variant as the only abundant variant. Out of 141/192 cases with

more than one valid site, we report

• precise site assignment for 80.9%(114/141) of the cases
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Table 6.2: FDR Results on lens dataset. At cosine score cutoff = 0.4, 16 cases rejected,
201 cases accepted.

Estimated Abundance
FDR

#Cases with k groups identified
of Variant Group k ≥ 1 k = 1 k = 2 k = 3
≥ 55% 0.011 96.5% 96.5% 0 0
≥ 50% 0.014 97.0% 97.0% 0 0
≥ 45% 0.012 97.0% 96.5% 0.5% 0
≥ 40% 0.016 97.5% 97.0% 0.5% 0
≥ 35% 0.016 98.0% 97.0% 1.0% 0
≥ 34% 0.016 98.5% 97.5% 1.0% 0
≥ 32% 0.019 98.5% 97.0% 1.5% 0
≥ 30% 0.024 98.5% 96.5% 2.0% 0
≥ 25% 0.024 99.0% 96.5% 2.5% 0
≥ 20% 0.035 99.5% 96.0% 3.5% 0

• ambiguous site assignment for 19.1%(27/141) of the cases.

Note that this result suggests that FP rate can be reduced by up to 19.1% when ambigu-

ous site assignments are removed. Using our method, we not only report more accurate

and trustworthy site assignments, but we are also able to identify mixtures of variants

and estimate relative abundances. Our method also has the potential to find novel mod-

ification sites through the decoy hits.

Below, we discuss the rest of the cases (9/201) where we did not agree with

Inspect’s site assignment in 3 categories: (1) mixtures, (2) corrected site assignments

and (3) incorrect site assignments.

Mixtures At FDR 2%, we identify 3 mixtures of 2 variant groups. In all mixture cases,

each identified group has only one valid variant. So, we unambiguously assign the mod-

ifications to the sites. The identified modification variants and the estimated abundances

for those mixture cases are listed in Table 6.4. The annotated mixture spectra are pre-

sented in Figures 6.7, 6.8 and ??.
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Figure 6.7: An identified mixture of 2 modification variants of WDSWTSSR. The vari-
ant with +16 on N-terminal W and the variant with +16 on W4 are identified at ratio
64%:36%. For simplicity, only b- and y- ions are shown. The distinguishing peaks
supporting the co-existence of the two variants are circled.

Figure 6.8: An identified mixture of 2 modification variants of NNGLHTL-
SLDASEEYAVLKQFL. The variant with +43 on N1 and the variant with +43 on K19
are identified at ratio 60%:40%. For simplicity, only b- and y- ions are shown. The
distinguishing peaks supporting the co-existence of the two variants are circled.
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Table 6.3: Results for Modification Variant Identification at 2% FDR.

mod.
#valid #valid groups rank of the #valid variants

#cases
groups identified Inspect id. in the top group

16 1 1 1 1 33
-17 1 1 1 1 17

precise 43 1 1 1 1 1
site 16 2 1 1 1 18

assignments 16 3 1 1 1 1
43 2 1 1 1 84
43 3 1 1 1 11
16 1 1 1 2 7

ambiguous 16 2 1 1 2 2
site 16 2 1 1 3 1

assignments 43 1 1 1 2 2
43 2 1 1 2 15

mixtures
16 2 2 2 1 1
43 3 2 2 1 1
43 4 2 2 1 1

corrected 43 3 1 - 1 2
assignments 43 3 1 - 2 1

16 1 0 - - 1
incorrect 43 1 0 - - 1

assignments 43 2 0 - - 1

Corrected Assignments In 3 cases, we identify a variant group different than Inspect’s

identification. In each case, the identified group has only one valid variant, thus we un-

ambiguously assign the modification to a single distinct variant. Inspect’s and our site

assignment of the modification for these cases are listed in Table 6.5. For one of the

cases, the modified spectrum annotated with both of the identifications is also presented

in Figure 6.10. The distinguishing peaks supporting the existence of our assignment and

the ones supporting Inspect’s assignment are enclosed in circles and squares, respec-

tively. As we can see from the figure, there is more evidence for our identification. Note

that, in this case, LP assigns 80% to our identification while it assigns 20% to Inspect’s.

Thus, it can be also interpreted as a mixture at a higher FDR (4%).
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Table 6.4: Identified mixtures at FDR 2%

peptide modification variant estimated abundances

NNGLHTLSLDASEEYAVLKQFL
+43 on N-terminal 60%
+43 on K19 40%

VLGDVIEVHGKHEER
+43 on N-terminal 55%
+43 on R15 45%

WDSWTSSR
+16 on N-terminal 64%
+16 on W4 36%

Figure 6.9: An identified mixture of 2 modification variants of VLGDVIEVHGKHEER.
The variant with +43 on V1 and the variant with +43 on R15 are identified at ratio
56%:44%. For simplicity, only b- and y- ions are shown. The distinguishing peaks
supporting the co-existence of the two variants are circled.
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Figure 6.10: A corrected Inspect site assignment. The modified spectrum is iden-
tified as I[+43]LEKGEYPR by Inspect. At < 2% FDR, we identify the variant
ILEK[+43]GEYPR instead. The distinguishing peaks supporting the existence of
ILEK[+43]GEYPR and the ones supporting Inspect’s assignment are enclosed in circles
and squares, respectively.
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Table 6.5: Corrected Inspect Identification at FDR < 2%

peptide Inspect identification our identification
ILEKGEYPR +43 on N-terminal +43 on K4
TDSLSSLRRPIKVDSQEHK +43 on N-terminal +43 on K11
SDRDKFVIFLDVK +43 on N-terminal +43 K5

Incorrect Site Assignments In 3 cases, LP assigns all of the abundance to the invalid

groups. Thus, we can not identify any variant for those cases. The reasons of these

incorrect identifications are listed below:

1. Discrepancy between unmodified spectrum and mixture spectrum:

The distinguishing fragment ions between the actual variant group and its neigh-

boring group are not identified in the unmodified spectrum. So, the inferred de-

tectability is very low or none. Then, in LP optimization, the distinguishing ions

do not influence the solution, and in the optimal solution some/all of the abun-

dance is given to the neighboring group. The 2 of the false negative cases fall in

this category. The modified spectrum and the unmodified spectrum used for one

of those two cases are shown in Figure 6.11a,b. Inspect identifies the variant that

assigns the modification to N-terminal G. In our grouping, based on the modified

spectrum, the variants that assign the modification to N-terminal G, L2, M3 form

the 1st group and the variants that assign the modification to M4, E5, L6 form the

2nd group. LP solution assigns all of the abundance to the 2nd group instead of

the 1st group even though there is an intense peak at b3* that distinguishes be-

tween those two variant groups. Because, b3 ion is not detected in the unmodified

spectrum, its detectability is very low. LP can not distinguish between the two

groups and incorrectly assigns the abundance to the 2nd group.

2. Contaminant peaks or novel modification site:

If LP assigns abundance to an invalid variant group and there are peaks supporting

the existence of the invalid group, the solution can be interpreted in two ways. Ei-

ther (1) LP identifies the group incorrectly due to contaminant peaks or (2) There

is indeed a variant that assigns the modification to a novel residue. In one of the

false negative cases, we do not identify the Inspect’s pick that assigns +43 mod-
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Figure 6.11: An incorrect site assignment due to discrepancy between the mod-
ified spectrum and the unmodified spectrum. (a) Modified spectrum identified
as G+43LMMELSEDCPSIQDR and (b) unmodified spectrum identified as GLM-
MELSEDCPSIQDR by Inspect. In our grouping based on the modified spectrum, the
variants that assign the modification to N-terminal G, L2, M3 form the 1st group and
the variants that assign the modification to M4, E5, L6 form the 2nd group. LP solution
assigns all of the abundance to the 2nd group instead even though there is an intense
peak at b3* that distinguishes between those two variant groups. Because, since b3 ion
is not detected in the unmodified spectrum, its detectability is very low, and the LP can
not distinguish between the two groups.
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ification on N-terminal R but the variant that assigns the modification to F4. The

modified spectrum annotated with both of the variants are shown in Figure 6.12.

The peaks that are supporting the presence of the variant that assign modification

to F4 are circled. This case can be interpreted as an incorrect identification due to

contaminant peaks or an identification of ”F” as a novel modification site for +43.

Figure 6.12: An incorrect identification due to contaminant peaks or identification of
a novel modification site. The modified spectrum is identified as R[+43]PFFPFH by
Inspect. LP assigns all of the abundance to the variant that assigns the modification to
F4. The annotation of the spectrum as R[+43]PFFPFH and RPFF[+43]PFH are shown
in one plot. The peaks that support the presence of 2nd variant are circled. This case
can be interpreted as a misidentification due to contaminant peaks or an identification of
”F” as a novel modification site for +43.

6.4 Simulation

We apply our framework on simulated data to test how well we are able to iden-

tify the present modification variants and recover their actual relative abundances from

a mixture MS/MS spectrum. We generate simulated data based on the 212 unique un-
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modified peptides which were identified from the lens dataset by at least two spectra.

For each unmodified peptide, we create mixture spectra of its variants which are singly

modified with +43. We allow the modification to occur on only valid sites (N terminal

*, R, K) to account for also the distribution of the number and position of the sites in

real data. The distribution of the number of valid sites of +43 for our set of peptide

sequences are shown in Table 6.6.

Table 6.6: Number of valid sites of +43 in the set of peptide sequences chosen for
simulation.

#valid sites #cases
≥ 1 212
≥ 2 208
≥ 3 58
== 4 4

Each simulated dataset consists of an unmodified peptide sequence, an unmodi-

fied spectrum to be used for inference of detectabilities, and a mixture spectrum. Given

unmodified peptide p, we generate 100 different such datasets of k ≤ 3 co-eluting pep-

tide variants as follows:

1. Among the MS/MS spectra identified with the same unmodified peptide p, we

choose top two highest scoring (Inspect MQscore) spectra S1 and S2. We use

S1 to generate mixture spectrum and S2 to be used for inference of detectabilities

later.

2. Let n be the number of valid sites in p. For k = 1 to n, we do the following 100

times to generate a series of mixture spectra of k variants.

(a) We select k random modification sites on p and k random relative abun-

dances ≥ 20% (summing to 1), one for each modification variant.

(b) We create k versions of S1, each with total intensity multiplied by its rela-

tive abundance. For each version, we shift all ion masses to the new mass

positions induced by modification and randomly redistribute the noise (non-

annotated peaks).

(c) We add up all k versions of S1 to create the mixture spectrum M(S1)
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In total, we obtain 21200(44.7%), 20800(43.9%), 5400(11.4%) mixture spectra of 1,2,

and 3 variants, respectively. Note that since some of the present variants might be

grouped together, the percentages of cases with actual 1, 2, 3 variant groups might be

different from those.

We then solve the LP using S2 as the unmodified spectrum to infer detectabilities

and M(S1) as the mixture spectrum to obtain the relative abundances for each of the k

variants. Note that in order to estimate FDR we blind ourselves to the site specificity of

the modification. In the LP formulation, we include all possible singly modified variants

of p allowing modification to occur on any residue. We group indistinguishable variants

using variant distance threshold of 5% and output the estimated abundances per variant

group.

The distribution of number of variant groups per LP system, number of variants

per group and number of valid variants per valid group are shown in Figure 6.13. Note

that the average number of valid variants in a valid variant group in the simulations is

1.1. When we identify the correct variant group, we identify the correct variant in 90.0%

of the cases. In the rest, the modification site is ambiguous and the group has 2 (9.7%

of cases) or 3 (0.3% of cases) variants.
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Figure 6.13: Distribution of (a) number of variant groups (b) size of variant groups (c)
number of valid variants per valid group in the simulated data.
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We pool results from all of the datasets with mixtures of k = 1, 2, 3 variants and

evaluate our method on (1) identification (2) quantification of variant groups.

As described earlier, we are able to control FP rate on variant identification using

target-decoy strategy. In Table 6.7, we show the FDRs for a range of cutoffs on the

estimated abundance of the variant groups. We also show the percentage of the cases

with k = 1− 4 identified groups (estimated abundance ≥ cutoff) and the percentage of

the cases with k actual groups (actual abundance ≥ cutoff). In ideal sensitivity, the two

percentages should be equal. As we see, the percentages inferred from the LP results

closely follow the actual percentages. For example, at 1% FDR (estimated abundance

≥ 20%) cutoff, we identify at least one variant group for 98.9% of the cases; 1 variant

group in 51.0%, 2 variant groups in 45.2% and 3 groups in 2.7% of the cases. In the ideal

case, we would identify exactly 1, 2 and 3 variant groups in 47.0%, 47.6% and 5.7% of

the cases, respectively. This result suggests that the sensitivity of our approach is close

to the optimal.
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In order to measure the accuracy of the variant identifications, we calculate

how often the variant groups identified are correct. We call a variant group identifi-

cation correct, if the group was initially assigned a non-zero abundance (i.e. ≥ min.

abundance= 20%). In Figure 6.14, we compare the percentage of the cases where we

identify at least k variant groups and the cases where top (most abundant) k identifi-

cations are correct at FDR 1% for k = 1, 2, 3. As shown in Figure 6.14a, when there

is only one variant group present in the sample, we identify a single variant group in

almost all (99.3%) of the cases with very high accuracy (99.9%). In Figure 6.14b,c the

identification results on mixtures of 2 and 3 variant groups are shown. We achieve simi-

larly very good performance in identification of both variant groups from a mixture of 2

groups. We are able to correctly identify both groups in 90.0% of the cases. In presence

of 3 variants, percentage of identification of all variants drops to 55.2% but with 89.2%

accuracy.
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Figure 6.14: Identification results on mixtures of a) 1, b) 2 and c) 3 variant groups at
FDR=1%. The percentage of the cases where we identify at least k variant groups and
the cases where top (most abundant) k identifications are correct for k = 1, 2, 3.
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We further investigate how the accuracy of the identifications change by the

abundance of the variant groups. Figure 6.15 demonstrate the percentage of ≥ k(1− 3)

identifications (white bars) and the correct top k identifications (blue, green, red bars for

k=1,2, and 3, respectively) grouped by the abundance of actual most abundant variant

group. As we can see, in the mixtures of 2 variant groups, the percentage of the correct

top 2 identifications decreases from 95.9% to 80.6% while the percentage of correct top

1 identification is almost the same (> 98%) suggesting that as the relative abundance

of the 2nd most abundant variant gets smaller, we are more likely not to identify the

2nd variant group. Note that the accuracy is still more than 90% for the correct 2nd

variant group identification. Similarly, in the mixtures of 3 variant groups, as the relative

abundances of the 2nd and 3rd most abundant variants gets smaller, the percentage of

the identifications of 2 or more groups decreases from 92.1% to 88.9% and of 3 variants

from 60% to 43.5. However, in all those cases, accuracy is above 85%.

Besides identification of the present variants, our approach also reports relative

abundances of the identified variant groups. We evaluate our quantification results by

comparing the estimated and actual abundance of the identified variant groups in mix-

tures of 2 and 3 groups. The boxplots of log ratios of the estimated abundances of iden-

tified variant groups to their actual abundances, shown in Figure 6.16ab, are constructed

with 5, 25, 50, 75, and 95 percentiles. We observe that 90% of the variant groups are

accurately quantified with less than 0.5 and 1 fold difference of their actual abundance

in mixtures of 2 and 3 variant groups, respectively.

6.5 Discussion

Large scale post translational modification (PTM) site assignment using mass-

spectrometry based techniques is a challenging problem in proteomics. One of the com-

mon limitations of in PTM identification is co-elution of different positional PTM vari-

ants with similar mass and retention times resulting in mixture tandem mass spectrum.

We propose a novel computational framework to accurately identify and quantify co-

eluting peptide modification variants. Given a mixture spectrum, our method assigns
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Figure 6.15: Identification results on mixtures of a) 2 and b) 3 variant groups at
FDR=1%. Colored bars show the percentage of the cases where top (most abundant)
k (1− 3) identifications are correct grouped by the actual abundance of the most abun-
dant the variant group. Non-colored (white) bars indicate the percentage of the cases
with ≥ k group identifications.
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Figure 6.16: Quantification results on mixtures of a) 2 and b) 3 variant groups at
FDR=1%. Box plot displays the distribution of the log ratio of the estimated abun-
dance to the actual abundance of the variant groups. The bottom and top of the box are
the 25th and 75th percentile (the lower and upper quartiles, respectively), and the band
near the middle of the box is the 50th percentile (the median). The ends of the whiskers
represent the 5th and 95th percentiles.

the modification(s) to specific site(s) with confidence or determines a mixture of multi-

ple modification variants with accurately estimated relative abundances.

In PTM identification and quantification, our approach is first to utilize absence

of the peaks in addition to the presence of peaks and their intensities in tandem mass

spectrum based on the inferred detectabilities of the fragment ions in mass spectrome-

ters. We recruit an unmodified spectra of the peptide sequence of which fragment ion

detectabilities will be inferred. Relative detectabilities are assigned to ions based on

their relative peak intensities in the spectra. We resolve ambiguity in detectability as-

signment when a peak is annotated by multiple fragment ions by simply discarding the

annotation with lower ion probability. However, detectability inference can be improved

by recruiting multiple unmodified spectra and/or devising better strategies to resolve the

cases with ambiguous peak annotations.

Another novel aspect of our approach is that we report ambiguities in the assign-

ment of modification when there is no/little evidence in the MS/MS data for particular

variant(s) and it can not assign the modification confidently. In such a case, we cluster

the variants based on the peaks distinguishing between the variants and output identi-

fication and quantification results for the clusters/groups instead of individual variants.
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Grouping of the modification variants can be studied more systematically by exploring

different distance metrics and many existing clustering techniques.

Traditional methods in PTM identification do not provide a way to measure error

rates in large scale PTM analysis. We propose a novel target-decoy strategy to estimate

false discovery rates (FDRs) for site-localization score thresholds. In our FDR strategy,

we used the estimated abundances of variant groups as our scoring scheme but it is

possible to devise different scoring schemes for different applications.

Use of target-decoy based FDR strategy not only helps to control the FP rate in

the site localizations, but also has great potential to detect novel sites of less studied

or unknown modifications. Site specificity blind-quantification of PTM variants will

elucidate potential sites through decoy hits.

Chapter 6 is in preparation for publication as “Identification and Quantification

of Post-translational Modification Variants and False Discovery Rates”. B. Dost, V.

Bafna and N. Bandeira (2010). In preparation”. The dissertation author was the primary

author of this paper.



References

[1] P. L. Adams, M. R. Stahley, A. B. Kosek, J. Wang, and S. A. Strobel. Crystal
structure of a self-splicing group I intron with both exons. Nature, 430(6995):45–
50, Jul 2004.

[2] T. Akutsu. Dynamic programming algorithm for RNA secondary structure predic-
tion with pseudoknots. Disc. Appl. Math., 104:45–62, 2000.

[3] L. Argaman et al. Novel small RNA-encoding genes in the intergenic regions of
Escherischia coli. Curr. Biol., 11:941–950, 2001.

[4] V. Bafna, S. Muthukrishnan, and R. Ravi. Computing similarity between RNA
strings. Combinatorial Pattern Matching, 937:1–14, 1995.

[5] P. V. Baranov, C. M. Henderson, C. B. Anderson, R. F. Gesteland, J. F. Atkins, and
M. T. Howard. Programmed ribosomal frameshifting in decoding the SARS-CoV
genome. Virology, 332(2):498–510, Feb 2005.

[6] Y. Ben-Asouli, Y. Banai, Y. Pel-Or, A. Shir, and R. Kaempfer. Human interferon-
gamma mRNA autoregulates its translation through a pseudoknot that activates the
interferon-inducible protein kinase PKR. Cell, 108(2):221–232, Jan 2002.

[7] A. Condon, B. Davy, B. Rastegari, F. Tarrant, and S. Zhao. Classifying RNA
Pseudoknotted Structures. Theoretical Computer Science, 320(1):35–50, 2004.

[8] R. M. Dirks and N. A. Pierce. A partition function algorithm for nucleic acid
secondary structure including pseudoknots. J Comput Chem, 24(13):1664–1677,
Oct 2003.

[9] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis,
chapter 10.3 Covariance models: SCFG-based RNA profiles. Cambridge Univer-
sity Press, 1998.

[10] S. Eddy. Non-coding RNA genes and the modern RNA world. Nature Reviews in
Genetics, 2:919–929, 2001.

[11] P. Evans. Algorithms and Complexity for Annotated Sequence Analysis. PhD
thesis, University of Victoria, Victoria BC, Canada, 1964.

149



150

[12] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. W.H. Freeman and Company, 1979.

[13] S. Griffiths-Jones, S. Moxon, M. Marshall, A. Khanna, S. R. Eddy, and A. Bate-
man. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids
Res, 33(Database issue):121–124, Jan 2005.

[14] J. Jaeger, D. Turner, and M. Zuker. Improved prediction of secondary structures
for RNA. Proceedings of the National Academy of Sciences, 86:7706–7710, 1989.

[15] T. Jiang, G. Lin, B. Ma, and K. Zhang. A general edit distance between RNA
structures. J Comput Biol, 9:371–388, 2002.

[16] R. Klein and S. Eddy. Rsearch: Finding homologs of single structured rna se-
quences. BMC Bioinformatics, 4(1):44, 2003.

[17] H. Matsui, K. Sato, and Y. Sakakibara. Pair stochastic tree adjoining grammars
for aligning and predicting pseudoknot RNA structures. Bioinformatics, 21:2611–
2617, 2005.

[18] P. L. Nixon, A. Rangan, Y.-G. Kim, A. Rich, D. W. Hoffman, M. Hennig, and D. P.
Giedroc. Solution structure of a luteoviral P1-P2 frameshifting mRNA pseudoknot.
J Mol Biol, 322(3):621–633, Sep 2002.

[19] C. D. Novina and P. A. Sharp. The RNAi revolution. Nature, 430(6996):161–164,
Jul 2004. News.

[20] B. Rastegari and A. Condon. Linear time algorithm for parsing rna secondary
structure. In 5th Workshop on Algorithms in Bioinformatics (WABI), 2005.

[21] T. Rastogi, T. L. Beattie, J. E. Olive, and R. A. Collins. A long-range pseudoknot is
required for activity of the Neurospora VS ribozyme. EMBO J, 15(11):2820–2825,
Jun 1996.

[22] E. Rivas and S. Eddy. A Dynamic Programming Algorithm for RNA Structure
Prediction Including Pseudoknots. Journal of Molecular Biology, 285:2053–2068,
1999.

[23] G. Storz. An expanding universe of noncoding RNAs. Science, 296(5571):1260–
1263, May 2002.

[24] C. A. Theimer, C. A. Blois, and J. Feigon. Structure of the human telomerase RNA
pseudoknot reveals conserved tertiary interactions essential for function. Mol Cell,
17(5):671–682, Mar 2005.

[25] A. Vitreschak, D. Rodionov, A. Mironov, and M. Gelfand. Riboswitches: the
oldest mechanism for the regulation of gene expression? Trends in Genetics,
20(1):44–50, 2003.



151

[26] Z. Weinberg and W. L. Ruzzo. Faster genome annotation of non-coding rna fam-
ilies without loss of accuracy. In Proceedings of the Annual Intl. Conference on
Computational Biology (RECOMB), 2004.

[27] G. D. Williams, R. Y. Chang, and D. A. Brian. A phylogenetically conserved
hairpin-type 3’ untranslated region pseudoknot functions in coronavirus RNA
replication. J Virol, 73(10):8349–8355, Oct 1999.

[28] W. C. Winkler and R. R. Breaker. Genetic control by metabolite-binding ri-
boswitches. Chembiochem, 4(10):1024–1032, Oct 2003.

[29] S. Zhang, I. Borovok, Y. Aharonowitz, R. Sharan, and V. Bafna. A Sequence-
Based Filtering Method for ncRNA Identification and its Application to Searching
for Riboswitch Elements. Manuscript, 2005.

[30] S. Zhang, B. Hass, E. Eskin, and V. Bafna. Searching genomes for non-coding
rna using fastr. IEEE Transactions on Computational Biology and Bioinformatics,
2(4):366–379, 200.

[31] M. Zuker and D. Sankoff. RNA secondary structures and their prediction. Bull.
Math. Biol., 46:591–621, 1984.

[32] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM, 42(4):844–
856, 1995.

[33] M. Ashburner et al. The gene onthology consortium. gene onthology: Toll for the
unification of biology. Nature Genetics, 25:25–29, 2000.

[34] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J. R. Stat. Soc. B, 57:289–300, 1995.

[35] J. Berg, M. Lassig, and A. Wagner. Structure and evolution of protein interaction
networks: A statistical model for link dynamics and gene duplications. Bio. Med.
Center Evolutionary Biology, 4:51, 2001.

[36] P. Dent, A. Yacoub, P. B. Fisher, M. P. Hagan, and S. Grant. Mapk pathways in
radiation responses. Oncogene, 22(37):5885–5896, Sep 2003.

[37] S. F and Z. R. Identifying active transcription factors and kinases from expression
data using pathway queries. Bioinformatics, 21(Suppl 2):ii115–ii122, Sep 2005.

[38] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Co., San Francisco, 1979.

[39] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. W.H. Freeman and Company, 1979.



152

[40] U. Guldener, M. Munsterkotter, M. Oesterheld, P. Pagel, A. Ruepp, H.-W. Mewes,
and V. Stumpflen. MPact: the MIPS protein interaction resource on yeast. Nucleic
Acids Res, 34(Database issue):436–441, Jan 2006.

[41] E. Hirsh and R. Sharan. Identification of conserved protein complexes based on a
model of protein network evolution. In Fifth European Conference on Computa-
tional Biology (ECCB’06), 2006. To appear.

[42] T. Ito, T. Chiba, and M. Yoshida. Exploring the yeast protein interactome using
comprehensive two-hybrid projects. Trends Biotechnology, 19:23–27, 2001.

[43] M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori. The KEGG
resource for deciphering the genome. Nucleic Acids Res, 32(Database issue):277–
280, Jan 2004.

[44] B. P. Kelley, R. Sharan, R. M. Karp, T. Sittler, D. E. Root, B. R. Stockwell, and
T. Ideker. Conserved pathways within bacteria and yeast as revealed by global
protein network alignment. Proc Natl Acad Sci U S A, 100(20):11394–9, 2003.

[45] T. Kloks. Treewidth: computations and approximations. Springer-Verlag, 1994.

[46] M. Mann, R. Hendrickson, and A. Pandey. Analysis ures of proteins and proteomes
by mass spectrometry. Annu. Rev. Biochem, 70:437–473, 2001.

[47] H. W. Mewes, D. Frishman, K. F. Mayer, M. Munsterkotter, O. Noubibou, P. Pagel,
T. Rattei, M. Oesterheld, A. Ruepp, and V. Stumpflen. MIPS: analysis and anno-
tation of proteins from whole genomes in 2005. Nucleic Acids Res, 34(Database
issue):169–172, Jan 2006.

[48] R. Y. Pinter, O. Rokhlenko, E. Yeger-Lotem, and M. Ziv-Ukelson. Alignment of
metabolic pathways. Bioinformatics, 21(16):3401–8, 2005.

[49] T. Shlomi, D. Segal, E. Ruppin, and R. Sharan. QPath: A Method for Querying
Pathways in a Protein-Protein Interaction Network. BMC Bioinformatics, 7(199),
2006.

[50] C. A. Stanyon, G. Liu, B. A. Mangiola, N. Patel, L. Giot, B. Kuang, H. Zhang,
J. Zhong, and J. Finley, R. L. A Drosophila protein-interaction map centered on
cell-cycle regulators. Genome Biol, 5(12):R96, 2004.

[51] I. Xenarios, D. W. Rice, L. Salwinski, M. K. Baron, E. M. Marcotte, and D. Eisen-
berg. DIP: the database of interacting proteins. Nucleic Acids Res, 28(1):289–91,
2000.

[52] E. Homsher A. M. Gordon and M. Regnier. Regulation of contraction in striated
muscle, 2000.



153

[53] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.
Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-
Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M.
Rubin, and G. Sherlock. Gene ontology: tool for the unification of biology. the
gene ontology consortium. Nat Genet, 25(1):25–29, May 2000.

[54] Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression pat-
terns. Journal of Computational Biology, 6(3/4):281–297, 1999.

[55] Molly A. Bogue, Stephen C. Grubb, Terry P. Maddatu, and Carol J. Bult. Mouse
phenome database (mpd). Nucleic Acids Research, 35(Database-Issue):643–649,
2007.

[56] K Brix, P Lemansky, and V Herzog. Evidence for extracellularly acting cathepsins
mediating thyroid hormone liberation in thyroid epithelial cells. Endocrinology,
137(5):1963–1974, May 1996.

[57] Angels Almenar-Queralt Velia M. Fowler Catharine A. Conley, Kimberly L. Fritz-
Six. Leiomodins: Larger members of the tropomodulin (tmod) gene family. Ge-
nomics, 73(1):127–139, May 2001.

[58] Steven Delvaux and Leon Horsten. On best transitive approximations to simple
graphs. Acta Inf., 40(9):637–655, 2004.

[59] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. W.H. Freeman and Company, 1979.

[60] Laurent Gautier, Leslie Cope, Benjamin M. Bolstad, and Rafael A. Irizarry. affy—
analysis of affymetrix genechip data at the probe level. Bioinformatics, 20(3):307–
315, 2004.

[61] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit,
B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus,
R. Irizarry, F. Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith,
G. Smyth, L. Tierney, J. Y. Yang, and J. Zhang. Bioconductor: open software
development for computational biology and bioinformatics. Genome Biol, 5(10),
2004.

[62] M. Gerstein and R. Jansen. The current excitement in bioinformatics - analysis
of whole genome expression data: how does it related to protein structure and
function, 2000.

[63] F D Gibbons and F P Roth. Judging the quality of gene expression-based clustering
methods using gene annotation. Genome Res, 12(10):1574–1581, Oct 2002.



154

[64] David Gibson, Ravi Kumar, and Andrew Tomkins. Discovering large dense sub-
graphs in massive graphs. In VLDB ’05: Proceedings of the 31st international
conference on Very large data bases, pages 721–732. VLDB Endowment, 2005.

[65] Curtis Huttenhower, Avi I Flamholz, Jessica N Landis, Sauhard Sahi, Chad L My-
ers, Kellen L Olszewski, Matthew A Hibbs, Nathan O Siemers, Olga G Troyan-
skaya, and Hilary A Coller. Nearest neighbor networks: clustering expression data
based on gene neighborhoods. BMC bioinformatics, 8:250, 2007 2007.

[66] Minoru Kanehisa, Michihiro Araki, Susumu Goto, Masahiro Hattori, Mika Hi-
rakawa, Masumi Itoh, Toshiaki Katayama, Shuichi Kawashima, Shujiro Okuda,
Toshiaki Tokimatsu, and Yoshihiro Yamanishi. Kegg for linking genomes to life
and the environment. Nucl. Acids Res., pages gkm882+, December 2007.

[67] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University
Press, 1995.

[68] R. Project. The R project for statistical computing, 2003.

[69] J. Quackenbush. Computational analysis of microarray data. Nat Rev Genet,
2(6):418–427, June 2001.

[70] Sven Rahmann, Tobias Wittkop, Jan Baumbach, Marcel Martin, Anke Truss, and
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