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ABSTRACT OF THE DISSERTATION

Image Cytometry Classifiers: Isolation of Cancer Cells from Blood and
Morphometric Characterization of Cytotoxicity in High Content

Screening

by

Behrad Azimi

Doctor of Philosophy in Bioengineering

University of California, San Diego, 2010

David A. Gough, Chair
Mark Mercola, Co-Chair

Advances in microscopy have made the automatic acquisition of large vol-

umes of images from biological specimens a routine. In high content screening

(HCS), databases of cytometric measurements from cell images can be easily made.

The transformation of such cytometric data into biological knowledge is the general

aim of this dissertation.

One such transformation can help detect circulating tumor cells (CTCs)

in blood based only on their morphology. CTCs travel from a primary tumor

to settle in a metastatic site and form more tumors. Enabling the detection of

CTCs can help characterize metastatic behavior and improve cancer diagnosis.

Here, the use of neural networks in detecting CTCs based on nuclear morphology

alone was explored (Chapter 1). Furthermore, various methods are proposed and

tested to systematically improve the performance of such classifiers (Chapter 2).

Additionally, since the method is novel, it could detect cells that may be key

to the study of cancer progression but have been missed by current techniques.
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Therefore, it is also important to physically isolate the resultant cells to do down-

stream experimentation. To accomplish this, a microscopy cell sorting instrument

is developed and tested that retrieves desired cells directly from the surface of a

microscopy slide with relatively high throughput (Chapter 3).

Another transformation of cytometric data to biological knowledge was ex-

plored by attempting to gauge cytotoxicity using morphology alone. In HCS,

hundreds of thousands of compounds are tested on cells and a desired biological

response is assayed to find drug candidates. Assessing toxicity in that stage would

stop the advancement of toxic candidates into more expensive testing and clini-

cal trials. Implementing cytotoxicity assays into screens, however, is prohibitively

costly. A method for mimicking the costly cytotoxicity measurements in large

screens by using morphology alone is proposed and studied (Chapter 4). The

method is then applied to a small screen and its performance is measured. Fur-

ther, distortions often exist in screen data because of problems with preparation

of microtiter plates. A median-based method has been developed and tested here

to remedy this problem and make screen data statistically more viable (Chapter

5).
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Chapter 1

Neural Network Classification of

Circulating Tumor Cells in Blood

1.1 Introduction

According to the National Cancer Institute (NCI), about 1 in 8 women in

the United States will develop breast cancer during her lifetime. Breast cancer

ranks just behind lung cancer as the leading cause of cancer death for women

and in the leading cause of death in women ages 15-54. Between 1973 and 1991,

the incidence of breast cancer rose 24% in the United States, due mainly to the

increased use of mammography, but has steadily decreased since then. Moreover,

during the same period, the mortality rate did not increase and has been steadily

decreasing since the late 1990s. Early detection and prognostic screening probably

played roles in lowering these statistics. In fact, according to the American Cancer

Society’s facts and figures from 2006-2007, mammography will detect 80%-90% of

breast cancers in women without symptoms. The five-year survival rate for breast

cancer is 98% for women who were diagnosed with localized breast cancer, and

89% for women who were diagnosed when the cancer was in a regionalized stage.

Current clinical methods for detecting breast cancer include palpation (ei-

ther through a clinical breast exam or monthly self-examination), mammography,

MRI, and ultrasound to evaluate suspicious lumps. Once a breast anomaly has

1
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been identified, a tissue sample is biopsied to determine whether the lump is can-

cerous. According to Bjurstam, approximately 20% of breast biopsies turn out

to be breast cancer [12]. Prognosis and proper treatment depend on a number of

factors such as tumor size, location within the breast, and invasiveness (as assessed

by the presence of cancer in the lymph nodes or other parts of the body).

Mammography is considered the gold standard for diagnosing breast cancer,

and there is substantial active research on finding methods to detect breast cancer

cells in the circulation as a possible diagnostic/prognostic tool. Research efforts

to identify CTCs in the bone marrow and/or peripheral blood have utilized PCR,

soluble protein assays, immunomagnetic sorting, fluorescence-activated cell sorting

(or flow cytometry), and image cytometry [61, 60, 72, 83, 95, 13, 107].

Polymerase chain reaction (PCR) relies on selective expansion of a known

DNA sequence, delineated by a set of olignucleotide primers, by a modified DNA

polymerase. A gene may be amplified 106-109-fold by PCR, and detection speci-

ficity is determined by sequencing the amplified DNA product. Reverse transcrip-

tase PCR (RT-PCR) allows detection of RNA by an initial conversion of RNA to

DNA catalyzed by enzyme reverse transcriptase. Targets for RT-PCR detection

have included the oncogene HER2/neu [28, 104], Cytokeratin 19 [78, 94, 96, 117,

71], as well as other tissue-specific biomarkers [26, 66, 118].

Cell separation and sorting methods have been used to isolate rare cancer

cells from blood and bone marrow. In flow cytometry, fluorescently-labeled cells

in a hydrodynamically focused fluid stream are excited by a laser beam. Forward-

scatter and one or more measurements of side-scatter are collected for each cell.

Suspicious cells are identified by gating their fluorescent intensities. Flow cytom-

etry for detecting circulating tumor cells in blood tends to produce high numbers

of false positives due to specimen autofluorescence, nonspecific staining, and cell

aggregates. Furthermore, multiple handling steps and cell transfers through the

complex capillary system can contribute to sample loss. In contrast, immunomag-

netic sorting uses antibodies conjugated to paramagnetic beads. Once beads are

bound to surface antigens on the cell, a magnet can be used to capture cells for sort-

ing and enrichment. Due to the size of the magnetic beads used, immunomagnetic
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sorting is limited to use against surface antigens of the cells.

While these alternative detection assays will not likely replace mammog-

raphy for diagnosis, they may be useful for characterizing the cells escaping the

solid tumor(s), assessing disease progression and for monitoring minimal residual

disease. Furthermore, the afore-mentioned research technologies rely on tissue-

specific biomarkers. A biomarker is any substance, such as proteins, antibodies,

genes, as well as DNA or RNA fragments, whose detection may be used to mea-

sure the progress of a disease or its treatment. One of the earliest breast-associated

biomarkers to be used was CA15.3 against MUC1 which is frequently overexpressed

in malignant breast cancer. Zimmerman et al. tested 114 patient samples that were

known to be either benign or malignant. Positive staining of greater than 10% of

tumor cells was found in 97% of breast carcinoma cases and in 90% of adenocarci-

nomas overall. Four of 40 (10%) cases with benign mesotheliomas stained as false

positives [119]. Cheung et al. reported that CA15.3, CEA, and ESR were the best

validated combination for detection, albeit for late-stage cancer that had already

been diagnosed and for which the presence of metastatic tumors had been detected

by other means [22]. It was eventually found that the utility of CA15.3 for detect-

ing early stage disease was low, and that 20-30% of women with benign tumors

will have elevated expression [99]. In other words, preoperative measurements of

CA15.3 concentrations can’t be used for screening or diagnosis. However, elevated

concentrations of CA15.3 pre- or postoperatively and at the time of initial relapse

have been correlated with patient outcome [29].

These technologies have shown promising initial findings and have been

translated to the clinical setting in at least one case for following and predicting

the likelihood of disease progression. To date, only the CellSearch R©Epithelial

Cell Kit has been FDA-approved for detecting circulating tumor cells in blood

[1]. This FDA-approved technology uses the most common biomarkers investi-

gated for epithelial carcinomas: cytokeratins and EpCAM. Cytokeratins (CK) are

intermediate filaments comprising the cytoskeleton of epithelial cells. In humans,

twenty cytokeratins have been identified and classified roughly according to de-

creasing molecular weight. Cytokeratin 19 (CK19) expression is commonly asso-
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ciated with breast carcinomas, with over 95% of tumor cells in all human primary

and metastatic tumors staining positive for CK19 [4]. The epithelial adhesion

molecule (EpCAM) is a cell surface glycoprotein involved with cell-to-cell adhe-

sions. EpCAM is expressed at a basal level in normal adult and neonatal epithelia

but is overexpressed in epithelial carcinomas, including breast cancers [82, 106].

The expression of EpCAM is down-regulated in CTCs as compared to primary

tumor cells [88].

One of the obvious limitations of this technology is that circulating tu-

mor cells are not detectable in all cancer patients–even in some with aggressive

metastatic disease. For example, Kim et al. found CTCs in only 8 of 29 women

with metastatic disease[60], while Witzig et al. found CK+ cells in only 21 of 75

cancer patients [107]. It is interesting to note the inconsistencies in the detection

of CTCs using cytokeratins and/or EpCAM. Kasimir-Bauer et al. [55] studied

samples from 28 patients using two methods in parallel: immunocytochemistry

(ICC) alone and immunomagnetic sorting followed by ICC (IMS/ICC). In 6 of 28

patients, CTCs were found by both assays. Sixteen were positive for CTCs by

ICC but negative by IMS/ICC. Finally, six were negative by ICC but positive by

IMS/ICC. Thurm et al. analyzed Ficoll-enriched bone marrow aspirates that were

either double-labeled EpCAM+CK or immunomagnetically sorted against EpCAM

then CK stained. Ten of 35 samples were CK+ but none coexpressed EpCAM.

Only 2 of 27 specimens enriched by IMS coexpressed cytokeratin [101]. Most re-

cently, a prospective study of the only FDA-approved method, CellSearch R©, found

that among 92 breast cancer patients with metastesis, only 70% had a positive

CTC count [89].This lack of sensitivity is explained by citing the heterogeneity of

EpCAM expression [106, 88].

What complicates things further is that not all cancer cells from a patient

express biomarkers at the same level. That is, cancer cells in an individual pa-

tient will have an expression profile (or distribution) that will be different from

the expression profiles from other patients. Moreover, subpopulations of cancer

cells from the same patient biopsy often express different proteins. The genetic

instability of cancer that enables conversion to an aggressive phenotype that may
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demonstrate further alterations in gene expression, and heterogeneity of the pro-

teins expressed[32, 79, 87, 102, 113] is the reason that finding an absolute set of

differential expression markers is difficult, if not impossible, for accurate detection

of CTCs. Even if a subset of CTCs will always be found, seeking them based

on a particular biomarker or set of biomarkers likely leave a potentially large and

important set of CTCs unnoticed.

For this reason, it is important to find a method that is independent of

biomarker expression for detecting CTCs. Preliminary studies were done in our

lab to detect breast cancer cells by staining for cytokeratins in an in vitro spiked

model of CTC in peripheral blood consisted of cancer cells mixed with mononuclear

white blood cells (mWBCs). Expectedly, the cancer cells were heterogeneous for

cytokeratins and were not all identified. Through these experiments, it was noted

that some cancer cells appeared larger and more irregularly shaped than mWBCs.

We thus decided to explore whether detection of CTCs could be performed using

nuclear morphology alone, independent of tissue-specific biomarkers. To test this,

we first used manual (or interactive) classification, which involved a user setting

gates on empirically-determined size and shape features to select a subpopulation

of suspicious cells and manually reviewing the resulting gallery of cell images to

eliminate false positives. We then, trained neural networks to select suspicious

cells and compared the sensitivity and specificity with manual gating.

Over the past decade, neural network classifiers have been put to greater

use in biology and medicine, e.g. in analyzing microarray[36, 37, 48, 68], mass

spectrometry[63, 68], flow cytometry[67], ultrasound[21, 52], MRI[73], and image

cytometry[20, 62] data. Particularly for clinical applications related to cancer,

neural networks have been applied to risk assessment in prostate cancer[2, 75,

76], survival prediction in breast cancer[15, 16] as well as the identification of

microcalcification patterns in mammograms [19, 47, 49, 54, 110, 111]. Some of the

neural networks evaluated included qualitative features (e.g. diet, race, and general

health [2] or age, race, and symptoms[16]) or manually segmented objects (from

digitized mammograms [47]). Furthermore, with the exception of the detection of

activated lymphocytes [67], none of these studies performed exhaustive cell-by-cell
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analysis.

1.2 Materials and Methods

1.2.1 Preliminary studies to explore nuclear morphology

While studying cytokeratin expression in cancer cells (results not shown),

images were acquired to demonstrate differences in nuclear morphology among the

different cell lines. Cancer cells from each line were grown as adherent cultures on

#1.5 coverslips (Fisher Scientific, Tustin, CA), fixed with 4% paraformaldehyde

for 1 hour, then counterstained with DAPI for fluorescent imaging. Adapted from

Hamada[39], the preparation of DAPI solution consisted of 75ng/ml DAPI, 10nM

Tris, 10nM EDTA, 100nM NaCl, and 2% 2-mercaptoethanol, prior to mounting

and sealing to 3x1 microscope slides (Fisher).

1.2.2 in vitro Mixture Models

Mononucleated white blood cells were isolated from a sample of whole blood

from a healthy individual by density gradient centrifugation using HISTOPAQUE-

1077 (Sigma-Aldrich, St. Louis, MO).

Each of six human breast cancer cell lines were cultured as adherent mono-

layers and spiked into human blood. These cell lines were HCC1395, MCF7, MDA-

MB-231, MDA-MB-435, MDA-MB-468, and T47D (ATCC, Manassas, VA). The

cells were first stained with CellTracker Orange (Molecular Probes, Eugene, OR)

as a gold standard against which to grade the performance of classification via

nuclear features. After detaching from culture dishes and resuspended in PBS,

cancer cells were mixed with mWBCs at ratios of 1:10 (HCC1395 only), 1:102, or

1:103 and fixed with 4% paraformaldehyde for 1 hour.

Cell mixtures were centrifuged as a monolayer onto silane-coated slides

(Sigma-Aldrich) for imaging. Finally, nuclei were counterstained with DAPI solu-

tion, prior to the application and sealing of coverslips.
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1.2.3 Instrumentation and data collection

A system developed in our laboratory that is functionally equivalent to a

Q3DM/Beckman Coulter EIDAQ/IC 100 image cytometer includes the following

components for image acquisition, automated stage movement, and autofocus. A

red LED (HWPT-MH00, peak wavelength 626nm, Agilent Technologies, Palo Alto,

CA) provides phase-contrast illumination, strobed under computer control, on a

Nikon Eclipse TE300 inverted microscope. Strobing the LED allows for essentially

instantaneous response when switching between transmitted light and epifluores-

cence. Primary optics include a Nikon LWD 0.52NA condenser and Nikon Plan

Fluor 20X/0.50NA Ph1 DLL objective. For epifluorescence excitation, we use a

100W mercury vapor short arc lamp (OSRAM HBO 103 W/2) in a Nikon LH-

M100CB-1 arc lamp housing (Nikon Instruments, Lewisville, TX) with a Uniblitz

VS25S2ZM1R1 shutter (Vincent Associates, Rochester, NY).

Lateral motion control of a motorized stage (99S008-N23, Ludl Electronics

Products Ltd, Hawthrown, NY) is performed under computer control by stepper

motors (PCI-7324, National Instruments) at a minimum step size of 125nm. A

Polytec, Inc. (Auburn, MA) 350-nm range piezoelectric objective positioner (PI-

FOC) and E-S810.L0 closed-loop controller, monitored by a National Instruments

PCI-6031E data acquisition board, allow for computer-controlled focus position-

ing. Calculation of best focus is done in hardware with a Q3DM, Inc. (San Diego,

CA) Afx-3000 autofocus circuit that was originally developed in the Price lab [14].

Filter cube sets for DAPI and Spectrum Orange (for CellTracker Orange)

were used for fluorescent imaging (Chroma Technology, Brattleboro, VT). Images

were acquired with a Cohu 3000-6612 Progressive Scan CCD RS170 camera (San

Diego, CA) and digitized to 640x480 pixels2 with a National Instruments IMAQ

PCI-1424 multi-channel frame grabber (Austin, TX). Under 20X magnification,

each pixel is 0.517344 µm x 0.517344 µm or 0.267645 µm2.

Software to drive the image cytometer (CytoShop v1.6.512.648 and Cy-

toShop v2.1 Build 0.4) was kindly donated by Q3DM and Beckman Coulter. Cy-

toShop enables straightforward image acquisition of arbitrarily large areas of a

slide. Fast image segmentation in CytoShop is performed on fluorescent images,
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Table 1.1: The a priori feature set. This set is consisted of 7 nuclear features

(morphometric and fluorimetric) from CytoShop which were used as inputs to the

a priori neural networks.

Feature Description

Area Area of the nucleus in square microns

Perimeter Perimeter of the nucleus

Wiggle Perimeter divided by area of the nucleus

Integ gs Sum of grayscale intensities of pixels in the nucleus

StdDev Standard deviation of intensities of nuclear pixels

CM3 Third central moment of the intensities of nuclear pixels

CM4 Fourth central moment of intensities of nuclear pixels

using a method that is largely independent of fluorescence intensity [84]. Non-

linear least-squares-designed finite impulse response (FIR) filters greatly enhance

contrast between object and background to enable automatic histogram threshold-

ing. After segmentation, a set of about 75 features based on pixel intensity and

object morphology are measured on each cell. Table 1.1 summarizes nuclear fea-

tures expected to be pertinent for classification. The empirically-chosen features

are designated with a check in the right column.

Initially, nuclear area and nuclear wiggle (a perimeter-area ratio), were ex-

amined for distinguishing between cancer and normal using size and shape. Using

simple thresholds on these two features, subpopulations of cells were quickly de-

lineated. Once a subset of cells is defined, CytoShop creates a gallery that is

quickly displayed for visual review of the cells. As mentioned previously, the gold

standard for assessing cancer origin for the in vitro models is CellTracker Orange.

After gating on CellTracker Orange signal, the montage of cell images from the

positive population is manually examined and artifacts (e.g. CellTracker signal

not actually localized within the cell boundary) are removed.
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1.2.4 Neural Network Classifiers

Cytoshop measures more than thirty morphometric and fluorometric fea-

tures per object segmented from images. These measurements can be exported for

analysis in third-party programs, and the framework for training and evaluating a

neural network was programmed in MATLAB (The MathWorks, Inc., Natick, MA)

using the Neural Network Toolbox. For the purposes of this paper, we designed

neural networks that used a subset of seven features thought a priori useful for

classifications as inputs.

The general architecture of the feed-forward neural networks described here

is shown in Figure 1.1. Output of each neuron depends on a weighted sum of its

inputs but does not necessarily need to be linear or continuous. All neurons in our

analysis used a tan-sigmoid activation function to mimic the activation of biologic

neurons. To use the Neural Network Toolbox in MATLAB, the input features were

rescaled to the range. The result from the output node is also scaled [0-1], and a

final decision between cancer (1) and normal (0) was made using a simple post-

processing threshold of 0.5. Values below 0.5 are considered to be non-cancer cells;

and values of 0.5 and above were considered to be cancer. The error between the

output classification decision and the target classification is calculated as the mean

squared error (MSE), given by Equation 1.1 where Q is the size of the training

set, k is the index of the training vector, T is the target vector, and A is the output

vector for the network prior to post-processing. The neural networks were trained

via backpropagation. Essentially, training consists of iteratively running a subset of

the data through the neural network, comparing the network’s output to the target

(desired) output, and adjusting network weights to achieve a desired minimum for

the mean squared error. This process is computationally-intensive and can require

a long time for convergence. At each node, a local error is calculated based on what

its output should have been to achieve the desired output. Weights are adjusted to

minimize the local error, and how these weights change also depends on local errors

at the previous layer. Neurons connected by stronger weights have a greater effect

on local errors downstream. Consequently, the learning through error minimization

propagates backwards through the network. The process of backpropagation relies
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on calculating the gradient of the error in the network with respect to network

weights. Algorithms based directly or indirectly on this gradient are then be used

to minimize the error.

MSE =
1

Q

Q∑
k=1

(
T (k)− a(k)

)2
(1.1)

The neural networks used here were trained using a technique known as

resilient backpropagation. In preliminary studies, we compared resilient backprop-

agation to a gradient descent method. For the latter method, weights are changed

every training iteration (epoch) based on the derivative of performance with re-

spect to each of the weights. If we call a particular weight X and the next update

to that weight δX, then δX is given by Equation 1.2 where lr is a constant.

∆X = lr
dMSE

dX

(1.2)

In contrast, when training is through resilient backpropagation, a variable

learning rate matrix LR is used instead of a single fixed value. After initialization,

LR is updated at each iteration based on whether or not the performance gradient

has changed sign. That is, if the derivative of performance with respect to a given

weight changes sign, the corresponding element in LR will be decreased by some

constant. In the case of no sign change, the corresponding element is increased by

a different constant in order to stimulate change. Changes in weight matrix are

calculated according to 1.3.

∆X = lr

(
dMSE

dX

)
÷

∣∣∣∣∣dMSE

dX

∣∣∣∣∣
(1.3)
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Figure 1.1: We used a seven-feature input layer, and ten and three nodes for the

next two hidden layers, respectively. The output from the final single-node layer

is the binary cancer/non-cancer decision.
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Training continues until the MSE reaches a specified tolerance, the gradient

reaches a specified minimum, or until a certain number of epochs have passed.

Depending on which in vitro model was trained, the minimum gradient was 10-12

or zero.

We trained and evaluated several neural networks with differing numbers

of nodes, trained by gradient descent and resilient backpropagation. For networks

with the same architecture, training by resilient backpropagation converged at

least an order of magnitude faster and classification performance was identical.

For large datasets with 100,000 or more cells, training may require up to a few day

to converge, so the training speed increase realized by resilient backpropagation

was important.

For our initial experiments, we trained and evaluated neural networks us-

ing data sets from HCC1395 spiked models. The data were randomly split into

a training set and a testing set (to characterize classification performance), com-

prising 30% and 70% of the original data, respectively. The random subsets were

generated such that the same ratio between cancer and normal cells in the original

data was maintained. Neural networks were trained for 20,000 epochs. With this

number of training iterations, the minimum gradient achieved was on the order of

10−12. Afterwards, neural networks were created with data from the other spiked

models.

Finally, a single neural network was designed using a pool of all the in vitro

data. That is, the same architecture was used but trained with a combination

of the HCC1395, MDA-MB-231, MDA-MB-435, MDA-MB-468, MCF7, and T47D

spiked blood data. Again, a random distribution of 70% from each data set was

combined and used for training, with ratios between cancer and normal maintained.

In generating performance statistics, however, the neural network was evaluated

on the remaining 30% of each data set separately in order to compare how well

the network could classify a variety of different breast cancer cells from normal.
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1.2.5 Performance Evaluation

The possible outcomes of a binary classifier are illustrated in 1.2. Cancer

cells that are correctly evaluated by the classifier are the true positives. Cancer

cells that are incorrectly evaluated as non-cancer are false negatives. Similarly, non-

cancer cells correctly classified are true negatives, while those incorrectly classified

are false positives. In quantifying these populations, the neural network was trained

on one set of data and the performance was evaluated on another set not previously

used for training.

Further performance measures are defined in Equation 1.4 to evaluate clas-

sification. Sensitivity and specificity are two common measures of classification

performance and reliability. Sensitivity is the probability of a positive finding be-

ing correct, while specificity is a measure of the proportion of actual negatives in

the entire sample. We also quantify accuracy, defined as the probability that a cell

in the subpopulation classified as cancer truly is cancer.

Table 1.2: Possible outcomes of a binary classifier and definition of basic classifi-

cation performance measurements.

Gold Standard

+ -

Selected by Algorithm
+ TruePositive FalsePositive

- FalseNegative TrueNegative
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Accuracy =
TruePositive

TruePositive+ FalsePositive
× 100%

Sensitivity =
TruePositive

TruePositive+ FalseNegative
× 100%

Specificity =
TrueNegative

TrueNegative+ FalsePositive
× 100%

(1.4)

1.3 Results

1.3.1 Observed differences in nuclear morphology of breast

cancer cell lines vs. mWBCs

We first reviewed galleries of nuclear images of the six cell lines and mWBCs.

Slides with nuclei of each of the breast cancer cell lines and one with mWBCs were

imaged and the morphometric features were measured. Example nuclei are shown

in screenshots of the galleries from CytoShop in Figure 1.2, each of which are

displayed at the same magnification with different numbers of pixels. As explained

in Materials and Methods, each image pixel recorded corresponds to 0.267645 µm2.

For the image montages, CytoShop created a bounding box around each nucleus

that may be different based on mean size in the population. For HCC1395, the

bounding box was 119x119 pixels2; for MDA-MB-231, MDA-MB-435, MCF7, and

T47D, the bounding boxes were 79x79 pixels2; for MDA-MB-468, the box was

109x109 pixels2; and for mWBCs, the bounding box was 49x53 pixels2. The

mWBCs tend more to be smaller and more uniform in size and shape. Quantitative

comparisons of area and wiggle are shown in Figure 1.3. HCC1395 nuclei are the

largest and have the smallest wiggle (are the most irregular in shape); in Figure

1.2, they appear more lobular and generally more irregularly shaped. The MCF7



15

and T47D nuclei also appear larger in Figure 1.2 than mWBCs, and are larger on

average in Figure 1.3, but the tails of the distributions overlap with mWBCs. The

MCF7 and T47D nuclei also have smaller wiggle (are more irregularly shaped) by

the measurements in Figure 1.3. The MDA-MB-468 nuclei are larger, with some

overlap in the tail of the distribution, than mWBCs by Figure 1.3 and have similar

wiggle. MDA-MB-231 and MDA-MB-435 cells are more comparable in both size

and shape to mWBCs than the other cell lines. These results motivated us to

hypothesize that cancer cells may be distinguished from mWBCs based on their

nuclear morphology alone. Since HCC1395 cancer cells are dramatically different

from mWBCs in their distributions, we chose them as our first model for developing

our methods and testing this hypothesis.

We reviewed whether or not there may be a relationship between the clinical

characteristics of these cell lines that might be associated with their morphologies.

In the Boyden chamber assay for invasiveness, MDA-MB-231 cells were ranked

highly invasive, MDA-MB-435 cells were moderately invasive, MDA-MB-468 cells

were poorly invasive, MCF7 cells were minimally-to-moderately invasive, and T47D

were not invasive [100]. In a different study, HCC1395 cells are also labeled as

invasive, but they were not ranked in comparison to the first five cell lines [35].

There may be a positive correlation between invasiveness and wiggle, and an inverse

correlation between invasiveness and area. That is, small round cancer cells may

be more invasive than large irregular cancer cells. HCC1395 cancer cells appear

may be an exception to this rule, but invasiveness was not compared relative to

the other cell lines. Thus, morphology may be related to cancer metastasis and it

could be important to find a method (e.g., neural networks on a larger feature set)

that can detect those cancer cells that look most like mWBCs since they could be

the most invasive.

1.3.2 Manual gating for classification of HCC1395 human

breast cancer cells

We began to investigate the differences in size and shape between cancer

and normal cells using a spiked mixture model with HCC1395 cancer cells. Clumps
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Figure 1.2: Galleries of nuclei images. Cancer cells from each cell line have distri-

butions of size and shape that potentially could be used to distinguish them from

normal mononucleated white blood cells
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of cells, however, presented a challenge for study since CytoShop’s measurements

are meaningful only for single cells. We instituted the manual classification scheme

illustrated in Figure 1.4 to eliminate clumps and continued to optimize specimen

preparation in an attempt to decrease them as much as possible. By excluding

objects with large areas and small wiggle, most of the clumps containing three

or more nuclei could be successfully excluded. Gates (or thresholds) on nuclear

area and nuclear wiggle were then manually set to classify cells as mWBC singlets,

mWBC doublets and singlet cancer cells. (See Figure 1.5). Singlet white blood

cells comprise most of the objects with low nuclear area. Two adjacent mWBC

nuclei (incorrectly segmented as one object) often have a combined area compara-

ble to a singlet cancer cell but with a greater perimeter. Consequently, wiggle may

be used further to separate singlet cancer cells from mWBC doublets. The thresh-

olds shown in Figure 1.4 and Figure 1.5 to define the subpopulations of cells are

examples to provide an acceptable compromise between sensitivity and specificity.

Overlap in the distributions of area and wiggle for cancer cells vs. doublet

mWBCs resulted in false positives (see the gallery of HCC1395 cells classified as

cancer in Figure 1.6). Once a subset of suspected cancers has been found, images

of the cells can be visually inspected and the doublets interactively removed. For

translation to the clinical setting, classification would reduce the number of cells

to be reviewed by a human from millions to hundreds. False negatives may also

occur, but it’s not practical to review and reclaim them. As also evidenced by

the large standard deviation bars in area for HCC1395 and T47D in Figure 1.3,

cancer cells are also morphologically heterogeneous. Some, like MDA-MB-231

and MDA-MB-435 are almost morphologically indistinguishable from mWBCs by

the two features in Figure 1.3 . Large granulocytes (that may not have been

separated during enrichment) and a very small number of normal epithelial and/or

endothelial cells, thought to have frequencies of 1-2 per 10 ml of blood,[6] could be

present as additional sources of false positives. Nevertheless, visual inspection of

say a few hundred cells should allow most of the false positives to be identified and

removed, thereby improving performance of classification by morphology alone.

Manual gating followed by visual inspection was performed in two sets of
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Figure 1.3: Variations in nuclear area and wiggle for the different breast cancer

lines compared with mWBCs. Statistics are shown as means (bars) +/- standard

deviations (error bars).

Figure 1.4: Decision tree for removing clumps and classifying cells. Values for

gating on nuclear area and nuclear wiggle shown in the diagram are examples.
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Figure 1.5: Classification of HCC1395 cancer cells using nuclear area and wiggle.

This is done using gates (or thresholds) to distinguish between cancer and non-

cancer (mononuclear WBC singlets and doublets).
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Figure 1.6: An example gallery from the subpopulation classified as cancer. This

subpopulation is form the population shown in Figure 1.3 (large nuclei with low

wiggle). Visual inspection to eliminate doublets (e.g., row-column: 1-2, 1-4, 1-5,

5-8, 5-9, 5-10, 6-9, 7-3, 7-4 and 7-5) reduces the number of false positives and

increases accuracy and sensitivity.
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experiments and results are summarized in Table 1.3. The left side of the ta-

ble is for low-density samples where cells were seeded onto slides at a density or

approximately 50,000 cells/cm2. In the right side of the table, medium-density

samples were prepared with approximately 250,000 cells/cm2. The numbers of

true positives, false positives, true negatives, and false negative classifications and

the resulting performance statistics are shown. The results for manual gating fol-

lowed by visual inspection are reported first, with the numbers for manual gating

alone in parentheses. The arrows indicate whether the performance improved or

worsened after visual inspection. To reiterate, only the cells positively classified as

cancer were visually inspected. Finally, the performance was calculated using the

presence of the CellTracker Orange as ground truth label.

Although the number of true positives sometimes decreased with visual in-

spection, the number of false positives usually decreased significantly. This has

the biggest impact on increasing overall classification performance: accuracy, sen-

sitivity, and specificity are 90% or greater after visual inspection. Moreover, only

a small fraction of the total number of cells in the blood samples were visually

inspected to achieve these results. With this successful manual classification in

HCC1395 cells, we next applied similar gating strategies on area and wiggle to

classify cancer cells in mixture models using the five other breast cancer cell lines.

1.3.3 Manual gating for classification of cell from five other

breast cancer cell lines

The results in the previous section confirmed our observation that HCC1395

breast cancer cells are mostly larger and more misshapen than mWBCs. We next

evaluated the performance of manual gating without visual inspection on spiked

models using breast cancer cell lines with morphologies more similar to mWBCs.

For manual gating applied to spiked models using MDA-MB-231, MDA-MB-435,

MCF7, and T47D, gating was adjusted slightly to compensate for their smaller

nuclear area and higher nuclear wiggle (rounder shape). For these experiments,

the threshold for area was lowered to 55 µm2, and the threshold for wiggle was

raised to 0.60 µm−1. Table 1.4 summarizes performance for several experiments
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with these four additional cell lines. Except for the experiment with MDA-MB-468,

accuracies and sensitivities tended to be very poor, indicating many false positives

and false negatives. The specificities, or true negative rates, were high as expected

for rare classification. Manual gating performance was thus much poorer than for

HCC1395 cells and it was not followed by visual inspection due to the inordinately

high number of cells that would have needed to be reviewed.

In the case of the MDA-MB-468 model, sensitivity (97.70%) and specificity

(99.31%) were very good, although there were many false positives, leading to low

accuracy (54.23%). Since MDA-MB-231 and MDA-MB-435 cancer cells are small

and round, i.e. with distributions of nuclear are and wiggle very similar to mWBCs,

we expected the poorest results from the mixture models using these two cell lines.

For the experiments with MDA-MB-231, accuracy ranged 5.37%-11.59%, sensi-

tivity ranged 19.60%-26.87%, and specificity ranged 95.44%-99.39%. For MDA-

MB-435, accuracy ranged 4.04%-5.00%, sensitivity ranged 15.18%-46.82%, and

specificity ranged 97.13%-98.07%. The results are poor, with the low accuracies

due to many false positives, and low sensitivities due to many false negatives.

Unfortunately, performance was even worse with MCF7 and T47D. For

the experiments with MCF7, accuracy ranged 0.791%-77.78%, sensitivity ranged

2.74%-44.68%, and specificity ranged 98.54%-99.97%. For T47D, accuracy ranged

0.274%-0.506%, sensitivity ranged 14.63%-21.14%, and specificity ranged 94.07%-

95.59%. The low classification performance with these spiked models may be due

to poor choices for the area and wiggle gates. However, since these cells lines

supposedly had distributions of area and wiggle less like mWBCs, the gates should

have worked better than for MDA-MB-231 and MDA-MB-435.

A possible explanation for this inconsistency may be in how the preliminary

morphology studies were done. As mentioned in Section 2.1, breast cancer cells

were grown as adherent cultures on coverslips prior to fixing. When slides of the

mixture models were prepared, cells were fixed in suspension, then centrifuged as

a monolayer onto slides. When grown on coverslips, MCF7 and T47D cells may

spread out much more so than the other cell lines. When fixed in suspension and

subsequently centrifuged onto slides, they remained spherical and aren’t as flat.
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Table 1.4: Classification performance of manual gating based strictly on nuclear

morphology (area and wiggle). This is done in five other in vitro spiked models.

These cell lines were selected because they were expected to have morphologies

more similar to mWBCs.

Experiment Cell Line Total Cancer Accuracy (%) Sensitivity (%) Specificity (%)

1 MDA-MB-231 149,698 670 5.35 26.87 97.86

2 MDA-MB-231 155,366 653 10.83 19.60 99.32

3 MDA-MB-231 191,920 759 11.59 20.16 99.39

4 MDA-MB-435 425,253 2,827 5.00 15.18 98.07

5 MDA-MB-435 475,732 1,258 4.04 46.82 97.13

6 MDA-MB-468 84,507 696 54.23 97.70 99.31

7 MCF7 14,729 27 50 12.50 99.97

8 MCF7 19,604 64 77.78 44.68 99.97

9 MCF7 39,337 8 57.5 25.56 99.93

10 MCF7 92,933 401 1.97 2.74 99.41

11 MCF7 103,199 314 0.791 3.82 98.54

12 MCF7 106,819 353 7.88 5.38 99.79

13 T47D 101,947 164 0.506 14.63 95.37

14 T47D 107,239 88 0.274 14.77 95.59

15 T47D 107,580 123 0.405 21.14 94.07
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In Figure 1.7, nuclear wiggle is plotted against nuclear area for the other five

in vitro mixture models. With the exception of MDA-MB-468, these cancer cells

are more like mWBCs (lower nuclear area, higher wiggle) than HCC1395 breast

cancer cells.

Interestingly, the graphs for MDA-MB-231 and T47D now appear rather

similar, although T47D cells seem to have a tighter distribution for both area and

wiggle. MDA-MB-435 cells appear to have the smallest standard deviation in area

but have a large standard deviation in wiggle. MCF7 cells have much variation

in their statistical distributions for area and wiggle. In contrast to HCC1395 and

MDA-MB-468, there are no obvious demarcations among singlet mWBCs, doublet

mWBCs, and singlet cancer cells. Since the cells were prepared by cytocentrifu-

gation for these results and were cultured on glass coverslips for Figure 1.2 and

Figure 1.3, this shows that cancer cell morphology depends on how the cells were

prepared.

To summarize this section, manual gating based on nuclear area and nuclear

wiggle classified HCC1395 cancer cells well, but not for some of the other breast

cancer cell lines. While there are still subtle differences in nuclear area and wiggle

between mWBCs and the other breast cancer cell lines, overlap in the tails of

the distributions makes accurate classification based only on linear thresholds of

these two features unlikely. The next step, then, is to explore additional features

in multidimensional space to classify between normal and cancer cells. Moreover,

the classification may be nonlinear and nonlinear, multidimensional classification is

more difficult to visualize. With the wealth of features available, we were motivated

to perform nonlinear classification using additional features.

1.3.4 Automated neural network

Network development with HCC1395 spiked model

To test nonlinear classification, we selected a subset of seven features we

thought a priori might separate the classes. We then trained and tested neural

networks on the HCC1395 spiked model. The seven nuclear features are shown in

Table 1.1 : 1) area, 2) perimeter, 3) wiggle (perimeter/area), 4) integrated intensity
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Figure 1.7: Nuclear area and wiggle for in vitro spiked models. The models used

are consisted of MDA-MB-231, MDA-MB-435, MDA-MB-468, MCF7, and T47D

breast cancer cells in mWBCs and demonstrate much more overlap than for the

HCC1395 cell line (see Figure 1.3). Cancer cells are plotted in grey and mWBCs

are black.
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(which is proportional to the DNA content), 5) standard deviation of the intensity

(which is a measure of contrast), 6) the third central moment of the intensity (which

is a measure of asymmetry, or skewness, of the intensity distribution) and 7) the

fourth central moment of intensity (a measure of ”peakedness”of the distribution).

Based on the literature[11, 30] and initial experiments, we chose a feedforward

network topology consisting of four layers: an input layer with seven features, two

hidden layers (ten nodes and three nodes, respectively), and an output layer with

a single neuron.

Performance statistics for the HCC1395 model are summarized in the first

three rows of Table 1.5 . As explained in Materials and Methods, the neural

networks were trained on 30% of the original data and tested on the remaining

70%. The numbers given for Total Cells and Cancer Cells are thus from that 70%

of the cells. For Data Set #1, performance was mixed. There were 1,013 true

positives, 284 false positives, 5,063 true negatives, and 209 false negatives. It is

interesting to note that performance is worst for the smallest data set (#2) and

best for the largest data set (#3). The poor performance for Data Set #2 may be

due to rarity of cancer cells, i.e. there may simply not have been enough cells (118)

to train the network adequately to distinguish between cancer cells and mWBCs.

Overall, the accuracy range was 43.22%-93.07% (vs. 67.4-93.3 in Table 1.3 manual

gating), the sensitivity range was 30.18%-82.90% (vs. 90.6-98.4 in Table 1.3 manual

gating), and the specificity range was 98.34%-99.79% (vs. 99.7-99.8 in Table 1.3

manual gating). Thus, the sensitivities and specificities (or true positive and true

negative rates, respectively) were comparable to manual gating, with the neural

network classification being substantially less labor-intensive.

Results from Data Set #1 are shown on 2D scatterplots of wiggle vs. area in

Figure 1.8. The top panel is the actual data, with mWBCs in black and HCC1395

breast cancer cells in grey. The middle panels shows the cancer and mWBC sub-

populations the neural network identifies, projected onto wiggle vs. area. The

third panel plots true positives, false positive, true negative, and false positive

classifications in four colors. Such nonlinear separation is impossible with manual

gating using simple linear thresholds.
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Figure 1.8: Wiggle and Area distribution of neural network classified cells. These

results are from the neural network in Experiment #1, Table 1.5. 30% of the data

was used for training. The training set consisted of 524 HCC1395 cancer cells

with 2,291 mWBCs (2,815 cells total). The network was then evaluated with the

remaining 70% of the data, consisting of 1,222 HCC1395 cancer cells and 5,347

mWBCs (6,569 cells total). The top panel shows the actual distribution of cells

in the data with HCC1395 cancer cells as grey and mWBCs as black. The middle

panel shows how the network classifies cells (HCC1395 grey, mWBCs black). In

the bottom panel, performance of classifying cancer cells is given: true positives

(red), false positives (green), true negatives (blue), and false negatives (yellow).
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Network performance with other spiked models

Given the improvement in performance of HCC1395 performance with the

neural network, we next applied the same methodology to train and evaluate neural

networks using data from the in vitro spiked models of the other five cancer cell

lines. Results using these data sets are also shown in Table 1.5 (Data Sets 4-11).

For the two experiments using MDA-MB-231, the accuracy range was 40.50%-

60.33% (vs. 5.35-11.59 in Table 1.4 manual gating), the sensitivity range was

34.48%-36.20% (vs. 19.6-26.87 in Table 1.4 manual gating), and specificity range

was 99.16%-99.51% (vs. 97.86-99.39 in Table 1.4 manual gating). Thus, all three

performance measurements improved with the neural network. With the MDA-

MB-435 model, the accuracy was 20.0% (vs. 4.04-5.0 in Table 1.4 manual gating),

the sensitivity was 21.05% (vs. 15.18-46.82 in Table 1.4 manual gating), and the

specificity was 99.99% (vs. 97.13-98.07 in Table 1.4 manual gating). Thus, the

accuracy and specificity improved and there was not enough data to evaluate the

change in sensitivity. With the MDA-MB-468 model, the accuracy was 85.49% (vs.

54.23 in Table 1.4 manual gating), the sensitivity was 55.65% (vs. 97.7 in Table

1.4 manual gating), and the specificity was 99.92% (vs. 99.31 in Table 1.4 manual

gating. Thus, the accuracy and specificity improved and the sensitivity worsened

with the neural network; manual gating had many more false positives, while the

neural network had significantly fewer false positives and more false negatives.

With MCF7, the accuracy was 0%-23.31% (vs. 0.8-77.78 in Table 1.4 manual

gating), sensitivity was 0%-6.75% (vs. 2.74-44.68 in Table 1.4 manual gating), and

specificity was 100% (vs. 99.54-99.57 in Table 1.4 manual gating). With T47D,

accuracy was 0-50.0% (vs. 0.27-0.5 in Table 1.4 manual gating), sensitivity was

0-0.18% (vs. 14.63-31.14 in Table 1.4 manual gating), and specificity was 100% (vs.

94.1-95.59 in Table 1.4 manual gating). Thus, while the specificity improved for

both MCF7 and T47D cell lines, the accuracies worsened for MCF7 and improved

for T47D and the sensitivities worsened for both MCF7 and T47D. Again, the

classification performance was very poor for the MCF7 and T47D cells.

These neural networks may have been overtrained, especially with Data

Sets 9 and 11, where there were too few cancer cells present in the training sets (in
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terms of absolute numbers). The neural network may have trained on intracellular

variations among the predominantly mWBCs instead of the cancer cells. As a

result, the network might have learned better to correctly classify mWBCs, rather

than to differentiate between cancer and non-cancer cells.

Neural network trained on a mixture of all six cancer cell lines

To test the hypothesis that the neural network was over training on mW-

BCs, we created a single, unified neural network trained using a pool of 30% of

each of the in vitro mixture model experiments from all six cell lines (11 in all, as in

Table 1.5 ). After training was complete, performance statistics were gathered by

testing the neural network on the remaining 70% of each of the individual spiked

data sets. Table 1.6 shows a comparison of the results of this more robust network

with the results from the individual neural networks shown in parentheses. While

performance was not equal for each of the breast cancer cell lines, it improved

in many cases. With MCF7, the accuracy was 5.06%-22.22% (vs. 0%-23.31% in

Table 1.5 with neural networks trained only with MCF7 spiked data), sensitiv-

ity was 0.09%-0.98% (vs. 0%-6.75% previously), and specificity was 99.93%-100%

(vs. 99.91%-100% previously). For T47D, the accuracy was 27.03%-100% (vs.

0%-50.00% with neural networks trained only with T47D spiked data), sensitivity

was 0.18%-1.01% (vs. 0%-0.18% previously), and specificity was 99.99%-100% (vs.

100% previously).

For MDA-MB-435, the unified network performed significantly better. Ac-

curacy was 62.74% (vs. 20.00% previously), sensitivity was 84.65% (vs. 21.05%

previously), and specificity was 100% (vs. 99.99% previously). For MDA-MB-

231, accuracy was 48.21-67.19% (vs. 40.50%-60.33% previously), sensitivity was

3.37%-4.12% (vs. 34.48%-36.20%), and specificity was 99.46%-99.96% (vs. 99.16%-

99.51% previously). The network has fewer false positives but many more false

negatives, explaining the poor sensitivity.

The unified network’s performance for HCC1395 showed fewer false posi-

tives but more false negatives. Accuracy was 80.20%-96.88% (vs. 43.22%-93.07%

with networks trained only with HCC1395 spiked data), sensitivity was 18.34%-
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77.39% (vs. 30.18%-73.93% previously), and specificity was 96.63%-99.98% (vs.

94.69%-99.79% previously). The single, unified neural network appeared to have

sacrificed some performance for the cells at the extremes small (MDA-MB-231)

and large (HCC1395) cancer cells. On the other hand, since it had a more diverse

training set, the network didn’t have a problem with overtraining. Where previous

neural networks had 0% accuracy and sensitivity (Data Sets #9 and #11), the

unified network showed improvement.

1.4 Discussion

Pathologists routinely use nuclear morphology while analyzing histological

tissue sections to diagnose cancer. For example, pathologists often look at nuclear-

to-cytoplasmic volume ratio and changes in cellular texture and shape as indicators

of malignant transformation. Here, we tested whether nuclear morphology might

be applied on a cell-by-cell basis to classify cancer cells in fluorescent microscopy

images.

In observing images of cell nuclei from different breast cancer cell lines and

comparing them with nuclei from mononucleated white blood cells, there were

differences in the distributions of nuclear area and nuclear wiggle. It was hypoth-

esized that these differences could be exploited to classify between cancer and

normal using nuclear morphology alone. A simple model system using HCC1395

breast cancer cells spiked among normal mWBCs was used to develop classification

methods since HCC1395 cells were very dissimilar to mWBCs and relatively easy

to identify. Manual gating with linear thresholds on area and wiggle provided good

initial results with HCC1395, but when similar gating strategies were used for on

spiked model with the other breast cancer cell lines, performance was worse. Since

these other cell lines were chosen for morphologies more similar to mWBCs, they

were expected to provide a greater challenge.

To further test the ability to CTCs based on nuclear morphology, additional

morphometric and fluorometric features were chosen and it was hypothesized that

these additional features and nonlinear supervised classification using neural net-



32

works would improve performance. We trained and evaluated a fully-connected,

feed-forward neural network architecture that used seven features thought a pri-

ori to be useful for classification. We tried neural networks trained specifically

on data from each spiked model, as well as a unified neural network trained with

data pooled from model experiments using all six cell lines. The individual neural

networks had poor performance, possibly due to overtraining or over-fitting of the

data. That is, because most of the spiked data consisted of mWBCs, the networks

were learning to identify the variations among mWBCs rather than the differences

between normal and cancer cells. The unified network on pooled cells from all six

cell lines may have partially overcome this problem because its training data was

more diverse. The downside is that classification performance decreased for the

largest (HCC1395) and smallest (MDA-MB-231) breast cancer cell lines.

Detecting and classifying rare cancer cells in blood is a challenge. The

results presented here, however, are promising and lead us to believe that clas-

sification using morphology is worth exploring further. Additional insights may

be gained by applying more advanced and sophisticated methods. We assumed

our input feature set would be effective for classification. Systematic feature se-

lection should be applied to a large set of nuclear features to determine whether

performance can be improved by better feature selection. Artificial enrichment of

the training data (since there are far many more mWBCs than cancer cells) or

increased error-weighting of false negatives vs. false positives may also improve re-

sults. Other unsupervised methods such as principal components analysis (PCA)

and support-vector machines (SVM) may also improve performance. At the very

least, morphology may be useful as an adjunct to gene expression biomarkers for

detection of rare cancer cells in blood.
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Table 1.5: Neural network performance (a priori feature set) trained and evaluated

for in vitro spiked models. Each experiment represents a different neural network.

Training was done on 30% of the data set. Total Cells and Cancer Cells refer to

the remaining 70% of the data comprising the testing sets.

Dataset Cell Line Total Cells Cancer Cells Accuracy (%) Sensitivity (%) Specificity (%)

1 HCC1395 6,569 1,222 78.10 82.90 94.69

2 HCC1395 4,211 169 43.22 30.18 98.34

3 HCC1395 50,651 1,327 93.07 73.93 99.79

4 MDA-MB-231 51,515 801 40.50 36.20 99.16

5 MDA-MB-231 347,889 7,302 60.33 34.48 99.51

6 MDA-MB-435 115,612 19 20.00 21.05 99.99

7 MDA-MB-468 59,155 487 85.49 55.65 99.92

8 MCF7 212,066 815 23.31 6.75 99.91

9 MCF7 278,729 2,198 0 0 100

10 T47D 47,723 554 50.00 0.18 100

11 T47D 221,736 988 0 0 100
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Table 1.6: Performance of a single, unified neural network for in vitro spiked

models. A single neural network was trained and tested using a pool of all the

data. Similar to before, the training set consisted of 30% of the cells from each data

set, while the testing set consisted of the remaining 70%. Results in parentheses

are for the neural network trained on that data set alone. Up and down arrows

indicate relative change in performance.

Dataset Cell Line Accuracy (%) Sensitivity (%) Specificity (%)

1 HCC1395 96.88 (43.22) 4 18.34 (30.18) 5 99.98 (98.34) 4
2 HCC1395 80.20 (78.10) 4 59.66 (82.90) 5 96.63 (94.69) 4
3 HCC1395 91.29 (93.07) 5 77.39 (73.93) 4 99.71 (99.79) 5
4 MDA-MB-231 48.21 (40.50) 4 3.37 (36.20) 5 99.94 (99.16) 4
5 MDA-MB-231 67.19 (60.33) 4 4.12 (34.48) 5 99.96 (99.51) 4
6 MDA-MB-435 62.74 (20.00) 4 84.65 (21.05) 4 100 (99.99) 4
7 MDA-MB-468 84.65 (85.49) 5 77.00 (55.65) 4 99.88 (99.92) 5
8 MCF7 5.06 (23.31) 5 0.98 (6.75) 5 99.93 (99.91) 4
9 MCF7 22.22 (0) 4 0.09 (0) 4 100 (100)

10 T47D 100.00 (50.00) 4 0.18 (0.18) 100 (100)

11 T47D 27.03 (0) 4 1.01 (0) 4 99.99 (100) 5



Chapter 2

Improving Classification by

Enriching the Cytometric Feature

Space

2.1 Introduction

A classifier makes decisions based only on the information it is fed. If the

data inputed into the classifier contains relatively few information about the class

of the cells to be sorted, the classifier fails to detect and utilize the class information

as it remains hidden in the plethora of other irrelevant data. A typical cytometry

dataset can be defined as a two-dimensional matrix of numerical data, with features

in the columns and cells in the rows. We hypothesize that this problem can be

solved by enriching the class information content in both of these dimensions.

First, not all features fed into the classifier contain useful class information.

Therefore, it is useful to systematically identify and eliminate those features that

do not contain significant class information and to retain those that do. We propose

three feature selection methods to perform this task and aim to briefly compare

the resultant feature sets.

Second, if a dataset contains very few cells that belong to one of the two

classes, the error due to their misclassification will not be large enough to affect the

35
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training. Therefore, it is useful to train the classifier on a set that has a significant

number of cells belonging to all classes to be identified. However, the problem of

detecting CTCs in blood has one class that is inherently rare. To remedy this, the

traing set is enriched in a supervised manner by removing WBCs, which lack the

gold standard stain. Further Principal Component Analysis (PCA) is explored as

a classifier that assumes the variance in feature space of an enriched class is chiefly

due to the presence of multiple classes.

2.2 Features Selection

Not all features fed into the classifier carry significant information regarding

the class of the cells. Such features introduce unnecessary noise into any classifier

and can further deter classification by confusing the classifier. These features

should be systematically identified and removed from the final feature set that is

used for training of the classifier.

2.2.1 Features Selection Methods

Leave One Out Cross Validation (LOOCV)

A network with 17 inputs was created and a feature set with all 17 available

features (features in Table 4.2 with percentile distribution measures excluded)

were used to train the neural network with %30 of the cells to 20000 epochs or

minimum error gradient of −1×10−20, whichever occurred first. The classification

performance was measured on the unseen rest (%70) and this performance was

recorded as the reference performance. Next, a series of 17 feature sets were

prepared in a way that each set lacked one of the available 17 features. A neural

network was constructed with 16 inputs and was trained with each of the feature

sets using the same training parameters as the reference training. To compare

the performance of the network trained on data lacking each feature with the

reference performance a new measure J was devised as shown in Equation (2.1).

We described this measure as one minus the ratio of total false detections of the

subject network to that of the reference network which allows J to approach +1
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when performance improves by the removal of the feature and grows increasingly

negative when the performance is compromised by the removal of the feature.

Therefore, a negative J value indicates the removed feature was important in the

classification–the performance was worsened by its removal–and a zero or positive

J value indicates a feature that is redundant or unnecessary in the classification

decision making–its removal led to improved performance.

J = 1− (FP + FN)FeatureEliminated

(FP + FN)AllFeatures

(2.1)

Traditional Weight Observation

In a neural network such as the one used here, the input to a neuron is the

linear combination of the outputs of the previous layer of the input feature for the

first layer. After training the weight for the input significant to the classification

will therefore have a large magnitude. During the training this weight should

only stably increase rather than fluctuating uncontrollably. Hence we hypothesize

that a weights corresponding to a significant input feature should exhibit a high

magnitude and low rate of change.

To observe the weight changes during training, two methods were devised.

First, we constructed a network with the four layers common to the other networks

used here Figure 2.1. The network was trained with the the given feature set for

10,000 epochs. The weight of the connections between the input and first hidden

layer was observed and recorded during training. The rate of change of these values

was subsequently calculated. After the training was done, the sum of the absolute

value of the weights (Equation (2.2)) and the sum of the absolute value of the rate

of change of the weights (Equation (2.3)) were calculated and recorded for each of

the connections that correspond to each feature. The weights change abruptly in

the beginning of the training (from random initialization values towards trained

values). Therefore, the gradients are summed only from iteration 1000 to the end

of training and the beginning of training is excluded form the sum. Features with

high sum absolute value of weight and low sum weight gradient were chosen to

construct a new feature set.
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T∑
t=1

m∑
i=1

| Xi,t | (2.2)

T∑
t=1000

m∑
i=1

| dXi

dt
| (2.3)

Pseudo-Layer Weight Observation

A second network architecture, shown in Figure 2.2, was made to create

a single connection weight per input. In this architecture, a pseudo-layer was

introduced and connections were made on one-to-one bases between the pseudo

layer and the input layer. The weights of these connections were observed and

recorded as the network was trained on the full feature set. Sum of the absolute

values of the weights and the sum of the absolute value of the rate of change

of the weights were calculated and reported according to Equations (2.4) and

(2.5). The weights change abruptly in the beginning of the training (from random

initialization values towards trained values). Therefore, the gradients are summed

only from iteration 1000 to the end of training and the beginning of training is

excluded form the sum. As before, features with high sum absolute value of weight

and low sum weight gradient were chosen to construct a new feature set.

T∑
t=1

| Xt | (2.4)

T∑
t=1000

| dXt

dt
| (2.5)

2.2.2 Features Selection Results and Discussion

Leave One Out Cross Validation (LOOCV)

Table 2.1 illustrates J values found for each of the features. Features with a

negative J were selected and a new feature set using these features was constructed.
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Figure 2.1: Network architecture used for Traditional Weight Observation. The

network is consisted of n input neurons, each connected to a feature and m neurons

in the second layer. Note the Input Weight connections shown in orange.
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Figure 2.2: Network architecture used for Pseudo-Layer Weight Observation. The

network is consisted of n input neurons. Note the additional input layer and the

Input Weight connections shown in orange.
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Table 2.1: Relative Performance (J) for features tested. Negative values indicate

significant features for which the removal worsened the performance. A complete

description of each feature is provided in Table 4.2.

Feature Eliminated J

Integ gs 0.10

CM3**1/3 0.03

Width 0.02

Area 0.02

CM4**1/4 0.00

Height -0.02

IQ range -0.02

Variance -0.02

Wiggle -0.07

CM4 -0.11

AbsDev -0.16

Perimeter -0.20

CM3 -0.25

Area**1/2 -0.28

Aver gs -0.28

Wiggle Nrm -0.39

StdDev -0.46

Traditional Weight Observation

Figure 2.3 illustrates the sum of absolute value of the training weights in

the first layer as described in Equation (2.2) for 10,000 epochs of training. While

the values change abruptly in the beginning of the training, they soon settle to

their respective levels. This illustrates the training behavior of the neural network

and its apparent convergence to the point where classification error is left relatively

unchanged. Also noteworthy is the large value corresponding to the CM4 feature.

At the end of the training, most features seem to have values in the range of 0-500,
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CM4 has a relatively large value of 5000.

Figure 2.4 illustrates the sum of absolute value of the gradient of gradient

of weights in the input layer as described in Equation (2.3). The abrupt change in

the weights in the first 1000 epochs is visible and indicative of weights changing

from their random initialized values to values that accommodate low classification

error. This is the reason why we chose to exclude this region from the summation

in Equation (2.3).

Once both of the weights and their gradient is summed for the training

period, the resultant values are used to select significant features. Figure 2.5

illustrates the plot of the two measures given in Equations (2.2) and (2.3). A

line threshold is applied to select a subset of features with high training weight

magnitude and a stable weight value throughout the training.

Pseudo-Layer Weight Observation

Figure 2.6 illustrates the absolute value of the training weights in the pseudo

layer structure (left) as described in Equation (2.4) and its cumulative sum (right).

The values are found for training the network for 10,000 epochs. Conveyance of

each weight to its corresponding trained value is apparent in the left panel of the

figure. The cumulative sum of those values are then plotted for each epoch and

are illustrated on the right. The final cumulative sum (at epoch 10,000) is used as

one of the criteria for feature selection.

Figure 2.7 illustrates the absolute value of the weight gradient of each fea-

ture node in the pseudo layer (left) as described in Equation (2.5) and its cumu-

lative sum throughout training (right). The large values in the beginning of the

training are indicative of the rapid changes in the weights from their randomly

initialized values towards their trained target. As mentioned before, this is why

the first 1000 epochs are excluded form summation in Equation (2.5).

The results at the end of training are recorded and plotted in Figure 2.8.

This figure illustrates the plot of the two measures given in Equations (2.4) and

(2.5). A line threshold is applied to select a subset of features that with correspond-

ing nodes that have high weight magnitude and a stable weight value throughout
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Figure 2.3: Plot of sum absolute value of training weights in the input layer of the

traditional network structure. This value, as defined in Equation (2.2) is plotted

for each feature node and as a function of the epoch (iteration) of training.



44

Figure 2.4: Plot of sum absolute value of the gradient of training weights in the

input layer of the traditional network structure.This value, as defined in Equation

(2.3) is plotted for each feature node and as a function of the epoch (iteration) of

training.
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the training.

Summery of Feature Selection Results

From the three methods above, three feature sets were constructed as illus-

trated in Table 2.2. In confirmation of our preliminary studies, a form of area and

wiggle (ratio of perimeter/area) appeared in all three feature sets. Interestingly,

area was replaced by square root of area in all three feature sets. A significant

number of features repeated in two feature sets. The performance improved signif-

icantly for most of the cell lines when these reduced feature sets were used in lieu

of the full feature set (Figure 2.9, pseudo-layer weight observation not shown).

Table 2.2: Feature sets constructed by weight observation and leave one out cross

validation methods. The number in the parentheses indicate the number of sets in

which the Feature is represented.A complete description of each feature is provided

in Table 4.2.

Traditional Weight

Observation

Pseudo-Layer Weight

Observation

LOOCV

AbsDev (2) Area**1/2 (3) AbsDev (2)

Area**1/2 (3) CM3**1/3 (2) Area**1/2 (3)

Aver gs (2) Ineg gs (2) Aver gs (2)

CM3**1/3 (2) IQ range (1) CM3 (1)

CM4**1/4 (1) Variance (2) Perimeter (1)

Integ gs (3) Wiggle Nrm (3) StdDev (1)

Variance (3) Wiggle (1) Wiggle Nrm (3)

Wiggle Nrm (3)

2.3 Training Set Enrichment

As mentioned in the introduction of this chapter, one of the aims of the

study is to enrich the training feature set in both the features dimension and the
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Figure 2.5: Scatter plot of feature evaluation results based on the traditional net-

work structure.

Figure 2.6: Plot of the absolute value of the weight of each feature node in the

pseudo layer structure (left) and its cumulative sum throughout training (right).

The values plotted in the right panel are defined in Equation (2.4) from which Xt

is plotted on the left. Both values are plotted as a function of epoch (iteration) of

training.
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Figure 2.7: Plot of the weight gradient of each feature node in the pseudo layer

structure (left) and its cumulative sum throughout training (right). The values

plotted in the right panel are defined in Equation (2.5) from which dXt/dt is

plotted on the left. Both values are plotted as a function of epoch (iteration) of

training.

Figure 2.8: Scatter plot of feature evaluation results based on the pseudo-layer

network structure.
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Figure 2.9: Bar graph of relative performance based on numbers of false negatives.

Results normalized with respect to full network without enrichment. Generally,

without enrichment (right side of each red bar), feature selection improved the

performance or left it unchanged; with the exception of only three experiments

out of fifteen. Regardless of feature set, however, enrichment of training set to a

1:10 ratio (left side of each red bar) decreased false negatives; with the exception

of only one experiment out of twenty. The original concentration of cancer cells in

the training set is shown in the parenthesis next to the name of each cell line.
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cells dimension. In our early studies of neural networks, we observed that the

performance of the classifier is directly dependent to the concentration of cancer

cells in the training set. This led us to hypothesize that if the training set repre-

sented the cancer cells better, the trained network would be able to detect them

with better performance. Hence we designed an experiment in which WBCs are

taken out of the training set data to artificially increase the concentration of cancer

cells to 1:10. The neural network trained on this set was then applied to unseen

mixture data with the original cancer cell concentration and the performance was

recorded (Figure 2.9). As expected the enriched training set greatly improved the

classification performance for most cell lines and experiments. This method, in

combination with feature selection described above improve the performance of

the neural network classification by enriching the feature space with class data in

both the features and cells dimensions.

2.4 Classification with PCA

Designing the studies related to training feature space enrichment led us

to further delve into the study of the statistical richness of the training feature

space. For example, an interesting question that rose was whether the variance

of the feature space is dominated by the class data, or contrary by the internal

variation in the features of each class. In other words, is the variance of features

in each class larger than that of the combined classes? The significance of this

question lies in the fact that if the variance is chiefly due to the existence of

multiple classes, thresholding the high variance dimensions of the space could be

used as a classification mean.

Briefly, PCA can be used to find the high variance components of the feature

space. A threshold can then be applied to those high variance components to

separate the two classes. Further, unlike neural networks that are supervised and

require ground truth data for training, such a method is unsupervised and only

requires a set for which the variance is mainly due to the existence of two classes.
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2.4.1 PCA Methods

To test the application of PCA for the classification of cancer cells, we

designed an in vitro breast cancer and an in vivo melanoma mouse model.

in vitro Breast Cancer Model

A spike model was created using a mixture of HCC1395 breast cancer cells

in human WBCs as defined in Section 1.2.2 and cytometric data was obtained as

described. Matlab (Mathworks, MA, USA) was used as a the platform to apply

PCA on the cytometric data. The resultant components were thresholded using an

empirical hyperplane and performances were calculated with respect to the ground

truth staining.

in vivo Melanoma Mouse Model

The B16F10 human melanoma is a cell line used extensively in animal mod-

els of aggressively metastasizing melanoma. [9, 8, 103] SW1 melanoma cells grow

less aggressively than B16F10 and contain an N-ras mutation within codon 13

(Gly 13 Asp due to GGT to GAT or ACC to ATC mutations). Dr. Ze’ev Ronai’s

group transfected both of these cell lines to stably express GFP for in vivo animal

studies. After subcutaneous injection of 105 cells into mice, tumors are palpable

after two weeks. Mice were sacrificed at roughly one week intervals and blood

collected by direct cardiac puncture. During pilot experiments presented here, a

few mice were euthanized by inhalation 16 of 100% carbon dioxide gas or by an

overdose of tribromoethanol (Avertin R©) injected into the peritoneal cavity. Total

blood volume in a mouse is approximately 6-8% of its body weight [44]. The mice

used in our studies were typically 10-15g, so we expected to collect between 0.6-

1.2 ml blood. The collected blood was then centrifuged and the layer containing

the WBCs and cancer cells were extracted, scanned and analyzed as described

in Section 1.2.2. The cytometric data obtained was subjected to PCA in Matlab

(Mathworks, MA, USA). After applying an empirical hyperplane threshold the

performances were calculated with respect to the GFP ground truth. For this ex-

periment, the selected subpopulation was again subjected to PCA and thresholded
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and performances were once again calculated.

2.4.2 PCA Results and Discussion

in vitro Breast Cancer Model

The first three components of PCA applied to HCC1395 cells spiked into

human blood are shown in Figure 2.10. The classification performance was eval-

uated using the decision plane (yellow) in the right panel of Figure 2.10 and the

performance results are shown in Table 2.3. For preliminary data, this is very

encouraging as it indicates the likelihood that unsupervised PCA will potentially

perform comparably to neural networks. The PCA method can be converted to a

fully unsupervised method by implementing clustering algorithms (e.g. k-means)

to the PCA transformation of enriched data. A decision plane calculated based on

the resultant clusters can then be applied to PCA transformation of unseen data

for class assignemnt.

Although a spiked model may be less realistic than an in vivo model, its

simplicity is an advantage. Preparing samples from an animal model costs more

and takes significantly longer than an in vitro model. With the latter, we were

able to improve our sample preparation techniques, test and evaluate our image

processing and develop and experiment with our classification algorithms before

moving to in vivo models. After developing the current classification techniques

for an in vitro model, it is straightforward to test and modify it to work for in vivo

models.

in vivo Melanoma Mouse Model

The first three components of the PCA analysis form the mouse melanoma

model is shown in Figure 2.11. A reasonable separation may be created by a

threshold along just the first principal component. See Views (B) and (C) in

Figure 2.11. Thresholding at zero gives 13.67% accuracy, 68.87% sensitivity, and

98.75% specificity. Applying a second PCA to this subpopulation to further pu-

rify this set (e.g., distinguish between melanoma cells and WBC doublets), gives
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Figure 2.10: PCA components of the in vitro breast cancer model.. PCA linearly

maps features of the spike model into components that have maximum variance

(left). A decision hyperplane is applied to assign class to each datapoint (right).

Table 2.3: Performance of PCA classification on the in vitro breast cancer model

containing hWBCs and HCC1395 cells.

Accuracy (%) 72.9%

Sensitivity (%) 92.1%

Specificity (%) 98.6%

True Positives 223

True Negatives 5691

False Positives 83

False Negatives 19
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25.87% accuracy, 65.84% sensitivity, and 99.46% specificity. Detailed performance

statistics are given in Table 2.4.

These preliminary animal studies highlight important considerations in or-

der to move beyond the in vitro models. We see that cancer cells have different

morphology when in the circulation. As the cancer cells travel through blood, they

are subjected significant mechanical disruption due to the shear forces of blood flow

and the strains of the tiny vessels in the microvasculature. Such forces eliminate

the very large cancer cells. Those that remain will have size characteristics that

are similar to WBCs, as WBCs too survive circulation. This toughens the task

of classification of in vivo CTCs using morphology. With the above example, by

applying PCA on an in vivo model and finding performances, we were able to

illustrate that morphology alone could still be used for classification of in vivo

cancer cells. With the given methods developed, we are now able to investigate

interesting questions regarding the process of metastasis. For example, we can

study whether there exists a correlation between numbers of CTCs detected and

disease progression.
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Figure 2.11: PCA components of the in vivo melanoma mouse model. Cancer cells

are plotted in red while WBCs are plotted in blue according to the GFP ground

truth. The three dimensional view of all three components is shown in the top-left

panel. The rest of the panels are two-dimensional projections of PCA data along

the direction illustrated in the three-dimensional plot. These plots illustrate that

there are still many melanoma cells among the main cluster of WBCs.
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Table 2.4: Classification performance of sequential PCA application on the in

vivo melanoma mouse model. The cell line used was melanoma B16F10. The

performance of the second PCA is calculated with respect to the original data set

(i.e. after applying two PCAs sequentially).

First PCA Second PCA

Accuracy (%) 13.67 25.87

Sensitivity (%) 68.87 65.84

Specificity (%) 98.75 99.46

True Positives 1637 1565

True Negatives 819064 824921

False Positives 10342 4485

False Negatives 740 812



Chapter 3

Microscope Cell Sorting

To study rare circulating tumor cells in blood, it is not merely sufficient

to detect and locate them on a microscopy slide. Ideally, these cells of interest

should be physically isolated with high purity to enable further biological studies

such as Polymerase Chain Reaction (PCR) for specific genes or microarray studies

of the expressional profile of the cells. The current cell-separation technologies

developed for diagnostic or research applications include fluorescence-activated cell

sorting (FACS) and magnetic-activated cell sorting (MACS). Both methods offer

throughputs (>10,000 cells/sec) that surpass the requirements of our application

of interest [85, 86]. However, both of these methods lack the purity and sensitivity

that is required in an ultra-rare model such as that of circulating tumor cells. At

best, custom single-cell FACS machines can sort samples as rare as 1 in 10,000

cells up to %99 purity on [85]. This specification renders the current FACS- and

MACS-based separation methods insensitive for sorting rare cells in blood that

can be as rare as 1 in 1,000,000. Since the separation technique to be developed

had to follow classification methods that are based on cytometric measurement

of microscopy images, one requirement of the technique should be its ability to

collect cells directly off of a microscope slide. One such technique that meets this

requirement is laser microdisection that was originally designed for isolation of

regions of interest from tissue sections [45]. This commercially available method,

however, requires a dedicated microscope base or extensive customization of the

optics of an existing microscope. Because of this limitation and given the practical

56
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and financial requirements, using laser microdisection was not a viable option.

Therefore, an inexpensive and ubiquitous technique was needed to manipulate and

isolate individual cells which could be set up on any microscopy platform.

3.1 Methods

3.1.1 Mechanical Setup

To collect the cells, a glass micropipette with the inner diameter of 20-30

microns (Humagen Fertility Diagnostics, VA, USA) was attached to a micropipette

collar which in turn was connected via rigid plastic tubing to a CellTram Vario

Microinjector (Eppendorf, Germany). The microinjector is a syringe that has a

finely controlled plunger which is turned, rather than pushed or puled, to displace

fluid content. The specifications of the microinjector allows for 960 nL volume

transfer per revolution and a minimum volume transfer of 2 nL. The common sizes

of the cells to be collected was estimated at 30 microns or a volume of 0.1131 nL

assuming a spherical shape. The microinjector’s smallest volume transfer of 2nL

or 20 times the volume of an average cell. This was thought as a good initial

guess for the magnitude of the volume that would need to be aspirated in order

to detach the cell from the glass surface of the coverslip. The microinjector was

filled with oil. The microinjector was setup on an Eidaq100 High Throughput

Microscope (Q3DM, San Diego, USA) to enable automated rare cell detection

and retrieval on the same instrument. A metal post was used to raise and hold

the micromanipulator at the hight necessary to reach the stage of the Eidaq100.

The Eidaq100 system is controlled via its hardware control suite Cytoshop (Ver

2.0, Beckman Coulter, USA) that enables acquisition as well as segmentation and

cytometric analysis of the acquired images.

3.1.2 Computer Control Scheme

The system was automated to lift the glass micropipette, navigate it in the

horizontal plane and to aspirate to collect cells. The general schema of the control
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system is illustrated in 3.1.

Figure 3.1: Control scheme for automation of the cell isolation system.

Automation of the Syringe

The CellTram Vario Microinjector offers a coarse control and a fine control

for the aspiration of its content. The fine knob allows for aspiration resolution

of up to 960 nL/revolution. This knob was connected via a joint shaft connector

to a stepper motor (Vexa, USA) (Figure 3.2). LabView (Version 8.0, National

Instruments, USA) was used to control the stepper motor. A LabView Virtual

Instrument (VI) was made along with custom controller functions to communicate

with the stepper motor (Figure 3.2). After some experimentation, the velocity of

the stepper motor was set to 20,000 steps/sec. A VI, called CellTramControl.vi

was designed to perform the aspiration at a set stepper size, velocity and number

of steps every time it was invoked.
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Automation of the Micromanipulator and the Stage

A Sutter MP-281 (Sutter Instruments, California, USA) micromanipulator

and controller combination unit was used to navigate the glass micropipette in

three axes. The MP-281 unit is comprised of the three-axis kinetic head, a three-

axis rotary optical encoder for manual operation and a control box. The kinetic

head has a moving plate with a dovetail interface to which an instrument collar

is attached. The dovetail mounting allows for precise adjustment of the angle of

attack for the instrument collar. For this study, we used the instrument collar

provided with the CellTram Vario microinjector (Figure 3.4). A LabView VI,

MP281Control.vi, was written for basic control of the MP-281 using serial interface

(Figure 3.5). Functions were made to calibrate the micromanipulator upon startup

and to navigate to desired positions during each call.

Stage automation was achieved by accessing the National Instrument con-

trol board inside the Eidaq100 using. A VI named StageControl.vi was written to

navigate the stage to a given x and y position. Positions of cells were obtained

from segmentation of nuclear images in CytoShop. An offset was introduced for

each direction to account for differences in calibration. The offset was by moving

the stage to a given cell and verifying the position of the cell by aligning it to the

center of the field of view through the eye-pieces. This offset was found after each

scan and was part of the procedure for switching to retrieval mode.

Collection Sequence

LabView VIs, to control the stage, syringe and the micomanipulator, are

used to make collection of cells easy. The following is a sequence of events generally

followed in an experiment: 1) The slide was scanned and analyzed using Cytoshop

(Ver 2.0, Beckman Coulter, USA) software. A list of nuclear coordinates was

generated. 2) Cytoshop is terminated and the Automated Sequence LabView VI

was launched. 3) The desired cell is identified under the eyepieces and the stage

is moved using StageControl.vi interface to bring the cell close to the center of the

field of view. An offset can be introduced here if the desired cell is not positioned

in the center of the field of view. 4) The micromanipulator, which was previously
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centered at the center of the FOV, is lowered until the tip touches the cell. 5)

CellTramControl.vi is used to aspirate the cell, while observing the cell carefully

to ensure it is detached from the substrate and is sucked into the micropipette.

6) If the cell remains attached, step 3 should be repeated until successful. 7) The

micromanipulator is lifted a few tens of microns while still keeping the tip under

the surface of the liquid surface. 8) At this point, another cell can be collected

by starting at step 1. Once the collection is finished, the direction of the Vexa

stepper motor can be reversed to push out the collected cells into a new container

for storage or culture. Also, the tip can be broken into a centrifuge tube and cell

can be lysed directly for biological experiments such as microarrays.

3.2 Proof of Concept Experiment

3.2.1 Experimental Design

A proof of concept experiment was designed to show that the retrieval

processes works as intended. The criteria for success in the experiment is to visually

confirm that cells are collected in the micropipette. To do this, we follow the steps

presented in 3.1.2 to collect fluorescently-labeled cells.

3.2.2 Cell Preparation

Multiple cell lines, most prominently 3T3 and SW1, were used for testing

and validation of the system. Cells were fixed with 4% paraformaldehyde for

1 hour, then counterstained with DAPI for fluorescent imaging. Adapted from

Hamada[39], the preparation of DAPI solution consisted of 75ng/ml DAPI, 10nM

Tris, 10nM EDTA, 100nM NaCl, and 2% 2-mercaptoethanol. The fixing and

staining were done after live cells were centrifuged onto a single-chamber Lab-Teck

IITMChambered Coverglass (Cat#155360, Nunc, Thermo Scientific, USA). The

DAPI solution was kept in the chamber and not washed away to compensate for

the effect of photobleaching throughout the experiment. The chamber was then

set in the stage insert of the Eidaq100.



61

3.2.3 Results

Scanning, analysis and collection of cells were done according to the se-

quence previously described. After timing the collection of about 50 cells, the

throughput of collection was found to be 20 cells/sec which does not include

scanning, analyzing and calibration time. In a separate run, after some cells were

collected into the glass micropipette tip, the tip was brought into focus and the

transmitted light source was turned off. The tip was viewed under fluorescence

setting for DAPI and an image was captured. Figure 3.6 shows the tip of the mi-

cropipette and cells that are collected. The cells are DAPI-stained and hence their

nuclei is visible in the image. Under fluorescent light, the tip is only visible due

to the scattering of fluorescent signal from cells and perhaps autofluorescence of

the glass. Therefore, the grayscale image in Figure 3.6 is inverted and its contrast

adjusted to make the tip more visible. The few cells collected in the tip of the

pipette are also visible. As more cells are collected, the cells form a line inside the

lumen of the pipette.

3.3 Discussion

Since the selection of cells in this project is based on morphology quan-

tified from microscopy images, the method desired here was one that could be

implemented directly on a microscope. Most of the currently available microscopy

specimen collection methods are laser-based. For example, laser microdissection

uses a high powered through-the-lens laser beam to cut the area around a desired

region and physically catapult the region off of the slide. Such methods require a

dry sample prepared on special substrates which may interfere with the quality of

collected specimen for down-stream testing. These methods also require extensive

customization of the optical instrument to implement the laser light path, control

the laser and physically collect samples. This makes their implementation both

expensive and intrusive. The method proposed here uses very few components that

are inexpensive and off-the-shelf. Other than for controlling the stage, the method

proposed here does not interface in any way with the microscope. Therefore, the
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system is flexible for implementation onto any microscopy system with minimal

customization.

As compared with the laser-based methods, the method designed here has

inherently lower throughput as it requires some user supervision and control for

collection of each cell. As a trade-off, however, the system allows for visual verifi-

cation of cells collected and therefore can be potentially very specific and sensitive

in collecting a valuable subpopulation of cells. Overall, the system described here

is an inexpensive and easily implementable system for semi-manual collection of

cells that could be further automated for better throughput.
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Figure 3.2: Fluidic setup of the microscope cell sorter. The CellTram Vario is

shown coupled with a Vexa motor.

Figure 3.3: Screenshot of the VI used to control the syringe setup.
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Figure 3.4: The kinetic plate setup of the microscope cell sorter. The dovetail (A)

and an instrument collar attached (B) is shown. The attached glass micropipette

is lowered into a chambered coverglass mounted on the stage of an Eidaq 100 (C).
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Figure 3.5: Screenshot of the MP281Control.vi, the VI used to control the MP-281

micromanipulator.
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Figure 3.6: Micropipette tip containing collected DAPI-stained cells. The grayscale

image has been inverted for better viewing of the glass pipette (A). DAPI-stained

nuclei are visible on the coverglass (B) and also collected in the tip of the mi-

cropipette (C).



Chapter 4

Morphometric Characterization

of Cytotoxicity

4.1 Introduction, Background and Significance

Detecting and quantifying toxicity of compounds have become an impor-

tant challenge in small molecule screening. Early detection of toxic compounds in

the drug development pipeline can significantly reduce cost and development time

by helping to prevent toxic compounds from advancing into becoming drug can-

didates, and even approved pharmaceuticals. Toxic compounds that do advance

through the discovery process often pose great cost as they fail in early trials, due

to their toxicity, or cause cardiac, hepatic and renal toxicity after administration.

With the advent of image-based high-content screening (HCS), assays can be im-

plemented in parallel with drug screening to acquire toxicity data and prevent toxic

compounds from advancing into the discovery pipeline. These methods often in-

volve adding additional, commercially available, fluorescent markers for detection

of toxicity and cell death. However, in high-throughput HCS (HT-HCS), where

many hundreds of thousands of compounds are tested in a given screen, multiplex-

ing a toxicity screen that involves additional biological preparation and staining

can be prohibitively. Therefore, a cytotoxicity screen is desired that is sensitive,

accurate and requires minimal additional preparation and cost.

67
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It has been long known that cell death affects cytoplasmic and nuclear

morphology and that morphology can be used as a method of assessing cell death

and toxicity. For example, Clarke et. al. reported in 1990 in a review article that

the three types of cell death known then (apoptotic, autophagic, and non-lysosomal

vesiculate) were detectable by visual assessment of cell morphology from electron

micrographs [23]. Specifically for apoptosis, the changes in the morphology of the

nucleus, chiefly chromatin reorganization and aggregation, has been widely studied

with both electron and transmitted light microscopy using immuohistochemistry

(IHC) [57, 10]. Cell toxicity and death have also been assessed using fluorescent

microscopy [92, 93, 112, 38, 80]. Fluorescent microscopy, as used in HCS, enables

extraction of numeric measurements of the image and region of interest (ROI) that

can potentially be used as metric for biological phenomena. Segmentation is used

to detecting pixels that belong to background and those that belong to ROI (cells,

nuclei, etc.) and morphometric and fluorometric measurements are calculated for

each ROI. This affords HCS with an unprecedented sensitivity and specificity in

assessing biological events. For cytotoxicity, when compared to plate-readers where

only a a single fluorescent measurement is recorded for each experiment, HCS was

shown to have higher sensitivity (90% versus 25%) and higher specificity (98%

versus 90%) when using specific fluorescent toxicity markers [80].

To assess toxicity in HT-HCS, therefore, nuclear fluorometric and mor-

phometric features are good candidates for use as predictors especially since a

vast collection of them can be easily obtained using existing algorithms [46, 43].

Databases resulting form these numerical measurements can be vast because they

are made for each cell or even sub-cellular entity. As a result, finding and analyzing

biologically relevant features becomes the key challenge of performing meaningful

analysis based on HT-HCS data [31, 7]. Often, measurements made for cells that

are stained with more than one marker have redundancies in their information

content in a way that one could replicate a certain feature using a subset of the

rest of the features. For example, Loo et. al. showed that in heterogenous cell

populations stained with a collection of markers, one can eliminate the data from

one of the discriminating markers and still recreate the subpopulations with the
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remaining marker set by classifying the cells in a feature space that includes pheno-

typic features [69]. Such studies suggest that cytometric feature space of cells are

highly redundant and potentially valuable metrics can be found from the readily

available features that are seemingly irrelevant. In all HT-HCS projects, nuclear

images of often DAPI-stained cells are collected to perform segmentation are left

largely unanalyzed as a byproduct. Since toxicity has great effects on nuclear mor-

phology [43], we hypothesize that nuclear features could be used as a means of

calculating a metric that is useful in evaluating cytotoxicity.

4.2 Methods

The flow chart illustrated in Figure 4.1 shows the overall process of calculat-

ing a mimicked Cytotoxicity Index (CI) that mimics a given toxicity marker and is

only calculated based on nuclear features of DAPI-stained cells. This cytotoxicity

index is found and verified using dose responses of known toxic compounds.

4.2.1 Mathematical Notation

Cytometric data are often obtained from multi-wellplate experiments, where

each well contains many cells. Because attributes are measured at various levels

(i.e., for individual cells, wells and plates) it is necessary to define a set of notations

that succinctly and accurately describes and how each term is calculated. For an

attribute A, therefore, we can describe a set of variables to accurately define the

domain for which the attribute is calculated:

Range is the scope for which the attribute was calculated. Although other scopes

are possible, this variable usually takes the form of Cell, Well or Plate. For

instance, the Range of an attribute calculated for a single cell is Cell while

the Range of an attribute measured for each well (e.g., number of cells) is

Well.

Treatment is the experimental condition under which the cells were kept through-

out the experiment. Only differential conditions are described here and treat-
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ments common to all cells in the experiment are omitted from this descrip-

tion. For example, it is only necessary to define a positive control Treatment

in terms of how it is different from the negative control and further informa-

tion is not necessary for the purposes of notation.

Instance is the mathematical index of the item for which the attribute is mea-

sured. For example, Instance can be the cell index i for an attribute calcu-

lated for the ith cell or the ith item in the Range.

It is worthy to note that not all of these variables are necessary to describe

all of the attributes presented here. In most cases, it is trivial to assume what

the variable is and its explicit indication is not needed. However, if we were to

illustrate the attribute A with all its variables, we would illustrate it as:

Range
Treatment AInstance

This notation can also be expanded to the functions of the attributes such

as their mean and standard deviation. For example, the mean of the ith attribute

of across all cells in a well which which contains compound A can be expressed as:

Cell
CompoundAµ(Attributei)

4.2.2 Preparation of GuideP late with Target Cytotoxicity

Measure

The method for calculation of CI employed in this study finds a subset

of Attributes that contain cytotoxicity information. The criteria used for this

selection is how well they correlate with a verified measure of cytotoxicity, or a

Target measure, such as obtained form staining for well known toxicity markers

(e.g., TUNEL, Caspase, Cytochrome C, etc.). The method, therefore, requires a

GuideP late to be prepared with the cytotoxicity staining to be mimicked (Target

measure) and a nuclear stain to obtain Attributes. The Attributes are then ana-

lyzed, selected and put together to create a CI which closely resembles the Target

measure.
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To induce toxicity we prepared dose responses of MG132, Staurosporine and

Taxol. Table 4.1 illustrates these toxins, their mechanism of action and their EC50

(concentration at which half the cells are dead after 24hr incubation). The dose

responses were prepared to cover the full range of the toxic concentration, especially

the lower concentrations where earlier responses to the toxin were recorded. This

is due to the fact that the end-stage cell death appears more similar among all

toxic responses as accompanied by complete fragmentation and disintegration of

nuclear envelope. The earlier responses, however, could be distinct among different

toxins. Note that the EC50s given in Table 4.1 are not necessarily for the cell lines

used in this experiment as EC50s for all cell lines are not available for a given toxin

through literature search.

Table 4.1: Toxins used to cause cytotoxicity.

Toxin Mechanism of Action EC50 24hr incubation

MG132 Proteosome inhibitor and

autophagy inducer [41].

5.0µM for HeLa cells [41].

Staurosporine Protein kinase inhibitor and

apoptosis inducer [115].

0.5-1.0µM for cardiomy-

ocytes [115].

Taxol Mitosis inhibitor [70]. 2.5-7.5nM for eight various

tumor cell lines [64].

A number of the commercially available toxicity kits were used to study

how well the CI method can mimic their measure of toxicity. The following is a

list of these kits and the corresponding protocol that was used.

TUNEL is a method of detecting DNA fragmentation by staining the open nicks

of fragmented DNA using a fluorescent dye [34]. This method is widely

used to assess cell toxicity. However it is incapable of distinguishing be-

tween different types of cell death [3]. A plate of AML12, a mice liver cell

line[109], was prepared according to the protocol used in the PubChem screen

(AID: 1656) [33] except for lipid staining. The DAPI staining was post-

poned until after the TUNEL protocol. Next, the plate was stained with the
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In Situ Cell Death Detection Kit, Flourescein (Roche, Cat#11684795910,

Mannheim, Germany). In short, the fixed cells were washed with PBS and

incubated in the permeabilization solution for 2min on ice. The solution was

then removed followed by another PBS wash. About 50µL of the TUNEL

reaction mixture was added to each well and the plate was incubated in a

cell culture incubator for 1hr. The wells were then washed three times with

PBS and stained with DAPI as described in [33].

Cell Permeability Dye is a dye that fluoresces once inside the cell. A healthy cell

is supposed to be impermeable to the dye, while the compromised membrane

of a treated cell will let the dye in. The dye is often designed to only fluoresce

when inside the cell. For the experiments described here, the Cell Permeabil-

ity reagents form the Multiparameter Cytotoxicity Kit (Cellomics/Thermo

Scientific, Cat#8408001, IL, USA) was used to stain AML12 cells. The flu-

orescent dye was designed to excite at 491 nm and emit at 509 nm. The

staining was done in a 384 well plate and according to the provided protocol

and in conjunction with the other staines contained in the Multiparameter

Cytotoxicity Kit, namely Cytochrome C (550/568nm), LC3B (646/674nm)

and DAPI (358/461nm).

Cytochrome C is one of the most common commercially available apoptosis mark-

ers. When apoptosis is initiated, Cytochrome C detaches from the inner

mitochondrial membrane where it is part of the electron transport chain. It

then diffuses to the cytoplasm and nuclei and its translocation is a common

marker for apoptosis. In this experiment, the fluorescent conjugated antibod-

ies from the Multiparameter Cytotoxicity Kit (Cellomics/Thermo Scientific,

Cat#8408001, IL, USA) were used to stain AML12 cells for Cytochrome C.

The dyes used were to fluoresce in 568 nm and excite at 550 nm. The staining

was done in a 384 well plate and according to the provided protocol and in

conjunction with the other staines contained in the Multiparameter Cytotox-

icity Kit, namely Cell Permeability Dye (491/509nm), LC3B (646/674nm)

and DAPI (358/461nm).
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4.2.3 Imaging Protocols

The GuideP late and any plate for which the CI is to be measured should be

imaged with exactly the same instrument and imaging parameters. For this study,

depending on the experiment the plates are imaged using one of the following

protocols.

For the experiments involving the Lipid Droplet screen and TUNEL mimic,

the plates were imaged on an Opera QEHS (Perkin Elmer) with a 20x 0.45 NA

air objective. Images were binned 2-by-2 for an image size of 688 by 512 pixels.

The nuclear channel was acquired using 365 nm Xenon lamp excitation and 450/50

emission filters. Two fields per well were acquired for the screening plates and nine

fields were acquired for the GuideP late.The integration times were set so that less

than 5% of pixels are overexposed.

For other experiments that involve the Cytochrome C and Cell Permeability

Dye, plates were imaged on an IC100/Eidaq100 (Beckman Coulter/Q3DM, USA)

using a Nikon Plan Fluor 20X 0.50 NA air objective. Nine nuclear images per well

were acquired in 8-bit mode on a ORCA-ER camera (Hamamatsu, Bridgewater,

NJ) using standard DAPI filter cubes (Chroma Technology, Brattleboro, VT). The

integration times were set so that less than 5% of pixels are overexposed.

4.2.4 Calculation of the Cytotoxicity Index

The cytotoxicity index (CI) is defined here as a single numerical value cal-

culated based on easily-measurable Attributes of a cell and is designed to replace

or mimic the Target cytotoxicity measure that is expensive or not feasible to

implement in hight-throughput screening. The CI is measured from a subset of

attributes with trends that correlate well with the direct cytotoxicity measure to

be replaced. For a description of how such attributes are selected please refer to

the section 4.2.7. In order to make CI a controlled metric, the attribute of each cell

is first converted to z-scores with respect to the mean and standard deviation of

of the same attribute of an untreated population of cells as illustrated in Equation

(4.1). The weighted Euclidian distance, Equation (4.2) was then used to combine

the Attributes into a single measure. In that equation, Wa is the weight of each
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attribute determined manually or, as described later, by finding the correlation

coefficient with respect to a Target measure. A cell with Attributes equal to the

mean of the Attributes of an untreated population will have a very small or zero

z-score for each Attribute. Therefore, its CI will be close or equal to zero and the

metric itself can be viewed as distance away from the untreated population.

Cell
T reatedZa =

|CellPopulation
Untreatedµ(Attributea)− Cell

T reatedAttributea|
CellPopulation

Untreatedσ(Attributea)
(4.1)

Cell
T reatedCI =

√√√√NumberofAttributes∑
a=1

Wa ×
(

Cell
T reatedZa

)2
(4.2)

4.2.5 Calculation of Attributes

Attributes are defined as metrics of a cell or a collection of cells that are

readily available and are to be used to mimic and replace the expensive toxicity

measure. In this application, these metrics include morphometric and fluorometric

features of a cell as well as their corresponding components obtained through

Principle Component Analysis (PCA) or Independent Component Analysis (ICA)

or any other space-transformation operation.

Features

The degradation of the nuclear structure as a result of cell death, in par-

ticular apoptosis, and the morphology characteristics of it is well documented in

literature [92, 93, 53].

In fluorescent microscopy, these late-stage cell death morphologies are char-

acterized by reduction in nuclear size (change in nuclear area), condensation of

DNA (bright spots), and nuclear fragmentation (nuclear blobs) as illustrated in

Figure 4.2 for J774 cells treated with Taxol and MG132 and stained with DAPI.

For example, the commercially available cytometry software package Cy-

toShop (Ver 2.0, Beckman Coulter, USA) produces the nuclear features illustrated

in Table 4.2 by default. For the experiments involving the a priori feature set

(see Section 4.2.7), CytoShop was used to generate features values. For all other
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experiments, a custom pipeline was created in CyteSeer (Ver 2.0.4, Vala Sciences

Inc., San Diego, CA, USA) to recreate the features listed in Table 4.2. Segmenta-

tion was performed using CyteSeer’s Otsu method with sensitivity and minimum

object size set at 80% and 5 pixels, respectively.

Multivariate Component Analysis

The cytometric features calculated for each cell describe the position of the

cell in the multi-dimensional, or multivariate, feature space. Since one can theo-

retically calculate an unlimited number of features for each cell, it can be deduced

that the features produced may not be independent of each other. Also, while

some features could indicate toxicity, others may contain little or no toxicity in-

formation. As a result the desired toxicity information may be hidden in multiple

features at once. Furthermore, the toxicity information itself may be a multivariate

space, requiring more than one dimension of data to accurately describe. Using

only the dimension of the feature space can therefore be unwise as the toxicity in-

formation may remain contained in multiple features and unrevealed. A common

way to investigate the dimensionality of a multivariate space is to employ factor

analysis and in particular PCA [51] and ICA [25]. These methods transform a

multivariate feature space to a new space where dimensions (components) satisfy

criteria such as independence or maximum data content. The components and the

original dimensions are linear combinations of each other, and a transformation

matrix stores the coefficients of the linear transformation. The transformation is

often reversible by multiplying the components and the inverse of the transforma-

tion matrix through which the original data can be reproduced in a lossless fashion.

Since the dimensionality of the dataset is limited to the number of existing dimen-

sions, the transformed space can contain a lower number of dimensions compared

to the original space.

The dimensions resulted form PCA are created with the criteria of being

orthogonal and having the highest data content. The components are produced

such that their variance is the maximum present in the data, where variance is

assumed to be the primary indicator of data-content. PCA components are then
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Figure 4.1: Flowchart showing the process involved in calculating CI. The pro-

cess starts with the scanning and cytometric analysis of a GuideP late prepared

as described in Section 4.2.2 and finishes with the calculation of CI. The list of

significant Attributes found is saved and is later used to calculate CI in HT-HCS

mode.

Figure 4.2: Typical end-stage toxicity effect of Taxol and MG132. The effect is

shown on J774 cells stained with DAPI. Nuclear condensation and fragmentation

is apparent with higher treatment concentration.
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Table 4.2: List of default nuclear features calculated by CytoShop 2.1 (Beckman

Coulter, USA).

Feature Description

X-size X-size of nucleus in pixels.

Y-size Y-size of nucleus in pixels.

Width X-size of nucleus in microns.

Height Y-size of nucleus in microns.

Area Area of nucleus in microns2.

Area**1/2 Square root of area of nucleus.

Perimeter Perimeter of the nuclear mask.

Wiggle Perimeter divided by area of the nucleus. Measures how convoluted

the boundary of the nucleus is; high for lobed nuclei.

Wiggle Nrm Perimeter divided by the square root of the area of the nucleus

Integ gs Integrated grayscale of nuclear brightness.

Aver gs Average grayscale of nuclear brightness.

Percents 0 Pixel intensity that is darker than 0% of nuclear pixels.

Percents 5 Pixel intensity that is darker than 5% of nuclear pixels.

Percents 25 Pixel intensity that is darker than 25% of nuclear pixels.

Percents 50 Pixel intensity that is darker than 50% of nuclear pixels.

Percents 75 Pixel intensity that is darker than 75% of nuclear pixels.

Percents 95 Pixel intensity that is darker than 95% of nuclear pixels.

Percents 100 Pixel intensity that is darker than 100% of nuclear pixels.

IQ range Interquartile range measures spread of dispersion. It is the difference

between the Percent 75 and Percent 25.

Variance Variance of intensity of pixels in the nucleus.

StdDev Standard deviation of intensity of pixels in the nucleus.

AbsDev Absolute deviation of intensity of pixels in the nucleus.

CM3 Third central moment of pixels in the nucleus; Skewness, or measure

of asymmetry in probability distribution.

CM3**1/3 Third root of CM3.

CM4 Fourth central moment of pixels in the nucleus; Kurtosis, or measure

of ’peakedness’ in probability distribution.

CM4**1/3 Third root of CM4.
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sorted in terms of their variances, with the first component containing the highest

possible variance of the original feature space. As a result, if significant toxicity

variation exists in the data set, PCA is useful to extract and concentrate it in a few

components. PCA involves a closed form mathematical operation with negligible

computation demand. In this study, functions from the Statistical Toolbox 7.3 of

Matlab 2009b (Mathworks, USA) are used to preform PCA.

ICA transformation, on the other hand, aims at minimizing the dependence

between the resultant components. The ICA components are not necessarily or-

thogonal and are not sorted based on variance. ICA is therefore a good method

for separation of sources in mixed feature sets. This makes ICA useful when the

toxicity data exists in the feature set along with other significant data trends. Un-

like PCA, the solution to ICA is not a close form solution and requires iterations.

In this study, a Matlab implementation of the algorithm known as “fastICA” [42]

is used to find the ICA components.

4.2.6 Data Normalization

Cytometric Attributes can have very different magnitudes and ranges (Fig-

ure 4.3). Equation (4.2), uses the z-scores to transform all features to the same

range and ensure Attributes with intrinsically large magnitudes do not dominate

those will smaller magnitudes which may be more significant. However, if the in-

ternal deviation (i.e., standard deviation) of the distribution of the Attribute is

naturally much wider than that of another Attribute, the z-scores of that Attribute

can still dominate in the CI equation just as its magnitude would have it z-scores

were not used. To remedy this, all data input to the process were normalized in

the following manner. First, the mean of the Attribute from the untreated cell

population was subtracted. Next, the values corresponding to the 10th and 90th

percentile in rank order of the Attribute of the untreated cell population was found

(minus the mean) and the Attribute to be normalized was linearly transformed so

that those values from the untreated cell population were aligned to preset values

of 0.1 and 0.9. This way the z-score found to form a widely spread Attribute are

less likely to dominate the CI, while significant changes in an Attribute that cor-
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responds to toxicity are preserved. Non-gaussian distributions might still enable

one Attribute to dominate over another in some situations, but this effect should

be at least reduced.

4.2.7 Selection of Attributes

Once attributes are calculated for each cell, those that correlate with the

target toxicity measure are selected and used to calculate the CI. Multiple correla-

tion methods are used to help ensure accounting for as many modes of correlation

as possible.

A priori Feature Set

It has been well understood that end stage toxicity is followed by degra-

dation of the nuclear structure. Effects of toxicity of Taxol and MG132 on J774

cells are visible in Figure 4.2. These changes are characterized by reduction in nu-

cleus size, condensation of DNA (high intensity spots), and nuclear fragmentation.

Based on this preliminary understanding, an a priori set of nuclear morphology

features, including Nuclear Area, Roundness (Perimeter over Area) and Chromatin

Condensation (Percentage of pixels with maximum intensity in the nucleus) were

used to calculate z-factors (number of standard deviations away from mean) for

each cell, as expressed in Equation (4.1), with respect to the untreated control

cell population. The resultant z-score was then averaged using Equation (4.3). In

addition to the Attribute z-scores, we also calculate the z-score of the cell count

according to Equation (4.4) as the cell number is lowered at the final stage of

toxicity. Equation (4.5) was then used to calculate a Euclidian distance measure

as the Cytotoxic Index (CI) for the well.

Well
TreatedZa =

CellCount∑
c=1

Cell
T reatedZa,c

CellCount
(4.3)

Well
TreatedZCellCount =

|WellPopulation
Untreated µ(CellCount)− Well

TreatedCellCount|
WellPopulation

Untreated σ(CellCount)
(4.4)
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Well
TreatedCI =

√√√√NumberofAttributes∑
a=1

(
Well

TreatedZa

)2
+
(

Well
TreatedZCellCount

)2
(4.5)

This cytotoxicity index was calculated for a murine macrophage cell line

J774 and Hela Cells treated with a dose response of Taxol and is shown in Figure

4.4.

Selection of Attributes Based on Correlation

The a priori features were selected based on a general understanding of

how the cells change shape as they die. However, this feature set may or may

not be the optimum for gauging toxicity as different cell death mechanisms may

be associated with different changes in the nuclear morphology. Furthermore, the

individual features may not represent the best correlation to the Target measure,

but such correlation may arise in the set of Attributes calculated from the fea-

ture set as described above. In order to systematically select the best attributes,

Pearson (Equation (4.6)) and Spearman (Pearson calculated for rank order) coef-

ficients are calculated for each Attribute and the Target measure. Pearson and

Spearman coefficients are correlation coefficients that span [-1 1] with their sign

reflecting whether the vectors are directly (+) or inversely (-) correlated. The mag-

nitude of the coefficient expresses how well the values correlate, with 0 signifying

lack of correlation. While Pearson takes in the actual values in the vectors being

studied, Spearman uses their rank order. Therefore, Pearson coefficient quantifies

linear correlation best, while Spearman reflects correlation regardless of linearity.

Attributes with Pearson or Spearman coefficients above a certain threshold, set to

0.5 in this study, are labeled to be significant. An Attribute that is labeled signif-

icant for both Pearson and Spearman is labeled as linearly correlated, while one

that is only significant in Spearman is labeled non-linearly correlated. Attributes

with an insignificant coefficient in both are discarded. The significant features are

then used to find the CI according to Equation (4.2).



81

ρ =
1

n

n∑
i=1

(Xi − µX

σX

)(Yi − µY

σY

)
(4.6)

4.2.8 Zprime Calculation

Zprime has been used frequently as a measure of the dynamic range in a

biological assay [116]. It is defined as the distance between positive and nega-

tive controls in terms of the standard deviations of the two control distributions

(Equation (4.7)).

Zprime = 1− 3× (σ+ + σ−)

| µ+ − µ− |
(4.7)

The value of Zprime ranges from −∞, for controls that overlay on top of

each other and offer almost no dynamic range, to +1 where the distance of between

the control means is three time the sum of their standard deviations. Zprime is a

very stringent measure of dynamic range and almost no biological assay can obtain

a perfect Zprime of +1. A Zprime of +0.5, for example, occurs when the means

of the two controls are three times the sum of their standard deviations apart.

To ensure statistical viability of a screen, biological assays that have Zprime lager

than 0 and smaller that +0.5 are considered only in multi-plicate format, while

assays with Zprime larger than +0.5 are often validated to run in HT-HCS without

repeat.

For this experiments, the CI and the Target measurements are found for

each cell. The average of those values are averaged for each well. The mean and

standard deviations were found for the average values of each group of wells with

the same condition (treated with the same compound and concentration). These

values were used to find the Zprime according to Equation (4.7).

4.2.9 Application to Small Molecule Library Screen

In order to find CI for a small molecule library screen, the list of signif-

icant Attributes should be obtained by preparing a separate microtiter plate, a

GuideP late, that is stained with the toxicity marker (e.g., TUNEL, Cytochrome
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C, Permeability Dye, etc.) that is to be mimicked. The plate must also contain a

control compound that induces the desired toxic response (such as shown in Table

4.1). Optimally the plate should contain a statistically viable dose response for

the compound that is also reflective of the concentration of the compounds used

in the screen. The plate should then be scanned with all channels required for the

cytotoxicity marker in addition to the nuclear channel.

In this study, the CI algorithm is applied to a confirmatory screen of Lipid

Droplets [33] comprised of three 384 well plates containing 869 compounds found

to be positive for the Lipid Droplet screen. Each plate also contains untreated

cells as controls. The confirmatory screen was run in duplicates (i.e., two plates

containing the same compounds and compound map). Therefore, a total of six

plates containing a duplicate set of three plates were prepared as confirmatory

assay for the Lipid Droplet screen. The plates were scanned and analyzed for their

intended purpose in the Lipid Droplet screen.

Next, a GuideP late of TUNEL was prepared with the same protocol used

to make the confirmatory screen plates, but this time the plate was also stained

for TUNEL. A TUNEL-mimic CI was found from this plate. Corresponding CI

were also calculated retrospectively for the six screen plates. The ability of CI to

find the same toxic compound twice was then assessed by surveying the CI-positive

cells across the duplicate plates.

Furthermore, the PubChem compound database was queried for the com-

pounds found to be CI-positive to find whether their toxicity is independently

confirmed. PubChem contains screening results from various researchers and the

data is organized both in terms of biological assays used and compounds tested.

Therefore, it is possible to search for a compound and find its activity in various

biological assays. Some of the assays deposited into PubChem are assays designed

to investigate toxicity.
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4.3 Results

4.3.1 Cell Permeability

Cells treated with a dose response of MG132, Staurosporine and Taxol

were stained with the Cell Permeability dye as described in the methods section.

The Cell Permeability signal was quantified as the average pixel intensity of the

corresponding channel under the cells mask calculated by Cytoshop. The CI was

guided to mimic this signal as described in the methods section. The values (CI

and Cell Permeability) were averaged for the well and averaged again for all wells

with the same condition (i.e. for each concentration). The dose response results for

Cell Permeability dye and the mimicked CI are shown in Figure 4.5. A Zprime was

also calculated and reported. The Zprime reported was the better Zprime between

the non-treated condition and the two highest concentrations. The Zprime was

improved from negative values of -0.89, -1.08 and -29.37 to +0.30, +0.64 and -

2.25 for MG132, Staurosporine and Taxol, respectively. Usually, a Zprime greater

than +0.5 warrants running a screen in HT-HCS without duplicates while positive

values lower than +0.5 would require duplicates. With the improvements afforded

by replacing the Cell Permeability signal with CI, the screen is now statistically

viable and cytotoxic hits are better characterized and controlled. All this occurs

while the screen can be run without the additional cost of the cell Permeability

dye.

4.3.2 Cytochrome C

Once again, a dose response of MG132, Staurosporine and Taxol were used

to make a mimicked CI measurement. This time the cells were stained for Cy-

tochrome C as described in the methods section. The Cytochrome C signal was

quantified as the average pixel intensity of the corresponding channel under the

nuclear mask calculated by Cytoshop. The CI was guided to mimic this signal

as described in the methods section. The values (CI and Cytochrome C) were

averaged for the well and averaged again for all wells with the same condition

(i.e. for each concentration). The dose response results for Cytochrome C and the
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mimicked CI are shown in Figure 4.6. A Zprime was also calculated and reported.

The Zprime reported was the better Zprime between the non-treated condition

and the two highest concentrations. The Zprime was improved from negative val-

ues of -4.13, -1.30 and -3.42 to +0.30, +0.65 and -2.06 for MG132, Staurosporine

and Taxol, respectively. Once again, the improvements afforded by replacing the

Cytochrome C signal with CI, the screen becomes statistically viable and cyto-

toxic hits are better characterized and controlled. This improvement is made even

though the need for additional staining, scanning and analysis of the Cytochrome

C may be eliminated.

4.3.3 TUNEL

For mimicking TUNEL, like the other mimics, dose responses of MG132,

Staurosporine and Taxol were used. TUNEL staining was done as described in

the methods section. The average pixel intensity of the TUNEL channel under

the nuclear mask was calculated by Cytoshop to quantify DNA fragmentation.

The CI was guided to mimic this signal as described in the methods. The values

(CI and TUNEL) were averaged for the well and averaged again for all wells with

the same condition (i.e. for each concentration). The dose response results for

TUNEL and the mimicked CI are shown in Figure 4.7. A Zprime was also cal-

culated and reported. The Zprime reported was the better Zprime between the

non-treated condition and the two highest concentrations. The Zprime was im-

proved from -15.13 and -9.51 for TUNEL to -5.57 and -2.83 for CI for Staurosporine

and Taxol, respectively. The Zprime for MG132 was slightly worsened from -1.41

to -1.97 when switching from TUNEL to CI. This worsening is not too significant

when considering that the CI measure is calculated without the need for TUNEL

staining, scanning and analysis.
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4.3.4 Uniqueness of CI and Attribute Set Selected for Each

Marker

It is possible that the CI only looks for Attributes that accompany a com-

mon cellular behavior among all markers chosen. In other words, the CI may

be quantifying a profound and easily detectible effect that is nonspecific to the

marker, but accompanies all kinds of cell death. For example, if one uses cell

count as a measure of cell death, one finds that it highly correlates with end-stage

toxicity. Yet, that doesn’t make it a good candidate to replace all markers since

it only represents one cell behavior and cannot be used to reproduce signals from

various markers. To investigate this we aimed to compare the Attributes sets se-

lected for each market by the algorithm. If the algorithm selects a different set of

Attributes to mimic different markers, then CI is successful in dynamically choos-

ing Attributes that best represent the marker’s quantification of specific cell be-

havior. In particular, studying the correlation coefficients found for the Attributes

and the Target measure will be able to reveal if the correlation patterns found

are unique to each marker. For example, if the correlation coefficients found for

TUNEL are identical or very close to those found for Cytochrome C, it could be

deduced that the CI merely quantifies a nuclear morphology that exists in both

when early apoptosis is initiated (Cytochrome C) and when late-stage DNA frag-

mentation occurs (TUNEL). On the contrary, if the correlation coefficients found

are varied and unique to each marker, then the CI is likely quantifying different

patterns of morphology that are unique to the cell behavior being quantified by

the marker to be mimicked.

The correlation coefficients found for between each of the Attributes and

the TUNEL, Cytochrome C and Cell Permeability markers are shown in Figure

4.8. As described before for the calculation of CI, two sets of correlations are

found. Pearson correlation coefficients are found to quantify linear correlation,

while Spearman correlation coefficients are used to quantify non-linear correlations.

The values found are color mapped for better visual presentation. The range 0 to

+1 is shown in shades of black to red while the range 0 to -1 is illustrated in the

shades of black to red.
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Comparing the patterns that arise for Pearson and Spearman coefficients, it

is obvious that on average Spearman coefficients are higher in magnitude (brighter

green or red) than Pearson coefficients found. This is evidence for the trivial

fact that in comparing any random set of vectors, one is more likely to find non-

linear correlations than linear correlations. Linear correlations require a much

higher agreement between the rank and magnitude of numbers in the two vectors

compared (i.e., first order relationship) while Spearman non-linear correlations can

be found for vectors that only match in rank order (i.e., first, second or higher order

relationships).

Furthermore, while there are similarities between all, the patterns found for

TUNEL, Cytochrome C and Cell Permeability appear to be distinct when viewed

in detail. The patterns found for TUNEL are much different from those found for

Cytochrome C and Cell Permeability. This may be due to the fact that the Cy-

tochrome C and Cell Permeability data originates from a singe physical microtiter

plate while a separate plate was prepared to obtain the TUNEL data. The pat-

terns for Cytochrome C and Cell Permeability are similar in the features and PCA

regions while their ICA potion appears to be distinct. This also suggest the appro-

priate use of ICA in conjunction to PCA for obtaining complementary components

that quantify various aspects of the data spread. While PCA is keen to calculate

components with greatest overall distribution (i.e., most information content)[51],

ICA aims at calculating components that are independent (i.e., most independent

sources of information) [25]. Other unintended variations (e.g., temperature, dry-

ing, etc.) may affect both Cytochrome C and Cell Permeability dye signal the

same way since these signal originate from the same physical well. Therefore, the

dominant source of information may be due to the unintended effects. However, in

that case the information that is independent to each signal, sill still be extracted

by ICA. This appears to be happening for the Cytochrome C and the Cell Perme-

ability dye as they have almost identical correlation coefficients with the features

and PCA components, but very distinct coefficients for ICA components.
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4.3.5 Small Molecule Library Screen Results

The TUNEL-mimicked CI was found for all six plates (three set of dupli-

cates). An example of the CI found for a set of duplicate plates is shown in Figure

4.9. Some of the compounds that have high CI in both duplicate plates are indi-

cated by arrows. To quantify the repeatability of CI, the z-score of CI was found

with respect to the untreated wells and those compounds with z-score > 3 were

labeled as CI-positive. Next, the duplicate plates were surveyed and compounds

found to be CI-positive in duplicate plates were counted. Out of the 869 com-

pounds tested, 166 were CI-positive in at least one of the duplicate plates. Among

the CI-positive compounds, 146 or 88% were repeated across duplicate plates. This

data indicates that the CI method can robustly detect the same hit twice with 88%

probability.

Finally, to investigate whether the toxicity of the CI-positive compounds

are independently confirmed, PubChem compounds database was searched for all

166 compounds. Although results were not found for all of the 166 compounds

searched, 28 compounds were found to be positive in other screens that study

cytotoxicity. The most common of the toxicity compounds where hits were found

were high-throughput plate reader screens that quantify Cytochrome C (apoptosis

marker) and ATPlite (amount of cellular ATP). The fact that no results were

obtained by querying the rest of the compounds does not necessarily mean that

they are not toxic. It may also mean that they have never been tested. Further,

if they were tested using plate readers (as most screens in PubChem are) there

is a chance that their toxicity was missed. This is due to the fact that in high-

throughput screens, plate reader screens are inherently less sensitive than HCS in

finding low intensity hits [18].

4.4 Discussion

Results from mimicking Cell Permeability Dye (Figure 4.5),Cytochrome C

(Figure 4.6) and TUNEL (Figure 4.7) illustrate that the calculated CI closely re-

sembles the dose response trend of the respective toxicity marker. When comparing
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the magnitudes in the CI axis, it becomes apparent the CI value itself cannot be

directly used as the cytotoxicity measure since it varies greatly from mimic to

mimic and dose response to dose response. The CI measure is a highly relative

measure and the fact that it offers viable Zprime indicates that it can resolve the

biological behavior with great dynamic range. It is only when the CI value of a

cell is compared to that of an untreated populations (i.e., in terms of z-scores) that

the measure represents its biological meaning well. Therefore, it is recommended

the z-score of CI be used as hit selection criteria instead of the CI value itself.

An added benefit of this method is that it can be retrospectively applied

to images stored from previously run high content screens. Since most compounds

in a large chemical library do not have toxicity information associated with them,

this proves to be an inexpensive for assessing toxicity on images that are already

collected and stored. The only effort needed is the preparation and analysis of a

single GuideP late with the desired marker to be mimicked.

In this study, some compounds found to be toxic by CI were previously

known to be toxic, while no toxicity information is available for other detected

compounds. Although requiring further biological experiments to confirm their

toxicity, the fact that the findings of the CI potentially included previously un-

known toxic compounds poses as an example of the motivation behind this project.

Creating a database of toxicity information for various chemical libraries and dif-

ferent cell lines would not only add to our understanding of cytotoxicity in various

cells, it could also save us the great cost of testing known toxic compounds over

and over. The robustness and ease of use of CI, and the ability to apply it retro-

spectively, makes it a great candidate for such a role.
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Figure 4.3: Variability of cytometric feature magnitude and range is illustrated in

a box plot. A sample set of nuclear features were chosen and plotted to to illustrate

the variability. In the plot, the central red mark is the median, edges of the blue

box are the 25th and 75th percentiles, the black whiskers are the limits at which

extreme data points not considered outliers and outliers are plotted individually

as red crosses.
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Figure 4.4: Dose response of Taxol for J774 and HeLa cells as quantified by the a

priori feature set CI.

Figure 4.5: Dose responses of Cell Permeability and its mimicked CI. Dose re-

sponses of MG132, Staurosporine and Taxol are shown from left to right for the

average cellular intensity of the Cell Permeability dye (blue) and CI (green). The

color-coded Zprimes are also shown in the insets.



91

Figure 4.6: Dose responses of Cytochrome C and its mimicked CI. Dose responses

of MG132, Staurosporine and Taxol are shown from left to right for the average

nuclear intensity of Cytochrome C (blue) and CI (green). The color-coded Zprimes

are also shown in the insets.

Figure 4.7: Dose responses of TUNEL and its mimicked CI. Dose responses of

MG132, Staurosporine and Taxol are shown from left to right for the average

nuclear intensity of TUNEL (green) and CI (blue). The color-coded Zprimes are

also shown in the insets.
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Figure 4.8: Correlation coefficients of Attributes found for various toxicity markers.

Pearson and Spearman coefficients were found for 22 Nuclear Features and their

PCA and ICA transformations with respect to TUNEL, Cytochrome C and Cell

Permeability measures. Green=1, Black=0 and Red=-1.
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Figure 4.9: Example CI results form duplicate plates of a small molecule library

screen. The CI is plotted as a bar for each well. Duplicate plates shown have

the same compound map and are prepared identically. Note the repeated spikes

across duplicate plates (some indicated by arrows) illustrates a high CI value for

the same compound in both plates.



Chapter 5

Hybrid Median Filter

5.1 Introduction

Errors in MTP data can arise from many sources including robotic liquid

handling, instrumentation and atmospheric conditions, and are frequently exacer-

bated by lengthy or complex assays [50, 56, 90, 114]. The detrimental localized

data distortions in MTP data obtained from a chemical library screen can be ran-

dom, such that sporadic errors are distributed unpredictably throughout a screen,

or systematic, such that a similar pattern is repeated predictably. These distor-

tions include edge artifacts that can be caused, e.g., by variations in temperature

and humidity over the area of a MTP. Even seemingly predictable patterns such

as edge artifacts usually have random components that cannot be easily modeled

or corrected [90]. Random components become more evident when comparing spa-

tially patterned data distortions from MTP to MTP, as they often defy prediction

by a concise error model. Strategies for rectifying systematic errors include defin-

ing and tracking the error sources and introducing methods to compensate for their

effects. A common approach is to flag and remove errors from MTP data, but this

has the undesirable effect of discarding potentially useful data [50]. The primary

challenge, therefore, is to design a method for correcting underlying data distor-

tions while preserving the signal contributed by the hits, which can be modeled as

sparse point noise, or outliers.

Local distortions, such as edge artifacts, can be thought of as local variations

94
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in background. This shifts the problem to one of finding a way to correct the

background values to within a narrow and uniform range (e.g., a flat surface in a

3D plot), thereby removing the distortions/artifacts and improving the confidence

in resolving the sparse point noise of outliers that correspond to screening hits,

while reducing the hit/background dynamic range as little as possible. We believe

the simplest way to do this is to estimate the local background (L) within an

appropriate sample neighborhood and scale each target data point (TargetValue)

centered in that neighborhood by the ratio of the global (G) and local backgrounds

(L) as shown in Equation (5.1), where the CorrectedValue replaces the TargetValue

in the corrected MTP dataset.

CorrectedV alue =
(G
L

)
× TargetV alue (5.1)

In chemical library or functional genomics (RNAi and cDNA) screens, hits

are typically high- or low-magnitude values compared to the background wells.

Thus, error correction consists of correcting local background distortions by, e.g.,

applying a median filter,[65] as illustrated in Figure 5.1 panel A, while retain-

ing sporadic, high/low magnitude events. That is, the hits are analogous to the

salt and pepper, or point noise that typically comprises errors in many other ap-

plications. For chemical library or functional genomics screening applications,

non-parametric data scaling should not remove or dwarf these rare, low- or high-

magnitude events, since these correspond to assay hits and are the samples of

interest. MTPs with local patterns designed into the assay, such as a serial dilu-

tions of compounds for dose-responses, should be addressed with other methods

such as LOcal regrESSion (LOESS) to fit and normalize data[98, 114] via locally

adaptive processes that use low-order polynomials to approximate a fit to neigh-

borhood data [24].

For primary screens, both the median filter and the hybrid median filter

(HMF) can be used to estimate the local (empirically defined neighborhood) back-

ground to scale the center element by the global background (G/L, see Equation

(5.1)). G is the true or expected background, which can be estimated by the

median or average of the whole dataset or a representative subset of values (e.g.,



96

multiple plates in a batch, or one plate) in the screen; the global background esti-

mate is a constant for a whole dataset, a batch of plates, or a single plate respec-

tively. Importantly, the median-based correction is outlier resistant in that a single

hit/outlier will not alter the local estimate L of the background. By taking the

statistical median step-wise over pre-determined sub-regions of the neighborhood,

the HMF provides additional freedom to ignore multiple hits/outliers within the

neighborhood to create the background estimate. Because they completely ignore

the hits/outliers in estimating the background, we hypothesized that median filters

would be a better choice than typical smoothing operators/filters and those based

on the DFT, which invariably blunt the hits. The linear DFT views everything as

spatial frequencies, which cannot always properly represent the discrete properties

inherent of the assay data. The nonlinear and inherently digital properties of the

HMF enable more complete insensitivity to hits/outliers and it can be applied to

raw data arrays systematically and automatically without plate-by-plate operator

input, which may improve consistency.

In preliminary experiments, we tested various local background estimators

on MTP data for their respective capacity to diminish spatial distortion while pre-

serving hit amplitudes, and found the bidirectional hybrid median filter (HMF)

promising [77, 91]. We then adapted the HMF for better operation at MTP edges

and compared it to a recently described Small Laboratory Information Manage-

ment System (SLIMS) DFT technique [56, 90]. The strengths and weaknesses of

the algorithms were evaluated by the reduction of background distortion and over-

all variations in MTP values (with hits removed), preservation of hit amplitudes,

and/or hit:background dynamic range.

5.2 Materials and Methods

5.2.1 Median-Based Array Correction

MTP data can be written in the matrix notation Equation (5.2) where R

and C represent the maximum number of rows and columns, respectively , in the

MTP (e.g., R=16, C=24 for a 384-well MTP). Here, each element of the matrix
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represents the measurement originating from a well. In index notation, this can

be simply expressed as MTPi,j, where i = [1, 2, 3, ..., R] and j = [1, 2, 3, ..., C] are

the row and column indices.

MTP =


MTP1,1 MTP1,2 . . . MTP1,C

MTP2,1 MTP2,2
. . .

...
...

. . . . . .
...

MTPR,1 . . . . . . MTPR,C

 (5.2)

A square local neighborhood of the size d × d (e.g., 3 × 3 and 5 × 5 in

Figure 5.1 panel A and B, respectively) is explicitly described with odd values of d

for symmetry. The half-size of the filter, using integer math, is defined as h=d/2

(e.g., h=5/2=2 for d=5). A local background Li,j within each d× d neighborhood

around MTPi,j is estimated by the HMF such that the center element of the

neighborhood falls on MTPi,j. The medians of the diagonal and axial elements of

each neighborhood are defined as shown in Equation (5.3).

AxialElementsMedian =

MEDIAN〈H ∪ V | H = MTPi,j 6=k, V = MTPi6=k,j; k = [1, 2, ..., h]〉

DiagonalElementsMedian =

MEDIAN〈D | D = MTPi6=k,j 6=k; k = [1, 2, ..., h]〉

(5.3)

Note that since k is a non-zero index, the central element is excluded from

these median calculations. Moreover, when the neighborhood is close to the pe-

riphery of the MTP, the filter elements that fall outside of the defined range of

MTPi,j are simply ignored by dynamically shrinking the neighborhood size at the

edges. Finally, the estimate of the local background is as shown in Equation (5.4).
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Li,j =

MEDIAN [AxialElementsMedian,DiagonalElementsMedian,MTPi,j]

(5.4)

Using the global background G of the entire MTP and this local background

estimate, each data point MTPi,j is then scaled to a corrected value Ci,j using a

more specific version of Equation (5.1), given in Equation (5.5).

Ci,j =
( G

Li,j

)
×MTPi,j (5.5)

For the more common median and average filters, each element was also

scaled in the manner described in Equations (5.1) and (5.4), with L defined as the

median and average of the neighborhoods (Figure 5.1 panel A), respectively, and

G defined as the MTP median (Figure 5.1).

The kernel sizes of 3× 3 and 5× 5 for the HMF were chosen empirically. In

preliminary experiments (data not shown), the 5× 5 size appeared to be optimum

for 384-well MTP arrays; however, application to higher density formats may re-

quire additional testing to confirm an optimal kernel size and it is possible that

larger kernel sizes (e.g. 7 × 7, 9 × 9, etc) might perform better in higher density

formats where, e.g., edge artifacts might also extend inward over a larger number

of wells. Since the local background estimation depends heavily on obtaining a

representative sample population from the MTP, kernel size is important partic-

ularly at the MTP edges. An alternative to ignoring the kernel elements outside

the array when operating at the edges is to keep the kernel size constant and move

the target pixel within the kernel and appropriately alter the sub-regions for calcu-

lations of the intermediate medians. Alternatives from image processing are also

available [58, 59, 97].

Application of the common median and average filters (see Figure 5.1 panel

A), and the bidirectional HMF (see Figure 5.1 panel B), are described as follows.

For the example 5×5 neighborhood in Figure 5.1 panel A, the median and average

filters used all 25 of the elements to obtain local backgrounds of 12 and 12.96,
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respectively. Application of the bidirectional HMF in Figure 5.1 panel B to the

same neighborhood gave a median of the diagonal elements of 11 and a median of

the axial elements of 13. With a central data element of 19, the final rank ordered

list yields a hybrid median of 13.

The operation of the HMF is illustrated in more detail in the diagram of

an example MTP (Figure 5.2) created using Microsoft Excel by weighting array

values appropriately to create a uniform contour with a pronounced edge artifact.

The HMF with kernel (or neighborhood) size d=5, was applied to the MTP and

the medians of the diagonal (gray) and axial (black) elements are noted in the

table (Figure 5.2, bottom), along with the original and scaled value of the center

MTPi,j position (red). Note that elements of the HMF outside of the MTP array

are ignored when they overhang the plate edge at the peripheral wells. The total

number of contributing elements (N) is listed for each of the masks, which are

located at center coordinates IDi,j.

For the example targeting well A-01 for correction in Figure 5.2, there is no

hit, but the modeled edge effect decreases the values toward the edge and Eq. 5

scales MTP1,1 = 25 to the corrected value C1,1 = 50. At well D-16, MTP4,16 is a

down hit, there are two up hits in the 5× 5 neighborhood (95 in the diagonal and

75 on the vertical axis), and the well value is unchanged at C4,16 = 10. At H-24,

there is an up hit distorted by the edge effect and MTP8,24 = 95 is scaled up to

C8,24 = 113. At well K-10, MTP11,10 = 50 is the same as the global estimate,

resulting in no change for C11,10 = 50. Well O-03 is a down hit of MTP15,3 = 4

that is distorted by the edge effect and is corrected up to C15,3 = 7. A program for

implementing the bidirectional hybrid median filter can be downloaded at http://

sdccg.burnham.org/metadot/index.pl?iid=2363 (password pbushway).

5.2.2 Discrete Fourier Transform-Based Data Correction

DFT calculations of biological array experiments,[56, 90] can be used to

create a periodogram of the array data [5, 105]. The periodogram describes the

degree of distortions that can be modeled by patterning in the original array data.

In a MTP, plate-wide, well-by-well random variations including point-noise (out-
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liers; hits) represents low periodogram amplitudes and composes the bulk of the

array data in a screen. Localized spatial distortion and patterning appears as high

magnitude signal on a periodogram due to spatial agreement in array values.

Our MTP data were processed with the Small Laboratory Information Man-

agement System (SLIMS) DFT software (downloaded from

http://slims.sourceforge.net) for comparison with the hybrid median filter. The

VisTa standalone was used to confirm SLIMS-implemented DFT and DFT correc-

tions

(see http://www.columbia.edu/cu/biology/faculty/stockwell/StockwellLab/index

to download). [90]

5.2.3 MIN6 eGFP/DsRED cells

The MIN6 mouse insulinoma cell line [74] was stably modified following

lentiviral infection to express eGFP under the control of the human insulin pro-

moter [81] and DsRED under control of the phosphoglycerate-kinase (PGK) min-

imal promoter. [27, 40] The dual promoter system allows a direct comparison of

insulin and PGK promoter activities.

5.2.4 Experimental Array Data

Our comparative analysis of correction methods used a combination of

three computationally-derived (synthetic, created in Microsoft Excel) and four

experimentally-derived, cell-based (experimental, MIN6 eGFP/DsRED cells) MTP

array data, which are summarized in Table 5.1 . In the three synthetic arrays, a

model 384-well MTP was created to mimic the edge artifact commonly observed

in real-world assay data. Synthetic1 (Figure 5.3) edge distortion was created in

the outer wells (a distance of three or less from the edge), spanning the range

0.25-0.5 (out of 0.0-1.0). The Synthetic1 background values were generated ran-

domly around a mean of 0.5 with a 5% deviation (using a uniform distribution) to

mimic noise. Synthetic1 hits were inserted randomly with magnitudes 0.6 and 1.0

(Figure 5.3 panel A). Synthetic2 was created with edge effects within three wells



101

of the edge but without background noise or hits (Figure 5.4 panel A). Sythethic3

is similar to Synthetic2 but with hits created by a random multiplier or divisor in

the range 1 to 10 (Figure 5.6 panel A).

The four experimental datasets were created from two different MIN6 MTPs

that were prepared to mimic minor edge distortion and hits (Experimental1 in

Figure 5.4 panel D, Experimental2 in Figure 5.7 and Figure 5.5) MIN6 cells were

seeded into a black-wall, clear-bottom 384 well MTP to achieve 60% confluence 24

hrs after seeding. Four image fields per well were acquired for both MTPs using a

Nikon 10x, NA 0.45 objective at 12-bits/pixel binned 4x4 using the following filters:

360/40, 460/40 (DAPI), 475/20, 535/50 (eGFP), 535/50, 620/60 (DsRED) excita-

tion/bandpass, emission/bandpass, respectively. TIFF images were analyzed using

the IN Cell Analyzer 1000 Developer Toolbox. First, the eGFP image channelwas

flat-field corrected from previously acquired blank reference images and then an

isotropic diffusion filter was passed over the image for 5 iterations to smooth image

noise in image areas devoid of significant signal variation (terms and algorithms

from INCell 1000 Developer Toolbox). Images were then segmented using thresh-

old T = 1.04∗MeanImageIntensity for the eGFP channel. The well readouts were

the density multiplied by the area under the segmented masks produced as a stan-

dard metric (DxA measurement) in the GE Developer Toolbox. The first plate was

incubated for a total of 3 days at 37 oC and 10% CO2 until cells achieved 90-100%

confluence, then fixed in 5% paraformaldehyde (FLUKA) and imaged on the INCell

1000 to generate the Experimental1 dataset. Then randomly positioned wells were

incubated with 0.04% Phalloidin-Alexa488 (Invitrogen/Molecular Probes) in PBS

to simulate up hits and the MTP was re-imaged to generate the Experimental2

dataset.

The second MIN6 MTP for datasets Experimental3 and Experimental4 was

created to mimic more severe edge distortion and hits with decreased fluorescence

intensity. Cells were seeded to achieve 40% confluence the day after seeding and

maintained in culture for an extended incubation time of 5 days to maximize edge

distortions, fixed and read using the EnVision plate-reader (PerkinElmer, MA,

USA). Methanol was then added to randomly selected wells and groups of wells,
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Table 5.1: List of datasets used in evaluation of HMF. The datasets listed are

created and used for gauging the performance of the correction methods.

Dataset Name Description

Synthetic1 Synthetic data created in Microsoft Excel with a background

SD of 5%, containing hits less than or equal to 5x SD. (Figure

5.3 panel A)

Synthetic2 Synthetic data created in Microsoft Excel to represent edge

effects in the three most peripheral wells. (Figure 5.4 panel

A)

Synthetic3 Synthetic data created in Microsoft Excel to represent edge

effects in the most peripheral wells (within three from the

edge), with hits created by a random multiplier or divisor in

the range 1 to 10. (Figure 5.6 panel A)

Experimental1 eGFP Readout of MIN6 cells incubated for 2 days and imaged

on an INCell1000 imager (Figure 5.4 panel D) with no hits

implemented.

Experimental2 eGFP Readout of MIN6 cells incubated for 2 days and im-

aged on an INCell1000 imager. Up hits were simulated using

phalloidin-FITC for illustration in (Figure 5.7 panel ) and

analysis presented in (Figure 5.5 panel ).

Experimental3 Data are eGFP or DsRED (two colors, same MTP) readout

of MIN6 cells on an Envision plate-reader after incubation

for 5 days.

Experimental4 eGFP or DsRED readout of MIN6 cells on an Envision plate-

reader (Figure 5.4 panels D and G respectively) after incu-

bation for 5 days. Down hits were simulated by addition of

methanol as described in Methods.
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to decrease fluorescence and thereby mimic down hits or toxic compounds for the

Experimental4 dataset, which was also read on the Envision instrument. Both

eGFP and DsRed spectra data were collected. This diverse collection of datasets

helped delineate the differences in performance.

5.2.5 Calculations

The measurements used to gauge the performance of arrays are described

as follows. The coefficient of variation of the background (CV = 100xSD/mean)

was used to describe the variation in the MTP data array background values.

In arrays with hits, the hits were removed prior to calculating the CV, unless

otherwise noted.

Over each MTP dataset, we define the average hit amplitude and Dynamic

Range as shown in Equations (5.6) and (5.7), respectively, where SDBackground

is the SD of the plate with the hits excluded. Dynamic Range and CV both distin-

guish array corrections that improve assay performance by decreasing background

variation and/or increasing hit amplitudes, rather than by a simple multiplication

that increases the amplitudes of both the hits and the background. The data

is objectively improved hit magnitudes increased and/or background variations

decreased with smaller background CV and larger Dynamic Range.

AverageHitAmplitude =

∑
| Hit−MeanBackground |
NumberofHits

(5.6)

DynamicRange =
AverageHitAmplitude

SDBackground

(5.7)

5.2.6 HMF Performance vs. Hit Density

The HMF assumes that hits are relatively rare in the neighborhood. As hit

density increases, the probability increases that enough hits reside within a given

neighborhood to cause errors in the local background estimate. To investigate the

sensitivity of the HMF to the number of hits in an MTP, we mathematically in-

troduced increasing numbers of hits into the synthetic and experimental datasets
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and measured the corresponding changes in the CV and Minimum Dynamic Range

(which is defined by a variation of Equation (5.7) wherein the Average Hit Ampli-

tude is replaced by the Minimum Hit Amplitude). For this experiment, variations

of the Synthetic2 (Figure 5.4 panel A) and Experimental1 (Figure 5.4 panel D)

MTPs were used. Originally, neither of these datasets contained any hits. To

mimic a relatively weak hit, we chose a hit signal magnitude of mean plus 3 x

SD, where SD is the Standard Deviation of the MTP without hits. Hits were ran-

domly positioned in the MTP and Dynamic Range and CV were measured with

and without correction by the 5 × 5 HMF. This experiment was performed with

number of hits varying from 1 to 381 in increments of 5.

5.3 Results

5.3.1 Comparisons of Average, Median and Bidirectional

HMF Corrections on a Synthetic MTP

In the first experiment, the background estimates provided by HMF were

directly compared to those from the median and average filters (see Figure 5.1) for

their ability to correct localized distortions in the Synthetic1 dataset which contains

simulated hits (Figure 5.3). All filters improved the Dynamic Range in Synthetic1

to some degree, but the HMF achieved the greatest reduction in CVs (Figure 5.3

panel E). The 5×5 HMF (Figure 5.3 panel B) and the 3×3 median filters (Figure

5.3 panel C) corrected the edge distortion and retained the amplitude of simulated

hits. In contrast, the smoothing effects of the 3× 3 average filter (Figure 5.3 panel

D) reduced simulated hit magnitudes and demonstrated a diminished capacity to

correct edge distortions (Figure 5.3 panels B-C).

Background smoothing was compared via the CVs as shown in Figure 5.3

panel E; a lower MTP background CV indicates a more uniform background. The

3×3 median filter (Figure 5.3 panel E) reduced the whole background CV to 8.2%

from 24.9% for raw MTP and increased the Dynamic Range (see Eq. 7) by 7.1-

fold, while the 5 × 5 median filter decreased the whole background CV to 13.8%
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and increased Dynamic Range by 3.1-fold. The 3× 3 average filter resulted in less

improvement, with a whole background CV of 11.2% and Dynamic Range 3.3-fold

better. The 5× 5 average filter decreased the whole background CV to 16.7% and

increased the Dynamic Range by 2.1-fold. The 3 × 3 median filter increased the

dynamic range the most (7.1-fold), with the HMF next best (6.5-fold), whereas

the HMF reduced the whole background CV the most (to 7.9%) and the 3 × 3

median next best (to 8.2%). At the edges, the HMF also reduced the CV the most

(from 14.2% to 8.8%), with the 3× 3 median filter next with a reduction to 9.7%.

Inspection of the corrections along the 2-well-wide edges of the MTP in Figure 5.3

panel C vs. A shows the differences. The 3× 3 median filter, results in Figure 5.3

panel C, demonstrate more corruption in at the edges (e.g., regions A-15, A-09, D-

02 and O-23 in Figure 5.3 panel C vs. panel 3). Thus, the HMF enhanced Dynamic

Range less than the 3 × 3 median filter, but created a lower background CV and

left hit amplitudes closer to RAW data values. Also notable is how differently the

HMF correction effected the CV of the peripheral wells compared to the central

wells. HMF reduced the CV of the peripheral wells the most (14.2% in raw versus

8.8% in corrected) while changing the CV of the center region the least (6.6% in

raw versus 6.8% in corrected). This shows the effectiveness of the HMF correction,

especially for edge effects.

5.3.2 Performance comparison of the 5× 5 HMF and DFT

Corrections on Spatially Distorted MTP Array Data

We compared the performances of the 5× 5 HMF and DFT (as applied in

the SLIMS software package) on synthetic and experimental datasets, both with

and without simulated hits as described in the Methods. Example images from the

Experimental2 dataset are shown in Figure 5.7 and include: 1) A negative control

central well (Figure 5.7 panel A); 2) a dim negative control edge well (Figure 5.7

panel B) that resulted from long-term cell culture; and 3) a very bright simulated

hit positioned at the MTP edge (Figure 5.7 panel C, note higher contrast vs. panels

A and B) that were artificially brightened to visualize the cells.

Figure 5.4 panels A and D are surface plots of the Synthetic2 and Exper-
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imental1 datasets, respectively. These datasets did not contain simulated hits.

Figure 5.4 panel B illustrates the Synthetic2 MTP treated with the SLIMS DFT

method. The waves in the surface plots that are especially prominent at the edges

in Figure 5.4 panel B are typical ringing artifacts often created by transforming the

image data to the discrete frequency domain and back to the spatial domain,[108]

as done by DFT techniques. By inspection, the HMF produced a flatter 3D plot

overall (Figure 5.4 panel F) vs. the DFT correction (Figure 5.4 panel E, compare,

e.g., areas M-J/13-16). Neither method completely corrected areas near corner

wells A-1 and A-22 (Figure 5.4 panels E and F), where more prominent noise

might be mistaken for hits.

The Synthetic2, Synthetic3, Experimental1, Experimental2 and both eGFP

and DsRed datasets of Experimental3 and Experimental4 were corrected using the

DFT, 3×3 median, 5×5 median and 5×5 HMF correction methods. The CVs were

calculated and plotted in Figure 5.5 panel A for datasets with no simulated hits

and 6B for data arrays with simulated hits. In data arrays without hits (Figure 5.5

panel A), the 5× 5 median background estimator performed the worst (decreased

the CVs the least) on the eGFP and DsRed Experimental3 and Synthetic2 datasets,

and the DFT performed the worst on the eGFP and DsRed Experimental3 dataset.

The 5× 5 HMF lowered the CVs the most on all datasets; with DFT second best

on the Experimental3 eGFP dataset (4.2% vs. 4.5%), and tied with HMF in the

Experimental3 DsRed dataset (both 4.3%). The 3×3 median was second to HMF

on both the Experimental1 (2.7% vs. 2.8%) and the Synthetic2 (2.6% vs. 4.1%)

datasets. For analogous corrections of the arrays with simulated hits included

(Figure 5.5 panel B), the DFT performed the worst on all datasets, except for

Experimental4 DsRed, and actually increased the CVs compared to the raw data

on the Experimental2 and Synthetic3 datasets (to 36.0% from 14.4% and to 33.1%

vs. 23.8%, respectively). The 5×5 HMF again performed the best on all datasets,

with the 3× 3 median second best on the Experimental4 eGFP dataset (5.1% vs.

5.9%), the DFT second best on the Experimental4 DsRed dataset (6.5% vs. 8.8%),

and the 3× 3 median second best on both the Experimental2 (4.5% vs. 4.9%) and

Synthetic3 datasets (3.9% vs. 5.7%).
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In Table 5.2 , the data of Figure 5.5 panels A and B were further averaged

across all datasets into two groups with and without simulated hits for compari-

son. Without simulated hits, the improvements in CV to an average of 0.2-0.3x of

raw are similar except for the 5×5 median, which improved the CVs by an average

of only 0.6x. The differences are more dramatic with simulated hits, where the

5 × 5 HMF and 3 × 3 median average corrections were again similar at 0.3x and

0.4x, respectively, but the 5 × 5 median corrected by an average of 0.6x and the

DFT actually made the average CV worse than the raw data by 1.3x. Thus, for

the results in Figure 5.5 panels A-B and averages shown in Table 5.2 , the CV

was decreased most consistently by the HMF method, and the DFT correction

performed especially poorly on the Experimental2 and Synethetic3 datasets with

simulated hits included.

Table 5.2: Performance of correction methods without hits vs. with hits averaged

for all datasets. The average CVs for the datasets are tabulated for experiments

without and with simulated hits in the arrays, to further compare the performances

of the DFT, 3× 3 median, 5× 5 median, and 5× 5 HMF filters in the experiments

of Figure 5.5 panels A and B. CVs with hits were calculated only on non-hit wells.

No Hits With Hits

Correction Method CV(%) CV/Raw CV(%) CV/Raw

Raw Data 16.2 1.0 17.0 1.0

5× 5 HMF 3.5 0.2 5.0 0.3

3× 3 median 5.4 0.3 7.3 0.4

SLIMS DFT 5.5 0.3 22.0 1.3

5× 5 median 9.2 0.6 10.4 0.6

We next evaluated the Dynamic Ranges (see Equation (5.7)) and average

hit amplitudes after corrections by the median, HMF and DFT (both normalized

to the raw data) methods. As shown in Figure 5.5 panel C, the Dynamic Ranges

increased most after correction by the HMF in all datasets, with the 3× 3 median

performing second best in the Experimental4 eGFP dataset (1.4 vs. 1.6), the DFT

performing second best in the Experimental4 DsRed dataset (1.7 vs. 3.2), and the
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3× 3 median performing second best in both the Experimental2 (3.0 vs. 3.2) and

Synthetic3 (3.6 vs. 5.2) datasets. The DFT method decreased the Dynamic Range

in all datasets except in Experimental4 DsRed dataset.

Correction methods affect the range of simulated hit amplitudes, as shown

in Figure 5.5 panel D where a consistent retention of hit amplitudes was observed

in HMF corrections, while the DFT had a tendency to blunt the hits. Interestingly,

while the DFT blunted the hit amplitudes the most in the Experimental4 DsRed

dataset (0.69x), it apparently also decreased the CV even more to still improve

the Dynamic Range, second only to the HMF (Figure 5.5 panel C). Overall the

median-based background estimation method (Equation (5.1)), retained hit am-

plitudes representative of the raw (0.99x to 1.06x).The preservation of raw data

hit amplitudes was independent of median filter type and contrasted sharply with

DFT corrections which consistently reduced hit amplitudes over all of the datasets.

In addition, all of the background estimation methods (Equation (5.1)) improved

the Dynamic Ranges (Figure 5.5 panel C), whereas the DFT decreased them in

three out of the four datasets.

The DFT and HMF corrective effects on simulated hit amplitudes are fur-

ther illustrated in 3D surface plots of the Synthetic3 and Experimental4 eGFP and

DsRed datasets in Figure 5.6 panes A-I. Note that artifacts in different channels

in the same wells (e.g., eGFP and DsRED) are independent from each other (see

Figure 5.6 panels D-F vs. G-I), which means that the background estimate of one

reporter protein cannot be used to correct the distortion of another. The perfor-

mance differences between these two methods can be viewed by comparing Figure

5.6 panels B, E and H to C, F and I, respectively. In each case, the DFT largely

blunts the hits more and decreases the background variations less than the HMF

background estimator.

5.3.3 Effect of Hit Density on HMF Correction Perfor-

mance

The HMF background estimation method was found to better retain hits

than the other background estimators. This ability to ignore hits in the background
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estimate was expected to decrease as the hit densities increased. High hit density

experiments, such as secondary screens, should be excluded from HMF correction,

as should the regions with contiguous control wells. To determine at what hit

densities HMF should no longer be used, simulated hits were randomly positioned

100 times each for hit densities of 1 to 382 in 384 wells with the magnitude of 3

x SD as described in the methods. The resulting CV (Figure 5.8 panel A) and

SNR (Figure 5.8 panel B) plots were created from the averages of each set of 100

trials at each density and the SD envelopes are also shown. The HMF reduced the

CVs at all hit densities and as shown by the SNR, began blunting the hits as the

hit densities increased. The SNRs improved more than 50% at hit densities lower

than 20% for the Synthetic1 data set and lower than 25% for the Experimental1

data set. Thus, the HMF decreased the CV and improved the SNR at hit densities

an order of magnitude or greater than are typical for primary screens.

5.4 Discussion

One variable in the HMF that might be further optimized, especially for

different (larger or smaller) MTP plate sizes is the kernel size. The 5 × 5 size

was empirically determined to be optimum for 384-well MTP arrays; however,

for application to denser formats (e.g., 1,536) it be would useful to test different

kernel sizes such as 7×7 and 9×9. Since the local background estimation depends

heavily on obtaining a representative sample population from the MTP, kernel size

becomes a significant concern at the MTP edges. Although the total number of

elements sampled by the kernel filter is reduced at the MTP periphery because a

portion of the mask overhangs the MTP edge, the 5× 5 HMF was robust enough

to maintain a tight correlation between the obtained median value and the local

sampling area in the 384 well MTP. Alternative ways to address array edges are

well documented for image processing [58, 59, 97].

HMFs, like all automated methods for correcting systematic errors, require

spatially random MTP data with no artificial arrangement of wells that are ex-

pected to have high or low magnitudes. As shown in Figure 5.8 panel , the effec-
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tiveness of the filter diminishes as the hit density increases, with CV significantly

diminished at hit rates above 20%. High densities or clustering of positive wells, or

organizing MTPs with dose series or controls positioned in rows or columns would

result in misrepresentation of the control values as background in the kernel and

compromises filter function. One way to circumvent this problem is by nesting

controls or dilution series within the MTP in such a way as to avoid having a

low- or high-value cluster disturb the function of the filter (i.e. by randomizing

well positions). Also, in the case of controls positioned in rows or columns, the

filter can be programmed to exclude the control wells from analysis. The SLIMS

interface used in the DFT corrections offers such an option [56, 90]. Alternatively,

the HMF kernel could be customized by excluding axial elements (column or row)

which might contain control wells and we are exploring this further.

In comparison of MTPs before and after correction with DFT, the correc-

tion restored values to the mean value range (compare Figure 5.6 panel G to H).

With rare exceptions, however, the DFT corrections also reduced the amplitude of

simulated hits (compare hits in Figure 5.6 panel E vs. D and panel H vs. G). For

example, in the corners of the Experimental4 DsRed array, the DFT method failed

to preserve simulated hits altogether and instead reduced the hit to background

levels. This tendency to blunt hits is also common to the averaging correction

methods (compare Figure 5.3 panels D, B and C). In contrast, the 5 × 5 HMF

retained all simulated hits in our data sets, scaling them in agreement with local

wells (e.g., compare region A1 in Figure 5.6 panels G-I).

The case of Experimental4 DsRed illustrates an interesting point in the

comparison of the DFT and median-based correction methods. The background

CV measurements for Experimental4 DsRed (Figure 5.5 panel B) are higher in

arrays corrected with 3× 3 and 5× 5 median as compared to the DFT. However,

viewing Figure 5.5 panel D reveals that while the DFT reduced the background CV

more, it did so at the cost of blunting hits. The DFT correction is also accompanied

with a reduction in Dynamic Range which is apparent in Figure 5.5 panel C. The

lower CVs, blunted hits and reduced Dynamic Range after DFT treatment can

be explained by a gross flattening of the array contour without regard to discrete



111

hits. For example, the MTP edge correction appears extensive after treatment

with the DFT-based method in the Experimental DsRed (compare data in the

range 37.5%-50% in Figure 5.6 panel G vs. H), but the corrections also reduced

the magnitude of many of the hits (e.g., well A13).

Further, correction of corner wells by the DFT was more aggressive than

the correction of the other edge-proximal wells. The DFT also blunted the hits

in MTP corners more aggressively than other edge-proximal wells (e.g., compare

corrections to A1 and P1 to M1 and A13 in Figure 5.6 panels G-H). This correction

is unusual and suggests a DFT correction artifact based on highly conserved array

symmetry (4 corners). The correction made by the HMF to MTP corner wells,

however, appears to be consistent with that made to other edge-proximal wells

(e.g., compare corrections to A1 and A13 in Figure 5.6 panels H-I).

Although the DFT reduced the background CVs statistically over the entire

MTP for both Synthetic2 and experimental arrays (Figure 5.5 panel B and Table

5.2 ), it introduced waves or ringing artifacts in Figure 5.4 panels B and E (e.g.

area J-17) in the corrected Synthetic2 dataset. The DFT is based on continuous

functions that require special treatment to deal with finite data arrays. i.e., how

does one model the region at the edge where the data ends? In order for contin-

uous functions to work at the edges, assumptions have to be made to create data

outside the original array. e.g., if one produces an artificially larger plate where

the outside values are zero, a step function is produced that generates distinctive

ripple patterns [108]. Various windowing functions have been designed to reduce

this ripple. Primary screening data has hits that are fundamentally discrete on a

background that can be modeled as continuous (a single mean with noise). Be-

cause of this it may be possible to remove the ripple by iteratively refining the

estimate of the data outside the MTP array to match the mean and noise of the

background.

Median filters (Figure 5.4 panel C), which are nonlinear and natively dis-

crete, do not generate ringing artifacts. However, the HMF corrected array Figure

5.4 panel C exhibits symmetric artifacts in the corners of the plate due to the

small sample size of the HMF kernel in the corners. This resulted in insufficient
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sampling of the background and in turn reduced the efficacy of the correction. The

corner correction failures in the HMF correction had a much smaller effect than

the DFT ringing on the CVs (Figure 5.5 panel A). One possible solution to this

problem is to adaptively increase the kernel area at the corners. The kernel size

could also be held constant by moving the target pixel. Alternatively, we have ad-

justed the kernel pattern to make it more or less sensitive to outliers as the sample

size decreases. In addition, we have found that the serial application of multiple

discrete filters tuned to common MTP array patterns minimizes the introduction

of artifacts at the MTP corner regions, while also having an additive beneficial

effect on error correction.

The DFT method transforms MTP data into the Fourier space by fitting

sinusoidal functions to the data [90]. Since sinusoidal functions are by definition

continuous, this transformation assumes that the data is also continuous. For

MTPs, this means that the DFT correction expects a hit, which by definition has

an extreme magnitude, to resemble its surrounding background wells. However,

since hits in MTP data are inherent spatial discontinuitiespresence of a hit is

not related to the magnitude of the wells around it and is an abrupt departure

from the backgroundthe piecewise continuity assumption of the DFT method is

not appropriate. Fitting of a continuous function to discontinuous data reduces

the hits toward background levels, i.e., blunts them. The HMF method, on the

other hand, is based on nonlinear rank order calculations for each neighborhood

(i.e., finding the median) and does not assume spatial continuity in the dataset.

This inherently discrete method essentially ignores rare extreme values (hits) in

its estimation of the background.

In summary, the 5×5 HMF performed best overall with regard to statistical

improvement of the various datasets tested and this conclusion is supported by

the surface plots describing the arrays before and after correction. The DFT

method may benefit from case by case fine-tuning in the frequency domain. The

bidirectional HMF might also be further tuned by optimizing the neighborhood

size and subregions, but the easily implemented and computationally cheap 5× 5

HMF performed well on all of the datasets tested here. We conclude that median
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based array correction methods best reduced localized data distortion and assay

noise while preserving hit amplitudes, and that discrete background smoothing

approaches are superior to ones based on continuous functions for this data type

rare hits in data arrays.
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Figure 5.1: Illustration of example 3 × 3 median and 5 × 5 HMFs. (A) Elements

representing both common 3 × 3 median and average filters, where the median is

obtained from the rank order of all 9 elements and the average is the arithmetic

mean of the same elements, are shown. (B) For the bidirectional 5 × 5 HMF,

the median values are extracted from neighborhood diagonals (light gray), cross

(black), and center value (hashed) and are used to generate a rank-ordered 3-

number list from which a final hybrid median value is determined for each data

element in an MTP array.
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Figure 5.2: Application of the 5 × 5 bidirectional HMF to a MTP array. Various

placements of the HMF on an example array illustrate the function of the filter

and the effect of peripheral wells on filter size and the total number (N) of sam-

pled elements. As the 5× 5 HMF passes over the array, it returns a unique value

estimating the local neighborhood (Li,j) corresponding to the raw data element

at its center (MTPi,j). A linear transform is then applied to the raw data center

element. The linear transform divides the dataset global median (G) (50 as in-

dicated in top left corner) by the filter hybrid median (Li,j) to produce a simple

scalar that is multiplied by MTPi,j to yield the corrected value (Ci,j). The table

(bottom) tracks MTPi,j and Ci,j for the illustrated operations.
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Figure 5.3: Comparison of local background estimators. The performances of the

average, median, and bidirectional hybrid median filters (HMFs) are compared

using the Synthetic1 dataset. The raw data are shown in (A) and the array correc-

tions are shown in (B) for the 5×5 HMF, (C) for the 3×3 median filter, and (D) for

the average filter. A data table (E) statistically summarizes the capacity of each

filter to smooth localized background distortion while preserving hit amplitudes

in the Excel array. Mean, standard deviation, and coefficient of variation (CV)

were calculated with the simulated hits removed. Dynamic range was calculated

according to Equation (5.7). The table breaks down corrective performance at the

edges and central region of the array. Edge regions are defined by a 2-element wide

border plus 1 element nested at each corner. The 5× 5 median and average filters

are not shown in surface plots because of reduced correction efficiency and method

redundancy, but are summarized in (E). The scale and color codes are identical,

with each color corresponding to 12.5% of the total range.
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Figure 5.4: Panel of surface maps comparing DFT and HMF correction perfor-

mances. 3D plots of Synthetic2 dataset (A) and Experimental1 data acquired

on the INCell1000 high content microscope (D), both without simulated hits, are

compared with 3D plots after correction by the DFT (B, E) and 5 × 5 bidirec-

tional hybrid median (C, F) filters. Color intervals represent 12% of the RAW

array range. All MTPs shown are normalized with respect to the maximum and

minimum of their respective RAW dataset. The RAW datasets shown, therefore,

span 0%–100%.
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Figure 5.5: Summary of background estimator performance. (A) The coefficient

of variations (CVs) for the corrected Synthetic2, Experimental1, and the eGFP

and DsRed datasets of Experimental3 that contained no simulated hits are shown.

(B) The CVs of corrected Synthetic3, Experimental2, and the eGFP and DsRed

datasets of Experimental4, which contained simulated hits that were removed prior

to CV calculations, are shown. (C) Shows the effect of array corrections on dynamic

range. The average absolute deviation of hits from the array mean is divided by

the background standard deviation (values shown above dynamic range bars). The

corrected arrays were then normalized to the RAW data dynamic range by divi-

sion. (D) The average absolute deviations of hits from each array were normalized

to the RAW data and shown as a percentage of the RAW data amplitude. Impor-

tantly, (C) shows the consolidated effect of the correction method (noise, localized

distortion, and preservation of dynamic range), whereas (D) tests if dynamic range

improvements were made by erosion or exaggeration of array hit amplitudes. See

Methods for details on calculations.
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Figure 5.6: Panel of surface maps comparing corrections to arrays with nested out-

liers. Surface maps of the Synthetic3 dataset (AC) and Experimental4 eGFP (DF)

and Experimental4 DsRed (GI) are shown, as described in Methods and Table 5.1.

The RAW data are shown in (A, D, and G) and the data as corrected by the 5× 5

bidirectional hybrid median filter (HMF) (C, F, and I) and the Discrete Fourier

Transform (DFT) (B, E, and H) methods. The Experimental4 eGFP and DsRED

data are shown separately but each well contains both fluorescent proteins. The

eGFP and DsRED differ in localized edge distortion prior to correction (see Dis-

cussion). Color intervals represent 12% of the RAW array range. All MTPs shown

are normalized with respect to the maximum and minimum of their respective

RAW dataset. The RAW datasets shown, therefore, span 0%-100%.
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Figure 5.7: Example MTP edge distortion in the cell- based fluorescent assay.

The example eGFP raw images from MTP used in the Experimental2 dataset are

shown. Panel (A) from a central well is brighter than the image in (B) from a

peripheral well, demonstrating an edge effect. (C) Shows an example simulated

hit. Brightness was increased artificially in (A) and (B), relative to (C) for display,

resulting in higher backgroundsnote the resulting higher backgrounds and lower

contrast.
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Figure 5.8: Effect of hit density on 5 × 5 hybrid median filter (HMF) function.

Simulated hits were positioned randomly into the Synthetic2 and Experimental1

(Figure 5.4 panels A and D, respectively) and the effect on coefficient of variation

(CV) and signal-to-noise ratio (SNR) were determined for increasing numbers of

hits (from 1 to 382 in increments of 5) along with standard deviation obtained

over 100 trials. (A) Effect on CV: a negative value in the vertical axis signifies an

improvement (reduction) in CV. (B) Effect on SNR: a positive value in the vertical

axis signifies an improvement in SNR. Note that the 5× 5 HMF improves CV and

SNR at all hit densities; however, the magnitude of the effect diminishes as the hit

density increases.
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