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Abstract 

Exact and distance-independent expressions for beam-shape coefficients 

(BSC'S) ill various cases are obtained. For a weakly focused beam in the two-

dimensional (three-dimensional) case, the expression is shown equal (linearly 

related) to the value of the beam field at the distance of m/k {\/T(l + l)/k) 

from the origin, where m(l) is the azimuthal (principal) angular momentum 

number and k is the wavenumber. This provides a rigorous foundation for 

and a better understanding of the localization principle of van de Hulst. Fur-

thermore, it gives corrections to the principle if the beam is more focused. 

With the knowledge of the asymptotic behavior of the positions and widths 

(or quality value) for the morphology-dependent resonances (MDR's) in Mie's 

scattering, the results are applied to discuss and answer questions regarding 

the excitation of high-Q MDR's by good collimated wave beams focused at 

positions essentially off the surface of the sphere. 



摘 要 

針對不同情况，本文得到了與距離散射中心位置無關的波束形狀因子。 

對于一束二維（三維）的弱聚焦波束，我們的近似表達式正比于該波束在距 

離 坐 標 原 點 處 的 波 場 。 其 中 m © 分 別 爲 方 位 （ 主 ） 角 動 量 量 

子數，A爲波束的波數。這一方面爲vandeHulst所提出的局域性原理提供了 

更嚴格的理論依據，同時也便于我們對該原理有更深入的理解。另外，有關 

結果也預示了該局域性原理的高階誤差。在對MDR共振位置、寬度有深入 

瞭解的基礎上，我們也嘗試回答了波束入射在散射對象表面外面的時候如何 

引起共振激發的問題。 
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Chapter 

Introduction 

The Mie scattering, which refers to the scattering of plane electromagnetic 

waves by an isotropic and homogeneous sphere, is a topic of long history [1— 

5]; it is sometimes called the Lorenz-Mie scattering because Lorenz studied a 

similar problem earlier in the context of scattering of sound waves [6]. This 

problem has attracted much interest in recent decades [5, 7-11], mainly because 

of the appearance of resonances, which can be readily demonstrated with the 

advent of lasers and sophisticated diagnostics, and leads to studies and appli-

cations in various areas, including lasing [12,13], particle sizing [14,15], Raman 

scattering [16,17], optical levitation [18], etc. 

Such resonances in fact come from the exceptionally large values of the co-

efficients at certain size parameters s ~ ka = lixajX (a being the radius of the 

sphere, and A the wavelength). These coefficients, each labeled by two angular 

momentum numbers (principal I and azimuthal m) are those of the partial-

wave terms in the series solutions originally obtained by Mie for the scattered 

field and the internal field. Physically, the resonances are due to the tunneling 

of the incident wave into the sphere, as circumnavigating waves near the sur-

1 



Chapter 1, Introduction 

face, which undergo almost total internal reflection and get enhanced through 

phase matching. They are called morphology-dependent resonances (MDR's), 

whispering gallery modes (WGM's), or quasi-normal modes (QNM's), by dif-

ferent groups of people in the area. 

Mie's theory has been generalized to the scattering of wave beams, also 

called the generalized Lorenz-Mie theory (GLMT) [6]. This generalization 

is needed not only because of laser beams being used in practice, but more 

importantly, because of the discovery by experiments [19, 20] and numerical 

simulations [21,22] that the effectiveness of resonance excitation depends on 

where the beam is focused relative to the sphere. Such effective excitation 

has been explained by the localization principle (LP) of van de Hulst [3] in 

the extended version [23] which states that a partial-wave term of angular 

momentum number (or order) I corresponds to a ray passing the origin at a 

distance (/ + |)A/27r [3] and the ray can be off the surface. Under this principle, 

geometric optics (a ray) and wave optics (a partial-wave term of an order) are 

connected. Yet the principle is heuristic and there is obviously a need for a 

rigorous basis. 

For an incident wave beam, there are coefficients of the partial-wave terms 

in the expansion for the beam field which, unlike the case of an incident plane 

wave, are generally different for different angular momentum numbers; they 

have been called the beam shape coefficients (BSC's). Relation between the 

BSC and the LP has been pointed out before, but only in the context of 

applying the latter to obtain an approximation of the former. 

It is the purpose of this thesis to study the BSC and its relation to the LP 

in a rigorous manner and, furthermore, how it can be applied to explain the 

excitation of resonances by off-center or even off-surface wave beams. 

2 



Chapter 1. Introduction 

For simplicity, wc first study such problems in the two-dimensional (2-D) 

context in Chapter 2. Along the way we also obtain asymptotic formulas for 

the positions and widths of the high-quality (high-Q) resonances. 

In chapter 3, the study is extended to the 3-dimensional (3-D) case, where 

both scalar wave beams and laser beams are considered. Of course, the vector 

nature of the latter beam fields is stressed. 

The two chapters, albeit related, are written relatively self-contained. Each 

has an introduction of its own. 

Throughout the paper, we have adopted the terminology and notations 

commonly used in quantum mechanics, which are also similar to those used 

by Jackson [24] and Young et al. [25 



Chapter 2 

Beam-shape Coefficients, 

Localization Principle and 

Excitation of Resonances in 

Mie,s Scattering ——a 

Two-dimensional Study 

Here we study how the beam-shape coefficient is related to the localization 

principle of van de Hulst and its relevance to the excitation of morphology-

dependent resonances (MDR's) by off-surface laser beams in the two-dimensional 

context. 

First, we obtain asymptotic formulas for the position and width of MDR's. 

We find that, for high-Q MDR's, the angular momentum number m is between 

s and ns as expected, where n is the refractive index of the sphere. In addi-

tion, we show that the Q value basically increases exponentially with the size 

4 



Chapter 2. BSC，s’ Localization Principle and Excitation of 
Resonances, a 2—D Study 

parameter, and this will be useful for our discussion on the excitation. Here 

we follow closely the method of Lam et a l [26] for the 3-D Mie scattering. 

The formula for the position, given by Eq. (2.9), is almost identical to that 

of Lam et al. This is not a surprise in view of the same physics involved. On 

the other hand, the formulas for the width, given by Eq. (2.13) for the two 

states of wave polarization and which to our knowledge have not appeared in 

the literature before, have the two-dimensional characteristics. These formulas 

should be useful in the interpretation and understanding of the resonance phe-

nomena in cylindrical micro-cavities and the coupling between optical fibers 

and/or micro-disks in photonic circuitry. 

Second, we consider an incident beam in either state of wave polarization 

and derive an exact and distance-independent expression for the BSC which, 

to first-order approximation in small angle of beam divergence, reduces to a 

simple formula, given by Eq. (2.24). This formula clearly states that the BSC 

of angular momentum number m is equal to the incident beam field at the 

perpendicular distance of m/k. This, with proper modification, essentially 

gives the content of the localization principle of van de Hulst, in its original or 

extended version. The simplicity of the beam-shape coefficient will certainly 

save a lot of labor in numerical computations and modelings in problems of 

scattering by a light beam. Moreover, we have shown the limitation of the 

principle and made correction to it in the case of a more focused beam. 

Because rn lies between s and ns and because of our approximate BSC 

formula, high-Q resonances are most efficiently excited by beams focused at 

distances between a and na, which are off the surface. There is the interesting 

question here, namely, how to interpret the excitation of a liigh-Q MDR in the 

sphere by an essentially off-surface laser beam, especially in the limit of short 

5 



Chapter 2. BSC，s, Localization Principle and Excitation of 
Resonances^ a 2—D Study 

wavelength? This is discussed and answered in the last section. 

2.1 Positions and widths/Q-values of MDR's 

We first set up the formulas and notations for later convenience. Taking 

the cylinder axis as the 2：-axis and the incident wave along the '[direction, it is 

well known that the incident, internal and scattered electric (magnetic) fields, 

all having only the >2:-component for the T丑-polarization (TM-polarization) 

case, are respectively given by 

and 

Fine = exp (iky) = ^ Jm{kr) exp {im4>) 

Fint = ^ amJminkr) exp {imcf)) 

Fsca 二 ^ c饥Hm(kr) exp (im0) 

(2.1) 

(2.2) 

(2.3) 

where the common time-factor exp {—iut) has been omitted for simplicity, r 

and 0 are the polar coordinates in the x2/-plane, the sum is over all positive and 

negative integers of m including 0, J„i is the Bessel function, Hm (superscript 

omitted for simplicity) is Harikel function of the first kind with out-going wave 

at infinity, m is the mode number or the angular momentum index, and the 

coefficients are 
2i 

� = , (2.4) 
7TsD,n(s) 

and 
Jm(ns)Jl^(s) - nPJm(s)J^{ns) 

Cm = — / 、 ， （丄 



Chapter 2. BSC，s’ Localization Principle and Excitation of 
Resonances , a 2—D Study 

with the denominator function defined by 

Dm(s) = Jm(ris)H'^(s) - nPI{爪(s)j;jns) . (2.6) 

Note that 

F=1 or 1/n^ (2.7) 

for the TE'-polarization case or the TM-polarization case, respectively, and 

the prime sign in J'^ and H'^ means a derivative of the function with respect 

to the argument and that each J^ exp (?'m於）or 丑爪 exp (zm^), together with 

the time-fact or, is called a partial wave of mode number m in the solution. 

2.1.1 Positions 

Now the positions of the MDR's are determined by the zeros of the imagi-

nary part of the denominator or 

nPJ'Jns)/J^{ns) = , (2.8) 

which has the same form as (2.1b) in [26]. The asymptotic position of 

mode number m and radial order number i is therefore given by 

"71�1/3 P 3a?广 2�I/3 
nSmA = m + a, - - F = = + 

V 2 / 20 \m) 

(2.9) 

2v^(l - l / n � W 
+ 0 ( l / m ) 

for large m, where a^'s are the roots of the Airy function Ai(—2；) already 

tabulated in [26]. It is exactly the same as that by Lam et al. if m is replaced by 

7 
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Z+1/2, where I is the mode number or the principal angular momentum number 

ill the 3-D case. The similarity is not a surprise in view of the same physical 

situation where the wave enhances itself through internal reflections along a 

big circle and phase matching. Note that the electric (magnetic) field for the 

T£^-polarization (TM~polarization) case in the 3-D Mie scattering is parallel 

to the direction of the "angular momentum" and therefore perpendicular to 

the plane of the big circle, same as in our 2D case. 

2.1.2 Widths and Q-values 

The width of a resonance is related to the leakage. It may be determined by 

essentially switching off the incident wave, hence leaving only the internal wave 

and the scattered wave. The boundary conditions then require a vanishing 

denominator function in Eq. (2.6), which admits complex solutions for the size 

parameter. The imaginary part of the solution simply gives the half width, 

whereas the real part, for tiny leakage, should be very close to the position in 

Eq. (2.9)，to be indicated by sq in the following. We follow the method of 

Lam et al. and introduce the mismatch function of complex z 

M{z) = H'Jz)/HUz) - PnJ'Jnz)/Jrr,.(nz) . (2.10) 

The root of it,之o, which obviously satisfies Dm{z) — 0, gives the complex solu-

tions. For tiny leakage, Sq — zq is small so that we have M(sq) = M'{zq) {sq — Zq) 

to first order in the smallness. Now, use of the Wronskian of Bessel's functions 

leads cxactly to 

7rSoYrniSo)Hr,risQ)， 



Chapter 2. BSC，s’ Localization Principle and Excitation of 
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while use of the Bessol differential equation gives, for the T丑-polarization case, 

M'(^o) (2.12a) 

exactly and, for the TAI-polarization case, 

M\zo) = — 1) [{m/nsof + CC(彻)/K爪(补))2] . (2.12b) 

The imaginary part of Zq, which is negative as expected, can therefore be 

obtained to yield the following full-width at half maximum (FWHM) for the 

MDR of mode riiiinber m and order number i 

4 

with 

N = 1 or (l + l /n^) c o s h ^ ^ - l (2.14) 

for the T丑-polarization case or the TM-polarization case, respectively, where 

we have introduced a convenient parameter ^ through the hyperbolic cosine 

by 

cosh^ = m/s , (2.15) 

and have approximated = — sinh( [See (2.6b) in [26] or [27 

assuming a finite coth , and s in all the equations refers to the corresponding 

position of the resonance in Eq. (2.9). These widths have the 2D characteristics 

and are slightly different from the 3-D counterparts. For example, we have 

2/TTS instead of because of the difference in the Wronskians, and we 

have the (cylindrical) Bessel function instead of the spherical Bessel function. 

9 
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The difference is not a surprise in view of the physical situation where the 

circumnavigating wave "sees" on its sides different curvatures of the interface 

in the two different cases. We have also numerically computed the widths and 

hence the Q values (defined by s/F) of the MDR's for a number of cases. To 

show the results and for comparison with our asymptotic formula, we give in 

Fig. 2.1 the semi-log values of QmjJSm,i (i.e., 1/r^,,) versus s for a number of 

m，s and is for the polarization case, with the index of refraction n — 1.33. 

The points, represented by different little symbols (stars, diamonds, squares, 

triangles and circles) each for a mode number m, are the numerically computed 

results. Only MDR's with Q/s > 10 in the range are shown. The solid lines 

are plotted according to our asymptotic formula Eq. (2.13), each for a fixed m 

and with s increasing from s ~ m!n\ they obviously start from their respective 

highest values at z = 1 and decrease rapidly with s. The dotted lines are plotted 

for each i according to the following further simplified result [27 

1 / r . , = ！ ^ ^ e x p [ 2 m ( e - t a n h e ) ] ^ (2.16) 
2 sinh^ 

which itself already shows the exponential dependence on rri or s asymptoti-

cally in view of the relatively slow variation of The approximate "straight-

iiess" of the dotted lines is therefore not a surprise. Obviously, the line for 

i = 1 gives the largest Q/s. For m = 100, the Q/s-value is as large as 2 x 10^, 

and exponentially larger for larger rnl The comparison is very satisfactory. We 

note that Q/s is larger for smaller s in the range between m/n and m and this 

is really due to the effect of the Hankel function in the formula. The graph for 

the TM case have similar features. 

10 



Figure 2.1: Semi-log graph of Q/s vs s for a number of m,s and i's for the TE 
case. The points (given by the stars, diamonds, squares, triangles and circles) 
are the numerically computed values. Solid lines are from Eq. (2.13) and the 
dashed lines from Eq. (2.16). 
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2.2 Beam-shape coefficient and the localiza-

tion principle of van de Hulst 

Figure 2.2: Sketch of the cross-section of a cylinder with its axis taken as the 
2；-axis, and an incident beam focused att {xq, 0). 

We now consider a 2D incident laser beam in either state of polarization, 

propagating mainly along the ^-direction and focused at a point Fq 三 p o ) . 

The cross-section of the cylinder with the beam for a particular case of 如 = 0 

2
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is shown schematically in Fig. 3. The field (electric for the TE-polarization 

case or magnetic for the TM-polarization), having only the 之-component, is 

independent of z and can always be expressed as a linear superposition of plane 

wave solutions as follows 

F^c(x，y) = ro) exp(tk^x + ikyy)dkj： , (2.17) 
J-k 

where F(kx； Fq), which contains ro as a parameter, is any function of k^. 

ky = y/k"̂  — k^, and the time-factor has again been omitted. Note that, with 

the integration limits at (i.e., /c), we have excluded component waves 

decaying along the y-direction; such excluded waves are believed not present 

ill any wave beam propagating in free space. 

The exponential function in the integral can now be expressed in terms of 

the partial waves like that in Eq, (2.1) except that the angle (j) is now replaced 

by (/) + 7, where 7 is the angle of the wave-vector relative to the y-axis, i.e., 

sin7 = kjk . (2.18) 

Subsequently, we have 

F”ir(工,y) = ^ PmJm(kr) cxp , (2.19) 
rn 

which is the same as that in Eq. (2.1) except for the additional factor, called 

the beam-shape coefficient (BSC), given by 

P m ^ F{ka:;ro)exp{7m-f)dk^^ . (2.20) 

13 
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For a perfect circular surface, the partial waves are independent of one another 

and, furthermore, each partial wave in the incident field is accompanied by the 

corresponding partial waves in the internal and scattered fields through the 

boundary conditions. Therefore, the internal and the scattered fields are the 

same as those in Eq. (2.2) and Eq. (2.3) except for the same additional factor, 

i.e., 

Fintioc, y) = PmdmJm [nkv) cxp {im^) (2.21) 
m 

and 

y) 二 ^ l3mCmHm{kr) exp [imcf)) . (2.22) 
77? 

These expressions simply show that the excitation of any MDR of a mode 

number rn, besides the crucial dependence on the right size parameter s at 

which the coefficients a^ and Cm are significantly large, depends also on the 

value of the corresponding BSC. 

2.2.1 Approximate formula for BSC 

From Eq. (2.18), the following series expansion 

7 = 智 + K 警 警 _ 

is well-known. If only the first term is kept, the integral in Eq. (2.20) is exactly 

the same as that in Eq. (2.17) at x = m/k and y — 0, yielding a remarkably 

simple approximate formula as follows 

Pm = F•人m/KQ) . ( 2 . 2 4 ) 

4
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Chapter 2. BSC，s, Localization Principle and Excitation of 
Resonances，a 2—D Study 

So the BSC of angular momentum number m in the TE [TM) case is simply 

equal to the value of the beam electric (magnetic) field at the perpendicular 

distance m/k\ One obvious implication regarding the excitation of a high-

Q MDR of number m is that, in addition to the crucial requirement of the 

right size parameter, one has to require the beam to be focused at the right 

distance, namely, a perpendicular distance m/k, from the cylinder axis or, 

ill the language of quantum mechanics, to require the beam to have the right 

"angular momentum". Furthermore, because a high-Q MDR has its m number 

lying in between s and ns, its excitation is most effective if the beam is focused 

at a point between a and na which is essentially outside the surface o^ the 

cylinder. This is precisely the prevailing argument regarding excitation by 

beams using the (extended) localization principle of van de Hulst. Here we 

have provided a general yet rigorous derivation of it. 

What is the condition for the validity of the above formula? Of course we 

have to require a small angle of beam divergence, i.e., kw�1，where w is the 

size of the beam waist. Moreover, because it is m j appearing as a phase factor 

in Eq. (2.20), we have to require 

m �( k w f (2.25) 

in addition. 

What is the correction to the approximate formula? This can be answered 

qualitatively by rewriting the first two terms in Eq. (2.23) as 

"hjqr f ^ 1 
7 ~ 

5
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where we have approximated (k^r/k)^ by l /{kwy. This leads to 

meaning a largest BSC of m number for a beam focused at a position slightly 

farther than m./k. This correction is not negligible if m is as large as k^w^. 

The localization principle of van de Hulst states the correspondence of a 

partial wave of m to a ray passing the origin at a distance m/k. This idea 

comes from the analogy of an electron passing by the center with angular 

momentum Ih and linear momentum hk in quantum mechanics so that l/k is 

the distance of the electron if thought localized. There is a question in the 

statement, namely, a term of order m is a widespread wave, and so how it 

can correspond to a localized ray. It turns out that our approximate BSC can 

answer this question and thus provide a better understanding of the principle. 

A ray is really a good beam of waist size (w, say) much greater than the 

wavelength, i.e., kw »> 1. If the beam is focused at Xq�w from the origin, 

it has a spread of angular momentum from k(xo — w) to k(xo + w), i.e., m in 

the summation for the beam field, given by Eq. (2.19), need only cover this 

range, the BSC'S for m outside the range being negligibly small. So, it is not 

that one partial wave of m corresponds to the ray but really that many partial 

waves of neighboring m,s around the average in = kxQ correspond to the ray 

passing the origin at a, distance rh/k. With this understanding, we may say 

that the localization principle of van de Hulst comes out naturally from the 

BSC to first-order approximation in small angle of divergence. 
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2.2.2 An example for exact BSC 

If we take 

ro) = exp(-ik:j:Xo) for k工 < k^ < k (2.28) 

and zero otlierwise, meaning a beam focused at (xq, 0) and of a square Fourier-

transform profile, the field in Eq. (2.17) along the x-axis can be easily evaluated 

to be 

F,nc(x, 0) - 2sm[kd(x — Xo)]/{x — Xo) (2.29) 

which is recognized as the field in the (2-D) single-slit diffraction. The integral 

in Eq. (2.20) can then be exactly evaluated to yield 

Pin = 
sin(m — m' + + sin(m — m' — 1)7^ 

m — m' + 1 m — m' — 1 
(2.30) 

where ^d 三 siii"^ {kd/k) is the (half) angle of beam divergence (or convergence). 

It is now of interest to plot (3讯 versus k x � a n d examine the variation around 

kxQ = m for a number of jdS. Moreover, we can compare it with 

sill (m — A:xo)sin7d 
An = ^ ^ ^ ^ (2.31) 

m — kxq 

obtained from the approximate formula. The results are shown in Fig. 2.3 for 

m = 50, 70, 100 with = 15°, and in Fig. 2,4 for m = 50, 70, 90 with = 30°, 

respectively. The solid lines give the exact results according to Eq. (2.30) and 

the dashed lines give the approximate results according to Eq. (2.31). We see 

the best agreement of the two curves for the smaller = 1 5 �a n d the smaller 

rn = 50, as expected. In addition, the exact focus position for maximum BSC 

is always larger than the corresponding one given by the approximate formula. 

17 
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This is also expected from Eq. (2.27). 

Obviously, the approximate BSC always has its maximum if the beam focus 

:ro is equal to rn/k. It is therefor of interest to plot the exact focus position 

for maximum BSC versus m. The results are given by the points in Fig. 2.5 

for =15°, and in Fig. 2.6 for = 30®, where the straight line gives kxo for 

maximum BSC according to the approximate formula. We see that the points 

lie almost completely on the straight line for jd = 15°, while the points are 

slightly above the straight line for jd — 30° and for larger m numbers. Again, 

these results are expected. 

= 15 degree Exact 
Approximate 

30 40 50 60 70 80 90 100 110 120 

kx^ 

Figure 2.3: Variation of jS^ versus kx^ for m = 50, 70，100 with、二 15( 
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2.3 Excitation of high-Q MDR’s by off-surface 

laser beams 

We have seen that the MDR of highest Q has its m close to ns so that 

it can be efficiently excited by a good laser beam focused at a, perpendicular 

distance �n a , which is outside the surface. There is therefore a paradox, 

for short wavelengths and beam waist satisfying s �A ; ' � � 1 , that a laser 

beam essentially off the surface can excite an MDR of highest Q\ This can be 

resolved from the following considerations. 

First, a narrow laser beam seemingly off the surface is nevertheless touching 

the surface with its transverse tail. For a beam field identically zero outside a 

transverse range, the Fourier transform goes to zero only slowly with k^ accord-

ing to the convolution theorem. This means that it can not be a laser beam of 

single frequency. One can even consider a field of the form e x p [ — a ; ^ ) ] for 

x^ < a? and identically zero elsewhere. This function, the "smudge function" 

called by Light hill [28], is different iable to any order; it and all its derivatives 

vanish identically at a: = 士a. Numerical computation can easily show that 

its Fourier transform decreases slowly (in fact, oscillating with slowly decreas-

ing amplitude) with towards infinity. Having said that the field tail of a 

seemingly off-surface beam is not zero at the surface, we by no means say that 

the effectiveness of resonance excitation depends on the strength of the tail in 

the sphere. It all depends on how much the incident beam field contains the 

partial wave of that particular resonance, and this is precisely determined by 

the value of the beam-shape coefficient. 

Second, since Q/s increases exponentially with s as shown in Sect. 2.1.2, 

the excitation of the resonance by such an off-surface laser beam necessarily 
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takes an exponentially long time to complete. This makes sense because the 

field tail of a narrow but highly collimated laser beam touching the surface 

could be exponentially weak. Furthermore, a huge Q/s implies a tiny line 

width of the resonance which could be smaller than the line width of the laser 

beam and, in such a case, only a small portion of the laser energy feeds the 

resonance. 

Having discussed so, we note the experimental result of Lin et al. [29], which 

shows a discrepancy with the interpretation using the localization principle. 

Even with a rigorous derivation and thus a better understanding of the prin-

ciple now, their result cannot be explained by claiming that they used a more 

focused beam in the experiment because such a case would predict a slightly 

farther impact parameter for more efficient excitation, contrary to what they 

have found. Seeking an explanation through the effect of surface perturbations 

in the literature [30, 31] is therefore well-justified. 
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Chapter 3 

Beam-shape Coefficients and 

Localization Principle in Mie,s 

scattering 

Here we extend the study to the 3-D case. Both scalar wave bema and 

laser beams are considered. 

3.1 Introduction 

In the study of Mie's scattering of a laser beam incident onto a sphere 

either on-center or off-center, it is important to express the beam fields in 

terms of partial waves, each labeled by the two well-known angular momentum 

numbers I (principal) and m (azimuthal). The coefficient to each partial wave, 

symbolized by /3i’m, say, is called the beam-shape coefficient (BSC). Obviously, 

the knowledge of the BSC'S is crucial to the determination of the scattering 

characteristics. While numerical methods for the exact evaluation of such 
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coefficients are available, analytic approximate formulas are of course highly 

desirable, especially in view of the simplicity in calculation and the possible 

help in the conceptual understanding of the subject matter. Hence, based 

on the localization principle of van de Hulst [3], a localized model has been 

proposed and used, particularly by Gouesbet, Lock, and collaborators in their 

generalized Lorenz-Mie theory (GLMT) for the evaluation of the BSC [32,33], 

albeit a general rigorous justification is still lacking. From their analytical work 

for an off-axis gaussian beam [34, 35], they conclude with a modified localized 

model in which the BSC is determined by the radial component of the field 

evaluated at a perpendicular distance of y/{l + 1/2)^ - {rn + 1/2)2//,: from the 

origin in the plane perpendicular to the beam axis (i.e., the central line of 

the beam), where 27T/k is the wavelength and k is the wave number. This 

result is hardly understood physically, especially in the case of non-negligible 

m compared to I. 

Inspired by the approximate formula for the BSC in the 2-D case for a. 

weakly focused beam [36] and the elegant treatment of scattering of electro-

magnetic waves found in Jackson's text [24], we have succeeded in obtaining 

approximate formulas in the 3-D case with a laser beam. In particular, we 

show that the BSC is linearly related to the value of the transverse component 

of the beam field at a distance of y/l{l + l)/k from the origin in the plane 

perpendicular to the beam axis, irrespective of the beam position. It is essen-

tially the coefficient of the Fourier series for the field varying along the circle of 

radius y/l(l + l)/k in the plane. The only assumption here is a weakly focused 

wave beam so that the angle of beam divergence, of the order of l/ka^ is small, 

where (j is a measure of the linear size of the beam waist at the focus. Our 

result is physically more appealing in view of the localization principle of van 
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de Hulst and our method is simpler than that in the GLMT. As we shall see, 

like that in the 2-D case, our result in fact provides a basis for and a proper 

understanding of the localization principle. We also want to point out that our 

exact expression for the BSC, being in terms of the Fourier transform of the 

beam field, is always independent of the radial distance (r) as it must be. This 

differs from that in the GLMT which relies on the choice of the beam field in 

the physical space; such a choice may not be an exact solution to Maxwell's 

equations, thus leading to dependent BSC. On the other hand, any choice of 

the Fourier transform does not have this problem. 

The formulation is given in the next section. We first treat the scalar-wave 

case, not only because of its simplicity, but also of its real applications in scat-

tering of sound wave beams and quantum mechanical (scalar) wave beams. 

We then consider the central part, the case of electromagnetic (EM) waves, of 

which we have particularly in mind Mie's scattering and excitation of morphol-

ogy dependent resonances by focused laser beams either on-center or off-center. 

Because of the simplicity and elegance, Jackson's treatment is followed closely, 

and therefore readers are recommended to consult the relevant parts in the 

text. Some special field profiles, which give either exact or approximate BSC's 

in closed form, are considered in Section 3.3, together with comparisons. Rel-

evance of our approximate formulas to, and thus a proper understanding of, 

van de Hulst's localization principle are given in Section 3.4. Discussion and 

conclusions are given in the last section. 
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3.2 Formulation 

3.2.1 Scalar wave beams 

Consider any single-frequency propagating scalar wave beam (e.g., a sound 

wave beam or a. quantum mechanical scalar wave beam) satisfying the Helmholtz 

equation. Being finite everywhere, the beam wave field, with the time-varying 

factor e x p ( — o m i t t e d , can always be expanded as follows 

^(v) = (3.1) 
Im 

where the sum is the familiar double sum over integer I from 0 to infinity and 

m from —I to I, ji{kr) is the spherical Bessel function of order I, Yimifh 小、is 

the spherical harmonic of order [I, m), r, 0, and (f) are the spherical coordinate 

variables, and 

Punji{kr) = I dn (P)屯(r) (3.2) 

gives the BSC, with the integration over the entire solid angle ( = sin 6d0d(p�, 

On the other hand, the same beam wave field can have a Fourier-integral ex-

pression which is essentially a linear superposition of plane sinusoidal waves, 

each satisfying the same wave equation. For convenience but without loss of 

generality, we take the z-axis of our coordinate system parallel to the beam 

axis so that the expression is 

少(r) = J exp(ik . r) (3.3) 

where the integral is over the transverse area satisfying k丄三 y^g + kf^ < k, 

c/̂ k丄三 kidk±d(l)k is the area element in cylindrical coordinates, and k̂  = 
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> 0. As well-known from the expression, a cylindrically symmetric 

field necessarily implies a cylindrically symmetric Fourier transform, and vice 

versa. Note that i depends on both k丄 and the position of the focus through 

the factor, the latter not explicitly shown in the above equation for simplicity. 

Substituting Eq. (3.3) into the right-hand side of Eq. (3.2), using the 

following known relation 

exp(zk . r) = 4>k)yim{0. (3.4) 
I Til 

and applying the orthonormal relations for the spherical harmonics, we readily 

obtain 

i^lm = “ J 丄齿(k丄)y^;^ ( ‘ < M ( 3 . 5 ) 

which, due to cancelation of the spherical Bessel function, is r-independent as 

it must be. 

So far the expression for the BSC is exact and applies to even strongly 

focused beams. To find an approximate expression similar to that in the 2-D 

case [36], we note that ^^(ki) in Eq. (3.3) is related only to the scalar field 

in the .t^-plane which contains essentially a Fourier series in m as obvious 

from (3.1). So multiplying ^ ( f l ) with exp{~im(^) and integrating over the 

azimuthal angle, we obtain 

^ � 妨e — 0 ) = i讯 J ^ A i i ( k i ) & , (3.6) 

where the transverse position f± is expressed in terms of cylindrical coordinate 

variables and , / 爪 ( 式 。 丄 / ^ ) is the (cylindrical) Bessel function of order m. We see 

that the left-hand side is just the m-th coefficient of the Fourier series for the 
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field varying along the circle of radius p in the xy-plane. 

Furthermore, as shown in Appendix A for small angle 6, we can approxi-

mate the spherical harmonic by the Bessel function, good to first order in sin B 

and without restriction on I, according to 

YUO, c/y) c e一 (3.7) 

Here, for convenience, we have introduced a m-symmetric coefficient defined 

by  

三 /[,(二]t'l二H); (3.8) 
for \in\ < I and zero otherwise. Note that, for any allowed I, Q,q = G,士i = 1 

and Cim is monotonically decreasing with (positive) m and reaches its smallest 

non-zero value C", which turns out to be very close to zero for very large I 

according to 

Cu - {A7Tiy/\2/ey (3.9) 

via the well-known Stirling approximation; for example, it is as small as 2.16 x 

10—7 and 2.78 x 10—13 for I = 50 and I = 100, respectively. In passing, we 

note that Eq. (3.7) is essentially a relation between the associated Legendre 

polynomial and the Bessel functions, and we want to point out the work of 

MacDonald in the area. Details and our clarification are given in Appendix B. 

Also, for ready references, we also collect some useful formulas and relations 

for the Legendre polynomials and the Bessel functions in Appendix C. 

For a weakly focused beam, we may take 9k as small within the k丄-integral 

and use the above approximation for the spherical harmonics in Eq. (3.5). 

The resultant integral is just of the form on the right-hand side of Eq. (3.6) if 
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p is replaced by + sin 9k being equal to /c丄/fc. This means that the 

BSC, for small angle of beam divergence, is linearly determined by the field in 

the xy-plane at a distance of from the origin. More precisely, we 

have 

二 却 屯 ( A 小,0) (3.10) 

evaluated at = + Vj/k. Note that the integral is basically the m-th 

coefficient of the Fourier series for the field varying along the circle of radius 

p in the x2/-plane. 

3.2.2 Electromagnetic wave beams 

We now turn to the central theme. From Jackson's, the multipole expan-

sion for the electric field (E) and the magnetic field (B) of any single-frequency 

propagating EM wave beam, omitting the time-varying factor, takes the fol-

lowing general form 

E(r) = [Mlm)ji{kr)Xi^ + [i/k)i3E(lm)V x ji{kr)Xim]， (3.11) 
Im 

and 

cB(r) = ^ [PE{lm)ji{kr)Xirr. — (i/k)fhi{lm)V x ji{kr)Xim], (3.12) 
Im 

respectively, where the double sum is the same as that in Eq. (3.1) except I 

is now from 1 to infinity, X/̂ ^ is the vector spherical harmonic of order (I, m), 

and fhiijTn) [l3E(lm)] is the BSC for the so-called magnetic [electric] multipole 

wave, which is also called the transverse electric [magnetic] wave or simply 
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the TE [TM] wave in view of the field direction with respect to the position 

vector. Taking the inner product with the complex conjugate of the vector 

spherical harmonic, integrating over the entire solid angle, and making use of 

the ortlionormal relations, we have 

Mlmlnikr) = Jdnxi^ ‘ E(r) (3.13) 

and 

Chilm)綱=c J dnXl^ ‘ B(r) (3.14) 

Like the scalar-wave case, another integral expression for the fields exists. To 

keep our treatment somewhat parallel to Jackson's for the convenience of later-

on calculations, we choose to express the above electric field, and similarly for 

the magnetic field, as 

E(r) = E(+)(r)+E(-)(r) (3.15) 

with 

E(土)(r) = J 丄 左 ( 士 ) ( k 丄 ） 卜 ± ze, - exp(^k . r), (3.16) 

where we have again chosen the z-axis parallel to the beam axis. (Note again 

that ^&士) depends on both k丄 and the position of the focus, the latter not 

explicitly shown in the above equation for simplicity.) We may call E(+) and 

E(-) the light-hand and left-hand rotating (in the transverse plane) fields, 

respectively, and a field of any other state can be obtained from an appropriate 

combination of them. Obviously, each field in Eq. (3.16) is an exact solution 

of Maxwell's equations. Hence, each has a multipole expansion like that in Eq. 
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(3.11) with its corresponding BSC's, on which we shall henceforth concentrate 

without loss of generality. Now by substituting the above integral for E(土）into 

Eq. (3.13), repeating essentially Jackson's steps in obtaining the miiltipole 

expansions for circularly polarized plane wave fields, and following the steps 

leading to Eq. (3.5)，we obtain 

- me地 (3.17) 

where we have in fact used the definition X/̂ n 三 LYJ^/^1(1 + 1) with X/^ = 0 

for I = 0, and the following relations involving the angular momentum operator 

L L (e.̂ . 士 iey) = L±, L土y；爪 二 (/干 m)(Z ± 7 n + 士i, and L^Yim = 

mVim, and indicates the dependence of the spherical harmonics on the two 

angles Ô  and (f)̂  in the k-space. Note that the appearance of yj’z+i and YJ，— 

should not be a problem because their respective preceding factors vanish in 

such cases. 

Equation (3.17) is an exact expression for the BSC and it is r-independent 

a.s it must be. It is expressed in terms of the Fourier transform of the beam 

field rather than the beam field itself, and any choice of the Fourier transform 

is compatible with Maxwell's equations. It applies for any rotating (in the 

transverse plane) wave field no matter how the beam is focused. Of course, 

any other state of wave can be obtained from Eq. (3.15). For example, a 

wave field with transverse component only along the x-direction [y-direction 

can be obtained by taking 色、-�=它⑷[办_)= 一办+)] in Eq. (3.16) and 

the subsequent BSC in Eq. (3.13) is given by = + ( • I m ) 
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= /3]^\bn) — In a similar fashion, the BSC for the electric 

multipole (TM) waves can be obtained via the integral form for the wave 

magnetic wave expressed like that in Eq. (3.16). The derivation is straight-

forward and we simply give the result below 

们 “ / V k / ( 士 ） c o s 没 

x A I T f i ) 

{ + - m tan �e 士咖 Ŷ ; 

士秘h 
〒 2 e 

—v/y + mKZ —m + l e —咖]]> (3.18) 

Naturally, the two exact expressions can be used for numerical evaluations of 

tho BSC's if the Fourier transforms of the fields are known. There is no worry 

of the ?�dependence. 

We now want to approximate the expression in a way similar to the scalar-

wave case. Here (士）(k丄) is related only to the transverse component of 

the electric field in Eq. (3.16) in the xty-plane which, when multiplied with 

exp(—hn(p) and after integration over the azimuthal angle, leads exactly to 

功 = 广 / 沪 k 丄 办 ± ) ( k 丄 ) 丄 p ) (3.19) 

where 
1 r ^ 

eHp)^^I 妨e-一丑i士 
(3.20) 

is the 7r?-th coefficient of the Fourier series for the transverse field varying along 

the circle of radius p in the .Ty-plane. 

For a laser beam of small angle of divergence, we can readily apply the 
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approximation Eq. (3.7) for the evaluation of the first integral in Eq. (3.17) 

and, via Eq. (3.19), obtain the dominant part 

• n �= 2 V ^ ， 叫 逆 干 - + 叫 i C i W (3.21) 

evaluated at p = + l)/k, where P(J^�Q(1, -I) = PMI{1,1) 二 0 should be 

noted. The second integral, wliich is first order in sin 6k — tan 9k for small 

can be obtained for and /3(j^�separately in a similar way via the following 

general relations [37, 38 

{21 + l)sin6'P/"(co8 6̂ ) = P二厂(cos — 

= ( / - m + 2 ) ( / - m + 1)P;;7Hcos6') - + m)(l + m -

(3.22) 

and Eq. (3.7). The derivation is straight- forward and the sub dominant BSC 

turns out to be 

• n ) = ； 1 ) 干 m + l ) C W i ， 叫 ⑷ 

- ± m){l ±m- (3.23) 

where pi,三 \/JT-\- I)(I 2)/k is a bigger radius and p.,三 — l)l/k is a 

smaller radius, when compared with the radius + 1)/A:, and we should 

also note that the second term vanishes for m =干Z. Since the field varies on 

the scale a, which is much larger than the difference in radius, we may simplify 

the result via the following expansions without loss of precision within our 
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approximation 

e � ̂  a ) + 警 ( 3 . 2 4 ) 

and 

e ) � ^ e V ) - 洞 ： 厕 ^ (3.25) 

all evaluated at p = ^JT(l + l)/k] the second term being smaller by an order 

of l/ka is obvious. From Eq. (3.18) and under the same approximation, the 

BSC for the electric multipole (TM) wave can be shown to be simply given by 

f t � ( l m ) = TipiVilrn) (3.26) 

Note that the derivation does not require the knowledge of the exact form of 

the beam field and thus our results apply to a beam of any shape so long as 

we have a small angle of beam divergence. 

3.3 Explicit BSC，s for some special cases 

3.3.1 Exact results for beams of cylindrical symmetry 

For beams of cylindrical symmetry, the beam field and thus its Fourier 

transform are independent of the azimiithal angle and the beam axis must 

pass through the origin. Under this condition, Eq. (3.5) for the scalar-wave 

case and Eq. (3.17) for the EM-wave case can be simplified to 

Am = 47r7'V7r(2/+ 1) / k ^ d k ( c o s 0 ^ ) (3.27) 
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and 

Pif(lm) = ATTi^^/M^'l) / 、 丄 土 ) （ A ; 丄 ） 

Jo 
tan 9k dPi {cos Ok] 

P/(cos Oif)— 
1(1 + 1) d0k 

(3.28) 

respectively. 

With these preliminaries, we consider a plane wave as a first example. The 

field is a constant, taken to be unity for simplicity, so that its Fourier transform 

is given by 丄)/27rA:丄,a 2-dimensional Dirac delta function with cylindrical 

symmetry. Hence, the above two equations readily reduce to 

,4n = y / ^ T + l ) ‘，0 (3.29) 

and 

= iV47r(2/ + l)(5^,±i , (3.30) 

respectively, the latter being exactly the result obtained by Jackson. Note that 

they can also be obtained from Eq. (3.10) and Eq. (3.21) because sin ffk is 

zero exactly. 

As a, second example, we take the Fourier transformed field to be a constant 

within a certain circle in the k丄-plane, i.e., 

丄 ） = 办 土 ) ( k 丄 f o r k^ < k i < k (3.31) 

and zero otherwise, where we have chosen the constant to be such that the 
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coŝ  Bd) (3.35) 

In a similar way, the only non-zero BSC'S for the EM-wave case can be obtained 

directly from Eq. (3.28) to be 

咖，士 1 )务 
kl a + !)(/ +2) 

X 

sin^ Od 尸/(cos6y + 2 
P/(cos Oct) — cos ( 9 � - i ( c o s Bd) 

(3.36) 
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corresponding wave field in the xy-plane, readily given by 

屯(p, 0 ) = 丑 f )(p, (/>) = 2j,(kap)/kap , (3.32) 

approaches unity at the origin. In passing, we note that, in the limit of zero 

kd, the Fourier transformed becomes a Dirac delta function and the wave field 

itself becomes a constant, implying the plane-wave case. 

The only non-zero BSC for the scalar-wave case can then be obtained di-

rectly from Eq. (3.27) by carrying out the integration [39]. The result is 

—4.1'k2 y^7r{2l + 1) I COS 0^Pi-I(COS0D} - Pi (cos Od) 2n TD f n \ ^ ― ^ — coŝ  O^Pi{cosOd) 

(3.33) 

where 

0,1 = sm- \kd /k ) < 7r/2 (3.34) 

is obviously the angle of beam (divergence. For convenience, we give, for Z = 1 

Aie 
Pu)= 
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and, for convenience, we give 

奶1，士 1) = + — ， ‘ 尸 ( 綱 

for / = 1. Note that the first term, which is the same as that in the scalar-

wave case, comes from the first integral in Eq. (3.17); it dominates for small 

0(i as expected, yet it becomes comparable to the second term otherwise. Note 

also that we have the plane-wave case in the limit of zero Od, and the results 

in Eq. (3.29) and Eq. (3.30) are recovered from Eq. (3.33) and Eq. (3.36), 

respectively. 

3.3.2 Approximate results for gaussian beams 

Consider a gaussian beam weakly focused on the x-axis at a distance po 

from the origin. We may therefore take 

屯(p,也 0) = = exp (3.38) 

so that the integral in Eq. (3.10) and those for the Fourier-series coefficients in 

Eq. (3.21) and Eq. (3.23) can be performed to yield modified Bessel functions. 

For the scalar-wave case, the result is 

= ^/^^^(^TrjCirr, exp U P P O / C T ' ) (3.39) 
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evaluated at p = y ^ / + For the electromagnetic-wave case, the domi-

nant result is 

⑴丨 / m i l终叫 1 兀 + 士 m)(/干m + 1) 
"MO _ — I V / (TTl) 

2 2 
G ， 叫 丄 e x p ( — 叫 ( 3 . 4 0 ) 

evaluated at p = + 1)/A:, while the subdominaiit result is 

； = •'柳〜 
^/i(^Tl)(2l-hl) 

PbPo 
干 m + 2

)(丨干.m+l)G+i，…平 1 e x i ) ( — 一 

2 2 

士 士 m - l)C,_i’爪干 1 e x p ( — 叫 i ( 学 (3.41) 

Expectedly, Eq. (3.39) and Eq. (3.40) reduce to Eq. (3.29) and Eq. (3.30) 

respectively in the limit of infinite cr (i.e., the plane-wave case), the subdom-

inaiit result being zero. Furthermore, for the beam focused at the origin so 

that po — 0, we have, for the scalar-wave case, 

P丨m = ^ V M 2 / + l )exp ‘，o (3.42) 

and, for the electromagnetic-wave case, the dominant result is 

= zV4^(2/ + l)exp (‘’士i (3.43) 
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while the subdoininant result takes the following form via the expansion similar 

to Eq. (3.24) and Eq. (3.25) 

= I V - ^ T T T - exp ^ ^ j ‘，土 1 

(3.44) 

which may be ignored in our approximation. 

3.3.3 A comparison of results 

As a, check of the approximation, we compare Eq. (3.33), the exact BSC 

expression for the scalar-wave beam modeled by Eq. (3.31), with the following 

approximate expression 

010 - + 1) � /^ t t x T T i . L (3.45) 

according to Eq. (3.10), where the wave function in Eq. (3.32) has been 

substituted. Noticing that the two give exactly the same constant value (in 

fact, for I = 0, we plot hi Fig. 3,1 the BSC values versus (in degrees), 

the (half) angle of beam divergence, for / = 1, 5, 25 and 100 as examples, 

the solid lines giving the exact results and the dashed lines the approximate 

results. As we can see, the comparison is very satisfactory. The two lines for 

each while different slightly for large Od, are completely indistinguishable for 

small as expected. 
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(in degree) 

Figure 3.1: Comparison of the exact BSC for the scalar-wave beam modeled 
by Eq. (3.31) with the approximate BSC according to Eq. (3.45) for / — 1, 5, 
25 and 100. 
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3.4 Relevance to the localization principle of 

van de Hulst 

Like that in the 2-D case, there is a question of the statement by van 

de Hulst regarding the localization principle, namely, a term of order I is a 

widespread wave, and so how can it correspond to a localized ray? It turns 

out that our approximate BSC, derived from first principle, can answer this 

question and thus provides a proper perspective of the principle, in a somewhat 

similar way, as in the 2-D case. 

A ray is meaningful only in geometric optics, just like that a localized 

electron is a semi-classical concept. From the viewpoint of wave optics, it is 

really like a highly collimated gaussian beam of waist size much greater than 

the wavelength, i.e., ka > » 1. As such, the BSC's for the beam electric and 

magnetic fields, which are respectively given by Eq. (3.11) and Eq. (3.12), are 

well-approximated by the expressions in Eq. (3.21) [or Eq. (3.40) in case of a 

gaussian beam] and Eq. (3.26), or their linear combinations depending on the 

state of wave polarization (in the transverse plane). If the beam axis is at a 

distance of po from the origin satisfying p o �c r , the beam field is essentially 

zero outside the radius range {po — â  po a)\ our results immediately show 

that we can safely neglect those BSC's with angular momentum number I 

lying outside the range {kpo — ka, kpo + ka). This means that the summation 

over the angular momentum number in Eq. (3.11) and Eq. (3.12) for the 

beam fields need only cover those Vs in the range and there are many such 

numbers around the average angular momentum number, I, say. So, it is not 

that one term of order I corresponds to the ray but really that many terms of 

neighboring I ,s around the average I corresponds to the ray passing the center 
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at a distance l/k, noting that yZ(r+T) ~ / + 1/2 ~ / for large I. With 

this understanding, one can repeat the elegant work of van de Hulst on the 

scattering of a ray by a large sphere in expanding the scattering coefficient 

of one angular momentum number into a series of terms, the first giving rise 

to the immediate reflected ray, and the rest giving rise to the subsequent 

refracted rays. But here again many neighboring angular momentum numbers 

are involved, yet the conclusion is the same if his angular momentum number 

is replaced by the average I] this is so because the scattering coefficient is 

a smooth function of the angular momentum number for the case of beams 

hitting the sphere. In this connection, we would like to point out that the 

latter smoothness breaks down for morphology-dependent resonances (MDR's) 

of high-quality (Q) factor, yet fortunately such high-Q MDR's occur for I lying 

between the size parameter ka and nka (n the refractive index and a the radius 

of the sphere) which corresponds to beams passing just off the sphere. 

3.5 Discussion and conclusions 

We have obtained exact and r-independent expressions [i.e., Eq. (3.5), Eq. 

(3.17) and Eq. (3.18)] for beam-shape coefficients (BSC) of order Im in the 

partial-wave expansion of any wave beam field in various cases. From them we 

have derived, for weakly focused beams or well-collimated beams, approximate 

expressions [i.e., Eq. (3.10), Eq. (3.21) and Eq. (3.23), and Eq. (3.26)] which 

are linearly related to the value of the beam field at a transverse distance of 

y/JJj -f l)/k from the origin, the latter being recognized as the expectation 

value of the angular momentum divided by the linear momentum of a electron 
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wave beam in the semi-classical regime of quantum mechanics. Explicit BSC'S 

in closed form for a number of cases have been found, and comparisons of 

exact and approximate results made to show how good the approximation is. 

The relevance of our approximation to van de Hiilst's localization principle has 

been shown; this helps to put the principle in a proper prospective as regards 

conceptual understanding. 

The BSC'S for a wave beam is irrespective of the existence of a scatterer, 

yet its usefulness relies very much on it. This is particularly so for a sphere 

at the origin by which an on-center, off-center or even off-sphere wave beams 

are being scattered and high-Q MDR's are excited. We hope to come back to 

such problems in the near future. 
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Appendix A 

Approximated by 

+ for Small 9 

Our Approximation 

Consider the differential equation for the associated Legendre function 

1 d .八 d ,,, 1� m? 
—7J17J • 0 — + 1(1 + 1 — sin 0 dO dO siir 6 

(A.l) 

If we change the variable Q to it becomes 

/ y " ( c o s巧= 0 (A. 2) 

for 0 < ^̂  < 7r/2. Assuming small 9 so that sin^ 0 can be ignored compared to 

unity, the above equation immediately reduces to the well-known Bessel differ-

ential equation with the solution JmiC)- This means that is linearly 

related to ’ - M ) sin 9). The proportionality constant can be determined 
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by comparing the appropriate series expansions for the two functions. It turns 

out that it is easier to find the following relation for m < 0 

P^icosO) ~ - 御 + 1) J m ( V W T I ) s i n ^ ) , (A.3) 

from which we can easily obtain, for m > 0, 

{l + m)\ 
Pr (cos0) ~ ：二 m;! [ - V W + ^ J ‘ ( V T ^ ^ T T i y s i n � (A.4) 

via 

PricosO) = ( — 1 广 广 ( c o s 約 , (A.5) 

an exact relation. Now Eq. (3.7) can be obtained by using the definition 

糊 (A.6) 

without much difficulty. Note that our derivation requires neither I � 1 nor 

I sin^' < 1. This is different from the MacDonald approximation as understood 

in the literature [40,41 
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Appendix B 

The Relation between Legendre 

Functions and Bessel Functions 

——Generalized MacDonald 

Approximation 

B . l Background 

MacDonald [42-44] obtained an approximate expression for an arbitrary 

associated Legendre function in terms of Bessel functions. While MacDonald 

did not specify the limitation on I, The prevailing view is that this approxi-

mation is applicable for Z � 1 [45, 9.722 on pp. 963] and [41]. However, it 

is shown in this section that the approximation is also applicable for small I, 

such as I = 0,1, 2, • • •. With such an understanding, we can use MacDonald 

approximation when considering on-center or near-center cases, in which the 

indices I are not so large. 
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B.2 Analytical Derivation 

From the general form of associated Legendre functions, suggested by I. S. 

Gradshteyn and I. M. Ryzliik [45, Eq. (8.704) on pp. 959], we obtain that 

pricose)= 
1 —COS0 F -LI + + ？71; 

—COŜ  

1 — COS 9 
1 + cos B 

—cos^ 

r ( l + m) |_l + cos6>J ‘ V T , …， … ’ 2 

r ( r - l)r(r + / + 1) / I - cos 沒、 

r(—/)r(/ + i ) r ( r + m + i ) r ( r + i) I
 r

 

£
 

m
T
 

+ COS 0 
T 

、 2 

-cose\ 
- r + 1) r ( r + rn + l ) r ( r + 1) V J 

\
—
/
 

1
 +

 

r
 7

 

+
 

I
 

7
6
 /
 

/
(
V
 /
I
 

r
 r
 

£
 

(B.l) 

where the indices I, m lying on the interval [—/，+/], are both integers, and 

the angle is a real number, so that the argument cos lies on the interval 

—1, +1]. Note that the normalization factor is slightly different from (一广,2, 

suggested by M. Abramowitz and I. A. Stegun [46’ Eq. (8.1.2)], which is also 

widely used. 

For arbitrary positive integer I > r > 1, we expand the polynomial as 
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and the coefficients 
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r(2r - l)(2r + 1) 

1 r(r + 1) r(r + 1) 1 r(r + 1) 
3 r ( r - 2 ) r ( r - l ) 4 

(B.3) 

7 = 1 J二？+ 1 
2 

l y 
2j 

r(r - l)(2r - 3)(2r - l)(2r + l)(lQr + 7) — 

i r ( r + l) l i r ( r + l) + 
18 r (r - 5) 1 5 r ( r - 4 ) 

31 r(r + 1) 29r(r + l) 9 r(r + 1) 
12r(r —3) 12r(r —2) 32r(r —1). ^ . ) 

For I > r = 

(B.5) 

For / > r = 0, 
r(^ + r + l) 

V 
(B.6) 

For r > l > Q , 
r(^ + r + l) 
—r(卜 r + 1) 

= 0 . (B.7) 

We obtain that 

P「爪―6 0 = 

—cos 0 
+ cos 

Z ^ t y T Z + r(7- + m + l)r(r + 1) 
, 1 —COS"� 

2 
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+ 

1 — COS 0 
1 + co^O 

1 — cos 0 
1 + cos 9 

F I 

E —广(《+ 1) 
2r 

r(r+ m+ l)r(r + 1) 
2r-2 

� 1 — cos6>� 

V 2 

+ l)r(r+T) 

+ 
1 — cos 9 
1 + cos 没 E 

2r-

r ( r+ m + l)r(r + 1) V ^ 2 J 
(B.8) 

where we have ignored the terms of order (n + .2r- n \
 

/
 

+
 

2r- etc. Nu-

merical simulation will be delivered in the following context to check the va-

lidity of the truncation. 

Comparing Eq. (B.8) with Eq. (9.1.10) of M. Abramowitz and 1. A. Stegun 

46]. the ascending series of Bessel functions of the first kind (of integer order) 

{ X / 2 ) 
2r 

r ( r+ m+ l)r(7- + 1) (B.9) 

we finally obtain the MacDonald approximation 

B.lOa) 

and 

PRICOSO) 

人 - sin: J饥—3 ⑷ + Jm-2、fj) + (B.lOb) 

when the parameter /i = {21 + 1) sin f is neither too large nor too small. 

50 

^

 I
 
2
 

s
 

o
 

1 

2 

0 
2 

+ cos^) ^ 

Jm (") + Hin" 



Chapter B. The Relation between Legendre Functions and Bessel 
Functions ——Generalized MacDonald Approximation 

When m = 0, the formula can be further reduced to 

0 
Pi(cosO) ^ < Jo(m) + «in' 2 (B.ll) 

When (9 = 0, we obtain that P/"(l) = (_)爪(I + J爪(0) - 0 for m ^ 0, 

and P广(1) = 1 for m = 0. 

Eqs. (B.IO) show the approximate relation between associated Legendre 

functions and Bessel functions of the first kind (of the integer order I, m of 

course). It is valid when the angle 0 is not so large, the ind ices�s satisfy 

0 �• � S Z + l《芸， (B.12) 

so that both | sin^ | � 1 and ^ sin^ | <C 1. MacDoiiald approximation is 

successfully generalized to small /'s such as 0, 1 ， 2，… . 

As MacDonald discovered the approximation with traditional "series ex-

pansion and truncation" methods, later scientists all claimed that the approx-

imation is only applicable for large / or / + We noticed that the key term, 

the polynomial 

r(/-r + l) (B.13) 

can be strictly reduced to 

/ l、2r / i \ 2r-2 / i \ 2r-4 

N + - + " / + - + . . . + C (B.14) 
\ V \ 27 V 2 / 

for / = 0,1. As for / > 2, we have (/ + > f ~ 7 and + 2 璧〜40’ 

which implies that the MacDonald approximation is not so bad even for small 

Z = 2 , 3 , 4 , … . L a t e r numerical results will confirm our prediction. 
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B.3 Numerical Simulation 

To verify the validity of the generalized MacDonald approximation, we com-

pare the 1st order, 2nd order approximation, with the exact value (numerical 

evaluation). [47 

Figs. B.l - B.7 show P「州(cos 0), 1st order, 2nd order of the generalized 

MacDonald approximation as functions of the angle 0, for I = 25, 50, 100’ 

m = 0, 1, 2，...，7 respectively, and corresponding error are also listed in the 

right-hand column. 

As for m = 0, we find from Fig. B.l, that the error of generalized 

MacDonald's Lst order approximation is less than %5 for 9 < 0.35 �20。， 

Q < 0.25 �1 4 ° , 61 < 0.2 �11。，when I = 25, 50, 100 respectively. On the 

same figure, we also notice that the error of MacDonald's 2nd order approx-

imation is less than %1 for 0 < 0.35 �20。，which shows that the 2nd order 

approximation is perfect enough to evaluate arbitrary Legendre function in 

terms of Bessel functions. Similar results are obtained for m = 1, 2 , … ， 6 

in Figs. B.2 — B.7, and the angles, which corresponds to the error (1st order 

approximation) of %5, are all larger than 0.2 � 1 1 � . 

We notice that the error grows with the increasing of the angel 0, for fixed 

I and m. It agrees well with Eqs. (B.IO) that the leading error is proportional 

to siii^ I approximately. 

Figs. B.8 — B.14 show Pf"^ {con 0), the 1st order, 2nd order generalized 

MacDonald approximation as functions of the indices I, for the angle 9 = 5", 

10。，20。，the index m = 0, 1, 2, • • •, 7 respectively, and the corresponding error 

are also listed. 

As for m = 0, we find from Fig. B.8, that the error of MacDonald's 1st 
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order approximation is less than %5 for I < 600, I < 200, I < 30, when 

9 = 5°, 10。，20° respectively. On the same figure, we also find that the error of 

MacDonald's 2nd order approximation is less than %1 for the same range of I, 

which shows that the 2nd order approximation is perfect enough to evaluate 

arbitrary Legendre function in terms of Bessel functions. Similar results are 

obtained for m = 1, 2 ,…，6 in Figs. B.9 - B.14, and the indices I, which 

corresponds to the error (1st order approximation) of %5, are all larger than 

those for m = 0. 

We also notice that the error increases with the increasing of for fixed 

m and 0. It agrees well with Eqs. (B.IO) that the leading error is related to 

Note that the affect of 去 term decreases with the increasing of I so that | 

dominate. 

Figs. B.15 - B.17 show P「爪(cos0�, the 1st order, 2nd order generalized 

MacDonald approximation as functions of the indices m, for the angle 9 = 5°, 

10。，20。，the index I = 25，50, and 100 respectively, and the corresponding 

error are also listed. Note that the error is shown in semi-log scale. 

As for 9 = 5。，we find from Fig. B.15, that the absolute error of general-

ized MacDonald's 1st order approximation decreases with the increasing of m, 

while the relative error does not change too much. As for that of 2nd order 

approximation, similar trend is found in the same figure, and the accuracy is 

further improved. Similar results are obtained for 0 = 10° and 2 0 �i n Fig. B.16 

and B.17. 
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B.4 Conclusion 

From our numerical results, MacDonald approximation is good, even for 

small contrary to the prevailing interpretation in the community. 
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-/ycosey20 
he 1st Order Approximation 

error of the 2ml Order Approximation 

Figure B.2: Numerical evaluation of the functions P^^^(cos 0), P^ ^̂(cos 9) and 
PiQJ(cos0), as well as the comparison with Macdonald's approximation. 
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• error of the 1 st Order Approximation 
error of the 2nd Order Approximation 

Figure B.2: Numerical evaluation of the functions P^^^(cos 0), P^^^(cos 9) and 
P IQ J (COS0) , as well as the comparison with Macdonald's approximation. 
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0 00 0 05 

2 0X10-' 

Figure B.2: Numerical evaluation of the functions P^^^(cos 0), P^^^(cos 9) and 
P IQ J (COS0) , as well as the comparison with Macdonald's approximation. 
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• Macdonald 's I St Order Approximation 
Macdonald's 2nd Order Approximation 

Figure B.4: Numerical evaluation of the functions P2^^{cos9), FtjQ^(cos^) and 
0), as well as the comparison with Macdonald's approximation. 
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Macdonald'<! 1 st Order Approxtmation 
Macdonald's 2nd Order Approximation 
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• Macdonald's 1st Order Approximation 

Macdonald's 2nd Order Approximation 

Figure B.2: Numerical evaluation of the functions P^^^(cos 0), P^^^(cos 9) and 
P IQJ (COS0) , as well as the comparison with Macdonald's approximation. 
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0 00 (3 05 0 fO 

Macdonald's kt Order Approximation “ 
Macdonald's 2nd Order Approximation 

1 
error of the 1st Order Approx iniation | _ 
error of the 2nd Order Appnaximationj : 

w . . 誦 ： 

Figure B.2: Numerical evaluation of the functions P^^^(cos 0), P^^^(cos 9) and 
P IQ J (COS0) , as well as the comparison with Macdonald's approximation. 
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• Macdonald's I st Order Approxiniahj 
Macdonald's 2nd Order Approxima 

Figure B.2: Numerical evaluation of the functions P^^^(cos 0), P̂^̂(cos 9) and 
PIQJ(cos0), as well as the comparison with Macdonald's approximation. 
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-P^ (cose) / 20 where 9 — 10 degree 
Error of the 1st Order Approximation 
Error of the 2nd Order Approximation 

004 
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- P (cosO), where 6 = 
Macdonald 's I st Order Approximat ion 
Macdonald 's 2nd Order Approximat ion 

Figure B.2: Numerical evaluation of the functions P̂ ^̂ (cos 0), P^^^(cos 9) and 
PIQJ(cos0), as well as the comparison with Macdonald's approximation. 

62 

，where 9 = 5 degree 

：1st Order Approximation 
Macdonald 's 2nd Order Approximation 

-P^ (cosO) / 20，where 8 = 20 degree 
Error of the 1st Order Approximation 
Error of the 2nd Order Approximation 

Chapter B. The Relation between Legendre Functions and Bessel 
Functions ——Genernlized MacDonald Approximation 

H
i
,
.
 



Chapter B. The Relation between Legendre Functions and Bessel 
Functions ——Generalized MacDonald Approximation 

1st Order Approximation 
Macdonald's 2nd Order Approximation 

(cosS), where 9 = 10 degree 
：>-Macdotiaid's 1st Order Approximation 

Macdonald's 2nd Order Approximation 

Error of the 1st Order Approximation 
Error of the 2nd Order Approximation 

Figure B.9: Numerical evaluation of the functions 尸厂i(cos5。)，尸厂i(coslO°) 
and P�i(cos20°), as well as the comparison with Macdonald's approximation. 
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Macdonald's 1st Order Approximation 
Macdonald'<; 2nd Order Approximation 

• Macdonald's 1st Order Approximation 
Macdonald's 2nd Order Approximation 

2 0x10 

1 0x10， 

Figure B.17: Numerical evaluation of the functions P^^ (cos 20。)，Pe^^cos 20°) 
and P^QQ"(COS 20''), as well as the comparison with Macdonald's approximation. 
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-尸,(cosO), where 0 = 1 0 degree 
Macdonald's 1st Order Approximation 
Macdonald's 2nd Order Approximation 

10x1 n 

5 0*10 “ 

， ( c o s O ) / 20. where 0 = 20 degree 
Error of the 1st Order Approximation 
Error of the 2nd Order Approximation 

Figure B.17: Numerical evaluation of the functions P^^ (cos 20。)，Pe^^cos 20°) 
and P^QQ"(cos 20''), as well as the comparison with Macdonald's approximation. 
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Error of the 1st Order Approximation 
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Error of the 2nd Order Approximation 
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Figure B.17: Numerical evaluation of the functions P^^ (cos 20。)，Pê ĉos 20°) 
and P^QQ"(cos 20''), as well as the comparison with Macdonald's approximation. 
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Figure B.13: Numerical evaluation of the functions S''), F^'^{cos 10°) 
and /^ , -5(COS20°)，as well as the comparison with Macdonald's approximation. 
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Figure B.15: Numerical evaluation of the functions i^25"'(cos 5°),尸5；)爪(cos 5� ) 
and as well as the comparison with Macdonald's approximation. 
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Figure B.17: Numerical evaluation of the functions P^^ (cos 20。)，Pê ĉos 20°) 
and P^QQ"(COS 20''), as well as the comparison with Macdonald's approximation. 
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Figure B.17: Numerical evaluation of the functions P^^ (cos 20。)，Pê ĉos 20°) 
and P^QQ"(COS 20''), as well as the comparison with Macdonald's approximation. 
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Appendix C 

Recurrence Relations for 

Legendre Functions and 

Spherical Harmonics 

The recurrence relations for Legendre functions and those for spherical 

harmonics are shown in this section. With these relations, we can manipulate 

the higher order terms of the approximate BSC's. 

C. l Recurrence Relations for Legendre Func-

tions 

From the generating function for Legendre functions, we have the following 

recurrence relations for Legendre Functions: 

{21 + l)xPr(x) = {l + m)Pr_, (x) + ( / - m + (C.l) 
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(2Z + 1)(1 — x'y^Pr(x) = F ^ f W 一 (C.2) 

(21 十 1)(1 — = (l-m + 2){l-m + 

- { l - \ - m ) { l ^ m - l ) P l ^ - \ x ) , (C.3) 

and 

(2Z + 1)(1 — = + m)Pr」i(冗）—in 一饥 + (C.4) 

c . 2 Recurrence Relations for Spherical Har-

monics 

Based on the recurrence relations for Legendre Functions in the last section, 

and the definition of spherical harmonics by Jackson [24, Eq. (3.53) 

we have the following recurrence relations for spherical harmonics 

V21TT cos OYUO.<l>) = 

+ (C.6) 
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711 + 1 

21 

and 

细 s i n 命 肩 = , 广 二 微 釣 

+ 丨、(0，小).(C.9) 
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