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The thesis consists of two independent parts. Part I focuses on evolution-

ary games in networked entities and Part II focuses on calculations on optical 

properties of metallic gratings. 

Part I focuses on studying the extent of cooperation in networked entities, 

within the contfixt of the Prisoner's Dilemma (PD).and the Snowdrift Game 

(SG). The iterated prisoner's dilemma (IPD) is studied in the full payoff space 

spanned by two parameters (3 and 7. A theoretical study on two-strategy IPD 

is presented. We then iiuriierically study the IPD in the full payoff space, with 

four different initial configurations. It is found that including the Tit-for-tat-

like (ETFT) and Always-defecting-like {BAUD) strategies as initial strategies 

can maximize tlie dominating area of geiierous strategies in the payoff spaxjc • 
at equilibrium. The roles played by ETFT and EAUD are further studied on the 

diagonal and anti-diagonal lines of the payoff space. 

The Snowdrift Game is regarded as an important alternative to PD in 

studying the emergence of cooperation in competing populations. The phase 

transitions in spatial snowdrift games are introduced. By studying the relative 

alignments of the payoffs of C and D nodes, the phase transitions are analyti-
IF 

cally explained. As an extension to the standard two-person SG, an TV-person 
R 

X 

Snowdrift Game (NPSG) is proposed to include generic multi-person inter-

actions. NPSG in a well-mixed population is studied analytically by using 
the replicator dynamics. A simulation algorithm is developed. We also study 

% 

NPSG on lattices and find a s才pressed cooperation frequency, when com-

pared with the well-mixed case.' For NPSG played on ID chain, the problem 



can be solved analytically. We further extend our work to study coevolving 

dynamics. Wc propose aud study a model in which the connections arc driven 

to evolve by the dynamics of SG. Compared with played on static network, 

the cooperation frequency is promoted. A scmi-analytic theory is proposed, 

with the results qualitatively agree with simulation results. 

Part II foe uses mainly on studying the optical properties of grating within 

the Rigorous Coupled-Wave Analysis (RCWA) method. The surface plasmon 

(SP) dispersion relation in a system consisting of a thin metallic film sand-

wiched between a linear dielectric and nonlinear dielectric of arbitrary non-

linearily is derived, based on a generalized "first integral" approach. The SP 

dispersion relation in a system consisting of a thin metallic film sandwiched in 

a symmetric nonlinear dielectric environment is then derived. The changes in 

SP dispersion relations on film thicknesses are discussed for both cases. 

The optical properties of two samples of one-dimensional metallic reflec-

tion gratings arc studied. The numerical results of the zoroth order roflort.anro 

are in good agreement with experimental data. The Wood's anomaly oc-

curs when a particular diffraction order emerges or disappears, tlius inducing 

a change in the efficiency of other diffraction orders. This phenomenon is 

studied by calculating and measuring the efficiencies of all allowed diffraction 

orders. Numerical results of the near field patterns show a coupling between 

the waveguide and SP modes. We also study the controllable enhanced trans-

mission in a semiconductor grating. The dielectric constant of a semiconductor 

becomes a tensor in the presence of a static magnetic field parallel to the slit. 

Numerical results based on RCWA reveal that the zeroth order transmission 

peaks at normal incidence, can be shifted to longer wavelengths and the peak 

values of transmission can largely be enhanced when a moderate magnetic field 

is applied. A single-mode theory incorporating anisotropy is developed. The 

analytic results are in quantitative agreement with RCWA, indicating that the 
• T. 

tunability in the transmission stems from the waveguide mode. 
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摘要 

本論文包含兩個獨立的部分。第一部分是對網絡上的演化傅奔的探討。 

第二部分則是對金屬光柵之光學性質的計算。 

論文的第一部分主要硏究網絡結構上的囚徒困境（Prisoner's Dilemma)及 

雪堆博弈（Snowdrift Game)�輕們在整個收益空間（payoff space)中對反覆囚 

徒困境（Iterated Prisoner's Dilemma)進行了研究。先是對系統只包含兩個策 

略（s t rategy)的情況進行了理論分析。然后，我們對系統中初始有100個策 

略的情形進行了数值模擬。模擬涵蓋了整個收益空間，并采用了四個不同的 

初始條件。結果顯示，當系統初始同時包含下列兩種策略時，以懷慨策略主 

導的平衡態會在收益空間中占據最大面積。這兩種重要策略分別是’“以牙還 

牙”（Tit-for-tat)和“永不合作”（Always-defecting)�通過對收益空間的對角 

線和反對角線的研究，我們對該兩種策略所起的作用做了更為仔細的探討。 

在囚徒困境之外，雪堆博弃也被廣泛的用于研宄競爭性群體中的合作燒象。 

前人研宄發現晶格上的雪堆博弃中存在相變現象。我們通過對合作者和不合作 

者的收益進行比較和排序，解析的解釋了此類相變產生的原因及相變點的位置。 

經典的雪堆博弈是一個雙人博弈，但在現黄中多人博弈的情況屢見不鮮。所以 

我們將其推廣至多人博弈，提出了一個多人雪堆博弈模型（TV-Person Snowdrift, 

Game)�我們首先研究了該模型在全接觸人群（well-mixed population)中的 

表現，並用“複製子動力學”（replicator dynamics)對結果進行了解析分析。 

我們亦發展了一套算^^來對該模型進行數值模擬。對晶格上的多人博弈的研 

究揭示其平衡態合作率（the equilibrium frequency of cooperation)顯著低于 

在全接觸人群中的表現。在一維鍵條上的多人雪堆博弈可以進行解析分析。 

我們也研究了博弈與網絡結構的共同演化。在所構造的模型中，網絡的結構 

會因其上進行的雪堆博弈的動力學而改變。”網络結構固定的情況相比，該 

模型的平衡態合作率顯著提升。我們提出了一個半近似理論，理論與數值結 

果具有定性的一致性。 

論文的第二部分主要是對金屬光柵光學性質的探討。主要的数值計算方 

法是嚴格稱合波分析（Rigorous Couplcd-Wave Analys is )�我們首先推導出了 
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下面兩個系統的表面等離子體模（Surface Plasmon)的色散關係。第一個系統 

包含一層金屬薄膜，其一邊是非錢性介質，另一邊則為錢性介質。在第二個 

系統中，金屬薄膜處于對稱的非綫性介質中。我們對種叫做“首次積分” 

(first integral)的技巧進行了推旗，使得我們可以處理任意的非錢性介質。我 

們遁討論了金屬膜厚度對色散關係的影蜜。 

之後我們研宄了兩個一維金靡反射光柵樣品的光學性質。我們採用嚴格 

锅合波分析計算得到的反射率，跟货驗測量的結果吻合的很好。當光柵的某 

一级衍射波產生或者消失的時候，會伴隨著其他級衍射波衍射率的突然改變， 

該效應被稱為伍德奇異性（Wood's Anomaly)�我們對各容許衍射級的衍射率 

進行了計算和測量，’兩者都證明了伍德奇異性的發生對應于衍射率的突變。 

我們也通過計算，繪出了光柵及其附近範圍内磁場的分佈。通過對特定波長 

和入射角度對te的近場分佈進行分析，我們發現狹縫中的波導模（waveguide 

mode)和光柵表面的表面等離子模存在著锅合。 

我們亦對一維半導體光柵的可調控增強透射（enhanced transmission)進 

行了探討。當沿平行于光柵縫隙的方向施加一個磁場時，半導體的介電常数會 

由一個数值變為跟磁場強度相關聯的張量。通過改變磁場強度，我們可以改 

變介電常数張量，進而控制光柵的透射率。在敉值計算方面，我們採用嚴格 

稱合波分折計算了垂直入射時的0級透射率。計篇結果顯示與沒有磁場的情 

況相比，在施加了適當強度的磁場之后，透射峰所在的波長會向長波方向移 

動广移動幅度可達15%之多。相應的，透射率也會顯著增大，甚至倍增。在 

理論方面，我們發展了一個單模理論（singkMiKxie theory) ,該理論建基于光 

柵狹縫中只有一個主導本征模的假設之上。應用此單模理論得到的解析結果 

跟RCWA的数值結果相當一致，證明了增強透射是由狹缝中的波導模引致。 
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Chapter 0 

Overview 

Half of the 2009 Nobel Prize in Physics has been awarded to Prof. Charles 

K. Kao, for his "groundbreaking achievements concerning the transmission of 

light in fibers for optical communication" [2]. Since�the development of the 

first generation optical fiber communication system in 1976, the worldwide 

communication system based on optical fibers has greatly changed our life [3 . 

The internet is probably the biggest change that optical fibers has brought 

us, and using the internet has become a part of our daily life. The World 

Wide Web, which is a collection of all webpages on the internet, is a huge 

network consists of billions of webpages that are connected by hyperlinks. 

The topological structure of the World Wide Web has been studied, by taking 

the webpages as nodes and the hyperlinks between them as edges between the 

nodes [4]. In fact, the research on the structure of networks has a much longer 

history than the history of the internet. As early as 1960s, Milgrain studied 

on social networks and revealed the famous ‘‘Six Degrees of Separation" [5 . 

In recently years, with the availability of large databases, the structures of 

many real networks have been studied [1], e.g., the citation network [6], the 

protein network [7], and the mobile communication networks [8j. Alongside the 

studies on the network structures, researchers have been interested in dealing 

with effects of the structural properties of networks on dynamical processes in 
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networks. Such dynamical processes can be opinion formation [9, 10], decision 

making [11], spread of epidemics |12, 13], etc. The first part of tlie thesis is on 

the emergence of cooperation in networked entities, within the context of the 

prisoner's clileiniiia (PD) and the snowdrift game (SG). These two games are 

the most-studied games in game theory. This part includes Chapters 1-5 of 

the thesis. 

Chapter 1 gives a brief review on evolutionary games and networks. For 

evolutionary games, the general p r o p e i ^ s of the prisoner's dilemma and the 

snowdrift game are introduced. For n e t ^ r k s , several important properties 

of networks are introduced. The random gr aph and the Barabasi-Albert net-

work are then reviewed. Chapter 1 provwies the background information for 

Chapters 2-5. 

Chapter 2 gives the results on the iterated prisoner's dilemma (IPD). 

A theoretical study on two-strategy IPD is presented in the full payoff space 

spanned by two parameters fi and 7. The IPD game is then numerically 'studied 

on the full payoff space. The roles played by the Tit-for-tat-like (ETFT) and 

Always-defecting-likc (EAUD) strategies are investigated in detail. 

Chapters 3—5 deal with the evolutionary snowdrift game. In Chapter 3, 

wc introduce the spatial snowdrift game. By invoking the idea of coiiipariiig 

the payoffs to cooperators and to defectors in the last surviving patterns, we 

explain the phase transitions in the spatial snowdrift game. The idea caii 

further be extended in future studies on the emergent behavior in other games. 

In Chapter 4，we propose and study a multi-person, version of the stan-

dard two-person snowdrift game: The N-person Snowdrift Game (NPSG). The 

NPSG in a well-mixed population is studied analytically and numerically. The 
9 

numerical results are in good agreement with analytic results. The time evo-
I ‘ 

lution of cooperation is also studied analytically. Besides the well-mixed case, 

the NPSG is also s t u d i ^ on ID chain and 2D lattices. Compared with the • » 
well-mixed case, the frequency of cooperation is suppressed by the underlying 
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n^vork structure. The equilibrium frequency of cooperation is analytically 

worked out for the case of a ID chain. 

In Chapter 5, we study the snowdrift game on adaptive networks. The 

evolution of the network structure is driven by the game dynamics. Two 

rewiring mechanisms, the random rewiring and opinion rewiring, are imposed. 

By carrying out iiuiiicrical simulations, it is found that the frequency of coop-

eration fc is promoted in both cases. The network structure at equilibrium is 

examined for opinion rewiring. A semi-analytic approach is proposed to find 

the equilibrium f c . The results are in qualitative agreement with simulation 

results. 

Now, back to our story on the internet. Over the last few years, optical 

fibers are being laid from^ the operator's switching equipment all the way to 

our homes [3]. However, signals are still transmitted by electronic circuits 

inside the computers. To connect our computer to the internet, we still need 

an optical/olectrical converter. If the electronic circuits can be replaced by 

photonic devices someday, it will be another revolution. However, the size 

and performance of the photonic devices are constrained by the diffraction 

limit. For chip-based optical signals that most likely to employ wavelengths 

of about 1500 iiiii, the minimum width of the optical wire is much larger than 

the smallest circuit width in microprocessors [14]. In recently years, studies 

on the surface plasinon (SP) polaxitoiis suggest a possible way for reducing 

the size of photonic devices. Surface plasmon is a surface electromagnetic 

(EM) wave that is localized and propagating along a metal/dielectric interface. 

By properly designing the metal/dielectric interfaces, SP can be excited by 

EM wave from outside. The excited SP mode has the same frequency as 

the outside EM wave, but has a much shorter wavelength. Thus, SP could 

travel along nanoscale wires to carry information in photonic devices, Surface 

plasmon cannot be directly excited by light incident from the dielectric. A 

common method to excite surface plasmon is to use a grating. It was found 
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that for optically thick metallic films with patterned subwavelength holes, the 

SP excited on one side can be tunneled to another side and results in a much • 

larger transmittance than predicted by classical theory. This phenomenon 

is referred to as enhanced transmission or extraordinary transmission, which 

has attracted much attention since its discovery by Ebbesen et al. in 1998 

15]. Besides the possible applications in photonic devices, SP has a wide 

range of exciting applications, such ^ enhanced spectrum [16], high efficiency 

lighting [17], biological sensing [18], etc. The discipline that studies the surface 

plasmons has been termed as plasmonics [19). The second part of the thesis 

focuses on surface plasmon excitations and the optical properties of metallic 

gratings. -

In Chapter 6，we introduce the dispersion relation of SP modes in a 

semi-infinite me^l/ l inear dielectric system, and in a linear/metal/linear sys-

tem. By invoking a "first integral" technique, the SP dispersion relation of 

a nonlinoar/metal/linoar system is analytically studied, where the nonlinear 

medium can take on arbitrary nonlinearity. For this case, the dispersion re-

lation can be modified by tuning the electric field at the nonlinear/metal in-

terface. The SP modes in a symmetric nonlinear/metal/nonlinear system are 

also discusscd. 

Chapter 7 introduces the formalism of the Rigorous Couple-Wave Anal-

ysis (RCWA), which is a grating theory that is coirimonly used� to study the 

optical properties of periodic structures. Techniques to improve the numerical 

stabilities and the convergence rate are introduced. Two sample calculations 

are carried out to verify that the computer code that we set up is valid. 

Chapter 8 discusses the optical properties of two samples of one-dimen-

sional metallic reflection gratings. The samples are fabricated at CUHK and 

their reflectance are measured. Numerical calculations are carried out based 

on RCWA. The numerical results agree well with measured results. The 

phenomenon of Wood's anomaly is studied by measuring and calculating the 
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efficiencies of diffraction orders, and the coupling between waveguide and SP 

modes arc examined. 

Chapter 9 studies a semiconductor grating with a static magnetic field 

applied parallel to the slits. The dielectric constant of semiconductors bccoincs 

a tensor under a non-zero magnetic field. The numerical results based on 
� 

RCWA reveal that the zeroth-order transmission peaks can be shifted and 

the transmittance can be enhanced by applying a moderate magnetic field. A 

single-mode theory is developed and results are in quantitative agreement with 

RCWA. 

Chapters 1，Sections 6.1 and 6.2 of Chapter 6, and Chapter 7 are reviews. 

Other parts contain original results. All numerical results, unless stated oth-

erwise, are obtained by the author himself. Part of the results in Chapters 4， 

6，and 9 have been published in physics journals. Results in Chapter 8 have 

been presented in a conference. The titles of the journal articles and the con-

ference paper are included as references. Appendix A gives the results of tho 

development of a friendship network in an international summer school, which 

has been published. 



Chapter 1 

Review on evolutionary games and 

networks 

This chapter gives a brief review on the properties of evolutionary games and 

networks. For evolutionary games, some basic properties such as the fitness, 

Nash equilibrium and evolutionarily. stable strategy are introduced. The pris-

oner's dilcinnia and the snowdrift game arc also discussed. For networks, 

several important properties are introduced, including the degree distribution, 

the clustering coefficient and the shortest path length. The random graph and 

the Barabasi-Albert scale-free growing network'are also reviewed. 

1.1 The prisoner's dilemma and the snowdrift game 

Game theory is a branch of mathematics that studies the behavior in strategic 

situations [20]. It was developed by John von Neumann and Oskar Morgestern 

ill the 1940s [21]. In general, the games studied in game theory consist of a 

number of players and a set of strategies. Traditional game theory is mainly 

focused on the case of two players, while evolutionary game theory typically 

considers a population of players instead of just two. The number of strategies 

can be two or more, but the two-strategy games, e.g., the prisoner's dilemma 

6 
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and the snowdrift game, are the most studied cases. 

1.1.1 Two-Strategy games 

Before we discuss the prisoner's dilemma (PD) and the snowdrift game (SG), 

we first discuss two-strategy games in general. Both PD and SG are special 

cases of the general scenark). Our discussion here mainly follows Chapter 4 of 

Rof. [20. 

Consider two strategies A and B and a game described by a payoff matrix 

A B 

A 

B 

(1.1) a b 

\ c d , 

This payoff matrix should be read as follows: A gets a payoff a when playing 

with A, and a payoff b when playing with B; while B gets a payoff c when 

playing with A, and a payoff d when playing with B‘. 

Consider a population of size N. Each of them can hold either strategy 

A or B. XAN of them are holding strategy A. Here, XA is the frequency of 

strategy A. The frequency of B is then XB — L—x. The fitness F^ and JB are 

defined by 
\ 

fAioo) = a;a + (l - x ) 6， （1.2) 

/fl(x) = x c + ( l - x ) d . (1.3) 

The evolution of Xi (i = A. or B) is governed by the replicator equation: 

‘ Xi = Xi[fi{x) 一 少j . (1.4) 

where 巾 is the mean fitness given by 
y K 

• ‘ 

‘ ^ = x f A ( x ) - \ - { l - x)fB(x) . (1.5) 

Prom Eq.(1.4), the frequency of strategy i increases (decreases), if the fitness 

fi of strategy i is larger (smaller) than the mean fitness • . • 
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For the frequency of strategy A 

. X = x{l - x)[fA{x) - fsix)] . (1.6) 

The equilibria of this equation can be obtained by setting the right hand side 

to zero. The solutions are 0, 1，and any x between 0 and 1 that satisfies 

F A { X ) = / B ( X ) . 

Dominating strategy at equilibrium 
% 

By Eqs. (1.2) and (1.3), 
， 

FA{X) - IB{X) = x{a 一 c) + (1 - x)(b - d) . (1.7) 

By determining the sign of — f s i ^ ) and thus the sign of i , the dominating 

strategy at equilibrium can be found as follows: 

• If a > c and b �d , A dominates. 

• If a < c and b < d, B dominates. , 

• U a > c and b < d, there is an unstable equilibrium x* = (d — b)/(a — c + 

d — b) between 0 and 1. For 0 < x < x*, i < 0, x ^ 0. For x* < x < 1, 

X > 0, X -)• 1. 

• U a < c and b > d, there is a stable equilibrium x* = {d — b)/(a — c+d — b) 

between 0 and 1, and two unstable equilibria: x = 0 and 1. For both 

0 < X < X* and x* < x < x ^ x*. The strategies A and B coexist at 

equilibrium. 
• ^ 

Nash equilibrium 

The Nash equilibrium was proposed by the Nobel laureate John Forbes Nash. 

The concept of Nash equilibrium for a two-strategy game is explained as fol-

lows: If two players are holding the same strategy that is a Nash equilibrium, 
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then neither of them can be benefited (increase the payoff) by changing his 

strategy. The Nash equilibrium can be divided into two categories, weak and 

strict. For the two-strategy game discussed before, considering two players 

both holding strategy A. U a = c, one player can switch to strategy B without 

changing its payoff. Under this condition, A is called a weak Nash equilibrium. 

U a > c, the payoff will be lowered if one switches to B, thus A is called a strict 

Nash equilibrium. Similarly, for the two-strategy game we discussed before, B 

is a weak Nash equilibrium if d = 6’ and a strict Nash equilibrium '\[ d> b. 

Evolutionarily stable strategy 

The evolutionarily stable strategy (ESS), proposed by John Maynaxd Smith, 

is a Nash equilibrium that is "evolutionarily" stable [22]. It means that the. 

selection dynamics automatically oppose other strategies to invade an ESS. If 

a strategy A can be taken over by a tiny portion of another strategy B, then 

we call that B can invade strategy A. In our case, for strategy to be an 

ESS, either of the following conditions should be satisfied: 

1. a > c, ‘ 

2. a = c and b > d. 

Proof: Consider the case that the frequency of B is an iiifinitesiiiially small 

number e, thus the frequency of is 1 — e. For A not to be invaded by B, 

Eq.(1.6) implies that should be greater than /B(:C)，leading to 

� (1 - c ) ( a - c ) > e{d-h) . (1.8) 

、 f> 

Since d and b are finite and e is infinitesimal small, for a + c�e{d — b) can be 

neglected and Eq.(1.8) requires a �c . For a — c, b > d \s required. � 

Silnilarly, for strategy B to be an ESS, either d > b or d = b and c > a 

shouWbe satisfied.“ 

/ 
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1.1.2 The prisoner's dilemma 

The most extensively studied two-strategy game is the prisoner's dilemma 

(PD). The classical scenario of the prisoner's dilemma is as follows: The police 

arrested two suspects of a crime, without sufficient evidence for a conviction. 

The two prisoners are separated and cannot communicate with each other. 

The police offer each of them the same deal, i.e., to confess the crime so as to 

avoid a severe sentence. If one confesses (defects to the other) while the other 

remains silent (cooperates with the other), the defector will go free immediately 

while the cooperator will receive a 10-year sentence. If both confess, each of 

them will receive a 5-year sentence. If both remain silent, then both will be 

free after six months due to insufficient evidence. The payoff matrix of this 

story is 

Remains silent (C) 

Confesses (D) 

Remains silent (C) Confesses (D) 
/ \ 

6 months 10 years 

goes free 5 years 

(1.9) 

A generalized form of the above payoff matrix is 

C 

D 

C D 

R S � 

T P 

(1.10) 

where T stands for temptation to defect, P for punishment, R for reward 

and S for sucker's payoff. The ranking of the payoffs in Eq.(l.lO) requires 

T > R > P > S. For repeated games, i.e., the same two players play for more 

than one round, an additional constraint 2R > {T -f S) should be satisfied, 

since the payoff of full cooperation should be higher than alternating between 
T 

cooperation and defection. 

�Based on the discussion on the general two-strategy game in Soc. 1.1.1, 

the strategy D is both a strict Nash equilibrium and an ESS. It is also the 
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dominating strategy at equilibrium in a well-mixed population, in which every 

agent can interact with all other agents. 

For the convenience of both theoretical and numerical treatments, it is 

common to fix the values of two payoffs, and then use two variables to represent 

the payoffs. For example, we can fix = 1 and 5 = 0, then let T = 1 + 卢 

and F = 1 - 7. The two constrains T > R > P > S and 2R > (T S) caii 

be satisfied when 0 < P < 1 and 0 < 7 < 1. The ranges of p and 7 cover the 

whole payoff space of the RD game. 

1.1.3 The snowdrift game 

The snowdrift game (SG), also called the Hawk-Dove game, is an alternate to 

the PD game. Consider two drivers driving home in opposite directions blocked 

by a snowdrift. Each driver can take one of the two actions, to get out to shovel 

the snowdrift (cooperate) or stay in the car (defect, or not-to-cooperate). If 

both start shoveling, they can share the total labor cost c for the work and 

enjoy the benefit h of getting home. However, i f ^ l y one shovels the snowdrift, 

both of them can still get home, but the defector avoids the labor cost. If both 

of them choose to stay in the car, they have to wait for the snow to melt and 

receive no benefit at all. 

Based on this scenario, the payoff matrix of SG can be written as 

C 

D 

C D 

R^h-cjl S = b-c 

T=b P=0 

(1.11) 

with b > 0 0. Thus, the ranking of the payoff values isT > R > S > P. The 

main difference between SG and PD is the ordering of S and P, with P > S 

for PD and 5 > P for SG. For SG, neither C nor D is a Nash equilibrium or 

an ESS. 

Let xc be the frequency of cooperators. A stable equilibrium XQ exists in 
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a well-mixed population, since T > R and P < S. The value of is given by 

= - - = 1 - — ^ . (1.12) ^ T~ R + S-P 2b-c V ) 

By introducing r = c/(26 — c), fc = 1 — r, which is a line that connecting 

(1,0) and (0,1) in the (r, xc) plain. Another common treatment in dealing 

with SG is to define r\ = c/h. In terms oi r i , x^ = 1 — 2ri / (2 — ri). 

1.2 Review on networks 

A network or a graph is composed of a set of vertices (nodes) with a number 

of edges (links) connecting them. The study of graph, called graph theory in 

mathematics and computer science, has a long history starting from Euler's 

study on the Seven Bridges of Konigsberg in 1735. Many systems take the 

form of networks [1]. A few examples are the internet, the social networks of 
V 

acquaintances, the collaboration networks of scientists, the air traffic networks, 

and neural networks. Networks with directed links are called directed networks. 

An example is the air traffic network, in which the nodes are the airports and 

the links are the airlines connecting them. A flight from airport A to airport B 

is a directed link initiated at A and pointing towards B. Accordingly, networks 

with undirected links are called undirected networks. Links can carry weights, 

with the weights representing costs, distances or capacities etc., depending on 

the system. Taking again the air traffic network as an example, the weights 

can bo the number of flights between two airports. The number of flights from 

Hong Kong to Shanghai is 32 per day, while it is only 18 for flights to Beijing. 

Taking the weight of the link between Hong Kong and Beijing to be 1，then 

the link between Hong Kong and Shanghai has a weight of 32/18 = 1.78. 
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1.2.1 Basic properties 

Degree 

For an undirected network, the degree A: of a node is the number of edges that 

connects to the node. For a directed network, the degree is divided into two 

types, the indegree and the outdegree. The indegree (outdegree) of a node is 

the number of edges directed into (from) the node. The spread in the degrees 

of the nodes in a network is described by the degree distribution P(k). 

Clustering coefficieirt 

In social networks, the friends of your friend have a good chance to also be 

your friends. The clustering coefficient (CC) is used to quantify this tonclcncy. 

For a node i, if its ki neighbors are fully connected, the total number of edges 

between them would be ki(ki — l)/2. The clustering coefficient of node i is 

defined as the ratio between the number Ei of edges that really exist between 

the ki neighbors of the node i and ki{ki — l) /2 [23], 

Ci = “ 2 E i (1.13) 
ki{ki - 1) 

The clustering coefficient of a network of size N is the average of C‘ over all 

nodes, , 

(1.14) 

Shortest path length 

The shortest path between two nodes i and j is the path that connects nodes 

i and j with the sum of the weights of the constituting edges being minimized. 

This definition is also applicable to unweighted networks by assigning each 

edge the same weight. The sum of the weights £ij is called the length of the 

path. Many algorithms, such as the Dijkstra's algorithm, have been developed 

for finding the shortest path and £ij. 
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The mean shortest path length of a network of size N is the average of ~ 

over all the �(二一 1 �i - j pairs, 

This definition becomcs problematic if the networks is disconnected [1). An 

alternative way is to define \/£ as the average of reciprocals l/iij, ‘ 

~R _ 一 (1.16) 

The diameter D of a network is the largest iij among all pairs of nodes 

in the network. 

1.2.2 Random Graph 

The random graph is the most studied model in graph theory. It was intro-

duced by Paul Erdos and Alfred Renyi [24]. A random graph of N nodes and 

n edges is constructed by randomly choosing n edges from the N{N - l ) /2 

possible edges. An alternative definition is the binomial model: For the N 

nodes, each pair of nodes is connected with probability p. The expectation 

value of the total number of links is p{N(N — l)/2]. Under the condition that 

n = PIN(N — l)/2], the two definitions give the same result. 

For a random graph of size N and probability p, the average degree (k)= 

p(N — 1) ~ pN. The degree distribution follows a binomial distribution 

p(fci=k)=(^： i y ( i — 一 . (1.17) 

For large N, it can be approximated by a Poisson distribution 

. (1.18) 

Figure 1.1 shows the degree distribution of a random graph obtained by nu-

merical simulations for systems of size N = 1001 and probability p = 0.05. 

The results agree well with Eq.(1.18). 
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QT 

Figure 1.1: The degree distribution of a random graph of size N = 1001 

and probability p = 0.05 obtained by numerical simulations (symbols). The 

theoretical result given by Eq.(1.18) is shown for coipparison (line). Each data 

point is an average over 100 realizations. 

By definition, the connecting probability of two neighbors of an arbitrary 

node z in a random graph is equal to the connecting probability of two ran-

domly selected nodes, which is p. So the clustering coefficient of a random 

graph is 

errand = P = N 
(1.19) 

For fixed (A:), Grand oc N - � 
<n 

The average path length of a random graph follows irand 
ln((fc)) 

which means that a random graph has the small-world effect., A network is 

lu(N) 
23 

said to show the small-world effect if £ scales with or slower than In(iV) for 

fixed (k) [1. . 

• 、 

1.2.3 Barabasi-Albert Network 
f 

In recently years, studies on real networks reveal that many of them are scale 

free, i.e，the degree distribution follows a power law at large k, P ( k ) � 
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network N w 7 e C 

film actors |26, 27) 449, 913 113.43 2.3 3.48 0.2 

WWW AltaVista [28) 203，549, 046 10.46 2.1/2,71 16.18 -

citation network [6] 783， 339 8.57 3 - -

Internet [29, 30] 10, 697 5.98 2.5 3.31 0.035 

metabolic network [31] 765 9.64 2.2 2.56 0.09 

protein interactions [7 2，115 2.12 2.4 '6.80 0.072 

Table 1.1: The network sizo N, mean degree (A:), exponent 7，mean shortest 

path length £，and clustering coefficient C of some real networks that show a 

power-law degree distribution. This table is reproduced from part of tabic II 

of Ref. [1]. ( ^exponent of in/out degree) 

23, 1]. Table 1.1’ lists the power law exponents and sonie other properties for 

a collection of real networks. The power-law degree distribution of these real 

networks is quite different from that of the classical random graph, for which 

the degree distribution follows a Poisson distribution. Inspired by this fact, 

Barab紅i and Albert [25] proposed the so called Barabasi-Albert (BA) model, 

which, gives a possible origin of the power-law degree distribution. The key 

ideas are growing network and preferential attachment. 

The growth of a BA network starts with mo nodes, with the degree of each 

of them be greater or equal to m. Here m ^ mo is an integer. At every time 

step, a new node is added, with m links to be established with m different 

existing nodes. The probability p that a new node will be connected to an 

existing node j depends on the degree kj of node j: 

P⑷） (1.20) 

This, mechanism of establishing new links is called preferential attachment 

The degree distribution of BA networks has been derived theoretically by 
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ST -4 

-6 

mQ=3, m=3 
mo=5, m=5 
15.4k-2 92 

1000 

Figure 1.2: The degree distribution P{k) of BA networks of size N = with 

mo — m = 3 and m �二 m == 5. The linear fit of the mo = 3 case (blue line) 

gives a slope of —2.92. Each data point is an average over 10 realizations. 

different methods [25, 32, 33]. Here we just give the result 

P { k ) � = k- (1.21) 

which is independent of m. Figure 1.2 shows the degree distribution of BA 

networks with TUQ = m = 3 and mo = m = 5 obtained by numerical simula-

tions. The best fit in the m = 3 case gives an exponent 7 = 2.92, which is 

very close to the theoretical predictibn of 7 二 3. 

The clustering coefficient of a BA network can be expressed as [34 

C 二 
m2(m + 1): 

4 ( m - 1) 
In 

m + 1 � 
m m + 

ln(N) 
N 

(1.22) 

A comparison between Eq.(1.22)' and simulation results is shown in Fig. 1.3, 

and good agreement is obtained. The mean shortest path length of a BA 

network is given by € �ln(7V)/Inln(iV) for m ^ 2, and £ �I n ( i V ) for m = 1 

351. V 
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o 

N 

Figure 1.3: The clustering coefficient C versus N for BA networks with 

mo 二 m = 3. The simulation results (black crosses) and results given by 

Eq.(1.22) (red dots) arc shown. Each simulation data point is an average over 

10 realizations. 

1.3 Conclusion 

In this chapter, we roviownd the properties of evolutionary games and networks. 

For evolutionary games, we introduced some basic properties and discussed the 

prisoner's dilemma arid the snowdrift game. For networks, wc introduced sev-

eral basic properties, such as the degree distribution and the clustering coeffi-

cient. The random graph and the BA network arc also reviewed. The concepts 

we discussed in this chapter will be used in Chapters 2-5 and Appendix A. 



Chapter 2 

The Iterated Prisoner's Dilemma 

In this chapter, we first give a review on previous studies on the iterated 

prisoner's dilemma (IPD) game, including Axelrod's famous experiment and 

related works. The two-strategy IPD game is then analytically investigated. 

The IPD game is studied in the full payoff-space spanned by fi and 7，using four 

types of initially configurations. Both numerical and analytical investigations 

are carried out. It is found that for systems with the two strategies Etft and 

Eaud added initially, tho dominating area of generous strategies in the payoff 

space is the largest among the four initial configurations. The roles played by 

ETFT and EAUD arc further studied on the diagonal and anti-diagonal lines of 

the payoff space. The winning strategies for small and large ^ values along the 

anti-diagonal line are analytically predicted. 

2.1 Review of previous works on IPD 

It is well known that evolution is based on fierce competitions. Thus only 

selfish behavior should be rewarded (36). Yet cooperation exists everywhere 

and it is an essential element of our society. Why and how can cooperation 

emerge in a group of egoists? Studies on iterated games, such as the IPD, 

provide a possible answer. 

19 
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We begin the story by introducing a famous experiment conducted by 

Robert Axclrod around 1980 [37). In the experiment, Axelrod invited experts 

in game theory to submit computer programs to play the IPD game with the 

payoff matrix 

C D 

C 

D 

(2.1) R=Z 5 = 0 

\ T = 5 P = 1 , 

For the first tournament, fourteen strategies were submitted. The lengths of 

the strategies ranged from 4 lines to 77 lines in Fortran. A random strategy, 

which randomly chooses to cooperate or defect with equal probability, was 

also introduced. Thus there were fifteen strategies in total. Each strategy 

competes with itself and every other strategy in one move, with a total of two 

hundred moves. Surprisingly, the winner was found to be the strategy with the 

shortest length, named the Tit-for-tat (TFT) strategy, submitted by Anatol 

Rapoport at the University of Toronto. The TFT strategy cooperates in the 

first move, and then repeats the opponent's action in the previous move. To 

further investigate the role of TFT, Axelrod conducted the second tournament. 

The strategy pool of tho second tournament was much larger than the first one, 

including 62 strategies plus a random strategy. Instead of repeating exactly 200 

moves, a continuing probability w = 0.99654 was introduced. With probability 

w, the same two players will play for another move. Once again, TFT won 

the sccorid tournament. By comparing the behavior and payoffs of different 

strategies, Axelord concluded that the robust success of TFT came from "its 

combination of being nice, retaliatory, forgiving, and clear." [37) 

Nowak and Sigmund studied the role played by TFT in heterogeneous 

populations [38}. They used a triplet (i/,p, q) to represent a strategy, where 

y is the probability to cooperate at the first round, p (q) is the conditional 

probability to cooperate given that the opponent's last action is C (D). It 

is obvious that 0 ^ p ^ 1 and 0 ^ g ^ 1. This set up covers several key 
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strategies, including T F T (1,1,0)，always defecting (AllD) (0’ 0，0), and always 

cooperating (AllC) (1，1，1). 

They studied the infinitely IPD {w = 1) of a total of 100 strategies. In 

this case, the final outcome is independent of the action in the first round, 

and the two parameters (p, q) are sufficient to represent a strategy. Among 

the 100 strategies, 99 were placcd randomly on the p-q space, and one T F T -

like strategy (0.99,0.01) was added by hand. For Axelrod's payoff values in 

Eq.(2.1)，they found that the presence of a tiny portion of TFT-like strategy 

at the beginning could lead to the dominance of generous Tit-for-tat (GTFT) 

strategies in the long run. A GTFT strategy refers to one with a large p and 

a non-zero but small q. Thus, they concluded that T F T strategy serves as the 

pivot that leads the evolution toward cooperation. 

In a noisy environment, the performance of T F T strategy becomes worse. 

Here, noise means that a player will occasionally take the action that contra-

dicts to the prediction of its strategy by mistake. Consider two players both 

using TFT, they will always cooperate in a noise-free environment. Once noise 

is introduced, e.g., one player chooses to defect after a C action of the other 

player by mistake, then they begin to punish each other in the long run, which 

largely reduces the total payoff of the system. Some other strategics, such aa 

GTFT [39] and the Pavlov strategy [40], were found to be more robust than 

TFT, when playing in a noisy environment. A holder of GTFT has a nonzero 

probability q to cooperate when the opponent defected in the previous round. 

This generosity makes GTFT more robust than T F T when playing in a noisy 

environment. A player of the Pavlov strategy repeats its previous action if it 

received a high payoff, i.e., R or T, in the previous round, but switches its 

action if it received a punishing payoff P or 5 in the previous round. This 

strategy cannot be represented in the {p, q) space. However, it can be defined 

by introducing a vector (Pi’P2，P3，P4)’ where pi, p2�P3, and p4 are the condi-

tional probabilities to cooperate after receiving a payoff of R, S�T, and P in 
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the previous rouSd. The Povlov strategy is >(1，0，0，1)，while T F T is (1,0,1,0) 

in this representation. 

Motivated by the work of Nowak and Sigmund [38], we study the infinitely 

IPD game beyond the Axelrod's payoff values, including the whole payoff space 

of PD game. We intend to investigate the role played by T F T for payoff values 

-other than Axelrod's, and understand the evolution process analytically. To 

cover the whole payoff space of the PD game, we set = 1 and 5 = 0. The 

values of P and T are related to R and S using two variables (3 and 7. The 

payoff matrix is 

C D 

C 

D 

1 0 (2.2) 

^ l + f t 1 - 7 ^ 

with 0 < < 1 and 0 < 7 < 1. The space covers all possible payoff values. 

Axelrod's payoff values correspond to a single point with coordinate | ) in 

the payoff space. 

The system wc considered contains n reactive strategies of thn typo = 

{pi, Qi). The frequency of strategy Ei at time t is denoted by with 

= 1. For infinitely IPD, the payoff obtained by a strategy E, when 

playing against E j is [41] 

A{Ei, Ej) = c , C j ( R - S - r -f P) + Ci{S 一 P) + cj{T - P) + P , (2.3) 

where the parameters Ci and Cj are given by 

Qi + djQj  
1 一 (KDJ 

二 Qj + djq, 
—1 — d�dj 

CI = 

CJ 

(2.4) 

(2.5) 

with di — Pi — Qi. For a strategy Ei playing against itself, Q can be simplified 

to the form denoted by 

= • (2.G) 
1 — a； 
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For the payoff values given by Eq.(2.2), Ci, Cj and A{EI, EJ) are positive for all 

possible combinations of Ei and Ej . 

The fitness of strategy E�at time t is defined as 
n 

= ， （2.7) 

- j = l 

which is the mean payoff Ei obtained when competing with all strategies. The 

mean fitness is 
n 

i = l 

n n 

= ⑴工乂OA五“如. (2-«) 
t=i j=i 

The evolutionary dynamics of follows the replicator equation 

+ 1) = x , { t ) M t ) / ^ t ) . (2.9) 

Strategies with a fitness higher (lower) than the mean fitness have their fre-

quencies increased (decreased) in the next time step. Equation (2.9) keeps the 

normalization of frequencies. 

Li extended the work of Nowak and Sigmund to the case of 7 = /i |42|, 

i.e., the diagonal line in the /?-7 space. It was found that GTFT strategies 

only dominate in an intermediate range along this line. For ft values out-

side this range, the system is dominated, by defecting strategies that have 

small (p, q) values. The diagonal line is later studied by Chan et al. [43], 

with a slightly-modified initial condition. In addition to the TFT-like strategy 

E r r r = (0.99,0.01) added into the system by hand initially，they also in-

cluded an AllD-like strategy EAUD = (0.01,0.01). Surprisingly, the emergence 

of GTFT strategies becomes very robust in the large region. They went on 

to explain this effect by analytically studying a two-strategy game with the 

strategies ETFT and EAUD- Chan [44] studied IPD in the whole payoff space, 

with fixed strategies that form a lattice in the p-q space. 



Chapter 2. The Iterated Prisoner 's Dilemma 24 

Here we study the IPD in the whole payoff space in a more detailed way. 

Our work is motivated by the following questions. 

• What are the behavior of the dominating strategies of any payoff value 

in the whole payoff space? 

• What are the roles played by ETFT and BAUD for payoff values other 

than those on the diagonal line? 

• How the winning strategies emerge from a collection of strategies with 

equal initial fraction? 

• Can the results be understood analytically? 

2.2 Two-Strategy IPD Game 

Before introducing the numerical results, wc give a theoretical study on the 

two-strategy IPD game, which will be very useful for our later discussions. We 

study analytically the simplest case of IPD in a system consisting only of two 

strategies Ei = (Pi，仍）and E2 — (P2，必)• The frequencies of Ei and E2 are x 

and I — X, respectively. According to Eq.(2.7), the fitness of EI and E2 are 

h = x A { E u E , ) ^ { \ - x ) A { E u E 2 )， （2.10) 

/2 = (1-0：)>1(丑2，场）+3：>1(£；2,场）. （2.11) 

The mean fitness is = xfi + (1 — x)f2. The evolution of x is governed by 

the replicator equation 

X = x f i ! ^ . (2.12) 

Both fi and 少 are positive, so whether x will grow or drop is determined by 

whether / i > or / i < ^ and thus the sign of / i —少.We note that 

( / 1 -巾卜（ 1 -工 ) ( / 1 - / 2 ) (2.13) 

= ( 1 一 X)[XIA{EUE,) - A{E2, E,)) + (1 — x)(A(EU E2) - A(E2, E2))] 
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Defining 

Equation (2.13) becomes 

(/i - = (1 - x)[{l - x)K(Eu E2) - xK(E2, E, 

(2.14) 

(2.15) 

Sincc both x and I - x are positive, so the following conclusions can bo 

drawn: 

• If K{Ei, E2) and K{E2, E{) have opposite signs, then [[\ — x)K{E\,E2)-

XK(E2, El)] and K i E u E2) have the same sign. If K{Eu E2) > 0’ i � 0 ’ 

strategy Ei will replace E2 definitely. If K{Ei, E2) < 0，E2 will replace 

五1. 

• If K{Ei, E2) and K[E2, Ei) have the same sign, then the sign of x will 

be related to their relative frequencies. 

2.2.1 Determine the sign of K{Ei, Ej) 

By Eqs. (2.3) and (2.14), 

= ( c c , - - s,Si){R — _ + P) + — — P) + {cj - Sj)(T 一 P) 

= { l - P - - djSjCi + CiSj - + (ci- 5j)[7 - 1 + dj(j3 + 7) 
{c,-Sj)B{Ei,Ej)， (2.16) 

where B(E“ Ej) = ((1 - /3 - y)(djCi + Sj) + 7 - 1 + dj(/3 + 7)]. So the sign of 

K(Ei, Ej) is related to the signs of (cj - Sj) and B(Ei, Ej). 

It can be proved that Ci-Cj, Ci — Sj, and Sj — Sj always share the same sign 

41]. So the sign of Cj — Sj can be obtained once we know the sign of s, - Sj, 

which can be determined readily. Consider the strategy Ej == (Pj，gj)’ Qj can 
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be written as a function of Sj using Eq.(2.6): 

QJ = -巧） (2.17) 

which is a line that connects {pj, qj) to the TFT corner (1,0) in the p-q space 

with a slope —-ry———The absolute value of the slope is 
1/Sj — 

QJ 

1 - Pj 
(2.18) 

If E, = (p„ QI) lies along this line, C,-SJ = 0, thus K[E” EJ) = K[E” E,) = 0. 

When Ei plays against E j � i t does as well as E j does against itself. This line 

divides the p-q space into two regions. We call the area above the line Region 

A, and the area below the line Region B (see Fig. 2.1). For a strategy E, lies 

in Region A, % > Ij, so Si — Sj < 0 and thus Cj — Sj < 0. Following a similar 

consideration, for E � i n Region B, q — Sj > 0. The sign of Cj — Sj for a given 

strategy E j and an arbitrary Ei is shown in Fig. 2.1 schematically. 

0 

i 

A: Ci - S j > 0 

\ 
Q 

B: c 、-Sj < 0 \ 
Region II， 

B{E,) < 0 

Region I, 

B{Ei) > 0 

0 

Figure 2.1: The sign of q - Sj for an Figure 2.2: The sign of B{Ei) of 

arbitrary strategy Ei, given a strat- an arbitrary strategy Ei under the 

cgy Ej = {pj, Qj). condition that 0 -{- y = 1. 

The sign of B(Ei, Ej), which is related to both Ei and Ej, is difficult to 

determine in general. However, under the condition that /3 + 7 — 1，B{Ei, Ej) 
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becomes a function of Ej only, with B(Ei, Ej) = B{Ej) — pj — qj —/?. The sign 

of B{Ej) can then be determined easily[41j. For a given fi�B(E) == = 0 

is a line in the p-q space. The whole p-q space is divided into two regions by 

this line. For a strategy Ei that lies in the region towards the southeast corner 

of this line (Region I), B(Ei) > 0. For Ei that lies in the other region (Region 

II), B(Ei) < 0 (see Fig. 2.2). 

2.2.2 The invasion problem 

Based on our previous discussions, the winner of the two-strategy game be-

tween El and E2 can be determined when + 7 = 1. For a given 0 value, if 

El lies in Region I (see Fig. 2.3): 

• E2 i n l A : C 2 - S 1 > 0，B ( E 2 , EL) > 0 a n d B{EU 丑2) > 0 , s o K{E2, E^) > 0 

and K{Ei, E2) < 0. E2 can invade Ei. 

• E2 in IB: C2-S1 < 0, B(E2, El) > 0 and B(Ex, E2) > 0’ so K[E2�E^) < 0 

and K{Ei, E2) > 0. Ei can invade E2. 

• E2 in IIA and IIB: B{E2,Ei) > 0 and B{EuE2) < 0’ thus K(E2,E^) 

and K ( E i � E 2 ) always share the same sign. The invasion relation depends 

on their frequencies. 

If El lies in Region II (see Fig. 2.4): 

• E2 in lA and IB: B(E2,Ei) < 0 and B(丑i，£y > 0. K{E2,Ei) and 

K(Ei, E2) always share the same sign. The invasion relation depends on 

their frequencies. 

• E2 in IIA: C2 — Si > 0，B{E2,E I ) < 0 and 丑(£：1’ 五 2 ) < 0, so that 

K{E2, EL) < 0 and K{EI,丑2) > 0 . E】can be invaded by EI. 

• E2 in IIB: C2 - Si < 0, B (E2 ,E I ) < 0 and B(Ei ,E2) < 0’ so that 

K ( E 2 � E l ) > 0 and K{Ei, E2) < 0. E2 can invade Ei. 
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For general cases of arbitrary and 7 and arbitrary £ " 2， o n c e we 

determined the sign of B{E2, E\), the previous arguiiionts still hold. 

Figure 2.3: For a given ^ under the 

condition that + 7 = 1，a strategy 

(pi, Qi) in Rogion I ran invade any 

strategy in IB. Meanwhile, it can be 

invaded by any strategy in I A. 

Figure 2.4: For a given (3 under the 

condition that + 7 = 1，a strategy 

(piyQi) in Rogion II can invade any 

strategy in IIA. Meanwhile, it can 

bo invaded by any strategy in IIB. 

To sum up, if B[Ei, E'/j shares the same sign as B{E2, Ei), then one 

strategy can definitely invade another strategy. If B{Ei, E2) and B(E2, E\) 

have different signs, then the competitiveness of tho two strategics depends on 

their relative frequencies. 

Threshold frequency Xc 

For later discussions, it is useful to define a threshold frequency Xc for strategy 

E\. For X > Xc, strategy Ei can take over the whole population of strategy 

E2 when playing a two-strategy game against E2. Under the condition that 

B{Ei, E2) and ^ i ) share the same sign, r r �= 0 or 1, depending on 

whether Ei can invade E2 or not. 
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When B{E\, E2) and B(E2, Ei) have different signs, 0 < Xc < 1- Here we 

derive the expression of Xc- For E\ to replace E2, the fitness fi of E\ should 

be greater than the fitness f i of E2. By Eq.(2.7), we have 

xA{Eu El) + (1 - x)A(EuE2) > (1 - X)A(E2, E2) + xA{E2, E, 

Thus we can obtain an inequality, 

A(E2�E2) -

(2.19) 

X > 
E,) 一 A(Eu E2) + E2) — A{E2. E, 

Xth- (2.20) 

Noticing that 0 ^ Xc ^ 1, Xc can be defined as 

0， xth ^ 0, 

Xth, 0 < Xth < 1 

1， Xth ^ 1. 

Xr = (2.21) 

2.3 Two-parameter IPD 

Here, we study the IPD game in the whole payoff space. The system we 

studied consists of 100 strategies, each of them has the same initial frequency 

工nut = 0.01. Four types of initial configurations are studied: 

• Type 0 (TO) — 100 stochastic strategies. 

• Type 1 (Tl ) — A TFT-like strategy ETFT = (0.99,0.01) and 99 stochas-

tic strategies. 

• Type 2 (T2) — An AilD-like strategy BAUD = (0.01,0.01) and 99 stochas-

tic strategics. 

• Type 3 (T3) — ETFT、EMLD^ together with 98 stochastic strategies. 
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<p> 一 TO: 100 random stategies <q> — TO: 100 random stategies 

Figure 2.5: (p) and {q) for systems with initial configuration TO in the f i - � 

spacc. Results aro obtained by averaging over 100 realizations. 

A cutoff froqiicncy Xmxn 二 10—川 is introduced in our simulations to model a 

system with finite population [43]. If the frequency of a strategy drops below 

工mm，the strategy will be removed. In a single run, IPD is played for 10® time 

steps, and it is found to be sufficiently long for the system to reach the steady 

state for most cases. At the end of each run, the mean values of p and </ of the 

surviving strategies are calculated: ‘ 

Pmean =E 工tPi QR =^^tQi (2.22) 

Note that x, = 0 for extinct strategies. In most realizations, there is only one 

surviving strategy Eg fc (ps, Qs) at equilibrium. For these cases, (pmeam Qmean)= 

(P«，9，)-
/ 

For each type of initial configuration, M realizations is run for a certain 

payoff value. The average values of Pmean and Qmean over these M realizations 

are 
(P) = X I Pmean， (^) = 如'仙"• (2-23) 

(p) and (q) reflects the behavior of the dominating strategies of the steady 

state. The values of (p) and {q) for the four types of initial configurations are 

shown as contour plots in Figs. 2.5-2.8. 
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Figure 2.6: (p) and {q) for systems with initial configuration T1 in the P-'y 
It. 

space. Results are obtained by averaging over 100 realizations. 
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Figure 2.7: {p) and (q) for systems with initial configuration T2 in the P-j 

spacc. Results arc obtained by averaging over 100 realizations. 
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<p> 一 T3: TFT + Alio + 98 Random 

Figure 2.8: (p) and {q) for systems with initial configuration T3 in the 

space. Results are obtained by averaging over 100 realizations. 

For all four initial configurations, the lower half part (7 < 0.5) of the 

space is occiipicd by blue and dcop blue colors, corresponding to the dorninanro 

of defecting strategies that have small (p) and (q) values. The upper left-hand 

coraer of " - 7 space is the cooperative region that has large (p) and {q) values 

(in deep red and red colors). The area of this region is smallest for the initial 

configuration TO, and increases as the initial configuration cliaiigcs lo T2, T1 

and T3. For initial configuration T3, the whole upper half plane is dominated 

by large (p) values, with {q) decreasing as p increases. Thus the dominance 

of cooperative strategies gradually changes into TFT-like strategies (large (j)) 

and small (q)) as /? increases. To see the effect of different initial configurations 

more clearly, we divide the payoff space into three regions, according to the 

values of (p) and {<7): 

• AllD-like Region: (p) ^ 0.5 and {q) ^ 0.5. 

• TFT-like Region: (p) > 0.5 and {q) < 0.5. 

• AllC-like Region: (p) > 0.5 and (q) > 0.5. • 
1 

Figure 2.9 shows the results in Figs. 2.5-2.8 in terms of these three re-

gions. We intend to call AllC-like and TFT-like strategies generous strategies, 
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TO 一 100 random strategies T1 — TFT + 99 Random 
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Figure 2.9: The coverage of the three regions in the payoff space for the four 

types of initial configurations. White color for AllD-like region, green for 

TFT-like region, and red for AllC-like region. 
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since they are likely to cooperate with cooperating opponents. While AllD-like 

strategies intend to always defect, thus we call them egotistic strategies. In 

Fig. 2.9, the dominating area of generous strategies of T2 is larger than TO, 

which means that a system with a small portion of Etft added initially can 

do better than a system consisting of only random strategies. By adding both 

E/[ud and Etft initially, the area of generous strategies is the largest among 

the four initial configurations. The results indicate that a small fraction of 

very egotistic strategy Eaud added initially can help Etft to extend the dom-

inating area of generous strategies. This result is rather surprising. To further 

investigate the roles played by Baud and Etft in the evolution process, we 

study the IPD game along the diagonal and anti-diagonal lines of the P-y space 

in detail. The diagonal line has been studied by Li and Chan et al. previously, 

here we continue on their works. The anti-diagonal line is chosen because it 

crosses the three regions for all four initial configurations and it can be treated 

theoretically. 

2.3.1 Diagonal line 

By setting 7 = /? and varying the value of 3 �w e get the dominating strategies 

along the diagonal line in the payoff space. Figure 2.10 shows (p) and {q) as a 

function of P for the four types of initial configurations. 

For /3 < 0.45, the curves of both (p) and (q) are nearly parallel to the x 
i 

axis and they can be divided into two categories. The first category consists 

of TO and T l , with (p)�0.33 and (q) > 0.01. The second category consists of 

T2 and T3, with (p) < 0.2 and (q) < 0.01. The main difference between these 

two categories is that EAUD is added initially in the second category. Thus 

we can conclude that EAUD plays a key role in reducing {p) and {q) values at 

small p region. 

For > 0.5, T2 has larger (p) and {q) values compared with TO, with 



Figure 2.10: (a) {p) and (b) {q) as a function of P along the diagonal line 

7 二卢 in the space for the four initial configurations. Each data point 

is an average over 500 realizations. The inset of (b) is a zoom-in picture for 

0 < 0 . 4 5 . � 

their values first increase and then decrease as P increases. T3 has even larger 

{p) and (q) values, showing the dominance of the generous TFT-like strategies 

at large (3 region. So the existence of ETFT at the beginning can bring the 

system towards cooperation when (3 is large, and EAUD makes this effect morn 

stable. 

To have a better understanding of the roles played by BAUD and ETFT, we 

carry out analytical studies based on our previous discussions on twojstrategy 

game. 
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[a) The whole (p, q) space. 
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(b) Zoom-in picture for q < 0.02. 

Figure 2.11: Contour plot of G(E, Baud) for any strategy E = {p, q) at p = 0.1. 

Whi te color for G{E, EAIID) — 1, green color for G(E、BAUD) = 0 and red color 

f o r BAUD) = - 1 -

The value of G{E, Eaiid) for arbi t rary E = {p,q) at = 0.1 is shown in 

Fig. 2.11(a). We use white, green and red colors for G(E, EAIID) = 1,0 and -1， 
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Dominating strategies at small 0 region 

The small ft region is dominated by Al lD- l ike strategies. To facilitate our 

analytical discussions, we define 
f 

, K ( E i , E2) > 0 and K(E2 , E i ) < 0 

G { E u E2) = 0, K { E u E2) < 0 and K[E2、Ei) > 0 > (2.24) 

— 1，s g n { K { E u E 2 ) ) = sgn (K (E2 .E , ) ) 

where sgn(x) extracts the sign of x. The meaning of the different values of 

G(及，松）is 

, E\ can always invade E2, 

G ( E i , E2) = < 0, E2 can always invade 

—1， invasion depends on their frequencies. 

(2.25) 

c 
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respectively. The dominat ing color is green, imp ly ing that EAUD can replace 

most strategies when playing a two-strategy game against them. The areas 

of whi te and red colors are t iny. A n enlarged picture for q < 0.02 is shown 

in Fig. 2.11(b), which is d iv ided into two parts by the blue line tha t connects 

EAUD to the T F T corner (1,0) . The area under this line is colored white. Thus 

EAUD can be taken over by any strategy tha t lies below this l ine when playing 

a two-strategy game. Recall our previous discussions on two-strategy game in 

Sec. 2.2，here our case only has a t iny area of Region I (red color area), which 

we can ignore and assume all strategies are in Region I I . As defined before, 
\ 

/ = q/(\ — p) is the absolute value of the l ine tha t connects strategy E = (p, q) 

to the T F T corner (1,0). For strategies in Region I I ’ the smaller I value a 

strategy has, the more compet i t ive i t is. So the winn ing strategy should be 

the. one w i th the smallest I value. A winn ing strategy of a single run is the 

strategy that has the largest frequency in the steady state of tha t run. Figure 

2.12 shows the winn ing strategy (black cross) of every single run, for a tota l 

of 500 runs using in i t ia l conf igurat ion T3. The strategy w i t h the min imum 

I of tha t single run is also shown (red dot) . Our predict ions coincide well 

w i t h s imulat ion results. Due to the competit iveness of strategies w i t h small I 

value at small FI, even w i thou t EAUD added in i t ia l ly , the w inn ing strategy of 

one realization is st i l l the strategy of the m in imum I value in tha t realization 

(Fig. 2.12 ( b ) ) . 、 

Dominating strategies at large (5 region 

Figure 2.13 shows the threshold frequency xc of e t f t when playing a twos -

t r a t o g y g a m e aga ins t EAUD- Fo r XTFT > 工c’ EAUD c a n b e t a k e n over b y ETFT-

For large (3�a small por t ion of ETFT can easily take over a large por t ion of 

EAUD. However, EAUD can st i l l be able to invade a large area of strategies. 

Figure 2.14(a) shows G(E, EAUD) at = 0.95. Strategies in the area of green 

color can be replaced by EAUD when playing a two-strategy game. In a system 

。 
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T3. 

v + r 、 、 
• •• ； 

• t 〜 1 1 二 f " I _ _ > 
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P 

(a): in i t ia l configuration T3. 

TO. 6 = 7 = 0.1 

Simulation 
min(q/(1-p)) 

0 . 0 6 象 + 令 

o- 0.04 

0.02 +叙爐貌++ 

(b): in i t ia l configuration TO. 

Figure 2.12: The winning strategies (black cross) and the strategy wi th mini-

mum I = q/{l—p) value (dot) in 500 realizations. P = 0.1, in i t ia l configurations 

are T3 and TO. 
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with 100 strategies, BAUD is st i l l able to replace strategies in the green area, 

which can then be replaced by TFT- l i ke strategies, such as ETFT- These T F T -

like strategies are then replaced by generous T F T strategies. Figure 2.14(b) 

shows G{E, ETFT) at FI : 0.95. The winning strategies of 1000 runs arc also 

shown (blue dots). Most of them are inside the white area, indicating the 

winning strategies have a large chance to be those that can invade ETFT-

Figure 2.13: The threshold frequency XC of ETFT when playing against EAUD 

as a function of /? along the diagonal line of the /3-7 space. The inset is a 

zoom-in picture at large p. 

2.3.2 Anti-diagonal line 

Figure 2.15 shows (p> and {q) as a function of 0 for the four types of ini t ial 

configurations along the anti-diagonal lino. Both {p) and (q) arc very large 

when P is small, showing the dominance of cooperative behavior. For P > 

0.6, (p) and (q) become small, the systems become dominated by egotistic 

strategies. TO and T2 have similar (p) and {q) behavior when 0 is small, so 

are T 1 and T3. The difference between the two groups is that for TO and 

T2, {p) and (q) begin to drop at a smaller 0. So the in i t ia l ly added ETFT in 
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(a ) : G{E, EAUD) (b)： G{E, ETFT) 

Figure 2.14: Contour plot of (a) G{E, EAUD) and (b) G{E, ETFT) at = 0.95. 

White color for G[E, EAUD) = 1�green color for G{E, EAUD) = 0 and red color 

for EAUD) = — 1. The winning strategies of 1000 realizations wi th init ial 

configuration T3 are also shown in (b) as blue dots. 

T 1 and T3 can keep a large (p) and large {q) for a larger range of P values. 

In other words, the dominance of cooperative behavior bccomos more stable 

wi th the existence of ETFT at the beginning. For ^ > 0.6, TO and T1 make 

up one group. T2 and T3 make up another group, which has smaller {p) and 

{q) values. Each group have similar ijp) and {q) behavior. Thus, the init ial ly 

added E^UD in T2 and T3 can lower the values of (p) and {q) at large P 

region. To conclude, the dominating strategies in small and large 3 regions 

can be changed separately by the init ial ly added ETFT and EAUD- We shall 

study the origin of this in what follows. 

Two-Strategy game of ETFT and EAUD 

Figure 2.16 shows the threshold froqucncy XC of ETFT when playing a two-s-

trategy game against EAUD- For x > Xc, EAUD can be replaced by ETFT- When 

P is small, a t iny port ion of ETFT can eventually replace a large population of 

EAUD. SO, AllD-like strategies are very weak when competing wi th TFT- l ike 
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Figure 2.15: (Lef t ) (p) and (Right) {q) as a funct ion of along the anti-diag-

onal l ine 7 = 1 — in the 卢-7 space for the four in i t ia l configurations. Each 

data point is an average over 500 realizations. 

strategies at small /? region. Th is explains why (p) and (q) of systems w i th 

in i t ia l conf igurat ion T2 , which has BAUD added in i t ia l ly , have similar behavior 

w i th systems consisting of 100 random strategies (w i th in i t ia l conf igurat ion TO) 

at the small (3 region. When (3 becomes larger, ETFT becomes less competi t ive 

when facing EAIID. The dominat ing strategies change to Al lD- l ike. 

Dominating strategies at small 

For ft is small, ETFT and other T F T - l i k c strategies have advantages when 

playing w i t h EAUD and other A l lD- l ike strategies. Recall our discussion on the 

invasion problem in two-strategy games. For a given 0 w i t h /? + 7 = 1, the p-q 

space is d iv ided into Region I and I I by the line q = p — P (Fig. 2.2). EAUD is 

always in Region I I for any /? > 0, and ETFT is in Region I for < 0.98. For a 

strategy in Region II，a line connecting this strategy to the T F T corner (1,0) 

can be drawn. The absolute value of the slope of th is line is I = q/(l — p). 

Strategies below this l ine can definitely replace strategies on or above this line 

when playing a two-strategy game. Thus, A l lD- l i ke strategies, which has small 

I values, arc able to replaco most of the strategies in Region I I . These Al lD- l iko 
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Figure 2.16: Tho threshold frequency XC of ETFT when playing against EAUD 

as a function of P along the anti-diagonal line of the /?-7 space. The inset is a 

zoom-in picture at small ft. 

(O 
0.12 

0.06 

Figure 2.17: A typical evolution process for system wi th ini t ia l configuration 

T3 at 卢= 0 . 1 . 
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strategies can then be taken over by TFT- l i ke strategies in Region I. For a 

strategy in Region I, i t can be invaded by any other strategy in Region I that 

has a larger I value. A l lC- l ike strategies, which have both large p and large 

q valu(is, have larger I than TFT- l i ke strategies. So they are able to invade 

TFT- l i ke strategies. Based on our discussion, we imagine that strategies w i th 

small I values in Region I I would have advantages at the early stage of the 

evolution, and then TFT- l i ke strategies begin to grow. TFT- l i ke strategies are 

then replaced by Al lC-I ike strategies, w i th the winning strategy being the one 

w i th the largest I value. 

Figure 2.17 shows a typical evolut ion process at = 0.1 for system wi th 

in i t ia l conf igurat ion T3. A t i = 0，all the 100 strategies have the same fre-

quency Xtnit = 0.01. As t increases, A l lD- l ike strategies begin to take the 

largest percentage at i = 63. When t = 163, these Al lD- l ike strategies are re-

placed by a T F T - l i k e strategy and three Al lC- l ike strategies. Eventually, there 

is only one Al lC- l ike strategy survived at i = 10®. So the evolution proccss 

we predicted is verif ied by the simulat ion results in Fig. 2.17. In Fig. 2.18， 

we show the winn ing strategies (black cross) of 500 realizations for systems 

w i th in i t ia l configurations TO and T l , together w i t h the strategy that has the 

largest I value in Region I of every run (red dot) . Good agreeiiiciits between 

simulat ion results and our predictions are obtained. 

Dominating strategies at large P 

For very large strategies in Region I become very weak when competing 

w i t h A l lD- l ike strategies in Region I I . Strategies in Region I I w i t h large I 

values can also be invaded by Al lD- l ike strategies. So the system is dominated 

by strategies tha t have small I values in Region I I . The winn ing strategy in a 

single run should be the part icular strategy tha t has the smallest I value. In 

Fig. 2.19，the s imulat ion results well agree w i t h our predictions. 
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TO. p 

Figure 2.18: The winning strategies obtained by simulations (black crosses) 

and the strategy w i th maximum / = ("(1 - p) value in Region I for 500 

realizations (clots). /? = 1 — 7 = 0.1, w i th ini t ia l configurations TO and T l . 

2.3.3 Analytical calculations of {p^in) and {q ,̂in) 

Since wo ran prcdict the winning strategy E而 i -- (Pwru, Qwtn) of a singln run 

for very small and very large P values for the aiiti-diagoiiaJ line, we should be 

able .to ctvlculato t l ic i i icaii values of punn hi id gunn analyiic-cilly. Chan |44| luus 

calculated (punn) and (qujin) for small P values along the diagonal line. Here 
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Figure 2.19: The winning strategies obtained by simulations (black cross) and 

tho strategy w i th i i i i i i i inuin I = q/{l — p) value in Region I I (dots) for 500 

realizations. 13 二 0.7, w i th in i t ia l configurations TO and T2 

we calculate (Pu.m〉and (qunn) along the anti-diagonal line. 

{Punn) and〈<7職〉at small (3 
• 

Take rn to be the number of stochastic strategies of the system, 100 — rn is 

the number of intenl ioi ial ly inserted strategies, rn = 100, 99, 99, and 98 for 

systems wi th in i t ia l configuration TO, T l , T2 and T3, respectively. For small 
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TO, p = 1-Y = 0. 

Simulation 
min(q/(1-p)) 

P-P 
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the winning strategy has the maximum I = q/{\ 

strategies that lie below the lino q 二 p - (Region I). 

p) value among all 

C ( l , l -p 
> 

B(p 十 dp,p + dp - ^ 

MP,P -

f 

(a ) W i t h o u t ETFT (h) W i t h E r r r 

Figure 2.20: Schematic diagrams of the relative positions of strategies discussed 

in Sec. 2.3.3 for calculating (punn) and {qu,xn) at small ft. 

Define the points Q and C to be the T F T corner (1,0) and the point of 

intersection of the two lines q = p — P and p = I, respectively (see Fig. 2.20). 

We construct the triangle AQAB in the p-q space, where A = {p,p - (3) and 

B = (p + dp, p dp - are two points on the lino q = p - fl. Figure 2.20(a) 

shows the relative positions of those points schematically. For the rn random 

stratogios, if there is one strategy in AQAB and no strategy in ISQBC, t,h(、n 

the winning strategy wi l l be the strategy in A Q A B . The probabil ity for this 

to happnii is 

Pr = m X S^qab x (1 — S^QBC) 

1 -

2 V 

Fdp� 

{l-P)dp 
= n i X X 

2 

where S^QAB is the area of AQAB. Wc iicglcctcd the dp term in calculating 

Saqbc- A strategy can be anywhere inside AQAB. The averaged p�q values 
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of strategies in AQAB for many runs is the coordinate of the ceritroid of 

AQAB, which is ？…;⑴)after iieglcctiiig the dp terms. Tl io values of 

{Pwtn) and {qwtn) can be calculated by integrating over p. 

For systems wi th ini t ial configurations TO and T2 that do not contain 

Etft-, I) ranges from to 1. Thus, 

{Pwin) = [ F X ^ dp， 

" “】 _ (2.26) 
�g 爾 〉 - f Fx . 

J FT J 

For syslciiis wi th E t f t added init ial ly, wc define D = which 

is the point of intersection of lines q = p — p and q = \ — p (see Fig. 2.20(b)). 

W i th probabil i ty PTFT = (1 — tl icrc is no strategy in AQCD. 

Under this condition, the winner is ETFT- W i t h probabil i ty 1 — PTFT, there is 

one or more strategies in AQ(7D， the winning strategy is the one wi th largest 

/ value in AQCD. {pwtn) and〈<7unn〉can then be calculated as 

{Pnnn) = PTFT X 0 .99 + (1 — PpFT) X / F X '^^^dp ’ 

{QUNN) = PTFT x 0 .01 + (1 - PTFT) X F X 彻 二 

(2.27) 

Table 2.1 shows the simulation and analytic results of {pwm) and {qwm) 

for the lour in i t ia l configurations at = 0.06. The analytic results agree well 

wi th the simulation, results. 

{Pwtn) and at large /? 
q 

When p is large, the winning strategy has the min imum I = value among 
1 ~p 

all strategies that l ie ' to the west of the line q = p — P (Region I I ) . The line 

q = p - ft intorsorts wi th linos q = 0 and p = 1 at points G = (/?, 0) and 

H = - P). Point Q is the T F T corner (1,0) (see Fig. 2.21). Since the 

prcsciice of a small fraction of EMID ini t ial ly can affect tl ie winning strategics, 
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Table 2.1: {pwin) and〈<7肌„〉values obtained by simulations and analytic 

calculations for the four in i t ia l configurations at 二 1 — 7 : 0.06. 

iPwin) TO T 1 T 2 T3 

Simulat ion 0.953 0.974 0.982 0.985 

Analy t ic 0.986 0.986 0.986 0.986 

{Qwxn) TO T 1 T2 T3 

Simulat ion 0.631 0.653 0.656 0.670 

Analy t ic 0.613 0.612 0.612 0.612 

we divide our discuss into two parts, depending on whether the system has 

BAUD added in i t ia l ly or not. 

For systems w i th Eaud added ini t ial ly, we use point A to denote jEaiid 

in the p-q spacc. Lino AQ intersects w i th lino GH at point C = (0.99" I 

0.01,0.01(1 — P)). Figure 2.21(a) shows the relative positions of these points 

schematically. W i t h probabi l i ty PAUD - (1 - thoro is no 

strategy in the quadri lateral DACGO, the winner is E^mj. W i t h probabil-

i ty (1 — Paud), there is at least one strategy in OACGO, the winning strategy 

is inside C\ACGO. The probabi l i ty that there are two or more strategies in 

[2ACG0 is t iny, thus we can simpl i fy assume that there is only one strategy 

inside \I\ACGO, which is the winner. The average value (〈Punn〉，{qwxn)) of win-

ning strategies inside [JACGO for mul t ip le runs corresponds to the centroid 

(Pc> <?c) of r i A C G O , which is given by 

Pi X S^^QAO - P2 X S^QCG 
PC 

Qc = 

SDACGO 

Q\ X S/SQAO 一 92 X S^QCG 

(2.28) 

(2.29) 
SDACGO 

where = = 3 ^ ) and (p2 = 1.卿广tn，仍 _ o.oi^^i-^)^ are the centroids 

of AQAO and A Q C G , respectively, S^QAO = S^QCG = ^Voo '̂ and 

SUACGO = SAQAO — S^QCG-
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0.04 0.2& 

0(0,0) 

(a) W i t h BAUD-

0(0,0) 

(b) W i t h o u t BAUD-

Figure 2.21: Schematic diagrams of the relative positions of strategies discussed 

in Sec. 2.3.3 for calculat ing (pwin) and {qwm) at large P. 

〈Punn〉and (QWIN) can be calculated in terms of PAUD, PC and qc： 

(PWIN) = PAIID X 0 . 0 1 + ( 1 — PAUD) X Qc , 
… （2.30) 

(QWZU) = PAUD X 0 . 0 1 + ( 1 - PAUD) X PC . 

For systems w i thou t E^no added in i t ia l ly , i t is more involved to calculate 

〈Pumi> and {qwin)- Consider two points A = {0, q) and B — (0, 4- dq) in the 

p-q space (see Fig. 2.21(b)). A tr iangle AQAB is formed by connecting points 

A and B to the T F T corner Q = (1,0) . The area of AQAB is S^QAB = 

dq/2. The two lines QA and QB intersect w i t h the line q - p - (5 dX points 

C = and D = ( 微 ’ i l ^ f ^ ) . So = (1 + .— 

P){l-/3)dq/(2(l + q}^). A quadri lateral OABCD is constructed by connecting 

the points A, B, C , and D. Figure 2.21(b) i l lustrates the set up. For a 

system w i t h m stochastic strategies, i f there is one strategy in r\ABCD and 

no strategy in \I\OADG, the winn ing strategy w i l l be the one inside [2ABCD. 
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The probability for this to happen is 

Pr = mx SoABCD x (1 - Sooadg)"^'^ 

… ( T 2 ( i T ^ . 

三 Fdq . 

50 

(2.31) 

X 
V2 l+q 

The averaged p, q values of strategies in OABCD for many runs 

coordinates (pc> Qc) of the centroid of DABCD. 

Pi X S^qab - P2 X S^QCD 
PC 

Qc = 

SuABCD 

Ql X S^QAB - <?2 X S^qcd 

e the 

(2.32) 

(2.33) 
SoABCD 

whore (pi 二全， =警） a n d (j>2 = 92 =〗么；广 )arc the rontroid of 

AQAB and AQCD^ respectively. We have neglected the dq terms. 

The values of (pwin) and {qwin) can then be calculated by 

iPwtn) = F X pcdq， 

卞 （2.34) 

iQwtn) = F X qcdq . 
•/o 

Table 2.2 shows the simulation and analytic results of {punn) and {qu,in) given 

by Eqs. (2.30) and (2.34) for the four ini t ial configurations at = 0.81. Good 

agreement is obtained between the simulation results and the analytic results. 

2.4 Conclusion 

This chapter gives a detailed study on the iterated prisoner's dilemma. We 

reviewed previous studies on IPD, in which the main focus was the role played 

by the T F T strategy. Then we analytically studied thn two-stratogy IPD in 

the whole payoff space spanned by and 7. We focused on the ^ = 1 — 7 case, 

which can be treated analytically. Wc numerically studied the IPD game in 
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Table 2.2: {p^m) and {qwin) values obtained by simulations and analytic cal-

culations for the four ini t ial configurations at = 1 — 7 = 0.81. 

{Punn) TO T 1 T2 T3 

Simulation 0.323 0.339 0.129 0.147 

Analyt ic 0.311 0.311 0.126 0.125 

{Qwiti) TO T 1 T2 T3 

Simulation 0.0135 0.0134 0.00744 0.00697 

Analyt ic 0.0140 0.0142 0.00750 0.00752 

the whole payoff space, using four types of in i t ia l configurations. I t was found 

that for systems wi th both ETFT and EAUD added ini t ial ly, the dominating 

area of A l lC and G T F T strategies in the payoff space is the largest among the 

four in i t ia l configurations. The roles played by ETFT and EAUD were further 

studied by working on the diagonal and anti-diagonal lines of the payoff spacc. 

I t was found that EAUD could replace many strategies for any payoff value. For 

payoff values wi th large ft, ETFT can easily take over EAUD, which waa then 
4 

replaced by more generous strategies. This process leads to the dominance of 

generous strategics at large ft. Based on the analysis on the two-strategy game, 

we analytically predicted the winning strategies for small and large 0 values 

along the anti-diagonal line. The average p and q values of these winning 

strategies were also calculated. The results agree well w i th the simulation 

results. 



Chapter 3 

Phase transitions in spatial 

snowdrift game 

In this chapter, we first review previous studies on the spatial prisoner's 

dilemma game and spatial snowdrift games. We then study the bohaviors 

of phase transitions in the spatial snowdrift game. By studying the relative 

alignments of the payoffs of C and D nodes, wc explain the phase transitions 

analytically. 

3.1 Introduction 

Evolutionary game theory has been used in studying the cincrgciicc of coop-

eration. The prisoner's di lemma (PD) and the snowdrift game (SG) are the 

mostly studied two-person evolutionary games. Both of th^ i i i arc two-strategy 

games in which the players have two options: to cooperate (C) or defect (£)). 

A basic introduct ion of the two games has been given in Sec. 1.1. 

The behavior of these two games in a well-mixed population can be in-

vestigated theoretically. For PD, the D-character is allways the dominating 

strategy in the steady state. For SG, both C and D can coexist at equilib-

r ium, w i th the fraction of cooperators / c = 1 — ^ ^ (Eq.(1.12)). Besides 

52 
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the well-mixed case, bo th games have been studied in structured populations, 

in which an agent is coii i iccted only to a group of other agents rather than 

the whole populat ion. I t was found that the emergence of cooperation can 

be afi'cctcd by the under ly ing network structure [45, 46]. Among the network 

structures, the spat ial structure is the most studied structure [45]. The iter-

ated PD game was first studied on gr id by Axe l rod [37]. Later, Nowak and 

May studied the one-round PD game on latt ices [47j. In their set up, each 

player competes w i t h all neighbors and obtain a payoff at each t ime step. By 

comparing the payoff w i t h tha t of the neighbors, a player w i l l follow the strat-

egy of the neighbor w i t h the highest payoff. The i r observation is that C and 

D coexist at equi l ib r ium for a substantial subset of the payoff space and for 

most in i t ia l condit ions, which means that latt ice structure promotes coopera-

t ion in P D game. The effect of lat t ice structure is verified by many later works 

45，48, 49, 50). The reason why spatial s t ructure can promote cooperation is 

that cooporators can form clusters. By gaining benefit f rom mutual coopera-

t ion w i th in the clusters, agents at the cluster boundaries are able to resist the 

invasion f rom the surroui id i i ig defectors. Fol lowing the studies of PD game on 

spatial structures, the SG was played on lattices by Hauert and Doebeli |51 . 

Contrasted to the spat ial P D game, they found that spatial structure often 

inhibi ts cooperat ion for SG. 

I l l this chapter, we wi l l f irst review the work by Hauert and Doebeli, 

and then analyt ical ly explain the behavior of the phase transit ions in spatial 

snowdri f t game. 
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3.2 The spatial snowdrift game 

3.2.1 One-parameter payoff matrix 

The payoff matr ix of SG has been given in E q . ( l . l l ) as 

C D 

C ( R = b_c/2 S 二 b- \ 

D I 

54 

(3.1) 

� T = b P 二0 , 

For convenience of both numerical and theoretical discussions, we normalize 

the payoff values by d iv id ing them wi th R, thus R = 1 and P = 0. The values 

of T and S are 

where r = c/(2b — c) is the cost-to-bene fit ratio, f c = 1 — r is the equil ibrium 

frequency of cooperation of the well-mixed case. The payoff matr ix of SG after 

normalization is: 

C 

D 

C D 

R = 1 5 = 1 -

T = 1 + r P = 0 

(3.4) 

3.2.2 Snowdrift game on lattices 

Hauert and Doebeli [51] played the snowdrift game on 2D lattices w i th pe-

riodic boundary conditions. The size of the lattices are 100 x 100, w i th the 

number of neighbors takes on /c = 3 (hexagonal latt ice), 4 (square lattice), 6 

(triangle lattice) and 8 (square lattice wi th nearest and next nearest neighbors 

connected). Figure 3.1 il lustrates the geometrical structures of these lattices. 

Let Xc{t) be the frequency of cooperation at l ime t. An ini t ia l condit ion 

x c i t == 0) = 0.5 was used in their simulations, i.e., half of the agents take 
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Figuro 3.1: Different types of 2D lattices. From Loft to r ight: Hexagonal 

{k = 3), Square {k = 4)，Triangle (k = 6) and Square latt ice w i th nearest and 

next nearest neighbors connected {k = 8). 

on the C character init ial ly. The updat ing process could be synchronous or 

asynchronous. For synchronous updating, every node i plays SG wi th all its k 

neighbors and obtain an accumulated payoff P、at each t ime step. Every node i 

then randomly chooses a neighbor j as reference for updating. I f P】> P,, then 

w i th probabi l i ty f ( P j — Pi) agent i wi l l adapt j ’ s strategy, and w i th probabil i ty 

1 — f{Pj ~ Pt) agent i keeps its character. For asynchronous updating, only 

one node i is randomly sclectcd for possible updat ing at eacli t ime step. By 

comparing its payoff P, and the payoff Pj of a randomly selected neighbor j、 

node i w i l l follow j ' s strategy w i th probabi l i ty f{Pj - P,) if P] > P,. The up-

dat ing process may be interpreted as reproduction, i.e., strategies w i th higher 

payoffs have more offspring. The probabi l i ty funct ion f{Pj — can take one 

of the following two forms [51]: 

• Form 1: 

where k(l + r ) normalizes the probabi l i ty. By taking this form, the 

probabi l i ty / is proport ional to the payoff difference between nodes j 

and i. 

參 Fbrm 2: 

f 仍 - P ， ） = — ， （3 6) 

where K represents a noise parameter. Th is form is similar to the Fer-

mi-d ist r ibut ion in physics. 



0.2 

k = 6 
k = 8 

well-mixed 

0.4 0.6 0.8 

Figure 3.2: The frequency of cooperation / c as a funct ion of the cost-to-bencfit 

rat io r for SG played on lattices of different geometries (symbols), f c of the 

well-mixed case is shown for comparison (line). 

We use Form 1 in the fol lowing discussion. 

Figure 3.2 shows the steady state frequency of cooperation f c a funct ion 

of the cost-to-benefit rat io r for SG played on 2D latt ices (symbols). The 

asynchronous updat ing process is used. The key features of fc are: 

參 Fbr small r , f c 〜 1 , the system is in an A l lC phase dominated by C 

character. 

• For r larger than a cr i t ica l value r e , the system changes from an A l lC 

phase to a mixed phase that contains both C and D characters. 

• For r 〉 T D , /c•〜0， the system evolves into an A l l D phase, C character 

becomes ext inct . 

Compared w i t h the wel l-mixed case, cooperation is promoted by the latt ice 

structure for r < rc, and suppressed for r > re- Except for the small range 

of r < r c , spat ial s t ructure is found to inh ib i t cooperation for SG for a large 
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range of r values. Using a technique called pair approximation [52, 51], f c can 

be estimated analytically. The analytic results agree well wi th the numerical 

results at intermediate r , but fails at high and low r [51 j. Here we explain the 

phase transitions and prcdict the values of r c and r o by comparing the payoffs 

of neighboring C and D nodes. 

3.3 Theoretical investigations on phase transitions 

in spatial SG 

To understand the origin of the phase transitions and analytically predict the 

transition points, i t is useful to study the case when cooperators and defectors 

have the same payoff. 

The payoff of an agent that plays SG wi th its neighbors can be expressed 

as a function of its degree k (thus the number of neighbors) and the number 

of D-neighbors. For a C-agent wi th y D-neighbors, 

Pc{k,y) = {k-y)R -\- yS 

=k — yr . 

(3.7) 

For a D-agent w i th z D-neighbors, 

Poik^z) = ik-z)T + zP 

={k - z ) ( l r ) . 

(3.8) 

When a C-ageiit has the same payoff wi th one D-iieighbor, Pc(A：, y) 二 /^d(�2). 

In this case, r can be expressed as a function of k, y, and 2， 

k - z + y 
(3.9) 



Chapter 3. Phase transitions in spatial snowdrift game. 、*>, 58 

、寧•-

3.3.1 Phase transition between AIIC and mixed phases 

When r is small, the system is in the A l lC pluise tha i is doiiiiiicitcd by C-c:liarcu:ti?r, 

wi th only a t iny fraction of isolated D-nodes. An isolated D iiodo that is sur-

rounded by C nodes can not be replacwl by C, since its payoff is liigluT than 

any C node. 
、‘ 

Many defectors initially 

For systems wi th many defectors init ial ly, consider a C-agent w i th two /^-neighbors 

(y — 2) competing wi th one of its D neighbors that hâ s one D-nr ighbor (二二 1). 

Figure 3.3(a) illustrates this pattern on a square lattice. The payoffs of the C 

and D nodes aro: 

Fc{kV2) ^ k-2r , ( 3 . 1 0 ) 

Po{h, 1 ) = A : + {k - \)r - 1 . 

Tho payoff difForonrn brtwoon t’h(、C and D nodes is 

- P c ( A : , 2 ) - F u { k , I ) - 1 - ( A - I 1 ) 7 , . ( 3 . 1 1 ) 

For r is very small, Pc、k、2、> 1)，D iiodcii w i th one D-iu' igl ibor t an 

be replaced by C-charactcr, when competing wi th C nodes wi th two or less 

D neighbors. Only isolated D nodes left, so the system involves into an Al lC 

phase^lgjlg. 3.3(b)). Thus the pattern shown in Fig. 3.3(a) is the \f\st surviving 

pattern before the j>ystein transits into an A l iC state. For r becoincs larger 

than a cri t ical value rc, 2) < 1), C can be replacocl by D. The 

number of D nodes tends to increase, and the steady state contains both C 

and D nodes. The crit ical value rc separates the A l lC phase and the mixed 

phase w i th both C and D nodes. By Eq.(3.9), 

= ； (3•⑵ 
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/ ) —— I ) 一 广 — 1 ) 

I) 

I ) - D- I) - I) 

⑷ (b) 

Figure 3.3: Schematic diagram showing the phase transit ion between A l lC and 

inixod phases. 

Figuro 3.4 shows a c.omparison between t l ic simulation results (symbols) 

of f c versus r and the cr i t ical points predicted by Eq.(3.12) (vertical bars). 

The transit ion points arc very well prodiclod by the tlK^orctical analysis. 

For 7. sl ightly larger than 7,c，fc drops sharply w i th a dropping rate 

dfc 

(Ifc 
dr 

A second discontinuity of — o c c u r s at a sl ightly larger value rc\- f c cirops 
‘ dr " 

slower for r > r ( ” ’ indicat ing another phase transit ion behavior. This transi-

t ion can be explained ais follows: When r becomes sl ightly larger than rc，C 

nodes wi th two D-neighbors can be replaced by /J-character, thus f c drops 

sharply. However, C nodes w i th only one D-neighbor {y = 1) can st i l l replace 

D nodes w i th one or more £)-neighbors (z = 1 or above). When r becomes 

larger than a cr i t ical value r ^ i , < 1), and C nodes wi th one 

/J-neighbor are taken over by D nodes. By sett ing Pc�k., 1) = 1), we 
- « 

( i l l tain thfi cr i t ical point. 

r c i = I . (3.13) k 

The values of vc i given by Eq.(3.13) are shown in Fig. 3.4 (vortical black bars), 

which coincide w i th the slope discontinuity points in the simulation results. 



Figure 3.4: The s imulat ion results of f c versus r for systems w i th in i t ia l con-

di t ion x c { t = 0) = 0.5 (symbols). Tho analy t i ra l ly prcdictod phasr t ransi t ion 

points r c and r c i are shown as the vert ical bars. 

Invasion problem: one defector initially 

As mentioned, an isolated D character luus the largest payofi value, which c an 

replace one of its C neighbors and form a D-D pair. I t is interesting to study 

the spread of the D character in systems w i t h only one D node in i t ia l ly . T l i is 

is called the invasion problem. 

Consider a D-D pair surrounded by C nodes. Each of the two D nodes % 

has {k — 1) C-neighbors. Thus they have the same payoff value? 

Po{kA) = (k-l)(\^r) . (3.14) 

The surrounding C nodes are also sharing tho same payoff value 

Pc(k，1) = k 一 r • (3.15) 

广 ‘ 

Pc(A:, 1) > •Ft)(人：，1) at small r , one D in the D-D pair can be replaced by C, 
% 

which leaves an isolated D node. The D pat tern switches between an isolated 
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D node and a D-D pair. The D-character cannot spread and the system is in 

an A l lC state. When r bccomes large enough so that Pc(人’，1) < !)> t l ie 

D-D pair can grow, e.g. into D-D-D or other structures, the D-charactcr can 

spread and the system involves into a mixed phase. The phase tra i is i t io i i thus 

occurs at Pc(A:, 1) = Pd(A•，1), w i th the cr i t ical value 

r c i - I . (3.16) k 

Figure 3.5 i l lustrates the phase transi t ion schematically. The simulat ion results 

of / c as a funct ion of r for systems wi th one defector in i t ia l ly are shown in 

Fig. 3.(). Compared w i th systems w i th many defectors in i t ia l ly , the transit ion 

shifts from 1 / ( k + 1) to 1 / k {vert ical bars), in agreement w i th the theoretical 

predictions in Eq.(3.16). 

n 一 

I ) 一 I ) 

n 

I 1 

C (‘ 
I I 

I) — / ; -
1 I 

(a) 0)) 

Figure 3.5: Schematic diagram showing the phase transi t ion between A l lC and 

mixed phases for sqiiaro la t t i ro w i th one dofector in i t ia l ly . 

3.3.2 Phase transition between mixed and AIID phases 

As 7, increases, C nodes become less and less competi t ive. For r becomes 

larger than a cr i t ical value rp, C node becomes almost ext inct and the system 

changes f rom a phase containing both C and D charactcrs to an A l l D phase. 



0.0 
0 .0 0.2 0.4 0.6 0.8 

Figure 3.6: The simulation results of f c versus r for systems wi th one D- i iudr 

ini t ial ly, i.e., the invasion problem. The crit ical points of the phase transit ion 

between the A l lC and mixed phase shifts from 1/(A: + 1) to 1/A: (black vortical 

bars). 

This transit ion can also he explained by comparing tho payoffs of C and D 

nodes. 

Small fraction of cooperators initially 

When the fraction of cooperators is ini t ial ly small, it is diff icult for C nodes to 

form big clusters. The last surviving pattern should be a C node surrounded 

by D nodes. I f this C node is replaced by D, then C node extincts and the 

system evolves into an A l l D phase (see Fig. 3.7). 

The payoff of an isolated C node is 

Pc(k,k) = k-kr (3.17) 

Since we are considering the last surviving pattern, i t is reasonable to assume 

this C node is the only C-neighbor of all its D-neighbors. The payoff value of 
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Figure 3.7: Schematic diagram showing the phase transit ion between mixed 

phfLso and A l lD phase in systems w i th a small fraction of coopcrators init ial ly. 

its D-neighbors are identical and given by 

P o i k . k - 1) = 1 + r . 

Let = ^ — 1), we obtain the cri t ical value 

- i t - 1 
ro k + 

(3.18) 

(3.19) 

For r > r j j , the system evolves into an A l lD phase. Figure 3.8 shows f c as 

a function of r w i th ini t ia l condit ion x c ( t = 0) = 0.003 for all four types of 

lattice structures. Equation (3.19) predicted the phase transit ion points r,) 

vory well for all types of lattices. 

Many cooperators initially 

For systems w i th a large fraction of cooperators in i t ia l ly, Eq.(3.19) fails to 

predict r^ for the cases of A: = 3 and 4. The reason is that C nodes wi th one 

or more C neighbors are able to resist the invasion from a D neighbor who 

has no other C-neighbors for r = r ^ . For systems w i th a large fraction of 

cooperators in i t ia l ly , C-C pairs are common. Thus the phase transit ion point 

shifts from TQ to a larger value for /c = 3 and 4. Here we explain the transit ion 

behavior of the k = 3 case. 



Figure 3.8: The s imulat ion results of f c versus r for systems w i th in i t ia l 

condit ion x c { t = 0) = 0.003. The transi t ion into an A l l D phase is predicted 
k — \ 

to occur at (vert ical bars). 
fc '1 1 

The surv iv ing pat tern cr i t ical to the ext inct ion of C nodes in the A: = 3 

case is a C-C pair surrounded by D nodes for system w i th many cooperators 

in i t ia l ly , instead of an isolated C node. Af ter this pat tern breaks, an isolated 

C node can be replaced by D node, the system evolves into an A l l D phase. 

The payoff to the C node is 

Pc(3 ,2) = 3 - 2 r (3.20) 

The payoff to the surrounding D neighbors is 

戶D(3，2) = 1 + (3.21) 

Phase t ransi t ion occurs when Pc(3 ,2 ) = PD(3, 2), so the t ransi t ion point is 

2 
TD2 = 3 ， ( k =： 3). (3.22) 

The r£)2 value is shown in Fig. 3.9, which agrees w i t h the s imuUt ion result. 
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Figure 3.9: The simulat ion results of f c versus r in a hexagonal latt ice {k = 3) 

w i th in i t ia l condi t ion x c { t = 0) = 0.5. The cr i t ical point of phase transit ion 

between mixed phase and A l l D phase is estimated to be 2 /3 (green vertical 

bar). 

4 

3.4 Discussion 

In this chapter, we explained the phase transit ions in the spatial snowdrift 

game by involving the idea of comparing the payoffs to C and D jodes in the 

last surviv ing patterns. Th is theory successfully explains the phase transit ion 

between A l l C phase and mixed phase, and the t ransi t ion between mixed phase 

and A l l D phase. In other models of complex systems, similar ideas have been 

applied to explain the success rate in the Binary-Agent-Resource{BAR) game 

53] and the cr i t ical phenomena of SG played on networks [54，55]. This idea 

can further be extended in future studies on the emergent behavior in other 

gam^s, such as the Publ ic Good Game [56] and the TV-person snowdrift game 

57 
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Chapter 4 

The /V-Person Snowdrift Game 

In this chapter, we propose and study the multi-person version of the stan-

dard two-person Snowdrift game: The N-person Snowdrift Game (NPSG). 

The NPSG in a well-mixed population is studied analytically using the repli-

cator dynamics. A numerical algori thm is proposed to simulate the game, 

wi th results in good agreement w i th the analytic result. The t ime evolution 
• 

of cooperation is analytically studied. Besides the well-mik^d case, the NPSG 
I 

is also studied on I D chain and 2D lattices. Comparod wi th the well-rnixrid 

case, the fraction of cooperators is suppressed by the underlying structure in 

the population. By considering the 3-site local configurations in a I D chain, 

we worked out analytical ly the equil ibrium frequency of cooperation. Approx-

imate solutions are then given for 2D lattices. Part of the results reportod in 

this chapter can be found ii^ Refs. (57, 58 . 

4.1 Motivation and set up of the game 

The study of two-person games, such as the Prisoner's Di lemma and the snow-

dr i f t game, have been the main theme of evolutionary game theory. However, 

multi-person interactions are abundant, in reality, which should bettor be do-

scribed by multi-person games. A representative multi-person interacting game 
# 

66 
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is the Public Goods Game (PGG) [56, 59]. The PGG considers N interacting 

agents, cach of them can choose to contribute an amount c to the public good 

or not. W i t h n contributors (cooperators), the total contribution is nc, which 

is then mult ipl ied by a factor IZ {7Z < N) and equally distributed to all N 

members. Thus a cooperator can obtain a benefit IZnc/N — c and a defector 

(noii-cooperator) can get TZnc/N. For yV 二 2，PGG rcduces to the standard 

PD game. Thus, PGG is an TV-person generalization of PD game. As in PD, 

cooperative behavior extinct for PGG played in a well-mixed population. In a 

spatial structured population, cooperators and defectors coexist (60, 61|. 

Here we propose a multi-person version of the snowdrift game, namely t he 

yV-person snowdrift game (NPSG)|57]. Consider a system consisting of Naii 

agents. A group of N agents are chosen to complete a task wi th cost c. If 

the task is completed, each member in the group gets a reward b. E(ach agent 

has two options: to share the labor to complete the task (cooperate), or to 

do nothing and wait for others to complete the task (defect). I f there arc n 

(n ^ 1) cooperators among the N agents, each of the N agent obtains a benefit 

6, wi th the cost shared by the n coopcrators. However, if there is no coopcrator 

(n = ())，then the N defectors get nothing. The payoffs to cooperators and 

defcctors can then be wr i t ten as 

Pc{n) = 6 — - ’ for n € |l,yV 
n 

Poin： 
0 n = 0 

b n e fl,yV - 1 

(4.1) 

(4.2) 

where n is the number of cooperators in the group of'TV agents. 

We can normalize the payoffs by introducing the cost-to-benefit ratio r = 

c/b. In terms of r , the payoffs can be wri t ten as 

Pc{n) = 1 - ioTTie (4.3) 
n 
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0 71 = 0 
P d H = . (4.4) 

1 n e [ l ’ y v - l 
、 

There are many real-life situations that can be modeled by the N-person 

snowdrift game, here we give a few examples: 

• Traf f i c b l o c k e d b y s n o w d r i f t . Consider an intersection of roads blocked 

by a snowdrif t , cars from N directions are blocked. I f the snowdrift is 

shoveled w i th a cost c, everyone can pass through the junct ion. 

• G r o u p p r o j e c t . Students in a course are often required to do a group 

project. Usually, the job is not evenly shared by the group members. 

Some students participate heavily, someone,just wait for others to do 

the job. But everyone earns the somo credit from the project as long -AS 

the active members finish the task [44 . 

• P u b l i c c o n s t r u c t i o n . For a public construction, such as a bridge or a 

road that serves a small community, if somoono r.hooso to cont.ributo and 

share the cost, then everyone wi l l be benefited from their contribution. 

• C l e a n u p c o m m o n areas . Some common areas, such as a classroom 

or a dormi tory, need to be cleaned up regularly w i th a cost c, so that 

everyone can be benefited from the cleanliness. 

NPSG can be studied in a well-mixed population or on a network struc-

ture. The well-mixed and structured population in lattices wi l l be studied ii i 

this chapter. 
參 

4.2 NPSG in well-mixed population 

In this section, we study NPSG in a well-inixed population both analytically 

and numerically. This section is based on Ref. [57] and【58 . 



Chapter 4. The N-I ^erson Snowdri f t . Game 69 

4.2.1 Analytical approach: the replicator dynamics 

Consider a well-mixed population consists of NQU agents, the number of coop-

erators at t ime t is denoted by Nc{t). The frequency of cooperation x(t)= 

Nc/Nail• Tl ie evolution oi. x{t) is governed by ttic replicator ciynamics [57]: 

i 二 工 ( J c - f)， （4.5) 

where f c ( / ) is the instantaneous average fitness of cooperators (the whole 

population). Here, 

f = x f c + {l-x)fo， （4.6) 

with f o being the instantaneous average fitness of defectors. Substituting 

Eq.(4.6) into Eq.(4.5), we get 

X = x(l - x)(fc - fo) . (4.7) 

In a well-mixed population, the N agents forming a group are randomly chosen 

in every t ime step. The number of coopcrators among the N agents follows a 

binomial distr ibution, f c is then given by 

fc = E ~ 1) 一(1 -工 f …PcU + 1)， (4.«) 
j=o \ .7 y 

wi th the first three factors giving the probabil i ty of having {j 4- 1) cooperators 

in a group of N agents. Similarly, 
N-�/N - 1\ 

fD = J 2 [ . 一 工 ( 4 . 9 ) 
j=o \ 3 J 

‘ We first focus on the steady state of x{t). In the steady state, x = 0. By 

Eq.(4.7), i t implies that the equil ibrium frequency of cooperation x* satisfies 

!c(x) = ID(x) . (4.10) 

Substitut ing Eqs. (4.3) and (4.4) into Eqs. (4.8) and (4.9)，fc and fu can bo 

expressed in terms of N and r . Equation (4.10) then becomes 

二 1 fN -W f X' 
+ 1 V J 

(4.11) 
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The summation over j can be treated analyt ical ly by using the binomial ex-

pansion 

Integrat ing both sides of Eq.(4.12) w i th respect to y� 

义、1+2/)〜 

A f N \ 严 
二 

which results in an ident i ty 

(4.12) 

(4.1:3) 

(4.14) 
i + 1 N + 

Subst i tut ing Eq.(4.14) into Eq.(4.11), we obtain an TV-th-orcler equation for 

a：•， 

r ( l - x')^ + Nx'(\ — a:•广 1 - r = 0 . (4.15) 

Note that the populat ion size Naii does not enter, as the analysis aijsumes 

an inf inite populat ion fol lowing the mean-field spir i t . Among the N roots of 

Eq.(4.15), only the one between 0 and 1 is physically acceptable. For /V ^ 4, 

Eq.(4.15) can be solved in closed form. For N = 2, the solut ion is x* = 

which recovers the result of the standard two-person evolut ionary snowdrif t 

game in a well-mixed populat ion (Eq.(1.12)). Figure 4.1 shows a:*(r) for N = 2, 

3, 5, and 10. x*{r) decreases as r increases for arb i t rary N. For a given r, x' 

is lower for larger N . Th is indicates tha t as the cost and group size increase, 

the incentives for being a cooperator drops, and agents tend to wait for others 

to complete the task and enjoy the benefit. The dependences of x' on N for 

r — 0.2, 0.5 and 0.8 arc shown in Fig. 4.2. x* decroasos as N incroasos, w i th a 

power law of exponent —1. Analyt ica l ly , by considering the small x* l imi t of 

Eq.(4.15) we f ind 

thus X* 〜 1 / i V for large N follows. 



Figure 4.1: The equi l ibr ium frequency of cooperat ion as a funct ion of r , for 

yv = 2，3，5, and 10 in a wel l-mixed populat ion. The analyt ic results (linos) 

obtained by solving Eq.(4.15) and tho s imulat ion results (symbols) are in good 

agreement. The s imulat ion parameters ar& Naii = 2000， init ial fract ion of 

coopnrators x{t = 0) = 0.5, and 10^ t ime steps. Each data point is an average 

over 100 realizations. 

4.2.2 Simulation algorithm 

To verify the analyt ic results of replicator dynamics, wc perform numerical 

simulat ions on NPSG using the fol lowing a lgor i thm: Consider a large pop-

ulat ion of Nail agents, every one can take on either the C-character or the 

D-character in i t ia l ly . A t each t ime step, an agent i is randomly chosen, which 

competes w i t h a group of /V — 1 agents tha t are randomly chosen among the 

Nail — 1 agents. Depending on the character of agent i , i ts payoff 尸,is evaluated 

according to Eq.(4.3) or Eq.(4.4). For evolut ion to happen, another agent j is 

randomly chosen. Agent j competes w i t h a group of randomly chosen N — 1 
* 

agents and obta in a payoff Pj. I f P‘ < Pj, agent i w i l l fol low the character 
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Figure 4.2: A log-log plot of the equi l ibr ium Troqucncy of cooporation as a 

funct ion of iV for r = 0.2, 0.5，and 0.8 in a well-mixed populat ion. The analytic 

results (lines) f rom Eq.(4.15) and the simulat ion results (symbols) are in good 

agreement. The s imulat ion parameters are Naii = 5000, x(t »= 0) = 0.5, and 

10^ t ime steps. Every data point is an average over 10 realizations. A dotted 

line of slope —1 is shown to guide the eye. 

of agent j w i t h probabi l i ty (P, — Pi). I f P , 》 P j , the character of agent i re-

mains unchanged. The results obtained f rom numerical simulat ions (symbols 

in Figs. 4.1 and 4.2) agree well w i t h the analyt ic results based on the replica-

tor dynamics, showing tha t the simulat ion a lgor i thm is constructed properly. 

The construct ion of. a proper simulat ion algor i thm wi l l be useful in studying 

variations of the model in which analytical^ approaches fail. 

4.2.3 Time evolution of cooperation 

The t ime evolut ion of cooperation based on the above a lgor i thm can also be 

studied analyt ical ly. To proceed, i t is useful to focus on the effective t ime step. 

I n carrying out numerical simulations, evolut ion (i.e., change in character or 

strategy) cannot happen if agents i and j are sharing the same character. 
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The effective t ime steps are those in which a possible strategy switching may 

happen, i.e., agents i takes C and j takes D or vice versa. For a system 

w i th the fract ion of cooperators being i , the probabi l i ty for a t ime step to be 

effective is 2 x ( l — x). 

Competing factors in evolutionary dynamics 

Among the effective t ime steps, the probabi l i ty that agent i holds C and agent 

j holds D is 1/2. Under this condit ion, Pj > Pi holds, except for the case that 

agent j faces a group of TV — 1 defectors. The probabi l i ty for this si tuat ion 

to happen is (1 一 W i t h probabi l i ty 1 - (1 - rc)"—】，P, = 1 > P., and 

agent i w i l l adapt the character of agent j w i t h probabi l i ty (1 — Pj). For agent 

2, the ni imbor of cooporators among its all N — 1 neighbors follows a binomial 

d istr ibut ion. The probabi l i ty P rob (C D) tha t agent i switches f rom C to 

D in an effective t ime step is given by 

1 N - l 

Prob(C - ^ D ) = - x [ l - ( l - x)^-^] X Y^ 
'N - 1\ 

n + 1 V n 
- X iN-

(4.17) 

Following similar arguments, the probabi l i ty tha t agent i switches f rom D to 

C in an effective t ime step is 

N-l 
Prob (D C ) = - X (1 -工)" - 1 X Y ^ ( 1 -

fN - l \ 
n + n 

x " ( l - X 

I t is useful to define two coefficients P^ and Qf. 

N-] / y v - 1 \ 
^ ― ‘ n -f 1 V 71 / 

(4.18) 

(4.19) 

Nx - d - ^ n 

and 

(4.20) 
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Pi is the average deviation of the cooperator's payoff from the maximum payoff 

value 1, and Q^ is the probabil i ty that the N — I random neighbors arc all 

defectors. In terms of P； and Q^, Eqs. (4.17) and (4.18) can be wr i t ten as 

n = Prob{C — D) 二 — Qt )， (4.21) 

Ft 三 P rob(D — C、= — P.) . (4.22) 
2 • 

By introducing F\ and F^, we change our viewpoint from the switching of char-
acter of individual players, to the change in the global fraction of cooperators 

t 

in the whole population. F； ( f } ) is a "force" that acts on the population to 

suppress (promote) cooperation. 、 

For a system at the steady state wi th cooperators take a fraction x', 

Prob(C -y D) = P rob (D C), which implies 

P ^ ( r , x * ; N ) = Q r ( x ' ; N ) . (4.23) 

Substitut ing Eqs. (4.19) and (4.20) into Eq.(4‘23)，we recover the A^-th-order 

equation Eq.(4.15) that obtained by replicator dynamics. 

Time evolution of the frequency of.cooperation “ « 

The two quantities N) and Qf(x; N) are t ime dependent as they depend 

on the instantaneous frequency of cooperation x(t). Therefore, f \ and 厂卞 are 

also t ime dependent. Thus our analysis can be applied to study the time 

evolution of r e⑴.Cons ide r a system of size Naii. Nc{t) is the number of 

cooperators at t ime t and the frequency of cooperation' x(t) = Nc{t)/Naii. 

^ th prpbabil i ty F-f, the system has one more cooperator in an effective time 

the probabil i ty to lose one cooperator. Let {Nc{t)) be the 

expected value of Nc at t ime step t�the expected value for Nc in the next 
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t ime step { N c { t + 1)) is 

{Nc{t + 1)> = {Nc{t)) X (1 - Ft - n ) + ( { N c ( t ) ) 4- 1) X Ft 

-f ( ( A r c W ) - l ) x F ； 

= i ^ c i t ) ) + i ( g t - n ) • (4.24) 

By Eq.(4.24), we get a difference equation of (x(t)}: 

i^it + 1)> - {x{t))=去(Qt - Pi) : (4.25) 

Subst i tu t ing Eqs. (4.19) and (4.20) into Eq.(4.25) and tak ing t ime as a con-

tinuous variable, we obta in a differential equation of {x{t)): 

d{x) _ ' l 
" r f T = 

Equat ion (4.26) is a dif ferential equation for the t ime evolut ion of {x(t)), start-

ing f rom its in i t ia l value x(t = 0) to the equi l ibr ium value x*. I t is possible to 

solve {x[t)) analyt ical ly for yV = 2 and 3. For N ^ 4, Eq.(4.26) can be solved 

numerically. ‘ 

When N = 2, the NPSG recovers the standard two-person SG, the ana-

lyt ic solut ion for Eq.(4.26) is simple. For N = 2, Eq.(4.26) becomes 

(1 一 〈 力 + ‘ （ ( 1 一 〈 力 一 
(4.26) 

d{x) 
dt 2Naii 

which gives the-t ime evolut ion of {x(t)). 

g - l ) ⑷ + (1 - 0 (4.27) 

〈 冲 ) 〉 = + 卜 - Y ^ ) e - -

—^*N=2 + (工b - 气 (4.28) 

The long t ime l imi ts gives = which agrees w i t h the equi l ibr ium x* 

obtained by replicator dynamics ' (Eq.( 1.12)). 

For N = 3,.Eq.(4.26) becomes 

d{x) _ 1 

I T - 2Naii ( l - ^ ) ( x > ^ - ( 2 - r ) ( x > + ( l - r ) ] . (4.29) 
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Depending on the comparison between the values of Xq and x*, there are two 

solutions. I f XQ�T", 

M 6 - 3 r x /3 r (4 - r ) , 
x{t) = r z " 一 V 」 _ i tanh 

6 - 2 r 6 - 2 r 
v /3r (4 - r ) 

rZNaii 
t + tanh" 

( 6 一 3 r ) - ( 6 - 2r)xo 

(4.30) 

For Xq < X*, the solution is 

X⑷二 
6 - 3 r v^3r(4 -
6 - 2 r 6 - 2 r 

coth 
>/3r(4 - r ) 

l2Nau 
+ coth" 

( 6 - 3 r ) - ( 6 - 2r)xo 

V'3r(4 - r) 

• 、 （4.31) 

Both solutions give the same long t ime l imi t of = ^ ^̂  ‘ 

which agrees w i th obtained by Eq.(4.15). As an i l lustrat ion of how the 

frequency of cooperation x{t) evolves, Figure 4.3 shows the typical evolutionary 

trends of x{t) for N — 2 and 3 obtained by numerical simulations, together wi th 

analytic results given by Eq.(4.28) and Eq.(4.31). Good agreement between 

analytic results and simulat ion data is found. 

4.3 NPSG on lattices , 

In addit ion to the well-mixed case, we study NPSG in structured population in 

chain and 2D lattices. A n simulation algori thm is proposed to obtain numerical 

results. Besides the numerical results, analytic results are given for NPSG on 

I D chain. 

4.3.1 Simulation algorithm and numerical results 

The simulation algor i thm is similar to that of the well-mixed case. In each « 

t ime step, a node i is randomly picked to play a (fc + l)-person game wi th its 

k neighbors in a latt ice. Depending on the character of agent i , its payoff Pi is 

evaluated according to Eq.(4.3) or Eq.(4.4). Another agent j is then randomly 

picked and its payoff Pj is found by competing w i th its k neighbors. If Pi is 
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. time step 

Figure 4.3: The simulation (symbols) and analytic results (linns) of tho time 

evolution of x{t) for 2-person {N = 2) and 3-person {N = 3) snowdrift game. 

The parameters are r = 1/7, x{t = 0) = 1/2’ and Naii = 5000. The simulation 

results are obtained by one single run. The analytic results are obtained by 

Eq.(4.28) and Eq.(4.31). The equil ibrium frequency of cooperation x*n=2 = 

12/13 and xj^^g = 3/4 (dotted lines) are shown to guide the eye. 

less than P), the charactcr of agent i wi l l be replaced by that of agent j wi th 

probabil i ty {Pj — Pi). I f Pi ^ P ” agent i keeps its own character. 

We play NPSG on the following lattices: I D chain w i th two nearest neigh-

bors {k = 2)，2D hexagonal lattice {k = 3)，2D square lattice (k = 4), 2D 

triangle lattice (k = 6), and 2D square lattice w i th connections to the nearest 

and next nearest neighbors {k = 8). We use a typical size of lattice Naii = lO"* 

nodes. The periodic boundary condition is imposed to mimic an infinite pop~ 

Illation. Numerical results are shown in Fig. 4.4 (symbols), together wi th the 

corresponding analytic results of the well-mixed case w i th the same group size 

N = k 1 (lines). Comparing wi th the well-mixed case w i th the same N� 

the frequency of cooperation x* is suppressed in the presence of an underlying 

lattice structure. This result is consistent wi th that in tho spatial two-person 

N = 2 
+ Simulation Analytic 
- - X V , = 12/13 

N = 3 
“Simulat ion Analytic 

xV. = 3/4 
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Figure 4.4: The frequency of cooperation as a funct ion of r for different 

lattices. Numerical results (symbols) of I D chain w i th fc = 2，2D latt ice w i th 

A; = 3, 4, 6，and 8 arc shown. The simulat ion parameters are Naii = 

x{t = 0) = 0.5，and 10® t ime steps. Each data point is an. average over 50 

runs. For comparison, tho lines show the results in the well-mixed caso w i th 

the same values of N — k + 1. The presence of an underly ing latt ice structure 

suppresses the frequency of cooperation signif icantly. 

4.3.2 Analytic study on 1D chain 

Here, we derive an analyt ic solut ion for NPSG in a I D chain by considering the 

transit ions between different local configurations. In a I D chain, we observed 

that two connected C-nodes do not exist in the steady state. Th is is because 

such a C-C pair is unstable. One C node in this C-C pair w i l l t r y to switch its 

character when i t compares its payoff w i t h a D node that has a C neighbor. 

Af ter switching, this defected C node has no interest to switch back to C again, 

since i t gets the highest payoff when competing w i th the adjacent C neighbor. 
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Local Type Payoff of 

configuration central site 

DCD C I 1 - r 

CDC D1 1 

CDD D2 1 

DDC D2 1 

DDD D3 0 

Table 4.1: Classification of local configurations in a I D chain wi th nearest 

neighboring connections. 

As a result, only isolated C nodes exist at equilibrium. 

For NPSG on a I D chain, every node plays a 3-person game wi th its two 

neighbors. Consider the possible local configurations involving three neighbor-

ing nodes. There are eight possible local configurations in principle. Since two 

C nodes cannot be adjacent, we only need to consider five out of the eight 

configurations at equil ibrium: DDD, CDD, DDC, CDC, and DCD. Due to 

the left-right symmetry, the two configurations CDD and DDC can be further 

classified to belong to one type, which left us four types. These configurations 

are listed in Table 4.1. 

Let yVci，Ndi ,Nd2 i be the number of the four types of local configu-

rations. A t any time, these numbers add up to 

Nci + NDI + ND2 + ND3 = Nail (4.32) 

For every C-agent in the central site (type C I ) , it also appears twice in the 

peripheral sites (types D\ and D2). The balance between the sum of C-agents 

in the central and peripheral sites lead to 

2Ndi + ND2 = INci (4.33) 

Next we consider the probabilities of making a transition from one configura-

tion to another, as the system evolves. In doing so, it is convenient to consider 
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the effective t ime steps, in which there is an attempt in a change of the char-

acter of a chosen node [SS]. For a choscii agent i comparing its payoff wi th 

another agent j、the agents i and j must hold different characters for a possible 

change to occur. Taking the central site as the one for evolution, there wi l l be 

transitions between types Cl and D3. For transition from C l to D3, we select 

a type C l agent as node i, and a type D1 or D2 agent as node j. The payoff 

dii^erence is Pj — Pi = r. The probabil ity for the transition to happen is 

Prob((71 - D3) = 1 X 二 二 X ” • （4.34) 

M 

Similarly, the probabil i ty that a type D3 configuration becomes type C l is 

Prob(D3 — C l ) = 二 x l x ( l - r ) . (4.35) 
作 D 1 十 1 �D 2 +八D3 

In dynamical equil ibrium, these two probabilities are equal and we have 

Nd3 r y 
— 二 • .14.36) 

, NDI + 1 - r 

One more equation can be obtained by considering the transit ion between 

types Dl and D2. When the central agent changes its character, the neigh-

boring sites can notice this change in their peripheral sites. Two peripheral 

C sites are removed for a C-agent switches to D. The neighboring sites of 

that C-agent may change from type D\ to D2, or from type D2 to D'S. In a 

mean field approach, the two peripheral C sites are randomly removed from 

all configurations that have one or more peripheral C sites. Thus, the proba-

bi l i ty that type D\ loses a peripheral C site is twice as of that for type D2. 

Therefore, the probabil i ty for a transition from type D l to type D2 is 

‘ P r o b ( D l -> D2) = 2 X . (4.37) 

The same analysis when applied to the transition from type D2 to type D l 

gives 

Prob(D2 m ) = 2 X … N D 2 (4.38) 
^ ， 2ND3 + ND2 
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Dynamical equi l ibr ium implies Prob(_Dl —> D2) — P rob(D2 D l ) , and thus 

2NDI ND2 

The rat io 

solving thn set 

results are 

(4.39) 

of the four types of configuration can be obtained by 

2Ndi + ND2 ~ 2ND3 + ND2 

Nail 
of four equations Eqs. (4.32)，(4.33), (4.36)，and (4.39). The 

g = 浮 ， （ - ) 

Nhi (1 - 祈 (4.41) 

(4.42) 

. " a " 2 - v ^ ， 

• A^p2 二 - 2r 

— 2 - v ^ ‘ 

" t r ^ r - ( 例 

TV. 

The equi l ibr ium frequency of cooperation x* — is given by Eq.(4.40). A 

comparison between the simulat ion results and Eq.(4.40) is shown in Fig. 4.5, 

and good agreement is found. Therefore, it is sufficient to consider local con-

figurations consisting of 3 neighboring sites for a I D chain, and there is no 

need to consider local configurations longer than 3 sites. 

4.3.3 Analytic theory for 2D lattices 

Chan |44] extended the analysis to NPSG on a 2D square latt ice {k — 4) by 

considering local configurations of 5 sites: the central site and its four nearest 

neighbors. The analyt ic result of the frequency of cooperation is found to be 

1 -
， = 4) = 2 3 7 1 7 ^ . (4-44) 

Comparing Eq.(4.44) w i t h simulation results of x ^ , the analytic result of x ^ 

works well only for large r , and discrepancies are found at small r (see Fig^4.6). 

Examining the spatial patterns of C and D nodes, i t was found that checker-

board-like structures exist at small r , showing a correlation between an agent 
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0.0 0.4 0.6 0.8 

Figure 4.5: The frequency of cooperation as a function of r in a I D chain 

(symbols). In simulations, we used Naii — 10*，x{t 二 0) = 0.5 and 10^ t ime 

steps. Each data point is an average over 50 realizations. The analytic results 

obtained by Eq.(4.40) (line) arc shown for comparison, and good agreomnnt is 

found. 

and its diagonal neighbors (next nearest neighbors). This is the reason why 

the analytic result obtained by considering only 5-site configurations fails at 

small r . 

For lattices w i t h larger values of k, i t is dif f icult to obtain an analytic 

solution for x*. Inspired by the analytic results of I D chain and 2D square 

lattice, we propose a form for the equi l ibr ium frequency of cooperation for 

large k values: 
1 - r " 左 

^ h W = 2 T 7 I A - (4-45) 

When /c = 2 and 4，Eq.(4.45) recovers XQ in I D chain and 2D square lattice. 

Figure 4.6 shows the results given by Eq.(4.45) (lines) and the simulation 

results (symbols) for the 2D triangle latt ice {k = 6) and 2D square latt ice w i th 

nearest and next nearest neighbors connected (k = 8). The proposed form 
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Figure 4.6: The frequency of cooperation as a function of r in 2D lattices wi th 

k = 4, G and 8 (symbols). In simulations, wc used Naii 二 K A x{t 二 0) 二 0.5 

and 10® t ime steps. Each data point is an average over 50 realizations. The 
C I 

analytic results proposed in Eq.(4.45) (lines) are shown for comparison, 

works well at large r, when compared wi th simulation results. 

4.4 Conclusion 

In this chapter, we proposed and studied the TV-person snowdrift game. The 

model is a generalization of the snowdrift game to include N-person interac-

tions. The game was studied both analytically and numerically in a well-mixed 
i 

population. I t .was found that the frequency of cooperation decreases as r and 
t 

N increases. The t ime evolution of cooperation was studied analytically by 

considering the two opposite forces that promote (F^) and suppress (F丄）the 

cooperation. The simulation results verified the results of tho N = 2 and 3 

cases. 

In addit ion to the woll-mixcd caso, NPSG was numerically studied on lat-

tice structures. Compared w i th the well-mixed case, cooperation is suppressed 
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by the underlying lattices. Analyt ic theories were developed by focusing on 

the local configurations consisting of a central site and its nearest neighbors. 

The theory works successfully in I D chain. In 2D lattices, the theory works at 

large r and discrepancies arc found at small r , suggesting t l iat a theory that 

includes larger spatial correlation is needed in the small-r region. 



Chapter 5 

Snowdrift game on adaptive 

network 

In Chapters 3 and 4, we studied the dynamics of games on static lattices, in 

which the network structure does not change as the game evolve. However, 

in many real world systems, the relation between agents (thus the structure 

of the network) often co-evolvcs w i th the interactions between thcni (thus the 

dynamics of the game). Examples are abundant. In the spread of an epidemic, 

such as SARS or H l N l , i t is useful to isolate infected patients from healthy 

people so as to slow down the spread. In the language of Susceptible-Infect-

ed-Recovered (SIR) model [62] on networks, i t means that the links between 

an agent and others w i l l be broken i f the character of the agent changes from 

susceptible to infected. Another example is tha t “ before an election, voters 

like to communicate w i th people that share the same opinion, and the social 

network is thus influenced by the opinion of the voters. 

The coevolut ion of dynamical processes and network structures is now 

an important ' problem in complex networks and complex systems. Gross et al. 

studied epidemic dynamics on an adaptive network [63). Besides the normal 

Susceptible-Infected-Susceptible (SIS) process, a susceptible agent breaks the 

85 

乂 J 
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l ink and rewire bo another randomly chosen susceptible agent w i th a probabil-

i ty w for every SI l ink. The rewir ing process caii diangc the degree correlations, 

the fract ion of i n f e c t ^ agents, and other properties of the systems. For the 

Voter Model [G4]，rewiring can lead to a phase transit ion between a connected 

and a fragmented network [65). In the connected condit ion, the dependence of 

the consensus t ime on the network size caii either be logar i thm (direct Voter 

Model) or exponential (reverse Voter Model) [66). For two-person games, the 

.Prisoner's Di lemma has been studied on an adaptive network by Zimmermann 

et al. [67]. 

In this chapter, we propose and study a model of an adaptive network of 

agents competing in the Snowdrif t game. 

、 

5.1 Model and numerical results 

The Snowdrif t game has been introduced in Sec. 1.1.3. The normalized payoff 

matr ix of SG has been given in E q ^ . 4 ) as 

C D 

C 

D 

R = 1 5 = 1 -

T = 1 + r P = 0 

wi th the cost-to-benefit rat io r G (0,1). 

Consider a system consisting of N agents connected by a network struc-
« 

ture. A n agent can take on one of the two characters, either cooperate (C) or 

non-cooporate/defect (D). The average degree (k) is kept fixed as the network 

evolves. ‘ ‘ 

A t each t ime step, a pair of C-D l ink connecting nodes i and j of opposite 

characters is randomly picked. Agents i and j then play the Snowdrif t game 

w i th each of their neighboring agents and obtain an accumulative payoff Pa, 

and P d j , respectively. The per l ink payoffs P、and P j are obtained by div id ing 
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Pai and Pa j by their degrees, i.e., 

Pai , „ Pa, 
P 、 二 a n d P,- = ^ , 

/v| /Vj 

where ki and kj are the instantaneous degrees of nodes i and j. Evolution takes 

place if Pi • Pj. Here we call the agent w i th the lower payoff the loser, and the 

agent wi th the higher payoff the winner. The loser tries to do better by either 

changing his character or his neighborhood. W i t h probabil i ty / (P“P j)， the 

loser switches his character to follow the winner's character. W i t h probability 

1 - / ( P j , Pj), the loser wi l l break the l ink that connected to the winner and 

rewire to another agent m. The probabil i ty function f(Pi, Pj) takes the form 

of 
P�一 PJ (5.1) 

+ r 

where (1 + r ) is a normalization factor. Two mechanisms are imposed to find 

the target agent m: \ 

• Random Rewiring: m is randomly chosen from all agents, except those 

who are the current neighbors of the loser. 

• Opinion Rewiring: m is randomly chosen from the agents that share the 

same character as the loser. 

Compared w iU^ ja^^ous studies on the Snowdrift game on static networks (see 

Chapter 3), the new element is the rewiring process driven by the dynamics of 

the game. ‘ 

5.1.1 Numerical results 

We carried out numerical simulations of the model. The 2D hexagonal ( ( / c )= 

3) and square ((A:) = 4) lattices are chosen to be the ini t ia l underlying net-

works. W i t h the rewiring process, the network structure evolves wi th time. 

Init ial ly, a fraction XQ of agents are randomly assigned the C character and 
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other agents take on the D character. The equil ibrium frequency of coopera-

t ion / c as a function of the cost-to-benefit ratio r arc shown in Fig. 5.1 for ^hc 

two rewiring mechanisms. We compare the results w i th that of the snowdrift 

game on static lattices discussed in Chapter 3 (dotted lines). By introduc-

ing the rewiring process, f c is promoted in a large range of r for both random 
% 

rewiring and opinion rewiring. In both eases, there is a crit ical point r ^ , above 

which f c decreases sharply. The results of opinion rewiring (lower panel) are 

more interesting. When r < TC, f c = 1 corresponding to a homogeneous Al lC 

phase. As r becomes larger than r c , f c decreases and the system is in a mixed 

phase wi th both C and D agents. We wi l l focus on the case of opinion rewiring 

in the following discussion. 

5.1.2 The steady state 
» 

The network structure is changed by the rewiring process. I t is found that the 

system often breaks into clusters in the steady state. Table 5.1 shows some 

key properties of the system for several values of r , including the size of the 

two biggest clusters, the fraction of cooperators, and the mean degree of these 

clusters. When r < r。 the system is dominated by one big cluster containing 

only C nodes, together w i th a few isolated nodes and small clusters. When 
/ 

r > rc�except for some particular values, the system has two big clusters 

generally: one cluster is A l lC and the other is A l lD (see Fig. 5.2(a)). For some 

particular values of r , such as the r = 0.8 caso in Table 5.1, the systom is 

dominated by one cluster containing both C and D nodes. 

What is happening at these values of r? Why does the system not break 
I 

into pieces of opposite characters? To answer these questions, we examine 

the remaining C-D pairs at equil ibrium. I t turns out that the payoffs of the 

connected C and D nodes are equal, i.e., f(Pc, PD) = 0, and evolution stops. 

For most cases, the number of C-D links LCD amounts only to a small fraction 



n >0*0«0<H 

<k>=3, adaptive 
.<k>=4, adaptive 

<k>=3, static 
<k>=4, static 

0.2 0.4 0.6 0.8 
Cost-to-benefit ratio r 

Figure 5.1: The equi l ibr ium frequency of cooperation / c as a function of 

r (symbols) for random rewiring (upper panel) and opinion rewiring (lower 

panel). The in i t ia l network structures are 2D lattices w i th {k) = 3 and 4. The 

simulation parameters arc N = lO^，initial fraction of cooperators XQ = 0.5, 

and 5 x 10® t ime steps. Each data point is an average over 100 realizations. 

The standard deviation of fc is shown as error bar. For comparison, / c as a 

function of r for SG on static lattices are also shown (dotted lines). 

0.2 0.4 0.6 0.8 
Cost-to-benefit ratio r 
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Table 5.1: .The size, frequency of cooperation xcs and the mean degree {k^) of 

the two largest clusters for the system in the steady state, r = 0.3，0.7 and 0.8. 

The system size is N = lO^, each set of data is obtained by one realization. 

{k) = 3’ xc = 0.4 

Cluster Size 工Cs kK) 

r = 0.3’ fc = 0.9999 

9957 1 3.012 

4 1 . 1.5 

r 二 0.7，fc = 0.3965 

3965 1 3.390 

5877 0 2.794 

r = 0.8, fc = 0.3556 

9900 0.359 3.02 

3 、 0 1.333 

{k) =4, Xc = 0.58 

Cluster Size {ks) 

r = 0.3, fc 二 0 . 卿 9 

9986 1 4.005 

2 1 1 

r = 0.7，fc = 0.4737 

4737 1 3.811 

5229 0 4.194 

r = 0.8, fc = 0.4041 

9972 0.4052 4.009 

2 0 1 

of the to ta l number of l inks L. So the largest cluster has the form of a C cluster 

connected to a D cluster by a number of C-D l inks, as shown in Fig. 5.2(b) 

schematically. 

I t is possible to explain the existence of these part icular values of r ana-

lyt ical ly. Recall tha t in Sec. 3.3，we express the payoff of a C or D node as 

a funct ion of i ts degree and the number of Z)-neighbors. Here we follow the 

idea. For a node of degree k t ha t has y D-neighbors, i ts payoff can be wr i t ten 

as 

{fc - y)R 4- yS , y PciKy) 

i f i t is of C character, and 

k 
(5.2) 

PoiKy) 
(k 一 y)T + zP + 

(5.3) 
k k 

i f i t is of D character. For the two nodes at the two ends of a C-D l ink when 
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〇 

O D 

o o W 

〜 ⑷ （b) 

Figure 5.2: Schematic diagrams show the two different scenarios of the system 

at. oquil ibri i im for r > re- (a) Two big clusters of opposite characters, (b) 

One cluster w i th C and D nodes. 

evolution stopped, they should have the same payoff. I t implies that 

Pc{kc,yc) = PoikD^yo)， (5.4) 

where kc {ko) and yc [yo) are the degree and number of D-neighbors of the 

C {D ) node, respectively. Substitut ing Eqs. (5.2) and (5.3) into Eq.(5.4), we 

obtain an equality 

〜如 (5.5) 
koyc + kcikp -yo)‘ 

Since kc�ko, yc and yo are all integers and they satisfy the conditions that 

yc ^ kc and yo ^ {ko — 1), this equality only holds for some particular values 

of r . For other values of r , Eq.(5.5) cannot be satisfied and the system breaks 

into two large pieces. 

5.2 Semi-analytic approach 

I t is not easy to develop an analytic solution for f c . The main difficulty 

is to express the probabil i ty function . / ( P “ 巧），and thus the switching and 

rewiring probabilities, analytically. Here we use numerical simulations as a 
a 

guide to develop a semi-analytic theory. To proceed, i t is necessary to define 

some quantities. The number of C and D nodes are denoted by N�and ND、 

respectively. Since evolution happens on C-D links, these links are called 
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active links. The C (D) nodes that have C-D links are active C (D) nodes. 

Nac (A^OD) be the number of active C (D ) nodes. The nodes that have no C-D 

l inks are called inactive nodes. Thus, the nodes are divided into four types: 

the active C(D) nodes and inactive C{D) nodes. The number of C-D links 

is denoted by LCD-左aC is the mean degree of active C nodes and kao is the 

mean degree of active D nodes. The mean number of C neighbors of active C 

(active D) node is defined as UaC i^ao)-

To carry out a mean-field approach, several assumptions are made: 

• Nodes of the same type are identical. 

• Inactive C and D nodes share the same degree kia-

參 The fraction of active C nodes among all the C neighbors of a C node 

is The fraction of active D nodes among all the D neighbors of a 
Nc 

n J • ^aD 
D node is ——. 

ND « 

By making these assumptions, we have neglected the degree distr ibut ion and 

the distr ibut ion in the number of C neighbors among all neighbors. 

The calculation is carried out as follows: Consider N agents that are 

located on a latt ice structure and a fraction of XQ agents are assigned as coop-

erators init ial ly. The values of the quantities discussed above are calculated. 

A t each t ime step, the following tasks are carried out. 

1. The average payoffs of active C nodes Pac and active D nodes PQD are 

calculated according to 

P "aC7 + (feoC - — r) 
PaC = r ， (5.6) 

kaC 
= 、 (5.7) 

2. A random number i 6 |0,1] is generated. 

3. I f i < f (PaCj 尸aD)’ the node w i th lower payoff w i l l follow winner's strat-

egy. 
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4. Otherwise, the node w i t h lower payoff w i l l " rewire" to another node that 

has the same charactcr. 

5. The new. values of the quantit ies are calculated. 

Figure 5.3 shows the change of the quantit ies in one t ime step schematically. 

The evolution process stops i f one of the fol lowing condit ions is satisfied. 

• Nc = N OT Nd = N. 

• kaC ^ 1 or kaD ^ 1. 

• l̂ aC ^ 0 or VaD ^ 1-

Here we use the switching process C D to show the change of the 

quantit ies in one t ime step. The change of the quantit ies for other processes 

can be calculated in a similar manner. Consider a convincing process of C D 

happens in t ime step t. The number of active and inactive C neighbors of the 

C node are 

nac(t) = ， (5.8) 

and 

niac{t) = yac{t) - nac(t) . (5.9) 

For a C node switching to D , the C-C l inks between t l i is node and its neighbors 

become C-D l inks. Meanwhile, the C-D l inks become D-D l inks, thus the 

change of Lcd is i^acit) 一 {kac{t) 一 i^acW), i.e., 

+ 1) = Lcd{t) + 2uac{t) - kac{t) . (5.10) 

After switching, the C node becomes active D node, and its riiacit) inactive 

C neighbors become active, so that 

Nc{t + 1) = Nc{t) - 1， (5.11) 

ND(t + 1) 二 ND⑴ + 1， （5.12) 

Nao i t + 1) = Nao i t ) + 1， （5.13) 

Nacit + 1) = Nac(t) + riiacit) - 1 . (5.14) 
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As the riiacit) inactive C nodes become active, they contr ibute to the values 

of both kac and Uac-

kac(t)[Nac{t) - 1] + niac(t)kia{t) kac{t + 1 ) = Nac(t + 1) ’ 

and 

i^ac{t)[Nac{t) - 1] - nac{t) + ⑴ [M《）—1 

(5.15) 

l^acit + 1 ) = 
Nac(t + 1) 

Similarly, the changes of kap and Uao are 

NaD(t)kaD{t) + k,c{t) 

(5.16) 

kaoi t + 1 ) = 

l^aoit + 1 ) = 

NaD(t + 1) ， 

Nap{t)iyaD{t) + [2Vac{t) 一 W O 

(5.17) 

(5.18) 
NaD(t + 1) 

After we obtained the mean degree of active C and D nodes of t ime step t+l, 

the mean degree kia of inactive nodes is calculated as 

释 〉 - N a c j t + l )kac{ t 4 - 1 ) - NaD(t + l)kaD{t + 1) 

The set of equations Eqs. (5.10)-(5.19) models the dynamics and they can be 

iterated. 

Comparisons between the results obtained by the set of equations and 

simulation results for systems wi th ini t ia l condition XQ = 0.3，0.5 and 0.7 

are shown in Fig. 5.4. A transit ion from an A l lC phase to a mixed phase 

is observed for all XQ values, in agreement w i th simulation results. However, 

the transit ion points deviate from the simulation results and discrepancies are 

also found in the r > rc regions. Since we have neglected many factors in 

the analytic approach, such as the degree distr ibution, the analytic results do 

not agree quanti tat ively w i th the simulation results. A better theory oughts 

to take the neglected element into account. 
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(b): Convincing: D switches to C. 
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D 
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D 
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D � / 

D 

D rewires to D ,、 
'\/\/\/\/\/\/\/\/^ O D 
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One more D neighbor. 

D D 

(d): Rewiring: D rewires to D. 

Figure 5.3: Schematic diagrams show the change of the key quantit ies of the 

four evolutionary processes. 
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r=0.3, Simulation 
r=0.5. Simulation 
r=0.7. Simulation 

r=0.3, Analytic 
r=0.5, Analirtjc 
r=0.7. Analytic 
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Cost-to-benefit ratio r Cost-to-benefit ratio r 

Figure 5.4: The analytic (lines) and simulation results (symbols) of the equi-

l ibr ium frequency of cooperation / c as a function of r , for both (k) = 3 (Left) 

and 4 (Right) cases. The ini t ial frequency of cooperation arc taken to bo XQ 

= 0 . 3 , 0.5 and 0.7. The simulation parameters are N — lO'̂  and 5 x 10^ time 

steps. Each data point is an average over 100 realizations. 

5.3 Conclusion 

In this chapter, we studied the Snowdrift game on adaptive networks. Two 

rewiring mechanisms, the random rewiring and opinion rowiring, are imposed. 

By carrying out numerical simulations, i t was found that the frequency of 

cooperation fc is promoted in both eases. A phase transition takes place 

at the crit ical point r ^ , where fc drops suddenly. The network structure is 

examined for opinion rewiring. For r < rc�the system is dominated by a large 

cluster of C nodes. When r > RC, the system breaks into an AUG and an A l lD 

cluster for most values of r . For some particular values of r , the system wil l 

not break. These values were explained by comparing the payoffs of adjacent 

C and D nodes. A semi-analytic approach was then proposed. The results are 

in qualitative agreement w i th simulation results. The theory, however, fails to 
% 

predict the correct value of rc and the detailed behavior of fc for r > rc-

As a preliminary study, our model emphasized on what a loser could do 
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when compared w i th a neighboring winner. In our model, an agent wi l l t ry to 

rewire even if the difference between Pi and Pj is very small. The comparison 

between the payoffs of two agents to decide on the action also makes analytic 

treatment dif f icult . Our model has motivated a simpler model studied recently 

by Graser et al. |68), which is based on the comparison between an agent's 

payoff and his own expectation. The modified model can be treated more 

readily by a mean-field approach w i th idea similar to the one presented here, 

but w i th results in good agreements w i th simulation results. 



Chapter 6 

Surface plasmon excitations 

In this chapter, we first introduce some basic concepts that wi l l be useful for 

our further discussions on surface plasmon excitations, including the Maxwell 's 

equations, the T E and T M polarizations and the Drude model of the dielectric 

constant of metals. We then study the surface plasmon (SP) modes that lo-

calized on metal/dielectr ic interfaces. We derive the dispersion relation of SP 

modes in a semi-infinite metal/ l inear dielectric system, and in linear dielec-

tric /meta l / l inear dielectric system. The SP dispersion relations of a nonlinear 

dielectr ic/metal/ l inear dielectric system is then studied analytically, by invok-

ing a “ f i rs t integral" technique. Our theory can treat arbi t rary i ionli i iearity. 

The SP modes in a symmetric nonlinear dielectr ic/metal/nonlinear dielectric 

system are also discussed. 

98 
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6.1 Basic concepts 

6.1.1 Maxwell's Equations 

The Maxwell's equations in matter can be wr i t ten as 

V X E = -
dB 
dt， 

dlD 

• D Pf. 

V - B = 0 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

where J / and pf are the free current density and free charge density, respec-

tively. 

In this thesis, we wi l l only consiiler non-magnetic material w i th no free 

currnnt and charge, i.e., 

J / = 0 , 

二 0 . 

(6.5) 

(6.6) 

(6.7) 

In this the Maxwell's equations become 

V X E = -fiQ-
dt 

V X H = 
’ 

• • D = 0 

V - H = 0 

(6.8) 

(6.9) 

(6.10) 

(6.11). 

Consider the fields taking on the form of plane waves, 

E(r， t ) = E ( r ) e -twt 

H ( M ) = H ( r ) e —ta;̂  

(6.12) 

(6.13) 
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and the mater ia l to be a l inear dielectric w i t h 

. ’ D = cotE , (G.14) 

Eqs. (6.8) and (6.9) become 

V X E = i u f i o H . , (6.15) 

• X H = - i c jcoeE . (6.16) 

Tak|a£ the divergence of Eqs. (6.15) and (6.16) yield Eqs. (6.11) and (6.10). 

Thus EOT. (6.10) and (6.11) are redundant under our assumptions, we only 

need to ccnsider Eqs. (6.8) and (6.9). 

6.1.2 TE and TM polarizations 

I n a homogeneous isotropic medium, i f we restrict ourselves to an effectively 
* 

two-dimensional problem, such tha t al l quanti t ies are independent of ？/, the E 

and H fields can be expressed as 

E ( r , t) = z)x + Ey{x, z)y 4- , (6.17) 

. n{r,t) 二 [//:(:E，2)i + / /y( :c ;2)众+ //z(:c，2)ile一iw . (6.18) 

Subst i tu t ing Eqs. (6.17) and (6.18) in to Eqs. (6.15) and (6.16)，it can be shown 
« 

that the set of equations for Ey, H^ , H^ are decoupled f rom tha t for Hy、E:、Ez、 

thus revealing tha t there are two independent polarizations. One polar izat ion 

has the electric f ield being perpendicular to the x-z plane, which is called 

Transverse Electr ic ( T E ) mode or 5-polarization. The other polar izat ion has 
• ‘ 

the magnetic field being perpendicular to the x-z plane, which is called the 

Transverse Magnet ic ( T M ) mode or p-polaxization. These two polarizations 

obey different boundary condit ions. For many situations, they can be treated 
• • 

separately. • 
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6.1.3 Dielectric constants of metals 

The Drucle model [69] gives a convenient way to describe the dielectric con-

stants of metal analytically. 

I l l the Drude model, the clcctrons are treated as free electrons. The charge 

and mass of an electron are taken to be —e and m, respectively. There are 

collisions between the electrons and impurities, phonons, etc., wi th the mean 

free time between collisions being r . The damping constant F = 1 / r . The 

motion of an electron in the presence of an external electric field E ( r , t)= 

is'described by 

m r + mPr = —eE(r)e —iu/t 

The solution of Eq.(6.19) is r ( i ) = re "^^ wi th 

e 1 
E ( r ) 

mcj^ + iVuj 

The induced dipole moment has an amplitude 

:E( r ) 

(6.19) 

(6.20) 

(6.21) m (j2 + tTo; 

Let N be the number of electrons per unit volume, the macroscopic polarization 

is ‘ 

P = Np 二 eoxE . (6.22) 

Substitut ing Eq.(6.21) into Eq.(6.22), we obtain the electric susceptibility 

Ne^ 1 _ 、 
X = . (6.23) 

mco + iTu 
I 

Thus the dielectric constant c is 

Ne) 1 
6 = 1 + X = 1 (6.24) 

m€o + iFcj 

I t is easily to see that e is complex, w i th the real and the imaginary parts of c 

given by 

— - ( 6 . 2 5 ) 
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and 
uj^T p 

1 a;3 + Pa； ’ ： 

respectively. Here Up is called the plasma frequency, ^ iven by 

o Ne^ - -
Uf = 

(6.26) 

(6.27) 
mto 

•I 
For bj that satisfying t j^ +「2 < cjp, tr is negative, while €j is always positive. 

For good conductors, F is much less than cjp. Thus, we often neglect the F 
‘ , 

term and take the metal to be lossless. Under this approximation, the diolectric 

constant becomes real 

e = e, = 1 - ^ , (6.28) 

and e is negative for u) < ujp. . 

6.2 Surface plasmon at metal/linear dielectric inter-

face 
« 

Surface plasmon (SP) is a surface electromagnetic wave that is localized and 

propagating along a metal/diclectric interface. SP is an old subjoct, wi th 

the pioneer work carried out by Ritchie in 1950s [70]. Later, the dispersion 

relations of SP in a number of metal/ l inear dielectric multilayer structures 

were studied by Economou in 1960s [71]. In recently years, researchers have 

been interested in the functionality of SP in manipulating light, including 

possible applications in optics, fabricating, biological sensors, and cloaking 

metamaterials [72, 73]. 

In this section, we review the SP modes in the following systems: 

1. Semi-infinite metal/ l inear dielectric interface. 

2. Metal film between two semi-infinite linear dielectrics. 

The dispersion relation wi l l be derived for these two systems and the main 

features wi l l be discussed. 
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6.2.1、 Semi-infinite metal/linear system 

Here we consider a system of two serni-infinite media that are separated by an 

interface at z = 0. The dielectric constants of the medium above (z > 0) and 

below {z < 0) the interface are f i and 62, respectively. 

For T M polarization, the H field has a ？/-component only. The electric 

and magnetic fields at a location can in general be wr i t ten as 

E(r, t) = lE,{z)x + E,(z)z] ⑷， （6.29) 

H ( r , 0 = ， （6.30) 

where kx is the x-compoiient of the wave vector. 

For the SP mode localized at the interface, the fields exponential ly decay 

outward f rom 2 = 0 for both 2: > 0 and 2 < 0. H{z) and E{z) in each medium 

can then be wr i t ten as 

l U z ) = ， (6.31) 

E“z) = + exp(-qiz) , (6.32) 

H2(Z) = H2y(0-)yexp(q2z)， (6.33) 

E2(z) = [E2x(0- ) f + E2^(0-)Z] exp(q2z)， （6.34) 

where both 仍 and 仍 aro positive, and the amplitudes are those at the value 

of z specified inside the parentheses. 

For T M mode, the Maxwell 's equations Eqs. (6.15) and (6.16) caii be 

simplif ied to 

1 — o H y = dzEx - dxEz ’ (6.35) 

iueoeEx = d^Hy ’ （6.36) 

-iujeoeE^ = d:Hy . (6.37) 

Subst i tut ing Eqs. (6.31)-(6.34) into Eqs. (6.36) and (6.37), the relations 
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between Ex, E : and Hy are 

E , . = - ^ f f i y ， (6.38) 
eo^icj 

Eu = - — Hiy ’ (6.39) 
eoeiu " 

= - — H 2 y ， . (6.40) 
eoe2UJ 

E2z = - — t h y . (6.41) 
eoe2Ci； 

The boundary .condit ions require the tangential components Hy and Ex be 

continuous at the interface -2 = 0, leading to ‘ 

A + 丝 = 0 . (6.42) 
ei €2 

Notice that bo th q\ arid q2 are positive. For Eq.(6.42) to hold, “ and t2 must 

of opposite signs. Th is requirement can be satisfied i f one medium is a metal. 

For T E polar izat ion, the fields can be wr i t ten down in a similar way. 

Using the Maxwel l 's equations, the relations between H : and Ey are found to 

be 

/ / i x = -i—E,y ’ (6.43) 
Mow 汉 

， / / 2x = i — E 2 y . ( 6 .44 ) 
‘ 

The tangential components H : and Ey are continuous at the interface 2 = 0, 

leading to 

+ 92 = 0 . (6.45) 

The condi t ion can never be satisfied for positive 仍 and q2. Thus the SP mode 

can only be of T M polarization. 

Subst i tu t ing Eqs. (6.38) and (6.39) into Eq.(6.35), qi can be expressed as 

a funct ion of k : and cj, 

. = (6.46) 



Chapter 6. Surface plasmon excitations 132 

a)=a)/(1+ej 

3 

Figure 6.1: The SP dispersion relation at semi-infinite metal/ l inear interface. 

The metal is' assumed to be lossless. 

where c — l /x /coZ^ is the speed of l ight in vacuum. Similarly, 

UJ^ 
(6.47) 

« 

The condit ion Eq.(6.42) can then be wr i t ten as 

u (6.48) 

This is the dispersion relation of surface plasmoii at the interface in a senii-iii-

finite linear dielectr ic/metal system. • 

Taking medium 1 (2 > 0) to be a linear dielectric and medium 2 {z < 

0) to be lossless metal w i th a dielectric constant given by Eq.(6.28), the SP 

dispersion relation is i l lustrated in Fig. 6.1. For k x 》 U j J c 、 l j tends to ⑴邓= 

cVp/VeTl^T. Notice that the SP dispersion relation curve always lies to the 
- » 

r ight of the l ight line u = c k x / y / ^ . Therefore, the SP mode cannot be directly 

excited by light incident from medium 1. 

A common method to excite surface plasmons is to use a grating. When a 

l ight wave incident on a grating, a series of diffraction waves can be generated. 



Chapter 6. Surface plasmon excitations 106 

l a ； M e t ^ / ^ s ^ 

III: Linear, €3 

Figure 6.2: Schematic diagram show运 the structure of a linear-metal-linear 

system. 
% 

The x-component of the wavevector of the n^^ order diffraction wave kxn is 

27r 
kxn = k^o + n — ， （6.49) 

where L is the period of the grating. Surface plasmon can be cxdted if fc^n 

satisfies the dispersion relation: 

kxo + n ^ = /Cxn = - \ l • (6.50) 
L C V + C2 

6,2.2、Metallic film between two linear dielectrics 

Here we introduce the surface plasmon dispersion relation of a linear dielec-

tr ic/raetal / l inear dielectric structure. 

Consider a metall ic film of dielectric constant €2 and thickness d separating 

two semi-infinite dielectrics at 2 = 0 and z = —d. The dielectric constants of 

the two dielectrics are €1 (z > 0) and €3 (z < -d), respectively. Figure 6.2 

shows the system structure schematically . 
售 

The SP modes should be T M polarized. The fields in each i i icdiui i i can 

be wr i t ten down. In medium 1，the fields decay away from the z = 0 interface, * 
thus 

H i ( z ) = , (6.51) 

Ei(z) = + E i : ( 0 + ) i l e二 " • （6.52) 
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In medium 2，the fields are superpositions of the waves decaying f rom the two 

interfaces. 

E2{Z) = + + [EDe-…+ E^AO'Je' 

In medium 3，the fields decay as z decreases, 

恥 ) = 杆 d ) 众 ， 

Esiz) = + 幻. 

(6.53) 

z . 

(6.54) 

(6.55) 

(G.56) 

The coefficients Qi (z = 1, 2 and 3) are obtained f rom the wave equations as 

(6.57) 

The relat ion between E: and Hy in each medium can be obtained by 

即bstituting Eqs. (6.51)-(6.56) into Eq.(6.36), 

E l : 二 ， （6.58) 
IUJCqCI 

E t = - ^ ^ H ^ y ， (6.59) 

== 丑2;， (6.60) 
iueoe2 y 

Es, - ^ - ^ H ^ y . (6.61) 
tujeoes 

The boundary condit ions are that the tangential components Ex and Hy are 

continuous at the two interfaces z — 0 and z = —d. By apply ing the boundary 

conditions at 2 = 0, and 一）can be expressed as a funct ion of 

/Ay (0+) ’ 

. K(『)=5(1 + 1 1 ) 付 iy(0+)， (6.62) 

' "2v(0-) = J f 1 - //iy(0+) . (6.63) 
2 \ 92^1 / 
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So are E ^ and E ; : . 

Similarly, at 2; = ~d, we found 

108 

H3y{-d-) = + //2y(0-)e-們' 

= c o s h ( g 2 d ) + — s i n h ( 9 2 d ) / / i y ( 0 + ) , 
L 购 

and 

EsA-d-) = E2+“0-)e 的 d + £; ‘ (0-)e-<»d 

1 ^iy(O^) 

(6.64) 

92 sinh(q2d) + ^ ^ cosh(q'2<i) (6.65) 
icJCoe2 

Substitut ing Eqs. (6.64) and (6.65) into Eq.(6.61) and canceling the / / iy(0+) 

term, we obtain the SP dispersion relation of a linear-metal-linear structure: 

(92^1^3 + 9193^2) tanh(g2rf) + 9 2 ^ 2 + = 0 • (6.66) 

For d 00, tanh(g2cO 〜1，Eq.(6.66) becomes 

(91̂ 2 + + 93^2) = 0， （6.67) 

which leads to 

9162 + 92^1 = 0 and 92(3 十 93^2 = 0， 

i.e., the dispersion relations of SP modes excited on semi-infinite e i /meta l and 

metal/ea interfaces. The SP modes at the two interfaces become decoupled for 

thick metallic f i lm. 

In what follows, we discuss the SP modes supported by symmetric and 

asymmetric structures. For convenience, the metal is assumed to bo lossless 

wi th the dielectric constant given by Eq.(6.28). 

SP modes supported by symmetric structures 

For a metallic film embedded in a symmetric environment w i th €3 = €1, 93 = 

Eq.(6.66) becomes 

{qlel + qlel) tanh(仍d) + = 0， (6.68) 
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which can be rewr i t ten as 

9162 + <72(1 tanh 
q2d' , f q2d 

q2€i + 9162 tanh 0 . (6.69) 
2 ‘ 

So there are always two bound modes [71，74): one high frequency mode (sb) 

that has a symmetr ic Hy and has the form [q2ei + qie2 tanh(3|^)) = 0; and 

one low frequency mode (a^) tha t has an ant isymmetr ic Hy and has the form 

9ie2 + g2Citanh(3|^)] = 0. 

‘F igure 6.3 shows the SP dispersion relations and their dependence 011 the 

f i lm'thickness for a metal l ic film in' air. The metal is taken to be silver, w i th 

plasma frequency Up = 1.36 x 10̂ ® rad s一 1. When the film is th in , due to the 

coupling of the SP modes at the two interfaces, the Sb mode becomes higher 

and the a^ mode becomes lower in frequency (see d = 20 i irn results). As 

the film becomes thicker, the coupl ing effect becomes weaker, and the two 

modes become closer in frequency^ (see d = 30 n m results). For d —> 00, the 

two modes are uncoupled and become degenerate (see d — 100 nm results). 

The Hy field d is t r ibut ion for the two modes at k : = 4.53 x 10^ m _ i and 

d = 30 n m are shown in Fig. 6.4. For the Sb mode, the Hy field is distr ibuted 

symmetr ical ly (corresponding to Point 1 in Fig. 6.4). For the a^ mode, the Hy 

field is d is t r ibuted ant i -symmetr ical ly (corresponding to Point 2 in Fig. 6.4). 

SP modes supported by asymmetric structures 

For a metal l ic film embedded in asymmetric environment, due to the mismatch 

of the SP frequencies excited at the two interfaces, the si tuat ion becomes more 

complicated [75, 73]. For the convenience of our discussion, we assume e i〉€3. 

For bounded SP modes to exist, bo th qi and q^ should be positive, which 

requires 
2 2 

k l - e i ^ > 0 and k l - 6 3 ^ > 0. (6.70) 

For the SP mode excited at the meta l /e i interface, bo th condit ions can be sat-

isfied, indicat ing tha t th is mode is always a bound mode. However, for the SP 



〔a) Point 1 in Fig. 6.3. (b) Point 2 in Fig. 6.3. 

Figure 6.4: The Hy field distr ibut ion for Points 1 and 2 in Fig. 6.3. Points 

1 and 2 have the same k: and thickness d�with kx = 4.53 x lO? and 

d = 30 nm. 、 

Figure 6.3: The SP dispersion relations for a metallic f i lm in air. The thickness 

of the metallic film is taken to be d = 20 nm, 30 nm and 100 nm. Two points 

wi th the same and d values are chosen for which the Hy field distributions 

are shown in Fig. 6.4. 
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mode at the metal/ea interface, the two conditions cannot be simultaneously 

satisfied for u values less than c/ci/y/c7. When this happens, the SP mode is 

no longer bounded, the quantities q^ and k : are all complex. The wave 

front is t i l ted towards the metal film in £3, after propagating through the film, 

i t grows exponentially in €1. This mode is called leaky mode [75]. I f u can be 

larger than c k x / y / ^ , this mode wi l l become a bound mode. 

6.3 Surface plasmon of nonlinear/metal system 

Besides the study of surface plasmon modes on metal/ l inear dielectric inter-

faces, researchers were interested in the SP dispersion relation at a metal /Kcrr- type 

nonlinear interface. For a Kerr material, the D - E relation takes on the form 

D = eE + a丨EpE = e/fE. The evanescent electric field into the Kerr medium 

gives a spatially-changing dielectric constant depending on the distance from 

the interface, provides an alternative way in modify ing the SP dispersion rela-

tions. Recently, the surface plasmon mode in a semi-infinite Kerr /meta l system 

has been studied independently by Huang [76] et al.，and X u [77] et al. Here, 

we study the SP dispersion relations of a nonlinear-metal-linear system and 

a symmetric nonline^-metal-nonlinear system. Instead of considering Kerr 

dielectric only, we consider the general case where the D - E relation tnsidc the 

nonlinear dielectric takes the form 

D = eE + 卢E = (丑)E , (6.71) 

where e is the linear part of the response, a is a nonlinear susceptibility, and 

E = |E|. This type of arbi t rary nonlinearity has been studied in nonlinear 

random composite materials [78]. We wi l l present exact analytic expressions 

of the SP dispersion relations. 
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III: Linear, c/ 

Figure 6.5: Schematic diagram showing the structure of a nonlinear-metal-l in-

eax system. 

6.3.1 Nonlinear-metal-linear structure 

This section is based on Ref. [79]. 

The system consists of a th in slab of metal of thickness d (Region 2 in 

Fig. 6.5) separating a nonlinear dielectric occupying the space of 2 > 0 (Re-

gion 1) and a linear dielectric occupying the space oi z < —d (Region 3). 

Let €jn and e/ be the dielectric constant of the metall ic and linear dielectric 

regions, respectively. Consider a TM-polar ized wave w i th the H- f ie ld having 

y-component only. The electric field at a location in the system can in general 

be wr i t ten as [80，76): 

E(r, = ^ liE^iz)x + E,{z)z] e:(矢…⑷ + c.c. (6.72) 

where k : is the x-component of the wavevector. The relations between Ex, E : 

and Hy are given by the Maxwell 's equations Eqs. (6.8) and (6.9) as 

Hy{z) = -^eouE,， (6.73) 

dE工(k _ 
dz \ ‘ kxC^ * 

d(eiE,) 

E . , (6.74) 

虹 = . (6.75) 

Here, €‘ = e^, depending on the location. Since em and et do not depend 

on 2，Eq.(6.75) reduces to dEJdz = kxEx in Regions 2 and 3. I n the nonlinear 

Region 1, however, En i i ^ i z ) ) cannot be canceled in Eq.(6.75). 
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The linear regions can be treated readily by wr i t ing down the general form 

of the Enfield. I n Region 2, we have 

EMz) = + 

E,2{Z) = + 丑 ( 一 d < 2 < 0 )， (6.76) 

I ；? 

where Qm = y k^ — Cm— and the amplitudes are those at the value of z 

specified inside the parentheses. Similarly, in Region 3 (2 < —d), we have 

E.3{Z) = 一 ) ， 

= — ， (6.77) 

r ' i j 

where qt — y — The relations between E^ and Ex in Region 2 

and 3 can be obtained by following Eq.(6.74), w i th E~2 = kxE~2/qm,丑力= 

- / c x ^ r f / ^ m / a n d E之3 = 

A standard treatment of the nonlinear Region 1 invokes a " f i rs t integral" 

to get at an equation for dEx i /dz [80]. Here, we generalize the technique to 
> 

arbitrary value of /? characterizing the nonlinearity. Taking the derivative of 

Eq.(6.74) w i th respect to z and mult i j^ lying through by d E x \ / d z , we get in 

Region 1 dEii (PEii _ k dEii dE^i ^ 丑 dE^^i 
‘ dz dz^ I dz dz ^^ dz 

' s 
A n integration w i t h respect to z gives 

(6.78) 

+ C， (6.79) 
6 ‘ • 
where 'C is an integration constant. The key step is to recognize the identity 

、 
J (El + + EAE.) = - ^ { E l + E】产 2+1， (6.80) 

and rewrite Eq.,(6.79) as 
g» 

(警丫 =权一 p^El, + E�1)-為昏绍 1 + 松 (6.81) 
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where we have set C = 0 as E^ i , E^i and dEx i / dz must vanish as 2 — o o . 

Equat ion (6.81) is val id for 2 > 0 and i t generalizes the result in Ref. |80, 7G| 

specific for P — 2. App ly ing Eq.(6.81) to 2 = 0+ where 三 Exo and 

= we get ‘ 

fdE: Lj^ 2a 
、 … = 贼 - > 绍 - 品 对 + 2 ’ (6.82) 

where EQ = E^Q + E^Q is the squared magnitude of the clcctric field at t l ic 

interface between Regions 1 and 2. Requir ing this result to be consistent w i th 

dEx i / dz in Eq.(B.74) gives 

隐 - 2 e n . ) + eE2o + ^ E f = 0 . (6.83) 

Another relat ion between E^O and EQ can be found by imposing the bound-t 

ary condit ions tha t Ex and Hy arc continuous at the 2 = 0 and z = -d 

interfaces. I t gives ‘ 

QmCniPE^o , (6.84) 

where P = qttm + qmf-t tanh(g^d) and Q = qmU + Qt^m tanh(g„,d). Since 

E^Q = EQ — E;Q、E】Q can be solved to give 

• ^ ^ I ^ k i ： ^ ^ " • 〜, (6.85) 

c 一 2 《 W W Q 2 + (e + 知 E o ' � 尸 2 + 人 , 兄 們 = 0 . 

Final ly, subst i tu t ing Eq.(6.85) into Eq.(6.83), wc obtain 

点 碼 0 

‘ . (6.86) 

This is the equation tha t gives the SP dispersion relations. Due to the non-

linear dielectric, the strength EQ at the interface appears and i t can alter the 

dispersion relations. I t recovers previous results for a = 0 (Eq.(6.66)) and 

generalizes the results for a Kerr medium [76，77] to the case of a th in metal l ic 

f i lm. 

, « * 
Figure 6.6 shows results of model calculations i l lust rat ing the dispersion 

relations and their dependence on the metall ic film thickness. The metal has 
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Figure 6.6: The dispersion relat ion of SP mod伪 in a M B B A / s i l v e r / a i r system 

typical of th ick (d = 200 nm) and th in (d = 20 nm) metal l ic f i lms are shown. 

a Drude form dielectric constant e^i = 1 — Wp/cj^, w i th cjp takes the value for 

silver, cjp = 1.36 x rad The nonlinear dielectric is the l iquid crystal 

M B B A [80，81] and the linear diclectric is air w i t h ce = 1. The parameters 

for M B B A are € = 2.4025，a = 6.379 x lO'^^ y-2 and p 二 2、& field 

Eo = 2.5 X 105 V / m is used. The f i lm thicknesses are taken to be 20 nm artd 

200 nm. For a given thickness, there are two branches. For th ick films (see 

d = 200 m i l results), the SP modes are uncoupled and the results coincide w i th 

the SP dispersion relations for a single interface between metal and each of the 

dielectrics, as indicated by the dots. These branches have a large k ! l imi t 

of u4「,(）= ( j p / v / m ； and u^?’"^) = U p / + e + aES/2 [76], respectively. 

For th inner films (see d = 20 nm results), the upper (lower) branch becomes 

higher (lower) in frequency as a result of the mix ing or hybr id izat ion of the SP 

modes in the th ick- f i lm l im i t , w i t h the upper (lower) branch carries a heavier 

weight of the metal /nonl inear (metal / l inear) dielectric SP mode. Due to the 
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* « 

mismatch between the two dielectrics, the upper branch contains two parts. 

When u is small, i t corresponds to a leaky mode w i th k : being coriiplox, as 

shown by the dot ted line and dashed line in Fig. 6.6. For u becomes large 

enough, the mode becomes bound and kj： bccoines real (solid l ine). 

Equat ion (6.86) contains the th ick- f i lm decoupled l imi ts as a special case 

of Qmd —> oo so that P — Q = Qe^m + Qm^e- The equation reduces to 

P f ^ y - 仏 + + 点 + 权 ) ] = 0. (6.87) 

Setting P^ — 0 recovers the standard SP modes at a metal / l inear dielectric 

interface (Eq.(6.48)). Equat ing the first term to zero gives tho uncoupled SP 

dispersion relations at an interface separating semi-infinite metal /nonl inear 

diclcctric regions: 

Lj = ck. 
\ 1/2 

+ Peel,-(2 + - Pe^aE^ 
(6.88) 

V ^mele (2aEo^ + ( 2 + - € , „ ) ) , 

which is a generalization of the previous /3 = 2 results [76，77] to arb i t rary /3. 

The fci oo l im i t gives 厂 乂 which should be finite. I t thus requires 

+ 
(2 + P)en( -f PotE^ 

For Drude fo rm of i t gives 

(6.89) 

者 n ^ ) = 外 _ ^ , ’ (6.90) 
〜/l + ( 诉 〜 ^ … 十 南 a E o 卢 

V J � 

where t l ie last result corresponds to the weak field l im i t . The effects of different 

nonl ineari ty are shown in Fig. 6.7, which gives 广明 as a funct ion of \a\EQ for 

different values of For a > 0 ， d e c r e a s e s monotonical ly w i th Eq. For 

Q < 0, there is a cutoff value of \OI\Eq = above which no real solution 

of u^JT,明 exists. Figure 6.8 shows how the SP dispersion relation is modif ied 

by the nonlinear response in a nonlinear dielectr ic/metal interface by solving 

Eq.(6.88), as a result of the field-dependent dielectric constant in the nonlinear 

medium. 
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Figure 6.7: The l im i t ing value as a function of \ct\EQ for both a < 0 

and a 〉 0 and different values of p in the thick film l imi t . The metal takes a 

Drude form dielectric constant Cm and the linear part of the nonlinear medium 

takes on e = 2. 

0.6 

I 
0.4 

0.2 

0.0 

a=0 

o<0. |a| E/=0.75 
a<0. |a| E/=1.31 
a>0. |a| E/=1.5 
ot>0. |a| E»=4 

ck/o) 

Figure 6.8: The dispersion relations at a meta l /Ker r medium interface for 

different nonlii iearities in the thick film l imi t . The metal takes a Drude form 

dielectric constant Cm and the linear part of the nonlinear medium takes on 

2. 
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6.3.2 Symmetric nonlinear/metal/nonlinear structure 

Based on the results of nonl inear/metal / l i i iear system, we are able to study the 

SP dispersion relat ion of a metall ic f i lm embedded in a symmetr ic nonlinear 

dielectric environment. The structure is similar to the previous structure in 

Fig. 6.5，with the linear dielectric in Region 3 replaced by a nonlinear material 

of dielectric constant e„/. For the structure to be symmetr ic, the strength of 

the E fields at the two interfaces should have the same value EQ. The x and 

z components of the E field at 2 = 0 (2 = —d) are E^o (Exd) and E^o (E^ j ) , 

respectively. . 

Equat ion (6.83) s t i l l holds in Regions 1 and 3. By using this equation, 

EZO can be expressed as a funct ion of EQ, • 

E,N = ER 
(e + ^aES) k y 

2eruklc^ - w^el, • 剛 

Here we choose E^o to be positive. For a decaying field in Region 1, k^ — '^ent > 

0. By using Eq.(6.74), dEx/d^ > 0, indicat ing that E : should be negative. 

Similarly, we can prove that E! and Ez share the same sign for z ^ —d. 

By using Eq.(6.91) and EQ = E^ E^, E^Q can also be expressed as a 

funct ion of EQ, • 

Exo 二 -丑0、 
+ 徵 。 劝 @ - w' 

2eruklc^ 一 w^el, . (^ 卩？） 

Similar ly, we can wr i te down Exd and E^d as a funct ion of EQ a.t z = 

—d. Ezd could have the same^ or opposite sign of E^o, corresponding to the 

symmetric and ant i -symmetr ic branches, respectively. Ezd and Exd are 

= 土 
源 2 一 ’ （̂̂  J " 

^xd = 土) 
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The E fields at the two interfaces can be related by matching boundary con-

dit ions at the two interfaces 2 = 0 and z 二 一d, g iv ing 

Exd = E^o cosh{qmd) 
qm^nl E^o s inh(g^d)， 

^ntEzd 
k. 

Qm 
-E^sinh{qmd) + ^ ^ ^ E ^ o cosh(gmt') 

(6.95) 

(6.96) 

Due to symmetry, these two boundary condit ions yield the same result. The 

dispersion relat ion can be obtained by subst i tu t ing Eqs. (6.92)-(6.94) into 

either Eq.(6.95) or Eq.(6.96). For the symmetr ic branch s^, the dispersion 

relation is 

Qm^rU 
k-r^m / + 

2 
c^Eg] klc?! 

2 + f3 V 
6 + 

2(1 + /3) 
2 + P 

OCES^ klc^ -w^e nt 

and for the ant i -symmetr ic branch a^ 

Qm^nt 
kf乞m 

e + 
2(1 + " ) 

2 + 3 

klc^ — ur -nt 

= — t a i i h 

(6.97) 

= — c o t h 

(6.98) 

qmd� 

fqrA 

When a = 0，which corresponds to the case that Regions 1 and 3 are 

filled w i th the same linear dielectric, our results reduce to the well-known 

l inear /meta l / l inear case, as given in Eq.(6.69). When a ^ 0, our theory gives 

the SP dispersion relat ion for a metal l ic film in symmetr ic nonlinear materials 

of arb i t rary nonl ineari ty. 

Figure 6.9 shows the dispersion relations of a metal l ic film embedded in 

a symmetr ic M B B A environment. The metal is taken to be silver and the 

parameters of M B B A are the same as those we used in Sec. 6.3.1, a field EQ = 

2.5 X 105 V / m is used. The results are similar to the SP dispersion relations 

of symmetr ic l incar /meta l / l inear system. For th in f i lm, the two branches are 

separated due to the hybr id izat ion of the SP modes in the th ick film l im i t (see 

d = 20 m i l results). As the film becomes thicker, this effect becomes weaker 

(see rf = 30 nm results). For the th ick film l im i t d cx>, t a n h ( g „ j d / 2 ) = 
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coth{qmd/2) = 1, and the two branches become degenerate (see d = 100 nm 

results). 

6.4 Conclusion 

In this chapter, we reviewed several basic concepts, including the Maxwell 's 

equations, the T E and T M polarizations, and the Drude diclectric constant of 

metals. These concepts w i l l be used in our future discussions. The surface plas-

mon dispersion relations of a semi-infinite metal/ l inear dielectric system and 

l inear/metal / l inear structure are introduced. The bound and leaky SP modes 

are discussed. By invoking the "f i rst integral" technique, the SP dispersion 

relations of a nonlinear-metal-linear system are derived, where the nonlinear 

medium can take on arbi t rary nonlinearity. The effects of metall ic film thick-

ness and different nonlinearity on the SP dispersion relations are discussed. 

We derived the SP dispersions relation of a system wi th a slab of metal in a 

symmetric nonlinear dielectric environment. The dependence of the dispersion 

relations on film thickness is i l lustrated. 
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(X10V) 
20 

Figure 6.9: The dispersion relations of SP modes in a M B B A / m e t A l / M B B A 
r 

system. The thicknesses of the metallic film are taken to be d = 20 nm, 30 nm 

and 100 nm. 
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Chapter 7 

The Rigorous Coupled-Wave 

Analysis 

In this chapter, we introduce the Rigorous Coupled-Wave Analysis (RCWA) , 

which is a grat ing theory commonly used to study the optical properties of pe-

riodic structures. The algor i thms to treat one dimensional periodic structures 

are discussed. The Fourier factorization rule, and the scattering mat r ix tech-

nique are also introduced. T w o simple examples are used to test the RCWA 

algori thm. 

7.1 Introduction 
f 

The Rigorous Coupled-Wave Analysis (RCWA) is a numerical method for com-

put ing the di f f ract ion fields of grat ing structures. I t was first developed by 

Moharam and Gaylord [82, 83, 84]. Later, the idea of scattering mat r ix was 

introduced to improve the numerical stabi l i ty [85], and the Fourier factor-

ization rules were developed to speed up the convergence [86]. The R C W A 

method has been generalized to study arbi t rary anisotropy [87) and geometric 

profiles [88，89]. I n this chapter, we present an in t roduct ion to the RCWA 

algor i thm in handl ing one-dimensional periodic structures. The method w i l l 

122 
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- €2 X 

y 

Figure 7.1: Schematic diagram showing a I D structure w i th period L along 

the X direction. 

then be used in the next two chapter. 

7.2 RCWA for 1D periodic structures 

Prom here on, we use H to represent the H field we used in Chapter 6, and 

redefine H = cB. By doing so, the H field has the same dimension as the E 

field, which is convenient for numerical treatment. The Maxwell 's equations 

Eqs. (6.8) and (6.9) become 

• x E = 」 尝 ， (7.1) 
c ot 

• x H 二 i f . (7.2) 
c at 

Below we introduce the RCWA algori thm for T M and T E polarizations sepa-

rately. 

7.2.1 TM polarization 

Consider E M fields taking on the form of plane waves 

E(r，t) 二 ， （7.3) 

H ( r , t ) = H ( r ) e - ^ ' . (7.4) 
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For T M polarization, the H field has ？/-component only, Eqs. (7.1) and (7.2) 

can be rewr i t ten as 

ikHy{x, z) = dzEx(x^ z) - dxE^ix, z)， (7.5) 

ikeEx(x,z) = dzHy{x,z) ’ （7.6) 

—ikeE^ix, z) == dxHy{x, z) ’ (7.7) 

where k = uj/c is the wavevector. 

Here we consider a periodic structure that has periodicity along the x 

direction, w i t h a period L. The dielectric constant e(x) is a periodic function 

that takes on different values depending on the location. The structure is 

schematically i l lustrated in Fig. 7.1. For this system, both E ( r ) and H ( r ) can 

be expanded in Fourier series, 
oo 

n=—cx) 
oo 

Y ^ ， （7.8) 
n=—OO 

oo 

where k^n is defined as 

kxn = ^x H . (7 9) 

The dielectric constant c(x) can also be expressed as a summation of Fourier 

components, 

f 2 … 球 . (7.10) 

n=—OO 
Subst i tut ing Eqs. (7.8) and (7.10) into Eqs. (7.5)-(7.7), we obtain 

t 

i k H y r M = £；;JZ) - ik^nE^niz)， （7.11) 

= H'^^iz)， （7.12) 
m 

- k ^ e n - m E ^ m { z ) = ⑷ . （7.13) 
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To numerically implement the algori thm, we should make a cutoff and 

use a f inite number of Fourier orders to represent the H and E fields, as well 

as the dielectric constant c. Here, we use N to denote the number of the 

remaining orders. Thus the summations in Eqs. (7.8) and (7.10) go from -N 

to N, instead of f rom —oo to oo after the cutoff. For a function f that can be 

expanded in Fourier series, the 2N + 1 Fourier coefficients can be represented 

in a vector form as「/J, w i th the n - t h element of the vector「/J „ = f n - N - i . 

Thus the Fourier coefficients of the H and E fields can all be wr i t ten in vector 

forms. By doing so, Eqs. (7.11)-(7.13) can be rewri t ten as 

iA:|/|�//j =�E;j-ii iMir£y 
iA: | / | |M「£y 二「//(J , 

A: | / | [ le肌」二 IIMI「仏 

(7.14) 

(7.15) 

(7.16) 

where | / | is an identi ty matr ix , \\s\\ is a diagonal mat r ix w i th ||s —SMNSF •N-

夕J is a toeplitz matr ix w i t h [[分Jmn = gm-n [90]. The S function is the K r o 

necker delta, 6mn = 1 i f m = n, and 0 otherwise. Combining Eqs. (7.14)-(7.16)， 

wo have a second-order differential equation of Hy, 

K\ 二 - 「凡 j ^ m\Hy\ (7.17) 

Let Hyn{z) take on the form Hyn(z) = According to Eq.(7.17)’ k^ 

should be an eigenvalue and「//y j be an eigenvector of the matr ix [M] . The 

dimension of matr ix [M ] is 2N + 1，so there are (2N -f 1) sets of eigenvalues 

and eigenvectors in total. Denoting the p - th eigenvalue and eigenvector as fc‘ 

and H " ^ , the general solution can be wr i t ten as a linear combination of the 

eigenmodes, 

(7.18) 
n,p 

where A^ and A~ B arbi t rary constants. Here k^p is chosen to have positive 

imaginary part, so that the term gives a forward decaying mode and the 
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A~ term gives a backward decaying field. We construct a、2N + 1) x [2N + 1) 

matr ix [//y] by using the p- th eigenvector of the matr ix |M] to be the p- th 

column, and express the coefficients A^ and A~ in vector forms,「^A士Jp 

Thus, Eq.(7.18) becomes 
=〜士 

Hy{x,z)\ = II exp(2A:,a:)||[Hy](|| exp(ik,z)[WA'^l + \\exp(-ik,z)\\\A 

Similarly, the general form of the E : field is 

「E:(:r ’2)J = ||exp(iA:,x)||[£;,](||exp(i/c,2)||[yl-^J - || exp(-2A:,z)|| [ A 

where [E,] = 

-J). 
(7.19) 

J)， 

(7.20) 

7.2.2 polarization 

For T E polarization, the H field has x and z components, while the E field 

only has a y component. The Maxwell's equations Eqs. (7.1) and (7.2) for this 

case can be wr i t ten as 

ikeEy{x,z) = - ， （7.21) 

-ikH^{x, z) = d^Ey{x, z)， （7.22) 

ikH,{x,z) = d^Ey{x,z) . (7.23) 

By wr i t ing down the E ^ d H fields, and e(x) as Fourier series in a similar 

way as in Eqs. (7.8) and (7.10), Eqs. (7.21)-(7.23) become 

iky^€n-mEyyn{z) = ⑷-付“⑷， 

m 

-ikH^niz) = , 

fcH饥(z) = k^nEyn(z). 

(7.24) 

(7.25) 

(7.26) 

A second order differential equation of Ey can be obtained by combining 

Eqs. (7.24) - (7.26)，which can be expressed in matr ix form as 

丑= ( I I M 2 - I 料 肌 J E [ M 购 (7.27) 
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Let Eyn(z) take on the form Eyn{z) = EynC-认“、k^ should be an eigenvalue 
and J^yJ an eigenvector of the matr ix [M] . Similar to the T M case, we denote 

、 

the p - th eigenvalue and eigenvector as fc^ and The general solution can 

be wr i t ten as 

Ey(x, = + 〜 ) ， （7.28) 
n , p » 

where A^ and A~ are arbi t rary constants. 

7.2.3 Fourier factorization rule 

Previous researches have revealed that RCWA converges slowly in T M polar-

ization [91]. Lalanne and Morris [92], and Granet and Guizal [93] improved the 

convergence rate by replacing Je]] w i th [ l /e ] ] " ^ , wi thout clari fying the reason. 

The mathematical ly proof of this replacement' was given by L i [86]. Here we 
- » 

briefly introduce the idea. Our discussion here is based on Ref. [90, 94 . 

Consider three functions /(re), g(x), and h{x) that have the same period 

L and have the following relation 

/(rr) = g{x)h(x). 

The three functions can be expressed in Fourier series as 

J � 呼 、 

n 

n 

(7.29) 

(7.30) 

î nirx 

Thus, the n - t h order Fourier coefficient of f can be wr i t ten as 

fn — 〉 ， (7.31) 
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which is called the Laurent's rule. I f g{x) and h{x) do not have concurrent dis-

continuity, i.e., the discontinuities of g{x) and h{x) occur at different positions, 

the Laurent's rule Eq.(7.31) wi l l give efficient convergence rate. 

Another case is that g{x) and h{x) have concurrent discontinuity, but they 

are complementary, i.e., g{x) and h(x) are discontinuous at the same position 

Xrf while their product f { x ) = g(x)h{x) is continuous at Xd- For this ease, tl ic 

inverse rule should be appiied in order to achieve satisfactory convergence, 

19 
hr (7.32) 

For the case of T M polarization, 

D{x) = e(x)£;(x) (7.33) 

D{x) is continuous along x , while e{x) and E{x) have concurrent discontinuity, 

so the inverse rule should be applied. Equation (7.15) should be rewri t ten as 

i\I\k = (7.34) 

and the [M] mat r ix in Eq.(7.17) becorncs 

[M = 一 (|/|A:2— 丨 I M M I M ) (7.35) 

7.2.4 Matching boundary conditions 

Using the general solutions of the E M fields, the exact solutions can be ob-

tained by matching boundary conditions. Here we use a three-layer system to 

i l lustrate the idea. Layers 1 and 3 are homogeneous media. Layer 2 is a peri-

odic structure sandwiched between Layers 1 and 3 w i th the interfaces located 

at 2 = 0 and -z — d, respectively. Light incident f rom Layer 1. Here, we only 

consider the T M polarization case. The T E polarization case can be derived 

in a similar way. 
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For T M polarization, the general forms of the Hy and E : fields can be 

wri t ten in matr ix form. For Layer 1， 

「 E i " 」 = 一 |丨 c x p ( - i A : ’ ) | | M r J ) • 

(7.36) 

For Layer 2， 

- 「 / / 巧 = I I cxp( iA: .x) | | [ / /2 j ( | | cxp(zA:i2)^)||\Ai\ + | | e x p ( - 2 ^ f ) z ) | | M 2 j )， 

「Ei2)J = \ \ e x p ( i k , x ) \ \ l E 2 M \ e M i f ^ ? ^ z ) \ \ \ A ^ \ - || e x p C - z A : ^ ^ ) ^ ) ! ! J ) . 

(7.3?) 

For Layer 广 

「 / /巧= I I exp(iki'\z - rf))||���+ 丨丨 - d))\\ M 

「Ei^)」= I I exp(ifc.2:)||lE3.1(|| expiik^^\z 一 - || exp ( - z f c⑵z - d))\\ [ A j J ) 

(7.38) 

Matching boundary conditions at z = 0, the coefficients of the fields in 

Layers 1 and 2 are related through 

12+1 T-IZ-A /「/1+|\ 
(7.39) 

( \ A t l \ 一 
/ [7^12+ 1 了 12-1、 M 

where 

土 二 4 ( [ / / ^ 1 - 1 1 / / 广 ) 1 土 [ E i ⑷ 1 一 

Similarly, matching boundary conditions at z = d lead to 

(7.40) 

I
J
 
I
 

+
 2

 -
 
o
 

4
 

^
 

II exp{-ik?^d)\\ 0 

0 

了 23+j j j '23-

2^23-1 [了 23+ 

+
 3

 _
 

C
*
 

M
 A
 

(7.41) 

In general, the transfer matr ix that relates the coefficients of the fields of two 

adjaccnt layers takes on the following form 

(7.42) 。 丨 " 0 、 ' [ T t n t /广1 ] 、 " 略 J ) 

VK-jj V 0 J 
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Equation (7.39) is a special case that =丨丨巾+丨丨=|/|. 

Notice that fcP) has a positive imaginary part. Thus the exp(— 

term grows exponentially as the thickness d increases, which may lead to nu-

merical instabil i ty for large d. To avoid the instability, an algorithm using the 

scattering matrix should be applied. 

Scattering, matrix 

The idea of transfer matr ix is to relate the coefficients of the fields in different 

regions, while the idea of scattering matrix is to relate the coefficients of the 

input and output fields. Take Layer 1 and Layer 3 of our three layer systom 

as an example, A^ and A ^ are the coefficients of the fields moving towards 

thfi medium (input fields), and y4「and A ^ are the coefficients of tho fields 

moving away from the medium (output fields). These two sets of coefficients 

are related by the scattering matr ix as 

(7.43) 

The scattering matr ix that relates the fields of Layer 1 and an arbitrary 

layer can be obtained iteratively. Let us assume that the scattering matrix 

that relates the fields of Layer 1 and Layer j is known, i.e., 

— P l 2 J (\At\\ 

叫= 1 划 

f c l j i 
[ s k ' ] ) 

(7.44) 

We want to find the scattering matr ix that relates the fields in Layer 1 and 

Layer j + 1，i.e., 

(7.45) 

Notice that the coefficients of the fields in Layers j and j + I are related by 

the transfer matr ix given by Eq.(7.42). Combining Eqs. (7.42) and (7.44), the 

「々+1」）— [ S i n [ 艰 + 1 1 、 (「々J 

V r^rj ； 一 
f c l j + l ] 

[ S i n ) 
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unknown elements in Eq.(7.45) can be solved: 

SiY+i] = ( I T / 严 1 - ， 

1
 

+
 J

2
 

1
5
2
 

(7.46) 

In Eq.(7.46), only the term appears, thus the exponentially growth 

terms exp(—z/c^nrf) are avoided. For mult ip le layered structures, by start ing 

from the scattering mat r ix that relates Layer 1 w i th itself, i.e., 

|/| 0 

vr>irj/ \ 0 m/ 
々 J (7.47) 

and applying Eq.(7.46) iteratively, we can find the scattering matr ix that re-

lates Layer 1 and the far end. 

For the three layer system under consideration, the incident wave has 

the zeroth order only in Layer 1. Thus, the ampl i tude of the input field is 

Atn = 〜 111 Layer 3，there is no incoming wave, t h u s 「 / l l J = 0. By 

Eq.(7.43), the transmission and reflection coefficients can be obtained as 

A+ _ rQi,3i 
— 1*̂ 11 Jn,yV+l， 

A - c»1.3 
^ I n 一 1*̂ 12 Jn,N+l . 
f 

The n - t h order transmittance and reflectance aro given by 

(7.48) 

(7.49) 

Tn = 

/^n = Re 

|>43+„|2’ for T M 

⑴,丨乂3+„|2’ for T E ‘ 

(7.50) 

(7.51) 
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7.3 Sample calculations 

In this section, we apply the RCWA method to two simple examples. 

7.3.1 Total internal reflection at glass-air interface 

We implemented R C W A by setting up our own computer codes. To tost the 

val idi ty of our code, we use RCWA to study the reflection and transmission 

at a glass-air interface. The dielectric constants of glass and air are Cg 二 2.25 

and 6q = 1, respectively. Consider a beam of T E polarized l ight incident from 

glass to the glass-air interface w i th incident angle Oj. The traiisir i i t tance and 

reflectance of this system can be analytically solved. The solutions ， 

_ y / ^ c o s 9T / 2 C O S 9J S I N ^ T V 

0 = v ^ c o s ^ / V s\n{9r + Or))， 

= f s m { e j - e T ) y 
\sm{eJ+ 0T) J ’ 

call be found in textbooks (e.g., Ref. [95]). Here, 0丁 is the angle of refraction, 

which is related to dj by the Snell's Law 

sin 9 t y / ^ 
(7.53) 

sin 6] y / ^ 

Figure 7.2 shows To and RQ as a funct ion of the incident angle Oj (solid lines), 

based on Eq.(7.52). The RCWA results are also shown (symbols), which co-

incide w i th the analyt ic results. According to Eq.(7.52), the t ransmit tanro T。 

becomes 0 when 9 t = 90°. When this occurs, the reflectance becomes 1. This 

phenomenon is called tota l internal reflection. For our system, i t occurs at 

9i 二 42.8°, as shown in Fig. 7.2. 

7.3.2 Enhanced transmission in a silver grating 

In 1998，Ebbesen et al. studied the optical transmission through an optical ly 

thick silver film patterned w i th an array of sub-wavelength holes. They ob-

served that the transmission efficiencies are orders of magnitude greater than 
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10 20 30 
Angle of Incidence (Degree) 

Figure 7.2: The transmittance To and reflectance Rq an a. function of the 

incident angle 9[, for a T E polarized E M wave incident f rom glass to air. 

Analyt ic results (solid lines) and results by RCWA (symbols) are shown. 

predicted by classical theory at some frequencies [15]. This phenomenon is 

often rofcrred to as the enhanced transmission or extraordinary transmission. 

The underlying mechanism is generally regarded to be related to the excitation 

of surface plasmon modes. Later, Schroter and Heitmann performed numeri-

cal calculations on the transmission through a' one-dimensional silver grating 

96]. Their results arc in quali tat ively agreement w i th Ebbesen's measure-

ments. They also verified that the transmission maxima indeed correspond to 

the excitat ion of surface plasinons. Here, we use RCWA to perform a similar 

calculation. 

The system consists of a one dimensional silver grat ing of period L = 

900 nm, w i th slit w id th w — 36 nm and thickness d = 60 nm. One side of 

the grat ing is air and inside the slits are fil led w i th air. Another side is glass 

wi th dielectric constant Eg = 2. A beam of T M polarized l ight is incident upon 

the grat ing w i th angle 6. The system is schematically shown in Fig. 7.3. Our 

system is the same as in Ref. (90 . 

/ 
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Figure 7.3: Schematic diagram showing a silver grat ing of period L = 900 nm, 

thickness d = 60 nm, and slit w id th w = 36 nm. One side of the grat ing is air 

and the slits are fi l led w i th air of dielectric constant = 1, and another side 

of the grat ing is glass w i t h dielectric constant Cg — 2. A T M polarized wave is 

incident upon the grat ing from air w i th an angle 9. 

Figure 7.4(a) shows the zeroth order transmission To as a function of inci-

dent frequency at normal incidence. For the frequency range of concern, there 

are three peaks. The slit takes on 4% of the period, but at the transmission 

peaks, more than 20% of the l ight can penetrate through. So the transmission 

is largely enhanced at these peaks. Now we show that these peaks are related 

to SP excitations. We change the incident angle 9 and thus the value of k^. The 

frequency of the transmission peaks are plotted versus kx in Fig. 7.4(b) (sym-

bols). As discussed in Chapter 6，/c: should satisfy the relation (Eq.(6.50))， 

. , 2 7 r u I titm 〔、、 
Kx + n — = k^sp = - \ — (7.54) 

L “ c V Ct + 

for a SP mode to be excited. Here ê  can be CQ or e^, depending on the location. 

For any kxsp, there is always a k^o w i th in [0,27r/L] that satisfies the following 

relation 
• 27r 

Ksv = ẐO + r a —， （7.55) 
a 

where m is an integer, which can be positive or negative. Thus, by finding 

out kxo, the SP dispersion relation can be folded into the region 0 < kxo < 

! L , which is called the Brillouin Zone. Figure 7.4(b) shows the folded 

dispersion curves for SP modes excited at the metal-air interface (dashed lines) 

and metal-glass interface (solid lines), respectively. The peak values well agree 
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Figure 7.4: (a) The zeroth order transmission at normal incidence for the 

system shown in Fig. 7.3. (b) Symbols show the positions of the transmission 

peaks. Lines show the folded dispersion curves of SP modes excited at metal-air 

interface (dashed lines) and metal-glass interface (solid lines), respectively. 

w i th the dispersion relation curves, showing that the transmission peaks arc 

related to the excitation of SP modes at both interfaces. 

7.4 Summary 
> 

III this chapter, we introduced the RCWA algori thm for onc-dimensional peri-

odic structures. We presented the formalisms, and introduced the scattering 

matr ix and Fourier factorization rules, which arc techniques to improve the 

numerical stabilit ies and the convergence rate. Two sample calculations were 

carricd out, in which RCWA is used to study the tota l internal reilection at a 

glass-air interface and the surface plasmon excitations in a silver grating. The 

method and computer codes developed wi l l be used in the next two chapters. 
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Chapter 8 

Optical properties of metallic 

reflection gratings 

In this chapter, we study two samples of one-dimensional metall ic reflection 

gratings that are fabricated at C U H K and their measured reflectance. We 

carry out numerical calculations based on the Rigorous Coupled-Wave Analysis 

and compare the results w i th measured results. The phenomenon of Wood's 

anomaly is studied by measuring and computing the diffraction efficiency of 

different orders. We show numerical results of the near field patterns, which 

indicate that there is a coupling between waveguide modes and surface plasmon 

modes.. 

8.1 Sample preparation 
t 

Researchers have been mainly interested in studying the optical properties of 

transmission gratings since the discovery of enhanced transmission through 

patterned metallic films w i th subwavelength holes [15]. In contrast, studies on 

reflection grat ing are relatively few. The metallic reflection grating can sup-

port surface plasmon excitations at the surface and waveguide mode inside the 
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slits. They have possible applications including high efficiency surface-emit-

t ing organic l ight emi t t ing diode (0LED)[17] , surface-enhanced Raman scat-

tering [16], etc. Here, we study the optical properties of one-dimensional gold 

reflection gratings. This chapter is based on a collaboration work w i th an ex-

perimental group. The experiments were mainly carried out by Mr . Luk Wai 

Chun, under the supervision of Prof. Daniel Ong [97]. We did the numerical 

calculations and theoretical analysis. Results in this chapter were reported in 
t 

a conference (Ref. [98]). 

In this section, we give a brief account on the preparation of the one-di-

mensional metall ic reflection gratings and the geometry structure of the sam-

ples. The preparation process consists of two steps: 

1. Use interference l i thography to prepare a one-dimensional dielectric grat-

ing on a substrate. 

2. Use sputtering to deposit a layer of gold on to the dielectric grating to 

form a one-dimensional metall ic grating. 

The preparation process is schematically shown in Fig. 8.1. Now we discuss 

the process in detail. 

The interference l i thography is a fabrication technique for preparing pat-

terned structures on a substrate. The basic principle is as follows: First, a 

layer of photoresist is deposited onto the substrate. A patterned laser light 

is then incident upon the photoresist. The areas under the l ight become ex-

posed and the other areas remain unexposed. After exposure, the unexposed 

photoresist is washed away by organic solvents. The remaining parts form a 

patterned structure. 

The patterned incident laser is produced by using Lloyd mirror. The in-

terference between the directly incident l ight and the l ight reflected by the 

rnirror forms the periodic pattern. Glass is used as the substrate. The pho-

toresist that we used is SU-8, which is a negative photoresist. The refraction 
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Plain glass 
Metal layer 
(Gold) 

Sputtering of 
Metal 

Figure 8.1: Schematic diagram showing the sample preparation process. 

index of SU-8 is 1.59. 

The parameters of the dielectric grat ing can be tuned [94]. The period of 

the grat ing can be changed by al ter ing the incident angle. The slit w id th can 

be tuned by changing the exposure t ime. The grat ing height can be tuned by 

using different combinations of SU-8 concentration and spin coating speed. 

Af ter the dielectric grat ing is prepared, a layer of gold is deposited onto 

i t to form a metal l ic grat ing by using sputtering. The idea of sputter ing is as 

follows: The dielectric grat ing and a gold target am put in a chamber fil led w i th 

argon gas. Due to the interact ion w i t h argon ions, gold atoms can be detached 

from the target. Some of these atoms fly to the substrate and deposit onto i t . 

Two samples are prepared, which are labelled Sample 1 and Sample 2. 

Figure 8.2 shows the pictures of the two samples, which are obtained by us-

ing scanning electron microscope (SEM). Both samples are very regular and 

periodic. The results are shown in Fig. 8.3. The period L of both samples is 

about 760 nm. The sl i t widths are w — 140 nm for Sample 1 and w — 177 nm 

for Sample 2，and they are quite similar. The main difference between the two 

samples is in their depth d’ w i t h d = 390 nm for Sample 1 and d = 580 nm for 

Sample 2. 
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Figure 8.2: The SEM pictures of Sample 1 (left panel) and Sample 2 (right 

panel). 

=765 nm 

(a) Sample (b) Sample 2 

Figure 8.3: Schematic diagram showing the topological structures of Sample 

1 (left panel) and Sample 2 (r ight panel). The parameters are measured by 

SEM. 

f •jr. 
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CCD 

Sample rotatk>n \ 
ctano Grating sample 

Figure 8.4: Schematic diagram showing the experimental set up for measuring 

the zeroth order reflectance. 

8.2 The zeroth order reflectance 

In this section, we study the zeroth order reflectance of the two samples. The 

experimental set up for measuring the zeroth order reflectance is shown in 

Fig. 8.4 [97】.A whi te arc lamp is used as the light source. The light beam 

becomes coll imated after passing through the two objects. We are only in-

terested in the T M polarization here, so a polarizer is used to produce T M 

polarized l ight beam. The polarized beam is focused on the sample surface. 

The grating can be rotated so as to change the incident angle, and the rotat ion 

arm can be rotated to r ight angle so that the reflected l ight can pass through. 

The reflected l ight is spli t into different wavelengths, and the intensities are 

recorded by the CCD detector. 

Figures 8.5(a) and 8.6(a) show the measured zeroth order reflectance of 

Samples 1 and 2, respectively. The x axis is the incident angle 0 and the 

y axis is the wavelength A. The values of the reflectance are indicated by 

colors, greener for larger reflectance and bluer for smaller reflectance. The 

main features of the zeroth order reflectance are: 

• There are nearly flat bands w i th very low reflectance (color in deep blue). 



20 30 

Incident Angle (Degree) 
50 

(a) Exper imenta l results. (b) R C W A results. 

Figure 8.5: The zeroth order reflectance of Sample 1. Bo th experimental 

results (left panel) and results by R C W A (r ight panel) are shown. 

We use R C W A to calculate numerical ly the zeroth order reflectance of 

the two samples，under T M polar izat ion. The topological structures shown in 

Fig. 8.3 are used to model the two samples. The dielectric constant of gold 

is taken f rom Ref. [99). The numerical results of the zeroth order reflectance 

are shown in Fig. 8.5(b) and 8.6(b) for Samples 1 and 2，respectively. The 

same color scale is used. The R C W A results are in good agreement w i t h the 

experimental results. A l l main features of the experimental results are also 

found in the numerical results. Encouraged by the agreement, we proceed to 

study the opt ica l propert ies of the two samples in greater detai l . Our focus 

w i l l be main ly on Sample 2, bu t results on Sample 1 w i l l also be mentioned. 

To look closer at the zeroth order reflectance of Sample 2，we re-plot 

Fig. 8.6 (b) in a more colorful way, as shown in Fig. 8.7, red for large reflectance 
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For Sample 1, there is one such flat band, located at around A 〜750 nm. 

For Sample 2, there arc two such bands, one at around 650 i im and 

another at around 950 nm. 

For each sample, there are three oblique crossed br ight lines. 
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20 • “ 3 0 
bxddent Angle (Degree) 

20 30 
Incident Angle (Degree) 

(a) Expor imental results. (b) RCWA results. 

Figure 8.G: The zeroth order reflectance of Sample 2. Bo th cxpcri i i iental 

results (left panel) and results by RCWA (r ight panel) are shown. 

and blue for low reflectance. The dispersion relations of the Wood's anomaly 

(clashed lines) and surface plasinon (solid lines) are drawn, after folding them 

into the first Br i l lou in Zone. The dispersion relation of the Wood's anomaly 

wi l l be given in Sec. 8.3. To draw the SP dispersion relation, we take the 

grat ing surface as a semi-inf inite metal surface. Thus, the dispersion relation 

is given by Eq.(6.50), i.e., 

, 27r 
ACxo + n—= 

L/ u + 
(8.1) 

where k^o is the i - component of the wavevector of the incident wave, n is an 

integer, and Cm is the dielectric constant of gold. A set of four points, namely 

Point 1 - Point 4，are also indicated on Fig. 8.7. They are located on the low 

reflectance flat bands. In tho fol lowing part , wo wi l l s tudy the effort of Wood's 

anomaly, the surface plasmon, and the low reflectance flat bands. 

8.3 Effects of the Wood's anomaly 

When l ight of wavelength A incident upon a reflection grat ing of period L at 

an angle 6, the l ight w i l l be diffracted. Let km be the i -component of the 



When the condit ion 

as 

sin 6' = sin 0 H 

is satisfied, 0'，、— 士90° and the diffracted wave becomes parallel to the grat-

ing surface. The energy carried by this order w i l l be redistr ibuted to other 

allowed di f f ract ion orders. The redistr ibut ion of energy gives rise to a sudden 

Surface plasmon 

Incident Angle (degree) 

Figure 8.7: R.CWA results of the zeroth order reflectance of Sample 2. The 
Ck 

X axis is the incident angle and the y axis is the wavelength. Colors indicate 

the reflectance, w i th red for large reflectance and blue for low reflectance. The 

folded dispersion relaticvis of the Wood's anomaly (dashed lines) and SP (solid 

linos) arn shown. Four points, Point 1 - Point 4, arc marked for studying the 

low reflectance flat bands. 

wavevector of the n - t h order dif fracted wave, k m and k^o are related by 

f^xn — ^xO + ^ T 
(8.2) 

27r 2兀 
Notice that Â xo = — sin0, and Ar̂ .̂  = — s i n w h e r e is the angle of 

A A 
reflection of the n - t h order dif fracted wave. Equat ion (8.2) can be rewri t ten 
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change in the dif fraction efficiency of the other orders. This effect is called 

the Wood's anomaly [100|. Equation 8.4 gives the dispersion relation of the 

Wood's anomaly. 

In Fig. 8.7, wc observed that in most cases, the Wood's anomaly lines mark 

the boundaries between two different colors, meaning that there is a sudden 

cliaiige i l l Uie zeroth order rcflcctancc when the Wood's anomaly occurs. Hero, 

the dif fraction efficiency of all allowed diffraction orders is measured so as to 

study the Wood's anomaly. Experimental ly, a beam of Helium-Neon laser of 

wavelength 633 nm is used to measure the efficiency of the diffraction orders. 

The experimental set up is almost the same as that in Fig. 8.4. The main 

difference is that here a He-Ne laser is used as the light source. To measure 

the n - th order dif fract ion efficiency, the angle is first calculated by using 

Eq.(8.3), and the rotat ing arm is then turned to the right angle, thus the 

efficiency can be measured. 

The experimental results are shown in Fig. 8.8(a). The + 1 order vanishes 

at about 9 = 10". The —2 order appears at about 9 二 40。. These arc the 

incident angles at which Wood's anomaly occurs. When Wood's anomaly 

occurs, the efficiencies of the 0th and —1 order change suddenly. 

'Nui i ier ical ly, the onicicncy of the n - th diffraction order Rn (:aii be calcu-

lated by RCWA, 

Ru = Re r l ， (8.5) 
\ AC,n / 

where k:n = — ̂ In and r^ is the amplitude of the n - th order diffracted 

wave. Wood's anomaly occurs at k^n = 0, thus /?„ = 0. The RCWA results 
J 

of Sample 2 are shown in Fig. 8.8(b), using the same wavelength as in the 

experimental results. Al though the calculated magnitudes are not very close 

to the experimental results, the main features are almost the same. The dis-

appearance of the + 1 order and the appearance of the —2 order occur at the 

same incident angles as the experimental results. The occurrence of Wood's 



Incident Angle (Degree) 

(a) Experimental results 

Figure 8.8: The efficiciicy of the 0th, 

Incident Angle (Degree) 

(b) RCWA results 

+ 1，一1，and —2 dif fraction orders for 

Sample 2，as a function of the incident angle. The incident wave has a wave-

length of 633 nm, corresponding to a He-Ne laser. The left panel shows the 

experimental results, and the right panel shows the numerical results obtained 

by RCWA. The occurrences of the Wood's anomaly are marked by dashed 

vertical lines. 

anomaly leads to a shoulder or kink in the efficiency of other orders. 

8.4 Coupling between waveguide mode and SP mode 

In this section, we carry out numerical studies on the low reflectance flat bands. 

The algor i thm of RCWA was introduced in Chapter 7. To use RCWA, 

we cut the system into laj^ers, and solve the eigen modes of Hy in each layer. 

We can then wri te down the general solutions of the H and E fields in each 

layer. The coefficients are obtained by matching boundary conditions at the 

interfaces. 
4 

For our previous studies on the zeroth order reflectance and the Wood's 

anomaly, we only make use of the coefficients of the incoming and the diffracted 

fields in the space outside the grating (the first layer). Here, we make use of 

the coofficionts in all layers, and obtain the ricax field map to show the fiold 
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Figure 8.9: (a) The noar field pattern of Hy at Point 2 in Fig. 8.7. (b) Tho up-

per panel shows the direction of the incident wave. The lower panel il lustrates 

the sinusoidal pattern of the field inside the slit. 

d istr ibut ion inside and at the surface of the grating. For a given incident 

angle and wavelength, we divide the whole space into 5 nm x 5 nm grids and 

compute the intensity of the Hy field at tho centre of each grid. By plot t ing 

the intensity of Hy for all grids, we can obtain the near field pattern of Hy. 

Let us first examine the near field pattern at Point 2 in Fig. 8.7, which 

has an incident angle of 36° and a wavelength of 947.5 nm. The near field map 

of Hy for Point 2 is shown in Fig. 8.9(a). In computing the near field pattern, 

we replaced the photoresist SU-8 by gold, since the gold layer is thicker than 

the skin depth. The intensity of the field is indicated by different colors, w i th 

red for large intensity and blue for small intensity. The black lines outl ine 

the structure of the grating. We are interested in the field distr ibut ion inside 

tho slit. The field has a vory large intensity at tho bot tom. As z increases, 

the intensity gradually decreases to zero and then increases again. A t the 

open end, the intensity is small. This intensity distr ibut ion shows a sinusoidal 
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pattern of the field, which is characteristic of a standing wave. The wavelength 

is about 4 /3 of the slit depth, as i l lustrated in the lower panel of Fig. 8.9(b). 

The standing wave inside the slit can be understood as follows. 

There is a dominat ing eigen mode inside the slit. Consider this mode 

propagating forward, and being reflected at the bottom. The superposition 

of the .forward and backward propagating waves results in a standing wave. 

When the incident wave is in resonance w i th this eigen mode inside the slit, 

the energy is highly localized inside the slit, and the reflectance is low. We 

call the standing wave inside the slit a waveguide mode. 

The above discussion is verified by the RCWA results. The RCWA results 

indicate that there is only one mode that can propagates along the z direction 

wi thout significant loss, which is the dominat ing mode. For the Hy field inside 

the slit, the bo t tom is an antinode and the open end is a node, as i l lustrated 

in the lower panel of Fig. 8.9(b). 

I f the dominat ing eigen mode of the slit does not interact w i th the outside 

environment, the waveguide mode is independent of the incident angle, which 

results in a low reflectance flat band in the contour plot of the zeroth order 

reflectance. However, in both experimental and RCWA results (see Fig. 8.6)， 

the low reflectance bands are not flat and arc often separated by the SP dis-

persion relation lines. Here, we prove that the warp and separation are due to 

the interaction w i th SP modes. 

Figure 8.10 shows the near field pattern of Hy at Point 1 in Fig. 8.7. Point 

1 has an incident angle of 10° and a wavelength of 1044 nm. The wavelengths 

of Points 1 and 2 differ by about 100 nm, however, the intensity distr ibut ion 

of Hy inside the^'slit are quite similar. For both cases, the fields inside the slit 

show the character of a standing wave, w i th the wavelengths roughly equal 

4 /3 of the slit depth. Thus, we can conclude that Points 1 and 2 belong to the 

same waveguide mode. The regions where these two points lie are related to the 

mixing of a flat waveguide mode and a dispersive SP mode. After mixing, these 
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two dispersion relations repel each other, result ing in a wavelength difference 

between Points 1 and 2. 

to^eoo 
X(nm) 

Figure 8.10: Near field pat tern of Hy at Point 1 in Fig. 8.7. 

Besides the waveguide mode for Points 1 and 2, there are three segments 

of flat band located at around A = 600 nm, and they are separated by the SP 

dispersion relat ion lines. Points 3 and 4 in Fig. 8.7 are two points locatod on 

these segments. The coordinates of Points 3 and 4 are {6 = 5°, A = 580 nm) 

and {0 — 36°, A = 646 nm) , respectively. The i r wavelengths differ by 6G run. 

The near field pat tern of Hy at Points 3 and 4 are shown in Fig. 8.11. Similar 

to the previous results of Points 1 and 2，the standing waves inside the slits 

belong to the same waveguide mode, w i t h the wavelength being roughly 4 /5 

of the depth of the sl i t . Due to the mix ing w i t h the SP mode, th is waveguide 

mode is separated in to three parts and is no longer flat. 

Sample 1 has a smaller sl i t depth as Sample 2. For the wavelength range 

under consideration, there is only one waveguide mode. We take a point w i t h 

incident angle 38° and wavelength 721 nm to show the near field pattern. The 

intensity of the Hy field inside and at the surface of the grat ing is shown in 

Fig. 8.12. A standing wave w i t h wavelength of about 4 / 3 of the sl i t depth 
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(a) Point 3 

Figure 8.11: Near filed pattern of Hy at 

panel) in Fig. 8.7. 

(b) Point 4 

Point 3 (left panel) and Point 4 (right 

is observed inside the slits. The waveguide mode also couples w i th the SP 

mode, and i t shifts to the longer wavelength side at small incident angles (see 

Fig. 8.5). 

8.5 Summary 

III this chaptcr, we introduced the fabrication of one-dimensional metallic grat-

ing by using interference' l i thograph and sputter ing techniques. We studied and 

measured the zeroth order reflectance of two samples . Results of numerical 

calculations are in good agreement w i th experimental data. The phenom-

ena related to the Wood's anomaly are shown by measuring and calculating 

the efficiencies of all allowed diffraction orders. The near field pattern shows 

that the low reflectance flat bands are related to the excitation of waveguide 

modes. Both experimental and numerical results indicate a coupling between 

the waveguide mode and SP mode. 
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Figure 8.12: Near filed pat tern of Hy for Sample 1, at an incident angle of 38' 

and a wavelength of 721 nm. 
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Chapter 9 

Controlling enhanced transmission 

through semiconductor gratings 

with subwavelength slits by a 

magnetic field 

In this chapter, we exploit the change in the dielectric constant tensor of a con-

ductor by a static magnetic field as a handle to control enhanced transmission 

in a semiconductor grating. Numerically, results of Rigorous Coupled-Wave 

Analysis (RCWA) incorporating the tensorial dielectric constant reveal that 

the zcroth-ordor transmission peaks at normal incidcnce can bo shifted by 

about 15% to longer wavelengths and the peak values of transmission readily 
«• • 

doubled when a moderate magnetic field is applied. Analyt ical ly, a single-

mode theory incorporat ing anisotropy is developed and results are in quantita-

tive agreement w i th RCWA^ indicating that the tuuabi l i ty in the transmission 

steins from the waveguide mode. This chapter is based on Ref. [101 . 

151 
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9.1 Introduction 

The phenomenon of enhanced transmission through patterned metall ic fi lms 

w i th subwavelength holes has triggered intensive research interest since its 

discovery [15]. The physical mechanism is generally regarded to be related to 

surface plasmon (SP) excitations [102], and the new area called plasmonics 

19, 103] has flourished. The advancement has opened up excit ing possibilities 

such as enhanced spectroscopy, high-resolution microscopy and sensing, and 

better l ight sources, jus t to name a few [19，103, 104，18]. Metal l ic gratings w i th 

subwavelength slits, in which the slits show periodici ty in one dimension, show 

similar phenomena in transmission [96, 105，106]. In addi t ion to SP resonance, 

the one-dimcnsional structure allows waveguide resonance to play a crucial 

role in transmission through a thick metall ic grat ing (105, 106, 107]. In this 

mechanism, the slits behave as open Fabry-Perot resonant cavities that channel 

the incident electromagnetic (EM) waves through the grat ing [108, 109]. This 

ii iechanisiii is part icular ly impor tant in metall ic gratings in that there exists 

propagating waveguide mode w i th a vanishing cutoff frequency, while such a 

mode is absent in metal l ic films patterned w i th an array of holes. To make 

use of the enhanced transmission, i t w i l l be very useful i f one can control the 

transmission through a grat ing and the frequencies at which the transmission 

peaks, w i thout having to fabricate another grat ing using different slit widths, 

thicknesses, and /o r different materials. There have been many attempts, and 

the main idea is to t r y to manipulate the dielectric constants in the system. For 

example, one could put an anisotropic material such as a l iquid crystal into the 

slits [110) and tunc the anisotropy and thus tho diolcctric constant tensor by 

aligning the directors by an external field [110，111). Enhanced transmission in 

the T H z frequency range has also been observed in semicoriductgrs patterned 

w i th an array of subwavelength holes [112，113). The dielectric constant of 

semiconductors depends on the carrier concentration through the bulk plasma 
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frequency and the transmission can be varied thermally [114, 113]. Similarly, 

in metall ic gratings fabricated on a substrate of n- type GaAs, one can change 

the dielectric constant and thus the transmission by varying the doping in the 

substrate |115] and/or by varying a bias voltage |116, 117 . 

Here, we study the transmission of T M polarized E M wave through a 

seiriicoriductiiig grat ing in the presence of a static magnetic field applied par-

allel to the slits. Whi le most previous works introduce an anisotropic material 

into the slits, we exploit the anisotropy in the material forming the grating in 

the presence of a static magnetic field as a handle in control l ing transmission. 

The physics is that the dielectric constant of a conductor becomes a tensor 

and thus anisotropic when a magnetic field is applied. For metals, the change 

in the dielectric constant by a magnetic field is t iny due to the dominance of 

the bulk plasma frequency over the cyclotron frequency. For semiconductors, 

the carrier concentration and the bulk plasma frequency are much lower than 

that in metals and a moderate magnetic field could load to an appreciable 

change in the elements of the dielectric constant tensor. Accompanying wi th 

the use of semiconductor in the grating is that the frequency range of interest 

is shifted towards T H z or lower, depending on the temperature and doping. 

Interestingly, this range is of great interest for civi l ian applications as well 

as those related to national security [118]. Whi le the shift of the transmission 

peaks by a magnetic field in a semiconductor grat ing has recently been studied 

numerically by Hu et ai [119], these authors ignored the effects of damping 

and did not take ful l account of the tensorial nature of the dielectric constant, 

and thus they missed the effects of the magnetic field on the magnitude of 

transmission. In this chapter, we study the transmission both numerically and 

analytically. Using the method of Rigorous Coupled-wave Analysis (RCWA) 

generalized to treat media of tensorial dielectric constants, we show that both 

the transmission and the wavelengths at which the transmission peaks can be 

tuned over an appreciable range by a magnetic field of strength that is readily 
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Layer 3 

Layer 

2 

Layer 2 ^ 

B field 

X 

L 

Figure 9.1: Schematic diagram showing a semiconductor grat ing of period 

L, thicknoss d, and slit w id th w. The tensorial dielectric constant is duo to 

an external magnetic field BQI) applied in the direction parallel to the slits. 

The slits arc filled w i th a medium wi th a scalar dielcctric constant t i and the 

media on both sides have scalar dielectric constants Ch. Here, 6 is the angle of 

incidence of a T M polarized electromagnetic wave. 

attainable in a laboratory. Analyt ical ly, we explain the tunabi l i ty in the trans-

mission by developing a single-mode theory based on waveguide resonance and 

accounted for anisotropy. 

9.2 The system and numerical results 

Figure 9.1 shows schematically the system we propose to study. I t consists 

of a semiconductor grat ing of thickness d, period L, and slit w id th w. The 

separation between adjacent slits is much larger than the skin depth in the 

relevant frequency range and the grating is thick in the sense that E M waves 

in the frequency range of interest cannot penetrate through. A static magnetic 

field B = Boy is applied to the grating in the direction parallel to the slits (see 

Fig. 9.1). The dielectric constants on both sides of the grat ing are assumed 

to be identical and taken to be a scalar th and that inside the slit is a scalar 
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both independent of BQ. For a semiconductor, the charge carriers lead to a 

dielectric constant of the Drude form in the absence of a magnetic field [120 

爹 h - ； ： ^ ， （9.1) 

where too is the dielectric constant at high frequencies, ujp is the plasma fre-

quency and F is a clamping constant. For BQ + 0, the semiconductor develops 

a tensorial dielcctr ic constant ^ given by [121，90 

u)= 

'̂ P 1 n J^l if 

0 ^ o o - ；： ^ 0 

‘ • 0 u;2+iru； 1-/2 ^ W +̂iPu； W ^ / 

(丄 0 -IS 

0 6 丨丨 0 

iS 0 £丄 

、 (9.2) ‘ 

where / = ⑷ + 幻 w i t h cjc = being the cyclotron frequency. Here, 

—e and m* are the electron charge and carrier effective mass, respectively. 

For tensorial dielectric constant takes on the form of the independence 

of the T E and T M polarizations preserves. Here we are interested in the 

transmission of T M polarized E M waves. For a semiconductor, hup is typical ly 

10一4 that of a metal and its value depends on the carrier concentrations and 

thus on doping and the temperature. Th is has the impor tant consequoncc that 

a readily at ta inable BQ (e.g., < 1 T ) is sufficient to cause significant deviations 

of c 丄 f rom 6II and S f rom zero. Th is sensit ivi ty of TF on BQ leads to a tunable 

transmission. • 

To i l lustrate the tunab i l i ty and the enhancement in transmission in the 

presence of a moderate magnetic field, we calculate the transmission in an InSb 

grat ing using the exact method of R C W A generalized to treat anisotropic me-

dia [87’ 90]. As a model system, we take L = 2 mm, w = 0.2 mm, and thick-

ness d = 4 mm. The dielectric constant tensor of undoped InSb can be eval-

uated by the reported parameters [122]: e^o = 15.68, hujp = 5.525 x 10"^ eV, 

h r = 2.235 X 10一4 eV. These values were obtained by detailed experiments 
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Figure 9.2: The zoroth order transmission at normal incidcncr. <us a function 

of incident wavelength for three different values of the magnetic field BQ — 0, 

0.20 T and 0.33 T . Results obtained by RCWA (solid linos) and singU^modr 

theory (Eq.(9.45)) (dashed lines) are shown for comparison. 

at a temperature of 80 K . We iissuine the media on the two sides of the grat-

ing and i l l the sl i l are identical wi th c^ = f ] — 1. For incident wavelengths 

in vacuum that range from A = 3 mm to 20 mm, which are larger than the 

slit width, the corresponding frequencies are slightly below the THz raiigo. 

Figure 9.2 shows the zeroth order transmission TQ at normal incidence as a 

function of the wavelength, for BQ = 0 T , 0.20 T and 0.33 T . The key features 

arc: 

• There arc throe transmission peaks in tho range of A considorncl. 

• A s Bo increases, each peak shifts to longer wavelength and the peak value 

of To increases. 

• The shifts aiicl eiil ianceiiiciits arc both substantial w i th AA 〜 1 1 % to 

19% of the wavelength that To peaks at " o = 0 and the peak values of 

To could readily be doubled by a moderate Bo. 

RCWA 
Single-mode 

^ ^ B = 0.33T 
B = 0.20T 

气=0 
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X 

Region I Region I I Region I I I 

q W 
w w 

—i 2 , 

Figure 9.3: A zooin-in picture of a slit. Regions I and I I I are semiconductor. 

The two regions are separated by a slit (Region I I ) that occupies —w/2 < x < 

w/2. 

Our system thus provicias a simple way to control both the magnitude and 

Wciv(»leiigth of peak transinissions. Wo have checked that at room tt;niperature, 

for which the dielcctric constant tensor of InSb can he estimated | l 13), these 

key features persist and the frequency range shifts into the THz range. 

9.3 Single mode approximation 

The features of the R C W A results are tractable analyt ical ly, by developing a 

single-mode theory. The single-mode theory cissuinos that the field inside the 

slit is sufficiently well described by the fundamental mode. This assumption 

is valid i f there is only one nonevanescent propagating mode in the silt [123 • 

We wi l l show the analyt ic approach in this section. 
f 

9.3.1 The propagating mode inside the slits 

To find the eigen mode of the propagation mode in the sl i t , we only need 

to consider one period of the grat ing w i th the sl i t centered at x = 0. Tho 

two adjacent semiconductor blocks (Regions I and I I I ) are separated by a slit 

(Region I I ) that occupies —w/2 < x < w/2. Figure 9.3 shows the pattern 
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schematically. 

For T M polarized wave, the H and E fields in cach r(’gion ran in goiu'ral 

be wr i t ten as 

H �( r ’ 0 = Hi-'^yexp[i(kaja: + ky.z) - lut], 
I (9.3) 

E ⑴ ( r ’ f ) = (E^J^x + Ei'^z)Qxpli(kajX + k-(jz) - lut] ’ 

wi th j = 1，2，and 3 denoting Regions I, I I and I I I . K = 2TX/\ is the wave vector 

i l l vacuum, ka�and krfj are the x and 2 components of k in Region j. The IJy 

field should be continuous at the two interfaces for any :，which requires the 

2-coii iponenl of the wavcvector to be the same in the t l ircc regions, = 7 for 

j = 1，2, and 3. 

In Regions I and I I I , by subst i tu t ing Eqs. (9.2) and (9.3) into t l i r Maxwell 's 

equations Eqs. (7.1) and (7.2), the relations between IIy, Ej., and E： can be 

wr i t ten in a matr ix form 

To get a non-t r iv ia l solution, the determinant of the above mat r ix should bo 

zero, thus 

—e± iS V 
iS f丄 二（). (9.4) 

—7 fv , .EJ 

土 f 丄 

Following a simi lar ly procedure, for Region I I , 

Or； 土 \ A i - r (9.(i) 

The square roots of Eqs. (9.5) and (9.6) are chosen to give a positive imaginary 

part. 

The relation between E, and Hy in Regions I and I I I can he extracted 

troi i i Eq.(9.4) as 

c 丄 - i S 

iS £1 / \ E , 

"A 

7 / / 

土 

(U.7) 
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Thus for Regions I and I I I 

匕 z = 2 ^ " y 
( 丄 ( 9 . 8 ) 

= [ Z , 士 Z讽， 

where Z i = - J ^ ^ , and Z<i - ，] Similarly, for Region 
— -

I I , 

(9.9) 

= ， 

where Z i = — 

Now we can wri te down the general forms of the I ly and E： fields in each 

region. In Region I I ’ 

二 丨 C e + (9.10) 

z) = ZalCe'*^"-^^ - . (9.11) 

In Regions I and I I I , the fields decay into the semiconductor from the interfaces. 

For Region I w i th x < —w/2, 

= ， (y.12) 

z ) = ( Z x - . ( 9 . 1 3 ) 

For Region I I I w i th x > w/2, 

= ’ (9.14) 

z) = (Z i + Z2)fV*^。3+(i-"/2)e.h2 . (9.15) 

The boundary conditions require that the tangential components Ily and 

E： be continuous at the interfaces. Matching boundary coiulit ioi is at x -

-xu/2 gives 

A = C e T 山 + p^-rka-w/2 ’ (9.16) 

(Z i - Z2)A = — • (9.17) 
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At RR = IL;/2, we have 

F = + 严 W 2 ’ (9.18) 

(Z i + Z2)F = _ Q^ika, (9.19) 

Combining Eqs. (9.16)-(9.19) and using the fact that a j — — a j we get 

(Z i - Z 2 - = - { Z i - Z 2 + Z3)4>+D， (9.20) 

{Z i + Z2 - = " ( Z i + Z i \ Z3)<I)一D， （9.21) 

where 中 = By eliminating C and D�we obtain a transcondental 

equation for the propagation constant 7 , 

(^+2 _ 4 , - 2 2Z2Z3 

The exact form is 

z t a — v / T T T ^ ⑷ 二 《 (丄 i Q , ( (广 2 ) ] : , 

(9.22) 

(9.23) 

Note that c i and S depend on BQ through cJc, and 7 can thus be tuned by 

Bo. To test our single-mode approach, we compare the complex 7 obtained 

by numerically solving Eq.(9.23) (dotted lines) and by the exact RCWA (solid 

linos) for a range of A and throe values of BQ in Fig. 9.4. The results arc 

in excellent agreement, implying that our single-mode theory captures the 

essential physics. 

9.3.2 The zeroth order transmittance 

We proceed to obtain an analytic expression for the transmittance. 

The general solutions of the H field in Layers 1 and 3 (see Fig. 9.1) can 

be expressed as Rayleigh expansions, 

//乂)（2：’ z) = cxp(iA:a;„a: + ik^n^) + r„exp(iA:i„x - ik^n^)]， 

“ (9.24) 
//广(1，z) ^ ^ t n exp[zA:x„x + ik^uiz - d)], ‘ 



Chapter 9. Controlling enhanced transmission through seimconductor graf.tngs 
with suhwavc.lc.ngth slits by a mafpietic field 15(i 

Figure 9.4: Real and imaginary parts of the propagation constant 7 for incident 

wavelengths from 3 m m to 20 mm and BQ = 0，0.20 T and 0.33 T . Results 

obtained by R C W A (solid lines) and single-mode theory (Eq.(9.23)) (dashed 

lines) arc shown for comparison. 

where r „ is the n - t h order reflectance (transmittance) coefficient. The 

n - t h order x and z components of the wavevector are = k y / ^ s u i O + 乎， 

and kzn = y/k'^e^ 一 = kyjch - {y/^sinO警尸. 

For Layer 2, we consider the fundamental mode only. The z-component 

of the wavevector k'̂  = k'y, w i th the coefficient 7 solved from Eq.(9.23). The 

x-component of the wavevector is = \ J — k ^ . The general form of the 

H- f ie ld inside the sl i t is 

z) = exp(zA:;x + ik'.z) + A-exp{-ik'^x - ik',{z - d) (9.25) 

The general form of the E : field in each layer can also be wr i t ten down 

k. 
= ^ -jf^lSno^^piifCxnX + i/^zn:) _ rnexp(zA:i„x - ih^nz)] ’ 

k： 
z) = f [>!+ exp(iA:;:c + ik'.z) - A- exp(-ik'^x 一 ik丨入z - d)) 

= ^ exp[ik^x + 一 d) 

(9.26) 
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The t ransmit tance and reflectance can be obtained by matching boundary 

conditions. The procedure is quite standard, here we mainly follow Rcf. |90 . 

The boundary condit ions are that E : and Hy are continuous at the 2 = 0 

and z — d interfaces. The semiconductor surface can be treated as perfect 

conductor, thus E : should be zero at the semiconductor surface. 

Let the Ex field be continuous at 2 = 0, which leads to 

k[ 
kei _ ’ I I I < 

<
/
 

f
 

where 中= Q X \ ) ( i k ' ^ d ) . Mu l t i p l y i ng both sides by Qxp{-ikxrni) and 

over a period f rom x = 一 L / 2 to C/2, the equation becomes 

5mO 一 = ZmlA-'Si-k.m + K) 一 ̂ A'Si-k.m 一 K 

where 

Z r r ,= 

w 
2 ' 

w < \、 
(9.27) 

integrat ing 

(9.28) 

L f^zm^l 
and 

•” 2 

(9.29) 

(9.30) S ⑷ = 丄 工 = 丄 s i n ( S ) . 
w J_u> sw \ 2 J 

a 

Following a simi lar procedure, the cont inui ty of Ex at the upper interface z — d 

leads to 

tm = + K) - A-S(-k,m " A:；)) . (9.31) 

I f the sui i i i i iat io i is in Eqs. (9.24) and (9.2G) are taken t o sum over a f inite 

range n = —•/V，…,0, • • • , N, then there are a tota l of 4N + 4 unknowns: 

A~, and 2N + 1 for each of and Equations (9.28) and (9.31) represent 

4yV + 2 condit ions. To solve the problem, we need two more condit ions, which 

can be obtained by considering the cont inui ty of Hy at the two interfaces. A t 

2 = 0 and -w/2 < x < it;/2, 

^ ( S n o + = + e—,矢；工. （9 .32 ) 



Chapter 9. Controlling enhanced transmission through seimconductor graf.tngs 
with suhwavc.lc.ngth slits by a mafpietic field 15(i 

By expressing the functions at both sides in Fourier series over the domain 

-w/2 < X < w/2, and requiring each of the components of the two functions 

to be matched, vfjs get 

- d x 一 + 一 W 
n 

• w 

‘ “ (9.33) 
W J.HL 

2 

We only need one condit ion for this interface, so we take the m = 0 component 

only, i.e., 

T ( S n o + = + • (9.34) 

Apply ing the same argument on the z = d interface, the continuity of Hy leads 

to 

= + A-S{-k',) . (9.35) 
n 、 

Equations (9.28), (9.31)，(9.34), and (9.35) provide all the conditions re-

quired to solve the \ N + 4 unknowns. 

For convenience, we define 

and 

(9.36) 

(9.37) p 土 二 E 知土 • 

n 

Summing of both sides of Eq.(9.28) over m, we get 

Y^iSmO - rm)S{k,m) = - 少 一 • （9.38) 

rn 

Comparing this equation w i th Eq.(9.34), the r ^ term can be eliminated, i.e., 

+ + 一 p - ) 二 . (9.39) 

Similarly, by combining Eqs. (9.31) and (9.35)，wc have 

- p+) + A-S{-k'^){\ + p - ) = 0 • (9.40) 
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The coefficients A'^ and A~ can be solved by using Eqs. (9.39) and (9.40), 

> r = 

2(\+p-)S{k,o) 
(1 + p + ) ( l + P - ) - (1 - p + ) ( l -

2(p+ — 1 ) 取 0 )$ 

(1 + p + ) ( l + p - ) - (1 - p + ) ( l - p - ) 作 ( - A : 

(9.41) 

(9.42) 

Using Eq.(9.31), the zeroth order transmission coefficient to is found to be 

to = (9.43) 

For the system we concerned, I L I 《A, thus i t is reasonable to make the ap~ 

proxiniat ion tha t k':w 〜 0 . Under this approximation, Qn — Qn ~ Qn and 

p+ = p_ = p, Eq.(9.43) becomes 

4^0 explikyd) 
to = (1 + p ) 2 - (1 - p)2exp(2iA:7rf)， 

e^wy s inc^[kwly/ th sin 0 + n全 ) /2 
where p = E n 9n and = 

s i n ( i ) / x . 

The zeroth order transmission efficiency is 

(9.44) 

，w i t h s i i i c ( x ) = 

T o -
4^0 (iXY){iky(l) 

( 1 - f p ) 2 - ( l - p ) 2 e x p ( 2 t A : 7 d ) 
(9.45) 

The results of To (A) calculated from Eq.(9.45) are also shown in Fig. 9.2. 

They agree very well w i t h R C W A results, except for a slight overestimation at 

short wavelengths. The theory captures both the shifts and enhancements in 

the transmittance peaks. From Eq.^9.45), the positions (wavelengths) of the 
s 

peaks can be estimated by the Fabry-Perot condit ion 

1 一： 
2Arg 

1 
+ 2A:Re 7 d = 2n7r (9.46) 

where n is an integer. As BQ increases, p and 7 vary and the peaks shift . By 

numerical calculations using Eq.(9.45) on our model system for BQ increases 

from 0 to 0.33 T , the values of TQ are found to enhance by 92% to 132% foi： 

the three peaks and the shifts in the wavelength of the peaks A A / A range 
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from 11% to 19%. These values agree well w i th RCWA results and show that 

the trai isinit tai ice can be significantly controlled by varying BQ over a range 

accessible in laboratories. 

Ir 

9.4 Summary 
« 

In summary, we studiod a semiconductor grating w i th a static magnetic fiold 

applied parallel to the slits both numerically and analytically. Incorporating 

the tcnsorial diclcctric constant of the grating material and ciaiiipiiig in RCWA 

calculations, the transmission and the wavelengths at which the transmission 

peaks show significant changes when a moderate magnetic field is applied. 

A single-mode theory that incorporates the anisotropy in the grating mate-

rial was developed and results on the propagation constant and transmittance 

were in good agreement w i th RCWA results, indicating that the tunabi l i ty in 

transmission stems from the waveguide mode. The properties of tunabi l i ty 

and analytical ly tractable make the system useful for designing devices that 

rely on control l ing E M wave transmission near the T H z range. 



Chapter 10 

Summary 

This thesis contains two independent parts. The first part (Chapters 1-5) 

focuses on the emergence of cooperative behavior in networked entities. The 

second part (Chapters 6-9) focuses on the optical properties of one-dirnensional 

metallic gratings. 

To provide the necessary backgrounds for the first part, we reviewed the 

basic properties of evolutionary games and networks. We introduced the gen-

oral properties of two-strategy games, including fitness, Nash equil ibrium, and 

evolutionarily stable strategy. We then reviewed the two most studied two~s-

tratcgy games — the prisoner's di lci i i ina (PD) and the snowdrift game (SG). 

For networks, we introduced the concepts of several important properties, in-

cluding the degree distr ibut ion, the clustering coefficient and the shortest patl i 

length. The random graph and the Barab如 i -Albert scale-free network are then 

reviewed. 

We studied the infinitely iterative prisoner's dilemmas in the ful l payoff 

space. I t was found that the existence of a Ti t - for- tat- l ike strategy E r r r and 

an Always-defecting-like strategy EAUD are crucial for the system to evolve to 

a state that is dominated by generous strategies at equil ibrium. By carrying 

out detailed numerical and analytical investigations, the roles played by ETFT 

and EAUP were examined. The strategy EAUD could replace many strategics 
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for any payoff value. However, for a large range of payoff values, i t can be 

caiiily taken over by ETFT- This proccss leads to the cioiiiiiiaricc of generous 

strategies at these payoff values. 

Wc then studied the snowdrift gainc, which is regarded as aii important 

alternative to PD. Previous studies found that there are phase transitions in 

' the spatial snowdrift game. We explained the phase transitions by invoking 

the idea of comparing the payoffs to C and D players in the last surviving 

patterns. We should notice that phase transitions are common for SG-like 

games played on network structures. Thus, the idea we developed here can be 

extended to future studies on the emergent behavior in other games. 

Previous studies on the evolutionary games were mainly focus on two-s-

trategy games. However, examples of multi-agent interactions are abundant 

in reality. To model these interactions, we proposed the TV-person snowdrift 

game (NPSG), which is a multi-person version of the classical two-person SG. 

The NPSG played in a woll-mixod population was studied both analytically 

and numerically. We then studied NPSG on lattices numerically . Compared 

wi th the woll- i i i ixcd case, the cooperation frequency is suppressed when NPSG 

is played on lattices. We developed an analytic theory by focusing on the local 

configurations consisting of a ccntral site and its nearest neighbors. The iho-

ory works well for I D chain, and discrepancies are found in higher dimensions, 

suggesting that a theory that includes larger spatial correlation is needed. 

Unt i l here, the games are played on static networks, i.e., the network 

structure remains unchanged as the game dynamics evolves. In many real 

systems, the relation between agents often co-evolves wi th the interactions 

between them. Inspired by this fact, we used the snowdrift game as a tool to 

study the co-evolving of networks and game dynamics. A model was proposed. 

By carrying out numerical simulations, i t was found that the frequency of 

cooperation is promoted, compared w i th SG played on static networks wi th 

the same mean degree. A semi-analytic approach was then proposed, w i th the 
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results in quali tat ive agreement w i th simulation results. 

The second part focuses mainly on studying the optical properties of 

metallic and semiconducting gratings. We first studied the surface plasmon 

(SP) dispersion relations in a system consisting of a th in metallic f i lm sand-

wiched between a linear dielectric and a nonlinear dielectric. Exact expressions 

wore derived, and the dcpciidciicc of the SP dispersion relations on f i lm thick-

nesses and nonlinearity were discussed. The main idea here is that we can 

change the dielectric constant of a nonlinear medium, and thus the SP disper-

sion relations, by tuning the strength of the electric field at the rnetal/nonli i iear 

dielectric interface. We also studied the SP dispersion relations in a system 

consists of a th in metall ic film in a symmetric nonlinear dielectric environment. 

The Wood's anomaly, surface plasmon excitation and waveguide modes 

are characteristic features of one-dimensional reflection gratings under T M po-

larization. These effects were studied on two grating samples, using the Rig-

orous Coupled-Wave Analysis (RCWA) method. The phenomenon of Wood's 

anomaly was studied by measuring and computing the diffraction efficiency of 

different orders. The factors related to the existence of waveguide modes were; 

studied by near-field patterns. Coupling between waveguide modes and SP 

excitations was also observed. 

We also carried out numerical and theoretical studies on controllable en-

hanced traiisii i ission in semiconductor gratings. Incorporating t l ie teiisoiial 

dielectric constant of a semiconductor in the presence of a magnetic field into 

RCWA calculations, we found that the transmission peaks can shift to longer 

wavelengths and the peak values of transmission can be largely enhanced when 

a moderate magnetic field is applied parallel to the slits. Moreover, this effect 

can be analytically studied by developing a single-mode theory. The properties 

of tunabi j i ty and analyt ical ly tractable make the system usefial for designing 

devices that rely on control l ing E M wave transmission near the THz range. 



Appendix A 

Development of Friendship Network 

Among Young Scientists in an 

International Summer School 

A total of 49 students, about half of them male, from various countries and 4 

student helpers attended the 2008 China Complex Systems Summer School or-

ganized by the Santa Fe Inst i tute and the Chinese Academy of Sciences held in 

Beijing. We studied the development of the social network among these partic-

ipants dur ing the School, which lasted for 4 weeks, by carrying out surveys at 

different times of the School. The students got to know each other through var-

ious activit ies, including being roommates, eating together everyday, attending 

lectures, doing group projects, sight-seeing visits, etc. The topological struc-

tures and various properties of the network are discussed. The results indicate 

how the part icipants bocamo friends as t ime went by. By considering the corre-

lations between reciprocal evaluations via the Pearson's correlation coefficient, 
/ 

i t is found that, the ethnici ty and gender arc important factors in cstablishir>g 

personal relationships and in gett ing mutual ly consistent perceptions on the 

relationships. We also study the cliquc components and community structures 
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in the networks. Th is work has been published in Ref. [124 

A.1 Introduction 

There has been much interest in s tudying the format ion and dovolopmont of 

social networks in the real wor ld [1, 23). As early as the 1920,s and 30's, Moreno 

studiod the format ion of acquaintance groups 1125). "Other studies on various 

kinds of social networks then followed, among them the most wel l-known is 

probably the experiment revealing the ‘ ‘Six Degrees of Separation" carriod 

out by M i lg ram in 1965 [5]. In this pioneering s tudy in experimental social 

sciences, the part ic ipants were asked to pass a letter to an assigned targeted 

person in Boston by forwarding i t to one of their acquaintances whom they 

thought would be closer to the addressee. One should, however, note that 

in the early days, in format ion regarding social networks was usually gathered 

by surveys. W i t h the avai labi l i ty of large databases in recent years, studies 

on latge social networks have been carried out w i thou t doing surveys, e.g., the 

network on col laborat ions among scientists [126] and among workers in the film 

industry [26], and fr iendship networks in schools [127，128, 129]. Alongside the 

studies on social networks are the extensive works on the nonsocial networks 

revealed in the contexts of in format ion scicnce [130, 4，131, 8], and in biological 

systems [7]. The degree correlat ion of these two types of networks has been 

discussed [132].^ These works have led to the developments in techniques in 
p 

analyzing complex networks. For example, algori thms (133, 134, 135, 136) were 

developed to look for the communit ies or sub-structurcs in social and biological 

ne tworks . . 

In the present work, wo s tudy the format ion and dcvelopii iei i t of the friend-

ship network among the student part ic ipants and student helpers in the Santa 
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Fe Complex Systems Summer School 2008 held in Beijing, China. They com-

prise a group of young students in science and engineering from different coun-

tries, and they have different mother tongues. They got to know each other 

through various activit ies dur ing the school. In three surveys carried out at 

different times in the school, participants were asked to indicate how well they 

knew eacli other. From the data, we study the change in the friendship network 

as t ime proceeds, the correlation of the evaluations between two participants, 

and the community structures. I t is found that the ethnicity, probably due to 

convenience in communications in terms of languages, and gender are impor-

tant factors in friendship network formation among the participants. We also 

use the data to explore the community structure in the network and how it 

changes w i th t ime. 

A.2 The surveyed group in Santa Fe CSSS2008 

The 2008 China Complex Systems Summer School (CSSS2008) was co-spon-

sored by the Santa Fe Inst i tute and the Inst i tute of Theoretical Physics at the 

Chinese Academy of Sciences. I t was held in Beij ing between 30 June and 

25 July 2008. The School enrolled 49 students, among them 26 students are 

of Chinese nat ional i ty (14 males, 12 females) and 23 arc "foreign" students 

(11 males, 12 females). The word "foreign" is used here w i th reference to 

the venue of the School and thus participants w i th noii-Chiiiesc nationality 

are counted as " foreign". Most Chinese students attended a one-week English 

t ra in ing course prior to the commencement of the school. Thus, those who 

attended the English t ra in ing course met each other sl ightly earlier than they 

met the other participants. Among the 23 foreign students, about half of them 

came from the USA and the others were from Argentina, South Korea, India, 

Singapore and countries in the European Union. Dur ing the school, two stu-

dents were assigned to one dormi tory room, w i th one student from mainland 
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China and one from overseas. In addit ion, there were four student helpers 

from the Inst i tute of Theoretical Physics at the Chinese Academy of Sciciiccs. 

They lived and studied together w i th the participants dur ing the workshop. 

The participants and the student helpers attended 5 hours of loctiires per day 

and had meals together. The participants were required to carry out project 

work in groups of 3 to 7 students, and a group was designed to iiicludc both 

students from mainland China and elsewhere. Members in the same group had 

dinner together off-campus twice a week. Participants could also take part in 
秦 

various social activit ies in spare time, e.g., dancing and traveling. Most par-

ticipants did not know each other before the school. Their personal relations 

were developed dur ing the four weeks in the School. I t makes the Summer 

School a well defined system for investigating the development and evolution 

of friendship among a group of young science and engineering students. 

We collected the data on friendship among the participants and student 

helpers by carrying out three surveys at different times of the workshop. The 

first survey was oonducted in the second week (6-11 July) , the second survey 
/ 

during 13-18 July, and the th i rd survey on the last day (25 July) of the School. 

Since one student was i l l in the first week, the student was excluded from the 

survey. This left us w i th 52 nasnes, 48 students and 4 student helpers, on 

the questionnaire. Each of the 52 informants was asked to evaluate how well 

he/she got to know the other participants, by using a 5-level ranking from 

"very unfamil iar" (1) to ‘ 'very famil iar" (5). We intentionally d id not define a 

descriptor of each level, both because i t is diff icult to give a precise definit ion 

and friendship is most l l lcetys^mething of personal judgment. For each survey, 

we were able to receive 40-50 completed questionnaires; For someone who 

did not respond, the response on h i m / H ^ by other part icipants was used as 

his/her response. For simpl ici ty in displaying the network, we convert the data 

into undirected unweighted networks in the following discussion. I t should be 

noted that the data actually allows us to construct networks w i th directed 
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l inks. Here, we w i l l use the data to study the correlation between reciprocal 

evaluations, i.e., how close two part icipants rank each other's friendship. 

A.3 Basic properties of the networks 

To construct a network from the data, we use vertices (nodes) to represent 

tho part icipants and l inks to roprosont an established friendship between two 

participants. Consider two nodes i and j. We define the establishment of 

a l ink as follows. A l ink is established when part ic ipant i { j ) chosc ‘‘very 

famil iar" in his/her response towards part ic ipant j (i) and at the same t ime the 

part ic ipant j (z) chosc either "very famil iar" or " fa ln i l iar " in his/her response 

towards i ( j ) . In this way, a network is constructed f rom the data of each 

survey. The networks so formed in the three surveys are called Network 1, 

2, and 3，respectively. Figure A . l shows the topology of the three networks. 

The nodes are fixed in space in order to show the development of the three 

networks clearly. From the data, we have also calculated the average degree, 

the clustering coefficient, the average shortest path length and the diameter 

of the networks at different times. Results for these basic network properties 

are shown in Table A . l . These properties of the randomized version of the 

three networks are also listed for comparison. The randomized networks are 

constructed by keeping the degree of each node fixed while reshuffling the links 

137，138 . 
« 

The degree of a node is the number of edges stemming f rom the node. 

In the friendship network, ^ihc degree k gives the number pf friends of a node. 

Thus, {k) is the average number of friends per part ic ipant. Figure A.2 shows 

the degree distr ibut ions P{k) of the three networks. The dist r ibut ion, giving 

the fraction of nodes w i t h degree k, shows the spread in the degrees among 

the nodes. As the scHooi proceeded, the part icipants got to know each other 

better. Th is is reflected in the evolution of both (k) and The average 



Figure A . l : Topology of the friendship networks, Network 1, 2 and 3 (from left 

to r ight), formed at different times of the workshop. • : Non-Chinese females, 

:Non-Chinese males, • : Chinese females and • : Chinese males. Pajek is 

used to creatc the visualizations. 

number of friends increased from 9 in Network 1 (early in the School) to 18 in 

Network 3 (last day of School); and P{k) extended to the side of larger values 

of k, indicating the port ion of participants w i th a large number of friends also 

increased w i th t ime. 

.12 

0.08 

Network 1 
Network2 
NeMvork3 

15 25 35 

Figure A.2: Degree distr ibutions P{k) of the friendship networks, Network 1’ 

2 and 3, obtained at different times. The lines are just drawn to guide the eye. 

In social networks, i t is likely that your friend's friends are also your 

friends. This property is characterized by the clustering coefficien 

local clustering coefficient of the node i can be defined as Cj = 
hi{ki 一 1) 
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Table A . l : Basic properties of friendship networks and randomized networks 

at different times of the workshop. These properties i i icludc the clustering 

coefficient C, the average shortest path length L , the diameter D, the mod-

ulari ty Q and the average degree (k). Properties of randomized networks are 

averaged over 10 realizations. 

Network 1 Network 2 Network 3 

Real Randomized Real Randomized Real Randomized 

c 0.34 0.25 0.45 0.36 0.51 0.45 

L 2.08 1.99 1.76 1.74 1.66 1.64 

D 4 4 3 3 3 2.9 

Q 0.34 0.28 0.27 0.19 0.25 0.15 

w 9.23 14.58 18.31 

whore; ki is the degree of the node i and thus the number of its nearest neigh-

bors, and yVX is the number of triangles formed by the node i and its /c, 

neighbors. Thus, Ci measures the closeness of i 's nearest neighbors or friends. 

The clustering coefficient C of the network is the average of Ci over all nodes, 

. G . , C — 
N 

The values of C for the friendship networks are given in 

Table A . l . I t is found that the values of the clustering coefficient C increased 

as the school proceeded. This is reasonable as the participants became friends 

of each other. This effect is also reflected in the average length of the shortest 

path (27) and the diameter [23], which dropped as the School proceeded. 

A.4 Correlation between reciprocal evaluations 

The data allow us to study the reciprocal evaluations, i.e., how close the evalu-

ations of a part icipant i on others (or a group of other participants) are, when 

compared w i th the evaluations of the other participants on the part icipant i. 

Friendship is hard to quant i fy and very often i t is a matter of perception. For 



Chapter A. Development of Friendship Network Among Young Scientists in 
an International Summer School 176 

f 
example, you may not be the best friend of whom you regarded to be your 

best friend. Here, we study the correlation between reciprocal evaluations. In 
•I 

simple terras, consider the mutual evaluations between two participants i and 

j. I f the evaluation of i on j is identical to that of j oii t , then the correlation 

of reciprocal evaluations is perfect. However, if i evaluated j as “very famil iar" 

(or 5) and j evaluated i as ‘‘very unfamil iar" (or 1), then the correlation is 

opposite. To ful ly display the correlations of two-person reciprocal evaluations 

among all the 52 participants, we need a 52 x 52 matr ix for each survey. I t 

is thus more convenient to measure the correlations of evaluations between a 

participant i and a group G of participants, using the idea of the Pearson's 

correlation coefficient. The group may consist of all the other participants or 

a sub-group of participants. Let M be the number of participants in the group 

G. A part icipant i evaluates each of the members in group G and thus the 

evaluations form an array (a vector) x*'^ = { x j ' ^ } , where j = 1 , . . . ,Af and 

x j ' ^ is the evaluation on a member j in group G by part icipant i. Similarly, 

each of the Af members in group G evaluates the part icipant i and the eval-

uations also form an array (a vector) x^'* = {工严}’ where j = I,... ,Af and 

x^'* is the evaluation on the participant i by the mena^ber j in group G. The 

Pearson's correlation coefficient (PCC) that measures the correlation between 

a participant i and a group G of participants is given by 
i 

{ x f x f ' ) -
r ( i , g roup G) = , ， ( A . i ) 

^ { { [ x f Y ) - ( x f ) ? ) [ { { x f y ) - { x f -

where〈...> = •. The PCfc： so-definod falls into the range - 1 ^ 

r ^ 1, w i th r = 1 stands for perfect correlation and r = 0 stands for no 
A 

correlation. 
« 

Figure A.3 shows the values of the PCC of each part icipant against the 

group G consisting of al l other participants, f rom the data of the second survey. 

Two students did not respond in this survey, which left us 50 participants. To 
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Individual ID i 

Figure A.3: The Pearson's correlation coefficient of all informants in the sec-

ond survey. The participants are labeled by a number and grouped as NCF 

(Non-Chinese female), N C M (Non-Chinese male), CF (Chinese female), and 

C M (Chinese male). The dash line shows the average value of the correlation 

coefficient over all participants. 

display the results, we assigned a number (characterizing the identi ty) to each 

of the 50 participants. In doing the assignment, we intentionally grouped the 

participants into four groups: Non-Chinese females (NCF), Non-Chinese males 

(NCM) , Chinese females (CF), and Chinese males (CM). This grouping wi l l 

be useful for later discussion. From Fig. A.3, the PCC values are all positive, 

w i th a mean (dashed line) of about 0.6. The mean PCC in the survey carried 

out on the last day of the school is slightly higher. This positive correlation in 

the responses of the participants also justifies the construction of an undirected 

network as shown in Fig. A . l . 

Dur ing the School, we observed that participants in every sub-group 

(NCF, N C M , CF, C M ) tended to know each other better. To quanti fy this 

observation, we define 

Ar (z , group G') = r(i, group G') — r{i, group G). (A.2) 

Here the group G' = NCF, NCM, CF, CM. I f the part icipant i happens to 

belong to the group he/she is excluded from the group in evaluating r and 
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NCM CM NCM 

NCF … — C F 

CM 

Individual 101 

(a) Ar(i, Non-Chinese females) 

Indtvidual ID I 

(b) Ar{t, Non-Chinese males) 

Individual ID i 

(c) Ar(i, Chinese females) 

Individual 10 i 

(d) Ar(i, Chinese males) 

Figure A.4: Values of Ar(i，group G') as defined in Eq.(A.2) for every part ici-

pant i against different groups G' == (a) Non-Chinese females, (b) Non-Chinese 

males, (c) Chinese females, and (d) Chinese males. The values are shown for 

data collected in the second survey. The values for G' in the own group of the 

part ic ipant i are shown in red (squares), which are always positive. 

A r . The group G consists of al l the 49 part icipants, i.e., al l part ic ipants cxccpt 

the part ic ipant z, and thus r ( i , group G) is the quant i ty shown in Fig. A.3. I f 

the value of A r ( z , group G') is positive (negative), i t indicates that the cor-

relation in mutua l evaluations between the part ic ipant i and members in the 
J 

group G' is better (worse) than the correlation between the part ic ipant i and 

all the other part ic ipants. 

Figure A.4 shows the results of Ar (2 , group G') for all part icipants i against 

the four sub-groups G'�as obtained in the second survey. We have carried out 

NCM 

NCF 
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similar analyses for the other two surveys. From Fig. A.4, i t is clear that 

Ar(z , own group) is always positive, and i t is the case for all three surveys. 

The results show that participants belonging to the same ethnic group and the 

same sex can better evaluate the friendship among them. In contrast, there 

are consistently negative values of A r in some cases. For example, Fig. A.4(d) 

indicates that the correlation between nearly all iion-Chiiiese-inale participants 

and the Chinese-male participants is worse than the correlation of the same 

part icipant between all other participants. The results indicate that , given the 

short t ime frame of the Summer School, the group of Chinese-male participants 

did not do very well in making new friends outside their group. The same fea-

ture is observed for the Non-Chinese-female and Chinese-female participants, 

but they did sl ightly better than the Chinese-male participants. 

A.5 Community-like structures in friendship networks 

A general property of social networks is that they contain compact sub-graphs 

1]. The connections are dense wi th in these sub-graphs, and the connections 

between the sub-graphs are less dense. This is related to the possible com-

munity structure of the network. In Table A . l , compared w i th the random-

ized networks, the real networks have larger clustering coefficient and average 

shortest path length, indicat ing the existence of compact sub-graphs. To re-

veal those compact structures, we study the /c-clique components |139, 140 

and the community structures of social networks of CSSS2008. 

I l l grapli-thcorctical language, a A;-cliquc is a complete sub-graph corisist-

ing of k vertices in a graph. Two /c-cliques are said to be adjacent if they 

share (k — 1) vertices. For example, four nodes forming two triangles gives 

two adjacent 3-cliques. The social structure of a populat ion is reflected in the 

maximal sub-graph consisting of adjacent A:-cliques. Such maximal sub-graph 
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is referred to as the fc-clique percolation component. Finding the clique perco-

lation coii iponciits (CPC) in a network thus reveals how compact the groups 

of members are and the overlapping vertices. Since the links in the social net-

works wc discussed so far are too dense for f inding the /c-clique coiiipoiieiits, 

we increase the threshold for the establishment of links so as to construct a 

network w i th fewer links. For studying Ar-cliques, wc establish a l ink between 

two participants only if they chose “very famil iar" towards each other. Fig-

ure A.5(a) shows the 3-clique and 4-clique components in the social network 

constructed from data in the first survey (VF Network 1), and Fig. A.5(b) 

shows the 4-clique and 5-clique components in the social network constructed 

from the second survey ( V F Network 2). 

(a) The 3-clique (thin lines) and 

4-cliquc (thick lines) components 

based on data in the first survey (VF 

Network 1). 

(b) The .4-cliquc (thin lines) and 

5-clique (thick lines) components 

based on data in the second survey 

(VF Network 2). 

Figure A.5: The /c-clique components in networks constructed from data in the 

(a) first and (b) second survey. A l ink is drawn between two participants only 

when they ranked each other "very famil iar". Vertices co inected by links w i th 

the same color (grey scale) belong to the same clique percolation component. 

Red vertices are shared by two CPCs or above. 

There are interesting community structures in the results. The largest 
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cluster in Fig. A.5(a) (colored purple) is a group of Chinese students who 

rcccivcd the English t ra in ing course together pr ior to the School. They lived 

together for one more week, and the result was tha t they established a closer 

relationship among themselves. There were some projcct groups formed early 

in the school and pr ior to the first survey, and they formed the other clusters 

in Fig. A.5(a). In Fig. A.5(b) from the sccorid survey, the largest cluster 

st i l l constitutes the Chinese students, and there are more clusters fonned by 

project groups. In addi t ion to these two types of cluster, a Spanish-speaking 

cluster (colored in green) can also been seen clearly. Thus, our analysis on 

/c-clique components reveals that clusters of part ic ipants were formed as a 

result of languages (Chinese and Spanish speaking) and activit ies such as group 

projects. 

Part ic ipants in the school interacted through various activit ies. Among 

them, the most effective ones were the roommates and members in the same 

projcct group. In a way, part icipants wero forcod to interact, under those two 

situations. Thus, they tended to establish a stronger friendship. This is indeed 

the case f rom the survey data. In Network 2, about 80% of the part icipants es-

tablished connections w i t h other members in their project group, and over 90% 

established l inks w i t h their roommates. Besides interactions between room-

mates and project group members, there were other on-campus and off-campus 

activit ies that were meant to promote inter-personal relationships among the 

participants. These activit ies included having lunches and dinners together, 

visits to the Forbidden Palace and Olympic parks, and karaoke. By removing 

the l inks between roommates and members in a project group in Networks 1， 

2 and 3，we obta in the social networks driven by these activit ies. We labeled 

these networks as Ac t i v i t y Network 1，2 and 3. Figure A.6 shows the com-

muni ty structures of Ac t i v i t y Networks 2 and 3, respectively, after an analysis 

on the modular i ty Q. The hierarchical agglomeration a lgor i thm [135，136 I S 

used to detect communi ty structures in these act iv i ty networks by calculating 
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the values of the modular i ty Q unt i l Q reaches a maximum. For a commu-

nity inside the population, the value of Q is the difference between the actual 

fraction of edges inside the community and the expected fraction of edges that 

would fall inside the community if the links are randomly placed. By itcra-

tively calculating Q for different part i t ions of the system, a maximum Q is 

readied when the underlying coini i iui i i ty structure is selected. Upon rocicliing 

a maximum, we identify the participants who formed the communities and 

the results are shown in Fig. A.6. A higher value of Q indicates a stronger 

community structure in the network. The values of the modular i ty Q of the 

Act iv i ty Networks 1, 2 and 3 and their randomized versions are listed in Table 

A . l . 

Figure A.6: The community structures in Act iv i ty Network 2 (upper) and 

3 (lower). Symbols of different shapes (colors) are the nodes belonging to 

different groups. • : Non-Chinese females, : Non-Chinese males, • : Chinese 

females and • : Chinese males. Pajek is used to create the visualizations. 

The Ac t iv i t y Network 2 (see Fig. A.6) contains three communities - one 

that is dominated by Chinese, one by Non-Chinese, w i th a small community 

that serves as a bridge between the two bigger communities. In this bridging 
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community, there are three Chinese students. Among them, one is a student 

helper, another two are participants who are very wi l l ing to help both the 

Chinese and non-Chinese participants. There are another three non-Chinese 

participants in this bridging group. One is an Ai i icr ica-born Chinese and 

the other two are non-US and non-Europe participants. They served as a 

cul tural bridge between the two bigger groups. As t ime wont by, the bridging 

community disappeared in the data of the th i rd survey. The members merged 

into the two bigger communities, as shown in Ac t i v i t y Network 3. Together 

wi th this change are many more inter-community links, indicating that more 

members in the two bigger communities have become known to each other 

at the end of the School. The modular i ty Q was not too large for all the 

three act iv i ty networks, indicating the strength of the community structure 

was weak. The value of Q decreased as the School proceeded, and thus the 

community structure decayed w i th time. 
« 

A.6 Summary 

In summary, we studied the development of friendships among the participants 

in a recent Santa Fe Complex Systems Summer School held in Beijing. Three 

surveys woro carried out at different times of the School. The data thus re-

vealed the evolution of the friendship network as the participants got to know 

each other through various activities. The topological structures and the basic-

properties were discussed. We quantif ied the correlation between reciprocal 

evaluations by the Pearson's correlation coefficient. By grouping the partici-

pants based on their ethnici ty and sex, the results indicated that participants 

w i th in the same group were able to give very close mutual evaluations, while 

mutual evaluations for members in different groups were usually not very con-

sistent. This may be a result of the different cul tural backgrounds, social skills, 

and possibly language barriers among the participants in different groups. We 
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also studied the clique components and commuTfiity structures in the networks. 

I t was found that there was a small community of participants who served as 

a cul tural bridge between two big communities of different ethnic groups a t . 

the early part of the School. As t ime went by, there were more coiiiiectioiis 

between the two big communities and the bridging group disappeared. As the 

succcss of a school or an international event hinges much on how well the par-

ticipants mix, our results indicate that i t is crucial to have a group of helpers 

who can communicate w i th the participants of different backgrounds. 
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