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Abstract 

The purpose of this study is to investigate problematic areas that arise in 

biometrics and solve them. Two biometric technologies (fingerprint 

biometrics and voice biometrics) are addressed. 

Fast synthetic fingerprint image generation is introduced. An application of 

using synthetic images with predefined properties to evaluate fingerprint 

extraction algorithm is proposed. An optimization technique that speeds up 

fingerprint image generation is described in detail. Correlation between 

synthetic and real fingerprints is evaluated. 

Fingerprint matching algorithm that does not perform global registration and 

can match deformed fingerprints is described and evaluated. 

New speaker identification method is presented and multibiometrics using 

fingerprints and voice is analyzed. 

1 Introduction 

1.1 Research Area 

Biometric technologies are becoming very common in everyday life [1]. The 

use of distinctive and unique features that can identify a person (such as 

fingerprints, palm prints [2][3], face [31]], iris or voice) makes it possible to 

determine an identity of a person in easy and convenient way. Many 

countries integrate biometric features into the passports and identity cards. 

Biometrics is used at companies to track working time, identity is checked 

during elections to prevent multiple voting, at banks and in prisons to enforce 

security.  

The use of biometric technology grows every day and is forecasted to grow in 

coming years what makes biometrics a very attractive branch of science. The 

research area of this work is fingerprint and voice biometrics: fingerprint 
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image synthesis for fingerprint extraction algorithm performance evaluation, 

distortion tolerant fingerprint matching, and speaker recognition. 

1.2 Fingerprint biometrics 

Fingerprint recognition is used for more than a hundred years. It is the most 

used biometric today. The usage of fingerprints for person identification 

became popular In Europe after Henry Fauld noticed in 1880 that fingerprints 

are unique and can be used to identify a person. In 1888 Francis Galton 

described features that can be used to identify fingerprints. In 1900 Edward 

Henry proposed fingerprint classification into six classes. This classification 

system is known as Henry system. Fingerprints are used by law enforcement 

agencies from the beginning of the XX century. 

When fingerprints databases became large, manual identification became a 

difficult and problematic task. Starting from 1960 USA, Great Britain and 

France police departments and criminal investigation bureau were developing 

automatic fingerprint identification systems (AFIS). Nowadays AFIS is 

commonly used in law enforcement agencies around the world. Automatic 

fingerprint identification systems are also used in everyday life to enforce 

security in banks and in schools, to control access to computer accounts, and 

to track working time. 

Although automatic fingerprint identification is used for more than fifty years, 

this task is not completely solved so attention to this branch of science is still 

high. 

1.2.1 Fingerprint structure 

Fingerprint is a structure of a fingertip lines (ridges and valleys) they appear 

during the early development of body and does not change much through the 

whole life. Burns, scratches and other imperfection can make a fingerprint 

less readable, but in most cases it is still possible to identify a person. 
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Figure 1: Author’s fingerprint. 

1.2.2 Fingerprint acquisition 

Historically fingerprints were collected using ink and paper. A fingerprint was 

soaked in ink and pressed against a paper to get a plain fingerprint, or rolled 

on a paper from one side to another to get rolled fingerprint. Then a paper 

was scanned to get a digital image of a fingerprint. 

Fingertip has a sweat pores that constantly emit sweat and when a finger 

contacts other objects, thin film of sweat and fat is left on the surface of the 

object and represent a fingerprint that has left it. Such marks are collected by 

criminal investigators and used as an evidence of the crime scene. 

Such prints are called latent. Special chemicals are used to make them more 

evident, and digital photographs made. Latent fingerprints are often of poor 

quality and additional image processing is often performed before feature 

extraction. Most of the current civil and forensic biometric systems use 

fingerprint readers to obtain a fingerprint. Over the last decade, several 

companies released fingerprint scanners that provide good image quality, 

ease of use and attractive price  

Almost all of the current fingerprint readers can be divided into three 

categories: optical (measuring light reflection on the finger lines and the 

spaces between them), semiconductor (directly measuring the characteristics 
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of a finger) and ultrasound (measuring the duration of the echo signal). 

Although optical scanners are the oldest and most commonly used, 

semiconductor scanners are becoming increasingly popular because they are 

lightweight and small, can be installed in portable computers, mobile phones 

and other devices. 

Semiconductor readers by the principle of operation are divided into 

capacitive, thermal and piezoelectric. Ultrasound scanners are not yet widely 

used because of bigger size and larger price. Most fingerprint scanners 

provide a flat image, but there are scanners that provide rolled fingerprint 

image. Scanners for rolled fingerprints are used for large scale AFIS and they 

are much more expensive than plain fingerprint scanners. 

The most important fingerprint scanner specifications are resolution, scanning 

area and the number of colors. Minimal resolution in accordance with the 

requirements of the FBI is 500 pixels per inch. If the resolution is lower, it 

becomes difficult to extract small features of a fingerprint. Readers with less 

than 250 pixels per inch resolution are not used in practice. According to the 

FB requirements, the area of the scanned fingerprint must be larger than 1  

1 inches. Fingerprint color is not used in fingerprint recognition, so most 

fingerprint readers return gray-scale images. 

1.2.3 Fingerprint features 

Fingerprint image consists of lines (ridges and valleys) that go almost in 

parallel (Figure 1) Ridges sometimes split (bifurcate) into two or more ridges. 

Global patterns can be noticed in places where ridges are curved and change 

direction. Such areas of discontinuity are called singular points (Figure 2). 

There are three types of singular points [20]: core (ridge lines make a 180 

degree turnaround core point), delta (ridges from three directions and 

connect in one point called delta) and whorl (ridge lines make a 360 degree 

turn around whorl point). 
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Figure 2: Singular points. 

Figure 3: Minutiae points. 
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Local patterns can be noticed in places where ridge line bifurcates (splits into 

two ridges) terminates or connects. Such patterns are called minutiae points 

[21] (Figure 3). Line ends and bifurcations are the most used minutiae points. 

 

Figure 4: Types of minutiae points. 

Other types (Figure 4) are not so commonly accepted since it is harder to 

establish minutiae point type automatically.  

Minutiae points are described by   and   coordinates, angle between line 

direction and horizontal axis (Figure 5). 

Although minutiae points contain large amount of information about 

fingerprint, additional information may be extracted from the fingerprint. 

 

Figure 5: Characteristics of minutiae points. 

1.2.4 Fingerprint matching 

Fingerprints are compared in a process that is called fingerprint matching. 

Extracted minutiae points from one fingerprint are compared to minutiae 

points from the other fingerprint and similarity score between two 
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fingerprints is determined [14]. Fingerprint matching is a difficult task: 

fingerprints may be distorted [5], rotated or translated; images may contain 

different parts of the same fingerprint; fingertip skin may have imperfections 

such as scratches and wounds, image may be noisy or dirt may be left on 

fingerprint scanner. 

1.2.5 Fingerprint classification 

In the process of identification a fingerprint is compared to all fingerprints in a 

database. If fingerprint database is large, the process may become very time 

consuming. To make it faster, fingerprint classification may be used. 

Fingerprint class is determined based on the number and location of singular 

points and only fingerprints of the same class are compared. Commonly 5 

classes are used (Arch, Tented Arch, Left loop, Right Loop and Whorl (Figure 

6).  

 

Figure 6: Types of fingerprints. 
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Arch type fingerprints do not have any singular points. Tented arch type 

fingerprints have two singular points: core and delta (delta is below core). 

Loop type fingerprints also have two singular points: core and delta. Delta 

point is located to the right (in case of left loop) or to the left (in case of right 

loop) relative to core point. Whorl type fingerprints have two core and two 

delta singular points. Ridge frequency and orientation maps (Figure 7) are 

commonly used to evaluate fingerprint type automatically. Ridge frequency 

map displays local ridge frequency and can also be used to separate 

foreground from background. 

 

Figure 7: Frequency map (left) Orients map (right). 

1.2.6 Extraction of fingerprint features 

Fingerprint features are extracted in feature extraction process. Typical 

extraction algorithms use following image processing routines to extract 

fingerprint features: segmentation (to remove background), normalization (to 

stretch contrast), binarization (to distinguish ridges and valleys), 

skeletonization (to make ridges thinner), and detection of minutiae points. 
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1.2.7 Fingerprint recognition performance evaluation 

Biometric systems store biometric information (features) in the form of 

template that characterizes a person. In case of fingerprints a template is a 

file that keeps record of singular and minutiae points that were extracted 

from a fingerprint image. The templates are stored in a database. During 

verification input template   from a person is compared to a stored template 

  and similarity                 is computed. Similarity score shows the 

probability that templates   and   come from the same person. Null and 

alternate hypotheses are: 

       , input template does not come from the same person as in stored 

template T; 

       , templates   and   are from the same person. 

The associated decisions are: 

  : person is not who he claims to be; 

  : person is who he claims to be. To make a decision, similarity score is 

compared to a threshold  . If similarity score is larger than threshold  , the 

decision is made that templates I and T come from the same person (  ). Two 

types of error may occur: 

Type I: false acceptance (   is decided when    is true); 

Type II: false rejection (   is decided when    is true). 

False Acceptance Rate (FAR) is the probability of type I error, False Rejection 

Rate (FRR) is the probability of type II error: 

                         

                        

To evaluate the performance of a biometric system on a specific database, 

similarity score distribution                 must be collected on templates 

from the same person (genuine similarity distribution), and distribution 

                on templates that come from different persons (impostor 

similarity distribution). Figure 8 demonstrates FAR and FRR for a given 
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threshold  . It is evident, that FAR is a percentage of impostor pairs whose 

matching score is greater than or equal than threshold   and FRR is a 

percentage of genuine pairs whose similarity is less than threshold  . Actually 

FAR and FRR a functions depending on  . Threshold   is a tradeoff between 

FAR and FRR. If threshold is increased, FAR decreases (system becomes more 

secure), but at the same time FRR increases making it harder for a person to 

be successfully identified. Additionally to FAR and FRR functions more simple 

performance indicators are used: 

Equal error rate (EER) is an error at such threshold t that FAR and FRR for that 

threshold are equal. 

Zero FRR is the lowest FAR at which no false rejections are made. 

Zero FAR is the lowest FRR at which no false acceptances are made. 

To compare different biometric systems FAR and FRR are computed for all 

thresholds from 0 to maximum and a point (FAR(t), FRR(t)) is plotted on a 

graphical plot for each threshold  . The obtained curve demonstrates how 

FAR depends on FRR for all possible thresholds is called receiver operating 

characteristic (ROC) curve (Figure 9). ROC curve can be used to analyze such 

biometric system parameters as FRR at given FAR (For example FRR@FAR = 

0%, FRR@FAR = 0.1%, FRR@FAR = 0.01% or FRR at any other FAR). The lower 

the ROC curve is, the better is the recognition performance. Although ROC 

curve does not provide information about confidence intervals, this problem 

is not significant since the number of impostor and genuine pairs is very high 

even for small databases since each template in a database is verified against 

all other templates. If a database consists of 1500 records (15 persons each 

having 10 fingers scanned 10 times), the number of pairs is 1500*(1500-1) / 2 

= 1124250. 
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Figure 8: Similarity score distributions for genuine and impostor pairs, FAR and FRR 
for a given threshold  . 

 

 

Figure 9: Example of ROC curve. 

1.3 Voice Biometrics 

1.3.1 Speaker identification and verification tasks 

Identification and verification concepts are the same as in fingerprint 

biometrics. 

In verification the comparison     (“one to one”) is done, that is: a person 

claims his identity and then the presented speech utterance is compared with 

an earlier recorded speech examples belonging to the claimed identity. If 

similarity of the two utterances exceeds a chosen threshold the person’s 

identity is approved / verified; otherwise the person’s identity is not verified. 
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Verification problem naturally arises in access control systems as in border or 

immigration control services. 

Any verification algorithm can make two types of errors: some percent of 

genuine utterances may be rejected (not verified) and some percent of 

speech utterances belonging to different persons may be claimed as being 

genuine (belonging to the same person). The first type of error is called False 

Rejection Rate (FRR) and the second is called False Acceptance Rate (FAR). 

These two errors depend on chosen similarity threshold – higher thresholds 

produce larger FRR and smaller FAR, and inversely the lower thresholds 

produce smaller FRR but larger FAR. Graph of the parametric curve 

           ,            , where parameter t is the similarity 

threshold, is called Detection Error Tradeoff (DET) curve. DET curve provides 

visual representation of speaker verification algorithm performance. The 

lower is the DET curve, the better is the quality of speaker verification 

algorithm. DET curve is similar to a ROC curve that is commonly used in 

fingerprint biometrics. The difference in the name appeared when fingerprint 

biometrics and voice biometrics communities started using different names 

for the same concept. 

In identification comparison     (“one to many” or “one to  ”) is 

performed, that is: a person does not claim his identity and the problem is to 

find the most similar speaker among database of   speakers or more 

generally sort   speakers in order of similarities to the speech utterance 

under investigation. Person identification by voice has applications in 

criminology or in security services (when for example, a mobile phone is 

recorded and individuals that take part in conversations should be identified). 

If there is no some additional information, the   voices are arranged 

according similarities of   pairs of speech utterances where a pair consists 

of voice sample under investigation and one of   voice samples that are 

recorded in a voice database. The pair with the largest similarity gives 
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hypothesis about identity of speaker whose voice sample is under 

investigation. There are two subtypes of identification problems that are 

called open and closed set problems. In the case of the open problem it is not 

known whether the voice under investigation is contained in the voice 

database of   speakers. In the case of closed set identification it is known 

that one and only one voice sample is contained in a database of   records. 

Identification problem with closed set is easier – the pair of voice records with 

the biggest similarity can be identified as belonging to the same person. In the 

case of open identification the similarity threshold must be chosen to make a 

decision whether a voice under investigation is contained in the set of   

voice records. In such case verification is equivalent to a particular case of 

speaker recognition with open set when   = 1. 

To estimate the quality of speaker identification or other biometric 

identification systems a ranking curve is used. Ranking curve is a plot for 

closed speakers set identification. In abscissa axis numbers from 1 to   are 

plotted and in ordinate axis the cumulative percentage of speakers that were 

identified in nth or smaller place is plotted. For example let   = 5 and 20 

speakers were identified. Let suppose that according to voices similarity 11 

speakers were identified in the 1st place, 4 in the 2nd, 3 in the 3d, 0 in 4th 

and rest 2 in the 5th place. Than ranking curve for the given experiment of 

speaker identification would be plotted using the points: (1, 55), (2, 75), (3, 

90), (4, 90), (5, 100). 

1.3.2 Text-dependent and text-independent speaker recognition 

Another criterion for classification of speaker recognition systems is the text 

that is used to recognize a person. If the spoken text is known in advance and 

the same text is contained in a recorded database of speech utterances and 

the same phrase is spoken during verification or identification process than 

the process it is called text-dependent speaker recognition. For example if a 

person says “I am engineer Jonas Jonaitis, my identity number is 273” at 
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entrance and the same text is saved in utterances data base, speaker 

recognition problem is text-dependent. Such recognition systems are used 

more frequently in verification and require much shorter speech utterances 

for speaker recognition. However text-dependent and even text-prompted 

access control systems can be broken down by recorded examples of a person 

speech utterance. A variation of text-dependent recognition may be used 

when several different phrases of the same speaker are recorded in 

utterances database and voice recognition system randomly asks to 

pronounce a particular phrase during verification. Such systems belong to the 

so called text-prompted systems and give additional flexibility to the speaker 

verification process [60]. In the more general case a text-prompted system 

can ask to pronounce any unknown in advance text. 

In text-independent speaker recognition spoken and stored phrases have 

different text content. Text-independent speaker recognition problem 

naturally arises when we have a database of speech utterances of suspected 

persons and a particular phrase or phrases recorded during phone call or by a 

hidden microphone. One can remember recent examples of questionable Bin 

Laden records where decision about speaker identity was done under text-

independent conditions. It is clear that speech utterances saved in speech 

database should be sufficiently rich to cover possible phonetic range. If in 

text-dependent speaker recognition requirement to a phrase duration is 

about 10 sec., text-independent recognition requires speech examples 3-5 

min. long. 

Techniques that estimate text-dependent and text-independent speech 

utterances use different approaches. In text-dependent speech recognition 

systems Dynamic Time Warping (DTW) technique [61], [62] dominates. DTW 

technique gives an elegant solution for compensation of variations in speed 

with which the same phrase is pronounced. In speaker recognition using text-

independent speech examples Gaussian Mixture Model (GMM) [63], Vector 
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Quantization (VQ) [64], Arithmetic Harmonic Sphericity measure (AHS) [65], 

and different variations of Hidden Markov Model (HMM) [66] dominate. Text-

independent recognition systems have an additional source of information 

that is used in speaker recognition. This source is statistics of phonemes of 

diphones used in free speech examples. The phonemes statistic can be 

accumulated manually or using speech to text engines. 

1.3.3 Speaker modeling techniques 

A general structure of speaker recognition algorithms is presented in the 

following scheme. For more detailed description of each step of the scheme 

an overview on modern techniques that are used for speaker recognition was 

used [67]. 

 

 A typical scheme of speaker recognition system. 

1.3.3.1 Speech signal processing, features 

Any speech signal is first pre-emphasized. Pre-emphasizing filter enhances 

high frequencies of the speech signal spectrum. The pre-emphasizing filter is 

defined by the following formula: 

                   

The value of a parameter   is taken from the interval             and 

depends on sampling rate of the speech signal. Some authors use signal 

Target model Background model 

Score normalization 

Decision 

Matching of models 

Signal processing, feature extraction 



 

19 

adaptive   values that depend on the contents of a frame. If features are 

extracted using filter-banks or all-pass filters that have increasing resolution 

with increase of frequency, application of pre-emphasizing filter is not 

necessary. In general simple experiments with different   values give 

empirical answer to optimal a value. If pre-emphasizing gives only a small 

increase in speaker recognition it is recommended not to apply this filter for 

the speech signal. The initial speech signal is divided in frames and analysis is 

done locally by applying a window to overcome boundary problem. A 

windowed local speech signal is called a speech frame or just frame. Duration 

of a frame is 20-30 milliseconds. The frames can have overlap and two 

neighboring frames can be shifted in time 10 milliseconds back or forward. 

These values are found empirically and are justified by an average physical 

duration of time interval when the speech signal is approximately stationary. 

In theory the shorter the frame the more stationary it is, however it would be 

difficult to estimate the spectral content of a very short speech frame. 20 

milliseconds duration allows estimating spectrum up to 100 hertz that is 

sufficient for speaker recognition. 

The Hamming and the Hanning windows are the most frequently used for 

frame windowing. Both windows suppress boundary values that increases 

signal-to-noise ratio in spectrum domain. The fast Fourier transform (FFT) 

[68], [69] of the windowed signal represents the spectral content of the 

frame. To apply FFT the samples of a frame should be padded by zeros to 

have total number of samples that is a power of 2 (for example 256 or 512). 

1.3.3.2 Mel Cepstrum 

The modulus of the FFT represents power spectrum of the frame. The FFT 

spectrum has a lot of fluctuations that can be reduced by application of a 

filter-bank series. A fixed representative of the filter-bank averages FFT power 

spectrum around central frequency. Standard deviation of the smoothing 

filter increases with rise of central frequency that fits physiological property of 
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our hearing system. The parameters of the spectrum smoothing filter are 

defined by their left, central, and right frequency. Filter can by triangular or 

exponential type. In effort to copy the properties of our hearing system many 

authors use the Bark/Mel scale for the central frequencies of the smoothing 

filters. The central locations of the Mel scale are defined by the following 

formula: 

             (  
 

    
)   

The presented formula is taken from [70]. More complicated versions of the 

Mel scale exist but all formulas have a following property: for low frequencies 

f (up to 1000) Mel scale converts frequency almost linearly and for high 

frequencies the conversion becomes logarithmic. 

Finally, the decimal logarithm is taken of this spectral envelope and is 

multiplied by 20 in order to obtain the spectral envelope in decibels (dB). This 

tradition comes from electronic engineers who use dB as a standard measure 

unit. After this stage of the processing, a vector of features that encodes 

spectral content of the frame is obtained. However such features have 

redundant information and an additional transformation is performed to 

reduce feature dimensionality. The cosine discrete transform is usually 

applied here to produce cepstral coefficients [71], [72]: 

   ∑      (        
 

 
)            

 

   
 

Here K is the number of power spectrum values    smoothed on Mel scale 

central frequencies and       is the number of cepstral coefficients. 

1.3.3.3 Linear prediction 

In all-pole Linear Prediction (LP) model   value of a signal is predicted by a 

linear combination of its previous values [73]: 

    ∑            
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where   is the order of LP model;    are linear prediction coefficients (LPC) 

of the model;   is a gain scaling factor and    is the source for the present 

input. The LPC parameters of LP approximation   ̂   ∑       
 
    are 

found by minimization of a sum of the squared approximation errors. 

Traditionally the LP source is not modeled in speaker recognition that limits 

the use of fundamental frequency to recognize speaker. This limitation can be 

overcome by modeling of the source or by direct estimation of the 

fundamental frequency and their statistics. 

The LP model leads to the transfer function 

      (  ∑    
  

 

   
)        ⁄⁄  

where                       of the p-th order of all pole LP model. Mean 

square error of the residuals      ̂     is typically minimized because this 

leads to more simple linear equations for the prediction of the coefficients 

that are easily solved by computers. 

Figure 10 illustrates the spectrum of Lithuanian vowel “a” estimated by three 

different methods. The black curve gives the FFT power spectrum, green 

curve represents modulus of transfer functions estimated by LP model of 

order p=8 and the blue curve correspond to the power spectrum estimated by 

LP model of order p=16. In general FFT spectrum is over-detailed and the 

modulus of the transfer function of LP model gives an envelope of FFT 

spectrum and the resolution of the envelop is controlled by the order p of the 

LP model. 
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Figure 10: Wave function of the Lithuanian vowel "a" (above) and its spectrum 
estimated by different methods (below). 

1.3.3.4 LPC-based cepstral parameters 

Coefficients of fixed order LP model are estimated for any speech frame. LPC 

parameters are rarely used directly for speaker recognition. The prediction 

coefficients are unstable in case of small perturbations of speech signal and 

do not have a simple interpretation. It was discovered that some linear 

combinations of the LP coefficients can give approximations of the cepstral 

coefficients. If the order p of the LP model tends to infinity the 

approximations tends to equalities [74]. 
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The linear expressions that convert LPC to LP Cepstral Coefficients (LPC to 

LPCC) are the following: 

        

       ∑   
 

   

   
              

   ∑   
 

   

   
            

1.3.3.5 Additional transformations 

Mel or LP Cepstral Coefficients allow a simple procedure for channel 

compensation. Channel distortions can be modeled as additional filter that is 

applied to the signal. Since the channel filter is approximately constant in time 

and the cepstral coefficients correspond to the Fourier coefficients of the 

logarithm of the power spectrum, the channel transfer function transforms 

into an additional term which may be removed by subtracting mean values of 

the cepstral coefficients. This operation is named cepstral mean subtraction 

(CMS) and is often used to increase the tolerance of speaker recognition to 

channel differences, differences in recording conditions, background noise, 

etc. However CMS do note solves such problem as additional noise which has 

no convolutive property. A partial solution for reduction of additive noise 

problem can be equalization of variance of each cepstral component. 

Cepstral coefficients do not contain information about dynamics of the 

speech. For that purposes the so called delta (Δ) and delta-delta (ΔΔ) 

parameters are added to cepstral coefficients. The delta and delta-delta 

parameters are an approximation of first and second derivatives of the 

cepstral coefficients as functions in time [75]. The derivatives can be 

estimated by the following formulas: 
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where   with upper index   represents vector of cepstral coefficients of 

the m-th frame and parameter   = 1, 2 or 3. The first component of vector of 

cepstral coefficients        is not invariant to recording conditions and is 

not included into features set; however the first component of 

         vectors becomes invariant to the level of loudness of recording 

device and can be included into final features vector. 

1.3.4 Models of Speakers and their matching 

When speech utterance is represented as a sequence of feature vectors it is 

called that features of the signal are extracted. To have possibility to compare 

extracted features the same type of features are selected for target 

(database) and for investigative (input) speech examples. However different 

utterances may have different textual content, different duration and 

therefore cannot be compared directly frame-by-frame. In this section a short 

introduction to feature matching techniques is provided. Two groups of 

measures that are used for estimation of speech utterances are known. The 

first group constructs a statistical model for measured features vectors. If 

features   are   dimensional vectors a density function          that 

maximizes likelihood of observed features of the frames is constructed. If at 

authorization process a speech frame with features vector f is observed, 

direct substitution of   to      gives likelihood of that frame for the target 

speaker with the density function           Such substitutions should be 

done for each frame and an average      value represents similarity 

measure of the two speakers models. Much faster comparison of the two 

voice samples can be done by constructing a density function for investigative 

(input) voice record also and estimating the probability that two densities 

correspond to the random source of features vector f. Another type of 

measures directly compares pairs of features vectors that correspond to 

different frames of the target (database) and investigative (input) voice and a 

global measure of similarity is constructed from local comparisons of 
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similarity of pairs of frames. This technique is called template matching, it is 

more intuitive, and in common, is more expensive. Both types of measures 

have their merits and demerits, and therefore a combination of them is often 

used. 

1.3.4.1 Template Models 

In the most simple template model only a single template  , which is the 

model target (database) speech record, is used. Template   belongs to the 

linear space of all possible feature vectors and can be defined as mean vector 

of feature vectors of speech frames. Such approach minimizes mean square 

Euclidean distance error between a fixed template and all frame feature 

vectors. If we have              feature vectors of M frames of a 

target voice record, then target speaker template would be 

 ̅  
∑    

   

 
  

Distance between feature vector   of an investigative (input) m-th frame 

and target model   is expressed by: 

 (    )̅  √(    )̅
 
       ̅  

Here   is a feature components weighting matrix. Euclidean distance is 

defined by identity matrix, covariance matrix of frame feature vectors define 

Mahalanobis distance. If initial feature vectors are transformed to the space 

which basis consists of orthogonal eigenvectors of the covariance matrix, the 

Mahalanobis distance is equal to Euclidean distance and computational cost 

of the latter is much smaller (proportional to the dimensionality of feature 

vector) [76]. 

1.3.4.2 Dynamic Time Warping 

If speaker recognition is text-dependent or text-prompted with vocabulary 

covered in saved speech records database, template matching is an intuitive 

approach and often used in speaker recognition. The idea is that even the 
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same phrases are pronounced by the same person, they sound more similar 

than phrases pronounced by different speakers. Voice recognition is easier if 

speakers cooperate with authorization system and pronounce personalized 

utterances such as “I am Jonas Jonaitis, engineer, my personal number 375” 

and “I am Petras Petraitis, my job position is in support division, personal 

number 781”. It is natural to expect that average value of frame-to-frame 

distance of both records of the same has good discriminative characteristic 

for recognition of the claimed speaker. However in text-dependent and text-

prompted case small variations in speed by which utterances are spoken 

appear. Dynamic Time Warping (DTW) [62] gives an elegant solution which in 

some sense optimally arranges the frames that should by paired to compare 

two utterances. The cost of DTW algorithm is moderate since distances 

between all frames of two utterances should be estimated that makes 

complexity quadratic. Suppose we have              input voice features 

vectors and   ̅   ̅     ̅   target voice features vectors. Than DTW 

algorithm gives non-decreasing set of indices 

                            that minimizes with some additional 

conditions the average distance  (   )̅  ∑
 (    ̅    )

 
  

    

 

Figure 11: Frame correspondences without alignment (left) and with DTW alignment 
(right). 

Figure 11 illustrates identical alignment          of frames of two curves 

that have the same number of points (left part) and the one which minimizes 
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average distance between two curves (right part). Some attempts to explore 

DTW method for text-independent speaker recognition are known, but since 

DTW algorithm has quadratic complexity and text-independent speech 

records are much longer than text dependent records, application of DTW 

technique in such cases is limited. 

1.3.4.3 Vector Quantization approach 

The main drawback of DTW template matching approach is that this 

technique does not work for text-independent speaker recognition. A direct 

on templates matching of two speech samples would be estimation of 

distances or similarities between all possible pairs of features vectors that 

correspond to two speech utterances and minimization of the obtained 

distances matrix by columns and rows and calculation of average minimal 

distances. However such direct approach leads to big computational cost. For 

example if we have two utterances 3, 5 minutes long with length and distance 

between neighboring frames of 10 milliseconds, the total number frame pairs 

similarity of which should be estimated will be 3x60x10 x 5x60x10 = 54 e 6 

that is sufficiently big number even for modern computers. Vector 

Quantization is an old well known technique which allows reducing initial 

number of vectors by rounding them to centroids that contain the so called 

codebook [98]. Vectors of codebook are usually formed by some clustering 

procedure. The size of the codebook ranges in speaker recognition from 32 to 

2048 and has tendency to grow recently. Let   denote the codebook 

constructed for target speaker vectors. Then the average quantization 

distance of investigated voice feature vectors defines distance between the 

two speakers. Formally for the distance such expression is used: 

      ̅  ∑
    ̅   (    )̅
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The vector quantization technique reduces computational costs and is often 

used as one of similarity/distance measure for voice comparison. To further 

increase the speed of comparison of two voice records, the features vectors 

of both vectors can be quantized and distances or similarities between code 

words of the two vector codebooks can be used. However such approach 

decreases the quality of speaker recognition. Sometimes such double 

quantization approach is used for initial selection of most similar pairs of 

records that are further investigated by traditional Vector Quantization 

modeling. 

1.3.4.4 Nearest Neighbors method 

Nearest neighbors (NN) method combines strength of DTW and VQ methods. 

Unlike the VQ method, NN method keeps all features vectors of the target 

data [98]. For each input frame the most similar enrolled target frame is 

found and for each enrolled target frame the most similar input frame is 

found and the two series of minimal distances are averaged. This method is 

the most computationally complex but it gives the best results in of text-

independent speaker recognition when the recognition is done by template 

matching methodology. 

1.3.4.5 Stochastic models 

Template methods work well for text-dependent speaker recognition 

however they are computationally complex expensive and not state of the art 

quality when text-independent recognition is needed. In stochastic approach 

a density function that maximizes the likelihood to observe the same feature 

vectors for input phrases that are observed for target speakers is constructed. 

For each target speaker a separate density function is constructed. Then the 

estimation of the likelihood to observe feature vectors of unknown speaker 

for all target models gives the measure of probability that the unknown input 

speaker has the same identity as a target speaker. So we have set of 
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conditional probability distribution functions with the number of conditions 

equal to the number of target speakers. Conditional probability density 

function (pdf) of a target speaker is estimated from the set of training 

features vectors and can be parametric on non-parametric. In any case 

(parametric or non-parametric pdf) probability that feature vectors of 

unknown speaker are generated by the claimed target model can be 

estimated. This probability gives not normalized matching scores. To build 

parametric model, a specific form of pdf should be assumed and then free 

parameters of the model are determined by maximization of likelihood of 

observed training features vectors. One possible assumption can be made 

that the pdf is the multivariate normal density function. Then free parameters 

of the model would be mean vector   and covariance matrix C of the 

multivariate normal distribution. In this case value 

                    √  
  

    
 

       
 

 
                 . 

Here K is dimension of frame features vector,     is determinant of the 

covariance matrix. Having features training vectors  ̅           mean 

vector and covariance matrix of target model can be estimated by the 

following expressions: 

  
∑  ̅  

   

 
  

  
∑ ( ̅   )   ̅      

   

   
  

Here “ ” denotes point-wise multiplication. However multivariate normal 

distribution is a very simple approximation of real training vectors and 

therefore Gaussian Mixture Model (GMM) in which density function is a 

normalized sum of a few different multivariate normal distributions is used. 

More detailed description of this model is given in next chapter. Although 

strictly speaking speech frames do not provide independent feature vectors it 

is assumed that they are independent. Such assumption allows estimating 
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conditional probability of unknown speaker simply by multiplying frames 

probabilities. 

Another very popular stochastic model is Hidden Markov Model (HMM) [97]. 

Hidden Markov Model is a double embedded stochastic process in the sense 

that the stochastic process is not directly observable. The HMM is defined by: 

1. Finite set of states             

2. NxN matrix of transition probabilities      , which means “transit 

at next time moment to the state   if we were at state   at 

current time”. It is assumed that transition probabilities do not 

depend on time. 

3. Finite set of   observable symbols   , 

4.     matrix of probabilities      which means “probability to 

observe symbol    at state    , 

5.   probabilities    that define state probabilities at initial 

moment. 

Having observations set and HMM it is easy to calculate probability of such 

observation. However in practice HMM should be constructed from 

observations. For fixed parameter   the rest of HMM parameters and 

sequence of states are chosen by maximizing probability to have the 

observations set under the model and the states sequence. 

These two problems are solved using Baum-Welch and Viterbi algorithms 98. 

1.3.4.6 Gaussian Mixture Model 

The most popular stochastic model that is successfully applied for many years 

in speaker recognition is Gaussian Mixture Model (GMM). The authors of this 

method are Reynolds and Rose [80]. In this model, pdf function is modeled by 

the expression: 

                    ∑         
   , 
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is shifted multivariate normal distribution and 

             ∑     
 

   
 

are weights of the shifted and scaled normal distributions. The complete 

Gaussian mixture density has I mean K dimensional vectors, K x K covariance 

matrices and positive weights. However, it is often assumed that covariance 

matrices have simple structure, for example diagonal, that save memory 

required for model and simplifies the estimation of the model. GMM model 

has simple interpretation. Speech signals are composed by different 

phonemes that can by clustered in feature space and each component of 

GMM density can represent a particular phoneme and the weights of mixture 

represents frequency/probability of occurrence of that phoneme. Mean 

vectors    define acoustic positions of the phonemes and covariance 

matrices    sharpness of localization of phonemes around their acoustic 

centre. GMM has advantage over VQ approach since the latter can be 

interpreted as an approximation of pdf by a discrete histogram with centers in 

code words. On the other hand, code words of VQ can be used for initial 

positions of mean vectors    that are later tuned by an iteration process that 

maximizes a posteriori probability to observe training features vectors. 

Let                         represents parameters of the GMM. Than 

having target training features vectors  ̅           the GMM parameters 

are found by maximizing the a posteriori probability 

 (  ̅   )  ∏  ( ̅     )
 

   
  

The a posteriori probability highly non-linearly depends on the model 

parameters that require applying some iterative process for maximization of 

the probability. Having constructed GM target model the measure of 

correspondence of unknown voice to the target voice is estimated by 

 (  ̅   )  ∏           
   , 

where    are feature vectors of unknown speaker voice utterance. 
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1.3.5 Speaker recognition by Lithuanian authors 

The most contribution to speaker recognition is done by Antanas Leonas 

Lipeika with co-authors. In his and J. Lipeikiene first paper [81] speaker 

identification problem is considered. In [82] a modification of VQ method for 

speaker identification is proposed. The main contribution was in modification 

of quantization algorithm that allowed increasing codebook by one and tune 

it for optimization of speaker identification quality. In [83] a notion of pseudo 

stationary segments was proposed and applied for speaker recognition. 

Pseudo stationary segments were found by joining adjacent frames that have 

similar spectral content. Similarities of spectral contents were estimated by 

likelihood ratio distance [84]. When pseudo stationary segments are found, a 

direct minimization of a likelihood distance is done for fixed segments of 

investigative (input) voice versus all possible target (database) segments and, 

vice versa, pseudo stationary segment of target voice is fixed and the most 

similar to that segment investigative segment is found. Average values of 

likelihoods of the pseudo stationary signals are used as final similarity 

measure. In [85] an idea of application of LPC residual signal to increase the 

quality of speaker recognition was proposed. It was shown that fusion of 

ordinary speaker similarity measures with the ones estimated for LPC residual 

signal can increase speaker recognition quality. In this paper usual Euclidean 

metrics calculated on LPC derived cepstral coefficients were investigated and 

likelihood ratio distance was mentioned. It was shown that for both metrics 

an increase in speaker recognition quality after fusion of the two types of 

feature metrics is observed. In [86] the possibilities of DTW based techniques 

for speaker recognition were investigated. In [87] the details of GMM were 

analyzed and a compact set of features that are estimated on the base of Line 

Spectral Pairs (LSP) that are derived from marginal LPC variations was 

proposed. It was shown that dimensionality of features can be reduced two or 

more times compared to a conventional cepstral features without significant 
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loss in speaker recognition quality. Another work worth mentioning is [88], 

where the usage of consonant-vowel diphones for speaker discrimination was 

proposed. 

1.4 Problem Relevance 

It is easy to notice that biometric technologies are spreading across the world. 

Even low cost notebooks and mobile phones have integrated fingerprint 

scanners and users can log on with fingerprint instead of password. 

Integrated webcams are used to identify a person by face, and microphones 

are used to provide access to the system by the voice. All these technologies 

provide faster and reliable access to data, bank account or computer than 

password, because passwords can be stolen, forgotten, lost or unlocked by 

specific software. These are the reasons why many universities, companies 

and institutions invest time and money in research and development of 

biometric algorithms. 

Several international competitions were arranged to compare different 

biometric algorithms and track progress in biometric research: FVC (FVC 2000, 

FVC 2002, FVC 2004, FVC 2006 and FVC ongoing), NIST (National Institute of 

Standards and Technology) MINEX (MINEX, MINEX II and Ongoing MINEX) and 

PIV for fingerprints; NIST Face Recognition Vendor Tests (FRVT) for faces; NIST 

Speaker Recognition Evaluation (SRE) for voice biometrics; NIST Iris Challenge 

Evaluation (ICE), Independent Testing of Iris Recognition Technology (ITIRT) 

for irises are the largest and most known biometric competitions. These 

competitions show that in spite the progress in such aspects as reliability, 

speed and interoperability is impressive, there are many difficult problems 

left to overcome. 

All biometric technologies are dependent on input quality: If obtained 

fingerprint image is noisy, low contrast or deformed; recorded voice phrase is 

of low volume or very short, iris image is obstructed by eyelids, reflections or 

glasses, face image is acquired in poor lightning conditions or using low 
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quality camera, the task of verification becomes more difficult. The main 

challenge of modern biometric algorithms is to overcome these difficult 

conditions and extract as much data as possible. Innovative methods help 

algorithm developers better understand the weaknesses of their algorithms 

and address them. Algorithm developers have to take into consideration that 

when the popularity of biometric technology increase, requirements to 

algorithm accuracy also increase. Error rate of one percent may be suitable 

for a small company using time attendance system based on biometrics, but 

will make a lot of problems to a bank with millions of customers or during 

elections to prevent multiple voting. 

This work is about fingerprint and voice biometrics. Fingerprint biometrics is 

the most popular biometrics: fingerprint scanners are cheap, easy to use and 

the process of verification is fast. 

Voice biometrics is the most available biometrics, because no additional 

hardware is needed. Most computers have audio interface with possibility to 

plug microphone, microphones are integrated into webcams, headphones 

and mobile phones. 

1.5 Research Objects 

The thesis research objects are: performance evaluation of fingerprint 

extraction algorithm using fingerprint synthesis, fingerprint matching method 

that is able to match deformed fingerprints, person identification using voice 

and fusion of both biometrics. 

1.6 The Objectives and Tasks of the Research 

The aim of the research was to complexly analyze research area and address 

difficult problems. In the first part of the work fingerprint extraction algorithm 

development problems are analyzed and fingerprint image synthesis is 

suggested to overcome that problems. In the second part of the work 

fingerprint matching algorithm problems are analyzed and new matching 
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algorithm is proposed to deal with them. New person identification by voice 

method is addressed in the third part of the work and multibiometrics using 

fingerprints and voice is proposed to increase identification accuracy. 

1.7 Scientific Novelty 

The new method of fingerprint image synthesis is introduced in first chapter. 

Differently from already existing synthesis methods it can generate fingerprint 

images with predefined features. Such images with known characteristics 

allow evaluating the performance of fingerprint extraction algorithm 

independently from fingerprint matching algorithm. A new practical 

application for synthetic fingerprints is suggested: they can be used to 

estimate the quality of images in a given database or the quality of a 

fingerprint scanner. 

New fingerprint matching algorithm that is described in the second chapter 

does not perform fingerprint registration (evaluation of rotation and 

translation) and is capable to match fingerprints with elastic deformations. 

Multibiometrics using new person identification by voice method and new 

fingerprint matching method is described in next chapters. The performance 

was analyzed using specially prepared multibiometric database. 

This work is the first attempt to prove that there is no correlation observed 

between similarities based on fingerprints and similarities based on voice. 

Such independence of two biometrics means that they can be successfully 

combined into multibiometrics. 

1.8 Practical Importance of the Work 

Methods described in this work can be used to solve many difficult tasks. 

Fingerprint image synthesis (chapter 2) can be used to generate large 

fingerprint databases, to evaluate the performance of fingerprint extraction 

algorithm. Since it is possible to generate a fingerprint image with pre-defined 

properties and features, it becomes easy to evaluate such properties of 
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fingerprint extraction algorithm as stability to noise and accuracy of extracted 

features. 

New fingerprint matching method (chapter 3) allows accurate matching of 

plain and rolled fingerprints with elastic deformations that are common in 

rolled fingerprints and sometimes occur in plain fingerprints. 

Multibiometrics using fingerprints and voice (chapters 4 and5) can provide 

more flexible and accurate way of person identification. 

1.9 Approval of Research Results 

Research results were published in valuable international journal Informatica. 

The conference papers were presented and an oral presentation in 

INFORMATION TECHNOLOGIES (IT2010) conference was done. 

1.10 Defended propositions 

1. New fingerprint image synthesis method can generate 

fingerprints with predefined features. Such fingerprints can be 

used to test and develop biometric systems. 

2. Fingerprint image synthesis uses iterative convolution with large 

kernel that is a very time consuming operation. An optimization 

that speeds up synthesis process several times was presented. 

3. A method to evaluate the performance of fingerprint extraction 

algorithm using synthetic fingerprints can be used evaluate 

extractor’s performance. 

4. Fingerprint matching method that does not perform fingerprint 

registration and is able to match deformed plain and rolled 

fingerprints with better accuracy. 

5. New speaker identification method outperforms traditional 

speaker identification methods. 
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6. Since fingerprint and voice similarities do not correlate much, 

multibiometric using both fingerprints and voice can further 

increase identification accuracy. 

1.11 Publications 

International journals which are included into the International Master 

Journal List (ISI): 

1. Andrej Kisel, Alexej Kochetkov, Justas Kranauskas (2008). 

Fingerprint Minutiae Matching without Global Alignment Using 

Local Structures INFORMATICA, 2008, Vol. 19, No. 1, 31-44 ISSN 

0868-4952. 

2. Algirdas Bastys Andrej Kisel, Bernardas Salna (2010). The Use of 

Group Delay Features of Linear Prediction Model for Speaker 

Recognition INFORMATICA, 2010, Vol. 21, No. 1, 1-12 ISSN 0868-

4952. 

International journals which are included in the Scientific Master Journal 

Proceeding List (ISI): 

1. Andrej Kisel (2010). Fast Fingerprint Image Synthesis. 

Proceedings of 16th International Conference on Information 

and Software Technologies. April 21st - 23rd 2010, Kaunas 

University of Technology, Lithuania, ISSN 2029-0063 pp. 107-

115. 

Journal submissions under review: 

1. Andrej Kisel (2010). Multibiometrics using fingerprints and 

voice. Information technology and control, Kaunas University of 

Technology. 

1.12 Outline of the Thesis 

The thesis consists of 3 main parts: fingerprint biometrics (chapters 2 and 3), 

voice biometrics (chapter4) and multibiometrics (chapter 5). 
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The 2nd chapter describes fast fingerprint image synthesis method that can 

be used to create large fingerprint databases and to evaluate the 

performance of fingerprint extraction methods. 

The 3d chapter is devoted to a fingerprint matching method that is robust to 

deformations and does not perform fingerprint alignment. 

The 4th chapter introduces the use of group delay features of linear 

prediction model for speaker recognition. 

The 5th chapter presents multibiometrics using fingerprints and voice. 

The 6th chapter completes thesis with brief summary and conclusions. At the 

end of the work a bibliography list is presented. 

2 Fingerprint image synthesis 

This chapter presents a fingerprint synthesis method that can generate a 

fingerprint with predefined minutiae points. Fingerprint type is chosen 

randomly and singular points positions and quantities are chosen randomly 

according to the fingerprint type. Orientation map is generated using 

fingerprint orientation model. Ridge frequency map is generated. Initial image 

with drawn minutiae points that are oriented by orientation map is 

constructed. Iterative filtering of the initial image with Gabor filters that are 

oriented using orientation map and constructed using frequency map 

produces fingerprint image with minutiae points located at the predefined 

positions. An optimization of the iterative filtering is described. Synthetic 

fingerprint images are used to evaluate extraction algorithm's stability to 

noise. A measure of extraction algorithm’s robustness to noised fingerprint 

images is proposed. 

2.1 Introduction 

Much attention is being paid to different biometric algorithms such as person 

identification by unique features. Fingerprint identification is one of the most 
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popular ways to identify a person and much research is done in this area of 

biometrics. Identification process consists of fingerprint image acquisition, 

feature extraction and feature matching. 

Different methods to evaluate algorithm performance are proposed [38], [39], 

[40], [41] and most of them use fingerprint databases such as NIST SD4 [42]or 

NIST SD14[43] to calculate accuracy. Features are extracted in enrollment 

phase [44], [45] and then extracted features are matched against each other 

in matching phase [13] [18] [46] to calculate Receiver Operating Characteristic 

(ROC), Detection Error Trade-off (DET) or other statistics [47]. Many 

competitions [18], [48] have been arranged to analyze and benchmark 

different commercial and academic algorithms. The biggest and most 

thorough of them was NIST arranged competition MINEX [49]: Vendors could 

send their extraction or matching algorithms and best extractors and 

matchers were selected. Majority of vendors send both algorithms and it is 

interesting, that in many cases matching algorithms performed better with 

extractors from the same vendors (it can be seen from scenario 1 in MINEX 

report [49]). It can be easily explained, since many vendors develop both 

matcher and extractor and they know about typical problems of their 

extractors and can compensate for them in matching phase. It is hard to 

develop an accurate extraction algorithm because it is hard to evaluate it 

without a good matcher and since most vendors develop both algorithms, 

they are not sure that even if performance of their matcher or extractor is 

good enough, it will be good when used with other extractor (or matcher). 

Estimation of biometric algorithms performance expressed in ROC or DET 

curves depends on database of fingerprint images, quality of extraction and 

quality of matching algorithm. To have the possibility to estimate extractor 

and database quality separately from matching routine, we propose to utilize 

synthesized fingerprints images. Synthesized images can serve as a reference 

or as an ideal database that allows introducing some quantitative quality 
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measures for estimation of extractor’s performance for a particular database. 

If one extractor is applied on several fingerprint image databases, the 

database quality can be associated with the proposed quality measure. The 

situation is similar to situation when the quality of several extraction 

algorithms can be compared if same database for each extractor is used to 

calculate statistics. 

The ROC and DET characteristics of extracting algorithm can be replaced by a 

quality measure that accounts information about exact positions, types and 

orientations of minutiae. To have fingerprints images with predefined 

minutiae points, we extend SFINGE fingerprint image synthesis method [50]. 

2.2 SFINGE 

Different synthesis methods were analyzed [50], [51], [52] and SFINGE [50] 

was chosen as a base method. It is well described and its ability to generate 

finger-like images was tested in fingerprint verification competitions 

(FVC2000 [38] FVC2002 [18] FVC2004 [48] and FVC2006), in which one of four 

databases was generated synthetically. Generated fingerprints look like real 

ones, and identification algorithms performance is similar to performance 

obtained on real fingerprints. 

SFINGE (Synthetic Fingerprint Generation) consists of several steps: 

Fingerprint form generation, fingerprint type and orientation map generation, 

density map generation, ridge generation. 

2.2.1 Fingerprint form 

Fingerprint generation is starting by fingerprint form determination. 

Fingerprint form can be described by many different methods. For example, it 

can be described by an ellipse, or by a square with rounded corners. SFINGE 

method uses five coefficients, which can be generated randomly, or inserted 

manually or derived from the real fingerprint (Figure 12). 
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Figure 12: Five coefficients that describe fingerprint form (left) and fingerprints of 
different form (right). 

2.2.2 Fingerprint type and orientation map 

These properties are strongly related, because fingerprint type depends on 

positions of singular points (cores and deltas), and positions of singular points 

depend on orientation map. Different methods of orientation map generation 

are described in literature [53], [54] and any of them can be used to generate 

fingerprint orientation map with greater or smaller accuracy. Sherlock-

Monroe [53] method was chosen in this work because of its simplicity. 

Fingerprint orientation map is calculated in following steps: 

1. Fingerprint type is selected (manually or randomly); 

2. Quantities of singular points are selected depending on 

fingerprint type. Positions of all singular points (loops and 

deltas) are selected (randomly or manually) with restrictions 

that depend on chosen type. 

3. Having loops and deltas quantities and positions, orientation 

map is generated by the following formula: 
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where   is a complex number made from       coordinates of point, in 

which orientation   is calculated;    – number of delta type singular points; 

   – number of core type singular points;     – complex number made from 
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i-th delta coordinates;     – complex number made from j-th loop 

coordinates;     – complex number argument; 

Orientation is calculated in each pixel of fingerprint image (Figure 13). 

   

Figure 13: Example of orientation maps for different type fingerprints. 

2.2.3 Ridge density map generation 

Ridge density map is generated using following information about fingerprint 

characteristics: Default distance between ridges is 9 pixels (here and below 

we assume that scanner’s resolution is 500 pixels-per-inch (DPI)), ridge 

frequency is lower on the top of the image, and lower on the bottom [20]. 

2.2.4 Ridge generation 

Ridges are generated by iterative filtering of the blank image (initial image) 

with random dots, by Gabor filter [55] that is created using orientation and 

density from orientation and density maps: 

1. Black image with white dots in random positions is generated, 

2. Image is filtered several times with spatial (Gabor) filter (Figure 

14), which has orientation and frequency properties. Filter is 

generated by the following formula: 
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In this equation,   represents the wavelength of the cosine factor,   

represents the orientation of the normal to the parallel stripes of a Gabor 

function,   is the phase offset,   is the sigma of the Gaussian envelope and 

  is the spatial aspect ratio, and specifies the ellipticity of the support of the 

Gabor function. 

 

Figure 14: Gabor filter. 

Orientation and frequency values are taken from orientation and frequency 

maps. 

Filter is applied to entire initial image, and after several iterations random 

dots begin to grow into the lines and lines begin to form fingerprint ridges. 

Ridges fill the image and minutiae points (ends and bifurcations) appear 

(Figure 15). 

 

Figure 15: Ridge generation from initial image. Filtered images are shown in the top 
row, and binarized versions are in the bottom row. 
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2.2.5 Analysis 

An algorithm was implemented, and after experiments and research it was 

modified to generate minutiae points not in random positions, but in 

predefined ones. The following section describes a method that is fast and 

can generate images with minutiae in given positions. 

2.3 Modified SFINGE Method 

Since method is based on SFINGE method, steps like orientations map 

calculation and filtration are not described here once more. This section is 

focused on the differences between original and modified method. 

Main steps of fingerprint generation are: 

1. fingerprint type is chosen (randomly or manually); 

2. orientations (Figure 13) are generated; 

3. Gabor filters of orientations that present in orientations image 

are generated before filtering to speed up generation; 

4. initial image is constructed; 

5. initial image is filtered with Gabor filters that are oriented by 

orientation image. 

 
Figure 16: Orients map (left), initial image with drawn minutiae points (center), 

generated image, with resulting minutiae points marked with circles(right). 

 

Initial image is constructed by the following steps: 

1. zero valued image of given size is constructed; 
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2. coordinates (positions) and types of minutiae points are 

generated randomly or selected manually; 

3. small images of minutiae are drawn on the initial image in the 

selected positions so that minutiae orientations are aligned with 

orientation map. 

There are two types of minutiae points – line ends and bifurcations. Since 

these types are invertible (line end is a bifurcation on the inverted image), a 

bifurcation is drawn using positive (+1) value pixels, and line end is drawn 

using negative (-1) value pixels (Figure 16 (center)). 

The most straightforward way to generate a fingerprint is to filter the Initial 

image with Gabor filters that are oriented by orientation image (Figure 13), 

but since responses of Gabor filters are calculated in every pixel, it is a 

computationally complex operation. An optimization was implemented to 

perform iterative filtering only in those pixels that are required in current 

iteration to generate a fingerprint. The main idea of the improvement is to 

start filtering from positions of drawn minutiae and near it, and to extend 

filtering area until entire image is generated. For example, if Gabor filter is 10 

pixels wide, then in the first iteration pixels that are from 0 to 10 pixels away 

from the drawn minutiae points are filtered, in the second iteration – pixels 

that are from 1 to 11 pixels away from drawn minutiae points are filtered, in 

third iteration – pixels that are from 2 to 12 pixels away from drawn minutiae 

points are filtered, in fourth iteration – from 3 to 13 pixels away, and so on, 

until the fingerprint is generated (no pixels are left to filter). To perform fast 

calculation of distances to minutiae points, Euclidean Distance Map (EDM) 

[56] is calculated from initial image. The EDM map is an image, and value of 

each pixel indicates the distance to the nearest object (drawn minutiae point). 

The order of filtering can be easily calculated from EDM. In the first filtering 

iteration only pixels that have values from 0 to 10 in EDM are filtered, in 

second filtering iteration only pixels with values from 1 to 11 in Euclidean 
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Distance Map are filtered in initial image, in third iteration only pixels with 

values from 2 to 12 are filtered, in fourth iteration – from 3 to 13 and so on. 

(Figure 17 shows an example) 

    

Figure 17: Iterations of generation. An area that is white is filtered n each iteration. 

Filtering is performed by applying Gabor filter (orientation   is taken from 

orientation map, frequency   is taken from the frequency map) to each pixel 

of the initial image in the order that is calculated from EDM. 

Generated image can be noised or transformed after generation to provide it 

more natural look. 

The described optimization speeds up generation process more than 5 times 

comparing to a straightforward version. 

The resulting generation speed is more than 2 fingerprints per seconds on 

Intel Core 2 Duo 6600 processor. 

It can be noticed that though some additional minutiae points appear in result 

image, all initial minutiae points are present and location, direction and type 

of them are the same as in the initial image. 

Similar synthesis approach was independently used in [57] with the aim to 

investigate the possibility of fingerprint reconstruction from standard 

template. The main differences in generation process are summarized in the 

following table (Table 1): 



 

47 

Table 1: Differences between modified SFINGE method 
and the method descried in [57]. 

Modified SFINGE method Method described in [57] 

Fingerprint form is described 
by 5 coefficients that are 

generated randomly 

Fingerprint form is 
approximated from minutiae 

positions 

Fingerprint type is selected 
randomly, singular points are 

selected randomly with 
restrictions of chosen type, 
orientations are generated 

using fingerprint orientations 
model 

Orientations are derived from 
template 

Pixels of initial image can have 
values [-1, 0, 1]. In the 

beginning the images consists 
of zeroes. In the places where 

bifurcations should be 
generated, thin lines that 
represent bifurcations are 

drawn using positive (1) values. 
In the places where line ends 
should appear, thin lines that 

represent bifurcations are 
drawn using negative (-1) 

values. 

Initial image is binary and 
constructed using minutiae 

prototypes that look like small 
raster images of minutiae 
points cropped from real 

fingerprint image 

Fingerprint image generation is 
done by filtering of the initial 

image with Gabor filters in the 
order specified by Euclidean 

Distance map. 

Fingerprint image generation is 
done by iterative filtering of 
the initial image with Gabor 

filters, until fingerprint is 
generated. 

2.4 Correlation of synthetic fingerprints and real fingerprints 

Synthetic fingerprints look like real, but before using them, it must be proved 

that they have the same properties as the real ones, and can be used instead 

of them. The generation method is based on SFINGE method, which was 

validated in [57], but an additional test to further investigate the problem was 

performed: 

 DB1A database (800 fingerprints from 100 individuals) from FVC2002 

competition was chosen. 



 

48 

 Features (minutiae points) and orientation maps were extracted 

from all fingerprints using VeriFinger SDK [23]. 

 A synthetic fingerprint for each extracted template was generated 

using modified SFINGE method. 

 Templates from each synthetic fingerprint were extracted using 

VeriFinger SDK. 

 Three different matching scenarios were implemented: 

1. synthetic fingerprints vs. real fingerprints; 

2. synthetic fingerprints vs. synthetic fingerprints; 

3. real fingerprints vs. real fingerprints. 

In synthetic fingerprints vs. real fingerprints scenario each template from 800 

synthetic fingerprints was matched against 800 templates from real 

fingerprints using matcher described in [13] providing 800 similarity scores (8 

genuine scores and 792 impostor scores) for each synthetic fingerprint. 

Similarity scores were analyzed to determine the rate of successful matches 

between a synthetic fingerprint and 8 real genuine fingerprints. The match 

was considered successful, if genuine score is more than maximal impostors 

score. The process was repeated for second and third scenarios. The results 

are summarized in the following table (Table 2): 

Table 2: Probability of successful matches [%]. 

Number of matched genuines 1 2 3 4 5 6 7 8 

Scenario 1: Synth. vs. Real 100 100 100 99.625 99.625 99 97.375 89.125 

Scenario 2: Synth. vs. Synth. 100 100 100 100 99.875 99.125 97.125 89.625 

Scenario 3: Real vs. Real 100 100 100 100 100 99.75 98.875 96.375 

 

The first column (1) shows what the probability that a synthetic (in case of 

scenario 1) fingerprint has a successful match with at least one real fingerprint 

from 8 genuine fingerprints is. 
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 The second column (2) shows what the probability that a synthetic (in case 

of scenario 1) fingerprint has a successful match with at least two real 

fingerprints from 8 genuine fingerprints. 

The third column (3) shows what the probability that a synthetic (in case of 

scenario 1) fingerprint has a successful match with at least three real 

fingerprints from 8 genuine fingerprints is. 

The last column (8) shows what the probability that a synthetic (in case of 

scenario 1) fingerprint has a successful match with all real fingerprints from 8 

genuine fingerprints. 

It can be seen from the Table 1 that each synthetic fingerprint matches 

successfully with all 8 real genuine fingerprints in 89.125% of cases and up to 

3 real genuine fingerprints are matched successfully in 100% of cases. 

The probability that a synthetic fingerprint successfully matches with all real 

genuine fingerprints (scenario 1 column8,) is almost the same as the 

probability that a synthetic fingerprint successfully matches with all synthetic 

genuine(scenario 2 column 8) fingerprints 

The conclusion can be drawn that synthetic fingerprints are very similar to 

real ones and can be used instead of real fingerprints when needed. 

2.5 Extraction algorithm performance evaluation 

The aim of the extraction algorithm (extractor) is to extract different 

fingerprint characteristics and properties such as minutiae point’s locations, 

orientations and types, fingerprint type estimation and so on. Most extraction 

algorithms (extractors) consist of different image processing algorithms such 

as image normalization, texture orientation estimation, binarization, 

skeletonization and ridge frequency analysis. Developers of algorithms have 

to overcome many problems: source image can be noisy, fingerprint may be 

with scars and other imperfections, errors made in one extraction step can 

strongly affect other step, so it is necessary to have some way to evaluate 

extractor performance and find what errors can be fixed and which steps 
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need more attention. It would be very useful to have some reference 

fingerprints, with known characteristics (Figure 18). The output of the 

extractor could be compared to known characteristics and errors could be 

calculated. Such task could be done by manual analysis of several real 

fingerprints with marking all the necessary properties such as minutiae points, 

fingerprint type, singular points locations and so on, but it is a very time 

consuming operation and the resulting data will be non-objective (results will 

depend on person. For example – one fingerprint can have more than 

hundred minutiae points, and each minutiae point have such characteristics 

as: location, direction, and type. To evaluate extractor’s performance to a 

good degree of accuracy one may need to repeat this procedure hundreds or 

thousands times so it becomes obvious that such work cannot be done 

manually. 

Fingerprint image synthesis can be used to evaluate extractor’s accuracy. For 

example, many extractors perform orientation map estimation and since 

orientation map in synthetic fingerprint is generated by a known 

mathematical model, exact orientation in every pixel is known. It can be 

compared to an estimated orientation and error can be calculated. 

Fingerprint type, ridge frequency, minutiae point’s locations, types and 

directions are all predefined and can be used to evaluate extractor's accuracy. 

It is possible to generate thousands of fingerprints and evaluate extractor's 

performance with unprecedented accuracy. Extractor's stability to noise, 

deformations or scars can also be evaluated by adding artificial noise of 

different power to generated images and then initial data can be compared to 

the output of the extractor. 
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Figure 18: Orients map (left), predefined minutiae (center), generated fingerprint 
(right). 

2.6 Experiments 

To illustrate how synthetic images can be used to evaluate extractor’s 

performance, an experiment was done. The method was used to analyze how 

artificial noise affects extractor's results. Extractor from NIST certified 

VeriFinger SDK [23] was chosen. 

Three databases were prepared: 

1. DB1 - 1000 synthetic fingerprint images with 50 initial minutiae 

points per fingerprint; 

2. DB2 is a publicly available database DB1A from FVC2004 [48] 

competition (high quality fingerprint images from FBI certified 

scanner); 

3. DB3 is a publicly available database NIST SD29 [33](WSQ 

compressed fingerprint images from scanned fingerprint cards 

(only plain fingerprints were used). 

The resolution of images in DB2 and DB3 is 500 DPI; resolution of synthetic 

fingerprint images is about 500 DPI. 

Images were noised with shot ('salt and pepper') noise [56] - some percent of 

all image pixels were set white or black. Positions of noised pixels were 

chosen randomly (Figure 19). 
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Figure 19: Examples of shot noise of different power on DB1 (left), DB2 (center), DB3 
(right) (noise percentage: top left - 0%, right bottom – 80%). 

Minutiae points from noised images were extracted and following statistics 

for each noise density d (percentage of the noised pixels) from 0 to 100 were 

calculated: 

1. percent of initial minutiae points that was found on noised 

image (Minutiae point was considered as found if it is the 

nearest minutiae point to the initial minutiae point and the 

distance to it is less than 10 pixels; 

2. how found minutiae positions were affected by noise (the 

average distance in pixels between initial minutiae and found 

minutiae). 

Since accurate minutiae positions on real databases are not known (as in 

generated fingers), minutiae points extracted from not noised images were 

considered as initial minutiae points. Results are presented in following 

figures: 



 

53 

 

Figure 20: Quantity of initial minutiae points found on noised images (horizontal axis 
- noise density from 0% to 100%, vertical axis - quantity of found minutiae from 0 

(0%) to 1 (100%). 

 

 

Figure 21: Average distance between minutiae in noised image and minutiae in 
initial image (horizontal axis - noise density from 0% to 86%, vertical axis - average 

distance in pixels. 
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It can be noticed from the Figure 20 that on DB1 more than 90% of minutiae 

points are detected up to noise densities around 60% (when more than half of 

image pixels are corrupted) and the average distance to initial minutiae point 

is about 1.5 pixels (Figure 21). 

On DB2 more than 90% of minutiae are detected if noise density is less than 

20% (Figure 20), but the average distance to original minutiae point is still less 

than one pixel (Figure 21). 

On DB3 more than 90% of minutiae are detected only if noise density is less 

than 5% (Figure21). At noise density 20% only 60% of minutiae are found and 

the average distance to original minutiae point is more than one pixel (Figure 

21). 

Real fingerprint images have lower signal-to-noise ratio because some noise is 

added during fingerprint acquisition process (dust on scanner, marks from 

previously scanned fingerprints, digitization errors, image compression 

artifacts). 

We propose to use synthesized image database as references in estimation of 

quality of the extractor. For example curve of Figure 20 that corresponds to 

synthetic DB1 is the most right. We postulate that this curve corresponds for 

ideal scanner or ideal database and has 100% quality. The measure of quality 

can be defined as 100 * S1 / S1, where S1 is an area below the graph in Figure 

20 that corresponds to DB1. Quality of DB2 and DB3 databases or their 

corresponding scanners is 100 * S2 / S1 and 100* S2 / S1. Here S2 and S3 are 

areas below the corresponding graphs in Figure 21. After calculation of the 

areas, quantitative extractor quality on DB2 and DB3 was calculated. The 

numbers are 64.7% for DB2 and 35.3% for DB3. Graphs in Figure 20 represent 

proportion of reliable detected minutiae in respect of added “salt and 

pepper” noise. Thus the calculated qualities represent extractor quality for 

the two databases in the sense of quantity of reliably detected minutiae. 
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 Graphs in Figure 21 can be used in the similar manner to estimate precision 

of extracted minutiae positions. Average error on DB2 is 7.8 times higher than 

on DB1, on DB3 – 11.1 times higher than on DB1. Note that in both cases 

extraction qualities for DB3 were lower and this well correlates with published 

ROC and DET characteristics for these databases [48], [58]. 

2.7 Summary and Conclusions of the Chapter 

A method of fingerprint image generation was described in detail. The 

method is fast, and can generate images with minutiae points that have 

predefined properties such as location, direction and type. It can be used not 

only to generate large databases of fingerprints, but to precisely evaluate 

extraction algorithm performance and detect its weak sides (stability to noise, 

scratches, deformations and other imperfections). Experiments show that 

quality of generated images is much better than quality of real fingerprints 

and since initial minutiae positions are known, the accuracy of evaluation is 

higher. 

It is common to evaluate database, extractor or matcher accuracy by 

calculating statistics like ROC on some database, but the result of such 

evaluation depends on all three components – quality of database, quality of 

extractor and quality of matcher. When synthetic database is used, evaluation 

results depend on only two components – quality of extractor and quality of 

database. Influence of the matcher is eliminated by using synthetic database 

as a reference. Two measures for extractor’s performance estimation on 

different DB were introduced. The resulting quality is in the range of 0 and 

100%, where 100% corresponds to the case of synthetic images. The obtained 

numeric values of the qualities correspond to known ROC characteristics of 

test databases. 

The described method can be used to design an extraction algorithm that is 

more tolerant to scanner noise, fingerprint scratches and deformations. Since 
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additional minutiae points appear in result image during generation process, 

additional workaround may be needed to overcome this issue. 

3 Fingerprint matching 

3.1 Introduction 

Most automatic fingerprint verification and identification systems use 

minutiae information from fingerprints to align and compare images or their 

templates to speed up the matching process. We refer to minutiae as ridge 

ending or ridge bifurcation with any additional local features. Extraction of 

minutiae from fingerprint image is out of the scope of this work. 

Much effort has been made to create matching algorithms capable of dealing 

with distortion and deformations in fingerprint images. Exhaustive overview 

of possible methods is made in [20] and [21]. Thin-plate spline model is used 

to deal with distortion in [5]: first, local matching is performed on structures 

that consist of minutiae and its two closest neighboring minutiae points to 

determine which minutiae possibly match, then global matching is made to 

find registration parameters; after finding the global registration parameters 

that coarsely align two fingerprints, elastic deformation is eliminated using 

thin-plate spline model, and final match is made. The authors reported major 

increase in performance. However, their approach uses registration 

estimation that is not reliable when fingerprints are distorted since accurate 

registration does not often exist, see Figure 22. Two distorted fingerprints are 

presented. After registration, only small common part that is not distorted is 

left. 
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Figure 22: Two different impressions of the same fingerprint before and after best 
registration. 

Errors in registration lead to errors in further steps. Matching based on local 

and global structures is described in [24]. Local matching uses local structures 

that consist of minutiae point and its neighboring minutiae points and is 

rotation and translation tolerant. Local structures from both fingerprints are 

matched to find the best matching pair. This pair is used as a reference 

correspondence point, and other minutiae points are aligned based on this 

correspondence. After alignment global structure matching is performed. To 

account for deformation, large bounding boxes are used, but to decrease the 

probability of false match, the matching certainty level function that provides 

some sort of match probability instead of just "matched" or "not matched" 

result is defined. Although authors reported good matching performance, the 

disadvantages of their matching algorithm are similar to [5]. If the fingerprints 

are distorted, the exact registration parameters do not exist, and even the 

reference local pair cannot be used to align them. Errors in choosing the right 

reference point or incorrect alignment lead to incorrect match. Other 

methods are described in literature [20], but most of them are either 

variations of above described methods that use registration, or their 

computational cost is too high or they use some other, not minutiae methods 

to deal with distortion and cannot be used with existing fingerprint databases 

based on minutiae. For example, an interesting method is introduced in [28] 

where authors normalize the fingerprint image to a canonical form so that 

ridges are equally spaced and less affected by distortion. In [7] a distortion 

model that could describe elastic deformation found in fingerprint images is 
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presented. Authors validated it by manually setting deformation parameters, 

but no automatic optimization technique that could be used to automatically 

derive deformation parameters while matching minutiae is known. In general, 

distortion elimination is a hard problem that could improve performance of 

most matchers, if properly solved. After normalization or deformation 

removal a rigid matcher could be used for direct comparison [18]. Another 

normalization technique was introduced in [14] – the minutiae distance is 

normalized at the matching stage according to the local ridge frequency. This 

method could improve matcher performance for good quality fingerprints 

where reliable frequency estimation is possible, and for minutiae pairs that 

are not far from one another, so that changes in ridge frequency along the 

fingerprint that occurs even in not distorted images are less than errors that 

are made while estimating the frequency. 

In this chapter, a completely new approach of minutiae matching is proposed 

as a framework with broad range of possible implementations. One of the 

most simple but effective implementation is discussed here. The method 

consists of three main steps: matching of local structures, correspondence set 

construction and validation of higher order local structures. The first step has 

the following properties: Low false rejection ratio (FRR), rotation and 

translation invariance, locality (for tolerance to deformations) and low 

computational complexity. 

Possible implementation will be discussed in section 3.3. The second step 

receives a similarity matrix filled with similarity score of every minutiae point 

from the first template compared with every minutiae point from the second 

template. In spite of the fact, that one minutiae point from the first template 

can be very similar to several different minutiae points from the second 

template, every minutiae point can make only one correspondence between 

the templates. Construction of minutiae correspondence set is discussed in 

section 3.3.2. While constructing the minutiae correspondence set no 
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information about the global fingerprint structure is used. The last step of 

global fingerprint structure validation is discussed in section 3.4. 

3.2 Fingerprint Matching Without Global Alignment 

This chapter is about a method of minutiae based fingerprint matching that is 

robust to deformations and does not perform fingerprint alignment. It 

concentrates on comparing rotation and translation invariant local structures 

defined by minutiae point and its neighboring minutiae points. Then the 

collection of most probable correspondences of matched minutiae is found. 

Finally, the local structures of higher order are validated. All three steps are 

completely rotation and translation invariant, robust to nonlinear 

deformations and do not use any fingerprint alignment. Experimental results 

on publicly available as well as internal databases showed an improved 

performance of the proposed method in comparison with the traditional 

minutiae based algorithms that perform fingerprint registration. 

3.3 Local Matching 

In most general case, template of fingerprint is the description of minutiae 

points set. Two sets of minutiae must be compared while matching two 

fingerprints. For simplicity, we will call   (test set) – the first set of   

minutiae and   (sample set) – the second set of   minutiae. The order of 

sets is not important because the proposed method is symmetric. We define 

local matching as a comparison of   local structures from set   to   local 

structures from set   where every local structure is associated with minutiae 

which serves as a reference point to that local structure. The result of local 

matching step is a     similarity matrix filled with similarities between 

local structures. 

3.3.1 Local Structure 

Generally, local structure could be anything from a minutiae point identified 

by a vector starting at       and local ridge direction   to a set of minutiae 
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with some portions of original image. However, we are looking for a structure 

that is rotation and translation invariant, local (for tolerance to deformations) 

and easy comparable. 

One of possible candidate could be the structure that we define using graph 

notation similar to [24], see Figure 23. The local structure associated with the 

minutiae    (defined by a vector starting at         and local ridge 

direction   ) for distance      and maximum number of nearest neighbors 

     is the graph            consisting of: 

  
   {            (     )      }               

 
   {   |                     }, 

where     is labeled with tuple               (     )          is the angle 

between    and    directions. Additionally, other features can be used to 

improve the performance. 

Such local structure is rotation and translation invariant and tolerant to non-

rigid nonlinear deformations. 

 

Figure 23: Local structure associated with minutiae   . 

3.3.1.1 Similarity Score 

In spite of the fact, that minutiae extraction from fingerprint image is out of 

the scope of this work, possible errors of false detected and missed minutiae 

cannot be ignored. The local structures cannot be compared directly if any of 

these errors is present. To deal with these errors we construct a similarity 

function   (  
    

 ) for comparison of two local structures   
  and   

  

from test and sample fingerprints. If there were no extraction errors the 
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edges of every local structure could be sorted in clockwise (or 

counterclockwise order) starting from the direction of associated minutiae 

and compared directly by a function: 

  (  
    

 )  ∑      
     

  

|  
 |

   

  
(3.1) 

  (  
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            – thresholds,       – predefined parameters.  

However, we can deal with errors introduced by extraction in the following 

way: 

1. Sort   
  edges in a clockwise order (starting from the direction 

of associated minutiae) into a sequence    
 ; 

2. Sort   
  edges in a clockwise order (starting from the direction 

of associated minutiae) into a sequence    
 ; 

3. Find the longest common subsequence (LCS) of    
  and    

  

using the same similarity function CE from (3.2) for comparison 

of sequence elements. 

4. Sum up the similarities of edges that make the longest common 

subsequence: 

   ̅̅̅̅ (  
    

 )  ∑   (   
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     (   
     

 )

 (3.3) 

As a convenient abuse of terminology we will use    instead of   ̅̅̅̅  to 

represent similarity between two local structures. 

3.3.2 Correspondence Set Construction 

After calculating similarity between every local structure from test and 

sample fingerprints similarity matrix       is filled with these values. This 



 

62 

matrix can be used to construct a correspondence set of minutiae pairs where 

every local structure belongs maximum to one correspondence: 

   {(  
    

 )|  
      

   }               (3.4) 

 

Though many different approaches can be used to find minutiae 

correspondence set, a maximum weighted matching on bipartite graphs is 

used to find the correspondence set maximizing the sum of similarities 

between local structures. 

Bipartite graph is constructed from similarity matrix with vertices defined by 

local structures from both fingerprints and weighted edges defined by greater 

than 0 similarities between associated local structures. We use Hungarian 

algorithm [59] to solve this problem in                time in worst case. 

 

3.4 Validation 

Until a correspondence set is constructed no global fingerprint registration is 

used and for robustness to deformations it will not be used anywhere in the 

proposed method. Although local structures from test and sample fingerprints 

can have high similarity they can be located differently in respect to each 

other in fingerprints (see Figure 24). 
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Figure 24: Corresponding local structures (numbered 1, 2 and 3). 

 

Similar cases should be taken under consideration. The easiest solution would 

be to perform global alignment of fingerprints, but since global registration is 

not used, local structures of higher order are constructed to control how local 

structures are located in the fingerprint. We define structures of higher order 

    
  and     

 as pairs of local structures from the correspondence set that 

was constructed in previous section for test and sample fingerprints: 

 
    

  (  
    

 )           

    
  (  

    
 )           

 (3.5) 

Local structures of higher order     
  and     

  are rotation and translation 

invariant. Additionally, they hold information on how local structures are 

situated in the fingerprint in respect of each other without a need of global 

fingerprint registration. Some of the local structures of higher order are 

marked in Figure 24 by Latin letters a, b, and c. For example, structure b 

(identified by local structures 1 and 3, angles  and, and distance between 

minutiae points associated with local structures) from Figure 24 in test 

fingerprint is compared to corresponding structure b in sample fingerprint. If 



 

64 

the structures are not consistent they are not used in calculating similarity 

score between fingerprints. 

3.4.1.1 Similarity Score 

We define similarity score SS between two local structures of higher order 

    
  and     

  as: 
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            – angles between the segments connecting the local structures 

of higher order and directions of their associated minutiae, 

                  – predefined parameters. 

3.5 Final Similarity Score 

We define similarity score between two fingerprints as a sum of similarity 

scores between all local structures of higher order (that passed a validation 

step) combined with similarity scores of local structures that make them: 
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  are local structures that make     
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 )) can be one of the following (but 

not limited to): 
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       function is used to normalize similarity score for differently sized 

fingerprints. 

Selection of the most suitable   and   functions can improve matching 

performance in cases when fingerprints of different sizes are compared. 

               and            were used in this work together 

with (3.9) equation. 

3.6 Evaluation of threshold parameters 

3.6.1 Threshold Parameters in Local Structures 

Two threshold parameters are used in constructing local structures:      

and      . Experimental results show that changing value of parameter 

     hardly changes matching performance. However, to make structures 

more local the value of     pixels was chosen. Additional testing was 

performed on several databases for choosing the value of      parameter. 

It showed that      is a tradeoff between speed and quality. The value of 10 

was chosen. The results are shown in Figure 25. 
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Figure 25: Change of FRR @ FAR = 0.01% (in percent) for different values of      on 
different databases. 

3.6.2 Threshold Parameters in Similarity Functions 

The proposed method uses several predefined thresholds 

                           however we show that similarity functions are 

constructed to be robust. None of them uses a hard decision (see (3.2), (3.6), 

and (3.7)) because the information on level of similarities is lost in that way. 

Our similarity functions include this information and are stable in respect to 

varying values of threshold parameters. Actually, these parameters control 

what amount of deformation is allowed by the proposed method. For 

example, allowing stronger deformations (higher thresholds values) results in 

higher false acceptance rates but lower false rejection rate. The parameters 

we used (      = 12,       = 17,       = 12,       = 17) was a 

compromise between FAR and FRR. However, additional testing showed that 

the chosen values can be changed within 50% without noticeable impact to 

the performance of the proposed method. 
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3.7 Performance Evaluation 

The complexity of the algorithm consists of three man stages: local structure 

matching, correspondence set construction and validation. The complexities 

of the stages when number of features in first fingerprint is   and in the 

second fingerprint is   are:                                  

respectively, that gives resulting complexity of the algorithm: 

                                          .  

The performance of the proposed method was tested on publicly available 

NIST Special Database 29 [33] fingerprint database (hereafter referred as 

SD29). The database consists of 216 ten-print fingerprint card pairs with both 

the rolled and plains scanned at 19.7 pixels per mm. For direct comparison we 

chose publicly available NIST fingerprint image software NFIS2 [34] minutiae 

based fingerprint matching algorithm (hereafter referred as BOZORTH3). 

Fingerprint minutiae extractor from NFIS2 (MINDTCT) was not used in the 

evaluation because of big number of false minutiae it produces (BOZORTH3 

matcher uses only 150 minutiae of best quality from the fingerprint template 

to deal with this problem). We tested the proposed matching method with 

commercially available fingerprint minutiae extraction algorithm of better 

quality [23] (hereafter referred as COMM). We will refer to the proposed 

method as Local Structure Matcher (LSM) in all experiments. 

SD29 database consists only of fingerprint images that were scanned from 

fingerprint cards. Additional tests were done to prove that the proposed 

method works well with live scanned fingerprints. The following databases 

were chosen: 

1. DB1 from FVC2002 fingerprint verification competition [18] 

collected with optical sensor "TouchView II" from Identix. The 

database consists of 800 different fingerprints with 8 

impressions per finger; 
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2. DB2 from FVC2002 fingerprint verification competition collected 

with optical sensor optical sensor "FX2000" from Biometrika. 

The database consists of 800 different fingerprints with 8 

impressions per finger; 

3. Neurotechnology’s internal database collected with optical 

single-finger scanner "DFR 2090" from Identix (hereafter 

referred as INTERNAL1). The database consists of 1400 different 

fingerprints with 10 impressions per finger; 

4. Neurotechnology’s internal database collected with high-quality 

optical single-finger scanner "Cross Match Verifier 300" 

(hereafter referred as INTERNAL2) recommended for large scale 

automatic fingerprint identification systems. The database 

consists of 1 400 different fingerprints with 10 impressions per 

finger. 

5. A relative comparison with other algorithms that perform 

registration can be found at: http://bias.csr.unibo.it/fvc2006/  

3.8 Results 

NIST VTB fingerprint system with Bozorth98 matcher (previous version of 

BOZORTH3) participated in Fingerprint Vendor Technology Evaluation (FpVTE) 

2003 [36] and proved to be comparable to other commercial algorithms and 

even better than almost half of the contestants. The following experiment 

shows an improvement of the proposed method over BOZORTH3 matcher 

with COMM minutiae extractor. 18 ROC curves were calculated on different 

parts of SD29 [35] (P2P – plain vs. plain fingers, P2R – plain vs. rolled fingers, 

R2R – rolled vs. rolled fingers, RT – right thumb, LT – left thumb, RI – right 

index, LI – left index, RM – right middle, LM – left middle) of SD29 for both 

methods. The results (False rejection rate – FRR when false acceptance rate – 

FAR is 0.01%) are shown in Table 3 and 

Table 4. 
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Table 3: COMM+BOZORTH3 FRR @ FAR = 0.01% on different parts of SD29 

part RT LT RI LI RM LM average 

P2P 7.1 6.2 18.9 15.0 14.8 14.1 12.68 

P2R 12.7 12.8 14.7 18.6 14.6 12.2 14.27 

R2R 16.3 11.3 6.6 5.9 8.3 6.0 9.08 
 

Table 4: COMM+ LSM FRR @ FAR = 0.01% on different parts of SD29. 

part RT LT RI LI RM LM average 

P2P 7.14 9.89 14.8 11.5 15.9 13.2 12.07 

P2R 5.36 9.34 9.07 12.5 9.62 9.34 9.205 

R2R 4.95 7.69 4.4 6.59 5.49 8.79 6.318 

 

The proposed method improves FRR at FAR = 0.01% from 12.01% to 9.20% on 

average. As expected, the largest improvement was gained on rolled-to-rolled 

fingerprint matching were stronger deformations of fingerprints are possible. 

 

Figure 26 and Figure 27  

Figure show the performance of the proposed method on live scan 

fingerprints from FVC2002 databases that were collected with optical 

scanners. 

 

Figure 26: COMM+BOZORTH3 compared to COMM+LSM on FVC2002 DB1 database. 
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Figure 27: COMM+BOZORTH3 compared to COMM+LSM on FVC2002 DB2 database. 

 

Summary of improvements (FRR @ FAR = 0.01%) over all databases is 

presented in Table 5. 

Table 5: FRR @ FAR = 0.01% on tested databases 
with commercial minutiae extractor 

database BOZORTH3 LSM 

SD29 (average) 12.01 9.20 

FVC2002 DB1 8.73 3.29 

FVC2002 DB2 5.82 3.00 

INTERNAL1 5.65 2.3 

INTERNAL2 1.78 0.44 

 

The largest improvement was achieved for the live scanned fingerprints. 

False rejection rate (FRR) at 0.01% FAR is up to 4 times (one-tailed paired t-

test; p < 0.0005; Table 5) lower comparing with BOZORTH3 matcher. 

3.9 Summary and Conclusions of the Chapter 

A framework to match deformed fingerprints was presented in this chapter. It 

consists of simple and intuitive steps. The proposed implementation of the 

steps is straightforward and flexible, does not use registration, and is capable 

of matching deformed fingerprints. It leaves much freedom in combining the 

suggested methods with other approaches. Evaluation of algorithm was made 
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on large data sets with different matching parameters. It has been shown that 

proposed method is flexible and tolerant to rotation, translation and 

deformation of fingerprint images. Performance of the method was compared 

with BOZORTH3 matcher and improvements up to 4 times (one-tailed paired 

t-test; p < 0.0005; Table 5) in false rejection rates at 0.01% FAR were 

demonstrated. 

4 Speaker Recognition 

4.1 Introduction 

New text independent speaker identification method is presented. In this 

chapter. Phase spectrum of all-pole linear prediction (LP) model is used to 

derive the speech features. The features are represented by pairs of numbers 

that are calculated from group delay extremums of LP model spectrum. The 

first component of the pair is an argument of maximum of group delay of all 

pole LP model spectrum and the second is an estimation of spectrum 

bandwidth at the point of spectrum extremum. A similarity metric that uses 

group delay features is introduced. The metric is adapted for text 

independent speaker identification with general assumption that test speech 

channel may contain multiple speakers. It is demonstrated that automatic 

speaker recognition system with proposed features and similarity metric 

outperforms systems based on Gaussian mixture model with Mel frequency 

cepstral coefficients, formants, antiformants and pitch features. 

Automatic speaker recognition quality still remains pretty low in comparison 

with other biometric identification methods based on fingerprints [13], irises 

and even faces analysis [26] [30]. Conventionally, the front-end of the 

recognition system uses features such as cepstral, Bark or Mel frequency 

cepstral coefficients [4]. The features are based on spectrum amplitude of the 

speech frames or their residual parts of linear prediction model [16][15]. In 
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our opinion mainstream of speaker recognition algorithms underestimate 

information contained in phase spectrum. The idea that spectrum phase can 

contain valuable information for speaker recognition is not very surprising 

because it is known that traditional power spectrum resonant characteristics 

can be derived exclusively from the phase spectrum [11], [22]. To resolve 

stability problem, the phase spectrum of traditional Linear Prediction (LP) 

model is used. In [32]the group delay features for speaker recognition were 

derived directly from the Fourier spectrum of the speech frames. Such 

approach requires special techniques dealing with instabilities of unwarped 

Fourier spectrum. We combine [11] and [37] techniques to extract group 

delay features of LP model. In [11] third order derivatives of the LPC phase 

spectrum were used to extract speech formants. We explore only first and 

second derivatives of LPC phase spectrum. The zero-crossings of the second 

derivative provides information about formants positions. LPC phase first 

derivative at formants frequencies gives simple approximations of the 

formants bandwidth. In [37] a connection between LPC phase and Line 

Spectrum Frequencies (LSF) is described. That inspired us to construct a 

symmetrized form of LPC phase representation which saves features 

computation cost and gives simple formulas for approximation of LPC 

spectrum poles. Gaussian Mixture Model (GMM) (see[25], [11]) becomes a 

standard technique for modeling of distributions of speakers features and 

their comparison. Since our features are restricted to the rectangle 

(0,1))(0,   we estimated features distribution using histogram technique 

and constructed an information theory based similarity measure for 

comparison of speech utterances. 



 

73 

4.2 Group Delay Features of all-pole LP model 

4.2.1 Linear Prediction 

In Linear prediction (LP) model [10] samples of a speech frame are 

represented in the form 

    ∑ 

 

   

            (4.1) 

where            are the Linear Prediction Coefficients (LPCs),   is the 

model order,   and    are the excitation gain and source, respectively. The 

LPCs are derived adaptively for each 20-30 ms speech frame by minimization 

of excitation mean square energy. For simplicity, we will assume that the 

order of LP model is uneven, i.e.       . The LPC spectrum or the 

transfer function of the LP filtering is defined by:  

    
 

    
  (4.2) 

where        ∑  

    

   

   
    (4.3) 

 

is the inverse filter. The LPC spectrum represents an envelope of the speech 

spectrum. 

4.2.2 Phase of Spectrum of LP model 

Let us define symmetrical polynomial      and antisymmetrical polynomial 

     by the formulas:  

      
                

 
  (4.4) 

      
                

  
   √    (4.5) 

 

The      and      polynomials are related to the symmetrical polynomial 

     and      of Line Spectrum Frequencies (LSF) analysis [37] by the 

following formulas: 
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                                  (4.6) 

                                    (4.7) 

On the unit circle              are real-valued,  

                      (4.8) 

 and                     (4.9) 

 

The equations (4.8) and (4.9) show that the frequency response and the 

phase of the transfer function of the LP model satisfy the equations: 

        
 

√           
  (4.10) 

and                            (
 (   )

 (   )
)    

         √  . 

(4.11) 

 

4.2.3 LPC Phase Spectrum Features 

The LPC spectrum in the all-pole representation has the following form: 

      
 

∏   
                

  (4.12) 

 

where        is location of the m-th pole of the LPC spectrum, and 

          is the angular frequency of the pole. From Eq. (4.12) follows that 

the mth pole contributes to the LPC phase spectrum with the additive term  

         
            

              
).  

 

Therefore for the first and second phase spectrum derivative we have: 

 
     

  
 ∑

              
                 

 
 

 

  (4.13) 

 
      

   
  ∑

        
           

                  
   

  

 

 (4.14) 

 

The negative derivative of phase of the LP spectrum is called group delay of LP 

model. The poles locations are not estimated and the phase spectrum 
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derivatives are calculated by numerical differentiation of Eq. (4.11) identity to 

reduce calculation time. 

Equation (4.13) gives that for the strong pole with    close to 1  one can 

expect local maximum of the group delay at a point    close to the angular 

frequency   . The local maximum m  can be found as second derivative 

zero-crossing point which is closest to the   . (4.13) gives: 

        
  

    
 (4.15) 

 and     
      

        
  (4.16) 

Considering the provided observations, we define the group delay features of 

a speech frame as a set of pairs  

 (   
 

        
)           (4.17) 

where      is the set of all zero crossings of the phase spectrum second 

derivative that belong to the radian frequency interval       and  

      
      

        
 

 

        
 (4.18) 

 

defines a bandwidth of a formant of the speech frame. 

4.3 Speech Utterance Similarity Measure for Speaker 

Identification 

Suppose there are two sampled speech utterances      and      and 

similarity between them must be measured. Let's assume that      samples 

belong to a speaker   of the training set and        samples belong to a 

speech utterance of one, two or even more test speakers. The similarity 

measure should estimate the probability that speaker   of the training set 

speaks in   speech utterances. Such speaker recognition scenario occurs in 

forensic evaluation of the evidence using automatic speaker recognition 

systems. In forensic evaluation speech utterance of a training speaker can be 

recorded in a separate channel or manually segmented from multi speakers 
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speech utterances, and test speech utterances may consists of natural records 

of persons under investigation. 

4.3.1 Features statistics. 

In previous section we introduced LPC phase spectrum variation features 

which for the k-th speech frame consist of    
    

   pairs where   
  is the 

frequency position of the m-th local maximum of the group delay and   
  a 

bandwidth of the extremum point. The speech utterances are divided into 

short time intervals of 1 sec. Duration and distribution of the group delay 

features of their frames is estimated. Since distance between two neighbor 

frames is      sec., we have about          pairs    
    

   of features 

in 1 sec. duration utterance. Distribution of    
    

      
  

 
        is 

estimated by division of    
  

 
        into     rectangular boxes and 

calculating number of pairs    
    

   that belong to the boxes. Warping 

parameter         is adapted to sampling frequency    so that division 

of frequency range    
  

 
  in equal width intervals corresponds roughly to 

the Bark frequency scale. Possible bandwidth interval       is divided into 

increasing width intervals of total number   . 

4.3.2 Similarity measure of two short speech utterances 

Similarity measure between two speech utterances is defined as a mutual 

information of the two group delay feature distributions. Let       is 

total number of all possible rectangular boxes        
  and   

     
     

  

and   
 

    
 
    
 are feature vectors which components are numbers of 

group delay features belonging to boxes   . By definition, all the   
  and   

 
 

correspond to         and         seconds time intervals of   and   

speech utterances respectively. Let   
  and   

 
 are Shannon's entropies of 

the   
  and   

 
 counts, i. e.,  
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    (4.20) 
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  (4.21) 

Let     
   

    
    

 
    
  denotes conjoint counts of   

  and   
 

 and  

     
   

  ∑ 

 

   

  
   

      
   

        
   

      
   

   (4.22) 

is the Shannon's entropy of the     
   

. It is easy to prove the following 

statement about a relation between the three entropies. 

Theorem 1. For any counts   
  and   

 
 and their conjoint count     

   
 the 

following inequalities hold true:  

    
     

 
     

   
    

     
 

       (4.23) 

where    
   

  

     
   

 
   

   
 
 

     
   

 
      (4.24) 

and                       (4.25) 

 

Proof. The Gibbs' inequality [17] for any two distributions    and    gives  

  ∑ 

 

   

          ∑  

 

   

          
 

  

Applying this inequality for      
     

   or      
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that proves the left hand side inequality of Eq. (4.23). 
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The right hand side inequality of Eq. (4.23) can be justified by information 

theory reasoning.     
   

 is the average Shannon's information for appearance 

of a text letter of the text with     
   

 letters counts. The information about a 

letter of the text with conjoint     
   

 counts can be obtained using the 

following procedure. At first the question is asked "is this letter from the text 

with   
  or   

 
 counts"? Then, depending on the answer to the first 

question, the second question is asked "which letter is from the text with   
  

counts?" or "which letter is from the text with   
 

 counts?" with probability 

  and       respectively. Answer to the first question contains 

                    bits of information and the second one contains 

  
  or   

 
 bits of information with probability   and   respectively. Since 

the strategy of provided two questions is not optimal in general, we have the 

right hand side inequality of Eq. (4.23). 

To provide a formal proof of the right hand side inequality of Eq. (4.23) let us 

consider continuous function: 

                    

It is easy to check that this function is subadditive, that is 

                         

Really, if     is fixed then 

 (                )

  
     (

 

   
)    

and                          

Therefore                        . Applying this inequality we 

have: 
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Definition 1. Similarity of   of         time interval (in seconds) of 

speech utterance of the   speaker to the         time interval of the   

speaker(s) is the number  

                        
   

     
 

     
   

    

  (4.26) 

 

Theorem 1 gives that the similarity of any two speech utterances          

and          is always non-negative and not greater than 1 . The next 

definition gives similarity of          short speech utterance to all the   

utterances. 

Definition 2. Similarity of          short speech utterance to the   

utterances is the number  

  (          )  
∑  (                 )

    
   

  
, (4.27) 

where    is the amount of seconds in   speech utterance. In other words, 

similarity               is the average similarity of          utterance to the 

set of all of one second duration utterances         . 

The last definition combines short segments similarities to an integrated 

similarity of   and   utterances. 

Definition 3. Similarity of   speech utterances to the   utterances is the 

number  

                                       (          )  
(4.28) 

              

The provided similarity measure        is asymmetrical (in general 

             ). This is explained by the asymmetry in   and   data:   

consists of utterances of one speaker and   may contain utterances of two 

or even more speakers. If a priori   contains speech utterances of only one 

speaker too, the        can be modified to symmetrical similarity by 

skipping "half biggest" words in Definition 3. All provided speech similarity 
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measures are based on mutual information, are non-negative, and do not 

exceed 1. If   and   are totally different, i.e. the   and   group delay 

features points belong to non intersecting sets of boxes   , then, with all   

and  ,     
   

    
     

 
      and         . In the opposite case, 

when the all counts are proportional (         
          

 
)     

   
    

  

   
 

   
  and         . Consequently, the similarity measure        

has a probabilistic interpretation:        is a probability that   speaker 

participates in   dialogue. 

4.4 Experimental Results 

4.4.1 Preprocessing of initial data 

The following standard steps of initial data preprocessing were used in all our 

experimentations: Silent or low energy speech intervals were detected and 

removed from the further analysis, sound data was pre-emphasized with first 

order filter of the form        . speech utterance was segmented into    

msec. frames with    msec. overlapping, frame samples were windowed 

with Hanning window, first order all-pass filter with warping parameter 

      [29] was applied to the windowed speech data. 

4.4.2 A graphical illustration of group delay features 

 A speech frame with LPC log power spectrum represented Figure 28 

illustrates ideas about group delay features. The first derivative of LPC phase 

spectrum of the same speech frame is presented in Figure 29. Comparing LPC 

log power spectrum and LPC phase spectrum variation, one can notice that 

the last has two additional formants (maximums of the spectrum). The rest 

five formants of both spectrums have similar positions at frequency axis, 

however, peaks of the first derivative of LPC phase spectrum are more 

prominent than that of LPC log power spectrum. 
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Figure 28: LPC log power spectrum of a speech frame. 

 

Figure 29: First derivative of LPC phase spectrum of the same speech frame. 

 

Figure 30: -log band width with marked features points                of the 
speech frame. 

 

The (4.16) approximation gives a "pole distance" of a chosen formant      

to the unit circle. Figure 30 presents      of the distances with marked 

points that correspond to formats. The coordinates of the marked points 

define pairs                that form features vector of the speech frame. 
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4.4.3 Experimentation data sets and results 

 Different speaker recognition techniques were compared using Russian 

Speech Data voice (RUSBASE) database which is distributed by ELRA 

(European Language Resources Association) [8] and data from the 

Netherlands Forensic Institute Speaker Recognition Evaluation (NFISRE). The 

NFISRE was conducted in 2004 – 2005 in order to compare the methods used 

by different forensic institutes belonging to the European network of forensic 

science institutes. NFISRE has two reference recordings containing speech 

utterances of a known and suspected speaker. Other test recordings contain 

from 20 sec. to 10 min. speech utterances of two speakers. The NFISRE task 

was to determine if suspected speaker participates in provided test 

utterances. Correct training set was constructed by manual segmentation of 2 

training recordings leaving only utterances of suspected speaker and 

recordings that were fully automatically checked. Ideal recognition was 

obtained by comparing with ground truth released by NFI [9], that is – all 

impostor and genuine speakers were correctly classified. 

RUSBASE is divided into 5 cases with approximately 15 sessions for each case. 

It contains 44 men and 35 women voices with total size of speech recordings 

about 500 Mb. First three sessions were used as a training set. Remaining 

sessions were used for testing. 

Table 6: Recognition of RUSBASE speaker, case 1, voice man, using different 
methods and features 

Method Features EER [%] 

VQ MFCC 8.8 

GMM MFCC 5.8 

GMM F&A 5.1 

Phonemic F&A 2.32 

RUSBASE recognition based group delay features were compared with 

Gaussian Mixture Model (GMM) that uses Mel Frequencies Cepstral 

Coefficients (MFCC), Formants and Antiformants (F&A), pitch value F0. Table 6 

[27]gives results of Equal Error Rates (EER) for speaker recognition on 
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RUSBASE, case 1, men voices, using MFCC, F&A, and F0 features and Vector 

Quantization (VQ) (see [15]) and GMM recognition methods. The EER ranges 

from 2.32% to 8.8 % (see Table 6). On the group delay and mutual information 

based speaker recognition algorithm for the same data gives EER = 0.042%. 

Table 7 provides full results of speaker recognition of RUSBASE. Here Zero FAR 

is false acceptance rate (FAR) when false rejection rate (FRR) is 0% and Zero 

FRR is False rejection rate (FRR) when false acceptance rate (FAR) is 0%. 

Table 7: Speaker recognition using phase spectrum features and of mutual 
information type similarity. RUSBASE data set, case 1 – 5 

Case Voice Zero FAR[%] EER[%] Zero FRR[%] 

1 man 1.8 0.042 0.12 

1 woman 1.96 0.042 0.07 

2 man 0.8 0.084 0.12 

2 woman 2.17 0.2 1.37 

3 man 3.19 0.058 0.09 

3 woman 1.96 0.033 0.06 

4 man 0.6 0.01 0.02 

4 woman 4.6 0.112 0.15 

5 man 2.79 0.199 0.59 

5 woman 0.44 0.007 0.01 

The new speaker recognition technique showed a reduction of equal error 

rate up to twenty times in comparison to traditional methods that use 

features derived exclusively from the amplitude of the power spectrum. 

4.5 Summary and Conclusions of the Chapter 

It is shown that phase of transfer function defined by linear prediction model 

can be used for derivation of features of utterances. The features represent 

extremes of the group delay of the LP model. Similarity measure between two 

speech utterances was defined as mutual information of the two group delay 

feature distributions. The performance of group delay features and their 

similarity metric was tested on two speaker datasets that contain text-

dependent and text-independent utterances. The new speaker recognition 

technique showed up a reduction of equal error rate up to twenty times in 
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comparison to traditional methods that use features derived exclusively from 

the amplitude of the power spectrum. 

5 Fusion 

5.1 Introduction 

Fingerprint recognition and speaker recognition alone are widely used to 

solve tasks such as time-attendance control, data encryption, system logon 

and others, but when top security is required in applications such as bank 

account protection, border control or law enforcement, one modality is not 

enough. Manual workers or elderly people have worn fingerprints with lots of 

scars and imperfections so using only fingerprints may lead to high false 

rejection rate. Similar problems can happen to a person’s voice. 

Each biometric has its own vulnerabilities. Security system based on 

fingerprints can be attacked using artificial (gummy) fingers. Multibiometrics 

can help in making biometric system more flexible and secure. This chapter 

focuses on multibiometrics using speaker recognition and fingerprint 

recognition. The performance of three biometric systems (biometric system 

based upon single fingerprint, two fingerprints and multibiometric system 

based on fingerprints and voice) is compared. 

5.2 Testing data 

Since all above mentioned databases contained only voice samples or only 

fingerprints the need for a new database appeared. No publicly available 

multimodal fingerprint and voice database was found, so new database was 

prepared to evaluate finger and voice fusion. The database consists from two 

parts: voice and fingerprint. 
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5.2.1 Voice database 

Voice database was recorded in natural office conditions using low cost 

headset ACME HM – 03. There were two recording sessions with an interval 

no less than a week to imitate natural usage scenario. 

Voice samples were taken from 23 persons. Each person was asked to say two 

types of phrases – fixed (F) and not fixed (NF). Fixed type of phrase consisted 

of numbers from 1 to 10 (in Lithuanian language). This type of phrase was the 

same for each person. The duration of the phrase is about 10 seconds. 

Not fixed type of phrase was different for each person and consisted of 

several words: the person was asked to say name, surname and living address 

(street, number of the house and room number). The duration of the phrase 

is also about 10 seconds. 

5.2.2 Fingerprints database 

Fingerprints were taken from the same 23 persons. Lumidigm Venus V302 

fingerprint scanner was used to capture the fingerprints. There were 10 

fingerprint scanning sessions. Interval between sessions was not as long as 

interval between voice recording sessions because fingerprints are not as 

variable as voice. 

5.3 Fusion 

In this chapter following fusion strategies are compared: fingerprint + 

fingerprint and fingerprint + voice. 

5.3.1 Fingerprint + fingerprint fusion 

Fingerprints were enrolled using extraction algorithm COMM mentioned in 

the second chapter [23] and matched using algorithm described in second 

chapter. 

Since there were 10 scanning sessions there are 10 instances of each 

fingerprint that belong to the same person (genuine). Similarity scores can be 
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combined in many ways. For example similarity scores from index fingers can 

be combined, or from thumbs. 

To investigate the possibilities of fingerprint fusion, correlation between 

fingerprints was calculated in the following way: a fingerprint position was 

selected, for example, right index finger. Since we have 23 persons scanned 

10 times, we have 230 instances of right index finger. 10 instances are 

genuine and 220 instances are impostors. Only genuine pairs were taken into 

consideration because in most cases similarity between impostors is zero. 

Similarities between genuine pairs were calculated giving us a column of 

similarities. Then another fingerprint was selected, for example left index 

finger. Similarities between genuine pairs were calculated in the same order 

as the similarities of genuine pairs of right index giving us another column of 

similarities. Correlation coefficient between these two columns shows how 

much left index finger correlates with right index finger. 

The above procedure was repeated for all possible fingerprint pairs (left index 

+ right index, left index + right thumb, left thumb + right index and so on) 

giving us the following table (Table 8) where fingers are numbered in a 

following way: 1, 2, 3, 4 and 5 are right thumb, right index, right middle, right 

ring, and right small; 6, 7, 8, 9, 10 are left thumb, left index, left middle, left 

ring, and left small. 
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Table 8:. Correlations between fingerprints with different positions. 

Finger 1 2 3 4 5 

1 1 .21 ± .04 .21 ± .04 .3 ± .04 .19 ± .04 

2 .21 ± .04 1 .33 ± .04 .34 ± .03 .33 ± .04 

3 .21 ± .04 .33 ± .04 1 .44 ± .04 .37 ± .04 

4 .30 ± .04 .34 ± .03 .44 ± .04 1 .37 ± .04 

5 .19 ± .04 .33 ± .04 .37 ± .04 .37 ± .037 1 

6 .24 ± .04 .11 ± .04 .16 ± .04 .19 ± .05 .09 ± .05 

7 .10 ± .04 .10 ± .05 .07 ± .05 .09 ± .04 .06 ± .05 

8 .10 ± .04 .13 ± .04 .14 ± .05 .26 ± .04 .20 ± .05 

9 .14 ± .04 .08 ± .04 .15 ± .04 .29 ± .04 .22 ± .04 

10 .27 ± .04 .20 ± .04 .12 ± .04 .12 ± .04 .26 ± .04 

Table 8 continued. 

Finger 6 7 8 9 10 

1 .24 ± .04 .10 ± .04 .05 ± .04 .14 ± .04 .27 ± .04 

2 .11 ± .04 .10 ± .05 .13 ± .04 .07 ± .04 .20 ± .04 

3 .16 ± .04 .07 ± .05 .14 ± .05 .15 ± .04 .12 ± .04 

4 .19 ± .05 .09 ± .04 .26 ± .04 .29 ± .04 .12 ± .04 

5 .09 ± .05 .06 ± .04 .20 ± .05 .22 ± .04 .26 ± .04 

6 1 .17 ± .04 .20 ± .04 .20 ± .04 .30 ± .04 

7 .17 ± .04 1 .25 ± .05 .12 ± .05 .21 ± .04 

8 .20 ± .04 .25 ± .05 1 .30 ± .03 .21 ± .04 

9 .20 ± .04 .12 ± .05 .30 ± .04 1 .32 ± .04 

10 .30 ± .04 .21 ± .04 .21 ± .04 .37 ± .04 1 

It is easy to notice that the smallest correlation is between fingers with 

positions 1 (right thumb) and 8 (left middle) (0.050 ± 0.041). The largest 

correlation is between fingers with positions 3 (right middle) and 4 (right ring) 

(0.439 ± 0.035). 

 

 

ROC curves were calculated for each fingerprint. FRR@FAR = 0% (Zero FAR) 

and equal error rate (EER) are presented in Table 9. 
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Table 9: FRR@FAR = 0% and EER of fingerprint recognition algorithm 
(fingers 1 – 10). 

Finger position Zero FAR[%] EER[%] 

1 1.67 0.64 

2 0.56 0.31 

3 4.17 1.80 

4 6.76 2.51 

5 5 1.72 

6 2.78 1.94 

7 1.39 0.86 

8 4.35 1.63 

9 7.96 3.15 

10 5.93 2.50 

Since correlations between fingerprints are low, fusion could give good 

results. It is natural to fuse symmetric fingerprints (left index with right index, 

left thumb with right thumb), so only symmetric fingerprints were fused by 

simple summation rule. ROCs of fused fingerprints were calculated and the 

results of the fusion summarized in Table 10: 

Table 10: FRR@FAR = 0% (Zero FAR) and EER values of fused fingerprints ROC. 

Fingers Zero FAR[%] EER[%] 

1+6 0.09 0.08 

2+7 0 0 

3+8 0.46 0.17 

4+9 0.83 0.18 

5+10 0.28 0.11 

It is easy to notice from Table 9 and Table 10 that matching reliability 

becomes more than two times better when two fingerprints are used instead 

of one. Fusion of voice and fingerprints is described in next section. 

5.3.2 Fingerprint + voice fusion 

ROCs on voice database were calculated. Different usage scenarios were 

analyzed: Not fixed vs. not fixed (NF vs. NF); fixed vs. fixed (F vs. F); NF vs. F 

and F vs.NF. FRR@FAR = 0% and EER values of ROCs are presented in Table 

11. 
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Table 11: FRR@FAR = 0% (Zero FAR) and EER values of speaker recognition 
algorithm. 

Scenario Zero FAR[%] EER[%] 

NF vs. NF 0 0 

F vs. F 0 0 

NF vs. F 78.26 10 

F vs. NF 47.82 9.75 

It is obvious that when same type voice phrases are used, the recognition is 

ideal (algorithm makes no errors), but when different type of voice phrases 

are used (more natural scenario), the recognition performance is not as good 

as fingerprint recognition (what is widely known, since voice is more variable 

than fingerprint). 

To investigate fingerprint and voice fusion, correlations between fingerprints 

and voice of the same person were calculated in the following way: fixed type 

of voice sample was matched against not fixed type of voice sample (since F 

vs.NF scenario performance is better than NF vs. F) giving us a voice similarity 

score. Fingerprints of the same person were matched against each other and 

lowest similarity score was taken giving us finger similarity score. Lowest 

similarity score was taken to analyze the most difficult case. 

Correlation between 23 voice and 23 fingerprint similarities was calculated 

giving value –0.110   0.251, so good fusion might be expected. 

ROCs for three scenarios were calculated: single finger, two finger fusion 

(symmetric fingers were used like in Table 10) and finger and voice fusion. 

Similarity scores of fingerprint and voice algorithms were normalized to have 

the same mean and standard deviation. After that they were simply added. 

The results are summarized in Table 12 (FRR@FAR = 0%) and Table 13 (EER). 
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Table 12: Comparison of three scenarios FRR @ FAR = 0% [%]. 

Single Finger 
Two 

 Fingers 
Finger and 

 Voice 

1 1.67 1+6 0.09 1 0% 

2 0.56 2+7 0 2 0% 

3 4.17 3+8 0.46 3 0.22% 

4 6.76 4+9 0.83 4 1.89% 

5 5 5+10 0.28 5 0.67% 

6 2.78 6+1 0.09 6 1.11% 

7 1.39 7+2 0 7 0% 

8 4.35 8+3 0.46 8 0.56% 

9 7.96 9+4 0.83 9 1% 

10 5.93 10+5 0.28 10 0.33% 

Table 13: Comparison of three scenarios EER [%]. 

Single Finger 
Two 

Fingers 
Finger and 

Voice 

1 0.64 1+6 0.08 1 0% 

2 0.31 2+7 0 2 0% 

3 1.80 3+8 0.17 3 0.11% 

4 2.51 4+9 0.18 4 0.43% 

5 1.72 5+10 0.11 5 0.25% 

6 1.94 6+1 0.08 6 0.45% 

7 0.86 7+2 0 7 0% 

8 1.63 8+3 0.17 8 0.23% 

9 3.15 9+4 0.18 9 0.22% 

10 2.50 10+5 0.11 10 0.21% 

 

It can be seen from Table 12 and Table 13 that in all cases finger and voice 

fusion performers better than single fingerprint no matter what characteristic 

(Zero FAR or EER) is considered. 

In cases where correlation between two fingers is high, voice and fingerprint 

fusion performs even better than two fingerprints fusion (see Table 12 row 1 

(single fingerprint – 0.64%, two fingerprints – 0.09%, voice and fingerprint – 

0%), row 3(single fingerprint – 4.17%, two fingerprints – 0.46%, voice and 

fingerprint – 0.22%), and Table 13 rows 1 and 3). 
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5.4 Summary and Conclusions of the Chapter 

Multibiometrics using fingerprints and voice was presented in this chapter. 

Experiments show major increase in identification performance. 

Multibiometric systems have many advantages over systems limited to only 

one modality. They are more flexible and secure. 

6 Conclusions 

Fingerprint image synthesis method and two biometric algorithms (person 

identification by fingerprints and speaker identification by voice) were 

described in detail. 

The speed of an earlier known synthesis algorithm has increased more than 

three times. A new practical application of synthetic fingerprints to estimate 

the quality of a fingerprint image by comparing it to an ideal noise free 

synthetic fingerprint was found. 

Problems in fingerprint matching are analyzed, and necessity of registration 

(evaluation of rotation and translation) is discussed. 

New Fingerprint matching algorithm is designed to match deformed 

fingerprints. It consists of simple and intuitive steps. The proposed 

implementation of the steps is straightforward and flexible, does not use 

registration, and therefore is capable of matching deformed fingerprints. The 

advantage of proposed fingerprint matching algorithm is validated on a set of 

popular publically available fingerprint databases. One-tailed t-test showed 

improvement in comparing with NIST matcher with p < 0.0005. 

Speaker recognition algorithm uses phase of transfer function defined by 

linear prediction model for derivation of features of utterances. The features 

represent extremes of the group delay of the LP model. Similarity measure 

between two speech utterances was defined as a mutual information of the 

two group delay feature distributions. 
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The proposed voice recognition algorithm showed up to ten times better 

performance in comparison with commonly accepted on Gaussian Mixture 

Model based voice recognition algorithm. 

Multibiometrics using fingerprints and voice was also presented. Experiments 

showed significant decrease in EER and FRR@FAR = 0% when two fingerprints 

or fingerprint and voice are used. 

Voice and fingerprint fusion performs almost as well as two fingerprints 

fusion. 

This study is the first to demonstrate that similarities between voice samples 

and similarities between fingerprints do not have any correlation what makes 

them ideal for multibiometric. 

6.1 Future Directions 

Fingerprint synthesis method (chapter 2) can be used to create a fingerprint 

with pre-defined properties and features. It would be interesting to 

investigate the possibilities of synthesis to reconstruct low quality fingerprints 

with scars, dirt and other imperfections. 

During developing and testing of the fingerprint matching algorithm 

(chapter3), minutiae features were limited to position and direction 

information. Addition of other features (minutiae type, quality, texture 

information) could further improve matcher performance. 

It was shown that fingerprint fusion and voice fusion performs better than 

fingerprints alone (chapter 5), and in some cases fingerprint and voice fusion 

performs even better than fingerprint fusion. Such cases occur when 

correlation between fingerprints is high. It would be useful to investigate such 

occurrences and introduce additional normalization in fusion rule to account 

fingerprint correlation. 
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Acronyms 

AFIS Automatic Fingerprint Identification System 

FVC Fingerprint Verification Competition 

NIST National Institute of Standards and Technology 

MINEX Minutiae Interoperability Exchange Test 

ROC Receiver Operating Characteristic 

DET Detection Error Tradeoff 

SFINGE Synthetic Fingerprint Generation 

EDM Euclidean Distance Map 

WSQ Wavelet Scalar Quantization 

DPI Dots per Inch 

FRR False Rejection Rate 

FAR False Acceptance Rate 

EER Equal Error Rate 

NFIS2 NIST Fingerprint Image Software Version 2 

GMM Gaussian Mixture Model 

LP Linear Prediction 

LPC Linear Prediction Coefficient 

NFISRE Netherlands Forensic Institute Speaker Recognition Evaluation 

RUSBASE Russian Speech Data voice 


