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ABSTRACT 
 
 

This dissertation examines the problem of comparing samples of multivariate normal data 

from two populations and concluding whether the populations are equivalent; equivalence is 

defined as the distance between the mean vectors of the two samples being less than a given 

value. 

Test statistics are developed for each of two cases using the ratio of the maximized 

likelihood functions.  Case 1 assumes both populations have a common known covariance 

matrix.   Case 2 assumes both populations have a common covariance matrix, but this covariance 

matrix is a known matrix multiplied by an unknown scalar value.  The power function and bias 

of each of the test statistics is evaluated.  Tables of critical values are provided.     
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CHAPTER 1 
 

INTRODUCTION 
 
 

 This dissertation explores the use of multivariate analysis to perform acceptance 

sampling by employing a multivariate equivalence test.  This economically feasible approach 

allows users to specify both the consumer’s risk and the producer’s risk.  Given a new 

manufacturing facility or a change to a process procedure for a previously qualified material, it 

will allow engineering basis values to be set for the new procedure with a reduced dataset by 

making a comparison with the original qualification data.  If the new product is sufficiently 

similar to the original qualification sample, then the two can be considered equivalent in terms of 

the engineering basis values.  

1.1 Composite Materials Testing 

 Numerous tests are performed on a new composite material in order to compute the 

engineering basis values for that material.  Engineers use these values to determine if a material 

is appropriate for a specific application.  The tests are destructive, so sampling is the only option. 

The expense in determining engineering basis values is considerable; exacting tests are 

performed in environmental chambers to simulate the effects of extreme heat or cold on the 

material, while specialized equipment records precisely what stresses are required to break the 

specimen.    

 Data on composite materials from tests in the National Center for Advanced Materials 

Performance (NCAMP) are used as examples throughout this dissertation.  The tests used were 

“fill compression,” which refers to the direction of the material (fill) and the type of stress 

applied during the test (compressive). Test results analyzed are strength and modulus.  Different 
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environmental conditions included cold temperature dry (CTD) at -65°F, room temperature dry 

(RTD) at 75°F, and elevated temperature wet (ETW) at 200°F. 
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CHAPTER 2 
 

BACKGROUND 
 
 

 First, it is necessary to understand some of the basic terms and concepts of acceptance 

sampling, engineering basis values, equivalency testing, and multivariate analysis. 

2.1 Terminology 

 Some key terms relative to acceptance sampling follow: 

 Producer’s risk: The maximum probability of wrongly rejecting material that actually 

meets the specified criteria. 

 Consumer’s risk: The maximum probability of wrongly accepting material that does not 

actually meet the specified criteria 

 B-basis value: An engineering value at the lower end of a 95% confidence interval for the 

10th percentile. 

 A-basis value: An engineering value at the lower end of a 95% confidence interval for the 

1st percentile. 

 Null hypothesis:  The default assumption used to compute the probabilities above. 

 Type I error:  Incorrectly rejecting the default assumption when it is actually true. 

 Type II error:  Incorrectly failing to reject the default assumption when it is actually false. 

 Power of a test:  Probability of correctly rejecting the default assumption. 

2.2 Acceptance Sampling  

 Acceptance sampling is the practice of accepting or rejecting an entire batch or shipment 

of material based on testing or inspecting a sample. The two possible default hypotheses are as 

follows:  Either we can assume the new batch is acceptable and check to see if it is not, or we can 

assume the new batch is not acceptable and check to see if it is.  With either one, there are two 
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possible outcomes:  Either the batch is accepted and released for use, or the batch is rejected and 

dispositioned.  This leads to only two possible errors that can occur with acceptance sampling:  

Material is accepted that should have been rejected; the probability of this occurring is called the 

“consumer’s risk.”  Or material is rejected that should have been accepted; the probability of this 

occurring is called the “producer’s risk.” 

A puzzling aspect to the current standard practices of acceptance sampling is that, 

typically, any incoming supply has more than one key characteristic that must be monitored, yet 

sampling plans are almost universally set up for a single characteristic.  A separate sampling plan 

is needed for each key characteristic being evaluated and makes an assumption that the key 

characteristics are independent. 

Another puzzling aspect of current standard practices is that acceptance plans give 

probabilities for the producer’s risk. This equates to the default hypothesis that the material is 

acceptable. For example, the sampling plans detailed in Mil-Std-105E, a very widely used set of 

acceptance sampling plans, are for a single characteristic indexed by the producer’s risk. The 

question remains:  Why aren’t sampling plans based on the consumer’s risk, since acceptance 

sampling plans are typically constructed by consumers for their own benefit? 

2.2.1 Equivalence Testing for Acceptance Sampling 

 Acceptance sampling that specifies the consumer’s risk does so by assuming that the 

samples are not acceptable.  This type of testing is termed ‘hypotheses of equivalence’ and is 

rarely mentioned in discussions about acceptance sampling.  Most people are unaware of which 

risk indexes sampling tables such as those found in MIL-STD-105E [1]. 

 One reason that such an approach has not been used is the technical difficulty of 

computing probabilities for the consumer’s risk.  The computation requires specifying the largest 
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non-zero difference considered equivalent. When sampling theory was being developed in the 

first half of the twentieth century, those computations simply were not feasible. But they could 

certainly have been performed in the past few decades with the necessary computing power that 

has been widely available. 

Another problem is the power of this type of test.  Theoretical limitations are imposed on 

testing equivalence hypotheses.  Specifically, the power is limited to a maximum that is 

dependent not only on the sample size but also on δ.  The smaller the value of δ, the lower the 

maximum achievable power of the test will be for any given set of sample sizes.  The lower the 

power, the higher the producer’s risk.  This is illustrated in Table 1.  For small values of δ, large 

sample sizes are required to achieve a reasonable producer’s risk. 

TABLE 1 
 

MAXIMUM POWER OF UMP TEST AND CORRESPONDING PRODUCER’S RISK 
AT LEVEL Α = 0.05 FOR ONE-SAMPLE EQUIVALENCE PROBLEM WITH  

GAUSSIAN DATA OF UNIT VARIANCE [2] 
 

n   0.1 0.5 1.0 2.0 3.0 
Power 0.05025 0.05665 0.08229 0.32930 0.82465 

Producer’s Risk 0.94975 0.94335 0.91771 0.67070 0.17535 
 

Because of this issue, plans that focus on the consumer’s risk are too expensive to be 

practical, both for producers and for consumers. 

2.3 Engineering Basis Values 

 Engineering A- and B-basis values are computed for key characteristics of a composite 

material from tests run under specified conditions, such as the tensile strength of a material in a 

cold, dry environment.  These basis values become the reference for design engineers to use in 

designs to ensure that a part exposed to stresses, such as a strut in an airplane wing, is composed 

of materials that will not fail under that level of stress. 
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2.3.1 Current Computations for Engineering Basis Values of Composite Materials 

Basis values are set using the mean and standard deviation of a sample of the material.  

This sample is referred to as the original qualification sample.  Each key property, such as warp 

compression (WC) modulus or fill tension (FT) strength is tested under various environmental 

conditions, such as cold temperature dry or elevated temperature wet. 

A variety of methods can be used to compute basis values; these include fitting a 

regression model over the different conditions, normalizing the data and pooling across the 

environmental conditions, or computing a basis value for each environmental condition 

individually.  Basis values can be computed assuming that the data fit a normal distribution, a 

Weibull distribution, etc.   Each method has certain advantages, and each makes certain 

assumptions about the distribution of the test data. 

How well the data fits the various distributions and assumptions is then tested. The final 

selection of the mathematical model used to compute the basis values is dependent on the results 

of those tests. For example, the ANOVA approach is used when between-batch variability is 

large enough to preclude pooling the batches together within an environmental condition. The 

assumptions made when using the ANOVA approach are as follows [3]: 

1. The data from each batch are normally distributed. 

2. The within-batch variance is the same from batch to batch. 

3. The batch means are normally distributed. 

The model is then set up as follows:  

 ij i ijx e    

where  xij is test result for the jth specimen in the ith batch,  μi is the batch mean, and eij is the 

error term with μi~ n(μ., 2
μ) and eij~n(0, e

2).  This model assumes that xij~ n(μ., 2
μ+ e

 2). 
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The methodology developed in this dissertation relies upon similar assumptions and 

extends the model to a multivariate normal distribution of test results. 

 The ANOVA approach uses the population variance to compute the engineering basis 

values as follows:   

 B

A

B basis X T S

A basis X T S

  

  
  

In this situation, X  is the qualification sample mean, S represents the estimate of the population 

variance based on the ANOVA analysis, and T is a computed factor [3].   This methodology is 

relatively robust to deviations from the normality or equal variation assumptions and provides a 

conservative result when that assumption fails.   

2.4 Equivalency Tests for Composite Materials 

To determine if a new facility or procedure will produce material capable of meeting the 

basis values computed from the qualification sample, a smaller ‘equivalency sample’ is 

produced, and tests from that sample are compared to the results of the previous tests on the 

qualification sample. 

2.4.1  Current Equivalency Method 

For each property tested, a separate comparison is made for each environmental 

condition. The final decision regarding equivalence is based on using engineering judgment to 

subjectively assess all test results to arrive at a yes or no decision regarding the equivalence of 

the new material with the original material. 

Tests are conducted as follows:  Modulus values are compared using a two-tailed t-test, 

while strength values are compared with a one-tailed test using the mean and minimum value. [4] 

Separate independent tests are performed for modulus and strength. Formally, the test hypotheses 

are set up as follows:  
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For modulus values: 0 1 2

1 1 2

: 0

: 0 

H

H

 
 

 
 

  

For strength values:  0 1 2

1 1 2

: 0

: 0 

H

H

 
 

 
 

  

where μ1 is the mean of the qualification material for the characteristic being tested, and μ2 is the 

mean of the material being compared for equivalence.  The second material might come from a 

different manufacturing environment, or it might be that the manufacturer wishes to make a 

change to the manufacturing process.  Either way, before the new process can claim the use of 

the basis values and other characteristics previously established for the material, the equivalence 

of the final product to the original material must be established.  If the material is not found 

equivalent, additional testing is required to establish the characteristics of the material coming 

from the new facility or changed procedure.  

Note that the default assumption is that the two samples are from identically distributed 

populations. If the sample fails the test, this assumption is rejected at the specified level of 

confidence.  If the sample does not fail the test, the probability that the two samples are the same 

is equivalent to the power of the test.  For the sample size typically used in the testing of 

composite materials, the power is considerably lower than the confidence level used to determine 

if it is not equivalent.  “A nonsignificant difference must not be confused with significant 

homogeneity” [2], yet this is exactly what our current method does.   

2.4.2 Disadvantages of the Current Method 

 One disadvantage of this approach is that it only looks at individual test results for 

comparison.  No use is made of relationships between the characteristics being evaluated.  This 

approach has the unintended side effect of producers benefitting from smaller sample sizes. 

Smaller sample sizes decrease the power of the test, which means the probability of a Type II 
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error occurring is larger for smaller samples. Since the default assumption is that the new product 

is equivalent and the test determines whether or not to reject that assumption, a Type II error 

means to accept material as equivalent when it actually is not.  If the null and alternative 

hypotheses were flipped around and it was assumed that the product was not equivalent, this side 

effect would disappear. 

 Another problem is that given the number of individual tests compared with a 95 percent 

level of confidence, the probability that at least one test will fail due to random chance alone is 

quite high.  For example, with 30 tests, the probability of having at least one failure is 0.785.  

This equates to a producer’s risk of more than 20 percent if the material were rejected for a 

single test failure.  In fact, it is extremely uncommon for any equivalency sample to pass all tests 

that are run.  This is why subjective engineering judgment is a major part of the process in 

deciding whether or not two facilities producing the same material can be considered equivalent.   

2.5 Multivariate Tests 

Multivariate tests examine multiple characteristics simultaneously and uses the expected 

relationship between them as part of the criteria used to judge similarity between the two 

samples. A primary advantage of the multivariate approach is that it allows for the inclusion of 

information about the relationships between different characteristics, rather than evaluating each 

characteristic in isolation when making the overall judgment about acceptance. Another 

advantage of multivariate testing is that it reduces the subjectivity of the overall choice by 

replacing a decision based on the subjective weighting of many different test results with an 

objective decision based on the combined results of the different tests. 

 With the advantages of multivariate testing, it is logical to ask why it is not in use.  One 

reason is the computational difficulty.  Another reason that the multivariate approach has not 
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been popular is because, under the traditional null hypothesis of equality, it would result in 

nearly always rejecting the null since the more information used when comparing two groups, 

the more likely some minute difference will be found.  Since the default assumption is that they 

are the same, any tiny but statistically significant difference results in a rejection of the null 

hypothesis.  Thus, multivariate acceptance testing has been of limited practical use. 

2.5.1 Multivariate Hypotheses of Equivalence 

 While it seems counter-intuitive, combining multivariate testing with the hypothesis of 

equivalence can overcome both sets of problems.  When acceptance limits are set based on the 

consumer’s risk, there must be some positive value ( > 0) such that a deviation of less than   

from nominal for the sample being evaluated is considered acceptable.  In addition, a 

measurement of the distance between two multivariate vectors is needed.  This measurement will 

be defined in the next chapter. 

 One advantage of this approach is that δ can be used to control the producer’s risk 

simultaneously with the consumer’s risk. If δ is defined as a multiple of the standard deviation, 

then a value for δ corresponding to any desired producer’s risk can be found. 

One consequence of testing hypotheses of equivalence is that the A- and B-basis values 

used must be adjusted downward. If the mean could possibly deviate from the nominal mean 

vector by as much as δ and still be considered equivalent, then the engineering basis values must 

be computed from the lowest possible acceptable mean rather than the qualification sample 

mean. 

At NCAMP, researchers are currently in the process of developing engineering basis 

values and computing the results of equivalency tests simultaneously. Therefore we are in a 
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unique position to develop and implement a strategy that would set basis values and acceptance 

limits using a multivariate approach combined with testing hypotheses of equivalence. 

2.6 Literature Review 

The principle work on equivalence testing is Wellek’s Testing Statistical Hypotheses of 

Equivalence [2], of which chapter nine covers the bivariate normal equivalence test and indicates 

what assumptions are needed for the multivariate approach to equivalence testing and what form 

an extension of that approach should take.  This dissertation extends that work to the multivariate 

situation and also expands it to include the situation where the common covariance matrix is an 

unknown multiple of a known covariance matrix. 

For analysis of a multivariate normal random variable, the Anderson’s venerable An 

Introduction to Multivariate Statistical Analysis [5] is a classic and immensely helpful in 

understanding the details of multivariate distributions. 

For understanding how those details fit into an application, such as the one developed 

here, Johnson and Wichern’s Applied Multivariate Statistical Analysis [6] was invaluable.  

Matrix Analysis for Statistics by Schott [7] was also a contributing resource to developing this 

theory. 

 Hoag and Craig’s Introduction to Mathematical Statistics [8] and Shorack’s Probability 

for Statisticians [9] were used for basic statistical theory. 

 The main theorem of this dissertation relies on techniques borrowed from “Monotonicity 

Properties of the Power Functions of Likelihood Ratio Tests for Normal Mean Hypotheses 

Constrained by a Linear Space and a Cone,” by Hu and Wright [10] and “The Integral of a 

Symmetric Unimodal Function Over a Symmetric Convex Set and Some Probability Inequalities” 

by Anderson [11]. 
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Dr. Hu’s article in the February 2007 issue of The American Statistician, “Teacher’s 

Corner” [12]  column, regarding notation for multivariate normal distributions and some 

theorems that are easily derived using that notation, was extremely useful. 

 Finally, it is worth mentioning that sites like Mathworld.com and Wikipedia were 

invaluable for accessing and verifying basic information before going on to the next step in a 

proof or a program. 
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CHAPTER 3 
 

THE MATH OF IT ALL 
 
 
 This chapter contains the math of it all, a detailed mathematical description and analysis 

of the problem of a multivariate equivalence test.  It requires the user to specify two things:  

 δ,  the tolerable difference; a population that differs from the expected mean by a value of 

less than δ is defined as equivalent (what an engineer would call “close enough”). 

 α,  the maximum probability of incorrectly rejecting the null hypothesis. 

3.1 Problem Statement 

When comparing two or more samples, some applications need to test (at the α-level of 

significance) that the samples come from equivalent populations rather than the more typical 

determination that the two samples are from different populations.  This thesis defines a 

procedure to compare multivariate normal data sampled from two groups and to conclude that 

the two samples are from equivalent populations; that is, the groups differ by less than the given 

amount, δ. 

 Assume that two samples of size n1 and n2 of p-vectors come from multivariate normal 

distributions with means μ1 and μ2, and having a common covariance matrix, Σ. In the 

application of this research, equivalence testing of composite materials, the natural choice for the 

experimental unit is the panel.  Multiple tests of each type are performed on specimens from 

each panel. The mean result of those tests by panel will have a multivariate normal distribution 

with a mean vector identical to that of the underlying distribution. 
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3.1.1 Measurement  

The measure of the distance between the two mean vectors will be the norm of the 

difference between the two mean vectors.  This norm is the induced norm from the following 

inner product: 

 1
1 2 1 2 1 2, , , pv v v v v v  R  (1) 

3.1.2 Definitions 

The following definitions will be used: 

 
1 2 1 2

1 2 1 2

  The difference vector of the two mean vectors:  ,

 The size of the combined samples: ,  where 1, 2,3,

,  The norm is the square root of the inner product defined in (1

p

m n n n n

       

    

 

R

N N 

   ) 

 

3.1.3 Statement of Hypothesis  

Given δ > 0, “equivalent populations” are defined as those populations with mean vectors 

with a normed difference of less than δ.  Define  0 :pv v    R .  If the null hypothesis is 

true, then 0 .  This is formally stated as 

 0 0

1 0

:

:

H

H




  

This hypothesis flips the typical null, and the alternative hypothesis equality between the two 

mean vectors is part of the alternative rather than the null hypothesis.  Thus, when the null is 

rejected, we can state with confidence that the difference between the two populations is “close 

enough” rather than simply failing to reject the null hypothesis that they are the same. 

This hypothesis will be tested using a likelihood ratio test (LRT).  The LRT requires a 

test statistic constructed from the ratio of the maximum value of the likelihood function over the 

entire space  pR  to the maximum value of the likelihood function over the null space (Θ0). 
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 Figure 1 shows Θ0 and its compliment for R2.  Θ0 and its compliment are bounded by the 

solid line with Θ0, including the boundary and everything outside of it.  Its compliment is the 

area inside the solid line but not including the boundary. 

 

Figure 1. Θ0 and rejection region in two dimensions. 

3.1.4 Case 1 and Case 2 

  In Case 1, the common covariance matrix is assumed to be a known positive definite 

matrix, Σ.  In Case 2, the common covariance matrix is assumed to be an unknown positive 

scalar multiple of a known positive definite matrix, σΣ.  Case 1 can be considered a particular 

instance (σ=1) of the more general problem expressed in Case 2. 

3.2 Case 1  

3.2.1 Sample Distributions 

The formal description of these sample distributions is 

 
 

 
1

2

1 1 1 2

1 2 1 2

, , ~ , ,  unknown,  known

, , ~ , , ,

n p

p pxp
n p

X X N

Y Y N

  

  

 


   R R




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3.2.2 Joint Probability Density Function 

 The joint probability density function (pdf) of the m independent random vectors from 

the samples is the product of their individual probability density functions (pdfs).  For our p-

dimensional multinormal sample, this is 

 
 

   

 
   111 2 2 21 1

2 2

1/2 1/ 2/2 / 2
1 1

1 1

2 2

Y YX X j ji i
n n

p p
i j

e e
  

 

       

 


 

    

3.2.3 Likelihood Function L(μ1, μ2) 

 The joint probability density function may be regarded as a function of the parameters μ1 

and μ2.  When so regarded, it is denoted by L(μ1, μ2) and called the likelihood function. [8] This 

function can be used to determine the likelihood of any particular set of parameter values or to 

find the parameter values with the largest likelihood given the sample data collected.  The 

likelihood function can be expressed as  

  
 

1 2 22
1 2

1 1

1
2

1 2 /2 /2

1
,

2

n n

i j
i j

X Y

mp mL e
 

 


 

 
 
  
 

    



  

3.2.4 Maximized Likelihood Function L(μ1, μ2) Without Restrictions 

The principle of maximum likelihood is the idea that given a particular set of sample 

values, we can find a function of those sample values such that when the parameter value is set 

equal to that function of sample values, the likelihood function is maximized [8]. 

Define  
1 2 22

1 2 1 2
1 1

,
n n

i j
i j

A X Y   
 

      (2) 

Theorem 1:     
 

 ,

2
1 2 /2 /2

1
max , ,

2

A X Y

mp m
L L X Y e 







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Proof:   
 

 1 2,

2
1 2 /2 /2

1
,

2

A

mp mL e
 

 






 and it is clear that  1 2,L    will be maximized when 

 1 2,A    is minimized.   1 2,A    can be further decomposed as 

   
1 2 22

1 2 1 2
1 1

, ,
n n

i j
i j

A X X Y Y g   
 

       

with   2 2

1 2 1 1 2 2,g n X n Y        (3) 

Clearly  1 2, 0g     with  , 0g X Y  , and the remaining terms do not contain the parameters 

μ1 or μ2.  Thus, 

   
1 2 22

1 2
1 1

, ,
n n

i j
i j

A A X Y X X Y Y 
 

       

and  

    
  22

( , )

2
1 2

1
max , ,

2
pm m

A X Y

L L X Y e 



 


   □ 

3.2.5 Minimum Distance Projection 

Let D be a set on pR  and v be a vector in pR .  A minimum distance projection of v onto 

D, denoted by  P v , has the following two characteristics: 

  P v D  

  P v v w v w D      

If D is a closed set in pR ,  it is known that the projection,  P v , exists.  The projection is 

unique if D is also convex. 
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3.2.5.1 Minimum Distance Projection from 0
p R  

 Figure 2 is a diagram showing a minimum distance projection for the two-dimensional 

situation.   

 
 

Figure 2.  Projection of point v in the compliment of Θ0 onto Θ0. 

 

Since Θ0 is closed, for all pvR , a projection of v onto Θ0 must exist.  Define  
0

P v as follows: 

 
0

if  0 . . 0

if     

 
if  0 <

py v y s t y
y

P v v v

v v
v




 



    
 

 


R                 

                                                

                                      

 

Lemma 1:  With  
0

P v  defined as above,  
0

P v  is the minimum distance projection of v 

onto Θ0 
 
Proof:  The proof is established by considering three cases: v  0 , v  , and 0  v   . 

Case 1:   0v   

a)     
0 0 0P v y P v

y

       

b)   
0 0P v v y w w v w

y

           0 0  
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Case 2:   v   

a)    
0 0 0P v v P v v       

b)  
0 0P v v v v w v w        0  

Case 3:  0  v    

a)    
0 0 0P v v P v

v

       

b)    0 01
v v

P v v v v v v w v w               

By the triangle inequality, 

 w w v v w v v w v w v         

 
0 0P v v w v w       

Thus,  
0

P v  is the minimum distance projection of v onto Θ0 .    □ 

This projection is not unique, since when 0v  , any non-zero vector in pR  can be 

selected as y. However,  
0

v P v  is unique, regardless of the vector selected.  

Lemma 2:  Let  
0

P v be the projection of v onto Θ0 derived in Lemma 1.  Then  

0

00 if  
( )

otherwise 0

v v
v P v

v v


 

         
 

Proof: 

Case 1:   When v  , then  
0

0v P v v v     

Case 2:   When 0  v    
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a) If 0v  , then  
0

v P v v y y v
y y

         

b) If 0 v   ,  

then  
0

1
v v

v P v v v v v              □ 

3.2.6 Maximum Likelihood Function L(μ1, μ2) under Restriction that  is in Θ0 

 Some lemmas will be needed before the maximum of the likelihood function under this 

restriction can be proven. 

Let  1 2,g    be defined as in equation (3).  Then  

Lemma 3:        221 2
1 2 1 1 2 2

1
,

n n
g X Y n X n Y

m m
           

Proof:  Define  1 2 2n X n Y
u

n

m

  
    and   1 2 1n X n Y

v
n

m

  
  

 Then from equation (3):   2 2
1 2 1 1 2 2,g n X n Y        

 
2 2

1 1 2 2n X u u n Y v v        
 

      1 1 2 2 1 2 3 1 2, , ,t t t         

where   2 2
1 1 2 1 2,t n X u n Y v       

  2 2
2 1 2 1 1 2 2,t n u n v        

 3 1 2 1 1 2 2, 2 , 2 ,t n X u u n Y v v          

But   2 2
1 1 2 1 2,t n X u n Y v       
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2 2
1 2 2 1 2 1

1 2

2 2
2 2 2 1 1 1

1 2

n X n Y n n X n Y nmX mY
n n

m m m m

n X n Y n n X n Y n
n n

m m

     
   

      
 

 

2 2
2 21 2 1 2

2 2

n n n n
X Y X Y

m m
       

21 2n n
X Y

m
   , 

  2 2
2 1 2 1 1 2 2,t n u n v        

2 2
1 2 2 1 2 2 1 1 2 1 1 1 2 2

1 2

2 21 2
1 2 1 1 2 2 1 2 1 1 2 22 2

n X n Y n n m n X n Y n n m
n n

m m m m

n n
n X n Y n n n X n Y n n

m m

     

   

     
   

       

 

   

21 2
1 2 1 1 2 22

2
1 1 2 2

1
,

n n
n X n Y n n

m

n X n Y
m

 

 


   

   
 

and  3 1 2 1 1 2 2, 2 , 2 ,t n X u u n Y v v          

   

   

1 2 2 1 2 1 2 2 1 2
1 1

1 2 1 1 2 1 2 1 1 2
2 2

2 ,

2 ,

n X n Y n n X n Y n
n X

m m

n X n Y n n X n Y n
n Y

m m

   


   


     
  

     
  
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    

    

1 2 2 1 2 1 2 2 1 2 1
1

1 2 1 1 2 1 2 1 1 2 2
2

2 ,

2 ,

mX n X n Y n n X n Y n m
n

m m

mY n X n Y n n X n Y n m
n

m m

    

    

       


       


 
 

 

1
2 2 2 1 2 1 2 1 1 2 22

2
1 1 1 1 2 1 2 1 1 2 22

2
,

2
,

n
n X n Y n n X n Y n n

m
n

n X n Y n n X n Y n n
m

   

   

      

       
 

     

     

1 2
1 2 1 1 2 22

1 2
1 2 1 1 2 22

2
,

2
,

0.

n n
X Y n X n Y

m
n n

X Y n X n Y
m

   

   

      

      



    

 The conclusion follows from the fact that  

         1 2 1 1 2 2 1 2 3 1 2, , , , .g t t t             □ 

Lemma 4:   
0

1 2min ,  g  


 occurs at the following parameter values: 

 
   

0 01 2 2 1 2 1
1 2ˆ ˆ,     

n X n Y n P X Y n X n Y n P X Y

m m
       

   

Proof:  First we claim 1 2 0ˆ ˆ    since 

   

     

0 0

0

0

1 2 2 1 2 1
1 2

1 2
0

ˆ ˆ
n X n Y n P X Y n X n Y n P X Y

m m

n n P X Y
P X Y

m

   




     
  

 
   

 

Second, the first term in  1 2,  g    is minimized at 1 2ˆ ˆand    since 

      
0

221 2 1 2
1 1 2 1 1 2ˆ ˆ, ,

n n n n
t X Y X Y P X Y t

m m
            

Finally, the second term of  1 2,  g    is also minimized at 1 2ˆ ˆand   : 
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     
0 0

2

1 2 2 1 2 1
2 1 2 1 2

1
ˆ ˆ,

n X n Y n P X Y n X n Y n P X Y
t n X n Y

m m m
           

      
   
   

 
   

0 01 2 1 2 1 2 1 2 1 2 1 21 n n X n n Y n n P X Y n n X n n Y n n P X Y

m m m
          

    
   
   

 

 2 1 20 ,t    .         □ 

Theorem 2:     1 2 0 1 2ˆ ˆmax , : ,L L        

 

 
 1 2

0
22

2 22 1 2

1 1

1 1
exp

22
pm m

n n

i j
i j

n n
X X Y Y X Y P X Y

m


 

  
           

   
 

 
Proof:  In section 3.2.4, we established that  1 2,  L    depends on μ1 and μ2 only through 

 1 2,  g    and that  1 2,  L   is a decreasing function of  1 2,  g   .  Lemma 4 shows that 

 1 2,  g    is minimized at 1 2ˆ ˆ,   under the restriction 0 .  Thus,   1 2,  L    is maximized 

at 1 2ˆ ˆ,     under 0 , i.e.,    
0

1 2 1 2ˆ ˆmax ,  = ,  L L   


. Direct computation shows that 

 
 

 1 2

0
2 2

2
22 1 2

1 2
1 1

1 1
ˆ ˆ,  exp .

22
pm m

n n

i j
i j

n n
L X X Y Y X Y P X Y

m
 




 

  
                

 

Thus, the theorem is established.        □ 

3.2.7 Ratio of Maximized Likelihood Functions 

Let Λ represent the ratio of the two maximized likelihood functions:  

 
  

1 2

1 2 0

max ,

max , :

L

L

 
 

 


 

By Theorems 1 and 2, 



 

 24

 
 

 

 
 

1 2

22

1 2

0
22

22

1 1

2221 2 1 2

1 1

1 1
exp

2, 2

ˆ ˆ, 1 1
exp

22

pm m

pm m

n n

i j
i j

n n

i j
i j

X X Y Y
L X Y

L n n
X X Y Y X Y P X Y

m


 



 


 

          
  

              

 

 
0

2
1 2exp
2

n n
X Y P X Y

m 
      

.  

Hence, Λ is a non-decreasing function of  
0

2
X Y P X Y   . 

3.2.8 Likelihood Ratio Test (LRT) Statistic 

By the relationship expressed in Lemma 2: 

    0

02

2

0

0 X Y
X Y P X Y

X Y X Y

      
   

 

 
0

2
X Y P X Y   is a non-increasing function of X Y , as shown in Figure 3. 
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Figure 3. Relationship of X Y with  
0

2
X Y P X Y   . 
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 is a non-decreasing function of  
0

2
X Y P X Y   , which is itself a non-increasing 

function of X Y , and since X Y  is non-negative, it is also a non-decreasing function of 

2
X Y .    This means that 

21 2n n
T X Y

m
   can be used as our test statistic.  We can reject the 

null hypothesis when T is sufficiently small.     

Case 1 Test Statistic:  
21 2n n

T X Y
m

       (4) 

3.2.9 Distribution of T 

Theorem 3:   1 2
22~ n n

p mT     

Proof:         
1

2 11 2 1 2

1 2

n n n n m
T X Y X Y X Y X Y X Y

m m n n



             
 

 

Since we know that  
1

1
1~ , nX N    and  

2

1
2~ , nY N    are independent, then 

    
1 2 1 2

1 1
1 2~ , , m

n n n nX Y N N         because it is a linear transformation of multinormal 

random variables.  [6] 

Using Theorem 10.12 from Schott [7]:  

Let x~Nm(μ,), where  is a positive definite matrix and let A be 

an m x m symmetric matrix.  If A is idempotent and rank (A) = 

r, Then x′Ax  ~ χ2
r(λ), where λ = μ′Aμ.   

Checking those conditions, we have  
1 2

~ , m
n nx X Y N     and r =p.  Let  

1 2

1
m

n nA


  ; then 

A = Ip  is idempotent with rank (A) = p and 1 2
2n n

mA    ; thus,  1 2
22~ n n

p mT   .  □ 
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3.2.10 Stochastic Monotonicity of Distribution of T 

A monotonic function is either entirely non-increasing or non-decreasing.  If 

   1 2 0P T t P T t t        when 1 2   , then the distribution of T is stochastically 

non-decreasing in  .    

Theorem 4:   2
p  is stochastically non-decreasing in θ 

Proof:  Let Z be a random vector with Z~N(0, Ip) and let f(z) be the pdf of Z.  

Define X = Z+μ. Then X~N(μ, Ip) and has pdf f(x−μ).  Note that  2~ pX X     . 

Define  :pE v v v t  R .  This leads to the following equalities: 

         2
p

E

P t P X X t P X E f x dx            

Theorem 1 in Anderson [11] states the following: 

Let E be a convex set in n-space, symmetric about the origin.  Let f(x) ≥ 0 

be a function such that: 

(i) f(x)=f(−x),  

(ii)  ( ) ux f x u K  is convex for every u (0 < u < ∞), and 

(iii) ( )
E

f x dx    (in the Lebesgue sense). 

 Then    
E E

f x ky dx f x y dx    for 0≤ k ≤ 1. 

Since y is an arbitrary vector, the conclusion actually claims ( )
E

f x ky dx  is a non-

increasing function of  0,k  .   
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Our E is a convex set, which is symmetric about the origin. The pdf of Z~N(0, Ip), 

f(z) = f(−z) with  ( ) uz f z u K  being convex for every positive real number u.  Since 

it is a pdf, the integral is finite in the Legesgue sense, so this theorem can be applied to 

f(x) and E as defined above. Thus,     2 2
p

E

P k t f x k dx        is a non-

increasing function of k.  Hence,  2
p   is stochastically non-decreasing in θ.     □ 

3.2.11 Properties of the Test 

Let    P T t     , with t being the critical value associated with α and H0. 

This function plays an important role in the study of the properties of the test 

because     is the probability that we will reject H0 given a value for Δ.    

A Type I error is the probability of rejecting H0 when it is actually true.  The 

probability of a Type I error is     when Δ is in Θ0 .   

A Type II error is the probability of failing to reject H0 when it is actually false. 

The probability of a Type II error is  1   under that restriction that Δ is not in Θ0. 

3.2.11.1 Power of the Test 

The power of the test is the probability of rejecting H0 given that H0 is actually 

false, i.e.,  0|P T t  .  So    under the restriction that Δ is not in Θ0 is the 

power function for this test.   

3.2.11.2 Least-Favorable Points in H0 

The least favorable points in H0 are those that maximize the probability of rejecting H0, 

i.e., those points that maximize the probability of a Type I error. To find the least favorable 

points in Θ0 , we find the maximum value of     over all possible values of  in Θ0.  As 
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shown in Theorem 4, when the true value of the difference, ||||, increases, the probability of 

rejecting H0 decreases.  So     is maximized at that lowest possible value of 0  .  This 

is δ by definition, that is 

   
0

max max


 
  

    

Thus, the set of least favorable points is  0 :    .  

3.2.11.3 Setting the Critical Value 

If t = αth
 percentile of a chi-squared distribution with p degrees of freedom and non-

central parameter of 21 2n n

m
  , then  P T t    for all  in Θ0.  Thus, the maximum 

probability of a Type I error is α.  

3.2.11.4 Unbiasedness of the Test 

An unbiased test has a higher probability of rejecting the null hypothesis when it is false 

than when it is true.   This test is unbiased because if 1 0 2 0 and     , then 1 2    .  

By Theorem 4, this implies that    1 2    .  Since the probability of rejecting H0 when  

lies in Θ0 is smaller than the probability of rejecting H0 when  does not lie in Θ0, this test is 

unbiased for H0. 

3.3 Case 2 

For Case 2, we tackle the situation where the two populations are assumed to have a 

common covariance of σΣ, with σ > 0.  Case 1 can be considered a particular instance (σ=1) of 

the more general problem expressed in Case 2.  The same measurement and definitions given in 

sections 3.1.1 and 3.1.2 will be used.  
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3.3.1 Sample Distributions 

 
The formal description of these sample distributions is 

 
 

1

2

1 1 1 2

1 2 1 2

, , ~ , , ,  unknown,  known

, , ~ , 0, , ,

n p

p pxp
n p

X X N

Y Y N

    

    

 


    R R




 

3.3.2 Joint Probability Density Function 

 
 The joint probability density function of the m independent random vectors from the 

samples is the product of their individual pdfs.  For Case 2, this is 

 
   

 
   111 2 2 21 1

2 2

1/ 2 1/ 2/ 2 /2
1 1

1 1

2 2

Y YX X j ji i
n n

p p
i j

e e
  

 

   

       

 


 

   

3.3.3 Likelihood Function L(μ1, μ2,σ) 

The likelihood function can be expressed with A(μ1, μ2) and defined as in equation (2). 

 
 

 1 2,

2
1 2 /2/2

1
, ,

2

A

mmp
L e

 
  

 





 

3.3.4 Maximized Likelihood Function L(μ1, μ2,σ) Without Restrictions  

Lemma 5:  The likelihood function is maximized over all σ > 0 at  1
1 2,m   A  

Proof:  We can use the derivative test to establish a value for σ that maximizes L(μ1, μ2,σ).  

Since this function and its natural log are maximized at the same values of σ, the 

technique of maximizing the natural log of the function is used.   

  
 

   1 2
1 2 /2/ 2

,1
ln , , ln ln

2 22
mmp

m
L

 
   


  



A
 

Taking the derivative of the log with respect to σ yields  

     1 2
1 2 2

,
ln , ,

2 2

d m
L

d

 
  

  
  

A
 

Setting the derivative equal to zero and solving for σ yields 
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   1 2 1
1 22

,
0 ,

2 2 m

m  
  

 
    

A
A  

Since 
   

     

     

     

1 2
1 2

1 2 1 2 1 2
1 22 2

1 2
1 2

,
ln , , 0

, , ,
ln , , 0

2 2 2
,

ln , , 0

Ad
L

d m
A A Am m d

L
m d m

Ad
L

d m

 
   


     

    
  

 
   







 

        
  


 



 when >

 when 

 when 

 

This establishes that the maximum of the likelihood function will occur at
 1 2,A

m

 
  . □ 

Lemma 6:  The unrestricted likelihood function is maximized over all possible values of μ1, 

μ2 and σ at  1
1 2, , ,mX Y X Y     A . 

Proof:  As established in Lemma 5,     1
1 2 1 2 1 2, , , , ,mL L       A  

But   
   

 
 

1 2

1 2

,1

2 ,

1
1 2 1 2 /2

/2 1 2

1
,  ,  ,  

,
2

m
m m

mp

e

m

 
 

   
 




 
 
 



A

A

L A
A

 

 
 

  22
1 2

/2 /2

,
,

2

mm

mp m

e

m

 



  
  

  

A
 

   

which is maximized when A(μ1, μ2) is minimized.  As shown in section 3.2.4, if there are no 

restrictions on μ1 and μ2, A(μ1, μ2) is minimized at 1 2,X Y   .  Thus,  

    
 

  2
2

1 2 / 2/ 2

, ,
max , , , ,

2

mm

mmp

A X Y A X Ye
L L X Y

m m
  



   
     
      

.                 □ 
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3.3.5 Maximized Likelihood Function L(μ1, μ2,σ) under Restriction that Δ is in Θ0 

 Next, we need to maximize the likelihood function under the restriction of the null 

hypothesis.  Define  

   
0 01 2 2 0 1 2 1 0

1 2ˆ ˆ,     
n X n Y n P X Y n X n Y n P X Y

m m
         

   

Lemma 7:  The restricted likelihood function is maximized over all possible values of μ1, μ2 

and σ at  1
1 1 2 2 1 2ˆ ˆ ˆ ˆ, , ,m         A . 

Proof:  Since L(μ1, μ2,σ) ≤ L(μ1, μ2, A(μ1, μ2)/m), as shown in Lemma 5,  and 

  
 

  22
1 21

1 2 1 2 /2 /2

,
,  ,  ,

2

mm

m mp m

e

m

 
   



  
  

  

A
L A , the problem of finding the maximum 

under the restriction can be reduced to finding  
0

1 2min ,  A  


.  Recall from section 3.2.4 that 

this is accomplished by finding  
0

1 2min ,  g  


 with  1 2,  g   defined as in equation (3).  By 

Lemma 4 this occurs at 1̂  and 2̂ .  

Thus,  
 

  2

0

2
1 2

1 2 /2/ 2

ˆ ˆ,
max , ,

2

mm

mmp

Ae
L

m

 
  







 
  

  
. □ 

3.3.6 Ratio of Maximized Likelihood Functions 

As in Case 1, we define Λ as the ratio of the two maximum likelihood functions, with the 

function for the restricted domain in the denominator:  
 
 

0

1 2

1 2

max , ,

max , ,

L

L

  
  



  .   Putting the 

expression found for the maximized likelihood function from Lemmas 6 and 7, we get 
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 

 
 

 

 
 

 
 

2

2

2

2
/2/ 2

1 2

1 2 1 221 2
/2/ 2

, ,1
, ,

2 ˆ ˆ,

ˆ ˆ, ,ˆ ˆ,1ˆ ˆ, ,
2

m

m

m

m

mmp

m

mmp

A X Y A X Y
L X Y e

m m A

A A X YAL em m

  
    









   
   
             

             

 

Define 
 

0

1 2

2

0

22

1 1

n n

i j
i j

X Y P X Y
T

X X Y Y



 

   


   
. 

Lemma 8:  Λ is an increasing function of T 

Proof:  Λ is clearly an increasing function of   

 
 

 
1 2

0

1 2

222
1 2

0
1 11 2

22

1 1

ˆ ˆ,

,

n n

i j
i j

n n

i j
i j

n n
X X Y Y X Y P X Y

A m

A X Y
X X Y Y

  
 

 

       


  

 

 
 

Then 
2

1 2 1

m

n n
T

m
    
 

.  Since 0T  , Λ  is  an increasing function of  T.    □ 

3.3.7 Likelihood Ratio Test (LRT) Statistic 

  Since Λ is an increasing function of T, T can serve as our test statistic.  We will 

reject H0 when T is sufficiently large.  Substituting in the projection from section 3.2.5, we can 

express the test statistic as follows: 

Case 2 Test Statistic: 
   

1 2

2

22

1 1

n n

i j
i j

X Y I X Y
T

X X Y Y

 

 

    


   
 

where  I X Y   is an indicator function such that  
1

0

X Y
I X Y

X Y






     
 

if 

if 
. 

Some lemmas will be needed to establish the properties of this test statistic. 

Define    2

NT X Y I X Y         
   and   

1 2 22

1 1

n n

D i j
i j

T X X Y Y
 

     . 
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Lemma 9: Distributions of TN and TD are independent 

Proof:  TN is a function of X Y only.    

TD is a function of 
1 21 1, , , , ,n nX X X X Y Y Y Y       .    

If X Y  is independent of 
1 21 1, , , , ,n nX X X X Y Y Y Y       , then the distributions 

of TN and TD are independent. 

Let D be the matrix of data values for the two samples. 

 

 

1 2

1

2

1 1 ,

1 2

, , , , ,  then ~ ,

0
                                       with ,

0

n n p m

n

pxm
n

X X Y Y N 

 

   
 

    

D D Μ Σ

1
Μ

1

 

 

where  ,~ ,p mN D Μ Σ  is a notation that indicates D is a p x m random matrix, E(D) = M, and 

the columns of D are independent normal vectors with a common covariance matrix σΣ.   This is 

the notation used by Hu [12].    

Define A and B as follows:    

1 1 1

2 2 2

1 1

2 21

n n n

m
n n n

mx mxm

n n
I

n n

   
   
     
   
   
      

1 1 1
0

A B
1 1 1

0

 

Then 

1

1 2

2

1
1 1

2

, , , , ,

n

n n
n

n
X X Y Y X Y

n

 
 
       
 
  

1

DA
1

  ,  

    

1 1

1 2

2 2

1
1 1

2

, , , , ,

n n

pxm n n m
n n

n
X X Y Y I

n

  
  
        
      

1 1
0

DB
1 1

0

   
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1 1

1 2 1 2

2 2

1
1 1 1 1

2

, , , , , , , , , ,

n n

n n n n
n n

n
X X Y Y X X Y Y

n

 
 
          
 
  

1 1
0

1 1
0

     

  
1 21 1, , , , , .n nX X X X Y Y Y Y         

Clearly, 

1 1

1 2 1 2 1 2

2 2

1

1 2 1 2 1 2

2

, , , .

n n

n n n n n n
m

n n

n
I

n n n n n n

n

  
                                        

1 1
0

1 1 1 1 1 1
A B 0

1 1
0

 

By (b) of Lemma 2 according to Hu [12], which states the following: 

Suppose Y ~ Npxn(M,Σ)  If A′B = 0, where A has n rows, then YA and YB are 

independent.   

With the data matrix D taking the part of Y in the lemma, all criterion are met for A and 

B; thus, X Y and 
1 21 1, , , , ,n nX X X X Y Y Y Y        are independent. Therefore, TN 

and TD are independent.            □ 

Lemma 10:  Distribution of 
1 2

22

1 1

n n

i j

i j

D X X Y YT
 

     is free of μ1 and μ2   

Proof:  It is helpful to note the following:  

1 1

1 1 1 1

2 2 2 2 2 2

1

2

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

n n

n n n n

m
n n n n n n

n
I

n

  
                                                   

1 1
0

B 0
1 1

0

 

By part (d) of Hu’s Lemma 2, that rank (B) = Tr(B) = 1 2
1 2

1 2

1 1
2

n n
n n m

n n

 
   . 

Since B is idempotent, by Theorem 4.5 of Schott [7], there exists a matrix P (not unique) 

where ( 2)m x mP R  and rank(P) =  2m   s with P′P = Im-2 such that B = PP′.  
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Pre-multiplying B by 1

1

1 0

0 1

n

n

 
   

 and post-multiplying by P yields 

1 1

2 2

1

2

1

1

2

1 0 1 0

0 1 0 1

1 0

0 1

1 0

0 1

n n

n n

n

m
n

n

n



    
          

 
     

 
    

BP PP P

0 P PI

P 0

  

Invoking part (a) of Lemma 2 from Hu [12], which states the following: 

For an n x m matrix P with P′P = I, YP~Npxm(MP, Σ).  

Thus,      1

2

1 2 2

0
~ , , 0,

0

n

px m
n

N N   

  
        

1
DP P

1
 is a distribution free of μ1 and 

μ2.  Since TD is a function of DB, which is a function of DP, the distribution of TD is free 

of the parameters μ1 and μ2.                 □ 

Lemma 11:  Distribution of numerator of T depends on μ1 and μ2 only through    

Proof:  Recall that:     2

NT X Y I X Y         
 

and that by Theorem 3, above, the following product has a non-central chi-squared distribution:  

   
1 1

2 22 1 2

1 2 1 2

2 22 1 2

1 2

~

~

p

p

n nm m
X Y X Y X Y

n n n n m

n nm
X Y

n n m

  


 


 
                

     
      
  

Σ

 

Since the pdf of 
2

X Y depends on μ1 and μ2 only through  , the pdf of X Y  also 

depends on μ1 and μ2 only through  .    Since TN is a function of X Y , this establishes that 

the distribution of TN is dependent on μ1 and μ2 only through  .     □ 
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Theorem 5:  PDF of T depends on μ1 and μ2 only through   

Proof: By Lemma 11, we can denote the pdf of TN by  ,nf t  .  By Lemma 10, we can denote 

the pdf of TD by g(tn).  By their independence, established in Lemma 9, the joint pdf of TN and TD  

is  , ( )n nf t g t  , which depends on μ1 and μ2 only through .  But N

D

T
T

T
  is a function of 

TD  and TN.  Therefore, the distribution of T depends on on μ1 and μ2 only through .   

           □ 

3.3.8 Stochastic Monotonicity of Distribution of T 

Some lemmas are needed before we can establish that the distribution of T is 

monotonically non-decreasing in  .  

Define       2
, R P X Y I X Y tR          .   

Lemma 12:     1 2, ,  0R R R      when 1 2    

Proof: Let  :   pD x x tR   R  and let  2
g x  be the multinormal pdf of 

1 2

~ ,p

m
X Y N

n n

 
   

 
.  Then 

       2
, R P X Y I X Y tR           

       2
 and PP X Y tR X Y         

     and PP X Y tR X Y        

   P X Y tR     
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   P X Y D    

   P X Y D    

   2

D

g x dx   

By Theorem 1 from Anderson [11], since D is a convex set symmetric about the origin 

and  2
g v  is symmetric about the origin with   2

:p
uv R g v u K    being convex for 

every positive real number u and its integral always non-negative and finite in the Lebesgue 

sense,  ,k R   is a non-increasing function of [0, ) for all .pk  R   By Lemma 11, 

 ,k R   depends on kΔ only through .k k    So we conclude that  , R  is a non-

increasing function of  , i.e.    1 2 1 2, ,  0R R R             □ 

Theorem 6:  T is stochastically non-increasing with respect to  , i.e. 

   1 2 1 20 when .P T t P T t t           

Proof:  Note that  

      1 2
22

1 1

2 n n

i j

i j

X X Y YP T t P X Y I X Y t 
 

  
  

         
  
   

    1 2
22

1 1

1 22 22

1 1

n n

i j

i j

n n

i j
i j

X X Y YE P X Y I X Y t X X Y Y 
   

  
                    

     

By Lemma 9, which establishes the independence of X Y and 
1 2

22

1 1

n n

i j

i j

X X Y Y
 

    , and 

the definition of  , R  ,  

    1 2
22

1 1

1 22 22

1 1

n n

i j

i j

n n

i j
i j

X X Y YP X Y I X Y t X X Y Y 
   

  
            

   
     
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1 2 22

1 1

, .
n n

i j
i j

X X Y Y
 

 
     

 
   

So  
1 2 22

1 1

,
n n

i j
i j

P T t E X X Y Y
 

  
       
    
  . 

By Lemma 12,  
1 2 22

1 1

,
n n

i j
i j

X X Y Y
 

 
    
 
   is a non-increasing function of   with 

probability 1.  So  P T t is a non-increasing function of  .     □ 

3.3.9 Properties of the Test 

We will reject H0 when T is greater than the critical value.  Let    P T t     , with t 

being the critical value of the test for a given α.    Thus, β(Δ) is the probability of rejecting H0. 

When the null hypothesis is true, β(Δ) gives the probability of Type I error. When the null 

hypothesis is false, 1−β(Δ) gives the probability of a Type II error . 

3.3.9.1 Least-Favorable Points in H0 

The significant level of the test is the maximum probability that H0 is rejected when H0 is 

actually true.  This level is denoted by α.  When  T t being the region of the rejection of H0, 

  0max :P T t       

By the definition of    ,  

 max :         . 

By Theorem 6,    is a non-increasing function of  .  So  

   max : *  where *              

This point, Δ* is called a least-favorable point in H0. Clearly,  0 :    gives the 

collection of least-favorable points in H0. 
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3.3.9.2 Unbiasedness of Test 

If  β(Δ),then the probability of rejecting the null hypothesis is always larger for 0  

than for 0 , and the test is unbiased.   Let 1 0 1 2 0 2 and             

Then by Theorem 6,        1 1 2 2P T t P T t          . 

Thus. this test is unbiased. 

3.3.9.3 Evaluation of Power Function 

As we saw earlier, many properties of the test were obtained through the established 

monotonicity of the rejection probability function β(Δ) with respect to  .  The expression 

      ,N
N D

D

T
P T t P t P T T t

T


 
        

 
 

however, does not have a closed form. 

 Let * :n
n d

d

t
D t t t

t

       
   

 and f(tn, td) be the joint probability density function of  

 ,N DT T  .  Then  

    
*

, .n d n d

D

f t t dt dt     

 From the proof of Theorem 5,      , ,n d n d n df t t f t g t dt dt   where  ,nf t   is the 

probability density function of TN , and g(td) is the probability density function of TD. With given 

Δ, both  ,nf t  and g(td) can be numerically determined through χ2- distributions.  Therefore,  

     
*

,n d n d

D

f t g t dt dt      
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can be computed by numerical integration method.  In such a computation, Δ with different norm 

values can be selected on a ray staring at the origina in any convenient direction.  

3.3.10 Setting the Critical Value  

While the Case 2 test statistic does not fit a known distribution, its distribution can be 

simulated using the distributions of 
2

X Y and 
1 2

22

1 1

n n

i j

i j

X X Y Y
 

    . The critical values can be 

found via such a simulation using the least favorable value for Δ – i.e.  0 :    .  The 

distribution of 
2

X Y was established in Theorem 3.  Before we can establish the distribution 

of TD,  another lemma is needed. 

Lemma 13:  If    1, , ~ 1 ,n nX X N    X  , then 
2 2

1

~
n

i np p
i

X X  


  

Proof:    1, , ~ 1 ,n nX X N    X   implies     ~ 1 ,  where =n nVec N I     X  

 Since  1

1 1 1 1
, , n n n n

n n p nX X X X I I I
n n

            
   

X X ,  

 1

1 1 1 1
, , ( )n n n n

n p n n pVec X X X X Vec I I I I Vec
n n

                        
X X . 

This implies that 
2 1

1 1

1 1
( ) ( )

n n

i i i
i i

X X X X X X
 



 

       

  1

1

( ) ( )
n

i i
i

X X X X 



     

     1

1 1, , , ,n n nVec X X X X I Vec X X X X             

     11 1 1 1n n n n
n p n n pVec I I I I I Vec

n n
 

                                  
X X
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      11 1n n
nVec I Vec

n
                

X X  

      11 1
 with A= n n

nVec A Vec I
n

                  
X X . 

Once again applying Theorem 10.12 from Schott [7], given in section 3.2.9 , we find that since 

   ~ 1 ,nVec N  X  and   

     1 11 1 1 1
A A n n n n

n n nI I I
n n

                               
 

   1 11 1 1 1 1 1n n n n n n
n n n n n nI I I I I I A

n n n
                                  

 

we can conclude that  2 2

1

1
~

n

i
i

X X  
 

  with  

     11 1
1 1n n

n n nI
n

              
 

            1 11 1
1 1 0 0n n

n n nI
n

      
                      

, 

and degrees of freedom equal to  

     11 1n n
n nTR A TR I I

n
                

 

 1 1 1
1n n

n p

n
TR I I np p n

n n

             
   

. 

Thus, 
2 2

1

1
~

n

i np p
i

X X 
 



   
2 2

1

~
n

i np p
i
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Proof:  By Lemma 13, 
1

1

2 2

1

~
n

i n p p
i

X X  


  and 
2

2

2 2

1

~
n

j n p p
j

Y Y  


 .  These are independent 

central chi-squared distributions.   

The sum of independent central chi-squared distributions is well known to be a central 

chi-squared distribution with degrees of freedom equal to the sum of the degrees of freedom of 

the distributions being added.  The conclusion follows immediately. 

3.3.11 Simulation of Case 2 Test Statistic Distribution 

A random variable with the distribution of T can be simulated by substituting in 

randomly generated values from the appropriate distributions for 
2

X Y  and 

1 2
22

1 1

n n

i j

i j

X X Y Y
 

     .  The simulation can be computed specifying values for n1, n2, p, α, and δ. 

Let U be a randomly generated value from a 
2

2 1 2
p

n n

m




  
     

 distribution, and let  W be a 

randomly generated value from a 2
2mp p   distribution.  If δ is defined as a multiple of the square 

root of σ, i.e.,    ,  we can simulate values for T as follows: 
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This simplifies to  

1 2

2

1 2
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n n
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n nm
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W n n m



 




 
      
 

  

Because this formulation eliminates σ from the non-centrality parameter, critical values 

for T will be stable for a given ε, whereas they will vary for a given δ.  It makes more sense to 

provide tables for values of ε rather than δ. 
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 Table 2 in Appendix A shows the results of the simulation for critical values with n1 = 6; 

n2 = 2; α=0.05, p = 3, 4, 5, and 6; and ε = 0.1 to 5.0.  One million test statistics were randomly 

generated for each set of parameters. The 95th percentile of those 1,000,000 test statistics was 

computed to determine the critical value.  This was done twice in order to verify the accuracy of 

the resulting statistics.  The results were consistent to the first three decimal places. 

The simulation results are shown graphically in Figure 4.   The SAS code used to 

generate those values is provided in Appendix B.  The null hypothesis is rejected and the new 

material considered equivalent when the test statistic is greater than the critical value. 
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Figure 4.  Critical values of Case 2 test statistic with α = 5%, n1 = 6 and n2 = 2. 
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CHAPTER 4 
 

EXAMPLE APPLICATION 
 
 
4.1 Example Data 

To demonstrate the use of this approach, we will use NCAMP test results. Table 2 [13] 

show strength and modulus results for a fiberglass epoxy composite material.  The qualification 

sample had two panels, cured separately, from each of three different batches of material, for a 

total of six panels.  In addition, nine companies produced smaller equivalency samples of this 

material.  Each equivalency sample consisted of two panels, cured separately and usually from a 

single batch.  Each row in Table 2 gives the results for a single panel of material. Multiple test 

specimens were cut from each panel.  Each value is the mean of multiple destructive tests from a 

minimum of three.  Since all the values are means, the panel mean vectors have a multinormal 

distribution centered on the true mean vector. 

TABLE 2 

GLASS 6781 FILL TENSION PANEL DATA 

Company 
Code 

Panel 
ID 

Mean Vectors 
Strength 

CTD 
(ksi) 

Modulus 
CTD 
(msi) 

Strength 
RTD 
(ksi) 

Modulus 
RTD 
(msi) 

Strength 
ETW 
(ksi) 

Modulus 
ETW 
(msi) 

A0 A1 86.8256 4.1342 81.9492 4.0615 58.3693 3.7252 
A0 A2 90.5834 4.1229 83.6153 4.0303 59.3905 3.7333 
A0 B1 93.5993 4.1052 82.5799 4.0336 57.9774 3.7246 
A0 B2 92.6419 4.1026 83.2296 4.0310 56.9364 3.7374 
A0 C1 91.6543 4.1567 77.3917 4.0975 52.6690 3.8361 
A0 C2 86.1103 4.2412 73.7584 4.1754 57.6251 3.8522 
A1 H8 104.7720 4.3109 93.1665 4.2907 66.2259 3.8234 
A1 H9 102.3422 4.3259 93.6730 4.2642 66.2396 3.8532 
A2 G8 100.7421 4.2101 92.4146 4.1596 64.1142 3.7933 
A2 G9 102.5788 4.1789 91.0630 4.1324 63.7832 3.7749 
A3 E1 91.4111 4.1400 84.6080 4.0335 58.1473 3.7413 
A3 E2 95.4070 4.1375 84.7847 4.0411 58.8351 3.7159 
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Company 
Code 

Panel 
ID 

Mean Vectors 
Strength 

CTD 
(ksi) 

Modulus 
CTD 
(msi) 

Strength 
RTD 
(ksi) 

Modulus 
RTD 
(msi) 

Strength 
ETW 
(ksi) 

Modulus 
ETW 
(msi) 

A4 F1 101.5407 4.1214 91.3569 4.0616 60.1149 3.6535 
A4 F2 103.3725 4.1850 89.9774 4.0893 60.8018 3.8006 
A5 F1 93.7389 4.1293 85.9663 4.0944 57.3603 3.7727 
A5 F2 89.7994 4.1654 81.7455 4.0942 58.7655 3.7617 
A6 E1 102.0095 4.2496 94.9075 4.2011 63.5386 3.9018 
A6 E2 101.0647 4.2748 97.5123 4.1656 66.6956 3.8939 
A7 F5 100.7955 4.1914 87.5858 4.1444 61.7685 3.8369 
A7 F6 99.3658 4.2207 88.5357 4.1221 63.5465 3.8330 
A8 F7 101.4659 4.1396 90.5325 4.0954 62.8581 3.7360 
A8 F8 99.5110 4.1478 90.0073 4.1408 62.0124 3.7273 
A9 E5 99.6023 4.3338 88.3391 4.2965 62.6129 3.9849 
A9 E6 99.5025 4.2903 89.5656 4.2779 61.7814 3.9429 

 

 Table 3 shows the vectors of company means.  The qualification sample (A0) is X , 

while each equivalency company below is Y .  The panel is the experimental unit.  The sample 

sizes are six for the qualification sample and two for each of the equivalency samples.  Six 

different test results are listed for each panel. 

TABLE 3 
 

FILL TENSION MEAN VECTORS 

Company 
Code 

Mean Vectors 
Strength 

CTD 
(ksi) 

Modulus 
CTD 
(msi)

Strength 
RTD 
(ksi)

Modulus 
RTD 
(msi)

Strength 
ETW 
(ksi) 

Modulus 
ETW 
(msi)

A0 90.236 4.144 80.421 4.072 57.161 3.768 
A1 103.557 4.318 93.420 4.277 66.233 3.838 
A2 101.660 4.195 91.739 4.146 63.949 3.784 
A3 93.409 4.139 84.696 4.037 58.491 3.729 
A4 102.457 4.153 90.667 4.075 60.458 3.727 
A5 91.769 4.147 83.856 4.094 58.063 3.767 
A6 101.537 4.262 96.210 4.183 65.117 3.898 
A7 100.081 4.206 88.061 4.133 62.658 3.835 
A8 100.488 4.144 90.270 4.118 62.435 3.732 
A9 99.552 4.312 88.952 4.287 62.197 3.964 
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 In Figure 5, the mean vectors are displayed graphically.  The ETW values are plotted in 

the lower left, the CTD values in the upper right, and the RTD values in the middle. Lines 

connect the mean values of the different environments by company. 
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Figure 5.  Fill tension mean vectors. 
 

The assumed covariance matrix, Σ, is defined as follows: 
 

31.07 0.18 26.83 .23 14.43 .12

.18 .005 .176 .006 .16 .005

26.83 .176 32.70 .205 16.21 .103

.23 .006 .205 .007 .18 .005

14.43 .16 16.21 .18 12.32 .10

.12 .005 0.103 .005 .10 .007

 
 
 
 

   
 
 
 
 

 

 
This covariance matrix was constructed using the data from all 24 panels available for this 

material; therefore, it includes the variance attributable to different producers as well as different 

cure cycle recipes for this material.  Separating the sources of variability will prove useful when 

constructing basis values to accompany the equivalency criteria, but that is beyond the scope of 

this paper.   
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Theoretical issues arise when substituting an estimated matrix constructed from the sample 

data.  These issues will be discussed in Chapter 5.  For the example analysis, this matrix will be 

treated as the known covariance matrix for the population of fill compression test results for the 

fiberglass epoxy material. 

4.2 Setting δ or Defining ‘Close Enough’ 

Before a comparison can be made,  must be determined.  Recall that  represents the 

largest allowable difference that is considered ‘close enough.’   One choice is to key  to the 

producer’s risk.  At this point, it will not be an exact computation, since the final acceptance 

limit will fall inside the ellipsoid, with the boundary of points exactly δ from the center of the 

ellipse.  Thus, the producer’s risk based on δ is only approximate, although an exact value can be 

computed later. 

Since this is a multivariate normal distribution, the norm has a chi-squared  distribution.  

So a value can be found for δ that will correspond to a specified producer’s risk.  For example, to 

achieve a producers risk of approximately 5 percent, set 
1.635

ˆ



 , the value of a 2

6   for α = 

5%.  The area defined as the compliment of Θ0, which represents acceptable product, will 

correspond to approximately 95 percent of the expected output.   

4.3 Test Statistics and Results for Case 1 

 Differences between the mean vector of the qualification sample and the mean vector of 

each equivalency sample  X Y are shown in Table 4. The non-centrality parameter of the 

distribution of T will be the same for all companies but will vary with δ.   For this example, the 

non-centrality parameter is 21 2

1 2

4.0344
n n

n n
 


. 
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TABLE 4 

DIFFERENCES OF MEAN VECTORS 
 

Company 
Code 

Differences of Equivalency Mean Vectors with Qualification Mean Vectors 
Strength 

CTD 
(ksi) 

Modulus 
CTD 
(msi)

Strength 
RTD 
(ksi)

Modulus 
RTD 
(msi)

Strength 
ETW 
(ksi) 

Modulus 
ETW 
(msi)

A1 (13.3213) (0.1746) (12.9991) (0.2059) (9.0715) (0.0702) 
A2 (11.4246) (0.0507) (11.3181) (0.0745) (6.7874) (0.0160) 
A3 (3.1733) 0.0051 (4.2757) 0.0343 (1.3299) 0.0395 
A4 (12.2208) (0.0094) (10.2465) (0.0039) (3.2970) 0.0411 
A5 (1.5334) (0.0036) (3.4352) (0.0228) (0.9016) 0.0010 
A6 (11.3013) (0.1184) (15.7893) (0.1118) (7.9558) (0.1297) 
A7 (9.8448) (0.0622) (7.6401) (0.0617) (5.4962) (0.0669) 
A8 (10.2526) 0.0001 (9.8492) (0.0466) (5.2739) 0.0365 
A9 (9.3166) (0.1682) (8.5317) (0.2157) (5.0359) (0.1958) 

 

Critical values for the Case 1 test statistic for this example (n1 = 6, n2 = 2, p = 6) are 

shown in Table A-1 of Appendix A for values of δ from 0.1 to 6.0 and values of α ranging from 

0.01 to 0.20.   The null hypothesis is rejected when the test statistic is less than the critical value.  

When the null hypothesis is rejected, the two samples can be said to be equivalent—that is, they 

have a difference of less than δ—at the 1−α confidence level. 

The Case 1 test statistic for each company was computed, and the results are shown in 

Table 5 along with the value of δ required for the company to be considered equivalent to the 

qualification sample with α = 0.05.  These results indicate that only companies A5 and A3 were 

able to produce material sufficiently close to the qualification sample to fall within an acceptance 

ellipse for a value of δ less than two.  However, company A5 passes even with the consumer’s 

risk set at 1 percent.   
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TABLE 5 
 

CASE 1 TEST STATISTIC EXAMPLE RESULTS 

Company 
Code 

Case 1 
Test 

Statistic T 

Passes 
Equivalence 

at α = 0.10 for δ  ≥ 

Passes 
Equivalence 

at α = 0.05 for δ  ≥ 

Passes 
Equivalence 

at α = 0.01 for  δ ≥ 
A5 1.5908 0.1 0.1 1.6 
A3 2.9431 1.2 1.6 2.4 
A7 6.8096 2.5 2.8 3.5 
A2 7.5873 2.6 3.0 3.6 
A8 8.9699 2.9 3.2 3.8 
A4 10.9461 3.2 3.5 4.1 
A9 11.9352 3.4 3.7 4.3 
A6 14.6322 3.7 4.0 4.6 
A1 15.9013 3.9 4.2 4.8 

 
 
 Some options are available with this approach.  We could center the ellipse at the mean 

of the combined values of all panels, rather than that of the qualification sample.  Another option 

is to allow our ellipse to be stretched out toward the high end of strength and modulus as 

acceptable, as long as they increase at the proper proportion to each other, rather than insisting 

on the modulus associated with the mean strength of the qualification sample. 

4.4 Test Statistics and Results for Case 2 

The test statistic, which varies with ε when 



 , was computed for each company for 

various values of ε. These results are shown in Table 6.  A value above the critical value 

indicates that H0 can be rejected.  A value of zero for the test statistic indicates that it was larger 

than the value of δ. Table 7 indicates the smallest ε for each company that will reject H0. 
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TABLE 6 
 

CASE 2 TEST STATISTICS WITH α = 0.05 
 

Company 
Code 

Critical Value for α = .05 
0 0 0.00059 0.00073 0.00089 0.00104 0.00138 0.00155 0.00176

ε = 0.7 ε = 0.9 ε = 1.4 ε = 1.5 ε = 1.6 ε = 1.7 ε = 1.9 ε = 2.0 ε = 2.1 
A1 0 0 0 0 0 0 0 0.00025 0.00262 
A2 0 0 0.00014 0.00224 0.00683 0.01393 0.03562  0.05022 0.06731 
A3 0 0.00036  0.03828 0.05337 0.07095 0.09104 0.13871  0.16630 0.19638 
A4 0 0 0 0 0.00059 0.00355 0.01698  0.02745 0.04041 
A5 0.001186  0.01106  0.07948 0.10067 0.12436 0.15054 0.21041  0.24410 0.28028 
A6 0 0 0 0 0 0 0.00090  0.00427 0.01015 
A7 0 0 0.00220 0.00676 0.01382 0.02339 0.05002  0.06708 0.08664 
A8 0 0 0 0.00018 0.00236 0.00705 0.02392  0.03611 0.05080 
A9 0 0 0 0 0 0 0.00438  0.01031 0.01874 

 
 
 
 

TABLE 7 
 

CASE 2 TEST STATISTICS EXAMPLE RESULTS 
 

Company
Code 

Class II Test Statistic
Passes Equivalence at

α = 0.05 for ε > 
A5 
A3 
A7 
A2 
A8 
A4 
A9 
A6 
A1 

0.7 
0.9 
1.6 
1.8 
1.9 
2.0 
2.2 
2.4 
2.6 

 
 
 

The Case 2 critical values and test statistics for a consumer’s risk of 5 percent are shown 

graphically in Figure 6.  When the test statistic is above the critical value, the sample for that 

company can be considered equivalent to the qualification sample for that value of ε. 
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Figure 6.  Critical values and Case 2 test statistics for FT data with α = .05. 
 

4.5 Comparison with Current Method Results 

Results of the current equivalency tests are displayed graphically in Figure 7.  The open-

top black rectangles represent the current acceptance limits for a producer’s risk of 5 percent for 

the three environments.  Points that lie outside the boxes have failed the equivalency.  Table 8 

shows the individual results for each company and each test using the current methodology.  
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Figure 7. Fill tension mean vectors with current acceptance limits. 
 
 

TABLE 8 
 

FIBERGLASS EPOXY FILL TENSION TEST RESULTS AT α = 0.05 CURRENT METHOD 
 

Company 
Code 

Current Equivalency Test Results 
Strength 

CTD 
(ksi) 

Modulus 
CTD 
(msi)

Strength 
RTD 
(ksi)

Modulus 
RTD 
(msi)

Strength 
ETW 
(ksi) 

Modulus 
ETW 
(msi)

A1 PASS FAIL PASS FAIL PASS FAIL 
A2 PASS FAIL PASS FAIL PASS PASS 
A3 PASS PASS PASS PASS PASS PASS 
A4 PASS PASS PASS PASS PASS PASS 
A5 PASS PASS PASS PASS PASS PASS 
A6 PASS FAIL PASS FAIL PASS FAIL 
A7 PASS FAIL PASS FAIL PASS FAIL 
A8 PASS PASS PASS FAIL PASS PASS 
A9 PASS FAIL PASS FAIL PASS FAIL 

 
None of the companies had any difficulties passing the strength tests, but modulus tests 

were problematic.  Only three companies—A3, A4, and A5—lie within the equivalency limits 

for all environments.  The remaining companies fall outside of it for at least one test result.  

While A3 and A5 were the two companies that were ranked closest to the qualification sample 
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according to both Case 1 and Case 2 test statistics, companies A7, A2, and A8 all scored closer 

to the qualification sample than A4.  There is an explanation. 

Recall that the strength tests are evaluated with respect to a one-sided test. A material 

with higher strength values is not going to be rejected even though it may differ significantly 

from the strength values of the qualification sample.  Company A4 has higher strength values, 

and that is the reason for the large distance measurement from the qualification sample.  For this 

equivalence approach to be a viable alternative to the current method of assessing composite 

materials, an adjustment must be made in order to accommodate the one-sided hypothesis of the 

strength tests. 

For the example data, those higher strength values are the reason that a company may 

require a large value of δ for equivalence using the Case 1 and Case 2 test statistics.  The sample 

data must be checked to determine whether they fall inside the union of the acceptance ellipsoid 

with the original acceptance box. 

Figure 8 shows an artist’s rendition of what the various acceptance regions would look 

like in three dimensions.  The mean vectors of various samples are displayed as white dots.  The 

larger black dot is actually a very small ellipsoid centered on the qualification mean vector.  This 

black dot is the acceptance region for a consumer’s risk of 5 percent and δ = 0.  The blue and 

green ellipsoids represent acceptance regions for a producer’s risk of 5 and 1 percent, 

respectively. 

The blue box is the open-ended acceptance region using current methods.  The sides 

represent the limits for the mean of the modulus, both upper and lower.  The bottom and back 

represent the minimum value for the mean of two different strength tests, but there is no top or 

front because there is no maximum placed on the strength test results. 
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Figure 8.  Artist’s rendition of multivariate acceptance regions. 

 
 The red ellipse is contained inside the box representing current acceptance limits, so it is 

the ellipse that corresponds with current limits.   This diagram shows the problem regarding the 

acceptance ellipses. Essentially, any sample mean vectors that within the blue box are accepted 

as equivalent by current standards.  This mismatch is the reason an adjustment will need to be 

made to accommodate the one-sided hypothesis of the strength tests.  This is not a difficult 

adjustment to make. 
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CHAPTER 5 
 

CONCLUSIONS AND RECOMMENDATIONS 
 
 

5.1 Engineering Basis Values 

 Table 9 [14] shows the basis values that are computed using currently accepted methods 

for the example data.  Due to large batch-to-batch variability, the ANOVA method was required 

for three of the four environmental conditions.  This method requires five independent batches, 

so only estimates are available for those conditions.  A-basis values require five independent 

batches for all methods, so only estimates are provided.   The modified CV method approach 

inflates the variation of the qualification batch when the coefficient of variation is small (under 8 

percent).  This attempts to make the basis values more realistic and to compensate for the 

variation over time and between producers, which the qualification sample does not include. 

TABLE 9 
 

BASIS VALUES FOR GLASS 6781 FILL TENSION 
  

Fill Tension Strength Basis Values and Statistics 
Env CTD RTD ETW ETW2 
Mean 90.06 80.50 57.22 55.32 
Stdev 3.31 3.81 2.29 1.74 
CV 3.67 4.73 4.00 3.15 
Mod CV 6.00 6.37 6.00 6.00 
Min 84.24 72.21 52.09 52.03 
Max 95.81 84.60 59.77 59.62 
No. batches 3 3 3 3 
No. spec. 19 19 19 22 

Basis Values and Estimates 
B-basis value 83.61    
B-estimate  55.47 46.28 47.58 
A-estimate 79.03 37.60 38.47 42.05 
Method Normal ANOVA ANOVA ANOVA 

Modified CV Basis Values and Estimates 
B-basis value 79.52 NA NA 49.06 
A-estimate 72.06 NA NA 44.59 
Method normal NA NA normal 
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 When the equivalence approach discussed in this thesis is used, these basis values will 

not be appropriate when the value of δ exceeds the difference between the qualification mean 

and the minimum acceptable value of the mean strength.  This is due to any value within the 

acceptable ellipsoid being considered acceptable, which will include values that fall below the 

original acceptance limits computed from the qualification sample in that case.  This method 

allows for additional variation with large values of δ, but this must be reflected in the 

engineering basis values.  Fortunately, this is not a difficult computation. 

5.2 Engineering Basis Values to Accompany δ 

 Since any value within the acceptable ellipsoid is possible, to compute basis values it is 

necessary to find the point on the ellipse with the minimum value for that property (x).  Then the 

basis value for that property is computed by assuming that x is the mean of the qualification 

sample.  Figure 9 shows warp compression RTD qualification and equivalency data for Glass 

6781, corresponding basis values, and acceptance ellipses for the bivariate distribution of 

strength and modulus.  The B-basis value computed from the qualification sample results in the 

same B-basis value as with δ = 1.1. 

5.3 Advantages of Multivariate Hypothesis Test of Equivalence 

 This approach begins with an acceptance region that lies inside the δ-ellipsoid (which is 

the boundary of the maximum possible acceptance region) and expands toward that boundary as 

the sample size increases.  As the database of material test results increases, the expected 

variance decreases due to the larger sample size. Thus, the acceptance region of each grade can 

be expected to increase as the boundary of the acceptance region moves closer to the maximum 

acceptance region, which is defined by δ-ellipsoid around the qualification mean vector. 
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Figure 9. Glass 6781 warp compression RTD strength and modulus results. 
 

 
As mentioned in Chapter 2, this approach also eliminates the side effect of producers 

being benefitted by smaller sample sizes and larger uncertainty about their product’s test results.  

Instead, larger sample sizes will result in a larger ellipsoidal acceptance area. 

In addition, the basis values can be expected to climb upward as the variance decreases.  

This means that over time, as the database accumulates more information, basis values may 

increase, and those higher basis values will retroactively include all previously accepted material 

for that grade. 

Producers would be able to both select an acceptable producer’s risk and provide their 

customers with a specified probability that their material will meet those basis values. These are 

guarantees that do not exist with the current methodology. 
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5.4 Checking Assumption of Equal Covariance Matrices 

 Since a primary assumption of this analysis is that the covariance matrices are the same, 

those covariance matrices will need to be verified as similar before materials can be compared in 

this manner.  Anderson [5] established a method to accomplish this.  It remains to be seen if this 

is a useful method or if it will nearly always classify two panels as having “different” co-

variance matrices.  If it is the latter, a similar approach for ‘close enough,’ will need to be 

developed for testing the equality of co-variance matrices before the results of applying it to the 

mean vectors of composite test results can be considered sound. 

5.5 Recommendations 

 I recommend that an analysis of NCAMP materials be done using this technique to create 

the following categories of basis values: 

 TWIN:  Engineering basis values generated with the current methodology. This is 

expected to have a producer’s risk of between 70 and 30 percent. 

 Grade A:  Engineering basis values generated with the current methodology is valid for 

this category.  However, Grade A material may fall outside the “TWIN” category but 

does so without adversely affecting the strength characteristics. 

 Grade B:  Engineering basis values generated to accompany acceptance limits set with a 

producer’s risk of approximately 5 percent. 

 Grade C:  Engineering basis values generated to accompany acceptance limits set with a 

producer’s risk of 1 percent or less. 

As more producers come on line with a material, a product that qualifies as “TWIN” can 

be added to the database of test results from which the basis values for “TWIN” are computed.   

Any materials that qualify as “Grade A” can be added to the database of test results from which 
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the basis values for “Grade A” are computed; likewise for “Grade B” and “Grade C.”  Materials 

that do not qualify as Grade C would require a larger set of test results in order to recommend 

basis values. 

While a producer might be disappointed to have its material rated as Grade B or Grade C 

rather than Grade A, this may be preferable to the expense and delay of running additional tests 

to determine engineering basis values for their materials. 
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APPENDIX A 
 

TABLES OF CRITICAL VALUES 
 
 
 

TABLE A-1 
 

CRITICAL VALUES FOR CASE 1 TEST STATISTIC 
 

Critical Values for n1 = 6,  n2 = 2, and p = 6 
δ α = 0.01 α = 0.02 α = 0.05 α = 0.10 α = 0.20 

0.1 0.8743 1.1373 1.6395 2.2096 3.0778 
0.2 0.8809 1.1458 1.6518 2.2263 3.1009 
0.3 0.8919 1.1602 1.6725 2.2541 3.1396 
0.4 0.9076 1.1806 1.7018 2.2936 3.1944 
0.5 0.9281 1.2072 1.7401 2.3450 3.2656 
0.6 0.9538 1.2405 1.7879 2.4089 3.3539 
0.7 0.9849 1.2808 1.8455 2.4860 3.4599 
0.8 1.0219 1.3286 1.9138 2.5770 3.5845 
0.9 1.0652 1.3846 1.9934 2.6826 3.7285 
1.0 1.1154 1.4494 2.0851 2.8039 3.8928 
1.1 1.1733 1.5237 2.1899 2.9418 4.0784 
1.2 1.2394 1.6084 2.3087 3.0972 4.2860 
1.3 1.3147 1.7045 2.4425 3.2713 4.5167 
1.4 1.3999 1.8129 2.5925 3.4650 4.7712 
1.5 1.4962 1.9347 2.7597 3.6793 5.0503 
1.6 1.6045 2.0709 2.9451 3.9152 5.3547 
1.7 1.7259 2.2228 3.1499 4.1736 5.6850 
1.8 1.8615 2.3914 3.3751 4.4553 6.0417 
1.9 2.0125 2.5778 3.6215 4.7610 6.4252 
2.0 2.1801 2.7832 3.8902 5.0914 6.8359 
2.1 2.3653 3.0085 4.1818 5.4470 7.2742 
2.2 2.5692 3.2546 4.4971 5.8285 7.7403 
2.3 2.7930 3.5226 4.8368 6.2362 8.2345 
2.4 3.0374 3.8132 5.2014 6.6705 8.7570 
2.5 3.3035 4.1271 5.5914 7.1317 9.3079 
2.6 3.5919 4.4649 6.0074 7.6202 9.8874 
2.7 3.9036 4.8273 6.4496 8.1362 10.4956 
2.8 4.2390 5.2148 6.9184 8.6800 11.1326 
2.9 4.5988 5.6278 7.4142 9.2517 11.7986 
3.0 4.9835 6.0668 7.9373 9.8516 12.4936 
3.1 5.3936 6.5321 8.4878 10.4797 13.2176 
3.2 5.8295 7.0240 9.0659 11.1363 13.9709 
3.3 6.2916 7.5429 9.6720 11.8215 14.7534 
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Critical Values for n1 = 6,  n2 = 2, and p = 6 
δ α = 0.01 α = 0.02 α = 0.05 α = 0.10 α = 0.20 

3.4 6.7801 8.0889 10.3061 12.5353 15.5652 
3.5 7.2955 8.6624 10.9684 13.2779 16.4064 
3.6 7.8379 9.2635 11.6591 14.0494 17.2769 
3.7 8.4076 9.8925 12.3783 14.8498 18.1769 
3.8 9.0048 10.5494 13.1260 15.6792 19.1064 
3.9 9.6298 11.2345 13.9025 16.5378 20.0653 
4.0 10.2826 11.9479 14.7077 17.4255 21.0538 
4.1 10.9635 12.6897 15.5418 18.3425 22.0719 
4.2 11.6725 13.4600 16.4049 19.2887 23.1196 
4.3 12.4099 14.2589 17.2969 20.2642 24.1969 
4.4 13.1757 15.0866 18.2181 21.2691 25.3039 
4.5 13.9701 15.9430 19.1685 22.3035 26.4405 
4.6 14.7931 16.8284 20.1480 23.3672 27.6068 
4.7 15.6449 17.7427 21.1568 24.4604 28.8029 
4.8 16.5254 18.6861 22.1948 25.5832 30.0286 
4.9 17.4349 19.6585 23.2623 26.7354 31.2841 
5.0 18.3733 20.6601 24.3591 27.9173 32.5693 
5.1 19.3407 21.6909 25.4853 29.1287 33.8843 
5.2 20.3373 22.7509 26.6410 30.3697 35.2291 
5.3 21.3629 23.8402 27.8261 31.6404 36.6037 
5.4 22.4178 24.9588 29.0408 32.9407 38.0081 
5.5 23.5019 26.1068 30.2850 34.2707 39.4423 
5.6 24.6153 27.2842 31.5588 35.6304 40.9063 
5.7 25.7580 28.4910 32.8621 37.0197 42.4001 
5.8 26.9300 29.7273 34.1951 38.4388 43.9238 
5.9 28.1314 30.9931 35.5576 39.8876 45.4773 
6.0 29.3623 32.2884 36.9499 41.3662 47.0607 
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 In Table 2, a value of  “0” indicates that for that combination of ε and α, the simulation 

produced no values for T above 0 at the 1−αth percentile, while a value of  “0.000” indicates that 

the simulation produced a value for the 1−αth percentile between 0 and 0.0005. 

TABLE A-2 
 

CRITICAL VALUES FOR CASE 2 TEST STATISTIC 
 

Critical Values for n1 = 6,  n2 = 2,  p = 3,     
ε α = 0.01 α = 0.02 α = 0.05 α = 0.10 α = 0.20 

0.1 0 0 0 0 0 
0.2 0 0 0 0 0 
0.3 0.000 0.000 0 0 0 
0.4 0.002 0.001 0 0 0 
0.5 0.003 0.002 0.001 0 0 
0.6 0.006 0.004 0.002 0.000 0 
0.7 0.009 0.007 0.004 0.001 0 
0.8 0.013 0.010 0.006 0.003 0.000 
0.9 0.017 0.013 0.009 0.005 0.001 
1.0 0.022 0.017 0.011 0.007 0.002 
1.1 0.029 0.022 0.015 0.009 0.003 
1.2 0.035 0.027 0.018 0.012 0.005 
1.3 0.042 0.032 0.022 0.015 0.006 
1.4 0.049 0.038 0.026 0.018 0.008 
1.5 0.057 0.044 0.031 0.021 0.011 
1.6 0.065 0.051 0.035 0.025 0.013 
1.7 0.073 0.057 0.040 0.029 0.015 
1.8 0.081 0.064 0.045 0.032 0.018 
1.9 0.090 0.071 0.051 0.037 0.021 
2.0 0.096 0.077 0.056 0.041 0.024 
2.1 0.104 0.084 0.061 0.045 0.027 
2.2 0.112 0.091 0.067 0.050 0.030 
2.3 0.121 0.099 0.073 0.054 0.033 
2.4 0.130 0.107 0.080 0.059 0.037 
2.5 0.139 0.115 0.086 0.065 0.040 
2.6 0.148 0.123 0.093 0.070 0.044 
2.7 0.157 0.132 0.100 0.076 0.048 
2.8 0.169 0.141 0.107 0.082 0.052 
2.9 0.179 0.150 0.115 0.088 0.056 
3.0 0.190 0.160 0.123 0.094 0.061 
3.1 0.201 0.170 0.131 0.101 0.066 
3.2 0.214 0.181 0.140 0.107 0.071 
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Critical Values for n1 = 6,  n2 = 2,  p = 3,     
ε α = 0.01 α = 0.02 α = 0.05 α = 0.10 α = 0.20 

3.3 0.226 0.192 0.148 0.114 0.076 
3.4 0.240 0.204 0.158 0.122 0.081 
3.5 0.253 0.215 0.167 0.129 0.087 
3.6 0.267 0.228 0.177 0.137 0.092 
3.7 0.281 0.240 0.187 0.145 0.098 
3.8 0.296 0.253 0.197 0.153 0.104 
3.9 0.312 0.267 0.207 0.161 0.110 
4.0 0.328 0.280 0.218 0.170 0.116 
4.1 0.343 0.294 0.229 0.179 0.122 
4.2 0.360 0.308 0.241 0.188 0.129 
4.3 0.377 0.322 0.252 0.197 0.136 
4.4 0.394 0.337 0.263 0.206 0.142 
4.5 0.413 0.353 0.276 0.216 0.149 
4.6 0.430 0.369 0.288 0.225 0.156 
4.7 0.449 0.384 0.300 0.235 0.163 
4.8 0.467 0.400 0.313 0.245 0.171 
4.9 0.486 0.417 0.326 0.256 0.178 
5.0 0.506 0.433 0.339 0.266 0.186 

 
 

Critical Values for n1 = 6,  n2 = 2,  p = 4,     
ε α = 0.01 α = 0.02 α = 0.05 α = 0.10 α = 0.20 

0.1 0 0 0 0 0 
0.2 0 0 0 0 0 
0.3 0 0 0 0 0 
0.4 0.000 0 0 0 0 
0.5 0.001 0.000 0 0 0 
0.6 0.003 0.002 0 0 0 
0.7 0.005 0.003 0.001 0 0 
0.8 0.007 0.005 0.002 0.000 0 
0.9 0.009 0.007 0.004 0.001 0 
1.0 0.012 0.010 0.006 0.003 0 
1.1 0.015 0.012 0.008 0.004 0.000 
1.2 0.019 0.015 0.011 0.006 0.001 
1.3 0.023 0.019 0.013 0.009 0.002 
1.4 0.027 0.022 0.016 0.011 0.004 
1.5 0.031 0.026 0.019 0.013 0.005 
1.6 0.036 0.030 0.023 0.016 0.007 
1.7 0.041 0.035 0.026 0.019 0.009 
1.8 0.047 0.039 0.030 0.022 0.011 
1.9 0.052 0.044 0.033 0.025 0.013 
2.0 0.058 0.049 0.037 0.028 0.015 
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Critical Values for n1 = 6,  n2 = 2,  p = 4,     
ε α = 0.01 α = 0.02 α = 0.05 α = 0.10 α = 0.20 

2.1 0.064 0.054 0.042 0.031 0.018 
2.2 0.070 0.060 0.046 0.035 0.020 
2.3 0.077 0.065 0.051 0.039 0.023 
2.4 0.083 0.071 0.055 0.042 0.026 
2.5 0.090 0.077 0.060 0.046 0.029 
2.6 0.097 0.084 0.066 0.051 0.032 
2.7 0.105 0.090 0.071 0.055 0.035 
2.8 0.112 0.097 0.076 0.060 0.039 
2.9 0.120 0.104 0.082 0.064 0.042 
3.0 0.129 0.112 0.088 0.069 0.046 
3.1 0.136 0.118 0.094 0.074 0.049 
3.2 0.145 0.126 0.101 0.080 0.053 
3.3 0.155 0.135 0.107 0.085 0.057 
3.4 0.164 0.143 0.114 0.090 0.061 
3.5 0.174 0.151 0.121 0.096 0.066 
3.6 0.184 0.160 0.128 0.102 0.070 
3.7 0.194 0.169 0.136 0.108 0.075 
3.8 0.205 0.179 0.144 0.114 0.079 
3.9 0.216 0.188 0.151 0.121 0.084 
4.0 0.227 0.198 0.159 0.127 0.089 
4.1 0.238 0.207 0.167 0.134 0.094 
4.2 0.250 0.218 0.175 0.141 0.099 
4.3 0.261 0.229 0.184 0.148 0.104 
4.4 0.274 0.239 0.193 0.154 0.109 
4.5 0.286 0.250 0.201 0.162 0.115 
4.6 0.298 0.261 0.210 0.169 0.120 
4.7 0.311 0.272 0.219 0.176 0.126 
4.8 0.324 0.284 0.229 0.184 0.131 
4.9 0.338 0.295 0.238 0.191 0.137 
5.0 0.350 0.306 0.247 0.199 0.143 

 
 

Critical Values for n1 = 6,  n2 = 2,  p = 5,     
ε α = 0.01 α = 0.02 α = 0.05 α = 0.10 α = 0.20 

0.1 0 0 0 0 0 
0.2 0 0 0 0 0 
0.3 0 0 0 0 0 
0.4 0 0 0 0 0 
0.5 0 0 0 0 0 
0.6 0.001 0 0 0 0 
0.7 0.003 0.001 0 0 0 
0.8 0.004 0.003 0.000 0 0 
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Critical Values for n1 = 6,  n2 = 2,  p = 5,     
ε α = 0.01 α = 0.02 α = 0.05 α = 0.10 α = 0.20 

0.9 0.006 0.004 0.001 0 0 
1.0 0.008 0.006 0.003 0.000 0 
1.1 0.010 0.008 0.005 0.001 0 
1.2 0.013 0.011 0.007 0.003 0 
1.3 0.015 0.013 0.009 0.005 0.000 
1.4 0.018 0.016 0.011 0.007 0.001 
1.5 0.022 0.019 0.014 0.009 0.002 
1.6 0.025 0.022 0.016 0.011 0.003 
1.7 0.029 0.025 0.019 0.013 0.005 
1.8 0.033 0.028 0.022 0.016 0.007 
1.9 0.037 0.032 0.025 0.018 0.008 
2.0 0.042 0.036 0.028 0.021 0.010 
2.1 0.046 0.040 0.031 0.024 0.012 
2.2 0.051 0.044 0.035 0.027 0.015 
2.3 0.056 0.049 0.039 0.030 0.017 
2.4 0.061 0.053 0.043 0.033 0.020 
2.5 0.067 0.058 0.047 0.036 0.022 
2.6 0.072 0.063 0.051 0.040 0.025 
2.7 0.078 0.068 0.055 0.043 0.028 
2.8 0.084 0.074 0.060 0.047 0.030 
2.9 0.090 0.079 0.064 0.051 0.033 
3.0 0.097 0.085 0.069 0.055 0.037 
3.1 0.103 0.091 0.074 0.059 0.040 
3.2 0.110 0.097 0.079 0.064 0.043 
3.3 0.117 0.104 0.084 0.068 0.046 
3.4 0.124 0.110 0.090 0.072 0.050 
3.5 0.132 0.117 0.096 0.077 0.054 
3.6 0.140 0.124 0.101 0.082 0.057 
3.7 0.148 0.131 0.107 0.087 0.061 
3.8 0.156 0.138 0.113 0.092 0.065 
3.9 0.164 0.146 0.120 0.097 0.069 
4.0 0.173 0.153 0.126 0.102 0.073 
4.1 0.181 0.161 0.132 0.108 0.077 
4.2 0.190 0.169 0.139 0.113 0.081 
4.3 0.200 0.177 0.146 0.119 0.086 
4.4 0.209 0.185 0.152 0.124 0.090 
4.5 0.219 0.194 0.159 0.130 0.094 
4.6 0.228 0.202 0.167 0.136 0.099 
4.7 0.238 0.211 0.174 0.142 0.103 
4.8 0.247 0.220 0.181 0.148 0.108 
4.9 0.257 0.228 0.188 0.154 0.112 
5.0 0.268 0.238 0.196 0.160 0.117 
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Critical Values for n1 = 6,  n2 = 2,  p = 6,     
ε α = 0.01 α = 0.02 α = 0.05 α = 0.10 α = 0.20 

0.1 0 0 0 0 0 
0.2 0 0 0 0 0 
0.3 0 0 0 0 0 
0.4 0 0 0 0 0 
0.5 0 0 0 0 0 
0.6 0 0 0 0 0 
0.7 0.001 0 0 0 0 
0.8 0.002 0.000 0 0 0 
0.9 0.004 0.002 0 0 0 
1.0 0.006 0.004 0.000 0 0 
1.1 0.008 0.006 0.002 0 0 
1.2 0.010 0.008 0.004 0.000 0 
1.3 0.012 0.010 0.006 0.002 0 
1.4 0.014 0.012 0.008 0.003 0 
1.5 0.017 0.014 0.010 0.005 0.000 
1.6 0.019 0.017 0.013 0.007 0.001 
1.7 0.022 0.019 0.015 0.010 0.002 
1.8 0.026 0.022 0.017 0.012 0.003 
1.9 0.029 0.025 0.020 0.014 0.005 
2.0 0.032 0.028 0.022 0.016 0.007 
2.1 0.036 0.032 0.025 0.019 0.009 
2.2 0.040 0.035 0.028 0.021 0.011 
2.3 0.044 0.039 0.031 0.024 0.013 
2.4 0.048 0.043 0.035 0.027 0.015 
2.5 0.053 0.047 0.038 0.030 0.017 
2.6 0.057 0.051 0.041 0.033 0.020 
2.7 0.062 0.055 0.045 0.036 0.022 
2.8 0.067 0.059 0.049 0.039 0.025 
2.9 0.072 0.064 0.053 0.042 0.028 
3.0 0.077 0.069 0.057 0.046 0.030 
3.1 0.083 0.074 0.061 0.049 0.033 
3.2 0.088 0.079 0.065 0.053 0.036 
3.3 0.094 0.084 0.070 0.057 0.039 
3.4 0.100 0.089 0.074 0.061 0.042 
3.5 0.106 0.095 0.079 0.065 0.045 
3.6 0.113 0.101 0.084 0.069 0.048 
3.7 0.119 0.106 0.089 0.073 0.052 
3.8 0.126 0.112 0.094 0.077 0.055 
3.9 0.132 0.119 0.099 0.081 0.059 
4.0 0.139 0.125 0.104 0.086 0.062 
4.1 0.146 0.131 0.109 0.090 0.066 
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Critical Values for n1 = 6,  n2 = 2,  p = 6,     
ε α = 0.01 α = 0.02 α = 0.05 α = 0.10 α = 0.20 

4.2 0.154 0.138 0.115 0.095 0.069 
4.3 0.161 0.145 0.121 0.100 0.073 
4.4 0.168 0.151 0.126 0.105 0.077 
4.5 0.177 0.158 0.132 0.109 0.081 
4.6 0.184 0.165 0.138 0.114 0.084 
4.7 0.191 0.172 0.144 0.119 0.088 
4.8 0.200 0.180 0.150 0.124 0.092 
4.9 0.208 0.187 0.156 0.130 0.096 
5.0 0.217 0.194 0.163 0.135 0.100 
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APPENDIX B 

 
SAS CODE  

 
 
 

SAS Code to Generate Table A in Appendix A 
 
 
Data TestStat2; 
n1 = 6; 
 n2 = 2; 
p = 6; 
do delta = .1 to 4 by 0.1;  
 ncp = delta*delta*n1*n2/(n1+n2); 
 do q = 0 to .99 by 0.01; 
  x = cinv(q, p, ncp); 
  y = cdf('CHISQ',x, p, ncp);  
  output;                                                                                                                            
 end;              
 end; 
 
run; 
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SAS Code to Generate Table B in Appendix A 
 
 

*---------------------------------------------+ 
| April 2, 2010          | 
| Generate simulated random test statistics   | 
+---------------------------------------------*; 
 
/*  generate random values */ 
 
   data work.temp2; 
/*  Code to allow computations of multiple values of n1 and n2 */ 
 /*   do n1 = 3 to 10; 
    do n2 = 2 to 8; 
   */ 
   n1 = 6; n2 = 2;  
   p=6; 
    m = n1 + n2; 
      do p = 3 to m-2;  
      do _j_ = .1 to 5 by .1; 
    expR = (m-2)*p; /* the expected value for sigma is the degrees of 
freedom of chi-square dist divided by m */ 
       epsilon = _j_; 
        ncp = (n1*n2*epsilon*epsilon)/m; 
       retain _seed_ 0; 
        do _i_ = 1 to 1000000; 
         R = RAND('CHISQUARE', (m-2)*p); 
      T1 = RAND('UNIFORM'); 
       if(T1 = 0) then T1 = RAND('UNIFORM'); 
      T3 = quantile('CHISQ', T1, p, ncp); 
      T4 = (T3*m)/(n1*n2); 
      If sqrt(T4) < epsilon*sqrt(n1*n2/m) then T = 
(epsilon - sqrt(T4*n1*n2/m))**2/R; Else T = 0;  
        output; 
          end; 
    end; 
   end;  
/*  end;  
 end;  
 end;  
*/ 
Keep n1 n2 p epsilon ncp T4 R T;  
run; 
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proc sort; by p epsilon;   
run;  
/*  Run univariate to determine quantiles and statistics for each set of test results */ 
proc univariate data = work.temp2 noprint;  
by p epsilon; 
 var T ;  
output out=sasuser.six_two pctlpts = 80 98 pctlpre= T  
pctlname pct80 pct98   
mean = mean std = stdev p90 = pct90 p95=pct95 p99 = pct99 max = max  
;   
 run;  
 
quit; 
 
data work.temp2; 
/*  Code to allow computations of multiple values of n1 and n2 */ 
 /*   do n1 = 3 to 10; 
    do n2 = 2 to 8; 
   */ 
   n1 = 6; n2 = 2;  
   p=6; 
    m = n1 + n2; 
      do p = 3 to m-2;  
      do _j_ = .1 to 5 by .1; 
    expR = (m-2)*p; /* the expected value for sigma is the degrees of 
freedom of chi-square dist divided by m */ 
       epsilon = _j_; 
        ncp = (n1*n2*epsilon*epsilon)/m; 
       retain _seed_ 0; 
        do _i_ = 1 to 1000000; 
         R = RAND('CHISQUARE', (m-2)*p); 
      T1 = RAND('UNIFORM'); 
       if(T1 = 0) then T1 = RAND('UNIFORM'); 
      T3 = quantile('CHISQ', T1, p, ncp); 
      T4 = (T3*m)/(n1*n2); 
      If sqrt(T4) < epsilon*sqrt(n1*n2/m) then T = 
(epsilon - sqrt(T4*n1*n2/m))**2/R; Else T = 0;  
        output; 
          end; 
    end; 
   end;  
/*  end;  
 end;  
 end;  
*/ 
Keep n1 n2 p epsilon ncp T4 R T;  
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run; 
 
proc sort; by p epsilon;   
run;  
/*  Run univariate to determine quantiles and statistics for each set of test results */ 
proc univariate data = work.temp2 noprint;  
by p epsilon; 
 var T ;  
output out=sasuser.six_two2 pctlpts = 80 98 pctlpre= T  
pctlname pct80 pct98   
mean = mean std = stdev p90 = pct90 p95=pct95 p99 = pct99 max = max  
;   
 run;  
 
quit; 
 
data sasuser.sims; 
set work.temp2; 
run; 
quit; 
 


