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ABSTRACT 

As the use of composites increases, more problems arise with processing and 

manufacturing of this type of material in order to make it a more durable and reliable for 

today’s applications. One of the most important problems in the cutting of composites is the 

poor quality of the machined surface and unknown status of the machining forces. Knowing 

the status of forces during the final machining process helps reduce such defects as 

delamination and fiber-matrix debonding. This research attempted to develop a fully 

theoretical model for edge trimming of composites for fiber orientations greater than 90 

degrees. The energy method was used as the approach, and the machining forces were 

compared to the experimental results. A series of experiments were conducted to validate 

the theoretical foundations. 

Composite coupons with different fiber orientations and tool rake angles were 

prepared for the machining experiments, and the cutting forces were measured using a 

four-component dynamometer. In addition, a finite element model (FEM) was built to 

model the depth of damage along the fibers. The theoretical depth of damage compared to 

the FEM analysis showed that they were in good agreement. The parameters affecting the 

machining forces of composites can be divided into three categories: tool geometry, 

material properties, and machining conditions. The effect of all of these parameters is 

reflected in the formula. In addition to the thrust and cutting forces, the depth of damage 

along the fibers can be calculated. 

It was concluded that the material properties and machining conditions, more than 

the geometry of an orthogonal cutting tool, are more influential in affecting the processing 

and manufacturing of composite materials.  
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CHAPTER 1 
 

INTRODUCTION 

1.1. Fiber-Reinforced Composite Materials 

Composite materials consist of two or more materials arranged or mixed together to 

produce desirable properties that cannot be achieved by themselves. For example, fiber-

reinforced composite materials consist of high-strength and high-modulus fibers 

embedded in the matrix material. Here, the fibers are the principal load carrying members, 

and matrix material keeps the fibers together, acts as a load-transfer medium between 

fibers, and protects the fibers from being exposed to the environment (e.g., moisture, 

humidity, etc.). 

The major difference between composites and alloys is that the materials forming 

alloys can be combined so that the resulting material is homogeneous and the components 

are indistinguishable with the naked eye; however, composites, if well designed, usually 

exhibit the best qualities of their components and often-other qualities that neither 

component possesses. Some of the properties that can be improved by forming a composite 

material are as follows [1]: 

• strength  

• stiffness  

• corrosion resistance  

• wear resistance  

• attractiveness  

• weight 

• fatigue life 

• temperature-dependent behavior 

• thermal insulation 

• thermal conductivity 

• acoustical insulation 
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Of course, not all of these properties are improved simultaneously and usually there 

is no requirement to do so. Actually, depending on the required design specifications, 

components can be mixed so that the resulting material has only the characteristics needed 

to perform the task for which it is designed. A good example of a design factor would be 

thermal or electrical insulation versus thermal or electrical conductivity [1]. 

Composite materials have a long history of usage. The very first time they were used 

is not clear yet, but all recorded history contains references to some type of composites. 

For instance, straw was used by Israelites to strengthen mud bricks. The ancient Egyptians 

used plywood. They also realized that wood could be rearranged to achieve better strength 

and resistance to thermal expansion as well as absorb moisture to cause swelling. Medieval 

swords and armor were constructed with layers of different metals. More recently, fiber-

reinforced, resin-matrix composite materials that have high strength-to-weight and 

stiffness-to-weight ratios have become important in weight-sensitive applications such as 

aircraft and space vehicles [1]. 

1.2. Classification and Characteristics of Composite Materials 

 Four common types of composite materials are as follows: 

• Fibrous composite materials that consist of fibers in a matrix. 

• Laminated composite materials that consist of layers of various materials. 

• Particulate composite materials that are composed of particles in a matrix. 

• Combinations of some or all of the first three types [1]. 

It is known that fibers are stiffer and stronger than the same material in bulk form 

since they have a near crystal-sized diameter and a very high length-to-diameter ratio, 

whereas matrix materials have their usual bulk-form properties. 
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Fiber-reinforced composite materials for structural applications are often formed in 

thin layers or laminas in the form of pre-impregnated. A lamina is a macro unit of material, 

the material properties of which are determined through appropriate laboratory tests. One 

can stack them in appropriate orientation in structural elements such as bars, beams, or 

plates to gain the best performance of the element for the specific application. Although 

fiber-reinforced polymers (FRPs) are generally fabricated as near-net-shape, additional 

machining is often necessary in order to trim the fabricated part to its final dimensions. 

The purpose of this study was to develop equations that estimate the machining forces in 

the cutting of unidirectional composite plates. The analysis of the machining forces used to 

form unidirectional composites involves an understanding of machining theories, 

composites failure theories, and structural theories (i.e., kinematics of deformation) [2]. 

The machining of FRPs differs in many aspects from the cutting of metals. The 

material behavior in composites is not only inhomogeneous but also depends on fiber and 

matrix mechanical properties, fiber orientation, tool geometry, and type of weave [3]. 

1.3. Research Rationale 

This research effort focused on understanding the machinability of unidirectional 

carbon fiber-reinforced polymers (CFRP) during orthogonal cutting, since there is no 

reliable cutting theory for the machining of composites. The chip-formation mechanism in 

orthogonal machining of composites is different from that of metals; therefore, the cutting 

theories developed for metals cannot be used directly in the orthogonal machining of 

composites. In addition, more mechanisms are involved in the cutting of composites than 

for metals.  
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1.4. Objectives and Research Scope  

The primary objective of this research was to study, by experiments and analysis, 

the cutting forces in orthogonal machining of unidirectional CFRP materials. Experiments 

were conducted using a single-edge turning tool. Orthogonal cutting forces were then 

compared to the developed theory. Knowledge of cutting forces and the effect of tool 

geometry and cutting direction will lead to better design of materials and tooling systems. 

The specific objectives of this research were as follows: 

• To develop a theoretical and semi-empirical formula for the cutting forces in 

orthogonal cutting of unidirectional composite materials considering different 

involved cutting mechanisms. 

• To investigate the effects of fiber orientation, cutting parameters, and tool geometry 

on the cutting mechanisms. 

• To extend the developed theoretical cutting models to include multidirectional 

composites and machining with multi-edge cutting tools to improve the surface 

qualities of the workpiece [4]. 

1.5. Organization of Dissertation 

The chapters of this research are organized as follows:  Chapter 2 describes the 

geometry of single-edge cutting tools. Both orthogonal and oblique cutting tools and their 

geometries are explained in detail here. Chapter 3 describes different theories in metal 

cutting and the effects of tool geometry on thrust and cutting forces. In addition, different 

finite element and statistical-based force-prediction models are presented here. In Chapter 

4, the developed mechanics model to predict the cutting and thrust forces for 

unidirectional FRP composites is described.  
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CHAPTER 2 
 

BACKGROUND AND LITERATURE REVIEW 

2.1. General 

One of the problems in the machining of composites is related to the abrasiveness of 

reinforcement fibers, which causes fast tool wear and deterioration of the machined 

surface. Among damages that can result from abrasiveness, delamination is the major 

problem. Few theories and investigations have been published in this area, and they are 

primarily based on artificial neural network (ANN) or statistical analysis. One of the 

problems with ANN is that these theories are not reliable outside of their training domain. 

A discussion about the background of orthogonal and oblique cutting in order to 

understand the cutting mechanics of isotropic material will follow in sections of this 

chapter. This discussion will then be extended to the machining mechanisms of FRP 

composites in the chapters that follow. 

First, orthogonal cutting tool geometry will be discussed. Then, orthogonal and 

oblique metal cutting mechanisms and force prediction theories using a single-edge cutting 

tool will be introduced. Following that, chip formation in the machining of FRP composites 

will be discussed from a machining point of view, and problems with machining of fiber-

reinforced composites will be discussed briefly.  This will be followed by discussion of the 

use of traditional machining processes in composite machining and developed orthogonal 

cutting models [4]. Finally, an analytical approach to find the machining forces will be 

presented. 
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2.2. Geometry of a Single-Edge Orthogonal Cutting Tool  

 Koshal [5] states that orthogonal is a simplified situation which is seldom met with 

in practice and most of the research into chip formation has been based on that. The tool 

approaches the work with its cutting edge parallel to the uncut work surface and at right 

angles to the direction of cutting. The tool as shown in Figure  2-1 is wider than the work to 

prevent end effects. Orthogonal cutting can be achieved only in a planing or shaping 

operation; however, a close approximation can be obtained when turning on the end of a 

thin-walled tube. 

 

Figure  2-1. Orthogonal Machining [5] 

 In practice, cutting tools usually approach the work obliquely and have rake angles 

in both directions on the rake face, together with a nose radius at the end of the cutting 

edge. The direction in which the chip flows across the tool surface is determined by this 

complicated geometry. British Standard 1296: 1972 defines the angles on single-point 
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cutting tools in terms of the normal rake system, as shown in Figure  2-2, and is based on 

two coordinate rake angles. The back rake or cutting-edge inclination 𝜆𝜆𝑠𝑠  is measured 

parallel to the cutting edge in the vertical plane, and the normal rake 𝛾𝛾𝑛𝑛  is measured in a 

plane at right angles to the cutting edge and perpendicular to the rake face.  The tool 

approach angle is 𝜓𝜓𝑟𝑟 , and the horizontal clearance angle, or tool minor cutting edge angle, 

is 𝜅𝜅𝑟𝑟′ . In addition, the tool is relieved to give vertical clearance angles of about 5°. 

 

Figure  2-2. Angles in the normal rake system [5] 

Other systems of tool nomenclature relate the rake angles to the coordinate axes of 

the tool shank, or to the cutting edge, measuring the angles in each case in the vertical 

plane. Although these systems are conceptually simpler, they are of little use in deducing 

the direction of chip flow. The British Standard relates to single-point tools, but it can be 

applied also to multi-point tools and is generally preferable to other systems. 
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2.3. Geometry of a Single-Edge Oblique Cutting Tool  

Experimental work has shown that the direction in which the chip passes across the 

rake face of the tool can be expressed using Stabler’s law [5]. This is best understood by 

referring to Figure  2-3, which shows an oblique shaping operation. This law simply states 

that = 𝜆𝜆𝑠𝑠  , where 𝜆𝜆𝑠𝑠  is the cutting-edge inclination, and 𝛾𝛾 is the angle measured on the rake 

face between the normal to the cutting edge and the direction of chip flow. In this example, 

the tool approach angle is zero, but the result is equally applicable for turning or face-

milling cutters where the tool approach angle is generally not zero. 

 

Figure  2-3. Oblique machining [5] 

The chip geometry and the principal cutting force are determined by a rake angle 

measured in the direction of chip flow. This is known as the “effective rake” and is shown as 

𝛽𝛽𝑒𝑒  in Figure  2-4, which relates to a lathe tool, where [5] 
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Figure  2-4. Angles in oblique machining [5] 

         sin𝛽𝛽𝑒𝑒 = sin 𝛾𝛾𝑛𝑛 + sin2 𝜆𝜆𝑠𝑠 − sin 𝛾𝛾𝑛𝑛 sin2 𝜆𝜆𝑠𝑠 = cos2 𝜆𝜆𝑠𝑠 sin 𝛾𝛾𝑛𝑛 + sin2 𝜆𝜆𝑠𝑠  ( 2-1) 

If the normal rake is not specified, it can be calculated from the vertical rake angle’s 

coordinate to the cutting edge, as shown in Figure  2-5, from which it can be seen that [5] 

 

Figure  2-5. Back rake and normal rake relationship [5] 

 tan 𝛾𝛾𝑛𝑛 = tan𝛽𝛽′ cos 𝜆𝜆𝑠𝑠  ( 2-2) 
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CHAPTER 3  
 

CUTTING FORCES IN METAL CUTTING 

3.1. Cutting Forces in Orthogonal Machining of Metals  

The basic mechanics of chip-type machining processes are shown, in simplest two-

dimensional form, in Figure  3-1 [6]. A tool with a certain rake angle 𝑎𝑎 (positive, as shown) 

and relief angle moves along the surface of the workpiece at a depth of 𝑎𝑎𝑐𝑐 . The material 

ahead of the tool is sheared continuously along the shear plane, which makes an angle of ∅ 

with the surface of the workpiece. This angle is called the shear angle and, together with 

the rake angle, determines the chip thickness 𝑎𝑎𝑐𝑐 . The ratio of 𝑎𝑎𝑐𝑐  to 𝑎𝑎0 is called the cutting 

ratio 𝑟𝑟𝑐𝑐 . The relationship between the shear angle, the rake angle, and the cutting ratio is 

given by equation ( 3-1) [6]. 

 

Figure  3-1. Basic mechanics of metal-cutting process [6] 

 tan𝜙𝜙 =
𝑟𝑟𝑐𝑐 cos 𝛾𝛾

1 − 𝑟𝑟𝑐𝑐 sin 𝛾𝛾
 ( 3-1) 
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It can readily be seen that the shear angle is important in that it controls the 

thickness of the chip. This, in turn, has great influence on cutting performance. The shear 

strain that the material undergoes is given by equation ( 3-2). Shear strains in metal cutting 

are usually less than 5. 

 

Investigations have shown that the shear plane may be neither a plane nor a narrow 

zone, as assumed in simple analysis. Various formulas that define the shear angle in terms 

of such factors as the rake angle and the friction angle 𝛽𝛽 have been developed. The forces 

acting on the cutting tool are shown in Figure  3-2. The resultant force 𝑅𝑅 has two 

components, 𝐹𝐹𝑐𝑐  and 𝐹𝐹𝑡𝑡 . The cutting force 𝐹𝐹𝑐𝑐  in the direction of tool travel determines the 

amount of work done in cutting. The thrust force 𝐹𝐹𝑡𝑡  does not work but, together with 𝐹𝐹𝑐𝑐 , 

produces deflections of the tool. The resultant force also has two components on the shear 

plane: 𝐹𝐹𝑠𝑠  is the force required to shear the metal along the shear plane, and 𝐹𝐹𝑛𝑛  is the normal 

force on this plane. Two other force components also exist on the face of the tool: the 

friction force 𝐹𝐹 and the normal force 𝑁𝑁.  

Whereas the cutting force 𝐹𝐹𝑐𝑐  is always in the direction shown in Figure  3-2, the 

thrust force 𝐹𝐹𝑡𝑡  may be in the opposite direction to that shown in Figure  3-2. This occurs 

when both the rake angle and the depth of cut are large, and friction is low. 

From the geometry of Figure  3-2, the following relationships can be derived: 

 𝜇𝜇 =
𝐹𝐹𝑡𝑡 + 𝐹𝐹𝑐𝑐 tan 𝛾𝛾
𝐹𝐹𝑡𝑡 + 𝐹𝐹𝑐𝑐 tan 𝛾𝛾

 ( 3-3) 

 𝛾𝛾 = cot𝜙𝜙 + tan(𝜙𝜙 − 𝛾𝛾) ( 3-2) 
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 𝐹𝐹 = 𝐹𝐹𝑡𝑡 cos 𝛾𝛾 + 𝐹𝐹𝑐𝑐 sin 𝛾𝛾 ( 3-4) 

 𝜏𝜏𝑠𝑠 =
𝐹𝐹𝑐𝑐 sin𝜙𝜙 cos𝜙𝜙 − 𝐹𝐹𝑡𝑡 sin2 𝜙𝜙

𝐴𝐴0
 ( 3-5) 

 

 

Figure  3-2. Force system in metal cutting process 

 where 𝜇𝜇 is the friction coefficient,  𝐹𝐹 is the friction force along the tool, and 𝜏𝜏𝑠𝑠  is the 

shear stress in the shear plane. 

3.2. Chip Thickness  

Boothroyd [7] claims that the chip thickness 𝑎𝑎0 in metal cutting is not only governed 

by the geometry of the cutting tool and the undeformed-chip thickness 𝑎𝑎𝑐𝑐  but, as will be 

seen, is also affected by the frictional conditions existing at the chip-tool interface. Because 

the cutting process is affected by these factors, it differs fundamentally from other metal-

deformation processes, where the final shape of the deformed material is determined by 
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the shape or setting of the tool used. In metal cutting, before predictions of cutting forces 

can be made, the chip thickness 𝑎𝑎𝑜𝑜  must be determined in order for the geometry of the 

process to be known. 

It has been shown in equation ( 3-1) that a knowledge of the shear angle 𝜙𝜙 allows 𝑎𝑎0 

to be estimated for a given set of cutting conditions. Experiments show that, 𝜙𝜙 and the 

cutting ratio 𝑟𝑟𝑐𝑐  depend on the workpiece and tool materials and the cutting conditions. A 

number of attempts have been made in the past to establish a theoretical law that predicts 

the shear angle 𝜙𝜙, and two of these attempts are considered below. 

Although Piispanen attempted to solve this problem in 1937, Boothroyd [7] notes 

that the first complete analysis resulting in a so-called “shear-angle solution” was 

presented by Ernst and Merchant. The chip is assumed to behave as a rigid body in their 

analysis. It is assumed to be in equilibrium by the action of the forces transmitted across 

the chip-tool interface and across the shear plane. It is also supposed that the resultant tool 

force is transmitted across the chip-tool interface and there is no force acting on the tool 

edge or flank (i.e., the plowing force is zero). 

The basis of Ernst and Merchant’s theory was to minimize the cutting force for the 

shear angle 𝜙𝜙. Since, for given cutting conditions, the work done in cutting is proportional 

to 𝐹𝐹𝑐𝑐 , it was necessary to develop an expression for 𝐹𝐹𝑐𝑐  in terms of 𝜙𝜙 and then to obtain the 

value of 𝜙𝜙 for which 𝐹𝐹𝑐𝑐  is a minimum. 

From Figure  3-2, 

 𝐹𝐹𝑠𝑠 = 𝑅𝑅 cos(𝜙𝜙 + 𝛽𝛽 − 𝛾𝛾) ( 3-6) 
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 𝐹𝐹𝑠𝑠 = 𝜏𝜏𝑠𝑠𝐴𝐴𝑠𝑠 =
𝜏𝜏𝑠𝑠𝐴𝐴0

sin𝜙𝜙
 ( 3-7) 

 𝑅𝑅 =
𝜏𝜏𝑠𝑠𝐴𝐴0

sin𝜙𝜙
1

cos(𝜙𝜙 + 𝛽𝛽 − 𝛾𝛾)  ( 3-8) 

 

Now by geometry 

 𝐹𝐹𝑐𝑐 = 𝑅𝑅 cos(𝛽𝛽 − 𝛾𝛾) ( 3-9) 

 

Hence, from equations ( 3-8) and ( 3-9), 

 𝐹𝐹𝑐𝑐 =
𝜏𝜏𝑠𝑠𝐴𝐴0

sin𝜙𝜙
cos(𝛽𝛽 − 𝛾𝛾)

cos(𝜙𝜙 + 𝛽𝛽 − 𝛾𝛾) ( 3-10) 

 

Equation ( 3-10) may now be differentiated with respect to 𝜙𝜙 and equated to zero to 

find the value of 𝜙𝜙 for which 𝐹𝐹𝑐𝑐  is a minimum. The required value is given by 

 2𝜙𝜙 + 𝛽𝛽 − 𝛾𝛾 =
𝜋𝜋
2

 ( 3-11) 

 

Merchant found that this theory agreed well with experimental results obtained 

when cutting synthetic plastics; however, did not agree well enough with experimental 

results obtained for steel machined with a sintered carbide tool. 

It should be noted that, in differentiating equation ( 3-10) with respect to 𝜙𝜙, it was 

assumed that 𝐴𝐴0, 𝛾𝛾, and 𝜏𝜏𝑠𝑠  would be independent of 𝜙𝜙. On reconsidering these 

assumptions, Merchant included in a new theory the relationship 
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 𝜏𝜏𝑠𝑠 =  𝜏𝜏𝑠𝑠0 + 𝑘𝑘𝜎𝜎𝑠𝑠  ( 3-12) 

 

which indicates that the shear strength of the material 𝜏𝜏𝑠𝑠  increases linearly with the 

increase in normal stress 𝜎𝜎𝑠𝑠  on the shear plane; at zero normal stress, 𝜏𝜏𝑠𝑠  is equal to 𝜏𝜏𝑠𝑠0 . 

It is assumed that 𝑘𝑘 and 𝜏𝜏𝑠𝑠0 are constants for the particular workpiece materials and 

that 𝐴𝐴0 and 𝛾𝛾 are constants for the cutting operation. The resulting expression is 

 2𝜙𝜙 + 𝛽𝛽 − 𝛾𝛾 = 𝐶𝐶 ( 3-13) 

 

3.3. Oblique Machining Theory 

The oblique cutting was first addressed by Merchant [8]. A few theories exist about 

the orthogonal cutting of metals in which the tool has zero inclination. However, complex 

tool geometries are widely used in industry where orthogonal cutting theories are not 

directly applicable. In oblique cutting, the cutting edge of the tool is not perpendicular to 

the cutting velocity. Most analyses assume that the mechanics of cutting in the normal 

plane are identical to that of orthogonal cutting; therefore, all of the force and velocity 

vectors are projected on the normal plane [9]. In the analysis of oblique cutting, the chip 

flow in the plane normal to the cutting edge acts as an orthogonal flow. The obliqueness of 

the cutting process is described by including a sliding process in the direction parallel to 

the cutting edge. Another approach to the oblique cutting analysis, described by Shaw et al. 

[10], considers the chip flow in the plane containing the cutting velocity and chip flow 

normal to this plane, but the normal stresses on the shear plane does not act in the 

direction parallel to this plane. 
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 In Figure  3-3, 𝜙𝜙𝑛𝑛  is called the normal shear angle located between the shear and 𝑥𝑥𝑥𝑥 

planes. The shear velocity lies on the shear plane but makes an oblique shear angle 𝜙𝜙𝑖𝑖  with 

the vector normal to the cutting edge on the normal plane. The sheared chip flow angle 𝜂𝜂 is 

measured from a vector on the rake face and normal to the cutting edge [9]. The 

geometrical relation between the shear direction and chip flow is given by 

 

Figure  3-3. Force, velocity, and shear diagrams in oblique cutting [7] 

 tan 𝜂𝜂 =
tan 𝑖𝑖 cos(𝜙𝜙𝑛𝑛 − 𝛼𝛼𝑛𝑛) − cos(𝛼𝛼𝑛𝑛) tan(𝜙𝜙𝑖𝑖)

sin𝜙𝜙𝑛𝑛
 ( 3-14) 

 

Based on Armarego and Whitfield’s [11] oblique model, the force components in the 

directions of cutting force (𝐹𝐹𝑐𝑐), the thrust force (𝐹𝐹𝑡𝑡), and the normal force (𝐹𝐹𝑟𝑟) are given by  

 

𝐹𝐹𝑐𝑐 = 𝑏𝑏ℎ �
𝜏𝜏𝑠𝑠

sin𝜙𝜙𝑛𝑛
cos(𝛽𝛽𝑛𝑛 − 𝛼𝛼𝑛𝑛) + tan 𝑖𝑖 tan 𝜂𝜂 sin𝛽𝛽𝑛𝑛

�cos2(𝜙𝜙𝑛𝑛 + 𝛽𝛽𝑛𝑛 − 𝛼𝛼𝑛𝑛) + tan2 𝜂𝜂 sin2 𝛽𝛽𝑛𝑛
� 

𝐹𝐹𝑡𝑡 = 𝑏𝑏ℎ �
𝜏𝜏𝑠𝑠

sin𝜙𝜙𝑛𝑛 cos 𝑖𝑖 
sin(𝛽𝛽𝑛𝑛 − 𝛼𝛼𝑛𝑛)

�cos2(𝜙𝜙𝑛𝑛 + 𝛽𝛽𝑛𝑛 − 𝛼𝛼𝑛𝑛) + tan2 𝜂𝜂 sin2 𝛽𝛽𝑛𝑛
� 

𝐹𝐹𝑟𝑟 = 𝑏𝑏ℎ �
𝜏𝜏𝑠𝑠

sin𝜙𝜙𝑛𝑛
cos(𝛽𝛽𝑛𝑛 − 𝛼𝛼𝑛𝑛) tan 𝑖𝑖 − tan 𝜂𝜂 sin𝛽𝛽𝑛𝑛

�cos2(𝜙𝜙𝑛𝑛 + 𝛽𝛽𝑛𝑛 − 𝛼𝛼𝑛𝑛) + tan2 𝜂𝜂 sin2 𝛽𝛽𝑛𝑛
� 

( 3-15) 
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Therefore, the corresponding cutting constants are 

 

𝐾𝐾𝑐𝑐𝑐𝑐 =
𝜏𝜏𝑠𝑠

sin𝜙𝜙𝑛𝑛
cos(𝛽𝛽𝑛𝑛 − 𝛼𝛼𝑛𝑛) + tan 𝑖𝑖 tan 𝜂𝜂 sin𝛽𝛽𝑛𝑛

�cos2(𝜙𝜙𝑛𝑛 + 𝛽𝛽𝑛𝑛 − 𝛼𝛼𝑛𝑛) + tan2 𝜂𝜂 sin2 𝛽𝛽𝑛𝑛
 

𝐾𝐾𝑡𝑡𝑡𝑡 =
𝜏𝜏𝑠𝑠

sin𝜙𝜙𝑛𝑛 cos 𝑖𝑖 
sin(𝛽𝛽𝑛𝑛 − 𝛼𝛼𝑛𝑛)

�cos2(𝜙𝜙𝑛𝑛 + 𝛽𝛽𝑛𝑛 − 𝛼𝛼𝑛𝑛) + tan2 𝜂𝜂 sin2 𝛽𝛽𝑛𝑛
 

𝐾𝐾𝑟𝑟𝑟𝑟 =
𝜏𝜏𝑠𝑠

sin𝜙𝜙𝑛𝑛
cos(𝛽𝛽𝑛𝑛 − 𝛼𝛼𝑛𝑛) tan 𝑖𝑖 − tan 𝜂𝜂 sin𝛽𝛽𝑛𝑛

�cos2(𝜙𝜙𝑛𝑛 + 𝛽𝛽𝑛𝑛 − 𝛼𝛼𝑛𝑛) + tan2 𝜂𝜂 sin2 𝛽𝛽𝑛𝑛
 

( 3-16) 

 

3.4. Review of the Machining of Fiber-Reinforced Polymers 

Presently, almost every aerospace company is focusing on composites and  

developing products made with fiber-reinforced composite materials. There have been 

several stages of progress in FRP composites since the 1960s. The impact of the use of 

composite materials on jet-engine performance is substantial. Currently, with various 

metal alloys, thrust-to-weight ratios of 5 to 1 are achieved. Fiber-reinforced plastics and 

metals might lead to ratios as high as 16 to 1. Ultimately, with advanced graphite-fiber 

composites, thrust-to-weight ratios on the order of 40 to 1 appear possible. An eightfold 

increase in the performance index of thrust-to-weight ratio should lead to drastically 

pyramided weight savings in an entire aircraft due to substantially lessened structural 

support requirements [12]. This explains the dramatic increasing demand in FRP materials. 

The processes used to make composite structures usually require that trimming and 

other secondary machining operations such as drilling and milling be performed prior to 

assembly of the components. Machining processes are required to manufacture accurate 

surfaces and holes to allow precision fitting of parts into an assembly. Since composite 

materials shrink during the curing stage, it is not practicable to place holes in the part 
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during the molding stage; therefore, milling, cutting, drilling, etc. are considered post-cure 

operations. 

Modern composites are very abrasive and tough; therefore longer lasting and 

stronger tools are needed to be able to economically cut composites. A large database of 

machining information for various high-speed steel- and carbide-cutting tool materials 

exists for machining metal, wood, and some thermoplastic materials. However, much of 

this data cannot be directly applied to the machining of modern composites. Modern 

composites, like graphite-epoxy, aramid-epoxy, and carbon-carbon each have their own 

machining characteristics which may result in poor machined surface quality if ignored. 

Composites are neither homogeneous nor isotropic; therefore, the machining 

characteristics depend on the tool path in relation to the direction of the reinforcing fibers. 

Metals or metal alloys have almost homogeneous properties throughout the workpiece, but 

each component in a composite material retains its individual properties [13] 

3.4.1. Problems in Machining of Fiber-Reinforced Polymers 

A few advantages in the machining of composites are as follows: 

• The surface quality is improved, unless the part is directly in contact with the mold 

surface. 

• Accuracy, in terms of dimensional and geometrical accuracy for assembly, increases. 

• The majority of problems associated with part shrinkage and insert movement 

during the fabrication processes are eliminated. 

On the other hand, the machining of composites poses several problems, one of 

which is associated with drilling. Drilling is a widely used process that is essential for 

assembling composite parts. Drilling of FRP may cause problems, which are different from 
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what occurs during drilling of metals. Delamination, fracture, break-out, and separation are 

some of the most common failures involved with drilling. Delamination (surface and sub-

surface) is the most critical of these, as it reduces the structural integrity, results in poor 

assembly tolerance, adds a potential for long-term performance deterioration, and may 

occur at both the entrance and exit planes. Delamination can be prevented by finding 

optimal thrust force (minimum force above which delamination is initiated) [13]. In 

composite materials, particularly when they are being used in the aircraft industry, 

delamination plays a major role in the quality of the hole, since numerous microcracks in 

the drilled-hole surface can be detrimental. At lower altitudes, water vapor can penetrate 

into these microcracks, and then when the airplane reaches higher altitudes and thus 

freezing temperatures, the absorbed water vapor freezes, propagates into the microcracks, 

and deteriorates the fatigue properties [14]. 

In general, problems associated with traditional machining of FRPs include fiber 

pull-out, fiber push-down, delamination, burning, machined-surface fuzzing, and dust-like 

chips, all of which are health hazards [4]. 

3.4.2. Mechanics of Chip Formation in Unidirectional FRP 

Machining of FRP depends on fiber and matrix properties, which describe how they 

respond to each machining process. In addition, the following factors affect the choice of 

specific process: type of machining operation, part geometry and size, finish and accuracy 

requirements, number of parts, diversity material construction of parts, availability of 

appropriate machine and cutting tools, availability of in-house technology, current 

machining practice, manufacturing schedule, capital requirements and justification for new 

equipment, and overall costs [15]. 
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Chip formation in FRP differs from that which occurs in metals. In metals, the 

material shears and the chip forms and flows over the tool, based on the cutting angles and 

parameters; however, in the machining of composites, other mechanisms affect the cutting 

forces. 

It has been found that chip formation in composites highly depends on fiber 

orientation and the angle of the cutting direction with the fibers. 

The chip formation mechanisms in the orthogonal machining of unidirectional FRPs 

have been described in detail [16-19]. Here, orthogonal cutting was used to study the chip 

formation process. The most significant findings in these studies are summarized here. 

Three different cutting modes occur during orthogonal machining of FRPs and are 

described schematically in Figure  3-4. 

 

Figure  3-4. Cutting mechanisms in the orthogonal machining of graphite/epoxy [18] 
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Wang and his colleagues [18] used a charge-coupled device (CCD) camera with 

additional optical equipment necessary for obtaining a high-quality image. Figure  3-5 

shows typical frames obtained by Wang et al. [18] during orthogonal trimming of 0°, 45°, 

90°, and 135° unidirectional graphite/epoxy, respectively, and illustrates the dramatic 

change in chip formation with fiber orientation. They observed that when the cutting 

direction is along the fiber orientation, peel fracture begins from the tool point and 

propagates along the fiber/matrix interface, which resulted in small but distinct 

fragmented chips, as shown in Figure  3-5 (a). Depending on the depth of cut and tool rake 

angle, chip formation occurs with bending of the chip and fracture under cantilever loading, 

thus creating the broken-chip surface. They also observed that when trimming with 0° or 

negative rake angle tools, microbuckling was more prominent. At higher fiber orientations, 

small discontinuous dust chips were produced (Figure  3-5 (b)), and it was more difficult to 

observe and record the chip formation because of its small size. Figure  3-5 (d) shows the 

generation of delamination and macro fracture ahead of the tool in 135° fiber orientation. 

Another study by Koplev and his colleagues [16] showed that increasing the rake angle of 

the tool reduces the principal cutting force to some extent, while no definite trend was 

found on the thrust force. They also found that the cutting direction relative to the fiber 

orientation has a significant effect on the quality of the machined surface. Koplev et al. [16] 

also logged thrust and principal cutting forces as function of fiber orientation and cutting 

parameters. Then, cutting forces were correlated to the chip formation and tool wear to 

extract the fundamental relationships. 
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Figure  3-5. Chip formation during orthogonal trimming: (a) 0°, (b) 45°, (c) 90°, and 
(d) 135° [20] 

In another study, Kaneeda [17] investigated the cutting mechanisms using a 

scanning electron microscope by cutting laminates parallel to the cutting direction. He 

found that the main chip formation mechanism is due to fiber-matrix debonding. He also 

claimed that the chip forms in two stages when the cutting tool has a positive rake angle. In 

the first stage, the cutting tool bends the work material layer, and in the second stage, fiber 

fracture occurs. When the tool rake angle is zero or negative and the cutting direction is 

parallel to the fiber orientation, the prominent cutting mechanism is fiber microbuckling. 

When the cutting direction makes an angle with the fiber orientation, the author observed 

that the primary chip formation mechanism is cutting the fibers. This cutting mode is also 

known as the fiber crushing mode, since extensive crushed fibers were observed on the 

machined surface. 
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It was also noted that the chip formation mechanism highly depends on the cutting 

direction, fiber orientation, and tool-tip geometry. The force fluctuation pattern expresses 

the chip formation mode [18]. When cutting parallel to the fiber orientation and with a 

positive rake angle, fiber-matrix debonding, or Mode I, occurs, followed by bending of the 

chips, sliding over the rake face, and finally fracture due to bending stress. With cutting 

tools having a negative rake angle and cutting parallel to the fiber direction, Mode II of chip 

formation occurs, which is fracture by buckling. According to the same study, in the 

machining of composites with a relative fiber orientation of 0° ≤ 𝜃𝜃 ≤ 75°, and with a 

positive rake angle, Mode II fracture occurs. Fibers fracture as the result of shear induced 

across the fiber axis. Fiber-matrix interfacial fracture and sliding along the fiber direction 

causes the chip to slide over the rake face. A Mode III fracture occurs in the machining of 

unidirectional composites with a relative fiber orientation greater than 90° in which 

consecutive planes of fiber-matrix interface are subjected to in-plane and out-of-plane type 

of shear. 

Based on researchers’ observations, there are similarities between the orthogonal 

cutting of ductile metals and unidirectional composites when the fiber orientation is 

10° ≤ 𝜃𝜃 ≤ 75°, and these researchers have attempted to employ Merchant’s well-known 

shear plane theory in the cutting of composites [21-23]. Merchant assumed that chip 

deformation occurs along a shear plane that forms at the tip of the cutting edge and 

continues upward to a point where the chip-free surface meets the workpiece-free surface, 

and the shear plane angle takes the value, which minimizes the energy consumed in the 

cutting [8]. 
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The shear plane theory for composite materials is limited to a certain range of fiber 

orientation, which according to the literature is approximately 10° ≤ 𝜃𝜃 ≤ 75°; however, 

this approach would not apply to all possible fiber orientations in a composite structure. 

Another limitation is caused by interfacial shearing, which occurs along the fiber-matrix 

interface and forces the chips to slide up the rake face. In a way, this forces the shear plane 

angle to assume a value equal to the fiber-orientation angle, regardless of the minimum 

energy principal [22]. Results from this approach have shown reasonable agreement with 

experiments, only when the fiber orientation is 10° ≤ 𝜃𝜃 ≤ 60°. 

Experiments show that machining conditions and tool point geometry have less 

influence on principal and thrust forces in a trimming operation. The cutting force 

increases as the fiber orientation approaches 75° , then it increases at a faster rate while 

trimming a 90° fiber orientation. With any further increase in the fiber orientation, the 

principal force decreases, with the sprouting decrease occurring at 150° and 165° 

orientations [18-19]. It was found that the thrust force during the cutting of composites 

was nearly always higher than the corresponding principal force, except when trimming 

material with fiber orientations of 𝜃𝜃 = 0° and 𝜃𝜃 ≥ 90°,  which is different from what occurs 

in the conventional cutting of metals. Generally thrust force increased with fiber 

orientation up to 45° and then decreased to 90° [18-19]. Higher thrust-force generation is 

probably the result of deformation of fibers in the contact zone prior to fracture [18-19]. In 

addition, it was noted that cutting speed does not have a significant effect on the cutting 

forces; however, principal cutting force increased linearly with depth of cut. 

In another study, Wang and Zhang [24] reported different deformation mechanisms 

in the cutting zone when the depth of cut and fiber orientation change. These deformation 



25 
 

mechanisms are schematically illustrated in Figure  3-6 using a model with a single fiber. 

When 𝜃𝜃 is less than 90°, as shown in Figure  3-6(a), regardless of depth of cut, the fiber is 

pushed by the tool (Force 𝐹𝐹1) perpendicular to the fiber axis and toward the workpiece 

subsurface. In this case, there is minor fiber bending due to the matrix support behind the 

fiber. Also, as the tool moves toward the workpiece, a tensile force is acting along the fiber 

axis to cause the fiber to break in the neighborhood of the cutting zone. When the fiber 

orientation is greater than 90°, the situation becomes more complicated. When the depth of 

cut is less than 𝑑𝑑. sin(𝜃𝜃 − 90), where 𝑑𝑑 is the fiber diameter, i.e., when the tool is cutting the 

very top surface of the fiber, as shown in Figure  3-6(b), the fiber is under compression. In 

this case, the fiber is unlikely to break when the surrounding epoxy, which is quite brittle, 

is fractured. The forces will be changed as the depth of cut becomes greater than 

𝑑𝑑. sin(𝜃𝜃 − 90).  

 

Figure  3-6. Schematic cutting models [24] 

There have been several semi-empirical and statistical models to predict forces in 

the machining of composites. Therefore, it is important to review some of those models to 

understand their pros and cons. 
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3.4.3. Mechanics of Chip Formation in Machining Multidirectional Laminates 

Wang et al. [18-19] studied orthogonal cutting mechanisms in the edge trimming of 

graphite/epoxy laminate with polycrystalline diamond tools. They observed discontinuous 

chips in the cutting of multidirectional composite plates as with the trimming of 

unidirectional panels. They claimed that the cutting mechanisms for 0° and 45° plies were 

the same as those in trimming unidirectional material. However, chip formation 

mechanisms in cutting 90° and −45° plies of multidirectional plies are different because of 

the support provided by adjacent plies. They found that chip formation and the machined 

surface quality in cutting unidirectional material highly depend on fiber orientation, with 

limited tool geometry influence. They also noted that increasing rake angle reduces the 

cutting forces while cutting material with 0° fiber orientation. With fiber orientation up to 

90°, increasing the rake angle increased the thrust force. Smaller relief values caused 

higher thrust force values, and cutting the speed did not show a significant effect on the 

forces involved. An increase in the depth of cut linearly increased the forces [19]. They 

used a graphite/epoxy panel composed of 350I-6 resin and IM-6 fibers with 6 𝜇𝜇𝜇𝜇 fiber 

diameter, 0.68 fiber volume fraction, and 200 𝜇𝜇𝜇𝜇 ply thickness for the edge trimming 

experiments. The stacking sequence of the plies was [45°/−45°/(0°/90°/45°/−45°)2]𝑠𝑠 , 

where the stretching/bending coupling was eliminated because of the specific layup, which 

results in less chance for delamination and debonding. In contrast to the results obtained 

from the machining of a unidirectional laminate, the cutting force in the machining of 

multidirectional composite panels was found to be greater than the thrust force for all 

cutting conditions and tool geometries. 
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Using factorial design, Wang et al. developed empirical cutting force models for 

principal and thrust forces in terms of rake angle (𝛾𝛾), clearance angle (𝛼𝛼), depth of cut (𝑎𝑎𝑐𝑐), 

and cutting speed (𝑉𝑉). Gauss-Newton search and nonlinear regression was employed to 

construct the generalized machining force models. 

 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐶𝐶0 + �𝐶𝐶𝑖𝑖
𝑖𝑖

.𝑋𝑋𝑖𝑖 + ��𝐶𝐶𝑖𝑖𝑖𝑖
𝑗𝑗

.𝑋𝑋𝑖𝑖 .𝑋𝑋𝑗𝑗
𝑖𝑖

 ( 3-17) 

 

where 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is the machining force, 𝑋𝑋𝑖𝑖  are factors, and 𝐶𝐶0,𝐶𝐶𝑖𝑖 , and 𝐶𝐶𝑖𝑖𝑖𝑖  are coefficients. 

 They performed an analysis of variance (ANOVA) on the average cutting force data 

and found the main effects on the principal cutting (𝐹𝐹𝑐𝑐) and thrust (𝐹𝐹𝑡𝑡). Equation ( 3-18) 

shows the empirical relations for principal and thrust forces. The correlation coefficients 

for the principal and thrust force models are 0.98 and 0.83, respectively. 

 
𝐹𝐹𝑐𝑐 = 10.68 − 11.67𝛾𝛾 + 1584.53𝑎𝑎𝑐𝑐 + 0.99𝛾𝛾2 − 7.10𝑉𝑉𝑎𝑎𝑐𝑐 + 12.74𝛼𝛼𝑎𝑎𝑐𝑐  

𝐹𝐹𝑡𝑡 = 147.27 − 4.92𝛼𝛼 + 188.55𝑎𝑎𝑐𝑐 + 0.77𝛾𝛾2 − 32.54𝛾𝛾𝑎𝑎𝑐𝑐 + 24.19𝛼𝛼𝑎𝑎𝑐𝑐  
( 3-18) 

 

where 𝛾𝛾 is the rake angle, 𝑎𝑎𝑐𝑐  is depth of cut, 𝛼𝛼 clearance angle, and 𝑉𝑉 is cutting velocity.  

Analysis of the optimal principal cutting force showed that a rake angle (𝛾𝛾) of 

approximately 7° minimized the cutting force. Thrust force, however, increased with an 

increasing rake angle but decreased with an increasing clearance angle. They found that a 

tool with 6°~7° 𝛾𝛾 and 17° 𝛼𝛼 angles minimizes the resultant forces. Increasing the clearance 

angle beyond 17° would result in lower thrust force and therefore resultant force, but this 

would reduce the tool life. They also found that the resultant cutting force in trimming 

multidirectional laminates is nearly equivalent to a summation of forces from independent 
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unidirectional laminates, based on a rule of mixtures approach; therefore, the 

superposition rule can be employed for this problem. This implies that edge trimming of 

multidirectional laminates will be dominated by the ply with the most rigid structural 

characteristics. To examine the dynamic effects and periodicity events in the chip 

formation process, the cutting force signatures and machined surface profiles were 

inspected [20]. For multidirectional laminate, spectral analysis showed that no periodicity 

existed, which is in agreement with the observation that the material behaved as an 

assembly of independent materials, each with its own chip formation characteristics [4]. 

3.5. Modeling of Chip Formation in Machining FRPs (Mechanics-Based) 

A few mechanics-based models have been proposed for the cutting forces in both 

unidirectional and multidirectional composites, which are founded on the mechanics of 

cutting in metals. Some of them divide the cutting direction in two intervals and develop a 

model for each one separately. However, in most, a shear plane is considered to form, 

extending up from the tool cutting edge to the point of intersection of the free surfaces of 

the work and chip. 

3.5.1. Bhatnagar Model  

The first study on the orthogonal machining of fiber-reinforced polymers was done 

by Everstine and Rogers [25]. They used the continuum mechanics approach to develop a 

theory to predict minimum cutting force in the case of parallel (0°) fiber orientation. 

Bhatnagar et al. [22] developed a model for the cutting forces in orthogonal trimming of 

carbon fiber-reinforced polymers, based on Merchant’s theory, for the power required for 

the removal of materials. They noted that the in-plane shear strength of material has a 

significant effect in determining cutting forces. The shear strength of FRP for different fiber 
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orientations can be measured by the Iosipescu shear test method [26]. Similar to the 

observations of Koplev et al. [16], Bhatnagar et al. [22] reported that the chip formation 

mechanism depends on relative fiber orientation. Figure  3-7 shows a schematic 

representation of fiber orientation in Bhatnagar et al.’s study of orthogonal cutting of 

unidirectional FRPs. They took the machining direction as the datum and expressed the 

fiber orientations with respect to 𝜃𝜃 as the only rotational parameter. 𝜃𝜃 varies from 0° to 

180°. However, it is split into two broad groups:  0° − 90° as +𝜃𝜃 and 180° − 90° as −𝜃𝜃. 

 

Figure  3-7. Schematic representation of the location of fiber orientation [22] 

Using the Iosipescu shear tests, Bhatnagar et al. correlated the shear strength to the 

fiber orientation as 

 𝜏𝜏(𝜃𝜃) = 85.4285 − 2.2280 𝜃𝜃 + 0.0300 𝜃𝜃2 − 0.0001 𝜃𝜃3          𝑀𝑀𝑀𝑀𝑀𝑀 ( 3-19) 

 

 In this approach, to model the –𝜃𝜃 cutting forces, the following assumptions are 

made: 

• The shear plane is along the fiber direction at which the matrix shears. 
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• The cutting forces depend on the in-plane shear strength of the respective fiber 

angle. 

• Cutting and modeling are two-dimensional. 

• The model is for – 𝜃𝜃 only when 90° ≤ 𝜃𝜃 ≤ 180° (Figure  3-8). 

 

Figure  3-8. Schematic illustrating cutting mechanism for -𝜃𝜃 UD-FRP [22] 

The cutting and thrust forces are determined from the shear plane model as 

 𝐹𝐹𝑐𝑐 =
𝜏𝜏(𝜃𝜃)𝑎𝑎𝑐𝑐ℎ

sin𝜃𝜃
cos(𝛽𝛽 − 𝛾𝛾)

cos(𝜃𝜃 + 𝛽𝛽 − 𝛾𝛾) ( 3-20) 

 𝐹𝐹𝑡𝑡 =
𝜏𝜏(𝜃𝜃)𝑎𝑎𝑐𝑐ℎ
sin(𝜃𝜃)

sin(𝛽𝛽 − 𝛾𝛾)
cos(𝜃𝜃 + 𝛽𝛽 − 𝛾𝛾) ( 3-21) 

 

where, 𝛽𝛽 is the mean friction angle, and 𝛾𝛾 is the rake angle. The friction angle 𝛽𝛽 can be 

calculated using the theory of metal machining as 

 𝜇𝜇 = tan𝛽𝛽 =
𝑁𝑁
𝐹𝐹

=
𝐹𝐹𝑐𝑐 sin 𝛾𝛾 + 𝐹𝐹𝑡𝑡 cos 𝛾𝛾
𝐹𝐹𝑐𝑐 cos 𝛾𝛾 − 𝐹𝐹𝑡𝑡 sin 𝛾𝛾

 ( 3-22) 
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However, since it is difficult to obtain the mean friction angle value (𝛽𝛽) for each specimen 

configuration, Bhatnagar et al. used the Merchant’s circle to calculate the value of (𝛽𝛽). 

The experimental results for the cutting force showed a cyclic variation of the force 

ratio 𝑁𝑁 𝐹𝐹�  with the fiber angle. Figure  3-9 and Figure  3-10 show the variations of thrust and 

cutting forces for different fiber orientations and rake angles. 

 

Figure  3-9. Variation of cutting force with fiber angle (𝜃𝜃) for different  rake angles (𝛾𝛾) [22] 

 

Figure  3-10. Variation of thrust force with fiber angle (𝜃𝜃) for different rake angles (𝛾𝛾) [22] 
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Bhatnagar et al.  also observed from the force data that the friction conditions at the 

rake face depend on the fiber orientation, and the rake angle did not show a significant 

effect on friction at the tool-chip interface (Figure  3-11). 

 

Figure  3-11. Variation of (𝛽𝛽 − 𝛾𝛾) with fiber angle (𝜃𝜃) from orthogonal cutting tests for 
different rake angles (𝛾𝛾) [22] 

The requirement of determining in-plane shear strength by experiment, varying the 

friction angle, which in turn depends on the fiber orientation, the workpiece material, and 

tool geometry, is one of the drawbacks of this model. In addition, the model is not valid for 

the fiber orientations less than 90° since the chip formation mechanism is different. They 

also did not consider the fiber fracture as one of the factors affecting the machining forces. 

However, in this model the effect of fiber growth along the fiber orientation was 

considered. It is evident from the Figure  3-12 that the model is not valid for the higher 

positive fiber orientation angles, as the chip formation mechanism differs drastically [4]. 
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Figure  3-12. Variation of inplane shear strength with fiber angle (𝜃𝜃) from orthogonal 
cutting tests and Iosipescu shear tests [22] 

3.5.2. Finite Element Models 

Arola and Ramulu [27] from the visual observation of experiments realized that the 

removal of material in the machining of composites occurred through a series of fracture 

events and was clearly discontinuous. To simulate the fracture and nodal debonding, they 

did not use cohesive elements in the finite element modeling. Instead, they used a stress 

criterion to model the fracture in machining FRP. Chip formation during the primary 

fracture, as shown in Figure  3-13, was achieved using a nodal debond criterion on a plane 

corresponding to the trim plane. In each fiber angle, the trim plane ahead of the tool tip was 

double-noded. Debonding was permitted for each pair of nodes when the nodal stress 

approached either a predefined maximum normal or shear stress. The authors found that 

the chip formation in orthogonal trimming of FRP depends on fiber orientation and tool 

geometry. The cutting forces obtained from experiments agreed well with their finite 
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element model; however, the variation of thrust force was incorrect. The reason for the 

inconsistency of the numerical results with the measurement is the difficulty in properly 

defining the fracture plane. In addition, predictions for the principal cutting forces using   

Tsai-Hill criterion are more in agreement with the experimental measurements than the 

predictions using maximum stress criterion. 

 

Figure  3-13. Chip formation in orthogonal trimming in unidirectional FRPs: (a); (b) chip 
formation fracture planes of 30 unidirectional graphite/epoxy; (c) [27] 

Bhatnagar et al. [28] used a numerical method and experiments to predict the 

cutting forces, contact pressure, and frictional shear at the tool-fiber interface in the 

machining of unidirectional glass fiber-reinforced polymer (UD-GFRP). Both the thrust and 

cutting forces of their numerical simulation matched well with the experimental results. 

Mahdi and Zhang [29] used the fiber and matrix mechanical properties to obtain an 

equivalent homogeneous anisotropic material (EHAM) to predict the cutting force. In 
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addition, they used Tsai-Hill (or maximum work) criterion to simulate the material 

separation and therefore chip formation. This criterion for a plane-stress condition is 

 𝜎𝜎11
2

𝑋𝑋1
2 −

𝜎𝜎11𝜎𝜎22

𝑋𝑋1
2 +

𝜎𝜎22
2

𝑋𝑋2
2 +

𝜎𝜎12
2

𝑆𝑆2 ≥ 1 ( 3-23) 

 

where 𝑋𝑋1 and 𝑋𝑋2 are the tensile (or compressive) failure strength in the 1 and 2 directions, 

and 𝑆𝑆 is the shear failure strength. The model predictions agreed with the experimental 

results. They also showed that the tool rake angle, varying from 0° to 20°, does not have a 

significant effect on the cutting force. 

Several numerical and analytical models for cutting and trimming of composites 

have been proposed since the introduction of composites, but each of them works for a 

certain range of fiber orientation. 

3.5.3. Non-Traditional Machining 

3.5.3.1. Abrasive-Waterjet Machining 

Hashish [30] has presented extensive research on the machining of composites with 

abrasive waterjets. He studied metal matrix composites (such as magnesium boron carbide 

and aluminum silicon carbide), laminated thermoset composites (such as carbon-epoxy 

resins, fiber-reinforced thermoplastic composites), and ceramic composites (such as silicon 

carbide and aluminum oxide systems) in different machining processes, including linear 

cutting, milling, turning, and drilling of small diameter holes. He claimed that machining 

with an abrasive waterjet is significantly more dependent on the matrix material than the 

reinforcement particulate or whisker material. He also found that abrasive-waterjet 

machining is faster in removing material compared to many composite machining 
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techniques; however, dimensional accuracy is still low and needs further work. In addition, 

excessive water pressure can cause the water to penetrate between fibers and cause the 

laminates to separate [31]. Figure  3-14 shows a schematic view of an abrasive-waterjet 

nozzle. 

 

Figure  3-14. Abrasive-waterjet nozzle [30] 

As is known, delamination is a major problem in the machining of composites. 

Several researchers have investigated the quality and machinability of composites using 

waterjet and abrasive-waterjet methods [30, 32-38].  It was found that crack tips are 

generated by the shock wave impact of the waterjet at the primary cutting stage, while 

delamination along the fiber-matrix interface is a result of water penetration into the crack 

tips that creates water-wedging and the embedment of abrasives [35]. These delamination 
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mechanisms are shown in Figure  3-15. Figure  3-16 shows an abrasive-waterjet cutting 

system. 

 

Figure  3-15. Mechanisms of delamination: (a) fracture initiation, (b) water-wedging and (c) 
abrasive embedment [35] 

 

Figure  3-16. Schematic of AWJ cutting system [35] 
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 Shanmugam et al. [35]  also compared the quality of the cutting with a pure 

waterjet, an abrasive waterjet, and a delayed abrasive waterjet. They found that the cutting 

quality and performance using abrasive waterjet without any delay in the abrasive mass 

flow is much better comparing to pure waterjet and waterjet with delayed abrasive flow. 

Figure  3-17 compares the quality of the cuttings performed with waterjet and abrasive 

waterjet methods. 

 

Figure  3-17. Cross sections of workpieces performed by cutting at P = 210 MPa: (a) using 
pure waterjet, (b) using AWJ at 𝑚̇𝑚 = 3 𝑔𝑔/𝑠𝑠, and (c)  using AWJ at 𝑚𝑚 = 3 𝑔𝑔/𝑠𝑠̇  and particles 

introduced after a delay time of 3 s [35] 

3.5.3.2. Laser Cutting 

Laser trimming cured graphite/epoxy laminates with an acceptable heat-affected 

zone (HAZ) has proven to be extremely difficult. The carbon fibers have a high thermal 

conductivity, and the material fibers and matrix do not simultaneously reach their 

vaporization temperatures [39]. 
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Currently, there are two industrial lasers being used for cutting composites, 

𝑁𝑁𝑁𝑁:𝑌𝑌𝑌𝑌𝑌𝑌 and 𝐶𝐶𝑂𝑂2. The 𝑁𝑁𝑁𝑁:𝑌𝑌𝑌𝑌𝑌𝑌 laser efficiently cuts metallic composites since its 

wavelength is effectively absorbed by most metallic compounds; however, if used for 

cutting organic materials, it can decompose the organic resin, since its wavelength is not 

effectively absorbed by this type of material. The 𝐶𝐶𝑂𝑂2 laser operates at a wavelength that is 

effectively absorbed by most organic materials. 

Mello [31] successfully cut Kevlar/graphite/epoxy and Kevlar/epoxy composites 

with a three-axis laser work station. The cut exhibited no signs of fraying, and the edge was 

smooth. Cutting tests using high-quality electrically pulsed 𝑁𝑁𝑁𝑁:𝑌𝑌𝑌𝑌𝑌𝑌 lasers have yielded 

smaller HAZ results compared to cuts with a continuous wave 𝐶𝐶𝑂𝑂2 laser. A smaller HAZ is 

the result of using Q-switching modulation in an electrically pulsed beam. The key to 

effectively trimming graphite/epoxy laminates with an acceptable HAZ is to minimize the 

amount of heat added to the cut edge. The combined use of high-beam quality 

𝑁𝑁𝑁𝑁:𝑌𝑌𝑌𝑌𝑌𝑌 lasers and pulsing techniques appears to be of benefit [39]. 

Laser processing of non-metallic composites has proven to be a practical approach 

as a machining method; however, several precautions need to be taken. Hazardous fumes 

can be generated once the laser interacts with the workpiece, especially in the presence of 

assist gas.   
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CHAPTER 4 
 

FORCE PREDICTION MODEL FOR CUTTING UNIDIRECTIONAL 
FIBER-REINFORCED PLASTICS 

Zhang et al. proposed a mechanics model for orthogonal machining of unidirectional 

composites [23]. They observed that three distinct deformation regions exist in the cutting 

zone, as shown in Figure  4-1, when the fiber orientation 𝜃𝜃 varies between 0°and 90°. The 

first region is in front of the rake face, resulting in a chip, which is called a chipping region 

or Region 1. Fracture occurs at the cross-sections of the fibers and along the fiber-matrix 

interfaces. The chipping along an overall shear plane, as shown in Figure  4-1, is the result 

of a zigzag cracking of the fibers perpendicular to the fiber axes and the fiber-matrix 

interface debonding in the fiber-axis direction. The second distinct deformation region 

takes place under the tool nose, where the nose pushes down the workpiece material. For 

convenience, it is called the pressing region or Region 2. The last region, called the 

bouncing region or Region 3, involves primarily the bouncing back of the workpiece 

material, which happens under the clearance face of the cutting tool. When the fiber 

orientation is larger than 90°, more deformation mechanisms take place. As illustrated in 

Figure  4-2, both the fiber-matrix debonding and fiber bending contribute significantly to 

the deformation and removal of material. Because of the debonding, the depth of the 

subsurface damage becomes much greater, as shown in Figure  4-3. The bending of the 

fibers makes the breakage point of a fiber vary with the movement of the cutting tool, and 

as demonstrated in Figure  4-3, the quality of a machined surface becomes much poorer.  
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Figure  4-1. Definitions of cutting variables and deformation zones when fiber orientation is 
smaller than 90° [23] 

 

Figure  4-2. Fiber-bending and fiber-matrix debonding during cutting when fiber 
orientation is larger than 90° [23] 

 

Figure  4-3. Effect of fibre orientation (F593 panels); microstructure in the subsurface (fibre 
orientation = 120°, depth of cut = 0.100mm, rake angle = 0°) [23] 
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4.1. Modeling of Orthogonal Cutting of Unidirectional Fibers 

Based on an understanding of the above, the mechanics of modeling of cutting need 

to be conducted differently when 𝜃𝜃 ≤ 90°or when 𝜃𝜃 > 90°. 

4.1.1. Modeling of orthogonal cutting of unidirectional fibers for 𝜽𝜽 ≤ 𝟗𝟗𝟎𝟎° 

4.1.1.1. Region 1 – Chipping 

Zhang et al. [23] shows the total shear force 𝐹𝐹𝑠𝑠  in Region 1 can be calculated by  

 𝐹𝐹𝑠𝑠 =
𝜏𝜏1.ℎ.𝑎𝑎𝑐𝑐

𝜏𝜏1
𝜏𝜏2

cos(𝜃𝜃 − 𝜙𝜙) sin𝜃𝜃 − sin(𝜃𝜃 − 𝜙𝜙) cos 𝜃𝜃
 ( 4-1) 

 

and 𝐹𝐹𝑦𝑦1  and 𝐹𝐹𝑧𝑧1 , which are thrust and cutting forces, respectively, in Region 1 can be 

calculated using the following equations: 

 

⎩
⎪
⎨

⎪
⎧𝐹𝐹𝑧𝑧1 = 𝜏𝜏1.ℎ. 𝑎𝑎𝑐𝑐 .

sin𝜙𝜙 tan(𝜙𝜙 + 𝛽𝛽 − 𝛾𝛾) + cos𝜙𝜙
𝜏𝜏1
𝜏𝜏2

cos(𝜃𝜃 − 𝜙𝜙) sin𝜃𝜃 − sin(𝜃𝜃 − 𝜙𝜙) cos 𝜃𝜃

𝐹𝐹𝑦𝑦1 = 𝜏𝜏1.ℎ.𝑎𝑎𝑐𝑐 .
cos𝜙𝜙 tan(𝜙𝜙 + 𝛽𝛽 − 𝛾𝛾) + cos𝜙𝜙

𝜏𝜏1
𝜏𝜏2

cos(𝜃𝜃 − 𝜙𝜙) sin𝜃𝜃 − sin(𝜃𝜃 − 𝜙𝜙) cos 𝜃𝜃

� ( 4-2) 

 

To calculate the forces using equation ( 4-2), 𝜙𝜙 needs to be determined. According to 

the general cutting mechanics 

 tan𝜙𝜙 =
𝑟𝑟𝑐𝑐 cos 𝛾𝛾

1 − 𝑟𝑟𝑐𝑐 sin 𝛾𝛾
 ( 4-3) 

 

where 𝛾𝛾 is the rake angle of the tool and 
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 𝑟𝑟𝑐𝑐 =
𝑎𝑎𝑐𝑐
𝑎𝑎0

 ( 4-4) 

where 𝑎𝑎0 is the chip thickness and 𝑟𝑟𝑐𝑐  is the cutting ratio. Because an FRP during cutting 

behaves like a typical brittle material [40], it is reasonable to let 𝑟𝑟𝑐𝑐 = 1. Therefore, 

 𝜙𝜙 ≈ tan−1 �
cos 𝛾𝛾

1 − sin 𝛾𝛾
� ( 4-5) 

 

4.1.1.2. Region 2 – Pressing 

The deformation in Region 2 is caused by the tool nose, which can be viewed as the 

deformation under a cylindrical indenter, as shown in Figure  4-4 as Wang et al. [23] 

proposed. 

 

Figure  4-4. Contact between tool nose and the workpiece material in Region 2 [23] 

Wang et al. shows that the total cutting forces in Region 2 become 

 �
𝐹𝐹𝑦𝑦2 = 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (cos𝜃𝜃 − 𝜇𝜇 sin𝜃𝜃)
𝐹𝐹𝑧𝑧2 = 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (sin𝜃𝜃 + 𝜇𝜇 cos 𝜃𝜃)

� ( 4-6) 
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 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐾𝐾.𝑃𝑃 ( 4-7) 

 

where 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  is the real resultant force in Region 2, where the coefficient 𝐾𝐾 is a function of 

fiber orientation, i.e., 𝐾𝐾 = 𝑓𝑓(𝜃𝜃), to be determined by the experiment. 

𝑃𝑃 can be calculated using the following equations [41]: 

 

⎩
⎪
⎨

⎪
⎧𝑃𝑃1 =

1
2
𝑏𝑏1

2.𝜋𝜋.𝐸𝐸∗.ℎ
4. 𝑟𝑟𝑒𝑒

𝑃𝑃2 =
1
2
𝑏𝑏2

2.𝜋𝜋.𝐸𝐸∗.ℎ
4. 𝑟𝑟𝑒𝑒

� ( 4-8) 

 

where 

 �𝑏𝑏1 = 𝑟𝑟𝑒𝑒 sin𝜃𝜃
𝑏𝑏2 = 𝑟𝑟𝑒𝑒 cos 𝜃𝜃

� ( 4-9) 

 

in which 

 𝐸𝐸∗ =
𝐸𝐸

1 − 𝜈𝜈2 ( 4-10) 

 𝑃𝑃 = 𝑃𝑃1 + 𝑃𝑃2 ( 4-11) 

 

4.1.1.3. Region 3 – Bouncing 

The contact force between the clearance face and the workpiece material is caused 

by the bouncing back of the workpiece material in this region [23]. 

The cutting forces in the “Bouncing Region” (Region 3) are 
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 �
𝐹𝐹𝑦𝑦3 =

1
2

. 𝑟𝑟𝑒𝑒 .𝐸𝐸3.𝐻𝐻. (1 − 𝜇𝜇 cos𝛼𝛼 sin𝛼𝛼)

𝐹𝐹𝑧𝑧3 =
1
2

. 𝑟𝑟𝑒𝑒 .𝐸𝐸3.𝐻𝐻 cos2 𝛼𝛼                         
� ( 4-12) 

 

One can use contact mechanics between a wedge and a half-space to calculate the 

normal contact force 𝑁𝑁, shown in Figure  4-5 [42]: 

 

Figure  4-5. Contact in Region 3 

 
𝑁𝑁 =

1
2

.𝑎𝑎.𝐸𝐸3. tan𝛼𝛼.ℎ 

𝑎𝑎 =
𝑟𝑟𝑒𝑒

tan𝛼𝛼
 

( 4-13) 

 

4.1.1.4. Total Cutting Forces 

The total machining forces, 𝐹𝐹𝑧𝑧  and 𝐹𝐹𝑦𝑦 , are the summation of the corresponding 

components from the above three regions. 
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 �
𝐹𝐹𝑦𝑦 = 𝐹𝐹𝑦𝑦1 + 𝐹𝐹𝑦𝑦2 + 𝐹𝐹𝑦𝑦3

𝐹𝐹𝑧𝑧 = 𝐹𝐹𝑧𝑧1 + 𝐹𝐹𝑧𝑧2 + 𝐹𝐹𝑧𝑧3

� ( 4-14) 

 

4.1.2. Modeling of Orthogonal Cutting of Unidirectional Fibers for 𝜽𝜽 > 9𝟎𝟎° 

When the fiber orientation is greater than 90°, a cutting involves other deformation 

mechanisms, as shown in Figure  4-2. Two methods will be presented in this study, the 

finite element method (FEM) and the analytical method. 

4.1.2.1. Finite Element Modeling of Debonding 

Finite element analysis (FEA) was conducted using a commercial package, 

Abaqus/Explicit, to measure the fiber-matrix debonding length. The material was modeled 

at the microscopic level to better understand the delamination mechanism. Fiber and 

matrix materials were modeled separately, bonded together using cohesive elements. 

Abaqus provides a type of element, which is primarily intended for bonded interfaces 

where the thickness is negligibly small. The constitutive response of this element can be 

directly expressed in terms of traction versus separation. In the case of finite thickness of 

the cohesive element and availability of the macroscopic properties of the adhesive 

material, it may be more appropriate to model the response using the conventional 

material model. For the purpose of this study, the cohesive element for the interface with 

the traction-separation response was used. Cohesive behavior, defined in terms of the 

traction-separation law, has several advantages: 

• Can be used to model the delamination at interfaces in composites directly in terms 

of traction versus separation. 
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• Allows specification of material data, such as the fracture energy as a function of the 

ratio of normal to shear deformation (mode mix) at the interface. 

• Assumes a linear elastic traction-separation law prior to damage. 

• Assumes that failure of the elements is characterized by progressive degradation of 

the material stiffness, which is driven by a damage process. 

• Allows multiple damage mechanisms. 

• Can be used with a user subroutine UMAT in Abaqus/Standard or VUMAT in 

Abaqus/Explicit to specify user-defined traction-separation laws. 

4.1.2.1.1. Fiber Material Modeling  

Carbon fiber shows orthotropic properties [43]; however, in this study, to compare 

the analytical solution with the FEM model, an isotropic model was used to model the 

carbon fibers. The summary of the properties of an isotropic carbon fiber is available in 

Table  4-1 [43]. 

TABLE  4-1 
 

CARBON FIBER MECHANICAL PROPERTIES 

Diameter, 𝜇𝜇𝜇𝜇 6.9 
Axial modulus of elasticity (𝐸𝐸11), 𝐺𝐺𝐺𝐺𝐺𝐺 186 
Axial tensile strength, 𝐺𝐺𝐺𝐺𝐺𝐺 3.6 
Axial shear modulus, 𝐺𝐺𝐺𝐺𝐺𝐺 76.9 
Flexural strength, 𝐺𝐺𝐺𝐺𝐺𝐺 4.0 
Axial Poisson’s ratio 0.3 

 

http://a_sahraie-pc:2080/v6.8/books/sub/sub-link.htm#sub-xsl-umat�
http://a_sahraie-pc:2080/v6.8/books/sub/sub-link.htm#sub-xsl-vumat�
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Linear elasticity in an orthotropic material can be defined by providing the nine 

independent elastic stiffness parameters, as functions of temperature and other predefined 

fields, if necessary. In this case, the stress-strain relations are of the form [44] 

 

⎩
⎪
⎨

⎪
⎧
𝜎𝜎11
𝜎𝜎22
𝜎𝜎33
𝜎𝜎12
𝜎𝜎13
𝜎𝜎23⎭

⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐷𝐷1111 𝐷𝐷1122 𝐷𝐷1133 0 0 0

𝐷𝐷2222 𝐷𝐷2233 0 0 0
𝐷𝐷3333 0 0 0

𝐷𝐷1212 0 0
𝑠𝑠𝑠𝑠𝑠𝑠 𝐷𝐷1313 0

𝐷𝐷2323 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝜖𝜖11
𝜖𝜖11
𝜖𝜖11
𝜖𝜖11
𝜖𝜖11
𝜖𝜖11⎭

⎪
⎬

⎪
⎫

 ( 4-15) 

 

where the engineering constants are calculated using the following equations [44]: 

 

𝐷𝐷1111 = 𝐸𝐸1(1 − 𝜈𝜈23𝜈𝜈32)𝛶𝛶 

𝐷𝐷2222 = 𝐸𝐸2(1 − 𝜈𝜈13𝜈𝜈31)𝛶𝛶 

𝐷𝐷3333 = 𝐸𝐸3(1 − 𝜈𝜈12𝜈𝜈21)𝛶𝛶 

𝐷𝐷1122 = 𝐸𝐸1(𝜈𝜈21 + 𝜈𝜈31𝜈𝜈23)𝛶𝛶 = 𝐸𝐸2(𝜈𝜈12 + 𝜈𝜈32𝜈𝜈13)𝛶𝛶 

𝐷𝐷1133 = 𝐸𝐸1(𝜈𝜈31 + 𝜈𝜈21𝜈𝜈32)𝛶𝛶 = 𝐸𝐸3(𝜈𝜈13 + 𝜈𝜈12𝜈𝜈23)𝛶𝛶 

𝐷𝐷2233 = 𝐸𝐸2(𝜈𝜈32 − 𝜈𝜈12𝜈𝜈31)𝛶𝛶 = 𝐸𝐸3(𝜈𝜈23 + 𝜈𝜈21𝜈𝜈13)𝛶𝛶 

𝐷𝐷1212 = 𝐺𝐺12 

𝐷𝐷1313 = 𝐺𝐺13 

𝐷𝐷2323 = 𝐺𝐺23 

( 4-16) 

 

where 𝛶𝛶 =
1

1 − 𝜈𝜈12𝜈𝜈21 − 𝜈𝜈23𝜈𝜈32 − 𝜈𝜈31𝜈𝜈13 − 2𝜈𝜈21𝜈𝜈32𝜈𝜈13
 ( 4-17) 
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When the material stiffness parameters (the 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ) are given directly, Abaqus 

imposes the constraint 𝜎𝜎33 = 0 for the plane stress case to reduce the material's stiffness 

matrix as required. 

4.1.2.1.1.1. Stress-Based Failure Theories 

Several stress-based failure theories for an orthotropic material that can be used to 

model fiber failure are available. The input to these theories are 𝑋𝑋𝑡𝑡  and 𝑋𝑋𝑐𝑐 , which are 

tensile and compressive stress limits in the 1-direction, 𝑌𝑌𝑡𝑡  and 𝑌𝑌𝑐𝑐 , in the 2-direction, and 

shear strength 𝑆𝑆 in the 𝑥𝑥 − 𝑦𝑦 plane. 

Maximum Stress Theory 

Maximum Stress Theory criterion states that the material will not fail if [44] 

 𝐼𝐼𝐹𝐹 = max �
𝜎𝜎11

𝑋𝑋
,
𝜎𝜎22

𝑌𝑌
, �
𝜎𝜎12

𝑆𝑆
�� < 1.0 ( 4-18) 

 

In this criterion, if 𝜎𝜎11 > 0, 𝑋𝑋 = 𝑋𝑋𝑡𝑡 ; otherwise, 𝑋𝑋 = 𝑋𝑋𝑐𝑐 . If 𝜎𝜎22 > 0, 𝑌𝑌 = 𝑌𝑌𝑡𝑡 ; otherwise, 𝑌𝑌 = 𝑌𝑌𝑐𝑐 . 

Tsai-Hill Theory 

In the Tsai-Hill Theory [44], 𝑋𝑋 and 𝑌𝑌 take their values in the same way as described 

in the “Maximum Stress Theory.” 

 𝐼𝐼𝐹𝐹 =
𝜎𝜎11

2

𝑋𝑋2 −
𝜎𝜎11𝜎𝜎22

𝑋𝑋2 +
𝜎𝜎22

2

𝑌𝑌2 +
𝜎𝜎12

2

𝑆𝑆2 < 1.0 ( 4-19) 

 

Tsai-Wu Theory 

The Tsai-Wu Theory failure criterion requires that [44] 
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𝐼𝐼𝐹𝐹 = 𝐹𝐹1𝜎𝜎11 + 𝐹𝐹2𝜎𝜎22 + 𝐹𝐹11𝜎𝜎11
2 + 𝐹𝐹22𝜎𝜎22

2 + 𝐹𝐹66𝜎𝜎12
2 + 2𝐹𝐹12𝜎𝜎11𝜎𝜎22 < 1.0 

 

𝐹𝐹1 =
1
𝑋𝑋𝑡𝑡

+
1
𝑋𝑋𝑐𝑐

,𝐹𝐹2 =
1
𝑌𝑌𝑡𝑡

+
1
𝑌𝑌𝑐𝑐

,𝐹𝐹11 = −
1

𝑋𝑋𝑡𝑡𝑋𝑋𝑐𝑐
,𝐹𝐹22 = −

1
𝑌𝑌𝑡𝑡𝑌𝑌𝑐𝑐

,𝐹𝐹66 =
1
𝑆𝑆2 

 

𝐹𝐹12 = 1/2𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2 [1 − �
1
𝑋𝑋𝑡𝑡

+
1
𝑋𝑋𝑐𝑐

+
1
𝑌𝑌𝑡𝑡

+
1
𝑌𝑌𝑐𝑐
� 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + �

1
𝑋𝑋𝑡𝑡𝑋𝑋𝑐𝑐

+
1
𝑌𝑌𝑡𝑡𝑌𝑌𝑐𝑐

� 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2  

( 4-20) 

 

otherwise 

 𝐹𝐹12 = 𝑓𝑓∗�𝐹𝐹11𝐹𝐹22 ( 4-21) 

where −1.0 ≤ 𝑓𝑓∗ ≤ 1.0. the default value of 𝑓𝑓∗ is zero. 

Azzi-Tsai-Hill Theory 

The Azzi-Tsai-Hill Theory [44] failure criterion is very similar to the Tsai-Hill 

Theory, except that the absolute value of the cross product term is taken as 

 𝐼𝐼𝐹𝐹 =
𝜎𝜎11

2

𝑋𝑋2 −
|𝜎𝜎11𝜎𝜎22|
𝑋𝑋2 +

𝜎𝜎22
2

𝑌𝑌2 +
𝜎𝜎12

2

𝑆𝑆2 < 1.0 ( 4-22) 

 

The difference between these two criterions takes effect only when 𝜎𝜎11  and 𝜎𝜎22  have 

opposite signs. 

Output Variables 

In Abaqus/Standard, history output can also be requested for the individual stress 

theories with output variables MSTRS, TSAIH, TSAIW, and AZZIT and for the strain theory 

with output variable MSTRN. 
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4.1.2.1.2. Matrix Material Modeling 

Matrix material was modeled as isotropic with elastic-plastic behavior [45] and 

shear damage failure criterion. A summary of the matrix properties is shown in Table  4-2 

[43]. 

TABLE  4-2 
 

EPOXY RESIN MECHANICAL PROPERTIES 

Modulus of elasticity (𝐸𝐸), 𝐺𝐺𝐺𝐺𝐺𝐺 2.5 
Tensile strength, 𝑀𝑀𝑀𝑀𝑀𝑀 70 
Shear modulus, 𝐺𝐺𝐺𝐺𝐺𝐺 1.37 
Shear strength, 𝑀𝑀𝑀𝑀𝑀𝑀 146 
Poisson’s ratio 0.3 

 

4.1.2.1.2.1. Damage Initiation for Ductile Material 

4.1.2.1.2.1.1. Shear Criterion 

*SHEAR FAILURE [44] was used to predict the onset of damage in epoxy. This 

damage initiation model should be used in conjunction with *PLASTIC [44] material model. 

The model assumes that the equivalent plastic strain at the onset of damage 𝜖𝜖𝑆̅𝑆
𝑝𝑝𝑝𝑝  is a 

function of shear stress ration and strain rate 

 𝜖𝜖𝑆̅𝑆
𝑝𝑝𝑝𝑝 �𝜃𝜃𝑠𝑠 , 𝜖̇𝜖

𝑝𝑝𝑝𝑝
� ( 4-23) 

 

where 𝜃𝜃𝑠𝑠  is the shear stress ratio 

 𝜃𝜃𝑠𝑠 =
𝑞𝑞 + 𝑘𝑘𝑠𝑠𝑝𝑝
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

 ( 4-24) 
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𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum shear stress, and 𝑘𝑘𝑠𝑠  is the material parameter. The material fails 

when the following criterion is met [44]: 

 𝜔𝜔𝑆𝑆 = �
𝑑𝑑𝜖𝜖𝑝𝑝𝑝𝑝

𝜖𝜖𝑆̅𝑆
𝑝𝑝𝑝𝑝 �𝜃𝜃𝑠𝑠 , 𝜖̇𝜖

𝑝𝑝𝑝𝑝
�

= 1  ( 4-25) 

 

where 𝜔𝜔𝑠𝑠  is a state variable that increases monotonically with plastic deformation that is 

proportional to the incremental change in equivalent plastic strain. At each increment 

during the analysis, the incremental increase in 𝜔𝜔𝑠𝑠  is computed as 

 𝛥𝛥𝜔𝜔𝑠𝑠 =
𝛥𝛥𝜖𝜖𝑝𝑝𝑝𝑝

𝜖𝜖𝑆̅𝑆
𝑝𝑝𝑝𝑝 �𝜃𝜃𝑠𝑠 , 𝜖̇𝜖

𝑝𝑝𝑝𝑝
�
≥ 0 ( 4-26) 

4.1.2.1.3. Fiber-Matrix Interface Modeling 

The interface was defined by the cohesive section with the *TRACTION 

SEPARATION [44] law.  The onset of damage was based on the *QUADS [44] function, 

which specifies that damage initiation is based on the quadratic traction-integration law for 

cohesive elements. The damage evolution of the cohesive section is then based on the 

strain energy release rate and is defined by *ENERGY [44].  The fiber-matrix interface 

properties are given in Table  4-3 [43]. 

TABLE  4-3 
 

FIBER-MATRIX INTERFACE PROPERTIES 

Normal strength, 𝑀𝑀𝑀𝑀𝑀𝑀 160 
Shear strength, 𝑀𝑀𝑀𝑀𝑀𝑀 34 
Strain energy release rate, 𝐽𝐽/𝑚𝑚2  50 
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4.1.2.1.3.1. Linear Elastic Traction-Separation Behavior 

 It is possible to write the elastic constitutive matrix that relates the nominal 

stresses to nominal strains across the interface, in which the nominal stresses are the force 

components divided by the original area at each integration point; while the nominal 

strains are the separation of nodes at the interface divided by the original thickness at the 

integration point. The default value of the original constitutive thickness is 1.0 for traction-

separation response, which ensures that nominal strain is equal to the relative 

displacements of the top and bottom faces. The elastic behavior in terms of tractions and 

separations can be written as [44] 

 𝜖𝜖𝑛𝑛 =
𝛿𝛿𝑛𝑛
𝑇𝑇0

,    𝜖𝜖𝑠𝑠 =
𝛿𝛿𝑠𝑠
𝑇𝑇0

,    𝜖𝜖𝑡𝑡 =
𝛿𝛿𝑡𝑡
𝑇𝑇0

 ( 4-27) 

 𝑡𝑡 = �
𝑡𝑡𝑛𝑛
𝑡𝑡𝑠𝑠
𝑡𝑡𝑡𝑡
� = �

𝐾𝐾𝑛𝑛𝑛𝑛 𝐾𝐾𝑛𝑛𝑛𝑛 𝐾𝐾𝑛𝑛𝑛𝑛
𝐾𝐾𝑠𝑠𝑠𝑠 𝐾𝐾𝑠𝑠𝑠𝑠 𝐾𝐾𝑠𝑠𝑠𝑠
𝐾𝐾𝑛𝑛𝑛𝑛 𝐾𝐾𝑠𝑠𝑠𝑠 𝐾𝐾𝑡𝑡𝑡𝑡

� �
𝜖𝜖𝑛𝑛
𝜖𝜖𝑠𝑠
𝜖𝜖𝑡𝑡
� = 𝐾𝐾𝐾𝐾 ( 4-28) 

 

where 𝑡𝑡 is the traction vector consisting of three components, 𝑡𝑡𝑛𝑛  represents the traction 

along the normal direction (3-local direction), and 𝑡𝑡𝑠𝑠  and 𝑡𝑡𝑡𝑡  represent two shear tractions 

along the local 1- and 2-directions in three-dimensional problems. In two-dimensional 

problems, 𝑡𝑡𝑛𝑛  will be in the local 2-direction, and 𝑡𝑡𝑠𝑠  will be in the local 1-direction. 𝑇𝑇0 

denotes the original thickness of the cohesive element, and 𝛿𝛿𝑛𝑛 , 𝛿𝛿𝑠𝑠 , and 𝛿𝛿𝑡𝑡  represent the 

separations corresponding to each traction vector [44]. 

To formulate the estimation for the parameters required for modeling the traction-

separation behavior of an interface in terms of the material properties of the blank 

adhesive material, the cohesive layer thickness should be considered. If 𝑇𝑇𝑐𝑐  is the cohesive 
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layer thickness, and 𝐸𝐸𝑐𝑐  and 𝜌𝜌𝑐𝑐  are adhesive material stiffness and density, the stiffness of 

the interface (relating the nominal traction to the displacement) is given by 𝐾𝐾𝑐𝑐 = (𝐸𝐸𝑐𝑐/𝑇𝑇𝑐𝑐), 

and the density of interface is given by 𝜌̅𝜌𝑐𝑐 = (𝜌𝜌𝑐𝑐𝑇𝑇𝑐𝑐) [44]. 

4.1.2.1.3.2. Damage Modeling 

Each failure mechanism consists of three ingredients:  a damage initiation criterion, 

a damage evolution law, and a choice of element removal when the damage state is 

completely reached. Four damage initiation criterions are available for the traction-

separation material response in Abaqus. 

4.1.2.1.3.2.1. Damage Initiation 

Damage is assumed to initiate when the maximum nominal stress ratio reaches a 

value of one or [44] 

 max �
〈𝑡𝑡𝑛𝑛〉
𝑡𝑡𝑛𝑛0

,
𝑡𝑡𝑠𝑠
𝑡𝑡𝑠𝑠0

,
𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡0
� = 1 ( 4-29) 

 

where, 𝑡𝑡𝑛𝑛0, 𝑡𝑡𝑠𝑠0, and 𝑡𝑡𝑡𝑡0  represent the peak values of the nominal stress when the deformation 

is either purely normal to the interface or purely in the first or second shear direction, 

respectively. 

 max �
〈𝜖𝜖𝑛𝑛〉
𝜖𝜖𝑛𝑛0

,
𝜖𝜖𝑠𝑠
𝜖𝜖𝑠𝑠0

,
𝜖𝜖𝑡𝑡
𝜖𝜖𝑡𝑡0
� = 1 ( 4-30) 

 �
〈𝑡𝑡𝑛𝑛〉
𝑡𝑡𝑛𝑛0

�
2

+ �
𝑡𝑡𝑠𝑠
𝑡𝑡𝑠𝑠0
�

2
+ �

𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡0
�

2

= 1 ( 4-31) 
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 �
〈𝜖𝜖𝑛𝑛〉
𝜖𝜖𝑛𝑛0

�
2

+ �
𝜖𝜖𝑠𝑠
𝜖𝜖𝑠𝑠0
�

2
+ �

𝜖𝜖𝑡𝑡
𝜖𝜖𝑡𝑡0
�

2

= 1 ( 4-32) 

 

Equations ( 4-30) to ( 4-32) show the “maximum nominal strain criterion,” 

“quadratic nominal stress criterion,” and “quadratic nominal strain criterion,” respectively, 

in which, 𝜖𝜖𝑛𝑛0, 𝜖𝜖𝑠𝑠0, and 𝜖𝜖𝑡𝑡0 represent the peak values of the nominal strain when the 

deformation is either purely normal to the interface or purely in the first or the second 

shear direction. 

4.1.2.1.3.2.2. Damage Evolution 

The damage evolution law describes the rate at which the material stiffness is 

degraded once the corresponding initiation criterion is reached. A scalar variable, 𝐷𝐷, 

represents the damage in the material and takes the effect of all active damage 

mechanisms. The interval of 𝐷𝐷 is from 0 to 1. Two components define the evolution of 

damage. The first component is either the effective displacement at complete failure 𝛿𝛿𝑚𝑚
𝑓𝑓 , 

relative to the effective displacement at the initiation of damage 𝛿𝛿𝑚𝑚0 , or the dissipated 

failure energy 𝐺𝐺𝐶𝐶  [44]: 

 𝛿𝛿𝑚𝑚 = �〈𝛿𝛿𝑛𝑛〉2 + 𝛿𝛿𝑠𝑠2 + 𝛿𝛿𝑡𝑡2 ( 4-33) 

 

The second component to the definition of damage evolution is the evolution law, 

and consequently, damage variable, 𝐷𝐷, between the damage initiation and the material’s 

final failure. Figure  4-6 shows a linear softening law.  
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Figure  4-6. Linear damage evolution [43] 

Two of the most used damage evolutions are the “power law” and “Benzeggagh-

Kenane (BK),” which define the dependency of the fracture energy on the mode mix. 

Equation ( 4-34) shows the power law interaction of the energies required to cause failure 

in the individual (normal and two shear) modes: 

 �
𝐺𝐺𝑛𝑛
𝐺𝐺𝑛𝑛𝐶𝐶
�
𝛼𝛼

+ �
𝐺𝐺𝑠𝑠
𝐺𝐺𝑠𝑠𝐶𝐶
�
𝛼𝛼

+ �
𝐺𝐺𝑡𝑡
𝐺𝐺𝑡𝑡𝐶𝐶
�
𝛼𝛼

= 1 ( 4-34) 

 

where 𝐺𝐺𝑛𝑛 ,𝐺𝐺𝑠𝑠 , and 𝐺𝐺𝑡𝑡  refer to the work done by the traction and its conjugate relative 

displacement in the normal, first-, and second-shear directions, respectively, and 𝐺𝐺𝑛𝑛𝐶𝐶 ,𝐺𝐺𝑠𝑠𝐶𝐶 , 

and 𝐺𝐺𝑡𝑡𝐶𝐶  are the critical fracture energies that should be specified as input. 

Equation ( 4-35) shows the BK fracture criterion, which is particularly useful when 

the critical fracture energies during deformation purely along the first and second shear 

directions are the same, i.e., 𝐺𝐺𝑠𝑠𝐶𝐶 = 𝐺𝐺𝑡𝑡𝐶𝐶: 
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 𝐺𝐺𝑛𝑛𝐶𝐶 + (𝐺𝐺𝑠𝑠𝐶𝐶 − 𝐺𝐺𝑛𝑛𝐶𝐶) �
𝐺𝐺𝑆𝑆
𝐺𝐺𝑇𝑇
�
𝜂𝜂

= 𝐺𝐺𝐶𝐶  ( 4-35) 

 

where 

 
𝐺𝐺𝑆𝑆 = 𝐺𝐺𝑠𝑠 + 𝐺𝐺𝑡𝑡  

𝐺𝐺𝑇𝑇 = 𝐺𝐺𝑛𝑛 + 𝐺𝐺𝑆𝑆  
( 4-36) 

 

and 𝜂𝜂 is the material parameter [44]. 

Figure  4-7 schematically represents how damage initiation and evolution depend on 

the mode mix for a traction-separation response with isotropic shear behavior. 

 

Figure  4-7. Illustration of mixed-mode response in cohesive elements [43] 

 

 



58 
 

4.1.2.1.4. Simulation Procedure 

Conventionally, in the machining of homogeneous material, a plane strain analysis is 

used, but due to out-of-plane displacements in the machining of FRPs, the plane stress 

analysis should be used [27, 46-47]. 

Finite element analysis was studied using Abaqus/Explicit. The tool was modeled as 

a 2D planar discrete rigid. The workpiece was modeled with four different zones:  fiber, 

matrix, equivalent homogeneous material (EHM), and fiber-matrix interface. The objective 

of this analysis was to find the fiber-matrix debonding length when the tool is cutting the 

material. The workpiece dimensions were 2000𝜇𝜇𝜇𝜇 × 1000𝜇𝜇𝜇𝜇 with two fibers. There was a 

matrix layer between each fiber and a cohesive material zone as the fiber-matrix interface. 

The rest of the workpiece was modeled as EHM by an equivalent transversely isotropic 

homogeneous single-phase material with properties (𝐸𝐸11,𝐸𝐸22,𝐺𝐺12 , and 𝜈𝜈12), determined 

from the rule of mixtures [1, 48], equations ( 4-37) to ( 4-40). Figure  4-8 shows a schematic 

finite element model used as workpiece. 

 

Figure  4-8. Schematic view of the fiber, matrix and EHM zones used in FEM for the case of 
135° fiber orientation and %60 fiber volume fraction 



59 
 

 𝐸𝐸11 = 𝑣𝑣𝑓𝑓𝐸𝐸𝑓𝑓 + 𝑣𝑣𝑚𝑚𝐸𝐸𝑚𝑚  ( 4-37) 

 

𝐸𝐸22 =
𝐸𝐸𝑓𝑓𝐸𝐸𝑚𝑚′

𝑣𝑣𝑓𝑓𝐸𝐸𝑚𝑚′ + 𝑣𝑣𝑚𝑚𝐸𝐸𝑓𝑓
 

𝐸𝐸𝑚𝑚′ =
𝐸𝐸𝑚𝑚

1 − 𝑣𝑣𝑚𝑚2
 

( 4-38) 

 𝐺𝐺12 =
𝐺𝐺𝑓𝑓𝐺𝐺𝑚𝑚

𝑣𝑣𝑓𝑓𝐺𝐺𝑚𝑚 + 𝑣𝑣𝑚𝑚𝐺𝐺𝑓𝑓
 ( 4-39) 

 𝜈𝜈12 = 𝑣𝑣𝑓𝑓𝜈𝜈𝑓𝑓 + 𝑣𝑣𝑚𝑚𝜈𝜈𝑚𝑚  ( 4-40) 

 

Carbon fiber was modeled with isotropic material properties. Since EHM zones are 

not isotropic, material orientation should be defined for each zone. If an orthotropic model 

is used for carbon fibers, they can share the same coordinate system with EHM zones. 

4.1.2.1.5. Element Selection 

Fully integrated elements in Abaqus/Standard and Abaqus/Explicit do not 

hourglass but may experience “locking” behavior:  both shear and volumetric [44]. Shear 

locking occurs in first-order, fully integrated elements (in Abaqus, CPS4, CPE4, C3D8, etc.) 

that are subjected to bending; however, using a reduced integration will solve this problem. 

The numerical formulation of the elements causes shear strains that do not really exist. 

Therefore, these elements are too stiff in bending, particularly if the element length is of the 

same order of magnitude as or greater than the wall thickness.  

Volumetric locking takes place in fully integrated elements when the material 

behavior is (almost) incompressible. Unrealistic pressure stresses develop at the 

integration points, resulting in stiff behavior of the element against deformations that 



60 
 

should cause no volume changes. For almost incompressible materials (elastic-plastic 

materials for which the plastic strains are incompressible), second-order and fully 

integrated elements start to develop volumetric locking when the plastic strains are about 

the elastic strains. However, the first-order, fully integrated quadrilaterals and hexahedra 

elements use selectively reduced integration (reduced integration in volumetric terms). 

Therefore, these elements do not lock with almost incompressible materials. Reduced-

integration, second-order elements develop volumetric locking for almost incompressible 

materials, only after significant straining occurs. In this case, volumetric locking often 

comes with a mode that looks like hourglassing. Normally, this problem can be avoided by 

refining the mesh in regions of large plastic strain [44]. 

If volumetric locking is suspected, by checking the pressure stress at the integration 

points, it is possible to determine if any volumetric locking is occurring. If the pressure 

values show a checkerboard pattern that is changing significantly from one integration 

point to the next, then volumetric locking is occurring. Therefore, in this analysis CPS4R 

(reduced integration four-node element) with enhanced hourglass control was used for 

both matrix and fiber to avoid shear locking [44]. Increasing the number of layers does not 

improve the results. However, more layers are required for accurate analysis when 

material nonlinearities are present [49].  With reduced integration, the number of elements 

through the depth of in-plane bending plays a critical role. For this problem, two elements 

through the depth fail to maintain accurate enough results. Four elements through the 

depth provide acceptable results. If the idealization involves only one element through the 

depth, the material integration points would all lie on the neutral axis, and the bending 

behavior would depend entirely on the (artificial) hourglass stiffness for the case of 
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reduced integration. Combined with enhanced hourglass control, the CPS4R, C3D8R, and 

S4R elements provide excellent results, even with four elements along the depth [49]. 

A four-node bilinear plane stress quadrilateral element (CPS4R) with reduced 

integration was used for the fiber and matrix material with enhanced hourglass control to 

avoid shear and volumetric locking. Element deletion was activated for fibers and cohesive 

elements; however, the matrix material will distort without element deletion. Different 

material layers were generated by partitioning; therefore, no contact was defined between 

fiber, matrix, and interface. In this case, matrix element deletion may result in penetration 

of the fiber elements into the matrix. Another approach would be to model each layer 

separately and then assemble the layers. For the latest approach, the side boundaries of 

each layer should be included in the contact definition. The advantage of using this method 

is the ability to activate element deletion for the matrix material; however, as the number 

of fibers and matrix layers increases, it is more difficult to use this approach. Moreover, if 

the material undergoes a complete damage, element deletion removes the element from 

analysis. This may result in inaccurate results. 

4.1.2.1.6. Cohesive Response Using Penalty Stiffness 

According to section  4.1.2.1.3.1, as the thickness of the cohesive element gets closer 

to zero, the stiffness of the cohesive element tends to infinity. One way to avoid any adverse 

effect on the stable time increment is to choose material property such that Δ𝑡𝑡𝑐𝑐 = Δ𝑡𝑡𝑒𝑒 , 

where Δ𝑡𝑡𝑐𝑐  is the time increment of the cohesive element, and Δ𝑡𝑡𝑒𝑒  is that of neighboring 

elements. 
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For constitutive response defined in terms of traction versus separation, the ratio of 

the stable time increment of the cohesive elements to that for the other elements is given 

by [44] 

 𝛥𝛥𝑡𝑡𝑐𝑐
𝛥𝛥𝑡𝑡𝑒𝑒

= ��
𝜌̅𝜌𝑐𝑐
𝜌̅𝜌𝑒𝑒
� �

Ke

Kc
� ( 4-41) 

 

where subscripts “c” and “e” correspond to the cohesive elements and the surrounding 

elements, respectively. 

The surrounding elements properties can be used to calculate the stiffness and 

density of the cohesive elements. 

 𝐾𝐾𝑐𝑐 =
𝐸𝐸𝑐𝑐
𝑇𝑇𝑐𝑐

=
1

10
𝐸𝐸𝑒𝑒
𝑇𝑇𝑒𝑒

= 0.1𝐾𝐾𝑒𝑒  ( 4-42) 
 

 𝜌̅𝜌𝑐𝑐 = 𝜌𝜌𝑐𝑐𝑇𝑇𝑐𝑐 =
1

10
𝜌𝜌𝑒𝑒𝑇𝑇𝑒𝑒 = 0.1𝜌̅𝜌𝑒𝑒  ( 4-43) 

 

where 𝑇𝑇𝑒𝑒  represents the characteristic length of the neighboring non-cohesive elements. By 

choosing 𝐾𝐾𝑐𝑐 = 0.1𝐾𝐾𝑒𝑒 , the stiffness in the cohesive layer relative to the surrounding 

elements will be similar to the default stiffness used by penalty contact in Abaqus/Explicit. 

The cohesive element stiffness in this approach is different from the measured stiffness of 

the interface; however, if the peak strength and the fracture energy remain unchanged, the 

global response will not be affected significantly in many cases [44]. 

The stiffness of the cohesive elements in this study was calculated based on the 

traction-separation law. 
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4.1.2.1.7. Finite Element Analysis of Debonding Length Predictions 

The finite element analysis was run on a unidirectional material with mechanical 

properties given in Table  4-1, Table  4-2, and Table  4-3. Figure  4-9, Figure  4-10, and Figure 

 4-11 show sample pictures of the cutting simulation with Abaqus. 

 

Figure  4-9. Abaqus model of fiber bending for 𝜃𝜃 = 90° and 𝛾𝛾 = 15° 

 

 

 

Figure  4-10. Abaqus model of fiber bending for 𝜃𝜃 = 135° and 𝛾𝛾 = 15°  
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Figure  4-11. Abaqus model of fiber bending for 𝜃𝜃 = 170° and 𝛾𝛾 = 15° 

The length at which the fibers break due to excessive normal force can be measured 

using the Abaqus post-processer. The failure criterion is the maximum in-plane principal 

stress, and it is assumed that the fiber fails if any element meets the criterion. This length 

was measured for different combinations of fiber orientations and tool rake angles, and the 

results are shown in Figure  4-12. 

 

Figure  4-12. Lengths at which fibers break due to excessive normal stress 



65 
 

4.1.2.2. Analytical Method – Thrust Force 

4.1.2.2.1. Region 1 – Fiber Microbuckling  

4.1.2.2.1.1. Model 1 – Perfectly Aligned Fibers with Aligned Axial Force 

The compressive failure characteristics of a fiber can be studied by embedding it in 

a resin casting [50]. Fiber microbuckling can be studied in both two- and three-dimensional 

models. The study of each case depends on the status of stress in the material. In the 

orthogonal cutting of composites, the plane stress analysis should be used [27, 46-47]. 

Equations ( 4-44) and ( 4-45) represent the predicted stress that causes buckling in 

composites in the extension and shear modes, respectively, as shown in (Figure  4-13) [51]. 

 

Figure  4-13. Possible buckling patterns for unidirectional composites [51] 

 𝜎𝜎𝐶𝐶𝐶𝐶 =
𝜋𝜋2𝐸𝐸𝑓𝑓ℎ2𝑘𝑘

12𝐿𝐿2 �𝑚𝑚2 +
24𝐿𝐿4𝐸𝐸𝑚𝑚
𝜋𝜋4𝑐𝑐ℎ3𝐸𝐸𝑓𝑓

�
1
𝑚𝑚2�� ( 4-44) 

 𝜎𝜎𝐶𝐶𝐶𝐶 =
𝐺𝐺𝑚𝑚

(1 − 𝑘𝑘)
+
𝜋𝜋2𝐸𝐸𝑓𝑓𝑘𝑘

12
�
𝑚𝑚ℎ
𝐿𝐿
�

2

 ( 4-45) 

 

where 𝐸𝐸𝑓𝑓  is the Young modulus of the fiber, 𝑘𝑘 is the volume fraction of the reinforcement, 𝐿𝐿 

is the length of composite specimen, 𝑚𝑚 is the number of buckle waves, ℎ is the thickness of 
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reinforcement or laminas, 2𝑐𝑐 is the thickness of matrix between laminas, and 𝐺𝐺𝑚𝑚  is the 

shear modulus of the matrix. 

Equations ( 4-44) and ( 4-45) were derived for simply supported ends of the 

individual laminas. If the laminas are not simply supported, then equation ( 4-46) should be 

used, in which 𝜆𝜆 depends on the end boundary condition of the individual lamina and gives 

the values of 𝜆𝜆 as a function of 𝐿𝐿/2𝑅𝑅, where 𝐿𝐿 is the specimen length, and 𝑅𝑅 is the radius of 

the end of the lamina [51]. 

 𝜎𝜎𝐶𝐶𝐶𝐶 =
𝐺𝐺𝑚𝑚

1 − 𝑘𝑘
+ 𝜆𝜆

𝜋𝜋2𝐸𝐸𝑓𝑓𝑘𝑘
12

�
𝑚𝑚ℎ
𝐿𝐿
�

2

 ( 4-46) 

 

For a square-ended lamina, 𝑅𝑅 = ∞, and according to Table  4-4, 𝜆𝜆 = 4, which 

corresponds to the fixed-end condition. Table  4-4 shows that 1 ≤ 𝜆𝜆 ≤ 4, depending on the 

rounded-end radius. For 𝑅𝑅 = 0, 𝜆𝜆 = 1, which corresponds to laminates with simply 

supported ends. 

TABLE  4-4 
 

END FIXITY PARAMETER 𝜆𝜆 AS A FUNCTION OF 𝐿𝐿/2𝑅𝑅 [51] 

𝐿𝐿
2𝑅𝑅

 0 1 2 4 6 8 10 15 20 30 40 50 ∞ 

𝜆𝜆 4 3.17 2.45 1.69 1.42 1.30 1.23 1.15 1.11 1.07 1.05 1.04 1 

 

For a composite made of a given combination of materials, the composite stress 𝜎𝜎𝐶𝐶𝐶𝐶  

and 𝜎𝜎𝐶𝐶𝐶𝐶  must be minimized with respect to the number of buckle waves 𝑚𝑚 to minimize the 

valus of 𝜎𝜎𝐶𝐶𝐶𝐶  and 𝜎𝜎𝐶𝐶𝐶𝐶 . For any given 𝑘𝑘, the smaller value of 𝜎𝜎𝐶𝐶𝐶𝐶  or 𝜎𝜎𝐶𝐶𝐶𝐶  is the governing stress. 
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Generally, for 𝑘𝑘 ≤ 0.1, equation ( 4-44) gives a lower microbuckling stress, whereas for 

𝑘𝑘 ≥ 0.1, the governing equation for the minimum stress is given by equation ( 4-45). 

In the edge trimming of FRPs, when 90° ≤ 𝜃𝜃 ≤ 180°, it is assumed that the cutting 

process causes microbuckling of the fibers due to the tool nose radius. Knowing the critical 

stress causing microbuckling and fiber volume fraction (𝑣𝑣𝑓𝑓), it is possible to estimate the 

thrust force, assuming that all of the thrust force causes fiber microbuckling. 

For a more complicated case of microbuckling analysis, which is especially useful in 

the oblique machining of composites, a circular fiber-reinforced composites model can be 

used. When this type of composite is subjected to compressive loading aligned with the 

fiber direction, two types of microbuckling mechanisms can cause failure:  microbuckling in 

the extension mode and microbuckling in the shear mode [52]. Both failure modes are 

shown in Figure  4-13. According to the literature on microbuckling analysis of laminate-

reinforced composites, the first mode (extension mode) will take place if the fiber volume 

fraction of the composite is less than 0.1, (𝑘𝑘 ≤ 0.1), whereas microbuckling in the shear 

mode will take place at higher fiber volume fractions (𝑘𝑘 ≥ 0.1). An approximate solution 

for the latter problem was obtained using the energy method. 

If force 𝑃𝑃 is being applied on a composite coupon, the change in the strain energy of 

the fiber ∆𝑉𝑉𝑓𝑓  and the matrix ∆𝑉𝑉𝑚𝑚  must be equal to the work done by the external 

compressive force  𝑃𝑃, or [52] 

 ∆𝑉𝑉𝑓𝑓 + ∆𝑉𝑉𝑚𝑚 = ∆𝑇𝑇 ( 4-47) 

 

Assuming the shear mode buckling of fibers with sinusoidal deformation, 

displacement in the transverse direction can be written in the following series for 𝑣𝑣 [52]: 
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 𝑣𝑣 = � 𝑎𝑎𝑛𝑛 sin
𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿

𝑛𝑛=∞

𝑛𝑛=1

 ( 4-48) 

 

and the strain energy of bending of the fiber is [52] 

 ∆𝑉𝑉𝑓𝑓 =
𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓

2
� �

𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2�

2𝐿𝐿

0
 ( 4-49) 

 𝑑𝑑𝑑𝑑 =
𝜋𝜋4𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓

4𝐿𝐿3 � 𝑛𝑛2𝑎𝑎𝑛𝑛2
𝑛𝑛=∞

𝑛𝑛=1

 ( 4-50) 

 

The work done by the compressive force 𝑃𝑃 acting on a fiber can be calculated as [52] 

 ∆𝑇𝑇 =
𝑃𝑃𝜋𝜋2

4𝐿𝐿
� 𝑛𝑛2𝑎𝑎𝑛𝑛2
𝑛𝑛=∞

𝑛𝑛=1

 ( 4-51) 

 

Assuming there is no shear deformation in the fiber, the changes in the strain energy 

associated with extensional stresses in the matrix can be written as [52] 

 ∆𝑉𝑉𝑚𝑚 =
1
2
� 𝜏𝜏𝑥𝑥𝑥𝑥𝑥𝑥  𝛾𝛾𝑥𝑥𝑥𝑥𝑥𝑥  𝑑𝑑𝑑𝑑
𝑉𝑉

 ( 4-52) 

 

and the integration extends over a repeating volumetric element of composite. Now, a 

relation between the shear stress 𝜏𝜏𝑥𝑥𝑥𝑥𝑥𝑥 , shear strain 𝛾𝛾𝑥𝑥𝑥𝑥𝑥𝑥  in the matrix and the deformation 

of the composite and its microstructure should be established. 
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In the case of circular fiber-reinforced composites the above-mentioned quantities 

are assumed to be a function of both 𝑥𝑥 and 𝑧𝑧: 

 𝜏𝜏𝑥𝑥𝑥𝑥𝑥𝑥 , 𝛾𝛾𝑥𝑥𝑥𝑥𝑥𝑥 = 𝑓𝑓(𝑥𝑥, 𝑧𝑧) ( 4-53) 

 

It can be said that if an external axial load is being applied on the composite, then 

the conditions of symmetry require that lines ab, bc, cd, and da (Figure  4-14) in a deformed 

repeating element remain parallel to the corresponding lines in the undeformed material. 

The following relation can now be established between the displacement of the fiber and 

shear strain in the matrix at any point z on the boundary of the repeating element based on 

the assumption in equation ( 4-53). 

 

Figure  4-14. Laminae and circular fiber-reinforced composites [52] 

Equations ( 4-54) and ( 4-55) apply to the square fiber packing of circular fibers [52]:  
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 𝛾𝛾𝑥𝑥𝑥𝑥𝑥𝑥 ≈ �
1

1 − 𝑘𝑘𝑧𝑧
� �
𝑑𝑑𝑑𝑑
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𝜋𝜋
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 ( 4-55) 

 

where 𝑘𝑘 is the fiber volume fraction of the composite, 𝑧𝑧 is a variable, and 𝑐𝑐 is defined in 

Figure  4-14. 

 For a given shear strain in the matrix, the shear stress is 

 𝜏𝜏𝑥𝑥𝑥𝑥𝑥𝑥 = 𝐺𝐺𝑚𝑚𝛾𝛾𝑥𝑥𝑥𝑥𝑥𝑥  ( 4-56) 

 

and equation ( 4-52) becomes 

 ∆𝑉𝑉𝑚𝑚 =
𝐺𝐺𝑚𝑚
2
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

1 − 𝑘𝑘𝑧𝑧
�

2

𝑑𝑑𝑑𝑑
𝑉𝑉

 ( 4-57) 

 

where differentiation of equation ( 4-48) with respect to 𝑥𝑥 and substitution for 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 and 

integration of the resultant equation over the wavelength 𝐿𝐿 yields [52] 

 𝛥𝛥𝑉𝑉𝑚𝑚 =
𝑐𝑐𝐺𝐺𝑚𝑚𝜋𝜋2

2𝐿𝐿
� 𝑛𝑛2𝑎𝑎𝑛𝑛2 �

𝑑𝑑𝑑𝑑
1 − 𝑘𝑘𝑧𝑧

𝑐𝑐

−𝑐𝑐

𝑛𝑛=∞

𝑛𝑛=1

 ( 4-58) 

 

Using equations ( 4-47), ( 4-50), ( 4-52), and ( 4-58) and solving for 𝑃𝑃 yields [52] 
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   ( 4-59) 

 

and the critical value of the load 𝑃𝑃 can be expressed as [52] 

 𝑃𝑃𝑐𝑐𝑐𝑐 = 2𝑐𝑐𝐺𝐺𝑚𝑚 �
𝑑𝑑𝑑𝑑
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 ( 4-60) 

 

where 𝑚𝑚 is the number of buckle waves corresponding to 𝑃𝑃𝑐𝑐𝑐𝑐 . 

The critical compressive fiber stress is [52] 

 𝜎𝜎𝑓𝑓𝑐𝑐𝑐𝑐 =
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where, for the square fiber packing, 

 
𝑐𝑐 = 𝑟𝑟 �

𝜋𝜋
4𝑘𝑘
�

1
2 ( 4-62) 

 

and 𝐿𝐿/𝑚𝑚 represents the buckle wavelength. 

 𝐺𝐺𝐿𝐿𝐿𝐿 =
1

2𝑐𝑐
� �
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 ( 4-63) 

 

where 𝐺𝐺𝐿𝐿𝐿𝐿  is the shear modulus of a circular fiber-reinforced composite [53]. 
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Plugging equations ( 4-62) and ( 4-63) into equation ( 4-61), minimizing this with 

respect to 𝑚𝑚, and making use of relationship 𝜎𝜎𝑓𝑓𝑐𝑐𝑐𝑐 𝑘𝑘 = 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐 , the final equation for 

microbuckling stress of a composite with simply supported fibers at the end becomes [52] 

 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐺𝐺𝐿𝐿𝐿𝐿 + �
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For the fixed ends fibers, the equation will be [52] 

 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐺𝐺𝐿𝐿𝐿𝐿 + 𝜋𝜋2𝐸𝐸𝑓𝑓𝑘𝑘 �
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For a plane stress analysis, equation ( 4-53) can be used to compute the 

microbuckling stress. To minimize the value of 𝜎𝜎𝐶𝐶𝐶𝐶 , the value of 𝑚𝑚, which represents the 

number of buckling waves, should be equal to one. In addition, the fiber volume fraction 

can be written in terms of the matrix and reinforcement lamina thickness, where 𝜆𝜆 depends 

on the end fixed condition of the fibers, which, for the case of edge trimming, is the 

clamped-free condition. However, there is not such a condition in Table  4-4. From the 

mechanics of the material, a column with a clamped-free boundary condition can be 

replaced by a simply supported column at both ends with an effective length of 𝐿𝐿/2. 

Therefore [52], 

 𝑘𝑘 =
ℎ

2𝑐𝑐 + ℎ
,   𝜆𝜆 = 1 ( 4-66) 
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where 𝐿𝐿 in equation ( 4-67), is the length of the composite specimen, which, in this case, is 

the fiber-matrix debonding length that was computed using FEM in section  4.1.2.1. 

To calculate the buckling force, the microbuckling stress in equation ( 4-67) should 

be multiplied by the area of the tool nose, which contributes to microbuckling. The red face 

(Face 1) shown in Figure  4-15 causes fiber microbuckling since, according to the cutting 

direction, the fibers undergoing the red area will fail due to microbuckling and the ones 

contacting the blue area (Face 2) will be conducted to the rake face of the tool, thus 

generating no thrust force. The distribution of force along Face 1 is not linear, and for each 

infinitesimal area, the force is calculated using equation ( 4-68) and then integrated over 

the total arc angle. It is assumed that the resultant force at Region 1 is along the fibers, thus 

causing microbuckling. The resultant force then can be projected along the horizontal and 

vertical directions to determine the thrust and cutting force.  

 

Figure  4-15. Tool nose area causing fiber microbuckling        

 𝑑𝑑𝑑𝑑 = 𝜎𝜎𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑 = 𝜎𝜎𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒𝑑𝑑𝑑𝑑 ( 4-68) 

 𝑑𝑑𝐹𝐹𝑛𝑛 = 𝑑𝑑𝑑𝑑 cos �𝜃𝜃 − 𝜙𝜙 −
𝜋𝜋
2
� = 𝑟𝑟𝑒𝑒𝜎𝜎𝐶𝐶𝐶𝐶 cos �𝜃𝜃 − 𝜙𝜙 −

𝜋𝜋
2
� 𝑑𝑑𝑑𝑑 ( 4-69) 
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 𝑑𝑑𝐹𝐹𝑛𝑛 = −𝑑𝑑𝑑𝑑 sin �𝜃𝜃 − 𝜙𝜙 −
𝜋𝜋
2
� = −𝑟𝑟𝑒𝑒𝜎𝜎𝐶𝐶𝐶𝐶 sin �𝜃𝜃 − 𝜙𝜙 −

𝜋𝜋
2
� 𝑑𝑑𝑑𝑑 ( 4-70) 

 

Figure  4-16 shows a schematic picture of forces acting on the part of the tool nose 

compressing the fibers. 

 

 

Figure  4-16. Tool nose force diagram 

Simplifying equations ( 4-69) and ( 4-70) 

 𝑑𝑑𝐹𝐹𝑛𝑛 = 𝑟𝑟𝑒𝑒𝜎𝜎𝐶𝐶𝐶𝐶 sin(𝜃𝜃 − 𝜑𝜑)𝑑𝑑𝜙𝜙 ( 4-71) 

 𝑑𝑑𝐹𝐹𝑠𝑠 = 𝑟𝑟𝑒𝑒𝜎𝜎𝐶𝐶𝐶𝐶 cos(𝜃𝜃 − 𝜑𝜑)𝑑𝑑𝑑𝑑 ( 4-72) 

 

According to Figure  4-17, 𝑑𝑑𝑑𝑑𝑐𝑐  and 𝑑𝑑𝐹𝐹𝑡𝑡  can be written as 

 𝑑𝑑𝐹𝐹𝑐𝑐 = −𝑑𝑑𝑑𝑑 cos(𝜋𝜋 − 𝜃𝜃) = −𝑑𝑑𝑑𝑑 cos 𝜃𝜃 = −𝜎𝜎𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒 cos𝜃𝜃 𝑑𝑑𝑑𝑑 ( 4-73) 

 𝑑𝑑𝐹𝐹𝑐𝑐 = −𝑑𝑑𝑑𝑑 sin(𝜋𝜋 − 𝜃𝜃) = −𝑑𝑑𝑑𝑑 sin𝜃𝜃 = −𝜎𝜎𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒 sin𝜃𝜃 𝑑𝑑𝑑𝑑 ( 4-74) 
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Figure  4-17. Angles of forces acting on nose of cutting tool 

The total thrust force and the portion of cutting force causing by the tool nose radius 

can be calculated by integrating equations ( 4-73) and ( 4-74) over the angle of region one 

shown in Figure  4-15. 

 𝐹𝐹𝑐𝑐1 = � −𝜎𝜎𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒 cos 𝜃𝜃𝜃𝜃𝜃𝜃 = −𝜎𝜎𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒 �𝜃𝜃 −
𝜋𝜋
2
� cos 𝜃𝜃

𝜃𝜃−𝜋𝜋2

0
 ( 4-75) 

 𝐹𝐹𝑡𝑡1 = � −𝜎𝜎𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒 sin𝜃𝜃𝜃𝜃𝜃𝜃 = −𝜎𝜎𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒 �𝜃𝜃 −
𝜋𝜋
2
� sin𝜃𝜃

𝜃𝜃−𝜋𝜋2

0
 ( 4-76) 

 

Substituting from equation ( 4-67) 

 𝐹𝐹𝑐𝑐1 = −�
(2𝑐𝑐 + ℎ)

2𝑐𝑐
𝐺𝐺𝑚𝑚 +

𝜋𝜋2𝐸𝐸𝑓𝑓ℎ
3(2𝑐𝑐 + ℎ) �

ℎ
𝐿𝐿
�

2

� 𝑟𝑟𝑒𝑒 �𝜃𝜃 −
𝜋𝜋
2
� cos 𝜃𝜃 ( 4-77) 

 𝐹𝐹𝑡𝑡1 = − �
(2𝑐𝑐 + ℎ)

2𝑐𝑐
𝐺𝐺𝑚𝑚 +

𝜋𝜋2𝐸𝐸𝑓𝑓ℎ
3(2𝑐𝑐 + ℎ) �

ℎ
𝐿𝐿
�

2

� 𝑟𝑟𝑒𝑒 �𝜃𝜃 −
𝜋𝜋
2
� sin 𝜃𝜃 ( 4-78) 

Experiments show that the values of the thrust force are much lower than the ones 

calculated from equation ( 4-78), which is due to the assumption of the model. This model 
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assumes that the fibers are perfectly aligned with each other and with the compressive 

axial force, which is not valid in reality. Any waviness of lateral force on the fibers 

significantly reduces the microbuckling stress. This can be corrected by considering an 

initial deformation in the fibers with lateral force acting on it. 

The above-mentioned method is more accurate if the tool nose radius is significantly 

bigger than the fiber diameter; however, if it is smaller than the fiber diameter, the 

following method will better predict the contribution of the tool nose to the cutting and 

thrust forces. 

 𝐹𝐹𝑐𝑐1 = − �
(2𝑐𝑐 + ℎ)

2𝑐𝑐
𝐺𝐺𝑚𝑚 +

𝜋𝜋2𝐸𝐸𝑓𝑓ℎ
3(2𝑐𝑐 + ℎ) �

ℎ
𝐿𝐿
�

2

� 𝜋𝜋𝑟𝑟2 𝐻𝐻
𝑐𝑐 + 2𝑟𝑟

cos 𝜃𝜃 ( 4-79) 

 𝐹𝐹𝑡𝑡1 = −�
(2𝑐𝑐 + ℎ)

2𝑐𝑐
𝐺𝐺𝑚𝑚 +

𝜋𝜋2𝐸𝐸𝑓𝑓ℎ
3(2𝑐𝑐 + ℎ) �

ℎ
𝐿𝐿
�

2

� 𝜋𝜋𝑟𝑟2 𝐻𝐻
𝑐𝑐 + 2𝑟𝑟

sin𝜃𝜃 

 

( 4-80) 
 

 

4.1.2.2.1.2. Model 2 – Undulating Fiber Model 

Model 2 is same as Model 1; however, in this model, it is assumed that the resultant 

force acting on the unidirectional composite at the tool nose is aligned with the fibers. 

Figure  4-18 shows a schematic picture of fibers with initial waviness, and the forces and 

moments acting on an infinitesimal element of the fiber surrounding by the matrix 

material. The importance of initial fiber curvature has been pointed out and incorporated 

in the model by many investigators [54-58]. 

The initial waviness of the fibers can be shown in a sine form function as [59] 



77 
 

 𝑣𝑣0 = 𝐵𝐵0 sin
𝜋𝜋𝜋𝜋
𝐿𝐿

 ( 4-81) 

 

 

Figure  4-18. Schematic picture of fibers with initial waviness 

where, 𝑣𝑣0  is the equation of initial fiber wave, and 𝐵𝐵0 and 𝐿𝐿 are the amplitude and the 

wavelength of the sine form function, respectively. 

The resulting fiber wave equation after loading can be written in the same manner 

as [59] 

 𝑣𝑣 = 𝐵𝐵 sin
𝜋𝜋𝜋𝜋
𝐿𝐿

 ( 4-82) 

 

The equation of moment equilibrium for the infinitesimal fiber element shown in 

Figure  4-18 is [59] 

 −𝑀𝑀 + (𝑀𝑀 + 𝑑𝑑𝑑𝑑) + 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 −
𝑉𝑉𝑉𝑉𝑉𝑉

2
− (𝑉𝑉 + 𝑑𝑑𝑑𝑑)

𝑑𝑑𝑑𝑑
2

= 0 ( 4-83) 
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where 𝜎𝜎 is the average stress on the element, 𝐴𝐴 is the fiber cross-sectional area, and 

𝑀𝑀 and  𝑉𝑉 are the internal resultants. 

Ignoring the small terms (second-order differentiations) and dividing by 𝑑𝑑𝑑𝑑 yields 

[59] 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜎𝜎𝜎𝜎
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 𝑉𝑉 = 0 ( 4-84) 

 𝑀𝑀 = 𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓
𝑑𝑑2

𝑑𝑑𝑥𝑥2 (𝑣𝑣 − 𝑣𝑣0)  ( 4-85) 

 

Assuming small axial displacement, the shear strain in the matrix can be 

approximately written as [59] 

 𝛾𝛾𝑥𝑥𝑥𝑥𝑥𝑥 =
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑣𝑣 − 𝑣𝑣0) ( 4-86) 

 

Since shear is dominated by the matrix [59], 

 𝑉𝑉 = 𝐴𝐴𝐺𝐺𝐿𝐿𝐿𝐿
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑣𝑣 − 𝑣𝑣0 )  ( 4-87) 

 

where, 𝐺𝐺𝐿𝐿𝐿𝐿  is the shear modulus of composites. Substituting equations ( 4-85) and ( 4-87) 

into equation ( 4-84) and evaluating at 𝑥𝑥 = 𝐿𝐿 yields [59] 

 𝜎𝜎𝜎𝜎 𝐵𝐵 = �𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓
 𝜋𝜋2

𝐿𝐿2 + 𝐴𝐴.𝐺𝐺𝐿𝐿𝐿𝐿� (𝐵𝐵 − 𝐵𝐵0)    ( 4-88) 
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By letting 𝐵𝐵𝑐𝑐  be the waviness amplitude at failure, the critical composite strength 

can be written as [59] 

 𝜎𝜎𝑐𝑐 = �
𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓𝜋𝜋2

𝐴𝐴𝐿𝐿2 + 𝐺𝐺𝐿𝐿𝐿𝐿� �1 −
𝐵𝐵0

𝐵𝐵𝑐𝑐
� ( 4-89) 

 

The term 𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓𝜋𝜋2/𝐴𝐴𝐿𝐿2 in equation ( 4-89) can be neglected since it is very small in 

comparison to 𝐺𝐺𝐿𝐿𝐿𝐿 . Therefore, the equation can be rewritten as [59] 

 𝜎𝜎𝑐𝑐 = 𝐺𝐺𝐿𝐿𝐿𝐿 �1 −
𝐵𝐵0

𝐵𝐵𝑐𝑐
� ( 4-90) 

 

where 𝐵𝐵𝑐𝑐  can take two values depending on the failure mode:  one associated with fiber 

bending and the other associated with matrix or interface shear failure.  Failure is 

controlled by shear. This failure occurs when the shear stress in composites reaches the 

critical shear strength of the matrix of the fiber-matrix interface. The maximum shear in the 

matrix can be calculated from equation ( 4-87) as [59] 

 𝜏𝜏𝑥𝑥𝑥𝑥𝑥𝑥 = 𝐺𝐺𝐿𝐿𝐿𝐿
𝜋𝜋
𝐿𝐿

 (𝐵𝐵 − 𝐵𝐵0) ( 4-91) 

 

The matrix material fails when 𝐵𝐵 = 𝐵𝐵𝑐𝑐  and 𝜏𝜏𝑥𝑥𝑥𝑥𝑥𝑥 = 𝜏𝜏𝑐𝑐 . The term 𝜏𝜏𝑐𝑐  is the shear 

strength of matrix or the fiber-matrix interface. Therefore, the critical value of the waviness 

amplitude can be written as [59] 

 𝐵𝐵𝑐𝑐𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 =
𝜏𝜏𝑐𝑐
𝐺𝐺𝐿𝐿𝐿𝐿

𝐿𝐿
𝜋𝜋

+ 𝐵𝐵0  ( 4-92) 
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A composites buckling strength in the shear mode can be determined by 

substituting 𝐵𝐵𝑐𝑐𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒  from equation ( 4-92) into equation ( 4-90) or [59] 

 𝜎𝜎𝑐𝑐𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 =
𝐺𝐺𝐿𝐿𝐿𝐿

1 + 𝜋𝜋𝐵𝐵0
𝐿𝐿
𝐺𝐺𝐿𝐿𝐿𝐿
𝜏𝜏𝑐𝑐

 
 ( 4-93) 

 

Here, failure is controlled by the bending of the fiber. 

In this failure mode, when the flexural stress in the fiber reaches its flexure strength, 

the composite fails. From equation ( 4-85), the flexural strength of the fiber can be written 

as [59] 

 𝑋𝑋𝑐𝑐
𝑓𝑓 = 𝐸𝐸𝑓𝑓𝑟𝑟

𝜋𝜋2

𝑙𝑙2
(𝐵𝐵𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝐵𝐵0)  ( 4-94) 

 

where 𝑋𝑋𝑐𝑐
𝑓𝑓  is the flexure strength of fiber, and 𝑟𝑟 is the fiber radius. Solving the above 

equation for 𝐵𝐵𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  [59] 

 𝐵𝐵𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
𝑋𝑋𝑐𝑐
𝑓𝑓

𝐸𝐸𝑓𝑓
𝐿𝐿2

𝜋𝜋2𝑟𝑟
+ 𝐵𝐵0 ( 4-95) 

 

and the composites strength in the fiber bending mode is [59] 
 

 
𝜎𝜎𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =

𝐺𝐺𝐿𝐿𝐿𝐿

1 + 𝜋𝜋2 � 𝐵𝐵0
2𝐿𝐿2� �

2𝑟𝑟𝐸𝐸𝑓𝑓
𝑋𝑋𝑐𝑐
𝑓𝑓 �

 
( 4-96) 
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Failure that is controlled by matrix shear and failure that is controlled by bending of 

fiber result in two different buckling stresses whereby the minimum of these failure modes 

gives the composites strength in compression. The undulated fiber model gives a better 

estimate of the critical buckling stress compared to the perfectly aligned fibers composites, 

since it considers the fibers waviness defect, which has a big impact on the compressive 

strength [59]. Equation ( 4-96) is likely to be applicable to Kevlar/epoxy composites, 

because the flexural strength of Kevlar fibers is very low [60]. 

The orthogonal edge trimming thrust force and the contribution of tool nose to the 

cutting force can be calculated using equations ( 4-75) and ( 4-76), based on the shear 

failure mode: 

 𝐹𝐹𝑐𝑐1 = −
𝐺𝐺𝐿𝐿𝐿𝐿

1 + 𝜋𝜋𝐵𝐵0
𝐿𝐿
𝐺𝐺𝐿𝐿𝐿𝐿
𝜏𝜏𝑐𝑐

 
𝑟𝑟𝑒𝑒 �𝜃𝜃 −

𝜋𝜋
2
� cos 𝜃𝜃 ( 4-97) 

 𝐹𝐹𝑡𝑡1 = −
𝐺𝐺𝐿𝐿𝐿𝐿

1 + 𝜋𝜋𝐵𝐵0
𝐿𝐿
𝐺𝐺𝐿𝐿𝐿𝐿
𝜏𝜏𝑐𝑐

 
𝑟𝑟𝑒𝑒 �𝜃𝜃 −

𝜋𝜋
2
� sin𝜃𝜃 ( 4-98) 

 

and for the failure mode controlled by the bending of fibers, equations ( 4-99) and ( 4-100) 

can be used: 

 𝐹𝐹𝑐𝑐1 = −
𝐺𝐺𝐿𝐿𝐿𝐿

1 + 𝜋𝜋2 � 𝐵𝐵0
2𝐿𝐿2� �

2𝑟𝑟𝐸𝐸𝑓𝑓
𝑋𝑋𝑐𝑐
𝑓𝑓 �

𝑟𝑟𝑒𝑒 �𝜃𝜃 −
𝜋𝜋
2
� cos 𝜃𝜃 

( 4-99) 

 𝐹𝐹𝑡𝑡1 = −
𝐺𝐺𝐿𝐿𝐿𝐿

1 + 𝜋𝜋2 � 𝐵𝐵0
2𝐿𝐿2� �

2𝑟𝑟𝐸𝐸𝑓𝑓
𝑋𝑋𝑐𝑐
𝑓𝑓 �

𝑟𝑟𝑒𝑒 �𝜃𝜃 −
𝜋𝜋
2
� sin𝜃𝜃 

( 4-100) 
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For smaller fiber radii, equations ( 4-101) and ( 4-102) give a better prediction: 

 𝐹𝐹𝑐𝑐1 = −
𝐺𝐺𝐿𝐿𝐿𝐿

1 + 𝜋𝜋2 � 𝐵𝐵0
2𝐿𝐿2� �

2𝑟𝑟𝐸𝐸𝑓𝑓
𝑋𝑋𝑐𝑐
𝑓𝑓 �

𝜋𝜋𝑟𝑟2 𝐻𝐻
𝑐𝑐 + 2𝑟𝑟

cos 𝜃𝜃 
( 4-101) 

 𝐹𝐹𝑡𝑡1 = −
𝐺𝐺𝐿𝐿𝐿𝐿

1 + 𝜋𝜋2 � 𝐵𝐵0
2𝐿𝐿2� �

2𝑟𝑟𝐸𝐸𝑓𝑓
𝑋𝑋𝑐𝑐
𝑓𝑓 �

𝜋𝜋𝑟𝑟2 𝐻𝐻
𝑐𝑐 + 2𝑟𝑟

sin𝜃𝜃 
( 4-102) 

 

4.1.2.2.1.3. Model 3 – Buckling Considering Lateral Force 

The presence of lateral force acting on the fibers significantly affects the axial 

buckling force. In this model, it is assumed that the lateral force 𝑠𝑠 is acting at the tip of the 

fiber. This model can be used in the analysis of the cutting thrust force considering the 

friction. Figure  4-19 shows a schematic view of a single fiber under axial and lateral forces 

𝑃𝑃 and 𝑠𝑠. 

 

Figure  4-19. Single fiber under axial and lateral force surrounded by matrix material 
(r = fiber radius; 2c = fiber spacing) 
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Assumptions for this model include the following [59]: 

• Two-dimensional deformation. 

• Fiber that cannot shear. 

• A matrix that does not elongate/contract, therefore, the only deformation 

mechanism in the matrix being pure shear. 

• Normal stresses in the fiber that produce no mechanical work during deformation, i.e., 

 𝜎𝜎 =
𝑃𝑃
𝐴𝐴

+
𝑀𝑀𝑀𝑀
𝐼𝐼𝑓𝑓

≈
𝑀𝑀𝑀𝑀
𝐼𝐼𝑓𝑓

 ( 4-103) 

 

Shear stress in the matrix can be written using Hook’s law. 

 𝜏𝜏𝑥𝑥𝑥𝑥𝑥𝑥 = 𝐺𝐺𝑚𝑚𝛾𝛾𝑥𝑥𝑥𝑥𝑥𝑥  ( 4-104) 

 

or, according to Figure  4-19, 

 𝛾𝛾𝑥𝑥𝑥𝑥𝑥𝑥 = �
𝑐𝑐 + 𝑟𝑟
𝑐𝑐

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 ( 4-105) 

 

In addition, total energy in the element is [59] 

 
𝑈𝑈 = −

𝑃𝑃
2
� �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�

2

𝑑𝑑𝑑𝑑
𝐿𝐿

0
−� 𝑠𝑠 �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝑑𝑑𝑑𝑑

𝐿𝐿

0
+

1
2
� 𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 �

𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2�

2

𝑑𝑑𝑑𝑑
𝐿𝐿

0

+
1
2
� 𝐴𝐴𝑚𝑚𝜏𝜏𝑥𝑥𝑥𝑥𝑥𝑥 𝛾𝛾𝑥𝑥𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑
𝐿𝐿

0
 

( 4-106) 
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in which the first two terms are the external work done by external forces 𝑃𝑃 and 𝑠𝑠, and the 

last two terms are the internal deformation energy. 

According to Figure  4-20, the axial displacement of the free end of the beam can be 

calculated using equation ( 4-107) [61]. This displacement is used to find the external work 

done by the axial force 𝑃𝑃 only. 

 

Figure  4-20. A beam under axial force 

 𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑�1 + �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�

2

− 𝑑𝑑𝑑𝑑 ≈
1
2
�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�

2

𝑑𝑑𝑑𝑑 ( 4-107) 

 
Using the principal of virtual work and equation ( 4-106) [62-63] 

 

 

𝛿𝛿𝛿𝛿 = 𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 � �
𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2��

𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝛿𝛿𝛿𝛿�𝑑𝑑𝑑𝑑
𝐿𝐿

0

+ �−𝑃𝑃 + 𝐴𝐴𝑚𝑚 �1 +
𝑟𝑟
𝑐𝑐
�

2
𝐺𝐺𝑚𝑚�� �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� �

𝑑𝑑
𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿� 𝑑𝑑𝑑𝑑 − � 𝑠𝑠𝑠𝑠𝑠𝑠
𝐿𝐿

0

𝐿𝐿

0
 

( 4-108) 
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𝛿𝛿𝛿𝛿 = 𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 ��
𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2� �

𝑑𝑑
𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿��
0

𝐿𝐿

− 𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 � �
𝑑𝑑3𝑣𝑣
𝑑𝑑𝑥𝑥3� �

𝑑𝑑
𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿� 𝑑𝑑𝑑𝑑
𝐿𝐿

0

+ �−𝑃𝑃 + 𝐴𝐴𝑚𝑚 �1 +
𝑟𝑟
𝑐𝑐
�

2
𝐺𝐺𝑚𝑚� ��

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝛿𝛿𝛿𝛿�

0

𝐿𝐿

− �−𝑃𝑃 + 𝐴𝐴𝑚𝑚 �1 +
𝑟𝑟
𝑐𝑐
�

2
𝐺𝐺𝑚𝑚�� �

𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2 𝛿𝛿𝛿𝛿�𝑑𝑑𝑑𝑑 − � 𝑠𝑠𝑠𝑠𝑠𝑠

𝐿𝐿

0

𝐿𝐿

0

= 𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 ��
𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2� �

𝑑𝑑
𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿��
0

𝐿𝐿

− 𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 �
𝑑𝑑3𝑣𝑣
𝑑𝑑𝑥𝑥3 𝛿𝛿𝛿𝛿�

0

𝐿𝐿

+ 𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 � �
𝑑𝑑4𝑣𝑣
𝑑𝑑𝑥𝑥4 𝛿𝛿𝛿𝛿�𝑑𝑑𝑑𝑑

𝐿𝐿

0

+ �−𝑃𝑃 + 𝐴𝐴𝑚𝑚 �1 +
𝑟𝑟
𝑐𝑐
�

2
𝐺𝐺𝑚𝑚� ��

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝛿𝛿𝛿𝛿�

0

𝐿𝐿

+ �𝑃𝑃 − 𝐴𝐴𝑚𝑚 �1 +
𝑟𝑟
𝑐𝑐
�

2
𝐺𝐺𝑚𝑚�� �

𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2 𝛿𝛿𝛿𝛿�𝑑𝑑𝑑𝑑 −

𝐿𝐿

0
[𝑠𝑠𝑠𝑠𝑠𝑠]0

𝐿𝐿  

( 4-109) 

 
𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓

𝑑𝑑4𝑣𝑣
𝑑𝑑𝑥𝑥4 + �𝑃𝑃 − 𝐺𝐺𝑚𝑚𝐴𝐴𝑚𝑚 �1 +

𝑟𝑟
𝑐𝑐
�

2
�
𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2 = 0 

𝑑𝑑3𝑣𝑣
𝑑𝑑𝑥𝑥3 +

𝑠𝑠
𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓

= 0    
( 4-110) 

 

Applying the following boundary conditions [59]: 

 

𝑥𝑥 = 0:          𝑣𝑣 = 0           
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 

𝑥𝑥 = 𝐿𝐿:         
𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2 = 0                      

𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓
𝑑𝑑3𝑣𝑣
𝑑𝑑𝑥𝑥3 = −𝑠𝑠 

( 4-111) 
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Depending on the sign of 𝐴𝐴 in the following equation, the solution for 𝑣𝑣 may vary. 

 𝐴𝐴 = 𝑃𝑃 − 𝐴𝐴𝑚𝑚𝐺𝐺𝑚𝑚 �1 +
𝑟𝑟
𝑐𝑐
�

2
 ( 4-112) 

 

If 𝐴𝐴 < 0 

 

𝑣𝑣 =
𝑠𝑠

𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓𝐵𝐵1
3 [sinh𝐵𝐵1𝐿𝐿 cosh𝐵𝐵1𝑥𝑥

− cosh𝐵𝐵1𝐿𝐿 sinh𝐵𝐵1𝑥𝑥 − sinh𝐵𝐵1𝐿𝐿 + 𝐵𝐵1𝑥𝑥 cosh𝐵𝐵1𝐿𝐿] 

𝐵𝐵1
2 = −

𝐴𝐴
𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓

 

( 4-113) 

 

If 𝐴𝐴 > 0 

 

𝑣𝑣 =
𝑠𝑠

𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓𝐵𝐵2
3 [sin𝐵𝐵2𝐿𝐿 cos𝐵𝐵2𝑥𝑥

− cos𝐵𝐵2𝐿𝐿 sin𝐵𝐵2𝑥𝑥 − sin𝐵𝐵2𝐿𝐿 + 𝐵𝐵2𝑥𝑥 cos𝐵𝐵2𝐿𝐿] 

𝐵𝐵2
2 =

𝐴𝐴
𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓

 

( 4-114) 

 

The composite will fail if the shear stress in the matrix is greater than its shear strength. 

 𝐴𝐴 < 0:      𝜏𝜏𝑐𝑐 =
𝑠𝑠𝐺𝐺𝑚𝑚 �1 + 𝑟𝑟

𝑐𝑐�

2𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓𝐵𝐵1
2 [sinh(𝐵𝐵1𝐿𝐿) sinh(𝐵𝐵1𝑛𝑛𝑛𝑛)

− cosh(𝐵𝐵1𝐿𝐿) cosh(𝐵𝐵1𝑛𝑛𝑛𝑛) + cosh(𝐵𝐵1𝐿𝐿)] 
( 4-115) 
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4.1.2.2.2. Region 2 – Fiber-Matrix Debonding 

Fiber matrix debonding is based on shearing in the matrix or the fiber-matrix 

interface. Figure  4-21, generated from FEM analysis, shows the shear strain in the matrix 

material during material deformation. Ramesh et al. [64] claimed that the dominant failure 

mechanism in FRP is by matrix shearing. It can be assumed that crack development occurs 

along the fiber and matrix interface. In this study, it is assumed that the fiber does not 

shear. 

 

Figure  4-21. Matrix shearing during cutting process 

The matrix material flow is such that after flowing, it slips on the rake face of the 

tool. Therefore, there is a change in the matrix material orientation because of shearing. 

This model does not consider friction between the chip and the rake face. 

A more complicated model is one that reflects the effect of friction. 
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4.1.2.3. Analytical Model – Cutting Force 

The cutting force is caused by two factors: tool nose radius and resistance of the 

fibers against bending. Each of these factors will be considered to calculate the cutting 

force. Knowing the force to calculate a single fiber, it is possible to determine the total force 

to bend a certain number of fibers.  

Depending on fiber orientation, tool rake angle, and the workpiece material 

properties, three different models were proposed for the fiber bending. 

𝜃𝜃 − 90 ≤ 𝛾𝛾 

𝜃𝜃 − 90 ≥  𝛾𝛾 

Damage occurs due to fiber breakage rather than matrix shearing. 

4.1.2.3.1. Bending Force When 𝜽𝜽 − 𝟗𝟗𝟗𝟗 ≤ 𝜸𝜸 

When the fiber orientation relative to the rake angle of the tool falls into the range of 

𝜃𝜃 − 90 ≤ 𝛾𝛾, the fibers undergo bending due to the exerted cutting force. In this model, it is 

assumed that the chip forms by the tool nose before it slips onto the rake face of the tool. 

This means that the force applied by the tool bends the fibers and then the surrounding 

matrix shears. Figure  4-22 shows a schematic view of fibers bent as the result of cutting 

force. 

 

Figure  4-22. Fibers bending when 𝜃𝜃 − 90 ≤ 𝛾𝛾 
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Two different factors produce the cutting force: 

• Resistance of the fibers against bending. 

• Microbuckling of the fibers due to the tool nose radius. 

No force as the result of bouncing back of material was considered in this model, since this 

effect has already been reflected in fiber microbuckling calculations. The contribution of 

each of the above-mentioned factors depends on the tool geometry, material properties, 

fiber orientation, and machining parameters, such as depth of cut. 

Consider a single fiber as shown in the Figure  4-23. If the lateral force 𝑠𝑠 acts on this 

fiber, the deflection of the fiber is such that the total potential energy is minimized. 

 

Figure  4-23. Schematic figure of single fiber under lateral force 

This analysis is based on the following assumptions [59]: 

• Two-dimensional deformation. 

• No shear in the fiber. 

• No matrix extension or compression. 
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• Normal stress in the fiber that produces no mechanical work during its deformation. 

Under these assumptions and with reference to Figure  4-23,  

 𝛾𝛾𝑥𝑥𝑥𝑥𝑥𝑥 𝑐𝑐 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑟𝑟 + 𝑐𝑐) ( 4-116) 

 𝛾𝛾𝑥𝑥𝑥𝑥𝑥𝑥 = �
𝑐𝑐 + 𝑟𝑟
𝑐𝑐

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  ( 4-117) 

 

Following the same procedure as mentioned in section  4.1.2.2.1.3, the fiber 

deflection will be 

 

𝑣𝑣 =
𝑠𝑠

𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓𝐵𝐵1
3 [sinh𝐵𝐵1𝐿𝐿 cosh𝐵𝐵1𝑥𝑥

− cosh𝐵𝐵1𝐿𝐿 sinh𝐵𝐵1𝑥𝑥 − sinh𝐵𝐵1𝐿𝐿 + 𝐵𝐵1𝑥𝑥 cosh𝐵𝐵1𝐿𝐿] 

𝐵𝐵1
2 = −

𝐴𝐴
𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓

 

( 4-118) 

 

where 

 𝐴𝐴 = −𝐴𝐴𝑚𝑚𝐺𝐺𝑚𝑚 �1 +
𝑟𝑟
𝑐𝑐
�

2
 ( 4-119) 

 

The energy balance for a single fiber surrounded by the matrix material can be 

written as 

  𝑈𝑈 = −� 𝑠𝑠 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝑑𝑑𝑑𝑑

𝐿𝐿

0
+

1
2
� 𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 �

𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2�

2

𝑑𝑑𝑑𝑑
𝐿𝐿

0
+

1
2
� 𝐴𝐴𝑚𝑚𝜏𝜏𝑥𝑥𝑥𝑥𝑥𝑥 𝛾𝛾𝑥𝑥𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑
𝐿𝐿

0
 ( 4-120) 
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where the first term is the external work done by the lateral force 𝑠𝑠, the second term 

corresponds to the strain energy stored in the fiber, and the last term represents the strain 

energy stored in the matrix corresponding to one fiber. 

If the debonding length 𝐿𝐿 in equation ( 4-120) is known, then the bending force 𝑠𝑠 for 

a single fiber can be calculated by solving the equation 𝑈𝑈 = 0. However, the debonding 

length is unknown, and therefore another equation must be solved simultaneously with the 

energy equation. 

It can be assumed that the composite material fails due to the excessive shear stress 

in the matrix material; however, for the chip to form, the material failure is not enough. 

When the chip forms, both fiber and matrix fail. 

The following equation can be used to calculate the shear stress in the matrix at any 

given 𝑥𝑥 coordinate along the fiber axis. 

 𝜏𝜏𝑥𝑥𝑥𝑥𝑥𝑥 = 𝐺𝐺𝑚𝑚 �1 +
𝑟𝑟
𝑐𝑐
�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 ( 4-121) 

 

where 𝑣𝑣 is the fiber deflection and can be calculated using equation ( 4-118). 

The fiber deflection is such that it takes the maximum deflection and slope at the 

free end. On the other hand, there is a specific point along the fiber at which both the 

deflection and the slope are zero. If the distance of the point to the free end of the fiber 

along the fiber axis is 𝐿𝐿, then the shear stress at this point can be calculated using equation 

( 4-121). The fiber can take a deflection such that the shear stress in the fixed point reaches 

the matrix shear strength. This deflection is cause by a lateral force 𝑠𝑠. Therefore, solving 

equations ( 4-120) and ( 4-121) simultaneously at 𝑥𝑥 = 𝑛𝑛𝑛𝑛, gives the length 𝐿𝐿 and the lateral 



92 
 

force 𝑠𝑠, which cause the debonding of fiber-matrix interface due to excessive shear stress in 

the matrix material. 

 
𝑈𝑈 = −� 𝑠𝑠 �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝑑𝑑𝑑𝑑

𝐿𝐿

0
+

1
2
� 𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 �

𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2�

2

𝑑𝑑𝑑𝑑
𝐿𝐿

0
+

1
2
� 𝐴𝐴𝑚𝑚𝜏𝜏𝑥𝑥𝑥𝑥𝑥𝑥 𝛾𝛾𝑥𝑥𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑
𝐿𝐿

0
= 0 

𝜏𝜏𝑥𝑥𝑥𝑥𝑥𝑥 = 𝐺𝐺𝑚𝑚 �1 +
𝑟𝑟
𝑐𝑐
�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜏𝜏𝑐𝑐  

( 4-122) 

 

Here, 𝑠𝑠 can be found by solving any of the equations. Using the second equation, which 

represents the shear stress distribution in the matrix along the fiber, 

𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒

= −𝜏𝜏𝑐𝑐  
𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓𝐵𝐵1

3

𝑑𝑑[sinh𝐵𝐵1𝐿𝐿 cosh𝐵𝐵1𝑥𝑥 − cosh𝐵𝐵1𝐿𝐿 sinh𝐵𝐵1𝑥𝑥 − sinh𝐵𝐵1𝐿𝐿 + 𝐵𝐵1𝑥𝑥 cosh𝐵𝐵1𝐿𝐿]
𝑑𝑑𝑑𝑑

 

.
1

𝐺𝐺𝑚𝑚 (1 + 𝑟𝑟
𝑐𝑐)

 

( 4-123) 

 

Evaluating equation ( 4-123) at 𝑥𝑥 = 𝑛𝑛𝑛𝑛 and substituting it into equation ( 4-122) gives 

2𝜏𝜏𝑐𝑐𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓𝐵𝐵1
2

𝐺𝐺𝑚𝑚 �1 + 𝑟𝑟
𝑐𝑐� [sinh(𝐵𝐵1𝐿𝐿) sinh(𝐵𝐵1𝑛𝑛𝑛𝑛)− cosh(𝐵𝐵1𝐿𝐿) cosh(𝐵𝐵1𝑛𝑛𝑛𝑛) + cosh(𝐵𝐵1𝐿𝐿)]

� �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑑𝑑𝑑𝑑

𝐿𝐿

0

+
1
2
𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 � �

𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2�

2

𝑑𝑑𝑑𝑑
𝐿𝐿

0
+

1
2
𝐺𝐺𝑚𝑚 �1 +

𝑟𝑟
𝑐𝑐
�𝐴𝐴𝑚𝑚 � �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�

2

 𝑑𝑑𝑑𝑑
𝐿𝐿

0
= 0 

( 4-124) 

 

The only unknown parameter in equation ( 4-124) is 𝐿𝐿, which is the fiber-matrix debonding 

length due to shearing in the matrix. This equation can be solved numerically. 
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Another failure mechanism is the excessive normal stress in the fiber that will result 

in fiber breakage. Maximum normal stress in the matrix should not exceed the fiber flexural 

strength.  For this mechanism, 𝑠𝑠 is 

 𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = −
𝑋𝑋𝑓𝑓𝐵𝐵1𝐼𝐼𝑓𝑓

𝑟𝑟(− sinh(𝐵𝐵1𝐿𝐿) cosh(𝐵𝐵1𝑥𝑥) + cosh(𝐵𝐵1𝐿𝐿) sinh(𝐵𝐵1𝑥𝑥)) ( 4-125) 

 

Evaluating equation ( 4-125)and substituting it into equation ( 4-122) gives 

 

𝑋𝑋𝑓𝑓𝐵𝐵1𝐼𝐼𝑓𝑓
𝑟𝑟(− sinh(𝐵𝐵1𝐿𝐿) cosh(𝐵𝐵1𝑥𝑥) + cosh(𝐵𝐵1𝐿𝐿) sinh(𝐵𝐵1𝑥𝑥)� �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝑑𝑑𝑑𝑑

𝐿𝐿

0

+
1
2
𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 � �

𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2�

2

𝑑𝑑𝑑𝑑
𝐿𝐿

0
+

1
2
𝐺𝐺𝑚𝑚 �1 +

𝑟𝑟
𝑐𝑐
� 𝐴𝐴𝑚𝑚 � �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�

2

 𝑑𝑑𝑑𝑑
𝐿𝐿

0
= 0 

( 4-126) 

 

Equation ( 4-126) can also be solved numerically for 𝐿𝐿. The calculated 𝐿𝐿 from this 

equation gives the length that the fibers tend to break due to excessive normal stress along 

the fibers. 

𝐿𝐿 values from equations ( 4-124) and ( 4-126) should be substituted into equations 

( 4-123) and ( 4-125) to find the maximum lateral force on each fiber resulting in both fiber 

and matrix failure. The total cutting force for this fiber orientation interval can be 

estimated by knowing the total number of fibers that resist against chip formation. 

If a cylindrical shape for the fibers is considered, then parameter 2𝑐𝑐 depends on the 

fiber volume fraction 𝑣𝑣𝑓𝑓  and fiber packing. Fiber packing can be square, hexagonal, or any 

other packing. Figure  4-24 shows fiber spacing for square fiber packing and how parameter 

2𝑐𝑐 can be calculated for this particular fiber packing. 
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Figure  4-24. Fiber spacing for square fiber packing 

 𝑣𝑣𝑓𝑓 =
𝜋𝜋𝑟𝑟2

𝑎𝑎2  ( 4-127) 

 𝑎𝑎 = 𝑟𝑟�
𝜋𝜋
𝑣𝑣𝑓𝑓

 ( 4-128) 

 2𝑐𝑐 = 𝑎𝑎 − 2𝑟𝑟 = 𝑟𝑟 ��
𝜋𝜋
𝑣𝑣𝑓𝑓
− 2� ( 4-129) 

 

Therefore, 

 𝐴𝐴 = −𝐴𝐴𝑚𝑚𝐺𝐺𝑚𝑚 �1 +
𝑟𝑟
𝑐𝑐
�

2
= −

1
2
𝐴𝐴𝑚𝑚𝐺𝐺𝑚𝑚

⎝

⎛
�
𝜋𝜋
𝑣𝑣𝑓𝑓
− 1

�
𝜋𝜋
𝑣𝑣𝑓𝑓
− 2

⎠

⎞ ( 4-130) 

 

and 

 𝐵𝐵1
2 = −

𝐴𝐴
𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓

 ( 4-131) 
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where 

 𝐼𝐼𝑓𝑓 =
𝜋𝜋𝑟𝑟4

4
.
ℎ
𝑎𝑎

 ( 4-132) 

 

Since the total potential energy balance should be written for the volumetric 

element of the material, the factor ℎ/𝑎𝑎 in 𝐼𝐼𝑓𝑓  takes care of the number of fibers along the 

thickness. 

𝐴𝐴 𝑚𝑚  in equations ( 4-120), ( 4-122), and ( 4-130) represents the matrix cross-sectional 

area associated with one fiber (Figure  4-24). 

The calculated 𝐿𝐿 from equations ( 4-124) and ( 4-128) along with equations ( 4-123) 

and ( 4-125) can be used to compute the lateral force needed to form chips: 

 𝐴𝐴𝑚𝑚 = 𝑎𝑎2 − 𝜋𝜋𝑟𝑟2 ( 4-133) 

 

Comparisons show that the two-dimensional model, representing fiber and matrix 

as thin blocks, gives better results compared to the cylindrical model of fibers when matrix 

material fills the remaining space. 

4.1.2.3.2. Bending Force When 𝜽𝜽 − 𝟗𝟗𝟗𝟗 ≥ 𝜸𝜸 

When 𝜃𝜃 − 90 ≥ 𝛾𝛾, more shearing occurs in the matrix material, and the material 

fails because of either extensive shear in the matrix or fiber breakage. All of the 

assumptions mentioned in section  4.1.2.3.1 are applicable to the case of 𝜃𝜃 − 90 ≥ 𝛾𝛾. In 

addition, it is assumed that the fibers and matrix slip on the rake face of the tool after chip 

formation. Therefore, according to Figure  4-25, the slope at the free end of the fibers will be 
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 𝑥𝑥 = 𝐿𝐿:                            
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜃𝜃 −
𝜋𝜋
2
− 𝛾𝛾 ( 4-134) 

 

 

Figure  4-25. Fibers bending when  

It is assumed that the matrix material behavior is elastic-perfectly plastic [65]. 

Therefore, the fracture stress cannot be used in the debonding length and force 

calculations; instead, fracture strain was used. Figure  4-26 shows the elastic-perfectly 

plastic behavior of the epoxy matrix used for this study. 

 

Figure  4-26. Elastic -Plastic behavior of epoxy resin 
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The total potential energy and the shear stress in the matrix for this case are 

different and are given as 

 

Using the principal of virtual work 

 𝑑𝑑2

𝑑𝑑𝑥𝑥2 �𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓
𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2� = 0 ( 4-136) 

 

and the following boundary conditions 

 

𝑥𝑥 = 0:          𝑣𝑣 = 0           
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0

𝑥𝑥 = 𝐿𝐿:         
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜃𝜃 −
𝜋𝜋
2
− 𝛾𝛾 

𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓
𝑑𝑑3𝑣𝑣
𝑑𝑑𝑥𝑥3 = −𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒

 ( 4-137) 

 

From the boundary conditions above, it is clear that equation ( 4-122) cannot be 

used as the total potential energy for this case, since the generated essential boundary 

condition at 𝑥𝑥 = 𝐿𝐿 will not be satisfied. 

Deflection of the beam can be written as 

 𝑣𝑣 =
1

12
𝑥𝑥2

𝐿𝐿𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓
�−2𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥𝑥𝑥 + 6 �𝜃𝜃 −

𝜋𝜋
2
− 𝛾𝛾 � 𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 + 3𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐿𝐿2� ( 4-138) 

𝑈𝑈 = −� 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑑𝑑𝑑𝑑

𝐿𝐿

0
+

1
2
� 𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 �

𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2�

2

𝑑𝑑𝑑𝑑
𝐿𝐿

0
+ 𝐴𝐴𝑚𝑚 �−

𝐿𝐿𝜏𝜏𝑐𝑐2

2𝐺𝐺𝑚𝑚
+ 𝜏𝜏𝑐𝑐 �1 +

𝑟𝑟
𝑐𝑐�
�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝐿𝐿

0
� = 0 ( 4-135) 
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It is assumed that the fiber at the free end slips on the rake face of the tool. 

Therefore, the fiber slope at that point will be the rake angle of the tool in the fiber 

coordinate system. The fiber coordinate system is such that the  𝑥𝑥 axis is along the fiber. 

Equation ( 4-137) shows the fiber slope at  𝑥𝑥 = 𝐿𝐿. 

Using equation ( 4-138), the shear strain in the matrix along the fiber can be written 
as 

 𝛾𝛾𝑥𝑥𝑥𝑥𝑥𝑥 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�1 +
𝑟𝑟
𝑐𝑐
� = −

1
2

𝑥𝑥
𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓𝐿𝐿

�𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥𝑥𝑥 − 2 �𝜃𝜃 −
𝜋𝜋
2
− 𝛾𝛾 �𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 − 𝑠𝑠𝐿𝐿2� �1 +

𝑟𝑟
𝑐𝑐
� ( 4-139) 

 

Solving the above equation for 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒  

 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = −
2𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 �−𝑥𝑥 �𝜃𝜃 −

𝜋𝜋
2 − 𝛾𝛾 � + 𝛾𝛾𝑥𝑥𝑥𝑥𝑥𝑥 𝐿𝐿 �

𝑐𝑐
𝑟𝑟 + 𝑐𝑐��

𝑥𝑥𝑥𝑥(𝑥𝑥 − 𝐿𝐿)  ( 4-140) 

 

Evaluating equation ( 4-140) at 𝑥𝑥 = 𝑛𝑛𝑛𝑛 and substituting it into ( 4-135) 

 

2𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 �𝑛𝑛 �𝜃𝜃 −
𝜋𝜋
2 − 𝛾𝛾 � − 𝛾𝛾𝑥𝑥𝑥𝑥𝑥𝑥 � 𝑐𝑐

𝑟𝑟 + 𝑐𝑐��
𝐿𝐿2𝑛𝑛(1 − 𝑛𝑛) � �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝑑𝑑𝑑𝑑

𝐿𝐿

0

+
1
2
� 𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 �

𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2�

2

𝑑𝑑𝑑𝑑
𝐿𝐿

0

+ 𝐴𝐴𝑚𝑚 �−
𝐿𝐿𝜏𝜏𝑐𝑐2

2𝐺𝐺𝑚𝑚
+ 𝜏𝜏𝑐𝑐 �1 +

𝑟𝑟
𝑐𝑐
��

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝐿𝐿

0
� = 0 

( 4-141) 

 

The only unknown in equation ( 4-141) is 𝐿𝐿, which is the fiber-matrix debonding 

length due to the excessive shear strain in the matrix. The interesting characteristic of this 
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method is the dependency of the debonding length and cutting force on the fiber 

orientation as well as the tool rake angle. 

As previously explained, the composite may also fail due to fiber bending and 

fracture. If the normal stress in a single fiber exceeds the flexural strength of the fiber 

material, then the fiber will break and a chip will form. Using the fiber deflection equation, 

it is possible to calculate normal stress in the fiber. The maximum stress along the fiber will 

occur at the fixed end of the fiber (𝑥𝑥 = 0). 

 

𝜎𝜎 =
𝑀𝑀𝑀𝑀
𝐼𝐼𝑓𝑓

 

𝑀𝑀 = 𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓
𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2 

( 4-142) 

 

Therefore, the maximum normal stress at the fiber cross section along its axis can be 

determined as 

 𝜎𝜎𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = −𝑟𝑟. �
𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥
𝐼𝐼𝑓𝑓

− �𝜃𝜃 −
𝜋𝜋
2
− 𝛾𝛾 �

𝐸𝐸𝑓𝑓
𝐿𝐿
−
𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐿𝐿
𝐼𝐼𝑓𝑓

� ( 4-143) 

 

Hence, the lateral force needed to break the fiber at the fixed end can be written by 

substituting 𝑥𝑥 = 0 and 𝜎𝜎𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑋𝑋𝑓𝑓𝑐𝑐 : 

 
𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =

2 �−𝑟𝑟𝐸𝐸𝑓𝑓 �𝜃𝜃 −
𝜋𝜋
2 − 𝛾𝛾 � + 𝑋𝑋𝑓𝑓𝑐𝑐𝐿𝐿� 𝐼𝐼𝑓𝑓
𝐿𝐿2𝑟𝑟

 ( 4-144) 
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Equations ( 4-144) and ( 4-135) can be used to calculate the material failure due to 

fiber breakage as 

 
−

2 �−𝑟𝑟𝐸𝐸𝑓𝑓 �𝜃𝜃 −
𝜋𝜋
2 − 𝛾𝛾 � + 𝑋𝑋𝑓𝑓𝑐𝑐𝐿𝐿� 𝐼𝐼𝑓𝑓
𝐿𝐿2𝑟𝑟

� �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝑑𝑑𝑑𝑑

𝐿𝐿

0

+
1
2
� 𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 �

𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2�

2

𝑑𝑑𝑑𝑑
𝐿𝐿

0
+

1
2
𝐿𝐿𝐴𝐴𝑚𝑚𝐺𝐺𝑚𝑚 �𝜃𝜃 −

𝜋𝜋
2
− 𝛾𝛾�

2
= 0 

( 4-145) 

 

The two 𝐿𝐿 values found from equations ( 4-141) and ( 4-145) should be used to 

calculate the corresponding lateral forces. The one resulting in the greater lateral force 

should be picked as the debonding length, and the corresponding force will be the cutting 

force perpendicular to the fiber axis. This cutting force should be projected to the cutting 

direction to find the contribution of fiber bending and fiber-matrix debonding in the cutting 

force. The concept of material failure is different from cutting. The material fails if at any 

point the minimum requirement for the failure is met; however, during cutting, a chip 

forms if all of the active failure mechanisms meet the failure criterion. This explains why 

the greater lateral force should be chosen as the cutting force. 

4.1.2.3.3. Total Machining Forces 

The cutting force determined thus far is the force generated by only one fiber. Since 

almost the same force is needed to form a chip, the number of fibers in one chip should be 

known to compute the total cutting force. As shown in Figure  4-27, fibers break due to 

excessive bending, and it can be assumed that their breakage occurs along a straight line 

that makes an angle of 𝜙𝜙 with the workpiece surface. In addition, since the shear force 

acting on the different layers of matrix is the same, it is assumed that the fiber-matrix 
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debonding length along the interface is the same for all affected layers. It is possible to find 

angle 𝜙𝜙 by minimizing the total potential energy with respect to 𝜙𝜙. 

 

 

Figure  4-27. Shear stress and strain caused by machining 

The number of representative volume elements (RVEs) along the shear plane is 

𝑎𝑎𝑐𝑐 .sin (𝜃𝜃−𝜙𝜙)
𝑟𝑟 .sin 𝜙𝜙

. Therefore, the total potential energy for the whole chip will be in the form of 

equation ( 4-146). 

 
𝑈𝑈 = −� 𝑠𝑠 �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝑑𝑑𝑑𝑑

𝐿𝐿

0
+

1
2
𝑎𝑎𝑐𝑐 . sin(𝜃𝜃 − 𝜙𝜙)

𝑟𝑟. sin𝜙𝜙
. 𝑣𝑣𝑓𝑓 � 𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 �

𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2�

2

𝑑𝑑𝑑𝑑
𝐿𝐿

0

+
1
2
𝑎𝑎𝑐𝑐 . sin(𝜃𝜃 − 𝜙𝜙)

𝑟𝑟. sin𝜙𝜙
. 𝑐𝑐. 𝑡𝑡. 𝑣𝑣𝑚𝑚 � 𝜏𝜏𝑥𝑥𝑥𝑥𝑥𝑥 𝛾𝛾𝑥𝑥𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑

𝐿𝐿

0
 

( 4-146) 

 

Minimizing 𝑈𝑈 with respect to 𝜙𝜙 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 ( 4-147) 

 

Therefore, 

 

 𝑑𝑑 �sin(𝜃𝜃 − 𝜙𝜙)
sin𝜙𝜙 �

𝑑𝑑𝑑𝑑
= 0 ( 4-148) 

 sin(𝜃𝜃 − 2𝜙𝜙) = 0 → 𝜙𝜙 =
𝜃𝜃
2

 ( 4-149) 

 

Using equation ( 4-149), it is possible to find the number of RVEs in a chip: 

 

 𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑎𝑎𝑐𝑐 . sin(𝜃𝜃 − 𝜙𝜙)

𝑟𝑟 sin𝜙𝜙
=
𝑎𝑎𝑐𝑐 . sin �𝜃𝜃 − 𝜃𝜃

2�

𝑟𝑟 sin𝜃𝜃2
=
𝑎𝑎𝑐𝑐
𝑟𝑟

 ( 4-150) 

 

Therefore, the total cutting force can be calculated by adding the cutting force caused by 

the tool nose radius and the cutting force caused by fiber bending and matrix shearing: 

 

 𝐹𝐹𝑐𝑐 = 𝐹𝐹𝑐𝑐1 + 𝐹𝐹𝑐𝑐2 + 𝐹𝐹𝑐𝑐3  ( 4-151) 
 

 𝐹𝐹𝑐𝑐1 = −𝐺𝐺𝐿𝐿𝐿𝐿𝑟𝑟𝑒𝑒 �𝜃𝜃 −
𝜋𝜋
2
� cos 𝜃𝜃 ( 4-152) 
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𝐹𝐹𝑐𝑐2 =
max(|𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 |, |𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 |)

cos 𝛾𝛾 
. 𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅

=

max

⎝

⎜
⎜
⎜
⎛�−

2𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 �−𝑥𝑥 �𝜃𝜃 −
𝜋𝜋
2 − 𝛾𝛾 � + 𝛾𝛾𝑥𝑥𝑥𝑥𝑥𝑥 𝐿𝐿 �

𝑐𝑐
𝑟𝑟 + 𝑐𝑐��

𝑥𝑥𝑥𝑥(𝑥𝑥 − 𝐿𝐿) �

, �
2 �−𝑟𝑟𝐸𝐸𝑓𝑓 �𝜃𝜃 −

𝜋𝜋
2 − 𝛾𝛾 � + 𝑋𝑋𝑓𝑓𝑐𝑐𝐿𝐿� 𝐼𝐼𝑓𝑓
𝐿𝐿2𝑟𝑟 �

⎠

⎟
⎟
⎟
⎞

cos 𝛾𝛾
.𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅  

( 4-153) 

 𝐹𝐹𝑐𝑐3 = 𝐹𝐹𝑐𝑐2 . 𝜇𝜇. sin 𝛾𝛾 ( 4-154) 

 

The total cutting force will be 

𝐹𝐹𝑐𝑐 = −𝐺𝐺𝐿𝐿𝐿𝐿𝑟𝑟𝑒𝑒 �𝜃𝜃 −
𝜋𝜋
2
� cos 𝜃𝜃

+

max

⎝

⎜
⎜
⎜
⎛�−

2𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 �−𝑥𝑥 �𝜃𝜃 −
𝜋𝜋
2 − 𝛾𝛾 � + 𝛾𝛾𝑥𝑥𝑥𝑥𝑥𝑥 𝐿𝐿 �

𝑐𝑐
𝑟𝑟 + 𝑐𝑐��

𝑥𝑥𝑥𝑥(𝑥𝑥 − 𝐿𝐿) �

, �
2 �−𝑟𝑟𝐸𝐸𝑓𝑓 �𝜃𝜃 −

𝜋𝜋
2 − 𝛾𝛾 � + 𝑋𝑋𝑓𝑓𝑐𝑐𝐿𝐿� 𝐼𝐼𝑓𝑓
𝐿𝐿2𝑟𝑟 �

⎠

⎟
⎟
⎟
⎞

cos 𝛾𝛾
. 𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅 . (1

+ 𝜇𝜇. sin 𝛾𝛾) 

( 4-155) 

 

Figure  4-28 proves that the shear plane takes approximately the angle predicted by 

equation ( 4-149). In addition, looking at the high extreme of the fiber orientation angle of 

180°, it can be confirmed that according to the same equation, the number of RVEs in a chip 

should be 𝑎𝑎𝑐𝑐/𝑟𝑟, which is true for that orientation. 
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`  

Figure  4-28. Shear plane for fiber orientation 𝜃𝜃 = 135°, Rake angle = 10°,  
and Relief angle = 6°  

The same method will be used to calculate the total machining forces for the case of 

𝜃𝜃 − 90 < 𝛾𝛾. The shear plane angle will take the angle of 𝜃𝜃/2, and the total cutting force 

considering the friction will be 

 
 

𝐹𝐹𝑐𝑐 = −𝐺𝐺𝐿𝐿𝐿𝐿𝑟𝑟𝑒𝑒 �𝜃𝜃 −
𝜋𝜋
2
� cos𝜃𝜃 + max(|𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 |, |𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 |) .𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅  ( 4-156) 

 

where 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒  and 𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  can be calculated form equations ( 4-123) and ( 4-125), respectively. 
 

The friction force on the rake face and tool nose affects the thrust force computed 

from equation ( 4-98). The total thrust force is as follows: 

For  𝜃𝜃 − 90 < 𝛾𝛾: 

 
𝐹𝐹𝑡𝑡 = 𝐹𝐹𝑡𝑡1 + 𝜇𝜇𝜇𝜇𝑐𝑐 = 𝐺𝐺𝐿𝐿𝐿𝐿𝑟𝑟𝑒𝑒 �𝜃𝜃 −

𝜋𝜋
2
� sin𝜃𝜃

− 𝜇𝜇 �−𝐺𝐺𝐿𝐿𝐿𝐿𝑟𝑟𝑒𝑒 �𝜃𝜃 −
𝜋𝜋
2
� cos 𝜃𝜃 + max(|𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 |, |𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 |) .𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅� ( 4-157) 

 

For  𝜃𝜃 − 90 ≥ 𝛾𝛾: 
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𝐹𝐹𝑡𝑡 = 𝐺𝐺𝐿𝐿𝐿𝐿𝑟𝑟𝑒𝑒 �𝜃𝜃 −
𝜋𝜋
2
� sin 𝜃𝜃 − max(|𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 |, |𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 |) tan 𝛾𝛾 𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅

= 𝐺𝐺𝐿𝐿𝐿𝐿𝑟𝑟𝑒𝑒 �𝜃𝜃 −
𝜋𝜋
2
� sin𝜃𝜃

−max

⎝

⎜
⎜
⎜
⎛�−

2𝐸𝐸𝑓𝑓𝐼𝐼𝑓𝑓 �−𝑥𝑥 �𝜃𝜃 −
𝜋𝜋
2 − 𝛾𝛾 � + 𝛾𝛾𝑥𝑥𝑥𝑥𝑥𝑥 𝐿𝐿 �

𝑐𝑐
𝑟𝑟 + 𝑐𝑐��

𝑥𝑥𝑥𝑥(𝑥𝑥 − 𝐿𝐿) �

, �
2 �−𝑟𝑟𝐸𝐸𝑓𝑓 �𝜃𝜃 −

𝜋𝜋
2 − 𝛾𝛾 � + 𝑋𝑋𝑓𝑓𝑐𝑐𝐿𝐿� 𝐼𝐼𝑓𝑓
𝐿𝐿2𝑟𝑟

�
⎠

⎟
⎟
⎟
⎞

tan 𝛾𝛾 .𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅  
( 4-158) 
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CHAPTER 5 
 

EXPERIMENTAL WORK 

5.1. Setup 

A 2 1
2

inch × 9 inch unidirectional carbon fiber composite strip was used for the 

experiments in this research. The composite coupon was securely fixed on a swivel-based 

vise, which was attached to a KISTLER 9272 dynamometer. An adaptor was designed and 

used to attach the vise to the dynamometer.  

 The dynamometer readings were transferred to a National Instruments (NI) data 

acquisition (DAQ) card after being amplified by 5010B KISTLER dual-mode amplifiers. 

VILogger LabVIEW 8.0 registered the received signals with a frequency of 500 Hz. The DAQ 

card used was NI–6023E. Before using the DAQ card for the experiments, it was calibrated. 

The calibration had two steps: one for calibrating the voltage readings and the other to 

convert the voltage to the desired physical quantity. Thrust and cutting forces were 

calibrated with standard weights and hanging scale, respectively, and the torque was 

calibrated with a precise torque wrench [66-69]. Figure  5-1 shows the setup used for the 

experiments. The orientation of the cutting and thrust forces respect to the dynamometer 

coordinate system is shown in Figure  5-2. 

5.2. Methodology 

A customized tool was designed to use for the experiments on a CNC milling 

machine. All of the cutting edges had the same geometry. The tool was attached to the 

spindle of the machine using a tool holder. Because the purpose here was to do an 

orthogonal cutting on a CNC milling machine, it was important that the tool not rotate. This 
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was achieved using an M19 code on the CNC machine. This code provides feedback control 

for the spindle in order to keep it stationary. It also reorients the spindle in the same 

direction any time the code is run. Hence, to maintain the desired rake and relief angles 

relative to the cutting direction, the tool should be fit in the tool holder with the correct 

orientation. 

 

Figure  5-1. Setup used for the experiments 

 

Figure  5-2. Cutting and thrust force orientations respect to the dynamometer  
coordinate system [68] 
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 Figure  5-3 shows the spindle orientation after using the CNC milling machine M19 

code. 

 

Figure  5-3. Spindle reorientation with M19 code 

Figure  5-4 shows how the cutting tool should be oriented in the tool holder to 

maintain the desired rake and relief angles for the orthogonal cutting experiments. 

According to the figure, the white lines connecting the tool corners should be parallel to 

either the 𝑥𝑥 or 𝑦𝑦 axis of the machine. 

 

Figure  5-4. Customized tool used for experiments 

Another important point is to maintain constant depth of cut along both the 𝑥𝑥 and 𝑦𝑦 

axes. Changing the depth of cut can significantly affect the machining forces. Therefore, 
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each time the experiment is run, the top and side of the workpiece should be controlled 

using a dial indicator to ensure that they are parallel to the machine axes (Figure  5-5). It is 

assumed that there was no damage in the composite coupon each time the machining 

experiment was run. In addition, the tool nose radius was assumed to remain unchanged 

during the experiments. The experimental test matrix is shown in Table  5-1. 

 

Figure  5-5. Controlling top of workpiece using dial indictor 

TABLE  5-1 
 

EXPERIMENTAL TEST MATRIX 

Fiber  Orientation 
(𝜽𝜽) 

Tool Rake Angle 
(𝜸𝜸) 

Fiber orientation 
(𝜽𝜽) 

Tool Rake Angle 
(𝜸𝜸) 

𝟗𝟗𝟗𝟗° 5° 𝟗𝟗𝟗𝟗° 15° 
𝟏𝟏𝟏𝟏𝟏𝟏° 5° 𝟏𝟏𝟏𝟏𝟏𝟏° 15° 
𝟏𝟏𝟏𝟏𝟏𝟏° 5° 𝟏𝟏𝟏𝟏𝟏𝟏° 15° 
𝟏𝟏𝟏𝟏𝟏𝟏° 5° 𝟏𝟏𝟏𝟏𝟏𝟏° 15° 
𝟗𝟗𝟗𝟗° 10° 𝟗𝟗𝟗𝟗° 20° 
𝟏𝟏𝟏𝟏𝟏𝟏° 10° 𝟏𝟏𝟏𝟏𝟏𝟏° 20° 
𝟏𝟏𝟏𝟏𝟏𝟏° 10° 𝟏𝟏𝟏𝟏𝟏𝟏° 20° 
𝟏𝟏𝟏𝟏𝟏𝟏° 10° 𝟏𝟏𝟏𝟏𝟏𝟏° 20° 
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 Feed rate was kept the same, at 5.9 𝑚𝑚𝑚𝑚/𝑠𝑠𝑠𝑠𝑠𝑠 for all of the experiments. In addition, 

in-plane depth and width of the cut was 0.1 𝑚𝑚𝑚𝑚 and 1.0 𝑚𝑚𝑚𝑚, respectively for the tests 

(Figure  5-6). 

 

Figure  5-6. Width and in-plane depth of cut definitions 

Figure  5-7 shows a sample of measured machining forces in orthogonal cutting of a 

composite coupon when  𝜃𝜃 = 170°. 

 

Figure  5-7. Sample of measured cutting force for 𝜃𝜃 = 170°, 𝛾𝛾 = 5°, and 𝛼𝛼 = 9°  
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CHAPTER 6 
 

ANALYTICAL PREDITIONS OF THRUST AND CUTTING FORCES 

In this chapter, the predicted forces and debonding lengths from the analytical 

model are compared to those obtained from the FEM model and the literature. In addition, 

using a different material, the calculated force from the analytical model is compared to the 

experimental results. In order to use the proposed analytical model, several input 

parameters of the material, cutting tool, and machining condition should be provided. The 

parameters needed are listed in Table  6-1. 

TABLE  6-1 
 

FACTORS AFFECTING MACHINING QUALITY 

  

 

Machining Forces and Surface Quality

(for orthogonal cutting of unidirectional material)

Tool Geometry

Rake Angle
Tool Tip Radius

Material Properties

Fiber Orientation
Young Modulus of Fiber
Fiber Volume Fraction

Fiber Diameter
Shear Modulus of Fiber

Shear Modulus of Matrix
Tensile Strength of Fiber

Matrix  Shear Strain at Fracture

Machining 
Condition

Depth of Cut
Feed Rate
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6.1. Material Properties 

Most of the material properties listed in Table  6-1 are not available as individual 

properties of either the fiber or the matrix and should be calculated using the apparent 

mechanical properties of the composite. Fiber volume fraction is one essential parameter 

that must be determined in order to calculate the mechanical properties of the 

components. This can be found by looking at the cross section of the composite material 

under microscope.  

The composite material used in this research was NCT 321/G150 (NASS) Unitape 

[70]. Table  6-2 shows a list of apparent composite properties in 0° and 90° orientation. 

These properties can be used to calculate the individual material properties. 

TABLE  6-2 
 

APPARENT PROPERTIES OF NCT 321/G150 (NASS) UNITAPE [70] 

 Room Temperature Data 
 B-Basis (US Units) Mean (US Units) B-Basis (SI Units) Mean (SI Units) 
𝑿𝑿𝒕𝒕   251.40 (𝑘𝑘𝑘𝑘𝑘𝑘) 282.82 (𝑘𝑘𝑘𝑘𝑘𝑘) 1.73 (𝐺𝐺𝐺𝐺𝐺𝐺) 1.94 (𝐺𝐺𝐺𝐺𝐺𝐺) 
𝑬𝑬𝟏𝟏𝒕𝒕    −− 17.76 (𝑀𝑀𝑀𝑀𝑀𝑀) −− 122.5 (𝐺𝐺𝐺𝐺𝐺𝐺) 
𝝂𝝂𝟏𝟏𝟏𝟏  −− 0.321 −− 0.321 
𝒀𝒀𝒕𝒕   5.95 (𝑘𝑘𝑘𝑘𝑘𝑘) 7.06 (𝑘𝑘𝑘𝑘𝑘𝑘) 41 (MPa) 48.6 (𝑀𝑀𝑀𝑀𝑀𝑀) 
𝑬𝑬𝟐𝟐𝒕𝒕    −− 1.17 (𝑀𝑀𝑀𝑀𝑀𝑀) −− 8 (𝐺𝐺𝐺𝐺𝐺𝐺) 
𝑿𝑿𝒄𝒄  139.20 (𝑘𝑘𝑘𝑘𝑘𝑘) 165.80 (𝑘𝑘𝑘𝑘𝑘𝑘) 959 (𝑀𝑀𝑀𝑀𝑀𝑀) 1.14 (𝐺𝐺𝐺𝐺𝐺𝐺) 
𝑬𝑬𝟏𝟏𝒄𝒄    −− 17.73 (𝑀𝑀𝑀𝑀𝑀𝑀) −− 122 (𝐺𝐺𝐺𝐺𝐺𝐺) 
𝒀𝒀𝒄𝒄  28.30 (𝑘𝑘𝑘𝑘𝑘𝑘) 32.37 (𝑘𝑘𝑘𝑘𝑘𝑘) 195 (𝑀𝑀𝑀𝑀𝑀𝑀) 223 (𝑀𝑀𝑀𝑀𝑀𝑀) 
𝑬𝑬𝟐𝟐𝒄𝒄    −− 1.63 (𝑀𝑀𝑀𝑀𝑀𝑀) −− 11.2 (𝐺𝐺𝐺𝐺𝐺𝐺) 
𝑺𝑺𝟏𝟏𝟏𝟏  19.76 (𝑘𝑘𝑘𝑘𝑘𝑘) 21.02 (𝑘𝑘𝑘𝑘𝑘𝑘) 136 (𝑀𝑀𝑀𝑀𝑀𝑀) 145 (𝑀𝑀𝑀𝑀𝑀𝑀) 
𝑮𝑮𝟏𝟏𝟏𝟏  −− 0.55 (𝑀𝑀𝑀𝑀𝑀𝑀) −− 3.79 (𝐺𝐺𝐺𝐺𝐺𝐺) 
𝑺𝑺𝟏𝟏𝟏𝟏  12.59 (𝑘𝑘𝑘𝑘𝑘𝑘) 13.12 (𝑘𝑘𝑘𝑘𝑘𝑘) 86.7 (𝑀𝑀𝑀𝑀𝑀𝑀) 90 (𝑀𝑀𝑀𝑀𝑀𝑀) 
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Figure  6-1 shows the cross section of the composite used. The fiber volume fraction 

of the material was calculated by taking the average of three different measurements from 

different positions. 

 

Figure  6-1. Cross section of composite material used to calculate  
fiber volume fraction 

The other individual material mechanical properties can be calculated as shown 

below, using the data provided by Newport Adhesives and Composites, Inc. [71]. 

The 𝑣𝑣𝑓𝑓  for this material is 0.65. Therefore, using rule of the mixtures and 

considering the fiber direction as direction 1 

 
𝐸𝐸1 = 𝑣𝑣𝑓𝑓𝐸𝐸𝑓𝑓 + 𝑣𝑣𝑚𝑚𝐸𝐸𝑚𝑚  

17.76 = 0.65𝐸𝐸𝑓𝑓 + 0.35𝐸𝐸𝑚𝑚  
( 6-1) 

 

 

𝐸𝐸2 =
𝐸𝐸𝑓𝑓𝐸𝐸𝑚𝑚′

𝑣𝑣𝑓𝑓𝐸𝐸𝑚𝑚′ + 0.35𝐸𝐸𝑓𝑓
 

𝐸𝐸𝑚𝑚′ =
𝐸𝐸𝑚𝑚

1 − 𝑣𝑣𝑚𝑚2
 

1.17 =
𝐸𝐸𝑓𝑓𝐸𝐸𝑚𝑚

0.65𝐸𝐸𝑚𝑚 + 0.35(1 − 0.352)𝐸𝐸𝑓𝑓
=

𝐸𝐸𝑓𝑓𝐸𝐸𝑚𝑚
0.65𝐸𝐸𝑚𝑚 + 0.3𝐸𝐸𝑓𝑓

 

( 6-2) 
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Calculating 𝐸𝐸𝑓𝑓  and 𝐸𝐸𝑚𝑚  using equations ( 6-1) and ( 6-2) 
 

 
𝐸𝐸𝑓𝑓 = 27.12 𝑀𝑀𝑀𝑀𝑀𝑀 = 186 𝐺𝐺𝐺𝐺𝐺𝐺 

𝐸𝐸𝑚𝑚 = 0.36 𝑀𝑀𝑀𝑀𝑀𝑀 = 2.5 𝐺𝐺𝐺𝐺𝐺𝐺 
( 6-3) 

 

From the mechanics of material, it is known that 

 𝐺𝐺𝑓𝑓 =
𝐸𝐸𝑓𝑓

2(1 + 𝜈𝜈)
≈

186 𝐺𝐺𝐺𝐺𝐺𝐺
2(1 + 0.3)

= 71.5 𝐺𝐺𝐺𝐺𝐺𝐺 ( 6-4) 

 

and 𝐺𝐺𝑚𝑚  can be calculated using the rule of the mixtures: 

 
3.79 =

71.5𝐺𝐺𝑚𝑚
71.5 × 0.35 + 0.65𝐺𝐺𝑚𝑚

 

𝐺𝐺𝑚𝑚 = 1.37 𝐺𝐺𝐺𝐺𝐺𝐺 
( 6-5) 

 

A list of material properties used for both matrix and fiber is shown in Table  6-3. 

These values are estimated mechanical properties based on the composite’s apparent 

properties. 

TABLE  6-3 
 

LIST OF MATERIAL PROPERTIES USED FOR ANALYTICAL CALCULATIONS [71] 

Width of cut (𝐻𝐻) 1 𝑚𝑚𝑚𝑚 Fiber flexural strength �𝑋𝑋𝑓𝑓� 4.0 𝐺𝐺𝐺𝐺𝐺𝐺 
In-plane depth of cut (𝑡𝑡) 0.1 𝑚𝑚𝑚𝑚 Matrix fracture strain (𝜖𝜖𝑚𝑚) 0.10 
Fiber diameter �𝑑𝑑𝑓𝑓� 6.9 𝜇𝜇𝜇𝜇 Matrix shear strength (𝑆𝑆𝑚𝑚) 146 𝑀𝑀𝑀𝑀𝑀𝑀 
Fiber volume fraction �𝑣𝑣𝑓𝑓� 0.65 Matrix shear modulus (𝐺𝐺𝑚𝑚) 1.37 𝐺𝐺𝐺𝐺𝐺𝐺 
Fiber Young modulus �𝐸𝐸𝑓𝑓� 186 𝐺𝐺𝐺𝐺𝐺𝐺   
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To find the fiber and matrix strength, the rule of mixtures can be used [72]: 
 

 
𝑋𝑋𝑡𝑡 = 𝑣𝑣𝑓𝑓𝐹𝐹𝑏𝑏 + 𝑣𝑣𝑚𝑚𝜎𝜎�𝑚𝑚  

2 × 109 = 0.65𝐹𝐹𝑏𝑏 + 0.35𝜎𝜎�𝑚𝑚  
( 6-6) 

 

In equation ( 6-6),  𝜎𝜎�𝑚𝑚 is the average matrix stress and can be ignored. Therefore, the 

approximate fiber bundle strength will be 

 𝐹𝐹𝑏𝑏 ≈
2 × 109

0.65
= 3 𝐺𝐺𝐺𝐺𝐺𝐺 ( 6-7) 

 

The fiber strength is much higher than the bundle strength, especially when the 

fiber length is very small. This is because there are fewer imperfections in fiber that are 

smaller in length [73]. In this study, the fiber flexural strength was assumed to be at least 

2.5 times the fiber bundle strength. The matrix shear strength was estimated to be the 

same as the composite shear strength, since it can be assumed that the fiber does not shear. 

6.2. Machining Forces 

Figure  6-2 shows the predicted machining forces using the analytical method for 

𝛾𝛾 = 5°. As can be seen, there is a discontinuity in the cutting force, which is due to the 

change in the deformation mechanism. As discussed previously, when the fiber orientation 

is greater than 90°, the fiber slips on the tool rake face; however, for the smaller fiber 

orientations, the free end boundary condition is different. 
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Figure  6-2. Predicted and experimental cutting and thrust forces using material properties 
of tested composite listed in Table  6-3 

Any force value in Table  6-4 and Table  6-5 indicates an average over the time for a 

single experiment with corresponding fiber orientation and tool rake angle. 

 

TABLE  6-4 
 

CUTTING FORCE VALUES FROM  EXPERIMENTS (ALL FORCE VALUES IN [𝑁𝑁]) 

Rake Angle 

Orientation 
𝟓𝟓° 𝟏𝟏𝟏𝟏° 𝟏𝟏𝟏𝟏° 𝟐𝟐𝟐𝟐° 

𝟗𝟗𝟗𝟗° 32.5, 32.9, 45.3 20.9, 25.8, 42.3 35.0, 29.8, 43.0 25.9, 41.0, 32.9 
𝟏𝟏𝟏𝟏𝟏𝟏° 51.6, 60.9, 47.6 47.2, 48.9, 61.4 53.3, 58.7, 33.8 56.9, 52.0, 43.6 
𝟏𝟏𝟏𝟏𝟏𝟏° 13.3, 16.9, 24.9 12.9, 17.8, 15.6 16.8, 21.3, 16.0 15.1, 16.8, 19.1 
𝟏𝟏𝟏𝟏𝟏𝟏° 10.7, 20.5, 21.8 15.6, 18.7, 17.8 9.8, 14.4, 17.4  11.1, 13.3, 12.9  
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In Figure  6-2, bending force represents the portion of the cutting force caused by the 

bending of the fibers and fiber-matrix debonding, and the buckling force is an additional 

part of the cutting force due to the tool nose radius. The summation of these two forces 

represents the total cutting force. 

 

TABLE  6-5 
 

THRUST FORCE VALUES FROM EXPERIMENTS (ALL FORCE VALUES ARE IN [𝑁𝑁]) 

Rake Angle 

Orientation 
𝟓𝟓° 𝟏𝟏𝟏𝟏° 𝟏𝟏𝟏𝟏° 𝟐𝟐𝟐𝟐° 

𝟗𝟗𝟗𝟗° 17.8, 18.2, 19.1 10.7, 12.9, 14.7 11.4, 9.9, 9.9 16.9, 16.2, 10.4 
𝟏𝟏𝟏𝟏𝟏𝟏° 8.4, 8.0, 7.6 4.9, 4.0, 5.3 3.6, 3.1, 2.7 3.1, 3.1, 3.1 
𝟏𝟏𝟏𝟏𝟏𝟏° 2.2, 1.8, 2.7 2.2, 2.2, 2.7 1.8, 2.2, 1.9 1.3, 1.0, 1.2 
𝟏𝟏𝟏𝟏𝟏𝟏° 8.9, 13.8, 14.2 10.2, 2.2, 11.6 6.2, 8.2, 9.2 8.4, 9.1, 10.2 
 

Figure  6-3 shows the predicted cutting and thrust forces for 𝛾𝛾 = 10°. Here, the 

predicted values and the experiments are in a good agreement, and the trend of predicted 

forces is the same as experimental values. Figure  6-4 shows that at the higher fiber 

orientations (for 𝛾𝛾 = 15°), the error is more. However, the predicted bending value is very 

close to the experimental value. As the fiber orientation increases, the fibers will be closer 

to the free edges of the material. In this case, the fiber microbuckling theory will predict the 

values with more error.  
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Figure  6-3. Predicted and experimental cutting and thrust forces using material properties 
of tested composite listed in Table  6-3 

 

Figure  6-4. Predicted and experimental cutting and thrust forces using material properties 
of tested composite listed in Table  6-3 



119 
 

Figure  6-5 represents predicted cutting and thrust forces for 𝛾𝛾 = 20°.  

 

Figure  6-5. Predicted and experimental cutting and thrust forces using material properties 
of tested composite listed in Table  6-3 

Figure  6-6 shows the effect of tool rake angle on the cutting and thrust forces. 

Unexpectedly, it shows the bigger the rake angle the higher machining forces. However, in 

meal cutting bigger rake angles generate less machining forces. This can be explained with 

the chip formation mechanisms for fiber orientation 0° ≤ 𝜃𝜃 ≤ 90° which is based on matrix 

shearing and fiber breakage. The fibers break under lower force, when they are pushed 

normal to the fibers or at angles closer to that.  

It is expected that as the flexural strength of the fibers gets weaker, the cutting force 

decreases. Figure  6-7 shows this trend as expected. As can be seen, the effect of flexural 

strength is greater for the smaller-fiber orientations. More cutting force results in more 
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friction force on the rake face, which increases that portion of the thrust force caused by 

friction. 

 

Figure  6-6. Effect of rake angle of cutting tool on cutting and thrust forces 

 

Figure  6-7. Effect of fiber flexural strength on cutting and thrust forces 
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According to the same graph, it can be noted that for 𝑋𝑋𝑓𝑓 = 2 𝐺𝐺𝐺𝐺𝐺𝐺, another chip 

formation mechanism is active for fiber orientations greater than 𝜃𝜃 = 135°. For this fiber 

orientation interval, the chip does not form by fiber breakage, but the matrix material fails 

due to excessive shear stress after fiber failure to form the chips. However, for the smaller 

fiber orientations, the sequence of failure is different, and the matrix material fails before 

any damage is done to the fibers. Therefore, material mechanical properties have a 

significant effect on the chip-formation mechanisms. 

Figure  6-8 illustrates how the fiber volume fraction interacts with the cutting and 

thrust forces. As expected, the higher the fiber volume fraction, the higher the cutting 

forces.  

 

Figure  6-8. Effect of fiber volume fraction on cutting and thrust forces 

Fiber flexural strength and the Young modulus are two dependent mechanical 

properties, and their effect on the cutting forces cannot be presented individually. 



122 
 

However, the effect of fiber Young modulus only on the cutting forces is presented in Figure 

 6-9. 

 

Figure  6-9. Effect of Fiber Young modulus on cutting and thrust forces 

6.3. Fiber-Matrix Debonding Length 

Similar to machining forces, the fiber-matrix debonding length depends on the 

material properties, tool geometry, and machining conditions. Figure  6-10 shows the depth 

of damage along the fibers in each orientation. This plot shows that as the fibers get stiffer, 

damage increases; however, according to Figure  6-9 the opposite effect can be seen on the 

machining forces. The fibers break when they reach their flexural strength. A smaller 

Young modulus lets the fibers bend more until they reach that point, and this will result in 

higher cutting forces. Figure  6-11 shows that smaller rake angles result in more fiber-

matrix debonding as expected; however, smaller rake angles generate lower cutting forces. 
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Figure  6-10. Effect of fiber Young modulus on the fiber-matrix debonding length 

 

Figure  6-11. Effect of tool rake angle on the fiber-matrix debonding length 
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Figure  6-12 shows the comparison between the analytical and FEM results of fiber 

failure length along the fibers, indicating that the theoretical model and FEM are in a good 

agreement. 

 

Figure  6-12. Effect of tool rake angle on fiber-matrix debonding length  
(Comparison between theoretical and FEM results) 

Figure  6-13 andFigure  6-14 show the effect of relief angle on cutting and thrust 

forces. Here, the relief angle has a minor effect on the machining forces, and as the rake 

angle increases, the machining forces increase.  

According to Figure  6-10, depending on fiber orientation, the depth of damage may 

vary. Figure  6-15 shows the fiber length limited by the depth of cut and the damage length 

along the fiber orientation. If 𝐿𝐿 is greater than −𝑎𝑎𝑐𝑐/ sin𝜃𝜃, then the composite edge will be 

damaged after material removal and the damage residue exists. However, if 𝐿𝐿 is smaller 

than −𝑎𝑎𝑐𝑐/ sin𝜃𝜃, then broken fibers will be completely removed from the workpiece, and 
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the surface quality will be very good without any major or minor defects. Therefore, there 

exists a certain fiber orientation for any material and tool geometry in which no damage is 

left after edge trimming. This can be clearly seen in Figure 6-15. 

 

Figure  6-13. Effect of tool relief angle on cutting force (rake=5°) 

 

Figure  6-14. Effect of tool relief angle on thrust force (rake=5°) 
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Figure  6-15. Damage residue after edge trimming of unidirectional composites 

Figure  6-16,Figure  6-17,Figure  6-18, andFigure  6-19 show the effect of tool rake 

angle, fiber volume fraction, fiber Young modulus, and matrix shear strength on the depth 

of damage. These figures illustrate the angles in which damage takes place in the workpiece 

for various material properties and tool geometries. 

 

Figure  6-16. Effect of tool rake angle on the fiber-matrix depth of damage 



127 
 

 

Figure  6-17. Effect of fiber volume fraction on the fiber-matrix depth of damage 

 

Figure  6-18. Effect of fiber Young modulus on the fiber-matrix depth of damage 
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Figure  6-19. Effect of matrix shear strength on the fiber-matrix depth of damage 

Figure  6-20 shows the subsurface damage when the fiber orientation 𝜃𝜃 = 90° and 

𝛾𝛾 = 5°. As can be seen from Figure  6-10, the damage along the fiber direction is predicted 

to be, at most, 20 𝜇𝜇𝜇𝜇. Since the fiber orientation is 90°, the damaged material will be 

removed from the cut edge, leaving minor broken fibers or debonded material. Figure  6-21, 

Figure  6-22, andFigure  6-23 also show the cut material with the same fiber orientation but 

different rake angles. As predicted, there is minor fiber-matrix debonding.  

 

Figure  6-20. Microstructure in subsurface 
(fiber orientation = 90°, depth of cut = 0.100mm, rake angle = 5°, relief angle = 6°) 
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Figure  6-21. Microstructure in subsurface 
(fiber orientation = 90°, depth of cut = 0.100mm, rake angle = 10°, relief angle = 6°) 

 

Figure  6-22. Microstructure in subsurface 
(fiber orientation = 90°, depth of cut = 0.100mm, rake angle = 15°, relief angle = 6°) 

 

Figure  6-23. Microstructure in subsurface 
(fiber orientation = 90°, depth of cut = 0.100mm, rake angle = 20°, relief angle = 6°) 
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Experiments on the studied material revealed that at 𝜃𝜃 = 135°, the length of damage 

exceeds −𝑎𝑎𝑐𝑐/ sin 𝜃𝜃 , and the surface quality after the trimming is poor. Figure  6-24, Figure 

 6-25, Figure  6-26, and Figure  6-27 show the subsurface damage for this fiber orientation. 

 

 

Figure  6-24. Microstructure in subsurface 
(fiber orientation = 135°, depth of cut = 0.100mm, rake angle = 5°, relief angle = 6°) 

 

Figure  6-25. Microstructure in subsurface 
(fiber orientation = 135°, depth of cut = 0.100mm, rake angle = 10°, relief angle = 6°) 
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Figure  6-26. Microstructure in subsurface 
(fiber orientation = 135°, depth of cut = 0.100mm, rake angle = 15°, relief angle = 6°) 

 

Figure  6-27. Microstructure in subsurface 
(fiber orientation = 135°, depth of cut = 0.100mm, rake angle = 20°, relief angle = 6°) 

Figure  6-28,Figure  6-29,Figure  6-30, andFigure  6-31 illustrate that for 𝜃𝜃 = 170°, the 

debonded material and broken fibers will be completely removed from the trimmed edge 

leaving a good surface quality. 
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Figure  6-28. Microstructure in subsurface 
(fiber orientation = 170°, depth of cut = 0.100mm, rake angle = 5°, relief angle = 6°) 

 

Figure  6-29. Microstructure in subsurface 
(fiber orientation = 170°, depth of cut = 0.100mm, rake angle = 10°, relief angle = 6°) 

 

Figure  6-30. Microstructure in subsurface 
(fiber orientation = 170°, depth of cut = 0.100mm, rake angle = 15°, relief angle = 6°) 
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Figure  6-31. Microstructure in subsurface 
(fiber orientation = 170°, depth of cut = 0.100mm, rake angle = 20°, relief angle = 6°) 

 

  



134 
 

CHAPTER 7 
 

CONCLUSIONS AND FUTURE WORK 

The machining of composites is a complicated process, with many parameters 

involved in the force generated, cutting mechanisms, and quality of the machined surface. 

These parameters can be divided into three categories: tool geometry, mechanical 

properties of the material, and machining conditions. Therefore, it is very important to 

understand the effect of each parameter on the quality of the surface and machining forces. 

Cutting force, thrust force, and depth of damage were predicted using a completely 

theoretical formula for fiber orientations 90° ≤ 𝜃𝜃 ≤ 180° and were in good agreement with 

the experimental results. A finite element model was presented to estimate the depth of 

damage along the fibers. The FEM and theoretical predictions were close. 

The energy method combined with the undulating fibers model gives better force 

predictions than the straight fibers model.  

7.1. Conclusions 

Contrary to artificial neural network models, the theoretical model proposed in this 

study can be applied to any unidirectional fiber composites with elastic-plastic matrix 

properties, regardless of whether the  mechanical properties of the material are 

comparable to what was used in the experiments in this research. 

A theoretical model for machining of unidirectional composites was developed in 

this research. The model is based on the energy method and virtual work. The model 

predictions of the forces are in agreement to the experimental results. 

While predicting the forces for machining of unidirectional composites, it was found 

that fiber orientation has a significant effect on the cutting forces and the depth of damage 
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along the fibers. In addition, the model shows that the bigger the rake angle, the greater the 

machining forces. This is due to the chip formation mechanisms for fiber orientation 

0° ≤ 𝜃𝜃 ≤ 90°, which is based on matrix shearing and fiber breakage. Fibers break under 

lower force when they are pushed normal to the fibers or at angles closer to that. 

It was also found that the effect of flexural strength is greater at smaller fiber 

orientations, and as the fiber flexural strength is increased, the cutting and thrust forces 

also increased. Fiber volume fraction shows the same trend in the machining forces. The 

model predicts that as the fibers get stiffer, damage along them increases; however, the 

cutting and thrust forces decrease. 

According to the model, the machining forces proportionally increase with the width 

of cut; however, the effect of depth of cut is complicated. 

This model holds good at all depths and widths of cut. It can be used for any rake 

angle and fiber orientation when 90° ≤ 𝜃𝜃 ≤ 180°. 

The model reflects the effects of material properties including the fiber volume 

fraction, elastic modulus of the fiber, matrix shear strain strength, fiber diameter, fiber and 

matrix shear modulus, and fiber flexural strength. In addition to material properties, 

machining conditions and tool geometry affect the machining forces significantly. These 

factors can be summarized as the depth and width of cut for the machining conditions and 

tool rake angle and tool tip radius for the tool geometry. The effect of cutting speed may be 

considered if the matrix viscoelastic properties are included in the calculations. 

Using this method, recommendations for the fiber and matrix selection can be given 

to minimize machining damage while maintaining the material strength in the desired 

range.  
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7.2. Future Work 

As discussed, if the viscoelastic properties of the matrix are known, the effect of 

machining speed can be included in the calculations. The fundamentals of orthogonal 

cutting of composites is established in this study and can be extended to oblique machining 

of unidirectional and multidirectional composites using the same approach. It would be 

interesting to look at the chip formation using a high-speed camera to better understand 

the mechanisms involved in forming the chips for different fiber orientations and tool rake 

angles. The high-speed video recording of the machining could be run for both oblique and 

orthogonal cutting, and for each case, both unidirectional and multidirectional material  
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APPENDIX 

MATLAB PROGRAM FOR THE FORCE AND DEBONDING LENGTH CALCULATIONS 

%########################################################################## 
%This MATLAB code calculates the cutting forces in machining of 
%unidirectional composites for fiber orentations greater than 90 degrees 
%This program is a part of Ashkan Sahraie Jahromi's PhD thesis 
%########################################################################## 
%Thrust force included in this code version 
clear all; 
clc 
%-------------------------------------------------------------------------- 
%                             Defining constants 
%-------------------------------------------------------------------------- 
syms l S1 S2 x phi real; 
k = listdlg('PromptString','What is the working units?',... 
                'SelectionMode','single', 
'ListString',{'English','Metric'},... 
                'Name','Unit Selector','ListSize',[180 50]); 
switch k 
    case 1 
        disp 'English units selected' 
        prompt = {'Fiber Diameter (in)','Depth of Cut (in)','Width of Cut 
(in)',... 
            'Fiber Volume Fraction','Fiber Young''s Modulus (psi)','Fiber 
Flexural Strength (psi)',... 
            'Matrix Shear Modulus (psi)','Fiber Poison''s Ratio','Matrix 
Shear Strength (psi)','Matrix Ultimate Strain',... 
            'Tool Rake Angle (Deg)','Tool Tip Radius (in)','Friction 
Coefficient'}; 
        dlg_title = 'Input Machining Conditions'; 
        num_lines = 1; 
        def = {'2.72e-4','3.94e-3','3.94e-
2','0.65','2.9e7','435113.2','198701.7','0.3','21175.5','0.1','20','7.9e-
5','0.18'}; 
    case 2 
        disp 'Metric units selected' 
        prompt = {'Fiber Diameter (m)','Depth of Cut (m)','Width of Cut 
(m)',... 
            'Fiber Volume Fraction','Fiber Young''s Modulus (N/m^2)','Fiber 
Flexural Strength (N/m^2)',... 
            'Matrix Shear Modulus (N/m^2)','Fiber Poison''s Ratio','Matrix 
Shear Strength (N/m^2)',... 
            'Matrix Ultimate Strain', 'Tool Rake Angle (Deg)','Tool Tip 
Radius (m)','Friction Coefficient'}; 
        dlg_title = 'Input Machining Conditions'; 
        num_lines = 1; 
        def = {'6.9e-6','1e-4','1e-
3','0.65','200e9','3000e6','1.37e9','0.3','146e6','0.1','20','2e-6','0.18'}; 
end 
options.Resize='on'; 
options.WindowStyle='normal'; 
options.Interpreter='tex'; 
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prop = str2double(inputdlg(prompt,dlg_title,num_lines,def,options)); 
df=prop(1); 
t=prop(3); 
H=prop(2); 
Vf=prop(4); 
Ef=prop(5); 
Xf=prop(6); 
Gm=prop(7); 
nuf=prop(8); 
Gf=Ef/(2*(1+nuf)); 
epsc=prop(10); 
Sm=prop(9); 
Rake=prop(11); 
rake=Rake*pi()/180; 
mu=prop(13); 
Re=prop(12); 
%-------------------------------------------------------------------------- 
%                            Evaluating Peoperties 
%-------------------------------------------------------------------------- 
a=df/2; 
Vm=1-Vf; 
c=(df/2)*(Vm/Vf); 
If=t*df^3/12; 
% Vf=(df/2)/(c+df/2); 
% Vm=c/(c+df/2); 
G_LT=Gf*Gm/(Gf*Vm+Gm*Vf); 
A=-Gm*c*t*(1+(df/2)/c)^2; 
B1=sqrt(-A/(Ef*If)); 
n=0; 
Forces=[0,0,0,0]; 
li=70e-6; 
for i=90:2:180 
    i 
    n=n+1;   
    X(n)=i; 
    theta=i*pi()/180; 
    gamma_m=-(theta-rake-pi()/2); 
%-------------------------------------------------------------------------- 
%                                Equations 
%-------------------------------------------------------------------------- 
    v1=S1*(sinh(B1*l)*cosh(B1*x)-cosh(B1*l)*sinh(B1*x)-
sinh(B1*l)+cosh(B1*l)*x*B1)/(B1^3*If*Ef); 
    v2=-1/6*S2/Ef/If*x^3+1/4*(2*gamma_m*Ef*If+S2*l^2)/l/Ef/If*x^2; 
    
U1=int(Ef*If*(diff(v1,x,2))^2,x,0,l)/2+c*t*Gm*int((diff(v1,x)^2),x,0,l)*(1+(d
f/2)/c)^2/2-int(S1*diff(v1,x),x,0,l); 
    U2=int(Ef*If*(diff(v2,x,2))^2,x,0,l)/2+c*t*(-
l*(Sm^2/(2*Gm))+int(diff(v2,x),x,0,l)*Sm*(1+(df/2)/c))-
int(S2*diff(v2,x),x,0,l); 
    eps1=(1+(df/2)/c)*diff(v1,x)-epsc; 
    Sub_eps1=subs(eps1,x,0.001*l); 
    sigma_max1=Ef*diff(v1,x,2)*df/2-Xf; 
    Sub_sigma_max1=subs(sigma_max1,x,0); 
    eps2=(1+(df/2)/c)*diff(v2,x)-epsc; 
    Sub_eps2=subs(eps2,x,-1e-3*l); 
    sigma_max2=Ef*diff(v2,x,2)*df/2-Xf; 
    Sub_sigma_max2=subs(sigma_max2,x,0); 
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%-------------------------------------------------------------------------- 
%                                Solution 
%-------------------------------------------------------------------------- 
    if (i-90) <= (Rake) 
        SolS_shear=solve(Sub_eps1,S1); 
        Soll_shear=subs(U1,S1,SolS_shear); 
        SolS_bend=solve(Sub_sigma_max1,S1); 
        Soll_bend=subs(U1,S1,SolS_bend); 
        FShear = @(length_shear)[subs(Soll_shear,l,length_shear)]; 
        FBend = @ (length_bend)[subs(Soll_bend,l,length_bend)]; 
        options=optimset('Display','iter','TolFun',1e-12,'TolX',1e-
14,'NonlEqnAlgorithm','dogleg','LineSearchType','quadcubic','MaxFunEvals',70)
; 
        [length_shear,Shear] = fsolve(FShear,li,options) 
        [length_bend,BendStress] = fsolve(FBend,li,options) 
        force_shear=subs(SolS_shear,l,length_shear) 
        force_bend=subs(SolS_bend,l,length_bend) 
        Energy_bend=subs(U1,{l,S1},{length_bend,force_bend}) 
        Energy_shear=subs(U1,{l,S1},{length_shear,force_shear}) 
        CForce_Debonding=(-max(abs(force_bend),abs(force_shear))*Vf*H/a); 
        TForce_Friction=-CForce_Debonding*mu; 
        CForce_Radius=G_LT*df^2*pi()/4*t/(2*c+df)*cos(theta); 
        CForce_Total=CForce_Radius+CForce_Debonding; 
        length(n)=length_bend; 
    else 
        SolS_shear=solve(Sub_eps2,S2); 
        Soll_shear=subs(U2,S2,SolS_shear); 
        SolS_bend=solve(Sub_sigma_max2,S2); 
        Soll_bend=subs(U2,S2,SolS_bend); 
        FShear = @(length_shear)[subs(Soll_shear,l,length_shear)]; 
        FBend = @ (length_bend)[subs(Soll_bend,l,length_bend)]; 
        options=optimset('Display','iter','TolFun',1e-12,'TolX',1e-
14,'NonlEqnAlgorithm','dogleg','LineSearchType','quadcubic','MaxFunEvals',700
); 
        [length_shear,Shear] = fsolve(FShear,li,options) 
        [length_bend,BendStress] = fsolve(FBend,li,options) 
        force_shear=subs(SolS_shear,l,length_shear) 
        force_bend=subs(SolS_bend,l,length_bend) 
        Energy_bend=subs(U2,{l,S2},{length_bend,force_bend}) 
        Energy_shear=subs(U2,{l,S2},{length_shear,force_shear}) 
        CForce_Debonding=(-
max(abs(force_bend),abs(force_shear))*Vf*H/a)/cos(rake); 
        CForce_Friction=-CForce_Debonding*mu*sin(rake); 
        TForce_Friction=-CForce_Debonding*sin(rake); 
        CForce_Radius=G_LT*df^2*pi()/4*t/(2*c+df)*cos(theta); 
        CForce_Total=CForce_Radius+CForce_Debonding+CForce_Friction; 
        li=length_bend; 
        length(n)=length_bend; 
    end 
    TForce=G_LT*df^2*pi()/4*t/(c+df)*sin(theta)+TForce_Friction; 
    Forces(n,:)=[-CForce_Debonding,-CForce_Radius,-CForce_Total,TForce]; 
end 
plot(X,Forces(:,1),'*-',X,Forces(:,2),'.-',X,Forces(:,3),'+-
',X,Forces(:,4),'black--') 
hold on 
switch Rake 
    case 5 
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%-------------------------------------------------------------------------- 
%                                Cutting - Thrust 
%-------------------------------------------------------------------------- 
        
plot([90,90,90],[32.4,32.9,45],'redsquare',[90,90,90],[17.8,18.2,19.1],'black
hexagram') 
        
plot([115,115,115],[51.6,60.9,47.6],'redsquare',[115,115,115],[8.4,8,7.6],'bl
ackhexagram') 
        
plot([135,135,135],[13.3,16.9,24.9],'redsquare',[135,135,135],[2.2,1.8,2.7],'
blackhexagram') 
        
plot([170,170,170],[10.7,20.46,21.8],'redsquare',[170,170,170],[8.9,13.7,14.2
],'blackhexagram') 
        title('Plot of machining forces vs. fiber orientation for Rake=5') 
%-------------------------------------------------------------------------- 
    case 10 
%-------------------------------------------------------------------------- 
%                                Cutting - Thrust 
%-------------------------------------------------------------------------- 
        
plot([90,90,90],[20.9,25.8,42.25],'redsquare',[90,90,90],[10.7,12.9,14.7],'bl
ackhexagram') 
        
plot([115,115,115],[47.1,48.9,61.4],'redsquare',[115,115,115],[4.9,4,5.3],'bl
ackhexagram') 
        
plot([135,135,135],[12.9,17.8,15.6],'redsquare',[135,135,135],[2.2,2.2,2.6],'
blackhexagram') 
        
plot([170,170,170],[15.6,18.7,17.8],'redsquare',[170,170,170],[10.2,2.2,11.6]
,'blackhexagram') 
        title('Plot of machining forces vs. fiber orientation for Rake=10') 
%-------------------------------------------------------------------------- 
    case 15 
%-------------------------------------------------------------------------- 
%                                Cutting - Thrust 
%-------------------------------------------------------------------------- 
        
plot([90,90,90],[35,29.8,43],'redsquare',[90,90,90],[11.4,9.9,9.9],'blackhexa
gram') 
        
plot([115,115,115],[53.4,58.7,33.8],'redsquare',[115,115,115],[3.5,3.1,2.6],'
blackhexagram') 
        
plot([135,135,135],[16.8,21.3,16],'redsquare',[135,135,135],[1.8,2.2,1.9],'bl
ackhexagram') 
        
plot([170,170,170],[9.8,14.4,17.4],'redsquare',[170,170,170],[6.2,8.2,9.1],'b
lackhexagram') 
        title('Plot of machining forces vs. fiber orientation for Rake=15') 
%-------------------------------------------------------------------------- 
    case 20 
%-------------------------------------------------------------------------- 
%                                Cutting - Thrust 
%-------------------------------------------------------------------------- 
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plot([90,90,90],[25.9,41,32.9],'redsquare',[90,90,90],[16.9,16.2,10.4],'black
hexagram') 
        
plot([115,115,115],[56.9,52,43.5],'redsquare',[115,115,115],[3.1,3.1,3.1],'bl
ackhexagram') 
        
plot([135,135,135],[15.1,16.8,19.1],'redsquare',[135,135,135],[1.3,1,1.2],'bl
ackhexagram') 
        
plot([170,170,170],[11,13.2,12.9],'redsquare',[170,170,170],[8.4,9.1,10.2],'b
lackhexagram') 
        title('Plot of machining forces vs. fiber orientation for Rake=20') 
%-------------------------------------------------------------------------- 
end 
switch k 
    case 1 
        xlabel('Fiber orientation (Degrees)') 
        ylabel('Force (Pound/inch)') 
        p = legend('Bending force (Cutting)','Buckling force 
(Cutting)','Total cutting force','Thrust force','Experimental cutting 
force','Experimental thrust force',1); 
        set(p,'Interpreter','none') 
        grid on 
    case 2 
        xlabel('Fiber orientation (Degrees)') 
        ylabel('Force (N/mm)') 
        p = legend('Bending force (Cutting)','Buckling force 
(Cutting)','Total cutting force','Thrust force','Experimental cutting 
force','Experimental thrust force',1); 
        set(p,'Interpreter','none') 
        grid on 
end 
figure 
switch k 
    case 1 
        plot(X,length*10^6) 
        xlabel('Fiber orientation (Degrees)') 
        ylabel('Debonding length along the fibers (\muin)') 
        hold on 
        grid on 
    case 2 
        plot(X,length*10^6) 
        xlabel('Fiber orientation (Degrees)') 
        ylabel('Debonding length along the fibers (\mum)') 
        hold on 
        grid on 
end 
 


	CHAPTER 1 INTRODUCTION
	1.1. Fiber-Reinforced Composite Materials
	1.2. Classification and Characteristics of Composite Materials
	1.3. Research Rationale
	1.4. Objectives and Research Scope 
	1.5. Organization of Dissertation

	CHAPTER 2 BACKGROUND AND LITERATURE REVIEW
	2.1. General
	2.2. Geometry of a Single-Edge Orthogonal Cutting Tool 
	2.3. Geometry of a Single-Edge Oblique Cutting Tool 

	CHAPTER 3  CUTTING FORCES IN METAL CUTTING
	3.1. Cutting Forces in Orthogonal Machining of Metals 
	3.2. Chip Thickness 
	3.3. Oblique Machining Theory
	3.4. Review of the Machining of Fiber-Reinforced Polymers
	3.4.1. Problems in Machining of Fiber-Reinforced Polymers
	3.4.2. Mechanics of Chip Formation in Unidirectional FRP
	3.4.3. Mechanics of Chip Formation in Machining Multidirectional Laminates

	3.5. Modeling of Chip Formation in Machining FRPs (Mechanics-Based)
	3.5.1. Bhatnagar Model 
	Finite Element Models
	3.5.3. Non-Traditional Machining
	3.5.3.1. Abrasive-Waterjet Machining
	Laser Cutting



	CHAPTER 4 FORCE PREDICTION MODEL FOR CUTTING UNIDIRECTIONALFIBER-REINFORCED PLASTICS
	Modeling of Orthogonal Cutting of Unidirectional Fibers
	4.1.1. Modeling of orthogonal cutting of unidirectional fibers for 𝜽≤𝟗𝟎°
	4.1.1.1. Region 1 – Chipping
	4.1.1.2. Region 2 – Pressing
	4.1.1.3. Region 3 – Bouncing
	4.1.1.4. Total Cutting Forces

	4.1.2. Modeling of Orthogonal Cutting of Unidirectional Fibers for 𝜽>9𝟎°
	4.1.2.1. Finite Element Modeling of Debonding
	4.1.2.1.1. Fiber Material Modeling 
	4.1.2.1.1.1. Stress-Based Failure Theories

	4.1.2.1.2. Matrix Material Modeling
	4.1.2.1.2.1. Damage Initiation for Ductile Material
	4.1.2.1.2.1.1. Shear Criterion


	4.1.2.1.3. Fiber-Matrix Interface Modeling
	4.1.2.1.3.1. Linear Elastic Traction-Separation Behavior
	4.1.2.1.3.2. Damage Modeling
	4.1.2.1.3.2.1. Damage Initiation
	4.1.2.1.3.2.2. Damage Evolution


	4.1.2.1.4. Simulation Procedure
	4.1.2.1.5. Element Selection
	4.1.2.1.6. Cohesive Response Using Penalty Stiffness
	4.1.2.1.7. Finite Element Analysis of Debonding Length Predictions

	4.1.2.2. Analytical Method – Thrust Force
	4.1.2.2.1. Region 1 – Fiber Microbuckling 
	4.1.2.2.1.1. Model 1 – Perfectly Aligned Fibers with Aligned Axial Force
	4.1.2.2.1.2. Model 2 – Undulating Fiber Model
	4.1.2.2.1.3. Model 3 – Buckling Considering Lateral Force

	4.1.2.2.2. Region 2 – Fiber-Matrix Debonding

	4.1.2.3. Analytical Model – Cutting Force
	4.1.2.3.1. Bending Force When 𝜽−𝟗𝟎≤𝜸
	4.1.2.3.2. Bending Force When 𝜽−𝟗𝟎≥𝜸
	4.1.2.3.3. Total Machining Forces




	CHAPTER 5 EXPERIMENTAL WORK
	5.1. Setup
	5.2. Methodology

	CHAPTER 6 ANALYTICAL PREDITIONS OF THRUST AND CUTTING FORCES
	6.1. Material Properties
	6.2. Machining Forces
	Fiber-Matrix Debonding Length

	CHAPTER 7 CONCLUSIONS AND FUTURE WORK
	7.1. Conclusions
	7.2. Future Work

	REFERENCES
	APPENDIX

