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ABSTRACT 

This dissertation consists of four submission-ready papers that address some of the key error sources that 

affect the accuracy of interpretation of nanoindentation test results to obtain material properties for elastoplastic 

materials. The first part of the work is a study of the effect of sample tilt on results of nanoindentation tests. 

Geometrical relations are used to develop a correction to account for the effect of tilt angle on the contact area. 3D 

FEA (Finite Element Analysis) shows that the assumptions made in deriving the geometric correction are valid, and 

the results for contact area, hardness and modulus match the predictions of the analytical model.  It is shown that for 

both materials that sink-in and those that pile-up, the projected contact area for nanoindentation on tilted sample is 

higher than that estimated by the standard area function, which leads to overestimation of the hardness and elastic 

modulus. Experimental nanoindentation tests on tilted samples show lower sensitivity to sample tilt compared to 

FEA results because the compliance of the indenter holder causes the indenter tip to displace in the direction of the 

surface tilt, reducing the total penetration of the tip into the surface. For tips with very high compliance, this may 

even lead to significant underestimation of the hardness and modulus.  

The second part discusses the various factors that affect the accuracy of FEA of nanoindentation. With the 

understanding that contact area error arising from discretization of the continuum is a key contributor to noise in the 

hardness data, a self similar mesh is designed that results in a known amount of maximum error in contact area over 

a range of depths of penetration of the indenter. Based on the fact that contact area increases in discrete jumps, it is 

argued that the maximum force that a given area of contact can support, before the next element comes into contact, 

is the best measure of the true hardness of the material that can be obtained with a given mesh. FEA simulations 

carried out with meshes of different amounts of error in contact area show that as the discretization becomes coarser, 

the estimate of the true hardness increases, due to the inability of the mesh to resolve the steep gradients in stress 

and strain near the end point of contact. It is also shown that results obtained from different meshes with different 

error percentages can be extrapolated to determine the exact value of hardness that will be obtained with 

infinitesimally small elements. It is shown that other sources of error, such as the convergence tolerance of the 

iterative solution process, are small in comparison to the discretization errors. 

The third part is a study aimed at identifying the size of the volume underneath a nanoindentation that 

influences the hardness and modulus measured. FEA simulations of the indentation of a hemispherical particle 

embedded in a matrix reveal that the hardness of particle can be measured accurately by nanoindentation as long as 
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the plastically deformed region is confined entirely within the particle. While this may be intuitively obvious in 

retrospect, this is the first quantitative demonstration that this is so. It is found that an available relationship between 

the force, yield stress, and the radius of the plastically deformed zone is accurate under the conditions studied. This 

can be used to determine the maximum penetration depth that can be used if the size of the particle is to be 

estimated. For modulus of elasticity, it is shown that the modulus measured by nanoindentation method actually 

represents the elastic response of the entire specimen at the indentation point, which for all penetration depths, is a 

composite of the elastic response of both the particle and the matrix. A relationship is developed that shows the 

effect of boundary conditions and the matrix on the modulus measured by indentation at low depths of penetration 

for a hemispherical particle/matrix system. 

The last part describes a new iterative procedure for estimation of the mechanical properties of elastic-

perfectly plastic materials by nanoindentation. The key feature of this method is the estimation of the correct contact 

height, irrespective of whether the material piles-up or sinks-in, using an iterative procedure. It is shown that the 

proposed method improves the estimation of hardness and modulus compared to the Oliver and Pharr method and 

also gives a good estimation of the yield stress for materials with plastic index greater than 10. 
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CHAPTER 1 

INTRODUCTION 

Nanoindentation testing, also referred to as instrumented indentation testing, is widely used for mechanical 

characterization of small volumes of elastoplastic materials. The instrument directly measures the indentation force 

vs. displacement of the indenter, during the loading and unloading steps, from which the hardness and elastic 

modulus are estimated. However, the level of accuracy of the hardness and modulus values is always is question, 

since the method is very sensitive to several different parameters.  

In this dissertation, which consists of four submission-ready papers, some sources of error that affect the 

accuracy of nanoindentation tests are addressed. The literature relevant to each subject is reviewed in the 

introduction section of each chapter and the findings of each study are summarized in the conclusions section.  

Our study of the accuracy of nanoindentation tests was motivated by the desire to use this for measuring 

ductile damage distribution over the primary shear zone in metal cutting process (Figure 1.1). The deformation in 

this small region is of interest in FEA simulation of cutting, which is very sensitive to changes in material model 

(Madhavan and Adibi-Sedeh, 2005).  

 

Figure 1.1. Schematic sketch of orthogonal cutting showing the primary shear zone (Madhavan et al. 2010). 

We were interested to quantify the amount of damage at each point to include it in constitutive models to 

improve the accuracy of the simulation of metal cutting process. Damage measurement by nanoindentation and 

correlating it to mechanical properties has been addressed by some researchers using analytical approaches as well 
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as FEA and experimental studies (Basaran et al., 2004; Chen et al., 2006; Fleck et al., 1992; Kumar et al., 2001; 

Tasan et al., 2009; Xiang et al., 2006). Performing a grid of indents over the primary shear zone, it was observed that 

the noise level in the results obtained from nanoindentation was more than the changes expected in mechanical 

properties (Saket Kashani and Madhavan, 2007). It was concluded that in order to quantify ductile damage or any 

other parameter that introduces slight changes in the properties of material, a good understanding of the sources of 

error in nanoindentation tests was required. 

One of the sources of error that we encountered and we needed to address was the effect of sample tilt on 

nanoindentation results. This was critical for our studies since the presence of slight sample tilt from one specimen 

to another was unavoidable by the procedures used for mounting and polishing of the specimens. For the case of 

etched specimens, the local waviness of the surface could also be considered as a significant surface tilt. Lack of a 

good study on the effects of this factor and incorrect interpretation of sample tilt in available literature (Xu and Li, 

2007), led us to a comprehensive study of the effect of tilt on nanoindentation results as presented in chapter 2. 

Performing numerous finite element simulations of nanoindentation, it was observed that there is certain 

amount of noise in FEA results that could sometimes interfere with drawing clear conclusions, especially if the 

expected changes are small. It was also noticed that several studies reported FEA result of nanoindentation 

containing clearly perceivable noise (Antunes et al., 2007; Bolshakov and Pharr, 1998; Chen and Vlassak, 2001; 

Larsson et al., 1996). Reviewing the literature, a need for a comprehensive study of the accuracy of FEA of 

nanoindentation was felt. This was the motive for the study presented in chapter 3. Using appropriately designed 

meshes, the contribution of various error sources was quantified and an extrapolation method was developed to 

reduce the amount of maximum error to arbitrarily small values.  

This accurate FEA made possible a critical study to answer the important question: “What is the size of the 

volume underneath a nanoindentation that influences the hardness and modulus measured?”. The need to answer this 

question arose from the thought that the damaged region can be treated as a second phase with slightly different 

mechanical properties. This study also enables interpretation of nanoindentation results in a dual phase material. The 

study that is presented in chapter 4 identifies the volumes beneath a nanoindentation that influence hardness and 

modulus and also improves the understanding of the influence of properties of matrix on the modulus measured in a 

hemispherical particle/matrix configuration. The results of this study help to accurately relate the changes of 

mechanical properties observed from nanoindentation to different depths to the properties and extent of a second 
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phase or a damaged region. It also provides empirical rules for allowable depth of penetration for hardness and 

modulus measurement of small regions.  

The other source that was limiting our ability to quantify the change of mechanical properties was the 

inability of the widely used method (Oliver and Pharr, 1992) to estimate the contact area accurately when the 

material piles up around the indenter (Bolshakov, 1996; Bolshakov and Pharr, 1998; Cheng and Cheng, 1998, 2000). 

This was very critical for our studies since it is well known that the less the material work hardens, the more the 

amount of pile-up is (Cheng and Cheng, 2000; Shu et al., 2007). During the metal cutting test, the large strain 

imposed causes the material to work harden to the point of saturation and the chip can be considered to be a 

perfectly plastic material. Therefore a good estimate of mechanical properties could be obtained for parent material, 

but the results were not accurate for nanoindentation results of the chip. There are several studies in the literature on 

the effect of pile-up on nanoindentation results and of ways to correct for pile-up (Kese and Li, 2006; Lee et al., 

2007; Shu et al., 2007); however, none of them is widely accepted. Our studies on this issue led us to develop an 

iterative method that accurately estimates the contact area for materials that show pile-up around the indenter. As 

described in chapter 5, this method results in much better estimation of mechanical properties compared to the O&P 

method (Oliver and Pharr, 1992).  
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CHAPTER 2 

ANALYSIS AND CORRECTION OF THE EFFECT OF SAMPLE TILT ON RESULTS OF 
NANOINDENTATION 

2.1 Abstract 

Finite element simulations have been carried out to study the effect of sample tilt on the results of conical 

and Berkovich indentation. For the case of conical indentation it is found that, for indentation on a five degree tilted 

specimen of a material exhibiting sink-in or pile-up behavior, the projected contact area would be underestimated by 

8%. The hardness and elastic modulus are consequently overestimated by 8% and 4% respectively. These are 

significantly less than the overestimation of 130% for the hardness and 50% for the modulus reported in a recent 

paper (Xu Z-H, Li X. Philos Mag 2007; 87:2299). A generalized definition of the contact area that is also valid for 

indentation on tilted samples is proposed. We find that for conical indentation on a tilted surface, the boundary of 

contact lies along a plane; secondly that the plane is nearly parallel to the surface of the tilted sample; and thirdly 

that the contact depth measured along the indenter’s axis is independent of tilt angle! It is found that these 

conclusions are valid for both sink-in and pile-up materials. This permits a simple geometrical correction for the 

effect of sample tilt. The validity of this approach is also studied for Berkovich indentation on fused silica by finite 

element simulations as well as experimental tests. It is found that while FEA show that the correction approach 

improves the accuracy of estimated hardness and modulus significantly, experimental results indicate an over-

correction. The reasons for this are determined.  

 
Keywords: Nanoindentation; Finite element analysis; Hardness; Elastic behavior 

 

2.2 Introduction 

Instrumented indentation tests are widely used for mechanical characterization of small volumes of material 

to obtain the hardness and elastic modulus. The results are very sensitive to numerous instrumentation and sample 

preparation factors (Fischer-Cripps, 2004) such as surface roughness of the sample, sample compliance and indenter 

geometry.  

The effect of sample tilt on nanoindentation results is another specimen-related factor that can affect the 

results of nanoindentation tests. Specimen tilt could either be global, arising from non parallelism of the top and 

bottom surfaces of the sample, or a local tilt of the area under examination arising from surface waviness (Bobji and 
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Biswas, 1999) and from edge rounding effects near the edges of polished specimens. We have addressed the 

geometrical effects of surface tilt on nanoindentation results in a recent paper (Saket Kashani and Madhavan, 2008). 

Analytical equations were derived for calculating the true projected area of indentation of tilted specimens for 

pyramidal indenters such as Berkovich and cube corner, and also for conical indenters. The true projected area of 

contact was found to be higher for tilted indentation for the same depth of penetration. The resulting error that would 

be introduced in the modulus and hardness value was also determined. 

Xu and Li (2007) studied the effect of sample tilt on conical nanoindentation test results using finite 

element analysis, and also presented some experimental results. They simulated several conical indentations with 

equal depth of penetration on samples tilted different amounts. While they also found that sample tilt will increase 

the true projected area, their results showed the effect of tilt to be more than ten times higher than ours.  

In this paper we use finite element simulation to understand the effect of surface tilt on the results of 

conical nanoindentation. It is important to resolve this discrepancy since in most experiments the sample has a small, 

but finite, tilt. Indentation on samples tilted 1 to 5 degrees is studied using 3D finite element analysis (FEA) of half 

models and compared with a non-tilted sample. It is shown that nanoindentation results are not as sensitive to 

sample tilt as described in the work by Xu and Li (2007), and are of the magnitude expected based on our geometric 

analysis (Saket Kashani and Madhavan, 2008). We generalize the definition of contact depth in the manner that 

instrumented indentation actually measures it, which clarifies the sources of large differences between our result and 

ones reported in previous work (Xu and Li, 2007). FEA results also help us understand the reason why the analytical 

correction method based on geometry of the contact area between the indenter and the tilted specimen works so well 

and can be used to compensate for the slight influence of surface tilt on nanoindentation results.  

For the case of Berkovich indentation on tilted samples, there is no FEM study available in the literature, to 

the knowledge of the authors. It is important to study this since the geometric correction show that a given amount 

of indentation more than that of the equivalent cone (Saket Kashani and Madhavan, 2008). A similar set of results 

for the effect of tilt and twist was reported by Ellis et al. (2008) from alignment uncertainty study approach, but no 

closed form equation was presented.  

2.3 Basic theory of nanoindentation 

Instrumented indentation tests use the Oliver and Pharr (1992) method to estimate the contact depth (hc) 

based on the maximum load (Pmax) at full penetration depth (hmax) and the stiffness of the unloading force curve (S). 
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This is derived from Sneddon’s analysis (Cheng and Cheng, 1997) of the elastic deformation of a half space subject 

to an axisymmetric displacement boundary condition on the surface akin to that of a cone indenting it. The contact 

depth is determined using equation (2.1) which has rigorous applicability for elastic indentations but has been shown 

to be applicable to elastoplastic indentations too (Cheng and Cheng, 1997).  The projected contact area (Ac proj) is 

obtained by substituting the contact depth into the area function of the indenter, which is obtained from a calibration 

process.  The commonly used definition of hardness, the Meyer hardness, is the ratio of the indentation load to the 

area of the indent projected on a plane perpendicular to the axis of the indenter. The elastic modulus of the specimen 

can also be obtained from a relationship found in Sneddon’s analysis, modified to include a correction found and 

that accounts for the fact that the loading used in Sneddon’s calculation is different from that actually imposed by 

the indenter (Hay et al., 1999). 

hc=hmax-ε 
Pmax

S
 (2.1)

H=
Pmax

Ac proj
 (2.2)

Er=
1

2
√π

ඥAc proj

S (2.3)

1

Er
=

1-νs
2

Es
+

1-νi
2

Ei
 (2.4)

In the above equations, Er is the reduced modulus, Es the modulus of specimen, νs the Poisson’s ratio of 

specimen, Ei the modulus of indenter, νi the Poisson’s ratio of indenter, and  and ε are constants that depend 

primarily on the geometry of the indenter.  For conical indentation of fused silica, β can be obtained from analytical 

equation given by Hay et al. (1999) which is equal to 1.072. While ε turns out to be 0.72 for Sneddon’s boundary 

conditions, experimental results indicate that 0.75 is a better value for Berkovich indenters (Fischer-Cripps, 2004). 

2.4 Generalized Definition of Contact Depth 

The entire field of depth sensing indentation arose from the ability to estimate the contact depth accurately 

by compensating for the surface displacement using the approach developed by Oliver and Pharr (1992). The contact 

depth is calculated based upon the initial slope of the unloading portion of the load-displacement curve and is 

directly related to the projected contact area at peak load. Oliver and Pharr defined the contact depth as “the vertical 

distance along which contact is made”. Fischer-Cripps (2004) defined it as “the distance from the bottom of the 
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contact to the contact circle”. Both definitions provide a clear description of the contact depth of ideal conical 

indentations, but are not clear for the case of indentation on tilted samples or pyramidal indentations.  

For the case of indentation on tilted samples, the definition can be generalized to be valid independent of 

the tilt angle. Note that the maximum depth of penetration is measured along the direction along which the indenter 

is fed into the sample, the indentation direction. This is the way all commercially available nanoindentation 

machines measure the displacement, using a transducer. Assuming that this direction and the indenter’s axis are the 

same, the contact depth can be defined as: “the distance between the tip of the indenter and the intersection of the 

indenter’s axis with the plane of the boundary of contact” (Figure 2.1). In this work, it is shown that the boundary of 

contact for conical indentation remains planar, for all sample tilt angles. The above definition degenerates to the 

traditional definitions for the case of ideal conical indentation with no sample tilt. 

For ideal pyramidal indentation, it has been shown by 3D finite element analysis of Berkovich indentation 

on fused silica that the projected contact area is not a perfect equilateral triangle. The sides of the triangle are 

curved, attributable to the fact that the contact depth changes locally as the local cone angle varies. For a material 

that sinks-in, for which the O&P equation is valid, the smaller the local cone angle is (closer to the middle of the 

face), the smaller the contact radius and the smaller the contact depth. Shim et al. (2007) showed that the contact 

depth calculated by the O&P method results in a number between the minimum local contact depth (at the middle of 

the faces) and the maximum local contact depth (at the edges of the pyramid) as shown in Figure 2.2. The geometry 

of boundary of contact for pyramidal indentation on a tilted surface is further complicated by the tilt angle and also 

depends on the orientation of the pyramidal faces with respect to the axis of tilt. 

 
Figure 2.1. Projected area of indent for a contact depth of hc on a surface tilted η degrees. 

η 

hc θ 



8 
 

 

Figure 2.2. Variation of the depth of boundary of contact for a Berkovich indentation compared with that of conical 
indentation. Note that the conical depth of boundary of contact is between the minimum and the maximum local 

contact depths of Berkovich indentation (Shim et al.,2007). 

2.5 Area function for conical indentation into tilted samples 

As stated above, it is assumed that the tilt is only introduced as a result of sample tilt, the conical indenter 

being mounted accurately, with the geometrical axis of the indenter coinciding with the indentation direction.  The 

depth of indentation is measured beginning at the point where the indenter touches the sample, and is measured in 

the indentation direction along the indenter’s axis. 

For an ideal conical indentation without sample tilt, the impression will be circular and the projected area 

of the impression is given by equation (2.5), where θ is the semi-cone angle, and hc is the contact depth.  

Ac proj
θ =π hc

2 tan2θ (2.5)

For η degrees of sample tilt, assuming that the boundary of contact lies in a plane, the boundary of contact 

will be an ellipse. The projected area of contact, along the plane perpendicular to the axis of the indenter, will also 

be an ellipse as shown in Figure 2.1. The procedure for calculation of this area function is reported in our earlier 

work (Saket Kashani and Madhavan, 2008). Further assuming that the boundary of contact is parallel to the surface 

being indented, and defining hc to be the intersection of this plane with the indenter axis, the area of the projected 

ellipse can be calculated using equation (2.6).  

Ac proj
θη =

π hc
2 tan2θ

ሺ1-tan2θtan2ηሻଷ ଶ⁄
 (2.6)

Using the projected contact area of indentation on ideal surface without tilt given by equation (2.5) as the 

reference and assuming that hc remains independent of tilt, the error induced in the projected contact area due to tilt 

can be written as: 
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%error=
Ac proj
θη -Ac proj

θ

Ac proj
θ ×100 (2.7)

Figure 2.3 shows the error for a range of cone angles including 70.3º and 42.3º, for which the area functions 

are the same as that of Berkovich and cube corner indenters, respectively. Notice that the projected contact area with 

tilt is always more than that without tilt. This can be understood by referring back to Figure 2.1 and noting that the 

increase in area on the right side of the axis due to tilt is more than the decrease in area on the left. It can be seen 

from Figure 2.3 that indenters with larger semi-cone angles are more sensitive to sample tilt. A five degree tilt will 

result in 9.7% underestimation of projected area for the cone angle equivalent to that of a Berkovich indenter, while 

it results in only 1.0% error for the cone equivalent to a cube corner.  

The other useful conclusion that can be drawn is about the specification within ISO 14577 (2002) that the 

surface tilt should be less than 1º. This recommendation can be seen to be very conservative for indenters with 

smaller cone angles. Using the equations above, the maximum allowable tilt angle that results in less than 1% error 

in estimation of area function without any sort of correction strategy is plotted as a function of the semi-cone angle 

in Figure 2.4. For example, the allowable tilt angle for the cone equivalent to a Berkovich is 1.7º while it is 5.1º for 

the cone equivalent to a cube corner. This suggests that it may be possible to use indenters with smaller semi-cone 

angles to expand the applicability of this nondestructive test to cases where local surface tilt is unavoidable, such as 

with rough surfaces.  

 

Figure 2.3. Error in projected area versus tilt angle (η) for conical indenters of different semi-cone angles. 
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Figure 2.4. Maximum allowable surface tilt angle for the error in projected area to be less than 1%. 

2.6 Area function for pyramidal indentation into tilted samples 

For the ideal case of indentation without sample tilt, the projected area of a pyramidal indenter would be an 

equal-sided three sided figure. As discussed before, due to local contact height variations the sides can be either 

concave outwards (for sink-in) or convex outwards (for pile-up materials). The average contact height can be 

considered to be the one which would give an area of contact that is an equilateral triangle of contact area equal to 

that of the area function of the indentation. The projected area is a function of average contact height, hc, and the 

face angle of the pyramid, φ, as given in equation (2.8). The face angles of Berkovich and cube corner indenters are 

65.27º and 35.26º respectively.  

௖ ௣௥௢௝ܣ
ఝ ൌ 3√3 ݄௖ଶ ଶ߮ (2.8)݊ܽݐ

For the case of a tilted sample, the impression corresponding to the average of contact height, hc, will not 

be an equilateral triangle anymore. The procedure for calculation of the projected contact area of a triangular 

pyramidal indentation on a tilted surface was reported in our earlier work (Saket Kashani and Madhavan, 2008). The 

projected contact area for this case is also a function of the tilt angle (η) and the rotation angle (ߞ), as shown in 

equation (2.9). 

௖ ௣௥௢௝ܣ
ఝఎ఍ ൌ

ଷ√ଷ ௛೎
మ ௧௔௡మఝ

ଵିଷ ୲ୟ୬మ ఝ ୲ୟ୬మ ఎିଶ ୲ୟ୬య ఝ ୲ୟ୬య ఎ ୡ୭ୱଷ఍
  (2.9)

The tilt angle (η) is the angle between the normal vector of the sample surface, ො݊, and the axis of the 

pyramid (Z) (see Figure 2.5). The rotation angle (ߞ) specifies the direction of the tilt with respect to one of the edges 

of the pyramid, measured as the angle between the projection of one of the pyramid edges along which the Y angle 
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is aligned and the projection of the surface normal ( ො݊௫௬) on the plane perpendicular to the axis of the pyramid (XY 

plane).  

 

Figure 2.5. Schematic view of a pyramidal indentation into an tilted surface showing the Cartesian coordinate 
system at the tip of the pyramidal indenter with respect to which the tilt angle η and rotation angle ζ of the surface 

normal ࢔ෝ are defined. 

Figure 2.6 depicts the normalized projected contact area, the ratio of contact area with and without tilt 

(equation 2.9 and 2.8, respectively) for a Berkovich indenter (φ=65.27º) as a function of the rotation angle for 

different tilt angles from 1 to 5 degrees. It can be seen that the maximum error due to tilt occurs when the rotation 

angle ߞ is zero, i.e. the tilt is along an edge of the pyramid. 

 

Figure 2.6. Normalized projected contact area of Berkovich indenter versus rotation angle ζ for tilt angles η of 1 to 5 
degrees. 

In order to compare the effect of tilt for conical and pyramidal indenters, the normalized area versus tilt 

angle is plotted in Figure 2.7 for Berkovich, cube corner, and their equivalent cones. ߞ ൌ 0 is assumed for the 
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pyramidal ones to study the maximum possible error. It can be concluded that pyramidal indenters are more 

sensitive to sample tilt than their equivalent cones. This figure also shows that Berkovich indenters are much more 

sensitive to sample tilt compared to cube corner indenters. This is simply because a Berkovich indenter has a larger 

equivalent cone angle compared to a cube corner indenter.  

 

Figure 2.7. Normalized projected contact area for Berkovich, cube corner and their equivalent cones versus tilt angle 
(η). 

2.7 Finite Element Simulations 

Three dimensional finite element simulations were carried out using the ABAQUS/STANDARD software 

package, to check the effect of sample tilt on nanoindentation results. The loading and unloading steps were 

modeled for a rigid conical indenter with a semi-cone angle of 70.3º and for a rigid Berkovich indenter. Indentation 

was simulated using displacement boundary conditions on the indenter that resulted in a peak displacement of the 

indenter tip into the specimen of 90nm (Figure 2.8). The specimen was modeled as a half-cylinder 12.3 μm tall and 

24 μm in diameter, tilted from 0º to 5º with respect to the axis of the indenter, and meshed with fully integrated 

eight-noded hexahedral elements. Symmetry boundary conditions are applied on nodes along the plane of symmetry. 

The Berkovich simulations are also done using a half model by neglecting the effect of indenter’s orientation (ߞ ൌ

0). The displacement of nodes along the bottom of the cylinder was constrained as shown in Figure 2.8. Frictionless 

contact was defined between the indenter and the sample. The element sizes in the contact region were of the order 

of 15 to 20nm which was found to result in good resolution in the contact area measurement with errors less than 1% 

(Figure 2.9). For the case of conical indentation two materials were used to study the behavior of both sink-in and 

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

0 1 2 3 4 5
Tilt angle η (º)

Berkovich

Equivalent cone of Berkovich

Cube corner

Equivalent cone of Cube corner

௖ ௣௥௢௝ܣ
ఎ

௖ ௣௥௢௝ܣ
 



13 
 

pile-up materials. Elastic-plastic von Mises material with isotropic hardening with E/σy=75 (as a material that sinks 

in) and E/σy=400 (as a material that piles us) were simulated, with E=100GPa, ν=0.28. Power law work hardening 

behavior was assumed, of the form σത=σy(Eε/σy)n for ε  σy/E with n=0.1 (Xu and Li, 2007). For Berkovich 

simulations, fused silica was modeled as an elastic-perfectly plastic material with E=72GPa, ν =0.17 and σy =5.5GPa 

(Shim et al., 2007). 

 

Figure 2.8. Boundary conditions for the finite element model of indentation on a 5º tilted sample. The axis of tilt is 
along the Z axis, the indenter axis is along the Y axis and the origin of the coordinate system is at the tip of the 

indenter. The indenter is constrained to displace along its axis and the bottom face of the specimen is fixed. 

Figure 2.9. FE model of the specimen. (a) Size of the sample and the mesh used, (b) mesh in the region of interest 
for conical indentation, with element size of 15 to 20nm, (c) mesh in the region of interest for Berkovich 

indentation. 

2.8 Results 

Figure 2.10 shows the load-displacement curves obtained from FEA of conical indentation into surfaces 

tilted zero and five degrees for sink-in material. It can be clearly seen that the peak load is higher for the tilted 

indentation, by 8%. It is the case that the initial unloading slope is also greater for the tilted indentation, by 4% in 

this case.  

(a) (b) (c) 
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Figure 2.11(a) shows the distribution of von Mises stress along the top surface and along the symmetry 

plane of a specimen without tilt and Figure 2.11(b) shows that on a sample tilted 5 degrees with the indenter being 

vertical in both figures. It can be seen that the stress field for the tilted indentation is skewed, with a larger extent of 

stressed material on the side with the longer length of contact with the indenter. From the location of the stress 

contours (corresponding to σത=σyൌ1333MPa), it can be seen that size of the plastically deformed material is larger 

than the size of the contact on the surface. Note that the same view orientation, size and fringe ranges are used for 

both figures. 

The elements in contact with the indenter can be seen in the contact pressure plots shown in Figures 2.12(a) 

and 2.11(b) for the case of no tilt and tilted samples, respectively. It can be seen that the contact pressure is fairly 

uniform over the contact region. It can also be noted that the number of elements in contact at maximum 

displacement (more than 300) is sufficient for accurate determination of the area of contact. The jump in contact 

area due to each additional element coming into contact is about 0.3% of the maximum contact area at the maximum 

depth. Since the same element sizes are used for all the simulations, this is the amount of random error to be 

expected in the contact area and hardness results. Figure 2.13 shows the contact pressure distribution over the 

projected contact area for Berkovich indentation on non-tilted and tilted samples of fused silica. It can be seen that 

the true boundary of contact is not an equilateral triangle, but a concave outwards, three sided figure, as observed by 

others (Shim et al., 2007). 

 

Figure 2.10. Load-displacement curves for indentation into samples tilted zero and five degrees for E/σy=75. 
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Figure 2.11. Von Mises stress distribution at maximum load in MPa. (a) for sample without tilt, (b) for 5º tilted 
sample for E/σy=75 (σyൌ1333MPa). 

 

Figure 2.12. Contact pressure (MPa) at maximum load for conical indentation. (a) for sample without tilt, (b) for 5º 
tilted sample, with σyൌ1333MPa, and E/σy=75. 

 

      

  (a)  (b) 

Figure 2.13. Contact pressure (MPa) at maximum load for Berkovich indentation. (a) for sample without tilt, (b) for 
5º tilted sample for fused silica (σyൌ5500MPa).  

For obtaining the projected area of contact supporting the indenter, the contact area should be projected 

onto a plane perpendicular to the indenter axis. The total contact area, which is among the results output by 

ABAQUS, can be projected in the plane perpendicular to the indenter axis to obtain the projected contact area using 

equation (2.10) for conical indentation and using equation (2.11) for Berkovich indentation. 

Ac proj
θ ൌ Ac

θ sin θ (2.10)

Ac proj
φ ൌ Ac

φ sinφ (2.11)
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Having the maximum load and projected area at that load, the hardness can be determined using equation 

(2.2). The hardness of the specimen without tilt is found to be 4.2GPa for E/σy=75 and 0.9GPa for E/σy=400. The 

initial slope of the unloading curve is obtained from the load-displacement curve given by the FEA simulation. The 

reduced modulus of the contact pair is determined by substituting the stiffness and projected area into equation (2.3). 

The elastic modulus of the specimen can be obtained by substituting the reduced modulus and Poisson’s ratio of the 

specimen into equation (2.4); since the indenter is considered to be rigid, Ei= ∞. The elastic modulus of the 

specimen obtained from FEA simulation of the indentation of samples without tilt is found to be 101GPa for 

E/σy=75 and 102GPa for E/σy=400, which are close to the input value of 100GPa. 

Figure 2.14 shows the ratio of the projected contact area of indentation on tilted specimens to that on an un-

tilted specimen, as a function of tilt angle. The true ratio, obtained from FEA, is found to be matched well by 

equations (2.1, 2.6), i.e., the projected contact area increases with tilt in accordance with equation (2.6) for both 

sink-in and Pile-up materials. The geometric parameter ε in equation (2.1) is assumed constant at 0.72 for tilted and 

non-tilted indentations. Note that, without compensation of the area for tilt, that is with the O&P equations (2.1, 2.5), 

the small contact area decrease observed in Figure 2.14 with increase in tilt can be attributed to overestimation of the 

elastic recovery by the O&P equations due to the 8% higher force but 4% higher stiffness. However, the decrease in 

area estimated by O&P is less than 1%, and the ratio of hc/hmax remains nearly constant independent of tilt for both 

simulated materials. 

Figure 2.15 compares the hardness calculated using the three different measures of the projected area of 

contact shown in Figure 2.14.  It can be seen that the true hardness obtained from FEA remains constant independent 

of tilt angle – the small (<2%) variation in hardness are due to the contact area error. The area function for 

indentation without tilt (Ac proj
θ ) underestimates the contact area, thereby overestimating the actual hardness of the 

material. This error increases as the tilt angle increases. The overestimation factor is about 1.08 for the case of five 

degree sample tilt. It can be noted that using equation (2.6) reduces the error in estimation of hardness for both pile-

up and sink-in materials. 

Figure 2.16 shows the elastic modulus obtained from the O&P method using the three different measures of 

the area of contact.  Again the standard area function underestimates the area and leads to overestimation of the 

elastic modulus of the material as the tilt angle increases.  The overestimation factor is about 1.04, since the area 
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appears within a square root in equation (2.3) for the modulus. This shows that the correction method successfully 

reduces the error in modulus estimation for both pile-up and sink-in type. 

 

Figure 2.14. Comparison of the projected contact areas of conical indentations obtained from FEA, from O&P 
method, and from tilt corrected O&P for different tilt angles. Note that while FEA and the tilt corrected area 

function show an increase in Ac with tilt, the O&P method does not detect the change in Ac. 

 

 

 
 

Figure 2.15. Increase in the hardness calculated as a function of tilt angle of the specimen, shown for each of the 
three different measures of the contact area. Note that while the actual hardness given by FEA is nearly independent 

of tilt, the hardness estimation by the O&P method is 8 to 10% higher. 
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Figure 2.16. Increase in the modulus calculated as a function of tilt angle of the specimen, shown for each of the 
three different measures of the contact area. Note that while the modulus estimated using true unloading slope and 
the true contact area obtained from FEA is nearly constant, the modulus estimated by the O&P method is 4 to 5% 

higher. 

2.9 Experiments on tilted specimen of fused silica 

Indentations were performed using a Berkovich indenter to study the actual effect of sample tilt on 

nanoindentation results. Indentations were made on fused silica specimen with and without sample tilt. The sample 

tilt was introduced using a five degree angle block. In order to make sure the machine compliance is the same for 

both tests with and without tilt, a zero degree gauge block of the same material and the same height (~ 6-8 mm) was 

used for the zero degree tests as well. The sample was glued securely to the block and the block was held down by 

magnetic force. The zero degree tests were performed first and used to obtain the reference area function, which was 

then used for the tests on the tilted sample. Two sets of 6x6 indents at two different positions with increasing load 

from 5 to 9mN were performed on the sample with no tilt. This load range resulted in penetration depths between 

194 and 267nm. The area function was determined by forcing the reduced modulus to 69.6 GPa for all load curves 

and was used to process the data. The fitted area function resulted in average hardness and reduced modulus of 

10.12 and 69.54GPa respectively. In order to keep the indents on tilted sample within the calibrated contact depth 

range, the load range was reduced to 6 to 9mN for similar two sets of 6x6 indents at two different positions. This 

load range resulted in penetration depths between 210 to 260nm.The average of the hardness and reduced modulus 

of the 72 indents on the tilted sample were 10.60 and 72.87GPa respectively. This shows a clear overestimation 
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compared to the calibration values both in hardness and modulus; however, the 5% increase in measured hardness 

and 5% increase in measured reduced modulus do not exactly match the 12% and 6% increase expected based on 

theoretical and FEA results.  

After area function calibration, the same fused silica specimen was mounted on a five degree angle block 

and two grids of 36 indentations were made. The scanned impressions of indentations with nominal contact depth of 

150nm are shown in Figure 2.17 for both untilted and five degree tilted samples. It can be seen that the indentations 

on tilted sample results in an impression which is not an equilateral triangle, and which has slightly higher projected 

area for the same contact depth and consequently results in higher indentation loads.  

 
 (a) (b) 

Figure 2.17. The scanned impression of indentations on fused silica with contact depth of 150nm for (a) the untilted 
sample and (b) the five degree tilted one. 

A closer look at the load curves of indents with same maximum load of 9mN on zero and five degrees tilted 

samples revealed different creep behavior during the time the load is maintained constant at the peak value. The 

indentations were done in load control mode that consisted of 5 seconds linear loading, 5 seconds idle at maximum, 

and 5 seconds linear unloading. The displacement versus time during the idle time of these two load curves are 

shown in Figure 2.18. It can be seen that the indenter does not creep much into the tilted specimen while the load 

curve for indentation on zero degree shows about 3nm displacement. Since the load is constant at 9mN during these 

five seconds, the creep of the zero degree tilted sample means that the material hardness is slightly lower at smaller 

strain rates. This is an intrinsic character of the material and should not change with slight tilt of the sample; 

however, Figure 2.18 shows that the indenter creeps less than 1nm into the five degree tilted sample and then 

retracts. This interesting creep behavior of the tilted sample is interpreted as follows. The stem holding the indenter 

is deflected slightly to the side due to the side force developed while indenting a tilted specimen. This side force also 

results in creep to the side, which tends to increase the contact area. The indenter needs to retract to keep the load 
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constant. The deflection of the stem moves the indenter in the direction of the slope of the specimen surface, causing 

the true penetration depth to be smaller than the recorded penetration depth.  

 

Figure 2.18. The creep behavior of Fused silica during the idle time at constant 9mN load on ideal and five degrees 
tilted samples 

The deflection related overestimation in contact area needs to be compensated in experimental results. A 

5nm decrease in maximum depth of penetration is equivalent to about 60nm deflection in the position of the tip over 

the 5º tilted specimen. Since the stem of the indenter is about 5mm long, it can be seen that the change in angle due 

to this deflection is negligible. The deflection leads to a smaller maximum penetration into the sample surface than 

indicated by the instrument, the correction can be done by reducing the maximum depth of penetration used for data 

processing of tilted indentations (Figure 2.19). A 2% decrease in maximum depth of penetration, which is about 

5nm for 9mN indent makes the data agree with the values expected from geometrical estimation of contact area of 

Berkovich indentation on tilted samples, equation (2.9), and also FEA results of 3D Berkovich indentation on tilted 

fused silica. The normalized hardness and modulus values are plotted in Figures 2.20 and 2.21 for comparison.  

FEA of Berkovich nanoindentation on a 5º tilted specimen of fused silica shows that there is a constant side 

force, equal to 7.4% of the normal force during the loading step. The side force expected for a load of 9mN is about 

0.67mN. The deflection equation for a fixed-end cantilever, of dimensions equal to that in our setup, shows that if 

the modulus of the indenter’s stem is around 10GPa, the 60nm deflection is expected for this side load. The amount 

of deflection will be dependent on mechanical properties of the stem of the indenter and also the side stiffness of the 

transducer, which are not the same for different instrumented indenters. It should be also noted that the side stiffness 
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of the indenter stem and transducer may affect the unloading stiffness slightly. Therefore the modulus measured is 

affected by the stiffness of the system in horizontal direction, which can be different for different 

transducers/indenters.  

 

Figure 2.19. Schematic view of the effect of indenter deflection on measured maximum penetration depth. Note that 
the maximum penetration recorded by the instrument is more than the actual depth.  

 

Figure 2.20. Normalized hardness versus contact depth for raw experimental results and those corrected for side 
deflection, 3D FEA of Berkovich indentation on fused silica, and the expected geometrical overestimation based on 

equation (2.9). 
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Figure 2.21. Normalized modulus versus contact depth for raw experimental results and those corrected for side 
deflection, 3D FEA of Berkovich indentation on fused silica, and the expected geometrical overestimation based on 

equation (2.9). 

2.10 Discussion 

As noted previously, several assumptions were made in deriving the geometric correction equations for 

contact area in the presence of specimen tilt.  These include (i) the boundary of contact is along a plane (ii) this 

plane is parallel to the specimen surface and (iii) that the contact depth (measured along the indenter axis) is nearly 

constant independent of tilt (ε is constant), and can conceivably be obtained by the Oliver and Pharr method, 

equation (2.1).  Given these, it is remarkable that the simplified approach to correct for specimen tilt enables 

measurements of the hardness and modulus that are very close to true values, within 2% and 0.5% for hardness and 

modulus respectively. Still, it is of interest to check the degree to which each of these assumptions is valid. 

The boundary of the contact area was obtained approximately as the location of the contour line along 

which the contact pressure is equal to the yield stress.  Since the gradient of contact pressure is very high near the 

boundary (as can be seen from Figure 2.12, 2.13), the actual value chosen to identify the boundary does not affect 

the contour location or contour shape significantly.  Figure 2.22(a) shows the points along the boundary of the 

projected contact area for indentation into a sample tilted 5º, viewed along the axis of the indenter. Figure 2.22(b) 

shows the boundary of contact as viewed along the axis of tilt, from which it can be observed that the boundary lies 

along a plane for conical indentations. By fitting a trend line to the data in Figure 2.22(b), the equation of the plane 

is obtained to be y=0.082x-6.5 for E/σy=75 and y=0.081x+8.0 for E/σy=400, both with a goodness of fit R2=0.999. 
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From the equations, the tilt angle of the plane which contains the boundary of contact is found to be 4.69º for 

E/σy=75 and 4.63º for E/σy=400 and the depth of contact, hc= 90-6.5= 83.5nm and hc= 90+8.0 = 98.0nm for E/σy=75 

and E/σy=400 respectively. It is interesting to note that the ellipse in Figure 2.22(a) that seems to fit all the boundary 

points is actually the ellipse of the contact calculated from analytical equations given in previous work (Saket 

Kashani and Madhavan, 2007), using the above depth of contact and a tilt angle of 5º.  

The boundary of contact for Berkovich indentation on fused silica is also shown in Figure 2.22. It is clear 

that this boundary is not planar, but to study the applicability of the geometrical correction method, a plane was 

fitted to the data which has the equation of y=0.098x-30.4. The plane angle is consequently 5.57º which is a close to 

the tilt angle. Therefore it is expected that the geometrical correction method improves the area estimation which 

consequently improves the estimation of hardness and modulus. Note that the obtained tilt angle is slightly affected 

by number of extracted points at each side.  

In another approach to study the extent of the contact area, the last nodes in contact with conical indenter 

along the symmetry plane are plotted in Figure 2.23 for three different tilt angles for E/σy=75.  From the fact that all 

three contact ‘boundary’ lines intersect the vertical axis at the same depth, it can be concluded that the contact depth, 

hc, is constant, independent of tilt. 

Since each of the three assumptions made in deriving the geometric correction equations are seem to be 

quite accurate, it is not surprising that, using the contact area given by equation (2.6) within equations (2.2) and 

(2.3), better estimates for the hardness and modulus are obtained, as shown in Figures 2.15 and 2.16.  To implement 

this procedure as a correction for the effect of sample tilt, a geometrical correction procedure is proposed based on 

the derived area function to analytically correct the slight influence of sample tilt on contact area. The correction 

procedure can be simply applied by multiplying the usual area function of ideal indentation by 

ሺ1 െ tan θଶ tan ηଶሻିଵ.ହ for conical indentation and by ሺ1 െ 3 tanଶ ߮ tanଶ ߟ െ 2 tanଷ ߮ tanଷ ߟ cos  ሻିଵ forߞ3

pyramidal indentation, where θ is semi-cone angle, φ is the pyramid face angle, η is the sample tilt angle, and ߞ is 

the rotation angle. The two latter can be obtained from a post-test scan of the impression of indentation. 
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Figure 2.22. Approximate boundary of contact area for indentation into a sample tilted 5º, obtained as the contour of 
contact pressure equal to yield stress. (a) The view along the axis of the indenter which shows the boundary points 
of the projected contact area. (b) The view along the axis of tilt, showing that the boundary of contact lies along a 

plane for conical indentations. 

 

Figure 2.23. Side view of the contact area conical indentation for 0, 5, and 10 degrees of sample tilt from the last 
node in contact on the symmetry plane for E/σy=75. 
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The results presented in this work are very different from the ones presented in the work of Xu and Li 

(2007), except for the case of η=0º.  They reported the Oliver & Pharr method as being very sensitive to surface tilt. 

For instance, Xu and Li found that, for a constant penetration depth, the actual contact area of the indenter on a 

sample tilted five degrees was over two times that on a sample without tilt.  This caused the standard O&P method 

to overestimate the hardness and modulus for a sample tilted by five degrees to be 2.3x and 1.5x the actual values, 

respectively. 

Comparing the results of the simulations of the present work with the results of Xu and Li (2007), it is 

surmised that a different definition of the contact depth has likely caused the results reported in their paper to be 

dramatically different.  This is inferred from the comparison of their projected area plots with ours, shown in Figures 

2.24 and 2.25.  The generalized definition of contact depth (hc) is given earlier in this paper. The elliptical 

impressions for different amounts of surface tilt would look like those shown in Figures 2.24(a) and 2.25(a) if the 

contact depth is constant; however if the contact depth is measured as the penetration of the left edge of the indenter 

(h1, rather than hc), the elliptical impressions would look like that shown in Figures 2.24(b) and 2.25(b). This would 

explain their conclusion that using the standard O&P approach for obtaining the contact area results in 

underestimation of the projected contact area by up to 200% and consequently leads to significant overestimation of 

hardness and modulus. 

 
 

Figure 2.24. Comparison of the projected areas of contact for a conical indenter for tilted and un-tilted samples. (a) 
Keeping hc constant which is the actual case in FEA and experimentation. (b) Keeping h1 constant. 

 



26 
 

 

 

Figure 2.25. Projected contact areas for zero to 5 degrees of sample tilt. (a) Based on this work. (b) Presented in the 
work of Xu and Li (2007) 

In their experimental work Xu and Li (2007) used a 60º conical indenter on three samples with tilt angles of 

0, 1 and 3º; however, as shown in Figure 2.3, no significant error is expected for this indenter up to 3º tilt. They 

reported values of 72.0±0.6, 75.4±0.7 and 72.7±0.8 for modulus and 13.1±0.1, 13.5±0.3 and 14.3±0.6 for hardness, 

into samples tilted 0, 1, and 3º, respectively. The reason for lack of a clear trend and large variation is their indenter 

type.  

2.11 Conclusions 

3D FEA of conical nanoindentation of tilted samples shows that the boundary of contact lies along a plane 

that is nearly parallel to the surface of the tilted specimen. FEA also shows that the contact depth, measured as the 

distance between the indenter tip and the intersection of the axis of the indenter with the plane containing the 

boundary of contact, is independent of tilt angle. These observations justify the assumptions used to model the 

geometry of the area of contact during conical nanoindentation into tilted specimens. The derived analytical area 

function equation shows that the contact area increases faster with contact depth than that on non-tilted surfaces. A 

geometric correction procedure is proposed based on the derived area function to analytically correct the slight 

influence of sample tilt on contact area. The correction procedure can be simply applied by multiplying the usual 

area function of ideal indentation by ሺ1 െ tan θଶ tan ηଶሻିଵ.ହ for the case of conical indentation and by ሺ1 െ

3 tanଶ ߮ tanଶ ߟ െ 2 tanଷ ߮ tanଷ ߟ cos  ሻିଵ for pyramidal indentation, where θ is semi-cone angle, φ is the pyramidߞ3

face angle, η is the sample tilt angle, and ߞ is the rotation angle. The latter two parameters can be obtained from 

surface scans of the indentation impression. The accuracy of correction of the area function for tilted indentation is 
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verified by the results of 3D FEA of nanoindentation of tilted samples. If the sample tilt is not taken into account 

and the standard area function is used, the contact area would actually be underestimated, leading to overestimation 

of the hardness and modulus.  

For indentation with a cone of semi-cone angle 70.3º, with area function equivalent to the Berkovich 

indenter, on a specimen tilted five degrees, the contact area is underestimated by 8%, leading to 8% overestimation 

in hardness and 4% overestimation in modulus; however, a previous study has reported approximately 100% 

underestimation of contact area, 130% overestimation of hardness, and 50% overestimation of elastic modulus (Xu 

and Li, 2007). Experimental studies of Berkovich indentation on tilted fused silica confirms that nanoindentation test 

is not as sensitive to tilt as reported in the previous work. It was found in experiments that compliance of the 

indenter holder in the horizontal direction causes the actual maximum penetration depth to be lower than that 

measured by the instrument, which compensates for the underestimation of contact area of tilted indenter, and leads 

to even less sensitivity of results to tilt angle. 
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CHAPTER 3 

ACCURACY OF FEA OF NANOINDENTATION 

3.1 Abstract 

The aim of this study is to control and account for various sources of error in finite element analysis of 

nanoindentation tests and obtain the true hardness of a material as a function of its plastic and elastic properties. 

Indentation of an elastic perfectly plastic solid by a rigid cone is modeled using axisymmetric first order 

quadrilateral elements in ABAQUS/Standard.  In comparison with small errors arising from the convergence 

tolerance of the iterative solution process, errors due to discretization are found to be significant. Errors due to 

discretization arise from discrete jumps in contact area as each additional surface element comes into contact, and 

from higher indentation forces required for plastic deformation of larger elements near the boundary of contact. It is 

shown that a graded mesh, that permits self-similar growth of the displacement strain field with increase in 

indentation depth, can be used to keep the percentage error in hardness due to discretization constant at pre-set 

values. It is also shown that results obtained from different meshes with different error percentages can be 

extrapolated to determine the exact value of hardness that will be obtained with infinitesimally small elements. 

Using this approach, true hardness for a given set of elastoplastic properties commonly used for fused silica is 

determined to within 0.01%, 100 times more accurately than in earlier work. This extrapolation approach is also 

applied for calculation of accurate values of the ε correction factor used in the O&P method for estimation of contact 

depth and of the β correction factor in Sneddon’s equation.  

 

Keywords: FEA; indentation; nanoindentation; hardness; elastic modulus; stiffness; error; contact area 

 

3.2 Introduction 

Depth sensing nanoindentation has rapidly evolved into an important tool to study material properties over 

small length scales. The instrument directly measures the indentation force vs. displacement of the indenter during 

loading and unloading. The Oliver and Pharr method (Oliver and Pharr, 1992) is commonly used to estimate the 

contact depth, and consequently the contact area from the initial stiffness of the unloading curve. Using the contact 

area estimated by the O&P method, the Meyer hardness, the force per unit area of contact perpendicular to the 
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indentation force, can be calculated. The elastic modulus of the specimen that was indented can be estimated from 

Sneddon’s elastic solution for axisymmetric indentation (Oliver and Pharr, 1992). 

The true hardness of a material with given elastic and plastic properties is important in a variety of studies 

where it is important to capture the changes in hardness due to changes in inputs such as in the study of foams, 

coatings, thin films (Chen and Vlassak, 2001), surface roughness effects (Bobji and Biswas, 1999), tilt effects (Saket 

Kashani and Madhavan, 2008), etc. Increasingly, support from finite element simulations is used to understand and 

interpret experimental results. Due to the expense of 3D FEA, axisymmetric models with conical indenters having 

area functions equivalent to those of pyramidal indenters, are commonly used (Bolshakov et al., 1996). The 

advantage of finite element analysis is the true area of contact is known and can be used to determine the hardness. 

FEA can also be used to study the unloading process in detail and relate the stiffness of the unloading curve to the 

contact area and the elastic modulus.  

Comprehensive studies of various aspects of nanoindentation using FEA are available in the literature 

(Bolshakov, 1996; Hay et al., 1999; Shim, 2007). Several studies have shown that a number of test parameters such 

as thin film properties (Chen and Vlassak, 2001), influence of residual stress (Bolshakov et al., 1996), Surface 

properties (Bobji and Biswas, 1999; Warren and Guo, 2006), surface tilt (Saket Kashani and Madhavan, 2008), 

damage, etc. may cause changes in true or apparent hardness measured by O&P method. If the effect of small 

changes in these test parameters needs to be determined accurately, it is important to take into consideration various 

sources of error in FEA and develop a simulation that can study the true effect of the changes without the error in 

the simulations interfering with the conclusions.  

Thus far, the limits of accuracy of FEA of indentation have not been studied in great detail. Many studies 

show noise in the data obtained by FEA (Shim et al., 2007; Chen and Vlassak, 2001) yet report results to additional 

decimal places than warranted. In this paper, additional study of the various sources of error is carried out to 

establish the true hardness of fused silica with commonly used properties to an accuracy of 0.01%. Comparing this 

to other values reported in the literature for the same properties (Shim et al., 2007), it is found that the error in 

hardness reported by others can often be more than 1%. 

3.3 Basic theory of nanoindentation 

The basic equations in nanoindentation data processing are Oliver and Pharr’s equation for estimation of 

contact depth, the area function, the Meyer hardness equation, Sneddon’s equation for the reduced modulus, and the 
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equation for determining the sample’s modulus from the reduced modulus, equations (3.1) to (3.5) respectively 

(Oliver and Pharr, 1992). 

hcൌhmax‐ε
Pmax
S

 (3.1)

Ac projൌA ሺhcሻ (3.2)

H=
Pmax

Ac proj
 (3.3)

Er=
1

2
√π

ඥAc proj
S (3.4)

1

Er
=

1-νs
2

Es
+

1-νi
2

Ei
(3.5)

In these equations hc is the contact depth, Pmax is the maximum load, hmax is the maximum depth of 

penetration, S is the stiffness of unloading curve, A is the area function of the indenter, H is the Meyer hardness, Ac 

proj is the projected contact area, Er is the reduced modulus, Es is the modulus of specimen, νs is the Poisson’s ratio of 

specimen, Ei is the modulus of indenter, νi is the Poisson’s ratio of indenter, and  and ε are constants that depend 

primarily on the geometry of the indenter. 

3.4 Errors in FEA of nanoindentation 

Prchlik (2004) carried out a sensitivity analysis of hardness and elastic modulus evaluated from indentation 

load-displacement records (by the Oliver and Pharr method) to relative errors in force and penetration depth. This 

was done by differentiating the relations used in the O&P method. Assuming constant relative error over the entire 

depth and load ranges, the sensitivity relations for sharp indenters simplify to equations (3.6) and (3.7).  

ܪ∆
ܪ

ൌ െ2൬
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൰ (3.6) 
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൰ ൅ ൬

ܨ∆
ܨ
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While errors in measurement of contact height and force would lead to uncertainty in hardness and 

modulus measurements as shown above, for both experiment and FEA, the reasons for error in contact height and 

force are different in FEA than in experiments. Assuming that the test is modeled accurately and the properties and 

boundary conditions are assigned appropriately, there are still some sources of error that affect the contact height 

and indentation force. 
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a) Contact area error due to discretization. While the height of penetration of the indenter (hmax in Figure 

3.1 and 3.2) increases smoothly and continuously, the contact height, hc, exhibits discontinuities, with the height of 

the steps being dependent on the deformed size of the surface element and the indenter angle θ.  Using the last node 

in contact to determine the contact height, the mesh size at the boundary of contact (Le) is related to the granularity 

of contact height determination by ∆݄௖ ൌ ௘ܮ cos   .ߠ

The relative error in projected contact area of any self-similar indenter for which  ܣ  ן ݄ଶ (such as ideal 

cone, Berkovich and Vickers) can be determined as ∆ܣ ⁄ܣ ൌ 2∆݄ ݄⁄  (Prchlik, 2004). The relative error in projected 

contact area can be determined as a function of element size, contact radius, and semi-cone angle of the cone 

(equation (3.8)). 

ܣ∆
ܣ
ൌ 2

∆݄
݄
ൌ 2

௘ܮ cos ߠ
݄௖

ൌ 2
∆ܴ
ܴ
ൌ 2

ܴ௘
ܴ௖

ൌ 2
௘ܮ sin ߠ
ܴ௖

 (3.8) 

This error can be alleviated by controlling the solution step size and recording the force data with high 

resolution around the point of discontinuous change in contact area, so that the maximum force prior to a jump in 

contact area can be detected. If the maximum force prior to the jump in contact area can be accurately determined, 

the hardness (the maximum force a certain projected area of contact can support) can be determined accurately.  

 

 

Le 

θ 

Rc 

Re 

hc 

Figure 3.1. Schematic view of last element in contact in conical indentation 

hmax 
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Figure 3.2. The height of penetration of the indenter, hmax, increases smoothly and continuously while the contact 
height, hc, exhibits discontinuities, with the height of the steps being dependent on the deformed size of the surface 

element and the indenter angle θ. 

b) Error in force due to discretization. This is another source of error in FEA of nanoindentation test, 

which arises from approximating the load carrying capacity of a continuum by that of a discretization of the 

continuum. This error can usually be reduced by refining the mesh in the regions where stress or strain gradients are 

relatively high, typically around the boundary of contact. The effect of a coarse mesh can be observed by noting the 

jumps in stress across elements. This error in force will cause the maximum force supported by the contact area 

(prior to the jump in contact height) to be typically higher than that of the continuum. Additionally, while the contact 

area error is only a result of the mesh size at the contact surface, the error in force due to the discretization is 

affected by the mesh both at and below the boundary of contact.  

c) Convergence tolerance. The nonlinear response of the elastoplastic continuum necessitates iterative 

solution of the equilibrium equation in the implicit integral solution procedure used in ABAQUS/Standard. 

Convergence of the iteration can be judged using a variety of criteria. The criteria as well as the tolerances can be 

adjusted in ABAQUS simulations. There are numerous parameters that can be adjusted, but most of them rarely 

need to be reset from their default values according to ABAQUS theory manual. The convergence criterion for the 

ratio of the largest residual force to the average internal force for convergence (default 0.005) and convergence 

criterion for the ratio of the largest solution correction to the largest corresponding incremental solution value 

(default 0.01) were both reduced by a factor of 1E-16. In the case of this quasi-static simulation this just resulted in a 

slightly smaller force noise at the contact nodes, but much longer simulation time because of smaller step sizes for 

these simulations. 
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d) Number of significant digits. During the course of data processing it was noticed that the number of 

significant digits exported from ABAQUS can have significant influence on the noise level of calculated parameters 

like hardness and modulus. The modulus is especially sensitive to this because it is a function of slope of unloading 

curve, for very small steps, small round-off error in displacement, force and contact area values can add up and 

result in significant noise in final modulus values. Therefore it is recommended to use the maximum number of 

digits possible to minimize the effect of rounding the values exported from ABAQUS. 

3.5 Finite Element Model 

Using the dependence of the jumps in contact area on the mesh size described in the previous section, a 

mesh can be designed to control the maximum error from area measurement. To keep the maximum area 

measurement error constant, the element size at any given contact radius can be determined from equation (3.7). 

Therefore the contact surface of the specimen should be meshed with a linear gradient. The simplified form of the 

relation ܮ௘ ൌ  ௖ means that the element size should increase with increase of the radius. Using the same relationܴ ܥ

to mesh the interior region also, self-similar mesh having a constant discretization error can be realized.  

Four different values for contact area measurement error were considered in this study: 31.6%, 10%, 

3.16%, and 1% which means the ratio ∆ܴ/ ܴ should be 0.158, 0.05, 0.0158, and 0.005, respectively. For a cone with 

semi-cone angle of 70.3º, the specimen is meshed to follow this rule between radius of 10nm and 500nm. The 

indenter is loaded in displacement control mode into the material for 50nm. The specimen which is shown in Figure 

3.3 was considered as a 200μm radius semi-sphere to minimize the effect of boundary conditions. 

Figure 3.4(a) shows the close up of the controlled gradient mesh between 10 and 500nm for the mesh 

designed for 10% error and Figure 3.4(b) shows the initial 10nm. The element sizes at radius of 10 and 500nm and 

the number of elements on the surface between these points and also the number of elements for the whole model 

are listed for all four meshes in Table 3.1. It was verified that the mesh for the initial 10nm does not affect the 

results, by running similar simulations with only changing the mesh in that region. Four-node axisymmetric linear 

full integration elements (CAX4) were used for meshing the models. 

The indenter was modeled as an analytical rigid surface, representing a perfect conical indenter with a 

semi-cone angle of 70.3º which is a cone with area function equivalent to that of the Berkovich indenter. The 

material properties of fused silica used in this study were the same as reported by Shim et al. (2007): elastic-

perfectly-plastic material with a yield strength of 5.5 GPa, elastic modulus of 72GPa, and Poisson’s ratio of 0.17. 
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Frictionless contact was used between indenter and the specimen surface. Even though frictionless contact 

will increase the chance of radial displacement of the nodes and thus the deviation from the estimated error, it has 

been used in order to allow comparison of results with other works in the literature (Shim et al., 2007). On the other 

hand, this deviation makes the design a conservative one since the elements can move outward which reduces the 

radial width of the elements. Therefore, for the case of the mesh designed for 1% error in contact area, the maximum 

expected error in contact area is 1%, independent of friction value. It is important to remember that the error that is 

controlled here is the range of variation in results due to discrete jumps in contact area, not the deviation from true 

indentation results, as will be discussed in more detail later. 

 

TABLE 3.1 

SIZE AND NUMBER OF ELEMENTS FOR FOUR DIFFERENT MESHES DESIGNED TO RESULT IN 
31.6%, 10%, 3.16%, AND 1% ERROR IN HARDNESS 

Mesh error Element size (nm) Number of elements on the 
surface between R=10nm and 

R=500nm 

Number of elements 
in the whole model 

ܣ∆
ܣ

 
∆R
ܴ

 
@ R=10 

nm 
@ R=500 

nm 

1% 0.005 0.05 2.66 736 17754 

3.16% 0.0158 0.17 8.39 232 6358 

10% 0.05 0.53 26.55 73 1770 

31.6% 0.158 1.68 83.91 22 825 
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Figure 3.5 shows the distribution of von Mises stress at the maximum penetration for each of the four 

meshes. The differences in smoothness of stress contours can be observed, which will be shown to cause the 

discretization error in final results. Closer views of contours of von Mises stress near the end of contact are also 

shown in Figure 3.5. Note that for fused silica, the plastic zone is nearly hemispherical with a radius nearly equal to 

  

  

 (a) (b) 

Figure 3.2. Detail of the mesh. (a) Close up at the contact region which is meshed to have less than 1% jumps in 
contact area, (b) Initial 10nm with relatively coarse mesh.

 

 

 

Figure 3.1. Hemispherical axisymmetric model for 10% jumps in contact area. 
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the radius of contact. The equivalent plastic strain distributions beneath the indenter are also shown in Figure 3.6 for 

all four cases. 

 

  
(a)  (b) 

 

 

 
(c)  (d) 

Figure 3.3. Distribution of von Mises stress at maximum depth of penetration, hmax=50nm, with a close-up of the 
nodes in contact for the case of (a) 31.6% Mesh, (b) 10% Mesh, (c) 3.16% Mesh, and (d) 1% Mesh. 

R 500nm R 500nm 
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The variation of stress in y direction, ߪ௬௬, as a function of radius is shown in Figure 3.7 for the points on 

the surface of the specimen at the maximum penetration of 50nm. It can be seen that the coarser the mesh is, the 

larger is the deviation from expected value. The stress distribution plots around the last point in contact show that 

the gradient of stress in this region is not captured properly. Figure 3.8 shows the gradient of  ߪ௬௬ of the points on 

the surface of the specimen as a function of radius at the maximum penetration of 50nm. This figure clearly shows 

that finer mesh captures the high gradient of stress in this region while the coarse mesh is not capable of doing so. It 

is also of value to look at the distribution of equivalent plastic strain on the surface of the specimen as shown in 

Figure 3.9. It can be seen that the plastic strain required for deforming a fine mesh is smaller than that required for 

deforming a coarse mesh.  

 

 

 
(a)  (b) 

 

 

 
(c)  (d) 

Figure 3.4. Distribution of equivalent plastic strain at maximum depth of penetration for the case of (a) 31.6% 
Mesh, (b) 10% Mesh, (c) 3.16% Mesh, and (d) 1% Mesh. 
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Figure 3.7. The variation of stress in y direction, ߪ௬௬, at the maximum penetration of 50nm for the points on the 
surface of the specimen as a function of radius.  

 

 

Figure 3.8. The variation of the gradient of  ߪ௬௬ at the maximum penetration of 50nm for the points on the surface of 
the specimen as a function of radius. Note that the plastic strain required for deforming a fine mesh is smaller than 

that required for deforming a coarse mesh. 
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Figure 3.9. Equivalent plastic strain at the maximum penetration of 50nm for points on the surface of the specimen, 
around the last point in contact. Note that the amount of plastic strain is higher for coarser mesh which explains the 

increase of the hardness for coarser mesh. 

 

3.6 Hardness 

“The mean contact pressure, when determined under conditions of a fully developed plastic zone, is usually 

defined as the indentation hardness of the specimen material”(Fischer-Cripps, 2004). For self-similar indentation by 

sharp conical and pyramidal indenters, the mean contact pressure for any given material is expected to be constant, 

independent of the indentation depth. For each increment of load, the projected contact area increases by an equal 

amount. For determination of hardness, the load and the projected contact area that bears that load should be 

measured. 

If the loading step size is controlled to be fine enough, it can be observed (see Figure 3.10) that the force 

versus displacement curve is smooth, but there is a stepwise increase in contact area whenever a new node comes 

into contact with the indenter. Therefore, the hardness value will have sudden drops as each new node comes into 

contact (see Figure 3.11). In the simulations reported in this work, the value of these maximums and minimums are 

expected to be a constant value, since the mesh is designed to have constant ∆ܣ௖/ܣ௖. In order to determine these 

maximum and minimum values with a reasonable resolution and computational expense, the simulations were 

performed twice. First, they were simulated with maximum step size which recorded data at every 0.5nm. Then for a 

small time interval identified from the results, the simulations were rerun with higher time resolution around the two 
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last nodes coming into contact. At this second run, the maximum step size was set to record data every 0.005nm to 

identify the maximum and minimum hardness values more precisely.  

In the case of experimental hardness measurement by static nanoindentation, the load is measured 

continuously during the loading segment, but the projected contact area is only determined at the maximum load, 

since the unloading curve is required to estimate the contact depth. Therefore only one value for hardness can be 

obtained from each indentation. However, in FEM simulations of static nanoindentation tests, the contact area can 

be continuously recorded. From the force and contact area obtained from nanoindentation simulation with the four 

designed meshes, continuous estimation of the hardness values are obtained, as shown in Figure 3.11 and Figure 

3.12. 

As seen before, a very fine mesh along the contact surface can reduce discretization errors and improve the 

resolution of contact area measurement. However, no matter how small the elements are, the error in determination 

of contact area has a finite value due to the discrete steps by which it increases. In ABAQUS, the area corresponding 

to one-half of the elements on both sides of the node is added to the contact area (CAREA) which results in a sudden 

drop in hardness. As can be seen in Figures 3.11 and 3.12, the hardness drops when the indenter comes into contact 

with a new node. The amount of decrease in hardness is a function of element size at the point of contact, contact 

radius and indenter’s shape as shown in equation (3.8). Beyond this, the hardness increases as the indenter pushes 

into the material until the next node comes into contact. This occurs when the current contact area cannot support 

the applied load and additional area is required.  

 

Figure 3.10. Force and projected contact area as a function of displacement. Note that the force curve is smooth, but 
there is a stepwise increase in contact area whenever a new node comes into contact with the indenter. 
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Figure 3.12. Separate graphs for Hardness values of 31.6%, 10%, 3.16%, and 1% meshes to show the similar 
behavior of all meshes. 
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Figure 3.11. Hardness values for 31.6%, 10%, 3.16%, and 1% meshes. 
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The hardness vs. displacement curve is not differentiable at the point that a new node comes into contact. 

The left limit gives the maximum hardness and the right limit gives the minimum hardness for the mesh. The limits 

can be determined accurately by controlling the step size of the recorded increments in displacement to be very fine 

(0.005nm in this case). Since the mesh is designed to be self similar and have constant error over a wide range of 

penetration, successive maximums and minimums are the same, as shown in Figure 3.12, and calculating them only 

next to one node will be sufficient. The values of the maximum and minimum hardness obtained for the four meshes 

are listed in Table 3.2. Looking at results closely, reveals that the 0.005nm step sizes has resulted in consistent 

values of Hmax to within 2.5MPa. Consistency of the results is a reflection of the self similarity of the mesh, since the 

hardness values are independent of the depth of penetration.  

The actual maximum error in hardness due to the jumps in contact area can be calculated for each of the 

four meshes by considering the maximum hardness of that mesh as the reference (Hmin-Hmax)/Hmax. These maximum 

errors which are listed in Table 3.2 match very well with the expected error that the mesh was designed for. The 

slight differences arise from the fact that in typical approach the last node in contact is considered as the boundary of 

contact; however, the contact area increase due to a node coming into contact, given by the CAREA output variable 

in ABAQUS, includes half the area of elements on both sides of the node. There is also a slight difference between 

the desired constant gradient in mesh size required and the way that bias meshing works in ABAQUS/CAE.  

As can be seen in Figure 3.13, the maximum hardness is not affected by the mesh as much as the minimum 

values are. The maximum hardness value is the best measure of hardness obtained from a given mesh since at that 

point, the contact area measurement error is minimum. This is a valid measure, since hardness is the maximum 

contact pressure that a given contact area can support.  

 

TABLE 3.2 

MAXIMUM AND MINIMUM HARDNESS VALUES (GPA) FOR 31.6%, 10%, 3.16%, AND 1% MESHES 

Model 31.6% Mesh 10% Mesh 3.16% Mesh 1% Mesh 

Hmax1 9.8257 9.6897 9.5927 9.5534 

Hmax2 9.8282 9.6902 9.5924 9.5540 

Hmin1 6.8350 8.6896 9.2705 9.4522 

Hmin2 6.8280 8.6897 9.2701 9.4528 

Max of maxes 9.8282 9.6902 9.5927 9.5540 

Min of mins 6.8280 8.6896 9.2701 9.4522 

(Min/Max)-1 -30.5% -10.3% -3.4% -1.06% 
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Comparing Hmax obtained with different meshes, it can be observed that Hmax increases slightly as the mesh 

size increases. This is caused by the fact that a larger mesh size cannot track large gradients in stress, strain and 

shape of the surface that occur near the contact boundary. The actual hardness value of a material with given elastic 

and plastic properties would be obtained if one could mesh the specimen for 0% error, which will eliminate both 

contact area error and discretization error. As this is impossible, we introduce a new scheme for extrapolating the 

hardness values for different meshes (shown in Figure 3.9) to 0% error. It can be seen that second order equations fit 

the trends in maximum and minimum values well. It can also be seen that both second order fit predict the same 

value for the hardness for a 0% error mesh. Another approach, using two lines to fit to the maximum and minimum 

values from only the two finest meshes (Figure 3.14), also indicates the same value of hardness for zero error mesh. 

The lines intersect the zero percent error axis at almost same points: 9.5361 GPa and 9.5367 GPa.  Therefore, it can 

be concluded that 9.536 GPa is the best estimate of true hardness value for this material after virtually removing 

contact area and discretization errors. This value is used to determine the actual amount of error obtained with Hmax 

and Hmin of each of the designed meshes which are listed in Table 3.3. Shim et al. (2005) reported a hardness value 

of 9.24 GPa from axisymmetric FEA simulations with the same material properties used here. 

The constraint factor (C), which is the ratio of hardness to yield stress, can be precisely estimated to be 

1.734 for this material since the true hardness value has been calculated very precisely. The estimate for this value 

based on the expanding cavity model proposed by Johnson (Johnson, 1985) and Sakai’s Maxwellian model (Sakai, 

2009) is 1.591. 

 

 

Figure 3.13. Minimum and maximum hardness values for 31.6%, 10%, 3.16%, and 1% meshes. 
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3.7 Elastic Modulus 

While the actual elastic modulus used in the simulation is known, it is of interest to study the various 

sources of error in measurement of the elastic modulus from FEA results, using Sneddon’s equation, which relates 

the modulus to the unloading stiffness and the projected contact area. The simulations showed that at the beginning 

of unloading and where a new node comes into contact, the calculated modulus does not result in stable value. It has 

been verified by some simulations that this noise can be reduced by tightening the convergence tolerances; however 

this is very expensive since the iterations required for convergence become very high. Without changing the default 

convergence tolerance, it is recommended to start unloading right before a new node comes into contact. As 

previously noted at this point the maximum force can be supported by the contact area is correctly reported and the 

slope of the force vs. the unloading displacement is also likely to be captured accurately. Additionally, this also 

permits the unloading slope to be determined for a reasonably long period before the perturbations due to the last 

node moving out of contact. Interestingly, it is noted that the contact area obtained from FEA increases during the 

TABLE 3.3 

The actual error of Hmax and Hmin of each of the designed meshes with respect to the hardness at virtually zero 
error (H0=9.536GPa). 

 
31.6% Mesh 10% Mesh 3.16% Mesh 1% Mesh 

௠௜௡ܪ
଴ܪ

െ 1 3.1% 1.6% 0.6% 0.2% 

௠௔௫ܪ
଴ܪ

െ 1 -28.4% -8.9% -2.8% -0.9% 

 

Figure 3.14. Minimum and maximum hardness values for 3.16% and 1% meshes. Linear extrapolation of both 
maximum values and minimum values intersects at the same point on zero error axis.  
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unloading process due to radial displacement of nodes before contact with the last node is lost. Even more 

interestingly, it is found that the unloading slope (the stiffness) increases slightly as unloading progresses (Figure 

3.15), and the ratio of unloading stiffness to the square root of the contact area (the estimate for the elastic modulus) 

remains constant during unloading.  

Getting the contact area directly from ABAQUS and assuming β=1, only the stiffness is required to 

calculate specimen’s elastic modulus from equations (3.4) and (3.5). The stiffness is obtained from the local 

instantaneous slope of the load-displacement curve during elastic unloading. Specimen’s elastic modulus calculated 

using instantaneous value of stiffness and contact area are shown in Figure 3.16 for 0.5nm of unloading with step 

size of 0.005nm. It can be seen that the elastic modulus calculated remains constant throughout, for each of the four 

designed meshes. This is correlated with the purely elastic deformation that takes place. Perturbations observed for 

the 1% mesh of about 0.4nm of unloading area is due to the step change in contact area when the node at the outer 

radius of contact moves out of contact. The average value over the initial plateau for each of the meshes is listed in 

Table 3.3 and graphed in Figure 3.17. A straight line is observed to fit the data very well and indicates that the 

elastic modulus calculated form a FEA model with zero mesh error would be equal to 77.742GPa with β=1. Shim et 

al. (2007) reported modulus value of 76.75 GPa from axisymmetric FEA simulation of the same elastic-perfectly-

plastic model of fused silica with β=1. 
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Figure 3.16. Elastic modulus values for 31.6%, 10%, 3.16%, and 1% meshes with β=1. The values are 
determined using instantaneous load and local slope of load-displacement curves. 
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Figure 3.15. The instantaneous value of stiffness of unloading curve and projected contact area for the 1% mesh. 
Note that the contact area and also instantaneous stiffness of the unloading curve increases during the unloading 

process due to radial displacement of nodes before contact with the last node is lost.  
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Figure 3.16 and Figure 3.17 can be misleading since the coarser mesh seems to yield a calculated modulus 

value closer to the input modulus 72GPa. It should be noted that the β correction coefficient has not been applied to 

the data yet. The β correction factors for each mesh is determined based on the expected 72GPa value and are listed 

in Table 3.4. The extrapolated modulus value at virtually zero error (E=77.742 GPa) can be used to obtain the true β 

correction factor, β=1.0798. This value is in the range of recent analytical and experimental work as well. The 

analytical correction of Sneddon’s solution, presented by Hay et al. (1999) results in β=1.095 for Poisson’s ratio 

ν=0.17, and semi-cone angle θ=70.3º. Strader et al. (2006) suggested β=1.055 from experimental study of fused 

quartz using a Berkovich indenter. Shim et al. (2007) suggested β=1.059~1.068 from axisymmetric FEA simulation 

of elastic-perfectly-plastic fused silica. These values are expected from FEA with slightly coarse mesh as can be 

seen in Table 3.4. Note that, compared to the above work, the value of β has been estimated much more precisely in 

this study, since the value obtained here is for virtually zero size mesh. 

 

Figure 3.17. Elastic modulus values for 31.6%, 10%, 3.16%, and 1% meshes with β=1. Linear extrapolation is 
used to obtain the modulus at zero error as 77.742GPa.
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TABLE 3.4 

MODULUS OF ELASTICITY FOR 31.6%, 10%, 3.16%, AND 1% MESHES WITH β=1. 

Model 31.6% Mesh 10% Mesh 3.16% Mesh 1% Mesh 

Elastic Modulus (GPa) 73.231 76.315 77.285 77.605 

Beta correction factor, β 1.0171 1.0599 1.0734 1.0778 
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3.8 Epsilon correction factor for O&P method 

The same extrapolation approach can be used for obtaining an accurate value of the ε correction factor used 

to estimate the contact depth. The Oliver & Pharr equation for estimation of contact depth can be rearranged to 

equation (3.9). Using this equation, ε can be calculated from the modulus obtained with each of the meshes. 

ߝ ൌ
ܵ

௠ܲ௔௫
ሺ݄௠௔௫ െ ݄௖ሻ (3.9) 

In this equation, ݄௖ is the true contact depth in FEA simulation which can be simply calculated as 

݄௖ ൌ ඨ
௣௥௢௝ܣ
௧௥௨௘

ߨ tan ଶߠ
 (3.10) 

The data for obtaining the ε from each case are extracted and listed in Table 3.5. Figure 3.18 shows the plot 

of ε versus mesh error. The value of ε is obtained at virtually zero error mesh by fitting a line to the two finely 

meshed models which results in ε = 0.7690 as shown in Figure 3.18.  

Shim et al. (2007) reported ε = 0.736~0.739 from axisymmetric FEA simulation of elastic-perfectly-plastic 

fused silica. Their reported range is closer to the theoretical value ε = 0.72, suggested by Sneddon for conical 

indentation (Hay et al., 1999). 

 

TABLE 3.5 

CORRECTION FACTOR, ε, FOR O&P ESTIMATION OF CONTACT AREA FOR 31.6%, 10%, 3.16%, 
AND 1% MESHES. 

Model 31.6% Mesh 10% Mesh 3.16% Mesh 1% Mesh 

True projected contact area (nm^2) 22780.1222 27404.9817 29445.1715 30780.9195 

hc(nm) 30.489 33.441 34.664 35.441 

hmax(nm) 43.5250 47.2700 48.7400 49.7350 

Pmax (μN) 223.3982 265.5594 282.4490 294.0824 

Stiffness (μN/nm) 12.8450 14.6758 15.4143 15.8169 

ε 0.7495 0.7642 0.7682 0.7688 



50 
 

 

3.9 Discussion 

There are many papers available in the literature, where FEA simulations are used to study various aspects 

of indentation. Most of these simulations are 2D axisymmetric simulations of conical indentation. As noted above, 

there will be discrete jumps in contact area and consequently in hardness. Since none of the other authors have 

explicitly mentioned this issue, or controlled the step size to detect Hmax, it is conceivable that this is the main source 

of ‘noise’ that can be detected in FEA results represented in the literature (Shim et al., 2007; Chen and Vlassak, 

2001).  

Equations (3.8) can be used to estimate an approximate error bar, or range of results expected in the FEA 

simulations presented in the literature, in cases where the element sizes and the contact area have been given. The 

uncertainty in results for conical indentation simulations can be calculated from the element size at the point of 

contact, contact radius and the semi-cone angle. It should be remembered that this error bar is the minimum 

expected range of values, independent of other sources of error such as boundary conditions, contact type and so on.  

For example Hay et al. (1999) have reported results of axisymmetric FEA of conical indentation by four 

different cones with half-included angles of 42.28º, 60º, 70.32º, and 80º. Noting that their mesh consisted of square 

elements 5nm on a side in the region of contact, the possible error in contact area results calculated from equation 

(3.8) for contact depths between 10nm and 100nm, is plotted in Figure 3.19.  

 

Figure 3.18. Correction factor ε for estimation of contact depth for O&P method for 31.6%, 10%, 3.16%, and 1% 
meshes. Linear extrapolation is used to obtain its value at zero error. 
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This approach can be generalized to 3D FEA to estimate possible error from contact area measurement. 

Generally, the number of elements in contact, or more precisely, the number of elements on boundary of contact is 

the new parameter that comes to picture for determination of error bar of contact area measurement. This fact makes 

it almost impossible to design a mesh with a constant error bar in a specific range of penetration (specially for 

pyramidal indentation); however, one can easily calculate the ratio of projected contact area of one element to that of 

the entire indentation (∆ܣ/ܣ) and get a measure of the error from contact area measurement.  

3.10 Conclusions 

In this work the sources of error in FEA of nanoindentation are discussed and a method is developed to 

design the mesh at the contact surface to control the maximum possible error in contact area measurement. Self 

similar meshes with known amount of error were designed to determine the properties independent of the depth of 

penetration. The minimum and maximum hardness values from each of the four designed meshes were obtained 

precisely and the difference was found to agree with the expected error. It is also shown that the hardness can be 

measured very close to the true hardness even from very coarse meshes if the step size is controlled around the point 

where a new node comes into contact. It is also pointed out that the maximum of all hardness values for any mesh is 

the best measure of the hardness, not the average of them. It is shown that values of the constraint factor C, the 

modulus correction factor β, and the contact height correction factor ε, can be determined very precisely by 

extrapolating to virtually zero error mesh which accounts for both contact area measurement error and discretization 

error. This extrapolation approach is broadly applicable to problems where errors from mesh discretization can be 

quantified and controlled. 

 

Figure 3.19. Possible error in contact area from error in measurement of true contact area for element size of 
5nm for four different cones with half-included angles of 42.28º, 60º, 70.32º, and 80º. 
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CHAPTER 4 

THE VOLUME SAMPLED DURING NANOINDENTATION TEST FOR HARDNESS AND FOR 
MODULUS OF ELASTICITY 

4.1 Abstract 

In this paper, the size of the volume sampled by nanoindentation tests for hardness and modulus 

measurement is studied. This is done using finite element simulation of nanoindentation on a hemispherical particle 

embedded in a matrix with properties close to that of the particle. By monitoring the deviation of the measured 

hardness and modulus from those of the particle as the depth of penetration increases, the zones of influence for 

hardness results and modulus results are identified. In order to broaden the applicability of the study to a broad range 

of properties, the simulations are performed on two material systems, one that sinks in and another that piles up 

around the indenter and with two different cone angles of the indenter. It is found that for any elastic-perfectly 

plastic material, the intrinsic hardness of particle is measured until the contact radius reaches half the radius of 

particle, i.e. as long as the plastic region is still within the particle. For modulus, it is found that no specific volume 

is sampled beneath the indenter and the modulus measured by nanoindentation actually represents the elastic 

response of the specimen at the indentation point, which for all depths is a function of the properties of both the 

particle and the matrix. A relationship is developed to describe the observed behavior of the measured modulus as a 

function of the hemispherical particle-matrix configuration till the point when the contact radius reaches half the 

particle radius. 

 

Keywords: FEA; Indentation; nanoindentation; dual phase; hardness; elastic modulus; stiffness 

 

4.2 Introduction 

The raw data from a quasi static nanoindentation test is nothing but continuous load versus displacement 

data for loading of an indenter with known geometry into a specimen followed by unloading. Oliver and Pharr 

(1992) applied Sneddon’s solution for elastic indentation to analyze the initial unloading process and developed a 

method to relate the slope of the unloading curve to the area of contact. This approach enabled measurement of the 

hardness and the elastic modulus of the specimen. 
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When indenting into a homogenous bulk of material with a sharp indenter, it is expected that both the 

hardness and modulus would be independent of the depth of penetration; however, if the sample were not a semi-

infinite homogenous bulk with uniform mechanical properties, the measured properties would be a function of depth 

of penetration, as observed in nanoindentation on thin film/substrate systems. There are numerous papers that 

address the mechanics of nanoindentation of thin films. 

For measurement of properties of thin films, the conventional 10% of the thickness rule is most generally 

used, but the rule does not apply for measurement of modulus since there is always some elastic displacement of the 

substrate (Fischer-Cripps, 2004). Lichinchi et al. (1998) simulated 3D Berkovich nanoindentation of hard films on a 

soft substrate. They concluded for the TiN/HSS system, 15% of the thickness of the film is the critical depth at 

which the substrate begins to deform. Their simulations showed that soft substrate can begin to plastify at the 

interface region even before the plastic region in the film reaches the substrate. Bressan et al. (2005) presented some 

experimental and FEA work on the nanoindentation of bulk and thin film which still used the 10% of thin film as the 

rule of thumb.  

Chen and Vlassak (2001) reported the results of their numerical study on the measurement of thin film 

mechanical properties by means of nanoindentation. They performed numerous simulations to study the effect of the 

substrate on the measured properties of the film for various combinations of indentation depth, strength and 

modulus. Figure 4.1 summarizes their results for the hardness as a function of indentation depth for different 

combinations of strength of materials. 
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Figure 4.1. Variation of the normalized film hardness ܪ/ܪ௕with normalized indentation depth ߜ/݄, as a function of 
௙ߪ ௦: (a) soft film on hard substrate; (b) the transition fromܧ/௙ܧ ௦ andߪ/௙ߪ ൏ ௙ߪ ௦toߪ ൐  ௦; (c) hard film on softߪ

substrate; and (d) very hard film on soft substrate (Chen and Vlassak, 2001). 

From Figure 4.1(a) they concluded that the critical indentation depth is half of the thin film for the soft film 

on hard substrate system. We show in this paper that this has a small dependence on material properties and indenter 

geometry and is not a constant value. 

 From the data in Figures 4.1(b) and 4.1(c) they conclude that when the yield stress of the film is higher 

than that of the substrate, the normalized film hardness is no longer constant even for relatively small indentation 

depths. We show in this work that for two phase systems this can be improved, and that a critical depth of 

penetration for hard particle on soft matrix can be calculated, for slightly harder particles compared to the matrix. 

They have also shown in Figure 4.1(d) that for a very hard film on soft substrate (ߪ௙/ߪ௦ ൐ 40), the mechanism 

changes and the response to indentation is akin to that of a plate over an elastic foundation. They have also pointed 

out that the data in Figure 4.1 confirms that elastic mismatch plays a minor role in hardness measurement of thin 

film. 
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More recent FEA studies of thin film/substrate problem are presented by other researchers, with similar 

conclusions for various material types and simulation conditions (Chen and Bull, 2009; Pelegri and Huang, 2008; 

Wang et al., 2007). 

Saha and Nix (2002) experimentally studied the effect of the substrate on the determination of thin film 

mechanical properties by nanoindentation on the same thin film, deposited on four different substrates. Their 

experimental results support the findings of Chen  and Vlassak (2001) qualitatively. They also presented an 

extension to King’s solution (King, 1987) to account for the influence of substrate compliance by including a term 

due to the substrate effect in the reduced modulus equation for conical indentation  

1
௥ܧ
ൌ
1 െ ௜ߥ

ଶ

௜ܧ
൅
1 െ ௙ߥ

ଶ

௙ܧ
൬1 െ ݁ି

ఈሺ௧ି௛ሻ
௔ ൰ ൅

1 െ ௦ଶߥ

௦ܧ
൬݁ି

ఈሺ௧ି௛ሻ
௔ ൰ (4.1)

where α is a numerically determined scaling parameter, h is the indenter displacement, ܽ is the indentation contact 

radius, and t is the film thickness. They (Saha and Nix, 2002) showed that equation (4.1) predicts the expected film 

modulus reasonably well for indentation depths less than 50% of the film thickness. 

Han et al. (2005) used the reduced modulus given by equation (4.1) to estimate the resultant hardness as a 

function of depth. They used the relationship presented by Josling and Oliver (1990) in equation (4.2) to estimate  

hardness as long as the modulus estimation is valid.  
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ଶ ൌߚ

ଶ 4
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ܲ
ܵଶ

 (4.2)

Yu  et al. (1990) presented an elastic solution of the axisymmetric Boussinesq problem for indentation on a 

film/substrate system. “The results are obtained by solving a Fredholm integral equation of the second kind with a 

continuous symmetrical kernel which depends on the bonding conditions”. Numerical results are given for several 

combinations of film and substrate elastic moduli and film thickness. Later Chen and Vlassak (2001) showed that 

Yu’s elastic solution agrees well with finite element simulations and can be used for estimation of elastic modulus of 

the composite where the elastic properties of film and substrate are known. Han, Saha, and Nix (2006) used Yu’s 

elastic solution to calculate a relationship between the reduced contact stiffness and contact radius. Thus, they used 

this analysis to determine contact areas during indentation and to calculate the hardness as a function of indentation 

depth. Their experimental results show applicability of this method for several elastic mismatch ratios up to 

indentation depths of more than 80% of the film thickness. They showed that since the method is based on the 
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contact radius, the pile-up error would be taken care of and the method would be applicable to elastic-plastic 

indentation as well as elastic indention. 

Sakai (2009) also used Yu’s elastic solution along with FE simulations to define a spatially graded modulus 

and spatially graded yield stress and showed these two parameters perfectly lie on his Maxwelian relation for 

compliance factor (H/Y) as a function of plastic index (Er tanβ/Y). He showed that the analytical model perfectly 

matches with FEA results. He also presented some relations that can be used to simplify the application of Yu’s 

solution. 

Li and Vlassak (2009) used Yu’s method and other works to simplify the use of this elastic solution for thin 

film/substrate systems instead of Sneddon’s equation that is developed for indentation into homogenous materials. 

Their proposed procedure which is similar to the widely accepted procedure of Oliver and Pharr (1992), is 

applicable over a much larger range of indentation depths. 

Durst et al (2004) included the thin film configuration as one among three different configurations 

characteristic of dual phase systems. Their categories are based on the ratio of height to thickness of the second 

phase: thin film, columnar second phase, and particle (Figure 4.2). They showed how the load curve for the dual 

phase system change from that of the phase being indented to load curve of the second phase as conical indenter 

goes deeper into the phase being indented.  

 

Figure 4.2. Model systems for sectioned particle-matrix compounds: (a) thin film, (b) columnar, (c) particle.(Durst 
et al., 2004) 

It was decided that the transition from the properties of the phase being indented to those of substrate occur 

due to progressive increase in the volume where properties are sampled by the indenter. Study of this transition can 

lead to understanding of the volume that is sampled for determining each of the measured mechanical properties. 

Knowing this, educated guesses can be made about the size of the indents that would be best for any specific study, 

providing maximum information about the phase of interest with minimal noise. In addition, for the case of 

indenting on a second phase grain (Sun et al., 2008) or for capturing the gradient of variation of properties over a 



58 
 

small region (Saket Kashani and Madhavan, 2007), tracking the changes with depth of penetration will help to 

understand the influence of the material around the region of indentation on determined results.  

In this paper, we present some dual phase studies using FEA to understand the extent of the sampled 

material beneath the indenter for measurement of hardness and modulus. For the first time, a hemispherical particle 

is assumed with slightly different properties compared to those of the matrix. This allows understanding the volume 

sampled in a bulk material since the behavior of the two materials are not significantly different. The shape of the 

particle in the matrix is shown in Figure 4.3 schematically as compared to the ones in Figure 4.2.  

 

Figure 4.3. Schematic demonstration of hemispherical particle in matrix. 

4.3 Finite element model  

The nanoindentation test is simulated using an axisymmetric finite element model with linear full 

integration elements. The specimen is modeled as a hemisphere of radius 200 μm and meshed with a gradient in the 

contact region to keep the error in area measurement below 1% (explained in chapter 3). The geometry of the 

specimen and detail of the mesh are shown in Figure 4.4. This self-similar, constant-error mesh is applied to the 

range up to the radius of 500nm. More details about the mesh design and error control are reported in an earlier 

work (chapter 3) on the accuracy of FEA of nanoindentation. The indenter is modeled as an analytical rigid cone 

with semi-cone angle of 70.3º, with area function equivalent to that of a Berkovich indenter and 42.28º semi-cone 

angle for cone equivalent to a cube corner. Frictionless contact is used between the indenter and the surface of the 

specimen and fixed boundary conditions are applied to the outer radius of the specimen.  

Poon et al. (2008) have shown that if the height of the specimen is more than 100 times larger than the 

maximum depth of penetration, the elastic results would not be affected by the boundary conditions. In this work the 

maximum depth of penetration is only 100nm while the radius of the hemispheric model is 200μm. Even though the 

2000 times larger specimen is very conservative for avoiding the boundary effects, it is shown later in this paper that 

there is still a slight effect of the boundary on the modulus calculated.  
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Two material systems are considered as representatives of the materials that sink-in and pile-up around the 

indenter. These materials are designed around the properties of glass (Y= 2662MPa, ν= 0.25, E= 70Gpa) and 

aluminium (Y= 228.5MPa, ν = 0.25, E= 70Gpa) which have ܧ/ܻ of 26 and 306 respectively, both assumed to be 

elastic-perfectly plastic (Bolshakov, 1996). It is expected that glass would exhibit sink-in while pile-up will be 

expected for aluminium for the equivalent cone of Berkovich indenter (Bolshakov and Pharr, 1998). It should be 

noted that glass exhibits pile-up for the equivalent cone of cube corner indenter.  

The equivalent plastic strain distributions and von Mises stress distributions beneath the indenter are shown 

for these two materials in Figures 4.5 and 4.6. It is clear that the shape and size of the plastic zone is different in 

these two materials. The von Mises plots (Figure 4.6) also depict clear difference in the distribution of stress in these 

two representative materials. It can be concluded that the volume sampled for hardness and modulus measurements 

could be dependent on material properties and needs to be studied for a range of materials. 

 

   

 (a) (b) 

Figure 4.4. Mesh designed for 1% error (units in nm). (a) Axisymmetric model of hemispherical model, (b) close 
up at the contact region with 1% error, gradient mesh. 

R 500nm 

2.66 40,000 

R 200,000nm 
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(a)     (b) 

Figure 4.5.  Equivalent plastic strain distribution at maximum depth of penetration, 100nm (a) for glass (b) for 
aluminum. 

 

  
(a)     (b) 

Figure 4.6.  Von Mises stress distribution at maximum depth of penetration, 100nm, in MPa (a) for glass (b) for 
aluminum. 

4.4 Volume sampled for hardness 

In order to determine the volume sampled for measurement of hardness by nanoindentation, the 

hemispherical particle is modelled as a material with either 10% larger or 10% smaller yield stress with respect to 

that of the bulk phase. All other properties of the particle and the bulk are equal. 

Nanoindentation simulations were performed on only the bulk material (without the particle) to obtain the 

baseline value of hardness. Using the instantaneous load and the projected contact area directly obtained from FEA, 

the hardness can be determined from equation (4.3) where P is the load and Ac proj is the instantaneous projected 

contact area that carries the load. In Figure 4.7 and 4.8 it can be seen that the hardness value stabilizes after 

sufficient number of elements is used for discretizing the contact area and plastic zone. It was shown in our previous 

2 μm 2 μm 

600 nm 600 nm
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work (chapter 3) that the noise in hardness in the stabilized region comes from area measurement noise and the best 

estimate of hardness is the maximum value in that region. Therefore unique values are extracted from hardness 

curves corresponding to each material which are listed in Table 4.1.  

H=
P

Ac proj
ൌ

ܲ
௖ܣ sin ߠ

 (4.3)

 

Two dual phase simulations were performed for each material system by assuming hemispherical particles 

embedded in the matrix. In all simulations, the matrix had the properties of original materials (glass or aluminum), 

but the yield stress of the particle was altered to be either 10% lower or 10% higher than that of the matrix. The four 

dual phase simulations were Gl0.9Y-on-Gl, Gl1.1Y-on-Gl, Al0.9Y-on-Al, and Al1.1Y-on-Al. The second phase was 

modeled by simply assigning new material properties to the elements inside the particle, which has a radius of 

279nm in these simulations. The particle and matrix are perfectly connected by shared nodes and no sliding is 

allowed between them, modeling consistent deformation of the two phases. Indentation was simulated by linear 

displacement of the indenter to a maximum penetration of 100nm into the particle. Figure 4.7 and 4.8 also show 

continuous plots of the hardness vs. normalized depth of penetration for the dual phase simulations, in addition to 

results of indentation into single phase glass and aluminum.  

TABLE 4.1 

HARDNESS VALUES FROM INDENTING ON BULK MATERIALS WITH DIFFERENT YIELD STRESS 

Material Yield stress 
(Mpa) 

Hardness 
(GPa) 

Al0.9Y 205.7 0.530 

Aluminum 228.5 0.593 

Al1.1 251.4 0.653 

Gl0.9Y 2396 5.439 

Glass 2662 5.902 

Gl1.1Y 2928 6.350 
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Figure 4.7. Hardness vs. normalized depth of penetration for glass material system. 

 

Figure 4.8. Hardness vs. normalized depth of penetration for aluminum material system. 

In order to study the deviation of hardness measured, from that of the particle, the hardness measurement 

error relative to the expected value for the particle is plotted as a function of normalized depth of penetration (Figure 

4.9). It can be noted that the deviations for 10% higher and lower hardness are symmetric about the x-axis. The 

measured hardness begins to deviate from the hardness of the particle for penetrations greater than 25% of particle 

radius for the case of glass and for penetrations greater than 15% of particle radius for aluminum. This shows that 

recommendation of a constant percentage penetration for all materials is not valid.  

In order to study other parameters that may affect the critical depth of penetration, one more case was 

modeled within the glass material system, where in the particle has yield stress of 80% of that of glass. Additionally, 

cube corner indentation into a particle having yield stress equal to 90% of glass was simulated, to study the effect of 

cone angle. The results of these two new cases are also shown in Figure 4.9. It can be seen that the hardness of a 
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Gl0.8 particle on glass begins to be affected by the substrate at the same depth of penetration as observed in the 

other glass simulations, which is 25% of the particle size. However, the cube corner simulation shows negligible 

error in hardness measurement until the depth of penetration reaches 58% of the particle radius. This means that 

cube corner indenter samples a smaller volume compared to the Berkovich indenter, for the same depth of 

penetration. 

It is well known in the literature that the amount of sink-in and pile-up changes as a function of ܧ௥ߚ݊ܽݐ/ܻ 

(Bolshakov and Pharr, 1998; Cheng and Cheng, 2000). Chen and Vlassak (2001) showed that pile-up of a thin film 

on a substrate may be different from that of the same material in bulk form. Therefore, the amount of pile-up would 

be a function of ܧ௥/ܻ, indenter geometry, thin film configuration and normalized depth of penetration. Since it is 

noted in Figures 4.5 and 4.6 that the pile-up when indenting into aluminum causes the contact radius to be higher for 

the same depth of penetration, and since Figure 4.9 show that the true deviations in hardness of the particle begin at 

a smaller penetration, it is of intent to study the deviation as a function of the contact radius.  

Figure 4.10 shows the hardness error as a function of versus the normalized contact radius. It can be seen 

that all curves begin to get affected by matrix properties when the contact radius exceeds 50% of the radius of 

particle. This is a good rule of thumb that can be considered to be broadly applicable, for different materials and 

indenter sharpnesses, for all elastic-perfectly materials. To help understand the reason for this, Figure 4.11 shows the 

error vs. normalized radius of the plastic zone, which shows that the hardness measured starts to deviate from that of 

the particle’s hardness when the plastic zone spreads into the matrix.  

 

Figure 4.9. Hardness error versus normalized depth of penetration. 
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Figure 4.10. Hardness error versus normalized contact radius. 

 

Figure 4.11. Hardness error versus normalized radius of plastic zone. 

The radius of the plastic zone was calculated using the relationship developed by Harvey et al. (1993) for 

estimation of size of the plastic zone for elastic-perfectly plastic materials based on Johnson’s expanding cavity 

model (1985).  

ܴ௣௟ൌඥ3 ܲ ⁄ܻߨ2 (4.4)
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ൌܪ
ܲ
௖ܣ

ൌ
ܲ

௖ܴߨ
ଶ (4.5)

A relation for ܴ௖ ܴ௣௟⁄  can be obtained by eliminating force from equations (4.4) and (4.5) by use of the 

definition of the constraint factor (C=H/Y). The resultant relation can be written as 

ܴ௖
ܴ௣௟

ൌඨ
2
3C

(4.6)

From the results given in Table 4.1, it should be noted that the constraint factor of the materials used in this 

paper range from 2.2 to 2.6. Further simulations show that 2.6 is the maximum value of C attainable for frictionless 

simulations, which results in a minimum possible value of 0.51 for ܴܿ ⁄݈݌ܴ . Therefore one can conclude that for any 

elastic-perfectly plastic material, the intrinsic hardness of particle is measured until the contact radius reaches half of 

the radius of particle since the plastic region would be still within the particle. This is valid as long as the cavity 

expansion model can be used for modeling of the indentation of the composite system. For the cases of large 

mismatch between elastic modulus of the two materials or the yield stress values, the validity of this conclusion 

remains to be verified. This conclusion is definitely not valid for very hard particles in soft matrices for reasons 

noted in several thin film studies available in the literature (Chen and Vlassak, 2001; Sakai, 2009). 

4.5 Volume sampled for measurement of elastic modulus 

A similar approach using hemispherical particles, but with different modulii, is used to study the volume 

sampled for measurement of elastic modulus. A new set of materials are designed around the properties of glass and 

aluminum. The yield stress and Poisson’s ratio of the particle are kept the same as those of the present materials, and 

the elastic modulus of the particle is changed to be 10% higher or 10% lower. The material properties used in the 

simulations are listed in Table 4.2.  
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To study the variation of measured modulus as a function of depth of penetration, the indentation 

simulations are performed in displacement mode and stopped every 10nm for a 0.1nm unloading step. The slope of 

the unloading curve is used to calculate the modulus of elasticity at each unloading step. This results in 10 data 

points for each simulation since the maximum depth of penetration is 100nm. Performing a simulation with only one 

unloading step at 100nm confirmed that the small unloading steps do not affect the measurements in subsequent 

steps.  

The specimen’s modulus of elasticity Es can be obtained from equation (4.7) for the case of indentation 

with a rigid indenter where S is the stiffness of unloading curve, ߥs is the Poisson’s ratio of specimen, and  is a 

constant that depends primarily on the geometry of the indenter (Oliver and Pharr, 1992). 

Esൌ
√π
2

ܵ

ඥAc proj
ሺ1 െ ௦ଶሻߥ (4.7)

First, the simulations were done for the bulk aluminum and glass and other materials listed in Table 4.2 to 

determine the reference values. As can be seen in Figure 4.12, the obtained value for glass and aluminum is not 

exactly the same even though they have the same input elastic modulus. This means that the β correction factor is 

slightly different for these two materials. It is also interesting to note that even though a constant modulus value is 

expected for bulk material simulations, there is a slight linear increase in measured modulus as the depth of 

penetration increases. This may be attributed either to the fixed boundary condition at the outer radius of the 

specimen or to the increasing distortion of the elements at the center.  

In order to understand the dependency of the modulus increase to model size, three other simulations are 

performed on glass with model sizes of 20μm, 400μm, and infinity. Note that all previous simulations used a model 

TABLE 4.2 

LIST OF MATERIALS FOR MODULUS STUDIES WITH ALTERED MODULUS OF ELASTICITY.  

Material Yield stress 
(Mpa) 

Elastic modulus 
(Gpa) 

Al0.9E 228.5 63 

Aluminum 228.5 70 

Al1.1E 228.5 77 

Gl0.9E 2662 63 

Glass 2662 70 

Gl1.1E 2662 77 
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with outer radius of 200μm. Figure 4.13 depicts that the elastic modulus increases linearly as a function of contact 

radius with a specific dependency on model size. Notice that all the lines intersect with the vertical axis at the same 

value which is the elastic modulus independent from depth of penetration, E0. It can be also seen that even for 

infinite model size, which is simulated using axisymmetric fully integrated continuum infinite elements (CINAX4) 

at the outer radius of the model, the modulus increases slightly. This clarifies that the stiffness increase is not only 

because of the fixed boundary conditions in far field, but also because of the lack of self similarity or the increase of 

the amount of distortion of elements at the center of the model. Identification of the true sources of this effect 

remains to be verified.  

As noted during the hardness study, if the changes in modulus are normalized with respect to their values at 

zero penetration (which is the intercept of the lines with vertical axis), and the horizontal axis is considered as the 

contact radius, all data points collapse into one line as shown in Figure 4.14, which shows the modulus increase is 

the same for all simulations performed on same model size. The straight line equations given within Figure 4.14 can 

be rearranged so that the modulus can be written as 

ܧ ൌ ଴ሺ1ܧ ൅ ܾܴ௖ሻ (4.8)

where ܧ଴ is the modulus at zero depth of penetration, which is determined by extrapolation, and ܾ is equal to the 

slope of each line in Figure 4.14.  
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Figure 4.12. The elastic modulus obtained from indentation on bulk of each homogenous material increases slightly 
as depth of penetration increases. (β=1 is assumed) 

 

Figure 4.13. The elastic modulus obtained from indentation on bulk of glass increases linearly as depth of 
penetration increases with a dependence on model sizes. (β=1 is assumed) 
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Figure 4.14. The error in elastic modulus with respect to its value at zero penetration versus normalized contact 
radius for the studied materials with the 200μm model and also for glass with various model sizes. Note that the 

error in modulus measurement increases faster for smaller model sizes. 

Dual phase simulations are performed with a particle of size 1083nm, with modulus either 10% lower or 

10% higher than that of the matrix in which it is embedded. The deviation of the measured modulus from that of the 

particle is determined at the discrete depths of penetration. The reason for assuming a larger particle radius in 

modulus study compared to what used in hardness study is the fact that, for the same particle size, measured 

modulus sees the effect of matrix properties at much shallower depths of penetration compared to hardness. Larger 

particle size is used to be able to simulate the test within the same range of 100nm and 0.1nm unloading step at 

every 10nm. Figure 4.15 shows the plot of modulus error versus the normalized depth of penetration. It can be seen 

that for all cases the measured modulus is influenced by the matrix properties even at the very first data point where 

the penetration depth is less than 1% of the particle radius. This clearly shows that it is not possible to identify a 

finite volume that is sampled beneath the indenter and the modulus measured by nanoindentation actually represents 

the elastic response of the entire specimen at the indentation point, which is a function of the elastic modulus of the 

entire volume with a dependence on the distance from the indentation point.  
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Figure 4.16 show that if the errors are plotted versus normalized contact radius, the curves for glass and 

aluminum (Gl0.9E on glass, Al0.9E on aluminum) as well as the curves for different cone angles (cubecorner-

Gl0.9E on glass) merge together. This implies that all systems with particle modulus 10% less than that of matrix, 

behave the same, even independent of cone angle. 

 The slopes of these lines in Figure 6.16 are related to the ratio of modulus of the particle to that of matrix 

(Slope 1) ן െ  ௠)). Therefore, if the error is normalized with respect to the difference between the particle andܧ/௣ܧ

matrix properties, a single relationship that relates the deviations of the measured modulus of the particle to ܴ௖/ܴ௣  

and ܧ௣/ܧ௠ is obtained, as shown in Figure 4.17.  

 

Figure 4.15. Modulus error vs. normalized depth of penetration. 
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| 

Figure 4.16. Modulus error vs. normalized depth of penetration. 

In Figure 4.17 the vertical axis is the ratio of the deviation to (1 െ  ௠), which is found to make theܧ/௣ܧ

slopes of all curves equal to unity. The relationship can be written as:  

ቆ
ܧ
௣ܧ

െ 1ቇ ؆
ܴ௖
ܴ௣

൬1 െ
௣ܧ
௠ܧ

൰ (4.9)

Notice that the data are shown only up to contact radius of about 30% of the particle radius. Considering 

that much deeper indents (ܴ௖ ب ܴ௣) should result in measurement of the modulus of matrix without much effect of 

the particle, the linear behavior shown in Figure 4.17 can be inferred to be valid only for small ܴ௖/ܴ௣ ratios. To 

study the transition between these two se regimes, indentation into a particle of  Gl0.9E on glass has been simulated 

to higher ܴ௖/ܴ௣ ratios. Figure 4.18 show that the modulus measured shows linear behaviour until the contact radius 

reaches one-half of the particle radius. This means that equation (4.9) can be suggested as a model for the measured 

modulus only within this range, and can be rewritten as shown below to make the dependence of the measured 

modulus on contact radius explicit. 

௣ܧ ؆ ܧ ቈ1 ൅ ൬
௠ܧ െ ௣ܧ
௠ܧ

൰
ܴ௖
ܴ௣
቉ (4.10)
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Figure 4.17- Normalized modulus deviation relative to the maximum possible deviation, weighted by the ratio of 
modulus of particle to that of matrix vs. normalized contact radius for all studied cases 

 

Figure 4.18. Normalized modulus deviation relative to the maximum possible deviation, weighted by the ratio of 
modulus of particle to that of matrix vs. normalized contact radius for the case of Gl0.9E-on-Glass 

Equation (4.10) is similar to the form of the relation developed by Nagao et al. (2009) for determination of 

Young’s modulus for pyramidal indentation into thin film/substrate system. They used a one dimensional linear 

analysis which models the system as a set of linear springs. There are other works in the literature that also show the 

spring model to result in good agreement with experiments (Bec et al., 2006).  
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Figure 4.19. Geometry of the axisymmetric model of pyramidal indentation into thin film/substrate system and 
analogous 1D representation of a linear set of springs (Nagao et al., 2009). 

Figure 4.19 shows the geometry of the axisymmetric model proposed by Nagao et al. (2009). They defined 

the parameter τ as the parameter describing substrate effect where displacement of indenter can be expressed as 

summation of displacement in film and substrate. 

݄ߜ ൌ ௙݄ߜ  ൅ ௦݄ߜ ൌ ௙ሺ1݄ߜ ൅ ߬ሻ (4.11)

which can be used for τ ا 1 to obtain a relation between the measured modulus and the modulii of the film and 

substrate. 

؆ ௥ܧ ሺ1 െ ߬ሻܧ௙ ൅ .௦ܧ߬ (4.12)

They showed that for a practical system in which the film thickness is very small compared to that of the 

substrate, ௦ܶ ب ௙ܶ ൅ ଴ܶ, ( ଴ܶ defined in Figure 4.19) the parameter τ would be  

߬௙௜௟௠/௦௨௕௦௧௥௔௧௘ ൌ
௙ܧ
௦ܧ

଴ܶ

௙ܶ
ൌ
௙ܧ
௦ܧ

݄

௙ܶ
ଶ݊ܽݐ ߠ (4.13)

which results in 

௙ܧ ؆ ௥ܧ ቈ1 ൅ ൬
௦ܧ െ ௙ܧ
௦ܧ

൰
݄

௙ܶ
ଶ݊ܽݐ ቉ߠ (4.14)

Equation (4.14) relates the measured modulus of the thin film system to the modulus of the film and matrix 

and also the penetration ratio. Comparing this to equation (4.10), τ, the parameter describing matrix effect for a 

hemispherical particle within a matrix is: 
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߬௣௔௥௧௜௖௟௘/௠௔௧௥௜௫ ൌ
௣ܧ
௠ܧ

ܴ௖
ܴ௣

(4.15)

Note that equation (4.15) is developed for small values of matrix effect, τ ا 1. Therefore the proposed 

relation is valid for relatively shallow indents compared to the particle radius and also it works better for compliant 

particle in stiff matrix since it has smaller matrix effect compared to a stiff particle embedded in compliant matrix. 

4.6 Discussion 

Based on the understanding gained, that the hardness measured is identical to that of the particle so long as 

the plastic zone is confined within the particle, displacement and load limits can be formulated for maximum 

penetration before the matrix influences the hardness measurement for any elastic-perfectly plastic material. 

Equation (4.6) can be used to obtain the displacement limit 

hୡ ൏
ܴ௣
tanθ

ඨ
2
3C୮

 (4.16) 

 As can be seen the maximum contact depth is a function of particle radius ܴ௣, semi-cone angle θ and the 

normalized hardness of the particle material C୮ ൌ H୮/Y୮. This supports the common knowledge that believes 

sharper indents can go deeper on a film/substrate system. Equation (4.4) also can be used to come up with a 

maximum limit on the load if the hardness of particle is desired to be measured without any influence from the 

matrix: 

P ൏
2π
3 ௣ܻܴ௣

ଶ (4.17) 

The force limit as can be seen in equation (4.17) is a function of yield stress of particle ௣ܻ and its radius ܴ௣. 

These conclusions are valid only so long as the plastic region is confined to the particle. For the cases that the 

particle is harder than the matrix, another condition should also be satisfied, which avoids indentation of the particle 

into matrix. This condition can be simply expressed as:   

P ൏ ௠ܴ௣ܪߨ
ଶ (4.18) 

or simply 

௣ܻ ൏
3
2
 ௠ (4.19)ܪ
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Therefore, if the yield stress of the particle is more than 1.5 times of hardness of the matrix, the maximum 

permissible contact radius would be smaller, due to indentation of the matrix by the particle. 

Using the maximum possible constraint factor in equation (4.16), a conservative rule of thumb can be 

obtained which says the intrinsic hardness of particle is measured by nanoindentation until the contact radius reaches 

half of particle radius as long as condition given in equation (4.18) holds true. 

For the case of modulus measurement, it was shown that fixed boundary conditions in far field affect the 

measured modulus even for very shallow indents. The effect of the fixed boundary on measured modulus of bulk 

materials is formulated by equation (4.8). The behavior of the effect of matrix properties on measured modulus of a 

particle/matrix is also modeled using equation (4.10). It should be noted that the data that were used to develop 

equation (4.10) are the modulus of matrix and particle at specific contact radius and not a constant value of modulus. 

These two equations can be used to develop equation (4.20) for a particle/matrix configuration that includes the 

effect of boundary into account as well. In this equation, ܧ௣బ and ܧ௠బ are the intrinsic modulus of the particle and 

matrix respectively. Equation (4.20) yields into equation (4.8) for indentation on bulk material since the second term 

would be equal to one.  

௣బሺ1ܧ ؆ ܧ ൅ ܾܴ௖ሻ ቈ1 ൅ ቆ1 െ
௣బܧ
௠బܧ

ቇ
Rୡ
ܴ௣
቉ (4.20)

4.7 Conclusions 

In this paper, the size of the volume sampled for hardness and modulus measurement during 

nanoindentation test is studied. FEA simulations of nanoindentation test on a hemispherical particle embedded in a 

matrix are performed and the hardness and modulus are measured as a function of penetration depth. The deviation 

of hardness and modulus from those of particle are monitored which reveal the size of the zones that influence 

hardness and modulus results. It is found that for any elastic-perfectly plastic material, the intrinsic hardness of 

particle is measured until the contact radius reaches half of the radius of particle and until the plastic region is still 

within the particle. For modulus, it is shown that no specific volume is sampled beneath the indenter and the 

modulus measured by nanoindentation actually represents the elastic response of the entire specimen. It is shown 

that even for indentation on homogenous bulk material, the effect of the fixed boundary conditions in far field can 

be seen on indentation modulus, and the magnitude of the effect is a function of the contact radius and the model 

radius. A relationship is developed that shows the effect of matrix on resultant indentation modulus at low depths of 
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penetration for hemispherical particle/matrix system. The relation shows the specific dependency of the modulus on 

ratio of ܴ௖/ܴ௣  and ܧ௣/ܧ௠. 
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CHAPTER 5 

A NEW ITERATIVE PROCEDURE FOR ESTIMATION OF MECHANICAL PROPERTIES OF 
ELASTIC-PERFECTLY PLASTIC MATERIALS BY NANOINDENTATION: A PILE-UP CORRECTION 

METHOD 

5.1 Abstract 

A new iterative procedure is proposed to estimate hardness, elastic modulus, and also yield stress of a 

elastic-perfectly plastic material from nanoindentation load curve data. This procedure converges to accurate values 

independent of amount of pile-up or sink-in, which is an advantage over the classic Oliver and Pharr method. Finite 

element simulations have been carried out for a range of materials to study the effect of plastic index (ܧ௥ tanߚ /ܻ) 

on the constraint factor, ratio of contact depth to the depth of penetration and the beta correction factor. It is shown 

that the beta correction factor remains constant for the range of material properties studied. Relations are developed 

to describe the contact depth ratio and the constraint factor as functions of the plastic index, ܧ௥ tanߚ /ܻ. Starting 

with an initial value for the plastic index, the constraint factor and contact depth ratio are calculated and 

consequently an improved estimate of plastic index is obtained. This is used to improve the estimate of the contact 

depth and the constraint factor and the iteration continue until convergence is achieved. It is shown that the iterative 

method improves the accuracy of the estimated mechanical properties independent of the amount of pile-up. 

 

Keywords: Nanoindentation; Finite element analysis; Hardness; Elastic behavior; Pile-up 

 

5.2. Introduction 

The main challenge in determining hardness and modulus from nanoindentation load curve data is accurate 

estimation of the contact area. Oliver and Pharr (1992) proposed a method for estimation of the contact depth, and 

by extension the contact area, that enabled hardness and modulus measurements from depth sensing indentation. 

However, it was shown by numerous researchers that the O&P method results in large errors in estimation of contact 

area for materials that exhibit pile-up around the indenter. Casals and Alcala (2005) blamed the duality in 

mechancial property extractions from nanoindention on the lack of a good measurement method for the amount of 

pile-up through further analysis of the load curve. 

The paper by Cheng and Cheng (1998) was one of the first works that showed that the Oliver and Pharr 

(O&P) method (Oliver and Pharr, 1992) cannot be used with confidence for materials that show pile-up around the 
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indenter. They refined their results in a more recent work (Cheng and Cheng, 2000) and concluded that O&P is valid 

for highly elastic materials, ܻ/ܧ ൐ 0.05. For a Berkovich indenter, this can be stated in term of the plastic index as 

ܫܲ ൏ 7.16. They also showed that as the ratio of ܻ/ܧ decreases, the error of O&P method increases, and that the 

error is smaller for materials that work harden. 

Bolshakov presented a comprehensive study correlating the amount of pile-up to the ratio of residual depth 

of indentation after unloading, ݄௙ to the maximum penetration depth, ݄௠௔௫  (Bolshakov, 1996; Bolshakov and Pharr, 

1998). The correlation between pile-up and sink-in and the ratio of ݄௙/݄௠௔௫ can be seen in Figures 5.1 and 5.2. 

Their FEA simulations also showed that elastic perfectly plastic materials begin to show pileup for ݄௙/݄௠௔௫ ൐ 0.85 

corresponding to ܻ/ܧ ൏ 0.012, or ܲܫ ൐ 29.8, and that significant deviation from O&P results for ݄௙/݄௠௔௫ ൐ 0.73 

corresponding to ܻ/ܧ ൏ 0.029, or ܲܫ ൐ 12.5 (Figure 5.2). From Figure 5.2, it is also be noted that there is no pile-

up for strongly work hardening materials, even at PI up to 220, and O&P method is able to track the actual contact 

area quite well. 

 

Figure 5.1. Surface profiles for various ratio of ݄௙/݄௠௔௫ for elastic-perfectly plastic materials. (Bolshakov, 1996) 



80 
 

 

Figure 5.2. Normalized contact area for various ratio of ݄௙/݄௠௔௫. The contact areas are normalized with respect to 
area from indenter shape function evaluated at the maximum depth of penetration.(Bolshakov and Pharr, 1998) 

Shu et al. (2007) proposed a different approach for accounting for error caused by pile-up, taking both the 

ratio of ܧ/ܻ of the material and the work hardening exponent into consideration. They carried out a large number of 

FEA studies for different ratios of ܧ/ܻ, as well as different work hardening exponents for two different cone angles. 

They used the loading curvature and the work done by the indenters to obtain ܧ/ܻ and ݊ from indentation load 

curves. Then they used ܧ/ܻ and ݊ ratios to look up the amount of error of O&P method for estimation of hardness 

and modulus. The relative errors of the hardness and modulus of O&P method with respect to outcome of their FEA 

results are shown in Figure 5.3 and 5.4 respectively. 

Kese and Li (2006) proposed a method for accounting for the pile-up by considering the added pile-up 

contact area as semi-ellipses around Berkovich triangular impression. This was done by post AFM scanning of the 

indented surface and measurement of the pile-up contact width for each of the three possible pile-up lobes. Lee et al. 

(2007) proposed a different approach by measuring the modulus of the material from early Hertzian loading analysis 

and using it to predict the pile-up. Some recent works in this field have reported study of pile-up around spherical 

indenters (Taljat and Pharr, 2004), spherical-conical indenters (Maneiro and Rodriguez, 2005), and also the effect of 

pile-up on thin film system measurements (Zhou et al., 2008).  

In this article, a new iterative method is proposed that uses the observed dependence of the constraint factor 

and the contact height ratio (݄௖/݄௠௔௫) on the plastic index, to obtain the hardness, modulus and also yield stress 

independent from O&P method.  
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Figure 5.3. The error in the hardness obtained from O&P method. (Shu et al., 2007) 

 

Figure 5.4. The error in the modulus obtained from O&P method. (Shu et al., 2007) 

5.3. Finite element simulations  

2D axisymmetric finite element simulations of conical indentation are carried out in ABAQUS/Standard. 

The specimen is modeled as a hemisphere, discretized using linear fully integrated elements (CAX4) and meshed 

with a constant gradient of element size such that the size of the elements increases linearly with radius (ܮ௘ ൌ

ܴ௖/188), so that the error in contact area is below 1% for all indentation depths of interest. The indenter is modeled 

as an analytical rigid surface with semi-cone angle of 70.3º, which has an area function equivalent to that of the 



82 
 

Berkovich indenter. Frictionless contact is used between the indenter and the surface of the specimen and fixed 

boundary conditions are applied at the outer radius of the specimen.  

The material is assumed to be elastic-perfectly plastic, and several simulations are performed for different 

 ratios. Elastic modulus is kept constant at 70GPa and the Poisson’s ratio is taken to be 0.25.  The yield stress of ܻ/ܧ

the materials are varied between 114.25MPa to 26620MPa, using the same values as used by Bolshakov (1996),  to 

cover a broad range of plastic indices (ܲܫ ൌ ௥ܧ tanߚ /ܻ ൌ 1 . . 234, where ܧ௥ is the reduced elastic modulus, ߚ is 

the angle between the cone surface and specimen i.e. 90-θ, where θ is the semi-cone angle; β=19.7º for equivalent 

cone of Berkovich and ܻ is the yield stress). Simulations were performed to an indentation depth, ݄௠௔௫, of 20nm 

and then unloading the indenter by 0.1nm. The load curves for these simulations are shown in Figure 5.5. As noted 

earlier (chapter 3), though the unloading depth is very small, it is sufficient to obtain the stiffness accurately. To 

obtain true hardness for each material, maximum load and true projected contact area at maximum load are used 

from FEA results. Inputs and outputs of the simulations are listed in Table 5.1. 

 

Figure 5.5. Load curves from the FEA simulations of nanoindentation for the range of the materials for loading up to 
20nm penetration and 0.1nm unloading for determination of stiffness at maximum load. 

Figure 5.6 shows the dependence of constraint factor (normalized hardness, ܪ/ܻ) on the plastic index 

௥ܧ) tanߚ /ܻ) as obtained from our FEA results. This is very close to the results of Bolshakov (1996). Sakai (2009) 

also obtained similar results and developed an elastoplastic Maxwellian model that describes the normalized 
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hardness as a function of the plastic index over the entire range from purely elastic deformation to fully ductile. 

Their equation is given as: 

ܪ
ܻ
ൌ

ܥ

ቈ1 ൅ ൬
ܥ2

௥ܧ ݊ܽݐ ߚ /ܻ
൰
ଵ ௡⁄

቉
௡ 

(5.1)

where they suggested ܥ ൌ 2.65 and ݊ ൌ 2/3 to best match their FEA results. 

As can be seen in Figure 5.6, the equation (5.1) suggested by Sakai does not fit well to the FEA results 

from this work. Therefore equation (5.1) is modified to a more general form of 

ܪ
ܻ
ൌ

ଵܥ

ቈ1 ൅ ൬
ଶܥ

௥ܧ ݊ܽݐ ߚ /ܻ
൰
ଵ ௡⁄

቉
௡ 

(5.2)

where constants were determined by numerically fitting equation (5.2) to the FEA data; ݊ ൌ  ଵ=2.62 andܥ ,2/3

  .ଶ=4.1 resulted in least mean square errorܥ

 

Figure 5.6. Normalized hardness vs. plastic index for FEA results, Sakai Maxwellian model and from equation (5.2) 
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The O&P method (Oliver and Pharr, 1992) is used for processing the data to determine the hardness and 

modulus so that these values can be compared to the true values obtained from FEA. Equation (5.3) is the basis of 

O&P method that estimates the contact depth hc as a function of maximum depth of penetration hmax, maximum load 

Pmax, and stiffness at the maximum load S. The constant ε is a geometrical constant suggested to be equal to 0.75 for 

conical indentation based on the experimental work. Knowing the contact depth, the projected contact area Ac proj 

can be determined from the geometry of the indenter (θ  being the semi-cone angle) as:  

hc=hmax-ε 
Pmax

S
 (5.3)

Ac proj=π hc
2 tan2θ (5.4)

The hardness can be calculated from equation (5.5), and reduced elastic modulus Er from Sneddon’s 

equation (5.6) where β is a constant that depends primarily on the geometry of the indenter which is assumed equal 

to 1 for the sake of comparison (Oliver and Pharr, 1992). Having the reduced elastic modulus, one can determine the 

modulus of the specimen using equation (5.7), where the indenter’s modulus ܧ௜, its Poisson’s ratio ߥ୧, and the 

specimen’s Poisson’s ratio ߥୱ are known. In the case of rigid indenter, the second term simply is zero. 

TABLE 5.1 

PROPERTIES OF THE MATERIALS MODIFIED AND THE RESULTS OBTAINED FROM FEA 

Inputs Results 

Material 
Y  

(Mpa) 
E  

(Gpa) 
Er  

(Gpa) 
Ertanβ/Y 

Ac_FEA
(µm²) 

Pmax  
(mN) 

Hardness 
(Gpa) 

Stiffness  
(mN/nm) 

Y_114.25 114.25 

70 74.67 

234.000 0.015 0.004 0.295 0.0110 

Y_228.5 228.5 117.000 0.014 0.008 0.593 0.0106 

Y_420 420 63.654 0.012 0.013 1.096 0.0100 

Y_840 840 31.827 0.010 0.022 2.180 0.0089 

Y_1450 1450 18.438 0.008 0.029 3.606 0.0080 

Y_2006 2006 13.327 0.007 0.034 4.723 0.0076 

Y_2662 2662 10.043 0.006 0.038 5.902 0.0072 

Y_5324 5324 5.022 0.005 0.048 9.602 0.0063 

Y_7986 7986 3.348 0.004 0.052 11.892 0.0059 

Y_10648 10648 2.511 0.004 0.054 13.189 0.0057 

Y_13310 13310 2.009 0.004 0.055 13.860 0.0057 

Y_26620 26620 1.004 0.004 0.056 14.478 0.0056 
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H=
Pmax

Ac proj
  (5.5)

Er=
1

2
√π

ඥAc proj

S (5.6)

1

Er
=

1-νs
2

Es
+

1-νi
2

Ei
 (5.7)

Since the accuracy of hardness and modulus estimated by O&P method depends on the accuracy of 

determination of the contact area, which in turn directly depends on the accuracy of determination of contact height 

hc, the true contact area FEA and used to determine the true contact depth using equation (5.4). Figure 5.7 compares 

the ratio of contact depth to the maximum depth of penetration obtained from FEA with that from the O&P method 

(equation 5.3) for different values of the plastic index. It can be seen that, O&P does not predict the contact area at 

large values of the plastic index (PI>10) where there is pile-up around the indenter. These results match the findings 

of Bolshakov (1996) and Chen and Vlassak (2001). Figure 5.7 also show that equation (5.7), which is similar to 

equation (5.3) but has different constants, reproduces the FEA observations faithfully.  

݄௖
݄௠௔௫

ൌ ଵܥ ൅
ଶܥ

ቈ1 ൅ ൬
ଷܥ

௥ܧ ݊ܽݐ ߚ /ܻ
൰
ଵ ௡⁄

቉
௡ 

(5.8)

 The purely elastic solution of conical indentation on an elastic material presented by Sneddon leads to 

݄௖/݄௠௔௫ =2/π=0.637 (Hay et al., 1999). Chen and Vlassak (2001) showed through FEA simulations that ݄௖/݄௠௔௫ 

varies between 0.64 and 1.26. Assuming the same numbers for fitting the data, the constants 0.64=1ܥ for ܻ ൌ ∞ 

(purely elastic) and 0.62=2ܥ for ܻ ൌ 0 (Perfectly plastic) would be known. The numerical solution results in 36=3ܥ 

and ݊ ൌ 2/3 as the best fit to FEA data as shown in Figure 5.7. The main reason for lack of good agreement 

between equation (5.8) and FEA results our forcing the fit so that the elastic solution is not violated. 
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Figure 5.7. The ratio of contact depth to the maximum depth of penetration from FEA , O&P and equation (5.8) 

Figure 5.8 shows the true value of β that gives the exact input value for modulus as a function of plastic 

index. It can be seen that changes in β are negligible for the range of properties studied. Therefore the constant value 

of 1.065 is used for the iterative procedure. This number is close to the values reported in the literature (Hay et al., 

1999; Shim et al., 2007; Strader et al., 2006).  

 

Figure 5.8. The true β value obtained from FEA results. 

5.4 A new iterative procedure to obtain H, E and Y  

A new iterative procedure is developed, utilizing the effect of the plastic index on the constraint factor and 

the contact height ratio (equations 5.2 and 5.8) to estimate hardness, modulus and yield stress of an elastic-perfectly 

plastic material. The objective of the iteration is to find a combination of ܧ ,ܪ௥ and ܻ that satisfies equations (5.2) 

and (5.8).  As can be seen in the flowchart of the procedure in Figure 5.9, the only input for the calculations are the 

maximum load, maximum depth of penetration, and the stiffness of the unloading curve at maximum load. To begin 
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the iterative loop, an initial value should be assumed for ܧ௥/ܻ, e.g. ܧ௥/ܻ ൌ 1 and the plastic index (ܲܫ) should be 

calculated. As shown later, the convergence of the solution is independent of this initial value, but the closer the 

initial value is to the actual ratio, the faster the procedure would converge. For this plastic index, constraint factor 

 and contact height ratio ݄௖/݄௠௔௫ can be calculated from equations (5.2) and (5.8) respectively. Then calculated ܻ/ܪ

݄௖/݄௠௔௫ can be used to estimate the projected contact area since the cone angle and maximum depth of penetration 

are known. Based on the estimated projected contact area, the hardness (ܪ) and reduced modulus (ܧ௥) are calculated 

from equations (5.5) and (5.6). The new hardness and the current estimate of the constraint factor ܪ/ܻ are used to 

calculate the estimated yield stress (ܻ) using the estimated value of ܻ and ܧ௥, a new value of the ratio of ܧ௥/ܻ is 

estimated and compared with the old ratio to check for convergence of the iterations. If the ratio has not converged 

to a constant value, a new iteration is performed beginning with the new ratio of ܧ௥/ܻ as shown in the flowchart in 

Figure 5.9. The values of ܧ ,ܪ௥ and ܻ when convergence is achieved are the final estimates determined by this 

procedure. 
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Figure 5.9. Flowchart of the iterative procedure for determining the hardness, modulus, and the yield stress 

5.5. Results  

The effectiveness of the proposed method is demonstrated in Figures 5.10, 5.11 and 5.12 for the error in 

hardness, modulus, and yield stress of which the first two can be compared with the results of O&P method. It can 

be seen that the proposed iterative method improves the estimation of hardness and modulus compared to the Oliver 
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and Pharr method and also gives a good estimation of the yield stress for all values of plastic index greater than 10. 

For instance, for the worst case (Y=114.25MPa), while the O&P method results in 58.9% hardness error and 26.0% 

modulus error, the iterative method results in 0.5% and 0.2% error in hardness and modulus, respectively. For 

plastic indices smaller than 10, O&P method yields in good agreement with expected values, which makes the use of 

the iterative method unnecessary.  

 

Figure 5.10. Hardness error with respect to the expected value vs. plastic index for the developed iterative method 
and the O&P method 

 

Figure 5.11. Modulus error with respect to the expected value vs. plastic index for the developed iterative method 
and the O&P method 
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Figure 5.12. Yield stress error vs. plastic index for the developed iterative method 

5.6. Discussion  

This iterative approach converged for all cases, but the number of iterations, with the initial value of 

ܻ/௥ܧ ൌ 1 is plotted against the plastic index in Figure 5.13. It can be seen that the number of iterations increases as 

the plastic index decreases. The convergence path on normalized hardness graph and ݄௖/݄௠௔௫ graph for three cases 

are shown in Figure 5.14 and 5.15. Additionally, it is noted that the actual value of the plastic index is slightly 

different from the value to which the iteration converges. 

 

Figure 5.13. The number of iterations to converge to definite values vs. plastic index 
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Figure 5.14. The convergence path on ܪ/ܻ curve vs. plastic index for three cases. The first iteration and last 
iteration is shown for each path. 

 

Figure 5.15. The convergence path on ݄௖/݄௠௔௫ curve vs. plastic index for three cases. The first iteration and last 
iteration is shown for each path. 
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hardness, elastic modulus, and yield stress independent of the amount of pile-up or sink-in. It is shown from FEA 

that the beta correction factor to the Sneddon’s equation remains constant for the studied range of materials; 

however, the contact depth ratio and the constraint factor vary for different plastic indices, ܧ௥ tanߚ /ܻ. It is found 

that the proposed iterative method improves the estimation of hardness and modulus compared to the Oliver and 

Pharr method and also gives a good estimation of the yield stress for materials with plastic index greater than 10. For 

the case with maximum pile-up, the iterative method results in less than 1% error while O&P results in 59% 

hardness error and 26% modulus error.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

In the following, we summarize the important results detailed in this dissertation and show how, taken 

together, they help improve experimental and FEA nanoindentation studies.  

As described in chapter 2, one of the parameters that can introduce error in the mechanical properties 

determined by nanoindentation is presence of sample tilt. 3D FEA of conical indentation on tilted samples of 

materials which show pile-up or sink-in around the indenter reveals that: 

 the boundary of contact lies along a plane, 

 this plane is nearly parallel to the surface of the tilted specimen, 

 the contact depth, measured as the distance between the indenter tip and the intersection of the 

axis of the indenter with the plane containing the boundary of contact, is independent of tilt angle. 

The above observations justify the use of a geometrical correction for compensating for the effect of 

sample tilt. The analytical area function equation is obtained for conical and pyramidal indentation into tilted sample 

and it is shown that the contact area increases faster with contact depth than that on non-tilted surfaces. The 

geometric correction can be applied by simply multiplying the usual area function of ideal indentation by a 

correction factor given in equation (6.1) and (6.2), for conical and pyramidal indentation.  

௧௜௟௧௘ௗܣ
௜ௗ௘௔௟ܣ

ൌ ሺ1 െ tan θଶ tan ηଶሻିଵ.ହ (6.11)

௧௜௟௧௘ௗܣ
௜ௗ௘௔௟ܣ

ൌ ሺ1 െ 3 tanଶ ߮ tanଶ ߟ െ 2 tanଷ ߮ tanଷ ߟ cos ሻିଵ (6.2)ߞ3

where θ is semi-cone angle, ߮ is the pyramid face angle, ߟ is the sample tilt angle, and ߞ is the rotation angle of the 

pyramidal indenter with respect to tilt direction. The first two are known from geometry of the indenter and the two 

later can be obtained from surface scans of the indentation impression.  

The accuracy of the area function for tilted indentation is verified by the results of 3D FEA of 

nanoindentation of tilted samples. If the sample tilt is not taken into account and the standard area function is used, 

the contact area would actually be underestimated, leading to overestimation of the hardness and modulus. For 

indentation with a cone of semi-cone angle 70.3º, with area function equivalent to the Berkovich indenter, on a 
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specimen tilted five degrees, the contact area is underestimated by 8%, leading to 8% overestimation in hardness and 

4% overestimation in modulus which would be perfectly corrected for if the proposed correction factor is applied. 

The presented results improves the understanding about the effect of sample tilt since a previous study reported 

approximately 100% underestimation of contact area, 130% overestimation of hardness, and 50% overestimation of 

elastic modulus (Xu and Li, 2007).  

The results are experimentally validated by performing Berkovich nanoindentations on ideally mounted 

fused silica and on tilted one. It was shown that the proposed correction method reduces the induced error if the 

indenter is infinitely stiff in horizontal direction. It was shown experimentally that lack of infinite stiffness in 

horizontal direction causes side creep during indentation which leads to even less sensitivity of results to tilt angle. 

The findings of chapter 3 facilitate the design of a mesh that results in a known amount of error in the pre-

designed range of depths of penetration. This would enable FEA study of a parameter that affects the mechanical 

properties as the depth of indentation varies. The study also improves the understanding of various sources of error 

in finite element analysis of nanoindentation test in order to obtain the true mechanical properties of a material with 

given plastic and elastic properties.  

In comparison with small errors arising from the convergence tolerance of the iterative solution process, 

errors due to discretization are found to be significant. Errors due to discretization arise from discrete jumps in 

contact area as each additional surface element comes into contact, and from higher indentation forces required for 

plastic deformation of larger element near the boundary of contact. It is shown that a graded mesh, that permits self-

similar growth of the displacement strain field with increase in indentation depth, can be used to keep the percentage 

error in hardness due to discretization constant at pre-set values. It is shown that sudden jumps in projected contact 

area because of a new node coming into contact can be obtained as a function of element size ܮ௘ at contact radius ܴ௖ 

for a cone with semi-cone angle of ߠ. This inverse translation of this error to hardness error is verified in this work. 

ܣ∆
ܣ
ൌ 2

௘ܮ sin ߠ
ܴ௖

 (6.3) 

It is also found that the hardness can be measured very close to the true hardness even from a coarse mesh 

if the step size is controlled around the point where a new node comes into contact as long as the mesh is capable of 

conforming to deformation geometry. It is also found that the maximum of all hardness values obtained from any 

mesh is the best measure of the hardness, and not the average of them only and only if the plastic region is 

completely formed.  
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It is also shown that results obtained from different meshes with different pre-set error percentages can be 

extrapolated to determine the exact value of hardness that will be obtained with infinitesimally small elements. 

Using this approach, true hardness for a given set of elastoplatic properties commonly used for fused silica is 

determined to within 0.01%, 100 times more accurately than in earlier work. This extrapolation approach is also 

applied for calculation of precise values of the ε correction factor used in the O&P method for estimation of contact 

depth and of the β correction factor in Sneddon’s equation. This extrapolation approach is broadly applicable to 

problems where errors from mesh discretization can be quantified and controlled. 

The interesting study of the volume sampled underneath nanoindenter for hardness and modulus 

measurements given in chapter 4 was made possible by using the results of chapter 3. The comprehensive study 

improves the understanding of measurement of mechanical properties in a dual phase system with slight variation of 

properties between particle and matrix. A locally damaged region in a bulk material is a good example of such 

systems.  

This study is done by simulating nanoindentation test on a hemispherical particle embedded in a matrix 

with properties close to that of particle. By monitoring the deviation of hardness and modulus from those of particle 

as the depth of penetration increases, the zone of influence on hardness results and modulus results are identified. In 

order to generalize the conclusions of the study over a range of properties, the simulations are performed on two 

material systems, one of which sinks in and the other piles up around the indenter.  

It is found that the intrinsic hardness of particle is measured by nanoindentation as long as the plastically 

deformed region is within the particle, which is satisfied so long as equation (6.4) holds true. This condition is 

simplified to a conservative rule of thumb using the maximum constraint factor value, which says the intrinsic 

hardness of particle is measured so long as the radius of contact is less than one half the radius of the particle. 

However, it is shown that, if the yield stress of the particle is more than 1.5 times of hardness of the matrix (equation 

6.6), the maximum permissible contact radius would be smaller, due to indentation of the matrix by the particle 

(equation 6.5).  

hୡ ൏
ܴ௣
tanθ

ඨ
2
3C

 (6.4) 

P ൏
2π
3 ௣ܻܴ௣

ଶ (6.5) 
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௣ܻ ൏
3
2
 ௠ (6.6)ܪ

For measurement of modulus of elasticity it is shown that no specific volume is sampled beneath the 

indenter and the measured modulus by nanoindentation method actually represents the elastic response of the entire 

specimen at the indentation point.  

It is shown that even for indentation on homogenous bulk material; the effect of fixed boundary condition 

in far field can be seen on indentation modulus. A relationship is developed that shows the effect of boundary 

conditions and matrix on resultant indentation modulus at low depths of penetration for hemispherical 

particle/matrix system in equation (6.7). The relation shows the specific dependency of the modulus on boundary 

effects and the dependency on ratio of ܴ௖/ܴ௣  and ܧ௣/ܧ௠ for matrix effects. The equation is valid for small values 

of ሺܴ௖/ܴ௣ሻሺܧ௣/ܧ௠ሻ. 

௣బሺ1ܧ ؆ ܧ ൅ ܾܴ௖ሻ ቈ1 ൅ ቆ1 െ
௣బܧ
௠బܧ

ቇ
Rୡ
ܴ௣
቉ (6.7) 

The fifth chapter of the dissertation explains development of a new iterative method that estimates the 

hardness, modulus and yield stress of the material from load curve of a single indent. This is a very useful method 

since it works very well for the range of materials that show pile-up around the indenter.  

Finite element simulations have been carried out for a range of materials to study the variations of 

constraint factor, ratio of contact depth to the depth of penetration and the beta correction factor in Sneddon’s 

equation. It is shown that the beta correction factor remains constant for the studied range of materials; however, the 

contact depth ratio and the constraint factor vary for different plastic indices, ܧ௥ tanߚ /ܻ.  

It is found that the proposed iterative method improves the estimation of hardness and modulus compared 

to the Oliver and Pharr method and also gives a good estimation of the yield stress for materials with plastic index 

greater than 10. For the case with maximum pile-up, the iterative method results in less than 1% error while O&P 

results in 59% hardness error and 26% modulus error.  

6.2 Future work 

Nanoindentation test method is relatively a young and active research field in mechanics. There are 

numerous issues that need to be addressed in great detail to improve the applicability of this method to different 

cases. In this section, some future work is suggested to extend the findings in this dissertation. 
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In regard with sample tilt studies, a calibration method for measurement of side stiffness of the indenter’s 

stem and the transducer that results in complicated creep behavior of the material is needed. Further studies can 

result in generation of knowledge about side creep effects on final results. This can be used to introduce 

nanoindentation as a method to measure mechanical properties on a significantly tilted sample. Further FEA and 

experimental studies on the effect of side stiffness of the indenter’s stem and the transducer are required for such 

applications. The first step in this study would be the use of two-dimensional transducers that makes the 

measurement of side force possible. Two-dimensional transducers are commercially available and are mostly used 

for scratch tests. Having the load curved in both directions during indentation on a tilted sample, would give much 

more information about the amount of creep and its effects on measured properties. This can lead to development of 

stiffness correction relations to improve the accuracy of nanoindentation test.  

To study the accuracy of results of FEA of nanoindentation further, one can use infinite boundary 

conditions to compare the effect of boundaries on measured modulus. The other interesting study that can be carried 

out by designing new FEA simulations is the study of the effect of mesh distortion. This can be done by remeshing 

and rezoning to new meshes which will help to understand this effect on the extracted parameters. It is also of value 

to address the issues of simulation of indentation of indenters with small cone angles since very large distortion was 

observed in the mesh, especially for the case of frictionless contact. 

It would be of value to validate the results of dual phase studies experimentally. The expansion of relations 

for various material combinations would be also of great value for the use of nanoindentation test in an actual dual 

phase specimen. A ferrite/pearlite system would be a good candidate to develop the method for and study the 

applicability of the findings. 

Further study on the proposed iterative procedure can be of great value in the field of nanoindentation. The 

expansion of the method to work hardening materials should be pretty straight forward. Validating the method 

experimentally would improve the chances of the method to get widely recognized. The systematic error in 

convergence, especially for yield stress can be elevated by further study of the method.   
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