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ABSTRACT

Study of the Cauchy problem for Helmholtz equation is motivated by the in-

verse scattering theory and more generally by remote sensing. In this dissertation the

increased stability of the Cauchy problem for Helmholtz equation and the Maxwell’s

system is investigated with varying frequency. Here it has been shown that the the

stability of continuation is improving with the increasing frequency. The continuation

is inside the convex hull of the surface where the Cauchy data is given. This has been

demonstrated by numerical experiments with simple geometry. When we continue

outside of the convex hull, the subspace of stable solutions is growing with frequency.

This is also demonstrated by numerical experiments where we reconstruct the den-

sity function of the single layer potential. Another problem that is presented here is

the electromagnetic obstacle scattering problem, with variable frequency. Here the

existence and uniqueness of the solution to the forward problem is presented and the

analytic dependence of the solution on the frequency is proved.
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CHAPTER 1

INTRODUCTION

The problem of the continuation or the Cauchy problem for partial differential

equations is of fundamental theoretical interest and it is very important for practi-

cal applications, for example in control theory and inverse problems. This problem

started with Holmgren-John theorem about uniqueness for equations with analytic

coefficients. Finding the solution u of a partial differential equation from the given

data gj, f is the well known Cauchy Problem.

Lu = f on Ω,

∂jνu = gj, j ≤ m− 1 on Γ, (1.1)

where Lu =
∑
|α|≤m

aα∂
αu, Ω is a domain in Rn, Γ ∈ Cm−1, is a part of ∂Ω, the

boundary of the domain Ω, and ν is the outward normal to the boundary.

A Cauchy problem is said to be well-posed in the sense of Hadamard if the

following conditions hold:

1. u ∈ U exists for any gj ∈ G, f ∈ F ;

2. u ∈ U is determined uniquely by gj ∈ G, f ∈ F ;

3. u ∈ U depends continuously on gj ∈ G, f ∈ F ,

where U is the space of all solutions u and G×F is the space of all data gj, f prescribed

on the boundary Γ and on the domain Ω. In other words a Cauchy problem is well

posed, if the operator A : U → G×F defined as Au = {g, f} has a continuous inverse
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from G× F onto U . U , G, and F are open subsets of classical spaces Ck(Ω), Ck(Γ),

Hp
k(Ω), Hp

k(Γ) or their closed subspaces of finite codimension.

If one of the above three conditions is not satisfied, then such problems are

called ill posed problems in the sense of Hadamard. For ill posed problems u may not

exist. If u exists continuous dependence of u on gj, f may not be guaranteed.

A feature of this problem for elliptic equations is its exponential instability

pointed out by Hadamard in 1920’s. For example, consider the classical example of

Hadamard: of the Cauchy problem for the Laplace equation

∂2
xu+ ∂2

yu = 0 in R2
+ = {(x, y)|y > 0}, (1.2)

u = 0, ∂yu = g1,when y = 0. (1.3)

If g1(x) = n−kcos(nx), then u exists (u = n−3cos(nx)sinh(ny), k fixed). But one

can note that there is no continuous dependence of u on g1. In applications (inverse

problems) this continuous dependence (stability estimates for u) is of most impor-

tance. Only this condition guarantees the convergence of the solutions u while using

computational algorithms.

A stability estimate is defined [17] as a function ω such that

‖u− u∗‖U ≤ ω(‖Au− Au∗‖G×F ) (1.4)

An important condition for stability estimate is that limτ→0 ω(τ) = 0 and also ω

is increasing monotonically. Depending on this function ω we have three kinds of

stability estimates:

1. if ω(ε) = Cε, then the solution u depends Lipschitz continuously on gj, f ;
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2. if ω(ε) = Cεκ, 0 < κ < 1, then the solution u depends Hölder continuously on

gj, f ;

3. if ω(ε) =
C

|logε|
, then the solution u depends logarithmic continuously on gj, f ,

which is much weaker kind of continuity.

For applications mere continuity is not good, to develop efficient numerics we

expect that u depends at least Hölder continuously on data (the best case would be

Lipschitz continuity). Cauchy problems where u depends on data Hölder continuously

are said to be well behaved. This can be achieved by assuming that the solution u

and first few derivatives of u are bounded. Hence we consider a restricted solution

space UM where M is the apriori bound.

In 1960 John [19] showed that one has at least logarithmic stability for a wide

class of partial differential operators. In the same paper he considered an important

example:

∂2
xu+ ∂2

yu = ∂2
t u in Ω× (−T, T ), (1.5)

u = g0 and ∂νu = g1 on ∂Ω× (−T, T ). (1.6)

Let the solution u and first few derivatives be bounded and the domain Ω be given

by

Ω = {(x, y) : x2 + y2 < 1}. (1.7)

It is shown that at any point inside the cylinder Ω × (−T, T ) the solution u

depends Holder continuously on the Cauchy data g0, g1(or even Lipschitz continuously

3



[17] if appropriate norms are selected), but for the Cauchy problem

∂2
xu+ ∂2

yu = ∂2
t u in Ωe × (−T, T ), (1.8)

u = g0 and ∂νu = g1 on ∂Ωe × (−T, T ). (1.9)

with Ωe = {(x, y) : x2 + y2 > 1}, the dependence of the solution u on g0, g1 is at best

logarithmically continuous. This can be inferred by considering the solution of the

wave equation ∂2
xu+ ∂2

yu = ∂2
t u in polar coordinates which is given by

un = Jn(nr)ein(t+θ),

where Jn(nr) is the Bessel function of order n ∈ Z+.

For r < 1, it is shown that |un| = |Jn(nr)| < qn and for r > 1, un decreases only like

some negative powers of n, reaching maximum at r = 1. Also, in [19] it is shown that

for any r and any n ∈ Z+,

|un| = |Jn(nr)| < An−1/3.

These estimates for un show that the the best possible stability estimate is of loga-

rithmic type.

Since,

vn = e−intun = Jn(nr)einθ

solves the Helmholtz equation

(∆ + n2)vn = 0 in R2

this shows that the Cauchy problem for the Helmholtz equation is also not well

behaved.

Logarithmic stability is quite damaging for numerical solution of many inverse

problems. In the recent papers [3], [13], [15], [16] it was demonstrated that when one
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continues solutions of the Helmholtz equation from a surface Γ onto its convex hull

the stability is increasing and unstable (Hölder) component of stability estimates goes

to zero as the wave number is increasing. These results are summarized in chapters

2 and 3.

Stability of the continuation is crucial for stability (and hence for an efficient numer-

ical solution) of (non linear) inverse problems. Better numerical resolution for higher

wave numbers in the inverse medium and obstacle problems was observed in [6], [7]

(inverse medium problems in optics), [8] (inverse electromagnetic obstacle problem),

[12] (inverse source problem), and [26] (an inverse medium problem in ultrasound

tomography). The Helmholtz equation is a good model for acoustics where the phys-

ically interesting wave numbers are not very high (typically less than 30). They can

be really high for electromagnetic fields (k
√
εµ up to hundreds or thousands), and

then increasing stability is expected to be more dramatic.
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CHAPTER 2

INCREASED STABILITY IN THE CONTINUATION FOR
HELMHOLTZ EQUATION

Motivated by the inverse problems in the (acoustical, electromagnetic) wave

propagation and in particular by scattering theory, we focus on the Cauchy problem

for the Helmholtz equation

(
∆ + k2

)
u = f in Ω, u ∈ H(1)(Ω), (2.1)

with Cauchy data

u = g0 and ∂νu = g1 on Γ, (2.2)

where Ω is a Lipschitz bounded domain in Rn, n = 2, 3, and Γ is a part of its boundary.

In Theorem 1.1 Ω is a subset of a cylinder {x : 0 < xn < h, |x′| < r},

x′ = (x1, x2, ..., xn−1), and Γ is the open part of the boundary ∂Ω contained in the

layer {0 < xn < h}. We assume that Ω = {x : 0 < xn < ω(x′), x′ ∈ Ω′} , ω > 0,

ω ∈ C1(Ω′). Let Ω(d) = Ω
⋂
{x : xn > d}, F = ‖f‖(Ω) + ‖u‖(Γ) + ‖ 5 u‖(Γ) and

F (k, d) = ‖f‖(Ω) + d−0.5(k + d−1)‖u‖(Γ) + ‖ 5 u‖(Γ), here ‖u‖(l)(Ω) is the norm in

the Sobolev Space H(l)(Ω) and ‖u‖ = ‖u‖(0).

‖u‖∞,l(Ω) =
∑
|α|≤l

‖∂αu‖∞(Ω)

and ‖‖p is the standard norm in Lp. C denote generic constants depending on Ω and

Γ, any additional dependence is indicated.

In [13] they proved the following stability estimate for the solution u of (4.1)

and (2.2):

‖u‖(Ω(d)) ≤ C

(
F +

M1−λ
1 F (k, d)λ

d2−2λk

)
(2.3)

6



where

λ =
2r2d+ 3

8
d3

4r2h+ h2d+ 5
4
d2h+ 3

8
d3 + 3r2d

. (2.4)

One important corollary of (2.3) is that the stability and hence the resolution in the

Cauchy problem in the subdomain Ω(d) increases as the frequency k grows.

Theorem 2.0.1. Let ‖u‖(1)(Ω) ≤ M1. Then there exists a constant C such that for

any solution u to (4.1) and (2.2)

‖u‖2(Ω(0)) ≤ CM2
1 (ε2 +

1

(−lnε+ k)
1
8

) (2.5)

where ε = F
M1

.

Observe that the stability estimate (2.5) consists of two terms. If only the

first term ε2 is present we have the best possible Lipschitz stability, guaranteeing

in particular high resolution of suitable numerical algorithms. However, at fixed

k the Cauchy problem (4.1),(2.2) for the elliptic Helmholtz equation is notoriously

(exponentially) ill-posed, so a Lipschitz stability is not possible. Theorem 1.1 shows

that the second ”logarithmically unstable” term in(2.5) is going to zero (as a power

of k), and hence stability and resolution in the Cauchy problem are improving when

k grows.

Theorem 1.1 combined with known theory of Sobolev spaces implies global

improved stability in the exterior of an obstacle. Let Ω0 be a bounded convex domain

in Rn and D be an open subset of Ω0. Let P be a half-space of Rn and ΩP = Ω∩P .

Let P be the set of all P such that ∂Ω0 ∩P ⊂ Γ and Ω(D,Γ) be the union of all sets

Ω(P ) over P ∈ P .

In next Theorem and its Corollaries Ω = Ω0 \ D̄.

Theorem 2.0.2. Let ‖u‖(l)(Ω) ≤ Ml . Then there exists a constant C = C(l) such

7



that for any solution u to (4.1) and (2.2)

‖u‖∞(Ω(D,Γ)) ≤ CMl(ε
2 +

1

(−lnε+ k)
1
8

)θl , with θl =
1

2
− 0.8

l
(2.6)

where ε = F
M1

.

If l = 2 we have θl = 0.1. For large l this exponent is increasing to 0.5 showing

better stability.

Corollary 2.0.1. Let ‖u‖(l)(Ω) ≤ Ml. If Ω0, D are convex domains and Γ = ∂Ω0,

then the bound (2.6) holds in Ω(D,Γ) = Ω0 \D

Corollary 2.0.2. Let ‖u‖∞,2(Ω) ≤M∞,2. Then there exists constant C such that for

any solution u to (4.1) and (2.2)

‖u‖∞,1(Ω(D,Γ)) ≤ CM∞,2(ε2 +
1

(−lnε+ k)
1
8

)θ (2.7)

where ε = F
M1
, θ = 0.55 · 0.625 · 0.25 = 0.0859....

Observe that this corollary indicates better stability in reconstruction of the

boundary coefficient b in the impedance boundary condition ∂νu + bu = 0 on ∂D of

a given convex obstacle (on ”illuminated” part of nonconvex ∂D) from the Cauchy

data (2.2) for a solution to (4.1). Indeed, only remaining question to resolve is to

evaluate ”size” of zero set of ∇u on ∂D. Unfortunately, it is not a very simple issue.

2.1 Auxiliary Trace, Embedding , and Interpolation Results.

In this section we collect some mostly known results on traces and interpolation

which are needed in the proofs of section 1.2.

Lemma 2.1.1. Let S(d) = Ω ∩ {x : xn = d}. There exists a constant C such that

‖u‖(0)(S(d)) ≤ C‖u‖(1)(Ω).

8



This is a know result about bound of traces, see for example [21], p. 44.

Now we mention the well know interpolation inequalities for intermediate

derivatives. The main idea is that if u is bounded in H(s1) and H(s2) then u is

bounded in all the intermediate Sobolev spaces H(s) where s1 < s < s2. We remind

the standard interpolation inequality [23] is given by:

‖u‖(s)(Ω) ≤ C‖u‖1−θ
(s1)(Ω)‖u‖θ(s2)(Ω) (2.8)

where s = (1− θ)s1 + θs2 , 0 < θ < 1 and C = C(Ω, s1, s2, θ).

By known Sobolev embedding theorems [21], [28], p. 328

‖u‖q(Ω) ≤ C‖u‖(s), when n(
1

2
− 1

q
) ≤ s, ‖u‖∞(Ω) ≤ C(s)‖u‖(s)(Ω), when

n

2
< s.

(2.9)

Now we remind definition and properties of less standard space of functions

Hp,s(Ω). When Ω = Rn the norm of a function u in this space is

‖u‖p,s(Rn) = ‖F−1(1 + |ξ|2)
s
2Fu‖p(Rn)

where F is the Fourier transform [28], p. 177. For a bounded Ω the definition is

obtained by taking minimal norm of extension onto Rn [28]. p.310. Referring to [28],

pp. 59, 317, 328, we have the interpolations inequalities

‖u‖p,s(Ω) ≤ C(p, s1, s2, θ,Ω)‖u‖1−θ
p,s1

(Ω)‖u‖θp,s2(Ω) (2.10)

where 1 < p < ∞, s1 < s2, 0 < θ < 1, s = (1 − θ)s1 + θs2. In addition, there are

embedding theorems

‖u‖∞,l(Ω ≤ C‖u‖p,s(Ω), 1 < p <∞, l +
n

p
< s (2.11)

Lemma 2.1.2. There exists a constant C such that

‖u‖∞(Ω) ≤ C‖u‖1−θ(l)
(0) ‖u‖θ(l)(2) (Ω), θ(l) =

1.6

l
. (2.12)
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‖u‖∞(Ω) ≤ C‖u‖1/40
(0) (Ω)‖u‖39/40

∞,1 (Ω). (2.13)

Proof:

For n = 2, 3 we let s = 1.6 in(2.9) to yield

‖u‖∞(Ω) ≤ C‖u‖(1.6)(Ω). (2.14)

From (2.8) with s1 = 0, s2 = l, θ(l) = 1.6
l

we have

‖u‖(1.6)(Ω) ≤ C‖u‖1−θ(l)
(0) (Ω)‖u‖θ(l)(2) (Ω). (2.15)

Combining (2.14) and 2.15) we obtain the first statement (2.12).

Again by embedding (2.9) with n = 2, 3, q = 5 we yield

‖u‖5(Ω) ≤ C‖u‖(0.9)(Ω). (2.16)

By interpolation inequalities (2.8) with s1 = 0, s2 = 1, θ = 0.9

‖u‖(0.9)(Ω) ≤ C‖u‖0.1
(0)(Ω)‖u‖0.9

(1)(Ω). (2.17)

By more precise interpolation result (2.10)

‖u‖5,3/4(Ω) ≤ C‖u‖0.25
5,0 (Ω)‖u‖0.75

5,1 ≤ C‖u‖0.25
5 (Ω)‖u‖0.75

∞,1(Ω) (2.18)

Again by embedding theorems (2.11)

‖u‖∞(Ω) ≤ C‖u‖5,0.75(Ω) (2.19)

Hence from (2.19), (2.18)

‖u‖∞(Ω) ≤ C‖u‖0.25
5 (Ω)‖u‖0.75

∞,1(Ω) ≤ C‖u‖0.25
(0.9)(Ω)‖u‖0.75

∞,1(Ω)

due to (2.16) and (2.17). Finally, from the last inequality and from (2.17) we yield

(2.13).

The proof is complete.
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Lemma 2.1.3. Let ‖u‖∞,2(Ω) ≤M∞,2. There exists constant C such that

‖u‖∞,1(Ω) ≤ CM1−θ1
∞,2 ‖u‖θ1(0)(Ω). (2.20)

where θ1 = 0.55 · 0.625 · 0.5.

Proof: Again from interpolation inequality (2.8) we have

‖u‖(0.9)(Ω) ≤ C‖u‖0.55
(0) (Ω)‖u‖0.45

(2) (Ω) (2.21)

By (2.10)

‖u‖5,0.75(Ω) ≤ C‖u‖0.625
5 (Ω)‖u‖0.375

5,2 ≤

C‖u‖0.625
(0.9) (Ω)‖u‖0.375

5,2 ≤ C‖u‖θ2(0)(Ω)‖u‖1−θ2
∞,2

where we used (2.21) and let θ2 = 0.550.625. Using in addition the standard interpo-

lation inequality

‖u‖∞,1(Ω) ≤ C‖u‖0.5
∞ (Ω)‖u‖∞,2(Ω)0.5

we complete the proof of (2.20).

2.2 Proofs of stability estimates

Proof of Theorem 1.1:

First, we derive from (2.3) the following simpler upper bound

‖u‖(Ω(d)) ≤ C

(
F +

M1−λ1F λ1

d2
√
k

)
, λ1 =

d

4h
(2.22)

assuming that d < 1, F < 1, 1 ≤M1, λ < 1
2

and

(h2 + 3r2)d+
5

4
d2h < 4r2h. (2.23)

Indeed from (2.4) we can conclude that

λ >
2r2d

4r2h+ (h2 + 3r2)d+ 5
4
d2h

>
2r2d

4r2h+ 4r2h
=

d

4h

11



due to (2.23). So (2.3) implies (2.22).

Let F (d) = ‖u‖2(Ω(d)). As known (see e.g. [27], p. 77), there is

F ′(d) = −
∫

(x′,d)∈Ω

|u(x′, d)|2 dx′ = −‖u‖2(S(d)). (2.24)

From the mean value theorem we have F (d) = F (0) + F ′(d∗)d, where 0 < d∗ < d.

Hence,

|F (0)| ≤ |F (d)|+ |F ′(d∗)|d

and from (2.24), (2.22), and Lemma 2.1 we conclude that

‖u‖2(Ω(0)) ≤ C

(
F 2 +M2

1 ε
2λ1

1

kd4
+M2

1d

)
. (2.25)

Let us consider the function

f(d) = ε2λ1
1

kd4
+ d. (2.26)

and try to minimize this function with respect to d > 0. We choose

d = (E + k)−
1
8 , E = −lnε. (2.27)

From (2.26), (2.27),

f(d) = eα + d, where α = − d
C
E − 4lnd− lnk.

Due to (2.27),

α = − E

C(E + k)−
1
8

+
1

2
ln(E + k)− lnk (2.28)

If E ≤ k, then

α ≤ 1

2
ln(E + k)− lnk ≤ 1

2
ln(2k)− lnk =

−1

2
lnk +

ln2

2
≤ −1

4
lnE − 1

4
lnk +

ln2

2

12



If k ≤ E, then again from (2.28)

α ≤ − E

CE
1
8

+
1

2
ln2E − lnk ≤

− 1

C
E

7
8 − lnk ≤ − lnE − lnk + C

where we used twice that ClnA ≤ A
1
8 + C. Finally,

α ≤ −1

4
(lnE + lnk) + C

and from (2.28), (2.26) we have

f(d) ≤ C(
1

E
1
4K

1
4

+
1

(E + k)
1
8

) ≤ C
1

(E + k)
1
8

.

Combining with (2.25), (2.26) we complete the proof.

2

Proof of Theorem 1.2: We will apply Theorem 1.1 to domains ΩP . First

we observe that constants in lemmas 2.2, 2.3 for domains Ω = ΩP do not depend

on P . Indeed, according to the definitions the domains ΩP after an orthogonal co-

ordinate change have the form Ω(0) where functions ω are uniformly (with respect

to P ) bounded in C1, moreover they all have uniform cone property. Hence these

domains can be mapped onto a standard domain Ω0 (e.g the upper unit hemisphere

in Rn by C1) by diffeomorphisms which are uniformly bounded in C1 together with

their inverses. Applying Lemmas 2.2, 2.3 to Ω0 and using inverse diffeomorphism we

conclude that constants can be chosen P -independent.

Using (2.12) for Ω = ΩP , P ∈ P we yield

‖u‖∞(Ω(P )) ≤ CM
θ(l)
l ‖u‖

1−θ(l)
(0) (Ω(P )) ≤M

θ(l)
l M

1−θ(l)
1 (ε2 +

1

(−lnε+ k)
1
8

)0.5(1−θ(l)).

(2.29)

due to (2.5). Since Ω(D,Γ) is the union of ΩP over P ∈ P and M1 ≤ Ml we obtain

(2.6).
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2.3 Numerical experiments

In this section we conduct a numerical experiment to demonstrate the increas-

ing stability of the Cauchy problem. This numerical experiment reconstructs the

acoustical pressure from the knowledge of its farfield acoustical pressure in three di-

mensions. The reconstruction procedure is similar to the ones considered in [13] and

[18].

The experimental setup for the exterior problem consists of two concentric

semi spheres and a semi circle given by,

Γ0 = {x = (x1, x2, x3) ∈ R3 : ‖x‖ = r0, φ1 ≤ φ ≤ φ2, θ1 ≤ θ ≤ θ2}

Γ1 = {x = (x1, x2, x3) ∈ R3 : ‖x‖ = r1, φ3 ≤ φ ≤ φ4, θ3 ≤ θ ≤ θ4}

Γ2 = {x = (x1, x2, x3) ∈ R3 : ‖x‖ = r2, φ =
π

2
, 0 ≤ θ ≤ π

2
}

where φ = tan−1
(
x2
x1

)
and θ = tan−1

(√
x21+x22
x3

)
, r0 = 2, r1 = 1 and r2 = 1

2
. Five

acoustical sources are placed on the semicircle Γ2, the amplitudes and positions are

given by Table 1.

Amplitude Position

A1 = 1 (0, 0, 1
2
)

A2 = 4 (0, −1
2
√

2
, 1

2
√

2
)

A3 = 5 (0, −1
2
, 0)

A4 = 2 (0, −1
2
√

2
, −1

2
√

2
)

A5 = 3 (0, 0, −1
2

)

Table 2.1: Amplitudes and positions of acoustical sources

14



Next we discretize the surfaces Γ0 and Γ1 by considering n angles between φ1

and φ2 and n angles between θ1 and θ2. Hence we obtain n2 points on Γ0 which is

given by

Γd0 = {x = (x1, x2, x3) ∈ R3 : ‖x‖ = r0, φ = φi, θ = θi, i = 1, ..., n}

where φi = φ1 + iδφ and δφ = (φ2 − φ1)/n, θi = θ1 + iδθ and δθ = (θ2 − θ1)/n.

Similarly we obtain n2 points on Γ1 given by

Γd1 = {x = (x1, x2, x3) ∈ R3 : ‖x‖ = r1, φ = φj, θ = θj, j = 1, ..., n}

where φj = φ3 + jδφ and δφ = (φ4 − φ3)/n, θj = θ3 + iδθ and δθ = (θ4 − θ3)/n.

For this experiment n = 10, φ1 = φ3 = θ1 = θ3 = 0, φ2 = φ4 = −π and θ2 = θ4 = π.

The acoustic pressure and its normal (radial) derivative on Γd0 are calculated

using

u(x) =
5∑
j=1

AjΦ(x, yj) (2.30)

∂ru(x) =
5∑
j=1

Aj∂rΦ(x, yj) (2.31)

where

Φ(x, y) =
eik|x−y|

4π|x− y|

is the fundamental solution of the Helmholtz equation, while Aj and yj are the am-

plitudes and positions of the acoustic sources respectively as given in Table 1.

Using equations (2.30) and (2.31) we can generate the Cauchy data on Γd0 by

adding some noise,

uδ = u+ δ‖u‖2
ξ

‖ξ‖2

(2.32)

∂ruδ = ∂ru+ δ‖∂ru‖2
ξ

‖ξ‖2

(2.33)
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Frequency (k) Error of reconstruction(in %)

2.0 782.00%

4.0 544.44%

8.0 67.13%

16.0 2.79%

Table 2.2: Errors of reconstruction at various frequencies for the exterior problem

Here the noise is δ = 1% and ξ is a vector which is uniformly distributed on (−1, 1).

Since u is a radiating solution of the Helmholtz equation we have from [10]

u(x) ≈
N∑
n=0

n∑
m=−n

an,mh
(1)
n (|x|)Y m

n

(
x

|x|

)
(2.34)

The choice of N is quite important since it plays the role of a regularizer. For this

experiment N = 9, 10 which is the best possible choice. We find the coefficients an,m

by matching the series expansion of the solution with the Cauchy data calculated

from (4.13) and (4.14) on Γd0. This is achieved by forming a system Ax = b where

x is a vector of coefficients to be determined, vector b is the Cauchy data and the

entries of matrix A are formed by the product of spherical Hankel functions and

spherical harmonics. The solution to this system is obtained by forming the normal

equations A∗Ax = A∗b and by applying using conjugate gradient technique on these

normal equations. The number of iterations is chosen such that the residual error

is lesser that 100ε where ε is the machine epsilon. Using these coefficients an,m and

equation (2.34) we can reconstruct the acoustical field urecon on Γd1. The error of

reconstruction is given by

errrecon =
‖uexact − urecon‖2

‖uexact‖2
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where uexact is the acoustical field on Γ1 calculated using the equation 4.1. The error

of reconstruction (in percentages) for various frequencies is given in the table 2, which

demonstrates the increased stability in the reconstruction of the acoustical pressure.

Also, we would like to consider the interior problem. The experimental setup

for the interior problem consists of two concentric semi spheres and a semi circle

given by Γ0, Γ1 and Γ2 which is same as the setup for the exterior problem but with

r0 = 1
2
, r1 = 1 and r2 = 2. As before the Cauchy data is prescribed on the discretised

surface Γ0. This Cauchy data is matched with the approximate series expansion of

the solution to the interior problem which is given by

u(x) ≈
N∑
n=0

n∑
m=−n

an,mjn(|x|)Y m
n

(
x

|x|

)
to calculate the coefficients an,m and hence reconstruct the acoustic pressure on the

semi sphere. For interior problem N = 7 is the best choice. The algorithm used in

this case is precisely the same which was used for the exterior problem. The error of

reconstruction for various frequencies are shown in table 3. The error of reconstruction

for the interior problem increases with the increasing frequency.
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Frequency (k) Error of reconstruction(in %)

2.0 29.42%

4.0 61.84%

8.0 65.4%

16.0 117.15%

Table 2.3: Errors of reconstruction at various frequencies for the interior problem
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CHAPTER 3

INCREASED STABILITY IN THE CONTINUATION FOR
MAXWELL’S SYSTEM

In this chapter we consider the Cauchy problem for the stationary Maxwell

System  curl E − ikµH = 0 in Ω,

curl H + (ikε− σ)E = 0 in Ω,
(3.1)

with the Cauchy data

E = E0, H = H0 on Γ, (3.2)

where E,H are electrical and magnetic vectors E,H , Ω is a domain in R3 and Γ is

a part of its boundary ∂Ω. We will assume that the coefficients ε, µ, σ ∈ C2(Ω̄), 0 <

ε, 0 < µ, 0 ≤ σ on Ω̄, and the Cauchy data E0,H0 are given functions.

Let Ω ⊂ {0 < x3 < h, |x′| < r} with Lipschitz ∂Ω , Ω̄ ⊂ {x3 < h} and

Γ = ∂Ω∩{0 < x3 < h}, x′ = (x1, x2). Let Ω(d) = Ω∩{d < x3}. ‖u‖(l)(Ω) is the norm

in the Sobolev space H l(Ω) and ‖u‖(Ω) = ‖u‖(0)(Ω). We let F (E) = ‖E0‖(1)(Γ) +

‖H0‖(1)(Γ)+k(‖E0‖(Γ)+‖H0‖(Γ)), and F (E; k, d) = (k+d−1)(‖E0‖(Γ)+‖H0‖(Γ))+

‖E0‖(1)(Γ) + ‖H0‖(1)(Γ). For later use we let F = ‖f‖(Ω) + ‖u0‖(1)(Γ) + ‖u1‖(0)(Γ)

and F (k, d) = ‖f‖(Ω) + (k + d−1)‖u0‖(0)(Γ) + ‖u0‖(1)(Γ) + ‖u1‖(0)(Γ). By C we de-

note generic constants depending only on ε, µ, σ,Ω,Γ, a0,Bl,C1,C0. Any additional

dependence will be indicated.

In Theorem 1.1 we assume that 1 ≤ k, ‖E‖(1)(Ω) + ‖H‖(1)(Ω) < M1, d < 2r.

Theorem 3.0.1. Let

0 < 2εµ+∇(εµ) · x+ β3∂3(εµ), 0 ≤ ∂3(εµ) on Ω (3.3)

for some β3 > 0.
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Then there are C, λ(d) ∈ (0, 1
3
) such that

‖E‖(Ω(d)) + ‖H‖(Ω(d)) ≤

C(F (E) + k−
1
3 (F λ0(E) + d2λ0F λ0(E; k, d))M1−λ0 + k−

1
3d−2λ0M1−λ(d)F λ(d)(E; d, k))

(3.4)

for all E,H solving (5.1), (3.2). Here λ0 = 1
3
.

If ε, µ are constants and σ = 0, then

‖E‖(Ω) + ‖H‖(Ω) ≤ C(F (E) +
M

(−lnδ1 + k)
1
16

), (3.5)

where δ1 = F (E)
M

.

The condition (3.3) guarantees absence of trapped rays in the corresponding

dynamical (time dependent) problem. Presence of trapped (disjoint with Γ) rays

makes the improving stability estimate (3.4) impossible, as shown in [19]. It is related

to monotonicity of the speed of the propagation (εµ)−
1
2 with respect to x3 in the

dynamical case. The monotonicity condition is in particular very well known in the

(geophysical) inverse seismic problem. Its violation can even result in non uniqueness

of the continuation for the dynamical equations (see [14], p. 70, and related references

in this book). If the speed of the propagation decreases with respect to x3 (i.e.

increases in the direction of the continuation), then the condition (3.3) can be achieved

by choosing large β3.

For the dynamical Maxwell system sharp uniqueness of the continuation results

and stability estimates were obtained in the paper [11]. In the dynamical case the

Cauchy data are given on Γ× (0, T ). The best possible Lipschitz type stability in [11]

requires Γ to be more than “one half” of ∂Ω, it needs some boundary data on ∂Ω \ Γ

and T to be sufficiently large. So the conditions in [11] are global. In our result Γ
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can be any part of the boundary of a larger domain extending Ω, which means much

more flexible local data.

The assumptions on Ω can be relaxed, moreover Theorem 1.1 implies increasing

stability of the continuation from the boundary of a convex domain Ω1 onto Ω1 \

D where D is a convex subdomain of Ω. Indeed, complement of a convex D can

represented as the union of half-spaces P , as on Figure 2. Applying Theorem 1.1 to

Ω1∩P and combining the estimates over the union of P -s we complete the argument.

For more detail we refer to [3], [13].

First we reduce (5.1), (3.2) to the Cauchy problem for a system of the equations

of second order with the diagonal Helmholtz operator in its principal part. Next we

obtain energy type estimates in the low frequency zone, which are vectorial versions

of estimates in [16] and combine them to obtain a conditional Lipschitz stability

estimate with an additional energy type term. An additional (to [16]) difficulty is

that coefficients of low order terms can depend on k. Another new ingredient of our

results is a removal of an additional artificial small parameter in [15], [16]. Finally,

we use a scalar Carleman type estimate in [16], [4] to obtain Hölder type stability

estimates of the energy type term and complete the proof of stability estimate for

principally diagonal auxiliary system.

3.1 A reduction to a second order system

We start with a simple result which reduces the Maxwell’s system to a vectorial

Helmholtz equation. This reduction is well known, but we need details of it which

are essential for transformation of the Cauchy data.

Lemma 3.1.1. The Cauchy Problem for Maxwell’s System (5.1),(3.2) implies the
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following Cauchy problem

∆E+k2εµE+∇((ε+ik−1σ)−1∇(ε+iσk−1)·E)+µ−1∇µ×curlE+µσikE = 0 in Ω,

∆H+k2εµH+(ε+iσk−1)−1(∇(ε+iσk−1)×H)+∇(µ−1∇µ·H)+µσikH = 0 in Ω,

(3.6)

with the Cauchy data

E = E0, ∂νE = E1, H = H0, ∂νH = H1 on Γ, (3.7)

where

|E1|+ |H1| ≤ |∇tanE0|+ |∇tanH0|+ C(k(|E0tan|+ |H0tan|) + |E0|+ |H0|). (3.8)

Proof:

From the first equation in (5.1) we have

0 = curl (curl E)− ikcurl µH = −∆E +∇divE − ik(∇µ×H)− ikµcurl H .

From the second equation in (5.1) it follows that div((ikε− σ)E) = 0 and hence

divE = −(ikε− σ)−1∇(ikε− σ) ·E. (3.9)

Expressing, in addition, H from the first set of equations in (5.1) and curlH from

the second set in (5.1) we yield the first set (5.6). The second set is obtained by a

similar argument.

To bound the Cauchy data we consider any x0 ∈ Γ and use an orthonormal co-

ordinate system where the direction x3-axis is the normal ν(x0). Using the invariance

of the Maxwell system with respect to these coordinates we will have

∂2E3 − ∂3E2 = ikµH1, ∂3E1 − ∂1E3 = ikµH2;
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and therefore

∂3E1 = ∂2E3 + ikµH2,

∂3E2 = ∂2E3 − ikµH1

at x0. From (3.9) we have

∂3E3 = −∂1E1 − ∂2E2 − (ε+ iσk−1)−1∇(ε+ ik−1σ) ·E).

Observing that E1, E2 are tangential components of E at x0 and ∂1, ∂2 are tangential

differentiations at x0 from three previous equalities we yield (3.8) for E1. The bound

for H1 is obtained similarly.

The proof is complete.

We observe that the data (3.2) are overdetermined. Indeed, in the same co-

ordinate system at x0 ∈ Γ from (5.1) we have ∂1E2 − ∂2E1 = ikµH3, so the normal

components H3 and similarly E3 are linear combinations of tangential derivatives

of tangential components Etan,H tan and it is sufficient to prescribe on Γ only tan-

gential components of electromagnetic vector. However, then H1 norms of normal

components will be bounded by H2 norms of tangential components. When studying

stability we prefer to use more natural Sobolev norms for all components by prescrib-

ing the overdetermined Cauchy data (3.2).

Let m × m matrix functions Bl, l = 1, 2, 3, C = C1k + C0 ∈ C1(Ω̄) and a

positive function a0 ∈ C2(Ω̄). We will consider the Cauchy problem for the (more

general than (5.6)) principally diagonal system

(∆ + a2
0k

2 +
3∑
l=1

Bl∂l + C)u = f in Ω, (3.10)

u = u0, ∂νu = u1 on Γ. (3.11)
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Theorem 3.1.1. Let us assume the condition

0 < a0 +∇a0 · x+ β3∂3a0, 0 ≤ ∂3a0 on Ω. (3.12)

Then there are C, λ(d) ∈ (0, 1
3
) such that

‖u‖(Ω(d)) ≤ C(F + k−
1
3 (F λ0 + d2λ0F λ0(k, d))M1−λ0

1 + k−
1
3d−2λ0M

1−λ(d)
1 F λ(d)(k, d))

(3.13)

for all u solving (3.10), (3.11) provided ‖u‖(1)(Ω) ≤M1. Here λ0 = 1
3
.

This result will be proven in section 4.

The bound (3.4) of Theorem 1.1 immediately follows from Lemma 2.1 and

Theorem 2.1. The bound (3.5) follows from Lemma 2.1 and Theorem in [3] for the

Helmholtz equation.

3.2 Energy type estimates in low frequency zone

We will obtain some auxiliary results imitating the standard energy estimate

for hyperbolic initial value problems

In Lemmas 3.1-3.4 a ∈ C1([0, h]) is a scalar function, a = a(x3), Bl(3),C1(3),C0(3) ∈

C1([0, h]), l = 1, 2, 3 be m×m matrices depending only on x3, C(3) = C1(3)k+C0(3)

and vector functions vj ∈ C2(Ω̄∗) (with values in Rm) are zero outside Ω̄. In this

section we let Ω∗(d) = {x : d < x3 < h} and denote by V(ξ, x3) the Fourier transform

of the function v(x′, x3) with respect to x′.

Lemma 3.2.1. Let a vector function vj, j = 1, 2, 3 solve the initial value problem

(∆ + a2k2 +
3∑
l=1

Bl(3)∂l + C(3))vj = ∂jfj in Ω∗(d), j = 1, 2,

vj = 0 on Ω∗(h1) (3.1)
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for some h1 ∈ (d, h), fj ∈ C∞(Ω̄∗(d)), fj = 0 on Ω∗(h1), and

Vj(ξ, x3) = 0 when
a2(x3)

2
k2 < |ξ|2 (3.2)

Then there is constant C depending only on h, sup(|B|l + |C1|+ |C0|+ |∂3a|+

|a|), supa−1 over (0, h), such that

‖vj‖(Ω∗(d)) ≤ C‖fj‖(Ω∗(d)). (3.3)

Proof. Due to Parseval’s identity it suffices to show that the solution to the

initial value problem

∂2
3Vj + (a2k2 − |ξ|2)Vj + B3(3)∂3Vj −

2∑
l=1

ibl(3)ξlVj + (a1(3)k + a0(3))Vj =

− iξjFj on (d, h), j = 1, ..., n− 1, (3.4)

with the zero final conditions

Vj = 0, Fj = 0 on (h1, h), (3.5)

satisfies the bound∫ h

d

|Vj|2(ξ, s)ds ≤ C

∫ h

d

|Fj|2(ξ, s)ds, j = 1, ..., n− 1. (3.6)

Taking the inner product of the both sides of (3.4) and of ∂3V̄j, taking complex

conjugate and adding results we yield

(∂2
3Vj) · ∂3V̄j + (∂2

3V̄j) · ∂3Vj + (a2k2 − |ξ|2)(Vj · ∂3V̄j + V̄j · ∂3Vj)+

(B3(3)∂3Vj) ·∂3V̄j +(b3(3)∂3V̄j) ·∂3Vj−
2∑
l=1

i((Bl(3)ξlVj) ·∂3V̄− (Bl(3)ξlV̄j) ·∂3V)

((C(3))Vj · ∂3V̄j + ((C(3))V̄j · ∂3Vj = iξj(Fj · ∂3V̄j − F̄j · ∂3Vj).

Observing that ∂3|V|2 = V · ∂3V̄ + ∂3VV̄ and multiplying by -eτx3 we will have

−(∂3|∂3V|2)eτx3 − (a2k2 − |ξ|2)∂3|Vj|2eτx3 − 2<(b3(3)∂3Vj) · ∂3V̄j)e
τx3+
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2<(
2∑
l=1

i((Bl(3)ξlVj) · ∂3V̄)eτx3 − 2<((C(3))Vj) · ∂3V̄j)e
τx3 =

−2<(iξj(Fj · ∂3V̄j)e
τx3 .

Integrating by parts over the interval (x3, h) with use of (3.5) we obtain

|∂3Vj|2(x3)eτx3 +(a2k2−|ξ|2)|Vj|2(x3)eτx3 +

∫ h

x3

(τ−2<(B3(3)∂3Vj) ·∂3V̄j(s))e
τsds+

∫ h

x3

(τ(a2(k2 − |ξ|2) + 2a∂3ak
2)|Vj|2(s)eτsds+

∫ h

x3

2<(
2∑
l=1

i((Bl(3)ξlVj) · ∂3V̄)− 2<((C(3))Vj) · ∂3V̄j)(s)e
τsds =

−<(iξj

∫ h

x3

(Fj∂3 · V̄j)(s)e
τsds). (3.7)

By elementary inequalities

|
∫ h

x3

2<(
2∑
l=1

i((Bl(3)ξlVj) · ∂3V̄)− 2<((C(3))Vj) · ∂3V̄j)(s)e
τsds| ≤

C

∫ h

x3

|∂3Vj|2(s)eτsds+

∫ h

x3

|ξ|2|Vj|2(s)eτsds+

∫ h

x3

k2|Vj|2(s)eτsds,

and

| − <(iξj

∫ h

x3

(Fj∂3 · V̄j)(s)e
τsds| ≤

∫ h

x3

|ξ|2|Fj|2(s)eτsds+

∫ h

x3

|∂3Vj|2(s)eτsds,

so using that |ξ| < Ck, due to condition (3.2), and dropping first two terms on the

left side of (3.7) we yield ∫ h

x3

(τ − C)|∂3Vj|2(s)eτsds+

∫ h

x3

(τ(a2k2 − |ξ|2)− Ck2)|Vj|2(s)eτsds ≤ C

∫ h

x3

k2|Fj|2(s)eτsds. (3.8)

Again due to the condition (3.2), a2 k2

2
≤ a2k2 − |ξ|2 and choosing τ (depending on

the same parameters as C) we achieve that the first integral in (3.7) is non negative,
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so we obtain ∫ h

x3

(τa2k
2 − Ck2)|Vj|2(s)eτsds ≤ C

∫ h

x3

k2|Fj|2(s)eτsds

and finally choosing τ large but depending on the same parameters as C again we

arrive at (3.3) and complete the proof.

Lemma 3.2.2. Let v3 solve the initial value problem

(∆ + a2k2 +
3∑
l=1

Bl(3)∂l + C(3))v3 = ∂3f3 in Ω∗(d),

v3 = 0 on Ω∗(h1) (3.9)

for some h1 ∈ (d, h), f3 ∈ C∞(Ω̄∗(d)), f3 = 0 on Ω∗(h1), and

V3(ξ, x3) = 0 when
a2(x3)

2
k2 < |ξ|2. (3.10)

Then there is constant C depending only on h, sup(|B|l + |C1|+ |C0|+ |∂3a|+

|a|), supa−1 over (0, h), such that

‖v3‖(Ω∗(d)) ≤ C‖f3‖(Ω∗(d)). (3.11)

Lemma 3.2.3. Let v4 solve the initial value problem

(∆ + a2k2 +
3∑
l=1

Bl(3)∂l + C(3))v4 = kf4 in Ω∗(d),

v4 = 0 on Ω∗(h1) (3.12)

for some h1 ∈ (d, h), f3 ∈ C∞(Ω̄∗(d)), f4 = 0 on Ω∗(h1), and

V4(ξ, x3) = 0 when
a2(x3)

2
k2 < |ξ|2. (3.13)

Then there is constant C depending only on h, sup(|B|l + |a1|+ |a0|+ |∂3a|+

|a|), supa−1 over (0, h), such that

‖v4‖(Ω∗(d)) ≤ C‖f4‖(Ω∗(d)). (3.14)
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Lemma 3.2.4. Let v0 solve the initial value problem

(∆ + a2k2 +
3∑
l=1

Bl(3)∂l + (C(3))v0 = k2f0 in Ω∗(d),

v0 = 0 on Ω∗(h1) (3.15)

for some h1 ∈ (d, h), f3 ∈ C∞(Ω̄∗(d)), f4 = 0 on Ω∗(h1), and

V0(ξ, x3) = 0 when
a2(x3)

2
k2 < |ξ|2. (3.16)

Then there is constant C depending only on h, sup(|B|l + |C1|+ |C0|+ |∂3a|+

|a|), supa−1 over (0, h), such that

‖v0‖(Ω∗(d)) ≤ C(‖f0‖(Ω∗(d) + ‖∂3f0‖(Ω∗(d))). (3.17)

Now by using Lemmas 3.1-3.4, freezing coefficients with respect to x′ and

partitioning the unity, we will obtain energy type estimates.

Let δ > 0. By X ′(j) we denote points in R2 with integer coordinates. Let

x′(j), j = 1, ..., J be points δX ′(j) which are contained in Ω′ = {x′ : x ∈ Ω}. It is

clear that J ≤ Cδ. The balls B′(x(j); δ) form an open covering of Ω′. We define

Ωj = B′(x(j); δ) × (d, h). Let χ(x′; j) be partition of the unity subordinated to this

covering. We can assume that

0 ≤ χ(; j) ≤ 1, |∇χ(; j)| ≤ Cδ−1, |∆χ(; j)| ≤ Cδ−2. (3.18)

.

We will introduce a ”low frequency” projector v1 = Pv of a function v. Let

us introduce a function χ ∈ C∞(R) such that χ = 1 on (0, 1/2), χ = 0 on (3/4,∞),

0 ≤ χ ≤ 1. Let χj(x3; ξ) = χ(k−1a−1
0 (x(j), x3)|ξ|). We define

v(; j) = χ(; j)v, Pjv(; j) = F−1χjFv(; j), v1 =
J∑
j=1

Pjv(; j). (3.19)
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where F the the Fourier transform with respect to x′.

For brevity in Lemma 3.5 we let ‖v‖(d) = ‖v‖(0)(Ω
∗(d)).

Lemma 3.2.5. Let v ∈ C2(Ω̄∗(d)), v = 0 on Ω∗(d)\Ω, solve the initial value problem

(∆ + a2
0k

2 +
3∑
l=1

Bl∂l + C)v = ∂1f1 + ...+ ∂3f3 + kf4 + k2f0 in Ω∗(d),

v = 0 on Ω∗(h1) (3.20)

for some h1 < h.

Then there is a constant C such that

‖v‖(d) ≤ C((1 + δ−1k−1)(‖f1‖(d) + ...+ ‖f3‖(d)) + ‖f4‖(d) + ‖f0‖(d) + ‖∂3f0‖(d)+

δ−2k−1‖v‖(1)(Ω
∗(d)) + δ(‖v‖(d) + ‖∂3v‖(d))). (3.21)

Proof.

From (3.19) and from the Leibniz formula we have

(∆ + k2a2
0 +

3∑
l=1

Bl∂l + C)v(; j) =

χ(; j)(∂1f1 + ...+ ∂3f3 + kf4 + k2f0) + 2∇χ(; j) · ∇v + (
3∑
l=1

Bl · ∂lχ(; j) + ∆χ(; j))v,

so

(∆ + k2a2
0(x′(j), x3) +

3∑
l=1

Bl(x
′(j), x3)∂l + C)(x′(j), x3)v(; j) =

∂1(χ(; j)f1) + ...+ ∂3(χ(; j)f3)− ∂1χ(; j)f1 − ...− ∂3χ(; j)f3 + kχ(; j)f4 + k2χ(; j)f0+

2∇χ(; j) · ∇v + (
3∑
l=1

Bl∂lχ(; j) + ∆χ(; j))v + (k2((a2
0(x′(j), x3)− a2

0)+

3∑
l=1

(Bl(x
′(j), x3)−Bl)∂l + (C(x′(j), x3)−C)v(; j).

Applying the low frequency projector Pj to the both parts we yield

(∆ + k2a2
0(x′(j), x3) +

3∑
l=1

Bl(x
′(j), x3)∂l + C(x′(j), x3))Pjv(; j) =
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∂1Pj(χ(; j)f1) + ...+ ∂2Pj(χ(; j)f2)− Pj,3(χ(; j)f3)−

Pj((∂1χ(; j))f1)− ...− P2((∂2χ(; j))f2) + kPj(χ(; j)f4) + k2Pj(χ(; j)f0)+

F−1∂2
3χjFv(; j) + 2F−1∂3χjF∂3v(; j) + B3(x′(j); )F−1∂3χjFv(; j)+

+Pj((∆χ(; j) +
3∑
l=1

Bl∂lχ(; j))v) + Pj(2∇′χ(j) · ∇v)+

k2Pj((a
2
0(x′(j), x3)− a2

0) + Pj

3∑
l=1

(Bl(x
′(j), x3)−Bl)∂l + (C(x′(j), x3))−C)v(; j),

where Pj,3(f) = F−1∂3χjFf . Observing that

|(a2(x′(j); )−a2
0)|+|∂3(a2(x′(j); )−a2

0)|+|B(x′(j), )−B| ≤ Cδ, |C(x′(j), )−C| ≤ Ckδ

on support of v(; j), that ‖Pjf‖ ≤ ‖f‖, using (3.18), and applying Lemmas 3.1-3.4

we obtain

‖Pjv(; j)‖2(d) ≤ C(‖χ(; j)f1‖2(d)+...+‖χ(; j)f3‖2(d)+δ−2k−2(‖f1‖2(Ωj)+...+‖f3‖2(Ωj))+

‖χ(; j)f4‖2(d) + ‖χ(; j)f0‖2(d) + ‖χ(; j)∂3f0‖2(d)+

δ−2k−2‖∇v‖2(Ωj) + δ−4k−2‖v‖2(Ωj) + δ2(‖v‖2(Ωj) + ‖∂3v‖2(Ωj)). (3.22)

Now, summing local estimates (3.22) we will obtain a bound for v1 given by

(3.19). Support of v(; j) intersects at most 23 = 8 supports of other v(; k), but this

is not true for Pjv(; j). To make certain that constants C be δ independent, we will

use that (I − Pj)v(; j) is a high frequency component of v(; j) as defined by (3.19),

hence

‖(I − Pj)v(; j)‖2(d) ≤ Ck−2‖v(; j)‖2
(1)(d)

and

‖v(; j)‖2(d) = ‖Pjv(; j)‖2(d)+‖(I−Pj)v(; j)‖2(d) ≤ ‖Pjv(; j)‖2(d)+Ck−2‖v(; j)‖2
(1)(Ωj).
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Using that multiplicity of covering Ωj is at most 23 and summing (3.22) over j =

1, ..., J we yield

‖v‖2(d) ≤ C

J∑
j=1

‖v(; j)‖2(d) ≤

C(‖f0‖2(d) + ...+ ‖f4‖2(d) + ‖∂3f0‖2(d)+

δ−2k−2(‖f1‖2(d) + ...+ ‖f3‖2(d)) + δ−4k−2‖v‖2
(1)(Ω

∗(d)) + δ2(‖v‖2(d) + ‖∇v‖2(d))).

where we also used that χ2(; 1)+ ...+χ2(; J) ≤ 1 and that multiplicity of the covering

Ωj is less than 23. From the last bound we obtain (3.21) and complete the proof of

Lemma 3.5.

3.3 Carleman estimates and a proof of stability

Theorem 3.3.1. Let the condition (3.12) be satisfied.

Then there are C, λ1(d) ∈ (0, 1) such that

‖u‖(1)(Ω(d)) ≤ C(d2F (k, d) + d−2M
1−λ1(d)
1 F λ1(d)(k, d)) (3.23)

for all u solving (3.10), (3.11).

In the proofs we will use the following Carleman type estimate.

Let

w(x; τ) =

∫ 1

−1

exp(2τeσ(|x−β|2−θ2t2))dt, β = (0, 0, β3).

Lemma 3.3.1. Let the condition (3.3) be satisfied.

Then there are constants C, θ such that∫
Ω1

((τ 3 + τk2)|u|2 + τ |∇u|2)w(, τ) ≤

C(

∫
Ω1

|(∆ + a2
0k

2)u|2w(, τ) +

∫
∂Ω1

((τ 3 + τk2)|u|2 + τ |∇u|2)w(, τ))

for all functions u ∈ H2(Ω1) and all τ > C.
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A proof based on the known Carleman type estimates for hyperbolic equations

is given in [16]

Proof of Theorem 4.1.

We will choose β3 = −(2r2

d
− 3

8
d), β = (0, 0, β3) and we introduce the notation

Ωd = Ω ∩ {(d− β3)2 < |x− β|2}. We will assume that 3d2 < 16r2, so β3 < 0. Using

our choice of β and considering the intersection of level surface |x− β|2 = (1
2
d− β3)2

with the lateral wall {|x′| = r} of the cylindrical domain one can be convinced that

the boundary layer {x3 <
1
4
d} ∩Ω does not intersect Ω d

2
. Indeed, if (x′, x∗3) is a point

of the intersection of this cylindrical domain and of the boundary of Ω d
2

then

r2 + (x∗3 − β3)2 = (d− β3)2 = (
d

8
+

2r2

d
)2,

(x∗3 − β3)2 = (d
8
− 2r2

d
)2, and x∗3 − β3 = 2r2

d
− d

8
, which gives x∗3 = d

4
. Hence there is a

cut-off function χ which is 1 on Ω d
2
, zero near ∂Ω ∩ {x3 = 0} and which satisfy the

bounds |∇χ| ≤ Cd−1, |∆χ| ≤ Cd−2.

We have

(∆ + k2a2
0)(χu) = χ(∆ + k2a2

0)u + 2∇χ · ∇u + ∆χu =

χ(f −
3∑
l=1

B∂lu)−C(χu) + 2∇χ · ∇u + ∆χu,

due to (3.10). Applying Lemma 4.1 to each of m components of χu instead of u and

adding bounds for components we yield∫
Ω

((τ 3 + τk2)|χu|2 + τ |∇(χu)|2)w(; τ) ≤

C(

∫
Ω

|f |2w(; τ) +

∫
Ω

(|∇u|2 + k2|χu|2)w(; τ) +

∫
Ω\Ω d

2

|2∇χ · ∇u + (∆χ)u|2w(; τ)+

∫
Γ

((τ 3 + τk2)|u|2 + τ |∇u|2 + τ |∇u|2)w(; τ))).
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By choosing τ > C we can remove the term with k2|χu|2 on the right side absorbing

it by the left side. Using that χ = 1 on Ω d
2

and choosing τ large once more we can

similarly replace the integration domain in the second integral of the right side by

Ω \ Ω d
2
. Shrinking the integration domain in the left side and using the choice of χ

we yield ∫
Ωd

((τ 3 + τk2)|u|2 + τ |∇u|2)w(; τ) ≤

C(

∫
Ω

|f |2w(; τ) +

∫
Ω\Ω d

2

(d−2|∇u|2 + d−4|u|2)w(; τ)+

∫
Γ

((τ 3 + τk2 + τd−2)|u|2 + τ |∇u|2)w(; τ)). (3.24)

Let

b = eσX
2

, b1 = eσ|d−β3|
2

, b2 = eσ|
d
2
−β3|2 ,

where X = sup|x− β| over x ∈ Ω,

W (τ) =

∫ 1

−1

e2τbe−σθ
2t2

dt, w1(τ) =

∫ 1

−1

e2τb1e−σθ
2t2

dt, w2(τ) =

∫ 1

−1

e2τb2e−σθ
2t2

dt.

Observing that w1 ≤ w on Ωd, w ≤ W on Ω, and w ≤ w2 on Ω \ Ω d
2

and

replacing w by its minimal value in the left side and by maximal values on the right

side of (3.24) we yield

(τ 3 + τk2)w1(τ)‖u‖2(Ωd)) + τw1(τ)‖∇u‖2(Ωd) ≤

C(W (τ)(‖f‖2(Ω) + (τ 3 + τ(k2 + d−2))‖u‖2(Γ) + τ‖∇u‖2(Γ))+

d−4w2(τ)(‖∇u‖2(Ω) + ‖u‖2(Ω))).

Dividing the both parts of this inequality by w1 we obtain

(τ 3 + k2τ)‖u‖2(Ωd) + τ‖∇u‖2(Ωd) ≤

C(W (τ)w−1
1 (τ)(‖f‖2(Ω) + (τ 3 + τ(k2 + d−2))‖u‖2(Γ) + τ‖∇u|2(Γ))+
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d−4w2(τ)w−1
1 (τ)(‖∇u‖2(Ω) + ‖u‖2(Ω))). (3.25)

Obviously,

W (τ)w−1
1 (τ) ≤ CeC(d)τ .

An important observation is that

w2(τ)w−1
1 (τ) ≤ Ce−

τ
C .

Indeed, from the definition of bj and β by elementary calculations

b1 − b2 = eσ(2r2− d
2

8
+( 2r2

d
− 3d

8
)2)(eσ( 3d2

8
+2r2) − 1) ≥ C−1,

and therefore

w1(τ) ≥
∫ 1

−1

e2τb2e−θ
2t2

e2τ(b1−b2)e−θ
2

dt ≥ w2(τ)e2τ/C .

Hence from (3.25) we have

k2‖u‖2(Ωd) + ‖∇u‖2(Ωd) ≤

C(eC(d)ττ 3F 2(k, d) + e−τC(d)−1

d−4M2
1 ), when C < τ. (3.26)

By increasing C we can eliminate τ 3 in the right side.

To use (3.26) we need τ to be large. If M1 ≤ Cd2F (k, d) for some C, then we

have the Lipschitz bound (3.23). Otherwise we can equalize two terms in (3.26) by

letting

τ =
C(d)

C2(d) + 1
2ln

M1

d2F (k, d)
.

Then the right side in (3.26) is getting

Cd−2F 2λ1(k, d)M
2(1−λ1)
1

with λ1 = λ1(d) = 1
C2(d)+1

, and using that Ω(d) ⊂ Ωd we obtain (3.23).
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The proof is complete.

Proof of Theorem 2.1.

Since Γ is Lipschitz, by known extension theorems there is a function u∗ such

that u = u∗,∇u = ∇u∗ on Γ and

‖u∗‖(1)(Ω
∗(0)) ≤ C(‖u‖(Γ) + ‖∇u‖(Γ)) ≤ CF, (3.27)

where we used the definition of F . Let v = u− u∗ on Ω and v = 0 on Ω∗(0) \ Ω. It

suffices to obtain the bound (3.13) for v instead of u. Observe that

(∆+a2
0k

2+
3∑
l=1

Bl∂l+C)v = f−
3∑
l=1

∂l(∂l+(Bl)u
∗)−k2a2

0u
∗+

3∑
l=1

(∂lBl−C)u∗ in Ω∗(0).

(3.28)

Since v is zero outside some cylinder by using known results about H1-approximation

of energy solutions by H2-solutions we can assume that v ∈ H2(R2×(0, h)) and hence

f ∗ = ∂1f1 + ...+ ∂3f3 + f4 with ‖fj‖ ≤ CF . By (3.28) and Lemma 3.5

‖v‖(R2 × (d, h)) ≤

C(k−1‖f‖+ (1 + δ−1k−1)(‖∇u∗‖+ ‖u∗‖)+

δ−2k−1(‖u‖(1)(Ω(d)) + ‖u∗‖(1)(Ω(d))) + δ(‖u‖(1)(Ω(d)) + ‖u∗‖(1)(Ω(d)))) ≤

C(F + δ−2k−1F + δ−2k−1‖u‖(1)(Ω(d)) + δM1) ≤

C(F + δ−2k−1(F + ‖u‖(1)(Ω(d))) + δM1) (3.29)

where we used that ‖v‖(1) ≤ ‖u‖(1) + F due to (3.27). The minimum of δ−2A+ δM1

with respect to δ is

CA
1
3M

2
3

1 .

From this observation and from (3.29) we conclude that

‖v‖(Ω(d)) ≤ C(F + k−
1
3 (F + ‖u‖(1)(Ω(d)))

1
3M

2
3

1 ) ≤
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C(F + k−
1
3F

1
3M

2
3

1 + k−
1
3 (d2F (k, d) + d−2M

1−λ1(d)
1 F λ1(d)(k, d))

1
3M

2
3

1 ) ≤

C(F + k−
1
3 (F

1
3 + d

2
3F

1
3 (k, d))M

2
3

1 + k−
1
3d−

2
3M1−λ

1 F λ(k, d))

where we used Theorem 4.1 and the elementary inequality (a+b)p ≤ ap+bp, 0 < p < 1

and let λ = λ1(d)
3

.

The proof is complete.
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CHAPTER 4

NUMERICAL EXPERIMENTS

4.1 Introduction

This chapter demonstrates the increased stability in the recovery of density by

conducting some numerical experiments. We know that the single layer representation

of any solution to Helmholtz equation

(∆ + k2)u = 0 in D ⊂ R3 (4.1)

is given by

u(x) =

∫
∂D

g(y)Φ(x, y)ds(y), x ∈ R3 \ ∂D, (4.2)

where

Φ(x, y) =
eik|x−y|

4π|x− y|

is the fundamental solution of the Helmholtz equation and g is the surface density or

the amplitudes of the acoustic point sources given by Φ(x, y).

The double layer representation is given by

∂u

∂ν
(x) =

∫
∂D

g(y)
∂Φ(x, y)

∂ν(x)
ds(y), x ∈ R3 \ ∂D. (4.3)

The inverse problem is to find the surface density function g from the given Cauchy

data u and ∂νu. For simplicity we assume that the density is constant with respect

to frequency k. Recovering density from the measured noisy Cauchy data is very

important problem in applications and is an ill-posed problem.

For numerical experiments D = BR = {x : |x| < R} and the Cauchy data u

and ∂νu is given on the Unit sphere and the density g is defined on a sphere of radius
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R > 1. This problem is important and interesting since we like to continue outside of

the convex hull of the surface where the Cauchy data is prescribed. Here we assume

that g ∈ L2(∂BR) and hence u ∈ H(1)(S1).

4.2 Spherical Harmonics

From [10] we know that the function g, u and v can be expressed in terms of

spherical harmonics. Since g ∈ L2(∂BR), we can write

g(y) =
1

R

∞∑
n=0

n∑
m=−n

amn Y
m
n (ŷ) , y ∈ ∂BR (4.4)

where Y m
n (θ, φ) = Amn P

m
n (cos θ)eimφ. These coefficients amn can be computed by using

amn = Km
n

∫ π

0

∫ 2π

0

g(θ, φ)Pm
n (cos θ)e−imφdφ sin θdθ,

where Km
n = RAmn . Using the single layer representation for the solution u,

u(x) =

∫
∂BR

Φ(x, y)g(y)ds(y), x ∈ S1.

The fundamental solution Φ(x, y) is given by

Φ(x, y) = ik
∞∑
n=0

n∑
m=−n

jn(k|x|)Y m
n

(
x

|x|

)
h(1)
n (k|y|)Y m

n

(
y

|y|

)
, |y| > |x|.

Therefore

u(x) = ik
∞∑
n=0

n∑
m=−n

amn jn(k|x|)h(1)
n (k|y|)Y m

n

(
x

|x|

)
, (4.5)

or

u(x) =
∞∑
n=0

n∑
m=−n

umn Y
m
n (x̂),

where

umn = ikamn jn(kr)h(1)
n (Rk).

Differentiating (4.5) with respect to r we have

∂ru(x) = ik2

∞∑
n=0

n∑
m=−n

amn j
′
n(kr)h(1)

n (kR)Y m
n (x̂). (4.6)
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4.3 Spectral Analysis

In this section we analyze the spectrum of the forward operator which maps

g in to the Cauchy data u and ∂ru. First we start by looking at the singular values

of the single layer operator. Since g ∈ L2(∂BR), it can be shown that u ∈ H(1)(S
1).

We can write (4.2) as

(A1g)(x) =

∫
∂BR

g(y)Φ(x, y)ds(y), x ∈ S1, (4.7)

Here the operator A1 maps g ∈ L2(∂BR) in to u ∈ H(1)(S
1). From (4.5) the operator

A1 has the singular values

σn(A1) = k
√

1 + n(n+ 1)|jn(kr)h(1)
n (kR)|.

Similarly we can write (4.3) as

(A2g)(x) =

∫
∂BR

g(y)
∂Φ(x, y)

∂ν(x)
ds(y), x ∈ S1. (4.8)

Here the operator A2 maps g ∈ L2(∂BR) in to u ∈ L2(S1). From (4.6) the operator

A2 has the singular values

σn(A2) = k2|j′n(kr)h(1)
n (kR)|.

Therefore the forward operator is given by A = [A1, A2]T , which maps the density

function g ∈ L2(∂BR) into the Cauchy data pair (u, ∂ru) ∈ H(1)(S
1) × L2(S1). The

singular values of the operator A are given by

σn(A) = k|h(1)
n (kR)|

√
(1 + n(n+ 1))|jn(kr)|2 + k2|j′n(kr)|2.

Using these singular values we can compute the condition numbers of this operator

for different values of N and k. These condition numbers are given in Fig. 4.1. By

looking at these condition numbers we can observe that when N ≈ K the condition

numbers are low.
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Figure 4.1: Condition Numbers of the operator A for different values of k and N ,
with r = 1 and R = 2.
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4.4 Inverse Problem

The inverse problem is to find the surface density function g from the given

Cauchy data u and v. First we start with a know density function for example:

g(θ, φ) =

 1 for θ ≤ π
2

0 for elsewhere

Using this density function g first solve the forward problem to compute the Cauchy

data. This Cauchy data plus noise gives us the required data for the inverse problem.

Using this noisy Cauchy data we try to reconstruct the density function g. With

increasing frequency we can notice that the error in reconstruction of g decreases.

To this end we will assume that the noisy Cauchy data is given on the unit

sphere and reconstruct density g on a sphere of radius R. Here R = 2, although g

does not depend on the radius, but is a function of θ and φ, which is given by

g(θ, φ) =
1

2

N∑
n=0

n∑
m=−n

amn Y
m
n (θ, φ) ,

and the Cauchy data

u(x) = ik
N∑
n=0

n∑
m=−n

amn jn(k)h(1)
n (2k)Y m

n (θ, φ) , (4.9)

∂ru(x) = ik2

N∑
n=0

n∑
m=−n

amn j
′
n(k)h(1)

n (2k)Y m
n (θ, φ). (4.10)

Theorem 4.4.1. Lipschitz Stability: Let k2 ≥ 3N(N + 1), then

R−1‖∂ru‖2(∂BR) + k2R−1‖u‖2(∂BR)−R−3‖
(√

∆(φ,θ)

)
u‖2(∂BR)

≤ ‖∂ru‖2(S1) + k2‖u‖2(S1)− ‖
(√

∆(φ,θ)

)
u‖2(S1).
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Proof. From (4.9) we can write

u(x) =
N∑
n=0

n∑
m=−n

umn (r)Y m
n (θ, φ) , (4.11)

where umn (r) = ikamn jn(kr)h
(1)
n (kR), solves the differential equation

∂r(r
2∂ru

m
n ) + (k2r2 − n(n+ 1))umn = 0. (4.12)

Multiplying this equation by r−3∂ru
m
n and integrating by parts we have

0 =

R∫
1

(∂r(r
2∂ru

m
n ) + (k2r2 − n(n+ 1))umn )r−3∂ru

m
n dr

=

R∫
1

r−5

2
∂r(r

2∂ru
m
n )2 + (k2r−1 − r−3n(n+ 1))

∂r(u
m
n )2

2
dr

=
r−1

2
(∂ru

m
n )2|R1 +

5

2

∫ R

1

r−6(r2∂ru
m
n )2dr +

1

2
(k2r−1 − r−3n(n+ 1)(umn )2)|R1

+
1

2

∫ R

1

(k2r−2 − 3r−4n(n+ 1))(umn )2dr

=
1

2
R−1(∂ru

m
n (R))2−1

2
(∂ru

m
n (1))2+

1

2
(k2R−1−R−3n(n+1))(umn (R))2−1

2
(k2−n(n+1))(umn (1))2

+
1

2

∫ R

1

(5r−2(∂ru
m
n )2 + (k2r−2 − 3r−4n(n+ 1))(umn )2)dr.

k2 ≥ 3N(N + 1) implies that k2r−2 − 3r−4n(n + 1) ≥ 0 and therefore we have the

following inequality

R−1(∂ru
m
n (R))2+(k2R−1−R−3n(n+1))(umn (R))2 ≤ (∂ru

m
n (1))2+(k2−n(n+1))(umn (1))2).
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Using Parseval’s identity and the fact that ∆(φ,θ)Y
m
n (θ, φ) = −n(n+1)Y m

n (θ, φ)

we can conclude the proof.

4.5 Numerical Results

Figure 4.2: g and gapprox for N = 32

In this section we provide some pictures and errors of reconstruction of the

density function. Here we let R = 2. First we start with a know density function g

which has a jump discontinuity, given by

g(θ, φ) =

 1 for θ ≤ π
2
,

0 for elsewhere
.

Using this density function g first solve the forward problem to compute the

Cauchy data, given by (4.9) and (4.10). First for the given function g, we compute

the Fourier type coefficients amn using

amn = Km
n

∫ π

0

∫ 2π

0

g(θ, φ)Pm
n (cos θ)e−imφdφ sin θdθ.
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The above integral is computed by using Gauss-Legendre quadrature rule as

explained in [5].

Let

gapprox(θ, φ) =
1

2

N∑
n=0

n∑
m=−n

amn Y
m
n (θ, φ) .

The graphs of g and gapprox, for N = 32, are given in figures 4.2, 4.3 and 4.4.

Figure 4.3: g(φ, θ)

Next using these coefficients compute the the Cauchy data using (4.9) and

(4.10). Adding noise to this Cauchy data gives us the required data for the inverse

problem. Noisy Cauchy data is given by

uδ = u+ δ‖u‖2
ξ

‖ξ‖2

, (4.13)

∂ruδ = ∂ru+ δ‖∂ru‖2
ξ

‖ξ‖2

, (4.14)

where δ is the percentage of noise. Using this noisy Cauchy data we try to reconstruct

the density function g. This can be achieved by solving the system of equations
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Figure 4.4: gapprox for N = 32

(4.9) and (4.10) for the coefficients amn using least squares algorithm. The results

are depicted in the following pictures and tables. Hence the reconstructed density

function is given by

grecon(θ, φ) =
1

2

N∑
n=0

n∑
m=−n

amn Y
m
n (θ, φ) .

The errors of reconstruction given in the tables below is given by

error1 =
‖gapprox − grecon‖2

‖gapprox‖2

and

error2 =
‖g − grecon‖2

‖g‖2

Observing these pictures and errors of reconstruction of density, one can notice

that with the increasing frequency the error is reducing and especially in the region

where k ≈ N we have better stability.
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K 2 4 8 16 32 64

error 1 0.696 0.258 0.0415 0.00711 0.00782 0.0162

error 2 0.689 0.256 0.114 0.113 0.1134 0.1143

Table 4.1: Errors of reconstruction for N = 16 with 1% noise

K 2 4 8 16 32 64

error 1 2.806E+00 1.508E+00 2.898E-01 3.543E-02 3.903E-02 8.149E-02

error 2 2.719E+00 1.257E+00 1.826E-01 1.185E-01 1.196E-01 1.388E-01

Table 4.2: Errors of reconstruction for N = 16 with 5% noise

K 2 4 8 16 32 64

error 1 5.188 3.044 0.436 0.0711 0.0779 0.1626

error 2 5.144 3.019 0.4327 0.1334 0.137 0.1969

Table 4.3: Errors of reconstruction for N = 16 with 10% noise

K 2 4 8 16 32 64

error 1 214903.1654 174707.1571 31858.44881 32.68496732 0.007921545 0.016294205

error 2 214060.6646 174022.2402 31733.55186 32.55683011 0.079494187 0.080752598

Table 4.4: Errors of reconstruction for N = 32 with 1% noise
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Figure 4.5: grecon for N = 16 and various frequencies, with 1% noise

Figure 4.6: grecon for N = 16 and various frequencies, with 1% noise
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Figure 4.7: grecon for N = 16 and various frequencies, with 5% noise

Figure 4.8: gapprox for N = 16 and various frequencies, with 10% noise
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Figure 4.9: gapprox for N = 32 and various frequencies, with 1% noise

Figure 4.10: grecon for N = 32 and various frequencies, with 1% noise
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CHAPTER 5

DIRECT SCATTERING PROBLEM

5.1 Introduction

In this paper we investigate the scattering of time harmonic electromagnetic

waves by an obstacle, D in R3, with the most general impedance boundary condition

known as the Leontovich boundary condition. We assume that the boundary of the

obstacle ∂D is of class C2 and let De = (R3 \D) . We consider the exterior boundary

value problem for the Maxwell’s System curl E − ikH = 0 in De,

curl H + ikE = 0 in De,
(5.1)

with the most general impedance boundary condition known as the Leontovich bound-

ary condition

ν ×H − λ(ν ×E)× ν = 0 on ∂D, (5.2)

λ ≥ 0, λ ∈ C1(∂D) and the scattered fields Es, Hs satisfying the Silver-Müller

radiation conditions 
lim
r→∞

(Hs × x− rEs) = 0,

lim
r→∞

(Es × x+ rHs) = 0,

(5.3)

and from [10] we know that the Silver-Müller radiation conditions are equivalent to

the Sommerfeld radiation condition for the Cartesian components,
lim
r→∞

r

(
∂Es

∂r
− ikEs

)
= 0,

lim
r→∞

r

(
∂Hs

∂r
− ikHs

)
= 0,

(5.4)
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Also, from [10, pg 164] we have that the scattered fields have the following

asymptotic behavior


Es(x) =

eikr

r

{
E∞(x̂) +O

(
1

r

)}
, r →∞,

Hs(x) =
eikr

r

{
H∞(x̂) +O

(
1

r

)}
, r →∞,

(5.5)

where E∞ and H∞ are known as the far field pattern or the scattering amplitude

and H∞(x̂) = x̂×E∞(x̂).

Here E = Ei + Es, H = H i + Hs and
Ei(x) := i

k
curl curl peikx·d = ik(d× p)× deikx·d,

H i(x) := curl peikx·d = ikd× peikx·d,

are the incident electric and magnetic fields, d is a unit vector which gives the direction

of propagation and p is the polarization vector.

In the direct problem we are looking for the electric field E and magnetic field H in

the space H2(Bρ \D) for some ρ > ρ0 > 0, D ⊂ Bρ, where Hk(D) is (H(k)(D))3 the

three dimensional product of standard Sobolev space. Also, E, H ∈ C∞(R3 \ D)

with Es, Hs satisfying the Silver-Müller radiation condition.

5.2 Forward Problem

Lemma 5.2.1. The scattering problem for Maxwell’s System (5.1),(5.2) and (5.3) is

equivalent to the scattering problem for vector Helmholtz equation (5.6)

∆E + k2E = 0 in De,

div E = 0 on ∂D,

ν × curl Es − ikλ(ν ×Es)× ν = g on ∂D,

lim
r→∞

r

(
∂Es

∂r
− ikEs

)
= 0,

(5.6)
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and the equation

H = − i
k

curl E, (5.7)

Es ∈ H2(Bρ \ D), Es ∈ C∞(R3 \ D). The boundary data is given by g := −ν ×

curl Ei + ikλ(ν ×Ei)× ν.

Proof: From the equations (5.1) we note that curl (curl E)−ikcurl H = curl (curl E)−

k2E = −(∆ + k2)E +∇div E. But div (curl H) + ik(div E) = 0, so div E = 0, and

by taking traces we have that div E = 0 on the boundary ∂D. Hence the scattering

problem for Maxwell’s System implies to the scattering problem for vector Helmholtz

equation.

On the other hand (5.6) along with H = − i
k
curl E implies (5.1) . To this end

we let v = div E, but div Ei = 0 which implies that v = div Es, due to (5.6) v is a

solution of the following boundary value problem

∆v + k2v = 0 in De,

v = 0 on ∂D,

and has the asymptotic behavior

v(x) =
eikr

r

{
div E∞(x̂) +O

(
1

r

)}
, r →∞,

which satisfies the Sommerfeld radiation condition

lim
r→∞

r

(
∂v

∂r
− ikv

)
= 0

By uniqueness in the exterior Dirichlet problem for the Helmholtz equation v = 0 in

De which implies that div Es = 0 in De. Also, if H = − i
k
curl E then curl H =

− i
k
curl curl E = −ikE, which follows from (5.6). Hence if E solves the scattering
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problem for Helmholtz equation, then E = Ei+Es along with H = − i
k
curl E solves

the scattering problem for the Maxwell’s system.

2

Now we prove existence, uniqueness and analyticity of the solution with re-

spect to k of the following non-homogeneous boundary value problem for the vector

Helmholtz equation

∆v + k2v = f in Ω,

ν × curl v − ikλ(ν × v)× ν

div v

 = g on ∂D,

v = 0 on ∂BR,

(5.8)

v ∈H2(Bρ \D), f ∈H0(Bρ \D) and g ∈H
1
2 (∂D)

First we show that the above boundary value problem (5.8) is elliptic in the

Agmon-Douglis-Nirenberg sense, or elliptic in the general sense. Consider the follow-

ing boundary value problem:

Au = f on M, Bu = g on Γ. (5.9)

If the Shapiro-Lopatinskij condition holds then the boundary value problem

(5.8) is called elliptic in the Agmon-Douglis-Nirenberg sense, or elliptic in the gen-

eral sense. From [1] the Shapiro-Lopatinskij condition is equivalent to the following

condition: the rows of the matrix

b0(ξ′, ζ)a0(ξ′, ζ)

are linearly independent modulo the polynomial a+
0 (ξ′, ζ). Here a0(x, ξ) is the principal

symbol of A, b0(x, ξ) is the principal symbol of B, a0 is the matrix of cofactor of the

elements of the matrix a0 and a+
0 (ξ′, ζ) = (ζ−ζ1(ξ′))...(ζ−ζq(ξ′)), where ζ1(ξ′)...ζq(ξ

′)

roots of the polynomial det a0(ξ′, ζ) = 0 lying in the upper half plane.
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For the boundary value problem (5.8) A = ∆ + k2,

B =

 ν × curl − ikλ(ν×)× ν

div

Let x0 ∈ ∂D be any point on the boundary, choose a coordinate system such that

x0 = (0, 0, 0) and that the outward unit normal is ν = (0, 0, 1). In these coordinate

system the principal symbols of the partial differential operator and the boundary

operator are given by:

a0(ξ′, ζ) =


ζ2 + ξ2

1 + ξ2
2 0 0

0 ζ2 + ξ2
1 + ξ2

2 0

0 0 ζ2 + ξ2
1 + ξ2

2



b0(ξ′, ζ) =


−iζ −iξ1 0

0 −iζ −iξ2

−iξ1 −iξ2 −iζ


and the cofactor matrix of a0(ξ′, ζ) is

a0(ξ′, ζ) =


(ζ2 + ξ2

1 + ξ2
2)2 0 0

0 (ζ2 + ξ2
1 + ξ2

2)2 0

0 0 (ζ2 + ξ2
1 + ξ2

2)2


One can verify through simple calculation that the rows of the matrix

b0(ξ′, ζ)a0(ξ′, ζ) = (ζ + |ξ|2)2


−iζ −iξ1 0

0 −iζ −iξ2

−iξ1 −iξ2 −iζ


are linearly independent modulo the polynomial a+

0 (ξ′, ζ) = (ζ − i|ξ′|)3. Therefore

the boundary value problem (5.8) is elliptic in the Agmon-Douglis-Nirenberg sense,

or elliptic in the general sense. Let A be the operator corresponding to the elliptic

boundary value problem (5.8) and A : H2(Ω)→H0(Ω)×H
1
2 (∂D). Since the bound-

ary value problem (5.8) is elliptic from [2] we have that the operator A is Fredholm.
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For an operator T ∈ C(X, Y ), where X and Y are Banach spaces, to be

Fredholm means that

• The kernel Ker T = {x ∈ X : T x = 0} is finite dimensional,

• The range R(T ) is closed in Y ,

• The cokernel Coker T = Y \R(T ) is finite dimensional.

The index of the Fredholm operator is given by

ind T = dim Ker T − dim Coker T .

Theorem 5.2.1. Let T , S ∈ C(X, Y ) and let T be Fredholm, then there exists a

δ > 0 such that ‖T − S‖ < δ implies ind T = ind S.

Theorem 5.2.2. Let T (κ) be a family of compact operators in X holomorphic for

κ ∈ D0. Call κ a singular point if 1 is an eigenvalue of T (κ). Then either all κ ∈ D0

are singular points or there are only a finite number of singular points in each compact

subset of D0.

Let S be the set of all such k which are singular points of the operator A

corresponding to the elliptic boundary value problem (5.8).

Theorem 5.2.3. If k ∈ C \ S then there exists a unique solution to the boundary

value problem (5.8) in H2(Ω).

Proof. Let k1 = ik for some real k 6= 0. We now show that the solution to the

following homogeneous elliptic boundary value problem is identically zero.

∆v + k2
1v = 0 in Ω

ν × curl v − ik1λ(ν × v)× ν

div v

 = 0 on ∂D

v = 0 on ∂BR
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Since divv = 0, −(∆ + k2
1)v = (curl curl − k2

1)v. Multiplying this with v and

integrating over the bounded domain Ω = Bρ \D∫
Ω

(curl curl v − k2
1v) · vdx = 0.

Now integrating by parts using Green’s first vector theorem (see [10, pg 155]) and

using one of the vector identity (a× b) · c = −(a× c) · b we have,∫
Ω

(|curl v|2 − k2
1|v|2)dx+

∫
∂Ω

(ν × curl v) · vds = 0. (5.10)

Here ∂Ω = ∂D ∪ Sρ, hence∫
∂Ω

(ν × curl v) · vds = −
∫
∂D

(ν × curl v) · vds+

∫
Sρ

(ν × curl v) · vds,

using the boundary condition we have

∫
∂D

(ν × curl v) · vds = −ik1λ

∫
∂D

((ν × v)× ν) · vds

= −ik1λ

∫
∂D

|(ν × v)|2ds,

Plugging the above equation in (5.10) with (ν × v) = vT the tangential component

and k1 = ik, we have∫
Bρ\D

(|curl v|2 + k2|v|2)dx+ kλ

∫
∂D

|vT |2ds = 0. (5.11)

which implies that v = 0.

Let A(θ) be the operator corresponding to the following boundary value prob-
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lem.

∆ṽ = f in Ω

∂3ṽ1 − θ∂1ṽ3 = g1 on ∂D

∂3ṽ2 − θ∂2ṽ3 = g2 on ∂D

θ∂1ṽ1 + θ∂2ṽ2 + ∂3ṽ3 = g0 on ∂D

For the above we have written only the principal part and for some point x̃ ∈ ∂D

and ν = (0, 0, 1), 0 ≤ θ ≤ 1. if θ = 1, then A(θ) corresponds to the elliptic boundary

value problem (5.8). Also, the above boundary value problem is elliptic and hence

the operator A(θ) is Fredholm. Notice that A(θ) is continuous for all 0 ≤ θ ≤ 1,

hence A(θ) is a connected curve in the family of operators. Also, ind is a continuous

function .Therefore, ind A(θ) is constant for any 0 ≤ θ ≤ 1. By setting θ = 0, we

have the Neumann boundary value problem,

∆ṽ = f in Ω

∂3ṽ1 = g1 on ∂D

∂3ṽ2 = g2 on ∂D

∂3ṽ3 = g0 on ∂D

It is well known that the index of the Neumann boundary value problem is zero i.e.,

ind A(0) = 0, which implies that the index of the elliptic boundary value problem

(5.8) is zero or ind A(1) = ind A = 0. Therefore the elliptic boundary value problem

(5.8) is uniquely solvable for k1 = ik.
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Next for any k ∈ C we have the following boundary value problem which is a

compact perturbation of the boundary value problem (5.8),

∆v + k2
1v − (k2

1 − k2)v = f in Ω

ν × curl v − ik1λ(ν × v)× ν + i(k2
1 − k2)λ(ν × v)× ν

div v

 = g on ∂D

v = 0 on ∂BR

Let A1 be the operator corresponding to the above boundary value problem,

then there exists ε such that ‖A1 − A‖ < ε, which implies that ind A1 = 0 or the

index of the elliptic boundary value problem (5.8) is zero.

We can write the above elliptic boundary value problem in terms of operators,

A1 : H2(Ω)→H0(Ω)×H
1
2 (∂D) and B : H2(Ω)→H2(Ω)×H

3
2 (∂D) and

(A1 + B)v = f , v +A−1
1 Bv = f

and

A−1
1 B : H2 →H3 →H2

and the embedding H3 →H2 is compact and hence A−1
1 B : H2 →H2 is compact.

Let E∗ ∈H2(Bρ \D) solve the following elliptic boundary value problem

∆E∗ + k2E∗ = 0 in Ω

ν × curl E∗ − ikλ(ν ×E∗)× ν

div E∗

 = g on ∂D

E∗ = 0 on ∂BR

(5.12)

Let φ be a C∞cutoff function that is 1 near D and 0 in BR \Ω0. Then E∗ = E−φE∗,

E∗ ∈H2(Bρ \D), solves the following scattering problem
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∆E∗ + k2E∗ = f ∗ in De

div E∗ = 0 on ∂D

ν × curl E∗ − ikλ(ν ×E∗)× ν = 0 on ∂D

lim
r→∞

r

(
∂Es

∗

∂r
− ikEs

∗

)
= 0

(5.13)

where f ∗ = −(∆ + k2)(φE∗), f ∗ ∈H0(Bρ \D)

Theorem 5.2.4. If k ∈ R and k 6= 0 then there exists a unique solution to the

scattering problem (5.6) in H2(Bρ \D).

Proof. First, as in [9], we show that the solution to the homogeneous scattering

problem

∆E + k2E = 0 in De

div E = 0 on ∂D

ν × curl E − ikλ(ν ×E)× ν = 0 on ∂D

lim
r→∞

r

(
∂Es

∂r
− ikEs

)
= 0

(5.14)

is identically zero. Since divE = 0, −(∆ + k2)E = curl curl E − k2E. Multi-

plying this with E and integrating over some bounded domain Ω = Bρ \D∫
Ω

(curl curl E − k2E) ·Edx = 0.

Now integrating by parts using Green’s first vector theorem (see [10, pg 155]) we

have, ∫
Ω

(|curl E|2 − k2|E|2)dx+

∫
∂Ω

(ν × curl E) ·Eds = 0. (5.15)

Here ∂Ω = ∂D ∪ Sρ, hence∫
∂Ω

(ν × curl E) ·Eds = −
∫
∂D

(ν × curl E) ·Eds+

∫
Sρ

(ν × curl E) ·Eds,

using the boundary condition and the Maxwell’s equations we have
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∫
∂Ω

(ν × curl E) ·Eds = −ikλ
∫
∂D

((ν ×E)× ν) ·Eds+ ik

∫
Sρ

(ν ×H) ·Eds

= −ikλ
∫
∂D

|(ν ×E)|2ds− ik
∫
Sρ

(ν ×E) ·Hds,

Plugging the above equation in (5.15) with (ν ×E) = ET the tangential component,

we have∫
Bρ\D

(|curl E|2 − k2|E|2)dx− ik
∫
Sρ

(ν ×E) ·Hds− ikλ
∫
∂D

|ET |2ds = 0. (5.16)

Using the scattering data for non-zero real k, by taking the imaginary part of the

above equation we have

Re

∫
Sρ

(ν ×E) ·Hds = −λ
∫
∂D

|ET |2ds ≤ 0.

Hence uniqueness follows from [10].

We use the Lax-Phillips method to show that the scattering problem (5.13) is

uniquely solvable. Consider domain Ω0 containing D such that Ω0 lies in BR. Let φ

be a C∞cutoff function that is 1 near D and 0 in BR \ Ω0. Let Ω = De ∩ BR be the

bounded exterior domain. Now we look for a solution E∗ to (5.13) which is of the

form

E∗ = w − φ(w − v) (5.17)

where v(:,f ∗) is a solution to the following elliptic boundary value problem

∆v + k2v = f in Ω

ν × curl v − ikλ(ν × v)× ν

div v

 = g on ∂D

v = 0 on ∂BR

(5.18)

60



where f ∗ ∈H0(BR), f ∗ = 0 in D and w(:,f ∗) is a solution to the Helmholtz equation

in free space

∆w + k2w = f ∗ (5.19)

which satisfies the radiation condition. Hence

∆E∗ + k2E∗ = ∆w + k2w −∆φ(w − v)

−2∇φ · ∇(w − v)− φ(∆(w − v) + k2(w − v))

= f ∗ +Kf ∗

where Kf ∗ = −∆φ(w − v)−2∇φ·∇(w − v) in Ω0\D. E∗ solves the equation

∆E∗ + k2E∗ = f ∗ if and only if f ∗ solves the equation

f ∗ = f ∗ +Kf ∗ = (I +K)f ∗ (5.20)

The operator K is compact from H0(Ω) into itself . Thus equation (5.20) is

Fredholm and hence its uniqueness implies solvability. To this end we let f ∗ = 0 then

E∗ is a solution to the homogeneous scattering problem and therefore E∗ = 0, which

implies that w = φ(w − v). From the equations for w and v one can notice that

w−v solves the homogeneous Helmholtz equation in BR, also w = 0, v = 0 on ∂BR.

We choose R such that −k2
0 is not an eigenvalue for (5.8) in Ω. Hence w − v = 0 and

therefore w = 0, which implies that f ∗ = 0.

Given any f and g, we can find f ∗ and solve (5.20) for f ∗ and hence find w

by solving ∆w + k2w = f ∗ and v by solving the (5.8). Therefore we can find the

unique solution of the scattering problem (5.6) using (5.17).
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Let S be the set of all k ∈ C such that −k2 is the eigenvalue of (5.8) inside

the bounded domain Ω. It is well known that S is a discrete set. From now on we

assume that k ∈ C \ S. From [20] we need the following lemma.

Lemma 5.2.2. If T (κ) ∈ B(X, Y ) is holomorphic and T (κ0)−1 ∈ B(Y,X) exists, then

T (κ)−1 exists, belongs to B(Y,X) and is holomorphic for sufficiently small |κ− κ0|

Let B(k) be the operator which maps the solution of the boundary value

problem (5.8) from H2(Ω) into H0(Ω)×H
1
2 (∂Ω). Let V (k, :) be the inverse of B(k)

which maps H0(Ω) ×H
1
2 (∂Ω) into H2(Ω). Let A(k) be the operator which maps

the solution of the scattering problem (5.6) from H2(Bρ \D) into H0(Ω)×H
1
2 (∂Ω).

Lemma 5.2.3. The map V (k, :) : H0(Ω) × H
1
2 (∂Ω) → H2(Ω) is analytic with

respect to frequency k ∈ C \ S.

Proof. The operator B(k) is analytic with respect to k. From the above discussion

we know that the operator is invertible for some k0 ∈ R. From lemma (5.2.2) we have

that V (k, :) is also analytic and there exists ε such that B(k0) is invertible for all k

where |k − k0| < ε. From the well-known elliptic estimates we know that V (k, :) is a

linear continuous operator from H0(Ω)×H
1
2 (∂Ω) into H2(Ω) and f ∗(k, :)is analytic

with respect to k. Therefore the solution v of (5.8) which is given by V (k, :)f ∗(k, :

) = v(k, :) is analytic with respect to k.

Lemma 5.2.4. The solution E(; , k) to the scattering problem 5.6 can be analytically

continued onto a complex neighborhood of the frequency k0 ∈ R.

Proof. We repeat the proof of theorem (5.2.4) tracing analytic dependence on k.

Consider domain Ω0 containing D such that Ω0 lies in BR. Let φ be a C∞cutoff

function that is 1 near D and 0 in BR \Ω0. Let Ω = De∩BR be the bounded exterior
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domain. Now we look for a solution E∗ to (5.13) which is of the form

E∗ = w − φ(w − v) (5.21)

where v(:, k) is a solution to the following elliptic boundary value problem

∆v + k2v = f in Ω

ν × curl v − ikλ(ν × v)× ν

div v

 = g on ∂D

v = 0 on ∂BR

(5.22)

where f ∗ ∈ H0(BR), f ∗ = 0 in D and from 5.2.3 we have that v(; , k) is analytic in

a complex neighborhood of k0. Since w(:, k) is a solution to the Helmholtz equation

in free space

∆w + k2w = f ∗ (5.23)

which satisfies the radiation condition, w(:, k) is analytic in a complex neighborhood

of k0. Hence

∆E∗ + k2E∗ = ∆w + k2w −∆φ(w − v)

−2∇φ · ∇(w − v)− φ(∆(w − v) + k2(w − v))

= f ∗ +Kf ∗

where Kf ∗ = −∆φ(w − v)−2∇φ·∇(w − v) in Ω0\D. E∗ solves the equation

∆E∗ + k2E∗ = f ∗ if and only if f ∗ solves the equation

f ∗ = f ∗ +Kf ∗ = (I +K)f ∗ (5.24)

The operator K is analytic with respect to k. The given data f ∗ is analytic with

respect to k and hence f ∗ is also analytic with respect to k. Therefore E∗ is analytic

with respect to k.
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