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ABSTRACT

Study of the Cauchy problem for Helmholtz equation is motivated by the in-
verse scattering theory and more generally by remote sensing. In this dissertation the
increased stability of the Cauchy problem for Helmholtz equation and the Maxwell’s
system is investigated with varying frequency. Here it has been shown that the the
stability of continuation is improving with the increasing frequency. The continuation
is inside the convex hull of the surface where the Cauchy data is given. This has been
demonstrated by numerical experiments with simple geometry. When we continue
outside of the convex hull, the subspace of stable solutions is growing with frequency.
This is also demonstrated by numerical experiments where we reconstruct the den-
sity function of the single layer potential. Another problem that is presented here is
the electromagnetic obstacle scattering problem, with variable frequency. Here the
existence and uniqueness of the solution to the forward problem is presented and the

analytic dependence of the solution on the frequency is proved.
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CHAPTER 1
INTRODUCTION

The problem of the continuation or the Cauchy problem for partial differential
equations is of fundamental theoretical interest and it is very important for practi-
cal applications, for example in control theory and inverse problems. This problem
started with Holmgren-John theorem about uniqueness for equations with analytic
coefficients. Finding the solution u of a partial differential equation from the given

data gj, f is the well known Cauchy Problem.

Lu = f on €,
du=g;, j<m—1onT, (1.1)

where Lu = Z ao0%u, Q is a domain in R*, T' € C™ !, is a part of 9, the
la|<m
boundary of the domain €2, and v is the outward normal to the boundary.
A Cauchy problem is said to be well-posed in the sense of Hadamard if the

following conditions hold:

1. uw e U exists for any g; € G, f € F;
2. u € U is determined uniquely by g; € G, f € F;
3. u € U depends continuously on g; € G, f € F,

where U is the space of all solutions u and G x F'is the space of all data g;, f prescribed
on the boundary I' and on the domain 2. In other words a Cauchy problem is well

posed, if the operator A : U — G x F defined as Au = {g, f} has a continuous inverse



from G x F onto U. U, G, and F are open subsets of classical spaces C*(Q), C*(T"),
H}(Q), Hy (') or their closed subspaces of finite codimension.

If one of the above three conditions is not satisfied, then such problems are
called ill posed problems in the sense of Hadamard. For ill posed problems u may not

exist. If u exists continuous dependence of u on g;, f may not be guaranteed.

A feature of this problem for elliptic equations is its exponential instability
pointed out by Hadamard in 1920’s. For example, consider the classical example of

Hadamard: of the Cauchy problem for the Laplace equation

Pu+ dju=0in R} = {(z,y)|ly > 0}, (1.2)
u =0, yu = g;,when y = 0. (1.3)
If gi(z) = n*cos(nz), then u exists (u = n~3cos(nz)sinh(ny), k fixed). But one

can note that there is no continuous dependence of u on g;. In applications (inverse
problems) this continuous dependence (stability estimates for u) is of most impor-
tance. Only this condition guarantees the convergence of the solutions u while using

computational algorithms.

A stability estimate is defined [17] as a function w such that

lu = wlly < w([[Au = Au™||oxr) (1.4)

An important condition for stability estimate is that lim, ,ow(7) = 0 and also w
is increasing monotonically. Depending on this function w we have three kinds of

stability estimates:

1. if w(e) = Ce¢, then the solution u depends Lipschitz continuously on g;, f;
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2. if w(e) = Ce",0 < k < 1, then the solution u depends Holder continuously on

gj, f;

3. if w(e) then the solution u depends logarithmic continuously on g;, f,

= m7
which is much weaker kind of continuity.

For applications mere continuity is not good, to develop efficient numerics we
expect that u depends at least Holder continuously on data (the best case would be
Lipschitz continuity). Cauchy problems where u depends on data Holder continuously
are said to be well behaved. This can be achieved by assuming that the solution wu
and first few derivatives of u are bounded. Hence we consider a restricted solution

space Ujy; where M is the apriori bound.

In 1960 John [19] showed that one has at least logarithmic stability for a wide
class of partial differential operators. In the same paper he considered an important

example:

Pou+ Oju=0fuin Qx (=T,7T), (1.5)

u=go and d,u = g; on I x (=T,T). (1.6)

Let the solution u and first few derivatives be bounded and the domain {2 be given
by

Q={(z,y): 2* +y* < 1}. (1.7)

It is shown that at any point inside the cylinder Q x (=7',7T) the solution u

depends Holder continuously on the Cauchy data go, g; (or even Lipschitz continuously



[17] if appropriate norms are selected), but for the Cauchy problem

2u+ Oyu = O0fu in Q. x (=T,7T), (1.8)

u = go and O,u = gy on 9N, x (=T.,T). (1.9)

with Q. = {(z,y) : * +y*> > 1}, the dependence of the solution u on gy, g; is at best
logarithmically continuous. This can be inferred by considering the solution of the

wave equation diu + dju = dfu in polar coordinates which is given by

Up = Jp (m’)em(tw) ,

where J,(nr) is the Bessel function of order n € Z*.
For r < 1, it is shown that |u,| = |J,(nr)| < ¢" and for r > 1, u,, decreases only like
some negative powers of n, reaching maximum at r = 1. Also, in [19] it is shown that

for any r and any n € ZT,
|t | = | T ()| < An~13,

These estimates for u,, show that the the best possible stability estimate is of loga-
rithmic type.
Since,

v, = e My, = Jn(nr)eme

solves the Helmholtz equation
(A +n*)v, =0in R?

this shows that the Cauchy problem for the Helmholtz equation is also not well
behaved.
Logarithmic stability is quite damaging for numerical solution of many inverse

problems. In the recent papers [3], [13], [15], [16] it was demonstrated that when one
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continues solutions of the Helmholtz equation from a surface I' onto its convex hull
the stability is increasing and unstable (Hélder) component of stability estimates goes
to zero as the wave number is increasing. These results are summarized in chapters
2 and 3.

Stability of the continuation is crucial for stability (and hence for an efficient numer-
ical solution) of (non linear) inverse problems. Better numerical resolution for higher
wave numbers in the inverse medium and obstacle problems was observed in [6], [7]
(inverse medium problems in optics), [8] (inverse electromagnetic obstacle problem),
[12] (inverse source problem), and [26] (an inverse medium problem in ultrasound
tomography). The Helmholtz equation is a good model for acoustics where the phys-
ically interesting wave numbers are not very high (typically less than 30). They can
be really high for electromagnetic fields (k,/Zft up to hundreds or thousands), and

then increasing stability is expected to be more dramatic.



CHAPTER 2

INCREASED STABILITY IN THE CONTINUATION FOR
HELMHOLTZ EQUATION

Motivated by the inverse problems in the (acoustical, electromagnetic) wave
propagation and in particular by scattering theory, we focus on the Cauchy problem

for the Helmholtz equation
(A+k)u=finQ, ue Hy)(Q), (2.1)

with Cauchy data

u=goand ,u =gy on I, (2.2)

where (2 is a Lipschitz bounded domain in R",n = 2,3, and I is a part of its boundary.

In Theorem 1.1 € is a subset of a cylinder {z : 0 < =z, < h,|2/| < r},
' = (x1,x9,...,2,-1), and I" is the open part of the boundary 92 contained in the
layer {0 < x, < h}. We assume that Q@ = {z : 0 < z, < w(z/), 2’ € O} , w > 0,
w e CHY). Let Qd) = QN {z : @ > d}, F = ||f(2) + [ul[(T) + || 7 u[|(T') and
F(k,d) = || fII(Q) + d %k + d")|Jul(T) + || v u|(T), here [Jul ) (£2) is the norm in
the Sobolev Space H;)(€2) and ||ul| = ||ul|)-

lulloo s () = D 1107l (€2)
o<l

and |||, is the standard norm in LP. C' denote generic constants depending on €2 and
I', any additional dependence is indicated.

In [13] they proved the following stability estimate for the solution u of (4.1)
and (2.2):

(2.3)

1-) \
Jull(©d)) < C (F N w)

d2—2>\k
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where
2r’d + 3d°
A= ret st . (2.4)
4r2h + h*d + d*h + gd3 + 3r2d

One important corollary of (2.3) is that the stability and hence the resolution in the
Cauchy problem in the subdomain (d) increases as the frequency k grows.
Theorem 2.0.1. Let ||ul[q1)(2) < M. Then there exists a constant C' such that for

any solution u to (4.1) and (2.2)

1

[ull*(52(0)) < CM7(e” + m)

(2.5)

_ P
where € = YR

Observe that the stability estimate (2.5) consists of two terms. If only the
first term €2 is present we have the best possible Lipschitz stability, guaranteeing
in particular high resolution of suitable numerical algorithms. However, at fixed
k the Cauchy problem (4.1),(2.2) for the elliptic Helmholtz equation is notoriously
(exponentially) ill-posed, so a Lipschitz stability is not possible. Theorem 1.1 shows
that the second ”logarithmically unstable” term in(2.5) is going to zero (as a power
of k), and hence stability and resolution in the Cauchy problem are improving when
k grows.

Theorem 1.1 combined with known theory of Sobolev spaces implies global
improved stability in the exterior of an obstacle. Let €2y be a bounded convex domain
in R™ and D be an open subset of {2y. Let P be a half-space of R" and Qp = QN P.
Let P be the set of all P such that 0QyN P C I' and Q(D,T") be the union of all sets
Q(P) over P € P.

In next Theorem and its Corollaries Q = Qg \ D.

Theorem 2.0.2. Let |[ul|q)(2) < M; . Then there exists a constant C = C(l) such



that for any solution u to (4.1) and (2.2)

lulloo (D, T)) < CM(2 4 —— 0 witho,— =~ 22 (26)
(—lne + k)s 2
where € = Mil

If I = 2 we have 6, = 0.1. For large [ this exponent is increasing to 0.5 showing

better stability.

Corollary 2.0.1. Let [jul|)(Q2) < M;. If Qo, D are convex domains and I' = 08,

then the bound (2.6) holds in Q(D,T") = Qo \ D

Corollary 2.0.2. Let ||ul0o2(2) < Mooo. Then there exists constant C' such that for

any solution u to (4.1) and (2.2)

1 0

lulloc,1 (2D, T)) < CMuop(e® + ————)
(—lne + k)3

where & = 5,6 = 0.55 - 0.625 - 0.25 = 0.0859....

Observe that this corollary indicates better stability in reconstruction of the
boundary coefficient b in the impedance boundary condition d,u + bu = 0 on 9D of
a given convex obstacle (on ”illuminated” part of nonconvex dD) from the Cauchy
data (2.2) for a solution to (4.1). Indeed, only remaining question to resolve is to

evaluate "size” of zero set of Vu on dD. Unfortunately, it is not a very simple issue.
2.1 Auxiliary Trace, Embedding , and Interpolation Results.

In this section we collect some mostly known results on traces and interpolation

which are needed in the proofs of section 1.2.

Lemma 2.1.1. Let S(d) = QN {z:z, =d}. There exists a constant C' such that

[ull)(S(d)) < Cllulla)(€2).



This is a know result about bound of traces, see for example [21], p. 44.

Now we mention the well know interpolation inequalities for intermediate
derivatives. The main idea is that if u is bounded in H( ) and H,) then u is
bounded in all the intermediate Sobolev spaces H(y) where s; < s < s5. We remind

the standard interpolation inequality [23] is given by:
lull) () < Cllull S (@ lullf.,) () (2.8)

where s = (1 —0)s; +0s2 ,0< 0 <1and C =C(Q, s1, 52, 0).

By known Sobolev embedding theorems [21], [28], p. 328

1 1 n
lully(€2) < Cllulls), when n(3 — §> < 5, [lulloo($2) < C(s)llull(2), when 5 <'s.
(2.9)
Now we remind definition and properties of less standard space of functions

H, +(©2). When Q = R" the norm of a function w in this space is

lullps(R™) = [ F7H(1+ €)% Full,(R")

where F' is the Fourier transform [28], p. 177. For a bounded (2 the definition is
obtained by taking minimal norm of extension onto R™ [28]. p.310. Referring to [28],

pp- 59, 317, 328, we have the interpolations inequalities

lullys(Q) < Cp, 51, 52,0, D, (Dl ,, () (2.10)

p;s1 p;s2

where 1 < p < 00,81 < 82,0 < 0 < 1,8 = (1 —0)s; + 0s,. In addition, there are

embedding theorems
ulloos (2 < Cllullys(9), 1 <p < o0, I+~ <5 (2.11)
p

Lemma 2.1.2. There exists a constant C such that

1.6

lullo(€) < Cllullg)llullis) (), 60) = = (2.12)

(0)

9



1l oo (€2) < €l gy ([l 25 ().

Proof:
For n = 2,3 we let s = 1.6 in(2.9) to yield
[ulloo(2) < Cllull1.6)(€2).
From (2.8) with s; = 0,5, = 1,0(]) = %% we have

T

el 1.6y (€2) < Clluall "™ () [ull sy (62)-

Combining (2.14) and 2.15) we obtain the first statement (2.12).

Again by embedding (2.9) with n = 2,3,¢ = 5 we yield

[ulls(€2) < Cllull0.9)(€2)-

By interpolation inequalities (2.8) with s; = 0,5, =1,0 = 0.9

lull0.9)(€2) < Cllull o) (V) [ull3) (€2)-

By more precise interpolation result (2.10)

lullsa() < CllullsFQlulls < Cllulls*(llulS)

Again by embedding theorems (2.11)

[uloo(2) < Cllulls,0.75(€2)

Hence from (2.19), (2.18)

lulloo () < Cllulls* () [[ull5(92) < Cllullig’s) (Q)ull23 ()

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

due to (2.16) and (2.17). Finally, from the last inequality and from (2.17) we yield

(2.13).

The proof is complete.

10



Lemma 2.1.3. Let ||u|loo2(2) < Moo o. There exists constant C' such that
() < CMEL % (2. (2:20)
where 8; = 0.55 - 0.625 - 0.5.

Proof: Again from interpolation inequality (2.8) we have
lull0.9)(€2) < Cllulliey” ()llullts) ($2) (2.21)
By (2.10)
lulls.075(2) < Cllull3™ (Q)[Jull53™ <
Cllullf’sy (Dulg3™ < Cllull@ () [lulles?

where we used (2.21) and let 6, = 0.550.625. Using in addition the standard interpo-
lation inequality

lulloo1 (€2) < Cllulla? () lufle 2 ()™
we complete the proof of (2.20).

2.2 Proofs of stability estimates

Proof of Theorem 1.1:

First, we derive from (2.3) the following simpler upper bound

Ml*)qF)\l d
nwmu»chuujﬁﬁ—),l_ﬂ (2.92)
assuming that d < 1, FF <1, 1 < M, A < % and
w?+&%d+gfh<4ﬂh (2.23)

Indeed from (2.4) we can conclude that

2r2d 2r2d d

A > > — -
4r2h + (h% 4 3r2)d + %th Ar2h +4r2h  4h

11



due to (2.23). So (2.3) implies (2.22).

Let F(d) = ||ul|*(©(d)). As known (see e.g. [27], p. 77), there is

P==[ e d = —uls@) (2.24)

From the mean value theorem we have F(d) = F(0) + F'(d*)d, where 0 < d* < d.
Hence,

[FO)] < [F(d)| + [F'(d")|d

and from (2.24), (2.22), and Lemma 2.1 we conclude that

1
JulP(0) < € (2 M2 1 4 32 (2.29

Let us consider the function

fd) = 52)‘1ﬁ +d. (2.26)

and try to minimize this function with respect to d > 0. We choose
d=(E+k) 5, E=—lIne. (2.27)
From (2.26), (2.27),

f(d) = e* 4+ d, where a = —%E — 4lnd — Ink.
Due to (2.27),
E
C(E+ k)5

a=—

1
+ §ln(E + k) —Ink (2.28)

If £ <k, then

1 1
a < §ln(E +k)—lInk < éln(Zk) —Ink =

1 n2 1 1 n2
J— — < ——nE — - -
2lnk’—|— 5 = 4ln 4lnk—l— 2

12



If k£ < E, then again from (2.28)

E 1
a< — -+ =In2F — Ink <
CE3 2

8

_%Eé_znkg —nE—Ink+C

where we used twice that ClnA < As + C. Finally,
1
a< _Z(lnE +Ink) + C

and from (2.28), (2.26) we have
1 1 <c 1

fld) < C(

Combining with (2.25), (2.26) we complete the proof.

1 1+ 1) = o 1
EFiK1 (E+k)§> (E+k)s

|

Proof of Theorem 1.2: We will apply Theorem 1.1 to domains 2p. First

we observe that constants in lemmas 2.2, 2.3 for domains 2 = Qp do not depend

on P. Indeed, according to the definitions the domains €2p after an orthogonal co-

ordinate change have the form €(0) where functions w are uniformly (with respect

to P) bounded in C*, moreover they all have uniform cone property. Hence these

domains can be mapped onto a standard domain €y (e.g the upper unit hemisphere

in R™ by C') by diffeomorphisms which are uniformly bounded in C* together with

their inverses. Applying Lemmas 2.2, 2.3 to {2y and using inverse diffeomorphism we

conclude that constants can be chosen P-independent.

Using (2.12) for Q = Qp, P € P we yield

0 —6 0 —0
oo (2AP)) < MV Jusf| " (QPY) < MO0 +

(—Ine + k)3

0.5(1—6(1))

(2.29)

due to (2.5). Since Q(D,T") is the union of Qp over P € P and M; < M; we obtain

(2.6).

13



2.3 Numerical experiments

In this section we conduct a numerical experiment to demonstrate the increas-
ing stability of the Cauchy problem. This numerical experiment reconstructs the
acoustical pressure from the knowledge of its farfield acoustical pressure in three di-

mensions. The reconstruction procedure is similar to the ones considered in [13] and

18].

The experimental setup for the exterior problem consists of two concentric

semi spheres and a semi circle given by,

Ty = {z=(z1,22,23) ER: ||z|| = 10,01 < < b, 01 <O < 6o}

Iy = {z=(z,22,23) ER’: ||z|| = 11,05 < ¢ < ¢, 03 <0 <04}
3 77 T
Iy = {z=(21,20,23) e R 1 ||z|]| = 1o, = 5,0 <9< §}

Five

where ¢ = tan™! (i—f) and 0 = tan™! <—V1+2>, ro=2,r =1and ry = 3

xs3 2"
acoustical sources are placed on the semicircle I'y, the amplitudes and positions are

given by Table 1.

Amplitude | Position
A1 = 1 (0, 0, %)
A=t O g )
A; =5 (0, =t 0)
=2 1 0 5E 5)
A; =3 (0, 0, )

Table 2.1: Amplitudes and positions of acoustical sources

14



Next we discretize the surfaces I'y and I'y by considering n angles between ¢,
and ¢ and n angles between 6, and . Hence we obtain n? points on I'y which is

given by
FdO = {.1' = ($1,1’2,$3) c ]R?) . H.’EH = 7"0,¢ = ¢Z,9 = el,Z = 1,...,71}

where ¢; = ¢1 +i0¢ and 6¢p = (P2 — ¢1)/n, 0; = 01 +i060 and 60 = (02 — 01)/n.

Similarly we obtain n? points on I'; given by
Fdl = {.Z' = (331,1'2,1'3) € RS : Hx“ = rlad) = ¢j79 = 9]?] = 17"'7”}

where ¢; = ¢35+ jop and d¢ = (¢4 — ¢3)/n, 0; = 03 + 660 and 06 = (04 — 05)/n.

For this experiment n =10, ¢y = ¢p3 =0, =03 =0, ¢po = ¢4 = —mw and Oy = 0, = 7.

The acoustic pressure and its normal (radial) derivative on I'gy are calculated

using
5
u(e) = 3 A(x,y) (2.30)
j=1
5
Opu(z) = ZAjaTCI)(x,yj) (2.31)
j=1
where
eik|$_y|
) -

is the fundamental solution of the Helmholtz equation, while A; and y; are the am-
plitudes and positions of the acoustic sources respectively as given in Table 1.
Using equations (2.30) and (2.31) we can generate the Cauchy data on Iy by

adding some noise,

(2.32)

us = u+0|uls

§
1€]]2

s = Oyut 0]Dulla—

m (2.33)

15



Frequency (k) | Error of reconstruction(in %)
2.0 782.00%
4.0 544.44%
8.0 67.13%
16.0 2.79%%

Table 2.2: Errors of reconstruction at various frequencies for the exterior problem

Here the noise is 6 = 1% and ¢ is a vector which is uniformly distributed on (—1,1).
Since u is a radiating solution of the Helmholtz equation we have from [10]

u(@) Y > anmhV ()Y (é—‘) (2.34)

n=0 m=—n
The choice of N is quite important since it plays the role of a regularizer. For this
experiment N = 9,10 which is the best possible choice. We find the coefficients a, .,
by matching the series expansion of the solution with the Cauchy data calculated
from (4.13) and (4.14) on I'y. This is achieved by forming a system Ax = b where
x is a vector of coefficients to be determined, vector b is the Cauchy data and the
entries of matrix A are formed by the product of spherical Hankel functions and
spherical harmonics. The solution to this system is obtained by forming the normal
equations A*Ax = A*b and by applying using conjugate gradient technique on these
normal equations. The number of iterations is chosen such that the residual error
is lesser that 100e where € is the machine epsilon. Using these coefficients a,, ,,, and
equation (2.34) we can reconstruct the acoustical field u,econ, on 'y The error of
reconstruction is given by

o ||uea:act - ureconHQ
€rTrecon =

||uexactH2
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where ugzqq0 18 the acoustical field on I'; calculated using the equation 4.1. The error
of reconstruction (in percentages) for various frequencies is given in the table 2, which

demonstrates the increased stability in the reconstruction of the acoustical pressure.

Also, we would like to consider the interior problem. The experimental setup
for the interior problem consists of two concentric semi spheres and a semi circle
given by I'g, I'y and I's which is same as the setup for the exterior problem but with
ro = %, r1 = 1 and ro = 2. As before the Cauchy data is prescribed on the discretised
surface I'g. This Cauchy data is matched with the approximate series expansion of

the solution to the interior problem which is given by

=3 3 ot ()

n=0 m=—n

to calculate the coefficients a,,,, and hence reconstruct the acoustic pressure on the
semi sphere. For interior problem N = 7 is the best choice. The algorithm used in
this case is precisely the same which was used for the exterior problem. The error of
reconstruction for various frequencies are shown in table 3. The error of reconstruction

for the interior problem increases with the increasing frequency.
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Frequency (k) | Error of reconstruction(in %)
2.0 29.42%
4.0 61.84%
8.0 65.4%
16.0 117.15%

Table 2.3: Errors of reconstruction at various frequencies for the interior problem
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CHAPTER 3

INCREASED STABILITY IN THE CONTINUATION FOR
MAXWELL’S SYSTEM

In this chapter we consider the Cauchy problem for the stationary Mazwell

System
curl E —ikpH =0 in €2,
(3.1)
curl H + (ike —o)E =0 in (2,
with the Cauchy data
E = Eo, H = HO on F, (32)

where E, H are electrical and magnetic vectors E, H, ) is a domain in R? and I is
a part of its boundary 9€). We will assume that the coefficients €, u, 0 € C%(Q),0 <
£,0 < 11,0 < o on ©, and the Cauchy data E,, H, are given functions.

Let Q C {0 < 23 < h,|2'| < r} with Lipschitz 9Q , Q C {x3 < h} and
['=00n{0 < z3 < h}, 2’ = (21,22). Let Q(d) = QN{d < z3}. ||uf/@)(2) is the norm
in the Sobolev space H'(Q2) and [Jul|(Q) = ||ull(0)(Q). We let F(E) = || Eo||1)(T) +
[ ol 1) (D) +E([| Eoll (T)+ | Hol|(T')), and F(E; k, d) = (k+d=") (|| Eol|(I')+[ Ho||(I'))+
[ Eolla)(I) + [ H ol (1) (T). For later use we let F* = [[£[|(2) + [Juo[[(2)(I') + [lus[|(0)(T")
and F(k, d) = [|f](2) + (k + d~")|[uoll0)(T") + [[uoll1)(T) + [lutllo)(I'). By € we de-
note generic constants depending only on ¢, u,0,Q, T, ag, B;, C1, Cy. Any additional
dependence will be indicated.

In Theorem 1.1 we assume that 1 < k, [|[E|[1)(Q) + [[H||1)(Q) < My, d < 2r.

Theorem 3.0.1. Let

0 <2ep+ Vieu) -z + [305(ep), 0 < 03(ep) on (3.3)

for some 3 > 0.
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Then there are C, \(d) € (0, %) such that

IE][(2(d)) + [|H[(£2(d)) <

C(F(E) + k™ 3(F*(E) + d?°F*(E: k,d)) M + k™ 3d" 20 M) PAO(B: g k)
(3.4)
for all E; H solving (5.1), (3.2). Here \g = %

If e, 1 are constants and o = 0, then

M

I E[[(22) + [[H|(2) < C(F(E) + m

), (3.5)

where 1 = %

The condition (3.3) guarantees absence of trapped rays in the corresponding
dynamical (time dependent) problem. Presence of trapped (disjoint with I") rays
makes the improving stability estimate (3.4) impossible, as shown in [19]. It is related
to monotonicity of the speed of the propagation (&t,u)_% with respect to x3 in the
dynamical case. The monotonicity condition is in particular very well known in the
(geophysical) inverse seismic problem. Its violation can even result in non uniqueness
of the continuation for the dynamical equations (see [14], p. 70, and related references
in this book). If the speed of the propagation decreases with respect to z3 (i.e.
increases in the direction of the continuation), then the condition (3.3) can be achieved
by choosing large (.

For the dynamical Maxwell system sharp uniqueness of the continuation results
and stability estimates were obtained in the paper [11]. In the dynamical case the
Cauchy data are given on I" x (0, T"). The best possible Lipschitz type stability in [11]
requires I' to be more than “one half” of 01, it needs some boundary data on 92\ I'

and 7T to be sufficiently large. So the conditions in [11] are global. In our result I'
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can be any part of the boundary of a larger domain extending €2, which means much
more flexible local data.

The assumptions on €2 can be relaxed, moreover Theorem 1.1 implies increasing
stability of the continuation from the boundary of a convex domain ; onto € \
D where D is a convex subdomain of 2. Indeed, complement of a convex D can
represented as the union of half-spaces P, as on Figure 2. Applying Theorem 1.1 to
21 N P and combining the estimates over the union of P-s we complete the argument.
For more detail we refer to [3], [13].

First we reduce (5.1), (3.2) to the Cauchy problem for a system of the equations
of second order with the diagonal Helmholtz operator in its principal part. Next we
obtain energy type estimates in the low frequency zone, which are vectorial versions
of estimates in [16] and combine them to obtain a conditional Lipschitz stability
estimate with an additional energy type term. An additional (to [16]) difficulty is
that coefficients of low order terms can depend on k. Another new ingredient of our
results is a removal of an additional artificial small parameter in [15], [16]. Finally,
we use a scalar Carleman type estimate in [16], [4] to obtain Hélder type stability
estimates of the energy type term and complete the proof of stability estimate for

principally diagonal auxiliary system.
3.1 A reduction to a second order system

We start with a simple result which reduces the Maxwell’s system to a vectorial
Helmholtz equation. This reduction is well known, but we need details of it which

are essential for transformation of the Cauchy data.

Lemma 3.1.1. The Cauchy Problem for Mazwell’s System (5.1),(3.2) implies the
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following Cauchy problem
AE+KepE+V((e+ik o) 'V(et+iock™) - E)+u 'Vux curl E+puoikE =0 in

AH +k*epH A+ (e +ick™ ) YV (e+ick ™ ) x H)+V (u 'Vu-H)+poikH =0 in Q,
(3.6)

with the Cauchy data
E=FEy,o0FE=FE,, H=H,0,H=H; onTl, (3.7)
where
|Er| + [Hy| < [VianEo| + [VienHo| + C(k(|Eotan| + |Hotan|) + [Eo| + [Hol). (3.8)

Proof:

From the first equation in (5.1) we have
0 = curl (curl E) —ikcurl pH = —AE + VdivE —ik(Vu x H) — ikpcurl H.
From the second equation in (5.1) it follows that div((ike — o) E) = 0 and hence
divE = —(ike — o) "'V (ike — 0) - E. (3.9)

Expressing, in addition, H from the first set of equations in (5.1) and curlH from
the second set in (5.1) we yield the first set (5.6). The second set is obtained by a
similar argument.

To bound the Cauchy data we consider any xy € I' and use an orthonormal co-
ordinate system where the direction z3-axis is the normal v(z). Using the invariance

of the Maxwell system with respect to these coordinates we will have

82E3 - 83E2 = Zk?,LLHl, (93E1 - 81E3 = ’Lk’[,l,HQ,
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and therefore

63E1 = 82E3 + ZkILLHQ,
83E2 = 82E3 - Zk’[tHl

at xo. From (3.9) we have
BE3y = —01F) — 0By — (e +ick™ ") 'V(e + ik o) - E).

Observing that F, Fy are tangential components of E at xy and 0, 0, are tangential
differentiations at xy from three previous equalities we yield (3.8) for E;. The bound
for H, is obtained similarly.

The proof is complete.

We observe that the data (3.2) are overdetermined. Indeed, in the same co-
ordinate system at zp € I' from (5.1) we have 0, Fy — 0o Fy = ikuHs, so the normal
components Hs and similarly F3 are linear combinations of tangential derivatives
of tangential components E,,,, H,, and it is sufficient to prescribe on I' only tan-
gential components of electromagnetic vector. However, then H' norms of normal
components will be bounded by H? norms of tangential components. When studying
stability we prefer to use more natural Sobolev norms for all components by prescrib-
ing the overdetermined Cauchy data (3.2).

Let m x m matrix functions B;,l = 1,2,3, C = C1k + Cy € C1() and a
positive function ag € C?(€2). We will consider the Cauchy problem for the (more
general than (5.6)) principally diagonal system

3
(A+ak*+> B+ Clu=finQ, (3.10)
=1

u=uy,d,u=u; on I. (3.11)
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Theorem 3.1.1. Let us assume the condition
0< ag + Vao - T+ 6383@0, 0 < 33a0 on ﬁ (312)

Then, there are C, X(d) € (0,3) such that

[ul|(d)) < C(F + k™3 (F* 4 d?° FY (k, d)) M}~ + k~sd- 20 M} N PXD () a))
(3.13)

for all u solving (3.10), (3.11) provided |lul|1)(Q) < M. Here A = 5.

This result will be proven in section 4.
The bound (3.4) of Theorem 1.1 immediately follows from Lemma 2.1 and
Theorem 2.1. The bound (3.5) follows from Lemma 2.1 and Theorem in [3] for the

Helmholtz equation.
3.2 Energy type estimates in low frequency zone

We will obtain some auxiliary results imitating the standard energy estimate
for hyperbolic initial value problems

In Lemmas 3.1-3.4 a € C*([0, h]) is a scalar function, a = a(x3), B;(3), C1(3), Co(3) €
CY([0,h]),l = 1,2,3 be m x m matrices depending only on x3, C(3) = C1(3)k+Cy(3)
and vector functions v; € C?(Q*) (with values in R™) are zero outside . In this
section we let Q*(d) = {z : d < z3 < h} and denote by V(&, z3) the Fourier transform

of the function v(z’, x3) with respect to 2’

Lemma 3.2.1. Let a vector function v;,j = 1,2,3 solve the initial value problem

3
(A+a®k + ) Bi(3) + C(3))v; = 0;f; in Q*(d), j = 1,2,

=1

V= 0 on Q*(hl) (31)
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for some hy € (d,h), £; € C*(Q*(d)), £ =0 on Q*(hy), and

V(& x3) = 0 when @lf < | (3.2)

Then there is constant C' depending only on h, sup(|B|; 4+ |C1| + |Co| + |05a| +

|la]), supa™! over (0,h), such that
[v;11(27(d)) < CIE]|(2°(d))- (3.3)

Proof. Due to Parseval’s identity it suffices to show that the solution to the

initial value problem

2
O3V + (0K — [§°)V; + B3(3)05V; — Y iby(3)4V; + (a1(3)k + ag(3))V; =
=1
—iF;on (d,h),j=1,...,n—1, (3.4)
with the zero final conditions
Vj = 0, F]‘ =0on (hl, h), (35)
satisfies the bound
h h
/ [V,]2(&, 8)ds < C/ |F;1%(&,s)ds, j=1,..,n—1. (3.6)
d d

Taking the inner product of the both sides of (3.4) and of 93V, taking complex

conjugate and adding results we yield

(03V;) - 05V + (85V;) - 05V, + (a®k® — [E*)(V; - 05V + V- 05V )+
2
(B3(3)05V;) - 05V + (bs(3)05V;) - 05V, = > _i((Bu(3)&V;) - 05V — (Bu(3)V;) - 95 V)
=1

((CB)V; -5V, + ((C(3))V; - 05V, = i&;(F; - 05V, — F; - d3V).

Observing that 95| V|? = V - 93V 4+ 3;V'V and multiplying by -e*3 we will have

—(05105V[})e™ — (a®k* — |€]*) 05|V [?e™ — 2R(b3(3)05V;) - 95V ;)e™ 3+
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2R i((Bi(3)G V) - 05V)e™ — 2R((C(3))V;) - O5V,)e™ =

=1

—28%(253 (F] : 83Vj)67x3 .

Integrating by parts over the interval (x3, h) with use of (3.5) we obtain

h
|05V |* (23)e™ + (a®k* — |£*)| V] (w3)e™™ +/ (7 —2R(B3(3)05V;)-05V(s))e ™ ds+

x3

/h(7'<a2(]€2 — &%) + 2a03ak?)|V;|*(s)e ™ ds+

3

h
/ 2R3 (BU3)GV;) - V) — 2RUC(3)V) - 9V, (s)e™ ds =

=1

R, / (F,05 - V,)(s)e7ds). (3.7)

3

By elementary inequalities

\/ 2R(D_i((Bi(3)GV;) - 85V) —2R((C(3))V,) - 95 V;)(s)e™ds| <

h h h
¢ [ lovserds s+ [IEPIVIEEds + [ RV P
3

3 3

and
h - h h
=R [ (®0n Vieeas| < [ PR Ee s+ [ 10V Po)erds
x3 x3 3
so using that |£] < Ck, due to condition (3.2), and dropping first two terms on the
left side of (3.7) we yield

h
/ (7 — O)|05V,[2(s)e™ ds+

z3

h h
/ (7(®K? = |€P) = CR) [V, [2(s)e™ds < C / RIF,P(s)emds. (3.8)

x3

Again due to the condition (3.2), a?£ < a?k? — |¢|* and choosing 7 (depending on

the same parameters as C') we achieve that the first integral in (3.7) is non negative,
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so we obtain

h h
/ (rask? — CIRA)[V,[2(s)e™ds < C / K2 [T, 2(s)e™ ds
T3

3

and finally choosing 7 large but depending on the same parameters as C' again we

arrive at (3.3) and complete the proof.

Lemma 3.2.2. Let v3 solve the initial value problem
3
(A+ak* +) By(3)0 + C(3))vs = 0sf3 in Q*(d),
=1
vy =0 onQ*(hy) (3.9)
for some hy € (d,h), fs € C=(Q*(d)), f3 = 0 on Q*(hy), and
a’(xs)

V3(&, x3) = 0 when TkQ < |€]2 (3.10)

Then there is constant C' depending only on h, sup(|B|;+ |C1| + |Co| + |03a| +

|la]), supa™ over (0,h), such that
[v3[[(2(d)) < Clfs]|(27(a)). (3.11)
Lemma 3.2.3. Let v4 solve the initial value problem

3
(A+a®k + ) Bi(3)0, + C(3))vy = kfy in Q*(d),
=1
vy =0 onQ*(hy) (3.12)
for some hy € (d,h), f3 € C°(Q*(d)), f1="0 on Q*(hy), and

V(& x3) = 0 when @l{? < €. (3.13)

Then there is constant C' depending only on h, sup(|B|; + |ai| + |ag| + |0sa| +

|la|), supa™! over (0,h), such that
[val[(€7(d)) < CIEa|(€2°(d))- (3.14)
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Lemma 3.2.4. Let vy solve the initial value problem

3
(A+ak* +) Bi(3)0; + (C(3))vo = k*fy in Q7 (d),
=1

vo =0 on Q*(h) (3.15)
for some hy € (d,h), f3 € C>®(Q*(d)), fr=0 on Q*(h1), and

Vo(&,x3) = 0 when @kz < €. (3.16)

Then there is constant C' depending only on h, sup(|B|; 4+ |C1| + |Co| + |05a| +

|la|), supa™! over (0,h), such that
[vol[(€2°(d)) < C(lIfoll (€2°(d) + (|50 [|(2(d))). (3.17)

Now by using Lemmas 3.1-3.4, freezing coefficients with respect to x’ and
partitioning the unity, we will obtain energy type estimates.

Let § > 0. By X'(j) we denote points in R? with integer coordinates. Let
2'(7),7 = 1,...,J be points 0.X'(j) which are contained in ' = {2/ : x € Q}. It is
clear that J < (6. The balls B'(x(j);0) form an open covering of Y. We define
Q; = B'(x(j);6) x (d, h). Let x(2'; 7) be partition of the unity subordinated to this

covering. We can assume that

0<x(Gj) <1, |Vx(GH)| <O, |Ax(H)| < Cs2. (3.18)

We will introduce a ”low frequency” projector vi = Pv of a function v. Let
us introduce a function y € C*°(R) such that y =1 on (0,1/2), x = 0 on (3/4, 00),

0 < x <1 Let xj(23:€) = x(K"ag " (2(j), 3)[€]). We define

J

v(:J) = XCI)V, Pv(j) = FGFvG)), vi= Y Pv(ij). (3.19)

J=1
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where F the the Fourier transform with respect to x’.

For brevity in Lemma 3.5 we let ||v]|(d) = ||v]]0)(©2*(d)).
Lemma 3.2.5. Let v € C?(Q*(d)), v =0 on Q*(d)\Q, solve the initial value problem

3
(A+agk® +) B0+ C)v = Oify + ... + Osfy + ks + k>fy in Q*(d),

=1

v =0 0nQ"(hy) (3.20)

for some hy < h.

Then there is a constant C such that
IvIi(d) < C((1+ 6k N)(IfLll(d) + ... + [|£3]|(d)) + [|£a]|(d) + ||fo]|(d) + [|Dsfo]|(d)+
52 V] ) (2 (d)) + S(IIvII(d) + 18V (d))). (3.21)
Proof.

From (3.19) and from the Leibniz formula we have

3
(A+Kad+> B+ C)v(:j) =

=1
XG ) (O fy + ...+ Osfs + kfy + k) +2Vx(5) - Vv + ( ZBZ ax(G i) + AxG))v,

SO

(A + k2a3(2'(j), x5 +ZBZ ), 23)0 + C)(a'(5), w3)v(; ) =
h(xGHE) + ...+ 05(x(;))fs) — 31)((' N — = Osx G o)fs + kx( J)fs+ kX () fo+

2VX(:4) - Vv +( ZB@x 7)+ AXGI)V + (K ((a5(2'(5), 23) — ag)+

=1
Z (Bi(z —By)0, + (C(2'(j), x3) — C)v(; J).

Applying the low frequency projector P; to the both parts we yield
(A + K2a2(2' (), x3) + ZBZ ), 23)0; + C(2' (), 23)) Pv(; j) =
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NP (x(Gi)f) + .. + R Pi(x(i)E) — Pia(x(i)Es)—
Pi((OixGaNf) — .. — Pa((9ax(5))E2) + kP (x G 5)Ea) + B2 P (x( j)fo)+
FLogxGFv(;j) + 2F 10sx;F0sv (5 §) + Bs(2' (7)) F ' 0sx; Fv(; )+

+P((AXGH) + D Bidix(:5))v) + Pi(2V'X(j) - Vv)+

K Pi((a3(2' (), 23) — ag) + Py Y (Bil@'(j), w3) — B)dy + (C(2'(j), 23)) — C)v(; ),

where P;3(f) = F10;x,;Ff. Observing that
[(a®(2'(5); ) —ag) | +105(a*(2'(4); ) —ap) |+ |B('(5),) =B < €4, |C(2/(5),)—C| < Ckd

on support of v(;7), that | Pf|| < [/f||, using (3.18), and applying Lemmas 3.1-3.4

we obtain
1Pv ()2 (d) < CUIxG DR D) 4 A G 5 Esl* (d)+6 2R (|12 (92)) 4.+ I3[ (€2)) +

1GNP (@) + IxG ) El*(d) + [Ix (G 5) 05kl (d) +
OE2VVIP(Qy) + 6T RV IH(Q) + (VP () + 115V IP(92)). (3.22)
Now, summing local estimates (3.22) we will obtain a bound for vy given by
(3.19). Support of v(;7j) intersects at most 2% = 8 supports of other v(; k), but this
is not true for P;v(;j). To make certain that constants C' be ¢ independent, we will

use that (I — P;)v(;j) is a high frequency component of v(;j) as defined by (3.19),

hence
(I = P)vG)IP(d) < Ck72(lv(; )17 (d)

and
IvGDIP() = 1PvGDIP@)+IT=P)vG)IP() < IPv G +CR2 v G IR (925)-
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Using that multiplicity of covering Q; is at most 2° and summing (3.22) over j =

1,...,.J we yield
IvI*(d) < CZIIV
C(lIfoll*(d )+---+Hf4H (d) + 1| 9sfoI*(d)+
UENPD) + -+ 117 (d)) + 07 k2 VI (27(d) + * (v ]I*(d) + [V v][*(d))).

where we also used that x2(;1)+...+x2(; J) < 1 and that multiplicity of the covering
Q; is less than 23. From the last bound we obtain (3.21) and complete the proof of

Lemma 3.5.
3.3 Carleman estimates and a proof of stability

Theorem 3.3.1. Let the condition (3.12) be satisfied.

Then there are C, A\1(d) € (0,1) such that
Il (@) < C(@F(k,d) +d~> My~ PN D (&, d)) (3.23)
for all u solving (3.10), (3.11).

In the proofs we will use the following Carleman type estimate.

Let

1
w(z;T) :/ emp(QTe"(‘I’mQ’eZﬁ))dt, B8 =(0,0,ps).

1

Lemma 3.3.1. Let the condition (3.3) be satisfied.

Then there are constants C, 0 such that
/ (7 + 7D |ul* + 7|Vu|>)w(,7) <
1951

C(| WA+ agk®ulPw(,7) + / (7* + 7EH) [uf* + 7|Vu|>)w(, 7))
Q1 o

for all functions v € H*(Qy) and all 7 > C.
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A proof based on the known Carleman type estimates for hyperbolic equations
is given in [16]

Proof of Theorem 4.1.

We will choose 83 = —(% — g ), 8 =1(0,0,B3) and we introduce the notation
Qg =Qn{(d - B3)* < |z — B*}. We will assume that 3d> < 1672, so 83 < 0. Using
our choice of 8 and considering the intersection of level surface |z — 3|? = (%d — [33)?
with the lateral wall {|2'| = r} of the cylindrical domain one can be convinced that

the boundary layer {z3 < 1d} NQ does not intersect Qg. Indeed, if (2/, 23) is a point

of the intersection of this cylindrical domain and of the boundary of 2 d then

2
P (= B = (= B = (5 )

(25 — B3)? = (2 = 22)2 and a3 — B3 = 2 — 4, which gives 2 = 9. Hence there is a
cut-oft function x which is 1 on €2 4, Z€10 near 0N {x3 = 0} and which satisfy the
bounds |Vy| < Cd™!, |Ax| < Cd~2.

We have
(A +E%al)(xu) = x(A + k*al)u+2Vy - Vu + Ayu =

3
x(f — Z Boju) — C(xu) + 2Vy - Vu + Ayau,
=1

due to (3.10). Applying Lemma 4.1 to each of m components of yu instead of u and

adding bounds for components we yield
[+ Dl + 71V () Pruter) <
Q
e[ 1tPutn) + [(VuP+ Pt + [ 29 Tu+ (AguPu -+
Q Q 2\Qy

/F((T3 + ) + 7Vl + 7| Vul)w( 7).
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By choosing 7 > C we can remove the term with k?|xyu|? on the right side absorbing
it by the left side. Using that x = 1 on 2 a and choosing 7 large once more we can
similarly replace the integration domain in the second integral of the right side by

0\ Q a. Shrinking the integration domain in the left side and using the choice of x

we vield
| (@ i T uPyutr) <
d
e[ tPutr+ [ @V +d Pl
Q Q\Q%
/F((TS b k2 4 rd D) uf? + 7Vl ). (3.24)
Let

ocX? old—Bs|? o|d—Bs|?
b=ce ,b1:e| *83"|,b2:e‘2 53',

where X = sup|lz — | over x € Q,

1

L 27b —02t2 L 27b —0212 27b —0212
W(r) :/ e e dt, wy (1) :/ e e dt, wy(T) :/ e e dt.

1 -1 1
Observing that w; < w on Qg, w < W on Q, and w < we on O\ Qg and
replacing w by its minimal value in the left side and by maximal values on the right

side of (3.24) we yield
(7% + 7ES)wi (7) [u]*(Qa) + 7w (7)[[Vu]*(Qa) <
CW()IEI*(Q) + (7% + 7(k* + d %)) [ul*(T) + 7| Vul[*(T))+

d~ wa(7)([Vul*(92) + [ul*(€2)))-

Dividing the both parts of this inequality by w; we obtain
(7% + K1) [l (Qa) + 7l Vul[*(Q4) <

CW (rywy (r)(IEI*(92) + (7* + 7(k* + d=%))[Ju*(T) + 7| Vul*(T))+
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d™ ws(m)wr (T)([IVul*(Q) + [[ul*(2))). (3.25)
Obviously,
W (r)wy(r) < CeC@r.

An important observation is that

Indeed, from the definition of b; and 3 by elementary calculations

by — by = 2@ E T ED (o B2 _ 1) > 0

and therefore

1

9242 _p2

'LUl(T) > / €2Tb26 62T(b17b2)e dt > w2(7_)€27'/0.
-1

Hence from (3.25) we have
2 alf*(Qa) + | Va*(Q4) <

C D3 F2(k,d) 4+ ¢ C@ 7 d M), when C < 7. (3:26)

By increasing C' we can eliminate 73 in the right side.

To use (3.26) we need 7 to be large. If M; < Cd*F(k,d) for some C, then we
have the Lipschitz bound (3.23). Otherwise we can equalize two terms in (3.26) by
letting

C(d)

= I
Ty 17 " REK, )

Then the right side in (3.26) is getting
Cd=2F* (k, d)M; ")

with Ay = A\ (d) = m, and using that (d) C Q4 we obtain (3.23).
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The proof is complete.
Proof of Theorem 2.1.
Since I' is Lipschitz, by known extension theorems there is a function u* such

that u =u*,Vu =Vu* on I' and
[u*]| ) (€27(0)) < C([[al|(T) + [[Vul[(T)) < CF, (3.27)

where we used the definition of F'. Let v =u—u* on Q and v =0 on Q*(0) \ Q. It

suffices to obtain the bound (3.13) for v instead of u. Observe that

3 3 3
(A+agh®+) Big+C)v = f—Y  0(9+(B)u)—kaju*+ ) (9,B,—C)u” in Q*(0).
=1 =1 =1

(3.28)
Since v is zero outside some cylinder by using known results about H!-approximation
of energy solutions by H?-solutions we can assume that v € H*(R*x (0, h)) and hence

ff=01fi+..+0sfs+ fy with || f;|| < CF. By (3.28) and Lemma 3.5
IVII(R* x (d, h)) <

CEN + 1+ 07 kD) ([Var]] + [lu])+
072k~ (lall 1y () + [l 1) (2(d))) + d([[all 0y () + [ |1y (22(d)))) <
C(F+ 62k 'F + 0k ul (1)(Q(d)) + 0M;) <
C(F 4 62k~ (F + |Jul|q)(2(d))) + M) (3.29)

where we used that ||v]|1) < [Jul|q)+ F due to (3.27). The minimum of 6 24 4 dM;
with respect to d is

C A3 M.
From this observation and from (3.29) we conclude that

2
3

IVI[(Q(d)) < CF + k™5 (F + [Juf| 1) (2(d)))3 M)

IN
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M

2
3

C(F+k 3Fi M2 + k™ 3(d2F(k,d) + d 2 M DM@k q))s M) <
C(F + K 5(F5 + d3F3(k,d))M; + k=5d-3 MY F\k, d)

where we used Theorem 4.1 and the elementary inequality (a+b)? < a?+b",0 < p < 1

A1(d)

and let A = 3

The proof is complete.
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CHAPTER 4
NUMERICAL EXPERIMENTS

4.1 Introduction

This chapter demonstrates the increased stability in the recovery of density by
conducting some numerical experiments. We know that the single layer representation

of any solution to Helmholtz equation

(A+k)u=0in D C R? (4.1)
is given by
ww) = [ a@@a)ist), v eR\oD. (1.2)
D
where
eik|z_y|
P(z,y) = PP P

is the fundamental solution of the Helmholtz equation and g is the surface density or
the amplitudes of the acoustic point sources given by ®(z,y).

The double layer representation is given by

ou, . 0P (z,y) 3
o= [ aT s, = e\ op. (13)

The inverse problem is to find the surface density function g from the given Cauchy
data u and 0,u. For simplicity we assume that the density is constant with respect
to frequency k. Recovering density from the measured noisy Cauchy data is very
important problem in applications and is an ill-posed problem.

For numerical experiments D = Br = {z : |x| < R} and the Cauchy data u

and d,u is given on the Unit sphere and the density ¢ is defined on a sphere of radius
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R > 1. This problem is important and interesting since we like to continue outside of
the convex hull of the surface where the Cauchy data is prescribed. Here we assume

that g € Ly(0BR) and hence u € HV(SY).
4.2 Spherical Harmonics

From [10] we know that the function g, u and v can be expressed in terms of

spherical harmonics. Since g € Ly(0Bg), we can write

Z Z a™Y™(§), ye€dBg (4.4)

n=0 m=—n

where Y (0, ¢) = A™P™(cos 6)e™™?. These coefficients a™ can be computed by using
= K™ / / (cos B)e™™d¢ sin Od6,
where K" = RA". Using the single layer representation for the solution u,
u(w) = / ®(z,y)g(y)ds(y), z € S".
dBg

The fundamental solution ®(x,y) is given by

m [y
)= kS S Gulkla)Y] (| |)hs><k|y|m (a) 1yl > el

n=0 m=—n

Therefore
. 00 n . . T
=ik S S @ (bl b (klgl)Y; (—|) (45)
n=0 m=—n
or
=D > wr(@)
n=0 m=—n
where

u™ = ika™j, (kr)h\V(RE).

Differentiating (4.5) with respect to r we have

dyu(z _szZ Z a™j! (kr)h D (ER)Y™ (%), (4.6)

n=0 m=—n
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4.3 Spectral Analysis

In this section we analyze the spectrum of the forward operator which maps
g in to the Cauchy data u and 0,u. First we start by looking at the singular values
of the single layer operator. Since g € Ly(0Bg), it can be shown that u € H)(S").

We can write (4.2) as

(Asg)() = / g)e@a)dsty). we S (4.7)

Here the operator A; maps g € Lo(0Bg) in to u € Hp)(S"). From (4.5) the operator

Aj has the singular values

on(A1) = k\/1+ n(n + 1)|j,(kr)h (ER)).

Similarly we can write (4.3) as

(ag)e) = [ gt Pasty). aes (45)

Here the operator Ay maps g € Ly(9Bg) in to u € Ly(S'). From (4.6) the operator

Ay has the singular values
0u(Az) = k|7, (kr)h(D (kR)].

Therefore the forward operator is given by A = [A;, A5]”, which maps the density
function g € Ly(0Bg) into the Cauchy data pair (u,d,u) € Hqy(S') x Ly(S'). The

singular values of the operator A are given by

0u(A) = kIR (KR)|V/(L + n(n+ 1)) [ga(kr)[2 + k2[5, (k) 2.

Using these singular values we can compute the condition numbers of this operator
for different values of N and k. These condition numbers are given in Fig. 4.1. By
looking at these condition numbers we can observe that when N ~ K the condition

numbers are low.
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Figure 4.1: Condition Numbers of the operator A for different values of £ and N,
with r =1 and R = 2.
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4.4 Inverse Problem

The inverse problem is to find the surface density function g from the given

Cauchy data u and v. First we start with a know density function for example:

1 for 6<

IR

9(0,9) =

0 for elsewhere

Using this density function g first solve the forward problem to compute the Cauchy
data. This Cauchy data plus noise gives us the required data for the inverse problem.
Using this noisy Cauchy data we try to reconstruct the density function g. With
increasing frequency we can notice that the error in reconstruction of g decreases.

To this end we will assume that the noisy Cauchy data is given on the unit
sphere and reconstruct density g on a sphere of radius R. Here R = 2, although ¢
does not depend on the radius, but is a function of # and ¢, which is given by

1 N n

n=0 m=—n

and the Cauchy data

—zkz Z a™j, (kYR D (2k) Y™ (0, ¢) | (4.9)

n=0 m=-—n

= zk2z Z a™j (kYD (2k)Y (6, ¢). (4.10)

n=0 m=—n

Theorem 4.4.1. Lipschitz Stability: Let k* > 3N(N + 1), then
R 0,ul*(0Br) + K*R™ [ul*(0Br) — BRI (v/Aw) ul*(0Br)

< [10:ul*(S1) + K [ull*(S") — 1| (V/Ae) ull*(SY).
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Proof. From (4.9) we can write

N n

u(e) =Y > upr(r)Y,"(0,6), (4.11)

n=0 m=—n

where u™(r) = ika™j,(kr)hi) (kR), solves the differential equation

O, (r*o.u) + (K*r* — n(n + 1))u™ = 0. (4.12)

Multiplying this equation by r=39,u™ and integrating by parts we have

(@(r%wf) + (k2r2 —n(n+ 1))u;”)7°’36ru?dr

o
I
H\»m

R
-5 m\2
= / %&«(TZ&um)Q + (K*r~t —r3n(n + 1))—&%") dr
1

R
1
= (@um?|R + _/ r O (r*ul)dr + §(l€2r*1 =7 n(n+ 1)(uy)?)IF
1

1 R
+§/ (K*r~2 = 3r~*n(n + 1)) (u™)*dr
1

= SR @ (R)— 5 (0 ()4 5 (R =R (1)) (i (R)— 5 (K —n(n+ 1)) (' (1))?

R
+% /1 (5r=2(0,u)” + (K*r~2 = 3r~"n(n + 1)) (u;")?)dr.

k* > 3N(N + 1) implies that k*r~2 — 3r~4n(n + 1) > 0 and therefore we have the

following inequality

R0y (R)*+(k* R~ =R n(n+1)) (uy (R))* < (Oruyy' (1)) +(k*=n(n+1)) (' (1))%).

n
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Using Parseval’s identity and the fact that A )Y, (0, ¢) = —n(n+1)Y,;" (6, ¢)

we can conclude the proof.

4.5 Numerical Results

1! N T S _
o4 NS SN W D S N -
% N N NS NN SN N -
S BN SR W | RS SN O
02 ------------ ------------ ----------- ------------ ----------- .
D U/\ T —
A S D I

0 0s 1 14 2 25 3 35

Figure 4.2: g and guppror for N = 32

In this section we provide some pictures and errors of reconstruction of the
density function. Here we let R = 2. First we start with a know density function g

which has a jump discontinuity, given by

1 for 0<

vl

9(0,9) =

0 for elsewhere '
Using this density function g first solve the forward problem to compute the
Cauchy data, given by (4.9) and (4.10). First for the given function g, we compute

the Fourier type coefficients a]' using

Km/ / @) P™(cos 0)e™ ™ d¢ sin Od.
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The above integral is computed by using Gauss-Legendre quadrature rule as
explained in [5].
Let

N n
Goprec8,6) = 557 0 gV (6,6).

n=0 m=—n

The graphs of g and guppros, for N = 32, are given in figures 4.2, 4.3 and 4.4.

0.9
0.5
10.7
10.6
0.5

0.4

0.3

0.2

0.1

Figure 4.3: g(¢,6)

Next using these coefficients compute the the Cauchy data using (4.9) and
(4.10). Adding noise to this Cauchy data gives us the required data for the inverse

problem. Noisy Cauchy data is given by

us = u+d|ulls (4.13)

&
€12
&

Ous = aru‘|‘5||aru||2 )
[1€]]2

(4.14)

where 9 is the percentage of noise. Using this noisy Cauchy data we try to reconstruct

the density function ¢g. This can be achieved by solving the system of equations
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Figure 4.4: gapproe for N = 32

(4.9) and (4.10) for the coefficients a]' using least squares algorithm. The results
are depicted in the following pictures and tables. Hence the reconstructed density
function is given by

N n
Gren(0.0) = 3 57 D AV (6.9).

n=0 m=—n

The errors of reconstruction given in the tables below is given by

‘ | gapprox — Grecon | | 2

errorl =
| Gapproz |2

and

Hg _greconH2

error2 =
gll2

Observing these pictures and errors of reconstruction of density, one can notice
that with the increasing frequency the error is reducing and especially in the region

where k = N we have better stability.
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K 2 4 8 16 32 64
error 1 | 0.696 | 0.258 | 0.0415 | 0.00711 | 0.00782 | 0.0162
error 2 | 0.689 | 0.256 | 0.114 0.113 0.1134 | 0.1143
Table 4.1: Errors of reconstruction for N = 16 with 1% noise
K 2 4 8 16 32 64
error 1 | 2.806E+00 | 1.508E400 | 2.898E-01 | 3.543E-02 | 3.903E-02 | 8.149E-02
error 2 | 2.719E+00 | 1.257E4+00 | 1.826E-01 | 1.185E-01 | 1.196E-01 | 1.388E-01
Table 4.2: Errors of reconstruction for N = 16 with 5% noise
K 2 4 8 16 32 64
error 1 | 5.188 | 3.044 | 0.436 | 0.0711 | 0.0779 | 0.1626
error 2 | 5.144 | 3.019 | 0.4327 | 0.1334 | 0.137 | 0.1969
Table 4.3: Errors of reconstruction for N = 16 with 10% noise
K 2 4 8 16 32 64
error 1 | 214903.1654 | 174707.1571 | 31858.44881 | 32.68496732 | 0.007921545 | 0.016294205
error 2 | 214060.6646 | 174022.2402 | 31733.55186 | 32.55683011 | 0.079494187 | 0.080752598

Table 4.4: Errors of reconstruction for N = 32 with 1% noise
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Figure 4.5: grecon for N = 16 and various frequencies, with 1% noise

0.5 1 1.8 2 25 3 345

Figure 4.6: grecon for N = 16 and various frequencies, with 1% noise
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Figure 4.7: grecon for N = 16 and various frequencies, with 5% noise

Figure 4.8: guppros for N = 16 and various frequencies, with 10% noise
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10"

Figure 4.9: guppror for N = 32 and various frequencies, with 1% noise

045 1 15 2 25 3 k)

Figure 4.10: ¢recon for N = 32 and various frequencies, with 1% noise
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CHAPTER 5
DIRECT SCATTERING PROBLEM

5.1 Introduction

In this paper we investigate the scattering of time harmonic electromagnetic
waves by an obstacle, D in R?, with the most general impedance boundary condition
known as the Leontovich boundary condition. We assume that the boundary of the
obstacle D is of class C? and let D, = (R*\ D) . We consider the exterior boundary
value problem for the Mazwell’s System

curl E —ikH =0 in D,,
curl H ++kE =0 in D,,

(5.1)

with the most general impedance boundary condition known as the Leontovich bound-
ary condition

vx H—-XNvxE)xv=0ondD, (5.2)

A >0, A\ € CYOD) and the scattered fields E°, H*® satisfying the Silver-Miiller

radiation conditions
lim (H® x x —rE*®) =0,

r—00

(5.3)
lim (E* x 2 +rH®) =0,

r—00

and from [10] we know that the Silver-Miiller radiation conditions are equivalent to

the Sommerfeld radiation condition for the Cartesian components,

4 S
lim r (8E —ikFE® ) =0,
=00 or

lim r (OH —ikH® ) =0,
[ r—oo or
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Also, from [10, pg 164] we have that the scattered fields have the following

asymptotic behavior

7

\

E*(z) = e: {Eoo(gewo(%)}, r oo,
(5.5)
H(z) — 6: {Hoo<:@>+0<%)}, r = oo,

where Eo, and H,, are known as the far field pattern or the scattering amplitude

and Hoo(Z) = & X FEoo().

Here E=FE'+ E°, H=H'+ H* and

E'(z) := Lcurl curl pe*® 4 = ik(d x p) x de’*®4,

H'(z) := curl pe’*®? = jkd x pe*®,

are the incident electric and magnetic fields, d is a unit vector which gives the direction

of propagation and p is the polarization vector.

In the direct problem we are looking for the electric field E and magnetic field H in

the space H?(B,\ D) for some p > py > 0, D C B,, where H*(D) is (H*)(D))? the

three dimensional product of standard Sobolev space. Also, E, H € C*(R?\ D)

with E°, H?® satisfying the Silver-Miiller radiation condition.

5.2 Forward Problem

Lemma 5.2.1. The scattering problem for Mazwell’s System (5.1),(5.2) and (5.3) is

equivalent to the scattering problem for vector Helmholtz equation (5.6)

(

div E =0 on 0D,
vx curl B —ikAv x E°) xv =g ondD,

lim r (0E —ikE® ) =0,
[ r—oo or
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and the equation

H = —%curl E, (5.7)

E° € H*(B,\ D), E° € C™(R®\ D). The boundary data is given by g := —v X

curl E' + ikA(v x EY) x v.

Proof: From the equations (5.1) we note that curl (curl E)—ikcurl H = curl (curl E)
K*E = —(A+k?)E + Vdiv E. But div (curl H) +ik(div E) = 0, so div E = 0, and
by taking traces we have that div E = 0 on the boundary 0D. Hence the scattering
problem for Mazwell’s System implies to the scattering problem for vector Helmholtz
equation.

On the other hand (5.6) along with H = —;curl E implies (5.1) . To this end
we let v = div E, but div E* = 0 which implies that v = div E*, due to (5.6) v is a

solution of the following boundary value problem
Av+k?v=01n D,,

v=0ondD,

and has the asymptotic behavior

(x) = e {div Eoo(2)+ 0 (%) } , r— 00,

r

which satisfies the Sommerfeld radiation condition

0
lim r (—U — ikv) =0
r—00 or
By uniqueness in the exterior Dirichlet problem for the Helmholtz equation v = 0 in

D, which implies that div E* = 0 in D.. Also, if H = —%curl E then curl H =

i

ccurl curl E = —ikE, which follows from (5.6). Hence if E solves the scattering
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problem for Helmholtz equation, then E = E'+ E* along with H = —%Curl FE solves

the scattering problem for the Maxwell’s system.

O

Now we prove existence, uniqueness and analyticity of the solution with re-
spect to k of the following non-homogeneous boundary value problem for the vector

Helmholtz equation

Av+kv=Ff inQ,

v x curl v —ikA(v X v) X v
=g ondD, (5.8)
div v

v=0 on 0Bpg,
v e H*(B,\D), f € H'(B,\ D) and g € H?(9D)
First we show that the above boundary value problem (5.8) is elliptic in the

Agmon-Douglis-Nirenberg sense, or elliptic in the general sense. Consider the follow-

ing boundary value problem:
Au=fon M, Bu=gonT. (5.9)

If the Shapiro-Lopatinskij condition holds then the boundary value problem
(5.8) is called elliptic in the Agmon-Douglis-Nirenberg sense, or elliptic in the gen-
eral sense. From [1] the Shapiro-Lopatinskij condition is equivalent to the following

condition: the rows of the matrix

bo (fla g)a’o (6,7 C)

are linearly independent modulo the polynomial a (¢', ¢). Here ag(z, £) is the principal

symbol of A, by(z,&) is the principal symbol of B, a° is the matrix of cofactor of the

elements of the matrix ag and ag (¢/,¢) = (¢ —1(£))...(C— ¢, (€))), where (1 (£)...¢,(€)

roots of the polynomial det ag(¢’, () = 0 lying in the upper half plane.
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For the boundary value problem (5.8) A = A + k2,
v x curl —ikA(vx) X v
div
Let zy € 0D be any point on the boundary, choose a coordinate system such that

B =

xo = (0,0,0) and that the outward unit normal is ¥ = (0,0,1). In these coordinate
system the principal symbols of the partial differential operator and the boundary

operator are given by:

CHea+& 0 0
ao(¢',¢) = 0 CHE+E 0
0 0 CHE+8
—iC —i& 0
b(§,O)=1 0 —i¢ —i&
—1§1 —i&  —ig
and the cofactor matrix of ao(¢’, () is
(C+&+&8)° 0 0
a’(¢,¢) = 0 (C+&+8) 0
0 0 (2 +&+ &)

One can verify through simple calculation that the rows of the matrix

—i¢ —i& 0
bo(¢,0)a° (€, Q)= (C+IEP)? | 0  —i¢ —i&
—i& —ify —iC

are linearly independent modulo the polynomial ag (¢',¢) = (¢ — i|¢'|)®. Therefore
the boundary value problem (5.8) is elliptic in the Agmon-Douglis-Nirenberg sense,
or elliptic in the general sense. Let A be the operator corresponding to the elliptic
boundary value problem (5.8) and A : H*(Q) — H"(Q) x H: (0D). Since the bound-

ary value problem (5.8) is elliptic from [2] we have that the operator A is Fredholm.
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For an operator 7 € C(X,Y), where X and Y are Banach spaces, to be

Fredholm means that

e The kernel Ker 7 = {x € X : Tz = 0} is finite dimensional,
e The range R(T) is closed in Y,

e The cokernel Coker 7 =Y \ R(T) is finite dimensional.
The index of the Fredholm operator is given by
ind 7 = dim Ker 7 — dim Coker T.

Theorem 5.2.1. Let T, S € C(X,Y) and let T be Fredholm, then there ezists a

d > 0 such that ||T — S|| < implies ind T = ind S.

Theorem 5.2.2. Let T (k) be a family of compact operators in X holomorphic for
Kk € Dy. Call k a singular point if 1 is an eigenvalue of T'(k). Then either all k € Dy
are singular points or there are only a finite number of singular points in each compact

subset of Dy.

Let S be the set of all such k which are singular points of the operator A

corresponding to the elliptic boundary value problem (5.8).

Theorem 5.2.3. If k € C\ S then there exists a unique solution to the boundary

value problem (5.8) in H*(Q).

Proof. Let k; = ik for some real k& # 0. We now show that the solution to the

following homogeneous elliptic boundary value problem is identically zero.

Av+kv=0 in{
v x curl v — ik A (v x v) X v
=0 ondD
div v

v=0 on JdBp
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Since divv = 0, —(A + k%)v = (curl curl — k})v. Multiplying this with ¥ and
integrating over the bounded domain Q = B, \ D

/(Curl curl v — kiv) - vdr = 0.
Q

Now integrating by parts using Green’s first vector theorem (see [10, pg 155]) and

using one of the vector identity (a x b) - ¢ = —(a X ¢) - b we have,
/(|curl v|? — ki|v|*)dx + /(y x curl v) - vds = 0. (5.10)
Q o9

Here 02 = 0D U S, hence

/(uxcurlv)-Eds:—/(yxcurlv)-ﬁds—i—/(uxcurlv)-Eds,

o0 oD S,

using the boundary condition we have

/(u x curl v) - vds = —ikl)\/((y X v) X V) -vds

oD

oD
= —ikl)\/ (v x v)|*ds,
oD

Plugging the above equation in (5.10) with (v x v) = vy the tangential component

and k; = ik, we have

/ (|curlv|2+k2|v|2)dx+k/\/|vT|2ds:O. (5.11)
oD

B\D
which implies that v = 0.

Let A(f) be the operator corresponding to the following boundary value prob-
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lem.

Ab=Ff inQ
831;1 - 9(91?;3 =01 on 0D
(93172 — 632’(73 = g2 on 0D

981171 + 982172 -+ 83’173 = 4Jo on 0D

For the above we have written only the principal part and for some point £ € 9D
and v = (0,0,1), 0 <@ < 1. if § = 1, then A(f) corresponds to the elliptic boundary
value problem (5.8). Also, the above boundary value problem is elliptic and hence
the operator A(f) is Fredholm. Notice that A(6) is continuous for all 0 < 6 < 1,
hence A(0) is a connected curve in the family of operators. Also, ind is a continuous
function .Therefore, ind A(f) is constant for any 0 < § < 1. By setting § = 0, we

have the Neumann boundary value problem,

Av=f inQ
O3v7 = g1 on 0D
O3y = go on 0D
0303 = go on 0D
It is well known that the index of the Neumann boundary value problem is zero i.e.,
ind A(0) = 0, which implies that the index of the elliptic boundary value problem

(5.8) is zero or ind A(1) = ind A = 0. Therefore the elliptic boundary value problem

(5.8) is uniquely solvable for k; = ik.
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Next for any k& € C we have the following boundary value problem which is a

compact perturbation of the boundary value problem (5.8),

Av+kiv— (B2 —k)v=f inQ

vxcurl v — ik A\v x v) x v +i(k? — E)Av x v) X v
=g ondD
div v

v=0 onJdBg
Let A; be the operator corresponding to the above boundary value problem,
then there exists € such that [|A; — A|| < €, which implies that ind A4; = 0 or the
index of the elliptic boundary value problem (5.8) is zero.
We can write the above elliptic boundary value problem in terms of operators,
Ay H*(Q) — H°(Q) x H2(0D) and B : H*(Q) — H*(Q) x H2(9D) and
(A +Bv=f v+ A'Bv=f

and

A'B:H* — H® - H?

and the embedding H?® — H? is compact and hence A;'B: H> — H? is compact.

O]
Let E* € H*(B,\ D) solve the following elliptic boundary value problem
AE*+K*E*=0 inQ
v x curl E* —ikA(v x E*) x v
=g ondD (5.12)

div E*
E*=0 on dBp
Let ¢ be a C*cutoff function that is 1 near D and 0 in Bz \ . Then E, = E —¢E*,

E. € H*(B,\ D), solves the following scattering problem
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AE. + KE, = f. i D,
div E, =0 ondD
vxcurl E, —ikA(v X E,) xv=0 ondD

lim r (8;7 * —ik‘ES*> =0

r—00 r

where f, = —(A + k*)(¢E.), f. € H°(B,\ D)

(5.13)

Theorem 5.2.4. If k € R and k # 0 then there exists a unique solution to the

scattering problem (5.6) in H*(B,\ D).

Proof. First, as in [9], we show that the solution to the homogeneous scattering

problem
AE +k*E =0 in D,
div E=0 ondD
vxcurl E—ikA(v x E) xv=0 ondD
i () <

is identically zero. Since divE =0, —(A + k*)E = curl curl E — k*E. Multi-

(5.14)

plying this with E and integrating over some bounded domain Q = B,\ D

/(curl curl E — k*E) - Edz = 0.
Q

Now integrating by parts using Green’s first vector theorem (see [10, pg 155]) we

have,

/(]curl E|? — K*|E|*)dz + /(y x curl E) - Eds = 0. (5.15)
Q o0
Here 02 = 0D U S,, hence

/(1/ x curl E) - Eds = —/(V x curl F) -Fds—l—/(y x curl E) - Eds,
G) aD S,

using the boundary condition and the Maxwell’s equations we have
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/(yxcurl E)-Eds:—ik)\/((z/xE) xy)-Eds+z‘k/(uxH)-Eds

Rlo) oD S,

:—z'k‘)\/|(yXE)|2d8—ik/(VxE)-Hds,
oD Sp

Plugging the above equation in (5.15) with (v x E) = Er the tangential component,

we have

/ (|curl Ef* — k?|E|?)dx — ik /(1/ x E)-Hds — z'k:)\/ |Er|*ds =0.  (5.16)
oD

B,\D Sp
Using the scattering data for non-zero real k, by taking the imaginary part of the
above equation we have
Re/(y x E)-Hds = —)\/ |Er|*ds < 0.
Sp oD
Hence uniqueness follows from [10].

We use the Lax-Phillips method to show that the scattering problem (5.13) is
uniquely solvable. Consider domain € containing D such that Qg lies in Bg. Let ¢
be a C™cutoff function that is 1 near D and 0 in By \ Q. Let Q@ = D, N Bg be the
bounded exterior domain. Now we look for a solution E, to (5.13) which is of the

form

E,=w—¢(w—v) (5.17)

where v(:, f*) is a solution to the following elliptic boundary value problem

Av+Ev=Ff inQ
v xcurl v —ikA(v X v) X v
=g ondD (5.18)
div v

v=0 on JdBg
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where f* € H°(Bg), f* = 0in D and w(:, f*) is a solution to the Helmholtz equation

in free space

Aw + K*w = f* (5.19)

which satisfies the radiation condition. Hence

AE, + K’E, = Aw + K*w — Ap(w — v)
—2V6 - V(w —v) — ¢(A(w — v) + k*(w — v))
=f+Kf
where K f* = —A¢(w — v)—2Ve-V(w — v) in Qy\ D. E, solves the equation

AE, + k’E, = f, if and only if f, solves the equation
fo=F+Kff=(I+K)Jf" (5.20)

The operator K is compact from H?(f2) into itself . Thus equation (5.20) is
Fredholm and hence its uniqueness implies solvability. To this end we let f, = 0 then
E, is a solution to the homogeneous scattering problem and therefore E, = 0, which
implies that w = ¢(w — v). From the equations for w and v one can notice that
w — v solves the homogeneous Helmholtz equation in Bg, also w = 0, v = 0 on 0Bpg.
We choose R such that —kZ is not an eigenvalue for (5.8) in 2. Hence w — v = 0 and
therefore w = 0, which implies that f* = 0.

Given any f and g, we can find f, and solve (5.20) for f* and hence find w
by solving Aw + k*w = f* and v by solving the (5.8). Therefore we can find the

unique solution of the scattering problem (5.6) using (5.17).
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Let S be the set of all k& € C such that —k? is the eigenvalue of (5.8) inside
the bounded domain 2. It is well known that S is a discrete set. From now on we

assume that k£ € C\ S. From [20] we need the following lemma.

Lemma 5.2.2. IfT(k) € B(X,Y) is holomorphic and T(rko) ™' € B(Y, X) exists, then

T(k)™! emists, belongs to B(Y,X) and is holomorphic for sufficiently small |k — ko

Let B(k) be the operator which maps the solution of the boundary value
problem (5.8) from H?(2) into H"(Q) x H%(ﬁQ). Let V' (k,:) be the inverse of B(k)
which maps H"(Q) x H%(aQ) into H*(Q2). Let A(k) be the operator which maps

the solution of the scattering problem (5.6) from H?(B,\ D) into H’() x H> (092).

Lemma 5.2.3. The map V(k,:) : H°(Q) x H%({?Q) — H?(Q) is analytic with

respect to frequency k € C\ S.

Proof. The operator B(k) is analytic with respect to k. From the above discussion
we know that the operator is invertible for some ko € R. From lemma (5.2.2) we have
that V'(k,:) is also analytic and there exists € such that B(ko) is invertible for all k
where |k — ko| < e. From the well-known elliptic estimates we know that V'(k,:) is a
linear continuous operator from H(2) x H%(ﬁﬂ) into H*(2) and f*(k, :)is analytic
with respect to k. Therefore the solution v of (5.8) which is given by V' (k,:) f*(k,:

= v(k,:) is analytic with respect to k. O
) =wv(k,:) y p

Lemma 5.2.4. The solution E(;, k) to the scattering problem 5.6 can be analytically

continued onto a complex neighborhood of the frequency ko € R.

Proof. We repeat the proof of theorem (5.2.4) tracing analytic dependence on k.
Consider domain €y containing D such that € lies in Br. Let ¢ be a C™cutoff

function that is 1 near D and 0 in Bg \ Q. Let Q = D.N Bpg be the bounded exterior
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domain. Now we look for a solution E, to (5.13) which is of the form
E,=w—¢(w—v) (5.21)

where v(:, k) is a solution to the following elliptic boundary value problem

Av+Kkv=Ff inQ

v x curl v —ikA(v X v) X v
=g ondD (5.22)
div v

v=0 on JdBg
where f* € H°(Bg), f* = 0in D and from 5.2.3 we have that v(;, k) is analytic in

a complex neighborhood of kq. Since w(:, k) is a solution to the Helmholtz equation

in free space
Aw + K*w = f* (5.23)

which satisfies the radiation condition, w(:, k) is analytic in a complex neighborhood

of ky. Hence
AE, +K’E, = Aw + kF*w — Ad(w — v)
—2Vé - V(w —v) — ¢(A(w — v) + E*(w — v))
=f"+Kf"
where K f* = —A¢(w — v)—2Ve-V(w — v) in Qy\ D. E, solves the equation
AE, +K*E, = f, if and only if f, solves the equation
fo.=f"+Kff=I+K)f" (5.24)

The operator K is analytic with respect to k. The given data f, is analytic with
respect to k and hence f* is also analytic with respect to k. Therefore E, is analytic

with respect to k.
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