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ABSTRACT

We derive Carleman estimates with two large parameters for a general partial differ-
ential operator of second order under explicit sufficient global conditions of pseudo-convexity
on the weight function. We use these estimates to derive the most natural Carleman type
estimates for the anisotropic system of elasticity with residual stress. Also, we give applica-
tions to uniqueness and stability of the continuation, observability, and identification of the

residual stress from boundary measurements.
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CHAPTER 1
INTRODUCTION

There are many results on uniqueness and stability of solutions of the Cauchy problem
for general partial differential equations. Carleman type estimates are basic and powerful
tools for proofs of uniqueness in the Cauchy problem. Carleman estimates were introduced
by the Swedish mathematician Torsio Carleman in 1939. He tried to extend the classical
Holmgren uniqueness theorem for the differential operator with nonanalytic coefficients. So
he demonstrated the uniqueness results in the Cauchy problem for a two-dimensional elliptic
partial differential equation with nonanalytic coefficients. His idea turned out to be very
fruitful and until now it has dominated the field. In 1950-80s Carleman type estimates
and uniqueness of continuation theorems have been obtained for wide classes of partial
differential equations including general elliptic and parabolic equations of second order as
well as some hyperbolic equations of second order. For accounts on these results we refer
to books [14], [19]. While still there are challenges for scalar partial differential operators,
in many cases results are quite complete. The situation with systems is quite different.
A useful concept of pseudo-convexity is not available for systems, and Carleman estimates
are at present obtained only in particular cases. A general result by Calderén in 1958 is
applicable only to some elliptic systems of first order. Only recently was there progress
for classical isotropic dynamical Maxwell’s and elasticity systems [13]. This progress was
achieved by using principal diagonalization of these systems and Carleman estimates for
scalar hyperbolic equations. An important system of thermoelasticity can not be principally
diagonalized, however it has “triangular” structure which allows one to obtain Carleman
estimates and uniqueness of the continuation by exploiting Carleman estimates for second
order scalar operators with two large parameters [2], [12], [18]. So far, Carleman estimates
with two large parameters, have been obtained only for elliptic, parabolic, and isotropic

hyperbolic operators of second order [12]. Carleman estimates are also very useful in control
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theory (controllability and stabilization for initial boundary value problems) and inverse
problems [19]. In particular, they were a main tool in the first proof of uniqueness and
stability of all three elastic parameters in the dynamical Lamé system from two sets of
boundary data [16]. Until now, anisotropic systems have been studied only in very special
cases, like small scalar perturbations of classical elasticity (with residual stress) in [24], [25],
[26], where there are Carleman estimates, uniqueness and stability of the continuation, and
identification of the elastic coefficients for such systems. Recently in [20], [21], the Carleman
estimates with two large parameters have been obtained for general second order equations.
Constants in the estimates in [20], [21] depend on partial differential operators.

In this dissertation, we are mainly interested in proving uniqueness of continuation for
systems of partial differential equations in an anisotropic case. As an important example, we
consider the system of isotropic elasticity with residual stress, R. This system was studied
[13], [24], [25] by assuming the smallness of R. We obtain Carleman estimates with two
large parameters for the general scalar differential operators of second order, including as a
particular case, operators of hyperbolic type. Applying these estimates, we obtain Carleman
estimates, global uniqueness, and stability of the continuation results, and the identification
of the residual stress, R, without the smallness assumption of R, i.e., globally. We need to
assume K -pseudo-convexity with respect to two scalar operators involving residual stress.
Also, we improve results of [20], [21], [25], [26] by showing that constants in Carleman
estimates depend only on some constants in the pseudo-convexity conditions and bounds on
the coefficients of differential operators. So, the constants do not depend on a particular
operator. We give explicit conditions of pseudo-convexity with respect to the Euclidean
metrics. By using the methods and results of [16], we additionally obtain, for general scalar
operators, Carleman estimates with two large parameters in Sobolev spaces of negative order,
and using the methods of [25], [26], we derive most natural Carleman estimates for elasticity
systems with residual stress. In [21], such estimates are obtained with additional spatial

derivatives.



In Chapter 2 we introduce the basic notions of spaces of functions, which are sufficient
for understanding this dissertation. We give a discussion on how differential operators with
variable constants interact with multiplication by weight functions. A special integration
by parts technique is introduced, which is crucial for proving the Carleman estimate for a
general operator. Pseudo-convexity, one of the prerequisite notions of Carleman estimates,
is introduced and we give several estimates for systems with examples. Finally we discuss
the linear elasticity system and energy estimates.

In Chapter 3 we obtain pseudo-convexity conditions for a general second order oper-
ator. So we derive Carleman estimates with two large parameters. The known conditions of
pseudo-convexity in the anisotropic case are hard to verify, in particular with regard to the
hyperbolic operator. We also give explicit sufficient global conditions of pseudo-convexity of
the weight function. The main goals of this chapter are to prove strong Carleman estimates
for general scalar operators by the technique of differential quadratic forms and Fourier anal-
ysis, and to obtain weak Carleman estimates in Sobolev spaces of negative order with special
micro-localization arguments.

In Chapter 4, to easily use Carleman estimates for scalar equations, we extend the
elasticity system to a new principally triangular system where the leading part is a special
lower triangular matrix differential operator with the wave operators in the diagonal. Com-
bining estimates of scalar operators, we prove Carleman estimate for the elasticity system
with residual stress, which demonstrates the use of two large parameters.

In Chapter 5 we show uniqueness of continuation results in the Cauchy problem. We
prove Holder and Lipschitz stability estimates for the lateral Cauchy problem.

In Chapter 6 we discuss the inverse problem. We show uniqueness and stability of
the identification of six functions defining residual stress from one set of special boundary

measurements.



CHAPTER 2
PRELIMINARIES

2.1 Spaces of functions

We introduce the basic spaces of functions, which are sufficient for the understanding
of this dissertation. Both data and solutions for problems in partial differential equations are
functions defined on certain domains. In order to formulate precise theorems of uniqueness,
it is necessary to specify the spaces where these functions lie.

A Sobolev space is a vector space whose elements are functions defined on domains
or surfaces in R", which is the n-dimensional Euclidean space of points x = (z1, 22, ..., x,),
and whose partial derivatives satisfy certain integrability conditions. Throughout this disser-
tation the term domain, denoted by the symbol €2, refers to a nonempty open connected set

a2,

in R". Consider a point x = (x1,2s,...,z,) € R" its norm is given by |z| = (ijl ;5

The inner product of two points x and y in R" is x - y = Z?Zl x5y

If @ = (ay,...,q,) is an n-tuple of nonnegative integers o, we call @ a multi-index.

Qn

We denote % = xi" - - 20,

which has degree |a| = } ", a;, and also denote the product

al =a;!- - a,l. With D; = —i0/0x;, we set
D = D ... pon,
Here, i is the imaginary unit. Similarly, 0; = 0/0z;, and
9% =0 ... oon

denotes a differential operator of order |a|. Note that D®0y = 4.

If a and (8 are two multi-indices, we define addition and multiplication by

a+ﬁz(a1+/8l7"'7an+/8n)g kOé:(kOél,,k?Ozn)



We say that 8 < a provided §; < «; for 1 < j < n. In this case o — 3 is also a multi-index,

and | — G|+ 6| = |of. If 8 < a, we let

(5) - 11(3) -7~

Otherwise we set (g) =0.

We also recall the Leibniz formula
D*(wo)(x) =Y (“) DPu(z) D Pu(x)
Bl g
which in particular is valid for v € C*°(Q2) and v € D'(Q).

We introduce the derivatives of P(§) = > an&*:

oIA| B ol amp
i e

Ba

POg) =

If a, is a locally finite family of elements of D’'(€2) we can associate with that family the

linear differential operator

|
POD) =S —2 4, Do,
;(@—5)!

The Leibniz formula generalizes to

P(uv) = Z %DﬁuP(ﬁ)

In general (D?P)(D)u # DP(P(D)u), since by the Leibniz formula
a+pB—k
Z Z k! g k)! a)(D u).
a kZ<p
If O ¢ R™, we denote the closure of Q in R™ by . If u is a function defined on 2, we

define the support of u to be the set

supp(u) = {z € Q:u(z) # 0}.
We say that u has compact support in Q if supp(u) C Q and is compact.
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For the rest of this section we define €2 to be an open set in R", let m be a nonnegative
integer, and let s be a real number.
Spaces of continuous functions

We define the following spaces of continuous functions.

C™() is the space of all functions u with all their partial derivatives D*u of order
la| < m for nonnegative integers, continuous on €. Note that C=(Q) = (. °_,C™(Q),
CY(Q)) = C(Q). Since Q is open, functions in C™(Q) need not be bounded on 2.

Cy*(Q) is the space of all functions which have continuous bounded derivatives up to
order m. CJ*(2) is a Banach space with norm given by

lullep@) = D sup|Du(x)].

laj<m S

Ce(Q) (or equivalently D(2)) is the space of infinitely differentiable functions in
C*(Q2) with compact support in . Elements in C§° are called test functions.
C*(Q) is the space of Holder functions of order A\, 0 < A < 1, on (), i.e., the space of

functions u continuous on 2 with the norm

lu(z) — u(y)|
ulleaay = |ul|lcg +  sup ————5 < oo.
ullex@) = llulle@) i 0 o=y

C™HA(Q) is the space of functions u with finite norm
lullcmin@ = D 10%ullea@) < oo
laj<m
S(R™) is the space of all rapidly decreasing functions on R™ which are of class C*
and such that |z|*|D%u(z)| is bounded for every k& € N and every multi-index a.
Spaces of integrable functions
We define the following spaces of integrable functions.

LP(Q) is the space of all measurable functions u defined on §2 for which

/Q lu(z)Pda < oo



where 1 < p < co. LP(2) is a Banach space with norm given by
1
||| r () = (/ |u(x)|pda:) v < 00, 1<p<oo.
Q

If p =2, L*(Q2) is a Hilbert space, where the scalar product corresponding to the norm is
given by
(u,v) = / u(z)v(x)dz.
Q
L>(1) is the space of all measurable functions u on 2 which are essentially bounded

on € if there is a constant K such that |u(z)| < K almost everywhere on 2. This is a Banach

space with the norm given by
||| Lo () = esssup gealu(x)| < oo.

LP

1c(£2) is the space of all measurable functions on € with |u(x)|? is locally integrable

such that
/ lu(z)Pdr < oo
F

for every compact F' C ).
Space of distributions
We define the following spaces of distributions.
D'(R2) is the space of all distribution (generalized) functions v on €. The derivatives

of u with respect to x; are defined as

9, 0
(v 0) == (. 52

It is easy to see that % is again in D'(Q2). For higher derivatives,
(Du, ¢) = (—1)1*(u, D*¢).

Notice that every element of LP(€) is locally integrable in 2, so it defines a distribution in
Q). This means that LP(Q) is a linear subspace of D'(Q).
S'(R™) is the space of tempered distributions on R", i.e., the set of all continuous

linear mappings from S(R™) to R (or C).



Sobolev spaces
Sobolev spaces are useful subspaces of LP-spaces equipped with structures of Banach

spaces or Hilbert spaces. We define the norms

a 1/
HuHm,p = ( Z HD U||§) p7 I<p<o (2~1)
0<|ar|<m
and
e Lo (2.

H™?(Q) is the completion of {u € C™(Q) : ||u||;m,, < 00}. Notice that for p = 2 this

is a Hilbert space with an inner product

(U, V) = Z /QDau(:v)DO‘v(x)dm.

|| <m
We use the notation H™ = H™? with the norm || - ||y = || * [|m, 2-
H{(Q) is the closure of D(Q)(= C§°(2)) in H™(Q).
H,™(82) is the dual space of HJ*(Q2), i.e., the set of all continuous linear functionals
(mappings) on HJ*(Q2).
Define H*(R") by {u € S'(R") : / (1 + €]7)*2a(&)e™¢7de € L2 (R")}, s € R,

where 4 is the Fourier transform of u. We define the norm

el ey = (27)°" / (1+ [€P)la(e) .

We also introduce some weighted norms in this space. For 7 > 0, H*(R") is the same space

as H*(R"™) with the norm
JulFyg ey = (207" [ (72 IePla) P
Define W™P(Q) by {u € LP(Q) : D € LP(Q), 0 < |o] < m}.

This is a Banach space with norm defined by (2.1) and (2.2). The case p = 2 is most useful.

To simplify the writing, we put
wm™2(Q) = H™(Q),
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which is a Hilbert space.

Wy is the closure of C§°(2) in the space of W™P((Q).

Lipschitz domain
Consider an open set ) and its boundary 02 = I'. The simplest case of a Lipschitz

Q occurs when there is a function ¢ : R*! — R" such that
Q={zeR" 2, <¢() foral 2/ = (v1,...,7,,) € R" '}
If there is a constant M such that
|6(z") — ()| < Mz’ —y'| forall 2,y € R",

then we say that ¢ is Lipschitz and €2 is a Lipschitz hypograph.
The open set € is a Lipschitz domain if its boundary I' is compact and if there exist

finite families {w;} and {€2,} having the following properties:

1. The family {w;} is a finite open cover of I', i.e., each w; is an open subset of R",

r Q ijj.

2. Each €2; can be transformed to a Lipschitz hypograph by a rigid motion (rotation and

translation).
3. The set  satisfies w; N ) = w; N2, for each j.

Extensions

The proofs of Theorem 2.1 can be found in [31], [35]. It is also observed in [31] that
the operator extending u as 0 outside ) is continuous from H*(Q2) into H*(R") if and only
ifo0<s< %

Let B(0; R) be the ball of radius R centered at a point 0, v be the unit exterior

normal to the boundary of a domain, and diam(2) be the diameter of the domain 2.



Theorem 2.1 For any set Q) C R” there is a linear continuous operator E mapping C™*(Q)
into C"™A(R") such that Eu = u on §. Its norm depends on m, X\, and diam (). For any
Lipschitz Q € Q C B(0; R) and m nonnegative integer there is a continuous operator E
mapping H™? into H)""(B(0; R)) such that Eu = u on Q. If 9Q € C™, then there is a
similar continuous extension operator from H*() into H{(R™) when s < m and a bounded
extension operator from H™ /2(0Q) x --- x HY?(0RQ) into H™(Q) such that the extended

function u has the given Cauchy data (u,...,0™ 'u) in this product of spaces.

Embeddings
The embedding for Sobolev spaces are essential in the study of differential and integral
operators. The classical results were basically obtained by Sobolev in the 1930s.

The Sobolev embedding theorem states that if m > k and m —n/p > k — n/q then
wmp C Wk

where m, k € R.

The following theorem is given in [1].

Theorem 2.2 For any bounded Lipschitz domain §) there is a constant C(p,q, \) such that

for all functions u € H™?(Q) we have
[ull¢(€2) < Cllullm,p(€2), ¢ <np/(n—mp), n>mp,
[ullr,q(2) < Clluflm, (), k<m, p<g n(l/p—1/qg) <m—k,
[ullx(€2) < Cllullm,p(€), A <m —n/p, n < mp.
Moreover in case of strict inequalities corresponding embedding operators are compact.

Traces

In the boundary value problem for partial differential operators defined in a domain
2, it is important to determine the space of functions defined on 02 that contain the traces of
functions u in W ?(§2). Asshown in the Sobolev embedding theorem functions in W™ ?(R™),

mp < n have traces on R"~! that belong to LY(R"!) for p < ¢ < (n — 1)p(n — mp).
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Theorem 2.3 For any bounded Lipschitz domain Q@ C R™ and any (n — 1)-dimensional
Lipschitz surface S C Q there is a constant C(S,m,p,q) such that for all functions u €

H™P(Q) we have
lull(S) < Cllullm,p(R), 1<mp<n, ¢g<pn-1)/(n—mp), Se€C™,
ul[(1/2)(S) + [Vl (—1/2)(S) < Cllulla)(€).

The results for H™P?(2) spaces can be found in [29, chapter 2.2], while the claim about
H™(§2) spaces is proven in [31].
Integration by parts

For convenience we recall also the integration by parts formula,

/uﬁjvz/ uvy; dF—/ajuv, (2.3)
Q o0 Q

which is valid at least for functions u € H»?(Q), v € HY9(Q), 1/p+1/qg =1, 1 < p, and

bounded domains €2 with piecewise Lipschitz boundaries 0f2.

2.2 Fourier transforms and differential operators

If w € L'(R"), then the Fourier transform @ is the bounded continuous function in
R"™ defined by
(&) = /e‘i<x’§>u(:c)d:c, £ eR™ (2.4)

It yields an isomorphism & — &, with Fourier’s inversion given by
u(x) = (2#)”/ei<”’§>ﬁ(f)df, r € R", (2.5)

where < z,£ >= Z;;l x;&; denotes the inner product between the vector x and the covector .

Now consider a linear partial differential operator

P(z,0)= > b*(x)0° (2.6)

laj<m

11



of order m with variable coefficients. If all of the coefficients are independent of x, then P
is said to have constant coefficients, and if all of the b*(z)’s are real valued, then P is said
to have real coefficients. The symbol of P is given by
P(z,§) = ), b(x)(i€)",
lal<m
where P is a polynomial in ¢ of degree m with coefficients depending on x.
We now use the notation D; = —id;. The differential operator (2.6) can then be

represented in another way:

P(z,D)= Y a®(x)D" (2.7)

|a|<m
is of order m with variable coefficients a®(z) = il*6®(z). The differential operator (2.6) is

useful when handling real valued functions, while (2.7) is convenient in Fourier analysis.

Lemma 2.4 The Fourier transformation u — 4 maps S continuously into S. The Fourier

transform of x;u is —Dju, and the Fourier transform of Dju is u(§).

Proof of Lemma 2.4 ([15, page 161])

Differentiate (2.4) with respect to £, then we obtain
Do) = [t (i) (-im)* u(w)de

= /e‘i<x’5>(—x)°‘ u(x)dx, (2.8)
where the integral obtained is uniformly convergent. Hence u € C'*° and D®u is the Fourier

transform of (—x)%u. We also obtain

EDgu() = [ ¢ E D (o) ula))da (29)
using integration by parts. Hence

sup [€7D*a(€)| < Csup(l + )" DP (—2) ul))|

12



where C' = [(1 + |z]|)™" 'dx. Therefore the Fourier transformation maps S continuously

into S. When a = 0 we obtain from (2.9)

Pa(¢) = / e~ <% DPy(x)d, (2.10)

where £74 is the Fourier transform of D?u. We complete the proof of Lemma 2.4. []

We have thus
> a*(@Dwu(§) = Y a*(@)Eale). (2.11)

la|<m la|<m

The space S is closed under differentiation, multiplication by polynomials, Fourier transform,

and the pointwise product and convolution of elements of S, and so (2.8) and (2.10) hold

for functions belonging to S. Also the Fourier transform is a linear isomorphism & — S.
Consider the differential operator (2.7), in an open set @ C R", of order m, with

variable coefficients a® € C*(Q) (a # 0), a® € L2 (2). We denote the principal part by

loc

P(§) = Pu(x,8) = > a®(@)¢”, z€Q, {eC” (2.12)

|a|=m
We now discuss how the exponential weight functions w = e”¥ interact with the

differential operator P of order m. Let ¢ € C™(Q) and 7 € RL.
Lemma 2.5 Let u € H™()). The substitution
u=-e "
transforms P(x, D) in (2.7) to P(x, D +itV(x)).
Proof of Lemma 2.5
With a substitution u = e~ "%v in (2.7)
P(z,D)(e"™%v) = > a®(x)D*(e"v).

This implies
P(z,D)v = Z a®(x)e™?D%(e ).

13



We need to show

e’ DY(e"™%v) = (D — 7Dp)%; (2.13)

we prove this by induction. For |a| = 1, (2.13) holds since
e™?Dj(e"Pv) =e"?(e""?Djv +e TP (—1)D;pv) = (D; — TD;jp)v.
Assume (2.13) holds for |a| = n, n € N. Then with |¢/| =1
(D — 7D@)*
= (D — D)™ (D — 7Dp)v
= (D;j = 7Dj) (77 D ("))
= YD (e7™%0) + 7D;pe™ D (e7Tv) — TD;pe™ D (e %)
— TP DAY (7 TPY),

Hence (2.13) holds for |a| = n + 1. By induction we have (2.13). O
Let ¢ € C! be a real valued function defined in a neighborhood of a point z° and

assume that V(z°) # 0. Then the equation

defines a C'-hypersurface in a neighborhood of 2°. The part of a neighborhood of 2° where

o(x) > () is called the positive side of the hypersurface.

Definition 2.6 Given ¢ € C'(Q) with Vp(2°) # 0, if Pn(2°, V(2°)) = 0, the surface
S={reQ:p()=¢")} is called a characteristic surface at x° € Q with respect to P of
order m. If it is possible to find ¢ so that P, (V(p + e)) is not O(?) at 2° when ¢ — 0,

then the surface is said to be of simple characteristic.

A surface S is called a characteristic surface if it is characteristic at each of its points.
Consequently, a surface S is called noncharacteristic at x° if P, (2% V(2°)) # 0. That is,

a surface S is called a noncharacteristic surface when it is noncharacteristic at every point.
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For the method of integration for the characteristic equation P,,(Vy) = 0, assume
that P,, has real C?-coefficients in an open set € C R™ and that ¢ € C?((Q) is a real valued
function whose level surfaces are simple characteristic everywhere in ). Differentiation of

the equation P, (z, V) = 0 gives

n

> (0,0k0PY (2, V) + Poy (2, Vip)) = 0 (2.14)
4. k=1
where
; 0P, (x, P, (x,
P (x,€) = #, P, i(x, &) = #. (2.15)

We now see a necessary condition for a differential equation P(z, D)u = f to have
a solution locally for every f € C°°. And we shall see that a strengthened form of this
condition is also sufficient to imply local existence of solutions for every f, provided that

there are no multiple real characteristics. For (2.12) we let

Po(x,8) = Y a(z)¢

|a)l=m
and use the notations (2.15).
Let us consider
Com1(2,8) = Y (P (2,8) Py j(2,€) — PY(2,6) P, (1, ). (2.16)

7j=1
This is a polynomial in £ of degree 2m — 1 with real coefficients. If the coefficients of P,, are

real or constants, Cy,,_ is identically zero.

Theorem 2.7 Suppose that the differential equation
P(x,D)u=f

has a solution u € D'(QY) for every f € C3°(2). Then we have

Cgm_l(l‘,g) =0 f Pm(fE,f) =0, e, £eR". (217)
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We notice that the meaning of (2.17) is the commutator
P(z,D)P(z, D) — P(z,D)P(x, D) = C(z, D)

of order < 2m — 1, and Cy,,_1(x, D) is the sum of the terms of order 2m — 1 exactly in
C(z, D) [14, page 157].

The following theorem can be obtained from Theorem 2.7 [14, page 163].

Theorem 2.8 Suppose that the coefficients of the operator P(xz, D) of order m are in C*°(Q2)
and Cop_1(x,§) # 0 when Py, (x,§) =0, z € Q, £ € R™ in any nonvanished open domain
w C Q. Then there exist functions f € S() such that P(x,D)u = f does not have any

solution u € D'(w) in w C Q.

Example : (This example is given in [14].)

For the differential operator in R?
P(ZB, D) = —iDl + Dg — 2([131 + iﬂfg)Dg,

we have Cono1(x,€) = i((2i&s + 2i& + 0) — (—2i& — 2i&5 + 0)) = —8&. If we choose
& = —2m9, & = 2z, and & = 1, then Pi(z,§) = 0 but Cy,—1(x,§) # 0. Hence the
hypotheses of Theorem 2.8 are satisfied for every (2.

Now we know that existence of solutions in €2 of the differential equation P(z, D)u = f

requires that

Com1(2,6) =23 Y Py j(w, )P (2,6) = 0 (2.18)
1

if Pn(x,§)=0, £€R* xe€.

Definition 2.9 We say that P(x, D) is principally normal in Q if the coefficients of P,, are

in C'(Q) and there exists a differential operator Q,_1(z, D), homogeneous of degree m — 1

in D with coefficients in C*(Q), such that

Com-1(2,8) =2R P (2,8) Qm-1(z,§), &€R™ (2.19)
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In particular, P is principally normal if Cy,,_i(x,£) = 0 identically, that is, if the
commutator of P and its adjoint with respect to the form [ uvdz is of order < 2m — 2.
We can then take () = 0. Note that every operator with constant or real coefficients is
principally normal. It is clear that Q,,_; is uniquely determined by P,, unless P,, and P,

have a common factor, that is, P,, has a real factor.

2.3 Differential quadratic forms

We already introduced differential operators and their symbols in Section 2.2. One
of the techniques in the proof of estimates would be an integration by parts in the integral.
This technique is based on a concept of a differential quadratic form and its properties. Here
we follow [14].

First we introduce a differential quadratic form

F(D,Dyutt =Y _ aagD*uDbu, u € C(R") (2.20)
a?ﬂ

with constant coefficients a,5. Here the sum is finite. We associate with F(D, D) the form

F(G,Q) =) aasC*¢P, (eC, (2.21)
which we call its symbol. Since
DeEi<TC> = DML Denei<nl> = (Ld)) .. (—id,)ei < ¢
= (1. (Ongi<Tl> o (agi<e >

and

1T (> i<z, (> — (i<, (> _ gi<e, 2ime> _ —2<a, Im(>
for u = '<*<> we have that

Z aapDuDBu = Z aapCuCPfu = un Z aaﬁfaf_ﬂ

a, 3 a, B a3

_ 6_2<x’lmC>F(C, 5)
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It is obvious that the correspondence between the differential quadratic form (2.20) and the
polynomial (2.21) is one-to-one.

The form (2.20) is said to be of double order (p; m), m < u < 2m, referring to p
as the total order and m as the separate order of F, if in (2.21) we have |a| + |3] < p and
la| < m, |B] < m when a,z # 0.

Now for using the technique of integration by parts, let F(D, D)ut be the vector

divergent form with differential quadratic forms G*(D, D)ut, k = 1,...,n as components,
that is,
R
F(D,D)ui = ; B (G¥(D, D)ua). (2.22)
Since
0

i (i) = Dy () = (D) + u(Dy)] = (D) — (D).

the identity (2.22) is equivalent to the algebraic identity
F(G,¢) =) (¢ — GG (G Q). (2.23)
k=1
If F' can be represented as (2.22), from (2.23) it follows that

F( € =0, {eR™ (2.24)

/u@dw = (2%)‘"/@56&.

This is easy to show: by using the Fourier inversion formula

If u,v € S(R"),

/ u(z) v(z) de = / ((2m)™ / W(&)e" <" d¢ Yu(z) da




Hence by using this Parseval formula

[ P, Dyundz = 2n) [ Fe. 9 lato)Pds. we Cre)
The following lemma shows that (2.24) is the sufficient condition of (2.22).

Lemma 2.10 Suppose (2.24). Then there exist differential quadratic forms G*(D, D)uu

satisfying (2.22). And we have

10 . . n
GHE &) = — 57 —F(E+in, €—in)p=o, £ER™ (2.25)
2 0ny,
Furthermore, if F is of order (;1; m), then G* is always chosen of order (. — 1; m') where

, {m—l if w<2m (1) (2.26)

m =
m if w=2m (2).
Proof of Lemma 2.10 ([14, page 188])

Let ¢ = £+in, {,n € R*. By the assumption (2.24), the Taylor expansion of
the polynomial F'(§ + in, { 4 1) /m=0 has no independent terms of . Hence we can find
polynomials g*(&,n) such that

F(+in E+in)mo = > mg"(& n). (2.27)
k=1

Using &, = %(Ck + () and 7y, = —%((k — (}) we have

S g (€ m) = 030G~ G—5)gM(E )
k=1 k=1
Now we set
(—%)g’“(& n) =G, Q) (2.28)

to get the equivalent algebraic identity (2.23) of (2.22). Thus we complete the sufficiency of
(2.24).

Let us differentiate (2.27) with respect to 7; then by the product rule
S o FEtin EFinmmo = > g (&) + D ma—g"(& n).
k=1 ank k=1 k=1 ank

19



The second term on the right vanishes since we put 7 = 0. Hence we have each component

a -
a_nkF(g +in, £+ 1) =0 = 9" (& n).

We get (2.25) from (2.28).

To prove the last statement in this lemma, we need to know about congruence class
of order. Consider two polynomials F (¢, ¢) and Fy((, ¢) of order (u; m). If F = Fy — Fy
can be written in the form (2.23) with G* of order (u — 1; m’) where (2.26), we say these
two polynomials are congruent and denote F} = F5.

Claim :

Suppose the order of (;; m) such that |o/| + || = || + |#”| < p and each length
'], 18], ||, and |8"| < m. Then ¢*'¢" = ¢*"¢7".

Proof of Claim

(1) Consider the first case u < 2m. Then either |o/| or || is < m. Without loss of

generality, let |o/| < m. We need to show that the congruence class of (*'¢? does not change

even though one factor in 7' (respectively, Co‘/) is replaced by its complex conjugate. By

replacement, the statement

¢ = ¢ G
is modified to be

¢ = GG G
Then

Y = =N (G - e T G
This can be in the form (2.23) with G* of order (1 —1; m —1). Hence these two polynomials
are congruent, i.e., (*'¢% = ¢*'(?". Letting |#'| < m, the proof is analogous.
(2) Consider the second case p = 2m. It is invalid if |o/| + |”] = |68'| + |8"| = p.

Because |o/| = pu— ||, |#'| = p — |8"] implies || + |B'] = 2u — (|| +|8"]) < p. This is a
contradiction with || + |3”| > p. Hence it is only valid for |o/| = || = || = |5"| = m.
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Now we need to show that the congruence class of ¢*'¢? does not change even though one
factor in ¢#" and one in ¢ is simultaneously replaced by its complex conjugate, i.e., by

replacement, the statement

O = Ijk...@mgll...(jj..[ﬁm
is modified to be

P = ¢ "‘_gk"'%’”@l"‘Cj""C_g{”-
Using the identity

—g/

/. _ﬂ{ 7 ﬂ{ ’ 7 : _5/_ !
C}jkgjj _CJ(:ICC]‘] = ( l(:k - I(:k)gjj - (CJ _ij> /?k

we obtain
Ca/gﬂ/ . Ca//é—_ﬁ//
r_pt —o! B , o " =8 A o
= (g;‘kgjﬂ — C;?ij]) o G G o "Cjilleﬂl . ..Cgm
’ ! 76" ﬁl‘ 76/‘ ! 7 a/_ a/ , 7ﬂ/ 76/‘, 75/ —
= ((GF = GG = (67 = GGG - G Gl - GG G2 G - G

This can be in the form (2.23) with G* of order (u — 1; m). Hence these two polynomials
are congruent, i.e., (*'(% = ¢*'(P". This completes the proof of the claim. O

From our claim ¢ (% = ¢*" (%" it follows that every differential quadratic form F} of
order (y; m) is congruent to a sum of the form
Fy(¢, ¢) = Z 05" C"
loe|+18I1<p, || B]<m
of order (1 ; m) where there is at most one different non-zero term with the same multi-index
sum «+ (3 of a differential quadratic form F. Notice that F1(£, £) = 0 implies F5(¢, &) = 0.
This means all a,3 must be 0. Hence F; = 0. This completes the proof of Lemma 2.10. [

We now discuss a differential quadratic form with variable coefficients

F(x, D, D)uit =Y _ agg(x)D*uDPu, u € C3°(R"). (2.29)
a, B
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We associate this form with the polynomial

= aas(x)C¢P, (€T (2.30)

The following lemma shows the existence of lower total order differential quadratic

form.

Lemma 2.11 Suppose F(x, D, D)ui is a differential quadratic form of order (u; m) with
coefficients in C7(Q) , v > 1 and Q@ C R", and

F(z,6,§) =0, x€Q, £€R". (2.31)

Then there exists a differential quadratic form G(z, D, D)ut of lower total order with coef-

ficients in C71(Q) such that
/F(:B,D,D)uudz: /G(:B,D,D)uudx, u € Cg°(R™). (2.32)

Notice that G can be always chosen of order (u— 1; m') where

-1 i <2 1
m if w=2m (2).
Furthermore, we have
Gle6 ) = 53 g P in €= in)mo, € € R (2:34)
Proof of Lemma 2.11 ([14, page 189])
Let Fi, F5, ..., Fy be a basis in the finite dimensional vector space consisting of all

differential quadratic forms of order (u; m) with constant coefficients satisfying (2.24). Then
we can find differential quadratic forms Gf, j=1,...,N, k=1,...,nof order (u—1; m’)

where (2.33) so that

k R
Gi(D,D)uu, j=1,...,N. (2.35)



By assumption (2.31) and notion of basis, coefficients a;(x) € C7(Q2) are uniquely
determined, so

F(z,D,D)uu = zn:aj(:v)Fj(D,D)uu. (2.36)

Using (2.35) we have a vector component form

N n
F(z, D, Dyuti = ) _ a;(x) a%cf(z), D)ui.
j=1

k=1

Then using integration by parts

/F(:p, D, D)uudz

/89 Z a;(x)G;(D, D)uudz — /Z Z g;i )G%(D, D)uudz.

7j=1 k=1
Since u € C§°(2), the boundary term vanishes. Hence we obtain (2.32) with

G(z, D, D)uii = — Z > %(x)c’?(z), D)ui. (2.37)

=2

Take ( = £ 4+ and put n = 0. Then
N n 9
Using (2.25) from Lemma 2.10 we have

0
G(x,6,€) = ZZ o )5, i€+ im, €= in) o (2.38)

From (2.36) we consider the corresponding polynomial

()= Zaj(x)F](C ()

Then we obtain by differentiations

0 0 _
Fle,¢.0) = Z T ()5, F (G0, (2:30)

Using (2.39) in (2.38) we finally obtain (2.34). O
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2.4 Pseudo-convexity and Carleman estimates

In this section, we introduce the concept of pseudo-convexity needed for Carleman
estimates. The choice of the weight function in Carleman estimates is obvious for parabolic
and elliptic operators but is not for hyperbolic operator, in particular, for anisotropic ones.

Let ¢, 1 € C? be real valued functions defined in neighborhood U of a point xy and
V of a point 2°, V(zg) # 0, and V)(2") # 0. Then the sets

S={aeU: p(z) = plxo)}, (2.40)

S ={zeV : vx) = h(z")} (2.41)
define non-singular oriented level surfaces in U and V. Throughout this section we consider
C%-surfaces given as level surfaces of a real valued function in C%(Q2). Our purpose is to
show that solutions of a differential equation Pu = 0 vanishing on the positive side {z :
(x) > (2°)} must vanish in a full neighborhood of 2° when suitable convexity conditions
are fulfilled. These must only depend on the surface (2.41) and not on the function ¢ used

to represent it. If ¢ is another such function then /(z%) = v ’(2%) for some v > 0, and

Y 00kp(@)yszn =7 Y 05060 (2°)y 2

if Y y;0;0(2%) = 2.0k (2%) = 0, but not for all y, 2 € R™. This is the reason the following

definition contains only a part of the necessary conditions for Carleman estimates.

Definition 2.12 Suppose that the coefficients of P,, are real-valued. A function p € C*(Q)

1s called strongly pseudo-convex on S with respect to the differential operator if the conditions
P,(x,{)=0 (2.42)

forz e Q, ( =&+ itV(x), |¢] =1 with £ € R"\{0}, and 7 # 0 € R! imply that

oP, 0P, 1. _ 0P,

i ), for some positive number §.
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Definition 2.13 A function v is called pseudo-convex on Q with respect to P if 1 € C*(Q),
P(z,Vi(x)) #£0, z € Q, and

8POP opP _ OP 0*P
2000 g 5 @.8) + ) (505 = 0P acacmwx,&bo (2.44)

for any € € R™ and any point x of Q0 provided

Zagj z,€)0)(x) = (2.45)

For uniform pseudo-convezity, under the same assumption (2.45), a function 1 is

called K -pseudo-convex with respect to P if

aP or or _ oP 9*P
2 00kile)grae(@.6) + ) (Gedige = P grar 0.8 = KIEP (246)

for some positive constant K.

Notice that the constant K in pseudo-convexity (2.46) depends only on an operator
P. Hence the constant C' in the stabilities based on Carleman estimates depends only on
some constant K in the condition of pseudo-convexity (2.46).

Surfaces S given by (2.40) are called (strongly) pseudo-convex level surfaces if a func-
tion ¢ is (strongly) pseudo-convex. The following theorem shows the stability of (strongly)

pseudo-convex level surfaces.

Theorem 2.14 Suppose the surface S is (strongly) pseudo-convex with respect to P at x°.
Then there exist a neighborhood w of ° and a positive number € such that every ¥ € C?*(w)
for which

|ID*(p— )| <e in w, |af <2 (2.47)

has (strongly) pseudo-convex level surfaces with respect to P everywhere in w.

This result is proven in [14, page 204].
Note that when m = 1 there is no difference between pseudo-convexity and strong

pseudo-convexity. Since & > 0k P, %12 = 0 when P, = 0, equation (2.43) reduces to (2.44),
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in view of the definition of a principally normal operator, i.e., every operator whose coeffi-
cients are real valued is principally normal.
The following theorem tells us for second order operators pseudo-convexity of 1 im-

plies strong pseudo-convexity of ¢ given by ¢ = e?¥ for large 7.

Theorem 2.15 Suppose P is a partial differential second order operator with real-valued
principal coefficients. Then for operator P the pseudo-convezity of 1 € C?(Q) implies the
strong pseudo-convezity of ¢ € C*(Q) with ¢ = e for large ~y. And if the function ¢ €

C?(Q) is pseudo-convex with respect to P on ), then there are constants C, Co(v) such that
732|a/ |0%u|?e®™ < C(/ ]Pu|262w+/ (Tqu]2+T3]u\2)62w) (2.48)
Q Q 09
when C < vy, Co(y) < 7, la| <1, for all functions u € H*(Q).

This result is proven in [19, page 53].

Example 1 : A partial differential operator P is called elliptic on Q if
P(z,6) #0 for any £ € R"\{0} and any z € .
One example of an elliptic operator is
Pu = —div(aVu) +cu, a>¢gy>0 in Q (2.49)
where a € C1(Q), ¢ € L>=(9),

div(aVu) = a Z Pu+ Z 0;a0;u.

Jj=1 J=1

For the principal part we just take the higher order term of (2.49), so

Pu(z,&) =a(§ + &+ + &)

Then any function ¢ € C?(Q) with Vi # 0 on Q is pseudo-convex with respect to A on
Q. More generally, for every second order elliptic operator, any function ¢ € C%(Q) with

V| > 0 on Q is pseudo-convex.
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Example 2 : Consider an isotropic hyperbolic wave operator

P =apd} — A+ b+, (2.50)

Q=Gx (-T,T) CR" a9 € C(Q), ap > 0, b;, c € L>(). Then

We need a suitable function ¥(z,t) in Q. = QN {¢ > e} satisfying the pseudo-
convex condition adjusted to space-time geometry. The following is described in [19, page

66]. Motivated by speed of propagation concept we choose
V(x,t) = —0%t + |z — Ba]?, (2.51)

where 6 and [, are constants.

The conditions (2.45)
aplo =& F G =1, a6t + & (v Fa) =0
yield the left side in (2.44)
(20360) (20360)(~26°) + 23 (-2
j=1

+(4a08ta0§0)(2ag§0) — (2(10(%(1053)(2(13)(-29%5)

n n

+ > (4agdkaoko)(—26k) (—26°1) — > (2a00ka083)(—2)2(xx — fn)
k=1 k=1
= —80%a5(a3es) + 8(&1 + & + -+ &) — 8agdiant’E]
+1660°tap&oVag - € + 8ap&iVag - (z — f3,)
= 8(—0Paj + 1 — agdraottd® + 260*tagéoVag - & + alOVao (z = Bn))

1
=8 (1 + a—Vao Nz = 0y) — 92((13 + agdiagt — 2tapéoVag - {))
0

1
> 8(1+ a—OVao Az = B) — (a5 + aodraot + 2|aool|tVao|[€])).
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Hence the inequality
agh?(ag + Oragt + 2a3|tVao|) < ag + Vag - (v — 3,)

guarantees pseudo-convexity of the function 1 in (2.51) with respect to P in (2.50) on €.

For the condition of noncharacteristic V1, we have
Pz, Vip(x)) = ag(—26°t)* — 4(af + 25+ + (20 — B,)?)

= 4(a260% — 1)z, — Ba]*.

Hence
agh® # 1
guarantees that Vi is noncharacteristic on Q.
Special estimates of the Carleman type were obtained in some papers for second order
hyperbolic equations, and stability estimates were derived from them for a solution of the
Cauchy problem with data on a lateral surface.

We consider the linear differential operator

L 52 A A
A=— a*(z,t . att =ab
j%z:l ( )8xj8xk

which satisfies the uniform ellipticity condition

n

sold)? < ) d*(,1)g8 for EER”, (2,t) € Q=G x (-T,T),

k=1
and the conditions [la/*[[1(Q) = Y-, [a?*] < 1/e0.
We introduce a theorem which deals with the stability of the solution (u,q) of the

following inverse problem:

2

0
((ﬁ—i—A)E—l-Al)u:Mq—i-f, d,q=0 on Q,

u=gp, dybu=g; on I, u=g on G x {0}, (2.52)
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where u and q are vector valued functions with components (uq,...,u,,) and (g1, ..., qm),
E and M are the m x m unit matrix and the weighted matrix function, respectively, and A
is a first order matrix linear differential operator whose coefficients are bounded in modulus
by 1/e¢. In the theorem below the domain G is assumed to lie in the lamina {—h < z,, < 0},
h >0, while I' = 0G\{z, = —h} € C3. Set Q. = QN {p >}

The condition

gr<detM on G x (—61,51),
[ M[|2(2) + [|0:M[2(€2) < 1/,

where [[Mls = (37—, |m7*|?)1/2 is imposed on the weighted matrix function M.
Denote by C' and k positive constants that depend on GG and €g, €1, €5.
Y

The following theorem is given in [28] without proof.

Theorem 2.16 Let a’* be independent of t, and let

e <3 0 Wee jorceraca

, 0
J.k=1

Then there ezist constants C(e) and k(e), 0 < k < 1, such that if
Mheyteg? < T
and P(x,t) = |z — B> — 0*2, 3 = (0,...,0,3,), M2 <1, M = M(||a’*]|1(2)), then the
following estimate holds for the solution (u,q) of problem (2.52)
[l (€2:) + llallio () < C (&) P ul| 5" (@)
where
F = £ (@) + goll o) (1) + llgill (D) + el sy (G x {0}),

Note that in the case where @’/ = 1/c and a/* = 0 for j # k, the condition of
Theorem 2.16 for a’* is identical to the known condition for monotonicity of medium density
with respect to depth.

Now we state the interior Schauder type estimate for Holder stability of the Cauchy

problem in Section 5.1. The following theorem is given in [29, chapter 3.2].
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Theorem 2.17 Consider an elliptic operator

Pu = Z ao(x) D%

|| <m
with a.(x) € C*(Q), for all x € ),
S Ga(@)En £0, 0A£EER
|a|=m

For nonnegative integer k and 0 < A < 1 one has
[ullemirayy < Cll[Pulloray) + llulleogs), 1 cC Oy cC

where

ul|ery = sup  |[D%u(x)],
|a|<k,zeQ

|D%u(x) — Du(y)|
ullerry = lluller@y +  sup
) D ek zgen |z —y|?

(2.53)

Note that we write Q; CcC Q, if @ C Q) C Qy and € is compact, and say €y is

compactly contained in 2.

2.5 Elasticity system

In this section we discuss systems of differential operators.

Consider the system of differential equations
ZPZ]<D)UJ = fi7 1= 1,...,n.
j=1
Let u = (uy,...,u,)" and P(D) = (P;(D)). Then (2.54) can be written as

P(D)u=f.

(2.54)

If det P(£) = 0, there are polynomials Q1(§),...,Q.(&) and Ri(§),..., R,(§), where they

are not all identically zero, such that

n

D PO =0, Y R(OPHE) =0, i, j=1,....n

=1
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It follows that a necessary condition for the existence of a solution of systems of differential

equations (2.54) is
> Ri(D)fi =0.
i=1

Also it follows from (2.55) that

P(D)ju=0 if u=(Q:(D)y,...,Q.(D)p), pD.

Some results can only be obtained for systems of differential operators such that
det P(§) # 0, which we shall assume from now on.

Here we introduce the system of equations of linear elasticity which is not necessarily
isotropic. We need to describe this system in some detail to prove uniqueness by using a
Carleman estimate. For simplicity we formulate the system of linear elasticity in R3. Let

be a domain in R3. We introduce the elastic displacement vector
u: Q— R

We begin with a constituent law (Hooke’s law) expressing a linear relation between
force (stress) and deformation (strain). The stress tensor is 0;;(= ¢j;) and strain tensor is
gij(u)(=¢gj;(u)). We recall that

1
87;]'(11) = 5((911&] + (%ul)
The equation for the constituent law is

045 = Qijkh 5kh(u). (256)

Notice that we made use of the summation convention concerning repeated indices. Here
a;jrn are coefficients of the elasticity tensor, independent of the strain tensor ¢;;. Hence there
are 6 independent equations relating stresses and strains provided symmetric properties of

the coefficients of elasticity hold, i.e.,

Qijkh = Qjikh = Qijhk = Qkhij-
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The coefficients of elasticity are also assumed to have properties of ellipticity, that is,
Qikh€ij€kh > Q1€4j€45, 1 A constant > 0, A €ij- (257)

There are twenty-one elastic constants since we are in R3. Equation (2.57) implies the

invertibility of (2.56) and we have

Ei]’(u) = Aijkhgkha (258)
where coefficients of compliance A;;x;, have the same properties as the a;;n, i.¢.,

Aijkn = Ajikn = Aijnk = Akhij
and
Aijkhaijakh 2 20045, Qg a constant > O, A Oij- (259)
Setting

a = min(ay, as)

we replace the relations (2.57) and (2.59) by

{ ijkh<ijckh — 17<1) a> 0. (260)

Aijkn0ijOrn > 0045045,
In the isotropic case the elasticity tensor has no preferred direction; an applied force
(stress) gives the same displacements (strains) no matter the direction in which the force is

applied. The coefficients a;ji, are given by
ijieh = X0 O, + 11 (00 + Oindjn),
where the scalars A and p are the Lamé constants. Then the constituent equation (2.56) is

O35 = >\6z‘j5kk + 2u€ij
= Aékauk + 1% (Vluj + V]UZ) .
It follows that
Orh = (BA + 21 )
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such that the relations inverse to the constituent equation become

1 A

= — (01 — ——0owndis). 2.61
Eij 2/L(O.j 3)\+2’ugkh .7) ( )

Hence 3\ +2p > 0 with g > 0 implies that

045E4j 2 0, (262)

since 0;; and ¢;; are linked by the constituent law.

In the nonisotropic case, inequality (2.62) implies

Oij€ij = Gijkh€ij€kh = Aijknoijorn > 0.

Consider the coefficients with the residual stress term

ijkh = A0y O + 4 (0i0jn + Oindji) + 7jnbik.

Notice that

~.

. the index of equation,
. the index of differentiation,

. the index of function,

> x> .

. the index of differentiation.
Then

Qijkh€ij€kh = A 045 Okn€ij€rn + 1 (0ikdjn + Oinbjk)€ij€rh + Tin0ikEijCkn-

From now on we use summation notation. Then

3
E @ijkhEijEkh = A E 0ijOkhEij€rn + I E 0ik05hEijEkh

1,7,k,h=1

+u Z 6ih5jk5ij5kh + Z Tjh(sikgijgkh

3 3 3
= A E Eii€hh + 2/ E €ij€ij + E Tjh€ij€ih
ih=1 ij=1 ij,h=1

3 3 3
= )\(25”)2 + 2,u Z E?j + Z Tih€ijEin-
=1

i.j=1 ij,h=1
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We need the property of ellipticity given in (2.60) to write

3 3 3 3
)\(Zai)Q + 2u Z 6%- + Z Tin€ij€ih > Z e’—:?j. (2.63)
i=1

ij=1 ij,h=1 ij=1

For (2.63) we consider sufficient conditions

o
AZ0 and 2ul¢l* + ) ragign > 5 |¢P (2.64)

For the explicit condition of semidefiniteness of 2l + R we need to have all nonneg-

ative eigenvalues. The characteristic equation of matrix 2ul + R is

det(Izx —2ul — R) = 2° — (640 + 711 + 799 + 733)2°
+ (124% + 4(r11 + 722 + T3z 4 T1aTes + Taarsz + T3sT — Ty — T3 — 15T
— (8u3 + 4(rq1 + rog + 7‘33),“2 + 2(r1172 + 2733 + Ta3ri — 7”%2 - 7’53 - 7"32,1)/1

2 2 2
+r11T22T33 + 2719723731 — T11T53 — T2V — 7'337"12) =0.

For all nonnegative eigenvalues we have
6,&—1—7“11 + T2 + 733 Z O, (265)

120% 4 4(711 + 79 + T33) it + 711790 + TooTs3 + 13371y — Ty — Ty — T3y > 0, (2.66)
and
8%+ A(r11 + 722 + 733)p? + 2(r1aran + TaaTaz + TaaTin — 1Ty — Ty — 13 )
+ 711790733 + 27197331 — T11T53 — ToaTay — T33729 > 0. (2.67)

We need some explicit conditions from (2.66) and (2.67):

Solving for p by using the discriminant D gives the explicit condition from (2.66) by
(r11 — ra2)® + (rag — 133)° + (133 — 711)” + 6175 + 6135 + 613, < 0.

This says nothing. It implies that r1; = reo = r33 and ri5 = r93 = r3; = 0. This is the
isotropic case.

Equation (2.67) is more complicated. Let f(u) = p® + bu® + cu + d, where
1
b= 5(7’11 + T2 + T33),
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_ 1 2 2 2
Cc = Z(THTQQ + 799733 + 133711 — 'y — T93 — 7"31)7

and

d— 1 9 2 2 2
= —(7"117“227’33 + 2112793731 — 111793 — T22T'3; — 7“337’12)-

8
We need f(p) > 0 for all 4> 0. Then we have two cases:
(Case 1) d >0 and D =b*—3c <0 from f'(u)=3u?+ 2bu+c,
(Case 2) d >0, f(uy)>0,and D =b*—3c>0 where u; = _[’%’)2_36 is a real
solution of f'(u) = 0.

We shall obtain more explicit conditions based on above calculations by using Matlab

or Maple.

2.6 Energy estimates

We are interested in the Cauchy problem where I' is the large part of the lateral
boundary data, and for the remaining part we have one classical boundary condition like
Neumann or Dirichlet data. Then we can show that the operator mapping the initial data
into the lateral Cauchy data is isometric with respect to standard energy norms; this is
explained in [7] and [19, chapter 3]. So, under reasonable conditions, the lateral Cauchy
problem is as stable as any classical problem of mathematical physics. An n-dimensional
inverse problem for a hyperbolic or parabolic equation is called the inverse problem, with
the lateral data if both the Dirichlet and Neumann data are given on a part I'r C Sy of the
surface S = G x (0,T) of the time cylinder Qr = G x (0,7"), where G C R™ is a domain
and unknown coefficients of this equation are to be determined.

We consider a solution u to the boundary value problem
Pu=f in Q=G x (-T,7T),
u=0 on dG x (=T,T), 0G € C>. (2.68)
We define the energy integral for (2.48) as
E(t) = 1/2/G((8tu)2 + |Vul* + uQ)(, t).
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This is the standard energy integral, provided that v = 0 on dG. This can be proven
by multiplying the equation Pu = 0 by e™u” in first order, e™d,u in second order case,

integrating over G x (0,%), and using elementary integral inequalities.

Theorem 2.18 Let I' = 0€). Let P be a t-hyperbolic partial differential operator of second

order. Let v be (K)-pseudo-convezr with respect to P,
<0 on Gx{-T,T}, and 0<v on G x {0}.
Then there is a constant C' such that for any solution u to (2.68)
E) < C(/(ayu)2 + / ) (2.69)
r Gx(~T,T)
when =T <t <T.

This theorem is proven in [19, page 73].
In Carleman estimate (2.48) of Theorem 2.15, one does not need to include all bound-

ary terms. The following form of (2.48) is obtained.

Theorem 2.19 Let P be a t-hyperbolic operator of second order in Q = G x (=T,T). Let a

function ¢ be (K)-pseudo-convex with respect to P on Q and
0, <0 on Iy
Then there are constants C(~), Cy such that

7'320"/ |0%u|?e®™ < C(/ |Pu\262w+/ T|8l,u|262w)
Q Q 89\

when Cy < v, C' < 7, for all functions u € H*(Q) for which u =0 on 9Q, u = du = 0 on
G x{-T,T}.

This theorem is shown in [19, page 74].
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CHAPTER 3

CARLEMAN ESTIMATES FOR A GENERAL SECOND
ORDER OPERATOR

We consider the general partial differential operator of second order
A= Z ajkf)j(?k +beaj +c
k=1
in a bounded domain €2 of the space R" with the real-valued coefficients a’* € C''(Q2), and

v, c e L>®(Q2). The principal symbol of this operator is

Alw; Q) =) ™ ()¢ (3.1)

We use the following convention and notations for the rest of this dissertation. Sums
are over repeated indices j,k,l,m =1,...,n. Let 0 = (0y,...,0,), with D = —id, and let
a be a multi-index with integer components, (¢ = ({* - - - (2. The operators D® and 0% are
defined similarly. The vector v is the outward normal to the boundary of a domain. We use
generic constants C' (different at different places) depending only on the upper bound, M,
of coefficients in C1(2), C?(Q)-norms, on the constant K, on the function 1, on the value
€0, and on the domain ; any additional dependence is indicated. We recall that || - || is
the norm of the Sobolev space H*(Q), and we use the norms | - [(Q) and || - || () in the
space C*(Q) and L>(Q), respectively, as defined in Section 2.1.

Define the weight function

p=e" (3.2)

and let o = 1, Q. = QN {Y(z) > e}
In Theorem 3.1 we assume, in addition, that the coefficients of a general operator A

admit the following bound
a7 12(€2) + 107 [loo(2) + lleflo () < M.
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This assumption is needed to guarantee that constants C' as used in the theorem do not
depend on a particular A. It is not needed for the definition of K-pseudo-convexity in 2.13
where it suffices that a’* € C', and can be relaxed there.

Theorem 3.1 Let ¢ be K-pseudo-convex with respect to A in Q. Then there are constants
C, Co(y) such that
/03_2|°‘|e2w|8°‘u|2 < C’/eQT“"|Au|2 (3.3)
Q

Q
for all we C3(Q), |a| <1, C <7, and Cy(y) < 7.

In [10] this result (for a/* € C*°) with constants depending on A was stated without
proof; in [12] there are proofs for isotropic hyperbolic equations, and in [21] there are proofs
with constants depending on A. In [27] it is shown that ¢ (z,t) = |z — a|? — 0*t? is pseudo-
convex with respect to A if the speed of propagation is monotone in a certain direction.
According to [30], [33], ¥(x,t) = d*(z,a) — 6*t? (d is the distance in the Riemannian metric
determined by the elliptic part of A) is pseudo-convex if sectional curvatures are nonpos-
itive. In [2], [12], [18], Carleman estimates with second large parameter under additional
assumptions are used to obtain uniqueness of the continuation and controllability results for
thermoelasticity systems.

Now we state a weak form of Theorem 3.1, where we assume, in addition, that the

coefficients of A admit the bound
|a7*15(2) + 117 |00 () + 10,67 [0 () + llcllo () < M.

Theorem 3.2 Let A be a linear partial differential operator of second order with the principal
coefficients in C?() and with the coefficients of the first order derivatives in C1(). Let v
be a K-pseudo-conver C3(Q)-function with respect to A in Q. Let Av = fo + Z?Zl 0;f; in

Q). Then there are constants C, Cy(y) such that
21, 2 2ror Lo N g2 2
/ae 7 < C/ e (= fo + ij) for all ve Hy(Q) (3.4)
Q Q g ,
j=1

provided C' < v, Co(y) < T.
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The weighted energy type estimates with large parameter 7, introduced by Carleman,
proved first the uniqueness of the continuation results for elliptic systems on the plane with
nonanalytic coefficients. Hérmander [14] linked it to the pseudo-convexity condition for the
theory of functions of several complex variables and to energy estimates for general hyperbolic
equations. At present there are several interesting (and in some cases complete) results on
Carleman estimates and uniqueness of the continuation for second order equations, including
elliptic, parabolic, Schrédinger type, and hyperbolic equations [19], [30].

Systems of partial differential equations, however, still remain a serious challenge.
The only available general result is the celebrated theorem of Calderén of 1958 which is
applicable mainly to some elliptic systems. There have been progress for classical dynamical
isotropic Maxwell and elasticity systems [13], [17]. First uniqueness of continuation results
for some anisotropic systems (including thermoelasticity system) were obtained by Albano
and Tataru [2] and Isakov [18]. It was crucial in these papers to use Carleman type estimates
with two large parameters (3.3), an idea first introduced and applied to the classical elasticity
system in [17]. In [10] Theorem 3.1 (for C*°-coefficients) was stated without a proof and in
[12] there are not complete proofs for isotropic hyperbolic equations.

This chapter is organized as follows. In Section 3.1 we give a sufficient condition of
pseudo-convexity of a function ¢ with respect to the anisotropic wave operator O(u; R) =
R =3k Mﬁjﬁk when R is small relative to constants p and p, and we describe explicitly
this smallness condition. Also, we give explicit sufficient global conditions for a general
anisotropic hyperbolic operator A. In Section 3.2 we introduce the differential quadratic
form. Sections 3.3 and 3.4 are central. There we prove Theorem 3.1 by using an explicit form
of pseudo-convexity conditions for second order operators so that one can trace dependence
on a second large parameter v. The crucial part of the proof is Lemma 3.8, which gives
a bound on the symbol of the differential quadratic form. Finding a suitable form of this
bound is a decisive step in deriving Theorem 3.1. In the remaining part of Section 3.3 we

conclude the proof by standard Fourier analysis methods augmented by proper localization
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and the use of a large parameter 7. In Section 3.4 we prove estimates of Theorem 3.2 in
negative norms. A crucial idea of the proofs is to use pseudo-differential operator in (3.3),
to localize estimates, and to freeze coefficients in an appropriate way. This substantially

facilitates the use of Fourier analysis.

3.1 Pseudo-convexity condition for a general second order opera-

tor

It is not obvious or easy to find functions v which are pseudo-convex with re-
spect to a general anisotropic operator, in particular, to the hyperbolic operator A =
OF — > i—1 4;x050,. In the isotropic case, explicit and verifiable conditions for ¢(z,t) =
|z — B|* — 6%t were found by Isakov in 1980 and their simplifications are given in [19, section
3.4]. In the general anisotropic case Khaidarov [27] showed that under certain conditions
the same 1) is pseudo-convex if the speed of the propagation determined by A is monotone
in a certain direction. The most suitable choice is ¥ (z,t) = d*(z, 3) — 0*t* where d is the
distance in the Riemannian metric determined by the spacial part of A. Lasiecka, Triggiani,
and Yao [30] showed that this function is indeed pseudo-convex when d is convex in the
Riemannian metric. Romanov [34] gave a simple independent proof, and emphasized that
negativity of sectional curvatures are sufficient. A disadvantage of this choice of v is that,
in most inverse problems, A and therefore the corresponding Riemannian metric are not
known. In addition the known conditions of pseudo-convexity in the anisotropic case are not
so easy to verify. For example, conditions in [30], [34] impose restrictions on second partial
derivatives of a;;. In applications, residual stress is relatively small [32]. Motivated by these
reasons, we give simple sufficient conditions of pseudo-convexity for the scalar operators in-
volving residual stress, ((u; R) = 02 — > ik ’”SL:W@-(?;C, where “smallness” of R is explicit.
Moreover, we derive explicit sufficient global conditions for A when v(x,t) = |z — 3]* — 0*t?
is K-pseudo-convex.

Let # and d be any real numbers.
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Lemma 3.3 Let G be a domain in R" and Q = G x (0,T). Let u be constant, the matriz

R be symmetric positive at any point of €2, its coefficients depend only on x € R™, and

2upd® + 3||R+ pul||||VR|||z| < 2p* on Q. (3.5)
Let
1]
0* < =, (3.6)
P

Then the function ¥ (x,t) = |z|* — 60?12 — d? is pseudo-conver with respect to the anisotropic

wave operator O(p; R) in QN {|x — B]? > 6%¢}.

We recall that ||R]| is the norm (Zikzl ’l"?k)% of a matrix R = (r;). Let D =

sup |x — | over x € G and d = inf |z — (| over x € G, where Q = G x (=T,T).
Proof of Lemma 3.3
Due to the definition we need the positivity of the quadratic form

0A 0A - 0A 0A 0*A
Z (0

J€, 06, 95, 98, ~ " og06) 0

= Z %% B, o5~ o

Straightforward calculations with A(z, () = (2 — C ¢—>" b1 r;’“ (;Ck give

H =80 +8) (%(Z rinke + 1))

j=1 k=1

£ (=230 ) (= 23 1o+ 180)) 20— 6),)}

(e Z Ot ( %m T u60)) 2z — B),))

j,k=1 lm 1
- §M@2|f|2 _ B > ke + %Z (O rinte)® + 208, rinés) + 1°65)
P P = PPE = k=1
_|__ Z { Z@]Jﬂ& ZrkméerMfk)((l'—ﬁ)J)}
3,k=1
- — Z { Z ak'rlmflgm rr]k +M6Jk)((m _6) )}
J,k=1 I,m=1
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Hence

8 n
H > —;u92\€|2 g Z Tkl + Z an@
j: :

j,k=1

Z rirdile) + 2u 2l¢[?

j,k=1
——’Z{ Zaﬁ]lfl ZTkm5m+M5k ((z = B);)}
7,k=1 =1
__| Z { Z akrlmflfm Tjk“‘l“s]k)((x _ﬁ) )}’
7,k=1 I,m=1
§ “_2_ 2 2_@_02 - A
> p(p 6)[¢* + p(p )g::l?”ak&cfk

8 — "
— 5 2_ I0:Rllellz - B] > P + 18ml[6onl
m=1

k=1

4 n
> Z 10k RIEP |7 + pdzul | (z = B);]l,

k=
where we used the relation
> gl < IRIE)
J,k=1

which follows from the Cauchy-Schwartz inequality. Using this inequality again we conclude

that

8 u? 12
H > —(— — ) - ;HRJF#IHHVRHW—ﬁ||€|2-

pp
Hence the positivity of H follows from (3.5).

Since |z — (]? > 6*t* we have

n

A, Vip(z)) = 40'2 — §4|x N 7" (x — B);(x — B

jk=1

n

< 4((0* - %)\fc—ﬁIQ -y T;k@c—ﬁ)j(:v—ﬁ)k) <0

J,k=1

on Q N {|r — B* > 60*?} due to the condition (3.6) and the definition of . So V4 is not

characteristic on this set.
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In Lemma 3.4 for a general anisotropic hyperbolic operator we give the condition of
K-pseudo-convexity of ¢(x,t) = | — 3] — 0%t z, 8 = (0,...,0,0,) € R" with 3, large

enough.

Lemma 3.4 Let

n
AV E —
A= 6t — ajkajak, Qi = Akj,

jik=1
where aj, € C' satisfies the uniform ellipticity condition

n

D api& > solél’, EER", g > 0. (3.7)

j,k=1
Let
2ﬂ(xﬂf) = |.I' - 6’2 - 92t27 ﬁ = (07 .. 707/671)'

Assume that
n n

n—1
> Qb — 2 andiajn)éi& > elléf’, £ €R” (3.8)
k=1

Jl=1 k=1

for some €1 > 0. Then there is large 3, such that the function v is K-pseudo-convexr with

respect to A in .

Proof of Lemma 3.4
Denoting the left side in (2.46) by ‘H we have H = H; + Hs where

and

B 0A DA 0*A
Hy = (Bp—— ) o — O A=) B;1).
2 Z( 5¢, o, ~ " oe,08.)”

Using the first equality of (2.45) we yield

Hi= —80" > ap&i&e +8Y (O as)”.

Gk=1 j=1 k=1
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Using that 0yA, 8085 , 8?2520 8k8£0, 8?0252 , 7,k =1,...,n are all zeros, and that

0;p =2(x;— f;)and B; =0for j=1,...,n—1,

Hy, = Z{ QZakagz& —QZamkfm)
m=1

7,k=1

— ) Oeapgpy) (—2a5) J2(x; — ).

p,g=1
Hence
Hi + Hs
= =802 apbb + 82 Za]kgk
Ji,k=1 j=1 k=1
4 Z {2(2 akajlgl)(Z amkgm) - ajk( Z akapqépﬁq)}xj
jk=1 =1 m=1 a1
+48, > {o( D" dpeps) — 23 Okam&) (D amin) -
k=1 pa=1 =1 m=1
Let
Hs = Z Z {anOkaj — 2a0azn 1561 (3.9)
jl=1 k=1

Then with large (3, the positivity of (3.9) guarantees the positivity of H; + Hz, and hence
(2.46).

From the second condition (2.45) of K-pseudo-convexity in Definition 2.13

—46%t&) + 2 Z akért; — 2 Z ank&kBn = 0,

j,k=1

hence
n

>~ ame = 5-0(1€) (3.10)

k=1
where [O(€])] < CI¢], €] = (€2 + - - + £2)2.
Therefore

n n

Hs(€) = Y (O amdran — Qialk(akajn>§jfl) + %O(|§|2)‘ (3.11)
k=1 "

jl=1 k=1
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We have
Al ;Y (x,1)) = 40 =4y ap()(a; — ) (wr = Br) = —aun(2)5; +
k=1
where - -+ denotes the terms bounded by C3,. So V# is not characteristic in {2 for large (3,,.
O

A version of this lemma for a different weight function ¢ is given in [3].

Corollary 3.5 Let us assume the monotonicity of the speed of the propagation with respect

to A :

n

> ambhapéi& > ellé]®, € eR”, (3.12)

jvkvlzl

for some £1 > 0 and that the symmetrization of the matrix (ZZ;% a1k Ok jn) 1S nonpositive.

Then there is large B, such that the function 1 is K-pseudo-convex with respect to A in Q.

One can give more precise sufficient conditions for (3.8). For example, by using the
(Frobenius) operator norm of a matrix in L?(R™) one of these conditions is
n
4y Zalkaka']n &6 < .
J,k=1 k=1
This corollary gives more general pseudo-convexity conditions than in [27] where it
was assumed that aj, = 0 when j < n.

A useful matrix notation for the main terms of (3.11) is given by
€T(A, - V)AE — 26T (A V) ATE (3.13)

where 4; is the j row of the matrix

ai; a2 ... QAip

a21 Q29 ... Q9pn
A= ,

Ap1 Gp2 ... Gpp

with (An . V) = anlal -+ angag + -+ a,mﬁn and (A . V)/ = A181 + Agag + -4 An_lan_l.
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Now we obtain sufficient conditions for the positivity of the main terms in (3.11).
Suppose the monotonicity of speed propagation (A, - V)A satisfies the uniform ellipticity

condition such that

n

> abhapéi& > e, £ ER™, e > 2| AV A,

jik,l=1

Then the main terms in (3.11) have the positivity

n n—1 n
> amdean&i& — 2> Y an&i(Oajné;)

Jik,l=1 k=1 j,l=1
n—1 n n—1 n

> ¢ — 2| Zzamle Zzakajnﬁj’
k=1 i=1 k=1 j=1

> eifg]” = 21 ANV Aulllgl®

by using Cauchy-Schwartz inequality and the matrix norm [|All = (3 7, _, a?k)%.

Now we consider in more detail the cases of two and three dimensions.

Example 1 : (n =2)

From (3.10) we have & = —21¢, + 35,1 0(|€]), so by routine calculations

a2
2
Z @1151%25]'51
Jl=1

ax01a12 — a1201 G99

& + 6,'0(&).

= (allazz - G%Q) 2
ag9

Due to positivity of the matrix (a;i), we have ajjag — a%z > 0 and age > 0, so the nonposi-

tivity of the principal term (with respect to large ;) is

a
a1 ﬁ S 07
22

which is therefore a sufficient condition for K-pseudo-convexity of ¢ for large (5, provided
we have monotonicity of the speed of the propagation in the xo-direction.

Using & = —2¢&, + 35 10(|€]) from (3.10) we have

a22

2

2
Hs+ 3,1 O([¢]) = Z Aok Opai&& — 2 Z and1a;2&,&

Jkl=1 Jil=1
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Cl22(916l12 - a1231 22

= ((@131&11 =+ 6122326111) — 2a11a92 o2
22

Osa Osa a? Osa
9 02012 2022 12 2 02022\ .2
12( - —) = T(a1281a22 + ayy ))fl

12 22 a59 12
Since 82% < 0 implies that 63—?212 — 62—2‘222 < 0, we have new sufficient conditions for positivity
of H3 :

12 a2 2 2
0 < a1201a11 + ag0sa11, ala_ <0, aza— <0, and ai2(ajy01a922 + a5,02a9:) < 0.
22 22

These conditions imply the positivity or the negativity of some derivatives or conormal
derivatives in the zo-direction.
Example 2 : (n = 3)

By using & = —2L¢ — 226, 4 ... from (3.10) we obtain

3 2 3
Hs + 651 0(J¢]) = Z askOkani& — 2 Z Z aikOka;3&;81
Jik,l=1 k=1 j,l=1

= A& + 2456165 + Azl

where
a2
13
Ay = (a1301a11 + ag302a11 + aszdza11) — GT(G1381G33 + 302033 + az303ass)
33
a3 a3 ais
— 2a33(a1101 — + a30,— + a1303—),
ass ass ass
a3 ai13 a3
Ay = (a1301a12 + a2302a12 + a3303a12) — ag3(a2101 —= + a920o—— + a9305—)
ass ass ass
Q23 23 23 13023
- @33(@1131— + a120,— + @1363—) - ) (&13816133 + ag3dhaszs + @33836133),
ass3 33 ass Q33
and
a2
23
As = (a1301022 + a2302092 + a3303022) — 2. (a1301a33 + a302a33 + az30zass)
33
23 23 Q23
— 2(133(&1281— + a2282_ -+ CL2383—).
ass ass ass

The positivity of H3 follows from the inequalities 0 < A; and A3 < A;As. The formu-
las for Ay, As, and A3 contain several simple and meaningful blocks which have geometrical

or physical interpretations.
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Using the well-known inequality 2414: < /A, A5 with Ay, A3 > 0, we have that

A1+A3
Ay < 2A4s mplies Ay < /A1 A3, Using 0 < k <1,

A1+A3
2A1A3 Ag Al
A+ A A+ A ! A+ A

Hence Ay < kA; + (1 —k)As, 0 <k <1, implies Ay < VA A;.

As = kA; + (1 — k)As.

The positivity of Hsz follows from the inequalities A; > 0, A3 > 0, and Ay < kA; +

(1 —k)As where 0 < k < 1. Here j =1,2,3.

For A; > 0 and A3 > 0 we have

as; aj(ln > 0, as; 3ja22 > 0, as; 8ja33 < 0,

and
aj - @Z—;i <0, ay;- @Z—zi < 0.
For Ay < kA; + (1 — k)As with 0 < k < 1 we have
asj - 0j(a1z — kay; — (1 — k)ag) <0,
3093 — katy — (1 — k)ass < 0,
and

a a
(2kai; — ag;) - aja—”’ + (2(1 = k)ag; — ayy) - 9 —

33 a33

3.2 Divergent form F

< 0.

For the following, set ((p)(z) = £ +iTVp(x). We introduce the differential quadratic

form

F(z,7,D, D)vo

= |A(z, D+ itVp(x))v|* — |A(z, D — itV p(z))v|?. (3.14)

This differential quadratic form is of order (3;2), since the coefficients of the prin-

cipal part of A are real valued. By Lemma 2.11 there exists differential quadratic form

G(z,7,D, D) of order (2;1) such that

/g(x,D,D)vv:/f($,D,D)vv
Q Q
48
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and its symbol

1 0? -
G760 = 5D g g F@ GO, (=E+in at n=0

where
F(x,7,(,¢) = Az, { +itV)A(x,{ — itV ) — Az, { — itV ) A(x, ( + itV ).

Lemma 3.6 We have

(x 7-7 57 6)

0A OA 02A 02A
=2 + 2 A 28 A(———— —i70; e 1
rZaakgo%aCk JZ@k 8@ + \SZ (3Ck396k ZTGJGkgoaCjaCk) (3.16)

where A, Ok A, ... are taken at (z,{(p)(z)).

Proof of Lemma 3.6
Indeed, at n =0

0A
= - Z O(im— (2, & +iTV)A(x, & — iTV) — iA(2, & + itV ) — G

(r, &+ iTVgo))

(x,& —iTV)

0A . . . 0A
—1 a—Ck(x & —itVp)A(x,E + itV ) + iA(x, & — Nth)a—Ck

= izak(g_i<$7C(§0))A($’C_(¢)) — 5 (2,0(9)) Az, C(9))).

Using that i(zw — zw) = —23(zw), we yield

g(x,7,¢,¢)

_ _Qsz<( TA (o el ))+Z7'88k908252( ,C(9))) Az, ()

02,0C,
OA 0A , , DA 0A, -
+T(I,C< ))axk(w ,C(p) — waj@kso%(m( ))acj("” (" )))
A DA A
— 2TZaakgo8C ac QJzakA 23> A( axk(x HTM’“"O@C@@)
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OA A

=27 Y 0o + 23 0 A@+2%2A(82—A+z’780 62—A)
N ! ’“*Dag d¢; g 3Ck aﬂﬁkaCk ’ kwagja@

%A
- 272@%03@ G QJZ‘?’CA G o 232 A aCkaTk 70 ca,)

by the chain rule and the fact that g—ii = i70,;0kp. Observing that A(,((p)) = A, that

-3 (zw) = J(Zw), and noting that the coefficients of A are real-valued and hence

OA OA
20056 5

is real valued, equation (3.16) is obtained. O

The differentiation formulas
050 = 1051, 0009 = 19000 + 7 O Ort)
follow from the defined weight function (3.2) and are used in our proofs.

Lemma 3.7 Using formulas (3.17), from Lemma 3.6 we yield

Tﬁlg('x7 7—7 57 5) = gl(x7 T? 57 f) + gQ(fL‘, T? 57 f) + g3($7 T? 57 g) + g4(x7 T? f? f)

where
Gi(2,7,6,6) = 8yp ) @™ a" (Enby + 0° 00,000,
Go(2,7,6,6) = dyp Y a*0pa?™ (0* 0000 + 260610500 — Ei€nDY),
Gs(x,7,6,6) = 4yp (2 " 00" Op&ém
- Z @’ (0, a"" O + " 0,0,0) (€6 — 07 0;00Y)),
and

Ga(w,7,6,€) = 49%0 (2 a?™&n050)* + 207 (D~ a?™0j1p0,1))?
= 3" d"™(Gm — 0?00, 0)) (D a7 0)).

Observe that the terms of 7=1G with the highest powers of v are collected in Gj.

50

(3.17)

(3.18)



Proof of Lemma 3.7

From (3.16) the expression 771G(x, 7, &, €) yields

0A OA %A %A
— 4213 A— 2771 A(=—=——=——1i70; —). (3.1
ZZﬁﬁkgoaC]aquL T JZ@k a@—k T \SZ (5Ck8$k 27'0]0;9908@8@) (3.19)
The first term of (3.19) yields
A 0A
QZﬁﬁkcpa 04

a¢; 0Cy
=8 a"a" (& +inTp0n) (& — ivT0) (vp0; 06 + 77 0 O1))
=8> /" d"((&n& + VTP 0m ) + ivTp(§0mt — £nO))) (Y0001 + 7 0D1b0)1))
=8> (" aM&n&i (19000 +77 001b0k) + @M 0P 0, b Db (00 Ok + 7 OOyl

=879 Y " aM (§n&i+ 00 0) 0501 + 877 ((D | a?"Emd)? + 0 () 010 1)?).
(3.20)

Note that since (g—?%) is a symmetric matrix, it has a real value (imaginary part = 0).
J

The second term of (3.19) yields

2713 " 0kA a Ck
=477 " 0’ ma G
= 4777 d " (770 p0mp01p + Em&1050 + £i610mp — §iEmOup)
=4 Z a*0pa™ (T2 PP 0000 O + Yo (£n&1050 + £;60mY) — E;EnOIY))
= dyp Yy a0k’ (0?0000 + 26050 — £i&mOIb). (3.21)
The last term of (3.19) yields

92A 92A
1o
27 \SZA aCem @T@@kgoacagk)

= 477G Z almQCm (8kajkfj - iTﬁjﬁkcpajk )

= 47719 "™ (G — 7090 e) +iT(EOm P+ Endlp)) (Oha7E; — i (O D0+ a7 0;040))
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=477 a0k (G0 + EmD1p) — (§ibm — T°0100mp) (Ora” 060 + a*D;01p) )
=4 " (20007 Em0p — 0ua*EEmDi0 + T2k 0500100mp — & D0k
+7207% 8,00, 00; 0 )
=479 Y (20040 im0 — ORI 66RO + 7™ Ok’ Dj3p OO
— """ §Em (0,000 +10,00k)) + 0%d"™ a7 0p O (0,000 + O;Ok)))
= dyp(2) a0 LY =Y a0k O + @M 0;040) (E6m — 07 OD1))
— 120> d"™ (& — 0?00, 0) (Y a?*00). (3.22)

Using equations (3.20) through (3.22) and collecting the highest power of v in G, yields
(3.18). O

3.3 Strong Carleman estimates for scalar operators

In this section, we prove Carleman estimates for general scalar operators (Theorem

3.1) with the technique of differential quadratic forms.

Proof of Theorem 3.1
First, using Lemma 2.5 in Section 2.2, make the substitution ©v = e~ "¥v. Obviously

Dy(e ™) = e ™(Dy + iTOkp)v. Hence
Z a’*D;Dy(e”%v) = Z a’*e"™(D; + it0;0)(Dy + iTORp)V.
Accordingly the bound (3.3) is transformed into
Z /Q o329y < C/Q |A(, D + itV (3.23)

Lemma 3.8 Under the conditions of Theorem 3.1 for any g there is a constant C such that

(, () ()
(@) ()]

o (2) 2K — 20) (@)@ < 7167, E,€) + re(x)Crt A (3.24)

for all C <~, £ €R", and x € Q.
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Proof of Lemma 3.8

By homogeneity we can assume |((¢)|(x) = 1. In the proof we use that

n n

Az, C(p)(x) = Y (&€ — a*0000) + 20 Y | a’*o8;00
j,k=1 k=1
= A(z,8) — 0? Az, Vi (x +2202 8< (z,€)0,9(x). (3.25)

We assume that v > 1. To derive (3.24) we use K-pseudo-convexity of ¢» and consider

four possible cases.

Case 1 :
o =0, xg—oz xgjz/;) (3.26)
Then
o=0, Y & =0, ) d" o =0

and from (3.18) we yield

'G(x,0,€,¢)
=290 Y 0502076 2aM 8 + Ay Y aF O™ (286m 050 — &iEmOnY)
0A DA 8A 0A 0%A
=2 0;0 + 2 ((Op=— — (OpA) ———
> 2vpK (3.27)
by K-pseudo-convexity of ¢ with respect to A of (2.46).
Case 2 :

0A
o <6, YAl <d, | a—c(%f)aﬂb(ﬂf)l <0 <1, (3.28)

j

where 4 is a (small) positive number to be chosen later.
Using (3.18) as in Case 1, bounding the terms with o by —C~y¢d? and dropping the

first two and the last (positive) terms in G, we obtain
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TG(x,7,£,§)
> 290 ) 0,027 62076 — Cypd® + dyp Y a0 (266m D50 — E6mOi))
+ayp (2 a T OEn > 0508 — 3 aeiE Y (Oma™ o + a™00))
—dyp Y 7a*EE Y OOy
> (2 9040207 En2aME + 4 a0k (26En 0500 — &€mOY) — CF)
> Yp(2K —€(6))

where £(d) — 0 as 6 — 0.

Indeed, let us assume the opposite. Then there are ¢y > 0 and sequences &(p),
x(p) € Q, a(p), Alp), p = 1,2,... with [{(p)* + o(p)*|V(z(p))]? = 1 and A(p) with
coefficients bounded by M in C?(Q) such that

a(p) <p~", V() AWD)(x(p), € P !Z a@ ()9 (x(p))| <p~,
but
2> 0;06207™ (p) ((p))&m(p) 20" () (z(p)) (D)
+4) ()™ (p) (2(p) (26(D)&m (P)Oj2 (D)) — & ()em (D) (x(p))) — Cp ™"

S 2K—€0.

Using compactness and subtracting subsequences, we assume that z(p) — = € Q,
£(p) — &€ in R™ and a/*(p) — @’* in C1(2). Passing to the limits and using v(p) > 1 we

arrive at Case 1 and the inequality

2 9,0k (2)207™ (2)En2a™ (2)6 + 4 a*0pa?™ () (286€m 05 (x) — §6mOb(x))
< 2K — o

which contradicts (3.27).
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From now on we fix § such that £(0) < gy and denote it by dy. Observe that we choose

0o to be dependent on the same parameters as C'.

Case 3 : |[y7(z)| > do, [7A(z, (()(2))] < do.

Using (3.18) as above yields
71G(2,7,€,8) = —Crp(x) +8C 70 = 2vp(x) K

when we choose v > C2.
Case 4 : [yA(z, ((¢)(2))] > do.

From (3.18) we have
77'G(,7,€,8) +v0(2)CrlvA(z, ((9) (2)

> —Crplz) — Ol Al, ¢(9)(@)] + 1eCilvAlz, C()(@))P
> —Cyp(z) — Cyo(z) |y A(z, ((9)(@))] + 1pChilyA(z, (o) (2))
> ~Crp(a) + Crp@)Ale, ()] (S A @) @) -1) + () T A, ) @)

> —Cyp(x) + CW(JC)WA(%C(SD)(“;))’(C;C{O “h W(x)%(sg

> Kvyp(x)

when C} > % + €K This proves Lemma 3.8. O
0

Later on we need the norm

-1l = ( / ¢l (€)[2de) 2 (3.29)

where ( = ¢ + i7V(z0), £ € R"1 and z is a fixed point of 0. Here © is the Fourier

transform of a function v. Then

1/2
v
Hvlll-x = /|£|2 7'2]Vg0 'SE )

[0(§)]? 1/2
< (f et
< C(T‘g/|v|2dm)l/2 = O Yvfs.
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We observe that
olll-1 < CT7H ]l (3.30)
Moreover

P(z,D +itV 2
et ore o

|P(z, D + itV(xp))
T2 Vip(ao)|?

I} P(a, D+ itVe(zo))v |2, =

o6 a

< Cly)r? / P(a, D+ irVip(ao) P0(€) Pde
— CO)r 2| P(a, D + i Vo))l

The following lemma is given in [14].

Lemma 3.9 Let a(x) be Lipschitz continuous with Lipschitz constant M when |x| < ¢, that
is, la(z) —a(y)| < M|z —y| if max(|z|,|y|]) <. Let Qs ={x:x € Q, |x| <d}. Ifa(0) =0

it then follows that
I a(D; + itV (wo))v [l|-1 < M3+ |7V (wo)|7)][v]l2, (3.32)

where v € C§°(Qs) and ||v]|2 is the L*-norm of v.

Proof of Lemma 3.9

By using the following identity
a(D; +itV;)v = (D; +itVy;)(av) — (Dja)v
and the trivial estimates
Iol12y < 17V (@)l *llvllz, Il (Dj +irVe(wo) v [I2) < llvllz, v € L*(R™),

we have
Il a(D; +irVe(zo))v |1 < llavlla + [7V(zo)|(|(Dja)v]2-
Since |a| < dM in Qs and |(D;a)| < M, the inequality (3.32) follows. O
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Lemma 3.10 There are a function €(6;7) convergent to 0 as 6 — 0 for fized v and a
constant C(y) such that
7 !(G(ao, 7, D, D) = G(,7, D, D))uv| < e(657) Y 7270’ (3.33)
<1
and

Il A(zo, D + itVep(zo))v — A(, D +itV)u |2,

< (=6 + O Y (w2l [ joop 334

lo|<1

for all v € C3(B(z0;9)).

Proof of Lemma 3.10
Due to (3.18)
T_l(g(xo, 7, D, D) —-G(,7,D, D))v@

= > (1lp(zo)ai’ (z0) —p()ai’ (2))0jv(x) Oo(@)) + 77 (p(w0)*ad" (20) —p(2)?ah (2) v (x)u(z)

+7° ) (((wo)ay (wo) —p(x)af () dyu(w) v (@) + 772 (p(0) 0 (20) () *a} () (x)v (),

where a{k, . aik are continuous functions determined only by A and ¢. (3.33) follows by

the triangle inequality since |¢(z0)™a]" (z0) — ¢(x)™al" ()| < £(5; ) when |z — x| < 6.
We have
Il A(xo, D+ itV p(z0))v — A(, D + itV)v ||| -1

< 1D (@ (x0) — a?*)(9; — 70;0(w0)) (O — TOrsp(0))v ||| -1

CE+m 0@ =702 < (e(8:7) + C()71) D 7 ljow? (3.35)
|a]<1
by Lemma 3.9.
Furthermore

IIAC, D +irVeo(zo))v — A(, D +itVe)ul]| 4

= 11D @ ((9; = 79;0(0)) (D — TOwip(0)) — () — T0;0) (D — TOkp) v [[| 4
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< 1D @ (72 (950(w0)Onp(0) — 0j00k0) + 27(Ds0 — Ds0(20)) O + T(;0k0)) v |[| 1
<" 7|0 (9;00kp — 060(x0) Do) v ||| 1
+23 71 (95 — p(x0))Okv (|1 + 7Y _ [l Os0kpv [[| 1.
By using the property of the norm (3.29) we yield

I[AC, D +imVp)o — A(, D+ irVo(zo))v ||

< Cr Y |l (0500kp — 060(0) Do (o) |2
+2) (950 — 050(20))0kvll2 + > 19;0k0]l2
< el + €(57) D 10kvll2 + C()vll2

< (e(8:) +CrY Y o).

|| <1

Hence by using (3.35) we have
|| A(zo, D + itV (x0))v — A(z, D 4+ itV(z))v ||| -1

< WA(zo, D+ itV p(x0))v — Az, D + iTV(x0))v ||| -1
+ [ A(z, D + itVp(o))v — Az, D +i7Vep(z))v || -1

< (G +COrY Y ..

laf<1

This proves Lemma 3.10. [J

Now we continue the proof of Theorem 3.1. By using the Parseval identity,

(72 V gz 2y / 0*uPdr < (2m)" / ¢ () (o) [6(6) e

Multiplying the inequality (3.24) by [6(£)|?, v € C3().), and integrating over R™ we yield

C 'y (o) Z/Wso ) el

la|<1

¢() (o
() (o)

< 71/9(9&0,7 D D)UU + 790 $0 /|A x(), 2))| ’ ( )|2df

58



<7 / G(zo,7. D, DYov + vo(ao)ll| Alwo, D + irVio(zo))o |12,

< Tlfg(x,T,D,D)m? + &(8;7) Z 72204/\8%]2

lal<1

+ 79(zo) VIl A, D+ itV |[?) + (£(8;7) + Cly)r2) Y w72 / 0%0]*  (3.36)

o<1

for v € CZ(Q N B(xg,0)). Here we used Lemma 3.10 and the elementary inequality a? <

20? + 2(b — a)?. Choosing ¢ > 0 small and 7 large enough so that

(20) (o) (Yrep()* N > (£(837) + Cly)72)r 2,
we absorb the second and fourth term on the right side of the inequality (3.36) to the left
side to arrive at the inequality

> / (7p(0))* 200

|al<1
< € ([ 6(.7.D, D)o + el P A D+ ir Vo I2.).

As above, by choosing large 7 > C(7) one can replace ¢(zg) by ¢ on the left side of this
inequality. Using (3.14), (3.15) and the properties (3.30) and (3.31) of the norm ||| - |||-; we

conclude that

3 / (ro)* 20 ?

jal<1
< C||A(, D +itV)|5 + Cy)T HA(, D + itV
for v € CZ(B(z¢;9)). Choosing 7 > C(v) we eliminate the second term on the right side.
Now the bound (3.23) follows by partition of the unity argument. Since our choice of Jy
depends on 7, we give this argument in some detail.

The balls B(x; &) form an open covering of the compact set 2. Hence we can find a
finite subcovering B(z;; dp) and a special partition of the unity x;( ;) subordinated to this
subcovering. In particular, x; € C§(B(zg;;60)), 0 < x; < 1, and x5 = 1 on Q. By the
Leibniz formula

O (xv) = x;0% + (9%x;)v
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and

A(,D +itVp)(x;v) = x;A(, D+ itVe)v + Z aPri=PlgPy
I81<1

with |a’] < C(v). Hence applying the Carleman estimate (3.23) to y,;v and using the
elementary inequality |a + b]> > 1a* — b* we obtain

il Z/ 3— 2|a\‘X aavl2 Z/ 3’ ( XJ

|a\<1 la|=1

< CIxjA(, D+ itVe)u|; + Cly Z 722001 9|2,

[BI<1

Summing up over j = 1,...,J and using that X? = 1 we yield

33 [o ot = 3 ol

o<1 la|=1,i<J

< CIAGD +irVe)l3 + Cly) > 772 0%]}3.
1B8|<1

Since the highest powers of 7 are in the first term on the left side, choosing C(y) < 7 we
absorb the second term on the left and the right into the first term on the left. This completes

the proof of Theorem 3.1. [

3.4 Weak Carleman estimates for scalar operators

Now, we prove Theorem 3.2, the Carleman estimates in negative norms, which is
based on Theorem 3.1 and some additional lemmas.

By basic differentiation rules
A (D) = A(D +itVy) = A(D) + 7(A1(D) + ap) — T*A(V), (3.37)

where A; is the first order differential operator with the C'-coefficients depending on v and
ag is some function in L* depending on 7. Moreover C'(2)-norms of the coefficients of
Ay are bounded by C(v) and ||agl|0)(Q2) < C(7). We use the notation < & >= (|¢|* + 1)z
and the pseudo-differential operator ASf = F~1(< & > +7)°Ff, where F is the Fourier

transform and £ = (&1, ...,&,). Let Q* be a bounded domain in R™ with a smooth boundary
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such that Q C *. We can extend all coefficients of the operator A, onto R", preserving the

regularity in such a way that they have support in 2*.

Lemma 3.11 There exists a constant C(7y) such that

1A Apu — ApA T ull0)(Q7) < C)lullo) () for all u € Hy(R).

Proof of Lemma 3.11

Due to (3.37) it suffices to show that
IAT ad%u — ad*AZ ul| o) (Q7) < C(y)llufl)(Q), for all |af <2, (3.38)
with a € C%(Q%), |al2(Q) < M, and a = (ay,...,a,); that
HIA; ad%u — a0 A Ml o)) < COllull (@), forall [5 <1, (3.39)
with = (B1, ..., 3,); that
A au — a0 () < C()llullo) (), (3.40)
for a € C'(2*) (possibly depending on 7); and that
7l|A- aou — ao A ull) () < C(y)Jull0) () (3.41)

Let o;j > 0 and (3; = 1 while other components of 3 be zero. We introduce u; =

AZ19*=Pu. Using also that A, = Ag + 7 we have
A tadu — ad* A u = A7 aA, — Ara)duy = A7 (ahg — Aga)djuy

= A;l(aajAo — 8]-(A0a) + Aoﬁja)ul = A;l(aj(CLAO — Aoa) + (Aoaja — 8jaA0))u1.

From the Parseval identity ||u:||)(R") < C|lul|(0)(€2). By known estimates, in [6], of

commutators of pseudo-differential operators and of multiplication operators

[(afo — Aoa)url[0)(27) < C(9)[luallo)(R™).
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A similar estimate is valid when we replace a by d;a. Using, as above, that A;'9; is a
bounded operator in L? we complete the proof of the bound (3.38).

Proofs of (3.39), (3.40) are similar.

The bound (3.41) is obvious. Indeed

I7A  (aou) — TaoAT ullo) < ITA7 (aow)| o) + [|TaoAs ullo) < C()llull),

since ||[TAZ 0] o) < ||vll). O

In Lemmas 3.12 and 3.13, the variables z and y denote elements of R".

Lemma 3.12 Let K(x,y;7) be the Schwartz kernel of the pseudo-differential operator A7
with 7 > 1. Then

|0 K (2, y;7)| < Cld) 72| —y| 77
provided |a| <2 and 0 < dy < |x —y].

A proof can be found in [16, lemma 3.4]. This proof is valid in our case when we choose [ + 1
and replace n 4+ 1 by n.

Let 0* = supo and o, = inf o over B(30).

Lemma 3.13 Let ¢ be K -pseudo-convex with respect to A on Q. Then for any xo € Q there
are 6(vy) and a constant C' such that
/ (AP o) < ¢ [ A AP
n Rn

for all v € H2(B(x¢;)) provided C' < .

Proof of Lemma 3.13
We can assume that xy = 0 and we let B(d) = B(x¢;0). For continuity reasons,
is K/2 pseudo-convex in B(3¢). By Theorem 3.1 there exists a constant C' such that the

Carleman estimate

1

/ 0?2l 2 < / [Agvol* for all v € H;(B(39))
B(36) B(36)

|a|=0
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holds, provided C' < v, Cy() < 7.
Let x € C§°(B(30)), x = 1 on B(20). Using this Carleman type estimate for vy =

A v, we obtain

/ @I + 0 3 0 (AsLo) + 0P XA o)
B(35)

la|=1

<C [ A0t (3.42)
B(35)

<O [ (AR CONIA + 3 100 P)
B(35)

laf=1

where we used (3.37), the Leibniz formulas

Alxw) = xAw + A1 (; x)w + A(x)w, Ai(xw; @) = xAi(w; ¢) + A1 (x; p)w,

and the triangle inequality.

Due to the Parseval identity, we have

/ AT < [ j0eACtup g/ o :/ o2 (3.43)
B(36) R™ R B(30)

when || = 1. Similarly,

7'2/ Ao < / . (3.44)
B(35) B(35)

Using these inequalities and recalling that y =1 on B(20) we derive from the bound (3.42)

that
/ @A +0 S 1% (A1) ) — C () / jof?
B(26)

<c / (4o (A1) 2 4+ CO) o). (3.45)
B(35)

The Parseval identity and the definition of A, yield

/ ov? < / o v?
B(36) B(36)

o [ It iorae + o [ e

n < &>2 402 e < & >2 +0%2
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= (0" + (o)) IAU*UIQ+UZ oA

|lal=1

ﬁ?ﬂi%ﬁ+—2/aw ik

lo|=1
+/ ()3 A}
R\ B(36)

Ty 10N )P).
Since ¢ € C?, using (3.2) we choose 6(7) so that 1 < Z=. Choosing 7 > C(7) and using

IN

laj=1

Lemma 3.11 we have from (3.45) that
[ (@I + ool

<c / A AL + C() / A 17 S 107 A ) (3.46)
B(35) R\ B(26)

jaf=1

when 7 > C(v). By using Lemma 3.12 we eliminate the last integral in this bound to
complete the proof.

Since suppv C B(6), we have

WMWMS/ wmwmwwWSOMﬂ/|ww%ﬂwwy
B(5) B(9)

by Lemma 3.12, provided z € R™ \ B(20). When y € B(J),

1 5 5 1
=yl = Slz—yl+ 5 Ifr—yl —+—| |——|y| —+_\x|2 il
. C(v)

2 4

Hence by using the Schwartz inequality

WMM@SOMﬂun%ﬂ/|Wﬁmmmw31

B(9)

provided z € R™\ B(24). Using this estimate we conclude that the last integral in (3.46) is
less than C'(vy fB |v]?, so choosing 7 > C(v) we eliminate this integral by using the last

integral in the left side of (3.46) as an upper bound. OJ

Proof of Theorem 3.2
We first assume that suppv C B(xg;0). Using the substitution v = e”™¥w and the

identity Av = e " A, w we reduce (3.4) to the bound
2
olw]* < C/ 01N " £2) when 7 > C(y),
| s

64



provided A,w = foo + 7, 0; foj, With

n

foo =€ (fo= > T050f3), foj =€°f;.

j=1

Using Lemma 3.13 we have

/ olwl? < C (1A fuo? + 1A 0, £ )
B(xo;9) B(20;0) j=1

< [ (7P + 2 1)
j=1
by the Parseval identity. Using the definition of f,; we complete the proof when suppu C
B(xg; 0(x))-

We now use a special partition of unity argument.

Due to compactness of ) we can find a finite covering of Q by balls B(z(k); §(7)(k)),
k=1,...,K. Let x(;k) be the special C*°- partition of the unity subordinated to this
covering, i.e., supp x(; k) C B(z(k);0) and Zszl X2(;k) =1 on Q. By the Leibniz formula

A(x(; k)o) = x(5 k) Av + > 9;(bjv) + cv

j=1

n

= X(R)fo+ 20X R)f) = D_(@x GRS + 3 05 (bjv) + v,

j=1 =1

where b; and ¢ depend on 7. Applying Theorem 3.2 to x(; k)v we obtain

/ o™ k)P
Q

g

<C/(f—g+if2+0()iff+0( yw?)e?™?
SR AR D Y ; +Cy :

j=1
Summing over k = 1,..., K and choosing 7 > C(v) we absorb the terms containing v in the

right side by the left side and complete the proof of Theorem 3.2. [J
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CHAPTER 4

CARLEMAN ESTIMATES FOR ELASTICITY SYSTEM WITH
RESIDUAL STRESS

As an important application of Theorems 3.1 and 3.2, we consider an elasticity system
with residual stress, R, [24], [25], [32], [33]. This is an anisotropic system. At present, there
are results on the uniqueness of the continuation and identification of its coefficients under
the assumption that the residual stress is “small” (without a quantitative bound of how
small). In [33], there are uniqueness of the identification theorems for some coefficients of
the residual stress under quite complicated conditions and from all possible boundary data.
We derive global uniqueness of the continuation results in €}y C €2 under some pseudo-
convexity conditions on a weight function 1 defining Qq. In this chapter we let z € R?
and (z,t) € Q C R*. The residual stress is modeled by a symmetric second-rank tensor
R(z) = (rju(x))?,—; € C*(Q) which is divergence free, V- R = 0. Let u(z,t) = (u1, up,us) "
1 — R3 be the displacement vector in €. We recall the operator of linear elasticity with

residual stress; let
ARU =f (41)
given by
Aru = potu — pAu— A+ p)V(V-u) — (V- -u)VA - 2¢(u)Vu — V- ((Vu)R)  (4.2)
where p € C1(Q) and ), u € C?(€) are density and Lamé parameters depending only on z,
with e(u) = 3(Va+ (Vu)"). Let O(u; B) = 97 — 3, “28129,0;.
Theorems 4.1 and 4.2 of Carleman estimates for elasticity systems are basic tools for
stability estimates of the lateral Cauchy problem in Chapter 5, and for solving the inverse

problem in Chapter 6.

We assume that

7 2(€) + [Al2(Q) + |ul2(Q) + [17[2(Q) < M.
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The estimate (4.3) below was obtained in [24] when R is “small” and in [20], [21]
without any smallness condition. Now, we obtain the Carleman estimate (4.3) based on a
sufficient global K-pseudo-convexity condition of ).

Theorem 4.1 Let ) be K-pseudo-convex with respect to O(p; R), O(A+2u; R) in Q. Then

there are constants C, Cy(7y) such that

/ (o(|Vapul® + |Vardivu|? + |V, icurlul?) + o(Ju]? + |divu]® + |curlu]?))e*™?
Q

< /Q (JARul? + |V(Apu)[2)e™ (4.3)

for allu e H3(Q), C <, Co(y) <.

We now have a weak Carleman estimate for elasticity systems. Theorem 4.2 is the

simple version of Theorem 4.1 without additional spatial derivatives on the right side of

(4.3).

Theorem 4.2 Let 1) € C3(Q) be K -pseudo-convex with respect to O(u; R), (A + 2u; R) in

Q. Then there are constants C, Co(7) such that
/a(|u|2+|dwu|2+\curzu|2)62w < o/ |A guf2e? (4.4)
Q Q
for allu e H2(Q), C <, Co(y) <.

Using Theorem 4.2, we have better estimates of Holder stabilities in Chapters 5 and

6 with reduced regularities in data.

4.1 Reduction to extended principally triangular system

The elasticity system we consider here is not isotropic due to the presence of residual
stress. Unfortunately, there is no Carleman estimate for such systems. We already obtained
Carleman estimates (3.3) and (3.4) for a general scalar operator. To easily use Carleman
estimates for scalar equations, we extend this system to a new, principally triangular system.

We need to diagonalize the principal part of (4.1). It is impossible, however, to reduce the
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principal part of (4.1) to uncoupled wave scalar operators. Here we provide two reductions
for (4.1); with a standard substitution (u, v = divu, w = curlu) the system Azru = f in
(4.1) can be reduced to a new system, where the leading part is a special lower triangular
matrix differential operator with the wave operators in the diagonal. Using these reduced

systems, we are able to prove the stability estimate for (4.1).

Lemma 4.3 The system (4.1) implies an extended (principally triangular) system of equa-

tions by using two auziliary functions v = divu and w = curlu. This system is

f
O(p; R)u = p + Ayq(u,v)
£ ,
O\ +2u; R)v = dz’v; + Z V(r%c) - 0;0ku + Az (u, v, w) (4.5)
jk

f ,
O(u; R)yw = curl; + Z V(%) X 0;0u + Az (u,v, w),
ik

where Ajq, j =1,2,3, are first order differential operators with the coefficients of first order
derivatives of v and w with C'(Q)-norms bounded by a constant C and the coefficients of

first order derivatives of w and of zero order terms with L™ (£2)-norms bounded by C.

Proof of Lemma 4.3
Dividing the both sides of (4.1) by p yields

20— P A Ao v — (V) 2~ (Vas (v Y Lo vwr - f
d;u pA ; V(Vu) - (V )p (V +(V))p pV((V )R) p.(4.6)

Since the last residual stress term is divergence free, we have

3 3 3
V- (VWR) = > rpdiopu+ Y Orpdiu= Y rpd;opu

due to V- R =0. Then (4.6) implies

1 < A A f
Pu—"LAu— 13 00 - 2 (T - (V)22 - (Var(Va) )L = L (4
p p A p p pp
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We now use two auxiliary functions v = divu and w = curlu, so that (4.7) implies
1 A VA \Y f
Ofu — —Au — ;erkc?j@ku %V — 2)7 — (Vu+(Vu)") pu =

Hence (4.6) yields the first operator of new system (4.5) with wave operators in

diagonal
f
O(p; R)u = p + Ajq(u,v), (4.8)
A A
where Ajq(u,v) = ;MV v+ v?v + (Vu+ (Vu) >V,u

Below we use the following identities

Au =V (V-u) —curl(V x u) = Vo — curlw,
V. (Au) = A(V - u),

V x (Au) = A(V x u),

V x u = (Oquz — Ozug, 3uy — Oyusz, Oyug — Oauy), (4.9)
(JF)=f(V-F)+V[-F

) Vx(fF)=f(VxF)+VfxF,

curl(Vf) =V x (Vf)=0.

(1)
(2)
(3)
(4)
(5) v x u = (vauz — v3uz, V3U] — VU3, V1Us — Vali1),
(6) V
(7)
(8)

Taking the divergence on both sides of (4.7), we obtain

A p 1 VA Vi _f
\AE 82u——A - —Vw rik0;0u — v— — (Vu+ (Vu)") == ) = div—.
( ; EV = 23 rididh S - (Vs (Vo))" R ) = div,
(4.10)
We now consider the divergence of each term of (4.10) by using the identities (4.9).
The second term becomes
TN u
V. (=Au) ==V (Au) + V( ) (Au) = = Av + V( ) - (Vv — curlw) (4.11)
p p p p p
by using the product rule and (1), (3) of (4.9), the third term is

V. ATy v (A gy = A A, A

5 ; 5 ; ) - (Vo) (4.12)

by using the product rule and (1) of (4.9), the fourth term is

1 1
AV (; Z rjkajc‘)ku) P Z r]kc‘) 8k. V- 11 Z c%rjk@ Opuy + Z 8; Z rjkajakul)

7.k 7.k ]k:l
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:—erkﬁﬁkv—f— ZV?‘]k 66ku+Vp ngkaaku

7,k
- Z PO+ V(%’“) - 9;0pu (4.13)
by using the product rule and (6) of (4.9), and similarly for the fifth term,

A\ (UD) =V - (Vp)\) + Vo - % (4.14)

The divergence of the last term of (4.10) consisting of a matrix is more complicated; it yields

o
V- ((Vll + Vl.l Z 8ka uk -I— Z 8k8ku] ]p'u + Z 8 U + 8kuj)8k
Ji:k 7,k
Vu
_Za (V-w)ZE 4+ Au " + (Vu+ (Vu)" Zak p (4.15)
=Vu- Vu + (Vv — curlw) - Vi + (Vu+ (Vu)")V) - (@)
p p p
Using from (4.11) to (4.15) yields
2 2 A+ u Tjk V,u
v —=Av— ——Av—— Zrﬂﬁ OV — Z V( - 0;0ku — (V + 7) (Vo — curlw)
p p
A A \% VA f
ALY +V“)-W—((vu+(Vu)T>v).( Viy g YN Z it

p p p p p

Hence the second operator of new system (4.5) is obtained by

f
O + 2u; R)v = div— + Z V(Y 000 + Ay (u, v, w), (4.16)
Ny ,0
A A
where Agi (1,0, w) = (VE 4 VY (Vo — curtw) + (vAH L YATVIY o,
PP p p
Vi VA
+ ((Va+ (Vu) V) - (—) + (V- —)o.
p p
Taking the curl of both sides of (4.7) yields
A+ g VA Vi £
V x 82u——A ——Vuo——>» rj0;00u— (V-u)——(Vu+(Vu) )— ) = curl-.
( L0 3D it — (V)= (Vs (V) ) ) ;
(4.17)
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We now consider the curl of each term of (4.17) by using the identities (4.9), that is,

V x 0fu = 0w, (4.18)
V x (HAu) = H(V X Au) + VE x Au=EAw + vE x (Vo — curlw), (4.19)
p p p p p
and
A A
v x ( :“V) VAT v (4.20)

due to V x Vv = curlVv = 0, we have

V X ( % Z rjkﬁjﬁku) = % Z rjkajakw + Z V(%) X ajaku (4'21)

by using (7) of (4.9), and similarly

VA VA VA

V x (1-2) = 0V x ~2 + Vo x ~—=. (4.22)

p p p

Using (7), (8) of (4.9) the last term of (4.17) yields

Ijp

V x ((Vu+ (Vu)") =V x Zau +a,”p

)
— ZJTM(V x Ojug) + Z@kj?” X Ojup + ZJTM(V X Opuj) + Z@iju X O,

0 9; 9;
-3 JT“aj(v <wg) + Y %‘(v X Vuy) + ZaﬂT" X (Oyur + Ohu;)
: Z j

- % V(V xu) + Zak%“ X (Djuy, + Opuy). (4.23)
J

Using from (4.18) to (4.23) yields

O*w — —AW —— erka O W — ZV ) X 0;0,u — VH x (Vv — curlw)
p

f

Hence it yields the third operator of new system (4.0)

f .
Qs R)yw = curl + ZV(%’“) X 0;0u + As(u,v, W), (4.24)
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A
Mva+v(va7)

A
where Agi(u,v,w) = V% x (Vv —curlw) + V il
A
Vox A L gw Y Z& 5 D5y, + Opu;).
p p p
Combining (4.8), (4.16), and (4.24) produces the new system of equations. [J

4.2 Strong Carleman estimate for a general elasticity system

In this section we prove Theorem 4.1.

Lemma 4.4 Let |V| > 0 on Q. Then, for a second order elliptic operator A, there are

constants C, Co(7y) such that
7/04_2|a62w|8av|2 < C’/(IeQT"9|AU|2 (4.25)
Q Q
for all v e C3(Q), |a] <2, C <7, and Co(y) < 7.

Proof of Lemma 4.4

We apply Carleman estimate in [12],

> VA lleikleearul| < Clem A, Dull, (4:26)

o <2
to u = o3v. By the Leibniz formula

1

9%(02v) = 020% + 73 Ay (2, D)v, |af =1,2

and

N\»—A

A(z, D)(07v) = 02 A(z, D)v + 72 Ay (z, D)v,

where A,, is a linear partial differential operator of order m with coefficients bounded by

C(v). By using these relations with |a| = 1 and the triangle inequality from (4.26) we get

VA lloe™ Vol = C(y)llre™vl| < Clo2e™ Az, D)ol + C(7) Y [|Ir2em™#0%||.

lo| <1
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Similarly, when |a| = 2,
VAl — O) Y e oru]l < Clloter Al D+ C() Y [lrdereor).

o<1 o<1

Summing the inequalities over |a| < 2, we yield
VA D lle* el = C(y) Y e o
|| <2 lor|<1
< C ||cr%e”"Av|| + C’(v)HT%eW@aUH.

Since 0 = 7yp for 1 <~ and 1 < ¢, the second terms in the left hand side and the right

hand side are absorbed by the first term on the left side by choosing 7 > C(y). O

Proof of Theorem /.1
Applying Theorem 3.1 to each of seven scalar differential operators forming the ex-

tended system (4.5) and summing up seven Carleman estimates, we get

/(U\Vmu|2 + 0|vatv|2 + 0|Vmw|2 + ?ul? + o |v]? + o¥|w|?)e?™
Q

< c/ (JApul? + |V(Apu)[2)e2 + c/ Z 10,0u[2e¥¢

],k 1
+C /(|Vu|2 + |V + VW] + [u]? +v? + |w|H)e?™?.
Q
By choosing 7 > 2C', we absorb the third integral in the right side by the left side, arriving

at the inequality

/(J\Vx,tu\z + 0|Vaeiv]? + 0|V, w|* + o [ul? + o |v]? + o®|w]|?)e’™
0

< C/(\ARu|2+ IV (Agpu)]?)e?™ + c/ Z 10,05 u]2e2™. (4.27)

7,k=1

To eliminate the second order derivatives in the right side, we need a second large

parameter v. By Lemma 4.4

/ Z |0,00u?e*™® < C’/U|Au\262w
Q

j,k=1
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< C’/U(|Vv]2—|— |Vw|*)e?™ < C/(|f|2—|— IVE[})e?™ + C / |0,05u)?e*™%,
0 0 Q

where we used the known identity Au = Vv — curlw and (4.27). Choosing v > 2C, we can
see that the second order derivative term on the right side is absorbed by the left side. This

yields
3
v [ ode < C [ (82 4 e
Q

Q k=1

So, using again (4.27) proves (4.3). O

4.3 Weak Carleman estimate for a general elasticity system

In this section we prove Theorem 4.2.
Lemma 4.5 There exists a constant C(vy) such that
A2 (@ curl) v — (@ curl) A7V ][0/ (2) < COIVI0 (@)
for all v e HX(Q), |a] < 1.
The proof is similar to the proof of Lemma 3.11.

Lemma 4.6 Let V| > 0 on Q. Then there are constants C, Cy(v) such that

7/(02\u|2+ Z |0%u|?)e*™” < C/J(]curlu\z—i- |divul|?)e®™
Q Q
la|=1

for allw € H}(Q) provided C < vy, Co(y) < T.

Lemma 4.6 is proven in [11]. To make our exposition more self-contained, we give
a proof different from [11]. We expect this proof to be useful when handling more general

systems.

Proof of Lemma 4.6
Let zo € Q. We first consider u supported in B(z;0). Using the standard substitu-

tion u = e7"%v as above, this lemma follows from the bound

y / (A + v + 3 o)
B(9)

|a|=1
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<C [ al(urt) v + (i) vP)
B(5)

Since Avy = curlcurlvy — Vdivvy, by Lemma 4.4 there exist C' and C(v) such that

the following Carleman estimate holds
vy Z / oA |9y 2 < C/ o Z ([(0%curl) yvo|* + |(0%div) ,vo|?)
<2 7 B(36) B©)  |a=1

for all vy € HZ(B(30)) provided C' < v, C(y) < 7.

Let x € C§°(B(36)), x = 1 on B(26). Applying this Carleman type estimate to
vo = XA v, we obtain

7, (N 0 3D )+ (00N
B(3
la)=1

+ ) O (ALV) + 20 %0 (A7) + (0" )ALV

|af=2

<c /B oy 2 @ (A + (i) (AP

laf=1

+CEIAAVP + 7 [0%(AV)]P), (4.28)

jaf=1

where we used that due to (3.37), for any second order partial differential operator A with

constant coefficients,

A,(, D)(xA;v) = xA(, D +itV)Av + (TAg + Ai(, D))A v, (4.29)

where Ay and A; are zero and first order operators with bounded coefficients depending on
v and A, we applied the relation (4.29) to components of curl, and div,,, and we used the
triangle inequality.

Recalling that x = 1 on B(24), we derive from inequalities (3.43) and (3.44), and the
bound (4.28), so that

4-2]al| g A —1,|2 2
7/ o O“A.v|" = C(y / v
o >, | | (7) 3(35)| |

%) ol <2

< 0/3(35) (o Z (1(0%curl) (AP + [(0°div) o (A V)]?) + C(y)7]v]?). (4.30)

la)=1
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The Parseval identity and the definition of A, yield

/ NP < / (0" Iv]?
B(35) B(36)

0 [ i alords + @ I epae

5 <& >2 402 rs < & >% 4+ 0%2

=GRS S M

lal=1

o* o*
< 2(—)4/ oA ]2 4+ (—)? / a?|0%(A1v) 2
O B(26) Ox Z B(26)

laf=1

f @ IAIE R 3 0P
R3\ B(26)

|laf=1

Since ¢ € C?, using (3.2) we choose 6(7) so that § < 2. Similarly

foy v = [ it

) Jal=1

~(@ P+ [ P epae + / I eae

s < E>2 4 0% R < & >2 4 0*2

< 2/ Z (U*)4—2\a||aaA;*lv|2
R

3
1<|al<2

a_4—2|o¢\|aaA;*1V|2 + / Z (0*)4—2\04|804A;*1V‘27
R

\B(20) 1<ja|<2

<s
B(26)

where we used that o < 20, on B(3§). Choosing 7 > C(~) and using Lemma 4.5 we have

1<]a|<2

from (4.30) the inequality

/ (A |? 4 o?|v]? + Z |0°v|?)
R3

laf=1

< C’/ O Z (|0 A (curl) v + |0 AL (div) ,v|?)
(39)

|laf=1

+ C’(’y)/ Z ri=2lel|gap tv)? (4.31)
R3\ B(26

) Jal<2

when 7 > C(7). From (3.43) and (3.44) we have

/ 0. > (|0°A (curl) v + [07 AL (div) v]?)
(39)

la|=1
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< [ allcurt) vl + [div) v
B(5)
By using Lemma 3.13, we eliminate the last integral in the bound (4.31). Since

suppv C B(0),

oea vl <

VK g0y < C0r [ je i vy
B

B(9)

by Lemma 3.12, provided z € R*\ B(25). When y € B(4), as in the proof of Lemma 3.13,

|z —y| > 1&';”)' Hence by using the Schwartz inequality

0" ASAvI(z) < CO)r2(1 + []) / vP)? forall fo] <1
Q

provided z € R?*\ B(2§). Using this estimate, we conclude that the last integral in (4.31) is
less than C(7) fB((S) [v|?, so choosing 7 > C(v), we eliminate this integral by using the last
integral in the left side of (4.31) as an upper bound. This completes the proof of Lemma 4.6
when suppu C B(x; ).

Now we complete the proof by using a special partition of unity argument. Due to
compactness of 2 we can find a finite covering of Q by balls B(z(k); 6(7)(k)), k=1,..., K.
Let x(;k) be the special C*°- partition of the unity subordinated to this covering, i.e.,
supp x(; k) € B(x(k);6) and 31, x*(; k) = 1 on Q. By the Leibniz formula

curl(x(; k)u) = x(; k)curlu + Apju

and

div(x(;k)u) = x(; k)divu + Agau,

where Ag; and Ay are bounded matrix-functions depending on . Applying Lemma 4.6 to

x(; k)u and using the elementary inequality £|a|* — [b|* < |a + b|*> we obtain

N / @CGRE + 3 (R0 — C()uf)e

la|=1

< C’/ o ((lcurtu? + |divu]?®) + C(7)|ul*)e* ™.
Q
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Summing over k = 1,..., K and choosing 7 > C(~) we absorb the terms containing C(~)|u/?

by the first term on the left side and complete the proof. [J

Proof of Theorem 4.2
Applying Theorem 3.2 to each of seven scalar differential operators forming the ex-

tended system (4.5) and summing up seven Carleman estimates, we get

/Q o(jul? + [of? + [wP)e™

3
< C/ f]?e*™ + C / Z |0;ul?e®™ + C /(\u\Z + 0% 4 |w|?)e?™?.
0 0

J=1

By choosing ¢ > 2C' we can absorb the third integral in the right side by the left side,

arriving at the inequality

/Q o(ul + Jof? + [wf2)e™

3
< c/ 22 + C / 3 |9;uf?erm. (4.32)
Q Q55

To eliminate the first order derivatives in the right side we need the second large

parameter v. By Lemma 4.6 we have

3
’y/ Z|8ju|262”" < C’/U(|curlu|2—|— |divu|?)e*™?
Q5 Q

3
< 0/ f2e*% + C / > [oulrer,
Q Qi
where we used (4.32). Choosing v > 2C, we can see that the first order derivatives term on

the right side is absorbed by the left side. This yields

3
’y/ZI@uIQezw < C/ |f]%e?™%.
Q7 0

So using again (4.32), we complete the proof of estimate (4.4). O
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CHAPTER 5

UNIQUENESS OF CONTINUATION FOR SOLUTIONS OF
PARTIAL DIFFERENTIAL EQUATIONS

In this chapter we derive local (of Holder type) and global (of Lipschitz type) stability
estimates for the lateral Cauchy problem for system (4.2).

Let us consider the following Cauchy problem:

Agpu=f in Q,
u=ggp du=g; on ['CIN
where T € C3. Let Qs = QN {y > §}.

The Carleman estimate of Theorem 4.2 by standard argument [19, section 3.2] implies

the following conditional Hélder stability estimate for (5.1) in €25 (and hence uniqueness in
Qo).
Theorem 5.1 Suppose that all coefficients \, u, p, R are in C?(Q). Let ¢ € C3(Q) be K-
pseudo-conver with respect to O(u; R), O(X + 2u; R) in Q. Assume that Qo C QUT. Then
there exist constants C' = C(8), k = k(d) € (0,1) such that for a solution u € H?*(Q) to
(5.1) one has

[ull)(2s) + [[Vull0)(25) < C(F + M{™"F"), (5.2)

where F' = [|£]0)(€20) + l|goll(2) () + llg1ll2)(T), M1 = [[ullq)(€2).

In Lipschitz stability, we assume that 2 = G x (=7, T) and that the system Agu = f
in (5.1) is uniformly ¢-hyperbolic. Applying known [7] we showed that a sufficient condition

for hyperbolicity of the residual stress system (2.64) in Section 2.5 is, in more detail, that
0< A\ 0<eols<2uls+R on G.
We use the conventional energy integral
Bltsw) = [ (0 + [Tuf + [uf)(.0)

79



The Carleman estimate of Theorem 4.1 by standard argument implies the following

best possible Lipschitz stability estimate for (5.1) in 2.

Theorem 5.2 Suppose that \, i, p, R are in C?(Q). Let v be K -pseudo-conver with respect
to O(u; R), O\ + 2u; R) in Q. Assume that

<0 on Gx{-T, T}, 0<v¢ on G x{0}. (5.3)

Let T'=0G x (=T, T). Then there exists a constant C such that for a solution u € H?(Q)

to (5.1) one has
E(t;a) + E(t; Va) < C([[f]/1)(2) + lIgoll(z)(T) + [[g1l2)(I)) (5.4)
where =T <t <T.

5.1 Holder stability in the Cauchy problem

In this section we prove Theorem 5.1.

Proof of Theorem 5.1

By extension theorems for Sobolev spaces, we can find u* € H?(f2) so that
u" =gp, u"=g; on I'
and
[u™|2)(2) < CF. (5.5)

Let

v=u-—u" (5.6)
The function v solves the Cauchy problem

Arv=f—Agzu* in Q,
v=0, d,v=0 on I'C0f.

(5.7)
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To apply Carleman estimates of Theorem 4.2, we need zero Cauchy data on the whole
boundary. To achieve this condition, we introduce a cut-off function y € C*(2) so that

x =1on Q%, X =0 on Q\ Q. By the Leibniz formula
Agr(xv) = XArv + Ayv,

where A; is a matrix linear partial differential operator of order 1 with bounded coefficients
depending on y. Moreover, A; = 0 on 2 5 Using the Cauchy data (5.7) we conclude that

v € H2(Q), hence by Carleman estimate of Theorem 4.2 we have

/ (Iv] + [div(v)P + leurl(ev) [2)ee
(9]

< (J/(|f|2 F AR + |Av]2)ere
Q

for C' < v, Cy < 7. Shrinking integration domain on the left side to €2 Eh (where x = 1) and

splitting integration domain of |A;v|? into s and its complement we yield

/ (Jv]® + |divv]?* + |curlv]?)e*™®
Q35

= C/ (I + |Agu)e*™ + C / [Ayv[2e?m
Q MN\Qg
< CF?e7? 4 C’||V||?1)(Q)627‘b2,

where we used definition (5.2) of F' and bound (5.5) with ® = sup ¢ over 2 and &, =sup g
over '\ Q 5 Letting ®; = inf ¢ over () 35 and replacing ¢ on the left side of the preceding
inequality by ®; we yield
(V7o) (Qss) + ldivv o) (Qss ) + [leurtv][y) (Qas))e* ™
< CF?e*™ + C||V||%1)(Q)€2T¢2. (5.8)

Observe that ®, < ®;.
Using interior Schauder type estimates (2.53) in Theorem 2.17 for the elliptic operator

A = Vdiv — curlcurl, we obtain
V17 (€26) < CUIVITo) (Qse) + l[divv[Fgy (Qss) + lleurlv|[Fg) (Qss)).
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Hence (5.8) yields
VI () + V2V if) () < CF2TE00 4 Clvf (Q)e*®2m. (5.9)

If [vl|y(QQF~! < C, then ||v]|1)(€2) < CF. Otherwise we let 7 = %. Then the

bound (5.9) implies that
IVl () < Cllvliay (@)= F"

D1 -2

Fr e Combining both cases we yield

with k =

V1) () + [IVavll0)(26) < C(F + [Vl () = F").

Using the above inequality, the relation u = v 4 u*, the triangle inequality, inequality

(5.5), and the elementary inequality (a + b)® < a® +b", 0 < k < 1, we get (5.2). O

5.2 Lipschitz stability in the Cauchy problem
In this section we prove Theorem 5.2.

Proof of Theorem 5.2
As in the proof of Theorem 5.1, we introduce functions u* and v. Let v = u — u*.
Since the surface I' € C® is noncharacteristic for A, we can uniquely solve Agpu = f on I’

for &?u in terms of f, gy, g, and their tangential derivatives. Moreover

10;ull 1y (@) < C (£l (T) + llgoll 3y (1) + llgallz)(T)). (5.10)

1 1
2 2

Then extension Theorem 2.1 tells us that for f € H2(I') we can find u* € H3(Q) so that
ARH* = O,

u =gy, J,u" =g, o> *z@ﬁu on I,

14

and
lu () < C (1€l s (D) + lgolls) (D) + lgills) (D) (5.11)

due to (5.10) in the sense of a linear combination.
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The function v solves the Cauchy problem

;ARV:f—ARu)‘< in Q,

(5.12)
v=0, d,v=0 on I.
Moreover, due to our construction of u*, we have
O =0 on T, (5.13)

We introduce the following energy integrals for the hyperbolic system of elasticity

with residual stress
E(t;u) = /(|8tu]2 +|Vul? + [u]?)(,t), E(t) = E(t;v)+ E(t;Vv).
G

Dividing the system (5.1) by p and differentiating with respect to space variables we

obtain the extended system with the same principal part

p_lARV = p_lf*u

in Q=G x (-T,7T), (5.14)
p tA ROV = 0jp H* — (0;p T AR)V

where f* = f — Agu*, j = 1, 2,3, with the zero boundary value conditions in the sense of
(5.12), i.e.,
v=0, 0;v=0 on I'=0Gx (-T.T). (5.15)

By standard energy estimates for t-hyperbolic systems (i.e., [7])
CUE©) — [F]0y () < E(t) < C(EQO) + £ (2) when t€ (-T,T).  (5.16)

We choose a smooth cut-off function 0 < y(¢) < 1 such that xo(t) =1 for =T'+2 <

t <T —26and xo(t) =0 for |[t| > T — 0. It is clear that
Ar(xov) = xXF* + 200,x00,v + pd2xov

and

VAR(XO") = XOVf* + 2p3tX08tVV + paEXOVV (517)
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Using the Cauchy data (5.15) we conclude that yov € H (), hence

/ (Ve (xoV)|? + [ Vardiv(xov)|* + | Varcurl (xov)|? + [xov]?* + | div(xov)|* + |curl (xov)|?)e*™®
Q

< O/ ARGV + [VAR(oV)[2)e2 (5.18)
Q
< C( / (IF ] + |VE[2)e?™ + / (18:v [ + VP + 10,V v]2 + [Vv]?)e?™)
Q Gx{T—-26<|t|<T}

by Theorem 4.1 with fixed ~, (5.12), (5.13), (5.14), and using the definition of a cut-off
function 0 < xo(t) < 1.

Using the known identity Av = —curlcurlv + Vdivv and the boundary conditions
(5.15), from known elliptic estimates in the Dirichlet problem for the Laplace operator in G

we have
/ V2v]? < C/(|Vd@'vv|2+ IVeurlv|?)
G G
and
/G|8tVV|2 < C’/G(|8tdivv|2+ |Oscurlv?).

Shrinking the integration domain  on the left side of (5.18) to G x (0,0) where yo = 1
and choosing 1) by €717 < ¢2™¢ gince 1 —§ < ¢ on G x (0,6) and €>™* < €>"1=29) gince

p<1—=20onGx (T —46,T), gives

)
e?7(1=9) / E(t)dt
0

T
< C(/(|f*|2+ VE[2)e2m 1 ce2T<125>/ /(|8tv|2+ V4 (8] + [TV ).
Q T-26 JG
Hence
) T
e27(1=9) / Et)dt < C( / (IE* > + |V [2)e¥™ + Ce>(1-2) E(t)dt).
0 Q T—-26

Choosing ® = sup ¢ and using the energy bound (5.16) we yield
Q

T(1— 6 T * T(1— T *
e IOZB(0) = CeP I8 () < CoeTIEB(0) + Ce |1 (). (5.19)
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We now have the bound
E(0) < OfIf*|It(2) (5.20)

by choosing 7 (depending on C') so large that e~ < Zz in (5.19).

Using energy estimates (5.16) and (5.20), we finally get
B(t:v) + E(5Vv) < Clf[o(©).
Similar to the proof of Theorem 5.1, using u = v + u* and triangle inequality gives
E(t;u) + E(t; Vu)

< C(IF (@) + E(t ) + Bt Vur))
< C (I (@) + [ Azull) Q) + [0l 5 () + 9”5 (T))

< C ([I£ll1y () + ligoll ) (T) + llgallz) (1))
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CHAPTER 6
INVERSE PROBLEM

Now, we state results about identification of residual stress from additional boundary
data. For Theorems 6.1 and 6.2, let Q@ = G x (=T, T) where G is a bounded domain in R3
with C®-boundary and let T' C 0G x (=T, T).

Let u(;1) and u(;2) be solutions to

Agru=0 in Q,
u=uy, du=u; on G x {0}, (6.1)
u=gy on 0G x (=T,T),

corresponding to sets of coefficients R( ;1) and R(;2), respectively. In this chapter we assume

that p, A, i, 7%(;j) do not depend on ¢, that
07 18(Q) + [Als(Q) + [uls(Q) + [r7¥[s(Q) < M,

and that
w € H(G), u; € H¥(G), and gy € C°(0G x [-T,T)).

We also impose compatibility conditions of order 7 at G x {0}. Then, by known energy

estimates and Sobolev embedding theorems (like in [16], [25]),
10%07u]|00(Q) < C, when |a] <2, 8 <5. (6.2)

We can consider the boundary stress data as measurements (observations). We introduce

the norm of the difference of the lateral Cauchy data

Fo= 52, [900,(u(:2) — u(; 1)) 3)(T). (63

Since u(;1) = gy = u(;2) on I', F, is a norm of the difference of the Cauchy data on the

observation set I'.
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By examining the equation (4.2), we can see that since the residual stress tensor is
divergence free, it appears in the equation without first derivatives. It turns out that a single
set of Cauchy data is sufficient to recover the symmetric (variable) matrix R. To guarantee

the uniqueness, we impose a non-degeneracy condition on the initial data (ug,u;). Let

0? 20,0 20,0 02 2050 02
M — 1Up 102109 10300 05Uy 203U O3Ug ‘ (6.4)
8fu1 28162111 28183111 822111 28283111 6§u1

Note that M is a 6 x 6 matrix-valued function. We assume that
det M >¢e5>0 on . (6.5)

For example let ug(z) = (22,23, 23)" and wy(x) = (z9x3, 1173, 2122) " ; one can check
that (6.5) is satisfied with gy = 26.

Now, we state the Holder type estimate of determining coefficients in €25 defined as
Qn{y >}
Theorem 6.1 Let the initial data (ug, uy) satisfy (6.5). Assume that Qo C QUT. Assume

that ¢ € C3(Q) is K-pseudo-convex with respect to O(u; R(;2)), O\ + 2u; R(;2)) in Q.

Then there ezist constants C' = C(9), k = k(5) € (0,1) such that
I17(;2) = R(; Dl[0)(€%5) < CFE. (6.6)

If T is the whole lateral boundary and 7' is sufficiently large, then under more re-
strictive conditions a much stronger (and in a certain sense best possible) Lipschitz stability
estimate holds.

We assume that anisotropic system Agu = 0 in (6.1) is ¢-hyperbolic. A sufficient

condition is given in Section 2.5 as
OS )\, 80]3 S 2[1,]3+R on G

where €( positive. The conditions are satisfied when any eigenvalue of the matrix R is strictly

greater than —2pu. This happens when, for example, ZS r2. < 4% on G. Under these

ij=1"Tij
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conditions the anisotropic system A zpu = 0 is time hyperbolic and hence the initial boundary
value problem (6.1), for it is well-posed in standard energy spaces. We are interested in

recovery of the residual stress from additional boundary data.

Theorem 6.2 Assume that \, i1, p, R are in C*(Q). Let ¢ be K-pseudo-convex with respect
to O(w; R(;52)), O\ +2u; R(;2)) in Q. Assume that the condition (5.3) is satisfied. Let the
initial data (ug,wy) satisfy (6.5). Let I' = 0G x (=T,T). Then there exists a constant C
such that

IR(:2) — R(: )| 0(®) < CF. (6.7)

The weaker results of Theorems 6.1 and 6.2 with C' depending on R(;2) are derived
in [20], [21].

6.1 Holder stability for the residual stress

In this section we prove Theorem 6.1.

Proof of Theorem 6.1
Let u(;1) and u(;2) satisfy (6.1) corresponding to R(;1) and R(;2), respectively.
Denote u =u(;2) —u(;1) and F = R(;2) — R(;1) = (fx), j,k =1,...,3. By subtracting

equations (6.1) for u(;1) from the equations for u(;2) we yield

Agipu=A(;u(;1))F on Q (6.8)
where
3 3
AGuGD)F = fudiopa(;1) + Y 0 fudku(;1). (6.9)
Ji:k=1 j.k=1

Since the residual is divergence free, the second term on the right of (6.9) vanishes and
u=0u=0 on Gx{0}, u=0 on I (6.10)

Differentiating (6.8) in ¢ and using time independence of the coefficients of the system, we
get
AU =A(;U(;1))F on Q (6.11)
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where

0?u 92u(;1)
U= |09} and U(;1) = | d}u(;1) |- (6.12)
0/u Ofu(;1)

By extension theorems for Sobolev spaces there exists U* € H*({2) such that

U =0, U =0,U on I (6.13)

and
U [)(€2) < C[lo,U]|1)(I") < CF. (6.14)

due to the definition (6.3).
We now introduce V = U — U*. Then

AR( ;Q)V = .AF — AR(;Q)U* on {) (615)

and
V=0,V=0 onI. (6.16)

To use the Carleman estimate (4.4), we need zero Cauchy data on 0€. To create
such data we introduce a cut-off function y € C%(R?) such that 0 <y <1, x =1 on Qg and

X =0on Q\ Q. By the Leibniz formula
Ar(2)(XV) = XAgr(2)(V) + A1V = YAF — xAp2)U" + A1V

due to (6.15). Here (and below) A; denotes a first order matrix differential operator with
coefficients uniformly bounded by C(¢§). By the choice of x we have A;V = 0on Q 5 Because
of (6.16) the function YV € HZ(£2), so we can apply to it the Carleman estimate (4.4) with

fixed v to get

| AVEET < C0) [(PE+ Ao (U +0 [ AV
9 Q Q\Q%

<C (/ IF|2e*™ + F2e*™® 4 C(0)e™) (6.17)
Q
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where ® = sup ¢ over (2 and §; = e%. To get the last inequality we use the bounds (6.14).
From (6.1), (6.8), and (6.9) we have

AR(§2)u( ) 0) = pafll( ) 0) - MAU-( ) 0) - (/\ + M)V(V ) 11( ) 0)) -V (Vu( ) O)R< ; 2))

= fird;0pu(,0;1).

Using (6.10), since u(,0) = 0, the space derivatives are Vu(,0) = 0 and Au(,0) = 0. Hence

pdju(,0) = fix0;0pu(,0;1)

and
pdfu(,0) =" fix0:0;05u(,0;1)
on G x {0}. From now on we consider the symmetric matrix-function F as a vector func-

tion with components (fi1, fi2, fi3, f22, fos, f33). Using the definition (6.4) of M we obtain

p(0?u, 9Pu) = MF on G x {0}, and from the condition (6.5) we have
F =M (p(0}u,0}u))""
on G x {0}. Hence, by using (6.5), we get

F[P<C ) (107a(,0)P). (6.18)

£5=2,3

Since x(,T) = 0, we can write

T
/ 0 u(z, 0)22 @0 dy = —/ 8t(/ IxOPu(z, t) 22 @0 d) dt
G 0 e
< [ 2007 wlopal + rlowlofuP)e + 2 [ jofulonde
Q N2y
where 3 = 2,3. By using (6.12) and the well-known inequality |a||b|] < |a|? + |b]?, the right
side does not exceed

c / U™ 4 C(8) / URe)
Q Q\Qg

<o / V]2 + C(6) / V22 4 7 / U* e2re) (6.19)
Q Q Q

\Q;
3
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because U =V + U™,
Using that x = 1 on Qg, © < 6; on Q\Qg, and ¢ < ® on Q in (6.19) and from (6.14)
and (6.17) we yield

/ 002, 0)e2#(9 < / B2 4+ C(5)e¥™ + 76 @ F2). (6.20)
G Q

First we get this bound with G s instead of GG on the left side and then add to both
sides of the inequality the integral over G \ G 5, which is bounded by C (6)e*™ due to the

bound (6.2), and the inequality ¢ < d; on G\ Gs. From (6.18) and (6.20) we obtain
/ [F|2e?700) < C(/ IF|2e*™ + 7™ F2 4+ C(8)e*™). (6.21)
G Q
To eliminate the integral in the right side of (6.21) we observe that

/ IF|?(2)e? @D dadt
0

T
:/|F|2<x)e2w(x,0) (/ 2@ =@M qt) dg,
G

=T

Due to our choice of ¢ we have ¢(x,t) — ¢(z,0) < 0 when ¢ # 0. Hence, by the Lebesgue
theorem, the inner integral (with respect to ¢) converges to 0 as 7 goes to infinity. By reasons
of continuity of ¢, this convergence is uniform with respect to x € G. Choosing 7 > C' we
therefore can absorb the integral over (2 s in the right side of (6.21) by the left side arriving
at the inequality

\F\Qezw(’o) < O (1™ E? 4+ C(6)e*™).
Qs

Letting 6, = 7 < ¢ on s and dividing the both parts by €272 we yield

’F’Q < C<T€27(¢762)F62+€727—(627§1)) < 0(5)<€27<I>F02_'_6727(62761)) (6.22)
Qs

since Te =272 < (). To prove (6.6) it suffices to assume that F, < &. Then T = q;lgffgl >C

and we can use this 7 in (6.22). Due to the choice of T,

o 8201
_ _ F
e 27(82—61) _ 627'<I>F02 — Fc 2—61

)

and from (6.22) we obtain (6.6) with k = @%5;6—151' O
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6.2 Lipschitz stability for the residual stress
In this section we prove Theorem 6.2.

Proof of Theorem 6.2
In view of Holder Stability for the residual stress, since G x (=7, T) is noncharac-
teristic with respect to A we can uniquely solve the equation Ap(.yU = 0on 0G x (=T, T)

for 92U in terms of U and 9,U. In particular,
102Ul 5, (0G x (=T, 7))

< C (U] 5,(0G x (~T,T) + 8,0 3,(0G x (~T,T))) (6.23)

due to definitions of U in (6.11) and (6.12).

By extension theorems for Sobolev spaces there exists U* € H3() such that

ApU* =0,

U —o 80 —aU gu-— gy 20X DD, (6.24)

and

1071l (Q) < C(I10,Ull2)(0G x (=T.T)) + [9,Ul|1)(9G x (=T, T))) < CF.  (6.25)

%
due to (6.23) and the definition of F..
We introduce V = U — U*. Then due to (6.11), (6.12), and (6.24), we have

AR(;Z)V = A( X u( 3 1))F - AR( ;Q)U* on Q, (626)

V=9,V=0V=0 on 0G x (-T,T). (6.27)

As in Section 5.2 (Lipschitz statbility for Cauchy problem), since (6.26) is t-hyperbolic,

we use the known energy estimates. Relations (6.25), (6.26), and (6.27) give
CTHE(0) — [F[I{)(G) — F2) < E(t) < C(E(0) + ||F[},)(G) + F?) (6.28)

C

where
E(t)=Et;V)+ E(t;VV), E(t;V) :/(|8tV|2+|VV|2+|V|2)(,t). (6.29)
G
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Here and below, the operator V is V..

On the other hand, by using the Carleman estimate of Theorem 4.1 and our choice
of the weight function ¢ we bound the right side of (6.28) by a small fraction of E(0) and
given quantities.

To use the Carleman estimate (4.3), we need a cut off V near t =T and t = —T. We

first observe that from the definition and from the condition (5.3) that
1 < o(z,0), p@,T)=¢(@, ~T)<1 when z €Gq.
So there exists a 6 > & such that
1-0<¢ on Gx(0,9), p<1—20 on G x (T —24,T). (6.30)

We now choose a smooth cut-off function 0 < xo(¢) < 1 such that yo(t) = 1 for
—T+25<t<T—20and xo(t) =0 for |t| >T — 9.

Because of (6.27) and the sense of Lipschitz stability for Cauchy problem (Section
5.2), xoV € H3(Q). By the Leibniz formula

Ari2(xoV) = xoAGUGL))F — xoAgr2U* + 2p(0:x0)0:V + p(9;7x0)V
and
VAgr2(x0V) = xoVAGUGL))F — xoVAr2U* + 2p(9x0)0,VV + p(87x0)VV.

So, we apply the Carleman estimate (4.3) with fixed v for (6.26). Since d;xo(t) =0
when =7+ 26 <t < T — 20, the domain of integration shrinks to G x {T' — 20 < |t| < T'}.

Using (6.2) we have

/ (X0 VI* + Ve (o V)? + [Viadiv(xo V) [* + [Vaecurl(xo V) [*)e*™
Gx(0,T)

<C (/(‘F‘2 + |[VF[” + |Ag(2)U*|* 4 [V(A g2 U") )’
Q

- (V> + [0 V> +|VV]* + [0,V V)’ ™). (6.31)
Gx{T-26<|t|<T}
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Using the known identity AV = —curlcurlV + VdivV and the boundary conditions (6.27),

from known elliptic estimates in the Dirichlet problem for the Laplace operator in G we have
/ IV2V|? < C’/ (|VdivV|? + |VeurlV|?)
G el

and

/|815VV|2 < C/(|8tdivV|2+ 0, curlV|?).
e e

Integration of the energy bound (6.28) over (0,4) gives
5
SEW) < C([ Byt + [FI}y(G) + F2)
0

< C (/ (VP + [Var VI? + |VaordivV|? + |V curl V|?) + ||F||§1)(G) +F2).
Gx%(0,6)

Similarly
/ (VP + 10V + [VV + [0,V Ve
Gx{T—-26<|t|<T}

< C(ET2N(B(0) + R}y (G) + CF2e™™)
where ® = sup .
Q

Hence using (6.30) the bound of the left side in (6.31) gives

2 1=95 B(0) + / (0ol VI* + [V i(xo V) [2)e#
Gx(0,T)

< C(/Q(|F|2 + |[VF|?)e?™? + F2e*™® 4 7 0729([(0) +/G(|F|2+ IVE%)).  (6.32)

Now we choose 7 large enough such that e271=9§ > 2Ce?(1=29) Then we eliminate E(0)
from the right of (6.32).
Since U =V + U*, using (6.25) from (6.32) we obtain

[ 3up + vuper
Gx(0,T)

T
< C(ePF2 + / (/ 2rP@ gt 4 272 (R 4 IVF|?)(z)dz). (6.33)
G J-T
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Using (6.5), (6.9), and (6.10) from (6.8) we get that
poju =Y " fix0;0cu(;1),

pOju =" f;0,0;00u(; 1)
on G x {0}. So using the definitions of M, F we obtain p(0?u, 9?u) = MF on G x {0}, and

from the condition (6.5) we have
F =M (p(0/u,0/u)), VF =V(M(p(0{u,0;u)))
on G x {0}. Hence we obtain

F> + [VEP? < C ) [9/05a(,0)P. (6.34)

|a‘§1» B=2,3

Therefore

/ (FP + [VF2)#(0) < ¢ / Paru(,0) 220
G G

T
= -C / Ay ( / Ix00F 0u|?e*da) dt
0 G
<cC / (10002 ul|0f %) + 7100l |00 ) 7
0

+ C/ Xo](?tx()H@fﬁju\Qezw
Gx(T—26.T)

where |a| <1 and = 2,3. Now, as in the proofs of Holder stability for the residual stress,

the right side is less than

c / MC(UP + [VUP)™ + / (U2 + [VUP)e)
Q Gx(T—28,T)

=C (/QT><3(IU|2 +[VUP)e™ 4+ (R |17 (G) + F7))

where we used the equality U = U* + V with (6.25) and (6.28). From two previous bounds

we conclude that

(PR -+ VB
G
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T
< C(Te2fq>F3+/(/ 22Ut + 22N (JF|? + |[VF)?)). (6.35)
G J-T

Due to our choice of ¢, 1 < ¢(,0) and ¢(,t)—¢(,0) < 0 when t # 0. Thus, by the Lebesgue

theorem we have

T
20(/ e27’g&(,t)dt+€27'(1726)> < €2T<p(,0)
=T

uniformly on G when 7 > C. Hence choosing and fixing such large 7 (depending only on

C') we eliminate the second term on the right side of (6.35). O
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CHAPTER 7
CONCLUSION

We believe that the Carleman estimates of Theorems 3.1 and 3.2 for general anisotropic
operators that we obtained in Chapter 3 can be applied to other important systems of
mathematical physics, for example, to transversely isotropic elasticity systems and to some
anisotropic Maxwell systems.

It is not clear at the moment how to include the time derivatives of u in Theorem 4.2
on elasticity systems. If this were possible, then one can obtain proofs of Lipschitz stability
in the lateral Cauchy problem and for identification of residual stress in most natural norms.
By using additional spatial derivatives such Lipschitz estimates are constructed in [20], [21],
[25].

The next realistic goal is to apply the weak form of Carleman estimates to obtain
Carleman estimates, uniqueness of continuation, and coefficient identification results for the
important system of transversely isotropic elasticity, where currently there are no analytic
results. We expect that the developed theory can be extended to Schrodinger type equations,

and therefore to anisotropic systems describing elastic plates and shells.

97



REFERENCES

98



1]
2]

[3]

[11]

[12]

[13]

[14]

[15]

LIST OF REFERENCES

R. Adams and J. Fournier, Sobolev spaces, Pure and Applied Mathematics, 140 (2003).

P. Albano and D. Tataru, Carleman estimates and boundary observability for a coupled
parabolic-hyperbolic system, Electr. J. Diff. Equat., (2000), 1-15.

A. Amirov and M. Yamamoto, A timelike Cauchy problem and an inverse problem for
general hyperbolic equations, Appl. Math. Lett., 21 (2008), 885-891.

A L. Bukhgeim, Introduction to the theory of inverse problems, Brill Academic Publish-
ers, (2000).

A.P. Calderén, Ezxistence and uniqueness theorems for systems of partial differential
equations, Fluid dynamics and applied mathematics, Gordon and Breach, (1961).

R. Coifman and Y. Meyer, Commutateurs d’integrales singulieres et operateurs multi-
lineaires, Ann. Inst. Fourier Grenoble, 28 (1978), 177-202.

G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag,
(1976).

R. Dautray and J.L. Lions, Mathematical analysis and numerical methods for science
and technology, Springer-Verlag, 1-4 (1988).

F. John, Partial differential equations, Springer, (1982).

M. Eller, Carleman estimates with a Second large parameter, J. Math. Anal. Appl., 249
(2000), 491-514.

M. Eller, Carleman Estimates for some elliptic systems, J. of Physics Conf. Series, 124
(2008), 012023.

M. Eller and V. Isakov, Carleman estimates with two large parameters and applications,
Contemp. Math., AMS, 268 (2000), 117-137.

M. Eller, V. Isakov, G. Nakamura, and D. Tataru, Uniqueness and stability in the
Cauchy problem for the Mazwell’s and elasticity systems, College de France Seminar,
14, Studies in Appl. Math., 31 (2002), 329-349.

L. Hérmander, Linear Partial Differential Operators, Springer-Verlag, (1963).

L. Hormander, The analysis of linear partial differential operators, Springer-Verlag, 1-4
(1983).

99



[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[20]

[27]

28]

LIST OF REFERENCES (continued)

O. Imanuvilov, V. Isakov, and M. Yamamoto, An inverse problem for the dynamical
Lamé system with two sets of boundary data, Comm. Pure Appl. Math., 56 (2003),
1-17.

V. Isakov, A Nonhyperbolic Cauchy Problem for [, . and its Applications to Elasticity
Theory, Comm. Pure Appl. Math., 39 (1986), 747-769.

V. Isakov, On the uniqueness of the continuation for a thermoelasticity system, SIAM
J. Math. Anal., 33 (2001), 509-522.

V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New
York, (2005).

V. Isakov and N. Kim, Carleman estimates with two large parameters for second order
operators and applications to elasticity with residual stress, Applicationes Mathematicae,

35 (2008), 447-465.

V. Isakov and N. Kim, Carleman estimates with second large parameter for second
order operators, Some application of Sobolev spaces to PDEs, International Math. Ser.,
Springer-Verlag, 10 (2009), 135-1509.

V. Isakov and N. Kim, Global uniqueness and Lipschitz stability of residual stress from
one boundary measurement, ESAIM: Proc., 26 (2009), 45-54.

V. Isakov and N. Kim, Weak Carleman estimates with large parameters for second
order operators and applications to elasticity with residual stress, Discrete Cont. Dyn.

Systems-A, 27 (2010), 799-825.

V. Isakov, G. Nakamura, and J.-N. Wang, Uniqueness and stability in the Cauchy prob-
lem for the elasticity system with residual stress, Contemp. Math., AMS, 333 (2003),
99-113.

V. Isakov, J.-N. Wang, and M. Yamamoto, Uniqueness and stability of determining the
residual stress by one measurement, Comm. Part. Diff. Equat., 23 (2007), 833-848.

V. Isakov, J.-N. Wang, and M. Yamamoto, An inverse problem for a dynamical Lamé
system with residual stress, STAM J. Math. Anal, (2007), 1328-1343.

A. Khaidarov, Carleman estimates and inverse problems for second order hyperbolic
equations, Math. USSR Sbornik, 58 (1987), 267-277.

A. Khaidarov, On stability estimates in multidimensional inverse problems for differen-
tial equations, Soviet Math. Dokl, 38 (1989), 614-617.

100



LIST OF REFERENCES (continued)

[29] O.A. Ladyzenskaja and N.N. Uraltseva, Linear and quasilinear elliptic equations, New
York, Academic, (1968).

[30] I. Lasiecka, R. Triggiani, and P.F. Yao, Inverse/observability estimates for second order
hyperbolic equations with variable coefficients, J. Math. Anal. Appl., 235 (2000), 13-57.

[31] J. Lions and E. Magenes, Non-Homogeneous boundary value problems, Springer, (1972).

[32] C.-S. Man, Hartig’s law and linear elasticity with initial stress, Inverse Problems, 14
(1998), 313-320.

[33] L. Rachelle, Uniqueness in Inverse Problems for Elastic Media with Residual Stress,
Comm. Part. Diff. Equat., 28 (2003), 1787-1806.

[34] V. Romanov, Carleman estimates for second-order hyperbolic equations, Sib. Math. J.,
47 (2006), 135-151.

[35] E. Stein, Singular integrals and Differentiability properties of functions, Princeton uni-
versity press, (1970).

101



	Introduction
	Preliminaries
	Spaces of functions
	Fourier transforms and differential operators
	Differential quadratic forms
	Pseudo-convexity and Carleman estimates
	Elasticity system 
	Energy estimates

	Carleman estimates for a general second order operator
	Pseudo-convexity condition for a general second order operator
	Divergent form F
	Strong Carleman estimates for scalar operators
	Weak Carleman estimates for scalar operators

	Carleman estimates for elasticity system with residual stress
	Reduction to extended principally triangular system
	Strong Carleman estimate for a general elasticity system
	Weak Carleman estimate for a general elasticity system

	Uniqueness of continuation for solutions of partial differential equations
	Hölder stability in the Cauchy problem
	Lipschitz stability in the Cauchy problem

	Inverse problem
	Hölder stability for the residual stress
	Lipschitz stability for the residual stress

	Conclusion
	REFERENCES

